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Preface

The notes in this volume were produced in conjunction with the Thematic Program
in O-minimal Structures and Real Analytic Geometry, held from January to June
2009 at the Fields Institute. Among the activities of our thematic program were three
graduate courses, offered to participants and to graduate students from universities
in the Greater Toronto Area. Each of these courses was, in turn, split into three
modules, and most of these modules were taught by different instructors. Five
of the six contributions to this volume arose from the modules taught by the
authors: Felipe Cano on the resolution of singularities of vector fields; Chris Miller
on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of
o-minimal structures from quasianalytic classes; Fernando Sanzon non-oscillatory
trajectories; and Patrick Speissegger on pfaffian sets. The sixth contribution, by
Antongiuglio Fornasiero and Tamara Servi, is an adaptation of Wilkie’s construction
of o-minimal structures from total C°°-functions to the nonstandard setting. Their
adaptation was carried out concurrently with our program, and the resulting notes
fit in naturally with the pfaffian portion of our lectures.

There are only a few dependencies between the contributions: Miller’s is used in
both Rolin’s and Speissegger’s, and Rolin’s is used in Sanz’s. In addition, familiarity
with the basics is assumed for o-minimality (van den Dries [4] and Miller and van
den Dries [5]) and semianalytic and subanalytic sets (Bierstone and Milman [2]).
Further recommended reading are Marker [3] on model theory (basic aspects of
which are used in Miller’s notes) and Balser [1] on Borel-Laplace summation (used
in Sanz’s notes).

We thank the Fields Institute for the generous funding provided for our program,
and we thank its very competent and helpful staff for making our stay there
productive and very enjoyable. Participation of several US-based graduate students
and junior postdoctoral researchers was partially funded by NSF Special Meetings
Grant DMS-0753096.

Columbus, OH, USA Chris Miller
Bourgogne, France Jean-Philippe Rolin
Hamilton, ON, Canada Patrick Speissegger
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Blowings-Up of Vector Fields

Felipe Cano

Abstract A new proof of the reduction of singularities for planar vector fields is
presented. The idea is to adapt Zariski’s local uniformisation method to the vector
field setting.

Mathematics Subject Classification (2010): Primary 32S65, Secondary 37F75

Introduction

These notes cover part of a course taught at the Fields Institute in January 2009, as
part of the Thematic Program on O-minimal Structures and Real Analytic Geometry.
I try to introduce the reader to a new proof of the reduction of singularities for vector
fields in dimension two.

What is the reason for giving this new proof? Indeed, the original proof of 1968
given by Seidenberg [36] is complete and does not need much tweaking to be useful
for most applications. Other proofs in dimension two were published, among them
Giraud [20,21], van den Essen [39], Dumortier [19] and one by myself [7], where
I tried to recover Hironaka’s way of reducing singularities.

In these notes, the idea is to recover the local uniformization method due to
Zariski [42,43], which dates back to 1940 (see also Vaquié [40] for a discussion of
Zariski’s method). The proof I present here can be generalized at least to dimension
three, as done in joint work in progress with Roche and Spivakovsky [13, 14]. Also,
as I explain later, the result in dimension three gives a global result as an application
of Zariski’s method.

F. Cano (<)
Dpto. Algebra, Geometria y Topologia, Universidad de Valladolid, 47011, Valladolid, Spain
e-mail: fcano@agt.uva.es

C. Miller et al. (eds.), Lecture Notes on O-minimal Structures and Real Analytic 1
Geometry, Fields Institute Communications 62, DOI 10.1007/978-1-4614-4042-0_1,
© Springer Science+Business Media New York 2012



2 F. Cano

For a more general elementary exposition of the theory of singular holomorphic
foliations the reader may look at Camacho and Lins-Neto [5], Cano and Cerveau
(Introduction aux feuilletages singuliers, Unpublished lecture notes available from
the authors) and Brunella [3].

Historical note. Let us give a brief historical overview of the proof of reduction of
singularities for vector fields in dimensions two and three. First of all, let us indicate
that there are no known results in dimension greater than or equal to four, except for
the specific case of absolutely isolated singularities (see Camacho et al. [6]).

The original proof of Seidenberg is based on the behavior of the multiplicity
i(Cy, Cy; p) of the intersection of two plane curves C; and C; at a point p under
blowing-up. More precisely, Noether’s formula states that

i(C1,Cy; p) =mp(Crm,y(Cy) + Z i(C{,Cy;p),

p'€EE

where E is the exceptional divisor of the blowing-up with center {p}, C, C; are
the strict transforms of the curves C;, C, and m ,(C) denotes the multiplicity of the
curve C at the point p. Van den Essen’s, Dumortier’s and Giraud’s proofs follow this
same idea; Dumortier’s is specific to the real case and Giraud’s to the framework of
Algebraic Geometry in positive characteristic.

The use of the multiplicity of the intersection as a main invariant of control
is based on the fact that the singularities considered are isolated, and hence the
multiplicity of the intersection of the coefficients is finite. For vector fields this
invariant is called Milnor number and generalizes, in the Hamiltonian case, the usual
Milnor number of a function. If we can assure that the Milnor number remains finite
under any blowing-up, then the method generalizes to higher dimension without
obstruction. This is the case for absolutely isolated singularities in any dimension,
as shown in our work with Camacho and Sad.

If one wants to look at the general case in dimension three, it is necessary to
develop a method not based on control of the Milnor number. In [7], I gave a
proof based on the ideas of Hironaka. This method can be interpreted as follows
in dimension two: first, we need an invariant acting as the Hilbert-Samuel function;
this invariant is the logarithmic multiplicity of the vector field, together with a
description of a finite list of types. Second, we need maximal contact, which acts as
a kind of reduction of the dimension from two to one. Finally, we consider a more
specific invariant of control for the case of maximal contact, namely, the contact
exponent associated to a Hironaka’s characteristic polyhedron (in this case just a
line).

More precisely, the first result in ambient dimension three was given by myself in
[9,15], in the form of a positive answer to Hironaka’s game. This result is of a local
nature, where we allow formal centers of blowings-up. In some sense, it is a strong
local uniformization result, but it has the disadvantage that formal (non-convergent)
centers of blowings-up are used. The statement is as follows: we start with the germ
of a vector field at (C3,0), more precisely with the germ £ of the foliation induced
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by the vector field. To this vector field, we associate a logarithmic multiplicity at
a point p, the smallest multiplicity of the coefficients of the vector field expressed
in a logarithmic way with respect to a normal crossings divisor (that is, we “force”
the components of the divisor to be invariant). For instance, if p is the origin, the
divisor is defined by [7_, x; = 0 and the vector field is given by

&= Zai(x)xiﬁix,- + Z ai(x)aiXi,

i=1 i=e+1

then the corresponding logarithmic (or adapted) multiplicity is the minimum
of the multiplicities of the coefficients a;(x) at the origin, for i = 1,2,...,n.
We say that the point p is a log-elementary singularity of the vector field,
if the logarithmic multiplicity at p is less than or equal to 1. Now we play
Hironaka’s desingularization game between two players A and B (where “A” is
typically interpreted as “Abhyankar” in recognition of the latter’s contribution to
the understanding of singularities):

1. If p is log-elementary for the vector field, player A wins; otherwise, he chooses
a formal center of blowing-up.

2. Player B chooses a point p’ in the preimage of p under the blowing-up.

3. The game restarts with p’ in place of p.

A winning strategy for player A is a decision method that makes sure the game
stops in a finite number of steps, independently of the choices made by player B.
In [15], I presented a winning strategy for player A. In [9], I extended this strategy
to so-called elementary singularities, that is, singularities with non-nilpotent linear
part.

At this point, the problems in dimension three are the following:

(a) To obtain a result where the centers of blowings-up are analytic; that is, the
geometry of the ambient space is not destroyed by a blowing-up with a formal
center.

(b) To obtain a global result. Instead of blowings-up with centers adapted to the
point chosen by player B, try to obtain a global morphism such that all the
points on the exceptional divisor are log-elementary or, even better, elementary.

A version of Hironaka’s game can be played in the case of a non-oscillatory
trajectory of the germ at the origin of real vector field £ in R? (see Sanz [35]). Let y
be a non-oscillatory trajectory of ¢ that approaches to the origin, that is

lim y(t) = 0.
—>00

We assume that y is non-oscillatory (that is, y crosses any analytic hypersurface at
most finitely many times) and that y is not contained in any analytic hypersurface.
Then y acts as player B in the following way: player A chooses a blowing-up with
center the origin or a nonsingular analytic curve through the origin. The lifting
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of y accumulates at only one point p’ of the exceptional divisor: otherwise, we
could produce an algebraic hypersurface that y crosses infinitely many times,
contradicting the non-oscillatory property of y.

In joint work with Moussu and Rolin [12], we solved Hironaka’s game in the case
where player B is given by a non-oscillatory trajectory of the germ at the origin of
a vector field in R3. Since we were working over the real field, we were interested
in applications that are stable under ramifications, so we allowed ourselves to do
ramifications; nevertheless, all our centers of blowings-up were analytic. In this way
we obtained a local, non-birational reduction of singularities method over the real
field that finishes in elementary (not just log-elementary) singularities.

The techniques used in [12] have a natural interpretation in terms of Zariski’s
method for the local uniformization. Indeed, a non-oscillatory trajectory y of &
induces an identification of the field of rational functions (even of meromorphic
functions) in three variables with a Hardy field, via the substitution morphism

FX.Y.Z)  F()
GX.Y.2) GO0

This Hardy field has a natural valuation whose centers (in the sense of Zariski)
are given by the accumulation points of y under blowing-up. Thus, player B is in
this case a valuation that chooses, at each step, the center of the valuation in the
corresponding model of the field of rational functions. This is precisely Zariski’s
point of view for the local uniformization. The difference between his point of
view and Hironaka’s is that, in Zariski’s case, we know the nature of player B
(a valuation), and we can do arguments using this particular nature of player B.

The need for ramifications was evident in [12] for passing from a special
nilpotent situation to an elementary case. More precisely, an example produced by
F. Sanz and F. Sancho shows that the latter is not possible in general without using
formal, but nonconvergent, blowings-up. Their example is the following:

0 0 0 0 0
= — —ay— — Bz— — —Ax)—.
E=x (xax ayay ﬂzax) +xzay + x)aZ

This example is discussed in detail in the introduction of Panazzolo [30]. Let me just
mention that, for this &, using a blowing-up with center a formal £-invariant curve
transverse to {x = 0}, one obtains elementary singularities.

We are currently working, with Roche and Spivakovsky, on a local uniformiza-
tion result, in the sense of Zariski, for a general situation of algebraic geometry
in characteristic zero. We obtain, via a birational transformation along a given
valuation, log-elementary singularities in ambient dimension three. Moreover, these
log-elementary singularities satisfy a list of axioms given by Piltant [32] that allow
us to globalize the local uniformization in an ambient space of dimension three. This
result represents an axiomatic version of Zariski’s gluing of local uniformizations
in dimension three [42,43]. As a consequence, we obtain a global and birational
way of reducing singularities in dimension three, such that the final singularities are
log-elementary.
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In these notes, we present the two-dimensional version of this joint work, in order
to introduce the reader to the key ideas of our method.

To finish this historical note, let us point out that log-elementary singularities
are far from being elementary; for instance, nilpotent singularities are always log-
elementary. In fact, Panazzolo’s thesis [29] deals with transforming nilpotent to
elementary in a global non-birational way, via real transformations of ‘“quasi-
homogeneous” type. This important work showcases just how far log-elementary
signularities are from begin elementary.

The most complete result on reduction of singularities for vector fields in
dimension three is Panazzolo’s [30]. This is a global result, via non-birational
transformations, that obtains elementary singularities in the real case. His techniques
of control and globalization in [30] are close to Hironaka’s; but he also uses
weighted blowings-up, with weights associated to the Newton polyhedron of the
vector field. These latter ideas are, arguably, the reason for the relative simplicity of
his work.

More recently, as of May 2011, some new results on these matters have appeared:
first, the valuation-theoretic arguments in dimension three in [14] can be generalized
to any dimension in order to get maximal contact or resonance. Both these cases
represent a reduction, in a certain sense, of the ambient dimension of the problem.
Second, there is a preprint of McQuillan and Panazzolo in which they apply the
techniques of [29] to obtain a three-dimensional reduction of singularities for vector
fields in ambient dimension three, in the framework of stack theory.

Applications. A classical application of the reduction of singularities of vector
fields is the theorem of Camacho and Sad [4], which proves the existence of
an invariant holomorphic curve at a singularity of a holomorphic vector field in
dimension two. This result was conjectured by R. Thom, based on the intuition that
the invariant hypersurfaces should “organize” the dynamics. Their proof relies on
reduction of singularities and the behavior of an index, now known as the Camacho-
Sad index. A very short proof of this result may be found in [8].

In dimension two, the reduction of the singularities for vector fields has been a
central result, providing an algebraic skeleton in the study of holonomy, formal and
analytic classification, deformation, integrability, etc. Introductions to these topics
can be found in [16, 17,26-28].

In dimension three, fewer applications are known, due of course to the difficulties
of the result itself. There is a counterexample to the existence of an invariant analytic
curve, found by Gémez-Mont and Luengo [22], based on the behavior under
blowing-up of elementary singularities. Besides the geometric study of oscillation
presented in [35], I would like to mention a remark of Brunella [2] that shows that
any real vector field in dimension three, with an isolated singularity at the origin,
has at least one trajectory arriving at or exiting from the origin.

The reader may look at the references [10, 11, 18,23,31,33,34,38,41] as a small
seletion of papers corresponding applications of reduction of singularities and some
of the technics introduced in these notes.
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1 Vector Fields and Blowings-Up

Germs of vector fields. The ambient space M is for us of one of the following
types. We can have an ambient space which is a real analytic variety, that is M
is described by a collection of real charts such that the compatibility conditions of
the charts are real analytic applications. We can also consider the case that M is
a complex analytic variety, with the same definition as before, except for the fact
that the compatibility conditions of the charts are complex analytic (holomorphic)
applications. We also consider the case that M C Pg is an irreducible complex
projective variety, where we can eventually have singular points. Most of the
properties we are going to consider have local nature and thus they can be explained
in terms of the local ring Oy , of the germs of functions at a point p of M, whose
maximal ideal My, is given by the germs of functions f € Oy, such that
f(p)=0.

Since we work either over the real numbers or over the complex numbers, we
denote k = R or k = C, depending on the cases we are considering.

By definition, the germs of vector field at p € M are the k-derivations of the
local ring Oy, ,. That is a germ of vector field is a map

5 . OM, P OM, P
which is a homomorphism of k-vector spaces and satisfies to the Leibnitz rule

E(fg) = fEg + g&f.

We denote Der; Oy, the set of germs of vector fields at p. It has a natural structure
of k-vector space and moreover, it is a Oy, ,-module, where we have (f§)g =
f(&g).

The set of tangent vectors T, M at p is the set of “centered derivations”. That is,
a tangent vector at p is a map

v:Om,p, =k

which is a homomorphism of k-vector spaces and satisfies to the “centered”
Leibnitz rule

v(fg) = f(p)(vg) + g(p)(vf).

Obviously, any germ & of vector field at p induces a tangent vector
£, e T,M,

just by putting £|, /* = (§£f)(p). The tangent space T, M has a natural structure of
k-vector space.

Assume that p is a nonsingular point of M. This is always the case when M is
a real or complex analytic variety. Then the maximal ideal M, of Oy, has a
set of generators xy, X2, ..., X,, where n is the dimension of M. Depending on the
context, this set of generators is called regular system of parameters or system of
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centered local coordinates. There are particular germs of vector field that we denote
d/dx;, fori = 1,2,...,n defined by the properties
d lifi=j
T D T 0 i £

In fact, we obtain in this way a basis of the free Oy, ,-module Der; Oy ,. So, any
germ of vector field £ has a unique expression as

£ ) o tal
=a— +a—+---+a,—,
! dxy 2 dxo dx;,
where ai, as, ... ,a, € Oy p. Also, a k-basis of the tangent space T), M is given by
0/0x;|p, fori =1,2,...,n.In particular the map § — &/, is surjective.
Let us consider representatives X; of the germs x; fori = 1,2,...,n. There is

an open neighborhood U of p satisfying the following property:

For any point ¢ € U there is a unique q = (¢1.4>. . - -, qn) € k" such that the functions
X1—q1, X2 —q2, ..., X, — g, define a regular system of parameters of Opy,.

In view of this property, we can consider vector fields defined in such neighborhoods

U as expressions
n
0
=y 4 —
V=2 digy

i=1
where the A, Ay, ..., A, are functions defined in U. Obviously such a vector field

V induces a germ of vector field V, at each ¢ € U in an evident way, as well as
tangent vectors V(q) € T,M.

Definition 1.1. A germ of vector field & € Dery Oy, is non-singular if p is a non-
singular point of M and & (M ) is not contained in My ,.

In terms of coordinates, this is equivalent to say that £(x;)(p) # 0 for some of the
parameters x;. The next classical result justifies the interest of having a non-singular
germ of vector field

Theorem 1.2 (Rectification). Let & € Dery Oy, be a non-singular germ of vector
field and let us assume that the ambient space M is a real or complex analytic
variety. There is a choice of local coordinates x1, x5, . .., X, such that ¢ = 0/0dx;.

Blowings-up of ambient space. Let p € M be a nonsingular point of the ambient
space M . The blowing-up of M with center p is a morphism 7 : M’ — M that we
describe in this section.

Blowing-up of the projective space. Let us consider first the case where M = P
is the n-dimensional projective space. Take a projective hyperplane A, C P} such
that p ¢ As. Now, we can choose homogeneous coordinates [Xo, X1, ..., X,] in
[P} such that p = [1,0,0...,0] and A, = {Xo = O}. Note that the points in A
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are of the form [0, X1, X5, ..., X,,] and hence [X, X>, ..., X,] can be considered
as being homogeneous coordinates for A. Let us denote by

/\:PZ\{p}_)Aoo

the linear projection defined by A(q) = (p +¢) N A, Where p + ¢ is the projective
line through p and ¢. In terms of homogeneous coordinates, we have

A’([X()v)(ls X27--- 7X71]) = [X15X27--- 7X71]'
Let G(1) be the graph of A and consider the topological closure
G(A) C Pl x A

The first projection w : G(A) — P} is by definition the blowing-up of P} with
center p. Let us note that the equations of G(A) in homogeneous coordinates
[Xo. X1,..., Xy] for P} and [Y1, Y, ..., Y,] for Ay are

XY, =X;Y; fori,j =1,2,....,n.
We see that G(A) \ #~!(p) = G(X) and hence 7 defines an isomorphism

G\ (p) = PL\ {p}.

Moreover, there is an identification between 7! (p) and A... We say that 7! (p)
is the exceptional divisor of w and hence each of its points corresponds to a line
through p. L

The transformed space G(A) is a nonsingular variety. To see a chart decomposi-
tion of it, we write

G() =G Un (P} \ Aco) = (B \ {p) U™ (B \ Aco).

Now, we already know that 77! (P \ {p}) is identified with the open set P} \ {p}
of the projective space P}. To describe 7~ (P} \ Ax), let us first recall that there is
an identification

P\ Ago <> Al = k",

given in coordinates by [1,xy,x2,...,x,] < (x1,x2,...,X,). Now, we cover
7 (AR) by charts 7 (A7) = ] _, U; with

Uj =7 (A U{Y; # 0}

Each U; has a coordinate mapping

¢ U = A (x[Y]) — (xij),xgj),...,x,(/)),
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where x;j )= x ; and xi(j )=/ Y; fori # j.In particular, the blowing-up 7 in

the charts U; has the equations

(x(]), xflj))H(xl,xz,...,xn)eA",

where x; = x; and x; = X; x(j ) , fori # j.Let us remark that the morphism 7

may be recovered starting w1th these equations.

)

Blowing-up of any variety. Let M be a variety, covered by charts U C M, that we
identify as open sets U C AJ. Take a point p € M and consider a chart U such that
p € U. We can shrink the other charts to assume that p ¢ U’ for another chart U’
different from U. Now, we can do the blowing-up of U with center p

nU:U:n_l(U)aUCAZ.

We glue the charts U’ with U by recalling the identification between U \ 77 '(p)
and U \ {p}. In this way we obtain the blow-up morphism

7:M— M.

Blowing up along a subvariety. Let M be a variety and consider a closed subvariety
Y C M. We can identify locally the pair (M, Y') with the pair U x V, {0} x V, where
U and V are open subsets 0 € U C A]™" and V' C Aj". The blowing-up

T M—>M ,
of M with center r is obtained by gluing together the local blowings-up
UxV = Ux V,

where U — U is the blowing-up with center 0. Note that the exceptional divisor
7~ 1(Y) C M is a hyper-surface covered by open sets of the form 7! (p) x V.

The universal property of the blowing-up. The above constructions seem to be
highly non intrinsic. In particular one immediately sees a problem to justify the
gluing procedures in the blowing-up along a subvariety. All this difficulties are
solved by invoking the universal property of the blowing-up. In algebraic terms
it can be stated as follows

Let 7 : M — M be the blowing-up of M along a subvariety. Consider another proper
morphism 4 : M’ — M having the property that 7~ (M \ Y) is isomorphic to M \ Y and
h~'(Y) is a hyper-surface (in the sense that the sheaf Jy Oy is an inversible sheaf). Then
there is a unique morphism f : M’ — M such that w o f = h.

We will not insist in this property and the use of the blowing-up we will do is mainly
through the equations and coordinates.
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Transform of a vector field by blowings-up. Let & be a germ of vector field at
p € M. Thatis & € Dery Oy, ,. Consider a blowing-up

71:]\7I—>M,

along a subvariety Y C M and fix a point p’ € 7' (p). We want to see if £ defines
in a natural way a germ of vector field at p’.

Remark 1.3. Let w be a germ of differential 1-form. The standard pull-back of 1-
forms by a morphism allows us to define 7*w in a very natural way as a germ
of differential 1-form at p’. The case of a germ of vector field is slightly more
complicated.

The ring of germs of functions O, » is an extension of Oy, through the
blow-up morphism. More precisely, we can choose local coordinates x, X2, ..., X,
around p € M such that

1. The center Y of the blowing-up is locally given at p by

Yv:{xl:')('2:...:)('”!:0}7
where m is the codimension of Y in M.
2. There are local coordinates x}, x5, ..., X, at p’ € M’ such that
x} =x;/Xm, j=12,....m—1.
x}:x]" j:m,m+l,...,n.

(The equalities have to be interpreted locally at p’ by identifying x; with x; o 7).

Without doing the complete details, a necessary a sufficient condition to extend
& to a derivation
g : OM/,],/ e OM’,p’y

is that s(x;) € Oy forall j =1,2,...,n. Of course, it is enough to verify that
E(x’) € Oprp for1 < j <m— 1. Letus write

n
ad
&= ;ai(xl,xz,...,xn)a—)q.
We have
XmQi — Xily 1
E0x)) = §(xj /xn) = 5 = (aj _x;.am).

That is, the condition we look for is: x’,zn divides x,a; — xja,, in the ring Op pr,
foralll < j <m—1.
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Proposition 1.4. The following conditions are equivalent

1. & extends to a derivation § : Oy — Oy .

2. x’,zn divides xya; — Xjay in the ring Oy, forall 1 < j <m —1.

3. §(x;) belongs to the ideal I of Oy, generated by X1, X, . . ., Xp, (this is the ideal
definingY C M), foranyi =1,2,...,m.

Proof. Obviously 3 implies 2. Conversely, the condition that x’ ,zn divides x,a; —
Xjan, inthering Oy p is equivalent to say that x,,a; — X a,, is in IzOM,p. Assume
thata;, ¢ I forsome 1 < jo <m — 1. Then

a(xmajo - xjoam) _ aajo day,

= =daj,+Xpm— +X
Y X, J0 " dx

is notin /, contradiction, since x,,a; —x;a,, isin / 20y p-Ifa,, ¢ I, wedo the same
argument by taking the partial derivative with respectto x;, forany 1 < j <m—1.
O

The third condition in the proposition means that Y is invariant for £&. To be precise,
we have the following definition:

Definition 1.5. Let / C Oy, be a prime ideal, defining a germ of subspace
(Y, p) C (M, p). We say that (Y, p) is invariant for £ if and only if £(I) C 1.

Remark 1.6. The point {p} is invariant for £ if and only if & is singular at p (we
also say that & has an equilibrium point at p). Consider the curve

Y={x1:x2="':xn—1=0}v

to say that Y is invariant means that the vector field is “vertical” along the curve,
that is ¢;(0,0,...,0,x,) = Ofori = 1,2,...,n — 1; in other words, the vector
field is tangent to the curve at the points of ¥ and hence the trajectories of the
integral curves of £ starting at points in Y are contained in Y (this explains the word
“invariant”).

Foliations by lines. A foliation by lines £ over M corresponds to the fact
of considering locally a vector field “without velocity”. The leaves will be the
trajectories of the vector field, that is the images of the integral curves, where we do
not consider the parametrization by the time.

To be precise, an atlas for a foliation L is a collection (U;, &) of foliated charts
such that the &; are vector fields defined over the open sets U; and

§lvinu; = hijéjlunu; .

where the h;; are invertible functions defined over U; N U;. As usual, we define the
foliation by identifying it with a maximal atlas. The foliation is reduced if for any
(nonsingular) point p € M we can write

& = Zai (x)%

i=1
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where the coefficients a;(x) € Oy, are without common factor. It is possible to
pass from a foliation to a reduced one in a unique way just by taking the greatest
common divisor of the coefficients. The singular locus SingL of £ is locally given
by the singular locus of the vector fields & and it is of codimension greater or equal
than two in the case of a reduced foliation.

We can also define meromorphic foliations as given by atlases of the form
{(U;, g7'&)} where g; € Oy (U;) and the compatibility of the charts is defined as

giluinu Elv.nu, = hijgiluinu; §jlunu; -

As before a meromorphic foliation gives in a unique way a reduced foliation.

Algebraic foliations. In the algebraic case we can define a meromorphic foliation
in a particular way which is very convenient for the work in a bi-rational context.
Let K be the field of rational functions of M, that we suppose to be an algebraic
variety over a field k of characteristic zero (recall that we typically have k = R or
k = C). The K-vector field of derivations Dery K has K-dimension n = dim M .
A rational foliation by lines is just a one dimensional K-vector subspace

L C Deri K.

If induces a reduced foliation as follows. Let p € M be a nonsingular point. The
regular local ring Oy, , has a regular system of parameters x1, X, ..., X, (minimal
set of generators of the maximal ideal) and

. d
Derk(’)M,,, = Z OMWE'

i=1

Moreover, each germ of vector field § € Der; Oy, extends in a unique way to a
derivation § : K — K. Now £ N Dery Oy, is a free Oy ,-module of rank one
generated by a germ of vector field without common factors in its coefficients. In
this way we obtain a reduced foliation on M.

Blowing up foliations. We have seen that a vector field can only be blown up if the
center of the blowing-up is invariant. Otherwise, we obtain a meromorphic vector
field. This is not an obstruction for the blowing-up of a foliation. Hence any foliation
can be transformed under a blowing-up with any center.

Dicritical vector fields. Let £ be a germ of vector field in p € M and suppose that

n
ad
= a;i( X1, X2, ..., Xp)—
3 Z i( Dk
i=1
in local coordinates x1, X», .. ., X,,. Let us consider the blowing-up = : M; — M of

M with center p. Assume that p is an equilibrium point of £ and hence we have a
transform £ of £ by 7. Let us denote by E = m~'(p) the exceptional divisor of the
blowing-up 7.
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At each point p; € E we have that § = h&{, where h € Oy, p, and £ has no
common factors in its coefficients. We have the following properties

1. The exceptional divisor E is invariant for ,§ . This is a consequence of the fact that
p is an equilibrium point of &.

2. If & has no common factor in its coefficients, then 2 = 0 is contained in £. More
precisely, we have that either / is a unit (thatis 7 = Ois empty) or {h = 0} = E.

Let us look in a more precise way this situation. Consider the example of the radial
vector field

. ad
R = Z;Xia_xi.

Take a point p; with local coordinates X’ such that x| = x; and x/ = x;/x; for
i > 2.1In this case E = {x| = 0} and

‘N 9

. R = —.
x| ! x|

R =x]

Let us note that E is not invariant for R].

Definition 1.7. In the above situation we say that £ is dicritical at p or that 7 is a
dicritical blowing-up for & if and only if E is not invariant for £[.

This definition works for the case of a foliation, just by considering the reduced
foliation after blowing up.

Let us give a characterization of the dicritical vector fields at p. Let r be the order
of € at p, that is the minimum of the orders of the zero p of each coefficient a;. We
can decompose each coefficient a; (x) as a sum of homogeneous polynomials

a;(x) = A;,(x1,x2, ..., %) + Aipr1 (X1, X2, .0, X)) + 000

Now, the germ of vector field & is dicritical at p € M if and only if the vectors
(A1r, A2y, ..., An,) and (x1, X2, .. ., X,) are proportional, that is

X,‘ArJ = )CjA”‘; for allz,]

Let us remark that being dicritical is a very particular situation. A still unsolved
problem is to show that under any infinite sequence of blowings-up centered at
points the resulting foliation is dicritical only finitely many times. This is true in
dimension two and three, but it is not known for higher dimensions.

Invariant curves. Let& = ) '_ a;(x)d/dx; be a germ of vector field at p € M.
A germ of analytic parameterized curve at p is just a morphism y : ¢ — y(t), where
y(0) = 0. The curve y is called an integral curve of & if and only if

y'(@) =€)
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for all ¢, where () means the tangent vector of y at £. We know that there is always
a unique integral curve (in the analytic context) of £ at p. In the case that p € M is
an equilibrium point, the integral curve at p is just the constant curve ¢ — p.

We can also consider the definition of invariant subvariety given in a previous
section. Take a germ of curve (Y, p) C (M, p) at p, defined by the ideal I C Oy .
Recall that (Y, p) is invariant for £ if and only if £(/) C I.1Itis possible to show that
this is equivalent to say that (Y, p) is union of leaves, that is of images of integral
curves.

In a more algebraic frame, assume that we have a Puiseux parametrization

xi=¢i(t); i=12,....n

of the curve (Y, p). The necessary and sufficient condition to assure that (Y, p) is
invariant for & is that

ai(p()$ (1) = a;($(1)¢/(1); foralli, j.

This condition means that £(g) is in the tangent space of Y at each point g of ¥
near p.

Formal invariant curves. A formal curve (I?, p) at p € M is by definition the
kernel I C Oy, of a morphism of complete local rings

b : @M,,, = k[[x1, x2, ..., x,]] = k[[z]]

Here we can interpret ¢ as a Puiseux parametrization of (Y p). The derivation &
extends to a derivation & : 0 Mp —> O M,p- As for the convergent case we have

Proposition 1.8. In the above situation the following properties are equivalent

1.&()cl. o
2. ai(@(0))¢;(1) = a;(¢))p;(1);  foralli, .

If we have the equivalent properties of the above proposition, we say that (};, p)is
a formal invariant curve for §.

We shall see that there are formal invariant curves that are not convergent ones.
This is one of the difficulties when doing reduction of singularities of vector fields,
since the invariant objects are not necessarily convergent ones.

Definition 1.9. The formal curve (Y p) is non-singular if and only if there is a
Puiseux parametrization ¢(t) such that one of the ¢, (¢) has order 1.

This definition is equivalent to say that in formal coordinates, we have that Y =
{X2 = X3 = -+ = X, = 0}. Moreover, if the curve is convergent, the rectification
(in the analytic frame) may be done with convergent coordinates.
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Behavior under blowing-up. Let (Y, p) be a formal curve at p € M. Of course, a
particular case is the case when (Y, p) is convergent. Consider the blowing-up

T M - M

with center p: Up to do a linear change in the coordinates xy, x,, .. . Xp, We can
assume that ¥ has a parametrization ¢>(l) where ¢>1(t) has order d and ¢>, (t) has
order > d for all i = 2,3,...,n. Now, consider the point p; in the exceptional
divisor E of 7 corresponding to the line

)CZZ)C3:...:xn:0_

At this point we have local coordinates xi = X1, x,f = x;/x1, fori =2,3,...,n.
Now we have a Puiseux parametrization

=¢i(t). x/ = 28 i=2.3.....n,

that defines a formal curve Y at p1.- We say that (Y 1, p1) is the strict transform of
(Y, p) by & and that p, is the first tangent or first infinitesimal near point of (Y, p).

Proposition 1.10. Let & be a germ of vector field having an equilibrium point at
p € M and let (Y p) be a formal curve. Denote by (Y1, p1) the strict transform of
(Y, p) by the blowing-up 7 of M with center p. We have

1. (Yl, p1) is convergent if and only lf(Y, p) is convergent.
2. (Y1, py) is invariant for & if and only if (Y, p) is invariant.

Infinitely near points. Let (Y ,p) be a formal curve in M. We can blow up
successively M = M, to get an infinite sequence

Tit1: Mig1 — M;

of blowings-up with centers p; € M;, where (Y, +1, Pi+1) is the strict transform
of (Y, , pi) and of course we put (Yo, po) = (Y p). The points p; are called the
iterated tangents of (Y p) or in another context the infinitely near points (although
in [1] they consider only those points where the multiplicity does not drop).

Proposition 1.11 (Reduction of singularities of curves). Given a formal curve
(Y, p) in M, there is an index N > 0 such that (Y;, p;) is non singular for all
i>N.

Proof. Take coordinates xi, x»,...,X, and a Puiseux expansion ¢(¢) such that
¢; (1) = t™ U;(t), with U; (0) # 0 and

m=m; <mpy=<ms,...,my
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and moreover m does not divide m,. Blowing up, we obtain m| = my, m; =
m; —mj, fori > 2 and the situation repeats if m; < m/,. Note that m; # m/. After
finitely many steps we get m’, < m; and we are done by induction on 7. |

Take a (reduced) foliation by lines £ in M locally generated at p by a vector field
&. Let us denote by £; the successive transformed foliations each one in M; and let
& be alocal generator of £; at p;.

Proposition 1.12. The following properties are equivalent:

1. (IA’, p) is invariant for L.
2. There is an index N' > 0 such that p; € Singl;, for eachi > N'.

Proof. By reduction of singularities of the curve, we may assume that Y, p is given
by x = x3 = .-+ = x,, = 0. Let us consider a logarithmic viewpoint relatively to
x1 = 0. To do this, we put ; = & if x; = 0 is invariant for § and n; = x& if
x1 = 0is not invariant for & . We can write

ad . 0
4:b41 X;)Xj1— + b (x;)——
Ni i ( z) i axil Z l]( ’)axij
Jj=2
where the coefficients b;1, b;», . .., b;, have no common factor and the coordinates

satisfy

. _ i .
xille,x,-j—xj/xl, j =>2.

Let «; be the minimum of the orders of b;;, b;», ..., b;, and put t; = «; if ¢; is also
the minimum of the orders of b;», b;3,...,b;, and 1; = «; + 1 otherwise. We have
bii bij )
bivin=—=1 bivij = — —Xit1jbivi1. J =2
X X

Let §;; be the order of b;; (x1,0,...,0) = and §; the minimum of the §;;, for j > 2.
To say that (Y;, p;) is invariant is equivalent to say that §; = oo and this implies that
pi is a singular point of &;. Let us note that

Siv1 =6 —7.

The only way to have a finite §; is that 7; = 0 fori > N’. Butif t; = 0 the point p;
is a nonsingular point of 7; and “a fortiori” of &;. O

Elementary singularities. Let £ be a germ of vector field at p € M and assume
that p is an equilibrium point of &. That is £(M) C M, where M is the maximal
ideal of the local ring Oy, of M at p.

Let us recall that the quotient M/ M? is a k-vector space (here k is the base field)
of dimension n. More precisely, if x1, x», ..., X, is a local system of coordinates at
P, we have that

fj :Xj—‘r./\/lz; j = 1,2,...,}1,
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gives a k-basis of M/ M?. Now, the vector field £ induces a k-linear map
LE - M/M? — M/M?

givenby f 4+ M? = E(f) + M?. This map is called the linear part of &.

Definition 1.13. We say that p is an elementary singularity of & if and only the
linear part L& is non-nilpotent.

The study of elementary singularities is not particularly easy. Anyway, they are
stable under blowing-up and, for this reason, a good objective to the reduction
of singularities is to reach elementary singularities after performing well chosen
blowings-up. This objective has been obtained in dimension two by Seidenberg in
1968. In higher dimensions, the situation is much more complicated. In this notes
we will give some ideas in dimension three.

Lemma 1.14. Assume that £ has a singularity at p € M and let w1 : M| — M be
the blowing-up with center p. Let py € =" (p) be a singular point for the transform
&' of € by the blowing-up. Then py corresponds to an eigenvector of the transposed

linear part (L€)' : (M/M?*)* — (M/M?)*.

Proof. Up to do a linear change of coordinates, we can assume that p; has local
coordinates given by x] = x; and x} = x;/x; for j > 2. This means that p;
corresponds to the projective point corresponding to

Vit MM =k X LY 0, j > 2.

If v; is not an eigenvector of (L§)’, there is a coordinate x jo» Jo = 2, such that
vi o LE(X,) # 0. This is equivalent to say that

E(xj,) = axy +1(x2, x3,...,x,) + h(x),

where h € M? and o # 0. Note that

g(x;o) = §(xj/x1) = xil {E(xjo) - x;'oé(xl)}

and then £(x; ) = o modulo M". O

Proposition 1.15 (Stability under blowing-up). Assume that & has an elementary
singularity at p € M and let w : M1 — M be the blowing-up with center p. Let
p1 € = Y(p) be a singular point for the transform £ of £ by the blowing-up. Then
p1 is an elementary singularity for €.

Proof. Up to do a linear change of coordinates, we can assume that p; has local
coordinates given by x| = x; and x;. = x;/x; for j > 2. In view of the proof of
the above lemma, we have that

E(xj) =1 (x2,x3,...,%,) + h(x),
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where h € M?. Let Z};’=1 1;X; be a non-null eigenvector with a non-null
eigenvalue o for L&. This means that

LS Zujfj :OlZ,LLij
j=1 j=1

for o # 0. Assume first that u; # 0. We have LE(X)) = aux; + ijz AiXj,
since L& (x;) does not depend on X. Then

E(x)) = E(x1) = xj(ap + K (X)) h e M.

This implies that X is a non-null eigenvector with a non-null eigenvalue o/t
for LE'. Assume now that ; = 0. Up to do a linear change in the coordinates

X2,X3,...,X,, we can assume that L§(X,) = aX, and moreover, §(x])/x] € M.
We have

£0x7) = £Cun /1) = - {EC) = X6}
and then &(x/) = ax/ modulo M”. O
Simple singularities in dimension two. In the case n = 2 we can obtain a

supplementary condition under blowings-up.

Definition 1.16. Let p € M be an elementary singularity of £ and assume that the
ambient space M has dimension two. We say that p is a simple singularity for £ if
and only if A/ ¢ Q-o, where A, u are the eigenvalues of L&, with u # 0.

Proposition 1.17 (Stability of simple singularities). Let p be a simple singularity
for a vector field & in an ambient space M of dimension two. Consider the blowing-
up w : My — M centered at p. Then:

1. The blowing-up m is non-dicritical.
2. There are exactly two singular points p| and p{ for & in the exceptional divisor
E = 7' (p). Moreover p| and p| are simple singularities for .

Proof. Up to a linear change of coordinates, we can make diagonal the linear part
L§ of £ and hence
- ad ~ ad L )
§=Ax+alx. )+ uy + b(x,y))g; a.be M.

Let us do a blowing-up in the first chart by putting x’ = x, y’ = y/x. Then

E= (4 Xd)X b (= D)y + X — Y
0x 0x
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where @’ = a/x”,b" = b/x". Note that E is invariant and the origin p} is a
simple singularity, since the linear part is triangular with eigenvalues A, u — A and
hence A/(u — A) ¢ Q. No other point of E in the first chart is a singular point.
Working by symmetry, we find that the origin p/ of the second chart is also a simple
singularity with eigenvalues A — ., jt. O

We have a more general statement as follows:

Proposition 1.18. Let p be an elementary singularity for a vector field & in an
ambient space M of dimension two. Consider the blowing-up = : M, — M
centered at p. Denote by A, u, with i # 0 the eigenvalues of the linear LE of
£ If A # 1 we have:

1. The blowing-up m is non-dicritical.

2. There are exactly two singular points p| and p{ for & in the exceptional divisor
E = 7' (p). Moreover § has eigenvalues A, jt — A at p} and A — 1, ju at p}. In
particular one of them p' or p is a simple singularity.

If A = u, we have

1. If the linear part L& is diagonal, then w is a dicritical blowing-up and the
transformed foliation L' has no singular points at the exceptional divisor.

2. If the linear part L& is not diagonal (Jordan block), then w is non dicritical

and there is exactly one singular point p| for & in E. Moreover p| is a simple
singularity with eigenvalues |, 0.

Proof. The first part is exactly as in the previous proposition. For the second part,
we con choose coordinates such that

- 0 ~ 0 _ -
£ = (ux+ey+aley)g+uy+ b(x,y))@: abe M.
Let us do a blowing-up in the first chart by putting x’ = x, y’ = y/x. We have
!N d 2 /(1 ’ ! 4
E=p+xad)x' — + (—ey” +x'(b"'—y'a))—.
ax’ ax
If € = 0, then § = x'&’, where £’ is non-singular in this chart and transversal to E.
If € # 0, we have a simple singularity at the origin p| of this chart with eigenvalues

1, 0. Letus put x” = x/y and y” = y and let us look at the origin of the second
chart. We have

9 9
E=(—e+ )@ =x'b"))— + (u+y'b")y —.
ax ay’

If € = 0 we have £ = y”&”, where £” is non singular at the origin and if € # 0 the
origin is nonsingular for &. |
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This proposition has the following corollary that allows to reduce the elementary
singularities to simple singularities in dimension two.

Corollary 1.19. Let p be an elementary singularity for a vector field & in an
ambient space M of dimension two. There is a finite sequence of blowings-up

M=My< M Z. L pmy
centered at points p; € w~"(pi_1), where py = p such that all the singularities of
£in (m oy -+ 0 wy) "N p) are simple singularities.

Proof. If we have not finished, define p; to be the only non simple point over p;
under blowing-up. Let p;/q; be the quotient of the eigenvalues at p;. Assume that
q; > pi. The new quotient of eigenvalues is (¢; — p;)/ p;. Thus the invariant p; +¢;
decreases strictly. In this way we obtain that the two eigenvalues are equal and we
end by doing an additional blowing-up. |

Formal invariant curves at simple singularities. In this section the ambient space
M has dimension two. Consider a simple singularity p € M of a vector field &.
The blowing-up properties described in Proposition 1.17 of the previous section are
enough to detect what are the formal invariant curves of £ at p. Let us do it.

We can start by choosing local coordinates (x, y) at p such that the linear part
L£ has a diagonal form in the basis {X, 7} of M /M?. let us do the blowing-up

m M —> M

of M with center p and consider p{, p}, the origin of the first and second chart
respectively of the blowing-up, expressed in the coordinates x,y. Assume that
(Y, p) is a formal invariant curve of £ and let (Y7, p;) be its strict transform. We
have

The tangent p; of Y is either p| or p;.

To see this, note that the exceptional divisor E 11 is invariant and hence p; must be
a singular point of &, since there are at least two invariant curves through py: the
exceptional divisor and Y;. Thus p; = p| or p; = p/.

Assume that p/ is the tangent of (Y, p). We are going to prove that (Y, p) is
unique with this property. Thus we deduce

“There are at most two formal invariant curves of £ at p.”

Now, at the point p] we have two distinct invariant curves: the exceptional divisor
E! and Y;. Let us do the blowing-up with center p]

N21M2—>M1.

By Proposition 1.17, the new exceptional divisor E7 is invariant, as well as the
strict transform E} of E| and the strict transform Y, of Y;. Let p} be the point
corresponding to the tangent of £/, that is

2
{pé’ =E;N Ezl
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It is a simple singularity for £&. We also have another simple singularity p} € E%
We have two possibilities for the tangent p, of Y;: either p, = pJ or p» = p).

Let us note that the point pJ is a corner, in the sense that it is in the intersection
of two components of £, = (m; o 1)~ (p) = E% U E,. The point p} is called a
trace point to indicate that there is only one component of E; through p).

Lemma 1.20. We have p), € Y», that is p» = p).

Proof. Let us show that it is not possible that p, is the corner p}. Blowing up the
point pJ to obtain

ﬁ32M3 —)Mz.

The new two (simple) singularities p} and pf that we obtain are corners. The
situation repeats. If p) € Y>, we will get that all the infinitely near points of (i, p;)
are corners. This is not possible. In fact, after doing finitely many blowings-up,
we obtain a nonsingular curve (Z, g) passing trough a corner £ U F of a normal
crossings divisor. If (Z,q) is transversal to £ and F, we are done, in the next
blowing-up we have a trace point. If (Z, ¢) is tangent to E with an order of tangency
8 < o0, in the next blowing-up it has tangency order § — 1 and after finitely many
transformations we obtain the transversal case. |

As a consequence of the lemma, we have a complete description o the infinitely
near points { p; }$2, of (Y, p). They are obtained as follows. Write py = p, pi = pj.
The point p; € M, is a trace point of the total exceptional divisor of M;, given by

E;=E UE'U...UE]

1
and if we do the blowing-up
Tit1: Mig1 — M;

with center the point p;, then p; 4 is the only singularity of & in 71;_11 (pi) = E;Ill
that is a trace pointin E; .

We have deduced that the formal invariant curve (Y, p) is necessarily given by
the sequence of infinitely near points {p; } described above. This proves that (Y, p)
is unique with the tangent p{. Just by the geometrical properties of this sequence of
infinitely near points, we can deduce that (Y, p) is non singular. More precisely, we
can find local coordinates (x; 4, yi+1) at p; 4+ given by x; 4| = x and

yi+1=yi/x—ci; fOI'C,'Ek.
This implies that (Y, p) is necessarily the formal curve y = Zf’il ¢;x'. Indeed, this
curve is invariant by Proposition 1.12.

Briot and Bouquet theorem. A natural question arises in the study of simple
singularities in dimension two: may we find at least a convergent invariant curve
among the two formal invariant curves of a simple singularity?
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Let ¢ be a germ of vector field at p € M, where the ambient space M has
dimension two and p is a simple singularity for &. Let Y, Y, be the two formal
invariant curves of £. Choose local coordinates (x, y) at p such that

Yi={y—x¢p1(x)}; Y2={x—yd(y)}; ¢1(0) =0=¢(0). (1.1)

This is enough tho assure that the linear part L& of £ is diagonal. That is £ is of
the form

9 9
£ = (Ax + A(x, y))g + (uy + B(x, y))@,

where A and B have order at least two at the origin. Moreover, since p is a simple
singularity, we have that A # 0 or i # 0 and the quotient A/ ¢ Q.

Definition 1.21. In the above situation, we say that Y| is a Briot and Bouquet
invariant curve for &, or equivalently, a strong invariant curve for £ if A # 0. In
the same way Y> is a Briot and Bouquet, or a strong, invariant curve of & if y # 0.

The above definition seems to be not very intrinsical. In fact it is, we leave the
verification of this to the reader. Note also that we have always that either Y| or Y,
are strong.

The next theorem shows that a strong invariant curve is convergent. This is not
always true if the invariant curve is not strong.

Remark 1.22 (Euler’s example). The vector field
a ad
— 42 A S
E=xg =g

has the invariant curve y = > 0o nlx"t!

, which is not convergent.
Theorem 1.23 (Briot and Bouquet). A strong invariant curve is convergent.

Proof. Assume that Y] is strong. After doing a blowing-up and multiplying £ by a
unit, we can assume that £ is written as

d ad
§=x—+{ay + Fx,y)},
0x ady

where F(0,y) = 0and o ¢ Q. Letuswrite Y1 asy = >
that Y; is invariant means that

Znanx” = aZa,,x" + F x,Za,,x” (1.2)

Now, write F(x,y) = Zi,j F;;x'y/. Let us denote by C, the coefficient of x”
in F(x, anl anx™). There is a polynomial P, of nonnegative integer coefficients
such that

n ..
n>1dnX . The condition

C, = Py({lar.az,....ap—1:{F;j:i + j < nj}).
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In this way, we have that
1
n—auo

ay = Cy
and this gives the recursive dependence of a,, from the precedent ones.

Now, we are going to apply the method of the bounding series . There is a positive
rational number t such that 0 < 1/(n —«) < t for all n (recall that @ ¢ Q). Now,
consider the series with real coefficients ®(r) = ) ., ¢,¢”" which is a solution
T = & for the implicit problem -

T =) |F;|t'T/ =0.
]

iJj

This implies that ® is convergent. Moreover, the coefficients are nonnegative and
given by

1 S
e = —PaQlerlJeal - lenn [ Fy 10+ 7 = ni).

This allows us to show inductively that |a,| < ¢, and hence the series )., a,x"
is convergent. O

2 Two Dimensional Reduction of Singularities

Seidenberg’s statement. The reduction of singularities of vector fields in dimen-
sion two has been proven by the first time in a complete way by Seidenberg in
1968. Anyway the statement is already more or less implicit in works of Poincaré,
Bendixon and other authors 60 years before.

The original statement of Seidenberg is as follows. Consider an ambient space
M of dimension two and let £ be a germ of vector field at p € M. Denote L the
(germ of) reduced foliation given £. There is a finite sequence of blowings-up

I b N
M=My< M, «<---<— My, m=momo---0my,

each one centered at a point p; € m;” Y(pi—1), with p = py, such that the following
holds for any ¢ € 7~ (p):

Let Ly be the transform of £ in My. The germ of Ly in g is generated by a germ of
vector field £ at ¢ that is either nonsingular or simple.

The original proof of Seidenberg uses Noether’s formula on the multiplicity of the
intersection of two plane curves after blowing up.

In this notes we give another proof that is close to the valuative structure of the
infinitely near points of the foliation.
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Introducing the exceptional divisor. Let us consider as in previous section an
ambient space M of dimension two and a point p € M. Let us do a finite sequence
of blowings-up

] ) TN
SV M=My<~M <-.-EMy;, o=momo-om;,

each one centered at a point p; € o; '(p), with py = p. There is a total exceptional
divisor D; = o7 '(p) at each level M;. Moreover D; admits a decomposition into
irreducible components

D;=D;jyUDj;U---UDy;,

where D;; = Jri_l(pi_l) and D;; is the strict transform of D;_; ; by ;. Each of
the components D;; is isomorphic to a projective line (the fact that the intrinsic
structure of D;; does not vary by a subsequent blowing-up is specific of dimension
two, since a point has codimension one in D;;). We also have that two D;;, D;;
either do not intersect or they meet exactly at a point and they cross transversely at
that point.

The dual graph. Sometimes we represent D; and its irreducible components by the
dual graph D(S"), weighted by the self-intersection of the components. It has a
completely elementary inductive definition as follows.

The vertices, represented as black dots, correspond to the irreducible components
D;; of D;. The weights p;; that we associate to each D;; are defined inductively by
the following rules

1. Pii = —1.
2. If pi1 € Di—l,j’ then Pij = Pi—1.j — 1.
3. If pi— ¢ Di—l,j’ then Pij = Pi—1.j-

Finally, two vertices D;;, D;;s are joined by an edge if and only if the components
meet at one point, thatis D;; N D;;» # 9.

It is a good exercise to draw the dual graph in examples and to see what is the
relationship between G(S'~!) and G(S).

The tree of infinitely near points. Instead of looking S" thought the dual graph,
we are going to do it by means of the tree of infinitely near points and divisors.

To be more coherent, let us integrate the exceptional divisor in the ambient space
from the beginning. We say that a normal crossings divisor E in M is a subset
E C M thatis a finite union

E=E'UE*U---UEF
of closed irreducible hyper-surfaces E/ (since M has dimension two, then each E/

is a curve) without singularities such that two E’, E/ meet at most at one point and
transversely.
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Definition 2.1. A logarithmic ambient space is a pair (M, E), where E C M is a
normal crossings divisor. A germ (M, E), of logarithmic ambient space at p € M
is the germ of the pairs (U, E N U), where U C M are open sets with p € U.

Consider a finite sequence of blowings-up SV as in the previous section. Let
(M, E) be a logarithmic ambient space. We obtain logarithmic ambient spaces
(M;, E;) just by putting £y = E and

Ei =0, ' ({pi-1} U Ei_y).
We also denote
SV[E]: (Mo, Eg) <~ (M, Ep) < -+ < (My. E).

Let us define the tree 7TSN [E] of infinitely near points associated to SV [E]. It is an
oriented graph whose vertices are the points p;, fori = 0,1,2,..., N—1. Giventwo
vertices p;, pj, withi < j, there is an arrow p; — p; if the following properties
hold

L. wjomiy10---0omi—1(p;) = pi-
2. Thereisno k withi < k < j such that 77; o ;4 0 -+ 0o mp—1(px) = pi.

Note that if j — i we have a morphism

Oji . (Mj, Ej)p/- — (Ml‘, Ei)pi
that corresponds, up to isomorphism, to the blowing-up n; restricted to the germ
(M, Ej)p,-
The local-global argument. The discussion of the above section can also be done
in the case of an infinite sequence of blowings-up

S®IE]: (Mo, Eg) < (M, Ey) <.+,

where SV [E] denotes the corresponding truncation at the level N.

Definition 2.2. We say that S°°[E] is discrete if the tree of infinitely near points
T&°[E] has no points of infinite bifurcation.

Remark 2.3. The above condition is equivalent to say that the set

{mk o mkyr100omi(pjy1);j =k}

is finite, for any k > 0.

Proposition 2.4 (Koenigs). If S™°[E] is discrete, then the tree TS°[E] has at least
one infinite branch.
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By an infinite branch, or a bamboo, we mean a subgraph which is totally ordered.
Let us give a proof of the above proposition. This argument is in fact very related
with the local-global arguments in many procedures of reduction of singularities.

The proof is as follows. The tree has infinitely many vertices. Consider the
root vertex vg. Over vy we have an infinite tree but only finitely many vertices
immediately over it. So at least one of them, say v; supports an infinite tree. We
repeat the argument to detect v, and so on. This creates an infinite branch

Vo <= V] <= Vp < ¢
and the proof is ended.

Local global strategy. We shall use Proposition 2.4 as follows.
Let £ be a germ of vector field at p € M and L the (germ of) reduced foliation
given £. We construct a sequence of blowings-up as follows. Let

M = M, 2~ M,

be the blowing-up with center p. If all the points in 7;'(p) are simple or
nonsingular for the transform £; of £, then we stop. Otherwise, choose a singular
non simple point p; € 7 !(p) and let us do the blowing-up

M =M Z M,

with center p;. Denote 0o = my o m,. If all the points in o3 '(p) are simple or
nonsingular for the transform £, of L, then we stop. Otherwise, choose a singular
non simple point p, € o, (p). We continue in this way.

We have two possibilities, either we stop at a finite step and in this case the
reduction of singularities of Seidenberg is proved, or we do not stop. Our task is to
prove that this last situation does not hold. Hence, in order to find a contradiction,
we assume that there is an infinite sequence of blowings-up

] i y) 3
S®:M=My< M, < M, <.
constructed as above.

Remark 2.5. The tree of infinitely near points 7$° is discrete. This is a consequence
of the fact that the singular non simple points are isolated points (hence only finitely
many in a compact).

Now, by application of Proposition 2.4, there is an infinite bamboo BZ in the tree
T$°. It corresponds to an infinite sequence of local blowings-up of points g; .

Before continuing with the notations, we can assume that there is a normal
crossings divisor E C M given at the initial step, maybe £ = . Repeating all
the above arguments, we obtain an infinite bamboo

BY : (Mo, Eg), < (M), E\)y, < (My, Ey)yy < --- Q2.1

(we keep the notation r;, knowing that the indices have been altered).
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Our task is to prove that BZ cannot exist under the assumption that all the points
g; are singular non simple for ;.

Remark 2.6. In view of Corollary 1.19, we can assume that the points q; are
singular non elementary. If one of the g; is elementary, then by Corollary 1.19 we
obtain a simple singularity in a finite number of steps.

3 Types of Bamboos

We consider three types of bamboos, defined by its behavior at the infinity.

A (Combinatorial Type). There is an index N such that for any i > N the point g;
is a corner point of the divisor E;.

B (Formal Curve Type). There is an index N such that for any i > N the point g;
is not a corner point of the divisor E;.

C (Wild type). For any N > 0 there are 7, j with N < i, j such that ¢; is a corner
point of E; and ¢; is not a corner of E.

We shall see later the close relationship of these types with classical properties of
valuations of the field of rational functions of the ambient space.

4 Combinatorial Situations

Assume in this section that BZ[E] is a bamboo of combinatorial type. Up to cut it
by a finite level, we may in fact assume that each g; is a corner point of E;.

Remark 4.1. Although it is not too important, the above reduction of the problem
uses the fact that we consider a normal crossings divisor from the initial step.

Now, we need to show that BZ[E] with the assumption that all the g; are
singular but non elementary. Our arguments are based on the Newton Polyhedron
of a singularity and they are a strong particularization of Hironaka’s weak game on
characteristic polyhedra [24].

Let us select coordinates (x, y) at go such that £y = {xy = 0} locally at p = g.
Then L is generated by a germ of vector field at g, that has the logarithmic form

0 d
no =a(x,y)x— +b(x,y)y—,
dx ox

where a, b are without common factor. To see this it is enough to multiply a non
logarithmic generator &, of Ly by x, respectively y or xy in the cases that x = 0 is
not invariant, respectively y = 0 is not invariant or xy = 0 is not invariant.
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Let us note that if a(0, 0) # 0 or b(0, 0) # 0, then p is elementary (non-nilpotent
linear part). Hence we can assume that

a(0,0) = b(0,0) = 0.

The Newton polyhedron. Let us write

a(x,y) =Y Ayx'y/; bx,y) =y Byx'yl.
i, i,j

We define the Newton polyhedron N (no:x,y) C RZZO to be the convex hull of
Supp(no: x, y) + R, where

Supp(no: x. y) = {(i. j) € ZZ: (Aij. B;j) # (0.0)}.
Remark 4.2. Indeed, since we are working in dimension two, we could name “poly-
gon” to the Newton Polyhedron. In fact, what we are doing in this combinatorial
case has a direct generalization to any dimension. Thus in the general we deal with
a polyhedron in an Euclidean space of the same dimension as the ambient space.
On the other way, in the next sections we shall work with a “true” polygon, that we
shall call Newton-Puiseux polygon.

The Newton Polyhedron has the following property:
If A'(n; x, y) has only one vertex, then £ is nonsingular or elementary at p.

This is true even if we consider n” = fn instead of . The proof is as follows.
If A(n; x, y) has the only vertex (n,m), then x"y™ divides the coefficients of 1’
and N (x™y™™)n’; x, y has the only vertex (0,0). This implies that one of the
coefficients a or b is a unit.

The strategy is now as follows. We blow up to obtain the point ¢;. At the point
g1 we obtain local coordinates (x;, y;) and we describe the relationship between
N(n; x1, y1) and M (n; x, y). From this it will be evident that after finitely many
steps we get a Newton Polyhedron with only one vertex.

We know that ¢g; is a corner of E;. This implies that ¢; is the origin of one
of the two standard charts of the blowing-up expressed in the coordinates x, y.
To be precise, we obtain local coordinates x;, y; at ¢; by one of the following
transformations:

Tl: x; =x, y = y/x. 4.1
T2: xy =x/y, y1 = . 4.2)

Assume we have the transformation T1. Then 7 is given by

d d
n=ai(xi,y)xi— +bi1(x1, y)yi7—
0xy ay
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where
ay(xi, y1) = a(xy, x1y1). (4.3)
bi(x1, y1) = b(x1, x1y1) —a(xi, x1y1). (4.4)

From this equations we deduce that for any (i, j) € ZZZO then

(i,7) € Supp(n; x,y) < (i + j,j) € Supp(n; x, y).

In other words, the new Newton polyhedron A(n; x1, y1) is the convex hull of
N x,y)) + Rzzo, where 1) is the affine transformation

In the case that we are in the second chart, that is, we have the transformation T2,
we can do the same arguments, just changing the affine transformation 7; by 1,
defined by

Now, the problem of reduction of singularities in our combinatorial situation is
reduced to give a positive answer to the next “game” (we call it “game” although

there are no players in dimension two; it is the version in dimension two of
Hironaka’s game):

Combinatorial game of desingularization. Let N— C R2 | be a positively convex set
(that is Ny is a convex set such that Ny = Ny + Réo). Assume that N, has only vertices
with integer coordinates. Consider an infinite sequen_ce en=1,2,... where ¢, € {1,2}.
Define inductively N, to be the positive convex hull of t., (N,—). Then, there is an index
ng such that N, has only one vertex for n > ny.

Let us show how to give a positive answer to the game. It is obvious that N, has no
more vertices than N,_;. So we can do an argument by induction on the number of
vertices. Consider an arbitrary pair of vertices v = («, ) and v/ = (¢, ) of No,
where &’ > « and hence 8’ < B. Let I, be the sum

Iy=(a"—a)+ (B—p) € Zx.

After one transformation, we have I} < Iy. We end by repeating the argument with
the transformed vertices.

Following a formal curve. Assume in this section we assume that BZ°[E] is of a
type of formal curve. Thus, up to cut the first part of the bamboo we may assume
that each ¢; is contained in a single irreducible component of E; for alli > 0.

Let us interpret in terms of coordinates the above property. Let us choose local
coordinates x, y at p = ¢ such that £y = {x = 0} locally at go. The blowing-up
) is given in local coordinates x|, y; at g; by one of the following equations

Tl-c;: x1=x; y1=y/x—c¢ 4.5)
T2 : xy=x/y; y1 =Y. (4.6)
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If we have T1-cy, the divisor E at g; is x; = 0. If we have T2, then E| is locally
given by x;y; = 0 at q;. Hence we have only the case T1-c;. We can repeat
the argument at each step. In this way we obtain coefficients cj, ¢y, ..., and, by
construction, all the points ¢; are in the strict transform of the non-singular formal
curve

o0
y = Zc,-xi

i=1

ﬁ =

Now, we can use the arguments in the preceding section to end our proof. We can
consider the new normal crossings divisor E =EyUT at P = qo. It is maybe a
formal non convergent divisor, but this is not important for our arguments. All the
q; are corners with respect to E and we can apply the argument in the preceding
section.

Wild bamboos. The most difficult case is the one corresponding to wild bamboos.
It is also the situation where vector fields and two-variable functions or plane curves
really start to be different from the viewpoint of reduction of singularities. The proof
we present here is inspired in the usual method to obtain Puiseux expansions from
the Newton-Puiseux polygon.

Puiseux packages. Let us denote by e; = e;(E;,q;) the number of irreducible
components of E; through g;. Up to forget the first step of the bamboo, we have
thate; = 1 ore; = 2;if e; = 2 we have a corner point and if e; = 1 we have a

point that we call a trace point. Now we can cut the bamboo in finite sequences that
we call Puiseux’s packages. Take i < j. We say that

Ti41 TTi42 T
ij: (Miin)qi <~ (Mi+1’Ei+1)ql'+1 <~ "'(_](Mj’Ej)qj

is a Puiseux package of the bamboo BZ[E] starting at the index i if and only if the
next properties are satisfied:

1. e = 1 andej =1.
2. For any k withi < k < j, then ¢, = 2.

Let us note that given i with ¢; = 1, there is a unique Puiseux package P;;.

Let us assume without loss of generality that ey = 1 (this is possible up to cut a
finite first part of the bamboo). The whole bamboo may be decomposed in a unique
way into Puiseux packages

'POJ'(V'Piljwlpizjz7 s

where i;+1 = J.

Definition 4.3. The Puiseux package P;; is called to be essential if and only if
Jj > i + 2. (This is equivalent to say that there is an index k withi < k < j and
hence e, = 2.)
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Remark 4.4. Since we are in the case of a wild bamboo, there are infinitely many
essential Puiseux packages.

Our strategy will be the following one. We are going to attach a nonnegative
integer number Hj to each Puiseux package P; ;, with the property that Hy; > H1
and in the case that P; ;, is essential, then H; > H,y;. Obviously this allow us to
obtain the desired contradiction, since H cannot drop infinitely many times.

Newton-Puiseux Polygon. The invariant H; will be obtained from the Newton-
Puiseux Polygon that we introduce in this paragraph. First we need to choose local
coordinates X, yx at each point gy.

We start with x, y at p = g such that x = 01is a local equation of the exceptional
divisor. Now, looking at (4.5) and (4.6), we obtain xj, yx from x;_;, yx—; by one of
the equations T1-A or T2. Let us note the following remarks

. If e = 1 then Ej is locally given by x; = 0 at gx.

. If e = 2 then E} is locally given by x; yx = 0 at gx.
. If we do T1-A, with A # 0, then ¢ = 1.

. If we do T2, then ¢, = 2.

. If we do T1-0, then e}, = ej—;.

| N O B S R

Now we are going to choose an non-null element of the foliation £ of the form

ad d
E=a(x,y)x—+b(x,y)-—,
ax ady

with the property that the coefficients a, b have no common factor except eventually
powers of x. We are going to consider the (total) transform of £ at the final-
starting step of the Puiseux packages and from this we will describe and control
the invariants H.

Letus write § = ) oo | y*1,, where each 7, has the form

d d
ns = fs()x— + g (x)y —.
ax ay

In other words, we are saying that
o0 o0
a(x.y) =Y £y bx.y)= > gyt
s=0 s=—1

Now, let us define oy = ord( f;(x), gs(x)) to be the minimum of the orders at the
origin of f;(x) and g,(x) (in the case that f; and g, are identically zero we put
o; = +00). The Newton-Puiseux Polygon

NP x,y) CRsgx Ro_y
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is by definition the convex hull of
NPSupp(§: x, y) + RZ,,

where NPSupp(§; x, y) = {(ay,5);s = —1,0,1,2,...}.

The main vertex of N'P(§; x, y) is the vertex with smallest abscissa. The main
height H(&;x,y) is the ordinate of the main vertex. That is, the main vertex has
coordinates

(a, H(E: x,y))

where any other vertex (&', 4’) of the Newton-Puiseux Polygon is such that o’ > «
and “a fortiori” i’ < H(&:;x, y).

Definition 4.5. Given a Puiseux’s package P; ;,, we define H; = H(&; x;, y5).

sJs?
Remark 4.6. Assume that H(§;x,y) < 0. Up to divide £ by a power of x we
can assume that « = 0. Thus we have one of the vertices (0,0) or (0, —1) in the
Newton-Puiseux Polygon. If we have the vertex (0, —1), the vector field & is non-
singular. If we have the vertex (0, 0), but not the vertex (0, —1), the linear part of
& is triangular with a non-null diagonal, hence it is non-nilpotent and we have an
elementary singularity for .

Thus, our contradiction hypothesis implies that H; > 1 for all s.

An inessential Puiseux package. Let P;; be a non essential Puiseux package. We
know that j = i + 1. Denote by x, y the local coordinates at ¢; and by x’, y’ the
local coordinates at g; +1. We have that

X'=xiy =y/x—2A,
where A may be zero or not. The control of the main height is given in this case by
the following two lemmas
Lemma 4.7. If y* =y + Ax, then H(&;x,y) = H(E; x, y™).
Proof. Left to the reader. O
Lemma 4.8. IfA =0, then H(E; x',y') < H(E; x, y).

Proof. Let us note that

d , 0 , 0 ad , 0
X—=x'— —y'—; — =y —.
ax ax’ yay’ Y Y

Letus write § = ) oo | y*7,, where
d d
Ns = fs(O)xX— + g (xX)y .
ax ady
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Then & =) o2 | y"n., where

d d
My = x" 3 ()X — + (g (x) — i(x)y' — 1.
ax ady

This implies that &/ = «; + s. If we apply this movement to the Newton Puiseux
Polygon, we obtain that H(&;x', y') < H(&;x, ). |

Now, the first lemma reduces the control of the main height to the case A = 0 which
is given by the second lemma.

Essential Puiseux packages Equations. Let us consider an essential Puiseux’s
package P, ;.. Denote by x, y the chosen local coordinates at ¢;, and by x', y’ the
local coordinates at ¢ ;. Let us denote (x;, y;) the coordinates at g;, fori; <i < ji,
where (x,y) = (x;,, y;,) and (x", y") = (x},, y},). We know that

1. Fori =i, + 1 we have x; = x;—1/yi—1, yi = yi—1. (Transformation T2.)
2. Forany iy < i < j; we have either the transformation T1-0 or the transformation
T2, where

T1-0:x; = xj—1,yi = yi—1/Xi—1, and T2:x; = xj—1/yi-1,yi = Yi-1.
3. The last transformation is given by T1-A, with A # 0. That is, we have x’ =

A—
Xjo—1, Y = Yj—1/xj—1— A

Lemma 4.9. There is a unique pair of positive integer numbers p,d, with d > 2,
without common factor and a scalar A # 0 such that

y 4+ A=y xP.

Moreover, if we put ® = y¢ /xP, there are nonnegative integer numbers o, 8,7y, 8
with a8 — By = 1 such that x = x"*®F; y = x"7 @9,

Proof. We proceed by inverse induction starting on j;. We know that y’ + A =
Vj—1/Xj,—1. Now we respectively have

2
Yi—1 _ Yj—2 Yi—1 _ Vi
= 5 s or =
Xj—=1 X5 2 Xjs—1 Xj=2

if the transformation is respectively given by T1-0 or by T2. Assume that
Vi—1/Xj—1 = ylfi"/xfi, where d;, p; are without common factor. Then,

di—1
yjA_l _ yil—l

1
Xi_ Di
Js—1 X4
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where we put (d;—1, pi—1) = (d;, pi + d;) in the case of a transformation T1-0
and (d;—1, pi—1) = (d; + pi, p;) in the case of a transformation T2. We see that
(d;—1, pi—1) are without common factor and d;_; > d;, moreover d;_; > d; in the
case of a transformation T2. This proves the first part of the lemma.

For the second part, we proceed by induction assuming that

x = x0yP = s 4.7
with o;8; — B;y; = 1,foriy <i < j; — 1. Then

_ i1 it _ Vi S
X=X Yigr - X =X Viga

(Oéi+1 ,3i+1) _ (Oéi + Bi ﬁi)
Vit1 Oig1 Yi+38i 8 )’

(Oli+1 Bi+1 ) _ (Oli a; + Bi )

Yit1 Sit Yi vi+68i )’

if we have respectively the transformation T1-0 or T2. The obtain that the expression
(4.7) holds fori = j; — 1. Now we get

(0‘ ﬂ) _ (“j.v—l + Bj-1 ﬂ;;—l)
y 8 Vie—t +8j—1 8j—1 )

This ends the proof. O

where

respectively

Remark 4.10. We have that ® = y¢ /x? = x'47=r*®45=rF We deduce that d§ —
pB =1landdy — pa = 0. In particulary = p,a = d.

The critical segment. In this section we describe the effect of an essential Puiseux
package on the Newton Puiseux Polygon.
Let us recall that § = Y02 | y*n,, where each 7 has the form

0 0
ns = fs()x— + g (x)y —.
ax ay

and the Newton-Puiseux Polygon N(§; x, y) is the positive convex hull of the set
of (ay, s), where oy is the minimum of the orders of f;, g5, for each level s > —1.
We are going to look at the contact of the Newton-Puiseux Polygon with the lines
of slope —d/ p.

Remark 4.11. The slope —d / p is obtained with the following valuative considera-
tion. If we assume that the “value” of y? /x? is zero, then the value of y should be
p/d times the value of x. Thus —d / p is the anti-slope corresponding to p/d.
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For each level s, let us denote o; = a5 + s(p/d). We denote o(£; x, y) the
minimum of the o, and the critical segment C(§; x, y) is the set of the levels s such
that o, = 6(&; x, y). The critical height y(&; x, y) is the maximum of the indices s
such that the level s is in the critical segment. A trivial observation is that

xEx,y) < HE:x,y).

Now, let us denote by «(&; x, y) the minimum of the ¢, for s > —1. It is the
minimum abscissa in the Newton-Puiseux Polygon. We can now cut the vector field
in two parts, the initial part corresponding to the critical segment and the rest. To be
precise, put ~

(fs- 85) = (ps, ,U«s)xg_s(p/d) + (/s &5)s

where ¢ = 0(§; x, y) and (fs, gs) has order strictly bigger than o — s(p/d). Then,
we can write

£ =In(E:x,y) + £,
where

E)
PsX o=+ sy ==

W) = (p/d)
In(x,y) = Y yx0¢ e >

s=-—1

2(3x.y) {

Note that Q(é ;X,y) > 0, by construction.

Remark 4.12. Note also that if (ps, u5) # (0,0), then o — s(p/d) is an integer
number. Moreover, in the case s = y, where y = y(§;x,y) € Z, we know that
(oy> s x) # (0,0). Thena = ¢ — x(p/d) € Z and we can write

X
d 0
. — s(p/d)
In(§:x,y) = S;ly x0T {p WXt Msyay} 4.8)
@ - s (x—9)(p/d) d d
=X Zyx pxa——i—,usyay . 4.9)

s=-—1

Moreover, if we put dt = (y — s), we have

A

_ 0 ad

In(&;x, y) = x¥ )y~ Ux {ﬁ,xa— + ﬂ,y—} = (4.10)
= X dy

0 0
=x y%(l/cb)AZobA ’{pfxg—w,ya } @.11)
t=0 Y

where A is the integer part of (y 4+ 1)/d and o, = py—ar, fli = [y—ar-
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Control of the main height. Let us give here a control of the evolution of the main
height under an essential Puiseux package. We do it by parts, first we consider & and
second we do a precise computation for In(§; x, y).

Recall that our equations are x = x' ®#, y = x’?®°, where

O =yl /xP =y 4+

and d§ — pf = 1. These equations imply that

59 L9
a ad a

Lemma 4.13. «(£;x',)") > do.

Proof. 1f is enough to do the proof for é of the form

~ d d
_ a.,b e
E=x"y { pxo +uy3y}

where a + b(p/d) > o, since § is a combination of that kind of monomial vector
fields and the corresponding & may only increase. We have

0 0
= e @t | (o5 — upy' L+ (ud = )’ + 20

and hence a(£; x', y') = ad + bp > do. O
Now, let us write In(§;x, y) in the coordinates x’, y’. Recalling the expression
(4.11), we have

A
& 5 _ 0 0
In(§; x,y) = XCTP QALY " gt {p;xw MGAF N } (4.14)
t=0

where p, = 5,6 — i, and u, = ji,d — p; p. Recall that & = y’ 4+ A. Note also that

ad + yp =d(o— x(p/d)) + xp = do.

From this we already deduce that

a(n(&:x,y):x',y") = do.

From (4.14) we can write £* = @~ @F+xd+4) y/=deyp(g: x| y) as

A A
d 9
* A—t /!
3 —E o {p,xWﬂt, } E y {prx Sy 3y
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Remark 4.14. Note that (X, x) = (pg. 1y) # (0,0).

Lemma 4.15. The main height H(E;x', y') is the minimum of the indices r such
that (p), uf) # 0.

Proof. The main vertex of the Newton-Puiseux Polygon appears in In(£; x, y), since
a(In(&; x,y);x",y") = do and «a(§;x',y") > 0. Moreover, £* is obtained by
multiplying In(£; x, y) by x’~9¢ and by a unit depending only on y’. Thus the main
height H(&; x’, y’) is the main height of £*. This ends the proof. O

In view of Remark 4.14, we have that H(&;x’,y’) < A. Recalling that A is the
integer part of y + 1, and d > 2 and recalling also that y < H(§;x,y), with
1 < H(&:;x,y), we have that

L If H(E: x.y) > 2, then H(E: x'.y) < H(E: x. y).
2. IfH(g,x’y) =1 andX < 1 then H(S;x/,y/) <1
3.IfH(Ex,y) =1 = ythen HE; ¥, y) < 1.

Let us examine the last case H(§;x,y) = 1 = y assuming that H(§;x’,y’) = L in
order to obtain a contradiction. Note that d = 2. Then
0 0 0 ad
* I / I /
£7 =@ pyx P +Mo¢a—y,} + %Plx P +M1q’3—y,

Putting ® = y’ + A, this implies that

(o1, 175) = (Py» 140) (4.15)
(P 10+) = (Apy + pys 240 + 1)) (4.16)
(P21, 121) = (0, AR g + 1) (4.17)

Our contradiction hypothesis implies that
0= Apg+ iy = 20pg + 1y = Apy + pi.

In particular, we have that uj, = 0 = u). Now, let us recall that (p_;, u—;) =
(0, ;t—1) and on the other hand (o, ji1) = (p—1, —1). Thus

pp = —p-1B; wy = p-id.

Hence p| = 0 implies that u—; = 0 and p| = 0. Finally we obtain that all the
coefficients p|, pj, i}, 11y are zero. This is a contradiction.

Conclusion. The case of a wild bamboo does not occur, since otherwise, the main
height decreases strictly infinitely many times.
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5 Higher Dimensions

In the previous section we have presented a very particular way of reducing the
singularities of foliations by lines in an ambient space of dimension two. Actually
our algorithm is very “valuative” in the sense that a valuation and a bamboo are
very closed concepts. In the preprint [14] we perform a generalization to ambient
dimension three of these ideas.

The situation in higher dimension is much more complicated than in dimension
two, but doing a drastic simplification we can recognize the analogies as follows.

We place ourselves in the algebraic case and we fix a valuation v : K* —
I' of the field of rational functions of our ambient space M. In particular the
transcendence degree of K over C is three. In view of the classical theory of
valuations of Zariski [44], to each birational projective morphism

M - M

we obtain a unique center Y’ C M’ of the valuation and of course n(Y’) = Y,
where Y is the center of v in M. This recalls the idea of bamboo. Hironaka has
done the equivalent theory for the analytic case in his “voiite étoilée” [25]. In fact,
applying Hironaka’s Theorem of reduction of singularities (or in a weaker way the
Zariski Local Uniformization) we can do blowings-up of the ambient space in such
a way that the center P C M of v is a nonsingular point of M and we have in
addition the following situation (we take implicitly, in order to simplify the case of

a zero dimensional valuation, where all the centers are points):
There is a regular system of parameters z of the local ring Oy p that we can split as follows

7z = (lexz,..-,Xr,yr+1,yr+z,-~-,yn),

where the values v(x;) are Z-independent and generates the Q vector space I" @7 Q, for
i=12,...,r.

We call A = (Op.p;z = (X,Y)) a regular parameterized local model for K, v.
Now, if we take a center of blowing-up given by {z;, z;} where i < r, we recover
anew A’ from A and in this way we can try to do a local uniformization: that is,
try to reduce the singularities of a line foliation £ at the centers of the valuation v
in the successive models.
We have essentially three situations to consider:

Combinatorial case. This is the case when r = n. All the variables have
independent values. We write our vector fields in a logarithmic way

- 0
§= ;ai(X)xia—xi-

Now, the Newton support of the coefficients a;(x) allows us to draw a Newton
polyhedron N/ C RZ . If we choose the center of blowing-up {x;, x;} and v(x;) <
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v(x;) (note that we always have that v(x;) 7# v(x;)), the new Newton Polyhedron
N is the positive convex hull of 0;; (N), where o;; is the linear map given by

.y u, if s #£i
O—ij(U):u’ MSZ u,-+uj 1fS=l
In this way we define a game (that recalls Hironaka’s game in [37]) consisting in
choosing a center of blowing-up each time till we obtain a Newton polyhedron with
a single vertex. The reader may note that it is not difficult to find a winning strategy.
This combinatorial case is the parallel situation to the bamboos of corner points in
dimension two.

Note that if the Newton polyhedron has a single vertex v, then the vector field
may be written

v - ~ 3
=X a; (X)x; —
£ ; -
where d; (0) # 0 for some indices i. In particular we have an elementary singularity
of foliation.

A single dependent variable. Thatis z = (x1, X2, ...,X,—1, ). In this case we can
define Puiseux packages as in the case of wild bamboos and we can draw a Newton-
Puiseux polygon, following the same principles as in dimension two, just taking
account of the independent variables x on one side and the dependent variable y on
the other side. To be precise, we write the vector field in a logarithmic way with
respect to the independent variables

£ = Za,(x y)x, oo y)

i=1

and we split it as follows

=Y )y (Za,ﬁ(x)xl +bp(x) 5 )

p=—1 i=l

We put g = min{v(a; g(x)), ..., v(a@,—14(x)),v(bg(x))} and we draw a Newton-
Puiseux polygon P C I' x Zs>_; by taking the positive convex hull of the set of
points (g, B). By arguments as in the two-dimensional case, we obtain that P has
a single vertex and (after a certain work) we get elementary singularities.

Two dependent variables. We proceed by induction trying to repeat the precedent
case for y; and after to draw a Newton-Puiseux polygon for y,. This is possible,
but we obtain the (already know) formal obstructions to get elementary singularities
and finally we are able to get the so called log-elementary singularities: the order of
the logarithmic coefficients is less or equal than one.

For more details and how to globalize the procedure in dimension three, the
reader is referred to [14, 32].
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and Knight et al. [5]. The paper [24] by Speissegger is also useful, as it is
based on lecture notes from an earlier Fields Institute program (Algebraic Model
Theory, August 1996-July 1997). An extensive account of definability-theoretic
o-minimality requiring little or no background in logic is found in [31]; see also
van den Dries and Miller [34] for an exposition aimed at geometers.

Some global notation and conventions. The set of nonnegative integers is denoted
by N. We regard R as the one-point space {0}, and identify maps f:R® — R” with
the corresponding points f(0) € R”.

For any additively-written abelian group G and A € G, we denote the nonzero
elements of A by A*. If G is ordered, then A>° denotes the positive elements of A.

Generally, boldface fonts used within text indicate definitions. To illustrate,
ultimately abbreviates “for all sufficiently large positive arguments”, or grammati-
cal variants thereof as appropriate. Example of usage: Ultimately, x> < e*.

1 Introduction

We begin with a brief description of first-order expansions in the syntactic sense of
the ordered field of real numbers R := R, <, +,—,-,0,1). Readers already familiar
with model theory should note that the approach here is specialized to expansions
of the real field in extensions of the language of ordered rings {<, +, —, -, 0, 1} by
function (including constant) symbols only.

For each n € N, let 7, be a (possibly empty) set of functions R*" — R. We
regard the real numbers as an ordered field equipped with these extra functions, that
is, as the structure (in the syntactic sense) % := (R, (f ) rely 7,)- We also call R an
expansion (in the syntactic sense) of R. The primitive functions of 9% are the 0-ary
functions 0 and 1, the unary (thatis, R — R) function x — —x, the binary functions
addition and multiplication, and the members of the F,,. The language L of R (or
L(®R) if needed for clarity) consists of the symbols {<, +,—, -, 0, 1} together with
symbols representing the functions from the J,. All symbols are assumed to be
pairwise distinct. Generally, we do not distinguish by notation the symbols in the
language of R and the objects that they denote.

Foreachn € N, let 7, be the smallest subring of functions R” — R that contains

the coordinate projections x — x;:R" — R fori = 1,...,n and is “closed under
composition”, that is, forall m € N, g € F,, and f1,..., fin € Ty, we have g o
(fi,..., fm) € Ty

We construct collections R, s of subsets of R” for each n € N by induction
onk:

e Fork=0andn e NputR,o={f"'0): f € T,}.
e Foralln € N, let R, x4 be the boolean algebra of subsets of R” generated by

Ry ke UApr(X) : X € Ryq1x},

where pr: R”*! — R” denotes projection on the first n coordinates.
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A set X C R” is @-definable' in 9R if there exists k € N such that X € R k-
Given A C R, we say that X is A-definable in R if X is -definable in the
expanded structure (R, (a),c4), Where the notation indicates that we have enlarged
(“expanded”) Fy by the points in A regarded as functions R — R. For the most
part, only the cases A = R and A = @ will matter to us in this paper. We usually
drop the “in R” whenever the structure under consideration is understood, and we
abbreviate “R-definable” by just “definable”.? If X is a singleton {x}, we usually
drop the set braces and talk about the point x € R” as being A-definable (and so
on). Amap f:X — R” is A-definable if its graph {(x, f(x)) : x € X} C R"*7 ig
A-definable.

The distinction between “A-definable” and “definable” is often extremely
important in model-theoretic arguments. We shall be paying far more attention to
this distinction than is customary in o-minimal analytic geometry.

Let A C R. If X is A-definable, then so is its closure and interior. Given an
A-definable function f:X — R, its domain X is A-definable, the set of points
in its interior where f is differentiable is A-definable, and if X is open and f is
differentiable on X, then the graph of each partial derivative of f is A-definable.
Throughout this work we use many such basic facts. The proofs consist of showing
that the various sets and functions are defined by formulas built up from variables,
quantifiers, boolean connectives and symbols from the language of (R, (a@),c4). See
Appendices A and B of [34] for details and more information.

A subset X of R” is described by a collection # of functions R” — R if X is
a finite union of sets of the form {x € R" : f(x) = 0,g1(x) <O0,...,g(x) < 0}
with f, g1,...,8 € H.

The structure R:

* has (or admits) quantifier elimination—QE, for short—if, for all n € N, every
(-definable set in R”" is described by 7,,;

e is model complete if for all # € N and @-definable X C R” there exist p € N
and Y C R"*7 described by 7,4, such that X is the projection of Y on the first
n coordinates.

* is polynomially bounded if for each definable unary function f there exists
N € N such that ultimately | f(x)| < xV.

 is exponential if it defines the real exponential function e*: R — R.

* is exponentially bounded if for each definable unary function f there exists
N € N such that ultimately | f(x)| < expy(x), where exp, denotes the N-th
compositional iterate of e*.

10Often called “0-definable” in the model-theoretic literature.

2In many older papers in model theory, the default is that “definable” means “@-definable”.
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e is o-minimal if every definable subset of R is a finite union of points and open
intervals.? In fact, it is enough to require that every @-definable subset of R be a
finite union of points and open intervals; see 2.1 below.

Observe that QE implies model completeness (but not vice versa, as we shall
soon see). Evidently, R is exponentially bounded if it is polynomially bounded, and
not polynomially bounded if it is exponential.

Note. Syntactic (language-dependent) notions such as quantifier elimination and
model completeness are formulated in model theory for theories (in a given
language), not structures. For example, rather than saying that PR is model complete,
we should say that its complete theory Th(R) is model complete in the language in
which fA is presented. While this level of precision is sometimes needed in abstract
model theory, we adopt the convention in this paper that whenever we apply a
syntactic notion to a structure, we mean to apply it to the complete theory of the
structure under consideration in some given fixed language that should be clear from
context.
For r € R, x” denotes the power function

x", x>0
0, x<0.

X =

Although the notation x” is ambiguous for r € N, this will not cause any compli-
cations. The extension of the domain to (—oo, 0] is only to satisfy the technicality
that primitive functions of structures must, by definition, be totally defined. Much of
the time, this syntactic requirement has no impact on the underlying mathematics,
where we care as usual only about the restriction to R>°. Power functions play a
crucial role in this paper. The set of all 7 € A such that the function x” is definable is
a subfield of R (exercise); we call it the field of exponents of fR. If R is exponential,
then R is its field of exponents (exercise).

Before proceeding any further, let us consider a few examples in order to help
justify all these definitions.

The structure R admits QE by the Tarski-Seidenberg theorem—see [31,
Chap. 2] for an interesting proof due to Lojasiewicz—hence so does the expansion
(R, (r),er) (exercise); the notation indicates that F, = R and all other F, are
empty. For (R, (r),er), the sets 7, consist precisely of the real polynomials
on R”, and then sets described by 7, are called semialgebraic (or sometimes
R-semialgebraic). Thus, the sets definable in R are exactly the real semialgebraic
sets. It follows from QE that R has field of exponents Q and is o-minimal, as then
every unary definable function is ultimately algebraic, and every set of the form

{xeR: f(x) =0,g1(x) <0,...,g1(x) <0}

3In other words, the only definable subsets of R are those that must be there by virtue of the
usual ordering of the real line. Hence, the structure is “order-minimal”, thus accounting for the
abbreviation “o-minimal” and the use of a plain text font for the “o0”.
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where f, gi,..., g are unary polynomials is a finite union of points and open
intervals.

The real exponential field is the structure (R, (r),cgr, ). Here, 7y = R,
Fi = {e*} and all other F; are empty. By Wilkie [39], the structure (R, ¢*) is model
complete, hence so is (R (r)rer, e*) (exercise). Indeed, for every set X < R”
@-definable in (R, e"), there exist p € N and a polynomial P:R?>"*+P) — R
with integer coefficients such that X is the projection on the first n coordinates
of the set {(x,y) € R"*7 : P(x,y,e",e”) = 0}, where ¢* = (e*,...,e*) and
e’ = (e’',...,e’r). By Hovanskil [4], such sets have only finitely many connected
components; o-minimality follows. Quantifier elimination fails for (R, e*), indeed,
no proper* expansion of R by real-analytic primitive functions has QE (van den
Dries [26]; see also 4.6 below). The structure (R, e¥) is exponentially bounded, but
this is far from obvious; it was first established by van den Dries and Miller in [33],
but a stronger and more general result was later established by Lion et al. [6].

This ends our brief description of the syntactical point of view. From now on:
We revert to using standard terminology and conventions from mathematical logic
and model theory, in particular, we allow structures to have primitive relations other
than just <, though we tend to replace relations by characteristic functions whenever
convenient. We usually employ “fraktur” font to indicate structures (2(, ‘B and so
on) with corresponding math roman caps (A4, B and so on) for the underlying sets
(or even underlying ordered rings, depending on context), except for R, which will
always denote an expansion of R.

I next outline the main results presented in these notes. For the rest of this section,
let % be an o-minimal expansion of R with field of exponents K.

There is a striking dichotomy in the asymptotic behavior of the definable unary
functions:

Theorem 1.1 (Growth Dichotomy [8]). R is either polynomially bounded or
exponential.

Our focus in these notes will be on the case that 2R is polynomially bounded. The
next result is fundamental.

Theorem 1.2 (Piecewise Uniform Asymptotics [9]). Let R be polynomially
bounded and f:R™ x R — R be definable. Then there is a finite S < K such
that for each a € R™ either the function x — f(a,x):R — R is ultimately equal
to 0 or there exists v € S such that lim,_, { o f(a,x)/x" € R*.

An easy consequence (see 4.5 below for details):

1.3 ([10]). If R is polynomially bounded and U < R" is definable, open and
connnected, then the ring of all definable C*° functions U — R is a quasianalytic
class, that is, if f:U — R is definable and C*°, then f = 0 iff there exists xy € U
such that all partials of f vanish at x.

4 A proper expansion of R is one that defines a non-semialgebraic set.
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If K # R, then it is immediate from Growth Dichotomy that R is polynomially
bounded. We are then interested in what happens when we expand R by more power
functions. Let us make this precise. Given an expansion 2 of R and S € R, put
AS = (2, (r)res, (x"),es), the expansion of 2l by constants from S and power
functions with exponents from S. Since every power function is definable in (R, e*),
every set definable in 5 is definable in (2, e*). By o-minimality of the Pfaffian
closure ([23] or [25]), (R, e¥) is o-minimal, hence so is 935 for any S C R. The
question: If 9 is polynomially bounded, is the same true of RS, and is the field of
exponents what we would hope for, namely, the field K(S5)? In this generality, we
do not know, but we have a reasonable partial answer:

Theorem 1.4 ([9] and [12, 4.1]). Let R be polynomially bounded and S C R be
such that the restriction x" M1, 2] is @-definable in R for eachr € S.

1. If % has QF and is N -axiomatizable’, then the same is true of RKS).

2. If R is model complete, then the same is true of RS.

3. Every function definable in WXS) is given piecewise by iterated compositions of
Sfunctions definable in R and powers from K(S).

4. RS is polynomially bounded with field of exponents K(S).

The interval [1, 2] is chosen only for convenience and concreteness: If » € R and
I is any infinite interval of positive real numbers such that x” |/ is @-definable, then
x" M1, 2] is @-definable (by density of Q in R and the multiplicative properties of
power functions).

Remark. With a bit more work, one can show that ¥ is o-minimal without appeal
to Pfaffian closure; see [38] for the main idea (indeed, for the overarching strategy
of the proof of Theorem 1.4).

Let us consider some concrete applications.

1.5 ([91). Put ¢(x) = 1/(1 + x?) for x € R. For each S C R, all of the following
are model complete and polynomially bounded with field of exponents Q(S):

. R

.« (®e?)
. (KS, arctan)
. (@S, e?, arctan).

Proof. By results from [27] and [39], all of the following are o-minimal, have field
of exponents Q and are model complete:

° (@7 (M + @) )res. (r)res)

© R.(A+P))res. (r)res.e?)

* (R, (I +¢))res, (r)res, arctan)

* (R, ((1+¢))res. (r)res.e?, arctan)

SThat is, its theory is axiomatizable by universal sentences.
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Foreach r € R, the function x” M1, 2] is #-definable in R, (14+¢)"),and (1+¢)" is
both existentially and universally definable in (R, x"). The result is now immediate
from Theorem 1.4.2. |

Remark. (i) Every compact trajectory of any real linear vector field is definable in
the structure (R e?, arctan), which partly explains our interest in it; see [12,28] for
more information. (ii) By Bianconi [1], arctan is not definable in (R e*), nor is e?
definable in (R, arctan).

Result 1.5 was published in the year 1994. There is now (2011) a fairly large
body of literature on model completeness and o-minimality results for expansions
of R by differential rings of “restricted” functions. It is fair to say that the current
state of the art appears in Rolin et al. [18], see also [17], to which we refer the reader
for details and history. By combining their technology with ours, we obtain:

1.6. Let R be the expansion of R by all functions of the form

oo b ey
0, x e R"\ [-1,1]",

wheren € Nand f:R" — R is definable in R and C*° on some open neighborhood
of [—1, 1]". Suppose that Ry is polynomially bounded. Let S C R be such that, for
eachr € S, the restriction x" M1, 2] is @-definable in *R. Then %g is model complete
and polynomially bounded with field of exponents Q(S).

Proof. By 1.3 and [18], $R¢ is model complete and has field of exponents Q. Apply
Theorem 1.4.2. |

Concrete examples of applications of Theorem 1.4.1 take a bit more work to
state; for more detailed information on this material, see [9, 28]. A convergent
Weierstrass system (over R) is a family of rings W := (RLX1, ..., X;,1)sen such
that the following hold for all n, where X = (X1,..., X,).

* R[X]CRLX,CR[X].
e If o is a permutation of {1,...,n} and f(X) € RLX J, then

f(Xo'(l), ey X,,(,,)) e R.X .

o If F e RLXJisaunitin R[X], then it is also a unit in R_X ..

e (Weierstrass division) If F € R_LX, X,4+11 and F(0,X,4+1) € R[X,+1]
is nonzero of order d, then for every G € RLX, X,4;1 there exist
Q eRLX, X;+10and Ry, ..., Ry—; € RLX_ such that

d—1

G=0QF+) RXj,,.
i=0
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e Every F € R_X. converges to an analytic function f on some box
neighborhood U of the origin in R” such that for all @ € U the series

almf XH
aXI‘ (G)F S RLX_I

Fla+X)= )

WENM

belongs to R X _i.
Some examples:

e The family of rings of algebraic real power series is the smallest convergent
Weierstrass system.

e The family of rings of convergent real power series is the largest convergent
Weierstrass system.

e A power series f € R[Xi,..., X,] is differentially algebraic if the integral
domain R[9* f/0X* : u € N"| € R[Xi,...,X,] generated by the partial
derivatives of f over the field R of constants has finite transcendence degree over
R. The family of rings of convergent differentially algebraic real power series is
a convergent Weierstrass system.

Given a convergent Weierstrass system W, we obtain a structure Ry by
expanding R by all functions of the form

F(x), xel[-1,1]"
0, x e R"\ [—1,1]",

where n € N and all series F(a + X) belong to W for all a € [-1,1]". (For
n = 0, we take this to mean that we expand by all real constants.) By [27], Ry
is o-minimal and has field of exponents Q. By [28], Ry is model complete. By
arguing as in Denef and van den Dries [2], (Ry, x ') has QE. Finally, by arguing
as in van den Dries et al. [38, Sect. 2], K% is V-axiomatizable. Consequently, given
a subfield K of R such that the series Y, (;) X{ belongs to R_ X, forall r € K,
we have by Theorem 1.4.1 that R, admits quantifier elimination and is universally
axiomatizable. This holds in particular for the case that W extends the family of
rings of differentially algebraic convergent real power series. (For each r € R, the
series ) ;g (1) X[ is convergent and differentially algebraic.)

We arrive at our last main result. As previously mentioned, we do not know if
polynomial bounds are always preserved in passing from 9 to S35 . But exponential
bounds are if R is polynomially bounded, indeed, the Pfaffian closure of %R is then
exponentially bounded. We provide a part of the proof (see [25, Theorem B and
Proposition 1.14] for the rest):

Theorem 1.7 ([6]). Let % be polynomially bounded, G:R¥T? — R be definable
in R, and g be a solution on some ray (a, o) to the differential equation

(N+1) _ (N))'

v Gx,y,y,....y
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If BR, g) is o-minimal, then ultimately |g(x)| < C expy ., (x") for some C > 0 and
rek.

Consideration of the functions g := C expy,(x") for C > 0 and r € K shows
that the upper bound is optimal,® but the result can be sharpened in other ways;
see [0].

Here is an outline of the rest of this paper. Section 2 consists of a collection of
exercises for the reader, many of which are crucial for later developments. In Sect. 3,
Hardy fields are introduced and their connection to o-minimal expansions of R is
explained, culminating in the proof of Theorem 1.1. Section 4 contains a few special
results about the polynomially bounded case of Growth Dichotomy, beginning with
Theorem 1.2. Sections 5 and 6 are devoted to the proofs of Theorems 1.4 and 1.7.
We conclude with some suggestions for further study.

2 Some Exercises

The reader is strongly recommended to at least attempt these exercises before
moving on. Many of them will be used without proof, or even further mention,
in the sequel. Let % be an expansion of R.

If X C R” is definable, then there exist m € N, a € R” and @-definable Y C
R™*t" such that X = {x € R" : (a,x) € Y}. Note that X is A-definable, where A
is the union of the coordinates of a. To put this another way: Any set definable in R
is @-definable in some expansion of R by finitely many constants. In practice, this
observation is often used to reduce worrying about “A-definable versus definable”
to the case that A = @ when dealing with some fixed definable set X .

Each point of a finite #-definable set is #-definable. (There is a lexicographically
least element of the set if it is nonempty. And so on.)

Every polynomial map with coefficients from the real-closed subfield of R
generated by Fy is #-definable (where Fy is as in the definition of “structure”, given
in the second paragraph of the Introduction).

Every set described by 7, is @-definable.

Let X € IR” be described by 7,. Then there exist p € N and f € 7,4, such
that X is the projection on the first n coordinates of f~!(0). (Hint. For functions
f.g:R" — Rand x € R" we have f(x) = 0and g(x) = 0iff f(x)>+ g(x)> =0,
and f(x) =0or g(x) = 0iff f(x)g(x) =0.)

If ;3 has QE and A C R, then (R, (a)4e4) has QE, and similarly with “model
complete” in place of “QE”.

If an injective map f: A — B is definable, then the compositional inverse
f71:B — Ais definable.

The field of exponents is indeed a field.

6 Exercise. Prove it.
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The field of exponents of (R, e*) is R.
Given A € R"** and x € R”, let A, denote the fiber {y € R¥ : (x,y) € A} of
A over x. Show that if A is @-definable, then so are the following sets:

e Ay, if x is @-definable (in particular, if x € Q").

e {x e R": A, is closed}.

e {x € R": A, is bounded}.

e {x e R": A, is discrete}.

e {x e R": A, is finite}.

* {(x.y) € R""* : y is in the boundary of A.}.

e {x € R" : the boundary of A, is finite}.

e {x € R": A, is a finite union of points and open intervals}, if k = 1.

2.1. If every @-definable subset of R is a finite union of points and open intervals,
then R is o-minimal. (By previous exercises, for every n € N and @-definable
A C R*! the set of all x € R” such that A, is a finite union of points and open
intervals is dense and @-definable. Finish by an appropriate induction on n. See [13,
Proposition 1] for details. The proof works for all expansions of the real line (R, <)
whose @-definable points are dense in R. See [3, 1.14] for a rather different proof,
due to van den Dries, that works for expansions of arbitrary densely ordered groups.)

2.2. Let f:R — R. Show that:

o Y :i={y e R :lims10o(f(xy) — f(x)) € R} is a multiplicative group.

o Z:={zeR:3y e R*", lim,—400(f(xy) — f(x)) = z} is an additive group.

e The function L(f)(y) = limy—4oo(f(xy) — f(x)): Y — Z is a surjective ho-
momorphism. The notation is to suggest that L( ) is somehow the “logarithmic
part” of f', but this should not be taken too seriously, as we could easily have
Y = {1} and Z = {0}.

 The sets Y, Z and the function L( f) are @-definable in (R, f).

« If (R, f) is o-minimal and lim,_ o0 ( f(2x) — f(x)) € R*, then Y = R>? and
L(f) = log, for some a € R>". (Recall that every subgroup of (R, +) is either
cyclic or dense, and every endomorphism of (R, +) is either nowhere continuous
or linear.) Conclude that log is definable, hence so is e*.

2.3. Let f:R — R be ultimately nonzero. Show that:

¢ The sets
Yi={yeR": lim f(xy)/f(x) R}
Z :={zeR":3y e R, XETOO fxn)/f(x) =2}

are multiplicative groups.

e The function P(f)(y) = limymio(f(xy)/f(x)):Y — Z is a surjective
homomorphism. The notation is to suggest that P(f) is somehow the “power
part” of f, but again, this should not be taken too seriously. We tend to write just
P f as convenient.
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 The sets Y, Z and the function Pf are @-definable in (R, f).

« If (R, f)is o-minimaland 2 € Y, then ¥ = R>" and Pf is a power function.

o If there exists 7 € R such that lim, 1 f(x)/x" € R* then Y = R>? and
Pf=x".

 Calculate Y, Z and P f directly for the functions log x, x” log x, (log x)'°¢*.

2.4. In any expansion of R, the function e* is @-definable if it is definable. (Hint:
e* is the unique solution on R to the initial value problem y’ = y, y(0) = 1.)
Similarly, the function x” is #-definable if it is definable and r is @-definable. (Hint:
r = (x")'(1).) More generally: Definable solutions to initial value problems are
(-definable if all of the data are @-definable.

3 Hardy Fields, O-minimality and Growth Dichotomy

All of the main results listed in the introduction are tied to the asymptotic analysis of
definable unary functions, as we now begin to describe. First, define an equivalence
relation on the set of all functions R — R by relating functions f and g if they
ultimately agree. The equivalence classes are called germs (at +00). Working with
germs instead of functions allows us to ignore all but the asymptotics (at +00),
that is, to focus on the “ultimate behavior” of the functions. We regard the set
of all such germs as a ring, with germ(f) + germ(g) = germ(f + g), and
germ(f) - germ(g) = germ( f - g). A Hardy field is a field of germs that is closed
under differentiation, that is, if the germ of a function f belongs to the field, then
there is a differentiable function g such that the germs of g and g’ belong to the
field and g is ultimately equal to f. Every Hardy field is naturally ordered by setting
germ( f) < germ(g) iff g— f is ultimately positive. Observe that the set of germs of
rational constant functions is a Hardy field, indeed, it is the smallest Hardy field. Of
course, germs of constant functions are not very interesting, and one usually deals at
least with Hardy fields that extend the (germs of) the field Q(x) of rational functions.
We are now ready for a result that begins to explain the title of this paper.

3.1. IfR is an expansion of R, then the following are equivalent:

(1) *R is o-minimal.
(2) The germs of definable unary functions form a Hardy field.
(3) Every unary definable function is either ultimately zero or ultimately nonzero.

Proof. (1)=>(2) is immediate from the C' version of the Monotonicity Theorem
(a fundamental result in o-minimality). (2)=(3) is immediate from field structure
and the definition of germ.

(3)=(1).” Let A € R be definable. We must show that 4 is a finite union of
points and open intervals. For this, it suffices to show that boundary bd(A4) of A

"The argument is essentially from van den Dries et al. [38].
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is finite, which in turn reduces via Bolzano-Weierstrass to showing that bd(A4) is
bounded and discrete. (Recall that a subset of a topological space is discrete if all of
its points are isolated.) Let f be the characteristic function of A. As A is definable,
sois f (exercise). Then either f is ultimately equal to 1 or f is ultimately equal
to 0, so there exists b € R such that the ray (b, 00) is either contained in A or
disjoint from A. By the same reasoning applied to the set {—x : x € A}, there exists
a € R such that (—o0, a) either is contained in A or disjoint from A. Hence, bd(A)
is bounded. Fix xo € bd(A). By arguing as above with the set {1/(a — x¢) : a € A},
there exists € > 0 such that the interval (xo, xo + €) is either contained in A or
disjoint from A, and similarly for (xo—e, xo). Hence, bd(A)N(xo—¢, xo+€) = {xo},
thus showing that bd(A) is discrete. |

Exercise. The above holds with “@-definable” in place of “definable”.
(Recall 2.1.)

For the rest of this section, %t denotes an o-minimal expansion of R with field of
exponents K.

Let H denote the Hardy field of germs at oo of the definable unary functions.
We will not distinguish between functions and their germs by notation, relying
instead upon context. We regard R as a subfield of 7 by identifying r € R
with the germ of the corresponding constant function. The germ of the identity
function on R is denoted by x. We say that f € . is infinitely increasing if
limy 400 f(x) = +00.

Next are some crucial basic facts that the reader should verify before moving on.

32. ¢ If f e, thenlimy, 1o f(x) € RU{£}.

e {(f,g) € H* x H* : limy— 40 f(x)/g(x) € R*} is an equivalence relation.
Denote the natural quotient map by v. The image v(#™*) is an ordered abelian
group by setting v(f) + v(g) = v(fg) and v(f) > 0 iff limy— 4o f(x) = 0.
Denote the resulting absolute value on v(#H*) by | |. (Be careful: This does not
mean that [v( )| =v(| |).)

o If ffg € H* and | f| > |g|, then v(f) < v(g). (This reversal of order might
strike one as perverse, but the convention is firmly established in the literature.)
The converse fails.

e If ffg e H* and f # —g, thenv(f + g) > min{v(f), v(g)}, with equality if
v(f) #v(g).

o If feH*andr € R* thenv(rf) =v(f) =v(f])-

o If f e H* and v(f) # 0, then exactly one of f, 1/f, —f or —1/f is infinitely
increasing, and [v(f)| = [v(= /) = [v(1//)| = [v(=1//)]

o If f e S \R, then

v (f'1f) = v (/0 /A/N) = v (=N =) =v(1/0)/(=1/f)).

Logarithmic differentiation—the map a + a’/a: H* — #—plays an impor-
tant role in Hardy field theory.
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3.3. Leta,b € H* be such that 0 < |v(a)| < |v(b)|. Then v(a'/a) > v(b'/b).

Proof. Without altering |v(a)|, |v(b)|, v(a’/a) or v(b'/b), we replace a by *a
or £1/a, and b by +b or £1/b, to reduce to the case that a and b are infinitely
increasing.

If v(a) = v(b), then v(a’) = v(b’) by I’'Hopital’s Rule, so v(a’'/a) = v(a’) —
v(a) = v(d') —v(b) = v(b'/b).

Suppose that v(b) < v(a). Then b/a is infinitely increasing, so all of a, a’, b’
and (b/a)’ are positive, yielding b'/b > a’/a > 0 by the quotient rule. Hence,
v(a'/a) = v(b'/D). O

The appeal to I’Hopital’s Rule above is worth explaining, as it might seem
that we are making a classical “freshman’s dream” mistake by “going the wrong
way”. But because we are working in a Hardy field containing both a and b, we
know that the function a’/b’ has a limit [ € R U {£oc}. Hence, we must have
limy— 4o a(x)/b(x) = I by I’Hopital. This fact—that I’Hopital’s Rule “works
both ways”—is crucial in Hardy field theory and is used often.

For f,g:R — R, we write f ~ g if g ultimately has no zeros and

limy— 4 oo % = 1.1f f,g € H*, thenv(f) = v(g) iff f ~ cg for some ¢ € R*.

34. Leta,b € H* be such that v(a) > 0 and v(b) # 0. Then v(a’) > v(b’/b).

Proof. We may assume that v(a) = 0 by replacing a with a + 1 if otherwise. By
I’Hopital,

ab ab +ad'b
by
and so
. ab ab’ +a'b =a+a’2
b b’ b
Then 1 ~ 1+ (a’/a)/(b'/b), yielding v(a’/a) > v(b'/b). Finish by observing that
v(a'/a) = v(a’) — v(a), and v(a) = 0 by assumption. O

Another important tool in Hardy field theory is asymptotic integration. Given
f € H*, there need not be g € H* such that g’ = f. But for many purposes it
is enough to have g € H* such that g’ ~ f. Of course, there need not be such g
either: Consider 98 = R and f = 1/x. We do have the following result, which will
be enough for the purposes of this paper.

35. If f e H* and v(f) < v(1/x), then there exists g € H* such that g’ ~ f.

Proof. Note that (xf)" # 0.

Suppose that v(f) > wv((xf)), that is, v(f/(xf)) > 0. By 3.4,
v((f/(xf))) > v(1/x), that is, v(x(f/(xf)")') > 0. Put g1 = xf?/(xf)"
Basic calculus shows that g1/ f = 1+ x(f/(xf)")',so g| ~ f.
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Suppose that v(f) < v((xf)’), equivalently, f'/f ~ —1/x. Check that g| # 0.
Put g» = fg1/g) and check that g5 ~ f. (Hint:

& _ S gl

o g/a g/en
and keep 3.3 in mind.) a

Exercise. With f = (logx)/x and g as above, show directly that g| £ f.

3.6. So far, we have used only that 57’ is a Hardy field, not that it arises from the
germs of definable unary functions of an o-minimal expansion of R. Hence, results
established so far hold in any Hardy field. This now begins to change.

Our Hardy field H is “closed under composition™: If f, g € H* and f is infinitely
increasing, then the composition g o f lies in H* as well. Evidently, the sign of
v(g o f) is the same as that of v(g). Not all Hardy fields extending R(x) are closed
under composition, e.g., the function field R(x, e¥), as a set of germs, is a Hardy
field that does not contain e* o x? (exercise). Also,  is “closed under compositional
inverse”: If £ € H and v(f) < 0, then the germ f ' of the ultimately-defined
compositional inverse of f also belongs to . (We always use fraction-bar notation
for reciprocals of elements of 7*, so there is no ambiguity in the use of ~'.) Observe
that «/x ¢ R(x), so closure under compositional inverse is also a special property.

Exercise. The map (r,v(f)) = v(|f]): K x v(H*) — v(H*) is well defined.
The ordered group v(H*) together with this map is an ordered K -vector space. This
is true for any Hardy field that is closed under taking powers from K of positive
elements.

We are now ready to prove a stronger version of Growth Dichotomy
(Theorem 1.1).

3.7. Either R is exponential or v(H*) = K.v(x).
Proof. There are two cases to consider.
Case 1. There exists f € H* such that v(f'/f) # v(1/x) and v(f) # 0.

We show that R is exponential. By replacing f with — f, we take f > 0. By
replacing f with 1/f, we take f to be infinitely increasing. By replacing f with
£, we suppose that v(f’/f) < v(1/x). By 3.5, there exists g € H* such that
g ~ f'/f.Puth = go f~!;then i’ ~ 1/x. By the mean value theorem, we have

ho(Zx)—hzg-gh’og
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for some £ € H such that x < § < 2x. (Exercise: Why is the ultimately-defined
function £ definable?) Note that v(x/&) = 0 = v(Eh’ o &), the latter by substituting
& into x/’. Thus,

v(ho(2x) —h) = v(x/€) + v(EN 0 &) = v(x/§E) + v(xh') = 0.

By 2.2, R is exponential.
Case 2. Forall f € H* ifv(f'/f) # v(1/x),thenv(f) = 0.

We show that v(H*) = K.v(x). Let f € H*.

We show first that Pf = x” for some r € K, where Pf is as in 2.3. This is
immediate if v(f) = 0 (for then Pf = 1 = x°), so assume that v( f) # 0. Put
g = (f o(2x))/f € H*. Observe that

¢ _, 1o xff

X —

g fow) [

Since v(f) # 0, we have v(xf’/f) = 0, and so v(g’/g) > v(l/x). By the case
assumption, v(g) = 0, that is, f o (2x) ~ c¢f for some ¢ € R*. Now apply 2.3.

To finish the proof, we now let f € H* and show that v(f) = v(Pf). Since
P((Pf)/f) = 1R> (exercise), we are reduced to showing that if Pf = 1 [R>?,
then v( /) = 0. By the case assumption, it suffices to show that v(xf’/f) # 0. By
the mean value theorem,

fo@x) | _xflok _x &0k fot
s T E fet 7

where § € H* and x < & < 2x. It suffices now to show that v((§f' 0 &)/f 0 &) # 0
(for then v(xf'/f) # 0 as well). Since Pf(2) = 1, we have

- 1:!%9__):: (1) (Sﬁoé) (foé)
0=v ( 7 1 v E +v ToF +v 7 .
Since v(§) = v(x), it suffices now to show that f o & ~ f, which follows easily

from monotonicity—either f < foé < fo(2x)or f > fo& > f o (2x)—and
that Pf(2) = 1 (thatis, f o (2x) ~ f). |

With Growth Dichotomy now established, the next natural step is to study the
two resulting cases. But for the remainder of this paper, we deal for the most part
only with the polynomially bounded case.



58 C. Miller
4 Basics of Polynomial Boundedness

Throughout this section, we assume that R is o-minimal and polynomially bounded
with field of exponents K.

We begin with Piecewise Uniform Asymptotics (Theorem 1.2), which we restate
using the notation of the preceding section.

4.1. Let A CR" and f: A x R — R be definable such that, for every a € A, the
function x — f(a, x) is ultimately nonzero. Then there is a finite S C K such that
{v(f(a,x)):a e R"} C S.w(x).

Proof. By 3.7, for each a € A there exists unique p(a) € K such that v( f(a, x))
= p(a).v(x) = v(x"@). We must show that p(A) is finite; for this, it suffices to
show that p(A) is definable and has no interior. As the set {a € A : v(f(a, x)) = 0}
is definable, we reduce to the case that p(a) # 0 forall a € A. For each a € A, the
function x — f'(a, x) is ultimately differentiable. By I’Hopital,

(@ = lim x(9f/0x)(a, x)
PO= S0 fan

Thus, the function p: A — R is definable, hence so is p(A). We next show that p(A)
has no interior. Suppose otherwise; we derive a contradiction to finish the proof. Let
I be an open interval contained in p(A); then K = R, since p(4) € K and K is a
subfield of R. For alla € 4 and x > 0 we have

i 1O
i~>+oo fla.1)
s0 (x,a) = xP@:R>% x A — R is definable. By Definable Choice [31, p. 94],
there is a definable function g: I — A such that p(g(y)) = y forall y € I. Thus,
the restriction of the function x” to R>? x I is definable. By dividing x” by some
power function x” with r € I, we may assume that O € /. Then for some € > 0
the restriction of x¥ to R*? x (0, €) is definable. Observe that z = x” if and only
if 71/ = x forall x > 0 and y # 0, so the restriction of x” to R*® x (1/e, o0) is
definable. Then y — 2”:(1/€,00) — Ris also definable, so lim,_, 1 2" /y" = ¢
for some r € K and ¢ € R*. But then

2y vl 227

c= lim —= lm ———
y—+oo y’ y—>+00 (y —+ 1)r

= AT Ay

contradicting that ¢ # 0. |

The following minor restatement is often useful.

4.2. Let A CR"™ and f: A x R®® — R be definable. Then there is a finite S € K
such that for all a € A, either f(a,t) = 0 for all sufficiently small positive t
(depending on a), or lim,_, o+ f(a,t)/t" € R* for somer € S.
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(Apply 4.1 to the function (a,?) — f(a,1/t): Ax R** — R))

We need some notation before stating the next result. For x = (x,...,x,) €
R™, put |x| = sup{|xi],...,|xm|}. Given A € R™, y in the closure of A, and
f:A — R, wewrite f(x) = O(]x — y|") as x — y if there exist C € R*? and an
open neighborhood U € R™ of y such that | f(x)| < C |x — y|" forallx € ANU.
If A is unbounded, we write f(x) = O(|x|") as x — oo if there exist C, M € R>?
such that | f(x)| < C |x|" forall x € A with |x| > M. Recall the notation for fibers
of sets from Sect. 2.

4.3 (Uniform Bounds on Orders of Vanishing). Let A C R" " and f: A — R be
definable. Then there exists r € K>° such that for all (x,y) € R"t" if y € cl(A,)
and f(x,z7) = O(ly —z|") asz — y, then f(x,z) =0 forall z € A, neary.

Proof. Forall (x,y,1) € R"" x (0,00), put A(x,y,1) ={z€ Ay : |y —z| =1},
and put

X ={(x.y,t) eR" x (0,00): A(x,y,1) #0 & sup |f(x,2)| < 400

ZEA(x,).t)

Define F:R"*" x (0, 00) — R by

Flx.y.1) = {(s)upﬂf(X,z)l cze A(x,y, )}, if(x,y. 1) eX

, otherwise.

By 4.2, there exists r € K such that for all (x,y) € R™™ if F(x,y,t) = O(t")
ast — 0T, then F(x,y,t) = 0 for all sufficiently small positive ¢ (depending on
(x. ).

Now suppose that (x,y) € R™"™ y € cl(4,) and f(x,z) = O(]y —z|") as
z — y. Then f(x,—) is bounded near y, so F(x,y,1) = Sup.c (., |/ (x,2)]
for all sufficiently small £ > 0. Then F(x,y,t) = O(t") ast — 0T, and thus
f(x,z) = 0forall z € A, sufficiently close to y. |

Remark. The “O-constant” depends on x and y.

4.4. Let U C R" be open and f:U — R be definable. Then there exists N € N
such that for all x € U, if f is CV in an open neighborhood of x and all partial
derivatives of [ of order at most N vanish at x, then f vanishes identically on
some open V. C U withx € V.

Proof. By 4.3 there exists N € N such that for all x € U, if f(x) = O(]x — y|N)
as |x — y| — 0T, then f vanishes identically in a neighborhood of x. Now apply
Taylor’s formula. |

Quasianalyticity. For U C R” a definable open set, let C3°(U) denote the ring of
definable C* functions f:U — R.
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4.5. Let U C R" be definable, open and connected.

(1) If f € CF(U) and all partials of [ vanish at some xo € U, then f = 0.
(2) CF(U) is an integral domain.

Proof. (1). Consider the definable open set A consisting of all x € U such that
f IV = 0 for some open V C U withx € V.By 44, xp € A. Let x €
cl(4) N U. All partials of f are continuous on U and vanish identically on A.
Then all partials of f vanish at x. By 4.4, x € A. Thus, A is both open and
closedinU,so A =U.

(2). Let f, g € C°(U) with fg = 0. Suppose that g(xo) # 0 for some xo € U. By
continuity, g has no zeros in some open neighborhood of x¢. Then f vanishes
identically on this neighborhood, so all partials of f vanish at x,. Hence, f =0
by (1). O

Failure of “Naive QE”

4.6. Let R be the reduct of R generated over R by f € U, en CsE (R"). Then QE
fails for Ry unless every f €|, ey CsF¥(R") is definable in R.

Proof. Suppose that R has QE. Let #: R" — R be continuous and definable in R.
We show that 4 is definable in R. Define g: R"” x R — R by

_)yh(x/y), ify#0

glx,y) = ,

0, otherwise.
By QE, there is some F' € C®°(R"*2), definable in 9, and not identically equal to
0, such that the graph of g is contained in the zero set of F'. By quasianalyticity (and
because g vanishes at the origin), there is a nontrivial homogeneous polynomial P
of degree d > 0 and G € C*®(R"*2) definable in R such that F = P + G and
lim, 0+ G(v) v =0.Letx € R” and 7 € R. We have

0= F(rx.t,g(tx,1)) = F(tx,t,tg(x, 1)=t? P(x, 1, g(x, 1)+G(tx,t,1g(x, 1)).

Since g(x,1) = h(x), we have P(x, 1,h(x)) = —t~¢G(tx,t,th(x)). Keeping x
fixed and letting ¢t — 0, we have P(x,1,h(x)) = 0. As x is arbitrary, the graph
of & is contained in the zero set of the polynomial Q(x,z) := P(x,1,z), which is
nontrivial by homogeneity of P. Thus, the zero set of Q is a finite union of nonopen
cells definable in R. By continuity, both the set zero set of Q and the graph of &
are closed. By cell decomposition in Ry, the graph of 4 is a finite union of cells
definable in R. |

The above is a minor variant of a result due to van den Dries (generalizing the
“Osgood example™):
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4.7 ([26]). The conclusion of 4.6 holds without assuming polynomial bounds or
o-minimality if every f € |, ey Cs£(R") is real analytic.

We shall close this section with a result to be used in the proofs of Theorems 1.4
and 1.7; some preliminary work is needed.

4.8. Every power function of ‘R is @-definable.

Proof. Let r € K, and suppose that the function x” is defined by ¢(c, x, y) for
some (m + 2)-ary formula ¢ (in the language of i) and ¢ € R™. The set B of all
b € R™ such that ¢(b, x, y) defines a solution on R>? to the initial value problem
xy" = ry, y(1) = 1 is {r}-definable. Hence, by uniqueness of solutions to ODEs,
it suffices to show that r is @-definable. Put

C ={c e R": ¢(c, x, y) defines a function f.:R — R}.

Note that C is @-definable. Let f:R™ x R — R be the function given by f(c, x) =
fe(x)if ¢ € C and f(c,x) = 0 otherwise. Note that f is #-definable. Let S € K
be as in the statement of Piecewise Uniform Asymptotics applied to f. The proof
of Piecewise Uniform Asymptotics shows that S is #-definable. As S is also finite,
every s € S is @-definable. Hence, r is #-definable, and we are done. O

4.9 (exercise). Let A be (the underlying set of) an ordered field.

* Define an equivalence relation on A* by identifying x, y € A* iff there exists
n € N such that 27" < |y/x| < 2". Denote the natural quotient map by v (or
vy if needed); it is called the archimedean valuation on A. The image v(A4*)
is an ordered abelian group by setting v(x) + v(y) = v(xy) and v(x) > 0 iff
|x] <27 foralln € N.

o Ifx,y € A* and |x| > |y|, then v(y) < v(x). The converse fails.

e Ifx,y € A" and x # —y, then v(x + y) > min{v(x),v(y)}, with equality if
v(x) # v(y).

e If A is a Hardy field, then v = v (as defined in Sect. 3).

e If A can be expanded to a model 2 of Th(KK), then the map

(r,v(a)) = v(lal"): K x v(4*) — v(A4A¥)

is well defined (where x" is interpreted in 2(), and v(A*) is an ordered K -vector
space with this map as scalar multiplication. We let r.v(a) denote the image of
(r,v(a)) under this map.

4.10. LetA =B =RandA C*B.IfY € B* and v(Y) is K-linearly independent
over V(A*), then Y is definably independent with respect to Th(R) over A.

This is a special case of a result due to van den Dries [30, Theorem C] that
depends on earlier work with Lewenberg [32] as well as 4.8. A complete and self-
contained (modulo 4.8) proof appears in [24].
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5 Expanding by Powers: Proof of Theorem 1.4

Throughout this section, we assume that R is o-minimal and polynomially bounded
with field of exponents K. By 4.8, we suppose that R is an expansion in the syntactic

sense of EK, so that the notation x” makes sense in arbitrary models of Th(fR). Let
S € R be such that for every r € S the restriction x" M1, 2] is @-definable. Put
J = K(S). Note that x" |'[1, 2] is @-definable in R for every r € J. Let L be the
language of PR, L’ be the extension of L by pairwise distinct new unary function
symbols f, forthe r € J,and T be the extension of Th(fR) by the universal closures
of the following formulas:

Pl1. Foreachr € J,

[(x =0vx < 0) = fr(x) = O0JA[(0 < xA0 < y) = fr(xy) = fr(x)-fr(P)].

P2. Foreachr € J70, 1 <x — 1< f,(x).

P3. Foreachr,s € J,  fro(x) = fi(i(¥)) A fits(¥) = £1(X) - i),

P4. Foreachr € J, aformula ¢,(x,y) — y = f,(x), where ¢, is an L-formula
that defines the graph of x” M1, 2] in fR.

P5. 0 <x — fo(x) =1A filx) =x.

Evidently, R/ E T by interpreting f;, as x” for r € J. We are going to show that
T axiomatizes 937 by showing that T is complete. Our first goal is to show that T
admits QE relative to Th(fR). Next is the key technical lemma.

5.1. Suppose that R admits QF and is V-axiomatizable. Let A < B E T and
B’ > A be |%|+-saturated. Then there exists © E T with A € © C *B such that
D embeds over 2 into B'.

We have some preliminary work to do, beginning with some easy (proofs are left
to the reader) consequences of ordered field properties and P1-P5.

52. LetAET.

o Forallr € K, f, | 470 = x" 1 470,

o Forallr € J*, f, 1 A%% is an automorphism of the multiplicative group A>°,
with compositional inverse f;, }A”%. If r > 0, then f, is strictly increasing. If
r <0, then f, is strictly decreasing.

e Ifae A ands = Z?=1 ris; withr; € K and s; € J fori = 1,...,n, then
£i(@) = T2y £, (i @).

e If0<r<sanda > 1,then f.(a) < fs(a).

e Ifr #sanda > 0, then f.(a) = fi(a) iffa = 1.

e Themapr.v(a) := (r,v(a)) — v(f-(la]): J xv(A*) — v(A*) is well defined,
and v(A*) is an ordered J -vector space with this map as scalar multiplication.

We may write a” instead of f (a) without ambiguity whenever r € J anda > 0.
Both notations will be used according to convenience.
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Note that, as K is a subfield of J, we can also regard v(A*) as an ordered
K -vector space; we shall have occasion to do so.

Put UnT(4) = 4% N v=!(0). Note that if u € Unt(A) then there is some
nonzero integer k such that 1 < u'/% < 2.

GivenBE T, X € Band S C J, we say that X is closed under powers from
Sifx¥ e X forallx € X ands € S.

Given an L7 -structure 2, let 2; denote the reduct in the syntactic sense of 2 to
L. Note thatif A E T, then ; = fR.

53. Let B E T and A C B. If there exists P € A>° such that v(P) = v(A)
and p" € Aforall p € P andr € J, then A is closed under powers from J and
(A (x" 1 A)res) ET.

Proof. Since T has a universal axiomatization, it suffices to show that A is closed
under powers from J. Let a € A>°. (The result is trivial for ¢ < 0 by definition
of f,.) Then there exists u € Unt(4) and p € P witha = up. Letr € J.
Since p”" € A, it suffices to show that u” € A. We have some k € Z* such that
1 < u'* < 2. Since A € B, F Th(R), we have (u'/¥)" € A by P4. Thus,
u = (W/*)k e A. |

54. Let A,B E T and ¢:2A; — B be an embedding. If there exists P C A0
such that v(P) = v(A) and ¢p(p") = ¢(p) forallr € J and p € P, then ¢ is an
embedding A — *B.

Proof. Leta € A”% and r € J. We must show that ¢(a”) = ¢(a)". Since a = up
as in 5.3, it suffices consider the case that v(a) = 0. As before, we then have 1 <
a'/® < 2 for some k € Z*. By P4, we have ¢(a”) = ¢((a'/*)™*) = ¢p(a'/F)* =
¢ (a) /0 = ¢(a)" as required. O

Given M = Rand X € M, let M(X) denote the substructure of M generated
by X.

5.5. Suppose that:

o MM, M, M E Th(R);

o M < Nand M < N;

o o.M — M is an isomorphism,

* X C N and X’ C N’ are such that ¢ extends to an order-preserving bijection
pMUX - M UX'.

Then there is an isomorphism ¢: (X ) — MM (X') extending ¢;.

Proof. By o-minimality, the type of an element x € N over 91 is determined by the
cut that it realizes in M, and similarly for x’ € N’ over 9V. O

Proof of 5.1. In order to reduce clutter, we shall delete the superscripted * from
expressions like v(A4*) for ordered fields A.

Suppose that B admits QE and is V-axiomatizable. Note that substructures of
models of Th(R) are elementary substructures. Let 2t € B F T and B’ > 2 be
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|B|"-saturated. We must find © E T with C ® C ‘B such that ® embeds
over 2 into B’. We proceed by a trivial case distinction: vg(A) = vg(B) or
vg(A) # vp(B). The overall strategy is the same in both cases, but the tactics
are more involved for the latter.

Suppose that vg(A) = vp(B).Let x € B\ A. By saturation, choose y € B’ \ A
realizing the same cutin A as x. Put € = 2, (x) and ¢’ = 2, (y). Note that € < B,
and ¢’ < 9B, . By 5.5, there is an isomorphism ¢: € — ¢’ fixing A pointwise and
sending x to y. Trivially, vg(C) = vg(A) = v4(A) = vp/(C’). By 5.3, € and ¢’
expand to submodels ® and ®’ of B and B’. By 5.4, ¢ is an L’ -embedding of D
into B’ over 2 as desired.

Suppose that vg(B) # vp(A). Take x € B>? with vg(x) ¢ vp(A). Choose
y € B’ realizing the same cut in A as x. Fix a K-basis E for J such that 1 € E.
Put¢ =2, (x*:ec E)and @ = A, (y*:e € E).Put P = {ax" :a € A”° &
reJyand P’ = {ay” :a € A" & r € J}. As A is closed under powers
from J, so are P and P’. Observe that vg (P) = vg(A) + J.vg(x) and vg/ (P’) =
vp(A) + J.vp(y). Thus, it suffices now by 5.3 and 5.4 (and basic algebra) to show
that vp(C) = vp(4) + ZeeE K.vg(x°), vp/(C') = vg(A) + ZeeE K.vup (y°),
and there is an isomorphism ¢: € — ¢’ fixing A pointwise and sending x¢ to y°
for all e € E. Recall that y satisfies the same cut in A as does x. Hence, the same
is true of the pairs (x°, y¢) with e € E, because A is closed under powers from J.
It is easy to see that {vp(x®) : e € E} is K-linearly independent over vg(A) and
{vp/(¥°) : e € E} is K-linearly independent over vp'(A) = vg(A). The rest of the
argument is now routine via 4.10 and 5.5. a

A useful corollary of the proof of 5.1:

5.6. LetA =B =R andA CB.IfY € B* and v(Y) is J -linearly independent
over v(A*), then Y is definably independent (with respect to Th(R”)) over A.

(In other words, the conclusion of 4.10 holds with 37 in place of R and J in
place of K.)

Proof of 1.4

(1) Suppose that R has QE and is V-axiomatizable. We must show that the same is
true of 937. By 5.1 and general model theory (say, 2.3.9 and 4.3.28 of [7]), T
has QE. Let I3 be the prime submodel of R (recall that R has definable Skolem
functions) and P be its underlying set. As (P>°,-) is archimedean as an ordered
group, we have a” C P foreverya € P>%andr € J. (Foreverya € P> there
existh € [1,2)NP and k € Z such thata” = (b")¥.) Thus, 3 expands naturally
to an L’ -structure that embeds into every model of 7. Hence, T is complete,
so B’ has QE and is axiomatized by T. Since % has QE, the formulas ¢, in
P4 can be taken to be quantifier free, so that all of the formulas of P1-P5 are
quantifier free. Since R is V-axiomatizable, so is T', hence also R .

(2) Suppose that R is model complete. We must show that the same is true of S)‘{i
Let R be the expansion of R by all @-definable Skolem functions. Then R
has QE and is V-axiomatizable. By Theorem 1.4.1, 53’7 has QE. Since %R is
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3)

“)

6

model complete, its #-definable Skolem functions are both existentially and
universally definable, so a routine syntactic argument involving “de-nesting” of
terms shows that 97 is model complete. For every r € J, both r and x" are

existentially and universally definable in @S. (There exist m € N, polynomials
p.q € K[x1,...,xy]and s € S™ such that p(s) = rq(s).) Hence, RS is model
complete. "

Let R be as in the previous paragraph. Since R has QE and is V-axiomatizable,
the same is true of (R, (r),er). (Each real number is determined by its position
in (R, <) relative to Q, and each ¢ € Q is #-definable in R.) By Theorem 1.4.1,
(R, (r);er)’ has QE and is V-axiomatizable. By general model theory (or
see [38, 2.15]), every function @-definable in (R, (r),<r)” is given piecewise by
terms.® Hence, every function definable in 937 is given piecewise by (iterated)
compositions of functions definable in R and powers from J.

We must show that R/ is polynomially bounded with field of exponents J.
Recall that 237 is o-minimal. After passing to an extension by definitions, we
reduce to the case that R has QE and is V-axiomatizable.

Suppose that R/ is not polynomially bounded; then it is exponential by
Growth Dichotomy. Let B be a proper elementary extension of 2R”/. There
exists b € B such that b > R. As b and e’ are definably dependent (where
e” is interpreted in ‘B), there exists by 5.6 some 7 € K and N € N such that
e? < Nb', contradicting that there exists k € N such that e* > Nx' for all
x> k.

Now we show that 37 has field of exponents J. Let s € R be such that x*
is definable in R/. Let B and b be as before. By arguing as above, we have
v(b*) = v(b") for some r € K. Then v(b*~") = 0, so there exists N € N such
that b5~"I < N. Thus, s € J, forif not, there exists k € N such that x*~"l > N
for all x > k, contradicting that sl < N. O

Proof of Theorem 1.7

Let R be o-minimal and polynomially bounded with field of exponents K. Let
N € N, G:R¥*2 — R be definable in %, and g be a solution on some ray
(a,00) to the differential equation y¥V*D = G(x,y.y’....,y"™)). Suppose that
g is definable in an o-minimal expansion R of ‘R. We must show that there exists
r € K such that [g(x)| / expy,(x") is ultimately bounded. (Of course, we can
take r € N if desired since we are working over R.) This is obvious if R is
polynomially bounded, so assume otherwise;_then it is exponential by Growth
Dichotomy. Thus, working in the Hardy field H of PR (recall Sect. 3), it suffices to
take g infinitely increasing and show that v(g) > v(expy(x")) for some r € K.

8That s, if g: R” — R is definable, then there is a finite 7 C 7, such that the graph g is contained
in the union of the graphs of the f* € F.
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As this statement is definability-theoretic, we make some convenient assumptions
about the languages L and L of R ancflvi)‘{: G) {<,+,—,-} € L C L; (i) L
has constants for all re~al numbers; (iii) L has no relation symbols other than <;
and (iv) both 3% and R have QE and are V-axiomatizable (after expanding by
all definable Skolem functions). Let H be the Hardy field of R. Note that H is
an extension of H as an ordered differential field. For an n-ary function symbol
Fof Land fi,..., f, € H,let F(fi,..., fs) denote the germ of the function
Fo(fi,.... fn); then F(fl, o fu) € H. It follows that H and H (as ordered rings)
expand naturally to L-structures, with 98 € H C 7. Let §) be the L- substructure of
H generated by H U {g® 1k < N};theng € H* and R € H € § € H. We will
show that for every f € $* there exists r € K such that v(f) > v(expy4,(x")) to
finish.

We now show that the underlying ring of §) is a Hardy field. Let f € $*. We
must show that both 1/f and f” belong to §). There exist: n € N; ay,...,a, € H;
and F:R"T1+N _ R definable in 9 such that f = F(ay,...,a,,g9,...,g™).
Since ay, ..., a, are germs of functions definable in R, we may take n = 1 and
a; = x by replacing F with

D1seesynv+2) = Flai(v), ..o oan(31). Y2, o, YN +2).

The function

L/F(yt,...,yn+2)s, F(1,...,yn+2) #0

D1s-- o yN+2) >
0, F(yi,....yn+2) =0

is definable in 0%, so 1/f € §. By cell decomposition, there is a C'-cell C € R>TV
such that F C is C! and the curve (x, g®, ..., g"™)) ultimately lies in C. If C is
open, then ultimately f' = H(x,g®,...,g"™)), where

H(yi,....yn+2) = VFEQ1, . ovve2) - (Lya, oo N2, GO - - YN +2)).

Since H is definable in R, we have f’ € . The case that C is not open is left as an
exercise. (Hint: Every C'-cell is definably C'-diffeomorphic to an open C'-cell.)

We now show that #, § and H are models of Th(R). By QE and V-axiomatiz-
ability of R, substructures of models of Th(fR) are elementary substructures, so it
suffices to show that # F Th(R); for this, it suffices by V-axiomatizability of R
to show that every universal L-sentence true in R is true in H. Let oW1, ..oy v)
be a quantifier-free L- -formula such that RE V.. -va@. Let fi,..., f, be unary
functions definable in R. Then R F Vxo(fi(x),..., fu(x)),soH E (p(fl, e Ju)-
Hence, H E Vvi...v,0p.

Now, $) is closed under powers from K, so v($)*) is a K-linear space. As we
already know that v(H*) = K.v(x) by Growth Dichotomy, it follows from 4.10
and the previous paragraph that the K -linear dimension of v($*) is at least 1 and at
most N + 2.
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Let fo € $*. We show there exists r € K such that v(fy) > v(expy(x")).
(Aside: We shall actually need only that §) is a Hardy field extending Q(x) that is
closed under powers from K and dimg v($*) < N + 2.) It suffices to consider the
case that fj is infinitely increasing.

If v(fy/fo) = v(1/x), then v(log fo) > v(logx) by I’Hopital, so there exists
r € K such that v(fy) > v(x") = v(exp,(x")), and we are done. So assume that
v(fy/f0) < v(1/x).By3.5and 3.6, there exists f; € $H* suchthat f| ~ f// fo, that
is, fi ~ log fo. Observe that v( fy) and v( f1) are K-linearly independent (indeed,
R-linearly independent).

If v(f{/fi1) = v(1/x), then by arguing as before there exists r € K such that
v(f1) > v(x"). By increasing r, we have v(fy) > v(e*') = v(exp;(x")), and
we are done. So assume that v( f{'/f1) < v(1/x). By arguing as before, there exists
f> € $H* suchthat f, ~ log f; ~ loglog fo; then {v(fo), v(f1),v(f2)}is K-linearly
independent.

Continuing in this fashion, we obtainm < N 4+ 1 and f, ..., f;; € H* such that
Sm ~log fu—1 ~ -+ ~log,, foand v(fn) > v(x®) for some s € K. Hence, there
exists r € K such that v(fy) > v(exp,,(x")) > v(expy(x")) as required. (We
leave the details to the reader.) O

7 Suggestions for Further Study

We have only scratched the surface in these notes.

For a proper introduction to Hardy fields, I strongly recommend the papers
[19-22] by Rosenlicht.

With just a little extra work (primarily, pinning down what should be the
definition of power function), the growth dichotomy can be extended to O-
minimal expansions of arbitrary ordered fields; see [11] for details. An even further
extension to o-minimal expansions of arbitrary ordered groups is due to Miller and
Starchenko [15], but its statement and proof are considerably more involved.

The literature on analytic-geometric properties of o-minimal expansions of R is
now quite extensive; [34] is a good start.

See van den Dries and Speissegger [37] for a more definability-theoretic
approach to (parts of) Theorem 1.4, and [35,36] for some other interesting examples
of polynomially bounded o-minimal expansions of R.

See [6] for a more elaborate statement of Theorem 1.7, and [14] for an
exponential analogue.

One might wonder about polynomially (or exponentially) bounded expansions of
R that are not o-minimal, but it turns out that such structures are “almost o-minimal”
in a way that can be made precise; see [3, 13] for details.

We close with just a few open questions.

If K # Q and is a subfield of R, then QE fails for (R, (r),ex. (1 + x2)"),ek)

by 4.7. Does QE fail for R ? (Careful!)
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Let 2R be o-minimal and polynomially bounded with field of exponents K # R.

. Does (R, x" M1, 2]) have field of exponents K for some r € R\ K?
. Does (R, x" M1, 2]) have field of exponents K for every r € R\ K?
. Does (R, (x” M1, 2]),er\x) have field of exponents K?

. Does (R, exp MO, 1]) have field of exponents K ?

Evidently, (4)=(3)=(2)=(1). Does (1)=(2)? Does (2)=(3)? Does (3)= (4)? Is
there any proper subfield K of R—in particular, K = Q—for which any of the
above can be answered?
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Van den Dries and Speissegger [23] developed a method to establish model
completeness and o-minimality of the structure generated by real Gevrey functions
(which are a subtle generalization of the functions introduced by Tougeron [20]).
The outline of their method is an adaptation of a classical scheme, based on the
following properties :

1. A nonzero Gevrey function admits a nonzero asymptotic expansion at the origin,
which is a formal power series. This property is usually called quasianalyticity.
Hence a nonzero Gevrey function admits a Newton polyhedron.

2. After a convenient blowing-up, the Newton polyhedron of a given function
becomes simpler. In particular, the function may become analytic in at least one
variable.

3. If a Gevrey function is analytic and regular in one variable, then Weierstrass
preparation holds.

These properties allow one to prove that every existentially definable set can be
described as a finite union of projections of quantifier-free definable sets with “small
frontier”. A generalization of the arguments involved in the proof of Gabrielov’s
theorem of the complement for subanalytic sets then leads to model completeness.

Having in mind to extend the former arguments to other families of functions,
let us examine them more carefully. The important starting point of this strategy
is the quasianalyticity property, which establishes, for every integer n > 0, a kind
of dictionary between the Gevrey functions in n variables and a subalgebra of the
algebraR [[ X1, ..., X, ]]. Hence, the algebraic operations (such as blowings-up) that
simplify the formal series also simplify the corresponding function. This approach
naturally leads us to wonder what the relationship between quasianalyticity and
o-minimality may be.

Second, Weierstrass preparation does not hold in general in the quasianalytic
framework. Fortunately, it turns out that Weierstrass preparation is only a way to
accelerate the simplification process. It can be replaced by a refinement of the
blowing-up process, called (local) normalization. (Throughout this paper, we shall
omit the word “local” in this context, as no other kind of normalization is discussed.)
In a first step, this process is purely formal; that is, it is applied only to formal
power series. It implicitly uses the closure property of the rings of power series
under some classical operations, such as composition and partial differentiation.
The normalization process then transfers to the functions, thanks to quasianalyticity,
under the assumption that we work with quasianalytic classes closed under the same
operations.

This approach, first suggested by van den Dries, has been described in detail
by Speissegger, Wilkie and the author of these notes in [17]. It is applied to
the structures generated by so-called Denjoy-Carleman classes, in order to give a
negative answer to the following questions:

1. Does every o-minimal expansion of the real field admit analytic cell
decomposition?
2. Is there a “largest” o-minimal expansion of the real field?
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In these notes, we give some explanations of the normalization process
mentioned above, its relationship with o-minimality, and its application in various
contexts. The reader should be aware that we do not have in mind a coarse statement
such as “quasianalyticity implies o-minimality”. In Sect. 1, after having recalled a
few classical definitions, we give an explicit example of a function that generates
a quasianalytic algebra but is not definable in any o-minimal expansion of the real
field. The underlying ideas of the generalized version of Gabrielov’s theorem of
the complement are described in Sect. 2. The normalization of formal power series
is explained in Sect. 3. The o-minimality of the structures generated by convenient
quasianalytic classes is proved in Sect. 4. Finally, several applications of the above
techniques are given in Sect. 5.

Finally, let us recall a few classical notations and definitions. Let F be a
collection of functions f:R™ — R, for various m € N. The structure generated by
F is the smallest collection S of subsets of the spaces R”, n € N, which contains
the singletons of R, the diagonals, the graphs of addition, multiplication and of
all functions in F, and which is closed under finite boolean operations, cartesian
products and taking coordinate projections. It is an elementary exercise in predicate
logic to see that a set A C R” belongs to Sr if and only if A is definable (with
parameters) in the first-order expansion Rr = (R, <, +..0,1,(f)re ]-") of the
real field, and we shall in general use the latter terminology. Correspondingly, a map
f:A — R" is definable in R if its graph is definable in Rx. The structure R
is model complete if every definable set is existentially definable; in the geometric
terminology above, this means that Sr is also generated by F without using the
complement operation. Finally, the structure R £ is o-minimal if every subset of R”
that is definable in R £ has finitely many connected components.

Among the now classical examples of o-minimal structures, let us mention the
real field Ry, whose definable sets are exactly the sermialgebraic sets (Tarski-
Seidenberg); the structure R,, generated by all restricted analytic functions [6];
and the structure Rpp, generated by all pfaffian functions [26]. If F is a collection
of functions, the structure generated by all restricted analytic functions and the
elements of F is denoted here by Ry, =.

1 Quasianalyticity Does Not Imply O-minimality

Let O, denote the algebra of real analytic germs at the origin of R?. In this
section we give an example of a solution f : (0,¢) — R, with ¢ > 0 and
limy— f(x) = 0, of a polynomial differential equation such that the algebra
Ar = {F (x, f (x)), F € Oy} of germs of real functions at 0" is quasianalytic
(and hence the curve {(x, f (x)),x € (0,¢)} is non-oscillating), but the structure
R £ is not o-minimal. By quasianalytic, we mean here that every nonzero element
of A, has a nonzero asymptotic power series expansion at the origin. By non-
oscillating, we mean that A is a linearly ordered set of germs.
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In order to construct the function f, we first consider Euler’s classical differential
equation x?>y’ = y—x and fix one of its solution g: (0, &) — R. Itis well known that
g admits the asymptotic expansion g (x) = > ,-on!x"t1 at the origin. Moreover,
g being a pfaffian function, the structure R, is o-minimal [26]. Consider now the
function f : (0,&) — R defined by f (x) = g (x) + exp (—+)sin (+). Hence f
is obtained from g by adding a flat oscillating term. Despite the oscillating nature
of the perturbation, the algebra A is quasianalytic: indeed, every nonzero element
F (x, f (x)) of Ay admits at the origin the asymptotic expansion F(x, f (x)) =
F (x, & (x)). As it follows from Puiseux’s theorem that every formal power series
h (x) satisfying F (x. h (x)) = 0 actually converges, we have F (x, g (x)) # 0.
Hence Ay is quasianalytic. One immediately deduces that f is non-oscillating:
for each nonzero element /i of A/, there exist c € R and n € N such that
lim, o+ 7 (x) fex" = 1.

We prove that R ¢ is not o-minimal by constructing an oscillating function using
definable operations. The idea is to “kill” the principal part g of f: indeed, since g
is a solution of the Euler equation, we get

X2 f'— f4x=—exp (—l) sinl;
by X
since f” is definable in R 7 it follows that the latter is not o-minimal.
We remark that, while f is a solution of a polynomial differential equation
(exercise), it follows from [26] and the above that f is not definable in the structure
Rprgr generated by the pfaffian functions; in particular, f is not pfaffian.

Remark 1.1. 1. Non-oscillation is implied by, but is obviously not equivalent to,
quasianalyticity. For example, by Khovanskii, the curve {(x, exp (—1/x)),x > 0}
is non-oscillating; however, the algebra { F' (x,exp (—1/x))), F € O,}is clearly
not quasianalytic.

2. We already mentioned that the structure R, is o-minimal. However, Wilkie’s
general result on pfaffian functions does not give any information on the possible
model completeness of this structure. Moreover, while the formal series g is
Gevrey, the function g itself is not a Gevrey function in the terminology of
[23]. Indeed, the o-minimality of Ry, , is not a consequence of [23]; instead,
it was proved by Schaefke, Sanz and the author in [18] based on the construction
discussed here. (We also refer the reader to the notes written by F. Sanz in this
volume.)

3. In the above example, R s is not o-minimal because some definable operations
(that kill g, but not f') produce an oscillating result. This suggests two possible
ways to construct a pair of o-minimal expansions of the real field that do not
admit any common o-minimal expansion:

» First method: find a function g with a divergent asymptotic expansion and
a flat oscillating term ¢ such that g and f = g + ¢ vanish under the same
definable operations. Such an example, where f and g are indeed solutions of
the same linear differential equation, is given in [18], and explained without
details in Sect. 5.
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» Second method: find a “sufficiently transcendental” function g, in the sense
that, say, g does not satisfy any definable relation over R,, (i.e., any globally
subanalytic relation). An example of such a function (or more precisely of a
germ of such a function) is built by Le Gal and the author in [12], and by Le
Gal alone in [11]. In particular, this function is not solution of any (nontrivial)
analytic differential equation. Once such a function g is constructed, we
consider again f = g + &, for some flat oscillating term &.

The example given in this section illustrates the following: the quasianalyticity
of the algebra A, does not imply the o-minimality of the structure Ry. On
an intuitive level, this is not surprising: since o-minimality means finitely many
connected components for every definable set, the algebraic and quasianalytic
properties of A alone are not sufficient to imply this. Hence we are naturally led
to only consider a family of quasianalytic algebras rich enough for this task. For
instance, one might guess that these algebras need to be closed under the operations
classically involved in differential geometry. Rather than “quasianalyticity implies
o-minimality”, we prefer “quasianalyticity of a sufficiently rich family of algebras
implies o-minimality”.

2 Gabrielov Property, Model Completeness
and O-minimality

2.1 Gabrielov Property

The content of this section, for which the main references are [22, Sect. 2], and
[2, Sect. 3], is independent of the notions and methods mentioned above, such as
quasianalyticity or normalization. We describe a widely used geometric test which
implies model completeness and o-minimality. The proofs given or sketched in this
section are not used in the sequel.

In this section, we have to deal with coordinate projections of sets. Given m < n,
we denote by I17:R" — R” the projection on the first m coordinates. If A €
{1,...,n}" is astrictly increasing sequence, we let IT}: R” — R be the projection
defined by I} (x1,...,x,;) = (xm), .. .,x,\(m)). Hence IT% is a linear projection
onto an m-dimensional coordinate subspace of R”. In general, n being clear from
context, we will just write IT,, for IT}, and IT; for IT}.

We mentioned, in section “Introduction”, the role played by sets with “small
frontier”. We define the frontier of a set A C R" by fr (A) = A \ A, where A is the
topological closure of A. Roughly speaking, the condition of having small frontier
is intended to avoid classical oscillating phenomena. For example, the frontier of

the oscillating curve :
1
{ (x,sin (—)) x> O}
X
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is the segment {(0, y) : y € [—1, 1]}. In the same spirit, a trajectory of a plane vector
field that admits a limit cycle as its w-limit set is an oscillating object whose frontier
(the limit cycle) is not small.

In order to give a precise meaning to this notion of small frontier, we introduce a
notion of dimension. We call manifold a non empty embedded smooth (of class C*°)
submanifold of R¥ (for some k € N) everywhere of the same dimension dim (M ).
The manifolds considered in [22] are analytic. However, all the results of this section
hold in the smooth framework as well. We say that a set S C R* has dimension if
S is a countable union of manifolds. In that case, we put

dim (S) = max {dim (M ): M C S is a manifold}

if S is nonempty, and dim (9) = —oo.

Remark 2.1. 1. Letn > m;if S C R has dimension, the same is not necessarily
true for I1,, (S) (exercise). However, if S and IT,, (S) both have dimension, then
dim (S) > dim (I1,, (S5)).

2. We have seen above that the frontier of a manifold A may not be small: it may
even happen that dim (fr (A4)) is greater than dim (A).

For each n € N, we let A, be a collection of bounded subsets of R”, and let
A = (A,),cy- We call the elements of A the A-sets. A set E C R™ is a sub-A-set
if there aren > m anda A-set A € A, suchthat £ = I1,, (A). A A-manifold (resp.
sub- A-manifold) is a A-set (resp. a sub-A-set) that is at the same time a manifold.
For example, in the classical framework of analytic geometry, we would take the
A-sets to be the bounded semianalytic sets.

Definition 2.2. A set A C R" has the A-Gabrielov property if for each m < n there
are connected sub-A-manifolds By C R*"™4', ... B, C R""%, whereq,...,qx €
N, such that

[, (A) = I, (By) U--- U Ty, (By)

and foreachi = 1,...,k we have:

(G1) fr(B;) is contained in a closed sub-A-set D; such that D; has dimension and
dim (D;) < dim (B;);

(G2) dim (B;) < m and there is a strictly increasing A € {1, ..., m}d with d =
dim (B;) such that TT;|B;: B; — R? is an immersion.

We recognize in (G1) the condition of “small frontier”. It is instructive to
compare this with the analytic situation: the Fiber-cutting Lemma [2, Lemma 3.6],
states that, if A C R” is a bounded semianalytic set, then there are finitely many
smooth semianalytic sets B; C A such that:

L T, (A) = T, (U Bi)s

2. The restriction I1,,| B;: B; — R is a immersion for every i;

3. The subspaces I1,, (T, B;), for x € B; and every i, have a common complement
in R™,
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This fiber-cutting lemma implies that all bounded semianalytic sets have the
A-Gabrielov property (where A is the collection of all bounded semianalytic sets)
where, for all i in Definition 2.2,q; = 0, B; C A, and D; = fr (B;) is a semianalytic
set. The fact that the sets D; are semianalytic and that dim (D;) < dim (B;) is not
obvious, but follows from the study of the general geometric properties of these
sets due to Lojaciewicz [13]. It may happen that the knowledge of the geometric
properties of the A-sets (which play in general the role of quantifier free definable
sets) is a priori pretty poor, but it can be improved via a blowing-up process.
Therefore, although the general A-Gabrielov property may look a bit cumbersome,
it offers greater flexibility in the study of various classes of functions.

We can now state the main result of this section, which describes the geometric
test needed for the applications in Sect. 5.

Theorem 2.3 ([22, Corollary 2.9]). Assume that, for every A,B € A, and
neN,

1. {r} € Ay forallr € I and the sets
{(x,y.2) € I*:x+y =2z} and {(x,y,2) € I*:xy =2}

belong to As;

2. @ and I" belong to A, and for each pair (i, j) with 1 <i < j < n the diagonal
Ay = {x el x; = xj} as well as Al‘j belong to A\,;

3. AU B and AN B belong to A,;

4. I x Aand A x I belong to A, 41;

5. A has the A-Gabrielov property.

Then the expansion Ry = (R, <,0,1,4,—,-, A) of the real field by all A-sets is
model complete and o-minimal.

The main argument in the proof of this theorem is the model completeness of the
expansion /5 = (I, (A) sen, nen) of the interval / = [—1, 1]; see Sect.2.2. A few
routine arguments then allow us to conclude in Sect. 2.3.

2.2 Model Completeness of I 5

We suppose in this subsection that the family A satisfies hypothesis 2.-5. of
Theorem 2.3. It is worth noting that every sub-A-set has only finitely many
connected components, which are themselves sub-A-sets. Indeed, according to the
A-Gabrielov property, each sub-A-set E = II, (A) is equal to a finite union
Il,, (By)U---UTl,, (Bx) where the B;’s are connected sub-A-sets. We are therefore
not far from being convinced that, in this situation, “model-completeness implies
o-minimality”.

The model completeness of I, is an easy corollary of the next two statements
(see Corollary 2.6 below).
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Lemma 2.4 ([22, Lemma 2.5], [2, Lemma 3.9]). Suppose that for a certain d the
complement of each sub-A-set in 1% is a sub-A-set. Let A € {1,... m}d be strictly
increasing. Let E be a sub-A-set in I"™ and suppose there exists M € N such that
}E N H;l (x)} < M forall x € I¢. Then the complement E¢ of E in I" is also a
sub-A-set.

Proof (Sketch of proof). For simplicity, we may assume that A (i) = i for each
i, so that [, = II,. For x € 9, write E, for E N HA_1 (x). For k € N,
the set C, = {x e 14 |Ex| > k} is a sub-A-set in /¢. Hence the set Dy =
{x € I':|Ey| =k} = Ci \ Cry1 is a sub-A-set. Obviously E¢ is the union of
the sets I (D¢) \ E, fork = 0,..., M. Finally, IT;' (D{) \ E is the set of pairs
(x,y) € I?x I~ such that y is different from the k elements of E . This formula
defines E€ as a sub-A-set. (We leave the details of this proof as an exercise.) O

Theorem 2.5 ([22, Theorem 2.7]). If E C I is a sub-A-set, then E¢ C I is a
sub-A -set.

Proof. By induction on m (the case m = 0 is clear). Let m > 0 and assume that
the theorem holds for d < m. Let E C I™ be a sub-A-set. Hence E is the linear
projection of a A-set B. Thanks to the A-Gabrielov property, we may suppose that
B is a connected sub-A-manifold B C R”, where m < n, and that B has the
following properties:

1. fr(B) is contained in a closed sub-A-set D C I" such that D has dimension and
dim (D) < dim (B).

2. dim(B) = d < m, and there exists a strictly increasing A € {1,. ..m}d such
that IT; | B: B — R? is an immersion onto F = 1, (B) = ny (k).

Since I1,,| B and IT, | B have constant rank d we have, in particular, that dim (B) =
dim (E) = dim (F) = d. The proof is divided in two cases:

1. The “small” case, where d < m, which leads to the hypothesis of Lemma 2.4.

2. The “large” case, where d = m, where E€ is proved to be the union of the
complement of a sub-A-set contained in I1,, (D) (which falls under the “small”
case) and certain connected components of IT,, (D)°.

Case 1. d < m. We claim there exists M € N such that
‘(HT)_I (x) N E‘ <|0;' )N Bl <M

for all x € I¢. The only non-obvious inequality is the one on the right. Note that
I, |3: B — R? is a local homeomorphism. Put B, = H;l (x) N B for x € I¢.
We divide 7¢ into two sets: a “small” set G = II, (D), which is a closed sub-A-
set of dimension less than d, and G°. Since every neighborhood of every point of
G contains some points of G¢, it is enough to prove the result for x € G°. For
such an x, it is enough to notice that the map HﬂBnn;l(G(): BN H;l (G%) —
G¢ is proper (hence, being a local homeomorphism, it is a topological covering
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map). Indeed, if K C G¢ is compact and (ux), € B N HA_1 (K) converges to
u € I", then clearly u € H;l (K), and u € B (otherwise, u would belong to frB,
so I1, (u) € G, contradicting IT, (1) € K). Hence | B| takes a constant finite value
on each component of G¢. By the inductive assumption, G¢ is a sub-A-set, which
has therefore only finitely many connected components. The claim is proved, and
Case 1 is a consequence of Lemma 2.4.

Case 2. d = m. The projection I1,,|p is a local homeomorphism; hence I1,, (B)
is open in R”. Since I1,, (D) is a (closed) sub-A-set of dimension less than m,
(T1,, (D))° is a sub-A-set by Case 1. Now note that

EC = (I, (B))" = (IL,, (B U D)) U (I, (D) \ (I (B) N [y (D)) .

Morover, since (I1,, (B U D)) = (I1,, (B)) N (I1,,, (D))¢, I1,, (B) is open and
B U D is compact, it follows that (T, (B U D)) is open and closed in (I1,, (D))¢
and is, therefore, a sub-A-set. Since

dim (T, (B) N I, (D)) < m,

we now conclude by Case 1. O

Corollary 2.6. The structure I is model complete. Its definable sets are exactly
the sub- A\-sets contained in 1", forn € N.

Proof. 1t is clear that the sub-A-sets are existentially definable in /4. So it suffices
to prove that every subset of I” definable in I, is a sub-A-set: it follows from
Theorem 2.5 that the collection SA, of sub-A-sets of I, for n € N, is a boolean
algebra. Moreover, the hypotheses of Theorem 2.3 imply that each SA, contains
the diagonals A;;, for1 <i < j <n, andthat,if A € SA,,then Ax I and ] x A
belong to SA, 4. Finally, if B € SA, 41, then I, (B) € SA,,. O

2.3 From Model Completeness to O-minimality

We can now finish the proof of Theorem 2.3. For n € N, the map 7,:R" — I”

is defined by 7, (x1,...,x,) = (x1/y/1+x}.....x,/y/1 +x2). Let =, be the
collection of all sets A C R” such that 7, (4) is a sub-A-set. The sets of X, are
clearly existentially definable in R . In order to prove the model completeness (and
hence the o-minimality, because of the finiteness property of sub-A-sets) of Ry, it
remains to prove that the basic relations of R, are definable in the structure Ry =
(R, (A) sex, nen)-

Corollary 2.6 implies that every set A C R” that is definable in Ry actually
belongs to X,. Since classical arguments show that the graphs of addition and
multiplication in R? belong to X3, the proof is done.
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Corollary 2.7. Under the hyotheses of Theorem 2.3, a set A C R" is definable in
Ry if and only if t, (A) is a sub-A-set. |

3 Normalization of Formal Power Series

In this section, we explain the main steps of a normalization algorithm, the goal
of which is to simplify formal power series via certain transformations. This
process is mostly based on blowings-up. While inspired by Hironaka’s theorem
of resolution of singularities [9], our purpose (namely, to prove o-minimality and
model completeness for certain quasianalytic classes) does not need the complete
strength of the latter; the algorithm presented here is much simpler. For example,
whereas the codimension of the centers of blowings-up may vary in the general
method, it will always be equal to 2 in our process.

The material of this section mostly comes from [17, Sect.2]. Our goal is not
to repeat, or rephrase, the details of this paper. It is to make its reading easier by
describing the main ideas in small dimensions (n = 2, 3). The method developed in
[17] consists in associating, to each power series, an invariant that strictly decreases
at each step and that is minimal exactly for the so-called normal power series (see
Definition 3.1 below). Note that a complete proof of Hironaka’s theorem controlled
by such an invariant can be found in [3].

The role of our invariant is to measure “how far a series is from being normal”.
We do not give the formal definition of this invariant, which is a bit intricate. We pre-
fer to explain, in a more intuitive way, how the series are simplified by blowings-up.

We recall in a first subsection the geometric definition of blowing-up. Although
this definition is too general for these notes, it throws light on the terminology of
this section, which would be purely technical and arid without it. We explain in
the next subsection the normalization procedure in two variables. Most of the ideas
underlying the process in any dimension already appear in this case. In view of the
geometric applications of Sect.4, the closure properties of the algebras of power
series under some specific operations are emphasized. Then the general statement
is given, without proof, in the next subsection. Finally, the normalization process
in three variables is described in the last subsection. The explanations given in this
case should make the formalism of [17] more natural.

In order to define what is actually meant by a normal series, we introduce the
following notation. Let X = (Xy,...,X,)andr = (ry,...,r,) € N". We write X"
for X{'--- X

Definition 3.1. A series f € R [[X]] is called normal if f (X) = X" -U (X) with
r € NYand U € R[[X]] is a unit.

A finite set { f1, ..., fi} C R[[X]] of series is normal if f; (X) = X'+ -U (X),
with r, € N" and Uy, is a unit for each k, and if the set of monomials {X", ..., X"}
is linearly ordered by divisibility.
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Remark 3.2. Consider a C* germ f at the origin of R” such that f (x) = x"-U (x),
where x = (x1,...,x,) € R, r = (r1,...,r,) € N" and U is a C* germ at the
origin of R” such that U (0) # 0. Then the zero set of f is the germ at O of the
intersection of all sets {x; = 0} such that r; # 0. This explains the terminology
“normal”, which has its origin in the geometric terminology “normal crossings”.

3.1 Geometric Definition of Blowing-Up

We recall the definition of blowing-up as found in [2, Sect. 4] (among many other
possible references; see also F. Cano’s notes in this volume).

3.1.1 Blowing-Up of an Open V C R™ with Center {0}

Let P, (R) be the real projective space of dimension m. Consider an open
neighborhood V' of 0 in R™. The blowing-up of V with center {0} is the mapping
V' =V, where

Vi={(x.0) eV xP,_1 (R):x € £}

defined by 7 (x,£) = x. Hence 7! (0) = P,,—; (R). This proper map restricts to a
homeomorphism V\P,,_; (R) — V'\{0}. In order to express 7 in local coordinates,
we introduce the affine coordinates x = (xy, ..., x;;) of R”, and the homogeneous
coordinates £ = [§,...,&,] of P,,—; (R). Then

V' = {(X,E) eV xP,_; (R):xiéj :xjf,‘ fori, j = 1,...,m}

can be covered by the coordinate charts V;/ = {(x,§) e V1§ #0},i = 1,...,m,
with coordinates (x;i, ..., X;,;) defined for each i by

Xii = Xi, andxij = —ijI”j 7é i.

i
In these local coordinates,  is given by

XiiXij lfJ 7é i,

T(Xit, s Xim) > (X1, ..., Xp) , Withx; = o
Xii if j =1.
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3.1.2 Blowing-Up of an Open Set V x W C R™ x R"™" with Center
{0} x W Cc R"

Suppose that n > m and that W is an open subset of R"™"". We still consider an
open neighborhood V' of 0 € R™. The blowing-up of V x W with center {0} x W
is the mapping w x id: V' x W — V x W, where r: V' — V is the blowing-up of
V with center {0}.

3.1.3 Blowing-Up of a Manifold with Center a Submanifold

Let M be a real analytic manifold of dimension n and Y be a closed analytic
submanifold of M of codimension m. Let U C M be an analytic chart with
coordinates given by an analytic isomorphism ¢: U — V x W, where V, W are
open neighborhoods of the origins in R”, R*™" respectively, such that (Y N U) =
{0} x W. Let mo: V' — V be the blowing-up of V with center {0}. The blowing-up
of M with center Y is a proper analytic mapping 7: M’ — M such that:

1. 7 restricts to an analytic isomorphism M’ \ 77! (Y) - M \ Y;
2. There is an analytic isomorphism ¢’: 771 (U) — V' x W such that the following
diagram commutes :

/

¢
7N U) —= V' x W

b/ l j o xid

U VxW

These two conditions define 7 uniquely, up to an isomorphism of M’ commuting
with 7.

Example 3.3. 1. Blowing-up of R with a codimension 3 center. The blowing-up of
R? with center {0} is the mapping
TV ={(x.0) e VxP,(K):x €} > R?

defined by 7 (x,£) = x. Denote by (x, y,z) the affine coordinates of R?, and
[X,Y, Z] the homogeneous coordinates of P, (R). Consider, for example, the
chart V7 = {((x,y,2),[X,Y, Z]) € V': X # 0}, equipped with the coordinate
system (uy, v, wy) defined by

Z
, W1 = X

Uy =Xx,vy =

Then m is given in these coordinates by
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7 (uy,vi,wi) = (uy, uvy, uwy) = (x,,2) .
Obviously, if (u2, v2, wy) are the coordinates in the chart
Vo ={((x.y.2).[X.Y,Z]) e V1Y # 0},

then 7 (u2,va,wz) = (upva, v, wava), and if (u3,vs3, ws) are the coordinates
in the chart V3 = {((x,y,2),[X.Y,Z]) € V':Z # 0}, then 7 (u3,v3, w3) =
(u3w3, v3ws, ws).

2. Blowing-up of R with a codimension 2 center. Let Y C R3 be the axis given by
the equations {x = 0,y = 0}. The blowing-up of R with center Y is actually
the blowing-up 7 of R? x R with center {0} x R. In the chart

VixR={(((x.y).[X.Y]).2): ((x.y) . [X.Y]) € V"1 X # 0},

equipped with the coordinate system (uy, v, wy) defined by

Y

MIZX,V]:},W]:Z,

the map = is given by
7 (ur,vi,wi) = (u, uvy, wi) = (x,,2).

In the chart

Vax R = {(((x,).[X.Y]).2):((x.y) . [X.Y]) € V1Y #0},

7 is given by
(U2, v2, w2) = (Uav2,v2, w2) = (X, y,2).

The origin of the first chart may be translated. Instead of working in a neigh-
borhood of the point vi = 0 of the projective space P; (R), we may prefer to
work in a neighborhood of the point v; = A, for A € R. So we introduce the
coordinate v; defined by vi = A + vy, and the blowing-up 7 is expressed in these
coordinates by

7 (uy, vy, wy) = (u, u; (A +91),wy).

If we want to work in a neighborhood of the “point at infinity” of the first chart,
it actually means that we work at the origin of the second chart.

3. Blowing-up of R" with a codimension 2 center. The formulas above extend
obviously to the blowing-up 7 of R” with a center given by the equations
{xi =0,x; =0} forgiven 1 <i < j < n.To each point of the projective space
obtained by blowing-up with center the origin in the plane {xi, by j} corresponds
a local analytic expression of w. In the following, these expressions will be
called blow-up substitutions. These substitutions, which describe the action of
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the blowing-up 7 on formal series (and then on C* germs in Sect. 4), are the
R-algebra homomorphisms b;”: R [[X]] = R[[X]], A € R U {oo}, defined by

- Xi(A+X;) ifk=
b/ () = ¥ () k=
& otherwise
for A € R, and
. XXy ifk=i
bid (X =4 0
X otherwise.

4. The blowing-up of an analytic manifold with center a codimension 2 submanifold
is expressed by the formulas of the previous example in a coordinate system ¢
such that ¢ (Y N U) = {0} x W, with the notations of Sect.3.1.3.

Remark 3.4. As was mentioned at the beginning of this section, the only blowings-
up involved in our normalization process here have codimension 2 centers.

3.2 Normalization in Two Variables

Consider a nonzero series f (X,Y) € R[[X,Y]]. Write f (X,Y) = Y 2, X7
U; (X)Y!, where U; € R[[X]] are units and p; € N, fori € N. Let p =
min{p;,i € N}. After factoring out the monomial X7, we may suppose that
f(X,Y) is regular of order d in Y, that is, ordy f (0,Y) = d withd € N.
The property of the algebra R [[ X, Y]] involved here is the closure under monomial
division.

If ordy £ (0,Y) = 0, then f is a unit and is, therefore, normal. In order to
lower ordy f (0, Y), we use the blow-up substitutions representing the charts of the
blowing-up of R? with center the origin (see Sect. 3.1). These substitutions are the
R-algebra homomorphisms R [[X, Y]] — R [[X, Y]] defined by:

by(X)=Xandby (Y)=XA+Y), fordeR,

and
boo (X) = XY and by (Y) =Y.

The blowing-up of the series f is represented by the all by f, with A € R U {oo};
we therefore want to show that each b, f is, in some sense, simpler than f.

It is easy to see that ordy f (0, Y) does not always decrease (even up to factoring
out a monomial) under blow-up substitutions. Consider for example f (X,Y) =
Y2 + X?Y + X3, which satisfies ordy f (X,Y) = 2. Then

bof (X.Y)= f(XY.Y)=X*Y*+ XY + X°
=X*(Y?+ XY +X)=X>f(X,Y)
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and ordy f (0,Y) = 2. The order does not decrease, but we notice that the
valuation of the coefficients in X is decreasing. This example suggests a definition
of an invariant that involves not only the order in Y, but also the valuation of the
coefficients with respect to X .

Consider now the example

g(X.Y) = —ap(X)’, ag(X) = X (A +a; (X)),
where a;(X) € R[[X]] and A € R. Then
bog (X,Y) = X4 (Y —a; (X))

Since a; (X) has no reason to be “simpler” than a (X ), there is no obvious invariant
that is decreasing under the transformation b,

We therefore need to introduce a prior transformation that prevents a series
f(X,Y) with ordy f (0,Y) = d from having a root of multiplicity d, and that
does not increase the “complexity” of f. This transformation is classically called
the Tschirnhausen transformation. Since ordy f (0,Y) = d, 3= /3y =1 (X, Y)
satisfies the hypothesis of the implicit function theorem: there exists o (X) €
R [[X]] such that o (0) = 0 and 97! f/0Y 4" (X, (X)) = 0. Let g (X,Y) =
f (X,a(X)+7Y). According to Taylor’s formula, wet get

d—2 akf

Yk
Pt Y

g(X.Y) = X.a(X) Y +7YU (X,Y),

where U (X, Y) € R[[X, Y]] is a unit, because ordy g (0, Y) = d. Hence we may
now suppose that

fXY)=Y'UX.Y)+ ) X*U (X) Y,
kekK

where K C {0,...,d =2}, each rpy € N, and U (X,Y) € RJ[[X,Y]] and all
U (X) € R[[X]] are units. We note that several closure properties of the algebras of
power series have been used in the above transformations: closure under translation
(namely ¥ — Y — o (X), for a (X) € RJ[[X]] such that « (0) = 0), partial
derivatives, and composition.

If K = @, the series f is normal. Otherwise, ry > 0 for all k € K. Furthermore,
after replacing X by X?' (a power transformation), we may assume that ry is
divisible by d — k for each k € K. In order to understand how a blowing-up with
center {0} may simplify the series, we consider the maximal integer / € K such
that: - e
=

T e forall k € K.
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We claim that the pair (d, r;) is now lowered lexicographically by every blow-up
substitution (after possibly factoring out some power of X). In order to prove this,
we distinguish three cases represented, respectively, by (a) bso, (b) by for A # 0,
and (c) by. The inequality r; > d —k for each k € K is used in the three cases. The
role of Tschirnhausen’s transformation is essential for case (b).

1. Effect of the substitution bso. We obtain

boof (X.Y) =Y U (XY.Y)+ ) X" Up (XY)Y*H
keK

=y (U (XY.Y)+ Y X*U (XY) Y’k_(d_k’) .
keK

Hence by, f is normal.
2. Effect of the substitution by, A # 0. We have

by f(X.Y) = X‘g(X.Y),
where

gX.Y)=A+YV)UX.XQA+Y)+ ) X Py @)@+t
kekK

= (Yd + Yd_ld)td_l) U(X,X(A+Y)) + lower order terms.

The goal of Tschirnhausen’s transformation is to guarantee that the coefficient
of Y4~lin f (X,Y) is zero. Hence the coefficient of ¥~ in this expansion of
g (X,Y)isaunit, so thatordyg (0,Y) <d — 1.

3. Effect of the substitution by. We have

bof (X.Y)=XYU (X,XY) + Z Xty (x) vk
kekK

=X (YdU (X.XY)+ > X"y, (x) Yk) .
keK

So ordy by £(0, Y) < d; note moreover that

n-d-h_ L o, <@k

d—1 d—k

forallk € K,sol =1(f)=1(g),andr; (g) =r; (f)—(d =1) <ri(f).

Consequently, the complete normalization of f (X,Y) is achieved by the
application of finitely many translations, power transformations, and blowings-up.
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Remark 3.5. 1. The closure properties involved in this process are closure under:
monomial division, partial derivatives, solutions of implicit equations, compo-
sition and power substitution, and of course the usual algebraic operations. The
statements of Sect.4 will be established for quasianalytic classes closed under
these operations.

2. Weierstrass preparation is not involved in the above normalization process. It
is replaced by Taylor’s formula. This remark is useful in the quasianalytic
framework in which Weierstrass preparation does not hold.

3.3 Statement of the Normalization Theorem in Several
Variables

Notation 3.6. Let X = (Xy,...,X,),andset X' = (X1,..., X,,—1) ifn > 1. For
r=(r,...,r,) € N' write X" for Xlr1 .- X;n. Givenr,s € N, we write r < s if
r; < s; foreachi. Obviously r < s if and only if X* is divisible by X".

This general normalization process in n variables mostly follows the lines
described in Sect. 3.2, extended by an induction on n:

1. Up to a linear transformation, we may suppose ordy f (0, X,) = d < oo.
2. A Tschirnhausen transformation leads to a series f (X) such that

¥ Faxd (X1,0) = 0.

3. Taylor’s formula allows us to work with an expansion of f in X,, up to the order
d. By induction on n, the collection of coefficients of X ,’,‘ in this expansion, which
belong to R [[X’]], may be assumed being normal.

4. A power transformation then increases the exponents of the principal monomials
of the coefficients, so that they all become divisible by d!. This step is an essential
preparation to the next one.

5. Convenient blowings-up with codimension 2 centers simplify the coefficients,
progressively leading to a series f (X, Y) satisfying ordy f (0,Y) < d.

With respect to normalization in two variables, the main extra difficulty is the choice
of the center of each blowing-up.

We note here that, in the third step above, we need to normalize simultaneously
several series instead of a single one. This little technicality is solved by the
following elementary result:

Lemma 3.7 ([2, Lemma 4.7]). Let fi,..., fi € R[[X]].

1. The product fi --- fi is normal if and only if each fy, is normal.
2. Assume that all fy, fork = 1,....1, and all fi — fir, for0 <k <k’ <1, are
normal. Then { f1, ..., fi} is normal.
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List of elementary substitutions. In order to state the main result of this section,
we sum up the substitutions involved in the normalization process.

(a) Power substitution: they are used in Step 4 above, as a necessary preparation
to blow-up substitutions. For 1 < i < n and an integer ¢ > 0 we let
p:'q, Pig- R[[X]] = R[[X]] be the R-algebra homomorphisms defined by

[1 . . _ q . .:.
X ifj =1, v (X)) = X ifj =i,

+ (X)) =
pz,q( 1) X; otherwise.

X; otherwise,

(b) Translation substitution: it is used in Step 2 above for the Tschirnhausen
transformation. For 1 <i <manda € R[[X},..., X;—1]] such that « (0) = 0,
we let #,: R [[X]] — R[[X]] be the algebra homomorphism given by

Xi+a(Xy,....,X;i—) ifj=i,

o (X;) =
(X)) X; otherwise.

(c) Linear substitution: this transformation is involved in Step 1 to turn a series
regular in one variable. For i > 0 and ¢ = (cy,...,ci—1) € R~ we let
lio : R[[X]] = R[[X]] be the R-algebra homomorphism given by

li.C(Xj)Z Xj—f-Cle‘ ifl <j<i,

X; otherwise.

(d) Blow-up substitution: these transformations are involved in Step 5 to lower
the order of the series or of its coefficients in the last variable. For 1 < i <
j < nand X € R, we let b}/, bs:R[[X]] — R[[X]] be the R-algebra
homomorphisms defined by

- Xi(A+X;) ifk =],
by (X)) ="' (h+ X)) /
& otherwise,
and
. X, X; iftk=i,
by (xp) =0
X otherwise.

Note that bi‘j affects the j-th variable, while bf;é affects the i-th variable.

Definition 3.8. An admissible substitution t is any one of the following collections
of R-homomorphisms R [[X]] — R [[X]]:

1. 7 ={l;.}forsome 1 <i <nandc € R~! (alinear substitution);
2.t = {ty} forsome 1 < i < nanda € R[[X']] with « (0) = O (a translation
substitution);
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3.1 = {pit], pifq} for some 1 < i < n and integer ¢ > 0 (a power substitution);

4.t = b = {b;’j:k ERU{OO}} forsome 1 < i < j < n (a blow-up
substitution).

Remark 3.9. If © is an admissible substitution and f € R[[X]], then tf is a
(possibly infinite) collection of series. It is easy to see that f € R[[X]] is a unit
if and only if every member of tf is a unit. Moreover, if f € R[[X]] is normal
and t is a power substitution or a blow-up substitution, then every member of 7 f is
normal.

One can define the height h, (f) of a series f € R[[X]], which measures
“how far from normal” f is. The normalization is based on the analysis of h, (f).
Actually, h, (f) belongs to (N U {oo})™ equipped with the lexicographic ordering,
where v, only depends on 7. A proof of the following result is given in [17, Sect. 2]:

Theorem 3.10. Letn > 1.

1. If h, (f) =0, then f is normal.
2. If h, (f) > O, then there is an admissible substitution t such that h, (g) <

h, (f) isforeach g € tf.

Remark 3.11. The action of an admissible substitution 7 extends on a collection
of series. Hence, given a series f € R[[X]], there exists a finite sequence of
{1, ..., Ty} of admissible substitutions such that each element of Ty o --- 0 71 (f)
is normal.

3.4 Normalization in Three Variables

In this subsection, we illustrate the normalization algorithm for a series in three
variables X, Y, Z. (Note that X does not have the same meaning as in the
previous subsection; now, X is a single variable.) We suppose true the statement
of Theorem 3.10 for elements of R [[X, Y]]. Let f € R[[X, Y, Z]]. We explain the
main steps of the normalization of the series f.

Transformation into a regular series. It is well known that there exists ¢ € R?
such that ordz (/3. (0,0, Z)) < oc.

Tschirnhausen’s transformation. We suppose from now on that
ordz £(0,0,Z) =d < oc.

We have already explained the role of this transformation in Sect.3.2; it has the
exact same purpose in many variables. Since ¢~ /0Z971(0,0,0) = 0 and
0¢£/0Z4(0,0,0) # 0, the equation 3¢~' £/0Z971(X,Y,Z) = 0 admits a
unique solution Z = « (X,Y) € R[[X, Y]] such that & (0,0) = 0. The series
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tof € R[[X,Y, Z]] satisfies 0¢~! £/0Z?~! (X, Y,0) = 0; so we suppose from now
on that 3¢~ £/0Z9=1 (X, Y,0) = 0. It follows from Taylor’s formula that

d=2
1 o
f(X,Y,z):?Ew—k(X,Y,O)zk+sz(X,Y,Z)
=0

L

=Y AX.Y)Z'+2ZU(X.Y.2),

N~

»
I
S)

where f; (0,0) = O0fork =0,...,d —2and U (0,0,0) # 0 (U is a unit). This
expansion could be called a “quasi-Weierstrass preparation” of f. Note that, if f is
an actual polynomial in Z, the Tschirnhausen transformation is nothing other than
the classical “completion of the d-th power” used in the resolution of polynomial
equations.

Normalization of the coefficients. We set
K={ke{0,...d —2}: fr #0}.

The normalization of a given series (and hence of several series thanks to
Lemma 3.7) in two variables has been explained in Sect.3.2. It corresponds to
the induction hypothesis made on n in the general process. Hence we may suppose
that the collection { fx},cx is normal. Moreover, after two power substitutions

{ptd!, Prai( » {pzd!, p;d!} (where the indices 1 and 2 stand for the variables X
and Y') we may suppose that

f(X,Y.Z)=27U(X.Y,Z) + Z X" Y%U, (X,Y) Z¥,
keK

where U and Uy, for k € K, are units, and the exponents ry, sx, for k € K, are
divisible by d — j forall j € K. Therefore

(X YU, (X, Y)Y e R([X, Y]]

for all k € K, that is, the units of R [[X, Y]] admit a p-th root for each p € N. By
another application of the normalization in two variables, we may suppose that the
collection {(X’k YU (X, Y))l/(d_k) 'k e K} is normal.

Lowering the order by blowing-up. Lowering ordz f (0,0, Z) by a single blow-
ing-up is in general hopeless. We have to lower, by successive blowings-up (with
codimension 2 centers), the degree of the dominant monomial X" Y* of some
coefficient in the expansion of f. More precisely, from a practical point of view,
these blowings-up will always involve the variable Z and one of the variables X
and Y.
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Let us recall that the collection {(ry/(d —k),sx/(d —k))}ex is linearly
ordered (with respect to the partial order (p,q) < (r,s) if and only if p < r and
q <s).Letl =1 (f) € K be maximal such that

(driz’dsiz)5<dr_kk’ds_kk)7 Vk € K.

One of the exponents r; or s; is nonzero (otherwise we would have ordz f (0,0, Z) <
d). We may then suppose s; # 0. Let us examine the effect of the admissible
substitution b>3 on the series f (where the indices 2 and 3 represent the variables
Y and Z, respectively), by considering all the substitutions bi’3, for A € RU {o0}.

The following will be used in all cases below: for all k € K, since sx/ (d — k) >
s/ (d—1)>0,wehavesy >d —k.

(a) Effect of b22. We claim that this substitution transforms f into a normal series.
Indeed,

b2l f(X,Y,Z)=2U(X,YZ,Z) + Z X" YUy (X,YZ) ZFTs
keK

=7V (XY, 7).

where V (X, Y, Z2) =U (X,YZ,Z) + Y pex X" YU, (X,YZ) 2%~ =0 jg
a unit, because no monomial in the latter sum is a constant.

(b) Effect of bi‘3 for A # 0. We claim that, after factoring out a monomial, we have
ordzb, f (0,0, Z) < ordz f (0,0,Z). Actually, the following computation
shows that, for all but finitely many A € R, the series bi‘3 f(X,Y,Z)isnormal:

b f (XY, Z) =Y A+ 2)U(X,Y,Y (A + 2Z))

+ Y XY (A 4+ 2) U (X, Y)
keK

=Y (XY, 7).
where
gX.Y.Z)=ZUX.Y.Y A+ 2)+Z7 AU (X.Y.Y A+ Z)) +---:

in particular, ordzg (0,0,Z) < d — 1. We note that the existence of a
nonvanishing coefficient of Z?~! in this expansion is a consequence of the
hypothesis 9¢~! /0Z?~' (X,Y,0) = 0, which was obtained by Tschirn-
hausen’s transformation.

(c) Effect of bé’3. This substitution transforms f into the product of a monomial
and a series g € R[[X, Y, Z]] with! =1 (f) =/ (g) and a lower exponent s;.
The series g is then “closer than f to being normal”. More precisely, we have
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B2 f (X.Y.2) = Y20 (X.¥, XY) + 3 X"y hy, (X, 7) 24
kekK

=Y (X,Y.Z),

where g(X,Y,Z) = ZU (X,Y, XY) + Y cx XY=y, (X, Y) Z*.
Moreover, since s;/(d —k) > s;/(d —1), we have s;/(d —k) — 1 >
s;/(d —1) — 1, and hence

(k= (d—=k)/(d—=k)= (s —(d—=1))/(d=1)

for all k € K. This implies that/ (g) =1 (f).

Continuation of the process. This step is straightforward. Let g be the series
obtained after one of the above blow-up substitutions. Then:

1. If g is normal, we are done.

2. If ordzg (0,0, Z) < ordz f (0,0, Z), we apply the complete process (Tschirn-
hausen’s transformation, etc.) to g.

3. Ifordzg (0,0,Z) = ordz f (0,0, Z) and s; (g) < s; (f), we apply repeatedly
the blowing-up b>?3, until the series g obtained are either normal, or satisfy
ordzg (0,0,Z) < ordz f (0,0, Z), or satisfy s; (g) = 0. In the last case, we
notice that ri/ (d —k) > r;/(d —1) for all k € K, and we proceed with the
blowing-up b'3.

Remark 3.12. In this section, the comment “up to factoring out a monomial”
appears several times. The reader can check that, indeed, this operation does not
affect the process.

4 Quasianalyticity, Model Completeness and O-minimality

After studying normalization on the formal side, we now have to work in the
geometric framework. We consider quasianalytic classes of (germs of) functions.
We show that, under the closure assumptions that were emphasized in Remark 3.5,
these classes generate a model complete and o-minimal expansion of the real field.

In a first subsection, we introduce the quasianalytic framework, and give the list
of hypotheses which allow us to transfer the formal normalization process to germs
and functions. This process leads to a crucial geometric result, usually referred to
as uniformization. In the second subsection, we explain how this result, combined
with a few classical geometric tools, leads to a version of Gabrielov’s theorem of
the complement. The results of Sect. 2 then allow us to conclude.

Notation 4.1. Foreachn € N, we write x = (xy, ..., x,) for the affine coordinates
of R” and set X’ = (xq,...,x,—1) ifn > 1. Forr = (ry,...,r,) € N" we put
X" =xptee X
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4.1 Uniformization of C-sets

For every compact box
B - [alvbl] XX [anvbn]s

with a; < b; fori = 1,...,n and n € N, we fix an R-algebra Cp of functions
f: B — R such that the following hold:

(C1) Cp contains the functions (xi,...,x,) — x; and, for every f € Cg, the
restriction of f to int (B) is C*°;

(C2) If B” C R™ is a compact box and gi,...,g, € Cp are such that g (B’) C
B, where ¢ = (g1,...,8u), then for every f € Cp the function y +>
S(g1(y).- ... gn(y)) belongs to Cp';

(C3) For every compact box B’ C B we have f|B’ € Cpg for all f € Cp, and
for every f € Cp there is a compact box B’ C R” and g € Cps such that
B Cint(B’)and g|B = f.

It is important to note that (C1) and (C3) imply that every f € Cp extends to a
C®° function 7: U — R for some open neighborhood U of B (depending on f).
Therefore, for each i = 1,...,n we denote by df/dx; the restriction d f /dx;. We
also assume:

(C4) df/dx; € Cp forevery f € Cgandeachi =1,...,n.

Next, we complete this list of conditions satisfied by the functions f € Cp by a
list of conditions satisfied by the germs of the elements of Cj.

Notation 4.2. For every polyradius r = (r1,...,7,) € (0,00)", we put
I, = (—=ri,r)) x -+ x (=ry,r,) and ]_r =cl(l,).

For ¢ > 0, we simply write ¢ for the polyradius (e, ..., ¢). We write C, , = C7-.
We denote by C, the collection of all germs at the origin of the functions in
U e(0.00)" Cn.r- Each Cy is an R-algebra. Finally, we let " C, — R [[X]] be the map
that sends each f € C, to its Taylor series ? at the origin, and we denote by a, the
image of " in R [[X]].

We make the following extra assumptions:

(C5) ¢y — é; is an R-algebra isomorphism (quasianalyticity);

(C6) If n > 1 and f € C, is such that f (0) = 0 and (df/0dx,) (0) # O, there is an
a € C,—y with « (0) = O such that f (x",« (x")) = 0;

(C7 If f € C, andi < n are such that ? (X) = X;G (X) for some G € R[[X]],
then f = x; g for some g € C, such that G = @.

We can now adapt the language of analytic geometry to the quasianalytic
framework.
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Definition 4.3. 1. A set A C R” is called a basic C-set if there are r € (0, 00)" and
f.81,...,8k € C,, such that

A={xel: f(x)=0,g1(x) >0,...,g (x) >0}.

2. A finite union of basic C-sets is called a C-set. We call M C R" a C-manifold if
there is an r € (0, 00)" such that

e M is a basic C-set contained in /,;

* There are fi,...,fr € C,, such that M is a submanifold of I, of
dimension n — k on which fi,..., fi vanish identically, and the gradients
Vfi(@),...,V fk (z) are linearly independent at each z € M.

3. Let A C R". The set A C R”" is called C-semianalytic at a point a € R" if there
isanr € (0,00)" such that (4 —a) N I, is a C-set. A is C-semianalytic if A is
C-semianalytic at every pointa € R”. In this situation, if 4 is a manifold, we call
A a C-semianalytic manifold.

Remark 4.4. 1. Property (C7) has a simple but important consequence. Let f € C,
be such that /f\ € R [[X]] is normal. Then there existr € Nand U (X) € R[[X]] a
unit, such that 7 (X) = X"U (X). Hence there exists g € C, such that g (0) # 0
and f (x) = x"g (x).

2. The C-semianalytic sets are going to play the role of the A-sets of Sect. 2.

Notation4.5. 1. Forr € (0,00)", f = (fi..... fu) € (Cor)", S C I, and asign
condition o € {—1,0, 1}, we put

Bs (f.0) ={x € S:sgnfi (x) = o01,....sgnf, (x) = 0.} .

In the following, we use the notations of Sect. 2.1.

2. Each germ f € C, admits a representative in C, ,, for some r € (0, 00)", which
will be denoted by the same letter f. Given g = (g1,...,8%) € (C)E, we say
that r € (0,00)" is g-small if g; admits a representative in C, , fori = 1,...,k.

Definition 4.6. Letr € (0,00)". A set M C I, is C-trivial if one of the following
holds:

1. M = By, ((x1,...,x,),0) forsome o € {—1,0,1}";

2. There are a permutation A of {1,...,n}, aC-trivial N C I;anda g € Cy—1,
where s = (’”A(l)’ e rx(n_l)), such that g (1) C (—rA(n), rw,)) and I1) (M) =
graph (g[N).

A C-semianalytic manifold M C R” is called trivial if M = N + a for some
C-trivial manifold N C R” and some a € R” (thus every trivial C-semianalytic
manifold is bounded and connected).

Remark 4.7. We note that a tr_ivial C-manifold M is a bounded and connected C-
manifold such that fr (M) =M \ M is a C-set, has dimension, and dim (frM) <
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dim (M); this can easily be proved by induction on n. We recognize the “small
frontier” condition mentioned Sect. 2.

The next statement is the first step towards obtaining the Gabrielov property.

Proposition 4.8 ([17, Proposition 3.8]). Let r € (0,00)" and f € (C,,)". Then
there is a neighborhood W C I, of 0 with the following property:

(%) for every sign condition o € {—1,0,1}", there is an | € N, and for each
m=1,...,1 thereareny > n, ry € (0,00)"* and C-trivial manifolds Ny C I,
such that

By (fao) =11, (N)U---UTll, (Nl)

and, for each k, the set T1,, (Ny) is a manifold and T1,,|Ny.: Ny — T1,, (Ny) is a
diffeomorphism.

Remark 4.9. The complete Gabrielov property Definition 2.2 requires a statement
like (*) not only for C-semianalytic sets, but also for their linear projections.

Proof (Proof of Proposition 4.8). We may assume that f; # 0 for each j =
1,....u. Hence g = fi--- f # 0 and, by quasianalyticity of C,, we have g # 0.

The proof is done by induction on the pair (n, &, (g)), where h,, is the invariant
defined in [17] and mentioned in Sect. 3. If g is normal, then the statement is an
easy consequence of Remark 4.4. Otherwise, there exists an admissible substitution
7 such that &, (¢) < h, (g) for every ¢ € tg. In these notes, we only illustrate the
proof in the case where 7 is a translation substitution.

Leta € Ci—j, with 1 < i < nand «(0) = 0, be such that T = {t,}. Let
s € (0,00)" be both (#, f)-small and #,-small and such that z, (I;) C I,. By the
inductive hypothesis, there is a neighborhood V' C I, of 0 such that (x) holds with
to f, s and V in place of f, r and W. Then W = 1, (V') is a neighborhood of 0,
and we claim that () holds with this W.

To see this, we let 0 € {—1,0, 1}*. Let My C R™, fork = 1,..., p, be the
C-trivial manifolds obtained for this o from the inductive hypothesis applied to ¢, 1.
For each k, we put

Nie ={(x<i,t, x5, X;) 1 x € M and 1 = x; + o (x<)},
where xo; = (x1,...,xi—1) and X5; = (X;41....,%n,). Bach Ny is a C-trivial
manifold and By (f,0) = U,]::l I, (Ny). Moreover, since ty|I;: Iy — 1, (1)

is a diffeomorphism, it follows that IT, (Ny) = t, (I1, (M})) is a manifold and
I, | Nk: Ny — I1,, (Ng) is a diffeomorphism, as required. O

4.2 Towards the Gabrielov Property

We want to establish the o-minimality and model completeness of structures
generated by quasianalytic classes satisfying hypothesis (C1)—(C7) (see the precise
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statement in Sect.4.3). This goal is achieved with the methods of Sect.2.
In particular, we have to establish the Gabrielov property in the quasianalytic
framework. Roughly speaking, we have to prove the statement (x) of Proposition 4.8
for linear projections of bounded C-semianalytic sets. The following statements are
proved in [17].

4.2.1 The General Statements

The following proposition is an easy consequence of Proposition 4.8.

Proposition 4.10 ([17, Corollary 4.4]). Let A C R" be bounded and C-
semianalytic. Then there are n; > n and trivial C-semianalytic manifolds N; C R™,
fori =1,...,k, such that

A =TI, (N))U---UIl, (Ni)

and, for each i, the set 11, (N;) is a manifold and T1,|N;: N; — T1, (N;) is a
diffeomorphism. In particular, A has dimension.

Next, let M C R” be a C-manifold of dimension m < n. For every strictly
increasing sequence A € {1,...,n}" (see notations in Sect. 2), we put

M) ={x € M:T1;|Ty M has rank m} .

It is clear that M) is an open subset of M and is, in fact, a C-manifold. Moreover,
we have

M = M: X e{l,...,nY" is strictly increasing} .
y g

Letk <mand A € {1,...,n}" be strictly increasing. We let m (k) € {0,...,m}
be maximal such that A (m (k)) < k.

The following well-known statement of analytic geometry holds as well in our
quasianalytic framework.

Lemma 4.11 (Fiber Cutting Lemma) [17, Lemma 4.5]. Letn > m > k > 0. Let
M C R" be a C-manifold of dimension m. Assume that M = M), for some given

strictly increasing A € {1,...,n}" and that T1,|M has constant rank m (k). Then
there is a C-set A C M such that dim (A) < m and T, (M) = I1; (A).

This lemma allows us to prove:

Lemma 4.12 ([17, Lemma 4.6]). Let M C R" be a C-manifold of dimension m
and k < m. Then there are trivial C-semianalytic manifolds N; C R", satisfying
dim (N;) <k andn; > n fori = 1,..., K, and there are bounded C-semianalytic
sets A; C RPJ, with dim(Aj) <mand p; >nforj=1,...,L, suchthat

Iy (M) = T (N1) U -+~ U T (Ng) U T (A1) U--- U T (AL)
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and, for each i, there is a strictly increasing A € {1,...,k}dim(Nf) such that
;| N;: Ny — RI™ND s an immersion.

We obtain the Gabrielov property from the following:

Corollary 4.13 ([17, Proposition 4.7]). Let A C R" be a bounded C-semianalytic
set and k < n. Then there are trivial C-semianalytic manifolds N; C R", with
ni >nfori =1,...,J, such that

I (A) = T (Ny) U--- U Tl (Ny)

and, for each i, d = dim(N;) < k and there exists a strictly increasing A €
{1,..., k}d such that T1;|N;: Ni — RY is an immersion.

4.2.2 Study in Small Dimension

As before, we do not repeat or rephrase the detailed proof given in [17, Sect. 4]. We
merely illustrate the arguments of Lemma 4.12 (and Fiber Cutting Lemma 4.11) in
dimension 3, under some simplifying hypotheses.

We consider a 2-dimensional C-manifold M C R? and its projections IT; (M)
for k = 1,2. We define

re (M) = max {rk (Ix|r,m):x € M}.

Note that the case r; (M) = 0 is obvious.

Case k = 2. Then I1; = II, denotes the projection on the (xj, x,)-plane. We
suppose 1, (M) = 2. Let My = {x € M:rk(Ilz|r,;m) < 2}. Hence M \ M, is an
open subset of M that obviously satisfies the statement of Lemma 4.12. In general,
M is not a C-manifold, but is a bounded C-set. According to Proposition 4.10, there
exist finitely many integers v > 3 and C-manifolds N C R" such that I13|y: N —
I3 (N) C My is a diffeomorphism. Hence, for all a € N, we have rk (IT}|7,5) <

rk <H2|Tnv( )Mo) <ry(M).Sor;, (N) < 2, and we leave the proof of Lemma 4.12,
3 a
with N in place of M, as an exercise.

Case k =1. Then I1; = II; denotes the projection on the x;-axis. We suppose
ri(M) = 1. Hence Il |yy: M — TII; (M) is not a diffeomorphism anymore,
and we cannot conclude as easily as before. We denote by IT;, the projection
on the (x1, xy)-plane of coordinates, and by I1; 3 the projection on the (xy, x3)-
plane of coordinates. Let M, = {x € M:tk(Ili2|r,m) =2} and M3 =
{x € M:rk (Il 3|7, m) = 2}. These two sets are open in M. Moreover,

ri(M\ (MU M, 3)) =0,
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so it is enough to prove Lemma 4.12 on M;, U M| 3. We claim that there exists a
C-set A C M, ; such that [T} (4) = I1; (M, ;) and dim (A) < 2 (and similarly for
M, 3): consider r > 0 and f, g1, ..., gk € Cy, such that

M, ={xel:f(x)=0,g(x)>0,...,8 (x) >0}.

Let g be the productofall g;, j = 1,...,k, and all (x; —r;) |/, and (r; — x;) |1},
i = 1,2,3. Note that g is strictly positive on all of M|, and identically zero on
fr (M, ). For each a € I1; (M), the fiber M, = 1'[1_1 (@) N M, , is either empty
or a C-manifold of dimension 1. Let 7: R®* — R be the linear projection on the
Xz-axis. Since Iz |y, ,: M12 — R2 is an immersion and IT, | m, is constant, the map
12| M, is an immersion. If follows that, if C is a connected component of M,, then
1, (C) is open (and bounded) in R, which implies that fr (C) # 0.

The last step in the proof is the Fiber Cutting Lemma 4.11. The function g|M,
has critical points on each connected component of M,,, since g is positive on M,
and vanishes identically on fr(M,). Since M, is a C-manifold, it follows from
quasianalyticity (by the same arguments as in the analytic setting) that the set of
critical points of g| M, has empty interior in M,. Let

A = {x € M, ,: x is acritical point of g|M,, a = I1, (x)}.

Then IT; (A) = II; (M,,). Being a C-set, A has dimension. Since A has empty
interior in M| », dim (4) < 2 as required.

4.3 O-minimality and Model Completeness

We can now state the final result of this section: let 7 = UneN Cua-
Theorem 4.14. The structure R r is model complete and o-minimal.

The proof is an application of the techniques of Sect.2: for n € N, we consider
the collection A, = {X C I": X is C-semianalytic}. It is easy to check thatif A C
1" is a C-semianalytic set, then each NV; obtained from Proposition 4.13 can be taken
to be a subset of /"7. Hence every A-set has the A-Gabrielov property.

S Examples and Perspectives

We describe in this last section three o-minimal structures obtained by the above
methods. These examples illustrate several possible applications of Theorem 4.14.
Let us summarize roughly these various points of view.
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1. Certain algebras of functions are known to be quasianalytic. Such is the case
for the algebras studied by Denjoy [7] and Carleman [5]; hence it remains, for
our purposes, to prove that they also satisfy the closure properties (C1)—(C7) of
Sect. 4.1.

2. We may also work in the opposite direction. Consider a real function H for
which we suspect o-minimality (as well as model completeness and polynomial
boundedness). A possible strategy is to consider the smallest collection A (H)
of algebras of real functions containing H (we should speak actually of germs
of functions) and closed under the operations (C1)—(C7), and to prove that these
algebras are quasianalytic.

3. In order to build o-minimal structures that satisfy a given property (such as “not
having smooth cell decomposition”), we look for an appropriate function H
adapted to this property (such as a function that is not piecewise analytic) and
such that the algebras A (H) are quasianalytic.

5.1 Denjoy-Carleman Classes

These families of functions have been studied in [17] from the point of view of
o-minimality, and in [4] from the point of view of resolution of singularities.

Consider a sequence M = (My, My, ...) of real numbers such that 1 < M, <
M, < ---, and assume that M is logarithmically convex (or log-convex for short),
ie., Mi2 < M;_{M;4, for all i > 0. To every compact box B = [aj,bi] x --- X
[an,by], with a; < b; fori = 1,...n, we associate the collection C% (M) of all
functions f: B — R for which there exist an open neighborhood U of B, a C*
function g: U — R such that g|B = f, and a constant A > 0 (depending of f)
such that

‘gm) (x)’ < Alel+1 -My,, forallx e U anda € N",

where |¢| = o) + -+ + o,. We call C% (M) the Denjoy-Carleman class on B
associated to M . Notice that if M; = i! for all i > 0, then C% (M) is the class of
real-valued functions on B that extend analytically to an open neighborhood of B.
A classical result (see [10] for example) states that, under the hypothesis

n

M‘
Y —— =0, (5.1)
s Mi

the algebra C% (M) is quasianalytic: for any f € C% (M) and any x € B, the

Taylor expansion }”\x of f at x determines f among all functions in C% (M).
Hence a possible way to prove the o-minimality of the structure generated by

the algebras C% (M) is to prove the closure properties (C1)-(C7). Unfortunately,
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C% (M) is in general not closed under differentiation. Thus we introduce the classes
Cg(M) = U?’;OC% (M(f)) where M) = (M;.Mjy1,...); these classes are
obviously closed under differentiation and still quasianalytic.

However, to obtain closure under the other operations, we need a stronger
assumption on the sequence M . More precisely, we assume that M is strictly log-
convex, which means that the sequence (M;/i!) is log-convex. We can now state
the main result about these classes, as an immediate application of Theorem 4.14:
foreachn € Nand f € C_;  p» (M), we define f R" — R by f(x) = f(x)if
x € [-1,1]" and f (x) = 0 otherwise. We let Re sy be the expansion of the real
field by all f for f € Ci_;,p (M) and n € N,

Theorem 5.1. If M is strongly log-convex and satisfies (5.1), then the structure
Reary is model complete, o-minimal, polynomially bounded and admits C* cell
decomposition.

Some of the motivations for [17] came from van den Dries: he conjectured that

1. There is no “largest” o-minimal expansion of the real field;
2. There exist o-minimal expansions of the real field that do not admit analytic cell
decomposition.

Let us explain how Theorem 5.1 leads to these statements. As a consequence of
a deep result proved by Mandelbrojt [15], it is known that, given a C* function
f:U — R, where U is an open neighborhood of [—1,1]" and n € N, there
exist strongly log-convex sequences M and N satisfying (5.1), and functions
f € C[O_Ll]n (M) and f, € C[0 na (N) such that f (x) = f1(x) + f>(x) for
all x € [-1,1]" (a complete proof of this statement is given in the appendix of
[17], following indications of [10, Chap. V]; it is based on a detailed analysis of the
relationship between the lacunae of the Fourier spectrum of a periodic function and
its quasianalyticity).

Hence, if the C*° function f is oscillating, we see that the structures Rep)
and R¢(y) cannot admit any o-minimal common expansion. The first statement is
proved.

In order to prove the second statement, consider a C*° function f:[—1,1] —
R whose Taylor series at every x € [—1, 1] is divergent (actually, the set of such
functions is second category in the sense of Baire, see for example [8, 4.3, p. 301]).
Hence one of the two summands f; and f, of Mandelbrojt’s theorem must have a
divergent Taylor series at every x belonging to some open interval / C [—1, 1]. The
corresponding o-minimal structure does not admit analytic cell decomposition.

Remark 5.2. In a recent paper [11], Le Gal gives a new proof of these statements
that completely avoids Mandelbrot’s theorem. His proof is based on a generalization
of the ideas explained in Sect. 5.3 below.
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5.2 Differential Equations and Quasianalytic Classes

Since this topic is developed in F. Sanz’s course included in this volume, we do not
give many details here. We prefer to focus on a simple (though nontrivial) example
as an introduction to the general result.

Consider the differential equation x>y’ = y — x, y € R, with an irregular
singular point at the origin. This equation is usually called Euler’s equation. In
a neighborhood of the origin, this equation admits solutions H:(0,&) — R or
H:(—&,0) — R, for ¢ > 0. These functions are pfaffian, hence they are all
definable in the same common o-minimal expansion of the real field [26]. However,
these results do not imply anything about the model completeness of the structures
Ry for a fixed such H . In order to deal with this question, we establish o-minimality
in a way that does not make reference to [26]. Let us begin by listing some basic
properties of H:

1. For x > 0, the graph of such an H belongs to the so-called node part of the phase
portrait. Every such H is analytic on (0, £) and admits a C* extension on [0, ¢),
with H (0) = 0. Moreover, every such H admits the same asymptotic expansion
at the origin, which is the divergent Euler power series Y, . n!x"*1.

2. For x < 0, only one solution, denoted by Hj, admits ‘a C™ extension on
(—¢,0]. The graph of H, is called a separatrix curve of the phase portrait,
since it separates the dynamics inside the so-called saddle part of the phase
portrait. Again, Hy is analytic on (—¢, 0), and admits the Euler power series as
an asymptotic expansion at the origin.

3. For x < 0, the other solutions can be written as

H (x) = Hy(x) + Cexp(—1/x),

for C € R\ {0}. Hence they diverge to 00 as x goes to 0.

More involved is the following observation: the series H (x) =Y, on!x"tis
a Gevrey series of order 1. This means that its Borel transform

BH @)=Y e =

n>0

is analytic at the origin. In this case, the function BH is meromorphic on C and
bounded outside any neighborhood of { = 1, with a simple pole at { = 1. Thus,
we can compute its Laplace transform in every direction d but the real positive axis,
according to the formula

~ ~ d
H, () = L4BH (z) = /dexp (—z¢) %
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The classical theory of Borel-Laplace transforms says that the function Hy is
defined on an open sector S; based at the origin, bisected by d, and with opening
equal to 7. Moreover, H 4 is a solution of Euler’s differential equation and admits
the Euler series as a Gevrey asymptotic expansion at the origin. (We refer the reader
to Balser [1] for details on Gevrey functions.)

We remark that the functions H 4, for d # R_, have complex (non real) values
when restricted to the positive axis. Therefore, the only real solution of Euler’s
equation obtained by this Laplace-Borel process is Hy_ = Hy, which corresponds
to the separatrix.

It turns out that such real functions, obtained via a Borel-Laplace process, are
definable in the Gevrey structure Rg introduced by van den Dries and Speissegger
in [23]. They prove that Rg is o-minimal, model complete and polynomially
bounded. This result is mostly based on the quasianalyticity of the algebras of real
Gevrey functions they consider.

We can deduce—without any reference to pfaffian results—that the structure Rz,
is o-minimal and polynomially bounded. What about its possible model complete-
ness? Based on the fact that H| satisfies sz(; (x) = Hy(x) — x and, therefore,
that H| is existentially definable in Ry, there is a possible way to prove the
model completeness of Rz,, along the following lines: at some point of their proof,
van den Dries and Speissegger use a version of Weierstrass preparation. We can
replace this tool by the normalization process of Sect. 4. Each step of this process
needs the introduction of functions or sets that are existentially definable in Ry, :
Taylor’s formula, the implicit function theorem, monomial division, etc. Moreover
the next step, which leads from normalization to the A-Gabrielov property, is mostly
based on the Fiber-cutting Lemma, which also introduces existentially definable
sets. These “book-keeping” observations lead to an explicit version of the process
described in these notes (see [17] for the details), which in turn implies the model
completeness of Rp,,.

Finally, what can we say for the structures Ry when H # H,?

1. Consider first the solutions H:(0,&) — R of the node part of the saddle-node.
For such H, we consider the smallest collection A (H) of algebras containing
H and closed under the operations (C1)—(C7) of Sect. 4, and we prove that these
algebras are quasianalytic (see Sanz’s notes in this volume for details). Hence
Theorem 4.14 implies that the corresponding structure Rz is o-minimal, model
complete and polynomially bounded.

2. We already mentioned that the solutions H: (—&,0) — R of the saddle part of
the phase portrait can be written as H (x) = Hy + C exp (—1/x). Although it is
proved in [23] that the structure R g, exp is 0-minimal and model complete, this
does not imply that Ry is model complete. As of today this question is still open.
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5.3 O-minimal Structures Without Smooth Cell Decomposition

Many attempts to prove the existence of such a structure were inspired by the
construction of a Hardy field that contains nonsmooth elements. But it is not that
easy in general to prove that the methods used in the Hardy field framework extend
to the o-minimal setting. This goal was achieved in [12], using a slight variation of
Theorem 4.14.

In this section, we first recall one of the possible classical constructions of a
Hardy field that contains germs of not ultimately C*° functions. Then we show how
some of the ideas of this construction may be adapted to the o-minimal context.

5.3.1 A Hardy Field Containing Elements That Are Not C*

Recall that a Hardy field is a differential field of germs at +-oc of continuous real
valued functions; for an introduction to Hardy fields, we refer the reader to [16].
Hence, if the germ of a function belongs to a Hardy field there exists, for each
integer k, a neighborhood of +oc in which this function is C*. But this does not
imply that this function is C* in a neighborhood of +o0.

One of the ideas of such a construction is the following well known fact: the
germ at +o00 of a function f: Ry — R generates a Hardy field provided that every
elementof R[ £, /7, f”,...] (the ring of differential polynomials in f') is ultimately
never zero (and thus its germ at 400 is invertible). Here the function f will be
defined as the sum of two functions f (x) = F (x) + e *g (x), where

1. F is anon-oscillatory analytic function at infinity. More precisely, every nonzero
differential polynomial in F is equivalent at 400 to a monomial cx™7, with
¢#0and p e N;

2. g(x) = (sin2 )x, forx € Ry.

Let us explain how F may be defined. Consider a sequence (a;) of real numbers
that are algebraically independent over Q and such that the radius of convergence of
the series Y a; 7' is positive. Thanks to Lindemann’s theorem, such a sequence can
be obtained by considering the sequence b; = exp (p;), where p; is the i-th prime
number, and defining a; = exp(p;) /N;, where the N; are integers big enough
to guarantee the convergence of the series. Finally, let F (x) = Y 72 a;x". In
addition, another classical result of Hardy fields due to Rosenlicht [19] allows us
to choose F' such that every nonzero differential polynomial in F' admits a nonzero
principal part.

On the other hand, it can be proved (by straightforward computation) that the
germ of g at +oo admits, for every positive integer k, a C* representative, but that
g is not ultimately C*°. Moreover, for every m € N and every polynomial g €
R [Xo, X1, ..., Xum], we have
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Q(f,f’,...,f('")) :q(F’.“,F(m))

N
+ 3T (F A fl F, f0)

J=1

for finitely many polynomials Q1,..., Q. Hence the left-hand side is, at infinity,
a flat oscillating perturbation of the differential polynomial ¢ (F JF',...,F (’”)).
Since the latter polynomial admits a nonflat principal part at +oo, the same follows
for g ( LS f (’”)). Therefore, the germ of f at 400 generates a Hardy field.
Moreover, f is not ultimately C*, since g (x) = e* (F (x) 4+ f (x)) is not. This
finishes the construction.

Remark 5.3. Let us point out some interesting aspects of the above example. Two
goals need to be achieved simultaneously:

1. The non-oscillation of every differential polynomial in f. The dominant part F'
of the sum f (x) = F (x) + e *g (x) is designed for this purpose;

2. The fact that f is not ultimately C*°. This property is satisfied thanks to the
behavior of the flat perturbation e ™ g (x).

More precisely, the non-oscillatory behavior of F has to “resist” any polynomial
differential operation. This differential transcendence property is guaranteed by the
algebraic independence of the coefficients a;. Actually, this is mostly a property of
the formal power series Y_ b; 7', which is finally transformed into a convergent series
after the division of the coefficients b; by convenient integers.

Having in mind the construction of an o-minimal structure, we wonder if the
non-oscillation property “resists” not only the differential polynomial operations,
but also any definable operation. We shall see in the next section that this is indeed
the case. Finally, in order for the function f to generate an o-minimal structure, we
also need to know that f has correspondingly good behavior at every point of its
domain other than 4-o0.

Thus, in order to guarantee good local behavior of the function at every point,
the construction given in [12] of an o-minimal structure without smooth cell
decomposition is based on a somewhat different approach. As explained in the
next section, the two previous goals are achieved through a non-oscillatory function
whose germ at 0 is not C°°, and which has polynomial behavior everywhere else.

5.3.2 An O-minimal Structure Without Smooth Cell Decomposition
The main object of the construction proposed in [12] is a function H:R — R
satisfying the following properties:

1. The germ of H at 0 admits, for every non-negative integer k, a C¥ representative
(we will say that H is weakly C* for short);



Construction of O-minimal Structures from Quasianalytic Classes 105

2. The restriction of H to the complement of any neighborhood of 0 is piecewise
given by finitely many polynomials (piecewise polynomial for short);

3. The coefficients of the Taylor expansion of H at 0 are algebraically independent
over Q;

4. The germ of H at 0 is not C*°.

We then prove:

Theorem 5.4. Consider a function H:R — R that satisfies properties 1., 2. and
3.. Then the structure Ry is o-minimal and polynomially bounded.

Remark 5.5. 1. This result can be made more precise as follows: if H denotes the
collection of all derivatives H®) of H (defined in a neighborhood I; of 0), then
the structure Ry, is model-complete.

2. If the function H satisfies the extra hypothesis 4., then the structure Ry is
an o-minimal expansion of the real field that does not admit smooth cell
decomposition.

Construction of the function H. Let us explain the main steps of the construction.
Consider, as in Sect.5.3.1, a sequence (a;) of real numbers algebraically inde-
pendent over Q. The following operation is the main difference with the previous
construction of a Hardy field with nonsmooth elements. We do not demand the series
> a; x' to have a positive radius of convergence; indeed, we are not interested at all
in the possible convergence of this series.

We adapt instead a construction due to Borel, which states that, given any power
series H (x) € R[[x]], there exists a C*° function H:R — R whose Taylor
expansion at 0 € R is the series H (x) (see for example [14]). Of course, the
main point in this section is precisely to avoid C* functions. Therefore we build
H in the following way. For every integer i, let P; be the polynomial P; (x) =
(1—x)" (14 x)". For ¢ € [0, 1], we define

X' P (%) isx e (—e¢),

! 0 otherwise.

The functions v{ satisfy two main properties, where /, := (—¢, ¢) and | - ||, denotes
the mth Whitney norm on /:

1. For 0 < m < i, we have v € C" (I), (vf)(m) (0) = 0 and vaH; — 0 when
& — AO;

2. () (0) = it.

We now define, by induction on i € N (see [12] for details), numbers &; > 0 and

b; € R, such that &; — 0 and the functions i; = Y, _ bvi* satisfy

(hi_l + bivf)(i) (0) =ila; and ||b,-vfi ||f’_l < zil
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Therefore, for any m > 0, the series Y b;v:" is || - ||Z»-uniformly convergentin 7, .
It defines a weakly C* function H on (—1, 1) that is not C* on the sequence ¢;.

From algebraic transcendence to quasianalyticity. The algebraic independence
of the coefficients of the Taylor series of H at the origin implies actually much more
than the differential transcendence of H . It implies, indeed, that the elements of the
smallest collection of algebras of germs at 0, containing the germ of H and closed
under the operations (C1)-(C7), are quasianalytic.

More precisely, we introduce, for every n € N, the algebra WV, of weakly C*°
germs at the origin of R”, and we let A (H) be the smallest collection of algebras
A, (H) C W,, n € N, satisfying the following conditions:

1. The germ of H belongs to A;(H), and the germs of all polynomials in n
variables belong to A, (H);

2. If f € A,(H), and if f; denotes the restriction of f to the hyperplane x; = 0,
fori = 1,....,n, then the germ which continuously extends (f — f;)/x; at
0 € R™ belongs to A, (H);

3.1fg1,....gm € Ay(H) and f € A, (H), then f(g1 — g1(0),....8m — gu(0))
blongs to A, (H);

4. Ifn > 1land f € A,(H),letg(x) = f(x)— f(0) —x,0f/0x,(0) + x,, , so that
0g/0x,(0) = 1. Then the germ ¢ € W,_; defined by g(x, ¢(x)) = 0 belongs to
-An—l (H)

We then prove:

Theorem 5.6. Consider a weakly C* function H:R — R such that the coefficients
of its Taylor expansion at 0 are algebraically independent over Q. Then the algebras
A, (H) are quasianalytic.

This result guarantees good behavior, in the spirit of Theorem 4.14, of the
algebras of definable germs at the origin. The good behavior of the algebras of
germs at any other point is a consequence of the piecewise polynomial nature of H
outside the origin. The adaptation of Theorem 4.14 to this context is explained in
detail in [12, Sect. 3].

Let us conclude this section by saying a few words on the proof of Theorem 5.6.
The operations (C1)—(C7) are expressed in [12] in a language of operators acting on
the algebras of weakly C* germs. More precisely, an elementary operator is one of
the following, where n, m denote non-negative integers:

. The sum and the product acting on W, x Wj;

. The natural embedding W, — W, +1;

. For any ¢ € R, the constant operator W; — W) defined by f > c;

For 1 <i < n, the coordinate operators W, — W, defined by f > x;;

. The monomial division operators W, — W, defined by f + D; (f), where
i €{l,....n}, D;(f) is the germ at 0 € R”" of the continuous extension of
(f — fi)/xi and f; denotes the restriction of f to the hyperplane {x; = 0};
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6. The composition operators W,, x W) — W, defined by
(f 81engm) — [ (€= 81(0).....8n — gn (0):

7. The implicit function operators W, — W, defined, forn > 1, by f +— ¢,
where ¢ € W,_; is the germ characterized by ¢ (0) = 0 and g (x’, ¢ (x”)) =0,
with x’ = (x1,...,x,—1) and

g=f—f0)—x,9f/0xu (0) + xy.

An operator is a finite composition of elementary operators. Note, for instance,
that partial differentiation with respect to a coordinate is an operator. Moreover,
given a germ H € W, and a positive n, for every element g € A, (H) there exists
(at least) one operator £ such that L (H) = g.

The main tool in the proof of Theorem 5.6 is to consider, for every operator
L acting on W,, x --- x W, the corresponding formal operator L acting on
Rilx1, ..., x5,]] X -+ x R[[x1,...,x,,]], defined in the same way as a finite
composition of elementary formal operators. Indeed, the algebras A, (H) are
quasianalytic provided that E/(—ﬁ ) = 0 implies £ (H) = 0, for every operator L.

Why is the algebraic independence of the coefficients of the series H required?
Roughly speaking, the idea is to “forbid” H to belong to the kernel of any nonzero
formal operator, and to deduce the quasianalyticity of the algebras A4, (H) from the
implications

Z(FI) —0=L=0=—L=0.

The second implication is proved in [12] and called quasianalyticity for op-
erators. The first one holds for some operators (we have already mentioned in
Sect.5.3.1 that such a series H is differentially transcendental), but is obviously
wrong in general: for example, the Schwarz operators 9%/dx;dx; — 9*/dx;0x;

vanishes identically over the rings of formal power series. However, the following
related result is proved in [12]:

Lemma 5.7. Consider a formal series H (x) = Y H:x' € R[[x]] whose coeffi-

cients are algebraically independent over Q, and let L be a formal operator such
that E(H) = 0. Then there exists an integer N > 0 such that

L (x4 + 6" E () =0
forall g (x) € R[[x]].
Thus, the formal operator
ﬂ:?(x) = Z(hlxN + .- +thN +xN+1/g\(x))

is identically zero. Because of the quasianalyticity property for operators mentioned
above, the operator M, which acts on W, is also identically 0. In particular, if
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g € W, is defined by
H(x) =hix +-+hyx" +x¥g (x),

we have £ (H) = 0. Hence the quasianalyticity of the algebras A, (H) is proved.

Acknowledgements Supported by the Fields Institute for Research in the Mathematical Sciences
and the Université de Bourgogne.

References

1. W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential
Equations. Universitext (Springer, New York, 2000)
2. E. Bierstone, P.D. Milman, Semianalytic and subanalytic sets. Inst. Hautes Etudes Sci. Publ.
Math. 67, 5-42 (1988)
3. E. Bierstone, P.D. Milman, Canonical desingularization in characteristic zero by blowing up
the maximum strata of a local invariant. Invent. Math. 128, 207-302 (1997)
4. E. Bierstone, P.D. Milman, Resolution of singularities in Denjoy-Carleman classes. Selecta
Math. (N.S.) 10, 1-28 (2004)
. T. Carleman, Les Fonctions Quasi-Analytiques (Gauthier Villars, Paris, 1926)
. J. Denef, L. van den Dries, p-adic and real subanalytic sets. Ann. Math. 128(2), 79-138 (1988)
7. A. Denjoy, Sur les fonctions quasi-analytiques de la variable réelle. C. R. Acad. Sci. Paris 123,
1320-1322 (1921)
8. J. Dugundji, Topology Allyn and Bacon, Inc., Boston, Mass. 1966
9. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic
zero. I, II. Ann. Math. 79(2), 109-203 (1964)

10. Y. Katznelson, An Introduction to Harmonic Analysis. Cambridge Mathematical Library, 3rd
edn. (Cambridge University Press, Cambridge, 2004)

11. O. Le Gal, A generic condition implying o-minimality for restricted C°° functions. Ann. Fac.
Sci. Toulouse XIX, 479-492 (2010)

12. O. Le Gal, J.-P. Rolin, An o-minimal structure which does not admit C*° cellular decomposi-
tion. Ann. Inst. Fourier 59, 543-562 (2009)

13. S. Lojasiewicz, Sur les ensembles semi-analytiques, in Actes du Congres International des
Mathématiciens, (Nice, 1970), Tome 2 (Gauthier-Villars, Paris, 1971), pp. 237-241

14. B. Malgrange, Idéaux de fonctions différentiables et division des distributions, in Distributions,
ed. by Ec. Polytech (Palaiseau, 2003), pp. 1-21. With an Appendix: “Stanislaw Eojasiewicz
(1926-2002)”

15. S. Mandelbrojt, Sur les fonctions indéfiniment dérivables. Acta. Math. 72, 15-29 (1940)

16. C. Miller. Basics of O-minimality and Hardy fields. in Lecture Notes on O-minimal Structures
and Real Analytic Geometry, Fields Institute Communications, Springer Verlag, 62, 43-69
(2012)

17.J.-P. Rolin, P. Speissegger, A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and
o-minimality. J. Am. Math. Soc. 16, 751-777 (2003)

18. J.-P. Rolin, F. Sanz, R. Schifke, Quasi-analytic solutions of analytic ordinary differential
equations and o-minimal structures. Proc. Lond. Math. Soc. 95, 413-442 (2007)

19. M. Rosenlicht, Hardy fields. J. Math. Anal. Appl. 93, 297-311 (1983)

20. J.-C. Tougeron, Sur les ensembles semi—analytiques avec conditions Gevrey au bord. Ann. Sci.
Ec. Norm. Sup. 27, 173-208 (1994)

21. L. van den Dries, Tame Topology and O-minimal Structures (Cambridge University Press,
Cambridge, 1998)

AN



Construction of O-minimal Structures from Quasianalytic Classes 109

22. L. van den Dries, P. Speissegger, The real field with convergent generalized power series. Trans.
Am. Math. Soc. 350, 4377-4421 (1998)

23. L. van den Dries, P. Speissegger, The field of reals with multisummable series and the
exponential function. Proc. Lond. Math. Soc. 81(3), 513-565 (2000)

24. L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields
with exponentiation. Ann. Math. 140(2), 183-205 (1994)

25. A.J. Wilkie, Model completeness results for expansions of the ordered field of real numbers
by restricted Pfaffian functions and the exponential function. J. Am. Math. Soc. 9, 1051-1094
(1996)

26. A.J. Wilkie, A theorem of the complement and some new o-minimal structures. Sel. Math.
(N.S.) 5, 397421 (1999)



Course on Non-oscillatory Trajectories

Fernando Sanz Sanchez

Abstract Non-oscillatory trajectories of vector fields are discussed, and some
sufficient conditions are established that make the expansion of the real field by
such a trajectory o-minimal.

Mathematics Subject Classification (2010): Primary 03C64, 34C08, 34M40,
Secondary 34C10, 34C45, 37C10, 34E05, 34M30

This paper consists of notes for one module of the graduate course
“Multisummability and Quasi-analyticity” during the Thematic Program on
o-minimal Structures and Real Analytic Geometry at the Fields Institute for
Research in Mathematical Sciences, January through June 2009. The author
thanks the Institute for the delightful reception, hospitality and unbeatable working
conditions.

1 Introduction

These notes are framed in the general ideology of the Thematic Program on
o-minimal Structures and Real Analytic Geometry, roughly speaking, the study
of finiteness properties of “transcendental” objects arising from natural problems
in mathematics. “Natural problems” is an undefined term; they can be differ-
ential equations (ordinary or partial), foliations, diffeomorphisms, normalization,
integration, analytic continuation, etc., where the coefficients and parameters
of the problem belong to some well-behaved category: algebraic, real analytic,
holomorphic, Gevrey, quasi-analytic, etc.

ES. Sanchez (<)

Facultad de Ciencias, Department of Algebra, Geometry and Topology,
University of Valladolid, Prado de la Magdalena s/n, E-47005 Valladolid, Spain
e-mail: fsanz@agt.uva.es

C. Miller et al. (eds.), Lecture Notes on O-minimal Structures and Real Analytic 111
Geometry, Fields Institute Communications 62, DOI 10.1007/978-1-4614-4042-0_4,
© Springer Science+Business Media New York 2012



112 ES. Sanchez

Before being able to do something reasonable, we have to specify the type of
problem we have in mind. Then we have to rule out those objects arising from the
problem (solutions, trajectories, leaves, accumulation sets, ...) that are apparently
poorly-behaved enough to produce an infinite number of connected components
when manipulated by the usual geometric constructions. We keep the remaining
objects and study to what extent they really do have good geometric or topological
finiteness properties. In the best case, we would like to know whether they are
definable in some o-minimal expansion of the real field (see [31] for an introduction
to o-minimal structures). In particular, we investigate whether the sets generated by
those transcendental objects by standard boolean operations, cartesian products and
projections have only finitely many connected components.

One example for which this program can be achieved quite satisfactorily is
the case of pfaffian sets. They arise from pfaffian systems or codimension-one
foliations with singularities, expressed locally by a differentiable integrable one-
form with real analytic coefficients. The objects to study are (bounded) leaves of
these foliations. We rule out those leaves that do not satisfy the so-called Rolle
condition (see [18]). A Rolle leaf has the following non-oscillatory property: Its
intersection with any relatively compact semi-analytic curve has only finitely many
connected components.

More than that, it turns out that Rolle leaves have all the good finiteness
properties that we expect: all of them are definable in some o-minimal expansion
of the real field [14, 28, 29].

In these notes, we are dealing with the “dual problem” in terms of the dimensions:
we consider one-dimensional foliations with singularities, locally expressed by
a real analytic vector field and the transcendental objects are trajectories of the
vector field (also called orbits or integral curves). This time we have to rule out
those trajectories that are oscillatory in the sense that they intersect some relatively
compact analytic hypersurface infinitely many times (the non-oscillatory condition
for trajectories is the dual of the corresponding non-oscillation property related to
Rolle leaves).

Of course, if the ambient space has dimension two, Rolle leaves and
non-oscillatory trajectories are essentially the same thing. But we will see in these
notes that non-oscillatory trajectories are more complicated in higher dimensions
from the point of view of definability: contrary to Rolle leaves, they may not all
be definable in the same o-minimal structure (see Example 6.8 below), nor does
the non-oscillation property suffice for o-minimality for individual trajectories
(see Example 6.19 below).

A leaf of a one-dimensional foliation is locally an analytic curve at each of its
points. We are interested in what happens at its accumulation points. In considering
non-oscillatory trajectories, we skip the situation where they accumulate to a limit
cycle or more generally a polycycle. This is a very important situation that is crucial
for understanding the dynamics of planar polynomial or real analytic vector fields.
Yet, the interesting objects arising from this situation (the natural problem) is not the
spiraling one-dimensional leaves accumulating to the polycycle themselves, but the
Poincaré first return map associated to a small (half) transversal to the polycycle.
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Fig. 1 General setting

This map itself is susceptible to having tame, finiteness or o-minimal properties;
see, for example [12].

Non-oscillatory trajectories cannot accumulate to several points in the ambient
space and our problem is a local one. Thus, the general setting that we consider in
these notes is this (Fig. 1):

M is a real analytic smooth manifold, p is a point in M, X is a real analytic vector field
in a neighborhood of p with X(p) = 0 and y : [0, 00[— M is an integral curve (i.e.,

%(z‘) = X(y(t)) for any ¢t > 0) such that p is the unique w-limit point

w(y) = lim y(@) = p.

Almost all properties studied in these notes only depend on the image |y| of y and
not on the particular parametrization. In this way, we can (although we rarely do)
replace the vector field X by the (singular) 1-dimensional foliation Ly generated
by X. Also, we are only interested in asymptotic properties of y at p, that is, in the
germ of |y | near the point p.

Before going into the study of tame and o-minimal properties of non-oscillatory
trajectories, we want to treat the vague question of “how bad” or “how good” can
y behave asymptotically when it approaches its limit point without making too
many further assumptions on y. More ambitiously, we want to study the problem
of describing the local dynamics of real analytic vector fields in neighborhoods
of singular points. The attempt to tackle this question, especially for the three
dimensional case, has led quite recently to some partial but interesting results
where many different techniques in the theory of dynamical systems, real geometry,
reduction of singularities and asymptotic expansions are involved. A considerable
part of these notes is devoted to a presentation of several aspects of these themes
of research. Many details and definitions are included, so that these notes could
be useful for beginners in the research of o-minimal properties of solutions of
differential equations but without a deep background on geometry of dynamical
systems or reduction of singularities.
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The plan of these notes is the following. In Sect. 2 we motivate several concepts
and definitions by reviewing the well known two-dimensional case. In Sect.3 we
introduce properly all the concepts and review some of its properties. In the next
two sections we deal with the study of trajectories of a three-dimensional vector
field accumulating to a singular point with the aim of finding a common qualitative
behavior of a whole “package” of similar trajectories: Sect. 4 deals with oscillatory
trajectories and the existence of twister axes and Sect.5 deals with the existence
of linked and separated packages of non-oscillatory trajectories. Finally, Sect. 6 is
devoted to a general theorem about o-minimality of non-oscillatory trajectories in
any dimension under certain conditions.

We have striven to make the text self-contained, but we do assume that the
reader is familiar with the basic foundations of dynamical systems and differential
equations; see, for example, the classical book of Hartman [8] or the more
elementary book [19]. At those parts of the text where we need more specific results,
such as the Theorem of the Center Manifold or summability of formal solutions of
ODEs, we provide appropriate references. Also, we assume that the reader has a
sufficient background on real analytic geometry (Hironaka’s notes [10] are a very
good source; we recommend also of Bierstone and Milman [2]). For o-minimal
geometry, we recommend the book of van den Dries [31].

2 Dimension Two

Fix a trajectory y : [0,00[— R? of a real analytic vector field X on some
neighborhood of 0 € R? such that w(y) = 0.

Proposition 2.1 (Dichotomy in dimension 2). Exactly one of the following holds
(see Fig.2):

ey has a well defined tangent at 0; that is, there exists the limit

im y(1)
1—oo || y(t) ||’

 y spirals around O; that is, if we write y(t) = r(t)e'?? in polar coordinates,
where r(t) =|| y(t) ||, 0(t) = arg(y(t)), then

lim 6(t) = fo0.
—>00

There is an equivalent definition of spiraling for trajectories of analytic vector
fields which will be convenient for us later. Recall that given a half-line £ at O (not
containing the origin), the “local sides” of £ in R? can be roughly defined as the two
connected components of the complement of £ in a sufficiently small open sector in
the plane with the origin as the vertex whose interior contains £.
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Existence of tangent Spiraling

Fig. 2 Dichotomy in dimension 2

Fig. 3 Definition of spiraling

Claim. The trajectory y spirals around O if and only if, for any half-line £ at 0,
y intersects infinitely many times £ and, for sufficiently large ¢ (depending on £),
always transversally and in the same “direction”, that is, passing from a given side
to the other side of £ (see Fig. 3).

Proof of the claim: 1t is easy and standard. The “if” part is even true for parametrized
analytic curves y : [0, oo[— R?\ {0}: the hypothesis implies that if we fix ) € R
there exists a sequence {f, } in R going to +-o0 with {#,} = {t / 6(¢t) = 6y mod 27 Z}
and, moreover, we can suppose that %(t,,) > 0 for every n. Thus, since 6 is
continuous, 0(t,+1) — 0(t,) > 27 Vn and then lim,_, o, 0(¢) = +o0. For the “only
if” part we need the hypothesis that y is a trajectory of an analytic vector field.
It goes as follows. From lim, ., 8(f) = foo we infer that y intersects infinitely
many times any given half-line £. In order to prove that this intersection is ultimately
transversal and in the same “direction” we can use the analytic parametrization
p > pe'®, p €]0, e[ of £ and the function ¢(p) =< '@+ X(pe!®) > where
X is the vector field and <, > denotes the usual scalar product in R?. It extends
analytically to p €] — ¢, ¢[ and it is not identically zero (otherwise £ would be a
trajectory of X). On the other hand, ¢ vanishes at the corresponding value p of a
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point where y does not intersect transversally £. Also, ¢ has a sign at any transversal
intersection point p which depends only in which local side of £ you came from
when y crosses £ through p. Thus, if y changes the transit of sides between two
intersection points, ¢ vanishes at the corresponding p of some intermediate point.
These considerations prove that y crosses £ ultimately transversally and always in
the same “direction”. a

Proof of Proposition 2.1.- Write the vector field X locally at 0 as X = a(x, y)a_i +
b(x,y) % where a, b are analytic in a neighborhood of the origin. Given a trajectory
y of X accumulating to 0, if we write in polar coordinates r(z) =|| y(¢) || and
y(@)/r(t) = €D e S, with 6:]0, co[— R continuous, the functions r(t), 6(¢)
satisfy the system of differential equations

i = rk(A(0) + O(r))
6 = r*"'(B(0) + O(r)). 2.1)

Here k is the multiplicity of X at the origin (the minimum of the orders of a and b)
and A, B are 2m-periodic functions. Moreover, A, B are not both identically zero
(they are defined by the formulas

xag + ybr = r*TYA0), —yar + xby = r*T'B(6)

where ay, by are the homogeneous parts of a, b, respectively, of degree k). We need
to show that either lim, .o, 6(¢) exists in R (y has a tangent) or lim,, o, 8(¢) = £o0
(y spirals). We have two cases to consider.

Dicritical case: B() = 0. Both equations in the system (2.1) can be divided by r*
and then, after division, the new system is such that the points (r, 8) = (0, 6y) for
which A(6p) # 0 are non singular. On the other hand, y is, up to reparametrization,
part of a trajectory of this divided system, since the induced foliation over the half
space {r > 0} by the original system or by the divided one is exactly the same. The
conclusion is that lim,_,, 0(¢) exists and y has a tangent.

Non-dicritical case: B(8) # 0. The function B has finitely many zeros modulo
2nZ,say 0 < 0 < --- < 6, < 2m. Since r(t) goes to zero while ¢ goes to infinity,
for any ¢ > 0 sufficiently small there exists z, >> 0 such that 6(¢) is monotone for
every ¢ > t, for which 6(¢) belongsto U; /. +2xZ where I;, = [0;_1+¢,0; —¢],
j = 1,...,n (and where we set 8y = 0,). Moreover, the sign of the derivative of
0(t) inside each interval /;, + 27/ depends only on j and not on ¢ or /. We have
only two cases:

1. If 6(¢) is increasing (or decreasing) in every ;. for j = 1,..., n then either the
graph of 6 is included in one of the strips R.¢ x (16, —¢,6; + ¢[+2nl) or 0
diverges to 400 (or —oo). Since ¢ is arbitrarily small, we conclude the result in
this case.
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Fig. 4 Opposed monotonicity between strips implies existence of tangent

2. If 6(¢) has different monotonicity when it takes values in /. or ;1 for some
J then € can not pass from the strip R.o x ([0;—1 + &,0; —¢] 4+ 2n]) to R x
([0; + &.0; 41— €] + 2xl) or viceversa. This implies that §(¢) remains bounded
when ¢ goes to infinity (see Fig.4). Since it can not have any value of I, + 27 Z
as an accumulation value by monotonicity, if we make & — 0, we conclude that
lim; o0 O(t) exists and it belongs to {61, ..., 0,} + 27 Z. |

If there exists a trajectory y with w(y) = 0 having a tangent then any other
trajectory y” with w(y’) = 0 has also a tangent at the origin (otherwise, y’ would
be a spiraling trajectory and it would intersect infinitely many times the trajectory
y, which is not possible). Thus, the dichotomy stated in Proposition 2.1 is not just
for single trajectories but for the whole set of trajectories of a given vector field that
accumulate to the origin. One can go one step further in the spiraling case in the
sense that a spiraling trajectory forces that any other trajectory in a neighborhood
also accumulates to the origin. Let us state this result as follows:

Proposition 2.2. If y is a spiraling trajectory of an analytic vector field X at the
origin 0 € R? then there exists a neighborhood U of 0, positively invariant for X
such that any trajectory of X issued of a point in U \ {0} accumulates to the origin
and spirals around it.

Proof. Take a half-line £ through the origin and a neighborhood U sufficiently small
such that X is transverse to £ N U and 0 is the only singularity of X inside U.
Let y(#1), y(t2) € £ two consecutive points where y intersects £. The C'-piecewise
curve C given by y |}, »,) and the segment [y(t1), y(f2)] C £ is a Jordan curve. Let
U be the bounded connected component of R? \ C. It contains the origin. First, ¢,
being greater than ¢, we must have y(f,) is closer to zero than y(¢;) (see Fig.5).
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Fig. 5 Spiraling dynamics
in dimension 2

On the other hand, a trajectory )’ issued of a point in U can not cross C forwards,
so it remains in U and U is positively invariant. For such a trajectory y’, the omega-
limit set w(y’) is a compact connected invariant set contained in U. It can not be
a periodic orbit of X (otherwise, since this orbit must contain a singularity in its
interior, it circumscribes 0 and then, C lying outside the orbit, y must intersect it,
which is impossible). Hence w(y’) = 0 and so y’ spirals around the origin. O

Returning to our original purpose, the only trajectories (accumulating to a single
singular point) of analytic vector fields in dimension two susceptible to form
moderate geometry are those having a well defined tangent in their limit point. These
class of trajectories contains any relatively compact semi-analytic curve. Can we say
more about trajectories with a tangent? Do they really form a moderate geometry?
The answer is yes: they have all good properties that we expect from analytic or
semi-analytic curves.

First of all, we have the following important consequence of having a tangent.

Proposition 2.3. A trajectory y with a well defined tangent at 0 € R? is non-
oscillatory, that is, given an analytic curve C at the origin, y is either contained in
C oritintersects C only finitely many times.

Proof. Suppose that y intersects infinitely many times a (local) connected compo-
nent C’ of C \ {0} but it is not contained in C’. We can see C’ as an embedded
smooth one-dimensional submanifold of R? which is closed in an open sector S
around the origin bisected by the tangent direction of C’ and of opening less than
27. Thus S \ C’ have two connected components, the “local sides” of C’. We can
moreover suppose that y has the same tangent direction at the origin as the curve
C’ so that y |[.c0[ remains inside S for 7y sufficiently large. Now, using the same
kind of arguments that in the proof of the claim above, we find an infinite number of
points in C’ where C’ is tangent to the vector field X : either y intersects tangentially
C’ at infinitely many points or it intersects transversally changing the sides between
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Fig. 6 Oscillation with
tangent creates tangent points

two consecutive hits (see Fig.6). But then, since the set of points of C’ where
X is tangent to C’ is a semi-analytic subset of C’, if this set contains infinitely
many points it coincides with C’ and C” itself is invariant by the vector field. This
contradicts the fact that y intersects C'. O

We summarize in the following statement all that we can say about finiteness
properties of trajectories of vector fields in the plane.

Theorem 2.4 (Finiteness properties of trajectories in dimension 2). A trajectory
y of an analytic vector field such that w(y) = 0 € R? is non-oscillatory if and only
if it has a well defined tangent. Moreover, there exists an o-minimal expansion of the
real field in which every such trajectory is definable.

The last sentence on this theorem is much more involved. It can be obtained
using the remark that, in dimension two, a non-oscillatory trajectory of an analytic
vector field is also a Rolle’s leaf of the generated foliation. After that, the result
follows from the o-minimality of the structure generated by Rolle’s leaves, as we
have mentioned in the introduction.

3 Definitions and Generalities

In this section we review briefly well known concepts and results concerning
blowing-ups and vector fields that we will need throughout these notes. As well,
we investigate some new concepts about trajectories in general suggested by the
study of the two-dimensional case in the precedent section.
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3.1 Blowing-Ups

The orientable blowing-up at 0 € R" is the map

p:RxS~! > R"
(r, ) = ry.

It is a local diffeomorphism outside the exceptional divisor {0} x S"~! which is
mapped to the origin. This map is not injective but 2-to-1 outside the divisor. In order
to obtain an isomorphism outside the divisor, we have two options. If we want to
maintain orientability, we consider the restriction

pT iRy x S" ! - R”

so that our new ambient space is not longer an analytic manifold but and analytic
manifold with boundary. If we want to avoid borders, we consider the standard
(projective) blowing-up at 0 € R" defined as the map = : R" — R” obtained from
p by identifying points in R x §"~! according to the rule

r=r"and y =y
o0~ (' x) < or
r=—r"and y = —y
The quotient space R” is a real analytic n-dimensional manifold. It is covered by
affine charts (Uk,gk = (x{‘, .. ,x,’f)), k = 1,...,n (that is, the range of gk is the
whole affine space R") characterized by the fact that the blowing-up 7 is written in
U as

k kL k ko ok ok ok k ko k
T(XT) = (X7 X5 ey X X5 X X X s o0 Xy X ).

The exceptional divisor of the blowing-up 7 is E = 7~ !(0) =~ P%~! which is given
in the chart Uy by the equation £ = {x,’j = 0}.

The projective blowing-up is more suitable if we want to define it in other ground
fields different from the real one or if we want to extend it to other real manifolds.
More precisely, if M is an n-dimensional manifold and p € M, we define the
blowing-up of M at the point p by means of local charts as follows. Let¢ : U — R”
be a local chart of M centered at p and let V' = ¢ (U). Consider the disjoint union
manifold M \ {p} U x~'(V) and let M be the quotient space of this union by the
identification

g~ ($(q). q€U\{p}

We have that M is an analytic n-dimensional manifold and we define the blowing-up
asthemap 7, : M — M givenby mp(q) = qifq € M\{p} C M and,(E) = p.
The definition of the blowing-up at p depends on the particular choice of the chart.
However, if 7, : M > M s 71’;) : M’ — M are two different such blowing-ups,
then there exists a diffeomorphism ¢ : M — M’ such that ]T; o¢ = m,; thus we
can (and we will) identify them.
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LetY = {x; = --- = x, = 0} C R" with r > 2. We define the (orientable,
respectively projective) blowing-up of R" with center Y as the map

ny:n"xidy:Rg"xYaR"szR”

where 7" is the (orientable, respectively projective) blowing-up of R” at the origin.

Finally, let M be areal analytic manifoldand ¥ C M a closed embedded smooth
analytic submanifold of pure codimension r > 2. Let p € Y. Choose an affine
coordinate chart ¢ : U — R" of M at p forwhich Y NU = ¢~ '({x; = --- =
x, = 0}). Then, by definition, a (local) blowing-up of M with center Y at the point
p is the composition

2l R x¢¥nU) SR LUl M

where 7 is the inclusion and 7 is the projective blowing-up in R" with center
p(Y n U)!

3.2 Vector Fields Under Blowing-Ups

Let X be an analytic vector field in a real analytic manifold M and let p € M be a
singular point of X. Let 7, : M — M be the blowing-up at p. It is not difficult to
see using the charts of the blowing-up that there exists a vector field X on M, called
the total transform of X by mp, such that

(7,):X = X.

If the multiplicity of X at p is at least two then the exceptional divisor
E = n;l(p) is contained in the singular locus of X. Usually, we do not want to
have a singular locus of codimension 1. We can proceed locally as follows. If ¢ € E,
there is a chart of M at ¢ in which E has the local equation {x = 0} and there is a
natural number s > 0 such that X = x*X’ where X' is not identically zero at E.
This vector field X' is called the strict transform of X (by m,) at the point q. It is
not defined in the whole manifold M.

If we want to work with global objects, it is convenient to consider the
1-dimensional foliation £’ generated by the strict transform X’ at any point which
is well defined in M. The foliation £’ is called the strict transform (by p) of Ly,
the 1-dimensional foliation in M generated by X . Two cases can occur:

1Of course, we can define more general concepts of blowing-ups such as the (global) blowing-up
of M with center Y if Y is closed, or even only assuming that Y is a closed analytic set, possibly
with singularities (see [10]). However, we will not use these generalizations in this work.
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Fig. 7 Existence of tangent

1. The divisor E is invariant by £’ (called non-dicritical case). In this case, leaves
of Ly, except for the singular leave {p}, correspond isomorphically to leaves of
L' that do not intersect E.

2. The divisor E is generically transversal to £ (called dicritical case). In this case,
leaves of L, except the singular leave {p}, correspond to leaves of the restriction
of £ to M \ E and, generically, these leaves can be analytically continued
through the point { p} (and then they are semianalytic sets in M at the point p).

Similar concepts of total and strict transform of a vector field X exist for the
(local) blowing-up with an analytic smooth center which is invariant for X.

3.3 Parameterized Curves

Let p € M and let y : [0, +oo[— M be a parameterized analytic curve such that
y(t) # p Vt and such that its w-limit set

o(y) = [ ({t. o)

>0

is reduced to the single point p. Denote by | y |C M the image set of y.

3.3.1 Existence of Tangent

We say that y has a tangent at p if, denoting by 7| : M} — M the blowing-up with
center p, the lifting parameterized curve y; = ;' oy : [0, +00[— M| has a single
o-limit point p; € E; = 7' (p) (see Fig. 7). We say also that p; is the tangent of
y at p.Itis a well defined point (up to isomorphisms between different blowing-ups
as we have explained in the Sect. 3.1).
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Fig. 8 Iterated tangents

3.3.2 Iterated Tangents

We say that y has all iterated tangents if, recursively, y has a tangent at p, equal to
P1, then the lifting curve y; of y has a tangent at p;, equal to p,, etc. (see Fig. 8). The
sequence of points I7(y) = { pu}n>0, With po = p, is called the sequence of iterated
tangents of y. As in the case of the tangent, it is well defined up to equivalencies
between point blowing-ups.

3.3.3 Limit of Tangents

We say that y has the limit of tangents if there is an analytic coordinate chart of M
at p so that we can suppose that M = R" and p is the origin and the following limit
exists
im —),/(t) es!
i=oo || p(1) ||
where the dot denotes the derivative with respect to the parameter ¢. It is worth to
mention that this definition does not depend on the coordinate chart.

3

3.3.4 Oscillation

We say that y is non-oscillatory at p (with respect to the analytic sets) if for any
given local analytic hypersurface H of M at p, there exists 7y > 0 such that either
y([ty, 00[) C H or y([to, 00]) N H = @ (see Fig. 9). Equivalently, we can (and we
will) use the following definition: for any germ f of analytic function at p, either
f oy =0or f oy isinvertible in the ring of germs of continuous real functions at
t = +o0.
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Fig. 9 Oscillating
parameterized curve

3.3.5 Flat Contact

A subset I' C M is said to be an analytic half-branch at p if there exists a real
analytic map « :] — &, e[~ M with «(0) = p and an open neighborhood U of p in
M such that

rnvU = «(o, gf).

Equivalently, the germ of I at p is the germ of a connected component of C \ {p}
where C is a one-dimensional semi-analytic set in some neighborhood of p in M
and p € C. The local parametrization « of I" can be supposed to be a Puiseux’s
parametrization; that is, written in some analytic coordinates at p in the form

als) = (1 (5), ... an_1(s),55),

where k > 1 is a natural number and «; is analytic in | — ¢, e[ with o;(0) =
0, for j = 1,...,n — 1. The minimum such k is called the multiplicity of T at
p. We will say that T is not singular at p if, in some analytic coordinates (x =
(x1,...,x,—1), z) centered at p, we have (as germs)

F={x1=x2=---=x,,_1=0,z>0}.

Equivalently, the multiplicity of " is k = 1.

If 1y : My — M is the blowing-up at the point p, I'j = 7~ '(I') is called
the strict transform of I' by m,. It is not difficult to see using a parametrization o
that T intersects the exceptional divisor in a single point p, called the tangent
of I at p, and that I'| is an analytic half branch at p;. Continuing in this way, we
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define the sequence I T (I') = {p, }»>0 of iterated tangents and the sequence of strict
transforms {I',},>0 of I (with po = p and 'y = TI'). There is a classical result in
resolution of singularities of curves (see for instance [34]) that asserts that there is
no such that, for any n > ny, the point p, in the sequence of iterated tangents of I" is
a regular point of the exceptional divisor and the strict transform I',, is non singular
at py.

We say that a parameterized curve y with a single @-limit point p € M has a
flat contact with an analytic half branch T" at p if y has all the iterated tangents and
IT(y)=1T(T).

Remarks 3.1. (1) Having all iterated tangents does not imply flat contact: consider

for instance the mentioned example of the graph of x +— xﬁ, x > 0, for

which the sequence of iterated tangents does not correspond to the one of a real
analytic curve.

(2) The name “flat contact” is motivated by the following property whose proof is
left to the reader. Suppose that I' is not singular at p, that is

F:{xlzxzz---:xn_lzo’z>0}

in some coordinates. Write y in these coordinates as y(t) = (x(¢), z(t)). Then
y has flat contact with I' iff, for any N € N, we have

X1l _

m =
=00 |z(1) |V

(3) If y has flat contact with an analytic half-branch at p then there are exactly
two germs of analytic half-branches at p with respect to which y has flat
contact. To see this, we can suppose, after resolution of singularities as we
have explained before, that I" is non singular. This means that the germ of I"
is one of the two connected components of the germ of C \ {p} where C is an
axis of some system of coordinates. By definition, y has flat contact with both
components. Using Lojasiewicz’s regular separation property [15], these are the
only analytic half branches with this property.

Remark 3.2. Notice that all the concepts defined above: existence of tangent,
iterated tangents, limit of tangents, non-oscillation, flat contact, depend only on the
germ of the set | y | at the point p and not on the particular parametrization or the
origin t = 0 of such a parametrization.

We summarize the relations between these properties in the following
proposition.
Proposition 3.3. Let y : [0,00[— M be an analytic parameterized curve with
w(y) = {p}. Then:

(i) | y | is an analytic half-branch at p = y is non-oscillatory = y has the
iterated tangents = y has a tangent.
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(ii) v has the limit of tangents = y has a tangent.

(iii) If'y is a trajectory of an analytic vector field on a neighborhood of p then y is
non-oscillatory = y has a limit of tangents.

(iv) If y is a trajectory of an analytic vector field on a neighborhood of p and,
moreover, n = 2, then the properties: non-oscillatory, having a tangent, having
iterated tangents and having a limit of tangents are all equivalent for y.

Parts (ii) and (iii) are concerned with the concept of existence of limit of tangents
which is not going to be used in the sequel; the proof of them, as well as examples
showing that the reciprocal implication in (ii) is not true or that the hypothesis of
being a trajectory in (iii) can not be dropped, can be seen in [25].

Notice that part (iv) has been already proved in Sect.2. The hypothesis of y
being a trajectory is essential: take for instance the graph of the function x
exp(—1/x)sin(1/x), for x > 0, as a parameterized curve in the plane having the
property of iterated tangents but oscillating.

For part (i), the first implication is a classical result in real analytic geometry;
the reciprocal of the first implication is not true in general, even for trajectories:
consider the graph of the function x +— xﬁ, for x > 0, (the image of) a non-
oscillatory trajectory of the vector field X = —(xd/dx + ~/2yd/dy) which is not
an analytic half branch.

The third implication in (i) is obvious and, again, the reciprocal implication is not
true, even for trajectories of analytic vector fields (in dimension higher than two, by
part (iv)); the reader is encouraged to look for his own examples.

In what follows, we give the details of the proof of the second implication of
part (i); that is, non-oscillatory = iterated tangents. In the next section, we study in
which manner the reciprocal of this implication is not true for trajectories of analytic
vector fields in dimension three.

Suppose that y has not the property of iterated tangents. Then there exists a
sequence of blowing-ups 7y : M — My_1,k = 1,...,r at points pp_; € Mj_;
(with My = M, po = p) such that the lifting y, = nk_l o yk—1 has a single
limit point py € My fork = 1,...,r — 1 but y, = nr_l o yr—1 has at least two
different w-limit points p’, p” € M,. Without loss of generality we can suppose
that My = R” and that there exists a chart ¢ : U — R” of M, centered at p’ such
that the composition 77 0 --- 0 7, 0 ¢~! : R" — R” is a polynomial map. Since
p’ € w(y,), the image of y, intersects any neighborhood of M, at p’; on the other
hand, since p” is also a w-limit point, y, leaves eventually any sufficiently small
such neighborhood. So, there exists § > 0 such that y, intersects infinitely many
times the hypersurface in U

Hy =¢ ' (xf+ x5 + -+ x;, = 68)).
By Tarski’s Theorem ([30]), H = 7 o---om,(H,) is a semialgebraic hypersurface

in R" and so it is contained in an analytic hypersurface of M with respect to which
y is oscillating. |
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We finish this section with the following result

Proposition 3.4. Suppose that y is a trajectory of an analytic vector field on M
such that w(y) = p and that y has a flat contact with an analytic half-branch T'.
Then T is an invariant curve of X .

Proof. By the theorem of resolution of curves, we can suppose that I" is non singular
at p. We can also assume that there exists a transversal divisor E invariant for X.
In local coordinates (x = (xj,...,X,—1),2) we can write I' = {x = 0,z > 0},
E ={z=0}and

n—1 n—1 9 9

X ;[a, @) + ;xja,, (x,2)] o, + za(x,z) .

The branch I' is invariant if and only if a; = O fori = 1,...,n — 1. Suppose that
this is not the case. Then, there exists N > 0 such that a; (z) = z" b;(z) and one of
the b; satisfies b; (0) # 0. At the tangent point py, we can choose the standard chart
of the blowing up (y = (y1,..., Yu—1), ') such that the composition 771 o - - - 7y is
written as

x=27"y, z=17.

A simple calculation shows that the strict transform of X at py is given by

n—l1 n—1
0 d
/o / N / / N /
Xy = ;[m) + ];y,-b,-,-(z ¥y + 7@y
where the bij are analytic at the origin. We obtain by the hypothesis about the
b; that py is not a singular point for X ]’\, But this is a contradiction with the
fact that the lifting yny of y is a trajectory of X z/v (up to re-parametrization)

and w(yn) = pn. |

4 Oscillation, Spiraling, Twisters

In this section we restrict ourselves to the situation of dim M = 3. The source for
the contents of this section is the paper [3].

4.1 The Results

We have already seen that, in dimension two, a trajectory of an analytic vector field
having a tangent is non-oscillatory, that these two properties are in fact equivalent
and imply the existence of all iterated tangents (among other stronger properties
such as o-minimality). This equivalence is not longer true in dimension three or
higher: oscillation and iterated tangents can coexist for trajectories of analytic
vector fields.
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Fig. 10 Oscillating
trajectories with iterated
tangents

Example 4.1. Consider the following polynomial vector field in R?

0 d d
X=(x—y)—+(y+x)——7"—.
( Yoz T )ay 2w
A trajectory y of X issued of a point in the half space {z > 0} can be explicitly
parameterized by the coordinate z as

7z (Cexp(—1/z) exp(i/2), 2),

where C is a real non zero constant and where we have identified R* to C x R in
the usual sense. Then any such y satisfies w(y) = 0 € R?, has flat contact with the
analytic half axis {x = y = 0,z > 0} (by Remark 3.1, (2)) and is oscillating with
respect to any plane containing the axis (see Fig. 10).

In the example above oscillation can be somehow described in terms of
“spiraling” around the vertical axis. The following results from [3] assert that,
essentially, this is always the case for oscillating trajectories in dimension three if
we have iterated tangents.

Theorem 4.2 (Existence of spiraling axis). Let y be a trajectory of a real analytic
vector field in a three dimensional manifold M such that w(y) = p € M and
suppose that y has iterated tangents at p and it is oscillating. Then there exists
a (unique) analytic half branch I at p such that y has flat contact with I' and y
spirals around T" (see Fig. 11). The half branch T is called the spiraling axis for y.
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Fig. 11 Existence of the
spiraling axis I"

Fig. 12 Twister axis

Theorem 4.3 (Twister axis). Suppose that an analytic half branch T is the
spiraling axis for some trajectory y and assume that T ¢ Sing(X). Then there
exists an open subanalytic > set V of M containing the germ of ' at p which is
positively invariant for X and satisfies the property that any trajectory issued of a
pointin V accumulates to p and spirals around T (see Fig. 12). When this behavior
occurs we say that I is a twister axis and that V' is a twister domain of X at p.

For further use, given an analytic vector field X in a neighborhood of some point
p € M and an analytic half-branch I" at p (not necessarily a spiraling axis), we
will say that I is non-degenerated (for X ) if (the germ of) I' is not contained in the
singular locus Sing X of X.

2Following carefully the details of the proof of Theorem 4.3 in [3], one can suppose, furthermore,
that the twister domain V' is semi-analytic.
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Fig. 13 Definition of r
semi-analytic triangle over '

The second result, Theorem 4.3, can be viewed as the analogous in dimension
three to Proposition 2.2: the existence of a spiraling trajectory forces the rest of
trajectories in certain domain to spiral. In this sense, a twister axis is for the vector
field what René Thom has called a “centre organisateur de la dynamique”.

Before starting the proof of these theorems, we need to give a precise meaning
to the phrase “y spirals around an analytic half branch I'”. The concept of spiraling
trajectory in dimension three generalizes the one of spiraling trajectory in dimension
two, namely the definition formulated in the claim after Proposition 2.1 in Sect. 2.
We start with the definition of what we call semi-analytic triangles over I' which
play the role of half lines in dimension two.

Definition 4.4. Let ' = «(]0, 1[) be an analytic half branch at some point p of a
three dimensional manifold M. A semi-analytic triangle (over T") is a pair (W, T)
(see Fig. 13) where, for some 0 < ¢ < 1,

e W is an open semi-analytic set containing I'y = «(]0, &]).

e T is a smooth connected semi-analytic embedded surface of W \ T’ with Iy C
T =T\ T.

e The triplet (W, T, T';) is homeomorphic to

(R2x]0, e[, R x]0, ¢[, {0}x]0, &]).

We remark that, given a semi-analytic triangle (W, T'), there exists an open
neighborhood V' of T in W which is divided by T into two connected components,
V*,V~, called the local sides of T in W.

Definition 4.5. Given a parameterized curve y with w(y) = p and an analytic half
branch I' at p, we say that y spirals around I' or that I is the spiraling axis for y if
for any semi-analytic triangle (W, T') over I" there exists #, > 0 with the properties:
y(t) € Wtoranyt > tyand y ||, 00f intersects 7" infinitely many times transversally
and passing from one given local side of T to the other.
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4.2 Some Technical Properties of Semi-analytic Triangles

The proofs of Theorems 4.2 and 4.3 involve some known facts about the geometry
of semi-analytic sets, applied to semi-analytic triangles. In what follows, we
formulate these facts and will be content to indicate just the key arguments in order
to prove them.

Let I" be an analytic half branch at p € M given in some coordinates (x, y, 7)
by a Puiseux’s parametrization

t— (x(),y(@),t"), t€]0,1],

where n > 1 and x(¢), y(¢) are analytic functions at ¢t = 0. Consider the sequence
{Wi }k>0 of semi-analytic open sets

W= 100/ =@+ 0 —y@F <4 0<z< !

They are “sharper and sharper” and “smaller and smaller” while k — co.
Proposition 4.6. The sequence {W}} has the following properties.

1. Each Wy is an open neighborhood of the germ Ty of I at p and for any open
semi-analytic neighborhood W of Ty there exists ko such that Wy, C W.

2. If A C M is a semi-analytic set and Ty ¢ A then there exists ko such that
Wiy N A = @ forany k > k.

3. Let A C M be a semi-analytic set of dimension two such that Ty C A. There
exists ko > 0 such that, if Ry, ..., R, are the connected components of Wy, N
(A\ (T' N W), then, for any k > ko,

o The pair (W, R;) is a semi-analytic triangle over I fori = 1,...,s.
e Fori,j e{l,...,s}, we have either R; = R or
(Wi, Ri, R;, T N W) 2, (RZxRT RT x {0} x RT,R™ x {0} x R™,
{(0,0)} x R™).

(We will say simply that the two triangles (W, R;), (Wi, R;) are compatible).

Parts (1) and (2) are quite standard. They use the regular separation property
of semi-analytic sets [15]. Part (3) is a bit more involved and uses semi-analytic
stratifications adapted to the semi-analytic sets Wy, A, A, " that satisfy good regular
Whitney’s conditions [9]. A complete proof of Proposition 4.6 can be seen in [25].

Corollary 4.7. If y spirals around T" then y has flat contact with T'. Therefore,
there is at most one spiraling axis of a given trajectory of an analytic vector field in
a three dimensional manifold.
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Proof. By Definition 4.5, for any k > 0 there exists #x > 0 such that y |, oo
is ultimately contained in Wj; by (1) in Proposition 4.6, using resolution of
singularities, we can suppose that I is non singular and then Remark 3.1, (2) gives
he result. a

Corollary 4.8. The concept of axial spiralling is stable by blowing-up points:
suppose that y spirals around T at p and let 71 ©: M’ — M be the blowing-up
with center at p. If y', T denote the strict transform of y, T by m respectively then
y’ spirals around T' at p' € M, the tangent point of y.

Proof. The curve y’, considered as a trajectory of an analytic vector field up to
re-parametrization, is oscillating and has iterated tangents. By Theorem 4.2, it has
an spiraling axis and, by Corollary 4.7, this spiralling axis is I |

4.3 Outline of the Proof of Theorem 4.2

In this paragraph we sketch the proof of Theorem 4.2, complete details can
be viewed in the reference [3]. We fix an oscillating trajectory y in dimension three
with iterated tangents and we have to prove that it has a spiralling axis. There are
two parts in this theorem. First, the existence of an analytic half branch I such that
y has flat contact with I' and, second, that I" is actually an spiralling axis according
to Definition 4.5.

4.3.1 Existence of I'

Let H be an analytic hypersurface at p € M with respect to which y is oscillating,
thatis, | y |¢ H and fi(] y | NH) = oo. (Notice that we are implicitly assuming
that H has real dimension two as an analytic set.) Let { f = 0} be a reduced local
equation for H where f is analytic in some neighborhood of p in M. We can
suppose, taking irreducible components, that the germ of f at p is irreducible.

Consider the set Z = H N {df(X) = 0}, called the locus of (generalized)
tangencies. It is the set of points in H where either H or X is singular or X
is tangent to H. We can suppose that Z (its germ at p) is an analytic set of
dimension one: otherwise, either H is singular at any point (which is prevented
by the hypothesis of irreducibility of f), or H is everywhere tangent to X
(which is prevented by the fact that the trajectory y intersects H but it is not
completely contained inside H). Thus, Z consists of several analytic half branches
Z\,Zy, ..., Z,.

After a blowing-up 7 : M — M at the origin, we re-localize the problem at
the tangent point p; of y. Consider the strict transform X’ of X at p; and the strict
transform H' = w~!(H \ {0}) of the surface H. It is easy to observe that the new
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Fig. 14 Behavior of tangencies after blowing-up

locus of generalized tangencies Z!) at the point p is given by the strict transform
of several of the branches Z;,, ..., Z; and, perhaps, the curve Y, intersection of H’
with the exceptional divisor (see Fig. 14).

We claim that y has flat contact with one of the branches Z;. If this is not
the case, after several blowing-ups, by the previous remark about the behavior of
the locus of tangencies, restricting to a ball centered at the corresponding tangent
point of y, we can assume the following situation: M = R3, y accumulates to the
origin and is contained in a connected component  of the complement in R? of a
union E of coordinate planes (the created divisors) and the locus of tangencies Z
is contained in E. Thus, since Z contains the singularities of H, H N 2 is a non-
singular surface closed in €2. We conclude, since €2 is simply connected, that every
connected component of H N €2 separates €2 in two connected components (called
the sides of the component).

Now we can use the ubiquitous Rolle’s argument. Take H; one of the components
of H N Q having infinitely many intersection points with | y |. Since y intersects
transversally Hj, it passes from one side to the other side of H;. Take two
consecutive points p,qg €| y | NH; and o : [0,1] — H; a C'-path connecting
them (see Fig. 15). Since X “points” in opposite directions at p and ¢ it must be
tangent at some point of /m (o), obtaining then the desired contradiction.

4.3.2 T is a Spiraling Axis for y
We have to prove that y spirals around I" according to Definition 4.5. We use the

properties stated in Proposition 4.6 about the family of semi-analytic neighborhoods
{Wi}tofthegerm [hof "at p € M.



134 ES. Sanchez

Fig. 15 Rolle’s argument
applied to the component H

Let (W, T) be a semi-analytic triangle over I". Property (1), says that there exists
k such that Wy, C W. Also, y stays inside Wy for ¢t > 0 since it has flat contact
with I". On the other hand, property (3) (for A = H U T) implies that there exists a
connected component R of H N W \ T such that

1. (W, R) is a semi-analytic triangle.
2. (Wi, R) and (Wi, T N W;) are compatible.
3. y intersects R infinitely many times.

We can, moreover, suppose that X is transversal to R and 7" (because for some k big
enough W does not intersect other branches of tangencies between X and H or T
but I'). Thus y intersects transversally R infinitely many times. We have to show that
it intersects also T transversally infinitely many times and always from one given
side to the other side of T in Wj. The arguments are the usual topological ones
that we have already used for the spiraling in dimension two. Take two consecutive
intersection points y(z1), y(f2) € R so that the arc C =]y (#1), y(©2)[C Wi \ R.
We know also that y(¢; + ¢€), y(t> — €) are in opposite sides of R inside W; for
¢ sufficiently small. On the other hand, (W \ R) \ (T U I') has two connected
components 21, 2, and each of them contains a different side of R in W. Thus
C NT # @ which proves that y intersects infinitely many times 7" since it intersects
infinitely many times R. Moreover, each side of R or T is contained in exactly one
of the components 21, €2, and this gives us the desired conclusion that y passes
from one given side to the other of T'. This finishes the proof of Theorem 4.2. [

Using similar arguments as above with semi-analytic triangles we can prove the
following corollaries (see [3,4] for details).

Corollary 4.9 (Characteristic property of spiraling). Let y be a trajectory of an
analytic vector field in a three dimensional manifold M such that w(y) = p and let
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I' be an analytic half-branch at p. Then y spirals around T if and only if for any
semi-analytic set S of dimension 2 we have

IvCS & i(y|NnS) = occ. 4.1)

Corollary 4.10 (Spiralling around a non-singular axis). Suppose that ' is non
singular and given in local coordinates at p by I' = {x = y = 0,z > 0}. Put
cylindric coordinates x + iy = re'® and write y(t) = (r(t)e’®®, z(t)) witht > 0
in these coordinates. Then y spirals around U if and only if we have the properties

r(t)

00 2(1)N

=0 VYN = 0and lim 6(1) = %oo.
—>00

4.4 Outline of the Proof of Theorem 4.3

4.4.1 Vector Fields in Pre-final Situation

First we analyze a “reduced” situation of the theorem.

Let X be an analytic vector field in a neighborhood of a point p in a three
dimensional manifold and let I" be an analytic half-branch at p which is invariant
and non-degenerated for X (I" Z SingX), not necessarily a spiraling axis.

Definition 4.11. (1) We will say that X is in pre-final situation (with respect to T’
if there are coordinates (x, y,z) at p suchthatI' = {x = y = 0,z > 0} and
the vector field X is written as

q
. d
X = Zz’ Li(x,y) + 20Ty — 41— 4.2)
= 0z

where

*qz1,

e Li(x,y) = (a;x + b,-y)% + (cix + diy)% is a linear vector field,

e Lo(x,y) is not nilpotent,

e Y =A(x,y,2) % +B(x,y,z) % is a family of two-dimensional vector fields
tangent to the fibers {z = c¢st} and A(0,0,z) = B(0,0,z) = 0.

(2) We will say that X is in final situation (with respect to T') if, furthermore,
we have that either every L, = ak(x% + y%) is radial or the first Ly,
k € {0,...,q}, which is not radial has different eigenvalues (has not a two-
dimensional Jordan block).

Notice that, in particular, I' is a non-singular half-branch and then spiraling
around I" can be detected by using cylindrical coordinates (x, y,z) = (re'?,z) asin
Corollary 4.10. On the other hand, since I' is non-degenerated, I" is the image of a
trajectory that accumulates to the singular point p.
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The Example 4.1 in the beginning of this section is a vector field in pre-final
situation with respect to the z-axis. As we have shown, the z-axis is in this case a
twister axis and the half-space {z > 0} is a twister domain.

The rest of this paragraph is devoted to the proof of the following particular case
of Theorem 4.3.

Proposition 4.12. Suppose that X is in pre-final situation and that T" is an
spiralling axis for some trajectory vy, then there exists § > 0 such that the open
set Ds = {x> +y? < 8,0 < z < 8} is a twister domain for X ; that is, Ds is
positively invariant and any trajectory issued of a point in Dg \ T" accumulates to p
and spirals around T.

Proof. First, we claim that the eigenvalues of L are (non-zero) complex conjugate
numbers. Suppose, otherwise, that the eigenvalues of L, were two distinct real
numbers A # u. Choose the coordinates such that Ly = Ax% + uy%. If we
write in cylindric coordinates

yo(t) = (x(0), y(1),2(1)) = (r(0)e’"V, 2(1))
then we would have the equation for 6
(1) = (u — A) sinO(r) cos O(¢) + O(z(t)) + O(r(1)).

and thus, the function 6(z) would change its monotonicity from increasing to
decreasing between the strips [0; + ¢, 0,41 — €] where 6, = nl/2,] = 0,1,2,3
mod 7 and ¢ > 0. This prevents 6 to diverge to +00 or —oo and thus y, would not
spiral.

Notice that, due to the component —z¢719/3z in (4.2), any trajectory in a given
domain of the form Ds can be parameterized by z. This means that trajectories of
X are in one to one correspondence with the solutions of the following system of
ordinary differential equations

(s) ? :—Xq:sz-(x)_zqﬂ(/l(x,y,z))
& =\ B(x, ,7)

(this time we consider L; as the matrix (?/ Z()). In particular, we write yy(z) =
J %I

(x0(2), ¥0(2), 2) where (x¢(z), yo(z)) is a solution of (S). By the hypothesis that y,

spirals around I', we have that xo, yo are defined for any 0 < z < § and, if we put

x0(2) + ivo(z) = ro(z)e’®@ then ry(z) /7" — 0 Vn and 6y(z) — 00 when z — 0.
We consider two cases.

Case Spec Ly = {1, A} with A # X (non real eigenvalues).- First, the reader can
check that, after a suitable change of coordinates

(x,y) » (x,y)(Po + 2Py + -+ 27 Py),
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where P; is a two-by-two matrix with Py invertible, we can suppose that all L;,

j =0,...,q, are of the form (aj —b; ) The hypotheses of non-real eigenvalues
i 4

means with this notation by # 0. If we put p = r

equations (S) we obtain

2 = x2 4 y2, from the system of

Zq+1 dp "
(S,) T —plao +aiz+ -+ ayz") +2770(p).

A priori, we have the following possibilities:

(i) The first coefficient a; different from zero is positive.
(i) ap =a; =---=ay—1 = 0,a, <O0.
(iii)) ap =a; =---=ay = 0.
(iv) Forsome0 <s <g—1,a; <0anda; =0for0 < j <s—1.

If we were in case (i), j—’; is negative along any trajectory if z sufficiently small; in
particular, the function py(z) = xo(z)> + yo(z)> would not have limit equal to 0
when z tends to 0, contradicting the hypothesis w(yy) = 0. If we were in case (ii),
po(z) > C zV for certain constants C, N > 0 which would contradict the fact that Yo
has flat contact with T". If we were in case (iii) we could prove also that py(z) does
not tend to 0 when z — 0.

Thus, we are necessarily in case (iv). Notice that in this case ¢ > 1. We obtain
from equation (S,) that there exists some C > 0 such that, if 0 < p < § with §
sufficiently small,

1dp C

0< 0 dz < g
This, in turn, implies two things. On one hand, Dy is positively invariant since X
is transversal to the border of Dj in the positive half space {z > 0} and points into
the interior of Djs; on the other hand, for any solution z — p(z) of equation (S,)
there exists K > 0 with 0 < p(z) < K exp(—%). Thus, any trajectory y inside
Ds, being parameterized for any 0 < z < § accumulates to the origin and has flat
contact with I' by Remark 3.1.2. Moreover, since the equation for the angle function
0 = arctan y/x is

do
(Ss) zq“d—z = by + 0(2),

we have 6(z) — £oo when z — 0. Using Corollary 4.10, any trajectory issued of a
point in Dy spirals around I'.

Case Spec Ly = {1}, a single non-zero real eigenvalue.- Notice first that A < 0,
otherwise no trajectory of X in the half-space {z > 0} can accumulate to the
origin. Moreover, using similar arguments as above, for § > 0 sufficiently small,
Dy is positively invariant and any trajectory y inside this domain has flat contact
with I'. In order to prove that y spirals around I' it suffices to prove that it is
oscillating and then apply Theorem 4.3. Contrary to the previous case, the linear
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part Ly of the vector field alone is not responsible here for the oscillation of those
trajectories. We present here a proof that uses some dynamical arguments based on
classical results from the theory of Center Manifolds; in the next section we will
sketch another proof which only uses some algebraic manipulations of the system
of ordinary differential equations (S).

Let 7 : M’ — M be the polar local blowing-up with center Y = {x = y = 0}.
Every trajectory y in Dy (except I itself, of course) has a lifting  in M’ ~ S' x
R x Y which is a trajectory of the total transform X of X by 7. Since w(y) = 0,
we have w(7) C E = n~1(0) ~ S!. It suffices to show that w(y) = E. We have
that E is invariant by X and either entirely composed by singularities (when L is
diagonalizable) or with only two singular points (when L is not diagonalizable). On
the other hand, from the hypothesis and taking the appropriate charts of the blowing-
up, one can prove that the cylinder C = 7~ '(Y) ~ S' x R is a global center
manifold along E; that is, an invariant manifold for X whose tangent space at any
point ¢ of E is the (generalized) eigenspace corresponding to the zero eigenvalue of
the linear part of X at ¢.> The general theory (see [6, 13] for a proof) says that for
any trajectory 7 of X there exists a unique trajectory oy, called the accompanying
trajectory, inside C to which y is exponentially close in terms of the parametrization
by time, i.e., for some A,a > 0, we have

I V(1) —03(2) ||= Aexp(—at). (4.3)

Now, the accompanying trajectory oy, of the lifting ¥ of yy must accumulates to
the whole E since Yy is spiraling. This implies that any other trajectory inside
C, in a sufficiently small neighborhood of E, also accumulates to the whole E.
This forces any trajectory y to accumulate to the whole E, as we wanted to prove
(see Fig. 16). O

4.5 Stability of Spiraling by Blowing-Ups

In order to prove Theorem 4.3 in the general case, the strategy is the following: given
a vector field X and I' a non-degenerated spiraling axis of X for some trajectory y,
at some point p, we want to reduce to the situation of a vector field in pre-final
situation by means of analytic transformations that preserve the spiraling behavior.
Then we will construct a twister domain for X at p as the image of some twister
domain of the vector field in pre-final situation of the form Ds by the map obtained
by the composition of those transformations. In what follows we precise the kind

3Rigorously, this is only the case if E C SinNg()? ); otherwise, we have to say, more correctly, that
C is a normally hyperbolic invariant set of X (see [11,27]). The conclusions about accompanying
trajectories are, however, the same.
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C=r""({x=y=0})

=

{x=y=0}

Fig. 16 Spiraling and accompanying trajectories

of transformations needed to achieve this reduction. For the most part of the time,
they are blowing-ups with center either a point or a local analytic curve; eventually,
we will need some real ramifications over surfaces which does not intersect the
spiraling axis.

Definition 4.13. Let I be an analytic half-branch at some point p in a three
dimensional manifold M. A map & : M — M is said to be a basic I"-admissible
morphism if it is of one of the following forms:

e 1 is the blowing-up at p.

e Alocal blowing-up along a curve: there exists a one-dimensional smooth analytic
submanifold Y € M with Y N T and a chart (U, (x, y,z)) centered at p such
that Y N U is a coordinate axis and 7 is the composite of the blowing-up 7y :
M — U with center Y N U and the open immersion U — M.

e A g-ramification: there exists a chart (U, (x, y,z)) at p, with I' C {z > 0}, and
¢ € Nxj such that 7 is the composition of the ramification (x, y,z) — (x, y,z%)
by the open immersion U — M.

Evidently, =7 '()isan analytic half-branch at some p € M , called the (strict)
transform of I' by . A I'-admissible morphism is a composition of basic admissible
morphisms for I' and its successive transforms.

The following proposition is a consequence of the characteristic property of
spiraling, Corollary 4.9, and other arguments in subanalytic geometry similar to
those used in the proof of Theorem 4.2 (notice that the blowing-up with a smooth
closed center is a proper map [10]).

Proposition 4.14. Suppose that y is a trajectory of an analytic vector field X on
M such that w(y) = p and suppose that y spirals around an analytic half-branch
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. Letw : M — M be a basic T-admissible morphism. Then y = n~" oy satisfies
the properties:

1. o(J) = p e M.

2. | 7 | is a leave of a 1-dimensional foliation on M ; hence, up to re-parametriz-
ation, it is a trajectory of an analytic vector field X ona neighborhood of p
(called the strict transform of X by m).

3.y spirals around T.

Moreover, T is a twister axis for X if and only lfl:‘ is a twister axis for X.

4.5.1 General Case

The reduction to the pre-final situation is given in several steps.

Step 1. By blowing-up points, using resolution of singularities of curves, we can
suppose that I' is non-singular. So we assume that p is the origin of R? and that, in
some local coordinates, ' = {x = y = 0,z > 0}.

Step 2. We can suppose that the linear part Dy X of the vector field at the origin is
not zero. In order to prove this, write

and put ¢ + 1 = ord,(c(0,0,z)). Then ¢ is finite since " is non-degenerated.
If DX = 0, we consider the blowing-up m; at the origin and take standard
coordinates (x1, y1,21) at the tangent point p; of I' such that

X = X121, Y =)i1Z1, 2=11- 4.4

As we have explained in the Sect. 3.2, there exists s; > 0 such that 711* X=X =
z)' X{ where X is the strict transform. We have that the number ¢ + 1 drops strictly
for X|. Thus, after a finite number of steps we can assume Do X # 0.

Step 3. With the same notations as above, we can suppose that ¢ > 1. To see this,
if ¢ = O then I is tangent to an eigenvector of the linear part Dy X with non-zero
eigenvalue A. Necessarily A < 0 since the existence of y, implies that I" is itself a
trajectory accumulating to the origin.

By a point blowing-up and coordinates at the tangent point p; of I' as in
(4.4), the linear part transforms into

d 0
DoX(x,y,2) »» DoX(x1,y1,21) + X17— + yi—.
0x1 ay

After several of these blowing-ups, Dy X has two positive eigenvalues and a negative
eigenvalue. This means that X has a hyperbolic singularity at the origin. By the
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Fig. 17 Hyperbolic saddles r
has no spiraling axis

classical Hartman-Grobman theorem, the dynamics is topologically the same as a
linear saddle in R with a two-dimensional stable variety and a one-dimensional
unstable variety. This prevents the existence of yy since I is the only trajectory of
X accumulating to the origin contained in the same side of the unstable manifold as
I (see Fig. 17).

Step 4. We can suppose that the coefficient of d/0dz for the vector field is just
—z9%1, This is justified by the following computations. Take coordinates as in (4.4)
at the tangent point of I" after blowing-up the origin. The total transform equals the
strict transform of X since its multiplicity is equal to 1. The monomials transform
according to the rules

Zum3)dv v TS0y, U™z v U0/ 0z,

where we have used the notation u, v € {x, y}. After finitely many transformations
of this type we can write

X=U- |:L0(x,y) +zLi(x,y) + -+ 27L4(x,y) — 7t {8% + Y}:| , (4.5)

where L;(x, y) is a linear vector field in the variables (x, y), U(0,0,0) # 0 and
Y = A(x, y,2)0/0x + B(x, y,z)d/dy with Y(0,0,z) = 0.

Step 5. The vector field in (4.5) is already in pre-final situation if the linear
part Lo(x,y) is non-nilpotent. Suppose otherwise that Lo(x,y) = yd/dx (by
hypothesis Ly # 0). Write also, for j > 1,

d 0
LjG.y)=(ajx+bjy)o—+(c;x+ de)@-
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If ¢; = 0, we consider the blowing-up 7 with center the local invariant curve Z =
{y = z = 0} and we obtain, for the standard coordinates x = x;,y = y121,z = 21,
that the strict transform of I"is 'y = {x; = y; = 0,z; > 0} and

’ / 3
T = alLyn bt o Ly - L]
1

where L6 = (a1x1 + yl)a% + (cax1 + dlyl)% and ¢’ = ¢ — 1. The conclusion is
that either L; is non-nilpotent or the exponent ¢ drops. We win after finitely many
blow-ups of this kind.

If ¢; # 0, we first consider the ramification over the plane {z = 0}:

o R3 — R?’, (x/’ y/’zl) — (x/’ yl,le).

Then I’ = {x' =y’ = 0,7 > 0} = p~!(I") is the strict transform of I" by p, a non-
degenerated spiraling axis for the trajectory p~' o y, of the transform X’ = p*X.
Now we consider the blowing-up 7 with center the local curve Z’ = {y’ = 7/ = 0}
which is invariant for X’ and does not intersect I'". In coordinates x’ = x;,y’ =
y121.7 = z1, we can write 7* X’ = 71 X, where

ad ad 1, 0
Xi=y—+axim—+0@)— 5" {— + Y1} .
1 V1 ax 1 13)}1 (z1) 2Z1 %311 1}
Despite the fact that the exponent g increases in this case, we arrive to a

non-nilpotent linear part, i.e., the vector field in (4.5) in pre-final situation with
respectto I'.

4.5.2 Spiraling in Final Situation

The steps explained in the previous Sect.4.5.1 can be considered as a special case
of a reduction of singularities of the vector field X: after several transformations,
the singularity of X at the point signaled by the invariant half-branch I" has a non-
nilpotent linear (more correctly we have to say that it is a local uniformization along
I, see [5] and Theorem 5.9 below).

We can, nevertheless, continue this process of reduction of singularities along I"
in order to obtain a better description of the singularity of the transformed vector
field, not just a non-nilpotent linear part. Namely, we can obtain a vector field in
final situation as we have defined in Definition 4.11.2. The reason for considering
this final situation instead of the pre-final one is that we can decide whether T is
a twister axis of the vector field just by looking at the linear coefficients L; of
the expression (4.2) and we do not need to assume the previous existence of the
trajectory yo spiraling around I'.
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We summarize these commentaries in the two following results. In both
statement, let X be an analytic vector field in a neighborhood of some point p
in a three dimensional manifold M and let I be an analytic half-branch at p which
is invariant and non-degenerated for X .

Proposition 4.15. There exists a I'-admissible morphism 7 : M — M such that
the strict transform X of X by m is in final situation with respect to the strict
transform T of T'.

Proposition 4.16. Suppose that X is in final situation with respect to I' and written
as (5.7) with the corresponding properties of the linear terms L;. Then I' is a
spiraling axis (and thus a twister axis) if and only if the following properties hold:

1. qg=1

2. There is a first non radial term Ly with k € {0,...,q} and for this term
Spec(Ly) = {1, A} with A # A,

3. There exists 0 <[ < g — 1 with Spec(L;) = {u, [t} and Re(pt) # 0 and for the
first such L; we have Re(p) < 0.

Details of the proof of these results can be seen in [4]. For Proposition 4.15,
one uses similar arguments as the ones described in Steps 1-4 of the Sect.4.5.1.
For Proposition 4.16, one uses some of the arguments in the theory of dynamical
systems already sketched in the proof of Proposition 4.12 (compare also with
Proposition 5.13 bellow).

5 Non-oscillatory Trajectories: Linked and Separated
Packages

Theorem 4.3 describe non-degenerated spiraling axis as “centers” of a domain
where the dynamics of the vector field is qualitatively well understood. In this
section we identify other type of interesting “organizer centers” of the dynamics.
Namely, they appear when the analytic axis became a purely formal non-convergent
curve. The interpretation for this formal axis is that it represents a whole package
of trajectories sharing the same iterated tangents and having similar asymptotic
behavior.

5.1 Example of Euler’s Equation

In this paragraph we analyze a classical example in dimension two and then we
generalize it in dimension three. We will discover new asymptotic behavior for
non-oscillatory trajectories that we will describe in general in the next paragraphs.
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(Eo) x2dy/dx=y (Ey) x2dy/dx=y-x

Fig. 18 Euler’s Equation

5.1.1 Euler’s Equation in Dimension Two

3 3
Xo = — [ x2—
’ ( ix +y3y)
zdy

in R? or, equivalently, the linear ordinary differential equation (Eop) x = y.
Solutions of this equation are given by y(x) = Ce™"/*, where C € R. We conclude
that all trajectories of X in {x > 0} has flat contact with the analytic half-branch
{y = 0,x > 0}, which can be consider as a organizer center. A slight perturbation
gives Euler’s equation:

Consider the vector field

Xi=-(Pra0-ng) o @) 2L =yox
ax ay dx
Solutions of (E;) are of the form y(x) = yo(x) + Ce™'/*, C € R where
yo(x) is a particular solution. The phase portrait of X, is very similar to that of
Xo (see Fig.18) and, moreover, any trajectory in {x > 0} accumulates to the
origin, is non-oscillatory and has the same sequence of iterated tangents. This
sequence corresponds to the unique invariant formal curve of X;; i.e., the graph
r'= (x, ?(x)) of the (well known) unique formal solution of Euler’s equation (E}):

Fx) =x 4+ 12420 + o nl"H 4 e R[x]) (5.1
More precisely, after the blowing-up at the origin, in the chart (x;, y;) such that

X = x1,y = x1y1, the lifting of trajectories of {x > 0} go to the unique singular
point p; = (0, 1) on the domain of this chart. The strict transform of T’

f1=( fl(xl)_w)

X1
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is a formal curve centered at p; where the situation repeats. In this way, the sequence
of iterated tangents / T(f‘\) can be defined and, for any trajectory y of X; in {x > 0}
we have IT(I') = IT(y). On the other hand, it is easy to check that there is no
invariant analytic curve of X; contained in {x > 0} (the only analytic invariant
curve is the y-axis).

In general, a formal curve T of a real analytic manifold M centered at a point
p € M is a Puiseux’s parametrization of the form

['=®1@, ..., %-12).2), (5.2)
in some coordinates (xi,...,x,—1,z) at p, where r € N and X;(z) a formal
power series with X;(z) = 0. One can define the sequence of iterated tangents

1 T(f‘\) = {px} of r similarly as in the case of an analytic half-branch, just
by blowing-up points, taking the strict transforms of the series and defining the
corresponding tangent as the point defined in coordinates by the independent values
of these transformed series. The formal curve I is called not singular at p if we can
chose r = 1 in the parametrization (5.2).

Definition 5.1. Let y : [0,00[— M be an analytic parameterized curve with
w(y) = {p}. We say that y has flat contact with I if y has iterated tangents and
IT(y) =1T().

We have a similar result as Proposition 3.4 for formal curves.

Proposition 5.2. If y has flat contact with T and y is a trajectory of an analytic
vector field X then I is (formally) invariant for X .

Here, formally invariant means that if we write

X / + -t 0 +ba
= ad| — n—1— J—
laxl 4 laxn_l Bz

then the vectors of power series (al(f(z)), . ,an_l(f(z)), b(f(z))) and
(*}@),...,X,_,(2),rz"") are colinear (in the vector space of n-uples of power
series over the fractional field of R[[z]].

5.1.2 Euler’s Equation in Dimension Three
Now we construct an example, similar to Euler’s equation, in dimension three, by a
perturbation of Example 4.1.

Example 5.3. Consider the following algebraic vector field in R3

0 0 0
X=(x—-y —l—z)g—i-(—y—f-x)@—zza—z.
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Fig. 19 Perturbation of the example of spiraling dynamics

Although we can not give explicit expressions for the trajectories of this example
as in the Example 4.1, we can easily obtain the following qualitative properties for
any trajectory y in the half-space {z > 0} (see Fig. 19):

1. y accumulates to the origin and has iterated tangents. The calculations are similar
to those that we have sketched for Euler’s equation in the plane. More precisely,
one can see that there is a unique formal series solution (x, y) = (?1 (z)?z(z)) €
R[[z]]? of the system of ODEs associated to the vector field:

,dx

zd—zzx—i-y—z

sz_yzy_x (5.3)
dz

and that any trajectory in {z > 0} has the same sequence of iterated tangents as
the formal curve T = (£1(2), £2(2). 2).

2. y is non-oscillatory: if it was oscillating, since it has iterated tangents, it
would have flat contact with an analytic half-branch I' (the spiraling axis)
by Theorem 4.2; but then we would have IT (") = [ T(f‘\) and the series
?1 (2), ?z(z), completely determined by the sequence of iterated tangents, would
be convergent series, which is not the case (see below for a proof).

3. Given two different trajectories y, ¥’ on {z > 0}, we can parameterize by the
coordinate z as

Y@ = (x(2),y(2).2), ¥ () = (¥'(2). Y (2),2).

The differences u(z) = x(z)—x'(z), v(z) = y(z)—)’'(z) satisfy the homogeneous
system of ODEs

ydu

Z d—Z_M+V

zdv_ 5.4)
—=Vv—u
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and thus the argument of the vector (u(z), v(z)) € R?\ {(0,0)} tends to infinity
when z — 0T. The two trajectories are asymptotically linked (see Fig. 19; we
give the general definition below in Proposition 5.5).

5.1.3 Complex Euler’s Equation

The relation between the examples of Euler’s equation in the plane (E;) and
Example 5.3 in R? is more than just an analogy. Let us see why.
Consider the complex saddle-node equation for (z, w) € C:

d
(E,) [2d_v: =w—¢t, €=0,1.

For 7 = pe'® € {Re > 0}, consider the embedding j, : C x R — C?, j,(w,z) >
(w, zT). The equation induced by (E;) on C x R by j, is

,d
(Eer) z —sz—sz, zeR,weC.
dt T

Now, put w = x + iy so that (£, ;) becomes a system of two real analytic (linear)
ODEs. If ¢ = 0 then the zero map x(z) = y(z) = 0 is a solution of this system
and all other solutions have flat contact with this one. Their asymptotic behavior
is either non-oscillatory when 7 € R™ or splralhng when T ¢ R* (see Fig.20).
If e 75 0, the (unlque) formal solution of (E| ), (f (2), fz(z)) € R[[z]]? is such
that f @+ f (@) = £ (zr), where f(z) is the formal divergent solution (5.1)
of Euler’s equation (E;). Thus ff, fzf are both divergent series. In particular, for
T = 1, the formal solution of the system (5.3) is not convergent. As we have explain

in the previous paragraph, solutions of (£ ;) are non-oscillatory and the behavior
is either “not linked” when T € R™ or “linked” when t ¢ R (see Fig. 21).

5.2 Generalities About Linked Trajectories

In this paragraph we investigate the concept of linked trajectories suggested by
Example 5.3.

Definition 5.4. Let y,y’ be two parameterized curves in a three dimensional
manifold M such that w(y) = w(y’) = p € M.

(1) A system of coordinates w = (x,y,z) at p is called positive for y if, in
a sufficiently small neighborhood of p, | y |C {z > 0} and y can be
parameterized with z as a parameter in the form y(z) = (x(z), y(2),z) with
x(z), y(z) analytic functions in some interval ]0, &[.
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Fig. 20 Phase portrait of the equation (Ey ;)
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Fig. 21 Phase portrait of the equation (E ;)

(2) If w = (x,y,z) is positive for both y and y’, we say that they are w-
asymptotically linked (we will write shortly w-a.l)if | y | N | ¥’ |= @ and,
writing

Y@ = (x(2),y().2), Y@ =),y (.2, (5.5)

we have that the plane curve z — (x(z) — x'(2), y(z) — »'(2)) spirals around
(0,0) € R> whenz — 0.

We are not interested in the study of the linking property for general parameter-
ized curves but for non-oscillatory trajectories of analytic vector fields. For this kind
of curves we have the following technical properties (we do not reproduce here the
proof which can be seen in [4]).
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Proposition 5.5. Let y, Yy’ be two non-oscillatory trajectories of an analytic vector
field X in a neighborhood of a point p in a three dimensional manifold M such that

o(y) = o(y) = p.

1. If w = (x, y,z) are coordinates at p such that | y |¢ {z = 0} then w is positive
for y (up to change z by —z).

2. If w,w' are positive coordinates for both y and y', then y, y' are w-a.l. if and
only if they are w'-a.l. We will just say in this case that y, y' are asymptotically
linked (written a.l.).

3. Assume that y, y' are a.l. If H is an analytic surface at p then, as germs, | vy |,
| y' | are contained in the same local connected component of M \ H.

Notice that if y, y’ are two different a.l. trajectories of a vector field and p :
R?* — R? is a linear projection then the number of intersection points of the images
p(l ¥ D, p(| ¥ | is infinite although p(] y |) # p(] ¥’ |) as germs. Despite
of the fact that they are non-oscillatory and hence individually well behaved from
the point of view of finiteness properties, linked trajectories exhibit bad relative
behavior: the projection of one of them “oscillates” with respect to the projection
of the other. In particular, no two a.l. trajectories can be definable in the same
o-minimal structure. Surprisingly, as we prove in the next section, each (linked)
trajectory of Example 5.3 is individually definable in an o-minimal structure.

5.3 Statement of the Main Result

In the result that follows, we want to study the possibilities for a vector field to have
asymptotically linked trajectories. As we will see, this behavior will occur only
when those trajectories have flat contact with a formal curve as in Example 5.3.
In particular they will have the same sequence of iterated tangents. For this reason,
it will be useful to introduce the following terminology.

Let y, be a trajectory of a vector field X in a three dimensional manifold M such
that w(yp) is a single point p € M and such that y, has all iterated tangents. We will
speak of the integral package of y, as the set I P(yy) of all trajectories y of X with
w(y) = p, having all iterated tangents and such that I 7(y) = IT(yp). Although
we consider trajectories as parameterized curves, we will identify two elements y, y’
of I P(yp) if the germs at p of their images | y |, | ' | coincide.

Theorem 5.6. Let 1P (yy) be an integral package consisting on non-oscillatory
trajectories of X. Then we have one of the following possibilities:

1. Any two distinct elements y,y’ € PI(yy) are asymptotically linked. (We will
speak of a linked package).

2. For any two distinct elements y,y’ in IP(yy) there exists a bounded open
neighborhood U of p in M and a subanalytic continuous map p = B,/ : U —
R2 such that, as germs at p, we have
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By DNBUY ) =0
(We will speak of a separated package).

Trajectories of Example 5.3 in the half-space {z > 0} form a linked package.
The following result states that, essentially any linked package behaves like this
example. It can be viewed as the formal version of Theorem 4.3.

Theorem 5.7. Suppose that 1P (yo) is a linked package at p € M. There exists a
formal curve T such that I1T(yo) = IT(F) called the formal spiraling axis, which
is (analytically) transcendental. Also, for any neighborhood W of p, there exists an
open subanalytic set V. C W, positively invariant for X such that

y€IP(y) |y NV #0. (5.6)

A formal curve with parametrization f(z) = (X(z),7") in some coordinates (x, z)
at p is said to be (analytically) transcendental if given any convergent power series
f(x,z) € R{x, z} we have that f(X(z),z") = 0 implies f = 0.

In the rest of this section we sketch the proof of Theorems 5.6 and 5.7 at the
same time (complete details can be found in [4]). The plan is the following. First,
in Sect. 5.4, we explain how to reduce the general case to the case where p is an
elementary singularity of X'; that is, the linear part DX (p) has at least a non-zero
eigenvalue. This uses the Local Uniformization Theorem of vector fields along non-
oscillatory trajectories in [5]. Then, in Sect. 5.5 we study the elementary case.

5.4 Local Uniformization and Integral Packages

The Local Uniformization Theorem of vector field along a non-oscillatory trajectory
yo asserts that, after a finite number of ‘“‘suitable” modifications of the type
blowing-ups and ramifications, the lifted trajectory yy accumulates to an elementary
singularity p of the strict transform of the vector field. Let us describe here the
technical features needed in order to precise this result and to know how to use it
for the proof of Theorem 5.6.

Let y be a non-oscillatory trajectory of an analytic vector field X in a three
dimensional analytic manifold M such that w(y) = p. Similarly to what we have
considered in Definition 4.13, amap 7 : M — M is said to be a basic y-admissible
morphism if it is, either the blowing-up at p, or a local blowing-up along a smooth
curve Y through p which does not intersect y, or a g-ramification along a plane
through p. Also, similarly to Proposition 4.14, one can prove (see [4]) that, if 7 :
M — M is a basic y-admissible morphism then the lifting y = 7w~ o y satisfies
the properties:

l.w({)=peM.
2. ¥ is non-oscillatory.
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3. | 7 | is a leave of a 1-dimensional foliation on M; hence, up to re-parametriz-
ation, y is a trajectory of an analytic vector field X on a neighborhood of p
(called the strict transform of X by ).

These properties permit us to speak about a y-admissible morphism as a finite
composition of maps m = m, o ---m; such that m; is basic y-admissible and, for
i =1,...,n—1,if y; denotes the lifting of y;_; by m; with y, = y, then m; 4 is
basic y;-admissible.

The behavior of linked or subanalytically separated trajectories under admissible
morphisms is summarized in the following result.

Proposition 5.8. Let y,y’ be two non-oscillatory trajectories such that w(y) =
w(y’) =p € M andlet w : M — M be a morphism of analytic spaces.

(i) Assume that y,y’ are a.l. Then 7 is y-admissible iff it is y'-admissible and, in
this case, the liftings 7.y’ satisfy o(7) = w(y’) = p and they are a.l.
(ii) Reciprocally, if 7 is y and y'-admissible and }, );’ are a.l. then 'y, y’ are a.l.
(iii) If 7w is y and y'-admissible and their liftings do not accumulate to the same
point ofM then 'y, y’ are subanalytically separated.
(iv) If w is y and y'-admissible then y, y' are subanalytically separated if and only
if their liftings by m are subanalytically separated.

Proof. (See [4] for details). The proof of (iii) and (iv) are easy from the definitions
and the fact that the image of a subanalytic subset by an admissible morphism is
a subanalytic subset. The proof of (i) and (ii) uses, in big lines, Proposition 5.5
and the following construction for detecting the property of linking: suppose that
w = (x,y,z) are positive coordinates at p for both y and y’ and parameterize
y(z) = (x(2), ¥(2),2); then y, y’ are a.l. iff y’ intersects infinitely many times the
surface

Sw(y) =1(x(@) +1,y(@).2) /1 20, 2> 0}

and the sum of the indices of intersection of y’ with S,, at such points diverges to
400 or —oo. O

As a corollary, any pair of non-oscillatory trajectories which are asymptotically
linked belong to the same integral package and they remain in the same integral
package by admissible morphisms. A linked package is thus preserved by admis-
sible morphisms. On the other hand, if some trajectory is separated from its mates
in an integral package by an admissible morphism then it will be a subanalytically
separated from them.

With these remarks, in order to prove Theorems 5.6 and 5.7 we can make any
number of convenable admissible morphism with the purpose of finding a vector
field in a simpler situation. The following important result by Cano, Moussu and
Rolin on reduction of singularities of three dimensional analytic vector fields asserts
that we can reduce to the case of elementary singularity; that is, a singularity for
which the linear part of the vector field is non-nilpotent.
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Theorem 5.9 (Local Uniformization along non-oscillatory trajectories, [5]).
Let yy be a non-oscillatory trajectory of a vector field in a three dimensional real
analytic manifold. Then there exists a yy-admissible morphism w : M — M such
that the lifting yo = m~" o yy is, up to re-parametrization, a trajectory of a vector
field X having an elementary singularity at p = w ().

5.5 The Case of Elementary Singularity

In this paragraph we sketch a proof of Theorems 5.6 and 5.7 when p is an
elementary singularity of X ; that is, the linear part DX (p) is a non-nilpotent linear
map from 7, M into itself.

We will make use of the classical theory of invariant manifolds in dynamical
systems. Namely, the so called stable W*, center W€, unstable W", center-stable
W< and center-unstable W manifold of X at p, defined as embedded local
submanifolds through p, invariant for X and whose tangent space at p is the
eigenspace of DX (p) corresponding to eigenvalues with negative, zero, positive,
non-positive, and non-negative, respectively. The reader can consult [13] or [11] for
the precise statements concerning them and used throughout this paragraph.

Fix for the rest of the paragraph a non-oscillatory trajectory y, of X with w(yp) =
p and suppose that any element of the integral package I P(yy) is a non-oscillatory
trajectory. We start with a very general and easy result.

Lemma 5.10. There exists A = A(yy) € Spec(DX(p)) such that the tangent of y,
is an eigendirection of DX (p) of eigenvalue A.

Proof. (The non-oscillatory condition for y; is not necessary, just the existence of
tangent at p.) The argument is that the tangent direction of yy, considered as a point
in the exceptional divisor of the blowing-up at p is a singular point of the strict
transform of X. On the other hand, a computation shows that these singularities are
only at points corresponding to eigendirections of the linear part. |

We distinguish several cases for A(yp).

5.5.1 CaseA(yy) #0

We show in this case that the integral package is always separated. Moreover, we
show that for any y € I P(y) the image | y | is a pfaffian set so all good finiteness
properties for the trajectories are true, in particular the subanalytic separation.

We have necessarily A(yp) < 0 (otherwise w(yo) # p). Then any trajectory
of IP(yp) is tangent to the stable manifold W* of X at p by Lemma 5.10. The
classical theory of invariant manifolds says that, in fact, any such trajectory y is
actually contained in W*. We recall also that W* (its germ at p) is unique and
analytic. We analyze the different possibilities.
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If dimW?* = 1then | y |C W?* for any y € IP(yo); it implies that 7 P (o)
reduces to y and | yp | is an analytic half-branch.

If dim W* = 2 then any y € I P(yo) is a trajectory of the planar analytic vector
field X |ws. Using the projection onto the tangent plane 7, W*, we see that I P (yy)
is a separated integral package. Moreover, since these trajectories have a tangent,
they are Rolle leaves and thus pfaffian sets.

If dimW* = 3 and all eigenvalues are real (and thus negative), we use the
Dulac’s analytic normal form for X (see for instance [1]): there are analytic
coordinates (x, y, z) at p such that X can be written as

0 0 0
X =—x0—+ f(x,9)5= +8(x, 5,27
ox dy 0z

A trajectory of X is contained in a cylinder | 0 | xR where o is a trajectory of the
planar vector field —x% + f(x, y)aiy and satisfy an ordinary differential equation
over this cylinder. Since | o | is a Rolle leaf, we deduce that | y | is a pfaffian set.
Thus 7 P(yy) is a separated integral package.

Suppose, finally, that dim W* = 3 and Spec(DX(p)) = {A(yo),a £ ib} with
a < 0,b # 0. After a blowing-up of the point p, the strict transform of X at the
singular point p’ in the exceptional divisor corresponding to the tangent direction of
yo has eigenvalues A(yp), a —A(yo) £ib. By repeating the blowing-up at the iterated
tangents of yp we reduce to a situation where dim W* = 1.

552 Case A(yo) = 0 and Spec(DX(p)) = {0,0, p}

Let us see in this case that we obtain always that I P()y) is a separated package.

Since DX(p) is non-nilpotent, i is a non-zero real number. We analyze the two
situations:

If w > 0, by classical arguments in dynamical systems, if we fix a center
manifold W€ of X at p, then any y with @(y) = p must be contained in W¥¢.
This center manifold is the graph of a C'-map (x, y) + h(x, y) in some (analytic)
coordinates (x, y,z) at p. In this case the projection R? — R?, (x,y,2) — (x,y)
separates any couple of trajectories accumulating to the point p and the integral
package I P(yy) is separated.

If 1 < 0, we first use the following fact (already used in Sect. 4) from the theory
of invariant manifolds: given a center manifold W€ of X at p, each trajectory y with
w(y) = p has a unique accompanying trajectory o, inside W¢ in the sense of (4.3).
Then we use the following proposition whose proof is not reproduced here and can
be seen in [4].



154 ES. Sanchez

Different accompanying trajectories Same accompanying trajectories

Fig. 22 Accompanying trajectories in the center manifold

Proposition 5.11. There exists a neighborhood U of p in M such that, if o is a
trajectory inside the center manifold W¢ such that w(o) = p and o has the same
tangent direction at p as Yy, say Lo, then

Leoy= |J lyInU

yE€IP(y0),0y=0

is an open set of a C'-embedded surface S, through p. Moreover £y C T,S, and
S, is transversal to W€ at p.

Now take coordinates (x, y,z) at p such that £y = T,({x = z = 0}), T,W*¢ =
Ty({z = 0}) and 7,8, = T,({x = 0}) where o is the accompanying trajectory
of yo in W¢. In particular, we have that W¢ is a graph of a C!-function over
the (x,y)-plane and S, is a graph of a C!-function over the (y,z)-plane. If
y. v’ are two different trajectories in the integral package I P(yo) and let o,, o}
be their respective accompanying trajectories in W¢. We have the possibilities
(see Fig. 22):

() If | oy |#| 0,7 | (as germs at p) then the linear projection (x, y,z) = (x,y)
separates y, y’.

(i) If | o |=| oy | then, by Proposition 5.11, | y |,| ¥’ |C L(o,) and then the
projection (x, y,z) > (v, z) separates y, y’.

5.5.3 Case A(y9) = 0 and Spec(DX(p)) = {0, w1, p2} with w2 # 0

This case is much richer than the preceding ones in the sense that both types of
integral packages, either linked or separated, can appear. The following result asserts
that, in any case, all such integral packages will have a formal axis (Fig. 23).
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Fig. 23 Cases when A(yp) = 0 and the other eigenvalues are non-zero

Lemma 5.12. There exists a unique formal curve T at p which is invariant for
X and tangent to the eigenspace of DX (p) corresponding to the zero eigenvalue.
Moreover, we have

(i) T is not singular,

(ii) yo has flat contact with T and
(iii) T ¢ Sing X.
Proof If the real parts of w1, u, are (both) non zero (non-purely imaginary case)
then T is nothing but the formal center manifold WC a formal curve at p which is
uniquely determined, invariant for X and not singular (since it is a graph). Property
(i1) is easily obtained in this case by repeated blowing-ups and the following
observation: after the blowing-up at p, the strict transform X’ of X at the singular
point p; in the exceptional divisor, corresponding to the zero-eigenvalue satisfies
Spec(D,, X') = Spec(D,X). If Re(i1) = Re(uz) = 0 (purely imaginary case)
then the point p; is the only singularity on the exceptional divisor and the situation
repeats. We deduce that there is a unique possible sequence of iterated tangents of
a trajectory of the vector field X accumulating to p. Since formal curves at p are
univocally determined by its sequence of iterated tangents, we obtain (i) and (ii).

In order to prove (iii), suppose otherwise that T'c Sing X . The singular locus
SingX is an analytic set that we can assume to be of dimension at most one at the
point p. We would have that the formal curve T is in fact a convergent one and
defines an analytic non-singular curve Y at p. In the non-purely imaginary case,
Y is the center manifold (unique in this case), composed of singular points of the
vector field. We use the so called Center Manifold Theorem [6, 11] which assets
that, locally at p, the vector field X is topologically conjugated to a trivial product
of a two-dimensional vector field (in fact a linear vector field carrying the stable
and unstable dynamics) by the zero vector field in R (see Fig. 24). We conclude that
there are no non-trivial trajectories of X accumulating to p except those contained
in the stable manifold W*. They would be then tangent to a non-zero eigenvalue and
we would be in another case. In the purely-imaginary case, after the blowing-up 7 :
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Fig. 24 Dynamics in the non-purely imaginary case if Tc Sing X
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Fig. 25 Dynamics in the purely imaginary case if Tc SingX

M — M with center Y, which is admissible for y,, we can see that C = 7~ (p)
is a closed orbit of the transformed vector field. Since the lifting y; = 7oy
accumulates somewhere in C we would have that w(yy) = C and thus y; oscillating
(see Fig. 25). O

Consider analytic coordinates (x, y,z) at the point p and a formal Puiseux
parametrization of I' of the form

IF'=((.22.2, [(2).2) R
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We write formally X in the formal coordinates (X = x — ?(z), Yy =x-2(z),z) as
i O~ 0 0
X =a(x.y,2)z= +b(x.),2) o= +¢(x.Y.2) .
ox ay 0z

Then we have

T invariant < @(0,0,z7) = /b\(0,0, 7) =0,
I' ¢ SingX < ¢(0,0,z) # 0.

Moreover, in our case, if we write ¢(0,0,z) = z¢7!(co 4 --+) with ¢ # 0, then
q > 1 (since A(yp) = 0) and ¢y < 0 (since w(yo) = p).

Following similar steps of those of the procedure presented in Sect. 4.5.1, we can
reduce by means of yp-admissible morphisms, to the following situation (which we
can call “formal final situation”, see Definition 4.11): the vector field X is written
in coordinates (x, y, z) as

q
. 0
X = Zz’ L;i(x,y)+ ATy — qua— 5.7

j=0 ¢

where

e g>1land Tis tangent to the z-axis,

e Li(x,y)=1(a;x+ bjy)% + (cjx + djy)aiy is a linear vector field,

e The matrix of Lo(x, y) is invertible,

e Y = A(x,y, z)% + B(x, y,z)aiy is a family of two-dimensional vector fields
tangent to the fibers {z = c¢st} with Y(0,0,0) = O (but not necessarily
A(0,0,z) = B(0,0,z) = 0, unless T is an analytic half-branch) and

* Furthermore, either each L is a radial vector field ay (x% +y %) for0 <k <gq
or the first Ly, k € {0, ..., g}, which is not radial has different eigenvalues (i.e.,
the discriminant A(Lyg) is not zero).

Once we are in the final situation and o is a non-oscillatory trajectory tangent
to I' at p, we can determine if the integral package I P(yy) is a linked or separated
package just by looking at the g-truncated normal lineal part of the vector field X;
that is, the sum Z']’ —0 7/ L;(x,y) in the expression (5.7). The precise statement is
the following one (compare with Proposition 4.16).

Proposition 5.13. Denote by | = min{min{0 < j < gq/tr(L;) # 0},q + 1}.
Then

1. 1P (yo) is linked package iff the four following conditions hold
(AL) I <q, tr(L;) <0, k <q, A(Ly) <O.

2. If one of the conditions in (AL) fails then any two distinct trajectories y,y' €
1P (yy) are separated by a linear projection onto a linear plane through the
origin in the coordinates (x, y, z). In particular the integral package 1 P(yy) is a
separated package.
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Details of the proof of this proposition can be seen in [4]. It follows essentially
the same lines as the proof of twister dynamics in the pre-final situation,
Proposition 4.12. This time, some of the arguments of the theory of differential
equations applied there to the cylindric coordinates p(z),0(z) of a trajectory
must be adapted to f(z),0(z) with u(z) + ivz) = +/(5(2)e'?@, where
u(z) = x(z) —x'(z), v(z) = y(z) — y'(z) are the differences between two trajectories
in the integral package as in (5.5).

We can consider Proposition 5.13 as a refinement of Theorem 5.6 in the case
where X is in formal final situation. In this situation, Theorem 5.7 is also not
difficult to prove. In fact, the existence of a formal axis T is already given by
the hypothesis about the eigenvalues of the linear part (Lemma 5.12) while the
existence of a system of fundamental neighborhoods of p with the property (5.6)
will be a consequence of the proof of Proposition 5.13 (these neighborhoods play
the role of the twister domains of the form Dj in Proposition 4.12). Finally, the
argument that proves transcendence of the formal axis of a linked package is the
following. If f (f‘\(z)) = 0 for some non-zero analytic germ f(x, y, z) then, since
T is invariant and not convergent, there must be an irreducible component H; of
H = {f = 0} of dimension 2 which is contained in the set of (generalized)
tangencies, Z = {df(X) = 0}, between Z and X (otherwise Z would be an
analytic curve that “contains” the formal branch f). But then, one can show that
two different trajectories y, y’ issued of points in H; NV, where V is an open set
satisfying (5.6), can not be asymptotically linked since they are contained in an
analytic surface.

6 Quasi-analytic Trajectories and O-minimal Structures

In this last section we present a result about o-minimality of certain non-oscillatory
trajectories of analytic vector fields. As was announced in the introduction, the
property of non-oscillation alone is not sufficient in order to obtain the stronger
finiteness property of o-minimality and several extra assumptions are needed about
the vector field or the trajectory. Also, we will see in this section (see Example 6.8)
that each of the linked trajectories of Example 5.3 is definable in an o-minimal
structure, although their “pathological” relative behavior. This example provides an
uncountable family of o-minimal structures mutually incompatible; that is, there is
no common o-minimal expansion of two of them (another example of such a family
is given in [23]).

Complete and detailed proofs of the statements presented here can be found in
the paper [24].

Consider an r-dimensional system of real analytic ODE’s of the form

d
xq+ld_z =AM, y), y=01,....») €R’, (6.1)
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where ¢, called the Poincaré rank of the system, is greater or equal to 1 and A is
a real analytic map in a neighborhood of the origin of R'*" with values in R” and
such that A(0,0) = 0. We want to study solutions of (6.1) near the origin; that is,
analytic parameterized curves

H = (Hy,...,H):0,¢] > R" (6.2)
such that ‘fl—f = A(x, H(x)) forany 0 < x < ¢ and lim,_,,+ H(x) = 0.

Equivalently, if A = (4;,...,A,) are the components of the map A, we can
consider the real analytic vector field

ad d
q+1__
o, + X 5 (6.3)

X = Ay) o ot AY)
I

defined in a neighborhood of the origin in R”™!. The hyperplane {x = 0} is
invariant for X and, since X is transversal to the horizontal planes {x = c} o,
every trajectory of X outside {x = 0} can be parameterized by x. We have then
that solutions H of the form (6.2) correspond exactly to trajectories y of (6.3)
on {x > 0} such that w(y) = 0 € R’*! (our general setting in these notes).
This correspondence between solutions and trajectories permits to apply, with the
obvious meaning, the concepts of iterated tangents, oscillation, flat contact and
asymptotic linking to solutions of (6.1).

We are interested in the problem of whether the components H; of a solution H
like in (6.2) are definable in an o-minimal structure over the real field. The answer
is positive provided some assumptions on the system (6.1) and/or the solution H.
Of course, a first assumption is that / is non-oscillatory (at least with respect to
the semialgebraic sets of R”*!). However, our assumptions will be stated for the
system of differential equations (6.1) itself and in such a way that they will imply,
incidentally, the non-oscillation condition for the involved solutions.

6.1 Statement of the Main Theorem

6.1.1 Formal Solutions and Asymptotic Solutions

Our first assumption on the system of differential equations is a generic condition
concerning the spectrum Spec(Ag) = {Ai,...,A,} of the linear part 4g =
0A4/09y(0,0) € M,x,(R). We will assume

Ai #0, foralli;

(DA) arg(A;) # arg(A;) mod2nZ, fori # j.
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There is a classical result in the theory of analytic systems of differential
equations (see [35]) that asserts that, under the condition (DA), the system (6.1)
has a unique formal power series solution

H(x) = (H\(x),...,H,(x)) e R[[x]]", H(©)=0. (6.4)

(We can say, equivalently, that the formal curve (x, H (x)) is a formal solution of
the associated vector field (6.3).)

We will study o-minimal properties of solutions / like in (6.2) having the formal
solution as an asymptotic expansion when x — 07. By definition this means the
following: Write H (x) = Y02 x"h, where h, € R’; for every natural number
N > 0, there is Ky > 0 such that,

< Kyx¥*t', forx €]0, ¢]. (6.5)

n=1

N
H H(x) =Y x"h,

We will simply write H ~ H as x — 0.

6.1.2 Summability and Stokes Phenomena of the Formal Solution

In order to state our second assumption, we need first some relatively elementary
facts about summability of divergent series. In our particular case where the linear
part A of the system of equations is non singular we only need the following result
from Ramis (we use the standard notation S(«, 8; p), @, B € R, p > 0 for a sector
{ze C/|z] < p,a < arg(z) < B} opening p — a and of radius p).

Theorem 6.1. [20] Assume that the system (6.1) of ODE:s satisfy (DA) and consider
the formal solution H (z) € C[[z]]" as a vector of complex formal power series. Then
H () is q-summable. More precisely, for any 6 € R, except (possibly) for those
satisfying

q 0 = arg(A;) mod2nZ

Sfor some eigenvalue A ; of Ao, and for any open sector Sg = S(0 — Z”—q —6,0+ Z”—q +
8; p) of opening slightly greater than wt/q (with § sufficiently small) there exists a
unique holomorphic function H* = (H?, ..., H?) : Sy — C" such that:

1. HY satisfies the (complexified) system of equations (6.1) and
2. Foranyi, Hl-e has the series H ;(z) as the asymptotic expansion on the sector Sp.
This asymptotic expansion is, furthermore, Gevrey of order k = 1/q.

The function HY is called the q-sum of the series H (z) along the direction 6.

By definition (see [21]), a bounded holomorphic function # : § — C on a
sector S = S(a, B; p) has a Gevrey asymptotic expansion of order k (or a k-Gevrey
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asymptotic expansion) with right hand side Z(z) = D k>0 a7 € C[[z]], and we
write /1(z) ~ 71\(2), if for any 1 > 0 there are constants K, A > 0 such that

N—1

h(z) = > aid

k=0

< KANT(Nk + Dz|",

forany N € Nand any z € S(a + 0,8 — n;p — n). We remark that /(z) ~
0 + 0z+ --- if and only if h(z) is exponentially small of order 1/k, i.e., for any
n > 0, there is a positive constant a such that |/(z) exp(a|z|~'/*)| is bounded on
S(a + 1, B —n; p—n). This follows easily from Stirling’s Formula by choosing N
as the integer closest to |z|~!/¥.

The excluded angles in Theorem 6.1 are called the singular directions (also called
the anti-Stokes directions) of H (z). By the hypothesis (DA), there are exactly rq
different singular directions modulo 277Z. Denote them by 6, € [0,2xn), [ =
0,...,rqg — 1. Up to reordering of the eigenvalues A ;, we can choose the indices
such that 0 < 6y < -+ < 6,41 and g6, = arg(A;) mod2xZ if and only if
! 4+ 1 = j modr (we will say informally that the singular direction 8; corresponds
to the eigenvalue A ;).

Two g-sums H, HY of H (z) as in Theorem 6.1 coincide in the intersection
of their domains if there is no singular direction between 6 and 6’. We obtain, by
analytic continuation, holomorphic functions

H’:S’:S(@;—;—q+3,9,+1+%—5;p)—><cr, 1=0,.. . rqg—1

where §, p > 0 are sufficiently small and where we put 6,, = 0y + 2.

In general, the functions H' cannot be continued analytically or change their
Gevrey asymptotic behavior beyond the rays of angles 6; — %, Or41 + %, I =
0,...,rg—1, called the Stokes directions of H (z). The so called Stokes phenomenon
of the series H (z) is the description of the behavior of the difference A/(z) =
H'*'(z) — H'(z) of two such consecutive functions. This difference is defined in
the intersection S'/t! = §/' N S+ = §(6;4, — 35 16,0141+ 3, —8:p), asector
of opening slightly smaller than 7z /q.

Remark 6.2. 1t is quite easy to show, using the Riemann removable singularity
theorem, that each component of H (z) is a convergent power series at z = 0 if
and only if A; = 0 for every /.

The map A! = (A}, .-, Al) : SH/+1 5 C” satisfies the system of linear ODEs
(in the complex domain)

d
z‘”ld—z = Bi(2)y. (6.6)
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where Bj(z) is the matrix of holomorphic functions on SHFT defined by Bi(z) =
B(z. H'(z), H'*") with B(z.y,.y,) analytic and satisfying

A(z,y,) — Az y)) = E(L Y. ¥2) (Y2 — Y1)
1

We see that all matrices Bj(z) for [ = 0,...,rq — 1 have the same rh

Gevrey asymptotic expansion on the sector S* S+ with right hand side B(z)
B(z. H(z). H(z)) = A/dy (z. H (z)). The initial term B (0) = Ay has, in particular,
distinct eigenvalues. We can apply a classical result in the theory of linear ordinary
differential equations (see [35]) asserting that there exists a fundamental matrix
solution of (6.6) of the form

Y1(z) = Gi(2) exp(Q(2) 2/, (6.7)

where:

(i) Gi(z) is a matrix of holomorphic functions on §/*1.

(i) There exists a matrix G (z) of formal power series such that, for every /,
G/ (z) has é-Gevrey asymptotic expansion with right hand side a(z) in SHFL
Moreover det(a (0)) # 0;

(i) J = diag(wy,...,®,) is a constant diagonal matrix and

(iv) Q(z) = diag(Q1(2), ..., O, (7)) is a diagonal matrix where

Qj(z) — _%Z_q + ... € (C[Z—l]

are polynomials in the variable 7! of degree ¢ without constant term.

The singular directions (respectively the Stokes directions) are precisely the rays
where the initial term of some of the polynomials Q;(z) is real negative (re-
spectively purely imaginary). Denote the columns of the matrix G;(z) by Gy; (2),

j =1,...,r. Then, the particular solution Al of (6.6) can be written as
M) = Y €1 Gl (e Dz, (6.8)
where ¢; = (¢j1,...,¢;r) € C is some constant vector.

Lemma 6.3. Given ! € {0,...,rq — 1} and p = p(l) € {1,...,r} defined by
I + 1 = pmodr, we have that c;j = 0 for every j # L.

Proof. This is a classical result. It is due to the fact that for every j # pu, the
function exp(Q  (z)) is exponentially large on some ray in S’/*! while A; remains
bounded on that sector. |

Thus, in the expression (6.8), only the j-th coefficient ¢;;, where A; is the
eigenvalue corresponding to 6;, can have a non-trivial contribution in order to
compute A’. This coefficient merits a definition.
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Definition 6.4. The coefficient y; = ¢y, is called the Stokes multiplier of the
solution H (z) associated to the singular direction 6.

6.1.3 Transcendence, Quasi-analyticity and Statement of the Main
Theorem

It seems reasonable that, as long as H is transcendental (far from being a convergent
series), the solutions H which are asymptotic to H “separates” from any given
analytic object and will have then finiteness properties with respect to analytic func-
tions. As a confirmation of this impression, we propose the following proposition,
to be used later. It is stated for formal power series in general, irrespectively of the
fact that they are or not solutions of a system of ODEs. (Recall the definition of
(analytically) transcendental power series after the statement of Theorem 5.7.)

Proposition 6.5. Let ﬁ(x) be an r-uple of real formal power series as in (6.4)
and let H :]9, el = R be an analytic parameterized curve such that H ~ H as
x — 0% If H is a transcendental power series then H is non-oscillatory.

Proof. Given f(x,y) € R{x,y} non zero with f(0,0) = 0 then, by hypothesis of
transcendence, f(x, H (x)) = x"V7(x) with a series 7(x) such that 7(0) = uy # 0.
From the definition of asymptotic expansion we obtain that £ (x, H(x)) = x"u(x)

where u :]0,¢] — R is bounded and lim,_,+ u(x) = up. This implies that the
function x +— f(x, H(x)) for x > 0 has no zeroes accumulating to x = 0. This
gives, by definition, the property of non-oscillation for H. O

Proposition 6.5 means that the germs of functions of the form x — f(x, H(x)),
x > 0, where f is analytic at the origin, are completely determined by its formal
Taylor expansion at x = O0; in other words, it is a result of quasi-analyticity
(QA for short) for that class of germs. In the statement of our main result, we
impose a condition on the series H (x) that makes it to be transcendent enough
(see Definition 6.15 bellow) so that we can infer a QA property for a wider class of
germs constructed from analytic functions and the components of a solution H of
(6.1) satisfying H ~ H (x) as x — O7. This property on quasi-analyticity imply,
by itself, o-minimality of the components of H .

Transcendence of a series implies in particular divergence. Thus, according to
Remark 6.2, we need some Stokes multiplier to be non zero. The imposed condition
bellow is intended to achieve transcendence as much as possible by requiring a non-
zero Stokes multiplier for any eigenvalue. More precisely, we will denote by (SD)
(for singularity at any direction arg(A ;)) the following condition:

(SD) Forany u €{1,..., r} there exists [ € {0, ..., qr — 1} with/ 4+ 1 = pmodr such
that y; # 0.

We can now state the main result of this section.

Theorem 6.6. Consider a system of ordinary differential equations (6.1) with real
analytic coefficients and assume that the linear part Ay satisfies the condition (DA).
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Assume, moreover, that the formal power series solution H (z) satisfies the condition
(SD) about its Stokes multipliers. Then, given a solution H 3]0, ¢] — R” such that
H ~ ?I(z) as x — 0T, the components H;, j = 1,...,r of H are simultaneously
definable in an o-minimal expansion of the real field (R, +, -, 0, 1). More precisely,
the structure R, g, expansion of the real field by the restricted analytic functions
and the components of H is o-minimal, model-complete and polynomially bounded.

A restricted analytic function is a real function in R” for some n which takes
value O outside the compact cube " = [—1,1]" and coincides in [ with a
convergent real power series with radius of convergence greater than 1 in each
variable. The structure R,, generated over the real field by the restricted analytic
functions is o-minimal and model-complete and the family of its definable sets in
each R” coincides with the family of sets which are subanalytic in (Pﬁ)". All these
properties can be seen in [33].

We analyze here several applications of Theorem 6.6.

Example 6.7 (Plane Pfaffian curves). A first consequence is an o-minimality and
model completeness result for certain planar trajectories of vector fields or, equiva-
lently, planar pfaffian curves. Consider a real analytic vector field

a ad
X = a(%)’)a + b(%)’)@

in some neighborhood of 0 € R? with a(0,0) = (0, 0) = 0 and let y be a trajectory
of X accumulating to the origin and having a well defined tangent there. By virtue
of Proposition 2.3, and up to changing the variables x, y, the image | y | is the
graph of a non-oscillatory solution H :]0,¢] — R tending to 0 as x — 0 of the
differential equation b (x, y)% = —a(x, y). The o-minimality of the structure R, g
is a particular case of the results proved in [14, 36] since this graph is a Rolle’s
leave of an analytic foliation. Model completeness of the structure R,,  is, however,
unknown in general. Using Theorem 6.6 we can prove this property in the case that y
has not flat contact with an analytic half-branch at the origin. The proof of this claim
is as follows. Analytic changes of coordinates or blow-ups are obviously inessential
for the question of model completeness. Therefore, by a classical theorem on the
reduction of singularities [26], we can reduce to one of the following situations:

1. H is analytic also at x = 0. In this case, R,, g = R,, and the result is well
known ([7,33]).

2. H(x) = x* for some irrational A > 0. In this case, the model completeness is
proved in [17].

3. H is a solution of a saddle-node equation

d
xq“ﬁ =y+Ai(x,y), g=1,
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where A, is analytic at the origin and 4,(0,0) = %‘(O, 0) = 0. In this case,

H is asymptotic to the unique formal power series H (x) solution. Since we
have supposed that y has not flat contact with and analytic half-branch, H (x) is
divergent. We have that the hypothesis in Theorem 6.6 are satisfied (there is a
single eigenvalue and some Stokes multiplier of the formal solution H (x) must
be non-zero by Remark 6.2). The structure R,, i is thus model complete (and
polynomially bounded).

Example 6.8 (Two dimensional systems with non-real eigenvalues). Consider a
system (6.1) with » = 2 such that the linear part A9 = 0A4/dy(0) has two

non real conjugate eigenvalues Ay, A, = A1 (in particular, it satisfies condition
(DA)). Let H (x) € R[[x]]? be its formal power solution. The singular directions
0, of H(x) satisfy 6,1 = —6, if | = —k modg and, since H(x) has real

coefficients, the corresponding Stokes coefficients ¢; j, ¢k » are complex conjugate.
Thus, condition (SD) is equivalent to the existence of a non zero Stokes coefficient
for some singular direction. By Remark 6.2, this is equivalent to the divergence of
the series H (x) (of at least one of its components). In this situation, Theorem 6.6
applies and, for any solution H :]0,&] — R? with H(x) ~ H(x) asRT 3 x — 0,
the structure R,, iy is o-minimal and model complete. A concrete example is the
system of ODEs (5.3) with asymptotically linked solutions: the linear part has
eigenvalues 1 £ i and, as we have seen, its formal power series solution is not
convergent. Thus, any solution is definable in an o-minimal structure over the real
field. However, since all these solutions form a linked package, no two different
solutions can be definable in the same o-minimal structure.

As we have commented in the introduction, the example of the system (5.3)
contributes to the belief that non-oscillatory trajectories are more complicated than
Rolle’s leafs, from the point of view of finiteness properties: while any bounded
Rolle’s leave is definable in a common o-minimal structure, the pfaffian closure
Ranpaafr of Ry, we cannot say the same thing for the non-oscillatory trajectories.
(We recall the result in [28] on the construction of the o-minimal pfaffian closure of
any o-minimal structure over the real field). More than that, it is clear that at most
one of the structures R,, iy for A a solution of (5.3) could be a reduct of Ry, prasr.
We claim that it is actually the case for none of these structures.

Proposition 6.9. Let H : x — H(x) = (H,(x), Hy(x)) be any given solution
of the system (5.3) defined for x in some interval (0, €]. Then H is not definable in
Ran, prap

Proof. Assume, on the contrary, that for some solution H the structure R,, z is a
reduct of Ry, prar. Then, for any other solution G, the pfaffian closure Ry G prast
(which is of course an extension of Ry, pr) would be a common o-minimal
extension of R,, g and R, g, which is impossible. O

The proof of Theorem 6.6 is organized in several steps, each of them having its
own interest by itself. In the next paragraphs we sketch the main ideas involved.
Complete details can be found in [24].
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6.2 Step 1: Quasi-analyticity and O-minimality

Consider a system (6.1) of ODEs with real analytic coefficients and assume that it
has a formal power series solution

H(x) = (Hi(x),..., H,(x)) € R[[x]].

Fix a solution H :]0, &] — R’ such that H ~ H(x) as x — 07

In general, the property (6.5) of having a real asymptotic expansion is not
preserved for the respective derivatives of a given function H and of a power series
H (x). However, in our situation, since H is a solution of a system of ODEs, we can
casily obtain that d" H/dx" ~ H™ (x) as x — 0T for any n. Using this result and
up to the ramification x — H(x?), we can suppose that H is defined and of class
C® in the closed interval [—¢, &] and that its formal Taylor expansion at x = 0 is
precisely H (x).

Let Ay = {A,}m>0 be the smallest collection of germs of C* functions at the
origin of the euclidean spaces R™, for any m, satisfying:

Al R{xy,...,xn} C A, for any m and the germ of the components H; of H at
x = O belong to A,.

A2 If f € A, and g1....,8n € A with g;(0) = 0 for any j, then
f(g1,....gm) € A

A3 If f € A, and f(0,x3,...,x,) = O then there exists g € A, such that
xig=f.

A4 If f € A, with f(0) = 0 and df/0x,,(0) # O then the solution A(xy, ...,
Xm—1) of the implicit equation { f(x1,...,Xn—1,h) = 0, h(0) = 0} belongs to
Am—1.

If ' € A,, we denote by

~)

=Y iaaf(())xa eR[X]], X = (X1,.... Xn)

o) dx“

its formal Taylor expansion at the origin.

An essential key for the proof of Theorem 6.6 is the following result of
Rolin-Speissegger-Wilkie that allows to obtain new o-minimal structures from
quasi-analytic classes.*

Theorem 6.10 ([23]). If Ay is quasi-analytic; that is, if the following property
holds

(QA) Yfedn f=0= f =0,

then the structure R, g is o-minimal, model-complete and polynomially bounded.

4This result is discussed in [22].
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Thus our goal now is to prove (QA) for our class of functions Ay . The following
proposition permits to reduce considerably this property.

Proposition 6.11. The class Ay is quasi-analytic if property (QA) holds for the
Sfamily A, of one-dimensional germs.

Proof. Let f € A, such that }’\ € R[[X]] vanishes identically. We first claim that
there exists a representative F of f defined in some neighborhood U of the origin
0 € R™ satisfying the property that for any @ € U, the germ F, of F at a is equal
to g(x — a) for some g € A,,. In order to prove this claim, consider the class Ay
of germs at the origin satisfying this condition; we can check that this class satisfy
conditions A1-A4 and thus Ay C le. Now, assume that U = B(0, &) for some
e > 0.If werestrict F toaline £, : ¢ +> tz withz € S"~!, the germ (F ol,), of Fol,
at the point 7z belong to A; (after translation). It has zero Taylor expansion atf = 0
since ? = 0 and thus (F o £;)o = 0 by hypothesis. By usual topological arguments
we conclude that the germ (F o £,), is identically zero for every t. So F o £, = 0
and, since z € §"~! is arbitrary, we conclude that f = 0. a

6.3 Step 2: Reduction to Simple Functions

The class A, although consisting on one-dimensional germs, can be a priori very
complicated to handle: it has composites of transcendental functions, for instance
of the form H;(H(x)) where H;, H; are components of the vector solution H.
We describe a simpler subclass which will play an important role in the sequel.

We will use the notation

Tigp (x) = (p(x) — Jig (x))/x*

for ¢ a C*° function or a formal power series in a single variable x, where Ji¢ (x) €
R[x] denotes its k-jet at x = 0.

Definition 6.12. Let H = (H,,..., H,) : [—¢,¢] — R" be a C* function. A germ
@(x) of a C* function at 0 € R will be called a simple function (relatively to H) if

there exists n > 0, an analytic function f* € R{x,zi1, ...,z }, polynomials P;(x)
with P;(0) =O0for j =1,...,n and an integer kK > 0 such that
¢(x) = f(x. T H(P\(x)). ... . Te H(Py(x))). (6.9)

The family of simple functions is an algebra denoted by Sy .
Our problem of quasi-analyticity reduces considerably using the following result.

Theorem 6.13. Let H :]0,¢] — R’ be a solution of a system of ODEs (6.1) with
real analytic coefficients and assume that H has an asymptotic expansion H ~
H(x) as x — 0% If the class of simple functions Sy has the property (QA) then
Sy = A.
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In this statement, we do not assume any condition about the linear part 4y of
the system or about the Stokes phenomena of the formal solution H (x). The only
existence of the formal solution H (x) and the asymptotic expansion of the actual
solution H permits to construct the class of simple functions Sy . So, Theorem 6.13
could be applied to other situations where we do not have a priori the hypothesis
of Theorem 6.6. For instance, if the formal series solution H (x) is multisummable
in the positive real direction (see [16]) then the restriction H :]0,¢] — R” of its
multisum will have the required properties so that the associated class of simple
functions Sy is quasi-analytic. (We remark that the o-minimality of the structure
R, g in this case is already proved in [32]; however, model-completeness can not
easily deduced from the proofs in that paper).

The proof of Theorem 6.13 is quite technical (see [24] for details). One main
ingredient is the following quite general result in the theory of ordinary differential
equations.

Proposition 6.14. Let H :]0,¢] — R’ be a solution of the system (6.1) such that
lim, _,o+ H(x) = 0. Assume that A(0,0) = 0. For any L > 0 there exists a
neighborhood V of (0,0) € R'*", §; > 0 and an analyticmap B : [-L, L] xV —
R" such that

H(x +x9'7) = B(z,x, H(x)), |z|<L, 0<x <5$;. (6.10)
Proof. Let V; be a neighborhood of the origin of R'*" for which the map
A:(-L—=1,L+1)xV, >R, (z.(x,w)) > A(x + xT'z, w)

is well defined and take 6; > O such that (x,z) — 1 4+ x%z does not vanish for
0 <| x |< 61, ] z|< L + 1. Consider the (non-singular) system of ODEs on the
variable z parameterized by x

(Ex) cfg_vzv = (1+ x99 A(x, 2z, w).

The zero map is a solution of (Ej). Using the theorem of analytic dependence of
solutions of differential equations on parameters and initial values, we can see that
there exist a smaller neighborhood V' C V; such that, given (xo,wy) € V, the
solution ¢y, w,) of (Ey,) with initial condition ¢(0) = W exists and is analytic on
the interval [—L, L]. Moreover, the map

B:[-L.LIxV =R, (z.(x0. W0)) = ¢(x.w) (2)

is analytic. Choose finally §; > 0 such that (x, H(x)) € V for0 < x < §,.If we fix
such an x, the map z + B(z, x, H(x)) is the solution of (E,) with initial condition
H (x). This solution, for z small, can also be expressed as z > H(x + x9t!z).
We obtain the (6.10) by unicity of solutions. |
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6.4 Step 3: Strong Analytic Transcendence

Consider a system (6.1) of ODEs with real analytic coefficients and assume that it
has a formal solution H (x) = (H(x),..., H,(x)) € R[[x]]".

Definition 6.15. We say that H (x) is strongly analytically transcendental if it
satisfies the following condition:

(SAT) Ifk > 0,n > 0, an analytic function f* € R{x, z11,..., 2, } with f(0) =0
and distinct polynomials P;(x), ..., P,(x) with

deg P, < (¢ + Dord P, and P4 (0) >0 6.11)

are given, then one has f(x, {Tkﬁj (Pi(x))}j)) =0 = f=0.

(Recall the notation Ty ¢ (x) = (¢ (x)—Ji¢ (x))/x* where Jy ¢ (x) € R[x] denotes
the k-jet at x = 0).

With the aim of simplifying the exposition, a real polynomial P;(x) € R[x]
satisfying the properties in (6.11) will be called a g-short positive polynomial.
The first condition about the bound on the degree is justified by Proposition 6.14.
The second condition guarantees that P; takes positive values for small positive x
and will play an important role below.

The (SAT) condition is considerably stronger than the condition of transcendence
proposed in Proposition 6.5. We can see easily that it implies quasi-analyticity of
the class Sy of simple functions associated to a solution H :]0,&] — R” with
H ~ H(x)asx — 0%,

Summarizing, by virtue of Theorem 6.10, Proposition 6.11 and Theorem 6.13,
we can state the following

Theorem 6.16. Let ﬁ(x) € R[[x]]" be a formal power solution of a system (6.1)
and suppose that it holds the (SAT) property. Then, for any solution H :]0,¢] — R”
with H ~ ﬁ(x) as x — 0%, the expansion R,y is o-minimal, model-complete
and polynomially bounded.

Finally, to complete the proof of Theorem 6.6 we need to prove the following
result.

Theorem 6.17. Assume that conditions (DA) and (SD) hold for the system (6.1).
Then the (unique) formal power solution H (x) has the (SAT) property.

Before entering in the ideas of th proof of Theorem 6.17, let us discuss here the
pertinence of hypothesis (DA) and (SD) with some examples.

Example 6.18. Let E(x) € R[[x]] be the Euler series as in (5.1), solution of the
Euler’s equation x?>dy/dx = y — x. Let E : x — E(x), for x > 0, be a particular
solution of this equation and put

H(x) = (E(x) + exp (—%) , E(2x)) .
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It is a solution of the system

xzﬂ =y —X
dx
LT
dx 2
which does not satisfy (DA). The asymptotic expansion of H at x = 0 is

H x) = (E (x), E (2x)). The Euler series has the (SAT) property (since it has
the (SD) condition, see Example 6.7). However, it is evident from construction
that the (vector) series H (x) has not the (SAT) property. Thus condition (DA) in
Theorem 6.17 cannot be completely removed. Notice also that H (x) is divergent
(both components are divergent series) and, moreover, it is analytically transcen-
dental in the sense of what we have defined in Proposition 6.5; thus (SAT) property
is strictly stronger than just the transcendental property.

Example 6.19. Consider the example of the system (5.3), better written in our
current notation as
2dY1

X'——==y1+y2—Xx
dx Y1+ )2

XZ@ =)Y2=)1
dx
We have already seen (see Example 6.8) that the formal power series solution
H (x) € R[[x]]* satisfies the condition (SD) on the Stokes phenomena and thus,
by Theorem 6.17, it has the (SAT) property. Let H, G :]0, e] — R? be two different
solutions with lim,_,y+ H(x) = lim,_,,+ G(x) = 0. The map

H*:0,¢] = R*, H*(x) = (H(x), G(2x))

is a solution of a system of four ODEs whose linear part has eigenvalues 1 &£ i,
% + 5. It has an asymptotic expansion as x — 0" equal to

H*(x) = (H(x), H(2x)).

By the (SAT) property for H, we deduce that ﬁ;(x) is transcendental and thus,
by Proposition 6.5, that H* is a non-oscillatory solution. However, since H and
G are asymptotically linked, the components of H* can not all be simultaneously
definable in an o-minimal expansion over the real field.

In terms of vector fields, this example shows that, in dimension greater or equal
to 5, there are non-oscillatory trajectories of analytic vector fields which do not
generate an o-minimal structure over the real field. Such an example cannot exist in
dimension two since non-oscillatory trajectories in the plane are pfaffian sets. It is
an open question to know whether these kind of example may exist for vector fields
in dimension three or four.
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6.5 Step 4: Proof of the (SAT) Property

Let us sketch in this paragraph the proof of Theorem 6.17. In order to simplify
the exposition we will consider a particular case where all the main ideas involved
already appear.

Consider a system of real analytic ODEs as in (6.1)

d
xq“d—)f = A(x.y),

wherey = (y1, y2) (thatis r = 2) and

94 10
A = — = .
0= 5y @0 (0—1)

It satisfies the condition (DA) on the eigenvalues of the linear part. Let H (x) =
(ﬁ 1(x), H 2(x)) € R[[x]]? be the formal power series solution.

The general discussion in Sect.6.1.2 gives for this particular situation the
following description of the Stokes phenomena of H (z), considered as a complex
power series. The set of singular directions are denoted as

2lm 2+ Dw
{667 Yozi<g—1. 6] = 7’912 = %‘

Foreach 0f,e = 1,2,1 = 0,...,q — 1, the difference Af = (Af,, Af,) between
two g-sums of H (z) corresponding to directions slightly above and slightly below of
6f is holomorphic in some open sector bisected by the direction 6; and of opening
slightly smaller than 7 /2¢, as shown in Fig. 26. There exist complex polynomials
of degree ¢q

1 1
01(2) = == -+, 0a(2) =~ +-+-
q q
without constant terms, complex numbers a1, o, € C and a 2 x 2 matrix a(z) whose
entries are complex power series and for which G (0) is non-singular such that, for
each (e,l) € {1,2} x{0,...,q — 1},

Af(z) = cf exp(Q.(1/2))2% Gf (2), (6.12)

where ¢; € C and Gf(z) is a two-dimensional vector of holomorphic functions in
the corresponding sector having there the e-th column of G (z) as Gevrey asymptotic
expansion of order 1/4.

We assume that the formal power series H (z) has the (SD) condition. In our
particular case, it means that there exist /(1),/(2) € {0,...,¢q — 1} such that c,l(l),

clz(z) are both non-zero. Let us see that it has the (SAT) property.
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Fig. 26 Singular directions for different values of the Poincaré rank ¢

Suppose, by contradiction, that there exists k > 0, a non-zero analytic germ f
and distinct ¢g-short positive polynomials Py, ..., P, as in Definition 6.15 such that
the power series

f(@ TeH (Pi(x)), ..., Ti H (P,(x))) = 0. (6.13)

First, taking into account that T H () is the unique formal solution of a system of
equations analogous to (6.1), we can suppose without loss of generality that k = 0.
two components of H (z) and the index j for the different polynomials P; (x)) and
let A C {1,2} x {1,...,n} be the subset of indices (i, j) for which f depends
effectively on the variable z;;. Assume that A has minimal cardinality among all the
non-zero germs f satisfying (6.13).

Lemma 6.20. Fix (k,l) € A and denote K@) = (2 H (P/().....H(P,(2)).
We can suppose that df /9zx; (K (z)) # 0.

Proof. First, there exists s > 1 such that 9* f/ azi,(l/(\' (2)) # 0: otherwise the power
series
~ 1 0"f ~ ~ m
S Gz AH i (P @)Y jyzwn) = Y — 5 (K@) @ — Hi(Pi(2)))

' m
=m! 0z
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in R][[z, zx;]] would be identically zero. Thus any of its coefficients as a series
in R[[z]][[zx:]] is zero. On the other hand, these coefficients arise from plugging
(z.{H;(P;(2))}q.j)#(k)) in the coefficients f,, of f as a convergent power series
in the variable zj;; that is,

S Azibapen) = Y S Az o pyran) -

m=>0

Since each f,, is a convergent power series, by minimality of the cardinal of A, we
would have f,, = 0 for every m and thus f = 0. Now, consider g = 9*~! f/9z};"
where s is the minimum satisfying the condition above. The germ g is non-zero and
satisfies the required properties of the lemma. |

Denote v; = ordP; > 1for j = 1,...,n and v = min{vy,...,v,}. We
have (see [20]) that H (P :(2)) € C[[z]]? is v, g-summable whose (possibly) singular
directions are the v -th roots of the singular directions of H (z). Let

Q={pecl0,2x][/vjp = 9; mod 27 Z for some i, j, !}

be the set of representatives of the singular directions of all H (P} (z)) modulo 2
and order its elements as

0<¢g <@ <+ <@y <2m.

For any ¢ ¢ Q, we put F¥(2) = f(z, {I:I,-W(Pj (2))}.j)en), a holomorphic
function defined in some open sector V,, bisected by ¢ and of opening 7/vq
where 7 = max{vi,...,v,}. (Recall that H? = (HY, H>) denotes the ¢-sum

of the formal power series H (z) along the non singular direction ). For any
(i,j.k)ye{l,2}y x{1,2,...,n} x{1,2,..., N}, denote

~ ot o
hiji(z) = H'% (P;(2)) — H’™ (P;(2))

where ¢, (,o,;F & Q2 are close to ¢ and ¢, < ¢ < qolj . Using the Taylor expansion
of the function f, we can write, foreachk = 1,..., N,

Si(@) = F% (@) = F% (@) = Y Dije@hii 2). (6.14)

i

where D;j; is a holomorphic function in some sector V; bisected by ¢ and of
opening slightly smaller than 7t /vg where it satisfies the Gevrey asymptotics

of ~
ij
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The contradiction (and thus the end of the proof) will be found after proving the
following two incompatible results:

@O It f (I? (z)) = 0 then every F? is exponentially small of order strictly greater
than qv in V.
(II) If f # O then there exists some ko such that Xy, is exponentially small of order
exactly gv along at least some ray in the sector V.

The result (I) is an avatar of the Relative Watson’s Lemma, a quite general result
in the theory of multisummable series. We do not enter here in the proof (see [24]
and the references there).

Let us focus finally in the proof of (II).

Forany (j,k) € {1,....,n} x{1,..., N}, there exists e = e(j,k) € {1,2} and
I =1(j.k) with v; @ = 6;/}) such that

hij(x) = Af (P (2) = ¢f exp(Qe(1/ P )G, (). (6.16)

Up to reordering the polynomials P;, we can suppose that

V=g == < Vpgr S0 S o

Using the positiveness of the first coefficient of the polynomials P;, we can write,
using (6.16), the function X in (6.14) as

i@ = ) Di@A(Pj)+ 0 (eXp (—L)) :

qv+te
i=12;1<j<m 2]

where K, ¢ > 0 and ¢ is sufficiently small. Denote by 7} (z) the first summand in the
above expression. It remains to prove that, for some ko, T}, is exponentially small
of order exactly gv along some ray.

Notice that, by definition,

I(1,k) = - = l(ny, k) = I(k), e(l,k) =---=e(n, k) = e(k).

Write, using (6.12),

Ti(@) = cjigy I Ex@(Pj ()" exp(Qey(1/Pj(2)),  (6.17)
j=1
where
Eji(d) = Dijk@Gyy) | (Pi(2) + Daju @Gl o(Pj(2).  (6.18)

Claim. We can suppose that there exists eg € {1, 2} such that, for any k with e(k) =
€0, E1x(z) ~ E1x(z) # 0 as a formal asymptotic expansion.
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Proof of the claim.- First notice that
Eji(@) = (Dijx(@) Do) 69 (2),

where G¢(z) is the e-th column of the matrix G (z) defined at the beginning of this
paragraph. On the other hand, by Lemma 6.20 and (6.15), we can take f such that

_ J ~
D) = %(K(z)) £0.

Now use the fact that 6(0) is non-singular in order to assure that, for some ey, the
series (D/;k (2) D/27k (z)) G (2) is not identically zero.

Once we have chosen ey € {1,2}, we use the hypothesis (SD) so that we can
chose [y € {0, ...,q — 1} such that c[e(? = 0. Take, finally ko € {1,..., N} such that
eo = e(ko) and Iy = (ko) (that is, k¢ is defined by vey, = 9,‘;" mod 27 7).

We use the expression (6.17) for k = ko. We know that at least Ex, has a non
zero asymptotic expansion. We can suppose that this is so for £, if j € {1,...,n}
(otherwise, if E i, ~ 0 for such a Jo, since this expansion is Gevrey of order 1/qv,
this would imply that Ex, is exponentially small of order at least gv and, together
with the exponential term exp(Q ,(1/Pj,(z))), will produce a summand in (6.17)
negligible in front of those for which E i, » 6).

The fact that the P; are different g-short polynomials permits to assure that, if

J1 # Jja2, then
Qeo(l/le (Z)) - Qeo(l/sz(Z))

is a meromorphic function with non zero principal part. (The proof is an easy
exercise in the algebra of polynomials).

Now, up to have chosen conveniently the first index for the polynomials
Py,...,P,, (and thus have adapted the claim above to that index), we can suppose
that, for j > 1,

o(1/P;
B0 = oo ((g o 83 = exp (0, (1/P;(2)) = 0 (1/ P1(2)))

is exponentially small along the ray of angle ¢, as | z |— 0T. We have finally,
along the ray argz = ¢y,

Tk, (2)
exp (Qe, (1/P1(2)))

ni
= (W Eriy QP10 + ) Ejsy Q)P ()"0 B )
j=2

= M (ay + o(1))
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where M, some positive constant and @y € C \ {0}. We deduce that T}, along that
ray, is exponentially small of order exactly gv, the exponential order of the function

exXp (Qeo(l/Pl (Z)))

Acknowledgments Partially supported by the research projects MTM2007-66262 (Ministerio de
Educacién y Ciencia, Spain) and VA0O59A07 (Junta de Castilla y Ledn, Spain) and by the grant
Plan Nacional de Movilidad de RR.HH. 2008/11, Modalidad “José Castillejo”.

References

1.

2.

3.

oo

10.

11.

12.

13.
14.

15.

16.

17

18.

19.

20.

21.

V.I. Amold, Chapitres Supplémentaires de la Théorie des Equations Différentielles Ordinaires
(Editions Mir., Paris, 1980)

E. Bierstone, P.D. Milman, Semianalytic and subanalytic sets. IHES Publ. Math. 67, 5-42
(1988)

F. Cano, R. Moussu, F. Sanz, Oscillation, spiralement, tourbillonnement. Comm. Math. Helv.
75, 284-318 (2000)

. E. Cano, R. Moussu, F. Sanz, Pinceaux de courbes intégrales d’un champ de vecteurs

analytique. Astérisque 297, 1-34 (2004)

. E. Cano, R. Moussu, J.-P. Rolin, Non-oscillating integral curves and valuations. J. Reine

Angew. Math. 582, 107-141 (2005)

. J. Carr, Applications of Centre Manifold Theory (Springer, New York/Heidelberg/Berlin, 1980)
. AM. Gabrielov, Complements of subanalytic sets and existential formulas for analytic

functions. Invent. Math. 125(1), 1-12 (1996)

. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964)
. H. Hironaka, Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative

Algebra (Kinokuniya, Tokyo, 1973), pp. 453-493

H. Hironaka, Introduction to Real-Analytic Sets and Real-Analytic Maps (Instituto Matematico
“L. Tonelli”, Pisa, 1973)

M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds. Lecture Notes in Mathematics, vol. 583
(Springer, Heidelberg, 1977)

T. Kaiser, J.-P. Rolin, P. Speissegger, Transition maps at non-resonant hyperbolic singularities
are o-minimal. J. Reine Angew. Math. 636, 1-45 (2009)

A. Kelley, Stability of the center-stable manifold. J. Math. Anal. Appl. 18, 336-344 (1967)
J.-M. Lion, J.-P. Rolin, Volumes, feuilles de Rolle de feuilletages analytiques et théoreme de
Wilkie. Ann. Fac. Sci. Toulous. Math. 6, 93—-112 (1998)

S. Lojasiewicz, Ensembles semi-analytiques, vol. 92. Reproduced n A66.765 (L.H.E.S.
Prépublication, Ecole Polytechnique, Paris VI, 1965)

B. Malgrange, J.-P. Ramis, Fonctions multisommables. Ann. Inst. Fourier (Grenoble) 42(1-2),
353-368 (1992)

. C. Miller, Expansions of the real field with power functions. Ann. Pure Appl. Logic 68, 79-94

(1994)

R. Moussu, C. Roche, Théorie de Hovanskif et probleme de Dulac. Invent. Math. 105(2), 431—
441 (1991)

L. Perko, Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol.
7 (Springer, New York, 1991)

J.-P. Ramis, Les séries k~sommables et leurs applications, in Complex Analysis, Microlocal
Calculus and Relativistic Quantum Theory. Lecture Notes in Physics, vol. 126 (Springer,
Berlin-New York, 1980), pp. 178-199

J.-P. Ramis, Séries Divergentes et Théories Asymptotiques. Panoramas et Synthéses, vol. 121
(Société Mathématique de France, 1993), p. 74



Course on Non-oscillatory Trajectories 177

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34,
35.

36.

J.-P. Rolin, Construction of o-minimal structures from quasianalytic classes, in Lecture Notes
on O-minimal Structures and Real Analytic Geometry, Fields Institute Communications,
Springer Verlag, 62, 70-109 (2012)

J.-P. Rolin, P. Speissegger, J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality.
J. Am. Math. Soc. 16(4), 751-777 (2003)

J.-P. Rolin, FE. Sanz, R. Schifke, Quasi-analytic solutions of analytic ordinary differential
equations and o-minimal structures. Proc. Lond. Math. Soc. 95(2), 413-442 (2007)

F. Sanz, Dindmica oscilante de campos de vectores analiticos reales. Ph.D. Thesis, University
of Valladolid, Spain, 1999

A. Seidenberg, Reduction of the singularities of the differential equation Ady = Bdx. Am. J.
Math. 90, 248-269 (1968)

M. Shub, Stabilité globale des systémes dynamiques. Astérisque 56, (1978)

P. Speissegger, The Pfaffian closure of an o-minimal structure. J. Reine Angew. Math. 508,
189-211 (1999)

P. Speissegger, Pfaffian sets and o-minimality, in Lecture Notes on O-minimal Structures
and Real Analytic Geometry. Fields Institute Communications, Springer Verlag, 62, 178-218
(2012)

A. Tarski, A Decision Method for Elementary Algebra and Geometry (University of California
Press, Berkley and Los Angeles, 1951)

L. van den Dries, Tame Topology and o-minimal Structures. London Mathematical Society
Lecture Note Series, vol. 248 (Cambridge University Press, 1998)

L. van den Dries, P. Speissegger, The field of reals with multisummable series and the
exponential function. Proc. Lond. Math. Soc. 81(3), 513-565 (2000)

L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields
with exponentiation. Ann. Math. 140, 183-205 (1994)

R.J. Walker, Algebraic Curves (Dover, New York, 1950)

W. Wasov, Asymptotic Expansions for Ordinary Differential Equations (Wiley, New York,
1965)

A.J. Wilkie, A theorem of the complement and some new o-minimal structures. Selecta Math.
5(4), 397-421 (1999)



Pfaffian Sets and O-minimality

Patrick Speissegger

Abstract Recent developments in the theory of pfaffian sets are presented from
a model-theoretic point of view. In particular, the current state of affairs for Van
den Dries’s model-completeness conjecture is discussed in some detail. I prove the
o-minimality of the pfaffian closure of an o-minimal structure, and I extend a weak
model completeness result, originally proved as Theorem 5.1 in (J.-M. Lion and
P. Speissegger, Duke Math J 103:215-231, 2000), to certain reducts of the pfaffian
closure, such as the reduct generated by a single pfaffian chain.

Keywords Pfaffian functions ¢ O-minimal structures * Model completeness
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Introduction

These notes are the result of a month-long course taught during the Thematic
Program on o-minimal structures and Real Analytic Geometry, held at the Fields
Institute from January to June of 2009. They present an introduction to pfaffian sets
and functions with a model-theoretic perspective.

Introduced by Khovanskii [9] in the late 1970s, pfaffian sets are of interest to
many areas of mathematics; see for instance the Conclusion of [9], Moussu and
Roche [21] and Karpinski and Macintyre [7]. Van den Dries conjectured in the early
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1980s that pfaffian functions generate a model complete and o-minimal structure
over the real field, and he proposed proving this via a model-completeness argument
based on Khovanskii’s description of pfaffian sets. The first breakthrough in this
direction came with Wilkie’s model-completeness result for the real exponential
function [25]. While the significance of this work goes beyond that of pfaffian
functions in general, it also contains a proof of Van den Dries’s conjecture for
restricted pfaffian functions, that is, pfaffian functions restricted to compact boxes.
A geometric proof of the latter was given later by Gabrielov [3].

The second breakthrough came again from Wilkie in his proof of o-minimality
for unrestricted pfaffian functions [26], followed shortly by a similar result of Lion
and Rolin [14] for pfaffian functions over R,,. The ideas in these two papers were
then adapted to working over any o-minimal expansion of the real field in [22].
The first goal of these notes is to prove the main theorem of the latter, stated as
Theorem A below.

The proofs of Wilkie’s second theorem, of Lion and Rolin’s theorem and of
Theorem A do not quite follow the strategy proposed by Van den Dries. They
are based instead on ideas of Charbonnel; see [26] for a detailed account. These
ideas amount to allowing a certain limit operation (represented here by the pfaffian
limits in Sect.5) in the description of the definable sets, in addition to the usual
first-order operations, and establishing a version of model completeness using this
additional operation on definable sets. However, this limit operation does not set any
limits on the quantifier complexity for definable sets in terms of the usual first-order
operations, so the model-completeness aspect of Van den Dries’s conjecture remains
open.

Gabrielov reiterated the model completeness conjecture in [3], and he established
[4] a variant of Wilkie’s second theorem that produces a bound on the quantifier
complexity of sets definable by pfaffian functions. Around the same time, Lion and
I tinkered with Nash blowings-up (what we called “blowing up in jet space”) to
try to rewrite sets obtained by the above limit operation in terms of only the first-
order operations. In [15], we were only partially successful and obtained a weak
model-completeness result, stated as Theorem B below. The proof of this result
is the second goal of these notes. This weak model completeness turns out to be
useful for two geometric applications found in [15, 19], implied by Theorem B and
Proposition 1.14 below.

More recently, Lion and I were able to use Nash blowings-up to prove model
completeness for nested pfaffian sets, see [18]. Nested pfaffian sets were already
introduced in [9] and represent a natural language for pfaffian sets. While the
proof of this model-completeness result goes beyond the scope of these notes, the
approach taken there allowed me to streamline the proofs of Theorems A and B
given here. (Note, for instance, the short proof of Proposition 6.5 below, which
represented the key step in all versions of Theorem A published before the year
2000. Its short proof given here is due to a more careful treatment of Hausdorff
limits in Sects. 4 and 5, which allows me to “hide” the use of Baire category theory
in a convenient notion of dimension.) As a result, these notes also provide an
introduction to some of the ideas used in [18] in a somewhat less involved setting.
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Moreover, this approach is what allows me to establish Theorem B for certain
reducts of P(R), such as the expansion of R by a single pfaffian chain over R.

These notes are organized as follows: in Sect. 1, I introduce the necessary
terminology, state the main results and discuss some related issues, such as the
existence of pfaffian functions and various versions of Van den Dries’s model-
completeness conjecture. Proposition 1.14, being independent of the other material
in these notes, is proved in Sect.2. In Sect.3, I return to the pfaffian setting
to develop Khovanskii theory over an o-minimal structure, and Sects.4 and 5
discuss pfaffian limits in the same setting. Theorem A is proved in Sect. 6, together
with a characterization (Corollary 6.12) of the sets definable in reducts of R;.
In preparation for Theorem B, the effect of Nash blowings-up on pfaffian limits
is studied in Sect.7 under specific hypotheses. The key point in the proof of
Theorem B is that we can definably reduce to these specific hypotheses, modulo
a certain subset of the given pfaffian limit. This subset is shown in Sect. 8 to be
obtained from pfaffian limits of smaller dimension than the given pfaffian limit;
this is achieved via a fiber-cutting lemma for pfaffian limits (Proposition 8.2).
Theorem B is proved in Sect. 9.

I thank Gareth O. Jones for many helpful suggestions and discussions during the
writing of these notes.

Conventions. Throughout these notes, all functions, maps, manifolds, etc. are
assumed to be of class C ! unless indicated otherwise.

Let R denote a fixed, but arbitrary, expansion of the real field R:= (R, <,0,
1,+,-). Unless indicated otherwise, we use “definable” to mean “definable in
R with parameters from R”. Following model-theoretic convention, if A =
{ai,...,ar} is a finite collection of real constants, real-valued functions on Eu-
clidean space and subsets of Euclidean space, we denote by (R,ay,...,a;) the
expansion of R by all elements of A in the sense of model theory.

For x € R", we put |x| := sup{|xi|, ..., |x,|} and || x|| := /x} + -+ + x2, and

forr > 0weset B(x,r):={yeR": |y—x|<r}.

1 Pfaffian Functions and Rolle Leaves

I first introduce the notions of pfaffian functions and Rolle leaves over R, then state
the theorems proved in these notes and some related open questions. I finish this
section with a brief discussion concerning the existence of Rolle leaves over R.

Definition 1.1. A tuple of functions ' = (fi...., fx) : R" — R is a pfaffian
chain of length k over R if there are definable functions P;; : Rt — R
such that

%(x) = Pri(x, i(x),..., fikx)) forl=1,....k,i=1,...,nand x € R".

axi
(1.1
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A function g : R” — R is pfaffian over R if (g) is a pfaffian chain of length 1
over R.

Examples 1.2. (1) The function log is not pfaffian over R (because log is not total,
i.e., defined on all of R), but the function x — log (1 + xz) is pfaffian over R.
Similarly, the function arctan is pfaffian over R.

(2) Every antiderivative of a definable function from R to R is pfaffian over R,
but not necessarily definable: log (1 + xz) is not definable in R by quantifier
elimination and analytic continuation.

(3) Let f = (fi..... fr) : R" — RF be a pfaffian chain over R. Then the
function f; is pfaffian over R, and fori = 2,...,k, the function f; is pfaffian

over (R, f1,..., fi—1).

A more general way to define pfaffian functions comes from differential
geometry. For k,/ € N, identify the real vector space My ;(R) of all real-valued
(k x I)-matrices with R¥ via the map 4 = (aij) = z4 = (21, ..., 2x) defined by
aij = Zk@i—-1)+,- As usual, I write M, (R) in place of M, ,(R).

Let I < n. I denote by G! the Grassmannian of all /-dimensional vector
subspaces of R". This G,ll is a real algebraic variety with a natural embedding into
the vector space M, (IR): each [-dimensional vector space E is identified with the
unique matrix Ag (with respect to the standard basis of R") corresponding to the
orthogonal projection on the orthogonal complement of E (see Sect. 3.4.2 of [1]);
in particular, E = ker(Ag). Iidentify G! with its image in R"* under the above map.
Note that the sets G,? ,..., G} are the connected components of G, := U’;=o GY
and, under the above identification, G, is definable in R.

Definition 1.3. Let M be a C2-submanifold of R". Amapd : M — G, is a
distribution on M if d(x) € T, M for all x € M. A distribution d on M is an
[-distribution if d(M) C G,ll; in this situation, I say that d has dimension and set
dimd = 1.

For example, the distribution gy on M defined by gy (x) := T, M, called the
Gauss map of M, has dimension dim M.

Definitions 1.4. Let M be a C2-submanifold of R” and d be an /-distribution
on M.

(1) An manifold V immersed in M of dimension / is an integral manifold of d if
T,V = d(x) for x € V. An integral manifold V' of d is closed if V' is a closed
subset of M.

For example, for x € R? we let dexp(x) be the kernel of the 1-form dx, —
Xadx1, that is, dep(x) is the orthogonal complement of the vector (—x, 1) in
IR?. Then the graph of exp is a closed integral manifold of dex,. On the other
hand, for x € R?\ {0}, we let dspiral (X) be the kernel of (x; — x2)dx| + x2dxs.
Then the image of every trajectory of the vector field yspira 1= —X20/0x1 +
(x1 — x2)3/dx, in R? \ {0} is an integral manifold of dspiral-
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(2) A leaf of d is a maximal connected integral manifold of d.

For example, the graph of exp is a leaf of de.p, and the image of every
maximal trajectory of ygpira in R?\ {0} is a leaf of dspiral.-

(3) An integral manifold V' of d has the Rolle property (see Moussu and Roche
[21]) if for every curve y : [0, 1] —> M such that y(0), y(1) € V, there exists
at € [0, 1] such that y'(¢) € d(y(t)). Aleaf V of d is a Rolle leaf of d if V is
a closed and embedded leaf of d that has the Rolle property.

For example, M is a Rolle leaf of gj;. The image of every maximal
trajectory of yspiral in R? \ {0} is a leaf of dpiral that does not have the Rolle
property, because (0, 00) x {0} is transverse to dpiri. On the other hand, define
horizonta (X) = R x {0} for all x € R?. Rolle’s Theorem means exactly that
every horizontal line is a Rolle leaf of dperizontal-

Definition 1.5. If d is a definable (n — 1)-distribution on R” and V is a Rolle leaf
of d, then V is called a Rolle leaf over R.

The connection between pfaffian functions and Rolle leaves is established by
Lemmas 1.6 and 1.8 below.

Lemma 1.6 (Khovanskii [8]). Let f : R" —> R be pfaffian over R. Then the
graph gr f of f is a Rolle leaf over R.

Proof. Let Py,...,P, : R"™ — R be definable such that df/dx;(x) =
Pi(x, f(x)) for all x € R". For (x,y) € R"*! we let d(x,y) be the kernel of
the 1-form w := dy — Pydx; — --- — P,dx,. Note that d is definable. Since f
is C! and total, each of the sets C; := {(x,y) € R*"*!' : y < f(x)} and
C, = {(x,y) € R*"l : y > f(x)} is connected and gr f is a closed leaf
of d. Let y : [0,1] — R"*! be a curve with y(0),y(1) € gr f. Without loss
of generality, we may assume that w(y(0)) ()/’(0)) and w(y(1)) ()/’(1)) are both
nonzero and y ((O, 1)) is contained in either C; or C,.

We now claim that w(y(0)) (y’(O)) and w(y(1)) (y’(l)) must have opposite signs.
For if w(y(0)) ()/’(O)) > 0, say, there is an € > 0 such that y((O, 6)) C Cy, and so
by the above y((O, 1)) C Cy; but if also a)(y(l))()/’(l)) > 0, there is a § > 0 such
that )/((8, 1)) C (3, so that y((O, 1)) C (3, a contradiction. We obtain a similar
contradiction if both w(y(0)) ()/’ (0)) and w(y(1)) ()/’ (1)) are negative, so the claim
is proved.

It follows from the claim and Rolle’s Theorem that there exists a ¢ € (0, 1) such
that w(y(1))(y'(¢)) = 0. This is equivalent to saying that y'(1) € d(y(r)), so the
lemma is proved. O

Corollary 1.7. Let f = (fi,..., fr) be a pfaffian chain over R. Then for each
i =1,...,k, the graph of f; is a Rolle leaf over (R, fi,..., fi—1).

Proof. Combine Lemma 1.6 with Example 1.2(3). O

The converse to Lemma 1.6 is true locally around each point of a Rolle leaf over
R after a definable rescaling:
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Lemma 1.8. Let d be a definable n-distribution on R** and assume that
I, M (x, y) is an immersion for every (x,y) € R"T!. Let L be a Rolle leaf of
d such that T1,(L) = R". Then L is the graph of a pfaffian function over R.

Proof. Since for every x € R”, the line {x} x R is nowhere tangent to d by
hypothesis, it follows that L is the graph of a function f : R" — R. Also
by hypothesis, for each (x,y) € R"*! the space d(x, y) is the graph of a linear
function determined by an n X n-matrix /(x, y), with respect to the standard
basis of R”, such that the map (x,y) + [(x,y) is definable. Now the fact
that L is an integral manifold of d means that for any unit vector v € R”, the
derivative 0, f of f in the direction v is given by /(x, f(x)) - v; in particular, f is
pfaffian over R. a

Definition 1.9. Let £(R) be the set of all Rolle leaves over R. Define R; by
inductiononi € N: Ry := R, and fori > 0 we let R; be the expansion of R;_;
by all Rolle leaves over R;_;. The pfaffian closure of R is the expansion P(R) of
R by all Rolle leaves in |, ¢y L(R;). We call R pfaffian closed if every Rolle leaf
over R is definable in R.

Remark. Every Rolle leaf over P(R) is quantifier-free definable in P(R); in
particular, P(R) is pfaffian closed.

The first main goal of these notes is to prove:
Theorem A ([22]). If R is o-minimal, then so is P(R).

As mentioned in the introduction, the proof of Theorem A does not provide
meaningful insight about quantifier simplification:

Question 1. Is R model complete?

Note that every definable C2-cell is definably diffeomorphic to a Rolle leaf
over R. It follows that every definable set is existentially definable in R . Therefore,
“model completeness of R|” is the same as “model completeness of R relative to
‘R”, and P(R) is model complete by definition. On the other hand, it seems unlikely
that every pfaffian chain over R is definable in R j—although I am not aware of any
specific counterexamples—and hence that R and P(R) are interdefinable.

Question 2. Is there a pfaffian chain over R that is not definable in R;?

The following reduct of P(R) is more naturally defined than P(R) itself: let
Rpati be the expansion of R by all graphs of component functions of pfaffian chains
over R. By Corollary 1.7, Rpg is a reduct of P(R) and so is o-minimal.

Question 3. 18 Rpgi model complete? Is Ryprasr a proper reduct of P(R)?

I do not know whether any of these open questions implies any other. The first
attempt of Lion and myself to find an answer to some of these questions led to the
following:
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Definition 1.10. A set V' € R” is an integral manifold over R if there are a
definable C2-manifold M C R”, [ < dim M and a definable [-distribution d on M
such that V' is an integral manifold of d.

Fact 1.11 ([15]). Let X € R”" be definable in P(R). Then there is a ¢ € N, and
for p = 1,...,q, there are n, > n and an integral manifold U, € R"» over R
that is a cell definable in P(R) and of dimension at most dim X such that X =
I,(U)) U--- U TL,,(U,).

Fact 1.11 is a model-completeness result, albeit in a language that has no intrinsic
description over R. Nevertheless, this language has an advantage over the one
used to define P(R), because its predicates are integral manifolds of definable
distributions. This turns out to be useful in certain geometric situations and leads
to the following:

Definition 1.12. An expansion R’ of R is R-differentially model complete if for
every X C R” definable in R/, thereisa g € N, and for p = 1,...,q, there are
n, > n and an integral manifold U, C R"» over R definable in ‘R’ and of dimension
at most dim X such that X = I1,,(U;) U --- U I1,,(Uy).

Exercise 1.13. Let R’ be an o-minimal expansion of R. Show that R’ is
R-differentially model complete if and only if for every X C R” definable in R/,
thereisa g € N, and for p = 1,...,¢, there are n, > n and an integral manifold
U, € R"» over R that is a cell definable in ‘R’ and of dimension at most dim X
such that X = I1,(U;) U --- U I1,,(Uy).

To illustrate the use of R-differential model completeness, I show the following:
recall that R is polynomially bounded if for every definable function f : R — R,
there exist N € N and @ > 0 such that | f(x)| < xV for all x > a. Similarly, R
is exponentially bounded if for every definable function f : R — R, there exist
N e Nanda > 0such that | f(x)| < ey (x) forall x > a.

Proposition 1.14. Let R’ be an R-differentially model complete expansion of R,
and assume that R’ is o-minimal.

(1) If R admits analytic cell decomposition, then so does R’
(2) If R is polynomially bounded, then R’ is exponentially bounded.

Other uses of R-differential model completeness can be found for instance in
Jones [6]. Note that, by Exercise 1.13, Fact 1.11 is equivalent to stating that P(R)
is R-differentially model complete.

In these notes, I obtain something better (see Theorem B below): let R’ be a
reduct of P(R) that expands R. Let L C | J L(R ;) be such that R’ is the expansion
of R by all leaves in £'. For j € N, put £ := L' N U{;Ol L(R;) and let R’; be
the expansion of R by all leaves in £/;. Then R, = R and for each j > 0, R’ is a
reduct of R; that expands R/, _,.

Definition 1.15. R’ is chain-closed if, for j > 0, we have E’j C E(R’j_l), that is,
every leaf in £, is a Rolle leaf over R/, _,.
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Examples 1.16. (1) If R’ is a reduct of R, then R’ is chain-closed.

(2) P(R) is chain-closed.

(3) Let (fi,....fr) : R" — R* be a pfaffian chain over R. Then by
Corollary 1.7, the expansion (R, gr fi,...,gr fr) is a chain-closed reduct of
P(R). In particular, Ry is chain-closed.

The second main goal of these notes is to prove:

Theorem B. Assume that R’ is chain-closed. Then R’ is R-differentially model
complete.

As an immediate corollary to Theorem B and Proposition 1.14, one obtains
Theorem 3 in Lion et al. [19] and a generalization of the main theorem of [15]:

Corollary 1.17. Assume that R’ is chain-closed.

(1) If R admits analytic cell decomposition, then so does R’
(2) If R is polynomially bounded, then R’ is exponentially bounded. a

More recently, Lion and I have obtained a model completeness result for P(R)
in a natural language, that of nested Rolle leaves over R (see [18] for details), under
the additional hypothesis that R admits analytic cell decomposition. Indeed, we let
N (R) be the expansion of R by all nested Rolle leaves over R, and we prove that
if R admits analytic cell decomposition, then N'(R) is model complete. It follows
that N'(R) and P(R) are interdefinable.

To finish this section, I point out (without proofs) that there are many Rolle leaves
and hence pfaffian functions. To explain why, I first need to introduce the notion of
integrability, also used throughout these notes. Let d be an [-distribution on a C?-
submanifold M of R”, and assume that d is of class C? with p > 1. Let V(M,d)
be the collection of all vector fields on M tangent to d, and put

I(d):={xeM: [v,w](x) €d(x)forallv,we V(M,d)},

where [v, w] denotes the Lie bracket of the vector fields v and w. The distribution d
is integrable if /(d) = M, and d is nowhere integrable if /(d) = @.

Exercise 1.18. Let M be a C2-submanifold of R”.

(1) Show that every 1-distribution on M is integrable.

(2) Prove thatif d is a definable /-distribution on M, then the set /(d) is definable.

(3) Let d be an [-distribution on M. Prove that every integral manifold of d is a
subset of 1(d).

(4) Let d be an integrable /-distribution on M. Show that if V' is an embedded leaf
of d, then V is closed.

(5) Letd be an integrable (rm — 1)-distribution on M, where m := dim M, and let
V be a leaf of d with the Rolle property. Prove that V' is a Rolle leaf.
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Fact 1.19 (Froebenius, see Spivak [23]). Let d be an [-distribution on an open set
U C R". Then d is integrable if and only if for every x € U, there is an integral
manifold V of d such that x € V and V is of class C*.

It follows in particular that, in the situation of the previous fact, every point of
U belongs to a leaf of d. Since two leaves of d are either equal or disjoint, this
means that U is partitioned by the leaves of d. (This partition is called the foliation
associated to d; see Camacho and Lins-Neto [2] for details.) This observation,
together with the next fact, shows that there are plenty of analytic Rolle leaves.

Fact 1.20 (Haefliger [5], see also [21]). Letr d be an analytic (m — 1)-distribution
on an analytic submanifold M of R" of dimension m, and assume that M is simply
connected and d is integrable. Then every leaf of d is a Rolle leaf of d.

Haefliger’s Theorem is false without the assumption of analyticity, even in the
o-minimal context:

Reeb foliation (Lion [13], see also [17]). There is an integrable 2-distribution d on
R? that is of class C™ and definable in (Ran, exp) such that d has a leaf L that is
not a Rolle leaf of d.

However, analyticity is not necessary to produce Rolle leaves. The following
weaker version of Haefliger’s Theorem is true in the o-minimal context:

Fact 1.21 ([17]). Assume R is o-minimal, and let d be a definable and integrable
(m — 1)-distribution on a C2-submanifold M of R" of dimension m. Then M can
be covered by finitely many definable open subsets M; such that every leaf of the
restriction d; of d to M; is a Rolle leaf of d;.

2 Proof of Proposition 1.14

Let R’ be an o-minimal and R-differentially model complete expansion of R.

Lemma 2.1. Assume that R admits analytic cell decomposition, and let S C R”
be definable in R'. Then S is a finite union of analytic manifolds that are definable
inR'.

Proof. By induction on p := dim §; the case p = 0 is trivial, so we assume p > 0
and the lemma holds for lower values of p. Since R’ is R-differentially model
complete, we may assume S = Hflv(V), where N > n, M C R" is a definable
manifold, d is a definable distribution on M and V' an integral manifold of d that
is a cell definable in R’ of dimension at most p. By the inductive hypothesis, we
may assume that dim V' = p = dim S; in particular, V' is the graph of a function
f V. — RN Let C be an analytic cell decomposition compatible with d
such that for C € C, d€ is analytic and either d€ is integrable or d€ is nowhere
integrable. Replacing M, d and V by C, d€ and V N C for each C € C such that
C NV # @ we may assume, by Exercise 1.18(3), that M and d are analytic and d is
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integrable. The Frobenius integrability theorem in the analytic setting then implies
that V' is an analytic manifold. Since V' is the graph of the function f, it follows
that S an analytic manifold. |

Proof (Proof of Proposition 1.14(1)). Assume that R admits analytic cell decom-
position. We show by induction on r that if S is a finite collection of subsets of R”
definable in R/, then there is a decomposition of R” into analytic cells definable in
‘R’ that is compatible with each member of S. The cases n = 0, | are trivial, so we
assume thatn > 1. Let f : § — R be a function definable in R’ with S C R!
a cell; by cell decomposition, it now suffices to show that .S can be partitioned into
analytic cells Sy, ..., Sk definable in R’ such that f |S; is analytic for each ;.

To see this, we apply Lemma 2.1 to gr(f). The resulting analytic manifolds
Si.....8; € R” are the graphs of analytic functions g; : Hn_l(S}) — R. Now
use the inductive hypothesis to obtain a partition of IT,—_;(S) into analytic cells
S1,..., Sk definable in R’ compatible with each Hn_l(S}). O

The proof of Proposition 1.14(2) is based on a version of a conjecture of E. Borel
established in [19] (see also Miller [20] for an exposition of this conjecture) and
uses an argument found in the proof of [12, Proposition 4].

Proof (Proof of Proposition 1.14(2)). Assume that R is polynomially bounded, and
let f : R — R be definable in R’. By R-differential model completeness and
o-minimality, there are a definable manifold M < Rt with n > 1, a definable
1-distribution d on M, an integral manifold V of d that is a cell definable in R’
and an a > 0 such that gr(f [Ma,o00)) = IIa(V). Thus V = gr(F) for some
F = (fi,.... fu) : (a,00) —> R" definable in R’ such that /i = f |(a, 00).
Moreover, since V is an integral manifold of d, there is a definable vector field & on
M such that V is a trajectory of &: for x € M, £(x) is the unique vector contained
in d(x) satisfying IT;(¢(x)) = 1.

We now let (¢, x) range over R'*”, witht € R and x € R". Put m := dim M
and define ug, ..., un—; : M —> R as follows: uy(¢, x) := x; and for j > 0, let
uj(t,x) == Leg(uj—1)(t,x) = (duj_1 - £)(t, x) be the Lie derivative of u;_; with
respect to € (see [23]). Consider the definable set

E = {(t,uo(t,x),...,um—1(t,x),x): (t,x) e M}

and put D := I114,(E). Then D is of dimension at most m and by construction,
after increasing a if necessary, f [(a,o0) is of class C"~! and the graph of the
function ¢ +— (f(t), . .,f(’”_l)(t)) . (a,00) —> R™ is contained in D. By
cell decomposition and after increasing a if necessary, we may assume that D is
a cell. Then D is not an open cell, so there exists k < m such that I[1; (D) = grg
for some definable function g : II;_;(D) — R. Note that IT1,(D) = (a, 00),
so that k > 1. Hence f® (1) = g(¢. f(1),.... f*V()) for 1 > a; it follows
from Corollary 1 in [19] that f is bounded at +o0o by some finite iterate of the
exponential function. O
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3 Khovanskii Theory

Khovanskii theory relative to R, the fundamental result of which is Proposition 3.5
below, is the basis for Theorems A and B. Let M be a C2-submanifold of R” of
dimension m.

I sometimes need to work with maps from M to G, that are not necessarily
distributions on M . I shall use the following terminology: Given two maps d, e :
M — G,,Iwrited Ne : M —> G, for the map defined by (d Ne)(x) :=d(x)N
e(x),and I writed C eifd(x) Ce(x) forallx € M. Amapd : M — G, has
dimension if d(M) € G for some m < n; in this situation, I write dimd := m.
Note that, by linear algebra, if M and d,e : M — G, are of class C?, with
p € NU {oo, w}, and if d N e has dimension, then d N e is of class C?.

Definition 3.1. Let N € R/ be a C?>-manifold and f : N — M a C?-map, and
let d be a distribution on M. The pull-back of d on N by f is the distribution f*d
on N defined by

frd(y) = dfy)~ (d(f ().

where df, : T,N —> TyyyM denotes the linear map defined by the jacobian
matrix of f at y and (dfy)~'(S) denotes the inverse image of S under this map for
any S C TypyM.

Remark. In the situation of the previous definition, the pull-back f*d is a distribu-
tion on N of class C!. It is for this reason that I usually work on C?-manifolds and
with C2-cell decompositions in these notes.

If N is a C2-submanifold of M and f : N —> M is the inclusion map, the pull-
back f*d is simply the distribution gy N d}y on N, which I shall denote by d* .

Definition 3.2 ([21]). Let D be a set of distributions on M. A C?-submanifold N
of M is compatible with D if the pull-back (ﬂee £ e)N has dimension for every
&€ € D. A collection C of submanifolds of M is compatible with D if every C € C
is compatible with D.

For the remainder of this section, I assume that M is definable. I also fix a finite
set D of definable distributions on M and set dp := () ep d.-

Proposition 3.3. Let Ay,..., Ax € R" be definable and p > 2. Then there is a
finite partition (stratification, Whitney stratification) P of M into definable C?-
cells such that P is compatible with each A as well as D and dV is of class C” for
eachd e Dand N € P.

Proof. We proceed by induction on m = dim M ; the case m = 0 is trivial. So
assume m > 0 and the lemma holds for lower values of m. By cell decomposition,
we may assume that {A, ..., Ay} is a partition of M into definable C?-cells such
that d ' 4; is of class C” for each j and each d € D. In particular, foreach x € M,
there is a unique /(x) € {1,...,k} such that x € Aj). Forx € M and £ € D
we write T,E = T Ajx) N de(x), and foreach £ € D, j € {1,...,k} and
i €{0,...,m}, we define the set
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Mg,j,i = {x € Aj : dll’nTx(‘: =1 }

For each &, the sets Mg ;; form a partition of M, and since each d € D is
definable, each set Mg ;; is definable. Let C be a partition (stratification, Whitney
stratification) of M into definable C”-cells compatible with each Mg ;;. Then for
each C € C, there is a unique j(C) € {1,...,k}suchthat C C A). FixaC €C.
If dim C = m, then for each & C D there is a unique i (C,€&) € {0,...,m} such
that C € Mg j(c).i(c.e)- Since C is open in M , it follows that (dg)€ has dimension
i(C,&) for every £ € D. On the other hand, if dimC < m, then the inductive
hypothesis applied to C and D€ := {d€ : d € D} in place of M and D produces
a partition (stratification, Whitney stratification) Pc of C compatible with each A4 ;
as well as D€ Now it is straightforward to see that the collection

P:={CeC:dmC=m}u ] 7
CceC,dimC<m

is a partition with all the required properties. |

Recall that if C € R” is a manifold, a function ¢ : C — (0, o) is a carpeting
function on C if ¢ is proper and satisfies lim, ., ¢(x) = 0 whenever y € frC,
where the frontier is taken in R” U {oco}. For instance, given positive real numbers
ui,...,u,, the function

1

1+ ux? + -+ uyx2

X ¢u(x) =

is a carpeting function on R".

Lemma 3.4. Let N € M be a definable C?-cell compatible with D, and suppose
that dim(dp)™N > 0. Then there is a definable C*-carpeting function ¢ on N such
that the definable set

B:={xeN: (dp)"(x) Ckerdp(x)}

has dimension less than dim N.

Proof. By van den Dries and Miller [24] there is a definable diffeomorphism o :
REMN 5 N of class C2. Replacing n by dim N, N by R¥™ ¥ and each dV by its
pull-back 0*d", we reduce to the case where N = M = R" and dp has dimension
with dimdp > 0. Then for u = (uy,...,u,) € R" with all u; > 0, put

B, = {)C eR": dD(-x) - kerdqﬁu(x) }s
where ¢, is the carpeting function defined on R” before the lemma. If dim B, <n

for some u as above, the proof is finished. So assume for a contradiction that
dim B, = n for all u as above. Then dim B = 2n, where
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B:={(ux)eR'"xXR": uy>0,...,u,>0,x€B,}

so there are nonempty open V' C (0, 00)" and W C R” such that V' x W C B. Fix
some x € W with all x; # 0 and let u range over V. Note that

2uixidxi(x) + -+ 2upxudx, (x)

do,(x) =
$u(x) (- X2+t upx2)?

Therefore the vector space generated by all d¢,(x) as u ranges over V has
dimension n, that is, the intersection of all ker d¢,(x) as u ranges over V is trivial,
which contradicts dim dp > 0. O

I assume for the remainder of this section that every d € D has dimension m — 1.

Proposition 3.5. Let A € R” be a definable set. Then there exists a K € N such
that, whenever L, is a Rolle leaf of d for each d € D, the set AN (\;ep La isa
union of at most K connected manifolds.

Proof. We proceed by induction on dim A and the cardinality |D| of D. The cases
dim A = 0 or |D| = 0 being trivial, we assume that dim A > 0 and |D| > 0 and
that the result holds for lower values of dim A or | D|. By Proposition 3.3, it suffices
to consider the case where A = N is a C2-cell contained in M and compatible
with D. For each d € D, let L, be a Rolle leaf of d, and put L := (),;cp La; then
N N L is an integral manifold of (dp)" .

Case. dim(dp)N = 0. Choose any e € D and put D' := D\ {e} and L' :=
(\gep’ La- Then N N L’ is an integral manifold of (dp/)" of dimension at most 1.
By the inductive hypothesis, there is a K € N (depending only on N and A’, but
not on the particular Rolle leaves) such that the manifold N N L’ has at most K
components. Thus, if dim(N N L") = 0, the proposition follows from the inductive
hypothesis, so assume that dim(N N L’) = 1. Since N is compatible with D', it
follows that dim(dp/)" = 1 as well.

Let C be a component of N N L'. If C N L, contains more than one point,
then by the Rolle property of L, and the fact that C is a connected submanifold of
M of dimension 1, C is tangent at some point x € C to e, which contradicts the
assumption that dim(dp)" = 0. So C N L, contains at most one point for each
component C of N N L’. Hence N N L consists of at most K points.

Case. dim(dp)N > 0. Let ¢ and B be obtained from Lemma 3.4. Then dim B <
dim A, so by the inductive hypothesis, there is a K € N, independent of the
particular Rolle leaves chosen, such that B N L has at most K components. Since
N N L is a closed, embedded submanifold of N, ¢ attains a maximum on every
component of N N L, and any point in N N L where ¢ attains a local maximum
belongs to B. Hence N N L has at most K components. O

Corollary 3.6. (1) Let C be a partition of M into definable C>-cells compatible
with D. Then there is a K € N such that whenever C € C and Ly is a Rolle
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leaf of d for each d € D, the set C N[\, ep La is a union of at most K integral
manifolds Ly, ..., Lx of (dp)€ of the form L; = (Maep Li.a, where each L; 4
is a Rolle leaf of d€.

(2) Let A be a definable family of sets. Then there is a K € N such that whenever
A € Aand Ly is a Rolle leaf of d for each d € D, the set AN (") ;ep IS a union
of at most K connected manifolds.

Proof. Part (1) follows from Propositions 3.3 and 3.5. For (2), let A € R™*" be
definable such that 4 = { A, : 7z € R"}, where 4, := {x € R" : (z,x) € A}
is the fiber of A over z. Replace M by M’ := R™ x M and each d € D by the
distribution e; on M’ defined by e;(z,x) := R™ x d(x), and put & := {ey :
d € D}U{kerdz |M’,. .., dz, M'}. By Proposition 3.5, there is a K’ such that
whenever L, is a Rolle leaf of e for each e € &, the set A N (), c¢ L. has at most
K’ components. But for every Rolle leaf L, of d with d € D, the set R™ x Ly is
a Rolle leaf of e;; and for every z € R™,i € {1,...,m} and each component C of
M, the set R7! x {z;} x R"™ x C is a Rolle leaf of kerdz; | M’. Thus, we take
K := K’ -1, where [ is the number of components of M . O

Definition 3.7. A set X C R” is basic pfaffian over R if there are a definable C2-
submanifold N of R” of dimension /, a finite set £ of definable (I — 1)-distributions
on M, a Rolle leaf L, of e for each ¢ € £ and a definable set A C R” such that
X = AN ),ee Le. A pfaffian set over R is a finite union of basic pfaffian sets
over R.

Proposition 3.8. Let X| C R"! and X, C R"™ be pfaffian over R.

(1) If ny = ny, then X1 N X, is pfaffian over R.
(2) The product X, x X, is pfaffian over R.

Proof. (1) It suffices to consider X; and X, basic pfaffian over R. Let My, M, C
R" be definable manifolds with n = n; = n,, and for p = 1,2, let D? be finite
sets of definable distributions on M, Lg be a Rolle leaf of d for each d € D?
and A, C R" be definable such that X, = A, N(,cp» L} Let C be a C2-cell
decomposition of R” compatible with M|, M», M} N M;, A; and A,. Refining
C if necessary, we may assume that if C € C is such that C € M| N M, then
C is compatible with D := D' U D?. Then by Corollary 3.6(1), we may even
assume that M = M, = C for each such C € C. In this case, X; N X, is a
finite union of basic pfaffian sets over R by Corollary 3.6(1).

(2) Arguing as in the proof of Corollary 3.6(2), but without adding the extra
distributions kerdz; | M’ there, it follows that R"! x X, and X; x R" are
pfaffian over R. Hence X x X, = (X; x R"2) N (R™ x X3) is pfaffian over R
by (1). O

Question 4. Are the components of pfaffian sets over R also pfaffian over R? The
corresponding question for nested pfaffian sets has an affirmative answer [18].

Finally, similar arguments yield a fiber cutting lemma for pfaffian sets over R,
see Proposition 3.10 below.
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Lemma 3.9. Let A C R”" be definable and £ C D. Then there is a finite collection
P of pairwise disjoint definable C*-cells contained in A and compatible with D
such that

(i) dim(dg)N = 0 forevery N € P;
(ii) Whenever L is a closed and embedded integral manifold of d¢, each component
of A N L intersects some cell in P.

Proof. By induction on dim A; if dim A = 0, there is nothing to do, so assume
dim A > 0 and the corollary is true for lower values of dim A. By Proposition 3.3
and the inductive hypothesis, we may assume that A = N is a definable C2-cell
contained in M and compatible with D. Thus, if dim(dg)N = 0, the lemma is
proved; otherwise, let ¢p and B be as in Lemma 3.4 with £ in place of D.

Let now L be a closed, embedded integral manifold of d¢; it suffices to show
that every component of N N L intersects B. However, since (dg)N has dimension,
NNL is aclosed, embedded submanifold of N. Thus, ¢ attains a maximum on every
component of N N L, and any point in N N L where ¢ attains a local maximum

belongs to B. |

For each m < n, the map IT, : R" — R™ denotes the projection on the first
m coordinates; and for every strictly increasing A : {1,...,m} — {1,...,n}, the
map [T} : R" — R™ denotes the projection I} (x1, ..., x,) := (Xa1), - - -+ Xam))-

When 7 is clear from context, I usually write IT,, and IT, in place of IT;, and IT},
respectively.

Proposition 3.10. Let A € R” be definable and m < n. Then there is a finite
collection P of pairwise disjoint definable C?-cells contained in A and compatible
with D such that whenever L, is a Rolle leaf of d for each d € D and L :=
(Naep La, we have T1,,(A N L) = Uyep On(N N L) and for every N € P,
the set N N L is a submanifold of M, T1,, | N N L is an immersion and for every
n’ < n and every strictly increasing A : {1,...,n'}y —> {1,...,n}, the projection
I, 'N N L has constant rank.

Proof. Apply Lemma 3.9 with D U {kerdx, ... ,kerdx,} in place of D and £ =
D U {kerdxy,..., kerdx,}. O

4 Hausdorff Limits of Lipschitz Manifolds

A key ingredient in the proof of Theorem A is the representation of the frontier of a
pfaffian set over R in terms of certain Hausdorff limits. In this section, I introduce
the notion of Hausdorff limit and establish some basic facts about limits of certain
sequences of manifolds.

For A € R" and x € R", putd(x, A) := inf,ep |x — y|. Forsets A, B € R", the
Hausdorff distance is defined as
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d(A, B) :=sup{supd(x, B),supd(y, A), ,
X€A yEB

where the sup is taken in the set [0, oo]. Let K, be the set of all compact subsets of
R”" equipped with the Hausdorff distance; note that d(A4, @) = oo for all nonempty
A € K, and d(@, @) = 0. I refer the reader to Kuratowski [10, 11] for the classical
results about /C,;; in particular, I shall often use without reference the following facts:

Exercise 4.1. (1) IC, is a metric space.

(2) Every bounded sequence in /C, contains a convergent subsequence.

(3) Assume A, — A in K, as ¢t — oo in N. Then A is the set of all limits of
convergent sequences (x,) with x, € A, for each ¢.

(4) Assume that A,, — A, in K, as k — oo in N, for each ¢, and that A, — A4 in
KC,, as t — oo. Then there is a subsequence (k (t)), such that A = lim, 4, ().

Given a sequence (4,),en of bounded subsets of R”, I say that (4,) converges to
C € K, if the sequence (clA,) converges in K, to C, and in this situation I write
C =lim, A, and call C the Hausdorff limit of the sequence (4,).

I am interested in Hausdorff limits of sequences of manifolds of the following
kind: form < n, let 1" be the set of all E € G, such that IT,, | E is an immersion.
For every E € I, there is a matrix Lg € M,, ,—n(R) such that £ = { (v, Lgu) :
u € R™}, andIdefinen(E) := |Lg|.Ifey, ..., e, denote the standard basis vectors
of R" and Ar € M,(R) denotes the matrix represented by E € [, it follows that

n(E) = V| Azer|> + -+ [Agen|? ;

in particular, n : I, —> [0, 00) is a definable, real analytic map. For convenience, I
extend n to all of G by putting n(E) := oo if E ¢ I". Note that [Lg| < n(E) <
n|Lg|for E € I

Definition 4.2. Let M C R” be a manifold of dimension m and n > 0. Then M is
n-bounded if n(7, M) < nforevery x € M.

I now fix a submanifold M of R” of dimension m. For x € R” and p < n, set
X<pi=(x1,...,Xxp) and X5 1= (Xp41, ..., Xp).

Lemma 4.3. Letn > 0, and let V be an n-bounded submanifold of M of dimension
p <m.Letx € V,andlet e > 0 be such that (B(xfp, €)XB(xsp, pne))ﬂfr V =40.
Then the component of V N (B(xﬁp, €)X B(xsp, pr}é)) that contains x is the graph
of afunction g : B(x<,,€) —> B(x>p, pne) that is pn-Lipschitz with respect to |-|.

Proof. Set W := B(x<p,€) and W' := B(x.,, pne), and denote by C the
component of V N (W x W’) that contains x. Since C is n-bounded, the map
IT,C : C — W is alocal homeomorphism onto its image. By general topology,
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it is therefore enough to show that IT,(C) = W; we do this by showing that there
is a function g : W — W’ such thatgrg C C.
Since V is n-bounded, there are § > 0 and a pn-Lipschitz function

g B(x<p,8) — W'

such that grg, € C. Extend g to all of W as follows: for each v € bd W, let v/
be the point in the closed line segment [x<,,v] closest to v such that g, extends
to a pn-Lipschitz function g, on the half-open line segment [x<,,V’) satisfying
grg, € V N (W x W’). Then the proportion of the sidelengths of W and W', the
n-boundedness of V' and the fact that (W x W') N frV = @ imply that v/ = v for
eachv € bd W.Let g : W — W/ be defined by g(y) 1= g,(») if y € [x<p,V].
Since gr g is connected and contains x, it follows that grg € C, as required. a

Proposition 4.4. Assume that M is bounded, and let (V,) be a sequence of
submanifolds of M of dimension p < m. Let n > 0, and assume that each V,
is n-bounded. Moreover, assume that both K = lim, V, and K' = lim, fr V, exist
and there is a v € N such that for every 1 and every open box U C R", the set
V, N U has at most v components. Then for every x € K \ K, there are a box
U C R" containing x and pn-Lipschitz functions fi,..., f, : I1,(U) — R"77
such that gr f; € K \ K’ for each i and

KNU=(@geAHNU)U---U(grf,NU).

Proof. We write “lim” in place of “lim,” throughout this proof. Let x € K \ K’,
and choose € > 0 such that (B(x<p,3€) x B(xs,.3pne)) NfrV, = @ for all ¢
(after passing to a subsequence if necessary). Let U := B(x<,,€) X B(X>,, pne),
W := B(x<p,€) and W' := B(x.,,3pne). Then for each ¢, the assumptions and
Lemma 4.3 imply, with 2¢ in place of € and each z € U NV, in place of x, that there
are definable pn-Lipschitz functions fi,,..., fu, : W — R"77 such that every
connected component of ¥, N (W x W) intersecting U is the graph of some f .
Moreover, either fy , = fir, orgr fo, Ngr fir, =@, forall A, 1 € {l,...,v}, and

V,nU = (gr i, NU)U---U(gr f,, NU).

Passing to a subsequence if necessary, we may assume that each sequence (f3,),
converges to a pn-Lipschitz function f : W — R"P; thengr f) € K\ K'.
On the other hand, if x’ € K N U, then x’ € lim(V, N U), so by the above x’ €
lim(gr fo, N U) for some A, that is, x" € gr fj. |

Definitions 4.5. Call N C R" a C°-manifold of dimension p if N # @ and each
point of N has an open neighbourhood in N homeomorphic to R”; in this case p
is uniquely determined (by a theorem of Brouwer), and we write p = dim(N).
Correspondingly, a set S € R” has dimension if S is a countable union of C°-
manifolds, and in this case put
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max{dim(N) : N € S is a C°-manifold} if S # ¢

dim(S) :=
—00 otherwise.
It follows (by a Baire category argument) that, if S = |J, oy Si and each S; has
dimension, then S has dimension and dim(S) = max{dim(S;) : i € N}. Thus,
if N is a C!-manifold of dimension p, then N has dimension in the sense of this
definition and the two dimensions of N agree.

Corollary 4.6. In the situation of Proposition 4.4, the set K\ K' is either empty or
has dimension p. O

The following situation is central to my use of Hausdorff limits:

Lemma 4.7. Assume that M is bounded and has a carpeting function ¢. Let V be
a closed subset of M, and assume that V N U has finitely many components for
every open box U C R". Then for every sequence (r)cen of positive real numbers
satisfying r, — 0 as k — 00, we have

frV =1lm(V e~ (r)).
Proof. Letr, — 0 as k — oo. It suffices to show that

frv = lim (6~ (o)) N V)
k(j

for every subsequence (k(j));en of (k) such that the limit on the right-hand side
exists in K, that is, we may assume that the sequence (¢! (r,) N V) converges in
K. The properties of ¢ then imply that fr V' 2 lim, (¢~ (r) N V). Conversely, let
x € frV. Since V N B(x, 1) has finitely many components, there is a component
C of V.N B(x,1) such that x € frC. Then C U {x} is connected, so there is a
continuous curve y : [0,1] — C U {x} such that y([0,1)) € C and y(1) = x.
Hence ¢p oy : [0,1) —> (0,00) is continuous and satisfies lim;—1 ¢ (y(¢)) =
0, so the intermediate value theorem implies that the image y ([0, 1)) intersects
¢~ (r,) for all sufficiently large ¢, so that x € lim, (¢~'(r,) N V). Hence frV =
lim, (¢~ (r) N V). O

Definition 4.8. I abbreviate the conclusion of Lemma 4.7 by the statement
— 1 -1
frV—rh_%(VrW) (r)).

In these notes, sequences of n-bounded manifolds arise as sequences of integral
manifolds of a distribution on M : Let d be a p-distribution on M and n > 0.

Definition 4.9. The distribution d is called n-bounded at x € M if n(d(x)) < n.
The distribution d is n-bounded if d is n-bounded at every x € M.
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Remark. 1f d is n-bounded, then every integral manifold of d is n-bounded.

Let X, be the collection of all permutations of {1,...,n}. For o € X,, I write
o : R" — R" for the map defined by 0 (x1, ..., X,) 1= (Xo(1)s - - - - Xo(n))-

I assume for the remainder of this section that M is of class C2%. Given a
permutation 0 € X, the set 0~ (M) is a manifold and the pull-back o*d is a
distribution on o~ (M ); define

M,,:={xeM: n(c*d(o " (x)) <n}.

Lemma 4.10. (1) Ifn > n, then M = \J,cx Moy

(2) If ¢ is a carpeting function on M, then the function ¢, : My, — (0,00)
defined by ¢s,(x) = (7] — n(o*d(o_l(x))))qﬁ(x) is a carpeting function
on M.

(3) If d is definable, then so is each M.

Proof. Part (1) follows from the following elementary observation: let £ C R”
be a linear subspace of dimension d. Then there exists a ¢ € X, such that
n(oc~'(E)) <n.

To see this, given a basis {v;,...,vs} of E and 0 € X, denote by (vi,...,v4)s
the signed volume of the parallelepiped in R spanned by the vectors I, (o (v1)),
..., 14(0(vq)), and choose a 0y € X such that |(vi,...,V4)s,| is maximal. Since
the map (vq,...,vg) > (Vi,...,vq)s is d-linear for each o, oy is independent of
the particular basis considered; we claim that the lemma works with o = oy.

To prove the claim, assume for simplicity of notation that oy is the identity
map on R”. Then I1;(E) = RY, so there is a matrix L = (lij) € My—a.a(R)
(with respect to the standard bases for RY and R"~“) such that £ = { (u, Lu) :
u € RP}. Let {ej,...,eq} be the standard basis of R4, and consider the vectors
vi = (ex,Ler) € E fork = 1,...,d; clearly {vi,...,vg} is a basis of E. For
ie{l,....n—d}and j € {l,...,d}, denote by 0; ; € X the permutation that
exchanges the j-th and the (p + i)-th coordinates. Then /; ; = (vi,...,va)s ; for
all 7, j, and the maximality of [(vi,...,Va)o| gives |£; ;| < |(vi,...,Va)e| = 1 for
all i and j, and hence |L| < 1, as required.

For part (2), assume for simplicity of notation that o is the identity map and
note that n — n(d(x)) < n for all x € M,,. It is straightforward to see that
lim, . ¢5,(x) = 0 for x € frM,,; in particular, the function ¥,, : M —
[0, 00), defined by ¥, ,(x) 1= ¢o,(x) if x € My, and Y, ,(x) := 0 otherwise,
is continuous. Thus for all a > 0, the set ¢, ([a,0)) = ¥, ([a,0)) is a closed
subset of M contained in the compact set ¢! ([a/7, 00)), hence is itself compact.

For part (3), note that the set of all £ € G satisfying n(E) < 7 is
semialgebraic. O
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5 Pfaffian Limits

In this section, I introduce the pfaffian limits over R, which are used to describe the
frontiers of pfaffian sets. I then establish several regularity properties for pfaffian
limits over R, which allow me to give a quick proof of Theorem A in Sect. 6 and to
prepare the terrain for the proof of Theorem B.

Let M C R”" be a bounded, definable C2-submanifold of dimension m. Let D,
be a finite set of definable (m — 1)-distributions on M, and let 1 <[ < m and d, be
a definable [-distribution on M. Put D := Dy U {do}, and if N is a C2-submanifold
of M that is compatible with D, Iset DV := {dV : d € D}.

I assume in this section that D is compatible with M .

Definition 5.1. Let V' be an integral manifold of dp. Then V is admissible if there
are Rolle leaves W; = W, (V) of d for each d € D, and a definable, closed
integral manifold B = B(V) of dp such that V = W N B, where W = W(V) :=
MnN ﬂdeDO Wy (in particular, W = M if Dy = @).

Note that in this situation, W is uniquely determined by V' and D, while B is not;
I call W the core of V' and B a definable part of 1. Note also that every admissible
integral manifold of dp is closed, so that its frontier is a subset of fr M.

Remark 5.2. Let N be a definable C2-submanifold of M compatible with D, let
Wa be a Rolle leaf of d for each d € Dy, and put W := M N (),ep, Wa. By
Corollary 3.6(1), W N N is a finite union of closed integral manifolds wN, ..., WqN

of (dDO)N of the form WpN = N N(Nyep, WPIY ,» Where each WPIY ;18 a Rolle leaf
of dV.

Let now V be an admissible integral manifold of dp with core W and definable
part B. Writing VPN = WPN NBforp =1,...,q, it follows that VN N =
VY U---U VN and each V)" is an admissible integral manifold of (dp)" with core
WY and definable part B N N.

Definition 5.3. Let (V,),en be a sequence of integral manifolds of dp.

(1) The sequence (V,) is admissible if each V, is admissible with same core W
and there is a definable family B of closed integral manifolds of dy such that
B(V,) € B for all «. In this situation, W is the core of (V) and B is a definable
part of (V).

(2) Assume (V)) is admissible with core W and definable part B. If (V,) converges
to K € K, I call K a pfaffian limit over R and say that K is obtained from
D with core W.

I think of the core W in Definition 5.3 as representing the non-definable content
of the admissible sequence (V)). It is crucial to the arguments in this section that
only the definable parts of the V, are allowed to vary with ¢.

Exercise 5.4. Let (1)) be an admissible sequence of integral manifolds of dp with
core W and definable part B.
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(1) LetC be a partition of M into definable C?-cells compatible with D, and assume
that K = lim, V, exists and KV = lim,(V, N N) exists for each N € C. Then
K =Uy ec K N

(2) Let N be a C?-submanifold of M compatible with D, and adopt the notations of
Remark 5.2. Assume that KV = lim,(V, N N) and each KIJDV = limL(Vl)g exist.
Then each sequence (V;)} is admissible with core W' and finite part BY :=
{BNN: BeB}and KN = KM U---U K;V; in particular, K is a finite
union of pfaffian limits obtained from DV with cores among WV, ..., WqN .

Remark. The sets WPN of the previous exercise are definable in R(W). More
precisely, let L be the language containing a relation symbol for every definable
set. Then each WPN is quantifier-free definable in the language L (W).

To understand the frontier of an admissible integral manifold in terms of pfaffian
limits over R, I assume there is a definable C?2-carpeting function ¢ on M and
define g4 : M — G, by g¢(x) := kerd¢p(x) € T M. Let C be a Whitney
stratification of M by definable C2-cells compatible with D U {gs}, as obtained
from Proposition 3.3, and put

C?:={CeC: (dp)° g4}

Then dim (dp N g¢)c < dimdp for every C € C?. Set dl := dy N g, and D? :=
Dy U {d)}.

Lemma 5.5. The union of all cells in C? is an open subset M? of M that is
compatible with D? and dim(dp¢)M¢ < dimdp.

Proof. Note first that if C, D € C are such that D C frC, then by the Whitney
property of the pair (C, D), as defined on p. 502 of [24], for every sequence (X;);en
of points in C that converges to a point y € D and for which T := lim; 7y, C
exists in Gﬁimc, the inclusion 7, D C T holds. Since dp and g4 are continuous, it
follows that the union of all cells in C \ C? is a closed subset of M ; hence M ¢ is an
open subset of M . Finally, the definition of M? implies that dp(x) Z g, (x) for all
X € M?, and the lemma is proved. O

Next, let W; be a Rolle leaf of d foreach d € Dy andput W := M N ﬂdeDO Wy.
I adopt here the notations of Remark 5.2 corresponding to each N € C U {M?};
to simplify notation, I assume that the corresponding ¢ is the same for each of
these N by not requiring that the sets WV, ..., WqN be pairwise distinct. Then for
N eC?*U{M?,p=1,...,q,r > 0 and every admissible integral manifold V
of dp with core W and definable part B, the set (VPN N ¢_1(rK))K is an admissible
integral manifold of (dp¢)" with core WPN and definable part B NN N ¢~ (r).

Lemma 5.6. Let V be an admissible integral manifold of dp with core W, and let
(re)cen be a sequence of positive real numbers such that r, — 0 and K]]}’m V)=
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lim, (VPM¢ Neg~! (r,()) exists for each p. Then each Kéw (V') is a pfaffian limit over
‘R obtained from (D¢)M¢ with core WPM¢ andfrV = K1M¢(V) Uu.--u K,ﬁw(V).

Proof. Passing to a subsequence if necessary, we may assume
KY :=lim (VPN N ¢_1(r,())
K

exists for each p and N € C? as well; note that

q q
U =U Uk

r=1 Nece p=1

Let x € lim, (V Neg~! (rK)); by Lemma 4.7 and the above, it suffices to show that
x € K;V(V) forsome N € C? and p € {1,...,q}. Let x, € V N¢~'(r,) be such
that lim x, = x. Let N € C be such that infinitely many x, belong to N; passing to
a subsequence, we may assume that x, € N forall k. Then N € C?: otherwise gy N
dp < dy, which implies that N N V N ¢~ (r) = @ for all but finitely many r > 0.
Thus, after again passing to a subsequence if necessary, we may assume that there
is a p such that x,, € VPN N ¢~'(r,) for all k. Hence x € K]],V(V), as required. [

Proposition 5.7. Let (V,) be an admissible sequence of integral manifolds of dp
with core W, and assume that K' := lim, fr V, exists. Then K’ is a finite union of
pfaffian limits obtained from (D?)M ? with cores among WM Y, WqM .

Proof. Let B be a definable part of (V)). Let (ry)reny be a sequence of positive
real numbers such that r. — 0 and K;}”(Vl) = lim, ((Vl)lj‘,” N ¢~ (rc)) exists
for each p and each ¢. Passing to a subsequence if necessary, we may assume that
lim, K ;” ¢ (V) exists for each p. Then by the previous lemma,

q
K’ =lim (11;11 A ¢_l(r,())) = Jtim kM ).
p=1

So by Exercise 4.1(4), K’ = Ul;=1 lim, ((Vl)ﬁ’”) Ng~! (r,{(l))) for some subsequence
((1)),. Since for each p, the sequence ((V[)g”) N ¢~ (re)) is an admissible
sequence of integral manifolds of (dp¢)™ * with core WpM ? and definable part Bé)” ‘)
the proposition follows. O

Proposition 5.8. Let K be a pfaffian limit obtained from D. Then K has dimension
and dim K < dimdp.

Proof. Let (V,) be an admissible sequence of integral manifolds of dp such that
K = lim, V,. We proceed by induction on dim dp. If dimdp = 0, Corollary 3.6(2)
gives a uniform bound on the cardinality of V,, so K is finite. So assume dimdp > 0
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and the corollary holds for all pfaffian limits obtained from finite sets D’ of definable
distributions on manifolds M’ that are compatible with M’ and satisfy dimdp <
dim dD.

By Proposition 3.3 and Exercise 5.4(2), we may assume that M is a definable
C?2-cell; in particular, there is a definable C?-carpeting function ¢ on M. For each
o € X%,, let M,,, be as before Lemma 4.10 with dp in place of d. Then by that
lemma, M = Ugex M, and each M, ,, is an open subset of M. Hence D is
compatible with each M, ,,, and after passing to a subsequence if necessary, we
may assume that K, = lim,(V, N M, ,,) exists for each o. As in Exercise 5.4(2),
it follows that K = |J, 5, Ko, s0 by Lemma 4.10(2), after replacing M with
each 07! (M,.,,), we may assume that dp is 2n-bounded. Passing to a subsequence
again, we may assume that K’ := lim, fr V; exists as well. Then by Corollary 4.6,
the set K \ K’ has dimension at most dim dp, while by Proposition 5.7 the set
K’ is a finite union of pfaffian limits obtained from a finite set D’ of definable
distributions on a definable manifold M’ that is compatible with M’ and satisfies
dimdp < dimdp. So K’ has dimension with dim K’ < dim dp by the inductive
hypothesis, and the proposition is proved. |

Definition 5.9. A pfaffian limit K € R” obtained from D is proper if dim K =
dim dD .

Exercise 5.10. Let K € R” be a pfaffian limit over R with core W. Prove that
K = K; U---U K, where each K is a proper pfaffian limit over R whose core is
definable in R(W). [Hint: proceed as in the proof of Proposition 5.8.]

Finally, pfaffian limits over R are well behaved with respect to intersecting with
closed definable sets. To see this, define M := M x (0,1) and write (x, €) for
the typical element of M with x € M and € € (0, 1). I also consider D as a set
of distributions on M in the obvious way, and I set dy := dy N (kerde)m and
D := Dy U {dy}. For d € D, the set W, := W; x (0, 1) is a Rolle leaf of d, and 1
put W := () ,cp Wa; then W is definable in R(W).

Note that M is compatible with D, and whenever (V) is an admissible sequence
of integral manifolds of dp with core W and ¢, € (0, 1) for ¢ € N, the sequence
(Vl X {el}) is an admissible sequence of integral manifolds of dp with core W.

Proposition 5.11. Let K be a pfaffian limit obtained from D with core W, and let
C C R” be a definable closed set. Then there is a definable open subset N of M
and there are q € N and pfaffian limits K, ..., K, € R"*! obtained from DN with
cores definable in R(W) such that K N C = I1,(K;) U --- U IT,(Ky).

Proof (Sketch of proof). Fore > 0 put T(C,¢€) := {x € R" : d(x,C) < €}. Note
first that K N C = (.-, (K NnT(C, 6)), and the latter is equal to lim.— (K n
T(C, e)) in the sense of Definition 4.8. Next, let (V,) be an admissible sequence
of integral manifolds of dp such that K = lim, V,. Then for every € > 0, there is
a subsequence (t(k)) of (1) such that the sequence (V) N T(C, €)) converges to
some compact set K.. Note that K. N T(C,e) = K N T(C,¢), since T(C,€) is an
open set.
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Fix a sequence (¢,) of positive real numbers approaching 0, and for each «,
choose ¢(k) such that d(V,i) N T(C,€c), Ke,) < €. Passing to a subsequence if
necessary, we may assume that lim, K, and lim, (Vl(,c) NnT(C, eK)) exist; note that
these limits are then equal. Hence by the above, K N C = lim, (K NnT(C, eK)) =
lim, (KGK NnT(C, eK)) C lim, K, = lim, (Vl(,c) NnT(C, eK)). The reverse inclusion
is obvious, so K N C = lim, (Vl(,c) NT(, GK)). Therefore, put

N:={(x,e) eM: d(x,C) <e€}.

Then N is an open, definable subset of M and by the above K N C = lim, (V) N
N¢<), where N := {x € M : (x,¢) € N}.Hence KNC = lim, IT, ((Vl(,()x{e,(})ﬂ
N). Since lim, ¢, = 0, it follows that KNC = II,, ( lim, ((VLW x{€}) ﬂN)). Since
the sequence (VLM X {eK}) is an admissible sequence of integral manifolds of d, the
proposition now follows from Remark 5.2. a

Exercise 5.12. Let 53 and C be two definable families of closed subsets of R". Prove
that the pfaffian limits in the previous proposition depend uniformly on C € C, for
all pfaffian limits obtained from D with definable part 3. That is, there are 1, ¢ € N,
a bounded, definable manifold M C R"t~+1 3 finite set D of distributions on M
and a definable family B of subsets of R"T"*! such that whenever K is a pfaffian
limit obtained from D with definable part B and C € C, there are pfaffian limits
Ki,...,K; € R""*1 obtained from D with definable part B such that K N C =
M, (K U+ U T1(K,).

6 O-minimality

I now fix an arbitrary reduct R’ of R, that expands R.

Definition 6.1. A set X C R* is a basic A(R/)-set if there exist n > k, a definable,
bounded C2-manifold M C R” of dimension 1, a finite set Dy of definable (m — 1)-
distributions on M and a definable /-distribution dy on M, and for each ¥k € N an
admissible sequence (V,,), of integral manifolds of dp with core W and definable
part B independent of k, where D := Dy U dy, such that:

(i) The core W is definable in R/;
(ii) For each k, the limit K, := lim, V., exists in /C,;
(iii) The sequence (I (K,)), is increasing and has union X .

In this situation, I say that X is obtained from D with core W and definable part 5.
A A(R’)-set is a finite union of basic A(R’)-sets. I denote by A(R') the collection
of all A(R/)-sets in R¥ and put A(R') := (A(R')x)xen-

Whenever R’ is clear from context, I shall simply write “A” instead of “A(R')”.

Proposition 6.2. In the situation of Definition 6.1, there is an N € N, depending
only on D and B but not on W, such that every basic A-set obtained from D with
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core W and definable part B has at most N components. In particular, if X € RF
isa A-setandl € k, there is an N € N such that for every a € R! the fiber X, has
at most N components.

Proof. Let N be a bound on the number of components of the sets W N B as W =
(aep, Wa ranges over all intersections of Rolle leaves W, of d € Dy and B ranges
over B. Let X be a basic A-set as in Definition 6.1. Then each V., has at most
N components, so each K, has at most N components, and hence X has at most N
components. Combining this observation with Exercise 5.12 yields, for every A-set
X C R*, a uniform bound on the number of connected components of the fibers
of X. O

Proposition 6.3. (1) Any coordinate projection of a pfaffian limit over R whose
core is definable in R’ is a A-set.

(2) Every bounded definable set is a A\-set.

(3) Let d be a definable (n — 1)-distribution on M := (—1,1)" and L be a Rolle
leaf of d definable in R'. Then L is a A-set.

Proof. (1) is obvious. For (2), let C € R” be a bounded, definable cell. By cell
decomposition, it suffices to show that C is a A-set. Let ¢ be a definable
carpeting function on C. Then C = [J72, ¢l (qb_l((l/i, oo))), so let C :=
{(x,r) € C x(0,1): ¢(x) > r}andputdy := kerdr |C and D := {d,}.
Then for r > 0, the set C" = ¢~ '((r,00)) x {r} is an admissible integral
manifold of dp with core C and definable part C”, so cl(C") is a pfaffian limit
obtained from D with definable core.

(3) Let ¢ be a carpeting function on M. Then L = | J72, cl (L Ne¢~'((1/i, oo))),
soletM:={(x,r) e M x(0,1): ¢(x)>r}andputdy :=kerdr M, d :=
d MM andD := {d,do}. Let Ly, ..., L, be the components of (L x (0, 1)) "M;
note that each L, is a Rolle leaf of d. Thus for » > 0 and each p, the set
L, N ¢! ((r,00)) is an admissible integral manifold of dp with core L, and
definable part M" = ¢~ ((r, 00)) x {r}. O

Proposition 6.4. The collection of all A-sets is closed under taking finite unions,
finite intersections, coordinate projections, cartesian products, permutations of
coordinates and topological closure.

Proof. Closure under taking finite unions, coordinate projections and permutations
of coordinates is obvious from the definition and the properties of pfaffian sets
over R.

For topological closure, let X € RF be a basic A-set with associated data
as in Definition 6.1. Then cl(X) = lim, [Ix(K,) = TIIx(lim,lim, V,,) =
I (lim, Vi y(c)) for some subsequence (L(x)),; in particular, cl(X) is a projection
of a pfaffian limit over R with same core as X.

For cartesian products, let X; C R¥t and X, € R*2 be basic A-sets, and let M! C
R", D' and (V;') be the data associated to X; as in Definition 6.1, for i =1,2.
Denote their cores by W € R"' and W, < R, respectively. We assume that
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both M' and M? are connected; the general case is easily reduced to this situation.
Define
M:={(x,y,u,v): (x,u) € M"and (y,v) € M?*},

where x ranges over R¥, y over R¥2, u over R”' =1 and v over R">7%>. We interpret
D' and D? as sets of distributions on M correspondingly and put D := D! U D2,
Since M and M? are connected, each set

Veor={(x,yuv): (x,u) € V! and (y,v) € V2 }
is an admissible integral manifold of dp with core
W= {(x,y,u,v): (x,u) € Wyand (y,v) € W, }.

It is now easy to see that for each «, the limit K, := lim, V., exists in 1C;, +,,, and
that the sequence (ITj, 4k, (Ky)) is increasing and has union X; x X».

For intersections, let X1, X, € R* be basic A-sets. Then X; N X, = I (X x
X5) N A), where A := {(x,y) € R* xR¥: x; = y; fori = 1,...,k }. Therefore,
we let X € R¥ be a basic A-set and C C R¥ be closed and definable, and we show
that X N C is a A-set. Let the data associated to X be as in Definition 6.1, and let
M, D and W be associated to that data as before Proposition 5.11. Let also N be the
open subset of M given by that proposition with C’ := C x R"™* in place of C.
Then by that proposition, there is a ¢ € N such that for every « the set K, N C’ is
the union of the projections of pfaffian limits K, ..., K| obtained from DN with
cores definable in R’. Note that each K is the limit of an admissible sequence of
integral manifolds of DN whose core depends only on j but not on . Replacing each
sequence (K ,f) by a (possibly finite) subsequence if necessary, we may assume that
each sequence (Hk(K,ﬁ )) is increasing. Then each X; := [ J, K is a basic A-set
and X NC =X, U---UX,. O

Proposition 6.5. Let X C R¥ be a A-set. Then bd(X) is contained in a closed
A-set with empty interior.

Proof. Let the data associated to X be given as in Definition 6.1. Note that

bd(X) € lim bd(ITx(K.).

Fix an arbitrary «; since IIx(K,) = lim, I14(V,,) we may assume, by
Proposition 3.10, Exercise 5.4 and after replacing M if necessary, that I1; }dp
is an immersion and has constant rank » < k; in particular, dim(V,,) < k. If r < k,
then each IT; (K, ) has empty interior by Proposition 4.6, so

limbd(IT; (Ky)) = lim [T (K,) = i (lim K,.) = Hx(lim Vi ()
K K K K
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for some subsequence (t(x)), and we conclude by Propositions 5.8 and 6.3(1) in
this case. So assume that » = k; in particular, I1; (V) is open for every x and ¢. In
this case, since M is bounded, we have bd(I1;(K,)) < I1i(lim, fr V,,) for each «.
Hence

lilgn bd(ITx (Ky)) < Tl (lign lilm frVe,) = Hk(lilgn fr Vi)

for some subsequence (t(k)), and we are done by Propositions 5.7 and 6.3(1). O

Recall that for S € R¥, [ € {1,...,k} and a € R¥, we put
Sei={yeR": (a,y)e S}
Corollary 6.6. Let X € R be a A-set, and let 1 <[ < k. Then the set
B:={aeR : cl(X,) # cl(X), }

has empty interior.

Proof. It suffices to show that the corollary holds with X N ((—R, R)! x R*"") in
place of X, for each R > 0, so we assume that I1; (X)) is bounded. For each a € B
there is a box U € R¥~! such that cl(X,) N U = @, but cI(X), N U # @. Hence
B =Jy, By, where U ranges over all rational boxes in R*~/ and

By:={aeR :cl(X,)NU =0, cI(X),NU #@}.

Each By is contained in the frontier of the bounded A-set I1; (X N (R’ x U)). So
by the previous proposition By C Yy for some closed A-set Yy with empty interior.
Since each Yy is compact, we conclude that B has empty interior. O

Proposition 6.7. Let X C [—1,1]% be a A-set. Then [—1, 1]* \ X is also a A-set.

Proof. Set I := [—1,1]. Let X C I* be a A-set. We establish the following two
statements by induction on k:

(D If int(X) = @, then X can be partitioned into finitely many A-sets Gy, ...,
Gk in such a way that, for each i € {l1,..., K}, there is a permutation
m; of {1,...,k} such that 7;(G;) is the graph of a continuous function
fi i M1 (i (Gi)) — R.

(I);y The complement 7%\ X is a A-set, and the components of both X and 7%\ X
are A-sets.

The case k = 1 follows from Proposition 6.2; so assume k > 1 and that the two
statements hold for lower values of k. First we establish the following

Claim. Assume there is a A-set Z C I'* with empty interior such that X € Z and
(Dk and (IT)x hold with Z in place of X. Then (I); and (II)x hold.

To prove the claim, let Gy, ..., Gk be as in (I); with Z in place of X. Clearly
(D then also holds for X, since each 7;(G; N X) is the graph of the continuous
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function f; MI—;(; (G; N X)). Since the G; partition Z and (II); holds with Z in
place of X, it suffices to prove for each i that the complement G; \ X as well as the
components of both G; N X and G; \ X are A-sets. Fix an i; by Proposition 6.4, we
reduce to the case that m; is the identity map. Then by the inductive hypothesis, the
set [Tx—1(G; \ X) as well as the components of both IT;—;(G;NX) and I1;—; (G;\ X)
are A-sets, so the claim follows.

We now return to the proof of the theorem; there are two cases to consider.

Case 1. X has empty interior. Consider the A-sets
Ci:={aeclI¥":|X,|=i} forieN.
By (II)k—; the sets
Di=Ci\Ciyi={acl*": X, =i}

are also A-sets, and by Proposition 6.2 there is an N € N such that C; = Cy 4 for
alli > N.Let X; := X N ((C() \ CN+1) X 1) and X, (= X N (CN-H X I), by
the inductive hypothesis both X and X, are A-sets. The next two paragraphs then
finish the proof of Case 1.

First, note that |[(X),| < N foreverya € Ilj_;(X;). For1 < j <i < N,
define the A-sets

X;;:=1{(a,y) € D; x I : yisthe j™ element of (X1), },
S,',j = {a eD;: i(C](Xi,j))u| > 2},

and put § := UlsjsisN Si,j. (Here we use the fact that the collection of A-sets is
closed under taking topological closure.) Note that each X; ; is by construction the
graph of a function that is continuous away from S. Thus, (I); holds with X\ (Sx1)
in place of X by construction, and the corresponding (II); then follows easily from
the inductive hypothesis (and since the order < is semialgebraic). Note that

Sij ClaeRF: el((X)a) # (l(Xij))a i

it follows from Corollary 6.6 that each §; ; has empty interior, so S has empty
interior. Therefore (I)y—; and (II);—; hold with S in place of X by the inductive
hypothesis, and so (I)r and (II); hold with S x I in place of X. The claim implies
now that (I); and (II); also hold with X; N (S x I) in place of X, and with (S x
I)\ X, in place of X. Therefore, (I); and (I); hold with X, in place of X, and with
((Co\ Cn+1) x I)\ X, in place of X.

Second, note that Cyy; = IIx—(X3). Thus every fiber (X3), € I witha €
Cy+1 is infinite and hence (by Proposition 6.2 again) contains an interval. Since X,
has empty interior, it follows that Cy 4 has empty interior. (I); and (II);, with X,
as well as with (Cy4+; x 1) \ X; in place of X, now follow from the claim by a
similar argument as in the previous subcase.
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Case 2. X has nonempty interior. By Proposition 6.5 there is a closed A-set
Y C I* such that bd(X) € Y and Y has empty interior. By Case 1 applied to
Y, both (I); and (I); hold with ¥ in place of X. Note that if C is a component of
I*\Y and C N X # @, then C C X. It follows that each component of /¥ \ ¥
is either contained in X \ Y or is disjoint from X U Y. On the other hand, by
the claim the statements (I); and (II); hold with X N Y in place of X. Thus (I);
follows easily. |

Form € N, let 7,, = T(R/),, be the collection of all A-sets X C [™.

Corollary 6.8. The collection T = T(R') := (Tn)m forms an o-minimal structure
onl. |

Proof (Proof of Theorem A). For each m, let 7,, : R" — (—1,1)" be the
(definable) homeomorphism given by

( ) X1 Xm
T (X1, .oy X)) 1= e ,
! 1+ x7 1+ x2,

and let S, = S(R')n be the collection of sets 7,,'(X) with X € 7,. By
Corollary 6.8, the collection S = S(R') := (Su)m gives rise to an o-minimal
expansion Rs of R. By Proposition 6.3(2), every definable set is definable in Rs.
But every L € L(R) that is definable in R’ is definable in Rs as well: if L is a
Rolle leaf of a definable (n — 1)-distribution d on R”, then t,,(L) is a Rolle leaf of
the pullback (z, ')*d. It follows from Proposition 6.3(3) that 7,(L) € 7Ty, so L is
definable in R s. Since L € L('R) was arbitrary, it follows that R’ is a reduct of Rs
in the sense of definability; in particular, R’ is o-minimal. The theorem now follows
by taking R’ = R; and from the definition of P(R). |

Corollary 6.9. Let K C R" be a pfaffian limit over R whose core is definable in
R'. Then K is definable in R’.

Proof. Let W be the core of K and B be the definable part of K. Then the family
of all intersections W N B with B € B is a family definable in R’. The corollary
follows from the Marker-Steinhorn Theorem, see [16]. O

Exercise 6.10. Let K be a pfaffian limit over R. Prove that the o-minimal
dimension of K is equal to dim K.

Exercise 6.11. Let X C R” be definable in Rs.

(1) Show that, if X is bounded, then X is a A-set.

(2) Show that, if X is compact, then there are pfaffian limits K, € R"» over R
withn, > n,for p = 1,..., g, such that each K, has core definable in R’ and
X =1I1,(K;) U--- U II,(K,); in particular, X is definable in R'.

Corollary 6.12. The structures R’ and Rs are interdefinable; in particular, every
bounded set definable in R’ is a A-set.
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Proof. Let X be a bounded cell definable in Rs; since Rs is o-minimal, it suffices
to show that X is definable in R'. But both clX and fr X are compact and hence
definable in R’ by the previous exercise. |

7 Blowing-Up Along a Distribution

In this section, I establish a criterion for generic portions (in the sense of dimension)
of pfaffian limits over R to be integral manifolds of definable distributions. I fix a
bounded, definable manifold M C R” of dimension m, a finite set Dy of definable
(m — 1)-distributions on M and a definable [-distribution dy on M, and I assume
that all are of class C2. I put D := Dy U {d,} and k := dim dp, and I assume that
D is compatible with M.

Definition 7.1. Putn; := n + n? and let T : R" — R" denote the projection on
the first n coordinates. I define
M= grdp C M x fo C R, the graph of the distribution dp,
d':= (IT M ")*d, the pull-back to M of d via I1, ford € DU {dp}.
Icall D! := {d': d € D} the blowing-up of D (along dp); note that M" is

of class C?2, while d! is of class C'. Finally, for d € D U {dp} and an integral
manifold V of d, I define

vi=mmH=(v),

the lifting of V (along dp). Note that, in this situation, V! is an integral manifold
of d', and if d = dp, then V! is the graph of the Gauss map gy .

Next, I write M = | M,,, where o ranges over X, and the M, := M, ,, are as
in Lemma 4.10 with d and 7 there equal to dp and 2n here.

Definition 7.2. For an integral manifold V € M of dp ando € X,, [ put V, :=
V N M,. Then V; is an integral manifold of dp, and I define

Flv= | fr V)

oEX,

For the criterion, I let D C cIM ! be a definable C2-cell such that C := II(D)
has the same dimension as D and C is compatible with M, and fr M,, for every
o€ X,. Then D = grg, whereg : C — G,’,‘ is a definable map, and I assume
that the following hold:

(1) The map g N gc¢ has dimension and hence is a distribution on C;
(i) If g = g N gc, then either g is integrable or g is nowhere integrable.
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I also assume that there is a definable set S  cIM ! such that S N D = @ and both
S and S U D are open in cIM . In this situation, for any sequence (V;) of integral
manifolds of dp such that K := lim, th and K’ := lim, F'V, exist, I put

Lwyy:=(DnN K)\ (K/ Ufr(Sn K))

Remark. Assume that (V) is an admissible sequence of integral manifolds of dp
with core W such that K := lim, Vll and K’ := lim, F'V, exist, and assume that
K is proper. Then Ly, is a generic subset of K in the following sense: (Vf) is an
admissible sequence of integral manifolds of dé with core W, Thus by Exercise 5.4
and Propositions 5.8 and 5.7, K’ is a finite union of pfaffian limits over R with
cores definable in R(W) and of dimension less than dim K. Moreover, by cell
decomposition in R and Corollary 8.4 below, there is a finite union F < R™" T2
of pfaffian limits over R with cores definable in R(W') and of dimension less than
dim K such that fr(S N K) C I1,,, (F).

Finally, let g' : D —> G be the pull-back of g N g¢ to M via I1.
Proposition 7.3. In this situation, exactly one of the following holds:

(1) L, = O for every admissible sequence (V,) of integral manifolds of dp such
that lim, Kl and lim, F'V, exist;

(2) g is an integrable distribution on C, and for every admissible sequence (V) of
integral manifolds of dp such that lim, V' and lim, F'V, exist, the set L, is

L

an embedded integral manifold of g' and an open subset of lim, V,!.

In particular, if D is an open subset of M' and (V) is an admissible sequence of
integral manifolds of dp such that lim, V' exists, then D Nlim, V! is a finite union

L L
of leaves of (dzl))D.
I need the following observation for the proof of Proposition 7.3.

Remark. Let 0 € X,. Then o induces a diffeomorphism o : G, — G, defined,
in the notation of Sect. 1, by 0(y) := Ao (kery); define ol :R"x G, — R"x G,
by o' (x,y) := (6(x),0(y)). Note that 0! is also just a permutation of coordinates.
The map g° : 0(C) — fo defined by g°(0(x)) := o(g(x)) satisfies (g°)! =
o' o g o (6")7!. Moreover, if (V,) is a sequence of integral manifolds of dp
such that lim, V' exists, then lim, o (V;!) also exists and ' (D) N lim, 0! (V}!) =

o' (D Nlim, V)).

L

Proof (Proof of Proposition 7.3). By the previous remark and Remark 5.2, after
replacing M by o(M,) and W by o' (W N cIM}) for each 0 € X, satisfying
C C clM,, we may assume for the rest of this proof that dp is 2n-bounded and
prove the proposition with fr V! in place of F!(V,). Thus, let (V,) be an admissible
sequence of integral manifolds of dp such that K := lim, th and K’ := lim, fr Vf
exist, and put

L:=(DnNK)\ (K’Ufr(S ﬂK)).
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For the remainder of this proof, we write “lim” in place of “lim,”. By Corollary
3.6(2), there is a v € N such that for every open box U C R” and every ¢ € N, the
set U N V, has at most v connected components. We assume that L. # @; we then
need to show that g is an integrable distribution on C and that L is an embedded
integral manifold of g' and an open subset of K.

To do so, choose an arbitrary (x, y) € L with x € R” and y € G,,. Since S U D
is open in cIM ! there is a bounded open box B C R"! such that (x, y) € B and

clBNK C D\ (K Ufr(S NK));

in particular, (x, y) € D. Write B = Byx B} with By € R" and B} C R"’. Since D
is the graph of the continuous map g and C is locally closed, we may also assume,
after shrinking By if necessary, that D N (clBo x fr Bl) = 0.

On the other hand, after passing to a subsequence if necessary, we may assume
that lim (B N Vll), lim VL}B and lim fr V, p exist, where V, p :=={x € V,: (x,T\V))
€ B}. Then

BNK=Bnlm(BNV,')=BnNlmV/;.

We now claim that x ¢ limfr V, g in fact, since fr V,! N c1B = @ for all sufficiently
large ¢, it follows that fr V:B C fr B for all sufficiently large ¢. Also, lim V[}B -
clB N lim V! is disjoint from clBy x fr By by the previous paragraph, so clVJB is
disjoint from clBy x fr B; for all sufficiently large :. Hence fr V:B C fr By x B
for all sufficiently large ¢. Since B is bounded, frV, 5 C I, (fr I/l}B) holds, and it
follows that fr V, p C fr B for all sufficiently large ¢, which proves the claim.

Since each V, is an embedded, closed submanifold of M, apply Lemma 4.4 with
V. p in place of V, and n = 2n, to obtain a corresponding open neighbourhood
UC Byofxand fi,..., f, : Ix(U) — R*" % Let A € {1,...,v} be such that
x € gr f,. We claim that for every x’ € gr f, N U, the map f is differentiable
at 7 = TIx(x') with Ty gr fo = g(x’); since x’ is arbitrary, the claim implies
that gr f3 is an embedded, connected integral manifold of g. Assumption (ii) and
Exercise 1.18(3) then imply that g is an integrable distribution on C. Since (x, y) €
L was arbitrary, it follows that L is an embedded integral manifold of gl, as desired.

To prove the claim, let f; , : TIx (U) — R"* be the functions corresponding to
i as in the proof of Lemma 4.4. After a linear change of coordinates if necessary,
we may assume that g(x’) = RF x {0} (the subspace spanned by the first k
coordinates). It now suffices to show that f is n-Lipschitz at x” for every n > 0,
since then T, gr /i = RF x {0}. So let n > 0; since lim V:B € D = grg and
x" € C,andbecause C is locally closed and g is continuous, there is a neighborhood
U’ C U of x" such that gr f, , N U’ is (n/k)-bounded for all sufficiently large .
Thus by Lemma 4.4 again, f) is n-Lipschitz at x’, as required.

Finally, if D is open in M!, then g = dp | C and we can take S := @. Since
C is open in M and compatible with M, and fr M, for o € X, the equality C N
fr M, = @ holds for 0 € X,. Hence F'(V,) N D = @, and it follows that Ly, =
D N lim V, in this case. O
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8 Fiber Cutting for Pfaffian Limits

What about the set fr(S N K) that appears in the previous section? I show first—
similar to Proposition 5.11, but using the o-minimality of R |—that this set is a finite
union of projections of pfaffian limits over k.

Lemma 8.1. Let K C R” be a pfaffian limit over R with core W, and let C C R"
be a definable cell. Then there are pfaffian limits K, ..., K, C R"*2 over R whose
cores are definable in R(W) such that fr(K N C) = I1,(K;) U --- U I1,(K,).

Proof. Let M C R”" be a definable C 2_manifold of dimension m, Dy a finite
collection of definable (m — 1)-distributions on M and d, a definable /-distribution
on M, and put D := Dy U {dy}. Assume that M is compatible with D and K is
obtained from D, and put k := dim dp.

Define M := M x (0, 1)? and write (x, r, €) for the typical element of M with
x € Mandr,e € (0,1).Setdy := dyNkerdr Nkerde, D := DyU{dp} and W :=
W x (0, 1). Note that whenever (V)) is an admissible sequence of integral manifolds
of dp with core W and (r,, €,) € (0, 1)* for ¢ € N, the sequence (V, x{(r,, €,)}) is an
admissible sequence of integral manifolds of dp with core W. Let ¢ be a definable
carpeting function on C and put

N:={(x.r.e) eM: d(x,¢ ' (r)) <e€}.

Then N is an open, definable subset of M, and since K is compact and definable
in the o-minimal structure R, we obtain from Lemma 4.7 that fr(K N C) =
lim, o(K N ¢~'(r)). Moreover, let (V,) be an admissible sequence of integral
manifolds of dp such that K = lim, V;. Then for r > 0, the family of sets
{1imL(Vl NN"™): e > 0} is decreasing in €, where N™¢ := {x € M : (x,r,€) €
N}, so

o' NK = lim Tim(V; 0 N").

Hence, after passing to a subsequence of (V)) if necessary, there are r, — 0 and
€, — 0 such that

fr(K N C) = lim (V, N N"“) = lim I, ((V; x {r,, €)}) N N).

Since lim,(r,,¢,) = (0,0), the right-hand side above is equal to Hn(liml ((K X
{(r,e)}) N N)) Since the sequence (K x {(r, el)}) is an admissible sequence of
integral manifolds of dp with core W, Remark 5.2 now implies the lemma. a

The problem with the previous lemma, and with Exercise 6.11 as well, for their
use in the proof of Theorem B is that dimdp = dimdp, so it is possible that
dim K, > dimfr(K N C) for some p. To remedy this, we need a fiber cutting
lemma for pfaffian limits over R:
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Proposition 8.2. Let K C R”" be a pfaffian limit over R with core W and v < n.
Then there are q € N and proper pfaffian limits Ky, ..., K, € R" over R with
cores definable in R(W') such that

I,(K) =I,(K)) U---UTII,(Ky)

and dim K, = dimI1,(K,) < dim K for each p.
The following is needed in the proof of this proposition:

Exercise 8.3. Let S C R¥ be definable in an o-minimal expansion S of the real
field and put s := dim S. Then there is aset Y C §, definable in S, such that S C
clY, and for every x € Y there is a strictly increasing A : {1,...,s} — {1,...,k}
such that x is isolated in S N HA_1 (TTx(x)).

Proof (Proof of Proposition 8.2). Let M C R” be a definable C2-manifold of
dimension m, D, a finite collection of definable (m — 1)-distributions on M and
dy a definable /-distribution on M, and put D := Dy U {dy}. We assume that M
is compatible with D and K is obtained from D, and we proceed by induction on
m. The case m = 0 is trivial, so assume m > 0 and the proposition holds for
lower values of m. Let (V,) be an admissible sequence of integral manifolds of d
with core W such that K = lim, V,. Choosing a suitable C>-cell decomposition
of M compatible with D, and using Remark 5.2 and the inductive hypothesis,
we reduce to the case where M is a definable C2-cell such that for every s < v
and every strictly increasing map A : {1,...,s} —> {l1,...,v}, the rank of
I} Pdp(x) is constant for x € M; we denote this rank by ry. Putting D(1) :=
DU {(kerdxx(l))M, ..., (ker dxx(s))M } and k := dimdp, this means that dp)
has dimension k — r;. It follows from the rank theorem and the fact that admissible
integral manifolds of dp are closed in M that V, N (HK)_1 () is a closed integral
manifold of dp ;) with core W, fort € Nand y € IT} (V).

Lets := dim I1,(K); then s < k by Proposition 5.8. If s = k, we are done, so
we assume from now on that s < k. Let A : {1,...,s} —> {1,...,v} be strictly
increasing; since s < k,

dimdp()L) >k—s>0;

in particular, 7, < k. Hence by Lemma 3.4 and because each fiber V, N (HK)_l (»)
is a closed submanifold of M, there is a closed, definable set B) € M such that
dim By < m and

e Fory € R and € N, each component of the fiber V, N (HK)_I(y) intersects the
fiber B, N (IT2)~'(y).

In particular, I} (V, N B;) = I} (V,) for all ¢, and for all y € R, every component
of IT, (V,) N (I1})~"(») intersects the fiber IT,(V, N By) N (IT}) ™' (»).

We now denote by A the set of all strictly increasing A : {1,...,s} —>
{1,...,v}. Passing to a subsequence if necessary, we may assume for A € A that
the sequence (V, N Bj), converges to a compact set K*. Choosing a suitable C?-cell
decomposition of B) and using again Remark 5.2, it follows from the inductive
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hypothesis that the proposition holds with each K* in place of K. It therefore
remains to show that IT,(K) = (J;c, Iy (K*). To see this, fix a A € A; since
each IT, (K *) is closed, it suffices by Exercise 8.3 to establish the following

Claim. Lety € ITI5(K), and let x € I1,(K) N (HK)_I(y) be isolated. Then x €
I, (K*).

To prove the claim, note that IT,(K) = lim, IT, (V) since M is bounded. Let
x, € IT,(V,) be such that lim, x, = x, and put y, := IT}(x,). Let C, € R" be the
component of IT, (V)N (HX)_l (y,) containing x,, and let x/ belong to C,NIT,(V,N
By). Since also IT, (K*) = lim, IT,(V, N B;) we may assume, after passing to a
subsequence if necessary, that x’ := lim, x| € TI, (K k). We show that x’ = x,
which then proves the claim. Assume for a contradiction that x’ # x, and let § > 0
be such that § < |x — x’| and

B(x.8) N IL,(K) N (IT) ™' (y) = {x}. 8.1

Then for all sufficiently large ¢, there is an x;’ € C, such that§/3 < |x]'—x,| < 25/3,
because x,,x; € C, and C, is connected. Passing to a subsequence if necessary,
we may assume that x” := lim, x/" € I1,(K). Then x” € B(x,d) with x” # x,
and since x; € C, implies that TT}(x") = y,, it follows that IT}(x") = y,
contradicting (8.1). O

Combining Lemma 8.1 and Exercise 6.11 with Proposition 8.2 gives:

Corollary 8.4. (1) Let K € R”" be a pfaffian limit over R with core W, and
let C € R" be a definable cell. Then there are pfaffian limits Ky, ..., K,
C R"*2 over R with cores definable in R(W) such that fr(K N C) =
IT,(Ky) U---UTI,(K,) and dim K, < dim K for each p.

(2) Let R’ be a reduct of R that expands R, and let X C R" be definable in R’
and compact. Then there are pfaffian limits K, € R"» over R withn, > n and
dimK, < dimX, for p = 1,...,q, such that each K, has core definable in
R and X = T1,(K,) U--- U I, (K,). |

9 Proof of Theorem B

The main ingredient is Theorem 9.2 below, which in turn is based on the following:

Proposition 9.1. Let K C R” be a pfaffian limit over R with core W. Then there is
aq €N, andfor p =1,...,q, there are n, > n and embedded integral manifolds
U, € R" over R definable in R(W) and of dimension at most dim K such that
K cII,(U) U---U I, (Uy).

Proof. By induction on k := dim K, simultaneously for all n. If k = 0, then K is
finite and the proposition is trivial. So we assume k > 0 and the proposition holds



214 P. Speissegger

for all pfaffian limits K’ over R satisfying dim K’ < k. By Exercise 5.10, we may
assume that K is a proper pfaffian limit over R. Let M C R" be a definable C2-
manifold of dimension m, Dy be a finite set of definable (m — 1)-distributions on
M, dj be a definable /-distribution on M and put D := Dy U {d,}. Let (V,) be an
admissible sequence of integral manifolds of dp with core W such that K = lim, V,
and dimdp = k. By C™"2-cell decomposition and Remark 5.2, we may assume
that M is a C"*2-cell and each d € D is of class C" 2.

We now blow up m + 1 times along dp, that is, put ny := n, MO := M and
d’ := d foreachd € DU {dp} and D’ := D, and put V° := V and F°V :=
Uyes, fr Vs for every integral manifold V' of de with € € D U {dp}. By induction

onj =1,....m+ 1,definen; := (n;—1); =n;— +n§_1,M/ = (M/‘_l)l =
grdé_l, dl = (a’/‘_l)1 foreachd € DU {dp} and D/ := (D/_l)l, and define
the corresponding liftings V/ := (V/ _1)1 and F/V := F'VJ/~! for every integral
manifold V' of dg with € € D U {dp}. Foreach0 <i < j < m + 1, we also let
Jr,-] : R" — R"™ be the projection on the first n; coordinates.

Passing to a subsequence if necessary, we may assume that K/ := lim, ¥,/ and
lim, F/V, exist for j = 0,...,m (so K = K). Then nj (K’/) = K for each
J, and since K is proper with core W, each K/ is proper with core W/, and the
latter is definable in R(W). It follows from Exercise 5.4(2), Proposition 5.7 and the
inductive hypothesis that

(I) The proposition holds with each lim, F/V, in place of K.

For j = 0,...,m + 1, we write M(f = (M/)U,z,, as in Lemma 4.10 with M,
d and 7 there equal to M/, dJ, and 2n here. Let C/ be a C2-cell decomposition of
clM/ compatible with the sets M/, frMJ, Mg and fr M(f, foro € E,,‘/.. Refining
each C’ in order of decreasing j € {0, ..., m} if necessary, we may assume for each
such j that

(i) C/ is a stratification compatible with {nf *tH(C): € e ity and for every

D € C/T! that is the graph of amap g : C — G,]f/_, where C := ]TJ]»-H(D),
that

(i) The map g N g¢ has dimension and hence is a distribution on C;

(i) If g = g N gc¢, then either g is integrable or g is nowhere integrable.

By Corollary 8.4(1) and the inductive hypothesis,

() For j =0,...,mand E € C/, the proposition holds with fr (K/ N E) in place
of K.

We now fix j € {0,...,m}and acell C € C/ such thatdimC > j.

Claim. Thereisaq € N, and for p = 1,...,q, there are n, > n and an integral
manifold U, € R"» over R definable in R(W) and of dimension at most dim K
such that K/ N C € I1,,(U;) U -+ U T1,,(Uy).
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The proposition follows by applying this claim to each C € C°. To prove the
claim, we proceed by reverse induction on dim C < m. Let

. —1 . :
De = 1{D'N (nj].+1) (C): D'ec’*!, Cc calt (D)},

and fix an arbitrary D € Dc; it suffices to prove the claim with K/*! and D in
place of K/ and C. Let D’ € C/*! be such that D € D’; if dim D’ > dimC,
then the claim with K/ ! and D in place of K/ and C follows from the inductive
hypothesis, so we may assume that dim D’ = dim C. Then D is open in D’, and
since M/t! C R" x G,]f/_ and G,]f/_ is compact, there is a definable map g : C —

foj such that D = grg. Let
S:=|J{EeC/™: dimE >dimC };

since C/*! is a stratification, both S and S U D’ are open in cIM/*!, and since D is
openin D’, the set S U D is also open in clM /!, Hence by Proposition 7.3, the set
(K/Ttn D)\ (lim, F/ 'V, U fr (S N K/*)) is an embedded integral manifold of
g'.But DNfr(S N K/t C F, where

Fo=|Jifr(K/T'NE): EeC/* and dimE > dimC }
is compact, so the set
L= (K" D)\ (lm FFH (V) U F)
L

is an embedded integral manifold of g' definable in R(W). The claim with K/*!
and D in place of K/ and C now follows (I) and (II), which finishes the proof of
the proposition. O

Theorem 9.2. Let R’ be a reduct of Ry that expands R. Then R’ is R-differentially
model complete.

Proof. By induction on dim X ; the case dim X = 0 is trivial, so assume dim X > 0
and the corollary holds for lower values of dim X . Using semi-algebraic diffeomor-
phisms, we may also assume that X is bounded. Then clX is compact and hence, by
Corollary 8.4(2), a finite union of projections of pfaffian limits over R whose cores
are definable in R/, each of dimension at most dim X . So by Proposition 9.1, there
isag € N,and for p = 1,...,q, there are n, > n and an integral manifold
U, € R" over R definable in R’ and of dimension at most dim X such that
cl(X) € I, (U;) U---UIl,(U,). For each p € {1,...,4q}, let C, be a partition
of U, by cells definable in R’ such that the collection {IT,(C) : C € C,} is
compatible with X. Since U, is a submanifold of R"», each cell in C,, of dimension
dim U, is an open subset of U, and hence an integral manifold of e,. The corollary
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therefore follows by applying the inductive hypothesis to the union of all I1,(C)
suchthat C € C, with p € {1,...,¢q}, I1,(C) € X anddimC < dimU,. |

Proof (Proof of Theorem B). Let j € N be such that X is definable in R’;; we claim
a slightly stronger statement: there is a ¢ € N, and for p = 1,...,q, there are
n, > n and an integral manifold U, C R"» over R that is a cell definable in R’j
and of dimension at most dim X such that X = I1,,(U;) U --- U I1,,(U,). We prove
this claim by induction on j and k := dim(X). If K = 0, the claim is trivial and
if j = 1, the claim follows from Theorem 9.2; so assume that j > 1 and k > 0
and the claim holds for lower values of j or k. By the inductive hypothesis and
Theorem 9.2 with R’j_l in place of R, and after increasing n if necessary, we may
assume there are a C2-manifold M C R” of dimension m > k definable in R’ i1
and a k-distribution d on M definable in R’j_ , such that X is a cell that is also an
integral manifold of d.

By the inductive hypothesis, there areav > n+n?2, adefinable C2-manifold N C
RY, a definable m-distribution e on N and an integral manifold W of e that is a cell
definable in R’j_l such that gr(d) = I, ,2(W). Note, in particular, that W is the
graph of a function gy : M — R"™", because W is a cell, dim W = dim M and
I,(W)=M.Leto : R+ 5 R be the projection on the last n? coordinates,
put N/ := {x € N : 00Il,;,2(x) € GF} and set H(x) := 0 o I1,,2(x) for
x € N’. Note that N’ is definable and W C N’, because H(x) = d(I1,,2(x)) for
x € W.LetC be a C2-cell decomposition of N’ compatible with e and definable in
‘R such that, for C € C,

(*)¢ the dimensions of the spaces IT,, (¢ (x)) and IT, (€ (x)) N H (x) are constant
as x ranges over C; denote them by r¢ and sc, respectively.

Let C € C be such that C N W # @; it now suffices to prove the claim with
X¢ := I1,(C N W) N X in place of X. Note that the set C N W is an integral
manifold of ¢ and the graph of the restriction of gy to IT,,(C NW); in particular, by
(*)c, I, e (x) is an immersion for x € C. Also by ()¢, themap f€ : C — G,
defined by /€ (x) := e (x) NI, (H(x)) is a definable distribution on C, and the
set V := IT,'(X) N W N C is an embedded integral manifold of /€ definable in
R’] such that IT, (V) = X€. Assumption (x)¢ also implies that dim XC =50 <k,
so by the inductive hypothesis, we may assume s¢ = k, that is, H(x) € I1,(e€ (x))
for x € C. Since IT, }e€ (x) is animmersion for x € C, it follows that dim /€ = k.
Applying cell decomposition in R’J to V' and using the inductive hypothesis one
more time now finishes the proof of the claim. O
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1 Introduction

In [13], Wilkie proved a Theorem of the Complement (see Theorem 3.2 for the
precise statement), which allowed him to derive the following result: given an
expansion R of the real field with a family of C* functions, if there are bounds
(uniform in the parameters) on the number of connected components of quantifier
free definable sets, then R is o-minimal. The first application of this theorem is the
following: recall that a sequence fi,..., fs : R" — R of C* functions forms a
Pfaffian chain if

afi _ . .
i =pi(X, fi.....fi) i=1....8j=1...,n,
8xj

where p;; € R[X, y1,...,y]; a function f : R" — R is Pfaffian if it appears
in some Pfaffian chain. Thanks to a well known finiteness result in [7], Wilkie’s
theorem implies that the structure generated by all real Pfaffian functions is
o-minimal.

Let Ry be an o-minimal expansion of the real field. We say that a sequence
fi, ..., fs : R" — R of C* functions forms a generalized Pfaffian chain over Ry if

af; _ . .
a—lzgij(x,fl,...,f,-) i=1,....8; j=1,...,n,
Xj

where g;; are Ro-definable C*° functions; a function f : R” — R is a generalized
Pfaffian function over Ry if it appears in some generalized Pfaffian chain.

In [6], the authors generalized Wilkie’s Theorem of the Complement (by weak-
ening the smoothness assumption), and apply it to derive the following result:
the expansion of Ry by all generalized Pfaffian functions over Ry is o-minimal
(see Example 6.4).

By a different method (relying very indirectly on Wilkie’s work), Speissegger
proved in [9] a stronger result (the proof of which is discussed in [10]), namely the
o-minimality of the so called Pfaffian closure of Ry (where, roughly speaking, we
allow the functions f; and g;; in the above definition to be C' and not necessarily
total).!

Finally, in [1] the authors proved an effective version of Wilkie’s Theorem
of the Complement, which allowed them to deduce the following result: given
an expansion R of the real field with a family of C* functions, if there are
recursive uniform bounds on the number of connected components of quantifier free
definable sets, then there are recursive uniform bounds on the number of connected
components of all definable sets, i.e. the theory of R is recursively o-minimal.

'In [6] an alternative proof of Speissegger’s result is claimed. However, the proof contains a gap
(see [4]), which forces us to conclude that only the weaker statement given above is fully proved
in [6].
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Here we present a further generalized version of Wilkie’s and Karpinski and
Macinyre’s Theorems of the Complement. We generalize the original statements
in two ways: firstly, we further weaken the smoothness assumptions made in
[6]; secondly, we adapt the arguments in the proof to the non-Archimedean
situation, i.e. we consider not only expansions of the real field, but more generally
definably complete Baire expansions of ordered fields (see Definition 2.1). The main
motivation for proving such a general statement is that it allows us to obtain the
following first order version (proved in [4]) of Speissegger’s theorem mentioned
above: the Pfaffian closure of an o-minimal structure inside a definably complete
Baire structure is again o-minimal.

For the reader who is only interested in expansions of the real field, we remark
that this latter result can be used to give an alternative proof of Speissegger’s
theorem (in the spirit of the original [6]): for an exposition of the proof of the
real case, see also [11]. Moreover, we recover the main result in [1], but with a
more uniform axiomatization: let R be an expansion of the real field by a (classical)
Pfaffian chain f of functions; then the (recursive) subtheory of the complete theory
of R, axiomatized by the axioms of definably complete Baire structure and the
differential equations satisfied by f, is o-minimal.

The main result of this paper is Theorem 3.8. The main ideas and the structure of
the proof are due to [13]. The basic properties of the Charbonnel closure (the first
part of Sect.5) are developed following [8], whereas the proof of the Theorem of
the boundary 5.5 is inspired to [6] and the treatment given in [1].

In the final section we give an application of the main theorem. In Theorem 6.2
we give a necessary and sufficient condition for a definably complete Baire
expansion of an o-minimal structure by C* function to be o-minimal.

2 Preliminaries About Definably Complete Baire Structures

Throughout this paper, K is a (first-order) structure expanding an ordered field.
We use the word “definable” as a shorthand for “definable in K with parameters
from K”.

We denote by x, y, z, ... the points in K". When we want to stress the fact that
they are tuples, we write X, 5,7z, ..., where X = (x, ..., X,), etc.

For convenience, on K” instead of the usual Euclidean distance we will use the
equivalent distance

For every § > 0 and x € K", we define by B"(x;§) :={y e K" : d(x,y) < 8}
the open “ball” of center x and “radius” § and its closure by B (x:8); we will drop
the superscript m if it is clear from the context.

We define I17*" : K™*" — K™ as the projection onto the first m coordinates.

We write bd(X) := X \ X for the boundary of X.
We introduced definably complete Baire structures in [3].
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Definition 2.1. An expansion K of an ordered field is a definably complete Baire
structure if the two following (first-order) conditions hold:

1. Every definable subset of K has a supremum in K U {£o0}.
2. K, as a set, is not definably meager, i.e. K is not the union of a definable
increasing family of nowhere dense sets.

We refer the reader to [3, Sects. 1.2 and 2.1] for the precise definitions and
preliminary results about definably complete Baire structures.” Every expansion of
the real field and every o-minimal structure are definably complete and Baire; for the
(easy) proof of the latter fact, together with more examples of definably complete
Baire structure, see [3, Sect. 2.3]. The reader who is mostly interested in expansion
of R can recognize in the following results some “definable” analogues of well-
known topological properties of R.

Definition 2.2. Let X C K". X isin F, (or, “X is an F,-set”) if X is the union of
a definable increasing family of closed subsets of K", indexed by K.

The following three results, corresponding to [3, Lemmas 3.5, 5.4 and Corol-
lary 3.8], will be used in the following sections.

Proposition 2.3 (Baire’s category theorem). Assume that D C K" is in F,. Then,
D is definably meager iff D = 0.

Proposition 2.4 (Kuratowski-Ulam’s theorem). Let D be an F, subset of K" 1";
for every x € K", let D, = {y € K" : (x,y) € D} be the fiber of D over x
and T (D) := {x € K" : Dy is definably meager}. Then, D is definably meager iff
K™\ T(D) is definably meager.

Proposition 2.5. Let C € K" be in F,, and f : C — K% be definable and
continuous. Assume that for every x € C there exists V., C C neighbourhood of x,
such that f(C N Vx) is definably meager. Then, f(C) is definably meager.

Finally, recall the following definitions.

Definition 2.6. X < K" is definably compact (d-compact for short) if it is
definable, closed in K", and bounded.

Definition 2.7. A definable set X C K" is definably connected if it can not be
expressed as a union of two definable non-empty disjoint open sets. A subset C € X
is a definably connected component of X if it is a maximal definably connected
subset of X .

Every definable and connected set is definably connected. If K does not ex-
pand R, then it is totally disconnected; hence, every infinite subset (definable or not)

2 After this article was submitted, P. Hieronymi proved in [5] that, for expansions of ordered fields,
Condition (1) implies Condition (2): that is, every definably complete structure expanding a field
is also definably Baire.
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of K" is not connected. An example of an expansion K of the real field, such that K
defines a set which is definably connected but not connected, is given in [2]. On the
other hand, if K is an o-minimal expansion of R and X is definable in K, then X is
connected iff it is definably connected.

Definition 2.8. A n-dimensional definable embedded CV K-manifold V € K¢
(which we will simply call n-dimensional K-manifold) is a definable subset V/
of K“, such that for every x € V there exists a definable neighbourhood U,
of x (in K%), and a definable CV diffeomorphism f, : U, ~ K¢, such that
UcnNV = f7HK" x {0}).

3 The Generalized Theorem of the Complement

Definition 3.1 (Weak structure). Let K be definably complete and Baire. A
collection S of K-definable subsets of |,y K" is a weak structure (over K)
if S contains all zero-sets of polynomials and is closed under finite intersection,
Cartesian product and permutation of the variables. S is semi-closed if every set
in S is a projection of some closed set in S. S is o-minimal if for every 4 € S
there exists a natural number N such that, for every K-affine set L, the number of
definably connected componentsof A N L is at most N. S is determined by its
smooth functions (DSF) if every set in S is a projection of the zero-set of some C*°
function whose graph lies in S.

In [13] the following Theorem of the Complement is proved:

Theorem 3.2. If K expands the real field and S is an o-minimal weak structure
determined by its smooth functions, then S generates an o-minimal (first-order)
structure.

In [6] it is proved that this result still holds if one weakens the DSF assumption
and allows every set in S to be, for every N € N, a projection of the zero-set of
some C" function (with a further uniformity condition). Here we weaken further
the assumptions and allow S to be determined, not only by its smooth or its CV
functions, but by its C¥ admissible correspondences (roughly, partial multi-valued
functions with finitely many values at each point). Moreover, we do not restrict
ourselves to working with the real numbers, but we allow S to be a collection of
sets definable in a definably complete Baire structure.

To be able to state exactly the result we want to prove, we need to give some
definitions.

Definition 3.3 (Charbonnel closure)~. Let § be an o-minimal weak structure
(over K). The Charbonnel closure S = (S,:n € NT) is obtained from S by
closing under the following Charbonnel operations: finite union, intersection with
K-affine sets, projection and topological closure.
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Definition 3.4 (Admissible correspondence). A correspondence f : K" ~» K”
is a K-definable partial function from K” to the set of finite subsets of K”. We
denote by F' C K" x K™ the graph of f, i.e. the set F = {(¥,7) € K" x K" :
f(xX)#OAYy e f(X)}.Givenl < N € N, aC" admissible correspondence is a
correspondence f : K" ~» K™, satisfying the following conditions.

1. F is K-definable and has a finite number of definably connected components;

2. FisaC" closed embedded submanifold of K"1” of dimension 7;

3. Forevery X € F,the normal space NI to I at X is transversal to the coordinate
space K"; equivalently, the restriction to F of the projection map 17 is a local
diffeomorphism between F and K”.

Definition 3.5. Let f : K" ~» K” be a C" admissible correspondence. For every
C C K™, denote by f~!(C) the preimage of C under f, thatis f~!(C) := {x €
K" : 3y € C (X,y) € F}. Define V(f) := f~'({0}). Define the domain of f
to be dom(f) := f~1(K™). For every A C K", denote by f(A4) := {7 € K" :
dx € A (x,y) € F}, the image of A under f. For every X € K", we define
f@) = F (7)),

Example 3.6. 1. Every C" function is an admissible correspondence.

2. The correspondence +/x is not admissible.

3. Define g : R ~ R to be the correspondence with graph G := {(x,y) e R: y =
x2Vy = x?—1}. g is C*® admissible, it is definable in the real field, but it is not
a partial function.

4. Define g : R ~ R, g(x) := 1/x, defined for x # 0. g is an admissible C*°
partial function. The domain of g is not closed, and therefore it is not true that
the preimage of a closed set is closed.

Definition 3.7. Let S be a semi-closed o-minimal weak structure. S is determined
by its C N admissible correspondences (DACN )forall N € Nif foreach 4 € S,,,
there exist m > n and r > 1, such that, for each N, there exists a set Sy € K™,
which is a finite union of sets, each of which is an intersection of at most r sets of
the form V(fy.), where each fy; : K" ~ K is an admissible CN correspondence
inS,and A = I17(Sw).

Theorem 3.8 (Generalized Theorem of the Complement). Suppose that S is a
semi-closed o-minimal weak structure over K, which is DACY for all N. Then the
Charbonnel closure S of S is an g-minimal weak structure over K, which is closed
under complementation. Hence, S is an o-minimal first-order structure.

Remark 3.9. In Definition 3.7, note that:

1. Each set Sy is of the form Sy = U05j<kN Sy, (for some natural number k),
where each set Sy, ; is of the form

Svi= ) V(fwji-

o<i<r
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2. m and r do not depend on N; however, the number of sets forming the union
(and therefore the total number of correspondences fi; ;) might depend on N.
This property will be crucial in the proof of Proposition 5.9, which is an essential
step in the proof of Theorem 5.5. _

3. We only ask the correspondences fy,; ; to bein &, notin S, and only that they are
admissible correspondences, instead of total functions. Thus, the condition above
is weaker than the one formulated in [6], even for K an expansion of the real field.
Moreover, S satisfying DACY for all N does not imply that S is semi-closed.

4. By Example 3.6(1), DSF implies DACY for all N.

5. Notice that if f, g are functions, then V(f) N V(g) = V(f* + g?) and
V(f)UV(g) = V(fg); hence if each fi; ; is a (total single-valued) function,
we can replace the functions fy;; by a single function fy, obtained from
the fy,;; using products and sums of squares; this is the reason why in [6]
only one function fy is used (and in [13] one C* function f). However,
admissible correspondences do not form a ring (in particular, the square of
an admissible correspondence is not admissible in general), so in our case we
can not reduce to a single correspondence.

6. Let S be a semi-closed o-minimal weak structure satisfying DACY for all N.
Then it is harmless to assume every set in S to be closed: let S’ is the collection
of all closed sets in S; then, &’ is clearly an o-minimal weak structure; moreover
the Charbonnel closures of S and S’ coincide (since S is contained in the closure
of S’ under projection); it follows that S’ satisfies DACY for all N.

4 Admissible Correspondences

Before proving the Theorem 3.8 we need to give some preliminary results about
admissible correspondences.

Proviso. For the rest of this section, f : K" ~> K" is a CV admissible correspon-
dence, with graph F.

Lemmad4.1. 1. For every C C K" d-compact, f~'(C) is closed (in K").
In particular, V(f) is closed.

2. For every U C K™ open and K-definable, f~'(U) is open. In particular,
dom( f) is open.

Proof. Let x € f~1(C). We have to prove that x € f7YC). Let D :=
(F N (K" x C)) . Notice that D € C = C, and therefore D = D N C.

Since x € f~!(C), we have that for every U neighbourhood of x there exists
y € U, such that f(y) N C # @, i.e. the section (F N (K" x C))y is non-
empty. Since C is d-compact, D is non-empty. Since F' and C are closed, we have
FNEKx C)=FN(K"xC), and therefore

F,NC=(FNEK"xC)), =D.
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Since D # @, we have that x € f~!(C). O

Remark 4.2. 1f F is the graph of an admissible C" correspondence, then every
definably connected component of F is the graph of an admissible CV cor-
respondence. Conversely, if F; and F, are the graphs of two admissible CV
correspondences and F; and F, are disjoint, then F; U F, is the graph of an
admissible CV correspondence.

Lemma 4.3. Ler g : K" — K" be a K-definable partial function, with definably
connected domain. Then, g is admissible CV iff:

1. The domain of g is an open set U;
2. g:U > K"isaCV function;
3. Foreveryx € bd(U),

lim [g(7)| = +oo.
y—>x,
Jyeu
We conjecture that, if F' is definably connected and dom( ) = K", then, f is a
(total and single-valued) function.

The reader can check that the following properties of admissible correspondences
hold.

Lemma 4.4.

o Let¢ : K" — K" be a CN K-definable diffeomorphism. Then, ¢ o f : K" ~> K"
is CN and admissible.

o Let 0 : K" — K" be a CN K-definable diffeomorphism. Then, f o 0 : K" ~> K"
is CN and admissible.

o Let 0 : K" — K" be a CN K-definable function. If f o 0 : K" ~ K™ has
a finite number of definably connected components, then it is a CV admissible
correspondence.

Notice that in the above lemma we can not drop the hypothesis that ¢ is a
diffeomorphism, and replace it with the hypothesis that it is a CV function, and
similarly we cannot drop the additional conditions on 6.

o Infact,if m = I,n > 1, and ¢(x) = x2, it might happen that the graph of ¢ o f
is not a submanifold (because it “self-intersects”). For example, let g be defined
as in Example 3.6(3). Then the graph of g2 is not a submanifold.

» For instance, let K be an expansion of R where the sine function is defined; let
f(x):=1/x,and O(¢) := sint. Then, f o 6 = 1/ sin(¢) is not admissible.

Lemma 4.5 (Difference). Let m = 1, and define g : K't!' ~ K as g(x,y) :=
y — f(X). That is, the graph of g is G := {(X, y,z) € K""2: (X,z—y) € F}. Then,
g is CV and admissible.

Lemma 4.6 (Extension). Given g : K" — K a (total and single-valued) C" and
K-definable function, define the correspondence h := ( f, g) : K" ~> K" T that is,
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the graph of his H := {(X,7,z) € K"t . (X,3) € F & z = g(X)}. Then, h is
CN and admissible.

Definition 4.7 (Differential). For every (X,y) € F, it makes sense to define
Df(X;7y), the differential of f at the point (', ) (the notational difference with the
usual case when f is a function is that here we have to specify at which y € f(x)
we compute Df’). As usual, we say that (¥,V) is a regular point for f if Df(X;V)
has maximal rank, otherwise (X, y) is singular. Similarly, ¥ € K" is a regular value
if, for every X € f~!(y), (X,7) is a regular point; otherwise, ¥ is a singular value.

Moreover, we have a correspondence on K", which assign to every point X the
values of Df(X;y), as y varies in f(x). This correspondence in general is not
admissible, even if N > 2, because its graph might not be a manifold. The following
lemma addresses this point.

Lemma 4.8. Assume that N > 2.

e Let D f be the correspondence ( f, Df ) on K. That is, the graph of DfisH :=
{(X,7,2): (X.y) € F &7 = Df(X:¥)}. Then, D f is CN™! and admissible.
o Assume thatn = m + k, withk > 1. Fix 1 < iy < --- < iy < n. Then, the

Correspondence
2
£, det A fi)
a(x,-l,...,x,-k)

The two previous lemmas are particular cases of the following:

is admissible.

Lemma 4.9 (Composition). Let g : F — K* be a CN K-definable function. Let
h:= (f. g), thatis, the graphofhis H .= {(x,7,2) : X,y) € F &z = g(x,7)}.
Then, h is CV and admissible.

Proof. Since g is continuous, H is closed in F' x K*. Since F is closed in K"+,
H is closed in K#+m+k, O

Lemma 4.10 (Product). Fori = 1,2, let f; : K" ~ K™ be an admissible C"
correspondence, with graph F;. The, the correspondence fi x f» : K"+ ~,
Km+m2 with graph Fy x F», is an admissible CN correspondence.

Definition 4.11. Given a correspondence g : K" ~» K™, we denote by |g| the
correspondence |g| : K" ~ K, with graph |G| := {(x,¢) : 3y € K" (X,y) €
F & [y| =t}

Definition 4.12. Given C € K" and g : K" ~>K correspondence with graph G, and
X € C, we say that g reaches the minimum on C at X, if there exists y € g(X) such
that, for every (X', y’) € G, if X’ € C, then y < y’; moreover, y is the minimum of
gonC.

We also define infzec g(¥) := infg(C) € KU {£o0}.

Notice that infyec g(¥) = +oo iff g(C) = 0.
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Lemma 4.13. Let f : K" ~ K be admissible, and C C K" be K-definable,
d-compact and such that f(C) is non-empty. Then,

1. | f| achieves its minimum (but not necessarily its maximum) on C;
2. Ifinfyec f(X) # —oo, then f achieves its minimum on C (and similarly for the
maximum,).

Proof. The graph |F| of | f]is closed in C X [0, +00), and C is d-compact; hence,
(| F|) is closed in [0, +00), where 7w : C x [0, +00) — [0, +00) is the projection
onto the second coordinate. a

5 The Theorem of the Boundary

In this section we prove Theorem 3.8. The proof is shaped on Wilkie’s original
proof, which proceeds as follows: let S be a semi-closed o-minimal weak structure
which is DSE. Then S is an o-minimal weak structure and it is closed under
complementation (hence, it coincides with the structure generated by S). The proof
of the closure under complementation uses measure theoretic arguments (which here
we replace with definable Baire category arguments): mainly, Fubini’s Theorem and
a strong version of Sard’s Lemma which holds for C! functions with graph in S.
With these tools the author shows how to approximate the boundary of a set in
S with smooth manifolds also in S (this is where the DSF condition is used) and
concludes by a cell-decomposition argument.

The first step is to establish the following.

Theorem 5.1. If S is a semi-closed o-minimal weak structure, then its Charbonnel
closure S is a semi-closed o-minimal weak structure.

Notice that if S is as in the above theorem and X € S, then X has a finite number
of definably connected components, but we do not know whether such components
arein S.

The proof of this statement can be found in [8, Sect. 1].

It does not use specific properties of R, and can be reformulated in any definably
complete structure (the Baire property is not needed here).

Proviso 5.2. We fix for the rest of the section a semi-closed o-minimal weak
structure S over a definably complete Baire structure K which is DACY for all N.

The next two results do not need the DACY assumption.

Lemma5.3. Let A € S. Then A is definably meager < A has empty interior < A
is nowhere dense.

Proof. We first observe that, S being semi-closed, every set in S is an Fo-
set. In particular, by Proposition 2.3, the first equivalence is proved. The other
equivalence can be proved as in [8, Lemma 2.7], where we conclude by using
Proposition 2.4 and the previous observation, instead of Fubini’s Theorem. |
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Theorem 5.4 (Strong Sard’s Lemma). Suppose that m > 1 and f : K" ~ K"
isaC' admissible correspondence whose graph F is in S. Then the set of singular
values of f is in S and has empty interior (hence, it is definably meager in K™).

Proof. If f is a function, then we can apply, mutatis mutandis, the proof of Wilkie
[13, Lemma 2.7]. Otherwise, by the Implicit Function Theorem and the definition
of F, every point (x¥,y) € F has a K-definable neighbourhood U = U, x U, C
K" x K™ such that U N F is the graph of a C! function fy : Uj — U,. By reducing
U, if necessary, we can ensure that U; and U, are in S (in fact, we can assume they
are boxes), so that fy € S. We can apply the analogue statement for functions to fis
and obtain that the set of its singular values is definably meager. Now, since the set
X ¢ of the singular values of f is given by | J,; = ,, we can apply Proposition 2.5
to the projection 77 : K" x K™ — K" onto the second factor and obtain that X s is
definably meager. It is clear that Xy € S. a

The next, and most difficult, step is to prove the following Theorem of the
Boundary, corresponding to [13, Theorem 3.1]. Here it will be crucial that S satisfies
DACY forall N.

Theosem 5.5 (Boundary). Let A € gn be closed. Then there exists a closed set
B € S, such that B has empty interior and bd(A) € B.

Notice that, even without the DACY hypothesis, the following is true: if A is a
closed set in S, then bd(A4) has empty interior. The missing information is whether
bd(A4) isin S or not.

We will follow the outline of Wilkie [13, Sect. 3], but we will use [1] for some
definitions and proofs. The two approaches are equivalent, but we find the latter
easier to read.

Definition 5.6.
e Ky:={xeK:x>0}

¢ Given X € K", let [X] := max{|xi|,....|xs|}, and |X]| := {/x7 + -+ x2.

Notice that X +> ||X||? is a C* function, and so is the function X ﬁ

e Given A C K" and ¢ € K., define the e-neighborhood A®° of A as the set
{x eK"|dye Ad(x,y) < e}

e (The quantifier “for all sufficiently small”’) Given a formula ¢, we write V*e¢ as
a shorthand for (3u) (Ve < )¢, where u, ¢ are always assumed to range in K.
Ife = (e1,...,&,), then V'¢ is an abbreviation for V’¢g; ... Ve,.

e (Sections) Given § € K" x K’i and given € € Ki, we define Sz as the set
{x e K"| (x,¢) € S}.

e LetACK" S CK"x Ki. S approximates A from below (S < A) if

VieoVier ... Vier (S,



230 A. Fornasiero and T. Servi

e LetA C K" S C K" x K’i. S approximates A from above on bounded sets
(S = A)if

VieoVler ... V0er(A N B(0,1/€0) € (Sy...e0)™)-

Definition 5.7. Let k and N > 1 be natural numbers. An :S:(N )-constituent of
complexity k is a subset S € K" x Kﬁ_ of the form

{8 eK' xKt : Iy eK! f(x,7) 28

where f : K" x K*~! ~> K* is admissible, C" and in S. An S(N)-set of complexity
k is a finite union of S(N )-constituents of complexity k.

In the definition of g’(N )-constituents of complexity k, we can relax somehow
the condition on the dimension of the domain of the correspondence.

Remark 5.8. Let 0 < d < k,and f : K" x K ~ K* be an admissible CV
correspondence in S. Let S(f) := {(¥.7) € K" x Kt 13y e KY f(x.,7) > &)
Then, S(f) is an g(N )-constituent of complexity k. In fact, S(f) is of the form
{(x,5) € K" xKX @ 32 € K" 1f(X,2) 3 &), where f : K" x KF1 ~ KK is
an admissible C N correspondence in S:in particular, S(f) is an g(N )-constituent.
The graph of f is

F:={®xzw eK'xK-'xKF: (X, 21,....24.W) € F}.

We will show that, to obtain Theorem 5.5, it is enough to prove the following:

Proposition 5.9. Foreachn € N, A € Sy, and each N > 1, the following holds:
(®y): There exist k > 1 (the S(N)-complexity of A) and a S(N)-set S of
complexity k, such that S both approximates bd(A) from above on bounded sets
and approximates A from below.

A set S as in the above proposition is called an :S:(N )-approximant of A.
The following statement is a remark at the end of Wilkie [13, Sect. 4].

Lemma 5.10. Given N > 1, every g(N )-set has empty interior.

Proof. Tt suffices to show that each §(N )-constituent S has empty interior. S is of
the form Im(g) N (K" x KX ), where

g: Kn+k—l ~ Kn+k
x.y) ~ & f(x.)),

for some f : K"%=1 ~» KK admissible, CV and in S. Since g is in S, Theorem 5.4
implies that the image of g has empty interior. O
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The proof of the following statement can be obtained from the proof of Wilkie
[13, Lemma 3.3] by using Proposition 2.3 and Lemma 5.3 instead of Fubini’s
Theorem and [13, Theorem 2.1].

Lemma 5.11. Let § C€ K" x Kﬁ_ be in g,,+k. Denote by T the section T = §5 =
{(x e K"| (x,0) € S} € S,.. If S has empty interior, then T also has empty interior.
A < K" (not necessarily definable) such that S > A. Then, A € T. Let A €

S, S € 8n+k Suppose that S has empty interior and is an S(N )-approximant
for A. Then so does the section So ={xeK'(x,00e S} e S,

Theorem 5.5 follows immediately from the proposition and the two previous
lemmas. In fact, let A € S, be closed. By Proposition 5.9, there exists S € S,H_k
such that S > bd(A4) and S is an 8(1) set. By Lemma 5.10, S has empty interior,
and therefore, by Lemma 5.11, B := S, has also empty interior, is in Sy, and
bd(A) € B. Notice that in proving Theorem 5.5 we did not use the full power of the
Proposition 5.9, but only the case N = 1 and the fact that S approximates A from
above on bounded sets; however, the proof of Proposition 5.9 will be by induction,
and we need the stronger form as inductive hypothesis.

The remainder of this section is devoted to the proof of Proposition 5.9. The
proof of Proposition 5.9 follows the pattern of Wilkie [13, Statement 3.6]; however,
we need to prove some more intermediate steps, due to the fact that we are dealing
with several, not just one, correspondences in Definition 3.7.

Lemma 5.12 (Union). Let N, r, n= 1, Ay,..., A, be subsets of K", and, fori =
1,....r, let S; C K" XKk be an S(N) approxzmam‘forA Then, A :=\_J; A; has

an S (N)-approximant.

Proof. We may suppose that all the S; have the same complexity k; then, U; Siis
an S(N)-approximant of A. |

Lemma 5.13. Let f : K" ~> K be an admissible CV correspondence, and define
S :={(,t) e K" xK; : | f(X)| > t}. Then S approximates bd[V ( f)] from above
on bounded sets.

Proof. Fix ¢ > 0,and let V := V(f). Let X := bd(V) N B(0;1/¢), and Y¥; :=
X\ (|f|_1 (t)s). Note that X and Y; are d-compact. Let

P:={teK:t>0&Y,; # 0@}.

Assume for contradiction that the conclusion is false. This implies that P has
arbitrarily small elements, if we chose € small enough. Let X € acc,_, o+ ¥; (X exists,
because each Y, is contained in the d-compact set X), and U := B(X;¢/2). Note
that V is closed (because f is admissible), and that x € bd(V).

By shrinking ¢ if necessary, we may assume that there exists § > 0, such that
FN(Ux(=8,8))is the graph of aC" function g : U — (=8, §), such that g(¥) =0.
Since X € bd(V), |g| assumes a positive value y on U. Since U is definably
connected and g is continuous, |g| assumes all values in the interval [0, y] in U.
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Choose tp € P suchthatY; NU # @,and #y < y. Sincety < y,UN lg|™" (t0) # 9:
therefore, U C | g|_1 (to)?, and thus Y;,, N U = @, a contradiction. a

Lemma 5.14 (Zero-set of correspondences). If f : K" ~ K is admissible, cN
and in S, then its zero set V(f) has an S(N) -approximant S € 5n+2

Proof. Define the following two sets S and S_:
Sy :={(X.e1.82) € K" x K2 : 1 4+ ||X]|> < 1/e1 & f(X) > &2},

and S := Sy U S_. By Lemma 4.6, (£ f, ¢) are CN and admissible, where ¢ :
K" > K, (%.y) = (1+ %[>+ y»)~" (and in S). Thus, S is an S(N)-set.

We prove that S approximates V' ( ) from below, namely V°eoV*e1V¥er S; 6, ©
V(f)o.Let K :={x € K" : 1 + ||X||> < 1/e1}, and H := K \ V(f)®. Note that
K and H are d-compact, and S;, ., € K.

Claim. | f| has a positive minimum on H, if f(H) is non-empty.

If not, then, by Lemma 4.13, there exists X € H such that | f(X)| > 0; however,
this means that X € V(f) N H, contradicting the definition of H.

Thus, if we choose &, smaller than the minimum of | | on H (or arbitrarily if H
is empty), then S;, ., N H = @, and therefore S;, ., € K N V(f)® C V(f)®.

We prove that S’ approximates bd(V( f )) from above on bounded sets. Fix gy and
choose ¢; so that the set K considered above contains B(0, 1/&¢). By Lemma 5.13,
for all sufficiently small &,, setting g = | f|, we have g7 !(g5)® 2 bd(V(f)) N
B(0,1/&9). Thus bd(V(f)) N B(0,1/gp) < St° |

£1.62°"

The most difficult step of the proof of Proposition 5.9 concerns projections.
We will need some preliminary definitions and lemmas.

Definition 5.15. If f : K"*¥ ~» K¥ is an admissible correspondence, @ € K¥, and
g0 > 0, then we denote by V'[gg] the go-critical part of V' = V(f —a), i.e. the set of
points X in £ ~!(@), such that one of the following conditions is satisfied for some
I<ii<--<ix<n+k:

e Either 1 + [|[(xp+1, - - - Xutk)|I> = 1/e0,
2
e Or det(—a(x """ (& a))” = eo.

Proposition 5.16. Lern.k > 1, f = (fi...., fi) : K"t* — K be an admissible
C' correspondence in S, and V = V( f). Suppose further that 0 is a regular value
of f, and that U is an open ball in K" with the property that the set bd(zV) N U is
non-empty and bounded, where w := HZH‘ . Then for every sufficiently small ¢ > 0,
U intersects w(V[g]).

Proof. The proof proceeds as in the original [13, Corollary 2.9]. |

Lemma 5.17. Let X C K" be d-compact. Fix0 < ¢ € K, and N C K K-definable
and cofinal. Let (A(t));en be a definable family of subsets of K". The following are
equivalent
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1. Vx € X Vt € N large enough X N B(x;e) C A(t);
2. Vt € N large enough X C A(t).

Proof. That (2) implies (1) is clear.

Conversely, assume that (1) is true. Suppose, for contradiction, that (2) is false.
Let D(t) := X \ A(t). Let N’ := {t € N : D(t) # @}. Since (2) is false, N’
is cofinal in N. Let C be the set of accumulation points of (D(t)) 1> toos that is,
x e Ciff (Vre K")(VeeKy) Ay >r)y € Nandd(D(y), x) < e.

It is easy to see that C # @; let x € C. By (1), if ¢ is large enough, then X N
B(x;&) C A(t). Choose t € N’ such that X N B(x;¢e) € A(t) and d(x, D(t)) <e.
Let y € D(¢) such that d(x,y) < e. Since y € D(t), we have y ¢ A(t). Since
y € X N B(x;¢), we have y € A(t), a contradiction. O

Lemma 5.18 (Projection). Let N > 1. IfA C K"+ has an g(N+l)-appr0ximant
S c Kt x Kﬁ_, then there is an S(N)-approximant S’ C K" x Kﬁ_"'l for
m+t 4 C K.

The drop in regularity in the above lemma from N 4 1 to N is due to the fact that
the definition of S’ involves the derivatives of the functions defining S

Proof. We will give some of the details of the case when S has only one :S:(N )-
constituent:

S={xe ek xK": 3y e K" f(x,7) 25},

were f : K" x K1 ~ KK is some admissible CV*+! correspondence. Define
= (e1,...,er). Welet S’ € K" x KF*! to be the set whose sections SE,ssHl c K*
are given by:

Sty =T (Seleri]) = T (UG 7) € KIXKET: f(x, ) 3 8 er1]).

By Lemmas 4.8 and 4.6, S’ is an g(N )-set. Let us see that S’ approximates

I1"+1 A from below. From the definition of S’ it follows that SE/,SkJrl C nrtlse

On the other hand since S approximates A from below, given gy > 0, we have V'

Sz € (A). It follows that Ve, > 0V*Z we have Steess € LS C (T2 A)%.

It remains to prove that S” approximates bd(IT1?+!4) from above on bounded
sets.

We can use [13, Lemma 3.4] to prove that V¢, € is a regular value of f.

Fix g9 > 0. Let X := bd(IT2T14) N B(0; 1/¢o); note that X is d-compact. Let
X € X, and U be the open ball of center X and radius &.

Then U intersects T1”+! bd(4), and since S approximates bd(A4) from above
on bounded sets, it easily follows that V°¢ U intersects HZ“S;. On the other
hand since S approximates A from below and U & [12+14, it is easy to see that
U is not included in HZ“S;, and therefore must intersect its frontier. Thus by
Proposition 5.16, V&V*e; 1 U intersects 12! Sg[e 1] = S, . and hence
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we see that Ve ... Vi U C (5,
that V¥e; ... Vi1 X C (S/gl

,,,,, er41) . Using Lemma 5.17, we deduce
ex1) s which is the conclusion. O

Lemma 5.19 (Product). Letny,ny ki ks, N > 1. Fori = 1,2, let A; € S,,, such
that A; has empty interior (in K"'). Assume that each A; has an S(N)-approximant
ST C K" x Kﬁi. Then, Ay x Ay has an S(N)-approximant S C K" x Kﬁ_‘—"kz.
Moreover, up to permutation of variables, S = S| x S».

Proof. W.l.o.g., each S’ has only one :S:(N)-constituent, that is, it is of the form
ST = {(x,5) e K" x KN : 3y € Kb~ f,(x,7) > &}, for some CV admissible
correspondence f; : K" x KK=! ~» Kk i = 1,2. Define

= = = = k k.
S = {(X1,%2,%1,8) € K" x K™ x K x K :

Iy, e KN 3y, e KO £1(71,7) 381 & f(F2.T,) 3 B}

By Lemma 4.10 and Remark 5.8, S is an :S:(N)-set in §n1+nz+k1 +k,- Since each 4;
has empty interior, also the A; have empty interiors; therefore, bd(4;) = A;, and
we have A4; < S?, and S? < A;. The reader can check that we can conclude that
S approximates A; x A,. a

Lemma 5.20 (Linear intersection). Given N,n,k > 1,let A € :§n have an :§(N )-
approximant S C K" x Kﬁ_, and suppose Y is an (n — 1)-dimensional K-affine

subset of K", suppose further that ANY = @. Then, there is an g(N )-approximant
S'CK'xKi P for ANY.
Proof. We will use the following easy observation: let A, B € K" be closed sets,
and let K € K" be d-compact. Then V¥e,V*e; A2 N B2 N K C (AN B)°'.

By assumption, A N'Y C bd(A4), hence we only need to worry about a subset
of bd(A). Suppose Y is the zero-set of a linear polynomial / with coefficients in K.

Sepee = L £ e e UL U T A ey, )

where f;: K" — KK is a C functionin S.
Define S’ C K"T#*2 as the set whose sections S 1oirs, S K have the form:

S! =S,

E1yees€k42

s N Yo N K.,

where K, = {Xx € K"| |1, x1,....x,[> < 1/e1} = {] Ixuqre 1+ X0, x2 +
x2, )7 = e} and Y, = {¥| R I(x1,....x0)* + X2, = €2} By
Lemma 4.6 the set S’ is indeed an S(N)-set.

Let us prove that S’ approximates A N Y from below. By the above observation,

Ve Vie, A2 N B0;eT )N Y,y C(ANY)T,
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Since S approximates A from below we have:
VieoVier ... V38k+2 S’ - Sg:;’“.,

From the definition it follows that S ;l C K., NY,,, hence combining all these
equations we get

VSE() > OVS£1 . Vs£k+2 S/

Elsen€k 42

C(ANY)eo,

It remains to prove that S " approximates A N Y from above on bounded sets.
Since S approximates A from above on bounded sets we have:
Viey... ¥ergn bd(A) N B0;e;") C Se2. .
Since V¥eoV¥e; B(O0, 82_1) C K., and by our hypothesis bd(4) N Y = ANY, we
obtain, using again the above observation:

VoegVier .. Vs ANY C (S, NY., N K, )°.

~~~~~ L2

This concludes the proof of the lemma. |

Lemma 5.21 (Small intersection). Let n, ki, ko, N > 1; define M := N + n.
Fori = 1,2, let A; be closed sets in S,,, Assume that each A; has an S(M)
approximant S' C K" x KKi . Assume moreover that each A; has empty interior.

Then, A :== A N A, has an g(N)-approximant S C K" x Ki’+k‘+k2.

Proof. A = N> ((41 x A2) N A), where A is the diagonal of K" x K". By
Lemma 5.19, A; x A, has an E(M)-approximant in Syp4k,+k,- By hypothesis,
Ay x Az has empty interior, hence we can apply Lemma 5.20 n times, and therefore
(A x A2)~ﬂ A has an S(M )-approximant in Sz 4k, +k,+2n- Finally, by Lemma 5.18,
A has an S(M — n)-approximant in Su 4k, +k,- |

Lemma 5.22. Let f : K" ~> K be an admissible CN correspondence in S. Let
A:=V(f)x{0} CK"T!. Then, A has a g(N)-approximant in Sy+4.

Proof. Define S := {(¥,z,e1,62,83) € K" x K3, : 1 + [|[X]? < 1/e1 & |2 <
&, & f(X)+z > e3}. Notice that S is an g(N ) set (with only one constituent): in fact,
S={F.zenene)  m I/U+FP)+yf =1 &Z+y; =2 & f(X)+2
€3 }. Notice also that A has empty interior. We claim that A < S and S < A, proving
the conclusion. For fixed t > 0, let K(¢) ;== {x e K" : 1 + ||X||> < 1/¢}.

Claim 1. S < A,i.e. Y'gyV*’e Sz C A®, where ¢ := (g1, &2, &3).

Let (X,z) € Ss. Define I := [—./e2, /&2] and H := K(g1) \ V(f)®/* I, H and
K (e1) are d-compact, and Sz C K(g) x I.
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We claim that | f| has a positive minimum on H, if f(H) is non-empty.
Otherwise, by Lemma 4.13, there exists X € H such that f(X) > 0, contradicting
the definition of H. Let § > 0 be such minimum (or § = 1if f(H) is empty). If we
choose €3 smaller than §, then X € K(g;) \ H, and therefore X € V(f)%/*. Now
choose &, smaller than gy2/4, and obtain (X,z) € V(f)%/* x [—&o/4.80/4] € A®.

Claim?2. A < S,ie. ¥eoV's AN B(0;1/ey) C (S5).

Fix g9 > 0, and choose 1 > §; > 0 such that B(0; 1/&9) € K(8;). Let §; := &¢/2.
For any &; such that 0 < &; < 85, let 83 := &;,/2. Finally, choose any &3 such that
0 <e3 <83 Lety :=(X,z2) € AN B(0;1/g9). We prove that, for gy and & chosen
as above, y € (Sg)®. First, notice z = 0 and x € V(f). Letw := (X, &3). Notice
that d(y,w) = &3 < &9, and that w € Sz, and therefore y € (S7)%. Hence,

Veodd1Ver < 8138,Ver < 6,353Ves < 63 (A n B(O, 1/80) - (Sg)ao). O

Proof (Proof of Proposition 5.9). Since every set in S can be obtained from a finite
number of sets in S by performing a finite sequence of Charbonnel operations, we
can prove the statement inductively.

First, we prove the basic case, i.e. when 4 € S,. Fix N > 1. Let M be large
enough (how large will be clear from the rest of the proof).

By hypothesis, there exist m > n and r > 1, such that A = I1}(Sy), for some
Sy € K™ of the form Sy, = U0§j<kM Su,; where each set Sy ; is of the form

Suj= ) V(farip).

0<i<r

and each fy; ; : K" ~ Kisa CM admissible correspondence in S.

Let A; := II(Sm;). If we prove that each A; satisfies (®y), then, by
Lemma 5.12, A also satisfies (®y). Therefore, w.lo.g., kyy = 1, ie. Sy =
ﬂ05,<,, Vi, where Vi = V(fu.) (where each fy; : K" ~ Kis a CY

admissible correspondence in g). By Lemma 5.14, each V), satisfies (Pyr). We
need to prove that S, satisfies (® /) (for a suitable M”). If all the V),; were with
empty interior, we could apply Lemma 5.21. Otherwise, for every i, define Wy :=
Vi x {0} c K"+ By Lemma 5.22, each Wy, has an S(M) -approximant in
Sn+4; moreover, each WM, has empty interior, and therefore, by Lemma 5.21,
Wy = (); Wa,; has an S(M (r— 1)(m + 1))-approximant in Sgz.or —2)ym44.27—5.
Since Sy = T7*1(Wy), Sy has an S(M — rm + m — r)-approximant in
8327 —2)m+427—s. Finally, by Lemma 5.18, A has an S (M —rm+n—r)-approximant
in Sgor—2ymya2r—5.

The basic case when A € S is the only place where we use the DACY hypothesis.
Notice that we have to take

M>N+rm—n+r. 6.1
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Now we can explain the reason why we had to take m and r independent from N in
Definition 3.7: in fact, if instead m = m(N) and r = r(N) depended on N, then in
(5.1) we would have to take r = r(M) and m = m(M); but we would not be able
to do it, since we don’t know the value of M yet.

To prove the inductive step, suppose 4 € S,,.

If A is described as A U Ay, then an S(N )-approximant for 4 is given by the
union of the S(N)-approximants for A} and A,, respectively. The reason why this
arguments works is that topological closure commutes with union. The same is not
true with intersection instead of union, and this is the reason why we will need a
more complicated argument for the intersection.

If A is described as HZH’ [A1], then an iterated use of Lemma 5.20 tells us what
to do. _

If A is described as B, then it is trivial since by definition an S(N)-approximant
for B is an S(N)-approximant for A.

So, the only case which requires more care is the case when A is described as
A1 N L, where L is K-affine. We need to analyze all subcases.

If A; is described as a set in S, then A too can be described as a set in S and
we already know how to deal with these sets. If 4, is obtained as a union, then by
the distributivity laws for U, N, by inductive hypothesis and by an application of the
argument above on how to approximate unions, we know how to approximate A. If
A; = I'"[U], then we use the equation

N"U]N L =T7[(U x L) N (A x R™™)],

where A C K?" is the diagonal, and we conclude again by an application of
Lemma 5.18 and by inductive hypothesis. If A; is obtained by by intersection with
a K-affine set, then we conclude by the inductive hypothesis (as the intersection of
two K-affine sets is K-affine). The only difficult case is when A is described as U.
Let L=Y,N...NY,, where Y; is a K-affine set of codimension 1. Notice that

Uny=U0nNnruUnyfnyyu@ny, Ny,

where, Y] is the zero set of a linear polynomial / over K, Y1+ ={x e K" I(x) > 0},
and Y| is defined similarly by / < 0.

Now, Y; does not meet the interior of U N YljE (since it does not meet the interior

of Yli), hence to approximate the sets U N YljE N Y; we can use Lemma 5.20;
while by inductive hypothesis we can get an approximant for the set U N
Y,. Now notice that U N Y; has empty interior, so that we can make use of
Lemma 5.20 for (U N Y1) N Y,, and continue this way until we complete the proof
of the theorem. |
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5.1 Cell Decomposition

We conclude the proof of Theorem 3.8 by a cell decomposition argument.

Theorem 5.23. Let S be a semi-closed o-minimal weak structure on a definably
complete Baire structure K, satisfying the following condition:

(*) Forevery closed set in S, there exists a closed set B € S, such that B has empty
interior and bd(A) C B.

Then, S is closed under complementation (and hence is an o-minimal structure).

Notice that, by Theorem 53, if S satisfies DACY for all N, then S satisfies the
assumption (*), and therefore S is an o-minimal structure; hence, the above theorem
implies Theorem 3.8.

If one is interested only in the case when K is an expansion of the real field,
then [13, Sect. 4] already proves the result. We will now sketch how to modify
Wilkie’s original proof to adapt it to the case when K is not an expansion of R.

We assume tlgt S satisfies the Condition (*). Our aim is now to prove the
analogue of the S-cell Decomposition Theorem 4.5 in [13]; the reader can refer
to [13, Deﬁllitions 4.1 and 4.3], where we replace R by K, for the definition of S-
cell and of S-cell decomposition (the only unusual aspect in these definitions is that
an S-cell is assumed to be bounded).

Proposition 5.24. Let n > 1 and suppose that D is an S-cell in K" and that A is a
set in Sy. Suppose further that A is a subset of D which is also closed in D. Then,
there exists an S-cell decomposition D of D which is compatible with A.

Once established this result, we see that Theorem 5.23 follows easily, as
explained in the remarks preceding the proof of Wilkie [13, Theorem 4.5].

Instead of repeating Wilkie’s proof of Proposition 5.24, we will give the details
of the proof of the following weaker form, which shows the main ideas involved and
the points we need to modify in the non-Archimedean settings, but requires much
simpler formal scaffolds.

Proposition 5.25. Let n > 1 and suppose that D is an S-cell in K" and that A is a
set in Sy. Suppose further that A is a subset of D which is also closed in D. Then,
there exists a finite partition D of D into S-cells which is compatible with A.

The proof of Proposition 5.25 proceeds by induction on n. The case n = 0 is
trivial. Therefore, assume that we have proved the conclusion for 7, and let us prove
it for n + 1. If D is not an open cell, then, by the usual tricks, we can lower n,
and conclude by using the inductive hypothesis. Therefore, we can assume that D
is an open cell. We want to further reduce to the case when A has empty interior.
If A has non-empty interior, let B € S, such that B has empty interior and
bd(4) € B. Assume that we are able to find a finite partition D of D into S-
cells which is compatible with B. Then, since A is closed in D and every cell is
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definably connected, D is also compatible with A, and we are done. Hence, w.l.0.g.
A has empty interior (this is the only point where we use the condition (¥)). Let
C := (D), where 7 := II"*! and D = (f, g)c.

Claim 1. Foreachi > 1, consider the set

i
A= 4XeC:ay....yi <<y \E.y) €A
j=1

Then each set A; lies in gn, and Ay has empty interior in K" for some N > 1.

Proof. The definition of A; implies immediately that A4; € g,,.

Let N := y(A) + 1, and fix X € C. Note that if the fibre A, has cardinality
greater or equal to N, then it has non-empty interior.

Since A has empty interior, it is definably meager. Therefore, by Proposition 2.4,
the set of those points X € C such that Ay has non-empty interior is definably
meager. Thus, Ay is definably meager, and hence it has empty interior. |

Fix N as in the above claim, and define H etc. asin [13, p. 418]. More precisely,
define

H ={x,e)eCxKy:dyeKEE,y)e D &(x,y +¢e) €D}
Hry={x,e)eCxKy:IyeK({X, f(X)+¢) e D}
Hy ={(x,e) e C xKy:3y e K(x,g(X) —¢) € D},

and the following subsets of C

H:=Cn(H)o.
I:If =CnN (ﬁf)o,
H, = C N (Hyg)o.

Notice that the inductive hypothesis implies the following statement:

Let Ay, ..., A; be subsets ()iC which are closed in C and in S. Then, there exists a
finite partition C of C into S-cells which is compatible with each 4;.

In particular, there exists a finite partition C of C into S-cells which is compatible
with H, Hy, Hy, and with each 4; N C, fori = 1,...,N.

Let C' := C; be acell in C. Now, we want to define a partition D’ := D’; of
(C’ x K) N D into S-cells which is compatible with (C’ x K) N A. Once we have
these partitions, we can define D := (_J; D; and prove the conclusion.

If C’ is not open, we use the inductive hypothesis to find the desired partition.

Hence, we only need to consider the case when C’ is an open cell in C. Notice
that C’ N Ay is empty, because Ay has empty interior. If (C' x K) N 4 = @, we
choose D’ := {( f. g)c’}, and we are done. Otherwise, C’ N A; is non-empty; choose
k < N maximal such that C’ N A; # @ (and therefore C' C Ay).
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Claim 2. C' C Ay.

Proof. As in Wilkie’s proof, we conclude that H s I:If and H ¢ have empty interior,
and therefore are disjoint from C’.

Consider a point X € C’. Let M be the cardinality of the fibre A; note that, by
definition of k, M < k. Let yo := f(X), ym+1 := g(x),and, for1 <i < M, y;
be the i-th point of K such that (x, y;) € A.

Ifl <i < M,sincex ¢ H , we may find open neighbourhoods V; of X in K"
and J; of y in K, such that for each X’ € V; there is at most one y’ € J; such that
x',y") € A.

Similarly, if i = Oori = M + 1 then, since X ¢ I:If U I:Ig, we may choose V;
and J; suchthat (Vi x ) NA=0@.LetT :={yeK:(X,y) e A&y ¢; Ji}.
and T’ := {x} x T. Note that T” is a d-compact subset of D, and that A4 is a closed
subset of D disjoint from 7". Hence, the distance between T’ and A is some positive
numberd > 0.Let U := N vin{x e ¢’ :dx.5) < d}.

Therefore, for every X' € U,

(X} xK)nA| < |(x} xK)n A| = M. (5.2)

We conclude as in [13]: as X € Ay, we may choose X' € U N Ay here, from which
it follows (using the maximality of k) that M = k. Hence X € A and the claim is
justified. |

Thus, for each i = 1,...,k, we may define the function f; : C' — K is S by
fi (%) = y iff y is the i -th point of K such that (X, y;) € A.

Claim 3. Each function f; is continuous.

Proof. Letx € C'. Let U, V; and J; be defined as in the proof of the previous
claim, fori = 1,...,k. Let ¥ € U. Note that, since we have equality in (5.2),
then, for every i = 1,...,k, there is exactly one y/ € J; such that x', ¥ € A.
Note also that y/ = f;(X'). Fix i such that I < i < k, and fix J neighbourhood
of y; = f;(X). In the construction of V; and J;, we could have chosen J; such that
Ji € J, and then found a corresponding V;. Proceeding in the construction, we see
that, for every J neighbourhood of f; (X"), we can find U neighbourhood of X such
that f;(U) € J, which is equivalent to the definition of f; being continuous at X.
Since X € U is arbitrary, the claim is proved. O

Now, using the functions f, g, f1, ..., fk, we can define a cell decomposition of
(C’ x K) N D which is compatible with (C” x K) N A, and we are done.

6 Expansions of O-minimal Structures by Total
C*° Functions

In this section we give an application of Theorem 3.8. Let K be a definably complete
Baire structure, K, be an o-minimal reduct of K, expanding the field structure, and
F be a family of total C* functions definable in K. We assume that F is closed
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under permutation of variables, contains the coordinate functions (xy,...,x,)
xi, and thatif f € F, then (X, y) — f(X) is also in F. Let K¢(F) be the reduct of
K generated by Ky and F. We give necessary and sufficient conditions for K (F)
to be an o-minimal structure.

Definition 6.1. Let G, be the set of all total continuous functions definable in Ky,
and G be the set of functions of the form 4 o f, for some f : K" — K" in 7™ and
some & : K" — Kin G.

For every n € N, let §, be the family of subsets of K" of the form V(g), for
some g : K" — Kin G, and let S := (S,)en-

Notice that F C g, because, for every n € N, F" contains the identity function
on K”.

Theorem 6.2. K, (F) is o-minimal iff, for every X in S there exists a natural
number N, such that, for every K-affine set A, X N A has less than N definably
connected components.

We will need the following result about o-minimal structures.
Let [F be an o-minimal structure expanding a (real closed) field.

Proposition 6.3. For every N > 1 and every Y C " closed and F-definable there
exists h : F" — [0, 1] F-definable and CV, such that Y = V(h). In particular, since
every F-definable set is a finite union of F-cells, and every cell is the intersection of
an open and a closed set, F is generated by its CV definable functions.

Moreover, if Z is a closed F-definable subset of F" disjoint from Y, then we can
also require that Z = V(1 — h).

Proof. We can use [12, Corollary C.12], since the proof works also for o-minimal
structures expanding any real closed field, not just R. |

Proof (Proof of Theorem 6.2). Notice that S is a closed weak structure. It is obvious
that every set in S is definable in Ky(F). Conversely, since K, is o-minimal,
Proposition 6.3 and the fact that Gy € G imply that the structure generated by S
expands Ko; since moreover F C G, S generates Ko (F).
Hence, by Theorem 3.8, it suffices to show that S satisfies DACY for all N. That
is, letn € Nand fix A € §,. It is enough to prove the following:
(*) Forevery N € N, A is of the form V(gy) for some gy : K” — Kin G and CV.
Let g € G suchthat A = V(g). Hence, g = h o f, for some f : K" — K™
in 7 and some & : K" — K in Gy. Let iy : K" — K be CV and definable in
Ko, such that V(h) = V(hy) (the existence of hy is given by Proposition 6.3), and
define gy := hy o f : K" — K. Note that gy is CV and in G. Note moreover that

A=V(g) = fT'(V(h) = 7 (V(hy) = Vign).

and we are done. O
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Example 6.4. Let Ry be o-minimal expansion of the real field, and let F be the
family of generalized Pfaffian functions over Ry.

Then, Ry (F) satisfies the assumption of Theorem 6.2 (see [10]), and hence it is
o-minimal.
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