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To every ω-consistent recursive class κ of formulae, there correspond recursive class
signs r , such that neither (v Gen r) nor Neg(v Gen r) belongs to Flg(κ), where v is the
free variable of r .1

(Any not-too-weak consistent formal theory, in particular any reasonable formalization
of number theory, cannot prove everything that is true; i.e., such a theory is necessarily
incomplete.)

– Gödel’s first incompleteness (undecidability) theorem, 1931

In any not-too-weak formal theory, the formalization of consistency implies the Gödel
sentence, which is unprovable if the formal theory is consistent.

(If the formal theory is consistent, then its consistency cannot be proved within the
formal theory.)

– Gödel’s second incompleteness theorem, 1931

1 See: http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html.
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Foreword

While I was writing some words to say about Professor Kurt Gödel’s major works for
his 2006 centenary celebration at the University of Vienna, it suddenly came to me
that for everyone who gathered in his honor, Gödel’s extraordinary contributions to and
tremendous influence on mathematics would be something of which we were already
deeply aware. Thinking that perhaps a repeat of Gödel’s results would be unnecessary
with this group, I decided to share some of my own personal memories that are recalled
when I remember Professor Gödel.

I met Gödel for the first time at the Institute for Advanced Study in Princeton in
January 1959, when he was fifty-two years old. At the time, I was a very young thirty-
two-year-old whose only interest was my own problem within logic; I knew little of
logic as a whole. Throughout my first stay in Princeton, Gödel taught me many new
ideas, specifically about nonstandard models and large cardinals. On certain occasions,
he would lead me to the library and show me the precise page of a book on which
a pertinent theorem was presented, and he advised me on which books I should be
reading. He even counseled me that I needed to improve my English to communicate
with other mathematicians.

Gödel showed a keen interest in the problem on which I was working then: my
fundamental conjecture, that is, the cut elimination theorem on the generalized logic
calculus, which is the higher type extension of Gentzen’s logistischer klassischer Kalkül
sequent calculus, as introduced in 1934. At first, Gödel thought that one could find a
counterexample using his incompleteness theorem or a nonstandard model. He thought
that there must be a counterexample in every impredicative case, that is, a similar
situation to my problem in the way that the incompleteness theorem holds. Interestingly,
my fundamental conjecture trivially holds in the very impredicative cases. Professor
Gödel was surprised to find this and became intrigued with my conjecture. He thought it
would help my work if I could meet with Professor Kurt Schutte, whom he immediately
invited to the institute. Professor Schutte found the model-theoretic formulation of my
fundamental conjecture. Dr. Takahashi’s and Dr. Pravitz’s later works, which proved
my conjecture, were based on Professor Schutte’s result. Professor Gödel’s insight was
correct.
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xiv foreword

In my later visits with Gödel, we discussed the more philosophical aspects of logic.
He seemed to believe that the cardinality of the continuum is small. His theory was that
if one assumes the existence of a “beautiful scale” in the real numbers, this conclusion
is inevitable. Although I had a hard time understanding this idea, our discussions were
stimulating and gave me tremendous pleasure. I wish now that I had pursued his ideas
further. My hope is that future generations will take up his many interesting concepts
and develop them.

It would be Kurt Gödel’s greatest delight to see how his ideas are alive and remain
the cornerstones of modern logic more than thirty years after his death. Going further
back in time, in a letter to Robert Hooke dated February 5, 1675, Sir Isaac Newton
wrote of his own discoveries, “If I have seen further it is by standing on the shoulders
of giants.”1 I believe this applies to all who gathered in 2006 and to those who have
contributed their work to this volume – for Professor Gödel, although very shy, was
truly a giant.

It was in the spirit of acknowledging Professor Gödel’s ever-searching imagination
and philosophical open-mindedness that the historic 2006 meeting took place and that
this book was written. No doubt the legacy of the centenary and this volume will
serve as an inspiration for yet other generations of mathematicians (and philosophers).
Although I very much regretted that for reasons of health, I could not attend the 2006
celebration, I enthusiastically shared from afar the timeless spirit of Kurt Gödel, which
lives on in this book and in our minds.

Gaisi Takeuti
Professor of Mathematics, Emeritus,
Department of Mathematics, University of Illinois,
Urbana-Champaign, United States, and
former President, Kurt Gödel Society,
Vienna, Austria

1 http://www.quotationspage.com/quotes/Isaac Newton/.



Preface

Kurt Gödel and the Foundations of Mathematics: Horizons of Truth is the culmination
of a creative research initiative coorganized by the Kurt Gödel Society, Vienna; the
Institute for Experimental Physics; the Kurt Gödel Research Center; the Institute Vienna
Circle; the Vienna University of Technology; the Austrian Academy of Sciences; and
the Anton Zeilinger Group at the University of Vienna, where the Gödel centenary
celebratory symposium “Horizons of Truth: Logics, Foundations of Mathematics, and
the Quest for Understanding the Nature of Knowledge” was held from April 27 to
April 29, 2006.1

More than twenty invited world-renowned researchers in the fields of mathematics,
logic, computer science, physics, philosophy, theology, and the history of science at-
tended the symposium, giving the participants the remarkable opportunity to present
their ideas about Gödel’s work and its influence on various areas of intellectual en-
deavor. These fascinating interdisciplinary lectures provided new insights into Gödel’s
life and work and their implications for future generations of researchers.

The interaction among international scholars who only rarely, if ever, have the
opportunity to hold discussions in the same room – and some of whom almost never
write articles – has produced a book that contains chapters expanded and developed to
take advantage of the rich intellectual exchange that took place in Vienna. Written by
some of the most renowned figures of the scientific and academic world, the resulting
volume is an opus of current research and thinking that is built on the work and
inspiration of Gödel.

Several of the contributors were colleagues of or studied with Gödel: Gaisi Takeuti,
who contributed the foreword and offers warm remembrances of Gödel’s impact on
his work; Georg Kreisel, who contributed a detailed chapter on logic and foundations;
and Fields Medal winner Paul J. Cohen, who, sadly, died shortly after completing his
personal reflections for this volume.

1 See the symposium Web site for further information: http://www.logic.at/goedel2006/.
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Also, a number of other chapters in this volume contain extensive biographical
details about various aspects of Gödel’s life and work to supplement the technical
discussions. In addition, we include a short biography of Gödel’s life that contains
additional biographical resources and a select bibliography of his seminal works,
which are frequently cited throughout this book.

The main content of the volume is divided into the following three major parts,
broken down further into subparts to highlight the multidimensional impact of Gödel’s
contributions to academic advancement:

I Historical Context: Gödel’s Contributions and Accomplishments
Gödel’s Historical, Philosophical, and Scientific Work

Gödel’s Legacy: A Historical Perspective
The Past and Future of Computation

Gödelian Cosmology

II A Wider Vision: The Interdisciplinary, Philosophical, and Theological
Implications of Gödel’s Work

On the Unknowables
Gödel and the Mathematics of Philosophy

Gödel and Philosophical Theology
Gödel and the Human Mind

III New Frontiers: Beyond Gödel’s Work in Mathematics and Symbolic Logic
Extending Gödel’s Work
The Realm of Set Theory

Gödel and the Higher Infinite
Gödel and Computer Science

These topics cover not only the technical aspects of Gödel’s work and its legacy
but also the profoundly reflective aspects of his thinking, augmenting the appeal of the
book and ensuring its interest to both a specialized and a multidisciplinary readership.

Because of the stature and diverse research areas of the contributors, we believe this
book will appeal not only to mathematicians and logicians but also to computer sci-
entists, physicists, astrophysicists, cosmologists, philosophers, theologians, historians
of science, and postdoctoral and graduate students working in these areas as well as to
educated and informed others interested in foundational questions.

We hope we have achieved our goal of creating a lasting impact on the academic
community by further advancing the legacy of a man without whose stunning contribu-
tions to mathematical logic our world’s intellectual culture certainly would have been
diminished.
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symposium in April 2006.

The symposium was sponsored by the John Templeton Foundation (JTF), United
States, which also provided the funding for this book.1 Additional funding for the
centenary symposium was provided in Austria by the Federation of Austrian Industry;
the Federal Ministry of Infrastructure; the Federal Ministry of Education, Science, and
Culture; the city of Vienna; and the Austrian Mathematical Society. We also thank the
Microsoft Corporation for its contribution.

The editors wish to acknowledge the contributions of a number of individuals who
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Short Biography of Kurt Gödel

Gödel seated in the Mathematics–Natural Sciences Library at Fuld Hall, Institute for Advanced
Study, Princeton, New Jersey, 1963. Photograph by Alfred Eisenstaedt from the Time and Life
Pictures collection. Reproduced with permission from Getty Images.

Gödel’s signature. The electronic signature is used with permission from the Institute for
Advanced Study.

Kurt Friedrich Gödel is considered one of the most outstanding mathematical logicians
of the twentieth century and is thought by many to be the greatest logician since
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Aristotle. He was born on April 28, 1906, in what was then Brünn in the Austro-
Hungarian Monarchy and today is Brno in the Czech Republic. After attending school
in Brünn and graduating with honors, he enrolled at the University of Vienna in 1923
with the original intention of studying physics. He attended lectures on number theory
by professor Philipp Furtwängler, who, paralyzed from the neck down, lectured from
his wheelchair. Thereafter Gödel became interested in mathematical logic, the field to
which he would make his major contributions. As a student, he also attended meetings
of what would later become the Vienna Circle (Wiener Kreis), a group composed
mainly of philosophers that met to discuss foundational problems, inspired by Ludwig
Wittgenstein’s Tractatus Logico-Philosophicus. The group focused on questions of
language and meaning and logical relations such as entailment, originating logical
positivism (logical empiricism). Led by Moritz Schlick, who was later murdered by
a deranged former student in 1936 at the University of Vienna, its members included
Rudolf Carnap, Otto Neurath, Carl Hempel, Hans Reichenbach, Hans Hahn, Karl
Menger, and others. A Platonist from an early age, Gödel disagreed with many of
his colleagues’ views, yet the Vienna Circle had a major influence on his thinking. In
his doctoral dissertation, written under the supervision of Hans Hahn, he proved the
completeness of first-order predicate logic with identity, which states that any sentence
that holds in every model of the logic is derivable in the logic. His dissertation was
finished in 1929, and the result was published in 1930.

Also in 1930, at a meeting in Königsberg (David Hilbert’s hometown) on September
7 that was attended by, among others, John von Neumann, Gödel, still in his mid-
twenties, announced his work demonstrating that systems of mathematics have limits.
In particular, he showed that any not-too-weak consistent formal theory (say, any
reasonable formalization of number theory) cannot prove everything that is true; that
is, such a theory is necessarily incomplete.

Gödel’s startling results in formal logic, considered landmarks of twentieth-century
logic, were published as the now-famous incompleteness theorems the following year,
in 1931, ending many years of attempts to find a set of axioms sufficient for all
mathematics and implying that not all mathematical questions are formally solvable in
a fixed system. Gödel demonstrated, in effect, that hopes of reducing mathematics to an
axiomatic system, as envisioned by mathematicians and philosophers at the turn of the
twentieth century, were in vain. His findings put an end to the logicist efforts of Bertrand
Russell and Alfred North Whitehead and demonstrated the severe limitations of David
Hilbert’s program for arithmetic. In the introduction to his 1931 paper, Gödel stated:

It is well known that the development of mathematics in the direction of greater precision
has led to the formalization of extensive mathematical domains, in the sense that proofs
can be carried out according to a few mechanical rules. . . . It is reasonable therefore to
make the conjecture that these axioms and rules of inference are also sufficient to decide
all mathematical questions, which can be formally expressed in the given systems. In
what follows it will be shown that this is not the case.1

In addition to his proof of the incompleteness of formal number theory, Gödel (1938,
1939, 1953, 1990) published proofs of the relative consistency of the axiom of choice

1 See Gödel (1931) and http://www.ias.edu/people/godel.
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Gödel with Einstein at the Institute for Advanced Study, early 1950s. Photograph by Richard
F. Arens. From the Shelby White and Leon Levy Archives Center, Institute for Advanced Study,
Princeton, New Jersey. Reproduced with permission.

and of the generalized continuum hypothesis. His findings strongly influenced the
(later) discovery that a computer can never be programmed to answer all mathematical
questions.

After obtaining his Habilitation, Gödel joined the faculty of the University of Vienna
in 1930, becoming a Privatdozent (unsalaried lecturer) in 1933. He would remain there
until the Anschluss in 1938, when Austria became part of Nazi Germany. During the
1930s, he made several visits abroad: to the Institute of Advanced Study in Princeton
(1933–1934, 1935, and 1938), where he would eventually settle; to the University of
Göttingen (1938), where he gave lectures on set theory; and to the University of Notre
Dame (1939), where he worked with the newly emigrated Karl Menger. By 1938,
Gödel saw that his position as Privatdozent would not be continued, and he feared that
he would be drafted into the army. He left Europe with his wife via the Trans-Siberian
Railway in January 1940; they arrived in San Francisco by ship on March 4. They
would never return to Austria.

In Princeton, Gödel joined the Institute for Advanced Study, where he was profes-
sor in the School of Mathematics from 1953 until 1976, when he became professor
emeritus, holding the mathematics chair until his death from malnutrition on January
14, 1978. There Gödel’s interests turned increasingly to philosophy and physics. In the
1940s, he was able to demonstrate the existence of paradoxical solutions to Einstein’s
field equations in the theory of general relativity, which allowed for the possibility of
time travel into the past. Gödel’s theorems and other theoretical explorations in physics
and philosophy helped usher in the age of computer technology, influencing the inno-
vative work of John von Neumann, Alan Turing, and others in computer science that
has so profoundly influenced the world and our attempts to understand and manage it.2

Gödel’s last published paper appeared in 1958.

2 In fact, the most prestigious award for a research contribution in theoretical computer science is called the
“Gödel Prize.”
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During his life, Gödel received several prizes and honorary doctorates and member-
ships (and rejected some others). Among them were the Institute for Advanced Study’s
Einstein Award (1951) as well as the National Medal of Science (in the disciplines of
mathematics and computer science) from President Ford (1974) for “laying the foun-
dation for today’s flourishing study of mathematical logic.” Gödel received honorary
doctorates from Yale, Harvard, and Rockefeller universities and from Amherst College.
He was a member of the National Academy of Sciences of the United States, a foreign
member of the Royal Society of London, a corresponding member of the Institute of
France, a corresponding Fellow of the British Academy, and an honorary member of
the London Mathematical Society. In 2000, Time magazine included Gödel among its
top one hundred most influential thinkers of the twentieth century.

As noted in the editors’ preface, a number of chapters in this volume contain exten-
sive biographical details about various aspects of Gödel’s life and work to supplement
the technical discussions. In the following, we provide additional biographical re-
sources and a select bibliography of Gödel’s seminal works, which are frequently cited
throughout this book.

Additional Biographical Resources

Dawson, John W. Jr. Logical Dilemmas: The Life and Work of Kurt Gödel. Wellesley, MA: A K
Peters, 1997.

Institute for Advanced Study. http://www.ias.edu/people/godel.
Kurt Gödel Papers. Princeton University Library Manuscripts Division. http://diglib.princeton.edu/

ead/getEad?id=ark:/88435/v979v310g#bioghist.
Kurt Gödel Society. http://kgs.logic.at/index.php?id=23.
Sigmund, Karl, and John Dawson. Gödel’s Jahrhundert Ausstellung (Gödel’s Centenary Exhibition).

http://www.goedelexhibition.at/start/.
Sigmund, Karl, John Dawson, and Kurt Mühlberger. Kurt Gödel: The Album. Wiesbaden, Germany:

Vieweg, 2006. (Available in German and English)

Select Bibliography of Gödel’s Seminal Works

Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für
Mathematik und Physik, 37, 349–60. [Published PhD diss.]

. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I. Monatshefte für Mathematik und Physik, 38, 173–98. [English trans. J. van Heijenoort,
ed. (1967). From Frege to Gödel: A Source Book on Mathematical Logic. Cambridge, MA:
Harvard University Press, pp. 596–616. Repr. with facing English trans. On formally undecidable
propositions of Principia Mathematica and related systems. I. In Collected Works, vol. 1 (1986),
pp. 145–95.]

. (1938). The consistency of the axiom of choice and of the generalized continuum-hypothesis.
Proceedings of the National Academy of Sciences of the United States of America, 24, 556–7. [Also
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CHAPTER 1

The Impact of Gödel’s
Incompleteness Theorems

on Mathematics

Angus Macintyre

The Incompleteness Theorems are best known for interpretations put on them beyond –
sometimes far beyond – mathematics, as in the Turing Test, or Gödel’s belated claims
in the Gibbs Lecture, or in Penrose’s more recent work. In this chapter, the emphasis
is much narrower, in contrast to the title of the 2006 Gödel Centenary Conference
in Vienna – “Horizons of Truth: Logics, Foundations of Mathematics, and the Quest
for Understanding the Nature of Knowledge” – that preceded the development of this
volume. What is discussed here is almost exclusively the impact on pure mathematics.

That the 1931 paper had a broad impact on popular culture is clear. In contrast,
the impact on mathematics beyond mathematical logic has been so restricted that it
is feasible to survey the areas of mathematics in which ideas coming from Gödel
have some relevance. My original purpose in my presentation at the conference was
simply to give such a survey, with a view to increasing resistance to the cult of
impotence that persists in the literature around Gödel. After the Vienna meeting,
Kreisel persuaded me to write an appendix providing some justification for claims I
had made concerning formalizing in First-Order Peano Arithmetic (PA) Wiles’ proof of
Fermat’s Last Theorem. Our discussions on this have, in turn, affected Kreisel’s (2008)
paper, which provides indispensable proof-theoretic background for the appendix.

The Incompleteness Theorems and their proofs are strikingly original mathematics,
with something of the charm of Cantor’s first work in set theory. The original presen-
tation is free of any distracting reference to earlier mathematics. Unique factorization
is used (not proved), but what is used of the Chinese Remainder Theorem is proved. In
fact, the paper would have lost little of its drama if the definability of exponentiation
from addition and multiplication had been missed. However, this has always seemed
to me the prettiest part of the paper, and nearly forty years passed before this definition
was refined in the negative solution of Hilbert’s 10th problem.

The grand event in Vienna celebrated many aspects of Gödel’s work, but I find
it hard to imagine that such a popular event would have happened if Gödel had not
proved the Incompleteness Theorems of 1931 or had missed such a snappy proof. This
is said not to play down the drama and importance of his and Cohen’s work on the
continuum hypothesis (or Gödel’s work in cosmology). For popular scientific culture,
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the set-theoretic independence, however troubling or challenging, is less dramatic
than the general incompleteness phenomenon. In particular, it is hard to imagine the
set-theoretic independence alone giving rise to speculations about creativity. (To my
knowledge, the independence results for non-Euclidean geometry did not give rise to
such speculations, though they did lead to slogans about breakdown of intuitions.) The
classic set-theoretic independence results initiated a great, and still ongoing, creative
effort, leading to profound mathematics whose future development we can scarcely
guess. On the other hand, the technique of diagonalization, so much admired in popular
accounts, has had one infusion of new ideas, with the priority methods that first appeared
fifty years ago, but it has now gone rather a long time without startling developments.

1.1 His Contemporaries in Logic

I think that one can get a proper perspective on Gödel only by considering the work
of his exact contemporaries in logic because there is certainly a case to be made that
others had ideas and results that were to prove more fertile than Gödel’s. The relevant
points are as follows:

� Presburger’s work on the ordered abelian group Z, though neither as original nor as
difficult as Gödel’s work, is in no way dated. Here we have completeness of an intelligible
set of axioms, a useful quantifier elimination, and decidability. The result underlies much
of p-adic model theory and model-theoretic motivic integration (Denef and Loeser,
2001). There is extensive literature on the computer science side. Lately, Scowcroft
(2006) has refined the definability results to give connections to linear geometry and the
work of Weyl.

� Tarski’s work on real-closed fields (again, a completeness theorem) has inspired the
modern theory of o-minimality (see later), which has brought together model theory and
real analytic geometry and led to applications in Lie theory. In contrast, Tarski’s work
on truth, closer to Gödel’s work, has had little effect on mathematics beyond logic.

� Skolem had a broad mathematical range and made diverse, suggestive contributions to
logic. In the hands of an imaginative mathematician, the Löwenheim-Skolem theorem
can be very powerful. In addition, Skolem’s work on the ultrapower construction was of
exceptional originality and the origin of many fundamental results in pure model theory
and the model theory of arithmetic and set theory.

� Herbrand, before Gödel, and Gentzen, after Gödel, did the first (and still among the
best) combinatorial work in the transformation of proofs. At this time, Gödel was not
doing combinatorial proof theory but rather dramatic unprovability theory. The ideas
of Herbrand and Gentzen have been extensively developed in theoretical computer
science. On the other hand, functional interpretations, to which Gödel made major
contributions, have been very successful in the unwinding of proofs. Very elementary
considerations around growth rates of Herbrand terms, brought out by Kreisel, have
proved very efficient and memorable in unwinding bounds for the number of solutions
in the classical finiteness theorems (Luckhardt, 1996).

� Herbrand and Skolem made important contributions to the thriving number theory of
their time, Herbrand to ramification theory and cohomology and Skolem to p-adic
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analytic proofs of finiteness theorems for Diophantine equations. Gödel is known to
have attended advanced lectures on class field theory but used in his work no more than
the Chinese Remainder Theorem, the most primitive of all local-global principles. Julia
Robinson (1999) would need much more, around modern formulations of quadratic
reciprocity, in her definition of the integers in the rationals. Of course, Gödel’s use of
the Chinese Remainder Theorem, to code recursions, remained a central idea in the long
evolution of his ideas toward the solution of Hilbert’s 10th Problem.

� Ramsey’s Theorem, proved in connection with what is now regarded as a very peripheral
decision problem, was the starting point for combinatorial work that has flourished for
many years and is currently very rewarding in connection with harmonic analysis.
From the mid-1950s onward, the technology of indiscernibles has been involved in
many of the deepest proofs in mathematical logic. That a recursion-theoretic analysis of
Ramsey theory could be rewarding was not seen until the late 1960s (Specker, 1971).
Curiously, this analysis seems to have had no influence on the the discovery of “Ramsey
Incompleteness.”

1.2 The Mathematical Evolution of the Ideas

Despite the awe with which the results are still described, the basic ideas are easy and
were quickly adapted to obtain a number of striking consequences:

� Even before Gödel, work was under way on recursive definitions. Gödel provided the
central technique for negative results, but Turing gave the subject general interest by
providing a rigorous notion of machine and computation and by showing the equivalence
of his notion of computability to the rather less natural notions based on formal recursion
or lambda recursion. Again, Gödel contributed the main technique for proving noncom-
putability, from which Church readily proved undecidability of the decision problem for
first-order predicate calculus. The arithmetization technique was demystified, leading
to such notable results as Turing’s on universal machines. Somewhat later, one looked
at the finer structure of recursively enumerable sets, developed relative computability,
and posed the influential Post problem, whose solution led to the introduction of new
techniques of diagonalization.

� Rather more slowly, one moved toward the fine structure of definitions in arithmetic.
Here Gödel’s coding of recursions by the Chinese Remainder Theorem was central to
the repertoire, while being recognized as too weak on its own to yield undecidability
of Hilbert’s 10th problem. At the level of set theory, Tarski adapted Gödel’s diagonal
argument to get the classic results on undefinability of truth.

� After a while, one had the very polished treatment of undecidable theories in Tarski
(1968). The landmark problems, the word problem for groups and Hilbert’s 10th, posed
well before Gödel, took longer to solve. In the end, both negative solutions revealed
some unforeseen structure.

In the case of Hilbert’s 10th problem, there was certainly no reason to think it might
be decidable. At the time of Gödel’s first work, the only large-scale decidability was in
the area of quadratic forms (Siegel), and it took another thirty-five years before Baker’s
flexible method gave a variety of effective estimates, including a decision procedure for
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elliptic curves over Q. It still seems to me extremely optimistic to have expected that
all recursively enumerable sets should be Diophantine, and miraculous that it turned
out so. That said, it remains disappointing that so little has followed from the result.
Putnam’s neat observation that every Diophantine set is the set of positive values of a
polynomial gives the startling result that the set of primes is the set of positive values of a
polynomial (and one has been able to spell out such polynomials). But I think it fair to say
that the example remains merely striking, and there is no hint of any underlying theory
of such representations (e.g., in geometric terms). Again, one would have hoped that the
hardcore theory of recursively enumerable sets might by now have told us something
quite new and suggestive about Diophantine sets, but this has not happened, and it is
notable that no known method for the undecidability of Hilbert’s 10th problem gives any
information about the corresponding problem for the field of rationals. This makes it all
the more encouraging that Poonen (2009) has recently made the first serious progress
in that area for many years by showing that the integers have a universal-existential
definition in the rational field (improving the old result of Julia Robinson).

� Sarnak’s (2006) recent Rademacher lectures on solving equations in primes have an
interesting point of contact with the Putnam trick mentioned earlier. It turns out that to
get the right formulation of the rather deep theorems of these lectures, he has to allow
primes to be positive or negative. Forcing them to be positive would bring the pitfalls of
undecidability too close.

1.3 How the Number Theorists React to the Gödel Phenomenon

There has certainly been no cult of impotence. In the last thirty-five years, number
theory has made sensational progress, and the Gödel phenomenon has surely seemed
irrelevant. The number theorists are keenly aware of issues of effectivity (Hindry and
Silverman, 2000) and, indeed, of relative effectivity. Moreover, each of the classical
finiteness theorems is currently lacking expected effective information. However, there
is not the slightest shred of evidence of some deep-rooted ineffectivity. Some key points
are the following:

� The dimensions (of varieties) where unsolvability of Hilbert’s 10th problem sets in
are far beyond those where current, theory-driven research in number theory takes
place or concern varieties with no discernible structure. Lang says somewhere that no
undecidability is to be expected for abelian varieties. The sense (and plausibility) of this
is pretty clear, even if one can contrive undecidability results about abelian varieties, for
example, by considering period lattices with nonrecursive generators.

� The equations whose unsolvability is equivalent (after Gödel decoding) to consistency
statements have no visible structure and thus no special interest. Recall Gauss’s dismis-
sive remarks about the ad hoc nature of the Fermat equation. What we now appreciate in
Wiles’ great work is not that a specific family of equations has no nontrivial solution but
the link to modularity of elliptic curves over Q and the profound structure underlying
modularity. This has been followed, in an amazingly short time, by fundamental results
about Galois representations and the Langlands program (i.e., Sato-Tate conjecture,
Serre modularity conjecture).
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� The problem of deciding whether curves over Q have integer points is not yet known to be
decidable, but there is a bodyguard of theory, quite independent of logical considerations
and by now heavily supported by numerical evidence, that implies that undecidability
is not to be expected. Indeed, it is to be dreaded (and this is Shafarevich’s “gloomy
joke”) because of its implications for high theory. There are several proofs of Siegel’s
theorem, each with at least one region of current ineffectivity (Roth’s theorem or the
Mordell-Weil theorem). In the case of the Mordell-Weil theorem (needed for abelian
varieties in the standard proof of Siegel’s theorem), Manin (see Hindry and Silverman,
2000, 463) has shown that two dominant analytic conjectures imply effective bounds
for generators of the Mordell-Weil group and thereby remove one of the two regions of
ineffectivity. The first conjecture concerns the L-series of abelian varieties A over Q and
says, first, that the series has an analytic continuation to the whole complex plane and,
second, that it satisfies a standard functional equation involving the conductor N . By
modularity considerations, the conjecture is known to be true for elliptic curves over Q.
In general, if one assumes the analytic continuation, one then has the second conjecture,
of Birch and Swinnerton-Dyer, relating the order of vanishing at s = 1 to the rank of the
Mordell-Weil group and giving the leading term of the expansion around s = 1. Manin’s
proof involves showing how these two conjectures give a bound for the regulator and
thereby for generators of the Mordell-Weil group. Thus dominant analytic conjectures
reduce the ineffectivity to that coming from Roth’s theorem.

Kreisel has made me aware of the curious impact on Weil of issues around incom-
pleteness and undecidability. In 1929, before Gödel, as described in Weil (1980, 526), he
confronted issues of effectivity for elliptic curves and made little progress. Much later, in
the notes (Weil, 1980) provided for his Collected Works, Weil speculates about inherent
ineffectivity for the decision problem for curves and expresses the hope that progress in
mathematical logic will bring these problems within reach. It seems that he was unaware
of how devastating such ineffectivity would be for the edifice of conjectures in modern
arithmetic.

� Serre gives another perspective (1989, 99, remark 3). He derives Siegel’s theorem from
Mordell-Weil and an approximation theorem on abelian varieties. The latter is naturally
deduced from Mordell-Weil and Roth. Serre updates some observations of Weil and
remarks that from effective Mordell-Weil, one can dispense with Roth in favor of a
known abelian analogue of Baker’s lower bounds for linear forms in logarithms. Thus
it seems that the two analytic conjectures suffice to get the decidability of the decision
problem for curves.

� A propos of the decision problem for curves, the natural logical parameters of the
problem, such as number of variables and degree of polynomials involved, obscure
the geometrical notions (notably genus but also projective nonsingularity and Jacobian
varieties) that have proved indispensable to much research since Siegel’s work of 1929.
(I say “much” because some methods of Diophantine approximation are not naturally
described as geometric.) If one’s formalism obscures key ideas of the subject, one can
hardly expect logic alone to contribute much.

� There is no hint of incompleteness linked to classical analytic number theory. It was,
of course, natural to raise the issue of such incompleteness at the time when the prime
number theorem did not yet have an “elementary” proof. However, if one is familiar
with the standard analytic proofs, using, for example, analytic continuation, Kreisel’s
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sketches (1951, 1952a, 1952b) from the 1950s are totally convincing. Note, too, that
sketch here is anything but snide. Sketches are the appropriate medium for this kind
of mathematics. The whole enterprise is futile for those who do not know the analytic
proofs, whereas once one knows them, it typically requires little effort to reorganize the
proof into a weaker system. I recommend Kreisel’s brief account (2008).

� There is no hint of incompleteness (in the sense that one may need set theory) in the
work of Deligne on the Weil conjectures or Faltings on the Mordell conjecture. At the
Vienna meeting, I expressed confidence that the Wiles proof of Fermat’s last theorem
fits into PA. If the discussions on FOM (the “Foundations of Mathematics” moderated
e-mail list)1 are to be taken as representative of opinion among logicians, my claim
remains controversial. In the appendix to this chapter, I attempt to open some informed
discussion on the matter.

� The appendix is mainly concerned with the role of set theory in the formulation and/or
proof of modularity conjectures such as the restricted one used by Wiles in his proof
of Fermat’s last theorem. One goal is to show that the conjectures themselves are �0

1.
For this, it is crucial to use the input of Weil to the modularity conjecture, giving
precise formulations in terms of conductors (see Weil, 1999). Beyond this issue of
formulation, one has to survey proofs of modularity and show that each component can
be arithmetized. This is not at all a trivial enterprise, even if one aims only at an overview
of the proof.

We are fortunate to have the guide (Cornell et al., 1997) to the original proof. This
reveals a number of distinct regions of the proof, almost all hitherto unvisited by proof
theorists. These include Galois representations, distribution of primes, étale cohomology,
modular forms and functions, elliptic curves and their L-series, the analysis behind
Langlands’s theory (e.g., the proof of Langlands-Tunnell), and advanced commutative
algebra of noetherian rings. Even prior to all this, there is basic p-adic and adelic
analysis. Some but certainly not all this territory is known to some model theorists who
have learned something about definitions and uniformities therein. Moreover, this group
of people typically know a fair amount of complex analysis and geometry, and some are
accustomed to keeping track of the complexity of inductive arguments.

It is not clear to me what further useful proof-theoretic tool kit one has for the
preceding enterprise. I claim that there is no need for a proof of Wiles’ theorem (or
beyond, e.g., to the modularity theorem) of the use of strong second-order axioms with
existential quantifiers involved. The claim leaves open the question of the utility of
second-order formalism and of metatheorems (such as conservation results) formulated
in functional terms. It seems to me likely that these will be useful a little further down
the road, if enough logicians begin to pay attention to the structure of large-scale proofs
of the type of Wiles (Colin McLarty has recently circulated an interesting paper in this
area.) In addition, my own experience suggests that such a global structural analysis will
bring to light many local issues of model-theoretic and proof-theoretic interest. For my
own purposes, in getting the appendix written, I have relied (perhaps too exclusively)
on rules of thumb (and tricks of the trade) from model-theoretic algebra and the model
theory of PA and related systems. For a compact account of the basic proof-theoretic

1 See http://www.cs.nyu.edu/mailman/listinfo/fom/.
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issues, informed by over sixty years of case studies, one should consult Kreisel (2008).
Thus I choose to give arithmetic interpretations of, for example, those parts of real,
complex, or p-adic analysis (or topology) used in the proof.

� We are dealing with very specific functions, such as zeta functions, L-series, and modular
forms, that are directly connected to arithmetic. There is little difficulty in developing
the basics of complex analysis for these functions, on an arithmetic basis, sufficient
for classical arithmetical applications (e.g., Dirichlet’s theorem or the prime number
theorem) (Kreisel, 1952b), and for me, nothing would be gained by working in a
second-order formalism in a very weak system. At best, such systems codify elementary
arguments of general applicability. About more sophisticated analysis, as involved in
Langlands’s theory, I see no difficulty in principle, but one must be aware that this
analysis is much more delicate than the early analysis of classical analytic number
theory, and so one has simply got to go out and do it in arithmetic style. It seems to
me very unlikely that one will encounter in this part of the proof any inductions that
somehow involve either unlimitedly many first-order quantifier changes or second-order
quantifiers, the hallmarks of incompleteness.

� Given the complexity of the inductive arguments used in the foundations of étale coho-
mology, one would have to be more careful in that area, if one were using the theory for
general schemes, to get by with inductions of bounded complexity. Fairly extensive ex-
perience on the metamathematics of Frobenius leaves me confident of avoiding trouble
in any application (via the Weil conjectures) to varieties over finite fields (and in any
case, one does not need very general varieties in Wiles’ proof).

Étale cohomology of schemes can be used to prove the basic facts of the coefficients
of zeta functions of abelian varieties over finite fields, but there are more elementary
ways to get those results in PA. However, étale cohomology provides a huge variety of
Galois representations, and so any arithmetization of the latter theory is likely to need a
corresponding arithmetization of the former. Though I stress that such an arithmetization
is a distinctly nontrivial matter, I hasten to dissociate the problems therein from the
discussions on the FOM online forum suggesting that higher set theory (beyond ZFC)
might be needed for Wiles’ proof because of a perceived need for higher set theory in
the foundations of étale cohomology.

Fortunately, there is an FOM entry by Timothy Chow (2007) quoting an anonymous
number theorist on the daftness of such claims about higher set theory and étale coho-
mology. I urge the reader to seek out these remarks, which I expect to be very useful in
the enterprise of detaching the innocent from this cult of impotence.

� Again, existing work on model theory of various complete noetherian rings should give
confidence that one will find the right setting for the arguments in the deformation-
theoretic part of Wiles’ proof. This point and ones related to the last few sections are
developed in the appendix.

� I want to stress that it is by no means clear to me right now how much induction is needed
for a transcription of the mathematics of Cornell et al. (1997) to get a proof of Wiles’
theorem in PA. In particular, I think there is little evidence that bounded arithmetic plus
the totality of exponentiation would suffice. It is obvious that the latter proves some of
the basics around distribution of primes, but one has so little experience of more modern
mathematics in the system that one should be cautious.
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� In the appendix, I try to open a road to a proof of Fermat’s last theorem that does not use
set theory at all. Indeed, I seek to show that the modularity conjecture is itself arithmetical
and that its proof needs no set theory. It is not claimed, though I see no reason to doubt it,
that PA can reproduce the general theory of étale cohomology of varieties over number
fields and the resulting Galois representations. That general theory is not needed for
Wiles’ proof.

1.4 Group Theory

The evolution here is of particular interest. After the original proof by Novikov of the
unsolvability of the word problem, one had (in the Adjan-Rabin theorem) confirmation
that most classical decision problems about finitely presented groups are unsolvable.
Positive results were very rare in those days, mainly around the intricate small cancella-
tion theory, which had a geometrical interpretation (Lyndon and Schupp, 2004). Rather
later, in the 1980s, the important isomorphism problem for finitely generated nilpotent
groups was shown to be decidable by the essential use of the geometric and number-
theoretic ideas of Siegel (Grunewald and Segal, 1980a, 1980b). But for a while, the
emphasis was mainly on undecidability, and the tools from Gödel and his followers were
appropriate. In 1960, Higman (1961) gave a delightful shift of emphasis. He changed
the logical part of undecidability into something positive and versatile. In effect, he
took the neat observation from the 1940s on finite axiomatizability by extra predicates
and put it into group theory, by essential use of amalgamated products and other ba-
sics of the subject to prove that the finitely generated subgroups of finitely presented
groups are exactly the finitely generated, recursively presented groups. This became
a powerful tool for constructing pathological groups, and it yielded the existence of
universal finitely presented groups (in analogy with universal Turing machines). It
readily yielded characterizations of groups with solvable word problems, in terms free
of recursion theory. Yet Higman’s work was virtually the end of the importance of
Gödel’s ideas in combinatorial group theory. Serre’s work on trees gave a new perspec-
tive on amalgamation and HNN extensions. By the 1980s, the deep ideas of Gromov
around metrical and hyperbolic aspects of group theory had begun to penetrate the
subject. These relate to the geometry of small cancellation theory but are much more
conceptual. That the class of hyperbolic groups is quite restricted may be a defect from
the point of view of logic, but it is not at all from the standpoint of those who connect
geometry, topology, and group theory. For masterly accounts of how the subject looks
now, one should consult (Bridson, 2002; Bridson and Haefliger, 1999) and Bridson’s
recent ICM lecture (Bridson, 2007). Machines have not quite disappeared from the
scene, inasmuch as finite automata are basic.

My point here is that the ideas from Gödel were very important in establishing
the limitations of algorithmic methods for general finitely presented groups and got a
beautiful final version in Higman’s work but are now of little relevance. They delineate
the boundaries beyond which there are monsters (the monster itself is a highly structured
entity, connected to many currently central parts of mathematics). But one knows now
that the monsters are far away, and one has every confidence in the cordon sanitaire that
keeps them away from current research. There is no geometry visible in the pathology.
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In contrast, classically posed problems, such as that on the elementary theory of free
groups, are currently being analyzed positively through the essential use of geometric
or arboreal, as opposed to finite combinatorial, ideas (Sela, 2002).

1.5 Geometry and Dynamical Systems

There are two intriguing recent developments that appear to link a part of mainstream
geometry to classical Gödelian ideology. Both involve rather difficult mathematics and
give formulations in terms of classical recursion theory.

The first is the work of Nabutovsky and Weinberger (2000) (and see also the related
logical results in (Soare, 2004), which interprets surprisingly much of the working
of a Turing machine in the variational theory of Riemannian metrics on compact
manifolds of dimension at least five. Here, as Soare remarks in his useful account, one
is contributing to a very natural geometric classification problem using refined notions
of recursion theory. It is worth noting that no fuss is made about unprovability, although
one could surely torture the proof into an incompleteness proof. There is, however,
a remarkable example of a statement in differential geometry, with no reference to
recursion theory, whose only known proof uses recursion theory (Soare, 2004). Soare
chooses to stress the computability aspect, whereas it seems to me here that it is really
the delicate nature of the recursive construction that is important. (It is notable that
an early version of the work used the Sacks density theorem.) It is surely natural to
explore the possibilities of the techniques in lower dimensions.

The second is the work of Braverman and Yampolsky (2006), showing, within the
ideology of computable analysis, that there are quadratic Julia sets that are noncom-
putable relative to an oracle for the coefficients of the underlying quadratic polynomial.
(There are quadratic polynomials for which one has computability.) It would have been
startling had the problem turned out to be computable, but the proof, like most un-
decidability results for mainstream mathematical structures, is intricate and demands
detailed knowledge of central work in the specific subject matter. As of now, there is
less evidence of coding as refined as one sees in Nabutovsky and Weinberger (2000).
In contrast to the latter, the emphasis here is on noncomputability. In neither case do
we yet have a shift of emphasis as decisive as that for Higman’s theorem, identifying
a natural notion in recursion-theoretic terms.

1.6 Set Theory

Here there is no doubt that Gödel’s influence remains, and probably will remain, major.
The mathematical facts are quite evident. He gave a beautifully focused development of
the inner model L and, by an argument certainly not remote from that for Löwenheim-
Skolem, established that GCH and AC hold in L whether they hold in V . As with the
work on incompleteness, one is struck by the freshness of the work. ZF settles for
L, with ease, the issue of AC and CH (issues not to be clarified for ZF for another
twenty-five years). Yet Gödel missed some things about L that are important and were
not far away. As usual, I collect a few points:
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� His own methods show that GCH and AC have no advantage over ZF as far as provability
of arithmetic statements is concerned. This observation of Kreisel from the 1950s is
enough to ease certain concerns on the part of working mathematicians, mainly about
AC. Examples to which I have alluded elsewhere concern homotopy theory, where
Serre was well aware of his apparent appeal to AC via duality considerations, and the
Weil conjectures, where Deligne was loathe to use an embedding of the p-adics in the
complexes (Macintyre, 2005).

� Jensen’s work from the late 1960s shows how much more than CH is true in L. His work
is highly original and intricate but, in a real sense, elementary. The pattern is the same
as in the previous point. Gödel did not ask what more is true in L.

� We now understand, since Cohen (1966), an enormous range of models of ZFC and
profound implications from determinacy and the existence of large cardinals. The new
models are used not merely for independence results but sometimes in conjunction with
absoluteness results to prove results in ZFC. In fact, we now have a new branch of
advanced mathematics, notable for its beauty and coherence. What we do not have,
and in my opinion will not have, is any significant influence on other vigorous parts of
mathematics.

� Of course, some parts of mathematics have been affected by set-theoretic independence.
Many very difficult results have been obtained, but I feel that almost no surprises have
emerged (an exception being the link between Lebesgue measurability and consistency
of an inaccessible (Shelah, 1984), briefly discussed later). Abelian group theory and
general topology had each reached an impasse that was obviously set theoretical, and
after Cohen, one was able to show in most cases that there were immovable set-theoretic
obstructions to solving problems in the outer reaches of these subjects. My point is
simply that one must beware of exaggeration. If one knew these subjects, and set theory,
one really ought to have suspected that independence was inevitable in problems of
extremely general formulation. It is a mathematical achievement to confirm this, but I
do not regard this proliferation of independence results as in any real sense an impact
on thriving mathematics. I do not exclude that all this can change, but we have no clue
where to look for an example.

The Shelah result mentioned earlier is of quite a different nature. For the basic facts, a
useful reference is Miller’s (1989) review, which touches on the work of various authors,
for example, Raisonnier. At issue is the strength (but not simply consistency strength)
of the three properties Lebesgue measurability, the Baire property, and containing a
perfect set. There is an old and seemingly little-known result of Specker showing that if
all uncountable sets of reals contain a perfect set, then ω1 is inaccessible in L. There is
Solovay’s famous result that from the consistency of an inaccessible, there follows the
existence of a model of ZF +DC in which every set of reals is Lebesgue measurable,
every set of reals has the Baire property, and every uncountable set of reals contains a
perfect set. The startling results of Shelah produce a definable family of sets of reals,
indexed by reals, so that in any model of ZF +DC in which each set in the family
is Lebesgue measurable, ω1 is inaccessible in L. One can be much more explicit, as
Raissonier shows. In unexpected contrast, the assumption that all sets of reals have
the Baire property has no such implications. Indeed, any model of ZF has a generic
extension in which every set of reals has the Baire property. The main thing to emphasize
here is the very specific effect on L of a measurability assumption about sets of reals and
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the absence of such an effect for the notion of the Baire property (traditionally regarded
as cousin to the measurability notion).

1.7 Logical Form

It remains a popular goal to produce independent sentences (for some of the conven-
tional systems) of low logical complexity. I am not excited by this, mainly because my
own mathematical experience has taught me that there is normally little connection
between logical form and mathematical significance (compare the earlier remarks on
the decision problem for curves). I refer to my remark about the absence of any visi-
ble structure in the Gödel sentences. In number theory, it is usually hidden geometric
and/or analytic structure that determines relevance, and very little has happened in the
seventy-five years since 1931 to connect Gödel’s theory to geometry or analysis. It is
true that the work of Green and Tao on arithmetic progressions in the primes involves
very novel ideas closer to combinatorics, and it is certainly reasonable to go looking for
independence in this direction. I think it is fairly clear, though, that Gowers’s analytic
proof of the finite Szemeredi theorem can be fitted into PA.

1.8 Ramsey Independence

Ramsey’s work is arguably more influential than Gödel’s (and was done in the same
time period). The derived notion of indiscernibles is fundamental in all parts of logic,
most prominently in model and set theory (where it has deep links to truth definitions).
Thus it was an important event when, in the late 1970s, Paris, Kirby, and Harrington
discovered new forms of independent statements with no overt reference to Gödel
coding (though, in fact, the most famous new independence results were easily seen
to be equivalent to statements from the Gödel family). The new statements were seen
as mathematical in a way that the original Gödel sentences were not. There are other
differences. The Ramsey sentences are easily proved in set theory and do not iterate in
such a natural way as the Gödel ones. My own taste favors the link to hierarchies of
provably recursive functions and the point of view that the work gives us an illuminating
new perspective on Gentzen’s work and a better understanding of what can be done in
PA. The independence is the least structured aspect of it. I have never regarded PA as
in any way a privileged system.

1.9 “Topologie Moderee”

In central parts of mathematics, one does not go looking for monsters, and one does
not encourage them to intrude. One of the most deplorable effects of Gödel’s work is
the fixation with examining phenomena in utmost generality, in territory far beyond
mathematical civilization.

Grothendieck has stressed that the foundational efforts of the analysts and general
topologists create structures that are irrelevant or distracting for geometry, and indeed
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for mathematics in the tradition of Riemann or Poincare, where algebraic topology
gives the perspective. We now know (and on this, logicians and geometers interact)
that there are extensive non-Gödelian (un-Gödelian?) territories in mathematics, where
the category of definable sets is rich enough to support most of the constructions of
algebraic and differential topology but moderate enough that Gödelian pathologies are
avoided (van den Dries, 1998). Of course, one has to go deeply into specifics to get
these universes, whereas Gödel’s theory is all purpose in most of its applications.

1.10 Conclusion

As far as incompleteness is concerned, its remote presence has little effect on current
mathematics. Some of the techniques that originated in Gödel’s early work (and in
the work of his contemporaries) remain central in logic and occasionally in work
connecting logic and the rest of mathematics. The long-known connections between
Diophantine equations, or combinatorics, and consistency statements in set theory seem
to have little to do with major structural issues in arithmetic. That PA is entirely natural
in the context of finite combinatorics can hardly be denied, but no one has succeeded
in crossing the gap between finite combinatorics and arithmetic (especially arithmetic
geometry). As far as the geometry of sufficiently general Riemannian manifolds is
concerned, techniques descended from Gödel have proved illuminating (Soare, 2004),
without the results being sold as “natural independence.”

Appendix: Modularity, Fermat’s Last Theorem, and PA

At present, all roads to a proof of Fermat’s last theorem (FLT) pass through some
version of a modularity theorem (generically, MT) about elliptic curves defined over
Q. The network of ideas around modularity is extremely intricate, involving (inter alia)
analytic number theory, algebraic and arithmetic geometry, Galois theory, and advanced
commutative algebra of deformation theory. A casual look at the literature may suggest
that in the formulation of MT (or in some of the arguments proving whatever version
of MT is required), there is essential appeal to higher-order quantification over one of
the following:

� C
� modular forms
� p-adic fields
� the topological group Gal(Q)
� Galois representations
� coefficient rings in the sense of [41]

If one does not look at a proof of MT, one can do little logically except give a
superficial formulation of MT as a �l

m statement (for l and m not very large and l ≥ 1).
FLT itself is known to be�0

1 (and indeed without bounded quantifiers, by Matejasevic).
We all know that true higher-order sentences may imply �0

1 sentences unprovable in
PA. There is, however, no evidence whatsoever that something of this kind is going
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on here. The original purpose of this appendix was to give good reasons for believing
that the current proof(s) of FLT can be modified, without abandoning the grand lines
of such proofs, to proofs in PA. There is no possibility of giving a detailed account
in a few pages. I hope nevertheless that the present account will convince all except
professional skeptics that MT is really�0

1. For now, I make a few introductory remarks.

A1 Flavors of Incompleteness

In contrast to the situation in set theory, where one has very powerful and varied
techniques for constructing models of ZFC, one has very limited means for obtaining
incompleteness results for formal systems of arithmetic. On one hand, there are the
original Gödel examples, which can be decided easily using natural set-theoretic argu-
ments involving truth definitions and rather less easily using Gentzen’s deeper ideas
in proof theory. On the other hand, there are combinatorial principles of Ramsey type,
involving indiscernibles. Though these were not formulated until the mid-1970s, one
had known earlier (in set theory) the connection between truth definitions and indis-
cernibles. It was thus very satisfying when Ketonen and Solovay (1981) revealed the
fine structure underlying both the Paris-Harrington statement and the Gentzen analysis.
As I read this history, as of now, we have met arithmetic incompleteness only via either
(1) explicit use of higher-order principles or (2) finite combinatorics of Ramsey type.
As regards the latter, there is no trace of it in the literature around MT. As regards
the former, there is much overt use of higher-order notions (e.g., from the list given
earlier), and the main point of what follows is that there is no need for this higher-order
apparatus as far as FLT is concerned. Moreover, MT itself can be faithfully formulated
without higher-order quantification, but to see this, one must do some analysis of proofs
(but not necessarily a proof-theoretic analysis).

A2 Finite Approximations

R, C, Qp, Gal(Q), and the Tate modules [14] are all completions of finitist arithmeti-
cal structures. A substantial amount of their first-order theories admits natural finite
approximations that do not quantify over second-order entities. Putting proofs of MT
into PA will involve finding finite approximations of MT and of all the other principles
that go into its proof.

Nearly sixty years ago, Kreisel (1952b), considered such approximations in the basic
theory of complex analytic functions. One use of the ideas is to dispel any illusions
that the basic techniques of complex analysis, such as are used in the analytic proof of
the prime number theorem, have inherently second-order aspects when applied to the
classical functions. Kreisel’s observations are still useful in the much more complex
context of MT.

In that context, one considers modular forms for congruence subgroups� (Rohrlich,
1997). The� will be parameterized (coded) by integersN , and the set of corresponding
cusp forms will form a finite-dimensional space over C, with dimension computable,
in terms of N , by Riemann-Roch (Diamond and Schulman, 2005; Rohrlich, 1997).
An essential point in the modularity theory, equally essential in any useful logical
analysis, is that there is a canonical basis (of new forms) whose Fourier coefficients
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are algebraic integers. Moreover, the array of Fourier coefficients for this basis will be
�0 in N . These Fourier series are the important ones in (the formulation of) MT. The
general complex combinations of them are not needed in the formulation of MT.

Kreisel’s observations apply efficiently to the basic theory of modular forms and their
associated Dirichlet series, but deeper complex-analytic considerations are involved in
the proof of MT via the proof of the Langlands-Tunnell theorem. This concerns two-
dimensional complex representations ρ of the Weil group of an arbitrary number field
F , with the image of ρ in PGL2(C) solvable. The precise statement, is at first glance,
logically very complex (again, an illusion), but the main point here is rather to see and
understand the complexity of the proof and, in particular, the use of the trace formula.
Gelbart sketches the complex argument in Gelbart (1997), and inspection shows no
hint of higher-order maneuvers or associated obstruction to finite approximation. At
the same time, I concede that spelling out the finite approximations would be a lengthy
enterprise, and here it would be useful to have some metatheorems to apply. Gelbart
stresses some delicate aspects of the complex analysis, but these have nothing to do with
higher-order logic. There is no evidence at all that base change or the trace formula has
any essentially higher-order content. It may be instructive, and is certainly fascinating,
to read Langlands on Arthur’s work (Langlands, 2001).

I have let ideas get a little out of order to fix attention first on the complex analytic
aspects, where logical hygiene was put in place a long time ago (Kreisel, 1952b). Now
I turn to nonanalytic infinitistic aspects.

A3 Galois Theory

For any field K , Gal(K) is the group of automorphisms of Kalg (the algebraic closure
of K) over K , with the usual Krull topology. This is a compact, totally disconnected
group. First-order quantification over Gal(K) is certainly not interpretable in K , but
there is a basic apparatus of finite approximation, the Cherlin–van den Dries–Macintyre
(CDM) method (Cherlin et al., 1981), which gives natural first-order interpretations of
central concepts in the infinite Galois theory. In particular, this can be done in PA for
Gal(Q) and uniformly for Gal(Fp) for p prime.

A4 The p-adic Fields

It is routine to develop in PA, uniformly in p and n, the theory of congruences modulo
pn. But as for Gal(Q), one cannot literally interpret, uniformly or not, the completions
Zp and the corresponding Qp. It is, however, quite evident how to establish natural,
and extensive, finite approximations. Indeed, for classical algebraic questions, one can
do a great deal more by arithmetizing the Ax-Kochen-Ershov theory (Ax and Kochen,
1965a, 1965b, 1966; Eršov, 1965), working, for example, with internal versions of the
algebraic p-adics.

Moreover – and this is crucial for what follows – one may develop in PA the basics
of the Frobenius automorphisms of Fpn , the elements of the theory of decomposition
and inertia groups, ramification (for number fields), and Cebotarev’s theorem.

Going further, one may interpret even the Krull-Galois theory of the Qp uniformly.
One may show in PA that Qp is elementarily equivalent to its subfield of algebraic
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elements and that any finite extension of Qp is obtained by adjoining an absolutely
algebraic number (and that there are only finitely many extensions of each degree). From
this, one shows, in PA, the existence of a unique conjugacy class of closed subgroup H
of Gal(Q) with Fix(H ) elementary equivalent to Qp so that H is naturally isomorphic
to Gal(Qp). (This is a model-theoretic addendum to Mazur’s (1997) discussion in
Cornell (1997). If one has a continuous representation ρ from Gal(Q) to Mn(A), with
A being a topological ring, this gives an equivalence class of representations from
Gal(Qp) to Mn(A), with an unambiguous notion of the trace of ρ(σ ), for each σ in
Gal(Qp).

It is standard that Gal(Qp) acts on the residue field (the algebraic closure of Fp) of
the algebraic closure of Q (up to the conjugacies mentioned earlier), yielding an exact
diagram

1 → Ip → Gal(Qp) → Gal(Fp) → 1,

with Ip being the inertia subgroup of Gal(Qp). Gal(Fp) has the canonical PA-definable
Frobenius generator Frobp. This lifts to Gal(Qp) only modulo Ip. If ρ is trivial on Ip (a
notion independent of the conjugacy class) – in which case, we say that ρ is unramified
at p – we can write unambiguously up to conjugacy Frobp for any lifting of the element
Frobp of Gal(Fp), and we have an unambiguous notion of the value of trace Frobp.

In certain basic cases, we have a natural way of coding (in PA) continuous Ga-
lois representations. One is when the representations are complex. Because the Krull
topology is totally disconnected and the complex topology is connected, any ρ must
have finite image and be trivial on some Gal(K) for K a finite extension of Q. K can
clearly be coded, as can the finite subset that is the image, and thus (the details are not
important at this level of discussion) one codes ρ. A similar argument works for the
case in which the image of ρ is given as finite, as in the residual representations to be
defined later.

When A is a coefficient ring in the sense of Mazur with residue field Fq , we have
an induced residual representation ρ̄p to Mn(Fp). We say that ρ is a lifting of the
corresponding residual representation. This notion is of fundamental importance. The
basic equivalence for

ρ, ρ ′ : Gal(Q) → GLn(A)

is that there exists M such that

ρ ′ = M−1ρM, where M = 1 mod mA.

Then a deformation of ρ0 is an equivalence class of liftings.

A5 Some of the Number-Theoretic Notions
and Their Logical Aspects

Stevens (1997) gives a clear, compact account of the large-scale structure of Wiles’
proof. I refer to his article for the notions of (1) determinant, (2) cyclotomic character
χp, (3) odd, (4) flat, and (5) absolutely irreducible. All these, and many more given
subsequently, are needed in the statement and proof of Wiles’ version of MT.
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The fundamental Galois representations attached to an elliptic curve E defined over
Q are those connected with l-torsion for a prime l. The Tate module for l is defined by

(T )l(E) = lim← E[pn],

and it is isomorphic to Zl
2. Gal(Q) acts naturally on the Tate module, giving a repre-

sentation

ρE : Gal(Q) → GL2(Zp)

and residual

ρ̄ : Gal(Q) → GL2(Fp).

Again, for the preceding profinite structures, there is a simple apparatus of finite
approximation.

The remaining arithmetically definable invariants of E (in fact, they are �0) are
discriminant, minimal discriminant �E , and conductor NE . The only real subtlety, as
far as getting these definitions �0, concerns the 2-adic and 3-adic exponents of the
conductor, where one has to take account of the work of Ogg and Tate (Tate, 1974).
I will give details in a later account (the point being to paraphrase the language of
group schemes, adapting the presentation used by Edixhoven (1997)). Then one has
the general theorem, involving no fundamental difficulties as far as formulation or
proof in PA is concerned.

Theorem A5.1 (Stevens, 1997, 6) Let ρE, p be the p-adic Galois representa-
tion associated with an elliptic curve E/Q, and let NE be the conductor of E.
Then
� the determinant of ρE, p is χp and
� ρE, p is unramified outside of pNE .

In particular, ρE, p is odd. IfE is semistable with minimal discriminant�E , then
the residual representation ρ̄E, p has the following local properties:
� If l �= p, then ρ̄E, p is unramified at l ⇔ p|ordl(�E).
� ρ̄E, p is flat at p ⇔ p|ordp(�E).

A6 L-Series

The notion of L-series of an elliptic curve E, defined over a number field, is defined
by Silverman (1997). This is a �0 notion, in the obvious sense, because it is defined
in terms of the number of points of E in residue fields. In addition, the Riemann
hypothesis for curves can readily be proved in PA so that one has good estimates for
the growth rate of the coefficients of the L-series. Going much further, the Faltings
Isogeny theorem goes readily into PA.

On the other hand, a modular form has a Fourier expansion (see Rohrlich, 1997)
and an associated Dirichlet series. In its simplest form, MT says that if E is defined
over Q, and not just over the algebraic numbers (where Belyi’s theorem applies), then
E has the same L-series as a modular form of level of the conductor of E. The Eichler-
Shimura theory attaches to a modular form of weight 2 an odd two-dimensional Galois
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representation over the ring of integers generated by the coefficients of the form (see
Rohrlich, 1997). Motivated by this, one gives a definition of modularity of a Galois
representation, say, as in Stevens (1997, section 4.3). There is no present need to spell
out the definition as many equivalent definitions will appear later.

A7 Serre Conjecture

Serre (1987) isolated various key invariants of representations ρ over finite fields of
characteristic p, namely, N , k, and ε. N , the conductor of ρ, is not divisible by p but
takes into account all other l where ρ is ramified, with a computable exponent (see
Edixhoven, 1997). Variable k reflects the ramification at p (see Edixhoven, 1997), and
it requires work to show that this is �0 to develop its basic properties in PA. Edixhoven
indicates the underlying Galois-theoretic explanation on page 215 of Edixhoven (1997);
ε is �0-defined on page 213.

Now, Serre went on to formulate a very precise conjecture about the modularity of
such representations, linking the preceding invariants to invariants attached to modular
forms (Edixhoven, 1997; Serre, 1987). The proof of this conjecture was not available
at the time of Wiles’ work but has recently become available. As far as I can see, the
proof (Khare and Wintenberger, 2004, n.d.-a, n.d.-b) goes into PA. Serre showed that
his conjecture implies FLT, using the representation that emerged from the work of
Hellegouarch and Frey.

A8 A Special Representation Coming
from a Counterexample to FLT

Let p be a prime, at least 5, and suppose a, b, c ∈ Z, with abc �= 0 and

ap + bp + cp = 0.

Without loss of generality for what follows, we can assume b is even and a congruent
to 3 modulo 4. Let E be defined by

y2 = x(x − ap)(x + bp),

the curve of Frey-Hellegouarch.
E is an elliptic curve over Q. Let ρ be the residual representation, modulo p,

for p-torsion. Then, easily enough over PA, ρ is absolutely irreducible and odd, and
its Serre invariants are 2,2,1. The conductor of E is rad(abc), the product of all
primes dividing abc. It is square-free. Serre’s conjecture implies the existence of an
eigencuspform for�(2) of weight 2 and determinant 1, but, easily in PA, there is no such
form.

The curve E is semistable, a �0 condition, and Wiles proved that all such curves
are modular, thereby proving FLT. For the rest of this appendix, I restrict myself to a
discussion of metamathematical aspects of the ideas in Wiles’ proof.

Kreisel pointed out in conversation that one virtue of informal metamathematical
analyses is to bring out questions about the scope of implications such as that from
modularity to Fermat. One may work over larger number fields, typically totally real,
with a more complex notion of modularity. In some cases, the argument from the
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Frey curve, via Ribet and Wiles, adapts to give a clear analogue (Jaruis and Meakin,
2004), and in other cases, where the exotic modular form (from Frey) does exist, there
is still scope for useful application of the method, for example, by showing that the
form is in some other way incompatible with the Frey representation (Bugeaud et al.,
2006).

A9 Modular Forms

This is an exceptionally rich subject (Rankin, 1997; Diamond and Schulman, 1995).
There is first the nineteenth-century analysis, geometry and group theory, concerning
GL+

2 (R) and, in particular the modular group SL2(Z), action of the former on H, the
upper half-plane, action of the latter on lattices and elliptic curves, and construction,
via series, of modular functions and modular forms. In addition, there is the beginning
of the theory of the modular curves associated with congruence subgroups. This is a
vital part of mathematics about which logic has had little to say.

Now, if one chooses to ignore the mathematical substance and formulate the theory
in a general set-theoretic way, for example, by quantifying over any complex numbers,
modular forms, or lattices, one can easily contrive to encounter the Gödel phenomenon.
This is artificial, ignoring the important aspects of the situation:

� The crucial functions have recursive expansions (as sums over lattices, Fourier series,
or Dirichlet series), and the basic complex analysis can be done in the style of Kreisel’s
finite approximations.

� The hyperbolic geometry (e.g., of cusps) has a corresponding approximation theory,
allowing one to get by with arithmetic (and very restricted) quantification.

� The Riemann surface theory of the modular curves, and the correspondence, for weight
2, between S(N ) and the space of holomorphic differentials on (X0(N )), as well as the
Riemann-Roch theory needed to compute dimension via genus, are entirely arithmetic,
with corrresponding finite approximations.

� The basic theory of the Hecke operators and the Peterssen metric is arithmetic (in the
logical sense). Crucially, the relevant eigenforms have algebraic Fourier coefficients,
each form generating a number field. The set of newforms of level N is a recursive (in
N ) finite set.

The point of the latter is to show that the modularity theorems are in fact arithmetical
over weak subsystems. The mathematical substance is conveyed by �0

1 sentences.
Remarks on the FOM online forum suggest that this is not known. However, even
a casual glance at Langlands (1990) makes clear that it is very well known to the
practitioners. Serre’s (1999) obituary of Weil presents more such evidence, when he
stresses the advance in arithmetical understanding that came with Weil’s formulation
of MT.

A10 More on the Conductor

Fundamental to everything is the link between the conductor N of E and the level of
the corresponding newform. Ribet’s brilliant proof (level reduction), which reduced
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the required modularity hypothesis needed to use the Frey curve to prove FLT, goes by
a highly sophisticated induction (doable in PA). The following is Ribet’s Theorem:

Theorem A10.1 (Ribet’s Theorem) Let f be a weight 2 newform of conductor
Nl where l is prime and does not divide N . Suppose ρ̄f is absolutely irreducible
and that one of the following is true:
� ρ̄f is unramified at l
� l = p and ρ̄f is flat at p.

Then there is a weight-2 newform g of conductor N such that ρ̄f 
 ρ̄g .

Note the use of the �0-notion finite. The contradiction comes because the induction
leads to a nonexistent (even over PA) modular form.

A11 Equivalences

A striking feature of the subject is the variety of equivalent versions of MT, where the
equivalences are, in general, highly nontrivial. See Breuil et al. (2001) for the following
equivalent versions and Diamond and Schulman (2005) for a detailed treatment of many
of the equivalences.

1. The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f .
2. The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f of

weight 2 and level N (E).
3. For some prime l, the representation ρE,l is modular.
4. For all primes l, the representation ρE,l is modular.
5. There is a nonconstant holomorphic map X1(N )(C) → E(C) for some positive integer

N .
6. There is a nonconstant morphism X1(NE) → E that is defined over Q.

Statement 5, due to Mazur, is particularly interesting logically because it is so
algebraic geometric, as opposed to arithmetic-algebraic geometric. The proof needs
a serious descent. This complex version cries out for a bound on N and the degree
of the morphism, to be combined in some useful way with quantifier elimination for
algebraically closed fields. I am indebted to Richard Taylor and Bjorn Poonen for
providing me with a good (�0) bound for the modular degree (which I will not use
explicitly until a later publication). With that information, one can translate MT (over
a weak subsystem) into an exotic simple formula, as follows. There is an elementary
recursive map

N → �N (a, b),

where �N (a, b) is a quantifier-free formula in two variables a and b so that MT for
conductor N is equivalent to the statement that �N (a, b) holds for all a and b such that
the curve

y2 = x3 + ax + b

has conductor N. I will omit details until a future publication.
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A12 Wiles’ Proof

This involves crucially residual representations and their liftings. On one hand, there
is an appeal to Langlands-Tunnell, showing that residual representations with solvable
image are modular. On the other hand, there is an elaborate machinery for lifting
modular residual representations to actual modular representations.

The Langlands-Tunnell work is certainly much more complex from the analytic
standpoint than the kind of work finitized by Kreisel. For a clear account, one can consult
Gelbart’s (1997) work. The results are about complex representations, whereas Wiles
has to work over finite fields. As Gelbart points out, the proof goes via automorphic
cuspidal representations (adelic entities), built from local representations (discussed
later).

But simply to get mod 3 representations modular, Gelbart gives an explicit argument
on pages 160–63. By inspection of this, and Deligne and Serre (1975), this is in PA.
The Deligne-Serre proof is patently arithmetical. From one arithmetical modular form,
one constructs another by an easily formalized recursion. (That is not to say the proof
is easy! To do the whole project in PA, one has to do many such analyses of recursions.
For now, I do them on an ad hoc basis.)

For talking about the automorphic representations, one has to develop first in PA
the appropriate finitizations of Bargmann’s work on GL2(R) and the more recent p-
adic theory. Then one goes to adelic representations. The basic formalization poses
no problems. Perhaps the most inspiring part is the dictionary on page 170, and the
point to make is that we need it only in an arithmetic version. Finally, the proof of the
required base change and trace formula results has no hint of the Gödel phenomenon.
The specific algebraic computations needed (p. 202ff.) pose no problems.

A13 Deformation Theory

The construction by de Smit and Lenstra (1997) of the universal deformation ring of an
absolutely irreducible representation ρ of a profinite group G over a field is essentially
model theoretic. The result is somewhat more amenable to finitization than the other
available constructions discussed by Mazur. The construction is a double projective
limit and quite explicit, posing no problems of finite approximation.

Matters are much more delicate for the universal modular deformation ring of a
modular representation.

ρ0 : Gal(Q) → GL2(k),

where k is finite of characteristic p, and ρ0, restricted to Q(
√−3), is absolutely

irreducible.
For both, one imposes, as needed, supplementary conditions on the deformation

type. In the case Wiles needed, these conditions are determined by a finite set of
unramified primes distinct from p (see Stevens, 1997). In any case, the conditions on
the primes are �0.

The modular deformation ring is described by Diamond and Ribet (1997). Because
analytic objects are involved, the construction is considerably more elaborate. However,
no new infinitistic ideas are needed beyond those used in the discussion of algebraicity
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of Fourier coefficients earlier. On page 361 of Chapter 12, a completion occurs, but
this is readily approximated arithmetically.

The all-important isomorphism

R� → T�

then has to be established. This is very delicate, but not for Gödelian reasons. Conrad
(1997) gives an eloquent account of what is involved, including knowledge of Hecke
rings and knowledge of deformation rings. The latter involves Galois cohomology and,
as usual, will admit finite approximations. The algebraic ideas are very sophisticated
but free of any suggestion of Gödel incompleteness.

A14 Conclusion

In the preceding, I have drawn attention to many places in proofs of modularity where
the use of higher order notions can be eliminated and where central notions, apparently
higher order, are in fact first order and often of �0 or �0

1 complexity. It remains to be
seen what proof-theoretic analysis can do with this information. Kreisel (2008) points
out that the classical cut elimination for PA embedded in a system with (effective)
infinitary derivations, combined with what I have sketched, implies that in some sense,
the detour via modularity to a proof of FLT (where there is a use of a cut involving the
implication, between �0

1 sentences, from MT to FLT) can be avoided. Whether this
can lead to a more direct proof of FLT remains to be seen.
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CHAPTER 2

Logical Hygiene, Foundations,
and Abstractions: Diversity
among Aspects and Options

Georg Kreisel

Preamble around (asymmetric) commonplaces about aspects (of objects in view) and
options (for attention to rewarding aspects) in the subtitle related – also, but not only –
to the present occasion: the idea(l)s of logical hygiene, foundations, and abstractions
have been familiar for decades or more, but different aspects (and different functions
of each aspect) of those idea(l)s have rewarded attention, often to points of diminishing
returns in prominent directions, as experience around them has changed.

At least as read by some (of us) with logical BOR (background and other resources),
many passages in the world’s literature ever since the pre-Socratics refer to diversity
among aspects, actually of any object including idea(l)s: any relation between the
object and other things determines a property of the object, aka aspect (as seen from
that other thing).

Remark on other commonplaces, too: not knowing them (or rather not remembering
such items of common knowledge) when they are useful can be tiresome, but without
combining them with more specific and thus more demanding (generally discovered)
knowledge, they are rarely enough for progress; cf. below on logical hygiene for more
on such asymmetric knowledge.

As to (changing) options – tacitly, with due regard to suitable equivalence relations –
even for an object in view, as knowledge around it changes, different aspects of the
object are liable to reward attention (with that changing BOR). Familiar pieties about
first steps toward a focus on rewarding aspects often say more about the (b)rash faithful
than the faiths.

Remark tempering the general slogan about unity in diversity: time and again,
relatively few aspects are discovered that, suitably combined, are rewarding (for BOR
available) in relatively many situations to which attention is given; cf. the would-be
dramatic news of some relativity of (mere) truth (at least as I have come to under-
stand it). As to – feelings and measures of – reward, it is equally common knowledge
that their basins of attraction often evolve: both in consumer interests and in profes-
sional traditions in the commerce of ideas; more about this later when the time is
ripe.

27
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More specifically – on the present occasion, around the titles of Gödel’s most famous
logical discoveries in the 1930s1∗ – shifts in attention to diverse aspects of completeness
and (relative) consistency will be (re)viewed subsequently under the headings in the title
of this piece. Both Hilbert’s idea(lization)s of completeness and consistency – together
with decidability and logical (in)dependence, an order relation – made familiar by him
in the first three decades of the twentieth century, and some broader common meanings
(without premature precision, but attention to suitable, usually tacit understandings),
will come up in that review.

Remark for professional (pure) mathematicians: they need not be reminded that
when such (familiar) words (as completeness, etc.) become part of mathematical trade
jargon, they are used as labels for abstractions – roughly speaking, without definite
meaning.2

A little more will be said in Section 2.3 (and elsewhere) about relations between this
practice and – the half truth about – the unreasonable effectiveness of mathematics in
natural science, but also of one branch of mathematics in others, for example, geometry
in number theory.3

2.1 Logical Hygiene: Asymmetric Items in Logical Dress4

One aspect of logic most prominent in contemporary mathematics is its simple linguistic
structure (here meant in contrast to logical deduction, which seems to have struck
MAMNE (many a mind’s naked eye) most; more specifically, as in Endnote 1, MAMNE
with the BOR of a famous Greek, here Aristotle).5

Remark Even such austere texts as Bourbaki’s Éléments use other literary forms
besides logic, for example, in comments in the vernacular in the course of proofs. But in
the particular case of – what might be called – mathematical commonplaces across the
board, about (a) equivalence and (b) order relations, that aspect has a useful function6:
the items can be used as parts of proofs; cf. counterparts for branches of mathematics,
aka foundational (for the branch in view; in contrast to Section 2.2).

(a) Tacit understandings concerning – the meaning, sometimes aka use, of – equality
(familiar since the pre-Socratics)7 are, as it were, reflected in carping at the axioms for
≡ in logic texts about a century ago, for example, transitivity. (Admittedly, equality as
seen by MAMNE or the literal naked eye is often not transitive.) But since then, a more
demanding (qualitative) requirement on equivalence relations has become standard,
variously known as compatibility with or respect for suitable functions: in the case of
monadic functions ∀x∀y[x ≡ y ⇒ f (x) ≡ f (y)].

Suitable is underlined inasmuch as the replacement by some (or all) function(s) is
unsuitable except, perhaps, for logical one- or two-finger exercises; cf. Endnote 7. NB

∗ n refers to the nth endnote: 1 ≤ n ≤ 30. Some readers may prefer the option of reading the text without attention
to the endnotes and afterward read them selectively, if at all.

As far as I can see, the material in these notes is of interest only to readers with suitable BOR, occasionally
also outside logic or even mathematics. Now one of the less superficial functions of trade jargon is a warning
of the BOR assumed (here meant in contrast to literally superficial functions such as brevity). So trade jargon
will be used freely.
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Outside, but also within mathematics, this has counterparts for functions in a broader
(colloquial) sense.

Reminders, especially around logical – or other would-be universal formal – equiv-
alence (where new is taken to be nonequivalent and at a later date): pieties about coarse-
ness or any other such extreme of these equivalence relations simply distract from the
discovery of suitable functions in the situations in view.

(b) Although the (commonplace) reminder of diversity and the (often demanding)
matter of discovering relatively few items and their combinations suitable in relatively
many situations have come up in (a) with respect to equivalences, they are more familiar
around orderings.

Reminders about logic a century ago: at one extreme, there were elementary ax-
ioms without any compatibility conditions; at another, there was well-foundedness,
especially in Cantor’s set theory, tacitly, for arbitrary descending sequences.8

At least in algebra, and more generally in category theory, the emphasis has shifted to
suitable families of sequences (not always spiced with agony over – the mere legitimacy
of the idea of – arbitrary sets). In the simplest cases, the only compatibility required
is that the functions in sight preserve order; occasionally this compatibility is satisfied
as a corollary to more general considerations, for example, in the lively subject of
o-minimal structures.9

Viewed in the preceding terms, specifically round the acronyms MAMNE and BOR,
questions of applied mathematics force themselves on the attention. On one hand, there
are – descriptions of – orders that strike MAMNE and the discovery of functions for
which the orders are suitable (survival being a favorite in the biological tradition). On
the other hand, there is the discovery of orderings in a world that strikes MAMNE as
diverse: famously, (dis)order (measured) by entropy.10

Less generally (and thus more demandingly), there is the order relation familiar as
interpretability; in particular, definitions of a new symbol (for functions or predicates)
are always formally independent but sometimes interpretable.11

Remark A moment’s thought (or a look back at Endnote 6) shows that with growing
BOR, new items of (logical) hygiene may become prominent, while others will be put
on the back burner (without being invalidated); after all, this applies to suitable (literal)
hygiene, as conditions change (besides having to be remembered).

(c) The following (and last) item in this section fits the present occasion inasmuch as
Gödel associated it in the 1940s with a breakdown of our logical intuitions but, by the
1960s, dismissed it without further ado.12 Here it will be related to a review by Cantor
of Frege’s Grundlagen der Arithmetik (some twenty years before Russell derived a
paradox – not so much from “our” but from Frege’s intuitions).

Admittedly (actually, at least to me, decidedly apologetically), Cantor used me-
dieval language of “extension” and “intension” in his critique of Frege’s thoughtless,
sometimes dubbed “naughty,” axiom asserting that every predicate determines a set.
But some time earlier, Cantor had emphasized – not a formal definition of, but rather –
an aperçu about sets; to wit, varieties (Vielheiten) that can be grasped as unities (Ein-
heiten). How else should a variety be described but by a predicate? Teenage emotion
recollected in tranquility: when encountering this aperçu, I – did not think of the pred-
icate x /∈ x, but – did think of x = x as a candidate for a variety that cannot be grasped
as a unity. In short, not all predicates P are expected to define sets (whether or not a
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paradox results from this assumption), but only those such that ∃z∀x [P (x) ⇒ x ∈ z],
in other words, those bounded by some (set) z. In this case, P defines a set, say, y: in
symbols ∃y∀x [P (x) ⇔ x ∈ y].

Remarks Every predicate of the form (x ∈ z) ∧ P (x) is bounded in the preceding
sense, which is in fact Zermelo’s correction of Frege’s naughty axiom. Inasmuch
as the preceding formulation in logical symbolism is felt to be an improvement on
(Cantor’s) medieval language, Frege(’s formalism) may be said to have contributed to
the correction.13

Disclaimer By itself this does not establish consistency (and, as mentioned in
Endnote 11, it did not for me until the early 1950s14) but removes the particular malaise
of a paradox; cf. Section 2.2 for more on consistency of principles, aka consistency-
in-principle.

Reminders As so often happens when imaginative people thrash about for some-
thing to say about a (possibly imagined) problem (or artifact in experimental or ob-
servational science), the chances are that something of interest, necessarily elsewhere,
will be broached.15 At least in my – admittedly distinctly limited – knowledge of the
scholarly literature, the chances are less rewarding if the “thrashing” is directed at
old straws, again admittedly, at least, to me. For example, fitting the present occasion,
there is the old straw of the Liar, which seems to have wide appeal, perhaps more
than the alternative of relating incompleteness to diagonalizing sequences of partial
functions.

2.2 Logical Foundations: A (Here) Suitable Sense16

As just mentioned, removing a prima facie case for inconsistency is one thing; estab-
lishing consistency, at least, in principle, is another.

Reminder Not only the proverbial man-on-the-Clapham-bus is ill at ease with
merely such consistency; so are experienced and distinguished mathematicians.17 More
formally (but without exaggeration), there is demand for consistency with tacit (but,
in the situations in view, valid) assumptions, not merely among stated principles and
their formal consequences.

Remark Traditional consistency proofs by models approach the demand inasmuch
as they establish consistency with other (yet undiscovered, and in any case, unstated)
properties of the model in view (especially if it satisfies second-order axioms such
as continuity in non-Euclidean geometry); reducing the likelihood of error in practice
requires different tactics, including cross-checks.18

If formalism, which – like other -isms – restricts attention to its own privileged
aspects, is not regarded as an ideal, but simply as an idea, Hilbert’s kind provides a
definite, albeit at least to MAMNE without specialized BOR, totally sterile meaning,
aka semantics (for closed formulae A): A is a theorem by given rules.

Reminder Gödel’s incompleteness (and thus at first sight negative) results have
been popularized in terms of some (in arithmetic) true formula or, specifically, of the
(true) consistency statement (for the rules considered), not being formally derivable; cf.
Endnote 18. Without some usually doctrinaire restriction on proofs – here, of consis-
tency – the result merely ratifies broad experience (also, but) not only in mathematics:
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we don’t have all the answers. (In the specific case of consistency, at least for the usual
rules stated (not too sloppily), proofs by familiar models are known, at least, tacitly.)

In contrast – but fitting the warning in Section 2.1(a) about functions for which
logical equivalence is not (a) suitable (equivalence relation) – it is by no means expected
by MAMNE or even accepted (without checking a proof) that the addition of the
negation of the consistency statement (which is false in arithmetic) is consistent; cf.
Endnote 18 for (so-called derivability) conditions (that, equivalently, are properties of
canonical representations of the rules in view). Nor has this fact been sterile, at least,
in logic itself.19

Remark on the fact(s) observed at various times since the early 1930s (and brought
up-to-date in Chapter 1 of this volume) that incompleteness properties of the kind in
view here are hardly noted in the mathematical literature: besides, they were anticipated
in the 1920s, for example, by A. Weil, actually, in the specific case of binary quartics
over Q, L’arithmétique sur les courbes algébriques (1928); cf. his Collected Works
with a P. S. Anyhow, familiarity in abstract mathematics (some groups are, others
are not commutative), open properties, aka (so far) undecided propositions, are labeled
“hypotheses” or conjectures – with a different meaning up-market and down-market20 –
and explicitly mentioned in logical jargon: as premises of implications. NB As usual, if
the human touch is wanted with some embodiment of MAMNE, this can be done, too.21

A more demanding matter is to discover phenomena outside formal logic such that
a suitable combination of – suitable variants of – the (in)completeness results with
other knowledge around those phenomena contributes (to their understanding). This
has parallels with other uses of mathematics in natural science and requires suitable
BOR, and thus belongs to the endnotes.22 In short, logic is not for mathematics alone.

2.3 Logical Abstractions

prominent in the twentieth century (and not before): memorable from the contrast
between the expositions by Euclid and Hilbert (in his Grundlagen der Geometrie,
which in turn is in contrast to Anschauliche Geometrie by Hilbert and Cohn-Vossen23).

A metaphor popular in the middle of the twentieth century for the aspect of logic
in view dubs it – the grammar of a – language for (tacitly, abstract) mathematics.24

As announced in Endnote 8 and echoing a wording in Endnote 3, a principal concern
of this section is the unreasonable effectiveness (in particular, in mathematics) of
logical abstractions in the form of logically independent, but formally interpretable,
definitions; cf. (c) later. In preparation for this, (a) mentions some differences between
the logical and common or garden varieties of abstractions such as metaphors and other
analogies and, in particular, (b) mentions some aspects of more familiar languages that
are and some that are not retained in logic (as language).

(a) As a corollary to (the commonplace about) diversity among aspects, already
noted, of any object, observations of and thoughts around an object will focus on a
proper subset of its aspects, with MAMNE’s focus being one.

Reminder Depending on BOR, the focus will be arrived at by (conscious) selection
from a larger – but, of course, still partial – set of aspects. Roughly, but precisely enough
for the preparation in view, such a focus is dubbed abstraction.
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Warning about another meaning, especially in higher set theory: here abstraction
is not related to a focus (with neglect of many other aspects) but to the ordinal, aka
rank or type, of the objects in view here, which are sets: as it were, a measure of the
distance from concrete atoms.

At least generally, metaphors leave wide open which aspects of a literal meaning
are (to be) retained, while logical abstractions specify them: for flexibility, without
premature precision, whence the requirement of indefiniteness.

Reminder of Endnote 2: Russell’s catchy aperçu has been echoed in different
words by experienced mathematicians.25

To MAMNE (with very little BOR), the possibility of purely logical deductions
from logical formulae, the familiar literary form for logical abstractions, is no doubt
striking. But even moderate experience of mathematics is enough to realize that this
is an undemanding part of mathematical proofs, both for discovering and for under-
standing proofs. (Today the relation between genetics and epigenetics provides a good
metaphor.26)

(b) Logic, which, as has become standard in contemporary mathematics, includes set
theory, is taken to be a counterpart to grammar; with the addition of explicit definitions
for so-called nonlogical terms, it becomes a – counterpart to – language. Thus the
aspect of growth of familiar languages is retained in the metaphor.

Remark on malaise about expounding obscurum per obscurius (inasmuch as the
functions of logic in view may be felt to be obscure and of familiar languages more
so): but malaise, like doubts, can be doubtful, too, in particular, here, by forgetting
the – commonplace about the – diversity of aspects and of functions; a skill is required
to discover in those diversities suitable elements with counterparts, as in the case of
growth of both vocabulary and interpretations discussed earlier.

Reminders, especially around the (much touted) formal character of logical gram-
mar and its rules and the small basic vocabulary: these are in – certainly to MAMNE
with little BOR – striking contrast to their counterparts in more familiar languages (and
it is of course a principal business of professional logicians to exploit and correspond-
ingly emphasize such differences). As a corollary, a commonplace for idealizations
across the board, the discovery of – as always, for situations in view – suitable relations
between formal and those familiar languages, aka formalization, requires attention,
naturally, more in proof theory than model theory.27 This much seems widely, even if
mostly tacitly, understood and becomes noteworthy only when neglected (with sounds
of agony or other impatience).

Another story, actually already broached in Endnote 8, is the extent to which –
tacitly, the, by Section 2.1(a) for a suitable equivalence relation, same – capabilities
familiar from the use of metaphors and other analogies in familiar languages have
counterparts in the use of logical abstractions in pukka mathematics, even if, in this
notoriously lazy phrase, they are not needed-in-principle28; cf. (c).

(c) To those with here suitable BOR, such idea(l)s as purity of method in the
vernacular and consistency strength in trade jargon will be enough for an introduction.29

Logical hygiene is enough to temper innocent expectations of those idea(l)s generally,
and of this ordering (by consistency strength) in particular. But this is not enough to
specify contributions by the use of (logical) abstractions to proofs of theorems (either)
stated (or seen to be equivalent, e.g., with respect to a current arithmetic interpretation
to one) in purely arithmetic form.
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Reminder of elementary geometry in abstract style with and without familiar
names like “circle” or “ellipse” for abstract (explicit) definitions, with and with-
out pictures in the imagination or on paper – visualization: not only does this help
to see relations between such objects in the plane and suitable proofs (that turn
out to follow logically from the principles in view) but also three-dimensional fig-
ures, of which the objects are (conic) sections; in the jargon of these pages, three-
dimensional aspects. Here views of the more or less educated eye are concerned. In
other mathematics, it is the mind’s (naked) eye; cf. also the reminder in Endnote
25, here adapted to a shift from visualizing the (defining) elements to the (defined)
configuration.

Viewing circles and ellipses as conic sections provides an analogy between these
conic sections, but at least generally the plane curves do not present themselves with a
label announcing that analogy. The literature I know around – the process of – spotting
effective analogies varies, often with emphasis on (diverse) feelings around it, ranging
from malaise over the possibility of forgetting the problem in view while pursing such
analogies to the thrill reminding some of – tacitly, their experience(s) of or dreams
about – adultery.30

Remark on – the assumption of – a logical essence of mathematical thought: the
analogies in contemporary abstract mathematics (once found) take the form of logical
abstractions and are formally expressed by explicit definitions, naturally, together with
so-called defining properties; cf. Section 2.1(b). For that assumption to do miracles,
those defining properties would have to be noninterpretable (and, as expected, the
faithful – to that assumption – declare piously that interpretability is a conjecture).

Reminder of the disclaimer in Endnote 11(b): some (of us) are grateful for the
efforts of the faithful in this area, too. Finally, as it were for reassurance: if – to
our surprise – the efforts are successful, it will be an agreeable surprise to all but
irreconcilable skeptics.

Depending on BOR, interested readers will not only add to the material of this
section on the mathematical effectiveness of logical abstractions and on feelings about
their relations to metaphors or other abstractions but will include fine points from their
own logical experience. As they will have noticed, in this section, there was no occasion
for such fine points, in contrast to, say, Endnote 11c(ii) on determinacy in set theory
or Endnote 14 on arbitrary partitions – subsets, not arbitrary predicates; cf. Endnote
13 – in the 1920s. Certainly, to mathematically educated (naked) eyes, the methods
of proof for those partition theorems differ strikingly from those in analytic number
theory and other Dutch gardens of mathematics, but they were taken in stride. It was a
later logical discovery that the partition theorems also have (tacitly, familiar, not just
some) nonrecursive aspects and that bounds for finite versions (of van der Waerden’s
or Ramsey’s theorems) grow relatively fast. Readers with logical BOR will recall here
such “fine points” as – by independence not only from Peano arithmetic alone, but
together with all true �o

1-sentences – provably relatively large lower bounds for the
Paris-Harrington version of Ramsey’s theorem (used by Gowers in his work on Banach
spaces) and a mild use of comprehension in the most straightforward proofs of those
partition theorems by compactness from their infinite versions. (Though mild, and of
course very far from those higher cardinals in Endnote 11(c) and again later, those uses
present logical differences from other preceding mathematics.) NB “No occasion” for
the time being, leaving open the possibility that uses for extending – what Bourbaki
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called – the grammar will be discovered; uses, that is, “needs” for effectiveness, not
necessarily for provability.

Reminder In the early 1920s, Fraenkel, who had experience around ordinal arith-
metic, added to the grammar replacement, which, together with the power set, formally
implies largish cardinals. This, too, was taken in stride, presumably by some – certainly
not all – by superficial analogy with the case of finite sets.

Potentially delicate is the extent to which logical “fine points” contribute to –
feelings of – explanation and generally understanding of such phenomena around
bounds, as earlier. This is certainly of some consumer interest, even when professionals
are traditionally left to fend for themselves; cf. Endnote 25. Naturally, the matter is
realistic only for those whose BOR around logic matches that around the other parts
of mathematics in view.

As to axioms for higher cardinals, it seems fitting to go back to Hilbert’s metaphor
of Cantor’s paradise (and thus conclude this long section). The aspect most prominent
in Hilbert’s view of that paradise was its supply of so-called ideal elements, here aka
logical abstractions, with (his) special emphasis on their being eliminable like “manners
of speech,” here aka (a special kind of) interpretable explicit definitions: their potential
is a main theme of this section.

By Endnote 11(d), in Cantor’s own (and later, of course, others’) view of Can-
tor’s paradise, those higher cardinals were especially prominent, and axioms suitable
for them were discovered not to be interpretable in ZF (nor even in a second-order
variant). As is well known, Gödel emphasized that �0

1 (consistency) statements are
consequences. In the present chapter – cf. Endnote 3 and elsewhere – the tradition of
deriving axioms from the top down is by no means ignored but is rarely found effective
in mathematics – naturally, with the exception of a logical language itself. It started
off with the airy-fairy project of logical foundations for arithmetic (by Frege), for
mathematics (by Russell), and for the world (by Wittgenstein, who went on to specify
shortcomings evident for his grand view, but of course with counterparts elsewhere,
more down to earth, too). Taken up by mathematicians, this language was discovered
to have a most useful function. NB The project itself did not arise within professional
mathematical experience, of which those three authors had precious little.

Personal Acknowledgment

As I see such things, my feelings – of obligation and more – about help given to me by
K. Derus, not a professional logician, are a private matter. But perhaps this is a place
to note that without his help, this chapter would not have been produced.

Endnotes

1. Taken remotely, literally the idea(l) of completeness, here, of knowledge, is at odds with the
commonplace about diversity among aspects. Specifically, truth (tacitly, for a particular inter-
pretation) or even validity (for a class) is only one aspect of a proposition or, generally, of
logic. (Specializations and generalizations of terms in proof theory or abstractions of relations
in abstract mathematics are other aspects prominent in the literature.) Within logic, distinctions
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between deductive and functional completeness are familiar, perhaps less so Gödel’s own be-
tween proof-theoretic and model-theoretic completeness in his dissertation, but unpublished until
his Collected Works in the 1990s. Attention to certain aspects has evolved in diverse trades in the
commerce of ideas, (with luck) rewarding for those with BOR cultivated in the trade.

Remark on Gödel’s interest in epistemology, not prominent in his publications in the 1930s,
but later; cf. Synthese, 114, 124(c) (1998) and Endnote 29 for more: here, it seems to me,
the emphasis is on aspects that strike MAMNE (as in Section 2.1, short for many a mind’s
naked eye): tacitly bright, but with limited BOR, illustrated by those still famous Greek writers.
(MAMNE’s view can change with education; cf. training of the literal naked eye’s view.) A
notorious example is decidability in a finite number of steps in contrast to (another extreme such
as) NP or the possibly even narrower class P.

Reminder (Gödel’s results being left aside for the moment): at least in the logical literature
that I know from before the 1930s, there was nothing like the efficiency of his publications even
if by now this has become routine. In fact, in the last three decades, there has been remarkable
streamlining in the exposition of logical material from as late as the 1960s.

2. Labels such as perfect or amicable (natural) numbers have perhaps never been taken literally.
Dedekind associated Körper with an organic unity (between + and ×), but its translation field is, in
my experience, associated with contrasts between algebra and agriculture, in particular, warnings
against exaggerated expectations of (fancy) algebra in agriculture. Metaphors and similes aside,
the emphasis in abstract mathematics is on abstraction (in the sense of indefiniteness); cf. Section
2.3 of the main text, but also Bertrand Russell’s oft-quoted quip: “Thus mathematics may be
defined as the subject where we never know what we are talking about nor care whether what we
are saying is true”; cf. The International Monthly, 4 (1901) and p. 366 in vol. 3 of his Collected
Papers. (The definite article seems dubious inasmuch as some theologians use the same words of
their subject; e.g., they use implications, with Latin tags as premises: etsi deus daretur and etsi
deus non daretur.)

Less frivolously, professional mathematicians know striking examples of proofs for theorems
stated in terms of such labels, which are felt to be “more interesting” than the theorems because
of the “novelty” of the ideas. In this case, it can be rewarding to look for other theorems proved
by those “new” ideas; cf. Section 2.1(a) on (in)equivalence relations.

Reminders Early completeness theorems, especially by quantifier elimination, gave rise
to decomposition theorems, relative consistency theorems to conservation results (in the case
of assuming the GCH with a so-far striking dichotomy: in the main body of mathematics,
conservation for arithmetic theorems, seen by inspection of Gödel’sL is enough, and in descriptive
set theory, Shoenfield’s absoluteness theorem is not). As to completeness of predicate logic, a
purely model-theoretic variant has recommended itself; cf. Lecture Notes in Mathematics, 453,
52–71 (1975) for a description of all (partial or total truth valuations of) countable term models
with (a complete set of) logical inference rules as a corollary; as it were, a derivation of the rules
in contrast to earlier verifications of more ad hoc rules.

Reminder of malaise by MAMNE with Aristotle’s BOR in Met � 7, 1012a and 22–23: on
one hand, it is emphasized that definitions are only sometimes useful; on the other hand, it is felt
that for cogent reasoning, each term must have a definite meaning.

3. The “half truth” is the title of E. P. Wigner’s article in Communications in Pure and Applied
Mathematics, 13, 1–14 (1960). The effectiveness is not in doubt; (one’s feeling of) unreason-
ableness – e.g., of the effectiveness being a free lunch – depends on BOR. I myself am struck
by the additional skills besides (pure) mathematical gifts in spotting rewarding combinations
between mathematics and other suitable scientific knowledge. (Phenomena do not present them-
selves with instructions about which of their aspects will fit which mathematics (available) nor
vice versa.) Besides, idea(l)s about mathematical methods in the social sciences provide salutary
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object lessons, reminiscent of Plato’s complaints in the Republic about then-popular (cl)aims for
geometry of triangles in operations research (for military tactics).

Digression on a topic raised by Plato (and unusual in being quoted by Aristotle with approval;
cf. Nich. Ethics, 1095a32–1095b1): are we on the way to or from general principles? It is easy
to find examples throughout science and mathematics for each direction. In the particular case of
Hilbert’s famous Zahlbericht at the end of the nineteenth century, he went to a relatively small
arsenal of number fields (from diverse proofs throughout that century). In logic, he went by and
large in the opposite direction, perhaps most familiar in the literary form of (im)possibilities-in-
principle: tantamount to assuming those principles. Specifically, (the axioms for) those number
fields are patently incomplete and, in most cases, undecidable (without even a hint of decidability);
consistency was not an issue at all inasmuch as they are patently satisfied by Q or finite fields
(rings of integers mod p for prime numbers p). While more specific, and correspondingly more
demanding, aspects of this topic will come up later when the time is ripe, it will be expected –
and is verified in experience – that the way from principles, here aka ideal(ization)s, will be
most prominent in such areas as cosmology (especially before there was much observational
knowledge), by no means typical of natural science.

Disclaimer I do not know the extent to which Plato felt bound by (schoolmasterly?) rules, if
any, on the exclusive and inclusive or (in Greek corresponding to aut and vel in Latin); but I feel
that only the exclusive or in the preceding question would have been enough for – Plato’s taste
and talent for – drama.

Logical update (for consolidation) around axioms for ordered real closed fields: starting
from the top down, with Dedekind’s axioms for complete ordered fields (and arbitrary cuts), first-
order formalization leads straight to the schema of all first-order cuts, which is of unbounded
logical complexity. Starting from the bottom, with experience in real algebra, especially Sturm’s
theorem results in the schema of Artin/Schreier (of �2 complexity).

Peano’s axioms for 1 and successor (induction for arbitrary predicates) were tinkered with for
familiar reasons, and (second-order definable) + and × with their recursion equations added; cf.
PA.

4. The expression logical hygiene was used in the 1940s by A. Weil in L’avenir des mathématiques
(a kind of companion to Bourbaki’s manifesto, Architecture des mathématiques: la mathématique
or les mathématiques?), but with emphasis on another function: sterility, tacitly with respect to
bugs in contrast to cells of the host, which are helped to grow by (proper) hygiene, not always
by refinements in, say, cosmetics. This use is asymmetric, too, inasmuch as, by itself (without a
healthy organism), hygiene does not “go deep.”

5. At least for mathematicians, it is an open secret that logical deductions are not a particularly
demanding (or rewarding) part of proofs, in particular, compared with spotting suitable ideas –
presented in the form of axioms – including so-called auxiliary definitions. More broadly logical
inferences in senses established in logical trades – though occasionally troublesome to some
(e.g., the negation of uniform convergence in a text by Titchmarsh widely used in the 1940s) –
are certainly easier to simulate (by computers) than many other inferences that are child’s play
(for five-year-olds).

Remark on referring to – felt by some as dragging in – classical authors, above Aristotle:
far from (cl)aiming thereby to establish an authority, as stated already (and again in the next
endnote), the emphasis is on the limited BOR available at that time; sometimes for contrast with
later BOR, sometimes as a reminder that, for the (cl)aim in view, such BOR is enough.

6. On the diversity of aspects and the even greater diversity of their (potential) functions, cf. Quot
homines tot sententiae (Terence) and Quot capitum vivunt, totidem studiorum milia (Horace).

Remark on a difference of emphasis: in effect, these classical authors take Man as the
measure of all things (and thus aspects and functions to which attention is paid, tacitly with
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available BOR); granted that man (or, for that matter, natural number) is a measure of all
things, it is not always a good measure or even as good as others, again tacitly for the (class
of) situation(s) in view. While in mathematics, other numbers such as Dirac’s c-numbers and
q-numbers are traditional, comparisons – not only by measures (of men and traditions) but also
by such categories as up-market and down-market – are felt to be invidious.

7. Heraclitus famously anticipated – in effect, admittedly, not in so many words – Leibniz’s definition
of identity in terms of equivalence w.r.t all properties; recall the business of not stepping into the
same river twice. Here, too, carping about an “exact” meaning of all – in these pages seen as a
corollary to the commonplace about diversity among aspects – distracts from the more demanding
job of discovering suitable functions (even among some impeccably (exactly) defined “totality”).

Reminder from elementary logic, now for several function and predicate symbols: the
equivalence relations together with the compatibility conditions for those objects imply logical
compatibility for their whole logical closure.

8. The shift of emphasis in algebra to suitable families or categories is – of course, in effect, but
presumably with diverse intentions (cf. Horace in Endnote 6) – related to general feelings such
as malaise about impredicativity, one of several (b)rash reactions to Russell’s paradox taken up
later in (c). But under the present heading of “hygiene,” relations to down-to-earth mathematical
experience are more immediately pertinent.

(a) The property of arbitrary map (with given domain and range) is certainly described with
less BOR than such sophisticated families as constructible or continuous maps for this or that
topology: it is accessible to MAMNE with limited BOR, aka clear (where the feeling of clarity
is often modified by BOR in diverse directions to boot).

(b) In view of considerable BOR, especially in the twentieth century (of abstract mathematics),
the marginal utility of more sophisticated families has turned out to be remarkable (at the price of
suitable sophistication!), even for results about the clearer totality, e.g., about R by use of results
about all real closed fields.

Remark (for what it is worth): the BOR in view fits such commonplaces as reculer pour
mieux sauter, or discovering what is essential, tacitly, for at least one proof of the particular result
in view, rarely essential – either in the sense of necessary or sufficient – for a broad range.

(c) As an example of an exception, which – of course does not prove, but – may underline the
rule, here the preceding (b): even where more or less sophisticated lists are available (e.g., enu-
merations of arbitrary permutations of finite sets), there is no occasion to use them – memorably
for proving that no chessboard can be covered by dominoes over two adjacent squares so as to
leave a diagonal uncovered.

Remark on evidence in mathematics; cf. Endnote 2 with Russell’s quip on (lack of concern
for) mere truth: as expected (from the quip), evidence for, tacitly, other aspects of knowledge
is generally more rewarding here, perhaps relatively more so than in natural science. As a
corollary, the popular business of confirming or refuting – specifically, the truth of – this or that
is liable to be a distraction (from those other aspects, including the potential for abstraction, and
thus for flexibility; in particular, even without settling (mere) truth for the originally envisaged
interpretation; cf. the case of Riemann’s hypothesis as meant by him and one of its abstractions,
e.g., to varieties over finite fields).

9. The familiar compatibilities (with orders) – of the group operation and field operations in ordered
groups and fields, respectively – were added, as far as I know, without further ado; after all,
without such additions the whole (ordered structure) would not be more than the sum of its parts.
In the case of o-minimal models, there is, at least, the possibility of a theoretical interpretation:
compatibilities in the form of theorems (for o-minimal models) not imposed ad hoc.

10. In the tradition (in Endnote 6) of relying on the “human touch,” it seems more usual to view this
shift to a microworld when looking for unity within (the) diversity (tacitly, among aspects that
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strike MAMNE) as a matter of – feelings of – explanations; cf. the introduction to Dirac’s classic
on quantum mechanics. In terms of Section 2.1(b) of the present text, such discovered orders turn
out to be compatible with a relatively great variety of functions.

Remark So (re)viewed, the adjective deep seems apt (and does not merely evoke banter
about dirt and diamonds at great depth).

11. For reference in Section 2.3. Once a memorable function of – of course, formally independent,
but – interpretable definitions is stated, attention to “mere” independence (tacitly, for the situations
in view) is formally ratified.

Reminder As long as only sets of theorems without the new symbols – not, e.g., their
proofs – are in view, aka in-principle-provable theorems, the addition of interpretable definitions
is equivalent to the original axioms.

(a) Digression around malaise over relativity – here, of equivalences relative to functions –
apparently felt passionately (and certainly expressed vividly) by Pope Benedict XVI: whatever
his feelings, which at least some (of us) regard as his private (or perhaps professional) concern, his
words apply to the genuine difficulties of recognizing functions suitable for the situations in view,
including the possibility of one (or at least relatively few) function(s) or equivalence relation(s)
being rewarding in unexpectedly many situations in view; cf. the idea(l) of an essence with
the tacit promise of complete knowledge. Bourbaki’s basic structures, originally aka structures-
mères (and appropriate organic combinations) in mathematics or elementary particles (including
those associated with “fundamental” forces) in physics are tempered variants of that idea(l).
Background to that malaise – by implication, actually, also over which (among the familiar
diversity of) aspects reward attention – is provided in chapter 1 of J. Ratzinger, Einführung
in das Christentum (Munich: Kösel, 1968), explicitly addressed to a lay audience (based on a
course at Tübingen 1967 for the studium generale). Whatever – those with the BOR of – the
theologian Ratzinger may imagine the concerns of that audience to have been, his words evoke
vivid association in (the likes of) me: the crisp Latin principles Verum est ens, verum quia
factum (p. 35) and verum quia faciendum (p. 39) – tacitly, with the ideal of truth as a popular
peg on which to hang ideas – fit contemporary terminology; of beable (used by J. S. Bell for
interpreting quantum theory), observable (tacitly, with possibly discovered interpretations and
means of observation), and doable (in the broad sense of suggesting experiments (to do), for
which an idea or theory need not to be true for anything remotely like the interpretation(s) in
view); cf. also the digression in Endnote 3 on diverse functions of theoretical thought. By a
refrain throughout these pages, the skills required for discovering aspects that reward attention
(with the BOR available in the situation(s) in view) are not in question. But at least understood
as earlier, the words of chapter 1 are not a reassuring preparation for Ratzinger’s later chapters
(once again, for the likes of me).

(b) The matter of noninterpretable axioms fits the present occasion inasmuch as Gödel em-
phasized it, partly explicitly, partly tacitly; e.g., so-called axioms of infinity (AI for short) are
even second order – and thus robustly – independent. (Recall here also the digression in Endnote
3 on the way from principles, aka “from the top down.”)

Disclaimer around the pursuit of far-out idea(l)s in logic or mathematics, also with strong
feelings (of interest), to Keats aka mad: in contrast to such pursuits of social, economic, political,
or even big scientific ideas, where the costs can be high by ordinary measures (and the feelings
strike me as fanatic), I am not aware of any malaise in my own case, especially around pursuit
by others – how else should I know about points of diminishing returns? As to critical reviews,
it would not occur to me that they might convert the authors; possibly they provide relief for
readers left speechless by those far-out idea(l)s. The next paragraph also begins with a kind of
confession:



endnotes 39

(c) Not having studied any of those AI in the sense of (b), I have no views, but at most
impressions, albeit not unrelated to logical experience or broad commonplaces elsewhere in
this chapter. (i) Though in principle (cf. footnote 48a of Gödel’s incompleteness paper) some
previously logically independent arithmetic or even other �0

1 theorems follow from the AI in
view, they also follow from the consistency of (or at least a suitable reflection principle for) the
AI.

Remark Presumably the ideas used for proving equiconsistency of diverse systems can be
used for more informative (and actually also formally stronger) conclusions about having the
same sets of �0

1 or even of arithmetic theorems. However, this is no guarantee for relevance to
the main body of mathematics, despite the bit around Shoenfield’s absoluteness lemma in the
penultimate paragraph of Endnote 2.

(ii) Determinacy of (infinite) games in the tradition of descriptive set theory – that lost its
organic connection with the main body of mathematics in the 1920s (at least until recently) –
is a little too playful, aka too close to recreational mathematics for my taste. But at least this is
proportionate to the “distance” of those AI from that main body.

(iii) Subject to correction by – the likes of – Woodin, I have come to relate (not necessarily
elementary) embedding axioms (as in his chapter in this volume) to MAMNE’s view of the so-
called full set-theoretic hierarchy, specifically, MAMNE with my BOR after the early 1950s, but
decidedly not before; cf. Endnote 14 for more. The old concern for many iterations of a possibly
“thin” power set operation is supplemented by such axioms when pursuing a power set operation
“fat enough,” and thus (if iterated) unstructured enough to admit such nontrivial embeddings.

(d) Reminders of Cantor’s days: his – contributions to – descriptive set theory flourished;
e.g., the Cantor-Bendixon theorem in the subject of closed sets F . In contrast, (higher) cardinal
and ordinal arithmetic were above all remarkable by being viable at all; cf. Dr. Johnson on
dancing dogs and preaching women (novelists?). E.g., so viewed, the preceding theorem is read
as showing that such F satisfy his CH; reminding those (of us) with a little recursion-theoretic
BOR that the degrees of the first r.e. sets to be looked at were 0 and 0′. Depending on BOR, this or
that option will be exercised in periods of stagnation. At one extreme is Keats’ ideal of negative
capability (an ideal seen here as a corollary to diversity among aspects of actually any object or,
more poetically, to Hamlet’s reminder of things not thought of in – tacitly, any – philosophy);
cf. top of p. 150 of Synthese, 114 (1998) for more thoughts around it. At another extreme are
Cantor’s excursions into theology with reports in the literary form of set-theoretic metaphors; cf.
C. Tapp, Kardinalität und Kardinäle (Stuttgart: Steiner, 2005), with a stern rebuke by Cardinal
Franzelin (on p. 327, l.25, after noting Cantor’s good will: noch viel notwendiger ist das demütige
Gebet um Erleuchtung und Kraft von Oben).

Remark in terms of the particular theological tradition mentioned parenthetically in Endnote
2: Cantor pursued the premise etsi deus daretur; for the alternative premise, the cardinal’s words
(as I read them) say that he missed in Cantor an awareness of the limitations of (then known)
abstract set theory – in the Anglican tradition aka outward and visible signs of an inward and
invisible grace (of humility) – with the hope of a (future) bright idea and the power, aka peace of
mind, to develop it.

Still continuing the worldly alternative (in the remark), apart from the preoccupation with
higher cardinals, in modern jargon, Cantor confined himself to enrichments of sets by equiva-
lence and (well-) ordering relations (as in cardinal and ordinal arithmetic), in particular, when
contemplating relations between paintings and symphonies, represented by seven- (and some-
where four-) dimensional (product) spaces; cf. p. 412 and pp. 421–22 of Cantor’s Gesammelte
Abhandlungen, edited by Zermelo. (Furthermore, some kind of well ordering is assumed.) All
this continues to strike – presumably not only – me as unrealistic, but not altogether sterile when
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used for contrast: first, within (abstract) mathematics, other enrichments and corresponding ho-
momorphisms have replaced Cantor’s preoccupations. As to paintings and music, digitalization
has made altogether different representations familiar that are effectively combined with suitable
hardware (and “wetware”), aesthetically effective for those with suitable gifts, and for the rest (of
us) a reminder of additional requisites beyond abstract representations needed for effectiveness.

Preview Other oddities in periods of stagnation will come up subsequently.
12. On pp. 376–82 of vol. 3 of the Collected Works, Gödel refers, actually without being specific, to

matters of course that correct his earlier oversights and apologizes for mentioning such matters to
boot. In contrast, here, where such matters are dubbed “hygiene,” it is recognized as an empirical
discovery (and, at least to me, by no means as a matter of course) that such matters are often not
remembered (even) when this would be useful.

13. The logical background to Section 2.1(c) is familiar, in particular from the formalism of GB,
where Cantor’s Einheiten and Vielheiten correspond to sets and classes (i.e., predicates of sets),
respectively, but perhaps less so references to the accessible literature: Cantor’s review of Frege’s
Grundlagen der Arithmetik is on pp. 440–41 of his Gesammelte Abhandlungen (cf. Endnote
11(d)), where Frege’s naughty axiom – on every class being equivalent to a set – is dubbed
unglücklicher Gedanke. In his letter to Dedekind (of 31.VIII.1899 on p. 448 loc. cit.), Cantor
shows that the class V , short for {x:x=x}, is not a set by use of elementary properties of sets.
Russell (famously) showed that Frege’s axiom specialized to {x:x/∈x}, say R, is contradictory,
albeit without emphasizing that the contradiction is purely logical (without use of set-theoretic
properties of ∈, cf. top of p. 372 of La prédicativité, Bulletin de la Société Mathématique de
France, 88, 371–91 (1960)); in contrast, ∃y∀x (x ∈ y ⇔ x ∈ V ) is not logically contradictory
but is in conflict with the axiom ∀x∀C∃y(y = C ∩ x), taking V for x and R for C.

Without exaggeration, in the mathematical tradition, Frege’s axiom has long been treated with
more or less benevolent neglect, aka an oversight or blunder. In the logical tradition (up-market), it
is occasionally pointed out that suitable kinds of partial predicates or functions satisfy formally –
something like – Frege’s axiom around the recursion theorem or models of the λ-calculus.

Reminder of the commonplace about diversity, here of interpretations: the mere existence
of some variant to which a (classical) logical contradiction is not an obstacle is a matter of
course, but not the discovery of an area where such a variant is rewarding (with the risk in terms
of Bourbaki’s manifesto in Endnote 4 that the relation to Frege’s axiom is its côté le moins
intéressant).

Anecdote and thus without (cl)aims of statistical significance, but by experience suitable
for some consumers in the commerce of ideas, e.g., for comparison with their feelings: in his
essay on Russell, Gödel asks for an error in Frege’s axiom – that, tacitly, feels – like division
by 0 (i.e., cancellation without restriction). Whatever he may have expected when asking (or I,
when reading) his question, I now feel that (Russell’s) locating a purely logical contradiction
as (immediate) consequence of the axiom (schema) does feel like (spotting) division by 0. As
to evoking feelings of an oversight or a blunder, this depends for me on the individual in view,
actually on classical lines: ανθρωπoς ων ημαρτoν (Menander, 300 b.c.) and Cuiusvis hominis
est errare; nullius nisi insipientis in errore perseverare (Cicero).

14. Anecdote In the 1940s, I was sufficiently dubious about the mere consistency of GB that I called
the result – tacitly a certain prenex normal form of GB has no recursive model – a hypothetical
contribution on whether all consistent formulae have such models. (Note on arithmetic models for
consistent formulae of the predicate calculus, Fundamenta Mathematicae, 37, 265–85 (1950).)
In the early 1950s, I went to the trouble of writing this out for GB without the axiom of infinity
(for which I knew a model even then).

Remark on T. Skolem, Einige Bemerkungen zu der Abhandlung von E. Zermelo: Über
Definitheit in der Axiomatik, Fundamenta Mathematicae, 15, 337–41 (1930) (which I noticed



endnotes 41

only recently): one ingredient in the proof – of GB not having recursive models – is clear enough
at the end of Skolem’s note but is there used only to express his malaise about Zermelo’s idea,
in modern jargon, of all first-order formulae of set theory being definite. (The malaise expressed
was around some kind of inconsistency with countable models.) One missing ingredient was –
Gödel’s at the time unique, and for several decades by no means commonplace – awareness
of the potential of (formal) incompleteness and related indefiniteness, specifically, for replacing
malaise about contradictions by simple facts in those formal terms.

Horizons of (in)definiteness in MAMNE’s and in (such) other views (as those including
attention to scientific effectiveness): as observed in Fundamenta Mathematicae, 37 (1950) –
or by inspection of Skolem’s sketch – here a formally undecided �0

2 sentence comes up in
contrast to Gödel’s �0

1 sentences, in general, not obviously decided one way or the other for
(MAMNE’s) arithmetic. Cf. L. Manevitz and J. Stavi, �0

2-operators and alternating sentences in
arithmetic, Journal of Symbolic Logic, 45, 144–54 (1980), where the (obvious) parameter loc.
cit. is considered: orders of enumerations of countable sets of formulae (or of submodels).

For reference To MAMNE, this may not feel like a parallel to different models (of sets) in the
case of CH inasmuch as no particular enumeration feels (to MAMNE) comparably privileged to
the full hierarchy (which, by personal experience above, some (of us) do not at all feel privileged
spontaneously, but do so with a vengeance after attention has been drawn to it). But with broader
BOR – around the effectiveness of such abstractions as real closed or real fields compared to
R or, for that matter, number fields in the Zahlbericht compared with Q – such feelings have
changed (for some of us).

Reminders around the full power set operation (and hierarchies so generated): in logic itself,
it serves foundations (cf. Section 2.2, being definite for suitable segments) and – admittedly
asymmetrically – in second-order (in)dependence, including categoricity of blessed memory.
Such independence is robust, dependence occasionally useful pedagogically, for contrast between
generally undemanding constatations (of categoricities) and more demanding corresponding
formal independence. In MAMNE, the contrast between the easily described full hierarchy
(compared to L) and its relative intractability has evoked malaise, with corresponding barks and
meows, for those (of us) with a little BOR around both set theory and number theory. These are
reminiscent of obiter dicta here about (easily described) natural and (less easily described) p-adic
numbers with rationals in between, tacitly at least around some familiar classes of diophantine
equations; cf. (mid) teenage BOR for linear equations over integers and rationals, BOR in Cassels’
Rational Quadratic Forms also for p-adics (used on the way to rational and integral solutions,
comparable to, but more recondite than, absoluteness properties of L, as in Endnotes 2 and
15(a)). Fitting the commonplace of diversity among aspects, sets have other aspects besides
those of cardinal arithmetic (like CH; cf. Endnote 11(d)) and numbers other than those of
diophantine geometry. (Since Descartes, organic combinations between geometric and algebraic,
if not arithmetic, aspects of equations have been familiar.) Another aspect is the focus of prime
number theory, the proverbial irregularity in the distribution of primes fitting recent combinations
with – knowledge around – pseudo random sets in ergodic theory.

15. As the word (broach) may have suggested, the items in view are not prominent in the magisterial
pronouncements of the authors concerned (and thus not emphasized by professional popularizers);
cf. Poincaré’s skepticism about and around – what was then touted as – logic or Hilbert’s finitism
or formalism (take your choice; Poincaré had died before Brouwer’s preoccupation with the law
of the excluded middle).

Remark (in passing here, with lots of suitable literature elsewhere): with additional, often
tacit understandings, each of those pronouncements is – in mathematical jargon, trivially, more
usually, said to be – easily seen to be, as the case may be, true or false. NB each of those tacit
assumptions is satisfied in many (necessarily different) situations actually encountered.
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Samples (a) Poincaré was struck by a certain indefiniteness – not only in the truth value of
(closed) formulae but also – of predicates or functions in axiomatic (logistic) systems; cf. p. 47 of
Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen
Physik (Leipzig: Teubner, 1910). In Section 2.2, Gödel’s effective use of the distinction between
(formally) definite and possibly indefinite predicates is prominent.

Remark In the 1960s, this aspect of definitions was emphasized in model-theoretic terms,
specifically, in trade jargon: (semi-) invariantly definable or (so) definable-on (absolutely defined
terms). It also includes – for suitable classes of models what Gödel called – absoluteness (for V
and L).

(b) For various reasons, I know more of Hilbert’s nonmagisterial ideas; probably I am not
conscious of most reasons, but one is that I saw a good deal of Bernays, who liked to remem-
ber Hilbert. (With such oral history in mind, published and semipublished material strikes the
reader vividly that might otherwise be simply skipped. With the present industry of so-called
history of logic or mathematics in bulky tomes, which also function as tombs for diverse bon
mots, the chances are that hearsay (at least of – the likes of – Bernays) can also be docu-
mented). A most useful fact to remember is Hilbert’s stroke in the mid-1920s, from which he
never recovered. His style of thought was not the same after it. Various items will come up
later.

(c) Brouwer’s – what has been variously dubbed deviant or alternative – logic is particularly
noteworthy by the following difference (in logic) from a kind of natural history, in terms of
aspects that strike MAMNE with little BOR (in contrast to natural science, which often relies
on discovered aspects; cf. Endnote 11). In particular, instead of (cl)aiming only to eliminate
linguistic incongruities (tacitly, with respect to colloquial practice, dubbed “paradoxes” by the
faithful), Brouwer described – what he called – choice sequences that (cogently) required a
nonclassical logic.

Reminder from general mathematical experience: it is a separate matter to what extent, if
any, this is more rewarding than (familiar) paraphrases (here meant in contrast to the ritual of
some formal semantics).

16. The expression logical foundations has been long familiar (more widely and longer than logical
hygiene; cf. Endnote 4), with different – also tacit – (cl)aims to boot, ranging from security to
“deep(er)” aspects not accessible to MAMNE. Admittedly, occasionally, there has been emphasis
on aspects accessible to MAMNE with little BOR (as in back to basics). Readers with (here)
suitable BOR will know the (cl)aims of Bertrand Russell in the introduction to (the second
edition of) Principia Mathematica for logistic foundations to demonstrate a, if not the, unity,
as in the name of the journal Fundamenta Mathematicae and the opposition in Bourbaki’s la
mathématique. As to security, in the particular case of consistency in the sense of freedom
from contradiction (not requiring consistency in the sense of substance or compactness), it
became topical around one hundred years ago after Russell’s “paradox” in Section 2.1(c); cf.
the following endnotes. The aspect – of definite meaning – emphasized here fits a good deal of
the logical literature labeled “foundational” but also serves for contrast to the use of logic in
Section 2.3.

17. E.g., Bourbaki’s article (Foundations of mathematics for the working mathematician, Jour-
nal of Symbolic Logic, 14, 1–14 (1950)) (re-) formulates a shift of emphasis going back to
Hadamard from mere consistency-in-principle to consistency-in-mathematical-practice in, let us
say, provocative terms: consistency is an empirical fact, not a metaphysical principle (provoking
a reminder of many metaphysical principles refuted by empirical facts; some discovered, others
striking to MAMNE, at least after being pointed out).

Background to (such) malaise around the idea(l) of consistency: to MAMNE with the
BOR of Aristotle – tacitly, truth functional – consistency apparently seems necessary without
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qualification (not if the commonplace about diversity is remembered). Those with the BOR of
Niels Bohr are struck by – what he called – “deep truths,” say B, when (in his words) both
B and its negation are true. (I have come to regard his aperçu as follows: in the first place, B
must be sufficiently vague to be complemented by discoveries of conditions C1 and C2 actually
encountered and both rewarding attention in their ways such that C1 ⇒ B and C2 ⇒ ¬B. The
reading restores consistency, but understood uncompromisingly, Aristotle’s ideal would be an
obstacle even to looking for such a (re)reading.) Nearer home, the material in Endnote 13
around partial predicates presents undefined as a tertium datum; cf. the reminder at the end of
Endnote 2 on Aristotle’s malaise over indefiniteness. At another extreme, Hilbert’s equally flashy
slogan proclaimed consistency as sufficient in mathematics without – let us say, premature –
qualifications. Rewarding ones, and also limitations, tacitly, in diverse areas are familiar in logic,
ranging from – arithmetic (but, by Endnote 14, not generally recursive) definitions of – models
to truth in arithmetic of �0

1-theorems in �0
1 -complete systems, but not enough for ω-, or better,

1-consistency.
Reminder of a parallel to the effectiveness of mathematics in Endnote 3, by specialization

to mathematical logic, when thought of – as throughout these pages – as providing idea(lization)s
of especially mathematical experience of proofs. On one hand, additional (formal) knowledge
of the ideas contributes, e.g., consequences of different choices of rules (for describing a set
of theorems). On the other hand, organic combinations with suitable mathematical aspects of
that experience require attention. As expected from experience in the theoretical natural sciences,
“hard-nosed” mathematicians will miss counterparts in the logical idealizations of aspects in their
experience to which they have become attached, and “starry-eyed” logicians will be disappointed
by lack of interest in their pretty exercises; cf. Endnote 18 for more.

Anecdotes about some pioneers: (a) in the preface to – admittedly, only the first edition of –
Was sind und was sollen die Zahlen? Dedekind noted (his) malaise over some convincing reward
for meticulous logical deductions. He picked on reliability (patently related to the (cl)aims for
consistency) by use of a metaphor around reading: the only reliable way is to spell out the words
(letter by letter; with (my) present proof-theoretic BOR, an alternative is (to me) more satisfactory:
emphasis on different specializations and generalizations of terms in theorems derived by diverse
logical rules).

(b) According to Bernays – once again, cf. Endnote 15(b) – Hilbert was asked (before
his stroke, loc. cit.) if his claims for the ideal of consistency should be taken literally. In his
(then) usual style, he laughed and quipped that the claims served only to attract the attention of
mathematicians to the potential of proof theory.

Reminders First, Hilbert’s audience – knowing his preoccupation (in logic, not elsewhere)
with routine proofs, described by him as like numerical calculations of numerical equations;
cf. his wording of the tenth problem – would have understood this as potential for the kind
of routine consistency proof he envisaged as bypassing then popular (dramatized) foundational
problems and getting on with the job of doing mathematics as he had done (reworded in print
after his stroke as a “final solution of all foundational problems”). As viewed here (and in
Chapter 1 of this volume, as I read it, but without agony over foundational sensibilities), this
has occurred anyway, at least in Bourbaki’s tradition, without such consistency proofs, and
Gödel’s incompleteness theorems provided logical hygiene to Hilbert’s ideal but no relief from
the malaise felt about it by the (experienced) mathematicians mentioned earlier. Second, more
generally, while in practical life, it is often salutary to bypass obstacles after having paid attention
to them, in my experience – here and exemplified later – the ritual of a formal bypass is seldom
more rewarding than more or less benevolent neglect, at least, without a shift of emphasis (there
is no free lunch). A price paid by those (of us) later pursuing proof theory has been to discover
suitable ideas for adapting consistency proofs to aims rewarding for a broader view, naturally,
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not an unduly high price for those (of us) attracted by such activity; cf. again Endnote 18 for
more.

Gödel himself was skeptical about the interest of Hilbert’s program in his Königsberg lecture
as consistency does not (even) ensure ω- (or in present jargon 1-) consistency; a few years
later, in his Zilsel lecture, he referred to some great epistemological value of a realization of the
program. (For all I know, a formal ratification of weaknesses of such venerable idea(l)s as (mere)
consistency is deemed to have epistemological value.)

18. While (the) ideal(ization of) consistency of principles (in other words, in-principle) lends itself
to theory at all levels of sophistication to boot, including Gödel’s charming proof of consistency
for S ∪ {¬Con S} from Con S in Section 2.2, in practice, it is rarely pertinent to practical
concerns, for which an arsenal of precautions has evolved (including cross-checks of numerical
computations by suitable, sometimes most imaginative abstract interpretations).

Remark on a logical idealization of – the ubiquitous practice of – cross-checks used in the
second edition of Hilbert-Bernays II, pp. 298–300 (there is no counterpart in the first edition
of HB II; cf. pp. 283–89): while no more realistic as a description of natural phenomena of
proof, e.g., in speculation about biological data processing than more familiar formal systems,
it provides examples of bona fide formal systems that do prove their own consistency (and have
the same derivations, not only theorems, as others that don’t); only checking that a derivation is
a formal proof is different.

Remarks related to commonplaces around theoretical idea(lization)s, aka formalizations in
the case of formal theory:

(a) The would-be catchy formulations of the incompleteness theorems in terms of – some
tacit order of – strength of systems are, let us say, infelicitous; cf. Section 2.1(b) on functions of
orders. The example in HB II loc. cit. illustrates this vividly.

(b) This was brought up to date by R. G. Jeroslow, Redundancies in the Hilbert-Bernays
derivability conditions for Gödel’s second incompleteness theorem, Journal of Symbolic Logic,
38, 359–67 (1973).

(c) Another aspect, in particular, generality, of Gödel’s proofs of incompleteness – actually,
plain from both editions of HB II, albeit not stressed there (in keeping with the broad scheme loc.
cit.) – was later made familiar by Tarski and Mostowski in terms of definability; cf. Gödel’s title
without – what would then have been – premature precision, about systems “related” to Principia
Mathematica (or, if preferred, a formally clean variant of it).

Reminder of the preamble around diversity among aspects, here, of PM: one aspect, aka
property, of PM is that its set of axioms is r.e., another is that it is semi-invariantly definable-on
ω among general models (in terminology of the 1960s).

Pedantic technicality concerning both editions of HB II: while the axioms are not restricted
(e.g., to being r.e., aka formal), the numbering is required to be recursive: for the later abstraction,
this is invariantly definable-on, in Gödel’s terminology, entscheidungsdefinit.

(d) For readers familiar with rational mechanics with its ideal(izations of) solids, fluids,
and gases, describing MAMNE’s views of those objects in the literary forms of analysis: the
contributions range from the level of – the (very few) likes of – Newton, Laplace, or Poincaré to
the Tripos examples at Cambridge (United Kingdom) up to the 1940s. Counterparts are expected
(and realized) in the logical literature, including the superstition that a principal weakness (of
such applied mathematics) is lack of formal rigor, overlooking the oversights in MAMNE’s views
themselves (and correspondingly of their formal definitions), tacitly, for improving knowledge
of the earlier objects.

19. While Gödel – to the amazement of all with any feeling for mathematics – drew a conclusion
from mere consistency (or 1-consistency or what have you), without much direct consequence
for mathematics, when combined with suitable consistency proofs, the emphasis shifts from
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Gödel’s conclusion to (the negation of) principles used in those proofs, most famously (in logic)
Gentzen’s use of ∈0-induction applied to diverse predicates; cf. H. Friedman, Iterated inductive
definitions and �1

2 -AC, in Intuitionism and Proof Theory, ed. J. Myhill et al. (Amsterdam: North-
Holland, 1970), pp. 435–42. For a cozy presentation some thirty years ago, with an exposition
in appendix II of (part of) Friedman’s result suitable here, see, e.g., Wie die Beweistheorie zu
ihren Ordinalzahlen kam und kommt, Jahresbericht der Deutschen Mathematiker-Vereinigung,
78, 177–223 (1977), esp. pp. 214–23.

Reminders First, Friedman uses only the fact of unprovability (in Gödel’s second the-
orem for the systems in view), not details of its proof. By general experience, such results
are generally seen more vividly by model theory (even though some that were so stated in
the stone age of logic were originally established proof theoretically, with proofs providing
additional information; cf. Endnote 17). More specifically – at least my expectations of – ad-
vantages of a model-theoretic argument are illustrated by A. Bezboruah and J. Shepherdson,
Gödel’s second theorem for Q, Journal of Symbolic Logic, 41, 503–12 (1976). (Their own
reservations in the introduction to – what is in effect their advertisement in the title of – the
emphasis on Q do not spoil this use of their paper.) The non-Archimedean, aka nonstandard,
models of the systems in view are more or less brutally unfounded and so, in particular, are
nonstandard proofs of ¬Con S in them. So one expects (or just hopes) to see such proofs
(or, in fact, of all formulae) and their oddity. So (re-) viewed, a principal weakness of Q is
the patently exceptional nonstandard proof good enough here: just using the axiom (schema)
A → A and the rules of modus ponens and repetition. (Very simple induction would exclude
this.)

Disclaimers On one hand, even though exceptional, it is good enough to show that rules in
Endnote 18 requiring cross-checks with the (finite) body of previously proved theorems would
exclude this kind of proof; but cf. the later remark. On the other hand, I hold no brief for
their (stated) ideals of simplicity and, above all, generality without qualification: alternatives are
marginal utility and attention to diversity, here, of generalizations. E.g., L. H. and R. H. inverses
are equal in abelian groups, but the extension to all groups is only one viable option; another is
the extension to suitable commutative structures that are not necessarily groups.

Remark on, what would be for me, a missed opportunity, a blunder by me in the 1950s (prob-
ably published somewhere) corrected by Shepherdson: I had (sensibly) reinterpreted Rosser’s
so-called trick – eliminating Gödel’s assumption of 1-consistency for his incompleteness the-
orem, beyond consistency – as a shift in the rules considered, requiring cross-checking, albeit
asymmetrically: only the negation of the formula in view must not have been proved earlier (in
contrast to the symmetric variants in Endnote 18). My premature conclusion was that (such)
Rosser systems proved their own consistency. They do not; cf. Zbl. 728.03031, referring to a
letter (of 5.X.1991) by De Jongh.

20. The (gradual) introduction of the common word conjecture as part of mathematical trade jargon –
albeit not throughout the trade, where it is more or less synonymous with guess or sometimes just
a possibility – is here viewed as a vivid, albeit perhaps extreme, case of change in idea(l)s with
BOR; cf. preamble. Roughly speaking, with experience in up-market mathematics, a distinction
within the common or garden variety of guesses has come to be recognized as rewarding with
suitable BOR, at first, presumably, tentatively. Correspondingly tentative will then be a suitable
sense of evidence (for a conjecture in view). Not feeling myself to be a suitable spokesman for
the preceding trade, here are a couple of impressions:

(a) Like that favorite idea(l) of truth tout court (which leaves tacit some suitable interpretation,
e.g., a (class of) model(s)), it can be delicate to specify for which (among many) aspects such
evidence is sought; knowledge has many rewarding (and correspondingly demanding) aspects
besides truth, let alone, for some familiar interpretation. So much is only cautionary.
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(b) More positively, (my impression is that) conjectures are to be related – not only to some
special instances, but – to a broad (possibly informal) idea, comparable to the familiar matter of
crucial experiments for a general scientific theory.

Reminder The popular slogans of confirmation and refutation (adumbrated in Endnote 8)
and their synonyms revive – the (b)rash practice – in (a) without or prematurely specifying areas
of validity envisaged; cf. Endnote 22 for more.

21. As to the (popular?) human touch, it is apt to provide distraction, well illustrated by history –
not so much as practiced in biology – but particularly in the history of ideas; cf. A. Weil’s
autobiography (p. 119): l’histoire des mathématiques ou pour mieux dire la lecture des grands
textes mathématiques du passé me fascinait (after having lectured at an ICM on “History of
Mathematics: Why and How?”). Depending on their BOR, readers may be distracted in the sense
of being entertained or irritatingly deflected (from logical concerns) by the following historical
touches:

(a) W.r.t Endnote 18, Tarski emphasized – in effect (I at least do not know if on purpose
inasmuch as I do not know whether he ever looked at those pages in HB II) – the abstract aspect
of the formulation, Turing the particular case of r.e. systems. Gödel himself – both in his course
at Princeton in 1934 (before his transatlantic crossing with Bernays) and afterward in his Gibbs
lecture – also took up the particular case (that fascinated Turing) for contrast with a metaphysical
principle about Reason being able to answer all, let us say, Reasonable questions. Then there is
the term derivability conditions used in HB. Those committed to the trade dealing in provability
logics view these conditions as selections among proof predicates for a given theory, “identified”
with its set of theorems; cf. Section 2.1(a) on functions of equivalence relations. For those (of
us) who have found the body of proof theory (we know) most rewarding when applied to formal
rules, for which there are then familiar canonical representations, those conditions are then –
viewed as – properties of the rules; cf. also Endnote 19 on Rosser’s “trick.”

(b) With respect to Endnote 19, the malaise expressed in erudite jokes, e.g., by Tarski and
Weil, overlooks counterparts (to consistency) in ordinary mathematics they knew, e.g., fields
in algebra. NB They may have found erudite jokes about fields alluding to agriculture as stale
as I find theirs; but cf. Endnote 13 on – one way of – rethinking proofs of a consistency
statement.

Anecdotes about my teens at Cambridge (United Kingdom), where analytic number theory
was then popular, with proofs frequently dubbed more interesting than their theorems: in my
innocence, I asked, “So why do you not use – tacitly, ideas of – the proofs for theorems of
interest proportionate to that of the proofs?” I did not get an answer, nor did I have a clue how
rewarding (and, as so often, correspondingly demanding) such concern for “rethinking” of proofs,
by (suitable!) abstraction, would be in abstract mathematics of the second half of the twentieth
century. In fact, this had to wait until the mid-1950s, when I met Serre, a pioneer in the subject
(with – as it were, private – logical interests, and a feeling for logic).

(c) With respect to Endnote 20 around conjectures (in contemporary mathematical jargon),
readers of the literature will have come across occasional protests by authors whose impressions
or just questions have been dubbed (their) conjectures, sometimes the same authors who associate
Wiles’ (most) famous proof – not with Fermat’s marginal remark several centuries ago, but –
with Taniyama’s conjecture (or Taniyama/Weil if, in effect, usually not in these words, the latter’s
sharpening to �0

1-form is to be emphasized).
Remark Changes in meaning – with expanding BOR – of everyday terms are familiar in

physics, of weight and mass when BOR extends to, say, expeditions to the moon, or the neologism
“rest mass” when attention includes, say, the motion of electrons around the nucleus of atoms.

For the human touch (including names), here are a couple of anecdotes, at two extremes to
boot:
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(i) In his autobiography, shortly before Faltings’ proof of – what was aka – Mordell’s con-
jecture (of binary diophantine equations over Q, of genus > 1 having at most finitely many
solutions), Weil declares his (negative) feeling about that label (presumably, in contrast to the con-
jectures that the Clay Prizes reward only if proved, while either answer to NP ? P merits a prize).

Personal remark For a meaning of conjecture that has grown on me over the years, a formal
statement (to be proved, refuted, or shown to be undecided by suitable conditions) is generally
not enough; it has to be supplemented by a suitable text (as formal proofs usually are, even
in such austere texts as Bourbaki’s Éléments). Thus it is not excluded (though I do not know
how) that after Faltings’ proof, comments are found that supplement the formal statement into a
bona fide conjecture (even without constituting a proof) or, indeed, the opposite (by specifying
a previously overlooked obstacle).

(ii) This is a case ad hominem. In the 1960s, I wanted to shift attention – away from what had
struck me as thoughtless (cl)aims around “measures” for complexity – to (discovered) logical
uses of literally superficial parameters of length of proofs (number of lines or nodes); at least
in my view then, reminiscent of the shift (in the 1940s) from consistency to specialization of
(existential) terms in proofs of theorems (with existential quantifiers in suitable normal forms);
cf. the P.S. to M. Baaz and P. Wojtylak, Generalizing proofs in monadic languages, Annals of
Pure and Applied Logic, 154, 71–138 (2008). Briefly, a property ℘ of systems (in the notation of
Baaz and Wojtylak) with formulaeAwas considered in terms of provability �kby proofs of length
k:∃k∀n ∈ ω �k A [x/sn0]) ⇒� ∀xA. (Evidently some systems do, others do not have ℘.) Some
articles that established ℘ for this or that class of systems labeled their discoveries as proving
so-and-so’s conjecture or as being about length, tacitly, with emphasis on the premise in ℘, here
meant in contrast to the conclusion (about generalization). So (re)viewed, the label does not fit
(my) contemporary understanding. More appropriate, albeit very modest, was a conjecture after
Parikh’s proof of ℘ for a monadic variant of standard formal arithmetic, PA, related to general
experience in mathematics shifting from the existence of some solution (of a set of equations)
to descriptions of solution sets, with specification of a suitable class of systems and suitable
terms (instead of the numerals sn0: n ∈ ω): the emphasis shifts to generalization – in place of
specialization – of terms.

(d) A separate matter is the – feeling, aka sense, of – reward for such additions of the human
touch (or, more generally, of biographical material around authors for an understanding of their
ideas). By the commonplace of diversity, which, by now, has become a refrain in these pages, a
true but boring answer is evident. This does not exclude the discovery of significant categories
(of authors and ideas) on which somebody with taste and talent for the human touch may have
something rewarding to say.

22. As is well known, at least tacitly, to those with (rewarding) experience around so-called in-
terdisciplinary knowledge, which in the jargon used in these pages combines knowledge from
different disciplines, this requires additional skills (to those in any one discipline); cf. Endnote 3
on Wigner’s “half truth.” Perhaps it should be added that the kind and degree of satisfaction to
be expected from an item of interdisciplinary knowledge will be asymmetric, dependent on the
relative BOR around the different disciplines available. (Logical BOR, especially around Gödel’s
proofs, is assumed later.) After earlier reminders about diversity among aspects (and additional
diversity among potential combinations with any one aspect; cf. Endnote 6), the incompleteness
of the following samples – even with respect to my own knowledge! – is a matter of course.

(a) At one extreme are organic combinations of common(place) knowledge with professional
BOR, here viewed as consolidating the former, e.g., the commonplace of diversity and its corollary
that literal completeness is an oversight. In logic, even when rules are complete with respect to
validity, they need not be so with respect to deduction (in the cut-free case), let alone for proofs,
even in the case of classical propositional logic.
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Less technically, completeness of rules is understood, at least tacitly (by some), with respect
to proofs. Now, in a familiar way, for each N ∈ ω, and given graph G with N nodes, it can be
checked whether G is planar, and a propositional formula PG can be presented that is satisfiable
if and only if G is four-colorable. Thus a proof of the satisfiability of PG uses the four-color
theorem as an intermediary. With minimal assumptions on an equivalence relation between
proofs (cf. Section 2.1(a)), this has no equivalent among formal derivations for propositional
logic.

Reminder Equivalence is trivial if a set of rules is “identified” with its set of (propositional)
theorems.

(b) Some dreams around some theory of quantum gravity (rehashed also in this volume)
go back, in effect, if not “historically,” to an idea in Gödel’s Gibbs lecture (there) with special
emphasis on r.e., aka formal, theories; cf. Endnote 21(a).

Reminder At the time (in the early 1950s), Turing’s – cult of the black box, in the form of
his proposed – test prompted some reservations. Half a century later, robotic engineers are more
impressed by other capacities of humans and (some) other primates they (cl)aim to simulate than
by superiority in chess and mathematical deduction, here meant in contrast also to other more
imaginative elements of mathematical thought.

Admittedly, carping at – instead of ignoring; cf. the first reminder in Endnote 17(b) – weak
arguments is not everybody’s cup of tea. But here – naturally, with suitable BOR – some additions
and also disclaimers seem rewarding.

(i) Gödel states boldly – actually, for formal rules, but equally cogently for the broader kind to
which his argument for an undecided but true sentence applies – that the knowledge available (to
us) may be definable without (our) knowing a definition, and thus without knowing the truth of
that sentence. Perhaps more realistically, the enterprise of axiomatizing a – naturally, growing –
body of knowledge constitutes itself an addition to that knowledge, when the axiomatization so
found no longer includes that addition. Only with that addition is the consistency of the axioms,
and thus the truth of the undecided sentence (for its arithmetic interpretation), as vivid as this
(inclusion) may be – if not to MAMNE then – to some mind’s eye with a little logical BOR; cf.
notorious optical illusions.

(ii) Independent of those dreams around unknown theories is the broader question of finding
some suitable aspects of existing theories in natural science that satisfy laws outside some
(would-be privileged) familiar kind, e.g., nonrecursive laws in classical mechanics. There are
plenty available, e.g., in texts by Pour-El and Richards. What has so far been lacking is an
empirically satisfactory interpretation; cf. the review on pp. 53–55 of Jahresbericht der Deutschen
Mathematiker-Vereinigung, 94 (1992).

Remark There is no suggestion that nonrecursive aspects are more prominent in (classical)
quantum theory (without attention to gravity) than in classical mechanics; in particular, quantum
computation does not (cl)aim to compute nonrecursive functions, only to speed up computations.

(c) C. Koch and K. Hepp, Quantum mechanics in the brain, Nature, 440, 611–12 (2006),
largely ignore – in effect, perhaps having (tacitly) recognized – the oversights pointed out in (a)
and (b) above and so have no occasion to correct them. Instead, they go back to old (cl)aims
of relating consciousness to measurements in quantum mechanics in the 1920s, long before any
suggestion of quantum computation. Presumably, there is a potential for a review by reference
to such computation and also to discovered (neurobiological) aspects of consciousness (while in
the 1920s, only aspects visible to MAMNE without neurobiological BOR were used). Whatever
the interest of the article to professionals may be, (we) consumers are apt to balk at the sweeping
generality of the title and correspondingly facile slogans about the (relatively large) size – in
admittedly far-fetched dreams about functions – of microtubules (compared with effective ranges
familiar in quantum mechanics, let alone Planck lengths).



endnotes 49

Reminder of the question: why is gold yellow and silver gray? No doubt this question may
have been asked at a stage with minimal BOR, when MAMNE looking at lumps of gold and of
silver sees nothing moving fast, certainly, not their electrons moving around the nuclei of atoms
of those metals. Subject to a chance of confirming with competent specialists a report on this in –
the German edition of – Scientific American, it appears that relativistic effects of such motion
are related to those optical properties; cf. Endnote 21(c) for more around a broader (consumer’s)
view on such matters, enough to be prepared for contrasts with traditional professional choices
(by remembering logical hygiene around diversity) among aspects.

Reminder of an unproblematic counterpart of use in all molecular chemistry, not only biol-
ogy or neurobiology: metric three-dimensional aspects of chemical bonds derived (by Pauling)
quantum theoretically: This incidentally fills a gap on p. 35 of Ernst Mayr, What Makes Biology
Unique? (Cambridge: Cambridge University Press, 2004), at least if Pauling’s is counted as one
of the great discoveries made by physics in the twentieth century. Warning: the reminder does not
fit the equivalence relation (between sciences) apparently – in at least one sense of this word –
tacitly understood in the title.

Elementary reminder prompted by Gödel’s incompleteness result: as I have come to see
it, it is one of those more or less mathematical gems – like the irrationality of v

√
2, uniqueness

of the solution (v = 0) of v = cs (for a body starting at rest) noticed by Galileo, and (perhaps,
even) Russell’s contradiction (at least, if viewed as in Section 2.1(c) and Endnote 13) – that,
since classical times, have aroused in each generation exaggerated expectations of the “powers
of pure reason,” exaggerated by forgetting the additional, usually empirical knowledge needed
for progress (e.g., for the discovery of suitable measures when rationals are not); cf. also Endnote
11(d) for some additional, equally elementary items around this reminder.

23. Readers interested in Hilbert’s states of mind, in particular, before and after his stroke, will no
doubt recall Endnotes 15(b) and 22(a). But independently of this, the material (semi-) published
during his lifetime demonstrates his flexibility, at least in effect. E.g., soon after his best seller on
geometry – and his recommendation in his lectures of the logical exercises in it as a distraction
from boring philosophy of space at the time (at the end of the nineteenth century) – he took up
Einstein’s philosophy of space(-time) with relish, and without the kind of logic loc. cit.

24. The metaphor occurs – actually, in both forms, of logic as grammar, and logic as language – in
Bourbaki’s Foundations in endnote 17; cf. also the understanding in the remark in the first para-
graph of Section 2.1. NB This warns at the start that the author was logically self-educated, albeit
without even hinting at the usual consequences: not necessarily lack of general understanding
but certainly of what is and what is not generally familiar to the professionals (here, in logic).

Remark on the present case: self-taught Bourbaki had an exceptionally gifted teacher, albeit
with one-sided logical BOR, given that Weil had translated Hilbert’s Über das Unendliche in the
mid-1920s. For a kind of update, albeit in a very different style, cf. J. Dieudonné, The work of
Bourbaki during the last thirty years, Notices of the American Mathematical Society, 29, 618–23
(1982); cf. Endnote 25.

Correction cf. Section 2.1(a) on (in)equivalence relations with and without an order of
priority, aka difference and originality, respectively: Dieudonné’s (unauthorized) article repeats
Bourbaki’s own general view of the Éléments as not being original and in particular stresses some
kind of close relation to Hilbert’s earlier abstract number fields in the Zahlbericht and abstract
geometries in Grundlagen der Geometrie. As I have come to read this material, a difference is
striking. Hilbert did not and Bourbaki did stress compatibility conditions (e.g., in the manifesto;
cf. Endnote 4).

Remark on literary abstractions in metaphors from literal meanings: options for describing
the relation in view are Hilbert’s earlier ideas as a source (for the grand courant) of the Éléments
or as a seed fallen on fertile ground (provided by later mathematicians) with fruits presented
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loc. cit. Depending on BOR around geology and molecular biology, one or the other option is
more suitable for drawing attention to the potential of those compatibility conditions (ranging
from tributaries of the majestic river to so-called emergent properties coded in DNA, etc.;
cf. epigenetics in Endnote 26). To me, both a particular satisfaction derived from handling
mathematical abstractions and the skills needed for doing so effectively are reminiscent of those
found in experience with metaphors. This parallel might well have been as informative to Simone
Weil as her brother’s (in March 1940; cf. Endnote 30 for more); cf. also the reminder in the
following endnote.

25. On p. 618, at the bottom of the second column, Dieudonné has some pieties (of the bien-pensants)
about everybody being free to give their meaning to mathematics, as if not half the world, at least
tacitly, felt in need of guidance rather than freedom. There is lip service paid to the (no doubt
up-to-date) idea(l) of communication, without a hint of what (feeling?) is to be communicated,
except for something in contrast to meaning.

For reference in (c), following: Whatever Dieudonné’s words were to communicate, they
certainly evoke (in me) the following:

Reminder of a shift in emphasis from meanings of individual terms (in common or garden
varieties of languages) to those of compounds, in particular, describing analogies: their effective
use would be hampered by harking back to a semantics for the elements, not only by cramping
one’s pace but by preventing the meaning of the analogy to grow and adapt with new situations
encountered. After all, mathematics is not for morons incapable of such growth.

Disclaimer This is remembered without forgetting the (cl)aims of up-to-date artificial intel-
ligence (in robotics) with its (lucrative cl)aims of automation (and another market).

26. Anecdote from the mid-1950s, when I had (exceptional) private lessons in – visions around –
molecular biology, long before the slogan of the (family of) DNA molecule(s) being the
molecule(s) of life: what I understood of it did not seem unreasonable (in the sense of unre-
alistic), inasmuch as the molecule presented itself (to me) as a nondeterministic program, like an
axiom system, leaving open what was going to be generated – and tacitly given attention – and
in which order the rules were to be active, aka applied, a now familiar concern of epigenetics.

27. Roughly speaking, in (classical) model theory, the main (primary) object of attention is a class
of theorems, in proof theory also the proofs (and even the manner of checking the correctness of
application of the rules; cf. the first paragraph of Endnote 18).

28. As in Endnote 27, recall Endnote 18, now on tacit assumptions in practice around (absence
of) needs-in-principle. Russell stressed the (cl)aim of – Principia Mathematica as a parenthesis
in – a refutation of Kant, specifically of some kind of intuition for mathematics or perhaps
visualization in Section 2.3(c). Russell’s idea(l) was to use – tacitly, familiar – logic only.
So to speak legalistically, (Gödel’s) incompleteness refutes Russell’s idea, but with the tacit
assumption (surely accepted by Russell) that equivalence with respect to truth in arithmetic was
enough.

Remarks Mathematicians, often at a loss for words when wanting to convey very simple
feelings simply (not required in the trade), say that they expect from a proof not only truth but
understanding.

In logic, it has become customary in practice to interpret what is lacking in terms – not of
(a feeling of) understanding, but – of length; cf. Endnote 21c(ii) on some measures and (my)
reservations. No doubt there are some functions of some proofs for which length is a suitable
measure, but I’d find it hard to specify such cases, which those with a feeling for mathematics
want to understand at all. For one thing, descriptions of proofs are often more suitable.

29. By a fluke in my undergraduate days in the 1940s at Cambridge, idea(l)s of elementary and direct
proofs, especially in number theory (in contrast to analytic number theory, which used function
theory heavily), were (still) a prominent topic. Selberg’s (and Erdös’) elementary proof(s) of the
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prime number theorem caused a stir. By this fluke, I and others have had some time for second
thoughts.

(a) Certainly MAMNE – at least with BOR (in this respect) like mine in those days – saw
those ideas sufficiently clearly for confirming them formally, as it turned out, fitting some of the
literature I learned a little later; cf. Endnote 30.

(b) After an interlude – away from logic engaged in theoretical hydrodynamics, at the time
aka applied mathematics, I did not feel that those (clear) idea(l)s were among the “foolish things
one had better learn to forget,” but my emphasis changed: where, if anywhere, do they contribute?

Remark As it happens, this question, applied to ideal(izations of) liquids, had been excep-
tionally rewarding in hydrodynamics. By temperament, I paid particular attention to formal rigor
in hydrodynamics where this was (pointlessly) neglected, in contrast to logic, where a – for my
taste, disproportionate – cult was made of it ever since Gödel had shown that this paid off at all.

(c) By the time I came across Gödel’s term reductive proof – cf. Synthese, 114, 122 (1998) –
I had lived through several changes in the meaning of elementary proof; key words: first, the
division moved from R or C to the p-adics, and later from p-adics to l-adics. Furthermore,
attention was paid, albeit not in so many words, to – presumably, not only – my malaise over
those elementary proofs: their (auxiliary) constructions were (and are) not memorable to me; cf.
the middle paragraph on p. 123 loc. cit., citing W. J. Ellison and M. Mendès France, Les nombres
premiers (Paris: Hermann, 1975).

For all I know, (Gödel’s) reductiveness may have become a bona fide staple of the epistemo-
logical trade; cf. (c) on p. 124 loc. cit. But this leaves open what, if anything, it has to offer the
rest of us.

30. The references in the text are to letters of Gauß and A. Weil (to his sister, of 26.III.1940),
respectively.

Forewarned by a passage in an earlier letter (of 29.II.1940, reprinted in his autobiography,
of which more in the last remark of this endnote), not his own stated aim, but two other aspects
of Weil’s letter to his sister of 26.III.1940 are given attention subsequently. The first concerns
effective uses of “the” analogy between number and function fields.

(a) B. Mazur and A. Wiles, Analogies between function fields and number fields, American
Journal of Mathematics, 105, 507–21 (1983) (in an issue dedicated to Weil on his seventy-seventh
birthday), give an account of contributions under their heading over the preceding four decades.
But also they have – to me very efficient – reminders of a familiar price: where is an analogy
in view likely to contribute (rather than distract), and in which direction? Thus, on p. 507, it is
noted parenthetically that function fields are considered to be easier than number fields, and on
(top of) p. 508, they cite function fields (for curves over finite fields introduced in the early 1980s
as analogs to classical cyclotomic number fields) that “at least at . . . present . . . show every sign
of being just as difficult as their classical number-theoretic counterpart.”

Remark with the option of consolidating commonplaces about other abstractions by relations
to mathematical experience: this kind of uncertainty and awareness of changing BOR simply go
with the territory.

Disclaimer My BOR around the subject is not good enough to “balance the account” over,
say, the last twenty-five years, except for mathematical common(place) knowledge about Lang-
lands conjecture(s) coming under the heading in view, and Fields Medals having been awarded
for work on some of the number fields and function fields concerned (to Drinfeld and Laf-
forgue, respectively); cf. J. W. Cogdell, Langlands conjectures for GLn, in An Introduction to the
Langlands Program, ed. J. Bernstein and S. Gelbart (Boston: Birkhaüser, 2004), pp. 222–48.

(b) Those with BOR weighted toward formally real fields will think of Siegel’s extension in
the 1920s of Lagrange’s theorem (on representing nonnegative elements as sums of four squares)
to suitable number fields, with equally early straightforward counterexamples for function fields.
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(c) In the 1930s, specialists had developed a feeling good enough to let them transfer the
ideas of (usually easier) proofs for the fields of formal power series to p-adics. (There was
then no question of specifying a class of properties for which the transfer was to be expected.)
In the 1960s, experience around ultraproducts provided a suitable class – specifically (in the
sense of model theory, not Endnote 29) elementary properties – to correct and prove a corrected
version of a conjecture of Artin from the 1930s. While this result exceeded the expectations
of mathematicians from model theory and other logic, by general experience – e.g., around the
stock market – it raised somewhat unrealistic expectations later. At any rate, it remains a bona
fide contribution to pure mathematics; cf. Section 2.3.

At another extreme, in foundational, aka hard core, logic, more or less familiar function fields
are used as models; cf. Endnote 19 on Q and other so-called weak systems of arithmetic, about
which more later. They are at an opposite extreme – to p-adics, etc. – when viewed in terms of the
digression in Endnote 3 with such examples as Hilbert’s Zahlbericht: from the bottom up. The
logical tradition starts with Peano’s (second-) order axioms, and – more or less mechanically, after
replacing the successor by + and × – goes from the top down, restricting induction by quantifier
complexity. (This relies on Kleene’s arithmetic hierarchy; in effect, though not in these words,
he had applied logical hygiene, specifically for ensuring stability by referring to equivalence
with respect to definability; this was later sharpened by Matiyasevich by showing polynomial =
recursive enumerability.) My impression is that here the trade between mathematics and logic
has been mainly one way, with occasionally ingenious mathematics used for (often) logically not
particularly realistic problems; cf. ingenious Tripos problems mentioned at the end of Endnote
18 but also the general reminder in Endnote 17.

Remark on logical (partial) orderings by such measures as consistency or interpretability
“strength” or simply set inclusion (of provable theorems of this or that complexity; cf. Endnote
11c(i) with �0

1 and �0
∞, presumably with attention somewhere in the literature to logical hygiene

suitable to provability in “weak” systems parallel to Kleene’s for definability): what – at least to
me – is particularly lacking is the kind of logical hygiene (for orderings) emphasized in Section
2.1(b): attention to suitable functions, at least tacitly. Without this, the by now well-known fact
that those prominent axioms in ordinary mathematics do not differ dramatically in (any of those
logical) strength(s) from weak logical systems for arithmetic is neither particularly surprising
nor of much realistic consequence. After all, by Section 2.3 the effectiveness of suitable explicit
definitions, which are straightforwardly interpretable (and thereby equivalent in strength), is (to
me) a good warning of limitations of those measures.

Another aspect of Weil’s letter rewards attention, specifically around feelings about math-
ematical ideas, in his letter, (MAMNE’s) equivalence or similarity relations between feelings
about such ideas and about personal entanglements, here between feelings about combinations
of such ideas with knowledge from two other areas: one is mechanics in Endnote 29(b), the
other foundations in Section 2.2. In jargon used earlier, they are mathematical idea(lization)s of
experience in those areas; the matter of feelings is complementary to – aspects of – effectiveness
adumbrated in (a) to (c) of this endnote. Briefly, the gingerly – but for the likes of me not partic-
ularly secretive – approach in the discovery of areas and idea(lization)s suitable for one another
has a particular attraction, admittedly (for me) not altogether unrelated to so-called applications
of one mathematical discipline in another. NB The temptations of formal ingenuity unsuitable
for organic combinations – as in notorious Tripos problems on rational mechanics, but also in
foundations – are familiar: spotting and avoiding those pitfalls are necessary skills for moving in
those territories rewardingly.

By – what will continue to be – a refrain in these pages, descriptions of feelings are left to
others, e.g., to the likes of those other siblings, Henry and William James, if (descriptions of
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feelings about) subtleties of a particular kind or varieties of mathematical (but also, when I come
to think of it, of adulterous) experience are in demand; cf. Endnotes 2 and 3.

Remark on Weil’s letters of 29.II and 26.III.1940 (the former on p. 129 of Souvenirs
d’apprentissage, in particular, expressing his conviction that it was futile to try to convey his
mathematical interests to his sister): some contemporary biographers will presumably search in
his life during barely a month for events that may have given him the confidence at least to try
(by use of his metaphor). Whatever may be thought of the metaphor (of adultery), I myself was
disturbed by the ineptness of another metaphor in the earlier letter, comparing the project of
describing his interests (to his sister) to describing musical interests to a deaf person. Goethe’s
self-description suits me better: So verwandle ich, Ton- und Gehörloser, obgleich Guthörender,
jenen großen Genuss [der Musik] in Begriff und Wort (Letter to Zelter of 2.V.1820).
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CHAPTER 3

The Reception of Gödel’s 1931
Incompletability Theorems by

Mathematicians, and Some
Logicians, to the Early 1960s

Ivor Grattan-Guinness

Among those concerned with mathematical logic and axiomatics, the impact of Gödel’s
1931 theorems on first-order arithmetic was fairly rapid and positive, although a few
notable figures were a little slow to recognize it. However, the reception in the math-
ematical community in general was much slower and more muted. Evidence for this
impression is presented from the literature, especially from general books on mathe-
matics. The slowness is itself evidence of the ambiguous attitude that mathematicians
have usually shown toward logic.

Around 1930, developments in the foundations of mathematics were becoming
dominated by the program of metamathematics led by David Hilbert (1862–1943) as
well as by the reasonable expectation that all logical and mathematical theories that
could be axiomatized would be shown to be complete and consistent. Gödel’s own
Dissertation at the University of Vienna was of this kind. In it, he showed that the
first-order predicate calculus (as we now call it) with identity passed muster; a lightly
revised version was published (Gödel, 1930). However, in that year, he unexpectedly
changed the direction of research for ever. In a paper that was to be accepted as his
Habilitation at the University of Vienna, he showed two properties of the system P of
axiomatized first-order arithmetic (Gödel, 1931). In his first theorem, he proved that if
P was ω-consistent, then it contained more truths than theorems. Some months later,
he proved the second theorem: that any proof of the consistency of P would require a
logically richer theory than that of P itself, not a poorer one.

The history of the early reception of Gödel’s paper by logicians has been well
recorded (see esp. Dawson, 1985) and needs no special review here beyond pointing
out some surprising and little-known details. The rest of this chapter deals with the
reception by the mathematical community in general, a topic that, to my knowledge,
has not previously been studied. Conclusions for both stories are drawn in the last
section.

Three tables of bibliographic references related to Gödel’s theorems in the primary
literature are presented as the first part of the references. To avoid a considerable
duplication of referencing, items from these tables are cited in the text using author
and date and with the table number in square brackets (e.g., Rosser, 1953 [2]) and are
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listed with short titles in the tables chronologically by year. The second part of the
references lists all other items in the usual way.

3.1 The Significance of Gödel’s Theorems: Four Main Aspects

To start, I summarize the quartet of aspects that capture the significance of the theorems.

1. The first theorem sank the program for mathematics that had been developed by Alfred
North Whitehead (1861–1947) and Bertrand Russell (1872–1970) in their three-volume
Principia Mathematica (1st ed. 1910–1913; 2nd ed. 1925–1927; hereafter referred to
as PM). They held that “all” mathematics (or at least quite a lot of it) could be derived
solely from mathematical logic, including set theory (Grattan-Guinness, 2000a), but they
had only hoped for consistency and completeness, without having any means at hand to
exhibit them. (I shall use logicism, a term introduced by Rudolf Carnap (1891–1970) in
the late 1920s, to refer to their position.) This theorem also did not do much good for
metamathematics.

2. The second theorem sank the conception of metamathematics that Hilbert had been
developing in recent years, for, although he was not always explicit about it, he saw the
hierarchy of mathematics to metamathematics as an ascent into simplicity. This theorem
also did not do much good for logicism.

3. The proof method was rich in consequences in its own right. The method of Gödel
numbering (as it became known) played a major role in the growth of recursion theory
and the formation of companion impossibility theorems and conjectures in other contexts
by Alan Turing (1912–1954), Alonzo Church (1903–1995), and others.

4. The preceding three lines of influence are well recognized. Here I add another one that
is rarely mentioned and yet underlies this trio. Gödel succeeded with his proofs because
he recognized the central importance of distinguishing theory from metatheory, logic
from metalogic, signs from their referents, and so on, in all contexts. The distinction
was not new, metamathematics having already partially anticipated this approach, but
elsewhere, it was not well grasped or followed. (PM was a disaster in this respect,
especially with its all-purpose “implication.”) Around the same time, Alfred Tarski
(1901–1983) was coming to the same conclusion, partly from other considerations
(Feferman and Feferman, 2004, esp. interlude 3), and both men deserve the credit for
this major change in the conception of logic. To most of their predecessors, logic was
some vast, all-embracing body of knowledge relative to which metalogic could not be
formed, but from this point on, hierarchies were essential, whether in standard bivalent
logic, within which Gödel’s theorem lay, or in any other logic to come.

3.2 The Reception by Some Logicians

Despite the unexpected nature of the theorems, their reception among fellow logicians
seems on the whole to have been promptly realized. For example, Gödel did not need
to write the successor paper that he had expected would be necessary (the title of his
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paper ends “I”; Gödel, 1931). However, for four figures, the reception was less than
rapid.

3.2.1 Hans Hahn

Gödel’s paper appeared in the Monatshefte für Mathematik und Physik, then under the
editorship of Hans Hahn (1879–1934). However, two years later, Hahn threw away a
splendid opportunity to publicize the theorems before a general audience. A bust of
the physicist Ludwig Boltzmann was unveiled at the University of Vienna, and for
the occasion, Hahn prepared a lecture on “Logic, Mathematics and Recognition of
Nature” (Hahn, 1933 [3]). Although he included sections on “mathematics and reality”
and “science and reality,” for some reason, he did not mention Gödel. Initially, he had
found the first theorem rather difficult to grasp (Dawson, 1997, 73), and maybe the
difficulty continued. Sadly, he was soon to die, with no further chance to redress this
oversight.

3.2.2 W. V. Quine

When Gödel’s paper appeared, W. V. Quine (1908–2000) was writing his doctoral
thesis at Harvard University under the nominal supervision of Whitehead (who himself
seemed not to take any notice of the theorems). Quine was outlining a mathematico-
logical system potentially of the scope of PM but working out from different primitives.
His thesis (Quine, 1932) did not mention Gödel, which is not surprising. However, over
the next year, he spent some months in Europe, where he met Gödel, Tarski, and Carnap,
among others. On his return to Harvard, he wrote his first book, presenting another
system of PM-like potential (Quine, 1934) – but still without mentioning Gödel. That,
under the new circumstances, is rather a surprise. The book consists largely of a
workout of another set of primitives in logic and set theory, with a final chapter on the
“deducibility of the system of PM” that did not advance as far as first-order arithmetic.
The account is fairly limited from a mathematical point of view; a more elaborate
statement of the definitions of cardinals and ordinals, and maybe rational and irrational
numbers, would have made a more satisfactory presentation, and Gödel’s theorems
would have duly arisen as an aspect of first-order arithmetic.

I wrote to Quine about his silence over Gödel in this book, and he replied as follows
(Quine, 1998):

I was aware and appreciative of Gödel’s result by early 1932, probably via Sheffer at
Harvard. I recall Sheffer’s envy of it, in connection with a kindred but hopeless project of
his own.

H. M. Sheffer (1882–1964), a notorious nonpublisher, was influenced in his logical
work by the American tradition of postulation theory (Scanlan, 1991). Quine may have
been recalling Sheffer’s attempt to fashion a graphical system of notation for logic and
(among other aims) thereby to establish consistency (Scanlan, 2000, 209–18).

In his letter to me, Quine continued:

Also I remember that when first I met Gödel in Vienna in the autumn of 1932, I was already
aware and appreciative of his grand achievement. I am surprised to find no mention in
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my System of Logistic (1934). I can only plead that his theorem had no direct bearing on
the technical details of that book. He figures repeatedly in my next book, Mathematical
Logic (1940).

However, Quine discussed incompletability, and Gödel’s first theorem as such, only in
the last section of Mathematical Logic.

3.2.3 Saunders MacLane

A great tradition of American mathematicians writing Dissertationen in German uni-
versities ended in 1933 with Hitler’s arrival in power. Perhaps the last distinguished
example was that of the mathematician Saunders MacLane (1909–2005), who studied
at Göttingen University under the supervision of Paul Bernays (1888–1977) from 1931
until 1933, when Hermann Weyl (1885–1955) took over. His thesis (MacLane, 1934)
treated methods by which proofs of mathematical theorems could be shortened in sys-
tematic ways. Though MacLane’s study was not the same kind of study as Gödel’s
theorems, it would have been worth mentioning that MacLane’s results did link to
Gödel’s theorems in that some of the mathematical theories involved were undecidable
anyway; however, MacLane did not make such a connection. I asked him why and was
astonished by the answer (Mac Lane, 1999; recalling a long discussion we had had in
1996)1:

It is the case that I was not aware of [Gödel’s] paper when I was a student in Göttingen
1931 to 1933! Bernays and Gentzen probably must have known of it, but never spoke to
me about it!

Thus, apparently, there was some measure of denial about the theorems in Göttingen at
that time, doubtless caused by the anger (or disappointment) over them of Field Marshal
Hilbert. This is the only case of denial that I have found, and it was somewhat unreal in
that Bernays was then publishing the first volume of his account of metamathematics
(Hilbert and Bernays, 1934; the theorems were handled in vol. 2, 1939 [1]), and Gerhard
Gentzen (1909–1945) was working on post-Gödelian metamathematics.

In his autobiography, which appeared in 2004 and may have been written after his
obviously forgotten contacts with me, Mac Lane wrote (2004, 51):

Gödel’s famous incompleteness theorem appeared in 1931, but at that time I did not study
it carefully – an amazing omission, since Gödel’s work was among the most important in
twentieth-century mathematics and a major turning point in logic. I no longer understand
why I missed this event. At the time, Gödel was on the faculty of the University of Vienna;
I wonder whether his work was suppressed in Göttingen because it was a blow to Hilbert
and others or whether I was just so busy that I ignored the excitement. It was only later,
back in the United States, that I studied Gödel’s work.

3.2.4 Bertrand Russell

The distinction between theory and metatheory can be considered as part of a hier-
archy of languages, to use a phrase from Russell, our last figure here. The Tractatus

1 I follow this author in calling him “MacLane” when young and “Mac Lane” in old age.
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Logico-philosophicus of Ludwig Wittgenstein (1889–1951) (Wittgenstein, 1921) was
published, under a different title, only because Russell wrote an introduction to it (Rus-
sell, 1921). There Russell objected to the monism that Wittgenstein had imposed on
his system and mooted the possibility

that every language has, as Mr. Wittgenstein says, a structure concerning which, in the
language, nothing can be said, but that there may be another language dealing with the
structure of the first language, and having itself a new structure, and that to this hierarchy
of languages there may be no limit.

This is one of Russell’s finest philosophical insights, yet he never properly thought of
also applying it to his own logic, which he always saw as an all-embracing subject. Soon
afterward, in 1923 and 1924, he prepared new material for the second edition of PM but
made no use of this insight, nor did he draw on it after Gödel’s paper was published. He
did not mention Gödel in the new introduction that he wrote in 1937 for the reprinting
of his book The Principles of Mathematics (1903), where he had explained logicism in
prosodic form, nor in his philosophical autobiography, My Philosophical Development
(1959). In An Enquiry into Meaning and Truth, he deployed Gödel numbering for a
particular purpose but did not use anything else from Gödel’s paper (Russell, 1940,
71–72). In two short articles in which he outlined his philosophy of logical positivism,
he recalled his theory of hierarchies and related it both to Tarski’s semantic theory of
truth and to Gödel’s “paradoxes” or “puzzles,” but he misstated the first theorem as
concerning “any formal system” (Russell, 1945, 1950; see also Russell, 1997, 152,
159).

Furthermore, this newly gained link did not stay with him, for in 1963, in his early
nineties, he wrote to the logician Leon Henkin, clearly still mystified by the impact
that the theorems had made and stating the first one wrongly again (Grattan-Guinness,
2000a, 592–93). Henkin stated the theorem correctly in his answer, but without effect.
In 1965, Russell prepared an addendum to the replies, to critics that he had contributed
to the Schilpp volume of his philosophy in 1944. Once again, he gave a wrong statement
of the theorem, followed by a pathetic response to it (Russell, 1971, xviii).

Russell may have mentioned Gödel in his addendum because in 1944 he had pleaded
lack of time to reply to the article on his logic that Gödel had contributed, very late,
to the original volume. However, here comes another surprise: in that article (Gödel,
1944 [3]), Gödel had not mentioned his own theorems!

3.3 The Reception among Mathematicians:
The Technical Literature

Apart from the cases just described, those closely linked to Gödel’s concerns recog-
nized his theorems and their consequences quite soon after they were introduced.2

The field of formal logic, along with related topics, such as axiomatic set theory and

2 A search of the back files of the reviewing journal Zentralblatt für Mathematik yielded thirty-three papers to
1960 on (versions of) the theorems in which Gödel’s name was explicitly mentioned. Doubtless some more
articles appeared on the topic without “Gödel” in their titles. On the history of logic in general from around
1930 up to the early 1960s, see, for example, Mostowski (1966) and Mangione and Bozzi (1993, chaps. 5–7).
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aspects of model theory, progressed steadily, its social status raised by the launch
in 1935 of the Association of Symbolic Logic in the United States and its Jour-
nal the following year. By then, Gödel’s theorems formed part of the furniture for
logicians.

The rest of this chapter is concerned with the extent and manner of the reception
of the theorems among mathematicians in general – a very different story from the
reception among logicians. Let us start with the technical works on formal logic that
mathematicians could have seen had they wanted.

Some logicians wrote books with a broader audience than fellow specialists, and
mathematicians may have read them. I note some principal examples.

Just before World War II, Bernays published the second volume of his survey of meta-
mathematics, including proofs of both theorems in detail (Hilbert and Bernays, 1939
[1]); however, ensuing events must have limited its circulation. During the War and later,
various writings of Tarski are relevant, such as the logic textbook (Tarski, 1941 [2]),
which appeared in various languages. After the War, such books included the substan-
tial presentation by Stephen Kleene (1909–1994) of metamathematics (Kleene, 1952
[1]) and the technical monograph by Andrzej Mostowski (1913–1975) on Gödelian
results for arithmetic (Mostowski, 1952 [1]). Some years later, Martin Davis published
a broad account of recursion theory; naturally, the main hero was Turing, but Gödel
was duly noted (Davis, 1958 [1]).

However, in Logic for Mathematicians, Barkley Rosser (1907–1989) summarized
the treatment of mathematics given in PM but deliberately avoided details of the
theorems and referred to Gödel rarely (Rosser, 1953 [2]). Unfortunately, I did not ask
him about this decision, which seems somewhat regrettable, especially as the summary
of PM itself was, of course, very capably handled.

Another foundational area of mathematics affected by Gödel’s theorems was ax-
iomatic set theory. The two main systems were those launched by Ernst Zermelo
(1871–1953) in the first decade of the 1900s and by John von Neumann (1903–1957)
twenty years later; both were subsequently modified by others, including Gödel. As
first-order arithmetic is expressible within each system, they are both incompletable,
as Gödel mentioned in the first paragraph of his paper (Gödel, 1931).

In the 1950s, books began to appear on axiomatic or general set theory that were
written for a broader audience, and so one would expect that this important feature
would be explained. However, several mathematicians were silent, although they noted
Gödel’s later consistency results on set theory.

An interesting figure here is Abraham Fraenkel (1891–1965), one of the modifiers of
Zermelo’s system. He was well familiar with Gödel’s paper, for he wrote an excellent
review of it for the mathematics review journal Jahrbuch über die Fortschritte der
Mathematik (Fraenkel, 1938 [1]; the tardy publication reflects the declining state of
the journal). He had also heard Gödel lecture on his theorems in September 1931 at
the annual meeting of the Deutsche Mathematiker-Vereinigung, where he himself had
spoken on set theory.3 Nevertheless, most of his books after 1931 do not mention the
theorems: his Abstract Set Theory, although Gödel’s paper was listed in the superb

3 The third speaker at this special session on foundations was Zermelo, who was trying to prove the completeness
of mathematics using a vague prototheory of infinitely long proofs. The aftermath included a superb letter on
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bibliography that graced the first edition (Fraenkel, 1953 [3]); also Bernays’ book, to
which he contributed a lengthy historical introduction (Bernays, 1958 [3]); or even
his own short account of “logic and set theory” (Fraenkel, 1959 [3]). The only one
of his books in which incompletability received some notice was the one written with
Yehoshua Bar-Hillel (1915–1975) (Fraenkel and Bar-Hillel, 1958 [1], esp. 303–8),
making the silence elsewhere all the more noticeable.

Some of these books were presented as textbooks (at an advanced level). Several
others on or including axiomatic set theory came out in ensuing years (including
a 1973 revision of Fraenkel and Bar-Hillel’s book by Azriel Levy, with still more
details). Discussion of incompletability in connection with sets was patchy: there was
no discussion as such in Suppes (1960 [3]); some in Stoll (1961 [1], chap. 9 on first-order
theories); and none really in Kneebone (1963 [1], chap. 11), although the theorems
themselves were treated in chapter 8. Quine’s own account of the relationship between
set theory and logic, which naturally gave some space to the set theories embedded in
his own logical systems, did note incompletability, although rather sparingly (Quine,
1963 [2], esp. 110, 305, 325).

3.4 The Reception among Mathematicians:
The General Literature

The other main sources for mathematicians were popular writings that covered the pure
sides and/or foundations and axiomatics of mathematics. In many cases, the authors
themselves were not specialists in logic or set theory. I shall not discuss their accounts
in detail; in general, they were satisfactory within the limits of the books, although,
for example, some authors stated the first theorem in terms of consistency rather than
ω-consistency and so in effect described the version from Rosser (1936) without always
saying so.

3.4.1 Reactions to 1940

The earliest item of this kind comes not from a popular source, as that just described,
but rather from one that was (to be) widely available to mathematicians: a review
of Gödel’s paper in the new review journal Zentralblatt für Mathematik. The author
was the Berlin-based philosopher and mathematician Walter Dubislav (1895–1937);
by luck, it was the very first review to appear in the journal’s second volume (Dubislav,
1932a [1]).

Among popular sources, the first quintet to contain more than passing mentions
are in three different languages: a survey of current philosophies of mathematics by
Dubislav (1932b [1], esp. 20–22), together with a recognition of the “epoch-making
work of K. Gödel” in the review of the book by Heinrich Scholz (1884–1956) (Scholz,
1933 [2]); a popular lecture on the “new logic” given in Vienna by Gödel’s friend Karl
Menger (1902–1985) in 1932 and published the following year (Menger, 1933 [1]); a

his theorems that Gödel wrote to Zermelo; it was published in Grattan-Guinness (1979) and also in Gödel’s
(2003b) Collected Works, without the annoying typesetting errors that besmirched the first printing.
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survey of philosophies of mathematics by Friedrich Waismann (1896–1959), who was,
like Gödel, a member of the Vienna Circle (Waismann, 1936 [1], esp. sec. 9A); and
a discussion of axiomatics and formalism by the French philosopher Jean Cavaillès
(1903–1944) (Cavaillès, 1938 [1], esp. 143–49).

In addition, E. T. Bell (1883–1960), a historian of mathematics whom historians
dislike, gave a general account of the development of mathematics – and one reason for
the dislike is that he presented the theorems as concerning logic rather than arithmetic
(Bell, 1940 [1], 575–78). On the other hand, his account formed part of a substantial
survey of various recent foundational studies that would not have been familiar to many
of his readers.

Another book of this kind appeared from two New York authors: Mathematics and
the Imagination (Kasner and Newman, 1940 [3]). As the authors included a chapter on
paradoxes and Russell’s work (chap. 6), Gödel could have arisen naturally, but nothing
about his work was said. However, the situation for the junior author was to change so
substantially that he will become a major figure in our story.

3.4.2 The Key Role of Newman

James Roy Newman (1907–1966) trained as a lawyer at Columbia University in New
York. Early in his career, he formed a passion for popularizing mathematics.4 The first
manifestation of this passion was the book just noted. (Edward Kasner (1878–1955)
was a professor of mathematics at Columbia.) Soon after the book appeared, Newman
conceived of editing a large collection of articles on all aspects of mathematics for
a general audience, a project that eventually appeared in 1956 as a four-volume set
titled The World of Mathematics. It contained several articles concerning axiomatics
and logic; in particular, with his old philosophy professor at Columbia Ernest Nagel
(1901–1985), Newman wrote “Gödel’s Proof” (Nagel and Newman, 1956b [1]). A
somewhat different version of this article with the same title appeared that year in the
popular journal Scientific American, of which Newman was a member of the editorial
board (Nagel and Newman, 1956a [1]).The differences between the two versions of the
article seem to be due only to copyright concerns; there is no substantial variation in
content. Two years later, the authors extended the articles into a short book of the same
title (Nagel and Newman, 1958 [1]). It was shorter than they had intended because they
had wanted to include an English translation of the original paper, but unfortunately,
Gödel imposed such unreasonable conditions on the whole project (Gödel, 2003a, 2–8;
2003b, 135–54) that the plan had to be abandoned.

These three publications considerably raised the visibility of the theorems in the
mathematical community, and indeed beyond – the 1956 set sold very widely (for
example, I own a set that was given to me by an American composer), and the 1958
book is still in print. Newman and the role he played is a remarkable example of the
highly effective popularization of mathematics led by someone outside the profession.

4 No historical work seems to have been done on Newman. See his declaration in Who’s Who in America, vol. 4
(1968), p. 701.
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3.4.3 Other American Authors

The importance of the role of the United States in this story is enhanced further by other
general publications. Weyl had played a valuable role before Newman. In 1927, he had
published in German a survey of the philosophy of mathematics and science, and when
it was translated into English, he added several appendixes, including a substantial one
on Gödel’s theorems and their historical and philosophical context (Weyl, 1949 [1],
Appendix A).

Five years later, another distinguished mathematician with a serious interest in foun-
dational issues, R. L. Wilder (1896–1982), published a general book on foundations,
including a section on the theorems (Wilder, 1953 [1], 256–61). This work was echoed
five years later when the mathematics educators Howard Eves (1911–2004) and Carroll
Newsom (1924–1986) published a book with a very similar title but set at a level for
undergraduates (Eves and Newsom, 1958 [2]). The influence of Wilder on Eves and
Newsom is clear, as the authors state that one of them had been his student (however,
neither of the authors took a doctorate under his direction). The authors followed a
historical approach to foundations – Eves was a good historian of mathematics – and
ended with Gödel’s theorems. They stated that the details were above the level of their
book, but they had nicely revealed the context in which the theorems arose. Further-
more, in a revised edition of their book published in 1965, they did provide some of
the details of the theorems in a new appendix.

Quite different results came from another American textbook of the same period.
In Logic in Elementary Mathematics, the mathematics educators Robert M. Exner
(1914–2001) and Myron F. Rosskopf adopted quite a formal approach, with substantial
(although not axiomatic) accounts of the propositional and first-order predicate calculi
(Exner and Rosskopf, 1959 [3]). All was ready for Gödel, yet silence reigned in the
mathematical chapters of the book as they did not treat arithmetic at all. They gave no
explanation for this silence, and I have not been able to construct one; indeed, it seems
that a nice opportunity was missed.

3.5 Reception in Some Other Countries

The last section was dominated by Americans, a fact that forms part of my general
conclusions. However, a rounder picture is given by considering Gödel’s influence in
some other countries in which English is not the mother tongue.

3.5.1 France

France is an obvious case: an exceptionally important mathematical country for some
centuries but also well known for its long derision of logic. How did the French react
to the theorems? As our story starts in the 1930s, to a substantial extent, the question
becomes, how did the Bourbaki group react to the theorems?

The tone was set by Jean Dieudonné (1906–1992) in the 1939 volume of the
popular journal Revue Scientifique in his article “Modern Axiomatic Methods and
the Foundations of Mathematics” (Dieudonné, 1939 [3]). The title fits Gödel almost
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exactly, but Dieudonné ignored him, although he noted Hilbert’s ambition to “prove the
non-contradiction of mathematics”! He just emphasized some aspects of rigor, deduc-
tion from (vaguely known) primitives, and set theory. Similarly, four years later, in the
same journal, Henri Cartan (b. 1904) contributed “On the Logical Foundation of Math-
ematics” – surely a Russellian title (Cartan, 1943 [3]). However, he largely set aside
“logistic” and focused instead on transfinite arithmetic, axiomatic set theory, and some
aspects of logic, including quantification theory and even the Entscheidungsproblem,
and he mentioned his compatriot logician Jacques Herbrand (1908–1931). Therefore
his silence over Gödel is as striking as that of Dieudonné.

After the War, the first fascicles of Bourbaki’s Eléments des Mathématiques began
to appear, with historical notes in some of them. Gödel was absent, of course, although
about twenty-five years later, the newer members of the group were aware of him (see
the references in the collection of Bourbaki, 1969; one allusion is quoted subsequently).

At that time, the mathematician François le Lionnais edited a substantial volume on
current developments in mathematics (le Lionnais, 1948 [3]). Three articles crossed
Gödelian territory: Bourbaki on the architecture of mathematics, emphasizing structure
and axiomatics; Dieudonné on aspects of the achievements of Hilbert (who had died in
1943); and two other authors on the logical synthesis of results and research. Silence
reigned once more. In 1962, the book was reissued, and the editor added to it a reprint
of Dieudonné’s 1939 article – so encore rien.

The Bourbakists were much concerned with rigor and accuracy in mathematics, but
they drew little on logic as a discipline in its own right to fulfill their purposes. This
attitude was made very clear by their prominent representative André Weil (1906–
1998) in a lecture delivered before the Association of Symbolic Logic late in 1948, in
which he outlined the “foundations of mathematics for the working mathematician”
(Bourbaki, 1949 [3], written by Weil). He noted some features of logic, such as well-
formed formulae and quantification, and some set theory, but that was it. Instead, the
usual Bourbakist topics were prominent such as structure and abstraction, along with
some set theory.

3.5.2 Other Countries

I conclude this survey with some remarks on other countries. Gödel’s own part of
the world, central Europe, is an interesting study. Most major logicians and several
mathematicians had emigrated after the arrival of Hitler, and logic was judged to be a
degenerate academic subject. After the War, some logicians still pursued the subject,
but our concern is with the mathematical community in general.

In Germany, the second edition of the Encyclopädie der mathematischen Wis-
senschaften included two articles on logic in which the theorems were described
(Schmidt, 1950 [1]; Hermes and Scholz, 1952 [1]). (This made two more articles on
logic than were to be found in the first edition (1898–1935)!) However, in contrast to
that massive achievement, the second edition petered out rather quickly, and so these
articles may not have been widely read.

As in the United States, 1956 was quite a good year. A popular book on mathematics
by Herbert Meschkowski (1909–1990) contained a short section (Meschkowski, 1956
[1], chap. 11) on the theorems. A passage from Gödel’s paper was quoted in the German
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source book for “formal logic” by Innocentius M. Bochenski (1902–1995) (Bochenski,
1956 [1]; an English edition of that book appeared five years later).

A pioneering philosophical muse on “incompleteness and undecidability” was of-
fered by Wolfgang Stegmüller (1959 [1], esp. chap. B), although I doubt that many
mathematicians would have read it. This remark is not intended as a criticism of
Stegmüller’s book, but mention of it suggests another interesting historical question
that, to my knowledge, has not been studied: what is the history of the reception of
Gödel’s theorems in the philosophical community?

Most of the impact in Germany seems to have been made from the 1960s onward,
that is, later than the level of publicity achieved in American writing. For example, the
1958 book of Nagel and Newman was translated into German only in 1964, and the
new material in Weyl’s philosophy book of 1949, mentioned earlier, did not appear in
German until the third edition of 1966.

My impression is that the main reception of the theorems in other countries also
dates largely from the 1960s onward. Moreover, for several countries, the writings
were in their native languages and so did not export widely. For example, in Poland,
Mostowksi produced relevant material in the late 1940s (see, for example, Mostowksi,
1948, chap. 14),5 but it will have found a much smaller audience than his monograph of
1952 in English. Similarly, the Dutch logician and philosopher Evert Beth (1908–1964)
had been mentioning Gödel in various languages from the 1940s (he also suggested
to Mostowski that he write that monograph). His most widely read text was surely
his wide-ranging book in English The Foundations of Mathematics, which contained a
chapter on the theorems (Beth, 1959 [1], chap. 21). Unfortunately, however, he forgot
to include Gödel’s paper in his bibliography.

3.6 Concluding Remarks

One cites the case of an eminent university figure who, in a lecture given at Princeton in
the presence of Gödel, would say that nothing new had been done in logic since Aristotle!

– Bourbaki (1969, 14)

The evidence presented suggests that the logicians grasped the significance of Gödel’s
theorems rather quickly, although with a few slightly tardy cases. By contrast, the
mathematical community did not become generally aware of the theorems until around
twenty-five years after their publication, when American authors, especially the non-
mathematician Newman, played a major role in their dissemination. In this section, I
discuss these conclusions metatheoretically from various points of view.

In the preceding section, I confessed that this survey of the reception of Gödel’s
theorems is knowingly incomplete with respect to various countries. It is also incom-
plete in three other respects: (1) for reasons of space, I have not discussed all the

5 I am indebted to Roman Murawski for this information. The history of the reception of Gödel’s theorems in
other countries forms part of the history from the 1930s of formal logic there in general, which seems not to be
well studied, even for Poland; however, see Wolenski (1989). Pertinent literature includes Cavalieri (1988) and
Anellis (1987) on the Soviet Union, Schenk (1995) on the German Democratic Republic, and Sylvan (1992) on
Australia.
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items listed in the three bibliographic tables, but the other citations corroborate the
impression conveyed; (2) literature in the dominant languages must exist that I have
not tracked down; as the theorems relate to such a basic part of mathematics, discus-
sions by mathematicians may be anywhere within a wide range of interests, making
all of them very hard to locate; and finally, (3) mathematicians specializing in certain
areas sometimes become familiar with other areas (e.g., to give lecture courses on
them at their institutions) but do not leave a published trail in the form of papers or
books. Doubtless, formal logic formed such an alternative for some mathematicians.
One example is G. H. Hardy (1877–1947), who on occasion lectured both on logicism
and on metamathematics but did not include any foundational topics in his own popular
book on mathematics (Hardy, 1940 [3]).

Despite these examples, I think that the conclusions drawn are broadly correct,
especially concerning the difference in speeds of reception between logicians and
mathematicians. Moreover, I do not find the differences surprising. In my many years
of studying the history of mathematics and the history of logic, I have been aware
not only of the long history of both disciplines but especially that they usually had
little to do with each other. For example, from antiquity, the Greeks developed both a
tradition of rigorous mathematics, as exemplified by Euclid’s Elements, and a tradition
of systematic logical deduction with Aristotle (and a different tradition with the Stoics),
but they did not bring them together. The same noncontact is evident in later epochs,
down even to the twentieth century. For example, few mathematicians have ever read
PM and so are unaware of the interesting mathematics that it contains, especially
in the second and third volumes (e.g., the role and use of the axioms of choice); I
recall Dieudonné exhibiting this attitude perfectly at a meeting in Cortona, Italy, in
1983. Russell made the same point in his letter to Henkin mentioned earlier (Grattan-
Guinness, 2000a, 593). Again, despite great efforts at publicity, even the leading
mathematician Hilbert was unable to convince mathematicians in large numbers from
the 1920s onward to follow and take up metamathematics as a field of study or even
for teaching.

Among many differences between formal logic and mathematics, logic is the broader
discipline, and many of its concerns are and have been profitably pursued without
paying any special attention to mathematics; for example, some books on formal
logic published in the period covered in this chapter have not been cited precisely for
this reason. The main points of contact lie in some aspects of axiomatics and (since
around 1900) model theory (Peckhaus, 1999; Grattan-Guinness, 2000b). Otherwise, to
a mathematician, logic is certainly important for supplying rules of deduction such as
modus ponens and proof by contradiction, and maybe to help in the well formation of
formulae, but there is no special need to study matters that, to a logician, are central
such as why or in what circumstances a deduction is valid, nor is there a need to
consider other foundational aspects of mathematical theories. The common attitude
of mathematicians is exemplified, in a markedly forceful way, by the Bourbakists,
as previously noted; indeed, to some extent, this point shows their influence on the
mathematical community.

One aspect of mathematical theories rarely considered by mathematicians but well
noted by logicians is the forms and role of definitions (Dubislav, 1931). Gödel’s proof
of the first theorem rests on a sequence of forty-six definitions that had to be tight
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because of the need to keep logic and metalogic rigidly apart. If a mathematician were
to work his or her way through the sequence, the mathematician would find a level of
rigor that is very likely much higher than that which obtains even in so-called rigorous
mathematics. Therefore Gödel’s theorems would not apply to a mathematician’s way
of doing mathematics. One area of mathematics where practitioners might aspire
to Gödelian standards of proof is abstract algebra, but even there Mac Lane is very
unusual in the interest that he took in logic, both in the early 1930s and later (Mac Lane,
2004).

To logicians, mathematicians are rather sloppy and none too familiar with logic,
whereas to mathematicians, logicians are fussy and none too familiar with mathematics.
The epigraph to this section typifies both sides, not only because of its content but also
because of its context, namely, that Aristotle’s writings “encourage philosophers in
their neglect of the study of mathematics and block the progress of formal logic”
(Bourbaki, 1969, 14).

The wide gap between mathematics and formal logic was evident to me even before I
began to work on history. Around 1960, I was studying for a degree in mathematics, that
is, three years of proving theorems and proving theorems and proving theorems, but in
a degree course bereft of significant reflections on proof theory. In particular, Gödel’s
theorems were not mentioned in any course, although we did study the completeness
theorem of 1930 in a course on sets and models (with the logic explained in a few
lines). I record these memories because I am sure that my experience was quite typical
of its time, in all, or at least in many, countries.

In these contexts, the differences in the speeds of reception of Gödel’s theorems are
to be expected; indeed, without Newman the gap might have been still greater. This
gap has reduced somewhat from the 1960s onward, especially because of the steadily
increasing use of computers in general and the companion rise of computer science
as an academic discipline, and also (partly for this reason) because of the continual
growth of work in formal logic. Gödel (and also Tarski and Turing) grew to be very
well known, and Gödel’s theorems became quite popular; for example, three English
translations of his 1931 paper appeared in 1962, 1965, and 1967 (see under Gödel,
1931). Formal logic became even somewhat trendy, with many textbook publishers
wanting a book on it (maybe including some mathematics) on their publication lists.

Finally, where do we place Russell in this division between a logician’s logic and a
mathematician’s logic? He was certainly practicing the former kind, but always within
the all-embracing conception of logic mentioned earlier; he never fully realized that
his insight about monism could and should apply to his conception itself. For example,
around 1940, he gave a talk on logic and the foundations of mathematics at Harvard
University, and when MacLane, in the audience, asked about the bearing upon the talk
of Gödel’s theorem and of metamathematics, “there was a long silence” (Mac Lane,
2005, 138–39).

From the 1930s onward, thanks largely to Gödel and Tarski, there formed a subdivi-
sion within the logician’s logic between the all-embracers, such as Russell, and those
who recognized the necessity for, and generality of, the distinction between logic and
metalogic and theory and metatheory. In my view, this distinction is an essential but
underrated part of the fundamental importance and influence of Gödel’s extraordinary
paper of 1931 on logicians and, eventually, on mathematicians also.
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Foundations of Mathematics. London: van
Nostrand.

Textbook; chap. 8 (14 pp.) and other
mentions

Works in Which the Theorems Are Mentioned

Year Author, (Short) Title Comments

1933 H. Scholz, Review of Dubislav (1932b [1]).
Jahresbericht der Deutschen
Mathematiker-Vereinigung, 43,88–90.

None

1934 A. Heyting, Mathematische
Grundlagenforschung. Intuitionismus.
Beweistheorie. Berlin: Springer.

None

1939 R. Carnap, Foundations of Logic and
Mathematics. Chicago: University of Chicago
Press.

Part of International Encyclopedia

1941 A. Tarski, Introduction to Logic. 1st ed. New
York: Oxford University Press.

Later eds. and trans.

1941 R. Courant and H. Robbins, What Is
Mathematics? New York: Oxford University
Press.

Small note; to 4th ed. 1947

1946 H. Weyl, Mathematics and logic. American
Mathematical Monthly, 53, 2–13.

General review of foundations

1948 L. Chwistek, The Limits of Science. London:
Kegan, Paul.

Polish original 1935

1951 E. T. Bell, Mathematics: Queen and Servant of
Science. New York: McGraw-Hill.

Quote from Weyl (1946)

1953 E. R. Stabler, An Introduction to Mathematical
Thought. Cambridge, MA: Addison-Wesley.

Only corollary properly conveyed

1953 J. B. Rosser, Logic for Mathematicians. New
York: McGraw-Hill.

Theorems deliberately minimized

1955 E. W. Beth, Les Fondements Logiques des
Mathématiques. 2nd ed. Paris:
Gauthier-Villars.

Also mentions in other of his books

1958 H. Eves and C. V. Newsom, An Introduction to
the Foundations and Fundamental Concepts
of Mathematics. New York: Rinehart.

Some details given in appendix to
2nd ed. (1965)

1963 W. V. Quine, Set Theory and Its Logic.
Cambridge, MA: Harvard University Press.

2nd ed. 1969
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Works in Which the Theorems Are Not Mentioned

Year Author, (Short) Title Comments

1933 H. Hahn, Logik, Mathematik und Naturekennen.
Vienna: Gerold.

French trans. 1935

1935 E. R. Stabler, An interpretation and comparison
of three schools of thought in the foundations
of mathematics. Mathematics Teacher, 28,
5–35.

Covers logicism, metamathematics,
and postulation theory

1938 H. P. Fawcett, The Nature of Proof: A
Description and Evaluation of Certain
Procedures Used in a Senior High School to
Develop an Understanding of the Nature of
Proof. New York: Teachers College, Columbia
University.

Much oriented about the axioms of
geometry and its teaching; not a
word about any formal logic or
proof theory or any of its
practitioners; text unaltered in the
reprint (2001, Reston, VA:
National Council of Teachers of
Mathematics)

1939 J. Dieudonné, Les methodes axiomatiques
modernes et les fondements des
mathématiques. Revue Scientifique, 77,
224–32.

Repr. in Le Lionnais (1948), 1962
repr.

1940 G. H. Hardy, A Mathematician’s Apology.
Cambridge: Cambridge University Press.

Author well familiar with
foundations

1940 E. Kasner and J. R. Newman, Mathematics and
the Imagination. New York: Simon and
Schuster.

Chap. on paradoxes and foundations

1943 W. W. Sawyer, Mathematician’s Delight.
Harmondsworth, UK: Penguin.

Foundations not handled

1943 H. Cartan, Sur le fondement logique des
mathématiques. Revue Scientifique, 81, 2–11.

“Logistic” deliberately minimized

1944 K. Gödel, Russell’s mathematical logic. In The
Philosophy of Bertrand Russell, ed. P. A.
Schilpp. New York: Tudor, pp. 192–226.

Reviews only Principia
Mathematica; no mention of his
theorems

1948 F. Le Lionnais, ed. Les Grands Courants de la
Pensée Mathématique. Paris: Librairie
Scientifique et Technique.

Three related articles, inc. one by
Bourbaki; repr. 1962

1940s N. Bourbaki, Eléments des Mathématiques.
Paris: Hermann.

A few mentions in later eds.

1949 A. Darbon, La Philosophie des Mathématiques.
Paris: Presses Universitaires de France.

Posthumous; detailed study of
Russell, but no PM; done before
1910?

1949 N. Bourbaki, Foundations of mathematics for the
working mathematician. Journal of Symbolic
Logic, 57, 221–32.

Lecture delivered to the Association
of Symbolic Logic by A. Weil

1951 A. Bakst, Mathematics, Its Magic and Mystery.
Princeton, NJ: van Nostrand.

Mostly on heuristics

1952 L. Couffignal, Les Machines à Penser. Paris:
Editions de Minuit.

Popular book on computing; no
Turing

1953 B. V. Bowden, ed. Faster Than Thought.
London: Pitman.

Mainly on computers

1953 A. A. Fraenkel, Abstract Set Theory. Amsterdam,
Netherlands: North-Holland.

Paper only in the (huge) bibliography

1958 K. Menninger, Zahlwort und Ziffer. 2nd ed.
Göttingen, Germany: Vandenhoek und
Ruprecht.

Historical, but not on foundations

1958 P. Bernays, Axiomatic Set Theory. Amsterdam,
Netherlands: North Holland.

Historical preface by Fraenkel;
incompleteness not explicitly
mentioned
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1959 A. A. Fraenkel, Mengenlehre und Logik. Berlin:
Duncker und Humblot.

Ditto re incompleteness; English
trans. 1966

1959 R. M. Exner and W. F. Rosskopf, Logic in
Elementary Mathematics. New York:
McGraw-Hill.

Textbook level; arithmetic excluded!

1960 P. Suppes, Axiomatic Set Theory. Princeton, NJ:
van Nostrand.

None

1962 T. Dantzig, Number: The Language of Science.
4th ed. New York: Macmillan.

Historical work; includes sets

1964 The Mathematical Sciences: Essays for
COSRIMS. Cambridge, MA: MIT Press.

No foundations, but article on
continuum hypothesis
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———. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für
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CHAPTER 4

“Dozent Gödel Will Not Lecture”

Karl Sigmund

Kurt Gödel spent barely fifteen years in Vienna – less than in Brno, where he was born,
and less than in Princeton, where he would die. However, the years from 1924 to 1939
constituted his formative period. He was deeply affected by the extraordinary cultural
and intellectual flowering of what has been called “Vienna’s Golden Autumn,” and he
may one day be seen as its most prestigious scion.

The University of Vienna, in particular, played a pivotal part in Gödel’s life. To the
end, he remained grateful for the education it provided him; however, he could never
forget the bureaucratic pettiness and the hassles he encountered from his alma mater’s
administration (Sigmund, 2006; Dawson and Sigmund, 2006; Sigmund et al., 2006;
Buldt et al., 2002).

The story of Gödel’s Vienna years can be divided into three parts: the first is a tale
of brilliant success leading to early recognition, his PhD degree, and his Habilitation
(professorial qualifications); the second part deals with the confused period between
Hitler’s rise to power in Germany and the Anschluss, the annexation of Austria in
1938, and is marked by political unrest as well as by long periods of leave due partly
to Gödel’s visits to Princeton in the 1930s and partly to his recurrent health problems
that repeatedly forced him to withdraw into sanatoriums; and finally, the third part is
dominated by Gödel’s problems after the German takeover. He was politically suspect,
plagued by hostile authorities and under the threat of being drafted into the Wehrmacht
(Germany’s unified armed forces). Thanks to the persistent efforts of the Institute for
Advanced Study (IAS) in Princeton, he finally managed to obtain an emigration visa
for himself and his wife. However, the Viennese authorities continued to process his
case long after he had left the Third Reich in early 1940 and found a safe haven in
Princeton. He was granted the title of Dozent neuer Ordnung (lecturer of the New
Order) in absentia and was enjoined to return to Germany. Gödel never went back,
but until 1945, the university kept him on its books with the terse announcement that
“Dozent Gödel will not lecture.”

This chapter provides a discussion of Gödel’s troubled relationship with the Uni-
versity of Vienna based on material from the archives as well as on private letters.
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Facsimiles of most of these letters can be found in Sigmund et al. (2006; hereinafter
referred to as GA).

4.1 Part 1: A Place in History

The curriculum vitae Kurt Gödel wrote in 1929 when he applied for his PhD may serve
as an introduction to his life story:

I was born in 1906 in Brno, where I attended four grades of elementary school and
the eight grades of the German Staatsrealgymnasium [grammar school] and in 1924 I
passed my A-levels with distinction. In the autumn of that year I enrolled as a regular
student in the philosophical faculty of the University of Vienna, where I remained until
the end of my studies. I initially attended lectures mostly in theoretical physics (with Prof
Thirring); later I turned to purely mathematical studies, stimulated by the lectures of Prof
Hahn and Hofrat Furtwängler, whose seminars I visited eagerly. In addition, I attended
philosophical lectures by Prof Schlick and Prof Gomperz as well as Dozent Carnap. The
area at the border between mathematics and philosophy interested me in particular: this
has developed in a very lively way over the past few years through the works of Hilbert,
Brouwer, Weyl, Russell et al. My dissertation “The completeness of logical calculus” also
belongs in this border region. (Personalakte Kurt Gödel, Archiv der Universität Wien,
hereinafter referred to as PKGAUV; see also GA)

Gödel’s family belonged to the upper level of the German-speaking middle class in
Brno (then called Brünn), a charming provincial town in southern Moravia (in what was
then the Austro-Hungarian Monarchy), about two hours north of Vienna by train. Brno
had some industry and was somewhat grandiloquently known as the Czech Manchester.
Gödel’s father was director and later part owner of a textile firm there (Feferman, 1986;
Dawson, 1997).

During the last years of the Habsburg Empire, the strife between the Czechs and the
Germans dominated political life. It seems that Kurt Gödel and his brother Rudolf
were among the few pupils in the German-speaking school never to enroll for a
course in Czech (Kreisel, 1980). After Gödel finished school, with distinction, Vienna
represented an obvious choice of university for someone with his background. Once
in Vienna, Gödel lived with Rudolf, who was his senior by four years and who studied
medicine. The two brothers were well off and could afford to be choosy about their
apartments – they rented a new one each year (Schimanovich-Galidescu, 2002; see
also GA).

Gödel’s professor in physics, Hans Thirring, was an expert on general relativity who,
in 1920, had predicted, together with the Viennese mathematician Josef Lense, that the
rotation of a body (such as the earth) should affect its gravitational field. This effect
was experimentally verified only a few years ago (Ruffini and Sigismondi, 2003). At
an early stage, Gödel must thus have acquired a solid foundation in Einstein’s theory,
which would prove fruitful when he turned his attention some twenty years later to
cosmological work in Princeton.

Gödel’s curriculum vitae also mentions the philosopher Heinrich Gomperz and the
number theorist Philipp Furtwängler (whose title of Hofrat, meaning “court counselor,”
was highly coveted by Viennese professors). In a questionnaire that Gödel completed
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many years later (but never sent), he stressed that the introductory lectures of these two
luminaries were of particular importance for the development of his own philosophy
(the Grandjean questionnaire; see Dawson, 1997; see also GA). There is no reason to
doubt that Gödel was already a full-fledged Platonist by the age of twenty (Feferman,
1984; Köhler et al., 2002; van Atten and Kennedy, 2003). In contrast, Hahn, Schlick, and
Carnap were the mainstays of the Vienna Circle of logical empiricists (Popper, 1995;
Stadler, 2001). Gödel, who was the Vienna Circle’s youngest and quietest member,
disagreed with many of their views aired during the fortnightly sessions of the circle,
but he hardly ever voiced his objections (Menger, 1994). It was only twenty years later
that he began to put them down in writing, in an essay intended to refute Carnap’s view
that mathematics is the syntax of language (Carnap, 1963). None of the six versions of
the essay were published during Gödel’s lifetime.

Gödel’s PhD supervisor was Hans Hahn, an eminent mathematician and one of the
founders of functional analysis (Sigmund, 1995). Since the early years of the twentieth
century, Hahn had been interested in the foundations of mathematics and, in particular,
in the works of Frege, Russell, and Hilbert, although he had not yet published anything
on the topic (Hahn, 1988).

It seems that Gödel did most of his PhD work on his own. In a postcard dated
February 23, 1929, his friend Herbert Feigl (a student of Schlick and another junior
member of the Vienna Circle) wrote, “As I was not sure whether you would have agreed,
I did not ask Hahn about your paper. Didn’t you write to him?” (Gödel’s Nachlass,
Firestone Library, Princeton University; also see GA). The paper mentioned was the
thesis Gödel had submitted for his PhD (Gödel, 1929).

In his report on the thesis, Hahn wrote, on July 13, 1929, half a year later:

The paper deals with the so-called restricted functional calculus of logic [first-order logic],
where quantifiers range only over individual variables and not over functional variables.
It is shown that the system of axioms for first order logic that Whitehead and Russell
used in the Principia Mathematica is complete, in the sense that every generally valid
formula of this calculus can be derived formally from the system of axioms. Moreover,
the independence of the axioms is proved. This solves two problems that were explicitly
designed as unsolved in Hilbert-Ackermann, Foundations of Theoretical Logic. It follows
that for systems of axioms that can be formulated entirely within first order logic every
conclusion that is valid (i.e. that cannot be disproved by some counterexample) can be
formally proved.

The paper is a valuable contribution to logical calculus, fulfils entirely the requirements
for a PhD thesis and deserves to be published in its essential parts. (PKGAUV; see also
GA)

The paper was indeed published, within a few months, in the Monatshefte für Mathe-
matik and Physik (Gödel, 1930), whose editor in chief was Hans Hahn. There are a few,
highly significant differences between the submitted thesis (1929) and its published
version (1930), and it has been argued that Gödel made the changes to comply with
the general views of his thesis adviser (Baaz and Zach, 2002).

Gödel was not offered a position at the Mathematical Seminar after receiving his
doctorate – no academic position was available. The economic crisis had hit the univer-
sity with full force. Moreover, Austria had no funding organization able to offer project
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money to a postdoc. This did not greatly affect Gödel, who had independent means. His
father had died recently. His mother, Marianne, left Brno to live with her two sons in two
large, adjacent apartments in a stately house in the Josefstädterstrasse, a short walk from
the university. Gödel was free to devote himself to his scientific interests. He usually
worked late into the night, slept until late the next morning, and spent part of the day at
the Mathematical Seminar, helping Hahn with exercise classes, preparing students for
seminar talks, and spending much of his time in the library (Taussky-Todd, 1987). The
young Viennese professor of geometry Karl Menger, who was barely four years older
than Gödel, headed a group of young mathematicians and students who regularly met
for discussions and lectures at the newly founded Mathematical Colloquium (Golland
and Sigmund, 2000). Gödel was one of its most active participants and helped Menger in
the preparation of the proceedings, the Ergebnisse eines Mathematischen Kolloquiums
(Sigmund, 2002). Together with Menger, he gradually distanced himself from the Vi-
enna Circle, although he retained close contacts with most of its members, in particular
with Carnap. They frequently met in one of the numerous coffeehouses in town.

On August 26, 1930, at one such meeting in the Café Reichsrat, Gödel first mentioned
his epoch-making discovery: arithmetic is incomplete. (There exist true statements that
cannot be derived by purely formal means from the axioms.) A few weeks later, he
mentioned his result, almost casually, during a discussion at a conference in Königsberg
dedicated to the foundations of mathematics. John von Neumann, who was present,
immediately understood its impact and was soon able to deduce that Hilbert’s famous
program for proving the consistency of arithmetic could not be carried through. He
wrote to Gödel about it, but Gödel, in reply, was able to point out that that he had already
realized this consequence and included it in his publication, again in the Monatshefte:
“On formally undecidable propositions of Principia Mathematica and related systems.
I” (Gödel, 1931). The impact was tremendous. In particular, both von Neumann and
Menger outdid themselves to spread the news of this sensational breakthrough. Gödel
had originally planned to follow his paper with a second part, presenting a formalized
proof, but it soon became obvious that this was not necessary. His argument was
blindingly clear.

Gödel’s discovery was certainly more than sufficient to ensure his next step on
the academic ladder, namely, the Habilitation, that is, his promotion to Privatdozent
(private lecturer). This grade meant, essentially, that he was qualified for a position
as professor and had the right to lecture at the university, but it carried with it no
salaried job, and the only prospective income was the so-called Kollegiengeld, a small
fee proportional to the number of students enrolled in the Privatdozent’s course.

An unofficial rule of the University of Vienna stated that the Habilitation could not
be conferred sooner than four years after completion of a doctorate. However, Gödel
was clearly a very special case, and so this period was shortened, but he still had
to wait until 1933. During the waiting period, he maintained his way of life, making
himself useful in many small ways at the Mathematical Seminar and continuing with his
scientific work on logic, publishing most of it in the Ergebnisse eines Mathematischen
Kolloquiums. In June 1932, he finally submitted his Habilitation application.

The application once more required a curriculum vitae:

I was born in 1906 in Brno as the son of parents of German stock. I attended four grades
of elementary school and the eight grades of the German Staatsrealgymnasium there and
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in 1924 I passed my A-levels. In the autumn of that year I moved to Vienna, where I have
remained without any lengthy interruptions ever since. I was awarded Austrian nationality
in 1929. In the winter semester of 1924 I enrolled as a regular student in the Philosophical
Faculty and studied first physics and subsequently mostly mathematics. I also occupied
myself with modern developments of epistemology, inspired by Prof Schlick, whose
philosophical circle I often visited. My own scientific activity initially dealt with the field
of the foundations of mathematics and symbolic logic. In 1929 I submitted a paper in this
field, “The completeness of first order logic,” as a PhD thesis and obtained my doctorate
in February 1930. In the same year I lectured in Königsberg on the above-mentioned
paper. Moreover, I lectured on the paper I submitted for my Habilitation at the 1931
meeting of the German Mathematical Society in Bad Elster. In Vienna I participated in
the colloquium organised by Prof Menger and also contributed to the editing of its annual
proceedings. I was also active in the seminar on mathematical logic held by Prof Hahn
in the academic year 1931/32, selecting the material and helping the participants prepare
their report. In 1931 I was asked by the editorial team of the Zentralblatt für Mathematik,
to which I contribute regularly, to write jointly with A. Heyting a report on the foundations
of mathematics and I am currently engaged in its elaboration. (PKGAUV; see also GA)

This report was never finished. It may be noted that in contrast to the former curricu-
lum vitae, Gödel did mention the Vienna Circle (but omitted that he had passed his
A-levels with distinction). An Habilitation application also required a list of publica-
tions, three possible topics for a probationary lecture to be delivered in the presence
of the committee of professors evaluating the Habilitation, and a list of topics for
lecture courses for the coming years. Gödel proposed for the probationary lecture (1)
the construction of formally undecidable propositions; (2) the intuitionistic propo-
sitional calculus; and (3) the set of values of conditionally convergent series. The
committee chose his second topic.

The committee elected Hans Hahn to act as reporter on the scientific achievements
of Gödel. Whereas Hahn’s report on Gödel’s PhD thesis had been rather matter-of-fact,
saying that it “fulfils entirely the requirements for a PhD” – hardly adequate for a work
whose impact is still strong after eighty years – this time, Hahn pulled no punches. The
minutes of the committee meeting from December 1, 1932, state:

Prof Hahn also reported on the scientific suitability of Dr Gödel. The PhD thesis was
itself of very high scientific quality (“The completeness of the axioms of the functional
calculus of logic”). By showing that every generally valid formula of first order logic
is provable, it solved the difficult and important problem posed by Hilbert of whether
the axioms of the functional calculus of logic form a complete system. The Habilitation
thesis “Formally undecidable propositions of Principia Mathematica and related systems”
is a scientific achievement of the foremost order that has attracted highest attention in
all expert circles and that – as can be predicted with certainty – will have its place in
the history of mathematics. Dr Gödel has succeeded in showing that there are problems
within the logical system of Whitehead and Russell’s Principia Mathematica that can be
stated but are undecidable within the system and that the same holds for every system of
formal logic that encompasses the arithmetic of natural numbers; this also shows that the
program proposed by Hilbert to prove the consistency of mathematics cannot be carried
to its end.

Of several further papers by Gödel that concern the field of symbolic logic, let us
highlight the note “The intuitionistic propositional calculus”, in which the following
theorems are proved: There is no realization of Heyting’s axiom system for an intuitionistic
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propositional calculus with finitely many truth values for which the provable formulas, and
only those, yield arbitrarily assigned truth values specified beforehand. Infinitely many
systems lie between Heyting’s system and the usual system of ordinary propositional
calculus.

The papers submitted by Dr Gödel exceed by far the level usually required for a
Habilitation. An overview of the present-day state of the research on the foundations of
mathematics, which Dr Gödel has been asked to provide by the editors of Zentralblatt für
Mathematik, is due to appear soon.

Dr Gödel is already accepted as the foremost authority in the field of symbolic logic
and research on the foundation of mathematics. In close scientific collaboration with the
reporter and with Prof Menger he has also brilliantly proven his worth in other fields of
mathematics.

The commission has unanimously decided to request the faculty to endorse the sci-
entific competence of Dr Gödel for a Habilitation and to admit him to the scientific
colloquium. (PKGAUV; see also GA)

The scientific colloquium is an hourlong examination during which committee mem-
bers may ask the candidate any question related to his field. (This requirement has
subsequently been dropped.) Gödel’s probationary lecture took place within the Math-
ematical Colloquium. The audience included a guest from abroad, Oswald Veblen,
who was currently talent-scouting on behalf of the IAS in Princeton. Menger and von
Neumann had drawn his attention to Gödel, whose lecture made a most favorable
impression.

The ritual secret ballot in the faculty meeting came up with forty-nine yes votes and
the almost usual, isolated nay from one anonymous objector, who apparently delighted
in preventing unanimous outcomes. Afterward, Dean Srbik, an eminent historian who
would later play a deplorable part after the Anschluss, reported to the minister of
education, Kurt Schuschnigg:

The undersigned Dean reports on the progress of Dr Kurt Gödel’s Habilitation proceed-
ings.

On 25 June 1932 Dr Kurt Gödel submitted to the College of Professors [Professorenkol-
legium] of the Philosophical Faculty a request for conferring him the venia legendi [right
to lecture] in the field of “mathematics.”

The committee consisted of the professors Furtwängler, Hahn, Himmelbauer, Menger,
Prey, Schlick, Tauber, Thirring and Wirtinger and was headed by the Dean. It first met
to consider the application on 25 November 1932 and noted first that in accordance with
§§2 and 6 of the Habilitation norm the field was sufficiently wide and self-sufficient and
secondly that the personality of the above mentioned candidate gave no grounds for doubt
on his suitability for a university teaching position.

The following meeting of the committee took place the same day. In it, the papers
submitted, in particular the Habilitation thesis, were examined and found to be adequate,
thus allowing the candidate to proceed to the next steps of the Habilitation.

Accordingly, the committee proposed to the faculty meeting of 3 December 1932
that the applicant should be permitted to proceed with the further steps, i.e. with the
colloquium.

The College of Professors accepted the committee’s recommendation and decided to
admit the candidate to the colloquium. The result of the ballot on personal suitability was
51 yes and one no with no abstentions.
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The colloquium was held on 13 January 1933 and was found to satisfy the requirements
of the law and the faculty meeting of 21 January was therefore asked to allow the applicant
to proceed to the probationary lecture.

In its meeting on 21 January 1933, the College of Professors accepted this request with
the simple majority required by the Habilitation norm.

The probationary lecture took place on 3 February 1933 on the topic “The intuitionistic
propositional calculus.” The committee found this probationary lecture to satisfy the
requirements of the law.

Accordingly, the committee proposed at the faculty meeting on 11 February 1933 that
the probationary lecture satisfy the requirements of the law. The College of Professors
accepted the proposition with the simple majority required by the Habilitation norm.

According to §12 of the Habilitation norm, the final ballot on conferring the venia
legendi was held. The result was 42 yes and one no with one abstention.

Based on the College of Professors’ decision, the undersigned Dean proposes that the
applicant be granted the right to teach in the field of “mathematics” at the Philosophical
Faculty of the University of Vienna and asks the Ministry of Education for confirmation.
(PKGAUV; see also GA)

4.2 Part 2: Psychiatric Clinics and Ivory Towers

Gödel was awarded the title of Dozent (lecturer) on March 11, 1933. His proud mother
made sure that Brno’s German-speaking newspaper, the Brünner Tagesbote, announced
that Dr. Kurt Gödel, a son of the late Rudolf Gödel, director of an industrial enterprise,
had been awarded his Habilitation at the University of Vienna. It also announced that
Kurt Gödel had been invited to spend a semester as assistant professor at the IAS in
Princeton. Most of the newspaper issue dealt with the political turmoil caused by the
National Socialists’ rise to power in Germany (see GA): a few weeks earlier, Hitler
had been appointed Reichskanzler (Chancellor of the Reich) and had immediately
launched a ruthless campaign of Gleichschaltung – a euphemistic term that translates
as “coordination” – that rapidly transformed the Weimar Republic into the Third Reich.

As Dozent, Gödel was required to lecture for two hours per week during at least one
semester in four. Gödel held only three lecture courses at the University of Vienna and
thus barely fulfilled the requirement to retain his title. His first course, in the summer
semester of 1933, dealt with the foundations of arithmetic; his second, two years later,
with selected topics in mathematical logic; and his third, two years later again, with
axiomatic set theory. Gödel’s scientific genius was well known among the students
in the Mathematical Seminar, but so was the fact that his lectures were extremely
demanding. One of his students was Edmund Hlawka, who later became an eminent
number theorist. Hlawka notes that Gödel lectured at a dazzling speed (the book by
Hilbert and Ackermann (1928) was covered in one week) and always kept his back to
the student audience, whose size dwindled rapidly so that by the end of the semester,
only one student was still following the course – none other than Andrzej Mostowski,
the well-known Polish logician.

With so few students, Gödel’s lecture fees were ridiculously low. In one semester,
he earned two schillings and ninety groschen – barely the price of a few beers. It
was understood, of course, that Privatdozent Gödel did not need the income as he
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had independent means. However, during the 1930s, these means shrank inexorably,
and by the end of the decade, little was left. Nevertheless, Gödel, who still lived
with his mother, his brother, and an aged aunt in two large, adjacent apartments in
the Josefstädterstrasse, was not troubled by financial worries. Moreover, the salary he
obtained during his visits to the IAS was generous, and he was able to bring a large part
of it back to Vienna. Dollars were a prestigious commodity in crisis-ridden Austria.

In June 1934, soon after his return from the United States, Gödel had to be admitted
to a sanatorium in Purkersdorf, close to Vienna, for treatment following a nervous
breakdown. A terse receipt mentions the deposit of fifty dollars (see GA). According
to Gödel’s brother Rudolf, by this time an MD, the crisis had been caused by stress
from overwork. The state of the country to which Kurt Gödel had returned certainly did
nothing to reduce his nervous stress. The political and economic outlook in the wake
of the Great Depression was bleak. The Austrian chancellor, Dollfuss, a conservative,
was struggling fiercely against Left and Right. Parliament was suspended because of an
ill-considered move by some deputies and never resumed. Rather than looking for an
impossible majority of votes, Dollfuss preferred to establish an authoritarian regime of
a clerical-fascist blend. After a brief workers’ revolt in February 1934, which claimed
over a hundred victims, the Socialist Party was forced to go underground. So were
the National Socialists (Nazis), who vehemently agitated in favor of joining the Third
Reich.

Political struggles poisoned university life. A large number of the students were
sympathizers of the outlawed Nazi Party. Riots frequently forced the university to close,
sometimes for weeks. Authorities had to tell their lecturers how to deal with politically
motivated disruptions. It is unlikely that Gödel’s sparsely attended lectures were ever
the theater for National Socialist demonstrations, but Gödel kept the corresponding
memorandums to the end of his life, possibly because they say so much about the
atmosphere that reigned at Austrian universities in the 1930s.

The minister for education wrote:

It has come to my attention that at the end of a university lecture a large number of
students sang the German national anthem (or, according to others, the Horst Wessel
Lied), obviously with the intent of a political demonstration, and that some shouted “Heil
Hitler.” I am therefore obliged to require that strong measures be taken to prevent all
forms of acclamation or protest and all singing, shouting and similar forms of political
manifestations. (Gödel’s Nachlass, Firestone Library, Princeton University)

The memorandum then drew attention to the various laws and disciplinary measures
to which the police had recourse. Another circular letter was headed “Subversive
propaganda at institutes of higher education – duty of all university staff to oppose it”
and stated:

The Ministry of Education has received complaints about activities on university premises
that are directed, in a hidden way, against the interests of the country. In various exercise
classes, seminars and excursions and on other occasions where students are required
to speak, camouflaged political agitators following orders from abroad utter disobliging
remarks of a political or personal nature, as well as political jokes etc. without being
stopped by the members of the faculty, by scientific staff or by university employees.
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The Ministry of Education draws attention to these misdemeanours and expects that
they will immediately be stopped, if necessary using radical measures. The Ministry
of Education would regret having to use available disciplinary measures against a staff
member who should in future – unexpectedly – fail to react dutifully. (Gödel’s Nachlass,
Firestone Library, Princeton University; see also GA)

This was signed by Kurt Schuschnigg, then still minister for education, and was dated
June 17, 1934, that is, shortly after Gödel’s return from the United States. The contrast
to the ivory-tower atmosphere at the IAS must have been painful.

Soon afterward, in July 1934, members of the outlawed Nazi Party stormed the
chancellery and killed Dollfuss in his office. The putsch was quickly repressed, but the
authoritarian regime resorted increasingly to dictatorial measures. Kurt Schuschnigg,
who succeeded Dollfuss as chancellor, continued the latter’s policies for keeping Hitler
at bay, which relied almost exclusively on Mussolini’s goodwill.

In the same month, Hans Hahn, Gödel’s teacher, died unexpectedly following surgery
for cancer. He had been a supporter of “Red Vienna” and one of the very few professors
in vocal opposition to the nationalist-conservative majority at the faculty.

Gödel himself was apolitical, but like many others, he was obliged to join the
Fatherland Front, a party organization that was imposed from above. It found little
support in the population, but eventually, almost every third Austrian became a member.
The members had to pledge absolute loyalty and obedience to the Führer (meaning Kurt
Schuschnigg) and to wear a badge. In general, the Fatherland Front was considered
to be a toothless counterfeit mimicking the Nazi rituals across the border, a relatively
harmless rigmarole, but those who failed to adhere risked their jobs. This was the case
with Professor Heinrich Gomperz, the charismatic philosopher who had introduced
Gödel to Platonism. Gomperz was branded as lacking loyalty to Austria, was forced to
retire, and had to emigrate, at age sixty-three, to the United States.

Gödel’s financial contributions to the Fatherland Front were minimal and certainly
more a sign of cautiousness than of commitment. Karl Menger (1994), in his Reminis-
cences, writes:

Kurt Gödel kept himself well informed and spoke with me a great deal about politics
without showing strong emotional concern about events. His political statements were al-
ways noncommittal and usually ended with the words “don’t you think?”. . . Occasionally,
however, he made pointed and original remarks about the situation. Once he said, “Hitler’s
sole difficulty with Austria lies in the fact that he can only appropriate the country as a
whole. Were it possible to proceed piecewise, he would certainly have done so long ago
– don’t you think?”

Gödel’s next voyage to Princeton, in autumn 1935, was a disaster. After a few weeks, he
had to resign from the IAS and return to Austria. He experienced his worst psychological
crisis and had to spend many months in sanatoriums, this time in Rekawinkel and
Aflenz. A little handwritten note, kept at the university archives, says, “Unfortunately
I am obliged, again, to cancel my lecture course. Dozent Kurt Gödel” (see GA).

In summer 1936, the murder of Moritz Schlick on the stairs of the university shook
the Austrian public. The murderer, Dr. Nelböck, was only a few years older than Gödel
and had also studied mathematics and philosophy. Schlick had judged his PhD thesis
to be “fairly weak.” Nelböck suffered from psychological crises, pathological jealousy,
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and persecution mania and had to be committed to psychiatric clinics on several
occasions. He developed the idée fixe that Schlick was thwarting his professional
and private prospects, but although the motive behind Schlick’s murder was clearly
personal, it was quickly given a political and ideological spin by Nelböck’s defense
attorney. The argument (the accused was a simple farmer’s son whose upright Christian
beliefs had been subverted by an agnostic philosopher) was successful: Nelböck got
away with a ten-year sentence and was freed soon after the Nazis annexed Austria.

Schlick’s murder became a cause célèbre. Some of the contemporary press articles
were so venomous that Karl Menger decided to emigrate, with his young family, to the
United States. In 1937, he joined the University of Notre Dame, where he remained
until 1946.

By now, Gödel was scientifically isolated in Vienna. After Schlick’s death and
Menger’s emigration, both the Vienna Circle and the Mathematical Colloquium were
leaderless and struggled for survival. The philosopher Edgar Zilsel tried valiantly to
keep up the regular meetings of the logical empiricists. They could no longer meet in the
Mathematical Seminar (there was no professor left who was sufficiently interested to
allow them to use the premises) and thus had to convene in Zilsel’s apartment. In 1937,
Gödel gave a lecture there on mathematical logic. The manuscript was rediscovered
fifty years later in his estate by John Dawson. Menger’s collaborators, Franz Alt and
Abraham Wald, managed to keep the Mathematical Colloquium alive but had no job
and no official title and knew that time was running out on them. From America,
Menger wrote, on December 31, 1937, to his former student Franz Alt:

I am deeply sad to be unable to do anything for the dear beautiful circle of Viennese
mathematicians. I believe you should get together from time to time and especially see
that Gödel takes part in the Colloquium. It would be of the greatest benefit not only to
all the other participants but also to Gödel himself, though he may not realise it. Heaven
knows what he might become entangled in if he does not talk to you and his other friends
in Vienna from time to time. If necessary, be pushy, on my say-so. (from the personal
papers of Franz Alt; see GA)

However, the new year would see the end of an independent Austria, and Franz Alt,
far from being in a position to help Gödel, could consider himself lucky to obtain an
exit visa and escape, barely in time.

Gödel’s scientific community in Vienna had disappeared. Nevertheless, he was not
alone. Unknown to his colleagues and acquaintances, he had been supported for years
by the friendship of Adele Nimbursky, née Porkert, a divorcée seven years older than
himself. He must have met her in 1929 when he lived with his brother in an apartment
just opposite hers in the Lange Gasse. Adele was the daughter of a photographer.
The family was of modest means but had an interest in arts. As a child, Adele had
studied piano and ballet. It seems that she later worked at the Nachtfalter, a well-
known cabaret (listed as a Vergnügungsétablissement (pleasure establishment)) in the
city center. When Gödel met her, she was thirty and had returned from a failed marriage
to live with her parents. She worked for a few years as a masseuse and was listed as
such in the telephone book under her parents’ address. A couple years later, she was
listed, still under the same address, as “private.” Gödel kept her under wraps as well
as he could. However, when he was in the sanatorium, plagued by persecution mania
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and a morbid fear of poisoning, she visited him regularly. In a letter written much later,
the director of the IAS stated that Gödel, during his crisis, had refused to eat anything
except what Adele cooked for him and tasted under his eyes, from his own plate and
with his own spoon.

When Gödel recovered, he decided to marry Adele, despite the objections of his
family, who feared a misalliance. He rented an apartment in a stately house in the
Himmelstrasse, close to the Vienna Woods. Adele, with her practical and energetic
touch, took care of the furnishing. In November 1937, the young couple moved in.
Gödel’s mother, who had shared the apartment in the Josefstädterstrasse for eight years
with her two sons, resigned herself to returning to her villa in Brno.

4.3 Part 3: Escape from the Reich

At the time of the Anschluss, Gödel was in Vienna. He was not persecuted for racial or
political reasons, but many of his friends and former colleagues were. Gödel witnessed
the political upheaval, the euphoric demonstrations greeting Hitler’s troops, the anti-
Semitic bedlam in the streets, and the ferocious efficiency of the Gleichschaltung, the
“coordination” that implied the removal of all those disfavored by the new masters
(Siegmund-Schultze, 2002). A swiftly appointed commissioner-rector undertook the
Säuberung (cleanup) of the university, based on the law for the “reestablishment of a
professional civil service.”

In his inaugural speech, the new rector bemoaned the former coolness displayed by
the professors toward National Socialism and declared that “all this has now changed.
The material lesson enjoyed by the professorial body during the Führer’s presence in
Vienna will not fail to have its effect” (Archiv der Universität Wien).

Gödel’s former professor Furtwängler, who left because he had reached retirement
age, was replaced by one Anton Huber, a dyed-in-the-wool Nazi who had joined the
party while in Switzerland. The only other full professor at the Mathematical Seminar,
Karl Mayrhofer, turned out to have been an illegal party member all along.

In Gödel’s philosophical faculty, fourteen out of forty-five full professors, eleven
out of twenty-two associate professors, thirteen out of thirty-two emeritus professors,
and fifty-six out of one hundred fifty-nine lecturers “retired.” An essential instrument
for this upheaval was the oath to the Führer, to whom all salaried employees at the
university (Aryans only, of course) had to pledge their allegiance on March 22, 1938.
Gödel did not have to take the pledge because as a private lecturer, he did not rank
among university employees.

Franz Alt, who had applied for an immigration visa to the United States a few weeks
before the Anschluss, was quickly able to emigrate. Others, such as Abraham Wald
and Eduard Helly, had a much harder time and had to live through agonizing months of
bureaucratic chicanery, but by the end of summer 1938, practically all Gödel’s former
colleagues were gone.

Gödel himself was in a privileged position thanks to his multiple-entry visa for
the United States. On October 1, 1938, he was able to begin a long-scheduled visit
(his third), but his wife, Adele, whom he had married two weeks earlier, remained in
Vienna. During the subsequent eight months, which Gödel spent partly at the IAS and
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partly at Karl Menger’s University of Notre Dame in Indiana, the sinister nature of the
Third Reich became increasingly evident, in particular through the Reichskristallnacht
(Night of the Broken Glass), a state-led pogrom that claimed dozens of lives, and
through the occupation of Czechoslovakia, a flagrant breach of the Munich Treaty.
Hitler was clearly heading toward a major European war.

To Menger’s dismay, Gödel nevertheless insisted on returning to Vienna in June
1939. He planned to return to Princeton in the autumn, this time with his wife. Appar-
ently, it took him a long time to realize that this time, he was encountering more than
just the ordinary bureaucratic hassle with the Devisenstelle (a branch of the Ministry of
Finance that pestered him with demands to account for his American dollars) and the
Wehrmacht (who required him to show up for a military physical examination). In a
letter to Menger written on August 26, 1939, three days before the outbreak of Hitler’s
war, Gödel vaguely complained of Laufereien (pointless errands) but seemed to have
no doubts about his forthcoming return to Princeton.

The situation was much more serious than Gödel had anticipated. His multiple-entry
visa for the United States was in his previous Austrian passport and therefore no longer
valid. Obtaining a new immigration visa seemed to require an inordinate amount of
time: the American Consulate in Berlin was submerged with such applications. There
were special rules for professors, but Gödel was no longer even a lecturer.

The Germans had abolished the title of Privatdozent. Former lecturers could apply
to become a Dozent neuer Ordnung, which implied a salaried position. Gödel, with his
legalistic turn of mind, was outraged by the suspension of his former title. The official
reason given for this act was that he had failed to obtain permission to take up an
appointment in the United States. Such permission was required not by Austrian law
but by German law. Gödel may initially have overlooked this and later tried to amend
it by a curt note penned in Princeton:

This is to inform you that I have accepted an invitation to Princeton, USA, for the winter
semester 1938/39. My address there is Fine Hall, Princeton, New Jersey. Respectfully
yours, Kurt Gödel. (PKGAUV; see also GA)

This was apparently insufficient to mollify the University authorities. On July 12, 1939,
the dean informed the ministry that he had no current information on the whereabouts of
Gödel (unaware that the latter was back in Vienna at the time). He confirmed that Gödel
had written on October 31, 1938, to say that he had accepted an invitation to Princeton
but complained that he had given no specific information about his activities or the
duration of his stay. Moreover, Gödel had not asked for leave for the summer semester
of 1939. On this basis, the dean asked for the cancellation of Gödel’s Habilitation at
the Philosophical Faculty of the University of Vienna.

On August 12, 1939, the ministry replied regretfully that its hands were tied but
suggested a neat way to resolve the case of this obnoxious Privatdozent:

According to a past decree the right to teach of the above mentioned has been provisionally
suspended. As the former Austrian Habilitation norm is no longer valid, I lack the formal
means for the requested administrative measure.

However, his right to teach will be finally cancelled, either when he does not apply
before 1 October 1939 for promotion to Dozent of the New Order or else when the
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Reichsminister for Science and Education does not grant that promotion. It will be your
task to accompany an eventual application by Dr Gödel in such a way that the Minister
takes the desired decision.

In my opinion it is superfluous, in this case and in other cases in which the right to
lecture is suspended . . . to take special steps against a private Dozent of the Old Order
whose further teaching is undesired. (PKGAUV; see also GA)

To arrive at a decision, the leader of the National Socialist Association of Lecturers
of the University of Vienna, Professor Marchet, was asked for his opinion. Marchet,
who was no mathematician, had to ask for the opinion of Gödel’s former colleague
Mayrhofer, who had been a member of the outlawed Nazi Party. This was when Gödel’s
habit of discretion paid off. Marchet wrote to the dean:

Dr Kurt Gödel (until now Dozent) is scientifically well considered. His Habilitation
was supported by the Jewish professor Hahn. He is accused of having always moved in
liberal-Jewish circles. It must however be mentioned that during the Systemzeit [i.e. the
period of the former Austrian regime] mathematics was strongly jewicized [verjudet]. I
have not been apprised of any direct statements or acts against National Socialism. His
professional colleagues have not known him socially, so that further information about
him is not obtainable. (PKGAUV; see also GA)

Marchet concluded cautiously:

It is therefore not possible for me expressly to support his promotion to Dozent of the
New Order but neither do I have any grounds for objecting to it. (PKGAUV; see also GA)

On the basis of this report, the dean wrote, on November 27, 1939, to the rector:

I have been requested to report on the personality of Privatdozent Kurt Gödel, PhD, from
the points of view of profession, political stance and character.

Gödel has a high reputation in his field, which comprises the boundary region between
mathematics and logic and was particularly favoured by Gödel’s teacher, the Jewish
professor Hahn, as I learn from the judgements of the two full professors of mathematics
at our faculty, K. Mayrhofer and A. Huber; Gödel is particularly well-esteemed in the
USA, where such questions on the foundations of mathematics are of interest to wide
circles. (PKGAUV; see also GA)

At that time, it seemed unconceivable that these “questions on the foundations of
mathematics” could be of any practical use. However, other scientific communities
took a close interest in foundational questions – even negative answers to them –
and, by a sequence of unintended consequences, rapidly advanced the development
of the computer. It seems, moreover, that little attention was paid in the Third Reich
to the type of mathematics needed for cryptoanalysis. It is interesting to speculate on
what Gödel could have achieved in a position like that of Turing at Bletchley Park.
Fortunately for Gödel, his field played no part in the Deutsche Mathematik (Siegmund-
Schultze, 2002), a term was used by Vahlen, Teichmüller, and other Nazi mathemati-
cians. They never managed to come up with a proper definition of the term but agreed
that set theory, for instance, did not belong to it and that non-Aryan mathematicians
tended to compensate for their lack of intuition by an unfortunate bent for bloodless
abstraction.
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The dean went on to discuss the political stance of Kurt Gödel:

Concerning the political judgement of Gödel I have taken advice from Prof Marchet, the
leader of the association of lecturers at the University, whose opinion exactly matches my
own personal impression. Gödel, who grew up at a time when the Viennese mathematicians
were completely under Jewish influence, has hardly any inner rapport with National
Socialism. He gives the impression of a thoroughly apolitical person. Therefore, it seems
unlikely that he will be up to the difficult situations bound to arise for a representative of
the New Germany in the USA.

As a character, Gödel gives a good impression; in this respect I have never heard any
complaint about him. He has good manners and will certainly not commit any social
gaffes that could damage the reputation of his home country abroad.

If political reasons should forbid Gödel to travel to America, this raises the question of
providing him with means for living. Gödel has no income at all and he wants to accept
the invitation to the USA solely to ensure his livelihood. The whole question of leaving
Germany would be void if it were possible to find a suitably paid job within the Reich.
(PKGAUV; see also GA)

For Gödel, the situation was much graver than the dean knew – it was not only a
question of finding a livelihood. Gödel had finally been mustered by the Wehrmacht,
and to his consternation, he was found fit for garrison duty, as he wrote in November
1939 in a very despondent letter to Osvald Veblen. This meant that he was quite likely
to be called up soon to serve in the German army.

The journey to America suddenly seemed out of reach. The American Consul in
Berlin was submerged by applications for immigration visas. University professors
were eligible for nonquota visas, but Gödel did not fully qualify: he had not lectured
enough, and even his position as Dozent had become shaky.

However, the IAS proved up to the task. John von Neumann wrote a masterly analysis
for Abraham Flexner, the director of the IAS, showing that Gödel (“a mathematician
of the first rank – he is in a class by himself”) had a valid case after all. In particular,
Gödel could take advantage of the fact that although he had not lectured during the last
two calendar years, this was because of circumstances beyond his control: “Gödel’s
teaching,” as von Neumann smoothly argued, “was terminated by his being suspended
from office by the German Government after the invasion and annexation of Austria
in 1938.” He concluded, “I think that there cannot be the slightest doubt that he is a
professor in the sense of the law.”

This letter probably saved Gödel’s life, for it allowed Flexner to convince the
State Department and, in particular, the American Consul in Berlin. Against all odds,
Gödel’s visa problems were suddenly resolved. He and his wife obtained German exit
permits on December 19, 1939 – it must have seemed like a Christmas miracle. From
then on, things moved very quickly. The American immigration visas were issued on
January 8, 1940. Gödel had decided not to risk an Atlantic crossing (this was the time
that journals spoke of a “phony war,” but there was nothing phony about the U-boats).
Instead, Kurt and Adele chose to take the eastbound route, via Siberia and the Pacific.
The transit visas through the Soviet Union were obtained on January 12, and the journey
began a few days later. The entries on Gödel’s passport tell of a political tightrope act
(Dawson, 2002). The travelers had to cross Poland (which was occupied and divided)
and Lithuania (which was soon to be overrun by Stalin’s troops). After changing trains
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in Moscow, the Gödels continued their winter journey via the Trans-Siberian Railway
through the recently occupied Manchuria and on to Japan, which at that time had
deeply penetrated into China but had not yet signed the pact with Germany or engaged
in war against the United States. In Yokohama, the Gödels missed their ship and had
to wait several weeks for another steamer to take them across a still Pacific Ocean
on to the safety of San Francisco. As Gödel wrote to his brother, “San Francisco is
absolutely the most beautiful of all the towns I have ever seen” (letter from Kurt Gödel,
Handschriftensammlung der Wienbibliothek).

From there on, it was just a transcontinental train ride to the haven of the IAS. Fellow
emigrant Oskar Morgenstern notes in his diary (Dawson, 1997) that “Gödel arrived
from Vienna. Via Siberia. This time with wife. When asked about Vienna: ‘The coffee
is wretched’(!)” (diary of Oskar Morgenstern, Morgenstern papers, Duke University;
see also GA).

Kurt Gödel would never again return to Vienna, but this was something he himself
probably did not realize until decades later. The wheels of the bureaucracy that he had
left behind continued to grind (Dawson and Sigmund, 2006). On March 7, 1940, the
Ministry for Interior and Cultural Affairs sent an ill-tempered letter to the rector of
the university. In one single sentence of inordinate length, even by German standards,
it announced the return of some documents, asked for details about Gödel’s arrival in
Vienna, and chided the rector for supporting Gödel’s application to become Dozent
neuer Ordnung. Obviously, the writer was unaware that Gödel had left again in the
meantime:

Attached I return the collateral material of the report mentioned above (with exception
of the copies of the Deans’ report, the application of Dr Gödel and the memorandum
by the head of the association of lecturers, which are intended for my office) and I ask
for a detailed statement concerning the fact that Dr Gödel spent some time abroad on
his own, and dealing with the precise circumstances of his return (which has obviously
taken place). I request clarification of the apparent contradiction in your support for the
application of this private lecturer, whose right to teach has been suspended after the re-
unification of Austria with the German Reich, despite the fact that the Dean of the
Philosophical Faculty has asked for the (final) withdrawal of this right to teach, with the
full consent of the head of the association of lecturers, as expressed in the report of July
12 1939, Z.129 from 1938/39, seen by you, a withdrawal which, however, I was unable to
effect due to formal reasons (Decree of August 12 1939, Z. IV-2c-232.954) (Personalakte
Kurt Gödel, Archiv der Universität Wien; see also GA)

A second paragraph displays the everyday chicanery of Nazi bureaucracy:

In addition, I draw your attention on the fact that the proof of descent of Dr Gödel and his
wife is incomplete. It consists indeed of 16 documents (namely 12 – not, as mentioned
in the Dean’s report, 8 – photocopies, 3 additional certified copies and one document
concerning a change in religion by the father of Gödel) but the marriage certificates of
Gödel’s parents and his wife’s parents must be submitted (if not, in addition, the certificates
of the four pairs of grandparents). (PKGAUV; see also GA)

The rector asked the dean of the Philosophical Faculty to clarify the issue raised in
the first paragraph. On April 1, 1940, the dean explained his change of mind, some-
what disingenuously, by the fact that Gödel’s application for Dozent neuer Ordnung
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constituted a proof of political goodwill. He flatly stated that it was “doubtlessly incor-
rect” to say that Gödel had traveled to America without proper permission, apparently
referring to Gödel’s current leave, not the previous one. The ministry official rather
surprisingly gave up. On June 28, 1940, “in the name of the Führer,” the minister for
education signed a heavily embossed diploma that promoted Kurt Gödel to Dozent
neuer Ordnung and stated, rather pompously:

I sign this document in the expectation that the promoted will conscientiously obey his
official duties according to his oath of service and will justify the trust placed in him. In
return, he can be assured of the Führer’s special protection. (PKGAUV; see also GA)

This was two weeks after the Führer had taken Paris.
The diploma was never collected. It rests today in the university archives, together

with a receipt that still awaits the signature of Kurt Gödel. The rectorate of the university
wrote on several occasions to Gödel’s brother Rudolf, who replied, again and again,
that Kurt Gödel would collect the certificate as soon as he was back from the United
States.

A letter from Kurt to Rudolf, dated October 6, 1940, contains a passage in which
Kurt asks Rudolf to inquire, if feasible, about the salary that he would receive in the
event of his return. This may indicate that Gödel did not at the time entirely exclude the
possibility of returning to the Third Reich. It more probably shows that Gödel, while
still in Vienna, had so little hope that his application would succeed that he had not
even bothered to inquire about the rate of pay.

On January 30, 1941, Rudolf Gödel informed the dean that Kurt Gödel was unable
to return to Europe as the German Consulate had urgently advised against the journey.
The dean noted, “Gödel can only resume his lectures when circumstances permit it.
Immediately after his return, Gödel will present himself at the chancellery and the
faculty of the University.” Slightly later, the ministry granted Kurt Gödel an extension
of his leave up to July 31, 1941, but the tone of the letter was somewhat grudging.
On March 4, 1941, the German Ministry for Science and Education asked the Foreign
Office to inquire about Gödel. In reply:

As the German General Consulate in New York recently reported, Dr Gödel has asked
for an extension of his leave because the Institute in Princeton has offered him a stipend
of 4000$ for further research during the coming academic year. Given that the General
Consulate explained to him that his acceptance of this offer is undesired but that another
suitable occupation cannot be found, Dr Gödel asked to be informed, if a further leave
is not granted, whether after an eventual return [Heimschaffung] he would be given a
salaried position at a German university. However, he added that because of heart trouble
he was incapable of any strenuous administrative or teaching duties. (PKGAUV; see also
GA)

The scene in the German Consulate, with a straight-faced Gödel, would have been
worthy of an Ernst Lubitsch film. The term Heimschaffung seems very odd, with its
connotation of “being bundled home.” The waters of the Atlantic had not become safer,
and a return journey via Siberia would not be feasible for much longer. In fact, the
express letter from the German Foreign Office to the Ministry for Education was dated
June 22, 1941, the day after Hitler’s troops invaded the Soviet Union. Less than half
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a year later, Hitler declared war on the United States. However, amid the turmoil, the
elusive Dozent Gödel was not forgotten by the Viennese authorities. To their inquiries
Rudolf Gödel replied in an increasingly curt fashion. The dean had to write to the
ministry:

With regard to GZ 2226/946/II of 23 September 1942 I report that I have no knowledge
relating to the whereabouts of Dozent Dr Kurt Gödel. (PKGAUV; see also GA)

For one semester after another, until spring 1945, the Vorlesungsverzeichnis (a booklet
on the lectures held at the university) contained the terse statement that “Dozent Kurt
Gödel will not lecture.”

After the war, the institute of mathematics was quickly purged of its Nazi professors.
Johann Radon and Edmund Hlawka were appointed – a brilliant recovery – but the
emigrants were not asked back. Most of them would probably have declined to return
to postwar Vienna and to live among bombed-out houses in a drab and dismal city
occupied by the four Allied powers. However, that they were not even asked was a blot
on the early years of the new Austrian Republic. As Gödel wrote in 1946 to his mother
(who, in 1944, had returned from Brno to live with her son Rudolf in Vienna):

On principle one should be obliged (since the current Austrian government obviously
considers the Hitler regime as an illegal tyranny) to invalidate all the dismissals from the
Universities. In most cases those concerned would opt not to return but apparently they
are not even being offered the chance. (letter from Kurt Gödel, Handschriftensammlung
der Wienbibliothek)

Twenty years later, the Austrian foreign minister Bruno Kreisky (later a longtime
chancellor of the Austrian Second Republic) wrote to the rector of the university:

Your Honour,
An eminent personality whom I know well has drawn my attention to Professor

Dr Kurt Gödel, currently teaching at the Institute for Advanced Study in Princeton.
Gödel is a former Austrian. . . . The decisive result of his research is that all attempts
at a formalistic foundation of mathematics must fail and that there exist mathematical
systems for which it can be proved that it is impossible, by means of operations within the
system, to decide whether sentences that can be derived are provable or not. . . . I would
be grateful, your Honour, if you could consider whether and how Gödel, who soon will
celebrate his sixtieth birthday, could get honoured by his former University. A token of
recognition from Austria would, I believe, not only honour Gödel but also honour Austria.
(Personalakte Kurt Gödel, Archiv der Universität Wien; see also GA)

The eminent personality was, of course, Oskar Morgenstern. Soon afterward, the dean
of the Philosophical Faculty wrote to Gödel and offered him an honorary professorship.
Gödel declined, just as he declined an honorary membership of the Austrian Academy
of Science, on the most tenuous of grounds. These honors came too late.
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———. (2002). Max Dehn, Kurt Gödel, and the trans-Siberian escape route. Notices of the American

Mathematical Society, 49, 1068–75.
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CHAPTER 5

Gödel’s Thesis: An Appreciation

Juliette Kennedy

Introduction

With his 1929 thesis, Gödel delivers himself to us fully formed. He gives in it a
definitive, mathematical treatment of the completeness theorem,1 but he also declares
himself philosophically, unfolding the meaning of that theorem from a wider, rather
mature, fully philosophical point of view.2

Among the rewards of studying particularly its introductory remarks, are the fol-
lowing. First, light is shed on the timing of the first incompleteness theorem, construed
as a response to Carnap as well as its possible genesis as a response to Brouwer; those
remarks also add to our understanding of the separation of the completeness and cate-
goricity concepts, which was emerging just then. In a few crucial places, the remarks
can strike the modern reader as peculiar. The view taken here is that these peculiarities
are interesting and important, and therefore they are treated at length in this chapter.
The introductory remarks were never included in the publication based on the thesis,
and indeed, Gödel would not publish such unbuttoned philosophical material until
1944, with his On Russell’s Mathematical Logic.3

5.1 The Introduction to Gödel’s Thesis: Different Notions
of Consistency

The set of remarks we first consider occur in the first paragraph of Gödel’s 1929 thesis,
and address the issue of whether consistency is a ground for existence:

1 The completeness question was explicitly posed by Hilbert and Ackermann in their 1928 Grundzüge der
theoretischen Logik., and by Hilbert in his 1928 address to the International Congress of Mathematics, held in
Bologna. An English translation of the latter is printed in (Mancosu 1998).

2 The author thanks Steve Awodey, John Baldwin, Paolo Mancosu, and Dana Scott for helpful correspondence
and Dana Scott, again, for his careful editing. The author is especially grateful to Jouko Väänänen for extensive
discussions on many of the issues raised in this paper; to Wilfried Sieg for helpful discussion and references;
and finally, to Curtis Franks, whose close look at a previous draft led to many improvements in it.

3 Gödels contribution to the Schilpp volume on Russell.
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L. E. Brouwer, in particular, has emphatically stressed that from the consistency of an
axiom system we cannot conclude without further ado that a model can be constructed.
But one might perhaps think that the existence of the notions introduced through an axiom
system is to be defined outright by the consistency of the axioms and that, therefore, a
proof [that a model exists] has to be rejected out of hand. This definition (if only we
impose the self-evident requirement that the notion of existence thus introduced obeys
the same operation rules as does the elementary one), however, manifestly presupposes
the axiom that every mathematical problem is solvable. Or, more precisely, it presupposes
that we cannot prove the unsolvability of any problem. For, if the unsolvability of some
problem (in the domain of real numbers, say) were proved, then, from the definition above,
there would follow the existence of two non-isomorphic realizations of the axiom system
for the real numbers, while on the other hand we can prove the isomorphism of any two
realizations. We cannot at all exclude out of hand, however, a proof of the unsolvability of
a problem if we observe that what is at issue here is only unsolvability by certain precisely
stated formal means of inference. For, all the notions that are considered here (provable,
consistent, and so on) have an exact meaning only when we have precisely delimited the
means of inference that are admitted. (Gödel 1986, 61)

Gödel’s argument against what we might call Hilbert’s principle was aimed at a precept
of formalism, as formulated by Hilbert in, for example, his 1899 correspondence4 with
Frege, that consistency is a sufficient ground for existence. Another way of putting this
is that one needs only to establish the consistency of an axiom system, say, Zermelo-
Fraenkel set theory, to infer the existence of those objects to which the axioms refer.5

Hilbert argued for the idea that consistency entails existence, and Frege argued against
it. Following is a sample of their correspondence (Hilbert to Frege, December 29,
1899):

You write I call axioms propositions. From the truth of the axioms it follows that they do
not contradict one another. I found it very interesting to read this very sentence in your
letter, for as long as I have been thinking, writing and lecturing on these things, I have
been saying the exact reverse: if the arbitrarily given axioms do not contradict each other
with all their consequences, then they are true and the things defined by the axioms exist.
This is for me the criterion of truth and existence.

We do not know the extent to which Gödel might have been aware of the Hilbert-Frege
dispute, although he certainly seems to be worrying about the dispute precisely in his
remarks here. What is known is that Gödel would have been responding primarily to
Carnap, his close colleague and discussion partner, as detailed in Awodey and Reck
(2002) and Goldfarb (2005) – but more about that below.

Let us look carefully at Gödel’s argument. He begins by defining consistency syn-
tactically: an axiom system is said to be consistent if no contradiction is derivable in
finitely many steps from the system in question. Gödel then defines completeness:

4 See the Frege/Hilbert correspondence, (Frege, 1980).
5 Hilbert would come to abandon this view: “Denn das Problem der Widerspruchsfreiheit gewinnt nunmehr eine

ganz bestimmte, greifbare Form: es handelt sich nicht mehr darum, ein System von unendlich vielen Dingen
mit gegebenen Verknüpfungs-Eigenschaften als logisch möglich zu erweisen, sondern es kommt nur darauf an,
einzusehen, dass es unmöglich ist, aus den in Formeln vorliegenden Axiomen nach den Regeln des logischen
Kalküls ein Paar von Formeln wie A und ¬A abzuleiten.” See the 1921–1922 lectures of Hilbert and Bernays,
as quoted in Sieg (1999). See also Sieg (2002, 389–90).
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Here “completeness” is to mean that every valid formula expressible in the restricted
functional calculus (a valid Zähalaussage as Löwenheim would say) can be derived from
the axioms by means of a finite sequence of formal inferences.

Gödel goes on to remark about it that as a means of demonstrating consistency, the
theorem that the first-order predicate logic is complete represents a “theoretical com-
pletion” of the usual method of proving consistency, the usual method being simply to
exhibit a model.

Gödel then goes on to identify two properties of consistency, or more precisely,
two different senses in which the consistency of an axiom system can guarantee the
existence of a model. An axiom system is consistent in the first sense – let us call
this “syntactic consistency” – when no contradiction can be syntactically derived and
the construction of an associated model can be carried out, something that can be
done with the methods outlined in Gödels thesis. An axiom system is consistent in the
second sense – let us call this latter notion “semantic consistency” – if the existence of
a corresponding model is assumed outright; a construction is not required as

. . . the existence of the notions introduced through an axiom system is to be defined
outright by the consistency of the axioms and that, therefore, a proof [that a model exists]
has to be rejected out of hand.

Two notions of consistency exist: one starting from a syntactic condition that gives
rise to a model via a construction; another that assumes that the syntactic condi-
tion automatically defines a model.6 Note that if Hilbert’s principle is taken to mean
that “consistency entails existence,” then the latter concept of consistency renders
this principle true by default. The latter concept also permits a spectrum of variants.
We can simply define the existence of a model as the consistency of the axioms,
which again renders Hilbert’s principle true by default. This leads to a discussion
whether existence in mathematics can be so defined. In fact, Gödel’s criticism does
not seem to be pointed at this aspect; rather Gödel seems to take issue with Hilbert’s
principle in the context where consistency is taken in the first sense, that is to say,
syntactically.

We note that both concepts of consistency permit the following weakening, namely,
that they apply the concept of consistency only to categorical axiomatizations. Thus,
in the first sense, one would hold that an axiom system is consistent if one cannot
derive a contradiction and, moreover, any two models would be isomorphic. Note that
without a completeness theorem, this does not outright imply the existence of a model,
and indeed, it is nontrivial to construct a model even when one knows the system is
categorical. In the second sense, one would view the axiom system to be consistent
if any two models would be isomorphic and such a model does exist (or in a weaker
sense, one would hold that in this case, a model exists by definition). Again, the latter
variant would render Hilbert’s principle true by default, although the principle is now
weaker.

6 One might wonder if the idea behind semantic consistency is not simply to start from a model and then derive
the syntactic condition, which is a way of demonstrating consistency that mathematicians often revert to today.
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Before discussing Gödel’s argument in detail, we note that the notion of semantic
consistency occurs naturally in the (full) second-order framework, for the following
reason: given the second-order axioms, consistency from them is no guarantee of
having a model in the sense of full second-order logic. This is manifested by some
very simple examples. One example is that of second-order arithmetic, denoted P 2,
together with the axioms {n < c : n < ω}, where c is a new constant symbol added
to the language of arithmetic. This theory is clearly syntactically consistent, but it has
no models in the full second-order sense. This is because the model would have to
be nonstandard, whereas P 2 is categorical, that is to say, it has only one (standard)
model. For full second-order logic, then, the only way to think of consistency, it seems,
is to simply define it as a secondary property, that is, in terms of an already-existent
model.

We now consider Gödel’s argument. The hypothetical situation Gödel considers is
to accept that there is a categorical axiomatization A2 of the real numbers. Gödel also
assumes that consistency entails existence, one way or the other. He concludes from
this that there cannot be “unsolvable problems about the reals.” For assume that there
is a proposition φ about the reals, such that both φ and ¬φ are consistent with A2.
It then follows from Hilbert’s principle (that consistency implies existence) that there
must be two nonisomorphic models7 M and N of the theories A2 + φ and A2 + ¬φ.
But Hilbert’s (full) second-order axiomatizationA2 of the reals is categorical.8 We thus
obtain a contradiction, and therefore the statement that there are unsolvable problems
about the reals must be false.9

Note that the existence of M and N would follow also from Gödel’s own complete-
ness theorem (as presented here in Gödel’s thesis) if one had a completeness theorem
for A2, but then there could not be unsolvable problems in A2. Gödel seems to be
biased in favor of the existence of unsolvable problems, so he is driven toward the con-
clusion that there cannot be a completeness theorem for A2. However, if this is so, then
Hilbert’s principle is only meaningful in the second (semantic) sense of consistency;
that is, one knows that the axioms ofA2 are consistent because one already has a model
for them. This last point seems to contradict rather strongly what one might think of
as the finitist trend of Hilbert’s thinking.10 It would also seem unsatisfactory from the
perspective of logic to conclude that there are no unsolvable problems. For example,
at the time, the continuum hypothesis was thought to be unsolvable, at least Skolem
speculated as much already in 1922.11

7 Or “realization,” as Gödel called them.
8 Hilbert states this in “Über den Zahlbegriff,” and there are indications of a proof in unpublished lec-

ture notes from the late 1890s. By the late 1920s, it had become folklore (Wilfried Sieg, pers. comm.,
2007).

9 In modern terminology, the standard full second-order axiomatization of the real numbers is syntactically
complete. Note that the first-order theory of the arithmetic of the reals without the arithmetic of the natural
numbers permits an effective complete axiomatization by Tarski’s famous result. Gödel, on the other hand,
clearly thought of the theory of the reals as extending the theory of the natural numbers.

10 I do not address the question in this chapter of whether Gödel understands Hilbert’s philosophical position, or
the Hilbert program, correctly.

11 This view of solvability has emerged in the recent debate about second-order logic, where it has been expressed
that, for example, the continuum hypothesis is solved by default, as it were, following as it or its negation does
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Returning to Gödel’s argument, one can give up the categoricity of the axiomati-
zation, but then, without uniqueness, the principle that consistency entails existence
borders on incoherence. One might as well simply adopt the syntactic concept of con-
sistency. But then a slight peculiarity emerges, for Gödel assumes that the existence of
two nonisomorphic models of Hilbert’s axioms follows from the existence of an un-
solvable question φ about the reals, where unsolvability means that neither φ nor ¬φ is
decided by A2. Thus we do have a proof system, together with derivation rules, relative
to which the undecidability of φ allows one to add φ, and then in turn its negation ¬φ,
to Hilbert’s axioms to obtain two different consistent sets of axioms. To conclude the
argument, in attempting to derive a contradiction, Gödel must now introduce the first
notion of consistency (syntactic consistency) to obtain the two nonisomorphic models.
Both syntactic and semantic consistency are needed, but in that case, one relies on a
version of the completeness theorem for A2 – or where would these two models come
from?12

With the two distinct notions of consistency established, we come to the heart of the
argument, namely, that in either case, we contradict categoricity; we also come to the
heart of the problem with this argument, as Gödel seems to rely on some version of a
completeness theorem for A2. We now know that such a completeness theorem cannot
be proved, a consequence of the existence of unsolvable problems. Gödel noted this
consequence of the incompleteness theorem explicitly in 1930 during his announcement
of the first incompleteness theorem at Königsberg (see below), reasoning, very likely,
as follows: a single, second-order sentence φ characterizes the standard model for
arithmetic up to isomorphism. But this means that if a completeness theorem could be
proved for full second-order logic, arithmetic truth would be an r.e. relation; that is,
for all first-order arithmetic sentences ψ , N |= ψ iff φ −→ ψ is valid in second-order
logic. That is to say, N |= ψ would be equivalent to the existence of a proof.

That Gödel may have sensed the subtleties and the difficulties in his argument can
be seen from his remarks at the end of the paragraph:

These reflections, incidentally, are intended only to properly illuminate the difficulties
that would be connected with such a definition of the notion of existence, without any
definitive assertion being made about its possibility or impossibility. (Gödel 1986, 63)

from categoricity. For the working set theorist, of course, this idea leads nowhere. To learn that the continuum
hypothesis is solved is to have an understanding of which way it is solved (positively or negatively) and what
the method of solution is.

12 Note that Gödel is clearly not equating the two notions of consistency – the distinction between them is made
clear and explicit. Might Gödel have had an intermediate system in mind? Such a system might be categorical
for the natural number part, but not for the real part. An example of such a system would be a two-sorted
system consisting of an ω-rule for the natural numbers, but with comprehension for reals restricted in the sense
of Henkin models of second-order logic (Henkin, 1950). The natural number part of models of this system
coincides with the standard integers because of the ω-rule. In hindsight, we can say that from the point of view
of Hilbert’s principle, there is little difference between this intermediate system and A2. Indeed, we can rule
out the possibility that Gödel was thinking of an intermediate system as he specifically mentions categoricity
in connection with axiom systems for the reals rather than for the integers. It is also clear that he must have
had Hilbert’s second-order axiomatization of the reals in mind. This is because, as we have pointed out (and as
Gödel seems to be on the verge of realizing given the topic of his thesis), categoricity would fail for a first-order
axiomatization of the reals.
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In this thesis, Gödel did not delve any further into the matter of second-order
axiomatizability – although he would soon enough – but rather wished to emphasize
the possible existence of unsolvable questions, going so far as to use the assumption of
unsolvable questions about the reals as the basis of an argument by contradiction. By
the time he turned in his thesis in 1929, he had formulated the idea that unsolvability
is a genuine phenomenon – and that a conception of provability that ignores it is one
that is inherently flawed.

5.2 Categoricity and the Separation of First-
and Higher-Order Logic

Before taking up the matter of the incompleteness theorems, what could Gödel have
said at that point about second-order provability, completeness theorems for second-
order logic, and categoricity? That there can be no completeness theorem for (full)
second-order logic follows from Gödel’s incompleteness theorem, as was mentioned,
but Gödel does not seem to have known this definitively in 1929, at least to the extent
that he relies on it there.

As for categoricity, Gödel did not take note at the time that the failure of categoricity
for first-order theories (at least those with infinite models) is a consequence of the
completeness theorem. In fact, in connection with the existence of nonstandard models
of Peano arithmetic, Gödel would associate this, even in 1934, with the incompleteness
theorem rather than with the completeness theorem.

More precisely, it is a simple consequence of the completeness theorem that cat-
egoricity fails for first-order arithmetic. This fact was not published until 1936, with
the work of Malcev (1971), although the argument Malcev gives for its existence is
a simple one: to the language of Peano arithmetic, one adds a new constant symbol,
say, c. To the Peano axioms, one adds the axioms {0 < c, 1 < c, 2 < c, . . .}. This
new set of axioms is finitely consistent and hence, by compactness, consistent. But in
such a model, the interpretation of the new constant symbol c must be a nonstandard
integer.13

Indirect evidence suggests that Gödel may not have known this argument by 1934.
This can be inferred from his review of Skolem’s (1933), a landmark paper in which
Skolem constructs a model of so-called true arithmetic14 not isomorphic to the standard
model, using what is commonly known as the definable ultrapower construction – and
thereby proving directly that categoricity fails for true arithmetic.

In his review, Gödel associates the failure of categoricity of arithmetic with the
incompleteness theorem, from which the existence of those models, as he put it, also
easily follows, rather than with his own completeness theorem – an “extraordinary”

13 The compactness theorem is only implicitly stated in Gödel’s thesis, but his 1930 paper, based on his thesis,
includes it. The theorem as stated by Gödel in his (1930) is as follows: a countably infinite set of quantificational
formulas is satisfiable if and only if every finite subset of those formulas is satisfiable.

14 True arithmetic is the theory whose axioms are all first-order sentences in the language of arithmetic that are
true of the standard integers.
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omission on Gödel’s part, as Robert Vaught put it in his introduction to Gödel’s review.15

As Gödel writes there:

The author [Skolem] proves that there is a system N∗ of entities, with two operations +
and ·, defined on it, and with two operations > and =, that is not isomorphic to the system
N of natural numbers, but for which nevertheless all statements hold that are expressible
by means of the symbols mentioned at the outset and hold for the system N . From this
it follows that there is no axiom system employing only the the notions mentioned at the
outset (and therefore none at all employing only number-theoretic notions) that uniquely
determines the structure of the sequence of natural numbers, a result that follows also
without difficulty from the investigations of the reviewer in his 1931.

Gödels last remark is that it follows from the incompleteness theorem that there is no
effective axiomatization of the natural numbers that is categorical – a conclusion that
also requires the completeness theorem. Whereas Skolem showed something slightly
different and much stronger, namely, that categoricity fails even for true arithmetic;
that is, even if we admit a noneffective axiomatization of arithmetic, we still do not
reach categoricity – although we do reach completeness.16

Gödels lack of interest in nonstandard interpretations, if such a charge can be made
of Gödel here, may be why what would seem to be a very important observation – that
what the completeness theorem precisely does is to separate first- and second-order
logic because of categoricity17 – was not made by Gödel in his thesis.18

Apart from the question of what Gödel may have known,19 what was known about the
first- and higher-order logic distinction, and about categoricity, before 1929? Dedekind
noted the categoricity of his second-order axiomatization of arithmetic in 1887, but
the concept was isolated very likely for the first time, according to Awodey and Reck
(2002), by Huntington in 1902,20 who called it “sufficiency.” (Although the notion
of isomorphism relative to which Huntington proved his system of postulates to be
categorical, an element missing from other formulations from that time that mention
categoricity in some form, including Hilbert’s, was explicitly formulated by Dedekind
in his 1888 “Was Sind und was sollen die Zahlen?”)

The distinction between first- and higher-order logics seems also to have become
prominent with Weyl’s criticism of Zermelo’s axiomatization of set theory in 1910,
on the grounds that the concept of “definite property,” as Zermelo defined it, was

15 See Gödel (1986, 376).
16 Note that true arithmetic is a complete, nonrecursively axiomatizable theory and hence the incompleteness

theorem does not apply to it; that is, one does not obtain a model of true arithmetic not isomorphic to the
standard model by means of that theorem. One can obtain such a model by means of Malcev’s argument, with
true arithmetic standing in for Peano.

17 Of second-order Peano.
18 That the completeness theorem separates first- and second-order logic because of categoricity is, of course, not

completely true; e.g., it is not the case that all second-order theories are categorical.
19 Hilbert-Ackermann, a text that Gödel knew well, gives a second-order axiomatization of number theory. We

do not take up the issue of Hilbert’s various axiom systems with regard to their being first- or second-order,
or with regard to issues of categoricity or to completeness, here. See Awodey and Reck (2002) for a critical
assessment.

20 Huntington (1902)
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unclear.21 Skolem, in his (1923) (independently, not citing Weyl), also suggested that
the correct notion of “definite property” should be given in terms of what we would
now call first-order definability – although the dispute between Zermelo and Skolem
about Zermelo’s axiomatization of set theory was not put by them in those terms.

It appears that Skolem, in his 1923 work, was the only logician of the period for
whom the failure of categoricity of the Zermelo-Fraenkel axioms for set theory had
foundational importance – in fact, it lead to his dismissal, in that paper, of the idea
that Zermelo-Fraenkel set theory should play any foundational role in mathematics. As
Skolem remarks, the result has been known to him since 1915, but he did not publish
it then as

. . . first, I have in the meantime been occupied with other problems; second, I believed
that it was so clear that axiomatization in terms of sets was not a satisfactory ultimate
foundation of mathematics that mathematicians would, for the most part, not be very
much concerned with it. But in recent times I have seen to my surprise that so many
mathematicians think that these axioms of set theory provide the ideal foundation for
mathematics; therefore it seemed to me that the time had come to publish a critique.22

It is not known whether Gödel ever saw Skolem’s 1922 paper before he turned in his
thesis; in particular, it is not known whether Skolem’s foundational views had any
influence, or indeed counterinfluence, on Gödel.23 Returning to what Gödel surely was
aware of, as was mentioned earlier, Hilbert-Ackermann, a text which Gödel knew well,
gives a second-order axiomatization of number theory.24

By 1929, the understanding of various notions of completeness had deepened on
the basis of the work already cited, but also because of the work of Fraenkel, and
particularly of Carnap, the closest person to Gödel during the crucial years (1926–
1929).25 The work in which Carnap was engaged at the time consisted of building
on, and extending the work of, Fraenkel on the various notions of completeness he
had isolated. Carnap’s manuscript, which Gödel saw, was titled Untersuchungen zur
allgemeinen Axiomatik and was not published until recently.26 Awodey and Reck cite
Carnap’s achievement in that work as follows:

In [Untersuchungen] Carnap extends Fraenkel’s considerations in the following three
ways: he makes serious attempts to answer Fraenkel’s questions about the precise
connections between categoricity, deductive completeness, and semantic completeness.

21 See Mancosu et al. (2009).
22 See Skolem (1923).
23 Gödel did make a number of attempts to borrow the proceedings volume in which the paper was published

from various libraries in Vienna and also in Berlin. The evidence suggests that he did not succeed. See van
Atten (2005). For a comparison of Skolem (1923) and Gödel (1929), see van Atten and Kennedy (2009a).

24 I do not take up the issue of Hilbert’s various axiomatization systems with regard to their being first- or
second-order, with regard to categoricity, or with regard to completeness any further here. See Awodey and
Reck (2002) for a critical assessment.

25 Carnap and Gödel met frequently for discussion from about 1926, the year Gödel first began attending the
Vienna Circle, although the two also met frequently outside the Vienna Circle seminar. It was Carnap from
whom Gödel took his only logic course (as late as 1928), Carnap having taken up his Privatdozentur in Vienna
in 1926. See Dawson (1997) and also Awodey and Carus (2001) for an account of the extensive interaction
between the two.

26 See Carnap (2000); for an analysis of this work see Awodey and Carus (2001).
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Unlike Fraenkel, he puts his investigations into a formal, logical framework, namely that
of the simple theory of types. And he picks up on Fraenkel’s suggestions concerning the
relation between his three notions of completeness, on the one hand, and completeness
in the sense of Hilbert’s “Axiom of Completeness,” on the other. Carnap thus addresses,
systematically and in detail, what we would now call metatheoretic issues. (Awodey and
Reck 2002, 24)

Although Carnap had moved the discussion significantly forward, in virtue of his having
carried out the program outlined earlier, the Gabelbarkeitsatz, a principle theorem
of the Untersuchungen, equated categoricity, which he called monomorphicity, with
decidability – for Carnap, a form of completeness. This is true in the sense that if a
theory is categorical, then it only has one model, and thus any sentence is “decided” – by
the model. In the modern, computational sense of the term completeness, though, this
fails for higher-order logic, for while these models are categorical and hence decidable
in the preceding sense, there is no way to transform truth in the model into provability.

Even so, the Gabelbarkeitsatz played, and continues to play, an important role
in logic. For example, a recent interesting result due to Solovay, gives a proof that
what Awodey and Reck refer to as the general case of the Gabelbarkeitsatz, namely,
that semantic completeness implies categoricity for all finitely axiomatized theories in
higher-order logic, is independent of ZFC.

Awodey and Reck argue in their (2002) that

. . . the now standard restriction to first-order logic in connection with notions such as
categoricity and completeness conflicts with the way in which those concepts were initially
investigated in the works of Hilbert, Carnap, Gödel, Tarski and others. From a historical
point of view such a restriction is, thus, unwarranted and misleading. It is also ill-advised
from a technical point of view, insofar as some aspects of these issues are more naturally
and fruitfully addressed in higher-order logic, . . . (Awodey and Reck 2002)27

Whatever one’s allegiances are in this respect, and Awodey and Carus make a
convincing case for their view, I have been arguing that precisely because higher-order
logic was the “natural setting,” the distinction simply was not clear before.28

5.3 The Incompleteness Theorem

As is well known, Gödel’s announcement of his first incompleteness theorem was
made at the Erkenntnis conference in Königsberg in September 1930, where Gödel
was scheduled to speak about his dissertation results. At the end of a brief discussion
of these, Gödel remarked:

27 The reader is referred also to Awodey and Carus (2001) and (2006) for a very comprehensive account of
Carnap’s work on completeness and categoricity, as well as for a comprehensive account of the development
of the concepts of completeness and categoricity from Dedekind through Huntington, Veblen, Fraenkel, and
Carnap.

28 W. Goldfarb also builds a convincing case from the Carnapian perspective in his (Goldfarb, 2005) Goldfarb’s
incisive analysis of Gödel’s thesis remarks has a few points in common with the analysis give here, though the
emphasis there is on the influence of Carnap’s logical work on that of Gödel’s.
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I would furthermore like to call attention to to a possible application of what has
been proved here to the general theory of axiom systems. It concerns the concept of
“decidable” and “monomorphic.” . . . One would suspect that there is a close connection
between these two concepts, yet up to now such a connection has eluded general formula-
tion. . . . In view of the developments presented here it can now be shown that, for a special
class of axiom systems, namely those which can be expressed in the restricted functional
calculus, decidability always follows from monomorphicity.29. . . If the completeness the-
orem could also be proved for higher parts of logic (the extended functional calculus), then
it would be shown in complete generality that decidability follows from monomorphicity.
And since we know, for instance, that the Peano axiom system is monomorphic, from
that the solvability of every problem of arithmetic and analysis expressible in Principia
Mathematica would follow.

Such an extension of the completeness theorem is, however, impossible, as I have
recently proved; that is, there are mathematical problems which, though they can be
expressed in Principia Mathematica, cannot be solved by the logical devices of Principia
Mathematica. (Gödel 1986, 27–29)

The reader will notice the likeness between the penultimate paragraph here and the
paragraph from Gödels thesis with which we have been concerned.30 Both passages take
up the issue of the existence of a completeness theorem for second-order logic, the first
implicitly and the second explicitly. Thus had Gödel responded to Carnap, while at the
same time clearing up any vagueness that may have lingered from his thesis remarks.
The incompleteness theorem, in other words, was announced as demonstrating the
following negative result: the completeness theorem fails for second-order logic.

We now know from the second incompleteness theorem that consistency cannot be
shown for the circumstances outlined by Hilbert. As for semantic consistency, Gödel’s
remark in his 1931 paper, that consistency can be shown if one passes to higher types,
seems to revive the notion in some form:

. . . it can be shown that the undecidable propositions constructed here become decidable
whenever appropriate higher types are added (for example, the type ω to the system P ).
(Gödel, 1986, 181, n 48a.)

A preferred method of demonstrating the consistency of, say, arithmetic, today is just
this. For Peano arithmetic and for the theory of the reals in the sense that Gödel thinks of
it (i.e., as extending arithmetic), the only way of proving the consistency of the axioms
is by working in a system of higher type – a method that is, in spirit, somewhat close
to the semantic consistency assumption. Proving consistency and then constructing a
model for it is out of the question otherwise.31

29 First-order theories that are categorical are of finite size; otherwise, if there is an infinite model, there are
models in every cardinality by the Lowenheim-Skolem theorem.

30 The reader will also notice a train of thought somewhat reminiscent of Gödels here, in Hilbert’s 1928 Bologna
lecture, wherein Hilbert also considers incompleteness in the context of the notions of categoricity and
completeness. Hilbert’s argument also seems to depend on semantic completeness. See Mancosu (1998, 231).
A letter from Gödel to Feigl dated September 24, 1928 indicates that Gödel did not attend this lecture but was
rather in Brno at the time. See Gödel (2003, 402).

31 There is, of course, Gentzen’s consistency proof for Peano arithmetic, but this touches on issues that lie beyond
the scope of this chapter.
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5.3.1 The Timing of the Incompleteness Theorem

As we saw, Gödel remarked in his thesis:

We cannot at all exclude out of hand, however, a proof of the unsolvability of a problem
if we observe that what is at issue here is only unsolvability by certain precisely stated
formal means of inference.

This suggests that at the time, Gödel must have been considering unsolvability relative
to specific formal systems as distinct from unsolvability by any means at all.32 A
second explanation for the appearance of this paragraph in Gödels thesis, therefore,
may be that he must have been occupied with some version of the incompleteness
theorem at the time.33 Recall that in his argument, Gödel assumed the existence of a
proposition φ such that both φ and ¬φ are consistent with the axioms. Should Gödel
not abandon this assumption rather than Hilbert’s principle? Does not the fact that
Hilbert’s axiomatization is categorical imply that there will be no unsolvable problems
about the reals? As we saw, Gödel’s is an argument by contradiction, following from
the assumption that there are no unsolvable problems about the reals – his fundamental
assumption.

It is, to date, not known precisely when Gödel arrived at the first incompleteness
theorem. We do know that he spoke of it, and possibly of the second theorem, to Carnap
and Feigl in the Café Reichsrat on August 26, 1930, before announcing it during a
discussion session at the Königsberg meeting in September 1930. We know this from
Carnap’s diary entry from that day: “Gödel’s discovery: incompleteness of the system
Principia Mathematica; difficulty of the consistency proof.”34 In fact, Gödel must have
started thinking about the theorem at least from March 1928, after hearing Brouwer’s
two lectures in Vienna (on March 10, on intuitionistic foundations, and on March 14,
on the intuitionistic continuum).35

We know this from an earlier entry in Carnap’s diary, dated December 12, 1929,
in which he records a conversation he had with Gödel that day about Brouwer’s
lecture(s) of the previous year.36 In his entry, Carnap states that Gödel talked “about
the inexhaustibility of mathematics (see separate sheet). He was stimulated to this idea
by Brouwer’s Vienna lecture. Mathematics is not completely formalizable. He appears
to be right.”37 The separate sheet reads as follows:

We admit as legitimate mathematics certain reflections on the grammar of a language
that concerns the empirical. If one seeks to formalize such a mathematics, then with
each formalization there are problems, which one can understand and express in ordinary
language, but cannot express in the given formalized language. It follows (Brouwer) that
mathematics is inexhaustible: one must always again draw afresh from the fountain of

32 Gödel would refer to the latter as “absolute unsolvability” in the 1930s. See Kennedy and van Atten (2004)
and its revision van Atten and Kennedy (2009a) for a discussion of this notion in Gödel’s writings.

33 A point Warren Goldfarb has made in his (Goldfarb, 2005).
34 See Dawson (1997).
35 See van Atten and Kennedy (2009b) for details of the lectures, for Gödel’s reactions to them, as well as for the

evidence that he attended at least the second of them. See also Wang (1987, 84).
36 Gödel turned in his thesis in July 1929.
37 See Wang (1987, 84).
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intuition. There is, therefore, no characteristica universalis for the whole mathematics,
and no decision procedure for the whole mathematics. In each and every closed language
there are only countably many expressions. The continuum appears only in the whole of
mathematics . . . If we have only one language, and can only make elucidations about it,
then these elucidations are inexhaustible, they always require some new intuition again.

Thus it appears that Brouwer had arrived well before 1931 at an at least informal
form of what might be thought of as a diagonal argument, but for languages. In fact,
as van Atten and Kennedy point out in (2009a), Brouwer had already remarked in his
1907 thesis that “the totality of all possible mathematical constructions is ‘denumerably
unfinished’; by this he meant that ‘we can never construct in a well-defined way more
than a denumerable subset of it, but when we have constructed such a subset, we can
immediately deduce from it, following some previously defined mathematical process,
new elements which are counted to the original set.”’38 Brouwer is directly inspired by
Cantor’s theorem here and in the subsequent lecture, but his observation is nonetheless
a step forward from Cantor. Brouwer’s generalized version of the undenumerability
theorem is a diagonal argument for (a countable) language. One might think that the
step taken from this web of ideas to the first incompleteness theorem, is not wholly
impossible.

As for other anticipations of the incompleteness theorem, Hilbert conceives of the
possibility explicitly in his 1928 Bologna lecture. Post’s 1921 conjecture that “a com-
plete symbolic logic is impossible” should also be cited.39 Of course, what was missing
from both Brouwer’s and Post’s anticipations, what prevented these anticipations from
maturing into a full theorem, was any awareness that a completeness theorem was
required. Skolem’s remark in 192240 that the continuum hypothesis will be shown
independent has been cited earlier. Finally, Kripke’s interpretation41 of a 1925 remark
of Kuratowski to the effect that one cannot prove the existence of inaccessible cardinals
in ZFC renders Kuratowski’s insight tantalizingly close to the second incompleteness
theorem.

Systematically, so to speak, whether Gödel recognized this explicitly or only sensed
it, Gödel’s 1929 thesis was precisely the place to bring up incompleteness. This is
because only once the completeness theorem has been proved, is it meaningful to talk
about unsolvability. Why? The completeness theorem shows that first-order logic is
maximal, in the sense of being a proof system strong enough to prove any statement that
holds in all models of a particular first-order theory. Therefore it becomes meaningful
to ask, whether one can now decide every proposition in the language of the theory.
If we lack a completeness theorem (as in the case of the full second-order logic),
then there are consistent theories without a model. Proving an incompleteness theorem
would be irrelevant. It is only in the context of a completeness theorem, when we know
that every consistent theory has a model, that it becomes relevant.

38 See van Atten and Kennedy (2009b); quoting in turn Brouwer (1907, 82).
39 See Davis (1965, 416).
40 See Skolem (1923).
41 Address to the American Philosophical Association Eastern Division Meeting 2009, Philadelphia (Kripke

2009)
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5.4 Back to Gödel’s Thesis

We note a second moral Gödel draws from the completeness theorem in the third
paragraph of his thesis. He observes42 that one might raise the following objection:
does not the use of the law of excluded middle in its proof “invalidate the entire
completeness proof”? The completeness theorem asserts

‘a kind of decidability,” namely every quantificational formula is either provable or a
counterexample to it can be given, whereas the principle of the excluded middle seems to
express nothing other than the decidability of every problem.

Thus the proof may be circular: one uses the decidability of every question to prove
just that assertion.43 However, Gödel remarks, what he has shown is the provability of
a valid formula from “completely specified, concretely enumerated inference rules,”44

not merely from all rules imaginable, whereas the law of excluded middle is used
informally (in the metalanguage, as one would say nowadays); the notion of decidability
or solvability asserted by the law is left unspecified. As Gödel puts it:

. . . what is affirmed (by the law of excluded middle) is the solvability not at all through
specified means but only through all means that are in any way imaginable . . . 45

Gödel tells us that the assistance provided by the completeness theorem is that if we
assume solvability by all means imaginable, then we have, in the case of a sentence of
first-order predicate calculus, a reduction to solvability by very specific means laid out
beforehand.

5.5 Conclusion

The paragraphs in which these two observations occur were not included in the article
in Monatshefte based on Gödel’s thesis.46 Possibly Gödels advisor Hans Hahn, whom
Gödel thanks in its acknowledgments, suggested that Gödel leave it out. One could also
speculate that Gödel was worried by October 1929, when he submitted the article, that
those remarks, dwelling as they do on incompleteness, would draw too much attention
to the possibility of a theorem along those lines; but in fact we do not know the reason
these remarks were omitted.

On the philosophical (rather than the historical) side of things, one may ask why
Gödel felt pressed to argue in his thesis against the idea that consistency implies
existence? In other words, what is this argument doing in his thesis in the first place?
Apart from the speculation that Gödel may have wanted to mention what may have

42 See Gödel (1986, 63).
43 This is the content of Brouwer’s “Third Insight,” as expressed in his “intuitionistische Betrachtungen über den

Formalismus.” See Mancosu (1998, 40) for an English translation.
44 emphasis Gödel’s
45 Gödel remarks in a footnote to this passage that the notion of provability by any means imaginable is perhaps

“too sweeping.” Nevertheless, this does not affect the basic distinction that Gödel wishes to make between the
formal and informal notions of provability.

46 Gödel 1930 in Gödel (1986, 102).
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been very much on his mind by then, namely, unsolvability, one could also speculate
that Gödel may have worried that what the completeness theorem precisely does is to
verify the principle that consistency implies existence; if a theory is consistent, Gödel
shows, it has a model. However, if this is so, then the presence of mutually incompatible
extensions of, say, set theory opens the door to a relativistic notion of mathematical
truth, a view Gödel already claimed to have been at odds with in 1923.47

What is the continuing significance of the theorem? The debate about whether
second-order logic is the natural way to formalize mathematics has, if anything, in-
tensified in recent decades. What Gödel points to in the first paragraph of his thesis
is the idea that for logics that lack a completeness theorem, the proof concept is in
some sense not finalized. Therefore the concept of consistency is in some sense also
not finalized. Of course, one only needs soundness to define consistency in the second-
order context; one does not want to say that the proof concept for second-order logic
is not completely clear. In fact, logics that do have a completeness theorem, such as
first-order logic, might even be thought of as vague, in the sense that the discourse does
not fix a unique model, in general, but rather refers to a group of nonstandard models.
However this is misleading. For first-order logic, the proof concept is in a complete
state of analysis. If a sentence holds in every model, then it is provable. On the other
hand, if a sentence is provable, then we know the models in which it holds – all of
them.

We refer the reader to the by now massive literature on the subject and conclude with
an observation along this line from Andreas Blass48: what the completeness theorem
precisely shows, Blass asserts, is that if a first-order sentence holds in all models, it
must be because of a uniform reason (proof) and not for an accidental reason that
happens in each model or in each case for a different reason.

Blass is noticing that the first-order conception of logic eliminates anything arbitrary
about the first-order concept of truth – a quintessentially Gödelian thought.
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Goldfarb, W. (2005). On Gödel’s Way in: The Influence of Rudolf Carnap. The Bulletin of Symbolic

Logic, 11, 185–193.
Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15, 81–91.
Huntington, E. V. (1902). A complete set of postulates for the theory of absolute continuous magnitude.

Transactions of the American Mathematical Society, 3, 264–79.
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CHAPTER 6

Lieber Herr Bernays! Lieber Herr
Gödel! Gödel on Finitism,

Constructivity, and
Hilbert’s Program

Solomon Feferman

6.1 Gödel, Bernays, and Hilbert

The correspondence between Paul Bernays and Kurt Gödel is one of the most extensive
in the two volumes of Gödel’s Collected Works (1986–2003) devoted to his letters
of (primarily) scientific, philosophical, and historical interest. Ranging from 1930 to
1975, except for one long break, this correspondence engages a rich body of logical and
philosophical issues, including the incompleteness theorems, finitism, constructivity,
set theory, the philosophy of mathematics, and post-Kantian philosophy. In addition,
Gödel’s side of the exchange includes his thoughts on many topics that are not expressed
elsewhere and testify to the lifelong warm, personal relationship that he shared with
Bernays. I have given a detailed synopsis of the Bernays-Gödel correspondence, with
explanatory background, in my introductory note to it in CW IV (pp. 41–79).1 My
purpose here is to focus on only one group of interrelated topics from these exchanges,
namely, the light that this correspondence – together with assorted published and
unpublished articles and lectures by Gödel – throws on his perennial preoccupations
with the limits of finitism, its relations to constructivity, and the significance of his
incompleteness theorems for Hilbert’s program.2 In that connection, this piece has an
important subtext, namely, the shadow of Hilbert that loomed over Gödel from the
beginning to the end of his career.

Let me explain. Hilbert and Ackermann (1928) posed the fundamental problem of
the completeness of the first-order predicate calculus in their logic text; Gödel (1929)
settled that question in the affirmative in his dissertation a year later.3 Also in 1928,
Hilbert (1931a) raised the problem of the completeness of arithmetic in his Bologna
address; Gödel settled that in the negative another year later, in the strongest possible
way, by means of his first incompleteness theorem (Gödel 1931): no consistent formal
axiomatic extension of a system that contains a sufficient amount of arithmetic is
complete. Both of these deserved Hilbert’s approbation, but not a word passed from
him in public or in writing at the time. In fact, Hilbert and Gödel never met and never
communicated. Perhaps the second incompleteness theorem on the unprovability of the
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consistency of a system (Gödel 1931) took Hilbert by surprise. We don’t know exactly
what he made of it, but we can appreciate that it might have been quite disturbing,
for he had invested a great deal of thought and emotion into his finitary consistency
program, which became problematic as a result. He made just one comment about it,
of a dismissive character, four years later; I will return to that below.

The primary link between Gödel and Hilbert was Bernays, Hilbert’s assistant in
Göttingen from 1917 to 1922 and then his junior colleague until 1934, when Bernays
was forced to leave Germany because of his Jewish origins. It was in this period
that the principal ideas of Hilbert’s consistency program and of his Beweistheorie to
carry it out were developed and later exposited in the two-volume opus Grundlagen
der Mathematik (Hilbert and Bernays 1934, 1939) whose preparation was carried out
entirely by Bernays . It was Bernays who first wrote Gödel in 1930, complimenting him
on the completeness theorem for first-order logic and asking about his incompleteness
theorems, and it was Bernays who did what apparently Hilbert did not, namely, puzzle
out the proofs and significance of the incompleteness theorems through the landmark
year of 1931. Then it was Bernays for whom the results were later decisive in the
preparation of volume 2 of Hilbert and Bernays (1939).

I will elaborate, but first, some biographical information about Bernays (1976a) is
in order, drawn mainly from his short autobiography. He was born in 1888 in London,
from where the family soon moved to Paris and, a little later, to Berlin. There, at the
university, Bernays began his studies in mathematics with Landau and Schur; he then
followed Landau to the University of Göttingen, where he also studied with Hilbert,
Weyl, and Klein. Bernays completed a doctorate on the analytic number theory of
quadratic forms under Landau’s direction in 1912. From Göttingen, he moved later
that year to the University of Zürich, where he wrote his Habilitationschrift on analytic
function theory and became a Privatdozent (unsalaried university lecturer). In 1917,
Hilbert came to Zürich to deliver his famous lecture, “Axiomatisches Denken.” Having
resumed his interest in foundational problems, Hilbert invited Bernays to become his
assistant in Göttingen to work with him on those questions. In 1918, Bernays began
his work in logic with a second Habilitation thesis, “On the Completeness of the
Propositional Calculus and the Independence of Its Axioms.”

As Hilbert’s assistant in Göttingen from 1917 to 1922, Bernays was significantly
involved in helping Hilbert develop and detail his ideas about mathematical logic and
the foundations of mathematics; by the end of that period, these explorations had
evolved into Hilbert’s program for finitary consistency proofs of formal axiomatic
systems for central parts of mathematics. At Hilbert’s urging, Bernays was promoted
to the (nontenured) position of Professor Extraordinarius at Göttingen in 1922. He
held this position until 1933, when he – as a non-Aryan – was forced by the Nazis
to give up his post, but Hilbert kept him on at his own expense for an additional
six months. In spring 1934, Bernays returned to Zürich, where he held a permanent
position at the Eidgenössische Technische Hochschule (or ETH; Swiss Federal Institute
of Technology). (Treated as a temporary position for many years, it finally turned into
a regular position – albeit only as a Professor Extraordinarius – in 1945.) Following the
1934 move from Göttingen, Bernays had virtually no communication with Hilbert but
continued his work on the two volumes of the Grundlagen der Mathematik (Hilbert and
Bernays 1934, 1939); again, Bernays was completely responsible for their preparation.
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This was the first full exposition of Hilbert’s finitary consistency program and beyond,
presented in a masterful, calm, and unhurried fashion.4 Alongside that, beginning in
1930, Bernays was developing his axiomatic system of sets and classes as a considerable
improvement on the axiomatization of von Neumann; this was eventually published in
the Journal of Symbolic Logic in seven parts (Bernays, 1937–1954).

Bernays’ distinctive voice in the philosophy of mathematics began to emerge early
in the 1920s with a pair of articles on the axiomatic method and an early version of
Hilbert’s program; the long paper Bernays (1930) is on the significance of Hilbert’s
proof theory for the philosophy of mathematics. However, in a number of pieces
from then on, he distanced himself from Hilbert’s strictly finitist requirements for
the consistency program and expressed a more liberal and nuanced receptiveness to
alternative foundational views, including a moderate form of Platonism.5 This was
reinforced through his contact at the ETH in Zürich with Ferdinand Gonseth, who held
an open philosophy that rejected the possibility of absolute foundations of mathematics
or science. With Gonseth and Gaston Bachelard, he founded the journal Dialectica in
1945.6

Bernays visited the Institute for Advanced Study (IAS) in Princeton in 1935–1936,
and again in 1959–1960, during which period, he had extensive contact with Gödel.
As it happens, it was my good fortune to be at the institute that same year and to
make Bernays’ acquaintance then. I was two years out from a PhD at the University
of California, Berkeley, with a dissertation on the arithmetization of metamathematics
and – like so many logicians of those days – had been drawn to the IAS by the chance to
confer directly with Gödel and benefit from his unique insights. I had by then gone on
to establish my main results on transfinite progressions of theories, extending Turing’s
earlier work on ordinal logics.7 Among other visitors that same year were Kurt Schütte
and Gaisi Takeuti (my office mate at the IAS), to whom – along with Georg Kreisel
in his Stanford days – I am indebted for my way into proof theory. However, that’s
another story.8

Bernays was the most senior of the visitors in logic that year; he was then age
seventy-one, compared with Gödel’s fifty-three. I knew little of his work at the time,
other than as the coauthor of the Grundlagen der Mathematik and for the development
of his elegant theory of sets and classes. A gentle, modest man, he did not advertise
the range of his thoughts and accomplishments; it was only later that I began truly to
appreciate his place in the field of logic, and it was only much more recently, when
working on his correspondence with Gödel for CW IV, that I learned of the depth of
the personal and intellectual relationship between the two of them.

Here, for example, is a touching letter that Bernays wrote to Gödel on April 24,
1966, testifying to the highest intellectual and personal esteem in which Bernays held
him:

Dear Mr. Gödel,
I feel quite embarrassed, since I had not prepared anything suitable for the Festschrift in

honor of your 60th birthday – all the more so, as you made such a significant contribution
to the Dialectica issues for my 70th birthday.

In any case, I would like now to express my cordial good wishes on your [just]
completed decade of life.
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In view of the situation in foundational investigations, you can certainly ascertain with
much satisfaction that the discoveries and methods you brought to metamathematics are
dominant and leading the way in the research of today. May it be granted to you also in
the future to influence the direction of this research in a way that is fruitful.

Yet the foundations of mathematics are of course only one of the concerns of your
research; and I would also like to wish that your philosophical reflections may turn into
such results that you are induced to publish them.

Last [but] not least, I wish in addition that your general state of health in the com-
ing years be as satisfying as possible. Hopefully you can celebrate your 60th birthday
quite beautifully and take pleasure in the certainly impressive statement of the general
appreciation of your intellectual work.

With very cordial greetings, also to your wife,
Yours truly,
Paul Bernays (CW IV, 251)

In addition to his visit at the IAS in 1959–1960, Bernays paid visits to Gödel during
three stays when Bernays was a visiting professor at the University of Pennsylvania
between 1956 and 1965. Bernays died in Zürich in September 1977, just one month
shy of his eighty-ninth birthday and four months before Gödel’s death in January 1978.

6.2 The Year 1931: The Incompleteness Theorems
and Hilbert’s ω-Rule

The correspondence between Bernays and Gödel begins with a letter from Bernays
dated Christmas Eve, 1930, complimenting Gödel on the completeness theorem for
first-order logic Gödel (1930) and then asking to see his “significant and surprising
results” in the foundations of mathematics, namely, the incompleteness theorems, of
which he had heard from Courant and Schur. Gödel sent Bernays one set of proof
sheets forthwith. The first four items of correspondence between them in 1931 in
CW IV are largely devoted to Bernays’ struggles to understand the incompleteness
theorems against the background of ongoing work on the consistency program in the
Hilbert school.9 Earlier, Ackermann (1924), and then (in revised form) von Neumann
(1927), had supposedly given a finitary proof of the consistency of a formal system Z
for classical first-order arithmetic, nowadays called Peano arithmetic (PA). It was not
yet realized that their proof succeeds only in establishing the consistency of the weak
subsystem of Z in which induction is restricted to quantifier-free formulas.

Part of Bernays’ perplexities with Gödel’s incompleteness theorems had to do with
the roughly concurrent work of Hilbert (1931a, 1931b), in which a kind of finitary
version of the infinitary ω-rule extending Z to a system Z∗ was proposed as a means
of overcoming the incompleteness of Z. Roughly speaking, the rule allows one to
adjoin a sentence ∀xA(x) (A being quantifier-free) to the axioms of Z∗ for which it
has been shown finitarily that each instance A(n) for n ∈ ω is already provable in Z∗.
Hilbert claimed to have a finitary consistency proof of Z∗, relying mistakenly on the
work of Ackermann and von Neumann for Z. No reference to Gödel’s incompleteness
theorem appears in these articles. What would have led Hilbert to try to overcome the
incompleteness of Z if he was not already aware of it? True, he was already lecturing
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on the proposed extension of Z in December 1930, before he and Bernays even saw
the proof sheets of Gödel’s paper. On the other hand, Hilbert could well have learned
of Gödel’s incompleteness theorem before that from von Neumann, who heard about
it in September of that year. Others who might have communicated its essence to
him were Courant and Schur. This is not a place to go into all the relevant details.10

Bernays’ own two reports on the matter don’t quite jibe: in his survey article on Hilbert’s
foundational contributions for Hilbert’s (1935) collected works, Bernays said that even
before Gödel’s incompleteness theorems, Hilbert had given up the original form of his
completeness problem and in its place had taken up the ideas for an extension of Z by a
finitary ω-rule. However, in a letter thirty years later to Hilbert’s biographer, Constance
Reid, Bernays wrote that Hilbert was angry about doubts that he (Bernays) had already
expressed about the conjectured completeness of Z and was then angry about Gödel’s
results.11

In his correspondence with Bernays, Gödel points out things that he did not mention
in his review (1931c) of Hilbert’s article on Z∗, namely, that even with the proposed
ω-rule, the system is incomplete. He went on to write:

I do not think that one can rest content with the systems Z∗, Z∗∗ [a variant proposed by
Bernays for “aesthetic reasons”] as a satisfactory foundation of number theory . . . , and
indeed, above all because in them the very complicated and problematical concept of
“finitary proof” is assumed (in the statement of the rule for the axioms) without having
been made mathematically precise in greater detail. (CW IV, 97)

This resonates with Gödel’s statement to Carnap in May 1931 that he viewed the move
to Z∗ as a step compromising Hilbert’s program.12 However, he did not make this
fundamental criticism in his review of Hilbert (1931a) itself, as he might well have.

Gödel’s own concerns with determining the limits of Hilbert’s finitism are there
from the beginning. In his watershed paper on formally undecidable propositions,
after stating and sketching the proof of the second incompleteness theorem on the
unprovability of the consistency of systems by their own means, Gödel writes:

I wish to note expressly that [this theorem does] not contradict Hilbert’s formalistic
viewpoint. For this viewpoint presupposes only the existence of a consistency proof in
which nothing but finitary means of proof is used, and it is conceivable that there exist
finitary proofs that cannot be expressed in the formalism of [our basic system]. (Gödel,
1931a, CW I, 195)

Von Neumann – who was the first to grasp what Gödel had accomplished in his brief
announcement of the first incompleteness theorem at the Königsberg conference in
September 1930, and who independently realized the second incompleteness theorem –
had been urging the opposite view on him. At any rate, Gödel came around to von
Neumann’s viewpoint by the end of 1933, when he delivered a lecture at a meeting in
Cambridge, Massachusetts, during his first visit to the United States. That is the first of
a series of three remarkable lectures that Gödel gave between 1933 and 1941, in which
his thoughts about finitism, constructivity, and Hilbert’s program took more definite
form; these are the subjects of our next two sections. (All three lectures appeared in
print for the first time in CW III as ∗1933o, ∗1938, and ∗1941, respectively.)
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In the same period following 1931, there was a long break in the extant correspon-
dence between Gödel and Bernays. It did not resume again until 1939 and was then
devoted almost entirely to set theory, especially to Gödel’s proofs of the consistency
of the axiom of choice and the generalized continuum hypothesis with the axioms of
set theory. Initially presented in terms of the system of Zermelo-Fraenkel, for expos-
itory purposes, Gödel later adopted the system of sets and classes that Bernays had
communicated to him in 1931.

Of incidental personal note is the change in salutations that also took place in
1931: where, in the first few letters, Bernays was addressed as “Sehr geehrter Herr
Professor!” and Gödel as “Sehr geehrter Herr Dr. Gödel!” these now became “Lieber
Herr Bernays!” and “Lieber Herr Gödel!” respectively, and so remained throughout
their correspondence thenceforth.

6.3 The Year 1933: The Cambridge Lecture

On December 30, 1933, Gödel gave a lecture titled “The Present Situation in the Foun-
dations of Mathematics” for a meeting of the Mathematical Association of America in
Cambridge, Massachusetts. Gödel’s aim in this lecture was clearly announced in the
first paragraph:

The problem of giving a foundation for mathematics ( . . . [i.e.,] the totality of methods
of proof actually used by mathematicians) can be considered as falling into two different
parts. At first these methods of proof have to be reduced to a minimum number of axioms
and primitive rules of inference, which have to be stated as precisely as possible, and then
secondly a justification in some sense or other has to be sought for these axioms. (Gödel,
∗1933o, CW III, 45)

He went on to assert that the first part of the foundational problem had been solved
in a completely satisfactory way by means of formalization in the simple theory of
types when all “superfluous restrictions” were removed. As he explained, that was
accomplished by axiomatic set theory à la Zermelo, Fraenkel, and von Neumann, with
its underlying cumulative type structure admitting a simple passage to transfinite types.
Nevertheless, he said that set theory had three weak spots: “The first is connected with
the non-constructive notion of existence. . . . The second weak spot, which is still more
serious, is . . . the so-called method of impredicative definitions [of classes]. . . . The
third weak spot in our axioms is connected with the axiom of choice” (Gödel, ∗1933o,
CW III, pp. 49–50). Consideration of these led Gödel directly to the following stunning
pronouncement:

The result of the preceding discussion is that our axioms, if interpreted as meaningful
statements, necessarily presuppose a kind of Platonism, which cannot satisfy any critical
mind and which does not even produce the conviction that they are consistent. (Gödel,
∗1933o, CW III, 50)

Not that it was likely that the system was inconsistent, Gödel says, because it had been
developed in so many different directions without reaching any contradiction. Given
that, one might hope to prove the consistency of the system when treated in exact
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formal terms. However, not any proof would do: Gödel said that “it must be conducted
by perfectly unobjectionable [constructive] methods; i.e., it must strictly avoid the non-
constructive existence proofs, non-predicative definitions and similar things, for it is
exactly a justification for these doubtful methods that we are now seeking.” Even with
this, he said, the nature of such a proof is not uniquely determined because there are
different notions of constructivity and, accordingly, “different layers of intuitionistic
or constructive mathematics” (Gödel, ∗1933o, CW III, p. 51).

Concerning the use of the word intuitionistic in this last quotation, it should be
noted that according to Bernays (1967, 502), the prevailing view in the Hilbert school
at the beginning of the 1930s equated finitism with intuitionism.13 Within a few years,
finitism was generally distinguished from intuitionism in the sense of the Brouwer
school, in part through Heyting’s formalization of intuitionistic arithmetic and Gödel’s
1933 translation of the classical system of PA into Heyting arithmetic (HA). In this
lecture, however, Gödel never used the words finitary or finitistic. He also did not speak
explicitly about the Hilbert consistency program, except for one indirect reference,
which follows below.

Gödel delineated the lowest level of constructive mathematics, which he called the
system A, in the following terms:

1. The application of the notion of “all” or “any” is to be restricted to those infinite totalities
for which we can give a finite procedure for generating all their elements (as we can,
e.g., for the totality of integers by the process of forming the next greater integer and as
we cannot, e.g., for the totality of all properties of integers).

2. Negation must not be applied to propositions stating that something holds for all ele-
ments, because this would give existence propositions. . . . Negatives of general propo-
sitions (i.e. existence propositions) are to have a meaning in our system only in the
sense that we have found an example but, for the sake of brevity, do not wish to state
it explicitly. I.e., they serve merely as an abbreviation and could be entirely dispensed
with if we wished. From the fact that we have discarded the notion of existence and the
logical rules concerning it, it follows that we are left with essentially only one method
for proving general propositions, namely, complete induction applied to the generating
process of our elements.

3. And finally, we require that we should introduce only such notions as are decidable for
any particular element and only such functions as can be calculated for any particular
element. Such notions and functions can always be defined by complete induction, and
so we may say that our system [A] is based exclusively on the method of complete
induction in its definitions as well as its proofs. (Gödel ∗1933o, CW III, 51)

Gödel did not spell out formally these conditions on the system A, and there has been
considerable discussion about exactly how to interpret it. It is pretty clear that the
formulas of A should be taken as universal generalizations of quantifier-free formulas
built up from decidable atoms by the propositional operations. When dealing with the
provable formulas, one can just as well take them to be quantifier-free by disregarding
the initial universal quantifiers. Thus, at first sight, it seems that A should be interpreted
as a form of primitive recursive arithmetic (PRA), the quantifier-free system that has
the usual axioms for zero and successor, the defining equations for each primitive
recursive function – in which the step from each function equational axiom to the
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next is given either explicitly or by a complete induction (ordinary recursion on one
numerical variable) – and finally, a rule of induction on the natural numbers. Initially,
Wilfried Sieg, Charles Parsons, William Tait, and I all took this interpretation of A for
granted. However, both Sieg and Tait subsequently changed their minds, although for
different reasons.14 The main point raised by Sieg of what is at issue has to do with
Gödel’s (∗1933o, 52) statement that the most far-reaching consistency result obtained
by methods in accord with the principles of A is that given by the work of Herbrand
(1931). Herbrand’s theorem is for a (somewhat open-ended) system that goes beyond
PRA by including such functions as the one due to those from Ackermann, given by a
double-nested recursion. Nevertheless, it seems to me that it is still possible to construe
the system A as being PRA if one interprets Gödel’s remark as applying to the general
form of Herbrand’s argument rather than to the specific statement of his theorem.

At any rate, what Gödel (∗1933o, CW III, 51–52) has to say about the potential reach
of the system A in pursuit of constructive consistency proofs at least puts an upper
bound to its strength:

This method possesses a particularly high degree of evidence, and therefore it would be
the most desirable thing if the freedom from contradiction of ordinary non-constructive
mathematics could be proved by methods allowable in this system A. Also, as a matter of
fact, all the attempts for a proof for freedom from contradiction undertaken by Hilbert and
his disciples tried to accomplish exactly that. But unfortunately the hope of succeeding
along these lines has vanished entirely in view of some recently discovered facts [namely,
the incompleteness theorems]. . . . Now all the intuitionistic proofs complying with the
system A which have ever been constructed can easily be expressed in the system of
classical analysis and even in the system of classical arithmetic, and there are reasons for
believing that this will hold for any proof which one will ever be able to construct.

. . . So it seems that not even classical arithmetic can be proved to be non-contradictory
by the methods of the system A.

This is the sole reference to Hilbert and his program in the Cambridge lecture, but there
is no discussion there of Hilbert’s finitist criterion for consistency proofs, let alone
of Hilbert’s conception of finitism.15 This also returns us to the question of how to
interpret A, for if it were exactly PRA, Gödel would no doubt have recognized that its
consistency could be proved in PA, given his 1931 definition of the primitive recursive
functions in arithmetic and the arguments of Herbrand (1931). At any rate, whatever
the exact reach of the methods provided by A, it evidently appeared hopeless to Gödel
by 1933 to carry out that program for the system PA of arithmetic, let alone for analysis
and set theory.

Thus, in the final part of ∗1933o, Gödel took up the question of whether stronger
constructive methods than those provided by the system A ought to be admitted to con-
sistency proofs, in particular, “the intuitionistic mathematics as developed by Brouwer
and his followers.” That would take one at least up to arithmetic, given the reduction
of PA to Heyting’s intuitionistic system HA. The essential formal difference of A from
HA is that in the latter, all first-order formulas are admitted to the language. However,
Gödel is not at all satisfied with intuitionistic logic in pursuit of the consistency pro-
gram because the meaning of its connectives and quantifiers is explained in terms of
the (in his view) vague and unrestricted concept of constructive proof. In particular,
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a proof of an implication p → q is supposed to be provided by a construction that
converts any proof of p into a proof of q, and a proof of ¬p is supposed to be given
by a construction that converts any proof of p into an absurdity or contradiction. This
justifies, for example, p → ¬¬p in intuitionistic logic because p and ¬p constitute
a contradiction. Intuitionistic logic does meet the preceding condition 2 to the extent
that a proof of ∃xP (x) is supposed to be a construction that provides an instance t for
which P (t) holds, but condition 2 is not met in its stated form because negation may
be applied to universal statements in Heyting’s formalism, and because ¬∀xP (x) is
not intuitionistically equivalent to ∃x¬P (x), it cannot be considered as an abbreviation
for the latter. However, Gödel’s main objection to intuitionistic logic is that it does not
meet condition 1 because “the substrate on which the constructions are carried out are
proofs instead of numbers or other enumerable sets of mathematical objects. However,
by this very fact they do violate the principle, which I stated before, that the word
‘any’ can be applied only to those totalities for which we have a finite procedure for
generating all their elements. . . . And this objection applies particularly to the totality
of intuitionistic proofs because of the vagueness of the notion of constructivity. There-
fore this foundation of classical arithmetic by means of the notion of absurdity is of
doubtful value” (Gödel, ∗1933o, CW III, p. 53).

6.4 Transitions: 1934–1941

Hilbert was unaffected by any of the reconsiderations of the possible limits to finitary
methods in pursuit of his consistency program that had been stimulated by the second
incompleteness theorem. In his preface to volume 1 of the Grundlagen der Mathematik,
and in his sole reference anywhere to Gödel or his incompleteness theorems, Hilbert
writes:

This situation of the results that have been achieved thus far in proof theory at the same
time points the direction for the further research with the end goal to establish as consistent
all our usual methods of mathematics.

With respect to this goal, I would like to emphasize the following: the view, which
temporarily arose and which maintained that certain recent results of Gödel show that
my proof theory can’t be carried out, has been shown to be erroneous. In fact that result
shows only that one must exploit the finitary standpoint in a sharper way for the farther
reaching consistency proofs. (Hilbert and Bernays, 1934, v)16

Nevertheless, the need for a modified form of Hilbert’s consistency program began to
become generally recognized by others in his school by the mid-1930s, among them his
collaborator on the Grundlagen. As Bernays (1967, 502) wrote years later, “it became
apparent that the ‘finite Standpunkt’ is not the only alternative to classical ways of
reasoning and is not necessarily implied by the idea of proof theory. An enlarging of
the methods of proof theory was therefore suggested: instead of a restriction to finitist
methods of reasoning, it was required only that the arguments be of a constructive
character, allowing us to deal with more general forms of inference.”

One striking new specific way forward was provided by Gerhard Gentzen in his
1936 paper, in which the consistency of arithmetic is proved by transfinite induction
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up to Cantor’s ordinal ε0, otherwise using only finitary reasoning. In Hilbert’s preface
to volume 2 of the Grundlagen der Mathematik (Hilbert and Bernays, 1939), in which
he thanks Bernays for carrying out the exposition and development of his ideas for
proof theory and the consistency program, no mention is made of Gödel or Gentzen,
even though the volume contains an extended exposition of Gödel’s incompleteness
theorems and a description of Gentzen’s work in a section titled “Überschreitung des
bisherigen methodischen Standpunktes der Beweistheorie.”

Gödel reported on the issues of a modified consistency program in a remarkable
although sketchy presentation that he made to Edgar Zilsel’s seminar in Vienna in
1938, the notes for which were reconstructed from the Gabelsberger shorthand script
as Gödel (∗1938, CW III). He begins by pointing out that one can only deal with the
consistency of partial systems of mathematics as represented in formal systems T, and
this must be accomplished by other systems S. Moreover,

[the choice of such a system S] has . . . an epistemological side. After all we want a
consistency proof for the purpose of a better foundation of mathematics (laying the
foundations more securely), and there can be mathematically very interesting proofs that
do not accomplish that. A proof is only satisfying if it either

(i) reduces to a proper part or
(ii) reduces to something which, while not a part, is more evident, reliable, etc., so that

one’s conviction is thereby strengthened. (Gödel, ∗1938, CW III, 89; emphasis
original)

Although a reduction of kind (i) may be preferred because of its objective character,
whereas (ii), by comparison, involves subjective judgments, historically, the latter is
the route taken through the reduction of nonconstructive to constructive systems. How-
ever, because the concept of constructivity is hazy, it is useful to make a “framework
definition, which at least gives necessary if not sufficient conditions” (Gödel, ∗1938,
CW III, p. 91). That is provided by conditions like those for the system A in the Cam-
bridge lecture, here broken up into four parts, of which the last is that “objects should
be surveyable (that is denumerable).” However, now the system at the lowest level of
constructivity is specifically referred to as finitary number theory, and Gödel raises
the question, “how far do we get, or fail to get with finitary number theory?” (Gödel,
∗1938, CW III, p.93). His conclusion is that “transfinite arithmetic” (presumably PA)
is not reducible to A.17 It should be noted that the disagreements as to how the system
A of ∗1933o should be interpreted have not been raised for Gödel’s informal system
of finitary number theory in the 1938 lecture; instead, all who have considered it agree
that it may be formalized as PRA.

To go beyond what can be treated by finitary number theory, the fourth condition –
that the objects be denumerable – is jettisoned in all three of the further constructive
approaches considered at Zilsel’s seminar. These are (not in the order presented by
Gödel) the modal-logical route, the route of induction on transfinite ordinals, and
the route of constructive functions of finite type. The modal-logical route means the
intuitionistic logic of Brouwer and Heyting, for which a foundation of the notion of
constructive proof underlying it is sought in terms of a modal-like operator B (for
Beweisbar). After considering several possible conditions on B, Gödel’s conclusion is
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that there is no reasonable way to carry this out and that “this [route] is the worst of
the three ways” (Gödel, ∗1938, CW III, p. 103). The second route follows Gentzen’s
proof of consistency of PA by transfinite induction up to ε0, concerning which Gödel
indicates a new and more intuitive way why the proof works; however, few details
are given.18 As to the ordinal route itself, Gödel questions it on several grounds, the
main one being its lack of direct evidence for the principle of transfinite induction up
to ε0, let alone for the ordinals that would be needed to establish the consistency of
still stronger systems. The final route, by means of constructive functions of finite (and
possibly transfinite) type, is barely indicated, but it is that approach that Gödel himself
was to explore in depth, as we shall see shortly.

The Zilsel lecture notes conclude with the following quite interesting general as-
sessment, which is worth quoting at length:

I would like to return to the historical and epistemological side of the question and then
ask (1) whether a consistency proof by means of the three extended systems has a value
in the sense of laying the foundations more securely; (2) what is closely related, whether
the Hilbert program is undermined in an essential respect by the fact that it is necessary
to go beyond finitary number theory.

To this we can say two things: (1) If the original Hilbert program could have been carried
out, that would have been without any doubt of enormous epistemological value. . . . (a)
Mathematics would have been reduced to a very small part of itself. . . . (b) Everything
would have been reduced to a concrete basis, on which everyone must be able to agree.
(2) As to the proofs by means of the extended finitism, the first [i.e., (a)] is no longer
the case at all . . . [whereas] the second [i.e., (b)] (reduction to the concrete basis, which
means increase of the degree of evidence) obtains for the different systems to different
degrees, thus for the modal-logical route not at all, for the higher function types the most,
[and] for the transfinite ordinal numbers . . . also to a rather high degree. (Gödel, ∗1938,
CW III, 113)

In April 1941, Gödel (∗1941, CW III) delivered a lecture titled “In What Sense Is Intu-
itionistic Logic Constructive?” at Yale University. He had by then become established
as a member of the IAS, having fled Austria (and its threatened conscription) with his
wife at the last minute at the beginning of 1940.19 In the Yale lecture, he gave the first
public account of what was later to be called the Dialectica interpretation of HA in
a quantifier-free system of functionals of finite type – the route that he considered to
have the greatest degree of evidence (beyond that of finitism) of the three considered
at Zilsel’s seminar. His stated aim there is that “if one wants to take constructivity in a
really strict sense [then] the primitive notions of intuitionistic logic cannot be admitted
in their usual sense. This however does not exclude the possibility of defining in some
way these notions in terms of strictly constructive ones and then proving the logical
axioms which are considered as self-evident by the intuitionists. It turns out that this
can actually be done in a certain sense, namely, not for intuitionistic logic as a whole
but for its applications in definite mathematical theories (e.g. number theory)” (Gödel,
∗1941, CW III, 191). The functional interpretation proposed as the means to carry this
out is the subject of the final body of correspondence between Gödel and Bernays,
taken up in the next section.

As already mentioned, set theory was the main subject of the correspondence be-
tween Gödel and Bernays in a flurry of letters that began in 1939 and continued for three
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years (CW V, 114–41). The last one from Bernays in this period is dated September 7,
1942. In it, no mention is made of the war, except to remark on its mild effects on the
Swiss. Then Bernays – a bachelor – charmingly concludes his letter as follows:

Hopefully you are now well settled in Princeton, and married life and the domesticity
associated with it is quite salubrious for your physical and emotional health, and thereby
also for your scientific work.

Would you please convey my respects to your wife, even though I am not personally
acquainted with her.

Friendly greetings to you yourself. (CW V, 141)

After 1942, the correspondence between the two lapsed for fourteen years; no doubt
the difficulties of transmission during the war were the initial reason. However, once
resumed in 1956, the correspondence was to continue in a steady stream until the final
exchange in 1975. The date 1956 marked the first postwar visit of Bernays to the United
States and his first stay at the University of Pennsylvania, during which he was able to
come to Princeton to renew his personal contact with Gödel.20

6.5 The Dialectica Interpretation

In 1958, in honor of Bernays’ seventieth birthday, Gödel published in the journal
Dialectica his interpretation of intuitionistic number theory – and, thereby, classical
number theory – in a quantifier-free theory of primitive recursive functions of finite
type; this spelled out the notions and results of what had been presented in the Yale
lecture in 1941, and it subsequently came to be known as Gödel’s Dialectica inter-
pretation (Gödel, 1958, CW II). The change in title from the Yale lecture, “In What
Sense Is Intuitionistic Logic Constructive?” to that of the Dialectica paper, “On a Hith-
erto Unutilized Extension of the Finitist Standpoint” (“Über eine noch nicht benützte
Erweiterung des finiten Standpunktes”), indicates both a change of focus and a more
precise attention to the bounds for finitism, at least in Hilbert’s sense. This is reinforced
by the opening paragraph of the Dialectica piece:

P. Bernays has pointed out on several occasions that, since the consistency of a system
cannot be proved using means of proof weaker than those of the system itself, it is
necessary to go beyond the framework of what is, in Hilbert’s sense, finitary mathematics
if one wants to prove the consistency of classical mathematics, or even that of classical
number theory. Consequently, since finitary mathematics is defined as the mathematics
in which evidence rests on what is intuitive, certain abstract notions are required for the
proof of the consistency of number theory. . . . In the absence of a precise notion of what
it means to be evident, either in the intuitive or in the abstract realm, we have no strict
proof of Bernays’ assertion; practically speaking, however, there can be no doubt that it
is correct. (Gödel, 1958, CW II, 241)

Seven years after the publication of the Dialectica paper, Bernays told Gödel of a plan
to publish in the same journal an English translation that had been made of it by Leo F.
Boron. However, Gödel was not happy with certain aspects of both the original and its
translation and set out to revise them. A year later, he changed his mind and decided
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instead to improve and amplify the original by means of a new series of extensive
footnotes. Preparation of these dragged on for four more years, and it was only after
much help and encouragement from Bernays and Dana Scott that a revised manuscript
was sent to the printer in 1970. However, when the proof sheets were returned, Gödel
was again dissatisfied, especially with two of the added notes. Although he apparently
worked on rewriting these until 1972, the paper was never returned in final form
for publication. The corrected proof sheets found in his Nachlass (Firestone Library,
Princeton University) were reproduced for the first time in CW III, where they appear
as Gödel (1972). The full story of the vicissitudes of that paper is told by A. S. Troelstra
in his introductory note to Gödel (1958, 1972) in that volume.

The question of the bounds on Hilbert’s finitism comes up repeatedly in the corre-
spondence from this period; in letter 61 from Gödel to Bernays of January 1967, he
wrote:

My views have hardly changed since 1958, except that I am now convinced that ε0 is a
bound on Hilbert’s finitism, not merely in practice [but] in principle, and that it will also
be possible to prove that convincingly. (CW IV, 255)

During the same period, Bernays had been working on a second edition of the Grund-
lagen der Mathematik. Its first volume eventually appeared in 1968, and the second
appeared in 1970. As it happens, the latter was to contain a new supplement with an
exposition of proofs due to Kalmár and Ackermann – subsequent to Gentzen’s – of the
consistency of the system of Peano arithmetic by means of transfinite induction on the
natural ordering of order-type ε0. In connection with that, Bernays developed a new
and (on the face of it) more perspicuous proof of induction up to ε0 to be included in
the supplement, and he sent that proof along with his letter (67) to Gödel of January
1969. As Bernays puts it there, what he established with this proof was “the weak form
of induction, which says that every decreasing sequence comes to an end after finitely
many steps,” that is, that the relation is well founded.21 Gödel became quite excited
about Bernays’ proof, and in July 1969, he prepared a draft of a letter (68a) in which
he wrote:

You undoubtedly have given the most convincing proof to date of the ordinal-number
character of ε0. . . . Since functions of the first level [i.e., sequences of ordinals] can be
interpreted as free choice sequences and that concept is obviously decidable, a statement
of the form ‘For all free choice sequences . . . ” contains no intuitionistic implication,
and you have consequently completely eliminated the intuitionistic logic. If one reckons
choice sequences to be finitary mathematics, your proof is even finitary. . . . I now strongly
doubt whether what was said about the boundaries of finitism [at the beginning of 1958]
is really right. For it now seems to me, after more careful consideration, that choice
sequences are something concretely evident and therefore are finitary in Hilbert’s sense,
even if Hilbert himself was perhaps of another opinion.22 (CW IV, 269)

Then Gödel included a draft remark to a footnote of the revised version of 1958 to this
effect, adding:

Hilbert did not regard choice sequences . . . as finitary, but this position may be challenged
on the basis of Hilbert’s own point of view.23 (CW IV, 269)
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Indeed, the idea of “[free] choice sequences” used here is due to Brouwer in a form
that is quintessentially intuitionistic and generally regarded as nonfinitary in nature.
This is in one of Gödel’s letters that is marked “nicht abgeschickt” (not sent).

In the letter of July 25, 1969, that Gödel actually sent (68b), he changed his mind
about the significance of Bernays’ proof, although he still regarded it as “extraordinarily
elegant and simple”:

At first one also has the impression that it comes closer to finitism than the other proofs.
But on closer reflection that seems very doubtful to me. The property of being “well-
founded” contains two quantifiers after all, and one of them refers to all number sequences
(which probably are to be interpreted as choice sequences). In order to eliminate the
quantifiers . . . one would use a nested recursion. . . . But nested recursions are not finitary
in Hilbert’s sense (i.e. not intuitive). . . . Or don’t you believe that? (CW IV, 271)24

What is at issue in all this for Gödel goes back to his letter of 1931 to Bernays in
which he said that “the complicated and problematical concept of ‘finitary proof”’
needs to be made mathematically precise to decide such questions. In 1969, two such
characterizations of finitism were on offer, the first due to Georg Kreisel some ten years
before that, in terms of an ordinal logic whose limit is exactly ε0, that is, the strength of
PA (Kreisel, 1960). Gödel had discussed this with both Kreisel and Bernays and given
it serious consideration but was equivocal about the conclusion. A second proposed
characterization that arrived at PRA as the upper bound of finitism was sketched by
William Tait (1968) in his article “Constructive Reasoning” (later spelled out in his
article “Finitism”; Tait, 1981). As we have seen, that is the formal interpretation of the
system A of finitary number theory indicated by Gödel at the Zilsel seminar in 1938,
but no reference to Tait’s proposal appears in the correspondence with Bernays.

In any case, only the first of these could be considered an explication of finitism in
Hilbert’s sense, which unquestionably went beyond PRA. In letter 40 of August 1961,
Gödel wrote to Bernays that he had had interesting discussions with Kreisel about
his work and that “he now really seems to have shown in a mathematically satisfying
way that the first ε-number is the precise limit of what is finitary. I find this result
very beautiful, even if it will require a phenomenological substructure in order to be
completely satisfying” (CW IV, 193). The characterization of finitist proof in Kreisel
(1960) was given in terms of a transfinite sequence of proof predicates for formal
systems

∑
α , or ordinal logics in the sense of Turing (1939), under the restriction that

the ordinal stages α to which one may ascend are controlled autonomously; that is,
there must be, for each such α, a recognition at an earlier stage β that the iteration
of the process α times is (finitarily) justified. Kreisel’s main results are that the least
nonautonomous ordinal is ε0, and the provably recursive functions of the union of
the

∑
α for α < ε0 are exactly the same as those of PA. Both the description of the

ordinal logic for the proposed characterization and the proofs of the main results are
very sketchy (as acknowledged by Kreisel though excused by limitations of space); full
details, although promised, were never subsequently published.25 In addition, Kreisel
offered little in the way of convincing arguments to motivate his proposed explication of
the informal concept of finitist proof; this was perhaps the reason for Gödel’s statement
that more would be needed to make it “completely satisfying.”26
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Kreisel’s (1960) proposal had actually been made at the 1958 meeting of the Interna-
tional Congress of Mathematicians, and Gödel had already been cognizant of it at that
time. It is referred to in footnote 4 to the 1958 version of the Dialectica paper, where
Gödel says that a possible extension of the “original finitary standpoint . . . consists in
adjoining to finitary mathematics abstract notions that relate, in a combinatorially fini-
tary way, only to finitary notions and objects, and then iterating this procedure. Among
such notions are, for example, those that are involved when we reflect on the content
of finitary formalisms that have already been constructed. A formalism embodying
this idea was set up by G. Kreisel.” Just what Gödel has in mind here by the “original
finitary standpoint” is not clear, but whether he intends it to mean a system like PRA
or a system for Hilbert’s finitism in practice, either would put its strength well below
that of PA.

These matters are revisited in Gödel (1972); in its opening paragraph, finitary
mathematics in Hilbert’s sense is now defined as “the mathematics of concrete intuition”
instead of as “the mathematics in which evidence rests on what is intuitive,” as appeared
in Gödel (1958). The relevant footnote 4 now reads:

Note that an adequate proof-theoretic characterization of concrete intuition, in case this
faculty is idealized by abstracting from the practical limitation, will include induction
procedures which for us are not concretely intuitive and which could very well yield a
proof of the inductive inference for ε0 or larger ordinals. Another possibility of extending
the original finitary viewpoint for which the same comment holds consists in considering as
finitary any abstract arguments which only reflect . . . on the content of finitary formalisms
constructed before, and iterate this reflection transfinitely, using only ordinals constructed
in previous stages of this process. A formalism based on this idea was given by G. Kreisel
[1960]. (Gödel, 1972, CW II, 274)

However, there is now a further footnote, f, to this in 1972, in which Gödel says that
“Kreisel wants to conclude from [the fact that the limit of his procedure is ε0] that ε0

is the exact limit of idealized concrete intuition. But his arguments would have to be
elaborated further to be fully convincing.”

6.6 What, Really, Were Gödel’s Views on Finitism
and the Consistency Program?

In the preceding, I have concentrated primarily on summarizing the available evidence
concerning Gödel’s views on finitism and Hilbert’s program and its constructive ex-
tensions without critically examining those views themselves. Just what were those
views, and what was their significance for Gödel? There are two main questions, both
difficult: first, were Gödel’s views on the nature of finitism stable over time, or did they
evolve or vacillate in some way? Second, how do Gödel’s concerns with the finitist and
constructive consistency programs cohere with the Platonistic philosophy of mathe-
matics that he supposedly held from his student days? Our problem is that the evidence
is relatively fragmentary and, except for the published version of the Dialectica article,
for the most part comes from lectures and correspondence that Gödel himself did not
commit to print.
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With respect to the first of these questions, in my introductory note to the corre-
spondence with Bernays, I spoke of “Gödel’s unsettled views over the years as to the
exact upper bound of finitary reasoning,” but this characterization has been challenged.
In Tait’s trenchant essay review of CW IV and V , he takes me and others to task about
such judgments, in contrast to his own interpretation of the available evidence:

In any case, the alternative to this reading of the situation is to attribute to [Gödel] an
unreasonable fluctuation in his views about “finitism.” I feel that there has been rather
too much easy settling for obscurity or inconsistency on Gödel’s part in discussions of
his works, especially – but not exclusively – his unpublished work, appearing in volumes
III–V of the Collected Works. Of course, one can reasonably suppose that the wording in
those works, by their nature – lecture notes, letters written in a day, etc. – did not receive
the same care that he devoted to wording in his published papers. Nevertheless, it seems
all the more reasonable that, in such cases, one should look for an interpretation of what
he wrote, against the background of all of his writings, that has him saying something
sensible. (Tait, 2006, 93)

Tait refers to this as the McKeon principle,27 but as he himself remarks, one can carry
it too far: “In McKeon’s hands, it degenerated into the less salubrious view that the
great philosophers were never wrong: one only needed to discover the right principle
of translation.” I agree with both the principle and the caveat, so let’s proceed with
caution.

Another caveat warrants consideration: in his writings on finitism, reprinted as
chapters 1 and 2 with an appendix in The Provenance of Pure Reason, Tait (2005a)
has rightly emphasized the need to distinguish between the proper characterization
of finitism and historical views of it, especially Hilbert’s.28 Furthermore, in his essay
reviews of CW III and of CW IV and V , this has been extended to Gödel’s views of
both the proper characterization of finitism and what he took Hilbert’s view to be.
In the last of these (pp. 92–98), Tait argues that Gödel’s conception of finitism was
stable and is represented by what he has to say about the system of finitary number
theory for Zilsel’s seminar, which we have seen is interpreted as PRA. He sets aside
the problematic interpretation of the system A in the Cambridge lecture as Gödel does
not refer to it as being finitist but rather as being at the lowest level of a hierarchy of
constructive systems. Tait says that the ascription of unsettled views to Gödel in the
correspondence and later articles “is accurate only of his view of Hilbert’s finitism, and
the instability centers around his view of whether or not there is or could be a precise
analysis of what is ‘intuitive”’ (Tait, 2005a, 94). So, if taken with that qualification, my
ascription of unsettled views to Gödel is not mistaken. As to Gödel’s own conception
of finitism, I think the evidence offered by Tait for its stability is quite slim, but that’s
nothing I’m concerned to make a case about, one way or another.

I would add to all this only a speculation concerning Gödel’s vacillating views
of Hilbert’s finitism: perhaps he wanted it seen as one of the values of his work in
1958 and 1972 that the step to the notions and principles of the system for primitive
recursive functionals of finite type would be just what is needed to go beyond finitary
reasoning in the sense of Hilbert to capture arithmetic. For that it would be important
to tie down Hilbert’s conception precisely to have limit ε0, by means, for example, of
a characterization of the sort proposed by Kreisel.
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The second question raised earlier is the more difficult one and, to me, the most
intriguing of the whole affair: how does Gödel’s well-known Platonic realism cohere
with his engagement in the constructive consistency program and his claims for its
necessity? One way is to deny that there is a genuine incoherence by denying the
seriousness of that engagement. That is the position taken by Kreisel, who is utterly
dismissive of it, first in his biographical memoir for the Royal Society (Kreisel, 1980)
and later in his piece “Gödel’s Excursions into Intuitionistic Logic” (Kreisel, 1987). In
the former, he writes:

[Gödel’s] last self-contained publication [1958] . . . was presented as a consistency proof.
Between 1931 and 1958 . . . he studied other such proofs. . . . Very much in contrast to the
break with traditional aims, advocated throughout this memoir, Gödel continued to use
traditional terminology. For example, the original title of Spector (1962), extending Gödel
(1958), did not contain the word “consistency”; it was added for posthumous publication
at Gödel’s insistence. He knew only too well the publicity value of this catchword, which –
contrary to his own view of the matter – had made the second incompleteness theorem
more spectacular than the first. (Kreisel, 1980, 174)

The reference is to Spector’s posthumously published 1962 article, in which a functional
interpretation of a system of second-order number theory was obtained by means of the
so-called bar-recursive functionals. The “full story” of the title is recounted in Kreisel
(1987, 161):

Spector’s simple title was: Provably recursive functionals of analysis. Gödel did not find
this exciting, and proposed the addition: a consistency proof of analysis. . . . Of course, I
appreciated his flair for attracting attention, but my views about the sham of the consistency
business have remained uncompromising. So, to water down his addition, I proposed the
further qualification “by an extension of principles formulated in current intuitionistic
mathematics,” to which Gödel agreed, albeit reluctantly.

Kreisel (1987, 144) also writes more generally that in later years, “Gödel used crude,
hackneyed formulations that had proved to have popular appeal (and had put me off . . . ),
[though] in his very early writing he was more austere.” Given the accumulated evidence
that has been surveyed here of Gödel’s serious engagement with the constructive
consistency program from the beginning to the end of his career, it seems to me that
this tells us more about Kreisel than about Gödel.29

A second way to deal with the prima facie incoherence of Gödel’s Platonism with
his engagement in the constructive consistency program is to question his retrospective
claims of having held the Platonistic views back to his student days, at least if under-
stood in their latter-day form; the case for their development prior to 1944 is made by
Charles Parsons (1995). Also, through extensive quotation, Martin Davis (2005) has
pointed out that they were by no means uniform. This could account for such things as
the Cambridge lecture and the seminar at Zilsel’s but doesn’t account for the work on
the Dialectica interpretation well past the point where he had made plain his adherence
to full-blown set-theoretical realism.

A third possible way for a confirmed Platonist, such as Gödel, to make an engagement
in the constructive consistency program is to recognize the additional epistemological
value of success under that program; that is, even if the Platonist is convinced of



128 lieber herr bernays! lieber herr gödel!

the truth of his axioms, and hence of their consistency, he could still appreciate the
additional evidence of a different nature that a constructive consistency proof would
give.30 In Gödel’s case, this is supported by the final section of his Zilsel presentation
that was quoted in full in Section 6.4 above, whether or not he was a Platonist at the
time. Though that can be argued in principle, it seems to me curious that Gödel’s own
engagement in the program never went beyond arithmetic, where he can hardly have
thought that a constructive proof would make its consistency more evident than what
is provided by the intuitive conception. Perhaps, though, he believed that that was only
a test case and that a good start with arithmetic, such as that which he essayed with
the Dialectica interpretation, could take the program much further, to where intuition
is no longer so reliable.

Let me venture a psychological explanation, instead, that goes back to what I
suggested at the outset: Gödel simply found it galling all through his life that he never
received the recognition from Hilbert that he deserved. How could he get satisfaction?
Well, just as (in the words of Bernays) “it became Hilbert’s goal to do battle with
Kronecker with his own weapon of finiteness,”31 so it became Gödel’s goal to do battle
with Hilbert with his own weapon of the consistency program. When engaged in that,
he would have to do so – as he did – with all seriousness. This explanation resonates
with the view of the significance of Hilbert for Gödel advanced in chapter 3 of Takeuti
(2003),32 who concludes that “Hilbert’s existence had tremendous meaning for Gödel”
and that his “academic career was molded by the goal of exceeding Hilbert.” However,
Takeuti says that Gödel did not do any work subsequent to 1940 that was comparable
to the work on completeness, incompleteness, and the continuum hypothesis, perhaps,
among other things, because “there was no longer the challenge to exceed Hilbert.” In
that we differ: in my view, the challenge remained well into his last decade for Gödel
to demonstrate decisively, if possible, why it was necessary to go beyond Hilbert’s
finitism in order to prosecute the constructive consistency program.
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Endnotes

1. The five volumes of Gödel’s Collected Works (ed. S. Feferman et al., 1986–2003) are referred
to throughout this chapter and in the references as CW I, II, III, IV, and V . CW I consists of the
publications 1929–1936, CW II of the publications 1938–1974, CW III of unpublished essays
and lectures, CW IV of correspondence A–G, and CW V of correspondence H–Z. References
to individual items by Gödel follow the system of these volumes, which are either of the form
Gödel 19xx or of the form ∗Gödel 19xx, with possible further addition of a letter in the case of
multiple publications within a given year; the former are from CW I or CW II, whereas the latter
are from CW III. Thus, e.g., Gödel 1931 is the famous incompleteness paper, whereas Gödel
1931c is a review that Gödel wrote of an article by Hilbert, both in CW I ; Gödel ∗1933o is notes
for a lecture, “The present situation in the foundations of mathematics,” to be found in CW III.
Pagination is by reference to these volumes, e.g., Gödel (1931, CW I, 181), or simply Gödel (CW
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I , 181). In the case of correspondence, reference is by letter number and/or date within a given
body of correspondence, as, e.g., Gödel to Bernays (letter 56), or equivalently, Gödel to Bernays
(December 2, 1965), under Bernays in CW IV. When an item in question was originally written in
German, my quotation from it is taken from the facing English translation. Finally, reference will
be made to the various introductory notes written by the editors and colleagues that accompany
most of the pieces or bodies of correspondence.

2. William Tait (2006), in his forceful and searching essay review of CW IV and V , covers much
the same ground but from a different perspective; see esp. Section 6.6.

3. Hilbert introduced first-order logic and raised the question of completeness much earlier, in
his lectures of 1917–1918. According to Awodey and Carus (2001), Gödel learned of this
completeness problem in his logic course with Carnap in 1928 (the only logic course that he ever
took).

4. For an excellent introduction to Hilbert’s program with a guide to the literature, see the entry by
Richard Zach (2003) in the Stanford Encyclopedia of Philosophy. A more extended exposition
is to be found in part III of Mancosu (1998) as an introductory note to a number of major articles
by both Hilbert and Bernays in English translation.

5. See Parsons (2008) for an examination of Bernays’ later philosophy of mathematics.
6. In recognition of that, Feferman (2008) was published in Dialectica.
7. See Turing (1939) and Feferman (1962).
8. See Takeuti’s foreword in this volume.
9. The fifth and last item of 1931, from Bernays to Gödel, deals with one final point on this matter;

it is mainly devoted to a preliminary presentation of Bernays’ theory of sets and classes. See CW
IV (pp. 104–15).

10. In any case, I have discussed the evidence at length in my introductory note to Gödel’s review
1931c of Hilbert’s work on Z∗; cf. CW I , 208–13.

11. Cf. Reid (1970, 198–99).
12. Cf. CW I , 212. Olga Taussky-Todd (1987, 40) writes in her reminiscence that Gödel “lashed out

against Hilbert’s paper ‘Tertium non-datur’ [Hilbert, 1931a] saying something like, ‘how can he
write such a paper after what I have done?’ Hilbert in fact did not only write this paper in a style
irritating to Gödel, he gave lectures about it in Göttingen in 1932 and other places. It was to prove
Hilbert’s faith.”

13. Gödel himself, in the postscript to his remarks at the Königsberg conference, speaks of “finitary,
(that is, intuitionistically unobjectionable) forms of proof” (1931a, CW I, 205). Cf. also Bernays
(1930, Part II, sec. 2; Sieg, 1990, 272).

14. See Sieg’s introductory note to Gödel’s correspondence with Herbrand in CW V, 9n. s, and Tait
(2006, 98–105) in his essay review of CW IV and V.

15. What Hilbert meant by finitism has been the subject of extensive discussion in the literature; the
trouble is that he made no specific effort to delineate it and instead relied on informal explanations
and examples. A strong case has been made by Zach (1998, 2001, 2003), among others, that
Hilbert’s conception of finitism definitely goes beyond primitive recursive arithmetic to include
Ackermann’s function and other functions obtained by multiply nested recursions, together with
certain forms of transfinite recursion (in view of Hilbert, 1926).

16. Translated from the German: “Dieser Ergebnisstand weist zugleich die Richtung für die weitere
Forschung in der Beweistheorie auf das Endziel hin, unsere üblichen Methoden der Mathemattick
samt und sonders als widersprchsfrei zu erkennen. Im Hinblick auf dieses Ziel möchte ich
hervorheben, dass die zeitweilig aufgekommene Meinung, aus gewissen neueren Ergebnissen
von Gödel folge die Undurchfürbarkeit meiner Beweistheorie, als irrtümlich erwiesen ist. Jenes
Ergebnis zeigt in der Tat auch nur, dass man für die weitergehenden Widerspruchsfreiheitsbeweise
den finiten Standpunkt in einer shärferen Weise ausnutzen muss, als dieses bei der Betrachtung
der elementaren Formalismen erforderlich ist.”
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17. Hilbert (1926) refers to the axioms for quantifiers in the context of arithmetic as the “transfinite
axioms” because the law of excluded middle for quantified formulas requires the assumption of
the “completed infinite.”

18. The idea is elaborated in Tait (2005b).
19. See Chapter 4 in this volume for more on Gödel’s life in and emigration from Vienna.
20. Dana Scott, who was a student in Princeton at the time, recalls a “conversation” with Church,

Gödel, Bernays, Kreisel, and a couple of graduate students at Church’s home (pers. comm.,
2006).

21. As it happens, Bernays’ proof as it stands is mistaken, or at best incomplete, as shown by Tait
(2006, 89–91); see Endnote 24 for the reason.

22. Following a remark of Kreisel, Mark van Atten (2006, p. 26) suggests that Gödel, qua Platonist,
considered choice sequences to belong to the ontological realm of “our own ‘constructions’ or
choices” and hence not to pure mathematics; but the theory could well be considered a matter of
applied mathematics.

23. The version of the footnote that did appear in the proofs for Gödel 1972 (ftn. c, CWII, p. 272)
reads: “A closer approximation to Hilbert’s finitism can be achieved by using the concept of free
choice sequence rather than ‘accessibility.”’

24. Bernays answered the question concerning nested recursion, saying that the verschränkte rekur-
sion of vol. 1 of Grundlagen der Mathematik appears to him to be finitary in the same sense
as the primitive recursions (see CW IV, 277); cf. also Endnote 15. Tait (2006, 91–92) critically
examines the questions concerning nested recursion and choice sequences; he argues that these
go beyond finitism as it ought to be understood (which may well differ from the way Hilbert
understood it). In addition (Tait, 2006, 89–91), he usefully spells out Bernays’ proof of induction
up to ε0, considered the limit of the ordinals ω[n], where ω[0] = ω and ω[n+ 1] = ωω[n]. His
analysis reveals that Bernays’ prima facie inductive argument to show for each n that there are no
infinite sequences descending from ω[n] actually only reduces that property for ω[n+ 1] to the
assumption of nested recursion on ω[n]; therefore the proof as it stands is mistaken or, at best, is
incomplete without the additional claim that the no-descending-sequence property on an ordinal
justifies nested recursion on that ordinal. The situation here is related to the earlier result of Tait
(1961) that reduces, for any ordinal α, ordinary recursion on ωα to nested recursion on ω × α,
a fact, as it happens, known to Gödel but not invoked in his enthusiastic response to Bernays’
supposed proof.

25. A variant formulation of the proposed ordinal logic that is a little more detailed was presented in
Kreisel (1965, sec. 3.4, pp. 168ff.).

26. In Kreisel (1965, 169), it is said that the concept being elucidated is “of proofs that one can see
or visualize. . . . Our primary subject is a theoretical notion for the actual visualizing, not that
experience itself.” The matter was revisited in Kreisel (1970), where the project is to determine
“what principles of proof . . . we recognize as valid once we have understood . . . certain given
concepts” (p. 489), these being, in the case of finitism, “the concepts of ω-sequence and ω-
iteration” (p. 490).

27. Tait (2006, p. 93, fn. 15) describes this principle as follows: “Richard McKeon . . . preached
. . . this very salubrious view in connection with the interpretation of the great philosophers, such
as Plato: If your interpretation of them makes them fools . . . then it is likely you have more work
to do.” But one would hardly say that ascribing changing views to Gödel makes him out to be a
fool.

28. This obvious need has been emphasized by other commentators as well (cf., e.g., Zach, 2003,
and references therein).

29. According to Gödel’s communications to Hao Wang (1981, 654), an additional piece of evidence
for the seriousness of his engagement with Hilbert’s consistency program from the very beginning
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is that he was led to the incompleteness theorems through an aborted attempt to carry out the
program for analysis (second-order number theory).

30. This possibility has been emphasized by Jeremy Avigad and Mark van Atten in personal com-
munications.

31. Quoted in Reid (1970, 173).
32. This was brought to my attention by Mark van Atten after reading a draft of this article.
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July 1983, ed. P. Weingartner and L. Schmetterer, pp. 29–48. Naples, Italy: Bibliopolis.
Turing, A. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical

Society, Series 2, 45, 161–228. [Repr. M. Davis, ed. (1965). The Undecidable: Basic Papers on
Undecidable Propositions, Unsolvable Problems and Computable Functions. Hewlett, NY: Raven
Press, 155–222.]

Van Atten, M. (2006). Brouwer Meets Husserl: On the Phenomenology of Choice Sequences. Synthese
Library 335. Berlin: Springer.

Van Heijenoort, J., ed. (1967), From Frege to Gödel: A Source Book in Mathematical Logic. Cam-
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The Past and Future
of Computation





CHAPTER 7

Computation and Intractability:
Echoes of Kurt Gödel

Christos H. Papadimitriou

Kurt Gödel (1906–1978) lived half his adult life during the computer era – in fact,
virtually at the epicenter of the early development of the computer. Yet we have no
evidence that the great logician took a serious interest in the nature, workings, power,
or limitations of the beast.1 Nevertheless, I shall argue that Gödel’s work has had many
and crucial connections to computation for a number of reasons:

� The incompleteness theorem (Gödel, 1931) started an intellectual Rube Goldberg that
eventually led to the computer.

� Gödel’s early work contains the germs of such influential computational ideas as arith-
metization and primitive recursion.

� In a 1956 letter to John von Neumann (see Sipser, 1992), which was not widely known
for three decades, Gödel proposed a novel quantitative version of Hilbert’s program that
turned out to be precisely the P versus NP question.

� Negative results, of which the incompleteness theorem is an ideal archetype, constitute
an important and distinguishing tradition in computer science research.

Sections 7.1 and 7.2 recount how the incompleteness theorem motivated a number of
mathematicians during the 1930s to further sharpen the result’s negative verdict and
establish that mathematics, besides being impossible to axiomatize, cannot even be
mechanized (axiomatization being only one of the possible ways whereby mathematical
thought can be mechanized). For this program to be carried out, however, computation
had to be somehow defined, and those brilliant definitions – most notably Alan Turing’s
(1936) – were the mathematical precursors of the computer. When, ten years and one
world war later, the time came for the mathematical idea of the universal computer
to be incarnated, it was John von Neumann (1945), the first mathematician to grasp
the incompleteness theorem’s significance and to eagerly explore possible ways of
strengthening it, who came up with the influential design ideas that have to a large
extent defined computers ever since. Von Neumann is discussed in Section 7.3.

1 But see Sieg (2006) for a very recent insightful analysis of Gödel’s views on computation and computability
based mainly on his Gibbs lecture (Gödel, 1951).

137



138 computation and intractability: echoes of kurt gödel

Sections 7.4 and 7.5 focus on the P versus NP question and on the importance of
negative results. In a letter to a dying von Neumann in 1956, Gödel posed a question
as a way to explain a novel quantitative version of the foundations quest (see the
subsequent discussion): is it possible to construct a machine which, when presented
with a sentence in first-order logic, would find a proof for the sentence (provided such
a proof exists) after a number of steps that is proportional to the length of the proof (or,
say, its square)? As it turned out, this question was equivalent to P = NP, which was to
become, decades later, the central open question in computer science and possibly the
deepest open problem in mathematics.

In Section 7.6, I recount the influence that Gödel’s arithmetization had in theoretical
computer science, ending with a recent result establishing that the problems of finding
Brouwer fixed points and Nash equilibria are computationally equivalent (Daskalakis
et al., 2006); its proof makes crucial use of arithmetization. Finally, in Section 7.7, I
provide an epilogue describing the tragic lives of many of the great figures in twentieth-
century logic.

7.1 The Two Foundations Quests

The beginning of the twentieth century was a time of crisis for mathematics. The field
was flourishing and expanding in all directions, yet its foundations were contemplated
with anxiety and insecurity. Non-Euclidean geometries had revealed the dangers of
doing mathematics without a thorough understanding of its axiomatic basis, while
Georg Cantor’s dissection of infinity exposed new complexities that were considered
by many as problematic, even ominous. These problems had already claimed one
victim: Gottlob Frege had developed an ingenious notation for first-order logic as well
as a formalism for axiomatizing all arithmetic (the mathematics of whole numbers;
Frege, 1884), a singularly ambitious work in which, however, Bertrand Russell had
discovered a fatal flaw – at the precise time that the second volume of Frege’s magnum
opus was going to the printer.

This was the context of the launching of Hilbert’s foundations quest. David Hilbert
was not only the most eminent and accomplished mathematician of the time but also
a force of nature – a deeply optimistic man convinced that human ingenuity could
eventually conquer any challenge. “There are no unsolvable problems,” he would pro-
claim. “In mathematics there is no ignorabimus. . . . We must know, we shall know!”2

He was interested in founding all mathematics on axioms that are consistent (i.e., no
contradiction can arise from them) and complete (i.e., every true sentence in the domain
follows from the axioms), and he urged mathematicians to find such axiomatic systems
for arithmetic, and from those, for all mathematics – he had already succeeded in ax-
iomatizing geometry (Hilbert, 1899). Closer inspection, however, reveals that Hilbert’s
program consists, in fact, of two goals that are subtly distinct:

2 Most ironically, Hilbert repeated the latter proclamation in a radio broadcast on September 8, 1930, in
Königsberg, East Prussia – that is, at the precise place and on the precise day at which an unknown young
mathematician named Kurt Gödel was presenting his devastating refutation of the foundations quest.
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� The axiomatic foundations quest (AFQ): Find a provably consistent set of axioms
whose consequences comprise all theorems in mathematics.

� The computational foundations quest (CFQ): Find a mechanical procedure for distin-
guishing between true and false sentences in mathematics.

The AFQ is what is usually referred to in the literature as Hilbert’s program, and
it is articulated quite unambiguously in his address at the International Congress of
Mathematicians (Hilbert, 1900); in his Heidelberg talk (Hilbert, 1905); and in his
address, a decade later, to the Swiss Mathematical Society (Hilbert, 1918), for example.
In contrast, the CFQ was, at the beginning, only an undercurrent. It is clear that Hilbert
was thinking about algorithms early on; already in his 1900 address, he talked about “a
process according to which it can be determined by a finite number of operations,” albeit
in relation to his tenth problem of solving Diophantine polynomial equations. Ironically,
the earliest explicit reference to the mechanical nature of Hilbert’s program before the
late 1920s may have been Henri Poincaré’s (1914, 133) well-known polemical remark
likening the goal of the foundations quest to “the famous sausage machine at Chicago
where the living pigs are fed in at the top and appear as sausage and ham at the bottom.”

In 1928, a limited form of the CFQ was enunciated explicitly in Hilbert’s work
with Ackermann as the Entscheidungsproblem (decision problem), the development of
an algorithm for deciding whether a sentence in first-order logic is valid (Hilbert and
Ackermann, 1928). In other words, the Entscheidungsproblem specializes CFQ to the
domain of first-order logic.

It is not a priori obvious that the two foundations quests are equivalent (which
indeed they are, by virtue of their both being impossible). In fact, that the axiomatic
version implies the computational one is a consequence of the completeness theorem,
conjectured by Hilbert and Ackermann (1928) and famously proved by Kurt Gödel
(1929, 1930) in his doctoral thesis and presented at the September 1930 Königsberg
meeting, one day before the announcement of the incompleteness theorem (Gödel,
1931). The completeness theorem states that any valid formula in first-order logic has
a proof (in a natural proof system). Therefore, if mathematics were axiomatizable by
first-order axioms, given any mathematical sentence, one could search for a proof that
the axioms imply the sentence and also for a proof that they imply its negation. Because
the axiomatic system is assumed to be complete, one of the two implications must be
valid – and hence, by completeness, provable. Thus a machine could look at all possible
proofs, say, one after the other in increasing length, testing for each whether it is a
proof of one of the two implications. Because one of the two proofs must exist, this
algorithm is guaranteed to succeed in finding it after finitely many steps. The situation
advanced from the one in Figure 7.1a to the one in Figure 7.1b.3

Finally, less than a year after completing his doctoral dissertation, which estab-
lished the situation shown in Figure 7.1b, Gödel proved the incompleteness theorem,
demonstrating that AFQ, the stronger of the two goals, is impossible. With the incom-
pleteness theorem, the situation shown in Figure 7.1c prevails. Figure 7.1d shows the
two foundations quests after Turing’s paper (ca. 1936).

3 I am not aware of an explicit mention of this straightforward consequence of the completeness theorem in the
literature of the time; however, I have no doubt that it was well understood by the research community.



140 computation and intractability: echoes of kurt gödel

The Axiomatic Foundations Quest                  The Computational Foundations Quest 

(AFQ)                (CFQ) 
“Find a provably consistent set of axioms              “Find a mechanical procedure 

whose consequences comprise                          for distinguishing between
all theorems in Mathematics.”                   true and false sentences in 
Mathematics.” 

(a) The two Foundations Quests 

(AFQ)                ⇒          (CFQ) 

(b) The two Foundations Quests after Gödel’s Completeness 
Theorem (ca 1929) 

(AFQ)                ⇒          (CFQ) 

(c) The two Foundations Quests after Gödel’s Incompleteness 
Theorem (ca 1931) 

(AFQ)                ⇒          (CFQ) 

(d) The two Foundations Quests after Turning’s paper (ca 1937)

Figure 7.1. A tale of two quests.

7.2 The Dawn of Computation

After this devastating development for the foundations quest, the computational
(weaker) version provided the only glimmer of hope. After all, axiomatization is only
one of the possible ways to mechanize mathematics, and perhaps some more direct,
ad hoc approach might still be possible. But I do not believe that anybody at that time
was placing too much faith in this possibility. After the incompleteness disaster, the
mood in the foundations camp must have been one of despair and retreat. It is therefore
not surprising that several mathematicians worked on refuting the CFQ. Again, on
reflection, one realizes that there were three distinct ways in which something could be
salvaged from the foundations quest by utilizing computation (in Section 7.4, I discuss
a fourth, even more modest goal proposed two decades later by Kurt Gödel himself ):

1. Find an algorithm, presumably not based on an axiomatic system, that, given a sentence
in some domain of mathematics, would decide in finite time whether it is a theorem.

2. The Entscheidungsproblem is the specialization of (1) to first-order logic: find a machine
that decides whether a given sentence in first-order logic is valid.4

3. Given some (presumably incomplete) axiomatization of mathematics, find a mechanical
process that, given a sentence, discovers a proof of the sentence from the axiom system
provided it has one. This is in fact equivalent to (2), assuming that the axioms are first
order, because it entails deciding validity for the first-order logic formula stating that
the axioms imply the given sentence.

4 In fact, the proof of the completeness theorem reveals that the Entscheidungsproblem is a special case of the
decision problem in second-order arithmetic.
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But to refute any of these weaker versions of the foundations quest, the intuitive
notion of “algorithm” or “machine” or “mechanical process” had to be defined with
mathematical precision. This was not necessary previously, when the goal was to carry
out the foundations quest: if somebody had indeed come up with a mechanical way
of deciding truth in mathematics, the community would probably have little trouble
recognizing it as such, once it was presented to them. But now that impossibility was
to be established, an exacting discipline of thought was needed.

Because this is the nature of impossibility proofs: to show that something is impossi-
ble, one must first define and chart with precision the whole realm of possibilities. And
that is the reason why some of the brightest mathematical minds of that era embarked
on this momentous task: to define computation.

And define it they did. During the mid-1930s, at least four vastly different and,
in most cases, independent definitions of computation were proposed and used to
demonstrate the impossibility of CFQ (in fact, of the Entscheidungsproblem, the least
ambitious version): Alan Turing’s (1936) universal machine; Alonzo Church’s (1936)
λ-calculus; Stephen Kleene’s (1936) partial recursive functions; and Emil Post’s (1936)
machines. Actually, Church and his student Kleene were inspired to embark on this
investigation by Gödel himself, who visited Princeton and lectured on the incomplete-
ness theorem as well as on recursive functions in 1934 and 1935 (with Kleene as his
note taker).

Post’s story is particularly intriguing and touching: already in 1921, he had proved
results anticipating the incompleteness theorem, only to keep them in his drawer un-
published, probably out of pathological insecurity. In a letter dated October 31, 1938,
to Gödel, whom he admired, Post brushed aside his remarkable achievement and com-
mented, with astonishing modesty, that “after all it is not ideas but the execution of ideas
that constitute a mark of greatness.” In the mid-1930s, Post (1936) did come up with
a computational model that was eventually shown to be equivalent in computational
capability to the other three models.

But the most momentous entry into the race for the definition of computation was
by Turing (1936). Partly motivated by his interest in the workings of the human mind,
he defined what is now known as the Turing machine, an abstract computer model
that has deeply influenced both computational thought and computational practice. In
particular, Turing’s idea of universality (that a machine can perform any computational
task if supplied with the right set of instructions) presaged, and arguably brought about,
the general-purpose computer and its software.

That these four radically different definitions turned out to be exactly equivalent
in computational capability elevated computation to the status of a novel and surpris-
ingly robust – and thus presumably important – mathematical concept. Its real-world
incarnation would not be very long in coming.

7.3 Johnny-Come-Lately: Von Neumann, Gödel,
and the Computer

Of all the mathematicians involved in the foundations quest, John von Neumann was
the first to grasp the significance of Gödel’s announcement of the incompleteness
theorem. A brilliant and ambitious mathematician who had spent time at Göttingen
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with Hilbert, von Neumann had worked hard on the quest, and now his labors lay in
waste: “It’s all over!” he has been reported to have exclaimed at Königsberg. Soon after
this encounter, von Neumann realized that Gödel’s proof implied another devastating
impossibility result, the second incompleteness theorem, stating that any consistent
axiomatic system for arithmetic cannot be used to prove itself consistent – consistency
proofs being an important part of Hilbert’s program. Von Neumann was a man of
penetrating mathematical genius who was already well known for his ability to absorb
and assimilate rapidly complex work by other mathematicians and to further that work
in important directions unanticipated by the original author.

On November 20, 1930, von Neumann wrote to Gödel to announce his discovery
of the second incompleteness theorem; as it turns out, on November 17, Gödel had
submitted for publication his paper including his second incompleteness theorem,
which he had proved independently in the meantime; von Neumann immediately
acknowledged Gödel’s priority – with how much disappointment we cannot know.

Another interaction between Gödel and von Neumann, this one immediately after
the Königsberg presentation, was even more fateful. The result and proof that Gödel
sketched at the meeting were quite a bit weaker than the ones submitted for publication
two months later. Gödel stumbled on the incompleteness theorem while pursing the
foundations quest – he was trying to axiomatize analysis relative to arithmetic, that is,
assuming an axiomatization of arithmetic. In exploring how truth in arithmetic could
be used to establish truth in other domains, he realized with surprise that truth in
arithmetic is a little too expressive for its own good, so to speak, an insight that led
to the incompleteness theorem. However, his original proof, presented at Königsberg,
established the existence of unprovable sentences in the theory of sequences of integers.

According to Gödel’s memoirs (see Wang, 1996, 83–84), von Neumann asked him
after his talk whether he could extend his result to sentences about integers. Gödel
answered that he could see ways of reducing a sequence of integers to a single integer,
but these would involve devices such as the “sweeping” functions invented by Cantor
and not the ordinary operations of arithmetic. In the next two months, motivated by
von Neumann’s question, Gödel came up (to his utter surprise, he confessed) with
his ingenious encoding scheme of sequences of integers by integers using the Chinese
remainder theorem – an encoding that succeeds brilliantly in showing the unprovability
of simple sentences about integers.

By all available accounts, after Königsberg, von Neumann lost all interest in logic –
in fact, during the next decade, he missed no opportunity to express publicly and
unambiguously his total lack of interest in the subject. It is not implausible that this
was the result of his traumatic encounter at Königsberg; the mathematical genius could
not easily accept that somebody else had irreversibly beaten him to what perhaps was
the century’s most momentous theorem.

In fact, it appears that von Neumann had also turned a blind eye to the revolution in
mathematical computers that followed the incompleteness theorem. In writing a recom-
mendation letter for Alan Turing in 1938 – at the time a graduate student at Princeton,
justly famous for having shown the impossibility of the Entscheidunsproblem and for
having invented what was already being called the Turing machine – von Neumann
confined his praise to Turing’s work on periodic functions and continuous groups and
said not a word about logic and computation.
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A chance encounter in 1945 with an army officer named Herman Goldstine at the
Aberdeen, Maryland, train station brought an abrupt change to all this. At Golds-
tine’s invitation, von Neumann became involved as a consultant with the design of
the ENIAC computer, an effort supported by the military and spearheaded up to that
point by University of Pennsylvania engineering professors J. Presper Eckert and John
Mauchly. In his work with the ENIAC, and with the succeeding EDVAC project,5 von
Neumann remembered Turing to great effect. His ambitious ideas for a more principled
design, based on Turing’s concept of universality, divided the ENIAC group, pitching
von Neumann, along with several converts, against the more pragmatic engineers on
the design team (most ironically, von Neumann’s allies in this dispute were dubbed
the “logicians”; see Davis, 2000). Von Neumann (1945) proceeded to lay down the
principles of the stored program computer architecture in a document with the unas-
suming title “First Draft of a Report on the EDVAC.” Distributed widely by Goldstine
under von Neumann’s name, the “First Draft” imparts a vision of astonishing clarity
and presage and is one of the most influential documents in the history of computation.
It is mainly because of “First Draft” that the digital computer is called to this date the
“von Neumann machine.”

7.4 Hilbert’s Last Stand: Gödel’s Letter and P versus NP

One decade after the appearance of the “First Draft,” as John von Neumann was lying
in a hospital bed in Washington, D.C., he received a letter from Kurt Gödel. The great
logician inquired, in handwritten German, about the recipient’s health with a mixture
of human concern, optimism, and a formality oozing with respect. He then continued
with a mathematical question. Gödel proposed a less ambitious version of Hilbert and
Ackermann’s Entscheidungsproblem – a version that was still possible, despite the
deluge of negative results during the 1930s.

Recall that the Entscheidungsproblem sought an algorithm that, given any sentence
in first-order logic, would decide whether the sentence has a proof. Instead, Gödel was
looking for an algorithm with the following specifications: for any sentence in first-
order logic, if the sentence has a proof, then the algorithm will succeed in producing
it; if the sentence has no proof, the computation may never stop. Had Gödel imposed
no further requirement, this feat would be easy to accomplish by a scheme that tries
all possible proofs exhaustively, one by one and in increasing length, until the proof
of the sentence – assuming it exists – is found and verified. (If the sentence has no
proof, then the algorithm would go on computing forever, as it is allowed to do in
this case.) Notice that if the sentence indeed has a proof of length L, this scheme will
discover this proof after a computation of duration (number of elementary steps) that
is exponential in L, simply because there are exponentially many proofs of length L,
and the algorithm searches exhaustively through all of them.

Is it possible, asked Gödel, to achieve the same effect within a number of steps that is
polynomial in L – as he put it, proportional to L, or perhaps to L2 or some other power

5 ENIAC = Electronic Numerical Integrator and Computer; EDVAC = Electronic Discrete Variable Automatic
Computer. For more information on the development of the computer, see Chapter 8 in this volume.
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of L? Can the exhaustive search for proofs be dramatically telescoped? If his question
has a positive answer (and we still do not know whether it does), a most intriguing
possibility arises: when faced with an interesting mathematical conjecture, we could
submit it to this computer algorithm and let it compute for, say, a week. At the end of
this period, either we would have obtained a definite proof of the conjecture, or a proof
of its negation from a standard set of axioms such as Peano arithmetic. Otherwise, if
the algorithm did not stop after a few days, we could conclude the following: if the
conjecture – or its refutation – does have a proof, then the proof will have to be so
long that it could not be expected to fit within a million or more pages. In other words,
for all practical purposes, the conjecture cannot be settled. The existence of such an
algorithm would trivialize the practice of mathematics, the collapse of the foundations
quest in Gödel’s hands a quarter century earlier notwithstanding.

By 1956, as computers were being used more and more often in the solution of prac-
tical problems, the dichotomy between polynomial and exponential computation had
begun to replace Turing’s original contrast between computability and uncomputabil-
ity as the more meaningful boundary. In many real-world problems of a combinatorial
nature, a solution is sought in an exponential population of possible solutions. Some
of these problems can be solved by an efficient, polynomial method, whereas others
seem to require exponential exhaustive search. Von Neumann (1953) was the first to
hint at this dichotomy in a paper in which he succeeded in devising a polynomial al-
gorithm for a particular combinatorial problem (what is now known as the assignment
problem); this paper is probably one of the reasons why he was the recipient of Gödel’s
letter.

The dichotomy between polynomial and exponential search problems was identified
explicitly almost a decade later in the work of Alan Cobham (1965) and Jack Edmonds
(1965). In today’s terminology and notation, the class of all search problems is called
“NP,” whereas the search problems fathomable in polynomial time constitute the sub-
class “P.” Whether P = NP – that is, whether this dichotomy between exponential and
polynomial search is real or fictional, an artifact of our limited ability to devise fast
algorithms – has since been recognized as the most important and deep problem in
computer science, if not in all mathematics.

Fifteen years later, Stephen Cook (1971), who was not aware of Gödel’s 1956 letter,
showed that a quantitative form of the Entscheidungsproblem called “satisfiability”
is universal for NP; that is to say, it is “NP-complete.” Leonid Levin (1973) had a
similar insight independently, if a little later. The proofs can be considered a quantita-
tive analogue of Turing’s (1936) simulation of computation by first-order logic. Thus
Gödel’s question of whether proofs can be discovered in time proportional to Lc for
some constant c can be seen to coincide with asking whether P = NP. The great man
had anticipated not only this momentous question but also the central role logic would
play in its treatment.

7.5 On Negative Results and Gödel’s Influence

Few computer scientists today agree with the optimism regarding the P vs. NP question
apparent in Gödel’s 1956 letter. NP-completeness of a problem is now considered
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concrete evidence of intractability. The holy grail of computer science research today
is a proof that P �= NP.

This would be a negative result because it states that certain problems cannot be
solved in polynomial time. As computer science is about the power and limitations of
computation, negative results have been a major part of the field’s research agenda and
tradition since the very beginning. Indeed, the field’s birth certificate, so to speak, is
a negative result: Alan Turing (1936) proved that the halting problem (the problem of
telling whether a given program will eventually terminate) is undecidable (it cannot be
decided by a computer program). Over subsequent decades, as the field faced computa-
tional challenges of increasing variety and ambition, which had to be met with limited
computational resources, negative results became an important tool that helped focus
the research effort on what could actually be achieved. Even though negative results
are present in many other fields (e.g., recall the impossibility of squaring the circle or
solving quintic equations by radicals, Heisenberg’s uncertainty principle, and Arrow’s
theorem), it is also true that in no other field (besides logic, that is) are negative results
such a systematic and integral part of the field’s research methodology and culture,
and of course, the mother of all negative results is precisely Gödel’s incompleteness
theorem (of which Turing’s halting problem can be seen as a sharpening). In this sense,
Gödel has been a major source of inspiration to theoretical computer scientists.6

But Gödel’s (1931) early work also contains several specific technical ideas that can
be ex post recognized as computational. In his proof of the incompleteness theorem,
Gödel uses primitive recursive functions, a class of functions from natural numbers
to natural numbers (including the familiar functions of addition, multiplication, etc.),
each of which can be defined, in an unmistakably algorithmic way, on the basis of
certain very elementary functions; in terms of other previously defined functions; or
even in terms of the function itself, albeit on smaller arguments. The primitive recursive
functions, which had already been known to Ackermann and others, were extended
in the hands of Kleene (1936), who arrived at one of the important equivalent ways
of defining computation discovered during the 1930s (as recounted in Section 7.2).
Gödel’s (1940) proof of the consistency of the continuum hypothesis employs what is
essentially an extension of the primitive recursive functions to sets.

Gödel’s proof of the incompleteness theorem also relies on arithmetization, that
is, on representing syntactic elements, such as logical terms, formulas, and proofs, as
numbers. As it turns out, arithmetization has also been used crucially in theoretical
computer science research. To mention only two celebrated examples, Adi Shamir’s
(1992) “IP=PSPACE” proof is an interactive algorithm for establishing that a particular
quantified Boolean formula is satisfiable that works by first translating the formula into
a complex arithmetic expression involving products and sums and then establishing
that the expression evaluates to something different from zero. The PCP theorem of
Arora et al. (1998) encodes a satisfying truth assignment to a Boolean formula in
an ingenious and sophisticated way that has the counterintuitive property that errors
(deficiencies in either the satisfaction part or the encoding) are either completely absent
or are ubiquitous and so can be detected with high probability by rote sampling.

6 Indeed, the most prestigious award for a research contribution in theoretical computer science is called the
“Gödel Prize.”
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It is hard to discern the extent to which Gödel’s proof of the incompleteness theorem
was in any way an inspiration for these proofs. Certainly they are both very different
in style from Gödel’s arithmetization, which is, in some sense, tighter than both those
proofs just outlined in that Gödel then turns around and closes the loop by looking at
(properties of) the numbers resulting from his arithmetization as syntactic elements,
something that does not occur clearly in either of the other cases. The next section
recounts a more recent, and very different, use of arithmetization in the investigation of
the complexity of Nash equilibria (Daskalakis et al., 2006), for which I can positively
attest that Gödel’s proof was, to a certain extent, an inspiration.

7.6 Latter-Day Arithmetization: Equilibria in Games

Two years before he met Gödel at Königsberg, von Neumann (1928) – building, as
was his habit, on much less conclusive earlier work, this time by Emile Borel (1921) –
had proved his famous min-max theorem: every two-player zero-sum game has an
equilibrium.

We pause here to remind the reader of certain basic concepts from game theory:
a game is a situation in which two or more players interact, each with a finite set
of options (strategies). Once all players choose one strategy each, the payoff to each
player, a real number, is determined. A game is zero-sum if, for any combination of
strategies, the sum of the payoffs is zero, that is, no net payment ever enters or leaves
the system. When the players choose, independently, a randomized strategy each (i.e.,
a distribution over their strategy set), then it is routine to calculate the expected payoff
for each player. A best response of a player, given a strategy choice (randomized or
pure) for all other players, is a strategy (again, pure or randomized) that maximizes the
player’s expected payoff. An equilibrium is a set of strategies (randomized or not), one
for each player, each of which is a best response to all the rest taken together.

The beginning of game theory coincides with the publication of the book by John
von Neumann and Oscar Morgenstern (1944); with this it became apparent that the
case treated by von Neumann in his 1928 paper (namely, that of two-player, zero-sum
games) is far too specialized. The question arose, are there more general contexts in
which equilibria are guaranteed to exist?

Five years later, an ingenious graduate student at Princeton named John F. Nash
(1951) established a sweeping result stating that “all games have a randomized equi-
librium” – an existence theorem so momentous that the concept whose existence was
established has since been called the “Nash equilibrium.”

Games are used to model complex and consequential situations, and the development
of game theory coincided with that of the computer era. Therefore it is no surprise that
ever since Nash’s proof, researchers have strived to develop algorithms for finding the
equilibria guaranteed to exist by Nash’s theorem (given data representing the players’
utilities for each strategy combination); however, none of the algorithms developed for
this problem is efficient; that is to say, none required only polynomial time. Whether
the problem of computing Nash equilibria is in P became a persistent open question
(for the special case of two-person, zero-sum games, the answer is positive via the
min-max theorem and linear programming).
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In search of an algorithm for finding Nash equilibria, it is natural to examine Nash’s
existence proof and determine whether it can be turned into an algorithm, that is, to
see to what extent the proof is constructive. Unfortunately, this leads nowhere: Nash
proved the existence of equilibria by a clever reduction to Brouwer’s (1910) fixed-point
theorem (stating that any continuous function f from any compact set, such as the unit
cube, to itself has a fixed point: a point x such that f (x) = x), another important
existence theorem whose proof is notoriously nonconstructive. Therefore computer
scientists focused, predictably, on the complexity of finding a Brouwer fixed point,
and it soon became apparent that this is, in many ways, a computationally difficult –
“intractable” – task (Hirsch et al., 1989; Papadimitriou, 1994).7 In other words, it is
unlikely that Brouwer fixed points can be found in polynomial time. The question then
became, is Nash’s reliance on Brouwer’s theorem inherent, or is there a different, more
constructive proof of Nash’s theorem?

This question was recently resolved (Daskalakis et al., 2006): there is a (polynomial)
reduction from Brouwer’s fixed points to Nash equilibria, and hence the two problems
are computationally equivalent. Finding Nash equilibria is an intractable problem, and
to return to our concerns in this chapter, this reduction relies crucially on a particular
kind of arithmetization. Some highlights of the construction follow (see Daskalakis
et al. (2006) for the complete proof and Papadimitriou (2007) for a more extensive
overview as well as for a review of related work).

We start from an (appropriately represented) function f from the three-dimensional
unit cube to itself (in three dimensions, the Brouwer fixed-point problem has already
attained its full computational generality). Our plan is to create a game Gf such that
there is a natural correspondence between the Nash equilibria of Gf and the fixed
points of f. The game Gf has many players (the number of players is later reduced to
four by a different maneuver; actually, it was ultimately lowered to two in subsequent
work (Chen and Deng, 2006)).

Each player in Gf has two strategies, and thus the mixed strategy of each player
can be considered a number in [0,1] – setting the basis for our arithmetization. Three
distinguished players represent the three coordinates (x, y, z) of a point in the cube.
The plan is to create a game in which, at any Nash equilibrium, these three players
must represent a fixed point of f.

To achieve this, we create games that add, multiply, compare, and so on; that is,
small games are defined, typically with two “input” players, one “output” player, and
one or two other “internal” players, such that at any Nash equilibrium of the game of
the output player (considered as a number, as explained earlier) is the product (or the
sum, or the maximum, etc.) of the input players (also considered as numbers). These
games are then combined to synthesize a complex game Gf that effectively computes
the function f at the point (x, y, z) and (after overcoming a few further complications)

7 The intractability of the problem of finding a Brouwer fixed point, as well as a Nash equilibrium, differs from
NP-completeness (the usual concept of intractability in computer science) in important ways, having to do
with the fact that in contrast with all search problems known to be NP-complete, fixed points and equilibria
are guaranteed to exist. As a result, these problems are intractable in a sense that is both weaker and more
sophisticated than NP-completeness; see Papadimitriou (1994, 2007) and Daskalakis et al. (2006) for extensive
discussions of this point.
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forces the Nash equilibria of Gf to coincide with the fixed points of f , completing the
proof.

7.7 Epilogue

Kurt Gödel, the greatest logician since Aristotle, starved himself to death in a crisis
of paranoia.8 Emil Post died of complications from electroshock treatment for his
depression. Georg Cantor was in and out of mental hospitals for much of his life,
suffering from bipolar disorder. According to Gian-Carlo Rota (1997, 4):

It cannot be a complete coincidence that several outstanding logicians of the twentieth
century found shelter in asylums at some time in their lives: Cantor, Zermelo, Gödel,
Peano, and Post are some.

Although I am aware of no justification for the presence of Ernst Zermelo or Giuseppe
Peano in Rota’s list, the lineup is devastating indeed. Furthermore, Luitzen Egbertus
Jan Brouwer, the founder of intuitionistic logic (a point of view that scoffed at the
foundations quest) and who, incidentally, introduced Gödel to logic during a 1927 visit
to Vienna, died paranoid.9 If one also recalls that David Hilbert and Bertrand Russell
both had schizophrenic sons, then the connection between the foundations quest and
insanity becomes a mystery that cannot be easily dismissed.

But the story of the foundations quest and its aftermath leading to the computer
seethes with human suffering that goes beyond the tortured minds of many of its
protagonists (the book by Martin Davis (2000) is a wonderful account of all this).10

It unfolded through two world wars and periods of peace that were not much better.
Many of its participants fled the rise of the Third Reich, whereas some, like Hilbert,
did not – perhaps more tragically. Even though Gottlob Frege’s reputation survived
the destruction of his magnum opus in Russell’s hands, it has been marred forever by
his later anti-Semitic writings. John von Neumann died, in his early fifties and a few
months after receiving Gödel’s letter (which he is not known to have answered), of
cancer – probably the result of radiation exposure that he suffered in his capacity as the
architect not of the computer but of the U.S. hydrogen bomb. Finally, Alan Turing, the
man who contributed as much as anybody to the advent of the computer – and possibly
to the war effort – was hunted to his death, on account of his homosexuality, by the
British establishment’s unimaginable cruelty, bigotry, and ingratitude.

8 Apostolos Doxiadis’s play Seventeenth Night recounts Gödel’s tragic end in a manner that is both touching
and mathematically meaningful.

9 John Nash, though certainly not a logician, did seminal work in game theory, the study of rational strategic
behavior – a field that is arguably the rough analogue of logic for the second half of the twentieth century,
the time of the rise of capitalism and the advent of the cold war, during which foundations were no longer
contemplated or sought. He, too, suffered a mental breakdown, as famously described in A Beautiful Mind:
The Life of Mathematical Genius and Nobel Laureate John Nash, by Sylvia Nasar (Simon and Schuster, 1998).

10 The graphic novel LOGICOMIX (Bloomsbury, 2009), written by Apostolos Doxiadis and me, with art by
Alecos Papadatos and Annie di Donna, tells the story of logic in the twentieth century, focusing on the
foundations quest and the advent of the computer from Bertrand Russell’s point of view and featuring Kurt
Gödel.
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Poincaré, H. (1914). Wissenschaft und Methode. Leipzig, Germany: Teubner.
Post, E. (1936). Finite combinatory processes: Formulation 1. Journal of Symbolic Logic, 1, 103–5.
Rota, G. (1997). Indiscrete Thoughts. Boston: Birkhäuser.
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CHAPTER 8

From the Entscheidungsproblem
to the Personal Computer –

and Beyond

B. Jack Copeland

Gödel’s classic paper of 1931 did not settle Hilbert’s Entscheidungsproblem. The young
logician Alan Turing took up the problem and, in the course of his attack, conceived
the basic principle of the modern computer – the idea of controlling the machine’s
operations by means of a program of coded instructions stored in the computer’s
memory. The transition from mathematical logic to electronic hardware took twelve
years (1936–1948), and Turing played a central role in this transformation.

In a reference to Turing’s famous paper of 1936, “On Computable Numbers, with
an Application to the Entscheidungsproblem,”1 one of the pioneers of the electronic
computer, John Womersley, aptly described the new machines as “Turing in hardware”
(Womersley, 2005 [1946], 39). With Gödel’s (1931) introduction of the idea of repre-
senting logical and arithmetical statements as numbers, together with his foundational
contributions to recursion theory, the new machines might also be described, in a more
distant sense, as “Gödel in hardware.” Gödel himself, however, took little interest in
the development of the electronic computer (Wang, 1987, 171).

By what steps did the logicomathematical results of the 1930s lead to the modern
stored-program digital computer? The answer offered by computing folklore runs
“von Neumann . . . ENIAC . . . EDVAC. . . . Princeton”; the true story is rather different,
however. This chapter charts the development of the electronic stored-program digital
computer, from the extraordinary Colossus computers built for code breaking during
World War II to the first successful run of a stored program in 1948. Turing’s own
Automatic Computing Engine (ACE), the fastest of the pioneer machines, became a
foundation stone of the developing British computer industry and was the inspiration for
the earliest single-user desk-side computers – the first personal computers. The epilogue
compares Gödel’s and Turing’s views on the relationship between computation and
mathematics.

1 Turing’s paper is incorrectly stated to have been published in 1937 in Gödel’s Collected Works (see, e.g., vol.
1 (1986), 456) as well as in Andrew Hodges’ (1992) biography of Turing. The circumstances of publication of
Turing’s paper are described in Copeland (2004, 5).
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8.1 Turing and the Entscheidungsproblem

Gödel’s 1931 paper did not settle Hilbert’s decision problem for the first-order predicate
calculus. In fact, given Church’s thesis, Gödel’s proof of theorem X of the paper does
entail the unsolvability of the decision problem, but this was not noticed until much
later. (It seems that the point was first noted by Martin Davis (1965; see also see Kleene,
1986, 136).) It is probably fortunate that Gödel did not settle the decision problem in
1931, for if he had, then the young logician Alan Turing would not have taken it up, and
the history of the computer might have unfolded quite differently (and perhaps much
less satisfactorily, in the absence of Turing’s fundamental concept of universality).

Hilbert’s Entscheidungsproblem (decision problem) for the engere Functionenkalkül
K (first-order predicate calculus), as stated by Turing, is the following: is there a general
(mechanical) process for determining whether a given formula A of the functional
calculus K is provable (Turing, 1936, 259; also in Copeland, 2004, 84). Turing heard
of the Entscheidungsproblem in lectures given at Cambridge by Max Newman (a
Fellow of St. John’s College). Turing, who went up to King’s College in October
1931 to read mathematics and was elected a Fellow of King’s in spring 1935 at the
age of only twenty-two, attended Newman’s advanced lectures on the “Foundations of
Mathematics” from January to March 1935.2 Yorick Smythies attended this course of
lectures in 1934 and took detailed notes: Newman covered the Hilbert program, the
propositional and predicate calculus, cardinals, the theory of types and the axiom of
reducibility, Peano arithmetic, Hilbert on proving consistency, and Gödel’s first and
second incompleteness theorems.3 Newman mentioned that the Entscheidungsproblem
had been settled only in the special case of monadic expressions. As everyone knows,
Turing took on the Entscheidungsproblem and showed it to be unsolvable, along the
way inventing the universal Turing machine. In a single brilliant paper, Turing ushered
in both the modern computer and the study of unsolvability (the area of mathematical
logic concerning problems “too hard” to be solvable by the universal Turing machine).

Newman’s contribution was not limited to bringing the Entscheidungsproblem to
Turing’s attention: in the lectures, Newman defined a constructive process as one that
a machine can carry out. He explained in an interview:

I believe it all started because [Turing] attended a lecture of mine on foundations of
mathematics and logic. . . . I think I said in the course of this lecture that what is meant
by saying that [a] process is constructive is that it’s a purely mechanical machine – and I
may even have said, a machine can do it. . . .

And this of course led [Turing] to the next challenge, what sort of machine, and this
inspired him to try and say what one would mean by a perfectly general computing
machine.4

“On Computable Numbers” is the birthplace of the fundamental principle of the
modern computer, the idea of controlling the machine’s operations by means of a

2 Cambridge University Reporter, April 18, 1935, p. 826.
3 Notes taken by Yorick Smythies during Newman’s “Foundations of Mathematics” lectures in 1934. St. John’s

College Library, Cambridge.
4 Max Newman in a tape-recorded interview with Christopher Evans (“The Pioneers of Computing: An Oral

History of Computing,” London: Science Museum (a set of tape recordings) also quoted in Copeland (2004,
206; transcription by Copeland).
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program stored in the computer’s memory. Place a different program on the memory
tape of the universal Turing machine, and the machine will carry out a different compu-
tation. It was a fabulous idea. It led to the now ubiquitous “one-stop-shop” computer:
the single slab of machinery of fixed structure that makes use of symbolic instructions
stored in rewritable memory to become a word processor, or desk calculator, or chess
opponent, or photo editor – or any other machine we have the skill to create in the form
of a program. Turing’s universal machine has changed the world.

After Newman learned of Turing’s universal computing machine early in 1936, he
developed an interest in computing machinery, which he described as being, at that
time, “rather theoretical.”5 Turing himself was interested right from the start in building
a universal computing machine (Newman, 1954) but knew of no suitable technology.
It was not until his and Newman’s wartime days as code breakers at Bletchley Park that
the dream of building a miraculously fast, all-purpose, electronic computer took hold
of them. However, before turning to that side of the story, let us note what Gödel had
to say about Turing’s paper of 1936. (The final section of this chapter contains more
on this topic.)

Gödel described Turing’s analysis of computability as “most satisfactory” and “cor-
rect . . . beyond any doubt.”6 He also remarked, “We had not perceived the sharp con-
cept of mechanical procedures sharply before Turing, who brought us to the right
perspective” (Wang, 1974, 85). Gödel was not persuaded by Church’s thesis until he
saw Turing’s formulation. Kleene (1981, 59–61) wrote, “According to a November
29, 1935, letter from Church to me, Gödel ‘regarded as thoroughly unsatisfactory’
Church’s proposal to use λ-definability as a definition of effective calculability. . . . It
seems that only after Turing’s formulation appeared did Gödel accept Church’s thesis.”

It was Turing’s work, Gödel emphasized, that enabled him to generalize his incom-
pleteness result of 1931 (originally directed specifically at the formal system set out by
Whitehead and Russell in their Principia Mathematica (1910–1913)) to “every con-
sistent formal system containing a certain amount of finitary number theory” (Gödel,
1965, 71).

Turing, on the other hand – always a lone worker – seems to have paid little
attention to Gödel’s work in the course of his attack on the Entscheidungsproblem.
R. B. Braithwaite, another Fellow of King’s, wrote (in a letter to Margaret Boden,
October 21, 1982) of “Turing’s complete ignorance of Gödel’s work when he wrote
his ‘Computable Numbers’ paper,” adding, “I consider I played some part in drawing
Turing’s attention to the relation of his work to Gödel’s.”

8.2 Early Days

In the Victorian era, the farsighted Charles Babbage dreamed of building a huge,
general-purpose calculating machine, a single “engine” (as he called it) that could take
over the work of hundreds of human calculators. It was the railway age, and Bab-
bage proposed to build computers from types of mechanical components then found

5 Newman interviewed by Evans, “The Pioneers of Computing: An Oral History of Computing.”
6 “Some Basic Theorems on the Foundations of Mathematics and Their Implications,” Collected Works, vol. 3

(1995), p. 304, and “Undecidable Diophantine Propositions,” Collected Works, vol. 3 (1995), p. 168.
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in railway engines and other Victorian industrial machinery. His first project was a
special-purpose machine, the Difference Engine, for the production of mathematical
tables (e.g., logarithm tables).7 In 1822, Babbage unveiled a working model of the
Difference Engine, but he never completed the full-scale machine. A still more am-
bitious proposal was Babbage’s Analytical Engine, an all-purpose mechanical digital
computer.8 Babbage emphasized that “the conditions which enable a finite machine
to make calculations of unlimited extent are fulfilled in the Analytical Engine” (Bab-
bage, 1989 [1864], 97). The Analytical Engine was never built, but a small model was
constructed just before Babbage’s death.

Despite being nonelectrical, Babbage’s Analytical Engine had many similarities
with modern computers, including the ability to branch “conditionally” according to
the result of a previous calculation. It was to have an arithmetic unit, which, in the idiom
of the time, Babbage called the “Mill,” and an internal memory, which Babbage called
the “Store.” The Engine was to be controlled by a program of instructions contained on
punched cards. Turing (1950, 439, 450) described the Analytical Engine as a “universal
digital computer” and said generously that “Babbage had all the essential ideas” of the
digital computer (see also Copeland, 2004, 446, 455).

Nevertheless, Babbage’s machine lacked a key feature of the universal Turing ma-
chine: in Turing’s machine, there is no fundamental distinction between program and
data. Arguably, it is the absence of such a distinction that demarcates a stored-program
computer from a merely program-controlled computer. As Robin Gandy (once Turing’s
student) put the point, Turing’s “universal machine is a stored-program machine
[in that], unlike Babbage’s all-purpose machine, the mechanisms used in reading a
program are of the same kind as those used in executing it” (1998, 90; emphasis added).

Post-Babbage, a number of purely mechanical computing machines were con-
structed, including a modified version of the Difference Engine, built and success-
fully marketed by the Swedes Georg and Edvard Scheutz. Babbage’s idea of an all-
purpose calculating engine was never forgotten. In conversation with me in 1996, T. H.
Flowers, who designed and built Colossus, the first large-scale electronic computer,
recalled Babbage’s ideas being discussed at wartime Bletchley Park (the British code-
breaking headquarters where Colossus was used). Babbage was an influence on the
American pioneer Howard Aiken (Aiken, 1982 [1937]), whose giant electromechan-
ical Automatic Sequence Controlled Calculator at Harvard is sometimes said to have
been the first computer. Aiken’s machine did not embody the stored-program con-
cept, however. Instructions were fed in on punched tape (echoing Babbage’s scheme
for programming the Analytical Engine, where instructions were to be fed in on
punched cards connected together with ribbon to form a continuous strip). Control
was via the punched tape rather than via modification of internally stored instruc-
tions (as with modern computers). For example, if a program loop were required,
this would be achieved by feeding the same instructions repeatedly through the tape
reader.

7 For further information on the Difference Engine, see Campbell-Kelly (1989), Randell (1982), and Swade
(2001).

8 For further information on the Analytical Engine, see Bromley (1982), Lovelace and Menabrea (1953 [1843]),
and Swade (2001).
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Figure 8.1. Part of Babbage’s Difference Engine. This working fragment of the planned ma-
chine – one-seventh of the calculating section – has been described as the “first successful
physical realisation of automatic calculation” (Swade, 2010). Assembled in 1832, it was the
only part of the Engine that Babbage ever completed. Science and Society Picture Library,
Science Museum, London. Reproduced with permission.

Aiken’s computer was not electronic. Electromechanical equipment, such as the
Automatic Sequence Controlled Calculator, was based on the relay, a small switch
consisting of a mechanical circuit breaker (a metal rod) that is operated by a magnetic
field created by electric current passing through a coil of wire. Relays are clunky and
slow in comparison with electronic equipment. Others besides Aiken – notably Turing
himself, George Stibitz at Bell Telephone Laboratories, and Konrad Zuse in Berlin –
produced electromechanical computing machines in the preelectronic era. None of
the electromechanical computers embodied the stored-program concept, however. Pro-
gramming was done by rerouting wires (e.g., by means of plug boards and switches).
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To Zuse belongs the honor of having built the first general-purpose programmable
digital computer. His electromechanical Z3 (as it was later called) was working in 1941
(Zuse, 1980). Turing’s Bombe, designed during the last months of 1939, was a special-
purpose electromechanical computer. The Bombe’s function was to search through the
possible settings of the German Enigma machine until settings were found that would
decrypt the enemy’s message.9 The prototype Bombe (named simply “Victory”) was
installed at Bletchley Park in spring 1940 and was used exclusively by Turing and
his unit in their efforts to break German U-boat Enigma messages. Like the other
electromechanical computers of the era, the Bombe offered superhuman speed: it
could carry out in hours a search that would take a human clerk weeks or months.

Superhuman–but feeble compared with the speed of the electronic machines that
would soon be developed. Electronic valves (vacuum tubes) operate very many times
faster than relays because the valve’s only moving part is a beam of electrons. It was
the development of high-speed digital techniques using valves that made the modern
computer possible. Valves were used originally for purposes such as amplifying radio
signals. The output would vary continuously in proportion to a continuously varying
input, for example, a radio signal representing speech. It was the novel idea of using
the valve as a very fast switch, producing pulses of current – pulse for 1, no pulse for
0 – that was the route to high-speed digital computation.

8.3 Colossus: The First Large-Scale Electronic Computer

Newman spent the early years of the war lecturing in Cambridge. He and Turing kept
in close touch after Turing left Cambridge for Bletchley in 1939. Turing’s first wartime
letter to Newman starts, “Dear Newman, Very glad to get your letter, as I needed
some stimulus to make me start thinking about logic.”10 Despite the pressures of code
breaking, Turing found time to collaborate with Newman on a paper on Church’s
theory of types (Newman and Turing, 1942). If he had a night off-duty from Enigma,
Turing would be seen “coming in as usual . . . doing his own mathematical research at
night, in the warmth and light of the office, without interrupting the routine of daytime
sleep,” recalled fellow code breaker Joan Murray, née Clarke (Murray, 1993, 117). In
1942, Newman was also beckoned by Bletchley Park. He wrote to the Master of St.
John’s College to request leave of absence, and at the end of August, he joined Colonel
John Tiltman’s Research Section (Newman, 2006). Tiltman, an old hand, had been
breaking Russian, Japanese, and German ciphers since 1920. When Newman arrived
at Bletchley, Tiltman’s group was attempting to break the German cipher machine that
the British named “Tunny.” Tunny was the raison d’être of Colossus.

Colossus was designed and built by telephone engineer Tommy Flowers, a neglected
pioneer of computing.11 Before the war, he made groundbreaking use of electronic
valves. In his laboratory at the Post Office Research Station at Dollis Hill (in North

9 See “Enigma,” “History of Hut 8 to December 1941,” and “Bombe and Spider” in Copeland (2004).
10 A selection of their letters is in Copeland (2004, chap. 4); an extract from one is in Section 8.5 below.
11 Material relating directly to Flowers derives from (1) Flowers in interviews with Copeland, 1996–1998, and

(2) Flowers in an interview with Christopher Evans in 1977 (see Endnote 4).
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Figure 8.2. Operators at the controls of Flowers’ Colossus. The long loop of punched paper
tape that is wound around the pulley wheels contained the encrypted German message.
Colossus broke its first message at Bletchley Park in January 1944. British National Archives
Image Library, Kew. Crown copyright. Reproduced with permission.

London), Flowers designed telecommunications equipment involving as many as three
thousand to four thousand valves per installation. Outside Flowers’ small group, few
knew that electronic valves could be used reliably in such large numbers. According
to conventional wisdom, valves were too unreliable to permit large-scale use. Each
valve contained a hot, glowing filament, rather like a lightbulb, and the delicacy of this
filament meant that valves would suddenly cease operating. The greater the number
of valves in the equipment, the shorter the mean time to failure. Large installations
were therefore not practical, or so it was believed. This belief was largely based on
experience with radio receivers and the like, which were switched on and off frequently.
However, Flowers discovered that as long as valves were left on continuously, they
were in fact more reliable than relays – and, of course, immensely faster.

The earliest known use of valves for digital calculation was by John Atanasoff
at Iowa State College, although his machine was on a much smaller scale than the
equipment built by Flowers. During 1939–1942, Atanasoff constructed a small, special-
purpose electronic digital computing machine for solving a certain type of mathematical
equation (Atanasoff, 1982 [1940]). Unfortunately, his computer never worked properly
because errors were introduced into the calculations by a persistently buggy card reader;
but the electronic parts of this three-hundred-valve machine did function satisfactorily.
Atanasoff left the computer incomplete when he became involved in war work in 1942,
and he never returned to it. In 1941, John Mauchly paid a visit to Atanasoff’s Iowa
laboratory and was greatly interested in his nascent electronic digital computer (Burks,
2003, 52–53). With engineer Presper Eckert, Mauchly went on to design and build the
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ENIAC (Electronic Numerical Integrator and Computer); the story of the ENIAC will
be picked up again later in this chapter.

Digital electronics was a little-known field in those days. Flowers told me that at
the outbreak of war with Germany, he was possibly the only person in Britain who
realized that valves could be used for large-scale high-speed digital computing. So he
turned out to be the right man in the right place when he was ordered to join Turing at
Bletchley Park. Ironically, Flowers was brought into the code-breaking work because
of his vast experience with relays, not because of his knowledge of electronics, and
his first job was to design electromechanical equipment required for use against the
Enigma cipher machine.

Flowers built Colossus to attack not Enigma but Tunny, a very different cipher
machine. (Tunny was known to its German manufacturers, the Lorenz company, as the
Schlüsselzusatz – “cipher attachment” – SZ40/42.) The story of Enigma is well known,
but the story of Tunny has only recently been made public.12 Tunny was considerably
more sophisticated than Enigma. The Enigma machine was first marketed in 1923, and
even though extensive modifications were introduced by the German military, Enigma
was no longer state-of-the-art equipment by the time war broke out in 1939.

The Enigma machine was clumsy to use: three operators were required to encipher
and send a message. The cipher clerk typed the ordinary German (the “plaintext”) at
the keyboard of the Enigma machine, while his assistant read the enciphered output
(the “ciphertext”) via an arrangement of twenty-six small lamp bulbs located near the
keyboard. When a lamp bulb lit up, it illuminated a stenciled letter. As the letters of the
ciphertext appeared one by one at the lamps, the clerk wrote them down on paper. Once
encipherment was complete, the clerk handed the paper to the third player, the radio
operator, who converted the enciphered message into Morse code and transmitted it.

Clearly there was room for improvement, and in 1940, the Lorenz company produced
the thoroughly up-to-date Tunny machine. Only one operator was required at each
end of the radio link. The sending operator typed the plaintext at the keyboard of a
teleprinter (teletypewriter) that was attached to the Tunny machine, and the rest was
automatic. The encrypted output of the Tunny machine went directly to air. Morse code
was not used at all. Decryption was also automatic, and neither the sending nor the
receiving operator ever even saw the “ciphertext.” Unlike Enigma, Tunny carried only
the highest grade of intelligence – messages from Hitler and the Army High Command
to the generals in the field. The Tunny decrypts produced by Bletchley Park contained
intelligence that changed the course of the war in Europe.

Messages from the unknown new machine were first intercepted by the British
in June 1941. At first, nothing could be read, but then Tiltman scored a tremendous
success, managing to break a message of about four thousand keyboard characters
in length. Tiltman had very little to go on. Tunny was believed to encipher messages
expressed in international binary teleprinter code (which was in widespread commercial
use at that time). In teleprinter code, each keyboard character is expressed in the form

12 In my 2006 book Colossus and in a two-volume report written at Bletchley Park in 1945 and declassified in
2000, General Report on Tunny (National Archives/Public Record Office, document reference HW 25/4 (vol.
1), HW 25/5 (vol. 2)). A digital facsimile of the complete General Report on Tunny is in The Turing Archive
for the History of Computing: http://www.AlanTuring.net/tunny report.
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Figure 8.3. Tunny. When attached to a teletypewriter/teleprinter, the Tunny machine encrypted
the text that the operator typed at the keyboard. The rims of the Tunny’s encoding wheels
are visible behind the see-through panel. Picture Library, Imperial War Museum, London.
Photograph restored by Jack Copeland and Dustin Barrett. Reproduced with permission.

of five zeroes and ones (or dots and crosses, in Bletchley notation). Figure 8.4 shows
a wartime memory aid listing the pattern of dots and crosses associated with each
keyboard character. It also seemed likely that Tunny was an additive cipher machine.
An additive machine would generate within itself a stream of letters and other keyboard
characters, and this was automatically added to the plaintext to form the ciphertext. At
Bletchley, this internally generated stream was called the “key.” Symbolically, P + K
= Z, where P is the plaintext, K is the key, and Z is the ciphertext.

An additive system should have the property that Z + K = P (i.e., (P + K) + K =
P) so that the receiver’s machine can decrypt the message by producing the same key
and adding it to the ciphertext. For the receiving machine to generate the same key, the
receiving operator had to know which settings of the machine had been used by the
sender to generate the key. There were various ways of arranging this. For example,
the sender might transmit these settings to the receiver (in a suitably masked form),
or the sender and receiver might be issued identical instruction books that would tell
them what settings should be used for their first message on a particular day, and then
for their second message on that day, and so on. Initially, the former method was used
by Tunny operators, but later the second, more secure method was introduced.

The property Z + K = P was achieved in Tunny by the fact that, at the bit level, letter
addition was Boolean exclusive disjunction. That is to say, the teleprint equivalents of
keyboard characters were added in accordance with the rules: dot plus dot is dot, cross
plus cross is dot, dot plus cross is cross, and cross plus dot is cross. For example, A
(xx•••) + B (x••xx) = G (•x•xx). (A + B) + B = A: if B is added to G, A is retrieved.

Sometimes the sending Tunny operator would foolishly use the same settings for two
messages. At Bletchley, this was called a “depth.” In the early days of the Tunny system,
depths could easily be spotted by the British interceptors listening to the German radio
transmissions, because the sending operator also broadcast the settings used to produce
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Figure 8.4. A wartime memory aide showing the teleprint code for each of the thirty-two
keyboard characters used in the Tunny system. In modern notation, the dot would be written
“0” and the cross “1.” Recreated digitally from a typed card by Jack Copeland and Olwen
Harrison.

the key (in masked form). Depths were often the result of something going wrong
during the encryption and transmission of a message. The German operator would start
again from the beginning of the message, using the same settings. If the message were
repeated identically, the depth would be of no help to the code breakers. If, however, the
sending operator introduced typing errors during the second attempt, or abbreviations
or other variations, the depth would consist of two not-quite-identical plaintexts, each
encrypted by means of exactly the same key – a code breaker’s dream.

It was such a depth that Tiltman decrypted in late summer 1941, giving the code
breakers their first entry into Tunny. On the hypothesis that Tunny was additive, he
added the two ciphertexts. If the hypothesis were correct, this would have the effect of
canceling out the key and would produce a sequence of keyboard characters consisting
of the two plaintexts added together character by character (because Z1 + Z2 = (P1 +
K) + (P2 + K) = ((P1 + P2) + K) + K = P1 + P2). Tiltman managed to prize the
two individual plaintexts out of this sequence. It took him ten days. He had to guess at
words of each message, and Tiltman was a very good guesser. Each time he guessed
a word from one message, he added it to the characters at the relevant place in the P1

+ P2 sequence, and if the guess was correct, an intelligible fragment of the second
message would pop out. For example, adding the probable word geheim (secret) at a
particular place in the sequence revealed the plausible fragment “eratta” (Bauer, 2006,
372). This short break could then be extended to the left and right. More letters of
the second message are obtained by guessing that “eratta” is part of militaerattache
(military attaché), and if these letters are added to their counterparts in the P1 + P2
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sequence, further letters of the first message are revealed, and so on. Eventually, Tiltman
achieved enough of these local breaks to realize that long stretches of each message
were the same, and so he was able to decrypt the whole thing. By adding one of the
resulting plaintexts to the ciphertext, he was then able to extract the four thousand or
so characters of key that had been used to encrypt the message (since P + Z = K).

Breaking one message was a far cry from knowing how the Tunny machine worked.
The British knew the internal workings of the military Enigma machine even before
the war began (thanks to the Poles), and then a number of Enigmas were captured on
land and sea after hostilities had commenced. Tunny, on the other hand, was a complete
blank: no machine had been captured, nor would one be until the war was almost over.
In January 1942, William Tutte, a member of the Research Section, was able to deduce
the structure of the Tunny machine by studying the key that Tiltman had retrieved. It
was one of the most astonishing pieces of cryptanalysis of the war.

Tutte deduced that the key was produced by the addition, within the machine, of
two separate streams of characters. He inferred further that each of these two streams
was produced by a different set of five wheels (five because there are five bits in the
teleprint representation of each character). He called the first set the chi wheels and the
second set the psi wheels (after the Greek letters χ andψ). The chi wheels, he revealed,
moved regularly, whereas the psi wheels moved in an irregular way, under the control
of two further wheels (“motor” wheels). Tutte’s secret deductions saved untold lives.

Breaking a cipher system requires two steps. First, it is necessary to discover the
structure of the cipher machine, and this Tutte had now done. (This first step is today
known as breaking the machine.) Second, a method must be found for breaking the
messages as they are delivered by the interception operators, and the method must work
swiftly enough to enable the message traffic to be deciphered before the intelligence
is out of date. It was Turing who devised the first method used against Tunny, which
became known simply as Turingery.13 Turingery was the third of the three fundamental
contributions that Turing made to the defeat of Nazi Germany, along with the Bombe
and his unveiling of the special features of the system of Enigma used by the Atlantic U-
boats.14 Mathematician Jack Good, who worked on both Enigma and Tunny, observed,
“I won’t say that what Turing did made us win the war, but I daresay we might have
lost it without him.”15

Turingery depended on a technique, introduced by Turing, called “differencing” or
“delta-ing” (after the Greek letter �), a process of sideways addition. To delta the four
characters ABCD, one adds A to B, B to C, and C to D (producing three characters). It
might easily be thought that the process of adding the letters of an encrypted message
together in this way would scramble any information that was present, but Turing
showed that delta-ing would in fact reveal information that was otherwise hidden.
Delta-ing was the basis, not just of Turingery, but of every main algorithm used in
Colossus – the entire computer-based attack on Tunny flowed from this basic insight
of Turing’s. Turingery, though, was itself a paper-and-pencil method, and it depended
on insight – on what you “felt in your bones,” Tutte said.

13 Turingery is described in full in Copeland (2006, app. 6).
14 See “Enigma” in Copeland (2004).
15 Good in an interview with Pamela McCorduck (1979, 53).
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Tutte described Turingery as “more artistic than mathematical” (Tutte, 2006, 360).
He wanted a method for breaking Tunny messages that required no use of what you
“felt in your bones” – the sort of method that a machine could carry out – and in
November 1942, he found it, using an ingenious extension of delta-ing.16 It was his
second great contribution to the attack on Tunny. However, there was a snag. Tutte’s
method required a huge amount of calculation. If the method were carried out by hand,
as Turingery was, it could take years to decrypt a single message. Tutte explained his
new method to Newman, and Newman suggested using electronic counters to do the
calculations. It was an Archimedean moment. Newman was aware that, before the war,
electronic counters had been used in the Cavendish Laboratory at Cambridge to count
radioactive emissions, and in a flash of inspiration, he saw that this technology could
be applied to the very different problem of breaking Tunny messages. He sold his idea
to the head of Bletchley Park (probably with Turing’s assistance) and was put in charge
of building a suitable machine.

The prototype of Newman’s machine, installed in 1943, was soon dubbed “Heath
Robinson,” after a cartoonist who drew absurd devices. Heath Robinson was largely
electromechanical – only the counters were electronic, and it contained no more than a
few dozen valves. Newman’s wonderful contraption proved the feasibility of carrying
out Tutte’s method by machine, but it was slow and prone to inaccuracy and break-
down. Meanwhile, Flowers made a daring proposal: an all-electronic machine. He had
been called in (at Turing’s suggestion) to help with the design of Heath Robinson’s
electromechanical logic unit. Flowers was skeptical from the start about whether the
Robinson’s relay-based design could give the code breakers the accuracy and speed
that they needed. He also knew that by using valves in large numbers, he could con-
veniently store information that, in Heath Robinson, had to be supplied by means of
wear-prone paper tape running through the machine. Flowers proposed an electronic
monster containing about two thousand valves.

Newman took advice, and he was told that such a large installation of valves would
never work reliably. Bletchley Park declined to support Flowers’ proposal. In his
laboratory at Dollis Hill, Flowers quietly got on with building the all-electronic machine
that he could see the code breakers needed. He and his team of engineers worked day
and night for ten months to build Colossus – worked until their “eyes dropped out,”
Flowers said. On January 18, 1944, Flowers’ lads took Colossus to Bletchley Park in
a truck. Flowers recalled:

I don’t think they really understood what I was saying in detail – I am sure they didn’t –
because when the first machine was constructed and working, they obviously were taken
aback. They just couldn’t believe it! . . . I don’t think they understood very clearly what I
was proposing until they actually had the machine.17

The name “Colossus” was apt – the computer weighed about a ton. At its trial runs,
the code breakers were astonished by the speed of the machine and by the fact that,
unlike Heath Robinson, Colossus would always produce the same result if given the

16 Tutte’s method is described in full in Copeland (2006, chap. 5 and app. 4).
17 Flowers in an interview with Christopher Evans in 1977 (see Endnote 4); quoted in Copeland (2006, 75;

transcription by Copeland).
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same problem again. Colossus began real work on the German messages on February
5, 1944. (Flowers noted laconically in his diary for that day that “Colossus did its first
job. Car broke down on way home.”) The function of Colossus was to strip away from
the ciphertext the component of the key that the five chi wheels had contributed (using
Tutte’s method). The resulting “de-chi” could almost always be broken rapidly by hand
because of distinctive patterns in the component of the key that was contributed by
the five psi wheels. These patterns were caused by the irregular movement of the psi
wheels – presumably, the Tunny machine’s designers had believed that this irregularity
would strengthen the machine, but in fact, it introduced a crucial weakness.

By the end of the war in Europe, ten Colossi were working at Bletchley Park, in a
section headed by Newman called simply the “Newmanry.” The Newmanry was the
world’s first electronic computing facility. When the fighting ceased, two Colossi were
retained for secret use by the code breakers, and the remainder were destroyed, on
Churchill’s orders.

That this reversal of scientific progress was unknown to the outside world hardly
lessens the magnitude of the blow. The Colossi could have become part of public
science. Flowers’ engineers would quickly have adapted them for new applications,
and they might have become the heart of a scientific research facility. This could have
been in operation even before the ENIAC first ran in December 1945 (two years after
the first Colossus). With eight massive electronic computers in the public arena from
mid-1945, the story of modern scientific computing would have begun very differently.
Who can say what changes this would have brought in its wake.

The secret of Colossus was a long time in coming out. Those associated with the
story went to great lengths to obey their orders to disclose nothing of what they knew.
Newmanry operator Catherine Caughey even feared going to the dentist in case she
talked while under the anesthetic! Jerry Roberts, who broke the de-chis delivered by
Colossus, regretted that when his parents died in the 1970s, they knew nothing of
the work in which he was engaged during 1941–1945 at Bletchley – work of such
importance that, in different circumstances, he might reasonably have expected a
knighthood from the British crown. When the two-volume 1945 General Report on
Tunny – which lays bare the whole incredible story of Colossus – was declassified
in 2000, Caughey’s great regret was that she could never tell her husband about her
other life in the Newmanry; he had died in 1975, knowing nothing of his wife’s
extraordinary work as an operator of the first large-scale electronic computer. Helen
Currie, whose job it was to produce the complete German plaintext after Roberts,
or one of his colleagues, had broken part of a de-chi, described the burden of being
unable to share her memories with her family: during the “years of silence,” she said,
her wartime experiences took on “a dream-like quality, almost as if I had imagined
them.”18 Newman’s son William (who himself worked in the computing industry) said
that his father spoke to him only obliquely about his war work and died “having told
little.” Given the secrecy, it is not so surprising that books on the history of computing
regularly state that the Eckert-Mauchly ENIAC was the first programmable electronic
computer.

18 Caughey, Roberts, Currie, and (William) Newman tell their stories in Copeland (2006, chaps. 13, 14, 18, 20).
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Figure 8.5. The ENIAC. Commissioned by the U.S. Army, the computer’s function was to
calculate gunnery tables. The ENIAC was built at the Moore School of Electrical Engineering
(part of the University of Pennsylvania) and was first worked in December 1945. Subsequently,
this pioneering electronic computer was used for a wide variety of applications. Collections
of the University of Pennsylvania Archives. Reproduced with permission.

In later life, Flowers was bitter about the secrecy. He said:

When after the war ended I was told that the secret of Colossus was to be kept indefinitely I
was naturally disappointed. I was in no doubt, once it was a proven success, that Colossus
was an historic breakthrough, and that publication would have made my name in scientific
and engineering circles – a conviction confirmed by the reception accorded to ENIAC,
the U.S. equivalent made public just after the war ended. I had to endure all the acclaim
given to that enterprise without being able to disclose that I had anticipated it. (Flowers,
2006, 82)

8.4 Next: The Stored Program

Colossus had no provision for storing a program of instructions internally (although
Flowers had read “On Computable Numbers” at Newman’s suggestion). It was pro-
grammed by means of plug boards and switches. This seems unbearably primitive from
today’s perspective, when Turing’s glorious stored-program world is taken for granted.
The larger ENIAC was programmed in much the same way: to set up the computer
for a different job, operators would spend a day or more rerouting cables and setting
switches.
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The rest of the world did not know about Colossus, but its impact on Turing and
Newman was colossal indeed: once they saw Flowers’ racks of electronic equipment,
it was, Flowers said, just a question of their waiting for an opportunity to present itself
for putting the universal Turing machine into practice. Colossus was the connection
between Turing’s paper of 1936 and his and Newman’s postwar projects to build a
stored-program computer. However, historians have often assumed that the pioneers of
computing uniformly drew their vision of electronic computation from the ENIAC.

The war over, Newman left Bletchley Park to take up the Fielden Chair of Mathe-
matics at the University of Manchester. Shortly after his arrival in Manchester, he wrote
to the Hungarian-American pioneer of computing John von Neumann. This letter made
it clear that Newman had formed the intention to build a computer for peacetime ap-
plications by 1944 and that he had planned to embark on this project just as soon as he
“got out” of Bletchley Park. Newman wrote:

I am . . . hoping to embark on a computing machine section here, having got very interested
in electronic devices of this kind during the last two or three years. By about eighteen
months ago I had decided to try my hand at starting up a machine unit when I got out. . . . I
am of course in close touch with Turing.19

In the first weeks of 1946, Newman applied to the Royal Society of London for a
large grant to construct an electronic computer “directed primarily to opening up new
fields of research in pure mathematics.”20 The application was successful, and Newman
founded his computing machine laboratory at Manchester in July 1946.

Von Neumann himself was at the center of the American effort to build an electronic
stored-program computer. He had read Turing’s “On Computable Numbers” before the
war,21 and when he became acquainted with the ENIAC project in 1944 (Goldstine,
1972, 182), it must have been obvious to him that the instructions making up a program
should be stored internally in the form of numbers. He was well aware of the “great
positive contribution of Turing” (as he described it in a 1946 letter to Norbert Wiener):
the discovery that “one, definite mechanism can be ‘universal.”’22 Von Neumann put
Turing’s concept of an all-purpose stored-program computer into the hands of electronic
engineers. (Newman would soon do the same at Manchester.) Von Neumann’s colleague
Stanley Frankel reported (in a letter to historian Brian Randell) that von Neumann
“firmly emphasized to me, and to others I am sure, that the fundamental conception
is owing to Turing.”23 Frankel added, “In my view von Neumann’s essential role was
in making the world aware of these fundamental concepts introduced by Turing.” Von
Neumann could hardly fail to have also been influenced by Gödel’s demonstration (in
his 1931 paper) that logical and arithmetical sentences can be expressed as numbers.

19 Letter from Newman to von Neumann, February 8, 1946; in the von Neumann Archive at the Library of
Congress (also quoted in Copeland, 2004, 209; a digital facsimile of the letter is in The Turing Archive for the
History of Computing: http://www.AlanTuring.net/newman vonneumann 8feb46).

20 Minutes of the Council of the Royal Society of London, May 1946.
21 Stanislaw Ulam in an interview with Christopher Evans in 1976 (see Endnote 4).
22 Letter from von Neumann to Wiener, November 29, 1946; in the von Neumann Archive at the Library of

Congress, Washington, D.C. (also quoted in Copeland, 2004, 209).
23 Letter from Frankel to Brian Randell, 1972 (first published in Randell, 1972). I am grateful to Randell for

giving me a copy of this letter.
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Figure 8.6. John von Neumann beside the Princeton computer at the Institute for Advanced
Study, Princeton, New Jersey. The computer’s high-speed memory is located in the row of
canisters level with von Neumann’s left hand – each canister contains a Williams tube memory
unit (named after its inventor, F. C. Williams). Photograph by Alan Richards. Archives of the
Institute for Advanced Study. From The Shelby White and Leon Levy Archives Center, Institute
for Advanced Study, Princeton, New Jersey. Reproduced with permission.

Von Neumann’s (1945) “First Draft of a Report on the EDVAC” set out, in rather
general terms, the first design for an electronic, all-purpose stored-program computer –
a Turing machine in hardware. However, the ill-fated EDVAC (Electronic Discrete
Variable Arithmetic Computer) was not operational until 1952 (Huskey, 1972, 702).
The ENIAC-EDVAC group broke up when von Neumann and his collaborators Eck-
ert and Mauchly fell out, following the appearance of “First Draft.” The cause of
the disagreement was that “First Draft” was distributed with only von Neumann’s
name on it (see, e.g., Stern, 1980). Eckert and Mauchly formed their own Electronic
Control Company and began work on their EDVAC-like BINAC (Binary Automatic
Computer), while von Neumann drew together a group of engineers at the Institute for
Advanced Study in Princeton, New Jersey. He primed them by giving them Turing’s
“On Computable Numbers” to read.24 Von Neumann’s Princeton computer, which
began working in 1951, was not the first of the early electronic machines, but it was
the most influential.25

24 Letter from Julian Bigelow to Copeland, April 12, 2002; see also Aspray (1990, 178).
25 The Princeton computer is described in Bigelow (1980).
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Meanwhile, in 1945, Turing joined London’s National Physical Laboratory (NPL)
to design an electronic, all-purpose stored-program computer. He was recruited by
Womersley, head of NPL’s newly formed Mathematics Division. Womersley had read
“On Computable Numbers” shortly after it was published, and at the time, he had
considered building a relay-based version of Turing’s all-purpose machine. As early as
1944, he was advocating the potential of electronic computing.26 Womersley named
NPL’s projected electronic computer the Automatic Computing Engine (ACE) – a
deliberate echo of Babbage.

Turing studied “First Draft” but favored a very different type of design. To maximize
the speed of the machine, he opted for a decentralized architecture, whereas von
Neumann had described a centralized design that foreshadowed the modern central
processing unit. Turing located different arithmetical and logical functions in different
places in the hardware rather than following von Neumann’s model of a single central
unit in which “everything happens.” His colleague James Wilkinson observed that
Turing was “obsessed” with making the computations run as fast as possible,27 and
once a version of the ACE was operational, it could multiply at roughly twenty times
the speed of its closest competitor.28

Turing described his design in a report titled “Proposed Electronic Calculator,”
completed by the end of 1945 (Turing, 1945; see also Copeland, 2005, chap. 20).
The proposals in the report were much more concrete than those contained in von
Neumann’s rather abstract treatment in “First Draft.” Von Neumann hardly mentioned
electronics. The engineer whose job it was to draw up the first detailed hardware designs
for the EDVAC, Harry Huskey, found “First Draft” to be of “no help.”29 Turing, on
the other hand, gave detailed specifications of the various hardware units and even
included sample programs in machine code.

Turing’s plans caught the interest of the British press, with headlines such as “‘ACE’
May Be Fastest Brain,” “Month’s Work in a Minute,” and “‘ACE’ Superior to U.S.
Model.” Behind the scenes, however, all was not well. Turing’s plan was that Flowers
and his assistants from the Colossus days should build the ACE at Dollis Hill, but this
idea soon foundered. Flowers was under pressure to contribute to the restoration of
Britain’s war-ravaged telephone system, and despite his willingness to collaborate with
Turing, he rapidly became “too busy to do other people’s work.”30 The NPL’s slow-
moving bureaucracy proved unable to make alternative arrangements, and in April
1948, Womersley reported ruefully that hardware development was “probably as far
advanced 18 months ago.”31

While they waited for engineering developments to start, Turing and Wilkinson spent
their time pioneering computer programming, preparing a large library of routines for
the not-yet-existent machine. It was the availability of these ready-made programs that

26 See “The Origins and Development of the ACE Project,” in Copeland (2005, chap. 3).
27 Wilkinson in an interview with Christopher Evans in 1976 (see Endnote 4).
28 See the table by Martin Campbell-Kelly in Copeland (2005, 161).
29 Letter from Huskey to Copeland, February 4, 2002.
30 Flowers in an interview with Copeland, July 1998.
31 Minutes of the Executive Committee of the National Physical Laboratory for April 20, 1948 (National

Physical Laboratory Library; a digital facsimile is in The Turing Archive for the History of Computing:
http://www.AlanTuring.net/npl minutes apr1948).
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explained the success, once the hardware was working, of NPL’s scientific computing
service, which took on commissions from government, industry, and the universities –
the first such service in the world.

In 1947, Huskey left the EDVAC project and joined Turing at the NPL. He suggested,
very sensibly, that the NPL begin to construct a minimal version of the ACE on its own
premises. Huskey’s proposed machine soon came to be called the “Test Assembly.” By
about the middle of the year, circuit-block diagrams had been drawn up, a mainframe
had been built, valve types had been determined, and the NPL workshops were making
an experimental memory unit.32 Huskey’s first goal was to run a simple stored program
using an absolute minimum of equipment; after that, he wanted to develop a small but
substantial computer capable of solving practical problems.33 Unfortunately, the direc-
tor of the NPL, Sir Charles Darwin (grandson of Charles Darwin of evolutionary fame),
summarily stopped the work on the Test Assembly in what was one of the worst admin-
istrative decisions in the history of computing. Had it not been for Darwin, the ACE Test
Assembly might have been the first electronic stored-program computer to function.

In reality, however, the race was won in Manchester. Having secured his funding
from the Royal Society and established his Computing Machine Laboratory – a large,
empty room within which the proposed computer would be constructed – Newman
explained the concept of the electronic stored-program computer to radar engineers F. C.
“Freddie” Williams and Tom Kilburn.34 Williams and his assistant Kilburn were just the
men for the job. Not only had they spent the war designing innovative electronic circuits
but Williams had an idea for solving what was the fundamental problem of computer
engineering at that time: how to store large amounts of information economically and
in such a way that the information would be available at electronic speeds. Williams
and Kilburn pioneered a form of high-speed random-access memory in which digits
were stored on the face of a cathode ray tube. Later known simply as the Williams tube,
this form of memory was used in von Neumann’s Princeton computer and thereafter in
many early computers.

The first stored-program computer, the Manchester “Baby,” came to life on June 21,
1948. This was a modest machine based around three Williams tubes (the Princeton
computer had forty). “A small electronic digital computing machine has been operating
successfully for some weeks in the Royal Society Computing Machine Laboratory,”
wrote Williams and Kilburn in the letter to Nature that announced their success to
the world (1948, 487). Early stages of the construction of the Baby made use of a
“bedstead” from one of the Colossi, the iron frame that held the message tape. “It
reminds me of Adam’s rib,” said Jack Good, one of the Newmanry code breakers who
moved with Newman to Manchester.35

Regrettably, the Manchester Baby is now remembered as the work of Williams
and Kilburn alone (Copeland, 2001, 2004, 371–73). During the official celebrations

32 Letter from Huskey to Copeland, June 3, 2003; Wilkinson in an interview with Christopher Evans in 1976 (see
Endnote 4).

33 Letter from Huskey to Copeland, January 18, 2004.
34 See further “Colossus and the Dawning of the Computer Age” Copeland (2001) and the section on Newman

in “A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing” Copeland (1999, 454–57).
35 Letter from Jack Good to Copeland, March 5, 2004.
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Figure 8.7. Freddie Williams (right) and Tom Kilburn in front of their tiny pioneering computer
at the University of Manchester. The push-button switches were for entering the program digit
by digit. The instructions were stored in the computer as patterns of dots on the surface of a
cathode ray tube; this was similar in appearance to the small monitor tube in the center of the
photo. School of Computer Science, University of Manchester. Reproduced with permission.

of the fiftieth anniversary of the Baby held at Manchester in June 1998, Newman’s
name was not even mentioned, and neither was Turing’s. However, nearly thirty years
earlier, Williams (who died in 1977) was unambiguous in attributing credit to Newman:
“Now let’s be clear before we go any further that neither Tom Kilburn nor I knew the
first thing about computers when we arrived in Manchester University. . . . Newman
explained the whole business of how a computer works to us.”36 Newman’s experience
with his wartime computing facility of ten Colossi, together with his appreciation of
Turing’s concept of a universal machine, placed him in a unique position to educate
the engineers. Newman emphasized to Williams and others that it was in Turing’s “On
Computable Numbers” that the “idea of a truly universal computing machine was first
clearly set out.”37

Turing himself not only contributed the fundamental logical idea but also made a
very practical contribution to the triumph at Manchester. He gave a series of lectures in
London on computer design during the period December 1946 to February 1947, and

36 Williams in an interview with Christopher Evans in 1976 (see Endnote 4). As far as I know, these words of
Williams’ first appeared in print in an article I published with Diane Proudfoot on the fiftieth anniversary of
the Manchester Baby (Copeland and Proudfoot, 1998, 6).

37 Report by Newman on the Royal Society Computing Machine Laboratory (1948), distributed to Williams and
others (National Archive for the History of Computing, University of Manchester).
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Figure 8.8. The EDSAC. Built by Maurice Wilkes in the Mathematical Laboratory at the Univer-
sity of Cambridge, this substantial computer was put to heavy use as soon as it was completed
in 1949. Computer Laboratory, University of Cambridge. Reproduced with permission.

Kilburn attended these to learn how to design a computer.38 Early plans for the Baby
computer were ACE-like, following Turing’s idea of a decentralized architecture (as I
show in detail in Copeland, 2011a, 2011b). Subsequently, though, a centralized design
was adopted, and this was implemented in the 1948 Baby (Williams and Kilburn, 1953).

As mentioned earlier, von Neumann’s “First Draft” set out a centralized design.
The nature of von Neumann’s influence on the Manchester Baby has never been
adequately recognized. The logical design of the Baby is, in fact, virtually identical
to the design proposed at Princeton by von Neumann and his group (as I show in
Copeland, 2011b). It was as electronic engineers, not computer architects, that Williams
and Kilburn led the world in 1948. Newman (who had visited Princeton in 1946) and
his mathematician colleagues transferred logical ideas from the von Neumann group to
the Manchester engineers – although the engineers seem to have been largely unaware
of the transatlantic origin of the information they acquired.

The next stored-program computer to run was the EDSAC (Electronic Delay Storage
Automatic Calculator), at the University of Cambridge Mathematical Laboratory in
1949. The EDSAC’s designer, Maurice Wilkes, followed the EDVAC proposal closely,
as he indicated in his choice of name for the computer (Wilkes, 1985). His supreme
skill as an electronic engineer, coupled with expert advice from Thomas Gold on how
to design the computer’s memory units (Gold is better known as the originator, with
Fred Hoyle and Hermann Bondi, of the steady state theory in cosmology), gave Wilkes
a lead on the various American projects.

38 The notes of these lectures form Copeland (2005, chap. 22). Kilburn reported his presence at the lectures in
Bowker and Giordano (1993, 17–32); see also Copeland (2004, 372–73).
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In 1946, the NPL had attempted to recruit both Williams and Wilkes to assist with the
engineering side of the bogged-down ACE. Williams (then at the Telecommunications
Research Establishment in the west of England) turned down the NPL’s offer once the
Manchester project entered the picture. Wilkes, on the other hand, was willing to work
with the NPL, but Turing gave the idea short shrift. In a memo to Womersley, Turing
said:

I have read Wilkes’ proposals. . . . The “code” which he suggests is however very contrary
to the line of development here, and much more in the American tradition of solving
one’s difficulties by means of much equipment rather than thought. I should imagine
that to put his code (which is advertised as “reduced to the simplest possible form”) into
effect would require a very much more complex control circuit than is proposed in our
full-size machine. Furthermore certain operations which we regard as more fundamental
than addition and multiplication have been omitted.39

As the memo indicates, Turing’s approach to computer design was very different from
Wilkes’s, and not only in the matter of centralization versus decentralization. Turing
wanted to throw as much of the design burden as possible onto programming, in an
approach reminiscent of the modern Reduced Instruction Set Computer (RISC).40 He
planned to minimize the amount of hardware by using complex programming. With
this approach, special-purpose hardware – for multiplication, division, or floating-point
arithmetic, for example – would ideally be dispensed with in favor of programs that
performed the same functions.

The ACE’s decentralized architecture led to an unusual style of programming.
Instead of writing, say, “divide A by B and put the result in C,” the ACE’s programmer
would write a series of low-level instructions achieving that effect. Programs were made
up entirely of instructions such as “transfer the contents of unit 15 to unit 17” (usually
written simply as “15–17”). The effect of the transfer was to subject the contents of
the “source” to whatever operation was associated with the “destination” (in this case,
unit 17). Because the nature of the operation was implicit in the destination address
(or the source address, or both), no term specifying the operation was required in the
instruction. The instruction “15–17” added the numbers stored in units 15 and 16.

The Pilot Model of Turing’s ACE did not run until 1950. By then, Turing had lost
patience with the NPL and had moved to Newman’s Computing Machine Laboratory,
where he used the Manchester computer to model biological growth.41 The Pilot Model
ACE was based on Turing’s 1946 Version V of his ACE design42 – although the Pilot
Model had less than 5 percent of the memory capacity that Turing had originally
specified (overambitiously, in the eyes of his colleagues43). With a clock speed of one
megahertz, the Pilot Model left its competitors in the dust.

39 Memorandum from Turing to Womersley, undated, ca. December 1946 (Woodger Papers, National Museum
of Science and Industry, Kensington, London (catalog reference M15/77); a digital facsimile is in The Turing
Archive for the History of Computing: http://www.AlanTuring.net/turing womersley; also quoted in Copeland,
2005, 62).

40 For a discussion of RISC, see Doran (2005).
41 See “Artificial Life” and Turing’s “The Chemical Basis of Morphogenesis” in Copeland (2005).
42 Versions V–VII of Turing’s ACE design are described in detail in Copeland (2005, chap. 22).
43 Michael Woodger in an interview with Copeland, June 1998.
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Figure 8.9. The Pilot Model of Turing’s 1 MHz Automatic Computing Engine (ACE). The small
control desk is to the left of the main frame. Standing next to the control desk, under the
window, is the Hollerith punched-card input-output equipment. The computer’s memory, a
number of long tubes filled with mercury, is in the large wooden box (known to the engineers
as the “coffin”) atop the support at the right of the picture. National Physical Laboratory,
Teddington. Crown copyright. Reproduced with permission.

The NPL called in the English Electric Company to produce a marketable version
of the Pilot Model ACE. The result, the English Electric DEUCE (Digital Electronic
Universal Computing Engine), went on sale in 1955. The DEUCE proved immensely
successful and became a foundation stone of the developing computer industry in
Britain. More than thirty DEUCEs were sold – confounding Darwin’s suggestion,
in 1946, that “it is very possible that . . . one machine would suffice to solve all the
problems that are demanded of it from the whole country.”44 DEUCEs remained
in service until about 1970. Turing’s role in the development of hardware is rarely
mentioned in orthodox histories of the computer, yet there is a very direct line leading
from “On Computable Numbers,” via Colossus, to one of the major workhorses of the
first decades of the computer age.

Flowers’ plan to build the ACE at Dollis Hill did eventually bear fruit. When the Post
Office was contracted by the British government to supply a computer for top-secret
military use, Flowers’ right-hand men from the Colossus era, William Chandler and
Allen Coombs, were put back on the job of building the ACE. Thanks to Colossus, they
had unparalleled experience of large-scale digital electronics. Coombs and Chandler

44 C. Darwin, “Automatic Computing Engine (ACE),” National Physical Laboratory, April 17, 1946 (National
Archives/Public Record Office, document reference DSIR 10/385; a digital facsimile is in The Turing Archive
for the History of Computing: http://www.AlanTuring.net/darwin ace).
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based their MOSAIC (Ministry of Supply Automatic Integrator and Computer) on
Version VII of Turing’s design for the ACE.45 MOSAIC had approximately seven
thousand valves, almost three times as many as the largest Colossus (or, for that matter,
von Neumann’s Princeton computer, which had about the same number of valves as the
later Colossi). MOSAIC also contained two thousand germanium diodes, harbingers of
semiconductor technology. Coombs and Chandler did not attempt the one-megahertz
pulse rate that Turing had specified, settling for about half that (570 kilocycles per
second). Apart from this reduction in speed, MOSAIC was much closer to Turing’s
original grand conception than were the relatively small Pilot Model and DEUCE.
If Coombs and Chandler (who worked alone) had had access to anything like the
resources thrown into Colossus during 1943, Turing’s grand-scale ACE might have
become a reality at about the time of the Pilot Model. As it was, MOSAIC first ran
a trial program in 1952 or early 1953 (the exact date is not known) and was fully
operational at the Radar Research and Development Establishment by early 1955.46

Precise details of its use remain classified, but most likely, its function involved the
guidance of antiaircraft weaponry, using data from a radar tracking system.

By no means have all the experimental stored-program computers intervening be-
tween the Manchester Baby and von Neumann’s Princeton machine been mentioned
so far. In 1949, Wilkes’s EDSAC was followed in quick succession by three more
computers: the Eckert-Mauchly BINAC in Philadelphia; Trevor Pearcey’s CSIRAC
(Commonwealth Scientific and Industrial Research Organisation Automatic Com-
puter) at the University of Sydney in Australia; and Jay Forrester’s Whirlwind I at
the Massachusetts Institute of Technology.

In 1950, in Washington, D.C., the SEAC (National Bureau of Standards Eastern
Automatic Computer) ran its first program just a few weeks before the Pilot Model
ACE. The SEAC was built by Samuel Alexander and Ralph Slutz for the U.S. Bureau
of Standards Eastern Division. Huskey, freshly returned to the United States from his
year at the NPL, had initiated the Bureau of Standards computer project in 1948 and
had proposed a design modeled on the ACE (Huskey, 2005). In the end, though, the
Bureau of Standards opted for the home-grown approach, and SEAC was based on
the EDVAC. Meanwhile, Huskey moved to the Bureau of Standards Western Division
in Los Angeles, where he designed and built an experimental parallel computer us-
ing Williams tube memory. This, the SWAC (National Bureau of Standards Western
Automatic Computer), also ran in 1950 (following the SEAC and the Pilot Model ACE).

Later, Huskey based his G15 computer on Turing’s ACE design (although he used
a rotating drum memory in place of Turing’s acoustic, mercury-filled delay lines). The
G15, which was of about the same dimensions as a jumbo-sized kitchen refrigerator,
was the first personal computer. The prototype ran in 1954.47 Huskey followed Turing’s
principle of substituting programming for hardware. The result was a cheap, compact

45 A. W. M. Coombs (1954), MOSAIC, in Automatic Digital Computation: Proceedings of a Symposium Held
at the National Physical Laboratory, London: Her Majesty’s Stationery Office; Coombs in an interview with
Christopher Evans in 1976 (see Endnote 4); and Copeland (2005, chap. 3).

46 “Engineer-in-Chief’s Report on the Work of the Engineering Department for the Year 1 April 1952 to 31
March 1953” and “Engineer-in-Chief’s Report on the Work of the Engineering Department for the Year 1 April
1954 to 31 March 1955,” Post Office Engineering Department.

47 Letter from Huskey to Copeland, December 20, 2001. For more information on the Bendix G15, see Copeland
(2005).
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Figure 8.10. The MOSAIC. This highly secret computer was based on Version VII of Turing’s
design for the Automatic Computing Engine. Used in conjunction with radar equipment, the
MOSAIC contributed to Britain’s air defenses during the cold war period. Royal Mail Group,
United Kingdom. Reproduced with permission.

machine requiring no air-conditioning and using a normal 220-volt electric supply.
To increase the speed of the computer, Huskey adopted Turing’s scheme known as
optimum coding. Optimum coding, which was developed into a fine art at the NPL,
involved storing instructions not sequentially but in a way that minimized the time the
program would require to run. The programmer had to work out an optimal arrangement
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Figure 8.11. An advertisement for the Bendix G15 computer. The G15 was the first single-user
desk-side computer – the first personal computer. Harry Huskey. Reproduced with permission.
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for storing the instructions of each program. Turing’s instruction format involved
placing a pair of numbers in each instruction that together specified the position in
memory of the next instruction. Huskey transferred this feature to the G15, along with
Turing’s other timing tricks. The result was a machine blazingly fast for its size. The
Detroit-based Bendix Corporation marketed the G15 very successfully as a single-user,
desk-side computer, and G15s remained in use until about 1970.

Electronic stored-program computers began arriving in the marketplace in 1951 –
the start of a new era. The first was the Ferranti Mark I, built by the Manchester-based
company Ferranti Ltd. The Ferranti was a mass-produced version of the Manchester
University Mark I, a large computer that had been developed from the Baby by Williams
and Kilburn, with the help of Turing, especially on the programming side,48 and with
some significant contributions from Newman (see further Copeland, 2011). The first
Ferranti was installed in February 1951.49 The Eckert-Mauchly UNIVAC I (Univer-
sal Automatic Computer), the earliest mass-produced computer in the United States,
appeared later in the same year. The British LEO (Lyons Electronic Office) also made
its debut in 1951. Built for caterers J. Lyons and Company, the LEO was based on
Wilkes’s EDSAC. In 1953 came the International Business Machines (IBM) 701, the
company’s first stored-program electronic computer, a Williams tube machine strongly
influenced by von Neumann’s Princeton design. The rough pioneering days of elec-
tronic computing were over.

8.5 Epilogue: The Computer and the Mind

Gödel may not have shared Turing’s passion for the practicalities of computing, but the
two did share an abundant interest in the theoretical issue of whether the human mind is
equivalent to a computer. This epilogue briefly explores the views of Gödel and Turing
on whether mental processes can go beyond computational processes. Gödel in fact
criticized Turing sharply for what he regarded as a “philosophical error” in Turing’s
thinking about this matter, as I shall explain.

Famously, the incompleteness and undecidability results of Gödel and Turing have
been used to argue that there must be more to human mathematical thinking than can
possibly be achieved by a computing machine (see, e.g., Lucas, 1961, 1996; Penrose,
1994). Gödel’s own discussions of the implications of these negative results were
notably open-minded and cautious. For example, he said in conversation with Hao Wang
that the “incompleteness results do not rule out the possibility that there is a theorem-
proving computer which is in fact equivalent to mathematical intuition” (Wang, 1996,
186). On “the basis of what has been proved so far,” Gödel said, “it remains possible
that there may exist (and even be empirically discoverable) a theorem-proving machine
which in fact is equivalent to mathematical intuition, but cannot be proved to be so,

48 Turing’s “Programmers’ Handbook for Manchester Electronic Computer” (ca. 1950; available in The Turing
Archive for the History of Computing: http://www.AlanTuring.net/programmers handbook).

49 Letter from Turing to Michael Woodger, undated, received February 12, 1951 (Woodger Papers, Sci-
ence Museum, London; a digital facsimile is in The Turing Archive for the History of Computing:
http://www.AlanTuring.net/turing woodger feb51).
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nor even be proved to yield only correct theorems of finitary number theory” (Wang,
1996, 184–85). Gödel also said (but seemingly gave no clear indication whether, or to
what extent, he himself agreed with what he called Hilbert’s “rationalistic attitude”):

My incompleteness theorem makes it likely that mind is not mechanical, or else mind
cannot understand its own mechanism. If my result is taken together with the rationalistic
attitude which Hilbert had and which was not refuted by my results, then [we can infer]
the sharp result that mind is not mechanical. This is so, because, if the mind were
a machine, there would, contrary to this rationalistic attitude, exist number-theoretic
questions undecidable for the human mind. (Gödel, as quoted in Wang, 1996, 186–87)

Hilbert’s “rationalistic attitude” was summed up in his celebrated remark that “in
mathematics there is no ignorabimus” (1902, 445) – no mathematical question that,
in principle, the mind is incapable of settling.

In about 1970, Gödel wrote a brief note titled “A philosophical error in Turing’s
work.”50 This was, he said, to be regarded as a footnote to the postscript to his 1931
undecidability paper, which he had composed in 1964 (published as “Postscriptum”
in Davis, 1965, 71). The main purpose of the 1964 postscript was to state generalized
versions of incompleteness applicable to algorithms and formal systems. (It was in this
postscript that Gödel officially adopted Turing’s “analysis of the concept of ‘mechanical
procedure’ . . . alias ‘algorithm’ or ‘computation procedure”’; there he emphasized that
it was “due to A. M. Turing’s work [that] a precise and unquestionably adequate
definition of the general concept of formal system can now be given . . . [a] formal
system can simply be defined to be any mechanical procedure for producing formulas,
called provable formulas.”) In the 1964 postscript, Gödel also raised the intriguing
“question of whether there exist finite non-mechanical procedures,” and he observed
that the generalized incompleteness results “do not establish any bounds for the powers
of human reason, but rather for the potentialities of pure formalism in mathematics.”

Gödel’s (ca. 1970) retrospective footnote to his 1964 postscript attributed the view
that “mental procedures cannot go beyond mechanical procedures” to Turing in “On
Computable Numbers.” Gödel criticized an argument for this view, which he claimed
to find on page 250 of Turing’s paper (Copeland, 2004, 75–76):

Turing [there] gives an argument which is supposed to show that mental procedures
cannot go beyond mechanical procedures. However, this argument is inconclusive. What
Turing disregards completely is the fact that mind, in its use, is not static, but constantly
developing. (Gödel, ca. 1970)

Turing can readily be defended against Gödel’s charge of philosophical error.51 Gödel
was too hasty in his claim that, in “On Computable Numbers,” Turing put forward
an argument supposed to show that mental procedures cannot go beyond mechanical
procedures. No such argument is to be found in Turing’s paper, nor is there even any

50 Wang (1996, 195) reports that Gödel wrote the note “around 1970.” The note is included, with an introduction
by Judson Webb, in Collected Works, vol. 2 (1990), p. 306. In 1972, Gödel gave Wang a revised version of the
note, which Wang (1974, 325–26) subsequently published.

51 See further Copeland and Shagrir (forthcoming), which includes a discussion of Gödel’s claim (made in the
1972 revision of the note; see Wang, 1974, 325) that Turing argues from “the supposition that a finite mind is
capable of only a finite number of distinguishable states.”



178 from the entscheidungsproblem to the personal computer

trace of a statement endorsing the conclusion of the supposed argument. Turing, on the
page discussed by Gödel, was not talking about the general scope of mental procedures;
he was addressing a different question: “What are the possible processes which can
be carried out in computing a number?” (Turing, 1936, 249; see also Copeland, 2004,
74). Furthermore, a passage in “On Computable Numbers” seemingly runs counter to
the view Gödel attributed to Turing. Having defined a certain infinite binary sequence
δ, which he showed to be uncomputable, Turing said, “It is (so far as we know at
present) possible that any assigned number of figures of δ can be calculated, but not
by a uniform process. When sufficiently many figures of δ have been calculated, an
essentially new method is necessary in order to obtain more figures” (Turing, 1936,
253; see also Copeland, 2004, 79). Gödel, on the other hand, considered Turing to have
offered an “alleged proof that every mental procedure for producing an infinite series
of integers is equivalent to a mechanical procedure” (Gödel, as quoted in Wang, 1996,
197).

In short, Turing’s text does not support Gödel’s interpretation. The situation becomes
bleaker still for Gödel’s interpretation when Turing’s (1939) publication “Systems of
Logic Based on Ordinals” is taken into account. There Turing emphasized the aspect
of mathematical reasoning that he referred to as “intuition.” He said:

In pre-Gödel times it was thought by some that . . . all the intuitive judgments of mathe-
matics could be replaced by a finite number of [formal] rules. . . . In consequence of the
impossibility of finding a formal logic which wholly eliminates the necessity of using
intuition, we naturally turn to “non-constructive” systems of logic with which not all the
steps in a proof are mechanical, some being intuitive. (Turing, 1939, 215–16; see also
Copeland, 2004, 192–93)

In Turing’s view, the activity of what he called the “faculty” of intuition brings it about
that mathematical “judgments” – again, his word – exceed what can be expressed by
means of a single formal system (Turing, 1939, 214; see also Copeland, 2004, 192).
“The activity of the intuition,” he said, “consists in making spontaneous judgements
which are not the result of conscious trains of reasoning” (Turing, 1939, 214–15; see
also Copeland, 2004, 192). Turing’s cheerful use of mentalistic vocabulary in this
connection makes it very unlikely that Gödel was correct in finding an argument in the
1936 paper supposedly showing that mental procedures cannot go beyond mechanical
procedures.

During the early part of the war, probably in 1940, Turing wrote a number of
letters to Newman explaining his thinking about intuition. The following passage is
illuminating:

I think you take a much more radically Hilbertian attitude about mathematics than I do.
You say “If all this whole formal outfit is not about finding proofs which can be checked
on a machine it’s difficult to know what it is about.” When you say “on a machine” do you
have in mind that there is (or should be or could be, but has not been actually described
anywhere) some fixed machine on which proofs are to be checked, and that the formal
outfit is, as it were about this machine. If you take this attitude (and it is this one that
seems to me so extreme Hilbertian [sic]) there is little more to be said: we simply have
to get used to the technique of this machine and resign ourselves to the fact that there are
some problems to which we can never get the answer. On these lines my ordinal logics
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would make no sense. However I don’t think you really hold quite this attitude because
you admit that in the case of the Gödel example one can decide that the formula is true, i.e.
you admit that there is a fairly definite idea of a true formula which is quite different from
the idea of a provable one. Throughout my paper on ordinal logics I have been assuming
this too. . . .

If you think of various machines I don’t see your difficulty. One imagines different
machines allowing different sets of proofs, and by choosing a suitable machine one can
approximate “truth” by “provability” better than with a less suitable machine, and can
in a sense approximate it as well as you please. The choice of a . . . machine involves
intuition . . .52

Turing’s criticism of the “extreme Hilbertian” view is accompanied by what seems
to be a cautious endorsement of the attitude that Gödel described (in the quotation
given previously) as “rationalistic.” The “sharp result” stated there by Gödel seems in
effect to be that there is no single machine equivalent to the mind (at any rate, no more
is justified by the reasoning that Gödel presented), and with this, Turing was evidently
in agreement. Incompleteness, if taken together with an Hilbertian optimism, excludes
the extreme Hilbertian position that the “whole formal outfit” corresponds to some one
fixed machine. (Note, though, that Turing’s discussion does not rule out the possibility
raised by Gödel that there might in actuality be a machine that exhausts the mind,
although it cannot be proved to do so.)

Turing’s view, as he expressed it to Newman and in “Systems of Logic Based on
Ordinals,” appears to have been that mathematicians achieve progressive approxima-
tions to truth via a nonmechanical process involving intuition. This picture, in which
minds devise and adopt successive, increasingly powerful mechanical formalisms in
their quest for truth, is consonant with Gödel’s view that “mind, in its use, is not
static, but constantly developing.” Gödel’s own illustration of his claim that mind is
constantly developing is certainly related to Turing’s concerns. Gödel said, “This [that
mind . . . is not static, but constantly developing] is seen, e.g., from the infinite series
of ever stronger axioms of infinity in set theory, each of which expresses a new idea
or insight” (from the 1972 revision of the note; see Wang, 1974, 325). Gödel’s blunt
criticism that Turing “disregards completely” this dynamic aspect of mind was simply
misdirected. These two great founders of the study of computability were perhaps not
quite as philosophically distant on the mind-machine issue as Gödel supposed.
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CHAPTER 9

Gödel, Einstein, Mach, Gamow,
and Lanczos: Gödel’s

Remarkable Excursion
into Cosmology1

Wolfgang Rindler

This chapter was written in the hope that it might serve a readership that may not
necessarily be familiar with the details of Einstein’s general relativity theory but that
nevertheless may appreciate the gist of Gödel’s contribution to relativistic cosmology.
I have included all the technical details that general readers may wish to skip but
that those familiar with relativity theory might wish to review. In particular, I give an
elementary derivation of Gödel’s metric and of its geodesics.

Gödel’s brilliant burst into the world of physics in 1949 came as a surprise to those
who knew him “only” as one of the greatest logicians of all time and thus as a very pure
mathematician. However, to his colleagues at the Institute for Advanced Study (AIS)
in Princeton, it was less surprising. At IAS, he had famously befriended Einstein, and
much earlier, before switching over to mathematics, he had even entered the University
of Vienna (in 1924) as a physics student and attended lectures by Hans Thirring, one
of the earliest protagonists of Einstein’s theories. Moreover, although this was not
apparent from his published work, Gödel had maintained a lifelong interest in physics,
attending the physics seminars at IAS and keeping abreast of ongoing developments.
Then came the crucial trigger: the year 1949 brought Einstein’s seventieth birthday,
and Gödel was expected to contribute to the planned Festschrift for his friend. Not for
the first time did pressure prove conducive to invention.

What Gödel (1949a) invented for the occasion was a model universe that was con-
sistent with general relativity but that nevertheless exhibited two startlingly disturbing
features: bulk rotation (but with respect to what, as there is no absolute space in general
relativity?) and travel routes into the past (enabling one to witness or even prevent
one’s own birth?). Gödel did not claim that his model represented the actual universe
in which we live – he knew well that general relativity permits much more appropriate
models for that – but he nevertheless maintained that if general relativity permits such
strange behavior, then that behavior should be studied in detail. In particular, he urged

1 This chapter also appeared as a preprint article with the same title in the American Journal of Physics, 77, 2009;
it is published in this volume (as it was in the journal) with the permission of Cambridge University Press.
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astronomers to look for evidence of rotation and philosophers to rethink their ideas
about time.

9.1 First Look at Gödel’s Model

For the sake of concreteness, I shall begin with a brief preliminary description of
Gödel’s model universe based on general relativity. General relativity was Einstein’s
new (now a century old) theory of gravity, in which Newton’s force of gravity is
replaced by the curvature of four-dimensional space-time and where free matter moves
along the natural rails of this curved space-time, namely, its geodesics. A geodesic is
the closest analogue in any curved space to a straight line in flat Euclidean space. For
example, if you march as straight as you can on the surface of a sphere, you will follow
a great circle, and so great circles are the geodesics of a sphere. Unencumbered by
extraneous concepts such as absolute space, general relativity is ideally applicable to
whole universes. It determines, for example, how a universe moves under the action of
its own gravity.

Our actual universe is, of course, lumpy, containing big blobs of matter separated by
even bigger blobs of apparent emptiness. The exact dynamics of such lumpy systems
cannot, in practice, be analyzed directly. Instead one studies the smoothed-out version
of actual universes and makes the assumption that the dynamics are effectively the
same. The smoothed-out counterpart of any universe is its substratum, and not only
must the lumpiness be smoothed out, but so must the locally irregular motions. The
actual galaxies then sit on this (generally expanding) substratum more or less uniformly
distributed and with only relatively small irregular proper motions.

For the standard models of general relativity, as well as for Gödel’s model, these
substrata satisfy the so-called cosmological principle. This hypothesis, which is well
supported by observation, asserts that the universe is regular and that our place in it,
and in fact that of any other galaxy, is not special. Thus, for the sake of constructing
the model, the substratum is assumed to be perfectly homogeneous at all times.

Additionally, our universe is also known to expand, and it is commonly believed to
have originated in the big bang some fourteen billion years ago. A realistic substratum
must therefore expand. Gödel’s model, although homogeneous, ignores this expansion:
it is stationary, the same at all times. There is yet another difference from the usual
models of general relativity: Gödel’s model is not isotropic. Its substratum is somewhat
like a homogeneous crystal, having preferred directions at each point. We can picture
it as a stack of identical layers, infinite in all directions (see Figure 9.1). Each layer,
although it is drawn as a plane, is actually a Lobachevski plane, a two-dimensional space
of constant negative curvature. (The circumferences of circles, centered anywhere,
increase faster than in the Euclidean plane as we move away from the center. It is,
of course, one of the features of general relativity that it permits, and often requires,
curvature in both space and time.) On this layered spatial framework exists an overall
time, indicated by identical standard clocks, one sitting on each galaxy and all ticking
in unison forever. However, somewhat as in special relativity (the theory of flat vacuum
space-time), the synchronization of these clocks is not unique and depends on which
clock declares itself to be the “boss.”
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Figure 9.1. A spatial map of Gödel’s universe; the map flattens the z = const sections into
planes.

So far, this all looks fairly harmless, but now come the surprises. Consider an
inertial compass, also called a “gyrocompass.” This instrument contains a number of
gyroscopes and has the property of always pointing in the same direction in space.
Install such a gyrocompass suitably in a stunt airplane and point it, for example, at
the sun, and then fly any number of loops, twists, and turns. The gyrocompass ignores
them all and keeps steadily pointing at the sun. Now fix such a gyrocompass to every
galaxy in Gödel’s universe, and behold: they all rotate in unison about the normals
of the layers. This seems to indicate that the entire universe rotates rigidly in the
opposite direction – but relative to what? As mentioned before, in general relativity, the
only space is the space determined by the universe itself. Gödel (1949b) laconically
commented:

Evidently this state of affairs shows that the inertial field is to a large extent independent
of the state of motion of the matter. This contradicts Mach’s principle but it does not
contradict relativity theory.

These two sentences seem to be the sum total of what Gödel has ever said about this
paradoxical aspect of his model, and they occur in a lecture he never even published.2

Mach’s principle, as formulated by Einstein in his early quest for general relativ-
ity, was supposed to explain the mysterious existence of the preferred set of inertial
frames against which rotation and acceleration are measured in both Newton’s theory
and Einstein’s special relativity theory. (Newton’s absolute space, as an explanation,
had already been repeatedly challenged, most recently by special relativity.) Mach’s
principle says that the local inertial frame, or inertial field, is actively determined by
some average of the motions of all the masses in the universe. Einstein had hoped that
general relativity would show in detail how this determination works, but for a number
of reasons, he later (in the 1930s) discarded Mach’s principle. Therefore the inertial

2 It was published posthumously in the Collected Works (Gödel, 1949b).



188 gödel, einstein, mach, gamow, and lanczos

properties of Gödel’s model, although paradoxical, were not totally unacceptable to
Einstein. Yet Mach’s principle has a life of its own, and to its adherents, these properties
are still considered to be the most troubling feature of Gödel’s model.

Now for a second surprise. Consider a large circle in one of the layers of Gödel’s
substratum. (A minimum radius is required for this to work.) Now travel along this
circle at a very large velocity. (Again, a certain minimum velocity is necessary, but it
is less than the velocity of light.) Behold: you return to the galaxy from which you
started at an earlier time than when you left, as indicated by the local clock, yet by
your own reckoning, you have aged normally during the trip. You could now encounter
your own father when he was a child, and, if you were wicked, you could kill him,
thereby preventing your own birth. That is an awful paradox, and one would hope that
nature has ways to prevent space-times such as Gödel’s from actually materializing.
(In special relativity, where a similar danger lurks, nature prevents it by imposing a
universal speed limit – the speed of light.) That hope, indeed, was Einstein’s reaction
to Gödel’s result. Gödel (1949a) himself – surprisingly, perhaps – defended his model
on the grounds that it would cost impossible amounts of energy for a space traveler
to accomplish such a journey. Later, he granted that one could simply send a light
signal, guided by suitably placed mirrors, along a sufficiently large polygonal path to
do the same damage, but the radius would have to be so immense as to render even this
procedure impracticable (Gödel, 1949b).

9.2 How the Model Came into Being

In his Einstein Festschrift contribution, Gödel (1949a) stated that he was motivated
to invent his model universe from sympathy for Kant’s philosophy of time. It was to
serve as the first counterexample on the cosmic scale to the objective view of time,
which treats time as an infinity of layers “now” coming into existence successively. By
1905, Einstein had already shown this view to be problematic with his special theory of
relativity. Indeed, one of the greatest shocks delivered by that theory was the discovery
that simultaneity is relative, namely, the nows of different observers correspond to
different sets of parallel slices through space-time, the slices of one observer being
inclined to those of another. If the before-now already exists, and the after-now does
not yet exist, existence itself would then be relative to the observer, which Gödel held
to be nonsensical. He also pointed out that observers really play no essential role in
this argument: the vacuum space-time of special relativity (Minkowski space) simply
lacks distinguishing features between alternative parallel time slicings.

The situation becomes even worse with the irregular space-times of general rela-
tivity that correspond to real-life irregular matter distributions. Only in the idealized
homogeneous-isotropic universes introduced by Friedman (1922, 1924), of which the
1917 static Einstein universe was a special case, do we find an absolutely (geomet-
rically) determined worldwide time. These universes (except the Einstein universe)
expand with a single expansion function, and their intrinsically determined time slices
correspond to constant values of their steadily diminishing density. Thus the objective
(or absolute) view of time got a reprieve from Friedmanian cosmology – which Gödel
dismissed as accidental. His purported aim in the Festschrift essay (Gödel, 1949a) was
to show that in more general cosmologies, no such objective time need exist.
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Today we can learn a lot about the details of how Gödel arrived at his universe
from the three different versions in which he presented it as well as from his cor-
respondence with the Einstein Festschrift editor and with his mother. There is, first
of all, his brief (six-page) Festschrift essay (Gödel, 1949a), completed by the end
of March 1949, which contains not a single equation and concentrates mainly on
the physics and philosophy of time. Almost simultaneously, Gödel’s technical paper
appeared in a special Einstein issue of Reviews of Modern Physics (Gödel, 1949c).
This described, with similar brevity, the quantitative properties of the model as well
as an outline of its construction. Most illuminating of all, though, was the lecture
on rotating universes given by Gödel in May 1949 at IAS, which was published
only posthumously in the Collected Works (Gödel, 1949b). The lecture began as
follows:

A few years ago, in a note in Nature, Gamow (1946) suggested that the whole universe
might be in a state of uniform rotation and that this rotation might explain the observed
rotation of the galactic systems.

Gamow’s idea was that if the cells of primordial matter, which eventually collapsed
under their own gravity to form galaxies, had no initial angular momentum, then all
their matter would simply fall into the center and form a compact mass. (In fact, though,
the initial rotation needed to form a galaxy is so small that it can be explained simply by
natural random turbulence.) Importantly, however, Gamow (1946) ended his brief note
(see Figure 9.2) with the conjecture that rotating universes can probably be constructed
within general relativity.

In his lecture, Gödel immediately proceeded to exhibit a beautifully simple New-
tonian version of a rotating universe, and only from there did he gradually build up
his relativistic analogue. It is therefore tempting to contemplate the following route
whereby Gödel might actually have arrived at his universe.

It is May 1946. Einstein’s seventieth birthday is a little less than three years away.
Paul Arthur Schilpp, a philosophy professor at Northwestern University and editor of
the Library of Living Philosophers series, is already planning an Einstein Festschrift for
the occasion. He visits Princeton and seeks out Gödel. Gödel promises a contribution.
Soon thereafter, in correspondence with Schilpp, he offers to write about three pages
under the title of “Some Remarks about the Relation between the Theory of Relativity
and Kant” (Dawson, 1997; see also Gödel, 2003, 232–37). Although Schilpp presses
him for a much longer paper, Gödel keeps insisting that three to five pages is all he
needs for what he has to say. Evidently, he is not yet thinking of inventing a new
universe.

Then, serendipitously, Gödel comes across Gamow’s note in Nature with its chal-
lenge to find a rotating universe consistent with general relativity. Suddenly he has a
problem worthy of his genius and the perfect gift for Einstein! However, that is not
all. Gödel seems to have recognized quite early that in a rotating universe, there would
be no absolute time so that his Kantian ambition of superseding Friedman would also
come true. (Rotation implies twisting world lines of the galaxies and hence the nonexis-
tence of preferred time slices.) Thus fortune placed into his hands not only a significant
relativistic problem but one that even fell within his original Kantian program and that,
when it was all done, turned out to be far more beautiful than he could possibly have
foreseen.



190 gödel, einstein, mach, gamow, and lanczos

Figure 9.2. The “trigger”: Gamow’s 1946 letter to the editor of Nature. (Reprinted by permission
from Macmillan Publishers Ltd: “Rotating Universe?” Nature, 158, 549; 1946 [Oct. 19].)



gödel’s newtonian rotating universe 191

No wonder Gödel soon immerses himself happily in this work. On July 15, 1947, he
writes to Schilpp regretting the delay but saying that there is still an important point to
settle that depends “on the solution of a mathematical problem, at which I am working
now” (Gödel, 2003, 232–37). By September 1947, Gödel seems to have the outline
of his model, but more problems keep cropping up. Only on May 10, 1948, can he
correspond with his mother in Vienna, saying that he had intended to write long before
but that for several weeks, he had been beset by a problem that had driven everything
else out of his mind and that at last he had “settled the matter enough to be able to
sleep well again” (Dawson, 1997). What he had just found was that in his universe,
one could travel into the past – yet Schilpp had to wait another ten months for the final
manuscript.

9.3 Gödel’s Newtonian Rotating Universe

In his May 1949 lecture, Gödel, after quoting Gamow, recalled that “Newtonian physics
gives a surprisingly good approximation for the expanding (nonrotating Friedman)
universes.” He then proceeded ingeniously to construct a Newtonian rotating (but non-
expanding) universe. I shall outline his arguments here, partly because this Newtonian
model is intrinsically interesting and surprising and partly because it still seems to be
the best approach to the full Gödel model.3

In Newton’s theory, we start with absolute space. We pick one fixed axis about which
the universe is to rotate uniformly and rigidly. Its density ρ must then be constant in
time, and for the sake of the cosmological principle, we take it to be constant in space
as well. As in the Friedman case, we use Newton’s law only in its differential form:

∇2� = 4πGρ, (1)

where G is Newton’s constant of gravity. The solution we want is

� = πGρ(x2 + y2) = πGρr2, (2)

if the field is radially away from the axis, as symmetry demands.
The gravitational force toward the axis,

�fgrav = −∇� = −2πGρ�r, (3)

is then precisely balanced by the centrifugal force

�fcent = �2�r, (4)

provided that the angular velocity � satisfies

�2 = 2πGρ. (5)

At first sight, this may seem to be an unlikely model universe because, in defiance
of the cosmological principle, it has a center, or at least a central axis. However, on
closer inspection, it turns out that there is complete empirical symmetry among the

3 Incidentally, this Newtonian model was foreshadowed in van Stockum (1937), where Equation (5) had already
appeared.
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galaxies. Each moves freely; that is, each sits still without constraint on the rigidly
moving substratum. No observable gravitational force relative to the substratum exists
anywhere. At each point of the substratum, however, there is the same Coriolis force,

�fCor = 2�v × ��, (6)

acting on any particle that moves relative to the substratum with velocity �v. Empirically,
therefore, each galaxy can consider itself to be at rest on the axis of a universe that
rotates rigidly at angular velocity �� around it.

Because of the close analogy with the later relativistic model, it is worth noting that
all free orbits in the Newtonian model are circles, if started in a horizontal plane z =
const, and circular helices otherwise, with respect to the substratum. This follows from
the uniformity of the Coriolis force (6). Suppose, first, that a particle is projected with
some velocity �v relative to the substratum in a plane z = const. Because there is no
force on it in the direction of ��, it stays in its original plane, and because it experiences
only a sideways force, its speed remains constant. Consequently, the magnitude of the
sideways Coriolis force also remains constant, and the particle traces out a circle of
radius

r = v/2�. (7)

It is easy to see that this circle is described in the direction opposite to that of ��. If,
on the other hand, the particle’s initial velocity also has a component in the direction
of ��, that component stays constant, while only the horizontal velocity component
determines the radius of the resulting helix, according to (7).

We may note from (7) that the magnitude ω of the angular velocity of the orbiting
particle is given by

ω = 2�, (8)

and this is to be expected: if the mass of some central vertical cylinder of the substratum
(itself rotating at angular velocity �) allows a free substratum particle on its surface
to orbit its axis at angular velocity ��, it must also allow a particle to orbit its axis at
angular velocity −��, and that is −2 �� relative to the substratum.

Gödel’s Newtonian universe, as discussed here and in his lecture, is not quite the
correct Newtonian analogue of his relativistic universe. The reason is that his relativistic
universe is predicated on a negative cosmological constant �, for which allowance can
be made in Newtonian theory – but such allowance was not made by Gödel. The
Newtonian field equation to which Einstein’s field equation with � reduces in first
approximation is4

∇2�+�c2 = 4πGρ (9)

instead of (1), c being the speed of light and � being the joint potential for gravity and
the � force. Gödel’s relativistic universe, it turns out, crucially needs

� = −4πGρ/c2. (10)

4 See Rindler (2006, eq. (14.20)) and Ozsvath and Schuecking (2001, sect. 3(c)).
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If we use this value in (9), then instead of (2), which satisfies (1), we need

� = 2πGρ(x2 + y2), (11)

which satisfies (9) and (10). Consequently, instead of (5), we now find

�2 = 4πGρ, (12)

which is actually the precise relation that holds in Gödel’s (1949b) relativistic model.
Gödel considered (5) as already a “surprisingly good approximation.”

It should be noted, however, that whereas in the case of Einstein’s static universe of
1917, the Newtonian analogue “explains” the need for a positive � (a repulsive force
is needed to counteract gravity), the Newtonian rotating universe seems to throw no
light on the need for a negative � in Gödel’s universe. Somehow, via Einstein’s field
equation, it must contribute to the puzzling equilibrium in the z-dimension (Ozsvath
and Schuecking, 2001, sect. 3(c)).

9.4 Stationary Metrics in General and the Form
of Gödel’s Metric in Particular

Our next step here, as it was in Gödel’s lecture, is to construct the relativistic model in
close analogy to the Newtonian model. However, Gödel’s original method is geometri-
cally quite demanding, depending, as it does, on clever tricks with Clifford parallels in
hyperspheres, quaternions, and so on, all of which modern relativists are not so famil-
iar with. Here, therefore, I shall give an elementary derivation that uses only standard
results from the general theory of stationary space-times (Rindler, 2006, chap. 9).

Loosely speaking, a gravitational field is stationary if it does not change with time,
and it is said to be static if, additionally, “there is no rotation.” One can think of the
fixed points in the stationary field as forming a rigid (and generally curved) three-
dimensional lattice. Relative to this lattice is generally a permanent gravitational field,
and if the field is only stationary, but not static, there is also a unique permanent rotation
of the “compass of inertia” at each lattice point.

Four-dimensionally speaking, each point of the lattice has its world line in space-
time, and static space-times are characterized by the property that the set of these
“fundamental” world lines is irrotational. This is equivalent to the existence of a
unique set of identical (isometric) hypersurfaces (three-dimensional subspaces) cutting
orthogonally across all the fundamental world lines. It is these hypersurfaces that
constitute the unique simultaneities in static space-times.

In merely stationary space-times, the fundamental world lines twist and are not
hypersurface-orthogonal. Infinitely many sets of parallel and isometric (and, of course,
generally curved) hypersurfaces can then be drawn across the fundamental world lines,
forming different sets of equally admissible simultaneities. Gödel’s universe is of this
kind.

It can be shown that for the most general stationary space-time, one can always
find an “adapted” global time t (nonuniquely) of which the metric coefficients are
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independent. It is then usual to write the metric in the following canonical form5:

ds2 = e2�/c2
(cdt − c−2widx

i)2 − hijdx
idxj , (13)

where � is called the scalar potential, wi is the vector potential (i = 1, 2, 3), and xi are
the coordinates for the lattice, whose metric tensor is hij ; �,wi, and hij are functions
of the xi only. One of the advantages of this canonical metric is that it allows us to
“read off” the effective gravitational field and rotation. The effective gravitational field
�g is given by

�g = −grad�, (14)

and the proper (i.e., with respect to proper time at a given lattice point) rotation rate of
the lattice relative to the local gyrocompass is given by6

�� = 1

2c
e�/c

2
curl �w; (15)

both grad and curl refer to the metric hij .
In the case of Gödel’s universe, where the lattice is free-floating, we need �g = 0 and

can therefore set � = 0. This still leaves the following “gauge” freedom, namely, the
freedom to transform the metric (13) into an equivalent one:

xi → xi
′ = xi

′
(xi) (16a)

t → t ′ = t + f (xi), (16b)

with xi′ and f being any well-behaved functions of the xi . The effect of (16b) on �

and wi is as follows:

�′ = �, wi → w′
i = wi + c3f,i, (17)

where “, i” denotes partial differentiation with respect to xi. (I shall return to this gauge
freedom presently.) Note that if we know the metric of the lattice, plus the gravitational
field and the rotation rate at each point, then the metric (13) is uniquely determined up
to gauge transformations. (This argument can eventually be used to verify that Gödel’s
universe is indeed homogeneous.)

To construct the lattice for Gödel’s universe, we need, first of all, a set of parallel
lines (in the sense of constant orthogonal distance between neighboring members of
the set) to serve as local rotation axes for the universe. The 2-spaces orthogonal to
these lines must be homogeneous if we wish to make the whole lattice homogeneous,
but in accordance with general relativity, they need not be flat. They can, in fact, be
2-spaces of constant curvature. There are three types of such 2-spaces, having positive,
negative, or zero curvature: k/a2 (k = 1,−1, or 0). Their respective metrics are7

dl2 = a2(dr2 +�2dϕ2), (18)

with

� = sin r, � = sinh r, � = r for k = 1,−1, 0, respectively. (19)

5 See Rindler (2006, eq. (9.13)). Einstein’s summation convention applies here and in all subsequent formulas.
6 See Rindler (2006, 197).
7 See Rindler (2006, eq. (16.19)).
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Here ϕ is the angle around the origin, and ar measures radial ruler distance from the
origin. (There are other forms for these metrics, but for our purposes, these are the
most convenient.) If z is distance along the rotation lines, the 3-metric of the lattice
becomes

dl2 = a2(dr2 +�2dϕ2) + dz2. (20)

By the rotational symmetry about the central z-line, all the coefficients of the full
4-metric must be independent of ϕ, and by homogeneity in the z- and t-dimensions,
they must also be independent of z and t . We have already justified setting the scalar
potential equal to zero: � = 0. The vector potential wi, now reduced to dependence
on r only, cannot have a z-component because its curl is to point in the z-direction,
and a possible r-component can be transformed away by a gauge transformation (17).
Consequently, the full metric may be written in the form

ds2 = [dt − w(r)dϕ]2 − a2(dr2 +�2dϕ2) − dz2, (21)

where here, and from now on, unless otherwise stated, units are chosen so as to make
c = 1.

Following Gödel, we now redefine t, w, and z,

t → at, w → aw, z → az, (22)

so that (21) takes on the conformal form

ds2 = a2
{

[dt − w(r)dϕ]2 − (dr2 +�2dϕ2 + dz2)
}
. (23)

Let us first deal with the rotation rate of the lattice, as calculated from (15). For the
canonical metric (13) (with c = 1), the magnitude � of the rotation vector is given
explicitly by8

� = 1

2
√

2
e�
[
hikhjl(wi,j − wj,i)(wk,l − wl,k)

]1/2
. (24)

The metric (23) falls under the category (13), with

a2 = e2ϕ = hrr = hzz = hϕϕ/�
2. (25)

If we now set

(r,ϕ, z) = (x1, x2, x3), (26)

we see that w′ := dw/dr = w2,1 is the only nonvanishing derivative wi,j , and with
that, formula (24) yields

� = w′

2a�
. (27)

Because the coordinates (26) are right-handed if ϕ is measured in the counterclockwise
direction, it can be seen from (15) and (27) that �� acts in the direction of increasing or
decreasing ϕ, accordingly to w′ being positive or negative.

8 See Rindler (2006, eq. (9.23)).
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For a homogeneous universe, we clearly need� = const, and thus, by (27),w′ = α�

for some constant α. We could now integrate this and substitute the explicit function
w(r) into (23) before applying the field equations to that metric. In practice, however,
the field equations look a little simpler if w is left generic. Because of the symmetry of
all the other ingredients, the field equations themselves will imply w′ = α�.

At this point, we still have enough gauge freedom left to add a constant to w(r), and
simultaneously, a suitable multiple of ϕ to t . We can use this freedom to associate a
geometrically preferred – or canonical – global time with any galaxy X. The obvious
choice is the time that makes the hypersurface t = const cut X’s world line orthogonally
so that t then coincides locally with X’s inertial time. If X is the origin galaxy of the
metric (23), this simply requires that

w(0) = 0, (28)

a condition we shall now impose. Of course, the canonical time slices determined by the
galaxy X differ from those of another galaxy Y, just as they do in special relativity from
one inertial observer to another. However, that is precisely what made this universe
so attractive to Gödel. It stands in contrast to the situation in the Friedman universes,
where the canonical time slices cut orthogonally across all the fundamental world lines
and are thus shared by all the galaxies. In rotating universes, the fundamental world
lines twist, making such unicity impossible.

9.5 Do the Field Equations Permit a Gödel Universe?

So far, we have used a wish list of properties – mainly suggested by the Newtonian
analogy – to arrive at the metric (23), and we even know w(r) up to a constant (see
after (27)). We also know that to be on the same footing as the Friedman models,
the source matter should be pressureless dust, so almost no wiggle room is left; only
the sign of the curvature index k (cf. (19)) is still free. It is time to take our metric
before the judge – will it pass?

The judge is Einstein, and his field equations are the law. According to general
relativity, matter (in the form of the energy tensor) and geometry (in the form of the
metric) must jointly satisfy this law. In units that make c = 1, Einstein’s field equations
with cosmological constant � read as follows:

Gμν = −8πGTμν −�gμν. (29)

Here Gμν stands for the Einstein tensor Rμν − (1/2)gμνR, which is built out of the
metric and represents the geometry. We adopt the same sign convention as Gödel did
(which also coincides with that in Rindler, 2006). Greek indices run from 1 to 4, and
we augment (26) by

t = x4. (30)

On the right-hand side of (29), Tμν represents the sources. It is usual to assume that the
mechanical properties of the substratum – the smoothed-out universe – are equivalent
to those of dust, the technical term for a pressureless perfect fluid. Its energy tensor is
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then given by the alternative formulae9

T μν = ρUμUν or Tμν = ρgμαgνβU
αUβ, (31)

where ρ is the proper density (a constant in Gödel’s universe) and Uμ = dxμ/dτ is the
4-velocity of the substratum (τ = proper time). The substratum satisfies xi = const,
whence, from (23), dτ = adt so that

Uμ = (0, 0, 0, a−1). (32)

Then, because for (23) we have

gμν = a2

⎛⎜⎜⎝
−1 0 0 0
0 w2 −�2 0 −w
0 0 −1 0
0 −w 0 1

⎞⎟⎟⎠ , (33)

we find from (31) the following to be the only nonzero components of Tμν :

T22 = ρa2w2, T24 = −ρa2w, T44 = ρa2. (34)

To calculate the Einstein tensor Gμν for the metric (33) – a formidable task if done
by hand – it is nowadays best to use a computer program.10 The following values are
found:

G12 = G13 = G14 = G23 = G34 = 0, (35)

G11 = −1

4

w′2

S2
, (36)

G33 = 1

4

w′2

S2
+ k, (37)

G44 = −3

4

w′2

S2
− k, (38)

G24 = 3

4

ww′2

S2
+ 1

2
w′′ − 1

2

C

S
w′ + kw, (39)

G22 = −3

4

w2w′2

S2
− 1

4
w′2 − ww′′ + C

S
ww′ − kw2. (40)

In these formulas, the meanings of S and C depend on the curvature index, as follows:

if k = 1: S = sin r, C = cos r;

if k = −1: S = sinh r, C = cosh r;

if k = 0: S = 1, C = 0. (41)

We note that all the components Gμν are independent of the constant scale factor a.

9 See Rindler (2006, eq. (7.86)).
10 Donato Bini and Andrea Geralico of Consiglio Nazionale delle Ricerche (National Research Council), Rome,

provided valuable help with this.
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We are now ready to look at the Einstein field equations (29) explicitly, using the
metric components from (33), the Einstein tensor components from (35)–(40), and the
energy tensor components from (34). For μν = 12, 13, 14, 23, 34, these equations
are trivially satisfied, each term vanishing separately. For μν = 11, the field equation
reads

−1

4

w′2

S2
= a2�, (42)

which shows that we need the cosmological constant � and that it must be negative.
Then, for μν = 33, we find

1

4

w′2

S2
+ k = a2�, (43)

which, when added to (42), yields k = 2a2�. Thus, because of the negativity of �, we
must have

k = −1 (44)

and then

� = − 1

2a2
. (45)

According to (44), we must choose the second line in (41). Then, with (45), (42) yields
the expected relation (see after (27))

w′ = ±
√

2 sinh r, (46)

and consequently, with (28),

w = ±
√

2(cosh r − 1). (47)

Using (44), (45), and (46), the field equation for μν = 44 now yields

ρ = 1

8πGa2
. (48)

At this stage, no more freedom is left, and the last two field equations (for μν = 22 and
24) either are or are not satisfied by the values for k, �, ρ, and w as already found.
Happily (and miraculously?), it turns out that they are satisfied. As Gödel pointed out,
it is sufficient to check the field equations at a single point (most conveniently the
origin) because the space-time is homogeneous. At the origin, from (46) and (47), we
have

w = w′ = 0, w′/S = w′′ = ±
√

2, (49)

which makes the checking trivial.
One more point needs clarification here. In equations (46) and (47), we may pick

the positive or the negative sign. The result will be a universe that rotates counterclock-
wise, that is, in the same direction as ϕ (w > 0) or clockwise (w < 0): both, obviously,
are equally possible. We prefer the choice w > 0, although Gödel chose w < 0, nev-
ertheless asserting, apparently erroneously, that the rotation was in the direction of
increasing ϕ.
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Thus we have established the metric for Gödel’s universe in the following form
(cf. (23)):

ds2 = a2
{[
dt −

√
2 (cosh r − 1)dϕ

]2
− (dr2 + sinh2 rdϕ2 + dz2)

}
. (50)

The proper rotation rate of the lattice relative to the compass of inertia (cf. (27)) is now
given in full units by

� = c√
2a

. (51)

Summarizing our findings, we thus have, returning to full units,

−� = −1

2
K = 4πGρ/c2 = �2/c2 = 1/2a2, (52)

where K is the curvature of the layers z = const of the lattice.
Note the required relation between � and ρ (which is actually the same, except for

the sign, as in Einstein’s static universe of 1917). If � is indeed a constant of nature,
Gödel’s universe, just like Einstein’s, would need a highly tuned creation – unless one
regards � as determined by the ρ of the universe.

9.6 Light Cones, Time Travel, and Geodesics
in Gödel’s Universe

The basic absolute structure in the (Minkowskian) space-time of special relativity is the
set of parallel-oriented hourglass-like light cones, one at each event. They are closely
related to the invariance of the speed of light and to the well-known special-relativistic
speed limit v ≤ c for all particles and signals needed to ensure nonparadoxical
causality.

Let us consider this speed limit pictorially (see Figure 9.3) under the usual sup-
pression of one spatial dimension, say that of z. In an x,y,t space-time diagram (see
Figure 9.3a), where t is always drawn vertically, consider a portion (dx, dy, dt) of
a particle’s world line, starting at some event P (see Figure 9.3b). Let the distance
traveled be dr = (dx2 + dy2)1/2. The inclination dr/dt of this world line away from
the t-axis measures the particle’s speed. In ordinary units, the speed of light is very
large so that the world line of a photon would make almost a right angle with the
t-axis. For visual and dimensional convenience, it is therefore preferable to choose
relativistic units such that the speed of light is unity. Then photon world lines are
inclined at 45 degrees to the vertical. All the 45 degree lines through an event P con-
stitute the light cone at P (see Figure 9.3c), and ordinary particles passing through P

must have their world lines within the cone (v < c). An extended particle world line
must be inclined everywhere to the vertical at less than 45 degrees and so must lie
within the light cones all along its extent (see Figure 9.3d). All events in the top half
of the light cone at P can be influenced by signals from P , so this region is called
the “absolute future” of P (see Figure 9.3e). Similarly, all events in the lower half
of the cone can influence P , so this region is called the “absolute past” of P . All
events, such as Q, outside the cone occur before P in some inertial frames, after P
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Figure 9.3 The space-time aspect of special relativity in a nutshell.

in other inertial frames, and simultaneously with P in yet others because any plane
through P outside the cone represents a simultaneity t ′ = const in some inertial frame
(x ′,y ′,z′,t ′).

In full Minkowski space-time (x,y,z,t), the speed restriction dr/dt < c on a portion
(dx, dy, dz, dt) of a particle’s world line reads, in full units,

dx2 + dy2 + dz2 < c2dt2 (53a)

or

ds2 := c2dt2 − dx2 − dy2 − dz2 > 0, (53b)

whereas the local equation of a light cone is

dx2 + dy2 + dz2 = c2dt2 or ds2 = 0. (54)

In Minkowski’s language, ds2 stands for the squared displacement between neighboring
points (events) in the flat space-time of special relativity, and it is the primary law of
special relativity that every inertial observer obtains the same value for it. Evidently,
it is an analogue of dx2 + dy2 + dz2 – which represents squared distance between
neighboring points in Euclidean space – except that Minkowski’s ds2 can be negative
as well as positive or zero for perfectly ordinary event pairs. As we have seen, it is zero
for neighboring events on a photon world line and negative for events such as P and
Q in Figure 9.3e.

According to general relativity, the space-time in the presence of gravitating sources
is curved, although locally Minkowskian. This is analogous to the situation in differ-
ential geometry, where, for example, the surface of a sphere is curved but sufficiently



light cones, time travel, and geodesics in gödel’s universe 201

SR GR (maybe)

Figure 9.4. The invariant orientation of the light cones in special relativity (SR) and a permis-
sible orientation of the light cones in general relativity (GR).

small portions of it can be treated as flat and Euclidean to a high degree of accu-
racy. In fact, in every suitably small region of space-time, we can release an “Einstein
cabin” – a freely falling nonrotating box, like a severed elevator cabin or an astronaut’s
capsule – inside of which gravity has disappeared and special relativity holds. The ds2

between neighboring events in the curved space-time is the same as that measured in
the local Einstein cabin. Hence, ds2 = 0 is still the equation of the local light cone,
and ds2 ≥ 0 is still the local speed restriction on particle and signal world lines.

Now, whereas in the flat space-time of special relativity, the light cones are all
aligned in parallel like soldiers on parade (see Figure 9.4a), and no world line can loop
back on itself, general-relativistic space-times are curved, and the light cones can be
all over the place (as in Figure 9.4b). A year before he had even completed his general
theory of relativity, Einstein (1914) already worried about the possible existence of
curved space-times that allowed closed particle world lines, as in Figure 9.3b, even
though the light cones permit a consistent past-future labeling throughout. Einstein
wrote, “This conflicts strongly with my physical intuition. But I am unable to prove
that the theory excludes the occurrence of such orbits.” He was right. Much earlier than
1949, space-times had indeed been discovered where such orbits exist.11 But Gödel’s
universe was the cleanest example, certainly the one that caught the widest attention
and possibly the first in which time loops were explicitly recognized.

On the scale of the universe, an observer is but a particle. Observers’ world lines
must therefore also lie everywhere within the light cone. For an observer to travel
back to an event already experienced, his or her world line must be a closed loop,
lying everywhere within the light cone. In other words, the observer’s world line must
satisfy ds2 > 0 all along its length. Observe also, from (53b), that if you momentarily
fly along with an orbiting particle in a free Einstein cabin, its world line relative to
the cabin will satisfy dx = dy = dz = 0 and thus ds2 = c2dt2, so time elapsed at the
particle is given by

∫
ds/c.

In Gödel’s universe, the existence of closed particle world lines is almost trivially
easy to read off directly from the metric (50). Consider a circular path, r = const, in
one of the layers z = const, and let it be traced out so that t = const. (This last condition
is not nonsensical: time cannot stand still on an orbiting particle, nor on a given galaxy
along its path, but the cosmic time coordinate t can be the same on successive galaxies

11 Anti-de Sitter space, Lanczos (1924) space, van Stockum (1937) space, etc. For a discussion of anti–de Sitter
space, see Synge (1960) or Rindler (2006, sect. 14.6). I was unable to determine when its time loops were first
noticed.
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passed by the particle.) If we accordingly set dr = dz = dt = 0 in (50), we are left
with

ds2 = a2
[
2(cosh r − 1)2 − sinh2 r

]
dϕ2, (55)

which is obviously positive for sufficiently large r . Specifically, (55) can be transformed
into

ds2 = a2
[
(cosh r − 2)2 − 1

]
dϕ2 (56)

so that, provided that

cosh r > 3, (57)

such circles are possible particle world lines, and they clearly return to precisely the
initial event after one complete revolution. With equality instead of inequality in (57),
we would have ds2 = 0, and the world line would be that of a photon. Note, however,
that none of these orbits are geodesics (free-fall paths), as we shall see subsequently;
the photon would have to be guided by mirrors, and the particle would have to be
propelled by rocket motors.

As far as the requirement ds2 > 0 is concerned, a circle satisfying the condition (57)
could be described by a particle in the positive or negative direction of ϕ. However, in
any properly causal space-time – namely, one throughout which the two halves of the
local light cones can be consistently labeled “past” and “future” (and Gödel’s universe
is of this kind, as we shall presently see) – all world lines along their entire length must
point into the future cones. This will require the closed world lines of the positively
rotating universe to be described in the negative direction.

For the purpose of establishing this result, let us examine the light-cone structure
of the metric (50) all over a surface t = const in space-time. Such a surface is not a
plane in the geometrical sense, but we are at liberty to draw a map in which it is a
plane (see Figure 9.5). Nor do the fundamental world lines t = var (except that of the
central galaxy) cut such a surface orthogonally, but we are at liberty to map them as
vertical lines cutting t = const orthogonally. We shall not restrict the generality of the
argument by looking only at events satisfying z = const. In the plane t = const, let us
now go out from the center r = 0 along a radius ϕ = const and there look at directions
satisfying r = const. For them to lie on the light cone, they must satisfy ds2 = 0 (with
dr = dz = 0), which, together with (50), implies

dt −
√

2(cosh r − 1)dϕ = ±(sinh r)dϕ

or

dt/dϕ =
√

2(cosh r − 1) ± sinh r. (58)

Let us assume that we are sufficiently far from the origin to make the first term in the
square brackets in (55) greater than the second. Then both values for dt/dϕ in (58)
are positive. We know that the fundamental (galaxy) world line t = var at the event in
question must point into the future cone. Hence the light cone there looks like the third
one out in Figure 9.5.

At the origin r = 0, the metric (50), to first order in r , reduces to a Minkowskian
form. Hence the central light cone has the usual special-relativistic appearance with
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Figure 9.5. A space-time map of Gödel’s universe; the map flattens the t = const sections into
planes and progressively widens the intrinsically 90 degree angle of the light cones as we go
away from the chosen center.

a 45 degree semivertical angle. As we move away from the center, the cone tilts and
widens until at cosh r = 3, one of its edges touches the plane t = const because one of
the values of dt/dϕ in (58) becomes zero. (The reason that its semiangle is no longer
45 degrees is that our map distorts angles.) Farther out still, the direction ϕ = var lies
in its interior, and as Figure 9.5 shows, its future direction is that of decreasing ϕ. This
is what we set out to establish.

Let us next inquire into the particle speeds needed to describe the orbits under
discussion. Consider the ds2 of a portion of such an orbit, satisfying r ,z,t = const. It is
given by (55). In terms of the local inertial coordinates associated with whatever galaxy
the particle just passes, it is also given by ds2 = dt̃2 − dl2, where t̃ is the local inertial
time and, by (50), dl = a(sinh r)dϕ is the ruler distance traveled. (Note that whereas
at coincides with the proper time along any galaxy world line, the hyperplane elements
t = const are inclined to the hyperplane elements t̃ = const everywhere, except at the
center.) The local speed of the particle is then given by

v = dl

dt̃
= dl√

ds2 + dl2
= sinh r√

2(cosh r − 1)
. (59)

For the critical circle, we have cosh r = 3 (and thus sinh r = 2
√

2), and this gives us
v = 1, the speed of light. For larger circles, the required v gradually decreases to 1/

√
2

the speed of light, which is therefore the minimum speed for such journeys into the
past.
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If, on a given circle, r = const, the particle travels faster than with speed (59), which
is required to keep t constant; it will actually return to its spatial starting point earlier
than when it left. That can be seen particularly well from Figure 9.5, where the v of
(59) corresponds to a horizontal orbit to the left, and a greater v corresponds to an
orbit closer to the lower edge of the cone, thus going into earlier t-values. Formally,
from (59), a larger v makes the corresponding ds2 smaller for a given dl and thus for
a given dϕ. This leads to dt < 0 in (50) because dϕ is negative. The corresponding
orbit spirals downward below the t = const plane.

It is now evident that, as Gödel (1949a) asserted in his Festschrift article, in his
universe one can travel from any event to any other event, past or future. Suppose we
wish to go from event P here and now to event Q occurring anywhere at time t = to.

By going around circles of the right radius at the right speed, repeatedly if necessary,
we can travel to any past event on our original fundamental world line. On the other
hand, simply by sitting still, we can go to any desired future event on this world line.
Once we have reached the event t = to on our fundamental world line, we can find any
number of circular arcs in the plane t = to to take us to Q.

As mentioned earlier, the constant-time circular orbits discussed here are not
geodesics in the Gödel universe, although all geodesics are circles in the lattice or
circular helices, as is to be expected from the Newtonian analogy. The simplest method
of determining these geodesics is the method of rotating coordinates (Rindler and Per-
lick, 1990). According to this method, we take a uniformly rotating “vertical coordinate
plane” ϕ = ωt, (ω = const) as the base plane ϕ̃ = 0 for a new angular coordinate
ϕ̃:

ϕ̃ = ϕ − ωt (60a)

dϕ = dϕ̃ + ωdt. (60b)

The canonical stationary metric (50) is thereby transformed into another canonical
stationary metric, one whose lattice rotates relative to the old lattice at coordinate
angular velocity dϕ/dt = ω. For our present purposes, we need not calculate that
entire metric; all we need is the coefficient of dt2. Replacing dϕ by dϕ̃ according to
(60) transforms (50) into

ds2 = a2

{[
1 −

√
2(cosh r − 1)ω

]2
− (sinh2 r)ω2

}
dt2 + · · · . (61)

A fixed point P on this new lattice will move geodesically if the gravitational field,
relative to this lattice, vanishes at P . According to (14), we thus need only set the r-
derivative of the brace in (61) equal to zero. A simple calculation then yields a quadratic
equation for ω of the form Aω + Bω2 = 0, in which one of the roots is zero (not
surprisingly – particles sitting still in the original lattice also trace out geodesics). The
other root is

ω = −√
2

2 − cosh r
. (62)

Hence, within a coordinate plane z = const, a circle traced out at radius r with this
coordinate angular velocity is a geodesic; the negative sign means that it must be
traced out in the clockwise (negative) direction if ϕ increases in the counterclockwise
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direction. Note that as r increases from zero to cosh−1 2, ω numerically increases from
1/

√
2 to infinity. But a particle (or photon) orbit must be timelike (or null) and hence

must satisfy ds2 ≥ 0. Because the ellipses in (61) stand for terms involving the new
spatial differentials, we now set them equal to zero for the rotating lattice and substitute
for ω from (62). After some manipulation, this leads to

ds2 = 2 − cosh2 r

(2 − cosh r)2
a2dt2 (63)

and hence to the following condition for ds2 ≥ 0:

cosh r ≤
√

2. (64)

Equality here corresponds to a photon geodesic, which is thus the largest circular
geodesic. We may note that (64) is equivalent to cosh 2r ≤ 3; comparison with (57)
then shows that the largest circular geodesic is half as big as the smallest time loop.

To determine the local velocity of a particle following a circular geodesic, we repeat
the argument leading to (59), except that in the last step, we now take ds2 from (63)
and in dl replace dϕ by ωdt. This leads to the pleasant result

v =
√

2 tanh r, (65)

in terms of which the condition (64) reads v ≤ 1, just as one would expect.
The preceding analysis, in fact, determines all plane geodesics, namely, those in

coordinate planes z = const. For, given any initial particle velocity at any point of such
a plane, there is a unique geodesic with that initial vector velocity, and it will be a
circle: we need only to proceed orthogonally to the given velocity, along a geodesic
of the spatial lattice, through a ruler distance ar , where r is given by (65), to find the
center of the circular geodesic that fits the given initial data. It is well to bear in mind
this relation of the coordinate r to radial ruler distance – implicit in the metric (50) –
in all the preceding formulas.

We must also remember that not t but at in (50) corresponds to proper time at the
galaxies. If we wish, therefore, to compare the ω of geodesics with the � of the entire
Gödel universe, we need a factor a in the denominator of (62). Then, for small values
of r , we find, from (62) and (51), that ω = 2� numerically, just as in the Newtonian
analogue (cf. (8)).

To complete our discussion of the geodesics in Gödel’s universe, we would expect
from the Newtonian analogy that in the most general case, they are helices in the lattice,
and this is indeed so. For proof, we simply augment the rotation (60) by an additional
uniform translation (up or down) in the z-direction,

z̃ = z− ut, dz = dz̃+ udt, (u = const), (66)

so that each lattice point of the (r, ϕ̃, z̃) system now traces out a helix around the
central axis r = 0. Algebraically, this merely brings an additional term −u2 into the
brace in (61), which leaves (62) unchanged. Consequently, any point fixed in the new
lattice, now spiraling in the z-direction, still describes a geodesic when (62) is satisfied.
However, the condition for ds2 ≥ 0 is now obtained from the obvious modification of
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(63), which yields

2 − cosh2 r

(2 − cosh r)2
≥ u2, (67)

with equality again corresponding to photons.
The local horizontal velocity component of the geodesic is still given by (65). The

local vertical velocity component is not u but must again be found by a suitable variation
of (59) (putting dl = udz). If we denote it by ũ, we find that

ũ = u

1 + [2(cosh r − 1)/(2 − cosh r)]
. (68)

With that, (67) is equivalent to ũ2 + v2 ≤ 1, as one would expect.
The helicoidal geodesics discussed here are, in fact, the most general geodesics in

the Gödel universe in the sense that every possible geodesic is such a helix around
some suitable axis. Suppose that at any point in the lattice, we are given an initial local
velocity having a horizontal component v and a vertical component ũ. Then v allows
us, as before, to find r and ω and hence the axis of the helix; and finally, ũ together
with r determines the u of the helix via (68).

In any universe, the propagation of light is of special importance for interpreting
observations. In Gödel’s universe, as we have just seen, photons propagate along
circles or, more generally, along helices with axes in the z-direction; each satisfies
(65) and equality in (67). The larger the radius, the larger the horizontal velocity
component (65), and therefore the smaller the vertical velocity component ũ (because
v2 + ũ2 = 1) and with it also the pitch ũ/v of the helix. The largest possible radius, by
(64), is r = cosh−1

√
2 when v = 1, and the helix reduces to a circle. Also, the larger

the radius, the larger the angular velocity ω (by (62)) and hence the shorter the period.
On the other hand, the pitch increases without bound as r → 0, and the path ultimately
becomes a straight line in the z-direction.

From the preceding remarks, it is clear that galaxies on the same z-line can see
one another directly along that straight line, traversable in either direction. All other
light paths are traversable in one direction only, namely, clockwise. The farthest one
can see from any galaxy horizontally is to a ruler distance 2a cosh−1

√
2. A galaxy

at that distance sends us light along a semicircle of half that radius and, in turn,
sees us along the complementary semicircle. That same full circle, of course, shows
us the backs of our heads (and that galaxy, incidentally, lies on the smallest time
loop around ourselves). Other galaxies see us along portions of suitable helices, and
we see them along the complementary helices, the two being mirror images in the
coordinate plane ϕ = const, joining us to the galaxy in question. All galaxies that
lie strictly within a cylinder of radius 2a cosh−1

√
2 around us can receive light from

us, and we from them. However, galaxies with large z-values relative to us may
have to wait a while for the signal because many turns of the required helix may be
necessary. Also, there will generally be multiple connecting paths, and thus multiple
images, having left the source at different ages. This is most obvious for galaxy
pairs on the same vertical, which can be connected not only directly but also via an
infinite number of helicoidal light paths: the z-distance between successive loops of
the helices need only be whole fractions of the z-difference between the galaxies.
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(Think of the cylinders on which the helices lie as touching the z-line joining the two
galaxies.)

9.7 Stability

An important topic on which we have not yet touched is the stability, or lack of it, of
Gödel’s universe. Einstein’s static model of 1917 is patently unstable (in hindsight).
The slightest contraction leads to total collapse because the contraction decreases
the � repulsion (which is proportional to distance) and increases the gravity (which is
inversely proportional to the square of the distance). Conversely, the slightest expansion
becomes unstoppable.

An analogous Newtonian argument suggests that Gödel’s universe, on the contrary,
is stable with regard to contraction or expansion. Consider a slight deformation ro �→
ro + dr of a central cylinder r ≤ ro in Gödel’s model. The densityρ will decrease
like 1/r2 (by mass conservation), as will the rotation rate � (by angular momentum
conservation). Consequently, we have

ρ = ρor
2
o /r

2, � = �or
2
o /r

2

so that, with k = 2πGρo, (3), (4), and (12) yield

fgrav = −kr2
o /r, fcent = 2kr4

o /r
3.

�c2,of course, stays constant at its equilibrium value −4πGρo so that, by (2), (3), and
(11), we have, for the � force,

f� = −kr.
At ro, these three forces balance. Thereafter we have

dfgrav + df� + dfcent = k(r2
o /r

2)dr − kdr − 6k(r4
o /r

4)dr = −6kdr,

when r = ro. The changes in fgrav and f� just cancel each other out, and a restoring
force is provided by a change in centrifugal force. This shows the radial equilibrium
to be stable. (A very meticulous discussion of the stability problem can be found in
Barrow and Tsagas (2004).)

9.8 Comments

This is as far as I shall here go in discussing the technicalities of Gödel’s stationary
model universe. In summary, this model provides a prime example of an anti-Machian
distribution of matter, that is, one in which the rotation of the compass of inertia
bears no relation to the mass distribution. This goes against our intuition but need not
be fatal to the model. Gödel’s universe also neatly exhibits the two main difficulties
with time in general relativity. The first is the existence of closed time loops, which
play havoc with causality. A reasonable response to this is essentially Einstein’s: one
hopes that nature has some as yet undiscovered mechanism to prevent the formation
of such universes, analogously perhaps to the speed limit in special relativity, which
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also serves to preserve causality. The second difficulty is the nonunicity of simultaneity
in relativity, even in some relativistic cosmologies, although not in others. However,
though this dependence of the objectivity of time on the cosmic mass distribution may
well be a problem for philosophers, it presents neither physical nor logical problems
for physicists, who have long learned to live and work with this state of affairs.

We might ask one last question: how original were the remarkable features of
Gödel’s model? There is little doubt that both Gödel and Einstein regarded Gödel’s
discovery of time loops as unprecedented, yet solutions with time loops undoubtedly
existed before 1949 such as anti–de Sitter space, Lanczos space (Lanczos, 1924), and
the van Stockum spaces (van Stockum, 1937). In anti–de Sitter space, the time loops
can be removed by simple topological extension (see, for example, Rindler 2006, 314),
but in the Lanczos and van Stockum spaces, they are irremovable, just as in Gödel
space. On the other hand, an admittedly incomplete literature search failed to uncover
any evidence that the time loops in those earlier solutions had actually been recognized
as such until Gödel’s work made people look again. Rotating solutions, on the other
hand, were definitely known and recognized as such much earlier (van Stockum, 1937),
although certainly not rotating homogeneous universes.

In the epilogue below, I briefly report on the model by Lanczos, simply because
of the historical irony that Lanczos came so uncannily close to discovering Gödel’s
universe exactly twenty-five years earlier.

Gödel himself continued his interest in rotating universes well beyond 1949. How-
ever, only one more publication resulted from this work: the text of a lecture de-
livered in September 1950 titled “Rotating Universes in General Relativity Theory”
(Gödel, 1952). In this lecture, Gödel said that he was “setting forth the main results
(for the most part without proofs) to which my investigations on rotating universes
have led me so far.” The models he examines are spatially finite, homogeneous, and
expanding.

Here I shall content myself with reporting only one very interesting result from
that paper. Because in an expanding universe, the densityρ must steadily decrease,
we can consider the set of hypersurfaces ρ = const cutting across the fundamental
world lines as determining a kind of global time. However, they cannot cut across
those world lines orthogonally, for then we would have a Friedman universe and no
rotation. Imagine therefore a locally parallel set of such constant-density surfaces,
going from greater to lesser density, and the world line of a fundamental observer
(a substratum particle) cutting across them obliquely. The observer’s proper surface
of simultaneity is orthogonal to his or her world line and therefore cuts across the
constant-density surfaces. At any given instant, therefore, the observer sees more
galaxies in one half of the sky (where his or her simultaneity dips into the greater
density) than in the other half. In fact, Gödel long persisted in searching for this effect,
both through personal calculations from published data and by urging astronomers
onward (see Dawson, 1997, 182). However, no such indication of rotation has ever been
found.

E. Schuecking, who later talked with Gödel, has conjectured that the absence of
proofs from this paper may have been because of Gödel’s dissatisfaction with the
inelegance of his private calculations (Ellis, 1996). However, as described in detail by
Ellis, this paper contains a number of truly seminal ideas and results that later became
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part and parcel of the various extensions of theoretical cosmology beyond the Friedman
models. In fact, it is probably fair to say that Gödel’s 1952 paper was one of the main
impulses for many of these extensions.

9.9 Epilogue: Lanczos’ Model Universe of 1924

Twenty-five years before Gödel, Kornel (later Cornelius) Lanczos, one of the distin-
guished theoreticians of the twentieth century, invented a model universe (Lanczos,
1924) possessing many of the striking features of Gödel’s later model. Excusably for
that period, however, Lanczos failed to recognize the two most striking features: ro-
tation and time loops. His universe was rediscovered by van Stockum (1937), who at
least recognized its rotation, if not its time loops. The great defect of Lanczos’ model
as a cosmology is that it is not homogeneous.

Lanczos, like Einstein, still took it for granted that the universe is unchanging in
time. Friedman’s groundbreaking work, in which he introduced expanding universes
(in 1922, in the same journal in which Lanczos would later publish), did not percolate
into the scientific consciousness of the day, nor would it for many years to come.
(It took Hubble’s forceful personality finally to convince Einstein in 1931 that the
universe was really expanding.) Lanczos had only Einstein’s 1917 universe at which
to look, and he found it unsatisfactory. It required a specific relation, �c2 = 4πGρ

(numerically the same as Gödel’s), to hold between the density and the cosmological
constant. Such a relation, Lanczos wrote, “would be a mere coincidence and is therefore
not a satisfactory assumption.” He therefore set out to construct a stationary universe
without �. The field equations with dust sources do not permit such a universe to be
spherically symmetric, so Lanczos opted for the next best thing: rotational symmetry
about an axis.

Guided partly by symmetry, partly by simplicity, he then arrived at the following
Ansatz:

ds2 = dt2 −G(dr2 + dz2) − 2Qdϕ dt − Pd ϕ2, (69)

where G, Q, and P are functions of r only. (For comparison purposes, I reversed the
sign of Lanczos’ metric and wrote r , ϕ, z for his x, ψ , y.) It wasn’t too late to get
Gödel’s metric (50) out of this, but Lanczos proceeded down another road. Setting
� = 0 in the field equations, he now necessarily found

ds2 = dt2 − e−r2
(dr2 + dz2) − 2r2dϕ dt − (r2 − r4)d ϕ2, (70)

apart from an overall dimension-giving constant factor, which he set equal to unity.
The density function corresponding to this metric is given by

ρ = er
2

2πG
, (71)

where I have written ρ for Lanczos’ μ and used Gödel’s units, in which c = 1 but
8πG �= 1. Note that ρ → ∞ as r → ∞. However, Lanczos’ r is only a conventional
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coordinate, related to ruler distance l by

l =
∫ r

0
e−r2/2dr (72)

so that l → √
π/2 as r → ∞. Lanczos’ universe is thus recognized as a cylinder,

infinite in the z-dimension but with a singular edge and infinite density at ruler radius√
π/2.
For ease of comparison, we recast Gödel’s metric (50) into an alternative form,

which results when we set

t = 2t̃ , r = 2r̃ , z = 2z̃ (and S̃ = sinh r̃), (73)

namely,

ds2 = 4a2
{
dt̃2 − (dr̃2 + dz̃2) − 2

√
2S̃2dϕdt − (S̃2 − S̃4)dϕ2

}
. (74)

The analogy with Lanczos’ metric is now quite striking.
As is easily verified today (cf. (24)), Lanczos’ universe rotates locally (but not

rigidly) relative to the compass of inertia with proper angular velocity

� = er
2/2, (75)

although he did not know it. Even so, he determined the quasi-helicoidal shape of the
light paths in his model (which could have suggested rotation). Together, (75) and (71)
imply �2 = 2πGρ, as compared with Gödel’s �2 = 4πGρ.

Lanczos’ universe also has closed time loops. He actually went so far as to remark
that the simultaneity surfaces t = const eventually cut into the light cone (just as in
Figure 9.5), in fact, when r > 1. However, he also remarked that this was nothing
to worry about. Evidently he was only a hair away from realizing that all loops t ,
z, r = const with r > 1 in (70) are possible closed-particle world lines (as follows
immediately from inspection of the metric: ds2 > 0). Alas.

Later in his paper, Lanczos did include � but, unfortunately and inexplicably, took
it as an axiom that � ≥ 0, so nothing significantly new emerged. Alas once more.
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Peters.

Einstein, A. (1914). Die formale Grundlage der allgemeinen Relativitaetstheorie. Sitzungsberichte
d.kon.preuss.Ak. Wissenschaften, XLI, 1030–85. [See p. 1079. I am indebted to J. Ehlers for
drawing my attention to this reference.]
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CHAPTER 10

Physical Unknowables

Karl Svozil

As we know, there are known knowns;
there are things we know we know.
We also know there are known unknowns;
that is to say we know there are some things we do not know.
But there are also unknown unknowns –
the ones we don’t know we don’t know.

– United States Secretary of Defense Donald H. Rumsfeld
at a Department of Defense news briefing on
February 12, 2002

Ei mihi, qui nescio saltem quid nesciam!
(Alas for me, that I do not at least know the extent of my own ignorance!)

– Aurelius Augustinus, 354–430, “Confessiones”
(Book XI, chapter 25)

10.1 Rise and Fall of Determinism

In what follows, a variety of physical unknowables will be discussed. Provable lack of
physical omniscience, omnipredictability and omnipotence is derived by reduction to
problems that are known to be recursively unsolvable. “Chaotic” symbolic dynamical
systems are unstable with respect to variations of initial states. Quantum unknowables
include the random occurrence of single events, complementarity, and value indefinite-
ness.

From antiquity onward, various waves of (in)determinism have influenced human
thought. Regardless of whether they were shaped by some Zeitgeist, or whether, as
Goethe’s Faust puts it, “what you the Spirit of the Ages call, is nothing but the
spirit of you all, wherein the Ages are reflected,” their proponents have sometimes
vigorously defended their stance in irrational, unscientific, and ideologic ways. Indeed,
from an emotional point of view, may it not appear frightening to be “imprisoned” by
remorseless, relentless predetermination, even in a dualistic setup (Descartes, 1641);
and, equally frightening, to accept that one’s fate depends on total arbitrariness and
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chance? Does determinism expose freedom, self-determination and human dignity as
an idealistic illusion? On the other extreme, what kind of morale, merits and efforts
appear worthy in a universe governed by pure chance? Is there some reasonable in-
between straddling those extreme positions that may also be consistent with science?

We shall, for the sake of separating the scientific debate from emotional overtones
and possible bias, adopt a contemplative strategy of evenly-suspended attention outlined
by Freud (1999), who admonishes analysts to be aware of the dangers caused by
“temptations to project, what [the analyst] in dull self-perception recognizes as the
peculiarities of his own personality, as generally valid theory into science.” Nature is
thereby treated as a client-patient, and whatever findings come up are accepted as is
without any immediate emphasis or judgment.

10.1.1 Toward Explanation and Feasibility

Throughout history, the human desire to foresee and manipulate the physical world
for survival and prosperity, and in accord with personal wishes and fantasies, has been
confronted with the inability to predict and manipulate large portions of the habitat. As
time passed, people have figured out various ways to tune ever increasing fragments
of the world according to their needs. From a purely behavioral perspective, this is
brought about in the way of pragmatic quasi-causal conditional rules of the following
kind, “if one does this, one obtains that.” A typical example of such a rule is “if I rub
my hands, they get warmer.”

How does one arrive at those kinds of rules? Guided by suspicions, thoughts, for-
malisms and by pure chance, inquiries start by roaming around, inspecting portions of
the world and examining their behavior. Repeating phenomena or patterns of behavior
are observed and pinned down by reproducing and evoking them. A physical behavior
is anything that can be observed and thus operationally obtained and measured; for
example, the rise and fall of the sun, the ignition of fire, the formation and melting
of ice (in principle even time series of financial entities traded at stock exchanges or
over-the-counter).

As physical behaviors are observed, people attempt to understand them by trying
to figure out some cause (Frank, 1932; Schlick, 1932) or reason for their occurrences.
Researchers invent virtual parallel worlds of thoughts and intellectual concepts such
as “electric field” or “mechanical force” to explain and manipulate the physical behav-
iors, calling these creations of their minds “physical theories.” Contemporary physical
theories are heavily formalized and spelled out in the language of mathematics. A good
theory provides people with the feeling of a key unlocking new ways of world com-
prehension and manipulation. Ideally, an explanation should be as compact as possible
and should apply to as many behavioral patterns as possible.

Ultimately, theories of everything (Barrow, 1991; Kragh, 1999; Schlick, 1935)
should be able to predict and manipulate all phenomena. In the extreme form, science
becomes omniscient and omnipotent, and we envision ourselves almost as becoming
empowered with magic: we presume that our ability to manipulate and tune the world
is limited by our fantasies alone, and any constraints whatsoever can be bypassed
or overcome one way or another. Indeed, some of what in the past has been called
“supernatural,” “mystery,” and “the beyond” has been realized in everyday life. Many
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wonders of witchcraft have been transferred into the realm of the physical sciences.
Take, for example, our abilities to fly, to transmute mercury into gold (Sherr et al.,
1941), to listen and speak to far away friends, or to cure bacterial diseases with a few
pills of antibiotics.

Until about 1900, the fast-growing natural sciences, guided by rational (Descartes,
1637) and empirical (Hume, 1748; Locke, 1690) thinking, and seconded by the Euro-
pean Enlightenment, prospered under the assumption of physical determinism. Under
the aegis of physical determinism, all incapacities to predict and manipulate physical
behavior were interpreted to be merely epistemic in nature, purporting that, with grow-
ing precision of measurements and improvements of theory, all physical unknowables
will eventually be overcome and turned into knowables; that is, everything should in
principle be knowable. Even statistical quantities would describe underlying determin-
istic behaviors. Consequently, there could not exist any physical behavior or entity
without a cause stimulating or pushing it into existence.

The uprise of determinism culminated in the following statement by Laplace (1998,
chap. 2):

Present events are connected with preceding ones by a tie based upon the evident principle
that a thing cannot occur without a cause which produces it. This axiom, known by the
name of the principle of sufficient reason, extends even to actions which are considered
indifferent . . .

We ought then to regard the present state of the universe as the effect of its anterior state
and as the cause of the one which is to follow. Given for one instant an intelligence which
could comprehend all the forces by which nature is animated and the respective situation
of the beings who compose it an intelligence sufficiently vast to submit these data to
analysis it would embrace in the same formula the movements of the greatest bodies of
the universe and those of the lightest atom; for it, nothing would be uncertain and the
future, as the past, would be present to its eyes.

The invention of (analytic) functions reflects this paradigm quite nicely: some disper-
sionless point coordinate x(t) of infinite precision serves as the representation (Hertz,
1894) of a physical state as a (unique) function of physical time t .

Indeed, the possibility to formulate theories per se, and in particular, the applicabil-
ity of formal, mathematical models, comes as a mind-boggling surprise and cannot be
taken for granted; there appears to be what Wigner (1960) called an “unreasonable ef-
fectiveness of mathematics in the natural sciences.” Even today, there is a Pythagorean
consensus that there is no limit to dealing with physical entities in terms of mathe-
matical formalism. And, as mathematics increasingly served as a proper representation
of reality, and computational deduction systems were increasingly introduced to de-
lineate formalizable truth, algorithmics started to become a metaphor for physics. In
algorithmic terms, nature computes, and can be (re)programmed to perform certain
tasks.

The natural sciences continued to be uninhibited by any sense of limits until about
fin-de-siècle, around 1900. In parallel, the formalization of mathematics progressed in
an equally uninhibited way. Hilbert (1926, 170) argued that nobody should ever expel
mathematicians from the paradise created by Cantor’s set theory and posed a challenge
(Hilbert, 1902) to search for a consistent, finite system of formal axioms which would
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be able to render all mathematical and physical truths; just like quasi-finitistic ways to
cope with infinitesimal calculus had been found.

This type of belief system that claims omniscience could be called “deterministic
conjecture” because no proof for its validity can be given, nor is there any way of
falsification (Popper, 1959). Alas, from a pragmatic point of view, omniscience can be
effectively disproved on a daily basis by tuning in to local weather forecasts.

Furthermore, it seems to be an enduring desire of human nature to be able not merely
to trust the rules and theories syntactically and operationally (Bridgman, 1934) but also
to be able to semantically interpret them as implying and carrying some ontological
significance or truth – as if reality would communicate with us, mediated through our
senses, thereby revealing the laws governing nature. Stated pointedly, we not only wish
to accept physical theories as pure abstractions and constructions of our own mind
(Berkeley, 1710) but we associate meaning and truth to them so much so that only very
reluctantly do we admit their preliminary, transient, and changing character (Lakatos,
1978).

10.1.2 Rise of Indeterminism

Almost unnoticed, the tide of indeterminism started to build toward the end of the nine-
teenth century (Kragh, 1999; Purrington, 1997). At that time, mechanistic theories faced
an increasing number of anomalies: Poincaré’s discovery of instabilities of trajectories
of celestial bodies (which made them extremely sensible to initial conditions), radioac-
tivity (Kragh, 1997, 2009), X-rays, specific heats of gases and solids, emission and
absorption of light (in particular, blackbody radiation), the (ir)reversibility dichotomy
between classical reversible mechanics and Boltzmann’s statistical-mechanical theory
of entropy versus the second law of thermodynamics, and the experimental refutation
of classical constructions of the ether as a medium for the propagation of light waves.

After the year 1900 followed a short period of revolutionary new physics, in par-
ticular, quantum theory and relativity theory, without any strong inclination toward
(in)determinism. Then indeterminism erupted with Born’s claim that quantum me-
chanics has it both ways: the quantum state evolves strictly deterministically, whereas
the individual event or measurement outcome occurs indeterministically. Born also
stated that he believed that there is no cause for an individual quantum event; that is,
such an outcome occurs irreducibly at random.

There followed a fierce controversy, with many researchers such as Born, Bohr,
Heisenberg, and Pauli taking the indeterministic stance, whereas others, like Planck
(Born, 1955), Einstein (Einstein, 1938; Einstein et al., 1935), Schrödinger, and De
Brogli, leaning toward determinism. This latter position was pointedly put forward
by Einstein’s dictum in a letter to Born, dated December 12, 1926 (Born, 1969, 113):
“In any case I am convinced that he [the Old One] does not throw dice.” At present,
indeterminism is clearly favored, the canonical position being expressed by Zeilinger
(2005): “The discovery that individual events are irreducibly random is probably one
of the most significant findings of the twentieth century. . . . For the individual event in
quantum physics, not only do we not know the cause, there is no cause.”

The last quarter of the twentieth century saw the rise of yet another form of physical
indeterminism, originating in Poincaré’s aforementioned discovery of instabilities of
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the motion of classical bodies against variations of initial conditions (Campbell, and
Garnett, 1882; Diacu, and Holmes, 1996; Poincaré, 1914). This scenario of determin-
istic chaos resulted in a plethora of claims regarding indeterminism that resonated with
a general public susceptible to fables and fairy tales (Bricmont, 1996).

In parallel, Gödel’s incompleteness theorems (Davis, 1958, 1965; Gödel, 1931;
Smullyan, 1992a; Tarski, 1932), as well as related findings in the computer sciences
(Calude, 2002; Chaitin, 1987a; Grünwald, and Vitányi, 1987; Turing, 1937), put an
end to Hilbert’s program of finding a finite axiom system for all mathematics. Gödel’s
incompleteness theorems also established formal bounds on provability, predictability,
and induction. (The incompleteness theorems also put an end to philosophical con-
tentions expressed by Schlick (1935, 101) that, beyond epistemic unknowables and the
“essential incompetence of human knowledge,” there is “not a single real question for
which it would be logically impossible to find a solution.”)

Alas, just like determinism, physical indeterminism cannot be proved, nor can there
be given any reasonable criterion for its falsification. After all, how can one check
against all laws and find none applicable? Unless one is willing to denote any system
whose laws are currently unknown or whose behavior is hard to predict with present
techniques as indeterministic, there is no scientific substance to such absolute claims,
especially if one takes into account the bounds imposed by the theory of recursive
functions discussed later. So, just as in the deterministic case, this position should be
considered conjectural.

In discussing the present status of physical (in)determinism, we shall first consider
provable unknowables through reduction to incompleteness theorems of recursion
theory, then discuss classical deterministic chaos, and finally deal with the three types
of quantum indeterminism: the occurrence of certain single events, complementarity,
and value indefiniteness. The latter quantum unknowables are not commonly accepted
by the entire community of physicists; a minority is still hoping for a more complete
quantum theory than the present statistical theory.

10.2 Provable Physical Unknowables

In the past century, unknowability has been formally defined and derived in terms
of a precise, formal notion of unprovability (Davis, 1958; Gödel, 1931; Odifreddi,
1989; Rogers, Jr., 1967; Smullyan, 1992a; Tarski, 1932, 1956; Turing, 1937). This
is a remarkable departure from informal suspicions and observations regarding the
limitations of our worldview. No longer is one reduced to informal, heuristic contem-
plations and comparisons about what one knows and can do versus one’s ignorance
and incapability. Formal unknowability is about formal proofs of unpredictability and
impossibility.

There are several pathways to formal undecidability. For contemporaries accustomed
to computer programs (and their respective codes), a straight route may be algorithmic.
What is an algorithm? In Turing’s (1968, 34) own words,

a man provided with paper, pencil and rubber, and subject to strict discipline [carrying
out a set of rules of procedure written down] is in effect a universal computer.
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From a purely syntactic point of view, formal systems in mathematics can be identified
with computations and vice versa. Indeed, as stated by Gödel (1986, 369–370) in a
postscript, dated from June 3, 1964:

due to A. M. Turing’s work, a precise and unquestionably adequate definition of the general
concept of formal system can now be given, the existence of undecidable arithmetical
propositions and the non-demonstrability of the consistency of a system in the same
system can now be proved rigorously for every consistent formal system containing a
certain amount of finitary number theory.

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias
“algorithm” or “computation procedure” or “finite combinatorial procedure”). This con-
cept is shown to be equivalent with that of a “Turing machine.” A formal system can
simply be defined to be any mechanical procedure for producing formulas, called prov-
able formulas.

Almost since its discovery, attempts (Popper, 1950a,b) have been made to translate
formal incompleteness into physics, mostly by reduction to some provable undecidable
problem of recursion theory such as the halting problem (Barrow, 1998; Casti, and
Karlquist, 1996; Casti, and Traub, 1994; Costa, and Doria, 1991; da Costa, and Doria,
1991; Hole, 1994; Kanter, 1990; Moore, 1990; Suppes, 1993; Svozil, 1993; Wolfram,
1984, 1985). Here the term reduction indicates that physical undecidability is linked
or reduced to logical undecidability. A typical example is the embedding of a Turing
machine or any type of computer capable of universal computation into a physical
system. As a consequence, the physical system inherits any type of unsolvability
derivable for universal computers such as the unsolvability of the halting problem:
because the computer is part of the physical system, so are its behavioral patterns [and
vice versa (Bridgman, 1934; Landauer, 1986, 1991)].

Note that these logical and recursion-theoretical types of physical unknowables
are only derivable within deterministic systems that are strong enough to express
self-reference, substitution (Smullyan, 1992a, chap. 1), and universal computation.
Indeterministic systems are not deterministic by definition, and too-weak forms of ex-
pressibility are trivially incomplete (Brukner, 2003), as they are incapable of expressing
universal computation or self-reference and substitution.

Gödel himself did not believe that his incompleteness theorems had any relevance
for physics, especially not for quantum mechanics. The author was told by professor
Wheeler that Gödel’s resentments [also mentioned in Bernstein (1991, 140–141)] may
have been due to Einstein’s negative opinion about quantum theory, because Einstein
may have brainwashed Gödel into believing that all efforts in this direction were in
vain.

10.2.1 Intrinsic Self-Referential Observers

Embedded (Toffoli, 1978), intrinsic observers (Svozil, 1994) cannot leave their Carte-
sian prison (Descartes, 1641, Meditation 1.12) and step outside the universe examining
it from some Archimedean point (Boskovich, 1966, sect. 11, 405–409). Thus every
physical observation is reflexive (Nagel, 1986; Sosa, 2009) and circular (Kauffman,



provable physical unknowables 219

1987). The self-referential and substitution capability of observers results in very di-
verse, unpredictable forms of behavior and in provable unknowables.

For the sake of the further analysis, suppose that there exist observers measuring
objects and that observers and objects are distinct from one another, separated by a cut.
Through that cut, information is exchanged. Symbolically, we may regard the object as
an agent contained in a black box, whose only relevant emanations are representable
by finite strings of zeroes and ones appearing on the cut, which can be modeled by any
kind of screen or display. According to this purely syntactic point of view, a physical
theory should be able to render identical symbols like the ones appearing through the
cut; that is, a physical theory should be able to mimic or emulate the black box to
which it purports to apply. This view is often adapted in quantum mechanics (Fuchs,
and Peres, 2000), where the question regarding any meaning of the quantum formalism
is notorious (Feynman, 1965, 129).

A sharp distinction between a physical object and an extrinsic outside observer is a
rarely affordable abstraction. Mostly the observer is part of the system to be observed.
In such cases, the measurement process is modeled symmetrically, and information is
exchanged between observer and object bidirectionally. This symmetrical configuration
makes a distinction between observer and object purely conventional (Svozil, 2002a).
The cut is constituted by the information exchanged. We tend to associate with the
measurement apparatus one of the two subsystems that, in comparison, is larger, more
classical, and up-linked with some conscious observer (Wigner, 1961). The rest of the
system can then be called the measured object.

Intrinsic observers face all kinds of paradoxical self-referential situations. These
have been expressed informally as puzzling amusement and artistic perplexity, and
as a formalized, scientifically valuable resource. The liar paradox, for instance, is
already mentioned in the Bible’s Epistle to Titus 1:12, stating that “one of Crete’s own
prophets has said it: ‘Cretans are always liars, evil brutes, lazy gluttons.’ He has surely
told the truth.” In what follows, paradoxical self-referentiality will be applied to argue
against the solvability of the general induction problem as well as for a pandemonium
of undecidabilities related to physical systems and their behaviors. All are based on
intrinsic observers embedded in the systems they observe.

It is not totally unreasonable to speculate that the limits of intrinsic self-expression
seems to be what Gödel himself considered the gist of his incompleteness theorems. In
a reply to a letter by Burks [reprinted in von Neumann (1966, 55); see also Feferman
(1984, 554)], Gödel states:

that a complete epistemological description of a language A cannot be given in the same
language A, because the concept of truth of sentences of A cannot be defined in A. It is
this theorem which is the true reason for the existence of undecidable propositions in the
formal systems containing arithmetic.

One of the first researchers to become interested in the application of paradoxical
self-reference to physics was the philosopher Popper (1950a,b) who published two
almost forgotten papers discussing, among other issues, Russell’s paradox of Tristram
Shandy (Sterne, 1767): In volume 1, chapter 14, Shandy finds that he could publish two
volumes of his life every year, covering a time span far shorter than the time it took him
to write these volumes. This de-synchronization, Shandy concedes, will rather increase
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than diminish as he advances; one may thus have serious doubts about whether he
will ever complete his autobiography. This relates to a question of whether there can
be a physical computer that can be assured of correctly processing information faster
than the universe does. Wolpert (2001, 016128-1) states that [see also Calude et al.
(1995, sect. 5)] “In a certain sense, the universe is more powerful than any information-
processing system constructed within it could be. This result can alternatively be viewed
as a restriction on the computational power of the universe – the universe cannot support
the existence within it of a computer that can process information as fast as it can.”

10.2.2 Unpredictability

For any deterministic system strong enough to support universal computation, the
general forecast or prediction problem is provable unsolvable. This proposition will be
argued by reduction to the halting problem, which is provable unsolvable. A straightfor-
ward embedding of a universal computer into a physical system results in the fact that,
owing to the reduction to the recursive undecidability of the halting problem, certain
future events cannot be predicted and are thus provable indeterministic. Here reduction
again means that physical undecidability is linked or reduced to logical undecidability.

A clear distinction should be made between determinism (such as computable evo-
lution laws) and predictability (Suppes, 1993). Determinism does not exclude unpre-
dictability in the long run. The local (temporal), step-by-step evolution of the system can
be perfectly deterministic and computable, whereas recursion-theoretic unknowables
correspond to global observables at unbounded time scales. Indeed, (nontrivial) prov-
able unpredictability requires determinism, because formalized proofs require formal
systems or algorithmic behavior.

Unpredictability in indeterministic systems is tautological and trivial. At the other
extreme, one should also keep in mind that there exist rather straightforward pre-
Gödelian impossibilities (Brukner, 2003) to express certain mathematical truths in weak
systems that are incapable of representing universal computation or Peano arithmetic.

For the sake of exploring (algorithmically) what paradoxical self-reference is like,
one can consider the sketch of a proof by contradiction of the unsolvability of the halting
problem. The halting problem is about whether or not a computer will eventually halt on
a given input, that is, will evolve into a state indicating the completion of a computation
task or will stop altogether. Stated differently, a solution of the halting problem will be
an algorithm that decides whether another arbitrary algorithm on arbitrary input will
finish running or will run forever.

The scheme of the proof by contradiction is as follows: the existence of a hypothetical
halting algorithm capable of solving the halting problem will be assumed. This could,
for instance, be a subprogram of some suspicious supermacro library that takes the
code of an arbitrary program as input and outputs 1 or 0, depending on whether or not
the program halts. One may also think of it as a sort of oracle or black box analyzing
an arbitrary program in terms of its symbolic code and outputting one of two symbolic
states, say, 1 or 0, referring to termination or nontermination of the input program,
respectively.

On the basis of this hypothetical halting algorithm one constructs another diagonal-
ization program as follows: on receiving some arbitrary input program code as input,
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the diagonalization program consults the hypothetical halting algorithm to find out
whether or not this input program halts; on receiving the answer, it does the opposite:
If the hypothetical halting algorithm decides that the input program halts, the diag-
onalization program does not halt (it may do so easily by entering an infinite loop).
Alternatively, if the hypothetical halting algorithm decides that the input program does
not halt, the diagonalization program will halt immediately.

The diagonalization program can be forced to execute a paradoxical task by receiving
its own program code as input. This is so because, by considering the diagonalization
program, the hypothetical halting algorithm steers the diagonalization program into
halting if it discovers that it does not halt; conversely, the hypothetical halting algorithm
steers the diagonalization program into not halting if it discovers that it halts.

The contradiction obtained in applying the diagonalization program to its own code
proves that this program and, in particular, the hypothetical halting algorithm cannot
exist. A slightly revised form of the proof (using quantum diagonalizaton operators
that are equivalent to a classical derangement or subfactorial) holds for quantum
diagonalization (Svozil, 2009b), as quantum information could be in a fifty-fifty fixed-
point halting state. Procedurally, in the absence of any fixed-point halting state, the
aforemetioned task might turn into a nonterminating alteration of oscillations between
halting and nonhalting states (Kauffman, 1987).

A universal computer can in principle be embedded into, or realized by, certain phys-
ical systems designed to universally compute. An example of such a physical system is
the computer on which I am currently typing this chapter. Assuming unbounded space
[i.e., memory (Calude, and Staiger, 2010)] and time, it follows by reduction (Barrow,
1998; Calude et al., 1995; Casti, and Karlquist, 1996; Casti, and Traub, 1994; Costa,
and Doria, 1991; da Costa, and Doria, 1991; Hole, 1994; Kanter, 1990; Moore, 1990;
Suppes, 1993; Svozil, 1993; Wolfram, 1984, 1985) that there exist physical observ-
ables, in particular, forecasts about whether or not an embedded computer will ever
halt in the sense sketched earlier, that are provably undecidable.

10.2.3 The Busy Beaver Function as the Maximal Recurrence Time

The busy beaver function (Brady, 1988; Chaitin, 1974; Dewdney, 1984; Rado, 1962)
addresses the following question: suppose one considers all programs (on a particular
computer) up to length (in terms of the number of symbols) n. What is the largest
number producible by such a program before halting? (Note that non-halting programs,
possibly producing an infinite number, e.g., by a non-terminating loop, do not apply.)
This number may be called the busy beaver function of n. The first values of a certain
universal computer’s busy beaver function with two states and n symbols are, for n =
2, 3, 4, 5, 7 and 8, known to be, or estimated by (Brady, 1988; Dewdney, 1984), 4, 6,
13, greater than 103, greater than 104, and greater than 1044.

Consider a related question: what is the upper bound of running time – or, al-
ternatively, recurrence time – of a program of length n bits before terminating or,
alternatively, recurring? An answer to this question will explain just how long we have
to wait for the most time-consuming program of length n bits to halt. That, of course,
is a worst-case scenario. Many programs of length n bits will have halted long before
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the maximal halting time. We mention without proof (Chaitin, 1974, 1987b) that this
bound can be represented by the busy beaver function.

Knowledge of the maximal halting time would solve the halting problem quantita-
tively because if the maximal halting time were known and bounded by any computable
function of the program size of n bits, one would have to wait just a little longer than the
maximal halting time to make sure that every program of length n – also this particular
program, if it is destined for termination – has terminated. Otherwise, the program
would run forever. Hence, because of the recursive unsolvability of the halting problem
the maximal halting time cannot be a computable function. Indeed, for large values of
n, the maximal halting time explodes and grows faster than any computable function
of n.

By reduction, upper bounds for the recurrence of any kind of physical behavior can
be obtained; for deterministic systems representable by n bits, the maximal recurrence
time grows faster than any computable number of n. This bound from below for
possible behaviors may be interpreted quite generally as a measure of the impossibility
to predict and forecast such behaviors by algorithmic means.

10.2.4 Undecidability of the Induction Problem

Induction, in physics, is the inference of general rules dominating and generating
physical behaviors from these behaviors alone. For any deterministic system strong
enough to support universal computation, the general induction problem is provable
unsolvable. Induction is thereby reduced to the unsolvability of the rule inference
problem (Adleman, and Blum, 1991; Angluin, and Smith, 1983; Blum, and Blum,
1975; Gold, 1967; Li, and Vitányi, 1992) of identifying a rule or law reproducing the
behavior of a deterministic system by observing its input-output performance by purely
algorithmic means (not by intuition).

Informally, the algorithmic idea of the proof is to take any sufficiently powerful rule
or method of induction and, by using it, to define some functional behavior that is not
identified by it. This amounts to constructing an algorithm which (passively) fakes the
guesser by simulating some particular function until the guesser pretends to be able
to guess the function correctly. In a second, diagonalization step, the faking algorithm
then switches to a different function to invalidate the guesser’s guess.

One can also interpret this result in terms of the recursive unsolvability of the halting
problem, which in turn is related to the busy beaver function; there is no recursive bound
on the time the guesser has to wait to make sure that the guess is correct.

10.2.5 Impossibility

Physical tasks which would result in paradoxical behavior (Hilbert, 1926) are im-
possible to perform. One such task is the solution of the general halting problem, as
discussed earlier. Thus omnipotence appears infeasible, at least as long as one sticks
to the usual formal rules opposing inconsistencies (Hilbert, 1926, 163).

Another such paradoxical task (requiring substitution and self-reference) can be
forced upon La Bocca della Veritá (Mouth of Truth), located in the portico of the
church of Santa Maria in Cosmedin in Rome. It is believed that if one tells a lie with
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one’s hand in the mouth of the sculpture, the hand will be bitten off; another less violent
legend has it that anyone sticking a hand in the mouth while uttering a false statement
will never be able to pull the hand back out. Rucker (1982, 178) once allegedly put in
his hand in the sculpture’s mouth uttering, “I will not be able to pull my hand back
out.” The author leaves it to the reader to imagine La Bocca della Veritá’s confusion
when confronted with such as statement!

There is a pandemonium of conceivable physical tasks (Barrow, 1998), some quite
entertaining (Smullyan, 1992b), which would result in paradoxical behavior and are
thus impossible to perform. Some of these tasks are pre-Gödelian and merely require
substitution.

For the sake of demonstrating paradoxical substitution and the resulting impos-
sibility, consider the following printing task discussed by Smullyan (1992a, 2–4).
Let the expressions (not), (printable), (self-substitute), have a standard interpreta-
tion in terms of negation, printing, and self-reference by substitution [i.e., if X is
some expression formed by the earlier three expressions and brackets, then (self-
substitute)(X) = X(X)], respectively, and define (not)(printable)(X) for arbitray ex-
pressionsX to be true if and only ifX cannot be printed. Likewise, (not)(printable)(self-
substitute)(X) is defined to be true if and only if (self-substitute)X cannot be printed.
Whatever the rules deriving expressions (subject to the notion of truth defined ear-
lier) may be, as long as the system is consistent and produces only true proposi-
tions (and no false ones), within this small system, the following proposition is true
but unprintable: (not)(printable)(self-substitute)[(not)(printable)(self-substitute)]. By
definition, this proposition is true if and only if (self-substitute)[(not)(printable)(self-
substitute)] cannot be printed. As per definition, (self-substitute)[(not)(printable)(self-
substitute)] is just (not)(printable)(self-substitute)[(not)(printable)(self-substitute)], the
proposition is true if and only if it is not printable. Thus the proposition is either true
and cannot be printed, or it is printable and thus false. The latter alternative is ex-
cluded by the assumption of consistency. Thus one is left with the only consistent
alternative that the proposition (not)(printable)(self-substitute)[(not)(printable)(self-
substitute)] is true but unprintable. Note also that, since its negation (printable)(self-
substitute)[(not)(printable)(self-substitute)] is false, it is also not printable (by the
consistency assumption), and hence (printable)(self-substitute)[(not)(printable)(self-
substitute)] is an example of a proposition which is undecidable within the system –
neither it nor its negation will ever be printed in a consistent formalized system with
the notion of truth defined earlier.

10.2.6 Results in Classical Recursion Theory with Implications
for Theoretical Physics

The following theorems of recursive analysis (Aberth, 1980; Weihrauch, 2000) have
some implications for theoretical physics (Kreisel, 1974): (1) There exist recursive
monotone bounded sequences of rational numbers whose limit is no computable num-
ber (Specker, 1949). A concrete example of such a number is Chaitin’s Omega number
(Calude, 2002; Calude, and Dinneen, 2007; Chaitin, 1987a), the halting probability
for a computer (using prefix-free code), which can be defined by a sequence of ra-
tional numbers with no computable rate of convergence. (2) There exist a recursive
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real function which has its maximum in the unit interval at no recursive real number
(Specker, 1959). This has implications for the principle of least action. (3) There exists
a real number r such that G(r) = 0 is recursively undecidable for G(x) in a class
of functions which involves polynomials and the sine function (Wang, 1974). This,
again, has some bearing on the principle of least action. (4) There exist incomputable
solutions of the wave equations for computable initial values (Bridges, 1999; Pour-El,
and Richards, 1989). (5) On the basis of theorems of recursive analysis (Richardson,
1968; Scarpellini, 1963), many questions in dynamical systems theory are provable
undecidable (Calude et al., 2010; da Costa et al., 1993; Hirsch, 1985; Stewart, 1991).

10.3 Deterministic Chaos

The wording deterministic chaos appears to be a contradictio in adjecto, indicating a
hybrid form of chaotic behavior in deterministic systems (Anishchenko et al., 2007;
Lichtenberg, and Lieberman, 1983). Operationally, it is characterized by the practical
impossibility of forecasting the future because the system is unstable (Lyapunov, 1992)
and very sensitive to tiny variations of the initial state. Because the initial state can only
be determined with finite accuracy, its evolution will soon become totally unpredictable.

10.3.1 Instabilities in Classical Motion

In 1885 King Oscar II of Sweden and Norway, stimulated by Weierstrass, Hermite,
and Mittag-Leffler, offered a prize to anybody contributing toward the solution of the
so-called n-body problem (Weierstrass et al., 1885, 2):

Given a system of arbitrarily many mass points that attract each according to Newton’s
law, try to find, under the assumption that no two points ever collide, a representation of
the coordinates of each point as a series in a variable that is some known function of time
and for all of whose values the series converges uniformly.

The prize-winning work was expected to render systematic techniques toward a
solution to stable motion such that systems whose states start out close together will
stay close together forever (Diacu, and Holmes, 1996, 69). To everyone’s surprise, the
exciting course of events (Diacu, 1996; Diacu, and Holmes, 1996; Peterson, 1993)
resulted in Poincaré’s prize-winning centennial revised contribution (Poincaré, 1890),
which predicted unexpected and irreducible instabilities in the mechanical motion of
bodies. Poincaré was led to the conclusion that sometimes small variations in the initial
state could lead to huge variations in the evolution of a physical system at later times.
In Poincaré’s own words (Poincaré, 1914, chapt. 4, sect. 2, 56–57):

If we would know the laws of nature and the state of the Universe precisely for a certain
time, we would be able to predict with certainty the state of the Universe for any later
time. But . . . it can be the case that small differences in the initial values produce great
differences in the later phenomena; a small error in the former may result in a large error
in the latter. The prediction becomes impossible and we have a “random phenomenon.”
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Note that Poincaré adheres to a Laplacian-type determinism but recognizes the
possibility that systems whose states start out close together will stay close together for
a while (Diacu, and Holmes, 1996, 69) and then diverge into totally different behaviors.
Today such behaviors are subsumed under the name deterministic chaos. In chaotic
systems, it is practically impossible to specify the initial value precise enough to allow
long-term predictions.

Already in 1873, Maxwell mentioned (Campbell, and Garnett, 1882, 211–212)

When an infinitely small variation in the present state may bring about a finite difference
in the state of the system in a finite time, the condition of the system is said to be unstable.
It is manifest that the existence of unstable conditions renders impossible the prediction of
future events, if our knowledge of the present state is only approximate, and not accurate.

Maxwell also discussed unstable states of high potential energy whose spontaneous
(Frank, 1932) decay or change (Campbell, and Garnett, 1882, 212) “requires an ex-
penditure of work, which in certain cases may be infinitesimally small, and in general
bears no definite proportion to the energy developed in consequence thereof.”

Today, after more than a century of research into unstable chaotic motion, symbolic
dynamics identified the Poincaré map near a homocyclic orbit, the horseshoe map
(Smale, 1967), and the shift map as equivalent origins of classical deterministic chaotic
motion, which is characterized by a computable evolution law and the sensitivity and
instability with respect to variations of the initial value (Anishchenko et al., 2007;
Lichtenberg, and Lieberman, 1983; Shaw, 1981).

This scenario can be demonstrated by considering the shift map σ as it pushes up
dormant information residing in the successive bits of the initial state represented by the
sequence s = 0.(bit 1)(bit 2)(bit 3) . . . , thereby truncating the bits before the comma;
that is, σ (s) = 0.(bit 2)(bit 3)(bit 4) . . . , σ (σ (s)) = 0.(bit 3)(bit 4)(bit 5) . . . , and so
on. Suppose a measurement device operates with a precision of, say, two bits after the
comma, indicated by a two bit window of measurability; thus intially all information
beyond the second bit after the comma is hidden to the experimenter. Consider two ini-
tial states s = [0.(bit 1)(bit 2)](bit 3) . . . and s ′ = [0.(bit 1)(bit 2)](bit 3)′ . . . , where
the square brackets indicate the boundaries of the window of measurability (two bits
in this case). Initially, as the representations of both states start with the same two bits
after the comma [0.(bit 1)(bit 2)], these states appear operationally identical and can-
not be discriminated experimentally. Suppose further that, after the second bit, when
compared, the successive bits (bit i) and (bit i)′ in both state representations at identical
positions i = 3, 4, . . . are totally independent and uncorrelated. After just two itera-
tions of the shift map σ , s and s ′ may result in totally different, diverging observables
σ (σ (s)) = [0.(bit 3)(bit 4)](bit 5) . . . and σ (σ (s ′)) = [0.(bit 3)′(bit 4)′](bit 5)′. . . .

If the initial values are defined to be elements of a continuum, then almost all
(of measure one) of them are not representable by any algorithmically compressible
number; in short, they are random (Calude, 2002; Martin-Löf, 1966). Classical de-
terministic chaos results from the assumption of such a random initial value – drawn
somehow [one needs the axiom of choice (Svozil, 1995b; Wagon, 1986) for doing this]
from the continuum urn – and the unfolding of the information contained therein by
a recursively enumerable (computable), deterministic (temporal evolution) function.
Of course, if one restricts the initial values to finite sets, or, say, to the rationals, then
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the behavior will be periodic. The randomness of classical, deterministic chaos re-
sides in the assumption of the continuum; an assumption which might be considered
a convenience (for the sake of applying the infinitesimal calculus), as it is difficult to
conceive of any convincing physical operational evidence supporting the full structure
of continua. If the continuum assumption is dropped, then what remains is Maxwell’s
and Poincaré’s observation of the unpredictability of the behavior of a deterministic
system due to instabilities and diverging evolutions from almost identical initial states
(Lyapunov, 1992).

10.3.2 Rate of Convergence

The connections between symbolic dynamical systems and universal computation
result in provable unknowables (da Costa et al., 1993; Stewart, 1991). These symbolic
dynamic unknowables are different in type from the dynamical instabilities, and should
be interpreted recursion theoretically, as outlined in Section 10.2.2.

Let us come back to the original n-body problem. About one hundred years after
its formulation, as quoted earlier, the n-body problem has been solved (Babadzanjanz,
1969, 1979, 1993; Babadzanjanz, and Sarkissian, 2006; Diacu, 1996; Wang, 1991,
2001). The three-body problem was already solved by Sundman (1912). The solutions
are given in terms of convergent power series.

Yet, to be practically applicable, the rate of convergence of the series must be com-
putable and even reasonably good. One might already expect from symbolic dynamics,
in particular, from chaotic motion, that these series solutions could converge very
slowly. Even the short-term prediction of future behaviors may require the summation
of a huge number of terms, making these series unusable for all practical purposes
(Diacu, 1996; Rousseau, 2004).

Alas, the complications regarding convergence may be more serious. Consider a
universal computer based on the n-body problem. This can, for instance, be achieved
by ballistic computation, such as the “Billiard Ball” model of computation (Fredkin,
and Toffoli, 1982; Margolus, 2002) that effectively embeds a universal computer into
an n-body system (Svozil, 2007). It follows by reduction that certain predictions, say,
for instance, the general halting problem, are impossible.

What are the consequences of this reduction for the convergence of the series so-
lutions? It can be expected that not only do the series converge very slowly, like in
deterministic chaos, but that, in general, there does not exist any computable rate of
convergence for the series solutions of particular observables. This is very similar
to the busy beaver function or to Chaitin’s Omega number (Calude, 2002; Chaitin,
1987a), representing the halting probability of a universal computer. The Omega num-
ber can be enumerated by series solutions from quasi-algorithms computing its very
first digits (Calude, and Dinneen, 2007). Yet, because of the incomputable growth of the
time required to determine whether certain summation terms corresponding to halting
programs possibly contribute, the series lack any computable rate of convergence.

Though it may be possible to evaluate the state of then bodies by Wang’s power series
solution for any finite time with a computable rate of convergence, global observables,
referring to (recursively) unbounded times, may be incomputable. Examples of global
observables correspond to solutions of certain decision problems such as the stability of
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some solar system (we do not claim that this is provable incomputable), or the halting
problem.

This, of course, stems from the metaphor and robustness of universal computation
and the capacity of the n-bodies to implement universality. It is no particularity or
peculiarity of Wang’s power series solution. Indeed, the troubles reside in the capacity
to implement substitution, self-reference, universal computation, and Peano arithmetic
by n-body problems. Because of this capacity, there cannot exist other formalizable
methods, analytic solutions, or approximations capable of deciding and computing
certain decision problems or observables for the n-body problem.

10.4 Quantum Unknowables

In addition to provable physical unknowables by reduction to recursion-theoretic ones,
and chaotic symbolic dynamic systems, a third group of physical unknowables resides
in the quantum domain. Although it has turned out to be a highly successful theory,
quantum mechanics, in particular, its interpretation and meaning, has been contro-
versially received within the physics community. Some of its founding fathers, like
Schrödinger and, in particular, Einstein, considered quantum mechanics to be an un-
satisfactory theory: Einstein, Podolsky and Rosen (1938; 1935) argued that there exist
counterfactual (Svozil, 2009d; Vaidman, 2007) ways to infer observables from exper-
iment that, according to quantum mechanics, cannot coexist simultaneously; hence
quantum mechanics cannot predict what experiment can (counterfactually) measure.
Thus quantum mechanics is incomplete and should eventually be substituted by a more
complete theory. Others, among them Born, Bohr, and Heisenberg, claimed that un-
knowability in quantum mechanics is irreducible, is ontic, and will remain so forever.
Over the years, the latter view seems to have prevailed (Bub, 1999; Fuchs, and Peres,
2000), although not totally unchallenged (Jammer, 1966, 1974, 1992). Already Som-
merfeld warned his students not to get into the meaning behind quantum mechanics,
and as mentioned by Clauser (2002), not long ago, scientists working in that field had
to be very careful not to become discredited as quacks. Richard Feynman (Feynman,
1965, 129) once mentioned the

perpetual torment that results from [the question], “But how can it be like that?” which is
a reflection of uncontrolled but utterly vain desire to see [quantum mechanics] in terms
of an analogy with something familiar. . . .Do not keep saying to yourself, if you can
possibly avoid it, “But how can it be like that?” because you will get “down the drain,”
into a blind alley from which nobody has yet escaped.

This antirationalistic postulate of irreducible indeterminism and meaninglessness came
after a period of fierce debate on the quantum foundations, followed by decades of vain
attempts to complete quantum mechanics in any operationally testable way, and after
the discovery of proofs of the incompatibility of local, realistic, context-independent
ways to complete quantum mechanics (Clauser, and Shimony, 1978; Mermin, 1993).

In what follows, we shall discuss three realms of quantum unknowables: (1) ran-
domness of single events, (2) complementarity, and (3) value indefiniteness.
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10.4.1 Random Individual Events

In 1926, Born (1926b, 866) [see an English translation in Wheeler, and Zurek (1983,
54)] postulated that

“from the standpoint of our quantum mechanics, there is no quantity which in any indi-
vidual case causally fixes the consequence of the collision; but also experimentally we
have so far no reason to believe that there are some inner properties of the atom which
condition a definite outcome for the collision. Ought we to hope later to discover such
properties . . . and determine them in individual cases? Or ought we to believe that the
agreement of theory and experiment – as to the impossibility of prescribing conditions? I
myself am inclined to give up determinism in the world of atoms.”

Furthermore, Born suggested that, though individual particles behave irreducibly in-
deterministic, the quantum state evolves deterministically in a strictly Laplacian causal
way. Indeed, between (supposedly irreversible) measurements the (unitary) quantum
state evolution is even reversible, that is, one-to-one, and amounts to a generalized
(distance preserving) rotation in complex Hilbert space. In Born’s (1926a, 804) [see an
English translation in Jammer (1989, 302)] own words,

the motion of particles conforms to the laws of probability, but the probability itself is
propagated in accordance with the law of causality. [This means that knowledge of a state
in all points in a given time determines the distribution of the state at all later times.]

This distinction between a reversible, deterministic evolution of the quantum state,
on one hand, and the irreversible measurement, on the other hand, has left some physi-
cists with an uneasy feeling; in particular, because of the possibility to erase (Chapman
et al., 1995; Greenberger, and YaSin, 1989; Herzog et al., 1995; Kwiat et al., 1992;
Peres, 1980; Pfau et al., 1994; Scully, and Drühl, 1982; Scully et al., 1991; Zajonc et al.,
1991) measurements by reconstructing the quantum state, accompanied by a complete
loss of the information obtained from the quantum state before the (undone) measure-
ment – unlike in classical reversible computation (Bennett, 1973, 1982; Leff, and Rex,
1990), which still allows copying, that is, one-to-many operations, the quantum state
evolution is strictly one-to-one. If the possibility to undo measurements on quantum
states is merely limited by the experimenter’s technological capacities (and not bound
by any fundamental principle), then, one could speculate, Born’s statement seems to
suggest that the deterministic state evolution uniformly prevails. Pointedly stated, if, at
least in principle, there is no such thing as an irreversible measurement, and the quan-
tum state evolves uniformly deterministically, why should there exist indeterministic
individual events? In this view, the insistence in irreversible measurements as well as
in an irreducible indeterminism associated with individual quantum events appears to
be an idealistic, subjective illusion – in fact, this kind of indeterminism depends on
measurement irreversibility and decays into thin air if the latter is denied.

Similar arguments have been brought forth by Everett (1957) and Schrödinger
(1995). Note that it is not entirely clear [and indeed remains conventional (Svozil,
2002a)] where exactly the measurement cut (Rössler, 1998; Wigner, 1961) between the
observer and the object is located. By assuming the universal applicability of quantum
mechanics, the object and the measurement apparatus could be uniformly combined
into a larger system whose quantum mechanical evolution should be deterministic;
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otherwise quantum mechanics would not be universally valid. Such frameworks hardly
offer objective opportunities for indeterminism besides subjective ones – in the many
worlds resolution (Everett, 1957), every one of many simultaneous observers branching
off to different universes subjectively experiences the arbitrariness of the occurrence
of events as indeterminism. (This resembles the perception of a particular sequence of
bits as compared to all possible ones.)

Alas, the deterministic evolution of the quantum state could result in the super-
position of classically contradictory states. One of the mind-boggling, perplexing and
counterintuitive consequences associated with this coexistence of classical contradic-
tions is Schrödinger’s (1935a, 812) cat paradox implying the simultaneous coexistence
of death and life of a macroscopic object such as a mammal. Another one is Ev-
erett’s (1957) aforementioned many-worlds interpretation suggesting that our universe
perpetually branches off into zillions of consistent alternatives.

Thus one is faced with a dilemma: either to accept a somehow spurious nonuni-
formity in the evolution of the quantum state during (irreversible) measurement pro-
cesses – an ad hoc assumption challenged by quantum erasure experiments – or being
confronted with the counterintuitive decay of quantum states into superpositions of
classically mutually exclusive states – a sort of jelly – not backed by our everday expe-
rience as conscious beings (although often ambivalent we usually dont reside in mental
ambiguity for too long). Schrödinger (1995, 19–20) sharply addressed the difficulties
of a quantum theorist coping with this aspect of the quantum formalism:

The idea that [the alternate measurement outcomes] be not alternatives but all really
happening simultaneously seems lunatic to [the quantum theorist], just impossible. He
thinks that if the laws of nature took this form for, let me say, a quarter of an hour, we
should find our surroundings rapidly turning into a quagmire, a sort of a featureless jelly
or plasma, all contours becoming blurred, we ourselves probably becoming jelly fish. It
is strange that he should believe this. For I understand he grants that unobserved nature
does behave this way – namely according to the wave equation. . . . according to the
quantum theorist, nature is prevented from rapid jellification only by our perceiving or
observing it.

If, however, an additional irreducible irreversible evolution or some other, possibly
environmental (Peres, 1980; Zurek, 2003), effect associated with measurements (and
the collapse of the quantum wave function) is postulated or somehow emerges, indi-
vidual events may occur indeterministically. The considerations might appear to be
sophistries, but they have direct consequences for the supposedly most advanced ran-
dom number generators of our time. These devices operate with beam splitters (Calude
et al., 2010; Jennewein et al., 2000; Rarity et al., 1994; Stefanov et al., 2000; Svozil,
1990; Wang et al., 2006), which are strictly reversible (Greenberger et al., 1993; Ou
et al., 1987; Svozil, 2005c; Zeilinger, 1981) – one could demonstrate reversibility on
beam splitters by forming a Mach-Zehnder interforemeter with two serially connected
ones – or parametric down-conversions and entanglement (Fiorentino et al., 2007;
Hai-Qiang et al., 2004; Pironio et al., 2010).

Born did not address these questions, nor did he specify the formal notion of
indeterminism to which he was relating. So far, no mathematical characterization of
quantum randomness has been proved (Calude, and Svozil, 2008). In the absence of any
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indication to the contrary, it is mostly implicitly assumed that quantum randomness is of
the strongest possible kind, which amounts to postulating that the symbolic sequences
associated with measurement outcomes are uncomputable or even algorithmically
incompressible.

Indeed, the quantum formalism does not predict the outcome of single events when
there is a mismatch between the context in which a state was prepared, and the
context in which it is measured. Here, the term context (Svozil, 2009a,d) denotes a
maximal collection of comeasurable observables, or, more technically, the maximal
operator from which all commuting operators can be functionally derived (Halmos,
1974, sect. 84). Ideally, a quantized system can be prepared to yield exactly one
answer in exactly one context (Donath, and Svozil, 2002; Svozil, 2002b; Zeilinger,
1999). Other outcomes associated with other contexts occur indeterministically
(Calude, and Svozil, 2008).

Furthermore, the quantum formalism is incapable of predicting deterministically the
radioactive decay of individual particles. Attempts to find causal laws lost steam (Kragh,
1997, 2009) at the time of Born’s suggestion of the indeterministic interpretation of
individual measurement outcomes, and nobody has come up with a operationally
satisfactory deterministic prediction since then.

In the absence of other explanations, it is not too unreasonable to pragmatically
presume that these single events occur without any causation and thus at random.
Presently, this appears to be the prevalent opinion among physicists. Such random
quantum coin tosses (Fiorentino et al., 2007; Hai-Qiang et al., 2004; Jennewein et al.,
2000; Pironio et al., 2010; Rarity et al., 1994; Stefanov et al., 2000; Svozil, 1990,
2009e; Wang et al., 2006) have been used for various purposes, such as delayed choice
experiments (Jennewein et al., 2000; Weihs et al., 1998a).

Note that randomness of this type (Calude, 2005; Calude, and Dinneen, 2005) is
postulated rather than proved and thus, unless disproved, remains conjectural. This
is necessarily so, for any claim of randomness can only be corroborated relative to,
and with respect to, a more or less large class of laws or behaviors; it is impossible to
inspect the hypothesis against an infinity of – and even less so all – conceivable laws. To
rephrase a statement about computability (Davis, 1958, 11), how can we ever exclude
the possibility of our presented, some day (perhaps by some extraterrestrial visitors),
with a (perhaps extremely complex) device that computes and predicts a certain type
of hitherto random physical phenomenon?

10.4.2 Complementarity

Complementarity is the impossibility of measuring two or more complementary ob-
servables with arbitrary precision simultaneously. In 1933, Pauli (1958, 7) gave the first
explicit definition of complementarity stating that [see the partial English translation
in (Jammer, 1989, 369)]

in the case of an indeterminacy of a property of a system at a certain configuration (at a
certain state of a system), any attempt to measure the respective property (at least par-
tially) annihilates the influence of the previous knowledge of the system on the (possibly
statistical) propositions about possible later measurement results. . . . The impact on the
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system by the measurement apparatus for momentum (position) is such that within the
limits of the uncertainty relations the value of the knowledge of the previous position
(momentum) for the prediction of later measurements of position and momentum is lost.

Einstein, Podolsky, and Rosen (1935) challenged quantum complementarity (and
doubted the completeness of quantum theory) by utilizing a configuration of two en-
tangled (Schrödinger, 1935a,b, 1936) particles. They claimed to be able to empirically
infer two different complementary contexts counterfactually simultaneously, thus cir-
cumventing quantum complementarity. Thereby, one context is measured on one side
of the setup, whereas the other context is measured on the other side of it. By the
uniqueness property (Svozil, 2006a) of certain two-particle states, knowledge of a
property of one particle entails the certainty that, if this property were measured on the
other particle as well, the outcome of the measurement would be a unique function of
the outcome of the measurement performed.

This makes possible the measurement of one context as well as the simultaneous
counterfactual inference of a different complementary context. Because, one could
argue, although one has actually measured on one side a different, incompatible context
compared to the context measured on the other side, if, on both sides, the same context
would be measured, the outcomes on both sides would be uniquely correlated. (This
can indeed be verified in another experiment.) Hence, the Einstein, Podolsky, and
Rosen argument continues, measurement of one context per side is sufficient, for the
outcome could be counterfactually inferred on the other side. Thus, effectively two
complementary contexts are knowable. Based on this argument, Einstein, Podolsky,
and Rosen suggested that quantum mechanics must be considered incomplete, because
it cannot predict what can be measured; thus a more complete theory is needed.

Complementarity was first encountered in quantum mechanics, but it is a phe-
nomenon also observable in the classical world. To get better intuition of complemen-
tarity, we shall consider generalized urn models (Wright, 1978, 1990) or, equivalently
(Svozil, 2005b), finite deterministic automata (Calude et al., 1997; Dvurečenskij et al.,
1995; Moore, 1956; Schaller, and Svozil, 1996; Svozil, 1993) in an unknown ini-
tial state. Both quasi-classic examples mimic complementarity to the extent that even
quasi-quantum cryptography can be performed with them (Svozil, 2006c) as long as
value indefiniteness is not a feature of the protocol (Bechmann-Pasquinucci, and Peres,
2000; Svozil, 2010a), that is, for instance, the Bennett and Brassard (1984) protocol
(Bennett et al., 1992) can be implemented with generalized urn models, whereas the
Ekert protocol (Ekert, 1991) cannot.

A generalized urn model is characterized by an ensemble of balls with black back-
ground color. Printed on these balls are some color symbols. Every ball contains just
one symbol per color. Further assume some filters or eyeglasses that are perfect because
they totally absorb light of all other colors but a particular one. In that way, every color
can be associated with a particular pair of eyeglasses and vice versa.

When a spectator looks at a ball through such a particular pair of eyeglasses, the
only operationally recognizable symbol will be the one in the particular color that is
transmitted through the eyeglasses. All other colors are absorbed, and the symbols
printed on them will appear black and therefore will not be differentiable from the
black background. Hence the ball will appear to carry a different message or symbol,
depending on the color with which it is viewed.
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For the sake of demonstration, let us consider a generalized urn model with four ball
types, two colors, say red and green, and two symbols, say “0” and “1,” per color, that
is, ball type 1: (red 0 green 0), ball type 2: (red 0 green 1), ball type 3: (red 1 green 0),
and ball type 4: (red 1 green 1). The green pair of eyeglasses associated with the green
observable allows the observer to differentiate between ball types 1 or 3 (associated
with the green symbol “0”), and ball types 2 or 4 (associated with the green symbol
“1”). The red pair of eyeglasses associated with the red observable allows the observer
to differentiate between ball types 1 or 2 (associated with the green symbol “0”), and
ball types 3 or 4 (associated with the green symbol “1”). [Without going into details in
general this yields sets of partitions of the set of ball types resulting in partition logics
(Svozil, 1993, chapt. 10).]

The difference between the balls and the quanta is the possibility of viewing all
the different symbols on the balls in all different colors by taking off the eyeglasses;
also, one can consecutively look at one and the same ball with differently colored pair
of eyeglasses, thereby identifying the ball completely. Quantum mechanics does not
provide us with a possibility to look across the quantum veil, as it allows neither a global,
simultaneous measurement of all complementary observables nor a measurement of one
observable without disturbing the measurement of another complimentary observable
(with the exception of Einstein, Podolsky, and Rosen counterfactual measurements
discussed earlier). On the contrary, there are strong formal arguments suggesting that the
assumption of a simultaneous physical coexistence of such complementary observables
yields a complete contradiction. These issues will be discussed next.

10.4.3 Value Indefiniteness versus Omniscience

Still another quantum unknowable results from the fact that no global (in the sense of all
or at least certain finite sets of complementary observables) classical truth assignment
exists which is consistent with even a finite number of local (in the sense of comeasur-
able) ones, that is, no consistent classical truth table can be given by pasting together
the possible outcomes of measurements of certain complementary observables. This
phenomenon is also known as value indefiniteness or, by an option to interpret this
result, contextuality (see later). Here the term local refers to a particular context (Svozil,
2009a) that, operationally, should be thought of as the collection of all comeasurable
or copreparable (Zeilinger, 1999) observables. The structure of quantum propositions
(Birkhoff, and von Neumann, 1936; Kalmbach, 1983, 1986; Kochen, and Specker,
1965; Navara, and Rogalewicz, 1991; Pták, and Pulmannová, 1991; Svozil, 1998) can
be obtained by pasting contexts together.

As by definition, only one such context is directly measurable, arguments based
on more than one context must necessarily involve counterfactuals (Svozil, 2009d;
Vaidman, 2007). A counterfactual is a would-be-observable or contrary-to-fact condi-
tional (Chisholm, 1946) which has not been measured but potentially could have been
measured if an observer would have decided to do so; alas the observer decided to
measure a different, presumably complementary, observable.

Already scholastic philosophy, for instance, Thomas Aquinas, considered similar
questions such as whether God has knowledge of non-existing things (Aquinas, 1981,
part one, question 14, article 9) or things that are not yet (Aquinas, 1981, part one,
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question 14, article 13); see also Specker’s (1960, 243) reference to infuturabilities.
Classical omniscience, at least its naive expression that, if a proposition is true, then
an omniscient agent (such as God) knows that it is true, is plagued by controversies
and paradoxes. Even without evoking quantum mechanics, there exist bounds on omni-
science because of the self-referential perception of intrinsic observers endowed with
free will; if such an observer is omniscient and has absolute predictive power, then free
will could counteract omniscience and, in particular, the observer’s own predictions.
Within a consistent formal framework, the only alternative is to either abandon free
will, stating that it is an idealistic illusion, or accept that omniscience and absolute
predictive power is bound by paradoxical self-reference.

The empirical sciences implement classical omniscience by assuming that in prin-
ciple, all observables of classical physics are comeasurable without any restrictions,
regardless of whether they are actually measured. No ontological distinction is made
between an observable obtained by an actual and a potential or counterfactual mea-
surement. [In contrast, compare Schrödinger’s (1935a, sect. 7) own epistemological
interpretation of the wave function as a catalog of expectations.] Classically, precision
and comeasurability are limited only by the technical capacities of the experimenter.
The principle of empirical classical omniscience has given rise to the realistic be-
lieve that all observables exist regardless of their observation, that is, regardless and
independent of any particular measurement.

Physical (co-)existence is thereby related to the realistic assumption [sometimes
referred to as the “ontic” (Atmanspacher, and Primas, 2005) viewpoint] that (Stace,
1934) “some entities sometimes exist without being experienced by any finite mind.”
With regards to such unexperienced counterfactual entities, Stace (1934, 364, 365, 368)
questions their existence (compare also Schrödinger’s remark quoted earlier):

In front of me is a piece of paper. I assume that the realist believes that this paper will
continue to exist when it is put away in my desk for the night, and when no finite mind is
experiencing it. . . . I will state clearly at the outset that I cannot prove that no entities exist
without being experienced by minds. For all I know completely unexperienced entities
may exist, but what I shall assert is that . . . there is absolutely no reason for asserting that
these non-mental, or physical, entities ever exist except when they are being experienced,
and the proposition that they do so exist is utterly groundless and gratuitous, and one
which ought not to be believed. . . . As regards [a] unicorn on Mars, the correct position,
as far as logic is concerned, is obviously that if anyone asserts that there is a unicorn there,
the onus is on him to prove it; and that until they do prove it, we ought not to believe that
they exist.

One might criticize Stace’s idealistic position by responding that suppose an ex-
perimenter can choose which observable among a collection of different, complemen-
tary, observables is actually measured. Regardless of this choice, a measurement of
any observable that could be measured would produce some result. This contrary-
to-fact conditional could be interpreted as an existing element of physical reality.
Furthermore, according to the argument of Einstein, Podolsky and Rosen (1935, 777),
even certain sets of complementary counterfactual elements of physical reality coex-
ist “if, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of [these] physical quantit[ies].” The idealist



234 physical unknowables

might repond that these arguments are unconvincing because they are merely based on
conterfactual inference and are thus empirically “utterly groundless and gratuitous.”

The formal expression of classical omniscience is the Boolean algebra of observ-
able propositions (Boole, 1958), in particular the abundance of two-valued states in-
terpretable as omniscience about the system. Thereby, any such dispersionless quasi-
classical two-valued state – associated with a truth assignment – can be defined for all
observables, regardless of whether they have been actually observed.

After the discovery of complementarity, a further indication against quantum omni-
science came from Boole’s (1862) conditions of possible (classical) experience which
are bounds for the occurrence of (classical) events that are derivable within classical
probability theory (Pitowsky, 1989a,b, 1994; Pitowsky, and Svozil, 2001) for quantum
probabilities and quantum expectation functions. Bell (1966) pointed out that experi-
ments based on counterfactually inferred observables discussed by Einstein, Podolsky
and Rosen (1935) discussed earlier violate these conditions of possible (classical)
experience and thus seem to indicate the impossibility of a faithful embedding (i.e.,
preserving the logical structure) of quantum observables into classical Boolean alge-
bras. Stated pointedly, under some (presumably mild) side assumptions, unperformed
experiments have no results (Peres, 1978); that is, there cannot exist a table enumerat-
ing all actual and hypothetical context independent (see later) experimental outcomes
consistent with the observed quantum frequencies (Svozil, 2010b; Weihs et al., 1998b).
As any such table could be interpreted as omniscience with respect to the observables in
the Boole-Bell-Einstein-Podolsky-Rosen-type experiments, the impossibility to con-
sistently enumerate such tables (under the noncontextual assumption) appears to be a
very serious indication against omniscience in the quantum domain.

The quantum nonlocal (i.e., the particles are spatially separated) correlations among
observables in the Boole-Bell-Einstein-Podolsky-Rosen-type experiments are stronger
than classical in the sense that ex post facto, when the two outcomes are communicated
and compared, in the case of dichotomic observables, say “0” and “1,” for some mea-
surement parameter regions, there appear to be more equal occurrences “00” or “11”
and thus fewer unequal occurrences “01” or “10” than could be classically accounted
for; likewise, for other measurement parameter regions, there appear to be fewer equal
occurrences “00” or “11” and thus more unequal occurrences “01” or “10” than could
be classically accounted for. These conclusions can only be drawn in retrospect, that is,
after bringing together and comparing the outcomes. Individual outcomes occur inde-
terministically and, in particular, independently of the measurement parameter regions
[but not of outcomes (Shimony, 1984)] of other distant, measurements. No faster-than-
light signaling can occur. Indeed, even stronger-than-quantum correlations would, in
this scenario, not violate relativistic causality (Krenn, and Svozil, 1998; Popescu, and
Rohrlich, 1994, 1997; Svozil, 2005a).

The reason that it is impossible to describe all quantum observables simultaneously
by classical tables of experimental outcomes can be understood in terms of a stronger
conclusion that, for quantum systems whose Hilbert space is of dimension greater
than two, there does not exist any dispersionless quasi-classical, two-valued state inter-
pretable as truth assignment. This conclusion, which is known as the Kochen-Specker
theorem (Alda, 1980, 1981; Cabello et al., 1996; Kamber, 1964, 1965; Kochen,
and Specker, 1967; Mermin, 1993; Specker, 1960; Svozil, 1998, 2009a; Svozil, and
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Tkadlec, 1996); Zierler, and Schlessinger, 1965), has a finitistic proof by contradiction.
Proofs of the Kochen-Specker theorem amount to brain teasers in graph coloring re-
sulting in the fact that, for the geometric configurations considered, there does not exist
any possibility to consistently and context independently enumerate and tabulate the
values of all the observables occurring in a Kochen-Specker-type argument (Cabello
et al., 1996).

The violations of conditions of possible classical experience in Boole-Bell-type
experiments or the Kochen-Specker theorem do not exclude realism restricted to a
single context but (noncontextual) realistic omniscience beyond it. It may thus not be
totally unreasonable to suspect that the assumption of (pre-)determined observables
outside a single context may be unjustified (Svozil, 2004).

If one nevertheless insists in the simultaneous physical coexistence of counterfac-
tual observables, any forced tabulation (Peres, 1978; Svozil, 2010b) of truth values
for Boole-Bell-type or Kochen-Specker-type configurations would either result in a
complete contradiction or in context dependence, also termed contextuality, that is, the
outcome of a measurement of an observable would depend on what other comeasur-
able observables are measured alongside it (Bell, 1966; Bohr, 1949; Heywood, and
Redhead, 1983; Redhead, 1990; Svozil, 2009a).

Indeed, the current mainstream interpretation of the Boole-Bell-type or Kochen-
Specker-type theorems is in terms of contextuality, that is, by assuming a dependence
of the outcome of a single observable on what other observables are actually measured
or at least what could have been consistently known alongside it. This insistence
in the coexistence of complementary observables could be interpreted as an attempt
to rescue classical omniscience accompanied by ontological realism at the price of
accepting contextuality. The realist Bell (1966, 451) suggested that “the result of an
observation may reasonably depend . . . on the complete disposition of the apparatus.”
(Already Bohr (1949) mentioned “the impossibility of any sharp separation between
the behaviour of atomic objects and the interaction with the measuring instruments
which serve to define the conditions under which the phenomena appear.”)

For the sake of demonstrating contextuality (Svozil, 2010b) consider a dichotomic
observable (with outcomes “0” or “1”). Contextuality predicts that, when measured
together with some particular set of observables, this observable yields a certain out-
come, say “0,” whereas when measured together with another, complementary, set of
other observables, the observable may yield a different outcome, say “1.”

However, statistically the quantum probability and expectation value of this ob-
servable is noncontextual and thus independent of the set of co-observables. Thus
contextuality is a hypothetical (counterfactual) phenomenon regarding complementary
measurements on an individual particle, making it inaccessible for direct tests. Alas,
as far as Einstein-Podolsky-Rosen-type measurements might reproduce such contex-
tual behavior for individual particles, quantum mechanics predicts noncontextuality
(Svozil, 2009c) and thus contradicts the assumption of quantum contextuality. (Of-
ten claims of experimental evidence of quantum contextuality do not deal with its
individual particle character but deal with statistical violations of Boole-Bell-type or
Kochen-Specker-type configurations. The terms which contribute to (in)equalities are
not measured on one and the same particle; operationally they even originate in very
different measurement setups.) One may argue that contextuality occurs only when
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absolutely necessary, that is, when the set of observables allows only an insufficient
number of two-valued states for a homeomorphic embedding into (classical) Boolean
algebras; but in view of the fact that quantum noncontextuality for single events occurs
for configurations which can be pasted together to construct a Kochen-Specker-type
scheme, any such argument might appear ad hoc.

On the basis of the aforementioned lack of quantum omniscience, it is possible to pos-
tulate the existence of absolute sources of indeterminism; if there are no (preexisting)
observables, and no causal laws yielding individual outcomes, the occurrence of any
such outcome can only be unpredictable and incomputable (Calude, and Svozil, 2008).
This quantum dice approach has first been proposed (Rarity et al., 1994; Svozil, 1990;
Zeilinger, 1999) and realized (Hai-Qiang et al., 2004; Jennewein et al., 2000; Stefanov
et al., 2000; Wang et al., 2006) in setups which utilize complementarity, yet still allow
omniscience. More recently, it was suggested (Pironio et al., 2010; Svozil, 2009e) to
utilize quantum systems with more than two exclusive outcomes that are are subject to
value indefiniteness (two-dimensional systems cannot be proven to be value indefinite).
The additional advantage over devices utilizing merely complementarity is that these
new type of quantum oracles (Fiorentino et al., 2007; Paterek et al., 2010; Pironio et al.,
2010) are “quantum mechanically certified” by Boole-Bell-type, Kochen-Specker-type,
and Greenberger-Horne-Zeilinger-type (Greenberger et al., 1990) theorems not to al-
low omniscience. Of course, all these devices operate under the assumption that there
are no hidden variables that could complete the quantum mechanical description of
nature, especially no contextual ones, as well as no quasi-indeterminism caused by
environmental influences [such as in the context translation principle (Svozil, 2004)].
Thus, ultimately, these sources of quantum randomness are grounded in our belief that
quantum mechanics is the most complete representation of physical phenomenology.

10.5 Miracles Due to Gaps in Causal Description

A different issue, discussed by Frank (1932), is the possible occurrence of miracles
in the presence of gaps of physical determinism. Already Maxwell has considered
singular points (Campbell, and Garnett, 1882, 212–213), “where prediction, except
from absolutely perfect data, and guided by the omniscience of contingency, becomes
impossible.” One might perceive individual events occurring outside the validity of
classical and quantum physics without any apparent cause as miracles. For if there is
no cause to an event, why should such an event occur altogether rather than not occur?

Although such thoughts remain highly speculative, miracles could be the basis for an
operator-directed evolution in otherwise deterministic physical systems. Similar mod-
els have been applied to dualistic models of the mind (Eccles, 1986, 1990; Popper, and
Eccles, 1977). The objection that this scenario is unnecessarily complicating an oth-
erwise monistic model should be carefully reevaluated in view of computer-generated
virtual realities (Descartes, 1641; Putnam, 1981; Svozil, 1995a). In such algorithmic
universes, there are computable evolution laws as well as inputs from interfaces. From
the intrinsic perspective (Svozil, 1994), the inputs cannot be causally accounted for, and
hence they remain irreducibly transcendental with respect to the otherwise algorithmic
universe.
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10.6 Concluding Thoughts

10.6.1 Metaphysical Status of (In)determinism

Hilbert’s (1902) sixth problem is about the axiomatization of physics. Regardless of
whether this goal is achievable, omniscience cannot be gained via the formalized,
syntactic route, which will remain blocked forever by the paradoxical self-reference
to which intrinsic observers and operational methods are bound. Even if the universe
were a computer (Fredkin, 1990; Svozil, 2006b; Wolfram, 2002; Zuse, 1970), we would
intrinsically experience unpredictability and complementarity.

With regard to conjectures about the (in)deterministic evolution of physical events,
the situation is unsettled and can be expected to remain unsettled forever. The reason for
this is the provable impossibility to formally prove (in)determinism: it is not possible
to ensure that physical behaviors are causal and will remain so forever, nor is it possible
to exclude all causal behaviors.

The postulate of indeterministic behavior in physics or elsewhere is impossible to
prove by considering a finite operationally obtained encoded phenotype such as a finite
sequence of (supposedly random) bits from physical experiments alone. Furthermore,
recursion theory and algorithmic information theory (Calude, 2002; Chaitin, 1987a;
Grünwald, and Vitányi, 1987) imply that an unbounded system of axioms is required
to prove the unbounded algorithmic information content of an unbounded symbolic
sequence. There also exist irreducible complexities in pure mathematics (Chaitin, 2004,
2007).

The opportunistic approach that (as historically, many ingenious scientists have
failed to come up with a causal description) indeterminism will prevail appears to
be anecdotal, at best, and misleading, at worst. Likewise, the advice of authoritative
researchers to avoid asking questions related to completing a theory, or to avoid thinking
about the meaning of quantum mechanics or any kind of rational interpretation, and to
avoid searching for causal laws for phenomena which are, at the same time, postulated
to occur indeterministically by the same authorities – even wisely and benevolently
posted – hardly qualify as proof.

Any kind of lawlessness can thus be claimed only with reference to, and relative
to, certain criteria, laws, or quantitative statistical or algorithmic tests. For instance,
randomness could be established merely with respect to certain tests, such as some bat-
teries of tests of randomness, for instance, diehard (Marsaglia, 1995), NIST (Rukhin
et al., 2001), TestU01 (L’Ecuyer, and Simard, 2007), or algorithmic (Calude, and
Dinneen, 2005; Calude et al., 2010) tests. Note, however, that even the decimal ex-
pansion of π , the ratio between the circumference and the diameter of an ideal circle
(Bailey et al., 1997; Bailey, and Borwein, 2005), behaves reasonably random (Calude
et al., 2010); π might even be a good source of randomness for many Monte Carlo
calculations.

Thus, both from a formal as well as from an operational point of view, any rational
investigation into, or claim of, absolute (in)determinism is metaphysical and can only
be proved relative to a limited number of statistical or algorithmic tests which some
specialists happen to choose; with very limited validity for the formal and the natural
sciences.
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10.6.2 Harnessing Unknowables and Indeterminism

Physical indeterminism need not necessarily be perceived negatively as the absence
of causal laws but rather as a valuable resource. Indeed, ingenious quasi-programs
to compute the halting probability (Calude, and Chaitin, 2007; Calude, and Dinneen,
2007; Chaitin, 1987a) through summation of series without any computable rate of
convergence could, at least in principle, and in the limit of unbounded computational
resources, be interpreted as generating provable random sequences. However, as has
already been expressed by von Neumann (1951, 768), “anyone who considers arith-
metical methods of producing random digits is, of course, in a state of sin.”

Besides recursion-theoretic undecidability, there appear to be at least two principal
sources of indeterminism and randomness in physics: (1) one scenario is associated
with instabilities of classical physical systems and with a strong dependence of fu-
ture behaviors on the initial value, and (2) quantum indeterminism, which can be
subdivided into three subcategories, including random outcomes of individual events,
complementarity, and value indefiniteness.

The production of random numbers by physical generators has a long history (The
RAND Corporation, 1955). The similarities and differences between classical and
quantum randomness can be conceptualized in terms of two black boxes: the first of
them, called the “Poincaré box,” containing a classical, deterministic, chaotic source
of randomness and the second, called the “Born box,” containing a quantum source of
randomness.

A Poincaré box could be realized by operating a classical dynamical system in the
shift map region. Major principles for Born boxes utilizing beam splitters or parametric
down conversion include the following: (1) there should be at least three mutually
exclusive outcomes to ensure value indefiniteness (Bechmann-Pasquinucci, and Peres,
2000; Calude, and Svozil, 2008; Paterek et al., 2010; Pironio et al., 2010; Svozil,
2009e); (2) the states prepared and measured should be pure and in mutually [possibly
interlinked (Svozil, 2009c)] unbiased bases or contexts; and (3) events should be
independent to be able to apply proper normalization procedures (Samuelson, 1968;
von Neumann, 1951).

Suppose an agent is being presented with both boxes without any label on, or hint
about, them; that is, the origin of indeterminism is unknown to the agent. In a modified
Turing test, an agent’s task would be to find out which is the Born and which is the
Poincaré box solely by observing their output. In the absence of any criteria, there
should not exist any operational method or procedure capable of discriminating among
these boxes. Moreover, both types of indeterminism appear to be based on speculative
assumptions: in the classical case, it is the existence of continua and the possibility to
randomly choose elements thereof, representing the initial values; in the quantum case,
it is the irreducible indeterminism of single events.

10.6.3 Personal Remarks

It is perpetually amazing, perplexing and mind-boggling how many laws and mathe-
matical formæ can be found to express and program or induce physical behavior with
high precision. There definitely is substance to the Pythagorean belief that, at least in
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a restricted manner, nature is numbers and God computes; maybe also throwing dice
sometimes.

The apparent impossibility to explain certain phenomena by any causal law should
be perceived carefully and cautiously in a historic, transient perspective. The author has
the impression that in their attempts to canonize beliefs in the irreducible randomness
of (quantum) mechanics, many physicists, philosophers, and communicators may have
prematurely thrown out a thorough rationalistic worldview with the provably unfounded
claims of total omniscience and omnipotence.

Let me sketch some very speculative attempts to undo the Goridan Knot that haunts
the perception of randomness in the classical and quantum domains in recent times.
(1) Gödel-Turing-Tarski-type undecidability will remain with us forever, at least as
long one allows substitution, self-reference, and universal computation. (2) Most clas-
sical as well quantum unknowables might be epistemic and not ontic. (3) The classical
continua might be convenient abstractions that will have to be abandoned in favor of
granular, course-graining structures eventually. As a consequence, classical random-
ness originating from deterministic chaos might turn out to be formally computable
but for all practical purposes impossible to predict. (4) Space and time might turn out
to be intrinsic constructions to represent dichotomic events in a world dominated by
one-to-one state evolution. (5) There might only exist pure quantum states that can
be associated with a unique (measurement and preparation) context. Mixed quantum
states might turn out to be purely epistemic, that is, based on our ignorance of the
pure state we are dealing with. (6) Kochen-Specker and Boole-Bell-type arguments
should be interpreted to indicate value indefiniteness beyond a single context. The
idea that there is physical existence beyond a single context at a time (and, associated
with it, contextuality) might be misleading. (7) Quantum randomness originate in the
process of context translation between different, mismatching preparation and mea-
surement contexts. It might thus be induced by the environment of the measurement
apparatus and our technologic inability to maintain universal coherence. (8) Dualistic
operator controlled scenarios might present an option that are consistent or at least in
peaceful coexistence with a certain type of determinism (leaving room for miracles or
gaps of causality). The information flow from and through the interface might either
be experienced as miracle, or, within the statistical bounds, as incomputable event or
input. Whether these specutations and feelings are justified only generations to come
will know.
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Brukner, Č. (2003). Quantum experiments can test mathematical undecidability. In C. S. Calude,

J. F. G. Costa, R. Freund, M. Oswald, and G. Rozenberg (Eds.), Unconventional Computing.
Unconventional Computation. Proceedings of the 7th International Conference, UC 2008, Vienna,
Austria, August 25–28, 2008. Lecture Notes in Computer Science. Volume 5204/2008 (pp. 1–5).
Berlin: Springer.

Bub, J. (1999). Interpreting the Quantum World. Cambridge: Cambridge University Press.
Cabello, A., Estebaranz, J. M., and Garcı́a-Alcaine, G. (1996). Bell-Kochen-Specker theorem: A

proof with 18 vectors. Physics Letters A, 212(4), 183–187.
Calude, C. (2002). Information and Randomness – An Algorithmic Perspective (second ed.). Berlin:

Springer.
Calude, C., Calude, E., Svozil, K., and Yu, S. (1997). Physical versus computational complementarity

I. International Journal of Theoretical Physics, 36(7), 1495–1523.
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Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme. Monatshefte für Mathematik und Physik, 38(1), 173–198. Reprint and English translation
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Die Wiener Zeit. Aufsätze, Beiträge, Rezensionen 1926–1936, volume 6 (pp. 621–634). Wien and
New York: Springer.
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CHAPTER 11

Gödel and Physics

John D. Barrow

In this chapter, I introduce some early considerations of physical and mathematical
impossibility as preludes to Gödel’s incompleteness theorems. I consider some informal
aspects of these theorems and their underlying assumptions and discuss some of the
responses to these theorems by those seeking to draw conclusions from them about
the completability of theories of physics. Also, I argue that there is no reason for us
to expect Gödel incompleteness to handicap the search for a description of the laws
of nature, but we do expect it to limit what we can predict about the outcomes of
those laws, and I have provided some examples. I then discuss the “Gödel universe” –
a solution to Einstein’s equations describing a rotating universe where time travel is
possible, as demonstrated by Gödel in 1949 – and the role it played in exposing the
full spectrum of possibilities that a global understanding of space-time would reveal.
Finally, I show how recent studies of so-called supertasks – doing an infinite number
of things in a finite amount of time – have shown how global space-time structure
determines the ultimate capability of computational devices within them.

11.1 Some Historical Background

11.1.1 Physical Impossibilities

Scientific and philosophical consideration of physical impossibilities has a long history
(Barrow, 1998). The Aristotelian worldview outlawed the possibility that physical in-
finities or local physical vacua could be created or observed (Barrow, 2000). During the
Middle Ages, physicists devised ingenious thought experiments to try to imagine how
nature could be tricked into allowing an instantaneous vacuum to form and then argued
about how this possibility was stopped from occurring by natural processes – or, if that
failed, by the invocation of a Cosmic Censor to prevent its appearance (Grant, 1981).1

1 Earlier examples of some of these challenging thought experiments can be found in Lucretius, De Rerum Natura,
Book 1.
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Chemistry had its own ongoing alchemical debate about the possibility or impossibility
of making gold from base metals, and engineering retained an enduring attachment to
the quest for a perpetual motion machine that only fully abated when the consequences
of the laws of thermodynamics were systematically understood during the nineteenth
century. Subtle examples, like Maxwell’s sorting demon, still remained, until they were
eventually fully exorcised by the application of the modern thermodynamic theory of
computation in 1961 (Leff and Rex, 1990).2

11.1.2 Mathematical Impossibilities

Mathematicians also occasionally considered the question of impossibility in the con-
text of several fundamental problems of arithmetic, geometry, and algebra. Supposedly,
in about 550 b.c., the Pythagoreans first encountered the so-called irrationality of num-
bers such as

√
2, which cannot be expressed as the ratio of two integers (irrational

originally meaning simply “not a ratio” rather than “beyond reason,” as it does today)
(Guthrie, 1987). Legend has it that this discovery was such a scandal that the discov-
erer, Hippasos, was drowned by the members of the Pythagorean brotherhood for his
trouble. This gives us the first glimpse of operations and questions that have no answers
given a particular set of rules. In the first quarter of the nineteenth century, the problem
of finding an explicit form for the solution of a general quintic algebraic equation in
terms of its coefficients was proved to have no solution involving ordinary arithmetic
operations and radicals by the young Norwegian mathematician Henrik Abel (Pesic,
2003). Unlike the case of quadratic, cubic, or quartic equations, the general quintic
cannot be solved by any exact formula. Just a few years later, in 1837, rigorous proofs
were given that an angle of 60 degrees could not be trisected by just the use of a straight
edge and pair of compasses. These examples revealed for the first time, to those who
looked at them in the right way, some hints as to the limitations of particular axiomatic
systems.

In light of the ongoing impact of Gödel’s work on speculations about the limitations
of the human mind, it is interesting to reflect briefly on the sociological and psycho-
logical effects of some of these early results. The existence of irrational numbers was
of the deepest concern to the Pythagoreans; however, as far as we can judge, no deep
philosophical questions about the limitations of mathematical reasoning were raised
by the demonstration that the quintic could not be solved. Yet something changed. Pre-
viously, many things had been thought impossible that could not be so proved, despite
many efforts to do so, but now there were proofs that something could not be done.

11.1.3 Axiomatics

The development of understanding of what constructions and proofs could be carried
out by limited means, such as ruler and compass construction or the use of only

2 This work contains an overview with reprints of all the crucial papers.
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arithmetic operations and radicals, showed that axioms mattered. The power and scope
of a system of axioms determined what its allowed rules of reasoning could encompass.

Until the nineteenth century, the archetypal axiomatic system was that of Euclidean
geometry, but it is important to appreciate that this system was not then viewed, as
it is today, as just one among many axiomatic possibilities. Euclidean geometry was
how the world really was. It was part of the absolute truth about the universe. This
gave it a special status, and its constructions and elucidation, largely unchanged for
more than two thousand years, provided a style that was mimicked by many works
of philosophy and theology. The widespread belief in its absolute truth provided an
important cornerstone for the beliefs of theologians and philosophers that human
reason could grasp something of the ultimate nature of things. If challenged that this
was beyond the power of our minds to penetrate, the ancients could always point to
Euclidean geometry as a concrete example of how and where this type of insight into
the ultimate nature of things had already been possible. As a result, the discoveries by
Bolyai, Lobachevskii, Gauss, and Riemann that other geometries existed, but in which
Euclid’s parallel postulate was not included, had a major impact outside mathematics
(Richards, 1979). The existence of other logically consistent geometries meant that
Euclid’s geometry was not the truth: it was simply a model for some parts of the truth.
As a result, new forms of relativism sprang up, nourished by the demonstration that even
Euclid’s ancient foundational system was merely one of many possible geometries –
and indeed, one of these alternatives was a far more appropriate model for describing
the geometry of the earth’s surface than Euclid’s. Curious books appeared about non-
Euclidean models of government and economics. Non-Euclidean became a byword for
new and relative truth, the very latest intellectual fashion (Barrow, 1992, 8–15). Later,
new logics would be created, as well, by changing the axioms of the classical logical
system that Aristotle had defined.

Out of these studies emerged a deeper appreciation of the need for axioms to be
consistently defined and clearly stated. The traditional realist view of mathematics as
a description of how the world was had to be superseded by a more sophisticated
view that recognized mathematics to be an unlimited system of patterns that arise from
the infinite number of possible axiomatic systems that can be defined. Some of these
patterns appear to be made use of in nature, but most are not. Mathematical systems
like Euclidean geometry had been assumed to be part of the absolute truth about the
world and uniquely related to reality, but the development of non-Euclidean geometries
and nonstandard logics meant that mathematical existence now meant nothing more
than logical self-consistency (i.e., it must not be possible to prove that 0 = 1). It no
longer had any necessary requirement of physical existence.

11.1.4 Hilbert’s Program

The careful study of axiomatic systems revealed that even Euclid’s beautiful develop-
ment of plane geometry made use of unstated axioms. In 1882, Moritz Pasch gave a
very simple example of an intuitively “obvious” property of points and lines that could
not be proved from Euclid’s classical axioms. If the points A, B, C, and D lie on a
straight line such that B lies between A and C and C lies between B and D, then it is
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not possible to prove that B lies between A and D. The picture of the setup made this
appear inevitable, but this is not a substitute for a proof:

A B C D

Pasch wanted to distinguish between the logical consequences of the axioms of geome-
try and those properties that we just assumed were intuitively true. For him, mathemat-
ical argumentation should not depend on any physical interpretation or visualization of
the quantities involved. He was concerned that axiomatic systems should be complete
and has been described as the “father of rigor in geometry” by Freudenthal (1962).

David Hilbert, the greatest mathematician of the day, felt the influenceof Pasch’s
writings both directly and through their effects on Peano’s work (Kennedy, 1972) from
1882 to 1899, and he began his systematic program in 1899 to place mathematics on
a formal axiomatic footing (Gray, 1986; Toepell, 1986).3 This was a new emphasis,
conveyed by Hilbert’s remark that in mathematics, “one must be able to say . . . –
instead of points, straight lines and planes – tables, chairs, and beer mugs” (Reid,
1970, 57). He believed that it would be possible to determine the axioms underlying
each part of mathematics (and hence of the whole), demonstrate that these axioms are
self-consistent, and then show that the resulting system of statements and deductions
formed from these axioms is both complete and decidable. More precisely, a system
is consistent if we cannot prove that a statement, S, and its negation, ∼S, are both true
theorems. It is complete if, for every statement S we can form in its language, either S
or its negation ∼S is a true theorem. It is decidable if, for every statement S that can
be formed in its language, we can prove whether S is true or false. Thus if a system is
decidable, it must be complete.

Hilbert’s formalistic vision of mathematics was of a tight web of deductions spread-
ing out with impeccable logical connections from the defining axioms. Indeed, math-
ematics was defined to be the collection of all those deductions. Hilbert set out to
complete this formalization of mathematics with the help of others and believed that it
would ultimately be possible to extend the scope of mathematics to include sciences,
such as physics (Corry, 1997), that were built on applied mathematics. He began with
Euclidean geometry and succeeded in placing it on a rigorous axiomatic basis. His pro-
gram then imagined strengthening the system by adding additional axioms, showing at
each step that consistency and decidability remained, until eventually, the system had
become large enough to encompass the whole of arithmetic.

Hilbert’s program began confidently, and he believed that it would just be a matter of
time before all of mathematics was corralled within its formalistic web. Alas, the world
was soon turned on its head by the young Kurt Gödel. Gödel had completed one of the
early steps in Hilbert’s program as part of his doctoral thesis by proving the consistency
and completeness of first-order logic (later, Alonzo Church and Alan Turing would
show that it was not decidable). However, the next steps that he took have ensured his
fame as the greatest logician of modern times. Far from extending Hilbert’s program to
achieve its key objective – a proof of the completeness of arithmetic – Gödel proved that
any system rich enough to contain arithmetic must be incomplete and undecidable. This

3 Gray (1986) contains the text of Hilbert’s address to the International Congress of Mathematicians in 1900 on
pp. 240–82. See also Toepell (1986).
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Table 11.1. Summary of the Results Established about the Consistency, Completeness, and
Decidability of Simple Logical Systems

Theory Is It Consistent? Is It Complete? Is It Decidable?

Propositional calculus Yes Yes Yes
Euclidean geometry Yes Yes Yes
First-order logic Yes Yes No
Arithmetic (+, −) only Yes Yes Yes
Arithmetic in full (+, −, ×, ÷) ?? No No

took almost everyone by surprise, including John von Neumann, who was present at the
conference in Königsberg (Hilbert’s home town) on September 7, 1930, when Gödel
briefly communicated his results – von Neumann quickly appreciated them, and even
extended them (only to find that Gödel had already made the extension in a separate
paper), realizing that Gödel had effectively killed Hilbert’s program with one stroke.
Also surprised was Paul Finsler, who had tried, unsuccessfully, to convince Gödel that
he had discovered these results before Gödel did. Table 11.1 contains a summary of
the results established about the consistency, completeness, and decidability of simple
logical systems.

11.2 Some Mathematical Jujitsu

11.2.1 The Optimists and the Pessimists

Gödel’s monumental demonstration – that systems of mathematics have limits – grad-
ually infiltrated the way in which philosophers and scientists viewed the world and
our quest to understand it. Some commentators claimed that it showed that all human
investigations of the universe must be limited. Science is based on mathematics; math-
ematics cannot discover all truths; therefore science cannot discover all truths. One of
Gödel’s contemporaries, Hermann Weyl (1946), described Gödel’s discovery as exer-
cising “a constant drain on the enthusiasm and determination with which I pursued
my research work.” He believed that this underlying pessimism, so different from the
rallying cry that Hilbert had issued to mathematicians in 1900, was shared “by other
mathematicians who are not indifferent to what their scientific endeavors mean in the
context of man’s whole caring and knowing, suffering and creative existence in the
world.” Turning to more recent times, one writer on theology and science with a tradi-
tional Roman Catholic stance, Stanley Jaki (1980, 49), believes that Gödel’s theorem
prevents us from gaining an understanding of the cosmos as a necessary truth:

Clearly then no scientific cosmology, which of necessity must be highly mathematical,
can have its proof of consistency within itself as far as mathematics goes. In the absence of
such consistency, all mathematical models, all theories of elementary particles, including
the theory of quarks and gluons . . . fall inherently short of being that theory which shows
in virtue of its a priori truth that the world can only be what it is and nothing else. This is
true even if the theory happened to account with perfect accuracy for all phenomena of
the physical world known at a particular time.

It constitutes a fundamental barrier to understanding of the universe, for
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it seems that on the strength of Gödel’s theorem that the ultimate foundations of the
bold symbolic constructions of mathematical physics will remain embedded forever in
that deeper level of thinking characterized both by the wisdom and by the haziness of
analogies and intuitions. For the speculative physicist this implies that there are limits to
the precision of certainty, that even in the pure thinking of theoretical physics there is a
boundary. . . . An integral part of this boundary is the scientist himself, as a thinker. (Jaki,
1966, 129)

Intriguingly, and just to show the important role human psychology plays in assessing
the significance of limits, other scientists, such as Freeman Dyson, acknowledge that
Gödel places limits on our ability to discover the truths of mathematics and science
but interprets this as ensuring that science will go on forever. Dyson (2004) sees the
incompleteness theorem as an insurance policy against the scientific enterprise, which
he admires so much, coming to a self-satisfied end, for

Gödel proved that the world of pure mathematics is inexhaustible; no finite set of axioms
and rules of inference can ever encompass the whole of mathematics; given any set
of axioms, we can find meaningful mathematical questions which the axioms leave
unanswered. I hope that an analogous situation exists in the physical world. If my view of
the future is correct, it means that the world of physics and astronomy is also inexhaustible;
no matter how far we go into the future, there will always be new things happening, new
information coming in, new worlds to explore, a constantly expanding domain of life,
consciousness, and memory.

Thus we see epitomized the optimistic and the pessimistic responses to Gödel. The
optimists, such as Dyson, see Gödel’s result as a guarantor of the never-ending character
of human investigation. They see scientific research as part of an essential part of the
human spirit that, if it were completed, would have a disastrous demotivating effect
on us – just as it did on Weyl. The pessimists, such as Jaki (1966), Lucas (1970),
and Penrose (1989),4 by contrast, interpret Gödel as establishing that the human mind
cannot know all (maybe not even most) of the secrets of nature.

Gödel’s (1964 [1947]) own view was as unexpected as ever. He thought that intuition,
by which we can see truths of mathematics and science, was a tool that would one day
be valued just as formally and reverently as logic itself:

I don’t see any reason why we should have less confidence in this kind of perception, i.e.,
in mathematical intuition, than in sense perception, which induces us to build up physical
theories and to expect that future sense perceptions will agree with them and, moreover, to
believe that a question not decidable now has meaning and may be decided in the future.

However, it is easy to use Gödel’s theorem in ways that play fast and loose with
the underlying assumptions of his theorem. Many speculative applications can be
found spanning the fields of philosophy, theology, and computing, and they have been
examined in a lucid, critical fashion by the late Torkel Franzén (2005).

Gödel was not so minded as to draw any strong conclusions for physics from his
incompleteness theorems. He made no connections with the uncertainty principle of
quantum mechanics, which was advertised as another great deduction that limited

4 Also see Chapter 16 of this volume.
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our ability to know and which was discovered by Heisenberg just a few years before
Gödel made his discovery. In fact, Gödel was rather hostile to any consideration
of quantum mechanics at all. Those who, like Gödel, worked at the Institute for
Advanced Study (no one really worked with Gödel) believed that this was a result
of his frequent discussions with Einstein, who, in the words of John Wheeler (who
knew them both), “brainwashed Gödel” into disbelieving quantum mechanics and
the uncertainty principle. Greg Chaitin5 records this account of Wheeler’s attempt
to draw Gödel out on the question of whether there is a connection between Gödel
incompleteness and Heisenberg’s uncertainty principle:

Well, one day I was at the Institute for Advanced Study, and I went to Gödel’s office,
and there was Gödel. It was winter and Gödel had an electric heater and had his legs
wrapped in a blanket. I said “Professor Gödel, what connection do you see between your
incompleteness theorem and Heisenberg’s uncertainty principle?” And Gödel got angry
and threw me out of his office!

The claim that mathematics contains unprovable statements and that therefore physics –
which is based on mathematics – will not be able to discover everything that is true has
been around for a long time. More sophisticated versions of it have been constructed that
exploit the possibility that uncomputable mathematical operations would be required
to make predictions about observable quantities. From this vantage point, Stephen
Wolfram (1994) has conjectured:

One may speculate that undecidability is common in all but the most trivial physical
theories. Even simply formulated problems in theoretical physics may be found to be
provably insoluble.

Indeed, it is known that undecidability is the rule rather than the exception among the
truths of arithmetic (see Calude, 1994; Calude et al., 1994; Svozil, 1996, 112).

11.2.2 Drawing the Line between Completeness and Incompleteness

With these worries in mind, let us look a little more closely at what Gödel’s result might
have to say about physics. The situation is not so clear-cut as some commentators would
often have us believe. It is useful to lay out the precise assumptions that underlie Gödel’s
deduction of incompleteness.

Gödel’s theorem says that if a formal system is

1. finitely specified
2. large enough to include arithmetic
3. consistent

then it is incomplete. Condition 1 means that there is not an uncomputable infinity
of axioms. We could not, for instance, choose our system to consist of all the true
statements about arithmetic because this collection cannot be finitely listed in the
required sense. Condition 2 means that the formal system includes all the symbols and
axioms used in arithmetic. The symbols are 0 (zero), S (successor of), +, ×, and =.

5 Quoted in Bernstein (1991, 140–41); see also Svozil (1993) and Barrow (1998, chap. 8).
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Hence the number 2 is the successor of the successor of 0, written as the term SS0, and
2 and + 2 = 4 is expressed as SS0 + SS0 = SSSS0.

The structure of arithmetic plays a central role in the proof of Gödel’s theorem.
Special properties of numbers, like their factorizations and the fact that any number
can be factored in only one way as the product of prime divisors (e.g., 130 = 2 × 5
× 13), were used by Gödel to establish a crucial correspondence between statements
of mathematics and statements about mathematics. Thereby, linguistic paradoxes such
as that of the liar could be embedded, like Trojan horses, within the structure of
mathematics itself. Only logical systems that are rich enough to include arithmetic
allow this incestuous encoding of statements about themselves to be made within their
own language.

Again, it is instructive to see how these requirements might fail to be met. If we
picked a theory that consisted of references to (and relations between) only the first
ten numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) with arithmetic modulo 10, then condition
2 fails, and such a miniarithmetic is complete. Arithmetic makes statements about
individual numbers or terms (like SS0). If a system does not have individual terms
like this but, like Euclidean geometry, only makes statements about a continuum of
points, circles, and lines, in general, then, it cannot satisfy condition 2. Accordingly, as
Alfred Tarski first showed, Euclidean geometry is complete. There is nothing magical
about the flat, Euclidean nature of the geometry, either: the non-Euclidean geometries
on curved surfaces are also complete. Completeness can be long-winded, though. A
statement of geometry involving n symbols can take up to exp [exp [n]] computational
steps to have its truth or falsity determined (Harel, 2000). For just n = 10, this number
amounts to a staggering 9.44 × 109565; for comparison, there have only been about
1027 nanoseconds since the apparent beginning of the universe’s expansion history.
Similarly, if we had a logical theory dealing with numbers that used only the concept
of “greater than” without referring to any specific numbers, then it would be complete:
we can determine the truth or falsity of any statement about real numbers involving
just the “greater than” relationship.

Another example of a system that is smaller than arithmetic is arithmetic without the
multiplication, ×, operation. This is called “Presburger arithmetic” (Presburger, 1929;
Cooper, 1972; the full arithmetic is called “Peano arithmetic,” after the mathematician
Giuseppe Peano, who first expressed it axiomatically in 1889). At first, this sounds
strange – in our everyday encounters with multiplication, it is nothing more than a
shorthand way of doing addition (e.g., 2 + 2 + 2 + 2 + 2 + 2 = 2 × 6) – but in the
full logical system of arithmetic, in the presence of logical quantifiers such as “there
exists” or “for any,” multiplication permits constructions that are not merely equivalent
to a succession of additions.

Presburger arithmetic is complete: all statements about the addition of natural num-
bers can be proved or disproved; all truths can be reached from the axioms (Fischer
and Rabin, 1974).6 Similarly, if we create another truncated version of arithmetic that

6 The decision procedure is in general double-exponentially long, though; that is, the computational time required
to carry out N operations grows as (2N)N. Presburger arithmetic allows us to talk about positive integers and
variables whose values are positive integers. If we enlarge the system by permitting the concept of sets of
integers to be used, then the situation becomes almost unimaginably intractable. It has been shown that this
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does not have addition but retains multiplication, this is also complete. It is only when
addition and multiplication are simultaneously present that incompleteness emerges.
Extending the system further by adding extra operations, such as exponentiation, to
the repertoire of basic operations makes no difference. Incompleteness remains, but no
intrinsically new form of it is found. Arithmetic is the watershed in complexity.

The use of Gödel to place limits on what a mathematical theory of physics (or
anything else) can ultimately tell us seems a fairly straightforward consequence. How-
ever, as one looks more carefully into the question, things are not quite so simple.
Suppose, for the moment, that all the conditions required for Gödel’s theorem to hold
are in place. What would incompleteness look like in practice? We are familiar with
the situation of having a physical theory that makes accurate predictions about a wide
range of observed phenomena: we might call it the “standard model.” One day, we may
be surprised by an observation about which it has nothing to say. It cannot be accom-
modated within its framework. Examples are provided by some so-called grand unified
theories in particle physics. Some early editions of these theories had the property that
all neutrinos must have zero mass. Now, if a neutrino is observed to have a nonzero
mass (as experiments have now confirmed), then we know that the new situation cannot
be accommodated within our original theory. What do we do? We have encountered
a certain sort of incompleteness, but we respond to it by extending or modifying the
theory to include the new possibilities. Thus, in practice, incompleteness looks very
much like inadequacy in a theory. It would become more like Gödel incompleteness if
we could find no extension of the theory that could predict the new observed fact.

An interesting example of an analogous dilemma is provided by the history of
mathematics. During the sixteenth century, mathematicians started to explore what
happened when they added together infinite lists of numbers. If the quantities in the
list get larger, then the sum will diverge; that is, as the number of terms approaches
infinity, so does the sum. An example is the sum

1 + 2 + 3 + 4 + 5 + · · · = infinity.

However, if the individual terms get smaller and smaller sufficiently rapidly,7 then the
sum of an infinite number of terms can get closer and closer to a finite limiting value,
which we shall call the sum of the series, for example,

1 + 1/9 + 1/25 + 1/36 + 1/49 + · · ·= π2/8 = 1.2337005 . . . .

This left mathematicians to worry about a most peculiar type of unending sum:

1 − 1 + 1 − 1 + 1 − 1 + 1 − · · · = ?????.

If you divide up the series into pairs of terms, it looks like (1 – 1) + (1 – 1) + · · · , and
so on. This is just 0 + 0 + 0 + · · · = 0, and the sum is zero. However, think of the
series as 1 – {1 – 1 + 1 – 1 + 1 –· · · ,}, and it looks like 1 – {0} = 1. We seem to have
proved that 0 = 1.

system does not admit even a K-fold exponential algorithm for any finite K. The decision problem is said to be
nonelementary in such situations. The intractability is unlimited; see Fischer and Rabin (1974).

7 That the terms in the sum get progressively smaller is a necessary, but not a sufficient, condition for an infinite
sum to be finite. For example, the sum 1 + 1/2 + 1/3 + 1/4 + 1/5 + · · · is infinite.
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Mathematicians had a variety of choices when they were faced with ambiguous sums
like this. They could reject infinities in mathematics and deal only with finite sums of
numbers, or, as Cauchy showed in the early nineteenth century, the sum of a series like
the last one could be defined by specifying more closely what is meant by its sum.
The limiting value of the sum must be specified together with the procedure used to
calculate it. The contradiction 0 = 1 arises only when one fails to specify the procedure
used to work out the sum. In both cases, it is different, and so the two answers are not
the same because they arise in different axiomatic systems. Thus here we see a simple
example of how a limit is sidestepped by enlarging the concept that seems to create
limitations. Divergent series can be dealt with consistently so long as the concept of a
sum for a series is suitably extended (Rosen, 1996).

Another possible way of evading Gödel’s theorem is if the physical world only
makes use of the decidable part of mathematics. We know that mathematics is an
infinite sea of possible structures. Only some of those structures and patterns appear to
find existence and application in the physical world. It may be that they are all from
the subset of decidable truths. Things may be even better protected than that: perhaps
only computable patterns are instantiated in physical reality?

It is also possible that the conditions required to prove Gödel incompleteness do
not apply to physical theories. Condition 1 requires the axioms of the theory to be
listable. It might be that the laws of physics are not listable in this predictable sense.
This would be a radical departure from the situation that we think exists, where the
number of fundamental laws is believed to be not just listable but finite (and very small).
However, it is always possible that we are just scratching the surface of a bottomless
tower of laws, only the top of which has significant effect on our experience. If there
were an unlistable infinity of physical laws, though, we would face a more formidable
problem than incompleteness.

An equally interesting issue is finiteness. It may be that the universe of physical
possibilities is finite, although astronomically large (Barrow, 2005).8 However, no
matter how large the number of primitive quantities to which the laws refer, so long as
they are finite, the resulting system of interrelationships will be complete. I should stress
that although we habitually assume that there is a continuum of points of space and time,
this is just an assumption that is very convenient for the use of simple mathematics. We
have no deep reason to believe that space and time are continuous, rather than discrete,
at their most fundamental microscopic levels; in fact, some theories of quantum gravity
assume that they are not. Quantum theory has introduced discreteness and finiteness in
a number of places where once we believed in a continuum of possibilities. Curiously,
if we give up this continuity, there is not necessarily another point between any two
sufficiently close points you care to choose. Space-time structure becomes infinitely
more complicated because continuous functions can be defined by their values on the
rationals. Many more things can happen. This question of finiteness might also be
bound up with the question of whether the universe is finite in volume and whether the
number of elementary particles (or whatever the most elementary entities might be) of
nature are finite or infinite in number. Thus only a finite number of terms may exist

8 This could be because it has positive spatial curvature or a compact spatial topology like that of the 3-torus,
even though it has nonpositive curvature; see Barrow (2005, chap. 7).
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to which the ultimate logical theory of the physical world applies. Hence it would be
complete.

A further possibility with regard to the application of Gödel to the laws of physics
is that condition 2 of the incompleteness theorem might not be met. How could this
be? Although we seem to make wide use of arithmetic, and much larger mathematical
structures, when we carry out scientific investigations of the laws of nature, this does not
mean that the inner logic of the physical universe needs to employ such a large structure.
It is undoubtedly convenient for us to use large mathematical structures together with
concepts such as infinity, but this may be an anthropomorphism. The deep structure
of the universe may be rooted in a much simpler logic than that of full arithmetic and
hence be complete. All that this would require would be for the underlying structure
to contain either addition or multiplication but not both. Recall that all the sums that
you have ever done have used multiplication simply as a shorthand for addition. They
would be possible in Presburger arithmetic as well. Alternatively, a basic structure of
reality that made use of simple relationships of a geometrical variety, or that derived
from “greater than” or “less than” relationships, or subtle combinations of them all,
could also remain complete (Misner et al., 1973).9 That Einstein’s theory of general
relativity replaces many physical notions, such as force and weight, with geometrical
distortions in the fabric of space-time may well hold some clue about what is possible
here.

There is a surprisingly rich range of possibilities for a basic representation of
mathematical physics in terms of systems that might be decidable or undecidable.
Tarski showed that unlike Peano’s arithmetic of addition and multiplication of natural
numbers, the first-order theory of real numbers under addition and multiplication is
decidable. This is rather surprising and may give some hope that theories of physics
based on the real or complex numbers will evade undecidability in general. Tarski also
went on to show that many mathematical systems used in physics, such as lattice theory,
projective geometry, and abelian group theory, are decidable, whereas others, notably
nonabelian group theory, are not (Tarski et al., 1953). Little consideration seems to
have been given to the consequences of these results on the development of ultimate
theories of physics.

We should keep another important aspect of the situation in view: even if a logical
system is complete, it always contains unprovable “truths.” These are the axioms that
are chosen to define the system, and after they are chosen, all the logical system can do
is deduce conclusions from them. In simple logical systems, such as Peano arithmetic,
the axioms seem reasonably obvious because we are thinking backward – formalizing
something that we have been doing intuitively for thousands of years. When we look
at a subject such as physics, we find parallels and differences. The axioms, or laws,
of physics are the prime targets of physics research. They are by no means intuitively
obvious because they govern regimes that can lie far outside our experience. The
outcomes of those laws are unpredictable in certain circumstances because they involve

9 John A. Wheeler has speculated about the ultimate structure of space-time being a form of “pregeometry”
obeying a calculus of propositions restricted by Gödel incompleteness. We are proposing that this pregeometry
might be simple enough to be complete; see Misner et al. (1973, 1211–12).
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symmetry breakings. Trying to deduce the laws from the outcomes is not something
that we can ever do uniquely and completely by means of a computer program.

Thus we detect a completely different emphasis in the study of formal systems
and in physical science. In mathematics and logic, we start by defining a system of
axioms and laws of deduction, then we might try to show that the system is complete
or incomplete and deduce as many theorems as we can from the axioms. In science,
we are not at liberty to pick any logical system of laws that we choose. We are trying to
find the system of laws and axioms (assuming there is one – or more than one, perhaps)
that will give rise to the outcomes we see. As I stressed earlier, it is always possible
to find a system of laws that will give rise to any set of observed outcomes, but it is
the very set of unprovable statements that the logicians and mathematicians ignore –
the axioms and laws of deduction – that the scientist is most interested in discovering
rather than simply assuming. The only hope of proceeding as the logicians do would
be if, for some reason, there were only one possible set of axioms or laws of physics.
So far, this does not seem likely10; even if it were, we would not be able to prove it.

11.3 Laws versus Outcomes

11.3.1 Symmetry Breaking

The structure of modern physics presents us with an important dichotomy. It is impor-
tant to appreciate this division to understand the significance of Gödel incompleteness
for physics. The fundamental laws of nature governing the weak, strong, electromag-
netic, and gravitational forces are all local gauge theories derived from the maintenance
of particular mathematical symmetries. As these forces become unified, the number of
symmetries involved will be reduced until ultimately (perhaps) there is only one over-
arching symmetry dictating the form of the laws of nature – a “theory of everything,”
of which M theory is the current candidate. Thus the laws of nature are in a real sense
simple and highly symmetrical. The ultimate symmetry that unites them must possess a
number of properties to accommodate all the low-energy manifestations of the separate
forces – the states that look like elementary particles with all their properties – and it
must be big enough for them all to fit in.

There is no reason why Gödel incompleteness should hamper the search for this all-
encompassing symmetry governing the laws of nature. This search is, at root, a search
for a pattern, perhaps a group symmetry or some other mathematical prescription. It
need not be complicated, and it probably has a particular mathematical property that
makes it especially (or even uniquely) fitted for this purpose.

In reality, we never “see” laws of nature: they inhabit a Platonic realm; rather we
witness their outcomes. This is an important distinction because the outcomes are quite
different from the laws that govern them. They are asymmetrical and complicated
and need possess none of the symmetries displayed by the laws. This is fortunate

10 The situation in superstring theory is still very fluid. Many different, logically self-consistent superstring
theories appear to exist, but there are strong indications that they may be different representations of a much
smaller number (maybe even just one) theory.
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because, were it not so, we could not exist. If the outcomes of the laws of nature
possessed all the symmetries of the laws, then nothing could happen that did not respect
them. No structures could be located at particular times and places, no directional
asymmetries could exist, and nothing could be happening at any one moment. All
would be unchanging and empty.

This dichotomy between laws and outcomes is what I would call the “secret of the
universe.” It is what enables a universe to be governed by a very small number (perhaps
just one) of simple and symmetrical laws yet give rise to an unlimited number of highly
complex, asymmetrical states – of which we are one variety (Barrow, 2007).

Thus, whereas we have no reason to worry about Gödel incompleteness frustrating
the search for the mathematical descriptions of the laws of nature, we might well expect
Gödel incompleteness to arise in our attempts to describe some of the complicated
sequences of events that arise as outcomes of the laws of nature.

11.3.2 Undecidable Outcomes

Specific examples have been given of physical problems in which the outcomes of their
underlying laws are undecidable. As one might expect from what we have just said,
they do not involve an inability to determine something fundamental about the nature of
the laws of physics or even the most elementary particles of matter; rather they involve
an inability to perform some specific mathematical calculation, which inhibits our
ability to determine the course of events in a well-defined physical problem. However,
although the problem may be mathematically well defined, this does not mean that it
is possible to create the precise conditions required for the undecidability to exist.

An interesting series of examples of this sort have been created by the Brazilian
mathematicians Da Costa and Doria (1991a, 1991b). Responding to a challenge prob-
lem posed by the Russian mathematician Vladimir Arnold, they investigated whether
it was possible to have a general mathematical criterion that would decide whether
any equilibrium was stable. A stable equilibrium is a situation like a ball sitting in
the bottom of a basin – displace it slightly, and it returns to the bottom; an unstable
equilibrium is like a needle balanced vertically – displace it slightly, and it moves
away from the vertical.11 When the equilibrium is of a simple nature, this prob-
lem is very elementary; first-year science students learn about it. However, when the
equilibrium exists in the face of more complicated couplings between the different
competing influences, the problem soon becomes more complicated than the situation
studied by science students.12 So long as there are only a few competing influences,
the stability of the equilibrium can still be decided by inspecting the equations that
govern the situation. Arnold’s challenge was to discover an algorithm that tells us
whether this can always be done, no matter how many competing influences there
are and no matter how complex their interrelationships. By discover, he meant to
find a formula into which you can feed the equations that govern the equilibrium along

11 Actually, other, more complicated possibilities are clustered around the dividing line between these two simple
possibilities, and it is these that provide the indeterminacy of the problem in general.

12 It may not be determined at linear order if eigenvalues are zero or are purely imaginary.
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with your definition of stability and out of which will pop the answer “stable” or
“unstable.”

Da Costa and Doria discovered that no such algorithm can exist. Equilibria exist
that are characterized by special solutions of mathematical equations whose stability
is undecidable. For this undecidability to have an impact on problems of real interest
in mathematical physics, the equilibria have to involve the interplay of very large
numbers of different forces. Though such equilibria cannot be ruled out, they have not
arisen yet in real physical problems. Da Costa and Doria went on to identify similar
problems for which the answer to a simple question such as “will the orbit of a particle
become chaotic?” is Gödel undecidable. They can be viewed as physically grounded
examples of the theorems of Rice (1953) and Richardson (1968), which show, in a
precise sense, that only trivial properties of computer programs are algorithmically
decidable. Others have also tried to identify formally undecidable problems. Geroch
and Hartle have discussed problems in quantum gravity that predict the values of
potentially observable quantities as a sum of terms whose listing is known to be a
Turing-uncomputable operation (Geroch and Hartle, 1986).13 Pour-El and Richards
(1979, 1981, 1982) showed that very simple differential equations widely used in
physics, such as the wave equation, can have uncomputable outcomes when the initial
data are not very smooth. This lack of smoothness gives rise to what mathematicians
call an “ill-posed” problem. It is this feature that gives rise to the uncomputability.
However, Traub and Wozniakowski (1991) have shown that every ill-posed problem
is well posed on the average under rather general conditions. Wolfram (1982, 1985a,
1985b) gives examples of intractability and undecidability arising in condensed-matter
physics and even believes that undecidability is typical in physical theories.

The study of Einstein’s general theory of relativity also produces an undecidable
problem if the mathematical quantities involved are unrestricted (Buchberger and
Loos, 1983).14 When one finds an exact solution of Einstein’s equations, it is always
necessary to discover whether it is just another, known solution that is written in a
different form. Usually, one can investigate this by hand, but for complicated solutions,
computers can help. For this purpose, we require computers programmed to carry out
algebraic manipulations. A computer can check various quantities to discover whether
a given solution is equivalent to one already sitting in its memory bank of known
solutions. In practical cases encountered so far, this checking procedure comes up with
a definite result after a small number of steps. However, in general, the comparison
is an undecidable process equivalent to another famous undecidable problem of pure
mathematics, the word problem of group theory first posed by Max Dehn (1911) and
later shown to be undecidable (Boone, 1959).

The tentative conclusion we should draw from this discussion is that, just because
physics makes use of mathematics, it is by no means required that Gödel places any limit

13 The problem is that the calculation of a wave function for a cosmological quantity involves the sum of quantities
evaluated on every four-dimensional compact manifold in turn. The listing of this collections of manifolds is
uncomputable.

14 If the metric functions are polynomials, then the problem is decidable but is computationally double-
exponential. If the metric functions are allowed to be sufficiently smooth, then the problem becomes un-
decidable; see Buchberger and Loos (1983). I am grateful to Malcolm MacCallum for supplying these details.



gödel and space-time structure 269

on the overall scope of physics to understand the laws of nature.15 The mathematics of
which nature makes use may be smaller and simpler than is needed for undecidability
to rear its head.

11.4 Gödel and Space-Time Structure

11.4.1 Space-Time in a Spin

Although Kurt Gödel is famous among logicians for his incompleteness theorems, he
is also famous among cosmologists, but for a quite different reason. In 1949, inspired
by his many conversations with Einstein about the nature of time and Mach’s principle,
Gödel found a new and completely unsuspected type of solution to Einstein’s equations
of general relativity (Gödel, 1949; Hawking and Ellis, 1973; Barrow and Tsagas,
2004a).16 Gödel’s solution was a universe that rotates and permits time travel to occur
into the past.

This was the first time that the possibility of time travel (into the past) had emerged in
the context of a theory of physics. The idea of time travel first appeared in H. G. Wells’
famous 1895 story The Time Machine, but it was widely suspected that backward
time travel would in some way be in conflict with the laws of nature.17 Gödel’s
universe showed that was not necessarily so: it could arise as a consequence of a theory
obeying all the conservation laws of physics. Time travel into the future is a relatively
uncontroversial matter and is just another way of describing the observed effects of
time dilation in special relativity.

Gödel’s universe is not the one in which we live. For one thing, Gödel’s universe
is not expanding; for another, there is no evidence that our universe is rotating – and
if it is, then its rate of spin must be at least 105 times slower than its expansion rate
because of the isotropy of the microwave background radiation (Barrow et al., 1985).
Nonetheless, Gödel’s universe was a key discovery in the study of space-time and
gravitation. If time travel were possible, perhaps it could arise in other universes that
are viable descriptions of our own?

However, the influence of Gödel’s solution on the development of the subject was
more indirect. It revealed for the first time the subtlety of the global structure of
space-time, particularly when rotation is present. Previously, the cosmological models
that were studied tended to be spatially homogeneous, with simple topologies and
high degrees of global symmetry that ruled out or disguised global structure. Later,
in 1965, Roger Penrose would apply powerful new methods of differential topology
to this problem and prove the first singularity theorems in cosmology. The possibility
of closed, timelike curves in space-time that Gödel had revealed meant that specific

15 For a fuller discussion of the whole range of limits that may exist on our ability to understand the universe, see
Barrow (1998), on which the discussion here is based.

16 For details of the global structure of the Gödel universe, see Hawking and Ellis (1973); for a study of its
stability and a discussion of its Newtonian counterpart, see Barrow and Tsagas (2004a).

17 Forward time travel is routinely observed and is a simple consequence of special relativity. For example, in the
case of the twin paradox, the twin who has undergone accelerations returns to find that he is younger than his
twin: he has in effect time traveled into his twin’s future.



270 gödel and physics

vetoes had to be included in some of these theorems to exclude their presence; otherwise
past incompleteness of geodesics could be avoided by periodically reappearing in the
future. It was Gödel’s universe that first showed how unusual space-times could be
while remaining physically and factually consistent. Before its discovery, physicists
and philosophers of science regarded time travel into the past as the necessary harbinger
of factual contradictions. But Gödel’s solution shows that there exist self-consistent
histories that are periodic in space and time (Barrow, 2005). It continues to be studied
as a key example of an intrinsically general-relativistic effect, and its full stability
properties have been elucidated only recently (Barrow and Tsagas, 2004b). Some of
its unusual properties are explained in Chapter 9 of this volume.

In recent years, Gödel’s study of space-time structure and his work on the incom-
pleteness of logical systems have been pulled together in a fascinating way. It has been
shown that there is a link between the global structure of space-time and the sorts of
computations that can be completed within them. This unexpected link arises from
a strange old problem with a new name: is it possible to do an infinite number of
things in a finite amount of time? The new name for such a remarkable old activity is
a “supertask.”

11.4.2 Supertasks

The ancients, beginning with Zeno, were challenged by the paradoxes of infinities on
many fronts (Grünbaum, 1973a, 1973b, chap. 18), but what about philosophers today?
What sorts of problems do they worry about? Live issues at the interface between
science and philosophy are concerned with whether it is possible to build an “infinity
machine” that can perform an infinite number of tasks in a finite amount of time.
Of course, this simple question needs some clarification: what exactly is meant by
possible, tasks, number, infinite, finite, and, by no means least, time? Classical physics
appears to impose few physical limits on the functioning of infinity machines because
the speed at which signals can travel or switches can move has no limit. Newton’s laws
allow an infinity machine. This can be seen by exploiting a discovery about Newtonian
dynamics made in 1971 by the U.S. mathematician Jeff Xia (1992; Saari and Xia,
1989).18 First, take four particles of equal mass and arrange them in two binary pairs
orbiting with equal but oppositely directed spins in two separate parallel planes so that
the overall angular momentum is zero. Now, introduce a fifth, much lighter particle
that oscillates back and forth along a perpendicular line joining the mass centers of the
two binary pairs. Xia showed that such a system of five particles will expand to infinite
size in a finite time!

How does this happen? The little oscillating particle runs back and forth between the
binary pairs, each time creating an unstable meeting of three bodies. The lighter particle
then gets kicked back, and the binary pair recoils outward to conserve momentum. The
lighter particle then travels across to the other binary, and the same ménage à trois
is repeated there. This continues without end, accelerating the binary pairs apart so

18 The connection between Xia’s remarkable construction is pointed out in Barrow (2005, chap. 10). Note,
however, that the initial conditions needed for Xia’s specific example are special (a Cantor set) and will not
arise in practice.
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strongly that they become infinitely separated, while the lighter particle undergoes an
infinite number of oscillations in the finite time before the system achieves infinite size.

Unfortunately (or perhaps fortunately), this behavior is not possible when relativity
is taken into account. No information can be transmitted faster than the speed of light,
and gravitational forces cannot become arbitrarily strong in Einstein’s theory of motion
and gravitation, nor can masses get arbitrarily close to each other and recoil – there is a
limit to how close separation can get, after which an “event horizon” surface encloses
the particles to form a black hole.19 Their fate is then sealed – no such infinity machine
could send information to the outside world.

However, this does not mean that all relativistic infinity machines are forbidden.20

Indeed, the Einsteinian relativity of time that is a requirement of all observers, no matter
what their motion, opens up some interesting new possibilities for completing infinite
tasks in finite time. Could it be that one moving observer could see an infinite number
of computations occurring, even though only a finite number had occurred according to
someone else? Misner (1969) and Barrow and Tipler (1986, chap. 10) have shown that
there are examples of entire universes in which an infinite number of oscillations occur
on approach to singularities in space-time, but it is necessary for the entire universe to
hit the singularity; in effect, the whole universe is the infinity machine. It still remains
to ask whether a local infinity machine could exist and send us signals as a result of
completing an infinite number of operations in a finite amount of time.

The famous motivating example of this sort of temporal relativity is the so-called
twin paradox. Two identical twins are given different future careers. Tweedlehome stays
at home, while Tweedleaway goes away on a space flight at a speed approaching that of
light. When they are eventually reunited, relativity predicts that Tweedleaway will find
Tweedlehome to be much older. The twins have experienced different careers in space
and time because of the acceleration and deceleration that Tweedleaway underwent on
his round trip.

So can we ever send a computer on a journey so extreme that it could accomplish
an infinite number of operations by the time it returns to its stay-at-home owner?
Itamar Pitowsky (1990) first argued that if Tweedleaway could accelerate his spaceship
sufficiently strongly, then he could record a finite amount of the universe’s history on
his own clock, while his twin records an infinite amount of time on his clock. Does this,
he wondered, permit the existence of a Platonist computer – one that could carry out an
infinite number of operations along some trajectory through space and time and print
out answers that we could see back home? Alas, there is a problem – for the receiver
to stay in contact with the computer, he also has to accelerate dramatically to maintain
the flow of information. Eventually, the gravitational forces become stupendous, and
he is torn apart.

These problems notwithstanding, a checklist of properties has been compiled for
universes that can allow an infinite number of tasks to be completed in finite time –
supertasks. These are called Malament-Hogarth (MH) universes, after David Malament,
a University of Chicago philosopher, and Mark Hogarth (1992), a former Cambridge
University research student who, in 1992, investigated the conditions under which

19 Once two masses, each of mass M, fall inside a radius 4GM/c2, an event horizon forms around them.
20 We could be living inside a very large black hole along with the infinity machine.
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I-(P)

P

γ

∫dτ = ∞
along γ

Figure 11.1. A Malament-Hogarth space-time with time mapped vertically and space (com-
pressed to one dimension) mapped horizontally. We are located at P and our causal past, I−(P)
consists of all the events that can influence us. There is a path in our past, γ , such that there
is an infinite amount of its own time passing on approach to the space-time point where it
intersects our past light cone, the edge of I−(P).

they were theoretically possible. Supertasks (Earman and Norton, 1993) offer the
fascinating prospect of finding or creating conditions under which an infinite number
of things can be seen to be accomplished in a finite amount of time.21 This has all
sorts of consequences for computer science and mathematics because it would remove
the distinction between computable and uncomputable operations. It is something
of a surprise that MH universes (see Figure 11.1) are self-consistent mathematical
possibilities, but unfortunately, they have properties that suggest they are not realistic
physical possibilities unless we embrace some disturbing notions such as the prospect
of things happening without causes and travel backward through time. Figure 11.1
shows an MH universe.

The most serious by-product of being allowed to build an infinity machine is rather
more alarming, though. Observers who stray into bad parts of these universes will
find that being able to perform an infinite number of computations in a finite time
also means that any amount of radiation, no matter how small, gets compressed to
zero wavelength and amplified to infinite frequency and energy along the infinite
computational trail. Thus any attempt to transmit the output from an infinite number of
computations will zap the receiver and destroy him or her. So far, these dire problems
seem to rule out the practicality of engineering a relativistic infinity machine in such
a way that we could safely receive and store the information. However, the universes
in which infinite tasks are possible in finite time include a type of space that plays a
key role in the structure of the very superstring theories that looked so appealingly
finite.

If you could see the output from an infinity machine that completes supertasks,
then you have the possibility of deciding undecidable problems by a direct search
through the infinite catalog of possibilities: Turing’s uncomputable operations seem to
become completable in a finite amount of our wristwatch time. Is this really possible?
Remarkably, Hogarth (2004) showed that in some space-times, it was possible to decide

21 See also Barrow (2005, chap. 10).
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Gödel undecidable questions through a direct search by sending a computer along a
certain space-time path, γ , so that it could print out and send you the answer to the
question. Now, create a hierarchy of n space-time structures of ascending complexity
such that the nth in the sequence allows a supertask to be completed that can check the
truth of any arithmetical assertion made in the nth, but not in the (n + 1)st, quantifier
arithmetic in Kleene’s logical hierarchy, by which logicians calibrate the complexity
of possible logical expressions. There is a neat one-to-one correspondence between the
list of space-times and the complexity of the logical statements that they can decide.
Subsequently, Etesi and Németi (2002) showed that some relations on natural numbers
that are neither universal nor couniversal can be decided in Kerr space-times. Welch
(2008) recently generalized these results to show that the computational capability of
space-times could be raised beyond that of arithmetic to hyperarithmetics and showed
that there is an upper bound on the computational ability in any space-time that is a
universal constant defined by the space-time.

Thus, in conclusion, we find that Gödel’s ideas are still provoking new research
programs and unsuspected properties of the worlds of logical and physical reality.
His incompleteness theorems should not be a drain on our enthusiasm to seek out
and codify the laws of nature: there is no reason for them to limit the search for
the fundamental symmetries of nature in any significant way. By contrast, though, in
situations of sufficient complexity, we do expect to find that Gödel incompleteness
places limits on our ability to use those laws to predict the future, carry out specific
computations, or build algorithms: incompleteness besets the outcomes of very simple
laws of nature. Finally, if we study universes, then Gödel’s impact will always be felt as
we try to reconcile the simple local geometry of space and time with the extraordinary
possibilities that its exotic global structure allows. Space-time structure defines what
can be proved in a universe.
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CHAPTER 12

Gödel, Thomas Aquinas, and
the Unknowability of God

Denys A. Turner

12.1 Incompleteness, Arithmetical and Theological

The invitation to discuss issues of “indeterminacy” and “unknowability” across so di-
verse a range of interests as that represented at the 2006 “Horizons of Truth” conference
at the University of Vienna, and then to contribute a chapter to this volume, was, for
me, a jobbing student of medieval theology, far too good an opportunity to turn down.
I should perhaps explain why, briefly and in personal terms. Although a philosopher
by background and training, my principal academic interests have for some years now
been in the study of forms of medieval Christian theology, wherein can be found a
cluster of notions of what might be called “systematic indeterminacy,” or perhaps bet-
ter, “demonstrable unknowability,” and perhaps most relevantly to the purposes of this
chapter, systematic and “demonstrable incompleteness.” These are notions that bear
teasingly like-sounding analogies with parallel notions today in philosophy, mathe-
matics, natural science, and literary theory, and although by long-acquired academic
instinct, I am skeptical of grand theory purporting to link intellectual traditions across
epochs, even within historically continuous disciplines, let alone between very diverse
disciplines to boot, those like-sounding analogies do have a capacity to tease intellectu-
ally. For as with flirts, such analogies as often evade the advances they elicit; evasions
notwithstanding, though, they still exert their power to attract.

My interest in these theological topics was particularly renewed on the occasion of
the one-hundredth anniversary of the birth of Kurt Gödel, but not in the first instance by
the most obvious point of connection for a theologian, namely, his one explicitly theo-
logical intervention by way of an attempted reformulation of the so-called ontological
argument (Gödel, 1941).

For I doubt if his contribution to the long history of attempts to offer a deductive proof
of God’s existence gets us much further with the difficulties identified immediately on
its first presentation by Anselm, as I will explain later. More intriguing for a theologian,
if in rather more general terms, is the question of what the implications are for theology
as a discipline, if any, of Gödel’s two famous incompleteness theorems, at any rate, in the
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extended and generalized form demonstrated by Rosser.1 The first of these shows that
every formal system of arithmetic is in this sense incomplete in that, on the condition
that it is consistent, it is possible to construct some statement in number theory that
can neither be proved nor disproved in that system; that is, that it will contain some
undecidable propositions. The second, Gödel says, shows “a surprising consequence” of
the first, namely, that on the condition of the consistency of a number-theoretic formal
system, that consistency cannot be proved within the formal system. In short, what
Gödel-Rosser (i.e., Gödel as amplified by Rosser) shows in these two theorems is the
significance for a consistent number theory of two broad, and apparently paradoxical,
notions: that of the demonstrably undecidable and that of the indemonstrability of its
consistency.

How far may the theologian indulge the temptation to further generalize from
Gödel-Rosser’s highly specific theorems about the incompleteness of number theory,
thereon to exploit analogies for theological incompleteness? Later, we will examine
more closely the plausibility of such analogies, but for the time being, let us indulge
the temptation so far as would appear seemly and note that as embodying a general set
of metamathematical implications about undecidability and consistency, Gödel-Rosser
seem tantalizingly, if also elusively, to promise points of connection with a variety
of metatheological propositions about theological incompleteness with which I am
personally familiar from my own studies of medieval thought, in particular of Thomas
Aquinas. For although there are many Christian (and also many Jewish and Muslim)
theologians in the premodern traditions for whom the incompleteness of theology,
given consistency, is a core theological topos, it is a distinctive feature of the theology
of Thomas Aquinas that that theological incompleteness is connected specifically, as
in Gödel-Rosser, with the nature of proof.

Of course, I should insist that it is at best only on the strength of some (highly
risky) generalizations from Gödel-Rosser’s results that analogies of any such kind
have the capacity to attract. All the same, the temptation thus to explore those gen-
eralized analogies is especially acute for those, like myself, who are sympathetic to
Thomas Aquinas’s view, almost universally unpopular among theologians today, that,
in principle, the existence of God is rationally demonstrable but that – in a paradox
prima facie parallel to Gödel-Rosser’s – a rational proof of God’s existence also proves
the unknowability of the God thus proved. Now this view indeed differs sharply in
considerations of rationality and proof from what, since Kant in one way, and since
Karl Barth in another, is nowadays pretty much the theological consensus. For it seems
generally agreed among theologians today that any purported rational demonstration of
God’s existence would place God all too knowably, and therefore idolatrously, “within
the bounds of reason,” where reason is conceived of as a complete, closed, and bounded
discourse and as such would displace faith. As Pascal so famously put it (I paraphrase),

1 Gödel’s original statement and proof of the incompleteness theorem requires the assumption that the theory
is not just consistent but ω-consistent. Rosser (1936) strengthened the incompleteness theorem by finding a
variation of the proof that requires the theory to be only consistent rather than ω-consistent. I am much indebted
to Professor Hilary Putnam for some comments on an earlier draft of this chapter, which saved me from some
egregious errors of interpretation of Gödel’s two incompleteness theorems. Also see Chapter 14 on Gödel’s
ontological proof and its variants.
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there is no room for the “God of the philosophers” in the religion of “Abraham, Isaac,
and Jacob”; as we might better say, inverting the proposition, a God of the philosophers
leaves no room at all for the God of faith. Hence, if, speaking from within my own
theological standpoint, Gödel tantalizes the theologian, it will be if there is anything
to be gained by way of theological implications or analogies from his proof that the
very nature of proof in arithmetic shows its incompleteness, and if there is anything to
be gained by such analogical generalizations, it will be insofar as by them, a challenge
might be put to modern theologians concerning their conception of reason as a closed
system, a challenge that would, interestingly, set Gödel-Rosser’s propositions about
incompleteness in arithmetic in closer relation with some premodern theologies than it
would with the theological consensus of our times. The analogy would look like this:
just as in Gödel-Rosser, we are forced at the limits of number theory into the meta-
mathematical proposition that those limits are not closed, so in Thomas Aquinas, we
are forced at the limits of reason into the metaphysical proposition that reason is open
to that which altogether transcends it, that is, to God. It is this intriguing possibility of a
parallelism between Gödel and Thomas that will principally occupy me in this chapter.

Just here, a secondary objective turns the tables on the expectation that the interest
the theologian might be expected to have in Gödel’s work will be found in his revision
of the ontological argument. For it is my view that on the contrary, his proof fails
for much the same reason that all previous versions of the ontological argument fail,
namely, on account of the formal requirements of its deductive character. Among those
formal requirements is the dependence, as I will explain, of a deductive argument for
God’s existence on the provision of some definition of God, the provision of which
is exactly that which is ruled out by the argument strategy of Thomas Aquinas’s
proof – on the grounds, that is to say, that the nature of God is unknowable and
beyond any definition usable as a premise within a deductive inference. If that is so,
then exactly that which offers us theological prospects of connection between Gödel’s
incompleteness theorems and Thomas Aquinas – namely, that proof of God’s existence
rules out the knowability of God’s nature – is that which also rules out in principle the
argument strategy of Gödel’s ontological argument. In short, if the Gödel-Rosser of
the incompleteness theorems is of interest to the theologian, it will be on grounds that
reduce, if not eliminate, the interest of Gödel in the ontological argument. Such, then,
are the two speculations that I offer in a provisional and general way in this chapter.

12.2 The Variables of Unknowability

I begin with some general remarks about what one might call the “systematic indeter-
minacy” of theology, or, as one might also call it, the “demonstrable unknowability” of
its proper object, namely, God. I was first caused to wonder about analogies between
theological notions of unknowability and those in much contemporary philosophy,
literary theory, and science by Wittgenstein’s (1961) famous remarks about the “mys-
tical” at the end of the Tractatus. I first read them many years ago as a philosophy
undergraduate, then making no particular connections with anything but the picture
theory of language that formed the substance of that work. It was only many years
later that I found myself supervising the research of a PhD student at Cambridge
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who had undertaken to explore in detail the claim, recycled as often as it is left unin-
vestigated, that in this matter of the mystical, and of others, Wittgenstein was much
influenced by Schopenhauer. When that student, Andy King (2005), digging deeper
into Schopenhauer’s sources, was able to show that he, in turn, was deeply indebted
to the fourteenth-century Dominican friar known as Meister Eckhart, on whom I was
working at the time, it was then that there seemed to be better reasons than mere whim
to wonder at a potential analogy between Wittgenstein and Eckhart. For now it seemed
that there were grounds for exploring links in a traceable line of intellectual continu-
ity. Of course, Schopenhauer was an atheist, and when Wittgenstein tells us that the
logical conditions that underlie the possibility of language cannot themselves be stated
within language – they can be “shown,” he says, somewhat opaquely, but not “said”
(Wittgenstein, 1961, 4.022) – he is not in the least inclined to attach the name “God”
in any way to those unsayable conditions, as Eckhart did. However, when, for his part,
Eckhart demonstrates that this “God” has not, and cannot, have a “name” – for “God,”
he insists, is not, properly speaking, a name at all but is, as it were, a “place-holder” for
the unnameable “ground” of that which we can name (Colledge and McGinn, 1981,
180) – then the analogy continued to tease, for all that Wittgenstein himself refused
any satisfyingly theological consummation. For was not Eckhart thereby concluding
in his own way that even if God, as the extralinguistic condition of the possibility of
language, can be “shown,” most certainly he cannot be “said”?

Then Schopenhauer’s near-contemporary, Nietzsche, came into it along another
route, but again through the work of a Cambridge research student, working this time
on the relationship between theology and music. Dr. Stone-Davis and I used to argue
over whether music – at any rate, classical music of an “absolute” sort – could properly
be described as a “language.” I was inclined to think that it could, she only with
qualifications, but she did persuade me to agree at least to this much: that Kant had
entirely missed the point in ranking music as lowest among the arts on the grounds
that of all the arts, music was least like formal verbal discourse (Kant, 2000, 202). For
if there is something to be said in favor of music’s being construed on the model of
language – it is, after all, a form of communication by means of structured arrangements
of sound – musical utterance is not, as the philosophers say, constative; there is nothing
that music is about (Stone-Davis, 2005). If, she argued, it is right to concede that music
in any way bears an analogy with language, then what is wrong is to do so on that model
of the constative utterance, of reference-bearing speech, for on that account, music is
bound to turn out to rank lowest on the scale of approximations to that linguistic ideal.
For if in any way music is a language, it is a language whose utterances tell you nothing.

That was how I was brought back to Nietzsche, who simply reversed Kant’s priorities.
Rather than seeing music as a secondary and degenerate form of communication, falling
as it were away from a paradigm of formal language, Nietzsche thought of music as
a primary form of communication precisely in its character of not being constative,
of not being bound up in the binary oppositions of language as representational and
referential. As if supposing there were some real possibility of excising it, Nietzsche, of
course, saw reason to regret the binding of formal language into binary oppositions, into
those structures that he calls, generically, “grammar” – whether that grammar divides
language internally into the truth-falsity binary of classical logic or whether, from
the standpoint of its constative character, it divides into the epistemological binary of
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utterer-subject in its relation to object-uttered. Music seemed to Nietzsche to be a more
elemental form of human communication precisely because, in lacking all character
of the constative, and so in not being bound into the truth-falsity binary, it cuts below
language-as-referential. For music is sound structured internally in relations of pitch,
harmony, and rhythm in a free play of difference, difference, that is to say, that is
free of the zero-sum constraints of formal language. Relations of pitch are not true or
false. Harmonic progressions do not submit to the principle of contradiction – they
do not have to because truth and falsity are irrelevant in music. Because, in music,
you therefore cannot tell anyone anything, in music, both the “you” as subject telling
and the “anything” by way of object told are set aside. As Nietzsche says, “the whole
opposition between the subjective and the objective . . . is absolutely inappropriate
in aesthetics” (Nietzsche, 1999, 32), generally. As for music, like the Cheshire cat’s
smile, it is all smile and no cat, expression unembodied in anything except its character
as form. Expression is, as it were, its “body.”

Because Nietzsche, as I say, thought of music as a more elemental form of commu-
nication than formal language, it was his purpose to deconstruct – the word is ours,
not his – formal speech into a convergence on the paradigm of music rather than,
as in Kant, to miscall music on a logocentric paradigm. Therein lies the theological
significance of his philosophy, for God stands in the way of his deconstructive purpose.
The stability, the givenness, of the grammar of the constative – the formal laws of logic
(Nietzsche, 2002, I.3, 6–7), the claims to objectivity of the empirical laws of scientific
causality (Nietzsche, 2002, I.14, 15–16) – depend, he thinks, on a condition’s obtaining
that could not itself fall within those structures, the name of which, were there any
such being to instantiate that condition, would have to be “God.” It is God alone who
could hold “grammar” in place. God, of course, is dead, but dead as God is, like the
shadow on the wall of the Buddha’s cave (Nietzsche, 2001, 109), the shadow of God
long outlives the death of its original – and that shadow is long, for it consists in our
continuing faith in grammar. Hence, he says, “we are not getting rid of God because
we still believe in grammar” (Nietzsche, 1998, 19).

Now this conclusion intrigued me. I was still reading Meister Eckhart, and Thomas
Aquinas, and Nicholas of Cusa, and what I saw in them was the mirror image of
Nietzsche; that is to say, I saw in them all the elements of relationship in Nietzsche
between logic, language, and God, but, as it were, in horizontally reversed order. You
get to God, they seemed to say, not by holding grammar in place but only at the point of
grammar’s breakdown, by letting your grip on grammar slip. They seemed to say not,
as Nietzsche did, that deconstruction pressed subversively all the way down through
grammar is the gain you make from the denial of God but rather that deconstruction
is the price to be paid at the limits of language for the assertion of God’s existence.
That is to say, they do not think that their theological deconstruction visits generalized
ungrammatical mayhem across “language” as such, for they do seem to think that
language gets a grip on the world, and its grammar is in order therein: they do not deny,
as Nietzsche did, the possibility of theological proofs. In fact, they maintain that you
could, through argument from the nature of the world, prove that God exists and that
reason in its characteristically grammatical activity of proof holds thus far. However,
what you show to exist by such measures of proof must lie beyond the reach of the
reason that got you there. Hence, just because all three maintain that it is only on the
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world that language secures its grip, when it comes to God, that grip is finally lost, for
reason, functioning in proper order on the “inside” of grammar, proves that it rests on
an “outside” that that grammar cannot contain. So to say, the apotheosis of language
about the world is, they maintain, its failure as theology; in other words, it would not
be God we had a grip on if, as of God, we still believed in grammar’s grip.

More of that in due course. At this point, my reading of Nietzsche against the back-
ground of the high medieval theologians had caused me to be much puzzled by how
exactly one was to get clear about the distinction between the atheistic deconstruc-
tions of Nietzsche and the theistic deconstructions of the medieval theologians. These
perplexities were only intensified on discovering from yet another graduate student
in Cambridge, Mary-Jane Rubenstein, that that postmodernist guru Jacques Derrida
shared them (Rubenstein, 2003), for he, like Nietzsche, thought that all theology was –
in the end – but an inevitably failed attempt to eat your cake and have it, to say both that
God is at the center, holding grammar firmly in place, and at the same time is evading
the clutches of the grammar it “centers,” situated impossibly, therefore, both “inside”
and “outside” language. In the meantime, fainter echoes of those like-sounding analo-
gies came to my ears, if not to my understanding, from the world of science, echoes that
I was personally incompetent to interpret. For scientific colleagues would tell me of
how Heisenberg’s uncertainty principle, and more generally quantum mechanics, had
set a cat among the epistemological pigeons, at any rate in respect of just how stable
the relation between observer and observed could be counted on to be. It began to seem
that perhaps, after all, Nietzsche was not so far off the mark; at any rate, he began to
seem not so paradoxical today as he had seemed to be to his contemporaries in letting
cognitive instability run amok, even among those human discourses most unproblem-
atically credited with objectivity and scientificity, those of natural science – if, at any
rate, the scientists themselves were running scared of such grammatical notions. Of
course, as I say, I was unable to judge as between the competing accounts forthcoming
from the realists and conceptualists concerning how to explain what the disruption of
that stable relationship between knower and known entailed or was occasioned by:
whether to put it down to the real properties of the elementary particles or whether to
say that the problem lay on the side of the observer’s position. Whichever it entailed,
though, these faint echoes confirmed an instinct that possibly in our times some sort
of line of intellectual history was turning full circle on an older medieval theological
story so as to revisit it, and this possibility had a prima facie attraction to it, even if,
to be sure, for the most part, the circle was turning in three dimensions and was a
spiral gyrating away in atheist directions from the theological point that those medieval
theologians were occupying on it.

Then came my invitation to speak on the unknowability of God, occasioned by the
centenary of Kurt Gödel’s birth. Satisfied that I needed to know no more than the general
principle of Gödel’s theorem, and not its formidable mathematical proof, I agreed, for
it does seem to me worth testing out whether there is anything theologically significant
in Gödel’s conception of “systematic” or provable “incompleteness,” but now violating
the boundaries of that, as one might have supposed it to be, most securely defended
citadel of consistency and completeness – and so of “rationality” – arithmetic. It seemed
worth asking whether there is anything more to it than a “like-sounding analogy” with
what in high and late medieval theology was thought of as the demonstrable existence
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of its own object, namely, God, simultaneously with the demonstrable unknowability
of the nature of that object. I knew that all I would be able to do is explain what those
medieval theologians said about the divine unknowability, and what they said about
the logic of their theological discipline, whose task they conceived of as therefore
consisting primarily in demonstrating the paradox of its own incompleteness. Beyond
that, I should be happy to listen to the mathematicians and logicians speaking on their
own ground, as I do on mine here and now, and let it transpire one way or the other
whether our deliberations might cast any light on those questions about “analogies”
between scientific and theological disciplines.

12.3 Systematic Indeterminacy

I said just now that those medieval theologians Thomas Aquinas, Meister Eckhart, and
Nicholas of Cusa conceived of their discipline as being “systematically incomplete”
and open to a region beyond its power to determine, and I suppose that this is some sort
of paradox. For a discipline’s being systematic – speaking just of colloquial uses of
the word – would seem generally to imply its closedness and determination, a fixity of
boundary externally, and, as regards the internal relations of the elements of a system,
a consistency of method and a definite logic governing those relations. On the other
hand, indeterminacy would appear to imply the opposite of all these.

As I have said, there is an old theological story here concerning the relationship,
whether of contradiction or consistency, between completeness and indeterminacy – it
goes back at least as far as the Cappadocian Gregory of Nyssa in the fourth century of
the Christian era, and that is just as far as I happen to know. But it is also a complex
story, and the issues arise in very different historical and intellectual contexts. For
which reason I shall have to be selective and oversimplify, confining my remarks to
just three very different formulations: those of Gregory of Nyssa, Immanuel Kant, and
Thomas Aquinas.

12.3.1 Gregory of Nyssa

To begin with Gregory, then, his problem arose from within very specific historical
constraints and was perhaps not immediately a problem with the relation between
the determinate and the indeterminate within the discipline of theology as such. It is
in any case questionable whether he thought of there being any sort of occupation
to be called “theology,” not at any rate in that clearly articulated sense in which it
first came to be conceived in the high Middles Ages as a distinct academic discipline
within the division of academic labors in the university schools. Gregory thought that
what the theologian did was to engage in theoria, or as it came to be translated in the
West, contemplatio; and whether in Greek or Latin, the term was far more generous
in its range of meanings than our theology. For in either case, theoria or contemplatio
embraced all sorts of cognitive relations with God, from liturgical worship to formal
doctrinal statement, and much personal piety in between. Moreover, in the form in
which Gregory encountered the problem, it was as inherited from the dominant, and
consciously Platonist, philosophical culture with which he was attempting to wed his
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Christian theological beliefs. In short, Gregory’s problem concerned how consistently
to speak of that theoria’s object, namely, God, both as “infinite” and as “perfect”
(Gregory of Nyssa, 1978).

Now this was a problem for Gregory because, on the accounts of the “infinite” and
of the “perfect” that he inherited from that Platonist tradition, the “infinite” implied
boundlessness and so lack of form, hence incompleteness and imperfection, whereas
“perfection” implied form, and so determination, hence not infinity. Gregory therefore
had to provide an account of theoria within which the infinity and perfection of God,
properties of the deity inherited from his Hebraic biblical sources, could be, if not
exactly reconciled, then at least represented as not standing in formal contradiction
with one another. For if Gregory’s conception of theoria owes little to later, Western
conceptions of theology as a “system” of consistent propositions, nonetheless Gregory
did think that theoria had debts to pay to logic to this extent at least: that its utter-
ances must be, if not demonstrably free of internal inconsistency, then at least free of
demonstrable internal inconsistency. That minimal debt to logic entailed, therefore,
a theological responsibility: if he nowhere claims that formal consistency could be
demonstrated across theoria as a whole, then at least claims to formal contradictori-
ness had better in principle be rebuttable, else theoria would collapse into nothing more
exalted or worthy of assent than the merest gobbledygook – hence the need to resolve
the Platonist aporia.

Gregory’s theological strategy, therefore, is the dialectical product of two converging
energies, each embodying complex relations between determinacy and incompleteness.
If, in the first place, theoria – conceived of minimalistically as the sum total of propo-
sitions about God – is incapable of demonstrating its own formal consistency, in the
second, it must be in a position to counter claims to its formal inconsistency. Those
conditions being met, but only if they are, the way is open for Gregory to inscribe
paradoxicality into the very notion of theology as “systematic.” Theology, he thinks,
generates paradox: that is its method. God’s being infinite is something of which we
can more or less, if only negatively, give an account. God’s being perfect is something
of which we can more or less give an account, if only by denial of what we understand
of the limitedness of creatures. Hence God is both infinite and perfect, and so “in-
finitely perfect.” But of that whole expression we can give no positive account, except
as the conjunction of statements for each of which we can, disjunctively, provide the
justification. Theology cannot resolve the paradoxes it generates, for, on the contrary,
it shows that we occupy no epistemological ground on which they can be resolved.
The tension between the perfection and the infinity of God remains unresolved and
unresolvable by a finite mind. In that sense, theology is “systematically indeterminate”
in that it demonstrates its own incompleteness: at best it can show what it cannot say.
Indeed, it is properly speaking “theology” just insofar as it does that; moreover, it is
just insofar as it does so that theology ends in mystery, that is to say, it is just in that
sense – but in that sense alone – that theology is mystical.2

Of course, it might well be said that Gregory has this problem and is compelled
thus to resort to its dialectical, “apophatic” solution – not because there is something

2 Although nowadays there are plenty of other senses of that word that have few enough connections with Gregory
of Nyssa.
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in the nature of the theological project as such that requires it but only because he is
trapped into it by the particular exigencies of the Platonist starting point he inherits.
If you preferred to say that, I do not think you would be entirely wrong, so far as the
argument goes in the source to which I am here referring, his Life of Moses (Gregory of
Nyssa, 1978). However, there is more to it than that, and if it is not stretching historical
credibility too far for tolerance, we can see why if, taking a regrettably vast historical
leap to Immanuel Kant, we turn to his construction of what he calls the “antinomies”
of speculative reason.

12.3.2 Immanuel Kant

Kant’s critical strategy in this connection was principally negative – to show that
“speculative” reason could not by any means of its own generate knowledge of a tran-
scendental object, that is to say, an object transcending the forms of sensibility, space,
and time and the categories of understanding that organize the sensory, spatiotempo-
ral manifold into scientifically determinate objects of knowledge. His method of thus
limiting the “claims of speculative reason” was to show that from within different
speculative standpoints, you could demonstrate with equal soundness a proposition,
p, and its contradictory, ∼ p, thus showing the necessity of a standpoint that “tran-
scended” both.3 Thus, in Kant’s statement of the “third antinomy” in The Critique of
Pure Reason, arguments are presented on the “dogmatic rationalist” side that there is
an absolutely “spontaneous” freedom, whether as cause of the universe or as cause
in the universe – and on the empiricist side, that such freedom is impossible. Now,
on one hand, just because both p and ∼ p are demonstrable with equal soundness
from within their respective “standpoints,” the paradoxical tension cannot be reduced
by, as it were, any concessions on either half of it: the truth of p and the truth of
∼ p are apodictically demonstrated each within its standpoint. On the other hand, the
resulting paradox forces the mind to admit to the possibility of other ground – that of
“transcendental idealism” – whereon the paradox is resolved, but only on the condition
that the constraint of contradictoriness is not abandoned. As Kant says, there is an
“absolute necessity of a solution” of the antinomies (Kant, 1964, B504, 430); that is to
say, you cannot, for Kant, take the Nietzschean way out, which is to throw logic and
the principle of contradiction to the winds and simply say, as Walt Whitman is reported
to have declared, “I contradict myself? So I do. I am large, I contain multitudes.”4 It is
only if both conditions hold, first that p and ∼ p are demonstrable and second that their
contradictoriness is as binding as it is intolerable, that the mind is forced by virtue of
the antinomy to conclude that there is – there must be – the transcendental standpoint
beyond the range of speculative reason whereon the contradiction is resolved, whereon,

3 His purpose, of course, was to clear space free of “speculative” intrusion into the transcendental concepts of
God, freedom, and immortality so that they might reemerge as presuppositions of practical reason, curtailing
thereby the claims of (speculative) reason, as he puts it, “in order to leave room for faith” (Kant, 1964, 29).

4 With what truth, or in what context, he is said to have so remarked I do not happen to know, although “I am
large, I contain multitudes” is the famous line, of course, from his poem “Song of Myself” in Leaves of Grass
(1855).
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as Hegel was later to put it, the “negation” – that is, between p and ∼ p – “is negated,”
or, as Kant himself puts it at the very outset of Critique of Pure Reason:

Human reason . . . has this peculiar fate that in one species of its knowledge it is burdened
by questions which, as prescribed by the very nature of reason itself, it is not able to
ignore, but which, as transcending all of its powers, it is also not able to answer. (Kant,
1929, preface to 1st ed., A vii, 7)

Now I think that Gregory of Nyssa’s theological strategy is, in point of its obedience
to the exigencies of logic, not thus far different from Kant’s: no more than any other
discipline of thought may theology simply throw logical caution to the winds, and in
that minimal sense, at least, theology is “systematic.” Nothing in Gregory of Nyssa
lends support for that irrationalist Christian equivalent of Walt Whitman, Tertullian,
who was in his way as proud as Whitman was to proclaim that he believed the Christian
faith because it was absurd. If, then, Gregory finds himself knowing within different
standpoints that there are two propositions true of God that contradict each other,
then, like Kant, he has grounds for deriving from the contradiction that there must be
another standpoint within which the conflict between them is resolved: behind such
contradictions lies not the stasis of the irrational and nonsensical but the movement
of reason, compelling the mind to go beyond them. Moreover, like Kant, although
Gregory knows that there has to be such a standpoint, he knows equally that there can
be no occupation of it available within the constraints of human knowledge: we cannot
stand where God is, there where the paradox is dissolved and is there known in its
dissolution.

It is here, then, that we get to the heart of the matter, to the proposition that theology,
whether in Gregorian or Kantian form, is necessarily “incomplete.” For in either case,
the demonstration that the conflicting propositions are both true demands that there is
that in which the contradictory conjunction is resolved; but just that same demonstration
excludes the possibility of knowing the nature of that in which their conjunction is true.
For if, on the grounds on which we know the conflicting propositions to be true, we
could know the nature of that of which they are true, then that of which they are true
could not be God. For just insofar as we could know that nature, that nature would be
something that fell within the domain of our language, failing thus to transcend it; and,
thus enmeshed in its antinomies, it would fall from strictly the sublime into strictly the
ridiculous. So it would seem that the logic of the positions of both Gregory and Kant
is this: that theological “completeness” would entail its being internally contradictory,
whereas any strategy that would save its consistency would require as a condition its
incompleteness.

12.4 Theology as Essentially Uncompletable

So far, then, we have one form of “systematic incompleteness” characteristic of a certain
theological tradition: “systematic” in that the paradoxes thrown up by the multiplicity
of properties predicable of God demand – because the constraints of logic demand it –
resolution; “incompleteness” because the resolution of the paradox is demonstrably
beyond our powers. It is worth emphasizing, furthermore, that Gregory of Nyssa is far
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from seeing in this systematic failure of theoria some sort of deficiency as knowledge.
On the contrary, theoria encounters this double constraint of the equal necessity and
impossibility of resolving its paradoxes precisely insofar as it meets with its own
highest object, God, in its own subjective fulfillment as knowledge. This encounter
is, for Gregory, knowledge, theoria, reaching out to its own limits, there to know that
it cannot know what must lie beyond them. Moreover, this conception of theology’s
predicament is rooted, he thinks, in a biblical paradigm in the encounter of Moses with
Yahweh on Mount Sinai, where, meeting the divine presence in a dark cloud, he asks
to see the face of God and is denied it: “You may see me from behind, but my face you
may not see,” Yahweh tells him, “for no one may see my face and live” (Exodus 33:20).
You can, at the limits of human knowledge, know that there is that the nature of which
you cannot know, and this is God. It is, then, precisely in its theological failure that
knowledge reaches its fulfillment as theoria; it is knowledge “realized,” to employ a
Hegelianism, by its abolition. The theological is knowledge’s Aufhebung; it is reason’s
self-transcendence.

However, if it might be said that Gregory’s problem arises only on account of his
Platonist presuppositions about “infinity” and “perfection,” it might equally be said
that Kant’s antinomies are generated not out of any absolute character of the nature of
knowledge as such but only out of an artificially contrived construction of the dogmatic
rationalist and empiricist standpoints as being not only mutually exclusive but also as
collectively exhaustive. For there are in principle restatements of the epistemological
options that do not trap the philosopher between the Scylla of dogmatic rationalism and
the Charybdis of empiricism, just as there are conceptions of infinity and of perfection
that need not entail Gregory’s Platonist aporia. And if such restatements are possible,
the dialectical necessity with which the philosopher is required to postulate a higher,
and to human understanding unknowable, standpoint is to that extent reduced, if not
altogether removed.

Perhaps. However, even if neither Gregory nor Kant succeeds in demonstrating
absolutely this apophatic conclusion – that language has an “outside” that sustains it,
although equally we cannot inhabit it – this should not distract us from the fact that
that is what they attempt to prove. In acknowledging at least their intent, we might feel
that there are, at least in the general terms of an epistemically structural analogy, some
resonances with Gödel’s second incompleteness theorem in both in that due regard is
being made toward basic consistency within a system – in Gregory’s case, theoria,
in Kant’s, the constraints of reason – while acknowledging that consistency is in the
nature of the case indemonstrable. That said, whatever may be the truth concerning
the general applicability of their conclusions across theoria or reason as such, there
are epistemologically tougher statements of this “apophaticism” in the later Western
medieval traditions, indebted as the latter are to Gregory, at least indirectly. Tougher than
Gregory’s is that of Thomas Aquinas, for if it is after all true that Gregory’s conclusion
of the inherent paradoxicality of theology derived from the tensions embodied in
his classical Greek sources, for Thomas, the paradoxicality of the theological bites
deeper into language as such, and not on some assumptions derived from a particular
theological culture. For it bites into the very notion of proof of God’s existence and
of existence itself as predicated of God, and that paradox may be most summarily
presented in this form: Thomas thinks that it is possible to prove that God exists,
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but, he goes on to say, just those arguments that prove there to be a God also show
that the predicate form “x exists” has, as of God, itself passed beyond our power of
understanding. In short, if Thomas Aquinas’s proofs prove that God is, they also prove
that what God is is unknowable to us. For Thomas, if unknowability is the outcome, it
is paradoxes of proof that drive the mind to it.

12.5 Thomas Aquinas, Unknowability, Proof, and Proof
of Unknowability

Deadpan as is Thomas Aquinas’s default theological style, there is something at once
artless, and just for that reason, intensely dramatic, about the transition he effects from
question 2 to question 3 of his Summa Theologiae. In question 2, he has presented, in
highly abbreviated form, what one might call five “argument-strategies” of proof for the
existence of God. Leaving aside the issue of whether any or all of the arguments, in their
compressed form as there presented, are in fact sound, or even whether, considered just
as formal argument-schemas, they are in principle valid, it is at least certain – although
I grant that some dispute it (Milbank, 1999) – that Thomas thought of them in some
strict sense as “proofs”: formally valid inferences from true premises whose truth we
could know about independently of any theological presuppositions. These are, he says,
five ways in which Deum esse probari potest, and in terms of strict apodicity, there
is no stronger word in his logical vocabulary than probare. But if we can, for today’s
purposes, leave this controverted question on one side, it is not possible to sidestep the
issue of what it is that Thomas thinks the proofs prove. That God exists, you’ll say.
Just so, says Thomas, adding that the proposition “God exists” is analyzable out – as
we would nowadays say – by the existential quantifier “something or other is God,” or,
as he puts it, whatever it is that these proofs prove is quod omnes dicunt Deum (Summa
Theologiae, 1a q2 a3 corp).

Now, it is not entirely clear how best to translate quod omnes dicunt Deum. It goes
without saying that Thomas does not suppose that whatever it is that his proofs prove is
what “all people” mean when they use the name “God.” In my view, the phrase is best
translated, as I have argued elsewhere (Turner, 2004, 17–20), as “that is what people
refer to when they use the name ‘God.’” Manifestly “the first cause” or “necessary
being” or whatever is not the God “all people” have in mind when they pray to Him –
or for that matter when they curse Him. It would be all the same with blessings and
curses, of course, because, as Thomas quotes Aristotle as saying, eadem est scientia
oppositorum5 (one and the same is the knowledge of contraries), and you fail to pull
off an adequately blasphemous imprecation unless it is one and the same God to whom
people pray that you curse. What Thomas thinks the proofs yield is a minimum grip on
the noun God, showing the word God to have reference, and that, as I have put it, there
is something or other answering to that word and that you could show that whatever
thus answers to it is extensionally equivalent to the God “all people” praise or curse
when they do – or, for that matter, deny. You would, he well knows, have to show this

5 Thomas frequently appeals to this Aristotelian principle, e.g., in Summa Theologiae 1a q14 a8 corp and 1a q58
a4 ad2; see also Aristotle, De Interpretatione 6, 17a 33–35, and Metaphysics, IX, 1048 a11.
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extensional equivalence, and in fact, he takes his time over it, occupying some 149
articles of his Summa Theologiae engaged in the demonstration that the God of the
proofs is all the same with the Trinitarian God in whose name pious Christians bless
themselves.

However, the one thing Thomas rules out as a means to doing so in the demonstration
of this extensional equivalence is some definition of God. Of course, he says, providing
a definition would seem to be his obvious next move, or even that he should have begun
his account of proofs of God’s existence, as Anselm does, with a definition, namely,
“that than which nothing greater can be thought.”

For how else than by means of a definition of God would we know what the proofs
are meant to prove? Thomas acknowledges the force of the objection: as he remarks
in the prologue to question 3, in the normal case, “once you know whether or not
something exists, it remains to consider its manner of existence, so that we may know
of it what it is.” Alas for the vanity of theological hopes, he stops us short just there:
the urge for a definition must be resisted, he says, for in this case, no such thing is
possible. He goes on: “but since we cannot know of God what he is, but [only] what he
is not, we cannot enquire into the manner of God[’s] existence, but only into how he
is not. So, next we must consider this ‘how God is not’” (Summa Theologiae, 1a q.3
prol). And so he does: everything he contrives to show we can say about God places
God further beyond our comprehension, for the nature of God is to us, he says, omnino
ignota (Summa Theologiae, 1a q12 a13 ad1).

Therefore Thomas cannot begin his proofs in what might seem to be the obvious
way, with a definition of God, for, simply, there is no definition of God, although here
it is important not to become confused by ignorance of Thomas Aquinas’s Latin. Deus,
Thomas says, is a nomen, which is not to be translated as “proper name.” Grammatically,
he says, Deus is not the proper name of an individual, like “Peter Smith” functioning
as a subject term but never as predicate, but a common noun, and so a predicative term,
what he calls a nomen naturae, like “human.” Thomas maintains that a person who
mistakenly thinks there are many Gods is not making a grammatical mistake, as one
does who wonders if there might be many individual Peter Smiths (as distinct from
the undoubted fact that in the telephone directory, there are many individuals called
“Peter Smith”). The polytheist is committing a rational error, not a grammatical one.
For although it is demonstrable that there is and could be only one God and false
that there are many, polytheism is not simply incoherent in the way it is to wonder
if there might be many one and the same Peter Smiths. Being a common noun, God
therefore functions grammatically as a predicate, which is the reason why Thomas
agrees with the analysis of the proposition that forms the conclusion of an argument for
the existence of God in terms of the existential quantifier: “God exists” is analyzable
as “something or other is God” (Summa Theologiae, 1a q3 a4 ad2).

Now it might be asked how Thomas could consistently maintain both that God is a
grammatically descriptive term, a common noun, and that we cannot know the nature it
describes. In any case, one can repeat the question, how, without some initial definition
of what God is, would it be possible to know that a purported proof of God’s existence
has got to its destination? But the question confuses grammar with semantics. Knowing
the grammar of talk about God does not depend on having a definition of its topic in
any formal sense. To adapt an example of Herbert McCabe (2002, 37–88), I am afraid
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to say that I do not know what a computer is; I am nowhere near being in possession
of a definition. However, I know well enough how to use one, and, being old enough
to have painful experience of mechanical typewriters, carbon copies, and correcting
fluids, I am well aware of the difference it makes to be able to cut and paste text, to
be able to send papers by e-mail, and to repaginate at the click of a button. I do not
need to know what a computer is to be able to use one, and I can know how to use the
word computer in appropriately truth-bearing sentences, knowing only that whatever
a computer is, it is what accounts for my being able to cut and paste, send e-mails,
change pagination at the click of a button, and so forth: a computer needs only to
mean whatever it is that accounts for my being able to do these things. I can know the
grammar of the word computer from its effects on my writing, without knowing what
the word computer means.

Just so, Thomas says, with God: in place of a definition of God, arguments for God’s
existence rely on knowledge of the divine effects. If you interrogate the world with
sufficient persistence, you will, he thinks, come to know that it is created, and that is all
the grip you need on the word God to know its grammar. So we can know that God is
a common noun grammatically, that is to say, that it functions as a description without
knowing otherwise what, as Thomas puts it, “God is in himself.” That knowledge, he
insists, is altogether beyond us. Nothing of which you could give a definition could be
God. Moreover, that is the reason why Thomas thinks Anselm’s argument is invalid:
not just, that is, for Kant’s reason, namely, that existence is not a predicate and so
could not be included in the concept of God. For Thomas indicates that he could be
happy neither with Anselm’s proof nor with Kant’s critique of it: existence neither
follows nor does not follow from the concept of God because there is no concept
of God for Her existence to follow or not follow from (Summa Theologiae 1a q2 a2
corp).

12.6 The Failure of Gödels’ Ontological Argument

It is for similar reasons that Gödel’s version of the ontological argument fails, although
my comment here has relevance, as with Thomas Aquinas’s, more to Gödel’s argument-
strategy in general terms than to its technical detail, which is discussed in Chapter 14 in
this volume; in any case, it is generally accepted that, with some modifications, Gödel’s
argument is valid. Criticism of his proof therefore relies on challenging his axioms, for
if given them, the argument is valid and sound, whereas without them, it is valid but
unsound. In this connection, Gödel was, of course, familiar with one of the standard
objections to Anselm’s first formulation of the argument, the one principally relevant
here being that Anselm appears to confuse the subjective conceivability of a being “than
which nothing greater can be thought” with the objective possibility of a being “than
which nothing greater can be thought,” thinking that the first either is the same as or else
entails the second. He appears to conflate the two on the grounds that if the theist and the
atheist (the “fool”) are to be disagreeing with each other, the one denying what the other
affirms, then they must both “have the same idea” of what they are disagreeing about,
and so both must be “conceiving” something, namely, what answers to the common
definition. That is, if the theist is affirming anything at all under the description “God,”
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then it is exactly as answering to that same description that the atheist must deny
there is anything, otherwise he fails to pull off an adequate denial of what the theist
affirms. For, again, eadem est scientia oppositorum. However, suppose that what the
theist and the atheist conceive – “that than which nothing greater can be thought” – is
not the conception of anything possible. Then neither the theist’s affirmation nor the
atheist’s denial succeed one way or the other, for impossibilities have no truth values,
and there is nothing that the theist and the atheist are disagreeing about. However, the
first formulation of Anselm’s ontological argument relies on the description “that than
which nothing greater can be thought” being a possible description, and nothing that
Anselm offers shows that it is one.

Gödel’s strategy of reformulation acknowledges this difficulty along Leibnizian
lines, and he sets out to find a definition of God, something that answers to the
description “possibly God exists.” That starting point takes the form that possibly
there is an individual combining in its definition the set of all “positive” properties, as
Gödel calls them, a “positive” property being “positive in the moral aesthetic sense
(independently of the accidental structure of the world). . . . It may also mean pure
attribution as opposed to privation (or containing privation).” Now while it is far
from clear what Gödel means by a property’s being “positive” in “the moral aesthetic
sense,” and though it is somewhat clearer what he means by a property’s being “pure
attribution as opposed to privation,”6 it is certainly true, as he goes on to argue,
that the property of combining all such positive properties is itself a member of that
set, that is to say, is itself a “positive property,” there being, tautologically, nothing
“privated” therein. That “positive property” of combining all the positive properties
is, he says, the property of being “God-like.” Now one such positive property, Gödel
argues, is “necessary existence.” Hence the first series of steps in his reformulation of
the ontological argument consists in showing that the “God-like” possession of all the
positive properties is consistent, that is to say, is possible, and therefore that possibly a
“God-like” being necessarily exists.

At many points on the way thus far, exception can be taken to Gödel’s assumptions.
Leaving such objections thus far aside, the rest of Gödel’s argument depends on the
device in modal logic of extracting a necessity from “inside the brackets” so as to
stand outside them. His proof consists in showing that from the proposition “possibly a
necessary being exists,” you can derive the conclusion: necessarily (a necessary being
exists) – in short, that the proposition “a necessary being exists” is a necessary truth.
Now, as Thomas Aquinas has it, the conclusion is false: “God exists” is not for him a
necessary truth, for a necessary truth is one whose negation is a contradiction. Although
Thomas thinks that atheism is false, he does not hold that the denial of God’s existence
is self-contradictory. God’s existence, he says, is indeed a necessary existence: if God

6 For Gödel’s positive properties would seem to have the same logical character as Thomas Aquinas’s transcen-
dentals. Terms such as goodness, oneness, and, indeed, existence are topic-neutral in that they are predicable
literally of anything whatsoever, regardless of category – of any kind of thing whatsoever, there is something
that literally counts as being a good one of that kind – whereas nontranscendental terms are topic-specific in that
their literal predication is limited to a particular category. Heavy is predicable literally only of bodies that have
mass and so metaphorically of hearts or thoughts. As Thomas maintains, then, goodness is predicable literally
of both God and creatures, for nothing in the meaning of good limits it to creatures – or, as Gödel would say,
“contains privation” – whereas “God is the rock of my salvation” is necessarily a metaphor.
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exists, then God exists necessarily. It is simply a confusion to suppose that the de re
necessity of God’s existence entails the de dicto necessity of the proposition “God
exists.”

As we know, it is an elementary mistake to confuse the necessity with which
the conclusion follows from premises in a valid inference with the necessity of the
conclusion itself because any conclusion of a valid inference follows necessarily from
its premises, including contingent truths. The mistake is common among the Platonists,
Thomas notes, who similarly seem to derive from the de dicto proposition “necessarily
what is known is true” (which is no more than a definition of to know) the de re
conclusion that “only the necessarily true is known.” If I know that Socrates is sitting,
he says, then necessarily, Socrates is sitting, but of course, there is no necessity de
re to Socrates’ sitting: he has only to stand up and walk away, and the proposition
becomes false (Summa Theologiae 1a q14 a13 ad3). Now, although of marked Platonist
tendencies, Gödel makes no such elementary mistake. The conclusion he derives validly
from his premises, namely, that “‘a necessary being exists’ is a necessary truth,” is true
if and only if one of the argument’s assumptions is true, namely, that “necessary
existence” is a positive property of a “God-like” being. It is that assumption that
Thomas would have rejected, on the grounds that that assumption is crucial to the
derivation of the false conclusion that “God exists” is a necessary truth, for “God
exists” is deniable without contradiction.

To be clear, Thomas, of course, thinks that if you can prove that there is a God, then
it is simply a matter of what you mean by “proof” that the conclusion “God exists”
necessarily follows from that proof’s premises. Of course, Thomas thinks that God is
a “necessary being” – he thinks that you can prove that, too. What he denies is that
the conclusion “God exists” is a necessary truth because the purported demonstration
of that conclusion has to depend on conceiving of “necessary existence” as part of the
meaning of “God”; that is to say, it depends on conceiving of “necessary existence” as
a property because no judgment whether of contingent or necessary existence denotes
a property. Existence, necessary or contingent, is expressed in judgments, not analyzed
out of concepts: it is never part of the definition of anything that it exists, necessarily
or otherwise. His view is, as one might put it, that there is no kind of thing such that it
exists. Of course, then, if such a kind of being were possible, then not only would it be
a necessary being, that it exists would be a necessary truth.

12.7 Aquinas on Proof of God’s Existence

If Thomas Aquinas’s argument-strategy abandons the deductivism of Anselm’s – and
by anticipation that of Leibniz – then there seems little prospect thus far of common
theological purpose with Thomas being found in Gödel’s revision of it. As I say,
potential for some such connection worth exploring seems to lie more distantly –
although in my view more importantly – in a common but general epistemological
strategy, in Gödel’s case arithmetical, in Aquinas’s theological. Aquinas’s conception
of proof of God neither begins from nor ends in a definition of God but rather from
within a strategy of rational questioning of the world. His conviction is that if you push
such questions, principally causal ones, hard enough to reach the limits of reason, then
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just there at those limits, reason yields to the conclusion that the world originates in
an unknowable cause. Not what there is, but that there is anything at all – that is the
mystery that, for Thomas, if not for Wittgenstein, calls for the name “God.” You could
put it in another way: something or other answers to the common noun God because
it refers to the unknowable answer to a question that arises from our having pushed
causal explanations to the very boundary of sense, which we do when we ask, “How is
there anything at all rather than nothing?” Thomas, of course, does not put it in quite
that Leibnizian way, although what he does say is not unhappily thus paraphrased.
For the Leibnizian question has the same formal shape as Aquinas’s proofs, and if
there is anything at all in the comparison between Gödel’s theorems and Aquinas’s
proofs of God, it lies most plausibly, as I have said, in that general shape. For we
may note that the paradoxical result of Gödel’s first incompleteness theorem arises in
connection with multiplication and not with addition only, and for Thomas, too, proof
of God has an essentially multiplicative character. Aquinas’s causal questions can be
said to arise from within the bounds of language, for, as Peter Geach (1969, 81–81)
puts it, if we have available to us ordinary uses of the noun phrase “every moveable
thing” and the relative clause “cause of . . . ,” then the question formed from their
conjunction, “what is the cause of every mutable thing?” can, contrary to what Kant
supposed, have a sense we can grasp. However, the answer to it could not itself fall
within the bounds from within which the question arose; that is to say, the conjunction
is not merely additive, as if the sense of the word cause in “cause of every mutable
thing” was just the same as that which it possesses in its application within the world
of mutable things. For the sense of cause in “cause of every mutable thing” as it
were “multiplies” off the edge of the universe from within which the question arose.
Were the answer to be thus contained within the bounds of sense, then it could not
be to that question that it is the answer: for then it would be just one of the mutable
things within the world that the causal question asks about. Hence no such answer
deserves the name “God”: to pray to such a being would be the merest idolatry, and
your curses would be well merited by such a shibboleth and achieve no blasphemous
purpose.

We could not know what God is. Of course, as a Christian believer, Thomas does
not need to prove that God exists. However, as a Christian believer about to embark on
a massive structure of theological exposition and argument about the Trinitarian God
and the God of Jesus Christ, in which it could seem as if he was, after all, telling us a
great deal about what God is, he does need to prove that, on the contrary, anything you
go on to say about God can serve no purpose but to reinforce that unknowability of
the divine mystery. As he emphasizes, even faith does not somehow fill in a definition
of God lacking to reason because although, as he says, through faith we do indeed
enter into some sort of communion with God, even by faith, this “communion” is as to
something unknown to us, quasi ei ignoto (Summa Theologiae, 1a q12 a13 ad1). Faith
is a life lived, as it were, in the medium of that unknowability.

So that – as, I repeat, in highly general terms – is where things stand for Thomas:
argument about the world must, in the end, demonstrate the unknowability of its cause.
It is the nature of proof of God itself that generates the metatheological proposition
that theology is uncompletable because any conception of theology as a completable
system would run it into a self-defeating – because idolatrous – inconsistency.
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12.8 Arithmetical and Theological Incompleteness:
Are They the Same?

It was such accounts of theological epistemology – in one way that of Gregory of
Nyssa, in another way that of Kant, and in a third, and perhaps more convincing way,
that of Thomas – that brought to mind thoughts of those analogies, like-sounding as
they seem, with so many parallel notions that today are found in philosophy, particle
physics, literary theory, and, most surprising of all, arithmetic. However, if such is
the case for the exploitation of analogies between Gödel and at least one Christian
theological tradition, as it is called, of “negative theology,” it is time now to entertain
grounds for doubting whether the analogies hold at any more than at a highly general,
and equally risky, level. For I ought at this point to come clean and make it clear that –
tempting as it would be in this volume with its cross-disciplinary focus and scope –
I have no firm propositions to offer here of comfort to those too casually seeking
support for these notions of theological paradox in the paradoxes of Gödel-Rosser
about number theory. For my part, at any rate, I simply do not know whether the
superficial parallel is genuinely illuminating, if only because I do not know whether
the theologian and the mathematician are working with sufficiently similar notions of
consistency, completeness, or proof. If anything, I am on balance skeptical. It is in
any case clear that Gödel’s meta-arithmetical incompleteness theorems are syntactical
propositions about proof of unprovability within a calculus and are not without much
more ado to be assimilated to the semantical proposition of Thomas concerning the
unknowability of a proved result’s nature. Moreover, the notion of “proof” within
a calculus is inevitably defined in reference to a rigidly deductive system, whereas
Aquinas’s notion of proof in connection with the existence of God must submit with
equal inevitability to different rules of apodicity, as I have shown. The point of difference
between deductive proof in arithmetic and Thomas Aquinas’s conception of proof as
of God is all the more reinforced in Aquinas’s case by his refusal to accept the validity
in principle of any “ontological” – that is, quasi-deductive – proof of God, as we have
also seen. At best, then, any grounds for a more optimistic assimilation between Gödel
and Thomas must rely on the most general and formal level of comparability. I suppose
at that level, it can be said that something like the Gödelian syntactical proposition of
the first theorem about the “demonstrably undecidable” in arithmetic has the role in
Thomas of generating the metatheological proposition that theology cannot occupy the
ground on which alone its completeness could be known,7 this theological ignorance
being systemic: for it is simply in the nature of theology as a form of knowledge that
it is on the grounds of what it does know that it knows what it cannot know.

That said, my instinct is to conclude that except at such a generalized level of
structural similarity, the analogy serves little but the interests of distortion, both of Gödel

7 Incidentally, Thomas Aquinas’s conception of the “demonstrably undecidable” is not limited to this general
metatheological proposition. It governs the relationship between the oneness of God and God’s Trinitarian
nature. God’s being one is of such a kind, he thinks, that it is demonstrably undecidable whether there are or are
not three “persons” in God. In a celebrated polemical work, he argues that it is “demonstrably undecidable” for
a rational mind whether the world is eternal, a question that, he argues, is not settled either way by any proof
that the world is created “out of nothing”; see De aeternitate mundi contra murmurantes, an extract of which is
published in translation in McInerney (1998, 710–17).
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and of Thomas. Perhaps this will seem a sadly downbeat answer with which to conclude,
but not all is lost, there being at least one significant, albeit negative, gain. For it is
Gödel’s contribution to that series of skeptical questionings, emergent as we have seen
in the earlier decades of the twentieth century across a wide range of disciplines, that
exploded the myth of a narrowly rationalist and essentially antitheological conception
of reason, and it is his distinctive contribution to these questionings that is of particular
significance to the theologian. For it was in mathematics that the ideal type of a system
of rational thought, demonstrably complete and demonstrably consistent, seemed to be
instantiated most incontrovertibly. Gödel demolishes that paradigm of reason precisely
in its strongest case, but then, neither does the mirror image of that narrow atheistic
rationalism, which consists in a form of fideistic and irrationalist theism, gain any
succor from a theological analogy with Gödel. For what Gödel offers in the first of his
theorems is a proof of incompleteness, and in the second, a proof that consistency is
unprovable, a paradigmatically rational procedure of cracking open the closed circle
of reason and exposing it to what lies beyond it. On that ground of reason equivalently
mapped, neither rationalist nor irrationalist, the theologian may wish to stand. At any
rate, Thomas Aquinas does.
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1, 87–91.

Rubenstein, M.-J. (2003). Unknow thyself: Apophaticism, deconstruction and theology after ontothe-
ology. Modern Theology, 19, 387–417.

Stone-Davis, F. (2005). Musical perception and the resonance of the material PhD diss., University
of Cambridge. [See esp. Part III.]

Turner, D. A. (2004). Faith, Reason and the Existence of God. Cambridge: Cambridge University
Press.

Wittgenstein, L. (1961). Tractatus Logico-Philosophicus, 6, 432–7. Translated by D. F. Pears and
B. F. McGuiness. London: Routledge and Kegan Paul.



Gödel and the Mathematics of
Philosophy





CHAPTER 13

Gödel’s Mathematics
of Philosophy

Piergiorgio Odifreddi

Mathematicians with an interest in philosophy, such as the present author, find an
interest in the latter when they see it as a metaphor – or, even better, an inspiration – for
the former. Gödel provides a study case here because he is well known to have declared
that (part of) his mathematical work was a direct consequence of his philosophical
assumptions. If one takes this to mean Gödel’s own philosophy in an academic sense, for
example, as crystallized in the Nachlass, then it is difficult to make precise sense of his
remark, as some scholars have experienced. The following observations intend to show
that the difficulties disappear if one interprets Gödel’s “philosophical assumptions”
in a more popular sense, as meaning assumptions of philosophers whose thought he
happened to know and find interesting.

I claim that some of Gödel’s main results can be interpreted as being mathematically
precise formulations of intuitions of Aristotle, Leibniz, and Kant. We know of a direct
cause-and-effect connection only in some of the cases, but this is not the point. What we
really care about, as nonprofessional readers, is to show that (part of) philosophy can
be reinterpreted as asking questions and suggesting answers that mathematics makes
precise. To put it in a more general slogan, in intellectual history, everything happens
twice: first as philosophy, then as mathematics.

13.1 The Arithmetization Method (1931)

According to Gerald Sacks (1987), Gödel said that he got the idea of arithmetization
from Leibniz. Sacks seems to be skeptical about the causal effect and suggests that
Gödel may have only thought of it after the fact.

Be that as it may, it cannot be denied that in Leibniz’s (1666) Dissertatio de arte
combinatoria, one indeed finds a detailed exposition of a method to associate numbers
with linguistic notions. However, one also finds a quite surprising naı̈vety: to associate
composite numbers with composite notions, Leibniz proposes (in sect. 69) to use
multiplication, thus making decomposition uncertain (because a number may have
multiple decompositions).
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Gödel’s improvement on Leibniz was the use of prime exponentiation in place
of multiplication. This made decomposition unique by the prime factorization
theorem.

13.2 The Incompleteness Theorem (1931)

Kant’s main point in Critique of Pure Reason (Kant, 1781, 1787) and Prolegomena
to Any Future Metaphysics (Kant, 1783) is to show the limits of pure reason. A quick
rendition of the core of his arguments in modern logical language will help me make
my point.

Kant uses a system of twelve concepts of the understanding, to which correspond
twelve types of judgments, constituting the basis for a system of first-order modal logic.
More precisely, the list of judgments in Kant’s wording (and their self-explanatory, one
hopes, logical translations) is the following:

Quantity Quality
Universal (∀) Affirmative (propositional)
Particular (∃) Negative (¬)
Singular (∃!) Infinite (first order)

Relation Modality
Categorical (atomic) Problematic (�)

Hypothetical (→) Assertoric (�)
Disjunctive (∨) Apodeictic (�)

Kant claims that the list of categories is complete and attempts a proof called
the “metaphysical deduction of the pure concepts of the understanding.” The word
completeness here means “functional completeness,” in the sense in which the usual
connectives of classical logic are sufficient to generate any Boolean function.

Kant then claims that if reason is complete, in the different sense of being able
to deal freely with the concepts of understanding, then it is inconsistent. His proof
proceeds in two steps.

He first concentrates on the three concepts belonging to the relation group and
claims that completeness allows one to consider a limit version of each of them, called
a “transcendental idea.” More precisely, the three transcendental ideas are soul, first
cause, and God: they are obtained, respectively, by pushing to the limit the categories
of atomic predicate, implication, and disjunction.1

The second step of Kant’s proof is to show that the transcendental ideas lead to
contradiction, which he does by means of the four antinomies of pure reason.

Gödel’s work on the incompleteness theorem can be seen as a formal analogue of
Kant’s own. Indeed, the statement of the incompleteness theorem is a contrapositive
of Kant’s formulation: a sufficiently powerful and sound formal system that is not in-
consistent must be incomplete. Gödel’s proof neatly separates and axiomatizes various
aspects of Kant’s proof, as follows.

The request that the formal system be sufficiently powerful expresses a weak form
of completeness, and it can be rephrased as saying that it is possible to consider a

1 Thus God is identified with an omnicomprehensive disjunction.
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formal version of a particular transcendental idea, associated with (i.e., obtained by
pushing to the limit) the category of “nonprovability” and expressing the statement “I
am not provable.”

The role of antinomies is played here by the contradiction according to which, if “I
am not provable” were provable in a sound system, it would be true and hence also not
provable.

13.3 The Double-Negation Translation (1933)

In The Metaphysics (�, especially 1006a), Aristotle isolates two basic axioms of being:
(1) the noncontradiction principle, that is, ¬(A ∧ ¬A) (denied by Heraclitus), and
(2) the excluded middle, that is, A ∨ ¬A (denied by Anaxagoras). He asserts that a
proof of these principles should not be attempted: not everything can be proved, and it
is a sign of good education to know when to stop.

One would expect that at this point, nothing much would remain to be said, but
Aristotle makes an unexpected move: he claims that those principles, although impos-
sible to prove, can, however, be shown to be impossible to disprove, in the sense that
the assumption of their negation leads to contradiction.

The details of Aristotle’s attempted proof, by a method known as the élenchos,
are of no interest to us. But his statement is of interest, being just an assertion of
the provability of the double-negation of the axioms. This is precisely the core of the
double-negation interpretation of classical propositional logic into intuitionistic logic,
proven by Kolmogorv in 1925, Glivenko in 1929, and Gödel in 1933.

More precisely, one way of proving the double-negation interpretation (whose state-
ment asserts that if a propositional formula is classically provable, then its double
negation is intuitionistically provable) is by showing that the double negation of any
tautology is an intuitionistic consequence of instances of double negations of the ex-
cluded middle, and then to prove the latter outright in intuitionistic logic (this final step
being the formal analogue of the élenchos).

Of course, one should always take Aristotle’s (or anybody else’s) intuitions with a
grain of salt: after all, he also claimed (in 1012a) that if the excluded middle failed
for some formula, it should fail for all formulas, and that if there were more than two
truth values, there should be infinitely many – two assertions proved incorrect by later
developments of logic.

13.4 Sets and Classes (1940)

In his discussion of the ontological proof, Kant rephrases his main point about limita-
tions of reason in a way that ties it more to set theory than to the incompleteness theorem.
More precisely, he observes (Kant, 1781, 390–91) that one could distinguish God from
beings by saying that the latter are defined by sets of atomic predicates, whereas the
former is “only” defined by a (proper) class: the natural illusion of reason here thus
takes the form that “it is possible to apply to classes the same properties of sets.”

The difference between classes and sets is exploited and made precise in the so-
called Von Neumann–Bernays–Gödel system, in which classes are taken as primitive
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and seen as extensions of arbitrary predicates, whereas sets are defined as classes
belonging to some (other) class. One can then prove that proper classes (i.e., classes
that are not sets, of which God is an example, according to Kant) are indistinguishable
from the whole universe in the sense that they can all be put into a one-one and onto
correspondence with it (thus uncovering an unexpected pantheistic flavor in Kant’s
theology).

13.5 Cosmological Models (1949)

A basic assumption of Kant’s (1781, 1787) Critique of Pure Reason is that space and
time do not exist. Rather they are only illusions: although the objects of the external
world do appear to us as having spatial and temporal extension, these are not properties
of the objects; they are instead a consequence of the structure of our sensorial and
mental apparatus. (Kant’s terminology is that they are a priori constitutive of the form
of our perception.) In particular, we cannot have any objective knowledge of the world
and are bound to subjective pictures determined by our human nature.

Gödel (1995, 274) explicitly states that his work on cosmological solutions of the
field equations of general relativity was prompted by the question of whether the latter
could be shown to be in agreement (or at least, not in disagreement) with Kant’s
assumption on time.

On the positive side, he showed that it is indeed consistent with general relativity that
there is no notion of absolute and objective time. More precisely, he first constructed
a model with rotation of the major mass points, a condition that is sufficient (and
necessary) to show that there is no absolute time in the model. He then provided
stronger solutions in which there are even closed timelike lines: in the latter models,
one could travel in the past by going sufficiently far in the future, and thus even the
notion of an objective time for individual observers is ruled out.

On the negative side, Gödel argued that Kant’s thesis of the unknowability of things
in themselves was a subjectivistic exaggeration and not a logical consequence of his
assumptions on the a priori character of the form of human perception. In particular,
relativity theory itself shows that properties of space and time (such as the relativity of
simultaneousness, the non-Euclidicity of space, or the Lorentz contraction) that flatly
contradict our a priori intuition can nevertheless be discovered: thus it is possible that
science could “go beyond the appearances and approach the world of things” (Gödel,
1995, 244).

13.6 The Ontological Proof (1970)

According to Hao Wang (1987, 195) Gödel said that he got the idea for his version of the
ontological proof from Leibniz. It is clear from the following analysis that Gödel refers
to the short paper Quod Ens perfectissimum existit, in which Leibniz (1676) defines
God as a being having all perfections and proves that God exists because existence
is a perfection. The argument is, of course, Descartes’s version of Anselmus’s own,
and Leibniz’s improvement consisted in an attempt to show that the definition was not
contradictory.
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Despite that, according to Leibniz, his argument satisfied Spinoza, it could cer-
tainly not satisfy anybody aware of compactness (such as Gödel, who first discovered
it). Leibniz indeed makes the following hair-raising inference: he only shows that
perfections are compatible two by two, and then deduces from this that they are all
compatible.

To avoid such an embarrassing mistake, Gödel reformulated the argument as follows
(where we have dropped any reference to modalities because it was later proved that
they all collapse in the axiom system used by Gödel). He defines God as a being having
all positive properties and assumes that the positive properties form an ultrafilter on
the universe: thus closure under intersection (expressing that the positive properties
are compatible two by two) is simply postulated. Because any ultrafilter of subsets of
a finite set is principal, the existence of God (i.e., the intersection of the ultrafilter)
follows immediately from the assumption of the finiteness of the universe.

To avoid this unsatisfying hypothesis, it is enough to notice that it is used in the
argument only to show that the ultrafilter contains its own intersection: if the latter
is assumed directly, the result follows without any finiteness assumption. But the
intersection of the ultrafilter is God itself, and to assume that it is in the ultrafilter
means to assume that “being God” is a positive property, which is what Gödel indeed
does.

13.7 Conclusion

I have shown that certain passages of Gödel’s favorite philosophers can be seen as
an inspiration for, or reinterpreted in the light of, some formal developments of his
mathematical work. Historical evidence showing factual causal connections, which
indeed exists in some of the cases, is, however, not relevant to our main point, namely,
that both mathematicians and philosophers may profit from a nonacademic reading of
philosophy.
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CHAPTER 14

Gödel’s Ontological Proof
and Its Variants

Petr Hájek

In the early 1970s, we learned that Gödel had produced a proof of the existence of God
after he showed it to Dana Scott, who discussed it in a seminar at Princeton. Notes
began to circulate, and the first public analysis of the proof was performed by Sobel
(1987). Only after Gödel’s death, in the third volume of his collected works (Gödel,
1995), was the proof finally published. It is just one page, preceded by an extensive and
very informative introduction by Adams (Gödel, 1995). The volume also contains notes
from Gödel’s Nachlass, dated 1940, containing his first drafts of the proof. Presently,
there exist several papers on the topic, including two extremely interesting monographs
(Sobel, 2004; Fitting, 2002). A very important variant of Gödel’s system, resulting from
the first criticisms made of it, was generated by Anderson (1990). Anderson’s variant
will play an important role in this chapter.

Gödel is famous for his completeness and incompleteness theorems as well as for
his work with set theory, so his ontological proof has never received the same attention.
The proof belongs to the family of ontological arguments, that is to say, arguments that
try to establish the existence of God by relying only on pure logic. Such arguments were
presented by Anselm (1033–1109), Descartes (1598–1650), Leibniz (1646–1716), and
others, and Gödel is known to have studied particularly Leibniz’s works (the two books
mentioned earlier are recommended for information on the old ontological proofs and
their relation to Gödel’s proof). Here let us only mention that even if the old proofs were
clearly not formal proofs – in the sense of formal logic – and did not use modalities, they
show a striking similarity in their form: they (try to) argue that God exists (actually,
really, necessarily) if God is possible (consistent, present in our mind), and then to
prove that God is indeed possible. Details and weaknesses of these proofs are analyzed
particularly in Sobel’s book. Hartshorne (1962) seems to be the first to formalize the
modal substance of these proofs (see later); Gödel’s proof has this structure too.

This chapter concentrates on the formal (mathematical) aspects of Gödelian onto-
logical proofs; philosophical aspects are completely ignored. However, at the end, we
shall comment on the (possible) relevance of ontological proofs to religious faith. Our
plan is as follows: in Section 14.1, we specify the formal logic used (first-order modal
S5); Section 14.2 discusses Gödel’s original version (as presented by Scott), and we
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analyze the first criticisms of it (made by Sobel and Magari); Section 14.3 focuses on
Anderson’s variant and its variants; in Section 14.4, we analyze criticism formulated
by Oppy; Section 14.5 contains “Miscellanea,” for example, the use of different modal
logics, the question of proving the devil’s existence, a recent variant of Gödel’s original
proof by Koons, and some other matters; in Section 14.6, we ask what we have learned
about Gödel; finally, in Section 14.7, we consider the importance of ontological proofs
for religious belief. Section 14.8 concludes.

Let us close this introduction, for the reader’s pleasure, by quoting at least a part
of the famous Anselm’s Proslogion II as an example of an ontological proof (Hopkins
and Richardson, 1974):

Therefore, Lord, Giver of understanding to faith, grant me to understand – to the degree
You deem best – that you exist, as we believe, and that you are what we believe You to be.
Indeed, we believe You to be something than which nothing greater can be thought . . . even
the Fool is convinced that something than which nothing greater can be thought exists
at least in his understanding; for when he hears of this being, he understands [what he
hears], and whatever is understood is in the understanding. But surely that than which a
greater cannot be thought cannot be only in the understanding. For if it were only in the
understanding, it could be thought to exist also in reality – which is greater [than existing
only in the understanding]. Hence, without doubt, something than which a greater cannot
be thought exists both in the understanding and in reality.

14.1 The Logic Used

We shall use the best-known modal logic S5 (for other possibilities, see remarks in
Section 14.5). The reader is assumed to be familiar with classical propositional and
first-order predicate logic as well as with (at least) propositional S5 (for detailed
treatment of first-order S5, see Fitting and Mendelsohn, 1990). As usual, we use � for
the modality of necessity and � for possibility. Let us recall the propositional axioms
of S5. Besides the axioms of classical propositional logic, these are as follows

�(ϕ → ψ) → (�ϕ → �ψ)

�ϕ ≡ ��ϕ

�ϕ ≡ ��ϕ

�ϕ → ϕ.

Possibility is defined by
�ϕ ≡ ¬�¬ϕ.

Deduction rules are modus ponens and necessitation: from ϕ infer �ϕ. Semantics
come into play when considering Kripke models consisting of a nonempty set W of
possible worlds and an evaluation w of each propositional variable in each possible
world by a truth value 0 or 1. Connectives are evaluated in each possible world by
the usual truth tables; �ϕ is true in the model if and only if ϕ is true in each possible
world. Propositional S5 is complete with respect to these models; a formula is provable
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if and only if it is an S5-tautology (which is true in all Kripke models). (In particular,
recall that ��ϕ ≡ �ϕ is an S5-tautlogy.)

Let us illustrate the use of propositional S5 by presenting Hartshorne’s proof. Let q
stand for “God exists.” Assuming that �q, and q → �q (Anselm’s principle), then

�(q → �q),

�q → ��q,

��q → �q,

�q → �q,

�q.

As stated earlier, this is, in some sense, the common structure of ontological proofs
discussed by us. The question is how (or from what) to prove the two assumptions. Let’s
turn to the first-order S5. There are variables for an object’s alias beings (lowercase
letters) and for properties (uppercase latters), one constant G for the property being
godlike, and one predicate P of properties (being a positive property). This can be
understood either as a second-order logic or as a first-order, two-sorted logic with one
binary predicate Appl with the formula Appl(Y, x), abbreviated as Y (x). (The reader
may choose which version he or she likes.) We shall also use the extensional equality
predicate = for beings (thus we assume x = y → �(x = y)).

We shall discuss two variants of the logic: the first has Kripke models with
fixed domain (W,M,P rop,Appl, PK,GK ), where W is a nonempty set of possi-
ble worlds, M a nonempty set of objects (beings), Prop a nonempty set of properties,
GK ∈ Prop, PK ⊆ Prop ×W , and Appl ⊆ Prop ×M ×W . This has the following
meaning: (X,w) ∈ PK means that X is a positive property in the world w and that
(X, a,w) ∈ Appl means that the being a has the property X in the world w. In partic-
ular, (GK, a,w) ∈ Appl means that a is a godlike object in the world w. Satisfaction
is defined in the usual way, in particular, �ϕ (ϕ being a sentence) is true in the model
if and only if ϕ is true in each possible world.

Note that with these models, the predicate modal logic S5, with its usual axioms (just
axioms, rules of classical predicate logic, of propositional modal S5, Barcan formula
�(∀x)ϕ ≡ (∀x)�ϕ, and the rule of necessitation (from ϕ infer �ϕ)) is complete (see
Fitting and Mendelsohn, 1990).

The second set of semantics has, in addition to the preceding, among the predicates
a constant predicate E of (actual) existence; that E(u) is true in a world, w means that
the object u actually exists in this world. An axiom demands that in each world, at
least one object actually exists. The formula (∃Eu)ϕ(u) stands for (∃u)(E(u) ∧ ϕ(u));
similarly, (∀Eu)ϕ(u) stands for (∀u)(E(u) → ϕ(u)) (see, e.g., Fitting, 2002).

Furthermore, we assume the axiom schema with full comprehension. For each
formula ϕ(u, . . . ) (the dots standing for possible other free variables for beings or
properties), and each variable Y not occurring in ϕ, the axiom says

(∀ . . . )(∃Y )�(∀u)(Y (u) ≡ ϕ(u, . . . )

(satisfying that ϕ is a property). Full comprehension demands restriction to Kripke
models such that properties defined by formulas exist in the model. (One can also work
with weaker systems not containing the full comprehension; see comments later.)
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14.2 Gödel’s Proof

We reproduce Gödel’s original system (as presented by Scott) and his proof and prove
some additional theorems in the system. Recall that P (X) says that X is a positive
property, and G(a) says that a is a godlike being. Furthermore, X ⊆ Y (defined
later) says that X entails Y , XEssa that the property X is an essence of a (Gödel’s
name), and NE(a) that a necessarily exists. ¬X denotes a property Y satisfying
(∀a)(Y (a) ≡ ¬X(a)). The axioms follow:

(G1) P (X) ≡ ¬P (¬X)
(def) X ⊆ Y ≡ (∀u)(X(u) → Y (u))
(G2) (P (X) ∧ �(X ⊆ Y )) → P (Y )
(def) G(a) ≡ (∀Y )(P (Y ) → Y (a)) (Godlike)
(G3) P (G)
(G4) P (Y ) → �P (Y )
(def) XEssa ≡ X(a) ∧ (∀Y )(Y (a)→�(X⊆Y ))
(def) NE(a) ≡ (∀X)(XEssa → �(∃a)X(a))
(G5) P (NE)

In words, a property is positive if and only if its negation is not positive; a property
necessarily entailed by a positive property is itself positive; a positive property is
necessarily positive; and both godlikeness and necessary existence are positive. This
theory (over the predicate modal logic S5) will be denoted by GO.

Theorem 14.2.1 GO proves P (X) → �(∃a)X(a).

proof The following chain of implications is provable:
�(∀u)¬X(u) → �(∀u)(X(u) → ¬X(u)) → (P (X) → ¬P (X)) → ¬P (X).
Thus we have proved ¬�(∃a)X(a) → ¬P (X), which, in turn, proves the
theorem.

Remark GO proves G(u) ≡ (∀Y )(P (Y ) ≡ Y (u)).
Indeed, ← is trivial; for →, observe (G(u) ∧ Y (u) ∧ ¬P (Y )) → ((G(u) ∧ P (¬Y )) →
¬Y (u), a contradiction.

Theorem 14.2.2 GO proves G(u) → GEssu.

proof The following are provable:
(G(u) ∧ Y (u)) → P (Y ) → �P (Y ); P (Y ) → (∀x)(G(x) → Y (x)), thus
�P (Y ) → �(G ⊆ Y ), hence (G(u) ∧ Y (u)) → �(G ⊆ Y ).

Theorem 14.2.3 GO proves �(∃x)G(x)

proof GO proves �(∃x)G(x) by Theorem 14.2.1, G(x) → NE(x) because
P (NE), thus G(x) → �(∃x)G(x) because GEss x. Take q to be (∃x)G(x) and
apply Hartshorne’s proof.
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This completes Gödel’s proof of the necessary existence of a godlike being. We
present some further consequences of the axioms.

Theorem 14.2.4 GO proves (G(x) ∧ Y (x)) → �Y (x).

proof Let Ix be the property of being x, that is to say, satisfying Ix(z) ≡ z = x.
We have to prove that (G(x) ∧ Y (x)) → �Y (x). We already have �(∃z)G(z)
(using all the axioms of GO). Now observe the following provable implications:

(G(x) ∧ Y (x)) → (P (Y ) ∧ �P (Y )),
�(G(x) → (P (Y ) → (Y (x) ∧ Ix(x)))),
�P (Y ) → �(G(x) → (Y (x) ∧ Ix(x)))),
�P (Y ) → �(∃z)(G(z) ∧ Y (z) ∧ Ix(z)),
�P (Y ) → �(G(x) ∧ Y (x)),
(G(x) ∧ Y (x)) → �Y (x).

Theorem 14.2.5 GO proves G(u) ≡ (∀Y )(P (Y ) ≡ �Y (u)).

This follows immediately from the preceding remark and theorem. This equivalence
says that u is godlike if and only if the properties that u necessarily has are exactly
all positive properties. It will play an important role in Anderson’s variant of the
ontological proof. (It appears that provability of this theorem in GO has not previously
been observed.)

The next theorem is from Sobel (1987) and is called the “theorem on the collapse
of modalities in GO.”

Theorem 14.2.6 For each formula ϕ, GO proves (ϕ → �ϕ).

proof The following chain of implications is provable:
ϕ → [G(x) → (G(x) ∧ ϕ)] → [G(x) → �(G(x) ∧ ϕ)] → [G(x) → �ϕ].
Thus G(x) → (ϕ → �ϕ), hence (∃x)G(x) → (ϕ → �ϕ), and therefore
ϕ → �ϕ.

Consequently, in GO, for each formula ϕ, the formulas ϕ, �ϕ, and �ϕ are mutu-
ally equivalent, and modalities become superfluous. This appears to be a significant
disadvantage of GO and led Anderson to his emendation of the system (Anderson,
1990; he says there that, unfortunately, too much follows from these (Gödel’s) ax-
ioms). But surprisingly, in a very recent paper, Sobel (2006) argues that it is possible
that Gödel knew that his axioms lead to the collapse of modalities and accepted this for
some philosophical reasons (see Adams in Gödel, 1990, 400). Nevertheless, our main
attention will be paid to variants of the system not having a collapse of modalities.

Among the first critics of Gödel’s proof, let us mention Magari (1988). He says,
“Teofili hanno spesso fornito ingegnosi argomenti . . . esistono anche teofobi (io lo
sono di tutto cuore)” (he declares himself to be a “theofob") and “non è più facile
ammettere gli assiomi che ammettere direttamente il teorema” (it is not easier to accept
the axioms than to accept the conclusion). This second quotation is interesting with
respect to the possible religious significance of Gödel’s proof. Magari claims that the
sentence � �(∃x)G(x) is provable using only the first three axioms (G1)–(G3) of
Gödel, but this is false. (My counterexample in Hájek (1996) satisfies even Gödel’s
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(G1)–(G4).) Finally, let us mention Fitting’s observation (in his monograph) that inGO,
the axiom P (G) (godlikeness is positive) can be equivalently replaced by �(∃x)G(x).

14.3 Anderson’s Variant and Its Variants

Anderson’s variant (mentioned at the end of the preceding section) consists first in
weakening Gödel’s axiom (G1) to P (X) → ¬P (¬X). Thus, at most, one of the prop-
erties, X or ¬X, may be positive, but not both (but possibly neither of them). The
second difference in Anderson’s variant is made by changing the definitions of god-
likeness and essence, keeping the axioms (G2)–(G5) and the definition of necessary
existence as they are but using the new notions of godlikeness and necessary existence.
Call these axioms now (A2)–(A5) (Anderson’s version). The definition of godlikeness
is now

(def) G(u) ≡ (∀Y )(P (Y ) ≡ �Y (u)).

(Recall that we have shown that this formula is provable in GO.) We postpone any
discussion of Anderson’s notion of essence and necessary existence because we shall
show that in Anderson’s system (which we may callAO), they are redundant. (This was
first shown in Hájek (1996)). For the ontological proof in the logic with fixed domains,
we only need the following three axioms (the three first axioms in Anderson’s theory;
X ⊆ Y stands for (∀u)(X(u) → Y (u))):

(A1) P (X) → ¬P (¬X), where (¬X)(u) ≡ ¬X(u),
(A2) (P (X) ∧ �(X ⊆ Y )) → P (Y ),
(A3) P (G), where G(u) ≡ (∀Y )(P (Y ) ≡ �Y (u)).

In words, the negation of a positive property is not positive; a property necessarily
implied by a positive property is positive; and godlikeness is positive (u is godlike
if properties it necessarily has are exactly all positive properties). This theory will be
denoted (in accordance with Hájek, 2002b) by AO0.

Theorem 14.3.1 AO0 proves �(∃x)G(x), (∃x)�G(x) and also uniqueness:

(∀x, y)((G(x) ∧G(y)) → x = y).

proof AO proves P (X) → �(∃u)X(u) because assuming X is necessarily
empty gives �(X ⊆ ¬X); thus P (X) gives P (¬X), which contradicts (A1).
This proves �(∃x)G(x). Furthermore, AO0 proves G(u) → �G(u) using (A3)
and the definition of G. From this follows �(∃u)G(u) → �(∃u)G(u) and hence
�(∃u)G(u). Thus one gets (∃x)G(x), (∃x)�G(x). (Indeed, because G(x) →
�G(x), we can conclude that �(∃x)G(x) → �(∃x)�G(x) → (∃x)�G(x).) To
prove uniqueness, observe that for each x, there exists a property Ix such that
�(∀y)(Ix(y) ≡ y = x) (being x). Clearly �Ix(x) for all x; if G(x), then P (Ix);
thus if G(y), then �Ix(y), hence �(y = x).

Theorem 14.3.2 AO0 provesP (Y ) → �P (Y ) andP (Y ) → P (�Y ). (The for-
mer formula is Anderson’s axiom (A4).)
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proof First,

G(g) → (P (Y ) ≡ �Y (g)),
�G(g) → (�P (Y ) ≡ �Y (g)),
�G(g) → (�P (Y ) ≡ �Y (g) ≡ P (Y )),
P (Y ) ≡ �P (Y ).

We prove the second formula. Indeed, �(�Y → Y ) is a theorem, thus P (�Y ) implies
P (Y ). Conversely, assuming G(x), we get

P (Y ) → �Y (x) → �(�Y (x)) → P (�Y ).

Following Anderson, let us define (individual) essence and necessary existence as
follows:

XEssu ≡ (∀Y )(�Y (u) ≡ �(X ⊆ Y ))

NE(x) ≡ (∀Y )(YEssx → �(∃u)Y (u)).

Theorem 14.3.3 AO0 proves (∀x)IxEssx, (∀x)NE(x) and hence P (NE).
(The last formula is Anderson’s axiom (A5).)

proof The first claim is evident from definition, the second from the prova-
bility of �Ix(x) and from the provability of the formula (XEssu ∧ YEssu) →
(X ⊆ Y ∧ Y ⊆ X). The last formula follows from the fact that any property that
all objects have is positive.

Summarizing, AO0 proves all the axioms (A1)–(A5) of Anderson’s theory AO.

Now let us turn to the second set of models, which has among the predicates, in
addition to the preceding, a constant predicate E of (actual) existence. Recall that E(u)
is true in a world w means that the object u actually exists in this world and that
the formula (∃Eu)ϕ(u) stands for (∃u)(E(u) ∧ ϕ(u); similarly, (∀Eu)ϕ(u) stands for
(∀u)(E(u) → ϕ(u)) (see, e.g., Fitting, 2002).

Over this logic, we keep the axioms (A1), (A2), and (A3) and only change the
definition of godlikeness:

G(x) ≡ (E(x) ∧ (∀Y )(P (Y ) ≡ �Y (u))).

The theory will be called AOE0.

Theorem 14.3.4 AOE0 proves (∃x)�G(x), and hence �(∃Ex)G(x) (neces-
sary actual existence of a godlike being) and also uniqueness of the godlike
being.

proof Clearly the theory proves G(x) → �G(x) and �(∃x)G(x), that is,
(∃x)�G(x). FromG(x) → �G(x), we get �G(x) → �G(x) and (∃x)�G(x) →
(∃x)�G(x); thus we get (∃x)�G(x). This gives �(∃x)G(x) and hence
�(∃Ex)G(x) (because G(x) implies E(x)). Uniqueness uses the property Ix
as earlier.
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Define XEssx as earlier and prove that Ix is the individual essence of x for each x, but
change the definition of necessary existence to

NE(x) ≡ (∀Y )(YEssx → �(∃Ey)Y (y)).

Theorem 14.3.5 AOE0 proves NE(x) ≡ �E(x) and also P (NE).

proof We know that each essence of x is necessarily equivalent to Ix ; thus
NE(x) ≡ �(∃Eu)Ix(u) ≡ �E(x). Furthermore, for each x, G(x) → �G(x) →
�E(x), and thus �(G ⊆ �E) and hence P (�E).

In the rest of this section, we give an alternative presentation of the theory AOE0

in the logic with variable domains. (This part may be omitted by a hurrying reader.)
We now will call the theory AOE0, AOE01 and its predicate of godlikeness G1.
Now define X ⊆E Y to be (∀Ex)(X(x) → Y (x)), equivalently (∀x)((E(x) ∧X(x)) →
Y (x)) (see Fitting, 2002). Take AOE0 and change the axiom (A2) to (A2E), saying
(P (X) ∧ �(X ⊆E Y )) → P (Y ). Keep the original definition of godlikeness; that is,
let G2(x) ≡ (∀Y )(P (Y ) ≡ �Y (x)); the axiom (A3) becomes P (G2). Call this theory
AOE02.

Theorem 14.3.6 AOE02 proves (∃x)�(G2(x) ∧ E(x)) and hence �(∃Ex)
G2(x). It also proves (∃!x)G2(x).

proof Claim 1: The theory proves P (X) → �(∃Eu)X(u). Indeed,
(�(∀Eu)¬X(u)) → (�(X ⊆E ¬X)) → (P (X) → P (¬X)) → ¬P (X).
Consequently, the theory proves �(∃Ex)G2(x) and hence (∃x)�(E(x) ∧G2(x)).

Claim 2: The theory proves �(E(x) ∧G2(x)) → �(E(x) ∧G2(x)). Indeed, �
�(G2 ⊆E (G2 ∧ E)), which gives � P (G2 ∧ E) and hence � (G2(u) ∧ E(u)) →
�(G2(u) ∧ E(u)). From this, we get � �(G2(u) ∧ E(u)) → �(G2(u) ∧ E(u)).
The rest is evident. Uniqueness is proved as usual.

Theorem 14.3.7 AOE01 proves AOE02, and G1(x) ≡ G2(x).

proof X ⊆E (X ∧ E), thus � P (X) → P (X ∧ E) and (P (X) ∧ �(X ⊆E

Y )) → P (Y ). We see that AOE01 proves (A2E). Clearly � �(G1(x) → G2(x)),
thus � P (G2). Furthermore, � (∃!x)G1(x) and, also, � (∃!x)G2(x) (because
all axioms of AOE02 are provable). This gives � �(∀x)((G1(x) ∧G2(y)) →
x = y).

Theorem 14.3.8 AOE02 proves AOE01 and G1(x) ≡ G2(x).

proof Over AOE02, � (P (X) ∧ �(X ⊆ Y )) → (P (X) ∧ �(X ⊆E Y )) →
P (Y ), thus �(A2). Moreover, � P (G2 ∧ E), thus P (G1). The rest is as in the
previous proof.

14.4 Oppy’s Criticism

First, let us quickly mention a criticism from Oppy (1996). The idea was to define a
god∗-like being to be a being necessarily satisfying many but not all positive properties
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(and no nonpositive properties) and prove its necessary existence. Without going into
details, let us prove a theorem showing that this is not possible.

Theorem 14.4.1 Let AO0 be the theory over logic with fixed domain, as
earlier. Let AO ′

0 be an Oppy-style extension of AO0 with a new predicate G∗

for god∗-like such that T ′ proves the following:

(B1) G∗(x) → (∀Y )(�Y (x) → P (Y )),
(B2) G∗(x) → �G∗(x),
(B3) (∃x)G∗(x),
(B4) (G∗(x) ∧G∗(y)) → x = y.

Then AO ′
0 proves G∗(x) → G(x). In words, assume that AO ′

0 proves that god∗-
likeness of x implies that each property that x necessarily has is positive; god∗-
likeness implies necessary god∗-likeness; and there is exactly one god∗-like being.
ThenAO ′

0 proves that the unique god∗-like being is the same as the unique godlike
being.

proof First, observe that (B2) and (B1) imply that G∗ is positive. Second,
introduce a constant g∗ for the unique god∗-like being (and g for the unique
godlike being). Owing to uniqueness, for each property Y , Y (g∗) is equivalent to
(∀x)(G∗(x) → Y (x)). Let Y be an arbitrary positive property; we claim �Y (g∗)
(proving this we shall be ready). Indeed,

�¬Y (g∗) → (∀x)(G∗(x) → �¬Y (x)) (see earlier), hence
�¬Y (g∗) → �(∀x)(G∗(x) → �¬Y (x)) (by necessitation, � being equivalent
to ��),

thus �¬Y (g∗) → P (�¬Y ) (because �¬Y necessarily follows from G∗, as we
have just proved). But �¬Y is the same as ¬�Y , and �Y is positive, as proved
earlier. Thus we get a contradiction with the axiom (A1). We have proved �Y (g∗).
Thus g∗ satisfies the formula defining the godlike being, and hence g∗ = g. This
completes the proof.

This is practically the same reasoning as employed by Gettings (1999). Oppy (2000)
also suggests another “Gaunilian parody” of the proof of a godlike being. We slightly
simplify (owing to the fact that we need fewer axioms than Anderson’s original
system), and we systematically speak of theories, not only of their models. Let P ∗

be a new predicate of properties (possibly definable in AO0, or just extending its
language); we postulate the following (still over the logic with fixed domains):

(A1*) P ∗(X) → ¬P ∗(¬X), where (¬X)(u) ≡ ¬X(u),
(A2*) (P ∗(X) ∧ �(X ⊆ Y ) → P ∗(Y )),
(A3*) P ∗(G∗), where G∗(u) ≡ (∀Y )(P ∗(Y ) ≡ �Y (u)).

These are the same axioms as earlier, only with P ∗,G∗ instead of P,G. Clearly the
extended system proves �(∃u)G∗(u) (plus uniqueness), but assuming that P is not
equivalent to P ∗, we clearly get that the unique godlike being is different from the
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unique god∗-like being. Can we assume this? Is it consistent? The answer is yes, and
using the logic of a fixed universe, we can define such systems under the assumption
that there are at least two objects. Call a predicate P ∗ on properties definable in AO0

Gaunilian if AO0 proves (A1*)–(A3*).

Theorem 14.4.2 Gaunilian predicates are in one-one correspondence with
objects: for each Gaunilian predicate P ∗, let g∗ denote the corresponding god∗-
like being, and for each object constant a, letP a(Y ) be defined as �Y (a). ThenP a

is a Gaunilian predicate, and its godalike being is a. From a �= b, it follows that
Ga(a) ∧ ¬Gb(a) (different elements define nonequivalent Gaunilian predicates).

proof For P a , (A1*) and (A2*) are evident. Ga(u) becomes (∀Y )(�Y (a) ≡
�Y (u)), which implies �Ga(a). Thus P a(Ga), and we have (A3*). The rest is
evident. In particular, if a �= b, then �I a(a) ∧ ¬I b(a), hence ¬Gb(a).

Thus, in each model, each object determines a system of Gaunilian properties
whose god∗-like object is this object; systems of Gaunilian properties are in one-one
correspondence with objects of the model.

Now let us see what happens when we turn to the logic with variable domains of
actually existing objects. Having a Gaunilian predicate P ∗ with the modified definition
of G∗ (i.e., G∗(u) ≡ (E(x) ∧ (∀Y )(P ∗(Y ) ≡ �Y (u)))), we prove �(∃Ex)G∗(x), that is
to say, that the unique object g∗ satisfying G∗ satisfies �E(g∗). (The theory may be
called AOE′

0.) Then we get the following.

Theorem 14.4.3 In AOE′
0, Gaunilian predicates are in one-one correspon-

dence with necessarily actually-existing objects; one of them is the (starting)
predicate P of positivity and the corresponding godlike object.

proof By obvious modification of the preceding proof, we can arrive at
this one. In particular, Ga(u) is now equivalent to E(u) ∧ (∀Y )(�Y (u) ≡
�Y (a)), which gives ¬E(a) → ¬Ga(a) and E(a) → [E(a) ∧ (∀Y )(�Y (a) ≡
�Y (a))] → Ga(a).

But we cannot prove existence of objects different from the godlike object, combined
with satisfying necessary actual existence from any assumption of (plain) existence
of many objects. One easily constructs a model of our theory over the logic with
variable domains in which there are as many objects as you want, but the godlike
object is the only object necessarily actually existing; that is to say, the model satisfies
(∀x)(�E(x) → G(x)). Let us give a trivial example:

G M E

g 1 0 1
m 0 1 0

g 1 0 1
m 0 1 1
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with G being godlike; M being me; g being godlike being; m being me; E being actual
existence; and on upper world (heaven) and lower world (earth).

14.5 Miscellanea

We shall discuss possible variants of the underlying logic, further variants of the
axioms on godlikeness, and the question of proving the existence of the devil. First,
let us mention that some authors prefer to present Gödel’s system as a system in
second-order modal logic, whereas here we prefer to use two-sorted, first-order modal
logic. This is unimportant because the second-order logic (and second-order modal
logic) with its general Henkin-style (Henkin-Kripke) semantics is equivalent to the
corresponding two-sorted, first-order logic (and there is no reason to insist on the
standard semantics of second-order logic in analyzing Gödel’s ontological proof).

However, what can be discussed are modifications of the underlying modal logic
and of the comprehension schema. I argue that the proof is made by using the logic
KD45, called the “logic of belief,” which is just S5 without the axiom �ϕ → ϕ (Hájek,
1996). Then �ϕ can be read “ϕ is admitted” and �ϕ read “ϕ is believed.” This reading
seems to be of some interest. In the same paper, a schema of “cautious comprehension”
is suggested, and it is shown that the system (GO)caut (i.e., GO with only cautious
comprehension) is faithfully interpretable in AO0 (with its full comprehension) (see
also Hájek, 2002a).

It is even possible to assume only existence of properties used in the proof and
its discussion (as G, Ix,NE) and closedness of properties under negation. One such
example is the work of Szatkowski (2005), where the author offers twenty variants of
modal logic (second order but with Henkin-Kripke semantics) and shows them being
complete with respect to a natural axiomatization. In the appendix, he shows that in all
of them, Gödel’s ontological proof (of �(∃x)G(x)) works.

Kovač (2003) restricts the comprehension schema to prevent the collapse of modal-
ities but keeps it reasonably strong. In particular, it is assumed that the formula ϕ(x)
in the comprehension schema does not contain any closed subformula. Axioms on
modalities are not uniquely fixed; rather any modal system making the proof work is
admitted.

I argue for a further weakening of Anderson’s (A1) and (A2), motivated by the
observation that (A2) would force us, if we had a predicate “devillike,” to infer that
being godlike or devillike is a positive property (Hájek, 2002b). This may be considered
counterintuitive; if so, then the suggestion is to replace (A1) and (A2) by the axiom
(A12), saying (P (X) ∧ �(X ⊆ Y )) → ¬P (¬Y ). In words, if X is positive, and X

necessarily entails Y , then the negation of Y is not positive. Also, this weakened
system proves �(∃x)G(x) (and has no collapse of modalities). Furthermore, a version
exists with varying domains.

Koons (2005) extensively discusses possible restrictions of the comprehension
schema and modifies the original system, GO, by replacing the axiom (G5) of Gödel
(positivity of NE) by (G6) (he names Gödel’s axioms (A1)–(A5), and thus he names
his axiom (A6)). Koon’s axiom is just P (X) → P (�X). He shows that the modified
system proves �(∃x)G(x).
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Both the papers by Kovač and by Koons pay much attention to philosophical aspects;
moreover, Sobel (2006) further analyzes these aspects of Kovač’ and Koons’ papers.
These aspects are not discussed here.

Possibilities of changing Gödelian proofs to a proof of existence of the devil were
discussed by Cook (2003) and Pfeiffer (n.d.). Trivially, if you replace the predicate P
by N (negative), and G by D (devillike), for instance, in AO, you prove �(∃x)D(x).
But you cannot have both the original AO and its devillike modification and assume
P (X) → ¬N (X) (that no property is both positive and negative); this is obviously an
inconsistent theory. What you can aruge is the variant with (A12) just described earlier,
in addition to its devillike variant, and P (X) → ¬N (X), but this theory is rather weak.
See the papers just cited for more information.

14.6 What Do We Learn about Gödel?

Gödel is reported to have said to Oskar Morgenstern that he did not want to publish his
proof, lest he be thought to actually believe in God, whereas he was only engaged in a
logical investigation. But Wang reports that Gödel’s wife, Adele, revealed that even if
Gödel did not go to church, he was religious and read the Bible in bed every Sunday
morning (Wang, 1987, 1996). In the so-called Grandjean questionnaire, Gödel stated
that his belief was theistic, not pantheistic. From his letters to his mother, it is clear that
he believed in a life after death. Wang formulated Gödel’s argument as follows: “Science
shows that the world is rationally arranged; but without a next life, the potentialities of
each person and the preparations in this life make no sense.” Concerning religion, Gödel
wrote (Hao Wang’s translation; German original in Schimanowich-Galidescu, 2002), “I
believe that there is much more reason in religion, though not in the churches, than one
commonly believes, but we were brought up from early youth to a prejudgment against
it. We are, of course, far from being able to confirm scientifically the theological world
picture, but it might, I believe, already be possible to perceive by pure reason (without
appealing to the faith in any religion) that the theological worldview is thoroughly
compatible with all known data (including the conditions that prevail on our earth).
The famous philosopher and mathematician Leibniz already tried to do this 250 years
ago, and this is also what I tried in my previous letters.”

I think that these and similar pieces of information on Gödel’s opinions and beliefs
show that the ontological proof was, for him, not a pure logical game. The proof helps
us to better understand what sort of person he was. See also Köhler (2002).

14.7 Meaning for Religion?

Gaunilian examples discussed earlier were built from the assumption that there are
some necessarily actually existing objects; they just show that there may be various
systems of properties satisfying the axioms of the “ontological” theory (say, AO0). It
should be explicitly stated that this does not destroy the ontological proof, proving, not
assuming, necessary actual existence of a godlike being in the sense of the definition
of godlikeness. But to make this notion of godlikeness really interesting from the
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religious (and philosophical) point of view, one should have an elaborated theory
of positiveness (and of actual existence). A theologian should analyze the meaning
of axioms (A1)–(A3) and the notion of positive properties, especially in the context of
the Bible. Muck (1992) seems to be one of first attempts. Among other things, would
the axiom (not used in Gödel’s proof) “nobody except (possibly) God has necessary
existence” be a theologically acceptable assumption? I believe that Gödel’s proof would
deserve an analysis similar to the one the famous protestant theologian K. Barth (1958,
622) presented for Anselm’s proof. But it must be kept in mind that religious belief is
not first a matter of accepting some axioms but accepting a kind of life (following an
invitation). The religious notion of God is not the same as the philosophical one; recall
Pascal’s famous “Fire. God of Abraham, of Isaac, of Jacob, not of philosophers and
scientists.” On the other hand, let us quote another famous theologian (Tillich, 1955):
“Is there any possibility of uniting ontology with biblical religion, if ontology could not
accept the central assertion of biblical religion that Jesus is the Christ? . . . To ask the
ontological question is a necessary task. Against Pascal I say: The God of Abraham,
Isaac and Jacob, and the God of the philosophers is the same God. He is a person and
the negation of himself as a person.”

Finally, the famous Catholic theologian Hans Küng (1978, 626), in his long book,
says (shortened):

If God existed, then the substantiating reality itself would not ultimately be unsubstanti-
ated. God would be the primal reason of all reality.

If God existed, then the supporting reality itself would not ultimately be unsupported.
God would be the primal support of all reality.

If God existed, then evolving reality would not ultimately be without aim. God would
be the primal goal of all reality.

If God existed, then there would be no suspicion that reality, suspended between being
and not being, might ultimately be void. God would be the being itself of all reality.

If God existed,
then, against all threats of fate and death, I could justifiably affirm the unity and identity

of my human existence: for God would be the first ground also of my life;
then, against all threats of emptiness and meaninglessness, I could justifiably affirm

the truth and significance of my existence: for God would be the ultimate meaning also
of my life;

If God is, he is the answer to the radical uncertainty of reality.
That God is, can however be accepted neither stringently in virtue of a proof or

demonstration of pure reason nor absolutely in virtue of a moral postulate of practical
reason, still less solely in virtue of the biblical testimony.

That God is, can ultimately be accepted only in a confidence founded on reality itself.

14.8 Conclusion

Gödel’s ontological proof is certainly not of central importance in his scientific achieve-
ment. However, “the proof and criticisms of it have inspired interesting work” (Fitting,
2002). In particular, in modal logic it gives a nontrivial exercise in modal axiomatic
theories and their double semantics (fixed universe, varying universe). Furthermore,
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we have learned more about Gödel as a personality. Finally, concerning religion, “Even
if one concludes that even this form of an ontological argument is no sufficient proof of
God, it is a help for clarifying the notion of a property as used in the context of
properties of God” (Muck, 1992; my translation). For all of the other incredibly
Gödelian accomplishments, Gödel’s ontological argument, while often overlooked,
is one of his most fascinating legacies.
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barkeit, Bandl, Dokumente und historische Analysen, ed. Köhler et al., pp. 185–208. Vienna: öbv
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Gödel and the Human Mind





CHAPTER 15

The Gödel Theorem and
Human Nature

Hilary W. Putnam

In the Encyclopedia of Philosophy (Edwards, 1967, 348–49), the article by Jean van
Heijenoort titled “Gödel’s Theorem” begins with the following terse paragraphs:

By Gödel’s theorem the following statement is generally meant:

In any formal system adequate for number theory there exists an undecidable formula,
that is, a formula that is not provable and whose negation is not provable. (This statement
is occasionally referred to as Gödel’s first theorem.)

A corollary to the theorem is that the consistency of a formal system adequate for number
theory cannot be proved within the system. (Sometimes it is this corollary that is referred
to as Gödel’s theorem; it is also referred to as Gödel’s second theorem.)

These statements are somewhat vaguely formulated generalizations of results published
in 1931 by Kurt Gödel, then in Vienna.

Despite its forbidding technicality, the Gödel (1931) theorem has never stopped gener-
ating enormous interest. Much of that interest has been piqued because with the proof
of the Gödel theorem, the human mind has succeeded in proving that – at least in any
fixed, consistent system with a fixed, finite set of axioms that are at least minimally
adequate for number theory and in a system that has the usual logic as the instrument
with which deductions are to be made from those axioms – there has to be a mathe-
matical statement the human mind cannot prove. (In fact, the theorem is much stronger
than this: even if we allow the system in question to contain an infinite list of axioms
and to have an infinite list of additional rules of inference, the theorem still applies,
provided the two lists can be generated by a computer that is allowed to go on running
forever.)

Moreover, instead of speaking of formal systems adequate for (at least) number the-
ory, one can speak of computers. In such a version, the theorem says that if a computer
is allowed to write sentences of number theory forever, subject to the constraints that
(1) the list contains a certain subset of the axioms of Peano arithmetic, (2) the list is
not inconsistent (i.e., the list does not contain both a sentence and the negation of that
sentence), and (3) any sentence that can be deduced from finitely many sentences in

325
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the list via first-order logic is also in the list, then there is a true sentence of number
theory – in fact, the sentence that says that the output of the machine is consistent is
an example – that is not included in the list of sentences listed by the computer. If we
speak of the sentences listed by the computer as “proved” by the computer, and of a
computer of the kind just mentioned as an “acceptable” computer, we can phrase what
I describe in the preceding succinctly as follows:

There exists a procedure by which, given any acceptable computer, a human mathemati-
cian can write down a sentence of number theory that the icomputer cannot prove or
disprove.

Does this or does this not tell us something about the human mind? That is what I shall
discuss in this chapter.

15.1 Noam Chomsky, Scientific Competence,
and Turing Machines

What provoked the research described in this chapter is a conversation I had with Noam
Chomsky more than twenty years ago. I asked Chomsky whether he thought our total
competence – not just the competence of his postulated “language organ” but also the
competence of the “scientific faculty” that he also postulates – can be represented by
a Turing machine (where the notion of competence is supposed to distinguish between
our true ability and our so-called performance errors). He said yes. I at once thought
that a Gödelian argument could be constructed to show that if that were correct, then
we could never know – not just never prove mathematically, which is obvious after
the Gödel incompleteness theorems, but never know even with the help of empirical
investigation – which Turing machine it is that simulates our scientific competence.
That Gödelian argument was given in an article I published more than twenty years
ago (Putnam, 1985), but I have always been dissatisfied with one of the assumptions
I used in that proof (I called it a “criterion of adequacy” for formalizations of the
notion of justification), namely, the assumption that no empirical evidence can justify
believing p if p is mathematically false. (Although many would regard this assumption
as self-evident, those who would allow quasi-empirical methods in mathematics have
good reason to reject it.) Today, I am ready to demonstrate a proof whose assumptions
seem to me unproblematic. (Or at least they would be unproblematic if the notion of
a formalizable scientific competence made sense. Why I don’t think it makes sense is
the subject of the final part of this chapter.)

15.2 Gödel’s Incompleteness Theorems

Gödel’s second incompleteness theorem shows that if the set of mathematical truths
that is within human competence to prove were the output of an acceptable computer
(as defined earlier), then the consistency of the computer’s output could not be one of
those mathematical truths. For reasons I will go into in the final part of this chapter,
this doesn’t show that the human mind (or the competence of a human mathematician)
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can’t be perfectly simulated by a Turing machine. (This remark does not mean, by
the way, that I want to defend the view that it can be simulated by a Turing machine;
in the final part of this chapter, I argue that it is a mistake to think of us as having a
mathematical competence that is so well defined that that question makes sense is a
mistake.) Postponing that point for the time being, though, the Gödel incompleteness
theorems don’t even prove that we can’t know which Turing machine simulates our
mathematical competence, assuming such a machine exists, for to know that would
require empirical, not mathematical, research.

To see why, note that the proposition that we are consistent is ambiguous. For exam-
ple, this proposition may mean that we know the English sentence “our mathematical
competence is consistent” to be true; this is very different from knowing an arith-
metized version of the claim that it is consistent. This latter requires knowing which
Turing machine we are. Even if, in some sense, we know that we are consistent, to
go from that fact to the statement that “Turing machine Tk has a consistent output,”
where Tk is a machine that simulates our mathematical competence, would require the
empirical premise that Tk is such a machine; however, then “Tk is consistent” would
be a quasi-empirical mathematical statement, that is, a statement of mathematics that
we believe on the basis of an argument some of whose premises were empirical, and
nothing in the Gödel theorems rules out our knowing the truth of such a quasi-empirical
statement, in addition to knowing the mathematical theorems that we are able to prove
in the strict sense. However, I do want to say that reflecting on Gödel’s methods and
their implications can lead us to a deeper philosophical understanding of the issues
raised by Lucas, Penrose, and (on the other side) Chomsky.

15.3 Thinking about Chomsky’s Conjecture in a Rigorous
Gödelian Way

To think about Chomsky’s conjecture in a Gödelian way, let COMPETENCE abbreviate
the empirical hypothesis that a particular Turing machine Tk (the kth machine in the
standard Kleene enumeration) perfectly simulates the competence of our scientific
faculty, in Chomsky’s sense. To make this concrete, we may take this to assert that
for any proposition p, and for any evidence u expressible in the language that Tk uses
for expressing propositions and evidence (and if Chomsky is correct, that language is
innate), Tk sooner or later prints out Justifiedu(p) if and only if it is justified to accept p
when u is our total relevant evidence. (I identify sentences with their Gödel numbers in
what follows. Thus “Tk sooner or later prints out ‘Justifiedu(p)’” means that Tk sooner
or later prints out the word Justified followed by the symbols for the Gödel number of
the sentence u (subscripted), followed by a left parenthesis, followed by the symbols
for the Gödel number of the sentence p, followed by a right parenthesis.)

In addition, COMPETENCE asserts that the hypotheses and evidence we can de-
scribe in an arbitrary natural language can also can be represented in Tk’s language,
that is, that that language has the full expressive power of Chomskian “Mentalese.”
I am going to sketch a proof (given in full in the appendix) that if this is true, then
COMPETENCE cannot be both true and justified. In other words, if some particular
Turing machine Tk correctly enumerates the sentences that our competence would
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take to be justified on arbitrary evidence, then that statement is one that cannot be
empirically justified on any evidence.

The proof proceeds, of course, via reductio ad absurdum. The idea is to assume
that COMPETENCE is true and that some sentence e states evidence that justifies
accepting COMPETENCE. (Note that e and k are constants throughout the following
argument.) Using Gödel’s technique, we can construct a sentence GÖDEL in the
language of Peano arithmetic, and hence in the language of Tk (because that language
is capable of expressing all humanly accessible science), that says that Tk never prints
out Justifiede(GÖDEL). Therefore GÖDEL has the following property:

It is justified to believe GÖDEL on evidence e if and only if it is justified to believe (on
that same evidence) that the machine Tk never says (even if it is allowed to run forever)
that it is justified to believe GÖDEL on evidence e.

We are now ready to describe the idea of the proof of the following theorem (the actual
proof is given in the appendix).

An anti-Chomskian incompleteness theorem is that

COMPETENCE can’t be both true and justified.

It is well known that Gödel’s proof mimics the liar’s paradox. The proof of the anti-
Chomskian incompleteness theorem given in the appendix similarly mimics the fol-
lowing paradox, which we might call the justification paradox:

By the Gödel technique for constructing self-referring sentences (or the technique of
Quine, 1966, 9), it is easy to construct a sentence that says of itself that belief in it is
not justified. For example (using Quine’s technique), (B) “When appended to its own
quotation yields a sentence such that believing it is not justified” when appended to its
own quotation yields a sentence such that believing it is not justified.

Now reflect on the following: is believing (B) justified? Well, if belief in (B) is justified,
then I am justified in believing that belief in (B) is not justified because I see that that
is what (B) says. However, if belief in (B) is justified, then believing that belief in (B)
is justified is justified, so believing that belief in (B) is justified is both justified and not
justified, which is impossible. In this way, I now have justified believing that belief in
(B) is not justified, but what (B) says is precisely that belief in (B) is not justified, so I
have justified believing (B). Therefore believing (B) is justified, which, we just proved,
leads to a contradiction!

Just as Gödel’s proof turned the liar’s paradox from a contradiction into a proof that
the arithmetized version of the sentence “I am not provable” is not provable (unless
the system in question is inconsistent), so the proof we give in the appendix turns the
justification paradox into a proof that the arithmetized version of the sentence “believing
me is not justified” is not printed out by the machine Tk. However, if COMPETENCE
were true and also verified (by evidence e) to be true, we could know this proof and
so justify the sentence “believing me is not justified” – which would lead to a real
contradiction.
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15.4 Lucas and Penrose

As mentioned earlier, the Oxford philosopher John Lucas (1961) claimed that the Gödel
theorem shows that noncomputational processes (processes that cannot in principle be
carried out by a digital computer, even if its memory space is unlimited) go on in
our minds. He concluded that our minds cannot be identical with our brains or with
any material system (because assuming standard physics, the latter cannot carry out
noncomputational processes) and hence that our minds are immaterial. More recently,
a thinker whose scientific work I very much admire, Roger Penrose, used a similar
but more elaborate argument to claim that we need to make fundamental changes in
the way we view both the mind and the physical world. He, too, argued (Penrose,
1994) that the Gödel theorem shows that noncomputational processes must go on in
the human mind, but instead of positing an immaterial soul in which they can go on,
he concluded that these noncomputational processes must be physical processes in the
brain and that our physics needs to change to account for them.

Although neither Lucas nor Penrose is a Chomskian, an important similarity exists
between their notion of our mathematical competence and Chomsky’s notion of com-
petence. Chomsky (1957) has insisted that our competence in his sense includes the
ability to generate arbitrarily long grammatical sentences, together with the proofs of
their grammaticality (which had the form of so-called trees in Syntactic Structures). It
is well known (see, e.g., Hopcroft and Ullman, 1979) that this ability (in the case of
unrestricted languages in the Chomsky-Schützenberger hierarchy) is equivalent to the
ability to simulate the computations of an arbitrary Turing machine. Thus our com-
petence is supposed to include the ability to verify all truths of the form “machine Ti

eventually prints out sentence p.” However, Lucas and Penrose must also be making
this assumption because they assume that our competence is strictly greater than the
ability to prove all the theorems of Peano arithmetic, and all truths of the form “machine
Ti eventually prints out sentence p” are (on suitable arithmetization) theorems of Peano
arithmetic.

I reviewed Penrose’s (1994) argument, and like many others who studied it, I found
many gaps (Putnam 1994). Relax, though: I am not going to ask you to think about
the details of Penrose’s argument, and I am not going to provide a listing of the places
at which I believe it goes wrong. It may be that Penrose himself recognized that his
argument has gaps (even though, at the beginning, he promised a “clear and simple
proof”) because he offered a number of arguments that are not mathematical at all but
rather philosophical. (In any case, see Penrose’s Chapter 16.)

The heart of his reasoning goes as follows: let us suppose that the brain of an ideally
competent mathematician can be represented by the program of an acceptable computer
(as defined earlier), a program that generates all and only correct and convincing proofs.
The statement that the program is consistent is not one that the program generates, by
Gödel’s second incompleteness theorem. Therefore, if an ideal human mathematician
could prove that statement, we would have a contradiction. This part of Penrose’s
reasoning is incontrovertibly correct.

It is possible, however, that the program is too long to be consciously comprehended
at all – as long as the London telephone book or even orders of magnitude longer. In
that case, Penrose asks, how could evolution have produced such a program? It would
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have to have evolved in parts, and there would be no evolutionary advantage to the
parts.

As I shall explain shortly, I find some things wrong with the notion of “encapsulating
all humanly accessible methods of proof” and hence with the question of whether a
computer could do such a thing. However, even if we accept that notion, it is important
to recall that just this objection has been made to almost every evolutionary explanation
(how could wings have evolved in parts? how could eyes have evolved in parts?). In
case after case, an answer has been found (see Carroll, 2006), but the answer typically
involves generations of researchers, and we are hardly at a stage at which study of the
aspects of the brain that subserve our mathematical abilities are well enough understood
even to begin evolutionary study. Still, if you will permit me to offer what are obviously
speculations, following are two ways in which our mathematical abilities have parts
that could have utility apart from being combined in their present package:

1. As Wittgenstein suggested, the basic laws of arithmetic and geometry could, for example,
have first arisen as empirical generalizations that were later hardened into conceptual
truths(for an account of this, see Steiner, 2000). Most of this process would belong to the
history of our cultural rather than our biological evolution, although it would presuppose
the evolution of language and of the skills that underlie, for example, counting.

2. Reflection on their own practices (in any area) is historically an important way in which
humans arrive at new practices, but the biological capacity for such reflection could cer-
tainly have evolved independently of mathematics itself. Metamathematical reflection,
which is what fascinates Penrose, in fact came very late on the mathematical scene. For
several millennia, mathematics was exhausted by the two subjects of arithmetic (or num-
ber theory) and (Euclidean) geometry, and the explosion in what we today consider to be
mathematics, including set theory and its less well known (by nonmathematicians) rival,
category theory, was not driven by either Gödelian reflection or new a priori insights;
instead, new axioms, such as the axiom of choice and the axiom of replacement, were
added on strongly pragmatic grounds (again, a matter of cultural rather than biological
evolution). Only with Gödel’s incompleteness theorems does reflection on mathematical
practice become a way of proving number theoretic propositions that could not have
been proved previously. (The most elementary form of metamathematical reflection is
semantic reflection, illustrated by the argument that all the axioms of Peano arithmetic
are true, and the rules of inference preserve truth; therefore all the theorems of Peano
arithmetic are true, but 1 = 0 is not true and therefore is not a theorem of Peano arith-
metic, i.e., Peano arithmetic is consistent. Tarski’s work shows how this argument can
be formalized in a weak second-order extension of Peano arithmetic, and the Gödel
theorem shows that the result cannot be proved in Peano arithmetic itself.) Nothing
about this so far, though, suggests any problem for standard evolutionary theory.

What about iterated reflection? Let L0 be Peano arithmetic. Because we can see, by
the kind of metamathematical reflection just described, that the soundness of L0 (which
we accept) entails the truth of Con(L0), we can accept the soundness of L1, where L1 is
the result of adding Con(L0) as an additional axiom to L0. Continuing this procedure,
we generate a hierarchy of stronger and stronger intuitively acceptable systems, L0,
L1, L2, L3, . . . , and so on, ad infinitum.
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Turing (1939) proposed to extend this series into the transfinite, using notations for
computable ordinals. At limit ordinals λ, the associated Lλ is the union of all the earlier
Lλ”ccpms. (The notations for the ordinals are indispensable in defining the sentence
Con(L) precisely.) What if our idealized mathematical competencies were represented
by the totality of such Lλ with λ < ϕ, for some computable ordinal ϕ? (ϕ would have
to be a computable ordinal such that no recursive well ordering of that order type could
be seen by a human mathematician to be a well ordering or proved to be a well ordering
from below.) Such a totality might well be longer than the London telephone book, but
it would be constructed from L0, a system that is intuitively simple, using a method of
extension that is also intuitively simple. (As I just noted, the ability to reflect on our
own practices, which is what enabled us to arrive at that method of extension and also
enables us to see that various computable orderings are well orderings – normally, by
seeing that all their initial segments are well orderings – could well have developed
independently of L0.)

However, what if the ordinal logics procedure Turing described didn’t break off at
a computable ordinal? Feferman (1962) shows that with stronger reflection principles,
one can obtain all true number-theoretical propositions on a suitable path through the
computable ordinal notations. In that case, Penrose would be right: our mathematical
competence would exceed the powers of any Turing machine. My point is that Penrose
cannot exclude the possibility that our powers do break off at some computable ordinal.

Ah, but Penrose will certainly ask, what about us determines the limits of metamath-
ematical reflection? What determines where we break off? Here I have to say that I
don’t think there is a precise limit to what human mathematicians can do via reflection.
The very notion of an ideal mathematician is too problematic for us to speak of a
determinate limit here – a point to which I shall return shortly. Different individuals
have different limits to what they can do via metamathematical reflection (and the
possibilities of metamathematical reflection have barely been discovered to date). I
would say that what the limits are in the case of any given individual is obviously an
empirical question, and not necessarily a very interesting or important one.

One thing I will grant Penrose, however, is that I do find it mysterious that we have
the mathematical abilities we do. The simple fact that we can intuitively understand
the notion that the natural number sequence has no end amazes me more than that we
can Gödelize any given consistent formal system. I also find it mysterious that we have
the natural-scientific abilities, the linguistic abilities, the aesthetic abilities, and so on,
that we do. If a change in our physical, biological, and neurological theories makes it
possible to explain them, then, of course, I would welcome it – we all would – but I
do not believe that Penrose has given compelling reasons to think that our brains must
have noncomputable powers and that we must seek a scientific theory to explain them.

To see what we can learn about the human mind, or at least how we should (or rather
shouldn’t) think about it, from the Gödel theorem, I want now to raise two objections
against the very question that Penrose asks – the question of whether the set of theorems
that an ideal mathematician can prove could be generated by a computer.

My first objection – and this is a point that I want to emphasize – is that the notion of
simulating the performance of a mathematician is highly unclear. Whether it is possible
to build a machine that behaves as a typical human mathematician is a meaningful,
empirical question, but a typical human mathematician makes mistakes. The output
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of an actual mathematician contains inconsistencies (especially if we are to imagine
that she goes on proving theorems forever, as the application of the Gödel theorem
requires), so the question of proving that the whole of this output is consistent does
not even arise. To this, Penrose’s reply seems to be that the mathematician may make
errors, but she corrects them on reflection.

As I pointed out before, even if (via this or some other philosophical argument) we
know that the English sentence “our mathematical competence is consistent” is true,
this is very different from knowing an arithmetized version of the claim that this is the
case. This latter would require knowing which Turing machine simulates our mathe-
matical competence. (That we cannot know a similar fact about our natural-scientific
competence by empirical investigation was what our anti-Chomskian incompleteness
theorem showed.)

My second objection is that to confuse these questions is to miss the normativity
of the notion of ideal mathematics. The notion of ideal mathematics is the notion of
a human mathematician who always behaves (in his mathematical work) as a mathe-
matician should (or ideally should). To the extent that we can succeed in describing
human beings as physical systems, physics can say (at best) how they will behave,
competence errors and all. However, physics is not in the business of telling us how
human beings should behave.

15.5 A Caution against a Widespread but Naive Argument
for Algorithms in the Brain

It is not my aim merely to criticize those who make the mistake of thinking that the
Gödel theorem proves that the human mind or brain can carry out noncomputational
processes. That Lucas and Penrose have failed to prove their claims about what the
Gödel theorem “shows about the human mind” is widely recognized. At the same time,
however, a view that may seem to be at the opposite end of the philosophical spectrum
from the Lucas-Penrose view seems to me to be vulnerable to the two objections I
just made. I refer to the widespread use of the argument, in philosophy as well as in
cognitive science, that whenever human beings are able to recognize that a property
applies to a sentence in a “potentially infinite” (i.e., a fantastically large) set of cases,
an “algorithm” must be in their brains that accounts for this, and the task of cognitive
science must be to describe that algorithm. I think that the case of mathematics shows
that that cannot be a universal truth, and my criticism of Penrose may enable us to see
why we shouldn’t draw any mystical conclusions about either the mind or the brain
from the fact that it isn’t a universal truth.

First, though, a terribly important qualification is in order. I have no doubt that
human beings have the ability to employ recursions (another word for algorithms)
both consciously and unconsciously and that cognitive science should explain (and in
many cases does successfully explain) recognition abilities by appealing to the notion
of an algorithm. The work of Chomsky and his school, in particular, shows how our
ability to recognize the property of grammaticality might be explainable in this way.
Why, then, do I say that the case of mathematics shows that it cannot be a universal
truth that whenever human beings are able to recognize that a property applies to a
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sentence in a potentially infinite (i.e., a fantastically large) set of cases, there must be
an algorithm in their brains that accounts for it?

Well, just as it is true that we can recognize grammaticality in a fantastically large
set of cases, it is true that we can recognize its being proved in a fantastically large
set of cases. As we saw (via the anti-Chomskian incompleteness theorem), Gödel’s
techniques can be used to show – via a very different argument from Penrose’s – that
if an algorithm accounts for this ability, we are not going to be able to verify this.
However, I think it would be wrong just to stop with this conclusion. It would be wrong
because talk about a potentially infinite set of cases makes sense only when we can
verify the presence of an algorithm. Why do I say this?

Think for a minute about the mathematician about whom Penrose imagines he is
talking. If the mathematician could really recognize a potential infinity of theorems,
then he or she would be able to recognize theorems of arbitrary finite length, for
example, theorems too long to be written down before all the stars cool or are sucked
into black holes. However, any adequate physics of the human brain will certainly
entail that the brain will disintegrate long before it gets through trying to prove any
such theorem. In short, in fact, the set of theorems any physically possible human
mathematician can prove is finite.

Moreover, it is not really a set because sets, by definition, are two valued: an item
is either in or out. However, the predicate prove is vague. We can, of course, make it
precise by specifying a fixed list of axioms and rules to be used, but then the Gödel
theorem does show that in a perfectly natural sense, we can prove a statement that
is not derivable from those axioms by those rules. This may drive us to say that “by
‘prove’ we mean prove by any means we can ‘see’ to be correct.” However, this uses
the essentially vague notion “see to be correct.” In short, there isn’t a potentially infinite
set of theorems a mathematician can prove concerning which we can ask, is it recursive
or nonrecursive? What we do have is a vague, finite collection of theorems that a
real (flesh-and-blood) mathematician can prove. Vague, finite collections are neither
recursive nor nonrecursive; those concepts apply only to well-defined sets.

It may be objected, though, that Chomsky taught us that we can – and should –
idealize language users by imagining that (like ideal computers) they can go on gen-
erating grammatical sentences forever, sentences of arbitrary length. Yes, he did, but
the idealization he showed us how to make is only precise because it corresponds to
a well-defined algorithm. If we wish the question “what can an ideal mathematician
prove?” to be a precise one, we must specify just how the mathematician’s all-too-finite
brain is to be idealized, just as Chomsky did. If we do this by specifying an algorithm,
then, of course, the result will be computational.

If this is right, then we should not allow ourselves to say that the set of statements
that a mathematician can prove is a potentially infinite set. We should say only that
there are fantastically many statements a mathematician – an actual mathematician –
can prove and let it go at that. It does not follow from this that there is an algorithm such
that everything an ideally competent mathematician would (should?) count as proving
a mathematical statement is an instance of that algorithm, anymore than it follows from
the fact that there are fantastically many jokes that a person with a good sense of humor
can see to be funny that there is an algorithm such that everything a person with an
ideal sense of humor would see to be funny is an instance of that algorithm.
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Appendix

As earlier, we assume that Tk is a machine that perfectly represents our scientific
competence in the sense that for any proposition p, and for any evidence u (expressible
in the language that Tk uses for expressing propositions and expressing evidence), Tk

sooner or later prints out Justifiedu(p) if and only if it is justified to accept p when u
is our total relevant evidence. Let e be the Gödel number of a sentence that describes
evidence that justifies accepting COMPETENCE. Note that k and e are constants
in the following argument. As before, COMPETENCE also asserts that whatever
hypotheses and evidence we can describe in an arbitrary natural language can also can
be represented in Tk’s language, that is, that that language has the full of expressive
power of the Mentalese that Chomskians mention. Using Gödel’s technique, we can
construct a sentence GÖDEL in the language of Peano arithmetic, and hence in the
language of Tk (because that language is capable of expressing all humanly accessible
science), that says that Tk never prints out Justifiede(GÖDEL). Therefore GÖDEL has
the following property:

It is justified to believe GÖDEL on evidence e if and only if it is justified to believe (on
that same evidence) that the machine Tk never says (even if it is allowed to run forever)
that it is justified to believe GÖDEL on evidence e.

We assume two axioms concerning the notion of justification:

Axiom 1: It is never both the case that it is justified to believe p on evidence e
and justified to believe ¬p on evidence e.

Remark We know various statements of science that are, at a certain stage, justified
on all the available relevant evidence but are subsequently rejected on the basis of
new relevant evidence, possibly within the framework of new theories. Thus a Turing
machine that simulates our scientific competence as it proceeds chronologically may
list inconsistent statements because our evidence is not the same at different times.
However, Tk is not supposed to mimic the diachronic behavior of our brains but
is intended simply to represent a recursive enumeration of the sentences that it is
within the competence of the “scientific faculty” – which Chomsky claims to be
computational – to accept as justified on any evidence expressible in Mentalese. Thus
axiom 1 represents the requirement that the scientific faculty, when acting in accordance
with its competence, not regard both p and ¬p as justified on the same evidence. Even
this has been questioned by a friend, who writes:

I suppose that if an agent had purported justifications of a sentence and its negation, he
would realize that at least one of these justifications is bogus and should be withdrawn.
But the subject may not realize that he has justified a given sentence and its negation. To
give our agents the ability to tell whether their (justified) beliefs are consistent is to give
them a nonrecursive ability.

My response is that it is part of the notion of justification that justified beliefs are
not flatly contradictory (i.e., of the form p&¬p). I believe that this is something on
which all epistemologists would agree. If there is some other notion of justification
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with which both p and ¬p can sometimes be justified on the very same evidence, I am
sure that is not the notion of justification either Chomsky or Penrose or Lucas or I have
in mind. (The ability to tell whether two beliefs are flatly contradictory is a primitive
recursive ability.)

Because COMPETENCE is the statement that Tk perfectly represents our compe-
tence, we also have the following:

Axiom 2: If Justifiede (the machine Tk eventually prints out Justifiede (p))
and Justifiede (COMPETENCE), then Justifiede(p). (“Justifiede(p)” is, of course,
simply the sentence in the language of Tk – which was assumed to be a formalized
version of Chomsky’s Mentalese – that expresses the statement that “it is justified
to believe the sentence p on evidence e.” Note that by well-known results of Gödel
and Turing, “the machine Tk eventually prints out Justifiede (p))” is expressible
by a sentence of Peano arithmetic.)

The anti-Chomskian incompleteness theorem is as follows:

“COMPETENCE” can’t be both true and justified.

To guide the reader, following is an outline of the proof I shall give (in both parts of the
proof, we will assume that COMPETENCE is both true and justified by the evidence e).

Outline of Part I We will prove (by assuming the opposite and deriving a con-
tradiction) that it is not the case that the machine Tk eventually prints out Justifiede
(GÖDEL) (i.e., the machine Tk, which we assumed to enumerate correctly the sen-
tences that our epistemic competence would tell us are justified on arbitrary evidence,
does not generate the Gödelian sentence on the evidence that justifies our acceptance
of COMPETENCE).

Outline of Part II The conclusion of part I was as follows:

(a) It is not the case that the machine Tk eventually prints out Justifiede (GÖDEL). Because
we can know this proof if we have empirically justified COMPETENCE, and a proof
is a justification, it follows immediately that

(b) Justifiede (the machine Tk never prints out Justifiede(GÖDEL)).

Then the rest of part II will derive a contradiction from (b), thus showing that the
assumption that COMPETENCE is both true and justified must be false. The proof in
full follows.

Part I of the Proof Assume: The machine Tk prints out Justifiede(GÖDEL)

(i) Justifiede(GÖDEL). Reason: For the reductio proof of our incompleteness theo-
rem, we are assuming COMPETENCE. By assumption, the machine Tk prints out
Justifiede(GÖDEL). So by COMPETENCE, Justifiede(GÖDEL).

(ii) It is justifiede to believe that “the machine Tk eventually prints out Justifiede(GÖDEL).”
Reason: We just showed that Justifiede(GÖDEL). Then, by COMPETENCE, Justifiede
(the machine Tk eventually prints out Justifiede (GÖDEL)); that is, we are justifiede in
believing that the machine Tk eventually prints out Justifiede(GÖDEL).

(iii) We are justified in believing “the machine Tk does not eventually print out
Justifiede(GÖDEL).” Reason: Because, as pointed out earlier, on Chomsky’s ideal-
ized notion of competence (and also on the notion of our mathematical competence
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assumed by Lucas and Penrose), it is within our competence to recognize all truths
of the form “machine Ti eventually prints out sentence p,” and, by assumption, “the
machine Tk prints out Justifiede(GÖDEL),” this is a truth that our scientific faculty is
able to prove. Because a proof is a justification, we have the following: Justifiede (the
machine Tk eventually prints out Justifiede(GÖDEL)). However . . .

It is justified to believe GÖDEL on evidence e if and only if it is justified to believe (on
that same evidence) that the machine Tk never says (even if it is allowed to run forever)
that it is justified to believe GÖDEL on evidence e, and because this equivalence is known
to us, and by (i), we are justifiede in believing the left side, we are justifiede in believing
the right side; that is, we are justifiede in believing “the machine Tk does not eventually
print out Justifiede(GÖDEL)).”

However, (ii) and (iii) violate our consistency axiom (axiom 1). Thus (still assuming
that COMPETENCE is both true and justified on evidence e) we conclude that the
assumption of our subproof is false: it is not the case that the machine Tk prints out
Justifiede(GÖDEL). However, this is reasoning that we can easily go through if we have
discovered COMPETENCE to be true, so without any additional empirical evidence, we
have justifiede that “the machine Tk does not eventually print out Justifiede(GÖDEL)).”

To complete the proof of our incompleteness theorem, we therefore now need a
proof that this, too, leads to a contradiction. It follows:

Part II of the Proof We have, in part I, proved the following:

(i) Tk does not eventually print Justifiede(GÖDEL). From this, by COMPETENCE, we
have

(ii) Justifiede(GÖDEL). However, we have from before (B) Justifiede(GÖDEL) if and only
if (Justifiede (Tk does not eventually print Justifiede(GÖDEL)). Therefore

(iii) Justifiede (Tk does not eventually print Justifiede(GÖDEL)). However, from (i) and
the obvious rule of inference that proving X allows writing Justifiede (X), we have

(iv) Justifiede (Tk does not eventually print Justifiede(GÖDEL)).

Now (iii) and (iv) are a contradiction. This completes the proof of our anti-
Chomskian incompleteness theorem.
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Lucas, J. R. (1961). Minds, machines, and Gödel. Philosophy, 36, 112–27. [Repr. A. R. Anderson
(1964). Minds and Machines. Englewood Cliffs, NJ: Prentice Hall.]

Penrose, R. (1994). Shadows of the Mind: An Approach to the Missing Science of Consciousness.
Oxford: Oxford University Press.

Putnam, H. (1985). Reflexive reflections. Erkenntnis, 22(1), 143–54. [Collected in H. Putnam (1994).
Words and Life. Cambridge, MA: Harvard University Press, pp. 416–27.]

. (1994). Review of Shadows of the Mind. New York Times Book Review, November 20. [Repr.
H. Putnam (1995). Review of Shadows of the Mind. Bulletin of the American Mathematical Society,
32 (3), 370–73.]

Quine, W. v. O. (1966). The Ways of Paradox and Other Essays. New York: Random House.
Steiner, M. (2000). Mathematical intuition and physical intuition in Wittgenstein’s later philosophy.

Synthese, 125(3), 333–40.
Tarksi, A. (1936). The Concept of Truth in Formalized Languages. In Polish; the standard English

translation is collected in Tarski’s Logic, Semantics, Metamathematics, 2nd. edition (edited by
J. Corcoran) (Indianapolis: Hackett, 1983) (1st edition edited and translated by J. H. Woodger,
Oxford 1956).

Turing, A. (1939). Systems of logic defined by ordinals. Proceedings of the London Mathematical
Society, Series II, 45, 161–228.





CHAPTER 16

Gödel, the Mind, and the Laws
of Physics

Roger Penrose

Gödel appears to have believed strongly that the human mind cannot be explained in
terms of any kind of computational physics, but he remained cautious in formulating
this belief as a rigorous consequence of his incompleteness theorems. In this chapter,
I discuss a modification of standard Gödel-type logical arguments, these appearing to
strengthen Gödel’s conclusions, and attempt to provide a persuasive case in support of
his standpoint that the actions of the mind must transcend computation.

It appears that Gödel did not consider the possibility that the laws of physics might
themselves involve noncomputational procedures; accordingly, he found himself driven
to the conclusion that mentality must lie beyond the actions of the physical brain. My
own arguments, on the other hand, are from the scientific standpoint that the mind is
a product of the brain’s physical activity. Accordingly, there must be something in the
physical actions of the world that itself transcends computation.

We do not appear to find such noncomputational action in the known laws of
physics, however, so we must seek it in currently undiscovered laws going beyond
presently accepted physical theory. I argue that the only plausibly relevant gap in current
understanding lies in a fundamental incompleteness in quantum theory, which reveals
itself only with significant mass displacements between quantum states (“Schrödinger’s
cats”). I contend that the need for new physics enters when gravitational effects just
begin to play a role. In a scheme developed jointly with Stuart Hameroff, this has direct
relevance within neuronal microtubules, and I describe this (still speculative) scheme
in the following.

16.1 Three Worlds and the Mysteries That Connect Them

When discussing matters of the mind and of the possibility that the phenomenon of
consciousness may be essentially dependent on the particular form of those (mathe-
matical) laws that seem to govern our physical universe – especially in relation to the
issue of computation – I have found it useful to describe things with reference to a
diagram such as that depicted in Figure 16.1. In this figure, the three spheres represent,
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3

Mental
world

Platonic
world

Physical world2

1

Figure 16.1. Three “worlds” – the Platonic mathematical, the physical, and the mental – and
the three profound mysteries in the connections between them.

respectively (clockwise, starting from the far right), the physical world of material
objects (including the very space-time that these objects inhabit), the world of mental
experience, and the (Platonic) world of mathematical absolutes.

Some may object to the assignment of a reality to all three of these worlds. Mental
experiences, for example, might be regarded as merely things that are, in some way,
emergent from the activities of physically real brains and therefore have no separate
reality from that of the physical brains on which they seem to depend. Others might
regard mentality as primary and would take what we call the “physical world” to be
some kind of abstraction from conscious experience. Mathematical entities, moreover,
are often regarded as being mere constructs of mentality, and accordingly, mathematical
entities would have no separate reality beyond that of the minds from which they are
conjured forth. Yet I believe that it is useful to separate out these three aspects of
reality if we are to discuss issues of mentality and of physical laws in depth. This
is made particularly evident, I maintain, because if one takes the view that the very
existence of mathematical concepts is dependent on a preexisting mentality (with that
being, according to a viewpoint just expressed, dependent on a preexisting physical
reality), one is presented with the paradoxical issue of how it could be that the physical
universe had already been acting in accordance with very precise and sophisticated
mathematical principles long before there were any sentient beings able to conjure up
the needed mathematics!

Nor is this issue resolved if we regard the precise mathematical structure of the
laws governing the physical universe as something merely apparent, something that
our minds simply construct so that the workings of the physical world can become
comprehensible to us. The more profoundly we probe these physical laws, the more we
discover that sophisticated mathematics is just there in the workings of the world, at
the deepest levels that we can yet discern, with a precision that becomes only gradually
revealed to us and is found to be far, far greater than the precision that was available to
the original discoverers of these laws.1

1 For further discussion of these points, see Penrose (2004, sect. 1.3, 1.4, 3.3, 19.8, 34.7).
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The separating out of these three aspects of reality, as depicted in Figure 16.1, does
not resolve these issues, but it gives us a better framework within which to discuss
them. It also brings into focus the three mysteries that are involved in the relationships
between these three different aspects of reality, as shown in the figure. It is, indeed, a
mysterious fact that the workings of the physical universe accord, with such extraor-
dinary precision, with highly sophisticated, elegant mathematical laws (mystery 1).2 It
is also deeply mysterious how conscious mentality seems to arise when physical struc-
tures are exquisitely organized in an appropriate way, as with wakeful, healthy human
brains (mystery 2). Moreover, there is even something profoundly mysterious about
how conscious mentality, when focused with due concentration and understanding, can
have access to deep mathematical truths (mystery 3). The contention that this access
cannot be something of a purely computational nature, as I am indeed claiming, and
as Gödel himself believed, is one of the main themes of this chapter. Being unable to
be fully imitated by a computer, this mental access is, accordingly, something whose
precise nature is distinctly mysterious. In this account, I shall attempt to shed a little
light on this issue.3

A further mystery is inherent in the structure revealed in Figure 16.1, represented in
the cyclic nature of the figure. Whereas the actions of the entire physical world are taken
to be fully dependent on mathematical laws, as depicted, it is only a small fraction of the
Platonic mathematical world that has direct relevance to this physical behavior. (Most
mathematical journals, for example, are filled with articles whose concerns are very
remote from any physical application.) Also, those parts of the physical world whose
actions are relevant to the production of conscious mentality form a very tiny proportion
of the whole. (The mass of rocks in the earth, for example, enormously exceeds its
collective brain mass.) Also, it is clear that only a very minor part of mental activity
is concerned with the ascertaining of mathematical truth. (Even mathematicians – at
least, most of them – spend the greater part of their time thinking of other matters!)
Yet, if we follow the diagram of Figure 16.1 in a clockwise direction, we find that the
relevant small portion of each world encompasses, in principle, the entirety of the next
world and hence of all the worlds. This, in itself, is not quite a contradiction, but there
is something of a fourth mystery exhibited by this cyclic feature, which I have tried to
emphasize by invoking an element of the “impossible figure” in my illustration.4

I should point out, in this context, that this seemingly paradoxical feature is made
particularly stark because of three prejudices of mine that are implicitly involved in how
I have represented the connections between the three worlds in Figure 16.1. I have taken
it that these mysterious connections between each world and the next (read clockwise)
are such that in each case, the entire following world is encompassed by but a small part
of the one preceding it. Yet it is perfectly conceivable that in actuality, this is not the
case. Indeed, some physical actions may not be describable in terms of mathematical
laws; mentality may exist that is not grounded in physical structures; mathematical
truths may exist that can be precisely formulated but that are not accessible in principle

2 See, e.g., Wigner (1960); see also Penrose (2004, sect. 34.8, n. 34.34).
3 For more detailed accounts of my point of view, see Penrose (1989, 1994, 1997a, 1997b, 2004, sect. 34.7,

n. 34.34).
4 See, e.g., Ernst (1986) and Penrose and Penrose (1958).
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by conscious insight and understanding. All these issues have relevance and should be
considered seriously. However, for the purposes of this particular chapter, this would
just complicate the discussion unnecessarily. To allow a broadening of the picture
by including them would not appear to help us resolve the issues with which I am
concerned here.

Some points concerning our access to mathematical truth (mystery 3) are worthy of
further mention. It appears to be a common view that Gödel’s incompleteness theorems
have established the existence of well-defined mathematical statements that cannot be
resolved (“proved”) by use of purely mathematical reasoning. As should become
clear in the following discussion, this is very far from my own (or indeed, Gödel’s)
interpretation of the incompleteness theorems, which can be regarded as yielding only
humanly accessible truths, and I shall discuss this point further later. However, it would
seem to be an unresolved issue whether absolutely unsolvable mathematical problems
exist, as opposed to those that cannot be resolved within some particular formal system
of proof procedures.5 Moreover, I should make it clear that the arrow of mystery 3 in
Figure 16.1 is meant to refer to access in principle. It is clear, for example, that some
multiplication sums between integers are so stupendously huge that no human (or even
computer) can ever check the correctness of (or even state) such a product in detail. Yet
nothing of principle is involved in such a calculation that is beyond human reason, so
the arrow of mystery 3 is intended to include such things, where the only obstruction
to human access is sheer complication rather than any matter of principle.

Of course, the notion of the multiplication of a pair of integers is something mathe-
matically very elementary, no matter how large those integers may be, and the Platonic
mathematical world contains truths that are far more sophisticated than the correctness
of such a calculation. Indeed, mathematical logicians might take differing views of
many statements in set theory as to whether the so-called truth of certain mathematical
assertions is, or is not, an objective matter. One of the best known of such assertions
is Cantor’s continuum hypothesis, which asserts that no infinity (i.e., infinite cardinal
number) is greater than the number of integers yet, at the same time, is smaller than the
number of real numbers. Some, such as Gödel himself, would regard such a mathemat-
ical assertion as being necessarily either objectively true or objectively false (where
as yet the truth or falsehood of the continuum hypothesis would be unknown); others
might regard such a mathematical assertion as being a matter of subjective opinion that
might depend on which of a number of different alternative mathematical standpoints
one chooses to adopt. The issue has to do with how strong a Platonist a mathemati-
cian might be considered to be. Gödel himself was a very strong Platonist, taking the
view that all such assertions as the continuum hypothesis should be objectively either
true or false, and the unsettled nature of this particular assertion is merely a feature
of the present state of mathematical knowledge.6 Other mathematical logicians might
be considered to be much weaker Platonists, taking the view that the truth of a good
many apparently well-defined mathematical statements might be a matter of subjective

5 See, e.g., Mostowski (1957), and, for a more directly relevant modern discussion, Feferman (2006).
6 But see Chapter 20 in this volume. It should be made clear that the Gödel-Cohen demonstration of the inde-

pendence of the continuum hypothesis of the standard axioms of set theory (see Cohen, 1966) is in accordance
with this “unsettled nature.”
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opinion. In my view, such differences of opinion are of small concern to the issues that
will be relevant to us here. The inhabitants of the Platonic mathematical world are to
be simply those mathematical entities or assertions whose meanings and validity are
indeed objective and unambiguous. Moreover, as we shall see, the arguments that I
give will, on the whole, require such objectivity only for statements of a particularly
straightforward and unambiguous type, referred to as �1-sentences.

16.2 The Gödel-Turing Argument

The Hilbert program of the late nineteenth and early twentieth centuries attempted to
provide a basis for the notion of rigorous mathematical proof that could be formulated
in terms of what are referred to as formal systems. For the purpose of the discussion
here, it is not at all necessary to know what a formal system actually is, in any kind
of detail. All that we need to know is that any such system F provides us with a
computational procedure F for checking whether the methods of mathematical proof
that F provides have been correctly applied in any particular case.

Here I depend on the Turing(-Post) notion of a computation, or algorithm. What is
an algorithm? Rather than providing a precise mathematical definition of an algorithm
in terms of, say, a Turing machine,7 it will be easier for our present purposes (now
that computers constitute such a commonplace part of our lives) simply to define an
algorithm to be the action of a digital computer, where that computer is idealized so
that it never makes mistakes, has an unlimited storage capacity, and can run indefinitely
without ever wearing out. I shall be concerned here (up until Section 16.4) only with
the standard discrete notion of computation, where without loss of generality, we may
consider that the actions of our algorithms are on natural numbers (the ordinary finite
counting numbers 0, 1, 2, 3, 4, 5, 6, . . .).

Note the fact that algorithms need not simply be composed of arithmetical operations
but also can involve logical operations. Let us take an example that will be of value to
us later. If we are given the pair of natural numbers (a, b), then we can construct the
natural number n = ((a + b)2 + 3a + b)/2 simply by means of standard arithmetical
operations. However, in this case, we can also reconstruct the pair (a, b) from the
natural number n by an algorithmic procedure that also uses logical operations. To do
this, we first obtain the largest triangular number t that is no larger than n. Recall that the
triangular numbers are 0, 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, . . . , t =
1 + 2 + 3 + · · · + r = r(r + 1)/2. Then we find that t = r(r + 1)/2 with r = a + b,
from which it follows that a = n− t and b = r − a. Thus, once we have found t

(i.e., r), we need only standard arithmetical operations for finding a and b; but how
do we obtain t from n? One procedure would be to subtract 1 from n, then 2 from the
result, then 3 from the result, then 4, and so on, until we find the first number r + 1
for which this subtraction yields a negative number. This gives us r , as required, but
we see that logical operations are required as well as the standard arithmetical ones.

7 For the mathematical definition of a Turing machine, see, e.g., Davis (1978) or Penrose (1989, chap. 2).
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Note that this gives a way of encoding the pairs of natural numbers (a, b) as single
natural numbers, and vice versa, in an algorithmic way.

Another example of an algorithmic operation is to find the smallest natural number
that is not the sum of three square natural numbers. Here we could proceed as follows:
start with 0, finding 0 = 02 + 02 + 02. Then try 1, finding 1 = 12 + 02 + 02; then 2,
finding 2 = 12 + 12 + 02; then 3 = 12 + 12 + 12; then 4 = 22 + 02 + 02. In each case,
we can simply try all possibilities of sums of three square numbers that are each no
larger than the number to which we are trying to sum. We find that the operation stops
at 7, telling us that 7 is the smallest number that is not the sum of three squares. This
procedure is entirely algorithmic, but we take note that again, logical operations were
employed.

An important feature of algorithmic operations, however, is that they sometimes do
not terminate. For a simple example, we can replace 3 by 4 in the preceding example
and attempt to find the smallest natural number that is not the sum of four squares.
Noting that 7 = 22 + 12 + 12 + 12, we are forced to try larger numbers, but we find that
the procedure in fact continues indefinitely forever, without stopping. This is the case
because of a famous eighteenth-century theorem, from Lagrange, that every natural
number is the sum of four squares.

Lagrange’s theorem is a good example of a �1-sentence, which is the simple type of
mathematical assertion that was alluded to at the end of the introduction. Generally, a
�1-sentence is an assertion of the type “such-and-such an algorithmic procedure does
not terminate.” Another well-known �1-sentence is the assertion involved in Fermat’s
last theorem, which states that there are no positive integers x, y, z, m, with m > 2
such that xm + ym = zm, known to be true since the work of Andrew Wiles. Here the
algorithmic procedure could be phrased as running over all quadruplets (x, y, z,m) of
natural numbers (which can be done in a way that will be described shortly), where x, y,
z, and m− 2 are all positive, and then checking that in each case, the Fermat equation
is not satisfied, whereas the procedure would have had to come to a halt as soon as a
case was encountered in which the equation was satisfied. Another famous example of
a �1-sentence is Goldbach’s conjecture, which asserts that every even number greater
than 2 is the sum of two prime numbers. This �1-sentence is somewhat similar in form
to the previous example, but with the additional complication that the numbers in the
sum have to be checked to be prime in each case, which is an algorithmic (but lengthy)
process.

Recall that for the Fermat example, we need to run through the quadruplets
(x, y, z, m). This can be done simply by employing a slight elaboration of what we did
earlier, according to which we could run through all the pairs (a, b) of natural numbers
simply by running through all the natural numbers n = ((a + b)2 + 3a + b)/2. One
way of running through all the quadruples of natural numbers would be first to apply
this procedure to encode each of the pairs (x, y) and (z,m) as single numbers and then
to apply it again to the resulting two numbers to encode the entire quadruple as a single
natural number.

An important issue now arises: how are we to tell whether a given �1-sentence P
is true or false? A false �1-sentence can, in principle, always be ascertained to be
false, simply by running the said algorithm until it terminates. (The “in principle” is
important here because the actual running of the algorithm as far as is needed could well
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be prohibitive. This holds even for very elementary algorithms that obviously terminate
such as “start with 10999999 and then subtract 1 repeatedly, halting if the number becomes
negative.”) But it can sometimes be very difficult to ascertain the truth of a�1-sentence
that happens to be true, as we have seen in the case of Lagrange’s theorem, or extremely
difficult, as in the case of Fermat’s last theorem, or apparently even more difficult than
that, in the case of Goldbach’s conjecture – if, indeed, it turns out to be true – because
it remains unresolved at present. Is there, in fact, any true �1-sentence whose truth is
in principle inaccessible to human reason and insight?

To see what Gödel’s incompleteness theorems have to say on the matter, let us
appeal to Turing’s more direct and very general version of Gödel’s essential result. Let
us suppose that we have settled on some formal system F with which we are happy so
that we are prepared to have complete trust in the truth of any �1-sentence that can be
actually proved by following the rules of F. The checking of such a proof is to be an
algorithmic process, so we have some particular algorithm F that decides this.

More specifically, for the purposes of the Gödel-Turing argument, we shall need to
consider families of �1-sentences, the members of which are computably labeled by a
natural number r . Thus each value of r (computably) provides us with a computation,
and we are concerned with whether this computation terminates. Examples of such
families would be assertions claiming the nontermination of computations of the form
“find a natural number that is not the sum of r square numbers,” or “find a natural
number greater than 2 that is not the sum of up to r prime numbers,” or some such.
The first of these would be true, and proved, for r ≥ 4 and false otherwise; the second
would only be proved to be true for some very large r but conjectured to be true for
r = 2 and false for r = 0 or 1. Accordingly, each �1-sentence of our family would be
defined as an assertion that some computation does not terminate, the rth �1-sentence
of the family being defined in terms of some r-dependent computation that we could
write as C(r), where the computation is considered to act algorithmically on the natural
number r . (This, indeed, is the kind of action that a Turing machine effects.) All such
(r-dependent) computations can be (computably) listed:

C0,C1,C2,C3,C4, . . . ,

that is, as computer programs listed in an appropriate numerical ordering. We require
that this listing be computable in the sense that Cq(r) is a computable function of the
pair (q, r).

Now, suppose that we have some formal system F that has a certain capacity to
prove certain �1-sentences, where we fully trust that F is sound in this respect. Thus
F provides us with an algorithm A that, when presented with the pair of natural
numbers (q, r), will sometimes terminate, this termination signaling that F has indeed
ascertained that the computation Cq(r) does not terminate (i.e., F has provided us with
a proof of this, as confirmed by its proof-checking algorithm F). What we demand of
the algorithm A, as the �1-sentence truth ascertainer, is that whenever it comes to a
halt, this signals that such a proof has been achieved, according to the rules of F, of the
nonstopping of the algorithm Cq(r); so

if A(q, r) stops, then Cq(r) does not stop.
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We do not require that A(q, r) can settle the truth of every �1-sentence, but we are
demanding that A does not make mistakes so that the formal system F is at least sound
with regard to its assessments of �1-sentences.

Putting q equal to r in the preceding displayed statement, we obtain the following:

if A(r, r) stops, then Cr (r) does not stop.

However, A(r, r) is an algorithm that depends only on the single natural number r , so
it must be one of the Cq acting on r , say, CK , so

A(r, r) = CK (r),

and taking the particular value r = K in the previous displayed equation, we obtain
the following:

if A(K,K) stops, then CK (K) does not stop.

However (from the preceding equation with r = K),

A(K ,K) = CK (K),

whence

if CK (K) stops, then CK (K) does not stop,

so CK (K) does not in fact stop, and being the same as A(K,K), we have that A(K,K)
does not stop either.

The upshot of this is that we have found (in fact, in a manifestly computable way,
starting from the formal system F) a computation CK (K) that does not terminate,
giving us a valid �1-sentence, yet our particular �1-sentence truth ascertainer A is
not itself powerful enough to be able to establish this �1-sentence because A does not
terminate in this case. I shall refer to this �1-sentence as G(F), the Gödel assertion for
the system F. What we have established is that the �1-sentence G(F) is true provided
that F is sound with regard to �1-sentences, that is, that no false �1-sentences can be
proved by the methods allowed by F. Yet, under this assumption, G(F) cannot itself
be proved using these methods. We can paraphrase this remarkable conclusion more
colloquially as follows: for any computationally checkable system of proof procedures
(for �1-sentences) F, we can construct a �1-sentence G(F) that, on the assumption
that F is sound, is both true and unprovable by the methods of F.

16.3 The Noncomputability of Mathematical Conviction

We may wonder how it can be possible to deduce the truth of a particular �1-sentence,
namely, G(F), from the same belief system – that is, trust in the soundness of F – as
is needed for trusting the direct proof procedures that F actually provides, while at the
same time we find that G(F) is not itself accessible using these very proof procedures.8

8 In the context of Gödel’s second incompleteness theorem, belief in the soundness of F entails a belief in its
consistency (otherwise we would have to accept absurd assertions such as “2 = 3”), so we must also believe in
the Gödel sentence that asserts this consistency.
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Indeed, this is what, to me, is the most remarkable thing about Gödel incompleteness, for
it strikes at the very heart of the formalist philosophy of mathematics. That philosophy
would contend that formal proof is the bedrock of mathematics. In any particular
mathematical area, one would settle on some formal system F and take the view that
the establishment of mathematical truth within that area is, by definition, reduction to
“proof” within F. However, we have seen that if the area of mathematics in question
is the very basic one of “establishment of �1-sentences,” then this point of view will
not do – whatever system F we choose, our trust in its soundness, with regard to
�1-sentences, also gives us a trust that extends beyond the scope of F as a provider of
proof procedures, namely, to G(F) and also to many other �1-sentences such as those
obtained by iterating the Gödel procedure.

All this is beyond contention, as far as I can make out. However, in my opinion,
we can go a good deal further than this and gain some glimmer of a deep relevance
to the nature of human consciousness. Why do I believe that Gödel’s theorems have
something deep to say about human consciousness? Basically, I believe so because
the incompleteness theorems show, in my view, that human understanding – specifi-
cally in the area of mathematical understanding – is something that cannot be reduced
to computation, the quality of understanding being one manifestation of human con-
sciousness.

I should remark that whereas it is fully accepted that Gödel’s incompleteness theo-
rems have had a profound importance for the foundations of mathematics, and also that
they have significant and deep implications for philosophy in general, the issue of the
bearing of Gödel’s results on the nature of the human mind appears to remain highly
controversial. It seems clear that Gödel himself strongly held the view that human un-
derstanding – specifically human insight (or “intuition,” as Gödel would more usually
refer to it) – must indeed lie outside the scope of purely computational actions, but he
confessed to not having a rigorous demonstration of this contention, for he asserted:

On the other hand, on the basis of what has been proved so far, it remains possible that
there may exist (and even be empirically discoverable) a theorem-proving machine which
in fact is equivalent to mathematical intuition, but cannot be proved to be so, nor even
proved to yield only correct theorems of finitary number theory.9

Others10 have been somewhat less cautious in citing Gödel’s incompleteness theorems
as providing a demonstration that human understanding cannot be describable as the
action of a Turing machine. Gödel’s caution stems from the consideration that an F
(say, with regard to �1-sentences) may exist that is, unbeknownst to us, equivalent
to what in principle is accessible by understanding and insight, but where F actually
having this status (or even providing only true �1-sentences) would in principle be
inaccessible to us. If such an F were to exist, and effectively were to be part of the
unknown underlying mechanisms of our “computer-brains,” then even if we happened

9 See Gödel (1951) (his Gibbs lecture) as printed in Gödel (1995). This quotation can be found in Wang (1993,
118) and should be compared with what Gödel (1995, 309) says. Also see the introductory note by George
Boolos to Gödel (1951, 290–304) as well as Feferman (2006), in which Gödel’s cautious antimechanistic
argument is critically examined.

10 See Nagel and Newman (1958), Lucas (1961), and Penrose (1989).
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Figure 16.2. For our remote ancestors, a specific ability to do sophisticated mathematics can
hardly have been a selective advantage, but a general ability to understand could well have
been.

to come across it (“empirically”) and were to guess that it is sound (with regard to
�1-sentences), we could never be sure of this. If we were, we could infer with certainty
the validity of G(F), which is not within the scope of F and therefore not supposed to
be a knowably true �1-sentence.

However, is the existence of such an F really plausible? Even just on the general
grounds of evolution, this seems exceedingly unlikely. We would be asked to believe
that, purely by natural selection, an “F” could arise, basic to the underlying processes
of our supposedly computer-like brains, of such extraordinary sophistication that it
could in principle generate all the �1-sentences that are knowably true to us. However,
this role of F could not be knowable to us, and its G(F) would lie just beyond what
is in principle accessible. I can see no believable way that natural selection could give
rise to such a thing, especially when one takes into account how irrelevant to our
ancestors’ survival a facility with such sophisticated mathematical ideas could be (see
Figure 16.2).

Moreover, it seems to me that one can go a good deal further, on purely logical
grounds, toward eliminating Gödel’s loophole of a “theorem-proving machine,” which
might even be empirically discoverable. I am concerned only with �1-sentences here,
so let us suppose that we have somehow come across the rules of such a machine –
that is, some formal system F – whose �1-sentence theorems happen to be precisely
the �1-sentences that are in principle demonstrably true by human reason and insight
but we do not know for sure that F has this status, and certainly not at the level of any
kind of mathematical proof. The way that the following argument proceeds, roughly
speaking, is to consider, hypothetically, not just the �1-sentences that the system F can
itself directly prove but also the broader class of�1-sentences that could be established
on the assumption that F actually has this hypothesized status (of being able to establish
precisely all �1-sentences accessible in principle to human insight and reason). If we
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are to take it that we are entirely computational beings, and hence that this broader
class of �1-sentences11 can also be generated by some formal system, say, F*, then
we could consider the �1-sentence G(F*) and would have to regard it as true on the
basis of the aforesaid assumption. This line of reasoning follows one that I gave in my
article “Beyond the Doubting of a Shadow” (Penrose, 1996a), which was written in
response to a number of invited criticisms of my earlier book Shadows of the Mind
(Penrose, 1994). In that article, I proposed a simplified version of the more detailed
argument presented in the book (based on a form of words used by David Chalmers
(1995) in his commentary), and I repeat this formulation here.

In what follows, the term sound refers only to the soundness of a formal system F
with regard to its assertions (i.e., theorems) that have the form of �1-sentences. Also,
the assertion “I am F” is just shorthand for “the�1-sentences that are theorems of F are
precisely those that are in principle demonstrably true by human reason and insight.”
Furthermore, I am making the (reasonable) assumption that the �1-sentences that are
in fact “demonstrably true by human reason and insight” are in fact true.

On being presented with the putative system F, we now reason as follows:

(∗) “Though I do not know that I necessarily am F, I conclude that if I were, then the
system F would have to be sound and, more to the point, F* would have to be sound,
where F* is F supplemented by the further assertion ‘I am F.’ I perceive that it follows
from the assumption ‘I am F’ that the Gödel statement G(F*) would have to be true and,
furthermore, that it would not be a consequence of F*. However, I have just perceived
that ‘if I happened to be F, then G(F*) would have to be true,’ and perceptions of this
nature would be precisely what F* is supposed to achieve. As I am therefore capable of
perceiving something beyond the powers of F*, I deduce that I cannot be F after all.”

The foregoing reasoning deserves some considerable clarification. In particular, we
need to clarify what is meant by the system “F supplemented by the further assertion
‘I am F.’” I am taking it that we are happy with the unassailable nature of the Gödel-
Turing argument, as outlined in Section 16.1. We are concerned here with unassailable
belief, and such belief in “I am F” would therefore imply a corresponding belief in the
particular �1-sentence G(F) as well as in all the �1-sentence theorems of F. Hence
G(F) would have to be a consequence of the system F*. Moreover, this belief in G(F)
would have the implication that the formal system F′, which is F with G(F) adjoined to
it, is also sound with regard to �1-sentences so that a belief in the �1-sentence G(F′)
is also a consequence of F*. This process can be repeated, and we conclude that the
�1-sentence G(F′′) is also a consequence of F*, being a consequence of F′′, where F′′

is the formal system F′ with G(F′) adjoined. This process can be continued, in various
kinds of ways, to give additional consequences of F*.

However, in the previously displayed argument, we would need to be able to go
even further and say that the “�1-sentence G(F*)” is also a deduction from “I am F”;
however, this argument has a weakness because, as stated, F* is not a formal system
in the ordinary sense, for “I am F” is not an ordinary kind of logical assertion that

11 I am grateful to Hilary Putnam for pointing out, in conversation, that because of their conditional dependence
on F’s status, the actual assertions of this family do not individually have the form of �1-sentences. Critiques
concerning various other forms of this argument can be found in Shapiro (2003) and Lindström (2006).
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we would know how to express within the system F. However, if we are to assume
that our ordinary processes of understanding can be reduced to computation (as is
being assumed already in the proposed existence of F, in any case), then the family
of �1-sentences that can be established from the assumption “I am F,” together with
F itself, is indeed the family of �1-sentences that are computably generated and that
are therefore theorems of some formal system F*. Trouble arises, however, because
we may not know what the system F* would actually be (even though F is taken as
given). Although we can contemplate any suggested “F*” and then construct its Gödel
�1-sentence G(F*) without being sure that this particular F* actually does provide
proofs of all the �1-sentences that can be established from the assumption “I am F,”
together with F itself, we cannot be sure that F* is actually sound (with respect to
�1-sentences), so we would not be unassailably convinced of the truth of G(F*).

For reasons of this kind, the arguments that I gave in Shadows of the Mind (1994,
chap. 3) were not stated in exactly the way that I have stated them here. Instead,
the form of argument that I gave was a kind of reductio ad absurdum based on the
hypothesis that a family of mathematics-understanding robots could actually be con-
structed using standard computer-based artificial intelligence (AI) procedures. When
presented with the detailed computational procedures M that led to their construc-
tion (and I shall discuss such computational procedures a little more fully in the next
section), they could, on the hypothesis that the procedures M were indeed those under-
lying their construction, compute what F would actually have to have been. Moreover,
they could compute what the system F# would have to have been, where F# (similar
to F*, but not constructed in quite the same way) would be able to prove precisely the
�1-sentences that can be established from the assumption “I have been constructed
according to M,” together with F itself. Thus, if they were to accept that M actually
has the role claimed for it, then they would have to accept the �1-soundness of both F
and F# and hence the truth of G(F#) and its unprovability from F#. But this would be a
contradiction for them because F# was supposed to be able to prove any �1-sentence
that they could establish on the basis that they (the robots) had indeed been constructed
according to M.

Admittedly, this weakened form of argument does not have quite the force or sim-
plicity that the version extracted earlier and labeled (∗) was intended to have provided,
but this particular (weakened) argument is essentially that which I actually gave in
Shadows of the Mind (where the computational AI procedures that are supposed to
be able to result in intelligent mathematics-performing robots are humanly knowable),
and I believe that it is, in essence, correct. It lends considerable doubt to the hypothesis
that standard computational AI procedures can ever provide a robot that could acquire
genuine mathematical understanding. Some of the issues involved in formulating such
computational procedures will be raised in the next section.

16.4 Mistakes, Vague Arguments, and Idealizations

People often object to the kind of argument given in the previous section, sometimes
claiming that actual human reasoning does not follow the idealized precision that is
assumed in the Gödel-type arguments for the noncomputability of human understanding
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and insight. Indeed, it is certainly true that mathematicians, like everyone else, are
capable of vague reasoning and sometimes of making serious mistakes. I want to make
the point that though this is true, it does not reduce the significance of the arguments
given in Section 16.2. The most usual kind of mistake that a mathematician might
make is of no real concern to us here, being something that is correctable12 by that
mathematician on further contemplation or when the error is pointed out by someone
else. Our essential concern is for the ideal mathematical notions and arguments for
which mathematicians strive. In their preliminary thinking, it is quite usual to fall
significantly short of such ideals, and their published works are likely to be much
closer to such ideals than is their preliminary thinking.

Such an ideal of correctness is an essential feature of the very discipline of mathe-
matics because it gives objectivity to the fact that erroneous arguments are in fact to
be rejected. This is not to say that correct arguments need to be formulated in terms
of some particular formal system F because, as we have seen in Section 16.1, Gödel’s
theorems tell us that this can never encapsulate all correct mathematical arguments.

However, a different aspect of the issue of mathematical correctness relates to the fact
that not all mathematicians would hold to the same viewpoint with regard to arguments
involving infinite sets or classes, particularly considering the question of how strong
a Platonist a particular mathematician might be considered to be (e.g., is it always
acceptable to use the axiom of choice in a mathematical argument?). These issues tend
not to come up seriously until large, infinite sets or classes are being considered. I have
tried to reduce the impact of such differences of opinion by restricting attention to
mathematical statements of a particularly simple kind, namely, �1-sentences, whose
truth or falsehood would normally be considered to be a completely objective matter,
despite continuing arguments concerning the validity of proof methods used to establish
such sentences.

Another thing about which people tend to worry concerning the validity of the use
of Gödel-type arguments in relation to human thinking is that they would envisage such
arguments being applied to the entire (horrendously complicated) detailed activity of
an individual human brain, and they might quite reasonably question the validity of
such activity being regarded as being equivalent (with regard to �1-sentences) to some
formal system F. I have tried to avoid such criticism by referring not to the action of
the brain of some individual person but to the more abstract notion of mathematical
reasoning that is only approximated by the actions of individual mathematicians’ brains.

In Shadows of the Mind (Penrose, 1994, chap. 3), I needed to go rather further
than this, as I have indicated in the previous section, by considering the potential
capabilities of a community of mathematics-performing, computationally controlled
robots, the issue being how far toward achieving something equivalent to the capabilities
of mathematical understanding and insight could such a computational system be able
to go. The robots could be deliberately programmed in a top-down way, or perhaps

12 I consider the elimination of such “correctable mistakes” at some length in Shadows of the Mind (Penrose,
1994, esp. sect. 2.10, query 13, and sect. 3.17–3.21) as well as in “Beyond the Doubting of a Shadow” (Penrose,
1996a, sect. 6). Curiously, as I have discussed, Turing’s own proposed loophole to the Gödel argument seemed
to depend on the fact that humans are prone to errors (see Penrose, 1994, sect. 3.1). The issue of the idealization
of human mathematical thinking is also discussed in Shapiro (2003).
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bottom-up learning processes could be invoked, involving natural selection processes
with computationally simulated environments. Eventually, an algorithmic-underlying,
consistent mathematical belief system that is entirely computational in nature might
be attained by the robots. In this case, we are dealing with a system that is (by
definition) clearly computational. My claim, ultimately based on arguments like those
given earlier, is that such a system would always fall significantly short of what can be
achieved through human understanding.

A related matter is the issue of actual computers or brains being finite so that the
idealized notion of a Turing machine may be regarded as being only approximately
realized by a physical computer. The finiteness issues are also addressed in Shadows
of the Mind (Penrose, 1994, sect. 2.6, query 8, and sect. 3.20). I argue there that these
issues are only marginally relevant to whether we are computational entities.

16.5 Computability in the Laws of Physics

If it is accepted, in accordance with the discussion given previously, that human un-
derstanding, reasoning, and insight lie beyond computational activity, then we may
reasonably ask how such noncomputable action might arise through some physical
action of the brain. It appears that Gödel, on the other hand, did not consider the possi-
bility that the laws of physics might themselves involve noncomputational procedures;
accordingly, he found himself driven to the conclusion that mentality must lie outside
the actions of the physical brain. My own position is to take a more physicalist stance
than this and to argue (in accordance with mystery 2 of Figure 16.1) that the activities
of the human mind are grounded in the physical behavior of the particular physical
structures that are human brains. In accordance with this, there must be something in
the physical actions of the world that themselves transcend computation.

We do not appear to find such noncomputational action in the known laws of physics,
however, although this is a matter that is not beyond contention. It should be borne in
mind that the currently understood physical laws are phrased in terms of continuous
parameters, whereas the standard notion of computability refers to computation with
the (discrete) natural numbers. Thus the computability issues that I have so far been
considering are not immediately applicable to the laws of physics as we presently un-
derstand them.13 However, my own position, at least as things stand at the moment, has
been to ignore this issue because it seems unlikely to me that any plausible kind of non-
computability exists in these considerations that could be usefully taken advantage of
by a physical system. It is certainly my belief that many issues of mathematical interest
are still to be explored concerning this question, but I find it hard to see how the issues
I have raised concerning the noncomputability of mathematical understanding can be

13 See, e.g., Weihrauch (2000) and Pour-El and Richards (1998). Pour-El and Richards (1982, 2003) have pointed
out that some of the equations of physics have the property that computably presented initial data (necessarily
not smoothly varying, i.e., not C2) can sometimes lead to a noncomputable evolution. However, the relevance
of this type of result for the situation under consideration here is questionable (see Penrose, 1989). For some
alternative approaches to the issue of computability for real numbers, see Blum et al. (1989) and Bridges
(1999). See also Stannett (2003).
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resolved through subtleties of the distinctions between the discrete and continuous
notions of noncomputability. The measurements of continuous parameters in physical
situations are never absolutely precise, so these subtle distinctions would appear not to
be playing any operational role.

Instead, I believe that we must turn to the question of whether any fundamental gaps
remain in our understanding of physical laws that might be relevant to conscious brain
action. It is my view that we must seek noncomputability in currently undiscovered
laws going beyond currently accepted physical theory. Why do I make this claim? The
reason is that the standard equations of physics – taking into account the reservations
expressed in the previous paragraph – seem to be essentially computable. In fact, I
shall use the phrase “essentially computable” to denote “computable,” but where the
subtleties of the previous paragraph are indeed being ignored.

What are these equations? In the first place, when it comes to describing macro-
scopic objects, we have those from classical physics: Newtonian mechanics (Newton’s
laws), the field theories of electromagnetism (the Maxwell-Lorentz equations), and
gravitation (Einstein’s field equations). Then, for describing submicroscopic objects,
we need Schrödinger’s equation for the evolution of the quantum state-vector. The
solutions of all these equations are essentially computable. However, when a quantum
“measurement” or “observation” is made, we allow the state to jump to an eigenstate
of an operator that is defined in terms of the particular measurement that is being per-
formed and with a probability that is determined in terms of scalar products between
the state-vectors before and after the jump takes place. This jumping is taken to be
entirely probabilistic and certainly is not “noncomputable” in the essential sense to
which I just referred. It is not described by Scrödinger’s equation. That equation would
provide an evolution that is as deterministic and computable as is Newtonian dynamics.
One should, of course, bear in mind that determinism does not imply computability,
it being a fairly simple matter to provide toy-model universes that are deterministic
yet whose evolution is not possible to simulate computationally (see Penrose, 1989,
220–21, 287n6; 1997a, 118–19); that is the kind of “essential noncomputability” being
referred to here. The state jumping that occurs in the standard description of the mea-
surement process is quite unlike this, being taken to be a probabilistic action, providing
us with something of the nature of a Turing machine with a randomizer.

This last procedure is indeed very odd, being of quite a different form from the
continuous evolution equations that had been used up to this stage in physics. It is odd
also because it is a probabilistic procedure rather than something deterministic, as had
been the case for all evolution procedures previously known in the behavior of physical
systems, and it is particularly odd because it is in gross contradiction with the smooth
evolution of the quantum state described by the very precise Schrödinger equation.

This contradiction is often described as the measurement paradox. This paradox is
seen as a gross conflict between the two basic procedures of quantum mechanics. A
measurement of a small quantum system, after all, can be understood as the evolution
of a larger system consisting of the small quantum system under consideration together
with a larger object, namely, the measuring apparatus (and relevant elements of the en-
vironment as well). Why does this larger system not simply evolve smoothly according
to the Schrödinger equation, rather than jumping in this strange way, as described by
the measurement process of quantum mechanics? This discrepancy is not a small thing,



354 gödel, the mind, and the laws of physics

as was pointed out dramatically by Schrödinger himself. He considered a hypothetical
experiment (which would not be difficult to carry out in practice, if one wanted to do
such a thing) in which, according to the Schrödinger evolution, the state of a cat would
evolve into one in which the cat would be simultaneously alive and dead. This would be
an example of a quantum superposition – a well-established occurrence in the case of
individual particles or small quantum systems – in which two alternative realities can
occur simultaneously such as an individual quantum particle occupying two different
locations at the same time. Although small quantum systems indeed appear to indulge
in such strange superpositions, one never sees such things occurring for a large system
such as a cat, despite that the Schrödinger equation makes no distinction between small
things and large things.

The quantum measurement paradox is, in my view, completely un-resolved by
standard quantum theory, despite that we have numerous ways to address the issue,
with different physicists frequently taking completely different standpoints with regard
to it. For example, in one quite common point of view, that the detailed state of the
environment is “unobservable” is regarded as providing a resolution of the paradox.
In another, one considers that the dead and live cats coexist in parallel universes,
and an observer who then looks at the cat then has parallel existences in these two
universes, one seeing the dead cat and the other a live one, because somehow the
observer’s conscious experience splits into two so that each records the experience of
just one of the two alternatives. This is not the place for me to go into the reasons
for my dissatisfaction with both (and indeed all) these “conventional” resolutions of
the measurement paradox.14 Suffice it to say that in my opinion (in agreement with at
least three of the founders of the theory – Einstein, Schrödinger, and Dirac), standard
quantum theory is a provisional theory that needs to be completed or fundamentally
changed in some way in the future.

If we need a basic change in physical theory to accommodate the noncomputability
that appears to be a feature of the behavior of human brains when, at least, they are
involved with sophisticated mathematical reasoning, then it seems reasonable that this
change should be at a place where it seems that present-day theory is, in any case,
in need of change for direct physical reasons. Such a place would appear to reside in
whatever is needed to resolve the measurement paradox. We have many unknowns in
our present-day physical picture, but of these, only the measurement paradox seems to
present itself at such a scale that it could have relevance to the workings of a human
brain.

With this connection, I should emphasize that the change from Gödel-type reasoning
that I am demanding is not really expected to have anything specifically to do with
mathematical reasoning. The particular quality that is being brought to bear here on a
mathematical problem is understanding, and understanding need not specifically have
anything to do with mathematics. Moreover, genuine understanding is, at least in the
normal use of this term, conscious. It makes little sense to say of an entity that it
“understands” something if it is not actually aware of this thing, and awareness implies

14 See, in particular, Penrose (2004, chap. 29).
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consciousness. The notion of consciousness encompasses many other things than just
understanding, of course, such as the perception of a color, such as “blue,” or the
feeling of an emotion, such as “sadness,” or the feeling of pain, or the appreciation of
the beauty of a melody, and many other things besides. In addition, it seems unlikely
that most of these qualities of conscious experience are restricted to human beings, as
a good many of these qualities would seem to be quite widespread through the animal
kingdom, at least at the higher end of the animal scale with regard to mental capabilities.
There is nothing particular about mathematical understanding and insight, in my view,
beyond the fact that in mathematics, we find a use of understanding that is sufficiently
defined that it is possible to make precise arguments about the understanding process
itself. It is the more general quality of consciousness that itself seems to have the
distinctiveness that some very special feature of physical behavior may be at work.

What special feature of physical behavior could this be, where something distinctly
different seems to be going on from the normal physical actions that appear to govern
unconscious actions and seem to be adequately described by the conventional physics
that we now understand? I cannot see anything that has much chance beyond the part of
our physical picture that at present demands the strange jumping of the quantum state
that is needed to describe quantum measurements. If we indeed need a new theory for
that, then it seems to me that this new theory would have to be a major revolution, in
which new concepts are introduced that are broad enough to be able to accommodate
conscious experience. According to the foregoing discussion, these would have to
contain elements that are noncomputable.

Needless to say, I am not in possession of such a theory. Nevertheless, I believe that
it is possible to make some well-founded guesses as to some of the ingredients that such
a theory would involve. One of these guesses is that it is in the appropriate combination
of principles from the two great revolutions of twentieth-century physics – quantum
theory and Einstein’s general theory of relativity – that we must seek appropriate new
ideas. A preliminary investigation of these issues15 suggests that a resolution of the
measurement paradox would imply that a quantum superposition of an object in two
different locations should decay to one or the other on a time scale that can be calculated
from the distribution of mass in the object. In a proposed experiment partly aimed at
eventually testing such a scheme,16 a tiny mirror, of dimension roughly one-tenth of
the thickness of a human hair, would be put into a quantum superposition of two
very slightly different locations, resulting in a time scale of something around one
second.

16.6 Possible Role in Brain Function

Although some speculation is undoubtedly involved in these physical considerations,
inevitably, a good deal more guesswork is involved when it comes to the particular role

15 See Penrose (2004, chap. 30); for earlier work along these lines, see Károlyházy (1966), Diósi (1984, 1989),
and Penrose (1996b).

16 See Marshall et al. (2003).
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that this speculative physics might play in the operation of the brain when consciousness
is somehow evoked. The conventional picture of brain action, including whatever it
is that gives rise to consciousness, is that everything is to be explained in terms of
the firing pattern of neurons.17 What the current proposal requires, on the other hand,
is the allowance of a significant role for the proposed new physics that is supposed
to replace the present-day quantum-measurement procedure. This new physics would
become relevant at the boundary between quantum and classical behavior. Ordinary
nerve transmission seems to offer little hope for this because the electric fields involved
would continually disturb the environment of the individual nerves, allowing very little
prospect of maintaining the isolation needed for quantum coherence (quantum effects)
on a large scale (like superconductivity), which would be required over considerable
areas of the brain.

On the other hand, the cytoskeletons of neurons might be able to preserve such
quantum coherence. In particular, Hameroff has argued18 that microtubules (an impor-
tant constituent of the cytoskeleton), cylindrical tubes some twenty-five nanometers in
outer diameter and fourteen nanometers in inner diameter, might have a fundamental
role in the production of consciousness. In a model suggested jointly by Hameroff and
me,19 we proposed that different conformational changes in coherent collections of
microtubules, acting in concert over quite large areas of the brain, might exist in quan-
tum superposition, and conscious experiences could be associated with the reduction of
such large-scale superpositions to one or other of their separate components. According
to this scheme, the conformational states of the microtubules would indirectly affect
synapse strengths and thereby influence the circuitry of the neuron connections, and
thence the external behavior of the individual.

Various aspects of cognition that have proved puzzling for the conventional, solely
neuronal picture, notably the binding problem, whereby distant and largely unconnected
areas of the brain seem to conspire to provide a conscious experience, are more
likely to be explicable within the scheme that we are proposing. Moreover, the actual
dependence of conscious experience on the putative new physics, according to this
scheme, provides possible scope for genuine noncomputational behavior. Clearly a
good measure of speculation resides in any such proposal. In any case, consciousness
is such an extraordinary phenomenon, quite unlike anything else that we know about
in physical behavior, that any suggested explanation for it that is not exotic in some
very fundamental way would have very little hope of success.
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CHAPTER 17

Gödel’s Functional
Interpretation and Its Use
in Current Mathematics

Ulrich Kohlenbach

17.1 Introduction: General Remarks on Proof Interpretations

This chapter discusses applied aspects of Gödel’s functional (‘Dialectica’) interpreta-
tion, which was originally designed for foundational purposes. The reorientation of
proof theory toward applications to concrete proofs in different areas of mathematics,
which was begun in the 1950s by G. Kreisel’s pioneering work on the ‘unwinding of
proofs,’ also led to a reassessment of possible uses of functional interpretations. Since
the 1990s, this has resulted in a systematic development of specially designed versions
of functional interpretation and their use in numerical analysis, functional analysis,
metric fixed point theory, and geodesic geometry. Whereas [67] presents a comprehen-
sive survey of the new results that were obtained in these areas in the course of this
investigation, this chapter focuses on the underlying logical aspects of these develop-
ments. We start, however, with a general discussion of so-called proof interpretations
(and their role in Gödel’s work), of which functional interpretation is a particularly
interesting instance, and explain the original motivation behind the latter.

Proof interpretations play an important role in Gödel’s work and seem to be first
used systematically by him.

Let T1 and T2 be theories in languages L(T1) and L(T2). A proof interpretation I of
T1 in T2 in our sense consists of the following elements:

1. To each formula A ∈ L(T1), a new formula AI ∈ L(T2) is assigned by induction on the
logical structure of A.

2. The interpretations of the T1-axioms can be verified in T2.

3. The interpretations of the T1-rules are derivable rules of T2. The most important special
case is that of the modus ponens rule:

Modus Ponens Problem:
AI , (A→B)I

BI .
4. Often the soundness proof conveys additional information on AI , for example, a closed

term of L(T2) realizing AI in cases where AI is an existential sentence.

361
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As a consequence of these features of proof interpretations, one obtains the following:

1. We get a soundness theorem for I : T1 � A ⇒ T2 � AI .

2. A proof p of A can be transformed by I (by recursion on p) into a proof pI of AI . In
particular, the main overall logical structure of p remains intact, and pI usually is not
much longer than p.

3. If L(T1) = L(T2), T2 ⊆ T1 and � is a class of sentences A of L(T1) such that

T2 � AI → A,

then T1 is conservative over T2 with respect to sentences �. In particular, if ⊥∈ �, then
I yields a relative consistency proof of T1 relative to T2.

In Gödel’s work, the following examples of proof interpretations can be found:

1. Gödel’s 1933 negative translation of classical (‘Peano’) arithmetic (PA) into intuitionistic
(‘Heyting’) arithmetic (HA) ([32]): A �→ A′ is defined by induction on the logical
structure of A, as follows:

P ′ :≡ ¬¬P for prime formulas P ,
(A ∧ B)′ :≡ A′ ∧ B ′,
(A ∨ B)′ :≡ ¬(¬A′ ∧ ¬B ′),
(A → B)′ :≡ ¬(A′ ∧ ¬B ′),
(∀x A)′ :≡ ∀x A′,
(∃x A)′ :≡ ¬∀x¬A′.

In [32], Gödel proved that

(∗) PA � A ⇒ HA � A′.

This establishes the consistency of classical arithmetic relative to intuitionistic arith-
metic and (using that intuitionistically (A → B)′ ↔ (A′ → B ′)) the conservativity of
the former over the latter for so-called ∃-free sentences, that is, sentences that neither
contain ∃ nor ∨.

The characterization theorem for negative translation is trivial:

PA � A ↔ A′,

and so also the converse of (∗) holds.
A similar such translation was found independently by Gentzen, and prior to Gödel,

for propositional logic, Glivenko [31] had shown that the simple translation A �→ ¬¬A
already suffices. Other variants were subsequently developed by Kuroda [86] and Krivine
(made explicit in [105] and [104]). Negative translations have been extended to a great
variety of other systems (see Troelstra’s introductory notes to Gödel’s paper in [39]).

2. Gödel’s 1933 interpretation of intuitionistic propositional logic into classical modal
propositional logic S4 [33]: Let IPC denote intuitionistic propositional logic and S4 the
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familiar modal proposition logic defined by Lewis. Now define for A ∈ L(IPC) A� by
induction on A

P� :≡ P for atomic sentences P ,
(A ∨ B)� :≡ (�A� ∨ �B�),
(A ∧ B)� :≡ (A� ∧ B�),
(A → B)� :≡ �A� → �B�,

(¬A)� :≡ ¬�A�.

The following is shown in [33]:

IPC � A ⇒ S4 � A�.

The converse implication (conjectured in [33]) was proved in [92]. The resulting
equivalence was extended to predicate logic in [96] and [91] independently (taking
(∀x A)� :≡ ∀x A� and (∃x A)� :≡ ∃x�A�).

These results give a kind of interpretation of intuitionistic logic (as well as intuition-
istic arithmetic and analysis, to which this interpretation was extended subsequently in
various ways) in classical terms as a logic of proof obligations. For example, intuition-
istically, a sentence A ∨ B asks for a proof of either A or B. Here provability of A (i.e.,
�A) must not be understood with respect to a fixed formal system such as PA because
the S4-axiom �A → A would – as a consequence of Gödel’s second incompleteness
theorem – not be valid under such an interpretation. This, however, can be overcome
by refining the interpretation in terms of provability into a logic of proofs, which was
sketched by Gödel in 1938 (see [34], published only in 1995 in [41]) and fully elaborated
by Artemov [2].

3. Gödel’s functional (‘Dialectica’) interpretation ([37]; see also [36] and [38]) gives an
interpretation of HA into a quantifier-free calculus T of Hilbert’s [48] primitive recursive
functionals of finite type. It is based on a formula assignment

A �→ ∃x∀y AD(x, y),

whereAD is quantifier-free and x, y are tuples of functionals of finite type, together with
a soundness proof that shows by induction on a given HA-proof of A how to construct
closed terms t of T such that

T � AD(t, y).

Because 0 = 1 is preserved by this interpretation, the result provides a consistency proof
for HA (and so by the negative translation discussed in point 1 point also for PA) relative
to T .The foundational significance of this reduction rests on the fact that T contains only
(a rule of) quantifier-free induction, though stated in an extended language of functionals
of finite types. The discussion of this technique and its applications to mathematics in
more recent years will be the main issue of the rest of this chapter.

A common feature of all three proof interpretations, but also of Gödel’s inner model
construction for V = L in [35], is the treatment of constructive reasoning from a
classical standpoint:

� The negative translation shows that (irrespectively of the totally different philosophical
concepts behind classical and intuitionistic mathematics) they can rather easily be related
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to each other in the sense that intuitionistic arithmetic can be viewed as a refinement of
classical arithmetic, which contains the latter in its ∃-free part but which makes finer
distinctions in general, for example, by distinguishing the classical ∃-›quantifier ‘¬∀¬’
from a constructive one.

� The interpretation of IPC into S4 shows that the refinement provided by intuitionistic
logic can be accounted for also in a classical setting, provided the latter is extended by
a suitable modal operator.

� In the next section, we will argue that Gödel’s functional interpretation can be viewed
as treating the intended meaning of the intuitionistic connectives as spelled out by the
so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation from a classical point of
view, in which, also, negatively occurring universal quantifiers count as existential ones,
and so only purely universal statements carry complete information (compare this with
the ‘real statements’ of Hilbert). To put it in different terms, Gödel uses a classical
concept of ‘∃-free’ within an interpretation of intuitionistic arithmetic.

� In Gödel’s work on V = L, the concept of predicative definability (developed in the
‘semi-intuitionistic’ context put forward by H. Weyl, E. Borel, H. Poincaré, and others)
is used within impredicative classical set theory. In a letter to H. Wang from March 7,
1968, Gödel ([110], p. 205; reprinted in [43], p. 400) wrote,

However, as far as, in particular, the continuum hypothesis is concerned, there was
a special obstacle which really made it practically impossible for constructivists to
discover my consistency proof. It is the fact that the ramified hierarchy, which had
been invented expressly for constructivistic purposes, has to be used in an entirely
nonconstructive way.

This, however, seems to be somewhat too strongly worded: after all, Gödel’s consistency
proof has a constructive interpretation as a relative consistency proof of GB + GCH
relative to GB(= Gödel-Bernays set theory; see also Kreisel [83]). In his ‘Lecture
on the Consistency of the Continuums Hypothesis’ at Brown University (published
posthumously in [41], pp. 175–185), he explicitly links his consistency proof to the
program (for a ‘proof’ of the continuums hypothesis) outlined in Hilbert ([48]; Gödel
[41], p. 175):

Just recently I have succeeded in giving the proof a new shape which makes it somewhat
similar to Hilbert’s program presented in his lecture “Über das Unendliche.”

In addition to this, it is worth noting that in the letter to Wang cited earlier, Gödel also
attributes the fact that neither Skolem nor Herbrand had discovered his completeness
theorem to ‘that reluctance to use non-finitary concepts and arguments in metamathe-
matics’ ([43], pp. 403–404). However, there is evidence (see Goldfarb’s introduction
to [44], p. 12) that Herbrand was aware of the possibility of using an ineffective ar-
gument to derive the completeness theorem from his theorem but did not believe that
general ‘validity’ would make sense and focused on the fact that a particular set of
rules (having the subformula property by omitting the syllogism rule) was as strong as
the usual rules:

the theorem in question permits us to show that the system of rules of reasoning can
be changed profoundly while still remaining equivalent to the original ones, so that the
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rule of the syllogism, the basis of Aristotelian logic, is of no use in any mathematical
argument. (Herbrand [44], p. 276)

17.2 Functional Interpretation

Functional interpretation was developed by Gödel for HA but – via his negative trans-
lation – also applies to PA. We start by briefly recalling the well-known BHK interpre-
tation of intuitionistic logic in terms of ‘proofs’ which, rather than proofs in specific
formal systems, should be viewed as ‘verifying constructions’:

1. A proof of A ∧ B is a pair (pA, pB ), where pA is a proof of A and pB is a proof of B.
2. A proof of A ∨ B is a pair (n, p), where n is a natural number and p is a proof of A if

n = 0 and a proof of B if n �= 0, respectively.
3. A proof of A → B is a construction p that transforms any hypothetical proof q of A

into a proof p(q) of B.
4. A proof of ∃x A(x) is a pair (c, p), where c is an element (or – more precisely – a term

denoting an element) of the underlying domain and p is a proof of A(c).
5. A proof of ∀x A(x) is a construction p that transforms any element c of the underlying

domain into a proof p(c) of A(c).

Negation is treated as a defined notion ¬A :≡ (A →⊥) with the stipulation that there
is no proof p for ⊥.

This informal interpretation has some ambiguities, in particular, in the clause for
implication. Making this precise results in various so-called realizability interpreta-
tions. The most important ones are Kleene’s realizability [54] and Kreisel’s modified
realizability [78, 79]. Let us sketch now the main differences between these two inter-
pretations:

� Kleene’s realizers are natural numbers viewed as codes of partial recursive functions. A
number x realizes an implication A → B (short: x r (A → B)) if

∀y ∈ IN(y r A → {x}(y) ↓ ∧{x}(y) r B);

That is,

∀y ∈ IN(y r A → ∃z ∈ IN({x}(y) 
 z ∧ z r B)).

In particular, a Kleene realizer does not have to be defined in general on hypothetical
realizers for A but only on actual realizers for A. Referring to the standard formalization
of elementary recursion theory in HA, the interpretation x r A of a formula in the
language of HA again is a formula in that language.

� In contrast to the partial (and type-free) Kleene realizability, realizers in the sense of
modified realizability are (tuples of) total functionals x of finite type (in a suitable
domain of functionals) such that (denoting modified realizability by ‘mr’)

x mr (A → B) :≡ ∀y(y mr A → x(y) mr B),
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where for x = x1, . . . , xn, the expression x(y) denotes the tuple x1(y), . . . , xn(y). To
make this precise, we need to define a finite type extension HAω of HA such that forA in
the language of HA (and even forA in the extended language of HAω), the interpretation
a mr A of A is a formula of the language of HAω.

Both the formula x r A as well as the formula x mr A are in general not quantifier
free because in both cases, the clause for implication (as well as for the universal
quantifier) contains a universal quantifier. However, ‘x mr A’ is a so-called ∃-free
formula, that is, a formula that does not contain ∨ or ∃ (note that over HA, A ∨ B

is equivalent to ∃n[(n = 0 → A) ∧ (n �= 0 → B)] and so is usually counted as an
existential quantifier).

Owing to the existential quantifier hidden in {x}(y) ↓, the formula x r A is only
‘essentially ∃-free’, that is, it does not contain ∨ and contains ∃ only in front of prime
formulas.

As mentioned already, Gödel’s functional interpretationAD can be viewed as a form
of modified realizability where all classical existential quantifiers (i.e., not only posi-
tively occurring ∃-quantifiers but also negatively occurring ∀-quantifiers) are included
among the data ∃x that need to be realized, leaving only a purely universal formula left,
that is, AD ≡ ∃x∀y AD(x, y), where AD is a quantifier-free formula.1 This requires a
more subtle interpretation of implications: not only is an implication

∃x A0(x) → ∃y B0(y)

(A0, B0 quantifier-free) interpreted (following mr) as

∃f ∀x (A0(x) → B0(f (x)),

but in addition, an implication

∀x A0(x) → ∀y B0(y)

needs to be interpreted as

∃g∀y (A0(g(y)) → B0(y)).

In general, the functional interpretation of implications goes as follows: suppose that
we have defined already functional interpretations AD ≡ ∃x∀yAD(x, y) and BD ≡
∃u∀vBD(u, v). Then the interpretation (A → B)D of A → B is defined as

(∗) ∃U, Y∀x, v(AD(x, Y (x v)) → BD(U (x), v)).

This is motivated as follows: among all four possibilities of prenexing

∃x∀yAD(x, y) → ∃u∀vBD(u, v),

1 Some clarification of the relationship between modified realizability and functional interpretation has been
achieved in [103], where an infinite family of interpretations between these two is introduced (see also [93]).
However, in our view, functional interpretation is rather different from any realizability notion. E.g., realizability
notions all have a so-called ‘with-truth’-variant due to Aczel (see [109]), whereas such a variant of (the Diller-
Nahm version [19] of ) D is not sound (while a closely related so-called q-variant due to Kleene is), as was
shown in [52, 53].
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one chooses

∀x∃u∀v∃y(AD(x, y) → BD(u, v)).

Now applying the axiom of choice (see later) for functionals of arbitrary type yields
(∗). If we had chosen any of the three remaining possibilities for the prenexation, the
resulting functional interpretation would fail to have computable realizers already for
certain instances of A → A (see [108] (3.5.3)).

As we see, functionals of higher type show up (both in the courses of modified
realizability and functional interpretation) even for formulas in the language of HA
(i.e., formulas that only involve variables of the lowest type) and, in fact, the realizing
terms will be so-called primitive recursive functionals in the extended sense of [48]
and [37]: the set T of finite types is generated inductively by the following clauses:

(i) 0 ∈ T (ii) ρ, τ ∈ T, ⇒ (ρ → τ ) ∈ T;

0 is the type of natural numbers, and (ρ → τ ) is the type of objects mapping objects of
type ρ to objects of type τ.The degree deg(ρ) of ρ is defined by deg(0) := 0, deg(ρ →
τ ) := max{deg(ρ) + 1, deg(τ )}. Usually, outmost parentheses are omitted. The types
0 → 0 and (0 → 0) → 0 usually are denoted by 1 and 2, respectively. The primitive
recursive functionals of finite type in the sense of Hilbert [48] and [37] are generated
starting from 00 (zero), S(0→0) (successor), and variables of arbitrary types by the
following two schemas:

� For each term t τ [u] built up out of 0, S, previously defined primitive recursive functionals
and at most the variables u = u

ρ1
1 , . . . , u

ρk
k , there is a primitive recursive functional ϕ

such that

∀u(ϕ(u) =τ t[u]).

� For previously defined primitive recursive functionals ψτ and χτ→(0→τ ), there is a
primitive recursive functional ϕ such that

ϕ(00) =τ ψ, ∀u0(ϕ(S(u)) =τ χ (ϕ(u), u)).

A possible domain over which to interpret these functionals is the full set-theoretic
type structure Sω = 〈Sρ〉ρ∈T, where S0 := IN, and Sρ→τ is the set of all set-theoretic
functionals Sρ → Sτ . As observed already by Hilbert in [48], the preceding form of
primitive recursion in higher types, which allows one to use the whole functional ϕ(u)
of type τ in each step of the recursion to define ϕ(S(u)), makes it possible to define
more functions f : IN → IN than just the ordinary primitive recursive ones, namely,
the well-known Ackermann function and – as shown in [37] (see later) – in fact all
provably total recursive functions of PA.

It turns out that the same definition of functional interpretation applies to formulas
formulated already in an extension HAω of HA to all finite types. However, to generalize
Gödel’s soundness theorem for the interpretation from HA to HAω, one has to observe
two subtle points:

1. Because the functional interpretation of the contraction axiom A → A ∧ A depends
on the existence of decision functionals for the prime formulas involved, one must not
include higher type equality relations =ρ as primitive concepts to the language unless
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one has an intensional interpretation of =ρ in mind for which it is reasonable to assume
the existence of effective decision functions.

2. If only =0 is taken as a primitive notion (so that the only prime formulas are s =0 t ,
which are decidable), higher type equality has to be defined either as
(a) extensional equality s =ρ t :≡ ∀v(s(v) =0 t(v)) with new variables v so that s(v) is

of type 0
(b) in a way that is neutral with respect to the issue whether s =ρ t is interpreted exten-

sionally or intensionally, namely, as a Leibniz identity, that is, indistinguishability
in all number contexts

r[s/xρ] =0 r[t/xρ]

for all terms r0 of type 0.

Whereas Gödel in [37] apparently had an intensional interpretation of higher type
equality in mind, in his earlier treatment of 1941 [36], he argued for the option to
include only equality for numbers as a primitive notion (see the introductory remarks
to [37] by Troelstra [41]). We will take this option here and treat higher type equality
as extensional equality as this is the most natural interpretation for applications in
mathematics. Then, however, for the soundness theorem to hold, one must not stipulate
as an axiom that all functionals respect this extensionality but only a weaker rule
version of this (first considered in [102]):

QF-ER :
A0 → s =ρ t

A0 → r[s/xρ] =τ r[t/x]
,

where A0 is quantifier-free. We denote the resulting system (usually called ‘WE-HAω’
in the literature; see, e.g., [108], [3], or [69] for precise definitions) by HAω because
in this chapter, there is no danger to confuse this with other variants. qf-HAω is the
quantifier-free fragment of HAω, formulated with a substitution rule

SUB :
A

A[tρ/xρ]

and a quantifier-free rule of induction

QF-IR :
A(0) , A(x) → A(S(x))

A(x)

instead of the schema of full induction, both for all formulas A in this quantifier-free
language. Except for our extensional treatment of higher type equality (now formulated
as open formulas without quantifiers), this system is called calculus T in [37].

Definition 17.2.1

1. The so-called Markov principle in all finite types is the schema

Mω : ¬¬∃x A0(x) → ∃x A0(x),

where A0 is an arbitrary quantifier-free formula of HAω and x is a tuple of
variables of arbitrary types (A0(x) may contain further free variables in addition
to x).



functional interpretation 369

2. The independence of premise schema IPω
∀ for universal premises is the schema

IPω
∀ : (∀xA0(x) → ∃y B(y)) → ∃y(∀xA0(x) → B(y)),

where A0 is quantifier-free, y, x have arbitrary types, and y does not occur free
in ∀x A0(x).

3. The axiom of choice schema AC in all types ρ, τ is given by

AC : ∀xρ∃yτ A(x, y) → ∃Y ρ→τ∀xρ A(x, Y (x)),

where A is an arbitrary formula (not containing Y free).
4. The axiom of quantifier-free choice schema QF-AC in all types is given by

QF-AC : ∀x∃y A0(x, y) → ∃Y∀x A0(x, Y (x)),

where A0 is a quantifier-free formula (not containing Y free) and x, y are tuples
of variables of arbitrary types.

notation In the following, let Hω := HAω+ AC + IPω
∀ + Mω.

Theorem 17.2.2 (soundness of functional interpretation [37], [111], [108])
The following rule holds:

Hω � A(a) implies that T � AD(t(a), y, a),

where t is a suitable tuple of closed terms of HAω which can be extracted from a
given proof of the assumption and a contains all free variables of A.

Combined with Gödel’s negative translation A �→ A′, which extends from PA to
the classical variant PAω of HAω (i.e. HAω with the law of excluded middle schema
A ∨ ¬A added), the following holds (see, e.g., [89] or [69]).

Theorem 17.2.3 The following rule holds:

PAω+ QF-AC � A(a) implies that T � (A′)D(t(a), y, a),

where t is a suitable tuple of closed terms of HAω that can be extracted from a
given proof of the assumption.

Remark 17.2.4

1. The extraction of the terms t in both theorems is carried out by recursion over the
given proof. The complexity of this extraction procedure is rather low: the size of
the extracted terms is linear in the size of the given proof, the extraction algorithm
has a cubic worst-time complexity, and the depth of the verifying proof is linear
in the depth of the given proof and the maximal size of formulas occurring in
that proof (see [47] for this and much more detailed information). The extraction
algorithm has been further optimized in the ‘Light Functional Interpretation’ of
[45] and is implemented in [46].

2. In general, (A′)D causes unnecessarily high types. More efficient is, for example,
to use Kuroda’s negative translation [86] instead of Gödel’s original interpreta-
tion, which subsequently was further optimized by Krivine (see [85, 105]). In fact,
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the combination of Krivine’s negative interpretation with functional interpreta-
tion yields precisely the so-called Shoenfield variant [99] of Gödel’s functional
interpretation (see [104]).

Corollary 17.2.5 PA � 0 = 1 ⇒ T � 0 =0 1.

This corollary, which provides a consistency proof of PA relative to T , is the main
objective in [37]. The significance of the proof-theoretic reduction achieved by this rests
on the fact that induction for arbitrarily complex formulas is reduced to quantifier-free
induction (though formulated in an extended language of primitive recursive functionals
of finite type).

A far-reaching extension of Gödel’s result was obtained in 1962 by Spector [102],
who succeeded in giving a functional interpretation of classical analysis Aω axioma-
tized as the extension of PAω+QF-AC by the axiom schema of countable choice

AC0,ρ : ∀x0∃yρ A(x, y) → ∃f 0→ρ∀x0 A(x, f (x)),

where A is an arbitrary formula of PAω (not containing f free). The functional inter-
pretation is carried out in the extension T+BR of T by a schema BR of so-called bar
recursion. In fact, the interpretation also works for the axiom schema of dependent
choice DC [49, 89, 69]. This yields a relative consistency result of classical analysis
relative to T+BR. Further extensions have been given in, for example, [29, 24, 15].
Moreover, functional interpretation has been adapted to fragments of PAω based on
restricted forms of induction and could be used to calibrate the provably recursive
function(al)s of such fragments (see [95, 17]).

17.3 From Consistency Proofs to the Unwinding of Proofs

For applications of functional interpretation to mathematics with the aim of extracting
new effective data from a given proof, the reduction of full induction to the rule of
quantifier-free induction QF-IR is rather irrelevant, whereas now the emphasis is on
the extraction of terms realizing AD or (A′)D for interesting theorems A. This ‘shift
of emphasis’ (G. Kreisel) also leads to the following observation, already stressed by
G. Kreisel in the 1950s: whereas in reductive proof theory, the provability of universal
sentences, namely, formalized consistency statements, is a main focus of interest, one
may add arbitrary true universal sentences to, for example, PA or PAω as axioms
without any effect on the extractable programs from proofs. In particular, this means
that in this connection, proofs of purely universal lemmas do not need to be analyzed at
all. Before we can state the main consequences of the (proof of the) soundness theorem
of functional interpretation for the extractability of programs, we need the following
characterization result for AD .

Proposition 17.3.1 ([111], [108]) For all formulas A of L(HAω), one has

Hω � A ↔ AD.

Theorem 17.3.2 (program extraction by D-interpretation) LetP be an arbi-
trary set of purely universal sentences ∀aσP0(a) (P0 quantifier-free) of L(HAω),
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A0(xρ, uδ) be a quantifier-free formula containing only x, u free, B(xρ, yτ ) an
arbitrary formula containing only x, y free, and ρ, δ, τ arbitrary types. Then the
following rule holds:⎧⎨⎩

Hω + P � ∀xρ(∀uδA0(x, u) → ∃yτB(x, y)
)

then one can extract a closed term t of HAω s.t.
Hω + P � ∀xρ(∀uδA0(x, u) → B(x, t(x))

)
.

In particular, if Sω |= P, then the conclusion holds in Sω, where Sω is the full
set-theoretic model of PAω (and hence – using AC on the metalevel – of Hω).
The result also holds for tuples of variables x, u, y, where, then, t is a tuple of
closed terms.

proof (see also [108](3.7.5)) Making use of IPω
∀ , the assumption yields that

Hω + P � ∀xρ∃yτ (∀uδA0(x, u) → B(x, y)
)
.

Now define C(x, y) :≡ (∀uδA0(x, u) → B(x, y)
)

and consider CD(x, y) ≡
∃a∀b CD(a, b, x, y). Then(∀xρ∃yτ (∀uδA0(x, u) → B(x, y))

)D ≡ ∃Y,A∀x, b CD(A(x), b, x, Y (x)).

By (the proof of) Theorem 17.2.2, we obtain closed terms t, s such that

HAω + P � ∀x, b CD(s(x), b, x, t(x))

and hence

HAω + P � ∀x∃a∀b CD(a, b, x, t(x)).

By Proposition 17.3.1, we get

Hω � ∀x(C(x, t(x)) ↔ ∃a∀b CD(a, b, x, t(x))
)

and so

Hω + P � ∀xρ(∀uδA0(x, u) → B(x, t(x))
)
. "#

The combination of negative translation and functional interpretation (ND) yields the
following program extraction theorem for classical proofs (see, e.g., [69]).

Theorem 17.3.3 (program extraction by ND-interpretation) Let P be as
before and A0(xρ, uδ), B0(xρ, yτ ) be quantifier-free formulas containing only
x, u or x, y free, respectively, and ρ, δ, τ are arbitrary types. Then the following
rule holds:⎧⎨⎩

PAω+ QF-AC + P � ∀xρ(∀uδA0(x, u) → ∃yτB0(x, y)
)

then one can extract closed terms s, t of HAω s.t.
HAω + P � ∀xρ(A0(x, s(x)) → B0(x, t(x))

)
.

Again, we may have tuples of variables x, y, u.

The previous result has as a corollary the so-called no-counterexample interpretation
(NCI) of PA in HAω (and even T ). This interpretation was developed by Kreisel
[76, 77] prior to Gödel’s publication of the functional interpretation and involves for its



372 gödel’s functional interpretation and its use

formulation only functionals of type degree ≤ 2.Consider a sentenceA in the language
of PA in prenex normal form,

A ≡ ∃x1∀y1 . . . ∃xn∀yn A0(x1, y1, . . . , xn, yn),

and its Herbrand normal form, (written with function quantifiers rather than new
function symbols),

AH ≡ ∀h1, . . . , hn∃x1, . . . , xn A0(x1, h1(x1), . . . , xn, hn(x1, . . . , xn)).

The NCI of A asks for functionals �1, . . . , �n realizing ∃x1, . . . , xn in AH, that is
(writing h instead of h1, . . . , hn),

∀hA0(�1(h), h1(�1(h)), . . . , �n(h), hn(�1(h), . . . , �n(h))).

We then write � NCI A.

Corollary 17.3.4 Let A be a prenex sentence provable in PA; then one can
extract from a given proof closed terms � of HAω, that is,

HAω � � NCI A.

proof Modulo the canonical embedding of PA into PAω, the assumption
implies that PAω � A, and hence, a fortiori, PAω � AH . The conclusion now
follows from Theorem 17.3.3. �

By coding the tuple of number variables x1, . . . , xn into a single number variable x

and then searching for the least such x satisfying AH , it is clear that the mere truth
of A already implies the existence of computable (and hence continuous in the sense
of the Baire space) functionals � satisfying the NCI of A. However, from a proof
of A, the extraction procedure via functional interpretation will produce subrecursive
functionals whose complexity depends on the proof principles used. Note also that the
program extraction Theorem 17.3.3 applies to yτ of arbitrary type τ so that (except for
τ = 0) such a search is no longer possible.

While the NCI is an easy consequence of Gödel’s functional interpretation (com-
bined with negative translation), it is complicated to establish it directly as a proof
interpretation in its own right. This is caused by the bad behavior of the NCI with
respect to the modus ponens rule. In fact, the solution of the modus ponens under
this interpretation cannot be carried out (uniformly) by functionals definable in T but
requires a use of bar recursion (of lowest type). While this treatment of the modus
ponens pointwise stays within T , the type level of the primitive recursion needed to
satisfy the NCI of the conclusion B will in general be higher than that for the input
functionals from the NCI of the premises A and A → B [60]. In particular, this ap-
proach does not give optimal results for fragments of PAω with restricted induction,
whereas the route of proving the NCI via functional interpretation does [60, 95]. In fact,
the original proof of the NCI (based on a different description of the type-2 functionals
in T as the α(< ε0)-recursive functionals of type 2) as given in [76, 77] was based on
the ε-substitution method developed in [1] and so rather on a form of cut elimination
than established as a proof interpretation. A proof by direct use of cut elimination was
given subsequently in [97]. In fact, [34] shows that the NCI was clearly anticipated
by Gödel’s analysis of Gentzen’s consistency proof for PA based on cut elimination.
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Functional interpretation provides a modular way of constructing functionals satisfying
the NCI. As the latter can be viewed as a generalization of Herbrand’s theorem, it is
natural to look also for an extraction algorithm based on functional interpretation of
valid Herbrand disjunctions from proofs in classical logic. This was suggested already
by Kreisel in [81] and carried out finally in [26].

17.4 A Comparison of Interpretations of �0
3 → �0

2

In this section, we discuss in detail the treatment of a special case of the modus ponens
by functional interpretation (in particular, when combined with negative translation) in
comparison with other interpretations. The first nontrivial instance of the modus ponens
in a context based on classical logic is the situation where a ∀∃-sentence (say, in the
language of first-order arithmetic PA, i.e., a so-called �0

2-sentence) B is proved using a
lemma A of the slightly more complicated logical structure: ∀∃∀, that is, A ∈ �0

3. We
will see that only the combination of negative translation with functional interpretation
applied to ineffective proofs of A and A → B produces a satisfying computational
realizer for B. In fact, the performance of functional interpretation on the negative
fragment is so strong that applying first negative translation to the proof of A → B

improves the situation even in the case where A → B is constructively proven (say,
in HA). Note that relative to intuitionistic arithmetic plus the Markov principle for
numbers, (A → B)′ is a stronger statement than A → B.

This situation (formulated in suitable extensions of PA and PAω by abstract classes
of spaces; see later) already covers some important applications of functional inter-
pretation in metric fixed-point theory: here often the convergence toward 0 of some
nonincreasing sequence (tn) of nonnegative real numbers (defined in various parameters
involving the spaces and functions in question) toward 0 is proved using the Cauchy
property of this or some related sequence (sn) of real numbers, that is,

∀k ∈ IN∃n ∈ IN∀m ∈ IN(|sn −IR sn+m| ≤IR 2−k)

→ ∀k ∈ IN∃n ∈ IN∀m ≥ n(tm <IR 2−k).

Using an appropriate representation of real numbers as Cauchy sequences of rational
numbers with a fixed rate of convergence, one has ≤IR∈ �0

1 and <IR∈ �0
1 . Because

the monotonicity of (tn) implies that ∀m ≥ n(tm <IR 2−k) is equivalent to tn <IR 2−k ,
this implication has the form �0

3 → �0
2. The problem now is to get an effective bound

on ∃n in the conclusion, despite that there is in general none for ∃n in the premise;
for example, suppose that (sn), too, is a nonincreasing sequence of nonnegative real
numbers. Then the Cauchy property always holds, but by Specker [101], there are
simple primitive recursively computable sequences for which there is no effective rate
of convergence.

Consider sentences A,B in the language of PA L(PA) having the following form:

A ≡ ∀x∃y∀zA0(x, y, z), B ≡ ∀u∃v B0(u, v),

where A0, B0 are quantifier-free formulas (containing only the variables x, y, z and u,
v, respectively).
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We will compare in which data (and with what complexity) the interpretations
provide a witness function ϕ for B, that is,

∀uB0(u, ϕ(u)).

The interpretations we consider are Kleene realizability, modified realizability, and
functional interpretation as well as each of these interpretations combined with negative
translation as a preprocessing step. The preprocessing step using negative translation
in general is unavoidable when A and/or A → B are given with ineffective proofs
because all the interpretations mentioned do not apply to classical proofs. Because
modified realizability is trivial on the result of the application of negative translation,
we furthermore discuss the use of the so-called Friedman-Dragalin A-translation (see
later) as an intermediate step. Finally, we compare the result of applying functional
interpretation with the NCI.

17.4.1 Kleene Realizability of �0
3 → �0

2

A Kleene realizer e ∈ IN for A → B (short e r (A → B)) is (a code e ∈ IN of) a
partial computable 2-place function mapping any code f ∈ IN of a hypothetical partial
recursive function satisfying the Kleene realizability of A, that is,

∀x({f }(x) ↓ ∧∀zA0(x, {f }(x), z)),

and any number u ∈ IN into a witness for ‘∃v B0(u, v)’, that is,

e r (A → B) :≡ ∀f, u ∈ IN(∀x({f }(x) ↓ ∧∀zA0(x, {f }(x), z))
→ {e}(f, u) ↓ ∧B0(u, {e}(f, u))).

So a given recursive witnessing function {f } for ‘∃y’ in the premise A is translated
into a recursive witnessing function λu.{e}(f, u) for ‘∃v’ in the conclusion B.

This requirement to have a recursive witness for A ∈ �0
3 can, in general, only be

expected to be satisfiable if A has a constructive proof (e.g., in HA), as Specker’s
example, discussed earlier, shows. For an even simpler counterexample from recursion
theory, consider (here T denotes the standard Kleene T -predicate) the following:

A :≡ ∀x∃y∀z(T (x, x, y) ∨ ¬T (x, x, z))

is provable already in plain (classical) logic, but there is not even a recursive bound on
‘∃y’ (in x) as such a bound would provide a decision procedure for the special halting
problem {x : ∃y T (x, x, y)}.

17.4.2 Modified Realizability Interpretation of �0
3 → �0

2

The modified realizability interpretation of A → B is satisfied by any functional � :
ININ × IN → IN such that

∀f ∈ ININ, u ∈ IN(∀x, zA0(x, f (x), z) → B0(u,�(f, u))).

We then write � mr (A → B).
In difference to Kleene realizability, the modified realizability interpretation of a

(HA-) proof of A → B will provide a subrecursive functional � that is primitive
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recursive in the sense of Gödel’s T (and of much lower complexity for appropriate
fragments of HA). Moreover, � applies to any function f and not just to computable
ones. However, the weakness of this interpretation for ineffective premises A is similar
to that of Kleene realizability: if there is no computablef such that ∀x, z A0(x, f (x), z),
then the modified realizability interpretation does not yield an effective witness for the
conclusion B.

17.4.3 Functional Interpretation of �0
3 → �0

2

The functional interpretation (A → B)D of A → B is given by

∃V,Z,X∀f, u (A0(X(f, u), f (X(f, u)), Z(f, u)) → B0(u, V (f, u))).

Therefore a realization of the functional interpretation of A → B is a triple of func-
tionals ϕ1, ϕ2, ϕ3 such that

∀f, u (A0(ϕ1(f, u), f (ϕ1(f, u)), ϕ2(f, u)) → B0(u, ϕ3(f, u))).

We then write ϕ D (A → B).
As in the case of the modified realizability, any function f realizing A, that is,

(∗) ∀x, z A0(x, f (x), z),

can be used to perform the modus ponens to obtain λu.ϕ3(f, u) as a witness function for
the conclusionB. This time, however, instead of (∗) for each u, the weaker requirement
on f ,

(∗)− A0(ϕ1(f, u), f (ϕ1(f, u)), ϕ2(f, u)),

suffices. For possible uses of this in number theory, and also forB ∈ �0
3,where a similar

weakening of the premise A is possible, see [84] (this paper contains an extensive
discussion of the treatment of (�0

3 → �0
3)-implications by functional interpretation).

Suppose now that we have a (subrecursive) functional ϕ0 satisfying

(%) ∀x, g A0(x, ϕ0(x, g), g(ϕ0(x, g))),

that is, the NCI of A (which, in this case, coincides with the functional interpretation
(A′)D of the negative translation A′ of A using the stability of A0). If we then are able
to solve the system of equations

x = ϕ1(f, u) , ϕ0(x, g) = f (ϕ1(f, u)) , g(ϕ0(x, g)) = ϕ2(f, u)

for f, x, g in u, then we are able to solve the modus ponens and obtain B0(u, ϕ3(f, u))
for this f.

Such a solution can indeed by constructed by means of Spector’s aforementioned
bar recursive functionals. In the case at hand, only bar recursion B0,1 at the lowest
type is needed, which, applied to arguments in Gödel’s T , stays within T (although
T + B0,1 goes beyond T ) but, in general, increases the complexity of the arguments:
if the arguments only use recursion of type level n, the result of applying B0,1 to them
will produce a functional whose T -definition may need recursion of level n+ 1. For
details on all this, see [60] and the literature cited there (in particular, [51] and [98]).
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For the special case of the modus ponens problem just discussed, where instead of

∀x∃y∀zA0(x, y, z) → ∀u∃v B0(u, v),

we can prove the stronger form

(+) ∀u (∃y∀zA0(u, y, z) → ∃v B0(u, v)),

the use of bar recursion can be avoided: the functional interpretation (+)D of (+)
provides us with functions t, s such that

∀u, y (A0(u, y, t(u, y)) → B0(u, s(u, y))).

Then, substituting ϕ0(u, λy.t(u, y)) for y and using (%) with g := λy.t(x, y) yields

p(u) := s(u, ϕ0(u, λy.t(u, y)))

as a witness function for B, that is, ∀uB0(u, p(u)).
Note that this special case does not lead to an improvement of the situation for

Kleene or modified realizability because both interpretations fail to produce a witness
t(u, y) for ‘∀z’ in the premise.

The significance of the improvement achieved by functional interpretation depends
on whether a nontrivial effective ϕ0 satisfying (%) can in fact be extracted from a
classical proof of A. In Section 17.4.5, we will show that this can be achieved by
applying negative translation followed by functional interpretation, to the proof of A.

For related discussions of the weakness of a constructive (BHK-style) interpretation
of implications �0

3 → �0
3 and �0

3 → �0
2 as spelled out by (modified) realizability

compared to the strengthened interpretation provided by functional interpretation, see
Kreisel-Macintyre [84] and Kreisel [82].

17.4.4 Negative Translation Followed by Kleene Realizability Resp.
Modified Realizability of �0

3 → �0
2

The negative translations of A, A → B and B are, over HA, equivalent to

∀x¬∀y¬∀zA0(x, y, z),

∀x¬∀y¬∀zA0(x, y, z) → ∀u¬∀v¬B0(u, v),

∀u¬∀v¬B0(u, v),

and hence to so-called ∃-free formulas. However, the Kleene realizability interpretation
x r F of an ∃-free formula F is just the formula itself and does not depend at all on x
(e.g., we may take x := 0). Similarly, for modified realizability, where now the empty
tuple is the realizer.

To obtain from

∀u¬∀v¬B0(u, v)

a formula for which realizability interpretations are nontrivial, we must be able to
convert this back to the original conclusion,

∀u∃v B0(u, v),
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which amounts to an application of the (rule version of the) Markov principle M0 for
numbers

M0 : ¬∀x¬F0(x) → ∃x F0(x),

where F0(x) is a quantifier-free formula (which may contain additional parameters).
However, the modified realizability interpretation of M0 has (for suitable F0) no
effective solution ([79]): take F0(x) :≡ T (a, a, x), where T is Kleene’s T -predicate.
Then

f mr ∀a(¬∀x¬T (a, a, x) → ∃x T (a, a, x)) ↔ ∀a(¬∀x¬T (a, a, x)→T (a, a, f (a))).

By the undecidability of the special halting problem, however, there is no computable f
with this property. For Kleene realizability, the situation is different but equally unfor-
tunate: whereas modified realizability asks for a total function f, Kleene realizability
only requires a partial recursive function, which exists by trivial unbounded search

f (a) :=
{

least x with T (a, a, x), if ∃x T (a, a, x)
undefined, otherwise.

But although M0 is Kleene realizable in this way, this does not help for the modus
ponens problem at hand because rather than analyzing the proof of B (via the proofs
of A and A → B), just an unbounded search is performed, which totally disregards
the proof of B (but only uses the truth of B for the termination). In particular, no
subrecursive complexity information is obtained.

17.4.5 Negative Translation Followed by Functional Interpretation
of �0

3 → �0
2

The functional interpretations (A′)D and ((A → B)′)D of the negative translations A′

and (A → B)′ of A and A → B are equivalent over HAω to

(1) ∃Y∀x, g A0(x, Y (x, g), g(Y (x, g)))

∃X,G,V ∀Y,u(A0(X(Y, u), Y (X(Y, u),G(Y, u)), (G(Y, u))(Y (X(Y, u),G(Y,u)))
→ B0(u, V (Y, u))),

and (B ′)D is just (equivalent over HAω to)

∃f ∀uB0(u, f (u)).

If we throw away the information provided by X,G, the (then partial) functional
interpretation of ((A → B)′)D simplifies to

(2) ∃V ∀Y, u(∀x, g A0(x, Y (x, g), g(Y (x, g))) → B0(u, V (Y, u))).

From a realizer ϕ0 for ‘∃Y ’ in (1) and a realizer � for ‘∃V ’ in (2), we now obtain a
realizer for B just by application; that is, for f (u) := �(ϕ0, u), we have

∀uB0(u, f (u)).

Let us finally indicate how such a solution ϕ0 can be obtained for the ineffective
Cauchy property of a nonincreasing sequence of nonnegative and (for simplicity)
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rational numbers (sn) : define ϕ(0, g) := 0, ϕ(k + 1, g) := ϕ(k, g) + g(ϕ(k, g)). Then
(for N ≥ s0), one can show that

(3) ∃n ≤ ϕ(N2k, g)
(|sn − sn+g(n)| ≤Q 2−k),

and hence ϕ0(k, g) can be defined as the least such n. In fact, n can be taken as
n := ϕ(i, g) for a suitable i < N · 2k. Note that, in contrast to ϕ0, the bound ϕ depends
on (sn) only via N.

17.4.6 Negative Translation Followed by A-Translation and
Modified Realizability of �0

3 → �0
2

Friedman [23] and Dragalin [20] independently developed a so-called A-translation of
a formula F where every prime formula P (including ⊥) in F gets replaced by P ∨ A

(here ¬A must be defined as A → ⊥). Applying this technique to A :≡ ∃v0B0(u, v),
one can convert an HA-proof of ¬∀v¬B0(u, v) (resulting from negative translation)
into an HA-proof of ∃v B0(u, v), to which, then, modified realizability can be applied.
This does provide effective realizers from classical proofs of B (via classical proofs of
A and A → B), but the complexity usually is not optimal: as we saw in Section 17.4.5,
the negative translation of the Cauchy property of (sn) has a functional interpretation
using only primitive recursion at the lowest type 0. In contrast to this, the ∃v B0(u, v)-
translation of the negative translation apparently requires primitive recursion at type 1
(sufficient to define the Ackermann function) for its modified realizability interpretation
(see [69]).2 Strangely enough, functional interpretation of the ∃v B0(u, v)-translation
(though that step actually is not necessary, by our preceding discussion) again only uses
primitive recursion of type 0. So here we have a statement whose modified realizabil-
ity seems to require more complicated functionals than its functional interpretation.
However, this is not really surprising: because modified realizability gives a much
weaker treatment of implications, it is usually harder to satisfy when applied to an
implication whose premise, again, is an implication but whose conclusion is simple. It
is exactly this situation into which the A-translation applied to the result of the negative
translation leads. Refined versions of A-translation that use that the result of applying
negative translation can be verified in a context based on minimal logic are even more
complicated here: one now only has to replace ⊥ by ∃v0B0 (but not the prime formula
P :≡ |sn −Q sn+g(n)| ≤Q 2−k by P ∨ ∃v0B0), but one can no longer disregard the dou-
ble negation in front of P that results from the ‘official’ negative translation (which
we tacitly dropped in our intuitionistic context of HAω). One should also note that the
approach via any form of A-translation interprets A based on the conclusion B of the
proof that uses A, whereas functional interpretation is fully modular in the sense that
A is interpreted in a way sufficient for any use of it in any proof of any conclusion.

2 An optimized Kripke-style version of the A-translation that sometimes, e.g., in this case, gives a solution of the
right complexity was developed in [18].
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17.4.7 Discussion of the Results of the Comparison

As the treatment of A → B with A ∈ �0
3 and B ∈ �0

2 shows, the combination of func-
tional interpretation with negative translation gives the most successful interpretation
of this modus ponens. This is even the case when A → B is already proved construc-
tively so that negative translation would not be necessary to be applied to the proof of
A → B. Only in the special case where one can strengthen A → B to3

(+) ∀u (∃y∀zA0(u, y, z) → ∃v B0(u, v))

does the direct functional interpretation of a constructive proof of A → B provide a
similarly strong result, whereas in the general case, bar recursion (at the lowest level)
would be needed, which is avoided by the use of negative translation.

The direct functional interpretation of A → B (i.e., without negative translation as
a preprocessing step) actually coincides with the NCI of the following prenex normal
form (A → B)pr of A → B:

∀u∃x∀y∃z, v (A0(x, y, z) → B0(u, v)),

whereas the NCI of A coincides with the functional interpretation of the negative
translation A′ of A. Therefore, to perform the modus ponens under the NCI, one needs
exactly the same use of bar recursion B0,1 as discussed in Section 17.4.3 (for a detailed
discussion, see [60]). For the special case (+), the NCI yields results as strong as the
combination of negative translation with functional interpretation, but to verify the
soundness of the former for a given system, one either has to prove the soundness of
the latter or apply a suitable form of ε-substitution or cut elimination [76, 77, 97] that
destroys the modularity of the interpretation.

17.4.7.1 Comparison between (A′)D and Other (Classical)
∃∀-Normal Forms

We now further illuminate the good behavior of the combination (A′)D of negative
translation A′ and functional interpretation AD for proofs based on classical logic: by
the application of functional interpretation, clearly (A′)D has the form∃u∀v (A′)D(u, v),
where (A′)D is quantifier-free and u, v are tuples of variables for functionals of finite
types (where the length and the types only depend on the logical structure of A).
Because we work with classical logic, we may assume that A is given in prenex normal
form (with quantifier-free A0):

∀x1∃y1 . . .∀xn∃yn A0(x1, y1, . . . , xn, yn).

As in the preceding section, we only treat the case where A is arithmetical, that is,
where x1, y1, . . . , xn, yn have the type 0 of natural numbers. However, things also
generalize to the case where these variables may have arbitrary types.

The most well-known ∃∀ normal form of A results by forming the Skolem normal
form, which, in the presence of function variables, can be written as

AS :≡ ∃f1, . . . , fn∀x1, . . . , xn A0(x1, f1(x1), . . . , xn, fn(x1, . . . , xn)).

3 In A0, one can also allow r(u) instead of u for some term r.
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Though the implication AS → A is trivial, the converse implication (and hence the
equivalence between A and AS) can be justified using the following arithmetical axiom
of choice for numbers4

AC0,0
ar : ∀x∃y Aar (x, y) → ∃f ∀x Aar (x, f (x)),

where x = x1, . . . , xk, y are variables for numbers and Aar is an arithmetical formula.
Compared to AS, the NCI first forms the dual of the Skolem normal form, the

so-called Herbrand normal form,

AH :≡ ∀g1, . . . , gn∃y1, . . . , yn A0(g1, y1, g2(y1), y2, . . . , gn(y1, . . . , yn−1), yn),

and then applies quantifier-free choice

QF-AC : ∀x∃y A0(x, y) → ∃Y∀x A0(x, Y (x)) (A0 quantifier-free)

(though with function arguments x) to obtain

ANCI :≡
∃Y1, . . . , Yn∀gA0(g1, Y1(g), g2(Y1(g)), Y2(g), . . . , gn(Y1(g), . . . , Yn−1(g)),Yn(g)).

Because the implication A → AH is trivial, the implication A → ANCI only requires
quantifier-free choice QF-AC. However, the implication AH → A and hence ANCI →
A can again be justified only using arithmetical choice AC0,0

ar . The use of AC0,0
ar to

prove A → AS and AH → A is unavoidable because both schemas (when stated for
arbitrary arithmetical A) in fact imply AC0,0

ar , as is easy to show. In contrast to this,
the relationship between A and (A′)D is much closer than the relationship between
A and AS as well as A and ANCI, respectively: instead of arithmetical choice (for
numbers), only quantifier-free choice (though for higher types) is needed to establish
the equivalence.

Proposition 17.4.1

1. Let A be an arbitrary formula of the language of PAω. Then

PAω+QF-AC � A ↔ (A′)D.

[78]
2. Let A be in prenex normal form and arithmetical5

HAω � AS → (A′)D → ANCI.

In general, both implications cannot be reversed over PAω+QF-AC.

proof 1. See [108] (3.5.13), with a correction in [69]. 2. This is proved in
[69]. �

As we saw, the Skolem normal form AS is too strong to be useful for proofs based on
classical logic, as already �0

3-lemmas in general will not have a computable Skolem
function. The NCI weakens the requirement sufficiently to allow effective (and even

4 Because one can avoid choice by choosing the least number satisfying the property, this schema corresponds,
viewed from the perspective of set theory, to (arithmetical) comprehension and is not a proper form of choice.

5 The result also holds for general prenex A with the definitions of AS and ANCI extended in the obvious way.
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subrecursive) solutions but, when applied to some prenex normal form of a sentence
�0

3 → �0
2, is too weak for a simple treatment of the modus ponens (but has to use some

amount of bar recursion). (A′)D provides the right balance between the two extreme
interpretations AS and ANCI. The price to be paid for this is that with an increasing
number of quantifier alternations, the degrees of the types of the functionals increase
(i.e., higher and higher function spaces are needed), whereas forAS andANCI, variables
of type degree 1 and 2 are sufficient, respectively (i.e., only the arity but not the degree
of the type increases).

In practice, (A′)D , in many cases, coincides with the NCI owing to possible strength-
enings (+) of implications �0

3 → �0
2, as discussed in Section 17.4.3, by which

�0
3 → �0

2 reduces from �0
3 to �0

2.

In general, (A′)D and ANCI coincide as long as A is in �0
3 (as the Cauchy property

of bounded monotone sequences) but differ from A ∈ �0
3 on. Let us discuss this a bit

further but first revisit the solution for (A′)D of the Cauchy property A for monotone
sequences (sn) in [0,∞) ∩ Q given in (3). The bound also holds for nonincreasing
sequences of real numbers (sn) in [0,∞) and can be rewritten in the following form
(where [n; n+m] := {n, n+ 1, n+ 2, . . . , n+m}):

(4) ∃n ≤ ϕ(N2k, g)∀i, j ∈ [n; n+ g(n)]
(|si − sj | ≤IR 2−k).

Again, there actually exists such an n of the form n = ϕ(i, g) for a suitable i < N · 2k.
(4) yields (a quantitative form of) the so-called ‘finite convergence principle’ for-

mulated recently by Tao [106, 107].

Corollary 17.4.2 For all k,N ∈ IN, g ∈ ININ, there exists an M ∈ IN such that
for all nonincreasing finite sequences 0 ≤ sM ≤ . . . ≤ s0 ≤ N of length M + 1
in [0, N], there exists an n ∈ IN with

n+ g(n) ≤ M ∧ ∀i, j ∈ [n; n+ g(n)](|si − sj | ≤ 2−k).

Moreover, we can compute M as M := ϕ(N2k, g) with ϕ, as earlier.

That the bound in (4) is independent from the sequence (sn) in [0, N ] (which is
crucially used in the preceding corollary) is an instance of a general phenomenon that
can be established via a so-called monotone variant of functional interpretation due to
[58] and that is discussed in the next section (note that [0, N ]∞ is a compact metric
space with regard to the product metric).

We conclude this section by briefly mentioning another principle A recently dis-
cussed by Tao for which ANCI and (A′)D radically differ because it is no longer of the
form ∀∃∀ (unless a finite collection principle is used, which is as strong as the principle
A itself): the infinitary pigeonhole principle (IPP) is defined as

(IPP): ∀n ∈ IN∀f : IN → Cn∃i ≤ n∀k ∈ IN∃m ≥ k
(
f (m) = i

)
,

where Cn := {0, 1, . . . , n}.
The Herbrand normal form of (IPP) is

(IPP)H ≡ ∀n ∈ IN∀f : IN → Cn∀F : Cn → IN∃i ≤ n∃m ≥ F (i)
(
f (m) = i

)
,
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which gives rise to the following computationally almost trivial solution for the NCI
of IPP:

M(n, f, F ) := max{F (i) : i ≤ n} and I (n, f, F ) := f (M(n, f, F )),

which are realizers for ‘∃m’ and ‘∃i’ in (IPP)H . By contrast, the ∀∃-form of (A′)D is
arrived at as follows:

(IPP)
QF−AC⇔

∀n ∈ IN∀f : IN→ Cn∃i ≤ n∃g : IN → IN∀k ∈ IN
(
g(k) ≥ k ∧ f (g(k)) = i

)QF−AC⇔
∀n ∈ IN∀f : IN → Cn∀K : Cn × ININ → IN∃i ≤ n∃g : IN → IN(

g(K(i, g)) ≥ K(i, g) ∧ f (g(K(i, g))) = i
)

and requires (highly nontrivial) functionals I (n, f,K) andG(n, f,K), realizing ∃i and
∃g to solve (A′)D (see [94] and [69] for details). In fact, because (IPP) implies (over
weak base systems) the induction axiom for �0

1-formulas (whereas (IPP) itself follows
from �0

2-induction), the computational contribution of a use of (IPP) in a proof can
be of arbitrary primitive recursive (in the sense of Kleene) complexity, which is not
properly accounted for by the simple NCI solution but only by the solution of its ND
interpretation. By the aforementioned monotone variant of functional interpretation (to
be discussed later), one obtains a bound on ∃g that is independent from the coloring f
and that – combined with a uniform continuity argument – yields a quantitative version
of the ‘finitary’ version of (IPP) introduced by Tao [106, 107]. It therefore seems to be
the case that the program of so-called ‘hard analysis’ as advocated in [106] is closely
related to carrying out the monotone functional interpretation of proofs in analysis.
In fact, the results discussed in the next section have recently been applied by Avigad
et al. [4] to obtain the type of uniform quantitative analysis in ergodic theory discussed
in Tao [106] and have been used already in Tao [107].

17.5 Extraction of Effective Uniform Bounds in Analysis

Since the 1990s proof-theoretic methods based on specially designed variants and
extensions of functional interpretations have been used extensively for the ‘unwinding’
(G. Kreisel) of prima facie ineffective proofs in analysis, functional analysis, and,
most recently, geodesic geometry, this approach, also called ‘proof mining’, has led
to a number of new, effective quantitative results but also to new qualitative results
on the independence of solutions from certain parameters (uniformity results). The
following papers in analysis use such techniques directly, use results obtained by these
techniques, or have been guided by general logical metatheorems that were established
using functional interpretations [4, 10, 11, 12, 13, 14, 25, 57, 61, 62, 63, 65, 70, 71, 72,
73, 74, 88]. For surveys, see [67, 68] and – though covering only results up to 2002 –
[74], which explains in detail general aspects of applying functional interpretation to
analysis. Much more information can be found in the book [69]. [30] uses functional
interpretation (though mostly in the form of NCI) to analyze the proof of van der
Waerden’s theorem given by Furstenberg and Weiss based on topological dynamics.
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In recent years, general logical metatheorems based on functional interpretations
have been proved that, for large classes of proofs and theorems, guarantee the ex-
tractability of effective and strongly uniform bounds [28, 56, 64, 66, 87]. This shows
that the concrete applications are not ‘ad hoc’ and so meet the critique expressed in [21]
of early stages of the unwinding program (see also [90] for a discussion of ‘unwinding’
in general).

In this section, we sketch some of these metatheorems, but for details, refer to
[56, 64, 28]. We state one concrete application in analysis but otherwise point to the
papers listed earlier.

The most important variant of functional interpretation for these applications is
the monotone functional interpretation (MD), which was introduced in [58]. It is like
ordinary functional interpretation, except that the statement in the soundness theorem
for functional interpretation is replaced by

(+) ∃x(t∗ � x ∧ ∀a, y AD(x(a), y, a)
)

for suitable closed terms t∗, where � is a suitable hereditarily defined majorization
relation between functionals of type ρ (t∗ � x is to be understood coordinatewise). For
example, we may take Howard’s [50] relation of majorizability, or (which sometimes
is more suitable) the following variant (‘strong majorizability’) owing to Bezem [5],

{
x∗ �0 x :≡ x∗ ≥ x

x∗ �ρ→τ x :≡ ∀y∗, y(y∗ �ρ y → x∗y∗ �τ x
∗y ∧ x∗y∗ �τ xy).

We then say that t∗ satisfies the MD of A. The soundness proof for the MD proceeds
by establishing (+) by induction on the proof. It is similar to the usual soundness proof
combined with some easy majorization arguments. In fact, the construction of the terms
t∗ is much simpler than the construction of t in the usual functional interpretation [58],
which can be bypassed.

In the following, � is any set of sentences

∀a∃b ≤ r(a)∀c F0(a, b, c),

where a, b, c may have arbitrary types, r is a closed term, ≤ is defined pointwise, and
F0 is a quantifier-free formula. �̃ consists of the Skolem normal forms

∃B ≤ r∀a, c F0(a, B(a), c)

of these sentences. ‘NMD’ denotes the combination of negative translation with MD.

Theorem 17.5.1 (uniform bound extraction [55, 58])
Let A0(x1, yρ, zτ ) be a quantifier-free formula of L(PAω) containing only x, y, z
as free variables and let deg(τ ) ≤ 2 and s be a closed term. Then⎧⎨⎩

PAω+ QF-AC +� � ∀x1∀y ≤ρ sx∃zτA0(x, y, z)
⇒ NMD extracts a closed term t of HAω such that
HAω + �̃ � ∀x1∀y ≤ρ sx∃z ≤τ tx A0(x, y, z).

In particular, if Sω |= �, then the conclusion holds in Sω. The result also applies
to tuples of variables.
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Remark 17.5.2 The preceding theorem also has a version that is more in the
spirit of the original foundational aims of functional interpretation for consistency
proofs: if the premise is provable in PAω+QF-AC in the form6

� → ∀x1∀y ≤ρ sx∃zτA0(x, y, z),

and � is of the (with regard to the types) more restricted form:

∀a1∃b ≤1 r(a)∀c0F0(a, b, c),

then the verification of the extracted bound can carried out using only the fol-
lowing approximate (ε)-form:

�ε :≡ ∀a1, c0∃b ≤1 r(a)∀c̃ ≤ c F0(a, b, c)

of �, which for many ineffective principles � has a simple constructive proof.
For example, the well-known binary (‘weak’) König’s lemma WKL, which allows
one to carry out many ineffective proofs in analysis and algebra [100], can be
written as such a special axiom�, whose ε-version is trivial. This yields a relative
consistency proof of the part of mathematics that follows over PAω+QF-AC from
WKL relative to HAω and so – by Gödel [37] – relative to T . This has been
carried out not only for PAω but also for numerous fragments in [55, 59]. For a
related so-called bounded functional interpretation, see [22].

Using the so-called standard representation of complete separable (‘Polish’) metric
spaces X and compact metric spaces K (represented as totally bounded complete
metric spaces), Theorem 17.5.1 yields (taking quantification over K and X as a kind
of ‘macro’) the following ‘applied’ version: from proofs (say, in PAω+QF-AC+WKL)
of theorems

(1) ∀k ∈ IN∀x ∈ X∀y ∈ K∃n ∈ INA1(k, x, y, n),

where A1 is, modulo the representation ofX,K, a purely existential (�0
1)-formula, one

can extract bounds � ∈ T on ∃n that are independent from y ∈ K but only depend on
k and a representative fx ∈ ININ of the element x ∈ X, that is,

(2) ∀k ∈ IN∀x ∈ X∀y ∈ K∃n ≤ �(k, fx)A1(k, x, y, n),

where fx is any representative of x ∈ X (see [56]).

Remark 17.5.3 (enrichment of data) As stressed by G. Kreisel since the
1950s in lectures at Stanford (see also [84]), functional interpretation is a sys-
tematic tool to enrich the data of a problem in the numerical appropriate form to
make an effective solution possible. For example, a strictly positive real number x
gets enriched by a witness n ∈ IN such that x ≥ 2−n, and a Cauchy sequence gets
enriched by a rate of convergence. Monotone functional interpretation (which,

6 In particular, this is the case if we can allow the full extensionality rule resulting in a system satisfying the
deduction theorem. Full extensionality may be added, e.g., if the types in �, QF-AC, and ρ are ≤ 1 because
then, the elimination of extensionality procedure from [89] applies. One can also permit that the premise�(x, y)
depends on the parameters x and y ≤ sx.
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in these simple cases, produces the same enrichments as functional interpreta-
tion), moreover, enriches a continuous function, say, on [0, 1], by a modulus of
uniform continuity. Here and in many other cases, it automatically creates the
type of enrichments used, for example, in E. Bishop’s treatment of constructive
analysis [6, 8]. Whereas Bishop himself considered the functional interpretation
of implications as ‘numerical implication’ [7], it is argued in [75] that actually,
the monotone version is the more natural one. We will come back to this issue at
the end of this chapter.

Often theorems (1) result as prenex normal forms of theorems of the form

(3) ∀x ∈ X∀y ∈ K(F (x, y) =IR 0 → G(x, y) =IR 0)

for suitable T -definable functions F,G : X ×K → IR. This can be rewritten as

(4) ∀k ∈ IN∀x ∈ X∀y ∈ K∃n ∈ IN(|F (x, y)| ≤IR 2−n → |G(x, y)| <IR 2−k),

where the matrix in (4) is logically equivalent to a �0
1-formula.

Even for constructively proven theorems (3), modified realizability could not be
used because it produces the empty realizer for ∃-free sentences such as (3). Only a
technique supporting in a nontrivial way (i.e., not by unbounded search, as in Kleene
realizability) the (rule version of the) Markov principle, at least for numbers (needed
to perform the transition from (3) to (4)), such as functional interpretation, is of any
use here.

A particularly important class of theorems having the form (3) are uniqueness
theorems:

(5) ∀x ∈ X∀y1, y2 ∈ K

(
2∧

i=1

(F (x, yi) =IR 0

)
→ y1 =K y2).

Then (2) provides a modulus of uniqueness [56] � such that

∀k ∈ IN∀x ∈ X∀y1, y2 ∈ K

(
2∧

i=1

(|F (x, yi)| ≤IR 2−�(k,fx )

)
→ dK (y1, y2) <IR 2−k).

The crucial property of � is that it does not depend on y1, y2 ∈ K and hence can be
used to compute the unique root ŷ ∈ K of F (x, ·) in cases where it exists: let �(n, fx)
be any algorithm for computing a 2−n-root in K, that is,

∀n ∈ IN(|F (x,�(n, fx))| ≤IR 2−n).

Then dK (̂y,�(�(k, fx), fx)) < 2−k. Because of this and several other numerically
significant properties, such moduli � feature prominently in numerical analysis under
the name of ‘strong unicity’. This, in particular, is the case for best approximation
theory, where, based on functional interpretation, new results on the best Chebycheff
as well as L1-approximation and of functions in C[0, 1] by polynomials p ∈ Pn of
degree ≤ n (for the case of Chebycheff approximation, also for more general so-called
Haar spaces instead of polynomials) have been obtained ([56, 57, 74]).
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Whereas the difficult cases of Chebycheff and L1-approximation deal with the
special spaces C[0, 1] and Pn, the following much simpler uniqueness result applies to
a general class of spaces.

Definition 17.5.4 A normed linear space (X, ‖ · ‖) is called strictly convex if

∀x1, x2 ∈ B

(
‖1

2
(x1 + x2)‖ = 1 → x1 = x2

)
, where B := {x ∈ X : ‖x‖ ≤ 1}.

Proposition 17.5.5 Let (X, ‖ · ‖) be a strictly convex space and C ⊆ X be a
convex subset. Then each element x ∈ X has at most one element yb ∈ C of best
approximation in C, that is, at most one element yb ∈ C such that ‖x − yb‖ =
d := infy∈C ‖x − y‖.
Definition 17.5.6 A normed space (X, ‖ · ‖) is called uniformly convex with
modulus of uniform convexity η : (0, 2] → (0, 1] if

∀x1, x2 ∈ B∀ε ∈ (0, 2]

(
‖1

2
(x1 + x2)‖ ≥ 1 − η(ε) → ‖x1 − x2‖ ≤ ε

)
.

We may assume that η(ε) < 1.
One easily shows that for uniformly convex (X, ‖ · ‖) with modulus of uniform

convexity η, convex C ⊆ X, x ∈ X, and D ≥ d, the function

�(ε) := min

{
1,
ε

4
,
ε

4
· η(ε/(D + 1))

1 − η(ε/(D + 1))

}
is a modulus of uniqueness, that is,

∀y1, y2 ∈ C∀ε ∈ (0, 2]

(
2∧

i=1

(‖x − yi‖ ≤ d +�(ε)) → ‖y1 − y2‖ ≤ ε

)
.

As an immediate corollary to this uniform uniqueness result, one gets (for uniformly
convex Banach spaces and closed convex C ⊆ X) the existence of a (then, of course,
unique) best approximation, despite that compactness arguments cannot be applied
here: by the definition of d, there is a sequence (yn) in C with

‖x − yn‖ ≤ d + 2−n.

Hence (y�(2−n)) is a Cauchy sequence whose limit clearly is a best approximation.
In fact, the standard well-known existence proof for best approximations in uni-

formly convex spaces implicitly uses this very reasoning. Note that the plain unique-
ness result that follows already from the weaker assumption of strict convexity is not
sufficient to conclude this.

This simple example illustrates two things:

1. Despite that we did not assume X to be separable or C to be compact, we obtained a
uniform modulus of uniqueness not depending on y1, y2 ∈ C, except for some upper
bound on ‖x − y1‖, ‖x − y2‖ (clearly any such bound also is an upper bound on d

and, given a bound D on the latter, ‖x − yi‖ ≤ d +�(ε) implies ‖x − yi‖ ≤ D + 1).
For this it was sufficient to ‘uniformize’ the condition of strict convexity to uniform
convexity, which would follow in the very special case of a compact unit ball (implying
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the space to be finite dimensional) but also holds in much more general contexts. In fact,
essentially all strictly convex spaces of interest are also uniformly convex.

2. In the compact case K , and in contexts where all constants of the language are com-
putable, the existence of bounds that are independent from parameters in K can be
established using compactness, arguments (even yielding an effective uniform bound):
by unbounded search, one gets a computable nonuniform bound. Because computable
type-2 functionals are uniformly continuous when restricted to the Cantor space (ef-
fectively in further type 1 parameters), the result follows. Hence here it is the concrete
(subrecursive) description of the bounds extracted from given proofs that is of inter-
est. However, in the absence of compactness, already the existence of a (qualitative)
uniformity result can be of interest, for example, by providing an existence result that
even ineffectively could not be obtained otherwise. Moreover, in the presence of abstract
metric or normed spaces without any computability structure (see later) one cannot even
search for an effective (nonuniform) bound. For a nontrivial new fixed-point theorem
that was obtained in this way by removing a compactness assumption, see [11].

For concrete spaces (X, ‖ · ‖), one can easily construct counterexamples to the claim
that the observations just mentioned hold in general. In fact, separability (which was
used in the previous metatheorem to represent K via the Cantor space) now is the main
obstacle as the uniform version of separability on bounded subsets is nothing else but the
total boundedness of these sets and so (up to completeness) brings one back to the com-
pact case. The situation, however, changes if a proof applies to a general class of spaces
X whose defining axioms have the right uniformity built in, as is the case for uniformly
convex normed spaces but also many other structures, including metric spaces, hyper-
bolic spaces, CAT(0)-spaces, normed spaces, inner product spaces, uniformly convex
hyperbolic spaces, IR-trees, and δ-hyperbolic spaces (see [64, 28, 87]). In fact, general
metatheorems (based on extensions of monotone functional interpretation) have been
proved that guarantee the extractability of effective uniform bounds that only depend on
certain local upper bounds on metric distances of parameters in X, sequences in X and
functions f : X → X. Because the main interest here is in new qualitative uniformity
results, we will work in extensions of the system of classical analysis Aω :=PAω+QF-
AC+DC, as treated by Spector and Howard using bar recursion [102, 49]. Although
the latter has a complexity too vast to be of any numerical use, it does yield effective
uniform bounds when combined with a novel majorization relation (see latter).
Moreover, for concrete proofs, usually, only small fragments of the systems will be
used so that the bounds actually extracted often do have numerical value (see [67] for a
survey).

To formalize proofs dealing with abstract classes of structures X such as general
metric or normed spaces, we add such structures as kinds of atoms (Urelemente) to the
system Aω by extending the set of types T to a new base type X (ranging over elements
from X) over which we form the set of all finite types (in fact, one can add several such
structures simultaneously, but we treat here only the case of one structure). Then, by
adding appropriate new constants and axioms, one axiomatizes the class of structures
at hand. In such a framework, one can formalize proofs of theorems that hold for all
structures in the class being axiomatized (treated as parameters), as long as we only
consider theorems that do not quantify over the class of structures.
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For proofs in intuitionistic mathematics, this approach has already clearly been
anticipated in Gödel’s early 1941 presentation of functional interpretation ([36],
pp. 195–196), where he writes

more generally, if you apply intuitionistic logic in any branch of mathematics, you can
reduce it to a finitistic system of this kind under the sole hypothesis that the primitive
functions and primitive recursive relations of this branch of mathematics are calculable,
respectively, decidable. . . . This finitistic system to which intuitionistic logic, applied in
the branch of mathematics under consideration, can be reduced is always obtained by
introducing functions of higher types analogous to these, with the only difference that the
individuals upon which the hierarchy of functions is built up are no longer the integers
but the primitive objects of the branch of mathematics under consideration.

Definition 17.5.7 The set TX of all finite types over the two ground types 0 and
X is defined by

(i) 0, X ∈ TX (ii) ρ, τ ∈ TX ⇒ (ρ → τ ) ∈ TX.

A type is called small if it is of degree ≤ 1 (i.e., 0 → · · · → 0 → 0) or the form
ρ1 → · · · → ρk → X, where the ρis are 0 or X.

The theories Aω[X, d]−b and Aω[X, d,W ]−b result7 by extending Aω to all types in
TX and adding axioms for an abstract metric (in the case of Aω[X, d]−b) or hyperbolic
(in the case of Aω[X, d,W ]−b) space.

Aω[X, d,W,CAT(0)]−b is the extension by an abstract CAT(0)-space. Analogously,
one has theories Aω[X, ‖ · ‖] with an abstract nontrivial real normed space added (as
well as further extensions Aω[X, ‖ · ‖, C] and Aω[X, ‖ · ‖, C]−b with bounded and
general convex subsets C ⊆ X, respectively, which we will, however, owing to lack of
space, not treat here). Our theories also contain a constant 0X of type X, which, in the
normed case, represents the zero vector and, in the other cases, stands for an arbitrary
element of the metric space. For details on all this, see [64, 28].

Equality =X for the new type X is a defined notion

x =X y :≡ (dX(x, y) =IR 0IR),

and so we still only have decidable prime formulas s =0 t. Because we have to work
in the weakly extensional setting of Spector’s quantifier-free extensionality, we do not
have

x =X y → f X→X(x) =X f (y)

but only from a proof of A0 → s =X t can we infer that A0 → f (s) =X f (t) (A0

quantifier-free). This is of crucial importance for our metatheorems to hold. Fortunately,
we can, in most cases, prove the extensionality of f for those functions we consider,

7 The index ‘−b’ indicates that in contrast to the corresponding theories in [64], we (following [28]) do not
require the metric space to be bounded.
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for example, for nonexpansive functions, so that this only causes some need for extra
care in a few cases (for an extensive discussion of this point, see [64]).

Definition 17.5.8 For ρ ∈ TX, we define ρ̂ ∈ T inductively as follows:

0̂ := 0, X̂ := 0, ̂(ρ → τ ) := (̂ρ → τ̂ );

that is, ρ̂ is the result of replacing all occurrences of the type X in ρ by the
type 0.

We now introduce an extension of the majorization relation to objects with typesρ ∈ TX

where, however, the majorants always have types ρ̂ ∈ T. This relation is parametrized
by an arbitrary reference point a ∈ X.

Definition 17.5.9 ([28]) We define a ternary majorization relation �a
ρ between

objects x, y, and “a” of type ρ̂, ρ, andX, respectively, by induction on (the depth
of) ρ, as follows8:
� x0 �a

0 y
0 :≡ x ≥ y,

� x0 �a
X yX :≡ (x)IR ≥IR dX(y, a),

� x �a
ρ→τ y :≡ ∀z′, z(z′ �a

ρ z → x(z′) �a
τ y(z)) ∧ ∀z′, z(z′ �a

ρ̂ z → x(z′) �a
τ̂

x(z)).

For normed linear spaces, we choose a = 0X.

Definition 17.5.10 A formula F in L(Aω[X, . . .]−b) is called a ∀-formula (∃-
formula) if it has the form F ≡ ∀aσFqf (a) (F ≡ ∃aσFqf (a)), where Fqf does
not contain any quantifier and the types in σ are small.

Theorem 17.5.11 ([28])

1. Let ρ be a small type and let A∀(x, u) and B∃(x, v) be ∀- and ∃-formulas that
contain only x, u free and x, v free, respectively. Assume that the constant 0X does
not occur in A∀, B∃ and that

Aω[X, d]−b � ∀xρ(∀u0A∀(x, u) → ∃v0B∃(x, v)).

Then one can extract a computable functional9 � : Sρ̂ → IN such that the follow-
ing holds in all nonempty metric spaces (X, d): for all x ∈ Sρ , x∗ ∈ Sρ̂ if there
exists an a ∈ X such that x∗ �a x, then

∀u ≤ �(x∗)A∀(x, u) → ∃v ≤ �(x∗)B∃(x, v).

2. The theorem also holds for nonempty hyperbolic spaces Aω[X, d,W ]−b,
(X, d,W ), and for Aω[X, d,W,CAT(0)]−b, where (X, d) is a CAT(0)-space.

3. The theorem also holds for nontrivial real normed spaces Aω[X, ‖ · ‖], (X, ‖ · ‖),
where, then, ‘a’ has to be interpreted by the zero vector in (X, ‖ · ‖) and 0X is
allowed to occur in A∀, B∃.

Instead of single variables x, u, v and single premises ∀uA∀(x, u), we may
have tuples of variables and finite conjunctions of premises. In the case of a tuple

8 Here (x)IR refers to the embedding of IN into IR in the sense of our representation of IR.
9 Note that for small types ρ, the type ρ̂ is of degree 1. So �, essentially, is a type 2 functional : ININ → IN.
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x, we then have to require that we have a tuple x∗ of a-majorants for a common
a ∈ X for all the components of the tuple x.

Remark 17.5.12 From the proof of Theorem 17.5.11, it follows that the theorem
also holds with additional purely universal axioms and majorizable constants of
sufficiently small types added where, then, the bound depends on those majorants.
Based on this, the preceding theorem has been adapted to other structures such
uniformly convex normed spaces or inner product spaces [28] as well as uniformly
convex hyperbolic spaces, δ-hyperbolic spaces (in the sense of M. Gromov), and
IR-trees in the sense of Tits (see [87]).

Because the bound � operates on objects of degree ≤ 1, that is, natural numbers or
n-ary number theoretic functions, rather than x ∈ X or f : X → X, the usual type 2
computability theory as well as well-known subrecursive classes of such functionals
apply here irrespective of whether the metric or normed spaces to which the bounds
are applied come with any notion of computability.

The proof of Theorem 17.5.11 provides an algorithm based on (monotone) functional
interpretation for the extraction of �.

In the concrete applications, Theorem 17.5.11 is used via various applied corollaries,
of which we give an example now.

Definition 17.5.13 Let (X, d) be a metric space. A mapping f : X → X is
called nonexpansive if

∀x, y ∈ X(d(f (x), f (y)) ≤ d(x, y)).

Corollary 17.5.14 ([28]) LetA∃ be an ∃-formula andP,K Polish and compact
metric spaces respectively in standard representation by Aω-definable terms (see
[56] for a precise definition). If Aω[X, d,W ]−b proves a sentence

∀x ∈ P∀y ∈ K∀zX, z̃X, f X→X
(
f nonexpansive → ∃vINA∃

)
,

then one can extract a computable functional �(gx, b) such that for all x ∈
P, gx ∈ ININ representative of x, b ∈ IN,

∀y∈K∀z, z̃ ∈ X∀f : X → X
(
f n.e. ∧ d(z, f (z)), d(z, z̃) ≤ b → ∃v ≤ �(gx, b)A∃

)
holds in any nonempty hyperbolic space (X, d,W ).

proof (sketch) The fact that P,K have a standard representation by Aω-
terms essentially means that ∀-quantification over P and K can be expressed as
quantification ∀x1 and ∀y ≤1 N , respectively, where N is a fixed simple (prim-
itive recursive) function depending on K. Here the number-theoretic functions
encode Cauchy sequences (with a fixed rate of convergence) of elements from
the countable dense subset of P and K , respectively, on which the standard rep-
resentations are based. We now apply Theorem 17.5.11 with a := z. For this, we
have to construct �z-majorants for x1, y1, zX, z̃X, and f X→X :

x∗ := xM := λn.max{x(i) : i ≤ n}, y∗ := NM, z∗ := 00, z̃∗ := b,f ∗ := λn0.n+ b.
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For f ∗, we use that

d(x, z) ≤ n → d(f (x), z) ≤ d(f (x), f (z)) + d(f (z), z)
≤ d(x, z) + d(f (z), z) ≤ n+ b.

Note that the majorants only depend on x, b. �

Remark 17.5.15 The preceding corollary holds similarly for the case of
normed and inner product spaces (as well as their completions; see [69]) but –
owing to the fact that, then, ‘a’ must be fixed as the zero vector 0X – one has to
add the assumption ‖z‖ ≤ b in the conclusion.

We conclude this section with one concrete application of corollary 17.5.14: let
(X, d,W ) be a hyperbolic space, f : X → X be nonexpansive, and (λn) be a sequence
in [0, 1] that is bounded away from 1 and divergent in sum. Let (xn) be the so-called
Krasnoselski-Mann iteration starting from x0 := x ∈ X:

xn+1 := (1 − λn)xn ⊕ λnf (xn), where (1 − λ)x ⊕ λy denotes W (x, y, λ).

Theorem 17.5.16 (Borwein-Reich-Shafrir [9])

∀x ∈ X(d(xn, f (xn))
n→∞→ r(f ) := inf

y∈X
d(y, f (y))).

As shown in [28], Corollary 17.5.14 implies that there exists a computable function
� : ININ × IN3 → IN such that (using that (d(xn, f (xn)))n is nonincreasing) for all
hyperbolic spaces X, all nonexpansive functions f : X → X, all (λn) in [0,1],k ∈ IN,

α : IN → IN,with ∀n
(
λn ≤ 1 − 1

k
∧ n ≤

α(n)∑
i=0

λi

)
,

and all x, x∗ ∈ X, b ∈ IN with b ≥ d(x, x∗), d(x, f (x)):

∀l ∈ IN∀n ≥ �(α, k, b, l) (d(xn, f (xn)) < d(x∗, f (x∗)) + 2−l).

Such a � has been extracted in [71] (for the normed case already in [62]) from the
original ineffective proof in [9]:

�(α, k, b, l) := α̂(&2b · exp(k(M + 1))' − 1,M), where

M := (1 + 2b) · 2l , α̂(0, n) := α̃(0, n), α̂(i + 1, n) := α̃(̂α(i, n), n), with

α̃(i, n) := i + α+(i, n), where α+(i, n) := max
j≤i

[α(n+ j ) − j + 1].

For various applications of this result (also, for new qualitative results that only use the
uniformity of the bound but not its numerical value), see [71] and [72]. For uniformly
convex hyperbolic spaces, often special arguments yielding better bounds apply. This,
in particular, covers the important class of CAT(0)-spaces in the sense of Gromov and
in many cases provides even quadratic bounds. Here is one example: let f : C → C

be a self-mapping of a convex subset C of some CAT(0)-space (X, d); f is called
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asymptotically nonexpansive if, for some sequence (kn) in [0,∞) with limn→∞ kn = 0,
one has

d(f nx, f ny) ≤ (1 + kn)d(x, y), ∀n ∈ IN, ∀x, y ∈ C.

In this case, the Krasnoselski-Mann iteration of f starting from x ∈ C is defined by

x0 := x, xn+1 := (1 − λn)xn ⊕ λnf
n(xn).

Based on a suitable variant of Corollary 17.5.14, the following quadratic (in ε) bound
has been extracted recently.

Theorem 17.5.17 ([73]) Let (X, d) be a CAT(0)-space, C be a nonempty con-
vex bounded subset of X whose diameter is bounded by dC , and f : C → C be
asymptotically nonexpansive with sequence (kn).

Assume that K ≥ 0 is such that
∑∞

n=0 kn ≤ K and that L ∈ IN, L ≥ 2 is such
that 1

L
≤ λn ≤ 1 − 1

L
for all n ∈ IN. Then the following holds for all x ∈ C:

∀ε ∈ (0, 1]∃n ≤ �(K,L, dC, ε) (d(xn, f (xn)) < ε) ,

where

�(K,L, dC, ε) := 2M,

M := ⌈
1
ε2 · 24L2

(
5KD +D + 11

2

)
(h(K))3((1 +K)D + 1)2

⌉
,

D := eK (dC + 2) , h(K) := 2(1 + (1 +K)2(2 +K)).

As mentioned earlier, the extraction technique of monotone functional interpretation
underlying the proof of Corollary 17.5.14 (in the form for Hilbert spaces) has recently
been used in [4] to extract a uniform bound on the Herbrand normal form of the von
Neumann mean ergodic theorem (see also [107]).

17.6 Concluding Remarks

17.6.1 Foundational Reductions Revisited

As discussed earlier, Gödel’s aim in developing functional interpretation (and negative
translation) was to give a consistency proof for PA by reducing it to T , which Gödel
considered as a legitimate extension of strict finitism in the narrow sense. The founda-
tional relevance of this reduction (and other consistency proofs) remains debatable (see
Troelstra’s introductory remarks to [37] in [40]). The shift of emphasis towards appli-
cations in mathematics deviates from this original motivation and replaces the issue of
foundational reductions with concrete mathematical applications. However, there is one
aspect of the original preoccupation with consistency proofs that has shown up again in
the course of this applied reorientation: monotone functional interpretation can be used
to prove a useful elimination result for a classically false strong uniform boundedness
principle ∃-UBX ([66]) over, for example, Aω[X, d,W ] (i.e., Aω[X, d,W ]−b, plus an
axiom stating the boundedness of (X, d)). This principle allows one (among many other
things) to prove (over Aω[X, d,W ]) that every nonexpansive mapping f : X → X has
a fixed point which is known to be false already for bounded closed convex subsets of
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Banach spaces such as c0. Nevertheless, for a large class of sentences A provable using
∃-UBX (including so-called asymptotic regularity statements), one can show that they
are classically correct (see [66] and [63, 70] for concrete instances of this). Because
in metric fixed point theory many proofs of asymptotic regularity exist that use as an
assumption that f has fixed points, this can (and has been) applied for

� removing the need for complicated fixed-point theorems used to cancel this assumption
(resulting in elementary proofs)

� at the same time, dropping assumptions only needed to have these fixed-point theorems
available (thereby generalizing proofs).

17.6.2 Enrichment of Data Revisited

Whereas monotone functional interpretation over the original types T over IN creates
(irrespective of whether negative translation is used first) constructive enrichments
of data that classically are redundant (for statements involving continuous functions
only), our extension to the types for abstract classes of spaces based on �a creates
enrichments that even classically are a proper strengthening of the original assumptions
(owing to the lack of compactness). Using the uniform boundedness principle ∃-UBX

just mentioned, these enrichments become provable. For example, we translate for
bounded metric or hyperbolic spaces

� separability ⇒ total boundedness (with modulus)
� extensionality ⇒ uniform continuity (with modulus)10

� pointwise monotone convergence ⇒ uniform convergence (with modulus)
� existence of approximate solutions ⇒ existence of solutions
� strict convexity ⇒ uniform convexity (with modulus) in the hyperbolic or normed case
� contractive functions (Edelstein) ⇒ uniformly contractive functions (with modulus,

Rakotch)
� uniqueness ⇒ uniform uniqueness (with modulus).

What essentially is shown by theorems such as Theorem 17.5.11 is that provided we
restrict ourselves to input data having these uniformity features, this uniformity prevails
throughout even prima facie highly ineffective proofs formalizable in Aω[X, d,W ]
and yields an effective uniform version of the theorem in question. In many concrete
applications, even ineffectively, the uniform version was not known before.
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[39] Gödel, K., Collected Work, vol. 1, S. Feferman et al. (eds.), Oxford University Press, New York
(1986).
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[41] Gödel, K., Collected Work, vol. 3, S. Feferman et al. (eds.), Oxford University Press, New York
(1995).

[42] Gödel, K., Collected Work, vol. 4, S. Feferman et al. (eds.), Oxford University Press, New York
(2003).
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CHAPTER 18

My Forty Years on His Shoulders

Harvey M. Friedman

Gödel’s legacy is still very much in evidence. His legacy is overwhelming, particularly
in the arena of general mathematical and philosophical inquiry.

The extent of Gödel’s impact in the more restricted domain of mathematical practice,
however, is more open to question. In fact, Macintyre provides an in-depth assessment
of this impact in Chapter 1 of this volume. However, even in this comparatively
specialized domain, Gödel’s impact is seen to be substantial. As discussed in this
chapter, particularly in Section 18.11, I believe that the potential impact of Gödel’s
work on mathematical practice is also extensive. Although the full realization of this
potential impact will have to wait for some new breakthroughs, I have every confidence
that these breakthroughs will materialize.

Generally speaking, current mathematical practice has now become very far re-
moved from general mathematical and philosophical inquiry, where Gödel’s legacy is
most obviously decisive. However, there are signs that some of our most distinguished
mathematicians recognize the need for some sort of reconciliation: “Mathematicians
took the role of philosophers, but I want to bring the philosophers back in. I hope some-
day we will be able to explain mathematics in a philosophical way using philosophical
methods” (Atiyah, 2008a, 2008b).

I will not attempt to exhaustively discuss the full impact of Gödel’s work and all
of the ongoing important research programs that it suggests, as this would require a
book-length manuscript. Indeed, several books discuss the Gödel legacy from many
points of view, including, for example, Wang (1987, 1996), Dawson (2005), and the
historically comprehensive five-volume set of Gödel’s work (1986, 1990, 1995, 2003a,
2003b).

In Sections 18.1–18.6, I briefly discuss a sample of research projects that are sug-
gested by some of Gödel’s most famous contributions. In Sections 18.7–18.10, I discuss
a few of the highlights of a main recurrent theme in my own research, which amounts
to an expansion of the Gödel incompleteness phenomena in new critical directions.
The incompleteness phenomena lie at the heart of the Gödel legacy. Some care-
ful formulations, informed by various post-Gödelian developments, are presented in
Sections 18.2–18.4.
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One particular issue that arises with regard to incompleteness has been a driving
force for a considerable portion of my work over the last forty years. This has been
the ongoing search for necessary uses of set-theoretic methods in normal mathematics.
By way of background, Gödel’s first incompleteness theorem is an existence theorem
not intended to provide a mathematically intelligible example of an unprovable sen-
tence. Gödel’s second incompleteness theorem does provide an entirely intelligible
example of an unprovable sentence – specifically, the crucially important consistency
statement. (Remarkably, Gödel demonstrates by a brief semiformal argument that the
sentence he constructs for his first incompleteness theorem is demonstrably implied
by the consistency statement – hence the consistency statement is not provable. It was
later established that the two are in fact demonstrably equivalent.) Nevertheless, the
consistency statement is obviously of a logical nature rather than of a mathematical
nature. This is a distinction that is readily noticed by the members of the general math-
ematical community, which naturally resist the notion that the incompleteness theorem
will have practical consequences for their own research.

Genuinely mathematical examples of incompleteness from substantial set-theoretic
systems had to wait until the well-known work on the axiom of choice and the contin-
uum hypothesis by Kurt Gödel (1940) and Paul Cohen (1963, 1964). Here the statement
being shown to be independent of ZFC (the Zermelo-Fraenkel axioms plus the axiom of
choice) – the continuum hypothesis (CH) – is of crucial importance for abstract set the-
ory. However, mathematicians generally find it easy to recognize an essential difference
between overtly set-theoretic statements, such as CH, and so-called normal mathemat-
ical statements. Again, this is a particularly useful observation for mathematicians.
Specifically, the reference to unrestricted uncountable sets (of real numbers) in CH
readily distinguishes CH from normal mathematics, which relies, almost exclusively,
on the essentially countable (e.g., the continuous or piecewise continuous).

A more subtle example of an overtly set-theoretic statement that requires a second
look to see its overtly set-theoretic character is Kaplansky’s conjecture concerning
automatic continuity. In one of its more concrete special forms, it asserts:

(*) Every homomorphism from the Banach algebra c0 of infinite sequences of reals
converging to 0 (under the sup norm) to any separable Banach algebra is continuous.

Now (*) was refuted using the continuum hypothesis (due independently to H. G.
Dales and J. Esterle) and was later shown to be not refutable without the continuum
hypothesis, that is, not refutable in the usual ZFC axioms (due to R. Solovay). See
Dales (2001) for the refutation and Dales and Woodin (1987) for the consistency
(nonrefutability) result.

It is, of course, much easier for mathematicians to recognize the overtly set-theoretic
character after they learn that there are set-theoretic difficulties. By taking the following
negation, it is clear that one is asking about the existence of an object that was well
known, even at the time, to necessarily have rather pathological properties:

(**) there exists a discontinuous homomorphism from the Banach algebra c0 of infinite
sequences of reals converging to 0 (under the sup norm) to some separable Banach
algebra.

This is the case even for discontinuous group homomorphisms from ( into (
(which can be shown to exist without the CH). For instance, it is well known that
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there are no discontinuous group homomorphisms from ( into ( that are Borel
measurable.

At the outer limits, normal mathematics is conducted within complete separable
metric spaces. (Of course, we grant that it is sometimes convenient to use fluff – as
long as it doesn’t cause any trouble.) Functions and sets are normally Borel mea-
surable within such so-called Polish spaces. In fact, the sets and functions normally
considered in mathematics are substantially nicer than Borel measurable, generally
being continuous or at least piecewise continuous – if not outright countable or even
finite.1

We now know that the incompleteness phenomena do penetrate the barrier into
the relatively concrete world of Borel measurability – and even into the countable
and finite world – with independence results of a mathematical character. In Sections
18.7–18.10, I discuss my efforts concerning such concrete incompleteness, establishing
the necessary use of abstract set-theoretic methods in a number of contexts, some of
which go well beyond the ZFC axioms. Yet it must be said that the results to date
are very limited in scope and demand considerable improvement. We are only at the
very beginning of being able to assess the full impact of the Gödel incompleteness
phenomena. In particular, it is not yet clear how strongly and in what way the Gödel
incompleteness phenomena will penetrate normal mathematical activity. Progress along
these lines is steady but painfully slow. I am confident that a much clearer assessment
will be possible by the end of this century – and perhaps not much earlier. In Section
18.11, I take the opportunity to speculate far into the future.

18.1 The Completeness Theorem

In his PhD dissertation, Gödel (1929) proved his celebrated completeness theorem
for a standard version of the axioms and rules of first-order predicate calculus with
equality. This result of Gödel was anticipated, in various senses, by the earlier work
of T. Skolem, as discussed in detail in the introductory notes of Gödel (1986, 44–59),
which were written by B. Dreben and J. van Heijenoort.

Consider the following passage (Gödel, 1986, 52) from a letter Gödel wrote to Hao
Wang (December 7, 1967):

The completeness theorem, mathematically, is indeed an almost trivial consequence of
Skolem 1923a.2 However, the fact is that, at the time, nobody (including Skolem himself )
drew this conclusion (neither from Skolem 1923 nor, as I did, from similar considerations).

According to these introductory notes, the situation is properly summarized as follows:
thus, Gödel says, the only significant difference between Skolem 1923a and Gödel

1 Apparently, nonseparable arguments are being used in the proofs of certain number-theoretic results such as
Fermat’s last theorem. I have been suggesting strongly that this is an area where logicians and number theorists
should collaborate to see just how necessary such appeals to nonseparable arguments are. I have conjectured
that they are not necessary and that EFA = I�0(exp) = exponential function arithmetic suffices. See Avigad
(2003), Angus MacIntyre’s contribution to this volume, and McClarty (2010).

2 “Skolem 1923a” in this quote is Skolem (1922) in the list of references.



402 my forty years on his shoulders

(1929, 1930) lies in the replacement of an informal notion of “provable” by a formal
one – and the explicit recognition that there is a question to be answered.

To this, I would add that Gödel himself relied on a semiformal notion of “valid”
or “valid in all set theoretic structures.” The appropriate fully formal treatment of the
semantics of first-order predicate calculus with equality is credited to A. Tarski. How-
ever, as discussed in detail in Feferman (2004), surprisingly, the first clear statement
in Tarski’s work of the formal semantics for predicate calculus did not appear until the
1950s (Tarski, 1952; Tarski and Vaught, 1957).

Let us return to the fundamental setup for the completeness theorem. The notion
of structure is taken in the sense most relevant to mathematics and, in particular,
general algebra: a nonempty domain, together with a system of constants, relations,
and functions, with equality as understood. It is well known that the completeness
proof is so robust that no analysis of the notion of structure need be given. The proof
requires only that we at least admit the structures whose domain is an initial segment
of the natural numbers (finite or infinite). In fact, we need only admit structures
whose relations and functions are arithmetically defined, that is, first-order defined
in the ring of integers. However, the axioms and rules of logic are meant to be so
generally applicable as to transcend their application in mathematics. Accordingly, it
is important to interpret logic with structures that may lie outside the realm of ordinary
mathematics. A particularly important type of structure is a structure whose domain
includes absolutely everything. Indeed, it can be argued that the original Fregean
conception of logic demands that quantifiers range over absolutely everything. From
this viewpoint, quantification over mathematical domains is a special case, as “being
in a given mathematical domain” is treated as (the extensions of) a unary predicate on
everything.

These general philosophical considerations were sufficient for an applied philoso-
pher like me to begin reworking logic using structures whose domain consists of
absolutely everything. The topic of logic in the universal domain has been taken up
in the philosophy community, in particular, by T. Williamson (Rayo and Williamson,
2003; Williamson, 2000, 2003, 2006). I have not yet published on this topic, but un-
published reports on my results are available on the Internet, specifically in Friedman
(1999, 2002b, 65–99). I plan to publish a monograph on this topic in the not-too-distant
future.

18.2 The First Incompleteness Theorem

The first incompleteness theorem is first proved in Gödel (1931). It is proved there in
detail for a specific variant of what is now known as the simple theory of types (going
back to Bertrand Russell), with natural numbers at the lowest type. This is a rather
strong system, nearly as strong as Zermelo set theory. It asserts that there is a sentence
that is neither provable nor refutable in this system.

Gödel (1932a) formulates his incompleteness theorems for extensions of a variant
of what is now known as Peano arithmetic (PA). Gödel (1934) not only gives another
treatment of the results in Gödel (1931) but also, and most important, introduces the
notion of recursive functions and relations.
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Gödel (1931, 195) writes at the end of his article that “the results will be stated and
proved in full generality in a sequel to be published soon.” On the same page, we find
the following:

Note added 28 August 1963. In consequence of later advances, in particular of the fact
that due to A. M. Turing’s work a precise and unquestionably adequate definition of
the general notion of formal system can now be given, a completely general version of
Theorems VI and XI is now possible. That is, it can be proved rigorously that in every
consistent formal system that contains a certain amount of finitary number theory there
exist undecidable arithmetic propositions and that, moreover, the consistency of any such
system cannot be proved in the system.

The sequel was never published, at least partly because of the prompt acceptance of
Gödel’s results after the publication of his article (Gödel, 1931).

Today, Gödel is credited for quite general forms of the first incompleteness theorem.
There are already claims of generality in the original paper (Gödel, 1931). In modern
terms, in every 1-consistent recursively enumerable formal system containing a small
amount of arithmetic, there exist arithmetic sentences that are neither provable nor
refutable. Rosser (1936) is credited for significant additional generality, using a clever
modification of Gödel’s original formal self-referential construction. It is shown there
that the hypothesis of 1-consistency can be replaced with the weaker hypothesis of
consistency.

Later, methods from recursion theory were used to prove yet more general forms of
first incompleteness, where the proof avoids use of formal self-reference – although
even in the recursion theory, there is, arguably, a trace of self-reference present in the
elementary recursion theory used. The recursion theory approach, in a powerful form,
appears in Robinson (1952) and Tarski et al. (1953), with the use of the formal system
Q. Q is a single-sorted system based on 0, S, +, •, ≤, =. In addition to the usual axioms
and rules of logic for this language, we have the following nonlogical axioms:

1. Sx �= 0
2. Sx = Sy → x = y
3. x �= 0 → (∃y)(x = Sy)
4. x + 0 = x
5. x + Sy = S(x + y)
6. x • 0 = 0
7. x • Sy = (x • y) + x
8. x ≤ y ↔ (∃z)(z + x = y)

The last axiom is purely definitional and is not needed for present purposes (in fact,
we do not need ≤).

Theorem 18.2.1 Let T be a consistent extension of Q of a relational type in
many-sorted predicate calculus of arbitrary cardinality. The sets of all existen-
tial sentences in L(Q), with bounded universal quantifiers allowed, that are (1)
provable in T, (2) refutable in T, and (3) provable or refutable in T are each not
recursive.
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For the proof, see Robinson (1952) and Tarski et al. (1953). It uses the construction
of recursively inseparable recursively enumerable sets, for example, {n: ϕn(n) = 0}
and {n: ϕn(n) = 1}.

One can obtain the following strong form of first incompleteness as an immediate
corollary:

Theorem 18.2.2 Let T be a consistent extension of Q in many-sorted predicate
calculus whose relational type and axioms are recursively enumerable. There is
an existential sentence in L(Q), with bounded universal quantifiers allowed, that
is neither provable nor refutable in T.

We can use the negative s solution to Hilbert’s tenth problem to obtain other forms
of first incompleteness that are stronger in certain respects. In fact, Hilbert’s tenth
problem is still a great source of very difficult problems on the border between logic
and number theory, which I discuss later.

Hilbert asked for a decision procedure for determining whether a given polyno-
mial with integer coefficients in several integer variables has a zero. The problem
received a negative answer in 1970 by Y. Matiyasevich, building heavily on earlier
work of J. Robinson, M. Davis, and H. Putnam. It is commonly referred to as the
MRDP theorem (in reverse historical order; see Davis, 1973; Matiyasevich, 1993).
The MRDP theorem was shown to be provable in the weak fragment of arithmetic,
EFA = I�0(exp), in Dimitracopoulus and Gaifman (1982), which we can use to obtain
the following:

Theorem 18.2.3 Let T be a consistent extension of EFA in many-sorted pred-
icate calculus whose relational type and axioms are recursively enumerable.
There is a purely existential equation (∃x1, . . . ,xn)(s = t) in L(Q) that is neither
provable nor refutable in T.

It is not clear whether EFA can be replaced by a weaker system in Theorem 18.2.3
such as Q.

An important issue is whether there is a “reasonable” existential equation (∃x1, . . . ,
xn)(s = t) that can be used in Theorem 18.2.3 for, say, T = PA or T = ZFC. Note that
(∃x1, . . . ,xn)(s = t) corresponds to the Diophantine problem “does the polynomial s-t
with integer coefficients have a solution in the nonnegative integers?”

Let us see what can be done on the purely recursion-theoretic side with regard to
the complexity of polynomials with integer coefficients. The most obvious criteria are
the following:

a. the number of unknowns
b. the degree of the polynomial
c. the number of operations (additions and multiplications)

In 1992, Matiyasevich showed that nine unknowns over the nonnegative integers suf-
fice for recursive unsolvability. One form of the result (not the strongest form) says
that the problem of deciding whether a polynomial with integer coefficients in nine
unknowns has a zero in the nonnegative integers is recursively unsolvable. A detailed
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proof of this result (in sharper form) was given in Jones (1982). In addition, Jones
(1982) proves that, for example, the problem of deciding whether a polynomial with
integer coefficients defined by at most one hundred operations (additions and multi-
plications with integer constants) has a zero in the nonnegative integers is recursively
unsolvable.

It is well known that degree 4 suffices for recursive unsolvability. In Jones (1982),
it is shown that degree 4 and 58 nonnegative integer unknowns suffice for recursive
unsolvability; that is, the problem is deciding whether a polynomial with integer coeffi-
cients, of degree 4 with at most 58 unknowns, has a solution in the nonnegative integers,
is recursively unsolvable. In fact, Jones (1982) provides the following sufficient pairs
<degree, unknowns>, where all unknowns range over nonnegative integers:

<4,58>, <8,38>, <12,32>, <16,29>,

<20,28>, <24,26>, <28,25>, <36,24>,

<96,21>, <2668,19>, <2 × 105,14>,

<6.6 × 1043,13>, <1.3 × 1044,12>,

<4.6 × 1044,11>, <8.6 × 1044,10>,

<1.6 × 1045,9>

For degree 2 (a single quadratic), we have an algorithm (over the nonnegative integers,
the integers, and the rationals) going back to Siegel (1972). See Grunewald and Segal
(1981) and Masser (1998). For degree 3, the existence of an algorithm is wide open,
even for three variables (over the integers, the nonnegative integers, or the rationals).
For degree 3 in two integer variables, an algorithm is known, but it is wide open for
degree 3 in two rational variables.

It is clear from this discussion that the gap between what is known and what could
be the case is enormous, just in this original context of deciding whether polynomials
with integer coefficients have a zero in the (nonnegative) integers. Specifically, <3,3>
could conceivably be on this list of pairs.

These upper bounds on the complexity sufficient to obtain recursive unsolvability
can be directly imported into Theorem 18.2.3, as the underlying number theory and
recursion theory can be done in EFA. Although one obtains upper bounds on pairs
(number of variables, degree) in this way, this does not address the question of the size
of the coefficients needed in Theorem 18.2.3.

In particular, let us call a polynomial P a Gödel polynomial if

i. P is a polynomial in several variables with integer coefficients
ii. the question of whether P has a solution in nonnegative integers is neither provable nor

refutable in PA (we can also use ZFC here instead of PA)

I have never seen an upper bound on the size of a Gödel polynomial in the literature.
In particular, I have never seen a Gödel polynomial written fully in base 10 on a
small piece of paper. One interesting theoretical issue is whether one can establish any
relationship between the size of a Gödel polynomial using PA and the size of a Gödel
polynomial using ZFC.
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18.3 The Second Incompleteness Theorem

Gödel (1931) only sketches a proof of his second incompleteness theorem, after proving
his first incompleteness theorem in detail. His sketch depends on the proof of the first
incompleteness theorem, which is conducted in normal semiformal mathematics, being
formalized and proven within (systems such as) PA.

Gödel promised a part 2 for his 1931 paper, but this never appeared. There is some
difference of opinion whether Gödel planned to provide detailed proofs of his second
incompleteness theorem in part 2 or whether he planned to let others carry out the
details. In any case, the necessary details were carried out in Hilbert and Bernays
(1934, 1939), later in Feferman (1960), and most recently in Boolos (1993). In Hilbert
and Bernays (1934, 1939), the so-called Hilbert-Bernays derivability conditions were
isolated in connection with a detailed proof of Gödel’s second incompleteness theorem.
Later, these conditions were streamlined in Jerosolow (1973).

I take the liberty of presenting my own particularly careful and clear version of
the Hilbert-Bernays conditions. The starting point is the usual language L = predicate
calculus with equality, with infinitely many constant, relation, and function symbols.
For specificity, let us use the following:

(i) variables xn, n ≥ 1
(ii) constant symbols cn, n ≥ 1

(iii) relation symbols Rn
m, n,m ≥ 1

(iv) function symbols Fn
m, n,m ≥ 1

(v) connectives ¬, ∧, ∨, →, ↔
(vi) quantifiers ∃, ∀
Let us start with the following data:

1. a relational type RT of constant symbols, relation symbols, and function symbols
2. a set T of sentences in (the language based on) RT
3. a one-one function number from formulas of RT into closed terms of RT
4. a distinguished unary function symbol NEG in RT, meaning “negation”
5. a distinguished unary function symbol SSUB in RT, meaning “self-substitution”
6. a distinguished unary function symbol PR in RT, meaning “provability statement”
7. a distinguished formula PROV with at most the free variable x1, expressing “provable

in T”

The following is required. Let A be a formula of RT:

8. NEG(#(A)) = #(¬A) is provable in T.
9. SSUB(#(A)) = #(A[x1/#(A)]) is provable in T.

10. PR(#(A)) = #(PROV[x1/#(A)]) is provable in T.
11. PROV[x1/#(A)] → PROV[x1/PR(#(A))] is provable in T.
12. If A is provable in T, then PROV[x1/#(A)] is provable in T.

Here #(A) is the Gödel number of the formula A, as a closed term of RT.

Theorem 18.3.1 (self-reference lemma) Let A be a formula of RT. There
exists a closed term t of RT such that T proves t = #(A[x1/t]).
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proof Let s = #(A[x1/SSUB(x1)]). Write s = #B, where B = A[x1/SSUB
(x1)].

Note that

B[x1/#(B)] = B[x1/s] = A[x1/SSUB(s)].

Let us now apply condition 9 to B. We have that

SSUB(#(B)) = #(B[x1/#(B)])

is provable in T. Hence

SSUB(s) = #(A[x1/SSUB(s)])

is provable in T. Thus the closed term SSUB(s) is as required. QED

Lemma 18.3.2 (“I am not provable” lemma) There exists a closed term t
such that T proves t = #(¬PROV[x1/t]).

proof By Theorem 18.3.1, setting A = ¬PROV. QED

We fix a closed term t provided by Lemma 18.3.2.

Lemma 18.3.3 Suppose T proves ¬PROV[x1/t]. Then T is inconsistent.

proof Assume T proves ¬PROV[x1/t]. By condition 12,

PROV[x1/#(ØPROV[x1/t])]

is provable in T. By Lemma 18.3.2, T proves PROV[x1/t]. Hence T is incon-
sistent. QED

Lemma 18.3.4 T proves PROV[x1/t] → PROV[x1/PR(t)]. T proves
PROV[x1/t] → PROV[x1/NEG(PR(t))].

proof Let A = ¬PROV[x1/t]. By condition 11,

PROV[x1/#(A)] → PROV[x1/PR(# (A))]

is provable in T. By Lemma 18.3.2,

PROV[x1/t] → PROV[x1/PR(t)]

is provable in T. By condition 10, T proves

PR(t) = # (PROV[x1/t]).

By condition 8, T proves

NEG(# (PROV[x1/t])) = # (¬PROV[x1/t]).

By Lemma 18.3.2, T proves

NEG(PR(t)) = t.

The second claim follows immediately. QED
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We let CON be the sentence

(∀x1)(¬(PROV ∧ PROV[x1/NEG(x1)])).

Theorem 18.3.5 (abstract second incompleteness) Let T obey conditions 1–
12. Suppose T proves CON. Then T is inconsistent.

proof Suppose T is as given. By Lemma 18.3.4, T proves

PROV[x1/t] → PROV[x1/PR(t)] ∧ PROV[x1/NEG(PR(t))].

Given that T proves CON, T proves

¬(PROV[x1/PR(t)] ∧ PROV[x1/NEG(PR(t))]).

Hence T proves ¬PROV[x1/t]. By Lemma 18.3.3, T is inconsistent. QED

Informal statements of Gödel’s second incompleteness theorem are simple and dra-
matic. However, current versions of the formal second incompleteness are complicated
and awkward. Even the abstract form of second incompleteness given earlier using
derivability conditions is rather subtle and involved.

I recently addressed this problem in Friedman (2007a), where I present new versions
of formal second incompleteness that are simple and informally imply informal second
incompleteness. These results rest on the isolation of simple formal properties shared
by consistency statements. Here I do not address any issues concerning proofs of
second incompleteness.

Let us start with the most commonly quoted form of Gödel’s second incompleteness
theorem – for the system PA. PA can be formulated in a number of languages. Of these,
L(prim) is the most suitable for supporting formalizations of the consistency of PA.

We write L(prim) for the language based on 0,S and all primitive recursive function
symbols. Let PA(prim) be the formulation of PA for the language L(prim); that is, the
nonlogical axioms of PA(prim) consist of the axioms for successor, primitive recursive
defining equations, and the induction scheme applied to all formulas in L(prim).

Informal second incompleteness (PA(prim)) Let A be a sentence in L(prim)
that adequately formalizes the consistency of PA(prim), in the informal sense. Then
PA(prim) does not prove A.

We discover the following result. Let PRA be the important subsystem of PA(prim),
based on the same language L(prim), where it is required that the induction scheme be
applied only to quantifier-free formulas of L(prim).

Formal second incompleteness (PA(prim)) Let A be a sentence in L(prim) such
that every equation in L(prim) that is provable in PA(prim) is also provable in
PRA + A. Then PA(prim) does not prove A.

The informal second incompleteness for PA(prim) can be derived in the usual
semiformal way from the preceding formal second incompleteness for PA(prim).

Formal criterion theorem I Let A be a sentence in L(prim) such that every equation
in L(prim) that is provable in PA(prim) is also provable in PRA + A. Then for all n,
PRA + A proves the consistency of PA(prim)n.

Here PA(prim)n consists of the axioms of PA(prim) in prenex form with at most n
quantifiers.

The preceding development can be appropriately carried out for systems with full
induction. However, a more general treatment covers finitely axiomatized theories as
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well. Let us use the system of exponential arithmetic (EFA) for this more general
treatment. EFA is the system of arithmetic based on addition, multiplication, and
exponentiation, with induction applied only to formulas all of whose quantifiers are
bounded to terms. This is the same as the system I�0(exp) in Hajek and Pudlak (1993,
37).

Informal second incompleteness (general many sorted, EFA) Let L be a fragment
of L(many) containing L(EFA). Let T be a consistent extension of EFA in L. Let A be
a sentence in L that adequately formalizes the consistency of T, in the informal sense.
Then T does not prove A.

Formal second incompleteness (general many sorted, EFA) Let L be a fragment
of L(many) containing L(EFA). Let T be a consistent extension of EFA in L. Let A be a
sentence in L such that every universalized inequation in L(EFA) with a relativization
in T is provable in EFA + A. Then T does not prove A.

Formal criterion theorem II Let L be a fragment of L(many) containing L(EFA).
Let T be a consistent extension of EFA in L. Let A be a sentence in L such that every
universalized inequation in L(EFA) with a relativization in T is provable in EFA + A.
Then EFA proves the consistency of every finite fragment of T.

Here a relativization of a sentence ϕ of L(EFA), in T, is an interpretation of ϕ in T
that leaves the meaning of all symbols unchanged but in which the domain is allowed
to consist of only some of the nonnegative integers from the point of view of T.

Finally, I mention an interesting issue about which I am somewhat unclear but
that can be gotten around in a satisfactory way. It can be said that Gödel’s second
incompleteness theorem has a defect in that one is relying on a formalization of
Con(T) within T via the indirect method of Gödel numbers. Not only is the assignment
of Gödel numbers to formulas (and the relevant syntactic objects) ad hoc but one is still
being indirect and not directly dealing with the objects at hand – which are syntactic
and not numerical.

It would be preferable to directly formalize Con(T) within T, without use of any
indirection. Thus, in such an approach, one would add new sorts for the relevant
syntactic objects and introduce the various relevant relations and function symbols,
together with the relevant axioms. Precisely this approach was adopted by Quine
(1951, chap. 7).

However, in so doing, one has expanded the language of T. Accordingly, two choices
are apparent. The first choice is to make sure that as one adds new sorts and new relevant
relations and function symbols and new axioms to T, associated with syntax, one also
somehow has already appropriately treated, directly, the new syntactic objects and
axioms beyond T that arise when one is performing this addition to T. The second
choice is to be content with adding the new sorts and new relevant relations and
function symbols and new axioms to T, associated with the syntax of T only – and not
to try to deal in this manner with the extended syntax that arises from this very process.
This is the choice made in Quine (1951, chap. 7).

I lean toward the opinion that the first choice is impossible to realize in an appropriate
way. Some level of indirection will remain. Perhaps the level of indirection can be
made rather weak and subtle. Thus I lean toward the opinion that it is impossible to
construct extensions of, say, PA that directly and adequately formalize their entire
syntax. I have not tried to prove such an impossibility result, but it seems possible to
do so.
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In any case, the second choice, on reflection, turns out to be wholly adequate for
casting what may be called “direct second incompleteness.” This formulation asserts
that for any suitable theory T, if T′ is the (or any) extension of T through the addition
of appropriate sorts, relations, functions, and axioms, directly formalizing the syntax
of T, including a direct formalization of the consistency of T, then T′ does not prove
the consistency of T (so expressed).

One can recover the usual second incompleteness theorem for T from the preceding
direct second incompleteness by proving that there is an interpretation of T′ in T. This
was also done in Quine (1951, chap. 7). Thus, under this view of second incompleteness,
one does not view Con(T) as a sentence in the language of T but instead as a sentence
in the language of an extension T′ of T. Con(T) becomes a sentence in the language
of T only through an interpretation (in the sense of Tarski) of T′ in T. There are many
such interpretations, all of which are ad hoc. This view would then eliminate ad hoc
features in the formulation of second incompleteness while preserving the foundational
implications.

In the Introduction to Friedman (2011), the reader will find new statements of
Gödel’s second incompleteness theorem based on Gödel’s completeness theorem.

18.4 Lengths of Proofs

Gödel (1936) discusses a result that, in modern terminology, asserts the following. Let
RTT be Russell’s simple theory of types with the axiom of infinity. Let RTTn be the
fragment of RTT using only the first n types. Let f:N → N be a recursive function. For
each n ≥ 0, there are infinitely many sentences ϕ such that

f(n) < m,

where n is the least Gödel number of a proof of ϕ in RTTn+1 and m is the least Gödel
number of a proof of ϕ in RTTn.

Gödel expressed the result in terms of lengths of proofs rather than in terms of
Gödel numbers or the total number of symbols. He did not publish any proofs of this
result or results of a similar nature. As can be surmised from the introductory remarks
by R. Parikh, it is likely that Gödel had inadvertently used lengths and probably
intended Gödel numbers or numbers of symbols. In any case, the analogous result with
Gödel numbers was proved in Mostowski (1952). Similar results were also proved
in Ehrenfeucht and Mycielski (1971) and Parikh (1971). See also Parikh (1973) for
results going in the opposite direction concerning the number of lines in proofs in
certain systems.

In an unpublished manuscript, I considered, for any reasonable system T and pos-
itive integer n, that the finite consistency statement Conn(T) expresses that “every
inconsistency in T uses at least n symbols.” I gave a lower bound of n1/4 on the number
of symbols required to prove Conn(T) in T, provided that n is sufficiently large. A more
careful version of the argument gives the lower bound of n1/2 for sufficiently large n.
I called this “finite second incompleteness.” A much more careful analysis of finite
second incompleteness is in Pudlak (1985), which establishes an (n(log(n))−1/2) lower
bound and an O(n) upper bound for systems T satisfying certain reasonable conditions.
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It would be very interesting to extend finite second incompleteness in several di-
rections. One direction is to give a treatment of a good lower bound for a proof of
Conn(T) in T, which is along the lines of the Hilbert-Bernays derivability conditions,
adapted carefully for finite second incompleteness. I offer a treatment of the derivabil-
ity conditions in Section 18.3 as a launching point. A number of issues arise as to the
best way to set this up and what level of generality is appropriate. Another direction
to take finite second incompleteness is to give some versions that are not asymptotic;
that is, they involve specific numbers of symbols that are argued to be related to actual
mathematical practice.

Although the very good upper bound of O(n) is given in Pudlak (1985) for a proof of
Conn(T) in T, at least for some reasonable systems T, the situation seems quite different
if we are talking about proofs in S of Conn(T), where S is significantly weaker than T.
For specificity, consider how many symbols it takes to prove Conn(ZF) in PA, where n
is large. It seems plausible that there is no subexponential upper bound here.

Obviously, though, if there is some algorithm and polynomial P that PA can prove
is an algorithm for testing the satisfiability of Boolean expressions whose run time is
bounded by P, then PA proves Conn(ZF) using a polynomial number of symbols in n
(assuming that Con(ZF) is, in fact, true). Thus, to show that there is no subexponential
upper bound here, we will have to refute this strong version of P �= NP. However, this
appears to be as challenging as proving P �= NP.

Some other aspects of lengths of proofs seem important. One such aspect is the issue
of overhead. Gödel (1940) established that any proof of an arithmetic sentence A in
Von Neumann–Bernays–Gödel set theory (NBG) + AxC can be converted to a proof
of A in NBG.

Gödel used the method of relativization. Thus one obtains constants c,d such that if
arithmetic A is provable in NBG + AxC using n symbols, then A is provable in NBG
using at most cn+d symbols.

What is not at all clear here is whether c,d can be made reasonably small. Clearly
a lot of overhead is involved on two counts. One is in the execution of the actual
relativization, which involves relativizing to the constructible sets. The other is that
one must insert the proofs of various facts about the constructible sets, including that
they form a model of NBG.

The same remarks can be made with regard to NBG + GC + CH and NBG + GC,
where GC is the global axiom of choice. Furthermore, these remarks apply to ZFC and
ZF and also to ZFC + CH and ZFC. They also apply equally well to the Cohen forcing
method (Cohen, 1963, 1964) and to proofs from ZF + ¬AxC and ZFC + ¬CH.

I close with another issue regarding lengths of proofs in a context that is often
considered immune to incompleteness phenomena. Finite incompleteness phenomena
are very much in evidence here. Tarski and McKinsey (1951) proved the completeness
of the usual axioms for real closed fields using quantifier elimination. This also provides
a decision procedure for recognizing the first-order sentences in ((, <, 0, 1, +, −, •).
His method applies to the following three fundamental axiom systems:

1. The language is 0, 1, +, −, •. The axioms consist of the usual field axioms, together
with −1 is not the sum of squares, x or −x is a square, and every polynomial of odd
degree with leading coefficient 1 has a zero.
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2. The language is 0, 1, +, −, •, <. The axioms consist of the usual ordered field axioms,
together with every positive element has a square root and every polynomial of odd
degree with leading coefficient 1 has a zero.

3. The language is 0, 1, +, −, •, <. The axioms consist of the usual ordered field axioms,
together with the axiom scheme asserting that if a first-order property holds of something,
and there is an upper bound to what it holds of, then there is a least upper bound to what
it holds of.

For reworkings of and improvements on Tarski, see Cohen (1969), Renegar (1992a,
1992b, 1992c), and Basu et al. (2006). In terms of computational complexity, the set
of true first-order sentences in ((, <, 0, 1, +, −, •) is exponential space easy and
nondeterministic exponential time hard. The gap has not been filled. Even the first-
order theory of ((,+) is nondeterministic exponential time hard (see Rabin, 1977).
The work just cited concerns mainly the computational complexity of the set of true
sentences in the reals (sometimes with only addition). It does not deal directly with the
lengths of proofs in systems 1, 2, and 3.

What can I say about the number of symbols in proofs in systems 1, 2, and 3? I
conjecture that with the usual axioms and rules of logic, in all three cases, there is a
double exponential lower and upper bound on the number of symbols required in a
proof of any true sentence in each of 1, 2, and 3.

What is the relationship between sizes of proofs of the same sentence (without <)
in 1, 2, and 3? I conjecture that asymptotically, there are infinitely many true sentences
without < such that there is a double exponential reduction in the number of symbols
needed to prove it when passing from system 1 to system 3.

These issues concerning sizes of proofs are particularly interesting when the quan-
tifier structure of the sentence is restricted. For instance, the cases of purely universal,
purely existential are particularly interesting, especially when the matrix is particu-
larly simple. Other cases of clear interest are ∀ . . .∀∃ . . . ∃ and ∃ . . . ∃∀ . . .∀, with
the obviously related conditions of surjectivity and nonsurjectivity being of particular
interest.

Another aspect of sizes of proofs comes out of strong mathematical �0
2-sentences.

The earliest ones were presented in Goodstein (1944) and Paris and Harrington (1977)
and are proved just beyond PA. I discovered many examples in connection with theo-
rems of Kruskal (1960) and Robertson and Seymour (1985, 2004) that are far stronger,
with no predicative proofs (see Friedman, 2002a). None of these three references dis-
cuss the connection with sizes of proofs. This connection is discussed in Smith (1985,
132–35) and in the unpublished abstracts (Friedman, 2006a, 2006b, 2006c, 2006d,
2006e, 2006f, 2006g) from the Foundations of Mathematics Archives.3

The basic idea is this: a number of mathematically natural �0
2-sentences

(∀n)(∃m)(R(n,m)) are provably equivalent to the 1-consistency of various systems
T. One normally gets, as a consequence, that the Skolem function m of n grows very
fast, asymptotically, so that it dominates the provably recursive functions of T.

However, we have observed that in many cases, one can essentially remove the
asymptotics. In other words, in many cases, we have verified that we can fix n to

3 See http://cs.nyu.edu/pipermail/fom/.
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be very small (numbers like 3 or 9 or 15) and consider the resulting �0
1-sentence

(∃m)(R(n,m)). The result is that any proof in T (or certain strong fragments of T) of
this �0

1-sentence must have an absurd number of symbols, for example, an exponential
stack of one hundred 2s. Yet, if we go a little beyond T, we can prove the full�0

2-sentence
(∀n)(∃m)(R(n,m)) in a normal-sized mathematics manuscript, thereby yielding a proof
just beyond T of the resulting�0

1-sentence R(n,m) with n fixed to be a small (or remotely
reasonable) number. This provides myriad mathematical examples of Gödel’s (1936)
original length of proof phenomena.

18.5 The Negative Interpretation

Gödel wrote four fundamental papers concerning formal systems based on intuitionistic
logic (Gödel, 1932b, 1933a, 1933b, 1958). Gödel (1972) is a revised version of Gödel
(1958).

Gödel (1932b) proves that the intuitionistic propositional calculus cannot be viewed
as a classical system with finitely many truth values. He shows this by constructing an
infinite descending chain of logics intermediate in strength between classical propo-
sitional calculus and intuitionistic propositional calculus. (For more on intermediate
logics, see Hosoi and Ono (1973) and Minari (1983).)

Gödel (1933b) introduces his negative interpretation in the form of an interpretation
of PA in Heyting arithmetic (HA). Here HA is the corresponding version of PA based
on intuitionistic logic. It can be axiomatized by taking the usual axioms and rules
of intuitionistic predicate logic, together with the axioms of PA as usually given. Of
course, one must be careful to present ordinary induction in the usual way and not use
the least number principle.

It is natural to isolate Gödel’s negative interpretation in the following two ways:

a. an interpretation of classical propositional calculus in intuitionistic propositional
calculus

b. an interpretation of classical predicate calculus in intuitionistic predicate calculus

In modern terms, it is convenient to use ⊥, ¬, ∨, ∧, →. The interpretation for propo-
sitional calculus inductively interprets

⊥ as ⊥
¬ as ¬
∧ as ∧
→ as →
∨ as ¬¬∨

For predicate calculus,

∀ as ∀
∃ as ¬¬∃
ϕ as ¬¬ϕ, where ϕ is atomic
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Now, in HA, we can prove n = m ∨¬n = m. It is then easy to see that the successor
axioms and the defining equations of PA are sent to theorems of HA, and also, each
induction axiom of PA is sent to a theorem of HA. Furthermore, the axioms of classical
predicate calculus become theorems of intuitionistic predicate calculus, and the rules
of classical predicate calculus become rules of intuitionistic predicate calculus. Hence,
under the negative interpretation, theorems of classical propositional calculus become
theorems of intuitionistic propositional calculus, theorems of classical predicate calcu-
lus become theorems of intuitionistic predicate calculus, and theorems of PA become
theorems of HA.

In addition, any�0
1-sentence (∀n)(F(n) = 0), where F is a primitive recursive function

symbol of PA, is sent to a sentence that is provably equivalent to (∀n)(F(n) = 0). It is
then easy to conclude that every �0

1 theorem of PA is a theorem of HA.
Gödel’s negative interpretation has been extended to many pairs of systems, most

of them of the form T,T′, where T,T′ have the same nonlogical axioms and where T
is based on classical predicate calculus, whereas T′ is based on intuitionistic predicate
calculus (e.g., see Kreisel, 1968a, 344; 1968b, sect. 5; Myhill, 1974; Friedman, 1973;
Leivant, 1985).

A much stronger result holds for PA over HA. Every �0
2-sentence provable in PA

is provable in HA. The first proofs of this result were from the proof theory of PA
via Gentzen (1969; Schütte, 1977) and from Gödel’s so-called Dialectica or functional
interpretation (Gödel, 1958, 1972).

However, for other pairs for which the negative interpretation shows that they
have the same provable �0

1-sentences, say, classical and intuitionistic second-order
arithmetic, one does not have the required proof theory. In this case, the Dialectica
interpretation has been extended by Spector (1962), and that these two systems have
the same provable �0

2-sentences then follows.
Nevertheless, there are many appropriate pairs for which the negative interpretation

works, yet there is no proof theory and no functional interpretation. In Friedman
(1978), I broke this impasse by modifying Gödel’s negative interpretation via what is
now called the “A-translation” (see also Dragalin, 1980). I illustrate the technique for
PA over HA, formulated with primitive recursive function symbols.

Let A be any formula in L(HA) = L(PA). We define the A-translation ϕA of the
formula ϕ in L(HA), in case no free variable of A is bound in ϕ. Take ϕA to be the
result of simultaneously replacing every atomic subformula ψ of ϕ by (ψ ∨ A). In
particular, ⊥ gets replaced by what amounts to A.

The A-translation is an interpretation of HA in HA; that is, if ϕA is defined, and
HA proves A, then HA proves ϕA. Also, obviously, HA proves A → ϕA.

Now suppose (∃n)(F(n,m) = 0) is provable in PA, where F is a primitive recursive
function symbol. By Gödel’s negative interpretation, ¬¬(∃n)(F(n,m) = 0) is provable
in HA. Write this as ((∃n)(F(n,m) = 0) → ⊥) → ⊥.

By taking the A-translation, with A = (∃n)(F(n,m) = 0), we obtain that HA proves
((∃n)(F(n,m) = 0 ∨ (∃n)(F(n,m) = 0)) → (∃n)(F(n,m) = 0)) → (∃n)(F(n,m) = 0):

((∃n)(F(n,m) = 0) → (∃n)(F(n,m) = 0)) →
(∃n)(F(n,m) = 0),

(∃n)(F(n,m) = 0).
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This method applies to a large number of pairs T/T′, as indicated in Friedman (1973)
and Leivant (1985). Gödel’s so-called Dialectica interpretation, or functional interpre-
tation, of HA is presented in Gödel (1958, 1972).

In Gödel’s Dialectica interpretation, theorems of HA are interpreted as derivations
in a quantifier-free system T of primitive recursive functionals of finite type that is
based on quantifier-free axioms and rules, including a rule of induction.

The Dialectica interpretation has had several applications in different directions. We
will not discuss applications to programming languages and category theory. To begin
with, the Dialectica interpretation can be combined with Gödel’s negative interpretation
of PA in HA to form an interpretation of PA in Gödel’s quantifier-free system T.

One obvious application, and motivation, is philosophical, and Gödel discusses this
aspect in both papers, especially the second. The idea is that the quantifiers in HA or
PA, ranging over all natural numbers, are not finitary, whereas T is arguably finitary –
at least in the sense that T is quantifier-free. However, the objects of T are at least prima
facie infinitary, and so there is the difficult question of how to gauge this trade-off. One
idea is that the objects of T should not be construed as infinite completed totalities but
rather as rules. Interested readers can consult the rather extensive introductory notes to
Gödel (1958) in Gödel (1990).

Another application is to extend the interpretation to the two-sorted first-order
system known as second-order arithmetic, or Z2. This was carried out by Spector
(1962). Here the idea is that one may construe such a powerful extension of Gödel’s
Dialectica interpretation as some sort of constructive consistency proof for the rather
metamathematically strong and highly impredicative system Z2. However, in various
communications, Gödel was not entirely satisfied that the quantifier-free system Spector
used was truly constructive.

We believe that the Spector development has not been fully exploited. In particular,
it ought to give rather striking mathematically interesting characterizations of the
provably recursive functions and provable ordinals of Z2 and various fragments of Z2.

Another fairly recent application is to use the Dialectica interpretation, and ex-
tensions of it to systems involving functions and real numbers, to obtain sharper
uniformities in certain areas of functional analysis that had been obtained before by
the specialists. This work has been pioneered by Kohlenbach (see Kohlenbach, 2005;
Kohlenbach and Gerhardy, 2008; Kohlenbach and Oliva, 2003; see also Chapter 17 in
this volume).

18.6 The Axiom of Choice and the Continuum Hypothesis

Gödel wrote six manuscripts directly concerned with the continuum hypothesis: two
abstracts (Gödel, 1938, 1939a), one paper with sketches of proofs (Gödel, 1939b), one
research monograph with fully detailed proofs (Gödel, 1940), and one philosophical
paper, in two versions (Gödel, 1964 [1947]). The normal abbreviation for the axiom
of choice is AxC. The normal abbreviation for the continuum hypothesis is CH. A
particularly attractive formulation of CH asserts that every set of real numbers is either
in one-one correspondence with a set of natural numbers or in one-one correspondence
with the set of real numbers.
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Normally, one follows Gödel in considering CH only in the presence of AxC.
However, note that in this form, CH can be naturally considered without the presence of
AxC. In fact, Solovay’s model satisfying ZF + DC + “all sets are Lebesgue measurable”
also satisfies CH in the strong form that every set of reals is countable or has a perfect
subset (this strong form is incompatible with AxC; see Solovay, 1970). Here DC is the
axiom of dependent choice.

The statement of CH is from Cantor. Gödel also considers the generalized continuum
hypothesis (GCH), the statement of which is credited to Hausdorff. The GCH asserts
that for all sets A, every subset of ℘(A) is either in one-one correspondence with a
subset of A or in one-one correspondence with℘(A). Here℘ is the power set operation.
Gödel’s work establishes an interpretation of ZFC + GCH in ZF. This provides a very
explicit way of converting any inconsistency in ZFC + GCH to an inconsistency in ZF.

We can attempt to quantify these results. In particular, it is clear that the interpretation
given by Gödel of ZFC + GCH in ZF, by relativizing to the constructible sets, is rather
large in the sense that, when fully formalized, it results in a lot of symbols. It also
seems to result in a lot of quantifiers. How many?

So far I have been talking about the crudest formulations in primitive notation,
without the benefit of abbreviation mechanisms. However, abbreviation mechanisms
are essential for the actual conduct of mathematics. In fact, current proof assistants –
where humans and computers interact to create verified proofs – necessarily incorporate
very substantial abbreviation mechanisms (see, e.g., Barendregt and Wiedijk, 2005;
Wiedijk, 2006). Hence the question arises how simple an interpretation of ZFC +
GCH in ZF can be, with abbreviations allowed in the presentation of the interpretation.
This is far from clear.

P. J. Cohen proved that if ZF is consistent, then so is ZF + ¬AxC and ZFC +
¬CH, thus complementing Gödel’s results (see Cohen, 1963, 1964). The proof does
not readily give an interpretation of ZF + ¬AxC or of ZFC + ¬CH in ZF. It can
be converted into such an interpretation by a general method whereby under certain
conditions (met here), if the consistency of every given finite subsystem of one system
is provable in another, then the first system is interpretable in the other (see Feferman,
1960).

Again, the question arises, how simple can an interpretation be of ZF + ¬AxC or of
ZFC + ¬CH in ZF, with abbreviations allowed in the presentation of the interpretation?
Again, this is far from clear. Also, how does this question compare with the previous
question?

Another kind of complexity issue associated with the CH is of interest. First, I will
provide some background. It is known that every three-quantifier sentence in primitive
notation ∈,= is decided in a weak fragment of ZF (see Gogol, 1979; Friedman, 2003b).
Moreover, the five-quantifier sentence in ∈,= is not decided in ZFC (it is equivalent
to the existence of a subtle cardinal over ZFC; see Friedman, 2003a). It is also known
that AxC can be written with five quantifiers in ∈,= over ZFC (see Maes, 2007). The
question is, how many quantifiers are needed to express CH over ZFC in ∈,=? We can
also ask this and related questions where abbreviations are allowed.

Most mathematicians instinctively take the view that because CH is neither provable
nor refutable from the standard axioms for mathematics (ZFC), the ultimate status of CH
has been settled, and nothing is left to ponder. However, many mathematical logicians,
particularly those in set theory, take quite a different view, including Gödel. These
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mathematicians take the view that the CH is a well-defined mathematical assertion
with a definite truth value. The problem is to determine just what this truth value is.

The idea here is that a definite system of objects exists independently of human
minds and that human minds can no more manipulate the truth value of statements
of set theory than they can manipulate the truth value of statements about electrons
and stars and galaxies. This is the so-called Platonist point of view that is argued so
forcefully and explicitly in Gödel (1947 [1964]).

The late P. J. Cohen led a panel discussion at the Gödel Centenary celebration in
Vienna in 2006 called “On Unknowability,” in which he conducted a poll roughly
along these lines. The question he asked was, “Does the continuum hypothesis have a
definite answer?” or “Does the continuum hypothesis have a definite truth value?” The
response from the audience appeared quite divided on the issue. Of the panelists, the
ones who have expressed very clear views on this topic were most notably Cohen and
Hugh Woodin. Cohen took a formalist viewpoint, whereas Woodin took a Platonist
one. (See Chapters 19 and 20 – their respective contributions to this volume.)

My own view is that we simply do not know enough in the foundations of math-
ematics to decide the truth or appropriateness of the formalist versus the Platonist
viewpoint – or, for that matter, what mixture of the two is true or appropriate. Then it
is reasonable to place the burden on me to explain what kind of additional knowledge
could be relevant for this issue.

My ideas are not very well developed, but I will offer at least something for consid-
eration. It may be possible to develop a theory of “fundamental mental pictures” that is
so powerful and compelling that it supplants any discussion of formalism-Platonism in
anything like its present terms. What may come out is a fundamental mental picture of
the axioms of ZFC, even with some large cardinals, along with a theorem to the effect
that there is no fundamental mental picture for CH and no fundamental mental picture
for ¬CH.

18.7 Wqo Theory

Wqo theory is a branch of combinatorics that has proved to be a fertile source of deep
metamathematical phenomena. A qo (quasi-order) is a reflexive transitive relation
(A,≤). A wqo (well quasi-order) is a qo (A,≤) such that for all infinite sequences
x1,x2, . . . from A, ∃ i < j such that xi ≤ xj. The highlights of wqo theory are that
certain qos are wqos and certain operations on wqos produce wqos. Kruskal (1960)
treats finite trees as finite posets and studies the qo; there exists an inf preserving
embedding from T1 into T2.

Theorem 18.7.1 (Kruskal, 1960) The preceding qo of finite trees as posets is
a wqo.

The simplest proof of Theorem 18.7.1 and some extensions is in Nash-Williams
(1963), with the introduction of minimal bad sequences. I have observed that the
connection between wqos and well orderings can be combined with known proof
theory to establish independence results. The standard formalization of “predicative
mathematics” is from Feferman and Schutte (FS; see Feferman, 1964, 1968, 1998).
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Poincaré, Weyl, and others railed against impredicative mathematics (see Weyl, 1918,
1987; Feferman, 1998, 289–91; Folina, 1992).

Theorem 18.7.2 (Friedman 2002a) Kruskal’s tree theorem (KT) cannot be
proved in FS.

KT goes considerably beyond FS, and an exact measure of KT is known (see Rathjen
and Weiermann, 1993). J. B. Kruskal actually considered finite trees whose vertices
were labeled from a wqo ≤*. The additional requirement on embeddings is that label(v)
≤* label(h(v)).

Theorem 18.7.3 (Kruskal, 1960) The qo of finite trees as posets, with vertices
labeled from any given wqo, is a wqo.

Labeled KT is considerably stronger, proof theoretically, than KT, even with only
two labels, 0 ≤ 1. We have not seen a metamathematical analysis of labeled KT. Note
that KT is a �1

1-sentence and that labeled KT is a �1
2-sentence.

Theorem 18.7.4 Labeled KT does not hold in the hyperarithmetic sets. In fact,
RCA0 +KT implies ATR0.

A proof of Theorem 18.7.4 will appear in Friedman et al. (2011).
It is natural to impose a growth rate in KT in terms of the number of vertices of Ti.

Corollary 18.7.5 (linearly bounded KT) Let T1,T2, . . . be a linearly bounded
sequence of finite trees. ∃ i < j such that Ti is inf preserving embeddable into Tj.

Corollary 18.7.6 (computational KT) Let T1,T2, . . . be a sequence of finite
trees in a given complexity class. There exists i < j such that Ti is inf preserving
embeddable into Tj.

Note that Corollary 18.7.6 is �0
2.

Theorem 18.7.7 Corollary 18.7.5 cannot be proved in FS. This holds even for
linear bounds n + k with variable n and constant k.

Theorem 18.7.8 Corollary 18.7.6 cannot be proved in FS, even for linear time
and logarithmic space.

By an obvious application of weak Konig’s lemma, Corollary 18.7.5 has very strong
uniformities.

Theorem 18.7.9 (uniform linearly bounded KT) Let T1,T2, . . . be a linearly
bounded sequence of finite trees. There exists i < j ≤ n such that Ti is inf
preserving embeddable into Tj, where n depends only on the given linear bound
and not on T1,T2, . . . .

With this kind of strong uniformity, we can obviously strip Theorem 18.7.9 of
infinite sequences of trees. Using the linear bounds n + k, with k being fixed, we obtain
the following:

Theorem 18.7.10 (finite KT) Let n ) k. For all finite trees T1, . . . ,Tn with
each |Ti| ≤ i + k, there exists i < j such that Ti is inf preserving embeddable into
Tj.
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Given that Theorem 18.7.10 → Theorem 18.7.9 → Corollary 18.7.5 (using bounds
n + k, with variable n and k constant), we see that Theorem 18.7.10 is not provable in
FS. Other �0

2 forms of KT involving only the internal structure of a single finite tree
can be found in Friedman (2002a).

I proved analogous results for the extended Kruskal theorem (EKT), which involves
a finite label set and a gap embedding condition, only here, the strength jumps to that of
�1

1-CA0. I said that the gap condition was natural (i.e., EKT was natural). Many people
were unconvinced. Soon thereafter, EKT became a tool in the proof of the well-known
graph minor theorem of Robertson and Seymour (1985, 2004):

Theorem 18.7.11 Let G1,G2, . . . be finite graphs. There exists i < j such that
Gi is minor included in Gj.

I then asked Robertson and Seymour to prove a form of EKT that I knew implied
full EKT, just from graph minor theorem (GMT). They complied, and we wrote a triple
paper (Friedman et al., 1987). The upshot is that GMT is not provable in �1

1-CA0.
Just where GMT is provable is unclear, and recent discussions with Robertson have
not stabilized. I disavow remarks in Friedman et al. (1987) about where GMT can be
proved. An extremely interesting consequence of GMT is the subcubic graph theorem.
A subcubic graph is a graph in which every vertex has valence ≤ 3. (Loops and multiple
edges are allowed.)

Theorem 18.7.12 Let G1,G2, . . . be subcubic graphs. There exists i< j such that
Gi is embeddable into Gj as topological spaces (with vertices going to vertices).

Robertson and Seymour also claim to be able to use the subcubic graph theorem for
linkage to EKT (see Robertson and Seymour, 1985; Friedman et al., 1987). Therefore
the subcubic graph theorem (even in the plane) is not provable in �1

1-CA0.
I have discovered lengths of proof phenomena in wqo theory and use �0

1 sentences
(see Friedman, 2006a, 2006b, 2006c, 2006d, 2006e, 2006f, 2006g).

(*) Let T1, . . . ,Tn be a sufficiently long sequence of trees with vertices labeled from
{1,2,3}, where each |Ti| ≤ i. There exists i < j such that Ti is inf and label preserving
embeddable into Tj.
(**) Let T1, . . . ,Tn be a sufficiently long sequence of subcubic graphs, where each
|Ti| ≤ i + 13. There exists i < j such that Gi is homeomorphically embeddable into Gj.

Theorem 18.7.13 Every proof of (*) in FS uses at least 2[1000] symbols. Every
proof of (**) in �1

1-CA0 uses at least 2[1000] symbols.

18.8 Borel Selection

Let S ⊆ (2and E ⊆ (. A selection for A on E is a function f:E → ( whose graph is
contained in S. A selection for S is a selection for S on (. Let us say that S is symmetric
if and only if S(x,y) ↔ S(y,x).

Theorem 18.8.1 Let S ⊆ (2 be a symmetric Borel set. Then S or (2\S has a
Borel selection.



420 my forty years on his shoulders

My proof of Theorem 18.8.1 in Friedman (1981) relied heavily on Borel determinacy,
from D. A. Martin (see Martin, 1975, 1985; Kechris, 1994, 137–48).

Theorem 18.8.2 (Friedman, 1981) Theorem 18.8.1 is provable in ZFC, but
not without the axiom scheme of replacement.

Another kind of Borel selection theorem is implicit in the work of Debs and Saint
Raymond of Paris VII. They take the general form that if there is a nice selection for S
on compact subsets of E, then there is a nice selection for S on E (see Debs and Saint
Raymond, 1996, 1999, 2001, 2004, 2007).

Theorem 18.8.3 Let S ⊆ (2 be Borel and E ⊆ ( be Borel with empty interior.
If there is a continuous selection for S on every compact subset of E, then there
is a continuous selection for S on E.

Theorem 18.8.4 Let S ⊆ (2 be Borel and E ⊆ ( be Borel. If there is a Borel
selection for S on every compact subset of E, then there is a Borel selection for
S on E.

Theorem 18.8.5 (Friedman, 2005) Theorem 18.8.3 is provable in ZFC, but not
without the axiom scheme of replacement. Theorem 18.8.4 is neither provable
nor refutable in ZFC.

We can say more.

Theorem 18.8.6 (Friedman, 2005) The existence of the cumulative hierarchy
up through every countable ordinal is sufficient to prove Theorems 18.8.1 and
18.8.3. However, the existence of the cumulative hierarchy up through any suitably
defined countable ordinal is not sufficient to prove Theorem 18.8.1 or Theorem
18.8.3.

The f:N → N constructible in any given x ⊆ N are eventually dominated by some
g:N → N.

Theorem 18.8.7 ZFC + Theorem 18.8.4 implies DOM (Friedman, 2005).
ZFC + DOM implies Theorem 18.8.4 (Debs and Saint Raymond, 2007).

18.9 Boolean Relation Theory

The principal reference for this section is Friedman (2011). I begin with two examples
of statements in Boolean relation theory (BRT) of special importance for the theory.

Thin set theorem Let k ≥ 1 and f:Nk → N. There exists an infinite set A ⊆ N
such that f[Ak] �= N.

Complementation theorem Let k ≥ 1 and f:Nk → N. Suppose that for all
x ∈ Nk, f(x) > max(x). There exists an infinite set A ⊆ N such that f[Ak] = N\A.

These two theorems are official statements in BRT. In the complementation theorem,
A is unique. We now write them in BRT form.



boolean relation theory 421

Let MF be the set of all functions from some Nk into N. Let INF be the family of all
infinite subsets of N. We use IBRT for inequational Boolean relation theory. We use
EBRT for equational Boolean relation theory.

Thin set theorem For all f ∈ MF, there exists A ∈ INF such that fA �= N.

Complementation theorem For all f ∈ SD, there exists A ∈ INF such that fA
= N\A.

The thin set theorem lives in IBRT in A,fA. There are only 222 = 16 statements in
IBRT in A,fA. These are easily handled.

The complementation theorem lives in EBRT in A,fA. There are only 222 = 16
statements in IBRT in A,fA. These are easily handled.

For EBRT/IBRT in A,B,C,fA,fB,fC,gA,gB,gC, we have 229= 2512 statements.
This is entirely unmanageable. It would take several major new ideas to make this
manageable.

Discovery There is a statement in EBRT in A,B,C,fA,fB,fC,gA,gB,gC that is indepen-
dent of ZFC. It can be proved in SMAH+ but not in SMAH, even with the axiom of
constructibility.

Here SMAH+ = ZFC + (∀n)(∃κ)(κ is a strongly k-Mahlo cardinal). SMAH =
ZFC + {(∃κ)(κ is a strongly k-Mahlo cardinal}k. The particular example is far nicer
than any typical statement in EBRT in A,B,C,fA,fB,fC,gA,gB,gC. However, it is not
nice enough to be regarded as suitably natural.

Showing that all such statements can be decided in SMAH+ seems to be too hard.
What to do? Look for a natural fragment of full EBRT in A,B,C,fA,fB,fC,gA,gB,gC
that includes the example, where we can decide all statements in the fragment within
SMAH+.

We can also look for a bonus: a striking feature of the classification that is itself
independent of ZFC. Then we have a single natural statement independent of ZFC. To
carry this off, we need to use the function class ELG of functions of expansive linear
growth. These are functions f:Nk → N such that there exist constants c,d > 1 such that

c|x| ≤ f(x) ≤ d|x|

holds for all but finitely many x ∈ Nk.

Template For all f,g ∈ ELG, there exist A,B,C ∈ INF such that

X ∪ .fY ⊆ V ∪ .gW
P ∪ .fR ⊆ S ∪ .gT.

Here X,Y,V,W,P,R,S,T are among the three letters A, B, C.
Note that there are 6,561 such statements. I have shown that all these statements are

provable or refutable in RCA0, with exactly twelve exceptions. These twelve exceptions
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are really exactly one exception up to the obvious symmetry: permuting A,B,C, and
switching the two clauses. The single exception is the exotic case:

Proposition 18.9.1 A For all f,g ∈ ELG, there exist A,B,C ∈ INF such that

A ∪ .fA ⊆ C ∪ .gB
A ∪ .fB ⊆ C ∪ .gC.

This statement is provably equivalent to the 1-consistency of SMAH, over ACA′. If
we replace “infinite” with “arbitrarily large finite,” then we can carry out this second
classification entirely within RCA0.

Inspection shows that all the nonexotic cases come out with the same truth value
in the two classifications, and that is, of course, provable in RCA0. Furthermore, the
exotic case comes out true in the second classification.

Theorem 18.9.1 The following is provable in SMAH+ but not in SMAH, even
with the axiom of constructibility. An instance of the template holds if and only
if, in that instance, “infinite” is replaced with “arbitrarily large finite.”

18.10 Finite Incompleteness

A major direction of current research is to find an explicit �0
1-sentence that can be

proved only using large cardinals and that arguably represents clear and compelling
information in the finite mathematical realm. I have been engaged in this search in
recent years and now present a recent version of this work in progress. The reader will
find subsequent developments discussed in the Introduction to Friedman (2011).

Kernels in digraphs are intensively studied with a large literature base, including
applications to game theory, computer science, and other areas. A digraph is a pair
G = (V,E), where E ⊆ V x V. The vertices of G are the elements of V, and the edges of
G are the elements of E. A dag is a digraph in which there are no cycles. We say that S
is a kernel in (V,E) if and only if

i. No element of S connects to any element of S.
ii. Every element of V\S connects to some element of S.

Theorem 18.10.1 (VM44) There is a unique kernel in every finite dag.
Let Q be the set of all rational numbers.
We say that x,y ∈ Qk are order equivalent if and only if, for all 1 ≤ i,j ≤ k, xi

< xj ↔ yi < yj.
We say that E ⊆ Ak is order-invariant if and only if, for all order equivalent

x,y ∈ Ak, x ∈ E ↔ y ∈ E.
Let A ⊆ Q be fixed. The A-digraphs are the digraphs (Ak ,E), where E is an

order invariant subset of A2k.

A digraph (Ak,E) is downward if and only if x E y → max(x) > max(y).
The upper shift of a vector from Q is obtained by adding 1 to all of its nonnegative

coordinates.
The upper shift of a set of vectors from Q is the set of upper shifts of its elements.
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UPPER SHIFT KERNEL THEOREM. There exists 0 ∈ A ⊆ Q such that every
downward A-digraph has a kernel containing its upper shift.

Theorem 18.10.2 USKT is provable in SRP+ but not in SRP. ACA0proves
USKT if and only if Con(SRP).

Here SRP+ = ZFC + (∀k)(there is a cardinal with the k-SRP). SRP = ZFC +
{there is a cardinal with the k-SRP}k. We say that λ has the k-SRP if and only if every
2 coloring of the unordered k-tuples from λ has a homogeneous set which is stationary
in λ.

Theorem 18.10.3 is essentially finitary in the following sense.

Theorem 18.10.3 There is an algorithm α such that the following is provable
in ACA0. USKT holds if and only if α never terminates.

We now present an explicitly finite form of USKT. We use the following notion of
height of a tuple from Q. This is the sum of the magnitudes of the numerators and
denominators in the reduced forms of the coordinates.

Let (V,E) be a digraph, where V is a set of tuples from Q. An n-kernel is a set S ⊆
V such that

i. No element of S connects to any element of S.
i. Every element of V\S of height p ≤ n connects to some element of S of height ≤ 8p2.

The n-upper shift of S is the set of elements of the upper shift of S of height ≤ n.

FINITE UPPER SHIFT KERNEL THEOREM Let n ≥ 1. There exists finite
0 ∈ A ⊆ Q such that every downward A-digraph has an n-kernel containing its
n-upper shift. We can choose A and the n-kernels to consist entirely of tuples of
height ≤ 8n2.

Theorem 18.10.4 EFA proves FUSKT if and only if Con(SRP).

Note that FUSKT is explicitly �0
1.

18.11 Incompleteness in the Future

The incompleteness phenomena, the centerpiece of Gödel’s legacy, have come a long
way. The same is true of the related phenomenon of recursive unsolvability, also part
of the Gödel legacy. The phenomena are so deep and rich in possibilities that we
expect the future to eclipse the past and present. Yet continued substantial progress is
expected to be painfully slow, requiring considerably more than the present investment
of mathematical and conceptual power devoted to the extension and expansion of the
phenomena. This assessment also applies if we consider the P = NP problem as part
of the Gödel legacy (as is common today) on the basis of his letter of March 20, 1956,
to John von Neumann (Gödel, 2003b, letter 21, 373–77).

Also consider the recursive unsolvability phenomena. Perhaps the most striking
example of this for the working mathematician is the recursive unsolvability of
Diophantine problems over the integers (Hilbert’s tenth problem), as discussed in
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Section 18.2. We have, at present, no idea of the boundary between recursive de-
cidability and recursive undecidability in this realm. Yet I conjecture that we will
understand this in the future and that we will find, perhaps, that recursive undecidabil-
ity kicks in already for degree 4 with four variables. However, this would require a
complete overhaul of the current solution to Hilbert’s tenth problem, replete with new,
deep ideas. This would result in a sharp increase in the level of interest for the working
mathematician who is not particularly concerned with issues in the foundations of
mathematics.

In addition, we still do not know whether an algorithm exists to decide whether a
Diophantine problem has a solution over the rationals. I conjecture that this will be
answered in the negative and that the solution will involve some clever number-theoretic
constructions of independent interest for number theory.

We now come to the future of the incompleteness phenomena. We have seen how
this has developed thus far:

i. First incompleteness: Some incompleteness in the presence of some arithmetic
(Gödel, 1931)

ii. Second incompleteness: Incompleteness concerning the most basic metamathemati-
cal property: consistency (Gödel, 1931; Hilbert and Bernays, 1934, 1939; Feferman,
1960; Boolos, 1993)

iii. Consistency of the AxC: Consistency of the most basic, and once controversial, early
candidate for a new axiom of set theory (Gödel, 1940)

iv. Consistency of the CH: Consistency of the most basic set-theoretic mathematical
problem highlighted by Cantor (Gödel, 1940)

v. ∈0consistency proof: Consistency proof of PA using quantifier-free reasoning on the
fundamental combinatorial structure, ∈0 (Gentzen, 1969)

vi. Functional recursion consistency proof: Consistency proof of PA using higher-type
primitive recursion, without quantifiers (Gödel, 1958, 1972)

vii. Independence of AxC: Independence of CH (over AxC); complements iii and iv
(Cohen, 1963, 1964); forcing

viii. Open set-theoretic problems in core areas shown to be independent: Starting soon
after Cohen (1963, 1964), starting dramatically with R. M. Solovay, for example,
his work on Lebesgue measurability (Solovay, 1970) and his independence proof
of Kaplansky’s conjecture (Dales and Woodin, 1987), and continuing with many
others; see the rather comprehensive Jech (2006); also see the many set theory papers
in Shelah (1969–2007) (core mathematicians have learned to avoid raising new set
theoretic problems, and the area is greatly mined)

ix. Large cardinals necessarily used to prove independent set-theoretic statements:
Starting dramatically with measurable cardinals implies V �= L (Scott, 1961); con-
tinuing with solutions to open problems in the theory of projective sets (using large
cardinals), culminating with the proof of projective determinacy (Martin and Steel,
1989)

x. Large cardinals necessarily used to prove the consistency of set-theoretic state-
ments: See Jech (2006)

xi. An uncountable number of iterations of the power set operation necessarily used
to prove statements in and around Borel mathematics: Includes Borel determinacy
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and some Borel selection theorems of Debs and Saint Raymond (see Section 18.8; see
also Friedman, 1971, 2005, 2007b; Martin, 1975)

xii. Large cardinals necessarily used to prove statements around Borel mathematics:
Includes some Borel selection theorems of Debs and Saint Raymond (see Section
18.8; Debs and Saint Raymond, 1996, 1999, 2001, 2004, 2007; see also Friedman,
1981, 2005, 2007b; Stanley, 1985)

xiii. Independence of finite statements in or around existing combinatorics from PA
and subsystems of second-order arithmetic: Starting with Goodstein (1944), Paris
and Harrington (1977), and most recently, with Friedman (2002a, 2006a, 2006b,
2006c, 2006d, 2006e, 2006f, 2006g); uses extensions of point v from earlier (Gentzen,
1969), from Buchholz et al. (1981), and includes Kruskal’s theorem, the graph minor
theorem of Robertson and Seymour (1985, 2004), and the trivalent graph theorem of
Robertson and Seymour (1985)

xiv. Large cardinals necessarily used to prove sentences in discrete mathematics, as
part of a wider theory: Boolean relation theory (Friedman, 1998, 2010)

xv. Large cardinals necessarily used to prove explicit�0
1-sentences: See Section 18.10

for the current state of the art as well as the Introduction to Friedman (2011) for
subsequent developments.

Yet this development of the incompleteness phenomena has a long way to go before it
realizes its potential to dramatically penetrate core mathematics.

However, I am convinced that this is a matter of a lot of time and resources. The
quality man-hours devoted to expansion of the incompleteness phenomena are trivial
when compared with other pursuits. Even the creative (and high-quality) study of
U.S. tax law dwarfs the effort devoted to expansion of the incompleteness phenomena
by orders of magnitude – let alone any major sector of technology, particularly the
development of air travel, telecommunications, or computer software and hardware.

Through my efforts over forty years, I can see, touch, and feel a certain combinatorial
structure that keeps arising – a demonstrably indelible footprint of large cardinals. I am
able to display this combinatorial structure through Borel, discrete and finitary state-
ments that are increasingly compelling mathematically. For subsequent developments
in this project, see the Introduction to Friedman (2011).

However, I don’t quite have the right way to express it in core mathematics. I likely
need some richer context than the completely primitive combinatorial settings that I
currently use. This difficulty will definitely be overcome in the future, and that will
make a huge difference in the quality, force, and relevance of the results to mathematical
practice. In fact, I will go so far as to make the following dramatic conjecture: it’s not
that the incompleteness phenomena are a freak occurrence; rather they are everywhere.
Every interesting substantial mathematical theorem can be recast as one among a natural
finite set of statements, all of which can be decided using well-studied extensions of
ZFC, but not all of which can be decided within ZFC itself.

Recasting of mathematical theorems as elements of natural finite sets of statements
represents an inevitable general expansion of mathematical activity. This, I conjecture,
will apply to any standard mathematical context.

This program has been carried out, to a very limited extent, by BRT (as can be
seen in Section 18.9). This may seem like a ridiculously ambitious conjecture that
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goes totally against the current conventional wisdom of mathematicians – who think
that they are immune to the incompleteness phenomena. However, I submit that even
fundamental features of current mathematics are not likely to bear much resemblance
to the mathematics of the future.

Mathematics as a professional activity with serious numbers of workers is quite
new, let’s say, one hundred years old, although even that is a stretch. Assuming that
the human race thrives, what is this compared to, say, a thousand more years? It is
probably merely a bunch of simple observations in comparison.

Of course, a thousand years is absolutely nothing in evolutionary or geological time.
A more reasonable number is a million years. What does our present mathematics look
like compared with mathematics in a million years’ time? These considerations should
apply to our present understanding of the Gödel phenomena.

We can, of course, take this even further. A million years’ time is absolutely nothing
in astronomical time. Our sun has several billion good years left (although the sun will
cause a lot of global warming). Mathematics in a billion years’ time? Who can know
what that will be like. However, I am convinced that the Gödel legacy will remain very
much alive – at least as long as there is vibrant mathematical activity.
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Kurt Gödel. Amsterdam, Netherlands: North-Holland.
Myhill, J. (1974). Embedding classical type theory in “intuitionistic” type theory: A correction. In

Axiomatic Set Theory, Proceeding of Symposia in Pure Mathematics, vol. 13, part 2, ed. T. Jech,
pp. 185–88. Providence, RI: American Mathematical Society.

Nash-Williams, C. S. J. A. (1963). On well-quasi-ordering finite trees. Proceedings of the Cambridge
Philosophical Society, 59, 833–35.



references 431

Parikh, R. (1971). Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36, 494–508.
———. (1973). Some results on the lengths of proofs. Transactions of the American Mathematical

Society, 177, 29–36.
Paris, J., and Harrington, L. (1977). A mathematical incompleteness in Peano arithmetic. In Handbook

of Mathematical Logic, ed. J. Barwise, pp. 1133–42. Amsterdam, Netherlands: North-Holland.
Pudlak, P. (1985). Improved bounds on the lengths of proofs of finitistic consistency statements. In

Contemporary Mathematics, Logic and Combinatorics, 65, 309–32.
Quine, W. V. O. (1951). Mathematical Logic. Rev. ed. Cambridge, MA: Harvard University Press.

[1st ed. 1940.]
Rabin, M. (1977). Decidable theories. In Handbook of Mathematical Logic, ed. J. Barwise,

pp. 595–629. Amsterdam, Netherlands: North-Holland.
Rathjen, M., and Weiermann, A. (1993). Proof-theoretic investigations on Kruskal’s theorem. Annals

of Pure and Applied Logic, 60, 49–88.
Rayo, A., and Wiliamson, T. (2003). A completeness theorem for unrestricted first-order languages.

In Liars and Heaps, ed. J. C. Beall, pp. 331–56. Oxford: Clarendon Press.
Renegar, J. (1992a). On the computational complexity and geometry of the first-order theory of

the reals, Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision
problem for the existential theory of the reals. Journal of Symbolic Computation, 13, 255–300.

———. (1992b). On the computational complexity and geometry of the first-order theory of the
reals, Part II: The general decision problem. Preliminaries for quantifier elimination. Journal of
Symbolic Computation, 13, 301–28.

———. (1992c). On the computational complexity and geometry of the first-order theory of the reals,
Part III: Quantifier elimination. Journal of Symbolic Computation, 13, 329–52.

Robertson, N., and Seymour, P. D. (1985). Graph minors – a survey. In Surveys in Combinatorics
1985, pp. 153–71. London Mathematical Society Lecture Note Series 103. Cambridge: Cambridge
University Press.

———. (2004). Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series
B, 92, 325–57.

Robinson, R. M. (1952). An essentially undecidable axiom system. In Proceedings of the International
Congress of Mathematicians, pp. 729–30. Providence, RI: American Mathematical Society.

Rosser, J. B. (1936). Extensions of some theorems of Gödel and Church. Journal of Symbolic Logic,
1, 87–91.
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———. (1996). A Logical Journey: From Gödel to Philosophy. Cambridge, MA: MIT Press.
Weyl, H. (1918). Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis.

Leipzig, Germany: Velt.
———. (1987). The Continuum: A Critical Examination of the Foundations of Analysis. Translated

by S. Pollard and T. Bole. Philadelphia: Thomas Jefferson University Press.
Wiedijk, F., ed. (2006). The Seventeen Provers of the World. Foreword by Dana S. Scott. New York:

Springer.
Williamson, T. (2000). Existence and contingency. Proceedings of the Aristotelian Society, 100,

117–39.
———. (2003). Everything. Philosophical Perspectives, 17, 415–65.
———. (2006). Absolute identity and absolute generality. In Absolute Generality, ed. A. Rayo and

G. Uzquiano, pp. 369–89. Oxford: Oxford University Press.



The Realm of Set Theory





CHAPTER 19

My Interaction with Kurt Gödel:
The Man and His Work

Paul J. Cohen

Editors’ Note
Sadly, Paul Cohen, the only Fields Medal Laureate in the field of logic as of this
writing, died on March 23, 2007, shortly after completing this chapter. This is his final
published work, which was also reprinted in the revised edition of his book Set Theory
and the Continuum Hypothesis (Dover, 2008; originally published by W. A. Benjamin,
1966).

On the centenary of Kurt Gödel’s birth in 2006, it was most appropriate to celebrate the
man who, more than any other, guided logic out of its philosophical past to become a
vibrant part of present-day mathematics. His contributions are so well known, and the
recognition he has received is so plentiful, that to recite them here would be extraneous.
Rather I have chosen to relate how first his work, and then my interaction with him,
affected me so strongly.

Let me begin by explaining, and perhaps apologizing for, the somewhat personal
tone of my remarks. Since the publication of Gödel’s (1986, 1990, 1995, 2003a,
2003b) Collected Works, with their very rich introductions to the various articles, as
well as historical material, I can add little of a purely biographical nature to Gödel’s
mathematical contributions. Thus I shall have to speak mostly about what I know
best: my own development and interest in set theory, how the example of Gödel’s life
work deeply affected me, the story of my own discoveries, and finally, my personal
interaction with Gödel when I presented my work to him.

19.1 Background

It was my great fortune and privilege to be the person who fulfilled the expectations of
Gödel in showing that the continuum hypothesis (CH), in addition to other questions in
set theory, is independent of the usual set theory axioms. Gödel foresaw this possibility
in his article “What Is Cantor’s Continuum Problem?” (Gödel, 1964 [1947]). Reading
it greatly inspired me to work on the CH problem. Gödel’s point of departure in

435



436 my interaction with kurt gödel: the man and his work

discussing CH questions always seemed to be grounded in philosophical discussions
and in the work of previous researchers. In my case, I felt it was necessary to start
afresh and to treat the CH as an ordinary problem of mathematics, perhaps similarly to
how Cantor, and later Hilbert, regarded it.

Here I would like to sketch briefly some of the evolution of my own ideas about
the CH and their relation to Gödel’s work as well as his published opinions about
my eventual resolution of the problem. None of my work, however, would have been
possible without the momentous discovery of the constructible universe, which Gödel
achieved around 1938. His approach in discovering the notion of a constructible set
seems to have been decidedly influenced by the philosophical discussions of the past,
especially the notion of impredicativity, which was emphasized by Poincaré and others.
In this sense, I found the tone of his article difficult to understand as it seemed to hover
between philosophy and mathematics.

When I began my own attempts at solving the CH problem in 1962, I was strongly
motivated by the idea of constructing a model. In this sense, my spiritual ancestor
was perhaps Thoralf Skolem more so than Gödel. Of course, I eventually realized that
Gödel’s syntactical approach, where a constructible set could satisfy a certain property
and constructible sets could be collected to form a model, was not very different. After
my work was completed, I realized that a prejudice against models was widespread
among logicians and even led to serious doubts about the correctness of my work.
Nevertheless, as I was trying to construct interesting new models of set theory, I had to
start with a given model of it. Thus it seemed most natural to assume that this model was
a collection of actual sets, in which the membership relation has its usual meaning. Of
course, the Löwenheim-Skolem theorem guarantees the existence of such a model, even
a countable one, but this cannot be proved within Zermelo-Fraenkel set theory (ZF).
Even so, its truth would intuitively be accepted by everyone, even though, technically,
it goes beyond ZF. On the other hand, Skolem specifically mentioned the problem of
constructing more interesting models of set theory. In a remarkably prescient remark,
he said that adjoining new sets of integers would be difficult but probably of great
interest. Although Skolem’s remark was not known to me when I started my work, it
did seem like a natural way to proceed. Thus, to violate the CH in this way, one would
have to adjoin ℵ 2 new sets of integers. This seemed an almost obvious way to proceed,
so rather soon, I found myself thinking in a manner similar to Skolem.

At first, I had not actually understood Gödel’s work on the CH, finding the exposition
of his monograph rather difficult. However, as I thought about it more deeply, I realized
that all my attempts were intimately allied to his methods, and I eventually mastered
them completely. Suddenly, I had a tool with which I could make my own somewhat
vague ideas more precise. Thanks to Gödel’s discovery, I saw that the new universes of
set theory I wished to construct consisted of sets that were constructible from a limited
number of new sets, which I would introduce in a very particular way.

I would say that had the idea of constructing models by introducing new sets
been established earlier, it would have been a natural development for Gödel to have
achieved my own work. That my methods are a kind of synthesis of the work of Gödel
and Skolem has not been previously pointed out by authors, but I think it is fitting to
honor the intuitions, fulfilled many years later, of these two pioneers.
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A third theme of my work, namely, the analysis of so-called truth, is made precise
in the definition of forcing. To people who read my work for the first time, this
may very well strike them as the essential ingredient, rather than the two aspects of
constructibility and the introduction of new sets, as mentioned earlier. Although I
emphasized the model approach in my earlier remarks, this point of view is more akin
to the syntactical approach that I associate with Gödel. At least as I first presented
it, the approach depends heavily on an analysis and ordering of statements and, by
implication, on an analysis of proof.

Initially, I was not very comfortable with this approach; it seemed to be too close
to philosophical discussions, which I felt would not ultimately be fruitful. In a sense,
my enormous admiration for Gödel, as well as the fact that so much of his work was
based on this kind of philosophical analysis, was unconsciously a driving factor in my
persevering in this syntactical analysis. Of course, in the final form, it is very difficult
to separate what is model-theoretic from what is syntactical. As I struggled to make
these ideas precise, I vacillated between two approaches: the model-theoretic, which I
regarded as roughly more mathematical, and the syntactical-forcing, which I thought
of as more philosophical. In this way, the body of Gödel’s work, rather than particular
results, helped me to believe that something could come from a syntactical analysis. I
would say that my notion of forcing can also be viewed as arising from the analysis
of how models are constructed, something in the spirit of the Löwenheim-Skolem
theorem.

If I were to comment on previous work that might have led to an earlier discovery
of the independence results, following would be some of the salient points:

1. We have Skolem’s emphasis on models. It seems that Gödel hardly discussed models
of set theory. In particular, John Shepherdson’s result about the impossibility of inner
models to solve the problem should have received more attention (Shepherdson, 1951,
1952, 1953). Now, Gödel wrote no textbook on set theory, so we can only speculate as
to what he would have had to say about models in general. His emphasis, as mentioned
earlier, was syntactical, and thus he was concerned with consistency. That a standard
model for set theory (i.e., Skolem’s paradox) was a new axiom received scant attention.
Of course, it is stronger than mere consistency.

2. It is easy to show that assuming constructibility, no uncountable model that violates the
CH can exist. Had this been realized, a key step in forcing – namely, the use of countable
models – might have led to more rapid development of a solution.

3. In the spirit of Skolem, the addition of new sets was discussed briefly by András Hajnal
(1956) and Azriel Levy (1960). I do not know whether this work intrigued Gödel to any
extent.

My perhaps too dogmatic conclusion is that Gödel had no new method for a proof of
independence, as he had told some people. Yet I cannot overestimate how the body
of his work – his belief that a precise analysis of the axioms and consistency results
was possible – played a crucial role in allowing me to go forward. As I shall now
describe, these attitudes were reflected in my personal talks with Gödel after my work
was completed.
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19.2 Meeting Gödel

Soon after proving my first results, I had a great desire to meet Gödel and to do him
and myself the great honor of personally explaining the proofs to him. I met him at
Princeton with a preprint that gave all the essential details. He very graciously agreed to
read it. After just a few days, he pronounced my proof correct. We had a series of intense
discussions, and I asked whether he would communicate the paper to the Proceedings
of the National Academy of Sciences of the United States of America, where his
own results were first announced (Gödel, 1938; see also Gödel, 1939a, 1939b). He
kindly consented to do this, and we had a lively correspondence about the best way
to present it. He suggested several revisions. With this acknowledgment, and with his
later overly kind remarks about my discovery, I felt that we shared a great bond in that
we had successfully discovered, each in his own way, new fundamental methods in set
theory.

I visited Princeton again for several months and had many meetings with Gödel. I
brought up the question of whether, as rumor had it, he had proved the independence of
the axiom of choice. He replied that he had, evidently by a method related to my own,
but he gave me no precise idea or explanation of why his method evidently failed to
succeed with the CH. His main interest seemed to lie in discussing the truth or falsity
of these questions, not merely their undecidability. He struck me as having an almost
unshakable belief in this realist position that I found difficult to share. His ideas were
grounded in a deep philosophical belief as to what the human mind could achieve. I
greatly admired this faith in the power and beauty of Western culture, as he put it, and
would have liked to understand more deeply the sources of his strongly held beliefs.
Through our discussions, I came closer to his point of view, although I never shared
completely his realist perspective that all questions of set theory were, in the final
analysis, either true or false.

Let me turn now to a brief review of my intellectual development in mathematics.

19.3 High School: My Earliest Interest in Logic

In high school, number theory attracted me the most in mathematics, probably because
of the simplicity of the statements of the results and the complexity and ingenuity
of the proofs. I looked at the famous work of Edmund Landau (1927), Vorlesungen
über Zahlentheorie [Lectures on Number Theory]. The most complicated proof in the
book was the famous result of Carl Siegel, generalizing the work of Axel Thue on the
approximation of algebraic numbers and applications to Diophantine equations. This
proof is one of the rare, truly nonconstructive proofs in mathematics, and I was rather
disappointed by this. My basic instinct was to prefer constructive proofs, of course,
and so I began to think of exactly what I thought a constructive proof should be.

Thus I was clumsily reconstructing elementary recursion theory, primitive recursive
functions, and so on. Simultaneously, results in partitions of integers led me to think
how the results about sums of squares found by Jakob Jacobi and others could be
generalized. As the early methods used infinite power series, I wondered whether
– because we could answer all questions about polynomials by finite constructive
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methods – it would be possible to find (what I later learned are called) decision
procedures for a larger class of problems.

At this time, I did not at all know Gödel’s incompleteness theorem, which made this
dream impossible. Eventually, I became dimly aware of Gödel’s result, although not the
precise statement. I felt it was probably primarily a theorem of philosophical interest,
having little to do with the concrete questions of number theory that so infatuated me
in those years.

19.4 Graduate School: The Continued Pull of Logic

When I started graduate school, for the first time, I met students who had studied logic. I
was told that the search for a decision procedure was probably doomed – although I did
not clearly say exactly which class of problems concerning infinite power series most
interested me. As fate would have it, Professor Stephen Kleene visited the University
of Chicago, where I was enrolled, and he questioned me a bit about my “dream.” In no
uncertain terms, he told me that what I hoped to accomplish was impossible. Therefore
I started to read his book on metamathematics (Kleene, 1952). There, in just a few
pages, was a complete sketch of the incompleteness theorem. The rest of the book
held little interest for me, and I was confused about many basic ideas. I still had a
feeling of skepticism about Gödel’s work, but it was skepticism mixed with awe and
admiration.

I can say my feeling was roughly this: how can someone thinking about logic
in almost philosophical terms discover a result that had implications for Diophantine
equations? How very different it was from Landau’s book. For a brief period, I believed
that the famous liar’s paradox, which is almost at the very heart of Gödel’s reasoning,
itself entailed a paradox – and even that his theorem, as I wanted to apply it, was false.
However, after a few days, I closed the book and tried to rediscover the proof, which I
still feel is the best way to understand things. I totally capitulated. The incompleteness
theorem was true, and Gödel was far superior to me in understanding the nature of
mathematics.

Although the proof was basically simple, when stripped to its essentials, I felt that
its discoverer was above me and other mere mortals in his ability to understand what
mathematics – and even human thought, for that matter – really was. From that moment
on, my regard for Gödel was so high that I almost felt it would be beyond my wildest
dreams to meet him and discover for myself how he thought about mathematics and
the fount from which his deep intuition flowed. I could imagine myself as a clever
mathematician solving difficult problems, but how could I emulate a result of the
magnitude of the incompleteness theorem? There it stood, in splendid isolation and
majesty, not allowing any kind of completion or addition because it answered the
basic questions with such finality. I returned to the study of pure mathematics, having
tasted a bit of the depth of logic. However, the rest of Kleene’s book seemed rather
philosophical, and by temperament, even to the present day, I could not really be
involved in philosophical controversy. So much seemed to depend on personalities and
how one was able to express oneself with wit and elegance. As fate would have it, I
was wrong in several regards.
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Part of the standard curriculum at the university was a not-very-technical introduc-
tion to set theory, mostly the axiom of choice, facts about cardinality, and so on. I saw
these results as interesting but merely as pieces of clever reasoning, inferior in that
regard to the great body of mathematics that was attracting me – analysis, algebra, and
so on. As I have said, a career in logic seemed not very appealing because, in some
sense, Gödel had preempted the entire field.

Thus logic seemed to me to have little of the element of combinatorial thinking –
or, more crudely put, cleverness – that I found in analysis and number theory. There
was one exception, however. A small group of students were very interested in Emil
Post’s problem about maximal degree of unsolvability. I did dally with the thought of
working on it, but in the end, I did not. Suddenly, one day, a letter arrived containing
a sketch of the solution by Richard Friedberg (1957), and it was brought to my office.
Amid a certain degree of skepticism, I checked the proof and could find nothing wrong.
It was exactly the kind of thing I would like to have done. I mentally resolved that I
would not let an opportunity like that pass again. However, there seemed no way for
me to find an entry into the kind of deep philosophical thinking that I so admired in
Gödel and translate that into concrete mathematics.

19.5 The Beginnings of My Research Career

I wrote a thesis on harmonic analysis, on topics similar to those that led Georg Cantor
to his discovery of set theory. Cantor’s set theory impetus was well known to me,
but I saw no real connection with logic, at least not enough for me to begin to think
about set theory as a possible research field. Thus I essentially floated around the
periphery of logic. Kleene’s book contained essentially no mention of Gödel’s result
on the consistency of the CH, and I still had never actually seen a precise statement
of the axioms of Zermelo and Fraenkel. I was, however, aware of Skolem’s paradox
concerning the existence of countable models of set theory. I was able to sketch a proof
for myself, which seemed deep but not difficult. I might also mention that one of my
office mates was Michael Morley, who wrote a very good thesis in model theory, but I
knew nothing about it.

I then spent two years in Princeton at the Institute for Advanced Study and saw
Gödel occasionally in the common room, but I had no contact with him. Princeton was
an awe-inspiring place because of the famous people there, and Gödel was certainly
one of them.

19.6 The Quest for Consistency

I then went to Stanford. At a departmental lunch, the conversation turned to the
consistency of mathematics, mostly revolving around the ideas of Solomon Feferman
(who is represented in this volume). At that point, something jelled, and I thought I
saw a way to prove the consistency of mathematics by some kind of construction. I
gave a few lectures to a small audience, but I became discouraged in thinking that
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I was engaged in a futile enterprise – Gödel had shown that a consistency proof along
the lines I had envisaged was impossible.

At some point, my attention turned to set theory and the CH. In Gödel’s Princeton
monograph, I read the precise statement of the axioms for the first time (Gödel, 1940).
Essentially, the only weapon in my armory was the Löwenheim-Skolem theorem, but
I was convinced that the key question was constructing models of set theory. The
Skolem construction offered little help. I did not see at first how it could be adapted to
controlling the truth or falsity of given statements in the new model. It seemed that I
had no real tools with which to work – set theory was too big to handle, and Gödel’s
syntactical approach seemed more appealing for a while.

I read Gödel’s article on Cantor’s continuum problem (Gödel, 1964 [1947]) before
I had even considered attacking the problem of the CH. It was just of general interest
for me, and to a large extent, it was not even comprehensible to me. For one thing, it
assumed a certain philosophical point of view and the philosophical ramifications of
various attitudes toward it. I had never been attracted to philosophy, as I have explained,
and thus I was not really aware of the various attitudes the mathematicians of earlier
years had held.

Having said this, it is necessary to add that, of course, I had intuitive ideas of what
constituted a correct proof in mathematics. In particular, in number theory, I had begun
to think about certain applications in which nonconstructive methods were used and
was quite aware that these methods raised certain problems. Of course, these were very
far from the fundamental questions of set theory.

Did Gödel have unpublished methods for the CH? This is a tantalizing question. Let
me state some incontrovertible facts. First, much effort was spent analyzing Gödel’s
notes and papers, and no idea has emerged about what kinds of methods he might have
used. Second, I did ask him point-blank whether he had proved the independence of
CH, and he said no, but that he had had success with the axiom of choice. I asked
him what his methods were, and he said only that they resembled my own; he seemed
extremely reluctant to give any further information.

My conclusion is that Gödel did not complete any serious work on this topic that
he thought was correct. In our discussions, the word model almost never occurred.
Therefore I assume that he was looking for a syntactical analysis that was in the
spirit of his definition of constructibility. His total lack of interest in a model-theoretic
approach quite astounded me. Thus, when I mentioned to him my discovery of the
minimal model also found by John Shepherdson, he indicated that this was clear and,
indirectly, that he knew of it. However, he did not mention the implication that no
purely inner model could be found. Given that I also believe he was strongly wedded
to the syntactical approach, this would have been of great interest. My conclusion,
perhaps uncharitable, is that he totally ignored questions of models and was perhaps
only subconsciously aware of the minimal model.

The history of Gödel’s involvement with the independence results, to be sure, has a
somewhat sad conclusion. I think, without concrete evidence, of course, that it became
interwoven in his mind with larger questions of the reality of set theory. His unshakable
belief that all questions of set theory are decidable in some sense led him to think about
the independence question in a somewhat confused way and eventually led to a belief
that he had discovered a method that would resolve the issue. Otherwise, I find no
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plausible reason why he would so adamantly refuse to discuss it with me. Of course,
his general mental health was deteriorating in the last years, which no doubt was a
contributing factor. It is not clear from biographical remarks of people who knew him
at the time whether his breakdown in the early 1940s was a result of his frustration at
not being able to solve the independence of CH.

Clearly Gödel’s personal life was almost tragic in this period, and as far as the
history of mathematics is concerned, I think no new information will arise.
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CHAPTER 20

The Transfinite Universe

W. Hugh Woodin

The twentieth-century choice for the axioms1 of set theory are the Zermelo-Frankel
axioms together with the axiom of choice; these are the ZFC axioms. This particular
choice has led to a twenty-first-century problem:

The ZFC Dilemma: Many of the fundamental questions of set theory are formally un-
solvable from the ZFC axioms.

Perhaps the most famous example is given by the problem of the continuum hypothesis:
supposeX is an infinite set of real numbers; must it be the case that eitherX is countable
or that the set X has cardinality equal to the cardinality of the set of all real numbers?

One interpretation of this development is as follows:

Skeptic’s Attack: The continuum hypothesis is neither true nor false because the entire
conception of the universe of sets is a complete fiction. Furthermore, all the theorems of
set theory are merely finitistic truths, a reflection of the mathematician and not of any
genuine mathematical “reality.”

Here and in what follows, the “Skeptic” simply refers to the metamathematical position
that denies any genuine meaning to a conception of uncountable sets. The counterview
is that of the “Set Theorist”:

The Set Theorist’s Response: The development of set theory, after Cohen, has led to the
realization that formally unsolvable problems have degrees of unsolvability that can be
calibrated by large cardinal axioms.

Elaborating further, as a consequence of this calibration, it has been discovered that
in many cases, very different lines of investigation have led to problems whose degree
of unsolvability is the same. Thus the hierarchy of large cardinal axioms emerges as
an intrinsic, fundamental conception within set theory. To illustrate this, I discuss two
examples.

1 This chapter is dedicated to the memory of Paul J. Cohen.
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An excellent reference for both the historical development and the background
material for much of what I will discuss is the book by Kanamori (1994). The present
chapter is not intended to be a survey: my intent is to discuss some very recent results
that I think have the potential to be relevant to the concept of the universe of sets. The
danger, of course, is that this invariably involves speculation, and this is compounded
whenever such speculation is based on research in progress (as in Woodin, 2009).

20.1 The Examples

20.1.1 The First Example: Infinitary Combinatorics

A natural class of objects for study comprises the subsets of ω1, which is the least
uncountable ordinal. Recall that ω1 is the set of all countable ordinals, and so the
collection of all subsets of ω1 is exactly the collection of all sets of countable ordinals.
I shall be concerned with two varieties of subsets of ω1, which I define below.

Definition 20.1

1. A set C ⊆ ω1 is closed if, for all α < ω1, if C ∩ α is cofinal in α, then α ∈ C.
2. A set S ⊆ ω1 is stationary if S ∩ C �= ∅ for all closed, cofinal sets C ⊆ ω1. "#
The sets, S ⊆ ω1, which are stationary and costationary, are in many respects the

simplest manifestation of the axiom of choice. For example, one can show, without
appealing to the axiom of choice, that if there exists a well ordering of the real numbers,
then such a set S must exist. The converse is not true as the existence of such a set
S does not imply the existence of a well ordering of the real numbers. Recall that a
well-ordering of the real numbers is the total order of the real numbers relative to which
every nonempty set of real numbers has a least element.

Therefore it is natural to ask how complicated the structure of the stationary subsets
of ω1 (modulo nonstationary subsets of ω1) is or even if there can exist a small
generating family for these sets. Consider the following stationary basis hypothesis
(SBH):

There exists ω1 many stationary sets, 〈Sα : α < ω1〉, such that for every stationary set
S ⊆ ω1, there exists α < ω1 such that Sα ⊆ S modulo a nonstationary set.

The assertion that Sα ⊆ S modulo a nonstationary set is simply the assertion that the
set

Sα\S = {β < ω1 | β ∈ Sα and β /∈ S}
is not stationary. Such a sequence 〈Sα : α < ω1〉 of stationary subsets ofω1 would give,
in a natural sense, a basis for the stationary subsets of ω1, which is of cardinality ℵ1.

There is a remarkable theorem of Shelah (1986):

Theorem 20.2 (Shelah, 1986) The hypothesis SBH implies that CH is false. "#
This theorem, in conjunction with the subsequent consistency results of Woodin

(1999), suggests the following intriguing conjecture: the hypothesis SBH implies that
2ℵ0 = ℵ2.
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20.1.2 The Second Example: Infinite Games

Suppose A ⊆ P(N), where P(N) denotes the set of all sets σ ⊆ N and N =
{1, 2, . . . , k, . . .} is the set of all natural numbers. Associated with the set A is an
infinite game involving two players, player I and player II. The players alternate,
declaring at stage k whether k ∈ σ or k /∈ σ , as follows:

Stage 1: Player I declares 1 ∈ σ or declares 1 /∈ σ

Stage 2: Player II declares 2 ∈ σ or declares 2 /∈ σ

Stage 3: Player I declares 3 ∈ σ or declares 3 /∈ σ . . .

After infinitely many stages, a set σ ⊆ N is specified. Player I wins this run of the
game if σ ∈ A; otherwise, player II wins. (Note that player I has control of which odd
numbers are in σ , and player II has control of which even numbers are in σ .)

A strategy is simply a function that provides moves for the players given just the
current state of the game. More formally, a strategy is a function

τ : [N]<ω × N → {0, 1} ,

where [N]<ω denotes the set of all finite subsets of N. At each stage k of the game,
the relevant player can choose to follow τ by declaring k ∈ σ if τ (a, k) = 1 and by
declaring k /∈ σ if τ (a, k) = 0, where

a = {i < k | i ∈ σ was declared at stage i} .

The strategy τ is a winning strategy for player I if, by following the strategy at each
stage k where it is player I’s turn to play (i.e., for all odd k), player I wins the game
no matter how player II plays. Similarly, τ is a winning strategy for player II if, by
following the strategy at each stage k where it is player II’s turn to play (i.e., for all
even k), player II wins the game no matter how player I plays. The game is determined
if there is a winning strategy for one of the players. Clearly it is impossible for there to
be winning strategies for both players.

It is easy to specify setsA ⊆ P(N) for which the corresponding game is determined.
For example, if A = P(N), then any strategy is a winning strategy for player I. On the
other hand, if A is countable, then one can fairly easily show that there exists a strategy
that is a winning strategy for player II.

The problem of specifying a set A ⊆ P(N) for which the corresponding game is not
determined turns out to be quite a bit more difficult. The axiom of determinacy (AD),
is the axiom that asserts that for all sets A ⊆ P(N), the game given by A, as described
earlier, is determined. This axiom was first proposed by Mycielski and Steinhaus
(1962) and contradicts the axiom of choice. So the problem here is whether the axiom
of choice is necessary to construct a set A ⊆ P(N) for which the corresponding game
is not determined. Clearly, if the axiom of choice is necessary, then the existence of
such a set A is quite a subtle fact.
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20.1.3 Three Problems and Three Formal Theories

I now add a third problem to the list and specify formally a list of three problems. As
indicated, the first and third problems are within ZFC, and the second problem is within
just the theory ZF (this is the theory given by the axioms ZFC without the axiom of
choice):

Problem 1: (ZFC) Does SBH hold?
Problem 2: (ZF) Does AD hold?
Problem 3: (ZFC) Do there exist infinitely many Woodin cardinals?

I shall not give the formal definition of a Woodin cardinal here as it is a large cardinal
notion whose definition is a bit technical; see Kanamori (1994) for one definition.

The first problem, problem 1, is formally unsolvable if, assuming the axioms ZFC,
one can neither prove nor refute the SBH. Similarly, problem 2 is formally unsolvable
if, assuming the axioms ZF, one can neither prove nor refute AD. Finally, problem 3
is formally unsolvable if, assuming the axioms ZFC, one can neither prove nor refute
the existence of infinitely many Woodin cardinals. In each case, the assertion of formal
unsolvability is simply a statement of number theory. The remarkable fact is that these
three assertions of number theory are equivalent, and this is a theorem of number theory
from the classical (Peano) axioms for number theory. Thus two completely different
lines of investigation have resulted in problems whose degree of formal unsolvability
is the same, and this is exactly calibrated by a large cardinal axiom.

Assuming that the axioms ZFC are formally consistent, then, for the three problems
indicated here, the only possible formal solutions are as follows: no for the first and third
problems and yes for the second problem. Therefore it is more natural to rephrase these
assertions of formal unsolvability as assertions that particular theories are formally
consistent. I have implicitly defined three theories, and the assertions of unsolvability
discussed correspond to the assertions that these theories are each formally consistent:

Theory 1: ZFC + SBH
Theory 2: ZF + AD
Theory 3: ZFC + “There exist infinitely many Woodin cardinals”

The following theorem is the theorem that implies that the degree of unsolvability of
the three problems that I have listed is the same; see Kanamori (1994) for a discussion
of this theorem.

Theorem 20.3 The three theories, theory 1, theory 2, and theory 3, are equicon-
sistent. "#

20.2 A Prediction and a Challenge for the Skeptic

Are the three theories I have defined really formally consistent? The claim that they are
consistent is a prediction that can be refuted by finite evidence (a formal contradiction).



the cumulative hierarchy of sets 453

Just knowing that the first two theories are equiconsistent does not justify this prediction
at all. I claim the following:

It is through the calibration by a large cardinal axiom in conjunction with our understand-
ing of the hierarchy of such axioms as true axioms about the universe of sets that this
prediction is justified.

As a consequence of my belief in this claim, I make a prediction:

In the next ten thousand years, there will be no discovery of an inconsistency in these
theories.

This is a specific and unambiguous prediction about the physical universe. Furthermore,
it is a prediction that does not arise by a reduction to a previously held truth (e.g., as
is the case for the prediction that no counterexample to Fermat’s last theorem will be
discovered).

This is a genuinely new prediction that I make based on the development of set theory
over the last fifty years and on my belief that the conception of the transfinite universe
of sets is meaningful. Finally, I make this prediction independently of all speculation
of what computational devices might be developed in the next ten thousand years that
will increase the effectiveness of research in mathematics – it is a prediction based on
mathematics and not on consideration of the mathematician.

Now the Skeptic might object that this prediction is not interesting or natural because
the formal theories are not interesting or natural, but such objections are not allowed
in physics: the ultimate physical theory should explain all (physical) aspects of the
physical universe, not just those that we regard as natural. How can we apply a lesser
standard for the ultimate mathematical theory? In fact, I make a stronger prediction:

There will be no discovery, ever, of an inconsistency in these theories.

One can arguably claim that if this stronger prediction is true, then it is a physical law.

Skeptic’s Retreat: OK, I accept the challenge, noting that I only have to explain the
predictions of formal consistency given by the large cardinal axioms. The formal theory
of set theory as given by the axioms ZFC is so “incomplete” that either any large cardinal
axiom, in the natural formulation of such axioms, is consistent with the axioms of set
theory or there is an elementary proof that the axiom cannot hold.

We shall see that this is a very shrewd counterattack, even framed within the specific
context of the current list of large cardinal axioms, where it is a much more plausible
position. I shall need to review some elementary concepts from set theory. This is
necessary to specify the basic template for large cardinal axioms.

20.3 The Cumulative Hierarchy of Sets

As is customary in modern set theory, V denotes the universe of sets. The purpose
of this notation is to facilitate the (mathematical) discussion of set theory; it does not
presuppose any meaning to the concept of the universe of sets.
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The ordinals calibrate V through the definition of the cumulative hierarchy of sets
(zermelo, 1930). The relevant definition is given as follows.

Definition 20.4 Define for each ordinal α a set Vα by induction on α:

1. V0 = ∅
2. Vα+1 = P(Vα) = {X | X ⊆ Vα}
1. If β is a limit ordinal, then Vα = ⋃{Vβ | β < α}. "#

It is a consequence of the ZF axioms that for every set a, there must exist an ordinal α,
such that a ∈ Vα .

A set N is transitive if every element of N is a subset of N . Transitive sets are
fragments of V that are analogous to initial segments. For each ordinal α, the set Vα is
a transitive set.

Every ordinal is a transitive set; in fact, the ordinals are precisely those transitive
sets X with the property that for all a, b ∈ X, if a �= b, then either a ∈ b or b ∈ a.
Thus, if X is an ordinal and if Y ∈ X, then necessarily, Y is an ordinal. This defines a
natural order on the ordinals. If α and β are ordinals, then α < β if α ∈ β. Thus every
ordinal is simply the set of all ordinals that are smaller than the given ordinal, relative
to this order.

The simplest (proper) class is the class of all ordinals. This class is a transitive class,
and more generally, a class M ⊆ V is a transitive class if every element of M is a
subset of M . The basic template for large cardinal axioms is as follows:

There is a transitive class M and an elementary embedding

j : V → M

that is not the identity.

With the exception of the definition of a Reinhardt cardinal, which I shall discuss later,
one can always assume that the classes,M and j , are classes that are logically definable
from parameters by formulas of a fixed bounded level of complexity (�2-formulas).
Moreover, the assertion that j is an elementary embedding is the follwing assertion:

For all formulas φ(x) and for all sets a, V |= φ[a] if and only if M |= φ[j (a)];

this is equivalent to the assertion that

for all formulas φ(x), for all ordinals α, and for all sets a ∈ Vα , Vα |= φ[a] if and only
if j (Vα) |= φ[j (a)].

Therefore this template makes no essential use of the notion of a class. It is simply for
convenience that I refer to classes (and this is the usual practice in set theory).

Suppose thatM is a transitive class and that j : V → M is an elementary embedding
that is not the identity. Suppose that j (α) = α for all ordinals α. Then one can show
by transfinite induction that for all ordinals α, the embedding j is the identity on
Vα . Therefore, because j is not the identity, there must exist an ordinal α such that
j (α) �= α, and because j is order preserving on the ordinals, this is equivalent to the
requirement that α < j (α). The least such ordinal is called the “critical point” of j , and
it can be shown that this must be a cardinal. The critical point of j is the large cardinal
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specified, and the existence of the transitive class M and the elementary embedding j
are the witnesses for this.

A cardinal κ is a measurable cardinal if there exists a transitive class M and an
elementary embedding j : V → M such that κ is the critical point of j . It is by requiring
M to be closer to V that one can define large cardinal axioms far beyond the axiom that
“there is a measurable cardinal.” In general, the closer one requires M to be to V , the
stronger the large cardinal axiom. In Reinhardt (1970), the natural maximum axiom
was proposed (M = V ). The associated large cardinal axiom is that of a Reinhardt
cardinal.

Definition 20.5 A cardinal κ is a Reinhardt cardinal if there is an elementary
embedding j : V → V such that κ is the critical point of j . "#

The definition of a Reinhardt cardinal makes essential use of classes, but the follow-
ing variation does not and is more useful for this discussion. The definition requires
a logical notion. Suppose that α and β are ordinals such that α < β. Then we write
Vα ≺ Vβ to mean that for all formulas φ(x) and for all a ∈ Vα , Vα |= φ[a] if and only
if Vβ |= φ[a].

Definition 20.6 A cardinal κ is a weak Reinhardt cardinal if there exist γ >

λ > κ such that

1. Vκ ≺ Vλ ≺ Vγ

2. there exists an elementary embedding j : Vλ+2 → Vλ+2 such that κ is the critical
point of j "#

The definition of a weak Reinhardt cardinal only involves sets. The relationship
between Reinhardt cardinals and weak Reinhardt cardinals is unclear; however, given
the original motivation for the definition of a Reinhardt cardinal, one would conjecture
that, at least in terms of consistency strength, Reinhardt cardinals are stronger than
weak Reinhardt cardinals, hence my choice of terminology. In any case, the concept
of a weak Reinhardt cardinal is better suited to illustrate the key points I am trying to
make.

The following theorem is an immediate corollary of the fundamental inconsistency
results of Kunen (1971).

Theorem 20.7 (Kunen, 1971) There are no weak Reinhardt cardinals. "#

The proof is elementary, so this does not refute the Skeptic’s Retreat. But Kunen’s
proof makes essential use of the axiom of choice. The problem is open without this
assumption, and this is not just an issue for weak Reinhardt cardinals, which is just a
notion of large cardinals defined in this chapter. There really is no known interesting
example of a strengthening of the definition of a Reinhardt cardinal that yields a large
cardinal axiom that can be refuted without using the axiom of choice. The difficulty is
that without the axiom of choice, it is extraordinarily difficult to prove anything about
sets.

Kunen’s proof leaves open the possibility that the following large cardinal axiom
might be consistent with the axiom of choice. This therefore is essentially the strongest
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large cardinal axiom not known to be refuted by the axiom of choice; see Kanamori
(1994) for more on this as well as for the actual statement of Kunen’s theorem.

Definition 20.8 A cardinal κ is an ω-huge cardinal if there exists λ > κ and an
elementary embedding j : Vλ+1 → Vλ+1 such that κ is the critical point of j . "#
One could strengthen this axiom still further by requiring in addition that for some

γ > λ, we have Vκ ≺ Vλ ≺ Vγ and so match in form the definition of a weak Reinhardt
cardinal, the only modification being thatλ+ 2 is replaced byλ+ 1. This change would
not affect any of the following claims concerning ω-huge cardinals.

The issue of whether the existence of a weak Reinhardt cardinal is consistent with
the axioms ZF is an important issue for the Set Theorist because, by the results of
Woodin (2009), the theory

ZF + “There is a weak Reinhardt cardinal”

proves the formal consistency of the theory

ZFC + “There is a proper class of ω-huge cardinals.”

This number-theoretic statement is a theorem of number theory. However, as indicated
earlier, the notion of anω-huge cardinal is essentially the strongest large cardinal notion
that is not known to be refuted by the axiom of choice.

Therefore the number-theoretic assertion that the theory

ZF + “There is a weak Reinhardt cardinal”

is consistent is a stronger assertion than the number-theoretic assertion that the theory

ZFC + “There is a proper class of ω-huge cardinals”

is consistent. More precisely, the former assertion implies, but is not implied by, the
latter assertion, unless, of course, the theory

ZFC + “There is a proper class of ω-huge cardinals”

is formally inconsistent. This raises an interesting question:

How could the Set Theorist ever be able to argue for the prediction that the existence of
weak Reinhardt cardinals is consistent with axioms of set theory without the axiom of
choice?

Moreover, this one prediction implies all the predictions (of formal consistency) the Set
Theorist can currently make based on the entire large cardinal hierarchy as presently
conceived (in the context of a universe of sets that satisfies the axiom of choice). My
point is that by appealing to the Skeptic’s Retreat, one could reasonably claim that the
theory

ZF + “There is a weak Reinhardt cardinal”

is formally consistent – and in making this single claim, one would subsume all the
claims of consistency that the set theorist can make based on our current understanding
of the universe of sets (without abandoning the axiom of choice).
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The only tools currently available seem powerless to resolve this issue. Reinterpret-
ing the number-theoretic statement that the theory

ZF + “There is a weak Reinhardt cardinal”

is formally consistent, in a way that allows the Set Theorist to argue for the truth of this
statement, seems equally hopeless. Finally, unlike the axiom AD, there is no candidate
presently known for a fragment of V for which the existence of weak Reinhardt
cardinals is the correct (or even a possible) axiom.

20.4 Probing the Universe of Sets: The Inner Model Program

The inner model program is the detailed study of large cardinal axioms. The first
construction of an inner model is from Gödel (1938, 1940). This construction founded
the inner model program, and the transitive class constructed is denoted by L. This is
the minimum possible universe of sets containing all ordinals.

If X is a transitive set, then Def(X) denotes the set of all A ⊆ X such that A
is logically definable in the structure (X,∈) from parameters. The definition of L
is simply given by replacing the operation P(X) in the definition of Vα+1 with the
operation Def(X). More precisely, we have the following:

Definition 20.9

1. Define Lα by induction on the ordinal α:
a. L0 = ∅ and Lα+1 = Def(Lα)
b. If α is a limit ordinal, then Lα = ⋃{Lβ | β < α}.

2. L is the class of all sets a such that a ∈ Lα for some ordinal α. "#
It is perhaps important to note that though there must exist a proper class of ordinals

α such that

Lα = L ∩ Vα,

this is not true for all ordinals α.
The question of whether V = L is an important question for set theory. The answer

has profound implications for the conception of the universe of sets.

Theorem 20.10 (Scott, 1961) Suppose there is a measurable cardinal. Then
V �= L. "#
The axiom of constructibility is the axiom that asserts V = L; more precisely,

this is the axiom that asserts that for each set a, there exists an ordinal α such that
a ∈ Lα . Scott’s theorem provided the first indication that the axiom of constructibility is
independent of the ZFC axioms. At the time, there was no compelling reason to believe
that the existence of a measurable cardinal was consistent with the ZFC axioms, so
one could not make the claim that Scott’s theorem established the formal independence
of the axiom of constructibility from the ZFC axioms. Of course, it is an immediate
corollary of Cohen’s results that the axiom of constructibility is formally independent
of the ZFC axioms. The modern significance of Scott’s theorem is more profound:
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Scott’s theorem establishes that the axiom of constructibility is false. This claim (that
V �= L) is not universally accepted, but in my view, no one has come up with a credible
argument against it.

The inner model program seeks generalizations of L for the large cardinal axioms;
in brief, it seeks generalizations of the axiom of constructibility that are compatible
with large cardinal axioms (such as the axioms for measurable cardinals and beyond).
It has been a very successful program, and its successes have led to the realization that
the large cardinal hierarchy is a very robust notion. The results that have been obtained
provide some of our deepest glimpses into the universe of sets, and its successes have
led to a metaprediction:

A Set Theorist’s Cosmological Principle: The large cardinal axioms for which there is
an inner model theory are consistent; the corresponding predictions of unsolvability are
true because the axioms are true.

Despite its rather formidable merits, as indicated earlier, there is a fundamental difficulty
with the prospect of using the inner model program to counter the Skeptic’s Retreat.
The problem is in the basic methodology of the inner model program, but to explain
this, I must give a (brief) description of the (technical) template for inner models.

The inner models that are the goal and focus of the inner model program are defined
layer by layer, working up through the hierarchy of large cardinal axioms, which
in turn is naturally revealed by the construction of these inner models. Each layer
provides the foundation for the next, and L is the first layer. Roughly (and in practice),
in constructing the inner model for a specific large cardinal axiom, one obtains an
exhaustive analysis of all weaker large cardinal axioms. There can be surprises here
in that seemingly different notions of large cardinals can coincide in the inner model.
Finally, as one ascends through the hierarchy of large cardinal axioms, the construction
generally becomes more and more difficult.

20.5 The Building Blocks for Inner Models: Extenders

Suppose that M is a transitive class and that j : V → M is an elementary embedding
with critical point κ . As with the basic template for large cardinal axioms I discussed
earlier, here and subsequently, one can restrict onself to the classes that are definable
classes (by �2-formulas), for example, so that no essential use of classes is involved.

It is immediate from the definitions that for all ordinals γ , j (γ ) is an ordinal, and
moreover, j (γ ) ≥ γ . Suppose that κ < γ < j (κ) and that P(γ ) ⊆ M , where P(γ ) =
{A | A ⊆ γ }. The function

E(A) = j (A) ∩ γ

with domain P(γ ) is the extender E of length γ defined from j . Note that because
γ > κ , necessarily, E is not the identity function. Extenders are nontrivial fragments
of the elementary embedding j . (The concept of an extender is from Mitchell.) The
definition that I have given is really that of a strong extender because of the assumption
that P(γ ) ⊆ M . This I do for expository reasons. In the case that γ < j (κ), which
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is the present case, one could drop this requirement without affecting much of the
discussion.

The importance of the concept of an extender is as follows: suppose that E is an
extender of length γ derived from an elementary embedding j : V → M and that N
is a transitive class such that N |= ZFC. Suppose that E ∩N ∈ N and that γ = κ + 1,
where κ is the critical point of j . Then there exists a transitive class ME ⊆ N and an
elementary embedding

jE : N → ME

such that E ∩N is the extender of length γ derived from jE . The point here, of
course, is that the assumption is only thatE ∩N ∈ N , as opposed to the much stronger
assumption that E ∈ N . Both ME and jE can be chosen to be definable classes of N
(by �2-formulas) using just the parameter E ∩N .

Without the assumption that γ = κ + 1, which is a very special case, these claims
still hold, provided that one drops the requirement P(γ ) ⊆ M in the definition of an
extender that I have given.

These remarks suggest that one should seek, as generalizations of L, transitive
classes N such that N contains enough extenders of the form E ∩N for some extender
E ∈ V to witness that the targeted large cardinal axiom holds in N . One can then
regard such transitive classes as refinements of V that are constructed to preserve
certain extenders of V . The complication is in specifying just which extenders are to
be preserved.

For each set A, one can naturally define a class L[A] that is L relativized to the set
A, as follows:

Definition 20.11

1. Define Lα[A] by induction on the ordinal α:
a. L0 = ∅ and Lα+1[A] = Def(X) ∩ P(Lα[A]), where X = Lα[A] ∪

{Lα[A] ∩ A}.
b. If α is a limit ordinal, then Lα[A] = ⋃{Lβ[A] | β < α}.

2. L[A] is the class of all sets a such that a ∈ Lα[A] for some ordinal α. "#
If F is a function, then L[F ] is defined to be L[A], where A = F . Thus, if the

domain of F is disjoint from L, then L[F ] = L.
Constructing from a single extender E yields L[E], which is a true generalization

of L and solves the inner model problem for the large cardinal axiom that “there is
a measurable cardinal.” This claim follows from the results and methods of Kunen
(1970) and is illustrated in part by the following theorem.

There is a feature of inner models for large cardinals that is implicit in this example:

For a specific large cardinal axiom, there is, in general, no unique inner model for that
axiom but rather a family of inner models. However, all these inner models are equivalent
in a natural (but technical) sense.

One illustration of this is given by the following theorem, which is a modern formulation
of the fundamental results of Kunen (1970) on the inner model problem for one
measurable cardinal. For each extender E, let κE denote the least ordinal α such
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that E(α) �= α. This coincides with the critical point of the elementary embedding
j : V → M from which E is derived.

Theorem 20.12 Suppose that E and F are extenders.

1. If κE = κF , then L[E] = L[F ].
2. If κE < κF , then L[F ] ⊂ L[E], and there is an elementary embedding

j : L[E] → L[F ]. "#
For the generalizations of L[E] that one must consider to solve the inner model

problem for large cardinals beyond the level of measurable cardinals, this ambiguity
is much more subtle and lies at the core of the difficulty in even defining the inner
models.

By the preceding theorem, one cannot use a single extender to build an inner
model for essentially any large cardinal axiom beyond the level of a single measurable
cardinal. For example, suppose that E is an extender. Combining elements of Gödel’s
basic analysis of L, generalized to an analysis of L[E] with Theorem 20.12, it follows
that the inner modelL[E] will fail to satisfy the large cardinal axiom that “there are two
measurable cardinals.” There is an obvious remedy: to reach inner models for stronger
large cardinal axioms, one should use sequences

Ẽ = 〈Eα : α < θ〉,
where eachEα is the extender derived from some elementary embedding, as earlier. The
complication is in how actually to define the sequence; in fact, one must ultimately allow
the sequence to contain partial extenders, which creates still further complications.

A partial extender of length γ is the extender of length γ derived from a �0-
elementary embedding j : N → M , where N and M are transitive sets that are only
assumed to be closed under the Gödel operations, and instead of requiring P(γ ) ⊆ M ,
one requires that

P(γ ) ∩N = P(γ ) ∩M.

The requirement that j be a �0-elementary embedding is the requirement that for a
very restricted collection of formulas, φ(x0), and for all a ∈ N , N |= φ[a] if and only
if M |= φ[j (a)]. The relevant formulas are the �0-formulas.

The difficulty mentioned is in determining exactly when such partial extenders are
acceptable. In fact, things get so complicated that unlike the situation with measurable
cardinals, one can only define the inner model by simultaneously developing the
detailed analysis of the inner model in an elaborate induction.

The current state of the art is found in the inner models defined by Mitchell and Steel
(1994). The definition of these inner models is the culmination of a nearly twenty-year
program of developing the theory of inner models. The Mitchell-Steel inner models can
accommodate large cardinals up to the level of superstrong cardinals, but existence has
only been proved – from the relevant large cardinal axioms – at the level of a Woodin
cardinal, which is a limit of Woodin cardinals. In this program of establishing existence
of Mitchell-Steel inner models, the best results to date are from Neeman (2002).

The distinction between developing the theory of the inner models and proving the
existence of the inner models is perhaps a confusing one at first glance. The precise
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explanation requires details of the Mitchell-Steel theory, which are beyond the scope of
the present discussion. Roughly, the Mitchell-Steel theory reduces the problem of the
existence of the generalization of L for the large cardinal axiom under consideration
to a specific combinatorial hypothesis, provided that the large cardinal axiom is at the
level of a superstrong cardinal or below. This combinatorial (iteration) hypothesis can
be specified without any reference to the Mitchell-Steel theory and, more generally,
without reference to inner model theory at all. There is, of course, the possibility that
this is symptomatic of a far more serious problem and that by answering one of the test
questions of the inner model program negatively, one can prove that the inner model
program as presently conceived fails for some large cardinal axiom below the level of
a superstrong cardinal.

20.6 The Inner Model Program, the Core Model Program,
and the Skeptic’s Retreat

As I have claimed, there is a fundamental problem with appealing to the inner model
program to counter the Skeptic’s Retreat. The precise nature of the problem is subtle,
so I shall begin by describing what might seem to be a plausible version of the problem.
I will then briefly try to describe the actual problem. This will involve the core model
program, which is a variant of the inner model program.

Suppose (for example) that a hypothetical large cardinal axiom � provides a coun-
terexample to the Skeptic’s Retreat, and this is accomplished by the inner model
program:

To use the inner model program to refute the existence of an �-cardinal, one first must
be able to successfully construct the inner models for all smaller large cardinals, and this
hierarchy would be fully revealed by the construction.

Perhaps this could happen, but it can only happen once – this is the problem. Having
refuted the existence of an �-cardinal, how could one then refute the existence of any
smaller large cardinals, for one would have solved the inner model problem for these
smaller large cardinals? This would refute the Set Theorist’s cosmological principle,
so the fundamental problem is as follows:

The inner model program seems inherently unable, by virtue of its inductive nature, to
provide a framework for an evolving understanding of the boundary between the possible
and the impossible (large cardinal axioms).

On close inspection, it is perhaps not entirely convincing that there is a problem
here. Arguably, there is the potential for a problem, but the specific details of how
the inner model program might succeed in countering the Skeptic’s Retreat are clearly
critical in determining whether there really is a problem.

Although the idea that the inner model program could ever yield an inconsistency
result has always seemed unlikely, there is another way that the inner model program
might succeed in establishing inconsistency results in a manner that refutes the Skeptic’s
Retreat. The core model program can be described as follows: suppose that L[Ẽ] is
an inner model as constructed by the inner model program. In general, would one not
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expect the inner model L[Ẽ] to contain even all the real numbers; for example, if the
continuum hypothesis is false in V , then necessarily, there are real numbers that are
not in L[Ẽ]. Therefore every extender on the sequence Ẽ, when restricted to L[Ẽ], is
necessarily a partial extender in V . This suggests that one might attempt to construct
the inner model L[Ẽ] without using extenders at all but rather just partial extenders.

Though this might seem reasonable, there is, of course, a problem. If there are
no extenders in V , then there are no measurable cardinals in V , and so one cannot
in general expect to be able to build an inner model in which there are measurable
cardinals. But suppose one assumes that there is no proper transitive class N in which
a particular large cardinal axiom holds. Then a reasonable conjecture is that there is an
inner model of the form L[Ẽ] that is close to V .

One measure of the closeness of an inner modelN to V is a weak covering principle.
This requires a definition: a cardinal γ is singular if there exists a cofinal set X ⊆ γ

such that |X| < γ , and γ+ refers to the least cardinal κ such that κ > γ . Suppose that
N is a (proper) transitive class and that N |= ZFC. Then weak covering holds for V
relative to the inner model N , if for all uncountable singular cardinals γ , if γ = |Vγ |,
then

(γ+)N = γ+.

Allowing the case that Ẽ = ∅, so that L[Ẽ] = L, this becomes a very interesting
problem. The program to solve this family of problems is the core model program.
Both the inner model program and the core model program seek to construct exactly
the same form of an inner model – the only difference is in the assumptions from which
one starts. The inner model program starts with the assumption that a particular large
cardinal axiom holds in V , whereas the core model program starts with the assumption
that a particular large cardinal axiom does not hold in any transitive class N ⊆ V . It
is customary to refer to the transitive classes constructed by the methods of the core
model program as core models.

The core model program was inspired by Jensen’s covering lemma and began with
the results of Dodd and Jensen (1981). The strongest results to date are primarily from
Steel, who extended the core model program to the level of Woodin cardinals (Steel,
1996). As with the inner model program, the solutions provided by the Core Model
Program increase in complexity as the associated large cardinal axiom is strengthened.

The core model program has been quite successful, and out of it have come a number
of deep combinatorial theorems. For example, the methods and constructions of the
core model program play an essential role in the proof of Theorem 20.3. One might
suspect that the utility of the core model program is limited for proving the kinds of
theorems that an inconsistency result would require because of the requisite hypothesis
that there be no proper transitive classN in which a specific large cardinal axiom holds.
Despite this requirement, though, the core model program has yielded some surprising
theorems of set theory.

Recall that the generalized continuum hypothesis (GCH) is the assertion that for all
infinite cardinals, γ , 2γ = γ+, where 2γ is the cardinality of P(γ ) = {X | X ⊆ γ }.
The following theorem is an example of a theorem proved by the methods of the core
model program.
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Theorem 20.13 (Woodin, 1996) Suppose that there exists a countable set A
such that A is a set of ordinals and V = L[A]. Then the GCH holds. "#
On general grounds, to prove the theorem, it suffices from the hypothesis of the

theorem just to prove that the continuum hypothesis holds. The special case where
A ⊆ ω follows from Gödel’s analysis of L, generalized to the analysis of L[A]. For
the general case where one does not assume A ⊆ ω, there is no elementary proof of
the continuum hypothesis known.

By a theorem of Jensen (Beller et al., 1982) for any sentence φ, if the sentence is
consistent with the axioms ZFC, then the existence of a proper class N within which
the sentence holds is consistent with the hypothesis of Theorem 20.13. If, in addition,
the sentence is consistent with the axioms ZFC + GCH, then one can even require that
the transitive class N be close to L[A]. For example, one can require that N and L[A]
have the same cardinals. While this additional consistency assumption may seem like a
very restrictive assumption, at least for the current generation of large cardinal axioms,
it is not.

Therefore it is perhaps not unreasonable that the core model program might yield
that some proposed large cardinal axiom is inconsistent and, in doing so, refute the
Skeptic’s Retreat. But to accomplish this, though, the core model program would seem
to have to produce an ultimate core model corresponding to the ultimate inner model.
However, if this is an inner model of the form L[Ẽ] for some sequence of (partial)
extenders, as is the case for essentially all core models that have been constructed
to date, then the nature of the extenders on the sequence Ẽ should reveal the entire
large cardinal hierarchy – and we again are in a situation where further progress looks
unlikely.

Thus it would seem that the Skeptic’s Retreat is in fact a powerful counterattack.
However, there is something wrong here – some fundamental misconception. The
answer lies in understanding large cardinal axioms that are much stronger than those
within reach of the Mitchell-Steel hierarchy of inner models. Ironically, one outcome
of my proposed resolution to this misconception is that for these large cardinal axioms,
the Set Theorist’s cosmological principle is either false or useless. I shall discuss these
ramifications after Theorem 20.22.

20.7 Supercompact Cardinals and Beyond

We begin with a definition.

Definition 20.14 (Solovay) A cardinal κ is a supercompact cardinal if, for
each ordinal α, there exists a transitive class M and an elementary embedding
j : V → M such that

1. κ is the critical point of j and j (κ) > α

2. M contains all functions, f : α → M "#
Still stronger are extendible cardinals, huge cardinals, and n-huge cardinals where

n < ω. These I shall not define here. As I have already indicated, the strongest large
cardinal axioms not known to be inconsistent with the axiom of choice are the family
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of axioms asserting the existence of ω-huge cardinals. These axioms have seemed so
far beyond any conceivable inner model theory that they simply are not understood.

The possibilities for an inner model theory at the level of supercompact cardinals
and beyond have essentially been a complete mystery until recently. The reason lies
in the nature of extenders. Suppose that E is an extender of length γ derived from
an elementary embedding j : V → M with critical point κ such that P(γ ) ⊆ M . If
γ ≤ j (κ), then E is a short extender; otherwise, E is a long extender. Up to this point,
I have only considered short extenders. The properties of long extenders can be quite
subtle, and it is for this reason that I impose the requirement P(γ ) ⊆ M . Even with this
requirement, many subtleties remain. For example, Theorem 20.12, which I implicitly
stated for short extenders, is false for long extenders. One can prove the following
variation, provided that the extenders are not too long. For expository purposes, let
me define an extender E to be a suitable extender if E is the extender of length γ

derived from an elementary embedding j : V → M such that P(γ ) ⊆ M and such that
γ < j (α) for some α < j (κ), where κ is the critical point of j . Suitable extenders can
be long extenders, but they cannot be too long.

Theorem 20.15 Suppose that E and F are suitable extenders. Then

R ∩ L[E] ⊆ R ∩ L[F ] or R ∩ L[F ] ⊆ R ∩ L[E]. "#
Without the restriction to suitable extenders, it is not known if this theorem holds.

The following lemma of Magidor, reformulated in terms of suitable extenders, gives
a useful reformulation of supercompactness (Woodin, 2009). The statement of the
lemma involves the following notation, which I previously defined for short extenders.
Suppose that E is an extender of length γ derived from an elementary embedding
j : V → M . Then κE is the critical point of j . Suppose that α < γ . Then, by the
definition of E, and given that α = {β | β < α} ⊆ γ , we find that α is in the domain
of E and either E(α) = γ or E(α) < γ . Moreover, the following hold:

1. E(α) < γ if and only if j (α) < γ and E(α) = j (α).
2. E(α) = γ if and only if j (α) ≥ γ .

Thus κE is simply the least α such that E(α) �= α.

Lemma 20.16 Suppose that δ is a cardinal. Then the following are equivalent:

1. δ is supercompact.
2. For each ordinal γ > δ, there exists a suitable extender E of length γ such that

E(κE) = δ. "#
My convention in what follows is that a class E of extenders witnesses that δ is a

supercompact cardinal if, for each γ > δ, there exists an extender E ∈ E such that

1. E has length γ
2. E(κE) = δ and for some α < δ, E(α) = γ .

Note that condition 2 implies that E is a suitable extender.
The Mitchell-Steel inner models are constructed from sequences of short extenders.

To build inner models at the level of supercompact cardinals and beyond, one must have
long extenders on the sequence, and this creates serious obstacles if these extenders
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are too long. In fact, Steel has isolated a specific obstacle that becomes severe at the
level of one supercompact cardinal with a measurable cardinal.

By some fairly recent theorems (Woodin, 2009), something completely unexpected
and remarkable happens. Suppose that N is a transitive class for some cardinal δ,

N |= “δ is a supercompact cardinal,”

and that this is witnessed by the class of all E ∩N such that E ∩N ∈ N and such that
E is an extender. Then the transitive class N is close to V , and N inherits essentially
all large cardinals from V .

For example, suppose that for each n, there is a proper class of n-huge cardinals in
V . Then in N , for each n, there is a proper class of n-huge cardinals. The amazing
thing is that this must happen no matter how N is constructed. This would seem to
undermine my earlier claim that inner models should be constructed as refinements of
V that preserve enough extenders from V to witness that the targeted large cardinal
axiom holds in the inner model. It does not, and the reason is that by simply requiring
thatE ∩N ∈ N for enough suitable extenders from V to witness that the large cardinal
axiom, “there is a supercompact cardinal,” holds in N , one (and this is the surprise)
necessarily must have E ∩N ∈ N for a much larger class of extenders of V . So
the principle that there are enough extenders of N that are of the form E ∩N for
some extender E ∈ V , to witness that the targeted large cardinal axiom holds in N , is
preserved. The change, in the case that N is constructed from a sequence of extenders,
is that these extenders do not have to be on the sequence from which N is constructed.
In particular, in the case that the sequence of extenders from which N is constructed
contains only suitable extenders, large cardinal axioms can be witnessed to hold in N
by the “phantom” extenders (these are extenders of N that are not on the sequence),
which cannot be witnessed to hold by any extender on the sequence.

As a consequence of this, one can completely avoid the cited obstacles because

one does not need to have the kinds of long extenders on the sequence that give rise to
the obstacles.

Specifically, one can restrict consideration to extender sequences of just suitable ex-
tenders, and this is a paradigm shift in the whole conception of inner models.

The analysis yields still more. Suppose that there is a positive solution (in ZFC) to
the inner model problem for just one supercompact cardinal. Then, as a corollary, one
would obtain a proof of the following conjecture:

Conjecture (ZF) There are no weak Reinhardt cardinals. "#
It is possible to isolate a specific conjecture that must be true if there is a positive

solution to the inner problem for one supercompact cardinal that itself suffices for this
inconsistency result. To explain this further, I must give one last definition.

This is the definition of the class HOD that originates in remarks of Gödel at the
Princeton Bicentennial Conference in December 1946 (Levy, 1965).

Definition 20.17 (ZF)

1. For each ordinal α, let HODα be the set of all sets a such that there exists a set
A ⊆ α such that
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a. A is definable in Vα from ordinal parameters
b. a ∈ Lα[A].

2. HOD is the class of all sets a such that a ∈ HODα for some α. "#
The definition of HODα combines features of the definition of Lα and features of

the definition of Vα . I caution that, just as is the case for Lα , in general, we have

HODα �= HOD ∩ Vα,

although for a proper class of ordinals α, it is true that HODα = HOD ∩ Vα .
The class HOD is quite interesting for a number of reasons, one of which is illustrated

by the following observation of Gödel, which, as indicated, is stated within just the
theory ZF, in other words, without assuming the axiom of choice.

Theorem 20.18 (ZF) HOD |= ZFC. "#
This theorem gives a completely different approach to showing that if ZF is formally
consistent, then so is ZFC.

One difficulty with HOD is that the definition of HOD is not absolute; for example,
in general, HOD is not even the same as defined within HOD. As a consequence, almost
any set-theoretic question one might naturally ask about HOD is formally unsolvable.
Two such immediate questions are whetherV = HOD and, more simply, whether HOD
contains all the real numbers. Both of these questions are formally unsolvable but are
of evident importance because they specifically address the complexity of the axiom of
choice. If V = HOD, then there is no mystery as to why the axiom of choice holds, but
of course, one is left with the problem of explaining why V = HOD. If V = L, then it
is easy to verify that V = HOD. Furthermore, the inner models of Mitchell-Steel (in
the situations where existence can be proved) can always be constructed to be contained
in HOD, even though the axiom V = HOD can fail in a Mitchell-Steel inner model.

I now present a key conjecture. This conjecture involves the notion that an un-
countable cardinal γ is a regular cardinal. This is the property that for all X ⊆ γ , if
|X| < γ , then X is bounded in γ . Alternatively, referring to notions already defined,
an uncountable cardinal γ is a regular cardinal if it is not a singular cardinal.

The HOD Conjecture: (ZFC) Suppose that κ is a supercompact cardinal. Then
there exists a regular cardinal γ > κ that is not a measurable cardinal in
HOD. "#

If there is a supercompact cardinal in V , then the HOD conjecture implies that HOD
is close to V . Assuming that a slightly stronger large cardinal hypothesis holds in V

(and that the HOD conjecture also holds in V ), one actually obtains that HOD is quite
close to V . As evidence for the latter claim, I note the following theorem. Part 3 of
this theorem is a very strong closure condition for HOD, and part 2 follows directly
from part 3. The analogous closure condition holds for any transitive (proper) class
N |= ZFC such that for some cardinal δ,

N |= “δ is a supercompact cardinal,”

and such that this is witnessed by the class of all restrictions E ∩N , where E is an
extender and E ∩N ∈ N . Referring back to the discussion of the distinction between
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the core model program and the inner model program, this closure condition establishes
that in the context of the existence of just one supercompact cardinal, there is no
difference between the primary objectives of these two programs.

Theorem 20.19 (ZFC) Suppose that there is an extendible cardinal and that
the HOD conjecture holds. Then the following hold:

1. There exists an ordinal α such that for all cardinals γ > α, if γ is a singular
cardinal, then γ+ = (γ+)HOD.

2. Suppose for each n that there is a proper class of n-huge cardinals. Then for each
n,

HOD |= “There is a proper class of n-huge cardinals.”

3. There exists an ordinal α such that for all γ > α, if

j : HOD ∩ Vγ+1 → HOD ∩ Vj (γ )+1

is an elementary embedding with critical point above α, then j ∈ HOD. "#
If the HOD conjecture is provable in ZFC, then there is a striking corollary in ZF:

Theorem 20.20 (ZF) Suppose that λ is a limit of supercompact cardinals and
that there is an extendible cardinal below λ. Then there is no elementary embed-
ding

j : Vλ+2 → Vλ+2

that is not the identity. "#
This corollary would prove the preceding conjecture (that there are no weak Reinhardt
cardinals) and would give an inconsistency result that more closely matches the version
of Theorem 20.7 that Kunen (1970) actually proved (assuming the axiom of choice).

Theorem 20.21 (Kunen, 1970) Suppose that λ is an ordinal. Then there is no
elementary embedding j : Vλ+2 → Vλ+2 that is not the identity. "#
The connection between the HOD conjecture and the inner model problem for one

supercompact cardinal is illustrated by the next theorem. Arguably, statement 3 of this
theorem would follow from any reasonable solution to the inner model problem for
one supercompact cardinal.

Theorem 20.22 (ZFC) Suppose that there is an extendible cardinal. Then the
following are equivalent:

1. The HOD conjecture holds.
2. There is a cardinal δ such that

HOD |= “δ is a supercompact cardinal,”

and this is witnessed by the class of all E ∩ HOD such that E is an extender and
E ∩ HOD ∈ HOD.

3. There exists a class N ⊆ HOD, and there exists a cardinal δ such that

N |= ZFC + “δ is a supercompact cardinal,”
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and this is witnessed by the class of all E ∩N such that E is an extender and
E ∩N ∈ N . "#

These developments come with a price. For the large cardinal axioms stronger than
the axiom that asserts the existence of one supercompact cardinal, the set theorist’s
cosmological principle must be either abandoned or revised. The reason for this is
that the solution to the inner model problem for the specific axiom “there exists one
supercompact cardinal” necessarily will solve the inner model problem (as currently
defined) for essentially all the known large axioms up to and including the axiom “there
is an ω-huge cardinal.”

We therefore face a very simple dichotomy of possibilities: the inner model problem
for the axiom “there exists one supercompact cardinal” is solvable, or it is not. The other
possibility – this is the possibility that this solvability question is itself unsolvable –
is not an option based on any reasonable notion of mathematical truth. The simple
reason for this is that if the solvability question is itself formally unsolvable, then the
inner model problem for the axiom “there exists one supercompact cardinal” is not
solvable. The situation here is exactly like the situation for a number (but not all) of
the prominent open questions of modern mathematics. For example, if the Riemann
hypothesis is formally unsolvable (and there is absolutely no evidence for this), then
the Riemann hypothesis is true.

Whatever the outcome to this dichotomy of possibilities, one outcome seems certain:
the Set Theorist’s cosmological principle cannot be applied to argue for the truth of
(any) large cardinal axioms beyond the axiom “there exists one supercompact cardinal.”
Of course, it could be that the solution to the inner model problem for the axiom “there
exists one supercompact cardinal” involves the construction of an inner model that is
not of the form L[Ẽ], where Ẽ is a sequence of partial extenders, for example. But
this alone would not suffice to resolve the issue raised by the preceding theorem. The
reason is that statement 3 of the theorem makes no assumption that the inner model N
is constructed from an extender sequence. Furthermore, the necessity of the closeness
of N to V (which is the only issue here) does not require that N ⊆ HOD but only
requires that for some cardinal δ,

N |= ZFC + “δ is a supercompact cardinal.”

This is witnessed by the class of all E ∩N such that E is an extender and E ∩N ∈
N . A solution that solves the inner model problem for the axiom “there exists one
supercompact cardinal,” and yet involves only the construction of inner models for
which this fails would be completely unlike all the current solutions to the inner model
problem for the various large cardinal axioms where a solution exists.

One can correctly speculate that the difficulty is in the requirement that for the
inner model N , the relevant large cardinal axiom is witnessed to hold by extenders of
N that are of the form E ∩N for some extender E ∈ V . However, extenders are the
witnesses for large axioms, and therefore any genuine construction of an inner model
N should arguably satisfy this requirement. Moreover, to avoid trivial solutions, one
has to require that the associated inner models satisfy some form of being close to V .
More precisely, one has to require that the large cardinals of the inner models N that
constitute the solution have some form of ancestry in the large cardinals of V .
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There is a silver lining to this dark cloud. Suppose that the inner model problem
at the level of one supercompact cardinal can be solved and that the solution does
involve defining inner models that are of the form L[Ẽ], where Ẽ is a sequence of
(partial) extenders. Then it is possible to analyze the relationship of the inner models
L[Ẽ] to V without knowing how the corresponding extender sequences Ẽ are actually
constructed. The results to date (Woodin, 2009) have greatly clarified the axioms that
assert the existence of ω-huge cardinals and have revealed a new hierarchy of such
axioms. The emerging structure theory for these axioms could well develop to the
point where it serves as a surrogate for the existence of an inner model theory in a
revised version of the Set Theorist’s cosmological principle. On general grounds, one
can argue that if these axioms are consistent, then L[Ẽ] must provide a structure theory
for these axioms because if the axioms can hold in V , then they can hold in L[Ẽ]
(by the closeness of L[Ẽ] to V ). Therefore the required revision of the Set Theorist’s
cosmological principle may actually not be so severe. The revision would be in what
constitutes an inner model theory for those large cardinal axioms beyond the large
cardinal axiom that asserts the existence of one supercompact cardinal. My point is
that simply requiring that there be a generalization of the axiom of constructibility that
is compatible with the large cardinal axiom may (for evident reasons) not be sufficient
for these axioms. In addition, one may have to impose much stronger requirements,
perhaps more in line with the often-quoted speculation of Gödel (1947):

There might exist axioms so abundant in their verifiable consequences, shedding so much
light upon a whole discipline, and furnishing such powerful methods for solving given
problems (and even solving them, as far as possible, in a constructivistic way) that quite
irrespective of their intrinsic necessity they would have to be assumed at least in the same
sense as any established physical theory.

To summarize the point I am attempting to make:

The foundational basis for asserting that large cardinal axioms beyond the level of one
supercompact cardinal are true might lie in the structural consequences forL[Ẽ] that their
existence implies. Moreover, this claim of truth may require (and reinforce) some version
of the claim that V = L[Ẽ].

This speculation is grounded in a number of preliminary results (Woodin, 2009).

20.8 Summary

There is now a body of mathematical evidence that if there is a supercompact cardinal,
then there is a transcendent version, say, L�, of Gödel’s inner model L: in brief, there
is an ultimate L. This development, if realized, will yield a much deeper understanding
of the large cardinal axioms:

1. identifying much more precisely the transition for large cardinal axioms from the possible
to the impossible

2. providing a framework for a continuing evolution in the understanding of this transition
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The analysis will reveal some very subtle theorems about the nature of sets, which in
turn will eliminate essentially all the large cardinal axioms known to contradict the
axiom of choice. How, then, could one account for the new predictions of consistency
(and formal unsolvability) that will arise? Certainly not by invoking the Skeptic’s
Retreat.

Finally, we know that Gödel rejected the axiom V = L. The current view rejects this
axiom primarily because it is a limiting axiom that denies large cardinal axioms. This
particular argument would not apply to the axiom V = L�. Furthermore, assuming
that the analysis can be carried out to construct L�,

there is no known candidate for a sentence that is independent from the axiom V = L�

and that is not a consequence of some large cardinal axiom.

However, all large cardinal axioms are merely axioms for the height of L�, given that
no (known) large cardinal axiom can transcend L�.

As this point is a key point of the thesis of this chapter, I shall discuss it a bit further.
It is well known that large cardinal axioms yield new theorems of number theory;
more precisely, assuming the large cardinal axioms to be true, one can infer as true
specific statements of number theory that arguably cannot otherwise be proved. The
foundational issue raised by this is that the large cardinals do not exist in the universe
of number theory and yet their existence generates new truths of that universe. How,
then, can the number theorist account for these truths? This, of course, is presented in
the previous discussion as the debate between the Skeptic and the Set Theorist.

Why do similar issues not arise for the universe given by L�? Because the large
cardinals can (and therefore do) exist in this universe. This is the key new feature that
L� would possess that sets it apart from all the current known generalizations of L. As
a consequence of this feature, L� would provide an unambiguous conception of the
transfinite universe, giving an example of an axiom that achieves this goal and that is
arguably compatible with all large cardinal axioms where there is no example currently
known.

Would this alone be sufficient to argue that the axiom V = L� is the axiom for V ?
No more than one could argue that the axiom V = L is the axiom for V should all the
large cardinal axioms that imply that V �= L turn out to be inconsistent (which will
not happen). However, the successful construction of L� would provide substantial
evidence that there is a single axiom for V that yields a conception of the universe
of sets that is in fact (for the reasons articulated earlier) more unambiguous than our
present conception of number theory. Moreover, the successful construction of L�

would provide a starting point for discovering that axiom.
This development would be a significant milestone in our understanding of the

transfinite universe. I make this claim completely independently of any speculation that
there are number-theoretic problems that are orthogonal to all large cardinal axioms
such as is the case for the problem of the continuum hypothesis.
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CHAPTER 21

The Gödel Phenomenon in
Mathematics: A Modern View

Avi Wigderson

What are the limits of mathematical knowledge? The purpose of this chapter is to
introduce the main concepts from computational complexity theory that are relevant
to algorithmic accessibility of mathematical understanding. In particular, I’ll discuss
the P versus NP problem, its possible impact on research in mathematics, and how
interested Gödel himself was in this computational viewpoint.

Much of the technical material will be necessarily sketchy. The interested reader
is referred to the standard texts on computational complexity theory, primarily
Arora and Barak (2009), Goldreich (2008), Papadimitriou (1994a), and Sipser
(1997).

21.1 Overview

Hilbert believed that all mathematical truths are knowable, and he set the threshold for
mathematical knowledge at the ability to devise a “mechanical procedure.” This dream
was shattered by Gödel and Turing. Gödel’s incompleteness theorem exhibited true
statements that can never be proved. Turing formalized Hilbert’s notion of computation
and of finite algorithms (thereby initiating the computer revolution) and proved that
some problems are undecidable – they have no such algorithms.

Though the first examples of such unknowables seemed somewhat unnatural, more
and more natural examples of unprovable or undecidable problems were found in
different areas of mathematics. The independence of the continuum hypothesis and
the undecidability of Diophantine equations are famous early examples. This became
known as the Gödel phenomenon, and its effect on the practice of mathematics has
been debated since. Many argued that though some of the inaccessible truths above are
natural, they are far from what is really of interest to most working mathematicians.
Indeed, it would seem that in the seventy-five years since the incompleteness theo-
rem, mathematics has continued thriving, with remarkable achievements such as the
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recent settlement of Fermat’s last “theorem” by Wiles and the Poincaré conjecture by
Perelman. Are there interesting mathematical truths that are unknowable?

The main point of this chapter is that when knowability is interpreted by modern
standards, namely, via computational complexity, the Gödel phenomenon is very much
with us. We argue that to understand a mathematical structure, having a decision pro-
cedure is but a first approximation; a real understanding requires an efficient algorithm.
Remarkably, Gödel was the first to propose this modern view in a letter to von Neumann
in 1956, which was discovered only in the 1990s.

Meanwhile, from the mid-1960s on, the field of theoretical computer science has
made formal Gödel’s challenge and has created a theory that enables quantification
of the difficulty of computational problems. In particular, a reasonable way to capture
knowable problems (which we can efficiently solve) is the class P , and a reasonable
way to capture interesting problems (which we would like to solve) is the class NP .
Moreover, assuming the widely believed P �= NP conjecture, the class NP-complete
captures interesting unknowable problems.

In this chapter, I define these complexity classes, explain their intuitive meaning,
and show how Gödel foresaw some of these definitions and connections. I relate com-
putational difficulty to mathematical difficulty and argue how such notions, developed
in computational complexity, may explain the difficulty mathematicians have in ac-
cessing structural, noncomputational information. I also survey proof complexity: the
study of lengths of proofs in different proof systems.

Finally, I point out that this modern view of the limits of mathematical knowledge is
adopted by a growing number of mathematicians working on a diverse set of interesting
structures in different areas of mathematics. This activity increases interaction with
computer scientists and benefits both fields. Results are of two types, as in standard
computer science problems. On one hand, there is a growing effort to go beyond
characterizations of mathematical structures, and attempts are made to provide efficient
recognition algorithms. On the other, there is a growing number of NP-completeness
results, providing the stamp of difficulty for achieving useful characterizations and
algorithms. This second phenomenon, now ubiquitous in science and mathematics,
may perhaps better capture Gödel’s legacy on what is unknowable in mathematics.

21.1.1 Decision Problems and Finite Algorithms

Which mathematical structures can we hope to understand? Let us focus on the most
basic mathematical task of classification. We are interested in a particular class of
objects and a particular property. We seek to understand which of the objects have the
property and which do not. Let us consider the following examples:

1. Which valid sentences in first-order predicate logic are provable?
2. Which Diophantine equations have solutions?
3. Which knots are unknotted?
4. Which elementary statements about the reals are true?

It is clear that each object from the preceding families has a finite representation.
Hilbert’s challenge was about the possibility to find, for each such family, a finite
procedure that would solve the decision problem in finite time for every object in the
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family. In his seminal paper, Turing (1936, 1937) formulated the Turing machine, a
mathematical definition of an algorithm, capturing such finite mechanical procedures.
This allowed a mathematical study of Hilbert’s challenge.

Hilbert’s Entscheidungsproblem – problem 1 – was the first to be resolved, in the
same paper by Turing. Turing showed that problem 1 is undecidable, namely, that there
is no algorithm that distinguishes provable from unprovable statements of first-order
predicate logic. Hilbert’s tenth problem – problem 2 – was shown to be undecidable as
well, in a series of works by Davis, Putnam, Robinson, and Matiasevich (Matiasevich,
1993). Again, no algorithm can distinguish solvable from unsolvable Diophantine
equations.

The crucial ingredient in those (and all other) undecidability results is showing that
each of these mathematical structures can encode computation. This is known today to
hold for many different structures in algebra, topology, geometry, analysis, logic, and
more, even though a priori the structures studied seem to be completely unrelated to
computation. It is as though much of contemporary work in mathematics is pursuing,
unwittingly and subconsciously, an agenda with essential computational components.
I shall return to refined versions of this idea later.

The notion of a decision procedure as a minimal requirement for understanding of
a mathematical problem has also led to direct positive results. It suggests that we look
for a decision procedure as a means, or as a first step, for understanding a problem.
For problems 3 and 4, this was successful. Haken (1961) showed how knots can be
so understood, with his decision procedure for problem 3, and Tarski (1951) showed
that real-closed fields can be understood with a decision procedure for problem 4.
Naturally, significant mathematical, structural understanding was needed to develop
these algorithms. Haken developed the theory of normal surfaces, and Tarski invented
quantifier elimination for their algorithms, both cornerstones of the respective fields.

This reveals only the obvious: mathematical and algorithmic understanding are
related and often go hand in hand. There are many ancient examples. The earliest is
probably Euclid’s greatest common divisor (GCD) algorithm. Abel’s proof that roots
of real polynomials of degree at least 5 have no formula with radicals is the first
impossibility result (of certain classes of algorithms). Of course, Newton’s algorithm
for approximating such roots is a satisfactory practical alternative. What was true in
previous centuries is truer in this one: the language of algorithms is slowly becoming
competitive with the language of equations and formulas (which are special cases of
algorithms) for explaining complex mathematical structures.

Back to our four problems. The undecidability of problems 1 and 2 certainly sug-
gests that these structures cannot be mathematically understood in general. This led
researchers to consider special cases of problems that are decidable. But does decid-
ability, for example, that of problems 3 and 4, mean that we completely understand
these structures? Far from it. Both algorithms are extremely complex and time con-
suming. Even structurally speaking, there are no known complete knot invariants or
characterizations of real varieties. How can one explain such mathematical difficulties
for decidable problems?

It is natural to go beyond decidability and try to quantify the level of understanding.
We will use a computational yardstick for it. We argue that better mathematical under-
standing goes hand in hand with better algorithms for “obtaining” that understanding



478 the gödel phenomenon in mathematics: a modern view

from the given structures. To formalize this, we will introduce the computational terms
that are central to the theory of computational complexity. There is no better way to
start this than with Gödel’s letter to von Neumann.

21.2 Gödel’s Letter to von Neumann

In Gödel’s letter, which I include in its entirety for completeness, complexity is dis-
cussed only in the second paragraph – it is remarkable how much this paragraph
contains! It defines asymptotic and worst-case time complexity, suggests the study
of the satisfiability problem, discusses the mathematical significance of having a fast
algorithm for it, and even speculates on the possibility of the existence of such an
algorithm. In the section that follows the letter, I identify the letter’s contributions and
insights in modern language.

21.2.1 The Letter

First, a bit on the context. The letter was written when von Neumann was in the hospital,
already terminally ill with cancer (he died a year later). It was written in German, and
here we reproduce a translation. The surveys by Sipser (1992) and Hartmanis (1989)
provide the original letter as well as more details on the translation.

As far as we know, the discussion Gödel was trying to initiate never continued.
Moreover, we have no evidence of Gödel’s thinking more about the subject. Again,
we will refer later only to the second paragraph, which addresses the computational
complexity issue.

Princeton, 20 March 1956

Dear Mr. von Neumann:

With the greatest sorrow I have learned of your
illness. The news came to me as quite unexpected.
Morgenstern already last summer told me of a bout of
weakness you once had, but at that time he thought
that this was not of any greater significance. As I
hear, in the last months you have undergone a radical
treatment and I am happy that this treatment was
successful as desired, and that you are now doing
better. I hope and wish for you that your condition
will soon improve even more and that the newest
medical discoveries, if possible, will lead to a
complete recovery.

Since you now, as I hear, are feeling stronger, I
would like to allow myself to write you about a
mathematical problem, of which your opinion would
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very much interest me: One can obviously easily
construct a Turing machine, which for every formula F

in first order predicate logic and every natural
number n, allows one to decide if there is a proof of
F of length n (length = number of symbols). Let ψ(F, n)
be the number of steps the machine requires for this
and let φ(n) = maxF ψ(F, n). The question is how fast φ(n)
grows for an optimal machine. One can show that
φ(n) ≥ k · n. If there really were a machine with
φ(n) ≈ k · n (or even φ(n) ≈ k · n2), this would have
consequences of the greatest importance. Namely, it
would obviously mean that in spite of the
undecidability of the Entscheidungsproblem, the
mental work of a mathematician concerning Yes-or-No
questions (apart from the postulation of axioms)
could be completely replaced by a machine. After all,
one would simply have to choose the natural number n

so large that when the machine does not deliver a
result, it makes no sense to think more about the
problem. Now it seems to me, however, to be
completely within the realm of possibility that φ(n)
grows that slowly. Since 1.) it seems that φ(n) ≥ k · n
is the only estimation which one can obtain by a
generalization of the proof of the undecidability of
the Entscheidungsproblem and 2.) after all φ(n) ≈ k · n
(or φ(n) ≈ k · n2) only means that the number of steps as
opposed to trial and error can be reduced from N to
logN (or (logN )2). However, such strong reductions
appear in other finite problems, for example in the
computation of the quadratic residue symbol using
repeated application of the law of reciprocity. It
would be interesting to know, for instance, the
situation concerning the determination of primality
of a number and how strongly in general the number of
steps in finite combinatorial problems can be reduced
with respect to simple exhaustive search.

I do not know if you have heard that ‘‘Post’s
problem,’’ whether there are degrees of unsolvability
among problems of the form (∃y)φ(y, x), where φ is
recursive, has been solved in the positive sense by a
very young man by the name of Richard Friedberg. The
solution is very elegant. Unfortunately, Friedberg
does not intend to study mathematics, but rather
medicine (apparently under the influence of his
father). By the way, what do you think of the



480 the gödel phenomenon in mathematics: a modern view

attempts to build the foundations of analysis on
ramified type theory, which have recently gained
momentum? You are probably aware that Paul Lorenzen
has pushed ahead with this approach to the theory of
Lebesgue measure. However, I believe that in
important parts of analysis non-eliminable
impredicative proof methods do appear.

I would be very happy to hear something from you
personally. Please let me know if there is something
that I can do for you. With my best greetings and
wishes, as well to your wife,

Sincerely yours,

Kurt Gödel

P.S. I heartily congratulate you on the award that
the American government has given to you.

21.2.2 Time Complexity and Gödel’s Foresight

In this section, I go through the main ingredients of Gödel’s letter, most of which
were independently1 identified and developed in the evolution of computational com-
plexity in the 1960s and 1970s. These include the basic model, input representation
(asymptotic, worst-case), time complexity,2 brute-force algorithms and the possibility
of beating them, proving lower bounds, and last but not least, Gödel’s choice of a
focus problem and its significance. I comment on the remarkable foresight of some
of Gödel’s choices. When introducing some of these notions, I use common, modern
notation.

� Computability versus complexity: All problems we will discuss here are com-
putable, that is, they have a finite algorithm. Gödel states that for his problem, “one
can...easily construct a Turing machine.” We take for granted that
the given problem is decidable and ask for the complexity of the best or optimal al-
gorithm. Gödel is the first on record to suggest shifting focus from computability to
complexity.

� The model: Gödel’s computational model of choice is the Turing machine. Time will
be measured as the number of elementary steps on a Turing machine. We note that this
is a nontrivial choice for a discussion of time complexity back in 1956. The Church-
Turing thesis of the equivalence of all feasible computational models was around, and
all known algorithmic models were known to simulate each other. However, that thesis

1 Recall that the letter was discovered only in the 1990s.
2 I shall focus on time as the primary resource of algorithms when studying their efficiency. Other resources, such

as memory, parallelism, and more, are studied in computational complexity, but I will not treat them here.
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did not include time bounds, and it seems that Gödel takes for granted (or knows)
that all known models can simulate each other efficiently (something that is now well
established).

� The problem: Gödel focuses on one problem to define complexity, a finite version of
the Entscheidungsproblem, in which the task is to determine if a formula F has a proof
of length n. This is by no means an arbitrary choice, and Gödel is well aware of it, as will
be discussed later. Put differently, Gödel’s problem asks if we can satisfy a first-order
logic verifier that F is provable using only n symbols. We shall later meet its cousin,
the problem SAT (abbreviating “satisfiability”), in which the task is to determine if a
propositional formula has a satisfying assignment. It is not hard to see that SAT captures
Gödel’s problem,3 and so we will call his problem SAT as well.

� Input representation: Every finite object (formulas, integers, graphs, etc.) can be
represented as a binary string. We let Im stand for the set of all finite binary strings. Let
f be a decision problem (“Yes-or-No question” in Gödel’s letter), like those in
Section 21.1.1. Then f : I → {0, 1} is what we are trying to compute. Thus we consider
Turing machines that for every input x halt with the answer f (x). In Gödel’s problem,
the input is the pair (F, n), and the task is computing whether the first-order formula F
has a proof of length at most n.

� Input length: This is always taken in computational complexity to be the binary length
of the input. Clearly Gödel makes the same choice: when he talks about the complexity
of testing primality of an integer N , he takes the input length to be logN , the number of
bits needed to describe N . Of course, finite objects may have many representations that
differ in length, and one must pick “reasonable” encodings.4

� Time complexity: Complexity is measured as a function of input length. Adapting
Gödel’s notation, we fix any Turing machine M computing f . We let φ(n) denote
the maximum,5 over all inputs x of length n, of the number of steps M takes when
computing f (x). We then consider the growth of φ(n) for the “optimal machine”6

M . It is quite remarkable that Gödel selects both the asymptotic viewpoint and worst-
case complexity – neither is an obvious choice but both proved extremely fruitful in the
development of computational complexity.

� Brute-force algorithms: All problems mentioned by Gödel – SAT , primality testing,
and computing quadratic residue – have what Gödel calls “trial and error” and
“simple exhaustive search" algorithms. All these problems happen to be in
the class NP , and these obvious trivial algorithms require exponential time (in the input
length).

3 Simply assign propositional variables to the n possible proof symbols and encode the verification process so
that indeed they form a proof of F as a Boolean formula.

4 For example, in Gödel’s problem, it is possible to encode the input using |F | + log n bits, where |F | is the
encoding length (in bits) of the given first-order formula. However, as we will see later, it is more natural to
take it to be |F | + n, allowing for n variables to encode the possible values of the potential proof symbols. For
this problem, Gödel indeed measures complexity as a function of n.

5 This worst-case analysis is the most common in complexity theory, though of course, other measures are
important and well studied. In particular, average-case analysis (typical behavior of algorithms under natural
input distributions) is central both for algorithm design and cryptography.

6 Strictly speaking, this is not well defined.
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� Efficient algorithms: Gödel specifically suggests that time complexity7 O(n) or O(n2)
is efficient (or tractable) enough for practical purposes. This did not change for fifty years,
despite enormous changes in computer speed, and is a gold standard of efficiency. I’ll
try to explain why computational complexity theory chose to call (any) polynomial-time
algorithms efficient and why the class P includes all problems with such algorithms.

� The complexity of SAT : Gödel is completely aware of what it would mean if the
problem SAT were to have an efficient algorithm: “the mental work of a
mathematician concerning Yes-or-No questions (apart from
the postulation of axioms) could be completely replaced
by a machine.” So he realizes that solving this problem will solve numerous others
in mathematics. While not stating precisely that it is NP-complete (“captures” all
problems in NP), Gödel does ask “how strongly in general the number
of steps in finite combinatorial problems can be reduced
with respect to simple exhaustive search,” a set of problems we
naturally identify now with NP .

� Gödel’s speculation: The letter states, “Now it seems to me...to be
completely within the realm of possibility that φ(n) grows
that slowly,” namely, that SAT ∈ P , which, as we shall, see implies P = NP .
Gödel suggests this possibility based on the existence of highly nontrivial efficient
algorithms that improve exponentially over brute-force search: “such strong
reductions appear in other finite problems, for example
in the computation of the quadratic residue symbol using
repeated application of the law of reciprocity” (the trivial
exponential time algorithm would rely on factoring, whereas Gauss’s reciprocity
allows a GCD-like polynomial-time algorithm8). This lesson, that there are sometimes
ingenious ways of cutting the exponential search space for many important problems,
was taught again and again in the last half century.

� Lower bounds: Gödel tried proving that the complexity of SAT , φ(n), cannot grow
too slowly, but he could only prove a linear lower bound9 φ(n) = �(n). For Turing
machines, not much has changed in this half century – we still have no superlinear lower
bounds. Proving such lower bounds, namely, proving that computational problems are
intrinsically difficult, is a central task of complexity. I shall discuss partial success as
well as the difficulty of this task later.

The next sections elaborate on these and other notions and issues and provide some
historical background on their development in computational complexity theory. I first
deal with the complexity of computation and then move on to discuss the complexity
of proofs.

7 We use standard asymptotic notation: g(n) = O(h(n)) if, for some constant k and for all n, we have g(n) ≤
kh(n). In this case, we also say that h(n) = �(g(n)).

8 In any reasonable implementation Gödel had in mind, this would take time n3, which shows that Gödel may
have indeed considered the class P for efficiently solved problems.

9 Note that though this lower bound is trivial in the modern formulation of SAT , in which the propositional
formula has length at least n, it is far from trivial in Gödel’s formulation. Gödel does not supply a proof, and
Buss provides one in Buss (1995).
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21.3 Complexity Classes, Reductions, and Completeness

In this section, I define efficient computations, efficient reductions between problems,
efficient verification, and the classes P , NP , coNP , and NP-complete. I will keep
referring back to Gödel’s letter.

21.3.1 Efficient Computation and the Class P
In all that follows, I focus on asymptotic complexity and analyze time spent on a
problem as a function of input length. The asymptotic viewpoint is inherent to com-
putational complexity theory. We shall see in this chapter that it reveals structure that
would probably be obscured by finite, precise analysis.

Efficient computation (for a given problem) will be taken to be one whose run time
on any input of length n is bounded by a polynomial function in n. Let In denote all
binary sequences in I of length n.

Definition 21.3.1 (the class P) A function f : I → I is in the class P if there
is an algorithm computing f and positive constants A, c such that for every n
and every x ∈ In, the algorithm computes f (x) in at most Anc steps.

Note that the definition applies in particular to Boolean functions (whose output
is {0, 1}), which capture classification problems. For convenience, we will sometimes
think of P as the class containing only these classification problems. Observe that a
function with a long output can be viewed as a sequence of Boolean functions, one for
each output bit.

This definition was suggested by Cobham (1965), Edmonds (1965b), and Rabin
(1967), all attempting to formally delineate efficient from just finite (in their cases,
exponential time) algorithms. Of course, nontrivial polynomial-time algorithms were
discovered earlier, long before the computer age. Many were discovered by mathe-
maticians, who needed efficient methods to calculate (by hand). The most ancient and
famous example is Euclid’s GCD algorithm, which bypasses the need to factor the
inputs when computing their greatest common factor.

21.3.1.1 Why Polynomial?

The choice of polynomial time to represent efficient computation seems arbitrary,
and different possible choices can be made.10 However, this particular choice was
extremely useful and has justified itself over time from many points of view. We list
some important ones.

Polynomials typify slowly growing functions. The closure of polynomials under
addition, multiplication, and composition preserves the notion of efficiency under
natural programming practices such as using two programs in sequence or using one as
a subroutine of another. This choice removes the necessity to describe the computational
model precisely (e.g., it does not matter if we allow arithmetic operations only on single

10 And indeed such choices are studied in computational complexity.
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digits or on arbitrary integers because long addition, subtraction, multiplication, and
division have simple polynomial-time algorithms taught in grade school). Similarly,
we need not worry about data representation: one can efficiently translate between
essentially any two natural representations of a set of finite objects.

From a practical viewpoint, while a running time of, say, n2 is far more desirable
than n100, very few known efficient algorithms for natural problems have exponents
above 3 or 4. On the other hand, many important natural problems that so far resist
efficient algorithms cannot at present be solved faster than in exponential time. Thus
reducing their complexity to (any) polynomial is a huge conceptual improvement (and
when this is achieved, often, further reductions of the exponent are found).

The importance of understanding the class P is obvious. There are numerous com-
putational problems that arise (in theory and practice) that demand efficient solutions.
Many algorithmic techniques were developed in the past four decades and enable
solving many of these problems (see, e.g., the textbook by Cormen et al. (2001)).
These drive the ultrafast home computer applications we now take for granted, such
as Web searching, spell checking, data processing, computer game graphics, and fast
arithmetic, as well as heavier-duty programs used across industry, business, math, and
science. However, many more problems (some of which we shall meet soon), perhaps of
higher practical and theoretical value, remain elusive. The challenge of characterizing
this fundamental mathematical object – the class P of efficiently solvable problems – is
far beyond us at this point.

I end this section with a few examples of nontrivial problems in P of mathematical
significance. In each, the interplay of mathematical and computational understanding
needed for the development of these algorithms is evident.

� Primality testing: Given an integer, determine if it is prime. Gauss challenged the
mathematical community to find an efficient algorithm, but it took two centuries to
solve. The story of this recent achievement of Agrawal et al. (2004) and its history are
beautifully recounted in Granville (2005).

� Linear programming: Given a set of linear inequalities in many variables, determine if
they are mutually consistent. This problem and its optimization version capture numerous
others (finding optimal strategies of a zero-sum game is one), and the convex optimization
techniques used to give the efficient algorithms (Khachian, 1979; Karmarkar, 1984) for
it do much more (see, e.g., Schrijver, 2003).

� Factoring polynomials: Given a multivariate polynomial with rational coefficients,
find its irreducible factors over Q. Again, the tools developed in Lenstra et al. (1982)
(mainly regarding short bases in lattices in Re n) have numerous other applications.

� Hereditary graph properties: Given a finite graph, test if it can be embedded on
a fixed surface (like the plane or the torus). A vastly more general result is known,
namely, testing any hereditary property (one that is closed under vertex removal and
edge contraction). It follows the monumental structure theory (Robertson and Seymour,
1983–1995) of such properties, including a finite basis theorem and its algorithmic
versions.11

11 To be fair, while running in polynomial time, the algorithms here have huge exponents. We expect that further,
deeper structural understanding will be needed for more efficient algorithms.



complexity classes, reductions, and completeness 485

� Hyperbolic word problem: Given any presentation of a hyperbolic group by generators
and relations, and a word w in the generators, determine if w represents the identity
element. The techniques give isoperimetric bounds on the Cayley graphs of such groups
and more (Gromov, 1987).

21.3.2 Efficient Verification and the Class NP
Now we change our view of classification problems from classifying functions to clas-
sifying sets. We shall see that some subtle (and highly relevant mathematical) aspects
of complexity come to life when we focus on classifying sets. Thus a classification
problem will be any subset C ⊂ I. It is convenient for this section to view C as defining
a property; x ∈ C are objects that have the property, and x �∈ C are objects that do
not. While this is formally equivalent to having a Boolean function f : I → {0, 1} that
gives opposite values on C and I\C, this view allows us to distinguish between the
complexity of these two sets.

We are given an input x ∈ I (describing a mathematical object) and are supposed to
determine if x ∈ C. If we had an efficient algorithm for C, we could simply apply it to
x, but if we don’t, what is the next best thing? One answer is a convincing proof that
x ∈ C. Before defining it formally, let us see a motivating example.

As Gödel points out, the working mathematician meets such examples daily, reading
a typical math journal paper. In it, we typically find a (claimed) theorem, followed by
an (alleged) proof. Thus we are verifying claims of the type x ∈ THEOREMS, where
THEOREMS is the set of all provable statements in, say, set theory. It is taken for
granted that the written proof is short (page limit) and easily verifiable (otherwise
the referee and editor would demand clarification), regardless of how long it took to
discover.

The class NP contains all properties C for which membership (namely, statements
of the form x ∈ C) have short, efficiently verifiable proofs. As before, we use polyno-
mials to define both terms. A candidate proof y for the claim x ∈ C must have a length
at most polynomial in the length of x, and the verification that y indeed proves this
claim must be checkable in polynomial time. Finally, if x �∈ C, no such y should exist.

Definition 21.3.2 (the class NP) The set C is in the class NP if there is a
function VC ∈ P and a constant k such that
� if x ∈ C, then ∃y with |y| ≤ |x|k and VC(x, y) = 1
� if x �∈ C, then ∀y we have VC(x, y) = 0

Thus each set C in NP may be viewed as a set of theorems in the complete and
sound proof system defined by the verification process VC .

A sequence y that convinces VC that x ∈ C is often called a witness or certificate for
the membership of x in C. Again, we stress that the definition of NP is not concerned
with how difficult it is to come up with a witness y. Indeed, the acronym NP stands for
“nondeterministic polynomial time,” where the nondeterminism captures the ability of
a hypothetical “nondeterministic” machine to “guess” a witness y (if one exists) and
then verify it deterministically.
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Nonetheless, the complexity of finding a witness is, of course, important, as it
captures the search problem associated with NP sets. Every decision problem C

(indeed every verifier VC forC) in NP comes with a natural search problem associated
with it: given x ∈ C, find a short witness y that convinces VC . A correct solution to
this search problem can be easily verified by VC .

Though it is usually the search problems that occupy us, from a computational
standpoint, it is often more convenient to study the decision versions. Both versions
are almost always equivalent.12

These definitions of NP were first given (independently and in slightly different
forms) by Cook (1971) and Levin (1973), although Edmonds discusses “good charac-
terization” that already captures the essence of efficient verification (Edmonds, 1965a).
There is much more to these seminal papers than this definition, and we shall discuss
this later at length.

It is evident that decision problems in P are also in NP . The verifier VC is simply
taken to be the efficient algorithm for C, and the witness y can be the empty sequence.

Corollary 21.3.3 P ⊆ NP .

A final comment is that problems in NP have trivial exponential time algorithms.
Such algorithms search through all possible short witnesses and try to verify each.
Now we can make Gödel’s challenge more concrete. Can we always speed up this
brute-force algorithm?

21.3.3 The P versus NP Question: Its Meaning and Importance

The class NP is extremely rich (we shall see examples of this later). There are liter-
ally thousands of NP problems in mathematics, optimization, artificial intelligence,
biology, physics, economics, industry, and other applications that arise naturally out
of different necessities and whose efficient solutions will benefit us in numerous ways.
They beg for efficient algorithms, but decades of effort (and sometimes more) has
succeeded for only a few. Is it possible that all sets in NP possess efficient algorithms,
and these simply have not been discovered yet? This is the celebrated P versus NP
question, which appeared explicitly first in the aforementioned papers of Cook and
Levin and was foreshadowed by Gödel.

Open Problem 21.3.4 Is P = NP?

What explains the abundance of so many natural, important problems in the class
NP? Probing the intuitive meaning of the definition of NP , we see that it captures
many tasks of human endeavor for which a successful completion can be easily rec-
ognized. Consider the following professions and the typical tasks they are facing (this
will be extremely superficial but nevertheless instructive):

� Mathematician: Given a mathematical claim, come up with a proof for it.
� Scientist: Given a collection of data on some phenomena, find a theory explaining it.

12 A notable possible exception is the set COMPOSITES (with a verification procedure that accepts as witness a
nontrivial factor). Note that though COMPOSITES ∈ P is a decision problem, the related search problem is
equivalent to integer factorization, which is not known to have an efficient algorithm.
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� Engineer: Given a set of constraints (on cost, physical laws, etc.), come up with a design
(of an engine, bridge, laptop, etc.) that meets these constraints.

� Detective: Given the crime scene, find “who done it.”

What is common to all these tasks is that we can typically tell a good solution when
we see one (or we at least think we can). In various cases, “we” may be the academic
community, the customers, or the jury, but we expect the solution to be short and
efficiently verifiable, just as in the definition of NP .

The richness of NP follows from the simple fact that such tasks abound, and their
mathematical formulation is indeed an NP-problem. For all these tasks, efficiency is
paramount, and so the importance of theP versus NP problem is evident. The colossal
implications of the possibility that P = NP are evident as well: every instance of these
tasks can be solved, optimally and efficiently.

One (psychological) reason people feel thatP = NP is unlikely is that tasks such as
those described earlier often seem to require a degree of creativity that we do not expect
a simple computer program to have. We admire Wiles’ proof of Fermat’s last theorem;
the scientific theories of Newton, Einstein, Darwin, and Watson and Crick; the design
of the Golden Gate Bridge and the pyramids; and sometimes even Hercule Poirot’s
and Miss Marple’s analysis of a murder precisely because they seem to require a leap
that cannot be made by everyone, let alone by a simple mechanical device. My own
view is that when we finally understand the algorithmic processes of the brain, we may
indeed be able to automate the discovery of these specific achievements, and perhaps
many others. However, can we automate them all? Is it possible that for every task
for which verification is easy, finding a solution is not much harder? If P = NP , the
answer is positive, and creativity (of this abundant, verifiable kind) can be completely
automated. Most computer scientists believe that this is not the case.

Conjecture 21.3.5 Is P �= NP?

Back to mathematics! Given the preceding discussion, one may wonder why it is so
hard to prove that indeed P �= NP – it seems completely obvious. We shall discuss
attempts and difficulties soon, developing a methodology that will enable us to identify
the hardest problems in NP . Before that, though, we discuss a related question with a
strong relation to mathematics: the NP versus coNP question.

21.3.4 The NP versus coNP Question: Its Meaning
and Importance

Fix a property C ⊆ I. We already have the interpretations

� C ∈ P if it is easy to check that object x has property C
� C ∈ NP if it is easy to certify that object x has property C

to which we now add

� C ∈ coNP if it is easy to certify that object x does not have property C,

where we formally define the following:

Definition 21.3.6 (the class coNP) A set C is in the class coNP if and only
if its complement C̄ = I \ C is in NP .
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While the definition of the class P is symmetric,13 the definition of the class NP
is asymmetric. Having nice certificates that a given object has property C does not
automatically entail having nice certificates that a given object does not have it.

Indeed, when we can do both, we are achieving a mathematics holy grail of under-
standing structure, namely, necessary and sufficient conditions, sometimes phrased as
a duality theorem. As we know well, such results are rare. When we insist (as we shall
do) that the given certificates are short, efficiently verifiable ones, they are even rarer.
This leads to the following conjecture:

Conjecture 21.3.7 NP �= coNP .

First note that if P = NP , then P = coNP as well, and hence this conjecture im-
pliesP �= NP . We shall discuss at length refinements of this conjecture in Section 21.5,
on proof complexity.

Despite the shortage of such efficient complete characterizations, namely, properties
that are simultaneously in NP ∩ coNP , they nontrivially exist. Following is a list of
some exemplary ones

� Linear programming: Systems of consistent linear inequalities14

� Zero-sum games:15 Finite zero-sum games in which one player can gain at least (some
given value) v:

� Graph connectivity: The set of graphs in which every pair of vertices is connected by
(a given number) k disjoint paths

� Partial order width: Finite partial orders whose largest antichain has at most (a given
number) w elements

� Primes: Prime numbers

These examples of problems in NP ∩ coNP were chosen to make a point. At
the time of their discovery (by Farkas, von Neumann, Menger, Dilworth, and Pratt,
respectively), the mathematicians working on them were seemingly interested only
in characterizing these structures. It is not known if they attempted to find efficient
algorithms for these problems. However, all these problems turned out to be in P , with
some solutions entering the pantheon of efficient algorithms, for example, the Ellipsoid
method of Khachian (1979) and the interior-point method of Karmarkar (1984), both
for linear programming, and the recent breakthrough of Agrawal et al. (2004) for
primes.16

Is there a moral to this story? Only that sometimes, when we have an efficient
characterization of structure, we can hope for more: efficient algorithms. Conversely,
a natural stepping-stone toward an elusive, efficient algorithm may be first to get an
efficient characterization.

13 Having a fast algorithm to determine if an object has a property C is obviously equivalent to having a fast
algorithm for the complementary property C̄.

14 Indeed, this generalizes to other convex bodies given by more general constraints such as semidefinite pro-
gramming.

15 This problem was later discovered to be equivalent to linear programming.
16 It is interesting that a simple polynomial-time algorithm, whose correctness and efficiency rely on the (unproven)

extended Riemann hypothesis, was given thirty years earlier by Miller (1976).
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Can we expect this magic always to happen? Is NP ∩ coNP = P? There are
several natural problems in NP ∩ coNP that have resisted efficient algorithms for
decades, and for some (e.g., factoring integers, computing discrete logarithms), hu-
manity literally banks on their difficulty for electronic commerce security. Indeed, the
following is generally believed:

Conjecture 21.3.8 NP ∩ coNP �= P .

Note again that conjecture 21.3.8 implies P �= NP but that it is independent of
Conjecture 21.3.7.

We now return to develop the main mechanism that will help us study such questions:
efficient reductions.

21.3.5 Reductions: A Partial Order of Computational Difficulty

In this section, I deal with relating the computational difficulty of problems for which
we have no efficient solutions (yet).

Recall that we can regard any classification problem (on finitely described objects)
as a subset of our set of inputs I. Efficient reductions provide a natural partial order on
such problems that capture their relative difficulty.

Definition 21.3.9 (efficient reductions) Let C,D ⊂ I be two classification
problems; f : I → I is an efficient reduction from C to D if f ∈ P , and for every
x ∈ I, we have x ∈ C if and only if f (x) ∈ D. In this case, we call f an efficient
reduction from C to D. We write C ≤ D if there is an efficient reduction from C

to D.

The definition of efficient computation allows two immediate observations on the
usefulness of efficient reductions: first, that indeed, ≤ is transitive and thus defines a
partial order, and second, that if C ≤ D and D ∈ P , then also C ∈ P .

Intuitively, C ≤ D means that solving the classification problem C is computation-
ally not much harder than solvingD. In some cases, one can replace computationally by
the (vague) term mathematically. Often such usefulness in mathematical understanding
requires more properties of the reduction f than merely being efficiently computable
(e.g., we may want it to be represented as a linear transformation or a low-dimension
polynomial map), and indeed, in some cases, this is possible. When such a connection
between two classification problems (which look unrelated) can be proved, it can mean
the portability of techniques from one area to another.

The power of efficient reductions to relate seemingly unrelated notions will unfold
in later sections. We shall see that they can relate not only classification problems
but such diverse concepts as hardness to randomness; average-case to worst case
difficulty; proof length to computation time; the relative power of geometric, algebraic,
and logical proof systems; and last but not least, the security of electronic transactions
to the difficulty of factoring integers. In a sense, efficient reductions are the backbone
of computational complexity. Indeed, given that polynomial-time reductions can do all
these wonders, it may not be surprising that we have a hard time characterizing the
class P!
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21.3.6 Completeness

We now return to classification problems. The partial order of their difficulty, provided
by efficient reductions, allows us to define the hardest problems in a given class. Let C
be any collection of classification problems (namely, every element of C is a subset of
I). Of course, here we shall mainly care about the class C = NP .

Definition 21.3.10 (hardness and completeness) A problem D is called C-
hard if, for every C ∈ C, we will have C ≤ D. If we further have that D ∈ C,
then D is called C-complete.

In other words, if D is C-complete, it is a hardest problem in the class C: if we
manage to solve D efficiently, we will have done so for all other problems in C. It is not
a priori clear that a given class has any complete problems! On the other hand, a given
class may have many complete problems, and by definition, they all have essentially
the same complexity. If we manage to prove that any of them cannot be efficiently
solved, then we automatically have done so for all of them.

It is trivial, and uninteresting, that every problem in the class P is in fact P-complete
under our definition. It becomes interesting when we find such universal problems in
classes of problems for which we do not have efficient algorithms. By far, the most
important of all such classes is NP .

21.3.7 NP-Completeness

As mentioned earlier, the seminal papers of Cook (1971) and Levin (1973) defined
NP , efficient reducibilities, and completeness, but the crown of their achievement was
the discovery of a natural NP-complete problem.

Definition 21.3.11 (the problem SAT ) A Boolean formula is a logical ex-
pression over Boolean variables (that can take values in {0, 1}) with connectives
∧,∨,¬, for example, (x1 ∨ x2) ∧ (¬x3). Let SAT denote the set of all satisfi-
able Boolean formulas (namely, those formulas for which there is a Boolean
assignment to the variables that gives it the value 1).

Theorem 21.3.12 (Cook, 1971; Levin 1973) SAT is NP-complete.

It is a simple exercise to show that Gödel’s original problem, as stated in his letter,
is NP-complete as well. Moreover, he clearly understood, at least intuitively, its
universal nature, captured formally by NP-completeness, a concept discovered fifteen
years later.

We recall again the meaning of this theorem. For every set C ∈ NP , there is an
efficient reduction f : I → I such that x ∈ C if and only if the formula f (x) is satisfi-
able! Furthermore, the proof gives an extra bonus that turns out to be extremely useful:
given any witness y that x ∈ C (via some verifier VC), the same reduction converts
the witness y to a Boolean assignment satisfying the formula f (x). In other words,
this reduction translates not only between the decision problems but also between the
associated search problems.
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You might (justly) wonder how one can prove a theorem like that. Certainly the
proof cannot afford to look at all problems C ∈ NP separately. The gist of the proof
is a generic transformation, taking a description of the verifier VC for C and emulating
its computation on input x and hypothetical witness y to create a Boolean formula
f (x) (whose variables are the bits of y). This formula simply tests the validity of
the computation of VC on (x, y) and ensures that this computation outputs 1. Here
the locality of algorithms (say, described as Turing machines) plays a central role as
checking the consistency of each step of the computation of VC amounts simply to a
constant size formula on a few bits. To summarize, SAT captures the difficulty of the
whole class NP . In particular, the P versus NP problem can now be phrased as a
question about the complexity of one problem instead of infinitely many.

Corollary 21.3.13 P = NP if and only if SAT ∈ P .

A great advantage of having one complete problem at hand (like SAT ) is that now, to
prove that another problem (say, D ∈ NP) is NP-complete, we only need to design a
reduction from SAT to D (namely, to prove SAT ≤ D). We already know that for every
C ∈ NP , we have C ≤ SAT, and the transitivity of ≤ takes care of the rest.

This idea was used powerfully in Karp’s (1972) seminal paper. There he listed
twenty-one problems from logic, graph theory, scheduling, and geometry that are NP-
complete. This was the first demonstration of the wide spectrum of NP-complete
problems and initiated an industry of finding more. A few years later, Garey and
Johnson (1979) published their book on NP-completeness, which contains hundreds
of such problems from diverse branches of science, engineering, and mathematics.
Today, thousands are known, in a remarkably diverse set of scientific disciplines.

21.3.8 The Nature and Impact of NP-Completeness

It is hard to do justice to this notion in a couple of paragraphs, but I shall try. More can
be found in, for example, Papadimitriou (1997).

NP-completeness is a unique scientific discovery – there seems to be no parallel
scientific notion that pervaded so many fields of science and technology. It became a
standard for hardness for problems whose difficulty we have yet no means of proving.
It has been used both technically and allegorically to illustrate a difficulty or failure
to understand natural objects and phenomena. Consequently, it has been used as a
justification for channeling efforts to less ambitious (but more productive) directions.
We elaborate on this effect within mathematics.

NP-completeness has been an extremely flexible and extensible notion, allowing
numerous variants that enabled capturing universality in other (mainly computational,
but not only) contexts. It led to the ability of defining whole classes of problems
by single, universal ones, with the benefits mentioned earlier. Much of the whole
evolution of computational complexity, the theory of algorithms, and most other areas
in theoretical computer science have been guided by the powerful approach of reduction
and completeness.

It would be extremely interesting to explain the ubiquity of NP-completeness.
Being highly speculative for a moment, we can make the following analogies of this
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mystery with similar mysteries in physics. The existence of NP-completeness in such
diverse fields of inquiry may be likened to the existence of the same building blocks of
matter in remote galaxies, begging for a common explanation of the same nature as the
big bang theory. On the other hand, the near lack of natural objects in the (seemingly
huge) void of problems in NP that are neither in P nor NP-complete raises questions
about possible “dark matter,” which we have not developed the means of observing
yet.

21.3.9 Some NP-Complete Problems in Mathematics

Again, I note that all NP-complete problems are equivalent in a very strong sense.
Any algorithm solving one can be simply translated into an equally efficient algorithm
solving any other. Conversely, if one problem is difficult, then all of them are. I’ll
explore the meaning of these insights for a number of mathematical classification
problems in diverse areas that are NP -complete.

Why did Gödel’s incompleteness theorem seemingly have such small effect on
working mathematicians? A common explanation is that the unprovable and undecid-
able problems are far too general compared to those actively being studied. As we shall
see, this argument will not apply to the NP-complete problems we discuss. Indeed,
many of these NP-completeness results were proven by mathematicians!

We exemplify this point with two classification problems: 2DIO, of quadratic Dio-
phantine equations, and KNOT, of knots on three-dimensional manifolds.

2DIO: Consider the set of all equations of the formAx2 + By + C = 0 with integer
coefficients A,B,C. Given such a triple, does the corresponding polynomial have a
positive integer root (x, y)? Let 2DIO denote the subset of triples for which the answer
is yes. Note that this is a very restricted subproblem of the undecidable Hilbert’s tenth
problem, problem 2 from the introduction; indeed, it is simpler than even elliptic curves.
Nevertheless:

Theorem 21.3.14 (Adleman and Manders, 1975) The set 2DIO is NP-
complete.

KNOT: Consider the set of all triples (M,K,G), representing,17 respectively, a
three-dimensional manifold M , a knot K embedded on it, and an integer G. Given a
triple (M,K,G), does the surface that K bounds have genus at most G? Let KNOT
denote the subset for which the answer is yes.

Theorem 21.3.15 (Agol et al., 2006) The set KNOT is NP-complete.

Recall that to prove NP-completeness of a set, one has to prove two things: that it
is in NP and that it is NP-hard. In almost all NP-complete problems, membership
in NP (namely, the existence of short certificates) is easy to prove. For example, for
2DIO, one can easily see that if there is a positive integer solution r to the equation
Ax2 + By + C = 0, then indeed, there is one whose length (in bits) is polynomial in

17 A finite representation can describe M by a triangulation (finite collection of tetrahedra and their adjacencies),
and the knot K will be described as a link (closed path) along edges of the given tetrahedra.
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the lengths of A,B,C, and given such r , it is easy to verify that it is indeed a root of
the equation. In short, it is very easy to see that 2DIO ∈ NP . However, KNOT is an
exception, and proving KNOT∈ NP is highly nontrivial. The short witnesses that a
given knot has a small genus requires Haken’s algorithmic theory of normal surfaces,
considerably enhanced even short certificates for unknottedness in Re 3 are hard to
obtain; see Hass et al., 1999.

Let us discuss what theseNP-completeness results mean, first about the relationship
between the two and then about each individually.

The two preceding theorems and the meaning of NP-completeness together imply
that there are simple translations (in both directions) between solving 2DIO and prob-
lem KNOT. More precisely, it provides efficiently computable functions f, h : I → I
performing these translations:

(A,B,C) ∈ 2DIO if and only if f (A,B,C) ∈ KNOT

(M,K,G) ∈ KNOT if and only if h(M,K,G) ∈ 2DIO.

If we have gained enough understanding of topology to solve, for example, the knot
genus problem, it means that we automatically have gained enough number-theoretic
understanding for solving these quadratic Diophantine problems (and vice versa).

The proofs that these problems are complete both follow by reduction from (vari-
ants of) SAT. The combinatorial nature of these reductions may cast doubt on the
possibility that the computational equivalence of these two problems implies the abil-
ity of real “technology transfer” between topology and number theory. Nevertheless,
now that we know of the equivalence, perhaps simpler and more direct reductions
can be found between these problems. Moreover, we stress again that for any in-
stance, say, (M,K,G) ∈ KNOT, if we translate it using this reduction to an instance
(A,B,C) ∈ 2DIO and happen (either by sheer luck or special structure of that equation)
to find an integer root, the same reduction will translate that root back to a description
of a genus G manifold that bounds the knot K . Today, many such NP-complete prob-
lems are known throughout mathematics, and for some pairs, the equivalence can be
mathematically meaningful and useful (as it is between some pairs of computational
problems).

But regardless of the meaning of the connection between these two problems, there
is no doubt what their individual NP-completeness means. Both are mathematically
“nasty,” as both embed in them the full power of NP . If P �= NP , there are no
efficient algorithms to describe the objects at hand. Moreover, assuming the stronger
NP �= coNP , we should not even expect complete characterization (e.g., we should
not expect short certificates that a given quadratic equation does not have a positive
integer root).

In short, NP-completeness suggests that we lower our expectations of fully under-
standing these properties and study perhaps important special cases, variants, and so
on. Note that such reaction of mathematicians may follow the frustration of unsuc-
cessful attempts at general understanding. However, the stamp of NP-completeness
may serve as moral justification for this reaction. I stress the word may as the judges
for accepting such a stamp can only be the mathematicians working on the problem
and how well the associated NP-completeness result captures the structure they try to
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reveal. I merely point out the usefulness of a formal stamp of difficulty (as opposed to
a general feeling) and its algorithmic meaning.

The two preceding examples come from number theory and topology. I list in the
following more NP-complete problems from algebra, geometry, optimization, and
graph theory. There are numerous other such problems. It is hoped that this will
demonstrate how wide this modern Gödel phenomena on is in mathematics. The
preceding discussion is relevant to them all.

� Quadratic equations: Given a system of multivariate polynomial equations of degree
at most 2, over a finite field (say, GF(2)), do they have a common root?

� Knapsack: Given a sequence of integers a1, . . . , an and b, decide if there exists a subset
J such that

∑
i∈J ai = b.

� Integer programming: Given a polytope in Re n (by its bounding hyperplanes), does it
contain an integer point?

� Shortest lattice vector: Given a latticeL in Re n and an integer k, is the shortest nonzero
vector of L of (Euclidean) length ≤ k?

� 3Color: Given a graph, can its vertices be colored from {Red, Green, Blue} with no
adjacent vertices having the same color?

� Clique: Given a graph and an integer k, are there k vertices with all pairs mutually
adjacent?

21.4 Lower Bounds and Attacks on P versus NP

To prove that P �= NP , we must show that for a given problem in NP , no efficient
algorithm exists. A result of this type is called a lower bound (limiting from below the
computational complexity of the problem). Several powerful techniques for proving
lower bounds have emerged in the past decades. They apply in two (very different)
settings. Subsequently, I describe both and try to explain our understanding of why
they seem to stop short of proving P �= NP . I mention the first, diagonalization, only
very briefly and concentrate on the second, Boolean circuits.

21.4.1 Diagonalization and Relativization

The diagonalization technique goes back to Cantor and his argument that there are
more real numbers than algebraic numbers. It was used by Gödel in his incompleteness
theorem and by Turing in his undecidability results and then was refined to prove
computational complexity lower bounds. A typical theorem in this area is that more
time buys more computational power, for example, there are functions computable in
time n3, say, that are not computable in time n2. The heart of such arguments is the
existence of a universal algorithm that can simulate every other algorithm with only a
small loss in efficiency.

Can such arguments be used to separateP fromNP? This depends on what we mean
by “such arguments.” The paper by Baker et al. (1975) suggests a formal definition by
exhibiting a feature shared by many similar complexity results, called relativization.
For example, the result mentioned previously separating Turing machines running in
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time n3 from those with runnning time n2 would work perfectly well if all machines in
questions were supplied with an “oracle” for any fixed function f that would answer
queries of the form x by f (x) in unit time. Therefore relativizing lower bounds hold in
a “relativized world” in which any fixed such f is an easy function for the algorithms
we consider and so should hold in all such worlds. The Baker et al. (1975) paper then
proceeded to show that relativizing arguments do not suffice to resolve the P versus
NP question. This is done by showing that equipping the machines with different
functions f gives different answers to the P versus NP question in the respective
“relativized worlds.” In the three decades since that paper, complexity theory grew far
more sophisticated, but nevertheless almost all new results obtained do relativize (one
of the few exceptions is in Vinodchandran, 2004). More on this subject can be found
in chapter 14.3 of Papadimitriou (1994a), chapter 9.2 of Sipser (1997), and in Fortnow
(1994).

21.4.2 Boolean Circuits

A Boolean circuit may be viewed as the hardware analogue of an algorithm (software).
Computation on the binary input sequence proceeds by a sequence of Boolean oper-
ations (called gates) from the set {∧,∨,¬} (logical AND, OR, and NEGATION) to
compute the output(s). We assume that ∧,∨ are applied to two arguments. We note that
whereas an algorithm can handle inputs of any length, a circuit can handle only one
input length (the number of input “wires” it has). A circuit is commonly represented
as a (directed, acyclic) graph, with the assignments of gates to its internal vertices. We
note that a Boolean formula is simply a circuit whose graph structure is a tree.

Recall that I denotes the set of all binary sequences and that Ik is the set of sequences
of length exactly k. If a circuit has n inputs and m outputs, it is clear that it computes
a function f : In → Im. The efficiency of a circuit is measured by its size, which is the
analogue of time in algorithms.

Definition 21.4.1 (circuit size) Denote by S(f ) the size of the smallest Boolean
circuit computing f .

As we care about asymptotic behavior, we shall be interested in sequences of
functionsf = {fn}, wherefn is a function onn input bits. We shall study the complexity
S(fn) asymptotically as a function of n and denote it S(f ). For example, let PAR be
the parity function, computing if the number of 1s in a binary string is even or odd.
Then PARn is its restriction to n-bit inputs, and S(PAR) = O(n).

It is not hard to see that an algorithm (say, a Turing machine) for a function f that
runs in time T gives rise to a circuit family for the functions fn of sizes (respectively)
(T (n))2, and so efficiency is preserved when moving from algorithms to circuits. Thus
proving lower bounds for circuits implies lower bounds for algorithms, and we can try
to attack the P versus NP question this way.

Definition 21.4.2 (the class P/poly) Let P/poly denote the set of all functions
computable by a family of polynomial-sized circuits.

Conjecture 21.4.3 NP �⊆ P/poly.
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Is this a reasonable conjecture? As mentioned earlier, P ⊆ P/poly. Does the reverse
inclusion hold? It actually fails badly! There exist undecidable functions f (which
cannot be computed by Turing machines at all, regardless of their running time) that
have linear-sized circuits. This extra power comes from the fact that circuits for different
input lengths share no common description (and thus this model is sometimes called
“nonuniform”).

One might expect, therefore, that proving circuit lower bounds is a much harder
task than proving P �= NP . However, there is a strong sentiment that the extra power
provided by nonuniformity is irrelevant to P versus. NP . This sentiment comes from a
result of Karp and Lipton (1982), proving that NP ⊆ P/poly implies a surprising uni-
form “collapse” – not quite NP = coNP but another (somewhat similar but weaker)
unlikely collapse of complexity classes.

Still, what motivates replacing the Turing machine by the stronger circuit model
when seeking lower bounds? The hope is that focusing on a finite model will allow
the use of combinatorial techniques to analyze the power and limitations of efficient
algorithms. This hope has been realized in the study of interesting though restricted
classes of circuits. The resulting lower bounds for such restricted circuits fall short
of resolving the big questions, but nevertheless have had important applications to
computational learning theory, pseudorandomness, proof complexity, and more.

21.4.2.1 Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits, in particular
that they can efficiently simulate Turing machines. The next basic fact, first observed
by Shannon (1947), is that most Boolean functions require exponential sized circuits.

This lower bound follows from the gap between the number of functions and the
number of small circuits. Fix the number of input bits n. The number of possible
functions on n bits is precisely 22n . On the other hand, the number of circuits of
size s is (via a crude estimate of the number of graphs of that size) at most 2s2. Because
every circuit computes one function, we must have s ) 2n/3 for most functions.

Theorem 21.4.4 (Shannon, 1949) For almost every function f : In → {0, 1},
S(f ) ≥ 2n/3.

Therefore hard functions for circuits (and hence for Turing machines) abound.
However, the hardness is proved via a counting argument and thus supplies no way of
putting a finger on one hard function. I shall return to the nonconstructive nature of
this problem in Section 21.5. So far, we cannot prove such hardness for any explicit
function f (e.g., for an NP-complete function like SAT ).

Conjecture 21.4.5 S(SAT ) = 2�(n).

The situation is even worse: no nontrivial lower bound is known for any explicit
function.18 Note that for any function f on n bits (which depends on all its inputs), we

18 The notion “explicit,” which we repeatedly use here, is a bit elusive and context dependent at times. However,
in all cases we seek natural functions, usually of independent mathematical, scientific, or technological interest,
rather than functions whose existence is shown by some counting or simulation arguments.
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trivially must have S(f ) ≥ n just to read the inputs. The main open problem of circuit
complexity is beating this trivial bound.

Open Problem 21.4.6 Find an explicit function f : In → In for which S(f ) �=
O(n).

Here natural explicit candidate functions may be the multiplication of two (n/2)-bit
integers or of two

√
n × √

n matrixes over GF (2). But for any function in NP , such a
lower bound would be a breakthrough. Unable to prove any nontrivial lower bound, we
now turn to restricted models. There has been some remarkable success in developing
techniques for proving strong lower bounds for natural restricted classes of circuits. I
discuss in some detail only one such model.

The 1980s saw a flurry of new techniques for proving circuit lower bounds on
natural, restricted classes of circuits. Razborov developed the approximation method,
which allowed proving exponential circuit lower bounds for monotone circuits, for such
natural problems as CLIQUE. The random restriction method, initiated by Furst et al.
(1984) and Ajtai (1983), was used to prove exponential lower bounds on constant depth
circuits for such natural problems as PARITY. The communication complexity method
of Karchmer and Wigderson (1990) was used to prove lower bounds on monotone for-
mulas, for example, for the PERFECT MATCHING problem. See the survey (Boppana
and Sipser, 1990) for these and more. However, these all fall short of obtaining any
nontrivial lower bounds for general circuits and in particular of proving that P �= NP .

21.4.2.2 Why Is It Hard to Prove Circuit Lower Bounds?

Is there a fundamental reason for this failure? The same may be asked about any
long-standing mathematical problem (e.g., the Riemann hypothesis). A natural (vague)
answer would be that, probably, the current arsenal of tools and ideas (which may well
have been successful at attacking related, easier problems) does not suffice.

Remarkably, complexity theory can make this vague statement into a theorem.
Thus we have a formal excuse for our failure so far: we can classify a general set of
ideas and tools that are responsible for virtually all restricted lower bounds known
yet must necessarily fail for proving general ones. This introspective result, developed
by Razborov and Rudich (1997), suggests a framework called natural proofs. Very
briefly, a lower-bound proof is natural if it applies to a large, easily recognizable set
of functions. The authors first show that this framework encapsulates all known lower
bounds, then they show that natural proofs of general circuit lower bounds are unlikely
in the following sense: any natural proof of a lower bound surprisingly implies (as a
by-product) subexponential algorithms for inverting every candidate one-way function.
Again, I stress this irony – natural lower bounds lead to efficient algorithms for the
type of problem we want to prove hard!

Specifically, a natural (in this formal sense) lower bound would imply subexponen-
tial algorithms for such functions as integer factoring and discrete logarithm, generally
believed to be difficult (to the extent that the security of electronic commerce world-
wide relies on such assumptions). This connection strongly uses pseudorandomness,
which will be discussed later. A simple corollary is that no natural proof exists to
show that integer factoring requires circuits of size 2n

1/100
(the best current upper bound

is 2n
1/3

).
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One interpretation of the aforementioned result is an independence result of general
circuit lower bounds from a certain natural fragment of Peano arithmetic. This may
suggest that the P versus NP problem may be independent from Peano arithmetic, or
even set theory, which is certainly a possibility.

Finally, note that it has been over ten years since the publication of the natural proof
paper. The challenge it raised, prove a nonnatural lower bound, has not yet been met.

21.5 Proof Complexity

Gödel’s letter focuses on lengths of proofs. This section highlights some of the research
developments within complexity theory on the many facets of this issue in the last
couple decades. For extensive surveys and different takes on this material and its
relation to proof theory, independence results, and Gödel’s letter, see Beame and Pitassi
(1998), Buss (1995), Pudlak (1995, 1996a, 1996b, 1998), and Rudich and Wigderson
(2000).

The concept of proof is what distinguishes the study of mathematics from all other
fields of human inquiry. Mathematicians have gathered millennia of experience to
attribute such adjectives to proofs as “insightful,” “original,” “deep,” and, most notably,
“difficult.” Can one quantify mathematically the difficulty of proving various theorems?
This is exactly the task undertaken in proof complexity. It seeks to classify theorems
according to the difficulty of proving them, much like circuit complexity seeks to
classify functions according to the difficulty of computing them. In proofs, just like
in computation, there will be a number of models, called proof systems, capturing the
power of reasoning allowed to the prover.

Proof systems abound in all areas of mathematics (and not just in logic). Let us see
some examples:

1. Hilbert’s Nullstellensatz is a (sound and complete) proof system in which theorems are
inconsistent sets of polynomial equations. A proof expresses the constant 1 as a linear
combination of the given polynomials.

2. Each finitely presented group can be viewed as a proof system in which theorems are
words that reduce to the identity element. A proof is the sequence of substituting relations
to generate the identity.

3. Reidemeister moves are a proof system in which theorems are trivial, unknotted knots.
A proof is the sequences of moves reducing the given plane diagram of the knot into one
with no crossings.

4. Von Neumann’s Minimax theorem gives a proof system for every zero-sum game. A
theorem is an optimal strategy for White, and its proof is a strategy for Black with the
same value.

In these and many other examples, the length of the proof plays a key role, and the
quality of the proof system is often related to the shortness of the proofs it provides:

1. In the Nullstellensatz (over fields of characteristic 0), length (of the coefficient polyno-
mials, measured usually by their degree and height) usually plays a crucial role in the
efficiency of commutative algebra software (e.g., Gröbner basis algorithms).
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2. The word problem, in general, is undecidable. For hyperbolic groups, Gromov’s poly-
nomial upper bound on proof length has many uses, of which perhaps the most recent
is in his own construction of finitely presented groups with no uniform embedding into
Hilbert spac (Gromove, 2003).

3. Reidemeister moves are convenient combinatorially, but the best upper bounds on the
length of such proofs (namely, on the number of moves) that a given knot is unknotted,
are exponential in the description of the knot (Hass and Lagarias, 2001). Whether
one can improve this upper bound to a polynomial is an open question. We note that
stronger proof systems were developed to give polynomial upper bounds for proving
unknottedness (Hass et al., 1999).

4. In zero-sum games, happily, all proofs are of linear size.

I stress that the asymptotic viewpoint, considering families of “theorems” and mea-
suring their proof length as a function of the description length of the theorems, is
natural and prevalent. As for computation, this asymptotic viewpoint reveals structure
of the underlying mathematical objects, and economy (or efficiency) of proof length
often means a better understanding. Though this viewpoint is appropriate for a large
chunk of mathematical work, you may object that it cannot help explain the difficulty
of single problems such as the Riemann hypothesis or P versus NP . This is, of course,
a valid complaint. We note, however, that even such theorems (or conjectures) may be
viewed asymptotically (though not always with improved illumination). The Riemann
hypothesis has equivalent formulations as a sequence of finite statements (e.g., about
cancellations in the Möbius function). More interestingly, we shall see later a formu-
lation of the P/poly versus NP problem as a sequence of finite statements that are
strongly related to the natural proofs paradigm mentioned earlier.

All theorems that will concern us in this section are universal statements (e.g., an
inconsistent set of polynomial equations is the statement that every assignment to the
variables fails to satisfy them). A short proof for a universal statement constitutes an
equivalent formulation that is existential – the existence of the proof itself (e.g., the
existence of the coefficient polynomials in Nullstellensatz that implies this inconsis-
tency). The mathematical motivation for this focus is clear: the ability to describe a
property both universally and existentially constitutes necessary and sufficient condi-
tions – the aforementioned holy grail of mathematical understanding. Here we shall be
picky and quantify that understanding according to our usual computational yardstick:
the length of the existential certificate.

We shall restrict ourselves to propositional tautologies. This will automatically give
an exponential (thus a known, finite) upper bound on the proof length and will restrict
the ballpark (as with P vs. NP) to the range between polynomial and exponential. The
type of statements, theorems, and proofs with which we shall deal is best illustrated by
the following example.

21.5.1 The Pigeonhole Principle: A Motivating Example

Consider the well-known pigeonhole principle, stating that there is no injective map-
ping from a finite set to a smaller one. Though trivial, this principle was essen-
tial for the counting argument proving the existence of exponentially hard functions
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(Theorem 21.4.4) – this partially explains our interest in its proof complexity. More
generally, this principle epitomizes nonconstructive arguments in mathematics such
as Minkowski’s theorem that a centrally symmetric convex body of sufficient volume
must contain a lattice point. In both results, the proof does not provide any information
about the object proved to exist. Other natural tautologies capture the combinatorial
essence of topological proofs (e.g., Brauer’s fixed-point theorem, the Borsuk-Ulam
theorem, Nash’s equilibrium, see Papadimitriou (1994b) for more).

Let us formulate it and discuss the complexity of proving it. First, we turn it into a
sequence of finite statements. Fixm > n. Let PHPm

n stand for the statement there is no
one-to-one mapping of m pigeons to n holes. To formulate it mathematically, imagine
an m× n matrix of Boolean variables xij describing a hypothetical mapping (with the
interpretation that xij = 1 means that the ith pigeon is mapped to the j th hole).19

Definition 21.5.1 (the pigeonhole principle) The pigeonhole principle PHPm
n

now states that
� either pigeon i is not mapped anywhere (namely, all xij for a fixed i are zeros)
� some two are mapped to the same hole (namely, for some different i, i ′, and some
j , we have xij = xi ′j = 1).

These conditions are easily expressible as a formula in the variables xij (called a
propositional formula), and the pigeonhole principle is the statement that this formula
is a tautology (namely, satisfied by every truth assignment to the variables).

Even more conveniently, the negation of this tautology (which is a contradiction) can
be captured by a collection of constraints on these Boolean variables that are mutually
contradictory. These constraints can easily be written in different languages:

� Algebraic: as a set of constant degree polynomials over GF(2)
� Geometric: as a set of linear inequalities with integer coefficients (to which we seek a

{0, 1} solution)
� Logical: as a set of Boolean formulas

We shall see soon that each setting naturally suggests (several) reasoning tools, such as
variants of the Nullstellensatz in the algebraic setting, of Frege systems in the logical
setting and integer programming heuristics in the geometric setting. All these can be
formalized as proof systems that suffice to prove this (and any other) tautology. Our
main concern will be in the efficiency of each of these proof systems and their relative
power, measured in proof length. Before turning to some of these specific systems, we
discuss this concept in full generality.

21.5.2 Propositional Proof Systems and NP versus coNP
Most definitions and results in this section come from the paper by Cook and Reckhow
(1979) that initiated this research direction. I define proof systems and the complexity

19 Note that we do not rule out the possibility that some pigeon is mapped to more than one hole – this condition
can be added, but the truth of the principle remains valid without it.
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measure of proof length for each and then relate these to complexity questions we have
already met.

All theorems we shall consider will be propositional tautologies. Here are the salient
features that we expect20 from any proof system:

� Completeness: Every true statement has a proof.
� Soundness: No false statement has a proof.
� Verification efficiency: Given a mathematical statement T and a purported proof π for

it, it can be easily checked if indeed π proves T in the system. Note that here efficiency
of the verification procedure refers to its running time measured in terms of the total
length of the alleged theorem and proof.

Remark 21.5.2 Note that we dropped the requirement used in the definition of
NP , limiting the proof to be short (polynomial in the length of the claim). The
reason is, of course, that proof length is our measure of complexity.

All these conditions are concisely captured, for propositional statements, by the
following definition.

Definition 21.5.3 (proof systems (Cook and Reckhow, 1979)) A (proposi-
tional) proof system is a polynomial-time Turing machine M with the prop-
erty that T is a tautology if and only if there exists a (“proof”) π such that
M(π, T ) = 1.21

As a simple example, consider the following “truth-table” proof system MTT. Basi-
cally, this machine will declare a formula T a theorem if evaluating it on every possible
input makes T true. A bit more formally, for any formula T on n variables, the machine
MTT accepts (π, T ) if π is a list of all binary strings of length n, and for each such
string σ , T (σ ) = 1.

Note that MTT runs in polynomial time in its input length, which is the combined
length of formula and proof. However, in the system MTT, proofs are (typically) of
exponential length in the size of the given formula. This leads us to the definition of
the efficiency (or complexity) of a general propositional proof system M – how short
is the shortest proof of each tautology.

Definition 21.5.4 (proof length (Cook and Reckhow, 1979)) For each tau-
tology T , let SM (T ) denote the size of the shortest proof of T in M (i.e., the
length of the shortest string π such that M accepts (π, T )). Let SM (n) denote the
maximum of SM (T ) over all tautologies T of length n. Finally, we call the proof
system M polynomially bounded if and only if, for all n, we have SM (n) = nO(1).

Is there a polynomially bounded proof system (namely, one that has polynomial-
sized proofs for all tautologies)? The following theorem provides a basic connection of
this question with computational complexity and the major question of Section 21.3.4.

20 Actually, even the first two requirements are too much to expect from strong proof systems, as Gödel famously
proved in his incompleteness theorem. However, for propositional statements that have finite proofs, there are
such systems.

21 In agreement with standard formalisms (see later), the proof is seen as coming before the theorem.
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Its proof follows quite straightforwardly from the NP-completeness of SAT, the prob-
lem of satisfying propositional formulas (and the fact that a formula is unsatisfiable if
and only if its negation is a tautology).

Theorem 21.5.5 (Cook and Reckhow, 1979) There exists a polynomially
bounded proof system if and only if NP = coNP .

In the next section, I focus on natural restricted proof systems. A notion of reduction
between proof systems, called “polynomial simulation,” was introduced in Cook and
Reckhow (1979) and allows us to create a partial order of the relative power of some
systems. This is but one example of the usefulness of the methodology developed
within complexity theory after the success of NP-completeness.

21.5.3 Concrete Proof Systems

All proof systems in this section are familiar to every mathematician, ever since The
Elements of Euclid, who formulated a deductive system for plane geometry. In all
deductive systems, one starts with a list of formulas and, using simple (and sound)
derivation rules, infers new ones (each formula is called a “line” in the proof).

Normally the initial formulas are taken to be (self-evident) axioms, and the final
formula derived is the desired theorem. However, here it will be useful to reverse this
view and consider refutation systems. In the refutation systems following, I start with
a contradictory set of formulas and derive a basic contradiction (e.g., ¬x ∧ x, 1 = 0,
1 < 0 ), depending on the setting. This serves as proof of the theorem that the initial
formulas are mutually inconsistent. I highlight some results and open problems on the
proof length of basic tautologies in algebraic, geometric, and logical systems.

21.5.3.1 Algebraic Proof Systems

We restrict ourselves to the field GF(2). Here a natural representation of a Boolean
contradiction is a set of polynomials with no common root. We always add to such a
collection the polynomials x2 − x (for all variables x) that ensure Boolean values (and
so we can imagine that we are working over the algebraic closure).

Hilbert’s Nullstellensatz suggests a proof system. If f1, f2, . . . , fn (with any number
of variables) have no common root, there must exist polynomials g1, g2, . . . , gn such
that

∑
i figi ≡ 1. The gis constitute a proof, and we may ask how short its descrip-

tion is.
A related but far more efficient system (intuitively based on computations of Gröbner

bases) is polynomial calculus (PC), which was introduced in Clegg et al., (1996). The
lines in this system are polynomials (represented explicitly by all coefficients), and it
has two deduction rules, capturing the definition of an ideal: for any two polynomials
g, h and variable xi , we can use g, h to derive g + h, and we can use g and xi to derive
xig. It is not hard to see (using linear algebra) that if this system has a proof of length
s for some tautology, then this proof can be found in time polynomial in s. Recalling
our discussion of P versus NP , we do not expect such a property from really strong
proof systems.
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The PC is known to be exponentially stronger than Nullstellensatz. More precisely,
there are tautologies that require exponential-length Nullstellensatz proofs but only
polynomial PC proofs. However, strong size lower bounds (obtained from degree
lower bounds) are known for PC systems as well. Indeed, the pigeonhole principle
is hard for this system. For its natural encoding as a contradictory set of quadratic
polynomials, Razborov (1998) proved the following:

Theorem 21.5.6 (Razborov 1998) For every n and every m > n,
SPC(PHPm

n ) ≥ 2n/2 over every field.

21.5.3.2 Geometric Proof Systems

Yet another natural way to represent Boolean contradictions is by a set of regions
in space containing no integer points. A wide source of interesting contradictions
comprises integer programs from combinatorial optimization. Here the constraints are
(affine) linear inequalities with integer coefficients (so the regions are subsets of the
Boolean cube carved out by half spaces). A proof system infers new inequalities from
old ones in a way that does not eliminate integer points.

The most basic system is called cutting planes (CP), introduced by Chvátal (1973).
Its lines are linear inequalities with integer coefficients. Its deduction rules are (the
obvious) addition of inequalities and the (less obvious) dividing of the coefficients by
a constant (and rounding, taking advantage of the integrality of the solution space).22

Let us look at the pigeonhole principle PHPm
n again. It is easy to express it as a set

of contradictory linear inequalities: for every pigeon, the sum of its variables should
be at least 1. For every hole, the sum of its variables should be at most 1. Thus adding
up all variables in these two ways implies m ≤ n, a contradiction. Thus the pigeonhole
principle has polynomial-sized CP proofs.

Though PHPm
n is easy in this system, exponential lower bounds were proved for

other tautologies. Consider the tautology CLIQUE k
n: no graph on n nodes can si-

multaneously have a k-clique and a legal k − 1-coloring. It is easy to formulate this
technology as a propositional formula. Notice that it somehow encodes many instances
of the pigeonhole principle, one for every k-subset of the vertices.

Theorem 21.5.7 (Pudlak, 1997) SCP
(
CLIQUE

√
n

n

) ≥ 2n
1/10

.

The proof of this theorem by Pudlak (1997) is quite remarkable. It reduces this
proof complexity lower bound to a circuit complexity lower bound. In other words, he
shows that any short CP proof of tautologies of certain structure yields a small circuit
computing a related Boolean function. You probably guessed that for the tautology at
hand, the function is indeed the CLIQUE function mentioned earlier. Moreover, the
circuits obtained are monotone but of the following, very strong form. Rather than
allowing only ∧,∨ as basic gates, they allow any monotone binary operation on real
numbers. Pudlak then goes on to generalize Razborov’s approximation method for such
circuits and proves an exponential lower bound on the size they require to compute
CLIQUE.

22 For example, from the inequality 2x + 4y ≥ 1, we may infer x + 2y ≥ 2
1 , and by integrality, x + 2y ≥ 1.
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21.5.3.3 Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formulas, and the
differences between them will be in the structural limits imposed on these formulas.
We introduce the most important ones: Frege, capturing polynomial-time reasoning,
and Resolution, the most useful system used in automated theorem provers.

The most basic proof system, called the Frege system, puts no restriction on the
formulas manipulated by the proof. It has one derivation rule, called the cut rule:
from the two formulas A ∨ C, B ∨ ¬C, we may infer the formula A ∨ B. Every
basic book in logic has a slightly different way of describing the Frege system – one
convenient outcome of the computational approach, especially the notion of efficient
reductions between proof systems, is a proof (in Cook and Reckhow, 1979) that they
are all equivalent in the sense that the shortest proofs (up to polynomial factors) are
independent of which variant you pick.

The Frege system can polynomially simulate both the PC and the CP systems. In
particular, the counting proof described earlier for the pigeonhole principle can be
carried out efficiently in the Frege system (not quite trivially), yielding the following:

Theorem 21.5.8 (Buss, 1987) SFrege(PHPn+1
n ) = nO(1).

Frege systems are basic in the sense that they are the most common in logic and
in the sense that polynomial-length proofs in these systems naturally correspond to
polynomial-time reasoning about feasible objects. In short, this is the proof analogue
of the computational class P . The major open problem in proof complexity is to find
any tautology (as usual, we mean a family of tautologies) that has no polynomial-size
proof in the Frege system.

Open Problem 21.5.9 Prove superpolynomial lower bounds for the Frege
system.

As lower bounds for Frege are hard, we turn to subsystems of Frege that are
interesting and natural. The most widely studied system is Resolution. Its importance
stems from its use by most propositional (as well as first-order) automated theorem
provers, often called “Davis–Putnam” or (DLL) procedures (Davis et al., 1962). This
family of algorithms is designed to find proofs of Boolean tautologies, arising in diverse
applications from testing computer chips or communication protocols to basic number
theory results.

The lines in Resolution refutations are clauses, namely, disjunctions of literals (like
x1 ∨ x2 ∨ ¬x3). The inference cut rule simplifies to the resolution rule: for two clauses
A,B and variable x, we can use A ∨ x and B ∨ ¬x to derive the clause A ∨ B.

Historically, the first major result of proof complexity was Haken’s23 (Haken, 1985)
exponential lower bound on Resolution proofs for the pigeonhole principle:

Theorem 21.5.10 (Haken, 1985) SResolution(PHPn+1
n ) = 2�(n).

To prove it, Haken developed the bottleneck method, which is related to both the
random restriction and approximation methods mentioned in the circuit complex-
ity chapter. This lower bound was extended to random tautologies (under a natural

23 Armin Haken, the son of Wolfgang Haken, cited earlier for his work on knots.
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distribution) in Chvátal and Szemerédi (1988). The width method of Ben-Sasson and
Wigderson (1999) much simpler proofs for both results.

21.5.4 Proof Complexity versus Circuit Complexity

These two areas look like very different beasts, despite the syntactic similarity between
the local evolution of computation and proof. To begin with, the number of objects
they care about differs drastically. There are doubly exponentially number of functions
(on n bits) but only exponentially many tautologies of length n. Thus a counting
argument shows that some functions (albeit nonexplicit) require exponential circuit
lower bounds (Theorem 21.4.4), but no similar argument can exist to show that some
tautologies require exponential-sized proofs. So though we prefer lower bounds for
natural, explicit tautologies, existence results of hard tautologies for strong systems are
interesting in this setting as well.

Despite the different nature of the two areas, there are deep connections between
them. Quite a few of the techniques used in circuit complexity, most notably random
restrictions, were useful for proof complexity as well. The lower bound we saw in
the previous section is extremely intriguing: a monotone circuit lower bound directly
implies a (nonmonotone) proof system lower bound. This particular type of reduction,
known as the interpolation method, was successfully used for other, weak proof sys-
tems, such as Resolution. This leads to the question, can reductions of a similar nature
be used to obtain lower bounds for a strong system (like Frege) from (yet unproven)
circuit lower bounds?

Open Problem 21.5.11 Does NP �⊆ P/poly imply superpolynomial Frege
lower bounds?

Why are Frege lower bounds hard? The truth is that we do not know. The Frege
system (and its relative, extended Frege) capture polynomial-time reasoning as the
basic objects appearing in the proof are polynomial-time computable. Thus superpoly-
nomial lower bounds for these systems are the proof complexity analogue of proving
superpolynomial lower bounds in circuit complexity. As we saw, for circuits, we at
least understand to some extent the limits of existing techniques via natural proofs.
However, there is no known analogue of this framework for proof complexity.

I conclude with a tautology capturing the P/poly versus NP question, thus using
proof complexity to try to show that proving circuit lower bounds is difficult.

This tautology, suggested by Razborov, simply encodes the statement NP �⊆
P/poly, namely, that SAT does not have small circuits. More precisely, fix n, an input
size to SAT, and s, the circuit size lower bound we attempt to prove.24 The variables
of our lower bound formula LB s

n encode a circuit C of size s, and the formula simply
checks that C disagrees with SAT in at least one instance φ of length n (namely, that
either φ ∈ SAT and C(φ) = 0 or φ �∈ SAT and C(φ) = 1). Note that LB s

n has size
N = 2O(n), so we seek a superpolynomial in N lower bound on its proof length.25

24 For example, we may choose s = nlog log n for a superpolynomial bound or s = 2n/1000 for an exponential
bound.

25 Of course, if NP ⊆ P/poly, then this formula is not a tautology, and there is no proof at all.
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Proving that LB s
n is hard for Frege will in some sense give another explanation

for the difficulty of proving circuit lower bounds. Such a result would be analogous
to the one provided by natural proofs, only without relying on the existence of one-way
functions. But paradoxically, the same inability to prove circuit lower bounds seems to
prevent us from proving this proof complexity lower bound. Even proving that LB s

n is
hard for Resolution has been extremely difficult. It involves proving hardness of a
weak pigeonhole principle26 – one with exponentially more pigeons than holes. It was
finally achieved with the tour de force of Raz (2004)and with further strengthening of
Razborov (2004).
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Gödel’s model, 186–188

metrics, 194–197
origins, 188–192

Lanczos’s model, 209–211
light cones, 200–207
Newtonian universe, 192–194
and philosophy, mathematics of, 302
stability, 207–208
time travel, 200–207
See also physics

decision problems, 476–478
deformation theory, 22–23
determinism

chaos, deterministic, 217, 224–227
metaphysical status, 237
overview, 213–214
and predictability, 220
rise of, 215–216
See also indeterminism

deterministic chaos. See chaos, deterministic
DEUCE, 172
diagonalization, 220–221, 494–495
Dialectica interpretation (1958), 122–125,

415
See also functional interpretation
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and Gödel’s theorems, 325–326



512 index

hygiene (logical)
asymmetric items, in logical dress, 28–30
origin of term, 36n
overview, 27–28
See also abstractions (logical); foundations

(logical)

IAS. See Institute for Advanced Studies
impossibility

mathematical, 256
physical, 255–256
and unknowables, 222–223

incompleteness theorems
approximations, finite, 15–16
conductor, 20–21
deformation theory, 22–23
equivalences, 21
and Fermat’s last theorem (FLT), 14–15
finite, 422–423
first (undecidability)

impact of, 402–405
statement of, v, 325

future trends, 423–426
and Galois theory, 16
geometry and dynamical systems, 11
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and Gödel, 81, 83, 88

Kant, Immanuel
and incompleteness theorems, 300
and indeterminacy, 285–286

Kleene, Stephen
influence of, 439
realizability, 365, 374, 376–377

Kreisel, Georg, 15–16, 19, 124–125, 127, 365
Kruskal’s tree theorem (KT), 418–419

Lanczos, Kornel, and cosmology, 209–211
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