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2.7 Gröbner bases 27
2.8 Properties of a Gröbner basis 29
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Preface

About thirty-five years ago there was an awakening of interest of researchers
in commutative algebra to the algorithmic and computational aspects of
their field, marked by the publication of Buckberger’s thesis in 1966. His
work became the starting point of a new research field, called Computa-
tional Commutative Algebra. Currently, computer programs implementing
versions of his and related algorithms are readily available both as commer-
cial products and academic prototypes. These are of growing importance
in almost every field of applied mathematics because they deal with very
basic problems related to systems of polynomial equations. Statisticians,
too, should find many useful tools in computational commutative algebra,
together with interesting and enriching new perspectives. Just as the in-
troduction of vectors and matrices has greatly improved the mathematics
of statistics, these new tools provide a further step forward by offering a
constructive methodology for a basic mathematical tool in statistics and
probability, that is to say a ring. The mathematical structure of real random
variables is precisely a ring, and other rings and ideals appear naturally in
distribution theory and modeling. However, the ring of random variables
is a ring with lattice operations which are not fully incorporated into the
theory we present, at least not yet.
The authors’ attention was drawn to the relevance of Gröbner basis the-

ory by a paper on contingency tables by Sturmfels and Diaconis circulated
as a manuscript in 1993. With initial help provided by Professor Teo Mora
(University of Genova), a first application to design of experiments was
published by G. Pistone and H. Wynn in 1996 (Biometrika) and this field
of application was more fully developed by E. Riccomagno in her Ph.D.
thesis work during 1996-97 at the University of Warwick. Subsequent pa-
pers in the same direction were published by the authors and a number
of coauthors. We are pleased to acknowledge (in alphabetic order) Ron
Bates, Massimo Caboara, Roberto Fontana, Beatrice Giglio, Tim Holliday,
Maria-Piera Rogantin.
During the few years this monograph was in the making, we have ben-

efitted from many contributions by others, and further related work is in
progress. Some of the contents of this book was first exposed at the series of
four GROSTAT workshops, which took place in successive years, starting
in 1997 at the University of Warwick (UK), the IUT-STID in Nice-Côte
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xiv PREFACE

d’Azur in Menton (France), EURANDOM in Eindhoven (NL), and again,
in 2000, in Menton. We must thank all the participants and these institu-
tions for their support, in particular Professor Annie Cavarero, director of
IUT-STID.
We found keen collaborators at the University of Genova. We should

at least mention, together with those above, Professor Lorenzo Robbiano
(who also supported GROSTAT IV) and the CoCoA team who have had
a major influence on the algebraic and computational aspects of the field.
We are very grateful to them all for the early and generous access to their
research, for the high level of illumination it provided on the mathematical
foundations and the very fast computer code developed under the wings of
CoCoA.
We are grateful for many discussions with colleagues and coworkers. A

minimal list includes Wilf Kendall, Thomas Richardson, Raffaella Settimi
and Jim Smith, in Warwick, and Alessandro Di Bucchianico and Arjeh Co-
hen, in Eindhoven. Special thanks to Dan Naiman of The Johns Hopkins
University for allowing us to draw on recent joint work on tube theory in
Chapter 4. Ian Dinwoodie, from Tulane University, helped to strengthen
our understanding of the work of Diaconis and Sturmfels on toric ideals,
which we reach in the final sections of the book, from our own particular di-
rection. Because a considerable volume of the monograph is based on work
in progress, we have, on a few occasions, had to refer to unpublished, al-
though available, technical reports. We thank all the colleagues who helped
us by reading different versions of this work, some of them already men-
tioned, and also Neil Parkin for careful reading of the whole book. We also
thank our publishers for their help and considerable patience.
A cocktail of different grants and institutions has funded this research.

We should thank the UK Engineering and Physical Sciences Research
Council, the Italian Consiglio Nazionale delle Richerche, EURANDOM,
and, last but not least, IRMA and the University L. Pasteur of Strasbourg,
and Professor Dominique Collombier, who has hosted us during the final
revision of the book.
This book is dedicated to our families, with apologies to all for the ab-

sences that a triple collaboration must entail.

Giovanni Pistone
Eva Riccomagno

Henry Wynn

Strasbourg, France, October 2000
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Notation

Common symbols

N positive integer numbers
Z integer numbers
Q rational numbers
R real numbers
C complex numbers
S∗ ∗ excludes the 0 from the set S
S+ non-negative entries of the set of numbers S:

for example Z+ = {a ∈ Z : a ≥ 0} = {0} ∪ N

d superscript dimension of the cartesian product
for example, Zd stands for Z × · · · × Z︸ ︷︷ ︸

d times
{a} 1. component-wise fractional part operator, a ∈ Rd

2. the set whose element is a
#A number of elements in the set A
[p] vector or list p as a column vector
[a1 · · · an] matrix with the vectors ai, i = 1, . . . , n as columns
[[. . .], . . . , [. . .]] matrix as a list of rows
At transpose of A where A is a matrix or a vector
I identity matrix
x1, . . . , xd factors, variables, indeterminates
d 1. number of independent factors

2. number of variables
3. number of indeterminates

s number of xi’s if the algebra is emphasised
N 1. sample size

2. number of design points
3. number of support points

k, K fields of coefficients
for example, Q, R, Q(θ), transcendental extension,
Q(

√
2), algebraic extension
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xvi NOTATION

Notation for Gröbner bases

k[x1, . . . , xs] ring of polynomials in x1, . . . , xs
and with coefficients in k

xα = xα1
1 . . . xαs

s monomial in k[x1, . . . , xs]
p(x1, . . . , xs) polynomial in k[x1, . . . , xs]
τ , �, �τ term-ordering
xi1 � . . . � xis initial ordering on the indeterminates
τ(xi1 � . . . � xis) emphasis on the initial ordering
LTτ (p(x)) leading term of the polynomial p

with respect to the term-ordering τ
Ideal (g1, . . . , gh) ideal of k[x1, . . . , xs] generated by g1, . . . , gh
〈g1, . . . , gh〉
Variety(I) set of zeros of all polynomials in I
Ideal(V ) set of all polynomials vanishing at V
Variety(f1, . . . , fl) set of common roots of fi, i = 1, . . . , l
Rem(f),Rem(f,G) 1. normal form of f with respect to

the Gröbner basis G
2. remainder of the division of f with respect
to the set of polynomials G

Notation for experimental design

D, DN 1. experimental design
2. support for a discrete distribution

a, x design point
x(i), (x(i)1, . . . , x(i)d) ith design point for i = 1, . . . , N
X design region
Estτ (D) estimable terms with respect to τ and D
F polynomial regression vector
Z = [f(x)]x∈D,f∈F design matrix for a model with support F

and a design D;
the orderings on D and F carry over to Z

ZtZ information matrix
y = (y1, . . . , yN ) responses, values at the support points
θ, c, b, a parameters or coefficients
k[x1, . . . , xd]/ Ideal(D) quotient ring
k[x]/ Ideal(D)
L list of exponents of a vector space

basis of k[x1, . . . , xd]/Ideal(D)
L0 L \ {(0, . . . , 0)}
L′ L′ ⊆ L
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NOTATION xvii

Notation for logic and reliability

B(∨,∧,− , 0, 1) Boolean algebra
∨ maximum, union
∧ minimum, intersection
∅ empty set
D2d 2d full factorial design
D \D2d , D̄ complementary set of D ⊂ D2d

fa(x) polynomial indicator function of a ∈ D2d

fD(x) polynomial indicator function of D ⊂ D2d

E(f) mean value of f
� symmetric difference operator

Notation for probability and statistics

D, Ω support of a probability space
D� support of an image probability
Ai elementary event
A event
fA indicator function of the event A
L(D,K), L(D), L the set of functions from D to K
X function in L(D)
P probability
P0 uniform probability
K the constant in the exponential model
K(Φ), K(θ) cumulant generating function
E0 (X) expectation of X with respect to P0

EP (X) expectation of X with respect to P
mα raw moments E0 (Xα)
θα θ-parameters of a probability
µα µ-parameters EP (Xα)
pi p-parameters P (a(i))
ψα ψ-parameters in exponential models
ζα ζ-parameters: ζα = exp(ψα)
R three-dimensional multi-array

where Rem
(
Xα+β

)
=
∑
γ∈LR(α, β, γ)Xγ

R(β) matrix [R(α, β, γ)]γ,α∈L
r(δ, γ) R(α, β, γ) with δ = α+ β
Q(α, β), α, β ∈ L E0

(
Xα+β

)
=
∑
γ∈L r(α+ β, γ)mγ

© 2001 by Chapman & Hall/CRC



CHAPTER 1

Introduction

1.1 Outline

One of the most basic issues in statistical modeling is to set problems up
correctly, or at least well. This means, typically, that a sample space needs
to be defined together with some distribution on this sample space with
some parameters. After that one can decide if the parameters or even the
form of the distribution are known, and, given the motivation and resources,
enter into full-blown statistical inference. Great care needs to be taken with
data capture or, to put it more precisely, with experimental design, if the
model is to be properly postulated, tested and used for prediction.
Some of the questions which need to be addressed in carrying out these

operations are intrinsically algebraic, or can be recast as algebraic. By
algebra here we will typically mean polynomial algebra. It may not at first
be obvious that polynomials have a fundamental role to play.
Here is, perhaps, the simplest example possible. Suppose that two people

(small enough) stand together on a bathroom scale. Our model is that the
measurement is additive, so that if there is no error, and θ1 and θ2 are the
two weights, the reading should be

Y = θ1 + θ2

Without any other information it is not possible to estimate, or compute,
the individual weights θ1 and θ2. If there is an unknown zero correction θ0
then Y = θ0 + θ1 + θ2 and we are in worse trouble.
In a standard regression model we write in matrix notation

Y = Zθ + ε

and our ability to estimate the parameter vector θ, under standard theory,
is equated with “Z is N × p full rank” or Rank(Z) = p < N where θ
is a p-vector and N is the number of design points. An example is the
one-dimensional polynomial regression

Y (x) =
p−1∑

j=0

θjx
j + εx

Then, if the experimental design consists of p distinct points a(1), . . . , a(p),
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2 INTRODUCTION

the square design matrix

Z =
[
a(i)j

]
i=1,...,p;j=0,...,p−1

has full rank, and for submodels with fewer than p terms, the Z-matrix
also has full rank.
Algebraic methods have been used extensively in the construction of de-

signs with suitable properties. However, particularly in the construction
of balanced factorial designs with particular aliasing properties, abstract
algebra in the form of group theory has also been used to study the iden-
tifiability problem. Most students and professionals in statistics will recall
a course on experimental design in which Abelian group theory is used in
the form of confounding relations such as

I = ABC

and unless they are experts in experimental design, they may have remained
somewhat mystified thereafter. We return to this example in Section 1.3.
Let us consider a simple example. Here is a heuristic proof that there is

a unique quadratic curve through the points (a(1), y1), (a(2), y2), (a(3), y3)

yi = r(a(i)), i = 1, 2, 3

We can think of a(1), a(2), a(3) as the points of an experimental design
at which we have observed y1, y2, y3, respectively, without error. We also
assume that a(1), a(2), a(3) are distinct.
Define the polynomial

d(x) = (x− a(1))(x− a(2))(x− a(3))

whose zeros are the design points. Take any competing polynomial, p(x),
through the data that is such that p(a(i)) = yi (for i = 1, 2, 3). Write

p(x) = s(x)d(x) + r(x)

where r(x) is the remainder when p(x) is divided by d(x). Now we can
appeal to algebra and say that, given the polynomial p(x), r(x) is unique.
But it is clear from the equation that

yi = p(a(i)) = r(a(i)), (i = 1, 2, 3)

since by construction d(a(i)) = 0, i = 1, 2, 3.
The polynomial p above can be interpreted in two ways: (i) as a contin-

uous function with value yi at the point a(i) and (ii) as a representation of
the function defined only on the design points and again with value yi at
a(i) (for i = 1, 2, 3). The first way is very convenient when we do regression
analysis and thus we call p an interpolator. The other interpretation is more
suited for applications in discrete probability.
Here we have tried to solve an identifiability problem directly by exhibit-

ing a minimal degree interpolator rather than check the rank of a Z-matrix.
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OUTLINE 3

There is a crucial point to make: all the operations were carried out with
polynomials.
The same argument applies for polynomial regression of all orders in one

dimension. However, a very important issue for this book is that if we are
to use this argument for x in higher dimensions, then we need to cope with
the fact that representation of points as solutions of equations, the opera-
tion of division and the remainders themselves are not, in general, unique
in higher dimensions. The representation of discrete points as the solution
of polynomial equations is to treat them as zero-dimensional algebraic va-
rieties. The division operation becomes a quotient operation and we have
jumped into algebraic geometry. The set of all polynomials which are zero
on a variety (in this case, a set of points) has the algebraic structure of
an ideal. Strictly speaking, the quotient operation uses the ideal, not the
variety. The use of Gröbner bases will help throughout.
Elementary probability is not immune from this treatment. Consider a

random variable X whose support is a(1), a(2), a(3). What was an experi-
mental design, above, is now a support. Since X lives only on the support,
we can write (with probability one)

(X − a(1))(X − a(2))(X − a(3)) = 0

Expanding we obtain

X3 = (a(1) + a(2) + a(3))X2−
(a(1)a(2) + a(1)a(3) + a(2)a(3))X + a(1)a(2)a(3)

Taking expectation and letting the non-central moments of X be µ0 = 1,
µ1 = E (X), µ2 = E

(
X2
)
, . . ., we have

µ3 = (a(1) + a(2) + a(3))µ2

− (a(1)a(2) + a(1)a(3) + a(2)a(3))µ1

+ a(1)a(2)a(3)
µ3+k = (a(1) + a(2) + a(3))µ2+k

− (a(1)a(2) + a(1)a(3) + a(2)a(3))µ1+k

+ a(1)a(2)a(3)µk

(1.1)

We can, in this way, express any higher-order moment as a linear function
of µ0, µ1, µ2. This is an example of what we shall call moment aliasing.
This small example points to several levels of the use of polynomial

algebra in statistics. The first level is to set up the machinery for handling
sets of points in many dimensions. These points will be thought of first as
an experimental design D and then, when we do probability, as the support
of a distribution. Of course, the problem is then different. It is the algebra
which is, identical, and to emphasize this, we use the same letter D when
the set of points is a support. We will cover at some length all the issues
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to do with description of varieties, ideals, quotient operations and so on.
This occupies Chapters 2 and 3. Chapter 5 studies the algebra of random
variables over a finite set of points. This is the second level.
The third level is to interpolate the probability masses for our distribu-

tion on the support D. Since the algebra has already told us how to set
up interpolators, this is now straightforward, except that probabilities are
non-negative and must sum to one. Still at this level we have two basic
alternatives: to interpolate the raw probabilities or to interpolate their log-
arithm. For example, suppose we have a two-state (binary) random variable
taking the values in D = {0, 1} with probabilities 1− q and q, respectively:
a Bernoulli random variable. The raw interpolator is

p(x) = 1− q + (2q − 1)x

whereas the interpolator of the logarithm, after exponentiation, gives

p(x) = exp
(
log(1− q) + log

(
q

1− q

)
x

)

The second of these is the usual exponential family representation of the
Bernoulli.
The fourth level of algebraisation, and perhaps the most profound, arises

from noticing that when the support D lies at integer grid points, an ex-
ponential term such as eψ1x1 can be written ζx1

1 where

ζ1 = eψ1

Using this trick, we can rewrite models in the exponential form as polyno-
mials. For the Bernoulli, let ψ0 = log(1 − q) and ψ1 = log

(
q

1−q
)
. Then,

setting ζ0 = eψ0 and ζ1 = eψ1 we have the representation

p(x) = ζ0ζ
x
1

This coincides with the familiar form p(x) = qx(1 − q)1−x. We shall also
discuss this form, which is closely related to the work of Diaconis and
Sturmfels (1998) on toric ideals.
Note that we have been a little lazy with the notation here. All the forms

of p(x) have a different structure but agree numerically on D.
Much of the real usefulness of algebra in statistics comes from the inter-

play between these different parametrisations. We shall also need another
parametrisation in terms of moments. This is made harder by the fact that,
typically, statistical models or submodels are obtained by imposing restric-
tions on the parameters. We shall define an algebraic statistical model as
one which adopts one of these representations and for which the restric-
tions on the parameters are themselves polynomial. However, and this is
the most complex issue in the book, the forms of these submodels may
be different depending on the parametrisation. Only sometimes can they
be perfectly linked. An important example is the independence condition,
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which forces factorisation of the raw polynomial interpolators, maps to ad-
ditivity inside the exponential representation and factorisation in the ζ and
qx forms. Conditional independence, as used in Bayes networks, also has
this multiple representation. Chapters 5 and 6 discuss all these issues.
The book can be seen from different angles and we are grateful to a re-

viewer for making us more aware of this. The ambitious angle, and more
relevant to researchers in statistics, is to rewrite the foundations of discrete
probability and statistics in the language of algebraic geometry. We have
only partly succeeded in doing this. There is still much to be done, particu-
larly in sorting out fundamental issues arising from submodels discussed in
the last chapter, both theoretically and computationally. This effort must
surely draw on the important work of Andrews and Stafford (2000) on
general application of computer algebra to statistics.
The more modest objective in which we hope to have succeeded is to

enlarge the kitbag of tools available to the statistician. The Gröbner ba-
sis method in experimental design can now be used routinely, and is by
the authors, to investigate the identifiability of experimental design/model
combinations in real applications. The use of the methods in statistical
modeling should also proceed rapidly. After the seminal work by Diaconis
and Sturmfels (1998), there have been advances in using Gröbner basis
methods for Monte Carlo style sampling on contingency tables, notably
by Dinwoodie (1998). Promising ongoing work on the use of Gröbner ba-
sis methods in Bayes networks is being carried out by J. Q. Smith and
R. Settimi. We also include in Section 4.5 work by the authors and other
collaborators on reliability on binary (two-level) factorial design.

1.2 Computer Algebra

Several packages for symbolic computation and Gröbner basis computation
are available: CoCoA, Maple, Mathematica and GB, to mention a few. We
have used mostly Maple and CoCoA. Some points need to be made about
these packages.
The package CoCoA (COmputations in COmmutative Algebra, freely

available at http://cocoa.dima.unige.it) is specially developed for re-
search in algebraic geometry and commutative algebra. Thus it is faster
than most other software in computing Gröbner bases, although at times
not intuitive, and it allows more refined computations. The interface needs
further development and the use of unknown constants is not implemented.
Nevertheless in some cases ad hoc tricks can be used to force some indeter-
minates to play the role of unknown constants. An example is the case of
complex numbers for which an indeterminate i is introduced to represent
the complex unit. For details see Caboara and Riccomagno (1998).
Robbiano and other members of the CoCoA team are very active in the

research area described in Chapters 2 and 3 of this book. They concentrate
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6 INTRODUCTION

mainly on links to algebraic geometry with forays into statistics (Robbiano
and Rogantin (1998), Caboara and Robbiano (1997)), while the authors are
led by applications in statistics with some expeditions into the mathematics
and computation.
Maple (University of Waterloo, Canada http://www.maplesoft.com)

is a general purpose package for symbolic computations. It is quite fast,
simple to use and with a good online help. It has a very good interface,
allows the use of unknown constants or free parameters, but it is slower than
CoCoA for the specialized application described here. Maple V-5 includes
the package Groebner for doing Gröbner basis computation, and allows the
use of unknown constants and user-defined term-orderings.
Sometimes our examples will be over the set of integers, Z, which is not a

field. Gröbner basis theory has a counterpart for polynomials with integer
coefficients, but it is more expensive. For example, in CoCoA, when the ring
Z[x1, x2] is input, a message appears warning that G-basis-related compu-
tations could fail to terminate or can be wrong. However, Z is embedded
in Q, and one can work with rational coefficients and multiply everything
out to obtain integers. On other occasions one has to work with a finite
set of coefficients, say Zp. For p, a prime integer, Zp forms a field and the
algebraic theory of Gröbner bases is similar to that over rational numbers.
In other cases, such as the trigonometric case (see Section 3.14), difficulties
arise from the fact that the sine and cosine of rational values are typically
irrational numbers and thus the coefficient field is not embeddable in Q. Ad
hoc procedures have been considered based on simple algebraic extensions
of rational numbers.
As mentioned, the authors prefer to use Maple and CoCoA. Lists of soft-

ware that include routines to compute Gröbner bases are maintained at
http://SymbolicNet.mcs.kent.edu/ and http://anillos.ugr.es/. We
should mention: Matematica for its popularity, REDUCE written in LISP
and whose main characteristics are code stability, full source code availabil-
ity and portability, and AXIOM, which takes an object-oriented approach
to computer algebra and its overall structure is strongly typed and hi-
erarchical. Among the freely available software there is GROEBNER (at
ftp.risc.uni-linz.ac.at) developed at RISC-Linz by W. Windsteiger
and B. Buchberger, Macaulay2 (http://www.math.uiuc.edu/Macaulay2/)
developed by D. Grayson and M. Stillman to support research in alge-
braic geometry and in commutative algebra. The package SINGULAR
(http://www.singular.uni-kl.de/) is advertised as the most powerful
and efficient systems for polynomial computations with a kernel written in
C++.
Next we anticipate some notions from Chapter 2. Historically a first ap-

plication of Gröbner bases is as polynomial system solver in that it can
rewrite a system of polynomial equations in an equivalent form which is
easier to solve. Equivalent means with the same set of solutions. For ex-

© 2001 by Chapman & Hall/CRC

http://www.maplesoft.com
http://anillos.ugr.es
http://SymbolicNet.mcs.kent.edu
http://www.math.uiuc.edu
http://www.singular.uni-kl.de
ftp://ftp.risc.uni-linz.ac.at


COMPUTER ALGEBRA 7

ample, if the system has a finite number of solutions, there is a Gröbner
basis including a polynomial in only one indeterminate, a polynomial in
that indeterminate and another one, and so on. In this way the system can
be solved by backward substitution. The great advantage of Gröbner bases
with respect to, say, numerical methods for solving systems of polynomial
equations, is that it can also be used when the system has infinitely many
solutions. All the solutions are returned but in a parametric, or implicit,
form, which sometimes seems even more complicated than the original. This
is why it is generally recommended to couple Gröbner basis with numerical
methods when used as system solver.
In this book we are concerned with two slightly different algebraic aspects

which use the same Gröbner basis techniques. 1. We know the solutions (so
to speak) and are interested in determining the set of polynomials inter-
polating them. Then, Gröbner basis methods return a basis of the set of
functions defined over the solutions. 2. We have a system of polynomial
equations and would like to check whether there are some algebraic re-
lations. That is, we need to rewrite the system in a different form. The
operations we allow are sums of elements in the polynomial set consid-
ered and products with any polynomial. This leads to the definition of a
polynomial ideal for which we refer to the main text.

1.2.1 A quick introduction to Gröbner bases

A polynomial, in one or more variables, is a linear combination of mono-
mials. Thus 1 + 2x1 + 3x2 + 4x1x2 is a polynomial and 1, x1, x2, x1x2 are
monomials.
On the set of integer numbers there is one natural total order, the one

we all know. The set of monomials in one indeterminate, x, inherits such
an order, thus x is lower than x3 and 1 = x0 is lower than xα for all α
positive integers. We do not consider negative integers.
In more than one dimension the uniqueness of a natural way of order-

ing points on the (non-negative) integer grid is lost. The same is valid for
monomials in more than one indeterminate. In Chapter 2 monomial or-
derings (also called term-orderings) are properly defined. For the moment
we only observe that a term-ordering corresponds to a total order on the
integer grid and is compatible with cancellation of monomials. There are
orderings on the integer grid that do not correspond to any term-ordering.
The most common term-ordering is the lexicographic ordering. In three

dimensions x, y and z, first fix z larger (in the ordering) than y and y larger
than x. We write z � y � x and talk of initial ordering. All monomials
of the type xα are lower than any monomial involving y and/or z and the
monomials xα are ordered according to the one-dimensional ordering. Next
come the monomials with the y indeterminate at first degree, that is xαy,
which are again ordered according to the one-dimensional ordering. After
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Figure 1.1 Example of degree reverse lexicographic term-ordering in two dimen-
sions.

that we have the monomials xαy2. After all the monomials xαyβ , for α and
β non-negative integers, it is the turn of the monomials including the z
indeterminate.
The degree reverse lexicographic term-ordering is a term-ordering often

used. An example in two dimensions is given in Figure 1.1. Monomials on
a line parallel to y = −x are ordered in a linear fashion according to the
ordering in one dimension and going in the direction bottom to top, that is
xα is smaller than yα. Monomials on lines closer to the origin are smaller
than monomials on lines far away. In higher dimensions, hyper-planes play
the role of lines. For a definition see Section 2.3.
Once a term-ordering is chosen, the largest term of a polynomial is well

defined and is called its leading term.
Consider the system of polynomials

{
yx− z
x2 − z

(1.2)

The associated system of equations is obtained by equating to zero the
two polynomials. A quick computation shows that there are two sets of
solutions




x = 0
y = y
z = 0

and




x = y
y = y
z = y2

The following systems of polynomial equations have the same solutions,
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that is they are algebraically equivalent,

{
(y − x)x = 0
z − x2 = 0




yx− z = 0
z(y − x) = 0
z − x2 = 0

The corresponding two sets of polynomials are two different Gröbner bases
of the ideal generated by Equation (1.2) with respect to two different term-
orderings. That is the lexicographic ordering with initial ordering z � y � x
and the degree reverse lexicographic term-ordering with the same initial
ordering, respectively. The leading terms are {yx, z} and {yx, zy, x2}.
Looking at the solutions of the systems, one is tempted to say that an

equivalent set of polynomials is
{
x− y
z − y2 (1.3)

But it cannot be retrieved from the polynomials in (1.2) using sums and
products of polynomials. That is, this last system is not algebraically equiv-
alent to the others. The solution (0, 0, 0) is clearly given in (1.2) while
in (1.3) it is deduced from the solution x = y, z = y2 for y = 0. This
phenomenon is referred to as the multiplicity of a solution.
Roughly speaking, Gröbner basis computation allows us to rewrite the

system (1.2) without losing or adding solutions, by having the correct set
of leading terms. Namely, a polynomial set G is a Gröbner basis for a set of
polynomials F and with respect to a term-ordering if the set of polynomials
generated by the leading terms of F is equal to the analogous set generated
by the leading terms of G. The elements of the set generated by the polyno-
mials {f1, . . . , fs} are the polynomials

∑s
i=1 hifi, where the hi’s are generic

polynomials. Note the role of a term-ordering in the definition of Gröbner
bases. The set of polynomials F = {f1 = yx − z, f2 = x2y − z} does not
form a Gröbner basis with respect to the lexicographic term-ordering with
initial ordering z � y � x. Call this term-ordering τ . Indeed yx cannot be
obtained from the leading terms of f1 and f2, which is z for both f1 and
f2, but it is the leading term of f1 + f2. The (reduced) Gröbner basis of F
with respect to τ is given above. There is an algorithm to compute Gröbner
bases given a set of polynomials and a term-ordering which is described in
Section 2.12.3.
Having the right leading terms also helps in the division of polynomials.

Namely the division of a polynomial by a Gröbner basis has a unique
remainder, while in general this is not true. The division of a polynomial f
by a set F is a way of rewriting f as a polynomial combination of elements
of F in such a way that we are left with a reminder whose leading term
is not divisible by the leading terms of the polynomials in F . For example
consider f = z. The division of f by f1 and f2, with respect to τ , gives the
reminder yx if we divide first by f1, indeed f = (−1)f1+xy. But if we first
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Table 1.1 The 23−1 fractional factorial design.

A B C

1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

divide by f2 and then by f1 we obtain f = (−1)f2 + x2 where now x2 is
the remainder. Fortunately when we divide f with respect to the Gröbner
basis G, we do not need to consider with respect to which polynomial we
divide first, the reminder will always be the same, z itself in this example.

1.3 An example: the 23−1 fractional factorial design

In this section we outline the ideas and techniques presented in this book
on an example which we shall return to in the main text as well. Consider
the four points of the 23−1 fractional factorial design with levels ±1 in
Table 1.1 (see Box, Hunter and Hunter (1978) and Cox and Reid (2000)).
It is defined by the confounding relation ABC = I where A, B and C
are the factors and I is the identity. When we refer to the factors in the
classical framework, for example when using the mathematics of group
theory, we use capital letters. We use small letters a, b and c for factors in
our polynomial representation. Moreover some computer algebra software
require that indeterminates, the algebraic equivalent of factors, are a single,
small letter.
The rows in Table 1.1 are solutions of the following system of polynomial

equations, which defines the 23−1design




a2 − 1 = 0
b2 − 1 = 0
c2 − 1 = 0
abc− 1 = 0

(1.4)

The aliasing table in Table 1.2 is obtained by multiplying ABC = I by A,
B and C, respectively. Now, the system of polynomial equations originated
by substituting small letters in Table 1.2 has still the same set of solutions
as the system in (1.4). For the polynomials in the system so obtained,
namely abc − 1, bc − a, ac − b, ab − c, the first polynomial is larger than
the other three polynomials as its highest term is divided by the second-
order terms of the other three polynomials. In this sense it is redundant
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Table 1.2 Aliasing table for the 23−1 design.

ABC = I
BC = A
AC = B
AB = C

and it can be substituted by the three polynomials a2−1, b2−1 and c2−1
which are of smaller order. The set of zeros of the system of polynomial
equations obtained equating to zero these new three polynomials is the 23

full factorial design.
The final set of equations so obtained forms a Gröbner basis





a2 − 1
b2 − 1
c2 − 1
bc− a
ac− b
ab− c

(1.5)

General methods to compute Gröbner bases from a set of polynomials are
given in Chapter 2.
In the classical theory, one would look at the aliasing table in Table 1.2

and deduce that the interaction AB is aliased to the linear factor C. That
is the effects of AB and C are confounded and both AB and C cannot be
terms in the same linear regression model. In more mathematical terminol-
ogy one says that AB and C are linearly dependent functions over the 23−1

design. The approach presented in this book develops this observation. The
theory of Gröbner basis automatises the process of finding a vector space
basis of the set of functions defined over the 23−1 design. From this vector
space basis it is easy to check whether two terms are confounded. This
saturated set of independent terms is formed by monomials, that is fac-
tors and interactions. It will be the basis with the terms smallest in some
sense which will be clear when in Chapter 2 the concept of term-ordering
is explained.
We show the process for determining this vector space basis for the 23−1

design. Consider the Gröbner basis in Equation (1.5) and consider the
largest terms of each of its polynomials, they are

LT =
{
a2, b2, c2, ab, ac, bc

}

The formalization of this process requires again the definition of term-
ordering. For the moment it is sufficient to say that, for example, in ab− c
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the term ab is larger than c because it represents a second-order interaction.
In some cases to be considered later it will be possible that a linear term
is larger than an interaction.
Now consider all the terms that are not divided by the monomials in LT.

They are listed below and they are four, exactly the number of points in
the 23−1 design:

1, a, b, c

The theory of Gröbner bases states that this is a set of linearly independent
functions over the 23−1 design. They can be used to build a linear regression
model.
In particular all the functions over the 23−1 design can be represented as

linear combinations of those four monomials, and a function f is written
as

f(x) = θ0 + θ1a+ θ2b+ θ3c

where x ranges over the points in the 23−1 design. Now probabilities are
functions and thus can be represented in this way, and the θ coefficients
are chosen so that

∑
x∈23−1 f(x) = 1. For example, the probability that

assigns mass 1/2 to the point (1, 1, 1), mass 1/4 to the point (−1, 1,−1),
and equal mass 1/8 to the other two points is the function

1/4 + 1/16a+ 1/8b+ 1/16c

The uniform probability is given by the constant function 1/4.
Random variables are again linear functions of 1, a, b, c, for example Y =

A+ B + C. The expectation of Y with respect to the uniform probability
can now be computed with linear operations as

E0 (Y ) =
∑

x∈23−1

Y (x) =
∑

(a,b,c)∈23−1

(a+ b+ c) = 0

Analogously, the second-order moment is

E0

(
Y 2
)
=

∑

x∈23−1

Y (x)2 =
∑

(a,b,c)∈23−1

(a+ b+ c)2 = 12

As mentioned previously the relation (1.1) further simplifies the computa-
tion of higher-order moments.
We conclude this section by computing the image probability of Y . Let

us start with the computation of the image support. Thus adjoin the poly-
nomial for Y , using small letter y, to the equations of the Gröbner basis of
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the 23−1 design 



a2 − 1
b2 − 1
c2 − 1
bc− a
ac− b
ab− c
y − (a+ b+ c)

(1.6)

The aim is to find a polynomial involving only y and not the indeterminates
a, b and c. That is to check whether y is algebraically independent from a,
b and c. The square of the last polynomial in (1.6) above gives

y2 + (a+ b+ c)2 − 2y(a+ b+ c)

and thus, using again the definition of y,

y2 − (a+ b+ c)2 = y2 − a2 − b2 − c2 − 2bc− 2ac− 2ab

Now a2 = b2 = c2 = 1 and bc = a, ac = b and ab = c, giving

y2 − 2y − 3 = (y + 1)(y − 3) = 0

This is the description of the image of Y . In Chapter 5 this process is
automatised by considering the Gröbner basis of the polynomials above
with respect to a so-called elimination term-ordering.
The image probability of Y takes values on the set D∗ = {−1, 3} and its

density with respect to the uniform distribution has the form of a polyno-
mial supported on {1, y}. Thus in generic form we can write

pY = θ0 + θ1Y

Because the support of pY is {1, y}, the density pY is fully known if the
first two moments E (Y α), α = 0, 1 are known. By using the conditions

Y 2 = 2Y + 3, E (Y ) = 0, and E∗ (Y ) =
−1 + 3

2
= 1 (the expectation with

respect to the uniform on D∗), we obtain the system
{
1 = E∗ (θ0 + θ1Y ) = θ0 + θ1

0 = E∗
(
θ0Y + θ1Y

2
)
= E∗ (θ0Y + θ1(2Y + 3)) = θ0 + 5θ1

which gives pY =
5
4
− 1

4
Y .

The polynomial setup presented here can be used to discuss many prob-
abilistic and statistical concepts. Much of this can be found in the main
text but still much work is left for the authors and the interested reader.
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CHAPTER 2

Algebraic models

In this chapter we introduce the basic algebraic machinery: rings of poly-
nomials, ideals, varieties and Gröbner bases. The effort is motivated by a
general definition of a model to be given in Section 2.1.

In our definition of model, factors or inputs are denoted by the letter x,
responses or outputs are denoted by y, parametric functions denoted by
θ or functions of θ. These are related by polynomial algebraic relations,
possibly implicit. Another feature of the definition is that constraints of
polynomial type may be included in the specification of the model. Im-
plicit models and the introduction of constraints can lead to the use of
dummy variables. All this requires complex polynomial computations to
be tackled with advanced tools from polynomial ring theory together with
their computer implementation.

In this algebraic framework, the parameters of the model as interpreted in
statistics are functions of any form with the restriction that they belong to a
specified field. For example, Q(θ1, . . . , θp) is the set of all rational functions
in θ1, . . . , θp with rational coefficients. Another example is Q(eθ1 , . . . , eθp),
the set of all exponential rational functions. Parameters are treated as
unknown quantities and in most of the cases they appear in linear form.

The process of actual estimation of parameter values, given observed
values of factors and responses, will be formalised in Chapter 6. For the
purpose of the present chapter it suffices to represent the statistical error
(deviation from the model) by dummy variables.

Our working algebraic space is k[x1, . . . , xs], the commutative ring of
all polynomials in the indeterminates x1, . . . , xs and with coefficients in k,
where k is a field. Most of the time k will be the rational numbers Q, or a
field extension of Q.

There is often no ordering on the indeterminates x1, . . . , xs, in particular
no ordering is necessary when talking of ideals in k[x1, . . . , xs] and varieties
in ks (see Definition 5). Nevertheless in some algebraic and statistical sit-
uations it is necessary to order indeterminates.

Definition 1 An initial ordering is a total order on the indeterminates
x1, . . . , xs.

When the indeterminates are indexed from 1 to s, such as x1, . . . , xs, it is
convention to consider an initial ordering xi � xi+1 for all i = 1, . . . , s− 1.

In certain cases specific knowledge of the problem intervenes in the choice
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of the initial ordering. In Section 3.9 we use the idea of the fan of an ideal to
drop the assumption of having an a priori initial ordering (and in general
a term-ordering, see Section 2.3).

The quantities of the form xα1
1 . . . xαs

s with αi ∈ Z+ for all i = 1, . . . , s
are called terms.
Definition 2 The set of all terms in s indeterminates is denoted by T s.

Note that given an initial ordering a term is specified by the vector of
length s of its exponents. And thus T s is coded by Zs+. Specifically this is
the multi-index representation or log function of Definition 3.
Definition 3 Let x1, . . . , xs be indeterminates and let the initial ordering
be xi � xi+1 for all i = 1, . . . , s− 1. The log operator is the function

log : T s −→ Zs+
xα = (xα1

1 , . . . , xαs
s ) �−→ (α1, . . . , αs)

For example in Q[a, b, c] with the initial ordering a � b � c we represent
the term a7b2 as log(a7b2) = (7, 2, 0) and with the initial ordering b � c � a
as log(a7b2) = (2, 0, 7).

Note that an ordering over Zs+ translates via logarithm into an ordering
over T s. An ordering over T s which is compatible with monomial cancel-
lation is called a term-ordering. Term-orderings are discussed in detail in
Section 2.3 below.

The elements of k[x1, . . . , xs] of the form axα1
1 . . . xαs

s with αi ∈ Z+ for
all i = 1, . . . , s and a in k are called monomials. The term xα1

1 . . . xαs
s is

identified with the monomial axα1
1 . . . xαs

s for a = 1. Finally a polynomial
is a k-linear combination of terms.

A polynomial function is associated to each polynomial f as follows:

f : ks −→ k
(a1, . . . , as) �−→ f(a1, . . . , as)

In our definition a model is described as a set of polynomial equa-
tions. The algebraic variety of the finite set of polynomials f1, . . . , fr in
k[x1, . . . , xs] is the set

Variety(f1, . . . , fr) = {(a1, . . . , as) ∈ ks : fj(a1, . . . , as) = 0, j = 1, . . . , r}
Note that the variety depends on the specified field k. That is, the set

of solutions of the system of equations defining the variety depends on the
space in which the computation is done. For example, the univariate poly-
nomial x2+1 does not have solutions over the real numbers (empty variety)
and has two distinct solutions over the complex number field, namely ±i.

2.1 Models

Definition 4 Let k be a field, called the field of constants. Let K be a field
of functions φ : Θ −→ k, with Θ the set of parameters; K is called the
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POLYNOMIAL IDEALS 17

field of parametric functions. Let x = (x1, . . . , xd) be the control factors,
y = (y1, . . . , yp) be the responses and t = (t1, . . . , th) be dummy variables.
A model is a finite list of polynomials, f1, . . . , fq, h1, . . . , hl, such that fi ∈
K[x, y, t] and hj ∈ k[x, t]. The variety Variety(fi, hj : i = 1, . . . , q; j =
1, . . . , l) ∈ Kd+p+h is called the model variety and the variety Variety(hj) ∈
kd+h is called the input variety.
Example 1 The linear model y = a+ bx is f1 = y− a− bx ∈ Q(a, b)[x, y].
Example 2 The model y = ax1 + bx2 + cx3 over the mixture constraint
x1 + x2 + x3 = 1 becomes f1 = y − ax1 − bx2 − cx3, h1 = x1 + x2 +
x3 − 1 ∈ Q(a, b, c)[x1, x2, x3, y]. Another example of a mixture model is
f1 = θ1x

2
1 + θ2x

2
2 + θ3x3 with the additional constraint x1 + x2 + x3 − 1 in

Q(θ1, θ2, θ3)[x1, x2, x3].

Example 3 The implicit model y =
1

a+ bx
can be written in Q(a, b)[x, y]

as f1 = (a+bx)y−1. The condition that a+bx 
= 0 is included by adjoining
a dummy variable, f1 = (a+ bx)y − 1, f2 = (a+ bx)t− 1 ∈ Q(a, b)[x, y, t].
Example 4 The inverse polynomial model, see McCullagh and Nelder
(1983), is x/y = a + bx. We write f1 = bxy + ay − x ∈ Q(a, b)[x, y].
To represent an unspecified shift of x, a constant c is introduced by writing
f1 = bty + ay − t, f2 = t− x+ c in Q(a, b, c)[x, y, t].
Example 5 In this model we observe the distance from the origin of a
circle with unknown centre (a, b) and radius r in the directions x1, x2. The
model in Q(a, b, r)[x1, x2, y, t1, t2] is

f1 = (t1 − a)2 + (t2 − b)2 − r2

f2 = t1x2 − t2x1

f3 = y2 − t21 − t22

h1 = x2
1 + x2

2 − 1

where f3 gives the observed values, h1 the unit circle, f1 a generic circle
and f2 the mapping between the circles in f1 and h1. This model is implicit
and, in contrast to Example 4, the equations do not define a unique value
of y given the parameters and the indeterminates.
Example 6 In this example the statistical error is represented by dummy
variables. Let t = (η, ε) and f1 = η − a − bx, f2 = y − η − ε, h1 =
x(x− 1)(x− 2). The polynomial f1 models the mean response η = a+ bx,
f2 the deviation from the mean ε = y − η and h1 defines the design points
{0, 1, 2}.

2.2 Polynomial ideals

A basic tool is the algebraic structure called an ideal. A polynomial ideal
formalises the intuitive idea of the algebraic consequences of a system of
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18 ALGEBRAIC MODELS

polynomial equations. Following the notation generally used in algebra,
in the remaining sections of this chapter we indicate indeterminates by
x1, . . . , xs or in short x.

Definition 5

1. A (polynomial) ideal I is a subset of a polynomial ring k[x] closed under
sum and product by elements of k[x]. Specifically the set I ⊂ k[x] is an
ideal if for all f, g ∈ I and h ∈ k[x] the polynomials f + g and hf are in
I.

2. Let F be a set of polynomials. The ideal generated by F is the smallest
ideal containing F . It is denoted 〈F 〉.

3. An ideal I is radical if f ∈ I whenever a positive integer m exists such
that fm ∈ I.

4. The radical of an ideal is the radical ideal defined as
√
I = {f ∈ k[x] : a positive integer m exists such that fm ∈ I}.

Example 7 The set of all one-dimensional polynomials of the form xp(x),
where p ranges over the polynomial ring is a radical ideal. In fact if fm has
a zero constant term, then f has a zero constant term. Notice that the set
{x2p(x)}, p polynomial, is not a radical ideal.

Another example of an ideal is included in the following definition.

Definition 6 The projections of the ideal I with respect to a subset of
indeterminates S is the ideal I ∩k[S]. In particular Ip = I ∩k[xp+1, . . . , xs]
is called the p-th elimination ideal of I.

Elimination ideals are extensively used in elimination theory (see Sec-
tion 2.9), for example to triangularise a system of polynomial equations
and in other important applications.

Let us consider a finite set F of polynomials. All the polynomials gener-
ated via ideal operations form the smallest ideal containing F , that is the
ideal generated by F .

Definition 7 An ideal I is finitely generated if there exist f1, . . . , fr poly-
nomials in k[x] such that for any f ∈ I there exist s1, . . . , sr polynomials
of k[x] such that

f =
r∑

i=1

sifi

We write I = 〈f1, . . . , fr〉 and the set {f1, . . . , fr} is called a basis of I.

The Hilbert basis theorem (see Section 2.5) states that any polynomial
ideal is finitely generated.

We call f =
∑r
i=1 hifi a polynomial combination by analogy with linear

combinations of vectors. In contrast to vector spaces where the elements of
a basis must span and be linearly independent over k, an ideal basis need
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only span. For example, in I = 〈x1, x2〉 ⊂ k[x1, x2] the polynomial f = 0
can be expressed both as f = 0 · x1 + 0 · x2 and f = x2 · x1 − x1 · x2. In
more than one-dimension this lack of independence, due to the fact that
the coefficients are polynomials, is a cause of difficulties, for example in
extending the standard polynomial division algorithm for one dimension.
Moreover, a polynomial in an ideal may be expressed as a polynomial com-
bination of the basis elements in different but equivalent ways. Two bases
of the same ideal are two different but equivalent ways to write the same
set of polynomial equations and it is possible to write one in terms of the
other with ideal operations. Representations over different bases will be
shown to have different statistical interpretations, so that the ability to
move between different representations becomes extremely interesting.

In the last example we note that {x1, x2} is a minimal basis for I, that
is none of its proper subsets is a basis for I. Minimal bases of the same
ideal can consist of different numbers of elements. For example, we have
〈x2, x + x2〉 = 〈x〉 and both are minimal. In one dimension there is a
privileged generator of an ideal 〈f1(x), . . . , fv(x)〉 consisting of a single
element, namely the greatest common divisor or GCD of f1, . . . , fv.

2.3 Term-orderings

Univariate polynomials are linear combinations of univariate terms xn,
which are ordered by their degree. All computations for one-dimensional
polynomials exploit this fact. In more than one dimension it is necessary
to introduce the concept of a term-ordering to order terms. Term-orderings
express a ranking of the algebraic complexity of a model structure.

Note that the terms of T s are naturally pre-ordered according to sim-
plification of terms. For example x2

1x3 precedes x3
1x

2
3 as the “fraction”

x3
1x

2
3

x2
1x3

= x1x3 is still in T s.

Definition 8 A monomial or term-ordering on k[x] is an ordering relation
�τ (or τ or �) on T s, that is the terms of k[x], satisfying

1. xα � 1 for all xα with α 
= 0 and

2. for all α, β, γ ∈ Zs+ such that xα � xβ, then xαxγ � xβxγ .

We will also use the notation xβ ≺ xα for xα � xβ . Note that the restriction
of a term-ordering to the terms of the type xi gives an initial ordering of
the indeterminates of k[x1, . . . , xs]. Definition 8 implies the following.

(i) Any two terms are comparable, that is for any xα, xβ either xα � xβ

or xα = xβ or xβ � xα. This property characterises total orderings.

(ii) There is no infinite descending chain, that is any subset of terms con-
tains a minimum element with respect to the ordering. This property
is known as well ordering.
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20 ALGEBRAIC MODELS

(iii) The ordering is compatible with the simplification of terms, that is
for any pair of terms xα and xβ , if xα divides xβ then xβ � xα.

There are two basic term-orderings.

Example 8 The lexicographic term-ordering for which xα �lex xβ if with
reference to the log representation in the vector α−β the left-most nonzero
entry is positive. That is

xα � xβ if and only if




α1 > β1

or there exists p ≤ s such that
αi = βi for i = 1, . . . , p− 1 and αp > βp

For example for x1 � x2, x1
2x2

5 �lex x1x
12
2 and x2

1x
2
2 �lex x2

1x2. In a
lexicographic ordering an indeterminate dominates over the others.

Example 9 The other basic term-ordering is tdeg or degree reverse lexi-
cographic term-ordering, for which xα �tdeg xβ if

∑s
i=1 αi >

∑s
i=1 βi or∑s

i=1 αi =
∑s
i=1 βi and the right-most nonzero entry of α− β is negative.

That is

xα � xβ if and only if





∑s
i=1 αi >

∑s
i=1 βi

or there exists p ≤ s such that
αi = βi for i = p+ 1, . . . , s and βp > αp

For example x1x
5
2 �tdeg x2

1x
3
2, x2

1 �tdeg x1x2, assuming that x1 � x2. In
the tdeg ordering terms are ordered according to their total degree

∑s
i=1 αi

and terms of the same total degree are ordered with respect to an inverse
lexicographic term-ordering.

Example 10 Let x = (x1, . . . , xs) be the indeterminates and let p be a
positive integer smaller than s. The p-th elimination ordering is a term-
ordering where any monomial containing xj for a j ≤ p is smaller than any
monomial not containing any xj for all j > p. An example is lex, above.
Elimination term-orderings are extensively used in elimination theory.

A term-ordering can be reduced to a lex ordering using the fact that each
ordering corresponds to a (non unique) array M(τ) of integer vectors. The
theory of term-ordering classification via matrices is developed in Robbiano
(1985), and Adams and Loustaunau (1994). Here we simply state that for
the term-orderings of interest in this work the matrix M(τ) has full rank
and for all monomials xα the condition xα�τ1 is equivalent to the fact that
in every column of M(τ) the first non-null entry is positive.

The matrix M(τ) together with the log function determine τ as follows:
for a given term-ordering we have that �τ xα �τ xβ if and only if

M(τ) · α �lex M(τ) · β
referring to the lexicographic ordering over Zs+. That is if and only if the
first non-null component of M(τ)·(α−β) is positive. Notice that because of
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Table 2.1 Term-orderings in three dimensions. Initial ordering is x1 � x2 � x3.

Name Matrix Polynomial

lex




1 0 0
0 1 0
0 0 1


 x2

1x2 + x1x
2
2 + x1x2x3 − x†1

deglex




1 1 1
1 0 0
0 1 0


 x2

1x2 + x1x
2
2 + x1x2x3 − x†1

tdeg




1 1 1
0 0 −1
0 −1 0


 x2

1x2 + x1x
2
2 + x1x2x3 − x†1

elimination
ordering of
x2




0 1 0
1 0 1
0 0 −1


 x1x

2
2 + x2

1x2 + x1x2x3 − x†1

†
The polynomials are written with respect to the ordering in the same row.

the matrix M(τ) ordering monomials reduces to a collection of inequalities.

Definition 9 A grading is a mapping from the monomials T s to non-
negative integers Z+, additive in the exponents and such that the grading
of 1 is zero.

Example 11

(i) The total degree, sum of exponents, is a grading defined by grad(xα) =∑s
i=1 αi.

(ii) The partial degree grading is defined by grad(xα) =
∑
i∈I αi where

I ⊂ {1, . . . , s}.

If the first row of the matrix associated to a term-ordering τ is the vector
(1, . . . , 1), then τ is a total degree-compatible term-ordering, that is it takes
into account the total degree of terms. In general the first row of a term-
ordering matrix defines a grading with respect to which the term-ordering
is compatible. Table 2.1 shows the most important term-orderings for three
indeterminates.

Example 12 [Block orderings] Let M(τ) be a matrix for the term-ordering
τ on k[x1, . . . , xh] and let N(σ) be the matrix for the term-ordering σ on
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k[y1, . . . , yi]. Then, the matrix
[
M(τ) 0

0 N(σ)

]

represents a term-ordering on k[x1, . . . , xh, y1, . . . , yi] such that xα � yβ

for all α and β.

Definition 10 Let τ be a term-ordering on k[x] and f a polynomial in
k[x]. The leading term of f , LTτ (f) is the largest term with respect to τ
among the terms in f . The leading coefficient, LCτ (f) is the coefficient of
LTτ (f). The leading monomial, LMτ (f) is the product LCτ (f) LTτ (f).

Example 13 For f = 3x1x
2
2x3 + 1

2x1x2x
2
3 + 3x2

1 ∈ Q[x1, x2, x3] with
tdeg(x2 � x1 � x3) we have LT(f) = x1x

2
2x3 and with lex(x1 � x2 � x3)

we have LT(f) = x2
1. In both cases the leading coefficient is 3.

A term-ordering � on the terms of k[x] induces naturally a pre-total
ordering on the set of all polynomials k[x] given by the leading terms: for
f, g ∈ k[x] we have f ≥ g if LT(f) � LT(g).

2.4 Division algorithm

The operations over k[x] we mostly use are sum, product with scalar, prod-
uct of polynomials and polynomial division, and in particular simplifica-
tion of monomial fractions. The first three operations are natural while
polynomial division still needs to be discussed and requires the notion of
term-ordering. In the univariate case division and the division algorithm
for polynomials are well known and summarised in the following theorem.

Theorem 1 For every pair of polynomials, f and g in one indeterminate,
there exist unique polynomials, sg, r ∈ k[x] such that LT(r) ≺ LT(g) and
f = sgg + r, where the leading terms are with respect to the only term-
ordering in one dimension. The division algorithm returns sg and r.

In more than one dimension the situation is more complex.

Theorem 2 Let f, g1, . . . , gt be in k[x] and τ a term-ordering. There exist
s1, . . . , st ∈ k[x] and r ∈ k[x] such that

f =
t∑

i=1

sigi + r

and LTτ (r) is not divisible by any of the LTτ (gi) for i = 1, . . . , t.

Section 2.12.
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Definition 11 The polynomial r of the previous two theorems is called
the remainder. Sometimes instead of r we write Rem(f, {g1, . . . , gt}) or
Rem(f,G) where G is a finite set of polynomials: G = {g1, . . . , gt}.

The sum
∑t
i=1 sigi is an element of the ideal generated by the gi’s.

Neither si or r are uniquely defined. Indeed in more than one dimension
the division is not a proper operation over the polynomial ring since, in
general, its output is not unique, as the following example shows

x2y + xy2 + y2 = (x+ 1)(y2 − 1) + x(xy − 1) + 2x+ 1

giving r = 2x+ 1 if we divide first by y2 − 1 and

x2y + xy2 + y2 = (x+ y)(xy − 1) + (y2 − 1) + x+ y + 1

giving r = x+ y + 1 if we divide first by xy − 1.
The division decomposes a polynomial in two parts: the first part has

to do with the description of ideals, in particular, design ideals (see Sec-
tion 3.1), and the second part, the remainder, has to do with the reduction
of models.

Over the variety generated by g1, . . . , gt, f = r. Indeed r is a represen-
tation of f over the variety generated by the gi’s but of lower algebraic
complexity with respect to the given term-ordering, since the leading term
of r is smaller than the leading term of f .

When r = 0 then f belongs to the ideal I generated by the gi’s, and
this is the solution to the so-called ideal membership problem, standard
in algebraic geometry. Unfortunately, as the remainder is not unique, if a
computed r is not zero, we cannot conclude whether f belongs to the ideal
I. Then, a complete solution would involve the computation of all possible
remainders. But we shall see that we can avoid this by introducing a special
class of bases for ideals called Gröbner bases for which the remainder is
unique regardless of the computation. Even in this case the si’s remain
non unique.

2.5 Hilbert basis theorem

We start with a particular type of ideal which has independent interest.

Definition 12 A monomial ideal is a polynomial ideal I generated by a
(possibly infinite) set of monomials, in the multi-index notation

I = 〈xα : α ∈ A ⊂ Zd+〉
Example 14 The set generated by the leading terms of an ideal is a mono-
mial ideal and we write 〈LT(I)〉 = 〈LT(f) : f ∈ I〉.
Example 15 As another example consider the ideal I = 〈x4

1x
6
2, x

5
1x

5
2, x

6
1〉

in k[x1, x2]. An element of I is a k-linear combination of the monomials in
the right side of the leading edge in Figure 2.1.
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1 x1 x2
1 x3

1 x4
1 x5

1 x6
1

x2

x2
2

x3
2

x4
2

x5
2

x6
2

Figure 2.1 Example of monomial ideal.

Theorem 3 (Dickson’s Lemma) Every monomial ideal has a finite
basis of monomials.

Proof. The proof of this important theorem can be found in any introduc-
tory book of algebraic geometry, see for example Cox, Little and O’Shea
(1997).

A very important consequence of the Dickson’s Lemma is its extension
to polynomial ideals known as the Hilbert basis theorem. The proof will
accustom us to the language and techniques of algebraic geometry.
Theorem 4 (Hilbert Basis Theorem) Every ideal in k[x] has a finite
basis.

Proof. Let a term-ordering on k[x] be fixed. The set 〈LT(I)〉 = 〈LT(g) :
g ∈ I〉 is a monomial ideal. The Dickson’s lemma states that there exist t
polynomials g1, . . . , gt ∈ I such that the ideal generated by their leading
terms is the ideal generated by the leading terms of I, that is 〈LT(I)〉 =
〈LT(g1), . . . ,LT(gt)〉.

We want to prove that 〈g1, . . . , gt〉 = I. Clearly 〈g1, . . . , gt〉 ⊆ I. We prove
the converse by contradiction. From the division algorithm f ∈ I can be
written as f =

∑t
i=1 αigi + r where r is not divisible by any of LT(gi), i =

1, . . . , t. But also r = f −∑t
i=1 αigi ∈ I thus LT(r) ∈ 〈LT(g1), . . . ,LT(gt)〉,

which is a contradiction. Thus I ⊆ 〈g1, . . . , gt〉.
We anticipate the fact that the basis found in the proof of Theorem 4 is

a Gröbner basis.
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2.6 Varieties and equations

Varieties are the geometric counterparts of polynomial ideals. As we have
already noticed, a system of polynomial equations is associated with a
variety and with an ideal. The link between varieties and ideals is so strict
that many problems arising in the context of varieties can be analyzed
using techniques from ideal theory and vice versa.

Since any polynomial in the ideal generated by f1, . . . , fr ∈ k[x] van-
ishes on the elements of {x ∈ k[x] : f1(x) = . . . = fr(x) = 0}, the following
definition is well posed.
Definition 13
(i) Let S be a subset of ks. The set of polynomials defined by

Ideal (S) = {f ∈ k[x1, . . . , xs] : f(a1, . . . , as) = 0
for all (a1, . . . , as) ∈ S }

is an ideal called ideal of S.
(ii) The variety generated by a polynomial ideal I ⊆ k[x1, . . . , xs] is

Variety(I) = {(a1, . . . , as) ∈ ks : f(a1, . . . , as) = 0 for all f ∈ I}
A subset of ks which is a variety of a polynomial ideal in k[x1, . . . , xs]
is called a variety.
For I = 〈f1, . . . , fs〉 we write Variety(I) or Variety(f1, . . . , fs). This no-

tation is consistent with the previous one because a point is a zero for
the system of polynomial equations if and only if it is a zero for all the
polynomials in the ideal generated by the system of polynomial equations.

Another way to describe Ideal (S) is as the set of all polynomials interpo-
lating the value zero at the points in S. To select one of these polynomials
of minimum degree (in some sense) we need a term-ordering. The choice
of a term-ordering is a major issue in multi-dimensional interpolation. To
understand this point, note that there are many one-dimensional curves
through three points in general position in three dimensions. For example
both the following curves pass through the points (1, 1, 0), (0, 0, 0), (1, 0, 1)





x1 − x2 − x3 = 0
x2

2 − x2 = 0
x2

3 − x3 = 0
x2x3 = 0





x3 + x2 − x1 = 0
x2

2 − x2 = 0
x2x1 − x2 = 0
x2

1 − x1 = 0

(2.1)

Let S be a set and consider Ideal (S). In general the variety of such
an ideal, Variety(Ideal (S)), is bigger than S and coincides with S if and
only if S is a variety. It is called the closure of S, S̄ as it is the smallest
variety containing S. For example for S = {(a1, a1) ∈ R2 : a1 > 0},
Ideal (S) is the ideal generated by 〈x2〉 ∈ R[x1, x2] and Variety(Ideal (S)) =
{(a1, a1) ∈ R2 : a1 ∈ R}. This shows that in general subsets of ks described
by inequalities cannot be represented as varieties.
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Theorem 5 The ideal I generated by a set is radical.

Proof. This is a simple check.

In some cases Theorem 5 can be used to compute the radical of an ideal
as the following univariate example shows.

Example 16 Let us consider the ideal I generated by f = (x2 − 4)3(x2 +
1)(x3−7)2 in Q[x]. The generator f is not square-free and using the unique
factorisation of polynomials it is easy to show that the radical ideal of I is
generated by (x2−4)(x2+1)(x3−7). On the other side the variety V (f) over
the rationals is {−2, 2} and the Ideal (Variety(f)) is generated by x2 − 4.
Thus the ideal 〈(x2 − 4)(x2 + 1)(x3 − 7)〉 is strictly bigger than

√
I. Over

the algebraically closed field C all the roots of the equation f = 0 belong to
the variety generated by f and the equality Ideal (Variety(f)) =

√
Ideal (f)

holds. We have the following famous theorem.

Theorem 6 (Strong Nullstellensatz) For a polynomial ideal
√
I ⊂ Ideal (Variety(I))

When the coefficient field is algebraically closed Ideal (Variety(I)) =
√
I.

In particular Ideal (Variety(I)) is radical.

Proof. See Cox, Little and O’Shea (1997).

The Strong Nullstellensatz theorem implies that two ideals generate the
same variety if and only if their radicals are equal. For the importance of
the role played by the hypothesis of algebraic closure see Example 16.

Example 17 [Continuation of Example 16] Any polynomial ideal with
complex coefficients I = 〈f1, . . . , fs〉 ⊂ C[x] is generated by one element
(that is C[x] is principal) and in particular f = GCD(f1, . . . , fs), the great-
est common divisor, is a basis for I. Since C is algebraically closed, f is
uniquely factorised as f = c(x− a1)r1 · · · (x− ap)rp for some c, ai ∈ C and
ri ∈ Z+, i = 1, . . . , p. The square-free part of f is fred = c(x− aa) · · · (x−
ap). Then Variety(f1, . . . , fs) = Variety(f) = {a1, . . . , as} and the Strong
Nullstellensatz theorem becomes

Ideal (Variety(f1, . . . , fs)) = Ideal (Variety(f)) = 〈fred〉
The above sections allow us to develop further the notion of the model

introduced in Definition 4.

Definition 14 Given a model f1, . . . , fq, h1, . . . , hl the model ideal is the
ideal of the model variety and the design ideal is the ideal of the design
variety. Alternative terminology is support ideal and ideal of points.

Definition 15 Two models are algebraically equivalent if they generate the
same variety.
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Above we discussed that the converse to definition 15 is not true in general.
Example 18 [Continuation of Example 4] The model

f1 = bxy + ay − x
h1 = x2 − x

generates the variety

S = {(0, 0), (1,
1

a+ b
)} ⊂ Q(a, b)2, a 
= 0

The ideal generated by S is

〈(a+ b)y − x, x2 − x〉 ⊂ Q(a, b)[x, y]

Again f1 with the constraint h1 = x2 − 1 gives the variety

S = {(−1,
1

a− b
), (1,

1
a+ b

)} ⊂ Q(a, b)2

In turn, S generates the model

〈(a2 − b2)y + bx− a, x2 − 1〉
In both cases the model obtained is explicit.

In the previous discussion we warned that the initial description of the
model as in Definition 4 was not suitable for generating the model ideal and
the design ideal. It is necessary in some cases to compute a new basis, that
is an equivalent model, generating the same variety in order to generate
the appropriate ideal. This is done in the following sections.

In our interpretation, the design set of a model is a variety. This set can
be either a continuous surface or a finite set of design points. A finite set
of points is always a variety. Such a variety is called a zero-dimensional
variety. In Chapter 3 we see how to build the ideal for set of points as
experimental designs.

We note, without further explanation beyond the scope of the book, that
the dimension of a finite set of points is zero, the dimension of a curve is one
and of a surface is two. For the exact definition of dimension of a variety
we refer to the standard texts, for example Cox, Little and O’Shea (1997).

2.7 Gröbner bases

The Hilbert basis theorem states that any ideal is finitely generated, even if
the generating set is not necessarily unique. After the proof of Theorem 4 we
mentioned that the basis found was of a special type called Gröbner basis,
which we introduce now. The concept of leading term is again essential.

Definition 16 Let τ be a term-ordering on k[x]. A subset G = {g1, . . . , gt}
of an ideal I is a Gröbner basis of I with respect to τ if and only if

〈LTτ (g1), . . . ,LTτ (gt)〉 = 〈LTτ (I)〉
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where LTτ (I) = {LTτ (f) : f ∈ I}.
In general the following inclusion holds

〈LT(g1), . . . ,LT(gt)〉 ⊆ 〈LT(I)〉
and unless {g1, . . . , gt} is a Gröbner basis, the inclusion may be strict.
Indeed in 〈x3

1−2x1x2, x
2
1x2−2x2

2 +x1〉 ⊂ Q[x1, x2] with the tdeg(x1 � x2)
ordering we have that x2

1 ∈ 〈LT(I)〉 but x2
1 /∈ 〈LT(x3

1 − 2x1x2),LT(x2
1x2 −

2x2
2 + x1)〉 = 〈x3

1, x
2
1x2〉.

Example 19 Clearly a Gröbner basis of the one-dimensional ideal I =
〈f1, . . . , ft〉 is the greatest common divisor of f1, . . . , ft with respect to the
only term-ordering for one-dimensional monomials: for n,m ∈ Z+ xn � xm

if and only if n > m.

Theorem 7 Given a term-ordering, every ideal except {0} has a Gröbner
basis and any Gröbner basis is a basis.

Proof. This follows from the proof of Theorem 4.

In particular Gröbner bases are finite sets of polynomials.
In the definition of a Gröbner basis we cannot relax the requirement for

a fixed term-ordering.

Example 20 The Gröbner basis of 〈x2
1 − 2x1x3 + 5, x1x

2
2 + x2x

3
3, 3x

2
2 −

8x3
3〉 ∈ Q[x1, x2, x3] with respect to lex (x2 � x1 � x3) is





3x2
2 − 8x3

3,

80x2x3
3 − 3x3

8 + 32x3
7 − 40x3

5

x1
2 − 2x1x3 + 5

−96x3
7 + 9x3

8 + 120x3
5 + 640x3

3x1

240x3
6 + 1600x3

3 − 96x3
8 + 9x3

9

and with respect to tdeg(x2 � x1 � x3) is




x1
2 − 2x1x3 + 5

−3x2
2 + 8x3

3

8x1x2
2 + 3x2

3

Moreover an ideal can have different Gröbner bases with respect to the
same ordering. Both {x2

2 − x2x1, x
2
1} and {x2

2 − x1x2 + x2
1, x

2
1} are Gröbner

bases with respect to tdeg(x2 � x1) of the same ideal. We shall see that
given a term-ordering an ideal has a unique reduced Gröbner basis (see
Definition 18).

Definition 17 A minimal Gröbner basis is a Gröbner basis such that (i)
LC(g) = 1 for all g ∈ G and (ii) for all g ∈ G, LT(g) does not lie in
〈LT(G \ {g})〉.
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A minimal Gröbner basis is minimal in the sense that none of its proper
subsets is a basis for the same ideal.

Definition 18 A reduced Gröbner basis is a Gröbner basis such that (i)
LC(g) = 1 for all g ∈ G and (ii) for all g ∈ G, no term of g lies in
〈LT(G \ {g})〉.

Basically, any term of any polynomial in a reduced Gröbner basis is
essential. Clearly a reduced Gröbner basis is minimal.

2.8 Properties of a Gröbner basis

The link between Gröbner bases and the division algorithm is expressed by
the following theorem. Again, the proof is instructive for the techniques of
algebraic geometry we use.

Theorem 8 Let I ⊂ k[x] be an ideal, τ a term-ordering, G = 〈g1, . . . , gt〉
a Gröbner basis for I and f ∈ k[x]. Then, there exist a unique remainder
r ∈ k[x] and a polynomial g ∈ I such that (i) f = g + r and (ii) no term
of r is divisible by one of LT(g1), . . . ,LT(gt).

Proof. The existence of g and r follows from the division algorithm with
respect to the Gröbner basis (see Section 2.12). The uniqueness is proved
by contradiction. Let f = r1 + g1 = r2 + g2, then r1 − r2 = g2 − g1 ∈ I.
In particular LT(r1 − r2) ∈ 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉 since G is a
Gröbner basis. That is LT(r1 − r2) is divisible by some of the LT(gi) but
this is impossible since no term of r1 and no term of r2 has this property.
Thus r1 − r2 = 0 and r1 = r2. The uniqueness of g follows from the
uniqueness of r.

Unfortunately the uniqueness of the remainder r does not imply the
uniqueness of the decomposition over a Gröbner basis as the following ex-
ample shows.

Example 21 The set {x2 − x3, x1 + x3} is a Gröbner basis in k[x1, x2, x3]
with respect to any ordering (Gröbner bases with this property are called
total Gröbner bases). The following two identities prove the assertion

x1x2 = x2(x1 + x3) + (−x3)(x2 − x3) + (−x2
3)

x1x2 = x1(x2 − x3) + (+x3)(x1 + x3) + (−x2
3)

Given a term-ordering, a τ -Gröbner basis and a polynomial, the remain-
der in Definition 11 is called normal form. It is computed in Maple and
CoCoA by the command normalf and NF, respectively.

A most important consequence of Theorem 8 is the ideal membership
test.

Corollary 1 Let I be an ideal in k[x], G be a Gröbner basis of I and f a
polynomial in k[x]. Then, f ∈ I if and only if Rem(f,G) = 0.
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Theorem 9 Given a term-ordering, any non-empty ideal I of k[x] has a
unique reduced Gröbner basis.

Proof. To prove the uniqueness consider two reduced Gröbner bases of I,
G1 and G2. By definition (in particular point (ii) in Definition 18) they have
the same number of elements and the sets of their leading terms coincide:
LT(G1) = LT(G2). In particular for all g1 ∈ G1 there exists g2 ∈ G2 such
that LT(g1) = LT(g2) and this is a one-to-one correspondence. We have
to prove g1 = g2. On the one hand, since g1 − g2 ∈ I we have Rem(g1 −
g2, G1) = 0. On the other hand, none of the terms in g1 − g2 is divisible by
any of the leading terms of the G1. This implies Rem(g1−g2, G1) = g1−g2
and concludes the proof of the uniqueness of reduced Gröbner bases.

For the proof of the existence of reduced Gröbner bases see Cox, Little
and O’Shea (1997).

The following theorem lists features of Gröbner bases we shall refer to.

Theorem 10 Let I be an ideal in k[x] and τ a term-ordering. The follow-
ing statements are equivalent.

1. G = {g1, . . . , gt} is a Gröbner basis for I.

2. For all f ∈ I \ {0} there exists an element gi ∈ G such that LT(gi)
divides LT(f).

3. 〈LT(I)〉 = 〈LT(G)〉.
4. For all f ∈ I we have Rem(f,G) = 0 (ideal membership).

5. Any element f ∈ I is decomposed over G in the following way

f =
t∑

i=1

figi and LT(f) = max(LT(fi) LT(gi))

6. For any polynomial f ∈ k[x] there exists unique Rem(f,G) (remainder
theorem).

Proof. For the proof see Adams and Loustaunau (1994).

We conclude this section with the important remark that Gröbner bases
are computational objects. The first algorithm to compute Gröbner bases
is due to Buchberger (1966). Independently in 1964 H. Hironaka described
a similar concept to Gröbner bases he called “standard bases.” In Sec-
tion 2.12.3 we present a version of the Buchberger algorithm.
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2.9 Elimination theory

Gröbner bases with the lex ordering are especially used to solve systems
of polynomial equations. The more general use of Gröbner bases to solve
systems of equations is called elimination theory. A main theorem used in
elimination theory is the Weak Nullstellensatz.

Theorem 11 (Weak Nullstellensatz) Let k, the coefficient field, be al-
gebraically closed, then Variety(I) = ∅ if and only if I = k[x].

Proof. See Cox, Little and O’Shea (1997).

The problem of whether a system of polynomial equations f1 = . . . =
fv = 0 has a solution is called the consistency problem. In terms of vari-
eties this is equivalent to asking whether the variety Variety(f1, . . . , fv) is
empty. Because of the Weak Nullstellensatz Theorem and the uniqueness of
reduced Gröbner bases, over algebraically closed fields there is no solution
to the system if and only if the reduced Gröbner basis (with respect to any
term-ordering) of the polynomial ideal associated to the system is {1}. In
a non-algebraically closed field the condition is sufficient but not necessary,
a counter example is that 1 + x2 = 0 has no solution in R but

{
x2 + 1

}
is

a reduced Gröbner basis.

Theorem 12 Let τ be a p-th elimination term-ordering of the indetermi-
nates xp+1, . . . , xs. Let g1, . . . , gt be a Gröbner basis of the ideal I. Then

{g1, . . . , gt}
⋂

k[xp+1, . . . , xs]

is a Gröbner basis of the elimination ideal I
⋂
k[xp+1, . . . , xs].

Proof. See Cox, Little and O’Shea (1997).

The elimination theory implies that to solve the system of polynomial
equations f1 = . . . = fv = 0 one can first find a reduced Gröbner basis of
the ideal 〈f1, . . . , fv〉 with respect to the lex ordering. Call this {g1, . . . , gt}.
The new system of equations g1 = . . . = gt = 0 has essentially a triangular
form, which can be solved by backward substitution, and the two systems
have the same solutions since they generate the same ideal.

Example 22 With respect to the term-ordering lex (x1 � x2 � x3) the
Gröbner basis of f1 = x2

1 − x2
2, f2 = x1 + x2

2 + x2
3, f3 = x3 + x1 + x2 is





g1 = x1 + x2 + x3

g2 = x2
2 + x2

3 − x2 − x3

g3 = x2
3 + 2x2x3

g4 = −2x2
3 + 5x3

3

And the system f1 = f2 = f3 = 0 can be solved by solving the triangular
system g1 = g2 = g3 = g4 = 0.
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Other examples of applications of elimination theory will be given in
Chapter 3 where it is an essential tool in the construction of design ideals.

Let us now consider the variety associated to the projection ideal.

Theorem 13 Let V be a variety and Ideal (V ) its ideal. Let π be the pro-
jection of ks onto the last coordinates xp+1, . . . , xs. Then

Ideal (π(V )) = Ideal (V )
⋂

k[xp+1, . . . , xs]

Proof. Let g1, . . . , gt be a Gröbner basis of Ideal (V ) with respect to a term-
ordering as in Theorem 12. Then, the basis has the structure

g1(xp+1, . . . , xs)
...
gl(xp+1, . . . , xs)
gl+1(x1, . . . , xs)
...
gt(x1, . . . , xs)

where g1, . . . , gl is a Gröbner basis of Ideal (V )
⋂
k[xp+1, . . . , xs] and the

polynomials g1, . . . , gt form a Gröbner basis of Ideal (V ). If a ∈ π(V ) and
a = (a1, . . . , as) ∈ V then gi(ap+1, . . . , as) = 0 for i = 1, . . . , l and all
elements of Ideal (V )

⋂
k[xp+1, . . . , xs] are zero on such points. This shows

that

Ideal (π(V )) ⊂ Ideal (V )
⋂

k[xp+1, . . . , xs]

Now assume f ∈ k[xp+1, . . . , xs] is in Ideal (V ). Then, for all a ∈ V ,
f(a) = 0 so that f ∈ Ideal (V ). Note that ¯π(V ) = Variety(Ideal (π(V ))) =
Variety (Ideal (V ) ∩ k[xp+1, . . . , xs]).

Example 23 The reduced Gröbner basis for the model in Example 4 and
with respect to the term-ordering lex (t � x � y) is

{
(yb− 1)(x− c) + ya
t− x+ c

where the polynomial relationship linking input (x) and output (y) is
given by the first polynomial. The Gröbner basis with respect to the term-
ordering lex (x � y � t) giving the representation of the model remains the
same.

Example 24 For Example 5 the first two polynomials in the Gröbner basis
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with respect to lex (t1 � t2 � y � x1 � x2) give the input/output relation




x1
2 + x2

2 − 1,
2y2b2 + 2a2b2 − 2a2r2 + y4 + r4 − 2b2r2 − 2y2r2 + 4x2

2y2a2 + a4

− 2y2a2 + b4 − 8aby2x1x2 − 4x2
2y2b2,

ax1x2y
2 + ax1x2b

2 + x1x2a
3 − ax1x2r

2 + 2a2t2x2
2 − 2a2t2

+ 2b2x2
2t2 − bx2

2y2 − b3x2
2 + bx2

2r2 − bx2
2a2,

2at2x1 + 2bx2t2 − x2y
2 − x2b

2 + x2r
2 − x2a

2,

t2y
2 + t2b

2 + a2t2 − t2r
2 − 2ax1x2y

2 − 2bx2
2y2,

t2
2 − x2

2y2,
−y2 + 2t1a− a2 + 2t2b− b2 + r2

2.10 Polynomial functions and quotients by ideals

Quotients by ideals play a key role in the algebraic theory of identifiability
of Chapter 3. The ring-isomorphism between polynomial functions over a
variety and quotients by the variety ideal justifies the theory.

Definition 19 Let V ⊂ ks be a variety. A function

Φ : V −→ k

is a polynomial function (or mapping) if there exists a polynomial f ∈
k[x1, . . . , xs] such that

Φ(a1, . . . , as) = f(a1, . . . , as)

for all points (a1, . . . , as) in V . The polynomial f is said to represent Φ.
The collection of polynomial functions over V is denoted by k[V ]. The poly-
nomials that represent the same Φ are said to be confounded over V .

Notice that two polynomials f and g ∈ k[x] represent the same polyno-
mial function on V if and only if f − g ∈ Ideal (V ).

The set k[V ] is an Abelian ring with the following operations:

(Φ + Ψ)(a) = Φ(a) + Ψ(a)
(Φ · Ψ)(a) = Φ(a) · Ψ(a)
(αΦ)(a) = α(Φ(a))

where α ∈ k, Φ,Ψ ∈ k[V ] and a ∈ V . Moreover if f represents Φ and g
represents Ψ then f + g represents Φ + Ψ and f · g represents Φ · Ψ.

Definition 20 Let I be an ideal in k[x]. The quotient of k[x] modulo I is
defined as

k[x]/I = {[f ] : f ∈ k[x]}
where we define [f ] = {g ∈ k[x] such that f − g ∈ I}.
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The set k[x]/I has the algebraic structure of a k-algebra. For all f and
g in I and a scalar α in k we have the following definitions

[f ] + [g] = [f + g]
[f ][g] = [fg]
α[f ] = [αf ].

If the ideal I is generated by a variety V , then we have that f ≡ g
modulo Ideal (V ), that is [f ] = [g] if and only if f and g define the same
polynomial function V . This connection is exploited in the next theorem.

Theorem 14 The sets k[x]/ Ideal (V ) and k[V ] are ring isomorphic.

Proof. See Cox, Little and O’Shea (1997).

The division algorithm allows us to produce simple representations of
equivalence classes for congruence modulo an ideal. Given a Gröbner basis
of the ideal, two polynomials f and g are equivalent if and only if they have
the same remainder with respect to the Gröbner basis. This congruence is
carried over to the set of polynomial functions over the variety defined by
the ideal. The next theorem reinterprets the division and the form of the
remainder in this context.

Theorem 15 Let a term-ordering on k[x], τ be fixed and let I be an ideal
in k[x].
1. Every f ∈ k[x] is congruent modulo I to a unique polynomial r which

is a k-linear combination of the monomials in the complement of the
monomial ideal 〈LT(I)〉.

2. The elements of the set A = {xα : xα /∈ 〈LTτ (I)〉} are linearly indepen-
dent modulo I, that is modulo Ideal (V )

∑

x∈A
cαx

α = 0 with cα ∈ k

if and only if cα = 0 for all α.

Proof. See Cox, Little and O’Shea (1997).

That is k[x]/I is isomorphic as k-vector space to

Span(xα : xα /∈ 〈LT(I)〉)
Notice that the property xα /∈ 〈LT(I)〉 is derived finitely by checking that
xα does not divide any of the leading terms of the reduced Gröbner basis
of the ideal with respect to τ .

Different term-orderings give different bases for the above set. But they
have all the same cardinality since Span(xα : xα /∈ 〈LTτ (I)〉) are all k-
vector spaces isomorphic to k[x]/I. For example the left-hand system of
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polynomial equations in (2.1) gives a Gröbner basis with respect to the
lex (x1 � x2 � x3) term-ordering and the right-hand system is a Gröbner
basis with respect to the lex (x3 � x2 � x1) term-ordering. Of course they
represent the same ideal I. In both cases the dimension as a Q-vector
space of Q[x1, x2, x3]/I is 3. On the left-hand side, Q[x]/I is represented
with {1, x3, x2} and on the right-hand side, with {1, x1, x2}.

The above holds also for nonzero-dimensional ideals. The vector space
basis of the quotient ring plays a crucial role in this book. The last result
in this chapter characterises zero-dimensional varieties via the structure of
ideal bases and the structure of the quotient space.
Theorem 16 Let τ be a term-ordering and let k be algebraically closed.
Let V = Variety(I) be a variety over k[x] and G a Gröbner basis for I.
The following statements are equivalent.
1. V is finite.
2. For each i = 1, . . . , s there is mi > 0 and g ∈ G such that xmi

i = LT(g).
3. The k-vector space k[x1, . . . , xs]/I is finite-dimensional.

Proof. See Cox, Little and O’Shea (1997).

By the two previous theorems it follows that
Theorem 17 The vector space basis {xα : xα /∈ 〈LT(I)〉} has N elements
if and only if V has N elements.

Theorem 16 characterises zero-dimensional ideals. In particular it follows
that algorithmically the operations over the quotient space k[x]/I can be
performed via Gröbner bases and the remainder theorem (Theorem 10,
Item 6). For example let G be a Gröbner basis for I then [f+g] = Rem(f+
g,G) modulo I.

2.11 Hilbert function

In this book we will not discuss the notion of dimension of a variety, briefly
mentioned in Section 2.6. Nevertheless in Section 3.11 we use the Hilbert
function which is at the basis of the definition of dimension of a variety.
Definition 21 Let I be a polynomial ideal and s a non-negative integer.
The set of polynomials in I of total degree less that or equal to s is indicated
with I≤s.
Example 25 For the trivial ideal I = k[x1, . . . , xd], I≤1 is the set of linear
forms in x1, . . . , xd indeterminates.
Definition 22 Let I be an ideal in k[x1, . . . , xd] and s a non-negative in-
teger. The affine Hilbert function of I is the integer function

aHFI(s) = dim(k[x1, . . . , xd]≤s) − dim(I≤s)

where dim(V ) is the dimension of the vector space V .
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Definition 23 An ordering � such that
∑d
i=1 αi >

∑d
i=1 βi implies x

α �
xβ is called a graded ordering.

Theorem 18 Let I be an ideal in k[x1, . . . , xd] different from {0} and
k[x1, . . . , xd]. The following holds

(i) Let I be a monomial ideal. Then aHFI(s) is the number of mono-
mials of total degree less than or equal to s in the quotient space
k[x1, . . . , xd]/I.

(ii) For all sufficiently large s the affine Hilbert function of I is the poly-
nomial

aHFI(s) =
d∑

i=0

bi

(
s

d− i

)

where bi are integers and b0 is positive. Such a polynomial is called
the affine Hilbert polynomial.

(iii) If I is a monomial ideal then the degree of the polynomial in (ii)
above is the maximum of the dimensions of the coordinate subspaces
contained in Variety(I).

(iv) For a graded ordering the affine Hilbert function of 〈LT(I)〉 and I
coincide.

(v) The affine Hilbert polynomials of I and its radical have the same
degree.

(vi) Given a design D with li levels in the xi, the Hilbert function of the
design ideal, Ideal(D) is zero for s >

∑d
i=1(li − 1).

Proof. For Items (i), (ii), (iii), (iv) and (v) see Cox, Little and O’Shea
(1997). Item (vi) follows directly form (i).

2.12 Further topics

2.12.1 Division algorithm

At each step of the division algorithm in one dimension, the term of max-
imum degree (the leading term) of the dividend is well defined and it is
divided by the leading term of the divisor. The notion of term-ordering
makes possible the division algorithm for multi-dimensional polynomials
by allowing us to select leading terms. The simplification of monomials is
the foundation of the division algorithm. Thus we recall that xα divides xβ

if and only if all the components of α − β are greater or equal to 0. See
Definition 8, Item 2.

An example shows how the division algorithm works. In Q[x1, x2, x3]
with the tdeg(x1 � x2 � x3) ordering we want to divide x3

1x3x
2
2 + x2 by
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Table 2.2 Division algorithm.

Input g1, . . . , gt and f
Output s1, . . . , st and r such that 1. f =

Pt
i=1 sigi + r

2. LT(r) is not divisible by LT(gi)

begin s1 = s2 . . . = st := 0
r := 0
p := f

while p �= 0 do
i := 1
Division Occured := FALSE
while i ≤ t and Divison Occurred = FALSE do

if LT(gi) divides LT(p) then
si := si + LT(p)/ LT(gi)
p := p − LT(p)/ LT(gi)gi

Division Occured := TRUE
else

i := i + 1
if Division Occurred = FALSE then

r := r + LT(p)
p := p − LT(p)

end

x1x2 + x3, x1x3 and x3 in the given sequence. The scheme is as follows

s1 : x2
1x3x2 − x1x

2
3

s2 : x2
3

s3 :
g1 : x1x2 + x3 x3

1x3x
2
2 + x2

g2 : x1x3 x3
1x3x

2
2 + x2

3x
2
1x2

g3 : x3 − x2
1x

2
3x2 + x2

−x2
1x

2
3x2 − x1x

3
3

− x1x
3
3 + x2

−x1x
3
3

x2

First we notice that LT(x3
1x3x

2
2 +x2) is divided by LT(x1x2 +x3) giving

x2
1x3x2. We multiply it by x1x2 +x3 and subtract from x3

1x3x
2
2 +x2 getting

x3
1x3x

2
2+x2 = (x1x2+x3)x2

1x3x2+(−x2
1x2x

2
3+x2). Again LT(−x2

1x2x
2
3+x2)

is divided by LT(x1x2+x3) and we have x3
1x3x

2
2+x2 = (x1x2+x3)(x2

1x3x2−
x1x

2
3) + (x1x

3
3 + x2). Now LT(x1x

3
3 + x2) is not divisible by LT(x1x2 + x3)

but by LT(x1x3) and we have x3
1x3x

2
2 +x2 = (x1x2 +x3)(x2

1x3x2 −x1x
2
3) +

(x1x3)(x2
3)+(1)(x2). Since LT(x2) is not divisible by any of LT(x1x2 +x3),

LT(x1x3) and LT(x3), x2 is the remainder of the division.
Remember that the division is not a properly defined operation since its
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Table 2.3 The algebra-geometry dictionary.

Geometry Algebra

V Ideal (V )

V ∩W √
Ideal (V ) + Ideal (W )

V ∪W √
Ideal (V ) · Ideal (W )

V ∪W Ideal (V ) ∩ Ideal (W )

πp (Variety(I))†
√
I ∩ k[xp+1, . . . , xs]

† πp is the projector over the last s− p− 1 variables.

result, and thus the output of the above algorithm, depends on the order
on which the dividends are considered. Gröbner basis theory addresses this
issue. The division algorithm is discussed in considerably in the literature
and in Table 2.2 we report the code from Cox, Little and O’Shea (1997).

2.12.2 Algebra-geometry dictionary

The connection between varieties and radical ideals is so strong that an
algebra-geometry dictionary has been made. The parts of this dictionary
we shall use are shown in Table 2.3. They are taken from Cox, Little and
O’Shea (1997). We suppose that the ideals involved are radical and the
coefficient field is algebraically closed.

2.12.3 The Buchberger algorithm

Before describing the Buchberger algorithm we define S-polynomials (S-
poly). In particular S-polynomials are used to test whether a set of poly-
nomials is a Gröbner basis.
Definition 24 Let f and g be polynomials in k[x1, . . . , xs], τ a term-
ordering and xγ11 · · ·xγs

s the least common multiple (LCM) of LT(f) and
LT(g). Then the S-polynomial of f and g is defined as

S-poly(f, g) =
xγ11 · · ·xγs

s

LM(f)
f − xγ11 · · ·xγs

s

LM(g)
g

Simply, S-poly(f, g) is the mechanism by which we cancel leading terms
to produce the decomposition of Item 5 in Theorem 10. It is proved, see
Cox, Little and O’Shea (1997, Chapter 2 Lemma 5), that every cancel-
lation of leading terms among polynomials of the same total degree in-
volves S-polynomials. When considering two polynomials at a time, this
can be interpreted in a different way to compute the S-polynomial itself.
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For example, x3(2x3
1 + x3) − 2x1(x2

1x3 + x2
2) = x2

3 − 2x1x
2
2 is equal to

2 S-poly(2x3
1 + x3, x

2
1x3 + x2x3) = x3

1x3

2x3
1

(2x3
1 + x3) − x3

1x3

x2
1x3

(x2
1x3 + x2

2).
Let us detail how S-polynomials arise in the division algorithm. We want

to divide f by f1, . . . , fr. In the division algorithm it may happen that both
LT(fi) and LT(fj) divide the leading term X of f for some i 
= j. If we
divide X by fi then we have h1 = f− X

LT(fi)
fi. If we divide X by fj then we

have h2 = f − X
LT(fj)

fj . An ambiguity is introduced, that is the reason why
the decomposition of Item 5 in Theorem 10 may not be unique, namely

h2 − h1 =
X

LT(fi)
fi − X

LT(fj)
fj =

X

LCM(LT(fj),LT(fi))
S-poly(fi, fj).

Theorem 19 A basis G = {g1, . . . , gr} of an ideal I is a Gröbner basis if
and only if for each pair (i, j), i, j ∈ {1, . . . , r}

Rem(S-poly(gi, gj), G) = 0

Proof. See Cox, Little and O’Shea (1997).

Theorem 19 gives a finite test to verify whether a set of polynomials is a
Gröbner basis.

Up to now we have seen that any ideal except {0} has a Gröbner basis and
that it has a unique reduced Gröbner basis. Table 2.4 follows Chapter 2.7
of Cox, Little and O’Shea (1997) and shows a three-part version of the
Buchberger algorithm to compute the reduced Gröbner basis of an ideal
given a finite generating set and a term-ordering τ . The first part returns
a Gröbner basis for the ideal, the second one makes it minimal and the
third one makes it reduced. Consistency, finiteness and correctness of the
algorithm are proved in the literature.

Computer algebra packages use versions of the Buchberger algorithm
improved by sophisticated programming and additional mathematical ideas
(for example, the Gebauer-Möller formulae, see Caboara, de Dominicis and
Robbiano (1996), Marinari, Möller and Mora (1996)).

Broadly speaking, the Buchberger algorithm is a generalisation of the
Gaussian elimination or row reduction algorithm for linear systems, as the
following example shows.

Example 26 The Gauss Jordan elimination of the matrix A below

A =




3 −6 −2 0
2 −4 0 4
1 −2 −1 −1




is

B =




1 −2 0 2
0 0 1 3
0 0 0 0



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Table 2.4 Buchberger algorithm.

Input F = (f1, . . . , fr)
Output G = (g1, . . . , gt) ⊃ F Gröbner basis
begin
G := F
repeat

G1 := G
for each pair (p, q) ∈ G1 and p �= q do

S := Rem(S-poly(p, q), G1)
if S �= 0 then G := G ∪ {S}

until G = G1
end

Input G = (g1, . . . , gt) Gröbner basis
Output M = (m1, . . . , mu) minimal Gröbner basis
begin
M := G
for all f ∈ M do

if LT(f) ∈ 〈LT(M − {f})〉 then M := M − {f}
return M
end

Input M = (m1, . . . , mu) minimal Gröbner basis
Output R = (r1, . . . , rv) reduced Gröbner basis
begin
R := M
for all g ∈ R do

g1 := Rem(g, R − {g})
R := (R − {g}) ∪ {g1}

return R
end

The set of polynomials obtained by right multiplication of B with the
indeterminate vector (x1, x2, x3, x4) is

G = {x1 − 2x2 + 2x4, 3x4 + x3}
Now consider the set of polynomials, F obtained by right multiplication of
A with (x1, x2, x3, x4)

F = {3x1 − 6x2 − 2x3, 2x1 − 4x2 + 4x4, x1 − 2x2 − x3 − x4}
The Gröbner basis of F with respect to lex (x1 � x2 � x3 � x4) is equal
to G above. That is F and G above generate the same ideal since the
rows of B are obtained by those of A with ideal operations, and using the
S-polynomial test we see that a reduced echelon matrix leads to only one
reduced Gröbner basis. For a discussion on the links between Gröbner bases
and systems of linear equations we refer to Becker and Weispfenning (1993)
and Mora (1994).

In general the computation of the Gröbner basis is very expensive, the
cost depends heavily on the term-ordering, the worst being usually the lex
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ordering. There are methods to speed the computation based on the Hilbert
function for polynomials (see Cox, Little and O’Shea (1997, Chapter 9))
implemented in the packages we use. For a reference see Traverso (1996).
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CHAPTER 3

Gröbner bases in experimental design

In this chapter we use the methods of algebraic geometry to study the iden-
tifiability problem in experimental design: given a design which model(s)
can we identify? As mentioned the starting point is to represent a design D
as a variety, namely the solution of a set of polynomial equations, or equiv-
alently the design ideal, that is, the set of all polynomials interpolating the
design points at zero. The principal result is that starting with a class of
modelsM (usuallyM will be the set of all polynomials in d indeterminates)
the quotient vector space M/ Ideal(D) yields a class of identifiable terms.
The theory of Gröbner bases is used to characterise the design ideal and
the quotient space.
The following problems will be addressed in particular.
(i) Which classes of polynomial models does a given design identify?
(ii) Is a given model identifiable by a given design?
(iii) What is confounding/aliasing in this context?
(iv) What conditions must M satisfy so that the theory applies?
This algebraic approach to identifiability in experimental design was intro-
duced by Pistone and Wynn (1996).

3.1 Designs and design ideals

A design is a zero-dimensional variety, that is a pointwise finite subset
without replications, equivalently a single replicate design. Our philosophy
is to use in an interchangeable way the representation of a design as a
variety and as an ideal.
Definition 25

(i) A design is a finite set of distinct points in kd.
(ii) We call the design ideal of D (in symbol Ideal(D)) the ideal generated

by D, that is the set of all polynomials in k[x1, . . . , xd] whose zeros
include the design points. Alternative terminology is support ideal and
ideal of points.

The following theorem applies the general theory of Chapter 2 to the spe-
cific case of designs.
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Theorem 20 Given a design D,
(i) the design ideal, Ideal(D) is the intersection of the design ideals gen-

erated by the single design points of D.
(ii) The design D is a variety.
(iii) The design ideal Ideal(D) is a radical ideal.

Proof. The proof of Item (i) gives a method to construct a basis for Ideal(D)
as we shall see later. A design is the union of its single design points.
The single point (a1, . . . , ad) is clearly the variety defined by the ideal
〈(x1 − a1), . . . , (xd − ad)〉. Finite unions of varieties correspond to finite
intersections of ideals (see Table 2.3). That is Ideal (V1 ∪ V2) = Ideal (V1)∩
Ideal (V2). A basis for the design ideal is given by the products of all el-
ements in bases of the single design points. The intersection of the two
design ideals generated by f1 = (x1 − a1), . . . , fd = (xd − ad) and g1 =
(x1 − b1), . . . , gd = (xd − bd) respectively is figj for i, j = 1, . . . , d. In a
finite number of steps by adjoining a point at the time we obtain a basis
B for the design ideal.
One can see that the design D is defined by the solutions of the basis B

obtained above and thus D is a variety.
If fm(x) = 0 for all x ∈ D and some positive m then clearly f(x) = 0

for all x ∈ D. This proves that the Ideal(D) is radical.

Example 27 The 22 full factorial design {(±1,±1)} ⊂ Q2 corresponds to
the ideal of Q[x1, x2] generated by (x1 − 1)(x1 + 1) and (x2 − 1)(x2 + 1).
Indeed the solutions of the system of equations

{
x2

1 − 1 = 0
x2

2 − 1 = 0

are {(±1,±1)}.
In general a zero-dimensional variety is generated by the radical ideal

containing a polynomial interpolating the points. For example, the above
design ideal could be represented by the polynomial

(x2
1 − 1)2 + (x2

2 − 1)2

This feature will be exploited in Chapter 4.

3.2 Computing the Gröbner basis of a design

Consider the problem of finding the ideal associated to the set of points D
where

D = {(a(1)1, . . . , a(1)d), . . . , (a(N)1, . . . , a(N)d)}
One method which does not give rise to a Gröbner basis is used in the proof
of Theorem 20. The algorithm is as follows.
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(i) Consider the reduced Gröbner basis of the single point design ideal,
a(i), 〈x1 − a(i)1, . . . , xd − a(i)d〉.

(ii) Intersect the single point design ideals of all the design points.
Some computer algebra packages provide built-in procedures to com-

pute Gröbner bases of intersections of ideals. Other methods to find the
design ideal return directly its reduced Gröbner basis and thus assume a
term-ordering. Next we present a method which is a direct application of
elimination theory. We start with an example.

Example 28 [Continuation of Example 27] The considered design cor-
responds to the projection over Q[x1, x2] of the 6-dimensional ideal in
Q[t1, t2, t3, t4, x1, x2] generated by the following polynomials

t1(x1 − 1), t1(x2 − 1), t2(x1 + 1), t2(x2 − 1),
t3(x1 − 1), t3(x2 + 1), t4(x1 + 1), t4(x2 + 1),
t1 + t2 + t3 + t4 − 1

The last polynomial excludes unwanted points given by ti = 0, i = 1, . . . , 4.
Next compute the Gröbner basis of the previous nine polynomials with re-
spect to an elimination term-ordering, such as lex, and the initial ordering
t1 � t2 � t3 � t4 � x1 � x2. It is

G = {4t1 − x2x1 − x1 − 1− x2,

4t2 + x2x1 − x1 + x2 − 1,
4t3 + x1 − 1 + x2x1 − x2,

4t4 − x2x1 + x2 + x1 − 1,

x1
2 − 1, x2

2 − 1
}

The elements of G not containing the ti’s form the sought Gröbner basis
of Ideal(D), namely {

x1
2 − 1, x2

2 − 1
}

The generalisation to d-dimensions is as follows. The N -point variety

{(a(1)1, . . . , a(1)d), . . . , (a(N)1, . . . , a(N)d)}
is the set of the (real) zeros of the N -elimination ideal of the following ideal
in N + d variables

I = 〈ti(xj − a(i)j), i = 1, . . . , N and j = 1, . . . , d,
t1 + . . .+ tN − 1〉

as subset of k[t1, . . . , tN , x1, . . . , xd] where k is a (characteristic zero) field
including a(i)j for all i and j. From Section 2.9 recall that theN -elimination
ideal of I ⊂ k[t, x] is I ∩k[x]. The procedure is summarised in the following
algorithm.

(i) Write I ⊂ k[t1, . . . , tN , x1, . . . , xd].
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(ii) Find a Gröbner basis G for I with respect to an elimination ordering
of the ti’s in k[t1, . . . , tN , x1, . . . , xd].

(iii) The elements of G not containing the ti’s variables are the reduced
Gröbner basis for I ∩ k[x1, . . . , xd] with respect to the elimination
ordering used.

This method can be implemented in any computer algebra package which
computes Gröbner bases with respect to an elimination term-ordering.
Once we have a Gröbner basis of an ideal with respect to a term-ordering
the Gröbner basis with respect to another term-ordering can be computed,
for example with the Buchberger algorithm.
Another method to compute design ideals is based on specialized linear

algebra techniques for zero-dimensional ideals (see Marinari, Möller and
Mora (1993), hence the name M3 for the corresponding algorithm). A ver-
sion of this method is implemented in the CoCoA package in the function
called IdealOfPoints. It uses the notion of indicator functions (or separa-
tors) which we shall come back to in Definition 27.
By Theorem 8, given a term-ordering τ , any polynomial f ∈ k[x1, . . . , xd]

can be decomposed over the design D generated by the Gröbner basis
G = {g1, . . . , gs} as

f =
s∑

i=1

sigi + r

where r is a simpler (with respect to τ) polynomial than f and f(a(i)) =
r(a(i)) for all design points a(i) ∈ D.
Note once more that we have different Gröbner basis representations of

the same ideal corresponding to different term-orderings. Let us give an in-
terpretation in terms of interpolation and with reference to the intersection
method to construct the design ideal. For clarity we use the two-dimensional
space. Given a set of points {(a(i)1, a(i)2) : i = 1, . . . , N} in the plane (x, y)
with distinct x values we can always find the unique polynomial of min-
imum degree y = p(x) through these points. In higher dimension this is
no longer true. Unless we fix a term-ordering which, roughly speaking, de-
termines which point to fit first. Gröbner basis theory deals exactly with
this problem. Given the design points {a(i)1}i=1,...,N and the observed val-
ues a(i)2 = p(a(i)1), for i = 1, . . . , N , the remainder of p with respect
to the Gröbner basis through the {a(i)1}i=1,...,N points is the minimum
polynomial (with respect to the term-ordering) through those points.
Now we have different ways to determine a basis for the design ideal given

the variety of the design points. The inverse problem of determining the
design points given a finite basis of the design ideal can be solved by com-
puting the reduced Gröbner basis with respect to the term-ordering lex.
The obtained triangular polynomial system can be solved by backwards
substitution and the solutions are the design points.
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3.3 Operations with designs

Theorem 21 (Product of designs) Let D1 be a design in kd1 and D2 a
design in kd2 . Let D1 ×D2 =

{
(d1(i), d2(j)) : d1(i) ∈ D1 and d2(j) ∈ D2

}

be the product design on kd1+d2 . Then, D1 ×D2 is a design and its ideal is

Ideal(D1 ×D2) = 〈I1, I2〉
Let τ be a term-ordering over k[x1, . . . , xd1+d2 ]. Let G1 be a Gröbner basis
for Ideal(D1) with respect to the term-ordering obtained by restricting τ to
k[x1, . . . , xd1 ] and let G2 be the Gröbner basis for Ideal(D2) with respect
to the term-ordering obtained by restricting τ to k[xd1 , . . . , xd1+d2 ]. Then,
{g1, g2 : g1 ∈ G1 and g2 ∈ G2} is a Gröbner basis of Ideal(D1 × D2) with
respect to τ .

The notion of restriction of a term-ordering is intuitive. With the notation
of Theorem 21 for xα, xβ in k[x1, . . . , xd1 ], x

α � xβ in the restricted term-
ordering if xα �τ xβ as terms in the larger ring k[x1, . . . , xd1+d2 ].

Proof. With the S-polynomial test it can be proved that the set

{g1, g2 : g1 ∈ G1 and g2 ∈ G2}
is a Gröbner basis. Moreover D1 × D2 is a design as the solutions of the
system of equations g1 = 0, g2 = 0 for g1 ∈ G1 and g1 ∈ G1 are exactly the
points in D1 ×D2.

Theorem 22 (Restriction) Let τ be a term-ordering on the monomials
of k[x1, . . . , xd]. Let D be a design in kd with I = Ideal(D) ⊂ k[x1, . . . , xd]
and let J be an ideal in k[x1, . . . , xd]. Define the ideal I + J as

I + J = {f + g : f ∈ I and g ∈ J}
Let G1 and G2 be the τ -Gröbner bases for I and J , respectively. The ideal
I +J is the smallest ideal containing I and J and its variety is the restric-
tion of D to Variety(J), that is D ∩ Variety(J). A basis for I + J is G =
{g1, g2 : g1 ∈ G1 and g2 ∈ G2}. That is Variety(I + J) = D

⋂
Variety(J).

Proof. See Cox, Little and O’Shea (1997, Proposition 2 Section 4.3).

The set G in Theorem 22 might not be a Gröbner basis. An example is
for D = 22 as in Example 27 and J = 〈x1 − 1, x1x2 − 2〉.
Theorem 23 (Union) Let D1 and D2 be two designs on kd, let τ be a
term-ordering on k[x1, . . . , xd] and Gi the Gröbner basis of Ideal(Di) with
respect to τ (i = 1, 2). The set D1 ∪D2 is a design and a τ -Gröbner basis
(not necessarily reduced) of Ideal(D1 ∪D2) is

{g1g2 : g1 ∈ G1 and g2 ∈ G2}
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48 GRÖBNER BASES IN EXPERIMENTAL DESIGN

Proof. See Cox, Little and O’Shea (1997, Theorem 7 Section 4.3).

Theorem 24 (Image) Let D be a design on kd and consider Ideal(D) ⊂
k[x1, . . . , xd]. Let f1, . . . , fs be elements of k[x1, . . . , xd] and define the de-
sign D̃, the image of D with respect to f1, . . . , fs as

D̃ = {f1, . . . , fs} (D) = {(f1(a(j)), . . . , fs(a(j))) : a(j) ∈ D}
If G is a Gröbner basis of Ideal(D) with respect to the term-ordering τ then

Ideal(D̃) = 〈G, yi − fi : i = 1, . . . , s〉 ∩ k[y1, . . . , ys]
admits a Gröbner basis with respect to an elimination ordering of the x-
indeterminates whose restriction to the x’s is compatible with τ .

Proof. This follows from the elimination theory of Section 2.9.

3.4 Examples

Example 29 [Full factorial] The 33-full factorial with three factors at
levels {−1, 0, 1} corresponds to the variety

Variety
(
x3

1 − x1, x
3
2 − x2, x

3
3 − x3

)

In general the ld-full factorial design is represented by the variety

Variety (P1(x1), . . . , Pd(xd))

where Pi is the design ideal corresponding to the projection of the full fac-
torial design ideal on the factor i. Thus the degree of Pi is the number
of points in the projection over xi and its roots are the levels of the ith
factor. Notice that the symmetry of the design is transfered into the sym-
metry of the polynomial system defining/interpolating the design points.
For the class of models we consider, the identifiability problem is invariant
to scaling and shifting of the factors. For example, recoding the levels from
{−1, 0, 1} to {0, 1, 2} in the first variable x1 corresponds to a shifting of x1,
giving in the above example x3

1 + 3x2
1 + 2x1 instead of x3

1 − x1.

Example 30 The fractional design obtained by the 33-full factorial with
at least one component zero is the intersection of the varieties Variety(x3

3−
x3, x

3
2−x2, x

3
1−x1) and Variety(x1x2x3). The result is 〈x3

3−x3, x
3
2−x2, x

3
1−

x1, x1x2x3〉. Note that the Gröbner basis of both this example and the full
factorial designs in Example 29 does not depend on the choice of the term-
ordering. Moreover the leading terms of the elements of the Gröbner bases
are the same with respect to any term-ordering. We call such bases total
Gröbner bases. Also check Section 3.9.
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Example 31 [34−2-fractional factorial] The term-ordering becomes essen-
tial in the description of the ideal corresponding to a 34−2-fractional facto-
rial with level set {−1, 0, 1}. With respect to the lex ordering, the Gröbner
basis is





x3
4 − x4,
x1 + 9/4x2

3x
2
4 − 3/4x2

3x4 − 3/2x2
3 + 3/4x3x

2
4 + 3/4x3x4 − 1/2x3

−3/2x2
4 + 1/2x4 + 1,

x3
3 − x3,
x2 − 3/2x2

3x4 − 3/2x3x
2
4 + x3 + x4

and with respect to tdeg it is




x1x4 − 1/2x2x4 + 1/2x3x4 + 1/2x2 + 1/2x3,
x2x3 + x2

3 − x2x4 − x2
4,

x1x3 − 1/2x2
3 + 1/2x2x4 − 1/2x3x4 + 1/2x2

4 + 1/2x2 + 1/2x4,
x2

2 − x2
3 + x2x4 − x3x4,

x1x2 + 1/2x2
3 − 1/2x2

4 + 1/2x3 + 1/2x4, x
2
1 + 2x2

3 − 2x2x4 − x1 − 2,
x2

3x4 + x2
3 − x2x4 − 2/3x1 − 1/3x2 − 2/3x4 − 2/3,

x3
3 − x3, x

3
4 − x4,

x3x
2
4 − x2

3 + x2x4 + 2/3x1 − 1/3x2 − 2/3x3 + 2/3,
x2x

2
4 + x

2
3 − x2x4 − 2/3x1 − 2/3x2 − 1/3x3 − 2/3

Example 32 [Echelon designs] A design D ⊂ Zd+ is called an echelon
design if for any design point (a1, . . . , ad) all points of the form (y1, . . . , yd)
with 0 ≤ yj ≤ aj , for all j = 1, . . . , d belong to the design D. As an example
consider in two dimensions the design

D = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1)(2, 1), (0, 2)}

with point pattern

•
• • •
• • • •

A (non-reduced) Gröbner basis for the design ideal with respect to any
term-ordering is given by the following five polynomials





x2(x2 − 1)(x2 − 2)
x1x2(x2 − 1)
x1(x1 − 1)x2(x2 − 1)
x1(x1 − 1)(x1 − 2)x2

x1(x1 − 1)(x1 − 2)(x1 − 3)

Let now D be a generic echelon design in two dimensions. It is the union
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of columns of points of the form

(0, h), h = 0, . . . , k0
(1, h), h = 0, . . . , k1

...
(l, h), h = 0, . . . , kl

where k0 ≥ k1 ≥ . . . ≥ kl. The following polynomials form a Gröbner basis
for the design ideal





p0(x2) =
∏k0
j=0(x2 − j)

p1(x1, x2) = x1

∏k1
j=0(x2 − j)

p2(x1, x2) = x1(x1 − 1)
∏k2
j=0(x2 − j)

...
pl(x1, x2) =

∏l−1
j=0(x1 − j)

∏kl

j=0(x2 − j)
pl+1(x1) =

∏l
j=0(x1 − j),

(3.1)

See Caboara, Pistone, Riccomagno and Wynn (1997) and Robbiano and
Rogantin (1998) for an extension to higher dimensions.

3.5 Span of a design

In this section we consider a (single replicate) design D in kd and are
interested in all possible response functions with inputs in D and outputs
in an extension field of k.

Example 33 [Continuation of Example 27] Consider all the functions from
D to R where D = {±1,±1} ∈ Q2. The standard procedure is as follows.
Consider the vector E = [1, x1, x2, x1x2] and construct the matrix Z with
ith row equal to E evaluated at the ith point of D (see also Definition 26
later in this section)

Z =




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1




where the columns correspond to 1, x1, x2, x1x2 and the rows to the de-
sign points (−1,−1), (1,−1), (−1, 1), (1, 1) in order. Then, interpolate θ0 +
θ1x1+θ2x2+θ12x1x2 with θ = Z−1y where y is a vector of observed values.
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For y = (y1, y2, y3, y4) we obtain

θ̂1 =
1
4
(y1 + y2 + y3 + y4)

θ̂2 =
1
4
(−y1 + y2 − y3 + y4)

θ̂3 =
1
4
(−y1 − y2 + y3 + y4)

θ̂4 =
1
4
(y1 − y2 − y3 + y4)

In the previous example the vector E was a known regression vector.
Given a design with N points and N functions fi : D → R the same
procedure applies if the regression vector E = (fj : j = 1, . . . , N) is such
that the vectors E(a), a ∈ D are linearly independent.
Next, we give a method to find suitable vectors E given a design D. A

version of Theorem 15 of Chapter 2 is at the heart of the theory. Let D be
a design and τ a term-ordering, a monomial basis of the set of polynomial
functions over D is

Estτ (D) = { xα : xα is not divisible by any of the leading terms
of the elements of the Gröbner basis of Ideal(D) }

= {xα : xα /∈ 〈LT(g) : g ∈ Ideal(D)〉}
See also Definition 29.
Let us notice that Estτ (D) is of echelon form. Some literature refers to

this by saying that Estτ (D) is an order ideal, that is, if xα ∈ Estτ (D) and
xβ divides xα, then xβ ∈ Estτ (D).
In general, different term-orderings give different Estτ (D). All are order

ideals and have the same number of elements, as they are different bases
of the same vector space, namely the quotient space k[x]/ Ideal(D). Most
importantly, the following theorem holds.
Theorem 25 The set Estτ (D) has as many elements as there are design
points.

Proof. This follows from Theorem 26 below.

We see in Section 3.6 that this has consequences in modeling.
We can index Estτ (D) over a list L as

{xα : α ∈ L}
where L is the set of exponents of the elements in Estτ (D).
Definition 26 Let τ be a term-ordering and let us consider an ordering
over the design points D = {a(i) ∈ kd : i = 1, . . . , N}. Let L be the set of
exponents of Estτ (D). We call design matrix the following matrix

Z = [a(i)α]i=1,...,N ;α∈L
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Theorem 26
1. Z is non-singular.
2. Let ei be the d-dimensional vector with components 0 except in position
i where it has value 1. For all i = 1, . . . , d there exists a vector c(i) ∈ kd
such that Zc(i) = ei and the polynomial

∑
α∈L c(i)αx

α interpolates the
indicator function of the design point a(i). That is

∑

α∈L
c(i)αxα =

{
1 x = a(i)
0 x �= a(i) and x ∈ D

3. If f : D → K is a response mapping and y = (f(a(1)), . . . , f(a(N))) ∈ K
is the vector of responses, then

f(x) =
∑

α∈L
cαx

α (3.2)

where the vector of coefficients c = [cα : α ∈ L] = Z−1y and K is an
extension of k.

Proof. The proof is a simple check and follows immediately from the defi-
nitions and the theory in Chapter 2.

The usual estimator of the parameters (ZtZ)−1
Zty simplifies here to

Z−1y as Z is square full rank. In statistical terms the model is saturated.
The representation (3.2) of experimental results as an interpolatory poly-
nomial of minimal complexity (with respect to τ) is unusual and is one of
the key ideas of the book.

Definition 27 Given a design D =
{
a(i) ∈ kd : i = 1, . . . , N

}
we call the

indicator polynomial (or interpolatory polynomial) of a(i) a polynomial
f ∈ k[x1, . . . , xd] such that

f(x) =
{
1 x = a(i)
0 x �= a(i) and x ∈ D

Example 34 The polynomial defined in Theorem 26 Item 2 is an indicator
polynomial of D of minimum complexity with respect to the chosen term-
ordering τ .

Example 35 Consider the three points a(1) = (0, 0), a(2) = (0, 1) and
a(3) = (1, 0) and the corresponding echelon design D = {a(i) ∈ C2 :
i = 1, 2, 3} over the complex field. The design ideal is Ideal(D) = 〈x2

1 −
x1, x

2
2 − x2, x1x2〉 and a basis of the vector space C[x1, x2]/ Ideal(D) is

{1, x2, x1} with respect to any term-ordering. The elements of the list L
are (0, 0), (0, 1), (1, 0) and the design matrix Z is

Z =




1 0 0
1 1 0
1 0 1



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where the columns are labelled 1, x2 and x1 left to right and the rows are
labelled (0, 0), (0, 1) and (1, 0) top to bottom. The inverse of Z is

Z−1 =




1 0 0
−1 1 0
−1 0 1




Now the ith row of the vector

(Z−1)t




1
x2

x1


 =




1− x2 − x1

x2

x1




is the interpolatory polynomial of the design point a(i). Now let us suppose
we have the vector y = (y1, y2, y3) ∈ C3 of given values associated to the
design points. The equation

3∑

i=1

yi
∑

α∈L
cαx

α =
∑

α∈L
xα

3∑

i=1

yicα = yt(Z−1)t [xα]α∈L

= (y1, y2, y3)




1 −1 −1
0 0 1
0 1 0






1
x2

x1




= y1 + (y2 − y1)x2 + (y3 − y1)x1

gives a polynomial whose value at a(i) is yi.

3.6 Models and identifiability: quotients

The results of the previous section can be seen as providing statements
about identifiability.
Theorem 27 Let D be a design and τ a term-ordering. The model

∑

xα∈Estτ (D)

θαx
α (3.3)

is unambiguously identifiable since at the design points a(i) and for the
observed values yi, for all a(i) ∈ D, the linear system of equations

yi =
∑

xα∈Estτ (D)

θαx
α(a(i))

has one and only one solution with respect to θα. That is D identifies the
model in Equation (3.3).

Proof. From the arguments in Section 3.5, the above is a non-degenerate
system of linear equations in θα’s with as many unknowns as equations.

Corollary 2 With an N point-design we can identify (up to) N distinct
terms.
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Proof. By Theorem 15 we have that we can always identify the same num-
ber of terms whatever term-ordering we use, and by the elimination theory
it follows that this number is N .

Note that while the dimension is independent of the ordering, the ele-
ments of Estτ (D) strongly depend on the chosen term-ordering and thus
we have in general a whole range of identifiable saturated models (see also
Section 3.9). This fact could be used to influence the model structure. For
example, when main effects are favored, then a term-ordering that respects
the total degree of terms, such as the tdeg ordering, may be used. Another
example is when one effect dominates all the others. Then, a lexicographic
ordering may be appropriate (see Section 3.13).
Also Est is an order ideal, and this reflects one common practice in mod-

eling of including all the factors of a present interaction, that is, all lower-
order terms which divide a given term. McCullagh and Nelder (1983) speak
of functional marginality. Also the term hierarchical model is appropriate
for models with the order ideal property.

Corollary 3 Any element of Estτ (D) is the representative of an equiva-
lence class (congruent to the design ideal).

Proof. This follows from the definition of Estτ (D).

In particular, in the model in Equation (3.3), a monomial xα, α ∈ L can
be substituted with another element in the equivalence class of xα, not
necessarily a monomial (see below).
Note that once we have determined the Gröbner basis with respect to a

given term-ordering, the set of identifiable terms is automatically computed
without reference to the term-ordering chosen, since it only depends on the
properties of monomial multiplication.
With the above notation, the concept of algebraic identifiability is sum-

marized by the following mapping

ID,τ : k(θ0, . . . , θp)[x] −→ k(θ0, . . . , θp)[x]/ Ideal(D)
f �−→ Rem(f,G)

where we stress the presence of parameters in the coefficient field, see
Caboara and Riccomagno (1998). Note that ID,τ is not the congruence
modulo Ideal(D). Indeed it concentrates on the vector-space structure of
the quotient ideal, and the defining operation is the division with respect
to the Gröbner basis G.

3.7 Confounding of models

It is useful to highlight the interpolation aspect of Theorem 27. As noted,
since the number of estimable terms is exactly the sample size, we obtain
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exact interpolation when we fit the linear model composed exactly of all
identifiable terms. Any submodel of terms from Estτ (D) is also full rank
and can provide a candidate model. Such submodels will have an important
place in this book, particularly in Chapter 6.
It is important to emphasize that we start with the whole polynomial set,

k[x]. Given the term-ordering τ and the design D, let G = {f1, . . . , fv} be
the τ -Gröbner basis of Ideal(D). The vector space k[x]/ Ideal(D) is the set
of classes of remainders of the polynomials of k[x] with respect to division
by G. Thus, for f ∈ k[x], the equivalence class of f in k[x]/ Ideal(D) is

{g ∈ k[x] : f − g ∈ Ideal(D)}
A representative of the equivalence class of f is Rem(f,G) where G is a
Gröbner basis of Ideal(D). One interpretation is that the equivalence class
of a certain polynomial f gives all the polynomials that interpolate the
values of f at the design points.
Given a model f , a term-ordering τ and a design D, a model identifiable

by D and confounded with f is Rem(f,G). In particular, if Rem(f,G) is f
then f is identifiable by D. Thus the problem of checking whether a model
is identifiable by a design consists of computing and checking a remainder.
This operation can easily be carried out in CoCoA and Maple using the
NF and normalf commands, respectively. This holds because the division
algorithm operates linearly on the coefficients/parameters of f and thus
on the parameters of the model in such a way that if f is identifiable with
respect to a certain term-ordering, then it is identifiable with respect to
any term-ordering. Identifiability is a property of designs and models and
does not depend on the term-ordering.

Corollary 4 If a model M is identifiable by D with respect to a term-
ordering τ according to Theorem 27, thenM is identifiable by D with respect
to any other term-ordering σ.

Proof. A non-singular transformation transforms Estσ to Estτ .

Faugère, Gianni, Lazard and Mora (1993) compute efficiently Gröbner
bases for design ideals with respect to different term-orderings via the no-
tion of a Gröbner walk.

Example 36 Consider the 22 design with levels 0, 1. With respect to
any term-ordering the reduced Gröbner basis is

{
x2

1 − x1, x
2
2 − x2

}
and

Est(D) = {1, x1, x2, x1x2}. The full quadratic model

f(x1, x2) = θ1x
2
1 + θ2x

2
2 + θ3x1x2

is identifiable with D as Rem(f,G) = θ1x1 + θ2x2 + θ3x1x2. While the full
cubic model

h(x1, x2) = θ1x
3
1 + θ2x

3
2 + θ3x

2
1x2 + θ4x1x

2
2
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is not identifiable as Rem(h,G) = θ1x1 + θ2x2 + (θ3 + θ4)x1x2 and θ3
and θ4 are confounded. Notice, however, that the design D1 = {−1,+1}2

has the same Est set as the previous one, but a different Gröbner basis
G1 = {x2

1−1, x2
2−1}. In particular, we have Rem(f,G1) = θ1+θ2+θ3x1x2,

that is, the full quadratic model is not identifiable by D1.
Each of the equivalence classes in k[x]/ Ideal(D) can be seen as an aliasing

class in the sense that only one term from each class can be part of the same
identifiable model. See Holliday, Pistone, Riccomagno and Wynn (1999).
That is, any residual class of k[x]/ Ideal(D) is an infinite family of models
that are not distinguishable by the design.
From the above discussion we have that the following definition is well

posed.
Definition 28 Two models, f and g, are confounded ( aliased) under the
design D if and only if f − g belongs to the design ideal Ideal(D), equiva-
lently ID,τ (f) = ID,τ (g) for any term-ordering.
Given the design D, we select identifiable models as follows. As regression
vectors, choose any subset of a basis of the vector space k[x]/ Ideal(D).
Thus algebraic estimability becomes the following mapping

ID,τ : Q(θ0, . . . , θp)[x1, . . . , xd]× QN −→ Q[x1, . . . , xd]/ Ideal(D)
(f, y) �−→ X(x)(XtX)−1Xty

where N is the design size, X(x) is the regression vector extracted from
Rem(f,G) and X is the “design matrix” for X(x) and D. Note that X is a
sub-matrix of the design matrix in Definition 26. We consciously used the
same notation for algebraic identifiability and estimability to stress that
they often correspond both in theory and applications.

3.8 Further examples

Example 37 [Continuation of Example 29] The set of terms identifiable by
the 33-full factorial with respect to the tdeg term-ordering is the following

Est = { x2
1x

2
2x

2
3,

x2
1x

2
2x3, x2

1x2x
2
3, x1x

2
2x

2
3,

x2
1x

2
2, x2

1x2x3, x1x
2
2x3, x2

1x
2
3, x1x2x

2
3, x2

2x
2
3,

x2
1x2, x1x

2
2, x2

1x3, x1x2x3, x2
2x3, x1x

2
3, x2x

2
3,

x2
1, x1x2, x2

2, x1x3, x2x3, x2
3,

x1, x2, x3, 1 }
We have the well known result that the largest model we can identify with
the 33-full factorial design is the “full product” model. This is the case for
all term-orderings, since the Gröbner basis

{
x3

1 − x1, x
3
2 − x2, x

3
3 − x3

}
is a

total Gröbner basis.

Example 38 [Continuation of Example 30] The subset of 33-full factorial

© 2001 by Chapman & Hall/CRC



FURTHER EXAMPLES 57

for which at least one factor is zero gives the following subset of identifiable
terms with respect to any term-ordering

Est = { x2
1x

2
2, x2

1x
2
3, x2

2x
2
3,

x2
1x2, x1x

2
2, x2

1x3, x2
2x3, x1x

2
3, x2x

2
3

x2
1, x1x2, x2

2, x1x3, x2x3, x2
3,

x1, x2, x3, 1 }

Example 39 With the notation of Theorem 21 and with respect to τ , the
Est set for a product design D1 × D2 is the product of the Est sets for
the single designs and similarly for multiple products. This follows directly
from the structure of the Gröbner basis. Restrictions and union of designs
are discussed in Section 3.12.

Example 40 [Continuation of Example 31] For the 34−2 fractional full
factorial design with the tdeg ordering with

x1 � x2 � x3 � x4

we have

Esttdeg(34−2) = { x2
3, x2x4, x3x4, x2

4,
x1, x2, x3, x4, 1 }

and with the lex ordering for x1 � x2 � x3 � x4

Estlex(34−2) = { x2
3x

2
4, x2

3x4, x2
3,

x3x
2
4, x3x4, x3,

x2
4, x4, 1 }

Two factors, x1 and x2, are not in the above list of identifiable terms as
can be expected from the property of lexicographic ordering. Note here the
fact that the cardinality of these last two Est sets is equal to 9, the number
of design points.

Example 41 Consider the quadratic model in one variable and the three-
point design {a(1), a(2), a(3)}. Thus the design ideal is generated by (x−
a(1))(x−a(2))(x−a(3)) and the model is θ0 + θ1x+ θ2x2. With respect to
the only term-ordering in one dimension the remainder is θ0 + θ1x+ θ2x2.
As expected all three parameters are identifiable.
Instead in the cubic model the linear and cubic effects are aliased as the

remainder of the cubic model equation

θ0 + θ1x+ θ2x2 + θ3x3

by the design ideal is

θ0 + a(1)a(2)a(3)θ3 + (θ1 − θ3a(2)a(3)− θ3a(1)a(3)− θ3a(1)a(2))x
+(θ3 + θ3a(3) + θ3a(2) + θ3a(1))x2
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Example 42 An early example of the theory, Pistone and Wynn (1996),
gives a useful insight on the interpolation issue. Consider three points in
generic position in the plane,

(a(1)1, a(1)2), (a(2)1, a(2)2), (a(3)1, a(3)2)

The reduced Gröbner basis with respect to the term-ordering lex (x1 � x2)
is composed of the following two polynomials

g1 = −a(3)2a(1)1a(2)22 + a(3)22a(1)1a(2)2 + a(3)2a(2)1a(1)22
− a(3)22a(2)1a(1)2 + a(3)1a(2)22a(1)2 − a(3)1a(2)2a(1)22
+
(
a(1)1a(2)22 − a(1)1a(3)22 + a(2)1a(3)22 − a(2)1a(1)22

+ a(3)1a(1)22 − a(3)1a(2)22
)
x2

+ (−a(1)1a(2)2 + a(1)1a(3)2 − a(2)1a(3)2 + a(3)1a(2)2
+ a(2)1a(1)2 − a(3)1a(1)2)x2

2

+
(
a(2)22a(3)2 − a(2)2a(3)22 − a(3)2a(1)22

+ a(3)22a(1)2 − a(2)22a(1)2 + a(2)2a(1)22
)
x1,

g2 = −a(3)2a(2)2a(1)2 + (a(2)2a(1)2 + a(3)2a(1)2 + a(2)2a(3)2)x2

+ (−a(1)2 − a(2)2 − a(3)2)x2
2 + x

3
2

The leading terms and their coefficients are

LT Coefficient

x1 a(2)22a(3)2 − a(2)2a(3)22 − a(3)2a(1)22
+ a(3)22a(1)2 − a(2)22a(1)2 + a(2)2a(1)22

x3
2 1

The set of identifiable terms is 1, x2, x
2
2. We notice that the coefficient of

x1 is zero if and only if at least two of the design points have the same
x2 value. Repeating the above procedure with respect to lex and with the
constraint a(1)2 = a(2)2, the set of leading terms becomes x1x2, x1

2. Thus
the identifiable terms are 1, x2, x1. The same result is obtained when the
calculations are carried out with respect to the tdeg ordering. This is an
example of the connection between the structure of a design and the set
of identifiable terms. A major area of future work is to analyze the link
between the geometry structure of designs and the set of identifiable terms
returned by the above procedure for a fixed term-ordering. Some initial
results are contained in the study of fans in Section 3.9.

Example 43 [Continuation of Example 37] In Section 3.4 we have seen
that with the 33-full factorial design, we can estimate the standard quadratic
model. Next, we show the confounding structure for a standard cubic model
under a 33-full factorial with obvious notation
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(θ2,1,0 + θ2,3,0) x1
2 x2 + θ2,0,2 x1

2 x3
2 + θ2,0,0 x1

2 + θ2,2,0 x1
2 x2

2

+ θ2,2,2 x1
2 x2

2 x3
2 + (θ1,2,0 + θ3,2,0) x1 x2

2

+ (θ2,0,1 + θ2,0,3) x1
2 x3 + (θ0,2,1 + θ0,2,3) x2

2 x3

+ (θ1,0,2 + θ3,0,2) x1 x3
2

+ (θ1,1,0 + θ3,1,0 + θ1,3,0 + θ3,3,0) x1 x2

+ (θ1,0,1 + θ3,0,1 + θ1,0,3 + θ3,0,3) x1 x3

+ (θ0,1,1 + θ0,3,1 + θ0,1,3 + θ0,3,3) x2 x3

+ (θ0,1,2 + θ0,3,2) x2 x3
2 + (θ0,1,0 + θ0,3,0) x2

+ (θ1,1,2 + θ3,1,2 + θ1,3,2 + θ3,3,2) x1 x2 x3
2 + (θ1,1,1 + θ3,1,1

+ θ1,3,1 + θ3,3,1 + θ1,1,3 + θ3,1,3 + θ1,3,3 + θ3,3,3)x1 x2 x3

+ (θ2,1,2 + θ2,3,2) x1
2 x2 x3

2 + (θ1,2,2 + θ3,2,2) x1 x2
2 x3

2

+ (θ2,1,1 + θ2,3,1 + θ2,1,3 + θ2,3,3) x1
2 x2 x3

+ (θ1,2,1 + θ3,2,1 + θ1,2,3 + θ3,2,3) x1 x2
2 x3

+ (θ2,2,1 + θ2,2,3) x1
2 x2

2 x3 + (θ0,0,1 + θ0,0,3) x3

+ (θ1,0,0 + θ3,0,0) x1 + 2 θ0,0,0 + θ0,2,2 x2
2 x3

2 + θ0,2,0 x2
2

+ θ0,0,2 x3
2

where θi,j,k, for i, j, k = 0, 1, 2 is the parameter of the term xi1x
j
2x
k
3 in

the cubic model. Of the 64 parameters of the cubic model only the seven
coefficient terms involving only second-order powers and the constant are
fully identifiable. Notice that the coefficients of the other elements of Est are
linear combinations of the model parameters. As previously noticed, this
is always the case, since the division operates linearly on the coefficients of
the dividend.

Example 44 [Example 30 continued] Another example of parameter con-
founding is the standard quadratic model in 3 dimensions and the subset
of 33-full factorial with at least one zero-component.

θ0,1,2 x2 x3
2 + θ2,0,0 x1

2 + θ0,2,0 x2
2 + θ1,0,2 x1 x3

2 + θ0,0,1 x3

+ θ0,0,2 x3
2 + θ1,1,0 x1 x2 + θ1,0,0 x1 + θ0,1,0 x2 + θ2,1,0 x1

2 x2

+ θ0,2,2 x2
2 x3

2 + θ0,1,1 x2 x3 + 2 θ0,0,0 + θ0,2,1 x2
2 x3 + θ1,0,1 x1 x3

+ θ1,2,0 x1 x2
2 + θ2,0,1 x1

2 x3 + θ2,0,2 x1
2 x3

2 + θ2,2,0 x1
2 x2

2

and thus the product model is identifiable with a 33-full factorial design
with at least one zero component.
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3.9 The fan of an experimental design

In this section we define a large class of models with an order ideal structure
and identifiable by a given design. The idea of a fan of a design is introduced
in experimental design by Caboara, Pistone, Riccomagno andWynn (1997).
The algebraic notion of fan of an ideal goes back to Mora and Robbiano
(1988). We start with some definitions.

Definition 29 Let G be a Gröbner basis with respect to a term-ordering
τ . The monomial set

Initτ (G) = Ideal(LTτ (g) : g ∈ G)
is the initial ideal of G with respect to τ .

Note that, by the definition of a Gröbner basis, the following holds

Initτ (G) = Ideal(LTτ (g) : g ∈ I)
where I is the ideal generated by G. Thus we also write Initτ (I). Note that
the complementary set of Initτ (G) is an order ideal, and if G is a Gröbner
basis for a design ideal, then such complementary set is an Est set.

Theorem 28 Every ideal I ⊂ k[x] has only finitely many distinct initial
ideals, equivalently order ideals.

Proof. See, for example, Sturmfels (1996).

Corollary 5 Given an ideal I (in particular, a design D), the following
defines an equivalence relation on the set of all term-orderings. The term-
orderings τ1 and τ2 are equivalent with respect to I if and only if they have
the same initial ideal

Initτ1(I) = Ideal(LTτ1(g) : g ∈ Gτ1) = Ideal(LTτ2(g) : g ∈ Gτ2) = Initτ2(I)

where Gτj
is the Gröbner basis of I with respect to τj, (j = 1, 2).

Proof. It follows directly from Theorem 28.

Note that to each equivalence class one can associate an order ideal,
namely the complementary set. In particular, when I is a design ideal
Ideal(D), such complementary set is an Est set. This leads to the definition
of fan of a polynomial ideal.

Definition 30 Given the polynomial ideal I, the partition on the set of
term-orderings induced by the equivalence relation in Corollary 5 is called
the (algebraic) fan of I. Each element in the fan is called a leaf.

Each leaf of a fan is represented by an initial ideal. Equivalently it is rep-
resented by the complementary set of the initial ideal. Now the notion of
fan of a design is well defined.
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Definition 31 Let D be a design. The fan of D is the set of all Estτ (D)
as the term-ordering τ varies over all term-orderings.
The following example by Caboara and Robbiano (1997) shows that iden-
tifiability via Gröbner basis is not exhaustive in the sense that, given a
design D, there are models identifiable by D, namely whose design matrix
is full rank, that are not retrievable by the methods in this book.

Example 45 The design D = {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)} identi-
fies the model corresponding to the order ideal {1, x1, x2, x

2
1, x

2
2}, but such

ideal does not belong to the fan of D. The fan of D consists of the two
leaves

{
1, x1, x

2
1, x2, x1x2

}
and

{
1, x2, x

2
2, x1, x1x2

}
.

In the following example we show how a new concept of model confound-
ing can overcome the above problem.

Example 46 For the term-ordering tdeg (x1 � x2), the Gröbner basis for
the design in the previous example is




x2

1 + x1x2 − 1
2x

2
2 − x1 − 1

2x2

x3
2 − x2

x1x
2
2 − x1x2

The remainder of the polynomial model

f(x) = θ0 + θ1x1 + θ2x2
1 + θ3x2 + θ4x2

2

is
θ0 − θ2x1x2 + (θ1 + θ2)x1 + (θ3 +

1
2
θ2)x2 + (θ4 +

1
2
θ2)x2

2

There is an invertible linear relationship between the coefficients of the re-
mainder and the θ’s. This is always the case because the division algorithm
operates linearly on the coefficients of f . Thus, according to Definition 28,
f is identifiable.

Example 47 Let D be the star composite design with central point in d
dimensions. To fix notation, assume that the central point is 0 = (0, . . . , 0),
the levels of the 2d full factorial part are ±1 and that the arms on each axis
are at levels ±2. Then, the fan of D has d leaves. One leaf (with respect to
any term-ordering such that xi � xd for all i = 1, . . . , d− 1) is

L = { 1
x2
i (for all i = 1, . . . , d)
x4

1

xix
2
1 (for all i = 1, . . . , d)∏

i∈I xi (for all I with N elements and I ⊂ {1, . . . , d}
and N = 1, . . . , d) }

The other leaves are obtained by permutation of the variables. For the
proof we refer to Caboara, Pistone, Riccomagno and Wynn (1997).
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3.9.1 Computation of fans

The computation of the fan of a design (and of an ideal in general) is
very expensive as it involves the computation of many Gröbner bases. It
is known that, in the worst case, the computation of Gröbner bases has
double exponential cost. Ideally one would like to input all the information
available on the term-ordering before starting the computation, that is to
define a pre-ordering instead of a term-ordering.
The algorithm to calculate fans of ideals receives as input a basis of the

design ideal. At each step it chooses the possible leading terms compatible
with the known ordering information, applies the S-polynomial test to check
whether a set of polynomials is a Gröbner basis with respect to some term-
ordering, and keeps iterating to create new leaves of the fan. When the
S-polynomial test is positive over one leaf, it returns the Gröbner basis
associated with that leaf and the conditions which the term-ordering of
that leaf must satisfy. This algorithm was first introduced in Mora and
Robbiano (1988). The usual improvements to the Buchberger algorithm
for reduced Gröbner bases can be applied. We show the details with an
example.

Example 48 Consider the design D = {(0, 0), (1, 2), (2, 1)} and impose
the condition x1 � x2 on the term-ordering. The design D is the set of
solution of the following system of polynomial equations

f = x3
2 − 3x2

2 + 2x2

g = x1 + 3/2x2
2 − 7/2x2

The possible leading terms of g (compatible with x1 � x2) are x1 and
x2

2, and for f we have only x3
2. We create two leaves characterised by the

conditions x1 � x2
2 and x2

2 � x1, respectively. The S-polynomials are

S-poly(f, g) = −3x2
2x1 + 2x1x2 − 3/2x5

2 + 7/2x4
1 for x1 � x2

2

S-poly(f,g) = −2
3
x2

2 + 2x2 − 2
3
x2x1 for x2

2 � x1

Their remainders with respect to f and g are

p = Rem(S-poly(f, g), {f, g}) = 0 for x1 � x2
2

h = Rem(S-poly(f, g), {f, g}) = −2
3
x1x2 +

4
9
x1 +

4
9
x2 for x2

2 � x1

Since p = 0, by the S-polynomial test we have that, for all the orderings
such that x1 � x2

2, the set {f, g} is a (reduced) Gröbner basis, which gives
{1, x2, x

2
2} as the estimable set.

We have to continue the calculation for the orderings such that x2
2 � x1.

The new generating set is {f, g, h} and the only possible leading term of h
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is x1x2. Thus

S-poly(f, h) = −7/3x1x
2
2 + 2x1x2 + 2/3x3

2

S-poly(g, h) =
2
3
(x2

1 + x
2
2)−

5
3
x1x2

and

l = Rem(S-poly(f, h), {f, g, h}) = −14
9
x2

1 +
98
27
x1 − 28

27
x2

m = Rem(S-poly(g, h), {f, g, h}) = 2
3
x2

1 −
14
9
x1 +

4
9
x2

Because of the condition x1 � x2 on the ordering, the only possible leading
term of l and g is x2

1. The S-polynomial test shows that for the term-
orderings such that x2

2 � x1 and x1 � x2 the set {f, g, h, l,m} is a Gröbner
basis. The estimable set is {1, x1, x2}. In conclusion the fan of the design
D with the constrained x1 � x2 is

{{1, x2, x
2
2}, {1, x1, x2}

}
.

If no condition on the ordering is imposed, the above algorithm returns
the fan of the ideal given as input. Alternatively, to compute the fan one
could use the so-called Gröbner walk technique. A Gröbner basis is com-
puted with respect to some ordering, usually tdeg, and then from such
basis the bases for the other leaves are computed in a linear time. See Col-
lart, Kalkbrener and Mall (1997) and Faugère, Gianni, Lazard and Mora
(1993).

3.10 Minimal and maximal fan designs

From Definition 31 it follows that designs can be classified according to the
number of leaves in their fan.
Definition 32 A design is called minimal fan if its fan has only one leaf.
Note that a minimal fan design could actually identify other saturated mod-
els with an order ideal structure, but such models would not be retrieved
with the Gröbner basis method directly.
Definition 33 A design D ⊂ Zd+ is called a generalised echelon design if
for any design point (a1, . . . , ad), all points of the form (y1, . . . , yd) with
0 ≤ abs(yj) ≤ abs(aj), for all j = 1, . . . , d belong to the design D, where
abs(x) is the absolute value of x.
Theorem 29 Generalised echelon designs are minimal fan.

Proof. An elegant proof exploits the notion of distraction and can be found
in Robbiano and Rogantin (1998).

For any integer r ≥ 1 define the univariate polynomial

ur(z) =
r−1∏

s=0

(z − s)
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Then, for any multiple index α = (α1, . . . , αd) define gα(x) =
∏d
i=1 uαi

(xi).
Now a generalised echelon design can be defined in terms of a special set
E of index vectors α(1), . . . , α(m)

E =
{
β : 0 ≤ β ≤ α(j), for some j = 1, . . . ,m

}

Moreover, we may use unique α(j) in the sense that for no j′ �= j, it is true
that α(j′) ≤ α(j). In this case, the following holds for any term-ordering τ

(i) the (reduced) Gröbner basis elements are gα(j)(x), for j = 1, . . . ,m

(ii) LTτ (gα(j)(x)) = xα
(j)
, for j = 1, . . . ,m

(iii) Estτ (E) =
{
xβ : β ∈ E}.

The only difference for non-equally spaced design with the same echelon
structure is in (ii). If E′ is such a design, we obtain
(iii’) Estτ (E′) =

{
xβ : β ∈ E}.

For a generalised echelon design it is necessary to find an echelon design
D with the same Est.

Example 49 [Continuation of Example 32] Echelon designs are a special
case of generalised echelon design and thus are minimal fan. Moreover, an
echelon design identifies only the order ideal whose pattern is the same
pattern as the design. For the design in Example 32, the identifiable set is

{
1, x1, x2

1, x3
1, x2, x1x2, x2

1x2, x2
2

}

Definition 34 Given d and N positive integers, the set of all order ideals
in d indeterminates with exactly N terms is indicated by G(d,N).

Definition 35 A design is called maximal (statistical) fan if its fan is
all G(d,N), where d is the number of factors in D and N the number of
distinct points in D.

Theorem 30 A design, chosen randomly with respect to any absolutely
continuous measure with respect to the Lebesgue measure, identifies all mod-
els in G(d,N) with probability one.

Proof. LetD be a design. For all E ∈ G(d,N) the condition of identifiability
(invertibility of the design matrix) det (Z(E,D)) = 0 defines a variety in
the d×N space of all coordinates of D = {x(i) : i = 1, . . . , N} which is of
dimension less than d × N . This follows from the linear independence of
the monomials in any fan. Then, the set

⋃

E∈G(d,N)

{D : det (Z(E,D)) = 0}

remains of dimension less than d×N , since G(d,N) is finite. Any design D
whose coordinates do not lie on this variety (technically, any point in the
open set which is the union of the complement of the individual varieties
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det (Z(E,D)) = 0) will have all det (Z(E,D)) �= 0. Since this holds with
probability one, we are done.

It is still a conjecture to prove that there are maximal fan designs sup-
ported on the integer grid. Nevertheless, a weaker but important result is
presented in Theorem 31.
Example 50 This is an example of maximal fan design in any design
size and number of factors. Let {q1, . . . , qd} be the first d prime numbers
{1, 2, . . . }. Then define D = {x(i)}Ni=1 where

xj(i) = qj−1
i (j = 1, . . . , N)

Then consider the second row (i = 2) of a typical design matrix, Z for an
element of G(d,N) and the design D. The elements of this row are distinct
because each entry represents a distinct prime power decomposition. Now
all other rows of Z are distinct powers of this second row. This implies that
Z is of Vandermonde type and therefore has non-zero determinant.
Theorem 31 Given a positive integer N there exist designs that identify
all models L where
1. L has N terms,
2. L is an order ideal,
3. there is a term-ordering with respect to which the terms in L are the
smallest chain of length N .

Proof. Consider a maximal fan design and apply the algorithm in Sec-
tion 3.12.

Example 51 Below are examples of maximal fan designs in two dimen-
sions supported on the integer grid

N D

3 {(0, 0), (1, 2), (2, 1)}
4 {(0, 1), (1, 3), (2, 0), (3, 2)}
5 {(0, 1), (1, 3), (2, 0), (3, 4), (4, 2)}
6 {(0, 1), (1, 5), (2, 3), (3, 0), (4, 4), (5, 2)}
7 {(0, 1), (1, 4), (2, 2), (3, 6), (4, 0), (5, 5), (6, 3)}

3.11 Hilbert functions and fans for graded ordering

The Hilbert function, which plays an important role in the definition and
computation of dimension for algebraic varieties, is only briefly introduced
in Section 2.11. However, we can see that it leads to a pleasing result for
the fan of an experimental design when the term-ordering is graded.
The definition of grading of a term-ordering is given in Definition 9. See

also Definition 23.
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Theorem 32 For any design and any graded term-ordering τ the number
of terms of Estτ (D) of a given order s is the same.

Proof. Cox, Little and O’Shea (1997, Proposition 4, Section 9.3) states that
for any graded ordering � the Hilbert function of the monomial ideal I is
the same. Thus simply specialize Item (i) of Theorem 18 to τ and remark
that Estτ (D) consists precisely of monomials not in LT (Ideal(D)), that is
Q[x1, . . . , xd]/ Ideal(D). Then, for graded orderings the Hilbert functions
are the same and so the number of terms of a given degree s, aHFi(s) −
aHFi(s− 1), is the same for all graded orderings.

This has a nice interpretation for the sub-fan of all leaves corresponding
to graded orderings. We might call this the graded fan. Namely, every leaf
has the same number of terms of a given degree.
In Section 2.3 we showed examples of gradings and, in particular, showed

that some graded orderings are obtained by setting all the entries of the
first row of the ordering matrix equal to one.
Example 52 We consider an example in R3. For our first ordering τ1 we
take tdeg with x1 � x2 � x3 and the second ordering τ2 defined by the
matrix 


1 1 1

−1 0 −1
−1 −1 0




Take the design {(0, 0, 0), (1, 1, 1), (1, 1, 0), (2, 0, 2), (0, 3, 3)}. Calculations
give

Estτ1(D) =
{
1, x1, x2, x3, x

2
3

}
and Estτ2(D) =

{
1, x1, x2, x3, x

2
1

}

and Theorem 32 is confirmed.

3.12 Subsets and algorithms

For a number of statistical reasons, we are interested in adding to or sub-
tracting points from a design. The following result shows that elements of
Estτ are correspondingly added or subtracted.
Theorem 33 Let D1 ⊆ D2 be two experimental designs then for the same
term-ordering τ

Estτ (D1) ⊆ Estτ (D2)

Proof. In what follows, Ideal(D) is the design ideal for the design D and
{LTτ (Ideal(D))} is the set of leading terms of Ideal(D) with respect to the
term-ordering τ . The following relationships prove the theorem

D1 ⊆ D2 ⇐⇒ Ideal(D1) ⊇ Ideal(D2)
=⇒ {LTτ (Ideal(D1))} ⊇ {LTτ (Ideal(D2))}
⇐⇒ Estτ (D1) ⊆ Estτ (D2)
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Note that the last step uses the fact that for a design D, Estτ (D) is the
complementary set of {LTτ (Ideal(D))} equivalently of the set of leading
terms of the Gröbner basis of Ideal(D). The second implication follows
from the definition of {LTτ (Ideal(D))}.
Corollary 6 For any two designs D1 and D2 and a given term-ordering τ

Estτ (D1 ∩D2) ⊆ Estτ (D1) ∩ Estτ (D2)
⊆ Estτ (D1) ∪ Estτ (D2) ⊆ Estτ (D1 ∪D2)

Proof. The first and last inclusion follow from Theorem 33 by using the
appropriate sets. Note that even if D1 and D2 are distinct, then the last
inclusion is strict because both Estτ (D1) and Estτ (D1) contain 1 (at least).

Theorem 33 implies that if we add points, one by one, to a design, so we
add terms to Est. This can be turned into an algorithm for computing the
successive terms of Est, which is statistical in flavor.
Let DN = {a(1), . . . , a(N)} and Est =

{
xβ1 , . . . , xβN

}
where we have

considered the xβk to have been added sequentially. Also let

Zτ (DN ) =
[
(a(j))βk

]N
j,k=1

be the design matrix for the design DN and the monomials
{
xβk : k = 1, . . . , N

}

The next result considers the addition of a new point a(N + 1) to form

Estτ (DN+1) = Estτ (DN ) ∪
{
xβN+1

}

Theorem 34 In adding a point a(N + 1) to a design DN , the additional
monomial xβN+1 such that Est(DN+1) = xβN+1 ∪ Est(DN ) satisfies
1. xβN+1 /∈ Est(DN )
2. The design matrix for Estτ (DN+1) and DN+1 is non-singular
3. xβ

′ �τ xβ for any other β′ satisfying Item 1 and Item 2 above.

Proof. Item 2 must be satisfied for the set Est(DN+1) to be identifiable by
DN+1. Since Estτ (DN+1) must be an order ideal, we can see that the only
candidate to be xβN+1 are {LT(gj)} where G = {gj} is a Gröbner basis for
DN with respect to τ . Thus Item 1 is proved. We prove Items 2 and 3 by
contradiction.
Let xβN+1 satisfy 1, 2 and 3 and xγ another element of {LT(gj)} and

thus satisfying Items 1 and 2 but not Item 3. Let Estβ = Est(DN )∪ xβN+1

and Estγ = Est(DN ) ∪ xγ .
Now consider Item 2 and proceed by contradiction. Thus let β be defined
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as in the theorem so that γ �= β, xγ �τ xβ . Now xβ remains a leading term
of some Gröbner basis element g(x) of DN+1, which we can write

g(x) = θβx
β +

∑

α∈L∪γ
θαx

α

But then, since xγ �τ xβ , we must have θγ = 0. But since g(x) = 0 on
DN+1 and Est(DN )∪xβ is invertible over DN+1, all the coefficients of g(x)
must be zero, which is a contradiction.

Consider then adding xβN+1 terms to Est according Theorem 34. Let us
define gN (x) to be the Gröbner basis element for Est whose leading term
is xβN+1 . Assume also that the data is given by

{y1, . . . , yN , yN+1, . . .}
in the order corresponding to the addition of points. Let pN (x) be the
interpolator of {a(N), yN}. Then the following holds.

Corollary 7 The following up-dating formula holds for the interpolators
{pN (x)}

pN+1(x) = pN (x) + (yN+1 − pN (a(N + 1)))
gN (x)

gN (a(N + 1))

Proof. Since gN (x) = 0 on DN , pN+1(a(i)) = pN (a(i)) = yi (i = 1, . . . , N).
But at a(N +1), pN+1(a(N +1)) = yN+1 provided that gN (a(N + 1)) �= 0.
But the latter cannot happen because then gN (x) = 0 on DN+1 and the
fact that Estτ (DN+1) = xβ ∪ Est(DN ) is non-singular on DN+1 would
force gN (x) = 0, similarly to the proof of Theorem 34.

The algorithm is as follows

(i) D1 = a(1) and Estτ (D1) = {1}
At the Nth step do

(ii) Add a(N + 1) to DN to form DN+1.

(iii) Update Estτ (DN+1) = Estτ (DN ) ∪ xβN+1 where xβN+1 is computed
according to Theorem 34: the first “unused” xβN+1 for which the new
design matrix is non-singular. Call the new matrix ZN+1.

(iv) Construct pN+1(x) by pN+1(x) = [θα]t[xα] where [θα] = Z−1
N+1Y(N),

where Y(N) is the vector [y1, . . . , yN ]t and [xα] contains the elements
of Estτ (DN+1) in appropriate order.

(v) Construct (up to a scalar)

gN (x) = pN+1(x)− pN (x)
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This algorithm is very similar in structure to an algorithm in Abbott,
Bigatti, Kreutzer and Robbiano (2000) and it is based on Gaussian elimi-
nation. It is convenient to discuss both algorithms via a tableau represen-
tation.
The basic tableau is in effect a developing version of the design matrix.

We first represent an example and then give the steps more formally as
above.
Let us consider the following design in Q2

D4 = {(0, 0), (1, 0), (0, 1), (1, 2)}
and take the tdeg term-ordering with x2 � x1 as the initial order. In
particular we have

. . . � x2
2 � x1x2 � x2

1 � x2 � x1 � 1

A starting tableau with points as columns and monomials as rows is given
in Table 3.4

(0, 0) (1, 0) (0, 1) (1, 2)

1 1 1 1 1
x1 0 1 0 1
x2 0 0 1 2
x2

1 0 1 0 1
x1x2 0 0 0 2
x2

2 0 0 1 4

(3.4)

This is the transpose of the usual design matrix.
As we proceed down the rows of the tableau the first three rows form a

full rank matrix. However with the next row, x2
1, the 4 × 4 matrix of the

first four rows is singular. We can see this by a row reduction (subtract row
2 from row 4). The new tableau is

(0, 0) (1, 0) (0, 1) (1, 2)

1 1 1 1 1
x1 0 1 0 1
x2 0 0 1 2

x2
1 − x1 0 0 0 0
x1x2 0 0 0 2
x2

2 0 0 1 4

From the algorithm above we see that x2
1 is not in Est(D4). However if,

instead we consider x1x2, then the sub-matrix formed by the four columns
and rows 1, 2, 3 and 5 is non-singular and x1x2 is our new element in Est.
Now consider the addition of a further design point (2, 1). Then, the

tableau has five columns and becomes
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(0, 0) (1, 0) (0, 1) (1, 2) (2, 1)

1 1 1 1 1 1
x1 0 1 0 1 2
x2 0 0 1 2 1

x2
1 − x1 0 0 0 0 3
x1x2 0 0 0 2 2
x2

2 0 0 1 4 1

The entry “3” in row 4 now indicates that indeed x2
1 is a valid Est

member. Only if we find a complete row of zeros (for all columns) would
the term be prohibited. Suppose for example we has added the point (1, 3)
instead of (2, 1), then the the element “3” would be replaced with “0”. In
that case (a row of zeros) we can write down the operations on the row
x2

1 − x1 and claim that g(x) = x2
1 − x1 is an element of the Gröbner basis.

The algorithm is as follows. We start with a N -point design.

(i) Choose a term-ordering τ and line up the first N smallest monomials
in the τ -ordering. Set up the tableau with a column for each point and
for the moment an open-ended number of columns in the τ -ordering.
Assume an N -point design. The first row is all 1’s.

At the Nth step perform row reduction and

(ii) call each new row “good” if the sub-matrix formed by that row to-
gether with previous good rows is full rank.

(iii) Call the new row “bad” if the sub-matrix in (i) is not full rank, re-
vealed by a row of zeros after row reduction.

(iv) Provided the number of good rows is less then N , each good row
corresponds to a member of Est.

(v) Provided the stopping rule (see below) is not yet satisfied each bad
row in (ii) gives a member of the Gröbner basis of the design ideal of
the N points considered.

The stopping rule is based on the relationship between Est and the
Gröbner basis: stop if a new bad row corresponds to a monomial divisi-
ble by the leading term of the Gröbner basis generated by any previous
bad row. All previous bad rows yield the full Gröbner basis. Another stop-
ping rule is when the number of points the design and the number of terms
in Est are the same.
We can see from the example that a suitable sequential reordering of

points (columns) is guaranteed to produce an ordering of points such that
the sequential algorithm would not need to backtrack to revisit a previous
“failed” monomial.
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3.13 Regression analysis

The formal link with regression in statistics should by now be clear. For a
design D and a regression model

Y = Zθ + ε

the design matrix Z = [xα]x∈D;α∈L, Estτ (D) = {xα : α ∈ L} is non-singular
and provides a saturated model. We collect together a series of notes on the
use of the methods in practical regression. This is based on the author’s
joint work, particularly in industrial settings. It should be combined with
and draw on the special constructions and algorithm of the last section.
For some expansion of the issues discussed here, see Giglio, Riccomagno
and Wynn (2000).

3.13.1 Submodels

Any sub-model of Estτ (D) that is M = {xα : α ∈ L′ ⊂ L} is also identifi-
able with the design D and can be used (as can Est) as input to stepwise
regression. All the standard theory of the linear model is applicable.

3.13.2 Orthogonal polynomials

A method used extensively by the authors is to compute orthogonal poly-
nomials with respect to the term-ordering. Thus define

Y =Wφ+ ε

where W = ZτU
−1
τ and Uτ is the unique upper triangular (Cholesky)

matrix such that ZtτZτ = U tτUτ . Then

[hα(x)]α∈L′ =
[
U tτ
]−1 [xα]α∈L′

are orthogonal polynomials with respect to D. It is natural to order the
columns of Xτ in τ -ordering for then

hα(x) =
∑

α�τβ

cα,βx
β

and the model is written ∑

α∈L′
φαhα(x)

Then (under the usual regression assumptions) the minimum variance lin-
ear unbiased estimates of the φα are [φ̂α] = h[θ̂α] where θ̂α are the least-
squares estimates. The contribution to the usual regression sum of squares
of each φ̂α is simply φ̂2

α. Orthogonality means that the φ̂α are independent
under standard assumptions and can be used for standard half-normal plots
and similar analysis.
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3.13.3 Augmentation of designs

Theorem 34 is useful in augmentation of design with new points as may oc-
cur for example in optimal experimental design or sequential experimental
design more generally. The method contains a guarantee that all existing
models generated by a given τ will remain estimable by the augmented
design. Note that it is not true in general that the orthogonal polynomials
of the previous section remain the same.

3.13.4 Favored orderings and blocked orderings

Put simply, when a particular factor is small in the initial ordering it tends
to be favored in the allocation of monomial terms in Estτ (D). The lex
ordering is a radical version of this feature. It is common in analysis to
perform two- or multi-step procedures which would first screen the factors
using a simple analysis such as testing only for linear terms and then re-
ward the significant factors by putting them higher in the term-ordering,
perhaps leaving out non-significant factors altogether. The combination of
such strategies with the ability to construct quite general orderings and
using the “blocking” of the last section seems to be powerful.
In general one can choose the whole structure of the term-ordering in

order to force the Est set to include some terms, if the presence of the
terms is compatible with the design.

3.14 Non-polynomial models

Other types of models can be put into the algebraic setting of this book.
The important necessary condition is that the considered set of models
forms a ring. In particular, a one-to-one correspondence between the class
of models and a quotient space of a polynomial ring is required. This is
made clear by considering the Fourier regression case. See Caboara and
Riccomagno (1998).

Definition 36 Let A be a finite subset of the d-dimensional integer vectors.
The Fourier (or trigonometric) regression model based on A is defined as
the linear model

Y (x) =
∑

h∈A
ah exp

(
2πihtx

)
+ ε(x)

where ah is in k(i), the usual field of constants extended with the imaginary
unit, i.
The set A plays the role of the frequencies. In general the models in Defi-
nition 36 contain a non-zero real part and a non-zero imaginary part. The
following definition describes the set of Fourier models with a zero imagi-
nary part.
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Definition 37 Let A+ be a finite set of d-dimensional integer vectors not
containing zero and such that h ∈ A+ implies −h /∈ A+. A complete Fourier
(or trigonometric) model is defined as

Y (x) = θ0 +
√
2
∑

h∈A+

[
θh sin(2πhtx) + φh cos(2πhtx)

]

= α0 +
∑

h∈A+

[
βh exp(2πihtx) + δh exp(2πihtx)

]

where

α0 = θ0

βh =
φh − iθh√

2

δh =
φh + iθh√

2
Heuristically the one-to-one correspondence mentioned above is realized by
using the identities si = sin(2πxi) and ci = cos(2πxi) for all i = 1, . . . , d.
This idea is formalised in the following theorem.
Theorem 35 There is a one-to-one correspondence between the set of all
Fourier models and the polynomial quotient ring

k(i)[c1, . . . , cd, s1, . . . , sd]/〈c21 + s21 − 1, . . . , c2d + s
2
d − 1〉

Proof. See Caboara and Riccomagno (1998).

The commonly used computer algebra packages do not yet include a version
of the Buchberger algorithm for complex numbers. An ad hoc procedure
for Fourier models has been implemented in CoCoA.
Another example is given by regression models based on increasing ex-

ponentials, for example

Y (x) = θ0 + θ1 exp(x1) + θ2 exp(x2) + θ3 exp(x1 + x2) + ε

where ε is a random error with zero mean.
Definition 38 The set of exponential regression models is defined as

E =

{
∑

h∈A
θh exp(htx) : A ⊂ Zd+, A is finite and θh ∈ k

}

where k is the usual coefficient field.
Theorem 36 The set E is in one-to-one correspondence with the polyno-
mial ring k[t1, . . . , td].

Proof. The proof of the elementary fact that the relationship ti = exp(xi)
for i = 1, . . . , d defines a ring isomorphism between E and k[t1, . . . , td] is
left to the reader.
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CHAPTER 4

Two-level factors: logic, reliability,
design

4.1 The binary case: Boolean representations

There are close connections between two-level factorial designs and vari-
ous algebraic structures which employ binary representations. We will try
to arrive at a point where moving between the representations will give
additional insight.
The starting point is a set of variables x1, . . . , xd which are binary. We
code these two levels as {0, 1}. Following the analysis of the previous chap-
ters, we represent the set of values of a vector x = (x1, . . . , xd) as a 2d full
factorial design, D2d = {0, 1}d. This can be represented as the solutions of

{xi(xi − 1) = 0 : i = 1, . . . , d}
Next, we specialize the theory of Chapter 3 to the binary case.

Definition 39 Given a design, a fraction is simply a proper subset of the
design. In particular, a fraction DN is a subset of D2d of size N . Sometimes
we simply write D.

According to the Gröbner basis theory, given a term-ordering τ , the
fraction D has a Gröbner basis representation: if the reduced Gröbner basis
of Ideal(D) with respect to τ is

{gj(x) : j = 1, . . . , t}
then D is given by the solutions of

{gj(x) = 0 : j = 1, . . . , t}
Corresponding to D and given a term-ordering τ , there is a set of es-
timable terms

Estτ (D) = {xα : α ∈ L} (4.1)

which forms a vector space basis for k[x1, . . . , xd]/ Ideal(D), the quotient
vector space, where Ideal(D) is the design ideal: 〈gj(x) : j = 1, . . . , t〉.
The special feature of the binary case is that the terms of Estτ (D) are
multi-linear, that is square free. Thus the set L in (4.1) consists of binary
vectors. We recall also that Estτ (D) (or equivalently L) is an order ideal.
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Thus, for example, if x1x2x3 is in L so are

1, x1, x2, x3, x1x2, x2x3, x1x3

Note also that when D = D2d , D and L coincide because D2d is echelon
and thus minimal fan (see Section 3.10). Indeed the reduced Gröbner basis
for D2d is

{
x2
i − xi : i = 1, . . . , d

}
, for all term-orderings.

Definition 40 A Boolean algebra B(∨,∧,− , 0, 1) is a set B with two binary
operations ∨ and ∧, a complement ,̄ a null element 0 and a unit 1. The
set satisfies the commutative and associative properties over ∨ and ∧, the
two distributive properties

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

and
a ∨ 0 = 0 a ∧ 1 = a a ∨ ā = 1 a ∧ ā = 0

(a, b, c ∈ B).

Example 53 We can relate this directly to the design theory using a stan-
dard set representation, as shown below

1 ↔ D2d

element a ↔ design D
0 ↔ empty set ∅
∨ ↔ ∪
∧ ↔ ∩
ā ↔ D2d \D (written D̄)

With this correspondence designs, as subsets of a full factorial design, be-
come a Boolean algebra.

In Chapters 2 and 3 we showed how to construct a polynomial interpo-
lator over a set by using Estτ (D). Thus any function, g over D2d can be
expressed uniquely as a polynomial

g =
∑

α∈L2d

θαx
α

where L2d = {0, 1}d.
A further representation of the design is with indicator functions.

Definition 41 The indicator (polynomial) function of a binary design
D ⊆ D2d is

fD(x) =
∑

α∈L2d

θαx
α

where fD(x) =
{
1 if x ∈ D
0 if x ∈ D̄
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A formal way of expressing this is as a member of the quotient ring
k[x1, . . . , xd]/ Ideal(D2d) with the additional restriction f2

D = fD.

Example 54 The indicator function of the fraction D = {(0, 1), (1, 0)} of
D22 is fD(x1, x2) = x1 + x2 − 2x1x2 in Q[x1, x2]/〈x2

1 − x1, x
2
2 − x2〉. Over

the coefficient field Z2 the indicator function of D is x1 + x2.

To obtain the Boolean algebra representation we simply note that for
two designs D1 and D2 and corresponding indicator functions fD1(x) and
fD2(x), we have

fD1∪D2(x) = max (fD1(x), fD2(x)) = fD1(x) + fD2(x)− fD1(x)fD2(x)
fD1∩D2(x) = fD1(x)fD2(x)

fD̄1
(x) = 1− fD1(x)

fD2d
(x) = 1

f∅(x) = 0

for x ∈ D2d and where ∅ is the empty set.
Given a design D we can construct its polynomial indicator function fD
as follows. First write down the indicator for a single point ω ∈ D

fω(x) =
∏

i:ωi=1

xi
∏

i:ωi=0

(1− xi)

then clearly

fD(x) =
∑

ω∈D
fω(x) =

∑

ω∈D

∏

i:ωi=1

xi
∏

i:ωi=0

(1− xi)

Note that fD(x) contains, typically, square-free (multi-linear) monomials
up to the highest order:

∏d
i=1 xi. This representation is unique by con-

struction. In general the complexity of the monomial terms depends on the
complexity of the design D, a point we shall return to later.
We can thus move backwards and forwards between the set representa-
tion and the polynomial indicator function representation for designs.
We give two more alternative representations of a design, as a logical
proposition and as a binary string relating to the vertices of the unit hyper-
cube. A design D (or set) can be further interpreted as a logical proposition
by the translation

∪ ↔ ∨ (or)
∩ ↔ ∧ (and)
− ↔ ¬ (not)

Next, one can also represent D as a set of binary strings of length d (the
coordinate points). Then, a complex Boolean expression using indicator
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functions such as
f = max (f1f2, f3) = f1f2 + f3 − f1f2f3

= (f1 + f3 − f1f3)(f2 + f3 − f2f3) = max (f1, f3)max (f2, f3)

represents the corresponding evaluation of the truth of the underlying
proposition

D = (D1 ∧D2) ∨D3 = (D1 ∨D3) ∧ (D2 ∨D3)

Finally, order the corners of the 2d-full factorial design D2d . A design
can be represented by a binary string of length 2d. The idea is made clear
with an example. For d = 2 fix an anti-clockwise order on the points of the
{0, 1}2 grid starting from (0, 0), that is (0, 0), (1, 0), (1, 1) and (0, 1) last.
Below the representation of three designs is given

D1 = {(0, 0), (1, 0)} = (1, 1, 0, 0)
D2 = {(0, 0), (1, 1), (0, 1)} = (1, 0, 1, 1)
D3 = {(1, 1), (0, 1)} = (0, 0, 1, 1)

The design D = (D1 ∩D2) ∪D3, above corresponds to (1, 0, 1, 1). Putting
D1, D2, D3 and D together gives a truth table where T and F can be
interpreted as the truth of the proposition

(0, 0) (1, 0) (0, 1) (1, 1)

D1 T T F F
D2 T F T T
D3 F F T T

D T F T T

4.2 Gröbner bases and Boolean ideals

Given a term-ordering τ and a coefficient field including two different ele-
ments like 0 and 1, a design D is represented by a unique reduced Gröbner
basis, G, with respect to the τ term-ordering. Write the Gröbner basis, G
and the corresponding ideal as

Ideal(D) = 〈g(x) : g ∈ G〉
Let us repeat from the previous section that typically amongst the leading
terms of G there are monomials of the type x2

i and in Ideal(D) there are
the polynomials x2

i − xi for i = 1, . . . , d. However if D is a proper subset
of D2d then for all g ∈ G the leading term of g is either x2

i for a certain
i = 1, . . . , d or a multi-linear term.
Example 55 Let d = 3 and consider the set

D = {(1, 1, 0), (1, 0, 1), (0, 0, 1), (1, 1, 1)}
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The Gröbner basis with respect to the tdeg term-ordering is given by the
following polynomials





x2
3 − x3

x2x3 − x2 − x3 + 1
x1x3 − x1 − x3 + 1
x2

2 − x2

x1x2 − x2

x2
1 − x1

with leading terms
{
x2

3, x2x3, x1x3, x2
2, x1x2, x2

1

}

Now suppose that we can assume that D ⊆ D2d , that is, we know in
advance that the design is binary. Then, restricting to D2d we only need
use the multi-linear leading terms of the Gröbner basis and state that D is
given as the solution in D2d of





x2x3 − x2 − x3 + 1 = 0
x1x3 − x1 − x3 + 1 = 0
x1x2 − x2 = 0

However, we now have a competitor for the expression of D to the al-
ternative expression obtained by simply putting its polynomial indicator
function equal to unity

1− fD(x) = 0
In the example this is

1− (x1x2 − x2x3 + x3) = 0 (4.2)

The alternative forms are representations of Boolean ideals and corre-
sponding Boolean varieties. By this we mean the set of all indicator func-
tions which are zero on D and unity on D2d \D = D̄.
Let us be a little more precise and link the discussion more closely to the
Boolean algebra formulation, see Halmos and Givant (1998).
Definition 42 An ideal I in a Boolean algebra B is a subset of B with the
properties
1. 0 ∈ I
2. if f ∈ I and g ∈ I then f ∨ g ∈ I
3. if f ∈ I and g ∈ B then f ∧ g ∈ I.
Now consider D ⊆ D2d . Let D1 and D2 be any two sets containing D
then D ⊆ D1 ∩ D2. If E is any other set in D2d then D ⊆ D1 ∪ E. Now
let gD = 1 − fD where fD is the indicator function of D and similarly for
D1, D2 and E. Then, max(gD1 , gD2) = 0 on D and gD1gE = 0 on D. Thus,
with zero identified as the zero indicator we recapture either in the set
theory or in the polynomial representation the notion of a Boolean ideal.
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This is sometimes described by saying that D is the kernel of the Boolean
homomorphism

gD = 1− fD

There is an even simpler interpretation of the ideal using an inequality:
D ⊆ D1 means that gD1 is in the ideal generated by GD. But it is enough
to write

fD1 ≥ fD

for the two indicator functions. Thus we can, as is well known, work equiv-
alently within the theory of partial ordering and lattices.

4.3 Logic and learning

Recall that a logical proposition can be considered as a subset D of D2d ,
the set of all elementary propositions (also called outcomes, atoms, etc).
To repeat, D can be considered as an element of a Boolean algebra or a
Boolean function fD(ω), uniquely expressible as a polynomial consisting of
square-free monomials.
We may fix a particular D and consider it to be the set of all true elemen-
tary propositions. In many situations in logic we may wish to determine D
from other, partial information. In particular, in certain models of learning
we may be presented with training or test examples which state the truth
or falsehood of certain test cases. These can be presented as a set of N
pairs

(a(i), yi) (i = 1, . . . , N)

where yi is the truth value of a(i) ∈ D2d . Since we may interpret the truth
of a statement a(i) as the statement that a(i) ∈ D we can evaluate yi by

yi = fD(a(i)) (i = 1, . . . , N)

where fD(a(i)) (as usual) is the polynomial indicator for D, giving yi = 0
or 1.
In this case, we may call a (current) hypothesis any indicator function

fD′ which is consistent with the current truth, namely the set of data so
far collected: (a(i), yi) (i = 1, . . . , N). Such hypothesis satisfies

yi ≡ fD′(a(i)) = fD(a(i)) (i = 1, . . . , N)

Define

DN = {a(i) : a(i) ∈ D, i = 1, . . . , N}
D̄N = {a(i) ∈ D2d : a(i) /∈ D}

Then, the above statement can be written as an approximation for the
hypothesis, D′

DN ⊆ D′ and D̄′ ⊆ D̄N (4.3)
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preted as a statement about inclusion of the corresponding ideals, either
the set version or the indicator function version.
See Anthony and Biggs (1997) for an to computational
learning.

4.4 Reliability: coherent systems as minimal fan designs

The development in Section 4.1 is a useful platform for doing elementary
probability. We shall give a fuller development in Chapter 5. For the mo-
ment we simply consider a design D as an event in the probability space
of all events (D2d = Ω in probability notation). Then we simply obtain the
Boolean ring of events. All that remains is to attach probabilities {p(x)}
so that

0 ≤ p(x) ≤ 1 and
∑

x∈D2d

p(x) = 1

In Chapter 5 we shall extend the theory to give algebraic representations
for the p(x) themselves. We give now a fresh application of the ideas to
reliability theory, see Barlow (1998).

Definition 43

1. We call system a set S which consists of d components each of which
can fail or not fail coded 1, 0, respectively.

2. An outcome is a binary string of length d describing the failure or oth-
erwise of each component.

3. A failure outcome is an outcome which leads to the failure of the whole
system S.

4. The failure event (perhaps we should say the maximal failure event)
is the set of all failure outcomes. We shall denote it by D because it
has (again) the structure of a design: a subset of D2d , the space of all
outcomes.

In simple reliability the (often criticized) assumption that each compo-
nent fails independently is sometimes made. More generally we consider a
(joint) probability distribution given by {p(x) : x ∈ D}. In either case, the
probability of the system failure is

p(D) =
∑

x∈D
p(x)

A coherent system is one for which changing a non-failed component
to failed for any failure outcomes still yields a failure outcome. Thus, for
example, for a four component system if (1, 1, 0, 0) is a failure outcome, so
are (1, 1, 1, 0), (1, 1, 0, 1) and (1, 1, 1, 1).
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1

2

3

4

5

IN OUT

Figure 4.1 An input/output system.

Definition 44 Let D2d represent a system with d components and let D ⊆
D2d be a failure event. The system is said to be coherent if x ∈ D implies
x ∈ D for any x′ ≥ x (in the usual entry-wise ordering: x′

i ≥ xi, i =
1, . . . , d).

The classical definition of coherence also requires that every component
is non-redundant in the sense that the failure event contains the failure of
any component at least once.
There is a useful connection between coherent systems and the minimal
fan design in Section 3.10. The easiest way to see this is to (temporarily)
reverse the coding to 0 ↔ 1. Then, provided, there is at least one non-
empty failure outcome we obtain exactly an echelon design as introduced
in Example 32.

Example 56 Figure 4.1 shows a reliability network in standard form with
edges as components and clearly IN and OUT stand for input and output.
The system fails if the edges are cut so that there is no path from IN to
OUT. Table 4.1 shows the cuts that give the failure event of the system.
In the {0, 1} ≡ {not fail, fail} coding the failure outcomes are given in
Table 4.1. Reversing 0 and 1 yields an echelon design. Note that the minimal
fan property is unaltered by the coding.

Definition 45 For a coherent system a minimal failure outcome x is one
for which any x′ �= x for which x′ ≤ x is not a failure outcome.

Example 57 For the above network example the minimal failure outcomes
are 11000, 00011, 10101 and 01110; these are coded as cuts 12, 45, 135 and
234 respectively.

Definition 46 For a coherent system a minimal non-failure outcome x
is a non-failure outcome for which any x′ �= x with x′ ≥ x is a failure
outcome.
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Table 4.1 Cuts and failure event for the system in Figure 4.1.

12 45 135
123 145 234
124 245
125 345
1234 1345
1235 2345
1245
12345

11000 00011 10101
11100 10011 01110
11010 01011
11001 00111
11110 10111
11101 01111
11011
11111

Example 58 For the example in Figure 4.1 the minimal non-failure out-
comes are 01101, 10110, 01010, 10001; these are coded as paths 14, 25,
135, 234 respectively. A minimal path, here, means a sequence of connected
edges from input to output such that if an edge is out (fails) the path is
broken and the system fails.

The set D̄ = D2d \ D (where D is the failure event) is the non-failure
event of which the minimal non-failure outcomes are members.
The connection with minimal fan design yields benefits. Considering D
and D̄ for a coherent system as designs we can construct their Est sets.
By the minimal fan property they are independent of the term-ordering τ
chosen. Thus for any τ

Estτ (D) = {xα : α ∈ L}
where L = {α : αi = 1− ai, for i = 1, . . . , d and a ∈ D} and

Estτ (D̄) =
{
xα : α ∈ D̄

}

We see that D̄ is an echelon design and thus minimal fan in the standard
orientation. Therefore it provides the Est term exponents for itself. Any
function on D or D̄, such as a cost dependent on failure, can be written as

D : f =
∑

α∈L
θαx

α

D̄ : g =
∑

α∈D̄
φαx

α

4.5 Inclusion-exclusion and tube theory (with D. Naiman and
B. Giglio)

Throughout this section we consider coherent systems so that the failure
events D and non-failure events D̄ are minimal fan.
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Let us return to the use of indicator polynomials. Let

fD(x) =
∑

α∈D2d

θαx
α

be the indicator function for the failure event so that

fD(x) =
{
1 x ∈ D
0 x ∈ D̄

and recall that it is essentially a unique polynomial interpolator over D2d .
The standard inclusion-exclusion identity for failure is based on the minimal
failure outcomes, according to Definition 45. Let us call the collection of
minimal failure outcomes F . Then for each ω ∈ F define the “quadrant”

Qω = {ω′ : ω′ ≥ ω, ω ∈ D2d}
It is clear that

D =
⋃

ω∈F
Qω

Since the system is coherent for any ω ∈ F , Qω ⊆ D the failure event.
Thus Qω defines the set of all failure outcomes which include all failed
components indicated by ω. Let Fr be the set of all subsets of F of size r
and note that F1 = F . The following is obtained simply by applying the
usual inclusion-exclusion lemma. Note that the polynomial indicator of Qω

is simply

qω(x) = xω = xω1
1 . . . xωd

d

Theorem 37 For a coherent system with failure event D and minimal
failure outcomes F ⊆ D, let qω(x) be the indicator function of Qω =
{ω′ ∈ D2d : ω′ ≥ ω}. Then, the indicator for the failure event is

fD(x) =
∑

ω∈F=F1

qω(x)−
∑

(ω(1),ω(2))∈F2

qω(1)(x)qω(2)(x)+

. . . (−1)#F−1
∏

ω∈F
qω(x)

where #F is the cardinality of F .

There have been several attempts to obtain simplified versions of this
formula. The importance stems from the following: each qω(x) or equiva-
lently each Qω covers all events ω′ ≥ ω. Thus let ω = (ω1, . . . , ωd) be a
minimal failure event, let {p(ω)} be the failure distribution and let X be
the corresponding variable in D2d . Then

Prob {Qω} = E(qω(X)) = E(Xω)
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Similarly

Prob
(
Qω(1)

⋂
Qω(2)

)
= E(qω(1)qω(2))

= E
(
Xω(1)∨ω(2)

)

where ω(1) ∨ ω(2) =
(
max(ω(1)

1 , ω
(2)
1 ), . . . ,max(ω

(1)
d , ω

(2)
d )
)
and so on for

higher-order intersections.
Given a failure distribution {p(ω)} on D2d , the probability of failure is
given by taking expectation of the inclusion-exclusion formula of Theo-
rem 37 (with x replaced by X)

P(D) =
∑

ω∈F1

P(Qω)−
∑

(ω(1),ω(2))∈F2

P
(
Qω(1)

⋂
Qω(2)

)

+ . . . (−1)#F−1Prob

(
⋂

ω∈F
Qω

)

This is the usual formula for probability of failure based on “cuts” in system
reliability.
Associated with the inclusion-exclusion formulae are inequalities. We
state these for the indicator functions. Thus, for s odd (s = 1, . . . ,#F )

fD(x) ≤
s∑

r=1

(−1)r−1
∑

(ω(1),...,ω(r))∈Fr

qω(1) · · · qω(r)

and with reversed inequalities when s is even. Again, by taking expectation
we obtain the probability version.
Coherent systems have the key property that the set of Qω which appear
in the basic inclusion-exclusion lemma is very much restricted. Since each
such Qω has a monomial indicator qω(x) = xω = xω1

1 . . . xωd

d there is consid-
erable reduction in complexity in inclusion-exclusion identities. Moreover,
the standard inclusion-exclusion inequalities described above can be re-
placed by sharper inequalities with reduced complexity. Recent results are
based on discrete tube theory which we now develop briefly. This is based
on Giglio, Riccomagno and Wynn (2000) and Naiman and Wynn (2000).
See also recent work by Dohmen (1999).
For the above example in binary notation the minimal failure outcomes
are 11000, 00011, 10101 and 01110. The indicator function for the failure
event given in Table 4.1 is easily computed as

f = x1x2 + x4x5 + x1x3x5 + x2x3x4

− x1x2x4x5 − x1x2x3x5 − x1x2x3x4 − x1x3x4x5

− x2x3x4x5 + 2x1x2x3x4x5
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Note that it uses only eleven monomials (counting multiplicities) out of a
maximum of 25 = 32 (including 1).

Definition 47 An abstract simplicial complex is a collection S of non-
empty subsets of an index set I such that for any I ∈ S and J ⊂ I with
J �= ∅ we have J ∈ S. The dimension of the simplicial complex is the
maximal cardinality of I.

The r-tuples of S, that is the sets of size r, are called r− 1 simplices. Thus
a simplex of S has the property that all its sub-simplices also lie in S.
The basic idea of tube theory is that, in some circumstances, we (i)
index the sets we are interested in a special way (in our case, these are the
quadrants Qω ∈ F ) and then (ii) identify a simplicial complex satisfying a
special “discrete tube” property and finally (iii) claim inclusion-exclusion
identities and inequalities only using terms associated with the simplicial
complex.

Definition 48 An abstract tube is a collection of subsets A = {Ai : i ∈ I}
of a set X where the index set I has a simplicial complex S such that for
any x ∈ X the sub-simplicial complex

Sω =
{
I ∈ S : x ∈

⋂

i∈I
Ai

}

is contractible (as an abstract simplicial complex).

Here contractible means having the same “homotopy type” as a point,
that is, roughly stated, it has a geometric realisation which can be contin-
uously shrunk to a point.
The next result gives general inclusion-exclusion identities and inequali-
ties for discrete tubes.

Theorem 38 Let {A, I,S} be an abstract discrete tube and let I = n. If
χ(A) denotes the indicator function of a set A, then

χ (∪i∈IAi) =
m∑

r=1

(−1)r−1
∑

#I=r
I∈S

χ(
⋂

i∈I
Ai)

≤
s∑

r=1

(−1)r−1
∑

#I=r
I∈S

χ(
⋂

i∈I
Ai) (s odd)

≥
s∑

r=1

(−1)r−1
∑

#I=r
I∈S

χ(
⋂

i∈I
Ai) (s even)

(1 ≤ s < m).
The maximal value m of #I, I ∈ S is called the depth of the tube and is
the dimension of the simplicial complex (plus one).

© 2001 by Chapman & Hall/CRC



INCLUSION-EXCLUSION AND TUBE THEORY 87

First we index the set of minimal failure points F in some way

F =
{
ω(1), . . . , ω(n)

}

To construct a discrete tube, we need a mean of deciding which inter-
sections of {Qω : ω ∈ F} are in the simplicial complex. The method works,
rather, in reverse by describing which intersections are not in the complex.
Each intersection is defined by an index set I ⊆ {1, . . . , N}

Q∨i∈Iω(i) =
⋂

i∈I
Qω(i)

Definition 49 For an index set I and j /∈ I we say that j covers I if

(i) j < i for all i ∈ I

(ii) Qω(j) ⊇ Q∨i∈Iω(i)

Note that (ii) is equivalent to saying

ω(j) ≤ ∨i∈Iω(i)

Definition 50 An index set I is covered if there is a subset I ′ of I (possibly
I itself) such that there is some j /∈ I ′ which covers I ′.

Now define S as the set of non-covered index sets J . The main result is
that these form a discrete tube.

Theorem 39 Select a listing of the minimal failure outcomes:

F =
{
ω(1), . . . , ω(N)

}

and let Q = {Qω : ω ∈ F} be the corresponding individual failure events.
Let S be the set of non-covered index sets J ⊆ {1, . . . , N}. Then, {Q, I, S}
forms an abstract tube (I = {1, . . . , N}). Moreover the depth of the tube is
less than or equal to d, the number of components.

Proof. The proof is omitted but is an adaptation of the proof in Naiman
and Wynn (2000). See also Giglio, Naiman and Wynn (2000).

Theorem 39 can then be immediately applied to give the following result
for coherent systems.

Theorem 40 For a coherent system D2d , let F =
{
ω(1), . . . , ω(n)

}
be the

set of minimal failure outcomes, indexed in some order. Let {Q, I,S} be
the tube described in Theorem 39. Let D be the (maximal) failure event,
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then

fD(x) =
d∑

r=1

(−1)r−1
∑

#I=r
I∈S

∏

ω∈I
qω(x)

≤
s∑

r=1

(−1)r−1
∑

#I=r
I∈S

∏

ω∈I
qω(x) (s odd)

≥
s∑

r=1

(−1)r−1
∑

#I=r
I∈S

∏

ω∈I
qω(x) (s even)

(1 ≤ s < d).

Example 59 Consider another example in five dimensions with minimal
failure events

ω(1) = 11000, ω(2) = 00111, ω(3) = 10101, ω(4) = 01110

Computing the intersections via the ω(i), we obtain

ω(1) ∨ ω(2) = 11111 not covered
ω(1) ∨ ω(3) = 11101 not covered
ω(1) ∨ ω(4) = 11110 not covered
ω(2) ∨ ω(3) = 10111 not covered
ω(2) ∨ ω(4) = 01111 not covered
ω(3) ∨ ω(4) = 11111 covered

ω(1) ∨ ω(2) ∨ ω(3) = 11111 not covered
ω(1) ∨ ω(2) ∨ ω(4) = 11111 not covered
ω(1) ∨ ω(3) ∨ ω(4) = 11111 covered
ω(2) ∨ ω(3) ∨ ω(4) = 11111 covered

ω(1) ∨ ω(2) ∨ ω(3) ∨ ω(4) = 11111 covered

The simplicial complex, in terms of the indices, is

{1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},

{1, 2, 3}, {1, 2, 4}
This gives an improvement over the classical inclusion-exclusion lemma at
depths two and three because {3, 4} is omitted at depth two and {1, 3, 4}
and {2, 3, 4} are omitted at depth three. The depth of the tube is three as
opposed to four for the inclusion-exclusion lemma. The simplicial complex
is given pictorially by Figure 4.2.
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1 11

11

1

2 22

22

2

3

3

3

3 4

4

4

4

Figure 4.2 A simplicial complex.

4.5.1 Failure/non-failure duality and Gröbner bases

Because the failure and non-failure events for a coherent system are both
minimal fan echelon designs it is natural to conjecture a duality involving
Gröbner bases.
Consider the simple two-component system with single failure outcome
11. The non-failure event is {00, 10, 01}. As a zero-dimensional point set
this has the Gröbner basis

{
x2

1 − x1, x
2
2 − x2, x1x2

}
. Note that x1x2 has

index vector 11, which is precisely the failure event. Now interchange 0 and
1 so that 11 �→ 00. The Gröbner basis for the single point 00 is 〈x1, x2〉
whose elements have index set 10 and 01, which are the transformed version
of the minimal non-failure events 01 and 10, respectively. Notice that we
do not use the quadratic elements x2

i − xi.
We collect this duality together as a theorem, but omit the proof. To aid
the statement we refer to the 0↔ 1 interchange as “flipping”.
Theorem 41 Let F and G = {0, 1}d \ F be respectively the failure and
non-failure sets for a (binary) coherent system. Let F̃ and G̃ be their flipped
version. Let L(S) be the leading terms of the reduced Gröbner basis of a
subset S ⊆ {0, 1}d excluding quadratic terms. Then

L(G) = F �

L(F̃ ) = G̃�

where F � and G̃� are the minimum outcomes in each case.

Example 60 [Continuation of Example 58]. Either by taking complements
or noting that the minimal paths in Figure 4.2 are 14, 25, 135 and 234, the
minimal non-failure events are 01101, 10110 01010 and 10001 and the full
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non-failure event set is the complement set of Table 4.1:

01101 10110
10100 10010 10001 01100
01010 01001 00110 00101
10000 01000 00100 00010 00001
00000

Moreover, L(G) for the above point set is x1x2, x4x5, x1x3x5 and x2x3x4

confirming the result that L(G) = F �. We end this example by computing
a tube simplicial complex for the non-failure events. There are two options
to change the tube construction in Definition 49 by replacing ∧ by ∨ or
simply applying the construction to F̃ . Let us do the latter. Thus

F̃ � = {10010, 01001, 10101, 01110} .
Using Definition 49 in the order shown, we have

ω(1) ∨ ω(2) = 11011 not covered
ω(1) ∨ ω(3) = 10111 not covered
ω(1) ∨ ω(4) = 11110 not covered
ω(2) ∨ ω(3) = 11101 not covered
ω(2) ∨ ω(4) = 01111 not covered
ω(3) ∨ ω(4) = 11111 covered

ω(1) ∨ ω(2) ∨ ω(3) = 11111 not covered
ω(1) ∨ ω(2) ∨ ω(4) = 11111 not covered
ω(1) ∨ ω(3) ∨ ω(4) = 11111 covered
ω(2) ∨ ω(3) ∨ ω(4) = 11111 covered

ω(1) ∨ ω(2) ∨ ω(3) ∨ ω(4) = 11111 covered

This gives the simplicial complex (in terms of the index set for intersec-
tions):

{1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}

{1, 2, 3}, {1, 2, 4}
We may obtain alternative inequalities for system failure by setting out
the bounds for non-failure and using probability{system failure} = 1 −
probability{system non-failure}.

4.6 Two-level factorial design: contrasts and orthogonality

If the binary experimental design is treated from the point of view of classi-
cal design rather than its adaptation for logic and reliability, then somewhat
different issues arise. Foremost among these is orthogonality and its rela-
tionship to the underlying group structure. The following development is
taken from Fontana, Pistone and Rogantin (1997) and Fontana, Pistone
and Rogantin (2000).
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It is convenient to switch to a different binary coding {−1, 1} and the
unit hyper-cube {−1, 1}d. All the Gröbner basis theory still applies in the
sense that the natural recoding 1→ 1 and 0→ −1 preserves Estτ (D). This
is because the Gröbner basis for the d-dimensional full factorial design over
{−1, 1} is

〈x2
i − 1 : i = 1, . . . , d〉

with respect to any term-ordering.
In developing the application to 2d factorial design we shall make special
use of indicator functions. Here is a list of properties. Recall Definition 41.

1. The polynomial indicator function on {−1, 1}d of a single point a is

fa(x) =
∏

i:ai=1

1 + xi
2

∏

i:ai=−1

1− xi
2
=

d∏

i=1

1 + aixi
2

and of a design D is
fD(x) =

∑

a∈D
fa(x)

2. For a fraction D of D2d the design ideal is

Ideal(D) = 〈x2
1 − 1, . . . , x2

d − 1, 1− fD(x)〉
In general this representation is not a Gröbner basis.

3. We can characterize fD(x) also as

{
Ideal(D) = 〈x2

1 − 1, . . . , x2
d − 1, 1− fD(x)〉

f2
D − fD ∈ 〈x2

1 − 1, . . . , x2
d − 1〉

The theory of 2d fractions is well managed if we essentially restrict all the
statements to calculations of y-values on {−1, 1}d. Thus for any function
from the factorial design D2d to a field k we immediately replace it by its
polynomial interpolator

fD2d
(x) =

∑

α∈D2d

θαx
α

We now define an “expectation operator” E(·) which simply averages
quantities over {−1, 1}d.
Definition 51 Let f be a function from D2d to a field k. Then, the mean
value of f is denoted by E(f) and is defined by

E(f) =
1
2d

∑

x∈{−1,1}d

f(x)

This operator is useful for formalizing the idea of orthogonality.
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Definition 52 Let f, g be a functions from D2d to a field k.

1. A contrast on D2d is a function (response) f such that

E(f) = 0

2. Two functions, f and g, are orthogonal on D2d if

E(fg) = 0

For a design D ⊆ {−1, 1}d, the above definition extends to contrasts and
orthogonality with respect to D if the expectations are restricted to D.

Definition 53 Let D be a fraction of the 2d full factorial design and let
f, g be functions on D. The mean value of f is defined as

ED(f) =
1
#D

∑

x∈D
f(x)

where #D is the number of elements of D. The function f is a contrast on
D if

ED(f) = 0

The functions f and g are said to be orthogonal on D if their product is a
contrast

ED(fg) = 0

We investigate when two contrasts f and g are orthogonal with respect
to a fraction D. The first point is to express the indicator function of
the fraction D in terms of the monomials in Est = {xα : α ∈ L2d}, in other
words, expand fD(x) into multi-linear monomials, independent of the term-
ordering. Let this be

fD(x) =
∑

α∈L2d

bαx
α (4.4)

One advantage of the {−1, 1} coding is the special role played by the
symmetric difference of index sets. As we are only interested in multi-linear
terms, we identify a monomial xα with the vector α where αi = 0 or 1 and
in turn α can be identified with the set recording the position of the ones
in α. For example, for α = (1, 0, 1, 0), the corresponding set is {1, 3} and
for β = (0, 1, 1, 1), it is {2, 3, 4}. Then, we can define

α�β = (α ∪ β) \ (α ∩ β)

with reference to the set representation. For example, for α = (1, 0, 1, 0) and
β = (0, 1, 1, 1) we have α�β = (1, 1, 0, 1). It is important to note that thus
the monomial x1x2x4 is the product of the monomials x1x3 and x2x3x4 in
the Est representation of the quotient space k[x1, . . . , x4]/ Ideal(D24).

Theorem 42 Let xα, xβ and xγ be multi-linear monomial functions over
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the full factorial design D2d , that is αi, βi, γi = 0 or 1 for i = 1, . . . , d.
Then {

E(xα) = 0 for xα �= 1
E(xαxβ) = 0 for xα �= xβ

that is all the multi-linear terms (but 1) are contrasts and any pair of
distinct multi-linear terms are orthogonal with respect to a full factorial
design.

Now let D be a fraction of D2d and let fD be the indicator function of
D as in Equation (4.4). Then

1. xα is a contrast on D if and only if bα = 0

2. xα and xβ are orthogonal on D if and only if bα�β = 0

3. Let xα be a contrast. For any xβ and xγ such that α = β�γ, xβ is
orthogonal to xγ over D.

Moreover, we have 



ED(xα) =
2d

#D
bα

ED(xαxβ) =
2d

#D
bα�β

Proof. See Fontana, Pistone and Rogantin (1997). A useful relation used
in the proof is xαxβ = xα�β over D2d .

Given a term-ordering τ , the aim is to construct a maximal (in number)
set of mutually orthogonal contrasts among the xα, for xα ∈ Estτ (D).
According to Theorem 42, given the indicator function fD for the design D
as in Equation (4.4), we may simply inspect the coefficients bα. If {xα : α ∈
L′} is a set of mutually orthogonal contrasts, then any model employing
all (or some) of these terms is

y =
∑

α∈L′
θαx

α + ε

and the least-square estimators of the θα are simply

θ̂α = ED(xα)Y (x) α ∈ L′

where Y (x) is the interpolator of the observed values at the design points.
These estimators are also sometimes referred to as contrasts.

Example 61 Let D be the fraction of D25 in Table 4.2. The corresponding
indicator function is

fD(x) =
1
2
+
1
4
x1x2x4 − 14x1x2x3 +

1
4
x1x2x4x5 +

1
4
x1x2x3x5
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Table 4.2 A fraction of the five-dimensional full factorial design.

1 1 1 1 1
1 1 −1 1 1
1 1 −1 1 −1
1 1 −1 −1 −1
1 −1 1 1 −1
1 −1 1 −1 1
1 −1 1 −1 −1
1 −1 −1 −1 1

−1 1 1 1 −1
−1 1 1 −1 1
−1 1 1 −1 −1
−1 1 −1 −1 1
−1 −1 1 1 1
−1 −1 −1 1 1
−1 −1 −1 1 −1
−1 −1 −1 −1 −1

With respect to the term-ordering tdeg, we have

Est(D) = { 1,
x1, x2, x3, x4, x5,
x1x3, x1x4, x1x5, x2x3, x2x4, x2x5,
x3x4, x3x5, x4x5, x3x4x5 }

and a maximal subset of mutually orthogonal monomials is

L′ = { 1, x1, x2, x3, x4, x5,
x1x5, x2x5, x3x4, x3x5, x4x5,
x3x4x5 }
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CHAPTER 5

Probability

The presentation in this book of the application of commutative algebra in
probability and statistics has proceeded in two basic stages. In Chapters 2,
3 and 4, the emphasis is on the application of algebraic aspects to exper-
imental design. In the present chapter, algebraic constructions are carried
out for discrete finite probability distributions, replacing the design, as a
set of discrete points, by the support of a discrete distribution.

The algebraic encoding of the basic setting of probability and statistics
in the case of a finite sample space is carried out in a sequence of steps.

Level 1. Let k be a field of constants, typically k = Q. Finite subsets in
kd are described as zero-dimensional varieties, i.e. as the set of solutions
of a system of polynomial equations in d indeterminates. Such a sub-
set represents the sample space, or support, directly or after a suitable
coding.

Level 2. Let K be an extension of the basic field k in Level 1, typically
K = R. The K-valued random variables over a finite support form a
ring and are described as the quotient ring of the polynomial ring with
coefficients in K and d indeterminates by the variety (or more exactly
its ideal) in Level 1. The monomial basis of this space does not depend
on the extension field.

Level 3. Probabilities and statistical models are introduced using one of
a class of possible geometries on the set of probabilities, e.g., densities,
square roots of densities, exponential models. An algebraic representa-
tion exists for each case.

Level 4. For special types of support (lattice), a further level of algebrai-
sation is possible. In the non-lattice case, a differential-algebraic setting
is useful.

Level 3 mentions “geometry”, meaning that the actual construction of
probability and later probability models encourages the introduction of ex-
tra structure. That is, commutative algebra is not enough. More precisely,
as the probability is associated to expected values, hence to a scalar prod-
uct, we put a Euclidean structure on the ring of random variables. Such a
structure can be naturally derived from a special representation of the ring
of random variables as a (commutative) ring of matrices.
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5.1 Random variables on a finite support

In the present chapter, a finite subset of the affine space kd, namely the
design in the previous chapters

D =
{
a(i) ∈ kd : i = 1, . . . , n

}

is called support and represents the sample space, that is support, of a
discrete finite probability distribution. We often write aD := {a : a ∈ D}
and consider aD as an ordered list for a fixed but otherwise arbitrary total
ordering. We recall its algebraic representation from the previous chapters.
Let

Ideal(D) = {f ∈ k[x] : for all a ∈ D, f(a) = 0}
be the ideal associated to D. It will be called the support ideal. It is a radical
ideal and defines uniquely the support D as its variety. As in the design
case, given the support D and a term-ordering τ , there is a unique set of
terms which forms a vector space basis of the quotient space k[x]/ Ideal(D)

Estτ (D) = {xα : α ∈ L}
(see Section 3.5).

In general (see Section 2.2) any function Y from D to K, an extension
field of k, can be represented as

Y =
∑

α∈L
cαX

α (5.1)

with cα ∈ K. Here Xα with capital X denotes the function

Xα : D −→ k ⊆ K
while the small case letter x is used for the indeterminate. That is {Xα}α∈L
is a basis of the vector space of K-valued functions on D. Equation (5.1)
above is related to the normal form of polynomial interpolators of Y =
{Y (a) : a ∈ D}.

Note that if the field k has characteristic zero, that is it contains the ra-
tional numbers, and D is a finite set of points in kd, then a Gröbner basis of
k[x1, . . . , xd]/ Ideal(D) is also a Gröbner basis of K[x1, . . . , xd]/ Ideal(D),
for all extension fields K of k. This can be easily seen as the operations
needed to compute the Gröbner basis of Ideal(D) in K[x1, . . . , xd] are ac-
tually performed over k[x1, . . . , xd]. On this point see also Section 5.2.
Definition 54 Let D be a finite set of distinct points in kd and let K be
an extension field of k. The vector space of all functions from D to K is
indicated as L(D,K), briefly L(D) or L.

As in the design case, note that the list L depends on τ and D and
should therefore always be taken in context. Note also that Estτ (D) is the
complementary set of the set of leading terms of the support ideal I(D). We
consider L as a list ordered according to τ . From the previous theory (see
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in particular Section 2.10), we know that the following ring isomorphism
holds

L(D,K) ∼ K[x1, . . . , xd]/ Ideal(D)

5.2 The ring of random variables

We now consider the algebraisation of the event space and subsequently
the space of random variables.

Subsets of designs are called fractions in experimental design theory (see
Definition 39). In the context of discrete random variables we have the
following definition, which we saw briefly in Chapter 4.
Definition 55 An event, A is a subset of a sample space D.

As in Definition 41 an event A in the support D can be identified by its
indicator function fA. The indicator function has a polynomial representa-
tion on the support of type (5.1)

fA =
∑

α∈L
cαX

α (5.2)

If [a(1), . . . , a(N)] is the ordered list of the sample points, then Equa-
tion (5.2) evaluated at a(i) , i = 1, . . . , N , induces the following system
of linear equations 




fA(a(1)) =
∑

α∈L
cαa(1)α

...

fA(a(N)) =
∑

α∈L
cαa(n)α

As in design theory we define the support (or design) matrix (see Defini-
tion 26)

Z = [a(i)α]i=1,...,N ;α∈L
so that the indicator function of the sample point a(i) in Equation (5.2)
has entries cα,i given by the vectors [ci] = [cα,i]α∈L, thus

[ci] = Z−1[ei]

where we have performed the identification of functions with column vec-
tors, ei is the i-th element of the canonical basis of the vector space kn

and [ei] is the corresponding column vector. Note that Z is invertible as
Estτ (D) is a vector-space basis. Note also the formula

Z−1 = [c1, . . . , cN ]

A random variable Y on the support D with values in the field K, has
the form of Equation (5.1), with coefficients cα ∈ K. In fact, it can be
written as K-linear combinations of the indicator functions of the points of
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the support. If [yD] = [Y (a(1)), . . . , Y (a(N))] is the vector of the values of
Y and [cL] = [cα : α ∈ L] is the vector of coefficients in Equation (5.1),
then the equation

[cL] = Z−1[yD] (5.3)
and (5.1) are two equivalent ways to describe a generic random variable on
D.

The following theorem describes the ring structure of L(D).
Theorem 43 The multiplication of Xα and Xβ is computed as

XαXβ = Remτ

(
Xα+β

)

=
∑

γ∈L
r(α + β, γ)Xγ

where Remτ (f(X)) means the random variable f̃(X) derived from f̃(x) =
Remτ (f(x)) by substituting the indeterminate x with the random variable
X, and the normal form is computed with respect to Ideal(D).

The following definition has an important computational outcome.
Definition 56 Define the multi-array

R = [R(α, β, γ)]α,β,γ∈L = [r(α + β, γ)]α,β,γ∈L
and the list of N ×N matrices

R(β) = [r(α + β, γ)]γ,α∈L β ∈ L

whose elements are computed from the normal form operation. Sometimes
we write R(L) to stress the monomial basis considered.
The entries r(δ, γ), δ ∈ L+L and γ ∈ L are a basic computational object.
For an example, see Example 63. We assume from now on that they have
been computed.
Example 62 From the definition it follows that R(0) is the identity matrix
and that R(α, β, γ) = R(α + 1, β − 1, γ). There is much symmetry in the
multi-array R. Note moreover that not all of L + L is actually needed,
but by recursion it is sufficient to consider terms in L and xαxj for all
indeterminates xj .

Using the previous representation, the product of two random variables
has the following form

Y Z =

(
∑

α∈L
cαX

α

)
∑

β∈L
dβX

β




=
∑

γ∈L


 ∑

α,β∈L
cαdβr(α + β, γ)


Xγ

=
∑

γ∈L
[c]tL [r(α + β, γ]α,β∈L [d]LXγ

(5.4)
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5.3 Matrix representation of L(D,K)

The following theorem states that the ring of random variables L is a vector
space with a monomial basis. This allows a matrix representation of the
multiplication operator.
Theorem 44 Consider the k-linear mapping

Tβ : L(D) −→ L(D)
Y �→ XβY

where β ∈ L. The linear operator Tβ is represented on the monomial basis
as

XβY = Xβ

(
∑

α∈L
cαX

α

)

=
∑

α∈L
cαX

α+β

=
∑

γ∈L

(
∑

α∈L
r(α + β, γ)cα

)
Xγ

(5.5)

If fa is the indicator function of a point a in the support D, then fa is an
eigenfunction of Tβ and the corresponding eigenvalue is aβ.
Theorem 44 above shows that the linear mapping Tβ is represented by the
matrix R(β) in Definition 56. The set of matrices

∑
cβR(β) cβ ∈ K

is a representation of L(D,K) into the non-commutative ring of matrices
KN,N as a commutative subring of matrices. By substituting the indicator
function Y = fa in Equation (5.5) and equating coefficients, we see that

[ci] = Z−1[ei] =⇒
[
∑

α∈L
r(α + β, γ)cα,i

]

γ∈L
= aβ [ci] (5.6)

Using the matrices R(β), then Equation (5.6) gives

R(β)Z−1 = Z−1 diag
(
aβ : a ∈ D

)
, β ∈ L

hence
R(β) = Z−1 diag

(
aβ : a ∈ D

)
Z, β ∈ L (5.7)

In particular, equating traces in Equation (5.7) we obtain

TrR(β) =
∑

a∈D
aβ , β ∈ L (5.8)

Example 63 Consider a three-way layout (contingency table) with 3×3×3
cells. Assume that the cells are coded 1, 2, 3 and cells (i, i, i), i = 1, 2, 3
are not allowed. These are sometimes referred to as structural zeros. The
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corresponding polynomial ideal is obtained by elimination of t1 and t2 from
the system 




(x1 − 1)(x1 − 2)(x1 − 3),
(x2 − 1)(x2 − 2)(x2 − 3),
(x3 − 1)(x3 − 2)(x3 − 3),
(x1 − x2)t1 + (x1 − x3)t2 − 1

(5.9)

giving for tdeg(x1 
 x2 
 x3)




(x1 − 1)(x1 − 2)(x1 − 3),
(x2 − 1)(x2 − 2)(x2 − 3),
(x3 − 1)(x3 − 2)(x3 − 3),
x2

1x
2
2 + x2

1x2x3 + x1x
2
2x3 + x2

1x
2
3 + x1x2x

2
3 + x2

2x
2
3 − 6x2

1x2 − 6x1x
2
2

−6x2
1x3 − 12x1x2x3 − 6x2

2x3 − 6x1x
2
3 − 6x2x

2
3 + 11x2

1 + 36x1x2

+11x2
2 + 36x1x3 + 36x2x3 + 11x2

3 − 60x1 − 60x2 − 60x3 + 85

The corresponding vector space basis for L(D) is

1 x1 x2 x3

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

x2
1x2 x2

1x3 x1x
2
2 x1x2x3 x1x

2
3 x2

2x3 x2x
2
3

x2
1x2x3 x2

1x
2
3 x1x

2
2x3 x1x2x

2
3 x2

2x
2
3

x2
1x2x

2
3 x1x

2
2x

2
3

Note that the missing terms with respect to a full 33 set of points are
x2

1x
2
2, x

2
1x

2
2x3 and x2

1x
2
2x

2
3. Note that the fan for the above ideal consists of

the six leaves corresponding to the permutation of indexes 1, 2 and 3.
The uniform probability over D is simply given by the constant polyno-

mial

P0(x1, x2, x3) =
1
24

∈ L(D)

With a program in CoCoA, we computed the matrices R(β) for this ex-
ample and found the trace vector in Equation 5.10, which is given below,
in the same ordering as the vector space basis above

TrR(β) = ( 24, 48, 48, 48,
112, 94, 94, 112, 94, 112,
216, 216, 216, 180, 216, 216, 216,
490, 406, 406, 406, 490,
75, 75 )

(5.10)

Example 64 Consider the fraction of a 33-full factorial structure with
x ≤ y and x ≤ z, that is the 14 points (x, y, z)

(1, 1, 1), (1, 2, 1), (1, 3, 1), (1, 1, 2), (1, 2, 2),
(1, 3, 2), (1, 1, 3), (1, 2, 3), (1, 3, 3),
(2, 2, 2), (2, 3, 2), (2, 2, 3), (2, 3, 3),
(3, 3, 3)
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The above is an echelon design and its reduced Gröbner bases is given by
the following polynomials

(x1 − 1)(x1 − 2)(x1 − 3)
(x2 − 1)(x2 − 2)(x2 − 3)
(x3 − 1)(x3 − 2)(x3 − 3)
(x2 − 3)(x1 − 1)(x1 − 2)
(x3 − 3)(x1 − 1)(x1 − 2)
(x2 − 2)(x2 − 3)(x1 − 1)
(x3 − 2)(x3 − 3)(x1 − 1)

and the identifiable terms are

1 x1 x2 x3

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

x1x2x3 x2
2x3 x2x

2
3 x2

2x
2
3

The trace vector ordered as the set of terms above is

TrR(β) = ( 14 20 31 31
34 47 47 77 70 77

113 176 176 446 )
(5.11)

5.4 Uniform probability

Let us consider the uniform distribution P0 (·) on D and the corresponding
expectation E0 (·) on L(D). The uniform distribution assigns equal prob-
ability to the elementary events. As all random variables are of the form
(5.1), the expected value of a random variable Y can be defined as follows.

Definition 57 The expectation of a discrete random function on L(D),
Y =

∑
α∈L cαX

α with respect to the uniform distribution is

E0 (Y ) =
∑

α∈L
cαE0 (Xα) (5.12)

The basic moments are defined as

mα = E0 (Xα) , α ∈ L

Note that from Equation 5.12, we obtain an instance of moment confound-
ing or aliasing in that for all β

E0

(
Xβ
)

=
∑

α∈L
r(β, α)E0 (Xα)

That is E0

(
Xβ
)

is expressed as a finite sum of lower-order moments. We
return to study such issues in more detail in Section 5.9.
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Theorem 45 With the notation of Definition 57, the basic moments with
respect to the uniform distribution are computed as

mα =
1

#D
TrR(α)

where #D = #L is the number of distinct points in D.

Proof. The proof follows from Equation 5.8 and the definition of expecta-
tion with respect to the uniform distribution.

Theorem 45 gives a formula relating the moments to the Gröbner basis
which we shall use again.

Expectation computation can be expressed through moments.
Theorem 46 With the notation of Definition 57, let [mL] = [mα]α∈L and
the vector [y] contains the values of Y on D, then

E0 (Y ) = [m]t[c] = [m]tZ−1[y] (5.13)

Proof. This follows from Equation (5.3) and Theorem 45 above.

Example 65 [Continuation of Example 63] The basic moments are simply
obtained by dividing the trace vector by 24

[m]L = ( 1, 2, 2, 2,
14/3, 47/12, 47/12, 14/3, 47/12, 14/3,

9, 9, 9, 180, 9, 9, 9,
245/12, 203/12, 203/12, 203/12, 245/12,
75/24, 75/24 )

Example 66 If Y is the indicator function of the sample point a ∈ D,
then its expectation is 1/N , where N is number of points in the support.
From Equation (5.13) we obtain the formula

1
N

= [m]tZ−1[ei], i = 1, . . . , N

and the following identities

[ei]t(Z−1)t[m] = 1/N

[ei][ei]t(Z−1)t[m] = [ei]/N
N∑

i=1

[ei][ei]t(Z−1)t[m] =
N∑

i=1

[ei]/N

(Z−1)t[m] = 1/N [1]N

[m] =
1
N

Zt[1]N

where [1]N is the N -dimensional vector [1, . . . , 1].
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The ring of random variables L(D) is endowed with a scalar product

L(D) × L(D) � (Y, Z) �→ E0 (Y Z)

whose representation is

E0 (Y Z) = E0



(
∑

α∈L
aαX

α

)
∑

β∈L
bβX

β






=
∑

α,β∈L
aαbβE0

(
Xα+β

)

=
∑

α,β∈L
aαbβ

∑

γ∈L
r(α + β, γ)E0 (Xγ)

=
∑

α,β∈L
aαbβ

∑

γ∈L
r(α + β, γ)mγ

As in Definition 56, we define a basic computational object for the com-
putation of scalar products..

Definition 58 Define the matrix [Q(α, β)]α,β∈L with

Q(α, β) = E0

(
Xα+β

)
=
∑

γ∈L
r(α + β, γ)mγ

With respect to the monomial basis of L(D), the scalar product is rep-
resented by the matrix Q above and also, using the vectors [y] and [z] of
the values of Y and Z and E0 (Y Z) = 1

N [y]t[z], we obtain

Q =
1
N

ZtZ

Equation (5.8) gives also the representation

Q(α, β) =
1

#D

∑

γ,δ∈L
r(α + β, γ)r(γ + δ, δ)

Example 67 [Continuation of Example 63] For xα = x2
1x3 and xβ =

x1x2x3, Q(α, β) = 1115/12.

5.5 Probability densities

We now consider the case of an arbitrary probability distribution P (·) on
D which, as a density function with respect to the uniform distribution on
D, can be expressed as a member of the ring L(D)

P =
∑

α∈L
θαX

α (5.14)
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with the additional properties P ≥ 0 on D and the normalising condition

E0 (P ) =
∑

α∈L
θαmα = 1 (5.15)

If we derive θ0 from Equation 5.15 and substitute it in Equation 5.14, then
we obtain a representation of P (·), including the normalising condition

P = 1 +
∑

α∈L0

θα(Xα −mα)

as m0 = 1. The parameters θα, α ∈ L0 are to be chosen in the polyhedral
region defined by

1 +
∑

α∈L0

θα(aα −mα) ≥ 0 for all a ∈ D

A simple example is given by the Bernoulli P = 1 + θ1 (x− 1/2), where
−2 ≤ θ1 ≤ 2.

As in Section 5.4, the following definition is well posed.

Definition 59 An element Y =
∑
α∈L cαX

α of L(D) has expectation with
respect to P given by

Ep (Y ) = E0 (PY )

= E0



(
∑

α∈L
cαX

α

)
∑

β∈L
θβX

β






=
∑

α,β∈L
cαθβQ(α, β)

where Q(α, β) = E0

(
Xα+β

)
as in Definition 58. The basic moments are

µα = EP (Xα) =
∑

β∈L
θβQ(α, β), α ∈ L

or [µ] = Q[θ].

Other representations of P are possible. In Section 5.8 we shall discuss
the very important exponential representation.

Consider now S =
√
P , the positive square root of P on D. This has its

own representation

S =
∑

α∈L
φαX

α

Now the mass unity condition is

E0

(
S2
)

= 1
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which becomes

E0



(
∑

α∈L
φαX

α

)
∑

β∈L
φβX

β




 =

∑

α,β∈L
φαφβQ(α, β) = 1

that is S lies on the surface of the unit sphere. Recall that Q(α, β) =
1
N

ZtZ

is positive definite which means that we have two contrasting encodings of
the probability as linear and as spherical, respectively

{
p =
∑
α∈L θαx

α ≥ 0 x ∈ D
∑
α∈L θαmα = 1

and
{

p =
(∑

α∈L φαx
α
)2

x ∈ D
∑
α,β∈L φαφβQ(α, β) = 1

Again, a simple example is

φα =
1√∑

γ,β∈LQ(γ, β)

for all α ∈ L.

Example 68 Consider a simple Bernoulli model. In such a case we have
D = {0, 1}, Ideal(D) = Ideal(x(x− 1)) and f(x) = px(1 − p)1−x (note
the change in the reference measure). The two representations p, s and the
logarithm log p are

p(x) = 1 − p + (2p− 1)x

s(x) =
√

1 − p +
(√

p−
√

1 − p
)
x

log p(x) = log(1 − p) + (log p− log(1 − p))x

p(x) = exp
(

log(1 − p) + log
(

p

1 − p

)
x

)

As a more complex example, leading to the general binary case, consider
two binary variables

{
x1(x1 − 1) = 0
x2(x2 − 1) = 0

Thus, the set Estτ (D) is {1, x1, x2, x1x2} and is independent of the term-
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ordering. Thus, the density is written as

p(x) = p00 + (p10 − p00)x1 + (p01 − p00)x2

+ (p00 − p10 − p01 + p11)x1x2

= exp
(

log p00 + log
(
p10

p00

)
x1 + log

(
p01

p00

)
x2

+ log
(
p10p01

p10p11

)
x1x2

)

5.6 Image probability and marginalisation

Let Y1, . . . , Yh be in L(D), the ring of functions over D, P a probability on
D and write

Yj =
∑

α∈L
cα,jX

α (5.16)

Next we compute the algebraic encoding of the density PY1,...,Yh
of the joint

law Y = (Y1, . . . , Yh).
Theorem 47 Let G = {g1, . . . , gk} be a Gröbner basis for Ideal(D) and
let J ⊆ K[y1, . . . , yh, x1, . . . , xd] be the ideal generated by

{
gi(x) i = 1, . . . , k
yj −

∑
α∈L cα,jx

α j = 1, . . . , h
(5.17)

(i) The ideal J is the ideal of the extended support of points

{(a, Y (a)) : a ∈ D} , where Yj =
∑

α∈L
cα,jX

α

(ii) The Gröbner basis with respect to an elimination term-ordering of the
y variables includes a set of polynomials fl, l = 1, . . . , k̄ only in the
variables y and other polynomials in the y and x variables.

(iii) The polynomials fl(y), l = 1, . . . , k̄ form a Gröbner basis, G� of the
image support D� = Y (D). Let Estτ (D�) =

{
yβ : β ∈ L�

}
.

(iv) The basic moments of the Y -variables are expressed as functions of
the moments of the X-variables as

E0




h∏

j=1

Y
βj

j P


 = E0




h∏

j=1

(
∑

α∈L
cα,jX

α

)βj ∑

α∈L
θαX

α


 , β ∈ L�

Proof. Items (i),(ii),(iii) follow from the elimination theory of Section 2.9.
To prove Item (iv), note that the vector space basis of K[y1, . . . , yh]/J
determined by G� is Estτ (Y (D�)) =

{
yβ : β ∈ L�

}
. The joint probability

law of Y is known when the moments are known and the moments can be
computed by elimination as follows.
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The moments of the Y -variables

EP
(
Y β
)

= EP




h∏

j=1

Y
βj

j




can be reduced by moment aliasing on D� to the basic moments for β ∈ L�

and the latter ones are computed by substitution of (5.16) as

E0




h∏

j=1

Y
βj

j P


 = E0




h∏

j=1

(
∑

α∈L
cα,jX

α

)βj ∑

α∈L
θαX

α




This solves the image problem in the sense that we are able to compute
EY1,...,Yh

(F ) as EP (F (Y1, . . . , Yh)). Notice that

L(Y1, . . . , Yh) = {F (Y1, . . . , Yh) : F (y1, . . . , yh) ∈ K(y1, . . . , yh)/Ideal(D�)}
is a sub-ring of the ring L(D), precisely the ring of Y -measurable random
variables. The density P � of the image measure PY1,...,Yh

(·) is defined as
the relation

E0 (P �F ) = EP� (F ) = EP (F (Y1, . . . , Yh)) = E0 (PF (Y1, . . . , Yh))

for all F ∈ L(D�). This is related to the computation of

E0 (P |Y1, . . . , Yh) = P�(Y1, . . . , Yh)

which is the density with respect to the image of the uniform measure.
Computation of conditional expectations is discussed in Section 5.7 below.

Example 69 Consider the case of the marginalisation Yj = Xj for j =
1, . . . , h, h < d. Let τ be an elimination term-ordering for x1, . . . , xh. Then
the corresponding Gröbner basis includes polynomials gi(x1, . . . , xh) for
i = 1, . . . , k′ and other equations in all the variables x1, . . . , xd. Notice that
in the marginalisation case we do not need to introduce the y variables.

The image support D� is the projection of D on x1, . . . , xh. Moreover,
Ideal(D�) has Gröbner basis {gi : i = 1, . . . , k′} and Estτ (D�) is the subset
of Estτ (D) involving only the x1, . . . , xh. Then the generic Y ∈ L(D�) has
the form

Y =
∑

β∈L�

cβX
β

and note that cβ = 0 for β ∈ L \ L�. It follows that we can write the
expectation with respect to the marginal of the P distribution as

EX1,...,Xh
(Y ) = E0 (Y P ) =

∑

α∈L,β∈L�

θαcβQ(α, β) = [c]tQL�,L[θ]
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We can also compute the expectation with respect to the uniform distri-
bution on D�, P �

EP (Y ) = E�0 (Y P �) =
∑

α,β∈L�

θ�αcβQ(α, β) = [c]tQL�, L�[θ]�

where we wrote P � =
∑
β∈L� θ�βX

β . As [c] is a generic vector we have

Qθ = Q̃ θ�

and this defines P �.
The distribution of Y could be expressed as a density with respect to

the image on D� of the uniform probability on D. In this case it is the
conditional expectation of P given Y , see Section 5.7).
Example 70 [Continuation of Example 63] The support of the marginal
probability over x1 is D� = {1, 2, 3} with Gröbner basis equal to {(x1 −
1)(x1 − 2)(x1 − 3)} and Est(D�) = {1, x1, x

2
1}. For a generic function Y ∈

L(D�) written as Y = c1 + c1x1 + c2x
2
1 and a generic probability over D,

P =
∑24
i=1 θαi

xαi where αi are ordered as in (5.10), then

EP (Y ) =
1
24

24∑

i,k,h=1

zih (c0z1k + c1z2k + c2z3k)

where zij is the (i, j)-th entry of the design matrix, Z again ordered as
in (5.10).

5.7 Conditional expectation

Let D, τ , G = {g1(x), . . . , gk(x)} and Estτ (D) = {xα : α ∈ L} be as usual.
Let

Z =
∑

α∈L
bαX

α, Yj =
∑

α∈L
cα,jX

α, j = 1, . . . , l

be l + 1 random variables on D. We are interested in computing the con-
ditional expectation

Ẑ = EP (Z|Y1, . . . , Yl) = f(Y1, . . . , Yl)

First, define a general function of the type g(Y1, . . . , Yl) on D. All such
functions form a sub-ring of L(D) denoted L(Y ). A monomial basis (for
the vector space structure) can be computed as in Theorem 47 or in a
generalised way as follows.

Consider the extended ring K[x1, . . . , xd, y1, . . . , yl]. Let A be the matrix
for the term-ordering τ above and let σ be a term-ordering over K[y1, . . . , yl]
corresponding to the matrix B. A term-ordering over the extended ring is
defined by the block-diagonal matrix

ρ =
[

A 0
0 B

]
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In particular, a lexicographic ordering operates among the two blocks of
variables x and y, that is xα 
ρ yβ for all α and β. It can be shown
that the term-ordering ρ is an elimination term-ordering and thus by the
elimination theory of Section 2.9, the Gröbner basis with respect to ρ of
the ideal generated by





g1(x), . . . , gk(x)

yj −
∑

α∈L
cα,jx

α j = 1 . . . l

is of the form {
h1(y), . . . , hm(y)
f1(x, y), . . . , fq(x, y)

Again, the h polynomials above form a Gröbner basis of the image support
of the functions Y = (Yj)j=1,...,l, D∗ = Y (D). Note that in Est(D∗) there
may be less elements than in Est(D), because now we have y-terms and
the total number has to stay the same. Let {yβ : β ∈ L∗} be the monomial
basis of Ideal(D∗) and L be the full list of exponents. Then the ring of
functions, Y over D∗ coincides with the vector space of such monomials.

With this characterisation in mind, we use the following definition of
conditional expectation.
Definition 60 The conditional expectation of the random variable Z ∈
L(D) is defined as the unique Ẑ ∈ L(Y ) such that

for all G ∈ L(Y ) EP (ZG) = EP
(
ẐG
)

Clearly it is enough to check all G = Y β , β ∈ L∗.
If P is strictly positive over D, the conditional expectation is given in

terms of the base uniform distribution by

Ẑ = EP (Z|Y1, . . . , Yl) =
E0 (ZP |Y1, . . . , Yl)
E0 (P |Y1, . . . , Yl)

which follows simply by the relation EP (U) = E0 (UP ) and substitution.
We concentrate on computing Ẑ = E0 (Z|Y1, . . . , Yl). Using the linearity

and idempotency of the conditional expectation operator, we write the
defining condition as

for all β ∈ L, α ∈ L− E0

(
XαY β

)
= E0


∑

γ∈L∗
ĉγαY

γY β




where L− is the set of all indices in L with zero entries in y. Each of these
equations is a regression equation: we are estimating each Xα as a linear
function of the Y β , β ∈ L∗ at the points of the design. As the model space
is a ring, the conditional expectation coincides with the linear least-squares
regression.
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Example 71 [Continuation of Example 63] Let l = 1 and Y be the sum
X1 + X2 + X3. Then with respect to the term-ordering, ρ, defined by the
matrix over the extended space R[x1, x2, x3, y]

x1 x2 x3 y

1 1 1 0
0 0 −1 0
0 −1 0 0
0 0 0 1

The support D� is {4, 5, 6, 7, 8} with Gröbner bases (y−4)(y−5)(y−6)(y−
7)(y − 8). With respect to the term-ordering ρ the full set Est is

1, x2, x3,

x2
2, x2x3, x2

3,

x2y, x3y, x2
2y,

x2x
2
3, x2x3y,

x2y
2, x2

3y, x3y
2, x2x3y

2, x2y
3, x2

3y
2, x3y

3,

x2y
4, x3y

4

y, y2, y3, y4

For each Xα ∈ {1, X2, X3, X
2
2 , X2X3, X

2
3} it remains to determine a func-

tion Ẑα = c0,α + c1,αy + c2,αy
2 + c3,αy

3 + c4,αy
4 such that

E0

(
XαY β

)
= E0

(
ẐαY

β
)

(5.18)

for all Y β ∈ {1, Y, Y 2, Y 3, Y 4}. Using the values in Table 5.1 the six systems
of linear formulae in (5.18) are easily solved. The equations below show the
coefficients for Ẑα

E0 (X2|Y ) = −107.5026224 + 77.18138112Y − 19.94449301Y 2

+ 2.265005828Y 3 − .09484265734Y 4

E0 (X3|Y ) = 106.2237762− 75.49388112Y + 19.74256993Y 2

− 2.253787879Y 3 + .09484265734Y 4

E0

(
X2

2 |Y
)

= −443.8009907 + 315.5786713Y − 81.92416958Y 2

+ 9.372086247Y 3 − .3951777389Y 4

E0 (X2X3|Y ) = 17.23921911− 11.60314685Y + 3.120556527Y 2

− .3569347319Y 3 + .01580710956Y 4

E0

(
X2

3 |Y
)

= 421.5617716− 303.2543706Y + 79.99111305Y 2

− 9.217074592Y 3 + .3905885781Y 4
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Table 5.1 Values of E0

�
XαY β

�
for Example 63.

1 x2 x3 x2
2 x2x3 x2

3

1 1 2 2 14/3 47/12 14/3
y1 6 25/2 25/2 30 51/2 30
y2 75/2 81 81 199 699/4 391/2
y3 243 552 1083/2 1419 2529/2 1272
y4 3291/2 4053 3717 11238 38659/4 16211/2
y5 11781
y6 179415/2
y7 722763
y8 12151011/2

Example 72 [Continuation of Example 64] Consider again the expecta-
tion conditional to the sum y = x1 + x2 + x3. The image support D� is
{3, 4, 5, 6, 7, 8, 9} with Gröbner basis (y− 3)(y− 4)(y− 5)(y− 6)(y− 7)(y−
8)(y − 9). The set of estimable terms for the given support with the addi-
tional constraint given by the sum and with respect to the term-ordering
ρ above is

1 x2 x3 y

x2y x2
3 x3y y2

x3y
2 x3y

3

y3 y4 y5 y6

Using the values in Table 5.2, we can compute the conditional expectations
of the basic terms

E0 (X2|Y ) = 2.617475423 + .003011138705Y + .001389073323Y 2

+ .0005342423415Y 3 − .01018547732Y 4

.002553328738Y 5 − .0001585075427Y 6

E0 (X2X3|Y ) = 6.880923605 + .01120505649Y + .005101676179Y 2

+ .001936314720Y 3 − .04906279881Y 4

+ .01228985613Y 5 − .0007605881219Y 6

and by symmetry E0 (X3|X1 + X2 + X3) = E0 (X2|X1 + X2 + X3).

5.8 Algebraic representation of exponentials

Let a support D be given and let {g1, . . . , gk} be a Gröbner basis of the ideal
Ideal(D) in the ring k[x]. If Estτ (D) = {xα : α ∈ L} is the corresponding
list of estimable terms, we write [x] = [xα]α∈L where L has been ordered
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Table 5.2 Values of E0

�
XαY β

�
for Example 64.

1 x2 x3 x2x3

1 1 31/14 31/14 5
y1 41/7 97/7 97/7 465/14
y2 258/7 643/7 643/7 3233/14
y3 1724/7 4474/7 4474/7 23361/14
y4 12108/7 32425/7 32425/7 174425/14
y5 88616/7 243202/7 243202/7 1339305/14
y6 671148/7 1877653/7 1877653/7 1504679/2
y7 5229944/7
y8 41733348/7
y9 339667736/7
y10 2810401788/7
y11 23573207864/7
y12 199984864788/7

for example according to τ . Each function of exponential form
[
exp

(
∑

α∈L
ψαa

α

)]

a∈D
= exp (Z[ψ]) (5.19)

where [ψ] = [ψα]α∈L ∈ kN and x ∈ D can be written as a polynomial in
the ring

k(eψαa
α

: a ∈ D,α ∈ L)[x]/Ideal(D)

where k(eψαa
α

: a ∈ D,α ∈ L) is the set of rational functions in eψαa
α

and
with coefficients in k. Then, there exists a unique polynomial representation
of the function (5.19) as in Equation (5.1)

exp(ψtx) =
∑

α∈L
eα(ψ)xα (5.20)

with eα(ψ) ∈ k(eψαa
α

: a ∈ D,α ∈ L).
Writing [e(ψ)] = [eα(ψ)]α∈L from Equation (5.3), we have

[e(ψ)] = Z−1 exp (Z[ψ])

By the addition rule of the exponential in Equation (5.20) and the reduc-
tion rule of Theorem 43, we obtain

exp
(
ψt1x
)
exp
(
ψt2x
)

=
∑

γ∈L


 ∑

α,β∈L
eα(ψ1)eβ(ψ2)r(α + β, γ)


xγ
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and then

eα(ψ1 + ψ2) =
∑

β,γ∈L
eβ(ψ1)eγ(ψ2)r(β + γ, α)

or, in vector form

[e(ψ1 + ψ2)] =
[
[e(ψ1)]

t [r(β + γ, α)]β,γ∈L [e(ψ2)]
]
α∈L

Let ∂β be the partial derivative operator with respect to the parameter
ψβ . By applying ∂β to Equation (5.20) we obtain

∑

α∈L
∂βeα(ψ)xα =

∑

α∈L
eα(ψ)xα+β

=
∑

α∈L
eα(ψ)

∑

γ∈L
r(α + β, γ)xγ

=
∑

α∈L


∑

γ∈L
r(β + γ, α)eγ(ψ)


xα

(5.21)

so that
∂βeα(ψ) =

∑

γ∈L
r(β + γ, α)eγ(ψ)

or, in vector notation

∇e(ψ) = [∂βeα(ψ)]β,α∈L = [e(ψ)]t [R(γ)]γ∈L

5.9 Exponential form of a probability

The interest in exponentials stems from the exponential form of strictly
positive probabilities on the support D. All positive probabilities have the
form

p(X;ψ) = exp
(
ψtX

)
=
∑

α∈L
eα(ψ)Xα (5.22)

with the normalisation condition
∑

α∈L
eα(ψ)E0 (Xα) =

∑

α∈L
eα(ψ)mα = 1 (5.23)

This imposes a linear restriction on the eα’s.
In the usual setting of exponential models (see Chapter 6), this restriction

is presented in the following way. Let L0 = L \ {0}, ψ = [ψα]α∈L0 and
X = [Xα]α∈L0 with slight abuse of notation. Then





Pψ = exp
(
ψtX −K(ψ)

)

exp (K(ψ)) =
∑

α∈L0

eα(ψ)mα
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is the form of the full exponential model on D and K(ψ) = −ψ0 is called
the cumulant generating function. Note that the base distribution is given
by ψα = 0, α ∈ L0 and is uniform. In the terminology of exponential models
P can be considered as an exponential extension of the uniform. In the rest
of this section we shall cover the interplay between this representation and
the closely related standard moment generating functions.

As we have seen in Sections 5.1 to 5.4, the computations of moments both
with respect to the uniform probability and with respect to general proba-
bilities on the support D is crucial. Here we consider generating functions
to add new tools and insight to the computation of moments.

5.9.1 The geometric generating function

Let s = (s1, . . . , sd) be real variables and consider the generating function

H(s, x) =
1

∏d
i=1(1 − sixi)

=
∑

β≥0

sβxβ (5.24)

where β = (β1, . . . , βd). For fixed s, H(s, x) may be interpreted in the usual
way as a random variable in L(D),

H(s, x) =
∑

α∈L
bα(s)xα, x ∈ D

Here the bα(s) are rational forms in s which only depend on D and τ . That
is H(s, x) can be seen as a polynomial over D with rational polynomial
coefficients in s. In this way we have “folded” the infinite power series into
a finite polynomial in the particular xα, α ∈ L.

We can express this in matrix notation. Writing [h(s)]D = [H(s, a)]a∈D
and [b(s)]L = [bα(s)]α∈L we have

[h(s)]D = Z[b(s)]L

and
[b(s)]L = Z−1[h(s)]D

It is instructive to proceed in a different algebraic manner. We have

∑

α∈L
bα(s)xα

d∏

i=1

(1 − sixi) = 1 (5.25)

Considering the monomials which appear in multiplying out the left-hand
side of Equation (5.25) we have terms

xα
∏

i∈K
xi

for all different index sets K. We then obtain potentially all xα, α ∈ L
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together with monomials just “above” the upper boundary of L. This is
made clear by the following diagram

◦ ◦ ◦
. . ◦ ◦ ◦
. . . . ◦
. . . . ◦

Note that in the reduction form of Equation (5.25) we could use only
border terms, but we prefer a more general approach using all terms in
L + L.

By writing
∑

α∈L
b̃αx

α =
d∏

i=1

(1 − xi)

we obtain

1 =

(
∑

α∈L
bα(s)xα

)
∑

β∈L
b̃βs

βxβ


 =

∑

γ∈L
xγ
∑

α,β∈L
r(α + β, γ)bα(s)sβ b̃β

and equivalently
∑

α,β∈L
r(α + β, γ)bα(s)sβ b̃β = 0 γ ∈ L0

∑

α,β∈L
r(α + β, 0)bα(s)sβ b̃β = 1

This gives a means to compute bα’s without using the design matrix Z.
By Equation (5.24)

H(s, x) =
∑

β≥0

sβXβ =
∑

α∈L
bα(s)Xα

and taking expectation with respect to a probability P on D, we have

H(s) = EP (H(s,X)) =
∑

β≥0

sβEP
(
Xβ
)

=
∑

α∈L
bα(s)EP (Xα)

The left-hand side is a type of moment generating function and the formula
carries over all information about how higher-order moments “fold” into
lower-order moments. This is an instance of moment aliasing.

5.9.2 Univariate moment generating function

Let D be the support and let Y =
∑
α∈L cαX

α be a generic random vari-
able in L(D) represented with respect to Estτ (D). The uniform moment
generating function of Y is defined as

MY (t) = E0 (exp(tY ))
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We derive a differential-algebraic system for MY . We start with the Taylor
series expansion of the exponential

exp(tY ) =
∞∑

k=0

tkY k

k!
(5.26)

and compute

Y k =

(
∑

α∈L
cαX

α

)k
=
∑

α∈L
cα(k)Xα

The coefficients cα(k), α ∈ L, k ∈ Z+ satisfy a recurrence relation

∑

α∈L
cα(k + 1)Xα =

(
∑

α∈L
cα(k)Xα

)(
∑

α∈L
cαX

α

)

=
∑

α,β∈L
cα(k)cβXα+β

=
∑

α,β∈L
cα(k)cβ

∑

γ∈L
r(α + β, γ)Xγ

=
∑

γ∈L
Xγ

∑

α,β∈L
cα(k)cβr(α + β, γ)

where we have used the folding relations of Theorem 43. The recurrence
relation linking the coefficients of Yk is then

cγ(k + 1) =
∑

α∈L
cα(k)

∑

β∈L
cβr(α + β, γ) γ ∈ L and k ∈ Z+ (5.27)

Note that Relation (5.27) applies also to k = 0 if we define

cα(0) =
{

1 for α = 0
0 for α �= 0

We indicate this with cL(0) = 10. In fact it gives
∑

α∈L
cα(0)

∑

β∈L
cβr(α + β, γ) =

∑

β∈L
cβr(β, γ) = cγ

The linear recurrence relation (5.27) can be written in matrix form as

[cL(k + 1)] = A [cL(k)]

where

A =


∑

β∈L
cβr(α + β, γ)



γ,α∈L

=
∑

β∈L
cβR(β)

Also
[cL(k)] = Ak [10]
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We now use Equation 5.27 to derive an algebraic expression for the expo-
nential in Equation 5.26. We have

exp(tY ) =
∞∑

k=0

tk

k!

∑

α∈L
cα(k)Xα

and

MY (t) =
∞∑

k=0

tk

k!

∑

α∈L
cα(k)mα

=
∑

α∈L
mα

∞∑

k=0

cα(k)
tk

k!

We define

φα(t) =
∞∑

k=0

cα(k)
tk

k!

and show that the vector function φL(t) = [φα(t)]α∈L satisfies a linear
differential equation. By derivation and using again the recurrence relation
in (5.27)

d

dt
φα(t) =

∞∑

k=0

cα(k + 1)
tk

k!

=
∞∑

k=0


∑

β∈L
cβ(k)Aα,β


 tk

k!

=
∑

β∈L
Aα,β

( ∞∑

k=0

cβ(k)
tk

k!

)

=
∑

β∈L
Aα,βφβ(t)

As [φL(0)] = [cL(0)] = [e1], the linear differential system sought is




d

dt
[φL(t)] = A [φ(t)]

[φL(0)] = [10]

MY = φtL [mL]

(5.28)

If we write the solution of the linear differential system as an exponential
matrix, we obtain

MY (t) = [m]tL etA [10] (5.29)
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5.9.3 Moments of terms in the exponential model

Note that the above cases are for the moments of the raw Xi. In the ex-
ponential family case we will be interested in moments of the monomials
given by L0 itself. Thus, in a manner similar to the previous sections, we
write

H̃(ψ, x) =
1∏

α∈L0
(1 − ψαxα)

=
∏

α∈L0

∑

β≥0

(ψα)βxα+β

=
∑

α∈L
b̃α(ψ)xα

and
H̃P (ψ) =

∑

α∈L
b̃α(s)EP (Xα)

The computation of the polynomial representation of the rational function
is as in the previous case.

From Equation (5.20)

M(ψ, x) = exp

{
∑

α∈L0

ψαx
α

}

=
∑

α∈L
eα(ψ)xα

and the moment generating function is

MP (ψ) =
∑

α∈L
eα(ψ)EP (Xα)
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CHAPTER 6

Statistical modeling

6.1 Introduction

This chapter is devoted to the statistical applications of the polynomial en-
coding of probabilities on a sample space D described as a zero-dimensional
variety. We bring together the results on algebraic modeling of Chapter 2
with the treatment of probability theory of Chapter 5 to discuss statistical
modeling and analysis.
It will appear that the polynomial algebraic description is well suited

to describe operations on statistics (random variables) and on the algebra
of parameters, especially in particular cases, such as the lattice case. We
must underline the two applications, namely computation with random
variables versus computations with parameters; the latter being of a quite
different complexity. In fact, in the first case we work on ideals of points,
while in the second case we have to deal with generic algebraic varieties.
The computational load in the second case is much higher, and most of the
general algorithms available at the moment of writing this book are unable
to really deal with the symbolic solution of larger problems, a typical case
being the symbolic explicit solution of the maximum likelihood equations.
The solution we suggest consists in adopting a hybrid approach: use the

algebraic approach where it works very well, for example in the description
of the structure of models based on conditional independence assumptions,
and switch to a numerical approach when the symbolic solution is compu-
tationally infeasible, as in the solution of some maximum likelihood equa-
tions. Many research fields that use a computational commutative algebra
approach meet the same problem nowadays, and there is an important on-
going research effort to develop efficient hybrid algorithms. As far as this
book is concerned, we restrict ourselves to these generic remarks and will
not discuss the matter further.
After a description of how all basic problems of modeling and estima-

tion are encoded in a polynomial way, we make, in Section 6.2, a systematic
review of how basic results on statistical modeling and estimation are trans-
lated in our framework.
We close the present Chapter (and the book), with a long, detailed ex-

ample (see 6.9 below) on the treatment of a special graphical model (see
Figure 6.1), which leads us into a brief glimpse of toric ideals. This example
shows the evidence for our overall conclusion as discussed above. Namely,
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the algebraic polynomial theory is the most appropriate presentation and
computational method where the theory of designs is concerned. It sup-
plies interesting, albeit mainly conceptual, tools for the study of statistical
models. The effectiveness of the algebraic methods in statistical models re-
lies either on special cases, such that the lattice case treated here, or on
a drastic improvement of the efficiency of computer algebra algorithms. In
the final Section 6.10, we make a number of concise statements pertaining
to the structure of maximum likelihood equations in the case of a lattice
sample space.
In this chapter, D is a design with N points, τ a term-ordering and

Est = {xα : α ∈ L} the corresponding saturated set of identifiable terms.
With L′ or M we indicate a subset of L, L0 = L \ {0}, M0 =M \ {0} and
L′

0 ⊆ L \ {0}.

6.2 Statistical models

Statistics is mainly concerned with models, submodels and the relations
between them. As a general rule, according to the scope of this book, we
consider models and submodels that can be specified by an algebraic va-
riety, Θ with respect to some set of parameters with ideal denoted by
Ideal (Θ). We will call these sort of models algebraic statistical models. Be-
ing an algebraic model depends on the parameters used in the probability
description. In fact, some parameter transformations can destroy the alge-
braic character of the parameterisation. In particular, an algebraic model
can be linear when the algebraic variety is an affine subspace of the space
of parameters in the saturated model.
The most basic example consists in using as parameters the value of the

density function itself, that is, we have a vector parameter p = (pi : i =
1 . . .N) with

pi = P(ai), ai ∈ D,

N∑

i=1

pi = 1

where ai, i = 1 . . .N is a numbering of design points, and p is restricted
to some algebraic variety Π described by an ideal in the ring k[p]. The
ideal of this variety will be specified by giving equations in addition to the
normalisation condition. Note that the positivity condition pi ≥ 0 has to
be considered outside the algebraic framework.
Many types of models involving independence, conditional independence,

fixed marginals and so on are algebraic submodels with respect to the
point probability parameters. An example in a graphical model is given in
Equation (6.22) below.
Because the statistical models are described as algebraic varieties, the

problem of finding a minimal set of free parameters, that is, a proper
parameterisation, could be discussed in the framework of the parametric
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(rational) representation of algebraic varieties, as discussed for example in
Cox, Little and O’Shea (1997). We will not discuss this further, and restrict
ourselves in the following to specific examples, namely the polynomial en-
coding and the exponential. As a reference for the basic estimation theory,
we recommend Lehmann (1983) and (1986), and Kiefer (1987).

6.2.1 Polynomial form

Let us consider a statistical model whose density with respect to the uni-
form probability on the support D is given in polynomial form as

p(x; θ) =
∑

α∈L
θαx

α (6.1)

with θ belonging to a variety Θ of RN ; we assume Θ to be the variety of a
prime Ideal (Θ) of the ring R[θα : α ∈ L]. The ideal includes the equation
defining the normalising constant in Equation (6.1), then the parameter θ0
can be computed as

θ0 = 1−
∑

α∈L0

θαmα

with mα = E0 (Xα). We can rewrite the polynomial encoding as

p(x; θ) = 1 +
∑

α∈L0

θα(xα −mα)

where now θ = (θα : α ∈ L0) and the indeterminate θ0 has been eliminated
from Ideal (Θ).
The θ parameters are connected by linear relationships to the moment

parameters µ,

µβ = Eθ
(
Xβ

)

=
∑

α∈L
Q(α, β)θα (6.2)

with Q(α, β) = E0

(
XαXβ

)
, and to the probability parameters p,

µβ = Eθ
(
Xβ

)

=
N∑

i=1

Xβ(ai)pi
(6.3)

Note also the relation giving p(a; θ) for each a ∈ D as a function of the θ
parameters:

p(a) =
∑

α∈L
θαX

α(a) (6.4)

We could write Equation (6.2) in vector form as

[µ] = Q[θ]
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Equation (6.3) as

[µ] = Zt[p]

and Equation (6.4) as

[p] = Z[θ]

where Z = [Xα(a)]a∈D,α∈L is the design matrix and Q =
1

#D
ZtZ.

Any algebraic model in any of the parameters [p], [θ], [µ] is also an alge-
braic model in the other two parameters because of the linear dependencies
above. In particular, a linear model, with respect to any of these linearly
equivalent parameterisations, is defined as a model where the variety of the
parameters Θ is an affine subspace of RN and can be described by linear
equations. Using the term introduced by Amari, see Amari (1985), such
models are mixture statistical models, because, given two probabilities on
the model, the segment connecting the values of the parameters at each of
them runs over all mixtures of the two given probabilities.
The following two examples are devoted to the illustration of sampling

and sufficiency reduction when the polynomial form is used. The treatment
of such items as independence and sufficiency are particularly interesting
in the polynomial encoding, where general algorithms are not available in
the current literature. The usual reference to factorisation does not suggest
a constructive algorithm.

Example 73 [Independent marginals] Let us consider the simplest possi-
ble model of a two-dimensional sampling distribution, that is, two indepen-
dent Bernoulli variables. We denote the success probabilities by p1, p2. The
generic joint probability in polynomial form is

p(x, y; θ) = θ00 + θ10x+ θ01y + θ11xy

with marginals

p1(x; θ) =
(
θ00 +

1
2
θ01

)
+
(
θ10 +

1
2
θ11

)
x

p2(y; θ) =
(
θ00 +

1
2
θ10

)
+
(
θ01 +

1
2
θ11

)
y

The ideal of the model is obtained by the normalising equation and the
four equations obtained by equating the coefficients in

p(x, y; θ) = p1(x; θ)p2(y; θ)
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namely,





4 = θ00 + 2θ10 + 2θ01 + θ11

θ00 =
(
θ00 +

1
2
θ01

)(
θ00 +

1
2
θ10

)

θ10 =
(
θ00 +

1
2
θ10

)(
θ10 +

1
2
θ11

)

θ01 =
(
θ00 +

1
2
θ01

)(
θ01 +

1
2
θ11

)

θ11 =
(
θ10 +

1
2
θ11

)(
θ01 +

1
2
θ11

)

(6.5)

A proper parameterisation can be given in terms of the success probability
as





p1 = p1(1; θ) =
(
θ00 +

1
2
θ01

)
+
(
θ10 +

1
2
θ11

)

p2 = p2(1; θ) =
(
θ00 +

1
2
θ10

)
+
(
θ01 +

1
2
θ11

) (6.6)

Solving Equations (6.5) and (6.6) by reduction to triangular form for the
monomial ordering plex with initial ordering

θ00 � θ10 � θ01 � θ11 � p1 � p2

we obtain





−4θ00 − 2θ10 − 2θ01 − θ11 + 4 = 0,

−1
2
θ10 +

1
2
θ01 + p1 − p2 = 0,

1
2
θ01 + 1/4θ11 − p2 + 1 = 0,

−θ11 + 4p1p2 − 4p1 − 4p2 + 4 = 0

From this we could solve for the θ’s and by substitution obtain the properly
parameterised version of the density.
Let us see what happens in the case θ = p1 = p2. If we sum the sample

space ideal, the model ideal and the probability ideal, we obtain the ideal
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generated by the polynomials




x2 − x,

y2 − y,

4− (4θ00 + 2θ10 + 2θ01 + θ11) ,

θ00 −
(
θ00 +

1
2
θ01

)(
θ00 +

1
2
θ10

)
,

θ10 −
(
θ00 +

1
2
θ10

)(
θ10 +

1
2
θ11

)
,

θ01 −
(
θ00 +

1
2
θ01

)(
θ01 +

1
2
θ11

)
,

θ11 −
(
θ10 +

1
2
θ11

)(
θ01 +

1
2
θ11

)
,

p− (θ00 + θ10x+ θ01y + θ11xy)

A Gröbner basis is



− 4θ00 − 2θ10 − 2θ01 − θ11 + 4,

− 1
2
θ10 +

1
2
θ01,

1
2
θ01 + 1/4θ11 − θ + 1,

θ11 + 4θ2 − 8θ + 4,

4xyθ2 − 8xyθ + 4xy − 2xθ2 + 6xθ−
4x− 2yθ2 + 6yθ − 4y + θ2 − θ − p+ 4

The last polynomial is the representation of the probability density. In the
corresponding equation, the part equal to p factors out as follows:

p = (2xθ − 2x− θ + 2) (2yθ − 2y − θ + 2)

If we order with respect to the powers of θ, we obtain the representation

p =(4xy − 4x− 4y + 4)+
(−8xy + 6x+ 6y − 1) θ+

(+4xy − 2x− 2y + 1) θ2

where the polynomial coefficients are a set of sufficient statistics. Actu-
ally an elementary analysis shows that T (x, y) = x + y is a sufficient
statistic because on D we have (x + y)2 = (x + y) + 2xy, that is xy =
1
2T (x, y)

2 − 1
2T (x, y). The generalisation of this argument, leading to a

general algorithm for sufficiency, is described in the next section.

Example 74 [Independence on a single cell] Let us consider a 2× 3 table,
with sample space {1, 2} × {1, 2, 3}. Let us consider a model where inde-
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pendence is assumed for the cell (1, 1). In terms of the p parameters the
model is described by the equations

{
p(1, 1) + p(2, 1) + p(1, 2) + p(2, 2) + p(1, 3) + p(2, 3) = 1

(p(1, 1) + p(1, 2) + p(1, 3)) (p(1, 1) + p(2, 1)) = p(1, 1)

The sample space is described by the Gröbner basis
{
(x− 1)(x− 2),
(y − 1)(y − 2)(y − 3)

and the list of estimable terms is

1, x, y, y2, xy, xy2

The design matrix is

1 x y y2 xy xy2

11 1 1 1 1 1 1
21 1 2 1 1 2 2
12 1 1 2 4 2 4
22 1 2 2 4 4 8
13 1 1 3 9 3 9
23 1 2 3 9 6 18

Total 6 9 12 28 18 42

Using the relation [p] = Z[θ] we find, using dot notation for sum,




p(1, ·) = 7θ11 + 7θ21 + 18θ12 + 50θ22 + 18θ13 + 50θ23
p(·, 1) = 3θ11 + 5θ21 + 3θ12 + 3θ22 + 5θ13 + 5θ23
p(1, 1) = θ11 + θ21 + θ12 + θ22 + θ13 + θ23

Collecting all the terms together, the model is defined by the ideal gen-
erated by





x2 − 3x+ 2,

y3 − 6y2 + 11y − 6,
6θ11 + 9θ21 + 12θ12 + 28θ22 + 18θ13 + 42θ23 − 6,
θ11 + θ21 + θ12 + θ22 + θ13 + θ23−
[(7θ11 + 7θ21 + 18θ12 + 50θ22 + 18θ13 + 50θ23)
(3θ11 + 5θ21 + 3θ12 + 3θ22 + 5θ13 + 5θ23)]

In this system of equations, the sample variables x and y are separated
from the θ variables. In particular, no reduction is possible, except the
expression of θ11 as a function of the remaining θ’s by the normalising
equation. But if we introduce the new indeterminate p, representing the
values of the probability (but distinct from the probability parameter), by
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adding the equation

p = θ11 + θ21x+ θ12y + θ22y
2 + θ13xy + θ23xy

2

we can obtain in the Gröbner basis polynomials in x, y and θ. See below
for the computation of the sufficient statistics.

6.2.2 Sufficiency in polynomial models

We recall the basic theory of sufficiency in a form suitable for our purpose.
Let pθ, θ ∈ Θ, be a statistical model such that there exists a reference value
of the parameter θ0 for which all the likelihoods

pθ
pθ0

= �θ, θ ∈ Θ

are defined. More precisely, the likelihood is a random variable with values
into the parametric functions,

D � x �→ (θ �→ �θ(x))

The σ-algebra generated by this random variable, that is to say the σ-
algebra generated by all the random variables �θ, θ ∈ Θ, is the sufficient
σ-algebra. The space of bounded random variables measurable on this σ-
algebra is a ring with unity, the sufficient ring. Any set of random variables
{T} which generates the sufficient σ-algebra on the sufficient ring is a set
of sufficient statistics.
In our case, the sample space D is finite, and the sufficient ring is a

subring of the ring of random variables L(D). Let us assume that the
model is algebraic, and consider the quotient ring

R[θα : α ∈ L0]
Ideal (Θ)

We call this the ring of algebraic parametric functions. As a vector space,
and given a monomial ordering, this ring has a monomial basis

{
θβ : β ∈M

}
.

Every parametric function is characterised by the list of θβ ’s coefficients.
In other words, we have a different representation of the likelihood as

Tβ : D � x �→ Tβ(x), β ∈M

where
�θ(x) =

∑

β∈M
Tβ(x)θβ

The set {Tβ : β ∈M} contains sufficient statistics for which there is a com-
putational algorithm.
The given sufficient statistics, as the following example shows, is in most

cases further reducible, by considering a subset of the Tβ ’s generating the
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same ring. If we consider the polynomial mapping (sufficiency reduction)

[Tβ ]β∈M : D � x �→ [tβ ]β∈M = [Tβ(x)]β∈M ∈ RM

this mapping induces a partition on D into sets where the likelihood is con-
stant. By computing the image design D�, it is possible to find a monomial
basis for the indeterminates Tβ ’s, possibly obtaining a further reduction of
the number of functions in the sufficient statistics. The following example
illustrates the procedure.

Example 75 [Continuation of Example 73] The model variety Θ is defined
by Equations (6.5). The sum of the model ideal and the support ideal is
generated by the polynomials





4− θ00 + 2θ10 + 2θ01 + θ11,

θ00 −
(
θ00 +

1
2
θ01

)(
θ00 +

1
2
θ10

)
,

θ10 −
(
θ00 +

1
2
θ10

)(
θ10 +

1
2
θ11

)
,

θ01 −
(
θ00 +

1
2
θ01

)(
θ01 +

1
2
θ11

)
,

θ11 −
(
θ10 +

1
2
θ11

)(
θ01 +

1
2
θ11

)
,

x2 − x,

y2 − y

As we expect, the leading terms of a Gröbner basis for the monomial order
tdeg (θ00 � θ11 � θ10 � θ01 � x � y) (chosen for symmetry) are θ00, θ11,
θ2
10, x

2, y2, so that the monomial basis involves θ10, θ01, x, y, xy only. The
normal form of the probability density, ordered with respect to the free
parameters θ10 and θ01, is

p(x, y; θ) =
4
5
(1 + xy)

+
[
x− 2

5
(1 + xy)

]
θ10

+
[
y − 2

5
(1 + xy)

]
θ01

In this case there is no reduction for sufficiency, because the ring generated
by x, y, 1 + xy and the constants is the full quotient ring L(D).
But assume we add the equation implying the equality of marginals,

θ10 = θ01 = θ. Then, the Gröbner basis has leading terms θ00, θ10, θ01, θ11,
θ2, x2, y2. The monomial basis involves only the parameter θ. The normal
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form of the probability, ordered according to θ is

p(x, y; θ) =
4
5
(1 + xy)

+
[
x+ y − 4

5
(1 + xy)

]
θ

In this case the ring generated is strictly a subring of the quotient ring,

and x+ y is a sufficient statistic because xy =
1
2
(x+ y)2 − 1, on D.

6.2.3 Exponential form

In the exponential parameterisation, we consider mainly linear models of
the form

p(x;ψ) = exp


∑

α∈L′
0

ψαx
α −K(ψ)




where L′ is an order ideal of the list of estimable terms. This is not a
restriction, because it is always possible to make a change of indeterminate,
assigning a new indeterminate to each polynomial in the model. In fact,
assume we are interested in the linear model in exponential form

p(x;ψ) = exp




d∑

j=1

ψjFj −K(ψ)




where Fj , j = 1, . . . , d are linearly independent functions on D. If we
introduce the new indeterminates yj , j = 1, . . . , d, and add to the sample
space ideal the polynomials yj−Fj , j = 1, . . . , d, we reduce to the standard
situation. In specific cases, other reductions to this case are possible, using
a smaller number of new indeterminates.

6.3 Generating functions and exponential submodels

In this section we display the algebraic computations related to the moment
generating functions of sufficient statistics of an exponential model. We
refer to general treatises such as Barndorff-Nielsen and Cox (1989) and
(1994) for the role of this key quantity in estimation theory.
The moment generating function of the Xα, α ∈ L′

0, under the exponen-
tial model

Pψ = exp


∑

α∈L′
0

ψαX
α −K(ψ)



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where K(ψ) = K(ψα : α ∈ L′
0) = −ψ0, is

Mψ(s) = Eψ


exp


∑

α∈L′
0

sαX
α






= E0


exp


∑

α∈L′
0

(sα + ψα)Xα −K(ψ)






= exp (K(s+ ψ)−K(ψ))

=
M0(s+ ψ)
M0(ψ)

Now we use again the polynomial form of the exponential as a linear com-
bination of Xα, α ∈ L, namely

exp


∑

α∈L′
0

ψαx
α


 =

∑

β∈L
eβ(ψ)xβ

and the representation of expectations using raw moments

M0(ψ) =
∑

β∈L
eβ(ψ)mβ

so that

Mψ(s) =

∑
β∈L eβ(s+ ψ)mβ∑
β∈L eβ(ψ)mβ

(6.7)

Now at ψ, that is, with respect to Pψ, the following identity holds

Eψ
(
Xβ

)
=
∂βM0(ψ)
M0(ψ)

= ∂βK(ψ)

where ∂β means partial derivative with respect to ψβ . From Equation (5.3)
we have

∂βM0(ψ) = E0

(
∂βe
P

α∈L′ ψαX
α
)
= E0

(
∂β
∑

α∈L
eα(ψ)Xα

)

We can proceed in two equivalent ways: differentiating the eα(ψ) or sub-
stituting directly the value of the derivatives of Xβ with respect to ψβ ,
β ∈ L′

0.
We obtain, respectively

∂βM0(ψ) = E0

(
∑

α∈L
∂βeα(ψ)Xα

)
=
∑

α∈L
∂βeα(ψ)mα
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and

∂βM0(ψ) = E0

(
Xβ

∑

α∈L
eα(ψ)Xα

)

= E0

(
∑

α∈L
eα(ψ)Xα+β

)

=
∑

α∈L
eα(ψ)Q(α, β)

This implies

Eψ
(
Xβ

)
= (M0(ψ))

−1
∑

γ∈L

(
∑

α∈L
eα(ψ)r(α+ β, γ)

)
mγ

Now computing directly in

Mψ(s) = Eψ

(
exp

(
∑

α∈L′
sαXα

))

= Eψ


∑

β∈L
eβ(s)Xβ




=
∑

β∈L
eβ(s)Eψ

(
Xβ

)

and by substitution for Eψ
(
Xβ

)

Mψ(s) =M0(ψ)−1
∑

β∈L
eβ(ψ)

∑

γ∈L

(
∑

α∈L
eα(ψ)r(α+ β, γ)mγ

)

=M0(ψ)−1
∑

γ∈L′
eγ(s+ ψ)mγ [from (6.7)]

we have obtained two different representations. But equating coefficients of
mγ we have

eγ(s+ ψ) =
∑

β∈L

∑

α∈L
eβ(s)eα(ψ)r(α+ β, γ)

which returns also

∂βeγ(ψ) =
∑

α∈L
eα(ψ)r(α+ β, γ)

These are, respectively, functional and differential equations coming from
the original interpolator (5.3).
Note that they are distribution free in the sense that r(α+ β, γ) only

depends on D and τ .
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6.4 Likelihoods and sufficient statistics

Consider the exponential model with distribution given by

Pψ = exp


∑

α∈L′
0

ψαX
α −K(ψ)


 (6.8)

where K(ψ) is the cumulant generating function of the Xα, α ∈ L′
0 is a

subset of L0 as defined in Section 5.8, and we have taken the base dis-
tribution to be uniform. In statistical estimation we take an independent
identically distributed sample s of size N . Thus we consider a sample space
S = DN .
Note that statements like a ∈ s should be carefully distinguished from

a ∈ D, which expresses membership of the support.
The likelihood for s in the exponential submodels in Equation (6.8) is

L (ψ, s) =
∏

a∈s
exp


∑

α∈L′
0

ψαa
α −K(ψ)




= exp


∑

α∈L′
0

ψα
∑

a∈s
ψαa

α −NK(ψ)




The log-likelihood is

logL (ψ, s) = � (ψ, s) =
∑

α∈L′
0

ψα
∑

a∈s
aα −NK(ψ)

According to standard theory, the quantities

Tα =
∑

a∈s
aα, α ∈ L′

0

are the sufficient statistics. The maximum likelihood equations are
∑

a∈s
aα = N

∂K

∂ψα
(ψ)

= NEψ (Xα)
= Nµα, α ∈ L′

0

or

µ̂α = µ̄α

=
1
N

∑

a∈s
aα

=
1
N
Tα α ∈ L′

0
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where µ̄α is the notation for the sample mean of Xα and µ̂α is the notation
for the estimated value.
In vector notation we write

[µ̂α]α∈L′
0
= [µ̄α]α∈L′

0

The parameters [ψ] are free to assume values over the reals. The model
induces restrictions on the parameters [θ] and to the individual probabilities
[p], leading to unique solutions to

[µ̄] = QL′,L[θ̂] =
1

#D
Zt1[p̂]

where

QL′,L =
[
E0

(
Xα+β

)]
α∈L′;β∈L

and Z1 = [Xα(a)]a∈D;α∈L′ is the design matrix of the model. The restric-
tions on the p’s are

[p̂] =


exp


∑

α∈L′
0

ψ̂αx
α −K(ψ̂)





x∈D

= exp
(
Z1[ψ̂]

)

where a real function of a vector is computed componentwise. Thus for the
vector [ψ̂] of ψ̂α, α ∈ L0,

Zt1Z1[ψ̂] = Zt1 log[p̂]

and

[ψ̂] =
(
Zt1Z1

)−1
Zt1 log (Z1[p̂])

Let ∂β be the partial differential operator corresponding to the index
β (as defined in Section 5.8). We can develop an analysis based on the
interpolation methods used in Section 5.9.3. The expectation of Xβ at [ψ],
that is under the distribution in Section 6.3, is

µβ = Eψ
(
Xβ

)
=
∂βM0(ψ)
M0(ψ)

= ∂βK(ψ) = K(β),ψ

where K(β),ψ is the first-order cumulants of Xβ at [ψ] and M0(ψ) is the
moment generating function under the distribution in Equation (6.8). Now
consider the interpolator

exp


∑

α∈L′
0

ψαx
α


 =

∑

α∈L
eα(ψ)xα
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By the uniqueness of the interpolation, the eα(ψ) are unique. Thus,

∂β exp


∑

α∈L′
0

ψαx
α


 = ∂β

∑

α∈L
eα(ψ)xα

=
∑

α∈L
∂βeα(ψ)xα

By direct differentiation

∂β exp

(
∑

α∈L
ψαx

α

)
= xβ exp

(
∑

α∈L
ψαx

α

)

=
∑

α∈L
eα(ψ)xα+β

Now xα+β can itself be uniquely interpolated:

xα+β =
∑

γ∈L
r(α+ β, γ)xγ

This yields
∑

α∈L
∂βeα(ψ)xα =

∑

α∈L
eα(ψ)

∑

γ∈L
r(α+ β, γ)xγ

Equating coefficients

∂βeα(ψ) =
∑

γ∈L
eγ(ψ)r(γ + β, α)

from which we deduce

∂βM0(ψ) = ∂βE0


exp


∑

α∈L′
0

ψαX
α






= E0


∂β exp


∑

α∈L′
0

ψαX
α






=
∑

α∈L
∂βeα(ψ)mα

=
∑

α∈L

∑

γ∈L
eγ(ψ)r(γ + β, α)mα

=
∑

γ∈L
eγ(ψ)

∑

α∈L
r(γ + β, α)mα

Then, the likelihood equation becomes

µ̄β =
∂βM0(ψ̂)
M0(ψ̂)

(6.9)
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or, noting that M0(ψ) =
∑
α∈L eα(ψ)mα

(
∑

α∈L
eα(ψ̂)mα

)
µ̄β =

∑

γ∈L
eγ(ψ̂)

(
∑

α∈L
r(γ + β, α)mα

)
β ∈ L′ (6.10)

Note that e(0,...,0)(ψ) = 1. These equations are potentially solvable for ψα,
α ∈ L0. However, without further analysis they remain in non-algebraic
form because the vector of eα(ψ), α ∈ L has #D components: it cannot
be evaluated by linear operations alone because #L′ < #D = #L. The
additional restriction stems from the restrictions on ψα, α ∈ L0.
If we compare this development to Section 6.3 and the matrix develop-

ment at the beginning of this section we have

θα = eα(ψ) (M0(ψ))
−1

α ∈ L (6.11)

and

[µ̂] = Q[θ̂]

= Q[e(ψ̂)]
(
M̃0(ψ̂)

)−1

where [e(ψ̂)] is the vector of eα(ψ̂), α ∈ L0, giving

M0(ψ̂)[µ̄] = Q[e(ψ̂)] (6.12)

which is the matrix form of Equation (6.9).
The three equivalent representations of Equations (6.9), (6.10), (6.12)

do not necessarily yield closed form solutions for ψ̂α, α ∈ L′
0, despite the

fact that the ψ̂α can be computed in terms of the θ̂α. However, Level 4
algebrisation mentioned in Section 5.8 can assist.
Thus let ζα = exp (ψα), α ∈ L0. Then, the normal equations can be

written
∑

x∈D
xβ

∏

α∈L0

ζ̂xα = x̄β β ∈ L′
0

∑

x∈D
ζ̂xα = 1

Example 76 Consider D = {0, 1, 2} and the model

Pψ = exp (Xψ1 −K(ψ1))

Then, ψ0 = −K(ψ1), ζ0 = exp (−K(ψ1)) and ζ1 = exp (ψ1). The equations
are

ζ0
(
ζ1 + 2ζ2

1

)
= µ̄1

ζ0
(
1 + ζ1 + ζ2

1

)
= 1

which are easily solved for (ζ0, ζ1) and hence for ψ0 and ψ1.
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6.5 Score function and information

In this section we discuss some of the most basic quantities involved in
statistical inference connected to the exponential model and submodels.
The score function is the gradient of the log-likelihood: � (ψ0, S) of Sec-

tion 6.4

US;ψ
α =

∂l(S)
∂ψα

=
∑

a∈s
Xα(a)−N

∂K(ψ)
∂ψα

α ∈ L′
0

and in vector notation we write

US;ψ =
[
∂�

∂ψα

]

α∈L′
0

The information matrix is (minus) the Hessian of the log-likelihood:

N

[
∂2K(ψ)
∂ψα∂ψβ

]

α,β∈L′
0

= Covψ
(
US;ψ

)

In this case this is also the Fisher, or expected, information since, it does
not depend on X.
Note that from Section 5.8 we have

Covψ
(
US;ψ

)
= N

[
Covψ

(
Xα, Xβ

)]
α,β∈L′

0

= N


∑

γ∈L
r(α+ β, γ)µγ − µαµβ




α, β ∈ L0.
The “estimated” information is obtained by evaluation at the maximum

likelihood estimator ψ̂ giving

N


∑

γ∈L
r(α+ β, γ)µ̂γ − µ̂αµ̂β




Observe that µ̂α = µ̄α only if α ∈ L′. In matrix notation, using Equa-
tion (6.11)

[µ̂γ ]γ∈L = Zt[p̂]

= Q[θ̂]

= Q[e(ψ̂)]M0(ψ̂)

It is straightforward to derive the score functions for other parameterisa-
tions such as θ or ζ.
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6.6 Estimation: lattice case

We review the implications of the lattice case for estimation. Let us consider
a sample space D where each sample point is integer valued. Note that in
this case

Estτ (D) = {xα : α ∈ L}
contains integer-valued functions.
Let us consider the exponential model associated with the terms of a

sublist L′ ⊂ L containing 0 and the corresponding powers Xα, α ∈ L′
0.

The design matrix Z has a sub-matrix Z1 with columns restricted to L′.
If we introduce the new parameters (as in Section 6.4)

ζβ = exp (ψβ) , α ∈ L′

probabilities will be expressed as

p(a) = ζ0
∏

β∈L′
ζ
Xβ(a)
β , a ∈ D

Note that the exponents of the ζ monomials are the rows of the matrix
Z1. In a “parallel” notation we could write [p] = ζZ1 . If we proceed to the
computation of the moments of the sufficient statistics as a function of the
ζ parameters, we obtain for all β ∈ L′

µβ =
∑

a∈D
Xβ(a)p(a)

=
∑

a∈D
Xβ(a)ζ0

∏

β∈L′
ζ
Xβ(a)
β

Using again the array notation as above, we could write

[µ] = Zt1[ζ
Z1 ]

Equality of sample moments µ̄ and estimated moments required for the
maximum likelihood estimation gives the following set of normal equations

µ̄β =
∑

a∈D
Xβ(a)p(a)

=
∑

a∈D
Xβ(a)ζ0

∏

β∈L′
ζ
Xβ(a)
β

for β ∈ L′. It is a set of algebraic equations, whose positive solutions are
unique if the sample moments have values belonging to the exponential
model, which happens in the absence of zero values.

Example 77 The list of terms {1, x1, x2, x1x2}, that is
L = {(0, 0), (1, 0), (0, 1), (1, 1)}

gives rise to the saturated exponential model for the binary design D =
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{0, 1}2 for any term-ordering given by

p(x1, x2;ψ10, ψ01, ψ11) =
exp (ψ10x1 + ψ01x2 + ψ11x1x2 −K(ψ10, ψ01, ψ11))

Consider the model associated with the subset {x2, x1x2}, giving
L′ = {(0, 1), (1, 1)}

that is the exponential model

p(x1, x2;ψ01, ψ11) = exp (ψ01x2 + ψ11x1x2 −K(ψ01, ψ11))

Consider independent sampling.
The sufficient statistics are

T1 = x2, T2 = x1x2

The matrices Z and Z1 for the sample points ordered as

00 ≺ 10 ≺ 01 ≺ 11

become

Z =




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


 , Z1 =




1 0 0
1 0 0
1 1 0
1 1 1




We introduce the ζ parameters

ζ00 = exp (−K(ψ01, ψ11))
ζ01 = exp (ψ01)
ζ11 = exp (ψ11)

and obtain the following expressions for probabilities

p(00) = ζ00

p(10) = ζ00

p(01) = ζ00ζ10

p(00) = ζ00ζ10ζ11

The corresponding expressions for the moments are

1 = µ00 = 2ζ00 + ζ00ζ10 + ζ00ζ10ζ11

µ01 = ζ00ζ10 + ζ00ζ10ζ11

µ00 = ζ00ζ10ζ11

and the normal equations are easily solvable in rational closed form.

We mention without details the following interesting case: sample space
of type 2d and model x1, . . . , xd, x1xd, xixi+1 for i = 1, . . . , d− 1. The case
d = 4 will be treated in detail in Section 6.9.
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6.7 Finitely generated cumulants

From the general theory of exponential models we know that the variances
and covariances of the sufficient statistics are in one-to-one correspondence
with the model parameters, and could be used to give an alternative set of
parameters. In our framework, this relation is of algebraic type. Consider
the model

p(x1, . . . , xd;ψ) = exp


∑

β∈L′
0

ψβx
β −K(ψ)




with
K(ψ) = lnM(ψ)

and

M0(ψ) =
1

#D

∑

a∈D
exp


∑

β∈L′
0

ψβx
β


 where D ⊆ (

Zd+
)

If we introduce the ζ parameters by

ζβ = eψβ β ∈ L′
0

we obtain

M(ψ) =
1

#D

∑

a∈D


 ∏

β∈L′
0

ζa
β

β




and

∂βK(ψ) =

∑
a∈D a

β exp
(∑

γ∈L′
0
ψγa

γ
)

µ(ψL′
0
)

There is an algebraic relation between the first derivatives and the second
derivatives of M(ψL′

0
). In fact,

∂βK(ψ) =
∑
a∈D a

βζa∑
a∈D ζa

∂β∂γK(ψ) =
∑
a∈D a

βaγza − ∂βK(ψ)∂γK(ψ)
(∑

a∈D za
)2

and {(∑
a∈D z

a
)
∂βK =

∑
a∈D a

βza

(∑
a∈D z

a
)2
∂β∂γK =

∑
a∈D a

βaγza − ∂βK∂γK

Elimination of the relevant indeterminates will show an algebraic relation
between the mean parameters and the variance parameters.
Example 78 Consider the uniform distribution on {(0, 0), (1, 0), (0, 1)}.
The exponential model is

p(x1, x2) = exp (ψ1x1 + ψ2x2 −K(ψ1, ψ2))
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In this case elementary computations show that




∂2K

∂ψ2
1

=
∂K

∂ψ1

(
1− ∂K

∂ψ1

)

∂2K

∂ψ1∂ψ2

= − ∂K

∂ψ1

∂K

∂ψ2

∂2K

∂ψ2
2

=
∂K

∂ψ2

(
1− ∂K

∂ψ2

)

We want to mention here that a similar property has been considered for
statistical models on general sample space under the name of “finite gen-
eration of cumulants” in Pistone and Wynn (1999). In the lattice finite
sample space, all exponential models have this property.

6.8 Estimating functions

An estimating function is a polynomial U(θ, x) in the θ parameters and x’s
indeterminates such that

for all θ, Eθ (U(θ,X)) = 0 (6.13)

The score function is an estimating function; such functions play an im-
portant role in the theory of estimation and ancillarity.
If we collect the x’s terms in the expression of U(θ, x)

U(θ,X) =
∑

α∈L
uα(θ)Xα

then we can write, putting µα(θ) = Eθ (Xα),

e(θ) =
∑

α∈L
uα(θ)µα(θ) = 0

As the µα(θ), α ∈ L are polynomials of the ring R[θ], the computation of
the estimating functions can be reduced to the computation of a basis of
syzygies, see Cox, Little and O’Shea (1997), formed by S-polynomials, see
Definition 24. In the lattice case, we can alternatively look at polynomials
in the ζ’s parameters.
Equation 6.13 is equivalent to the following condition

Eθ (U(θ,X)) = E0 (U(θ,X)p(X, θ))

=
∑

α,β∈L
uαθβE0

(
XαXβ

)

=
∑

α,β∈L
uαθβQ(α, β)

= 0

which provides an alternative algebraic formulation of the problem.
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6.9 An extended example

In this example, we discuss a model arising in graphical models, as described
in the book by Lauritzen (1996, Chapter 3). This case is simple enough to
be treated in few pages, and still it is interesting in showing the application
of most of our algebraic methods and introducing the use of toric ideals
(Section 6.10).

6.9.1 Sample space

We consider the 24 sample space D = {0, 1}4. It is a case of binary design,
with the minimal fan property, already discussed in Section 4.1. We call

L = {α = (α1, α2, α3, α4) : αi = 0, 1, and i = 1, . . . , 4}
the list of exponents of the estimable monomials

Est(D) = {xα : α ∈ L}
= {1,

x1, x2, x3, x4,

x1x2, x1x3, x1x4, x2x3, x2x4, x3x4,

x1x2x3, x1x2x4, x1x3x4,

x1x2x3x4}
which is ordered, with initial ordering

x1 ≺ x2 ≺ x3 ≺ x4

by the ordering with matrix



1 1 1 1
−1 0 0 0
0 −1 0 0
0 0 −1 0




In fact, the first row orders first by degree, while the other rows resolve all
ties. Some other monomial ordering give the same ordering of Est(D).
The design matrix Z is given in Table 6.1, and the matrix of coefficients

of indicator polynomials of design points Z−1 is given in Table 6.2. Both
the matrices Z and Z−1 are triangular in the total ordering of monomials.
As a second special feature of this binary case, we note that the list of
sample points is again L, so that the sample point can be ordered with the
same order we used for the list of estimable terms Est(D).
The matrix of monomial products in the space of random variables L(D)

is given in Table 6.3 to 6.5. In this case, the actual form of the matrix Q
is easily described by noting that, on D,

XαXβ = Xα+β = Xmax(α,β) (6.14)
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Table 6.1 Z matrix of the 24 sample space D. The last row shows the totals over
each monomial in Est(D).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D 1 x
1

x
2

x
3

x
4

x
1
x
2

x
1
x
3

x
1
x
4

x
2
x
3

x
2
x
4

x
3
x
4

x
1
x
2
x
3

x
1
x
2
x
4

x
1
x
3
x
4

x
2
x
3
x
4

x
1
x
2
x
3
x
4

0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0100 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0001 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1100 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1010 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
1001 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0110 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0101 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0011 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
1110 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0
1101 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0
1011 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0
0111 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0
1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Total 16 8 8 8 8 4 4 4 4 4 4 2 2 2 2 1

with max(α, β) = (max(αi, βi); i = 1, 2, 3, 4), because all powers are re-
duced by the equations x2

i = xi, i = 1, 2, 3, 4.
The inverse matrix Z−1 has a special structure, which can be derived in

closed form as follows. The polynomial

4∏

i=1

[(1− ai) + (2ai − 1)xi] =
∑

α∈L

(
∏

i:ai=0

(1− ai)
∏

i:ai=1

(2ai − 1)

)
xα

(6.15)
is the indicator polynomial of the sample point

a = (a1, a2, a3, a4)

We exploit the fact that the points and the exponents are in the same set
L. For each α < a (coordinate-wise), there exists an i such that both αi = 0
and ai = 1, then

α < a =⇒
∏

i:αi=0

(1− ai) = 0

For a ≤ α, the value of
∏
i:ai=0(1 − ai) is 1. The second factor in Equa-

tion (6.15) ∏

i:αi=1

(2ai − 1)

is a sign depending on the number of i’s such that both αi = 1 and ai = 0,
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Table 6.2 Inverse of the Z matrix. The columns are the representations of the
indicator functions of the sample points. The columns’ labels, e.g, the elements
of Est(D), are not shown on the table.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
0
0
0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
1
0
1

0
0
1
1

1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1

1
1
1
1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0
1 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0
1 0 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 −1 0 −1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0

−1 1 1 1 0 −1 −1 0 −1 0 0 1 0 0 0 0
−1 1 1 0 1 −1 0 −1 0 −1 0 0 1 0 0 0
−1 1 0 1 1 0 −1 −1 0 0 −1 0 0 1 0 0
−1 0 1 1 1 0 0 0 −1 −1 −1 0 0 0 1 0

1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1

Table 6.3 Matrix [Q(α, β)]α∈L;β=1,x1,x2,x3,x4 . To save space, the row labels
Est(D) are not shown.

1 X1 X2 X3 X4

1 X1 X2 X3 X4
X1 X1 X1X2 X1X3 X1X4
X2 X1X2 X2 X2X3 X2X4
X3 X1X3 X2X3 X3 X3X4
X4 X1X4 X2X4 X3X4 X4
X1X2 X1X2 X1X2 X1X2X3 X1X2X4
X1X3 X1X3 X1X2X3 X1X3 X1X2X4
X1X4 X1X4 X1X2X4 X1X3X4 X1X4
X2X4 X1X2X4 X2X4 X2X3X4 X2X4
X2X4 X1X2X4 X2X4 X2X3X4 X2X4
X3X4 X1X3X4 X2X3X4 X3X4 X3X4
X1X2X3 X1X2X3 X1X2X3 X1X2X3 X1X2X3X4
X1X2X4 X1X2X4 X1X2X4 X1X2X3X4 X1X2X4
X1X3X4 X1X3X4 X1X2X3X4 X1X3X4 X1X3X4
X2X3X4 X1X2X3X4 X2X3X4 X2X3X4 X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4

that is for α ≥ a it depends on

|α− a| =
∑

i

(αi − ai)

After this reduction, Equation (6.15), becomes
∑

α≥a
(−1)|α−a|xα
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Table 6.4 Matrix [Q(α, β)]α∈L,β=x1x2,x1x3,x1x4,x2x3,x2x4,x3x4 . To save space, the
row labels Est(D) are not shown.

X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

X1X2 X1X3 X1X4 X2X3 X2X4 X3X4
X1X2 X1X3 X1X4 X1X2X3 X1X2X4 X1X3X4
X1X2 X1X2X3 X1X2X4 X2X3 X2X4 X2X3X4
X1X2X3 X1X3 X1X3X4 X2X3 X2X3X4 X3X4
X1X2X4 X1X3X4 X1X4 X2X3X4 X2X4 X3X4
X1X2 X1X2X3 X1X2X4 X1X2X3 X1X2X4 X1X2X3X4
X1X2X3 X1X3 X1X3X4 X1X2X3 X1X2X3X4 X1X3X4
X1X2X4 X1X3X4 X1X4 X1X2X3X4 X1X2X4 X1X3X4
X1X2X3 X1X2X3 X1X2X3X4 X2X3 X2X3X4 X2X3X4
X1X2X4 X1X2X3X4 X1X2X4 X2X3X4 X2X4 X2X3X4
X1X2X3X4 X1X3X4 X1X3X4 X2X3X4 X2X3X4 X3X4
X1X2X3 X1X2X3 X1X2X3X4 X1X2X3 X1X2X3X4 X1X2X3X4
X1X2X4 X1X2X3X4 X1X2X4 X1X2X3X4 X1X2X4 X1X2X3X4
X1X2X3X4 X1X3X4 X1X3X4 X1X2X3X4 X1X2X3X4 X1X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X2X3X4 X2X3X4 X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4

Table 6.5 Matrix [Q(α, β)]α∈L,β=x1x2x3,x1x2x4,x1x3x4,x2x3x4,x1x2x3x4 . To save
space, the row labels Est(D) are not shown.

X1X2X3 X1X2X4 X1X3X4 X2X3X4 X1X2X3X4

X1X2X3 X1X2X4 X1X3X4 X2X3X4 X1X2X3X4
X1X2X3 X1X2X4 X1X3X4 X1X2X3X4 X1X2X3X4
X1X2X3 X1X2X4 X1X2X3X4 X2X3X4 X1X2X3X4
X1X2X3 X1X2X3X4 X1X3X4 X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X4 X1X3X4 X2X3X4 X1X2X3X4
X1X2X3 X1X2X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X2X3X4 X1X2X3X4
X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4 X1X2X3X4

as it can be checked in Table 6.2. Given any real function f on the sample
space D, the interpolation formula is

f(x) =
∑

a∈D
f(a)

∑

α≥a
(−1)|α−a|xα

=
∑

α∈L


∑

a≤α
(−1)|α−a|f(a)


xα

(6.16)

The reader may recognise this a special case of Möbius inversion.
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1 2

34

Figure 6.1 A graphical model.

6.9.2 The model

We consider an exponential model of the form

p(x;φ) = exp

(
∑

α∈M
ψαx

α

)

where

M = {0000, 1000, 0100, 0010, 0001, 1100, 1001, 0110, 0011} ⊂ L

and ψ = (ψα)α∈M0 , M0 =M \ {0000}. Note that this model is a submodel
of the full exponential model and that its monomial terms are not the first
in the ordering we are using. In fact, the rank of the terms inM is 1, 2, 3, 4,
5, 6, 8, 9, 11. This model is described as a graphical model in Figure 6.1 and
is characterised by its Markov properties. For example, the factorisation

p(x;ψ) = exp(ψ0000 + ψ0100x2 + ψ0001x4)
exp(ψ1000x1 + ψ1100x1x2 + ψ1001x1x4)
exp(ψ0010x3 + ψ0110x2x3 + ψ0011x3x4)

shows the conditional independence of X1 and X3, given X2, X4, see Lau-
ritzen (1996, Chapter 3). Similarly X2 and X4 are conditionally indepen-
dent given X1, X3.
Let us consider the same model as a density Pθ in polynomial represen-

tation:
Pθ = θ0000 +

∑

α∈L0

θαX
α (6.17)

with the normalising condition

θ0000 = 1−
∑

α∈L0

θαmα

where E0(Xα) = mα = tα/16 is the α-moment with respect to the uniform
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Table 6.6 Linear transformation from the θ parameters to the µ parameters
(×16).

M L 0
0
0
0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
1
0
1

0
0
1
1

1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1

1
1
1
1

1 0000 16 8 8 8 8 4 4 4 4 4 4 2 2 2 2 1
2 1000 8 8 4 4 4 4 4 4 2 2 2 2 2 2 1 1
3 0100 8 4 8 4 4 4 2 2 4 4 2 2 2 1 2 1
4 0010 8 4 4 8 4 2 4 2 4 2 4 2 1 2 2 1
5 0001 8 4 4 4 8 2 2 4 2 4 4 1 2 2 2 1
6 1100 4 4 4 2 2 4 2 2 2 2 1 2 2 1 1 1

1010 4 4 2 4 2 2 4 2 2 1 2 2 1 2 1 1
8 1001 4 4 2 2 4 2 2 4 1 2 2 1 2 2 1 1
9 0110 4 2 4 4 2 2 2 1 4 2 2 2 1 1 2 1

0101 4 2 4 2 4 2 1 2 2 4 2 1 2 1 2 1
11 0011 4 2 2 4 4 1 2 2 2 2 4 1 1 2 2 1

1110 2 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1
1101 2 2 2 1 2 2 1 2 1 2 1 1 2 1 1 1
1011 2 2 1 2 2 1 2 2 1 1 2 1 1 2 1 1
0111 2 1 2 2 2 1 1 1 2 2 2 1 1 1 2 1
1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

distribution, and (tα;α ∈ L) is a vector of totals over Est(D), in the last
row of Table 6.2.
The expectation parameters

µβ =
∑

a∈D
Xβ(a)Pθ(a)

can be computed as a function of the θ parameters by using the Q-matrix
or directly from Equation (6.14) as follows

µβ = Eθ(Xβ)

= E0(XβPθ)

=
∑

α∈L
θαE0(XβXα)

=
∑

α∈L
θαmmax(β,α)

We know that the expectation parameters µβ , β ∈M0 are a full parametri-
sation of our exponential model. The matrix with entries 16× [mmax(β,α)],
for β ∈ M and α ∈ L is given in Table 6.6. The relevant part is a matrix
(M × L) rectangular because the µ parameters are restricted only by the
normalisation condition µ0000 = 1, while the θ parameters belong to an
eight-dimensional sub-variety of R16, to be described below.
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6.9.3 Lattice case

As the sample space is integer valued, it is possible to introduce one more
parameterisation, namely

p(x;ψ) = exp

(
∑

α∈M
ψαx

α

)

=
∏

α∈M
exp(ψαxα)

= ζ0
∏

α∈M0

ζx
α

α

(6.18)

where
ζα = exp(ψα), α ∈M0

As in Equation (6.17) the polynomial form of the density as a function
of the ζ parameters can be computed in at least two ways. One possibility
is to write the polynomial interpolation of each factor in Equation (6.18)
and then collect the terms in

exp(ψαxα) = ζx
α

α = 1 + (ζα − 1)xα

and
ζ0

∏

α∈M0

ζx
α

α = ζ0
∏

α∈M0

(1 + (ζα − 1)xα)

Alternatively, one could use directly the generic interpolation formula of
Equation (6.16) and obtain

θα = ζ0
∑

a≤α
(−1)|α−a|

∏

α∈M0

ζa
α

α

for α ∈ L. The coefficients in the previous equations are the same as the
entries of the matrix (Z−1)t, but the new system is not linear: the mono-
mial in each term has its exponent equal to a row of the matrix Z. The
monomials associated with each row of Table 6.1 are listed below.

0000 �→ p1 = ζ0

1000 �→ p2 = ζ0ζ1

0100 �→ p3 = ζ0ζ2

0010 �→ p4 = ζ0ζ3

0001 �→ p5 = ζ0ζ4

1100 �→ p6 = ζ0ζ1ζ2ζ5

1010 �→ p7 = ζ0ζ1ζ3

1001 �→ p8 = ζ0ζ1ζ4ζ6

0110 �→ p9 = ζ0ζ2ζ3ζ7

0101 �→ p10 = ζ0ζ2ζ4

0011 �→ p11 = ζ0ζ3ζ4ζ8

1110 �→ p12 = ζ0ζ1ζ2ζ3ζ5ζ7

1101 �→ p13 = ζ0ζ1ζ2ζ4ζ5ζ6

1011 �→ p14 = ζ0ζ1ζ3ζ4ζ6ζ8

0111 �→ p15 = ζ0ζ2ζ3ζ4ζ7ζ8

1111 �→ p16 = ζ0ζ1ζ2ζ3ζ4ζ5ζ6ζ7ζ8

(6.19)

We write explicitly all the equations relating the θ parameters to the ζ

© 2001 by Chapman & Hall/CRC



AN EXTENDED EXAMPLE 147

parameters as follows:





θ0000 = ζ0

θ1000 = ζ0(ζ1 − 1)
θ0100 = ζ0(ζ2 − 1)
θ0010 = ζ0(ζ3 − 1)
θ0001 = ζ0(ζ4 − 1)
θ1100 = ζ0(ζ1ζ2ζ5 − ζ1 − ζ2 + 1)
θ1010 = ζ0(ζ1ζ3 − ζ1 − ζ3 + 1)
θ1001 = ζ0(ζ1ζ4ζ6 − ζ1 − ζ4 + 1)
θ0110 = ζ0(ζ2ζ3ζ7 − ζ2 − ζ3 + 1)
θ0101 = ζ0(ζ2ζ4 − ζ2 − ζ4 + 1)
θ0011 = ζ0(ζ3ζ4ζ8 − ζ3 − ζ4 + 1)
θ1110 = ζ0(ζ1ζ2ζ3ζ5ζ7 − ζ1ζ2ζ5 − ζ2ζ3ζ7 − ζ1ζ3 + ζ1 + ζ2 + ζ3 − 1)
θ1101 = ζ0(ζ1ζ2ζ4ζ5ζ6 − ζ1ζ2ζ5 − ζ1ζ4ζ6 − ζ2ζ4 + ζ1 + ζ2 + ζ4 − 1)
θ1011 = ζ0(ζ1ζ3ζ4ζ6ζ8 − ζ1ζ4ζ6 − ζ3ζ4ζ8 − ζ1ζ3 + ζ1 + ζ3 + ζ4 − 1)
θ0111 = ζ0(ζ2ζ3ζ4ζ7ζ8 − ζ2ζ3ζ7 − ζ3ζ4ζ8 − ζ2ζ4 + ζ2 + ζ3 + ζ4 − 1)
θ1111 = ζ0(ζ1ζ2ζ3ζ4ζ5ζ6ζ7ζ8 − ζ1ζ2ζ4ζ5ζ6 − ζ1ζ2ζ3ζ5ζ7

− ζ1ζ3ζ4ζ6ζ8 − ζ2ζ3ζ4ζ7ζ8 + ζ1ζ2ζ5

+ ζ1ζ4ζ6 + ζ2ζ3ζ7 + ζ3ζ4ζ8 + ζ1ζ3

+ ζ2ζ4 − ζ1 − ζ2 − ζ3 − ζ4 + 1)
(6.20)

An equivalent system can be obtained by equating at each sample point
the two presentations of the probability density, that is, by writing the
equations

p(a, θ) = ζ0
∏

α∈M0

ζa
α

α , a ∈ D

with p = Zθ. In our example we obtain Equation (6.21).
The elimination of the ζ variables in either Equation (6.20) or Equa-

tion (6.21), gives the equations describing the variety of the values of the θ
parameters compatible with the model. This elimination is relatively com-
putationally heavy, so it is simpler to proceed using the parameters given by
the values of the probability at each point, that is, using Equation (6.19).
As will be discussed in Section 6.10, in this case we have a homogeneous
binomial ideal, namely each polynomial has only two terms of the same
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degree.





ζ0 = θ1

ζ0ζ1 = θ1 + θ2

ζ0ζ2 = θ1 + θ3

ζ0ζ3 = θ1 + θ4

ζ0ζ4 = θ1 + θ5

ζ0ζ1 = θ1 + θ2 + θ3 + θ6

ζ0ζ1ζ3 = θ1 + θ2 + θ4 + θ7

ζ0ζ1ζ4ζ6 = θ1 + θ2 + θ5 + θ8

ζ0ζ2ζ3ζ7 = θ1 + θ3 + θ4 + θ9

ζ0ζ2ζ4 = θ1 + θ3 + θ5 + θ10

ζ0ζ3ζ4ζ8 = θ1 + θ4 + θ5 + θ11

ζ0ζ1ζ2ζ3ζ5ζ7 = θ1 + θ2 + θ3 + θ4 + θ6 + θ7 + θ9 + θ12

ζ0ζ1ζ2ζ4ζ5ζ6 = θ1 + θ2 + θ3 + θ5 + θ6 + θ8 + θ10 + θ13

ζ0ζ1ζ3ζ4ζ6ζ8 = θ1 + θ2 + θ4 + θ5 + θ7 + θ8 + θ11 + θ14

ζ0ζ2ζ3ζ4ζ7ζ8 = θ1 + θ3 + θ4 + θ5 + θ9 + θ10 + θ11 + θ15

ζ0ζ1ζ2ζ3ζ4ζ5ζ6ζ7ζ8 = θ1 + θ2 + θ3 + θ4 + θ5 + θ6 + θ7 + θ8 + θ9

+ θ10 + θ11 + θ12 + θ13 + θ14 + θ15 + θ16

(6.21)

Direct elimination of the ζ’s leads to





−p3p5 + p1p10 = 0
−p2p4 + p1p7 = 0

−p9p11 + p4p15 = 0
p5p9p14 − p4p8p15 = 0

−p1p9p10p14 + p3p4p8p15 = 0
−p8p11 + p5p14 = 0

p2p9p10p14 − p3p7p8p15 = 0
p3p11p12 − p4p6p15 = 0

−p1p10p11p12 + p4p5p6p15 = 0
−p6p9 + p3p12 = 0

p2p10p11p12 − p5p6p7p15 = 0
p2p11p13 − p5p6p14 = 0

−p1p7p11p13 + p4p5p6p14 = 0
−p3p8p12 + p2p9p13 = 0

p1p8p10p12 + p2p5p9p13 = 0
−p6p8 + p2p13 = 0

p3p7p11p13 − p4p6p10p14 = 0
p4p8p10p12 − p5p7p9p13 = 0

−p5p6p14p15 + p2p10p11p16 = 0
−p4p6p14p15 + p3p7p11p16 = 0
−p1p6p14p15 + p2p3p11p16 = 0

−p13p15 + p10p16 = 0
p4p8p12p15 − p5p7p9p16 = 0
p2p9p13p14 − p3p7p8p16 = 0
p1p8p12p15 − p2p5p9p16 = 0
p1p9p13p14 − p3p4p8p16 = 0
p1p11p12p13 − p4p5p6p16 = 0

−p12p14 + p7p16 = 0

(6.22)

The corresponding variety for the θ and η parameters can be obtained
by substitution into this system of equations. Note that the representation
in Equation (6.22) is not unique. We return to this point in Section 6.10.
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6.9.4 Maximum likelihood

The normal equations for estimating parameter values can be based in an
exponential model on sample values µ̄β , β ∈M , namely

µ̄β = Eζ
(
Xβ

)
, β ∈M0

By use of the expression of µ parameters as a function of ζ’s parameters
given by Equation (6.20), we get, by multiplying the matrix Z1 = Zα∈L,β∈M
by the vector of monomials representing the p-values as a function of the
ζ-parameters, the normal equations

Zt1[p] = µ̄β

Since the ζ-parameters are an algebraically free set, this can be considered
the most compact expression.

6.10 Orthogonality and toric ideals

The central role played by the Z matrix for the full model, in any of the
examples, and familiarity with experimental design encourages the use of
orthogonality to aid the different parametric representation developed in
the example of Section 6.9.
Without loss of generality we can replace Z by the partitioned matrix

Z̃ = [Z1 : Z2]

where Z1 (as above) is the restriction of Z to the model columns, and Z2

is full rank and has column space orthogonal to the column space of Z1.
For the example in Section 6.9 this is straightforward: simply replace the
0, 1 coding of levels by the −1,+1 coding, and generate Z2 accordingly.
Listing of the non-model terms in the order x1x3, x2x4, x1x2x3, x1x2x4,
x1x3x4, x2x3x4, x1x2x3x4 one obtains the 16 × 7 matrix for Z2 in Table
6.7. Then, using the original coding for Z, it remains to see that Z1 and
Z2 are orthogonal: Zt1Z2 = 0. This depends on the fact that the model
part in the new coding is orthogonal to Z1, and the recoding does not
change the column space. Using the notation [p], [ψ], and [µ̂] to denote
the vector quantities as column vectors in the model, we have a succinct
representation for the model

[p] = exp (Z1[ψ])

or
log[p] = Z1[ψ]

The last equation is equivalent to

Zt2 log[p] = 0 (6.23)

from the orthogonality of Z1 and Z2.
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Table 6.7 Matrix Z2 for the graphical model of Section 6.9.

x1x3 x2x4 x1x2x3 x1x2x4 x1x3x4 x2x3x4 x1x2x3x4

0000 1 1 −1 −1 −1 −1 1
1000 −1 1 1 1 1 −1 −1
0100 1 −1 1 1 −1 1 −1
0010 −1 1 1 −1 1 1 −1
0001 1 −1 −1 1 1 1 −1
1100 −1 −1 −1 −1 1 1 1
1010 1 1 −1 1 −1 1 1
1001 −1 −1 1 −1 −1 1 1
0110 −1 −1 −1 1 1 −1 1
0101 1 1 1 −1 1 −1 1
0011 −1 −1 1 1 −1 −1 1
1110 1 −1 1 −1 −1 −1 −1
1101 −1 1 −1 1 −1 −1 −1
1011 1 −1 −1 −1 1 −1 −1
0111 −1 1 −1 −1 −1 1 −1
1111 1 1 1 1 1 1 1

Let us consider Equation (6.23) in some detail. Suppose that all the en-
tries of p are positive. In most cases Z2 will have integer entries; strictly if
Z1 has integer entries, as in the lattice case, then an orthogonal Z2 with
integer entries can be computed. In the example the entries are 0, 1. More-
over, since Est always contains the constant term and if the model is chosen
to include the constant term (the ψ0 term), then we have that Zt21 = 0,
where 1 = [1, 1, . . . , 1]t. These two facts together show that Equation (6.23)
lead to an homogeneous toric ideal for the p-parameters.
Consider the example, then for [p] > 0, the equation Zt2 log[p] = 0 implies

a bank of equations for the p-parameters




p1p3p5p7p10p12p14p16 − p2p4p6p8p9p11p13p15 = 0
p1p2p4p7p10p13p15p16 − p3p5p6p8p9p11p12p14 = 0
p2p3p4p8p10p11p12p16 − p1p5p6p7p9p13p14p15 = 0
p2p3p5p7p9p11p13p16 − p1p4p6p8p10p12p14p15 = 0
p2p4p5p6p9p10p14p16 − p1p3p7p8p11p12p13p15 = 0
p3p4p5p6p7p8p15p16 − p1p2p9p10p11p12p13p14 = 0
p1p6p7p8p9p10p11p16 − p2p3p4p5p12p13p14p15 = 0

(6.24)
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This provides an alternative set of conditions to those obtained by elim-
ination in Equation (6.22). Simpler versions are obtained by a column re-
duction of Z2. The two representations agree when [p] > 0, namely all
probabilities are positive on the support.
With regard to the maximum likelihood estimators, it can be shown that:

if there is such an estimator [p̂] > 0, then this is the only one satisfying
positivity. Thus,

1. if there is a solution to the normal equations [p̂] > 0, then it lies on the
intersection of the linear variety Zt1[p] = [̄µ] and the variety derived from
Zt2 log[p] = 0.

2. Such a solution can be found as one solution of the algebraic normal
equations expressed in any of the representations using one of p, ζ, θ, µ.

The theory of toric ideals lies behind the representations (6.19), (6.22),
(6.23) and (6.24) in the example. A full development is beyond the scope of
the book, but the reader who has reached this point will have found several
of the main features of the theory. In the book by Kreuzer and Robbiano
(2000), there is a pleasing introduction to the theory of toric ideals. They
were first used in statistics in the work of Diaconis and Sturmfels (1998),
see also Dinwoodie (1998). This final section can be considered as a brief
introduction to this important development, showing the critical role of the
ζ parametrisation.
The representation of probabilities in terms of the ζ in (6.19) is referred

to as a representation in terms of “power products”. For distributions and
models supported on more complex integer lattice points, this power prod-
uct representation still holds. Now, power products always lie on a toric
ideal generated by special homogeneous binary expressions. Binary here
means having only two terms. It is important to note that this binary
representation is not unique, and one may ask for a minimal set of such
generators, that is, a minimal basis. A simple way to obtain a basis is
precisely by elimination, which is how (6.19) was found.
The linear representation (6.23) for log[p] which depends on the matrix

Z2, orthogonal to Z1, can also be found in the theory. Writing [q] = log[p]
the equation is Zt2[q] = 0. All scalar multiples of Z1 also satisfy this equation
and such integer solutions form an integer lattice. Column-reduced versions
generate the same lattice. This is a way of constructing bases for the toric
ideal with fewer generators than simple elimination.
What is perhaps particular about the development in this book is the

demonstration of the construction of the toric ideal for any discrete proba-
bility model on lattice points, L, arising out of the polynomial exponential
representation. We summarize this as a series of steps.

1. From a support D on integer lattice points and a monomial ordering τ ,
construct Estτ = {xα : α ∈ L}.
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2. Interpolate the logarithm of the probability function on D to give a
saturated exponential model given by L.

3. Take any submodel L′ ⊂ L and parameterise the exponential terms with
ζ = exp(ψ).

4. Claim that the probabilities p are power products in the ζ.

5. Construct the toric ideal in the p’s by elimination.

6. Construct a matrix Z2, orthogonal to Z1, and use it, or use the toric
ideal theory, to construct a minimal set of generators for the ideal in
Item 5.

We can restate the formulation of the maximum likelihood problem. If
the maximum likelihood estimator [p̂] satisfies [p̂] > 0 then it lies on the
intersection of the linear (affine) variety given by the normal equations and
the toric variety defined by the submodel.
The following provides an easy exercise.

Example 79 Consider a 3× 3 contingency table with levels coded −1, 0,
+1 but with the diagonal x1 = x2 missing. Thus

D = {(0,−1), (1,−1), (1, 0), (0, 1), (−1, 1), (−1, 0)}
and label the corresponding probabilities p1, . . . , p6, respectively. For any
graded ordering, τ , such as tdeg

Estτ =
{
1, x1, x2, x

2
1, x

2
2, x1x2

}

Consider the exponential submodel excluding the x1x2 term:

p(x;ψ) = exp
(
ψ0 + ψ1x1 + ψ2x2 + ψ3x

2
1 + ψ4x

2
2

)

Then, in the above development

Z1 =




1 0 −1 0 1
1 1 −1 1 1
1 1 0 1 0
1 0 1 0 1
1 −1 1 1 1
1 −1 0 1 0



, Z2 =




1
−1
1

−1
1

−1




The toric ideal is generated by

p1p3p5 = p2p4p6
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and the full set of maximum likelihood equations is

p̂1 + p̂2 + p̂3 + p̂4 + p̂5 + p̂6 = 1
p̂2 + p̂3 − p̂5 − p̂6 = µ̄10

−p̂1 − p̂2 + p̂4 + p̂5 = µ̄01

p̂2 + p̂3 + p̂5 + p̂6 = µ̄20

p̂1 + p̂2 + p̂4 + p̂5 = µ̄02

p̂1p̂3p̂5 − p̂2p̂4p̂6 = 0

The solution has “closed form” in which, for example p̂1 is a solution of a
cubic equation and p̂2, . . . , p̂6 are elementary functions of this solution.
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