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Foreword

Hofstadter’s Law: It always takes longer than you think it will take,
even if you take into account Hofstadter’s Law.

(Douglas R. Hofstadter)

Dear Reader,

why did we begin the foreword of this second volume with the same quote
as the first? There we wrote that it took three years of intense work just to
fill three centimeters of your bookshelf. The completion of this volume took
four years and it is about four centimeters thick. Thus we have a confirmed
invariant which governs our writing: our velocity is one centimeter per year,
after all effects due to Hofstadter’s Law have been taken into account. When
we started this project in the last millennium, we planned a book for learning,
teaching, reading and, most of all, enjoying the topic at hand. Surely there
is no law which says that a mathematical book has to be dull, boring, dry,
or tedious. But how do you make it enjoyable?

Our approach has been to fill it with amusing quotes, varied jokes, funny
word games, flowery metaphors and occasional literary efforts. There are two
possible drawbacks of this method. Firstly, not everyone has the same sense
of humour and not every metaphor works as intended. For instance, it is easy
to joke about certain politicians, but what happens if they read this book?
And when we wrote of a small boat sailing slowly into the Brazilian sunset,
it was pointed out to us that this entails a geographical problem. Secondly,
it is very difficult to write humorously in a foreign language. In the foreword
of our first book, we acknowledged a modest lack of linguistic sophistication.
This time around, our scribbling has utterly changed for the worse. When
confronted with a concoction such as

... and if the whole section was a piece of cake for you, bring your bite to
bear on Tutorials 47 and 48 [...].

even our hardest, steadfastest advisors John Abbott and Tony Geramita had
to concede soft spots. The most enthusiastic remark we could wring from
them was that one can find almost every word we use in an English dictionary.
But if a word in the dictionary were mispelled, how would we know? Should
we have taken more heed of the suggestions of our readers, one of whom
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recommended correcting “I is an ideal” to “I am an ideal”? And what
about definitions like “A flower is an educated weed”?

Another source for trouble were commas. Their distribution in this volume
is rather random, because we were puzzled by rules such as the following one:
“If you use then after an if, then don’t put a comma before then.”

I must thank my parents,
but mostly my mother and my father.

(“Spillo” Altobelli)

As with the first volume, the second is really a joint effort of many people.
We won’t bore you with platitudes about how many people contributed to
this book; we’ll just bore you with a complete list of those people. A special
mention goes to John Abbott who spent a lot of time, and almost all his pa-
tience, to help us improve our text. Moreover, he continually stimulated our
writing with profound and enlightening remarks. Further substantial proof-
reading was done by Valentina Bertella, Anna Bigatti, Achim Kehrein, and
Tony Geramita. We are also grateful to Laura Bazzotti, Henrik Bresinsky,
Aldo Conca, Giorgio Dalzotto, Giulio Genovese, Daniel Heldt, Eva Ludwig,
Matthias Machnik, and Maria Evelina Rossi for helpful remarks. In spite of
this extensive proofreading, the book still contains infinitely many errors.
(Proof by induction: You can always find another one.) We shoulder the full
responsibility for everything that is still wrong, in particular if we have any
words out.

Let us also not forget the many other people who have contributed to
this book in more indirect ways: all famous and infamous people (including
ourselves) whose quotes we abused, the soccer players of our favourite teams
Bayern München and Juventus Turin who showed us that we were not the
only ones who had their ups and downs, and the central bankers of this world
who furnished us with never-ending amazement about their uncanny ability
to create money out of nothing. Very instrumental in the writing of this
book was the support we received from our families. Our wives Bettina and
Gabriella and our children Chiara, Francesco, Katharina, Veronika, as well
as the latest addition, Martin junior, devoted a significant part of their lives
to aid us as much as possible.

A very special “thank you” goes to the Springer team, in particular to
Dr. Martin Peters and his assistant Ruth Allewelt, for their efficient and
professional help in the editorial and production part of this endeavour. Last,
but not least, we acknowledge the book itself: after we have spent the better
part of eight years putting much of what we know about computer algebra
into it, the book knows more than we do since it also remembers what we have
already forgotten. May it be as enjoyable and instructive to you as it is to us!

Martin Kreuzer and Lorenzo Robbiano,
Dortmund and Genova, March 2005
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Tutorial 53. Reduced Gröbner Bases and Homogenization . . . . . 78

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1 What Is This Book About? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Now, What Is This Book Really About? . . . . . . . . . . . . . . . . . . . 2
0.3 What Is This Book Not About? . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4 Are There any Applications of This Theory? . . . . . . . . . . . . . . . 5
0.5 How Was This Book Written? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.6 What Is a Tutorial? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.7 What Is CoCoA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.8 And What Is This Book Good for? . . . . . . . . . . . . . . . . . . . . . . . 8
0.9 Some Final Words of Wisdom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



VIII Contents

Tutorial 54. Regular Sequences of Indeterminates . . . . . . . . . . . . 80
Tutorial 55. Set-Theoretic Complete Intersections . . . . . . . . . . . . 82
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Introduction

Writing, for him who knows it
is better than all other professions;

it pleases more than bread and beer,
more than clothing and ornament.

(20th Dynasty, Egypt)

0.1 What Is This Book About?

The title of this book is “Computational Commutative Algebra 2”. It is the
natural continuation of “Computational Commutative Algebra 1” written by
us in the last millennium. In the introduction to the first volume we wrote
that the fundamental ideas of Computational Commutative Algebra were
deeply rooted in the development of mathematics in the 20th century, and
that we planned to be back with more in the not so distant future. So, here
we are!

But why did it take so long? We love deadlines, in particular the whoosh-
ing sound they make as they fly by. Therefore we successfully missed every
deadline we had set for ourselves. Clearly, one reason is that writing this
book pleased us more than pasta and wine. Another reason is that laying
the foundations for Computational Commutative Algebra in the third mil-
lennium turned out to be more of a job than we had bargained for. Many
sections of this book are like small research papers because we tried to present
the material in the style that pleases us so much and differs markedly from
existing literature.

The result is a volume having almost twice the size of the first: some of
its 23 sections are as big as a whole chapter, some of its 55 tutorials are as
big as a whole section, and some exercises are as big as a tutorial. Together
the two books form a compilation of about 900 pages which includes a vast
collection of 99 tutorials to keep you busy for a long, long time. To sustain
your interest, we have tried to continue the presentation in the lively style
of the first volume. Alas, we have to inform you that this is absolutely and
definitively the second and last volume of the trilogy.



2 Introduction

0.2 Now, What Is This Book Really About?

As I said before,
I never repeat myself.

(Anonymous)

Let us examine some concrete problems whose solutions we shall try to
explain in this book. For a similar description of the contents of Volume 1 we
refer the reader to its introduction. Let us start with the problem of using
Gröbner bases in the homogeneous case. Suppose we are given a polynomial
ring P = K[x1, . . . , xn] over some field K .

Question 1 How can we equip P with gradings which are useful for Com-
putational Commutative Algebra?

More precisely, we are asking whether it is possible to find a monoid Γ
and a Γ -grading on P such that homogeneous ideals and graded modules
have additional invariants and are simpler to handle computationally. The
answer will turn out to be “positive Zm -gradings”, whatever they are.

Question 2 How can we relate an arbitrary ideal or module to a homoge-
neous ideal or a graded module?

In other words, how can we pass from the inhomogeneous to the homoge-
neous case? At least three possibilities will be discussed: degree form ideals
and Macaulay bases, homogenization, and the homogeneous part of an ideal.

Question 3 How can we exploit homogeneity to compute Gröbner bases and
perform elementary operations on ideals and modules more efficiently?

Related questions are: Are there special term orderings which can be used
to advantage in the graded setting? Are Gröbner bases of homogeneous ideals
again homogeneous? If we stop the computation of a homogeneous Gröbner
basis after some degree is finished, is the resulting truncated Gröbner basis
any good?

The fact that the gradings we use are positive implies that all irredundant
homogeneous systems of generators of a finitely generated graded module are
minimal. Hence the minimal number of generators of such a module is a well-
behaved invariant. This leads us to examine the following problems.

Question 4 How can we compute minimal homogeneous systems of gener-
ators, minimal homogeneous presentations, and minimal graded free resolu-
tions of finitely generated graded modules?

Another aspect of positive gradings is that they force the homogeneous
components of a finitely generated graded P -module M to be finite di-
mensional K-vector spaces. This allows us to define the Hilbert function
HFM : Zm −→ Z of M by HFM (i) = dimK(Mi) and to study its generating
power series, the Hilbert series of M .
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Question 5 How can we compute the Hilbert function and the Hilbert series
of a finitely generated graded module? What are their basic properties? How
fast do Hilbert functions grow?

In the standard graded case, i.e. when deg(x1) = · · · = deg(xn) = 1, one
of these basic properties of Hilbert functions is that HFM (i) is given by the
value of the Hilbert polynomial of M for large enough i .

Question 6 How can we compute the Hilbert polynomial of a graded mod-
ule M ? Can we derive other invariants of M from it?

It turns out that one of these invariants is the dimension of a graded ring
or a graded module. Thus we ask ourselves:

Question 7 What are the algebraic and geometric interpretations of the di-
mension of a graded ring?

These are our questions. And if they are not enough for you ... well, we
have others. For instance, we shall address the following existential question:

Question 8 Can mathematicians be replaced by computers?

In other words, can computers take over the job of proving theorems? Is
there true artificial intelligence?

Question 9 What is there beyond Gröbner bases?

Which other kinds of problems can be addressed using Computational
Commutative Algebra? Are there situations in which the theory of Gröbner
bases can be imitated or generalized?

Let us end this discussion by pointing out one unimportant choice we
have made. We have decided to change the title of Chapter 6 slightly and
call it simply “Further Applications” rather than mentioning Gröbner bases
explicitly. The justification is that the chapter has in fact a much wider scope.
Although Gröbner bases are always sneaking in one way or another, we cover
all the bases: binomial bases of toric ideals, Hilbert bases of monoids, liftings
and distractions of monomial bases, SuperG bases, bases of vanishing ideals
of finite sets of points, border bases of zero-dimensional ideals, standard bases
of filtered modules, SAGBI bases of subalgebras, and a basis for automatic
theorem proving. You name it, we’ve got it! (Well, almost.)

Last, but not least, let us henceforth limit the use of “let us”, lest we run
the risk of repeating ourselves.

Repetita iuvant.
(Ancient Latin Adage)
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0.3 What Is This Book Not About?

All is the same
A year has gone by
Some day you came
Some day you’ll die.

(Cesare Pavese)

Had we written this sentence in Volume 1, this very moment would have
occurred about four years ago. In those days we mentioned that the list of
topics which we did not talk about contained soccer, chess, gardening, and
our other favourite pastimes. Since life is too short and precious to miss out
on the good stuff, we decided to remedy these shortcomings. The current
volume includes two tutorials related to chess, and in the introductions of
the last two chapters we meet a gardener and a chess player engaged in an
animated trilogue with an amateur mathematician. Unfortunately, they are
so immersed in the discussion that the gardener forgets to advise us about
the right time to sow tomato seeds and the correct composition of the soil
for growing azaleas.

What else is not in this book? There is still nothing about computability
or complexity. We use the expression effectively computable loosely to mean
that there is some algorithm to perform the computation. And when we write
that some algorithm is efficient, we are usually indicating a personal opinion.
In fact, analyzing the worst-case or average-case complexity of algorithms
is not only beyond the scope of this book, but in our experience it would
tell little about their practical complexity, i.e. their running time for those
examples we happen to be interested in.

Even the terms algorithm and procedure are applied in a purely intuitive
and informal manner. In fact, the way we present algorithms in this book
differs from computer science texts. For us, an algorithm is really a more
general form of theorem where the instructions do not necessarily follow
linearly one after another, but conditionals and recursive constructions are
allowed. Consequently, it is usually not sufficient to prove correctness alone
(as for a theorem) but also finiteness. Later in this book we shall encounter
enumerating procedures. Roughly speaking, we think of them as algorithms
with only partial finiteness proofs. You will not find Turing machines or
recursive sets mentioned anywhere because for all algorithms and procedures
we explain there exist practical implementations (for instance in CoCoA), so
that a theoretical consideration of their workability is superfluous.

Finally, in Volume 1 we wrote that we did not cite anything anywhere.
This is still true. However, if you have devoured this book and crave for more,
you can find some suggestions for further reading in Appendix D.
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0.4 Are There any Applications of This Theory?

There is no branch of mathematics, however abstract,
which may not some day be applied

to phenomena of the real world.
(Nikolai Lobachevsky)

Allow us to be bold and brazen: Computational Commutative Algebra is
going to be one of the pillars of the applications of mathematics to the real
world in the third millennium. With the advance of computing technology it
has become feasible to grapple with industrial sized problems using symbolic
computations. One of the main purposes of this volume is to continue laying
the theoretical foundations for this development. Scattered throughout it you
can discover clues and suggestions relating the topics we discuss to actual
applications.

One aspect of this trend is nevertheless conspicuously absent here: sym-
bolic methods should really be viewed as complementary to the numerical
methods which have predominated up to now. Although a few computer
algebra systems, including CoCoA, offer you some possibilities of performing
hybrid computations, i.e. computations mixing symbolic and numerical meth-
ods, the area of numerical polynomial algebra is still in its infancy. Therefore
we leave to future treatises the questions of how to represent measured data
using numerical polynomials and of how to compute Gröbner bases, border
bases, SAGBI bases etc. with numerical polynomials. Let us just say that
actual industrial applications of Computational Commutative Algebra ex-
ist, are being continually developed, and will become more important in the
coming years.

0.5 How Was This Book Written?

Those are my principles,
and if you don’t like them ...

well, I have others.
(Groucho Marx)

A short answer to this question is that this book was written using LATEX
and the Springer macro package. Another quick reply is that this book is
written in the same style as Volume 1. Colloquially speaking, it contains
more of the same, much more. Furthermore, we tried to adhere to the rules
formulated in Section 0.7 of the first volume. Browsing this second volume,
you will also notice that we spruced it up with a rather generous sprinkling
of quotes and occasional literary efforts. Although this may be rare in a
mathematical book, we believe that a good mathematical joke is better than
a dozen mediocre papers. Moreover, some things are so serious that you can

0.5 How Was This Book Written?
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only joke about them. And if you don’t like our quotes ..., well, we have
others.

One of the problems we faced when we wrote Volume 1 is still as unsolved
as ever, namely the problem of differing notations. The following case in point
arose when we drafted Section 6.4. In accordance with books in commutative
algebra, we called a non-empty set of terms an order ideal if it is closed
under forming divisors. When we were criticized for this choice of name, we
did some research and found out that the same concept had been “discovered”
in several branches of mathematics. Of course, everybody had “introduced”
a different name, and few authors seemed to be aware of the alternative
terminologies. The following table summarizes our findings.

order ideal Computational Commutative Algebra
1) canonical term basis computer algebra
2) ∆-set coding theory
3) Ferrer diagram differential algebra
4) footprint coding theory
5) normal set numerical mathematics
6) poset ideal combinatorics
7) set of terms connected to 1 computer algebra
8) staircase algebraic geometry
9) standard set commutative algebra

10) term filter set theory

After the publication of the first volume, some questions arose concerning
the prerequisites for reading these books. Not surprisingly, for Volume 2 we
assume that you have mastered the essential parts of Volume 1. But what
do you need to know to be able to read Volume 1? In principle, a good
working knowledge of basic algebraic structures and techniques should suffice:
groups, rings, modules and fields, as well as homomorphisms, residue classes,
exact sequences and a few basic proof methods. Although we tried to keep
everything as self-contained as possible, it surely won’t hurt if you peek into
a standard algebra textbook (e.g. [La70]) in case of need. At times we also
assume that you apply your common sense and produce a reasonable guess
at what we mean, rather than expecting a formal definition of every single
word. Isn’t it clear what a subtuple should be?

Finally, let us point out one “rule” which has not yet been mentioned.
Normally, every section or subsection in this book has some global hypothe-
ses. Unless we specifically mention something else, they apply to everything
in that section or subsection. We tried not to change these global hypotheses
frequently during the course of the presentation. For propositions and theo-
rems we deem important, we repeat the global hypotheses to aid the reader
in looking up references. Of course we were not able to impose this rule un-
waveringly. There are no exceptions to the rule that every theorem likes to
be an exception to the rule.
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0.6 What Is a Tutorial?

The hardest thing to understand is the income tax.
(Albert Einstein)

The second hardest thing to understand could be some of the tutorials
in this book. Fortunately, there exists another rule: it is not necessary to
do and understand the tutorials in order to continue reading the main text.
Besides containing links to a wide variety of applications, tutorials provide
fodder for student projects, lab classes, term papers, and so on. But teachers
beware! The complexity of solving a tutorial may vary dramatically from
one to the next. Some tutorials require a lot of programming, while others
expect the reader to find rather tricky proofs. For some tutorials you can find
the solution in research papers or other literature; maybe there even exists a
pointer in Appendix D.

So, what are the tutorials good for? As we wrote in Volume 1, they are
mainly intended to help bridge the gap between the theory and actual com-
putations. What is computer algebra without a computer? Just another dry
part of algebra. Gröbner bases, gradings, Hilbert functions, all these notions
only come to life when you actually compute them. The tutorials should en-
tice you into experimenting, playing with CoCoA, computing special cases,
and thinking about what is going on inside the machine. If you use this book
for teaching, we believe it is important that you try your hand at the tutorials
before you assign them. Do not skip the computational parts of this book.
Do not teach according to the motto:

He who can, does. He who cannot, teaches.

0.7 What Is CoCoA?

With computers you can
waste time a lot faster.
(Darryl Mc Cullough)

If you want to heed our advice and do some actual computations, you need
access to a computer and a computer algebra system. As for the computer, we
are not offering advice. But as for the computer algebra system, we suggest
that you visit the web page

http://cocoa.dima.unige.it/

and download the free computer algebra system CoCoA. In fact, we hope that
you have already done so.

Naturally there are many other computer algebra systems that you can use
to implement the algorithms in this book or to solve the programming parts
of the tutorials. If you are expert enough, using several computer algebra

0.7
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systems in parallel certainly has advantages. However, if you are struggling
to come to grips with just one computer algebra system, then CoCoA is a very
good choice.

To help you master CoCoA usage and programming, we have given some
basic information in Volume 1. In this volume we have added appendices
describing its graphical interface and further programming techniques. If this
is still not enough for you, have a look at the on-line CoCoA tutorial and the
above web site.

Before plunging into action, however, you should carefully plan your time
table. Although the speed of time is one-second per second, when you sit in
front of your computer time passes a lot faster. And when you are playing
with CoCoA, you Can’t Stop!

0.8 And What Is This Book Good for?

You can fool all the people some of the time,
and some of the people all the time,

but you cannot fool all the people all of the time.
(Abraham Lincoln)

This book is good for learning, teaching, reading, and most of all, enjoying
the topic at hand. The theories it describes can be applied to anything from
children’s toys to oil production. Even browsing it superficially will show you
that it is different from other books on mathematics, except for Volume 1 of
course. We fool around much more! It is so different that it didn’t fit into
any of the regular book series of Springer Verlag and had the chance to get
its own colourful cover.

In earnest, this book is primarily intended as a textbook for advanced
courses in Computational Commutative Algebra. We don’t think that we
can fool you into believing that the material we cover is easy. But we hope
the presentation is comprehensible and pleasant enough to tempt you to
read on. Books and research papers in computer algebra differ even from
other works in mathematics. Since computers are very difficult to fool, the
standard of correctness of a computer algebra text has to be raised until the
implementation of the theorems and algorithms works. This is a high mark.
We hope we have achieved it.

The advice to go through this book with an open and critical mind applies
to Volume 2 as much as it did to Volume 1. Suppose you are playing with
CoCoA and you discover the following series of calculations:

7 × 15 = 105 and 10 + 5 = 15
7 × 18 = 126 and 12 + 6 = 18
7 × 21 = 147 and 14 + 7 = 21
7 × 24 = 168 and 16 + 8 = 24
7 × 27 = 189 and 18 + 9 = 27
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Have you unearthed a wonderful new method of checking multiplication ta-
bles? Not until you provide an actual formulation and a proof of the theorem
you claim to have found. This is what this book is really good at: it con-
tains formulations and (hopefully) correct proofs of many results which are
“folklore” or otherwise hard to nail down.

You cannot fool all the people all of the time. At some point somebody has
to sit down and implement an algorithm for computing graded free resolu-
tions, or a procedure for computing SAGBI bases. And no amount of friendly
but imprecise advice is going to deceive that person into believing this is easy:
his computer would quickly disabuse him of any such misconception. In this
sense, we hope you will find the combination of Volumes 1 and 2 not only
valuable for learning or teaching, but also as an ultra-explicit compendium
of the state of the art in Computational Commutative Algebra.

0.9 Some Final Words of Wisdom

Drillers shape holes,
bow makers shape arrows,

carpenters shape wood,
and the wise man shapes himself.

(Siddhartha Gotama)

After having typed about 900 pages of densely written mathematics, we
still cannot answer profound philosophical questions such as: What is the
deeper meaning of Computational Commutative Algebra? How is it going
to develop in the future? Instead of philosophizing endlessly, let us end this
introduction and send you off to Chapter 4 with a few words of wisdom by
Peter Taylor.

My premise is that we mathematicians are sitting on a gold mine. In terms
of structural beauty, stunning insights, unexpected power, all from simple,
accessible ingredients, very little can compare with our wonderful subject.
But we do a terrible job at communicating that to most of our students.
In the classroom we blow it, and we thereby alienate just about the entire
population. And we’ve no one to blame but ourselves.

Thus the mathematician shapes everybody. May this book shape you into
a fan of Computational Commutative Algebra. May it be a gold mine of
material for studying and teaching. May it help you appreciate the beauty
and the usefulness of our wonderful subject.

This is not the end
or the beginning of the end,

but it is the end of the beginning.
(Sir Winston Churchill)



4. The Homogeneous Case

Das Spiel dauert 90 Minuten.
[The game lasts 90 minutes.]

(Sepp Herberger)

Well, not quite: sometimes a soccer game lasts 93 minutes and 36 sec-
onds. Also the writing of this chapter took some unexpected turns. Initially,
our intention was to compose a small collection of the necessary background
material for our true goal, namely to write a linchpin chapter about Hilbert
functions. Hilbert functions arise in graded situations, and thus we were nat-
urally led to ask the following basic questions.

1) Which gradings on the polynomial ring are useful for Computational
Commutative Algebra?

2) How are the graded and the non-graded settings related to each other?
Can one pass from one to the other?

3) What, if any, are the computational advantages of being in a graded
setting?

4) How can one compute some typical invariants of homogeneous ideals
and graded modules, such as the minimal number of generators and the
graded Betti numbers?

As we struggled to answer these questions, the chapter grew and grew.
Time and again we discovered that the intricacies of some topic put up more
resistance than we had expected, and now that everything is finished, Chap-
ter 4 has more than 150 pages. So, what is all the fuss about?

Instead of delving into a detailed, proposition by proposition account
of the chapter, let us walk though a typical example originating in alge-
braic geometry. As we explain in Tutorial 27, the Zariski closure of the set
{(t, t3, t4) ∈ A3

Q | t ∈ Q} is an affine variety. In Tutorial 39.h we saw that the
vanishing ideal of this curve is I = (x1 − t, x2 − t3, x3 − t4) ∩ Q[x1, x2, x3] ,
and using Theorem 3.4.5 we find that I = (x1x2 − x3, x3

1 − x2) . Moreover,
a glance at LTDegRevLex(I) = (x1x2, x3

1, x2
1x3, x3

2) convinces us that I is not
principal, i.e. that the given system of generators is minimal.

However, this is not the end of the story. Usually, algebraic geometers
are even more interested in the projective closure of this curve, i.e. the
curve C = {(u4 : tu3 : t3u : t4) ∈ P3

Q | (t : u) ∈ P1
Q} . The homogeneous van-

ishing ideal of C is the homogenization Ihom = (fhom | f ∈ I) of I in
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P = Q[x0, . . . , x3] where fhom = x
deg(f)
0 f(x1

x0
, . . . , x3

x0
) denotes the homog-

enization of a polynomial f ∈ Q[x1, x2, x3] . How can we compute Ihom ?
As we shall see, it is not sufficient to homogenize the generators of I . In-
stead, Section 4.3 contains three methods for computing Ihom . Firstly, Corol-
lary 4.3.8 shows Ihom = (x0x3−x1x2, x2

0x2−x3
1) :

P
(x0)∞ . Secondly, Propo-

sition 4.3.21 yields Ihom = (x1x2−x0x3, x3
1−x2

0x2, x2
1x3−x0x

2
2, x3

2−x1x
2
3),

since G = {x1x2−x3, x3
1−x2, x2

1x3−x2
2, x3

2−x1x
2
3} is a DegRevLex-Gröbner

basis of I . The third method is based on Tutorial 51 and requires us to com-
pute the elimination ideal (x0 − y4

0 , x1 − y3
0y1, x2 − y0y

3
1 , x3 − y4

1) ∩ P .
After determining the homogeneous vanishing ideal Ihom of C in the

ring P , we would like to calculate some invariants associated to it. For in-
stance, what is the minimal number of generators of Ihom ? By the Graded
Version of Nakayama’s Lemma 1.7.15, the irredundant system of generators
consisting of the four polynomials given above is minimal. In fact, using the
variant of Buchberger’s algorithm we present in Theorem 4.6.3, we can dis-
cover this property while performing a suitable Gröbner basis computation.
Another way of expressing the insight we have just gained is to say that
there is a homogeneous surjective P -linear map ϕ : F −→ Ihom , where
F = P (−2) ⊕ P (−3)3 and Ker(ϕ) is contained in (x0, . . . , x3)F .

A finer set of invariants can be attached to Ihom if we notice that it is
actually a bigraded ideal. This means that if we use a Z2 -grading on P for
which deg(x0) =

(
1
0

)
, deg(x1) =

(
1
1

)
, deg(x2) =

(
1
3

)
, and deg(x3) =

(
1
4

)
,

then Ihom is a homogeneous ideal with respect to this grading. Hence we can
use the results in Sections 4.7 and 4.8 to compute the minimal bigraded free
resolution

0 −→ P
(
−
(

5
10

)
) λ−→ P

(
−
(
4
6

))
⊕ P

(
−
(
4
7

))
⊕ P

(
−
(
4
9

))
⊕ P

(
−
(

4
10

)) ψ−→
ψ−→ P

(
−
(
2
4

))
⊕ P

(
−
(
3
3

))
⊕ P

(
−
(
3
6

))
⊕ P

(
−
(
3
9

)) ϕ−→ Ihom −→ 0

of Ihom . The multiplicities of the shifts appearing in this resolution are called
the graded Betti numbers of Ihom . They encode subtle properties of the
geometry of C .

In the light of this example, let us come back to the basic questions we
asked above and discuss them. Let P = K[x1, . . . , xn] be a polynomial ring
over a field K .

1) The gradings on P have to be over an explicitly given, easily com-
putable monoid. For our purposes, the monoid Γ = Zm is well-suited. More-
over, each indeterminate should be homogeneous, and non-zero constants
should be homogeneous of degree zero. Fixing the degree of each indeter-
minate gives a uniquely defined grading on P with these properties. Let
W ∈ Matm,n(Z) be the matrix whose columns are the degrees of the indeter-
minates. We shall say that the grading on P is given by W . Such gradings
are studied in Sections 4.1 and 4.2.A. Later we introduce and study grad-
ings of positive type and positive gradings, because they offer additional nice
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properties such as finite dimensional homogeneous components of finitely gen-
erated graded modules, the applicability of the graded version of Nakayama’s
lemma, a natural and easily computable well-ordering on the set of degrees of
non-zero homogeneous polynomials, or the existence of a degree compatible
term ordering.

2) There are several ways of passing from a non-homogeneous polyno-
mial f (or ideal I ) to a homogeneous one. The first method is to consider
only those terms in the polynomial having maximal degree. They yield the
degree form of f . In analogy with the theory developed in Chapter 2, we can
now define the degree form ideal of I and study Macaulay bases, i.e. sets of
polynomials whose degree forms generate the degree form ideal of I . This
is done in Section 4.2.B. Another approach is followed in Section 4.3, where
we introduce new indeterminates and use them to homogenize a polynomial
by multiplying terms of non-maximal degree with suitable power products of
the homogenizing indeterminates. The ideal generated by the homogeniza-
tions of the polynomials in I is then called the homogenization of I and
denoted by Ihom . After a detailed discussion of the algebraic and compu-
tational aspects of the passage from I to Ihom (and back), we also explain
its relationship to Macaulay bases, Gröbner bases, and flat families. Finally,
in Tutorial 50, we show how to compute the homogeneous ideal obtained
from a non-homogeneous one by simply taking the ideal generated by the
homogeneous elements contained in it.

3) In Chapters 2 and 3 we have already encountered situations where
the difficulty of computing a particular Gröbner basis depended strongly on
the chosen term ordering. In many cases, the degree reverse lexicographic
term ordering turned out to be a good choice. So, what is so special about
it? This is the topic of Section 4.4, where we use term orderings which are
similar to DegRevLex for computing saturations, colon modules, addition of
an indeterminate, and reduction modulo an indeterminate in an efficient way
if the ideals and modules in question are suitably graded. Further advantages
of using gradings surface in Section 4.5, where we examine the computation of
Gröbner bases in a graded setting. The homogeneous version of Buchberger’s
algorithm permits substantial optimizations. This is because we can use the
fact that it proceeds degree by degree and also that the S-vectors it has to
process are homogeneous. Moreover, if we stop the computation after a fixed
degree is finished, we have computed a truncated Gröbner basis and, as we
shall see in Section 4.5.B, this may be all we need for a particular problem.

4) The first and most obvious invariant of a homogeneous ideal or graded
module is its minimal number of generators. Due to the Graded Version of
Nakayama’s Lemma 1.7.15, every irredundant homogeneous system of gen-
erators is minimal, and all of them have the same number of elements. In
Section 4.6, we prove that a slight variation of the Homogeneous Buchberger
Algorithm 4.5.5 yields a minimal homogeneous system of generators Vmin

contained in the original system of generators. The next step is to compute
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a minimal homogeneous system of generators of SyzP (Vmin), i.e. a minimal
homogeneous presentation of the ideal or module we started with. This step
is taken in Section 4.7, where we not only introduce several strategies for
computing such minimal homogeneous presentations, but also prove that the
ranks and shifts of the graded free modules involved in such a presentation are
invariants of M , i.e. they do not depend on the chosen presentation. Contin-
uing this process of computing minimal homogeneous systems of generators
of syzygy modules, we obtain a minimal graded free resolution

· · · −→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ M −→ 0

of a finitely generated graded P -module M , where F0, F1, . . . are finitely
generated graded free P -modules. After proving in Section 4.8.A that a fi-
nite minimal graded free resolution of M exists and is essentially unique
(up to isomorphisms of graded free modules), we present three methods for
computing it in Section 4.8.B.

After all is said and done, it seems that the advantages of working in
a graded setting more than compensate for the additional conceptual and
notational toil and trouble it requires. Do you think that this is an obvious
conclusion, something French people would call a “lapalissade”? At times
lapalissades contain profound truths.

Monsieur de La Palisse est mort
il est mort devant Pavie

un quart d’heure avant sa mort
il était encore en vie.

(Bernard de la Monnoye)
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4.1 Polynomial Rings Graded by Matrices

Begin at the beginning
and go on till you come to the end;

then stop.
(Lewis Carroll)

Before beginning our journey into the realm of gradings on polynomial
rings, let us have a look at where we are. In Volume 1 we devoted all of
Section 1.7 to the hidden secrets of general gradings. This generality was
motivated by the goal of providing correct proofs in the theory of Gröbner
bases of modules. Now, where do we want to go from there? For actual
computations, gradings on polynomial rings given by arbitrary commutative
monoids are too general. Therefore we need to restrict our attention to a
more limited class of gradings. How can we manufacture a suitable notion?

To get some inspiration, let us have another look back at the path we
took in Volume 1. In Example 1.7.2 we introduced the most common grading
on the polynomial ring, namely the standard grading, and in Section 1.4
we saw that the most useful term orderings on a polynomial ring are those
defined by matrices. What is the connection here? In both cases there is a
matrix of integers which plays a key role. Comparison of terms is based on
taking scalar products of the rows of this matrix with logarithms of terms.
For instance, the standard degree of a term t ∈ Tn is given by the product
deg(t) = W · log(t)tr , where W is the matrix W = (1 1 · · · 1).

Thus we are led in a natural way to connect the dots. On the polyno-
mial ring P = K[x1, . . . , xn] we define a Zm -grading by means of a matrix
W ∈ Matm,n(Z). The degrees of the indeterminates are the columns of W,
and constant polynomials are homogeneous of degree (0, . . . , 0)tr . So, what
are the applications of such gradings? A first answer comes from Proposi-
tion 4.1.8 which yields a characterization of monomial ideals as the most
homogeneous ones, since they are the only ideals which are homogeneous
with respect to every grading. But in order to be able to answer the question
more satisfactorily, we need to examine the basic properties of gradings by
matrices and to generalize this notion to include graded modules.

Do we really have to take the long and twisty road of modules again? Abso-
lutely yes! As we frequently saw in Volume 1, and as is becoming increasingly
clear, Computational Commutative Algebra is really about computations in
and with modules. This aspect is taken care of in Subsection B, where we
show that the most important operations on graded modules respect the grad-
ing. For actual computations, arbitrary gradings by matrices are too general.
Therefore in the last subsection we restrict our attention further and turn to
the subject of gradings of positive type. These are the gradings defined by a
matrix W ∈ Matm,n(Z) such that some linear combination of its rows with
integer coefficients has all entries positive (see Definition 4.1.17).

Why are they called of positive type, and why are they important? Con-
cerning these questions, we offer you two pieces of good news and one
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piece of bad news. The good news is that, under a grading of positive
type, the vector space of all elements of any given degree has finite di-
mension over K (see Proposition 4.1.19). Moreover, the Graded Version of
Nakayama’s Lemma 1.7.15 holds for such gradings, so that irredundant sys-
tems of generators are minimal (see Proposition 4.1.22). Hence gradings of
positive type enjoy two of the most useful properties we can hope for. So,
what is the bad news? Do you really want the bad news right now? Let’s
postpone it to a subsequent section and be happy for a while!

4.1.A Gradings by Matrices

Having introduced the general notions of graded rings and modules in Sec-
tion 1.7, we are now going to concentrate on certain special kinds of graded
object. We are interested in gradings on polynomial rings which have two
properties: the indeterminates are homogeneous, and the constants are ho-
mogeneous of degree zero.

In what follows, we let K be a field, n ≥ 1, and P = K[x1, . . . , xn]
a polynomial ring over K . Furthermore, we let (Γ,+) be a monoid whose
identity element is denoted by 0. As in Volume 1, we assume that Γ is a
commutative monoid.

Recall that in Section 1.7 we defined a Γ -grading on P to be a decompo-
sition P =

⊕
γ∈Γ Pγ into additive subgroups such that Pγ · Pγ′ ⊆ Pγ+γ′ for

all γ, γ′ ∈ Γ . A P -module M will be called a graded P -module if it is a
Γ -graded P -module in the sense of Definition 1.7.4, i.e. if we have a decom-
position M =

⊕
γ∈Γ Mγ into additive subgroups such that Pγ ·Mγ′ ⊆ Mγ+γ′

for all γ, γ′ ∈ Γ . In other words, a graded P -module is understood to be
graded over the same monoid. By Proposition 1.7.10, a finitely generated
module is graded if and only if it has a finite system of generators consisting
of homogeneous elements. In this case, as in Volume 1, we shall say that M
has a finite homogeneous system (or set) of generators.

Proposition 4.1.1. Let Γ be a monoid, and let γ1, . . . , γn ∈ Γ .
a) There exists exactly one Γ -grading on P such that the non-zero con-

stant polynomials are homogeneous of degree 0 and, for i = 1, . . . , n , the
indeterminate xi is homogeneous of degree γi .

b) Under this grading, the set {γ ∈ Γ | Pγ �= 0} is the submonoid of Γ
generated by {γ1, . . . , γn} .

Proof. To prove a), let us show existence first. For α1, . . . , αn ∈ N and
t = xα1

1 · · ·xαn
n , we let t be homogeneous of degree deg(t) = α1γ1+· · ·+αnγn .

More generally, given γ ∈ Γ , we say that a polynomial f ∈ P is homogeneous
of degree γ if all terms in its support are homogeneous of degree γ . This
means that Pγ =

⊕
α1γ1+···+αnγn=γ K xα1

1 · · ·xαn
n for all γ ∈ Γ . Then we

have
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P =
⊕

(α1,...,αn)∈Nn

K xα1
1 · · ·xαn

n =
⊕

γ∈Γ

( ⊕
α1γ1+···+αnγn=γ

K xα1
1 · · ·xαn

n

)
=
⊕

γ∈Γ

Pγ

and it is clear that Pγ · Pγ′ ⊆ Pγ+γ′ for all γ, γ′ ∈ Γ . Thus we have defined
a Γ -grading on P which has the desired properties.

Now we show uniqueness. Given any Γ -grading on P with the stated
properties, the conditions deg(x1) = γ1, . . . ,deg(xn) = γn imply that
deg(xα1

1 · · ·xαn
n ) = α1γ1 + · · · + αnγn for α1, . . . , αn ∈ N . So, in fact, the

above definition is forced upon us by the rules satisfied by a Γ -grading, i.e.
we have proved uniqueness.

The proof of b) follows from the observation that, for any γ ∈ Γ , the
vector space Pγ is generated by the terms of degree γ . The degrees of those
terms are contained in the submonoid of Γ generated by the set {γ1, . . . , γn} .
Conversely, every degree in this submonoid is the degree of a term because P
is an integral domain. �

Even in the case Γ = Z , the gradings on P provided by this proposition
are still very general, as the following example shows.

Example 4.1.2. Let the polynomial ring P = K[x1, x2] be equipped with
the Z -grading defined by K ⊆ P0 , x1 ∈ P−1 , and x2 ∈ P1 . Then we have
x1x2 ∈ P0 , and hence K ⊂ P0 . In fact, it is easy to see that dimK(P0) = ∞ .

Our main interest will be in gradings for which all homogeneous compo-
nents are finite dimensional K -vector spaces. The following definition gener-
alizes Example 1.7.2 and is a case in point.

Definition 4.1.3. A K -algebra R is called a standard graded K -algebra
if it is N -graded, satisfies R0 = K and dimK(R1) < ∞ , and if R is generated
by the elements of R1 as a K -algebra.

Standard graded algebras are characterized by the existence of special
presentations as follows.

Remark 4.1.4. Using Corollary 1.1.14 and Remark 1.7.9, we see that a
standard graded K -algebra R is an algebra of the form R ∼= P/I , where
P = K[x1, . . . , xn] is N -graded such that K = P0 , each xi is homogeneous
of degree one, and I is a homogeneous ideal in P . Conversely, every algebra
of this form P/I is a standard graded K -algebra.

In this and the following chapters, standard graded K -algebras will play
an important role. But not every N -graded, finitely generated K -algebra is
standard graded.

Example 4.1.5. Let P = K[x1, x2] be equipped with the standard grading.
Then the K -subalgebra S = K[x2

1, x1x2, x
2
2] of P is a finitely generated

N -graded algebra, but it is not standard graded, since S1 = {0} .
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To bring all the graded algebras which we want to examine in this chapter
under one umbrella requires a concept of gradings whose level of generality
is somewhere between the very wide class of gradings considered in Propo-
sition 4.1.1 and the rather limited class of standard graded K -algebras. For
our purposes, the following concept will prove most useful.

Definition 4.1.6. Let m ≥ 1, and let the polynomial ring P = K[x1, . . . , xn]
be equipped with a Zm -grading such that K ⊆ P0 and x1, . . . , xn are ho-
mogeneous elements.
a) For j = 1, . . . , n , let (w1j , . . . , wmj) ∈ Zm be the degree of xj . The

matrix W = (wij) ∈ Matm,n(Z) is called the degree matrix of the
grading. In other words, the columns of the degree matrix are the de-
grees of the indeterminates. The rows of the degree matrix are called the
weight vectors of the indeterminates x1, . . . , xn .

b) Conversely, given a matrix W = (wij) ∈ Matm,n(Z), we can consider
the Zm -grading on P for which K ⊆ P0 and the indeterminates are
homogeneous elements whose degrees are given by the columns of W. In
this case, we say that P is graded by W.

c) Let d ∈ Zm . The set of homogeneous polynomials of degree d is denoted
by PW,d , or simply by Pd if it is clear which grading we are considering.
A polynomial f ∈ PW,d is also called homogeneous of degree d , and
we write degW (f) = d .

To aid the reader in understanding our notation, we point out that a
degree is a vector in Zm . If we use it in matrix equations, its representation
is a column. Sometimes we also denote it by a row if no confusion arises.
If a grading on P is defined by a matrix W ∈ Matm,n(Z), the degree of a
term t = xα1

1 · · ·xαn
n is given by degW (t) = W · (α1, . . . , αn)tr. So, we have

{d ∈ Zm | PW,d �= 0} = {W · (α1, . . . , αn)tr | (α1, . . . , αn) ∈ Nn} .

Example 4.1.7. Let P = K[x1, x2, x3, x4] be graded by the matrix

W =

⎛⎝ 1 1 1 1
1 1 0 0
1 0 1 0

⎞⎠
and let f = x1x4−x2x3 . Then f is homogeneous of degree (2, 1, 1), because
W · log(x1x4)tr = W · log(x2x3)tr = (2, 1, 1)tr . The principal ideal generated
by f is a homogeneous ideal by Proposition 1.7.10.

A first non-trivial example of a graded object is given by the following
characterization of monomial ideals as the “most homogeneous” ideals. Recall
that a square matrix is called non-singular if its determinant is non-zero.

Proposition 4.1.8. Let I be an ideal of P . Then the following conditions
are equivalent.



4.1 Polynomial Rings Graded by Matrices 19

a) The ideal I is monomial.
b) There is a non-singular matrix W ∈ Matn(Z) such that I is homoge-

neous with respect to the grading on P given by W .
c) For every m ≥ 1 and every matrix W ∈ Matm,n(Z) , the ideal I is

homogeneous with respect to the grading on P given by W .

Proof. Since I is generated by terms, and terms are homogeneous with
respect to the gradings we are considering, Proposition 1.7.10 shows that a)
implies c). Obviously, b) is a special case of c). Therefore it suffices to show
that b) implies a).

We take a homogeneous polynomial f ∈ IW,d and show that there is only
one term in its support. Let t = xα1

1 · · ·xαn
n and t′ = xβ1

1 · · ·xβn
n be terms in

the support of f . Then d = degW (t) = degW (t′) implies W ·(α1, . . . , αn)tr =
W · (β1, . . . , βn)tr . Since we have det(W ) �= 0, the Z -linear map defined
by W is injective. Therefore we obtain (α1, . . . , αn) = (β1, . . . , βn), and
hence t = t′ . �

In general, this proposition does not hold for monomial submodules of
graded free P -modules (see Exercises 5 and 6). If two matrices in Matm,n(Z)
can be transformed into each other by elementary row operations, the relation
between the corresponding gradings on P is fairly simple to understand.

Proposition 4.1.9. Let m ≥ 1 , let W ∈ Matm,n(Z) , and let V ∈ Mat�,m(Z)
for some � ≥ 1 .
a) The gradings on P given by W and V ·W are related by PW,d ⊆ PV ·W,V ·d

for all d ∈ Zm. In particular, the map (idP , ψ) : (P, Zm) −→ (P, Z�) ,
where ψ : Zm −→ Z� is the left multiplication by V , is a homomorphism
of graded rings in the sense of Definition 1.7.7.

b) If ψ is injective, then we have PW,d = PV ·W,V ·d for all d ∈ Zm .

Proof. First we prove a). Since P is generated by Tn as a K -vector space,
and since terms are homogeneous, it suffices to prove the claim for a term
t = xα1

1 · · ·xαn
n ∈ PW,d . In this case we have degW (t) = d , and therefore

degV ·W (t) = V · W · (α1, . . . , αn)tr = V · d .
Now we prove b). Let t = xα1

1 · · ·xαn
n ∈ PV ·W,V ·d for some d ∈ Zm . Then

degV ·W (t) = V · d implies V ·W · (α1, . . . , αn)tr = V · d . By hypothesis, ψ is
injective, so we get W · (α1, . . . , αn)tr = d , i.e. we have degW (t) = d . Thus
the inclusion PW,d ⊆ PV ·W,V ·d is in fact an equality. �

Let us apply this proposition in the setting of Example 4.1.7.

Example 4.1.10. Let P = K[x1, x2, x3, x4] be graded by W =
( 1

1
1

1
1
0

1
0
1

1
0
0

)
.

First we want to determine the homogeneous component PW,d of degree
d = (2, 1, 1).

By definition, this vector space is generated by the terms t = xα1
1 · · ·xαn

n

such that W · (α1, . . . , αn)tr = d . The set of solutions in Nn of this system of
equations is {(1, 0, 0, 1), (0, 1, 1, 0)} . Thus we have PW,d = K ·x1x4⊕K ·x2x3 .
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Now let w1, w2, w3 be the rows of W . We replace w2 by w1 +w2 and w3

by w1 + w3 , i.e. we form the matrix V · W , where V =
( 1

1
1

0
1
0

0
0
1

)
. Then

we get V · d = (2, 3, 3)tr , and therefore the homogeneous component of P of
degree e = (2, 3, 3) with respect to the grading defined by V ·W is given by
PV ·W,e = K · x1x4 ⊕ K · x2x3 .

4.1.B Graded Modules

Here we take a look at graded modules over graded polynomial rings. Let a
Zm -grading on the polynomial ring P = K[x1, . . . , xn] be defined by a matrix
W ∈ Matm,n(Z), and let δ1, . . . , δr ∈ Zm. In Section 1.7 we defined a very
general notion of graded P -modules. In the following we consider modules
graded over the Zm -monomodule Zm, i.e. we use the same monoid that we
used for the grading of P . Thus a graded P -module has a decomposition
M =

⊕
d∈Zm Md and we have Pd ·Md′ ⊆ Md+d′ for all d, d′ ∈ Zm . We shall

now see that the usual ideal-theoretic and module-theoretic operations again
produce homogeneous ideals and graded modules when they are applied to
such objects.

Proposition 4.1.11. Let P be graded by W ∈ Matm,n(Z) , let I ⊆ P be a
homogeneous ideal, let U be a graded P -module, and let M and N be graded
submodules of U .
a) The sum M + N and the intersection M ∩ N are graded submodules

of U .
b) The colon ideal N :

P
M is a homogeneous ideal in P .

c) The ideal AnnP (M) is a homogeneous ideal in P .
d) The colon module N :

M
I and the saturation N :

M
I∞ are graded sub-

modules of U .
e) The radical ideal

√
I is a homogeneous ideal in P .

Proof. The proof of a) is straightforward, so let us proceed to b). Clearly,
the claim is true if N :

P
M = (0). Let f ∈ P be a non-zero polynomial

such that f · M ⊆ N , and let f =
∑

d∈Zm fd be its decomposition into
homogeneous components. For every homogeneous vector v ∈ M , we have
fv =

⊕
d∈Zm fd v ∈ N . This sum is the decomposition of fv into homo-

geneous components. Since N is a graded module, we get fd v ∈ N for all
d ∈ Zm . Hence we see that fd ∈ N :

P
M for all d ∈ Zm , as we wanted to

show. Claim c) is a special case of b), and d) follows in a similar way.
To prove e), we write f ∈

√
I as the sum of its homogeneous components

f = fd1 + · · · + fd�
, where d1 >Lex d2 >Lex · · · >Lex d� . We shall show that

f − fd1 ∈
√

I . Then the claim follows by induction on � . Let i > 0 be a
number such that f i ∈ I . When we expand this power, we obtain a sum
of homogeneous polynomials among which f i

d1
has the largest degree with

respect to Lex . Hence f i
d1

is the homogeneous component of degree i · d1
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of f i, and the fact that I is a homogeneous ideal implies f i
d1

∈ I . Thus we
get fd1 ∈

√
I , as desired. �

Corollary 4.1.12. Let I be a monomial ideal in P . Then the radical
√

I
is the monomial ideal generated by the squarefree parts of the terms in the
minimal monomial system of generators of I .

Proof. Let W ∈ Matn(Z) be a non-singular matrix. By Proposition 4.1.8,
the ideal I is homogeneous with respect to the grading given by W. Then
part e) of the proposition says that

√
I is homogeneous, too. Now another

application of Proposition 4.1.8 shows that
√

I is a monomial ideal. Clearly,
if a term xα1

1 · · ·xαn
n is one of the minimal monomial generators of I, then its

squarefree part
∏

{i|αi>0} xi is contained in
√

I . On the other hand, every
term in

√
I has a power which is a multiple of one of the minimal monomial

generators of I, and therefore the term is a multiple of one of those squarefree
parts. �

As usual, we want to relate different graded modules to each other using
suitable homomorphisms. Recall that in Definition 1.7.7 we introduced homo-
morphisms of rings graded by monoids, and of modules graded by monomod-
ules. In the present situation, that definition specializes in the following way.

Let P be graded by W ∈ Matm,n(Z), and let M,N be two Zm -graded
P -modules. A P -linear map ϕ : M −→ N is called a homomorphism of
graded modules or a homogeneous P -linear map if ϕ(Md) ⊆ Nd for
all d ∈ Zm . Important examples of such maps are constructed as follows.

Remark 4.1.13. Let P be graded by W ∈ Matm,n(Z), and let M be
a graded P -module. Given homogeneous elements v1, . . . , vr ∈ M with
degW (vi) = δi ∈ Zm for i = 1, . . . , r , the P -linear map ϕ : F −→ M
defined by ei �→ vi for i = 1, . . . , r is a homomorphism of graded modules.
We shall say that ϕ is the map induced by (v1, . . . , vr).

An easy way to construct graded modules comes from the observation
that, given a homogeneous P -linear map λ : M −→ N between Zm -graded
P -modules, the kernel Ker(λ) is a graded submodule of M and the image
Im(λ) is a graded submodule of N . Another kind of graded modules are
graded submodules of graded free modules. Let us briefly recall the pertinent
definitions.

According to Definition 1.7.6, the grading on P induces a Zm -grading on
the graded free P -module F =

⊕r
i=1 P (−δi): this grading is given by

Fd =
r⊕

i=1

PW, d−δi

for all d ∈ Zm . Thus a term tei ∈ Tn〈e1, . . . , er〉 , where i ∈ {1, . . . , r}
and t ∈ Tn , is a homogeneous element of F of degree degW (tei) =
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degW (t) + δi . In particular, the module F is the graded free P -module such
that degW (ei) = δi for i = 1, . . . , r .

Given a graded P -submodule M of F , we shall briefly say that M is
graded by W . The homogeneous components of M will be denoted by
MW,d for d ∈ Zm . Recall, from Definition 1.7.8, that a graded submodule
of P is also called a homogeneous ideal of P .

Under the change of grading homomorphism considered in Proposi-
tion 4.1.9, a graded submodule of a graded free module is transformed into a
graded submodule with respect to the new grading, as the following propo-
sition shows.

Proposition 4.1.14. Let P be graded by W ∈ Matm,n(Z) , let r ≥ 1 , let
δ1, . . . , δr ∈ Zm , and let M be a graded submodule of F . Moreover, let
V ∈ Mat�,m(Z) for some � ≥ 1 . Then M is also a graded submodule of⊕r

i=1 P (−V · δi) with respect to the grading defined by V · W .

Proof. Using Proposition 4.1.9 and the definition of the grading on F , we
see that

FW,d =
r⊕

i=1

PW, d−δi
⊆

r⊕
i=1

PV ·W, V ·d−V ·δi
= (

r⊕
i=1

P (−V · δi))V ·W, V ·d

for all d ∈ Zm . Since a system of generators of M consisting of homogeneous
elements with respect to the grading defined by W is also homogeneous with
respect to the grading defined by V · W, the claim follows. �

This proposition has a number of useful consequences.

Remark 4.1.15. Suppose we are in the setting of the proposition.
a) Let V = (a1 a2 · · · am) ∈ Mat1,m(Z), and let us form the linear combi-

nation V ·W of the rows w1, . . . , wm of W. Then M is a graded module
with respect to the grading defined by the 1 × n -matrix V · W.

b) Let a ∈ Z\{0} . Then M is a graded submodule of F with respect to the
grading given by W if and only if it is a graded submodule with respect
to the grading given by aW . This follows from the observation that the
inclusion FW,d ⊆ FaW,ad given by the corollary is, in fact, an equality.

Corollary 4.1.16. Let W �= 0 have Z-linearly dependent rows, and let W ′

be a submatrix of W which consists of a maximal linearly independent set of
rows. Denote the number of rows of W ′ by m′ , and let V ∈ Matm,m′(Z) be
the matrix such that V · W ′ = W . Then we have PW ′,d′ = PW,V ·d′ for all
d′ ∈ Zm′

.

Proof. It suffices to show that the inclusion PW ′,d′ ⊆ PV ·W ′,V ·d′ given by the
proposition is an equality. Let t ∈ Tn be a term of degree V ·d′ = W ·log(t)tr .
Now, the linear map defined by V is injective, so d′ = W ′ · log(t)tr . Hence t
is homogeneous of degree d′ with respect to the grading given by W ′, and
the above inclusion is indeed an equality. �
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In view of this corollary, we shall, from now on, assume tacitly that the
matrix W has Z -linearly independent rows, unless we explicitly say some-
thing else.

4.1.C Gradings of Positive Type

Our first goal in this subsection is to find hypotheses which force the ho-
mogeneous components of P to be finite dimensional K -vector spaces. For
instance, this is the case for the grading defined by W = (1 1 · · · 1). More-
over, Proposition 4.1.9.a shows that it is then also the case for every grading
defined by a matrix whose first row is (1 1 · · · 1). Inspired by this observa-
tion, we introduce the following notions.

Definition 4.1.17. Let m ≥ 1, let P be graded by a matrix W of rank m
in Matm,n(Z), and let w1, . . . , wm be the rows of W .
a) The grading on P given by W is called of non-negative type if there

exist a1, . . . , am ∈ Z such that the entries of v = a1w1 + · · · + amwm

corresponding to the non-zero columns of W are positive. In this case,
we shall also say that W is a matrix of non-negative type.

b) We say that the grading on P given by W is of positive type if there
exist a1, . . . , am ∈ Z such that all entries of a1w1 + · · · + amwm are
positive. In this case, we shall also say that W is a matrix of positive
type.

For instance, the matrix W = (−1 −1 0) is of non-negative type, the
matrix W ′ = (−1 −1) is of positive type, but W ′′ = (1 −1) is neither.
Gradings of non-negative type are intimately connected to N -gradings, as
the following proposition shows.

Proposition 4.1.18. Let P be graded by a matrix W ∈ Matm,n(Z) of
non-negative type, let Γ = {d ∈ Zm | PW,d �= 0} , and suppose that
V = (a1 a2 · · · am) ∈ Mat1,m(Z) is such that V · W = a1w1 + · · · + amwm

has all entries non-negative.
a) The map (idP , ψ) : (P, Zm) −→ (P, Z) , where ψ : Zm −→ Z is left

multiplication by V , is a homomorphism of graded rings. It satisfies
ψ(Γ ) ⊆ N .

b) There exists a matrix U ∈ Matm(Z) such that det(U) �= 0 and the non-
zero columns of U · W have all entries positive.

c) If W is of positive type, there exists a matrix U ∈ Matm(Z) such that
det(U) �= 0 and U · W has positive entries only.

Proof. The first part of claim a) follows from Proposition 4.1.9.a, while the
second part is a consequence of the fact that V ·W has non-negative entries
only.
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To prove b), we note that if ai �= 0 for some i ∈ {1, . . . , m} , then we
can replace the ith row of W by a1w1 + · · ·+ amwm using a suitable trans-
formation given by a matrix U1 ∈ Matm(Z). Next we multiply by a per-
mutation matrix U2 ∈ Matm(Z) such that this row becomes the first row.
Finally, by adding sufficiently high multiples of this new first row to the
other rows, we can make all entries in the non-zero columns of W positive.
Let U3 ∈ Matm(Z) correspond to those row operations. Then U = U3 ·U2 ·U1

is the desired matrix.
Finally we note that c) follows from b), because a matrix of positive type

has all columns non-zero. �

Now we are ready to show that polynomial rings with gradings of positive
type and finitely generated graded modules over them have finite dimensional
homogeneous components.

Proposition 4.1.19. Let P be graded by a matrix W ∈ Matm,n(Z) of pos-
itive type, and let M be a finitely generated graded P -module.
a) We have P0 = K .
b) For all d ∈ Zm, we have dimK(Md) < ∞ .

Proof. First we show a). Let V = (a1 a2 · · · am) ∈ Mat1,m(Z) be such
that V · W has positive entries only. Using Proposition 4.1.9, we see that
PW,0 ⊆ PV ·W,0 . Now it suffices to note that every term t = xα1

1 · · ·xαn
n �= 1

has positive degree degV ·W (t) = V · W · (α1, . . . , αn)tr > 0.
In order to prove b), we choose a finite homogeneous system of generators

of M and consider the corresponding representation M ∼= F/N where N is
a graded submodule of F .

Clearly, it suffices to prove the claim for F . We do this by showing it
is true for each P (−δi). Since P (−δi)d = Pd−δi

, it suffices to prove that
dimK(Pd) < ∞ for all d ∈ Zm . Since W is of positive type, there exists
a matrix V ∈ Mat1,m(Z) such that V · W has all entries positive. We use
Proposition 4.1.9.a to see that PW,d ⊆ PV ·W,V ·d . Hence we only have to
show that the K -vector spaces PV ·W,i are finite dimensional for all i ∈ Z .
Their vector space bases {xα1

1 · · ·xαn
n | V · W · (α1, . . . , αn)tr = i} are finite,

because V · W has positive entries only. �

A further advantage of considering finitely generated graded P -modules
in the case of gradings of positive type is that Nakayama’s Lemma applies
to them. In Corollary 1.7.16 we used the notion of a minimal system of
generators of M , and in Corollary 3.1.12 we mentioned irredundant systems
of generators. Let us give the precise definitions.

Definition 4.1.20. Let R be a ring and M a finitely generated R -module.
a) A finite system of generators of M is called a minimal system of

generators if its number of elements is minimal among all systems of
generators of M .
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b) A system of generators of M is called an irredundant system of gen-
erators if no proper subset generates M .

Minimal systems of generators are irredundant. Over arbitrary rings, the
two notions do not coincide. For instance, when R = Z and M is the ideal
generated by {2} , the system of generators {4, 6} is irredundant, but not
minimal. One of the most important consequences of Nakayama’s Lemma is
that, in the case of gradings of positive type, irredundant systems of homo-
geneous generators of finitely generated graded modules are minimal. This
will be shown in Proposition 4.1.22.

To formulate our next result, we need two additional objects. Let P be
graded by W ∈ Matm,n(Z), and let M �= 0 be a graded P -module. Then the
set Γ = {d ∈ Zm | Pd �= 0} is clearly a submonoid of Zm , and we can define
the Γ -submonomodule Σ of Zm generated by {d ∈ Zm | Md �= 0} . It is easy
to see that Σ = {d ∈ Zm | Md �= 0} if M is a submodule of a graded free
P -module. If the grading on P is of non-negative type, these monomodules
are well-ordered, as the following proposition shows.

Proposition 4.1.21. Let P be graded by a matrix W ∈ Matm,n(Z) of non-
negative type.
a) There exists a monoid ordering τ on Zm such that the restriction of τ

to Γ is a well-ordering.
b) For every finitely generated, graded P-module M , the restriction of τ to

the monomodule Σ is a well-ordering.
c) If W is of positive type, there exists a monoid ordering τ on Γ which

is a well-ordering and for which the set P+ =
⊕

d>τ0 Pd is the ideal
generated by {x1, . . . , xn} .

Proof. First we show a). Using Proposition 4.1.18.b, we find U ∈ Matm(Z)
such that det(U) �= 0 and all non-zero columns of U ·W have positive entries
only. For vectors d, d′ ∈ Zm , we define d ≥τ d′ if and only if U ·d ≥Lex U ·d′ .
Clearly, this rule specifies a monoid ordering τ on Zm. Its restriction to the
submonoid Γ is still a monoid ordering. It remains to show that τ |Γ is a
well-ordering on Γ .

Suppose that d1 >τ d2 >τ · · · is an infinite descending chain of elements
of Γ . Then, by definition, we have U ·d1 >Lex U ·d2 >Lex · · · . For every di ∈ Γ,
there exists a term ti = xαi1

1 · · ·xαin
n such that di = W · (αi1, . . . , αin)tr .

Therefore we have U · di = U · W · (αi1, . . . , αin)tr , and this vector has all
entries non-negative. Since Lex is a term ordering on Nn , Proposition 1.4.18
and Theorem 1.4.19 imply that an infinite chain U · d1 >Lex U · d2 >Lex · · ·
does not exist.

To prove b), we let {m1, . . . , ms} ⊆ M \ {0} be a homogeneous system
of generators of M and define γi = deg(mi) for i = 1, . . . , s . By Corol-
lary 1.7.11, we have Σ ⊆ ∪s

i=1(Γ + γi). Let σ be the restriction of τ to
the Γ -submonomodule Σ of Zm . Clearly, σ is a module ordering which is
compatible with τ .
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Now we show that the restriction of τ to ∪s
i=1(Γ + γi) is a well-ordering.

Suppose there is an infinite descending chain d1 >τ d2 >τ · · · in ∪s
i=1(Γ +γi).

Then one of the sets Γ + γi has to contain infinitely many degrees dj , i.e.
there exist indices j1 < j2 < · · · such that dj1 >τ dj2 >τ · · · is a chain in
Γ + γi . Now the chain dj1 − γi >τ dj2 − γi >τ · · · contradicts the fact that τ
is a well-ordering on Γ .

Finally, we note that c) follows from the observation that the well-
ordering τ constructed in the proof of a) satisfies degW (xi) >τ 0, since
degU ·W (xi) >Lex 0 for i = 1, . . . , n . �

Using this proposition, we see that the hypotheses of the Graded Version
of Nakayama’s Lemma 1.7.15 are satisfied for gradings of non-negative type.
If the grading is actually of positive type, we obtain the result we strived for.

Proposition 4.1.22. Let P be graded by a matrix W ∈ Matm,n(Z) of pos-
itive type, and let M �= 0 be a finitely generated graded P -module.
a) A set of homogeneous elements m1, . . . , ms generates the P -module M

if and only if their residue classes m1, . . . ,ms generate the K -vector
space M/(x1, . . . , xn)M .

b) Every homogeneous system of generators of M contains a minimal one.
All irredundant systems of homogeneous generators of M are minimal
and have the same number of elements.

Proof. By Proposition 4.1.21.c, there exists a well-ordering τ on Γ such
that P+ =

⊕
d>τ0 Pd = (x1, . . . , xn) , and therefore P/P+

∼= K . Hence a)
follows from Corollary 1.7.16.a. Now we prove b). Since P0 = K is a field,
Corollary 1.7.16.b shows that every homogeneous system of generators of M
contains a subset which is minimal among the homogeneous systems of gen-
erators of M and whose residue classes form a K -basis of M/(x1, . . . , xn)M .
This subset is also minimal among all systems of generators of M be-
cause, for any set of generators of M , their set of residue classes generates
M/(x1, . . . , xn)M . �

This proposition is not true in general if W is of non-negative type.

Example 4.1.23. Let P = Q[x, y] be graded by the matrix W = (0 1), and
let I = (xy, y − xy). Then W is of non-negative type, I is a homogeneous
ideal, and {xy, y−xy} is an irredundant homogeneous system of generators
of I . However, since I = (y), this system of generators is not minimal. Notice
that we have P+ = (y) and P/P+

∼= K[x] here.
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Exercise 1. Let K be a field, let Γ be a monoid, let R be a Γ -graded
K -algebra for which K ⊆ R0 , and let S ⊂ R be a K -subalgebra which
is generated, as a K -algebra, by homogeneous elements. Show that if we
define Sγ = S ∩ Rγ for all γ ∈ Γ , then S is a Γ -graded K -subalgebra
of R .

Exercise 2. Let K be a field, and let P = K[x1, x2] be equipped
with the standard grading. In Example 4.1.5 we have seen that the ring
S = K[x2

1, x1x2, x
2
2] is a graded K -subalgebra of P but is not a standard

graded K -algebra. On the other hand, it is easy to see (by hand or by
using the CoCoA procedure Elim) that S ∼= K[y1, y2, y3]/(y1y3 − y2

2) . If we
endow K[y1, y2, y3] with the standard grading, the ideal (y1y3−y2

2) is ho-
mogeneous and S is a standard graded K -algebra. Explain the apparent
contradiction.

Exercise 3. Let P = K[x1, . . . , xn] be standard graded. For a polynomial
f =

∑
α∈Nn cαxα1

1 · · ·xαn
n ∈ P and for i ∈ {1, . . . , n} , we define

∂f
∂xi

=
∑

α∈Nn
αi cα xα1

1 · · ·xαi−1
i−1 xαi−1

i x
αi+1
i+1 · · ·xαn

n

and call it the partial derivative of f by xi .

a) For f, g ∈ P and i ∈ {1, . . . , n} , show that ∂(f+g)
∂xi

= ∂f
∂xi

+ ∂g
∂xi

.

b) Let d ≥ 0, and let f ∈ Pd be a homogeneous polynomial of degree d .

Prove Euler’s formula d f =
∑n

i=1 xi · ∂f
∂xi

.

Exercise 4. Let P = K[x1, . . . , xn] be graded by W ∈ Matm,n(Z) , let
w1, . . . , wm be the rows of W, and let a1, . . . , am ∈ Z . Show that the pair
(idP , ψ) , where ψ : Zm −→ Z is defined by ψ(ei) = ai for i = 1, . . . , m ,
is a homomorphism of graded rings.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be graded by a
non-singular matrix W ∈ Matn(Z) , and let M be a graded submodule
of a graded free P -module F = ⊕r

i=1P (−δi) , where δ1, . . . , δr ∈ Zn .
Prove that M is generated by vectors of the form v = (c1t1, . . . , crtr) ,
where c1, . . . , cr ∈ K and t1, . . . , tr ∈ Tn are terms with the property
that degW (t1) + δ1 = · · · = degW (tr) + δr .

Exercise 6. Let P = K[x1, . . . , xn] , let r > 0, and let M be a P -sub-
module of P r. Show that the following conditions are equivalent.

a) The module M is a monomial module.
b) For every m ≥ 1 and every matrix W ∈ Matm,n(Z) , and for

all vectors δ1, . . . , δr ∈ Zm, the module M is a graded submodule
of
⊕r

i=1 P (−δi) with respect to the grading on P given by W .
c) For some non-singular matrix W ∈ Matn(Z) and for all vectors

δ1, . . . , δr ∈ Zm, the module M is a graded submodule of
⊕r

i=1 P (−δi)
with respect to the grading on P given by W .

Furthermore, give an example which shows that a) is not equivalent to the
following condition.

d) For every m ≥ 1 and every matrix W ∈ Matm,n(Z) , and for
some vectors δ1, . . . , δr ∈ Zm, the module M is a graded submod-
ule of

⊕r
i=1 P (−δi) with respect to the grading on P given by W .
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Exercise 7. Let K be a field, and let P = K[x1, . . . , xn] be graded by
W ∈ Matm,n(Z) .

a) Given an invertible matrix V ∈ Matm(Z) , consider the homomor-
phism of graded rings (idP , ϕ) : (P, Zm) −→ (P, Zm) , where the ring
on the right-hand side is graded by V · W and ϕ : Zm −→ Zm is
left multiplication by V . Show that (idP , ϕ) is an isomorphism of
graded rings, i.e. that there exists a homomorphism of graded rings
(idP , ψ) : (P, Zm) −→ (P, Zm) such that ϕ ◦ ψ = ψ ◦ ϕ = idZm .

b) Find an example which shows that it is not sufficient in a) to assume
that V is non-singular.

c) Can you find necessary and sufficient conditions for two matrices
W, W ′∈ Matm,n(Z) to give isomorphic gradings in the sense that there
is an isomorphism of graded rings (idP , ψ) : (P, Zm) −→ (P, Zm)?

Exercise 8. Show that W =
(

1−1 1
−1 2 0

)
is of positive type and that

W =
(
1−1 1
1 1−1

)
is not of non-negative type.

Exercise 9. Let K[x1, . . . , xn] be graded by W = (wij) ∈ Matm,n(Z) ,
let f ∈ P be a homogeneous polynomial, and let (a1, . . . , an) ∈ Kn such
that f(a1, . . . , an) = 0.

a) For m = 1, show that f(a1b
w11 , . . . , anbw1n) = 0 for all b ∈ K .

b) For m = 2, show that f(a1b
w11
1 bw21

2 , . . . , anbw1n
1 bw2n

2 ) = 0 for all
b1, b2 ∈ K.

c) Find and prove a generalization of a) and b) to arbitrary m ≥ 1.

Exercise 10. Let P = K[x] be graded by W ∈ Matm,1(Z) \ {0} . Show
that dimK(Pd) ≤ 1 for all d ∈ Zm .

Exercise 11. Let P = K[x1, . . . , xn] be graded by W ∈ GLn(Z) .

a) Show that dimK(Pd) ≤ 1 for all d ∈ Zm .
b) Give an example where Pd = 0 for some d ∈ Zm .

Exercise 12. Let K be a field, and let P = K[x1, . . . , xn] be graded
by a matrix W ∈ Matn−1,n(Z) of rank n − 1. For each degree d ∈ Nn−1,
prove that there exists a line �d in Qn for which �d ∩ Nn coincides with
the set {log(t) | t ∈ Tn, degW (t) = d} .

Exercise 13. Let K[x1, . . . , xn] be graded by W ∈ Matm,n(Z) , and
assume that dimK(P0) < ∞ . Prove that P0 = K .

Exercise 14. Let K be a field, let P = K[x1, . . . , xn] be graded by a
matrix W ∈ Matm,n(Z) of positive type, let I be a homogeneous ideal
in P, and let A = P/I . Moreover, let Σ = {d ∈ Zm | Ad �= 0} , and let τ
be a monoid ordering on Zm whose restriction to Σ is a well-ordering (see
Proposition 4.1.21). Finally, let a1, . . . , as ∈ A be homogeneous elements
such that degW (ai) >τ 0 for i = 1, . . . , s , and let A+ =

⊕
d>τ 0 Ad . Prove

that the following conditions are equivalent.

a) A = K[a1, . . . , as]
b) A+ = (a1, . . . , as)

Exercise 15. Let K be a field, let P = K[x1, . . . , xn] be graded by a
matrix W ∈ Matm,n(Z) of positive type, let M be a finitely generated
graded P -module, and let ϕ : M −→ M be a homogeneous P -linear map.
Prove that the following conditions are equivalent.
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a) The map ϕ is an isomorphism.
b) The map ϕ is injective.
c) The map ϕ is surjective.

Moreover, show that ϕ is an isomorphism if v−ϕ(v) ∈ (x1, . . . , xn)M for
all v ∈ M .

Tutorial 45: Homogeneous Maps and Toric Ideals

One of the most important tools for computing kernels and images of
K -algebra homomorphisms is the diagonal ideal. Given two polynomial
rings P = K[x1, . . . , xn] and P ′ = K[y1, . . . , ym] over a field K and two
ideals I ⊂ P and I ′ ⊂ P ′ , a K -algebra homomorphism ϕ : P/I −→ P ′/I ′

is determined by polynomials f1, . . . , fn ∈ P ′ such that ϕ(xi + I) = fi + I ′

for i = 1, . . . , n . Then the diagonal ideal corresponding to ϕ is defined to
be the ideal

J = I ′ Q + (x1 − f1, . . . , xn − fn)

in the polynomial ring Q = K[x1, . . . , xn, y1, . . . , ym] . Its usefulness for study-
ing ϕ was amply exhibited in Section 3.6. What is the correct analog of these
constructions in the graded case? In this tutorial, we shall try to answer this
question, and to apply our results to toric ideals.

Let � ≥ 1, let P be graded by W ∈ Mat�,n(Z), and let P ′ be graded
by W ′ ∈ Mat�,m(Z) . Suppose that I and I ′ are homogeneous ideals with
respect to these gradings.
a) Show that ϕ is a homomorphism of graded rings if and only if each

polynomial fi is homogeneous and degW ′(fi) = degW (xi).
b) Now suppose that I = (0) and that f1, . . . , fn ∈ P ′ are homogeneous

polynomials. Prove that there is a unique grading on P by a matrix
W ∈ Mat�,n(Z) such that ϕ is a homomorphism of graded algebras.

c) Assume that ϕ is a homomorphism of graded rings. Prove that if W ′

is of positive type, then W is of positive type, too. (Hint: Observe that
W = W ′S for a suitable matrix S ∈ Matm,n(N).)

d) Next we equip the polynomial ring Q = K[x1, . . . , xn, y1, . . . , ym] with
the grading given by the matrix W ′′ = (W |W ′) ∈ Mat�,m+n(Z) . Show
that the diagonal ideal J is homogeneous if and only if ϕ is a homomor-
phism of graded rings.
For the remainder of this tutorial, we assume that ϕ is a homomorphism

of graded rings and that W,W ′,W ′′ are chosen as above.
e) Prove that if W ′ is of positive type, then W ′′ is of positive type.
f) Given any homogeneous ideal J̃ ⊆ Q , show that J̃ ∩P is a homogeneous

ideal in P . Use this result and Proposition 3.6.3 to give two proofs for
the fact that J ∩ P is a homogeneous ideal in P .
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Now we specialize the above to the situation where I ′ = (0) and f1, . . . , fn

are terms. Let A = (aij) ∈ Matm,n(N) be such that fi = ya1i
1 · · · yami

m for
i = 1, . . . , n , and let I = J ∩ P be the toric ideal associated to A (see
Tutorial 38).
g) Prove that I is homogeneous with respect to the grading given by A .

(Hint: Use the grading on P ′ given by the identity matrix W ′ = In .)
h) Let IL be the lattice ideal associated to the lattice of integer solu-

tions of the homogeneous system of Diophantine equations defined by A
(see Tutorial 38.h). Use the identity I = IL :

P
(x1 · · ·xn)∞ to give an

alternative proof of g).

Tutorial 46: Projective Varieties

In algebraic geometry, graded rings occur in a variety of ways. The most
important way they appear is undoubtedly as the homogeneous coordinate
rings of projective varieties. In order to define and study projective varieties,
we need to assume that you have mastered Section 2.6, and that you have
a good working knowledge both of Tutorial 27 on affine varieties and of the
first part of Tutorial 35 on projective spaces.

Let K be a field, let P = K[x1, . . . , xn] and P = K[x0, . . . , xn] be
standard graded, and let An

K (resp. Pn
K ) be the n -dimensional affine (resp.

projective) space over K . Moreover, let L be an extension field of K , and
let K be the algebraic closure of K . For every homogeneous ideal J ⊆ P ,
we let

Z+
L (J) = {(p0 : . . . : pn) ∈ Pn

L | f(p0, . . . , pn) = 0 for all homogeneous f ∈ J}

A subset V ⊆ Pn
L is called a projective zero-set defined over K if it is

of the form V = Z+
L (J) for some homogeneous ideal J ⊆ P . Projective

zero-sets in Pn
K

are also called projective varieties.
a) Show that projective zero-sets have the following properties.

1) The empty set ∅ and Pn
L are projective zero-sets.

2) If V1, . . . , Vs ⊆ Pn
L are projective zero-sets, then ∪s

i=1Vi is a projec-
tive zero-set.

3) If I is a set of indices and {Vi}i∈I a set of projective zero-sets indexed
by I , then ∩i∈IVi is a projective zero-set.

Conclude that projective zero-sets can be taken as the closed sets of
a topology on Pn

L . When K = L , this topology is called the Zariski
topology on Pn

K .
b) Recall that, in Tutorial 36, we defined Pn

K as a set of equivalence classes
(Kn+1 \{0})/ ∼ . Every point p = (p0 : . . . : pn) in Pn

K is the equivalence
class of a punctured line L(p) = {(λp0, . . . , λpn) | λ ∈ K \{0}} in An+1

K .
Show that, for every homogeneous ideal J ⊆ P , the projective zero-set
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Z+
L (J) ⊆ Pn

L is the set of equivalence classes of punctured lines contained
in ZL(J) ⊆ An+1

L . In other words, we have p ∈ Z+
L (J) if and only if

L(p) ⊆ ZL(J).
The affine zero-set ZL(J) ⊆ An+1

L is called the affine cone over Z+
L (J).

c) Prove the following projective version of the Weak Nullstellensatz:
For a homogeneous ideal J ⊆ P , we have Z+

K
(J) = ∅ if and only if√

J = (x0, . . . , xn) .
Hint: If there exists a point q ∈ ZK(J)\{0} , then the punctured line L(q)
is contained in ZK(J). Now use b) and Proposition 3.7.1.

d) Using c), show that, for a homogeneous ideal J ⊆ P , the following con-
ditions are equivalent.
1) Z+

K
(J) = ∅

2) There exists a number s ≥ 1 such that (x0, . . . , xn)s ⊆ J .
3) For each i ∈ {0, . . . , n} , there exists a number αi ≥ 1 such that

xαi
i ∈ J .

Next we introduce the projective analog of Definition 2.6.15. For a
set S ⊆ Pn

L , we let I+(S) be the ideal in P generated by all homogeneous
polynomials F ∈ P such that F (p0, . . . , pn) = 0 for all (p0 : . . . : pn) ∈ S
(see Tutorial 16.e). The ideal I+(S) is called the homogeneous vanish-
ing ideal of S . If we have L = K and if S ⊆ Pn

K
is a projective variety

defined over K , then the standard graded K -algebra P/I+(S) is called the
homogeneous coordinate ring of S .
e) Show that I+(S) is a well-defined homogeneous ideal in P which satisfies

Z+
L (I+(S)) ⊇ S .

f) Prove the following projective version of the Strong Nullstellensatz:
For every homogeneous ideal J ⊆ P such that

√
J ⊂ (x0, . . . , xn) , we

have I+(Z+

K
(J)) =

√
J .

Hint: Show that I(ZK(J)) = I+(Z+

K
(J)) and apply Hilbert’s Nullstel-

lensatz 2.6.16.
g) Construct a 1-1 correspondence between non-empty projective varieties

V ⊆ Pn
K

defined over K and reduced standard graded K -algebras P/J ,
where the ideal J is a homogeneous radical ideal which is strictly con-
tained in (x0, . . . , xn).
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4.2 Degree Forms and Macaulay Bases

First things first,
but not necessarily in that order.

(Dr. Who)

The introduction to the preceding section ended with the preannounce-
ment of some problems related to gradings of positive type. Is it time to
face up to reality? Well, maybe not yet. The aim of the introduction to this
section is to highlight the most important points, but we do not necessarily
have to do it in the order in which they appear in the section. Let us instead
start by confronting the following fundamental question.

What is the degree of a polynomial?

To explain the problem, assume that the polynomial ring K[x1, . . . , xn]
over a field K is graded by a matrix W ∈ Matm,n(Z) . For the standard
grading defined by W = (1 1 · · · 1), we gave the standard answer right
away in Section 1.1: the standard degrees of terms are natural numbers, and
for a polynomial f , we defined deg(f) to be the maximum of the degrees of
the terms in its support. In the case of the grading defined by an arbitrary
matrix W, we have also seen that terms are homogeneous and that their
degrees can be computed easily. Furthermore, given two terms, we can decide
whether their degrees are equal or not. But which degree is larger?

Let us have a look at a concrete example. Let K[x1, x2] be graded by
W =

(
2 1

−1 0

)
. The polynomial f = x1 + x2 is the sum of two terms of

degrees degW (x1) = (2,−1) and degW (x2) = (1, 0). So, what is degW (f)?
There is no canonical answer. Since degrees are elements of Zm , we have to
choose an ordering on Zm to decide which homogeneous component of a given
polynomial has the largest degree. In the example at hand, we may observe
that W also represents a term ordering σ = Ord(W ) on T2 . Using σ , we get
x1 >σ x2 , since W · log(x1)tr >Lex W · log(x2)tr . As we saw in Section 1.4,
the comparison of two terms with respect to the monoid ordering given by
a matrix V is effected by lexicographically comparing the vectors obtained
from multiplying V by their logarithms. Thus we get a first clue for solving
our problem.

Now consider the following example. Let K[x1, x2, x3] be graded by
W =

(
2 1 3

−1 0 1

)
. The polynomial f = x1x3 + x5

2 + x2
1x3 is the sum of two ho-

mogeneous polynomials, namely f1 = x1x3 + x5
2 of degree degW (f1) = (5, 0)

and f2 = x2
1x3 of degree degW (f2) = (7,−1). Again we ask ourselves: what

is the degree of f ? Suppose we complete the matrix W to a non-singular
matrix V by appending the row (1 0 0). The vectors obtained by taking
the scalar products of the logarithms of the three terms in the support of f
with the rows of V are (5, 0, 1), (5, 0, 0), and (7,−1, 2). Their lexicographi-
cal comparison yields (7,−1, 2) >Lex (5, 0, 1) >Lex (5, 0, 0). By construction,
the degrees of the three terms are the first two components of those vectors.
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Therefore, if we want to let the grading interact with the ordering in a nat-
ural way, we should compare degrees lexicographically. In other words, there
is a natural law for ordering degrees, namely Lex.

Having decided to apply the principle of Lex and order, we can venture
further. A grading induces a partial ordering on the set of terms. Using this
partial ordering, we mimic the developments in Volume 1. The homogeneous
component of lexicographically largest degree of a vector of polynomials v
will be called the degree form of v , and plays a role analogous to its leading
term. Then we define degree form ideals and, more generally, degree form
modules of submodules of graded free modules. A set of vectors is called a
Macaulay basis of such a module M if their degree forms generate the degree
form module of M . In Subsection B we explore this idea and develop part
of the theory of Macaulay bases in analogy with, and as a generalization of,
the theory of Gröbner bases.

But something is still missing, both theoretically and practically. Theo-
retically, we would like Macaulay bases to be systems of generators, and
practically we would like to compute them. To fulfil these desires, gradings
of positive type are not good enough. Finally the bad news has hit! We
need the stronger notion of positive gradings. This corresponds to needing
term orderings in Gröbner basis theory instead of arbitrary monoid orderings.
Positive gradings are characterized by a degree matrix which has the look and
feel of the upper part of a matrix defining a term ordering. The subtleties
of positive gradings are investigated in Subsection A. If you want to get a
good grasp of this topic, we suggest that you compare Propositions 4.1.21
and 4.2.3 carefully.

Finally, dulcis in fundo, we use a mix of positive gradings, term orderings
and Gröbner basis theory to compute Macaulay bases (see Proposition 4.2.15
and Corollary 4.2.16). At this point you should be quite satisfied, unless you
interpret dulcis in fundo as the technical latin term for the melted ice cream
at the bottom of a tall thin glass which the spoon is unable to reach. However,
if you are developing a taste for Macaulay bases, and have an appetite for fur-
ther sweet delights, skip ahead to Section 4.3.B where two more treats await
you. And if it is all a piece of cake for you, try getting your teeth into Tutori-
als 47 and 48 where several additional generalizations and characterizations
of Macaulay bases are on the menu.

4.2.A Positive Gradings

Let K be a field, let m ≥ 1, and let P = K[x1, . . . , xn] be Zm -graded by a
matrix W ∈ Matm,n(Z). Recall that we always assume that the rows of W
are Z -linearly independent. Moreover, let δ1, . . . , δr ∈ Zm , and let F be the
graded free P -module F =

⊕r
i=1 P (−δi). The following definition provides

us with a first link between gradings and term orderings.
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Definition 4.2.1. Let τ be a monoid ordering on Tn and σ a module or-
dering on Tn〈e1, . . . , er〉 .
a) The ordering τ is called compatible with degW , or simply degree

compatible, if degW (t) >Lex degW (t′) implies t >τ t′ for all t, t′ ∈ Tn.
b) The ordering σ is called compatible with degW , or simply degree

compatible, if degW (tei) >Lex degW (t′ej) implies tei >σ t′ej for all
t, t′ ∈ Tn and all i, j ∈ {1, . . . , r} .

In the case of the standard grading, i.e. for W = (1 1 · · · 1), this defin-
ition agrees with Definition 1.4.9. The typical situation in which we have a
degree compatible monoid ordering is described in the following example.

Example 4.2.2. Suppose that W ∈ Matm,n(Z) has rank m . If we choose
a matrix W ′ ∈ Matn−m,n(Z) such that V =

(
W
W ′
)

is non-singular, then the
monoid ordering σ = Ord(V ) is compatible with degW .

Proposition 4.2.3. Let P be graded by a matrix W ∈ Matm,n(Z) of
rank m , and let Tn〈e1, . . . , er〉 be the set of terms in F . The following con-
ditions are equivalent.
a) The first non-zero element in each non-zero column of W is positive.
b) For i = 1, . . . , n , we have degW (xi) ≥Lex 0 .
c) The restriction of Lex to the monoid Γ = {d ∈ Zm | PW,d �= 0} is a

well-ordering.
d) The restriction of Lex to the monoid Γ = {d ∈ Zm | PW,d �= 0} is a

term ordering.
e) There exists a term ordering τ on Tn which is compatible with degW .
f) There exists a module term ordering σ on Tn〈e1, . . . , er〉 which is com-

patible with degW .

Proof. Conditions a) and b) are clearly equivalent. Next we prove “a)⇒c)”.
Since the rank of W is m , there are standard basis vectors ei1 , . . . , ein−m

which we can add as new rows to W such that the resulting matrix V is non-
singular. Hence every column of V has a non-zero entry, and the first non-zero
entry is positive. By Proposition 1.4.12, the monoid ordering σ = Ord(V ) is
a term ordering, and by construction it is compatible with degW . It follows
that there is no infinite decreasing sequence of terms t1 >σ t2 >σ · · · . Since
every element of Γ is the degree of a term and since σ is degree compatible,
every decreasing chain in Γ is eventually stationary. Now the claim follows
from Proposition 1.4.18.

The implication “c)⇒d)” follows from the last part of that proposition,
and the implication “d)⇒b)” follows from the definition of a term order-
ing. Now we prove “a)⇒e)”. As above, we choose standard basis vectors
ei1 , . . . , ein−m

∈ Zn and append them as new rows to W such that the result-
ing matrix V ∈ Matn(Z) is non-singular. Then the term ordering σ = Ord(V )
is compatible with degW .
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In order to show “e)⇒ f)”, we define an ordering σ on Tn〈e1, . . . , er〉
in the following way. Given tei, t

′ej ∈ Tn〈e1, . . . , er〉 , we let tei ≥σ t′ej if
degW (tei) >Lex degW (t′ej), or if degW (tei) = degW (t′ej) and i < j , or if
degW (tei) = degW (t′ej) and i = j and t ≥τ t′ . It is easy to check that σ
is a module ordering. We note that tei ≥σ t′ei if and only if t ≥τ t′ , i.e.
inside every component of F the ordering σ is induced by τ . Thus we see
that tei ≥σ ei for all t ∈ Tn and all i ∈ {1, . . . , r} . Hence σ is a module
term ordering. By construction, σ is degree compatible.

Finally we prove “f)⇒b)”. For i = 1, . . . , n , we have xie1 >σ e1 , and
therefore degW (xie1) = degW (xi)+degW (e1) ≥Lex degW (e1). Consequently,
we have degW (xi) ≥Lex 0 for i = 1, . . . , n . �

As we shall see, gradings by matrices which satisfy the conditions of this
proposition are very useful in a number of ways. For this reason we introduce
the following notions.

Definition 4.2.4. Let W ∈ Matm,n(Z) be a matrix of rank m .
a) The grading on P defined by W is called non-negative if the first non-

zero element in each non-zero column of W is positive. In this case, we
shall also say that W is a non-negative matrix.

b) The grading on P defined by W is called positive if no column of W
is zero and the first non-zero element in each column is positive. In this
case, we shall also say that W is a positive matrix.

Thus the above proposition implies that, if W defines a non-negative
grading defined by W, there exists a term ordering on Tn which is compatible
with degW . Notice also that if W is positive, then we have degW (xi) >Lex 0
for i = 1, . . . , n , and hence P+ =

⊕
d>Lex0

PW,d = (x1, . . . , xn). The following
corollary shows that in a finitely generated graded P -module there exists
no infinite decreasing chain degW (v1) >Lex degW (v2) >Lex · · · if the grading
defined by W is non-negative.

Corollary 4.2.5. Assume that W ∈ Matm,n(Z) defines a non-negative
grading on P . Let M be a finitely generated, graded P -module, and let Σ
be the set {d ∈ Zm | MW,d �= 0} . Then the relation Lex|Σ is a well-ordering.

Proof. By applying Remark 4.1.13 to a finite homogeneous system of gener-
ators of M , we construct a surjective homomorphism of graded P -modules
of the form

⊕r
i=1 P (−δi) −→ M . Now the claim follows from Proposi-

tion 4.2.3.c, because we have Σ ⊆ ∪r
i=1(Γ + δi). �

Our next corollary shows that non-negative gradings are of non-negative
type and positive gradings are of positive type, as their names suggests.

Corollary 4.2.6. Let P be graded by a matrix W ∈ Matm,n(Z) .
a) If the grading defined by W is non-negative, it is of non-negative type.
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b) If the grading defined by W is positive, it is of positive type.

Proof. To prove claim a), we let Ci denote for i = 1, . . . , m the set of all
indices j ∈ {1, . . . , n} such that the jth column of W has its first non-
zero entry in the ith row. If we add high enough multiples of the first row
to the rows below, the resulting matrix has strictly positive entries in the
columns indexed by C1 . In particular, the second row of this matrix has
strictly positive entries in the columns indexed by C1 ∪ C2 , and if we add
high enough multiples of that row to the rows below, rows 2, 3, . . . , m of
the resulting matrix have strictly positive entries in the columns indexed
by C1 ∪ C2 . Continuing this way, we finally arrive at a matrix whose last
row has strictly positive entries in columns C1 ∪ · · · ∪Cm , i.e. in all non-zero
columns. Claim b) follows in the same way, except that there are no zero
columns in W, so that the last row of the final matrix has positive entries
everywhere. �

The converse implications are not true, since for instance the grading
on K[x] given by W = (−1) is of positive type, but not positive. However, the
following remark says that there exists a change of grading which transforms
a grading of non-negative (resp. positive) type into a non-negative (resp.
positive) one.

Remark 4.2.7. Let P be graded by a matrix W ∈ Matm,n(Z).
a) If the grading defined by W is of non-negative type, then there exists a

non-singular matrix V ∈ Matm(Z) such that the grading defined by the
matrix W ′ = V ·W is non-negative and PW ′,V ·d = PW,d for all d ∈ Zm .

b) Similarly, if the grading defined by W is of positive type, then there exists
a non-singular matrix V ∈ Matm(Z) such that the grading defined by
the matrix W ′ = V · W is positive and PW ′,V ·d = PW,d for all d ∈ Zm .
These observations follow from Propositions 4.1.18 and 4.1.9.b. Let us

order the degrees of homogeneous polynomials with respect to the grading
given by W ′ using the ordering d ≥τ d′ ⇐⇒ W ′ · d ≥Lex W ′ · d′ intro-
duced in the proof of Proposition 4.1.21.a. Then the isomorphism of graded
rings (idP , ψ) : (P, Zm) −→ (P, Zm) , where ψ is the map defined by W ′ , is
compatible with the ordering of the degrees.

4.2.B Macaulay Bases

As in the first subsection, we let P = K[x1, . . . , xn] be graded by the matrix
W ∈ Matm,n(Z), and we let M be a non-zero P -submodule of the graded
free P -module F =

⊕r
i=1 P (−δi). But, unless stated otherwise, we do not

assume anymore that M is a graded submodule of F . In Definition 4.1.6, we
introduced the concept of degree of a homogeneous element of P. Now we
extend this notion as follows.
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Definition 4.2.8. Let v be a non-zero vector in M and v = vd1+· · ·+vds
its

decomposition into homogeneous components, where vdi
has degree di ∈ Zm

for i = 1, . . . , s . Without loss of generality, we may assume that we have
d1 >Lex · · · >Lex ds .
a) The vector degW (v) = d1 ∈ Zm is called the degree of v with respect to

the grading given by W . If it is clear which grading we are considering,
we shall also write deg(v).

b) The vector DFW (v) = vd1 is called the degree form of v with respect
to the grading given by W . For the zero vector, we define DFW (0) = 0.

In the case r = 1, δ1 = 0, and W = (1 1 . . . 1), i.e. if we equip P with
the standard grading, this definition of the degree of a polynomial and of
its degree form agrees with the usual one. Moreover, degree forms generalize
leading terms in the following sense.

Remark 4.2.9. Let W ∈ Matn(Z) be a non-singular matrix which defines
a positive grading. Then σ = Ord(W ) is a term ordering on Tn by Proposi-
tion 1.4.12. Given a non-zero polynomial f ∈ P , we have DFW (f) = LTσ(f).

It is also instructive to compare the current situation with the definition
of σ -degrees and σ -leading forms in Section 2.3.

Remark 4.2.10. In the situation of Section 2.3, consider the case of an ideal
M ⊆ P . In this case we defined a Tn -grading on the module P s which was
induced by a system of generators {g1, . . . , gs} of M (see Proposition 2.3.3).
By using the injective map log : Tn −→ Zn and by letting γi = log(LTσ(gi))
for i = 1, . . . , s , we can see that this Tn -grading corresponds exactly to the
Zn -grading on

⊕s
i=1 P (−γi) defined by the identity matrix.

Let us illustrate the concepts of degrees and degree forms with some
examples.

Example 4.2.11. Let P = K[x1, x2, x3] .
a) If we equip P with the grading defined by W = (1 2 1), then the

polynomial f = x3
1 −x1x2 +x1 has degree degW (f) = 3. More precisely,

it has two homogeneous components f = f3 +f1 , where DFW (f) = f3 =
x3

1 − x1x2 is the degree form of f and f1 = x1 has degree one.
b) Now we equip P with the grading defined by W = (−1 −1 −1). In this

case the same polynomial f = x3
1 − x1x2 + x1 has degree −1 and three

homogeneous components f−1, f−2, f−3 , where DFW (f) = f−1 = x1 ,
where f−2 = −x1x2 ∈ P−2 , and where f−3 = x3

1 ∈ P−3 .
c) Finally, we equip P with the grading defined by W =

(
1 2 4
2 1 3

)
and con-

sider the polynomial g = x2
1x

5
2 − x3

3 + x3
1x

2
3 . It has two homogeneous

components g = g(12,9) + g(11,12) , where g(12,9) = x2
1x

5
2 − x3

3 ∈ P(12,9)

and g(11,12) = x3
1x

2
3 ∈ P(11,12) . Notice that (12, 9) >Lex (11, 12). Thus we

have DFW (g) = x2
1x

5
2 − x3

3 and degW (g) = (12, 9).
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Our next remark collects some useful rules for computing with degree
forms. Their proofs are straightforward and proceed exactly as the proofs of
the corresponding rules for leading terms (see Proposition 1.5.3).

Remark 4.2.12. Let v1, v2 ∈ M \ {0} , and let f ∈ P .
a) If degW (v1) = degW (v2) and DFW (v1) �= −DFW (v2), then we have

DFW (v1 + v2) = DFW (v1) + DFW (v2).
b) If degW (v1) >Lex degW (v2) , then we have DFW (v1 + v2) = DFW (v1).
c) We have DFW (fv1) = DFW (f) · DFW (v1).

To develop the theory of degree forms further, we now introduce the
analogs of leading term ideals and Gröbner bases.

Definition 4.2.13. Let M be a submodule of the graded free P -module F .
a) The graded P -submodule DFW (M) = 〈DFW (v) | v ∈ M〉 of F is called

the degree form module of M with respect to the grading given by W .

b) A set {v1, . . . , vs} ⊆ M is called a Macaulay basis of M with respect to
the grading given by W if we have DFW (M) = 〈DFW (v1), . . . ,DFW (vs)〉 .

In the literature, Macaulay bases are also called H-bases. Under the hy-
potheses of Remark 4.2.9, a Macaulay basis with respect to the grading given
by W is nothing but a Gröbner basis with respect to Ord(W ) . More gener-
ally, given a suitable partial ordering on the set of degrees of the elements
of M , one can define Macaulay bases with respect to this partial ordering.
We invite you to explore this notion further in Tutorial 47. Continuing the
analogy between Macaulay bases and Gröbner bases, we now imitate Propo-
sition 2.4.3.a and show that a Macaulay basis is additionally a system of
generators of M under suitable hypotheses.

Proposition 4.2.14. Let P be non-negatively graded by the matrix W, and
let {v1, . . . , vs} be a Macaulay basis of M . Then the set {v1, . . . , vs} is a
system of generators of M .

Proof. Without loss of generality, we may assume vi �= 0 for i = 1, . . . , s .
Suppose that the claim is false, i.e. that 〈v1, . . . , vs〉 ⊂ M . Since the grading
is non-negative, the restriction of Lex to Σ = {d ∈ Zm | FW,d �= 0} is a
well-ordering by Corollary 4.2.5. So, there is an element v ∈ M \ 〈v1, . . . , vs〉
such that d = degW (v) is minimal. Using Corollary 1.7.11, we can write
DFW (v) = f1 DFW (v1) + · · · + fs DFW (vs) , where fi is a homogeneous poly-
nomial of degree degW (fi) = d − degW (vi) for i = 1, . . . , s . Now the rules
given in Remark 4.2.12 show that degW (v−f1v1−· · ·−fsvs) <Lex d . Because
of the minimality of d , this implies that there are polynomials g1, . . . , gs such
that v−f1v1−· · ·−fsvs = g1v1 + · · ·+gsvs . This representation contradicts
the supposition that v /∈ M and finishes the proof. �
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The conclusion of this proposition obviously holds if W is positive, but
it need not hold if W is of positive type (see Exercise 5). Degree compatible
term orderings allow us to connect the two notions of Gröbner basis and
Macaulay basis. Recall that, by Proposition 4.2.3, a degree compatible term
ordering exists if and only if P is non-negatively graded by W .

Proposition 4.2.15. Let the polynomial ring P be non-negatively graded by
W ∈ Matm,n(Z) , let σ be a term ordering which is compatible with degW ,
and let G = {g1, . . . , gs} be a σ -Gröbner basis of M .
a) The set {DFW (g1), . . . ,DFW (gs)} is a σ -Gröbner basis of DFW (M) .
b) The set G is a Macaulay basis of M with respect to W .

Proof. First we prove a). Let v ∈ M \{0} . Since σ is degree compatible, the
term LTσ(v) has to be one of the terms in Supp(DFW (v)) . Therefore we have
LTσ(v) = LTσ(DFW (v)). By assumption, LTσ(v) is a multiple of LTσ(gj)
for some j ∈ {1, . . . , s} . This shows a), and b) is an immediate consequence
of a) and Proposition 2.4.3.a. �

The converse of part b) of this proposition is not true in general (see
Exercise 6). A common situation in which we can apply b) is given by Exam-
ple 4.2.2. In fact, we can use this idea to compute Macaulay bases effectively
as follows.

Corollary 4.2.16. (Computation of Macaulay Bases)
Let P be non-negatively graded by a matrix W ∈ Matm,n(Z) , and let M be
a P -submodule of F . Consider the following sequence of instructions.
1) Choose a matrix W ′ ∈ Matn−m,n(N) such that V =

(
W
W ′
)

is non-singular
and positive.

2) Using Buchberger’s Algorithm 2.5.5, compute a Gröbner basis G of M
with respect to the term ordering Ord(V ) .

3) Return the result G .
This is an algorithm which computes a Macaulay basis G of M with respect
to the grading given by W .

Proof. Clearly, we may assume that M �= 0. By Proposition 4.2.3, a ma-
trix W ′ as required in step 1) exists. By Proposition 1.4.12, the monoid
ordering σ = Ord(V ) is then a term ordering. Hence Buchberger’s Algorithm
can be used to compute a σ -Gröbner basis of M . By the proposition, this
Gröbner basis is a Macaulay basis of M with respect to the grading given
by W . �

There are several ways to perform step 1) of this algorithm. One possibility
is to choose suitable standard basis vectors (see Exercise 9).
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Exercise 1. Let K be a field, let P = K[x1, . . . , xn] be graded by
W ∈ Matm,n(Z) , let δ1, . . . , δr ∈ Zm , and let F =

⊕r
i=1 P (−δi) . Show

that the grading given by W is non-negative if and only if the restriction
of Lex to the set Σ = {d ∈ Zm | FW,d �= 0} is a well-ordering.

Exercise 2. Let K be a field, and let P = K[x1, . . . , xn] be graded by
a matrix W ∈ Matm,n(Z) . Give an alternative proof of Corollary 4.2.6.a
using induction on m .

Exercise 3. Let K be a field, let P = K[x1, . . . , xn] be graded
by W ∈ Matm,n(Z) , and let I be a non-zero principal ideal in P . Show
that DFW (I) is generated by the degree form of a generator of I .

Exercise 4. In the following cases, try to find a non-zero matrix
W ∈ Mat1,3(Z) such that the support of the degree form of the following
polynomials contains as many terms as possible.

a) f1 = x3
1 − x2x3 + x1

b) f2 = x2
1x

5
2 − x3

3 + x3
1x

2
3

c) f3 = x3
1 + x3

2 + x3
3 − x2

1x
2
2x

2
3

Exercise 5. Let us equip the polynomial ring P = K[x] over a field K
with the Z2 -grading defined by W =

(−1
1

)
. Prove that x−x2 is a Macaulay

basis of the ideal (x) which does not generate that ideal.

Exercise 6. Let us equip the polynomial ring P = K[x, y] over a field K
with the standard grading. Show that {x2 − y2, xy} is a Macaulay basis
of the ideal (x2 − y2, xy) , but not a Gröbner basis with respect to any
term ordering.

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] be positively graded
by W ∈ Matm,n(Z) , and let f ∈ P \ {0} .

a) Show that if DFW (f) is irreducible then f is irreducible.
b) Show that the converse is not true in general.
c) Let f = x2

1 + g(x2, . . . , xn) . Show that, up to units, f has at most
two irreducible factors.

Exercise 8. Let K be a field, and let P = K[x1, . . . , xn] be graded by
a matrix W ∈ Matm,n(Z) of positive type.

a) Show that there exists a non-singular matrix U ∈ Matm(Z) such that
U · W defines a positive grading on P and such that (idP , ϕ) , where
ϕ : Zm −→ Zm is defined by U, is an isomorphism of graded rings.

b) Find an example where such an isomorphism does not preserve
Macaulay bases.

Exercise 9. Let W ∈ Matm,n(Z) be a matrix of rank m . Show that
one can choose n−m standard basis vectors ei1 , . . . , ein−m such that the
matrix

V =

⎛⎜⎜⎝
W
ei1

...
ein−m

⎞⎟⎟⎠
is non-singular. Moreover, show that the matrix V is positive if W is
non-negative.
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Tutorial 47: Computation of Macaulay Bases

Computers are useless.
They can only give you answers.

(Pablo Picasso)

In this tutorial we invite you to explore the notion of a Macaulay basis
further. Be prepared to work by doing both some thinking and some pro-
gramming. Let us start with a little programming.
a) Let P = Q[x1, . . . , xn] be non-negatively graded by W ∈ Matm,n(Z).

Write a CoCoA function CompatibleTO(. . .) which takes W and computes
a matrix V ∈ Matn(Z) of the kind required by step 1) of the algorithm
in Corollary 4.2.16. (Hint: You may want to solve Exercise 9 first.)

b) In the setting of a), let I be an ideal of P which is homogeneous
with respect to the grading given by W . Implement a CoCoA function
MacaulayBasis(. . .) which computes a Macaulay basis of I with respect
to this grading.
Switching to the thinking part, we shall now generalize Macaulay bases by

using partial monoid orderings on Tn . They are defined as follows. A relation
π on a monoid (Γ, ◦) is called a partial monoid ordering if the following
conditions are satisfied for all γ1, γ2, γ3 ∈ Γ .
1) γ1 ≥π γ1 (reflexivity)
2) γ1 ≥π γ2 and γ2 ≥π γ3 imply γ1 ≥π γ3 (transitivity)
3) γ1 ≥π γ2 implies γ1 ◦ γ3 ≥π γ2 ◦ γ3

Now it is time for you to start working again.
c) Compare this definition to the definition of a monoid ordering in 1.4.1.

For each of the additional properties in Definition 1.4.1, find a partial
monoid ordering which has this property but not the others.
Hint: Use Γ = T1 and Γ = T1 ∪ {∞} .
Next we choose m ∈ {1, . . . , n} , let v1, . . . , vm ∈ Rn be R -linearly in-

dependent vectors, and define V ∈ Matm,n(R) to be the matrix with rows
v1, . . . , vm . For two terms t1, t2 ∈ Tn , we set t1 ≥Ord(V ) t2 if and only if
V · (log(t1) − log(t2)) ≥Lex 0. Now back to work!
d) Prove that Ord(V ) is a partial monoid ordering on Tn . It is called the

partial ordering represented by V .
e) Consider the matrix U = (1

√
2
√

2) ∈ Mat1,3(R). Write a CoCoA func-
tion CompareOrdU(. . .) which takes two terms t1, t2 ∈ T3 and returns
the Boolean value corresponding to t1 ≥Ord(U) t2 .

f) Show that there do not exist m ≥ 1 and W ∈ Matm,n(Z) such that
Ord(U) is the lexicographic ordering on the degrees of the terms in T3

with respect to the grading given by W .
g) Find a number m ≥ 1 and a matrix W ∈ Matm,3(R) such that Ord(W )

is a term ordering which refines the partial ordering represented by U .
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h) Implement a CoCoA program CompareOrdW(. . .) which takes two terms
t1, t2 ∈ T3 and returns the Boolean value corresponding to t1 ≥Ord(W ) t2 .
At this point we can continue to generalize the definitions given in the

text. Let K be a field, let P = K[x1, . . . , xn] , and let V ∈ Matm,n(R)
be a matrix as above. Given a non-zero polynomial f ∈ P , we write
f = c1t1 + · · · + csts with c1, . . . , cs ∈ K \ {0} and t1, . . . , ts ∈ Tn . Without
loss of generality we may assume that t1 ≥Ord(V ) t2 ≥Ord(V ) · · · ≥Ord(V ) ts .
Then the polynomial

DFV (f) = c1t1 + · · · + cjtj where j = max{i | ti ≥Ord(V ) t1}

is called the degree form of f with respect to the partial ordering Ord(V ).
Furthermore, we define the degree form ideal DFV (I) and a Macaulay basis
with respect to Ord(V ) of an ideal I ⊆ P as in the text.
i) Prove that we have t ≥Ord(V ) 1 for every term t ∈ Tn if and only if the

first non-zero entry in each non-zero column of V is positive. In this case,
we shall say that Ord(V ) is a non-negative partial ordering.

j) Generalize Proposition 4.2.14 in the following way. Suppose that Ord(V )
is a non-negative partial ordering and {f1, . . . , fs} is a Macaulay basis of
an ideal I ⊆ P with respect to Ord(V ). Then {f1, . . . , fs} generates I .

k) Let Ord(V ) be a non-negative partial ordering on Tn . Generalize the
algorithm of Corollary 4.2.16 to an algorithm which computes a Macaulay
basis of a given ideal I in P with respect to Ord(V ).
Hint: Complete V to a non-singular matrix in Matn(R) in order to find
a term ordering which is compatible with Ord(V ).

l) Write a CoCoA program GenMacBasis(. . .) which implements this gener-
alized algorithm in the case of the non-negative partial ordering given by
U = (1

√
2
√

2).
Hint: Use the function written in part h) above. You will need to reim-
plement Buchberger’s Algorithm 2.5.5 for the term ordering represented
by this function.

Tutorial 48: Characterizations of Macaulay Bases

As we shall see in this tutorial, it is possible to define Macaulay bases in a
very general setting, namely for submodules of Γ -graded free R -modules,
at the level of generality we introduced in Section 1.7. We shall show that
such general Macaulay bases enjoy properties analogous to the ones we used
to characterize Gröbner bases (see Theorem 2.4.1). In fact, these Macaulay
bases can be considered as generalizations of Gröbner bases.

Let Γ be a commutative monoid obeying the cancellation law and for
which there exists a term ordering σ on Γ . Let R be a Γ -graded ring,
let γ1, . . . , γr ∈ Γ, let F =

⊕r
i=1 R(γi) be a Γ -graded free R -module, and
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let M be an R -submodule of F . Every element v ∈ M \ {0} has a unique
decomposition v = v1 + · · · + vs , where v1, . . . , vs are homogeneous and
deg(v1) >σ deg(v2) >σ · · · >σ deg(vs).

In this situation, we call DFΓ (v) = v1 the degree form of v with re-
spect to the Γ -grading on F . For v = 0, we set DFΓ (v) = 0. Then the
Γ -graded submodule DFΓ (M) = 〈DFΓ (m) | m ∈ M〉 of F is called the
degree form module of M . A set of elements {m1, . . . , mt} ⊆ M is
called a Macaulay basis of M with respect to the Γ -grading on F if
DFΓ (M) = 〈DFΓ (m1), . . . ,DFΓ (mt)〉 .
a) Explain how the situation described at the beginning of the section and

Definitions 4.2.8 and 4.2.13 are special cases of the above assumptions
and definitions.

b) Imitate the proof of Proposition 4.2.14 to show that every Macaulay basis
of M is a system of generators of M .

c) Prove that {m1, . . . ,mt} ⊆ M is a Macaulay basis of M if and only if
every element v ∈ M \{0} has a representation v =

∑t
i=1 fimi such that

f1, . . . , ft ∈ R and deg(v) = maxσ{deg(fimi) | i ∈ {1, . . . , t}, fimi �= 0} .
Hint: Proceed as in the proof of Proposition 2.1.3.

d) Let M be the tuple (m1, . . . , mt), and let v, w ∈ M . We write v
M−→w

if there exist f1, . . . , ft ∈ R such that v = w+
∑t

i=1 fimi , and such that

deg(w) <σ deg(v) or w = 0. The reflexive, transitive closure of M−→ is
denoted again by M−→ . Show that the following conditions are equivalent.

1) The elements of M are a Macaulay basis of M .
2) For an element v ∈ F, we have v

M−→ 0 if and only if v ∈ M .
3) If v ∈ M is irreducible with respect to M−→ , then we have v = 0.
4) For every v ∈ F , there exists a unique w ∈ M such that v

M−→w

and such that w is irreducible with respect to M−→ .
5) The relation M−→ on F is confluent.

Hint: Imitate the proofs of Propositions 2.2.5 and 2.2.8.
e) Prove that the conditions of d) are also equivalent to

∑t
i=1 fimi

M−→ 0
for all (f1, . . . , ft) ∈ SyzR(DFΓ (M)). (Hint: Use the method of the proof
of Proposition 2.3.12.)

f) Show that it suffices to check the condition of e) for a system of generators
of SyzR(DFΓ (M)).

g) Explain how one can use the preceding results to characterize Macaulay
bases by a suitable criterion for the lifting of syzygies.

h) Show that Gröbner bases are a special case of the general kind of
Macaulay bases considered here. Then use the results you proved above
to generalize Theorem 2.4.1 accordingly.
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4.3 Homogenization

The real world is a special case.
(Anonymous)

Throughout this chapter, we examine gradings on polynomial rings and
study some of their applications. For instance, we shall see that many algo-
rithms can be improved if we know beforehand that the input polynomials
are homogeneous. But unfortunately not every polynomial occurring in the
real world is homogeneous. Therefore we would like somehow to approximate
a non-homogeneous polynomial by a homogeneous one. How can we view an
arbitrary polynomial as a special case of something homogeneous?

First, let us search for a solution in an easy case. Let P = Q[x1, x2, x3] be
standard graded and f = x2

1 + x5
2x3 . The first term in the support of f has

degree 2 and the second term has degree 6. In order to view f as a special
case of a homogeneous polynomial, we introduce a new indeterminate y1 and
form F = y4

1x2
1+x5

2x3 . Then F is a homogeneous polynomial in the standard
graded ring P = Q[y1, x1, x2, x3] and we can recreate f by plugging y1 = 1
into F . In this sense, we can say that this process of homogenization allows us
to regard arbitrary real-world polynomials as special cases of homogeneous
ones. Notice that we would not have had to do anything if f had been
homogeneous to start with.

A natural question is whether we can extend everything to the Zm -graded
situation. For the moment, let us study the general case by means of an ex-
ample. Let P = Q[x1, x2, x3] be graded by W =

(
2 1 1
1 0 1

)
. Again the poly-

nomial f = x2
1 + x5

2x3 is not homogeneous, since degW (x2
1) = (4, 2), while

degW (x5
2x3) = (6, 1). The degree form of f is DFW (f) = x5

2x3 . First we
consider the upper row of weights. By introducing a new indeterminate y1

of degree one, we may homogenize f with respect to this row by forming
y2
1x2

1 + x5
2x3 . But then there is no way to endow y1 with a second integer

degree such that y2
1x2

1+x5
2x3 becomes homogeneous with respect to the lower

row of weights. What we have to do is introduce another indeterminate y2

and then set degW (y1) = (1, 0) and degW (y2) = (0, 1). Then the polynomial
y2
1x2

1 + y2x
5
2x3 is the homogenization of f .

This approach works quite generally, and the usual homogenization for
standard gradings (occurring most frequently in real life) is a special case.
Thus the section starts by providing all the necessary rules for dealing with
the processes of homogenizing and dehomogenizing polynomials. Then we
really get going and play the same game with ideals. Again we provide the
good rules for the interaction between homogenization and ideal-theoretic
operations (see Propositions 4.3.5, 4.3.10 and 4.3.12) and point out a few bad
ones (see Examples 4.3.9 and 4.3.11). As an application, we see that we can
compute homogenizations using saturation with respect to the product of the
homogenizing indeterminates, an operation we have mastered in Section 3.5.
A further application is discussed in Tutorial 51, where we suggest an efficient
method for computing the homogenization of implicitization ideals.
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In the last part of the first subsection we examine the behaviour of
Gröbner bases of ideals under dehomogenization. For this purpose we have
to relate a term ordering on the monoid T(x1, . . . , xn) to a term ordering on
the monoid T(y1, . . . , ym, x1, . . . , xn). After doing this in the correct way in
Definition 4.3.13, we can then show that Gröbner bases dehomogenize in a
natural way (see Proposition 4.3.18).

What about homogenizing Macaulay bases and Gröbner bases? Since
there are some problems in the general case, we assume in Subsection 4.3.B
that P = K[x1, . . . , xn] is positively Z -graded. Then we continue our investi-
gation by studying the effect of homogenization on Macaulay bases. We char-
acterize Macaulay bases as those systems of generators of an ideal I whose
homogenizations generate the homogenization of I . This is not generally
true for m ≥ 2 (see Exercises 8 and 9), but for m = 1 it yields an alterna-
tive way of computing the homogenization of an ideal (see Corollary 4.3.20).
Moreover, we show that Gröbner bases homogenize in the natural way (see
Proposition 4.3.21).

The final topic in this section has a more geometric flavour. Given an
ideal I in P , the rings P/I and P/DFW (I) are shown to be members of
a family of rings which is flat. Although we do not define this concept here,
we show how this family is constructed using the homogenization of I , and
that it has good properties. For instance, it turns out that Macaulay bases
are characterized by the property that they generate the defining ideal of
each fiber of the family (see Proposition 4.3.23). Again these results require
a positive grading with m = 1 (see Exercise 11).

Should we shed more light on these intricacies? On a fortune cookie we
read that “a good example is the best gift we can bestow on others”. Therefore
we conclude the section with some elementary examples which cast a few rays
of illumination into the vast areas of flat families, deformations, and Hilbert
functions. In due course, we shall revisit some of them.

What about homogenization of modules? Haven’t we been stressing the
need to concentrate on modules all along? Well, yes, but... in this section we
prefer to leave the job to you, in Tutorial 49. Finally, we mention that there
is another nice geometric interpretation of the operation of homogenizing a
polynomial ideal. It is related to the process of forming the projective closure
of an affine variety. In Tutorial 52 we invite you to explore this interpretation
by following our guided tour.

4.3.A Homogenization of Polynomials and Ideals

Let K be a field and P = K[x1, . . . , xn] a polynomial ring over K which
is graded by a matrix W ∈ Matm,n(Z) of rank m ≥ 1. In this situation
we choose new indeterminates y1, . . . , ym and call them homogenizing in-
determinates. Then we equip the ring P = K[y1, . . . , ym, x1, . . . , xn] with
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the grading defined by the matrix W = (Im | W ) , where Im denotes the
identity matrix of size m .

Clearly, the map (ı, idZm) : (P, Zm) ↪−→ (P , Zm) , where ı is the inclu-
sion and idZm is the identity, is a homomorphism of Zm -graded rings. The
processes of homogenizing and dehomogenizing a polynomial are now defined
as follows.

Definition 4.3.1. Let f ∈ P \ {0} and F ∈ P .
a) Write f = c1t1 + · · · + csts with c1, . . . , cs ∈ K \ {0} and distinct terms

t1, . . . , ts ∈ Tn . For j = 1, . . . , s , let degW (tj) = (τ1j , . . . , τmj) ∈ Zm .
Moreover, for i = 1, . . . , m , let µi = max{τij | j = 1, . . . , s} be the
maximum of the ith components of the degrees of the terms t1, . . . , ts .
Then (µ1, . . . , µm) is called the top degree of f with respect to the
grading given by W and is denoted by topdegW (f).

b) In the context of a), the homogenization of f with respect to the
grading given by W is the polynomial

fhom =
s∑

j=1

cj tj y
µ1−τ1j

1 · · · yµm−τmj
m ∈ P

For the zero polynomial, we set 0hom = 0.
c) The polynomial F deh = F (1, . . . , 1, x1, . . . , xn) ∈ P is called the deho-

mogenization of F with respect to y1, . . . , ym .

Our first observation is that the process of homogenizing a polynomial
can be described informally as follows. Multiply each term in the support
of f by the appropriate power product of y1, . . . , ym in order to make it
homogeneous of degree topdegW (f). Hence the polynomial fhom is indeed
a homogeneous polynomial in P of degree degW (fhom) = topdegW (f).

Secondly, we note that the operation of dehomogenization has been de-
fined for all polynomials in P , but usually we shall apply it only to ho-
mogeneous polynomials F ∈ P . Homogenization and dehomogenization of
polynomials obey the following rules.

Proposition 4.3.2. (Rules for Homogenizing Polynomials)
Let polynomials f, g ∈ P and F,G ∈ P be given.
a) Let f �= 0 , let µ = topdegW (f) , and let f = f1 + · · · + fr be the

decomposition of f into its homogeneous components, where each fi ∈ P
is homogeneous of degree di ∈ Zm . Then we have

fhom = yµ−d1 f1 + · · · + yµ−dr fr

where yµ−di = yαi1
1 · · · yαim

m for µ − di = (αi1, . . . , αim) ∈ Zm .
b) Let (µ1, . . . , µm) = topdegW (f) . Then we have

fhom = yµ1
1 · · · yµm

m · f( x1

y
w11
1 ···ywm1

m

, . . . , xn

y
w1n
1 ···ywmn

m

)
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c) We have (fhom)deh = f .
d) If fg �= 0 , we have topdegW (fg) = topdegW (f) + topdegW (g) .
e) We have (fg)hom = (fhom)(ghom) .
f) Let f, g, f + g ∈ P \ {0} , and let d be the componentwise maximum

of topdegW (f) and topdegW (g) . Then we have

yd−topdegW (f+g) · (f + g)hom = yd−topdegW (f) · fhom + yd−topdegW (g) · ghom

g) We have (FG)deh = F deh Gdeh and (F + G)deh = F deh + Gdeh .
h) Suppose that F is non-zero and homogeneous. For j = 1, . . . , m , let

sj = max{i ≥ 0 | yi
j divides F} . Then ys1

1 · · · ysm
m · (F deh)hom = F . In

particular, we have F deh �= 0 .
i) Given two terms T, T ′ ∈ T(y1, . . . , ym, x1, . . . , xn) with degW (T ) =

degW (T ′) and T deh = (T ′)deh , we have T = T ′ .

Proof. Claim a) follows by combining the terms t1, . . . , ts in Definition 4.3.1.a
into groups according to their degrees.

To prove b), we decompose f = c1t1 + · · · + csts as in the definition,
and we write tj = x

α1j

1 · · ·xαnj
n for j = 1, . . . , s . Then we have the equality

degW (tj) = W · (α1j , . . . , αnj)tr = (τ1j , . . . , τmj)tr , and therefore

fhom =
s∑

j=1

cj tj y
µ1−τ1j

1 · · · yµm−τmj
m

= yµ1
1 · · · yµm

m ·
s∑

j=1

cj
x

α1j
1 ···xαnj

n

y
τ1j
1 ···yτmj

m

= yµ1
1 · · · yµm

m ·
s∑

j=1

cj ( x1

y
w11
1 ···ywm1

m

)α1j · · · ( xn

y
w1n
1 ···ywmn

m

)αnj

= yµ1
1 · · · yµm

m · f( x1

y
w11
1 ···ywm1

m

, . . . , xn

y
w1n
1 ···ywmn

m

)

Claim c) follows easily from the definition. To prove d), we proceed com-
ponent by component. For i ∈ {1, . . . , m} , consider the ith component. Let
(µ1, . . . , µm) = topdegW (f) and (ν1, . . . , νm) = topdegW (g). Then we write
f = f ′ + f ′′ where f ′ contains the terms of f whose degree has ith com-
ponent equal to µi and f ′′ contains the remaining terms of f . Similarly, we
decompose g = g′ + g′′ . Then fg = f ′g′ + (f ′g′′ + f ′′g′ + f ′′g′′) where f ′g′

consists of terms whose degree has ith component equal to µi + νi and the
second summand consists of terms whose degree has a smaller ith compo-
nent. Hence the ith component of topdegW (fg) is µi + νi , as we wanted to
show.

For the proof of e), it suffices to use b) and d). Claim f) follows easily
from a), and claim g) from the fact that dehomogenization is nothing but the
substitution homomorphism yi �→ 1 for i = 1, . . . , m .

Finally we prove h) and i). We write F = ys1
1 · · · ysm

m F̃ , where F̃

is not divisible by any yi . We need to show that (F̃ deh)hom = F̃ . To
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this end, we note that no two terms in the support of F̃ dehomogenize
to the same term, since the dehomogenization of yα1

1 · · · yαm
m xβ1

1 · · ·xβn
n is

xβ1
1 · · ·xβn

n and the exponents α1, . . . , αm are determined by the equation
(α1, . . . , αm)tr = degW (F̃ ) − W · (β1, . . . , βn)tr . Moreover, the degree of
(F̃ deh)hom equals degW (F̃ ), because for every index j ∈ {1, . . . , m} there
exists one term in the support of F̃ which is not divisible by yj . Altogether,
the homogenization of F̃ deh is F̃ . Claim i) is a special case of h). �

Notice also that degW (f) ≤Lex degW (fhom) = topdegW (f). For m = 1,
the first inequality is an equality. The following example shows that it may
be a strict inequality when m ≥ 2.

Example 4.3.3. Let P = Q[x1, x2] be graded by the matrix W =
(
1 0
0 1

)
, and

let f = x1+x2 . Then we have topdegW (f) = (1, 1) and fhom = y2x1+y1x2 .
Hence we see that degW (f) = (1, 0) <Lex topdegW (f).

Based on the notions of homogenization and dehomogenization of poly-
nomials, we can now introduce the same processes for ideals.

Definition 4.3.4. Let I be an ideal in P and J an ideal in P .
a) The ideal Ihom = (fhom | f ∈ I) in P is called the homogenization

of I with respect to the grading given by W .
b) The set Jdeh = {F deh | F ∈ J} in P is called the dehomogenization

of J with respect to y1, . . . , ym .

Obviously, the set Jdeh is an ideal in P , since it is the image of J un-
der the surjective ring homomorphism P −→ P defined by yj �→ 1 for
j = 1, . . . , m and xi �→ xi for i = 1, . . . , n . In particular, we see that
Jdeh = (J : (y1 · · · ym)∞)deh . Although we have defined the dehomogeniza-
tion of an arbitrary ideal in P , we shall mainly be interested in the case of
homogeneous ideals, thereby justifying the choice of the name. Homogeniza-
tion and dehomogenization of ideals are governed by the following rules.

Proposition 4.3.5. (Rules for Homogenizing Ideals)
Let I be an ideal in P and J a homogeneous ideal in P .
a) We have (Ihom)deh = I . In particular, the operation which associates to

an ideal in P its homogenization is injective, and the operation which
associates to a homogeneous ideal in P its dehomogenization is surjec-
tive.

b) For a homogeneous polynomial F ∈ P , we have

F ∈ Ihom ⇐⇒ F deh ∈ I

⇐⇒ F = ys1
1 · · · ysm

m fhom for some f ∈ I and s1, . . . , sm ∈ N

c) For a homogeneous polynomial F ∈ P , we have F deh ∈ Jdeh if and only
if (y1 · · · ym)sF ∈ J for some s ≥ 0 .
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d) We have J ⊆ (Jdeh)hom = J :
P

(y1 · · · ym)∞ .
e) If I �= P , then y1 · · · ym is a non-zerodivisor for P/Ihom .
f) If I is a proper homogeneous ideal in P , then we have Ihom = I · P . In

particular, in this case y1 · · · ym is a non-zerodivisor for P/I · P .

Proof. First we prove a). By Proposition 4.3.2.c, we have I ⊆ (Ihom)deh .
Now let f ∈ (Ihom)deh . By definition, the polynomial f is of the form
f = (

∑r
i=1 Gig

hom
i )deh , where G1, . . . , Gr ∈ P and g1, . . . , gr ∈ I . Using

Proposition 4.3.2.g, it follows that f =
∑r

i=1 Gdeh
i gi ∈ I .

Next we show b). For a homogeneous polynomial F ∈ Ihom , we have
F deh ∈ (Ihom)deh = I by a). Given F ∈ P such that F deh ∈ I , we have
F = ys1

1 · · · ysm
m fhom for f = F deh and some s1, . . . , sm ∈ N by Proposi-

tion 4.3.2.h. And if F = ys1
1 · · · ysm

m fhom , then we clearly have F ∈ Ihom .
For the proof of c), we note that the implication “⇐” follows from the fact

that (y1 · · · ym)sF ∈ J implies F deh = ((y1 · · · ym)sF )deh ∈ Jdeh . Conversely,
let a homogeneous polynomial F ∈ P be given such that F deh ∈ Jdeh . Since
Jdeh is a homomorphic image of J , there exists a polynomial G ∈ J such
that Gdeh = F deh . The homogeneous components of G are also in J , be-
cause J is a homogeneous ideal. By multiplying them with the appropri-
ate terms in T(y1, . . . , ym), we may assume that G is a homogeneous poly-
nomial in J which satisfies Gdeh = F deh . Thus Proposition 4.3.2.h yields
numbers s1, . . . , sm, s′1, . . . , s

′
m ∈ N such that F = ys1

1 · · · ysm
m (F deh)hom =

ys1
1 · · · ysm

m (Gdeh)hom and G = y
s′
1

1 · · · ys′
m

m (Gdeh)hom . Altogether, this shows
(y1 · · · ym)sF ∈ (G) ⊆ J for s = max{0,max{s′i − si | i = 1, . . . , m}} .

The inclusion J ⊆ (Jdeh)hom in d) follows from Proposition 4.3.2.h, and
(Jdeh)hom ⊆ J :

P
(y1 · · · ym)∞ is a consequence of c). To prove the remain-

ing containment, we note that J :
P

(y1 · · · ym)∞ is clearly a homogeneous
ideal in P . Let a homogeneous polynomial F ∈ J :

P
(y1 · · · ym)∞ be given.

Then there exists an r ≥ 0 such that (y1 · · · ym)rF ∈ J . Therefore we have
F deh ∈ Jdeh . Using Proposition 4.3.2.h, we get numbers s1, . . . , sm ∈ N such
that F = ys1

1 · · · ysm
m (F deh)hom ∈ (Jdeh)hom , and this was to be shown.

To prove e), we suppose that y1 · · · ym F ∈ Ihom for some homogeneous
polynomial F ∈ P . Part a) implies F deh = (y1 · · · ymF )deh ∈ (Ihom)deh = I ,
and then b) yields F ∈ Ihom . Finally, we observe that a homogeneous poly-
nomial in P is its own homogenization because of Proposition 4.3.2.a. This
proves claim f). �

The following example shows that the inclusion in part d) of the preceding
proposition can be strict.

Example 4.3.6. Let P = K[x1] be standard graded and P = K[y1, x1] .
Then we have J ⊂ (Jdeh)hom for the principal ideal J = (y1x1 − y2

1) in P ,
since Proposition 4.3.5.d shows (Jdeh)hom = J :

P
(y1)∞ = (x1 − y1) and

x1 − y1 /∈ J .
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As a consequence of these rules, we can characterize the homogenization
of an ideal as follows.

Corollary 4.3.7. (Characterization of the Homogenization)
Let I be an ideal in P . For an ideal J in P , the following conditions are
equivalent.
a) J = Ihom

b) The ideal J is homogeneous, has dehomogenization I , and satisfies the
equality J = J :

P
(y1 · · · ym)∞ .

Proof. Since a) implies b) by parts a) and d) of the proposition, it remains
to prove the converse. Using the hypothesis and part d) of the proposition,
we calculate J = J :

P
(y1 · · · ym)∞ = (Jdeh)hom = Ihom . �

Another application of the proposition is a way of actually computing ho-
mogenizations and dehomogenizations of ideals. Later we will see alternative
ways to do this (see Corollary 4.3.20 and Corollary 4.4.15).

Corollary 4.3.8. (Computation of the Homogenization)
Let I be an ideal in P which is generated by polynomials f1, . . . , fr ∈ P ,
and let J be a homogeneous ideal in P which is generated by polynomials
F1, . . . , Fs ∈ P .
a) The homogenization of I can be computed via the formula

Ihom = (fhom
1 , . . . , fhom

r ) :
P

(y1 · · · ym)∞

b) The dehomogenization of J can be computed via the formula

Jdeh = (F deh
1 , . . . , F deh

s )

Proof. Claim a) follows from part d) of the proposition, since I is the de-
homogenization of (fhom

1 , . . . , fhom
r ), and b) is a consequence of the fact

that Jdeh is an image of J under a surjective ring homomorphism. �

Is the saturation needed in the above corollary? The following example
answers this affirmatively.

Example 4.3.9. Let P = K[x1, x2, x3] be equipped with the standard grad-
ing given by W = (1 1 1), let f1 = x2

1 + x2 , f2 = x2
1 + x3 , let I = (f1, f2),

and let P = K[y1, x1, x2, x3] . Then we have (fhom
1 , fhom

2 ) ⊂ Ihom , since
(f1 − f2)hom = (x2 − x3)hom = x2 − x3 is contained in Ihom , but not in
the ideal (fhom

1 , fhom
2 ) = (x2

1 + y1x2, x2
1 + y1x3) which does not contain any

non-zero homogeneous element of degree one.

Our next two propositions deal with the next level of generality, namely
with the behaviour of homogenization and dehomogenization under impor-
tant ideal-theoretic operations.
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Proposition 4.3.10. Let I , I1 , and I2 be ideals in P .
a) If I1 ⊆ I2 , then we have Ihom

1 ⊆ Ihom
2 .

b) We have (I1 ∩ I2)hom = Ihom
1 ∩ Ihom

2 .
c) We have (

√
I)hom =

√
Ihom .

d) The ideal I is prime if and only if Ihom is prime.

Proof. Claim a) follows immediately from Definition 4.3.4.a. In b), the inclu-
sion “⊆” follows from a). Now let F ∈ Ihom

1 ∩Ihom
2 be a homogeneous polyno-

mial. Then Proposition 4.3.5 shows F deh ∈ I1 ∩ I2 , and Proposition 4.3.2.h
yields F = (y1 · · · ym)s(F deh)hom ∈ (I1 ∩ I2)hom for some s ≥ 1. Since
Ihom
1 ∩ Ihom

2 is a homogeneous ideal, this proves the claim.
Next we prove claim c). By Proposition 4.3.5.b, a homogeneous polyno-

mial F ∈ P satisfies F ∈ (
√

I)hom if and only if F deh ∈
√

I , and this
means that there exists s ≥ 0 such that (F deh)s ∈ I . By Proposition 4.3.2.g,
the latter condition is equivalent to (F s)deh ∈ I for some s ≥ 0, and thus,
by Proposition 4.3.5.b, equivalent to F s ∈ Ihom for some s ≥ 0, i.e. to
F ∈

√
Ihom .

For the proof of d) we use Proposition 1.7.12 which says that Ihom is a
prime ideal if and only if FG ∈ Ihom implies F ∈ Ihom or G ∈ Ihom for
homogeneous polynomials F,G ∈ P . Notice that this proposition is applica-
ble, because Lex defines a monoid ordering on Zm . In order to prove “⇒”,
let F,G ∈ P be homogeneous polynomials such that FG ∈ Ihom . Using
Proposition 4.3.2.h, we find r, s ≥ 0 such that F = (y1 · · · ym)r(F deh)hom

and G = (y1 · · · ym)s(Gdeh)hom . Then we use F dehGdeh ∈ I to conclude that
F deh ∈ I or Gdeh ∈ I . Hence we have F = (y1 · · · ym)r(F deh)hom ∈ Ihom

or G = (y1 · · · ym)s(Gdeh)hom ∈ Ihom . Finally, the implication “⇐” follows
from the observation that every element f ∈ I is the dehomogenization of
fhom ∈ Ihom . �

Although, as we have seen, homogenization is compatible with many ideal-
theoretic operations, this is not true for sums and products of ideals. Our next
example shows that the corresponding claims in [ZS60], Ch. VII, Thm. 17,
do not hold (see also Exercise 4).

Example 4.3.11. Using the same assumptions as in Example 4.3.9, we let
I1 = (f1) and I2 = (f2).
a) We have Ihom

1 = (fhom
1 ) = (x2

1+y1x2) and Ihom
2 = (fhom

2 ) = (x2
1+y1x3).

Since the element f1 − f2 = x2 − x3 ∈ I1 + I2 satisfies (f1 − f2)hom =
x2 −x3 ∈ (I1 + I2)hom and (f1 − f2)hom /∈ Ihom

1 + Ihom
2 = (fhom

1 , fhom
2 ) =

(x2
1+y1x2, x2

1+y1x3), we see that the inclusion Ihom
1 +Ihom

2 ⊆ (I1+I2)hom

can be strict.
b) Consider the ideals I3 = (f1, x

2
2) and I4 = (f2, x

2
2). Then f1x

2
2 − x2

2f2 =
x3

2 − x2
2x3 ∈ I3 · I4 implies that we have x3

2 − x2
2x3 ∈ (I3 · I4)hom . Using

Corollary 4.3.8.a, we calculate Ihom
3 = (fhom

1 , x2
2) :

P
y∞
1 = (x2

1+y1x2, x2
2)

and, similarly, Ihom
4 = (fhom

2 , x2
2) :

P
y∞
1 = (x2

1 +y1x3, x
2
2). It follows that
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the ideal Ihom
3 ·Ihom

4 contains no non-zero elements of degree three. Hence
the inclusion Ihom

3 · Ihom
4 ⊆ (I3 · I4)hom can be strict.

Since dehomogenization is nothing but the application of a surjective
ring homomorphism, it is well-behaved with respect to many ideal-theoretic
operations. The following proposition summarizes this good behaviour.

Proposition 4.3.12. Let J , J1 , and J2 be homogeneous ideals in P .
a) If J1 ⊆ J2 , then we have Jdeh

1 ⊆ Jdeh
2 .

b) We have (J1 ∩ J2)deh = Jdeh
1 ∩ Jdeh

2 and (J1 + J2)deh = Jdeh
1 + Jdeh

2 .
c) We have (

√
J)deh =

√
Jdeh .

d) If J is a prime ideal of P which does not contain y1 · · · ym , then Jdeh is a
prime ideal of P . Conversely, if Jdeh is a prime ideal of P and y1 · · · ym

is not a zerodivisor for P/J, then J is a prime ideal of P .

Proof. It is clear that a) holds, and in b) the only non-trivial part is the
containment “⊇” in the first formula. Let f ∈ Jdeh

1 ∩ Jdeh
2 . By Proposi-

tion 4.3.5.b, there exists a number s ≥ 0 such that (y1 · · · ym)sfhom ∈ J1 and
(y1 · · · ym)sfhom ∈ J2 . Hence we get f = ((y1 · · · ym)sfhom)deh ∈ (J1∩J2)deh .

For the proof of c), we note that, by Proposition 4.3.5.b, a polynomial
f ∈ P satisfies f = (fhom)deh ∈ (

√
J)deh if and only if (y1 · · · ym)sfhom ∈

√
J

for some s ≥ 0. This is equivalent to ((y1 · · · ym)sfhom)t ∈ J for some t ≥ 0,
and therefore to f t = ((y1 · · · ym fhom)t)deh ∈ Jdeh for some t ≥ 0, i.e. to
f ∈

√
Jdeh .

It remains to prove d). First we assume that J is a prime ideal which does
not contain y1 · · · ym . Then Jdeh ⊂ P is a proper ideal of P , since 1 ∈ Jdeh

would imply (y1 · · · ym)s·1 ∈ J for some s ≥ 0, contradicting our assumption.
Now let f, g ∈ P such that fg ∈ Jdeh . By Propositon 4.3.5.b, there exists
a number s ≥ 0 such that (y1 · · · ym)s(fg)hom = (y1 · · · ym)sfhomghom ∈ J .
Since y1 · · · ym /∈ J , this yields fhom ∈ J or ghom ∈ J . Therefore we have
f = (fhom)deh ∈ Jdeh or g = (ghom)deh ∈ Jdeh .

Conversely, let F,G ∈ P be homogeneous polynomials such that FG ∈ J .
Then (FG)deh = F dehGdeh ∈ Jdeh implies F deh ∈ Jdeh or Gdeh ∈ Jdeh .
Using Proposition 4.3.5.c, we get (y1 · · · ym)sF ∈ J for some s ≥ 0 or
(y1 · · · ym)tG ∈ J for some t ≥ 0. Since y1 · · · ym is a non-zerodivisor for
P/J , this implies F ∈ J or G ∈ J . Now Propositon 1.7.12 shows that J is
a prime ideal of P . �

The last part of this subsection deals with the behaviour of Gröbner
bases under dehomogenization. To this end, we first explain how to relate
term orderings on P to term orderings on P . Recall that P is graded by
W = (Im | W ), and observe that W is non-negative (resp. positive) if and
only if W is non-negative (resp. positive).

Definition 4.3.13. Let σ be a monoid ordering on Tn = T(x1, . . . , xn)
and let us consider the relation σW on Tm+n = T(y1, . . . , ym, x1, . . . , xn)
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which is defined by the following rule. Given two terms t1, t2 ∈ Tm+n , we
say that t1 ≥σW t2 if either we have degW (t1) >Lex degW (t2) or we have
degW (t1) = degW (t2) and tdeh

1 ≥σ tdeh
2 . We call σW the extension of σ

by W . If it is clear which grading we are considering, we shall simply denote
it by σ .

Notice that σ is not necessarily a true extension of σ in the sense that
its restriction to Tn need not coincide with σ . However, this is the case if σ
is compatible with degW . The extension of a monoid ordering satisfies the
following properties.

Proposition 4.3.14. Let σ be a monoid ordering on Tn, and let σ be its
extension by W .
a) The relation σ is a monoid ordering on Tm+n which is compatible

with degW .
b) If W is non-negative and the restriction of σ to the terms in P0 is a

term ordering, then σ is a term ordering on Tm+n .
c) If W is positive, then σ is a term ordering on Tm+n .
d) If σ is of the form σ = Ord(V ) for a non-singular matrix V ∈ Matn(Z) ,

then we have σ = Ord
(Im W

0 V

)
.

Proof. First we prove a). In order to check antisymmetry, we assume that
t = yα1

1 · · · yαm
m xβ1

1 · · ·xβn
n and t′ = y

α′
1

1 · · · yα′
m

m x
β′
1

1 · · ·xβ′
n

n satisfy t ≥σ t′

and t′ ≥σ t . Then we have degW (t) = degW (t′) and tdeh = (t′)deh , and
therefore W · (α1, . . . , αm, β1, . . . , βn)tr = W · (α′

1, . . . , α
′
m, β′

1, . . . , β
′
n)tr and

(β1, . . . , βn) = (β′
1, . . . , β

′
n). By plugging the second equation into the first

one, we find Im · (α1, . . . , αm)tr = Im · (α′
1, . . . , α

′
m)tr , and hence t = t′ . The

other axioms for monoid orderings are easy to check, and the compatibility
of σ with degW is an immediate consequence of the definition.

Now we show b). Since σ is compatible with degW , we have yi >σ 1
for i = 1, . . . , m . For the same reason, if i ∈ {1, . . . , n} is such that
degW (xi) = degW (xi) >Lex 0, then xi >σ 1. Finally, if i ∈ {1, . . . , n} is
such that degW (xi) = 0, then the hypothesis implies xi >σ 1. By definition
of σ , we obtain xi >σ 1.

Claim c) follows from b), because if W is positive, we have P0 = K .
Finally, claim d) follows from the definition of σ in a straightforward manner.

�

Let us clarify the details of this proposition using an example.

Example 4.3.15. Let P = Q[x1, x2, x3] be graded by W = (1 1 0), and
let σ = Ord(V ) be the monoid ordering on T3 given by V =

(−1 1 1
0 1 1
0 0 1

)
.

Notice that the grading given by W is not positive, and that σ is not a term
ordering. However, the extension σ of σ by W is a term ordering by part b)
of the proposition, and we have σ = Ord

(
1 W
0 V

)
by d).
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The following lemma will prove to be a useful tool.

Lemma 4.3.16. Let G ∈ P be a non-zero homogeneous polynomial, and let
f ∈ P be a non-zero polynomial. Then
a) There exist s1, . . . , sm ∈ N such that LTσ(G) = ys1

1 · · · ysm
m LTσ(Gdeh) .

Hence we have (LTσ(G))deh = LTσ(Gdeh) .
b) If σ is compatible with degW , then

LTσ(fhom) = yµ−d1 LTσ(DFW (f)) = yµ−d1 LTσ(f)

where µ = topdeg(f) and d1 = degW (DFW (f)) .
c) If σ is compatible with degW and W ∈ Mat1,n(Z) is a one-row matrix,

then
LTσ(fhom) = LTσ(DFW (f)) = LTσ(f)

Proof. The proof of a) follows from the definition of σ . The proof of b)
follows from f = (fhom)deh and Proposition 4.3.2.a. The proof of c) follows
from b) and the fact that W ∈ Mat1,n(Z) implies µ = d1 . �

The assumption that σ is degree compatible cannot be dropped in part b)
of this lemma, as the following example shows.

Example 4.3.17. Let P = K[x1, x2] graded by W =
(
1 0
0 1

)
, let f = x1 +x2 ,

and let G = fhom = y2x1 + y1x2 . The term ordering σ = Ord(
(
0 1
1 0

)
) is

clearly not compatible with degW . Nevertheless, we have LTσ(G) = y1x2 =
y1 LTσ(Gdeh) in accord with a). But LTσ(fhom) = y1x2 does not agree with
the right-hand side, since µ = (1, 1) and d1 = (1, 0) and DFW (f) = x1 yield
yµ−d1 LTσ(DFW (f)) = y2x1 .

If we use the lexicographic term ordering instead, it is clearly compatible
with degW , and we obtain LTLex(f

hom) = y2x1 = yµ−d1 LTLex(DFW (f)) in
agreement with claim b).

Our next proposition shows how Gröbner bases behave under dehomoge-
nization. Notice that under the hypotheses of the following proposition, the
ordering σ is a term ordering by Proposition 4.3.14.b.

Proposition 4.3.18. (Dehomogenization of Gröbner Bases)
Let P be non-negatively graded by W ∈ Matm,n(Z) , let σ be a term ordering
on Tn , let J ⊆ P be a non-zero homogeneous ideal, and let {G1, . . . , Gs} be a
homogeneous σ -Gröbner basis of J . Then {Gdeh

1 , . . . , Gdeh
s } is a σ -Gröbner

basis of Jdeh .

Proof. It suffices to show for every non-zero polynomial f ∈ Jdeh that there
exists an index i ∈ {1, . . . , s} such that LTσ(f) is a multiple of LTσ(Gdeh

i ).
Since fhom ∈ (Jdeh)hom , Proposition 4.3.5.c yields a number � ∈ N such that
(y1 · · · ym)�fhom ∈ J . By assumption, there exist an index i ∈ {1, . . . , s} and
a term t ∈ Tn such that (y1 · · · ym)� LTσ(fhom) = yα1

1 · · · yαm
m t LTσ(Gi).
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By part a) of the lemma, there exist numbers s1, . . . , sm ∈ N such that
LTσ(fhom) = ys1

1 · · · ysm
m LTσ(f). If we dehomogenize the two expressions

for LTσ(fhom) and use part a) of the lemma again, we obtain the equality
LTσ(f) = t (LTσ(Gi))deh = t LTσ(Gdeh

i ), as claimed. �

4.3.B Macaulay Bases and Homogenization

In this subsection we consider different aspects of the process of homog-
enizing an ideal, specifically its relation to Macaulay bases and its geo-
metric interpretation. Since it turns out that the results we are going to
discuss do not hold in general, we restrict to the case when m = 1 and
the polynomial ring P = K[x1, . . . , xn] is graded by a row of positive in-
tegers W = (w1 · · · wn) ∈ Mat1,n(Z) . Moreover, since we now have only
one homogenizing indeterminate, it is customary to denote it by x0 rather
than by y1 . Hence we let P = K[x0, . . . , xn] be graded by the matrix
W = (1 w1 · · · wn). Notice that we have degW (f) = degW (fhom) and
fhom(0, x1, . . . , xn) = DFW (f) for every non-zero polynomial f ∈ P .

In Example 4.3.9 we saw that, to compute the homogenization of an ideal
(see Corollary 4.3.8.a), it is usually not sufficient to homogenize a system of
generators. Sometimes it is essential to perform the saturation with respect
to x0 . This suggests the following natural question. Which systems of gener-
ators of I have the property that their homogenizations generate Ihom ? Our
next theorem says that the answer to this question is “Macaulay bases”.

Theorem 4.3.19. (Macaulay Bases and Homogenization)
Let I be a proper ideal of P , and let {f1, . . . , fr} ⊂ P \ {0} be a system of
generators of I . Then the following conditions are equivalent.
a) We have Ihom = (fhom

1 , . . . , fhom
r ) .

b) The set {f1, . . . , fr} is a Macaulay basis of I with respect to the grading
given by W .

Proof. First we show that a) implies b). Given a polynomial f ∈ I \ {0} ,
we use the hypothesis to find a representation fhom =

∑r
i=1 Gif

hom
i , where

Gi is a homogeneous polynomial in P of degree degW (f) − degW (fi). If
we substitute x0 �→ 0 in this equation and use Proposition 4.3.2, we obtain
DFW (f) =

∑r
i=1 Gi(0, x1, . . . , xn) DFW (fi), as we had to show.

Now we prove that b) implies a). The ideal J = (fhom
1 , . . . , fhom

r ) is a
homogeneous ideal in P which is contained in Ihom . Using induction on
the degree d , we shall prove Jd = Ihom

d for all d ≥ 0. For d = 0, we
have Ihom

0 = J0 = (0), since I ⊂ P means that I contains no non-zero
constant polynomial. For d > 0, we let G ∈ Ihom

d . By Proposition 4.3.2.h,
the polynomial G is of the form G = xs

0(G
deh)hom for some s ≥ 0, and

Proposition 4.3.5.e implies (Gdeh)hom ∈ Ihom
d−s . Thus the claim follows from

the induction hypothesis Ihom
d−s = Jd−s if s > 0. Hence we may assume that

s = 0, i.e. that G = (Gdeh)hom .



56 4. The Homogeneous Case

By assumption and Corollary 1.7.11, there are homogeneous polynomi-
als g1, . . . , gr ∈ P of degree degW (gi) = degW (Gdeh) − degW (fi) such
that DFW (Gdeh) =

∑r
i=1 gi DFW (fi). Hence the polynomial Gdeh ∈ P is

of the form Gdeh =
∑r

i=1 gifi + h with a polynomial h ∈ P whose de-
gree is degW (h) < degW (Gdeh) = d . Using Proposition 4.3.2.c, we obtain
G = (Gdeh)hom =

∑r
i=1 gif

hom
i + xt

0H with t > 0 and a homogeneous
polynomial H ∈ P which is not divisible by x0 . Consequently, we have
H = (Hdeh)hom and xt

0H ∈ Ihom
d . Therefore Proposition 4.3.5.e and the in-

duction hypothesis show H ∈ Ihom
d−t = Jd−t . Altogether, we find G ∈ Jd as

claimed. �

For instance, for a principal ideal I = (f) in P , this theorem shows
Ihom = (fhom) , since {f} is a Macaulay basis of I . Exercises 8 and 9 show
that both implications of this theorem can fail in the case m ≥ 2.

Recall that Corollary 4.3.8 provides a method for computing the homoge-
nization of an ideal using saturation. Theorem 4.3.19 can be used to compute
homogenizations in another way if m = 1 and P is positively graded.

Corollary 4.3.20. Given an ideal I in P, consider the following sequence
of instructions.
1) Choose a non-singular matrix V ∈ Matn(Z) of the form

(
W
W ′
)
, where

W ′ ∈ Matn−1,n(Z) .
2) Compute a Gröbner basis {g1, . . . , gs} of I with respect to Ord(V ) .
3) Return the ideal (ghom

1 , . . . , ghom
s ) and stop.

This is an algorithm which computes Ihom = (ghom
1 , . . . , ghom

s ) .

Proof. It suffices to combine Corollary 4.2.16 and the theorem. �

Proposition 4.3.21. (Homogenization of Gröbner Bases)
Let σ be a term ordering on Tn which is compatible with degW , let I
be an ideal in P , and let {g1, . . . , gs} be a σ -Gröbner basis of I . Then
{ghom

1 , . . . , ghom
s } is a σ -Gröbner basis of Ihom .

Proof. It suffices to show that, for every non-zero homogeneous polynomial
G ∈ Ihom , there exists an index i ∈ {1, . . . , s} such that LTσ(G) is a mul-
tiple of LTσ(ghom

i ). Since Gdeh ∈ I \ {0} by Proposition 4.3.5, and since
{g1, . . . , gs} is a σ -Gröbner basis of I , we know that LTσ(Gdeh) is a mul-
tiple of LTσ(gi) for some i ∈ {1, . . . , s} . By Lemma 4.3.16.c, it follows that
LTσ((Gdeh)hom) is a multiple of LTσ(ghom

i ). Now the claim is a consequence
of Proposition 4.3.2.h. �

By this proposition, the polynomials ghom
1 , . . . , ghom

s computed by the al-
gorithm of Corollary 4.3.20 are actually a Gröbner basis of Ihom with respect
to σ , where σ = Ord

(
W
W ′
)
. On the other hand, Exercise 9 shows that the

proposition can fail in the case m ≥ 2.
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Our next topic is another interpretation of the homogenization process
which has a decidedly more geometric flavor. The basic result is part b) of
the following theorem. Notice that there exists a natural homomorphism of
K -algebras K[x0] −→ P/Ihom which allows us to consider P/Ihom as a
K[x0] -module.

Theorem 4.3.22. (Homogenization as a Free Module)
Let I be a proper ideal in P .
a) We have isomorphisms of K -algebras P/(Ihom + (x0)) ∼= P/DFW (I)

and P/(Ihom + (x0 − c)) ∼= P/I for every c ∈ K \ {0} .
b) The ring P/Ihom is a free K[x0]-module.

Proof. First we construct the two isomorphisms in a). By Proposition 4.3.2.a,
we have fhom(0, x1, . . . , xn) = DFW (f) for all f ∈ P \ {0} . Thus the preim-
age of DFW (I) under the homomorphism P −→ P defined by x0 �→ 0 and
xi �→ xi for i = 1, . . . , n is the ideal Ihom + (x0). This proves the first claim
in a). The second isomorphism is induced by the homomorphism ϕ : P −→ P
defined by ϕ(x0) = c and ϕ(xi) = cwi xi for i = 1, . . . , n . Using Proposi-
tion 4.3.2.a, we see that ϕ maps fhom ∈ Ihom to cd f for f ∈ I \ {0} and
d = degW (f). Hence ϕ maps Ihom + (x0 − c) onto I .

It remains to prove that ϕ−1(I) is contained in Ihom+(x0−c). Let f ∈ P
be a non-zero polynomial such that g = ϕ(f) ∈ I . Then the polynomial
h = cdegW (g) f − ghom satisfies ϕ(h) = cdegW (g) g − cdegW (g) g = 0, and
therefore h = cdegW (g) f − ghom ∈ Ker(ϕ) = (x0 − c). Since c �= 0, we obtain
f ∈ Ihom + (x0 − c), as we wanted to show. Thus ϕ induces the desired
isomorphism.

Now we prove b). We choose a term ordering σ on Tn which is compatible
with degW and let {f1, f2, . . . , fs} be a σ -Gröbner basis of I . By Macaulay’s
Basis Theorem 1.5.7, the residue classes of the terms in B = Tn \ LTσ{I}
form a K -basis of P/I . Our goal is to show that the residue classes of the
elements of B in P/Ihom form a K[x0] -basis. By Proposition 4.3.21, the
set {fhom

1 , . . . , fhom
s } is a σ -Gröbner basis of Ihom. By Lemma 4.3.16.b, we

have LTσ(fi) = LTσ(fhom
i ) for i = 1, . . . , s . Therefore it follows that the set

T(x0, . . . , xn) \LTσ{Ihom} equals ∪∞
i=0 xi

0B . Hence the residue classes of the
elements of this set form a K -basis of P/Ihom . Clearly, this implies that B
is a basis of P/Ihom as a K[x0] -module. �

In the language of algebraic geometry, the preceding theorem says that,
for any ideal I ⊂ P , the algebra homomorphism K[x0] −→ P/Ihom defines
a flat family whose special fiber is P/DFW (I) and whose general fiber
is P/I . Since the ring K[x0] is a principal ideal domain, flatness (a concept
not defined here) is equivalent to freeness (as in part b) of the theorem).
Theorem 4.3.19 allows us to characterize Macaulay bases by their behaviour
with respect to this flat family.
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Proposition 4.3.23. (Macaulay Bases and the Flat Family)
Let I be a proper ideal in P , and let {f1, . . . , fs} ⊆ P be a system of gener-
ators of I . Then the following conditions are equivalent.
a) The set {f1, . . . , fs} is a Macaulay basis of I .
b) For every c ∈ K , the residue classes of {fhom

1 , . . . , fhom
s } in the ring

P/(x0 − c) generate the ideal (Ihom + (x0 − c))/(x0 − c) .

Proof. By Theorem 4.3.19, condition a) implies Ihom = (fhom
1 , . . . , fhom

s ),
and hence b). Conversely, if we assume b) and apply it to the case c = 0, we
see that {DFW (f1), . . . ,DFW (fs)} generates DFW (I). Thus {f1, . . . , fs} is
a Macaulay basis of I . �

Another way to phrase the above statement is that if these conditions
hold, then the residue classes of {fhom

1 , . . . , fhom
s } generate the defining ideal

of every fiber of the flat family K[x0] −→ P/Ihom . Let us explain the geo-
metric content of this proposition with a few examples.

Example 4.3.24. Let P = Q[x1, x2] be graded by the matrix W = (1 2),
let f1 = x2

1 + x2
2 , let f2 = x1x2 , and let I = (f1, f2). Then we obtain

fhom
1 = x2

0x
2
1 + x2

2 and fhom
2 = x1x2 . The ideal I corresponds geometrically

to the origin Z(I) = {(0, 0)} ⊆ A2
Q

.

Now we look at the ideal Ĩ = (fhom
1 , fhom

2 ) in P and at its residue class
ideals (Ĩ+(x0−c))/(x0−c) ⊆ P/(x0−c) ∼= P for various c ∈ Q . If c �= 0, then
that residue class ideal is isomorphic to the ideal Ic = (c2x2

1 +x2
2, x1x2) ⊆ P

which corresponds to Z(Ic) = {(0, 0)} . But if c = 0, then the residue class
ideal is I0 = (x2

2, x1x2) and corresponds to the line Z(I0) = {(λ, 0) | λ ∈ Q} .

........................................................ ................

........

........

........

.....................

................

x1

x2

•............................................................................................................................................................................................................................................................................................................................................................................................................................................................

Thus the family K[x0] −→ P/Ĩ has general fiber {(0, 0)} , i.e. a point,
and a special fiber which is a line. This means that the family is not
flat. The reason is that {f1, f2} is not a Macaulay basis of I . If we add
the third polynomial f3 = x3

1 , then {f1, f2, f3} is a Macaulay basis of I
and the family K[x0] −→ P/(fhom

1 , fhom
2 , fhom

3 ) is flat. Its special fiber
P/(Ihom + (x0)) ∼= P/(x3

1, x1x2, x2
2) corresponds again to the origin only,

because Z((x3
1, x1x2, x2

2)) = {(0, 0)} .

Example 4.3.25. Let P = Q[x1, x2] be standard graded, let f1 = x1x2 ,
let f2 = x2

1 − x1 , let f3 = x2
2 − x2 , and let I = (f1, f2, f3). Geometrically,

the ideal I corresponds to three points Z(I) = {(0, 0), (1, 0), (0, 1)} ⊆ A2
Q

.
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It is easy to check that {f1, f2, f3} is a Macaulay basis of I . Thus we have
Ihom = (fhom

1 , fhom
2 , fhom

3 ).
Let us look at the family K[x0] −→ P/Ihom . For c ∈ Q \ {0} , the

fiber P/(Ihom + (x0 − c)) corresponds to Z((x1x2, x
2
1 − cx1, x

2
2 − cx2)) =

{(0, 0), (c, 0), (0, c)} . For c = 0, the fiber P/(Ihom + (x0)) corresponds to
{(0, 0)} .

........................................................ ................

........

........

........

........

........................

................

x1

x2

•

•

•←−

⏐⏐�
Thus we can interpret the process of letting c −→ 0 as the process of

moving the two points (c, 0), (0, c) towards the origin. In the special fiber,
the three points come together at the origin. This suggests that we should
consider the special fiber as a point of multiplicity three, a topic which we
shall examine more closely in Chapter 5.

Exercise 1. Let K be a field and P = K[x1, . . . , xn] . Find a matrix
W ∈ Matm,n(Z) such that the grading defined by W is of positive type,

but the grading on K[y1, . . . , ym, x1, . . . , xn] defined by W = (Im|W ) is
not of positive type.

Exercise 2. Let K be an algebraically closed field, let P = K[x0, x1] be

standard graded, let d ≥ 1, and let F ∈ P be a non-zero homogeneous
polynomial of degree d . Show that F admits a factorization F = F1 · · ·Fd

with homogeneous polynomials F1, . . . , Fd ∈ P1 .

Exercise 3. In the context of Subsection 4.3.A, let f1, . . . , fs ∈ P and
I = (f1, . . . , fs) . Prove that Ihom = (fhom

1 , . . . , fhom
s ) · P y1···ym ∩ P where

P y1···ym is the localization of P in the element y1 · · · ym .

Exercise 4. Let K be a field, let P = K[x1, . . . , xn] be graded by
a matrix W ∈ Matm,n(Z) , let I1 and I2 be two ideals in P, and let

P = K[y1, . . . , ym, x1, . . . , xn] .

a) Show that (I1 + I2)
hom = (Ihom

1 + Ihom
2 ) :

P
(y1 · · · ym)∞ .

b) Show that Ihom
1 · Ihom

2 = (I1 · I2)
hom if I1 and I2 are principal ideals.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
let I ⊆ P be an ideal, let f ∈ P be a non-zerodivisor for P/I , and let

P = K[x0, . . . , xn] .

a) Show that fhom is a non-zerodivisor for P/Ihom .
b) Find an example in which the inclusion Ihom +(fhom) ⊆ (I +(f))hom

is strict. Under which additional hypothesis on f is this an equality?
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Exercise 6. Let K be a field, and let J be a homogeneous ideal
in K[y1, . . . , ym, x1, . . . , xn] . Show that Jdeh can be a prime ideal with-
out J having this property.

Exercise 7. In the situation of Subsection 4.3.B, let I ⊂ P be a proper
ideal in P , and let ϕ : K[x0] −→ P/Ihom be the canonical ring homomor-
phism.

a) Show that ϕ is injective.
b) Prove that, for every non-zero polynomial f ∈ K[x0] , the image ϕ(f)

is a non-zerodivisor in P/Ihom .

Exercise 8. Let K be a field, and let P = K[x1, x2, x3, x4] be graded
by W =

(
1 1 1 0
1 0 0 1

)
.

a) Using CoCoA, show that the homogenizations of the polynomials
f1 = x1x2 − x2

3 and f2 = x2
2 − x2

4 generate the ideal (f1, f2)
hom .

b) Use the polynomial f3 = x1x
2
4 − x2x

2
3 to show that {f1, f2} is not a

Macaulay basis of (f1, f2) with respect to the grading given by W .

Exercise 9. Let K be a field, and let P = K[x1, x2, x3, x4] be graded
by W =

(
1 1 0 0
0 0 1 1

)
.

a) Show that the polynomials f1 = x1 − x3 and f2 = x2 − x4 form a
Macaulay basis of the ideal I = (f1, f2) with respect to the grading
given by W .

b) Use the polynomial f3 = x1x4 − x2x3 to prove that (fhom
1 , fhom

2 ) is
strictly contained in Ihom .

Exercise 10. In the setting of Proposition 4.3.21, let G be the reduced
σ -Gröbner basis of I . Prove that Ghom = {ghom

1 , . . . , ghom
s } is the reduced

σ -Gröbner basis of Ihom .

Exercise 11. Let P = Q[x1, x2] be graded by the identity matrix, let

I = (x1 + x2, x2
1, x2

2) , and let P = Q[y1, y2, x1, x2] . Consider P/Ihom as

a K[y1, y2] -module via the natural homomorphism K[y1, y2] −→ P/Ihom

and show that is not free.

Tutorial 49: Homogenization of Modules

I’m against a homogenized society,
because I want the cream to rise.

(Robert Frost)

The definitions in this section require only slight modification and ex-
tension in order to generalize the process of homogenization to vectors of
polynomials contained in submodules of graded free modules over a graded
polynomial ring. If you work out the following problems, you attain a theory
of homogenization which has the same level of generality as the remainder of
this chapter.
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Let K be a field, let P = K[x1, . . . , xn] be graded by W ∈ Matm,n(Z), let
δ1, . . . , δr ∈ Zm , and let F be the graded free P -module F =

⊕r
i=1 P (−δi).

We introduce homogenizing indeterminates y1, . . . , ym and equip the poly-
nomial ring P = K[y1, . . . , ym, x1, . . . , xn] with the grading defined by
W = (Im | W ). Then F =

⊕r
i=1 P (−δi) is a graded free P -module in

the natural way.
Given a vector v ∈ F \ {0} , we decompose it into its homogeneous com-

ponents v = v1 + · · · + vs , where vi is homogeneous of degree di ∈ Zm .
Then we let d ∈ Zm be the componentwise maximum of {d1, . . . , ds} ,
call it the top degree of v , and denote it by topdegW (v). The vector
vhom = yd−d1v1 + · · · + yd−dsvs ∈ F is called the homogenization of v
with respect to the grading given by W . For v = 0, we set vhom = 0.

Similarly, given a vector v ∈ F , we write v = (f̄1, . . . , f̄r) with poly-
nomials f̄1, . . . , f̄r ∈ P . Then we call v deh = (f̄1

deh, . . . , f̄r
deh) ∈ F the

dehomogenization of v .
a) Discuss how this definition generalizes Definition 4.3.1. In particular,

show that it behaves as if the canonical basis elements ei were true
indeterminates of degrees δi for i = 1, . . . , r .

b) Write a CoCoA function IsWHomog(. . .) which takes a vector in F , checks
whether it is homogeneous, and returns the corresponding Boolean value.

c) Implement a CoCoA function WDegree(. . .) which takes a homogeneous
vector in F or in F and returns its degree.

d) Prove the following rules for homogenizing vectors of polynomials.
1) For all v ∈ F , we have (vhom)deh = v .
2) For f ∈ P \ {0} and v ∈ F \ {0} , we have topdegW (fv) =

topdegW (f) + topdegW (v) as well as (fv)hom = (fhom)(vhom).
3) Let v, w, v+w ∈ F \{0} , and let d be the componentwise maximum

of d′ = topdegW (v) and d′′ = topdegW (w). Then we have

yd−topdegW (v+w) · (v + w)hom = yd−d′ · vhom + yd−d′′ · whom

4) For f̄ ∈ P and v, w ∈ F , we have (f̄ v)deh = (f̄deh)(v deh) and
(v + w)deh = vdeh + wdeh .

5) Let v ∈ F \ {0} be homogeneous and sj = max{i ≥ 0 | yi
j divides v}

for j = 1, . . . , m . Then we have

ys1
1 · · · ysm

m · (v deh)hom = v

In particular, we have v deh �= 0.
e) Write CoCoA functions WHomogenize(. . .) and WDehomogenize(. . .) which

take vectors in F and F , respectively, and perform the appropriate oper-
ation. Use your functions to compute the following homogenizations and
dehomogenizations, where we assume that P = Q[x1, . . . , xn] is graded
by W .
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1) vhom for v = (x2
1 + x2

2, x3
2) ∈ Q[x1, x2] ⊕ Q[x1, x2]((−1, 0)) graded

by the matrix W = (
(
1 1
2 3

)
)

2) whom for w = (x2
1x

2
2, x3

2x
3
3, x1x3) ∈ Q[x1, x2, x3]3 graded by the

matrix W =
(
1 1 1
0 1 2

)
3) v deh for v = (x1x2+x1y2, y2

1y4
2x1x2+y3

1y4
2x2) ∈ Q[x1, x2]((0,−1))⊕

Q[x1, x2]((2, 3)) graded by the matrix W =
(

1 0
−2 1

)
f) Let M be a submodule of F and M a graded submodule of F . Imitate

Definition 4.3.4 and introduce the homogenization Mhom of M and the
dehomogenization M deh of M . Then prove the following rules governing
these processes.
1) We have (Mhom)deh = M .
2) For a homogeneous vector v ∈ P , we have v ∈ Mhom if and only if

there exist a vector v ∈ M and numbers s1, . . . , sm ∈ N such that
v = ys1

1 · · · ysm
m vhom .

3) For a homogeneous vector v ∈ P , we have v deh ∈ M deh if and only
if (y1 · · · ym)s · v ∈ M for some s ≥ 0.

4) We have M ⊆ (M deh)hom = M :
F

(y1 · · · ym)∞ .
5) If M �= 0, then y1 · · · ym is a non-zerodivisor for F/Mhom .
6) If M is a proper graded submodule of F, then Mhom = P · M .

g) Use these rules to derive algorithms for computing the homogenization
and dehomogenization of submodules of F and F , respectively. Imple-
ment these algorithms in two CoCoA functions HomogModule(. . .) and
DehomogModule(. . .).

h) Using your function HomogModule(. . .), compute the homogenization of
the following submodules.
1) M1 = 〈(x1x2+1, x1+x2), (x3

1, x3
2), (x2, x1+1)〉 ⊆ Q[x1, x2]((−1, 0))⊕

Q[x1, x2]((0,−2)) graded by W =
(
1 2
2 1

)
2) M2 = 〈(x2

1 + 1, 0, 0), (0, x2
2 + 1, 0), (0, 0, x2

3 + 1)〉 ⊆ Q[x1, x2, x3]3

graded by W =
(
1 1 1
1 2 −1

)
i) Let M1,M2 be submodules of F and M1,M2 graded submodules of F .

Prove the following rules.
1) If M1 ⊆ M2 , then we have Mhom

1 ⊆ Mhom
2 .

2) We have (M1 ∩ M2)hom = Mhom
1 ∩ Mhom

2 .
3) If M1 ⊆ M2 , then we have Mdeh

1 ⊆ Mdeh
2 .

4) We have (M1 ∩ M2)deh = Mdeh
1 ∩ Mdeh

2 .
5) We have (M1 + M2)deh = Mdeh

1 + Mdeh
2 .

He who asks is a fool for five minutes,
but he who does not ask remains a fool forever.

(Chinese Proverb)
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Tutorial 50: The Homogeneous Part of an Ideal

The idea of homogenization is to approximate an arbitrary polynomial ideal
by a homogeneous ideal. The price we have to pay is the introduction of a
number of additional indeterminates. Another way to achieve the same goal is
to look at the ideal generated by the homogeneous elements in the given ideal.
Using this approach we avoid extra indeterminates, but the disadvantage is
that the approximation might be very bad, e.g. that the only homogeneous
element inside the ideal might be zero. Nevertheless, let us see what we can
do, and let us do it effectively.

Let K be a field, let P = K[x1, . . . , xn] be graded by W ∈ Matm,n(Z),
and let I be an ideal in P . Then the ideal IW generated by the homogeneous
polynomials in I is called the W-homogeneous part of I , or simply the
homogeneous part of I if it is clear which grading we are considering.
a) Prove that IW = Ihom ∩ P .

Hint: Show that both ideals are homogeneous and have the same homo-
geneous elements.

b) Using a), show that if I is a prime ideal, then IW too is a prime ideal.
c) Let σ be a term ordering on Tn . Generalize Tutorial 22.c by showing

that I is a homogeneous ideal if and only if its reduced σ -Gröbner basis
is homogeneous with respect to the grading given by W .

d) Let P = K[x1, . . . , xn] be standard graded. Find an ideal I ⊆ P such
that IW strictly contains the ideal generated by the homogeneous ele-
ments in some reduced Gröbner basis of I .

e) Combine the results obtained so far and develop an algorithm for comput-
ing IW . Implement this algorithm in a CoCoA function HomogPart(. . .)
which computes the homogeneous part of an ideal.
Hint: Use the reduced Gröbner basis of Ihom with respect to an elimina-
tion ordering for {y1, . . . , ym} .

f) Apply your function HomogPart(. . .) to compute the homogeneous parts
of the following ideals with respect to the gradings given by the stated
matrices.
1) I1 = (x2

1 − x1, x2
2 − x1) ⊆ Q[x1, x2] graded by W = (1 1)

2) I2 = (x1x2 − 1, 2x3
1x2 + x3

2 − x2
1) ⊆ Q[x1, x2] graded by W =

(
3 2
1 0

)
3) I3 = (x1x2x3 + x1 + x2, x1x2 + x2

2 + x2x3, x2
1x

2
2x3 + 2x1 + 2x2) ⊆

Q[x1, x2, x3] graded by W =
(
1 1 2
3 3 −1

)
g) The ideal generated by the terms in I is called the monomial part

of I and will be denoted by Imon . Explain how one can use the
preceding results in order to compute Imon . Write a CoCoA function
MonomialPart(. . .) which does this.

h) Compute the monomial parts of the following ideals.
1) J1 = (x1x2 + x1, x2

1x
2
2 + x2

1x2 + x2
1) ⊆ Q[x1, x2]

2) J2 = (x2
1 + 2x2

2, 2x2
1 + 2x1x2 + x2

2, x1x2 + 2x2
2) ⊆ Q[x1, x2]
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3) J3 = (x1x
2
2x3 + x1x2x3, x1x

2
2x3 + x2

2x3, x2
1x

3
2x3 + x2

1x2 + x1x2x3,
x5

1x
5
2x3) ⊆ Q[x1, x2, x3]

i) Let w1, . . . , wm be the the rows of W . We can consider them as matrices
in Mat1,n(Z) . Show that we have IW = (· · · ((Iw1)w2) · · ·)wm

.
j) Prove that IW ⊆ ⋂m

i=1 Iwi
and that this inclusion may be strict.

(Hint: Consider the ideal (x2 + y, x + y2) in Q[x, y] .)
k) Using i), implement a second function HomogPart2(. . .) , apply it in the

cases of f), and compare the results.
l) Compute the determinant of the matrix

W =

⎛⎜⎜⎝
2 1 . . . 1
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2

⎞⎟⎟⎠ ∈ Matn(Z)

Use this matrix together with i) to write a function MonomialPart2(. . .)
which computes Imon in an alternative way. Apply your function in the
cases of h) and compare the results.

Tutorial 51: Implicitization and Homogenization

In the current chapter it has been one of our dicta that many computations
can be performed more efficiently in a homogeneous setting. To make this
principle come alive, we now look at the computation of implicitizations us-
ing the technique of homogenizing, performing a homogeneous computation,
and dehomogenizing again. In Section 3.6 we defined the implicitization of
a tuple of polynomials (f1, . . . , fn) ∈ K[y1, . . . , ym]n as the ideal of all alge-
braic relations among them. Corollary 3.6.3 gives us a concrete method for
computing this ideal: form the diagonal ideal J = (x1 − f1, . . . , xn − fn) in
Q = K[x1, . . . , xn, y1, . . . , ym] and use elimination to get the implicitization
J ∩ K[x1, . . . , xn] .

Now we propose another way of computing such implicitizations. We in-
troduce a homogenizing indeterminate x0 and equip the polynomial ring
Q = K[x0, . . . , xn, y1, . . . , ym] with a suitable grading which makes the ideal
J = (x1 − fhom

1 , . . . , xn − fhom
n ) homogeneous. The we compute a homo-

geneous Gröbner basis of J ∩ K[x0, . . . , xn] and find J ∩ K[x1, . . . , xn] by
dehomogenizing it. We will guide you through a proof of the correctness of
this technique, ask you to implement it and to compare it to the former
method. In the second part of the tutorial, we introduce a variation of this
algorithm which computes the homogenization of the implicitization with re-
spect to the standard grading. An optimization of this algorithm is contained
in Tutorial 69.

Let K be a field, let P = K[x1, . . . , xn] , let P ′ = K[y1, . . . , ym] , and
let f1, . . . , fn ∈ P ′ \ {0} . We equip P with the grading given by the matrix
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W = (d1 · · · dn) , where di is the degree of fi with respect to the stan-
dard grading. Our goal is to show that we can compute the implicitization
of f1, . . . , fn by performing the following steps.
1) Form the polynomial ring Q = K[x1, . . . , xn, y1, . . . , ym] and the ideal

J = (x1 − f1, . . . , xn − fn) in Q .
2) Form the polynomial ring P = K[x0, . . . , xn] and equip it with the grad-

ing given by W = (1 d1 · · · dn).
3) Form the polynomial ring Q = K[x0, . . . , xn, y1, . . . , ym] and equip it

with the grading given by W̃ = (1 d1 d2 · · · dn 1 · · · 1).
4) For i = 1, . . . , n , compute the homogenization fhom

i of fi with respect
to x0 . Then form the ideal J = (x1 − fhom

1 , . . . , xn − fhom
n ) in Q .

5) Compute the elimination ideal I = J ∩ P .
6) Return the ideal I = Ideh .

In the following, you will prove that I = J∩P , i.e. that I is the implicitization
of J . Moreover, we shall see that I is the homogenization of I with respect
to the grading given by W .
a) Show that J ∩ P is a homogeneous ideal in P .
b) Using Proposition 3.6.1.a, prove that J is a prime ideal.
c) Using b), show that the ideal J ∩ P is saturated with respect to x0 .
d) Prove that the homogenization of J with respect to x0 is given by J .

(Hint: Use Corollary 4.3.8.)
e) Finally, use Corollary 4.3.7 to prove that (J ∩ P )hom = J ∩ P , where P

is graded by W and x0 is the homogenizing indeterminate.
f) Write a CoCoA function Implicit(. . .) which takes (f1, . . . , fn) and com-

putes the implicitization J ∩ P using the above method.
g) Apply your function Implicit(. . .) to compute the implicitizations of the

following tuples of polynomials. Compare the timings of your function to
the timings of the built-in CoCoA command Elim .
1) (y5

1 + y1y2 + y2, y4
1 + y1y

2
2 − y1 − 1, y3

1 + y2) in Z/(101)[y1, y2]
2) (y7

1 + y1y2 + y2, y4
1 + y1y

2
2 − y1 − 1, y3

1 + y2) in Z/(101)[y1, y2]
3) (y5

1 + y1y2 + y2, y4
1 + y1y

2
2 − y1 − 1, y3

1 + y2) in Q[y1, y2]
4) (y7

1 + y1y2 + y2, y4
1 + y1y

2
2 − y1 − 1, y3

1 + y2) in Q[y1, y2]
In the second part of this tutorial, we start with the same setting, but

we want to compute the homogenization of the implicitization J ∩ P with
respect to the standard grading on P. In this case, we can modify the above
steps as follows.
1’) Form the polynomial ring Q = K[x1, . . . , xn, y1, . . . , ym] and the ideal

J = (x1 − f1, . . . , xn − fn) in Q .
2’) Form the polynomial ring P = K[x0, . . . , xn] and equip it with the stan-

dard grading.
3’) Form the polynomial ring Q = K[x0, . . . , xn, y0, . . . , ym] and equip it

with the grading given by the matrix W̃ = (d d · · · d 1 · · · 1), where
d = max{d1, . . . , dn} is repeated n + 1 times.
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4’) For i = 1, . . . , n , compute the homogenization fhom
i of fi with respect

to y0 . Form the ideal J = (x0−yd
0 , x1−yd−d1

0 fhom
1 , . . . , xn−yd−dn

0 fhom
n )

in Q .
5’) Compute the elimination ideal I = J ∩ P .

In a manner which is similar to the method above we want to show the
formula I = (J ∩ P )hom . This gives us an efficient way of computing the
homogenization with respect to the standard grading of the implicitization
J ∩ P , since we have to compute only one Gröbner basis in a homogeneous
setting.
h) Show that J ∩ P is homogeneous with respect to the standard grading.
i) Using b), show that the ideal J ∩ P is saturated with respect to x0 .
j) Prove that the homogenization of J with respect to y0 is the ideal

(x1 − yd−d1
0 fhom

1 , . . . , xn − yd−dn
0 fhom

n ). (Hint: Use Corollary 4.3.8.)
k) Now show that J ∩ P = (J ∩ P )deh , where the dehomogenization is

formed with respect to x0 .
Hint: Prove the two inclusions. For the proof of “⊆”, equip P with the
grading given by (d · · · d), homogenize f ∈ J∩P with respect to y0 and
substitute yd

0 �→ x0 in fhom . For the proof of “⊇”, use the substitution
x0 �→ 1, y0 �→ 1.

l) Finally, use Corollary 4.3.7 to prove that (J ∩ P )hom = J ∩ P , where P
is standard graded and x0 is the homogenizing indeterminate.

m) Write a CoCoA function HomImplicit(. . .) which takes (f1, . . . , fn) and
computes the homogenization of the implicitization J ∩ P with respect
to the standard grading using steps 1’) – 5’).

n) Apply your function HomImplicit(. . .) to the examples in g) and measure
the timings.

Tutorial 52: Projective Closure

The geometric interpretation of the process of homogenizing a polynomial
ideal under the standard grading is the process of forming the projective
closure of an affine variety. Furthermore, the geometric interpretation of the
process of dehomogenizing a polynomial ideal is the process of passing to the
affine part of a projective variety. In this tutorial, we want to study these
processes from the geometric point of view.

Let K be a field, let P = K[x1, . . . , xn] and P = K[x0, . . . , xn] be
standard graded, let K be the algebraic closure of K , and let An (resp. Pn )
be the n -dimensional affine (resp. projective) space over K .
a) Show that, for i = 0, . . . , n , there exists an injective map ıi : An −→ Pn

defined by (p1, . . . , pn) �→ (p1 : . . . : pi : 1 : pi+1 : . . . : pn), where the “1”
occurs in the (i + 1)st position.

b) Prove that Pn is covered by the images of ı0, . . . , ın .
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In the following, we shall identify An with its image U under the map ı0 .
Thus, for a projective variety W ⊆ Pn , we can consider W ∩ U as a subset
of An . We call W ∩ U the affine part of W .
c) Let J ⊆ P be a homogeneous ideal which defines a non-empty projective

variety W = Z+(J) ⊆ Pn . Prove that the affine part of W is the affine
variety defined by Jdeh .
Now let I be an ideal in P , and let V = Z(I) be the affine variety in An

defined by I . Then the projective variety V = Z+(Ihom) ⊆ Pn is called the
projective closure of V .
d) Show that V ∩ U = V and that V is the smallest projective variety

whose affine part contains V .
e) Prove that the homogeneous vanishing ideal of V is I(V )hom .
f) Write a CoCoA function ProjClosure(. . .) which takes I and computes

the ideal Ihom which defines the projective closure of Z(I). Use your
function to compute the projective closure of the following affine varieties.
(In each case, you will have to find the vanishing ideal first.)
1) V1 = {(t3, t4, t5) | t ∈ K} ⊆ A3

2) V2 = {(t, u, t2, tu, u2) | t, u ∈ K} ⊆ A5 (This is the Veronese
surface which we first met in Tutorial 39.g.)

3) V3 = {(t, u, v, tu, tv) | t, u, v ∈ K} ⊆ A5

The variety H inf = Z+(x0) in Pn is called the hyperplane at infinity.
Let W ⊆ Pn be a non-empty projective variety defined by a homogeneous
ideal J ⊆ P . The points in W inf = W ∩ H inf are called the points at
infinity of W .
g) Show that H inf is the complement of U in Pn , and that it can be iden-

tified with Pn−1 .
h) Prove that W inf is the projective variety in Pn−1 defined by the ideal

obtained by setting x0 = 0 in the polynomials in J .
i) Compute the points at infinity of the projective closure of the twisted

cubic curve C = Z((x2
1 − x2, x

3
1 − x3)) ⊆ A3 . Then determine the set

of points at infinity of the projective variety Z+((x2
1 − x0x2, x

3
1 − x2

0x3))
in P3 obtained by homogenizing the generators of the defining ideal of C .
Compare and explain your findings.
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4.4 Term Orderings of DegRev Type

Mathematics is ...
the systematic misuse of a nomenclature

developed for that specific purpose
(Anonymous)

In the previous section we saw that if we want to homogenize an ideal in
a standard graded polynomial ring, we need an extra indeterminate which
then plays a special role. In Volume 1 we encountered several other situations
where a particular indeterminate becomes the focus of our attention. For
instance, in Sections 3.4 and 3.5 we computed intersections, colon modules,
and saturations by introducing a tag variable. In Tutorials 37 and 38 we found
an efficient way to calculate toric ideals using the saturation with respect to
an indeterminate.

What is the common thread connecting these phenomena? Is there any
advantage if we want to perform such operations and know that we are dealing
with a graded situation? Of course, there is. Otherwise, would we be asking
such rhetorical questions? In fact, we shall introduce a new nomenclature for
that specific purpose: a module term ordering is of xi -DegRev type if it acts
with respect to xi in the same way as DegRevLex does with respect to xn .
In other words, if the leading term of some homogeneous vector v is divisible
by xi , all terms in the support of v should be divisible by xi . Notice that this
generalizes the corresponding property of DegRevLex (see Corollary 1.5.12).

So, what are the advantages of this new terminology? Is it merely intended
to misuse you, our kind reader? Our answer is an unequivocal “no”. After
presenting you with a plethora of examples of term orderings of xi -DegRev
type, we show how we can use them in many common cases to compute colon
ideals and saturations in a simple manner. Applications include a homoge-
neous non-zerodivisor test, yet another way of computing homogenizations,
and a homogeneous radical membership test.

Moreover, we can quickly add an indeterminate to a graded submod-
ule (see Proposition 4.4.17) or reduce it modulo some indeterminate (see
Proposition 4.4.18). Geometrically, the last process corresponds to taking a
hyperplane section of an algebraic variety. This is one of the reasons for the
popularity of DegRevLex among algebraic geometers. But even a pure com-
putational commutative algebraist (i.e. a personified oxymoron) will enjoy
our final Corollary 4.4.19 which says that if you plug xi = 0 into a reduced
Gröbner basis and if your module term ordering is of xi -DegRev type, the
result is again a reduced Gröbner basis.

After all this advertising hype, it is high time to get going and offer our
new nomenclature for your delectation.

Let K be a field, let m,n, r ≥ 1, let P = K[x1, . . . , xn] be graded by
a matrix W ∈ Matm,n(Z) of rank m , let δ1, . . . , δr ∈ Zm , and let M be a
graded P -submodule of the graded free P -module F =

⊕r
i=1 P (−δi). The
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canonical basis of this graded free module will be denoted by {e1, . . . , er} .
We have degW (ei) = δi for i = 1, . . . , r .

In the following we shall denote the exponent of an indeterminate xi in
a term t = xα1

1 · · ·xαn
n ∈ Tn by logxi

(t). In other words, for i = 1, . . . , n ,
we let logxi

(t) = αi . The following definition introduces the central notion
of this section.

Definition 4.4.1. Let i ∈ {1, . . . , n} . We say that a module term order-
ing σ on Tn〈e1, . . . , er〉 is of xi -DegRev type if it satisfies the following
conditions:
a) The ordering σ is compatible with degW .
b) Let t, t′ ∈ Tn and j, k ∈ {1, . . . , r} . If the terms tej , t

′ek ∈ Tn〈e1, . . . , er〉
satisfy degW (tej) = degW (t′ek) and logxi

(t) < logxi
(t′), then we have

tej >σ t′ek .

This definition implies that for two terms of the same degree, one of which
is divisible by xi and one of which is not, the former one is the smaller one.
Furthermore, recall that a term ordering compatible with degW , and hence
a term ordering of DegRev type exists only if the grading given by W is
non-negative (see Proposition 4.2.3 and Exercise 2).

To get a feeling for this new notion, we consider a few examples. The
archetypal term ordering of DegRev type is DegRevLex.

Example 4.4.2. Let P be standard graded. The term ordering DegRevLex
on Tn is of xn -DegRev type, since it is degree compatible and, for all terms
t, t′ ∈ Tn of the same degree, logxn

(t) < logxn
(t′) implies t >DegRevLex t′ .

The term ordering DegRevLex can be generalized to a module term or-
dering in the following way.

Example 4.4.3. For r ≥ 1, we can define an ordering τ on the set of terms
Tn〈e1, . . . , er〉 of the graded free module F by defining tej ≥τ t′ek if we have
1) degW (tej) > degW (t′ek), or
2) degW (tej) = degW (t′ek) and t >RevLex t′ , or
3) degW (tej) = degW (t′ek) and t = t′ and j ≤ k .

It is easy to check that this defines a module term ordering τ on
Tn〈e1, . . . , er〉 . It is of xn -DegRev type, since for two terms tej , t

′ek of the
same degree we have that logxn

(t) < logxn
(t′) implies t >RevLex t′ , and

therefore tej >τ t′ek . We shall call τ the degree-reverse-lexicographic
module term ordering with respect to the grading given by W .

Other examples of term orderings of DegRev type follow from Defini-
tion 4.3.13.

Example 4.4.4. Let P be non-negatively graded by W ∈ Mat1,n(Z), let
P = K[x0, . . . , xn] be graded by W = (1 | W ), and let σ be a term ordering
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on T(x1, . . . , xn) which is compatible with degW . Then the extension σ of σ
by W is a term ordering of x0 -DegRev type on T(x0, . . . , xn).

Firstly, σ is a term ordering by Proposition 4.3.14.b. Secondly, it is
compatible with degW by Proposition 4.3.14.a. Finally, given two terms
t1, t2 ∈ T(x0, . . . , xn) such that degW (t1) = degW (t2) and such that
logx0

(t1) < logx0
(t2), it follows that degW (t1deh) > degW (t2deh). Then we

have t1 >σ t2 , since σ is compatible with degW .

It is easy to construct term orderings of xi -DegRev type on Tn for various
i ∈ {1, . . . , n} as follows.

Example 4.4.5. Let r = 1 and δ1 = 0.
a) Let w1, . . . , wn be positive integers, and let V be the matrix

V =

⎛⎜⎜⎜⎜⎜⎝
w1 w2 · · · wn−1 wn

−1 0 · · · 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎠
Then the term ordering σ = Ord(V ) is of x1 -DegRev type with respect
to the grading given by W = (w1, . . . , wn).

b) On T2, the term ordering represented by the matrix V =
(
1 2
1 0

)
is of

x2 -DegRev type with respect to the grading given by W = (1 2).

By Proposition 4.2.3, a degree compatible module term ordering exists
only if the grading given by W is non-negative. But the existence of a degree
compatible module term ordering is not enough to guarantee that there is a
term ordering of DegRev type (see Exercise 3). On the other hand, given a
degree compatible module term ordering, we can characterize whether it is
of DegRev type in analogy with the characterization of DegRevLex in Corol-
lary 1.5.12.

Proposition 4.4.6. Let σ be a module term ordering on Tn〈e1, . . . , er〉
which is compatible with degW , and let i ∈ {1, . . . , n} . Then the following
conditions are equivalent.
a) The ordering σ is of xi -DegRev type.
b) If a homogeneous vector v ∈ F \ {0} has a leading term LTσ(v) which is

divisible by x�
i for some positive integer � , the entire vector v is divisible

by x�
i , i.e. it is contained in x�

iF .

Proof. First we show that a) implies b). Let LTσ(v) = tej with t ∈ Tn and
j ∈ {1, . . . , r} , and let s ≥ 1 be the largest number such that xs

i | t . For
t′ek ∈ Supp(v), we have t′ek ≤σ LTσ(v) and degW (t′ek) = degW (LTσ(v)).
Therefore it follows that logxi

(t′) ≥ logxi
(t) = s , i.e. that xs

i | t′ . Altogether,
this shows that v is a multiple of xs

i .
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Conversely, let tej , t
′ek ∈ Tn〈e1, . . . , er〉 be two terms of the same degree

degW (tej) = degW (t′ek). Moreover, let s = logxi
(t) and s′ = logxi

(t′). We
have to show that s < s′ implies tej >σ t′ek . By dividing both sides of this
inequality by xs

i , we see that we may assume s = 0. Then v = tej + t′ek

satisfies xi � t and xi | t′ . By assumption, this yields LTσ(v) = tej . Hence
we get tej >σ t′ek , as we had claimed. �

One of the main uses of module term orderings of DegRev type is to
compute certain colon modules and saturations in a particularly simple way.
Notice that, given a submodule M ⊆ F and an ideal I , we always have
LTσ(M :

F
I) ⊆ LTσ(M) :

F
I , but this containment is generally strict (see

Exercise 5). In part b) of the following theorem and in several other results
of this section, we assume that we are given a homogeneous Gröbner basis of
a graded module. This is not a restrictive assumption, because, as we shall
see in the next section, the application of Buchberger’s Algorithm 2.5.5 to a
homogeneous system of generators yields a homogeneous Gröbner basis.

Theorem 4.4.7. (Colon by a Power of an Indeterminate)
Let M be a non-zero graded submodule of F , let i ∈ {1, . . . , n} , let σ be a
module term ordering of xi -DegRev type on Tn〈e1, . . . , er〉 , and let � ∈ N .
a) We have LTσ(M :

F
(x�

i)) = LTσ(M) :
F

(x�
i) .

b) Let G = {g1, . . . , gs} be a homogeneous σ -Gröbner basis of M . Then let
aj = max{α | xα

i divides gj} , let bj = min{aj , �} , and let g′j = gj/x
bj

i

for j = 1, . . . , s . Under these conditions {g′1, . . . , g′s} is a homogeneous
σ -Gröbner basis of M :

F
(x�

i) .

Proof. First we show a). Since “⊆” holds generally, we only need to
show the inclusion “⊇”. Let v ∈ F be a non-zero homogeneous vector
such that x�

iv ∈ LTσ(M). Since LTσ(M) is a monomial module, we have
x�

itek ∈ LTσ(M) for all terms tek ∈ Supp(v). Let tek be one of those terms.
By Proposition 1.5.6.a, there exists a homogeneous element w ∈ M such
that x�

itek = LTσ(w). By Proposition 4.4.6, the vector w is divisible by x�
i ,

i.e. it is of the form w = x�
iw

′ for some w′ ∈ F . Then x�
itek = LTσ(w) =

LTσ(x�
iw

′) = x�
i LTσ(w′) shows that tek = LTσ(w′) ∈ LTσ(M :

F
(x�

i)). Since
tek was an arbitrary element of Supp(v), it follows that v ∈ LTσ(M :

F
(x�

i)).
In order to show b), we first prove that 〈LTσ(gj)〉 :

F
(x�

i) = 〈LTσ(g′j)〉 for
j = 1, . . . , s . Since x�

i LTσ(g′j) = LTσ(x�
ig

′
j) ∈ 〈LTσ(gj)〉 , only the inclusion

“⊆” needs to be shown. Let tek ∈ Tn〈e1, . . . , er〉 be a term such that we
have x�

itek ∈ 〈LTσ(gj)〉 , where t ∈ Tn and k ∈ {1, . . . , r} . Thus there exists
a term t′ ∈ Tn such that x�

itek = t′ LTσ(gj), and there are two possibilities.
If � ≤ aj , we have tek = t′x

aj−�
i LTσ(g′j). Otherwise � > aj , and we have

x
�−aj

i tek = t′ LTσ(g′j). In this case xi does not divide g′j . Therefore it does
not divide LTσ(g′j) by Proposition 4.4.6. Hence we have tek = t′′ LTσ(g′j),

where t′′ is defined by t′ = x
�−aj

i t′′ . In both cases it follows that we have
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tek ∈ 〈LTσ(g′j)〉 . Since 〈LTσ(gj)〉 :
F

(x�
i) is a monomial module, this proves

the desired inclusion.
At this point we prove claim b) by showing that LTσ(M :

F
(x�

i)) =
〈LTσ(g′1), . . . ,LTσ(g′s)〉 . Using a), we get LTσ(M :

F
(x�

i)) = LTσ(M) :
F

(x�
i).

The latter coincides with 〈LTσ(g1), . . . ,LTσ(gs)〉 :
F

(x�
i) , since {g1, . . . , gs} is

a σ -Gröbner basis of M . This module in turn equals 〈LTσ(g′1), . . . ,LTσ(g′s)〉
by what we proved above and the fact that 〈LTσ(g1), . . . ,LTσ(gs)〉 is a mono-
mial module. �

The case when � = 1 in this theorem deserves special mention. It yields
a simple test for deciding when an indeterminate is a non-zerodivisor for a
graded P -module of the form F/M .

Corollary 4.4.8. (Colon by an Indeterminate)
Let M be a non-zero, graded submodule of F , let i ∈ {1, . . . , n} , and let σ
be a module term ordering of xi -DegRev type on Tn〈e1, . . . , er〉 . Moreover,
let G = {g1, . . . , gs} be a homogeneous σ -Gröbner basis of M , and for each
j ∈ {1, . . . , s} let

g′j =
{

gj/xi if gj is a multiple of xi,
gj otherwise.

a) The set {g′1, . . . , g′s} is a homogeneous σ -Gröbner basis of M :
F

(xi) .
b) Let G be the reduced σ -Gröbner basis of M . The indeterminate xi is a

non-zerodivisor for the graded P -module F/M if and only if none of the
elements in G is divisible by xi .

Proof. Claim a) is a special case of the theorem. To prove b), it suffices to
note that xi is a non-zerodivisor for F/M if and only if M :

F
(xi) = M and

to apply a). �

In a similar manner we can use term orderings of DegRev type to compute
the saturation of a module by an indeterminate.

Corollary 4.4.9. (Saturation by an Indeterminate)
Let M be a non-zero graded submodule of F , let i ∈ {1, . . . , n} , and let σ
be a module term ordering of xi -DegRev type on Tn〈e1, . . . , er〉 .
a) We have LTσ(M :

F
(xi)∞) = LTσ(M) :

F
(xi)∞ .

b) Let G = {g1, . . . , gs} be a homogeneous σ -Gröbner basis of M . For
j = 1, . . . , s , let aj = max{α ∈ N | xα

i divides gj} and g′j = gj/xai
i .

Then {g′1, . . . , g′s} is a homogeneous σ -Gröbner basis of M :
F

(xi)∞ .

Proof. By Proposition 3.5.9, we have M :
F

(xi)∞ = M :
F

(xi)� for suffi-
ciently large � ∈ N . Thus claim a) follows from Theorem 4.4.7.a. To prove b),
we let � ∈ N be large enough so that M :

F
(xi)∞ = M :

F
(xi)� . Then we

have � ≥ max{a1, . . . , as} , and the claim follows from Theorem 4.4.7.b. �



4.4 Term Orderings of DegRev Type 73

More generally, we can use the same idea to compute the colon module
of M by the principal ideal generated by a homogeneous polynomial. The
necessary module term ordering of DegRev type is provided by the following
lemma. (For a special case of this lemma, see Example 4.4.4.)

Lemma 4.4.10. Let P be non-negatively graded by W, let d ∈ Zm be a
degree vector which satisfies d >Lex 0 , and let P = K[x0, . . . , xn] be graded
by W = (d | W ) . Then there exists a module term ordering on the set of
terms of the graded free P -module F =

⊕r
i=1 P (−δi) which is of x0 -DegRev

type.

Proof. Since W has Z -linearly independent rows, the same holds for the row
vectors w1, . . . , wm of W , and also for the set {w1, . . . , wm,−e1} . There-
fore we can find indices i1, . . . , in−m ∈ {2, . . . , n + 1} such that the ma-
trix V ∈ Matn+1(Z) whose rows are w1, . . . , wm,−e1, ei1 , . . . , ein−m

is non-
singular. By the hypotheses on W and d , the ordering τ = Ord(V ) is a term
ordering on Tn+1 = T(x0, . . . , xn) . Moreover, the term ordering τ is clearly
of x0 -DegRev type.

Generalizing Example 4.4.3, we now define a module ordering σ on
Tn+1〈e1, . . . , er〉 by tej ≥σ t′ek for t, t′ ∈ Tn+1 and j, k ∈ {1, . . . , r} if
we have
1) degW (tej) > degW (t′ek), or
2) degW (tej) = degW (t′ek) and t >τ t′ , or
3) degW (tej) = degW (t′ek) and t = t′ and j ≤ k .

As in Example 4.4.3, we see that σ is a module term ordering of x0 -DegRev
type with respect to the grading on F defined by W . �

In view of this lemma, the assumptions of the following theorem can
always be satisfied.

Theorem 4.4.11. (Colon by a Power of a Polynomial)
Let P be non-negatively graded by W ∈ Matm,n(Z) , let M be a non-zero
graded submodule of F , let f ∈ P be a homogeneous polynomial whose degree
satisfies d = degW (f) >Lex 0 , and let � ∈ N . We equip P = K[x0, . . . , xn]
with the grading defined by W = (d | W ) ∈ Matm,n+1(Z) . Then we
choose a module term ordering σ on the terms of the graded free P -module
F =

⊕r
i=1 P (−δi) which is of x0 -DegRev type. Consider the following in-

structions.
1) Compute a homogeneous σ -Gröbner basis G = {g1, . . . , gs} of the graded

P -submodule M = MP + (f − x0)F of F .
2) For i = 1, . . . , s , let ai = max{α ∈ N |xα

0 divides gi} , let bi = min{ai, �} ,
and let g′i = gi/xbi

0 .
3) Substitute x0 �→ f in g′i , i.e. form the vector g′′i = g′i(f, x1, . . . , xn) in F .

Return G′′ = {g′′1 , . . . , g′′s } and stop.



74 4. The Homogeneous Case

This is an algorithm which compute a homogeneous system of generators G′′

of M :
F

(f �) .

Proof. By Theorem 4.4.7, the set {g′1, . . . , g′s} is a homogeneous σ -Gröbner
basis of the P -module M :

F
(x�

0). Upon substituting x0 �→ f , we see that
g′′1 , . . . , g′′s ∈ M :

F
(f �). To show the reverse inclusion, let v ∈ F be a

homogeneous vector such that f � v ∈ M . Then the equation

x�
0v = f �v − (f − x0)(f �−1 + f �−2x0 + · · · + x�−1

0 ) v ∈ M

shows v ∈ M :
F

(x�
0). We substitute x0 �→ f and get v ∈ 〈g′′1 , . . . , g′′s 〉 . �

Regarding the hypothesis degW (f) >Lex 0, we note that, in the N -graded
case, a term ordering of x0 -DegRev type exists on Tn+1 if and only if
degW (f) > 0 (see Exercise 4).

The theorem can be used to compute the colon module and the satura-
tion of M with respect to a homogeneous polynomial. The next corollary
corresponds to the case � = 1 of the theorem.

Corollary 4.4.12. (Colon by a Homogeneous Polynomial)
Assume the hypotheses of the theorem. For i = 1, . . . , s , let g′i be defined by

g′i =
{

gi/x0 if gi is a multiple of x0,
gi otherwise.

and let g′′i = g′i(f, x1, . . . , xn) . Then G′′ = {g′′1 , . . . , g′′s } is a homogeneous
system of generators of the colon module M :

F
(f) .

If we apply the theorem for large enough � , the colon module M :
F

(f �)
coincides with the saturation of M by (f).

Corollary 4.4.13. (Saturation by a Homogeneous Polynomial)
Assume the hypotheses of the theorem. For i = 1, . . . , s , let ai be the number
max{α ∈ N | xα

0 divides gi} , let g′i = gi/xai
0 , and let g′′i = g′i(f, x1, . . . , xn) .

Then G′′ = {g′′1 , . . . , g′′s } is a homogeneous system of generators of the satu-
ration M :

F
(f)∞ .

Let us compare the two algorithms for computing M :
F

(f)∞ provided
by Theorem 3.5.13.a and the preceding corollary.

Remark 4.4.14. Suppose that P is non-negatively graded by W . Let M
be a graded submodule of F as above, and let f ∈ P be a homogeneous
polynomial of degree d = degW (f) >Lex 0.
a) If we use Theorem 3.5.13.a to compute the saturation M :

F
(f)∞ , we

have to calculate the elimination module

[MP + (1 − fx0)F ] ∩ F

For this we need to find a Gröbner basis of the module in square brackets
with respect to an elimination ordering.
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b) If we use Corollary 4.4.13 to compute the saturation M :
F

(f)∞ , we have
to calculate a Gröbner basis of the graded P -submodule

M = MP + (f − x0)F

of F with respect to a module term ordering σ of x0 -DegRev type.
The second method is in general more efficient, since it preserves the ho-
mogeneity, i.e. we need just the Gröbner basis of a graded submodule with
respect to a degree compatible term ordering, and we can use the efficient
algorithms of Section 4.5 and Tutorial 59.

Corollary 4.4.13 has two nice applications. In Corollary 4.3.8.a we saw
that the computation of the homogenization of an ideal is equivalent to sat-
urating a certain ideal by the product of the homogenizing indeterminates.
This saturation can be performed one indeterminate at a time (see Exercise 6)
or in one step using Corollary 4.4.13.

Corollary 4.4.15. (Homogenization Via DegRev Type Orderings)
Let P be non-negatively graded by W ∈ Matm,n(Z) , and let I be an ideal
in P which is generated by non-zero polynomials f1, . . . , fs . We form the
polynomial ring P = K[y0, y1, . . . , ym, x1, . . . , xn] and equip it with the grad-
ing defined by W = (d | Im | W ) , where d = (1 1 · · · 1)tr . Let σ be a
term ordering of y0 -DegRev type on T(y0, . . . , ym, x1, . . . , xn) . Consider the
following instructions.
1) Compute the homogenizations fhom

1 , . . . , fhom
s and form the homogeneous

ideal J = (fhom
1 , . . . , fhom

s , y1··· ym − y0) in P .
2) Calculate a homogeneous σ -Gröbner basis {g1, . . . , gt} of J .
3) For i = 1, . . . , t , let ai = max{α | yα

0 divides gi} and g′i = gi/yai
0 .

4) For i = 1, . . . , t , let g′′i = gi(y1··· ym, y1, . . . , ym, x1, . . . , xn) . Return
G′′ = {g′′1 , . . . , g′′t } and stop.

This is an algorithm which computes a homogeneous system of generators G′′

of Ihom .

Proof. This result follows by combining Corollaries 4.3.8 and 4.4.13. �

In the case m = 1 the algorithm of this corollary can be simplified sub-
stantially (see Exercise 7). One of the applications of computing the satura-
tion by a polynomial is the Radical Membership Test 3.5.15. Corollary 4.4.13
enables us to write down a homogeneous version of this test.

Corollary 4.4.16. (Homogeneous Radical Membership Test)
Let P be non-negatively graded by W ∈ Matm,n(Z) , let I be a homogeneous
ideal in P, and let f ∈ P be a homogeneous polynomial of degree d >Lex 0 .
We equip the ring P = K[x0, . . . , xn] with the grading defined by the matrix
(d | W ) ∈ Matm,n+1(Z) . Let σ be a term ordering of x0 -DegRev type on
T(x0, . . . , xn) , and let G = {g1, . . . , gs} be the reduced σ -Gröbner basis of
the ideal IP +(f −x0)P in P . Then the following conditions are equivalent.



76 4. The Homogeneous Case

a) We have f ∈
√

I .
b) There exists a number i ∈ N such that xi

0 ∈ G .
If these conditions are satisfied, then f i is the lowest power of f contained
in I .

Proof. First we prove that a) implies b). Let i ∈ N be such that f i ∈ I .
Then we have xi

0 = f i−(f−x0)(f i−1+f i−2x0+· · ·+xi−1
0 ) ∈ IP +(f−x0)P ,

whence xj
0 ∈ G for some j ≤ i . Conversely, let xi

0 ∈ G for some i ≥ 0. Thus
we have I :

P
(f)∞ = (1) by Corollary 4.4.13, and therefore f ∈

√
I .

To prove the additional claim, let i = min{j ∈ N | f j ∈ I} . We have
to show xj

0 /∈ G for j < i . Suppose that xj
0 ∈ G for some j < i . Then

Theorem 4.4.11 yields 1 ∈ I :
P

(f j) , and therefore f j ∈ I , in contradiction
to the minimality of i . �

In the last part of this section we examine two further operations which
can be performed efficiently using module term orderings of DegRev type:
addition of an indeterminate to a submodule, and reduction of a submodule
modulo an indeterminate.

In the next proposition we are going to use the following notation. If
g ∈ M is a non-zero element, we write g = g′ + xig

′′ in the unique way so
that xi does not divide any monomial in the support of g′ .

Proposition 4.4.17. (Addition of an Indeterminate)
Let M be a graded submodule of F , let i ∈ {1, . . . , n} , and let σ be a module
term ordering of xi -DegRev type on Tn〈e1, . . . , er〉 .
a) We have LTσ(M + xiF ) = LTσ(M) + xiF .
b) Let G be a homogeneous σ -Gröbner basis of the module M . Then the

set G∪{xie1, . . . , xier} is a homogeneous σ -Gröbner basis of M +xiF .
c) Let G = {g1, . . . , gs} be the reduced σ -Gröbner basis of M . Then the set

{g′1, . . . , g′s, xie1, . . . , xier} \ {0} is the reduced σ -Gröbner basis of the
module M + xiF .

Proof. Since b) is an immediate consequence of a), and since in a) the con-
tainment “⊇” holds obviously, we prove only “⊆”. Let v = v′ + xiv

′′ be a
non-zero homogeneous element of M + xiF , where v′ ∈ M and v′′ ∈ F .
If LTσ(v) is divisible by xi , we obviously have LTσ(v) ∈ LTσ(M) + xiF .
Otherwise we have LTσ(v) ∈ Supp(v′). Since σ is of xi -DegRev type, the
term LTσ(v) is larger than any term of the same degree which is divisible
by xi . Hence we have LTσ(v) = LTσ(v′) ∈ LTσ(M).

To prove c), we observe that {g′1, . . . , g′s, xie1, . . . , xier} \ {0} is certainly
monic and minimal. It is also interreduced, since G is interreduced. �

For the next proposition, we need additional notation. Let n > 1, let
i ∈ {1, . . . , n} and let P̂ = K[x1, . . . , xi−1, xi+1 . . . , xn] . The restriction of a
term ordering σ on Tn to the monoid of terms T(x1, . . . , xi−1, xi+1 . . . , xn)
in P̂ will be denoted by σ̂ . Notice that we can identify P/(xi) with P̂ via
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the surjective K -algebra homomorphism ϕ : P −→ P̂ defined by xi �→ 0
and xj �→ xj for j �= i . The image of a polynomial f ∈ P under ϕ will be
denoted by f̂ .

Given a grading on P by a matrix W ∈ Matm,n(Z), we consider P̂ graded
by the matrix Ŵ which is obtained by deleting the ith column from W. For
every graded free P -module F , the map ϕ induces a homomorphism of
graded P -modules Φ : F −→⊕r

j=1 P̂ (−δj). The image of a graded submod-

ule M of F under Φ will be denoted by M̂ .

Proposition 4.4.18. (Reduction Modulo an Indeterminate)
Let M be a graded submodule of F , let i ∈ {1, . . . , n} , and let σ be a module
term ordering of xi -DegRev type on Tn〈e1, . . . , er〉 . Let G = {g1, . . . , gs} be
a homogeneous σ -Gröbner basis of M .
a) The set Ĝ = {ĝ1, . . . , ĝs}\{0} is a homogeneous σ̂ -Gröbner basis of M̂ .

In particular, we have LTσ̂(M̂) = (LTσ(M))̂ .

b) Assume that G is the reduced σ -Gröbner basis of M . Then Ĝ is the
reduced σ̂ -Gröbner basis of M̂ .

Proof. For the proof of a), we need to show LTσ̂(M̂) = 〈LTσ̂(ĝj) | ĝj �= 0〉 .
The inclusion “⊇” holds trivially. If we have M̂ = 〈0〉 , it follows that
M ⊆ xiF and Ĝ = ∅ . Thus we may assume that there exists a non-zero ho-
mogeneous vector u ∈ M̂ . Since Φ is surjective, there exists a homogeneous
vector v ∈ M \xiF such that Φ(v) = u . Then Proposition 4.4.6 implies that
the leading term LTσ(v) is not divisible by xi , and therefore Φ(LTσ(v)) �= 0.
All terms in Supp(u) are images under Φ of the same terms in Supp(v). Thus
we have LTσ̂(u) = Φ(LTσ(v)). Since LTσ(v) ∈ 〈LTσ(g1), . . . ,LTσ(gs)〉 , we
obtain LTσ̂(u) ∈ 〈LTσ̂(ĝj) | ĝj �= 0〉 , i.e. the claim.

Next we prove b). We have just seen that LTσ̂(ĝj) = Φ(LTσ(gj)) for all
ĝj �= 0. Hence the set {LTσ̂(ĝj) | ĝj �= 0} is a minimal system of generators
of LTσ̂(M̂). Since the leading coefficients of the elements of Ĝ are the same
as those of the corresponding elements of G , it remains to show that the
elements of Ĝ are interreduced. Again we use the fact that every term in
Supp(ĝj − LTσ̂(ĝj)) is the image of the same term in Supp(gj − LTσ(gj))
under Φ . We conclude that none of these terms is a multiple of one of the
terms in {LTσ̂(ĝj) | gj �= 0} . �

One consequence of this proposition is that certain reduced Gröbner bases
behave well under reduction modulo an indeterminate.

Corollary 4.4.19. In the situation of the proposition, let G = {g1, . . . , gs}
be the reduced σ -Gröbner basis of M, and assume that xi is a non-zerodivisor
for F/M . Then Ĝ = {ĝ1, . . . , ĝs} is the reduced σ̂ -Gröbner basis of M̂ .

Proof. By Corollary 4.4.8.b, the indeterminate xi does not divide an ele-
ment of G . Hence we have ĝj �= 0 for j = 1, . . . , s , and we can apply the
proposition. �
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Exercise 1. Prove that the term orderings defined in Example 4.4.5
are indeed of xi -DegRev type. More generally, given a positive grading
by W ∈ Matm,n(Z) on P with m < n and a number i ∈ {1, . . . , n} ,
construct a term ordering which is of xi -DegRev type .

Exercise 2. Prove that there exists no degree compatible term ordering
for the grading on P = K[x1, x2, x3] given by W =

(
1 −1 0
2 −3 1

)
. In particular,

there exists no term ordering of DegRev type.

Exercise 3. Find a matrix W ∈ Matm,n(Z) which defines a grading
on P = K[x1, . . . , xn] such that a degree compatible term ordering exists,
but no term ordering of xi -DegRev type for any i ∈ {1, . . . , n} .

Exercise 4. Let K be a field, let P = K[x1, . . . , xn] be positively graded

by W = (w1 · · · wn) ∈ Mat1,n(Z) , let d ∈ Z , and let P = K[x0, . . . , xn]

be Z -graded by W = (d w1 · · · wn) . Show that there exists a term
ordering of x0 -DegRev type on T(x0, . . . , xn) with respect to the grading

given by W if and only if d > 0.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] , let F be a finitely
generated free P -module, let M be a submodule of F, let I be an ideal
of P, and let σ be a module term ordering on the terms in F.

a) Show that LTσ(M :F I) ⊆ LTσ(M) :F I .
b) Prove by example that the containment in a) can be strict.

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] be positively graded
by W ∈ Matm,n(Z) , and let I be an ideal in P which is generated by
non-zero polynomials f1, . . . , fs . Explain how one can use the formula in
Tutorial 37.g and Corollary 4.4.9 in order to compute Ihom . Formulate an
algorithm and implement it in a CoCoA function IteratedHomog(. . .) . Use
your function to compute the homogenizations of the following ideals.

a) I1 = (x1 − x2
2, x1x2 − x1) in Q[x1, x2] graded by W =

(
1 1
0 −1

)
b) I2 = (x3

1 − x2x3, x3
2 − x1x3, x3

3 − x1x2) in Q[x1, x2, x3] graded by
W =

(
1 1 1
0 1 2

)
c) I3 = (x1x2−1, x2x3−1, x3x4−1, x4x1−1) in Q[x1, x2, x3, x4] graded

by W = I4 .

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] be positively graded
by W ∈ Mat1,n(Z) , and let I be an ideal in P which is generated by non-

zero polynomials f1, . . . , fs . Equip the polynomial ring P = K[x0, . . . , xn]
with the grading defined by (1 | W ) , and let σ be a term ordering of
x0 -DegRev type on T(x0, . . . , xn) . Consider the following instructions.

1) Compute fhom
1 , . . . , fhom

s and form the ideal J = (fhom
1 , . . . , fhom

s )

in P .
2) Calculate a homogeneous σ -Gröbner basis G = {g1, . . . , gt} of J .
3) For i = 1, . . . , t , let g′

i = (gdeh
i )hom . Return G′ = {g′

1, . . . , g
′
t} and

stop.

Show that this is an algorithm which computes a homogeneous system of
generators G′ of Ihom .
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Tutorial 53: Reduced Gröbner Bases and Homogenization

In Proposition 4.3.18 we saw that Gröbner bases behave well under dehomog-
enization, but in the light of Theorem 4.3.19 it is clear that their behaviour
under homogenization is more subtle. The situation becomes even more intri-
cate when we are interested in the properties of reduced Gröbner bases with
respect to homogenization and dehomogenization. In this tutorial we want to
face that challenge in the Z -graded case, i.e. when m = 1. As an application,
we shall be able to complement the methods of Corollaries 4.3.8 and 4.3.20
with another way of computing the homogenization of an ideal. The idea is
to compute the reduced Gröbner basis of the ideal with respect to a suitable
term ordering and to homogenize it.

Let K be a field, let P = K[x1, . . . , xn] be positively graded by a matrix
W = (w1 · · · wn) ∈ Mat1,n(Z), and let σ be a term ordering on Tn which
is compatible with degW . We equip the polynomial ring P = K[x0, . . . , xn]
with the grading defined by W = (1 | W ) and let τ be a term ordering
of x0 -DegRev type on T(x0, . . . , xn) which restricts to σ on T(x1, . . . , xn).
Finally, let I be an ideal in P and G = {g1, . . . , gs} its reduced σ -Gröbner
basis.
a) Show that LTτ (fhom) = LTσ(f) for all polynomials f ∈ P and that

(LTτ (F ))deh = LTσ(F deh) for all homogeneous polynomials F ∈ P .
b) Let H = {h1, . . . , ht} be the reduced τ -Gröbner basis of Ihom . Prove

that Hdeh = G .
Hint: Use a) and Proposition 4.3.5.e to show that LTτ (hi) = LTσ(hdeh

i )
for i = 1, . . . , t .

c) Find an example of a homogeneous ideal J ⊆ P for which the deho-
mogenization of the reduced τ -Gröbner basis of J is not the reduced
σ -Gröbner basis of Jdeh .

d) Prove that Ghom = {ghom
1 , . . . , ghom

s } is the reduced τ -Gröbner basis
of Ihom .
Hint: Use Proposition 4.3.5.b to show that, for every homogeneous poly-
nomial F ∈ P , there exist r ≥ 0, T ∈ T(x1, . . . , xn), and i ∈ {1, . . . , s}
such that LTτ (F ) = xr

0 T LTτ (ghom
i ) . To prove that Ghom is interre-

duced, write T ′ ∈ Supp(ghom
i ) ∩ LTτ (Ihom) in the form T ′ = xr

0 T ′′ ,
where T ′′ ∈ Supp(gi) , and in the form T ′ = xr′

0 LTτ (fhom) , where f ∈ I .
Then compare the two expressions.
In what follows, we shall assume that σ is of the form σ = Ord(V ) with

a matrix V ∈ Matn(Z) whose first row is W . Similarly, we let τ be of the
form τ = Ord(V ) with a matrix V ∈ Matn+1(Z) whose first row is W .
e) Write a CoCoA function Homog1(. . .) which combines the algorithm of

Corollary 4.3.8.a for computing Ihom with the proof of Theorem 2.4.13
to compute the reduced τ -Gröbner basis of Ihom .
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f) Write a CoCoA function Homog2(. . .) which combines the algorithm of
Corollary 4.3.20 for computing Ihom with the proof of Theorem 2.4.13
to compute the reduced τ -Gröbner basis of Ihom .

g) Next, write a CoCoA function Homog3(. . .) which computes the reduced
τ -Gröbner basis of Ihom using the method implicit in part d).

h) Finally, write a CoCoA function Homog4(. . .) which computes the reduced
τ -Gröbner basis of Ihom using an adaptation of the algorithm given in
Corollary 4.4.15.

i) Apply your four functions for computing Ghom to the following cases and
compare their timings for σ = Ord(V ) and τ = Ord(V ) , where

V =

⎛⎜⎜⎝
1 · · · 1 1
−1 0 0 0

0
. . . 0 0

0 0 −1 0

⎞⎟⎟⎠ ∈ Matn(Z)

and V is the analogous matrix of size (n+1) × (n+1).
1) I1 = (4x4

1 − x3, 5x5
1 − x2) in Q[x1, x2, x3]

2) I2 = (x2
1x2 + 2x1x2 + x1, x2

1 + x2
2 + 1, −2x1x2 − x1 + x3

2 + x2, −x5
2 −

x4
2 + x2

2 + x2 − 2) in Q[x1, x2]
3) I3 = (2x3

1 − x2
1x2x3 − 1, x2

1 − x3, x1x2 − x1x3 + x3) in Q[x1, x2, x3]

Tutorial 54: Regular Sequences of Indeterminates

Corollary 4.4.8 provides a simple criterion for an indeterminate to be a non-
zerodivisor for a finitely generated, graded module. If we want to generalize
this to a criterion for a list of indeterminates to be a regular sequence, we have
to use a special module term ordering of DegRev type, namely the degree-
reverse-lexicographic module term ordering τ introduced in Example 4.4.3.
Our goal is to show that xi, xi+1, . . . , xn is a regular sequence for a module of
the form F/M, where F is a graded free module and M a graded submodule
of F, if and only if it is a regular sequence for F/LTτ (M). Then we will find
an elementary criterion for the last condition. Finally, the case of an arbitrary
sequence of indeterminates can be handled by renaming the indeterminates
suitably.

Let K be a field, let m,n, r ≥ 1, let P = K[x1, . . . , xn] be graded by
a matrix W ∈ Matm,n(Z), let δ1, . . . , δr ∈ Zm , let F be the graded free
P -module F =

⊕r
i=1 P (−δi), and let τ be the degree-reverse-lexicographic

module term ordering defined in Example 4.4.3.
a) Show that τ has the following property. Whenever a homogeneous vec-

tor v ∈ F \ {0} satisfies LTτ (v) ∈ (xi, xi+1, . . . , xn) · F for some
i ∈ {1, . . . , n} , we have v ∈ (xi, xi+1, . . . , xn) · F .
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b) Now let σ be an arbitrary module term ordering on Tn〈e1, . . . , er〉 and �
a term ordering on Tn. Prove that the following conditions are equivalent.
1) The module term ordering σ is compatible with � (see Defini-

tion 1.4.17).
2) For all f ∈ P \ {0} and all v ∈ F \ {0} , we have the equality

LTσ(f v) = LT�(f) · LTσ(v).
3) Given two terms t1ei, t2ei , where t1, t2 ∈ Tn and i ∈ {1, . . . , r} , we

have t1ei ≥σ t2ei if and only if t1 ≥� t2 .
c) Let � be a term ordering on Tn and σ a module term ordering

on Tn〈e1, . . . , er〉 which is compatible with � . Moreover, let M be
a submodule of F, and let f1, . . . , fs ∈ P be polynomials such that
LT�(f1), . . . ,LT�(fs) is a regular sequence for F/LTσ(M) (see Defini-
tion 3.2.23.b). Prove that f1, . . . , fs is a regular sequence for F/M .
Hint: Using induction, reduce the claim to the case s = 1. Then argue
by contradiction starting from a counterexample with minimal leading
term.

d) In the setting of c), show that

LTσ(M + (f1, . . . , fs) · F ) = LTσ(M) + (LT�(f1), . . . ,LT�(fs)) · F

Hint: Using induction again, reduce the claim to the case s = 1. Then
argue by contradiction starting from a vector v = v′ + f1 v′′ such that
LTσ(v) /∈ LTσ(M) + LT�(f1) · F and LTσ(v′′) is minimal.

e) Let i ∈ {1, . . . , n} , and let M be a graded submodule of F . Prove that
xi, xi+1, . . . , xn is a regular sequence for F/M if and only if it is a regular
sequence for F/LTτ (M).
Hint: Use descending induction on i , Proposition 4.4.17 and Corol-
lary 4.4.8.

f) Now let M be a monomial submodule of F, let v1, . . . , vs be the min-
imal monomial system of generators of M (see Proposition 1.3.11),
and let t1, . . . , tu ∈ Tn . Show that t1, . . . , tu is a regular sequence for
F/M if and only if no indeterminate divides both ti and an element of
{t1, . . . , ti−1, ti+1, . . . , tu, v1, . . . , vs} for i = 1, . . . , u .

g) Using f), write a CoCoA function IsMonRegSeq(. . .) which takes a list L
of terms and a minimal monomial system of generators of a monomial
submodule M of F and checks whether L is a regular sequence for F/M.

h) Use your function IsMonRegSeq(. . .) to find out whether the following
lists of terms are regular sequences for Q[x1, x2, x3]3/〈x2

1e1, x2
2e2, x1x2e3〉:

L1 = (x2
3, x2

4), L2 = (x2x3, x1x4), and L3 = (x4
3, x

2
3x

2
4, x

4
4).

i) Implement a CoCoA function IsIndetRegSeq(. . .) which takes a list L
of indeterminates and a system of generators of a graded submodule M
of F and checks whether L is a regular sequence for F/M.
Hint: By renaming the indeterminates suitably, you can reduce the task
to the case L = (xi, xi+1, . . . , xn) for some i ∈ {1, . . . , n} .
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j) Use your function IsIndetRegSeq(. . .) to check whether the following
lists of indeterminates are regular sequences for the stated modules.
1) L1 = (x1, x2), L2 = (x1, x3), and L3 = (x3, x4) for the ring

Q[x1, x2, x3, x4]/(x2
1 − x2

2, x2
3 − x2

4)
2) L4 = (x1, x2), L5 = (x2, x4), and L6 = (x4, x3) for the module

Q[x1, x2, x3, x4]3/〈(x2
3 + x2

4)e1, x1e2 − x3e3〉

Tutorial 55: Set-Theoretic Complete Intersections

Hi! I’m in a phone booth
at the intersection of

WALK and DON’T WALK.
(Anonymous)

Many of the techniques we have learned in this chapter can be applied
in algebraic geometry. Here we present a first case in point. Throughout
this tutorial we have to assume that you are acquainted with affine and
projective varieties (see Tutorials 27 and 46). For a projective variety, its
homogeneous vanishing ideal has a unique minimal number of generators by
Proposition 4.1.22.b. But frequently there are smaller homogeneous ideals
which define the same projective variety and which have fewer generators.
The extremal case for this behaviour is the case of set-theoretic complete
intersections defined below.

Let K be a field, let P = K[x1, x2, x3] and P = K[x0, x1, x2, x3] both
be standard graded, and let C = {(t, t2, t3) | t ∈ K} ⊆ A3

K be the twisted
cubic curve we met in Exercise 10 of Section 3.4.
a) Prove that C is an affine variety whose vanishing ideal I = I(C) ⊆ P is

a prime ideal I = (f, g) generated by the two polynomials f = x2
1 − x2

and g = x1x2 − x3 .
Hint: First show that I is the kernel of the K -algebra homomorphism
ϕ : K[x1, x2, x3] −→ K[y] defined by xi �→ yi for i = 1, 2, 3.

b) Use the methods provided by Corollaries 4.3.8.a, 4.3.20, and 4.4.15 to
compute the homogenization Ihom of I in three ways. In all three cases
show that Ihom is generated by the three 2×2-minors d1 = x1x3 − x2

2 ,
d2 = x1x2 − x0x3 , and d3 = x0x2 − x2

1 of the matrix(
x0 x1 x2

x1 x2 x3

)
c) Prove that Ihom is a prime ideal and that the above three minors are

in fact a minimal system of generators of Ihom. (Hint: Use the graded
version of Nakayama’s lemma 1.7.15.)

d) Let D ∈ K[x0, x1, x2, x3] be the determinant of the matrix
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⎛⎝x0 x1 x2

x1 x2 x3

x2 x3 0

⎞⎠
Show that Ihom =

√
(d3, D) . More specifically, prove that d2

1 ∈ (d3, D)
and d2

2 ∈ (d3, D) by finding the corresponding expressions.
Let us interpret these algebraic facts in the language of algebraic geom-

etry. The projective variety C = Z+(Ihom) ⊆ P3 is the projective closure
of C . It is a curve, i.e. it is 1-dimensional in the sense of the definition
which we shall discuss in Chapter 5. Since C is contained in the 3-dimensional
space P3 , it has codimension two. It is known that in order to generate the
homogeneous vanishing ideal, one needs at least codim(C) = 2 polynomials.
In our case, we have seen that one actually needs at least three polynomi-
als. But there exists another ideal, namely (d3, D), which defines the same
variety and is indeed generated by only two polynomials. A variety with the
property that it can be defined by an ideal whose number of generators is
the codimension is called a set-theoretic complete intersection.

In the remainder of this tutorial, we shall generalize this result to find
more set-theoretic complete intersections. Let both P = K[x1, . . . , x4] and
P = K[x0, . . . , x4] be standard graded.
f) Let C = {(t, t2, t3, t4) | t ∈ K} ⊆ A4

K . Prove that C is an affine variety
whose vanishing ideal I = I(C) ⊆ P is a prime ideal generated by three
polynomials f = x2

1 − x2 , g = x1x2 − x3 , and h = x1x3 − x4 .
g) As in part b), compute the homogenization Ihom of I in three ways.

Show that Ihom is minimally generated by the six 2×2-minors of the
matrix (

x0 x1 x2 x3

x1 x2 x3 x4

)
h) Let J be the ideal generated by the leading principal minors of size > 1

of the matrix

M =

⎛⎜⎝
x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 0
x3 x4 0 0

⎞⎟⎠
i.e. the ideal generated by {det

(
x0 x1
x1 x2

)
,det

( x0 x1 x2
x1 x2 x3
x2 x3 x4

)
,det(M)} . Show

that Ihom =
√

J . Conclude that the projective closure C = Z+(Ihom)
of C in P4 is a set-theoretic complete intersection.
If you are very brave (and skilful), you might try to generalize the previous

examples as follows. Let n ≥ 2, let P = K[x1, . . . , xn] and P = K[x0, . . . , xn]
be standard graded, and let I be the ideal in P generated by the 2×2-minors
of the matrix

M =
(

x0 x1 · · · xn−1

x1 x2 · · · xn

)
∈ Mat2,n(P )
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i) Show that I is a prime ideal which is minimally generated by those
minors and that C = Z+(I) is a set-theoretic complete intersection
in Pn . This variety is called the rational normal curve in Pn .
Hint: Show that I =

√
J , where J is the ideal generated by the leading

principal minors of size > 1 of the matrix⎛⎜⎜⎜⎜⎝
x0 x1 · · · xn−2 xn−1

x1 x2 · · · xn−1 xn

x2 x3 · · · xn 0
...

...
...

xn−1 xn 0 · · · 0

⎞⎟⎟⎟⎟⎠
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4.5 Homogeneous Gröbner Bases

No problem is so formidable
that you can’t walk away from it.

(Charles Schulz)

The topic of the current chapter is homogeneity. Given the presence of a
grading on our objects of study, we want to take computational advantage
of it. But so far we have computed precious little. We have not yet even
considered the computation of Gröbner bases. What happens if we apply
Buchberger’s algorithm to a homogeneous ideal? Is the reduced Gröbner basis
of a graded submodule homogeneous? Can one write down a homogeneous
version of Buchberger’s algorithm which computes the desired Gröbner basis
degree by degree? As you know by now, these are rhetorical questions and
the answer is usually “yes”. In the first part of this section we shall explain
why.

After showing that Buchberger’s algorithm preserves homogeneity, we
characterize graded submodules by the property that their reduced Gröbner
bases are homogeneous (see Corollary 4.5.2). Then we actually try to com-
pute a homogeneous Gröbner basis. We reorganize Buchberger’s algorithm to
make it proceed degree by degree (see Theorem 4.5.5). In each degree there
are two phases: first we process the S-vectors, and then we treat the input
vectors of that degree. Although this strategy is not strictly necessary here,
we will be able to reap a nice reward in the next section. A long, detailed
illustrative run of this algorithm in Example 4.5.6 should make it clear that
there is no reason for you to walk out on us at this point.

Expanding on the idea of proceeding degree by degree, we examine in the
second subsection what happens if we stop our calculation at a given degree.
The name of this game is calculus interruptus and its result is called a trun-
cated Gröbner basis. A d -truncated Gröbner basis consists of the vectors of
degree less than or equal to d of some homogeneous Gröbner basis. Truncated
Gröbner bases have a characterization which is analogous to Buchberger’s cri-
terion for ordinary Gröbner bases (see Proposition 4.5.11). One consequence
of this characterization is Corollary 4.5.14 which explains what happens when
we add an element of degree d into a d -truncated Gröbner basis and this
will come in handy later. More practical applications of truncated Gröbner
bases are contained in Tutorial 57.

Naturally, computing a Gröbner basis degree by degree is neither a deep
nor a new idea. Therefore we were surprised to find that the problem of
writing down the algorithms in full detail is rarely addressed in the literature.
When we tried to tame the subtleties of this topic, we quickly understood
why. But instead of avoiding these uncharted waters, we stayed the course and
sailed into the perilous seas. We believe we reached our desired destination,
and we are offering you our maps as proof. Before leaving port, you still have
to endure a briefing on our assumptions and hypotheses.
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Positiveness, Effectiveness, Finiteness, and All That

Starting from this section, we are going to assume that our polynomial ring
P = K[x1, . . . , xn] is positively graded. Why is this condition so important?

The first property of a grading we need is that there is a well-ordering
on the degrees. It guarantees the descending chain condition 1.4.18.b, and
consequently, if a procedure produces a list of terms in strictly decreasing
degrees, it has to stop eventually. This is the archetype of all finiteness proofs
in Computational Commutative Algebra.

Generally speaking, the whole section, and in fact the entire chapter, can
be written up for modules over polynomial rings which are graded by a com-
mutative monoid possessing a monoid ordering which is a well-ordering. In
this way, we could furnish you with nicely honed theoretical arguments, most
of which are essentially impossible to implement in a true computer algebra
system. Just how should one practically realize an arbitrary commutative
monoid? And which monoids carry an effectively computable well-ordering?
A purely theoretical approach like this would clearly violate the concrete and
hands-on spirit of this book.

Thus we need to specialize to an effectively computable monoid and a
natural ordering on the degrees. Many applications of the homogeneous case
use the standard grading. In Chapter 5 we shall encounter some problems
where bigradings are truly useful, and the most general monoid we have ever
used is Zm . For a Zm -grading on the polynomial ring of the type considered
in this book, i.e. a grading given by a matrix W ∈ Matm,n(Z), a well-ordering
on the monoid of degrees Γ = {d ∈ Zm | Pd �= 0} exists if W is of non-
negative type (see Proposition 4.1.21).

However, as we explained in Section 4.1, gradings of non-negative type
are not yet good enough to satisfy further reasonable requirements, such
as finite dimensional homogeneous components and a well-behaved minimal
number of homogeneous generators. These properties are satisfied for grad-
ings of positive type (see Propositions 4.1.19 and 4.1.22). But this is still not
concrete enough for us. Although there exists a term ordering on the degrees
in the case of gradings of positive type (and even in the case of gradings of
non-negative type), there is no canonical choice for that ordering. Computers
absolutely hate that. Consequently, programmers dislike it, too. And we join
in and ask for a definite and easily computable answer to the question which
of two degrees is larger.

Moreover, having an explicit ordering σ on Γ with degW (xi) >σ 0 for
i = 1, . . . , n (as is guaranteed by a grading of positive type) has further
advantages for computing a homogeneous Gröbner basis degree by degree.
If Buchberger’s algorithm generates a new critical pair (i, j), it will have a
degree which is larger than the current degree. Namely, a non-zero S-vector
of the form Sij = tijgi − tjigj has a degree larger than gi , because we have
degW (tij) >σ 0 for any term tij �= 1. In this way, we never have to go back
in degree and apply reductions to elements of smaller degree.
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The second advantage is related to the efficiency of homogeneous Gröbner
basis computations. During the computation in degree d , the normal remain-
der of a homogeneous vector with respect to some list of homogeneous vectors
may have to be computed. If we know that degW (t) > 0 for every term t �= 1,
we can exclude reductors of larger degree. Therefore we can speed up the re-
duction process.

So, why are we not working with a grading of positive type together
with an explicitly given ordering σ on Γ such that degW (xi) >σ 0 for
i = 1, . . . , n? There are at least two reasons. According to Remark 4.2.7,
it is easy to switch from a grading of positive type to a positive grading.
And, for a positive grading, the ordering on the degree with the above men-
tioned property is simply Lex. This fact allows us to avoid many unnecessary
complications and to describe many algorithms in a more natural way.

But there is a more important reason. Ordering the degrees lexicograph-
ically has the added advantage that degree compatible term orderings exist
(see Proposition 4.2.3), so that we can study the interplay between non-
graded and graded settings. In conclusion, if Lex is to be a well-ordering on
the degrees such that degW (xi) >Lex 0 for i = 1, . . . , n , there remains but
one choice: P has to be positively graded. Voilà!

So, henceforth we let K be a field, we assume that P = K[x1, . . . , xn] is
positively graded by W ∈ Matm,n(Z), we let δ1, . . . , δr ∈ Zm , and we con-
sider the graded free P -module F =

⊕r
i=1 P (−δi) together with a module

term ordering σ on the monomodule Tn〈e1, . . . , er〉 of terms in F .

4.5.A The Homogeneous Buchberger Algorithm

First of all, let us have another look at the behaviour of Buchberger’s Algo-
rithm 2.5.5 in this graded situation. Given two non-zero homogeneous vec-
tors v, w ∈ F and a term t ∈ Tn such that t · LTσ(w) ∈ Supp(v), we
can perform the reduction step v

w−→ v′ . Notice that this can happen only
if degW (tw) = degW (v). Hence v′ is again a homogeneous vector of de-
gree degW (v). This simple observation is the key to the proof of the following
proposition.

Proposition 4.5.1. Let M be a graded submodule of F and {g1, . . . , gs} a
set of non-zero homogeneous vectors which generate M .
a) Buchberger’s Algorithm 2.5.5, applied to the tuple G = (g1, . . . , gs) , re-

turns a homogeneous σ -Gröbner basis of M .
b) The reduced σ -Gröbner basis of M consists of homogeneous vectors.

Proof. First we prove claim a). During the execution of Buchberger’s Al-
gorithm 2.5.5, only elements of the form NRσ,G(Sij) are appended to G .
Let LMσ(gi) = citieγi

for i = 1, . . . , s , where ci ∈ K \ {0} and ti ∈ Tn

and γi ∈ {1, . . . , r} . For all 1 ≤ i < j ≤ s such that γi = γj , the
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element Sij = lcm(ti,tj)
citi

gi − lcm(ti,tj)
cjtj

gj is homogeneous and its degree is
degW (lcm(ti, tj)) + δγi

. As we have noted above, the reduction steps dur-
ing the computation of the normal remainder of Sij preserve homogeneity
and degree. Therefore only homogeneous elements are appended to G and
the resulting Gröbner basis is homogeneous.

To prove b), we look at the construction of the reduced Gröbner basis in
the proof of Theorem 2.4.13. Starting with a homogeneous Gröbner basis, we
see that all operations preserve the homogeneity of the elements, since the
normal form operation is again composed of reduction steps and reduction
steps preserve homogeneity. �

An easy but important application of this proposition is the following cri-
terion for checking whether a given module is graded (see also Tutorial 22.c).

Corollary 4.5.2. (Characterization of Graded Submodules)
Let M be a submodule of F . Then the following conditions are equivalent.
a) The module M is a graded submodule of F.
b) For every term ordering σ on Tn〈e1, . . . , er〉 , the reduced σ -Gröbner

basis of M consists of homogeneous vectors.
c) There exists a term ordering σ on Tn〈e1, . . . , er〉 and a σ -Gröbner basis

of M which consists of homogeneous vectors.

Proof. Claim a) implies b) by part b) of the proposition, and claim b) obvi-
ously implies c). The remaining implication is an immediate consequence of
Proposition 1.7.10. �

Our next goal is to state and prove a homogeneous version of Buchberger’s
Algorithm. To ease the notation, we shall use the following convention. When-
ever a non-zero vector gi appears, we write LMσ(gi) = citieγi

where ci ∈ K
and ti ∈ Tn and γi ∈ {1, . . . , r} . Let us recall the basic objects occurring in
Buchberger’s Algorithm 2.5.5, examine whether they are homogeneous, and
determine their degrees in that case.

Remark 4.5.3. Let G = (g1, . . . , gs) be a tuple of non-zero homogeneous
vectors in F, and let di = degW (gi) for i = 1, . . . , s .
a) The syzygy modules SyzP (G) and SyzP (LMσ(G)) are graded submod-

ules of the graded free P -module
⊕s

i=1 P (−di) (see Exercise 3). The
canonical basis of this module will be denoted by {ε1, . . . , εs} .

b) For two indices i, j ∈ {1, . . . , s} such that i �= j and γi = γj , the element
σij = lcm(ti,tj)

citi
εi − lcm(ti,tj)

cjtj
εj is called the fundamental syzygy of

(LMσ(gi),LMσ(gj)) (see Theorem 2.3.7 and Proposition 3.1.3). Then σij

is homogeneous of degree degW (σij) = degW (lcm(ti, tj)) + δγi
. We note

that degW (σij) ≥Lex maxLex{di, dj} .
c) For all pairs (i, j) such that 1 ≤ i < j ≤ s and γi = γj , the S-vector

Sij = lcm(ti,tj)
citi

gi − lcm(ti,tj)
cjtj

gj of gi and gj is a homogeneous element
of F of degree degW (lcm(ti, tj)) + δγi

= degW (σij).
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d) The set B = {(i, j) | 1 ≤ i < j ≤ s, γi = γj} is called the set of critical
pairs of G . For (i, j) ∈ B , we define the degree of the critical pair
(i, j) to be degW ((i, j)) = degW (Sij).

The following definition provides a few more abbreviations which will
make it easier to formulate and study algorithms in the homogeneous case.

Definition 4.5.4. Let M be a graded P -module, let S be a subset of M ,
and let V = (v1, . . . , vs) be a tuple of non-zero homogeneous elements of M .
a) The tuple V is called deg-ordered if degW (v1) ≤Lex · · · ≤Lex degW (vs).

b) Given a degree d ∈ Zm, we let S≤d = {v ∈ S | v homogeneous,
degW (v) ≤Lex d} and Sd = {v ∈ S | v homogeneous, degW (v) = d} .

c) Likewise, given a degree d ∈ Zm , we let V≤d be the subtuple of V
consisting of the elements vi such that degW (vi) ≤Lex d , and we let Vd be
the subtuple of V consisting of the elements vi such that degW (vi) = d .

Now we are ready to formulate and prove the homogeneous version of
Buchberger’s algorithm. Notice that, unlike in Algorithm 2.5.5, here we shall
keep the input tuple untouched.

Theorem 4.5.5. (The Homogeneous Buchberger Algorithm)
Let P = K[x1, . . . , xn] be positively graded by W ∈ Matm,n(Z) , let M be
a graded submodule of F , and let V = (v1, . . . , vs) be a deg-ordered tuple of
non-zero homogeneous vectors which generate M . Furthermore, let σ be a
module term ordering on Tn〈e1, . . . , er〉 . Consider the following sequence of
instructions.
1) Let B = ∅ , W = V , G = ∅ , and s′ = 0 .
2) Let d be the smallest degree with respect to Lex of an element in B or

in W . Form the subset Bd of B, form the subtuple Wd of W , and delete
their entries from B and W , respectively.

3) If Bd = ∅ , continue with step 6). Otherwise, choose a pair (i, j) ∈ Bd

and remove it from Bd .
4) Compute the S-vector Sij and its normal remainder S′

ij = NRσ,G(Sij) .
If S′

ij = 0 , continue with step 3).
5) Increase s′ by one, append gs′ = S′

ij to the tuple G , and append the set
{(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B . Continue with step 3).

6) If Wd = ∅ , continue with step 9). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
7) Compute v′ = NRσ,G(v) . If v′ = 0 , continue with step 6).
8) Increase s′ by one, append gs′ = v′ to the tuple G , and append the set

{(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B . Continue with step 6).
9) If B = ∅ and W = ∅ , return the tuple G and stop. Otherwise, continue

with step 2).
This is an algorithm which returns a deg-ordered tuple G = (g1, . . . , gs′)
whose elements are a homogeneous σ -Gröbner basis of M .
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Proof. First we prove finiteness. Every time step 3) is executed, we remove
an element from the set Bd if it is non-empty, and every time step 6) is
executed, we remove an element from the tuple Wd if it is non-empty. The
tuple W is never enlarged. The set B is enlarged only in steps 5) and 8).
Notice that a pair (i, j) which is added to B in step 5) or in step 8) has
a degree d′ greater than d because the grading given by W is positive.
Thus, for each degree d , the execution of steps 3) to 8) is finite. When the
set B is enlarged, an element gs′ is appended to G which has a leading term
outside 〈LTσ(g1), . . . ,LTσ(gs′−1)〉 . Since every ascending chain of monomial
submodules of F becomes eventually stationary, steps 5) and 8) can be ex-
ecuted only finitely many times. Thus we reach eventually a point where
W = ∅ and B = ∅ , and the procedure terminates in step 9).

Now we show that the algorithm returns a homogeneous σ -Gröbner basis
of M . For every new element gs′ which is added to G , the set of pairs
{(i, s′) | 1 ≤ i < s′, γi = γs′} is added to B in steps 5) and 8). Hence all
pairs in {(i, j) | 1 ≤ i < j ≤ s′, γi = γj} are added to B at some point
during the execution of the algorithm.

Every time a pair (i, j) is deleted in step 3), steps 4) and 5) guarantee
that the corresponding syzygy σij has a lifting in Syz(G) . Therefore G is
a σ -Gröbner basis of 〈g1, . . . , gs′〉 by Buchberger’s criterion 2.5.3. Since all
generators {v1, . . . , vs} of M are eventually treated by steps 6), 7), and 8),
we have M = 〈g1, . . . , gs′〉 when the algorithm stops.

Moreover, the elements S′
ij or v′ in steps 4) and 7) are normal remainders

of homogeneous elements with respect to reduction by a list of homogeneous
vectors. Thus it follows by induction on s′ that G continues to consist of
homogeneous vectors throughout. Finally, the fact that the degrees of the
elements of G are ordered non-decreasingly follows from the choice of the
next degree d in step 2), because an element gs′ which is appended to G in
step 5) or 8) has the current degree d . �

The best way to come to grips with a complicated algorithm like this one
is to try it out on some example. Let us go through a complete computation
on a step-by-step basis.

Example 4.5.6. Let P = K[x1, x2, x3, x4] be graded by W =
(
1 1 1 1
1 1 0 0

)
,

let V be the tuple of polynomials V = (v1, v2) , where v1 = x1x3 − x2x4 and
v2 = x2

1 − x2
2 , and let I be the ideal generated by the polynomials in V . We

note that v1 is homogeneous of degree
(
2
1

)
and v2 is homogeneous of degree(

2
2

)
. Therefore V is a deg-ordered list.
Our goal is to compute a σ -Gröbner basis of I , where σ = DegRevLex .

We follow the algorithm explained in Theorem 4.5.5.
1) Let B = ∅ , W = (v1, v2), G = ∅ , and s′ = 0.
2) Let d =

(
2
1

)
, W(2

1) = (v1), W = (v2), and B(2
1) = ∅ .

3) Since B(2
1) = ∅ , we continue with step 6).
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6) Choose v = v1 and let W(2
1) = ∅ .

7) Compute v′ = NRσ,G(v) = v1 .
8) Let s′ = 1, G = (g1) with g1 = v1 , and B = ∅ .
6) Since W(2

1) = ∅ , we continue with step 9).
9) Since W �= ∅ , we continue with step 2).
2) Let d = degW (v2) =

(
2
2

)
, W(2

2) = (v2), W = ∅ , B(2
2) = ∅ , and B = ∅ .

3) Since B(2
2) = ∅ , we continue with step 6).

6) Choose v = v2 and let W(2
2) = ∅ .

7) Compute v′ = NRσ,G(v) = v2 .
8) Let s′ = 2, G = (g1, g2) with g2 = v2 , and B = {(1, 2)} .
6) Since W(2

2) = ∅ , we continue with step 9).
9) Since B �= ∅ , we continue with step 2).
2) Let d = degW ((1, 2)) =

(
3
2

)
, B(3

2) = {(1, 2)} , W(3
2) = ∅ , W = ∅ , and

B = ∅ .
3) Choose (1, 2) ∈ B(3

2) and let B(3
2) = ∅ .

4) Compute S12 = −x2
2x3 + x1x2x4 and S′

12 = NRσ,G(S12) = −x2
2x3 +

x1x2x4 .
5) Let s′ = 3, G = (g1, g2, g3) with g3 = −x2

2x3 + x1x2x4 , and B =
{(1, 3), (2, 3)} . We note that degW ((1, 3)) =

(
5
4

)
and degW ((2, 3)) =

(
4
3

)
.

2) Let d = degW ((2, 3)) =
(
4
3

)
, B(4

3) = {(2, 3)} , W(4
3) = ∅ , W = ∅ , and

B = {(1, 3)} .
3) Choose (2, 3) ∈ B(4

3) and let B(4
3) = ∅ .

4) Compute S23 = x2
1x2x4 − x3

2x4 and S′
23 = NRσ,G(S23) = 0.

3) Since B(4
3) = ∅ , we continue with step 6).

6) Since W(4
3) = ∅ , we continue with step 9).

9) Since B �= ∅ , we continue with step 2).
2) Let d = degW ((1, 3)) =

(
5
4

)
, B(5

4) = {(1, 3)} , W(5
4) = ∅ , W = ∅ , and

B = ∅ .
3) Choose (1, 3) ∈ B(5

4) and let B(5
4) = ∅ .

4) Compute S13 = x3
1x2x4 − x4

2x3 and S′
13 = NRσ,G(S13) = 0.

3) Since B(5
4) = ∅ , we continue with step 6).

6) Since W(5
4) = ∅ , we continue with step 9).

9) Since B = ∅ and W = ∅ , we return G = (g1, g2, g3) and stop.
The result of this algorithm is that G = (g1, g2, g3) is a homogeneous

σ -Gröbner basis of I .

To conclude this subsection, we collect a few remarks about the hypothesis
of the homogeneous Buchberger algorithm.

Remark 4.5.7. This algorithm does not require that σ be degree compat-
ible because during the computation of the Gröbner basis only comparisons
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of terms in the support of a homogeneous vector are made. Thus these terms
have the same degree, and it does not matter whether σ is degree compatible
or not.

Remark 4.5.8. If we drop the hypothesis that the grading by W be posi-
tive, the homogeneous Buchberger algorithm still computes a homogeneous
Gröbner basis of M (see also Exercise 5). But the resulting tuple will in
general not be deg-ordered anymore, and the algorithm may have to go back
in degree occasionally. The reason for this phenomenon is that a critical pair
(i, j) can have a smaller degree than gi or gj .

For instance, if we use the grading given by W =
(−1 −1 1 1

1 1 0 0

)
in the

previous example, the algorithm starts to work in degree degW (v2) =
(−2

2

)
,

then treats degree degW (v1) =
(
0
1

)
, and next goes back to the smaller degree

degW ((1, 2)) =
(−1

2

)
.

In particular, this shows that if we interrupt the execution of the algorithm
after some degree d is finished, the tuple G need not contain a truncated
Gröbner basis of M in the sense of the following subsection.

4.5.B Truncated Gröbner Bases

Given a homogeneous system of generators G of a graded module M and a
degree d ∈ Zm, the set G≤d generates the module 〈M≤d〉 by Corollary 1.7.11.
This simple observation lies at the heart of calculus interruptus. If, for some
reason, we happen to know ahead of time the maximum degree of an element
in a Gröbner basis, can we use that to simplify the computation?

To answer this question, we start from the same situation as above, i.e.
we let P = K[x1, . . . , xn] be positively graded by W ∈ Matm,n(Z), we let
F =

⊕r
i=1 P (−δi) be a graded free P -module, and we let σ be a module

term ordering on Tn〈e1, . . . , er〉 . Furthermore, we assume that we are given
a set of non-zero homogeneous vectors G = {g1, . . . , gs} in F . Then we let
M = 〈g1, . . . , gs〉 and G = (g1, . . . , gs).

Definition 4.5.9. Suppose that the set G is a homogeneous σ -Gröbner
basis of M, and let d ∈ Zm . Then the set G≤d (or the tuple G≤d ) is called
a d-truncated σ -Gröbner basis of M, or a σ -Gröbner basis of M which
has been truncated at degree d .

If we interrupt the Homogeneous Buchberger Algorithm 4.5.5 after some
degree d is finished, the elements of the tuple G at that moment form a
d -truncated Gröbner basis of M . Consequently, we can compute truncated
Gröbner bases efficiently as follows.

Proposition 4.5.10. (Computation of Truncated Gröbner Bases)
In the situation of Theorem 4.5.5, let a degree d0 ∈ Zm be given. We replace
steps 2), 5), 8) by the following instructions.
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2’) Let d be the smallest degree with respect to Lex of an element in B or
in W . If d >Lex d0 , return the tuple G and stop. Otherwise, form the
subset Bd of B and the subtuple Wd of W , and delete their entries
from B and W, respectively.

5’) Increase s′ by one, append gs′ = S′
ij to the tuple G , and append the

set {(i, s′) | 1 ≤ i < s′, γi = γs′ , degW ((i, s′)) ≤Lex d0} to the set B .
Continue with step 3).

8’) Increase s′ by one, append gs′ = v′ to the tuple G , and append the
set {(i, s′) | 1 ≤ i < s′, γi = γs′ , degW ((i, s′)) ≤Lex d0} to the set B .
Continue with step 6).

Then the resulting set of instructions defines an algorithm. It returns a deg-
ordered tuple G of homogeneous vectors forming a d0 -truncated Gröbner basis
of M .

Proof. While the Homogeneous Buchberger Algorithm computes in some
current degree d , only elements of degree d are added to the Gröbner basis
in steps 5) and 8). Hence, after finishing all degrees d ≤Lex d0 , the elements of
the tuple G are precisely the elements of degree ≤Lex d0 of the final Gröbner
basis. It is clearly not necessary to append critical pairs of degree larger
than d0 to B in steps 5) and 8), since those pairs would never be processed
anyway. �

For theoretical applications of truncated Gröbner bases, we need a gen-
eralization of Buchberger’s Criterion 2.5.3. The following proposition says
that d -truncated Gröbner bases are characterized by the property that their
S-vectors of degree ≤Lex d reduce to zero.

Proposition 4.5.11. (Characterization of Truncated Gröbner Bases)
Let G = (g1, . . . , gs) be a tuple of non-zero homogeneous vectors which gen-
erate a graded submodule M of F, and let d ∈ Zm . Then the following
conditions are equivalent.
a) The tuple G≤d is a d-truncated σ -Gröbner basis of M.
b) Every non-zero element v ∈ M≤d satisfies LTσ(v) ∈ LTσ(G)≤d .
c) For all critical pairs (i, j) of degree ≤ d , we have NRσ,G≤d

(Sij) = 0 .

Proof. Without loss of generality, we may assume that G is a deg-ordered
tuple. Hence we have G≤d = (g1, . . . , gs′) for some s′ ≤ s .

It is clear that a) implies b). Let us show that b) implies a). The assump-
tion implies that we can find terms t′1, . . . , t

′
s′′ of degree greater than d such

that
LTσ(M) = 〈LTσ(g1), . . . ,LTσ(gs′), t′1, . . . , t

′
s′′〉

Using Proposition 1.5.6.a, we may choose homogeneous elements h1, . . . , hs′′

in M such that LTσ(hi) = t′i for i = 1, . . . , s′′ . Then (g1, . . . , gs′ , h1, . . . , hs′′)
is a homogeneous σ -Gröbner basis of M . If we truncate it at degree d , we
get G≤d .
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Next we show that a) implies c). Let H = (g1, . . . , gs′ , h1, . . . , hs′′) be
a homogeneous σ -Gröbner basis of M for which we have degW (hi) >Lex d
for i = 1, . . . , s′′ . By Buchberger’s Criterion 2.5.3, we have NRσ,H(Sij) = 0
for all 1 ≤ i < j ≤ s′ such that γi = γj . But since critical pairs (i, j) of
degree ≤Lex d satisfy i, j ∈ {1, . . . , s′} and degW (Sij) = degW ((i, j)) ≤Lex d ,
only the elements of G≤d can be involved in the reduction steps which show

Sij
H−→ 0. This yields condition c).

Finally, it remains to prove that c) implies a). We need to show that there
exists a σ -Gröbner basis H of M such that H≤d = G≤d . To this end we
may replace G by a subtuple such that no leading term of an element of G
is a multiple of another one. Now we use the algorithm of Proposition 4.5.10,
applied to the system of generators V = G and d0 = d . In step 7) of this
algorithm it suffices to reduce only the leading term of v (see Remark 2.5.6.a).
Then the assumption implies that the algorithm puts the elements of V≤d

one by one into the computed truncated Gröbner basis and no critical pair
yields a new element. Hence the result of the algorithm is V≤d = G≤d . �

This characterization has several useful applications. Let us start with an
easy one.

Corollary 4.5.12. Let G = (g1, . . . , gs) be a homogeneous σ -Gröbner basis
of M , and let d ∈ Zm . Then G≤d is a d-truncated σ -Gröbner basis of the
module 〈M≤d〉 .

Proof. Since G generates M, the tuple G≤d generates the P -module 〈M≤d〉 .
From Buchberger’s Criterion 2.5.3 we know that, for all critical pairs (i, j),
we have NRσ,G(Sij) = 0. If we have degW ((i, j)) ≤Lex d here, the elements

of G involved in the reduction steps Sij
G−→ 0 all have degrees less than or

equal to d . Hence we see that NRσ,G≤d
(Sij) = 0, and the Proposition yields

the claim. �

Example 4.5.13. Let P = Q[x, y, z] be standard graded, let σ = DegLex ,
and let I ⊆ P be the ideal generated by G = (g1, g2, g3) , where g1 = xy− z2

and g2 = y2 and g3 = z3 . Then G≤2 = (g1, g2) is a 2-truncated σ -Gröbner
basis of both the ideal I and the ideal 〈I≤2〉 = (g1, g2), since the only critical
pair has degree 3. But the tuple G≤3 = (g1, g2, g3) is not a 3-truncated
Gröbner basis of I = 〈I≤3〉 , because NRσ,G≤3(S12) = −yz2 is a new Gröbner
basis element in degree 3.

Corollary 4.5.14. Let d ∈ Zm, let the elements of G = (g1, . . . , gs) form a
d-truncated σ -Gröbner basis of M, and let gs+1 ∈ F be a non-zero homo-
geneous element of degree d such that LTσ(gs+1) /∈ 〈LTσ(g1), . . . ,LTσ(gs)〉 .
Then {g1, . . . , gs+1} is a d-truncated Gröbner basis of M + 〈gs+1〉 .

Proof. To prove the claim, we check condition c) of the proposition. For
all 1 ≤ i < j ≤ s such that γi = γj and degW (Sij) ≤Lex d , we have
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NRσ,G(Sij) = 0 by the assumption and the proposition. Now the claim follows
from the proposition and the observation that there are no pairs (i, s + 1)
of degree d . Indeed, suppose that there were an index i ∈ {1, . . . , s} such
that γi = γs+1 and degW ((i, s + 1)) = d . Since degW (gs+1) = d , the term
LTσ(gs+1) would have to be a multiple of LTσ(gi), in contradiction to one
of the hypotheses. �

Exercise 1. Let P = K[x, y, z] be standard graded and I = (x2−y2+z2,
xy − z2, y3 + xz2 − yz2 + 2z3 + xy − z2, −y2z2 + 2z4 + x2 − y2 + z2,
xy3 − y2z2 + x3 − xy2 + xz2, x3y3 − 3x2y2z2 + 3xyz4 − z6 − yz3 − z4,
y3z9 + 3y2z10 + 3yz11 + z12 − y2z2 + 2z4) . Show that I is homogeneous.

Exercise 2. Let K be a field, and let P = K[x, y, z] be graded by a
non-singular matrix W ∈ Mat3(Z) .

a) Let I = (f1, f2, f3) be the ideal in P generated by the polynomials
f1 = xy , f2 = y4 − xyz2 − z4 , and f3 = xz2 . Show that I is not
W -homogeneous.

b) Let J = (f1, f2, f3) be the ideal in P generated by f1 = xy , f2 = xz2 ,
and f3 = c1x

3 +c2x
2y+c3x

2z+c4xy2 +c5xyz+c6xz2 +c7y
3 +c8y

2z+
c9yz2 + c10z

3, where c1, . . . , c10 ∈ K . Find necessary and sufficient
conditions on c1, . . . , c10 for J to be W -homogeneous.

Exercise 3. Let Γ be a monoid, let R be a Γ -graded ring, let M be
a Γ -graded R -module, and let v1, . . . , vs ∈ M be homogeneous elements.
Show that the syzygy module SyzR(v1, . . . , vs) is a graded submodule of
a suitable Γ -graded free R -module.

Exercise 4. Formulate and prove a homogeneous version of the Extended
Buchberger Algorithm 2.5.11.

Exercise 5. Generalize the homogeneous Buchberger algorithm in the
following ways.

a) From the assumptions of Theorem 4.5.5, drop the hypothesis that the
grading defined by W is positive. Show that the sequence of instruc-
tions given in the theorem still computes a homogeneous σ -Gröbner
basis of M .

b) Modify Theorem 4.5.5 as follows. Let P be graded by a commutative
monoid Γ , let τ be a term ordering on Γ , and let F be a Γ -graded
free P -module. Use τ to compare degrees in step 2). Formulate and
prove a version of the homogeneous Buchberger algorithm which ap-
plies to this situation.

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let f1, . . . , fr ∈ P \{0} be homogeneous of degrees d1, . . . , dr , respec-
tively. Assume that d1 < d2 ≤ d3 ≤ · · · ≤ dr , and let σ be a term
ordering on Tn. Show that {f1} is a d -truncated σ -Gröbner basis of the
ideal generated by {f1, . . . , fr} for every d such that d1 ≤ d < d2 .

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let f1, . . . , fr ∈ P1 . Furthermore, let I = (f1, . . . , fr) , let σ be a term
ordering on Tn , and assume that {f1, . . . , fr} is a 1-truncated σ -Gröbner
basis of I . Prove that {f1, . . . , fr} is a σ -Gröbner basis of I .
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Tutorial 56: Computation of Homogeneous Gröbner Bases

Runtime Error 6D at 417A:32CF: Incompetent User
(Anonymous)

When we start practical Gröbner basis computations using the Homoge-
neous Buchberger Algorithm 4.5.5, we quickly notice that it becomes very
slow as soon as we consider some non-trivial examples. This phenomenon is
not due to the incompetence of the user, but to the intrinsic complexity of
Gröbner basis computations. Nevertheless, there are some easy ways we can
improve the performance of our algorithm, and in this tutorial we study a
few of them.

As a byproduct, we shall show that the optimization for the usual Buch-
berger algorithm we stated in Tutorial 25.h is in fact correct. Further opti-
mizations of the homogeneous Buchberger algorithm are contained in Tuto-
rial 59.

Let K be a field, let the polynomial ring P = K[x1, . . . , xn] be positively
graded by W ∈ Matm,n(Z), let δ1, . . . , δr ∈ Zm , let F be the graded free P -
module F =

⊕r
i=1 P (−δi), and let V = (v1, . . . , vs) be a deg-ordered tuple of

non-zero homogeneous vectors in F which generate a graded submodule M
of F . For i = 1, . . . , s , we let di = degW (vi). Moreover, let σ be a module
term ordering on Tn〈e1, . . . , er〉 .
a) Implement the Homogeneous Buchberger Algorithm 4.5.5 in a CoCoA

function HomBA(. . .). Apply your function to compute the Gröbner bases
of the graded submodules generated by the following tuples with respect
to the given module term orderings.
1) M1 ⊆ P = Q[x1, x2, x3, x4] , graded by W =

(
1 1 1 1
1 1 0 0

)
, generated by

V1 = (x1x3 − x2x4, x2
1 − x2

2), with respect to σ = DegRevLex (see
Example 4.5.6)

2) M2 ⊆ P = Q[x1, x2, x3, x4] , graded by W = (1 1 1 1), generated by
V2 = (x3

1−4x3
2, x5

1−7x5
3, x7

1−11x7
4), with respect to σ = DegRevLex

and also to σ = Lex
3) M3 ⊆ P = Q[x1, x2, x3, x4] , graded by W = (1 1 1 1), generated by

V3 = (x2
1x4 + x3

2 + x3
3 − x3

4, x3
1x

2
4 + x4

2x4 + x5
3 − x5

4), with respect to
σ = DegRevLex and also to σ = Lex

4) M4 ⊆ P = Q[x1, . . . , x5] , graded by W = (1 · · · 1), generated by
V4 = (x5

1−x1x
4
5−x4x

4
5, x6

1−x1x
5
5−x3x

5
5, x51

1 +x16
1 x35

5 +x1x
50
5 −x2x

50
5 ),

with respect to σ = Lex
5) M5 ⊆ P = Q[x1, . . . , x5] , graded by W = (1 · · · 1), generated

by V5 = (7x2x
6
3x

2
4 + 4x6

1x2x
2
5 + 9x3

1x
2
3x4x

3
5 + 6x2

2x3x
6
5, 8x1x

5
2x

3
3 +

2x3
1x

3
2x

2
3x5 + 4x6

1x4x
2
5 + 3x2x

8
5, 5x3

1x
8
2x

2
3x4 + x5

1x
2
2x3x

6
5 + 2x2

2x3x
11
5 +

5x1x
13
5 ), with respect to σ = DegRevLex

6) M6 ⊆ P ⊕ P (−2), where P = Q[x, y, z] is graded by W = (1 1 1)
and M6 is generated by V6 = ((x2 + y2 − xz, 0), (y2 + 2yz − z2, 1)),
with respect to σ = DegRevLexPos
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7) M7 ⊆ P (−1) ⊕ P ⊕ P , where P = Q[x, y, z] is graded by W =
(1 1 1) and M7 is generated by V7 = ((0, z, y), (0, xy, xy − yz),
(y, z2, 0), (z, 0, y2)), with respect to σ = DegLexPos

In the following, we use the additional notation introduced before Theo-
rem 4.5.5. Let G = (g1, . . . , gs′) be the deg-ordered σ -Gröbner basis of M
computed by the algorithm. For i = 1, . . . , s′ , we write LMσ(gi) = ci ti eγi

with ci ∈ K \ {0} and ti ∈ Tn and γi ∈ {1, . . . , r} . For i, j ∈ {1, . . . , s′} , we
let tij = lcm(ti, tj)/ti , and σij = 1

ci
tij εi− 1

cj
tji εj ∈

⊕s′

k=1 P (−dk) . Further-
more, the set of critical pairs of G is B = {(i, j) | 1 ≤ i < j ≤ s′, γi = γj} ,
and the corresponding set of fundamental syzygies is Σ = {σij | (i, j) ∈ B} .
b) Let Σ′ ⊆ Σ be a subset which generates Syz(LMσ(G)) . Show that The-

orem 4.5.5 remains correct if we apply steps 3) – 5) only to those critical
pairs (i, j) such that σij ∈ Σ′ .

c) Prove that there exists a subset Σ′ of Σ which is a minimal set of
generators of Syz(LMσ(G)).
In Tutorial 59 we shall optimize the homogeneous Buchberger algorithm

by finding a set Σ′ as in c) and applying steps 3) – 5) only to critical pairs
(i, j) corresponding to σij ∈ Σ′ . Here we make a few steps in this direc-
tion by isolating certain critical syzygies which are not minimal generators
of Syz(LMσ(G)). To do this systematically, it will prove to be convenient to
modify Definition 3.1.1 by setting tεi ≥τ t′εj if LTσ(tgi) >σ LTσ(t′gj) or if
LTσ(tgi) = LTσ(t′gj) and i ≥ j . We shall call τ the ordering induced by
(σ,G) again.
d) Prove that Lemma 3.1.2 and Proposition 3.1.3 continue to hold with

this new definition, i.e. that τ is a module term ordering and Σ is a
τ -Gröbner basis of Syz(LMσ(G)).

e) Determine LTτ (σij) for (i, j) ∈ B . Then consider the following rules.
1’) Delete in Σ all elements σij such that there exists an element σi′j

for which LTτ (σij) is a proper multiple of LTτ (σi′j), i.e. a multiple
of and different from LTτ (σi′j).

2’) If, among the remaining elements, there are σij , σi′j with i′ > i and
LTτ (σij) = LTτ (σi′j), then delete σi′j .

Prove that the set Σ′′ of elements surviving these two rules is a minimal
τ -Gröbner basis of Syz(LMσ(G)).

f) Show that the result of applying Rules 1’) and 2’) is the same as the
result of applying the following two rules.
1) Delete in Σ all elements σjk such that there exists i ∈ {1, . . . , j−1}

such that tki divides tkj .
2) Delete in the resulting set all elements σik such that there exists

j ∈ {i + 1, . . . , k − 1} such that tkj properly divides tki .
g) Now we subject the elements of Σ′′ to a further rule.
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3’) Delete in Σ′′ all elements σij such that there exists k ∈ {j+1, . . . , s′}
for which tik properly divides tij and tjk properly divides tji .

Show that the resulting set Σ′′′ still generates Syz(LMσ(G)).
Hint: Prove that σij = tσik + t′σjk with t, t′ ∈ Tn \ {1} .

h) Prove that Rule 3’) is equivalent to the following rule.
3) Delete in Σ′′ all elements σij for which there exists k ∈ {j+1, . . . , s′}

with the properties that tki does not divide tkj , that tkj does not
divide tki , and that gcd(tik, tjk) = 1.

Hint: Look at the coefficients of σij = tσik + t′σjk and analyze their
exponents one indeterminate at a time.

i) Prove that the CoCoA function GoodGB(. . .) which you wrote in Tutor-
ial 25.h correctly computes a σ -Gröbner basis.

j) Write a CoCoA function Update(. . .) which implements the following
steps.

U1) Form the set C = {(i, s′) | 1 ≤ i < s′, γi = γs′} .
U2) Delete from C all pairs (j, s′) for which there exists i ∈ {1, . . . , j−1}

such that ts′i divides ts′j .
U3) Delete from C all pairs (i, s′) for which there is j ∈ {i+1, . . . , s′−1}

such that ts′j properly divides ts′i .
U4) Find in C all pairs (i, s′) and (j, s′) such that 1 ≤ i < j ≤ s′ and

gcd(tis′ , tjs′) = 1. In each case, delete the pair (i, j) in B if possible.
U5) Append the elements of C to B and stop.
Show that the Homogeneous Buchberger Algorithm 4.5.5 remains correct
if we substitute steps 5) and 8) by
5’) Increase s′ by one, append gs′ = S′

ij to the tuple G , and apply
Update(. . .). Continue with step 3).

8’) Increase s′ by one, append gs′ = v′ to the tuple G , and apply
Update(. . .). Continue with step 6).

Implement the resulting algorithm in a CoCoA function NewHomBA(. . .).
k) Apply your function NewHomBA(. . .) in the examples of a). Compare its

efficiency with the efficiency of HomBA(. . .) by using timings and by count-
ing the numbers of calls to NR(. . .) in every example.

Tutorial 57: Some Applications of Truncated Gröbner Bases

The possibility of truncating a Gröbner basis computation at some degree
has many uses. Every time we have some idea of the degree or the structure
of the answer we are looking for, we can try to abort the computation of
the Homogeneous Buchberger Algorithm 4.5.5 as soon as we have finished
treating the degree where we expect our result. In this way we can frequently
obtain good bounds on the time it takes to compute that result. Let us study
some instances in which this strategy works well.
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Let K be a field, let P = K[x1, . . . , xn] be positively graded by a ma-
trix W ∈ Matm,n(Z), let δ1, . . . , δr ∈ Zm, let F =

⊕r
i=1 P (−δi), and let σ

be a module term ordering on Tn〈e1, . . . , er〉 .
a) Write a CoCoA program TruncGB(. . .) which takes a tuple V = (v1, . . . , vs)

of non-zero homogeneous vectors which generate a graded submodule M
of F and a degree d ∈ Zm and computes a d -truncated Gröbner basis
of M using the algorithm of Proposition 4.5.10.

b) Apply your program TruncGB(. . .) to the following cases. Use K = Q ,
the standard grading, and the module term ordering σ = DegRevLexPos .
1) M1 = (x2

1 − 2x2
2, x3

1 − 3x3
3, x4

1 − x4
4) ⊆ Q[x1, . . . , x4] , d = 3

2) M2 = 〈(x1x2, x1x3, x2x3), (x2
2 + x2x3, x1x3 + x2

2, x1x3),
(−x1, x2, x1), (x2

2, x2x3, x1x3)〉 ⊆ Q[x1, x2, x3]3 , d = 2
3) M3 = 〈(0, x2x3, x1x3), (0, x1x3, x1x2 − x1x3), (x2x3, x1x3, 0),

(x2
2, x2x3, 0)〉 ⊆ Q[x1, x2, x3]3 , d = 3

c) Explain how one can use a truncated Gröbner basis computation to de-
velop an efficient homogeneous submodule membership test. Then imple-
ment your algorithm in a CoCoA function HomogIsIn(. . .) which takes a
homogeneous system of generators of a graded submodule M of F and
a homogeneous vector v ∈ F and checks whether or not we have v ∈ M .

d) Use your function HomogIsIn(. . .) to find out which of the following
homogeneous vectors are contained in the module M3 defined above.
1) v1 = (x2

2x3, x2
1x3, x1x2x3 − x1x

2
3)

2) v2 = (x3
2 − x1x2x3, x1x2x3, x2

1x2 − x1x2x3)
3) v3 = (x1x

2
2x3, x1x

3
2 − x3

2x3, x2
1x

2
3)

e) Let f, g ∈ P be two non-zero homogeneous polynomials. Show that
SyzP (f, g) is the graded submodule of P (−degW (f)) ⊕ P (−degW (g))
generated by (g/ gcd(f, g), −f/ gcd(f, g)).

f) Let 1 ≤ m < n , and let I be a homogeneous ideal in P . Suppose it is
known that the elimination ideal I ∩ K[x1, . . . , xm] is a principal ideal
generated by a homogeneous polynomial f ∈ I . Describe a variant of
your function TruncGB(. . .) which computes f . Implement it in a CoCoA
function HomogElimPoly(. . .) and apply it to the following cases, where
P = Q[x1, . . . , x6] is standard graded and m = 4.
1) I1 = (x1x6 − 2x2

4, x2
1 − 2x1x5 − x2

2 + x2
5 + x2

6, x2
3 − x2

5 − x2
6)

2) I2 = (x1x
3
4 − 1

2x3
4x5 − x4

6, x2x4 − 2x2
5 − x4x6, x3 − 1

3x6)
3) I3 = (x3

1−3x2
4x6−3x2

5x6+x3
6, x3

2−3x2
4x5+x3

5−3x5x
2
6 , x2

3−3x2
5+3x2

6)
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4.6 Minimal Homogeneous Systems of Generators

The Pythagorean Theorem employed 24 words,
the Lord’s Prayer has 66 words,

Archimedes’ Principle has 67 words,
the 10 Commandments have 179 words,
the Gettysburg Address had 286 words,

the Declaration of Independence 1,300 words,
and finally,

the European Commission’s regulation on the sale of cabbage: 26,911 words.
(Dennis Gartman)

In Proposition 4.1.22 we saw that finitely generated graded modules over
polynomial rings with gradings of positive type have the property that all
irredundant systems of generators have the same number of elements. Hence
every homogeneous system of generators contains a minimal one. Given a
system of homogeneous generators of a module, is there a good method to
compute a minimal one? What do we mean by a good method?

We have already addressed a similar problem in Corollary 3.1.12, where
we suggested that syzygies be used. Here we can do much better, but in order
to realize the benefit of using the grading we need some preparatory work
which, in turn, requires a lot of sweat. Fortunately, half the job has already
been done in Subsection 4.5.B, where we studied the behaviour of truncated
Gröbner bases under the process of adding one homogeneous generator at
a time. The second half of the job is based on Proposition 4.6.1, where we
prove a nice characterization of minimal homogeneous systems of generators.
In particular, we get a better insight into the problem of deciding whether
the addition of an element to a minimal system of generators produces a
minimal system of generators of the enlarged module (see Corollary 4.6.2).

Then we describe a variation of the Homogeneous Buchberger Algo-
rithm 4.5.5 which allows us to compute efficiently a minimal set of gener-
ators while also computing a homogeneous Gröbner basis. This is the main
result of the entire section. Therefore we illustrate it by working through
one example in full detail (see Example 4.6.6). We conclude the section with
Theorem 4.6.7. It treats the special case where the input set of generators is
already a reduced Gröbner basis. Besides being an interesting application of
the methods previously described, it serves as a basis for the optimizations
of Buchberger’s algorithm developed in Tutorial 59.

In this second volume we usually have longer sections than in the first
one. However, we decided to make this section a little shorter. Indeed, we are
proud to announce that, after minimalizing here and truncating there, the
number of words in this section is about 4,300, far fewer than the European
Commission’s regulation on the sale of cabbage ... even if you include the
words in this sentence.

Let K be a field, let m,n, r ≥ 1, let P = K[x1, . . . , xn] be graded by
a matrix W ∈ Matm,n(Z) of positive type, let δ1, . . . , δr ∈ Zm , and let M



4.6 Minimal Homogeneous Systems of Generators 101

be a non-zero graded P -submodule of F =
⊕r

i=1 P (−δi). Furthermore, let
{g1, . . . , gs} ⊆ M \ {0} be a homogeneous system of generators of M , and
let di = degW (gi) for i = 1, . . . , s .

Using the Graded Version of Nakayama’s Lemma 1.7.15, we have seen in
Proposition 4.1.22 that the irredundant homogeneous systems of generators
of the graded submodule M of F are all minimal. Hence they have the
same number of elements which we shall denote by µ(M) . Our first task is
to describe explicitly a subset of {g1, . . . , gs} which is a minimal system of
generators of M .

Recall that in Section 4.1 we showed that the set Γ = {d ∈ Zm | Pd �= 0}
is a submonoid of Zm on which we have a term ordering τ , and that on the
Γ -monomodule Σ generated by all degrees of non-zero elements of M we
have a module ordering σ which is a well-ordering and compatible with τ .
The following proposition will be a useful tool for solving our task.

Proposition 4.6.1. (Characterization of Minimal Homogeneous
Systems of Generators)

Let P be graded by a matrix W ∈ Matm,n(Z) of positive type, let M
be a graded submodule of F generated by non-zero homogeneous vectors
{g1, . . . , gs} , and assume that degW (g1) ≤σ degW (g2) ≤σ · · · ≤σ degW (gs) .
a) The set {g1, . . . , gs} is a minimal system of generators of M if and only

if we have gi /∈ 〈g1, . . . , gi−1〉 for i = 1, . . . , s .
b) The set {gi | i ∈ {1, . . . , s}, gi /∈ 〈g1, . . . , gi−1〉} is a minimal system of

generators of M .

Proof. First we prove a). If {g1, . . . , gs} is a minimal set of generators of M ,
then no relation of the form gi ∈ 〈g1, . . . , gi−1〉 can hold, since otherwise we
would have M = 〈g1, . . . , gi−1, gi+1, . . . , gs〉 . Conversely, if {g1, . . . , gs} is not
a minimal set of generators of M , then there exists an index i ∈ {1, . . . , s}
such that gi ∈ 〈g1, . . . , gi−1, gi+1, . . . , gs〉 . Using Corollary 1.7.11, we obtain
a representation gi =

∑
j �=i fjgj , where each fj ∈ P is a homogeneous

polynomial of degree degW (gi) − degW (gj).
We have already recalled that there exists a term ordering τ on the

monoid Γ = {d ∈ Zm | Pd �= 0} such that σ is compatible with τ . Therefore
we have degW (fj) ≥τ 0 whenever fj �= 0. So, if degW (gj) >σ degW (gi),
it follows that fj = 0. Hence there are two possibilities. Either we have
degW (gi) >σ degW (gj) for all j such that fj �= 0. In this case, those in-
dices j satisfy j < i by the assumption that the degrees of g1, . . . , gs are
ordered increasingly, and therefore we get gi ∈ 〈g1, . . . , gi−1〉 . Or there exist
some indices j with fj �= 0 such that degW (gj) = degW (gi). In that case,
the polynomials fj corresponding to those indices j are non-zero constants
by Proposition 4.1.19.a. We define jmax = max{j ∈ {1, . . . , s} | fj ∈ K \{0}}
and get gjmax ∈ 〈g1, . . . , gjmax−1〉 . In both cases, we obtain a contradiction to
our hypothesis.

Now let us show b). Let S = {gi | i ∈ {1, . . . , s}, gi /∈ 〈g1, . . . , gi−1〉} .
We see that the elements of S form a system of generators of M , because
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an element gi such that gi ∈ 〈g1, . . . , gi−1〉 is also contained in the module
〈gj ∈ S | 1 ≤ j ≤ i − 1〉 . The fact that this system of generators is minimal
follows from a). �

Later we shall use this proposition to construct minimal systems of gen-
erators of M by adding one element at a time. The following result is an
immediate consequence of a).

Corollary 4.6.2. Let M be a graded submodule of F , let {g1, . . . , gs} be a
minimal homogeneous system of generators of M , and let g ∈ F \ M be a
homogeneous vector such that degW (g) ≥σ maxσ{degW (gi) | i = 1, . . . , s} .

Then {g1, . . . , gs, g} is a minimal system of generators of the graded mod-
ule M + 〈g〉 . In particular, we have µ(M + 〈g〉) = µ(M) + 1 .

Clearly part b) of the proposition could be applied to compute a minimal
system of generators of M from a given homogeneous system of generators,
since module membership can be effectively checked. But this method would
require a large number of Gröbner basis computations. Therefore we will now
look for something better.

The following extension of the Homogeneous Buchberger Algorithm com-
putes a minimal system of generators of M contained in that given while also
computing a Gröbner basis. This variant is an efficient way to find a mini-
mal system of generators. If one is not interested in the Gröbner basis, one
can speed it up even more by truncating the computation in the appropriate
degree.

Theorem 4.6.3. (Buchberger’s Algorithm with Minimalization)
Let P = K[x1, . . . , xn] be positively graded by W ∈ Matm,n(Z) , let M be
a graded submodule of F , and let V = (v1, . . . , vs) be a deg-ordered tuple of
non-zero homogeneous vectors which generate M . Furthermore, let σ be a
module term ordering on Tn〈e1, . . . , er〉 . Consider the following sequence of
instructions.
1) Let B = ∅ , W = V , G = ∅ , s′ = 0 , and Vmin = ∅ .
2) Let d be the smallest degree with respect to Lex of an element in B or

in W . Form the subset Bd of B, form the subtuple Wd of W , and delete
their entries from B and W , respectively.

3) If Bd = ∅ , continue with step 6). Otherwise, choose a pair (i, j) ∈ Bd

and remove it from Bd .
4) Compute the S-vector Sij and its normal remainder S′

ij = NRσ,G(Sij) .
If S′

ij = 0 , continue with step 3).
5) Increase s′ by one, append gs′ = S′

ij to the tuple G , and append the set
{(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B . Continue with step 3).

6) If Wd = ∅ , continue with step 9). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
7) Compute v′ = NRσ,G(v) . If v′ = 0 , continue with step 6).
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8) Increase s′ by one, append gs′ = v′ to the tuple G , append v to the
tuple Vmin , and append {(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B .
Continue with step 6).

9) If B = ∅ and W = ∅ , return the pair (G,Vmin) and stop. Otherwise,
continue with step 2).

This is an algorithm which returns a pair (G,Vmin) such that G is a deg-
ordered tuple forming a homogeneous σ -Gröbner basis of M, and Vmin is a
subtuple of V whose elements are a minimal system of generators of M .

Proof. In the light of Theorem 4.5.5, we only have to show that the elements
in Vmin are a minimal set of generators of M . Since the algorithm is finite, it
operates in only finitely many degrees d . Therefore it suffices to prove degree
by degree that Vmin is a minimal system of generators of 〈M≤d〉 after the
algorithm has finished working on elements of degree d .

This is the case after step 1), i.e. when Vmin = ∅ is a minimal system of
generators of the zero module. Suppose it is true for the last degree treated
before d . Inductively, we can show that the elements of G continue to be con-
tained in the module 〈M<d〉 while we are looping through steps 3), 4), and 5)
of the algorithm. Namely, every time an element of the form NFσ,G(Sij) is
added to G , it is clearly contained in the module generated by the previ-
ous elements of G . Furthermore, by Proposition 4.5.10, the tuple G forms a
d -truncated Gröbner basis of 〈M<d〉 after we have finished looping through
steps 3), 4), and 5), i.e. when we have treated all pairs of degree d .

Now let Wd = (w1, . . . , w�), and let the numbering of these vectors cor-
respond to the order in which they are chosen in step 6). We show that, for
each application of steps 6), 7), and 8), the elements of Vmin continue to be
a minimal system of generators of the module they generate, and that this
module always is equal to the one generated by the elements of G . Further-
more, the elements of G are always a d -truncated σ -Gröbner basis of that
module.

When a new vector v = wi is chosen in step 6), there are two possibil-
ities. If v′ = 0 in step 7), then v is already contained in the module M ′

generated by the elements of Vmin . Otherwise, both v′ and v lie outside M ′:
since G is a d -truncated σ -Gröbner basis of M ′ , we can apply the Submod-
ule Membership Test 2.4.10.a. In this case, the tuple Vmin , augmented by v ,
is a minimal system of generators of the module M ′ + 〈v〉 = M ′ + 〈v′〉 by
Corollary 4.6.2. Moreover, the tuple G , augmented by v′ , is a d -truncated
σ -Gröbner basis of M ′ + 〈v′〉 by Corollary 4.5.14.

Altogether, it follows that, after degree d is finished, the elements of the
tuple Vmin are a minimal system of generators of 〈M≤d〉 , as we wanted to
show. �

It is easy to see that Buchberger’s Algorithm with Minimalization also
works if the initial tuple V is not deg-ordered. In this case, the tuple Vmin

may not be a subtuple of V , but will be a permutation of some subtuple.
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As we mentioned above, if we are only interested in the minimal system
of generators, this algorithm can be speeded up as follows.

Remark 4.6.4. In the setting of the theorem, suppose that we stop the exe-
cution of the algorithm after degree dmax = degW (vs) is finished and that we
append only the pairs {(i, s′) | 1 ≤ i < s′, γi = γs′ , degW ((i, s′)) ≤Lex dmax}
to the set B in steps 5) and 8). Then the resulting tuple Vmin is still a
subtuple of V which contains a minimal homogeneous system of generators
of M .

In step 8) of Buchberger’s Algorithm with Minimalization 4.6.3, we can
append the vector v′ , instead of v , to Vmin . The resulting tuple still gener-
ates M minimally. However, these generators are contained in the computed
Gröbner basis G instead of in the initial tuple V . They have the additional
property that each vector is fully reduced against the previous ones. For later
reference, let us spell out this version of the algorithm.

Corollary 4.6.5. Modify the theorem by replacing steps 1), 8), and 9) with
the following instructions.
1’) Let B = ∅ , W = V , G = ∅ , s′ = 0 , and Gmin = ∅ .
8’) Increase s′ by one, append gs′ = v′ to the tuples G and Gmin , and append

{(i, s′) | 1 ≤ i < s′, γi = γs′} to the set B . Continue with step 6).
9’) If B = ∅ and W = ∅ , return the pair (G,Gmin) and stop. Otherwise,

continue with step 2).
Then the resulting set of instructions defines an algorithm. It returns a
pair (G,Gmin) such that G is a deg-ordered tuple which forms a homoge-
neous σ -Gröbner basis of M , and Gmin is a subtuple of G which minimally
generates M .

Let us apply the Buchberger Algorithm with Minimalization 4.6.3 to a
concrete case and follow its computations on a step-by-step basis.

Example 4.6.6. Let P = Q[x, y, z] be standard graded, i.e. graded by W =
(1 · · · 1), let V be the tuple of polynomials V = (v1, v2, v3, v4) , where
v1 = x2 − xy , v2 = x2 − yz , v3 = x3 − yz2 , and v4 = y5 − z5 , and let I be
the ideal generated by the polynomials in V .

Our goal is to compute a minimal set of generators of I . We choose
the term ordering σ = DegRevLex and follow Buchberger’s Algorithm
with Minimalization 4.6.3. However, we stop the computation after degree
dmax = degW (v4) = 5 is finished.
1) Let B = ∅ , W = (v1, v2, v3, v4), G = ∅ , s′ = 0, and Vmin = ∅ .
2) Let d = deg(v1) = 2, W2 = (v1, v2), W = (v3, v4), and B2 = ∅ .
3) Since B2 = ∅ , we continue with step 6).
6) Choose v = v1 and let W2 = (v2).
7) Compute v′ = NRσ,G(v) = v1 .
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8) Let s′ = 1, G = (g1) with g1 = v1 , Vmin = (v1), and B = ∅ .
6) Choose v = v2 and let W2 = ∅ .
7) Compute v′ = NRσ,G(v) = xy − yz .
8) Let s′ = 2, G = (g1, g2) with g2 = xy − yz , Vmin = (v1, v2), and

B = {(1, 2)} .
6) Since W2 = ∅ , we continue with step 9).
9) Since W �= ∅ , we continue with step 2).
2) Let d = deg(v3) = 3. Since d ≤ dmax = 5, we let W3 = (v3), W = (v4),

B3 = {(1, 2)} , and B = ∅ . (Notice that degW ((1, 2)) = 3.)
3) Choose (1, 2) ∈ B3 and let B3 = ∅ .
4) Compute S12 = xyz − xy2 and S′

12 = NRσ,G(S12) = −y2z + yz2 .
5) Let s′ = 3, let G = (g1, g2, g3) with g3 = −y2z + yz2 , and let B =

{(1, 3), (2, 3)} .
3) Since B3 = ∅ , we continue with step 6).
6) Choose v = v3 and let W3 = ∅ .
7) Compute v′ = NRσ,G(v) = 0 and continue with step 6).
6) Since W3 = ∅ , we continue with step 9).
9) Since W �= ∅ , we continue with step 2).
2) Let d = degW ((2, 3)) = 4. Since d ≤ dmax = 5, we let W4 = ∅ , B4 =

{(2, 3)} , and B = {(1, 3)} .
3) Choose (2, 3) ∈ B4 , and let B4 = ∅ .
4) Compute S23 = xyz2 − y2z2 and S′

23 = NRσ,G(S23) = 0. Since S′
23 = 0,

we continue with step 3).
3) Since B4 = ∅ , we continue with step 6).
6) Since W4 = ∅ , we continue with step 9).
9) Since W �= ∅ , we continue with step 2).
2) Let d = deg(v4) = 5. Since d ≤ dmax = 5, we let W5 = (v4), W = ∅ ,

B5 = {(1, 3)} , and B = ∅ .
3) Choose (1, 3) ∈ B5 , and let B5 = ∅ .
4) Compute S13 = −xy3z + x2yz2 and S′

13 = NRσ,G(S13) = 0. Since we
have S′

13 = 0, we continue with step 3).
3) Since B5 = ∅ , we continue with step 6).
6) Choose v = v4 and let W5 = ∅ .
7) Compute v′ = NRσ,G(v) = v4 .
8) Let s′ = 4, G = (g1, g2, g3, g4) with g4 = v4 , let Vmin = (v1, v2, v4), and

let B = {(1, 4), (2, 4), (3, 4)} .
6) Since W5 = ∅ , we continue with step 9).
9) Since B �= ∅ , we continue with step 2).
2) Let d = degW ((2, 4)) = 6. Since d > dmax = 5, we return (G,Vmin) and

stop.
The result of this algorithm is that Vmin = (v1, v2, v4) is a minimal system

of generators of I . Notice that the returned tuple G is a 5-truncated σ -
Gröbner basis of I . If we are interested in a true σ -Gröbner basis of I , we
have to continue the algorithm in degree ≥ 6 until we get B = ∅ in step 2).
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The minimal homogeneous system of generators computed by Corollary 4.6.5
is H = (g1, g2, g4) , where g1 = v1 , g2 = v2 − v1 , and g4 = v4 .

Finally, we end this section with an application of the preceding theorem
which will be essential for optimizing the Homogeneous Buchberger Algo-
rithm 4.5.5 in Tutorial 59. More precisely, we want to apply the Buchberger
Algorithm with Minimalization 4.6.3 to a reduced Gröbner basis and improve
it significantly in that case.

Theorem 4.6.7. (Minimal Generators in a Reduced Gröbner Basis)
Let P = K[x1, . . . , xn] be positively graded by W ∈ Matm,n(Z) , let M be a
graded submodule of F, let σ be a module term ordering on Tn〈e1, . . . , er〉 ,
and let the deg-ordered tuple V = (v1, . . . , vs) be the reduced σ -Gröbner basis
of M. Finally, let dmax = degW (vs) , and consider the following instructions.
1) Let B = ∅ , W = V , G = ∅ , s′ = 0 , and Vmin = ∅ .
2) Let d be the smallest degree with respect to Lex of an element in B or

in W . Form the subset Bd of B , the subtuple Wd of W , and delete
their entries from B and W , respectively.

3) If Bd = ∅ , continue with step 6). Otherwise, choose a pair (i, j) ∈ Bd

and remove it from Bd .
4) Compute S′

ij = NRσ,G(Sij) . If S′
ij = 0 , continue with step 3).

5) Increase s′ by one, append the element gs′ = S′
ij to G , and append the

set {(i, s′) | 1 ≤ i < s′, γi = γs′ , degW ((i, s′)) ≤Lex dmax} to the set B .
Continue with step 3).

6) If Wd = ∅ , continue with step 9). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
7) If LTσ(v) = LTσ(g) for some g ∈ G , then replace the element g in G

by v , and continue with step 6).
8) Increase s′ by one, append gs′ = v to G and Vmin , and append the set

{(i, s′) | 1 ≤ i < s′, γi = γs′ , degW ((i, s′)) ≤Lex dmax} to the set B .
Continue with step 6).

9) If B = ∅ and W = ∅ , return the tuple Vmin and stop. Otherwise, con-
tinue with step 2).

This is an algorithm which computes a subtuple Vmin of V such that Vmin is
a minimal homogeneous system of generators of M .

Proof. It suffices to show that this procedure has the same effect as run-
ning the Buchberger Algorithm with Minimalization 4.6.3 on V . The main
difference occurs in step 7).

First we use induction on d to show that, after we have finished some
degree d , the tuple G has the same elements as V≤d . Every element of Vd is
put into G at some point in step 7) or 8). On the other hand, if an element gs′

is put into G in step 5), it has a leading term which is not a multiple of an
element of V<d . Hence it is replaced in G at some point in step 7).



4.6 Minimal Homogeneous Systems of Generators 107

Next we note that, after we have finished cycling through steps 3), 4),
and 5) in degree d , the tuple G is a d -truncated minimal σ -Gröbner basis
of 〈M<d〉 . Here minimal means that no proper subtuple of G is a d -truncated
σ -Gröbner basis of 〈M<d〉 .

Now we turn our attention to the loop described in steps 6), 7) and 8).
Notice that the effect of steps 7) and 8) is essentially independent of the order
in which we choose the elements v ∈ Wd in step 6). Hence we can assume for
the purposes of this proof that we always choose the vector v in Wd which
has the minimal leading term with respect to σ . With this assumption, we
show inductively that when we run steps 7) and 8) for some element v ∈ Wd ,
at each point the elements in G are a minimal σ -Gröbner basis of the module
they generate, and the elements of Vmin are a minimal system of generators
of that module.

For the induction step, we have to consider two cases: either v replaces an
existing element of G in step 7) or is appended to both G and Vmin in step 8).
In the first case, it suffices to show that the module generated by the elements
of G does not change when we perform the swap, i.e. that the difference
v − g is contained in this module. This follows from the observations that
LTσ(v−g) <σ LTσ(v) and all elements v′ in V such that LTσ(v′) <σ LTσ(v)
are already in G . Since v − g

V−→ 0, we have v − g
G−→ 0. In the second case,

it is clear that G continues to be a minimal Gröbner basis of the module it
generates by Corollary 4.5.14, and Vmin continues to be a minimal system of
generators of that module by Corollary 4.6.2.

Finally, we note that in step 8) we can append v to G without passing
to the normal remainder, since v is an element of a reduced Gröbner basis
and thus irreducible. �
Remark 4.6.8. Let us make some observations about this algorithm.
a) The proof of the theorem shows that the algorithm reconstructs the given

reduced Gröbner basis inside G , and that G≤d has the same elements
as V≤d after some degree d is finished.

b) In step 4) it is not essential to compute the normal remainder NRσ,G(Sij).
Rather, it suffices to reduce the leading term of Sij as far as possible.

c) The non-zero elements NRσ,G(Sij) computed in step 4) and the elements
v ∈ Vd which replace values already in G in step 7) are in 1 − 1 cor-
respondence, since every new element computed in step 4) must have a
new leading term in the leading term module of M . This new leading
term must be the leading term of an element in the reduced Gröbner
basis, hence it is replaced.

We conclude this section by applying Theorem 4.6.7 to a concrete case.

Example 4.6.9. Let P = K[x, y, z] be standard graded, let V be the tuple
of polynomials V = (v1, v2, v3, v4, v5) , where v1 = x2 − yz , v2 = xy − yz ,
v3 = y2z − yz2 , v4 = y3 , and v5 = yz3 , and let I be the ideal generated by
the polynomials in V .
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We assume that we know in advance that V is the reduced σ -Gröbner
basis of I, where σ = DegRevLex . Our goal is to compute a minimal set
of generators of I . To this end, we follow the algorithm explained in Theo-
rem 4.6.7. We note that dmax = 4.
1) Let B = ∅ , W = V , G = ∅ , s′ = 0, and Vmin = ∅ .
2) Let d = 2, B2 = ∅ , W2 = (v1, v2), and W = (v3, v4, v5).
3) Since B2 = ∅ , we continue with step 6).
6) Choose v = v1 and let W2 = (v2).
8) Let s′ = 1, G = (v1), Vmin = (v1), and B = ∅ .
6) Choose v = v2 , and let W2 = ∅ .
8) Let s′ = 2, G = (v1, v2), Vmin = (v1, v2), and B = {(1, 2)} .
6) Since W2 = ∅ , we continue with step 9).
9) Since B �= ∅ and W �= ∅ , we continue with step 2).
2) We note that degW (v3) = 3 and degW ((1, 2)) = 3. Hence we let d = 3,

W3 = (v3, v4), W = (v5), B3 = {(1, 2)} , and B = ∅ .
3) Choose (1, 2) ∈ B3 , and let B3 = ∅ .
4) Compute S′

12 = NRσ,G(S12) = −y2z + yz2 .
5) Let s′ = 3, G = (v1, v2, g3) with g3 = −y2z + yz2 , and B = {(2, 3)} .

(Notice that degW ((1, 3)) = 5 > 4 = dmax .)
3) Since B3 = ∅ , we continue with step 6).
6) Choose v = v3 , and let W3 = (v4).
7) Since LTσ(v) = LTσ(g3), we replace g3 , i.e. we let G = (v1, v2, v3).
6) Choose v = v4 , and let W3 = ∅ .
8) Let s′ = 4, G = (v1, v2, v3, v4), Vmin = (v1, v2, v4), and B = {(2, 3),

(2, 4), (3, 4)} .
6) Since W3 = ∅ , we continue with step 9).
9) Since B �= ∅ and W �= ∅ , we continue with step 2).
2) Note that degW (v5) = degW ((2, 3)) = degW ((2, 4)) = degW ((3, 4)) = 4.

Hence we let d = 4, W4 = (v5), W = ∅ , B4 = {(2, 3), (2, 4), (3, 4)} , and
B = ∅ .

3) Choose (2, 3) ∈ B4 , and let B4 = {(2, 4), (3, 4)} .
4) Compute S′

23 = NRσ,G(S2,3) = 0.
3) Choose (2, 4) ∈ B4 , and let B4 = {(3, 4)} .
4) Compute S′

24 = NRσ,G(S2,4) = −yz3 .
5) Let s′ = 5, G = (v1, v2, v3, v4, g5) with g5 = −yz3 , and B = ∅ , since all

the pairs (1, 5), (2, 5), (3, 5), and (4, 5) have degree bigger than dmax .
3) Choose (3, 4) ∈ B4 , and let B4 = ∅ .
4) Compute S′

34 = NRσ,G(S3,4) = 0.
3) Since B4 = ∅ , we continue with step 6).
6) Choose v = v5 , and let W4 = ∅ .
7) Since LTσ(v) = LTσ(g5), we replace g5 , i.e. we let G = (v1, v2, v3, v4, v5).
6) Since W4 = ∅ , we continue with step 9).
9) Since B = ∅ and W = ∅ , we return Vmin = (v1, v2, v4) and stop.
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The result of this algorithm is that Vmin = (v1, v2, v4) is a minimal homo-
geneous system of generators of I which is contained in V . Notice how few
reduction steps we had to perform. The treatment of the generators v1, . . . , v5

was a purely combinatorial affair.

Exercise 1. Let K be a field and P = K[x, y] . Find an example of an
ideal I in P and an element f ∈ P \ I such that µ(I + (f)) < µ(I) , and
another example such that µ(I + (f)) = µ(I) .

Exercise 2. Let K be a field, let P = K[x1, . . . , xn] be positively
graded, let d ≥ 1, and let I ⊆ P be a homogeneous ideal. Show that

µ(Id) ≤ (µ(I)+d−1
d

)
and give an example in which this inequality is strict.

Exercise 3. Let K be a field, let P = K[x1, . . . , xn] be graded by a posi-
tive matrix W ∈ Matm,n(Z) , let P+ =

⊕
d>Lex0

Pd , let δ1, . . . , δr ∈ Zm, let

F =
⊕r

i=1 P (−δi) , let M be a non-zero graded submodule of F , and let
g ∈ F \M be a homogeneous element. Show that the following conditions
are equivalent.

a) µ(M + 〈g〉) = µ(M) + 1
b) (P+ ·(M + 〈g〉)) ∩ M = P+ ·M
c) (P+ ·〈g〉) ∩ M ⊆ P+ ·M

Hint: Use µ(M) = dimK(M/(P+ · M)) .

Exercise 4. Use the previous exercise to give an alternative proof of
Theorem 4.6.1.a.
Hint: Show that µ(〈g1, . . . , gi〉) = µ(〈g1, . . . , gi−1〉)+ 1 by verifying condi-
tion c) of the previous exercise.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be positively graded
by W ∈ Matm,n(Z) , let δ1, . . . , δr ∈ Zm , and let F =

⊕r
i=1 P (−δi) . Given

a module term ordering σ on Tn〈e1, . . . , er〉 and homogeneous vectors
v1, . . . , vs ∈ F such that no two of them have their leading term in the
same position, show that {v1, . . . , vs} is a minimal system of generators
of the graded submodule 〈v1, . . . , vs〉 of F .

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] be positively graded
by W ∈ Matm,n(Z) , let δ1, . . . , δr ∈ Zm , let M be a non-zero graded
submodule of F =

⊕r
i=1 P (−δi) , and let d ∈ Zm. Furthermore, assume

that G = {g1, . . . , gs} is a d -truncated σ -Gröbner basis of M , and H is
a minimal homogeneous set of generators of M which consists of elements
of degree ≤ d . Finally, let gs+1, . . . , gs′ ∈ F be homogeneous elements of
degree d such that, for s + 1 ≤ j ≤ s′ , the leading term of gj is not a
multiple of a term LTσ(gi) with i < j .

a) Show that the set G∪ {gs+1, . . . , gs′} is a d -truncated Gröbner basis
of the module M ′ = M + 〈gs+1, . . . , gs′〉 .

b) Show that the set H ∪ {gs+1, . . . , gs′} is a minimal homogeneous set
of generators of M ′ .
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Exercise 7. Let K be a field, let P = K[x1, . . . , xn] , and let σ be a term
ordering on Tn . Furthermore, let f1, . . . , fs ∈ P \ K , let I be the ideal
generated by {f1, . . . , fs} , and assume that gcd(LTσ(fi), LTσ(fj)) = 1
for 1 ≤ i < j ≤ s . Prove that {f1, . . . , fs} is an irredundant system of
generators of I .

Exercise 8. In the ring Q[x, y, z] , consider the polynomials f1 = x2−yz ,

f2 = xy − z2 , f3 = y2z , f4 = xz2 , f5 = yz3 , and f6 = z4 . Suppose you
know that {f1, . . . , f6} is the reduced DegRevLex-Gröbner basis of the
ideal I = (f1, f2, f3, f4, f5, f6) . Compute a minimal system of generators
of I using Theorem 4.6.7.

Tutorial 58: Computing Some Minimal Systems of Generators

Minimalism is a cheap excuse for laziness.
(Anonymous)

In this section we have seen several methods for computing a minimal
homogeneous system of generators of a graded submodule. Here we ask you
to implement and compare them. For good measure we throw in another
one which is based on a syzygy computation and a smart application of
Nakayama’s Lemma. Of course, the telling test for these competing methods
is their practical performance. The handful of examples we provide here for
your perusal is merely meant to serve as a quick check for correctness. To get
a thorough grasp of the relative merits of various methods for minimalization
you need to overcome your innate laziness and continue to explore their
efficiency on your own.

Let K be a field, let P = K[x1, . . . , xn] be positively graded by a matrix
W ∈ Matm,n(Z), let δ1, . . . , δr ∈ Zm, let F =

⊕r
i=1 P (−δi), and let V =

(v1, . . . , vs) be a deg-ordered tuple of non-zero vectors in F which generate
a graded submodule M of F .
a) Using Proposition 4.6.1.b and the submodule membership test (see

Proposition 2.4.10 and Tutorial 57.c), develop an algorithm for comput-
ing a subtuple Vmin of V which generates M minimally.

b) Implement this algorithm in a CoCoA function Min1(. . .) . Apply your
function to the following tuples which generate graded submodules of
Q[x, y, z] ⊕ Q[x, y, z](−2) where we use W = (1 1 1).
1) V1 = ((x2 − xy, 0), (x2 − yz, 0), (x3 − yz2, 0), (y5 − z5, 0))
2) V2 = ((x4, y2), (x3y, yz), (x2y2, z2), (0, y3 − xyz), (0, y2z − xz2),

(0, y4 − x2z2), (x3y2 − x4z, 0))
3) V3 = ((xyz, x − y), (x4 + xyz2, xz), (x4, yz), (x6 − x5y, x2y2 − z4),

(x2y2z2, x2y2 − z4), (0, x4y2 − y3z3 − x2z4))
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c) Implement the Buchberger Algorithm with Minimalization 4.6.3 in a
CoCoA function Min2(. . .) and apply it to the examples of b). Which
function minimalizes the given tuple faster?

d) Modify the algorithm of Corollary 4.6.5 in such a way that it computes
the reduced σ -Gröbner basis of M and a minimal system of generators
of M contained in it.

e) Write a CoCoA function Min3(. . .) which implements the algorithm of d).
The apply your function to the examples of b). Let G1 , G2 , and G3 be
the resulting reduced Gröbner bases.

f) Implement the algorithm of Theorem 4.6.7 in a CoCoA function Min4(. . .),
apply it to the reduced Gröbner bases G1 , G2 , and G3 , and compare
the resulting minimal system of generators with the one computed by
Min3(. . .).

g) Now we want to compute a minimal homogeneous system of generators
of M in yet another way. For i = 1, . . . , s , let di = degW (vi) . Suppose
that W = (w1, . . . , wt) is a deg-ordered tuple of non-zero homogeneous
vectors in

⊕s
i=1 P (−di) which generate the syzygy module SyzP (V). By

considering W as a matrix of homogeneous polynomials and by substi-
tuting xi �→ 0 for i = 1, . . . , n in the entries of that matrix, we obtain a
matrix W ∈ Mats,t(K). Let I ⊆ {1, . . . , s} be the set of indices of the
rows involved in some maximal non-zero minor of W . Then show that
{vi | i ∈ {1, . . . , s} \ I} is a minimal homogeneous system of generators
of M .
Hint: Show that the corresponding vectors {vi | i ∈ {1, . . . , s}\I} form a
K -basis of M/(x1, . . . , xn)M and use the graded version of Nakayama’s
lemma.

h) Write a CoCoA function Min5(. . .) which implements the method for com-
puting a minimal set of generators of M resulting from i). Apply your
function to the examples in b) and discuss its efficiency.
Hint: To find the set I , take a non-zero row of W and keep adding
linearly independent rows until their number reaches the rank of that
matrix.

Tutorial 59: Optimizing the Homogeneous Buchberger Algorithm

(D)inner not ready: (A)bort, (R)etry, (P)izza
(Anonymous)

In Tutorial 56 we saw some straightforward improvements of the Homo-
geneous Buchberger Algorithm 4.5.5. Since it suffices to treat a subset of all
critical pairs for which the corresponding fundamental syzygies generate the
syzygy module of the leading terms of the computed Gröbner basis, we were
able to state a few simple rules for discovering unnecessary critical pairs. This
tutorial is a natural continuation of that process.
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After discovering that Rules 1) – 3) of Tutorial 56 do not always min-
imalize the critical pairs, we set out to achieve that minimalization by ap-
plying the algorithm of Theorem 4.6.7 to the minimal Gröbner basis Σ′′

of Syz(LMσ(G)) we discovered in Tutorial 56.e. The resulting minimaliza-
tion can be performed during the computation of the original Gröbner basis
and is as fast as the application of Rules 1) – 3). In the end, we obtain a
version of the Buchberger algorithm which is truly optimal in the sense that
only a minimal set of critical pairs is treated.

Let the assumptions and notation be the same as in Tutorial 56. Namely,
let K be a field, let the polynomial ring P = K[x1, . . . , xn] be positively
graded by W ∈ Matm,n(Z), let δ1, . . . , δr ∈ Zm , let F be the graded free
P -module F =

⊕r
i=1 P (−δi), and let V = (v1, . . . , vs) be a deg-ordered tuple

of non-zero homogeneous vectors in F which generate a graded submodule M
of F . For i = 1, . . . , s , we let di = degW (vi). Moreover, let σ be a module
term ordering on Tn〈e1, . . . , er〉 .
a) Consider the following example. Let P = Q[x, y, z] be standard graded,

and let G be a deg-ordered homogeneous σ -Gröbner basis of an ideal
M ⊆ P such that LMσ(G) = (t1, t2, t3, t4) , where t1 = x3z2 , t2 = x3y4 ,
t3 = y5z2 , and t4 = x2y5z . Compute the set Σ of fundamental syzy-
gies and its subset Σ′′′ of elements which survive Rules 1), 2), and 3)
of Tutorial 56. Show that Σ′′′ is not a minimal system of generators
of Syz(LMσ(G)).
This example shows that the algorithm of Tutorial 56.j is not optimal in

the sense that the set of critical pairs it treats does not always correspond
to a minimal system of generators of Syz(LMσ(G)). To get this property, we
now want to apply the algorithm of Theorem 4.6.7 to the minimal Gröbner
basis Σ′′ of Syz(LMσ(G)) we found in Tutorial 56.e.
b) Prove that a pair of pairs, i.e. a critical pair between two elements σij ,

σi′j′ yields an S-vector of the form c̃ t̃ σii′ , where c̃ ∈ K and t̃ ∈ Tn .
Show that such a pair of pairs is homogeneous and compute its degree.

c) Define a head reduction step and a tail reduction step of one funda-
mental syzygy by another. Describe the results of these reduction steps.

d) Let i, j, k ∈ {1, . . . , s′} be such that γi = γj = γk . Show that we have

lcm(ti,tj ,tk)
lcm(ti,tj)

· σij + lcm(ti,tj ,tk)
lcm(tj ,tk) · σjk − lcm(ti,tj ,tk)

lcm(ti,tk) · σik = 0

e) Let i, j, k ∈ {1, . . . , s′} be pairwise distinct numbers with γi = γj = γk .
Prove that the following conditions are equivalent.
1) σij ∈ 〈σik, σjk〉
2) tik | tij
3) tjk | tji

4) tk | lcm(ti, tj)
5) lcm(ti, tj , tk) = lcm(ti, tj)
6) gcd(tik, tjk) = 1
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Conclude that the S-vector c̃ t̃ σii′ of a pair of pairs satisfies t̃ = 1 if and
only if gcd(tij , ti′j) = 1.

f) Let Σ′′ be the minimal τ -Gröbner basis of Syz(LMσ(G)) constructed in
Tutorial 56.e. Consider the following instructions.
1) Let B∗ = ∅ , W = Σ′′ , A = ∅ , and Θ = ∅ .
2) For all σij , σi′j ∈ Σ′′ such that 1 ≤ i < i′ < j ≤ s , form the S-vector

S((i,j),(i′,j)) = c̃ t̃ σii′ where c̃ ∈ K and t̃ ∈ Tn . If t̃ = 1, append σii′

to B∗ .
3) Let d be the smallest degree with respect to Lex of an element of B∗

or W . Form B∗
d and Wd , and delete their entries from B∗ and W ,

respectively.
4) If B∗

d = ∅ , continue with step 11). Otherwise, choose an element
σij ∈ B∗

d and remove it from B∗
d .

5) If LTτ (σij) ∈ LTτ (Ad), then continue with step 4).
6) If LTτ (σij) = LTτ (σi′j) for some element σi′j ∈ Wd , then remove

σi′j from Wd , append it to A , and continue with step 4).
7) Find σi′j ∈ A<d such that tji is a multiple of tji′ . Then perform

the head reduction step σij

σi′j−→ t̃ σk� , where t̃ ∈ Tn , k = min{i, i′} ,
and � = max{i, i′} . If t̃ �= 1, continue with step 4).

8) If LTτ (σk�) ∈ LTτ (Ad), continue with step 4).
9) If LTτ (σk�) = LTτ (σk′�) for some element σk′� ∈ LTτ (Wd), remove

σk′� from Wd , append it to A , and continue with step 4).
10) If σk� ∈ B∗

d , delete σk� in B∗
d and continue with step 7), applied to

this element. Otherwise continue with step 4).
11) Append Wd to A and to Θ .
12) If B∗ = ∅ and W = ∅ , return Θ and stop. Otherwise, continue with

step 3).
Assume that this is an algorithm which computes a subset Θ of Σ′′ such
that Θ is a minimal system of generators of Syz(LMσ(G)) . (If you are
very adventurous, you may try to prove this. At the end of this tutorial
we give an extended hint on how you can proceed.)
Implement this algorithm in a CoCoA function MinCritPairs(. . .).

g) Using both a direct calculation and your function MinCritPairs(. . .),
apply this algorithm to the following cases.
1) Let Σ′′ be the set you computed in part a).
2) Let P = Q[x1, . . . , x5] be standard graded, and let LMσ(G) =

(t1, t2, t3, t4) , where t1 = x2
2x

6
3x4x

2
5 , t2 = x8

1x2x4x
4
5 , t3 = x8

1x
2
2x

6
3 ,

and t4 = x8
1x

6
3x

4
5 . Compute Σ , Σ′′ , and Σ′′′ , and show that Σ′′′ is

not minimal.
h) Modify the Homogeneous Buchberger Algorithm 4.5.5 by replacing steps

1), 2), 5), and 8) with the following.
1’) Let W = V , A = ∅ , B = ∅ , B∗ = ∅ , G = ∅ , and let s′ = 0.
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2’) Let d be the smallest degree with respect to Lex of an element of B
or W . Form Bd , B∗

d , Wd , and delete their entries from B , B∗ ,
and W , respectively. Apply the function MinPairs(A,Bd, B

∗
d) de-

fined below.
5’) Increase s′ by one, append gs′ = S′

ij to G , perform the procedure
Update(B,B∗, gs′), and continue with step 3).

8’) Increase s′ by one, append gs′ = v′ to G and perform the procedure
Update(B,B∗, gs′). Then continue with step 6).

Here Update(B,B∗, gs′) is the same as the procedure described in Tuto-
rial 56.j, except for the substitution of

U4’) Find in C all pairs (i, s′) and (j, s′) with 1 ≤ i < j < s′ such
that gcd(tis′ , tjs′) = 1. For each of these, check if (i, j) is already
contained in B∗ and append it if it isn’t.

The procedure MinPairs(A,Bd, B
∗
d) is defined as follows.

M1) If B∗
d = ∅ then stop. Otherwise, choose a pair (i, j) in B∗

d and
remove it from B∗

d .
M2) If tji = tji′ for some pair (i′, j) ∈ A , continue with step M1).
M3) If tji = tji′ for some pair (i′, j) ∈ Bd , remove this pair from Bd and

append it to A . Continue with step M1).
M4) Find (i′, j) ∈ A such that tji′ divides tji . Let (k, �) = (min{i, i′},

max{i, i′}). If gcd(tij , ti′j) �= 1, then continue with M1).
M5) If t�k = t�k′ for some pair (k′, �) ∈ A , continue with M1).
M6) If t�k = t�k′ for some pair (k′, �) ∈ Bd , delete this pair from Bd ,

append it to A , and continue with M1).
M7) If (k, �) ∈ B∗

d , delete (k, �) in B∗
d and continue with M4), applied to

this pair.
M8) Continue with step M1).
Show that, altogether, we obtain a new algorithm which computes a
deg-ordered homogeneous σ -Gröbner basis G of M . Moreover, the set
of pairs treated in steps 3) – 5’) corresponds to a minimal system of
generators of Syz(LMσ(G)).

i) Apply this algorithm to the following case and follow its computations
on a step-by-step basis. Let P = Q[x, y, z] be standard graded, and let
M ⊆ P be the homogeneous ideal generated by V = (v1, v2, v3) , where
v1 = x3z2 + x2y2z , v2 = x3y8 , and v3 = y10z2 . Use σ = DegLex .

j) Implement this new algorithm in a CoCoA function OptimalBA(. . .). Ap-
ply your function to the examples given in i) and in Tutorial 56.a. Com-
pare its efficiency with NewHomBA(. . .) by using timings and counting the
number of calls of NR(. . .).

k) (Note: The following task requires a substantial effort on your part. At-
tempt it only if you are very bored.) Prove the finiteness and correctness
of the algorithm underlying MinCritPairs(. . .). You could try to apply
Theorem 4.6.7 to Σ′′ and proceed as follows.
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1) Suppose the element σij chosen in step 4) of the algorithm in f) is not

in Ad but its leading term is in LTσ(Ad) . Show that σij
A−→ 0 by con-

sidering the three cases LTτ (σij) ∈ LTτ (Ad), LTτ (σij) irreducible
with respect to A , and LTτ (σij) reducible by A<d , separately.

2) Let 1 ≤ i < j < m ≤ s and i′ ∈ {1, . . . , j−1}\{i} . Suppose there are
terms t, t′, t′′ ∈ Tn \{1} such that σij = σii′ + t σi′j = t′ σim− t′′ σjm

and σi′m = t σi′j + t′′ σjm . Show that t , t′ , and t′′ are pairwise
coprime.

3) In the algorithm in f), suppose that the element σij reduces to σk�

in step 7) and that steps 8), 9), and 10) do not apply. Then show
that σk� is one of the elements of B∗

d which has been dealt with
already. (Write σij = t′σim + t′′σjm = tσi′j ± σk� and conclude that
t lcm(ti′ , tj) = t′′ lcm(tj , tm) = t̃ lcm(ti′ , tm). Using 2), prove that
t̃ = 1 does not happen.)
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4.7 Minimal Homogeneous Presentations

I have made this letter longer than usual,
because I lack the time to make it short.

(Blaise Pascal)

What is a good presentation? Some people might answer that first you
say what you’re going to say, then you say it, and then you say what you said.
In this sense the presentation in this book is not good, because we lack the
third part. However, when the subject of the presentation is presentations, our
intention is completely different, because we want to make the presentation
minimal. Although it has been claimed that minimalism is a cheap excuse
for laziness, this is all wrong for presentations, because it takes a lot of time
and effort to make them short.

In Computational Commutative Algebra, the computation of the minimal
homogeneous presentation of a module is the first step in the computation of
a minimal graded free resolution. Since many invariants of ideals and modules
can be derived from such a resolution, computing one is a crucial achievement.
It is also a formidable challenge, and to surmount the obstacles, we have to
select our strategy carefully. The first component of our strategy is to divide
and conquer. Therefore we divided the section into three subsections.

Firstly, we examine the existence and uniqueness of minimal homogeneous
presentations. If they didn’t exist, this section would never have been written
and you wouldn’t be reading these lines. This is the cheap way to settle the
existence question. And if they are not unique (spoiler: they aren’t) we should at
least find out how the different minimal homogeneous presentations of the
same module are related to each other and which invariants they share. In
this context it is useful to represent presentations by homogeneous matrices of
polynomials (see Definition 4.7.1 and Proposition 4.7.4) and to study how the
minimality of a presentation is reflected in the degrees of the rows and the
columns of the corresponding homogeneous matrix (see Propositions 4.7.8
and 4.7.10). These results allow us to associate two sets of invariants to a
graded module, namely its 0th and 1st graded Betti numbers.

Having defined these invariants, we could proceed as follows: give a hint
about a possible algorithm for the computation of minimal homogeneous
presentations and ask you to work out the details in the exercises. But as you
know, this is not what is going to happen here. We are going the extra mile
for you, dear reader, and will describe several algorithms. In fact, this extra
mile starts with a huge detour in the second subsection.

For more than 400 pages we have been stressing that computer algebra
is really about modules rather than ideals. Now we turn round and em-
bed a module in a suitable ring such that it becomes an ideal in that ring.
This process is called idealization. For graded submodules, we construct ex-
plicit idealizations (see Proposition 4.7.14) and show how Gröbner bases and
minimal systems of generators behave under this embedding (see Proposi-
tions 4.7.16 and 4.7.19). Moreover, by constructing an even bigger surround-
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ing ring, we can idealize a whole presentation and compute a minimal ho-
mogeneous presentation by minimalizing suitable homogeneous ideals (see
Proposition 4.7.23).

Finally, in the third subsection we present several ways to compute min-
imal homogeneous presentations. The obvious and inefficient strategy of ap-
plying Theorem 4.6.3 to minimalize the generators of the module, Theo-
rem 3.1.8 to compute the syzygies, and then Theorem 4.6.3 again to minimal-
ize the syzygies can be improved using the idealization technique to obtain the
vertical strategy for computing minimal presentations (see Theorem 4.7.26).
A more natural and efficient strategy is to compute the entire minimal homo-
geneous presentation degree-by-degree. This is called the horizontal strategy
and is explained in Theorem 4.7.29. It is particularly interesting to see how
strategies which look so different are simply variants of the classical Buch-
berger Algorithm applied to the idealization of the given module.

Before inviting you to read the section, we want to point out a choice of
notation we decided upon. In Subsection A we treat arbitrary finitely pre-
sented modules. Their presentation has the shape F1 −→ F0 −→ M −→ 0,
where F0 and F1 are free modules. However, in Subsection C we deal with
a submodule M of a free module. The name of the free module is F0 , and
the presentation of M has the shape F2 −→ F1 −→ M −→ 0.

You will notice that this section is longer than usual although we certainly
did not lack the time to make it shorter. Quite to the contrary, we tried to
give a careful account of the subtleties involved. Now, having said what we
are going to say, it is high time to start saying it.

4.7.A Existence and Uniqueness of Minimal Presentations

There can be only one.
(Movie Tagline)

Let K be a field, let m,n, r ≥ 1, let P = K[x1, . . . , xn] be positively
graded by a matrix W ∈ Matm,n(Z), and let M be a graded P -module
generated by a tuple of non-zero homogeneous elements G = (g1, . . . , gr). The
tuple (degW (g1), . . . ,degW (gr)) of their degrees will be denoted by degW (G).
In Definition 3.2.5 we said that a presentation of M is an exact sequence

F1 −→ F0 −→ M −→ 0

where F0 and F1 are free P -modules. Under our hypotheses we have addi-
tional information. The syzygy module SyzP (G) is a graded P -module. Let
S = (v1, . . . , vs) be a tuple of non-zero homogeneous vectors which gener-
ate SyzP (G), let d0i = degW (gi) for i = 1, . . . , r , and let d1j = degW (vj) for
j = 1, . . . , s . We consider the graded free P -modules F0 =

⊕r
i=1 P (−d0i)

and F1 =
⊕s

j=1 P (−d1j), and we denote the canonical bases of F0 and F1
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by (e1, . . . , er) and (ε1, . . . , εs), respectively. Finally, we define two homo-
morphisms of P -modules ϕ : F0 −→ M and ψ : F1 −→ F0 by ϕ(ei) = gi

for i = 1, . . . , r and ψ(εj) = vj for j = 1, . . . , s . Then the exact sequence of
graded P -modules

F1
ψ−→ F0

ϕ−→ M −→ 0

is called a homogeneous presentation of M . Notice that degW (ei) = d0i

for i = 1, . . . , r and degW (εj) = d1j for j = 1, . . . , s .
In the following we choose G and S to be minimal and examine which as-

pects of such a minimal homogeneous presentation are uniquely determined.
As a first step, we are going to see that the map ψ is associated to the
following kind of matrix.

Definition 4.7.1. Let M = (fij) be a matrix in Matr,s(P ) . We say that
M is a homogeneous matrix (or simply homogeneous) if there exist two
tuples d0 = (d01, . . . , d0r) and d1 = (d11, . . . , d1s) of elements in Zm such
that the polynomial fij is homogeneous of degree degW (fij) = d1j − d0i for
i = 1, . . . , r and j = 1, . . . , s . In this case, the pair (d0, d1) ∈ (Zm)r × (Zm)s

is called a degree pair of M .

We can think of a degree pair as a pair of tuples of degrees which mark the
rows and columns of a homogeneous matrix. Then the entry in position (i, j)
of the matrix is a homogeneous element whose degree is the difference of the
degree of the jth column and the degree of the ith row. Even if this entry is
zero, we have to consider it as a homogeneous element of that degree. Degree
pairs are not uniquely determined. We can add a vector d ∈ Zm to all the dij

and obtain d′0 = (d01 + d, . . . , d0r + d) and d′1 = (d11 + d, . . . , d1s + d). Then
also (d′0, d

′
1) is a degree pair of M . Clearly, fixing one of the components of

either d0 or d1 uniquely determines the degree pair of M .

Example 4.7.2. Let P = K[x1, x2, x3, x4] be graded by W =
(
1 1 1 1
1 2 3 4

)
. The

matrix
(
x3 x2 x4
x2 x1 x2

)
has homogeneous entries, but it is easy to see that it is

not homogeneous. However, the matrix
(
x3 x2 x4
x2 x1 x3

)
is homogeneous and one

of its degree pairs is (d0, d1) , where d0 =
(
(−2,−1), (−2, 0)

)
and d1 =(

(−1, 2), (−1, 1), (−1, 3)
)
. Another one is (d′0, d

′
1) , where d′0 =

(
(0, 0), (0, 1)

)
and d′1 =

(
(1, 3), (1, 2), (1, 4)

)
.

An immediate consequence of the definition is that the determinant of
a homogeneous square matrix of size r × r is a homogeneous polynomial
of degree

∑r
i=1(d1i − d0i). In particular, if a homogeneous matrix is invert-

ible in Matr(P ), its determinant is a non-zero constant. Another immediate
consequence is that Corollary 1.7.11 can be rephrased as follows.

Remark 4.7.3. For any homogeneous element u ∈ M , there exists a homo-
geneous matrix U ∈ Matr,1(P ) with degree pair (degW (G),degW (u)) such
that u = G · U .
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The next step is to investigate how homogeneous matrices are related to
maps of graded free modules.

Proposition 4.7.4. (Characterization of Homogeneous Matrices)
Let M = (fij) ∈ Matr,s(P ) , let d01, . . . , d0r, d11, . . . , d1s ∈ Zm , and let
d0 = (d01, . . . , d0r) as well as d1 = (d11, . . . , d1s) . Denote the canonical
bases of F0 =

⊕r
i=1 P (−d0i) and F1 =

⊕s
j=1 P (−d1j) by (e1, . . . , er) and

(ε1, . . . , εs) , respectively. Then the following conditions are equivalent.
a) The matrix M is homogeneous with degree pair (d0, d1) .
b) For j = 1, . . . , s , the vector vj = (f1j , . . . , frj) ∈ F0 is homogeneous of

degree degW (vj) = d1j .
c) The P -linear map ψ : F1 −→ F0 defined by ψ(εj) = vj for j = 1, . . . , s

is homogeneous.

Proof. The equivalence of a) and b) follows from the following fact. Given
j ∈ {1, . . . , s} , the vector vj = f1je1+· · ·+frjer is homogeneous of degree d1j

if and only if fij is homogeneous and degW (fijei) = degW (fij) + d0i = d1j

for i = 1, . . . , r . The equivalence of b) and c) is obviously true. �

Now we imitate the definition of a deg-ordered tuple (see Definition 4.5.4)
and extend it to homogeneous matrices.

Definition 4.7.5. Let d0 = (d01, . . . , d0r), d1 = (d11, . . . , d1s), and let M
be a homogeneous matrix with degree pair (d0, d1) . We say that M is a
deg-ordered matrix (or simply deg-ordered) if d01 ≤Lex · · · ≤Lex d0r and
d11 ≤Lex · · · ≤Lex d1s .

In other words, the degrees of the entries of a deg-ordered matrix are
non-decreasing from left to right and from bottom to top. Now we examine
matrices which are invertible in the sense that there exists an inverse ma-
trix with polynomial entries. What can we say about deg-ordered invertible
matrices? Clearly, invertible matrices correspond to isomorphisms of graded
free modules, but we can say a bit more. In the following, when we say that
a P -linear map of graded free P -modules is defined by a matrix without
specifying the bases, we mean with respect to the canonical bases.

Proposition 4.7.6. Let M ∈ Matr,s(P ) be a homogeneous deg-ordered ma-
trix with degree pair (d0, d1) = ((d01, . . . , d0r), (d11, . . . , d1s)) . Furthermore,
let F0 =

⊕r
i=1 P (−d0i) , let F1 =

⊕s
j=1 P (−d1j) , and let ϕ : F1 −→ F0 be

defined by M . Then the following conditions are equivalent.
a) The matrix M is invertible.
b) The matrix M is a block matrix of the form

M =

⎛⎜⎜⎜⎝
M11 M12 · · · M1q

0
. . . . . .

...
...

. . . . . . Mq−1 q

0 · · · 0 Mqq

⎞⎟⎟⎟⎠
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with square matrices M11, . . . ,Mqq which are invertible matrices with
constant entries.

c) The P -linear map ϕ is an isomorphism of graded P -modules.
If these conditions are satisfied, we have r = s and d0 = d1 .

Proof. First, we observe that if M is invertible, we have r = s . Moreover,
we claim that every entry on the main diagonal of M has to have degree
zero. To see why this is true, we write M = (fij) and M−1 = (f̃ij) with
fij , f̃ij ∈ P . Then we use the fact that the degrees of the ith elements fii, f̃ii

on the main diagonals of M and M−1 have to add up to zero. If we have
degW (fii) >Lex 0, we get degW (f̃ii) <Lex 0, and vice versa. Suppose that
degW (fii) <Lex 0. Then the degree of every element fjk with j ∈ {i, . . . , r}
and k ∈ {1, . . . , i} is negative, and therefore we have fjk = 0. Hence we
can consider M as a block matrix with two square blocks on the diagonal of
size i and r − i . Since the last row of the upper left block it zero, it follows
that det(M) = 0, in contradiction to the hypothesis. From this claim we
conclude that d0 = d1 .

Now we observe that below the main diagonal of M only non-positive
degrees are allowed. By combining the rows and columns whose indices i, j
satisfy d0i = d0j , we see that M and M−1 are block matrices with square
blocks on the main diagonal. Below these square blocks the degrees of all
entries are negative. Hence these entries are all zero. Since det(M) is the
product of the determinants of the blocks on the main diagonal, these blocks
are invertible matrices. Thus we have shown that a) implies b). The implica-
tions “b)⇒c)” and “c)⇒a)” are obviously true. �

Now we go one step further in our discussion of generators and syzygies
and assume that G and S are minimal homogeneous systems of generators.
Recall that every finite homogeneous system of generators of a module con-
tains a minimal one, because the polynomial ring P is positively graded (see
Proposition 4.1.22.b and Corollary 4.2.6.b).

Definition 4.7.7. Let G = (g1, . . . , gr) be a minimal homogeneous system
of generators of M, and let S = (v1, . . . , vs) be a minimal homogeneous
system of generators of SyzP (G). Then the presentation

F1
ψ−→ F0

ϕ−→ M −→ 0

where ϕ(ei) = gi for i = 1, . . . , r , and ψ(εj) = vj for j = 1, . . . , s , is called
a minimal homogeneous presentation of M .

Notice that, given G , a homogeneous presentation of M is uniquely
determined by the homogeneous matrix S . From the Graded Version of
Nakayama’s Lemma 1.7.15 it follows that a homogeneous presentation is min-
imal if and only if S contains no non-zero constant polynomials. A degree
pair of S is given by (degW (G),degW (S)).
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Now we turn to the main goal of this subsection which is to show that,
up to permutations, the pair (degW (G),degW (S)) is uniquely determined
by M if the homogeneous presentation is minimal. Recall that, by Propo-
sition 4.1.22.b, any two minimal sets of generators of a finitely generated
graded P -module have the same number of elements.

Proposition 4.7.8. Let G = (g1, . . . , gr) and G′ = (g′1, . . . , g
′
r) be deg-

ordered tuples of non-zero homogeneous elements of M which are minimal
homogeneous systems of generators of M .
a) We have degW (G) = degW (G′) . So the tuple degW (G) is uniquely de-

termined by the module M and does not depend on the choice of the
homogeneous minimal system of generators.

b) There are deg-ordered homogeneous matrices A,B ∈ Matr(P ) such that
the following conditions are satisfied.
1) We have G′ = G A and G = G′ B .
2) The matrices A and B are invertible.

Proof. First we prove a). Let degW (G) = (d1, . . . , dr) and degW (G′) =
(d′1, . . . , d

′
r) . Suppose there exists an index i ∈ {1, . . . , r} such that dj = d′j

for j < i and di <Lex d′i . By Proposition 4.1.22.a, the set of residue classes
{g′1, . . . , g′i−1} modulo (x1, . . . , xn) is a K -basis of M≤di

. On the other hand,
by the same proposition, the set of residue classes {g1, . . . , gi} is contained in
a K -basis of the same vector space. Since the two bases have different num-
bers of elements, this yields a contradiction. A similar argument shows that
we cannot have di >Lex d′i . Altogether, we must have di = d′i for i = 1, . . . , r ,
as claimed.

Now we prove b). By a) and Remark 4.7.3, there exist homogeneous deg-
ordered square matrices A,B such that G′ = G A and G = G′ B . From these
equations we deduce that G (Ir −AB) = 0, where Ir is the identity matrix
of size r × r . Since the residue classes {g1, . . . , gr} form a K -basis of M
by Proposition 4.1.22.b, the matrix of residue classes Ir − AB is the zero
matrix. Hence the matrices A and B are inverse to each other. It follows that
the constant terms of det(A) and det(B) are non-zero. But since A and B
are homogeneous matrices, this implies that their determinants are non-zero
constants, i.e. that they are invertible. �

In light of this result, we have a new set of invariants of a finitely generated
graded P -module.

Definition 4.7.9. Let G = (g1, . . . , gr) be a deg-ordered tuple of non-zero
homogeneous elements of M which form a minimal system of generators. For
i = 1, . . . , r , let d0i = degW (gi).
a) The tuple (d01, . . . , d0r) ∈ (Zm)r is called the degree sequence of M .

It does not depend on the choice of the minimal homogeneous system of
generators.
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b) For all d ∈ Zm , we let β0d(M) be the number of times d occurs in the
degree sequence of M . Then the numbers β0d(M), or simply β0d , are
called the 0th graded Betti numbers of M .

c) For later use, we call the number d01 = degW (g1) the initial degree
of M and denote it by α(M).

In the final part of this subsection we explain how passing from one homo-
geneous minimal system of generators of M to another affects their syzygies.

Proposition 4.7.10. Let G = (g1, . . . , gr) and G′ = (g′1, . . . , g
′
r) be deg-

ordered tuples of non-zero homogeneous elements of M which are also min-
imal homogeneous systems of generators of M . Let d0i = degW (gi) for
i = 1, . . . , r , let A ∈ Matr(P ) be a deg-ordered, homogeneous, invertible
matrix such that G′ = G A , and let S = (v1, . . . , vs) be a deg-ordered tu-
ple of homogeneous vectors in F0 =

⊕r
i=1 P (−d0i) which minimally gener-

ate SyzP (G) .
a) The tuple S ′ = A−1 S is a deg-ordered tuple of homogeneous vectors

in F0 which minimally generate SyzP (G′) .
b) We have degW (S) = degW (S ′) . Thus the pair (degW (S),degW (G)) is

uniquely determined by the module M .

Proof. Let us prove a) first. Since we have G′ (A−1 S) = (G A) (A−1 S) =
G S = 0, the columns of S ′ are syzygies of G′ . Given any homogeneous ele-
ment u ∈ SyzP (G′), we compute G (Au) = G′ u = 0. Hence the homogeneous
vector Au is a syzygy of G . Since S generates SyzP (G), there exists a homo-
geneous matrix H = (h1, . . . , hs)tr such that Au = h1v1 + . . .+hsvs = S H .
Therefore we have u = A−1 (Au) = (A−1 S)H = S ′ H , and it follows that S ′

generates SyzP (G′).
Moreover, by Proposition 4.7.4.c, the matrix A−1 corresponds to a bi-

jective homogeneous P -linear map ϕ : F0 −→ F0 . Therefore the tuple
S ′ = (ϕ(v1), . . . , ϕ(vs)) = A−1 S is also deg-ordered and a minimal system
of generators of SyzP (G′). Using Proposition 4.7.6, we see that the tuple S ′

satisfies degW (S ′) = degW (S) which proves b). �

The statement of this proposition can be visualized using the following
commutative diagram with exact rows, where F1 =

⊕s
j=1 P (−d1j) with

d1j = degW (vj), and where homogeneous tuples are used to label the ho-
mogeneous P -linear maps they define.

F1
S−→ F0

G−→ M −→ 0∥∥∥ ⏐⏐�A−1

�⏐⏐A ∥∥∥
F1

S′
−→ F0

G′
−→ M −→ 0

As a consequence of this proposition, we can attach further invariants to
a finitely generated graded P -module.
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Definition 4.7.11. Let M be a finitely generated graded P -module, let
G = (g1, . . . , gr) be a deg-ordered tuple which minimally generates M, and let
S = (v1, . . . , vs) be a deg-ordered tuple which minimally generates SyzP (G).
a) The degree pair (degW (G),degW (S)) of the homogeneous matrix S does

not depend on the choice of G and S . It is called the degree pair of
the module M .

b) For every d ∈ Zm, we let β1d(M) be the number of times the degree d
occurs in the tuple (degW (v1), . . . ,degW (vs)) . The numbers β1d(M), or
simply β1d , are called the 1st graded Betti numbers of the mod-
ule M .

Using the graded Betti numbers, a minimal homogeneous presentation
of M can be written in the form⊕

d∈Zm

P (−d)β1d −→ ⊕
d∈Zm

P (−d)β0d −→ M −→ 0

Before we plunge into actual computations of such presentations, we embark
on an extended detour.

4.7.B Idealization of Graded Modules and Presentations

If you can’t realize your ideal,
idealize the real.

(Stewart’s Marriage Counsel Homily)

On a multitude of occasions we have emphasized the importance of mod-
ules. One of our main arguments was that to confine our theory to the realm
of ideals would be far too limiting. In other words, we have been trying to
suggest that the ideal setting for our book is the category of finitely generated
modules over affine algebras. But in this section we realize that modules are
not the ideal objects we pretended them to be. In order to compute minimal
homogeneous presentations in a compact way, it turns out to be more efficient
to idealize graded submodules, i.e. to identify them with ideals in suitably
enlarged polynomial rings. The purpose of this subsection is to provide the
necessary mathematical background for that idea.

Definition 4.7.12. Let R be a ring and M an R -module. Let us equip the
product set R × M with two operations, namely

+ : (R × M) × (R × M) −→ R × M
((r,m), (r′,m′)) �−→ (r + r′,m + m′)

and · : (R × M) × (R × M) −→ R × M
((r,m), (r′,m′)) �−→ (rr′, rm′ + r′m)

In this way, the set R × M becomes a commutative ring with identity
element (1, 0). We call this ring the idealization of M and denote it by
R � M .
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The ring R�M is an R -algebra via the ring homomorphism R −→ R�M
given by r �→ (r, 0). The canonical map ı : M −→ R � M defined by
ı(m) = (0,m) is injective and R -linear. Its image is an ideal in R � M . We
shall denote this ideal by ı(M) and identify the elements of M with their
images under ı .

Let us collect some basic properties of the idealization of a module.

Remark 4.7.13. Let R be a ring and M an R -module.
a) The ideal ı(M) satisfies ı(M)2 = 0.
b) Given an R -submodule N ⊆ M , the inclusion R × N ⊆ R × M defines

an injective ring homomorphism R � N −→ R � M . The image of N
in R � M is an ideal which is contained in the ideal ı(M).

c) Let Γ be a monoid, let R be Γ -graded, and let M be a Γ -graded
R -module. Then R � M is a Γ -graded ring via (R � M)γ = Rγ × Mγ

for all γ ∈ Γ, and ı(M) is a homogeneous ideal in this ring.

In the following we want to study the idealization of a graded submodule
of a graded free P -module, since this is the most interesting case for the
applications to minimal presentations and minimal free resolutions.

As usual, we let P = K[x1, . . . , xn] be positively graded by a matrix
W ∈ Matm,n(Z), let d01, . . . , d0r ∈ Zm , let F0 =

⊕r
i=1 P (−d0i), and let M

be a graded submodule of F0 . The canonical basis vectors of F0 will be de-
noted by e1, . . . , er . By considering e1, . . . , er as indeterminates, we form the
polynomial ring P = K[x1, . . . , xn, e1, . . . , er] = P [e1, . . . , er] . We equip P
with the grading given by W = (W | d01 · · · d0r) ∈ Matm,n+r(Z). A vec-
tor v = f1e1 + · · · + frer ∈ F0 will be identified with the corresponding
polynomial in P .

Moreover, we let e be the ideal generated by E = {eiej | 1 ≤ i ≤ j ≤ r}
in P , and let E be the tuple

E = (e1e1, e1e2, . . . , e1er, e2e2, e2e3, . . . , e2er, . . . , erer) ∈ P
r(r+1)/2

In this situation we can represent the idealization of M as follows.

Proposition 4.7.14. (Idealization of a Graded Submodule)
Let V = (v1, . . . , vs) be a deg-ordered tuple of homogeneous vectors which
generate M.
a) The map ϕ : P � F0 −→ P/e which sends (f, (g1, . . . , gr)) to the residue

class of f + g1e1 + · · · + grer is an isomorphism of graded rings.
b) Under the composition M

ı−→P �M ↪−→ P �F0
ϕ−→P/e , the module M

is identified with the residue class ideal of IM = (v1, . . . , vs) + e ⊆ P .

Proof. First we prove a). Since ϕ is clearly a well-defined R -linear map,
we check that ϕ is compatible with multiplication. Let (f, (g1, . . . , gr)) and
(f ′, (g′1, . . . , g

′
r)) be two elements of R � M . Computing modulo e , we get
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ϕ((f, (g1, . . . , gr)) · (f ′, (g′1, . . . , g
′
r))) = ϕ((ff ′, (fg′1 + f ′g1, . . . , fg′r + f ′gr)))

= ff ′ + (fg′1 + f ′g1)e1 + · · · + (fg′r + f ′gr)er

= (f + g1e1 + · · · + grer) · (f ′ + g′1e1 + · · · + g′rer)
= ϕ((f, (g1, . . . , gr))) · ϕ((f ′, (g′1, . . . , g

′
r)))

Since ϕ is clearly both injective and surjective, it remains to show that ϕ is
homogeneous. The monomial ideal e is homogeneous (see Proposition 4.1.8),
and given a homogeneous element (f, (g1, . . . , gr)) of R�M, the residue class
of f + g1e1 + · · · + grer is homogeneous of the same degree. Therefore ϕ is
a homomorphism of graded rings.

To prove b), we combine the descriptions of the maps in Definition 4.7.12.b,
Remark 4.7.13.b, and part a). For i = 1, . . . , s , we see that vi is mapped to
the residue class vi + e by the composition. From this the claim follows im-
mediately. �

Definition 4.7.15. In the above setting, the ideal IM = (v1, . . . , vs)+e of P
is called the idealization ideal, or simply the ideal of M .

Gröbner bases of graded submodules and Gröbner bases of their ideals are
related as follows. Recall that a module term ordering σ on Tn〈e1, . . . , er〉
is compatible with a term ordering τ on Tn if t ≥τ t′ implies tei ≥σ t′ei for
all t, t′ ∈ Tn and i ∈ {1, . . . , r} (see Definition 1.4.17 and Tutorial 54.b). We
shall say that a term ordering σ on T(x1, . . . , xn, e1, . . . , er) extends both σ
and τ if the restriction of σ to Tn is τ and its restriction to Tn〈e1, . . . , er〉
is σ .

Proposition 4.7.16. (Gröbner Bases and Idealization)
Let IM ⊆ P be the ideal of M. Furthermore, let τ be a term ordering on Tn,
let σ be a module term ordering on Tn〈e1, . . . , er〉 which is compatible with τ ,
and let σ be a term ordering on T(x1, . . . , xn, e1, . . . , er) which extends both σ
and τ .
a) Let G be a σ -Gröbner basis of M. Then G ∪ E is a σ -Gröbner basis

of IM .
b) Let G be the reduced σ -Gröbner basis of M. Then the reduced σ -Gröbner

basis of IM is G ∪ {eiej ∈ E | ei, ej /∈ LTσ(M)} .

Proof. To prove a), we let G = {g1, . . . , gs′} and f ∈ IM . By subtracting
suitable multiples of polynomials eiej , we see that we may reduce f to the
form h = h0 + h1e1 + · · ·+ hrer with h0, . . . , hr ∈ P . Since IM is contained
in (e1, . . . , er), we have h0 = 0. The polynomial h = h1e1 + · · ·+hrer ∈ I is
linear in e1, . . . , er . The only generators of IM which are linear in e1, . . . , er

are v1, . . . , vs . Hence h is a P -linear combination of those generators. Thus
we have (h1, . . . , hr) ∈ 〈v1, . . . , vs〉 and LTσ((h1, . . . , hr)) = t LTσ(gi) for
some t ∈ Tn and i ∈ {1, . . . , s′} . Since the term ordering σ extends σ , we
get LTσ(h) = t LTσ(gi). Therefore we can reduce h by G . After several
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such reduction steps we eventually get zero, because G is a σ -Gröbner basis
of M . Altogether, the polynomial f reduces to zero using G ∪ E .

To show claim b), we let G be the reduced σ -Gröbner basis of IM . Since
we have eiej ∈ IM , we know eiej ∈ LTσ(IM ) for all 1 ≤ i ≤ j ≤ r . Now it
follows from the additional condition ei, ej /∈ LTσ(M) that eiej is a minimal
generator of LTσ(IM ) , and therefore eiej is contained in G . Thus G has
the form G = G ∪ {eiei ∈ E | ei, ej /∈ LTσ(I)} for some set of polynomials
G ⊆ P . The fact that the polynomials in G are irreducible with respect to E
implies that they have degree ≤ 1 in the indeterminates e1, . . . , er . Since we
have IM ⊆ (e1, . . . , er), this shows that the polynomials in G are linear forms
in e1, . . . , er . By Proposition 4.5.1.b, they are homogeneous with respect to
the grading given by W . Hence they are actually images of homogeneous
vectors in M . Their leading terms generate all elements in LTσ(IM ) of degree
one in e1, . . . , er . Thus the leading terms of the corresponding elements of M
generate LTσ(M). Finally, since the elements of G are fully reduced against
each other, the corresponding elements of M are fully reduced, too. Hence G
is the image of the reduced σ -Gröbner basis of M in P . �

In particular, notice that the reduced σ -Gröbner basis of IM is G∪E if
we have M ⊆ (x1, . . . , xn)F0 and where G denotes the reduced σ -Gröbner
basis of M. In the following, we give some typical examples of simultaneous
extensions σ of σ and τ as required by this proposition.

Remark 4.7.17. Let τ = Ord(V ) be a term ordering on Tn given by a
non-singular matrix V ∈ Matn(Z).
a) Let σ be the module term ordering τ−Pos on Tn〈e1, . . . , er〉 (see Ex-

ample 1.4.16.a). Then σ = Ord
(
V 0
0 Ir

)
is a term ordering on the monoid

Tn(x1, . . . , xn, e1, . . . , er) which extends both τ and σ .
b) Let σ be the module term ordering Pos−τ on Tn〈e1, . . . , er〉 (see Ex-

ample 1.4.16.b). Then σ = Ord
(

0 Ir

V 0

)
is a term ordering on the monoid

Tn(x1, . . . , xn, e1, . . . , er) which extends both τ and σ .
c) Suppose that τ is a degree compatible term ordering of the form

τ = Ord
(

W
W ′
)

with W ′ ∈ Matn−m,n(Z) and that d0i >Lex 0 for
i = 1, . . . , r . Then the module term ordering σ = Deg−τ−Pos is

compatible with τ , and the term ordering σ =

⎛⎝ W d01 · · · d0r

W ′ 0 · · · 0
0 Ir

⎞⎠
on T(x1, . . . , xn, e1, . . . , er) extends both τ and σ .

Example 4.7.18. Let P = K[x, y, z] be standard graded, and let τ be the
term ordering DegRevLex on T3 . Then σ = PosDegRevLex is a module term
ordering on T3〈e1, e2, e3〉 which is compatible with τ . Moreover, the term
ordering σ = Ord

(
0 I3
V 0

)
with V =

(
1 1 1
0 0−1
0−1 0

)
extends both σ and τ .

Now let M be the graded submodule of P (−1)3 generated by the set
of vectors {(x, y, 0), (0, 1, 0), (0, z2, xy)} . Then the reduced σ -Gröbner basis
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of M is {e2, xe1, xye3} . By applying the proposition, we see that the reduced
σ -Gröbner basis of the ideal IM is {e2, xe1, xye3, e

2
1, e1e3, e

2
3} .

After clarifying the behaviour of Gröbner bases with respect to idealiza-
tion, we turn to minimal homogeneous system of generators.

Proposition 4.7.19. (Minimal Generators and Idealization)
Let M be a graded submodule of a graded free P -module F0 =

⊕r
i=1 P (−d0i)

such that M ⊆ (x1, . . . , xn)F0 and where d0i >Lex 0 for i = 1, . . . , r . Fur-
thermore, let V = (v1, . . . , vs) be a deg-ordered tuple of non-zero homogeneous
vectors which generate M .
a) Assume that V is a minimal homogeneous system of generators of M.

Then the set {v1, . . . , vs} ∪ E is a minimal homogeneous system of gen-
erators of IM .

Now let τ be a term ordering on Tn, let σ be a module term ordering
on Tn〈e1, . . . , er〉 which is compatible with τ , and let σ be a term order-
ing on T(x1, . . . , xn, e1, . . . , er) which extends both σ and τ .
b) If we apply Buchberger’s Algorithm with Minimalization 4.6.3 to the tuple

(V | E) , it computes a minimal system of generators of the ideal IM ⊆ P
of the form (Vmin | E) , where Vmin is a minimal homogeneous system of
generators of M .

c) If we apply the algorithm of Corollary 4.6.5 to the tuple (V | E) , it
computes a homogeneous σ -Gröbner basis of IM of the form (G | E)
and a minimal system of generators of the form (Gmin | E) , where G is
a σ -Gröbner basis of M and Gmin is a minimal homogeneous system of
generators of M which is contained in G .

Proof. First we show a). By definition, the set {v1, . . . , vs}∪E generates IM.
Consider the grading on P defined by deg(xi) = 0 and deg(ej) = 1 for
i = 1, . . . , n and j = 1, . . . , r . Then IM is a homogeneous ideal with respect
to this grading. Its homogeneous component of degree one is Pv1 + · · · + Pvs ,
so that it follows from the minimality of V that we cannot drop any of these
generators in (V | E). Next we consider the image of IM under the substi-
tution xi �→ 0 for i = 1, . . . , n . Since M ⊆ (x1, . . . , xn)F0 , we have vi �→ 0
for i = 1, . . . , s . The images of the elements eiej are minimal generators.
Therefore the elements eiej are minimal generators of IM .

Now we prove b). The hypothesis d0i >Lex 0 implies that P is positively
graded. Hence we can apply Buchberger’s Algorithm with Minimalization.
Since (V | E) generates IM , the algorithm computes a minimal system of
generators of IM which is contained in (V | E). By considering the grading
deg(xi) = 0, deg(ej) = 1 again, we see that the vectors in V chosen by the
algorithm correspond to a minimal system of generators of M . Moreover, the
algorithm has to choose all polynomials eiej because they are all minimal
generators of IM .
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To show c), we claim that the σ -Gröbner basis of IM computed by
the algorithm has the form (G | E). Clearly, a critical pair (i, j) such that
LTσ(vi) = citieγi

and LTσ(vj) = cjtjeγj
satisfy γi = γj corresponds to a

critical pair of the vectors v1, . . . , vs in M. However, if we have γi �= γj , then
the corresponding S-vector has degree two in the indeterminates e1, . . . , er .
It reduces to zero, because the terms in its support are of the form teke�

where eke� has a smaller degree and has been appended to the Gröbner ba-
sis already. Moreover, every time the algorithm encounters a term eke� , that
term is irreducible with respect to the part of the Gröbner basis computed
so far and is appended to the Gröbner basis and to the minimal system of
generators. Altogether, we see that the algorithm computes a Gröbner basis
of the form (G | E). As above, it follows that the minimal set of generators
it finds is of the form (Gmin | E). �

Let us briefly discuss the hypotheses of this proposition.

Remark 4.7.20. Suppose we are in the setting of the proposition.
a) The assumption M ⊆ (x1, . . . , xn)F0 is essential for the proposition to

be true. Otherwise, S-vectors of the form eγi
vj−eγj

vi could be appended
to the Gröbner basis, because they contain terms of the form c eke� with
c ∈ K which have not yet been treated, i.e. which are not yet in the
Gröbner basis.

b) The assumption d0i >Lex 0 for i = 1, . . . , r is used to conclude that
the grading on P given by W is positive, but it is not essential for the
correctness of the algorithm (see also the discussion below).

Next we want to idealize not only a graded submodule, but a whole homo-
geneous presentation. We continue to assume that M is a graded submodule
of a graded free P -module F0 =

⊕r
i=1 P (−d0i) , where d01, . . . , d0r ∈ Zm,

and that V = (v1, . . . , vs) is a deg-ordered tuple of non-zero homoge-
neous elements which generate M. Then we form the graded free P -module
F1 =

⊕s
j=1 P (−d1j) where d1j = degW (vj) for j = 1, . . . , s . We let

{ε1, . . . , εs} be the canonical basis of F1 , and we consider a homogeneous
presentation

F2
ψ−→ F1

ϕ−→ M −→ 0

of M, where ϕ(εj) = vj for j = 1, . . . , s and where F2 is a another graded
free P -module.

Remark 4.7.21. For every d ∈ Zm, a homogeneous presentation of the
shifted module M(d) is given by

F2(d)
ψ̃−→ F1(d)

ϕ̃−→ M(d) −→ 0

where F1(d) and F2(d) are graded free P -modules, and where the homoge-
neous P -linear maps ϕ̃ and ψ̃ are given by the same homogeneous matrices
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as ϕ and ψ , respectively. Therefore the computation of a minimal homo-
geneous presentation of M is equivalent to the computation of a minimal
homogeneous presentation of M(d).

In view of this remark, we shall from now on assume that d0i >Lex 0
for i = 1, . . . , r . Notice that this implies d1j >Lex 0 for j = 1, . . . , s . This
assumption will prove useful in our theoretical discussion below. In an actual
implementation it is not really necessary, because shifting the entire compu-
tation by a fixed degree does not change its correctness.

In order to idealize the above presentation of M , we introduce the polyno-
mial ring P̃ = P [e1, . . . , er, ε1, . . . , εs] = K[x1, . . . , xn, e1, . . . , er, ε1, . . . , εs]
and equip it with the grading given by W̃ = (W | d01 · · · d0r | d11 · · · d1s).
Notice that, because of our assumption, this grading is positive. By Proposi-
tion 4.7.14.a, the idealization of the module F0⊕F1 is the ring P̃ /ẽ , where ẽ
is the homogeneous ideal generated by the union of {eiej | i, j = 1, . . . , r} ,
{eiεj | i ∈ {1, . . . , r}, j ∈ {1, . . . , s}} , and {εiεj | i, j = 1, . . . , s} .

Let ı0 : F0 −→ P̃ /ẽ be the homogeneous injective P -linear map given by
ı0((f1, . . . , fr)) = f1e1 + · · · frer + ẽ , and let ı1 : F1 −→ P̃ /ẽ be the homoge-
neous injective P -linear map given by ı1((f1, . . . , fs)) = f1ε1 + · · · fsεs + ẽ .
By Proposition 3.6.1, if (f1, . . . , fs) ∈ SyzP (V) is a homogeneous syzygy
of V , then the corresponding element f1ε1 + · · · + fsεs of P̃ is contained in
the ideal (v1 − ε1, . . . , vs − εs).

Definition 4.7.22. The ideal ĨM = (v1 − ε1, . . . , vs − εs) + ẽ in P̃ is called
the ideal of the presentation of M given above.

Our next proposition serves to justify this name.

Proposition 4.7.23. (Idealization of a Homogeneous Presentation)
Let ĨM ⊆ P̃ be the ideal of the presentation of M .
a) There exists a unique P -algebra homomorphism

Φ : P [ε1, . . . , εs]/(εiεj)i,j=1,...,s −→ P/e

which maps the residue class of εi to vi + e for i = 1, . . . , s .
b) The image of Φ is the residue class ideal of the ideal of M .
c) The kernel of Φ is the residue class ideal of the ideal of SyzP (V) .
d) The ideal of SyzP (V) is given by ĨM ∩ P [ε1, . . . , εs] .

Proof. To prove a), it suffices to note that Φ is well-defined, because we
have vivj ∈ e for i, j = 1, . . . , s . Claim b) follows from Proposition 4.7.14.b.

To show c), we note that Φ is induced by the substitution homomorphism
Ψ : P [ε1, . . . , εs] −→ P/e with εk �→ vk + e for k = 1, . . . , s . The ideal
(εkε�)k,�=1,...,s is contained in Ker(Ψ). Since v1, . . . , vs ∈ (e1, . . . , er) , the
kernel of the composition of Ψ with the canonical surjection P/e −→ P
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is (ε1, . . . , εs) , and therefore we have Ker(Ψ) ⊆ (ε1, . . . , εs). Furthermore,
we have f1ε1 + · · · + fsεs ∈ Ker(Ψ) if and only if f1v1 + · · · + fsvs = 0.
Hence {f1ε1 + · · · + fsεs | (f1, . . . , fs) ∈ SyzP (V)} ∪ {εkε� | k, � = 1, . . . , s}
generates Ker(Ψ), and the claim follows from Proposition 4.7.14.b.

Finally, part d) follows from c) by a slight generalization of Proposi-
tion 3.6.2, but the proof of that proposition still applies without modifica-
tions. �

4.7.C Computation of Minimal Homogeneous Presentations

There are two basic strategies for success
in computing minimal homogeneous presentations:

1. Never reveal your strategy.
2.

(Anonymous)

Knowing that a finitely generated graded P -module has a unique mini-
mal homogeneous presentation is not the same thing as being able to find it.
In principle, a couple of applications of Buchberger’s Algorithm with Min-
imalization 4.6.3 should do the trick, but not in an efficient way. Thus we
are looking for better strategies. In this subsection, we shall reveal two good
strategies for computing minimal homogeneous presentations: the vertical
and the horizontal strategy. In fact, we shall explain how our strategies can
be successful without needing to be secretive.

What does it mean to compute a minimal homogeneous presentation?
To be able to compute anything, we have to assume that M is somehow
given explicitly. Many times we assume that M is given by generators and
relations, i.e. that we have an isomorphism M ∼=

⊕r
i=1 P (−d0i)/〈v1, . . . , vs〉 .

In this case, it is easy to find a minimal homogeneous presentation.

Proposition 4.7.24. Let d01, . . . , d0r ∈ Zm , let F0 =
⊕r

i=1 P (−d0i) , and
let v1, . . . , vs ∈ F0 be homogeneous vectors such that we have an isomorphism
of graded P -modules M ∼= F0/〈v1, . . . , vs〉 . For i = 1, . . . , r , let ēi be the
residue class of ei in M .
a) The set of generators {ē1, . . . , ēr} of M is minimal if and only if we

have ei /∈ 〈e1, . . . , ei−1, ei+1, . . . , er, v1, . . . , vs〉 for i = 1, . . . , r .
b) Consider the following instructions.

1) Let r′ = r , let d′0i = d0i for i = 1, . . . , r , let W = (v1, . . . , vs) , let
s′ = s , and let i = 1 .

2) Check whether W contains a zero column. If so, delete that column
in W , decrease s′ by one, and repeat step 2).

3) Check whether the ith row of W contains a non-zero constant. If so,
continue with step 5).
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4) Increase i by one. If i > r′ , return W and stop. Otherwise, continue
with step 3).

5) Let j ∈ {1, . . . , s′} be such that the entry of W in position (i, j)
is a non-zero constant. Use this entry and row operations on W to
produce zeros everywhere else in the jth column. Delete the ith row
and the jth column of the new matrix and replace W by the resulting
matrix.

6) Decrease r′ and s′ by one. Replace d′0j by d′0 j+1 for j = i, . . . , r′ .
Then continue with step 2).

This is an algorithm which computes a tuple of homogeneous vectors
W = (w1, . . . , ws′) such that we have a homogeneous presentation
M ∼=

⊕r′

i=1 P (−d′0i)/〈w1, . . . , ws′〉 , and such that ē1, . . . , ēr′ is a min-
imal homogeneous system of generators of M .

Proof. The first claim follows immediately from the graded version of
Nakayama’s lemma (see Proposition 4.1.22). The procedure defined in b)
is clearly finite, because we either increase i in step 4) or decrease r′ in
step 6). It remains to show that the algorithm is correct.

Obviously, if some column of W is zero, the corresponding vector is not a
minimal generator of 〈w1, . . . , ws′〉 and can be deleted. This is done in step 2).
Let i ∈ {1, . . . , r′} and j ∈ {1, . . . , s′} be such that the entry in position
(i, j) of W is a non-zero constant. Without loss of generality we may assume
that it is 1. Hence there exists an element of the form v′

j = ei +
∑

k �=i akek

with ak ∈ P which is contained in the module generated by the current
column vectors v′

1, . . . , v
′
s′ of W . The row operations performed in step 5)

correspond to using this element to rewrite v′
1, . . . , v

′
j−1, v

′
j+1, . . . , v

′
s′ in such

a way that the result does not involve ei anymore. Consequently, the residue
class ēi is not a minimal generator of M and the syzygies of the system of
generators {ē1, . . . , ēi−1, ēi+1, . . . , ēs′} of M are generated by the columns
of the new matrix W computed by step 5). Clearly, step 6) conducts the
necessary adjustments to r′, s′, and F0 .

Altogether, we have shown that step 3) correctly recognizes non-minimal
generators ēi of M and steps 5) and 6) correctly remove them and modify
the presentation accordingly. �

Using this proposition, it is easy to compute a minimal homogeneous
presentation of M . In fact, it suffices to apply Buchberger’s Algorithm with
Minimalization 4.6.3 to the tuple W returned by the algorithm of part b) of
the proposition.

Done! Or are we? Is this really all there is to it? Not quite! The situation
becomes more interesting if we assume that M is a submodule of a graded
free module F0 =

⊕r
i=1 P (−d0i) and that it is given by a deg-ordered homo-

geneous system of generators V = (v1, . . . , vs). In view of Proposition 4.1.22,
the preceding proposition says that in order to compute a minimal homoge-
neous presentation of M , we may assume that M ⊆ (x1, . . . , xn)F0 . Based
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on the results of Sections 3.1 and 4.6, there is again an obvious method to
solve our task.

Remark 4.7.25. Consider the following instructions.
1) Using the Buchberger Algorithm with Minimalization 4.6.3, compute a

subtuple Vmin of V of homogeneous vectors which generate M mini-
mally.

2) Using Theorem 3.1.8, compute a matrix S whose columns generate the
module SyzP (Vmin). (Notice that all computations involved here keep the
homogeneity of the input by Proposition 4.5.1. Thus S is a homogeneous
matrix.)

3) Using the Buchberger Algorithm with Minimalization 4.6.3, compute a
subtuple Smin of S of homogeneous vectors which generate SyzP (Smin)
minimally.

4) Return Vmin and Smin and stop.
This is an algorithm which computes two tuples Vmin and Smin of homoge-
neous vectors such that Vmin minimally generates M and Smin minimally
generates SyzP (Vmin). In particular, we have a minimal homogeneous pre-
sentation

F2
ψ−→ F1

ϕ−→ M −→ 0

where F1 and F2 are graded free P -modules, where ψ is given by Smin and
where ϕ is given by Vmin .

Notice that this algorithm is rather wasteful, because the reduction steps
involved in computing the Gröbner basis of M in Theorem 4.6.3 have to
be done again by Theorem 3.1.8 (see Tutorial 61). Using the idealization of
the presentation discussed in the previous subsection, we can proceed in a
more efficient way. The method we use in the next theorem is called the
vertical strategy. The reason is that we compute first a minimal system
of generators Gmin of M by looping through all necessary degrees (which
we think of as being on top of each other) and then a minimal system of
generators of SyzP (Gmin) by a similar loop.

To ease the notation, we shall continue to resort to the following con-
vention introduced in Section 4.5. Given a tuple G = (g1, . . . , gs′), we write
LTσ(gi) = ti eγi

with ti ∈ Tn and γi ∈ {1, . . . , r} for i = 1, . . . , s′ . Moreover,
we identify the elements of the graded free P -module F0 =

⊕r
i=1 P (−d0i)

with their canonical images in the polynomial ring P = P [e1, . . . , er] and
equip P with the grading given by W = (W | d01 · · · d0r).

Theorem 4.7.26. (Computing Minimal Presentations Vertically)
Let M be a graded submodule of a graded free P -module F0 =

⊕r
i=1 P (−d0i)

where d0i >Lex 0 for i = 1, . . . , r . Let V = (v1, . . . , vs) be a deg-ordered tuple
of non-zero homogeneous vectors which generate M . Consider the following
instructions.
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1) Choose a term ordering σ on Tn(e1, . . . , er) . Let B = ∅ , W = V , G = ∅ ,
s′ = 0 , Gmin = ∅ , µ = 0 , and S = ∅ .

2) Let d be the smallest degree with respect to Lex of an element in B or
in W . Form the subset Bd and the subtuple Wd , and delete their entries
from B and W , respectively.

3) If Bd = ∅ , continue with step 6). Otherwise, chose a pair (i, j) ∈ Bd and
remove it from Bd .

4) Compute the S-vector Sij of gi and gj . Then compute S′
ij = NRσ,G(Sij) .

If S′
ij = 0 continue with step 3). If S′

ij �= 0 and it does not involve the
indeterminates e1, . . . , er , append it to S and continue with step 3).

5) Increase s′ by one, append gs′ = S′
ij to the tuple G , and append the

set {(i, s′) | 1 ≤ i < s′, γi = γs′} to B , where LTσ(gs′) = ts′eγs′ with
ts′ ∈ Tn and γs′ ∈ {1, . . . , r} . Then continue with step 3).

6) If Wd = ∅ , continue with step 9). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
7) Compute v′ = NRσ,G(v) and v̄ = v′(x1, . . . , xn, e1, . . . , er, 0, . . . , 0) .

If v̄ = 0 , continue with step 6).
8) Increase s′ and µ by one. Adjoin a new indeterminate εµ to P and

extend the grading to this new ring by defining degW (εµ) = degW (v̄) .
Extend the term ordering σ to the new ring in such a way that the ex-
tension is an elimination ordering for {e1, . . . , er} . Append gs′ = v̄ − εµ

to G and v̄ to Gmin . Append the set {(i, s′) | 1 ≤ i < s′, γi = γs′} to B .
Continue with step 6).

9) If B �= ∅ or W �= ∅ , continue with step 2).
10) Apply the Buchberger Algorithm with Minimalization 4.6.3 to the mod-

ule generated by S and obtain a subtuple Smin of S which minimally
generates that module. Return the pair (Gmin,Smin) and stop.

This is an algorithm which computes a pair (Gmin,Smin) where Gmin is a deg-
ordered tuple of homogeneous vectors in F0 which generate M minimally, and
Smin is a deg-ordered tuple of homogeneous vectors in

⊕µ
i=1 P (−d1i) which

generate SyzP (Gmin) minimally. Here µ is the number of elements in Gmin

and d1i is the degree of the ith element in Gmin for i = 1, . . . , µ .

Proof. In order to prove the finiteness of this procedure, we note that ele-
ments are appended to G and B only in steps 5) and 8). By induction on s′ ,
we see that all elements of G are of the form a1e1+· · ·+arer+b1ε1+· · ·+bµεµ

with ai, bj ∈ P . Moreover, the checks in step 4) and step 7) make sure that at
least one polynomial ai is non-zero. Since B is enlarged only when an element
is appended to G which has a new leading term, and since Corollary 1.3.10
implies that this can happen only finitely many times, the procedure termi-
nates after finitely many steps.

Now we prove correctness. If we substitute ε1 �→ 0, . . . , εµ �→ 0 every-
where, the algorithm reduces to the Buchberger Algorithm with Minimaliza-
tion 4.6.5. Thus the resulting tuple Gmin is a minimal homogeneous set of gen-
erators of M . To show that Smin is correct, we use Proposition 4.7.23. Notice
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that the elements gs′ = v̄− εµ appended to G in step 8) are exactly the gen-
erators of ĨM corresponding to the minimal system of generators Gmin of M.
Thus Proposition 4.7.23.e says that SyzP (Gmin) corresponds to the residue
class ideal of ĨM ∩P [ε1, . . . , εµ] in P [ε1, . . . , εµ]/(ε1εj | i, j = 1, . . . , µ). Since
all extensions of σ are elimination orderings for {e1, . . . , er} , the σ -Gröbner
basis of ĨM contains a system of generators of SyzP (Gmin).

In fact, we claim that the elements of S are a σ -Gröbner basis of
SyzP (Gmin) when the algorithm stops. This follows by inspecting the effect of
step 4): a σ -Gröbner basis element S′

ij of ĨM corresponds to a syzygy of Gmin

if and only if it is contained in P [ε1, . . . , εµ] . Finally, we note that Smin is
indeed a minimal system of generators of SyzP (Gmin) because we apply The-
orem 4.6.3 in step 10). �

The algorithm described in this theorem gives us another way to compute
the degree pair (degW (Gmin),degW (Smin)) of the module M effectively. But
unlike Remark 4.7.25, it returns a minimal system of generators which is not
necessarily contained in the given set of generators. Our next remark shows
how we can modify the theorem to get this property as well.

Remark 4.7.27. In the algorithm of the theorem, the elements v of the
tuple V for which the corresponding v′ does not involve the indeterminates
e1, . . . , er form a subtuple Vmin of V which minimally generates M . By
keeping track of the representations of new Gröbner basis elements in terms
of the elements in Vmin , we compute a homogeneous matrix A such that
G = Vmin A . Since Gmin is a subtuple of G , the columns corresponding to
the elements of Gmin in this matrix equality yield a matrix B such that

Gmin = Vmin B . Then the exact sequence F2
ψ′
−→F1

ϕ′
−→M −→ 0, where ψ′

is given by the matrix B Smin and where ϕ′ is given by Vmin , is a minimal
homogeneous presentation of M by Proposition 4.7.10.

To get a better understanding of the algorithm of the theorem, we apply
to in a concrete case and monitor its workings carefully.

Example 4.7.28. Let P = Q[x1, x2, x3, x4] be graded by W =
(
1 1 1 1
0 1 3 4

)
,

and let I be the homogeneous ideal in P generated by {f1, f2, f3, f4} where
f1 = x1x4−x2x3 , f2 = x2

1x3−x3
2 , f3 = x1x

2
3−x2

2x4 , and f4 = x2x
2
4−x3

3 . We
would like to compute a minimal homogeneous presentation of I . Since the
degree of the canonical basis vector e = 1 of F ′

0 = P is degW (1) =
(
0
0

)
, the

theorem is not immediately applicable. We apply Remark 4.7.21 and consider
the graded P -submodule M = I(−

(
1
0

)
) of F0 = P (−

(
1
0

)
) instead, where the

canonical basis vector e of F0 has degree degW (e) =
(
1
0

)
. As we said already,

in an actual implementation this is not really necessary.
The P -module M is generated by the homogeneous deg-ordered tu-

ple V = (f1e, f2e, f3e, f4e), where degW (f1e) =
(
3
4

)
, degW (f2e) =

(
4
3

)
,
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degW (f3) =
(
4
6

)
, and degW (f4) =

(
4
9

)
. Let us follow the steps of the algo-

rithm. To unclutter the presentation, we only note those steps where some-
thing happens. For the term ordering σ , we always choose the lexicographic
term ordering such that

e >Lex ε1 >Lex · · · >Lex εµ >Lex x1 >Lex · · · >Lex xn

1) Let B = ∅ , W = V , G = ∅ , s′ = 0, Gmin = ∅ , µ = 0, and S = ∅ .
2) Let d =

(
3
4

)
, Bd = ∅ , Wd = (f1e), and W = (f2e, f3e, f4e).

6) Choose v = f1e and set Wd = ∅ .
7) Compute v′ = NRσ,G(v) = f1e and v̄ = f1e .
8) Let s′ = 1 and µ = 1. Adjoin ε1 to P and let degW (ε1) =

(
3
4

)
. Let

g1 = f1e − ε1 , let G = (g1), and let Gmin = (f1e).
2) Let d =

(
4
3

)
, Bd = ∅ , Wd = (f2e), and W = (f3e, f4e).

6) Choose v = f2e and set Wd = ∅ .
7) Compute v′ = NRσ,G(v) = f2e and v̄ = f2e .
8) Let s′ = 2 and µ = 2. Adjoin ε2 to P and let degW (ε2) =

(
4
3

)
. Let

g2 = f2e−ε2 , let G = (g1, g2), let Gmin = (f1e, f2e), and let B = {(1, 2)} .
Observe that degW ((1, 2)) =

(
5
7

)
.

2) Let d =
(
3
6

)
, Bd = ∅ , Wd = (f3e), and W = (f4e).

6) Choose v = f3e and set Wd = ∅ .
7) Compute v′ = NRσ,G(v) = f3e and v̄ = f3e .
8) Let s′ = 3 and µ = 3. Adjoin ε3 to P and let degW (ε3) =

(
4
6

)
.

Let g3 = f3e − ε3 , let G = (g1, g2, g3), let Gmin = (f1e, f2e, f3e), and
let B = {(1, 2), (1, 3), (2, 3)} . Observe that degW ((1, 3)) =

(
5
10

)
and

degW ((2, 3)) =
(
5
6

)
.

2) Let d =
(
4
9

)
, Bd = ∅ , Wd = (f4e), and W = ∅ .

6) Choose v = f4e and set Wd = ∅ .
7) Compute v′ = NRσ,G(v) = f4e and v̄ = f4e .
8) Let s′ = 4 and µ = 4. Adjoin ε4 to P and let degW (ε4) =

(
4
9

)
. Then let

g4 = f4e − ε4 , let G = (g1, g2, g3, g4), let Gmin = (f1e, f2e, f3e, f4e), and
let B = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4)}. Notice that we have
degW ((1, 4)) =

(
5
9

)
, degW ((2, 4)) =

(
7
12

)
, and degW ((3, 4)) =

(
7
15

)
.

2) Let d =
(
5
6

)
, Bd = {(2, 3)} , and B = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)} .

3) Choose (2, 3) ∈ Bd and set Bd = ∅ .
4) Compute S23 = x3g2 − x1g3 = x1x

2
2x4e − x3

2x3e − x3ε2 + x1ε3 and
S′

23 = NRσ,G(S23) = x2
2ε1 − x3ε2 + x1ε3 . Set S = (S′

23).
2) Let d =

(
5
7

)
, Bd = {(1, 2)} , and B = {(1, 3), (1, 4), (2, 4), (3, 4)} .

3) Choose (1, 2) ∈ Bd and set Bd = ∅ .
4) Compute S12 = x1x3g1 − x4g2 = x3

2x4e − x1x2x
2
3e − x1x3ε1 + x4ε2 and

S′
12 = NRσ,G(S12) = −x1x3ε1 + x4ε2 − x2ε3 . Set S = (S′

23, S
′
12).

2) Let d =
(
5
9

)
, Bd = {(1, 4)} , and B = {(1, 3), (2, 4), (3, 4)} .

3) Choose (1, 4) ∈ Bd and set Bd = ∅ .
4) Compute S14 = x2x4g1 − x1g4 = x1x

3
3e − x2

2x3x4e − x2x4ε1 + x1ε4 and
S′

14 = NRσ,G(S14) = −x2x4ε1 + x3ε3 + x1ε4 . Set S = (S′
23, S

′
12, S

′
14).
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2) Let d =
(

5
10

)
, Bd = {(1, 3)} , and B = {(2, 4), (3, 4)} .

3) Choose (1, 3) ∈ Bd and set Bd = ∅ .
4) Compute S13 = x2

3g1 − x4g3 = x2
2x

2
4e − x2x

3
3e − x2

3ε1 + x4ε3 , and then
S′

13 = NRσ,G(S13) = −x2
3ε1 + x4ε3 + x2ε4 . Set S = (S′

23, S
′
12, S

′
14, S

′
13).

2) Let d =
(

7
12

)
, Bd = {(2, 4)} , and B = {(3, 4)} .

3) Choose (2, 4) ∈ Bd and set Bd = ∅ .
4) Compute S24 = x2x

2
4g2−x2

1x3g4 = x2
1x

4
3e−x4

2x
2
4e−x2x

2
4ε2 +x2

1x3ε4 and
S′

24 = NRσ,G(S24) = −x2x
2
4ε2 + x3

3ε2 + x2
1x3ε4 − x3

2ε4 .
2) Let d =

(
7
15

)
, Bd = {(3, 4)} , and B = ∅ .

3) Choose (3, 4) ∈ Bd and set Bd = ∅ .
4) Compute S34 = x2x

2
4g3−x1x

2
3g4 = x1x

5
3e−x3

2x
3
4e+x1x

2
3ε4−x2x

2
4ε3 and

S′
34 = NRσ,G(S24) = −x2x

2
4ε3 + x3

3ε3 + x1x
2
3ε4 − x2

2x4ε4 .
At this point we have computed a minimal set of generators Gmin of M

and a homogeneous set of generators S of SyzP (Gmin). Step 10) now requires
us to apply the Buchberger Algorithm with Minimalization 4.6.3 to the tuple
V = (v1, . . . , v6) = S = (S′

23, S
′
12, S

′
14, S

′
13, S

′
24, S

′
34) , where v1 = S′

23 =
x2

2ε1−x3ε2+x1ε3 , v2 = S′
12 = −x1x3ε1+x4ε2−x2ε3 , v3 = S′

14 = −x2x4ε1+
x3ε3 + x1ε4 , v4 = S′

13 = −x2
3ε1 + x4ε3 + x2ε4 , v5 = S′

24 = −x2x
2
4ε2 + x3

3ε2 +
x2

1x3ε4 − x3
2ε4 , and v6 = S′

34 = −x2x
2
4ε3 + x3

3ε3 + x1x
2
3ε4 − x2

2x4ε4 . Notice
that degW (v1) =

(
5
6

)
, degW (v2) =

(
5
7

)
, degW (v3) =

(
5
9

)
, degW (v4) =

(
5
10

)
,

degW (v5) =
(

7
12

)
, and degW (v6) =

(
7
15

)
.

In this case, the situation is particularly favourable. The reason is that
the first component of the degree of the first four elements in S is five and
the second components are pairwise different. Since the first component of
the degree of every indeterminate is positive, the first four elements of S are
already interreduced. The last two elements are easily seen to be contained in
the ideal generated by the first four. Therefore we get Smin = (v1, v2, v3, v4).

For the sake of completeness, we list the steps of Theorem 4.6.3 in the ide-
alized setting. We work in the polynomial ring K[x1, x2, x3, x4, ε1, ε2, ε3, ε4]
which is graded by W =

(
1 1 1 1 5 5 5 5
0 1 3 4 6 7 9 10

)
. We use an elimination ordering σ

for ε1, . . . , ε4 . Since we are only interested in a minimal system of generators
contained in S , we may use Remark 4.6.4 and truncate the computation af-
ter we have finished degree dmax =

(
7
15

)
and we may ignore pairs of higher

degree.
1) Let B = ∅ , v1 = S′

23 , v2 = S′
12 , v3 = S′

14 , v4 = S′
13 , v5 = S′

24 , v6 = S′
34 ,

W = (v1, v2, v3, v4, v5, v6), G = ∅ , s′ = 0, and Vmin = ∅ .
2) Let d =

(
5
6

)
, Wd = (v1), and W = (v2, v3, v4, v5, v6).

6) Choose v = v1 and let Wd = ∅ .
7) Compute v′ = NRσ,G(v) = v1 .
8) Let s′ = 1, G = (v1), and Vmin = (v1).
2) Let d =

(
5
7

)
, Wd = (v2), and W = (v3, v4, v5, v6).

6) Choose v = v2 and let Wd = ∅ .
7) Compute v′ = NRσ,G(v) = v2 .
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8) Let s′ = 2, G = (v1, v2), Vmin = (v1, v2), and B = {(1, 2)} . Notice that
degW ((1, 2)) =

(
7
9

)
.

2) Let d =
(
5
9

)
, Wd = (v3), and W = (v4, v5, v6).

6) Choose v = v3 and let Wd = ∅ .
7) Compute v′ = NRσ,G(v) = v3 .
8) Let s′ = 3, G = (v1, v2, v3), Vmin = (v1, v2, v3), and B = {(1, 2), (1, 3),

(2, 3)} . Notice that degW ((1, 3)) =
(

6
10

)
and degW ((2, 3)) =

(
7
12

)
.

2) Let d =
(

5
10

)
, Wd = (v4), and W = (v5, v6).

6) Choose v = v4 and let Wd = ∅ .
7) Compute v′ = NRσ,G(v) = v4 .
8) Let s′ = 4, G = (v1, v2, v3, v4), Vmin = (v1, v2, v3, v4), and B = {(1, 2),

(1, 3), (2, 3), (1, 4), (2, 4), (3, 4)} . We observe that degW ((1, 4)) =
(

7
12

)
,

degW ((2, 4)) =
(

6
10

)
, and degW ((3, 4)) =

(
7
15

)
.

2) Let d =
(

6
10

)
, Wd = ∅ , W = (v5, v6), Bd = {(1, 3), (2, 4)} , and let

B = {(1, 2), (2, 3), (1, 4), (3, 4)} .
3) Choose (1, 3) ∈ Bd and let Bd = {(2, 4)} .
4) Compute S13 = x4v1 + x2v3 = −x3x4ε2 + x1x4ε3 + x2x3ε3 + x1x2ε4 and

S′
13 = S13 .

5) Append g5 = S13 to G . No pairs need to be appended to B .
3) Choose (2, 4) ∈ Bd and let Bd = ∅ .
4) Compute S24 = x3v2 − x1v4 = x3x4ε2 − x2x3ε3 − x1x4ε3 − x1x2ε4 and

S′
24 = 0.

2) Let d =
(
7
9

)
, Bd = {(1, 2)} , and B = {(2, 3), (1, 4), (3, 4)} .

3) Choose (1, 2) ∈ Bd and let Bd = ∅ .
4) Compute S12 = x1x3v1 + x2

2v2 = −x1x
2
3ε2 + x2

2x4ε2 + x2
1x3ε3 −x3

2ε3 and
S′

12 = S12 .
5) Append g6 = S′

12 to G . From now on, no new pairs have to be created
since they all have too large degree.

2) Let d =
(

7
12

)
, Bd = {(2, 3), (1, 4)} , B = {(3, 4)} , Wd = (v5), and

W = v6 .
3) Choose (2, 3) ∈ Bd and let Bd = {(1, 4)} .
4) Compute S23 = x2x4v2 − x1x3v3 = x2x

2
4ε2 − x2

2x4ε3 − x1x
2
3ε3 − x2

1x3ε4

and S′
23 = S23 .

5) Append g7 = S′
23 to G .

3) Choose (1, 4) ∈ Bd and let Bd = ∅ .
4) Compute S14 = x2

3g1 + x2
2g4 = −x3

3ε2 + x1x
2
3ε3 + x2

2x4ε3 + x3
2ε4 and

S′
14 = S14 .

5) Append g8 = S14 to G .
6) Choose v = v5 and let Wd = ∅ .
7) Compute v′ = NFσ,G(v) = 0. (Notice that v5 = −g7 − g8 .)
2) Let d =

(
7
15

)
, Bd = {(3, 4)} , B = ∅ , Wd = (v6), and W = ∅ .

3) Choose (3, 4) ∈ Bd and let Bd = ∅ .
4) Compute S34 = x2

3v3 − x2x4v4 = x3
3ε3 − x2x

2
4ε3 + x1x

2
3ε4 − x2

2x4ε4 and
S′

34 = S34 .
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5) Append g9 = S′
34 to G .

6) Choose v = v6 and let Wd = ∅ .
7) Compute v′ = NFσ,G(v) = 0. (Notice that v = g9 .)

Now we have finished degree dmax =
(

7
15

)
and we may stop the computa-

tion. Altogether, we have computed a minimal homogeneous presentation

F2
ψ−→ F1

ϕ−→ M −→ 0

of M , where F1 = P
(
−
(
3
4

))
⊕ P

(
−
(
4
3

))
⊕ P

(
−
(
4
6

))
⊕ P

(
−
(
4
9

))
and where

F2 = P
(
−
(
5
6

))
⊕P
(
−
(
5
7

))
⊕P
(
−
(
5
9

))
⊕P
(
−
(

5
10

))
. The map ϕ : F1 −→ F0 is

defined by the homogeneous matrix (f1, f2, f3, f4), and the map ψ is defined
by the homogeneous matrix⎛⎜⎝

x2
2 −x1x3 −x2x4 −x2

3

−x3 x4 0 0
x1 −x2 x3 x4

0 0 x1 x2

⎞⎟⎠
Thus the minimal homogeneous presentation of I is F ′

2
ψ′
−→F ′

1
ϕ′
−→ I −→ 0

where we have F ′
1 = P

(
−
(
2
4

))
⊕ P

(
−
(
3
3

))
⊕ P

(
−
(
3
6

))
⊕ P

(
−
(
3
9

))
and where

F ′
2 = P

(
−
(
4
6

))
⊕P
(
−
(
4
7

))
⊕P
(
−
(
4
9

))
⊕P
(
−
(

4
10

))
. The maps ϕ′, ψ′ are defined

by the same matrices.

Sometimes the vertical strategy is not the most efficient way to compute a
minimal homogeneous presentation. For instance, suppose that we have some
information about the highest degrees occurring in the degree pair of M . In
this case, it is desirable to compute the minimal generators and their minimal
syzygies degree by degree, and to truncate the computation at the appropriate
degree. A method which proceeds degree by degree and determines both
the minimal generators and their minimal syzygies simultaneously for each
degree is called a horizontal strategy. Our next theorem shows how we can
implement it effectively.

To ease the notation, we shall again resort to the convention LTσ(gi) =
tieγi

with ti ∈ Tn and γi ∈ {1, . . . , r} . Moreover, we let LTσ(hj) = t̃jeηj

with t̃j ∈ Tn and ηj ∈ {1, . . . , µ} .

Theorem 4.7.29. (Computing Minimal Presentations Horizontally)
Let M be a graded submodule of a graded free P -module F0 =

⊕r
i=1 P (−d0i) ,

where d0i >Lex 0 for i = 1, . . . , r , and let V = (v1, . . . , vs) be a deg-ordered
tuple of non-zero homogeneous vectors which generate M . Consider the fol-
lowing instructions.
1) Choose a term ordering σ on the monoid Tn(e1, . . . , er) . Let B = ∅ ,

B′ = ∅ , W = V , G = ∅ , s′ = 0 , Gmin = ∅ , µ = 0 , S = ∅ , s′′ = 0 , and
Smin = ∅ .
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2) Let d be the smallest degree with respect to Lex of an element in B ∪B′

or in W . Form the subset Bd of B , the subset B′
d of B′ , the subtuple

Wd of W , and delete their entries from B , B′ , and W , respectively.
3) If B′

d = ∅ , continue with step 6). Otherwise, choose a pair (i, j) ∈ B′
d

and remove it from B′
d .

4) Compute the S-vector of hi and hj and call it Sij . Then compute the
normal remainder S′

ij = NRσ,S(Sij) . If S′
ij = 0 , continue with step 3).

5) Increase s′′ by one, append hs′′ = S′
ij to the tuple S , append the set

{(i, s′′) | 1 ≤ i < s′′, ηi = ηs′′} to B′ , and continue with step 3).
6) If Bd = ∅ , continue with step 10). Otherwise, choose a pair (i, j) ∈ Bd

and remove it from Bd .
7) Compute the S-vector of gi and gj and call it Sij . Then compute the

normal remainder S′
ij = NRσ,G(Sij) . If S′

ij involves one of the inde-
terminates e1, . . . , er then increase s′ by one, append gs′ = S′

ij to G ,
append {(i, s′) | 1 ≤ i < s′, γi = γs′} to B , and continue with step 6).

8) Compute the normal remainder S′′
ij = NRσ,S(S′

ij) . If S′′
ij = 0 , continue

with step 6).
9) Increase s′′ by one. Append hs′′ = S′′

ij to the tuples S and Smin . Append
{(i, s′′) | 1 ≤ i < s′′, ηi = ηs′′} to B′ . Continue with step 6).

10) If Wd = ∅ , continue with step 13). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
11) Compute v′ = NRσ,G(v) and v̄ = v′(x1, . . . , xn, e1, . . . , er, 0, . . . , 0) .

If v̄ = 0 , continue with step 10).
12) Increase s′ and µ by one. Adjoin a new indeterminate εµ to P and

extend the grading to this new ring by defining degW (εµ) = degW (v′) .
Extend the term ordering σ to the new ring in such a way that the ex-
tension is an elimination ordering for {e1, . . . , er} . Append gs′ = v̄ − εµ

to the tuple G and v̄ to Gmin . Append {(i, s′) | 1 ≤ i < s′, γi = γs′}
to B . Continue with step 10).

13) If B = B′ = ∅ and W = ∅ , return the pair (Gmin,Smin) and stop.
Otherwise, continue with step 2).

This is an algorithm which computes a pair (Gmin,Smin) where Gmin is a deg-
ordered tuple of homogeneous vectors in F0 which generate M minimally, and
where Smin is a deg-ordered tuple of homogeneous vectors in

⊕µ
i=1 P (−d1i)

which generate SyzP (Gmin) minimally. Here µ is the number of elements
in Gmin and d1i is the degree of the ith element in Gmin for i = 1, . . . , µ .

Proof. First we show finiteness. The procedure terminates when B , B′ ,
and W are empty. Only B and B′ are enlarged during the computation.
Each time the loop in steps 3)–5) is executed, one pair is removed from Bd

(and thus from B ). Similarly, performing the loops in steps 6)–9) and 10)–12)
removes one element from Bd and Wd , respectively. Hence it suffices to show
that B and B′ are enlarged only finitely many times.

The set B is enlarged in steps 7) and 12) only if an element gs′ is ap-
pended to G whose normal remainder with respect to the previous elements
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of G is non-zero. In this case, 〈LTσ(G)〉 is enlarged, and this can happen only
finitely many times. Similarly, the set B′ is enlarged in steps 5) and 9) only
if an element hs′′ is appended to S which has a new leading term. Again
this can happen only finitely many times.

Now we prove correctness. We consider the entire computation as a com-
putation in P̃ = K[x1, . . . , xn, e1, . . . , er, ε1, . . . , εµ] . We claim that the ele-
ments of W , G , Gmin , S , and Smin are always of the form f1e1 + · · ·+frer +
f̃1ε1 + · · · + f̃µεµ with fi, f̃j ∈ P . This is clearly true at the outset. By the
manner in which B and B′ are enlarged in steps 5), 7), 9), and 12), the new
S-vectors continue to have this shape. Furthermore, reducing one such vector
using another one preserves the shape. Hence the elements of G and S have
the desired form. Clearly the construction of Gmin in step 12) and Smin in
step 9) also preserves the given shape.

By induction on s′′ it follows that elements hs′′ which are appended to S
in step 5) and 9) do not involve the indeterminates {e1, . . . , er} . In particular,
their leading position is an element ηj ∈ {1, . . . , µ} .

If we set ε1 �→ 0, . . . , εµ �→ 0 in the entire algorithm and ignore the in-
structions concerning S and Smin , we see that we are applying Buchberger’s
Algorithm with Minimalization 4.6.3 to the tuple V . Therefore the tuple
G = (ḡ1, . . . , ḡs′) where ḡi = gi(x1, . . . , xn, e1, . . . , er, 0, . . . , 0) is a σ -Gröbner
basis of M and Gmin is a subtuple of G whose elements are a minimal system
of generators of M .

Next we let Gmin = (g̃1, . . . , g̃µ). We claim that the elements of G map
to zero under the homomorphism defined by ε1 �→ g̃1 , . . . , εµ �→ g̃µ . This
follows by induction on s′ because in step 5) an element of 〈g1, . . . , gs′−1〉 is
appended to G and in step 8) we have

gs′(x1, . . . , xn, e1, . . . , er, g̃1, . . . , g̃µ−1) = v̄ − gµ = 0

Hence the elements of G are contained in the ideal (g̃1−ε1, . . . , g̃µ−εµ) of P .
Since we know already that Gmin is a minimal system of generators of M , it
follows that ĨM = (g̃1 − ε1, . . . , g̃µ − εµ) + Ẽ is the ideal of a homogeneous
presentation of M . Therefore, by Proposition 4.7.23, it suffices to prove that
S ∪ {εiεj | i, j = 1, . . . , µ} is a σ -Gröbner basis of ĨM ∩ P [ε1, . . . , εµ] and
Smin ∪ {εiεj | i, j = 1, . . . , µ} is a minimal set of generators of this ideal.

Since σ is an elimination ordering for {e1, . . . , er} , steps 3), 4), 5),
8), and 9) correspond to the application of Buchberger’s Algorithm with
Minimalization 4.6.3 to this ideal. Hence the claim follows from Proposi-
tions 4.7.16.a and 4.7.19.a,b. Altogether, we have shown that Gmin is a min-
imal system of generators of M and Smin is a minimal system of generators
of SyzP (Gmin). �
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Let us add a few remarks about the inner workings of this algorithm.

Remark 4.7.30. Assume that we are in the setting of Theorems 4.7.26
and 4.7.29.
a) If we view the vertical and the horizontal strategy for computing a mini-

mal homogeneous presentation as algorithms in P, they are nothing but
two concrete versions of the same general algorithm, namely the Homo-
geneous Buchberger Algorithm 4.5.5. The difference lies in the particular
strategies for choosing the next pair to work on, and that we do not have
to consider critical pairs (i, s′) with γi �= γs′ because ei es′ maps to zero
in the idealization of M .

b) The proof of Theorem 4.7.29 shows that when the algorithm stops the
tuple G = (ḡ1, . . . , ḡs′) where ḡi = gi(x1, . . . , xn, e1, . . . , er, 0, . . . , 0) is
a σ -Gröbner basis of M , and the tuple S is a σ -Gröbner basis of the
module SyzP (Gmin)

c) Note that one can choose the term ordering on Tn〈ε1, . . . , εµ〉 freely,
as long as it extends σ . Hence the algorithm can be used to compute
a Gröbner basis of the syzygy module Syz(Gmin) with respect to an
arbitrary term ordering.

Example 4.7.31. The sheer length of this section forces us to ask you, dear
reader, to redo Example 4.7.28 with the horizontal strategy on your own. In
this particular case, the vertical strategy is superior, because it avoids the
computation of the critical pairs among syzygies, as we noticed before.

Exercise 1. Let K be a field, and let P = K[x1, x2, x3, x4] be graded
by W =

(
1 1 1 1
1 2 3 4

)
.

a) Show that M =
(

x2 x3 x4
x2 x1 x2

)
is not a homogeneous matrix.

b) Find all matrices W ∈ Mat2,4(Z) for which M is homogeneous with
respect to the grading given by W .

Exercise 2. Let P = Q[x, y, z] be standard graded, let v1 = x2 − xy ,

v2 = xy2 − y2z , and v3 = x3 + y3 + y2z .

a) Show that V = (v1, v2, v3) minimally generates the homogeneous ideal
I = (v1, v2, v3) .

b) Let v′
1 = xy−x2 , v′

2 = y2z−x2y , and v′
3 = x2y+xy2 +y3. Prove that

V ′ = (v′
1, v

′
2, v

′
3) is another homogeneous minimal system of generators

of I .
c) Find homogeneous matrices A , B for which V ′ = V A and V = V ′ B .
d) Compute det(A) , det(B) , and I3 −AB .

Exercise 3. Let P = Q[x1, . . . , xn] be standard graded.

a) Write a CoCoA function which computes the degree sequence of a
monomial ideal in P .
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b) Find the maximum number of elements in a minimal set of generators
of a monomial ideal in the ring P = Q[x, y] whose degree sequence
starts with 2.

c) More generally, given d ∈ N , find the maximum number of elements in
a minimal set of generators of a monomial ideal in the ring P = Q[x, y]
whose degree sequence starts with d .

Exercise 4. Let R be a ring, and let r ≥ 1. Given a square matrix
M = (aij) ∈ Matr(R) , define its adjoint matrix Madj = (bij)

tr by
bij = (−1)i+j det(Mij) , where Mij is obtained from M by deleting the
ith row and the jth column.

a) Show that MMadj = det(M) Ir .
Hint: For i �= j , consider the matrix M′ obtained by replacing the
ith row of M by the jth row.

b) Conclude that if vectors v1, . . . , vs ∈ Rr satisfy (v1, . . . , vs) · M = 0,
then det(M) · vi = 0 for i = 1, . . . , s . This result is sometimes called
Dedekind’s Lemma.

c) Let K be a field, let P = K[x1, . . . , xn] be positively graded by
W ∈ Matm,n(Z) , let M be a finitely generated graded P -module,
and let V = (v1, . . . , vs) and V ′ = (v′

1, . . . , v
′
s) be two homogeneous

systems of generators of M. Given matrices A , B such that V ′ = V A
and V = V ′ B , prove that det(Is −AB) · M = 0.

d) Find an example where V,V ′ are minimal and the matrices A , B
above satisfy AB �= Is .

Exercise 5. In the setting of Proposition 4.7.14, find all graded sub-
modules M ⊆ F0 for which the ideal IM is a prime ideal.

Exercise 6. Suppose we are in the setting of Proposition 4.7.14.

a) Exhibit an ideal in P which contains e but is not of the form IM for
any graded submodule M of F0 .

b) Characterize the ideals of P which are of the form IM for some graded
submodule M of F0 .

Exercise 7. Let P = K[x1, x2, x3, x4] be standard graded, and let N
be the graded P -submodule of P (−2)2 ⊕ P (−1)2 generated by the vec-
tors (0, x1, x1x2 − x2

4, x1x2 + x2
4) , (x2, 0, x1x3,−x1x3) , (0, 1, x2, x2) , and

(0, 0, 1,−1)) . Using the algorithm of Proposition 4.7.24.b, compute a min-
imal homogeneous presentation of M = (P (−2)2 ⊕ P (−1)2)/N .

Exercise 8. Let P = Q[x, y, z] be standard graded, and let I be the ideal
(x2, xy+xz, y2) in P . Compute a minimal homogeneous presentation of I
using both the vertical and the horizontal strategy. Compare the efficiency
of both methods.

Exercise 9. Work out Example 4.7.31!
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Tutorial 60: Computing Some Idealizations

idealization, idealisation (noun)
1. the representation of something as ideal.
2. a conception of something that dwells on
its advantages and ignores its deficiencies.

3. a general theoretical account of natural
phenomena that ignores features that are
difficult to accommodate within a theory.

(English dictionary)

In Tutorial 34 we studied elimination of module components. The idea
we had in mind was to consider the canonical basis vectors e1, . . . , er as
“indeterminates”. Using the idealization technique of Subsection B, we can
now realize this idea and dwell on its advantages.

Let K be a field, let P = K[x1, . . . , xn] be positively graded by a matrix
W ∈ Matm,n(Z), let d0i ∈ Zm for i = 1, . . . , r , and consider the graded
free P -module F0 =

⊕r
i=1 P (−d0i). The canonical basis of F0 is denoted by

{e1, . . . , er} . By applying a suitable shift, we may assume that d0i >Lex 0 for
i = 1, . . . r (see Remark 4.7.21).

According to Proposition 4.7.14.a, the polynomial ring P = P [e1, . . . , er]
represents the idealization P/E of F0 . We equip P with the grading given
by W = (W | d01 · · · d0r) and identify the elements of F0 with their canonical
images in P . Let M be graded submodule of F0 , and let G = (g1, . . . , gs)
be a tuple of homogeneous vectors which generate M .
a) Let ε1, . . . , εs be further indeterminates. Equip the polynomial ring

P [ε1, . . . , εs] with the grading obtained by extending the grading by W
using degW (εi) = degW (gi) for i = 1, . . . , s . Prove that the ideal
(g1 − ε1, . . . , gs − εs) ∩ P [ε1, . . . , εs] is the ideal of the module SyzP (G).

b) Write a CoCoA function IdealSyz(. . .) which implements the method
for computing SyzP (G) you found in a). Apply your function to the
homogenizations of the modules given in Tutorial 34.d with respect to
the standard grading and suitable shifts.

c) Let N be another graded P -submodule of F0 , and let H = (h1, . . . , ht)
be homogeneous system of generators of N . Introduce further indeter-
minates ε1, . . . , εr and equip the polynomial ring P [ε1, . . . , εr] with the
grading obtained by extending the grading by W with degW (εi) = d0i

for i = 1, . . . , r . Moreover, let h′
i be the polynomial obtained by

substituting e1 �→ ε1 , . . . , er �→ εr in hi . Prove that the ideal
(h1 − h′

1, . . . , hs − h′
s) ∩ P [ε1, . . . , εr] is the ideal of the module M ∩ N .

d) Write a CoCoA function IdealIntersect(. . .) which implements the
method for computing M ∩ N you found in c). Apply your function to
the homogenizations of the modules given in Tutorial 30.b with respect
to the standard grading and suitable shifts.

e) Let v ∈ F0 \ {0} be a homogeneous vector. Introduce a further indeter-
minate ε and equip the polynomial ring P [ε] with the grading obtained
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by extending the grading by W with degW (ε) = degW (v) . Prove that
the ideal (g1, . . . , gs, v−ε)∩P [ε] is the ideal of the colon ideal M :

P
〈v〉 .

f) Write a CoCoA function IdealColon(. . .) which implements the method
for computing M ∩ N you found in e). Apply your function to the ho-
mogenizations of the modules and vectors given in Tutorial 34.h with
respect to the standard grading and suitable shifts.

g) As the last job, we ask you to generalize Propositions 4.7.14 and 4.7.16 to
the non-graded case, and then to do as many as you can of the preceding
items in this situation.

Tutorial 61: Computing Some Minimal Presentations

The 10 computational commandments:
1. Always use the binary system.

10. Never use the symbol 2.
(Anonymous)

What would a section like this one be without a tutorial which requires
you to do some actual computer implementations? Surely, your fingers are
already itching to follow this computational commandment and start hit-
ting the keys. Plenty of competing algorithms and strategies require intense
practical testing to reveal their respective merits.

Let K be a field, let P = K[x1, . . . , xn] be positively graded by the
matrix W ∈ Matm,n(Z), let d01, . . . , d0r ∈ Zm , let F0 =

⊕r
i=1 P (−d0i), and

let M be a graded P -submodule of F0 which is generated by a deg-ordered
tuple of non-zero vectors V = (v1, . . . , vs).
a) Write a CoCoA function MinPres1(. . .) which takes V and uses the

built-in procedures of CoCoA to compute a pair of homogeneous matri-
ces (Vmin,Smin) which give a minimal homogeneous presentation

F2
ψ−→ F1

ϕ−→ M −→ 0

of M , where ϕ is given by Vmin and ψ is given by Smin . (In the fol-
lowing, you can use this function to check the correctness of your other
programs.) Hint: You may want to pass to the idealization of M and use
Proposition 4.7.23.

b) Apply your function MinPres1(. . .) to compute a minimal homogeneous
presentation of the following ideals and modules.
1) M1 = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) in Q[x1, x2, x3, x4] us-

ing the standard grading
2) M2 = 〈(x1+x2, x3−x4), (x2

1−x2
2, x

2
3+x2

4), (x1x2x3+x3
4, 2x1x2x4−x3

3)〉
in Q[x1, x2, x3, x4]2 using the standard grading

3) M3 = (x1x4 − x2x3, x2x
2
4 − x3

3, x1x
2
3 − x2

2x4, x2
1x3 − x3

2) in the ring
Q[x1, x2, x3, x4] graded by

(
5 4 2 1
1 1 1 1

)
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4) M4 = (x1x4−x2x3, x1x5−x2x4, x1x6−x2x5, x3x5−x2
4, x3x6−x4x5,

x4x6 − x2
5) in Q[x1, . . . , x6] graded by

(
1 1 ··· 1
1 2 ··· 6

)
5) M5 = 〈xiej−xjei | 1 ≤ i < j ≤ 6〉 in

⊕6
i=1 Q[x1, . . . , x6](−i) graded

by (1 2 · · · 6)
c) Write a CoCoA function MinPres2(. . .) which performs the same task as

MinPres1(. . .) but uses the algorithm of Remark 4.7.25. If possible, use
the function Min2(. . .) you wrote in Tutorial 58.c in steps 1) and 3).

d) Apply your function MinPres2(. . .) to the examples in b). Compare the
results and the timings with those of MinPres1(. . .) . For this purpose,
write a CoCoA function IsIsomPres(. . .) which checks whether two min-
imal homogeneous presentations of a module are isomorphic. (Hint: Use
Proposition 4.7.10.)

e) Implement a CoCoA function MinPresVert(. . .) which computes a mini-
mal homogeneous presentation of M using the vertical strategy of The-
orem 4.7.26. Apply it to the examples given in b) and compare it to
MinPres2(. . .) by counting the number of calls to the normal remainder
function. Which strategy is more efficient and why?

f) Let σ be a module term ordering on Tn〈e1, . . . , er〉 . Consider the follow-
ing sequence of instructions.
1) Let A = ∅ , B = ∅ , W = V , G = ∅ , s′ = 0, Gmin = ∅ , and let S = ∅ .
2) Let d be the smallest degree with respect to Lex of an element in B

or in W . Form the subset Bd and the subtuple Wd , and delete their
entries from B and W , respectively.

3) If Bd = ∅ , continue with step 7). Otherwise, chose a pair (i, j) ∈ Bd

and remove it from Bd .
4) Compute the S-vector Sij of gi and gj . Then apply the Division

Algorithm 1.6.4 to compute a homogeneous representation Sij =
q1g1 + · · · + qs′gs′ + p , where q1, . . . , qs′ ∈ P and p ∈ F0 satisfy the
conditions of Theorem 1.6.4.

5) If p = 0, append the column vector σij −
∑s′

k=1 qkek to the matrix S
and continue with 3).

6) Increase s′ by one, append gs′ = p to the tuple G , append the set
{(i, s′) | 1 ≤ i < s′, γi = γs′} to B , and append the column vector

1
ci

tijai − 1
cj

tjiaj − q1a1 − · · · − qs′−1as′−1

to the matrix A , where a1, . . . , as′−1 denote the previous columns
of A . Continue with step 3).

7) If Wd = ∅ , continue with step 10). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
8) Compute v′ = NRσ,G(v). If v′ = 0, continue with step 7).
9) Increase s′ by one, append gs′ = v′ to the tuple G and to the

tuple Gmin , append a row of zeros to S and A , append the column
vector (0, . . . , 0, 1)tr to A , and append {(i, s′) | 1 ≤ i < s′, γi = γs′}
to the set B . Continue with step 7).
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10) If B = ∅ and W = ∅ , then apply the Buchberger Algorithm with
Minimalization 4.6.3 to the module generated by the column vectors
of AS and obtain a subtuple Smin of AS which minimally generates
that module. Otherwise, continue with step 2).

11) Return the pair (Gmin,Smin) and stop.
Prove that this is an algorithm which returns a pair of deg-ordered tuples
of homogeneous vectors (Gmin,Smin) where Gmin minimally generates M
and Smin is a homogeneous minimal system of generators of SyzP (Gmin).

g) Write a CoCoA function MinPres3(. . .) which implements the preceding
algorithm. Try your function in the cases given in b) and compare its
efficiency to the earlier ones.

h) Finally, implement the horizontal strategy for computing minimal homo-
geneous presentations explained in Theorem 4.7.29 in a CoCoA function
HorMinPres(. . .). Apply this function again in the cases of b) and check
its correctness using IsIsomPres(. . .).

i) Compare the efficiency of the functions you wrote by constructing a ta-
ble which contains the timings, the number of calls to NR(. . .), and the
number of critical pairs which had to be treated for the examples given
in b). Try to explain the results.
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4.8 Minimal Graded Free Resolutions

You know, we just used so many metaphors
I forgot what the hell we were talking about.

(From “The Odd Couple II”)

The closing section of this chapter is both its climax and its time of
fruition. After extensive preparations in the previous section, we are ready
to harvest the fruits of our labour and compute minimal graded free resolu-
tions. Given a finitely generated graded module M over a positively graded
polynomial ring P = K[x1, . . . , xn] , we defined a finite minimal graded free
resolution of M to be an exact sequence

0 −→ F�
ϕ�−→ F�−1 −→ · · · −→ F1

ϕ1−→ F0
ϕ0−→ M −→ 0

where F0, . . . , F� are finitely generated graded free P -modules and where for
every i ∈ {1, . . . , �} the homogeneous homomorphism ϕi maps the canonical
basis of Fi to a minimal homogeneous system of generators of Ker(ϕi−1).
With the support of Section 4.7, we shall tackle the tasks ahead in two phases:
first we examine the existence and uniqueness of such resolutions, and then
we conjure up some algorithms to compute them.

The basic existence result for graded free resolutions is the graded version
of Hilbert’s Syzygy Theorem 4.8.4: for a proof, we simply follow in the wake
of Tutorial 29. However, the resolutions produced in this way are not min-
imal by a long shot. Far from this being our undoing, we save ourselves by
fabricating Theorem 4.8.6, a tool for minimalizing non-minimal resolutions.
By applying this universal remedy time and time again, we not only get
out of a tight spot, but we actually find an effective method for computing
minimal graded free resolutions. But we’re getting ahead of ourselves! If we
want to develop meaningful algorithms, the objects of our striving had bet-
ter be unique – or, at least, essentially unique. For want of a better idea, we
look over the preceding section and rediscover Proposition 4.7.10, a variant
of which enables us to prove that the minimal graded free resolution of M
is uniquely determined up to a homogeneous isomorphism. Then things are
really looking up, and we witness the debut of the graded Betti numbers, a
whole array of important invariants.

In the second part of this section we exhibit concrete algorithms for
computing minimal graded free resolutions and graded Betti numbers. One
method for treating this slippery topic could be to explain in every last de-
tail the use of the built-in CoCoA command Res(...) and leave it at that.
Instead, we present and explain ... not one ... not two ... but actually three
separate algorithms. The first one is obtained by overhauling the vertical
strategy of Theorem 4.7.26 and looping a loop around it. Though simple and
straightforward to implement, this vertical strategy for computing resolutions
is sometimes not optimal.

The second algorithm we present has its roots in the existence proof we
sketched above. In essence, we use the pruning technique of Theorem 4.8.6
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and apply it to the non-minimal resolution constructed during the proof of
Theorem 4.8.4. As we shall see, it all comes down to identifying a mini-
mal system of generators Gmin inside a homogeneous Gröbner basis G and
expressing G in terms of Gmin . Since we have already cooked from several
recipes for doing this, we could start feasting. However, we still have one ace
up our sleeves. By building on the horizontal strategy for computing minimal
homogeneous presentations, we can assemble a very compact algorithm which
computes a minimal graded free resolution degree by degree. The formula-
tion of this algorithm in Theorem 4.8.16 requires merely seven instructions.
Brevity is the soul of wit, and hand in hand with it one can achieve a very
satisfactory efficiency.

Free resolutions do not provide light reading. They wreak havoc on your
mind. Although we have steadfastly stayed the course and proffer a generous
sprinkling of examples, it is easy to get lost in a muddled computation. But
in the end, we hope that you will know exactly what we were talking about.

4.8.A Existence and Uniqueness of Minimal Free Resolutions

This subsection provides the mathematical background for dealing with min-
imal graded free resolutions. Our first task is to show that finite graded free
resolutions do indeed exist. The emphasis here is on the word finite, since the
construction of a free resolution is straightforward.

Let K be a field, let P = K[x1, . . . , xn] be positively graded by the
matrix W ∈ Matm,n(Z), and let M be a non-zero finitely generated graded
P -module.

Definition 4.8.1. A graded free resolution of M is an exact sequence of
the form

· · · ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ M −→ 0

where F0, F1, . . . are finitely generated graded free P -modules. If there exists
a number � ∈ N such that F� �= 0 and Fi = 0 for i > � , we say that it is a
finite graded free resolution of M of length � .

Clearly, the module M is a graded free P -module if and only if it has a
graded free resolution of length 0. Is there always a finite graded free resolu-
tion of M ? A quick reply would be to simply state that an easy generalization
of Tutorial 29 yields an affirmative answer to this question. However, even if
we risk being criticized for filling too many pages, we prefer to give the full
proofs. If you were diligent and worked out the details of Tutorial 29, it will
help you to digest everything here with little effort.

In the following, we assume that M is generated by a tuple of non-zero
homogeneous elements G = (g1, . . . , gr). For i = 1, . . . , r , let d0i = degW (gi).
The canonical basis of the graded free P -module F0 =

⊕r
i=1 P (−d0i) is

denoted by {e1, . . . , er} . Thus the P -linear map ϕ0 : F0 −→ M sending
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ei �→ gi for i = 1, . . . , r is homogeneous and surjective. Our first result
enables us to recognize a graded free module by looking at a Gröbner basis
of the syzygy module of a homogeneous tuple of generators.

Proposition 4.8.2. Let σ be a module term ordering on Tn〈e1, . . . , er〉 and
S = (v1, . . . , vs) be a σ -Gröbner basis of SyzP (G) . If LTσ(vi) ∈ {e1, . . . , er}
for i = 1, . . . , s then M is a graded free P -module.

Proof. After possibly deleting some of the syzygies in S , we may assume that
LTσ(vi) �= LTσ(vj) for i �= j . Then we use the syzygies in S to delete the
corresponding elements in the tuple G as described in Proposition 4.7.24.b.
The remaining elements of G still generate M . There are no syzygies among
them, since otherwise the leading term of such a syzygy would be a multiple
of an element of LTσ(S), but the syzygy has a zero in that position. Therefore
the remaining elements of G are a homogeneous basis of the P -module M .

�

The following lemma is the key to the existence proof for finite graded
free resolutions.

Lemma 4.8.3. Let σ be a module term ordering on Tn〈e1, . . . , er〉 , let N
be a graded P -submodule of F0 , and let V = (v1, . . . , vs) be a tuple of ho-
mogeneous vectors which form a σ -Gröbner basis of N . Furthermore, as-
sume that LTσ(v1) >PosLex · · · >PosLex LTσ(vs) , and that there exists a
number m ∈ {1, . . . , n} such that LTσ(vi) ∈ T(xm, . . . , xn)〈e1, . . . , er〉 for
i = 1, . . . , s . Then the leading terms of the fundamental syzygies σij of V
satisfy LTτ (σij) ∈ T(xm+1, . . . , xn)〈ε1, . . . , εs〉 for all i, j . Here τ is the
ordering induced by (σ,V) according to Definition 3.1.1.

Proof. Let 1 ≤ i < j ≤ s and LTσ(vi) = tieγi
as well as LTσ(vj) = tjeγj

with ti, tj ∈ T(xm, . . . , xn) and γi, γj ∈ {1, . . . , r} . A fundamental syzygy ex-
ists only if γi = γj . In this case, the hypothesis LTσ(vi) >PosLex LTσ(vj) im-
plies logxm

(ti) ≥ logxm
(tj). Hence xm does not divide lcm(ti, tj)/ti and we

have LTτ (σij) = (lcm(ti, tj)/ti) εi ∈ T(xm+1, . . . , xn)〈ε1, . . . , εs〉 , as claimed.
�

Now we are ready to settle the existence question for finite graded reso-
lutions. Notice that we even get a global bound for the length of a particular
resolution of an arbitrary finitely generated graded P -module.

Theorem 4.8.4. (Graded Version of Hilbert’s Syzygy Theorem)
Let M be a finitely generated graded P -module. Then M has a finite graded
free resolution of length at most n .

Proof. Let G = (g1, . . . , gr) be a tuple of non-zero homogeneous ele-
ments which generate M , let degW (gi) = d0i for i = 1, . . . , r , and let
F0 =

⊕r
i=1 P (−d0i). Then we have an exact sequence of graded P -modules
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0 −→ N
ψ−→ F0

ϕ−→ M −→ 0

where N = SyzP (G). It suffices to show that there is a graded free resolution

0 −→ Fn
ϕn−→ Fn−1

ϕn−1−→ · · · ϕ2−→ F1
ϕ1−→ N −→ 0

since then the sequence

0 −→ Fn
ϕn−→ Fn−1

ϕn−1−→ · · · ϕ2−→ F1
ψ◦ϕ1−→ F0 −→ M −→ 0

is a graded free resolution of M of length ≤ n .
Let σ be a module term ordering on Tn〈e1, . . . , er〉 and V = (v1, . . . , vs)

be a homogeneous σ -Gröbner basis of N . Without loss of generality we
may assume that LTσ(v1) >PosLex · · · >PosLex LTσ(vs). For i = 1, . . . , s , let
d1i = degW (vi). The canonical basis of F1 =

⊕s
i=1 P (−d1i) is denoted by

{ε1, . . . , εs} . Let τ be the module term ordering on Tn〈ε1, . . . , εs〉 induced
by (σ,V).

By Corollary 3.1.5, the set of fundamental syzygies of V can be lifted
to a τ -Gröbner basis S1 of the graded P -submodule S1 = SyzP (V) of F1 .
By Lemma 4.8.3, the τ -leading terms of the elements of S1 are contained
in T(x2, . . . , xn)〈ε1, . . . , εs〉 . Moreover, the elements of S1 are homogeneous
elements of F1 , and we may assume that their τ -leading terms are ordered
decreasingly with respect to PosLex.

This shows that we can repeat the same argument for S1 in place
of N and construct a graded submodule S2 of a graded free P -module F2

with a Gröbner basis whose leading terms involve only the indeterminates
x3, . . . , xn . After � ≤ n steps we reach a situation where the leading terms
of the Gröbner basis of S� do not involve any indeterminate anymore, i.e.
where they are elements in the canonical basis of F� . Hence we can apply
Proposition 4.8.2 to the sequence

0 −→ S� −→ F�
ϕ�−→ F�−1

and conclude that S�−1 , the image of ϕ� , is a graded free P -module. Con-
sequently, the homogeneous exact sequence

0 −→ S�−1 −→ F�−1
ϕ�−1−→ · · · ϕ1−→ F1

ϕ0−→ N −→ 0

is a graded free resolution and the proof is complete. �

Now we know how to make a finite graded free resolution of a finitely
generated graded module. However, as the title of this section suggests, we
want more.

Definition 4.8.5. Let M be a finitely generated graded P -module. A
graded free resolution
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· · · ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ M −→ 0

of M is called a minimal graded free resolution of M if the images of the
canonical basis vectors of Fi are a minimal system of generators of Ker(ϕi−1)
for every i ≥ 1.

By the Graded Version of Nakayama’s Lemma 1.7.15, the graded free reso-
lution of M in the definition is minimal if and only if none of the homogeneous
matrices representing ϕ1, ϕ2, . . . contains a non-zero constant polynomial.
By choosing a minimal homogeneous presentation of Ker(ϕi) for every i ≥ 0
and combining the resulting short exact sequences, we can easily construct a
minimal graded free resolution for a given module M . However, despite their
promising name, it is not yet clear that finite minimal graded free resolutions
exist. The finite graded free resolution constructed in the proof of the Graded
Version of Hilbert’s Syzygy Theorem 4.8.4 is usually non-minimal, because
the Gröbner basis of Ker(ϕi) constructed at each step is rarely a minimal
set of generators. Thus we are led to the idea of trying to trim a given free
resolution until it becomes a minimal one. The following tool does the trick.

Theorem 4.8.6. (Local Minimalization of Resolutions)
Let F3

ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ F0 be an exact sequence of finitely gener-
ated graded free P -modules and homogeneous P -linear maps. Then there
exists a homogeneous exact sequence of finitely generated graded free modules

F3
ϕ′

3−→ F ′
2

ϕ′
2−→ F ′

1

ϕ′
1−→ F0 such that the matrix associated to ϕ′

2 has no non-
zero constant entries and also Im(ϕ1) = Im(ϕ′

1) and Ker(ϕ3) = Ker(ϕ′
3) .

Proof. Without loss of generality, we may assume that the canonical bases
of all graded free modules involved are deg-ordered. Let G be the matrix
which defines ϕ1 , and denote Im(ϕ1) by M . Considered as a tuple of vec-
tors, G generates M . We pick a subtuple G′ of G which minimally gen-
erates M and construct the corresponding homomorphism of graded free
modules ϕ′

1 : F ′
1 −→ F0 . It follows that there exist two matrices A1 and B1

such that G = G′A1 and G′ = G B1 and A1B1 = I , where I denotes an
identity matrix. The matrix A1 yields a surjective homomorphism of graded
free modules α1 : F1 −→ F ′

1 .
Now let S be the homogeneous matrix corresponding to ϕ2 . Thus S

is a tuple of vectors which generate SyzP (G). As in the proof of Proposi-
tion 4.7.10.a (using A1 for A−1 and B1 for A), it follows that A1S gen-
erates SyzP (G′). Next, we let S ′ be a subtuple of A1S which generates
SyzP (G′) minimally and ϕ′

2 : F ′
2 −→ F ′

1 be the homomorphism of graded
free modules defined by S ′ . Since S ′ is a tuple of generators, there exists
a homogeneous matrix A2 such that A1S = S ′A2 . Since S ′ is a subtuple
of A1S , the homogeneous map α2 : F2 −→ F ′

2 defined by A2 is injective.
Altogether, we obtain a commutative diagram of homogeneous P -linear

maps with exact rows



152 4. The Homogeneous Case

F3
ϕ3−→ F2

ϕ2−→ F1
ϕ1−→ F0∥∥∥ ⏐⏐�α2

⏐⏐�α1

∥∥∥
F3

ϕ′
3−→ F ′

2

ϕ′
2−→ F ′

1

ϕ′
1−→ F0

where we define ϕ′
3 = α2 ◦ ϕ3 . Since α1 is surjective, we have Im(ϕ1) =

Im(ϕ′
1) and since α2 is injective, we have Ker(ϕ3) = Ker(ϕ′

3), as claimed.
By construction, the matrix S ′ representing the map ϕ′

2 corresponds to a
minimal system of generators and therefore does not contain non-zero con-
stant polynomials. �

Corollary 4.8.7. (Existence of Minimal Graded Free Resolutions)
Let M be a finitely generated graded P -module. Then M has a minimal
graded free resolution of length at most n .

Proof. Using Theorem 4.8.4 we find a finite graded free resolution of M of
length � ≤ n . Then we apply Theorem 4.8.6 repeatedly and replace pieces
of the resolution until none of the matrices corresponding to ϕ1, ϕ2, . . . , ϕ�

contains a non-zero constant polynomial anymore. �

After settling the existence question, we now study whether and in what
sense the minimal graded free resolution of a module is uniquely determined.
The following lemma, a variant of Proposition 4.7.10, provides essential aid.

Lemma 4.8.8. Let M be a graded submodule of a graded free P -module F0 ,
let ψ0 : F0 −→ F0 be a homogeneous isomorphism, let F2

ϕ2−→F1
ϕ1−→M −→ 0

and F2
ϕ′

2−→F1
ϕ′

1−→ψ0(M) −→ 0 be two minimal homogeneous presentations,
and let ψ1 : F1 −→ F1 be a homogeneous isomorphism which satisfies
ψ0 ◦ ϕ1 = ϕ′

1 ◦ ψ1 . Furthermore, assume that the matrices A,B,G,G′,S,S ′

representing the maps ψ0, ψ1, ϕ1, ϕ
′
1, ϕ2, ϕ

′
2 , respectively, are deg-ordered.

a) The tuple B S is deg-ordered and generates SyzP (G′) minimally.
b) There exists a deg-ordered invertible matrix C such that B S = S ′ C . In

other words, we have a commutative diagram

F2
ϕ2−→ F1

ϕ1−→ F0⏐⏐�ψ2

⏐⏐�ψ1

⏐⏐�ψ0

F2
ϕ′

2−→ F1
ϕ′

1−→ F0

where ψ2 is the homogeneous isomorphism defined by C .

Proof. The proof of a) is very similar to the proof of Proposition 4.7.10.a.
Since we have G′ B S = AG S = 0, the columns of B S are syzygies of G′ .
Given any homogeneous element u ∈ SyzP (G′), we compute AG B−1 u =
G′ u = 0. This shows that G B−1 u = 0. Hence the homogeneous vector B−1 u
is a syzygy of G . Since S generates SyzP (G), there exists a homogeneous
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matrix H such that B−1 u = S H . Therefore we have u = B (B−1 u) = B S H ,
and it follows that B S generates SyzP (G′). Moreover, since the matrix B is
deg-ordered and invertible, the matrix B S is deg-ordered too, and is also a
minimal system of generators of SyzP (G′).

To prove b), we observe that S ′ and B S both generate SyzP (G′) min-
imally. By Proposition 4.7.8, there exists a deg-ordered invertible matrix C
such that B S = S ′ C . �

Our next theorem shows that the minimal graded free resolution of a
finitely generated graded P -module is uniquely determined up to some ho-
mogeneous isomorphisms of graded free modules.

Theorem 4.8.9. (Uniqueness of Minimal Graded Free Resolutions)
Let M be a finitely generated graded P -module, and let

0 −→ F�
ϕ�−→ · · · ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M −→ 0

and · · · −→ F ′
�

ϕ′
�−→ · · · ϕ′

2−→ F ′
1

ϕ′
1−→ F ′

0

ϕ′
0−→M −→ 0

be two minimal graded free resolutions of M . Assume that the canonical bases
of the graded free modules Fi, F

′
j are deg-ordered.

a) For every i ≥ 0 , we have Fi = F ′
i . In particular, we have F ′

i = 0 for
i > � .

b) For i = 0, . . . , � there exist deg-ordered invertible matrices Ai defining
isomorphisms ψi : Fi −→ Fi yielding the commutative diagram

0 −→ F�
ϕ�−→ · · · ϕ3−→ F2

ϕ2−→ F1
ϕ1−→ F0

ϕ0−→ M −→ 0⏐⏐�ψ�

⏐⏐�ψ2

⏐⏐�ψ1

⏐⏐�ψ0

∥∥∥
0 −→ F�

ϕ′
�−→ · · · ϕ′

3−→ F2
ϕ′

2−→ F1
ϕ′

1−→ F0
ϕ′

0−→ M −→ 0

Proof. By Proposition 4.7.8.a, we have F0 = F ′
0 , and by Proposition 4.7.8.b,

there exists a deg-ordered invertible matrix A0 giving a homogeneous iso-
morphism ψ0 : F0 −→ F0 which satisfies ϕ′

0◦ψ0 = ϕ0 . Let G,G′,S,S ′ be the
deg-ordered matrices corresponding to ϕ0, ϕ

′
0, ϕ1, ϕ

′
1 , respectively. Since we

have G = G′ A0 , Proposition 4.7.10 implies that A−1
0 S ′ is a deg-ordered min-

imal homogeneous system of generators of SyzP (G) and that F1 = F ′
1 . Using

Proposition 4.7.8.b again, we find a deg-ordered invertible homogeneous ma-
trix A1 such that S = A−1

0 S ′ A1 . Therefore the homogeneous isomorphism
ψ1 : F1 −→ F1 defined by A1 satisfies ϕ′

1 ◦ ψ1 = ψ0 ◦ ϕ1 .
Now we are in a position to apply Lemma 4.8.8 to the commutative dia-

gram
F2

ϕ2−→ F1
ϕ1−→ F0⏐⏐�ψ1

⏐⏐�ψ0

F ′
2

ϕ′
2−→ F1

ϕ′
1−→ F0
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and we get F2 = F ′
2 and a homogeneous isomorphism ψ2 : F2 −→ F2 such

that ϕ′
2 ◦ ψ2 = ψ1 ◦ ϕ2 . By applying the lemma repeatedly in this way, we

prove both parts of the theorem. �

If the canonical bases of the graded free modules in a minimal graded free
resolution of M are not deg-ordered, we can pass to an isomorphic resolution
in which this is the case by permuting them suitably. Therefore we can attach
another set of invariants to a finitely generated graded P -module as follows.

Definition 4.8.10. Let M be a finitely generated graded P -module, and
let

0 −→ F�
ϕ�−→ · · · ϕ3−→ F2

ϕ2−→ F1
ϕ1−→ F0

ϕ0−→ M −→ 0

be a minimal graded free resolution of M . For every i ∈ N , let Ei be the tuple
of the canonical basis vectors of Fi . By passing to an isomorphic resolution,
we may assume that the tuples E0, E1, . . . are deg-ordered.
a) The degree sequence (degW (E0),degW (E1), . . . ,degW (E�)) does not de-

pend on the choice of the minimal free resolution of M . It is called the
degree sequence of the module M .

b) Let i ∈ {0, . . . , �} . For every d ∈ Zm, we let βid be the number of times
the degree d occurs in degW (Ei). The numbers βid are called the ith

graded Betti numbers of the module M .

Using the graded Betti numbers, a graded minimal free resolution of M
can be written in the form

0 → ⊕
d∈Zm

P (−d)βnd → · · · → ⊕
d∈Zm

P (−d)β1d → ⊕
d∈Zm

P (−d)β0d → M → 0

Using the algorithms discussed in the next subsection, the graded Betti num-
bers of a finitely generated graded P -module can be computed effectively. In
the standard graded case, they are usually displayed in a particularly com-
pact and expressive form which is called the Betti diagram and introduced
in Tutorial 63.

4.8.B Computation of Minimal Graded Free Resolutions

When the going gets tough, the tough get going.
(Pop music lyrics)

When the going gets tough, the tough go shopping.
(T-shirt slogan)

This is the point of no return. We are now going where few men have
gone before: down into the nitty-gritty details of computing minimal graded
free resolutions. Using Proposition 4.7.24, we can reduce the task to the
case of a submodule of a free module. As explained in the introduction of
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Section 4.7, it is convenient to denote the graded free module by F0 and its
graded submodule by M . The minimal graded free resolution of M we are
looking for is then of the form

0 −→ F�
ϕ�−→ F�−1

ϕ�−1−→ · · · ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ M −→ 0

So, let K be a field, let P = K[x1, . . . , xn] be positively graded by a
matrix W ∈ Matm,n(Z), let M be a graded P -submodule of a graded free
P -module F0 =

⊕r0
i=1(−d0i), and let V = (v1, . . . , vs) be a tuple of non-zero

homogeneous vectors which generate M. For d ∈ Zm , the minimal graded
free resolutions of M and M(d) differ only by the shift d . Therefore we shall
henceforth assume that we have d0i >Lex 0 for i = 1, . . . , r0 . To facilitate the
formulation of our algorithms, we introduce a number of conventions.

The ith graded free module Fi is always of the form Fi =
⊕ri

j=0(−dij). Its

canonical basis is denoted by (ε(i)
1 , . . . , ε

(i)
ri ) and is always kept deg-ordered.

The idealization of the module F0 ⊕ · · · ⊕ Fn is a residue class ring of the
ring P̃ = P [ε(i)

j | i ∈ {0, . . . , n}, j ∈ {1, . . . , ri}] . As in the previous section,
the entire computation can be viewed as computation in P̃ . In particular,
the elements of each Fi are identified with their images in this ring.

The first algorithm we present is a straightforward generalization of the
vertical strategy for computing minimal presentations (see Theorem 4.7.26).

Proposition 4.8.11. (Computing Minimal Resolutions Vertically)
Let M be a graded submodule of a graded free P -module F0 =

⊕r0
i=1 P (−d0i) ,

where d0i >Lex 0 for i = 1, . . . , r0 . Let V = (v1, . . . , vs) be a deg-ordered tuple
of non-zero homogeneous vectors which generate M . Consider the following
sequence of instructions.

1) Let i = 0 . Equip P = P [ε(i)
1 , . . . , ε

(i)
ri ] with the grading defined by W =

(W | di1 · · · diri
) . Choose a term ordering σ on Tn(ε(i)

1 , . . . , ε
(i)
ri ) . Let

B = ∅ , W = V , G = ∅ , s′ = 0 , G(i)
min = ∅ , ri+1 = 0 , and S = ∅ .

2) Let d be the smallest degree with respect to Lex of an element in B or
in W . Form the subset Bd and the subtuple Wd , and delete their entries
from B and W , respectively.

3) If Bd = ∅ , continue with step 6). Otherwise, chose a pair (j, k) ∈ Bd

and remove it from Bd .
4) Form the S-vector Sjk of gj and gk . Then compute S′

jk = NRσ,G(Sjk) .
If S′

jk = 0 continue with step 3). Otherwise, if S′
jk �= 0 and it does

not involve the indeterminates ε
(i)
1 , . . . , ε

(i)
ri , append it to S and continue

with step 3).
5) Increase s′ by one, append gs′ = S′

jk to the tuple G , and append the

set {(j, s′) | 1 ≤ j < s′, γj = γs′} to B , where LTσ(gs′) = ts′ε
(i)
γs′ with

ts′ ∈ Tn and γs′ ∈ {1, . . . , ri} . Then continue with step 3).
6) If Wd = ∅ , continue with step 9). Otherwise, choose a vector v ∈ Wd

and remove it from Wd .
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7) Compute v′ = NRσ,G(v) and v̄ = v′(x1, . . . , xn, ε
(i)
1 , . . . , ε

(i)
ri , 0, . . . , 0) .

If v̄ = 0 , continue with step 6).
8) Increase s′ and ri+1 by one. Adjoin a new indeterminate ε

(i+1)
ri+1 to P and

extend the grading to this new ring by defining degW (ε(i+1)
ri+1 ) = degW (v̄) .

Extend the term ordering σ to the new ring in such a way that the ex-
tension is an elimination ordering for {ε(i)

1 , . . . , ε
(i)
ri } . Append the ele-

ment gs′ = v̄ − ε
(i+1)
ri+1 to G and the element v̄ to G(i)

min . Append the set
{(j, s′) | 1 ≤ j < s′, γj = γs′} to B . Continue with step 6).

9) If B �= ∅ or W �= ∅ , continue with step 2).
10) If S �= 0 , increase i by one, form the ring P = P [ε(i)

1 , . . . , ε
(i)
ri ] , and

equip it with the grading defined by W = (W | di1 · · · diri
) . Restrict

the term ordering σ to Tn(ε(i)
1 , . . . , ε

(i)
ri ) . Let B = ∅ , W = S , G = ∅ ,

s′ = 0 , G(i)
min = ∅ , ri+1 = 0 , and S = ∅ . Then continue with step 2).

11) Let � = i + 1 . Return the list (G(0)
min, . . . ,G(�−1)

min ) and stop.
This is an algorithm which computes a list of deg-ordered homogeneous matri-
ces (G(0)

min, . . . ,G(�−1)
min ) with the property that the linear maps ϕj : Fj −→ Fj−1

given by G(j−1)
min for j = 1, . . . , � yield a minimal graded free resolution

0 −→ F�
ϕ�−→ F�−1

ϕ�−1−→ · · · ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ M −→ 0

Proof. The loop defined by steps 2) – 9) mirrors the main loop used in Theo-
rem 4.7.26 to compute a minimal homogeneous presentation of M vertically.
In the proof of that theorem we saw that, at the end of the ith iteration,
the tuple G(i)

min contains a minimal set of generators of the module generated
by W , and the tuple S contains a σ -Gröbner basis of SyzP (G(i)

min). Thus,
if we feed S as the new input tuple W into the next iteration of the loop,
we compute a minimal system of generators G(i+1)

min of SyzP (G(i)
min) and a

Gröbner basis of SyzP (G(i+1)
min ). By Theorem 4.8.9, this process stops after

at most n − 1 steps, i.e. after at most n − 1 steps we have S = ∅ and the
algorithm stops. �

Although the vertical strategy for computing minimal graded free resolu-
tions is in general rather crude, it has some merits.

Remark 4.8.12. Suppose we are in the setting of the theorem.
a) If we do not want to know the whole minimal graded free resolution

of M , or if we discover during the computation that the going is getting
too tough, we can stop the execution of the algorithm after the loop of
steps 2) – 9) is finished for a particular value of i and get the correct
first i + 1 graded free modules and maps.

b) When i ≥ 1, we can save some applications of step 4), since we know
that S is a Gröbner basis after the loop 2) – 9) for i − 1 is finished and
this is the new input tuple W .
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c) In step 10) we could choose σ freely, but would then lose the knowledge
that W is a Gröbner basis. So, the optimization of b) cannot be used.
However, we will get in G(i) a σ -Gröbner basis of SyzP (G(i−1)

min ) for the
chosen term ordering σ .

Following on from Example 4.7.28, we now compute the whole minimal
graded free resolution. Of course, we do not repeat the first iteration of the
loop in steps 2) – 9), since this has already been done.

Example 4.8.13. As in Example 4.7.28, we let P = Q[x1, x2, x3, x4] be
graded by W =

(
1 1 1 1
0 1 3 4

)
, and we let M be the graded P -submodule of

F0 = P (−
(
1
0

)
) generated by the homogeneous tuple V = (f1e, f2e, f3e, f4e),

where f1 = x1x4 −x2x3 , f2 = x2
1x3 −x3

2 , f3 = x1x
2
3 −x2

2x4 , f4 = x2x
2
4 −x3

3 ,
and e is the canonical basis vector of F0 .

When we compute the minimal graded free resolution of M vertically,
the first execution of the loop in steps 2) – 9) mimics the first part of Ex-
ample 4.7.28. After this iteration is finished, we have computed G(0)

min and a
tuple S = (S′

23, S
′
12, S

′
14, S

′
13, S

′
24, S

′
34) , where S′

23 = x2
2ε

(1)
1 − x3ε

(1)
2 + x1ε

(1)
3 ,

S′
12 = −x1x3ε

(1)
1 + x4ε

(1)
2 − x2ε

(1)
3 , S′

14 = −x2x4ε
(1)
1 + x3ε

(1)
3 + x1ε

(1)
4 ,

S′
13 = −x2

3ε
(1)
1 + x4ε

(1)
3 + x2ε

(1)
4 , S′

24 = −x2x
2
4ε2 + x3

3ε2 + x2
1x3ε4 − x3

2ε4 ,
and S′

34 = −x2x
2
4ε3 +x3

3ε3 +x1x
2
3ε4 −x2

2x4ε4 . Notice that degW (S′
23) =

(
5
6

)
,

degW (S′
12) =

(
5
7

)
, degW (S′

14) =
(
5
9

)
, degW (S′

13) =
(

5
10

)
, degW (S′

24) =
(

7
12

)
,

and degW (S′
34) =

(
7
15

)
.

Let us join the action and follow the further calculations step-by-step. We
continue to choose σ to be the lexicographic term ordering which satisfies

e >σ ε
(1)
1 >σ · · · >σ ε(1)

r1
>σ · · · >σ ε

(i)
1 >σ · · · >σ ε(i)

ri
>σ x1 >σ · · · >σ xn

10) Let i = 1, let P = K[ε(1)
1 , . . . , ε

(1)
4 ] be graded by W =

(
1 1 1 1 5 5 5 5
0 1 3 4 6 7 9 10

)
, let

B = ∅ , and let W = (w1, w2, w3, w4, w5, w6) where w1 = S′
23 , w2 = S′

12 ,
w3 = S′

14 , w4 = S′
13 , w5 = S′

24 , and w6 = S′
34 . Furthermore, let G = ∅ ,

s′ = 0, G(1)
min = ∅ , r1 = 0, and S = ∅ .

2) Let d =
(
5
6

)
, Bd = ∅ , Wd = (w1), and W = (w2, w3, w4, w5, w6).

6) Choose v = w1 and set Wd = ∅ .
7) Compute v′ = NRσ,G(w1) = w1 and v = w1 .
8) Let s′ = 1 and r1 = 1. Append ε

(2)
1 to P and extend the grading by

degW (ε(2)
1 ) =

(
5
6

)
. Let g1 = w1 − ε

(2)
1 , G = (g1), and G(1)

min = (w1).
2) Let d =

(
5
7

)
, Bd = ∅ , Wd = (w2), and W = (w3, w4, w5, w6).

6) Choose v = w2 and set Wd = ∅ .
7) Compute v′ = NRσ,G(w2) = w2 and v = w2 .
8) Let s′ = 2 and r1 = 2. Append ε

(2)
2 to P and extend the grading by

degW (ε(2)
2 ) =

(
5
7

)
. Let g2 = w2 − ε

(2)
2 , G = (g1, g2), G(1)

min = (w1, w2),
and B = {(1, 2)} . Observe that degW ((1, 2)) =

(
7
9

)
.
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2) Let d =
(
5
9

)
, Bd = ∅ , Wd = (w3), and W = (w4, w5, w6).

6) Choose v = w3 and set Wd = ∅ .
7) Compute v′ = NRσ,G(w3) = w3 and v = w3 .
8) Let s′ = 3 and r1 = 3. Append ε

(2)
3 to P and extend the grad-

ing by degW (ε(2)
1 ) =

(
5
9

)
. Let g3 = w3 − ε

(2)
3 , G = (g1, g2, g3),

G(1)
min = (w1, w2, w3), and B = {(1, 2), (1, 3), (2, 3)} . Observe that

degW ((1, 3)) =
(

6
10

)
and degW ((2, 3)) =

(
7
12

)
.

2) Let d =
(

5
10

)
, Bd = ∅ , Wd = (w4), and W = (w5, w6).

6) Choose v = w4 and set Wd = ∅ .
7) Compute v′ = NRσ,G(w4) = w4 and v = w4 .
8) Let s′ = 4 and r1 = 4. Append ε

(2)
4 to P and extend the grading

by degW (ε(2)
4 ) =

(
5
10

)
. Let g4 = w4 − ε

(2)
4 , G = (g1, g2, g3, g4), G(1)

min =
(w1, w2, w3, w4), and B = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4)} . We
note degW ((1, 4)) =

(
7
12

)
, degW ((2, 4)) =

(
6
10

)
and degW ((3, 4)) =

(
7
15

)
.

2) Let d =
(

6
10

)
, Bd = {(1, 3), (2, 4)} , and B = {(1, 2), (2, 3), (1, 4), (3, 4)} .

3) Choose (1, 3) ∈ Bd and set Bd = {(2, 4)} .
4) Compute S13 = x4g1+x2

2g3 = −x3x4ε
(1)
2 +(x1x4+x2x3)ε

(1)
3 +x1x2ε

(1)
4 −

x4ε
(2)
1 − x2ε

(2)
3 and S′

13 = NRσ,G(S13) = S13 .
5) Let s′ = 5, g5 = S′

13 , and G = (g1, . . . , g5). (The set B does not change,
because the leading term of g5 is in a new position.)

3) Choose (2, 4) ∈ Bd and set Bd = ∅ .
4) Compute S24 = x3g2 − x1g4 and S′

24 = S24 + g5 = −x4ε
(2)
1 − x3ε

(2)
2 −

x2ε
(2)
3 + x1ε

(2)
4 . Set S = (S′

24).
2) Let d =

(
7
9

)
, Bd = {(1, 2)} , and B = {(2, 3), (1, 4), (3, 4)} .

3) Choose (1, 2) ∈ Bd and set Bd = ∅ .
4) Compute S12 = x1x3g1 + x2

2g2 = (−x1x
2
3 + x2

2x4)ε
(1)
2 + (x2

1x3 − x3
2)ε

(1)
3 −

x1x3ε
(2)
1 − x2

2ε
(2)
2 and S′

12 = S12 .
5) Let s′ = 6, g6 = S′

12 , and G = (g1, . . . , g6) . Append (5, 6) to B . Note
that degW ((5, 6)) =

(
8
13

)
.

2) Let d =
(

7
12

)
, Bd = {(2, 3), (1, 4)} , B = {(3, 4), (5, 6)} , Wd = (w5), and

W = (w6).
3) Choose (2, 3) ∈ Bd and set Bd = {(1, 4)} .
4) Compute S23 = x2x4g2 − x1x3g3 = x2x

2
4ε

(1)
2 − (x2

2x4 + x1x
2
3)ε

(1)
3 −

x2
1x3ε

(1)
4 − x2x4ε

(2)
2 + x1x3ε

(2)
3 and S′

23 = S23 .
5) Let s′ = 7, g7 = S′

23 , and G = (g1, . . . , g7) . Append (5, 7) and (6, 7)
to B . Note that degW ((5, 7)) =

(
8
15

)
and degW ((6, 7)) =

(
10
18

)
.

3) Choose (1, 4) ∈ Bd and set Bd = ∅ .
4) Compute S14 = x2

3g1 + x2
2g4 = −x3

3ε
(1)
2 + (x1x

2
3 + x2

2x4)ε
(1)
3 + x3

2ε
(1)
4 −

x2
3ε

(2)
1 − x2

2ε
(2)
4 and S′

14 = S14 .
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5) Let s′ = 8, g8 = S′
14 , and G = (g1, . . . , g8) . Append (5, 8), (6, 8), and

(7, 8) to B . Note that degW ((5, 8)) =
(

8
16

)
, degW ((6, 8)) =

(
8
12

)
, and

degW ((7, 8)) =
(
10
21

)
.

6) Choose v = w5 and let Wd = ∅ .
7) Compute v′ = NRσ,G(v) = 0.
2) Let d =

(
7
15

)
, Bd = {(3, 4)} , B = {(5, 6), (5, 7), (6, 7), (5, 8), (6, 8),

(7, 8)} , Wd = (w6), and W = ∅ .
3) Choose (3, 4) ∈ Bd and set Bd = ∅ .
4) Compute S34 = x2

3g3 − x2x4g4 = (x3
3 − x2x

2
4)ε

(1)
3 + (x1x

2
3 − x2

2x4)ε
(1)
4 −

x2
3ε

(2)
3 + x2x4ε

(2)
4 and S′

34 = S34 .
5) Let s′ = 9, g9 = S′

34 , and G = (g1, . . . , g9). (There are no new pairs.)
6) Let v = w6 and Wd = ∅ .
7) Compute v′ = NRσ,G(v) = 0.
2) Let d =

(
8
12

)
, Bd = {(6, 8)} , and B = {(5, 6), (5, 7), (6, 7), (5, 8), (7, 8)} .

3) Choose (6, 8) ∈ Bd and set Bd = ∅ .
4) Compute S68 = x3g6 − x1g8 and S′

68 = −x2
2x4ε

(2)
1 − x2

2x3ε
(2)
2 − x3

2ε
(2)
3 +

x1x
2
2ε

(2)
4 . Let S = (S′

24, S
′
68).

2) Let d =
(

8
13

)
, Bd = {(5, 6)} , and B = {(5, 7), (6, 7), (5, 8), (7, 8)} .

3) Choose (5, 6) ∈ Bd and set Bd = ∅ .
4) Compute S56 = x1x3g5 − x4g6 and S′

56 = 0.
2) Let d =

(
8
15

)
, Bd = {(5, 7)} , and B = {(6, 7), (5, 8), (7, 8)} .

3) Choose (5, 7) ∈ Bd and set Bd = ∅ .
4) Compute S57 = x2x4g5 + x3g7 and S′

57 = −x2x
2
4ε

(2)
1 − x2x3x4ε

(2)
2 −

x2
2x4ε

(2)
3 + x1x2x4ε

(2)
4 . Let S = (S′

24, S
′
68, S

′
57).

2) Let d =
(

8
16

)
, Bd = {(5, 8)} , and B = {(6, 7), (7, 8)} .

3) Choose (5, 8) ∈ Bd and set Bd = ∅ .
4) Compute S58 = x5

3g5 − x4g8 and S′
58 = 0.

2) Let d =
(
10
18

)
, Bd = {(6, 7)} , and B = {(7, 8)} .

3) Choose (6, 7) ∈ Bd and set Bd = ∅ .
4) Compute S67 = x2x

2
4g6 + x1x

2
3g7 and S′

67 = 0.
2) Let d =

(
10
21

)
, Bd = {(7, 8)} , and B = ∅ .

3) Choose (7, 8) ∈ Bd and set Bd = ∅ .
4) Compute S78 = x2

3g7 + x2x
2
4g8 and S′

78 = 0.
Here we turn off the computer and turn on our brain again. We have

finished the loop in steps 2) – 9) for i = 1. The next round will use the
tuple S = (S′

24, S
′
68, S

′
57) as its input tuple. Since we have S′

68 = x2
2S

′
24 and

S′
57 = x2x4S

′
24 , the result will be G(2)

min = (S′
24) and there will be no syzygies.

Finally, the algorithm returns the triple (G(0)
min,G(1)

min,G(2)
min) where G(0)

min

and G(1)
min are the tuples computed in Example 4.7.28 and G(2)

min = (S′
24).

Therefore the module M has the minimal graded free resolution
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0 −→ P
(
−
(

6
10

)
) λ−→ P

(
−
(
5
6

))
⊕ P

(
−
(
5
7

))
⊕ P

(
−
(
5
9

))
⊕ P

(
−
(

5
10

)) ψ−→
ψ−→ P

(
−
(
3
4

))
⊕ P

(
−
(
4
3

))
⊕ P

(
−
(
4
6

))
⊕ P

(
−
(
4
9

)) ϕ−→ M −→ 0

where the matrices defining ϕ and ψ are the ones given in Example 4.7.28
and the matrix defining λ is (−x4 −x3 −x2 x1)tr .

The second algorithm for computing minimal graded free resolutions we
present is based on combining the resolution given in the proof of Theo-
rem 4.8.4 with the minimalization procedure of Theorem 4.8.6.

Proposition 4.8.14. (Schreyer’s Resolution Algorithm)
Let M be a graded submodule of a graded free P -module F0 =

⊕r0
i=1 P (−d0i) ,

let {ε(0)
1 , . . . , ε

(0)
r0 } denote the canonical basis of F0 , and let V = (v1, . . . , vs)

be a deg-ordered tuple of non-zero homogeneous vectors which generate M .
Consider the following sequence of instructions.

1) Let i = 0 . Choose a module term ordering σ0 on Tn〈ε(0)
1 , . . . , ε

(0)
r0 〉 .

2) Using Corollary 3.1.5, compute a σ0 -Gröbner basis G0 = (g(0)
1 , . . . , g

(0)
r1 )

of M . Reorder it so that LTσ0(g
(0)
1 ) >PosLex · · · >PosLex LTσ0(g

(0)
r1 ) .

3) Increase i by one. Let {ε(i)
1 , . . . , ε

(i)
ri } be the canonical basis of the graded

free P -module Fi =
⊕ri

j=1 P (−degW (g(i)
j )) , and let σi be the mod-

ule term ordering induced by (σi−1,Gi−1) on Tn〈ε1, . . . , ε
(i)
ri 〉 . Using

Corollary 3.1.5, compute a σi -Gröbner basis Gi = (g(i)
1 , . . . , g

(i)
ri+1) of

SyzP (Gi−1) . Reorder it so that LTσi
(g(i)

1 ) >PosLex · · · >PosLex LTσi
(g(i)

ri+1) .
4) If ri+1 �= 0 and i < n , continue with step 2). Otherwise, let j = 0 .
5) Compute a homogeneous minimal system of generators G′

0 of M and a
homogeneous matrix A0 such that G0 = G′

0 A0 .
6) Increase j by one. Compute a homogeneous minimal system of genera-

tors G′
j of the module generated by the column vectors of Aj−1 Gj and a

homogeneous matrix Aj satisfying Aj−1 Gj = G′
j Aj .

7) If Aj Gj+1 �= 0 , continue with step 6). Otherwise, let � = j , return
(G′

0, . . . ,G′
�) and stop.

This is an algorithm which returns a tuple (G′
0, . . . ,G′

�) of homogeneous ma-
trices for which the P-linear maps ϕj : F ′

j −→ F ′
j−1 given by G′

j−1 for
j = 1, . . . , � yield a minimal graded free resolution

0 −→ F ′
�

ϕ�−→ F ′
�−1

ϕ�−1−→ · · · ϕ3−→ F ′
2

ϕ2−→ F ′
1

ϕ1−→ M −→ 0

Proof. Clearly, steps 2) and 3) correspond to the computation of the graded
free resolution of M which is constructed in the proof of Theorem 4.8.4. It
remains to show that steps 5) – 7) correspond to the repeated application of
Theorem 4.8.6 in order to minimalize that resolution.

In step 5), we minimalize G0 . By Theorem 4.8.6, we have to replace the
syzygy matrix G1 by G̃1 = A0G1 . Next we want to minimalize the resolution
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at the map defined by G̃1 . By Theorem 4.8.6, we have to compute a minimal
homogeneous system of generators G′

1 of 〈G̃1〉 and to replace the syzygy ma-
trix G2 by G̃2 = A1G2 . If we continue in this way, Theorem 4.8.9 guarantees
that we stop after at most n steps and arrive at the minimal graded free
resolution of M . �

Remark 4.8.15. Although it is clear that we can use Explicit Member-
ship 3.1.9 to compute the matrices A0, . . . ,A� in steps 5) and 6) of the
algorithm in the theorem, this does not appear to be an efficient method.
One improvement is to perform the minimalization step-by-step as in Propo-
sition 4.7.24 and to adjust the syzygy matrices accordingly. Another solution
is to combine Corollary 4.6.5 with the book keeping technique of Proposi-
tion 2.5.11 .

The drawback of Schreyer’s Algorithm is that the Gröbner bases defining
the initial resolution may be very large. Then a huge number of minimaliza-
tion steps is necessary and the algorithm becomes slow. However, experience
shows that it performs well in many cases.

All good things come in threes.
(German Proverb)

Our third algorithm for computing minimal graded free resolutions gener-
alizes the horizontal strategy for computing minimal homogeneous presenta-
tions (see Theorem 4.7.29). As before, we consider the entire computation as
a computation in a large polynomial ring P̃ = P [ε(0)

1 , . . . , ε
(n)
rn ] a residue class

ring of which is the idealization of F0 ⊕ · · · ⊕ Fn , and we identify all vectors
with their images in P̃ . For the purposes of this theorem it will be convenient
to replace the Division Algorithm 1.6.4 with a procedure that merely head
reduces a given polynomial f with respect to a list of polynomials G . We
shall denote the result of such a reduction procedure by HRσ,G(f) and call
it a head reduction remainder of f .

Theorem 4.8.16. (Computing Minimal Resolutions Horizontally)
Let M be a graded submodule of a graded free P -module F0 =

⊕r0
i=1 P (−d0i)

where d0i >Lex 0 for i = 1, . . . , r0 . Let V = (v1, . . . , vs) be a deg-ordered tuple
of non-zero homogeneous vectors which generate M . Consider the following
sequence of instructions.

1) Let σ be a term ordering on Tn(ε(0)
1 , . . . , ε

(0)
r0 ) , let P = P [ε(0)

1 , . . . , ε
(0)
r0 ]

be graded by W = (W | d01 · · · d0r0) , let r1 = · · · = rn = 0 , let
B = {v1, . . . , vs} , let G = ∅ , and let Gmin = ∅ .

2) Let d be the smallest degree with respect to Lex of an element of B . Form
the subset Bd of B and remove its entries from B .

3) If Bd = ∅ , continue with step 7). Otherwise, let i be the largest upper
index of an indeterminate ε

(j)
k occurring in a polynomial of Bd . Let
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f ∈ Bd be a polynomial which involves that indeterminate. Remove f
from Bd .

4) Compute f ′ = HRσ,G(f) . If i ≥ 1 and one of the indeterminates
ε
(i−1)
1 , . . . , ε

(i−1)
ri−1 occurs in f ′ , append f ′ to G , append to B all S-poly-

nomials of f ′ and a polynomial g in G such that LTσ(f ′) and LTσ(g)
involve the same indeterminate ε

(i−1)
j , and continue with step 3).

5) If none of the indeterminates {ε(i)
1 , . . . , ε

(i)
ri } occurs in f ′ , continue with

step 3).
6) Increase ri+1 by one. Adjoin a new indeterminate ε

(i+1)
ri+1 to P and extend

the grading to this new ring by defining degW (ε(i+1)
ri+1 ) = d . Extend the

term ordering σ to the new ring in such a way that the extension is an
elimination ordering for {ε(0)

1 , . . . , ε
(i)
ri } . Compute the polynomial

f = f ′(x1, . . . , xn, ε
(i)
1 , . . . , ε(i)

ri
, 0, . . . , 0)

Append g = f − ε
(i+1)
ri+1 to G and f to Gmin . For all h ∈ B such that

LTσ(g) and LTσ(h) involve the same indeterminate ε
(i)
j , compute the

S-polynomial of g and h and append it to B . Then continue with step 3).
7) If B = ∅ , return the tuple Gmin and stop. Otherwise, continue with

step 2).
This is an algorithm which computes a deg-ordered tuple Gmin of homoge-
neous polynomials in P = P [ε(0)

1 , . . . , ε
(0)
r0 , . . . , ε

(�)
1 , . . . , ε

(�)
r� ] for which the

homogeneous maps of graded free P -modules ϕi : Fi −→ Fi−1 defined by the
elements of G ∩ P [ε(i)

1 , . . . , ε
(i)
ri ] yield a minimal graded free resolution

0 −→ F�
ϕ�−→ F�−1

ϕ�−1−→ · · · ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ M −→ 0

Proof. First we prove that the procedure is well-defined, i.e. that all instruc-
tions can be executed. For this purpose it suffices to show the following claim:
For a polynomial f which is contained in B or in G at some point during
the computation, there exists a number i ≥ 0 such that f is of the shape

f = a1ε
(i)
1 + · · · + ari

ε(i)
ri

+ b1ε
(i+1)
1 + · · · + bri+1ε

(i+1)
ri+1

with aj , bk ∈ P . This is clearly the case at the outset when v1, . . . , vs involve
only the indeterminates ε

(0)
1 , . . . , ε

(0)
r0 . Later B and G are enlarged only in

steps 4) and 6).
When f ′ = HRσ,G(f) is appended to G in step 4), the element f ∈ B

has been head reduced using only elements of the shape shown above. Thus
also f ′ has this shape. When g = f ′−ε

(i+1)
ri+1 is appended to G in step 6), the

element f ′ involves only indeterminates ε
(j)
k with upper index j ∈ {i, i+1} .

Consequently, the polynomial f ′ = f ′(x1, . . . , xn, ε
(i)
1 , . . . , ε

(i)
ri , 0, . . . , 0) in-

volves only indeterminates ε
(j)
k with upper index j = i , and so g has the
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claimed shape. When B is enlarged in step 4) or 6), the new elements are
S-polynomials of polynomials of the claimed shape. By the construction of σ ,
the leading term of a polynomial involves one of the indeterminates ε

(j)
k with

the smaller of the two upper indices. Since both leading terms are required
to involve the same indeterminate ε

(j)
k , it follows that the S-polynomials ap-

pended to B have the claimed shape, and the claim is proved.
Now we turn to proving finiteness and correctness of the procedure. The

procedure stops when B becomes empty. New S-polynomials are appended
to B in step 4) or 6) only if a new element is appended to G in the same
step. The new element of G has a leading term which is not contained in the
ideal generated by LTσ(G). Hence finiteness will follow if we can show that
only finitely many new indeterminates ε

(i+1)
ri+1 are introduced in step 6).

To prove this and the correctness of the algorithm, it is sufficient to prove
the following claim by induction on i : After finitely many steps, all elements
f ∈ B involving indeterminates ε

(i)
k with upper index i have been treated,

and at that point the tuple Gi = Gmin ∩ P [ε(i)
1 , . . . , ε

(i)
ri ] is a minimal system

of generators of Syz(Gi−1). To this end, we set ε
(j)
k �→ 0 for j > i everywhere

and show that the resulting algorithm reduced to the horizontal strategy for
computing minimal homogeneous presentations (see Theorem 4.7.29). The
choice of f in step 3) ensures that S-polynomials involving only the inde-
terminates ε

(i)
1 , . . . , ε

(i)
ri are treated first. This corresponds to doing the loop

in steps 3) – 5) before the loops in steps 6) – 9) and 10) – 12) in Theo-
rem 4.7.29. The fact that we replaced the normal remainder computation by
a head reduction remainder does not affect the correctness of the algorithm
by Remark 2.5.6.a. The elements f ∈ B which produce an f ′ appended to G
in step 4) correspond to the pairs treated in steps 6) – 9) in Theorem 4.7.29.
The elements f ′ discarded by step 5) correspond to the vectors v′ discarded
in step 11) in Theorem 4.7.29. Finally, step 6) corresponds to step 12) in
Theorem 4.7.29. Altogether, it follows inductively from Theorem 4.7.29 that
the algorithm is correct. In particular, by Theorem 4.8.9, the tuple Gmin is
finite and the computation stops after finitely many steps. �

The preceding algorithm admits several further optimizations.

Remark 4.8.17. Suppose that we are in the setting of the theorem.
a) Because of the checks performed in steps 4) and 5), the procedure

HRσ,G(f) can stop when all indeterminates ε
(i−1)
k , ε

(i)
� are eliminated

from f .
b) Let W be a matrix of non-negative integers. Then the head reduction

procedure can be further optimized by noting that a polynomial f can be
head reduced by g ∈ G only if degW (f) is componentwise larger than or
equal to degW . For instance, a homogeneous polynomial f of degree

(
4
3

)
cannot be reduced by a homogeneous polynomial of degree

(
3
4

)
. This

observation restricts the set of possible reductors in G .
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Last, but not least, we now apply the horizontal strategy for computing
minimal resolutions to the module discussed in Examples 4.7.28 and 4.8.13.

Example 4.8.18. Let P = Q[x1, x2, x3, x4] be graded by W =
(
1 1 1 1
0 1 3 4

)
, and

let M be the graded P -submodule of F0 = P (−
(
1
0

)
) generated by the ho-

mogeneous tuple V = (f1ε
(0)
1 , f2ε

(0)
1 , f3ε

(0)
1 , f4ε

(0)
1 ) , where f1 = x1x4 − x2x3 ,

f2 = x2
1x3 −x3

2 , f3 = x1x
2
3 −x2

2x4 , f4 = x2x
2
4 −x3

3 , and ε
(0)
1 is the canonical

basis vector of F0 . Thus we have degW (f1ε
(0)
1 ) =

(
3
4

)
, degW (f2ε

(0)
1 ) =

(
4
3

)
,

degW (f3ε
(0)
1 ) =

(
4
6

)
, and degW (f4ε

(0)
1 ) =

(
4
9

)
. We always choose σ to be the

lexicographic term ordering which satisfies

ε
(0)
1 >σ ε

(1)
1 >σ · · · >σ ε(1)

r1
>σ · · · >σ ε

(i)
1 >σ · · · >σ ε(i)

ri
>σ x1 >σ · · · >σ xn

O.k., now let’s get going, not shopping!

1) Let P = P [ε(0)
1 ] be graded by W = (W |

(
1
0

)
), let B = {f1ε

(0)
1 , f2ε

(0)
1 ,

f3ε
(0)
1 , f4ε

(0)
1 } , let G = ∅ , and let Gmin = ∅ .

2) Let d =
(
3
4

)
, Bd = {f1ε

(0)
1 } , and B = {f2ε

(0)
1 , f3ε

(0)
1 , f4ε

(0)
1 } .

3) Let i = 0, f = f1ε
(0)
1 , and Bd = ∅ .

4) Compute f ′ = HRσ,G(f) = f .
6) Let r1 = 1. Adjoin ε

(1)
1 to P . Extend the grading by degW (ε(1)

1 ) =
(
3
4

)
.

Let ḡ1 = f ′ , g1 = ḡ1 − ε
(1)
1 , G = (g1), and Gmin = (ḡ1).

2) Let d =
(
4
3

)
, Bd = {f2ε

(0)
1 } , and B = {f3ε

(0)
1 , f4ε

(0)
1 } .

3) Let i = 0, f = f2ε
(0)
1 , and Bd = ∅ .

4) Compute f ′ = HRσ,G(f) = f .
6) Let r1 = 2. Adjoin ε

(1)
2 to P . Extend the grading by degW (ε(1)

2 ) =
(
4
3

)
.

Let ḡ2 = f ′ , g2 = ḡ2 − ε
(1)
2 , G = (g1, g2), and Gmin = (ḡ1, ḡ2) . Append

S12 = x1x3g1 − x4g4 to B and note that degW (S12) =
(
5
7

)
.

2) Let d =
(
4
6

)
, Bd = {f3ε

(0)
1 } , and B = {f4ε

(0)
1 , S12} .

3) Let i = 0, f = f3ε
(0)
1 , and Bd = ∅ .

4) Compute f ′ = HRσ,G(f) = f .
6) Let r1 = 3. Adjoin ε

(1)
3 to P . Extend the grading by degW (ε(1)

3 ) =
(
4
6

)
.

Let ḡ3 = f ′ , g3 = ḡ3 − ε
(1)
3 , G = (g1, g2, g3), and Gmin = (ḡ1, ḡ2, ḡ3).

Append S13 = x2
3g1 − x4g3 and S23 = x3g2 − x1g3 to B . Note that

degW (S13) =
(

5
10

)
and degW (S23) =

(
5
6

)
.

2) Let d =
(
4
9

)
, Bd = {f4ε

(0)
1 } , and B = {S23, S12, S13} .

3) Let i = 0, f = f4ε
(0)
1 , and Bd = ∅ .

4) Compute f ′ = HRσ,G(f) = f .
6) Let r1 = 4. Adjoin ε

(1)
4 to P . Extend the grading by degW (ε(1)

4 ) =
(
4
9

)
.

Let ḡ4 = f ′ , g4 = ḡ4 − ε
(1)
4 , G = (g1, . . . , g4), and Gmin = (ḡ1, . . . , ḡ4).

Append S14 = x2x4g1 − x1g4 , S24 = x2x
2
4g2 − x2

1x3g4 , and S34 =
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x2x
2
4g3 − x1x

2
3g4 to B . Note that degW (S14) =

(
5
9

)
, degW (S24) =

(
7
12

)
,

and degW (S34) =
(

7
15

)
.

2) Let d =
(
5
6

)
, Bd = {S23} , and B = {S12, S14, S13, S24, S34} .

3) Let i = 1, f = S23 , and Bd = ∅ .
4) Compute f ′ = HRσ,G(S23) = S23−x2

2g1 = x2
2ε

(1)
1 −x3ε

(1)
2 −x3ε

(1)
3 +x1ε

(1)
4 .

Notice that ε
(0)
1 does not occur in f ′ .

6) Let r2 = 1. Adjoin ε
(2)
1 to P . Extend the grading by degW (ε(2)

1 ) =
(
5
6

)
.

Let ḡ5 = f ′ , g5 = ḡ5 − ε
(2)
1 , G = (g1, . . . , g5), and Gmin = (ḡ1, . . . , ḡ5).

No S-polynomial is appended to B .
2) Let d =

(
5
7

)
, Bd = {S12} , and B = {S14, S13, S24, S34} .

3) Let i = 1, f = S12 , and Bd = ∅ .
4) Compute f ′ = S12 + x2g3 = −x1x3ε

(1)
1 + x4ε

(1)
2 − x2ε

(1)
3 .

6) Let r2 = 2. Adjoin ε
(2)
2 to P . Extend the grading by degW (ε(2)

2 ) =
(
5
7

)
.

Let ḡ6 = f ′ , g6 = ḡ6 − ε
(2)
2 , G = (g1, . . . , g6), and Gmin = (ḡ1, . . . , ḡ6).

Append S56 = x1x3g5 + x2
2g6 to B . Note that degW (S56) =

(
7
9

)
.

2) Let d =
(
5
9

)
, Bd = {S14} , and B = {S13, S56, S24, S34} .

3) Let i = 1, f = S14 , and Bd = ∅ .
4) Compute f ′ = S14 − x3g3 = −x2x4ε

(1)
1 + x2ε

(1)
3 + x1ε

(1)
4 .

6) Let r2 = 3. Adjoin ε
(2)
3 to P . Extend the grading by degW (ε(2)

3 ) =
(
5
9

)
.

Let ḡ7 = f ′ , g7 = ḡ7 − ε
(2)
3 , G = (g1, . . . , g7), and Gmin = (ḡ1, . . . , ḡ7).

Append S57 = x4g5 + x2g7 and S67 = x2x4g6 − x1x3g7 to B . Note that
degW (S57) =

(
6
10

)
and degW (S67) =

(
7
12

)
.

2) Let d =
(

5
10

)
, Bd = {S13} , and B = {S57, S56, S24, S67, S34} .

3) Let i = 1, f = S13 , and Bd = ∅ .
4) Compute f ′ = S13 − x2g4 = −x2

3ε
(1)
1 + x4ε

(1)
3 + x2ε

(1)
4 .

6) Let r2 = 4. Adjoin ε
(2)
4 to P . Extend the grading by degW (ε(2)

4 ) =
(

5
10

)
.

Let ḡ8 = f ′ , g8 = ḡ8 − ε
(2)
4 , G = (g1, . . . , g8), and Gmin = (ḡ1, . . . , ḡ8).

Append S58 = x2
3g5 +x2

2g8 , S68 = x3g6−x1g8 , and S78 = x2
3g7−x2x4g8

to B . Note degW (S58) =
(

7
12

)
, degW (S68) =

(
6
10

)
, and degW (S78) =

(
7
15

)
.

2) Let d =
(

6
10

)
, Bd = {S57, S68} , and B = {S56, S24, S67, S58, S34, S78} .

3) Let i = 2, f = S57 , and Bd = {S68} .
4) Compute f ′ = HRσ,G(f) = S57 . Observe that this polynomial in-

volves ε
(1)
2 with upper index i − 1. Append g9 = S57 to G .

3) Let i = 2, f = S68 , and Bd = ∅ .
4) Compute f ′ = S68 + g9 = −x4ε

(2)
1 − x3ε

(2)
2 − x2ε

(2)
3 + x1ε

(2)
4 .

6) Let r3 = 1. Adjoin ε
(3)
1 to P . Extend the grading by degW (ε(3)

1 ) =
(

6
10

)
.

Let ḡ10 = f ′ , g10 = ḡ10 − ε
(3)
1 , G = (g1, . . . , g10), and notice that we have

to set Gmin = (ḡ1, . . . , ḡ8, ḡ10).
2) Let d =

(
7
9

)
, Bd = {S56} , and B = {S24, S67, S58, S34, S78} .

3) Let i = 2, f = S56 , and Bd = ∅ .



166 4. The Homogeneous Case

4) Compute f ′ = HRσ,G(f) = S56 . Append g11 = S56 to G . Append
S9 11 = x1x3g9 − x4g11 to B . Note that degW (S9 11) =

(
8
13

)
.

2) Let d =
(

7
12

)
, Bd = {S24, S67, S58} , and B = {S34, S78, S9 11} .

3) Let i = 2, f = S67 , and Bd = {S24, S58} . (Notice that we may not
choose f = S24 here.)

4) Compute f ′ = HRσ,G(f) = S67 . Append g12 = S67 to G . Append
S9 12 = x2x4g9 + x3g12 and S11, 12 = x2x

2
4g11 − x1x

2
3g12 to B . Note

that degW (S9 12) =
(

8
15

)
and degW (S11 12) =

(
10
18

)
.

3) Let i = 2, f = S58 , and Bd = {S24} .
4) Compute f ′ = HRσ,G(f) = S58 . Append g13 = S58 to G . Append

S9 13 = x2
3g9 − x4g13 , S11 13 = x3g11 + x1g13 , and S12 13 = x3

3g12 +
x2x

2
4g13 to B . Note that degW (S9 13) =

(
8
16

)
, degW (S11 13) =

(
8
12

)
, and

degW (S12 13) =
(
10
21

)
.

2) Let d =
(

7
15

)
, Bd = {S34, S78} , and B = {S11 13, S9 11, S9 12, S11 12, S12 13} .

3) Let i = 2, f = S78 , and Bd = {S34} .
4) Compute f ′ = HRσ,G(f) = S78 . Append g14 = S78 to G . No new S-

polynomials are appended to B .
3) Let i = 1, f = S34 , and Bd = ∅ .
4) Compute f ′ = HRσ,G(f) = 0.

Here we stop tracing through the computation. All the elements of B of
higher degree head reduce to zero. After that the algorithm stops and returns
the result Gmin = (ḡ1, . . . , ḡ8, ḡ10). When we sort the polynomials in Gmin

according to the upper indices of their indeterminates ε
(j)
k , we get the tuples

G0 = (ḡ1, ḡ2, ḡ3, ḡ4) = (f1ε
(0)
1 , f2ε

(0)
1 , f3ε

(0)
1 , f4ε

(0)
1 ), G1 = (ḡ5, ḡ6, ḡ7, ḡ8), and

G2 = (ḡ10). Thus we have calculated a minimal graded free resolution

0 −→ P
(
−
(

6
10

)
) λ−→ P

(
−
(
5
6

))
⊕ P

(
−
(
5
7

))
⊕ P

(
−
(
5
9

))
⊕ P

(
−
(

5
10

)) ψ−→
ψ−→ P

(
−
(
3
4

))
⊕ P

(
−
(
4
3

))
⊕ P

(
−
(
4
6

))
⊕ P

(
−
(
4
9

)) ϕ−→ M −→ 0

where the maps ϕ,ψ , and λ are given by the matrices G0 , G1 , and G2 ,
respectively. Wow! We have got the same result as in Example 4.8.13!

Exercise 1. Let K be a field and R = K[x]/(x2) . We equip R with
the grading induced by the standard grading on K[x] . Find the minimal
graded free R -resolution of the homogeneous ideal I = (x) in R .

Exercise 2. Let K be a field, let P = K[x1, . . . , xn] be positively graded
by W ∈ Matm,n(Z) , and let M be a finitely generated graded P -module.
Given two homogeneous tuples G = (g1, . . . , gr) and H = (h1, . . . , hs) of
non-zero elements which generate M , we let F =

⊕r
i=1 P (− degW (gi))

and F ′ =
⊕s

j=1 P (− degW (hj)) .
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a) (Graded Version of Schanuel’s Lemma) Prove that there exists
an isomorphism of graded P -modules SyzP (G)⊕F ′ ∼= F ⊕ SyzP (G′) .
Hint: Let A,B be homogeneous matrices such that G = G′ A and
G′ = G B . Then consider �(v, w) = (v + Bw, w − A(v + Bw)) and
�′(v, w) = (v − B(w + Av), w + Av) .

b) Using a), show that there is an isomorphism of graded P -modules
SyzP (G) ∼= SyzP (G′) if G and G′ are minimal systems of generators
of M .

c) Give a new proof for the uniqueness of the minimal graded free reso-
lution of M (see Theorem 4.8.9).

Exercise 3. Let K be a field, and let P = K[x, y, z] be standard
graded. Find a minimal graded free resolution of the graded P -module
K ∼= P/(x, y, z) .
Repeat this exercise with four, five or more indeterminates. Can you guess
the general shape of the minimal graded free resolution?

Exercise 4. Let P = Q[x, y, z] be standard graded. Compute the mini-

mal graded free resolution of the ideal I = (x2, x(y + z), y2) using

a) the vertical strategy (see Proposition 4.8.11),
b) Schreyer’s algorithm (see Proposition 4.8.14), and
c) the horizontal strategy (see Theorem 4.8.16).

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
let f1, f2 ∈ P be non-zero homogeneous polynomials, and let I = (f1, f2) .
Show that the graded Betti numbers of P/I are uniquely determined by
deg(f1) , deg(f2) , and deg(gcd(f1, f2)) .

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] be positively
graded, and let I be a homogeneous ideal in P . Find the graded Betti
numbers of P ⊕ I in terms of the graded Betti numbers of I .

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] be positively
graded by a matrix W ∈ Matm,n(Z) , let f1, f2, f3 ∈ P be homogeneous
polynomials which form a regular sequence, and let di = degW (fi) for
i = 1, 2, 3. Show that the graded free resolution of the ideal I = (f1, f2, f3)
has the shape

0 −→ P (−d1 −d2 −d3)
ϕ−→P (−d1 −d2)⊕P (−d2 −d3)⊕P (−d1 −d3) −→

ψ−→P (−d1) ⊕ P (−d2) ⊕ P (−d3)
ε−→ I −→ 0

and determine the matrices defining the maps ϕ and ψ .

Exercise 8. Let K be a field, let P = K[x1, x2, x3] be graded by I3 , and
let I = (x1x2, x2x3, x1x3) . Compute the minimal graded free resolution
of I with respect to this grading.
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Tutorial 62: The Hilbert-Burch Theorem

Is this the real McCoy?

Let K be a field, let P = K[x1, . . . , xn] be standard graded, and let I be
a proper homogeneous ideal in P . In this section we proved that the length �
of the minimal graded free resolution of P/I satisfies � ∈ {1, . . . , n} . It
is easy to see that this length is one if and only if I is a principal ideal.
Thus the first non-trivial case occurs when � = 2. In this tutorial we guide
you through a structure theorem for such ideals. More precisely, let G be a
minimal homogeneous system of generators of I . You will prove that G is
(up to signs) a multiple of the tuple of maximal minors of a homogeneous
matrix of size r × (r − 1), and that this matrix is the syzygy matrix of G .
The first ingredient of this proof is the following linear algebra result.
a) (McCoy’s Theorem) Let R be a ring, let 1 ≤ r ≤ s , and let an

R -linear map ϕ : Rr −→ Rs be given by a matrix M ∈ Mats,r(R). For
every 1 ≤ i ≤ r we denote the ideal generated by the i× i-minors of M
by Ii . Show that the following conditions are equivalent.
1) The homomorphism ϕ is injective.
2) We have AnnR(I1) = AnnR(I2) = · · · = AnnR(Ir) = 0.
3) We have AnnR(Ir) = (0).

Hint: To prove “1)⇒2)”, assume that AnnR(Iq) = 0 and AnnR(Iq+1) �= 0
for some q ∈ {1, . . . , r−1} . Let f ∈ AnnR(Iq+1)\{0} . W.l.o.g. let fd �= 0
for the minor d defined by the first q rows and columns of M . Now let
N be the submatrix of M consisting of the first q + 1 rows and q
columns, and let d1, . . . , dq+1 be the maximal minors of N . Show that
(fd1,−fd2, . . . ,±fdq+1, 0, . . . , 0) is a non-zero element of Ker(ϕ).
To prove “3)⇒1)”, use Dedekind’s Lemma (see Exercise 4 in Section 4.7).
In the following we let I be a homogeneous ideal in P whose minimal

graded free resolution has the form

0 −→
r−1⊕
i=1

P (−d1i)
ψ−→

r⊕
j=1

P (−d0j)
ϕ−→ I −→ 0

Let G = (g1, . . . , gr) and S = (v1, . . . , vr−1) be the homogeneous matrices
defining ϕ and ψ , respectively.
c) For i ∈ {1, . . . , r} , let Si be the matrix obtained by deleting the ith row

of S . Use a) to show that there is an index i such that det(Si) �= 0.
d) Let L be the field of rational functions L = K(x1, . . . , xn). For the

L-linear map ψ̃ : Lr −→ Lr−1 given by Str, prove

Ker(ψ̃) = L · (det(S1), −det(S2), . . . , (−1)r−1 det(Sr))

e) Using c), show that gi det(Sj) = (−1)i−jgj det(Si) for i, j ∈ {1, . . . , r} .
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f) Assume that f = det(S1) �= 0. Show that the P -linear map

ψ :
r−1⊕
i=1

P/(f)(−d1i) −→
r⊕

j=1

P/(f)(−d0j)

induced by ψ is injective.
Hint: Assume that u ∈⊕r−1

i=1 P (−d1i) satisfies ψ(ū) = 0. There exists a
vector w such that ψ(u) = fw . Hence 0 = ϕ(ψ(u)) = ϕ(fw) = fϕ(w)
implies ϕ(w) = 0.

g) Prove that G is a multiple of (det(S1), −det(S2), . . . , (−1)r−1 det(Sr)).
Hint: Assume that f = det(S1) �= 0. Let Īr−1 be the ideal in P/(f)
generated by the maximal minors of the matrix S . Using d), deduce
ḡ1 ∈ AnnP/(f)(Īr−1). Now apply a).

h) Find an example where G is a proper multiple of the tuple

(det(S1), −det(S2), . . . , (−1)r−1 det(Sr))

i) Suppose that G is deg-ordered and that deg(g1) = r − 1. Prove that
deg(g2) = · · · = deg(gr).

j) Let M = (mij) ∈ Mat3,2(Z) be a matrix with positive entries such
that m11 + m22 = m12 + m21 and m11 + m32 = m12 + m31 . Show
that there exists a homogeneous ideal I ⊆ K[x1, . . . , x6] whose minimal
graded free resolution has the form given above and whose graded Betti
numbers are d01 = m21 + m32 , d02 = m11 + m32 , d03 = m11 + m22 ,
d11 = m11 + m21 + m32 , and d12 = m12 + m21 + m32 .

Hint: Consider the matrix
(

xm11
1 xm21

2 xm31
3

xm12
4 xm22

5 xm32
6

)tr

. Find a term ordering

such that its three maximal minors are a Gröbner basis.

Tutorial 63: Computing Some Graded Betti Numbers

The most important information contained in a minimal graded free reso-
lution of a module are its graded Betti numbers. In this tutorial we want
to implement algorithms for computing minimal graded free resolutions and
graded Betti numbers. A particularly efficient way to display all graded Betti
numbers is the graded Betti diagram which we define and study below.

Let K be a field, let P = K[x1, . . . , xn] be graded by W ∈ Matm,n(Z),
and let F0 =

⊕r0
i=1 P (−d0i) where d01, . . . , d0r0 ∈ Zm . We denote the canon-

ical basis of F0 by {ε(0)
1 , . . . , ε

(0)
r0 } . Let V = (v1, . . . , vs) be a tuple of non-zero

homogeneous vectors in F0 , and let M be the graded submodule of F0 gen-
erated by V . The minimal graded free resolution of M has the shape

0 → ⊕
d∈Zm

P (−d)βnd → · · · → ⊕
d∈Zm

P (−d)β1d → ⊕
d∈Zm

P (−d)β0d → M → 0

where the numbers βij are the graded Betti numbers of M .
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a) Write a CoCoA function BettiNo(. . .) which takes V and uses the built-in
CoCoA routines to compute a list of lists which contains the graded Betti
numbers of M .

b) Using your function BettiNo(. . .), compute the graded Betti numbers of
the following modules.

1) M1 = 〈 (x1x4 − x2x3) ε
(0)
1 , (x2

1x3 − x3
2) ε

(0)
1 , (x1x

2
3 − x2

2x4) ε
(0)
1 ,

(x2x
2
4 − x3

3) ε
(0)
1 } ⊆ P

(
−
(
1
0

))
where P = Q[x1, x2, x3, x4] is graded

by the matrix W =
(
1 1 1 1
0 1 3 4

)
(see Examples 4.8.13 and 4.8.18)

2) M2 = 〈x1ε
(0)
1 , . . . , x5ε

(0)
1 〉 ⊆ P

(
−
(
2
3

))
where P = Q[x1, . . . , x5] is

graded by W =
(
1 1 1 1 1
1 2 3 4 5

)
3) M3 = 〈xixjε

(0)
1 | i, j = 1, . . . , 6〉 ⊆ P (−1) where P = Q[x1, . . . , x6]

is standard graded
4) M4 = 〈 (x1x3 − x2

2) ε
(0)
1 , (x1x4 − x2x3) ε

(0)
1 , (x1x5 − x3x4) ε

(0)
1 ,

(x2x4−x2
3) ε

(0)
1 , (x2x5−x3x4) ε

(0)
1 , (x3x5−x2

4) ε
(0)
1 〉 ⊂ P

(
−
(
1
0

))
where

P = Q[x1, . . . , x5] is graded by W =
(
1 1 1 1 1
0 1 2 3 4

)
5) M5 = 〈 (x2

1 − x2) ε
(0)
1 , (x2

2 − x4) ε
(0)
1 , (x2

3 − x6) ε
(0)
1 , (x2

4 − x8) ε
(0)
1 ,

(x2
5 − x8x2) ε

(0)
1 , (x2

6 − x8x4) ε
(0)
1 , (x2

7 − x8x6) ε
(0)
1 〉 ⊂ P (−1) where

P = Q[x1, . . . , x8] is graded by W = (1 2 · · · 8)
c) Implement a CoCoA function VMinRes(. . .) which computes a minimal

graded free resolution of M using the vertical strategy (see Proposi-
tion 4.8.11). Apply this function to the examples in b) and compare the
results.

d) Implement a CoCoA function SMinRes(. . .) computes a minimal graded
free resolution of M using Schreyer’s Algorithm (see Proposition 4.8.14).
Apply this function to the examples in b) and compare the results.

e) Implement a CoCoA function HMinRes(. . .) which computes a minimal
graded free resolution of M using the horizontal strategy (see Proposi-
tion 4.8.16). Apply this function to the examples in b) and compare the
results.

f) Compare your functions VMinRes(. . .), SMinRes(. . .), and HMinRes(. . .)
by counting the number of calls to NRσ,G and HRσ,G respectively, in the
examples of b).

g) Suppose that P = K[x1, . . . , xn] is standard graded. Prove that we have
min{j ∈ Z | βij �= 0} ≥ min{j ∈ Z | βi−1 j �= 0} for i = 1, . . . , n .
In the following we assume that the polynomial rings are standard graded.

In view of g), it makes sense to store the numbers {βi j−i | i ≥ 0, j ≥ α + 1} ,
where α = α(M). The matrix B = (βi j−i) consisting of these numbers is
called the Betti diagram of M .
h) Using calculation by hand, show that the Betti diagram of the ideal

I = (xy, xz, yz) in Q[x, y, z] is

⎛⎜⎜⎝
1 0
0 3
0 2

⎞⎟⎟⎠ .
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i) Write a CoCoA function BettiDiagram(. . .) which takes the output of
BettiNo(. . .) and computes the Betti diagram of M .

j) Apply your function BettiDiagram(. . .) to compute the Betti diagrams
of the following homogeneous ideals.
1) I1 = (x5

1−x5
2, x5

2−x5
3, x5

3−x5
4, x5

4−x5
5, x4

1x2 +x4
2x3 +x4

3x4 +x4
4x5 +

x4
5x1) in Q[x1, . . . , x5]

2) I2 = (x2x
2
8−x3

4, x3
2−x4x

2
6, x1x

2
7−x3

3, x3
1−x3x

2
5, x2x4−x6x8, x1x3−

x5x7, x2
2x8 − x2

4x6, x2
1x7 − x2

3x5) in Q[x1, . . . , x8]
3) I3 , the vanishing ideal of 11 randomly chosen points in P7 , obtained

by taking I := IdealOfProjectivePoints(GenericPoints(11));
in Z/(101)[x1, . . . , x7] .
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The mathematicians’ function should be
to simplify the intricate.

Instead they do just the opposite,
and complicate what is simple,

and call it ‘generalizing’.
(David Hilbert)

An amateur mathematician and two of his friends, a gardener and a chess
player, are walking on a passeggiata along the sea shore. He is holding a copy
of this book in his hands. Let us drop in on their animated discussion.
A: Recently I bought this book. I was intrigued by the introduction of Chap-

ter 5.
G: What is it about?
A: The authors call it Hilbert functions.
C: Can you explain what that is?
A: In a nutshell, the basic idea is to measure the size of a graded module by

considering dimK(Mi) for every i ∈ Z .
G: I heard that it has something to do with what Italian geometers at the

beginning of the twentieth century called formule di postulazione. I always
thought that postulante meant beggar. Is there any connection?

A: Yes, there is. Postulazione comes from the latin word postulatio which
means claim or demand. Those Italian geometers were considering the
vector space of all homogeneous polynomials of a fixed degree which
vanish at a given set of points. The codimension of this vector space is the
number of linearly independent conditions the point set demands from
the forms when they are required to contain it. On the other hand, this
codimension is a value of the Hilbert function of a ring K[x1, . . . , xn]/I
with a homogeneous ideal I .

C: But why are they called Hilbert functions? What is the German contri-
bution here?

A: David Hilbert was one of the greatest mathematicians around that time.
While studying invariant theory, he was able to simplify an intricate
maze of invariants attached to a graded module by combining them into
a single function which now bears his name.
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C: Very well, but that doesn’t impress me much. This Hilbert function still
has infinitely many values, hasn’t it? How would you ever get hold of all
of them?

A: Indeed, you are right. This is where the story gets interesting. In Sec-
tion 5.1 the authors prove that Hilbert functions are integer functions of
polynomial type. In other words, there exists a polynomial in Q[t] which
takes the same values as the Hilbert function of a graded module M
in large enough degrees. Thus Hilbert functions are finitely describable
in the sense that it suffices to determine the first few values and that
polynomial.

G: Finitely describable? Maybe. But what an ugly description is this? Is
that what you call simplifying the intricate?

A: Not really. But that chapter does not end with Section 5.1 either. You
have to read on! In the next section the authors use one of the most
fruitful ideas in all of mathematics: generating functions.

G: This sounds enticing. How does this fertilizer work?
A: Instead of considering the individual values HFM (i) of the Hilbert func-

tion of a graded module M , you combine them into a single object,
namely the power series HSM (z) =

∑
i∈Z HFM (i) zi which is (surprise,

surprise!) called the Hilbert series of M .
C: Power series? Is it powerful?
A: It is. In fact, it is shown here that a Hilbert series is a very special kind

of power series. First of all, we should call it a Laurent series, since there
can be finitely many negative exponents. But more importantly, it is
a rational series of the particularly simple form HSM (z) = zα HNM (z)

(1−z)n ,
where α is the initial degree of the module, HNM (z) is a polynomial
with integer coefficients, and n is the number of indeterminates in the
polynomial ring.

G: O.k., so it looks pretty simple. But why did you call it fruitful?
A: Hilbert series are convenient to handle. They are additive on homoge-

neous short exact sequences, invariant under passing to a leading term
module, invariant under field extensions, and are explicitly computable
for graded free modules.

C: Computable? Did you say computable? This interests me a lot. You know,
I always like to compute as many variations as possible. For instance, how
would you compute the Hilbert series of the polynomial ring itself?

A: Ah! This is not so difficult. By playing a little with binomial coefficients,
you can count the terms of a fixed degree. You get HFP (i) =

(
i+n−1
n−1

)
for

a polynomial ring P = K[x1, . . . , xn] and all i ≥ 0. Then you have to
switch your point of view; what looks complicated from one angle may
sometimes look simple from another. In the case at hand, these nasty
binomial coefficients turn out to be nothing but the coefficients of the
power series expansion of 1

(1−z)n . Do you see how elegant this description
is?
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G: Indeed, this is beautiful. To capture a huge amount of data in such a
compact formula reminds me of the efficiency of nature.

At this point the three men leave the promenade and turn into a gorgeous
Italian parco.
C: Now, how can one compute Hilbert series for more complicated modules?
A: In Section 5.3, the authors lay out a number of strategies for doing this.
C: Strategies? How wonderful! What is the best strategy?
A: Well, basically you first reduce the computation of Hilbert series to mod-

ules of the form P/I , where I is monomial ideal in P = K[x1, . . . , xn] .
Then you have to apply the multiplication sequence to decompose the
monomial ideal into smaller ones. That’s where those strategies come in.
It is like choosing the right path in the maze of paths in this park. The
best strategy is called the CoCoA strategy.

C: CoCoA? Isn’t that a computer program? Can I use it to play chess?
A: Not really. But you may enjoy Tutorials 65 and 71 where the theory of

Hilbert functions is used to solve several kinds of chess puzzles.
G: Besides those games, are there any true applications? I wonder whether

this CoCoA program would have been useful for those Italian geometers
and their postulazione. For instance, I wonder what happens if we mark
the positions of those three palm trees over there on map of this park?
Can you compute the postulation?

A: Hm, I am not sure. Let us give it a try. To have a homogeneous vanishing
ideal, we should consider the points as points in the projective plane.
One point p1 corresponds to one condition for curves of degree i ≥ 1,
i.e. the Hilbert function of R1 = K[x0, x1, x2]/I(p1) is HFR1(i) = 1 for
i ≥ 0 and the Hilbert series is HSR1(z) =

∑
i≥0 zi = 1

1−z .
G: I see. Then the Hilbert function of two points ought to be HFR2(i) = 2

for i ≥ 1, where R2 = K[x0, x1, x2]/I({p1, p2}). Similarly, the Hilbert
function of three points ought to be HFR3(i) = 3 for i ≥ 1, where
R3 = K[x0, x1, x2]/I({p1, p2, p3}), and so on.

A: Wait, wait! Not so quick! Who tells us that the conditions posed by
those points on curves of degree i are really linearly independent? For
two points, we can choose the coordinate system such that they are
p1 = (1 : 0 : 0) and p2 = (0 : 1 : 0). We get I({p1, p2}) = (x2, x0x1)
and R2

∼= K[x0, x1](x0x1). This yields HFR2(i) = 2 for i ≥ 1, as you
guessed. However, for three points the situation depends on whether they
lie on a line or not.

G: What?
A: If the three points are not collinear, we can choose the coordinate sys-

tem such that they are p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), and
p3 = (0 : 0 : 1). We get I({p1, p2, p3}) = (x0x1, x0x2, x1x2) and there-
fore an isomorphism R3

∼= K ⊕⊕i≥1(Kxi
0 ⊕ Kxi

1 ⊕ Kxi
2). This yields

HFR3(i) = 3 for i ≥ 1, again in agreement with your guess. But if the
three points are collinear, we choose the coordinate system such that
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p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), and p3 = (1 : 1 : 0). We get
I({p1, p2, p3}) = (x2, x0x1(x1 − x0)) and HFR3(1) = 2, HFR3(i) = 3 for
i ≥ 3.

G: That’s great! The Hilbert function tells me the geometry of my three
palm trees. It distinguishes whether they are planted in a row or not! I
start believing that this theory can be truly useful.

C: Are there other areas besides geometry where Hilbert function can be
applied? What about those chess problems I like so much?

A: Do you know the 8-queens problem? It asks in how many ways eight
queens can be placed on a chessboard so that no two of them attack each
other.

C: Of course! This is a famous problem. It was published in 1850 in a news-
paper, and while Carl F. Gauß was still working on it, an amateur math-
ematician had already found all solutions. Can you actually do it using
Hilbert functions?

A: Believe it or not, you can. If we ask how many queens you can place on
a chessboard such that no two of them attack each other, we are really
studying the graph whose vertices are the squares of the chessboard and
whose edges indicate queen moves. And we are asking for the maximal
cardinality of a totally disconnected subgraph, i.e. a subgraph such that
no two of its vertices are connected by an edge. The 8-queens problem is
to find the number of maximal, totally disconnected subgraphs. Let us
consider this easy example instead.

Using his walking stick, the mathematician starts to draw the following pic-
ture in an empty flower-bed.
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C: In this case I can tell you right away that a maximal, totally disconnected
subgraph has four vertices.

A: True. But for more complicated situations like the 8-queens problem we
need a systematic method for getting this answer. Let xi be an indeter-
minate corresponding to vertex i for i = 1, . . . , 6. Then the edges of the
graph correspond to the terms in L = {x1x6, x2x3, x2x6, x4x6, x5x6} .
Thus we can attach to our graph the graded ring K[x1, . . . , x6]/I
where K is a field and I is the monomial ideal generated by L .

C: So what? Does the Hilbert function of this ring contain any information
about our problem?
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A: Slow down, please! Let’s do one step at a time. The ideal I has the pri-
mary decomposition I = (x1, x2, x4, x5)∩ (x2, x6)∩ (x3, x6). What is the
meaning of these three ideals? For instance, let us consider (x2, x6). In
the graph this means that every edge contains at least one of the two
vertices {2, 6} . Therefore the complementary set of vertices {1, 3, 4, 5}
is totally disconnected. Likewise, {1, 2, 4, 5} and {3, 6} are totally dis-
connected. In conclusion, a maximal, totally disconnected subgraph has
four vertices.

G: I think there is a geometric side of this story. The polynomial ring
K[x1, . . . , x6] corresponds to the 6-dimensional affine space, and the sub-
variety Z(x2, x6) is a 4-dimensional linear subspace. Similarly, Z(x3, x6)
and Z(x1, x2, x4, x5) are 4- and 2-dimensional linear subspaces, respec-
tively. Altogether, the variety Z(I) is the union of these three linear
spaces and therefore 4-dimensional. But what has all of this to do with
Hilbert functions?

A: Well, you two should really read Section 5.4. Do you remember that I said
Hilbert functions were of polynomial type? The polynomial giving their
values in high degree is called, you guessed it, the Hilbert polynomial of
the graded module in question. Its degree is one less than the dimension
you mentioned, and its leading coefficient is related to the multiplicity
of the module which corresponds to the number of totally disconnected
subgraphs of maximal cardinality in our combinatorial example.

C: Can we calculate this stuff? I think we’ll need a computer in any but the
most trivial examples.

A: Oh, yes. The Hilbert polynomial can easily be computed from the Hilbert
series. As I just said, read Section 5.4 and you’ll get the full story.

C: Do you know that you haven’t told us so far which integer functions are
Hilbert functions?

A: Yes, and I had a good reason: the answer to this question is pretty com-
plicated.

G: I think the path we just took is of dubious value. The designers of this
garden call it the path of maximal irony, because it requires a lot of effort
and in the end it doesn’t take you anywhere. Is that true for Hilbert
functions as well?

A: No, no! In Sections 5.5, for instance, the authors guide you through
a labyrinth full of strange binomial representations of integers, even
stranger operations on those representations, weird monomial ideals gen-
erated by Lex-segments, and an abstruse proof by a bold double induction
involving generic linear forms. But the reward for these efforts are sharp
bounds for the growth of homogeneous ideals and their Hilbert functions
which had been considered rather inaccessible until recently.

C: Which brings us to another question. You mentioned Hilbert functions
only for graded modules. What do we do if we are not in a graded situa-
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tion? Do we have to just forget about all these nice computational tricks
we discussed today?

A: Quite the contrary! In Section 5.6 you can see that Hilbert functions exist
for arbitrary affine algebras. Hilbert polynomials, dimension, multiplicity,
everything carries over from the graded situation if we replace the vector
space of homogeneous polynomials of degree i in an ideal by the space
of arbitrary polynomials of degree ≤ i in that ideal.

G: Once again you mention dimensions. Is your notion of dimension, i.e. the
degree of the affine Hilbert polynomial, really the same as my concept,
namely the geometric notion based on chains of irreducible varieties?

A: This question is thoroughly warranted. And as you can see in this book,
the authors have to spend a lot of energy and to go through an extended
detour to answer it affirmatively.

C: By the way, did you know that there is also a combinatorial notion of
dimension?

A: I didn’t, but after studying Section 5.7 in here, I know what you mean.
Fortunately enough, it also agrees with my Hilbert function approach. In
fact, you can even interpret this dimension as a transcendence degree!

G: Ho, ho! Aren’t we getting a little carried away? And where does that gate
over there lead us?

At the far end of the park, our three strollers enter a blooming rose garden.
C: Wow! This is what I call dulcis in fundo.
A: This seems to be one the mottos of the authors of this book. For instance,

the last section of this chapter we were talking about contains the whole
theory of Hilbert functions, Hilbert series, and so on, in the multigraded
setting.

G: Is there any advantage of having a multigrading at hand? Aren’t you
complicating what is simple and calling it ‘generalizing’?

A: For one, the individual homogeneous components tend to be smaller.
C: Which aids the computation, of course!
A: Secondly, we can pass from a finer grading to a coarser one by means of

a change of grading. This allows us to treat Rees ring, Segre products,
Hadamard products, etc., effectively. You name it, we’ve got it!

Returning from the rose garden, the threesome pass a playground.
C: Recently my children brought home a nice new toy. It consists of coloured

90 degree arcs, four of which can be put together to form a ring. After
playing a while, we were able to use the six colours they had to form 231
different rings. I challenge you to explain this number.

A: I can’t. But if you solve Tutorial 83, you can do it yourself.
G: I wonder what else is in there. Somehow I began to realize that I knew

all of this already, but I did not know anymore that I knew it.
C: Fortunately the book remembers what we have already forgotten ...
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5.1 Basic Properties of Hilbert Functions

Besides it is an error to believe
that rigor in the proof

is the enemy of simplicity. [...]
The very effort of rigor forces us

to find out simpler methods of proof.
(David Hilbert)

As in the previous chapter, let us begin at the beginning, and let us
proceed in a systematic and rigorous way. For a start, let the polynomial
ring P = K[x1, . . . , xn] over a field K be standard graded. Given a finitely
generated graded module M over P , we attach many numerical invariants
to M by considering the function HFM : Z −→ Z defined by i �→ dimK(Mi).
This function is called the Hilbert function of M . It is the central object
of study in this chapter. The very effort of treating the theory of Hilbert
functions rigorously forces us to begin by simplifying the matter and looking
at the Z -module of all maps Z −→ Z first. Such maps will be called integer
functions.

Thus the first subsection is a collection of results about certain classes of
integer functions with special regard to properties which turn out to hold for
Hilbert functions. For instance, one such class is the set of integer functions
of polynomial type. Those functions f : Z −→ Z have the property that,
for large integers i , their value f(i) is given by the value p(i) of an integer
valued polynomial , i.e. of a polynomial p ∈ Q[t] such that p(i) ∈ Z for all
i ∈ Z . The interplay between integer functions of polynomial type and integer
valued polynomials is quite intricate. Hence we take great pains to present it
as simply as possible (but not simpler).

For instance, the Z -module of all integer valued polynomials has a nice,
simple basis, specifically the set {

(
t+a

b

)
| b ∈ N} , where a is a fixed integer

(see Proposition 5.1.7). These polynomials will turn out to be associated to
the Hilbert functions of particularly simple modules, namely polynomial rings
and their shifts. As we mentioned above, the values of an integer function f
of polynomial type and its associated integer valued polynomial agree for
large enough arguments. Indeed, the first integer such that they agree from
that point on is another useful invariant. It is called the regularity index of f .
Many remarkable properties of integer functions of polynomial type and their
regularity indices are collected in Proposition 5.1.10 and Corollary 5.1.11 and
given simple, rigorous proofs.

Why do we bother to spend several pages playing with such general stuff?
There are a number of reasons. The most obvious one is that this material
is important for later use. But even more than that, we wanted to have a
clear distinction between the general properties of integer functions and the
specific properties of Hilbert functions. Following this guideline, the second
subsection starts with the definition of Hilbert functions and moves quickly
to their basic properties. Let us point out three of them.
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Firstly, Hilbert functions are additive on short exact sequences (see Propo-
sition 5.1.14). Speaking on a higher level, this says that HFM is an additive
functor on the category of finitely generated graded P -modules, something
homological algebraists crave for. A more down to earth meaning is that we
can compute HFM using the Hilbert functions of simpler modules as build-
ing blocks, a fact which is going to enhance our later algorithms. Secondly,
the multiplication sequence 5.1.16 allows us to reduce the module modulo an
element, preferably a regular one. And thirdly, Theorem 5.1.18 says that the
Hilbert function of a graded submodule agrees with the Hilbert function of
its leading term module with respect to a module term ordering. Clearly,
this simplifies things even further and allows us to reduce the computation
of Hilbert functions to the case of monomial ideals.

The highlight of the section, like the highlight of a good show, appears at
the very end when we prove that Hilbert functions are indeed integer func-
tions of polynomial type (see Theorem 5.1.21). Using the extensive machinery
developed in the first part, the task of providing a rigorous proof of this result
becomes so straightforward and simple that you should be able to do it in
your head. Simplicity and rigor: two ingredients which combine perfectly to
ensure the continued success of Hilbert function theory.

5.1.A Integer Functions of Polynomial Type

Theorem: All positive integers are interesting.
Proof: Assume the contrary.

Then there is a smallest
non-interesting positive integer.

But, hey, that’s pretty interesting!
A contradiction. QED

(Anonymous)

In this subsection we define integer functions, introduce some general
operations and study their properties. In this way, we want to show that
integer functions are interesting without having to argue by contradiction.

Definition 5.1.1. A map f : Z −→ Z is called an integer function. Given
an integer function f : Z −→ Z , we define the following operators.
a) The integer function ∆f : Z −→ Z defined by ∆f(i) = f(i) − f(i − 1)

for i ∈ Z is called the (first) difference function of f .
b) Let ∆0f = f . For r ≥ 1, we inductively define an integer function

∆rf : Z −→ Z by ∆rf = ∆(∆r−1f) and call it the rth difference
function of f .

c) Given a number q ∈ Z , we define an integer function ∆qf : Z −→ Z by
∆qf(i) = f(i)−f(i−q) for i ∈ Z and call it the q-difference function
of f .

d) An integer function f : Z −→ Z is called an integer Laurent function
if there exists a number i0 ∈ Z such that f(i) = 0 for all i < i0 .
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e) Given an integer Laurent function f : Z −→ Z , we define another integer
Laurent function Σf : Z −→ Z by Σf(i) =

∑
j≤i f(j) and call it the

summation function of f .

Some authors use the expression “numerical function” to denote integer
functions. The difference and summation operations define bijections on the
set of integer Laurent functions which are inverse to each other.

Proposition 5.1.2. Let f : Z −→ Z be an integer Laurent function. Then
we have Σ∆f = ∆Σf = f .

Proof. For every i ∈ Z , we have Σ∆f(i) =
∑

j≤i(∆f(j)) =
∑

j≤i(f(j) −
f(j − 1)) = f(i) and ∆Σf(i) = Σf(i) − Σf(i − 1) =

∑
j≤i f(j) −∑

j≤i−1 f(j) = f(i). �

As we shall see, Hilbert functions are integer Laurent functions. But they
have another important property, namely that their values agree with the
values of some rational univariate polynomial from some point on. The fol-
lowing definition introduces a subset of Q[t] containing precisely the rational
univariate polynomials we are concerned with.

Definition 5.1.3. A polynomial p ∈ Q[t] is called an integer valued poly-
nomial if we have p(i) ∈ Z for all i ∈ Z . The set of all integer valued poly-
nomials will be denoted by IP . Furthermore, for every r ≥ 0, we let IP≤r be
the set of all integer valued polynomials of degree ≤ r .

Some authors use the expression “numerical polynomial” to denote integer
valued polynomials. Clearly, for every r ≥ 0, the set IP≤r is a Z -submodule
of Q[t] . Notice that IP is not contained in Z[t] , as evidenced by the integer
valued polynomial 1

2 t(t + 1).

Remark 5.1.4. To every integer valued polynomial p ∈ IP we can associate
an integer function Z −→ Z defined by i �→ p(i) for all i ∈ Z . The difference
function of this integer function is associated to the integer valued polynomial
∆p(t) = p(t) − p(t − 1). If p �= 0, the associated integer function is not an
integer Laurent function. Therefore we cannot define its summation function.

The following example highlights some very important integer valued
polynomials. Later we shall see that they are related to Hilbert functions
of polynomial rings. Recall that, for a ∈ N and i ∈ Z , the binomial coeffi-
cient

(
i
a

)
is defined by(

i

a

)
=
{

1
a! i (i − 1) · · · (i − a + 1) if a ≥ 1,
1 if a = 0.

Example 5.1.5. Let a, b ∈ Z with b ≥ 1, and let p ∈ Q[t] be the polynomial
defined by p(t) =

(
t+a

b

)
= 1

b! (t + a)(t + a − 1) · · · (t + a − b + 1). We claim
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that p is an integer valued polynomial. To this effect we have to show that,
for every i ∈ Z , the number (i + a)(i + a − 1) · · · (i + a − b + 1) is divisible
by b! . For all m ≥ 1, it is congruent to (i + a + mb!)(i + a − 1 + mb!) · · ·
· · · (i+a−b+1+mb!) modulo b! . Hence the claim follows from the observation
that, for a sufficiently big m , the usual binomial coefficient

(
i+a+mb!

b

)
is an

integer.
Clearly, we have deg(p) = b . Using Lemma 5.1.6.b below we see that

∆(
(
t+a

b

)
) =

(
t+a−1

b−1

)
. Repeating this process, we obtain ∆bp(t) = 1. For

b > 1, the polynomial p is not contained in Z[t] , since we have LCDeg(p) = 1
b! .

In order to examine integer valued polynomials of the form
(
t+a

b

)
more

carefully, we need to collect a few useful properties of binomial coefficients.

Lemma 5.1.6. Let a ∈ N and i ∈ Z .
a) For all i ∈ Z , we have

(−i
a

)
= (−1)a

(
a+i−1

a

)
.

b) If i ≥ a ≥ 1 , then we have
(

i
a

)
−
(
i−1
a

)
=
(

i−1
a−1

)
.

c) If i ≥ a ≥ 1 , then we have
∑i−1

j=a−1

(
j

a−1

)
=
(

i
a

)
.

d) If i ≥ a ≥ 0 , then we have
∑a

j=0

(
i−1−j
a−j

)
=
(

i
a

)
.

Proof. Claim a) follows from
(−i

a

)
= 1

a! (−i)(−i − 1) · · · (−i − a + 1) =
(−1)a 1

a! i (i + 1) · · · (i + a − 1) = (−1)a
(
i+a−1

a

)
. To prove b), we calculate(

i
a

)
−
(
i−1
a

)
= 1

a! [i (i−1) · · · (i−a+1)− (i−1)(i−2) · · · (i−a)] = 1
a! (i−1) · · ·

· · · (i−a+1) [i−(i−a)] = 1
(a−1)! (i−1) · · · (i−a+1) =

(
i−1
a−1

)
. Claim c) follows

by repeatedly applying b), since
(

i
a

)
=
(

i−1
a−1

)
+
(
i−1
a

)
=
(

i−1
a−1

)
+
(

i−2
a−1

)
+
(
i−2
a

)
=

· · · =
∑i−1

j=a−1

(
j

a−1

)
. Finally, also claim d) follows by repeatedly applying b),

since
(

i
a

)
=
(
i−1
a

)
+
(

i−1
a−1

)
=
(
i−1
a

)
+
(

i−2
a−1

)
+
(

i−2
a−2

)
= · · · =

∑a
j=0

(
i−1−j
a−j

)
. �

Now we collect some basic properties of integer valued polynomials.

Proposition 5.1.7. (Basic Properties of IntegerValued Polynomials)
Let a ∈ Z , r ∈ N , and let (a0, a1, a2, . . .) be a sequence of integers.
a) For an integer valued polynomial p , we have deg(p) = r if and only if

∆rp(t) ∈ Z \ {0} . If this holds true, we have ∆rp(t) = r! LCDeg(p) ∈ Z .
b) Let p be an integer valued polynomial of degree r . Then the polynomial

q = p − r! LCDeg(p)
(
t+a

r

)
is an integer valued polynomial of degree < r .

c) For every r ≥ 0 , the set of polynomials {
(
t+ai

i

)
| 0 ≤ i ≤ r} is a Z-basis

of IP≤r . Consequently, the set {
(
t+ai

i

)
| i ∈ N} is a Z-basis of IP .

d) For a map f : Z −→ Z , the following conditions are equivalent.
1) There exists an integer valued polynomial p ∈ IP with f(i) = p(i)

for all i ∈ Z .
2) There exist a number i0 ∈ Z and an integer valued polynomial q ∈ IP

such that f(i0) ∈ Z and ∆f(i) = q(i) for all i ∈ Z .
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Proof. Claim a) follows from the observation that, given an integer val-
ued polynomial p(t) = cr tr + (terms of lower degree) , we obtain ∆p(t) =
cr(tr−(t−1)r)+(terms of lower degree) = r cr tr−1+(terms of lower degree) .
To prove b), we observe that q is clearly an integer valued polynomial of de-
gree ≤ r . Since ∆rq(t) = ∆rp(t) − c∆r(

(
t+a

r

)
) = r! (LCDeg(p) − c) = 0, the

claim follows from a).
Next we show c). Let pi =

(
t+ai

i

)
for i ≥ 0. Suppose there is an r ≥ 0

and a relation b0p0+ · · ·+brpr = 0 with b0, . . . , br ∈ Q and br �= 0. Equating
the rth homogeneous components in this relation yields br LCDeg(pr) = 0,
a contradiction. Hence the polynomials pi are Z -linearly independent. The
fact that they generate IP≤r as a Z -module follows from a) and b).

It remains to prove claim d). The implication “1)⇒2)” follows from
∆f(i) = p(i) − p(i − 1) for all i ∈ Z , so that the integer valued polyno-
mial q(t) = p(t) − p(t − 1) does the job. Conversely, we note that we have
f(i) = f(i0) +

∑i
j=i0+1 ∆f(j) for i > i0 and f(i) = f(i0) −

∑i0
j=i+1 ∆f(j)

for i < i0 . By b), we can write the integer valued polynomial q in the
form q(t) = c1

(
t−1
0

)
+ · · ·+cm

(
t−1
m−1

)
, where c1, . . . , cm ∈ Z . Then also p(t) =

c1

(
t
1

)
+· · ·+cm

(
t
m

)
is an integer valued polynomial, and Lemma 5.1.6.b yields

q(t) = p(t)−p(t−1). Thus we obtain f(i) = f(i0)+
∑i

j=i0+1(p(j)−p(j−1)) =
f(i0) − p(i0) + p(i) for i > i0 and f(i) = f(i0) −

∑i0
j=i+1(p(j) − p(j − 1)) =

f(i0) − p(i0) + p(i) for i < i0 . Altogether, we see that the integer valued
polynomial p(t) − p(i0) + f(i0) has the desired property. �

The importance of integer valued polynomials derives from the fact that
they determine the eventual behaviour of the following kind of integer func-
tions.

Definition 5.1.8. Let f : Z −→ Z be an integer function.
a) The map f : Z −→ Z is called an integer function of polynomial

type if there exists a number i0 ∈ Z and an integer valued polynomial
p ∈ IP such that f(i) = p(i) for all i ≥ i0 . This polynomial is uniquely
determined and denoted by HPf .

b) For an integer function f of polynomial type, the number

ri(f) = min{i ∈ Z | f(j) = HPf (j) for all j ≥ i}

is called the regularity index of f . Whenever f(i) = HPf (i) for all
i ∈ Z , we let ri(f) = −∞ .

The integer functions of polynomial type we study later are called Hilbert
functions and their associated integer valued polynomials are called Hilbert
polynomials. This is the reason why we use the notation HPf . By definition,
not all values of an integer function f of polynomial type have to agree
with the corresponding values of HPf . The following example introduces
a family of integer functions of polynomial type which will turn out to be
fundamentally important.
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Example 5.1.9. For every i ∈ N , we define a map bini : Z −→ Z by
bini(j) =

(
j
i

)
for j ≥ i and by bini(j) = 0 for j < i . Clearly, the map bini

is an integer Laurent function of polynomial type. It satisfies HPbini
(t) =

(
t
i

)
and ri(bini) = 0. Moreover, if i > 0, then Lemma 5.1.6.b shows ∆bini(j) =
bini−1(j − 1) for all j ∈ Z .

But there is no integer valued polynomial p ∈ IP such that bini(j) = p(j)
for all j ∈ Z , because in this case we would get p = HPbini and p(−1) =(−1

i

)
= (−1)i , in contradiction to bini(−1) = 0.

Our next result says that integer functions of polynomial type behave well
under the difference and summation operations.

Proposition 5.1.10. Let f : Z −→ Z be an integer function. Then the
following conditions are equivalent.
a) The integer function f is of polynomial type.
b) The integer function ∆f is of polynomial type.

Moreover, if f is an integer Laurent function, then these conditions are
equivalent to the following one.
c) The integer function Σf is of polynomial type.

Proof. Let f be of polynomial type and p = HPf . Then the polynomial
q(t) = ∆p(t) is an integer valued polynomial, and we have ∆f(i) = ∆p(i) =
q(i) for i ≥ ri(f) + 1. Hence ∆f is an integer function of polynomial type.
Conversely, let q = HP∆f , and let g : Z −→ Z be the integer function of
polynomial type defined by g(i) = q(i) for all i ∈ Z . Now we choose a number
i0 ≥ ri(∆f) and define an integer function h : Z −→ Z by

h(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i∑
j=i0+1

g(j) for i > i0,

0 for i = i0,

−
i0∑

j=i+1

g(j) for i < i0.

It is easy to check that we have g = ∆h . By Proposition 5.1.7.d, there
exists an integer valued polynomial p ∈ IP such that h(i) = p(i) for all
i ∈ Z . Since i0 ≥ ri(f), this implies f(i) = f(i0) +

∑i
j=i0+1 ∆f(j) = f(i0) +∑i

j=i0+1 g(j) = f(i0) + h(i) − h(i0) = f(i0) + h(i) for all i > i0 . Thus f is
of polynomial type, as claimed.

To prove the equivalence of a) and c) it suffices to apply “a)⇔b)” to the
integer function g = Σf and to note that f = ∆g by Proposition 5.1.2. �

If all conditions of this proposition are satisfied, i.e. if the given map
f : Z −→ Z is an integer Laurent function of polynomial type, we can
compute the integer valued polynomials corresponding to ∆f and to Σf .
Recall that, for a polynomial p ∈ IP , we let ∆p be the polynomial defined
by ∆p(t) = p(t) − p(t − 1).
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Corollary 5.1.11. Let f : Z −→ Z be an integer Laurent function of poly-
nomial type.
a) We have HP∆f (t) = ∆HPf (t) . In particular, if deg(HPf ) > 0 , then we

have deg(HP∆f ) = deg(HPf ) − 1 .
b) For every q ≥ 1 , we have ri(∆qf) = ri(f) + q . In particular, we have

ri(∆f) = ri(f) + 1 .
c) If we write HPf (t) = c1

(
t−1
0

)
+ · · · + cm

(
t−1
m−1

)
and choose i0 ≥ ri(f) ,

then we have HPΣf (t) = c1

(
t
1

)
+ · · · + cm

(
t
m

)
+ f(i0) .

d) We have ri(Σf) = ri(f) − 1 .

Proof. Claim a) was shown in the first part of the proof of the proposition.
To show b), we let i0 = ri(f). Then we have ∆qf(i) = f(i) − f(i − q) =
HPf (i) − HPf (i − q) = ∆q HPf (i) for all i ≥ i0 + q . For i = i0 + q − 1,
we get ∆qf(i) �= ∆HPf (i), because we have f(i) = HPf (i) and f(i − q) =
f(i0 − 1) �= HPf (i0 − 1) = HPf (i − q) by the definition of ri(f).

Claim c) follows from the second part of the proof of the proposition,
and d) follows from b) because of ri(f) = ri(∆Σf) = ri(Σf) + 1. �

5.1.B Hilbert Functions in the Standard Graded Case

I hate quotations.
Tell me what you know.

(Ralph W. Emerson)

After all these preparations, it is time for us to tell you what Hilbert
functions really are. Specifically, we prove that they are examples of integer
functions of polynomial type. In fact, they are easily the most interesting
and important integer functions of polynomial type you will encounter in
this book. Let K be a field, and let P = K[x1, . . . , xn] be standard graded.

Definition 5.1.12. Let M be a finitely generated graded P -module. Since
the grading given by W on P is of positive type, Proposition 4.1.19 shows
that we have a well-defined map

HFM : Z −→ Z

i �−→ dimK(Mi)

This map is called the Hilbert function of M .

The Hilbert function is an invariant of M in the following sense. By
Proposition 1.1.12, an isomorphism of vector spaces ϕ : P1 −→ P1 extends
uniquely to an isomorphism Φ : P −→ P of graded K -algebras. Such a
map Φ is called a homogeneous linear change of coordinates. If we
choose a presentation M = F/U with a graded free P -module F and a



186 5. Hilbert Functions

graded submodule U of F , the map Φ extends uniquely to an isomorphism
of graded P -modules F/U −→ F/U . We express this fact by saying that
the Hilbert function of M is invariant under a homogeneous linear change of
coordinates.

To get an idea of the kind of integer function this is, let us compute it in
the simplest case M = P .

Proposition 5.1.13. For every i ∈ N , we have HFP (i) =
(
i+n−1
n−1

)
.

Proof. We shall use induction on n . For the case n = 1, we have HFP (i) =
1 =

(
i
0

)
for all i ∈ N . Now we consider the case n > 1. For each i ∈ N , we

let Tn
i be the set of all terms of degree i in Tn , and for j = 0, . . . , i we let

Tn
ij be the set of terms in Tn

i which are divisible by xj
n but not by xj+1

n .
Hence we have a decomposition Tn

i = ∪i
j=0Tn

ij of Tn
i into pairwise disjoint

subsets. Moreover, the elements in Tn
ij are in 1–1 correspondence with the ele-

ments of Tn−1
i−j . Using the induction hypothesis and Lemma 5.1.6.d, we obtain

HFP (i) = #Tn
i =

∑i
j=0 #Tn

ij =
∑i

j=0 #Tn−1
i−j =

∑i
j=0

(
(i−j)+(n−1)−1

(n−1)−1

)
=∑i

j=0

(
i+n−2−j

i−j

)
=
(
i+n−1

i

)
. �

Since it is clear that HFP (i) = 0 for i < 0, we can rephrase this proposi-
tion by saying that HFP (i) = binn−1(i+n−1) for all i ∈ Z , where binn−1 is
the function introduced in Example 5.1.9. Our next proposition enables us to
reduce the computation of the Hilbert function of more complicated graded
P -modules to this case.

Proposition 5.1.14. (Basic Properties of Hilbert Functions)
Let M , M ′ , and M ′′ be three finitely generated graded P -modules.
a) Let j ∈ Z . Then the Hilbert function of the module M(j) obtained by

shifting degrees by j is given by HFM(j)(i) = HFM (i + j) for all i ∈ Z .
b) Given a homogeneous exact sequence of graded P -modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we have HFM (i) = HFM ′(i) + HFM ′′(i) for all i ∈ Z .
c) Given finitely many finitely generated graded P -modules M1, . . . , Mr , we

have HFM1⊕···⊕Mr
(i) = HFM1(i) + · · · + HFMr

(i) for all i ∈ Z .
d) Let δ1, . . . , δr ∈ Z . The Hilbert function of the graded free P -module

F =
⊕r

j=1 P (−δj) is given by

HFF (i) =
r∑

j=1

HFP (i − δj) =
r∑

j=1

binn−1(i − δj + n − 1) for all i ∈ Z .

e) Given homogeneous generators {g1, . . . , gs} of M , we let δj = deg(gj)
for j = 1, . . . , s . Then we have HFM (i) ≤ ∑s

j=1 binn−1(i − δj + n − 1)
for all i ∈ Z . In particular, HFM is an integer Laurent function.
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Proof. The first claim follows from the definition of M(j), since we have
M(j)i = Mi+j for all i ∈ Z . Now we prove b). Since the P -linear maps in the
exact sequence are homogeneous, we have for every i ∈ Z an exact sequence
of finite dimensional K -vector spaces 0 −→ M ′

i −→ Mi −→ M ′′
i −→ 0.

Counting dimensions yields dimK(Mi) = dimK(M ′
i) + dimK(M ′′

i ), i.e. the
claim.

Next we prove c) by induction on r . Since the case r = 1 is clear, we may
assume r > 1. Then the homogeneous exact sequence

0 −→ ⊕r−1
j=1 Mj −→ ⊕r

j=1 Mj −→ Mr −→ 0

together with b) and the induction hypothesis yields the claim.
Part d) follows by combining a) and c). Finally, claim e) is a consequence

of d) and of the fact that the P -linear map
⊕s

j=1 P (−δj) −→ M defined by
ej �→ gj for j = 1, . . . , s is homogeneous and surjective. �

Using these rules, we can already compute the Hilbert function of many
interesting graded P -modules (see also Exercise 5).

Example 5.1.15. Let f be a non-zero homogeneous polynomial of de-
gree d . Then the Hilbert function of the graded P -module P/(f) is given
by HFP/(f)(i) = ∆d HFP (i) for all i ∈ Z . In order to see why this holds, it
suffices to apply the proposition to the homogeneous exact sequence

0 −→ P (−d)
ϕ−→ P −→ P/(f) −→ 0

where the map ϕ is “multiplication by f ”.

More generally, we can consider multiplication by a homogeneous poly-
nomial on an arbitrary finitely generated graded P -module.

Proposition 5.1.16. (The Multiplication Sequence)
Let M be a finitely generated graded P -module, and let f ∈ P be a non-zero
homogeneous polynomial of degree d .
a) There is a homogeneous exact sequence of graded P -modules

0 −→ [M/(0 :
M

(f))] (−d)
ϕ−→ M −→ M/fM −→ 0

where the map ϕ is induced by multiplication by f .
b) For all i ∈ Z , we have HFM/fM (i) = HFM (i) − HFM/(0:

M
(f))(i − d) .

c) The polynomial f is a non-zerodivisor for the module M if and only if
HFM/fM (i) = ∆d HFM (i) for all i ∈ Z .

Proof. In order to prove a), we note that multiplication by f defines a
homogeneous P -linear map M(−d) −→ M whose kernel is [0 :

M
(f)](−d)

and whose cokernel is M/fM . By dividing out the kernel we get the de-
sired exact sequence. Claim b) follows by applying parts a) and b) of



188 5. Hilbert Functions

Proposition 5.1.14 to this sequence. Finally, let us prove c). If f is a non-
zerodivisor for M then 0 :

M
(f) = 0 and the conclusion follows from b).

Conversely, if we assume that HFM/fM (i) = ∆d HFM (i) for all i ∈ Z , then
HFM/fM (i) = HFM (i) − HFM (i − d) for all i ∈ Z . Using b), we see that
HFM/(0:

M
(f))(i − d) = HFM (i − d) and hence HF(0:

M
(f))(i − d) = 0 for all

i ∈ Z which implies that 0 :
M

(f) is the zero module, and concludes the
proof. �

For modules of the form M = P/I , this proposition can be simplified as
follows.

Corollary 5.1.17. Let I be a homogeneous ideal in P , and let f ∈ P be a
non-zero homogeneous polynomial of degree d . Then we have a homogeneous
exact sequence

0 −→ [P/(I :
P
(f))] (−d)

ϕ−→ P/I −→ P/(I + (f)) −→ 0

and therefore HFP/(I+(f))(i) = HFP/I(i)−HFP/(I:
P

(f))(i− d) for all i ∈ Z .
In particular, f is a non-zerodivisor for P/I if and only if we have

HFP/(I+(f))(i) = ∆d HFP/I(i) for all i ∈ Z .

Proof. It suffices to observe that 0 :
P/I

(f) = (I :
P

(f))/I and to apply the
proposition. �

In order to be able to compute the Hilbert function for arbitrary finitely
generated graded P -modules, we need one more result.

Theorem 5.1.18. (Hilbert Functions and Leading Term Modules)
Let δ1, . . . , δr ∈ Z , let F be the graded free P -module F =

⊕r
j=1 P (−δj) ,

let M be a graded submodule of F , and let σ be a module term ordering
on Tn〈e1, . . . , er〉 . Then we have HFM (i) = HFLTσ(M)(i) for all i ∈ Z .

Proof. By Macaulay’s Basis Theorem 1.5.7, the residue classes of the terms
in Tn〈e1, . . . , er〉 \ LTσ{M} form a K -basis of both F/M and F/LTσ(M).
For every i ∈ Z , the residue classes of the terms of degree i of the
set Tn〈e1, . . . , er〉 \ LTσ{M} are therefore K -bases of both (F/M)i and
(F/LTσ(M))i . Hence we can use Proposition 5.1.14.b and get HFM (i) =
HFF (i)−HFF/M (i) = HFF (i)−HFF/ LTσ(M)(i) = HFLTσ(M)(i) for all i ∈ Z .

�

By combining the preceding results, we obtain an effective method for
computing individual values of Hilbert functions of finitely generated graded
P -modules.

Corollary 5.1.19. (Computation of Hilbert Function Values)
Let i ∈ Z , let M be a finitely generated graded P-module, and assume that
we are given a presentation M = F/N where N is a graded submodule of F .
Consider the following instructions.
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1) Choose a module term ordering σ on Tn〈e1, . . . , er〉 and compute LTσ(N)
using Buchberger’s Algorithm 2.5.5.

2) Using the Structure Theorem for Monomial Modules 1.3.9, write LTσ(N)
in the form LTσ(N) =

⊕r
j=1 Ij ej with monomial ideals I1, . . . , Ir of P .

3) For j = 1, . . . , r , determine HFP (i− δj) by applying Proposition 5.1.13.
4) For j = 1, . . . , r , determine HFIj

(i − δj) by counting the terms of de-
gree i − δj in Tn which are contained in Ij .

5) Return the number
∑r

j=1(HFP (i − δj) − HFIj
(i − δj)) and stop.

This is an algorithm which computes the value HFM (i) of the Hilbert function
of M .

Proof. The given presentation implies HFM (i) = dimK(Fi) − dimK(Ni).
Now we use Proposition 5.1.14.d to compute dimK(Fi) =

∑r
j=1 HFP (i−δj).

By the theorem, we have HFN (i) = HFLTσ(N)(i). Next we apply Proposi-
tion 5.1.14.c to LTσ(N) =

⊕r
j=1 Ij ej . Since degW (ej) = δj for j = 1, . . . , r ,

we obtain dimK(Ni) = HFLTσ(N)(i) =
∑r

j=1 HFIj
(i − δj) for the second

dimension in the expression above. �

Unfortunately, this algorithm is not very efficient. In the next two sec-
tions, we shall develop a method which is much more suitable for practical
applications. Next we apply the theorem to show that Hilbert functions do
not change under base fields extensions.

Given any finitely generated graded P -module M , we can choose a pre-
sentation M ∼= F/N where F is a finitely generated graded free P -module
and N a graded submodule of F . If we then have a field extension K ⊆ L , we
let P = L[x1, . . . , xn] and F =

⊕r
j=1 P (−δj). The graded P -module F/NF

will be denoted by M ⊗K L . We say that M ⊗K L is obtained from M by
base field extension. This notation indicates that M ⊗K L is a special case
of a more general construction called tensor product. It is easy to see that
the P -module M ⊗K L does not depend on the choice of the presentation
M = F/N (see also Exercise 7). Using the theorem, we can determine the
Hilbert function of M ⊗K L as follows.

Corollary 5.1.20. Let M be a finitely generated graded P -module, and let
K ⊆ L be a field extension. Then we have HFM (i) = HFM⊗KL(i) for all
i ∈ Z .

Proof. We choose a homogeneous presentation M = F/N with a graded
free P -module F =

⊕r
j=1 P (−δj) , where δ1, . . . , δr ∈ Z , and a graded sub-

module N of F . Then we let P = L[x1, . . . , xn] and F =
⊕r

j=1 P (−δj).
By definition, we have M ⊗K L = F/N F . Since Lemma 2.4.16 yields
LTσ{N} = LTσ{N F} , the theorem shows HFN (i) = HFN F (i) for all i ∈ Z .
Together with Proposition 5.1.14.b, this equality implies the claim. �

Let us finish this section by showing that Hilbert functions are actually
integer functions of polynomial type in the sense of Definition 5.1.8.
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Theorem 5.1.21. Let M be a finitely generated graded P -module. Then its
Hilbert function HFM : Z −→ Z is an integer function of polynomial type.

Proof. Let {g1, . . . , gr} be a homogeneous system of non-zero generators
of M , and let δi = deg(gi) for i = 1, . . . , r . Letting F =

⊕r
j=1 P (−δi),

we have a homogeneous surjective P -linear map ϕ : F −→ M defined
by ϕ(ei) = gi for i = 1, . . . , r . Let N be its kernel. Thus we have a ho-
mogeneous presentation M ∼= F/N . We choose a module term ordering σ
on Tn〈e1, . . . , er〉 and write LTσ(N) =

⊕r
j=1 Ij ej with monomial ideals

I1, . . . , Ir . By Corollary 5.1.19, we have HFM (i) =
∑r

j=1(HFP (i − δj) −
HFIj

(i − δj)) for all i ∈ Z .
Since HFP is an integer function of polynomial type by Proposition 5.1.13

and Example 5.1.9, and since the set of integer functions of polynomial type
is a Z -module, it suffices to show that the Hilbert function HFI of any
monomial ideal I ⊆ P is an integer function of polynomial type. We write
I = (t1, . . . , ts) with terms t1, . . . , ts ∈ Tn and proceed by induction on s .
For s = 0, we have I = (0) and HFI(i) = 0 for all i ∈ Z .

Now suppose s > 0, and let d = deg(ts). By Corollary 5.1.17, we have a
homogeneous exact sequence

0 → [P/((t1, . . . , ts−1) :
P

(ts))] (−d) → P/(t1, . . . , ts−1) → P/(t1, . . . , ts) → 0

Furthermore, it is easy to check that (t1, . . . , ts−1) :
P

(ts) = (ts1, . . . , ts s−1),
where tsj = lcm(ts, tj)/ts for j = 1, . . . , s − 1. Hence we have

HFI(i) = HFP (i) − HFP/I(i)
= HFP (i) − HFP/(t1,...,ts−1)(i) + HFP/(ts1,...,ts s−1)(i − d)
= HF(t1,...,ts−1)(i) + HFP (i − d) − HF(ts1,...,ts s−1)(i − d)

and the claim follows from the induction hypothesis. �

Exercise 1. Let f : Z −→ Z be the integer function defined by f(i) = i !
for i > 0 and f(i) = 0 for i ≤ 0. Show that f is not of polynomial type.

Exercise 2. Let K be a field, and let P = K[x1, . . . , xn] be standard
graded. Describe all homogeneous ideals I ⊆ P such that HFP/I(i) = 1
for every i ≥ 0.

Exercise 3. Let i ∈ N . Find an ideal I in a polynomial ring P such
that the regularity index of HFP/I is i .

Exercise 4. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let ϕ : P1 −→ P1 be an isomorphism of K -vector spaces.

a) Show that there exists a bijective homogeneous K -algebra homomor-
phism Φ : P −→ P which extends ϕ .

b) Prove that HFP/I = HFP/Φ(I) for every homogeneous ideal I ⊆ P .
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Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let f1, f2 ∈ P \ {0} be two coprime homogeneous polynomials of
degrees d1, d2 , respectively. Show that, for all i ∈ Z , we have

HFP/(f1,f2)(i) = HFP (i)−HFP (i− d1)−HFP (i− d2) + HFP (i− d1 − d2)

Exercise 6. Let P = Q[x, y] , let p = x2 + y2, and consider the integer
function f : Z −→ Z defined by f(i) = #Supp(pi) for i ≥ 0 and f(i) = 0
for i < 0. Show that f is of polynomial type and determine its associated
polynomial and regularity index.

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let M be a finitely generated graded P -module. Suppose that we have
two presentations M ∼= F/N and M ∼= F ′/N ′ , where F =

⊕r
i=1 P (−δi)

and F ′ =
⊕r′

j=1 P (−δ′j) are two finitely generated graded free P -modules,

where N is a graded submodule of F , and where N ′ is a graded submodule
of F ′ . Let ϕ : F/N −→ F ′/N ′ be the corresponding isomorphism of

graded P -modules. Given a field extension K ⊆ L , let P = L[x1, . . . , xn]

and F =
⊕r

i=1 P (−δi) as well as F ′ =
⊕r′

j=1 P (−δ′j) .

a) Show that the map ϕ induces an isomorphism of graded P -modules

ϕ : F/N F −→ F ′/N ′ F ′ .
b) Conclude that the module M ⊗K L is well-defined.

Tutorial 64: Hilbert Functions and Graded Free Resolutions

A good resolution is like an old horse,
which is often saddled but rarely ridden.

(Mexican Proverb)

Using the fact that Hilbert functions are additive on short exact sequences,
we can derive relations between the Hilbert function of a graded module and
its graded Betti numbers. In the following we examine those relations more
closely. In particular, we ask you to prove that the graded Betti numbers
determine the Hilbert function, but that the converse is not true in general.

Let K be a field, let P = K[x1, . . . , xn] be standard graded, let M be a
finitely generated graded P -module, and let

0 −→ F�
ϕ�−→ F�−1

ϕ�−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

ϕ0−→ M −→ 0

be its minimal graded free resolution, where Fi =
⊕

j∈Z P (−j)βij is a graded
free P -module and the numbers βij are the graded Betti numbers of M .

a) Prove that the Hilbert functions satisfy HFM (i) =
∑�

j=0(−1)j HFFj
(i)

for all i ∈ Z . (Hint: Split the resolution into short exact sequences

0 −→ Ker(ϕj) −→ Fj
ϕj−→ Ker(ϕj−1) −→ 0

and use Proposition 5.1.14.b.)
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b) Conclude that HFM (i) =
∑�

j=0

∑
k∈Z(−1)jβjk binn−1(i− k + n− 1) for

all i ∈ Z .
c) Find the minimal graded free resolutions of the following ideals and mod-

ules and use them to compute their Hilbert functions.
1) M1 = (x1x2, x1x3, x2x3) ⊆ Q[x1, x2, x3] (see Tutorial 63.h)
2) M2 = (x2

1−x2x3, x1x2−x2
3, x1x3−x2

2) = I2(
(
x1 x2 x3
x3 x1 x2

)
) ⊆ Q[x1, x2, x3]

(see Tutorial 62). This is the homogeneous vanishing ideal of the
twisted cubic curve in P3

Q .
3) M3 = (x1x4−x2x3, x2

1x3−x3
2, x1x

2
3−x2

2x4, x2x
2
4−x3

3) ⊆ Q[x1, . . . , x4]
(see Example 4.8.13)

4) M4 = 〈(x2
1, x1), (0, x2 − x3)〉 ⊆ Q[x1, x2, x3](−1) ⊕ Q[x1, x2, x3]

d) Let I = (f, g) ⊆ P be an ideal generated by two coprime homogeneous
polynomials f, g ∈ P . We say that I is a complete intersection ideal
of type (a, b) , where a = deg(f) and b = deg(g). Find the minimal
graded free resolution of P/I and use it to give a formula for the Hilbert
function of this ring involving only a and b . Moreover, determine the
regularity index of P/I .

e) Let I = (f, g, h) ⊆ P be an ideal generated by a homogeneous regular
sequence (f, g, h) of length three in P . We say that I is a complete
intersection ideal of type (a, b, c) , where a = deg(f), b = deg(g),
and c = deg(h). Find the minimal graded free resolution of P/I and use
it to give a formula for the Hilbert function of this ring involving only a ,
b , and c . Moreover, determine the regularity index of P/I .

f) Consider the graded Q[x, y] -modules M1 = Q[x, y]/(x2, y2), M2 =
Q[x, y]/(x2, xy, y3), and M3 = Q[x, y]/(xy, x2 − y2) . Show that M1

and M2 have the same Hilbert function, but different graded Betti num-
bers. Furthermore, show that M1 and M3 have the same Hilbert func-
tion and the same graded Betti numbers, but there is no isomorphism of
graded Q[x, y] -modules between them.
The following parts of this tutorial require much more sophisticated al-

gebraic techniques. We advise you to attempt to solve them only if you feel
sufficiently comfortable with homological algebra (see Tutorial 33) and local-
izations (see Section 3.5.a).
g) Let I ⊆ P be a homogeneous ideal such that HFP/I(i) = 0 for i ≥ 2.

Show that this condition uniquely determines the graded Betti numbers
of P/I . Find them.
Hint: First reduce the task to the case HFP/I(1) = n . Then dualize the
graded free resolution of P/I and show that the dual complex is a min-
imal graded free resolution of the graded P -module HomP (P/I,K)(n).
Now determine the graded Betti numbers βn−1j , βnj .

h) Let d1 . . . , d� ∈ Z , and let I ⊆ P be a homogeneous ideal such that the
graded Betti numbers of P/I satisfy βij = 0 for i = 1, . . . , � and j �= di ,
and for i ≥ � + 1. Prove that the non-zero graded Betti numbers of I
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are given by βi di
= (−1)i+1

∏
j �=i dj/(dj − di).

Hint: Localize the graded free resolution of P/I at S = P \ {0} and
show that

∑�
i=1(−1)iβi di

= −1. Then solve the resulting linear system
of equations for the numbers βi di

using Vandermonde’s determinant and
Cramer’s rule.
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5.2 Hilbert Series

We hear within us the perpetual call:
There is the problem. Seek its solution.

You can find it by pure reason,
for in mathematics there is no ignorabimus.

(David Hilbert)

I would like to call your attention
to a frequently neglected point,

namely the fact that Hilbert’s scheme
for the foundation of mathematics

remains highly interesting and important
in spite of my negative results.

(Kurt Gödel)

In the preceding section we were highly successful. We found not merely
one numerical invariant attached to a graded module, but infinitely many.
Now we risk becoming victims of our own success, because it is not clear
how we could ever know all those invariants. Is there a way to get a finite
description of those infinitely many numbers or is there some ignorabimus
after all? A first hint as to how we can seek a solution to this problem
is given by Theorem 5.1.21 where we proved that the Hilbert function of
a finitely generated graded P -module is an integer function of polynomial
type. Hence we could try to determine the regularity index, the associated
polynomial, and the first few values of this function in order to completely
describe it. Clearly, this would be a rather cumbersome approach, both from
the computational and from the conceptual point of view. But it shows that
there is hope!

Mathematics is full of wonderful ideas, so let us use one of them. A strik-
ingly powerful method for getting infinity under control is the method of
generating functions. In the situation at hand, it means that we use the val-
ues of the Hilbert function as the coefficients of a univariate power series,
or, if the module has some components of negative degree, of a univariate
Laurent series. At first glance this seems to gain nothing at all, but then
Theorem 5.2.6 comes into play which says that if the coefficients of a power
series satisfy some recurrence relation, then that series is really the power se-
ries expansion of a rational function, i.e. of the quotient of two polynomials.
By pure reason, we have found the blueprint for this section!

In the first subsection we collect the material we need as the theoretical
basis for our further studies. We define the rings of univariate power series and
Laurent series and examine their elementary ring-theoretic properties. Then
we define and characterize rational power series, and finally we show that
the associated Laurent series of an integer Laurent function f of polynomial
type has the form p(z)

(1−z)n , where n ∈ N and p(z) is a Laurent polynomial
over Z .

In the second subsection we apply this theory to Hilbert functions. We de-
fine Hilbert series of finitely generated graded modules over standard graded
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polynomial rings and derive their basic properties from the corresponding
properties of Hilbert functions. In particular, we see that Hilbert series are
additive on short exact sequences, and that forming the residue class mod-
ule with respect to a homogeneous non-zerodivisor of degree d corresponds
to multiplying the Hilbert series by 1 − zd . One useful consequence of the
latter property is that, in the homogeneous case, permutations of regular se-
quences are again regular (see Corollary 5.2.17). Moreover, Hilbert series do
not change under passage to the leading term module (see Theorem 5.2.18)
and under extensions of the base field (see Corollary 5.2.19). Finally, as indi-
cated by the general theory, we show that Hilbert series of finitely generated
graded P -modules are rational power series, and we determine their shape as
closely as possible (see Theorem 5.2.20). Although the proof of this theorem
provides us with a first insight into how one can actually compute Hilbert
series, the hard work of formulating and optimizing concrete algorithms is
deferred to the next section.

5.2.A Univariate Power Series

The Power Series instruments
are weatherproof, simple to use,

and give you the information you want
in a package that is small enough

to place where you want it.
(Marine Equipment Advertisement)

In order to introduce power series rings, we shall mimic the construction
of polynomial rings in Section 1.1. Besides being weatherproof, they will turn
out to be simple to use instruments fundamental to the development of our
theory. Later we shall see that some of them are computable such as Hilbert
series of finitely generated graded modules. The construction of a package
for their computation is an important task in the design of every computer
algebra system.

Let R be a ring. Recall that, for us, this always means a commutative ring
with identity element. We consider the set RN of all sequences (r0, r1, . . .) of
elements r0, r1, r2 . . . of R . Using componentwise addition and scalar multi-
plication, this set becomes an R -module. Next, we equip the R -module RN

with a multiplication. Given two elements (r0, r1, . . .) and (s0, s1, . . .) of RN,
we define

(r0, r1, r2, . . .) · (s0, s1, s2, . . .) = (
∑

i+j=0

risj ,
∑

i+j=1

risj ,
∑

i+j=2

risj , . . .)

It is easy to check that the set RN , together with componentwise addition
and this multiplication, is a commutative ring with identity (1, 0, 0, . . .).
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Definition 5.2.1. Let R be a ring. We equip RN with the ring structure
defined above.
a) If we let z = (0, 1, 0, 0, . . .) , the ring RN is called the (formal) power

series ring in the indeterminate z over R and is denoted by R[[z]] .
b) For n ≥ 1, we recursively define R[[z1, . . . , zn]] = (R[[z1, . . . , zn−1]])[[zn]]

and call it the (formal) power series ring in n indeterminates over R .

c) The elements of a power series ring are called power series. Power series
in R[[z]] are often called univariate power series, while power series
in several indeterminates are called multivariate power series.

Next we describe some properties of univariate power series.

Proposition 5.2.2. Let R[[z]] be the univariate power series ring over a
ring R .
a) Every element f ∈ R[[z]] has a unique representation f =

∑
i≥0 ciz

i

with ci ∈ R for all i ≥ 0 .
b) The units in R[[z]] are the power series f =

∑
i≥0 ciz

i such that c0 is a
unit in R .

c) If R is an integral domain, then R[[z]] is an integral domain, too.

Proof. By induction on i , we see that zi = (0, . . . , 0, 1, 0, 0, . . .) for i ≥ 0,
where 1 is the (i + 1)st entry of the tuple. Given an element f = (c0, c1, . . .)
of R[[z]] , the sequence of power series c0z

0, c1z
1, . . . has the property that

there is at most one non-zero component in each position. Therefore its com-
ponentwise sum

∑
i≥0 ciz

i is well-defined. The sum is exactly f , and this
representation is clearly unique.

Next we prove b). Given a power series f =
∑

i≥0 ciz
i which is a unit,

there exists a power series g =
∑

j≥0 diz
i such that fg = 1. Then the

representation of fg is

f g = c0d0 + (c0d1 + c1d0) z + (c0d2 + c1d1 + c2d0) z2 + · · ·
Therefore we have c0d0 = 1. Hence c0 is a unit of R .

Conversely, let f =
∑

i≥0 ciz
i be a power series in R[[z]] such that c0 is

a unit of R , and let d0 ∈ R be such that c0d0 = 1. By induction on i , we
can define elements di = −d0 ·

∑i
j=1 cjdi−j of R for i > 0. Then the power

series g =
∑

j≥0 djz
j satisfies fg = 1, i.e. f is a unit in R[[z]] .

To prove c), we let f =
∑

i≥0 ciz
i and g =

∑
j≥0 djz

j be non-zero power
series. Let i0 = min{i ∈ N | ci �= 0} and j0 = min{j ∈ N | dj �= 0} . Hence
the representation of fg is ci0dj0 zi0+j0 +(ci0dj0+1 + ci0+1dj0) zi0+j0+1 + · · · .
Thus ci0dj0 �= 0 implies fg �= 0. �

From now on we shall always denote power series using the representation
provided by part a) of this proposition. If the base ring is a field K , we can
form both the field of fractions K(z) of K[z] and the localization K[[z]]z .
The following proposition describes the way those two rings are related.
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Proposition 5.2.3. Let K[[z]] be the univariate power series ring over a
field K .
a) The localization K[[z]]z is a field. It is isomorphic to the field of fractions

of K[[z]] .
b) There is a canonical injective ring homomorphism ϕ : K(z) −→ K[[z]]z .

In other words, the field K[[z]]z is an extension field of K(z) .

Proof. To prove a), we write an element f of K[[z]]z\{0} in the form f = g
zi ,

where i ≥ 0 and g =
∑

j≥0 cjz
j ∈ K[[z]] . Let m = min{j ≥ 0 | cj �= 0} and

h =
∑

j≥0 cj+mzj . So, h is a unit of K[[z]] by Proposition 5.2.2.b. Thus the
equations g = zmh and f · (zi−mh−1) = g · (zmh)−1 = 1 finish the proof
of the first claim of a). To show the second claim of a), it suffices to take a
fraction f

g such that f, g ∈ K[[z]] \ {0} , to write 1
g = h

zi with i ≥ 0 and
h ∈ K[[z]] using the first claim, and to note that f

g = fh
zi .

An abstract way to prove b) would be to appeal to the universal property
of the localization of K[z] in K[z] \ {0} (see Exercise 3 of Section 3.5). Here
we construct the map ϕ explicitly instead. Every non-zero element of K(z)
can be uniquely written in the form zi f

g , where i ∈ Z and f, g ∈ K[z] are
coprime polynomials such that g(0) �= 0. By Proposition 5.2.2.b, there exists
a power series h ∈ K[[z]] satisfying gh = 1. Now we set ϕ(zi f

g ) = zifh . It
is easy to check that this defines an injective ring homomorphism. �

Based on our characterization of rational power series in Theorem 5.2.6, it
is easy to see that the field extension K(z) −→ K[[z]]z is not an isomorphism
(see also Exercise 2).

Given an integral domain R with field of fractions K , we have fur-
ther canonical injective ring homomorphisms, namely R[[z]] ⊆ K[[z]] and
R[[z]]z ⊆ K[[z]]z . In particular, we can view R[[z]] and R[[z]]z and K(z)
as subrings of the field K[[z]]z , and their intersections R[[z]] ∩ K(z) and
R[[z]]z ∩ K(z) are also subrings of K[[z]]z . In order to facilitate our naviga-
tion through this tangle of rings, we introduce the following names.

Definition 5.2.4. Let R be an integral domain and K its field of fractions.
a) The subring R[[z]] ∩ K(z) of the field K[[z]]z is called the ring of ra-

tional power series over R .
b) The localization R[[z]]z of the power series ring R[[z]] in the element z

is called the ring of Laurent series in one indeterminate z over R .
c) Finally, the ring R[z]z is called the ring of Laurent polynomials

over R . It is sometimes also denoted by R[z, z−1] .

Notice that a Laurent series f can be written as f =
∑

j≥−i cjz
j for

some i ∈ N with elements cj ∈ R for j ≥ −i . Subsequently, we shall mainly
use power series and Laurent series over the ring R = Z . In this case, rational
power series can be represented as the quotient of two polynomials of specific
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type. Before delving further into this topic, we need some auxiliary results
about the ring Z[[z]] .

Lemma 5.2.5. Let ci ∈ Z for i ≥ 0 , let f =
∑

i≥0 ciz
i ∈ Z[[z]] , and let

p ∈ Z be a prime number.
a) The number p divides f if and only if p | ci for all i ≥ 0 .
b) The canonical map Z[[z]] −→ Z/(p)[[z]] induces a bijective ring homo-

morphism Z[[z]]/(p · Z[[z]]) −→ Z/(p)[[z]] .
c) The element p ∈ Z[[z]] is a prime element.

Proof. Part a) follows from the fact that, for a power series g =
∑

i≥0 diz
i ,

we have p · g =
∑

i≥0(p di) zi . Part b) is an immediate consequence of a),
since the canonical map Z[[z]] −→ Z/(p)[[z]] is obviously a surjective ring ho-
momorphism, and by a) its kernel is precisely p·Z[[z]] . Finally, part c) follows
from b), because Z/(p)[[z]] is an integral domain by Proposition 5.2.2.c. �

Using this lemma, we can characterize rational power series over Z as
follows.

Theorem 5.2.6. (Characterization of Rational Power Series)
Let ci ∈ Z for i ≥ 0 , and let f =

∑
i≥0 ciz

i ∈ Z[[z]] . Then the following
conditions are equivalent.
a) The power series f is rational.
b) There exist a polynomial g ∈ Z[z] and integers a1, . . . , am ∈ Z such that

f = g/(1 − a1z − a2z
2 − · · · − amzm) .

c) There are natural numbers m,n ∈ N and integers a1, . . . , am ∈ Z such
that ci = a1ci−1 + a2ci−2 + · · · + amci−m for all i > n .

Proof. First we show that a) implies b). Let g, h ∈ Z[z] be polynomials
with h �= 0 and f = g/h . Without loss of generality we may assume that g
and h are coprime. By considering g and h as elements of Q[z] , we can apply
Proposition 1.2.8.c and find polynomials g̃, h̃ ∈ Q[z] such that g g̃ + h h̃ = 1.
Now we clear denominators and obtain an equation g g∗ + hh∗ = n with
g∗, h∗ ∈ Z[z] and n > 0. Next we multiply fh − g = 0 by g∗ and use our
equation to get h(fg∗ + h∗) = n .

Suppose that there is a prime number p dividing n . Then p divides
fg∗ + h∗ , because otherwise we have p | h by part c) of the lemma, and
then p divides g = fh , contradicting the coprimality of g and h . By dividing
out p and repeating the argument, we see that n divides fg∗+h∗ . Therefore
there exists a power series f∗ ∈ Z[[z]] such that nf∗ = fg∗ + h∗ , and hence
hf∗ = 1. Now Proposition 5.2.2.b yields h(0) ∈ {1,−1} , which implies that
the representation f = h(0)g/(h(0)h) has the desired form.

To prove that b) implies c), we use the fact that h = 1−a1z−· · ·−amzm

is a unit in Z[[z]] by Proposition 5.2.2.b and write h−1 =
∑

i≥0 biz
i with

b0, b1, . . . ∈ Z . If we then compare coefficients in hh−1 = 1, we find
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(1) bi − a1bi−1 − a2bi−2 − · · · − ambi−m = 0

for i ≥ m . By setting bi = 0 for i < 0, we achieve that equation (1) holds
for all i > 0. But it obviously does not hold for i = 0. Next we write
g = d0 + d1z + · · ·+ dnzn with d0, . . . , dn ∈ Z . We determine the coefficients
in f = g h−1 and find

(2) ci = d0bi + d1bi−1 + · · · + dmbi−m

for all i ∈ Z , where we set ci = 0 for i < 0. Now we plug the equations (1)
into (2) and obtain ci = a1ci−1 + · · · + amci−m for i > n .

Since b) obviously implies a), it remains to show that c) implies b). Let n
be the smallest number for which the hypothesis holds, and let g =

∑
i≥0 diz

i

with di ∈ Z . We compare coefficients in f · (1 − a1z − · · · − amzm) = g and
get

d0 = c0

d1 = c1 − c0a1

d2 = c2 − c1a1 − c0a2

...
dn = cn − cn−1a1 − · · · − c0an

di = ci − ci−1a1 − · · · − ci−mam for i > n

where we set ai = 0 for i > m . The assumption implies di = 0 for i > 0.
Hence g = d0 + d1z + · · · + dnzn satisfies the claim. �

Let us examine the power of this theorem in a well-known case.

Example 5.2.7. Let c0, c1, . . . be the Fibonacci sequence, i.e. let c0 =
c1 = 1 and ci = ci−1 + ci−2 for i ≥ 2. Then we have m = 2, n = 1, and
a1 = a2 = 1 in condition c) of the theorem. Therefore the Fibonacci numbers
are the coefficients of the power series 1/(1− z− z2) = c0 + c1z + c2z

2 + · · · .
Furthermore, if we set ci = 0 for i < 0, we can consider the integer

Laurent function f : Z −→ Z defined by f(i) = ci for i ∈ Z . We note that
this is not an integer function of polynomial type, because if a polynomial
p ∈ IP satisfies p(i) = ci for large enough i , then p(i) = p(i − 1) + p(i − 2)
implies ∆p(i) = p(i − 2) for large i . But then we have deg(∆p) = deg(p),
contradicting Corollary 5.1.11.a.

This example leads us to the question of how one can recognize Laurent
series whose coefficients form an integer function of polynomial type. This is
the topic of the remainder of this subsection. Let f : Z −→ Z be a non-zero
integer Laurent function. The number min{i ∈ Z | f(i) �= 0} will be denoted
by αf or simply α . Moreover, the associated Laurent series

∑
i≥α f(i) zi will

be denoted by HSf (z). In the next subsection the integer Laurent function f
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we consider will be a Hilbert function and its associated Laurent series will
be called a Hilbert series.

Let us collect some elementary rules for dealing with Laurent series asso-
ciated to integer Laurent functions.

Proposition 5.2.8. Let f : Z −→ Z be a non-zero integer Laurent function.

a) For every q ≥ 1 , we have HS∆qf (z) = (1 − zq) · HSf (z) .
In particular, we have HS∆f (z) = (1 − z) · HSf (z) .

b) We have HSΣf (z) = HSf (z)/(1 − z) .

Proof. To prove a), we calculate (1 − zq)HSf (z) = (1 − zq)
∑

i≥α f(i) zi =∑
i≥α f(i) zi −

∑
i≥α+q f(i − q) zi = HS∆qf (z). Claim b) follows from a),

because we have HSf (z) = HS∆(Σf)(z) = (1 − z)HSΣf (z). �

For the proof of our next theorem, we need the power series expansion of
(1 − z)−n for all n ≥ 1.

Lemma 5.2.9. For all n ≥ 1 , we have (1 − z)−n =
∑

i≥0

(
i+n−1
n−1

)
zi .

Proof. We proceed by induction on n . For n = 1, the geometric series
yields (1 − z)−1 =

∑
i≥0 zi . Now let n > 1. Using the induction hypoth-

esis and Lemma 5.1.6.c, we calculate (1 − z)−n = (1 − z)(1 − z)−n+1 =
(
∑

i≥0 zi)(
∑

j≥0

(
j+n−2

n−2

)
zj) =

∑
i≥0

[∑i
j=0

(
j+n−2

n−2

)]
zi =

∑
i≥0

(
i+n−1
n−1

)
zi .

�

At this point we are ready to characterize those Laurent series which are
associated to integer functions of polynomial type.

Theorem 5.2.10. (Characterization of Laurent Series of Integer
Functions of Polynomial Type)
For a non-zero integer Laurent function f : Z −→ Z , the following conditions
are equivalent.
a) The integer function f is of polynomial type.
b) The associated Laurent series of f is of the form HSf (z) = p(z)

(1−z)m where
m ∈ N and p(z) ∈ Z[z, z−1] is a Laurent polynomial over Z .

If these conditions are satisfied, we have m = deg(HPf (t)) + 1 .

Proof. First we prove that a) implies b). Let m = deg(HPf (t)) + 1. By
Corollary 5.1.11.a, the associated polynomial of the integer function ∆mf
is HP∆mf (t) = ∆m HPf (t) = 0. Thus the Laurent series p(z) = HS∆mf (z)
is actually a Laurent polynomial, and Proposition 5.2.8 shows that we have
HSf (z) = p(z)/(1 − z)m .

Conversely, we can use the hypothesis and Proposition 5.2.8 to con-
clude that the associated Laurent series of ∆mf is the Laurent polynomial
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HS∆mf (z) = p(z) ∈ Z[z, z−1] . In particular, we see that ∆mf(i) = 0 for all
sufficiently large integers i . Thus ∆mf is an integer function of polynomial
type, and the claim follows from Proposition 5.1.10. �

Notice that the proof of this theorem shows that the Laurent polyno-
mial p(z) in b) is nothing but HS∆mf (z). Given an integer Laurent function
of polynomial type, we relate its associated polynomial, Laurent series, and
regularity index as follows.

Corollary 5.2.11. Let f : Z −→ Z be a non-zero integer Laurent function
of polynomial type, and let α = min{i ∈ Z | f(i) �= 0} .
a) The associated Laurent series of f has the form HSf (z) = p(z)/(1−z)m ,

where m ∈ N and p(z) ∈ Z[z, z−1] is a Laurent polynomial of the form
p(z) =

∑β
i=α ciz

i with β ≥ α , cα, . . . , cβ ∈ Z , cα �= 0 , and cβ �= 0 .
b) If m > 0 , then we have HPf (t) =

∑β
i=α ci

(
t−i+m−1

m−1

)
, and if m = 0 ,

then we have HPf (t) = 0 .
c) We have ri(f) = β − m + 1 .

Proof. In the light of the theorem, to prove a) we have to show that the
Laurent polynomial p(z) starts in degree α . Since we have p(z) = HS∆mf (z),
this follows from the fact that the first non-zero value of ∆mf is ∆mf(α).

In order to prove claim b), we note that the case m = 0 is trivially true.
For m > 0, we use the lemma and calculate

HSf (z) = p(z) · (1 − z)−m

=
( β∑

i=α

ciz
i
)( ∑

j≥1−m

(
j+m−1

m−1

)
zj
)

=
∑

i≥α+1−m

(min{β,i+m−1}∑
j=α

cj

(
i−j+m−1

m−1

))
zi

For i ≥ β+1−m , we therefore get f(i) =
∑β

j=α cj

(
i−j+m−1

m−1

)
, and the claim

follows.
For the proof of c), we use Proposition 5.2.8. We have HS∆mf (z) = p(z),

and therefore ri(∆mf) = β + 1. Now Corollary 5.1.11.b shows ri(f) =
ri(∆mf) − m = β − m + 1. �

Finally, we apply the preceding results to a concrete case.

Example 5.2.12. Let f : Z −→ Z be the integer Laurent function defined
by f(i) = 0 for i < −1, f(−1) = f(0) = 4, f(1) = 8, f(2) = 9, and
f(i) = 2i2 − i for i ≥ 3.

Clearly, we have HPf (t) = 2t2 − t and ri(f) = 3. Thus the number m in
the preceding corollary equals m = deg(HPf (t))+1 = 3, and we get α = −1
as well as β = ri(f) + m− 1 = 5. Hence the associated polynomial of f is of
the form HPf (t) = c−1

(
t+3
2

)
+c0

(
t+2
2

)
+· · ·+c5

(
t−3
2

)
, where c−1, . . . , c5 ∈ Z .
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In order to find the numbers c−1, . . . , c5 , we could substitute some values ≥ 3
for t and solve the resulting linear system of equations.

Another method follows from the corollary. First we compute ∆3f and
get ∆3f(−1) = 4, ∆3f(0) = −8, ∆3f(1) = 8, ∆3f(2) = −7, ∆3f(3) = 8,
∆3f(4) = 2, and ∆3f(5) = −3. Therefore we have p(z) = 4z−1 − 8 +
8z − 7z2 + 8z3 + 2z4 − 3z5 and HSf (z) = p(z)/(1 − z)3 . The corresponding
representation of HPf (t) is

HPf (t) = 4
(
t+3
2

)
− 8
(
t+2
2

)
+ 8
(
t+1
2

)
− 7
(

t
2

)
+ 8
(
t−1
2

)
+ 2
(
t−2
2

)
− 3
(
t−3
2

)
Notice that the integer function g : Z −→ Z defined by g(i) = 0 for

i < 0 and g(i) = 2i2 − i for i ≥ 0 has the same associated polynomial
as f . But since ri(g) = 0 and g(1) is the first non-zero value of g , the
representation HSg(z) = (z + 3z2)/(1− z)3 is much easier to compute. Since
the difference between f and g is given by f(−1)−g(−1) = 4, f(0)−g(0) =
4, f(1) − g(1) = 7, and f(2) − g(2) = 3, we can use HSg to calculate HSf

by HSf (z) = 4z−1 + 4 + 7z + 3z2 + z+3z3

(1−z)3 .

5.2.B Hilbert Series in the Standard Graded Case

Two thirds of the people can’t do fractions.
The other half just doesn’t care.

(Anonymous)

After filling two thirds of this section with generalities about power series
and Laurent series, we now use the other half to apply this theory to the case
of Hilbert series. Starting from here, we operate again under the assumptions
that K is a field and P = K[x1, . . . , xn] a standard graded polynomial ring.
Recall that the Hilbert function of a finitely generated graded P -module is
an integer Laurent function by Proposition 5.1.14.c.

Definition 5.2.13. For a finitely generated graded P -module M, the as-
sociated Laurent series of the Hilbert function of M is called the Hilbert
series of M and is denoted by HSM . In other words, the Hilbert series of M
is the Laurent series HSM (z) =

∑
i≥α HFM (i) zi ∈ Z[[z]]z , where α = α(M)

is the initial degree of M (see Definition 4.7.9.c).

Since the coefficients of this Laurent series are the values of the Hilbert
function of M, the results of Section 5.1.B can be translated into statements
about Hilbert series of finitely generated graded modules. This task is ac-
complished by the following four propositions.

Proposition 5.2.14. The Hilbert series of P is given by HSP (z) = 1
(1−z)n .

Proof. By Proposition 5.1.13, the Hilbert function of P is given by HFP (i) =
binn−1(i + n − 1) for all i ∈ Z , and by Lemma 5.2.9, these numbers are
precisely the coefficients of the power series expansion of 1/(1 − z)n . �
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Proposition 5.2.15. (Basic Properties of Hilbert Series)
Let M,M ′,M ′′ be three finitely generated graded P -modules.
a) For all j ∈ Z , we have HSM(j)(z) = z−j HSM (z) .
b) Given a homogeneous exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0 ,

we have HSM (z) = HSM ′(z) + HSM ′′(z) .
c) Let M = M1 ⊕ · · · ⊕ Mr with finitely generated graded P -modules

M1, . . . , Mr . Then we have HSM (z) = HSM1(z) + · · · + HSMr
(z) .

d) Let δ1, . . . , δr ∈ Z . Then the Hilbert series of the graded free module
F =

⊕r
j=1 P (−δi) is HSF (z) = (

∑r
j=1 zδj )/(1 − z)n .

Proof. Part a) follows coefficientwise from Proposition 5.1.14.a, because if we
let α = min{i ∈ Z | Mi �= 0} , we have HSM(j)(z) =

∑
i≥α−j HFM(j)(i) zi =∑

i≥α−j HFM (i + j) zi = z−j
∑

i≥α HFM (i) zi = z−j HSM (z). The remain-
ing claims are immediate consequences of the corresponding parts of Propo-
sition 5.1.14.a and of Proposition 5.2.14. �

The Hilbert series version of the multiplication sequence reads as follows.

Proposition 5.2.16. Let M be a finitely generated graded P -module, and
let f ∈ P \ {0} be a homogeneous polynomial of degree d . Then we have
HSM/fM (z) = HSM (z) − zd HSM/(0:

M
(f))(z) .

In particular, the polynomial f is a non-zerodivisor for the module M if
and only if HSM/fM (z) = (1 − zd) HSM (z) .

Proof. To prove the first claim, it suffices to apply the Multiplication Se-
quence 5.1.16 and to use the basic properties listed above. The second claim
follows from Propositions 5.1.16.c and 5.2.8.a. �

In the case M = P/I , this proposition can be rewritten in the spirit of
Corollary 5.1.17. We leave this job to the reader and generalize the case of a
homogeneous non-zerodivisor to a homogeneous regular sequence instead.

Corollary 5.2.17. Let M be a finitely generated graded P -module, and let
f1, . . . , f� ∈ P be homogeneous polynomials of degrees d1, . . . , d� respectively.
Then the following conditions are equivalent.
a) The sequence f1, . . . , f� is a regular sequence for M .
b) We have HSM/(f1,...,f�)M (z) =

∏�
i=1(1 − zdi) HSM (z) .

c) For every permutation σ(1), . . . , σ(�) of the sequence 1, . . . , � , the se-
quence fσ(1), . . . , fσ(�) is a regular sequence for M .

Proof. The equivalence of a) and b) follows from the proposition by induc-
tion on � . This equivalence implies that a) and c) are equivalent, too. �

In Tutorial 33.b we saw an example of a non-homogeneous regular se-
quence where one of its permutations was not regular. Notice that this corol-
lary makes an example like that impossible in the homogeneous case.

Our next two results follow coefficientwise from the analogous properties
of Hilbert functions (see Theorem 5.1.18 and Corollary 5.1.20).
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Theorem 5.2.18. (Macaulay’s Theorem for Hilbert Series)
Let δ1, . . . , δr ∈ Z , let M be a graded submodule of the graded free P -module⊕r

i=1 P (−δi) , and let σ be a module term ordering on Tn〈e1, . . . , er〉 . Then
we have HSM (z) = HSLTσ(M)(z) .

As for Hilbert functions, we see that Hilbert series do not change under
base field extensions.

Corollary 5.2.19. Let M be a graded P -module, and let K ⊆ L be a field
extension. Then we have HSM⊗KL(z) = HSM (z) .

The last theorem of this section provides us with a precise description of
the shape of the Hilbert series of a finitely generated graded P -module.

Theorem 5.2.20. Let M be a non-zero finitely generated graded P -module,
and let α(M) = min{i ∈ Z | Mi �= 0} . Then the Hilbert series of M has the
form

HSM (z) = zα(M) HNM (z)
(1−z)n

where HNM (z) ∈ Z[z] and HNM (0) = HFM (α(M)) > 0 . Note that n is the
number of indeterminates of P .

Proof. By Theorem 5.1.21, the Hilbert function of M is an integer Laurent
function of polynomial type. Hence Theorem 5.2.10 shows that HSM (z) is of
the form p(z)

(1−z)m , where p(z) ∈ Z[z, z−1] is a Laurent polynomial and m− 1
is the degree of the associated polynomial of HFM . We claim that m ≤ n .

To prove this claim, we choose a homogeneous presentation M ∼= F/N
with a graded free P -module F and a graded submodule N of F . Since
HFM (i) ≤ HFF (i) , we have deg(HPHFM

) ≤ deg(HPHFF
). The degree of

the right-hand side is n − 1 by Proposition 5.1.14.d. Therefore we have
m = 1 + deg(HPHFM

) ≤ 1 + deg(HPHFF
) = n , as we wanted to show.

Now let p(z) = cαzα + cα+1z
α+1 + · · · + cβzβ , where α, β ∈ Z satisfy

α ≤ β and where cα, . . . , cβ ∈ Z . Using 1
(1−z)n = 1 + nz +

(
n+1

2

)
z2 + · · · ,

we see that HSM (z) = cαzα + (terms of higher degree). Hence α equals the
initial degree α(M) of M and cα = HFM (α) > 0. �

In other words, the Hilbert series of a graded module M is completely
determined by its initial degree α and the polynomial HNM (z) ∈ Z[z] . In
order to compute the Hilbert series of M , it is therefore sufficient to com-
pute HNM (z). Let us give this polynomial a name.

Definition 5.2.21. Given a finitely generated graded P -module M with
initial degree α = min{i ∈ Z | Mi �= 0} and Hilbert series HSM (z) =
zα HNM (z)

(1−z)n , the polynomial HNM (z) ∈ Z[z] is called the Hilbert numerator
of M .



5.2 Hilbert Series 205

Exercise 1. Let R = K[[z1, . . . , zn]] be a power series ring over a field K .

a) Show that a power series f ∈ R is a unit in R if and only if
f(0, . . . , 0) �= 0.

b) Prove that R has exactly one maximal ideal. Describe it!

Exercise 2. Show that the power series
∑

i≥1 zi! ∈ Z[[z]] is not rational.

Exercise 3. (A combinatorial identity)

For all n ≥ 1 and d > 0, show that
(

d+n−1
n−1

)
=
∑d

i=1(−1)i+1
(

n
i

) (
d−i+n−1

n−1

)
.

Exercise 4. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let I be a homogeneous ideal in P which is (x1, . . . , xn)-primary (see
Tutorial 43). Show that HSP/I(z) is a polynomial.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
let 1 ≤ s ≤ n , and let f1, . . . , fs be a homogeneous regular sequence for P .
For i = 1, . . . , s , we let di = deg(fi) . A ring of the form P/(f1, . . . , fs)
is called a homogeneous complete intersection of type (d1, . . . , ds) .
Show that the Hilbert series of a homogeneous complete intersection of
type (d1, . . . , ds) is given by

HSP/(f1,...,fs)(z) =
∏s

i=1(1+z+z2+···+zdi−1)

(1−z)n−s

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let I, J ⊆ P be two homogeneous ideals of P . Prove the following
equalities.

a) HNP/I(z) + HNP/J(z) = HNP/(I+J)(z) + HNP/(I∩J)(z)

b) zα(I) HNI(z)+zα(J) HNJ(z) = zα(I+J) HNI+J(z)+zα(I∩J) HNI∩J(z)

Exercise 7. Find a standard graded polynomial ring P and a finitely

generated graded P -module M whose Hilbert series is HSM (z) = z−1

(1−z)
.

Exercise 8. Consider the rational power series f = 1
1−z2 ∈ Q[[z]] .

a) Find a recurrence relation which describes the coefficients of f (see
Theorem 5.2.6.c).

b) Is there a standard graded K -algebra whose Hilbert series is f ?
c) Find a non-standard graded K -algebra whose Hilbert series is f .

Exercise 9. Find a homogeneous ideal I in a standard graded poly-
nomial ring P such that ∆(HFP/I) is not the Hilbert function of any
ring P/J with a homogeneous ideal J ⊆ P .

Exercise 10. Let f : Z −→ Z be a non-zero integer Laurent function
of polynomial type, and let d ∈ N be the degree of its associated integer
valued polynomial. Prove that there are integers e0, . . . , ed such that we
have the formula

HPf (t) =
∑d

i=0 ei

(
t+d−i

d−i

)
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Tutorial 65: Knight Moves

If you can’t beat your computer at chess,
try kickboxing.
(Anonymous)

How could I lose to such an idiot?
(Aaron Nimzowitch)

A well-known problem in elementary mathematics asks for the number
of squares on an infinite chess board a chess knight can reach in n moves.
Here we want to answer this question and similar ones without resorting
to complicated induction arguments, but using the power of Computational
Commutative Algebra instead.

To begin with, we let K be a field and identify the squares of an in-
finite chessboard with the (extended) terms in the Laurent polynomial ring
L = K[x, y, x−1, y−1] . For every n ∈ N , we let f(n) be the number of squares
a chess knight placed at 1 = x0y0 can reach in n moves. Moreover, let g(n)
be the number of squares a chess knight placed at 1 can reach in n , but not
in fewer moves.

The following picture illustrates the positions contributing to f(1) = g(1)
(marked •), those contributing to g(3) (marked ◦), and to f(3) (all marked
positions).
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1

•
••

•

•
• •
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◦ ◦ ◦

◦ ◦
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◦
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◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦ x6y−3

Similarly, we can picture the positions counted in f(2) (marked •), in g(4)
(marked ◦), and in f(4) (all marked positions) as follows.



5.2 Hilbert Series 207
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x5y−7

In the first part of this tutorial, we want to determine the functions f(n)
and g(n). Let M = {m1,m2, . . . , m8} be the set of the eight terms in L
given by m1 = x2y , m2 = xy2 , m3 = x−1y2 , m4 = x−2y , m5 = x−2y−1 ,
m6 = x−1y−2 , m7 = xy−2 , and m8 = x2y−1 .
a) Let n ∈ N and i, j ∈ Z . Show that the square xiyj is reachable from 1

in n moves if and only if xiyj ∈ Mn = {µ1 · · ·µn | µj ∈ M} . Conclude
that f(n) = #Mn .

b) Prove that g(n) = #(Mn \ ∪n−1
i=0 M i) for all n ∈ N .

c) Compute the first values of f(n) and g(n) by hand. Is it true that we
have g(n) = f(n) − f(n − 2)?

d) Let P = K[x1, . . . , x8] be standard graded, i.e. graded by the matrix
W = (1 1 · · · 1). We define a K -algebra homomorphism ϕ : P −→ L
by setting ϕ(xi) = mi for i = 1, . . . , 8. Using CoCoA, compute the ideal
I = ker(ϕ). (Hint: Use Proposition 3.5.6 to get a presentation of L . Then
apply Proposition 3.6.2.)

e) Let n ∈ N and i1, . . . , in, j1, . . . , jn ∈ {1, . . . , 8} . Prove that the two
products mi1 · · ·min

and mj1 · · ·mjn
are equal in L if and only if the

binomial xi1 · · ·xin
− xj1 · · ·xjn

is contained in I . Conclude that, for
every n ∈ N , the number #Mn equals dimK(Pn) minus the dimension
of the space of all such binomials of degree n .

f) Let IW be the homogeneous part of I (see Tutorial 50). Prove that I
and IW are binomial ideals. Using one of the CoCoA functions from Tu-
torial 50, compute IW .
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g) Show that f is the Hilbert function of P/IW . Compute HSP/IW
(z) and

derive a formula for f(n). (Hint: Use the method of the proof of Theo-
rem 5.2.6.)

h) Given n ∈ N and i1, . . . , in ∈ {1, . . . , 8} , prove that a product mi1 · · ·min

is contained in Mn \ ∪n−1
i=0 M i if and only if no binomial of the form

xi1 · · ·xin
− t with t ∈ T8

≤n−1 is contained in I .
i) Let σ be a degree compatible term ordering on T8 . Show that there is a

binomial of the form t−t′ ∈ I with t, t′ ∈ T8 and deg(t) > deg(t′) if and
only if t ∈ LTσ(I). Conclude that g is the Hilbert function of P/LTσ(I).

j) Using CoCoA, compute the Hilbert series of P/LTσ(I) and derive a for-
mula for g(n).

In the second part of this tutorial, we want to generalize the above method to
count products of extended terms or Laurent terms, i.e. terms in Laurent
polynomial rings. Let K be a field, let L = K[x1, . . . , xn, x−1

1 , . . . , x−1
n ] be

a Laurent polynomial ring, and let M = {m1, . . . , ms} be a finite set of
Laurent terms. Our goal is to determine the numbers f(n) = #Mn and
g(n) = #(Mn \ ∪n−1

i=0 M i) for every n ∈ N .
k) Let P = K[y1, . . . , ys] be standard graded. Define a homomorphism

of K -algebras ϕ : P −→ L by setting ϕ(yi) = mi for i = 1, . . . , s .
Write a CoCoA function RelationIdeal(. . .) which takes the tuple
(log(m1), . . . , log(ms)) and computes the ideal I = ker(ϕ).

l) Prove that, for every n ∈ N , the value f(n) is equal to HFP/IW
(n),

where W = (1 1 · · · 1) ∈ Mat1,s(Z) and IW is the homogeneous part
of I .

m) Write a CoCoA function LaurentProducts(. . .) which computes the func-
tion f(n). (Hint: You may use the built-in CoCoA function Hilbert(. . .).)

n) Prove that, for every n ∈ N , the value g(n) is equal to HFP/ LTσ(I)(n),
where σ is a degree compatible term ordering on Ts .

o) Write a CoCoA function NewLaurentProducts(. . .) which computes the
function g(n).

p) Try your functions for computing f(n) and g(n) in the following cases.
1) M1 = {x, xy, y, x−1y, x−1, x−1y−1, y−1, xy−1} in K[x, y, x−1, y−1]

(What does this mean in chess?)
2) M2 = {xy, x−1y, x−1y−1, xy−1} in K[x, y, x−1, y−1] (Picture this!)
3) M3 = {xiyjzk | i, j, k ∈ Z, i2+j2+k2 = 5} in K[x, y, z, x−1, y−1, z−1]

(The knight in spatial chess!)

Avoid the crowd.
Do your own thinking independently.

Be the chess player, not the chess piece.
(Ralph Charell)
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Tutorial 66: Veronese Subrings

In algebraic geometry, Veronese varieties are well-studied objects. In this
tutorial we examine the algebraic analog of taking a Veronese embedding
of a projective variety. Moreover, we want to understand how this process
affects the Hilbert series of the corresponding coordinate rings. Let K be a
field, and let R be a standard graded K -algebra, i.e. a K -algebra of the
form R = P/I , where P = K[x1, . . . , xn] is standard graded and I ⊆ P is a
homogeneous ideal.

For every d > 0, we let R(d) be the N -graded K -algebra whose ith

homogeneous component is R
(d)
i = Rdi for all i ≥ 0. The ring R(d) is called

the d th Veronese subring of R .
a) Show that R(d) is a standard graded K -algebra.
b) For the case R = P, find an explicit presentation of P (d) . More precisely,

show that P (d) ∼= K[y1, . . . , yN ]/Jd , where N =
(
d+n−1

n−1

)
and Jd is the

following ideal. Let t1, . . . , tN be the terms of degree d in Tn . Then Jd

is generated by all polynomials yiyj − yky� for i, j, k, � ∈ {1, . . . , N}
such that titj = tkt� . (Hint: Represent Jd as the kernel of a suitable
K -algebra homomorphism. Then show that it is a binomial ideal.)
The projective variety Vd(Pn−1) = Z(Jd) ⊆ PN−1 is called the d th

Veronese variety. Notice that the ideal Jd is a toric ideal (see Tutori-
als 38 and 45).

c) Write a CoCoA function VeroneseIdeal(. . .) which takes d > 0 and a
homogeneous ideal I in the current ring P and computes an ideal J in a
polynomial ring K[y1, . . . , yN ] such that we have R(d) ∼= K[y1, . . . , yN ]/J ,
where R = P/I .

Now suppose we are given a Laurent series f =
∑

i≥i0
ciz

i ∈ Z[[z]]z and a
number d > 0. Then we define f (d) =

∑
i∈Z cdiz

di and Verd(f) =
∑

i∈Z cdiz
i .

The Laurent series Verd(f) is called the d th Veronese series associated
to f . Our next goal is to compute some Veronese series which are associated
to important Hilbert series. For this, we need a few transformation rules. Let
g ∈ Z[[z]]z be a further Laurent series, and let h(z) = f(zd)g(z).
d) Show that h(d)(z) = f(zd)g(d)(z).
e) Using d), prove that Verd(h) = f · Verd(g).
f) Conclude that if f has the form f(z) = p(z)

(1−z)n for some Laurent poly-

nomial p(z) ∈ Z[[z]] , then we have Verd(f) = Verd((1+z+···+zd−1)n p(z))
(1−z)n .

g) Using f), compute Ver3( 1+z
(1−z)2 ).

h) In the situation of f) let f̃ : Z −→ Z be the integer Laurent function
such that HSf̃ = Verd(f), and let δ = deg(p). Then prove that we
have ri(f̃) ≤ � δ−n

d � + 1. Here �q� is the function which maps a rational
number q to the largest integer ≤ q .
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i) Show that the preceding inequality is not always an equality by examining
the case g(z) = (1 + z + z2 + z3 − 2z4 + z5)/(1 − z)2 with d = 2.

j) Next suppose f = HSR . Show that Verd(f) is the Hilbert series of the
Veronese subring R(d) .

k) Let Q = K[x1, x2] and d ≥ 1. Prove that the Hilbert series of Q(d) is
HSQ(d)(z) = 1+(d−1)z

(1−z)2 .
l) Write a CoCoA function VeroneseHS(. . .) which takes a number d > 0

and a homogeneous ideal I in the current ring P and computes the
Hilbert series of the d th Veronese subring of R = P/I .
Hint: In order to compute the Hilbert series of R , you may use the built-
in CoCoA function Poincare(. . .) . Now apply f).

m) Use your function VeroneseHS(. . .) to compute the Hilbert series of the
following Veronese subrings.
1) d ∈ {2, 3, 4, 5} , I = (0), n ∈ {1, 2, 3}
2) d ∈ {2, 3, 4} , I = (x3 + y3 + z3) ⊆ K[x, y, z]
3) d ∈ {2, 3} , I = (x2

1 − x2x3, x2
2 − x3x4) ⊆ K[x1, . . . , x4]

n) For i ∈ {0, . . . , d − 1} and j ∈ Z , we let (M (i))j = Ri+dj . Prove
that M (i) =

⊕
j∈N(M (i))j is a finitely generated graded R(d) -module.

o) Show that R , considered as an R(d) -module, satisfies R ∼=
⊕d−1

i=0 M (i) .
Is this an isomorphism of graded R(d) -modules?

p) Using f) again, write a CoCoA function VeroneseModuleHS(. . .) which
takes d > 0, i ∈ {0, . . . , d − 1} , and a homogeneous ideal I ⊆ P and
computes the Hilbert series of the module M (i) over R(d) = (P/I)(d) .
Hint: Show that the Hilbert series of M (i) over R(d) is given by
Verd(z−i HSP/I(z)).

q) Apply your function VeroneseModuleHS(. . .) to compute the Hilbert se-
ries of all possible modules M (i) in the cases of m).

Tutorial 67: Powers of Polynomials and Ehrhart Functions

What is the power of polynomials?
Just look at their powers,

the growth of their size is polynomial.
(Anonymous)

In Tutorial 42 we studied some strange polynomials. Their behaviour was
atypical in the sense that the square of each had fewer terms in its support
than the polynomial itself. However, to discover such polynomials, we had
to look for very special coefficients. In other words, such a property is truly
strange, because it is far from being shared by a generic polynomial. So, the
current question is: what is the generic size of a power of a polynomial? How
many terms are there in the support of these powers? After working for a
while in Computational Commutative Algebra, we have grown accustomed
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to the expressive power of polynomials. In this tutorial, we are concerned
with measuring the size of their powers.

Let K be a field, and let P = K[x1, . . . , xn] . For a non-zero polynomial
f ∈ P , we let LSupp(f) = {log(t) | t ∈ Supp(f)} ⊆ Nn be the logarithmic
support of f . Recall that in Tutorial 13 we defined the Newton polytope
of f as the convex hull of LSupp(f). Moreover, given a subset S of Nn and
a positive integer i ∈ N+ , we define

i S = {p1 + · · · + pi | p1, . . . , pi ∈ S}

a) Show that i conv(S) = conv(i S) for every i ≥ 1 and every S ⊆ Nn .
b) Prove that #Supp(f i) = #LSupp(f i) ≤ #(iLSupp(f)) for every i ≥ 1.

In the following we let char(K) = 0. Given S = {t1, . . . , tr} ⊆ Tn , we
say that a property holds for generic polynomials with support in S if
there exists a non-trivial system of polynomial equations in r indeterminates
such that the property holds for every polynomial a1t1 + · · ·+artr for which
(a1, . . . , ar) ∈ Kr is not a solution of the system.
c) Let i ≥ 1, and let S ⊆ Tn be a non-empty finite subset. Show that we

have #(LSupp(gi)) = #(iLSupp(g)) and Newton(gi) = iNewton(g) for
generic polynomials g with support in S .

d) Let i ≥ 1 and S = {t1, . . . , tr} ⊆ Tn a non-empty subset. Prove that
every polynomial g = a1t1 + · · · + artr with a1, . . . , ar ∈ N+ satisfies
#LSupp(gi) = #(iLSupp(g)) and Newton(gi) = iNewton(g).
Considering these results, we assume hereinafter that S = {t1, . . . , tr} is a

non-empty subset of Tn and that f ∈ P is a generic polynomial with support
in S , or f = a1t1 + · · · + artr with positive integers a1, . . . , ar . To measure
the size of Supp(f i) for i ≥ 1, we want to bring Hilbert functions into play. A
term in the support of f i is of the form tα1

1 · · · tαr
r with α1+· · ·+αr = i . Thus

we can view this term as a power product in t1, . . . , tr , and if t1, . . . , tr were
distinct indeterminates, it would be sufficient to count those power products.
e) For every i ≥ 1, prove that #Supp(f i) ≤

(
r+i−1

i−1

)
. Find an example

where this is a strict inequality.
So, the terms t1, . . . , tr do not behave like indeterminates. For counting

the terms in Supp(f i) using a suitable Hilbert function, we need at least the
property that Supp(f i) ∩ Supp(f j) = ∅ for i �= j . Unfortunately, not even
this is true in general, as the example f = x + x2 shows, where we have
Supp(f) ∩ Supp(f2) = {x2} . But for this problem there exist remedies, and
we shall examine two of them. The first one uses the homogenization of f and
is based on the observation that the terms in the support of different powers
of a homogeneous polynomial have different degrees. The second remedy is
to multiply f by a new indeterminate y0 and to observe that the terms
in Supp((y0f)i) have degree i in y0 .
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To implement the first method, consider the homogenization F = fhom

of f in P = K[x0, . . . , xn] . Let Supp(F ) = {t̄1, . . . , t̄r} , and let I ⊆ P be
the monomial ideal generated by {t̄1, . . . , t̄r} .
f) For every i ≥ 1, show that #Supp(f i) is the minimal number of gener-

ators of Ii .
g) Give an example which shows that f) is not true if char(K) > 0.

Let y1, . . . , yr be further indeterminates, and let Q = K[y1, . . . , yr] be
standard graded. In Tutorial 38 we defined the toric ideal associated to the
matrix (log(t̄1), . . . , log(t̄r)) ∈ Matn+1,r(N) by J = (y1− t̄1, . . . , yr − t̄r)∩Q .
h) Show that J is a homogeneous ideal. Then prove #Supp(f i) = HFQ/J(i)

for every i ≥ 1.
i) Give an example which shows that h) is not true if char(K) > 0.
j) Write a CoCoA function SuppSize(. . .) which takes a non-empty finite

subset S ⊆ Tn and computes the power series
∑

i≥0 #Supp(f i)zi , where
f ∈ Q[x1, . . . , xn] is a generic polynomial with support in S .

k) Apply your function SuppSize(. . .) to the following cases.
1) S1 = {x2

1, x1x2, x
2
2} ⊆ T2

2) S2 = {x1x2x3, x4
1, x4

2, x4
3, x3

1x
2
2, x3

2x
2
3, x2

1x
3
3} ⊆ T3

3) S3 = {xi1 · · ·xi5 | 1 ≤ i1 < · · · < i5 ≤ 8} ⊆ T8

l) Now implement the second method for treating the problem mentioned
above. More precisely, show that the results of f) and h) remain true if
we replace (t̄1, . . . , t̄r) by (y0t1, . . . , y0tr).
In the last part of this tutorial we connect the growth of the size of the

powers of a polynomial to the problem of counting integral points inside
polytopes. Since the latter problem extends well beyond the scope of this
tutorial, we must content ourselves with seeing just a few aspects.

Let us start again with a non-empty, finite subset S of Nn . We want to
count the number of integral points in conv(iS) for i ≥ 1, i.e. we want to
determine the function EFS : N −→ N given by EFS(i) = #(conv(iS) ∩ Nn).
This function is called the Ehrhart function of S .
m) Imitate the construction preceding f) to define a suitable subset S

of Tn+1 which has the property that EFS(i) = EFS(i) for all i ∈ N .
n) Let IS ⊆ P be the ideal generated by {xα0

0 · · ·xαn
n | (α0, . . . , αn) ∈ S} .

For every i ≥ 1, prove that EFS(i) is the minimal number of generators
of IS .

o) Let r = #S , and let JS ⊆ Q be the toric ideal associated to S . Prove
that JS is a homogeneous ideal and EFS(i) = HFQ/JS

(i) for all i ∈ N .
p) Conclude that there exists an integer valued polynomial EPS ∈ Q[t]

such that EFS(i) = EPS(i) for all sufficiently large i . This polynomial
is called the Ehrhart polynomial of S .

q) Write a CoCoA function EhrhartPoly(. . .) which computes the Ehrhart
polynomial of a non-empty finite subset of Nn .

r) Apply your function EhrhartPoly(. . .) to the following sets.
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1) S′
1 = {(0, 0), (6, 0), (5, 3)} ⊆ N2

2) S′
2 = {(3, 3, 0), (3, 0, 3), (0, 3, 3), (3, 6, 3), (6, 3, 3), (3, 3, 6)} ⊆ N3

3) S′
3 = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1), (1, 1, 1, 1, 1)} ⊆ N5

s) How many integral points lie in or on the triangle with vertices (0,−100),
(0, 50), and (75, 25)?

............................... ................

........

.......................

................

x

y

•

•

•

(0,−100)

(0,50)
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5.3 Computation of Hilbert Series

I think there is a world market
for maybe five computers.

(Thomas J. Watson, IBM, 1943)

Computers in the future
may weigh no more than 1.5 tons.

(Popular Mechanics, 1949)

640K ought to be enough for anybody.
(William H. Gates, 1981)

Prediction is very difficult,
especially about the future.

(Niels Bohr)

Nowadays, hundreds of millions of computers have been sold, the opening
screen of the Windows operating system alone occupies more than 640 kilo-
bytes of memory, and there are powerful notebook computers weighing no
more than 1.5 kilograms. Personal computers offer us tremendous power and
with their help we may dare to compute very complicated Hilbert series.
However, to achieve that goal we still need a good deal of hard work. Why
is this problem so difficult?

First of all, we need an algorithm. More than a century ago, David
Hilbert invented graded free resolutions for the purpose of computing the
functions which are now called Hilbert functions in his honour. But as we
have seen in Chapter IV, the computation of graded free resolutions is a
tough job. Fortunately, the theory of Gröbner bases and Buchberger’s algo-
rithm have improved the situation dramatically. In the last section we saw
that, to compute the Hilbert series of a graded module over the polynomial
ring P = K[x1, . . . , xn] over a field K , it is enough to determine its Hilbert
numerator. Moreover, the proof of Theorem 5.1.21 contains the outline of an
algorithm for doing this: first apply the basic properties to reduce the task to
the case of a P -module of the form P/I , where I is a monomial ideal, and
then use the multiplication sequence to proceed by induction on the minimal
number of generators of I .

This leads to a recursive procedure called the Classical Hilbert Numerator
Algorithm 5.3.2 which clearly shows where the difficulties of the problem lie.
On the one hand, we need a Gröbner basis of the module under consideration;
this part of the task has been discussed in Chapter IV. On the other hand,
using the multiplication sequence to break the problem into smaller pieces
may lead to an exponential number of branches of the computation. Since we
are dealing with monomial ideals, the combinatorial complexity of the task
appears here. We need to administer the full force of our cunning in order to
do well in most cases.

As you know by now, computers are not intelligent. They only think they
are. Therefore we need to invent good strategies in order to convince them
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to work efficiently on the challenge posed by the computation of Hilbert nu-
merators. More specifically, given a minimal monomial system of generators
{t1, . . . , ts} of I , we need to choose a good pivot, i.e. a term p ∈ Tn

d such
that the multiplication sequence

0 → [P/((t1, . . . , ts) :
P

(p))](−d) → P/(t1, . . . , ts) → P/(p, t1, . . . , ts) → 0

breaks the computation into two well-balanced parts. In this way, we hope
to get swiftly down to the base cases, i.e. monomial ideals whose Hilbert
numerator we know offhand. Are there good strategies for choosing such a
pivot? And what does it mean for a strategy to be good?

To answer these questions, we have to leave the firm ground of propo-
sitions and theorems. For every strategy, one can invent examples where it
performs exceptionally well or particularly badly. What really makes a strat-
egy good or bad is therefore its behaviour with respect to a large number
of interesting examples. Viewed from a higher point of view, what a strat-
egy does is to try to predict the future course of the computation. And as
we have seen, predictions are notoriously difficult, especially if they concern
the future. In this sense we discuss a number of strategies with fancy names
such as the indeterminate strategy (which is far from being indeterminate,
of course), the GCD strategy, and the CoCoA strategy. The last one is the
strategy implemented in CoCoA (where else?), and naturally, it is the one
we think is generally the best. Furthermore, these algorithms and strategies
lend themselves to a straightforward generalization: in Section 5.8 we shall
see how to compute Hilbert series in a Zm -graded setting.

Obviously, the structure of this section differs from the other ones. Tech-
nical terms such as recursive procedure, pivot element, strategies, and base
cases abound and the most instructive features are a couple of running exam-
ples which tie together the whole discussion and come in more installments
than a short-lived TV series. Do you see the difference? Like a diamond, a
good theorem is forever, but a good algorithm is confronted with an extra
looming parameter, a finite life-span. The end of the development is that,
using the best available strategies, one can achieve results which are so good
that nowadays the computation of Hilbert series can be used as a tool for
speeding up the computation of graded free resolutions (see Tutorial 69). In
this way, history has come full circle and Hilbert’s project is carried out in
reverse order!

In this section we let K be a field, P = K[x1, . . . , xn] a standard graded
polynomial ring, and M a non-zero finitely generated graded P -module. We
assume that we are given a homogeneous presentation M ∼= F/N , where F
is a finitely generated graded free P -module and N is a graded submodule
of F . We write F =

⊕r
i=1 P (−δi) with δ1, . . . , δr ∈ Z .

Clearly, if ei ∈ N for some i ∈ {1, . . . , r} , we can replace the presentation
M = F/N by a simpler presentation M ∼= F ′/N ′ , where F ′ is a graded free
P -module of rank r − 1 and N ′ is a graded submodule of F ′ . Therefore we
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shall from now on assume that the presentation of M is chosen in such a way
that ei /∈ N for i = 1, . . . , r . Hence the homogeneous system of generators
{e1 + N, . . . , er + N} of M consists of non-zero elements.

In Theorem 5.2.20 we saw that the Hilbert series of M is of the form
HSM (z) = zα HNM (z)/(1 − z)n , where α = min{i ∈ Z | Mi �= 0} is the
initial degree of M and HNM (z) ∈ Z[z] . Because of our assumption, we
have α = min{δ1, . . . , δr} . Our goal of computing the Hilbert series of M
immediately reduces to the task of finding the polynomial HNM (z) ∈ Z[z] .
The next step is to reduce the problem to the computation of the polynomial
HNP/I(z) for a monomial ideal I . The following proposition does that job.

Proposition 5.3.1. Let M ∼= F/N be a finitely generated graded P -module,
where N is given by an explicit set of generators and ei /∈ N for i = 1, . . . , r .
Assume that there exists a procedure MonHN(I) which computes the Hilbert
numerator HNP/I(z) for a monomial ideal I in P . Consider the following
instructions.
1) Let α = min{δ1, . . . , δr} . After choosing a module term ordering σ on

Tn〈e1, . . . , er〉 , compute LTσ(N) using Buchberger’s Algorithm.
2) Let {t1eγ1 , . . . , tseγs

} be a system of generators of LTσ(N) , where
t1, . . . , ts ∈ Tn and γ1, . . . , γs ∈ {1, . . . , r} . For i = 1, . . . , r , let Ii ⊆ P
be the monomial ideal generated by {tj | 1 ≤ j ≤ s, γj = i} and compute
HNP/Ii

(z) by performing MonHN(Ii) .
3) Return the polynomial

∑r
i=1 zδi−α HNP/Ii

(z) and stop.
This is an algorithm which computes the Hilbert numerator HNM (z) .

Proof. Since the procedure is clearly finite, it remains to prove correctness.
Using Properties 5.2.15.b,d and Proposition 5.2.18, we calculate HSM (z) =∑r

i=1 zδi HSP (z) − HSLTσ(N)(z). By the Structure Theorem for Monomial
Modules 1.3.9, we have LTσ(N) =

⊕r
i=1 Iiei , and therefore HSN (z) =∑r

i=1 zδi HSIi
(z). Hence we get HSM (z) =

∑r
i=1 zδi (HSP (z) − HSIi

(z)) =∑r
i=1 zδi HSP/Ii

(z). By assumption we have ei /∈ N for i = 1, . . . , r . Thus
we have P/Ii �= 0 and min{j ∈ Z | (P/Ii)j �= 0} = 0. Now Theorem 5.2.20
yields HSP/Ii

(z) = HNP/Ii
(z)/(1 − z)n . Altogether, we get

HSM (z) = zα

(1−z)n ·
r∑

i=1

zδi−α HNP/Ii
(z)

Since the algorithm returns the sum appearing on the right-hand side, the
claim follows from Theorem 5.2.20. �

To develop an algorithm for computing the Hilbert numerator of P/I for
a monomial ideal I we shall use a recursive procedure, i.e. a procedure
which may call itself during its execution. Of course, we have to make sure
that this does not lead to an infinite loop.

Recall from Proposition 1.3.11 that, given a monomial ideal I in P , there
exists a unique minimal monomial system of generators of I . So, given any



5.3 Computation of Hilbert Series 217

set of terms which generates I , this minimal monomial system of generators
is a subset of the given set and can be computed easily (see the proof of
Proposition 1.3.11 and Tutorial 8).

Now we are ready to describe the classical algorithm for computing Hilbert
numerators.

Theorem 5.3.2. (The Classical Hilbert Numerator Algorithm)
Let I be a non-zero proper monomial ideal in P . Consider the procedure
MonHN(I) defined by the following instructions.
1) Let {t1, . . . , ts} be the minimal monomial system of generators of I . If

s = 1 , let d = deg(t1) , return the result 1− zd , and stop. Otherwise, let
p ∈ {t1, . . . , ts} , and let J be the ideal generated by {t1, . . . , ts} \ {p} .

2) Call the procedures MonHN(J) and MonHN(J :
P
(p)) , and let f1(z) and

f2(z) be the polynomials which they return.
3) Let d = deg(p) . Return the polynomial f1(z) − zdf2(z) and stop.

This is an algorithm which computes the Hilbert numerator HNP/I(z) .

Proof. First we prove finiteness. In step 2), the procedure MonHN(. . .) calls
itself twice. We show that in both instances the minimal number of generators
of the ideal passed as argument is smaller than s . This fact is clear for J ,
and J :

P
(p) is the ideal generated by the terms lcm(ti, p)/p with ti �= p .

Hence we eventually reach s = 1, and the procedure stops in step 1).
To show correctness, we note that when the procedure reaches s = 1,

we have I = (t1) and the claim follows from Corollary 5.2.17. Now we use
induction on the minimal number of generators and assume that f1(z) =
HNP/J (z) and f2(z) = HNP/(J:

P
(p))(z). From Proposition 5.2.16, we get that

HSP/I(z) = HSP/J (z) − zd HSP/(J:
P

(p))(z). Thus the claim follows from the
observation that a P -module of the form P/I with a homogeneous proper
ideal I has its first non-zero homogeneous component in degree zero, and
from Theorem 5.2.20. �

Notice that the algorithm of this theorem shows that the polynomial it
returns always has constant coefficient HNP/I(0) = 1. Moreover, we remark
that several choices of p are available, and different choices may lead to
different levels of efficiency. Let us have a look at an example.

Example 5.3.3. Let I be the monomial ideal in K[x1, x2, x3] minimally
generated by {x3

1x2, x2
2x3, x4

3, x2x
2
3} . If we choose p = x2x

2
3 , we obtain

J = (x3
1x2, x2

2x3, x4
3) and J :

P
(p) = (x3

1, x2, x2
3). These ideals have three

minimal generators each.
However, if we choose p = x4

3 instead, we get J = (x3
1x2, x2

2x3, x2x
2
3)

and J :
P

(p) = (x3
1x2, x2

2, x2) = (x2). In this case the second ideal has only
one minimal generator, and this branch of the computation stops at the next
step. Thus this choice of p is better.
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In view of this example the question arises which minimal generator of I
we should choose in step 1). The following method works well in practise.

Remark 5.3.4. (The Good Generator Strategy)
Let I be a non-zero proper monomial ideal in P , and let {t1, . . . , ts} be its
minimal monomial system of generators. Let i ∈ {1, . . . , n} be such that xi

divides one of the terms t1, . . . , ts . Let p be one of the terms in which xi

appears with the highest exponent. Then apply step 1) of the Classical Hilbert
Numerator Algorithm.

In this way, not only does the ideal J :
P

(p) have at most s−1 generators,
but also its generators do not involve the indeterminate xi anymore. Hence
one of the branches of the algorithm stops after at most n − 1 recursions.

A number of further algorithms for computing Hilbert numerators of
monomial ideals are based on the idea that we can use the formula

HSP/(I+(p))(z) = HSP/I(z) − zd HSP/(I:
P

(p))(z)

where p is a term and d = deg(p), in another way, namely by expressing
HNP/I(z) in terms of HNP/(I+(p))(z) and HSP/(I:

P
(p))(z). In the following

we refer to p as the pivot. Again we have to make sure that this does not
lead to an infinite loop. We need to show that the recursive calls are applied
to sets generating simpler ideals. The following notion will help us achieve
this.

Definition 5.3.5. Let I be a monomial ideal and {t1, . . . , ts} its minimal
monomial set of generators. Then we define Σdeg(I) = deg(t1)+ · · ·+deg(ts)
and call it the total degree of I .

The recursion stops when we reach ideals I so simple the we know the
Hilbert numerator of P/I without further computation. These very simple
ideals are called the base cases. For instance, the base cases in the Classical
Hilbert Numerator Algorithm are the principal monomial ideals. For our
more general procedures a richer collection of base cases is provided by the
following proposition.

Proposition 5.3.6. Let I be a non-zero proper monomial ideal in P whose
minimal monomial generators {t1, . . . , ts} are pairwise coprime. Then the
Hilbert numerator of P/I is given by HNP/I(z) =

∏s
i=1(1 − zdeg(ti)) .

Proof. Using induction on s , we show that (t1, . . . , ts) is a regular sequence
for P ; then the claim follows from Corollary 5.2.17. Clearly, t1 is not a
zerodivisor in P. Now let s > 1, and suppose f ∈ P is a polynomial for
which f ts ∈ (t1, . . . , ts−1). It follows that, for every t̃ ∈ Supp(f), there exists
an index i ∈ {1, . . . , s − 1} such that ti divides t̃ ts . Then gcd(ti, ts) = 1
implies t̃ ∈ (ti). Altogether, we find f ∈ (t1, . . . , ts−1), as desired. �
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A monomial ideal which satisfies the hypothesis of this proposition will
be called a monomial complete intersection. Notice that it cannot have
more than n minimal monomial generators. At this point we can formulate
a prototype algorithm for computing Hilbert numerators of monomials ideals
using different strategies.

Theorem 5.3.7. (Computing Hilbert Numerators Using Strategies)
Suppose there exists a procedure Pivot(I) which applies to monomial ideals I
in P that are not monomial complete intersections, and which returns a
term p such that Σdeg(I:

P
(p)) < Σdeg(I) and Σdeg(I + (p)) < Σdeg(I) .

Let I be a non-zero proper monomial ideal in P . Consider the procedure
MonHN(I) defined by the following instructions.
1) Check whether I is a monomial complete intersection. If it is, let

d1, . . . , ds be the degrees of the minimal monomial generators of I . Re-
turn the result

∏s
i=1(1 − zdi) and stop. Otherwise, let p be the term

computed by Pivot(I) .
2) Call the procedures MonHN(I:

P
(p)) and MonHN(I +(p)) , and let f1(z) and

f2(z) be the polynomials which they return.
3) Let d = deg(p) . Return the polynomial zd f1(z) + f2(z) and stop.

This is an algorithm which computes the Hilbert numerator HNP/I(z) .

Proof. First we prove finiteness. In step 2), the procedure MonHN(. . .) calls
itself twice. In both instances the monomial ideals to which it applies have a
smaller total degree. Since the total degree is always non-negative, we even-
tually arrive at a monomial complete intersection or at total degree zero. We
claim that total degree zero never happens. If Σdeg(I) = 0, we have either
I = (0) or I = (1). Since I �= (0), it is clear that both I :

P
(p) �= (0) and

I + (p) �= (0). Thus I = (0) never happens. It remains to show that I = (1)
never happens.

Initially, this follows from I �= P . Later, the procedure Pivot(I) never
chooses p = 1, since then the equality I :

P
(p) = I contradicts the inequality

Σdeg(I :
P

(p)) < Σdeg(I). Thus we never get I + (p) = (1). Nor do we ever
get I :

P
(p) = (1), since in that case p ∈ I yields I+(p) = I , in contradiction

with Σdeg(I + (p)) < Σdeg(I). Altogether, we never reach Σdeg(I) = 0.
Hence the procedure stops in step 1) in every branch of the recursion.

Now we show correctness. When the procedure reaches a monomial
complete intersection, the claim follows from Proposition 5.3.6. Next we
use induction on the depth of the recursion. Hence we may assume that
f1(z) = HNP/(I:

P
(p))(z) and f2(z) = HNP/(I+(p))(z). Proposition 5.2.16 im-

plies
HSP/I(z) = zd HSP/(I:

P
(p))(z) + HSP/(I+(p))(z)

By using Theorem 5.2.20 and multiplying everything by z−α(1 − z)n , we
get HNP/I(z) = zdf1(z)+ f2(z). Therefore the algorithm returns the correct
result. �
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Naturally, we still need to show that a procedure Pivot(I) with the de-
sired properties really exists. In fact, we shall now introduce a number of
different strategies used in modern computer algebra systems and compare
their efficiency by way of two running examples.

Remark 5.3.8. (The Indeterminate Strategy)
Far from being indeterminate, this strategy is very concise and simple. The
procedure Pivot(I) determines i ∈ {1, . . . , n} such that xi is a proper divi-
sor of one of the minimal monomial generators of I and returns p = xi .

Let us see why this choice has the desired properties. First of all, an index
i ∈ {1, . . . , n} always exists, because ideals generated by indeterminates are
monomial complete intersections and we assumed I not to be one. Now let tj
be a minimal monomial generator of I which is a proper multiple of xi . Since
the exponent of xi in the corresponding generator lcm(xi, tj)/xi = tj/xi of
I:

P
(xi) is decreased by one, we have Σdeg(I:

P
(xi)) < Σdeg(I). On the other

hand, we have I + (xi) = J + (xi) , where J = (tk | xi � tk). Hence the ideal
I + (xi) has total degree 1 +

∑
xi�tk

deg(tk) < Σdeg(I).
In general, the ideal I:

P
(xi) will have about the same minimal number

of generators as I . A decrease happens for instance in situations such as
(x2

1x2, x1x3) :
P

(x3) = (x1). But the ideal I + (xi) will usually have sig-
nificantly fewer minimal generators than I , because all minimal generators
divisible by xi are replaced by the single minimal generator xi . This tends
to lead to a somewhat unbalanced situation where the two branches of the
computation have substantially different computational costs. Therefore the
indeterminate strategy is easy to implement, but not always very efficient.
An optimization is contained in Exercise 7.

Now let us immediately start our two running examples.

Example 5.3.9. (Running One)
Let P = K[x1, . . . , x4] and I = (x3

3, x3
2x3x

2
4, x2

1x
4
2x

2
4, x1x2x

2
3). We want

to compute the Hilbert numerator of P/I using the indeterminate strat-
egy. In the first step, we choose the indeterminate x1 as a pivot and obtain
I1 = I :

P
(x1) = (x3

3, x3
2x3x

2
4, x1x

4
2x

2
4, x2x

2
3) as well as I2 = I + (x1) =

(x3
3, x3

2x3x
2
4, x1). These ideals have four and three minimal monomial gener-

ators, respectively, and further recursive function calls are required.
For I1 , we choose x2 and find I11 = I1 :

P
(x2) = (x2

3, x2
2x3x

2
4, x1x

3
2x

2
4)

as well as I12 = I1 + (x2) = (x3
3, x2). To treat I11 , we choose the pivot x3

and get I111 = I11 :
P

(x3) = (x3, x
2
2x

2
4) as well as I112 = I11 + (x3) =

(x3, x1x
3
2x

2
4). Both of these are base cases, so that we get HNP/I111(t) =

(1 − z)(1 − z4) and HNP/I112(z) = (1 − z)(1 − z6) , and therefore

HNP/I11(z) = z HNP/I111(z) + HNP/I112(z) = (1 − z)(1 + z − z5 − z6)

Since I12 is a base case, we then compute HNP/I12(z) = (1− z)(1− z3) and

HNP/I1(z) = z HNP/I11(z) + HNP/I12(z) = (1− z)(1 + z + z2 − z3 − z6 − z7)
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For I2 , we choose the pivot x3 and immediately get the base cases I21 =
I2 :

P
(x3) = (x2

3, x3
2x

2
4, x1) as well as I22 = I2 + (x3) = (x1, x3). This yields

HNP/I21(z) = (1−z)(1−z2)(1−z5) and HNP/I22(z) = (1−z)2 , and therefore
HNP/I2(z) = (1− z)(1− z3 − z6 + z8). Altogether, the algorithm returns the
result

HNP/I(z) = 1 − z3 − z4 + z5 − z6 + z8

Our initial choice of the pivot was not the only possible one. By analyzing
the support of the minimal monomial generators of I , we may be able to
come up with a better choice (see also Exercise 7). In the case at hand, we
can take x3 as a pivot and get J1 = I :

P
(x3) = (x2

3, x3
2x

2
4, x1x2x3) as well

as J2 = I + (x3) = (x3, x2
1x

4
2x

2
4). Here J2 is already a base case, and J1 is

simpler than I1 .

Example 5.3.10. (Running Two)
Let P = K[x1, . . . , x4] and I = (x1x

3
3, x2

1x
2
2x3, x1x

3
2x3, x3

1x2x3x4) . Here the
pivot x1 yields the ideals I1 = I :

P
(x1) = (x3

3, x1x
2
2x3, x3

2x3, x2
1x2x3x4)

and I2 = I + (x1) = (x1). Clearly, this is a very unbalanced result and
the treatment of I1 will require much more work than the treatment of I2

which is a trivial base case. Notwithstanding this observation, we shall later
see that, in this very example, the indeterminate strategy is not performing
badly at all. So, to really see the difference between various strategies, one
usually has to look at much larger examples than we do here.

Our next strategy tries to overcome the deficiencies of the indeterminate
strategy by choosing the pivot to maximize the likelihood that the computa-
tion is cut into two branches of approximately the same size.

Remark 5.3.11. (The GCD Strategy)
Consider the following strategy which contains some “random” choice: Given
a monomial ideal I which is not a complete intersection, having a minimal
monomial system of generators {t1, . . . , ts} , choose an indeterminate xi such
that #{j | xi divides tj} is maximal. Then choose randomly two different
terms tj , tk which are divisible by xi , and return p = gcd(tj , tk).

Let us again prove that this strategy has the desired properties. First
of all, it always returns a result, because there must be some indeterminate
which is contained in at least two of the terms t1, . . . , ts , otherwise we would
be in a base case. Secondly, since the term p is divisible by xi , the minimal
monomial generators of the ideal I :

P
(p) corresponding to the terms tj

which are divisible by xi have their xi -exponents reduced by one. Thus the
ideal I :

P
(p) has smaller total degree than I . Finally, in the ideal I + (p)

the two generators tj , tk are replaced by p , and thus it, too, has smaller total
degree.

Experience shows that the GCD strategy performs well on many types
of input ideals. If #{j | xi divides tj} ≥ 3, it turns out to be even better
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to use as pivot the greatest common divisor of three randomly chosen terms
ti, tj , tk which are divisible by xi . Let us apply the GCD strategy to our
example “Running One”.

Example 5.3.12. (Running Further)
In Example 5.3.9, the indeterminates x2 and x3 each appear in three gen-
erators. We randomly choose the first and second generators containing x2

and compute p = gcd(x3
2x3x

2
4, x2

1x
4
2x

2
4) = x3

2x
2
4 . Using this term as pivot, we

calculate I1 = I :
P

(p) = (x3, x2
1x2) and I2 = I + (p) = (x3

3, x3
2x

2
4, x1x2x

2
3).

Here I1 is a base case and yields HNP/I1(z) = (1 − z)(1 − z3) . When we
apply the GCD strategy to I2 , we choose p = x2 and get I21 = I2 :

P
(x2) =

(x3
3, x2

2x
2
4, x1x

2
3) as well as I22 = I2 + (x2) = (x3

3, x2). Again I22 is a base
case and yields HNP/I22(z) = (1 − z)(1 − z3). In order to deal with I21 , our
strategy chooses p = x2

3 and computes I211 = I3 :
P

(x2
3) = (x1, x3, x

2
2x

2
4)

as well as I212 = I3 + (x2
3) = (x2

3, x2
2x

2
4). Since these are base cases, we get

HNP/I211(z) = (1 − z)2(1 − z4) and HNP/I212(z) = (1 − z2)(1 − z4), and
therefore HNP/I21(z) = (1 − z)(1 − z4)(1 + z + z2 − z3) . Putting everything
together, we find HNP/I2(z) = (1 − z)(1 + z + z2 − z4 − z5 − z6 − z7 + z8)
and

HNP/I(z) = 1 − z3 − z4 + z5 − z6 + z8

Even a brief glance at this computation convinces us that it is easier than
“Running One”. At several junctures there were other possible choices of
pivot, depending on random choices in our strategy but, in this example, all
of them yield similar computational trees.

Next we hit Example 5.3.10 with the GCD strategy and let the algorithm
run its course.

Example 5.3.13. (Hit and Run)
In the ideal I = (x1x

3
3, x2

1x
2
2x3, x1x

3
2x3, x3

1x2x3x4) of Example 5.3.10, the
indeterminates x1 and x3 occur in all generators. If we randomly take
the first two, we obtain the pivot p = gcd(x1x

3
3, x2

1x
2
2x3) = x1x3 . This

pivot leads us to consider I1 = I :
P

(x1x3) = (x2
3, x1x

2
2, x3

2, x2
1x2x4) and

I2 = I + (x1x3) = (x1x3) next. Since I2 is a base case, we apply the GCD
strategy to I1 . The indeterminate occurring most often is x2 , and the great-
est common divisor of the (randomly chosen) first two generators containing
it is p = x2

2 .
Therefore the algorithm has to compute I11 = I1 :

P
(x2

2) = (x2
3, x1, x2)

and I12 = I1+(x2
2) = (x2

3, x2
2, x2

1x2x4) , where I11 is a base case and I12 easily
reduces to base cases by choosing p = x2 . Again the choice of hitting the
ideal with the pivot given by the greatest common divisor of two generators
has reduced it quickly to some very simple cases.

From these examples, it would appear that the GCD strategy is the best
one available. But we have not yet taken into account one operation which
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incurs substantial computational cost: after each colon operation, the result-
ing list of terms has to be minimalized. In the worst case, this means that
we have to perform

(
s
2

)
divisibility tests on a list of s terms. Our final strat-

egy is similar to the GCD strategy in that it chooses terms of higher degree
dividing at least two minimal generators. But it restricts this choice to pure
powers of indeterminates, because for such pivots p the computation of the
minimal monomial generators of I :

P
(p) can be improved substantially (see

Exercise 4). This is the strategy implemented in CoCoA, and it performs really
well in practice.

Remark 5.3.14. (The CoCoA Strategy)
As a compromise between the two previous strategies, we introduce the fol-
lowing one. Given a monomial ideal I which is not a complete intersection,
let xi be one of the indeterminates occurring most often in the minimal
monomial generators {t1, . . . , ts} of I . Then choose randomly two minimal
generators tj , tk divisible by xi , and let p be the highest power of xi dividing
both tj and tk . Return p and stop.

It follows as in Remark 5.3.11 that this strategy has the properties pre-
scribed by Theorem 5.3.7. Although it sometimes produces slightly more
complicated ideals than the GCD strategy while the algorithm is running, it
can be implemented very efficiently, so that its higher speed more than makes
up for the extra distance it has to go.

Of course, we jump at once into action and run this strategy on our first
running Example 5.3.9.

Example 5.3.15. (Jump and Run)
When we apply the CoCoA strategy to Example 5.3.9, we can choose p to
be the highest power of x2 contained in x3

2x3x
2
4 and x2

1x
4
2x

2
4 , i.e. we choose

p = x3
2 . We obtain the ideals I1 = I :

P
(x3

2) = (x3
3, x3x

2
4, x2

1x2x
2
4, x1x

2
3)

and I2 = I + (x3
2) = (x3

3, x3
2, x1x2x

2
3). To treat I1 further, we choose the

indeterminate x3 and then the first two generators to get the pivot x3 . This
yields I11 = I1 :

P
(x3) = (x2

3, x2
4, x1x3) and I12 = I1 + (x3) = (x3, x2

1x2x
2
4),

where I11 can easily be split using p = x3 and I12 is a base case.
To treat I2 further, we choose the indeterminate x2 and the last two

generators to get the pivot x2 . This yields I21 = I2 :
P

(x2) = (x3
3, x2

2, x1x
2
3)

and I22 = (x3
3, x2) , where I21 can easily be split using p = x2

3 and I22 is a
base case. By recombining the Hilbert numerators, we get the result. Notice
that the computation in the two main branches has exactly the same length.
Thus our strategy splits the problem in a very balanced way into two parts.

To end this discussion, we have a look at a really fast example.

Example 5.3.16. (Road Runner)
Let us apply the CoCoA strategy to Example 5.3.10. Since x1x3 divides all the
generators, we choose p = x1 and get I1 = I :

P
(x1) = (x3

3, x1x
2
2x3, x3

2x3,
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x2
1x2x3x4) and I2 = I + (x1) = (x1). Then we deal with I1 by choosing

the pivot x3 and get I11 = I1 :
P

(x3) = (x2
3, x1x

2
2, x3

2, x2
1x2x4) and I12 =

I1 + (x3) = (x3). Finally, we treat I11 by choosing p = x2
2 and get the

base case I111 = I11 :
P

(x2
2) = (x2

3, x1, x2) as well as I112 = I11 + (x2
2) =

(x2
3, x2

2, x2
1x2x4) which is easily split by p = x2 . The computation was simple

at each step. Using the method of Exercise 4, the implementation yields a
fast and efficient algorithm.

All strategies can be enhanced further by enlarging the set of base cases,
for instance by using the cases described in Exercise 5 and Tutorial 68.

Exercise 1. Let K be a field, let P = K[x1, x2, x3] be standard graded,
let F = P (−2) ⊕ P (−1)2 , and let M be the graded submodule of F
generated by {e1−x1e2, x1x2e2, x3

2e2, x3e2−x2e3} . Compute the Hilbert
series of F/M .

Exercise 2. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let I = (x1x2, x2x3, . . . , xn−1xn) . Apply the Classical Hilbert Numer-
ator Algorithm 5.3.2 to the ideal I . In step 1) choose the term involving
the indeterminate with maximal index. Show that in this way the compu-
tation tree has a number of branches which is exponential in n .

Exercise 3. Let K be a field, let P = K[x1, . . . , x4] , and let I be the
ideal (x1x

3
3, x2

1x
2
2x3, x1x

3
2x3, x2x3x4) in P . Consider all possible choices

of pivot as the greatest common divisor of two minimal monomial gener-
ators and decide which of them is best suited to computing the Hilbert
numerator of P/I efficiently.

Exercise 4. Let T = {t1, . . . , ts} be the minimal monomial set of gen-
erators of a monomial ideal in the polynomial ring P = K[x1, . . . , xn]
over a field K , and let p = xd

i with i ∈ {1, . . . , n} and d ≥ 1. Let

j, k ∈ {1, . . . , s} , and write tj = xα1
1 · · ·xαn

n as well as tk = xβ1
1 · · ·xβn

n .

For 1 ≤ j ≤ s , we define tj : p = xα1
1 · · ·xαi−1

i−1 x
max{0,αi−d}
i x

αi+1
i+1 · · ·xαn

n .
For a set of terms L , the list L : p is defined elementwise.

a) Let j, k ∈ {1, . . . , s} be such that j �= k . Show that tj : p does not
divide tk : p if αi ≤ βi , or if min{αi, βi} > d , or if αi > d ≥ βi .

b) For every � ∈ {0, . . . , d} , let L� = {tj ∈ T | αi = �} , and then let
Ld+1 = {tj ∈ T | αi > d} . Show that the sets L� : p are interreduced,
i.e. they contain the minimal monomial generators of the ideals they
generate.

c) Prove that a term in L� : p may divide a term in Lm : p only if
� < m ≤ d .

d) Explain how one can use these results to drastically reduce the number
of divisibility tests needed in order to compute the minimal monomial
system of generators of (t1, . . . , ts) :P (p) .

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] , and let I be a
monomial ideal in P which has a minimal monomial system of generators
of the form {xα1

1 xα2
2 · · ·xαn

n , xβ1
i1

, xβ2
i2

, . . . , xβs
is
} , where βj > 0 for all

j = 1, . . . , s .
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a) Show that βj > αij
for j = 1, . . . , s .

b) Prove that the Hilbert numerator of P/I is given by the formula

HNP/I(t) =
∏s

j=1(1 − tβj ) − tα1+···+αn ·∏s
j=1(1 − t

βj−αij )

Exercise 6. Let I be a non-zero homogeneous proper ideal in the poly-
nomial ring P = K[x1, . . . , xn] over a field K . Prove that the following
conditions are equivalent.

a) The ideal I is zero-dimensional.
b) The Hilbert series HSP/I(z) is a polynomial.

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] , and let I be a
non-zero monomial ideal in P .

a) Let i ∈ {1, . . . , n} . Show that there exists a unique decomposition
I = xα1

i I1 + · · · + xαm
i Im such that

1) 0 ≤ α1 < · · · < αm

2) I1, . . . , Im are monomial ideals generated by terms which are not
divisible by xi .

3) For every j ∈ {1, . . . , m} , let Tj be the minimal monomial set
of generators of Ij . Then xα1

i T1 ∪ · · · ∪ xαm
i Tm is the minimal

monomial set of generators of I .

b) Consider the procedure NewMonHN(I) defined by the following instruc-
tions.

1) Check whether we have I = (1). In this case, return 0 and stop.
2) Choose i ∈ {1, . . . , n} such that xi divides one of the minimal

monomial generators of I . Write I = xα1
i I1 + · · · + xαm

i Im as
in a).

3) For j = 1, . . . , m , let Jj = I1 + · · · + Ij . Call the procedure
NewMonHN(Jj) and let fj(z) be the polynomial it returns.

4) Return the polynomial
1−zα1+(zα1−zα2)f1(z)+· · ·+(zαm−1−zαm)fm−1(z)+zαmfm(z)
and stop.

Show that this is an algorithm which computes the Hilbert numerator
HNP/I(z) .

c) Prove that the minimal number of generators of I satisfies the equality
µ(I) = µ(I1) + · · · + µ(Im) .

d) Show that µ(Ij) ≤ µ(Jj) for j = 1, . . . , m .
e) Let r ≥ 0 and I = (x1, . . . , xn)r . Show that we have µ(Ij) = µ(Jj)

for j = 1, . . . , m . Find further examples of monomial ideals with this
property.
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Tutorial 68: Implementation of the Hilbert Series Algorithm

There are two ways of constructing a software design.
One way is to make it so simple

that there are obviously no deficiencies.
And the other way is to make it so complicated

that there are no obvious deficiencies.
(C.A.R. Hoare)

Let K be a field, let P = K[x1, . . . , xn] be standard graded, and let I be
a non-zero proper monomial ideal in P . In this tutorial we want to implement
the Classical Hilbert Numerator Algorithm 5.3.2 and several other strategies
for computing the Hilbert numerator of P/I . Then we compare the efficiency
of these algorithms in some concrete cases. One particularly “bad” example
leads us to increase the number of base cases by studying tensor products of
graded K -algebras and the product formula for Hilbert series.
a) Write a CoCoA function MinMon(. . .) which takes a list of terms gener-

ating I and computes the minimal monomial system of generators con-
tained in it. (Hint: You may also use the function MinMonomials(. . .) of
Tutorial 8 if you wrote it back then!)

b) Now implement a CoCoA function HNClassical(. . .) which takes I and
computes the Hilbert numerator of P/I using the Classical Hilbert Nu-
merator Algorithm 5.3.2. Choose the generators according to the good
generator strategy described in Remark 5.3.4.

c) Apply your function HNClassical(. . .) to the following cases.
1) I1 = (x5

1, x1x2x3, x2x
4
3, x4

2, x1x
2
3, x5

3) in Q[x1, x2, x3]
2) I2 = (x4

1, x3
1x

3
2, x3

1x
2
2x3, x3

1x2x
2
3, x2

2x4, x2x
5
4) in Q[x1, . . . , x4]

3) I3 = (x4
2x

4
4, x1x

3
2x3x

3
4x5, x2

1x
2
2x

2
3x

2
4x

2
5, x3

1x2x
3
3x4x

3
5, x4

1x
4
3x

4
5) in the

ring Q[x1, . . . , x5]
4) I4 = (x1, x2, . . . , x6)6 in Q[x1, . . . , x6]
5) I5 = [(x1, x2)5 + (x4

1x3, x3
1x2x3, x2

1x
2
2x3, x3

1x
2
3, x2

1x2x
2
3)]

7 in the ring
Q[x1, x2, x3]

6) I6 = LTLex(x8
1 − x5

1x
3
2 − x6

3x
2
4, x6

1 − x3
1x

3
2 − x6

4, x7
1 − x7

5 − x4
3x

3
5) in the

ring Q[x1, . . . , x5]
7) I7 = (x1x2, x2x3, . . . , xn−1xn) in Q[x1, . . . , xn] , where n = 10.

d) Implement two CoCoA functions HNIndet(. . .) and HNgcd(. . .) which
compute the Hilbert numerator of P/I using the indeterminate strat-
egy and the GCD strategy, respectively. Apply these functions to the
cases of c) and compare the timings.

e) Write a CoCoA function OptColon(. . .) which optimizes the computation
of the minimal monomial system of generators of I:

P
(p) for the case of

a simple power pivot p = xd
i by using the results of Exercise 4.

f) Implement a CoCoA function HNCoCoA(. . .) which computes the Hilbert
numerator of P/I using the CoCoA strategy and the optimization pro-
vided by OptColon(. . .). Apply this function to the cases of c) and com-
pare the timings.
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g) Try to apply your functions to computing the Hilbert numerator of P/I7

for n = 100 (instead of n = 10). What happens? Why?
In order to remedy the problem underlying the last example, we are led

to introduce tensor products of graded K -algebras and use them to increase
the number of base cases. Although we hope that you have already seen the
tensor product of two K -vector spaces, we shall ask you to work out a few
crucial properties and to apply them to the study of graded algebras and
Hilbert functions.

Let V and W be two finite dimensional K -vector spaces, let {v1, . . . , vr}
be a K -basis of V , and let {w1, . . . , ws} be a K -basis of W . We define a new
K -vector space of dimension rs which we denote by V ⊗K W as follows. The
basis vectors of the new vector space are denoted by vi ⊗wj for i = 1, . . . , r
and j = 1, . . . , s . Moreover, we define a map ϕ : V × W −→ V ⊗K W
by ϕ(v, w) =

∑r
i=1

∑s
j=1 aibj vi ⊗ wj for all v = a1v1 + · · · + arvr and

w = b1w1 + · · · + bsws such that a1, . . . , ar, b1, . . . , bs ∈ K . The K -vector
space V ⊗K W is called the tensor product of V and W .
h) Prove that ϕ is a K -bilinear map.
i) Show that the vector space V ⊗K W has the following universal prop-

erty. Given a K -vector space U and a K -bilinear map ψ : V ×W −→ U ,
there exists a unique K -linear map λ : V ⊗K W −→ U such that
ψ = λ ◦ ϕ . In other words, there exists a commutative diagram

V ⊗K W U

V × W

�
�

�
�

�
��

λ

ψϕ

j) Show that this universal property determines the pair (V ⊗K W,ϕ)
uniquely up to a unique isomorphism. In other words, given another pair
((V ⊗K W )′, ϕ′) satisfying the same universal property, there is a unique
isomorphism of K -vector spaces ı : V ⊗K W −→ (V ⊗K W )′ such that
the following diagram is commutative.

V ⊗K W (V ⊗K W )′

V × W

�
�

�
�

�
��

ı

ϕ′ϕ

k) Now let I be an arbitrary homogeneous ideal of P, let Q = K[y1, . . . , ym]
be a standard graded polynomial ring over K , let J be a homogeneous
ideal of Q , and let R = K[x1, . . . , xn, y1, . . . , ym] be standard graded.
Show that the K -algebra defined by (P/I)⊗

K
(Q/J) ∼= R/(I ·R+J ·R)
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is standard graded and [(P/I) ⊗
K

(Q/J)]i ∼=
⊕i

j=0(P/I)j ⊗K
(Q/J)i−j

for all i ≥ 0.
Hint: To prove the second claim, define two K -linear maps which are
inverse to each other. One of them is obtained by applying the universal
property of the tensor product repeatedly.

l) In the situation of k), conclude that the Hilbert series of (P/I)⊗
K

(Q/J)
is HSP/I(z) · HSQ/J(z).

m) Taking into account what you have just proved, modify Theorem 5.3.7
by including more base cases. Then alter your function HNcocoa(. . .)
accordingly and apply it to the computation of HNP/I7(z) in the case
n = 100.

Tutorial 69: Hilbert Driven Gröbner Basis Computations I

Sometimes it pays to stay in bed on Monday,
rather than spending the rest of the week

debugging Monday’s code.
(Dan Salomon)

Sometimes it pays to skip reading the quote rather than to debug its
grammar. Fortunately, this tutorial was not written on a Monday. Our plan
is to speed up Gröbner basis computations by using a driver: the Hilbert
function. Now, what exactly is this supposed to mean?

Assume that we have some a priori knowledge about the Hilbert function
of a graded ideal or module, e.g. we are given its value in the degree in which
we are computing. Then we know how big the leading term module should
be in this degree. If the part of the Gröbner basis we have computed so far
is not big enough, we know how many Gröbner basis elements we still have
to discover, and if it is already big enough, we can skip the remaining pairs
and generators in this degree because we know that they will surely reduce
to zero.

This strategy clearly gives a powerful boost to most Gröbner basis com-
putations, but you might be tempted to object that to compute the Hilbert
function we first need to compute a Gröbner basis of the module, so that
our plan makes no sense. However, there are situations in which we do have
advance knowledge of the Hilbert series. Let us point out three typical cases.
Firstly, suppose you want to compute a Gröbner basis of a module with re-
spect to a term ordering σ which tends to be slow, for instance with respect
to σ = Lex . Then you start by computing a Gröbner basis with respect
to a faster term ordering, for instance with respect to DegRevLex , use this
Gröbner basis to determine the Hilbert series, and then apply the Hilbert
driven strategy to compute the other Gröbner basis.

Secondly, suppose your module is part of a homogeneous exact sequence
of graded modules and you know the Hilbert series of the other modules, for
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instance because they are graded free modules. Then you can use Proposi-
tion 5.2.15.b to determine the Hilbert series of the module under consider-
ation and use it to apply the Hilbert driven strategy. Thirdly, to compute
an implicitization ideal you have to find a Gröbner basis of an ideal of the
form (x1 − f1, . . . , xn − fn) with respect to an elimination ordering. By ho-
mogenizing the polynomials fi , raising the indeterminates xi to the appro-
priate powers di and using a term ordering such that the leading terms are
xd1

1 , . . . , xdn
n , you can immediately read off the Hilbert series of this ideal, and

then apply it to drive the computation of the elimination (see also Exercise 80
in Section 5.8).

At this point it is important to make the following observation: given a
monomial ideal or module, the computation of its Hilbert series is usually
a very fast operation in comparison to the computation of a Gröbner basis.
Hence it is frequently possible to compute many Hilbert series to aid the
computation of a single Gröbner basis. Enough said, let’s jump out of bed
and get going! Be it Monday or not, Hilbert series will be our guide at every
turn, for a swift and sure journey.

Let K be a field, let P = K[x1, . . . , xn] be standard graded, let M be a
finitely generated graded P -module, and let α = α(M) be the initial degree
of M .
a) Let j ∈ Z , and let N be a graded submodule of M such that Ni = Mi

for i < j . Prove that the following conditions are equivalent.
1) Nj ⊂ Mj

2) dimK(Mj) − dimK(Nj) > 0
3) There exists a positive integer cj such that HNM (z) − HNN (z) =

cjz
j−α + (terms of higher degree).

Show that cj = dimK(Mj) − dimK(Nj) if these conditions are satisfied.
Now let us try to use this basic observation to drive a Gröbner basis com-

putation. Let M be a graded submodule of F =
⊕r

i=1 P (−δi), and let σ be
a module term ordering on Tn〈e1, . . . , er〉 . Assume that we are applying the
Homogeneous Buchberger Algorithm 4.5.5 and we have finished the loop in
steps 3)–8) for some degree d . At this point the tuple G is a d -truncated
homogeneous σ -Gröbner basis of M . Suppose that we know the Hilbert nu-
merator of M and that a computation of the Hilbert numerator of the module
N = 〈LTσ(G)〉 yields HNM (z)−HNN (z) = cjz

j−α +(terms of higher degree)
with cj > 0.
b) Prove that we have Ni = Mi for i < j , that j > d , and that there

are neither reduced σ -Gröbner basis elements nor minimal homogeneous
generators of M in degrees d + 1, . . . , j − 1.

c) Show that we have cj ≤ #Bj + #Wj and that the reduced σ -Gröbner
basis of M contains exactly cj elements of degree j .

d) In the Homogeneous Buchberger Algorithm 4.5.5, replace steps 2), 3)
and 6) by the following instructions.
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2’) Let N = 〈LTσ(G)〉 . Compute the polynomial HNM (z)−HNN (z). If
it is zero, return G and stop. Otherwise, let d ≥ α and cd > 0 be
such that HNM (z) − HNN (z) = cdz

d−α + (terms of higher degree).
Form the subset Bd of B , form the subtuple Wd of W , and delete
their entries from B and W , respectively.

3’) If Bd = ∅ or if G contains cd elements of degree d , continue with
step 6’). Otherwise, choose a pair (i, j) ∈ Bd and remove it from Bd .

6’) If Wd = ∅ or if G contains cd elements of degree d , continue with
step 9). Otherwise, choose a vector v ∈ Wd and remove it from Wd .

Show that the resulting sequence of instructions is an algorithm which
computes a homogeneous σ -Gröbner basis of M . We call it the Hilbert
Driven Buchberger Algorithm.

e) Write a CoCoA function HDrivenBA(. . .) which implements the algorithm
of d). Apply this function to compute the PosLex-Gröbner bases of the
following ideals and modules. In each case, use CoCoA first to compute the
Hilbert series of Mi via its DegRevLexPos -Gröbner basis. Determine how
many degrees and how many pairs and generators were skipped because
of the Hilbert driven approach.
1) M1 = (x2

1 − x2
2, x3

1 − x3
3, x4

1 − x4
4) ⊆ Q[x1, . . . , x4]

2) M2 = (x2
1x4 − x1x

2
2, x2

2x4 − x2x
2
3, x2

3x1 − x2x
2
4) ⊆ Q[x1, . . . , x4]

3) M3 = 〈(0, x2x3, x1x3), (0, x1x3, x1x2 − x1x3), (x2x3, x1x3 − x2
2, 0),

(x2
2, x2x3, 0), (x1x2, 0, x2x3)〉 ⊆ Q[x1, x2, x3]3

In the last part of this tutorial we want to use the Hilbert driven approach
to speed up the computation of implicitizations. We shall apply it to the
following variant of the technique explained in Tutorial 51. Notice that the
results of Section 5.8 allow us to generalize the Hilbert driven approach for use
with more general gradings and to use the technique of Tutorial 51 without
modifications (see Exercise 80 in Section 5.8).

Let P ′ = K[y1, . . . , ym] be standard graded, let f1, . . . , fn ∈ P ′ \ {0} ,
and let di = deg(fi) for i = 1, . . . , n .
f) Consider the following sequence of instructions.

1) Form the rings P = K[x0, . . . , xn] and Q = K[x0, . . . , xn, y1, . . . , ym]
and equip them with the standard grading.

2) For i = 1, . . . , n , compute the homogenization fhom
i of fi with re-

spect to x0 . Then form the ideal J = (xd1
1 − fhom

1 , . . . , xdn
n − fhom

n )
in Q .

3) Using the lexicographic term ordering where x1 >Lex · · · >Lex

xn >Lex x0 >Lex y1 >Lex · · · >Lex ym , determine the Hilbert nu-
merator of J .

4) By applying the Hilbert Driven Buchberger Algorithm with respect
to an elimination ordering for y1, . . . , ym , compute the elimination
ideal I = J ∩ P .
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5) Let Ĩ = Ideh be generated by {g̃1, . . . , g̃s} . For i = 1, . . . , s , write
g̃i = gi(xd1

1 , . . . , xdn
n ) with gi ∈ P . Return I = (g1, . . . , gs) and stop.

Show that this is an algorithm which computes the implicitization of
(f1, . . . , fn).

g) Write a CoCoA function HDrivenImplicit(. . .) which implements the
algorithm of f). Apply your function to compute the implicitizations of
the following tuples of polynomials. In each case, determine the degrees,
pairs and generators skipped because of the Hilbert driven approach.
1) (y1 − 1, y2

1 − 2y1, y3
1 − 3y2

1) ∈ Q[y1]3

2) (y8
1 , y10

1 , y51
1 + y6

1 + y1) ∈ Q[y1]3

3) (y2y3 + y1, y2
2y3

3 + 2y1y2y3 + y2
1 + y2

3 + y2 − y3, y2y
3
3 + y1y

2
3 + y2

2y3 −
y2y

2
3 + y1y2 − y1y3 + y3) ∈ Q[y1, y2, y3]3
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5.4 Dimension, Multiplicity, and Hilbert Polynomials

Inflation’s down
except for what you actually buy.

(Chad Hudson)

In the first volume we had two quotes from David Hilbert, whereas in this
volume we have already had three. By applying a suitable hedonic deflator,
we can determine that the seasonally adjusted, monthly Hilbert quote core
inflation rate is a little over 0.1%. The situation gets trickier if we look at
what we actually do: the Hilbert functions we introduced in Section 5 are
just the tip of an iceberg. In the last two sections they were joined by Hilbert
series, Hilbert numerators, and Hilbert driven algorithms. In this section, we
have Hilbert polynomials, simplified Hilbert numerators, and h-vectors in the
offering.

What is the point of all this Hilbert theory? Hilbert functions provide
us with an infinitude of numbers attached to a homogeneous ideal or graded
module. Hilbert series allow us to manage these numbers in a small, simple
to use package, and Hilbert numerators are useful for actually computing
the essential information for describing Hilbert series. But somewhere hidden
in this sea of numbers are some data which really capture the underlying
geometric and the deeper algebraic structure of those ideals and modules. In
this section we want to extract those data, study their basic properties and
look for their true meaning.

In Section 5.2 we saw that the Hilbert series of a finitely generated graded
module M is a fraction whose numerator is a Laurent polynomial and whose
denominator is a power of 1 − z . Remembering Hilbert’s maxim to simplify
the intricate, we reduce the Hilbert series of M as much as possible and use
the simplified version to define the dimension and the multiplicity of M by its
pole order and the value of its numerator at z = 1, respectively. After proving
that the multiplicity is, in fact, always a positive integer, we compute dim(P )
and mult(P ), i.e. the dimension and the multiplicity of the polynomial ring.

In order to get a better feeling for these invariants, we proceed by proving
the basic properties of the dimension and the multiplicity. Moreover, we can
also encode the information contained in the Hilbert function of a module as
its dimension and the tuple of coefficients of the numerator of its simplified
Hilbert series. This tuple is called the h-vector of M , and its basic properties
are provided as well.

Then the study of dimension is raised to a new level. We show that the
dimension of an affine algebra of the form P/I does not change if we replace
the ideal I by its radical. This shows that the dimension is really an invariant
of geometric nature and depends only on the zero set of I . Further results in
this direction are the formula dim(P/(I ∩ J)) = max{dim(P/I),dim(P/J)}
which connects the dimension of a union of two zero sets to their individ-
ual dimensions, and the formula dim(M) = dim(P/Ann(M)) contained in
Theorem 5.4.10.
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Recall that Theorem 5.1.21 said that Hilbert functions of finitely gen-
erated graded modules are integer functions of polynomial type. Therefore
their associated polynomials are invariants of the module, and every integer
we can attach to them is an invariant, too. Thus the second subsection com-
mences by calling the associated polynomial of HFM the Hilbert polynomial
of M and denoting it by HPM (t). We compute the Hilbert polynomial in a
couple of easy cases and use the results of Section 5.1 to determine its basic
properties.

However, a deeper insight is gained only if we connect the Hilbert poly-
nomial to the invariants studied in the first subsection. Theorem 5.4.15
provides this connection and says that, essentially, dim(M) is the degree
and mult(M) is (dim(M) − 1)! times the leading coefficient of HPM (t).
Moreover, the same theorem shows how we can compute Hilbert polyno-
mials effectively if we know the Hilbert series. Finally, we show the formula
HPP/(I∩J)(t) = HPP/I(t) for homogeneous ideals J having

√
J = P+ . It says

that the Hilbert polynomial is really an invariant of the projective scheme de-
fined by I . Although that interpretation exceeds the scope of this book, it
shows why Hilbert polynomials are popular among algebraic geometers, while
computer algebraists usually prefer Hilbert series.

But dimension, multiplicity, and Hilbert polynomials are also versatile
tools for applications of Computational Commutative Algebra in other areas
besides algebraic geometry. In the tutorials we shall encounter two such areas:
graph theory (see Tutorial 71) and photogrammetry (see Tutorial 72). Is this
the end of the line? Will the rate of Hilbert inflation be kept under control
from here on? Unfortunately not. In Chapter 6 we will introduce Hilbert
bases, and it will be déjà vu all over again.

5.4.A Dimension and Multiplicity of Standard Algebras

Well and Good. Dreams are a multiplicity.[...]
These dimensions have nothing to do with frequency of dreaming,

but more to do with underlying principles of dream generation.
(Harry Hunt, “The Multiplicity of Dreams”)

Throughout this subsection, we let K be a field, we let P = K[x1, . . . , xn]
be standard graded, and we let M be a non-zero finitely generated graded
P -module. In Theorem 5.2.20 we have seen that the Hilbert series of M is of
the form HSM (z) = zα HNM (z)

(1−z)n , where α = α(M) is the initial degree of M ,
and where the Hilbert numerator HNM (z) is a polynomial in Z[z] having
HNM (0) > 0.

Just like the alchemists of yore, mathematicians always dream of distilling
the essence of an object. In the case of Hilbert series, we can proceed as
follows.
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Definition 5.4.1. In the Hilbert series HSM (z) = zα HNM (z)
(1−z)n , we simplify

the fraction by cancelling 1 − z as often as possible. We obtain a represen-
tation HSM (z) = zα hnM (z)

(1−z)d , where 0 ≤ d ≤ n and where hnM (z) ∈ Z[z]
satisfies hnM (0) = HFM (α) > 0.
a) The polynomial hnM (z) ∈ Z[z] is called the simplified Hilbert nu-

merator of M .
b) Let δ = deg(hnM (z)), and let hnM (z) = h0 +h1z + · · ·+hδz

δ . Then the
tuple hv(M) = (h0, h1, . . . , hδ) ∈ Zδ+1 is called the h-vector of M .

c) The number dim(M) = d is called the dimension of M .
d) The number mult(M) = hnM (1) is called the multiplicity of M .

It is clear that the Hilbert series of M is completely determined by the
numbers α(M), dim(M) , and the tuple hv(M). Obviously, the multiplicity
of M is nothing but the sum of the elements in the h-vector. By definition,
we have 0 ≤ dim(M) ≤ n . The fact that mult(M) is a positive integer is not
that obvious.

Proposition 5.4.2. For a non-zero finitely generated graded P-module M,
we have mult(M) > 0 .

Proof. Let d = dim(M), and let hv(M) = (h0, . . . , hδ). By Lemma 5.2.9, we
have HSM (z) = zα hnM (z)

(1−z)d = zα (h0 + · · ·+hδz
δ)
∑

i≥0

(
d+i−1
d−1

)
zi . For N � 0,

the coefficient of zα+N of this power series is h0

(
d+N−1

d−1

)
+· · ·+hδ

(
d+N−1−δ

d−1

)
=

1
(d−1)! [h0(N +d−1) · · · (N +1)+ · · ·+hδ(N +d−1−δ) · · · (N −δ+1)]. Since
this number equals HFM (N) > 0 and since it is a polynomial of degree d−1
in N , its leading coefficient 1

(d−1)! (h0 + · · · + hδ) is positive. Thus we have
mult(M) = hnM (1) = h0 + · · · + hδ > 0. �

The dimension, the h-vector, and the multiplicity of the polynomial ring
are easy to determine.

Example 5.4.3. In Proposition 5.2.14 we saw that the Hilbert series of P
is HSP (z) = 1

(1−z)n . Therefore we have dim(P ) = n and hv(P ) = (1)
and mult(P ) = 1. More generally, given a subset L ⊆ {x1, . . . , xn} consist-
ing of m indeterminates, let I be the ideal generated by L . Then we have
HSP/I(z) = (1 − z)m HSP (z) = 1

(1−z)n−m by Corollary 5.2.17, and therefore
dim(P/I) = n − m and hv(P/I) = (1) and mult(P/I) = 1.

Let us compute the dimension, the h-vector, and the multiplicity in a
slightly more complicated case.

Example 5.4.4. Let f ∈ P be a non-zero homogeneous polynomial of de-
gree d > 0. By Proposition 5.2.16, the Hilbert series of P/(f) is given by
HSP/(f)(z) = 1−zd

(1−z)n = 1+z+···+zd−1

(1−z)n−1 . Since the last fraction cannot be simpli-
fied anymore, we have dim(P/(f)) = n−1 and hv(P/(f)) = (1, 1, . . . , 1) ∈ Zd

and mult(P/(f)) = d .
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Using the basic properties of Hilbert series, we can prove a number of basic
properties of the dimension, the h-vector, and the multiplicity of a graded
module.

Proposition 5.4.5. (Basic Properties of Dim and Mult)
Let M , M ′, and M ′′ be non-zero finitely generated graded P-modules.
a) For every i ∈ Z , we have dim(M(i)) = dim(M) and hv(M(i)) = hv(M) .

In particular, we have mult(M(i)) = mult(M) .
b) Given a homogeneous exact sequence of graded P -modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we have dim(M) = max {dim(M ′),dim(M ′′)} and

mult(M) =

⎧⎨⎩mult(M ′) + mult(M ′′) if dim(M ′) = dim(M ′′),
mult(M ′) if dim(M ′) > dim(M ′′),
mult(M ′′) if dim(M ′′) > dim(M ′).

c) Given non-zero finitely generated graded P-modules M1, . . . , Mr , the mod-
ule M = M1⊕· · ·⊕Mr satisfies dim(M) = max{dim(M1), . . . ,dim(Mr)}
and mult(M) =

∑
{i | dim(Mi)=dim(M)} mult(Mi) .

d) Let δ1, . . . , δr ∈ Z , and let I ⊂ P be a homogeneous ideal. Then the
finitely generated graded P/I -module F =

⊕r
i=1(P/I)(−δi) satisfies

dim(F ) = dim(P/I) and mult(F ) = r · mult(P/I) .
e) Let δ1, . . . , δr ∈ Z , let N be a non-zero graded submodule of the graded

free module F =
⊕r

i=1 P (−δi) , and let σ be a module term order-
ing on Tn〈e1, . . . , er〉 . Then we have dim(LTσ(N)) = dim(N) and
hv(LTσ(N)) = hv(N) .
In particular, we have mult(LTσ(N)) = mult(N) . Moreover, if F/N �= 0 ,
we have dim(F/N) = dim(F/LTσ(N)) and hv(F/N) = hv(F/LTσ(N))
and mult(F/N) = mult(F/LTσ(N)) .

f) Let K ⊆ L be a field extension. Then we have dim(M ⊗K L) = dim(M)
and hv(M ⊗K L) = hv(M) . Thus we have mult(M ⊗K L) = mult(M) .

g) Let δ = deg(hnM (z)) . Then the h-vector of M satisfies hv(M) =
(∆d HFM (α), . . . , ∆d HFM (α + δ)) where d = dim(M) .

Proof. Claim a) follows immediately from Proposition 5.2.15.a. To prove b),
we assume that M , M ′ , and M ′′ have initial degrees α , α′ , and α′′ and
dimensions d, d′, and d′′ , respectively. Then Proposition 5.2.15.b yields

HSM (z) = zα hnM (z)
(1−z)d = zα′

hnM′ (z)

(1−z)d′ + zα′′
hnM′′ (z)

(1−z)d′′ = HSM ′(z) + HSM ′′(z)

Now we distinguish three cases. If d′ = d′′ , then zα hnM (z)(1 − z)d′
=

[zα′
hnM ′(z) + zα′′

hnM ′′(z)](1 − z)d , and consequently d′ ≥ d . But since
mult(M ′) = hnM ′(1) and mult(M ′′) = hnM ′′(1) are positive, the sum
in square brackets is not divisible by 1 − z . Hence we see that d = d′
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and mult(M) = hnM (1) = hnM ′(1) + hnM ′′(1) = mult(M ′) + mult(M ′′).
Now, if d′ > d′′ , then the equality zα hnM (z)(1 − z)d′

= [zα′
hnM ′(z) +

zα′′
hnM ′′(z)(1 − z)d′−d′′

](1 − z)d shows d = d′ , because mult(M ′) =
hnM ′(1) > 0 implies that the sum in square brackets is not divisible by 1−z .
It follows that mult(M) = hnM (1) = hnM ′(1) = mult(M ′). Finally, if
d′′ > d′ , we obtain d = d′′ and mult(M) = mult(M ′′) analogously.

Claim c) follows from b) by an easy induction on r , and d) follows from c)
and a). Moreover, parts e) and f) follow from Theorem 5.2.18 and Corol-
lary 5.2.19 which say that the corresponding Hilbert series are equal. Fi-
nally, to prove g), we let hnM (z) = h0 + · · · + hδz

δ with h0, . . . , hδ ∈ Z .
We apply Proposition 5.2.8.a and get HS∆d HFM

(z) = (1 − z)d HSHFM
(z) =

zα (h0 + h1z + · · ·+ hδz
δ). By the definition of the Hilbert series, this yields

∆d HFM (α + i) = hi for i = 0, . . . , δ , and the claim follows. �

The remainder of this subsection is devoted to providing the reader with
some useful properties of the dimension and the multiplicity of a graded mod-
ule. In particular, we describe the effect of common ideal-theoretic operations
on the dimension and the multiplicity of standard graded K -algebras. Our
first proposition in this direction says that the dimension of a module M
can decrease at most by one when we pass to a residue class module of the
form M/fM .

Proposition 5.4.6. Let M be a non-zero finitely generated graded P-mod-
ule, and let f ∈ P \ K be a homogeneous polynomial. Then we have

dim(M) − 1 ≤ dim(M/fM) ≤ dim(M)

If f is a non-zero divisor for M , we have dim(M/fM) = dim(M) − 1 .

Proof. Let d = dim(M) and δ = deg(f). Multiplication by f induces the
exact sequence of graded P -modules

0 −→ [0 :
M

(f)](−δ) −→ M(−δ) −→ M −→ M/fM −→ 0

Thus Proposition 5.4.5.b shows the inequality dim(M/fM) ≤ dim(M). To
prove the first inequality, we let N = [0 :

M
(f)](−δ) and use the exact

sequence to see that HSM/fM (z) = (1 − zδ)HSM (z) + HSN (z). Next we
let d′ = dim(M/fM) and d′′ = dim(N). By Proposition 5.4.5.b, we have
d′′ ≤ d . Using the abbreviations α′ = α(M/fM) and α′′ = α(N), we get

zα′
hnM/fM (z)

(1−z)d′ = zα hnM (z)·(1+z+···+zδ−1)
(1−z)d−1 + zα′′

hnN (z)

(1−z)d′′

If d′′ = d , the right-hand side yields zα hnM (z)·(1−zδ)+zα′′
hnN (z)

(1−z)d . Since this
fraction cannot be simplified further, we have d′ = d . Similarly, if d′′ ≤ d−2,

the right-hand side yields zα hnM (z)·(1+z+···+zδ−1)+zα′′
hnN (z)·(1−z)d−1−d′′

(1−z)d−1 and
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this fraction cannot be simplified further. Thus we have d′ = d − 1 in this
case. Finally, if d′′ = d − 1, the numerator of the combined fraction on
the right-hand side has the value δ hnM (1) + hnN (1) at z = 1, and this
value is positive by Proposition 5.4.2. Hence the combined fraction cannot
be simplified further and we obtain d′ = d − 1. Altogether, we have shown
that we have d − 1 ≤ d′ ≤ d , as claimed.

If f is a non-zero divisor for M , we have N = 0 and d′ = d− 1 because
the fraction zα hnM (z)·(1+z+···+zδ−1)

(1−z)d−1 cannot be simplified further. �

The following example shows that in this proposition we may have
dim(M/fM) = dim(M).

Example 5.4.7. Let P = Q[x, y] , let M = P/(xy), and let f = x . Then
we have dim(M/fM) = dim(P/(x)) = 1 = dim(P/(xy)) = dim(M). In fact,
consider the exact sequence

0 −→ [(y)/(xy)](−1) −→ [P/(xy)](−1) −→ P/(xy) −→ P/(x) −→ 0

Since [(y)/(xy)](−1) ∼= [P/(x)](−2), we obtain

HSM/fM (z) = 1
1−z = (1−z) 1+z

1−z + z2 1
1−z = (1−z)HSM (z) + z2 HSM/fM (z)

Our next result is that the dimension of an affine algebra P/I does not
change if we replace I by its radical. Hence the dimension is an invariant
which is basically of geometric nature, i.e. it depends only on the set of zeros
of I .

Proposition 5.4.8. Let I and J be proper homogeneous ideals in P .
a) If I ⊆ J , then we have dim(P/I) ≥ dim(P/J) .
b) For all i > 0 , we have dim(P/I) = dim(P/Ii) .
c) There exists a number i > 0 such that (

√
I)i ⊆ I . In particular, we have

dim(P/I) = dim(P/
√

I) .

Proof. In order to show a), it is enough to apply Proposition 5.4.5.b to
the canonical surjective P -linear map P/I −� P/J . Next we prove b) by
induction on i , the case i = 1 being identically true. For i > 0 we consider
the homogeneous exact sequence

0 −→ Ii−1/Ii −→ P/Ii −→ P/Ii−1 −→ 0

where the maps are the natural ones, and use Propositon 5.4.5.b to see that
dim(P/Ii) = max{dim(Ii−1/Ii),dim(P/Ii−1)} . The induction hypothesis
yields dim(P/Ii−1) = dim(P/I). Since Ii−1/Ii is a finitely generated graded
P/I -module, it is a quotient of a finitely generated graded free P/I -module.
So, parts b) and d) of Proposition 5.4.5 show dim(Ii−1/Ii) ≤ dim(P/I).
Hence it follows that dim(P/Ii) = dim(P/I).
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For the proof of the first part of c), we choose a system of generators
{g1, . . . , gs} of

√
I , and for j = 1, . . . , s we let αj ≥ 1 be such that g

αj

j ∈ I .
Given numbers β1, . . . , βs ∈ N such that β1 + · · ·+βs ≥ α1 + · · ·+αs−s+1,
we have gβ1

1 · · · gβs
s ∈ I , because for at least one index j ∈ {1, . . . , s} we must

have βj ≥ αj . Let fk = hk1g1 + · · ·+ hksgs ∈
√

I with hk1, . . . , hks ∈ P . By
expanding the product, we see that f1 · · · fi ∈ I for i ≥ α1 + · · ·+αs − s+1.
This implies (

√
I)i ⊆ I ⊆

√
I for those i . The second part of c) follows

by applying a) and b), because dim(P/
√

I) ≤ dim(P/I) ≤ dim(P/(
√

I)i) =
dim(P/

√
I) for i � 0 implies that we have equality everywhere. �

Our next proposition discusses the dimension and the multiplicity of an
affine K -algebra defined by the intersection of two ideals. Geometrically, this
corresponds to taking the union of two zero sets.

Proposition 5.4.9. Let I and J be proper homogeneous ideals in P .
a) We have dim(P/(I ∩ J)) = max{dim(P/I),dim(P/J)} .
b) If we have dim(P/I) = dim(P/J) > dim(P/(I + J)) , then we find

mult(P/(I ∩ J)) = mult(P/I) + mult(P/J) .
c) If dim(P/I) > dim(P/J) , then we have mult(P/(I ∩ J)) = mult(P/I) .

Proof. To show a), we construct two homogeneous exact sequences

(1) 0 −→ P/(I ∩ J) −→ (P/I) ⊕ (P/J) −→ P/(I + J) −→ 0
(2) 0 −→ P/I −→ (P/I) ⊕ (P/J) −→ P/J −→ 0

The first sequence is defined by the map P/(I ∩ J) −→ (P/I)⊕ (P/J) given
by f + (I ∩ J) �→ (f + I, f + J) and the map (P/I) ⊕ (P/J) −→ P/(I + J)
given by (f + I, g + J) �→ f − g + I + J . The second sequence is defined by
the natural maps. By applying Proposition 5.4.5.b to these two sequences,
we get

dim((P/I) ⊕ (P/J)) = max{dim(P/(I ∩ J)),dim(P/(I + J))}
and dim((P/I) ⊕ (P/J)) = max{dim(P/I),dim(P/J)}

The fact that the former is exactly dim(P/(I ∩ J)) follows from Proposi-
tion 5.4.8.a, since I ∩ J ⊆ I + J . Putting together the two pieces of informa-
tion, we get a).

Claims b) and c) follow from the assumption and Proposition 5.4.5.b
applied to the sequences (1) and (2). �

The last result of this subsection combines much of what we have proved
above and yields a useful formula for the dimension of a graded module.
Recall that a module M over a ring R can be considered as a module over
the residue class ring R/ AnnR(M) because the elements of AnnR(M) act
trivially on M .



5.4 Dimension, Multiplicity, and Hilbert Polynomials 239

Theorem 5.4.10. Let M be a non-zero finitely generated graded P -module.
Then we have dim(M) = dim(P/Ann(M)) .

Proof. Let {g1, . . . , gr} be a minimal homogeneous system of generators
of M , and let δi = deg(gi) for i = 1, . . . , r . We use the notation ai = Ann(gi)
for i = 1, . . . , r , observe that Ann(M) = ∩r

i=1ai . Without loss of generality,
we may assume that i < j implies dim(P/ai) ≥ dim(P/aj).

Now we use induction on r , the minimal number of homogeneous gener-
ators of M . If r = 1, then M is isomorphic to (P/a1)(−δ1) , and the con-
clusion follows from Proposition 5.4.5.d. If r > 1, we let N = 〈g1, . . . , gr−1〉 .
Consider the canonical exact sequence of graded P -modules

0 −→ N −→ M −→ M/N −→ 0

By Proposition 5.4.5.b, we have dim(M) ≥ dim(N). By induction, we have
dim(N) = dim(P/Ann(N)) = dim(P/(∩r−1

i=1 ai)). This dimension equals
max{dim(P/a1), . . . ,dim(P/ar−1)} by Proposition 5.4.9.a. Hence the as-
sumption dim(P/ar−1) ≥ dim(P/ar) implies that the dimension of N equals
max{dim(P/a1), . . . ,dim(P/ar)} . Therefore we can use Proposition 5.4.9.a
again to deduce that the maximum is equal to dim(P/(∩r

i=1ai)), and hence
equal to dim(P/Ann(M)). Altogether, we get dim(M) ≥ dim(P/Ann(M)).
Conversely, we have a canonical surjective homomorphism⊕r

i=1(P/Ann(M))(−δi) → M → 0

Using parts b) and d) of Proposition 5.4.5, we obtain the other inequality
dim(M) ≤ dim(P/Ann(M)). �

5.4.B Hilbert Polynomials in the Standard Graded Case

Let us continue to use the assumptions introduced at the beginning of the last
subsection. From Theorem 5.1.21 we know that the Hilbert function of M is
an integer function of polynomial type.

Definition 5.4.11. Let t be an indeterminate over Q .
a) The integer valued polynomial associated to HFM is called the Hilbert

polynomial of M and is denoted by HPM (t) . Therefore we have
HPM (t) ∈ IP ⊂ Q[t] and HFM (i) = HPM (i) for i � 0.

b) The regularity index of HFM is called the regularity index of M and
is denoted by ri(M).

Since the Hilbert polynomial of M is an invariant of the module, it can
be used to define many other invariants of M . For instance its degree and its
coefficients are numerical invariants of M . During the course of this subsec-
tion, we shall try to understand the relationship of some of those invariants to
the invariants defined in the preceding subsection. Let us begin by computing
the Hilbert polynomial and the regularity index in some easy cases.
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Example 5.4.12. The Hilbert function of P is HFP (i) = binn−1(i + n− 1)
for all i ∈ Z . Therefore the Hilbert polynomial of P is HPP (t) =

(
t+n−1
n−1

)
.

Clearly, we have HPP (i) = HFP (i) for i ≥ −n+1 and HPP (−n) =
( −1
n−1

)
=

(−1)n−1 �= HFP (−n) = 0. Thus we have ri(P ) = −n + 1.

Also rings of the form P/(f) with a non-zero homogeneous polynomial f
are easy to handle.

Example 5.4.13. Let f ∈ P be a non-zero homogeneous polynomial of
degree d > 0. The Hilbert function of P/(f) is HFP/(f)(i) = ∆d HFP (i) for
all i ∈ Z . Therefore we have HFP/(f)(i) =

(
i+n−1
n−1

)
−
(
i−d+n−1

n−1

)
for i ≥ d ,

and thus HPP/(f)(t) =
(
t+n−1
n−1

)
−
(
t−d+n−1

n−1

)
. Since we have HPP/(f)(i) =

HFP/(f)(i) for i ≥ d − n + 1 and HPP/(f)(d − n) =
(

d−1
n−1

)
− (−1)n−1 �=

HFP/(f)(d − n) =
(

d−1
n−1

)
, it follows that ri(P/(f)) = d − n + 1 = ri(P ) + d ,

in agreement with Corollary 5.1.11.b

It is not difficult to use the basic properties of Hilbert functions shown
in Section 5.1.B in order to determine the basic properties of Hilbert poly-
nomials. We leave it to the reader to write down similar properties of the
regularity index (see also Exercise 7).

Proposition 5.4.14. (Basic Properties of Hilbert Polynomials)
Let M , M ′, and M ′′ be three finitely generated graded P -modules.
a) For every i ∈ Z , we have HPM(i)(t) = HPM (t + i) .
b) Given a homogeneous exact sequence of graded P -modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we have HPM (t) = HPM ′(t) + HPM ′′(t) .
c) Given finitely many finitely generated graded P -modules M1, . . . , Mr , we

have HPM1⊕···⊕Mr
(t) = HPM1(t) + · · · + HPMr

(t) .
d) Let δ1, . . . , δr ∈ Z . The Hilbert polynomial of the finitely generated graded

free P-module F =
⊕r

i=1 P (−δi) is HPF (t) =
∑r

i=1

(
t−δi+n−1

n−1

)
.

e) Let δ1, . . . , δr ∈ Z , let N be a graded submodule of F =
⊕r

i=1 P (−δi) ,
and let σ be a module term ordering on Tn〈e1, . . . , er〉 . Then we have
HPN (t) = HPLTσ(N)(t) and HPF/N (t) = HPF/ LTσ(N)(t) .

f) Let K ⊆ L be a field extension. Then we have HPM⊗KL(t) = HPM (t) .

Proof. Claims a), b), c), and d) follow immediately from the correspond-
ing properties of Hilbert functions shown in Proposition 5.1.14. Similarly,
claim e) follows from Theorem 5.1.18 and b), and claim f) is a consequence
of Corollary 5.1.20. �

It is clear that we can effectively compute the simplification of the Hilbert
series of M required by Definition 5.4.1. Our next theorem says that the
simplified Hilbert numerator hnM (z) can be used to calculate the Hilbert
polynomial of M .
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Theorem 5.4.15. (Computation of Hilbert Polynomials)
Let M be a non-zero finitely generated graded P -module with initial degree
α = min{i ∈ Z | Mi �= 0} , and let d = dim(M) .
a) Let hnM (z) = h0 +h1z + · · ·+hδz

δ , where h0 > 0 and hδ �= 0 . We have

HPM (t) =
{∑δ

i=0 hi

(
t−α−i+d−1

d−1

)
if d > 0,

0 if d = 0.

b) We have dim(M) =
{

1 + deg(HPM (t)) if HPM (t) �= 0,
0 if HPM (t) = 0.

c) We have mult(M) =
{

(d − 1)! LCDeg(HPM (t)) if d > 0,
dimK(M) if d = 0.

d) The regularity index of M satisfies ri(M) = α + δ − d + 1 .

Proof. To prove a), we invoke Corollary 5.2.11.b in the present situation.
Namely, the Hilbert series of M has the form HSM (z) = zα hnM (z)

(1−z)d with
zα hnM (z) = h0z

α + · · · + hδz
α+δ . For d = 0, we have HPM (t) = 0. For

d > 0, we have HPM (t) =
∑α+δ

i=α hi−α

(
t−i+d−1

d−1

)
=
∑δ

i=0 hi

(
t−α−i+d−1

d−1

)
.

Now we show b). If HPM (t) = 0, the Hilbert series of M is a Laurent
polynomial. Therefore it is of the form HSM (z) = zα hnM (z)

(1−z)0 , and we get
dim(M) = 0. If we have HPM (t) �= 0, we can use a) to get HPM (t) =∑δ

i=0 hi

(
t−α−i+d−1

d−1

)
. We obtain 1

(d−1)! (h0 + · · · + hδ) = 1
(d−1)! hnM (1) as

the coefficient of td−1 . Hence we have deg(HPM (t)) = d − 1.
Next we prove c). For d > 0, we have just seen that LCDeg(HPM (t)) =

1
(d−1)! (h0 + · · · + hδ). This yields (d − 1)! LCDeg(HPM (t)) = h0 + · · · + hδ =
hnM (1). For d = 0, we have HSM (z) = hnM (z) and mult(M) = hnM (1) =∑

i∈Z dimK(Mi) = dimK(M).
Finally, we note that the proof of d) follows from Corollary 5.2.11.c. �

As we mentioned above, part a) of this theorem allows us to compute
Hilbert polynomials effectively, since we know from the previous section how
to compute HNM (z), and dividing this polynomial repeatedly by (1 − z)
yields hnM (z). If we are only interested in the dimension of M , we can
use the simpler algorithm described in Tutorial 70. Parts b) and c) of this
theorem show that dim(M) and mult(M) are related to the degree and the
leading coefficient of the Hilbert polynomial of M .

Our last proposition in this subsection provides some rules for the be-
haviour of Hilbert polynomials under certain ideal-theoretic operations.

Proposition 5.4.16. Let I and J be proper homogeneous ideals of P .
a) We have HPP/(I∩J)(t) = HPP/I(t) + HPP/J (t) − HPP/(I+J)(t) .
b) If

√
J = P+ = (x1, . . . , xn) , we have HPP/(I∩J)(t) = HPP/I(t) .
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Proof. To prove a), it suffices to apply the additivity of Hilbert polynomials
shown in Proposition 5.4.14.b to the exact sequences (1) and (2) constructed
in the proof of Proposition 5.4.9.

Now we show b). The assumption on J implies that we also have√
I + J = P+ . Thus Proposition 5.4.8.c yields dim(P/J) = dim(P/(I+J)) =

dim(P/P+). On the other hand, it is clear that HPP/P+(t) = 0. Hence
dim(P/P+) = 0, and consequently HPP/J (t) = HPP/(I+J)(t) = 0 by Theo-
rem 5.4.15.b. Now the conclusion follows from a). �

Exercise 1. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let I ⊆ P be a homogeneous ideal having dim(P/I) = d . Assume
that there exist d linear forms �1, . . . , �d such that �1, . . . , �d is a regular
sequence for P/I . Show that all components of the h-vector hv(P/I) are
positive.

Exercise 2. Let K be a field, and let P = K[x, y] be standard graded.

Show that 1−2z2

(1−z)2
cannot be the Hilbert series of any finitely generated

graded P-module.

Exercise 3. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let f, g ∈ P be non-constant homogeneous polynomials. Assume that
gcd(f, g) = 1, and let I be the ideal generated by {f, g} . Show that
dim(P/I) = n − 2 and mult(P/I) = deg(f) · deg(g) .

Exercise 4. Let K be a field, let P = K[x, y, z] be standard graded,
let f1, f2, f3 ∈ P be pairwise coprime homogeneous polynomials, and let
I = (f1, f2, f3) .

a) Show that dim(P/I) ≤ 1. Find an example for which dim(P/I) = 0
and an example for which dim(P/I) = 1.

b) Find an example for which dim(P/I) = 1 and mult(P/I) = 1.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let M be a non-zero finitely generated graded P -module. Moreover,
let f ∈ P be a non-zero homogeneous polynomial which is a non-zero
divisor for M .

a) Show that we have mult(M/fM) = deg(f) · mult(M) .
b) Show that we have HPM/fM (t) = HPM (t) − HPM (t − deg(f)) .

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
let f1, . . . , fn be homogeneous polynomials of degree two which form a reg-
ular sequence, and let S = SyzP (f1, . . . , fn) . Compute HSS(z) , HPS(t) ,
dim(S) , and mult(S) .

Exercise 7. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let M, M ′ be two finitely generated graded P -modules.

a) For i ∈ Z , prove that ri(M(i)) = ri(M) − i .
b) Show that ri(M ⊕ M ′) ≤ max{ri(M), ri(M ′)} . Find an example in

which we have a strict inequality here.
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c) Suppose that M is a graded submodule of a graded free P -module⊕r
i=1 P (−δi) . Let σ be a module term ordering on Tn〈e1, . . . , er〉 .

Prove that ri(LTσ(M)) = ri(M) .
d) Let K ⊆ L be a field extension. Show that ri(M ⊗K L) = ri(M) .

Exercise 8. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
and let M be a non-zero finitely generated graded P -module of dimen-

sion d > 0. Write HSM (z) = zα hnM (z)

(1−z)d as in Definition 5.4.1.

a) Prove that HPM (t) has a representation HPM (t) =
∑d−1

i=0 ei

(
t+d−1−i

d−1−i

)
with e0, . . . , ed−1 ∈ Z .

b) Show that e0 = mult(M) .

Tutorial 70: Computing the Dimension of a Module

In 1998, in the biggest incident of its kind,
a Salomon Brothers trader mistakenly sold

1.2 billion dollars worth of French government bonds
when he carelessly leaned on his keyboard.

(BBC news, Sep. 28, 2001)

This tutorial foreshadows some results which will be studied more thor-
oughly in Section 5.7. So, we give a spoiler warning and continue anyway.
Suppose that a finitely generated graded module is given by generators and
relations, and that we are interested in computing its dimension, but not nec-
essarily its Hilbert series or its Hilbert polynomial. Can we do better than
simply go through the general procedure which follows from the computation
of the Hilbert series? Yes, we can, and here we shall find out how it works.

Let K be a field, let P = K[x1, . . . , xn] be standard graded, and let M
be a finitely generated graded P -module which is given by a homogeneous
presentation M = F/N , where F =

⊕r
i=1 P (−δi) is a graded free P -module

and N ⊂ F a graded submodule.
a) Explain how one can use Theorem 5.4.10 and Proposition 5.4.5 to re-

duce the problem of computing dim(M) to the problem of computing
dim(P/I) for a non-zero proper monomial ideal I ⊂ P .

b) Assume that there is a CoCoA function MonIdDim(. . .) which computes
dim(P/I) for a non-zero proper monomial ideal I ⊂ P . Write a CoCoA
function ModuleDim(. . .) which takes a homogeneous presentation matrix
of M and computes dim(M).

From now on, let I be a non-zero proper monomial ideal in P , and let
{t1, . . . , ts} be its minimal monomial system of generators. For i = 1, . . . , s ,
we write ti = xαi1

1 · · ·xαin
n with αi1, . . . , αin ∈ N .

c) For i = 1, . . . , s , let t′i =
∏

{j|αij>0} xj . Show that there exists a number
k ≥ 1 such that J = (t′1, . . . , t

′
s) satisfies Jk ⊆ I ⊆ J . Conclude that

dim(P/I) = dim(P/J).
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d) Prove that the ideal J defined in c) is an intersection of linear ideals,
i.e. ideals of the form (xi1 , . . . , xiν

) , where 1 ≤ i1 < · · · < iν ≤ n . Find
an explicit way to compute a set of linear ideals whose intersection is J .
(Hint: Consider the minimal monomial system of generators of J . Take
one indeterminate from each generator in all possible ways.)

e) Show that dim(P/(xi1 , . . . , xiν
)) = n − ν for all 1 ≤ i1 < · · · < iν ≤ n .

Use this result to write down a formula for dim(P/J).
f) Combining the results of c), d), and e), implement a CoCoA function

MonIdDim(. . .) which takes a system of generators of a non-zero proper
monomial ideal I ⊂ P and computes dim(P/I).

g) Apply your function MonIdDim(. . .) to compute dim(P/Ii) for the fol-
lowing monomial ideals Ii , where i ∈ {1, 2, 3} .
1) I1 = (x3, xy2, xyz, xz2, x2y, x2z, xy2z) in Q[x, y, z]
2) I2 = (x1x2x

2
3, x2

1x
4
2x

2
4, x3

2x3x
2
4, x3

3) in Q[x1, x2, x3, x4]
3) I3 = (xixj | 1 ≤ i < j ≤ 10) in Q[x1, . . . , x10]

h) Use your function ModuleDim(. . .) to compute the dimension of the
graded modules over Q[x, y, z] represented by the following homogeneous
matrices.

1) M1 =

⎛⎝ 0 yz 0
xy y2 0
xz 0 z2

⎞⎠
2) M2 =

(
x2 + xy y3 0 xyz
y + z xz + z2 x + y xy + yz

)

Tutorial 71: Chess Puzzles

The mathematics of chess does not, it is true,
solve the problem of comprehending the contests of life,

but it sets that problem in precise terms,
and points to a solution.

(Emanuel Lasker)

A famous chess puzzle asks in how many ways eight queens can be placed
on a chessboard so that no two of them attack one another. We shall solve this
question for n queens on a board of size n×n , the classical case corresponding
to n = 8. We encode an n× n board as a ring with as many indeterminates
as there are squares on the board:

x1 1 x1 2 x1 3

x2 1 x2 2 x2 3

x3 1 x3 2 x3 3

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

...........................................................................................................................................................................

...........................................................................................................................................................................

...........................................................................................................................................................................

...........................................................................................................................................................................



5.4 Dimension, Multiplicity, and Hilbert Polynomials 245

Next we associate to any queen move the product of indeterminates cor-
responding to the two squares:
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• •
x1 1x1 2

......................................................... •

•

x1 3 x3 1.................................................................................................................................................................

Finally, we encode all possible moves of a queen on such a board in an
ideal which is generated by those products of indeterminates.
a) Write a CoCoA function IsMove(. . .) which takes two squares (i.e. two

indeterminates) and checks whether a queen is allowed to move from the
first square to the second.
Hint: You may assume that the base ring is Z/(2)[x1 1, x1 2, . . . , xn n] .

b) Write a CoCoA function QueenIdeal(. . .) which computes the ideal cor-
responding to all possible queen moves on an n × n board.

c) Now let P = Z/(2)[x1 1, x1 2, . . . , xn n] for some n ≥ 3, and let I ⊆ P be
the queen ideal defined in b). Prove that the dimension of the ring P/I
is the maximum number of queens you can place on an n×n board such
that no one attacks another.
Hint: Show that the minimal primes of the queen ideal are precisely the
solution ideals, i.e. the ideals generated by those indeterminates corre-
sponding to all squares except those occupied by queens in a solution.

d) Prove that the multiplicity of the ring P/I is the number of different
ways in which you can place those queens.
Hints: Show that the queen ideal is reduced. Then prove by induction
on s that the intersection of s solution ideals has multiplicity s .

e) Write a CoCoA function Puzzle(. . .) which computes the numbers of
queens and solutions defined in c) and d) for n = 3, 4, . . . up to a specified
number. Compute the number of solutions for n = 3, . . . , 8.

f) Check your result for n = 4 by proving directly that there are only the
following two solutions:
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g) If you are adventurous, you may also want to write a CoCoA function
OneByOne(. . .) which determines the solutions of our puzzle in the fol-
lowing way:
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1) Find all ways to place a queen in the top row.
2) For each of those, find all ways in which one can place a queen in the

second row such that it does not attack the first one.
3) Continue in this way, filling the rows one by one. (There is never

more than one queen in a row!)
4) Finally, return the list of all solutions to the puzzle.

Can you develop a recursive algorithm?
In the last part of this tutorial we examine a generalization of these ideas

from the queen ideal to graph ideals. Instead of dealing with the most general
case, we shall content ourselves with explaining the method by an example.
Consider the graph Γ given by the following picture.

........................
........................

........................
........................

.................

...........
...........

...........
...........

...........
...........

...........
...........

...........
..

........................................................................................................

.................................................................................................................................................................................................................

•

•

•

•

•
•

1

2

3

4

5

6

To each vertex i we associate an indeterminate xi . Then we form the ring
P = K[x1, . . . , x6] over a field K . The ideal I = (x1x6, x2x3, x2x6, x4x6, x5x6)
is called the graph ideal of Γ . It is generated by the products of the inde-
terminates corresponding to the edges of Γ . Furthermore, we introduce the
standard graded K -algebra R = P/I .
h) Prove that the minimal primes of I are the ideals p1 = (x1, x2, x4, x5),

p2 = (x2, x6), and p3 = (x3, x6).
i) Show that we have I = p1 ∩ p2 ∩ p3 .
j) A totally disconnected subgraph of Γ is a subgraph such that no

two vertices are connected by an edge. Prove that Γ has exactly three
maximal disconnected subgraphs, and that they correspond to the sets
of indeterminates outside p1 , p2 , and p3 .

k) Show that dim(R) is the maximal number of vertices in a totally discon-
nected subgraph of Γ .

l) Prove that the number of maximal disconnected subgraphs of Γ having
dim(R) vertices is equal to mult(R).

m) Using CoCoA, show that R satisfies dim(R) = 4 and mult(R) = 2.

A counterattack is never premature.
(Saviely Tartakower)
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Tutorial 72: Photogrammetry

Mathematicians are like Frenchmen:
whatever you say to them

they translate into their own language
and forthwith it is something entirely different.

(Johann Wolfgang von Goethe)

Photogrammetry is the theory of reconstructing a 3-D-scene from image
motion, i.e. from two or more images of the same object taken from different
camera positions. Typical applications include evaluation of satellite images,
surveying, and camera calibration. It differs from the related subject of com-
puter vision in that it is typically not time critical and we do not have to
deal with a continuous stream of incoming images or motion vectors. Let us
consider the following photogrammetric setup.

camera position 1 camera position 2
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• •q q′

o a

x

To describe our goals, we translate this setting into the language of math-
ematics and hope that it does not become something entirely different.

A camera position is a tuple c1 = (o, e1, e2, e3) such that o ∈ R3

and {e1, e2, e3} is an orthonormal basis of R3 . We can think of o as the
center of the camera and {e1, e2, e3} gives us the local coordinate system.
In the following we shall assume that we are given two camera positions
c1 = (o, e1, e2, e3) and c2 = (a, e′1, e

′
2, e

′
3) and we shall choose our coordinate

system such that o = (0, 0, 0) and {e1, e2, e3} is the canonical basis of R3 .
The affine map δ : R3 −→ R3 such that δ(o) = a and δ(o + ei) = a + e′i

for i = 1, 2, 3 is called the camera displacement. Using our assumptions,
we have δ(x) = Rtr x + a for all x ∈ R3 , and we can identify the camera
displacement with the pair (R, a) , where a ∈ R3 and Rtr = (e′1, e

′
2, e

′
3) is an

orthonormal matrix in Mat3(R).
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The image points inside the camera body will be considered as points
on the sphere of radius one around the camera center. The camera map
corresponding to camera position c1 is the map ϕ : R3 \ {0} −→ S given
by x �→ x/‖x‖ , where S is the sphere {x ∈ R3 | ‖x‖ = 1} . Similarly, the
camera map corresponding to c2 is the map ψ : R3 \ {a} −→ S′ given by
x �→ (x − a)/‖x − a‖ , where S′ is the sphere {x ∈ R3 | ‖x − a‖ = 1} .

Now we fix a camera displacement. A pair of points (q, q′) ∈ S×S′ is called
a corresponding pair if there exists a point x ∈ R3 such that q = ϕ(x)
and q′ = ψ(x), i.e. if q and q′ are the two images of the same point in R3

taken from the two camera positions. In this case we write q ↔ q′ .
a) For every corresponding pair q ↔ q′ such that q = ϕ(x) and q′ = ψ(x)

for some x ∈ R3 \{o, a} , show that we have ‖x−a‖ · q′ = R (‖x‖ · q−a).
Given a set of corresponding pairs Q = {qi ↔ q′i | i = 1, . . . , n} , we say

that a camera displacement (R, a) is a reconstruction compatible with Q
if there exist points x1, . . . , xn ∈ R3 such that ‖xi − a‖ q′i = R (‖xi‖ qi − a)
for i = 1, . . . , n . The basic photogrammetric problems we shall address in
this tutorial are the following:
1) How many corresponding pairs qi ↔ q′i are required in general to recon-

struct the camera displacement (R, a), and therefore the scene, up to a
finite number of possibilities?

2) How many different possibilities will there remain in general?
In practice, after we have reduced the compatible reconstructions to a

finite number of possibilities, we can resort to other means (such as over-
laps, coverings, or shadows) to distinguish between the different cases. The
following two ambiguities are innate in the chosen setup.
b) Let q ↔ q′ be a corresponding pair, and let λ ∈ R+ . Show that q ↔ q′

is also a corresponding pair for the camera displacement (R, λ a). This
phenomenon is called scaling ambiguity.

c) Let q ↔ q′ be a corresponding pair, and let S be the matrix of the 180o

rotation about the axis oa . Show that q ↔ q′ is also a corresponding pair
for the camera displacement (RS, a). (Hint: Use b) to assume ‖a‖ = 1.)
This phenomenon is called the twisted pair ambiguity.

d) Let (q, q′) ∈ S×S′ , and let (R, a) be a camera displacement. Prove that
the following conditions are equivalent.
1) There exist α, β ∈ R such that βq′ = R(αq − a).
2) We have 〈(Rq ×Ra), q′〉 = 0.

Here (x1, x2, x3) × (y1, y2, y3) = (x2y3 − x3y2, x3y1 − x1y3, x1y2 −
x2y1) denotes the vector product or cross product in R3 and
〈(x1, x2, x3), (y1, y2, y3)〉 = x1y1 + x2y2 + x3y3 is the standard scalar
product or inner product.
Hint: To show “2)⇒1)”, consider the cases q′×Rq = 0 and q′ ×Rq �= 0.
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Given vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3 , we define the

associated antisymmetric matrix Ta =

⎛⎝ 0 a3 −a2

−a3 0 a1

a2 −a1 0

⎞⎠ of a and

the Kronecker product a ⊗ b =

⎛⎝ a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞⎠ of a and b .

e) For all a, b ∈ R3 , prove the following equations.
1) Ta · b = b × a
2) (a ⊗ a) · Ta = 0
3) 〈a, b〉 a = (a ⊗ a) · b
4) Rb ×Ra = R · (b × a) = RTa · b

f) Given a camera displacement (R, a), let E = RTa . Conclude that a pair
(q, q′) ∈ S×S′ satisfies 〈Eq, q′〉 = 0 if and only if (q′)trE q = 0, and that
these equations hold true if q ↔ q′ .
A matrix E ∈ Mat3(R) is called an essential matrix if it is of the form

E = RTa for some orthonormal matrix R ∈ Mat3(R) and some a ∈ R3 . In
the following we let Q = {qi ↔ q′i | i = 1, . . . , n} be a set of corresponding
pairs.
g) Show that there is a reconstruction compatible with Q if and only if

there exists an essential matrix E ∈ Mat3(R) such that (q′i)
trE qi = 0 for

i = 1, . . . , n .
h) Let E = RTa be an essential matrix, and let S ∈ Mat3(R) be the

matrix corresponding to the 180o rotation about the axis oa . Show that
E = −RSTa and that every reconstruction (R′, a′) having E = R′Ta′

is either (R, a) or (RS,−a). Conclude that the twisted pair ambiguity
corresponds to the substitution E �→ −E .

i) Show that the scaling ambiguity corresponds to a substitution E �→ λE
with λ ∈ R+ .
In the light of these results we shall say that two reconstructions (R, a)

and (R′, b) which are both compatible with Q are essentially different if
the matrices RTa and R′Tb are R -linearly independent. Our next goal is to
study the set of all essential matrices more closely. In particular, we want
to characterize essential matrices by a finite number of polynomial equations
which their entries have to satisfy.
j) Let E ∈ Mat3(R) be an essential matrix, let U ,V ∈ Mat3(R) be or-

thonormal matrices, and let λ ∈ R . Prove that λE , UEV , and Etr are
essential matrices.

k) Let E = RTa be an essential matrix, and let b = R a . Then show that
we have E = TbR .

l) For an essential matrix E ∈ Mat3(R) , prove the characteristic equa-
tion

E Etr E = 1
2 Trace(E Etr) E
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Hint: First write E = TbR and show that it suffices to prove TbT tr
b Tb =

1
2Trace(TbT tr

b )Tb . Then show that TbT tr
b = 〈b, b〉I3 − b ⊗ b .

m) Show that every matrix E ∈ Mat3(R) which satisfies the characteristic
equation has determinant zero.

n) Let E be a matrix of size 3 × 3 of rank two having real or complex en-
tries and row vectors z1, z2, z3 . Show that if E satisfies the characteristic
equation, then there exists an index i ∈ {1, 2, 3} such that 〈zi, zi〉 �= 0.

o) Now prove that, for a matrix E ∈ Mat3(R), the following conditions are
equivalent:
1) The matrix E is an essential matrix.
2) We have rk(E) = 2 and E satisfies the characteristic equation.

Hint: To prove “2)⇒1)”, show that we may assume (0, 0, 1) · E = 0.
Then use n) to show that we may assume that the second row of E is
(0, 1, 0). Finally use the characteristic equation to show E = (±e1, e2, 0)
and decompose this matrix.

p) Let E ∈ Mat3(Q). Write a CoCoA function IsEssential(. . .) which
takes E , uses o) to check whether E is an essential matrix, and returns
the corresponding Boolean value.

q) Let E ∈ Mat3(Q) be an essential matrix. Write a CoCoA function
Decompose(. . .) which computes all possible decompositions E = RTa

where R ∈ Mat3(R) is an orthonormal matrix and a ∈ R3 .
Hint: Consider the entries of R and a as indeterminates and solve the
corresponding polynomial system of equations.

r) Conclude that there exists a reconstruction which is compatible with Q
if and only if there exists a matrix E ∈ Mat3(R) such that the following
equations hold true:
1) (q′i)

tr E qi = 0 for i = 1, . . . , n
2) EEtrE = 1

2Trace(EEtr)E
3) rk(E) = 2

For the remaining parts of this tutorial we assume that you have some
knowledge of projective spaces and varieties (see Tutorials 35, 46, and 52).
We associate a matrix E = (zij) ∈ Mat3(R) to the point p(E) = (z11 : z12 :
. . . : z33) in P8

R . The set E = {p(E) ∈ P8
R | E essential matrix} is called the

essential set in P8
R , and the projective variety

V = {(z11 : . . . : z33) ∈ P8
R | E = (zij) satisfies the characteristic equation }

is called the essential variety in P8
R .

s) Write a CoCoA function EssentialIdeal(. . .) which computes the ideal
IV ⊆ Q[z11, . . . , z33] defining the essential variety. Then use CoCoA to
examine whether the following claims hold true.
1) The ideal IV is a homogeneous radical ideal, i.e. it is the homoge-

neous vanishing ideal of V .
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2) The ideal IV is a prime ideal, i.e. the essential variety is an irreducible
projective variety.

3) We have dim(V ) = 5 and deg(V ) = 10. (Hint: Compute the Hilbert
polynomial of Q[z11, . . . , z33]/IV .)

4) If we intersect V with a randomly chosen linear space L ⊆ P8
R of

dimension three, we get 10 points of intersection.
t) Show that every matrix of rank one in V is the limit of a sequence of

essential matrices. Conclude that V is the projective closure of E .
u) Write a CoCoA function Reconstruct(. . .) which takes a set of corre-

sponding pairs Q = {qi ↔ q′i | i = 1, . . . , n} and performs the following
steps:
1) Find the equations of the hyperplanes in P8

R defined by (q′i)
tr E qi = 0

for i = 1, . . . , n .
2) Intersect V with those hyperplanes.
3) Check whether there are finitely many reconstructions compatible

with Q . If this is not the case, return an error message.
4) For every essential matrix in the intersection, compute the corre-

sponding reconstructions using your function Decompose(. . .).
v) Apply your function Reconstruct(. . .) to the set of five corresponding

pairs Q = {q1 ↔ q′1, . . . , q5 ↔ q′5} given by q1 = q′1 = (1, 0, 0), q2 =
q′2 = (0, 1, 0), q3 = q′3 = (0, 0, 1), q4 = q′5 = (1, 1, 1), and q5 = q′4 =
(3, 7, 2). Show that there exists a 1-dimensional family of reconstructions
compatible with these five corresponding pairs.

w) Apply your function Reconstruct(. . .) to a set of five corresponding
pairs Q = {q1 ↔ q′1, . . . , q5 ↔ q′5} obtained by a small perturbation of
the pairs in v). Show that there are exactly 10 reconstructions compatible
with the perturbed pairs.

x) Finally, conclude that in general one needs at least five corresponding
pairs in order to reduce the compatible reconstructions to a finite set of
possibilities, and in general this set consists of 10 possibilities which then
have to be distinguished by further corresponding pairs or other means.
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5.5 Bounds for Hilbert Functions

This proof of the theorem [...]
is given only to place it on record.

It is too long and complicated
to provide any but the most tedious reading.

(F.S. Macaulay)

Mathematics follows the path of maximal irony.
(Mark Green)

At first sight, this section may appear to provide any but the most tedious
reading. In fact, already the name “section” is a misnomer according to one of
our readers who suggested we call it a “chapter” instead. What is the purpose
of going to all this trouble? An astute reader may have observed that, despite
the great care taken to describe the properties of Hilbert functions, we still do
not know how to characterize them. In other words, given an integer function
of polynomial type, how can we know whether it is the Hilbert function of a
standard graded K-algebra? Are there any constraints which prevent a given
integer function from being a Hilbert function?

Before answering these questions, let us digress for a moment. Is there
a good reason to believe that the graph of a Hilbert function exhibits any
degree of predictability? Not so long ago, in the roaring nineties, many people
were full of irrational exuberance and believed they could predict the future
behaviour of any graph: stock prices, company profits, economic growth, and
budget surpluses were forecast into the distant future. Since mathematicians
have proved time and again that many of those graphs represent random
walks, it is clear that the efforts of astrologers, fortune tellers, stock market
gurus, and technical analysts are mostly in vain. The best we can say is that
a high growth rate cannot last for very long, because the earth’s resources
are limited. The only resource of unlimited supply is paper money which,
according to Voltaire, eventually returns to its intrinsic value.

What does this mean for Hilbert functions? Do they have a higher de-
gree of predictability or are they random walks, too? Almost a century ago,
F.S. Macaulay found the hidden rule governing the growth of Hilbert func-
tions. But although his result had a reasonably nice formulation, his proof
was complicated and tedious. Many decades later, Mark Green followed the
path of maximal irony and gave an elegant, short proof of another growth
theorem which implies Macaulay’s result. So, at the end of this development,
the precise formulation of Macaulay’s condition and the proof of the basic
properties of the functions he used are easily the most intricate parts of the
story.

Amazingly, the path which takes us to these results does not begin with
gradings, homogeneous ideals, or Gröbner bases. Instead, it begins with the
representation of integers in different bases. Since childhood we have been
used to representing integers using the decimal system, i.e. in terms of the
powers 1, 10, 100, . . . . Later on, when learning about computers and pro-
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gramming, we get to know the binary and hexadecimal representations.
But what we do here is utterly strange: we use the binomial coefficients(
n(i)

i

)
,
(
n(i−1)

i−1

)
, . . . to represent n , where n(i), n(i − 1), . . . are chosen maxi-

mally. This is called the binomial representation of n in base i and its basic
properties are explored in the first subsection.

Where is the path connecting those number games to ideal theory? We re-
veal it in the second subsection by introducing new ideals lying on the border
between ideal theory and combinatorics. They are called Lex-segment ideals
and, as their name suggests, their homogeneous components are generated in
each degree by the largest terms with respect to the lexicographic term order-
ing. Homogeneous vector spaces having this property are called Lex-segment
spaces. Their main feature is that they generate another Lex-segment space
in the next degree, and the dimension and codimension of that vector space
can be computed from the binomial representation of the dimension of the
original vector space (see Proposition 5.5.16). At this point the path of max-
imal irony takes another turn. If we reduce a Lex-segment space modulo xn ,
the dimension and codimension of the resulting residue class vector space
are again functions of the binomial representation of the dimension of the
space we started with (see Proposition 5.5.18). Thus we have discovered the
true meaning of the numerology of binomial representations: they control the
growth rate of Lex-segment ideals and their reductions modulo xn .

What is still lacking is the connection between the growth of Lex-segment
ideals and arbitrary ideals. Thus the third subsection starts with one of the
most controversial definitions in commutative algebra and algebraic geome-
try, the notion of genericity. Since we know that this topic can easily turn
from being Pandora’s box into a can of worms, we tread carefully along this
stretch of our path, give a very precise definition, and prove the properties
we need in full detail. From there we can proceed with rapid strides and
establish Green’s Reduction Theorem 5.5.25 with a bold double induction
argument. This theorem gives a bound for the codimension of the generic
linear reduction of a vector space generated by forms of a given degree by
the corresponding number for the Lex-segment space of the same dimension
and degree. As a consequence, we obtain a short proof of Macaulay’s Growth
Theorem 5.5.27 which bounds the codimension of the vector space generated
in the next degree. As in Green’s theorem, the bound is given by the cor-
responding number for a Lex-segment space. Thus we have now discovered
the true meaning of Lex-segment spaces and Lex-segment ideals: they are
the ones which exhibit the extremal growth rate and extremal generic linear
reductions.

Finally, we arrive at our destination. After numerous ironic twists and
turns, we give a numerical characterization of Hilbert functions among all
integer functions (see Theorem 5.5.32). Are we satisfied with this result? Is
it time to rest on our laurels? Mathematicians are never satisfied! Using the
concept of a Lex-segment ideal associated to a given ideal, we prove that



254 5. Hilbert Functions

the growth rate of any ideal equals the growth rate of the corresponding
Lex-segment ideal in large degrees. Based on this result, we ask you to find
another representation of the Hilbert polynomial (see Exercise 11) and to
recreate some modern research results which bound the number of generators
and the size of the reduced Gröbner basis of a homogeneous ideal in terms of
the associated Lex-segment ideal. Are you still craving for more? Well, maybe
you are ready to do your own research. But remember not to stray from the
path of maximal irony!

5.5.A Binomial Representations

The binomial expansion.
Please enter your username and password

to gain access to this resource.
(from “examstutor.com”)

Our journey begins with a result which shows how we can represent pos-
itive integers via a suitable sum of binomial coefficients. We shall not charge
you for this representation, although it is an essential first step on our path
to prove Green’s Reduction Theorem 5.5.25 and Macaulay’s Growth Theo-
rem 5.5.27. The set of positive integers {1, 2, 3, . . .} will be denoted by N+ .

Proposition 5.5.1. Let n, i ∈ N+ . The number n has a unique representa-
tion of the form

n =
(
n(i)

i

)
+
(
n(i−1)

i−1

)
+ · · · +

(
n(j)

j

)
such that 1 ≤ j ≤ i and such that n(i), . . . , n(j) ∈ N are natural numbers
which satisfy n(i) > n(i − 1) > · · · > n(j) ≥ j .

Proof. Let us use induction on i . For i = 1, the representation n =
(
n
1

)
satisfies all requirements, and it is clearly unique.

Now let i > 1. There is a unique number n(i) ∈ N with the property that(
n(i)

i

)
≤ n <

(
n(i)+1

i

)
. Let m = n −

(
n(i)

i

)
. By the induction hypothesis, the

number m has a unique representation of the form m =
(
n(i−1)

i−1

)
+ · · ·+

(
n(j)

j

)
such that 1 ≤ j ≤ i − 1, and n(i − 1) > · · · > n(j) ≥ j . Using the relations
n <

(
n(i)+1

i

)
=
(
n(i)

i

)
+
(
n(i)
i−1

)
, we see that m = n −

(
n(i)

i

)
<
(
n(i)
i−1

)
, and

therefore we get the inequality n(i − 1) < n(i). Altogether, we see that the
representation n =

(
n(i)

i

)
+ · · · +

(
n(j)

j

)
has the desired properties.

It remains to prove uniqueness. Given a representation of the prescribed
form, we have the inequality n(i − k) ≤ n(i) − k for k = 1, . . . , i − j , and
hence it follows from Lemma 5.1.6.d that(

n(i−1)
i−1

)
+· · · +

(
n(j)

j

)
≤
(
n(i)−1

i−1

)
+
(
n(i)−2

i−2

)
+ · · ·+

(
n(i)−i+1

1

)
=
(
n(i)
i−1

)
− 1

Therefore we have
(
n(i)

i

)
≤ n <

(
n(i)

i

)
+
(
n(i)
i−1

)
=
(
n(i)+1

i

)
. This shows that

n(i) is uniquely determined by n , and the claim follows inductively. �
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The representations provided by this proposition play a central role in
this section. Therefore we introduce the following notation.

Definition 5.5.2. Let n, i ∈ N+ .

a) The representation n =
(
n(i)

i

)
+ · · · +

(
n(j)

j

)
with the property that

1 ≤ j ≤ i and n(i) > n(i − 1) > · · · > n(j) ≥ j is called the binomial
representation of n in base i , or the ith Macaulay representation
of n . We shall also denote it by n[i] .

b) The i-tuple (n(i), . . . , n(j), 0, . . . , 0) is called the top binomial rep-
resentation of n in base i and is denoted by Topi(n). We also let
Topi(0) = (0, . . . , 0).

Notice that n(j) is really a function which also depends on i , so this
notation is slightly imprecise. But it is easy to read, and should not lead to
any confusion. The uniqueness of binomial representations also implies that
every natural number has a unique top representation in base i . With the
purpose of getting accustomed to binomial and top representations, let us
compute a few.

Example 5.5.3. The binomial representation of 102 in base 5 satisfies
102[5] =

(
8
5

)
+ 46[4] , since

(
8
5

)
= 56 ≤ 102 < 126 =

(
9
5

)
. Similarly,(

7
4

)
= 35 ≤ 46 < 70 =

(
8
4

)
yields 46[4] =

(
7
4

)
+ 11[3] . Continuing this way, we

finally get 102[5] =
(
8
5

)
+
(
7
4

)
+
(
5
3

)
+
(
2
2

)
and thus Top5(102) = (8, 7, 5, 2, 0).

Similarly, we have 13984[10] =
(
16
10

)
+
(
15
9

)
+
(
12
8

)
+
(
11
7

)
+
(
9
6

)
+
(
8
5

)
+
(
5
4

)
+
(
3
3

)
and Top11(13984) = (16, 15, 12, 11, 9, 8, 5, 3, 0, 0).

Top binomial representations have the nice property that one can compare
two numbers in the usual way, i.e. by looking at one “digit” at a time.

Proposition 5.5.4. Let m,n ∈ N and i ∈ N+ . The following conditions are
equivalent.
a) We have n > m .
b) We have Topi(n) >Lex Topi(m) .

Proof. First we show that a) implies b). Let Topi(n) = (ni, ni−1, . . . , n1) and
Topi(m) = (mi,mi−1, . . . , m1) . Suppose there exists an index � ∈ {1, . . . , i}
such that mk = nk for k = �+1, . . . , i and m� �= n� . By possibly subtracting
the same number from m and n , we may assume that � = i . Thus we now
have n > m and mi �= ni . Now

(
ni+1

i

)
> n > m ≥

(
mi

i

)
implies ni ≥ mi .

Together with mi �= ni , we get the desired conclusion that ni > mi .
In order to prove that b) implies a), we may again assume that the two

tuples are different in the first place, i.e. we may assume that ni > mi . We
deduce that n ≥

(
ni

i

)
≥
(
mi+1

i

)
> m . �

The following operations on binomial representations will be useful for
studying the growth of Hilbert functions. Further operations and rules are
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given in Tutorial 73. To read the following expressions correctly, remember
that by definition we have the equality

(
0
0

)
= 1.

Definition 5.5.5. Let n, i ∈ N+ and consider the binomial representation
n[i] =

(
n(i)

i

)
+ · · · +

(
n(j)

j

)
of n in base i .

a) We let (n[i])+ =
(
n(i)+1

i

)
+ · · · +

(
n(j)+1

j

)
.

b) We let (n[i])− =
(
n(i)−1

i

)
+ · · · +

(
n(j)−1

j

)
.

c) We let (n[i])++ =
(
n(i)+1

i+1

)
+ · · · +

(
n(j)+1

j+1

)
.

d) We let (n[i])−− =
(
n(i)−1

i−1

)
+ · · · +

(
n(j)−1

j−1

)
.

Moreover, we let (0[i])+ = 0, (0[i])− = 0, (0[i])++ = 0, and (0[i])−− = 0.

Clearly, the expressions given for (n[i])+ and (n[i])++ are already the bi-
nomial representations of those numbers in base i and i + 1, respectively.
The following example shows that this is not necessarily true for (n[i])−

and (n[i])−− .

Example 5.5.6. The binomial representation of the number 4 in base 2 is
4[2] =

(
3
2

)
+
(
1
1

)
. Therefore we have (4[2])− =

(
2
2

)
+
(
0
1

)
= 1, but 1[2] =

(
2
2

)
.

Similarly, we have (4[2])−− =
(
2
1

)
+
(
0
0

)
= 3, but 3[1] =

(
3
1

)
.

Some rules for the above operations follow easily from the definition.

Remark 5.5.7. Let n, i ∈ N+ .
a) We have n = ((n[i])+)− = ((n[i])++)−− .
b) Using Lemma 5.1.6.b, we see that we have n = (n[i])− + (n[i])−− .

Our next two propositions describe some features of the functions intro-
duced in Definition 5.5.5. More specific results are investigated in Tutorial 73.

Proposition 5.5.8. Let n, i ∈ N+ , let Topi(n) = (ni, . . . , n1) , and let
j = min{k | nk �= 0} .
a) We have Topi((n[i])+) = (ni + 1, . . . , nj + 1, 0, . . . , 0) . Consequently, the

map n �→ (n[i])+ is increasing.
b) We have Topi+1((n[i])++) = (ni +1, . . . , nj +1, 0, . . . , 0, 0) . Consequently,

the map n �→ (n[i])++ is increasing.
c) If n1 > 1 , let � = 1 . Otherwise, let � = 1 + max{k | nk ≤ k} . We

have Topi((n[i])−) = (ni −1, . . . , n� −1, 0, . . . , 0) . Consequently, the map
n �→ (n[i])− is non-decreasing.

Proof. The three formulas follow from the definitions of the three operations.
The additional claims are then a consequence of Proposition 5.5.4. �

It is not true that the map n �→ (n[i])− is increasing, as the following
example shows.
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Example 5.5.9. Let i > 1. Then we have 1[i] =
(
i
i

)
and 2[i] =

(
i
i

)
+
(
i−1
i−1

)
,

and therefore (1[i])− = (2[i])− = 0.

The following result will be used in the proof of Macaulay’s Growth The-
orem 5.5.27.

Proposition 5.5.10. Let n, i ∈ N+ , i > 1 . Then we have the inequality
(((n[i])−−)[i−1])++ ≥ n .

Proof. Let n[i] =
(
n(i)

i

)
+· · ·+

(
n(j)

j

)
be the binomial expansion of n in base i .

If j > 1, the binomial representation of (n[i])−− in base i − 1 is (n[i])−− =(
n(i)−1

i−1

)
+ · · ·+

(
n(j)−1

j−1

)
, and it is clear that (((n[i])−−)[i−1])++ = n . Otherwise,

when j = 1, we have (n[i])−− =
(
n(i)−1

i−1

)
+ · · · +

(
n(2)−1

1

)
+ 1. Let us denote

(n[i])−− by m , and let Topi−1(m) = (mi−1, . . . , m1). By Proposition 5.5.4,
we see that Topi−1(m) >Lex (n(i) − 1, . . . , n(2) − 1), and hence

(mi−1 + 1, . . . , m1 + 1, 0) >Lex (n(i), . . . , n(2), 0)

Let � ∈ {1, . . . , i − 1} be such that mk = 0 for k = 1, . . . , � − 1 and
such that mk = m(k) > 0 for k = �, . . . , i − 1. Since the numbers
n(2), . . . , n(i) are positive, the above inequality implies that there is an index
s ∈ {�, . . . , i − 1} with ms = m(s) > n(s + 1). Hence we get the inequal-
ity Topi((((n[i])−−)[i−1])++) ≥Lex Topi(n). Using Proposition 5.5.4 once again
yields the claimed inequality. �

The last result of this subsection can be viewed as the combinatorial part
of Green’s Reduction Theorem 5.5.25.

Theorem 5.5.11. Let m > n > 0 and i > 1 .
a) We have (n[i])+ ≤ m if and only if n ≤ (m[i])− .
b) The conditions in a) are satisfied if n ≤ (n[i])− + ((m − n)[i−1])− .

Proof. First we prove a). The implication “⇒” follows by applying the op-
erator (. . .)− to both sides of the inequality. To show “⇐”, we note that
Proposition 5.5.8.c implies that ((m[i])−)+ ≤ m . Therefore it suffices to ap-
ply the operator (. . .)+ to both sides of the inequality.

Now we prove b). Let n =
(
n(i)

i

)
+ · · ·+

(
n(j)

j

)
be the binomial expansion

of n in base i . It suffices to show that we have N ≤ m − n for the number
N =

(
n(i)
i−1

)
+ · · · +

(
n(j)
j−1

)
. Then we can use Lemma 5.1.6.b to deduce that

(n[i])+ = N + n ≤ m . We distinguish two cases.
If j > 1, the sum

(
n(i)
i−1

)
+ · · ·+

(
n(j)
j−1

)
is the binomial representation of N

in base i−1. Therefore we have (N[i−1])− =
(
n(i)−1

i−1

)
+ · · ·+

(
n(j)−1

j−1

)
. By the

hypothesis and Lemma 5.1.6.b, we see that (N[i−1])− ≤ ((m−n)[i−1])− . Since
n(j) > j − 1, we have ((N[i−1])−)+ = N . Thus we can apply the operator
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(. . .)+ to the above inequality and use Proposition 5.5.8.c to conclude that
N ≤ (((m − n)[i−1])−)+ ≤ m − n .

Otherwise, when j = 1, the sum
(
n(i)
i−1

)
+ · · · +

(
n(2)

1

)
is the bino-

mial representation of N − 1 in base i − 1. Therefore we have the rela-
tion ((N − 1)[i−1])− =

(
n(i)−1

i−1

)
+ · · · +

(
n(2)−1

1

)
. By Lemma 5.1.6.b, we

see that ((N − 1)[i−1])− = n − (n[i])− − 1, and thus the hypothesis yields
((N−1)[i−1])− < ((m−n)[i−1])− . Since the operator (. . .)− is non-decreasing
by Proposition 5.5.8.c, it follows that N − 1 < m − n , and therefore
N ≤ m − n . This finishes the proof. �

5.5.B Lex-Segment Spaces and Ideals

In this subsection, we let K be a field and P = K[x1, . . . , xn] a polynomial
ring over K in n ≥ 1 indeterminates. We equip P with the standard grading.
Our goal is to study certain special vector subspaces V of Pd for which P1 ·V
will turn out to be as small as possible. They can be described as follows.

Definition 5.5.12. Let d ∈ N , and let t ∈ Tn be a term of degree d .
a) A set of terms of the form {t′ ∈ Tn | deg(t′) = d, t′ ≥Lex t} is called a

Lex-segment. The empty set is also considered a Lex-segment.
b) A K-vector subspace V of Pd is called a Lex-segment space if V ∩Tn

is both a K-basis of V and a Lex-segment. In this case we denote the
K-basis V ∩ Tn by T(V ).

For instance, if n = 3 and d = 2 then V = Kx2
1 + Kx1x2 + Kx1x3 + Kx2

2

is the Lex-segment space generated by the Lex-segment of terms t′ of degree 2
such that t′ ≥Lex t = x2

2 . For n = 1, the only non-zero Lex-segment space
in degree d is Pd . Given a non-zero Lex-segment space V ⊂ Pd , we can find
explicit formulas for dimK(V ) and codimK(V ).

Proposition 5.5.13. (Basic Properties of Lex-Segment Spaces)
Let n ≥ 2 , let d ∈ N , let V ⊂ Pd be a non-zero Lex-segment space, and let t
be the lexicographically biggest term of degree d which is not in T(V ) . We
write t = xα1

1 · · ·xαr
r x

αr+1
r+1 where r ∈ {1, . . . , n − 1} and αr+1 > 0 , and we

let di = d −∑i
j=1 αj for i = 1, . . . , r .

a) The K-vector space V is the d th homogeneous component of the ideal

xα1+1
1 · (x1, . . . , xn)d1−1 + xα1

1 xα2+1
2 · (x2, . . . , xn)d2−1 + · · ·

· · · + xα1
1 · · ·xαr−1

r−1 xαr+1
r · (xr, . . . , xn)dr−1

Conversely, the d th homogeneous component of this ideal is the Lex-seg-
ment space such that the biggest term of degree d which is not contained
in it is xα1

1 · · ·xαr
r x

αr+1
r+1 .
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b) The binomial representation of dimK(V ) in base n − 1 is given by

dimK(V ) =
(
n−1+d1−1

n−1

)
+
(
n−2+d2−1

n−2

)
+ · · · +

(
n−r+dr−1

n−r

)
c) The binomial representation of codimK(V ) in base d is given by

codimK(V ) =
((

n−1+d−1
d

)
+
(
n−1+d−2

d−1

)
+ · · · +

(
n−1+d1

d1+1

))
+

((
n−2+d1−1

d1

)
+
(
n−2+d1−2

d1−1

)
+ · · · +

(
n−2+d2

d2+1

))
+ · · · +

((
n−r+dr−1−1

dr−1

)
+ · · · +

(
n−r+dr−1

dr

))
Proof. Let I be the monomial ideal in a). Our first goal is to show that
V ⊆ Id , so let t′ = xβ1

1 · · ·xβn
n ∈ T(V ). Since t′ >Lex t , we can define i

to be the minimal index such that βi > αi . By definition of t , we have
i ≤ r . Therefore the term t′ is of the form t′ = xα1

1 · · ·xαi−1
i−1 xαi+1

i t′′ with
t′′ ∈ T(xi, . . . , xn), and hence it is contained in Id . The other inclusion follows
from the observation that every term of degree d in one of the summands
of I is clearly Lex-bigger than t .

Now we prove b). The homogeneous component of degree d of the ideal I
is given by the formula Id =

∑r
i=1 xα1

1 · · ·xαi−1
i−1 xαi+1

i · K[xi, . . . , xn]di−1 .
By looking at the exponents of x1, . . . , xi , we see that this is a direct
sum of K-vector spaces. Hence the desired formula follows from the equal-
ity dimK(K[xi, . . . , xn]di−1) =

(
n−i+di−1

n−i

)
. It is the binomial representation

of dimK(V ) in base n − 1 because we have the inequalities n− 1 + d1 − 1 >
n − 2 + d2 − 1 > · · · > n − r + dr − 1 ≥ n − r ≥ 1.

Finally, we show c). Using b) and Lemma 5.1.6 we calculate

codimK ( V ) =
(
n+d−1

d

)
−

r∑
i=1

(
n−i+di−1

n−i

)
=

(
n+d−1

d

)
−
(
n−1+d1−1

n−1

)
−

r∑
i=2

(
n−i+di−1

n−i

)
=

(
n+d−1

d

)
−
(
n−1+d1−1

d1−1

)
−

r∑
i=2

(
n−i+di−1

n−i

)
=

((
n−1+d−1

d

)
+ · · · +

(
n−1+d1−1

d1

))
−

r∑
i=2

(
n−i+di−1

n−i

)
=

((
n−1+d−1

d

)
+ · · · +

(
n−1+d1

d1+1

))
+
(
n−1+d1−1

d1

)
−

r∑
i=2

(
n−i+di−1

n−i

)
=

((
n−1+d−1

d

)
+ · · · +

(
n−1+d1

d1+1

))
+
(
n−1+d1−1

d1

)
−

r−1∑
i=1

(
n−1−i+di+1−1

n−1−i

)
The second part of the last formula has the same shape as the formula we
started with, except that n has been replaced by n−1 and d by d1 . So, after
performing several similar calculations, we end up with the desired result. The
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fact that this result is the binomial representation of codimK(V ) in base d
follows from the inequalities n−1+d−1 > · · · > n−1+d1 > n−2+d1−1 >
· · · > n − r + dr − 1 ≥ dr ≥ 1. �

Let us compute the decomposition of some Lex-segment spaces and eval-
uate the corresponding dimension and codimension formulas.

Example 5.5.14. Let K be a field and P = K[x, y, z] .
a) Let d = 3, and let V ⊆ P3 be the Lex-segment space generated by

{t′ ∈ T3 | deg(t′) = 3, t′ ≥Lex y2z} . The biggest term in the complement
is yz2 . It is described by r = 2, α1 = 0, α2 = 1. Hence V is the
degree 3 component of the ideal x · (x, y, z)2 + y2 · (y, z)1 , and we have
dimK(V ) =

(
4
2

)
+
(
2
1

)
= 8 and codimK(V ) =

(
0
)

+
((

3
3

)
+
(
2
2

))
= 2.

b) Let d = 5, and let V ⊆ P5 be the Lex-segment space generated by
{t′ ∈ T3 | deg(t′) = 5, t′ ≥Lex x3y2} . The biggest term in the complement
is x3yz . Consequently, we have r = 2, α1 = 3, and α2 = 1. Therefore V
is the degree 5 component of the ideal x4 · (x, y, z) + x3y2 · (y, z)0 , and
we have dimK(V ) =

(
3
2

)
+
(
1
1

)
= 4 and codimK(V ) =

((
6
5

)
+
(
5
4

)
+
(
4
3

))
+((

2
2

)
+
(
1
1

))
= 17.

c) Let d = 6, and let V ⊆ P6 be the Lex-segment space generated by
{t′ ∈ T3 | deg(t′) = 6, t′ ≥Lex x5z} . The biggest term in the complement
is x4y2 . Hence we have r = 1 and α1 = 4. Therefore V is the degree 6
component of the ideal x5 · (x, y, z), and we have dimK(V ) =

(
3
2

)
= 3

and codimK(V ) =
((

7
6

)
+
(
6
5

)
+
(
5
4

)
+
(
4
3

)
+
(
3
2

))
= 25.

Example 5.5.15. Let K be a field, let P = K[x1, . . . , x4] , let d = 7, and
let V ⊆ P7 be the Lex-segment space generated by {t′ ∈ T4 | deg(t′) = 7,
t′ ≥Lex x2

1x
3
2x3x4} . The biggest term in the complement is t = x2

1x
3
2x

2
4 , and

hence r = 3, α1 = 2, α2 = 3, and α3 = 0. Therefore V is the degree 7
component of x3

1 · (x1, x2, x3, x4)4 +x2
1x

4
2 · (x2, x3, x4)1 +x2

1x
3
2x3 · (x3, x4), and

we have dimK(V ) =
(
7
3

)
+
(
3
2

)
+
(
2
1

)
= 40 and codimK(V ) =

((
9
7

)
+
(
8
6

))
+((

6
5

)
+
(
5
4

)
+
(
4
3

))
+
((

2
2

))
= 80.

The following proposition shows that we can find explicit expressions
for the dimension and codimension of the vector space generated by a
Lex-segment space in the next degree.

Proposition 5.5.16. Let d ∈ N , let V ⊂ Pd be a non-zero Lex-segment
space, and let t be the lexicographically biggest term of degree d which is
not in T(V ) . We write t = xα1

1 · · ·xαr
r x

αr+1
r+1 where r ∈ {1, . . . , n − 1} and

αr+1 > 0 , and we let di = d −∑i
j=1 αj for i = 1, . . . , r .

a) The K-vector space P1 · V is the Lex-segment space in Pd+1 for which
the lexicographically biggest term of degree d + 1 outside T(P1 · V ) is
xα1

1 · · ·xαr
r x

αr+1+1
r+1 .

b) We have dimK(P1 · V ) = ((dimK(V ))[n−1])+ .
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c) We have codimK(P1 · V ) = ((codimK(V ))[d])++ .

Proof. Using the decomposition of V given in Proposition 5.5.13.a, we see
that P1 · V is the homogeneous component of degree d + 1 of the ideal

xα1+1
1 · (x1, . . . , xn)d1 + xα1

1 xα2+1
2 · (x2, . . . , xn)d2 + · · ·

· · · + xα1
1 · · ·xαr−1

r−1 xαr+1
r · (xr, . . . , xn)dr

Now claim a) follows by using Proposition 5.5.13.a the other way around.
Moreover, this description of P1 · V implies b), since we get

dimK(P1 · V ) =
(
n−1+d1

n−1

)
+ · · · +

(
n−r+dr

n−r

)
= ((dimK(V ))[n−1])+

Finally, to prove c), we use

codimK(P1 · V ) =
(
n−1+d+1

d+1

)
− dimK(P1 · V ) =

(
n−1+d+1

d+1

)
−

r∑
i=1

(
n−i+di

n−i

)
and repeat the calculation given in the proof of Proposition 5.5.13.c. The
upshot is that all binomial coefficients have their upper and lower entries
increased by one, i.e. we obtain the result ((codimK(V ))[d])++ . �

The last part of this subsection is devoted to determining the properties
of reductions of Lex-segment spaces modulo xn . More generally, we introduce
the reduction of V modulo any linear form as follows.

Definition 5.5.17. Let V be a K-vector subspace of P , and let � ∈ P1 .
Then the image of V in P

�
= P/(�) is called the �-reduction of V , or the

linear reduction of V modulo � , and is denoted by V
�
.

For the next proposition, we are only interested in the xn -reduction of a
Lex-segment space. We identify P

xn with K[x1, . . . , xn−1] and let V = V
xn.

Proposition 5.5.18. Let d ∈ N , let V ⊂ Pd be a non-zero Lex-segment
space, and let t be the lexicographically biggest term of degree d which is
not in T(V ) . We write t = xα1

1 · · ·xαr
r x

αr+1
r+1 where r ∈ {1, . . . , n − 1} and

αr+1 > 0 , and we let di = d −∑i
j=1 αj for i = 1, . . . , r .

a) The K-vector space V is the Lex-segment space in K[x1, . . . , xn−1]d for
which the Lex-biggest term of degree d outside T(V ) is xα1

1 · · ·xαr
r x

αr+1
r+1

if r < n − 1 or xα1
1 · · ·xαi−1

i−1 · xαi−1
i · x

αn−1+αn+1
n−1 if r = n − 1 and

i = max{j ≤ n − 2 | αj ≥ 1} .
b) We have dimK(V ) = ((dimK(V ))[n−1])−− .
c) We have codimK(V ) = ((codimK(V ))[d])− .

Proof. Using the decomposition of V given in Proposition 5.5.13.a, we see
that V is the homogeneous component of degree d of the monomial ideal



262 5. Hilbert Functions

I = xα1+1
1 · (x1, . . . , xn−1)d1−1 + · · ·+xα1

1 · · ·xαr−1
r−1 xαr+1

r · (xr, . . . , xn−1)dr−1 .
In order to prove a), we distinguish two cases.

If r < n − 1 then V has the shape described in Proposition 5.5.13.a,
and the claim follows. If r = n − 1 then the last summand of I is
xα1

1 · · ·xαn−2
n−2 · x

αn−1+αn

n−1 . Therefore V is the Lex-segment space for which
the lexicographically biggest term of degree d not contained in T(V ) is
xα1

1 · · ·xαi−1
i−1 ·xαi−1

i ·xαn−1+αn+1
n−1 where i = max{j ≤ n−2 | αj ≥ 1} , and the

claim follows also in this case. In view of this fact and Proposition 5.5.13.b,
we can now compute

dimK(V ) =
(
n−2+d1−1

n−2

)
+ · · · +

(
n−r−1+dr−1

n−r−1

)
= ((dimK(V ))[n−1])−−

This proves b). Claim c) follows from

codimK(V ) =
(
n−2+d

n−2

)
− dimK(V ) =

(
n−1+d−1

d

)
−

r∑
i=1

(
n−1−i+di−1

n−1−i

)
and the calculation given in the proof of Proposition 5.5.13.c, but replacing n
by n−1, i.e. where all binomial coefficients have their upper entry decreased
by one. �

The formulas for dimK(V ) and codimK(V ) are also valid for V = 0
and V = Pd if we use the conventions 0− = 0 and 0−− = 0. But we would
like to point out that they do not in general provide us with the binomial
representation of dimK(V ) in base n − 2 and of codimK(V ) in base d (see
Exercise 2).

5.5.C The Theorems of Macaulay and Green

In this subsection we let K be a field, and we let P = K[x1, . . . , xn] be a
polynomial ring over K which is equipped with the standard grading. Recall
that, given an ideal I of P , the set

ZK(I) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0 for all f ∈ I}

is called the set of zeros (or the zero-set) of I in Kn . We can extend the
definitions in Tutorial 27 as follows.

Definition 5.5.19. Let S be a subset of Kn .
a) The set S is called Zariski closed if there exists an ideal I ⊆ P such

that S = ZK(I).
b) The set S is called Zariski open if there exists an ideal I ⊆ P such

that S = Kn \ ZK(I).
c) Let P be a property of elements in Kn . We say that P holds generically

in Kn, or for a generic element of Kn , if there exists a non-empty
Zariski open subset U of Kn such that P holds for all elements of U .
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It is easy to see that if K is finite then every subset of Kn is Zariski
closed and Zariski open (see Exercise 5). Hence the notion “P holds for a
generic element of Kn ” is interesting only if K is infinite. The names “Zariski
closed” and “Zariski open” derive their justification from the following fact.

Proposition 5.5.20. The Zariski closed subsets of Kn are the closed subsets
of a topology on Kn . It is called the Zariski topology on Kn .

Proof. The empty set and the entire vector space are Zariski closed, because
we have ∅ = ZK((1)) and Kn = ZK((0)). Given two Zariski closed subsets
W1 = ZK(I1) and W2 = ZK(I2), we have W1 ∪ W2 = ZK(I1 · I2). Given
a family {Wλ | λ ∈ Λ} of Zariski closed subsets Wλ = ZK(Iλ), we have⋂

λ∈Λ Wλ = ZK(
∑

λ∈Λ Iλ). �

Our next proposition provides us with two basic properties of the Zariski
topology.

Proposition 5.5.21. Let K be an infinite field.
a) Let I ⊆ P be a non-zero ideal. Then U = Kn \ ZK(I) has infinitely

many elements.
b) Let U1, U2 be two non-empty Zariski open subsets of Kn . Then U1 ∩U2

is non-empty.

Proof. First we prove a). Let f ∈ I \ {0} . Since we have ZK(I) ⊆ ZK(f),
it suffices to prove the claim for f ∈ P \ {0} and U = Kn \ ZK(f). We
use induction on n . For n = 1, the polynomial f has at most deg(f) zeros.
Since K is infinite, there are infinitely many points in K \ZK(f). Now con-
sider the case n > 1. We write f = f0 + f1xn + · · · fix

i
n , where i ≥ 0 and

f0, . . . , fi ∈ K[x1, . . . , xn−1] with fi �= 0. By the inductive hypothesis, there
is a point (a1, . . . , an−1) ∈ Kn−1 such that fi(a1, . . . , an−1) �= 0. There-
fore the polynomial f(a1, . . . , an−1, xn) ∈ K[xn] is non-zero. Using the case
n = 1, we find infinitely many values an ∈ K such that f(a1, . . . , an) �= 0.
Altogether, we have infinitely many points (a1, . . . , an) in Kn \ ZK(f).

Next we show b). Let U1 = Kn \ W1 and U2 = Kn \ W2 , and let I1, I2

be ideals in P such that W1 = ZK(I1) and W2 = ZK(I2). Now the claim
follows from W1 ∪ W2 = ZK(I1I2) and a). �

The Zariski topology on Kn induces a uniquely determined topology on
every n -dimensional K-vector space as follows.

Remark 5.5.22. Let V be a K-vector space of dimension n , and let
ϕ : V −→ Kn be an isomorphism of vector spaces. A subset U ⊆ V is called
Zariski open if ϕ(U) is a Zariski open subset of Kn . Clearly, this condi-
tion does not depend on the choice of the isomorphism ϕ and we obtain a
topology on V which is called the Zariski topology on V .

In particular, in this way we can say that a property P holds for a generic
linear form if there exists a Zariski open subset U of P1 such that the prop-
erty P holds for all linear forms in U .
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Recall that an isomorphism of K-vector spaces ϕ : P1 −→ P1 extends
uniquely to an isomorphism of graded K-algebras Φ : P −→ P with Φ|P1 =
ϕ , and that the map Φ is called a homogeneous linear change of coordinates.
In order to better understand the effect of reducing a K-vector subspace
V ⊆ Pd modulo a generic linear form, we generalize Proposition 5.5.18 as
follows.

Proposition 5.5.23. Let K be an infinite field, let d ∈ N , and let V ⊂ Pd

be a Lex-segment space.
a) For a generic linear form � ∈ P1 , there is a homogeneous linear change

of coordinates Φ : P −→ P such that Φ(V ) = V and Φ(�) = xn .
b) For a generic linear form � ∈ P1, we have dimK(V

�
)= ((dimK(V ))[n−1])−−

and codimK(V
�
) = ((codimK(V ))[d])− .

Proof. To prove claim a), we write � = a1x1+· · ·+anxn with a1, . . . , an ∈ K .
Clearly, the subset U ⊂ P1 of all � ∈ P1 such that an �= 0 is Zariski open and
not empty. For � ∈ U , we define a K-linear map ϕ : P1 −→ P1 by setting
ϕ(xn) = 1

an
(xn−a1x1−· · ·−an−1xn−1) and ϕ(xi) = xi for i = 1, . . . , n−1.

Then we have ϕ(�) =
∑n

i=1 aiϕ(xi) = xn , and ϕ is an isomorphism of
K-vector spaces. Let Φ : P −→ P be the homogeneous linear change of co-
ordinates induced by ϕ . We have Φ(V ) ⊆ V since for any term t ∈ Pd the
element Φ(t) is a K -linear combination of terms t′ ≥Lex t . Moreover, since Φ
induces an isomorphism Φ|Pd

: Pd −→ Pd , we have dimK(Φ(V )) = dimK(V ).
Altogether, it follows that Φ(V ) = V .

To prove b), we choose U ⊂ P1 and � ∈ U and Φ : P −→ P as in the proof
of a). Now, as Φ(�) = xn , we see that Φ induces an isomorphism of graded
K-algebras Φ : P/(�) −→ P/(xn), and Φ(V ) = V implies Φ(V

�
) = V

xn. Thus
Proposition 5.5.18 yields dimK(V

�
) = dimK(V

xn) = ((dimK(V ))[n−1])−− and

codimK(V
�
) = codimK(V

xn) = ((codimK(V ))[d])− . �

Now we are almost ready to prove the first main theorem of this section.
We shall avail ourselves of just one more result about generic linear forms.

Lemma 5.5.24. Let K be an infinite field, let P = K[x1, . . . , xn] be a poly-
nomial ring in n ≥ 2 indeterminates, let d ≥ 1 , and let V ⊆ Pd be a
K-vector subspace.
a) If Pd−1 · � ⊆ V for a generic linear form � ∈ P1 then V = Pd .
b) Let µ = max{dimK(V

m
) | m ∈ P1 \ {0}} . Then a generic linear form

� ∈ P1 satisfies dimK(V
�
) = µ .

c) Let ν = min{codimK(V
m

) |m ∈ P1 \ {0}} . Then a generic linear form
� ∈ P1 satisfies codimK(V

�
) = ν .

Proof. First we prove a). Let U ⊆ P1 be a non-empty Zariski open subset
such that Pd−1 · � ⊆ V for every linear form � ∈ U . It suffices to show that
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there exist n linear forms �1, . . . , �n in U such that {�1, . . . , �n} is a basis
of P1 . We construct this basis inductively. Since U is not empty, there exists
a linear form �1 ∈ U . Let i < n , and let {�1, . . . , �i} be already constructed.
Then the set U ′ = P1\〈�1, . . . , �i〉K is Zariski open and not empty. Therefore
Proposition 5.5.21.b shows that the set U ∩ U ′ is a non-empty Zariski open
subset of P1 . Thus there exists a linear form �i+1 in U ∩ U ′ . Clearly, the
elements {�1, . . . , �i+1} are K-linearly independent.

Now we prove b). Since we have V
�

= (V + Pd−1�)/Pd−1� , it suffices to
show that dimK(V +Pd−1�) is constant and maximal on a non-empty Zariski
open subset of P1 . Let {v1, . . . , vr} be a K-basis of V and {f1, . . . , fs} a
K-basis of Pd−1 . Then the tuple G = (v1, . . . , vr, f1�, . . . , fs�) generates the
K-vector space V +Pd−1� . We choose a vector space basis B of Pd and write
� = a1x1+· · ·+anxn with a1, . . . , an ∈ K . Then we form the matrix A whose
columns are given by the coordinate tuples of the elements of G with respect
to B . We have dimK(V + Pd−1�) = rk(A), and this rank is the maximal
number i such that not all minors of size i of A vanish. Those minors are
polynomials in a1, . . . , an , and their zero-set is a proper Zariski closed subset
of P1 . Hence the maximal rank of A is attained for a generic linear form.

Finally, to prove c), we observe that the codimension of V
�

is given by
dimK(Pd/(V + Pd−1�)). Therefore the claim follows from b). �

Finally, after all these preparations, we are in a position to prove Mark
Green’s beautiful formula whose first consequence is that Lex-segment spaces
have generic linear reductions of minimal dimension.

Theorem 5.5.25. (Green’s Reduction Theorem)
Let K be an infinite field, let P = K[x1, . . . , xn] be standard graded, let
d ∈ N , and let V ⊆ Pd be a K-vector subspace. For a generic linear form
� ∈ P1 , we have

codimK(V
�
) ≤ ((codimK(V ))[d])−

Here equality holds if V is a Lex-segment space.

Proof. Let us denote codimK(V ) by c . By the lemma, there exists a non-
empty Zariski open subset U1 ⊆ P1 such that codimK(V

�
) attains its mini-

mal value c for all � ∈ U1 . Thus the inequality to be proved is c ≤ (c[d])− .
If V = 0, the claim follows from the equalities c = dimK(P/(�))d =(

n−2+d
d

)
= ((dimK(Pd))[d])− = (c[d])− which hold for every � ∈ P1 \ {0} .

Furthermore, if V = Pd , the claim follows from the simple fact that we have
c = 0 = 0− = (c[d])− . Hence we may assume that V is a non-zero proper
vector subspace of Pd .

We proceed by induction on d + n . For d = 0 or n = 1, we have V = 0
or V = Pd , and the claim has been shown above. If d = 1 and n > 1, we
have (c[1])− =

(
c−1
1

)
= c − 1. Since V ⊂ P1 is Zariski closed, we choose

an element � ∈ P1 \ V and get dimK(V ∩ K·�) = 0. Consequently, we have
dimK(V

�
) = dimK(V ) and c = c − 1 = (c[1])− as required.
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The only remaining case is d ≥ 2 and n ≥ 2. For a linear form � ∈ P1 , we
define V : � = {f ∈ Pd−1 | f � ∈ V } and observe that the map “multiplication
by �” induces an exact sequence of K-vector spaces

(1) 0 −→ Pd−1/(V : �) −→ Pd/V −→ Pd/(V + Pd−1 · �) −→ 0

Using the isomorphism Pd/(V + Pd−1 · �) ∼= P
�

d/V
�
, we get

(2) codimK(V : �) = c − c for every � ∈ U1

Sequence (1) implies that we have V : � = Pd−1 if and only if Pd−1 · � ⊆ V .
Lemma 5.5.24.a says that if Pd−1 · � ⊆ V for a generic linear form � ∈ P1

then V = Pd , a case we have treated above. By Lemma 5.5.24.c, we may
therefore assume that there exists a non-empty Zariski open subset U2 ⊆ P1

such that codimK(V : �) > 0 for all � ∈ U2 . Hence equation (2) implies c > c
for all � ∈ U1 ∩ U2 . By Proposition 5.5.21.b, the set U1 ∩ U2 is a non-empty
Zariski open subset of P1 .

Now we fix a linear form L ∈ U1 ∩U2 . Since we have assumed n ≥ 2, the
set P1 \K·L is a non-empty Zariski open subset of P1 . Therefore any linear
form � in this set satisfies K·L ∩ K·� = {0} . To simplify the notation, we
denote �-reductions by P , V , and so on. We have just noted that K·L �= 0.
Multiplication by L induces an exact sequence of K-vector spaces

0 −→ P d−1/(V : L) −→ P d/V −→ P d/(V + P d−1 · L) −→ 0

Letting Ṽ be the image of V in P/(�, L), this sequence implies that

(3) codimK(Ṽ ) = dimK(P d/(V + P d−1 · L)) = c − codimK(V : L)

Next we calculate

V : L = ({f ∈ Pd−1 | fL ∈ V } + Pd−2 · �)/Pd−2 · �
⊆ ({f ∈ Pd−1 | fL ∈ V + Pd−1 · �} + Pd−2 · �)/Pd−2 · �
= {f ∈ P d−1 | f L ∈ V } = V : L

Consequently, we have

(4) codimK(V : L) ≤ codimK(V : L)

Since V : L is contained in Pd−1 , we can apply the induction hypothesis
to this vector space and obtain

(5) codimK(V : L) ≤ ((codimK(V : L))[d−1])− for generic � .

Moreover, the vector space V
L

is contained in P
L

d , and P
L

is isomorphic to a
polynomial ring in n−1 indeterminates over K . Therefore we can also apply
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the induction hypothesis to the vector space V
L
. Next we observe that Ṽ is

the reduction of V
L

modulo � . So, we obtain

(6) codimK(Ṽ ) ≤ ((codimK(V
L
))[d])− = (c[d])− for generic � .

By combining all equations and inequalities, we get

c = codimK(Ṽ ) + codimK(V : L) by (3)
≤ (c[d])− + codimK(V : L) by (6), (4)
≤ (c[d])− + ((codimK(V : L))[d−1])− by (5)
= (c[d])− + ((c − c)[d−1])− by (2)

Recall that L ∈ U1 ∩ U2 implies c > c . Therefore we can apply Theo-
rem 5.5.11.b to get the desired inequality c ≤ (c[d])− . Finally, we note that
Proposition 5.5.23.b shows that we have equality in this formula if V is a
Lex-segment space. �

In the language of Hilbert functions, Green’s Reduction Theorem can be
restated as follows.

Corollary 5.5.26. Let K be an infinite field, let P = K[x1, . . . , xn] be stan-
dard graded, and let I be a homogeneous ideal in P . For a generic linear form
� ∈ P1 and d ∈ N+ , we have

HF
P

�
/I

�(d) = HFP/(I+(�))(d) ≤ ((HFP/I(d))[d])−

Here equality holds if Id is a Lex-segment space.

Proof. It suffices to observe that P
�
/I

� ∼= P/(I + (�)) and to apply the
theorem to V = Id . �

Using Green’s bound for the dimension of the �-reduction of a vector sub-
space V of Pd , we can now deduce the following bound on the codimension
of the vector subspace P1 · V of Pd+1 .

Theorem 5.5.27. (Macaulay’s Growth Theorem)
Let K be a field, let d ∈ N+ , and let V be a K-vector subspace of Pd . Then
we have

codimK(P1 · V ) ≤ ((codimK(V ))[d])++

Here equality holds if V is a Lex-segment space.

Proof. Since Hilbert functions do not change under field extensions by Corol-
lary 5.1.20, we may assume that K has infinitely many elements. For every
linear form � , the map “multiplication by �” induces an exact sequence of
K-vector spaces Pd/V −→ Pd+1/(P1 ·V ) −→ Pd+1/(P1 ·V +Pd ·�) −→ 0.
Hence we see that
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(1)
codimK(P1 · V ) ≤ codimK(V ) + codimK(P1 · V + Pd · �)

= codimK(V ) + codimK(P1 · V
�
)

Now let � be a generic linear form. We apply Green’s Reduction Theo-
rem 5.5.25 and get codimK(P1 · V

�
) ≤ ((codimK(P1 ·V ))[d+1])− . Combining

this inequality with inequality (1), we obtain

(2) codimK(P1 · V ) ≤ codimK(V ) + ((codimK(P1 · V ))[d+1])−

Remark 5.5.7.b yields

(3) codimK(P1 · V ) = ((codimK(P1 · V ))[d+1])− + ((codimK(P1 · V ))[d+1])−−

By (2) and (3), we have ((codimK(P1 · V ))[d+1])−− ≤ codimK(V ). Now we
apply Propositions 5.5.8.b and 5.5.10 to obtain

codimK(P1 · V ) ≤ ((((codimK(P1 · V ))[d+1])−−)[d])++ ≤ ((codimK(V ))[d])++

The additional claim follows from Proposition 5.5.16.c. �

Again let us formulate this theorem in the language of Hilbert functions.
Notice that this version provides us with a sharp bound on the growth of the
Hilbert function of a standard graded K-algebra.

Corollary 5.5.28. Let K be a field, let P = K[x1, . . . , xn] be standard
graded, let I ⊆ P be a homogeneous ideal, and let d ∈ N+ . Then we have

HFP/I(d + 1) ≤ ((HFP/I(d))[d])++

Here equality holds if Id is a Lex-segment space which satisfies Id+1 = P1 ·Id .

Proof. It suffices to note that P1 · Id ⊆ Id+1 implies HFP/I(d + 1) =
codimK(Id+1) ≤ codimK(P1 · Id) and to apply the theorem to V = Id . �

Let us demonstrate the power of this corollary with an example.

Example 5.5.29. There is no standard graded K-algebra R for which
HFR(1) = 3 and HFR(2) = 5 and HFR(3) = 8. To see why this is true,
we suppose that R = P/I is such an algebra, where P = K[x1, . . . , xn] is
standard graded and I ⊆ P is a homogeneous ideal. Then the corollary yields
8 = HFP/I(3) ≤ ((HFP/I(2))[2])++ = (5[2])++ = (

(
3
2

)
+
(
2
1

)
)++ =

(
4
3

)
+
(
3
2

)
= 7,

a contradiction.

Definition 5.5.30. An ideal I in P is called a Lex-segment ideal if Id is
a Lex-segment space in Pd for every d ∈ N .

We observe that a Lex-segment ideal is necessarily a monomial ideal. The
following lemma provides a necessary and sufficient condition for a collection
of Lex-segment spaces to define a Lex-segment ideal.
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Lemma 5.5.31. Let {Vd | d ∈ N} be a collection of vector spaces such that
Vd ⊆ Pd for every d ∈ N , and let I =

⊕
d∈N Vd . The following conditions

are equivalent.
a) The K-vector space I is an ideal in P .
b) For every d ∈ N , we have P1 · Vd ⊆ Vd+1 .

Proof. Since a) clearly implies b), let us prove the reverse implication. Ac-
cording to the definition of a homogeneous ideal in Section 1.7, we need to
show that Pd ·Ve ⊆ Vd+e for all d, e ∈ N . This follows from the factorization
Pd = P1 · P1 · · ·P1 and induction on d . �

Finally, we are able to fulfil our promise: we are about to show a charac-
terization for the integer functions which are Hilbert functions of standard
graded K-algebras.

Theorem 5.5.32. (Characterization of Hilbert Functions)
Let f : Z −→ Z be an integer function, let n = f(1) , and assume that n > 0 .
Then the following conditions are equivalent.
a) The function f satisfies f(d) = 0 for d < 0 , f(0) = 1 , and

0 ≤ f(d + 1) ≤ (f(d)[d])++ for d ≥ 1 .

b) There exists a Lex-segment ideal I in the standard graded polynomial
ring P = K[x1, . . . , xn] with I≤1 = 0 and f = HFP/I .

c) There exists a homogeneous ideal I in the standard graded polynomial
ring P = K[x1, . . . , xn] with I≤1 = 0 and f = HFP/I .

Proof. First we show that a) implies b). For each d ≥ 0, let Id be the Lex-
segment space in Pd of codimension f(d). Since we have assumed f(0) = 1
and f(1) = n , we have I0 = I1 = 0. We want to show that I =

⊕
d≥0 Id

is an ideal in P . By the lemma, we need to show P1 · Id ⊆ Id+1 for all
d ≥ 2. Applying Proposition 5.5.16.a, we see that both vector spaces are Lex-
segment spaces in Pd+1 . Hence it suffices to prove dimK(P1 ·Id) ≤ dimK Id+1

for d ≥ 2. This follows from Macaulay’s Growth Theorem 5.5.27 and the
hypothesis because together they yield

codimK(Id+1) = f(d+1) ≤ (f(d)[d])++ = (codimK(Id)[d])++ = codimK(P1 ·Id)

The implication “b)⇒c)” is clearly true, and “c)⇒a)” follows immediately
from Corollary 5.5.28. �

Notice that the Lex-segment ideal corresponding to a given Hilbert func-
tion is uniquely determined. This motivates the following definition.

Definition 5.5.33. Let I ⊆ P be a homogeneous ideal having I≤1 = 0.
Then the uniquely determined Lex -segment ideal J ⊆ P with Hilbert func-
tion HFP/J = HFP/I is called the Lex-segment ideal associated to I
and is denoted by Lex(I).
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Corollary 5.5.34. Let I ⊆ P be a homogeneous ideal having I≤1 = 0 , and
let δ(I) be the maximal degree of a minimal generator of Lex(I) . Then we
have HFP/I(d + 1) = ((HFP/I(d))[d])++ for every d ≥ δ .

Proof. Since HFP/I = HFP/Lex(I) , we may assume I = Lex(I). In this case
the claim follows from Corollary 5.5.28. �

Further applications of Lex-segment ideals will be explored in Tutorial 74.
A far-reaching generalization of this corollary is Gotzmann’s Persistence
Theorem. It states that if the growth bound for HFP/I given by Corol-
lary 5.5.28 is achieved in some degree d > max{β0i(I) | i ∈ Z} then it is
achieved in all degrees ≥ d . Gotzmann’s Persistence Theorem can be proved
using his representation of the Hilbert polynomial (see Exercise 11), but the
details exceed the scope of this book.

By persistence even the snail reached Noah’s ark.
(Gilbert K. Chesterton)

Exercise 1. Let a ∈ N+ .

a) Give explicit descriptions of a[a] and (a + 1)[a] .
b) Now suppose a > 1. Give an explicit description of (a − 1)[a]

Exercise 2. Find a Lex-segment space V ⊂ Pd for some polynomial ring
P = K[x1, . . . , xn] and some d ∈ N such that the xn -reduction V of V
has the following properties:

1) The formula dimK(V ) =
(

n−2+d−α1−1
n−2

)
+ · · ·+(n−r−1+d−α1−···−αr−1

n−r−1

)
resulting from Proposition 5.5.18.b is not the binomial representation
of dimK(V ) in base n − 2.

2) The formula codimK(V ) =
(

n−2+d−1
d

)
+ · · · + (n−r−1+d−α1−···−αr−1

d−α1−···−αr

)
resulting from Proposition 5.5.18.c is not the binomial representation
of codimK(V ) in base d .

Exercise 3. Let K be a field, let P = K[x1, . . . , xn] be standard graded,
let d ≥ 0, let V ⊆ Pd be a Lex-segment space, and let i ∈ {1, . . . , n} .
Show that the intersection Vi = V ∩K[x1, . . . , xi] is a Lex-segment space.
Find the smallest term, the dimension, and the codimension of Vi .

Exercise 4. Let K be a field, let P = K[x1, . . . , xn] be standard
graded, let d ∈ N , let V ⊂ Pd be the Lex-segment space for which
t = xα1

1 · · ·xαr
r x

αr+1
r+1 with r < n and αr+1 > 0 is the lexicographically

biggest term outside T(V ) , and let I be the monomial ideal defined in
Proposition 5.5.13.a.

a) Show that dim(P/I) = n − min{i ≥ 1 | αi > 0} .
b) Show that mult(P/I) = αj where j = min{i ≥ 1 | αi > 0} .

Exercise 5. Let K be a finite field, let n > 0, and let V be an n -
dimensional K-vector space. Show that every subset W ⊆ V is Zariski
closed.
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Exercise 6. Find an example of a proper K-vector subspace V ⊂ Pd

for which we have equality in Green’s Reduction Theorem and Macaulay’s
Growth Theorem, but which is not a Lex-segment space.

Exercise 7. Let K be a field and R a standard graded K-algebra.

a) Prove that if HFR(d) ≤ 1 for some d ≥ 1 then we have HFR(i) ≤ 1
for all i ≥ d .

b) Suppose that HFR(d) = 2 for some degree d ≥ 2. Find all possibilities
for HFR(i) in degrees i ≥ d .

Exercise 8. Let K be a field. Suppose that a standard graded K-algebra
has one of the following Hilbert functions. (We list the values in degrees
≥ 0.)

a) 1 3 5 ? 5 5 5 5 · · ·
b) 1 3 5 5 ? 5 5 5 · · ·
c) 1 3 5 5 5 ? 5 5 · · ·

Find all possibilities for the missing numbers!

Exercise 9. Let K be a field. Prove that 1+2z+4z2

(1−z)2
cannot be the Hilbert

series of a standard graded K-algebra.

Exercise 10. Let K be a field, let P = K[x1, . . . , xn] be standard
graded, and let I ⊆ P be a non-zero homogeneous ideal. We say that
HFP/I is unimodal if there is a degree d ∈ N such that

HFP/I(0) ≤ HFP/I(1) ≤ · · · ≤ HFP/I(d) ≥ HFP/I(d + 1) ≥ · · ·
a) Prove that HFP/I is unimodal for every non-zero ideal I ⊆ P if

n = 2.
b) Find a homogeneous ideal I ⊂ P whose Hilbert series is given by

HSP/I(z) = 1 + 3z + 6z2 + 5z3 + 6z4.

Exercise 11. In this exercise we ask you to derive a special representation
of the Hilbert polynomial which is called the Gotzmann representation.
Let K be a field, let P = K[x1, . . . , xn] be standard graded, and let I ⊆ P
be a homogeneous ideal such that I≤1 = 0 and dim(P/I) > 0.

a) Prove that there exist natural numbers s , a1, a2, . . . , as such that
a1 ≥ a2 ≥ · · · ≥ as ≥ 0 and

HPP/I(t) =
(

t+a1
a1

)
+
(

t+a2−1
a2

)
+ · · · + (t+as−(s−1)

as

)
b) Show that the representation in a) is uniquely determined.
c) Write a CoCoA function which takes I and computes the Gotzmann

representation of the Hilbert polynomial of P/I .
d) In the Gotzmann representation, show that dim(P/I) = a1 + 1 and

that mult(P/I) is the number of times a1 appears in {a1, . . . , as} .
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Tutorial 73: Operations on Binomial Representations

In this tutorial we want to examine very carefully binomial representations
and the operations defined on them. We shall see that one can derive many
more rules for these operations than the ones given in the first subsection.
This allows us to give purely formal proofs of many theorems involving the
growth of Hilbert functions and Lex-segment ideals.

Let n, i ∈ N+ , and let n[i] =
(
n(i)

i

)
+ · · ·+

(
n(j)

j

)
be the binomial represen-

tation of n in base i . In addition to Definition 5.5.5, we define the following
two operations:
1) We let (n[i])+ =

(
n(i)
i+1

)
+ · · · +

(
n(j)
j+1

)
.

2) We let (n[i])− =
(
n(i)
i−1

)
+ · · · +

(
n(j)
j−1

)
.

Your first job is to implement binomial representations and their opera-
tions in CoCoA.
a) Write two CoCoA functions BinRep(. . .) and TopBinRep(. . .) which take

two positive integers n and i and compute the binomial representation
of n in base i and the tuple Topi(n) (see Definition 5.5.2).
Hint: Look at the proof of Proposition 5.5.1 and Example 5.5.3.

b) Use your function BinRep(. . .) to compute the following binomial rep-
resentations. Compare your results with the built-in CoCoA command
BinExp(. . .).
1) 34[4]

2) 1000[10]

3) 185000[10]

c) Implement the four operations introduced in Definition 5.5.5 and the
two above in CoCoA functions UpperPlus(. . .), PlusPlus(. . .), etc. Ap-
ply these functions to the examples of b) and compare the results with
BinExp(. . .). (Hint: Your functions should return the value of the result
of the operation, not its binomial representation.)

d) Using the functions LowerPlus(. . .) and LowerMinus(. . .), find examples
which show that these operations do not preserve binomial representa-
tions in general.

e) Show that we always have (n[i])+ = n+(n[i])− and (n[i])++ = n+(n[i])+ .
f) In the following the numbers n(2) and n(1) denote the last two compo-

nents of Topi(n). Prove the following formulas.
1) ((n + 1)[i])++ = (n[i])++ + n(1) + 1

2) ((n + 1)[i])− =
{

(n[i])− if j > 1,
(n[i])− + 1 if j = 1.

3) (((n[i])−−)[i−1])++ =
{

n if j > 1,
n + n(2) − n(1) if j = 1.

4) ((n + 1)[i])+ = (n[i])+ + j

5) ((n + 1)[i])−− =
{

(n[i])−− + 1 if j > 1,
(n[i])−− if j = 1.
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6) ((n + 1)[i])− =
{

(n[i])− + j − 1 if j > 1,
(n[i])− if j = 1.

7) ((n + 1)[i])+ =
{

(n[i])+ if j > 1,
(n[i])+ + n(1) if j = 1.

Hint: For the proof of 1), consider the case j = 1. Let s be the largest
number such that n(k) = n(1)+k−1 for 1 ≤ k ≤ s . Show that (n+1)[i] =(
n(i)

i

)
+ · · ·+

(
n(s+1)

s+1

)
+
(
n(1)+s

s

)
and use it to compute ((n+1)[i])++ . Then

show that (n[i])++ =
(
n(i)+1

i+1

)
+ · · · +

(
n(s+1)+1

s+2

)
+
(
n(1)+s+1

s+1

)
− n(1) − 1.

The proofs of the other formulas follow a similar pattern.
g) Using the same method of proof, show that different compositions of

these operations can be evaluated as follows.
1) ((n[i])++)− = (n[i])+ = ((n[i])−)++ = (n[i])++ − n

2) If i > 1 then ((n[i])−)− = (n[i])−− and ((n[i])−−)+ = (n[i])− .
3) ((n[i])−)+ ≤ n = ((n[i])+)− with equality if and only if n(j) > j .

h) Find an example in which we have ((n[i])−)− �= (n[i])−− .
i) Now let m be another positive integer. Prove the following claims.

1) If i > 1 and (n[i])−− ≤ (m[i−1])− then we have (n[i])− ≤ m .
2) We have (n[i])+ ≤ m if and only if n ≤ (m[i])− .
3) We have n ≤ (m[i])++ if and only if (n[i+1])−− ≤ m .

j) Use the preceding claims to give another proof of Theorem 5.5.11.b.

Tutorial 74: Bounds for Minimal Generators

Optimist: “If the economy goes like that any longer,
soon we will be begging in the streets.”

Pessimist: “I wonder from whom?”
(Anonymous)

One way of interpreting Macaulay’s Growth Theorem 5.5.27 is to say
that Lex-segment ideals are the slowest growing ideals. Therefore, given a
Hilbert function H of a standard graded K-algebra, the Lex-segment ideal
corresponding to H requires the greatest number of minimal generators in
each degree among all ideals corresponding to H . This is the basic idea we
want to explore further in this tutorial. Unfortunately, it turns out that the
bounds on the numbers and the degrees of the minimal generators that we
can derive from such a straightforward approach are very pessimistic in gen-
eral. However, as the example of the Lex-segment ideal itself shows, without
further information this is the best we can achieve. So, the bounds we derive
are useful mainly for theoretical purposes. As far as actual Gröbner basis
computations are concerned, it is probably better to follow the optimistic
approach: “If this Gröbner basis computation goes up in degree like that
any longer, soon we will be running out of memory.” (The pessimist’s CoCoA
command is Alt+Pause.)
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Let K be a field, and let P = K[x1, . . . , xn] be standard graded. For a
homogeneous ideal I ⊆ P , we let µ(I) be its minimal number of homogeneous
generators.
a) Let S be a finite subset of N , and let D = {di | i ∈ S} be a set of

natural numbers. Write a CoCoA function IsRestrHF(. . .) which takes S
and D and checks whether there exists a standard graded K-algebra R
such that HFR(i) = di for all i ∈ S .
Hint: Use Theorem 5.5.32 and the function PlusPlus(. . .) from the pre-
ceding tutorial.

b) Apply your function IsRestrHF(. . .) to check whether a standard graded
K-algebra can have the following Hilbert function values.
1) HFR(1) = 3, HFR(4) = 16
2) HFR(8) = 2, HFR(9) = 3
3) HFR(5) = HFR(6) = 3, HFR(8) = HFR(9) = 2
4) HFR(i) = (i + 1)2 for i = 0, . . . , 10.

c) Let s ≥ 0, let D = {d0, d1, . . . , ds} ⊂ N , and assume that there
exists a standard graded K-algebra R such that HFR(i) = di for
i = 0, . . . , s . Show that there exists a Lex-segment ideal JD ⊆ P such
that HFP/JD

(i) = di for i = 0, . . . , s and HFP/JD
(i) = 0 for i > s .

d) Let J ⊆ P be a Lex-segment ideal with J≤1 = 0. Show that the
0th graded Betti numbers of J satisfy β0d(J) = (HFP/I(d)[d])++ −
HFP/I(d + 1) for every d ≥ 1.

e) Let I ⊆ P be a homogeneous ideal having I≤1 = 0, and let G be a
reduced Gröbner basis of I . Prove the relations

µ(I) ≤ #G ≤ µ(Lex(I)) =
∑
d>0

(
(HFP/I(d)[d])++ − HFP/I(d + 1)

)
Hints: Use that fact that #G is the minimal number of generators of a
leading term ideal of I and compare the growth of this monomial ideal
to the growth of Lex(I).

f) Let I ⊆ P be a homogeneous ideal with I≤1 = 0, and let p(z) =
HNP/I(z) ∈ Z[z] be the Hilbert numerator of P/I . Write a CoCoA func-
tion MaxDegRedGB(. . .) which takes p(z) and computes a bound for the
maximal degree of an element in a reduced Gröbner basis of I . (Hints:
You may assume Gotzmann’s Persistence Theorem. Scour the CoCoA
package HP for useful commands.)

g) Apply your function MaxDegRedGB(. . .) to the following Hilbert numera-
tors of ideals in K[x1, . . . , x4] .
1) p1(z) = z5 − z4 − z + 1
2) p2(z) = z8 − z6 + z5 − z4 − z3 − 1
3) p3(z) = 2z9 − 7z8 + 9z7 − 4z6 + z5 − z4 − z3 + 1
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Tutorial 75: Gin for the Strongly Stable

VeNoM
Pour 2 1

2
oz of gin into a shaker,

stir in one tablespoon of CoCoA,
mix together and shake.

(from “Favourite Drinks of the Strongly Stable”)

Let us take a sip of VeNoM and start meditating a bit about Hilbert
functions and leading term ideals from a higher point of view. Right after
the definition of Hilbert functions we explained that they are invariants of
the ideal or module in question, i.e. that they stay the same under a generic
homogeneous linear change of coordinates. But then we used Gröbner bases
and leading term ideals to compute Hilbert functions. Alas, the latter objects
are anything but invariant under homogeneous linear changes of coordinates.
Shouldn’t Hilbert functions correspond to some kind of invariant leading term
ideal? Given a fixed Hilbert function, there are only finitely many monomial
ideals J for which P/J has this Hilbert function. Therefore, at least in
characteristic zero, we can hope that generic homogeneous linear changes of
coordinates always produce the same leading term ideal. This monomial ideal
should be an invariant of the given ideal and should have nice properties. Are
we getting a little carried away? Is our meditation turning into levitation?
It is time to pin down these high-flying ideas and turn them into concrete
mathematics.

Let K be a field, and let P = K[x1, . . . , xn] be standard graded. To
every matrix A = (aij) ∈ Matn(K) we can associate the K-linear map
ϕA : P1 −→ P1 defined by ϕA(xj) =

∑n
i=1 aijxi for j = 1, . . . , n . The

map ϕA extends uniquely to a homogeneous K-algebra homomorphism
ΦA : P −→ P . Recall that the map ΦA is called a homogeneous linear
change of coordinates if it is bijective.
a) Show that, for a generic matrix A ∈ Matn(K), the homomorphism ΦA

is a homogeneous linear change of coordinates.
In the following we let {yij | i, j = 1, . . . , n} be new indeterminates, we

let L be the field K(y11, y12, . . . , ynn), and we let L[x1, . . . , xn] be standard
graded. Then the matrix Y = (yij) ∈ Matn(L) defines a homogeneous linear
change of coordinates ΨY : L[x1, . . . , xn] −→ L[x1, . . . , xn] . Every specific
matrix A = (aij) ∈ Matn(K) is obtained by substituting yij �→ aij in Y .
Let ΨA : L[x1, . . . , xn] −→ L[x1, . . . , xn] be the homogeneous L-algebra
homomorphism defined by A . Given a homogeneous ideal I ⊆ P and a term
ordering σ on Tn , we define the generic initial ideal of I with respect
to σ by ginσ(I) = LTσ(ΨY(I)).
b) Write a CoCoA function TrueGin(. . .) which takes I and computes

ginσ(I). Apply your function to the following cases.
1) σ = DegRevLex , I1 = (x2

1 + x1x2 + x2
2, x3

1 + x3
2) ⊆ Q[x1, x2]

2) σ = Lex , I2 = (x2
1, x2

2, x2
3, x1x2x3) ⊆ Q[x1, x2, x3]
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3) σ = DegLex , I3 = (x2
1 − x2

2, x2
2 − x2

3) ⊆ Q[x1, x2, x3]
c) Try taking TrueGin(. . .) in larger samples.

(Hint: Remember the meaning of Alt+Pause.)
d) Let K be an infinite field. Prove that we have ginσ(I) = LTσ(ΨA(I)) for

a generic A ∈ Matn(K).
e) Implement a CoCoA function SubstituteGin(. . .) which takes I and

computes LTσ(ΨA(I)) for a random choice of A ∈ Matn(K).
f) Apply your function SubstituteGin(. . .) repeatedly to the examples

in b). Use the results to provide some evidence for the claim that this
function computes ginσ(I) with “high probability”.

g) Write a CoCoA function TripleGin(. . .) which uses SubstituteGin(. . .)
to compute three ideals LTσ(ΨA(I)) with randomly chosen A ∈ Matn(K)
and returns the result if they all agree. If not, the function repeats the
procedure using three new random matrices A .

h) Apply your function TripleGin(. . .) to compute a probable candidate
for ginDegRevLex(. . .) of the following ideals.

1) I4 = (x10
1 , x10

2 ) ⊆ Q[x1, x2]
2) I5 = (f, g, h) ⊆ Q[x1, x2, x3] , where f, g, h ∈ Q[x1, x2, x3] are ran-

domly chosen homogeneous polynomials of degree three
3) I6 = (x5

1, . . . , x
5
5) ⊆ Q[x1, . . . , x5]

In the remaining part of this tutorial we study a strong stability property
of ginσ(I). A monomial ideal J ⊆ P is called strongly stable if it satisfies
the following requirement: for any term t ∈ J and any indeterminate xj

dividing t , we have (xi t)/xj ∈ J for all 1 ≤ i < j . In other words, if we
replace an indeterminate in a term t ∈ J by an indeterminate having a
smaller index, the result is still contained in J . A well-known theorem due
to A. Galligo implies that if char(K) = 0 then ginσ(I) is strongly stable for
every homogeneous ideal I ⊆ P and every term ordering σ on Tn .

If after these first sips you are still strongly stable, we invite you to work
out the following parts of this tutorial.
j) Prove that in positive characteristic there exist homogeneous ideals I

for which ginσ(I) is not strongly stable. (Hint: Use I = (xp
1, x

p
2) where

p = char(K).)
k) Show that Lex-segment ideals are strongly stable, but the converse is not

true in general.
l) Let n = 2. Show that strongly stable ideals are Lex-segment ideals.

Deduce that the ideal ginσ(I) is the same for every term ordering σ
which satisfies x1 ≥σ x2 .

m) Assume char(K) = 0, let d1, d2 ≥ 1, let fi ∈ K[x1, x2]di
for i = 1, 2, let

f3 = gcd(f1, f2), and let I = (f1, f2).
1) Find the Hilbert function of P/I depending on d1 , d2 , and d3 =

deg(f3).
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2) Use l) and Galligo’s Theorem to determine the two possible generic
initial ideals of I .

n) Consider the ideal I7 = (x2
1, x1x2 + x2

2, x1x3) ⊆ Q[x1, x2, x3] . Show
that the ideal LTDegRevLex(I7) is strongly stable, but that it differs from
ginDegRevLex(I7).

o) Find an example of a strongly stable monomial ideal which is neither
a Lex-segment ideal nor a DegRevLex-segment ideal. (First you have to
choose a reasonable definition of DegRevLex-segment ideals.)

p) Show that the monomial ideal J = (x3
1, x2

1x2, x1x
2
2, x2

1x3, x1x2x3, x3
2)

in K[x1, x2, x3] is strongly stable, but is not a Lex-segment ideal.
q) Assume char(K) �= 2. Show that the ideal I8 =

(
x1(x1−x3)(x1−2x3),

x1(x1−x3)x2, x1x2(x2−x3), x1(x1−x3)x3, x1x2x3, x2(x2−x3)(x2−2x3)
)

in K[x1, x2, x3] satisfies ginDegRevLex(I8) = J .
Did you like this taste of gin? Avoid hangovers. Stay intoxicated.
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5.6 Affine Hilbert Functions and Krull Dimension

A mathematician is ...
a device for turning coffee into theorems.

(Paul Erdös)

A mathematician is ...
a blind man in a dark room

looking for a black cat which isn’t there.
(Charles Darwin)

Writing this section required a huge amount of coffee. At several junctures
we almost thought we were hunting for a ghost. The beginning of this story
is innocent enough. So far in this chapter we have restricted our attention to
standard graded K -algebras, i.e. to algebras of the form P/I where I is a
homogeneous ideal in the standard graded polynomial ring P = K[x1, . . . , xn]
over a field K . The reason for this choice is clear: it provides us with a natural
setting for studying Hilbert functions, Hilbert series, Hilbert polynomials,
and so on. Remembering that in the first volume we were able to prove many
theorems for rings of the form P/I with an arbitrary ideal I ⊆ P , we develop
the desire to generalize Hilbert functions to arbitrary affine K -algebras.

A few cups of coffee later the solution is at hand: instead of speaking of
the vector space of homogeneous polynomials in I of degree i , we consider
arbitrary polynomials in I of degree ≤ i . Then we define the affine Hilbert
function of P/I by HFa

P/I(i) = dimK(P≤i/I≤i) for all i ∈ Z . The first
subsection is the result of building upon this simple idea. The affine Hilbert
function of P/I is equal to the affine Hilbert function of P/LTσ(I) for
any degree compatible term ordering σ , and to the usual Hilbert function
of P/Ihom where P = K[x0, . . . , xn] (see Proposition 5.6.3). This allows us to
compute affine Hilbert functions (see Corollary 5.6.4) and it shows that they
are integer functions of polynomial type. Thus we can define affine Hilbert
series, affine Hilbert polynomials, the affine regularity index, the dimension,
and the multiplicity of P/I , and each notion coincides with the corresponding
notion for P/Ihom (see Proposition 5.6.12).

But something strange occurs when we compare different presentations
of the same affine algebra. Whereas the affine Hilbert function and the affine
multiplicity depend on the choice of the presentation (as expected, see Tuto-
rial 76), the dimension miraculously always gives the same number. Slightly
bemused, we start the coffee percolator and investigate.

The name “dimension” for this invariant provides a first clue. Of course
we have an intuitive notion of dimension: a point has dimension zero, a line is
1-dimensional, a plane is 2-dimensional, and the space surrounding us is fre-
quently referred to as 3-dimensional. In algebraic geometry, we can formalize
this idea by considering chains of irreducible subvarieties V0 ⊂ V1 ⊂ · · · ⊂ Vd

where V0 is a point, V1 is a curve, and Vd is the d -dimensional variety un-
der consideration. Here “irreducible” means that a variety should not be the
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union of two proper subvarieties, e.g. the union of two points would still be
0-dimensional. Translating this definition back into the language of commuta-
tive algebra, we arrive at the concept of Krull dimension: a ring R is said to
have Krull dimension d if the longest chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pd

in R has length d .
Now it is clearer what we are looking for. We want to prove that the

dimension of an affine algebra defined via the degree of its affine Hilbert
polynomial is equal to its Krull dimension. The first steps in this direction
are easily taken. Using the results of Section 5.4 and some basic properties of
minimal primes in Noetherian rings (see Proposition 5.6.15), we can reduce
the task to the case of an integral domain P/I (see Proposition 5.6.32). Then
we would like to compute everything modulo a non-zero element and proceed
by induction. Indeed, this process necessarily lowers the Krull dimension (see
Lemma 5.6.35). But when we try to demonstrate the same behaviour for the
degree of the affine Hilbert polynomial, all our previous knowledge proves to
be inapplicable and a cloud of darkness descends on us. What can we do?

Aha! We need more coffee and more theorems! Subsection B is filled with
results about prime and primary ideals. In particular, it is shown that ev-
ery ideal in a Noetherian ring has a primary decomposition (see Proposi-
tion 5.6.18) and that prime avoidance holds true (see Proposition 5.6.19).
Then everything is adapted to the case of standard graded algebras (see
Propositions 5.6.21 and 5.6.22). This allows us to introduce a very refined
tool: the existence of almost non-zerodivisors in standard graded rings (see
Proposition 5.6.26). So equipped, we find what we were looking for: the miss-
ing inequality in the proof of Theorem 5.6.36 about the equality of dimensions
and Krull dimensions.

Now the cloud has lifted, it has become evident that we were not looking
for a black cat which wasn’t there. Rather, we have stumbled upon a gorgeous
cat (namely primary decomposition) which will greatly enhance our further
alchemical endeavors of coffee transformation (see Tutorials 77 and 79).

Coffee (n.), a person who is coughed upon.
(Anonymous Dictionary)

5.6.A The Hilbert Function of an Affine Algebra

In this subsection we let K be a field, we let P = K[x1, . . . , xn] be standard
graded, and we let I be an ideal in P . Recall that a K -algebra of the form
P/I is said to be an affine K -algebra. For such algebras we use the following
notation.

Let i ∈ Z . In Definition 4.5.4.b, we introduced the set P≤i consisting of
all homogeneous polynomials of degree ≤ i . By 〈P≤i〉 we shall denote the
K -vector space spanned by those polynomials, i.e. the set of all polynomials
of degree ≤ i , including the zero polynomial. The K -vector space 〈I≤i〉 is
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the vector subspace of 〈P≤i〉 which consists of the polynomials of degree ≤ i
in I . Since 〈I≤i〉 = 〈P≤i〉 ∩ I , we can view the vector space 〈P≤i〉/〈I≤i〉
as a vector subspace of P/I . In the following we shall frequently use this
identification.

Definition 5.6.1. The map HFa
P/I : Z −→ Z defined by HFa

P/I(i) =
dimK(〈P≤i〉/〈I≤i〉) for i ∈ Z is called the affine Hilbert function of P/I .

For instance, the affine Hilbert function of P = K[x] is given by HFa
P (i) =

max{0, i + 1} for all i ∈ Z . The affine Hilbert function is not an invariant of
an affine algebra. It depends on the choice of a presentation, as the following
example shows.

Example 5.6.2. Consider the affine K-algebra R = K[x]/(x3). Using this

presentation, we have HFa
R(i) =

{
min{i + 1, 3} for i ≥ 0,
0 otherwise.

But it is easy to see that R is isomorphic to R′ = K [x, y]/(xy, x2 − y).

In this case we calculate HFa
R′(i) =

{
3 for i ≥ 1,
max{0, i + 1} otherwise. These two

affine Hilbert functions differ, because they have a different value for i = 1.

The task of computing individual values of affine Hilbert functions can
be reduced to the same task for ordinary Hilbert functions.

Proposition 5.6.3. (Basic Properties of Affine Hilbert Functions)
Let σ be a degree compatible term ordering on Tn, and let W = (1 1 · · · 1)
be the matrix defining the standard grading on P .
a) For every i ∈ Z , we have HFa

P/I(i) =
∑i

j=0 HFP/ LTσ(I)(j) . In particu-
lar, we have HFa

P/I(i) = HFa
P/ LTσ(I)(i) for all i ∈ Z .

b) For every i ∈ Z , we have HFa
P/I(i) = HFa

P/ DFW (I)(i) .
c) Let x0 be a homogenizing indeterminate, and let P = K[x0, . . . , xn] be

standard graded. Then we have HFa
P/I(i) = HFP/Ihom(i) for all i ∈ Z .

Proof. First we show a). By Macaulay’s Basis Theorem 1.5.7, the residue
classes of the terms in B = Tn \ LTσ{I} form a K -basis of P/I . We claim
that, for every i ∈ Z , the set B≤i of the residue classes of the terms in B≤i

form a K -basis of 〈P≤i〉/〈I≤i〉 .
To show that B≤i is a set of generators, we pick v ∈ 〈P≤i〉/〈I≤i〉 . So, v is

the residue class of some polynomial f ∈ P of the form f =
∑

t∈B ct t with
ct ∈ K and ct = 0 for all but finitely many terms t . Let f be a polynomial
with minimal leading term with respect to σ whose residue class is v . Then
we have deg(f) ≤ i because if deg(f) > i and g ∈ P≤i has residue class v ,
then we have f − g ∈ I and LTσ(f − g) = LTσ(f) ∈ LTσ{I} ∩ B yields a
contradiction. Hence v is contained in the span of B≤i .

To show that the elements of B≤i are K -linearly independent, we as-
sume that c1t1 + · · · + csts ∈ 〈I≤i〉 for some c1, . . . , cs ∈ K \ {0} and
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t1, . . . , ts ∈ B≤i . Then the relations LTσ(c1t1+· · ·+csts) ∈ {t1, . . . , ts} ⊆ B≤i

and LTσ(c1t1 + · · · + csts) ∈ LTσ(I) yield a contradiction.
Altogether, we have shown that HFa

P/I(i) = #B≤i . Since Macaulay’s
Basis Theorem 1.5.7 shows that the residue classes of the terms in B
are a K -basis of the ring P/LTσ(I), and since that ring is graded, we
know that the residue classes of the elements of Bj are a K -basis of
Pj/LTσ(I)j for every j ∈ Z . Therefore we have #B≤i =

∑i
j=0 #Bj =∑i

j=0 dimK(Pj/LTσ(I)j) =
∑i

j=0 HFP/ LTσ(I)(j) for every i ∈ Z .
Next we prove b). Let {g1, . . . , gs} be a σ -Gröbner basis of I . Then we

have LTσ(DFW (gi)) = LTσ(gi) for i = 1, . . . , s , and Proposition 4.2.15 yields

LTσ(DFW (I)) =
(
LTσ(DFW (g1)), . . . ,LTσ(DFW (gs))

)
= (LTσ(g1), . . . ,LTσ(gs)) = LTσ(I)

Hence the claim follows from a). To prove c), we may assume that i ≥ 1.
Let α : P i −→ P≤i be defined by α(F ) = F deh . Then α is K -linear by
Proposition 4.3.2.g, surjective by Proposition 4.3.2.c, and injective by Propo-
sition 4.3.2.h. Since it is clear that α(Ihom

i ) = I≤i , the claim follows. �

Part c) of this proposition leads to the following algorithm for computing
individual values of affine Hilbert functions.

Corollary 5.6.4. (Computation of Affine Hilbert Function Values)
Let I be a proper ideal in P which is generated by non-zero polynomials
f1, . . . , fs , and let i ∈ Z . Consider the following instructions.
1) If i < 0 , return zero and stop.
2) Choose a homogenizing indeterminate x0 , form P = K[x0, . . . , xn] , and

compute Ihom = (fhom
1 , . . . , fhom

s ) :
P

(x0)∞ .
3) Compute HFP/Ihom(i) using Corollary 5.1.19, return the result and stop.

This is an algorithm which computes HFa
P/I(i) .

Let us apply this algorithm to a concrete case. The following example also
shows why the assumption that σ is degree compatible cannot be dispensed
with in part a) of the proposition.

Example 5.6.5. Let P = Q[x1, x2, x3] and I = (x1x2 − x3, x2x3 − x1,
x1x3 − x2). Then we can calculate HFa

P/I(4) by computing

Ihom = (x1x2 − x0x3, x2x3 − x0x1, x1x3 − x0x2) :
P

(x0)∞

= (x1x2 − x0x3, x2x3 − x0x1, x1x3 − x0x2, x
2
1 − x2

2, x
2
2 − x2

3, x
3
3 − x2

0x3)

and HFP/Ihom(4) = 5. Since all generators of Ihom have degree ≥ 2, we
also see that HFa

P/I(1) = 4. If we choose the term ordering σ = Lex , we
have LTσ(I) = (x1, x

2
2, x2x

2
3, x

3
3) and HFa

P/ LTσ(I)(1) = 3. Therefore Propo-
sition 5.6.3.a requires a degree compatible term ordering.
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Of course, it is more enticing to compute all values of an affine Hilbert
function at once. To achieve this goal, we introduce the affine version of
Hilbert series.

Definition 5.6.6. The power series HSa
P/I(z) =

∑
i≥0 HFa

P/I(i) zi ∈ Z[[z]]
is called the affine Hilbert series of P/I .

The following proposition provides us with two ways of calculating affine
Hilbert series, one based on the computation of LTσ(I), and one based on
the computation of Ihom .

Proposition 5.6.7. Let σ be a degree compatible term ordering on Tn ,
let x0 be a homogenizing indeterminate, and let P = K[x0, . . . , xn] .

a) We have HSa
P/I(z) = HSP/ LTσ(I)(z)

(1−z) = HNP/ LTσ(I)(z)

(1−z)n+1 .
b) We have HSa

P/I(z) = HSP/Ihom(z) .

Proof. Using Proposition 5.6.3, we calculate

HSa
P/I(z) =

∑
i≥0

( i∑
j=0

HFP/ LTσ(I)(j)
)
zi

=
( ∑

i≥0

HFP/ LTσ(I)(i) zi
)
· (
∑
j≥0

zj) = HSP/ LTσ(I)(z)

(1−z)

and HSa
P/I(z) =

∑
i≥0

HFa
P/I(i) zi =

∑
i≥0

HFP/Ihom(i) zi = HSP/Ihom(z). �

For a homogeneous ideal, the affine Hilbert function and the Hilbert func-
tion of P/I are related as follows.

Proposition 5.6.8. Let I be a proper homogeneous ideal in P .
a) For all i ∈ Z , we have HFa

P/I(i) =
⊕i

j=0 HFP/I(j) .

b) We have HSa
P/I(z) = HSP/I(z)

1−z .

Proof. Claim a) follows from Proposition 5.6.3.a and from the observation
that Theorem 5.1.18 implies HFP/I(i) = HFP/ LTσ(I)(i) for all i ∈ Z . To
prove b), we use Theorem 4.3.22.a to see that P/(Ihom + (x0)) ∼= P/I .
Since x0 is a non-zerodivisor for P/Ihom by Proposition 4.3.5.e, we have
HSa

P/I(z) = HSP/Ihom(z) = HSP/I(z)

1−z by Propositions 5.6.7.b and 5.2.16.b.
�

Part b) of Proposition 5.6.7 and Theorem 5.2.20 imply that the affine
Hilbert series of P/I is of the form HSa

P/I(z) =
HNa

P/I(z)

(1−z)n+1 with a polynomial
HNa

P/I(z) ∈ Z[z] which is called the affine Hilbert numerator of P/I . We
can simplify this fraction by cancelling 1− z as often as possible and obtain
a representation HSa

P/I(z) =
hna

P/I(z)

(1−z)d+1 with a polynomial hna
P/I(z) ∈ Z[z]
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which satisfies hna
P/I(0) = 1 and hna

P/I(1) ≥ 1 (see Proposition 5.4.2). The
polynomial hna

P/I(z) is called the simplified affine Hilbert numerator
of P/I . Moreover, by part b) of Proposition 5.6.8, we have 0 ≤ d ≤ n .

In analogy with Section 5.4.A, we can now define the dimension and the
multiplicity of an affine algebra.

Definition 5.6.9. Let I be a proper ideal in P , and let HSa
P/I(z) =

hna
P/I(z)

(1−z)d+1

be the simplified Hilbert series of P/I .
a) The number dim(P/I) = d is called the dimension of P/I .
b) The number mult(P/I) = hna

P/I(1) is called the multiplicity of P/I .

As its name suggests, the dimension of an affine algebra does not depend
on the choice of a presentation. This will be shown in Subsection B. The
multiplicity of an affine algebra may depend on the presentation as we shall
see in Tutorial 76. By Proposition 5.6.8.b, the definitions of the dimension and
the multiplicity of P/I agree with the corresponding definitions in Section 5.4
if I is a homogeneous ideal.

Since the affine Hilbert function of P/I equals the usual Hilbert function
of P/Ihom , it is an integer function of polynomial type. The associated integer
valued polynomial is, of course, uniquely determined and gets the following
name.

Definition 5.6.10. Let I be a proper ideal in P .
a) The uniquely determined integer valued polynomial HPa

P/I(t) ∈ Q[t]
such that HPa

P/I(i) = HFa
P/I(i) for all i � 0 is called the affine Hilbert

polynomial of P/I .
b) The regularity index of HFa

P/I(t) is called the affine regularity index
of P/I and is denoted by ria(P/I).

For a homogeneous ideal I , the Hilbert polynomial and the regularity
index of P/I are related to their affine counterparts as follows.

Proposition 5.6.11. Let I be a proper homogeneous ideal in P .

a) We have HPP/I(t) = ∆HPa
P/I(t) = HPa

P/I(t) − HPa
P/I(t − 1) .

b) We have ri(P/I) = ria(P/I) + 1 .
c) We have dim(P/I) = deg HPa

P/I(t) .
d) We have mult(P/I) = dim(P/I)! LCDeg(HPa

P/I(t)) .

Proof. First we show a). Proposition 5.6.8.a yields HFP/I(i) = ∆HFa
P/I(i)

for all i ∈ Z . Now it suffices to apply Corollary 5.1.11.a because HFa
P/I is

an integer function of polynomial type. In order to show b), we use the same
argument and apply Corollary 5.1.11.b.

Next we prove c). If HPP/I(t) = 0, the polynomial HPa
P/I(t) is a

non-zero constant by a). Consequently, Theorem 5.4.15.b shows that we
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have dim(P/I) = 0 = deg(HPa
P/I(t)). Otherwise, if HPP/I(t) �= 0, Theo-

rem 5.4.15.b and a) imply dim(P/I) = 1 + deg(HPP/I(t)) = deg(HPa
P/I(t)).

Finally, we prove d). If we have HPP/I(t) = 0 then Theorem 5.4.15.c
and a) yield mult(P/I) = dimK(P/I) = HPa

P/I(t), and the claim is true.
Therefore we may now assume that d = deg(HPa

P/I(t)) ≥ 1. Then we write
HPa

P/I(t) = cdt
d + cd−1t

d−1 + · · · + c0 where c0, . . . , cd ∈ Q . Using a), we
calculate

HPP/I(t) = HPa
P/I(t) − HPa

P/I(t − 1)

= (cdt
d + · · · + c0) − (cd(t − 1)d + · · · + c0)

= d cd td−1 + (terms of degree ≤ d − 2)

Therefore we get d! LCDeg(HPa
P/I(t)) = d! cd = (d − 1)! LCDeg(HPP/I(t)) =

mult(P/I), as desired. �

For a non-homogeneous ideal I , we can compare the Hilbert polynomial,
the regularity index, the dimension, and the multiplicity of the affine alge-
bra P/I to the corresponding notions for P/Ihom .

Proposition 5.6.12. Let I be a proper ideal in P, let x0 be a homogenizing
indeterminate, and let P = K[x0, . . . , xn] .
a) We have HPa

P/I(t) = HPP/Ihom(t) .
b) We have ria(P/I) = ri(P/Ihom) .
c) We have dim(P/I) = dim(P/Ihom) − 1 .
d) We have mult(P/I) = mult(P/Ihom) .

Proof. The first two claims follow from Proposition 5.6.3.c which says that
the underlying Hilbert functions agree. Claims c) and d) follow from Propo-
sition 5.6.7.b and Definitions 5.4.1 and 5.6.9. �

5.6.B Primary Decomposition in Noetherian Rings

Of the colors,
red, blue and yellow

are primary and irreducible.
(Alice Bailey and Djwhal Khul)

The goal of this subsection is to introduce some parts of the general the-
ory of primary decomposition in Noetherian rings. Later we shall apply these
results to prove that the definition of the dimension of an affine algebra via
chains of prime ideals coincides with the definition via affine Hilbert polyno-
mials. The computational aspects of this theory are treated in Tutorials 43
and 79. Recall that the rings we consider are always assumed to be commu-
tative with identity element. A proper ideal I in a ring R is called a prime
ideal if rr′ ∈ I implies r ∈ I or r′ ∈ I for all r, r′ ∈ R .
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Definition 5.6.13. Let R be a ring. A prime ideal p of R is called a
minimal prime of R if there is no prime ideal q such that q ⊂ p . We
denote the set of all minimal primes of R by Min(R).

By Definition 2.4.4, a ring R is called Noetherian if every ascending
chain of ideals becomes eventually stationary. Our next proposition shows
that Noetherian rings have only finitely many minimal primes. In order to
prove it, we need the following auxiliary result.

Lemma 5.6.14. Let I1, . . . , Is be ideals in a ring R , and let p be a prime
ideal of R which contains I1 ∩ · · · ∩ Is . Then p contains one of the ideals Ii .

Proof. For a contradiction, suppose that there exist elements ri ∈ Ii \ p for
i = 1, . . . , s . Then we have r1 · · · rs ∈ I1 ∩ · · · ∩ Is ⊆ p . Since p is a prime
ideal, it follows that one of the factors ri is contained in p , in contradiction
to the choice of ri . �
Proposition 5.6.15. (Minimal Primes in Noetherian Rings)
Let R be a Noetherian ring.
a) Every radical ideal of R is the intersection of finitely many prime ideals

of R .
b) The are only finitely many minimal primes p1, . . . , ps of R . They satisfy

p1 ∩ · · · ∩ ps =
√

(0) .
c) Every prime ideal of R contains one of the minimal primes.

Proof. In order to show a) we use the technique of Noetherian recur-
sion. Suppose that claim a) is not true. Then the set of all radical ideals for
which the claim does not hold contains a maximal element I with respect
to inclusion because R is a Noetherian ring. Obviously, this ideal I is not
a prime ideal. Thus there exist a, b ∈ R such that ab ∈ I and a, b /∈ I . By
the maximality of I , the ideals J1 =

√
I + (a) and J2 =

√
I + (b) are finite

intersections of prime ideals. Hence it suffices to show I = J1 ∩ J2 in order
to arrive at a contradiction. Given f ∈ J1 ∩ J2 , there exist m1,m2 ∈ N and
g1, g2 ∈ I and h1, h2 ∈ R such that fm1 = g1 + ah1 and fm2 = g2 + bh2 .
Hence we get fm1+m2 = g1g2 + g1bh2 + g2ah1 + abh1h2 ∈ I , and the fact
that I is a radical ideal implies f ∈ I . As the other inclusion is obviously
true, this proves I = J1 ∩ J2 .

For the proof of b), we use a) and write
√

(0) = p1 ∩ · · · ∩ ps with prime
ideals p1, . . . , ps of R for which we may assume that pi � pj for distinct
i, j ∈ {1, . . . , s} . Since every minimal prime of R contains

√
(0), the lemma

shows that it is one of the primes p1, . . . , ps . Conversely, each prime ideal of
p1, . . . , ps is minimal, because otherwise it contains a strictly smaller prime
ideal which has to contain one of the ideals p1, . . . , ps by the lemma, in
contradiction to the assumption that pi ⊃ pj does not hold for i �= j . Thus
the primes p1, . . . , ps are exactly the minimal primes of R .

Claim c) follows from the lemma and the observation that every prime
ideal of R contains

√
(0). �
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Our next definition and the subsequent propositions should look familiar
to those of you who worked out the details of Tutorial 43.

Definition 5.6.16. Let R be a ring.
a) An ideal I of R is called irreducible if it cannot be written as the

intersection of two ideals, both of which properly contain it.
b) An ideal I of R is called a primary ideal if r r′ ∈ I implies r ∈ I or

r′ ∈
√

I for all r, r′ ∈ R .

Clearly, part b) of this definition implies that the radical of a primary
ideal I is a prime ideal p . In this situation we say that I is a p-primary
ideal or that I is primary for p . The following proposition collects some
basic properties of irreducible and primary ideals in Noetherian rings.

Proposition 5.6.17. Let R be a Noetherian ring.
a) If I is an irreducible ideal of R , it is a primary ideal.
b) Every proper ideal I of R is a finite intersection of irreducible ideals.
c) Let q1, . . . , qs be primary ideals of R , and let r ∈ R be an element which

is not contained in
√

q
1
∪ · · · ∪ √

q
s
. Then r is a non-zerodivisor for

R/(q1 ∩ · · · ∩ qs) .
d) Let p be a prime ideal of R , and let q1, . . . , qs be p-primary ideals of R .

Then q1 ∩ · · · ∩ qs is a p-primary ideal of R .

Proof. First we prove a). Since I is irreducible, the ideal (0) is irreducible
in the residue class ring R/I . We have to show that the ideal (0) is primary
in this ring. By passing to R/I , we may assume that I = (0). Let r, r′ ∈ R
be elements with r r′ = 0 and r′ �= 0. We need to show that there exists a
number i ∈ N such that ri = 0. If we can prove (ri) ∩ (r′) = (0) for some
i > 0, we can conclude that ri = 0 because (0) is irreducible. Since R is a
Noetherian ring, the ascending chain of ideals AnnR(r) ⊆ AnnR(r2) ⊆ · · · is
eventually stationary, i.e. there exists a number i ≥ 0 such that AnnR(ri) =
AnnR(ri+1). Let r′′ ∈ (ri)∩(r′). Then r r′ = 0 and r′′ ∈ (r′) imply r r′′ = 0.
Now we write r′′ = a ri with a ∈ R and use a ri+1 = r′′ r = 0 to obtain
a ∈ AnnR(ri+1) = AnnR(ri). Hence we get r′′ = a ri = 0, as desired.

Next we show b). We apply the technique of Noetherian recursion. Sup-
pose that the claim is not true. The set of all ideals for which the claim does
not hold contains a maximal element I with respect to inclusion because R
is a Noetherian ring. Clearly, the ideal I is not irreducible. Therefore there
exist two ideals I1 , I2 which properly contain I and satisfy I1 ∩ I2 = I .
The maximality of I implies that both I1 and I2 are finite intersections of
irreducible ideals. Hence also I is a finite intersection of irreducible ideals, a
contradiction.

To prove c), we let r′ ∈ R be such that r r′ ∈ q1 ∩ · · · ∩ qs . Since we have
r r′ ∈ qi and r /∈ √

qi , it follows that r′ ∈ qi for i = 1, . . . , s . Hence the
element r is a non-zerodivisor for R/q1 ∩ · · · ∩ qs .
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Finally, we show d). Let r, r′ ∈ R be such that r r′ ∈ q1 ∩ · · · ∩ qs ,
and assume that r′ /∈ √

q1 ∩ · · · ∩ qs =
√

q1 ∩ · · · ∩ √
qs = p . Then we have

r r′ ∈ qi and r′ /∈ √
qi = p , and therefore r ∈ qi for i = 1, . . . , s . This yields

r ∈ q1 ∩ · · · ∩ qs and finishes the proof. �

The preceding proposition allows us to prove the existence of primary
decompositions for ideals in Noetherian rings as follows.

Proposition 5.6.18. (Existence of Primary Decompositions)
Let R be a Noetherian ring. Every proper ideal I of R can be written as
I = q1 ∩ · · · ∩ qs with primary ideals q1, . . . , qs of R such that the following
conditions are satisfied.
1) For i, j ∈ {1, . . . , s} with i �= j we have

√
qi �= √

qj .
2) For i = 1, . . . , s we have

⋂
j �=i qj � qi .

Proof. Using parts a) and b) of Proposition 5.6.17, we obtain a decomposi-
tion I = q1∩· · ·∩qs with primary ideals q1, . . . , qs of R . Part d) of the same
proposition allows us to combine those primary ideals which have the same
radical. Thus we can achieve property 1). To achieve property 2), it suffices
to drop superfluous ideals qi . �

A representation I = q1∩· · ·∩qs as in this proposition is called a reduced
primary decomposition of I . The uniqueness of reduced primary decom-
positions will be discussed further in Tutorial 79 as will a way to compute
them. There is one more result about prime ideals in Noetherian rings which
will prove useful. It is sometimes known as the Prime Avoidance Lemma.

Proposition 5.6.19. (Prime Avoidance)
Let R be a Noetherian ring, let I be an ideal in R , and let p1, . . . , ps be
prime ideals in R . If I � pi for i = 1, . . . , s , then I is not contained in
p1 ∪ · · · ∪ ps .

Proof. Let us proceed by induction on s . For s = 1, the statement is obvi-
ously true. Now consider s > 1. For every i ∈ {1, . . . , s} , the inductive hy-
pothesis yields an element ri ∈ I \⋃j �=i pj . If ri /∈ pi for some i ∈ {1, . . . , s} ,
we are done. Otherwise we have ri ∈ (I ∩ pi) \

⋃
j �=i pj for i = 1, . . . , s . Now

we let r̃i =
∏

j �=i rj and we obtain r̃i ∈ (I ∩
⋂

j �=i pj) \ pi for i = 1, . . . , s .
Hence the element r = r̃1 + · · · + r̃s satisfies r ∈ I \⋃s

i=1 pi , as we wanted
to show. �

In the last part of this subsection we adapt the preceding results to the
graded case. The first contribution to this topic is a generalization of Propo-
sition 1.7.12. There it was shown that, for a homogeneous ideal, the property
of being prime can be checked using homogeneous elements only. Now it turns
out that the same is true for primary ideals.
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Proposition 5.6.20. Let Γ be a monoid, let τ be a monoid ordering on Γ ,
let R be a Γ -graded ring, and let I be a homogeneous ideal in R . Then I
is a primary ideal if and only if r r′ ∈ I implies r ∈ I or r′ ∈

√
I for

homogeneous elements r, r′ ∈ R .

Proof. Let r, r′ ∈ R be such that r r′ ∈ I and r /∈ I . We decompose r
and r′ into non-zero homogeneous components r = rγ1 + · · · + rγr

and
r′ = r′δ1

+ · · · + r′δs
where γ1 >τ · · · >τ γr and δ1 >τ · · · >τ δs . Clearly,

we may assume that rγ1 /∈ I since otherwise we could substitute r with
r − rγ1 without affecting the assumptions r r′ ∈ I and r /∈ I . It follows that
rγ1r

′
δ1

∈ I because I is a homogeneous ideal. Hence the hypothesis yields
r′δ1

∈
√

I . Choose i ≥ 0 such that we have (r′δ1
)i ∈ I . Then it follows that

r (r′ − r′δ1
)i ∈ I . Arguing as before, we see that r′δ2

∈
√

I . Continuing in this
way, we finally get r′ ∈

√
I , as we wanted. The converse implication follows

immediately from the definition. �

The next step is a graded version of the primary decomposition of an
ideal. Given an arbitrary ideal I , the homogeneous ideal generated by the
homogeneous elements in I is called the homogeneous part of I . It was
studied in Tutorial 50 and features prominently in the following proof.

Proposition 5.6.21. (Homogeneous Primary Decomposition)
Let Γ be a monoid possessing a monoid ordering τ , let R be a Γ -graded
Noetherian ring, and let I be a proper homogeneous ideal of R . Then there
exists a decomposition I = q1 ∩ · · · ∩ qs with homogeneous primary ideals
q1, . . . , qs of R such that the following conditions are satisfied.
1) For i, j ∈ {1, . . . , s} with i �= j we have

√
qi �= √

qj .
2) For i = 1, . . . , s we have

⋂
j �=i qj � qi .

Proof. Let I ⊂ R be a proper homogeneous ideal. By Proposition 5.6.18,
there exists a reduced primary decomposition I = q1 ∩ · · · ∩ qs with primary
ideals qi for i = 1, . . . , s . For an ideal J ⊆ R , let JΓ be the homogeneous part
of J , i.e. the ideal generated by the homogeneous elements in J . The chain
of inclusions I = (q1∩· · ·∩qs)Γ ⊆ (q1)Γ ∩· · ·∩(qs)Γ ⊆ q1∩· · ·∩qs = I shows
that we have I = (q1)Γ ∩· · ·∩ (qs)Γ . Next we prove that the ideals (qi)Γ are
primary ideals. By Proposition 5.6.20, it suffices to consider homogeneous
elements r, r′ ∈ R such that r r′ ∈ (qi)Γ and r /∈ (qi)Γ . Then r /∈ qi

implies r′ ∈ √
qi , and therefore r′ ∈

√
(qi)Γ . Thus we have shown that

(q1)Γ , . . . , (qs)Γ are primary ideals. Properties 1) and 2) can be achieved in
the same way as in the proof of Proposition 5.6.18. �

Now we turn our attention to Prime Avoidance 5.6.19. To find a graded
version of this result, we have to restrict the setting to standard graded
algebras.
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Proposition 5.6.22. (Homogeneous Prime Avoidance)
Let K be a field, let R be a standard graded K -algebra, let I ⊆ R be a
homogeneous ideal, let p1, . . . , ps be homogeneous prime ideal of R such that
I � pi for i = 1, . . . , s , and let d ∈ N . Then there exists a degree δ(d) ≥ d
such that Iδ(d) � (p1)δ(d) ∪ · · · ∪ (ps)δ(d) .

Proof. The method we use to prove this result is analogous to the method
of proof for Proposition 5.6.19, except that we have to be careful to keep
all elements homogeneous. Firstly, we observe that none of the ideals pi

coincides with R+ since the latter ideal contains all homogeneous ideals.
Secondly, we treat the case s = 1. Let r ∈ I and r′ ∈ R+ be homogeneous
elements which are not contained in p1 . Choose i ≥ 1 large enough so that
δ(d) = deg(r) + i deg(r′) ≥ d . Then we have r (r′)i ∈ Iδ(d) \ (p1)δ(d) .

Thirdly, we prove the case s > 1 by induction on s . By the inductive
hypothesis, there exist natural numbers δ1(d), . . . , δs(d) such that δi(d) ≥ d
and Iδi(d) �

⋃
j �=i(pj)δi(d) for i = 1, . . . , s . Therefore there exist homo-

geneous elements ri ∈ Iδi(d) with ri /∈ ⋃
j �=i(pj)δi(d) for i = 1, . . . , s .

If we have ri /∈ pi for some i ∈ {1, . . . , s} , we are done. Otherwise we
have ri ∈ (I ∩ pi)δi(d) \

⋃
j �=i(pj)δi(d) for i = 1, . . . , s . Now we define

di =
∑

j �=i δj(d) and r̃i =
∏
j �=i

rj , and we see that r̃i ∈ (I ∩⋂j �=i pj)di
\ (pi)di

for i = 1, . . . , s . By raising the elements r̃i to appropriate powers, we
may assume that d1 = · · · = ds . We denote this number by δ(d). Then
r = r̃1 + · · ·+ r̃s satisfies r ∈ Iδ(d) \

⋃s
i=1(pi)δ(d) , and the claim follows. �

The following example shows that the proposition is in general not true
for Zm -graded rings with m ≥ 2.

Example 5.6.23. Let K be a field, and let P = K[x, y] be graded by the
identity matrix I2 ∈ Mat2(Z). Then the homogeneous ideal I = (x, y) of P
is not contained in the prime ideals p1 = (x) and p2 = (y). Furthermore, we
have Id = K ·xα1yα2 = (x)d∪(y)d for every d = (α1, α2) ∈ N2 . In particular,
we see that Homogeneous Prime Avoidance 5.6.22 does not hold.

Furthermore, the claim of the proposition does not hold for every degree
δ(d) ≥ d , as our next example shows.

Example 5.6.24. Let P = F2[x, y] be standard graded. Then the homoge-
neous ideal I = (x, y) of P is not contained in the homogeneous prime ideals
p1 = (x), p2 = (y), and p3 = (x+y). But we have Id = (x)d∪ (y)d∪ (x+y)d

for d = 1. Thus the claim of the proposition does not hold for every degree
δ(d) ≥ d .

Finally, we use Homogeneous Prime Avoidance 5.6.22 to analyze homo-
geneous primary decompositions in greater detail. The following definition
introduces a generalization of the notion of a non-zerodivisor which is par-
ticularly useful in the graded case.
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Definition 5.6.25. Let K be a field, let R be a K -algebra, and let I be a
proper ideal of R . An element r ∈ R is called an almost non-zerodivisor
for R/I if AnnR/I(r + I) is a finite dimensional K -vector space.

The knowledge of a homogeneous primary decomposition enables us to
find homogeneous almost non-zerodivisors as follows.

Proposition 5.6.26. Let K be a field, let R be a standard graded K-algebra,
let I ⊂ R be a proper homogeneous ideal, let I = q1 ∩ · · · ∩ qs be a reduced
homogeneous primary decomposition of I , and let pi =

√
qi for i = 1, . . . , s .

a) If s = 1 and p1 = R+ then R/I is a finite dimensional K -vector space.
In particular, the residue class r+I of every element r ∈ R+ is nilpotent.

b) If R+ /∈ {p1, . . . , ps} then for every d ∈ N there exists a degree δ(d) ≥ d
and an element r ∈ Rδ(d) such that r is a non-zerodivisor for R/I .

c) If s ≥ 2 and R+ ∈ {p1, . . . , ps} , we may assume without loss of generality
that p1 = R+ . Then for every d ∈ N there exists a degree δ(d) ≥ d and
an element r ∈ Rδ(d) such that r is an almost non-zerodivisor for R/I .

Proof. Claim a) follows from the observation that for every homogeneous
element r ∈ R of positive degree we have r ∈ p1 =

√
I . Now we prove b).

Let d ∈ N . Using Proposition 5.6.22, we obtain a degree δ(d) ≥ d and a
homogeneous element r ∈ (R+)δ(d) such that r /∈ ⋃s

i=1(pi)δ(d) . By Proposi-
tion 5.6.17.c, the element r is a non-zerodivisor for R/I .

Finally we prove c). Let d ∈ N . Using Proposition 5.6.22, we obtain
a degree δ(d) ≥ d and a homogeneous element r ∈ (R+)δ(d) such that
r /∈ ⋃s

i=2(pi)δ(d) . Our goal is to show that r is an almost non-zerodivisor
for R/I . The ideal AnnR/I(r + I) is clearly homogeneous. To show that it
is a finite-dimensional K -vector space, it suffices to prove that there exists a
degree i ≥ 1 such that every homogeneous element r′ ∈ Rj of degree j ≥ i
with (r′ + I)(r + I) = 0 satisfies r′ + I = 0.

From the facts that R is a Noetherian ring and
√

q
1

= R+ we con-
clude that there exists a number i ≥ 1 such that (R+)i ⊆ q1 . In par-
ticular, this shows (q1)j = Rj for all j ≥ i . Therefore we see that
Ij = (q1)j ∩ · · · ∩ (qs)j =(q2)j ∩ · · · ∩ (qs)j for j ≥ i . Hence the condition
r r′ ∈ I implies that we have r r′ ∈ q2 ∩ · · · ∩ qs for all r′ ∈ Rj with
j ≥ i − δ(d). Since we have r /∈ ⋃s

i=2(pi)δ(d) , Proposition 5.6.17.c tells us
that r is a non-zerodivisor for R/q2 ∩ · · · ∩ qs . Consequently, it follows that
r r′ ∈ I implies r′ ∈ (q2 ∩ · · · ∩ qs)j = Ij for j ≥ i . This is exactly what we
wanted to prove. �
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5.6.C The Krull Dimension of an Affine Algebra

Bear in mind that 400 years ago,
arithmetic was a difficult art!

So great an educator as Melanchthon
did not trust the average student

to penetrate into the secrets of fractions.
(Wolfgang Krull)

Using chains of prime ideals, we have the following concept of the dimen-
sion of a ring.

Definition 5.6.27. Let R be a ring. The Krull dimension of R is the
supremum of the lengths d of chains p0 ⊂ p1 ⊂ · · · ⊂ pd of prime ideals
in R . We denote it by Kdim(R) and write Kdim(R) = ∞ if the supremum
is not finite.

For some rings, their Krull dimension is easy to determine.

Example 5.6.28. For a field K we have Kdim(K) = 0 since (0) is the only
prime ideal of K .

Example 5.6.29. For a principal ideal domain R , we have Kdim(R) = 1.
In particular, we have Kdim(Z) = 1 and Kdim(K[x]) = 1 for every field K .
The prime ideals of R are the zero ideal and the principal ideals (f) where f
is a non-zero prime element of R (see also Exercise 6).

Although it is possible for a Noetherian ring to have infinite Krull di-
mension, affine algebras have a finite Krull dimension. This is a consequence
of the main theorem of this subsection which says that, for an affine al-
gebra of the form P/I , we have Kdim(P/I) = dim(P/I). The proof of
this theorem consists of a number of steps. We begin at the beginning, i.e.
with the zero-dimensional case. In the following, we let K be a field, we let
P = K[x1, . . . , xn] be standard graded, and we let I ⊂ P be a proper ideal.

Proposition 5.6.30. For the affine K -algebra P/I , the following condi-
tions are equivalent.
a) dimK(P/I) < ∞
b) dim(P/I) = 0
c) Kdim(P/I) = 0

Proof. To show that a) implies b), we observe that the hypothesis implies
that the chain of K -vector spaces

0 = 〈P≤−1〉/〈I≤−1〉 ⊆ 〈P≤0〉/〈I≤0〉 ⊆ 〈P≤1〉/〈I≤1〉 ⊆ · · ·

is eventually stationary. Therefore HFa
P/I(i) is constant for i � 0, the poly-

nomial HPa
P/I(t) is constant, and dim(P/I) = deg(HPa

P/I(t)) = 0.
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Next we prove that b) implies c). Let p be a minimal prime of P/I .
Since the K -vector space dimension of 〈P≤i〉/〈I≤i〉 is constant for i � 0,
both P/I and (P/I)/p are finite dimensional K -vector spaces. It follows that
the integral domain (P/I)/p is a field, because the injective multiplication
by a non-zero element is forced to be bijective. This means that there is no
prime ideal in (P/I)/p besides the zero ideal. Consequently, there is no prime
ideal in P/I which contains p , as its residue class ideal would be a prime
ideal in (P/I)/p . Altogether, we see that no two prime ideals of P/I are
strictly contained in each other, i.e. that Kdim(P/I) = 0.

Finally, we show that a) follows from c). By the hypothesis and Proposi-
tion 5.6.15.b, there are only finitely many prime ideals in P/I . These prime
ideals are simultaneously minimal primes and maximal ideals of P/I . Thus
their preimages m1, . . . ,ms in P are exactly the maximal ideals of P con-
taining I . By Hilbert’s Nullstellensatz 2.6.6.b, we have dimK(P/mi) < ∞ for
i = 1, . . . , s . Let K be the algebraic closure of K , and let P = K[x1, . . . , xn] .
Then the Finiteness Criterion 3.7.1 shows that there are only finitely many
maximal ideals of P containing one of the ideals mi P . Let M be a maxi-
mal ideal of P containing I P . Then M ∩ P is a maximal ideal of P which
contains I , i.e. it is one of the ideals m1, . . . ,ms . Hence M contains one of
the ideals mi P for some i ∈ {1, . . . , s} . Thus there are only finitely many
maximal ideals of P containing I P , and the Finiteness Criterion 3.7.1 yields
the claim. �

The following consequence of this proposition will be used in the proof of
our main theorem.

Corollary 5.6.31. Let I ⊂ P be a prime ideal such that dim(P/I) > 0 ,
and let f ∈ P be an almost non-zerodivisor for P/I . Then we have f /∈ I .

Proof. The proposition and the hypothesis imply dimK(P/I) = ∞ . There-
fore we cannot have f ∈ I since in this case AnnP/I(f + I) = P/I would be
an infinite dimensional K -vector space. �

The next step is to reduce the proof of dim(P/I) = Kdim(P/I) to the
case of an integral domain P/I .

Proposition 5.6.32. Let Min(P/I) = {p1, . . . , ps} .
a) We have dim(P/I) = dim(P/

√
I) = dim((P/I)/(p1 ∩ · · · ∩ ps)) =

max{dim((P/I)/p1), . . . ,dim((P/I)/ps)} .
b) We have Kdim(P/I) = Kdim(P/

√
I) = Kdim((P/I)/(p1 ∩ · · · ∩ ps)) =

max{Kdim((P/I)/p1), . . . ,Kdim((P/I)/ps)} .

Proof. Let us begin by showing a). The first equality follows from Propo-
sitions 4.3.10.c, 5.4.8.c, and 5.6.12.c. More precisely, let x0 be a homoge-
nizing indeterminate, and let P = K[x0, . . . , xn] . Then we get dim(P/I) =
dim(P/Ihom)−1 = dim(P/

√
Ihom)−1 = dim(P/(

√
I)hom)−1 = dim(P/

√
I).

The second equality follows from parts a) and b) of Proposition 5.6.15.
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The third equality is a consequence of Propositions 4.3.10.b, 5.4.9.b,
and 5.6.12.c. More precisely, let Pi be the preimage of pi in P for i =
1, . . . , s . Then we get dim((P/I)/(p1 ∩ · · · ∩ps)) = dim(P/(P1 ∩ · · · ∩Ps)) =
dim(P/(P1 ∩ · · · ∩ Ps)hom) − 1 = dim(P/(Phom

1 ∩ · · · ∩ Phom
s )) − 1 =

max{dim(P/Phom
i ) | i = 1, . . . , s} − 1 = max{dim(P/Pi) | i = 1, . . . , s} =

max{dim((P/I)/pi) | i = 1, . . . , s} .
Now we prove b). The first two equalities follow from Proposition 5.6.15.b.

Every minimal prime of P/I contains
√

(0), i.e. the image of
√

I in P/I .
Therefore the prime ideals of P/I and P/

√
I are in 1-1 correspondence. The

third equality expresses the fact that every maximal chain of prime ideals
q0 ⊂ · · · ⊂ qd in P/I starts with a minimal prime q0 . �

The central part of the proof of the main theorem is going to be an a
induction on dim(P/I). Our next results provide us with inequalities on the
various dimensions which make this induction possible. Given a non-zero
polynomial f ∈ P of degree d , we have for every i ∈ N an exact sequence of
finite-dimensional K -vector spaces

(1) 0 −→ Ker(εi) −→ P≤i/(I≤i + (f)≤i)
εi−→P≤i/(I + (f))≤i −→ 0

where εi is the canonical surjection, and an exact sequence of finite dimen-
sional K -vector spaces

(2) 0 → Ker(µi) → P≤i/I≤i
µi→P≤i+d/I≤i+d → P≤i+d/(I≤i+d+(f)≤i+d) → 0

where µi is induced by multiplication by f .

Proposition 5.6.33. Let f ∈ P be a non-zero polynomial of degree d .
a) For every i ∈ N , we have a commutative diagram

P≤i/I≤i
µi−→ P≤i+d/I≤i+d⏐⏐� ⏐⏐�

P≤i+1/I≤i+1
µi+1−→ P≤i+d+1/I≤i+d+1

where the vertical maps are induced by the canonical inclusions and are
injective. In particular, we have Ker(µi) ⊆ Ker(µi+1) .

b) We have
⋃

i≥0 Ker(µi) = AnnP/I(f + I) .
c) If f is a non-zerodivisor for P/I then dim(P/(I+(f))) ≤ dim(P/I)−1 .

Proof. Claim a) is clearly true, and b) follows from a). It remains to prove c).
Sequence (1) yields HFa

P/(I+(f))(i) ≤ dimK(P≤i/(I≤i+(f)≤i)) , and by b) and
sequence (2) we have dimK(P≤i/(I≤i + (f)≤i)) = HFa

P/I(i) − HFa
P/I(i − d).

Consequently, we get HPa
P/(I+(f))(i) ≤ HPa

P/I(i) − HPa
P/I(i − d) for large

enough i . Since deg(HPa
P/I(t) − HPa

P/I(t − d)) = deg(HPa
P/I(t)) − 1, the

conclusion follows. �
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The inequality in the last part of this proposition is an equality if we
are given a homogeneous polynomial which is an almost non-zerodivisor
for P/DFW (I). This is the main result of our next proposition.

Proposition 5.6.34. Let W = (1 1 · · · 1) ∈ Mat1,n(Z) , let d ≥ 1 , and let
f ∈ Pd be an almost non-zerodivisor for P/DFW (I) .
a) The chain of K -vector spaces Ker(µ0) ⊆ Ker(µ1) ⊆ · · · is eventually

stationary. In particular, the K -vector space
⋃

i≥0 Ker(µi) is finite di-
mensional.

b) The polynomial f is an almost non-zerodivisor for P/I .
c) For large enough i , we have Ker(εi) = 0 .
d) If dim(P/I) > 0 then we have dim(P/(I + (f))) = dim(P/I) − 1 .

Proof. First we show a). The K -vector space AnnP/ DFW (I)(f + DFW (I))
is finite dimensional by assumption. Let m be the maximal degree of one
of its non-zero homogeneous components, or let m = 0 if this annihilator
is zero. Let i > m , and let g ∈ P be a non-zero polynomial of degree i
such that g + I≤i ∈ Ker(µi), i.e. such that fg ∈ I≤i+d . Then we have
DFW (g)DFW (f) = DFW (g) f ∈ DFW (I), and the definition of m implies
DFW (g) ∈ DFW (I). Thus there is a polynomial h ∈ I≤i with g−h ∈ P≤i−1 ,
and therefore g + I≤i ∈ Ker(µi−1). Since i > m was arbitrary, we obtain
Ker(µi) = Ker(µm) for i ≥ m . This proves a), and b) follows then from
Proposition 5.6.33.b and the fact that Ker(µm) is finite dimensional.

Next we prove c). Let m be defined as above, let i ≥ m , and let g ∈ P
be a non-zero polynomial of degree i with g + I≤i + (f)≤i ∈ Ker(εi), i.e.
with g ∈ (I + (f))≤i . Choose h1 ∈ I , h2 ∈ P of minimal degree such that
g = h1 −fh2 . We have to show deg(h1) ≤ i and deg(fh2) ≤ i . Suppose that
j = deg(h1) ≥ i + 1. Then deg(g) ≤ i implies DFW (h1) − f DFW (h2) = 0,
and therefore f DFW (h2) ∈ DFW (I). Since we have j > m , the definition
of m yields DFW (h2) ∈ DFW (I). Hence there is an element h3 ∈ I for which
DFW (h2) = DFW (h3). So, the polynomial h2 is of the form h2 = h3+h4 with
deg(h4) < deg(h2). Now the representation g = (h1 − fh3) − fh4 satisfies
h1 − f h3 ∈ I≤j−1 and fh4 ∈ (f)≤j−1 and contradicts the minimality of
j = deg(h1).

Finally we show d). By c) and sequence (1), we have HPa
P/(I+(f))(i) =

dimK(P≤i/(I≤i +(f)≤i) for large enough i . By a) and sequence (2), we have
dimK(P≤i/(I≤i + (f)≤i) = HPa

P/I(i) − HPa
P/I(i − d) + c for large enough i

and c = dimK(
⋃

i≥0 Ker(µi)). Hence dim(P/I) = deg(HPa
P/I) > 0 implies

deg(HPa
P/(I+(f))(t)) = deg(HPa

P/I(t)) − 1, and the proof is complete. �

The last ingredient we need for the proof of the main theorem is the
analogous inequality for the Krull dimension of P/(I + (f)).

Lemma 5.6.35. Let f ∈ P be such that f +I is not contained in a minimal
prime of P/I . Then we have Kdim(P/(I + (f))) ≤ Kdim(P/I) − 1 .
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Proof. Let p0 be a minimal prime of P/(I+(f)) such that there is a maximal
chain p0 ⊂ p1 ⊂ · · · ⊂ pd where d = Kdim(P/(I + (f))) and where pi is a
prime ideal of P/(I + (f)) for i = 1, . . . , d . For i = 0, . . . , d , let pi be the
preimage of pi in P/I . Thus we have a chain of prime ideals p0 ⊂ · · · ⊂ pd

in R . The first prime ideal p0 contains f . Hence it is not a minimal prime
of P/I . By Proposition 5.6.15.c, it properly contains a minimal prime q
of P/I . Thus we have found a chain of prime ideals of length d + 1 in P/I .
This proves the claim. �

Theorem 5.6.36. (The Krull Dimension of an Affine Algebra)
Let I be an ideal in P = K[x1, . . . , xn] . Then the affine algebra P/I satisfies

dim(P/I) = Kdim(P/I)

In particular, the dimension of an affine algebra P/I is an invariant which
does not depend the choice of the presentation.

Proof. First we show Kdim(P/I) ≤ dim(P/I) by induction on Kdim(P/I).
The case Kdim(P/I) = 0 is taken care of by Proposition 5.6.30. Now con-
sider the case d = Kdim(P/I) > 0. By Proposition 5.6.32, we may assume
that I is a prime ideal. Let (0) = p0 ⊂ · · · ⊂ pd be a maximal chain of
prime ideals in P/I . Every maximal chain of prime ideals in (P/I)/p1 starts
with the zero ideal. By taking preimages in P/I and prolongating the chain
with p0 , we get a chain of prime ideals in P/I of length one greater. This
shows that we have Kdim((P/I)/p1) = Kdim(P/I) − 1. Thus the inductive
hypothesis yields Kdim((P/I)/p1) ≤ dim((P/I)/p1). Let f ∈ P \ I be a
polynomial whose residue class is contained in p1 \ {0} . Then f is a non-
zerodivisor for P/I , and Propositions 5.6.12.c, 5.4.8.a, and 5.6.33.c imply
dim((P/I)/p1) ≤ dim(P/(I + (f))) ≤ dim(P/I) − 1. Combining everything,
we see that

Kdim(P/I) − 1 = Kdim((P/I)/p1) ≤ dim((P/I)/p1)
≤ dim(P/(I + (f))) ≤ dim(P/I) − 1

Next we prove dim(P/I) ≤ Kdim(P/I) by induction on Kdim(P/I).
The case Kdim(P/I) = 0 follows again from Proposition 5.6.30. Now con-
sider the case Kdim(P/I) > 0. By the first part of the proof, this implies
dim(P/I) > 0. In view of Proposition 5.6.32, we may again assume that I
is a prime ideal. Let W = (1 1 · · · 1) ∈ Mat1,n(Z). By Proposition 5.6.3.b,
we have dim(P/DFW (I)) = dim(P/I) > 0. We apply Proposition 5.6.26 to
the ring P and the ideal DFW (I). Since this ideal is not zero-dimensional,
we get a homogeneous polynomial f ∈ P which is an almost non-zerodivisor
for P/DFW (I). Then Proposition 5.6.34 implies that f is an almost non-
zerodivisor for P/I and dim(P/(I + (f))) = dim(P/I) − 1. The inductive
hypothesis yields dim(P/(I + (f)) ≤ Kdim(P/(I + (f))). Finally, we note
that Corollary 5.6.31 shows f /∈ I , and therefore Lemma 5.6.35 says that
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we have the inequality Kdim(P/(I + (f))) ≤ Kdim(P/I) − 1. Altogether, it
follows that

dim(P/I) − 1 = dim(P/(I + (f))) ≤ Kdim(P/(I + (f))) ≤ Kdim(P/I) − 1

as we wanted to show. The additional claim follows from the observation
that Kdim(P/I) is independent of the presentation since it refers only to
chains of prime ideals in the ring P/I . �

Exercise 1. Let K be a field, let P = K[x1, . . . , xn] be standard graded,

let I ⊆ P be an ideal, and let P = K[x0, . . . , xn] be standard graded. By

Proposition 4.3.5.f, the element x0 is a non-zerodivisor for P/Ihom .

a) Show that x0 − 1 is a non-zerodivisor for P/Ihom .
b) Construct a short exact sequence of K -algebras

0 −→ P/Ihom µ−→ P/Ihom ε−→ P/I −→ 0

where µ is induced by multiplication by x0 − 1, and ε is induced by
dehomogenization with respect to x0 .

c) Given i ∈ Z , restrict the above sequence to the vector spaces generated
by elements of degree ≤ i − 1 and ≤ i , respectively. Show that this
yields an exact sequence of finite dimensional K -vector spaces

0 −→ 〈P≤i−1〉/〈Ihom
≤i−1〉 µ−→ 〈P≤i〉/〈Ihom

≤i 〉 ε−→ 〈P≤i〉/〈I≤i〉 −→ 0

d) Using this sequence, prove the formula HFa
P/I(i) = HFP/Ihom(i) in

an alternative way (see Proposition 5.6.3.c).

Exercise 2. Write CoCoA functions AffineHS1(. . .) and AffineHS2(. . .)
which implement the two methods for computing affine Hilbert series sug-
gested by the two parts of Proposition 5.6.7. Apply your functions to com-
pute the affine Hilbert series of the algebras Q[x, y, z]/Ii for the following
ideals Ii . Compare their results and their timings.

a) I1 = (x − 2z4, y − 3z5)
b) I2 = (x2 − y, xy − z, xz − y2)
c) I3 = (x2 + y3 + z3 − 1, x3 + y4 + z5 − 1)

Exercise 3. Let K be a field, let n ≥ 2, and let P = K[x1, . . . , xn] .
Show that (x1, . . . , xn)2 is an (x1, . . . , xn)-primary ideal, but it is not
irreducible.

Exercise 4. Let R be a Noetherian ring. Show that every prime ideal
of R is irreducible, but the converse does not hold in general.

Exercise 5. Let R be a Noetherian ring. Show that every proper ideal
of R is contained in a maximal ideal of R . Conclude that every maximal
chain p0 ⊂ p1 ⊂ · · · ⊂ pd of prime ideals of R starts with a minimal
prime p0 and ends with a maximal ideal pd .

Exercise 6. Let R be an integral domain.
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a) Show that R has exactly one minimal prime, namely (0) .
b) Prove that a non-zero principal ideal (f) of R is a prime ideal if and

only if f is a prime element.
c) Assume that R is a principal ideal domain. Show that every inclusion

p ⊆ q of non-zero prime ideals in R is in fact an equality.

Exercise 7. Let R be a Noetherian ring and I an ideal in R . Show
that

√
I is the intersection of all prime ideals containing I . If you know

Zorn’s Lemma, you may try to prove this for an arbitrary ring R .

Exercise 8. Let R, S be rings, let I be an ideal in R , and let ϕ : R −→ S
be a ring homomorphism.

a) Show that, for every prime ideal p of S , its preimage ϕ−1(p) is a
prime ideal of R .

b) Show that the prime ideals of R containing I are in 1-1 correspon-
dence with the prime ideals of R/I .

c) Prove that the maximal ideals of R containing I are in 1-1 correspon-
dence with the maximal ideals of R/I .

d) Conclude that Kdim(R) ≥ Kdim(R/I) .

Exercise 9. Using the Chinese Remainder Theorem 3.7.4, show that the
following conditions are equivalent for a reduced Noetherian ring R .

a) The ring R is the direct product of finitely many fields.
b) We have Kdim(R) = 0.

Tutorial 76: The Multiplicity of an Affine Algebra

Research is what I’m doing
when I don’t know what I’m doing.

(Wernher von Braun)

Using the affine Hilbert polynomial, we have defined the multiplicity of
an affine algebra. In this tutorial we want to research this number further.
Although we don’t know yet what we’ll be doing with this research, we shall
look for connections between the multiplicities of different affine algebras,
explicit formulas for the multiplicity of special rings, and efficient ways to
compute them.

Let K be a field, let P = K[x1, . . . , xn] , and let I ⊂ P be an ideal.
a) Show that the multiplicity of an affine algebra depends on the choice of a

presentation. In other words, given another ring P ′ = K[y1, . . . , ym] and
an ideal I ′ ⊂ P ′ , it is possible to have an isomorphism of K -algebras
P/I ∼= P ′/I ′ even though mult(P/I) �= mult(P ′/I ′).
Hint: Consider K[x, y, z]/(z − x2).

b) Show that we have mult(P/I) = dimK(P/I) < ∞ if dim(P/I) = 0.
c) Deduce the formula mult(P/I) = mult(P/

√
I) + dimK(

√
I/I) under

the assumption that dim(P/I) = 0, and exhibit an example with
dim(P/I) > 0 for which this formula does not hold.
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d) Let d = dim(P/I), and let I ⊂ P be a radical ideal. Write I = p1∩· · ·∩ps

with distinct prime ideals p1, . . . , ps of P . Prove the formula

mult(P/I) =
∑

{i | dim(P/pi)=d}
mult(P/pi)

Hint: Use the exact sequences of the proof of Proposition 5.4.9.
e) Assume that P is standard graded. Let f ∈ P be a polynomial of degree

δ ≥ 1 such that DF(f) is a non-zero divisor for P/DF(I) . Show that we
have mult(P/(I+(f))) = δ ·mult(P/I). (Hint: Use Proposition 5.6.12.d.)

f) Exhibit an example showing that in e) it is not sufficient to assume that f
alone is a non-zero divisor for P/I .

g) Now assume that K is an infinite field and that dim(P/I) ≥ 1. Show
that a generic linear polynomial � ∈ P≤1 satisfies mult(P/(I + (�))) =
mult(P/I).

h) Write a CoCoA function MultAffineAlg(. . .) which takes an ideal I in
P = Q[x1, . . . , xn] and computes the multiplicity of P/I .
Hint: If dim(P/I) > 0, reduce modulo a generically chosen linear poly-
nomial.

i) Use your function MultAffineAlg(. . .) to compute the multiplicities of
the following affine algebras.
1) Q[x1, x2, x3]/(x1x2, x2x3, x1x3)
2) Q[x1, . . . , x5]/(x1, . . . , x4)3

3) Q[x1, . . . , x5]/(x1x
2
2, x1x

2
3, x1x

2
4, x1x

2
5)

Tutorial 77: Primary Decomposition of Monomial Ideals

Tell the truth and run.
(Yugoslav Proverb)

In Subsection B we encountered the primary decomposition of an ideal in
a Noetherian ring. This raises the question of how to compute the primary
decomposition of a polynomial ideal. A special case was treated in Tutor-
ial 43 where we discussed the computation of the primary decomposition of
a zero-dimensional polynomial ideal. In this tutorial we study another case
where primary decompositions can be computed efficiently, namely the case
of monomial ideals. Alas, the sword of Damocles is still hanging above us:
although knowledge of the primary decomposition of a polynomial ideal is
usually valuable, acquiring it is one of the most difficult tasks in Compu-
tational Commutative Algebra and is prone to overwhelm your computer.
Having told this truth, we turn back to the monomial ideal case and delay
facing the big task until the next section.

Let K be a field, let P = K[x1, . . . , xn] , and let I ⊂ P be a monomial
ideal. In the following, we present two methods for computing the primary
decomposition of I . The first method is based on the observation that it
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is easy to determine a decomposition of I into irreducible monomial ideals
by splitting its minimal monomial generators into powers of indeterminates.
Then the irreducible components corresponding to the same prime can be
recombined by intersecting them. This approach is easy to formulate and
implement, but it has the obvious disadvantage of creating a large number
of components which then have to be intersected.

The second method uses Alexander duality. This duality is an involution
on the set of radical monomial ideals which turns sums into intersections
and vice versa. The prime components correspond to the minimal monomial
generators of the Alexander dual. Hence we get an algorithm for computing
the prime decomposition of a radical monomial ideal, and the general case
can be reduced to it by the isolation of primary components explained in
Tutorial 43.g.
a) Show that the ideal I is a prime ideal if and only if it is of the form

I = (xi1 , . . . , xis
) with 1 ≤ i1 < · · · < is ≤ n .

b) Let t1, t2 ∈ Tn be two coprime terms. Prove that I = (I+(t1))∩(I+(t2)).
c) Using b), show that if I is irreducible, it is of the form I = (xα1

i1
, . . . , xαs

is
)

with 1 ≤ i1 < · · · < is ≤ n and α1, . . . , αs ∈ N+ .
Note: The converse implication is also true. This will be shown in Propo-
sition 6.2.11.

d) Write a CoCoA function MonIrredDecomp(. . .) which takes a monomial
ideal I and computes a decomposition of I into irreducible ideals.
Hint: Use b) and c).

e) Apply your function MonIrredDecomp(. . .) to compute a decomposition
of the following monomial ideals into irreducible monomial ideals.
1) I1 = (x1x

2
2x

3
3, x2x

2
3x

3
4, x1x

2
3x

3
4) ⊂ Q[x1, x2, x3, x4]

2) I2 = (x3
1x

3
2, x3

2x
3
3, . . . , x

3
8x

3
9) ⊂ Q[x1, . . . , x9]

3) I3 = (x1x2 · · ·xi−1xi+1 · · ·x9 | i = 1, . . . , 9) ⊂ Q[x1, . . . , x9]
f) Write a CoCoA function MonPrimDecomp(. . .) which finds the primary

decomposition of a monomial ideal in the following way: first com-
pute a decomposition into irreducible monomial ideals, and then com-
bine the irreducible ideals having the same radical using the function
MonIntersection(. . .) of Tutorial 8.

g) Apply your function MonPrimDecomp(. . .) to the ideals in e).
In the following we let R be the set of all radical monomial ideals of P .

The map ϕ : R −→ R which sends (xα11
1 · · ·xα1n

n , . . . , xαs1
1 · · ·xαsn

n ) to
∩s

i=1(x
αi1
1 , . . . , xαin

n ) is called Alexander duality.
h) Show that R is closed under finite sums and intersections. Conclude

that ϕ is well-defined.
i) Prove that we have ϕ2(I) = I for every I ∈ R . Deduce that ϕ is

bijective.
j) Let I1, . . . , Ir ∈ R . Show that the map ϕ satisfies ϕ(I1 + · · · + Ir) =

ϕ(I1) ∩ · · · ∩ ϕ(Ir) and ϕ(I1 ∩ . . . ∩ Ir) = ϕ(I1) + · · · + ϕ(Ir).
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k) Let I be the set of all monomial ideals in P , and let Φ : I −→ I be the
map obtained by extending the definition of ϕ to all elements of I . Find
examples which show that the map Φ does not share the properties in i)
and j).

l) Write a CoCoA function AlexDual(. . .) which takes a monomial ideal I
and computes Φ(I).

m) Apply your function AlexDual(. . .) to compute the Alexander duals of
the following monomial ideals.
1) J1 = (x1x2x3, x2x3x4, x1x3x4) ⊂ Q[x1, x2, x3, x4]
2) J2 = (x1x2, x2x3, . . . , x8x9) ⊂ Q[x1, . . . , x9]
3) J3 = (x1x2 · · ·xi−1xi+1 · · ·x9 | i = 1, . . . , 9) ⊂ Q[x1, . . . , x9]

n) A radical monomial ideal I with ϕ(I) = I is called self-dual. Using your
function AlexDual(. . .) or calculating by hand, prove that the monomial
ideal

I = (x1x2x3, x1x2x4, x1x3x5, x2x4x5, x3x4x5,

x2x3x6, x1x4x6, x3x4x6, x1x5x6, x2x5x6)

in Q[x1, . . . , x6] is self-dual.
o) Using CoCoA, find all self-dual radical monomial ideals in Q[x1, . . . , x6]

which are minimally generated by ten terms of degree three.
Hint: Use the CoCoA function Subsets(. . .).

p) Given I ∈ R and J = ϕ(I), prove that the largest degree of a minimal
monomial generator of J is n − dim(P/I) . Moreover, explain how one
can get the associated primes of I from the minimal monomial generators
of J .

q) Write CoCoA functions AlexDim(. . .) and AlexPrimDecomp(. . .) which
compute the dimension and the primary decomposition of a radical mono-
mial ideal using Alexander duality. Apply your functions to the ideals
in m) and n).
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5.7 Independent Sets of Indeterminates

Exercise 1. What is (x − a)(x − b) · · · (x − z)?
(Anonymous)

Sometimes it has to get very dark
before you see the light.

(Indian Proverb)

In the preceding section we proved that the dimension of an affine algebra,
as defined via its affine Hilbert function, coincides with its Krull dimension,
i.e. with a more geometric notion of dimension defined via chains of prime
ideals. In this section we study another notion of dimension with a somewhat
different geometric background: a d -dimensional affine variety should have a
component which looks locally like a d -dimensional affine space. Thus there
should be a projection onto a d -dimensional affine space which is locally
an isomorphism. Algebraically, this idea corresponds to the combinatorial
dimension of an affine algebra (see Subsection A) and to Noether Normal-
izations (see Tutorial 78). In fact, we shall see that to introduce dimension
theory via maximal sets of independent indeterminates yields a surprisingly
simple yet powerful approach.

But let us try do to things in chronological order — it is less confusing that
way! Given an affine algebra P/I, where P = K[x1, . . . , xn] is a polynomial
ring over a field K and I is a proper ideal in P, a set of indeterminates Y
is said to be independent modulo I if the canonical map K[Y ] −→ P/I is
injective. The maximal size of an independent set of indeterminates is called
the combinatorial dimension of P/I . In the first subsection we prove that
the combinatorial dimension of an affine algebra equals its dimension. Since
we also provide algorithms for computing the combinatorial dimension, fresh
light is shed on dimension theory, and we discover new paths leading deeper
into its thicket.

In the second subsection we link independent sets of indeterminates to al-
gebraically independent sets of elements and to transcendence bases. Despite
their awe-inspiring name, you do not really need to resort to transcendental
meditation to grasp the concept. Moreover, they provide the last link in our
long chain comprising the different facets of dimension investigated so far.
Finally, in the tutorials you will have the opportunity to construct special
injective homomorphisms K[Y ] −→ P/I called Noether normalizations (see
Tutorial 78) and to compute primary decompositions of ideals (see Tutor-
ial 79). The latter is a natural continuation and generalization of Tutorial 43
where only zero-dimensional ideals are considered.

In the following we let K be a field, let P = K[x1, . . . , xn] , and let I
be a proper ideal in P . For every subset Y ⊆ {x1, . . . , xn} , we denote the
polynomial ring K[xi | xi ∈ Y ] by K[Y ] and the ideal (xi | xi ∈ Y ) by (Y ).
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5.7.A The Combinatorial Dimension of an Affine Algebra

Our immediate agenda is to examine the following concepts.

Definition 5.7.1. Let Y ⊆ {x1, . . . , xn} be a set of indeterminates.
a) The set Y is said to be independent modulo I or an independent

set of indeterminates modulo I if I ∩ K[Y ] = (0).
b) The set Y is called a maximal independent set modulo I if Y is

independent modulo I and there is no set Z ⊆ {x1, . . . , xn} independent
modulo I with Y ⊂ Z .

c) The largest number of elements of a maximal independent set of indeter-
minates modulo I is called the combinatorial dimension of P/I and
is denoted by cdim(P/I).

Another way of phrasing the definition of an independent set Y modulo I
is to say that the canonical K -algebra homomorphism K[Y ] −→ P/I has to
be injective. The main goal of this subsection is to prove that the combina-
torial dimension of P/I equals its dimension. The following example shows
it is not true that all maximal independent sets of indeterminates modulo I
have the same number of elements. But later we prove that this is true for a
prime ideal I .

Example 5.7.2. Let P = Q[x, y, z] and I = (x−xy, x−xz). Then we have
I ∩ Q[x] = (0). The set {x} is a maximal independent set modulo I , since
I ∩ Q[x, y] = (x − xy) and I ∩ Q[x, z] = (x − xz). Moreover, the equality
I ∩ Q[y, z] = (0) implies that also the set {y, z} is a maximal independent
sets modulo I .

In some cases the combinatorial dimension is easy to determine.

Example 5.7.3. Let m ∈ {0, . . . , n − 1} , let Y ⊂ {x1, . . . , xn} be a subset
consisting of m indeterminates, and let I = (Y ). Then {x1, . . . , xn} \ Y is
a maximal independent set modulo I which has the largest possible num-
ber of elements, and we have cdim(P/I) = n − m . In particular, we get
cdim(P ) = n .

Before studying combinatorial dimension further, we need to get a better
understanding of independent sets of indeterminates. Theorem 3.4.5 on the
computation of elimination modules allows us to characterize them as follows.

Remark 5.7.4. Let Y ⊆ {x1, . . . , xn} be a set of indeterminates. Then the
following conditions are equivalent.
a) The set Y is independent modulo I .
b) For every elimination ordering σ for {x1, . . . , xn} \ Y and for every

σ -Gröbner basis G of I, we have G ∩ K[Y ] = ∅ .
c) There is an elimination ordering σ for {x1, . . . , xn}\Y and a σ -Gröbner

basis G of I such that G ∩ K[Y ] = ∅ .
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In particular, for a monomial ideal I, the set Y is independent modulo I
if and only if no term in I is a product of indeterminates solely from Y .

Using these equivalences, we have an effective way to check whether a
given set of indeterminates is independent modulo I . Thus we can compute
the combinatorial dimension of an affine algebra as follows.

Proposition 5.7.5. Let I be a proper ideal in P . Consider the following
instructions.
1) Let d = 0 and L0 = {∅} .
2) Form the set Ld+1 consisting of all sets Y ′ ∪ {xi} with Y ′ ∈ Ld

and i ∈ {1, . . . , n} being larger than any of the indices of the indeter-
minates in Y ′ .

3) For each set Y ∈ Ld+1 check whether Y is independent modulo I . If
not, delete Y from Ld+1 .

4) If Ld+1 = ∅ , return (d, Ld) and stop. Otherwise, increase d by one and
continue with step 2).

This is an algorithm which computes d = cdim(P/I) and the set Ld of all
maximal independent sets of indeterminates Y modulo I with #Y = d .

Proof. Since finiteness is obvious, it suffices to prove correctness. After
step 4) is finished, the set Ld contains only independent sets modulo I con-
sisting of d elements. We claim that the returned set Ld contains all maximal
independent sets modulo I of length d = cdim(P/I). Indeed, given any such
set Y = {xi1 , . . . , xid

} , where 1 ≤ i1 < · · · < id ≤ n , we can form a chain
∅ ⊂ {xi1} ⊂ · · · ⊂ {xi1 , . . . , xid

} of independent sets modulo I such that
each set in the chain is found and appended to Ld+1 in one of the iterations
of step 2).

Conversely, we claim that the returned set Ld contains only maximal
independent sets Y modulo I . Let Y ∈ Ld , and let xm ∈ Y be the indeter-
minate having the largest index. Clearly, Ld+1 = ∅ implies that Y cannot
be extended to an independent set using an indeterminate xi with i > m .
Furthermore, a possible extension using another indeterminate would lead to
another subset of Ld which could be extended by xm , in contradiction to
the fact that Ld+1 = ∅ . Thus the algorithm returns the correct result. �

Although this algorithm is correct, it is not efficient. In adverse cases
it may require up to 2n − 1 Gröbner basis calculations to do its job. In
Corollary 5.7.10 and Tutorial 78 we shall see more efficient ways to compute
maximal sets of indeterminates modulo I .

In the meantime, we describe some properties of the combinatorial di-
mension. They will be of use later.
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Proposition 5.7.6. (Properties of the Combinatorial Dimension)
Let P = K[x1, . . . , xn] , let I be a proper ideal in P, and let Y be a subset
of {x1, . . . , xn} .
a) We have cdim(P/I) = 0 if and only if dim(P/I) = 0 .
b) If J ⊆ I is another ideal of P and Y is independent modulo I then Y is

independent modulo J . Consequently, we have cdim(P/J) ≥ cdim(P/I) .
c) Let σ be a term ordering on Tn . If the set Y is an independent set

modulo LTσ(I) then it is independent modulo I . Consequently, we have
cdim(P/LTσ(I)) ≤ cdim(P/I) .

d) Let i ≥ 1 . The set Y is independent modulo I if and only if it is indepen-
dent modulo Ii. Thus we have cdim(P/Ii) = cdim(P/I) = cdim(P/

√
I) .

e) Let J be another proper ideal in P . The set Y is an independent set
modulo I ∩ J if and only if it is independent modulo I or modulo J .
Thus we have cdim(P/I ∩ J) = max{cdim(P/I), cdim(P/J)} .

Proof. First we show a). By Proposition 5.6.30 and the Finiteness Crite-
rion 3.7.1, the condition dim(P/I) = 0 is equivalent to I ∩ K[xi] �= (0)
for i = 1, . . . , n , and this is precisely the definition of cdim(P/I) = 0. To
prove b), it suffices to note that I ∩ K[Y ] = (0) implies J ∩ K[Y ] = (0).
Therefore, if Y is independent modulo I, it is also independent modulo J .

Next we show c). Suppose that Y is not independent modulo I . Hence
there exists a non-zero polynomial f ∈ I ∩ K[Y ] . Then its leading term is
a non-zero polynomial in LTσ(I) ∩ K[Y ] and Y is not independent mod-
ulo LTσ(I). For the proof of one implication in d), we can use Ii ⊆ I and b).
Conversely, assume that Ii ∩ K[Y ] = (0) and f ∈ I ∩ K[Y ] . Then we have
f i ∈ Ii ∩ K[Y ], and therefore f i = 0. This implies f = 0, and consequently
I ∩ K[Y ] = (0). The second claim follows from the fact that there exists a
number i ≥ 1 such that Ii ⊆

√
I

i ⊆ I .
Finally, we prove e). Clearly, I ∩K[Y ] = (0) implies I ∩ J ∩K[Y ] = (0).

Conversely, assume that I ∩ J ∩ K[Y ] = (0) and I ∩ K[Y ] �= (0). Let f be
a non-zero polynomial in I ∩ K[Y ] . For every g ∈ J ∩ K[Y ] , we then find
fg ∈ I ∩ J ∩ K[Y ] = (0), i.e. we have fg = 0. Thus we see that g = 0
and J ∩ K[Y ] = (0). Therefore we have the inequality cdim(P/I ∩ J) ≤
max{cdim(P/I), cdim(P/J)}, and the other inequality follows from b). �

The converse of part c) of this proposition is not true in general, as the
following example shows.

Example 5.7.7. Let P = K[x, y] , let I = (x2+y2), and let σ = DegRevLex .
Then {x} is a maximal independent set modulo I, but it is not independent
modulo LTσ(I) = (x2).

Our next proposition provides a nice description of the radical and the
combinatorial dimension of a monomial ideal. In fact, it constitutes one of the
reasons for calling cdim(P/I) the combinatorial dimension of I . Namely, the
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combinatorial dimension of a monomial ideal is a number given by a simple
combinatorial formula.

Proposition 5.7.8. (Combinatorial Dimension of Monomial Ideals)
Let I be a proper monomial ideal in P .

a) We have
√

I =
⋂

Y ⊆{x1,...,xn},
√

I⊆(Y )

(Y ) .

b) We have cdim(P/I) = n − min{#Y | I ⊆ (Y ) ⊆ {x1, . . . , xn}} .
c) We have cdim(P/I) = dim(P/I) .

Proof. First we show a). It is clear that
√

I is contained in the right-hand
side. To prove the reverse inclusion, let {t1, . . . , ts} be the minimal monomial
system of generators of

√
I . By Corollary 4.1.12, the set {t1, . . . , ts} consists

of squarefree terms. For a contradiction, assume that some term t ∈ Tn is
contained in the right-hand side, but not in

√
I . For every i ∈ {1, . . . , s} ,

there exists an index νi ∈ {1, . . . , n} such that xνi
divides ti , but not t .

Thus we have t /∈ (xν1 , . . . , xνs
) and

√
I = (t1, . . . , ts) ⊆ (xν1 , . . . , xνs

), in
contradiction with our assumption.

In view of Proposition 5.7.6.d, it suffices to prove b) for a radical ideal I,
since we have I ⊆ (Y ) if and only if

√
I ⊆ (Y ). In that case the claim follows

from a), Example 5.7.3, and Proposition 5.7.6.e because

cdim(P/I) = max{cdim(P/(Y )) | Y ⊆ {x1, . . . , xn} and I ⊆ (Y )}
= max{n − #Y | Y ⊆ {x1, . . . , xn} and I ⊆ (Y )}
= n − min{#Y | Y ⊆ {x1, . . . , xn} and I ⊆ (Y )}

yields the formula we were looking for.
Finally we show c). By Propositions 5.7.6.d and 5.4.8.c, it suffices to

prove the claim for the radical monomial ideal
√

I . Using a) together with
Propositions 5.4.9.b and 5.7.6.e, we see that we can even assume that I is
generated by a subset of {x1, . . . , xn} . Now the claim follows from Exam-
ples 5.4.3 and 5.7.3. �

Based on this proposition, we are ready to prove the equality of the dimen-
sion and the combinatorial dimension of an affine algebra in full generality.

Theorem 5.7.9. (Combinatorial Dimension of Affine Algebras)
Let P = K[x1, . . . , xn] , and let I be a proper ideal in P . Then the affine
algebra P/I satisfies cdim(P/I) = dim(P/I) .

In particular, the combinatorial dimension of an affine algebra does not
depend on the choice of presentation.

Proof. The inequality cdim(P/I) ≥ dim(P/I) follows by combining Propo-
sitions 5.7.6.c, 5.7.8.c, and 5.4.14.e. To prove the reverse inequality, we let
d = dim(P/I). For a contradiction, we assume that there exists a set of in-
determinates Y ⊆ {x1, . . . , xn} such that Y is independent modulo I and
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#Y = d + 1. Then the injective K -algebra homomorphism K[Y ] ↪−→ P/I
shows that we have HFa

P/I(i) ≥ HFa
K[Y ](i) =

(
d+1+i
d+1

)
for all i ∈ Z . Therefore

HPa
P/I(t) is a polynomial of degree ≥ d+1, in contradiction to the fact that

d = dim(P/I) = deg(HPa
P/I(t)). �

This theorem allows us to compute dimensions and maximal independent
sets of indeterminates in a more efficient manner.

Corollary 5.7.10. (Computation of the Combinatorial Dimension)
Let I be a proper ideal in P, and let σ be a degree compatible term ordering
on Tn .
a) We have dim(P/LTσ(I)) = dim(P/I) .
b) Consider the following instructions.

1) Compute LTσ(I) using Buchberger’s Algorithm.
2) Compute the minimal monomial system of generators {t1, . . . , ts} of√

LTσ(I) by taking the squarefree parts of the terms in a monomial
set of generators of LTσ(I) and by deleting those terms which are
proper multiples of others.

3) Apply the procedure IndepSet(Y, T ) to the sets Y = {x1, . . . , xn}
and T = {t1, . . . , ts} . Return its result and stop.

Here IndepSet(Y, T ) is the recursive procedure defined by the following
steps.
I1) If T = ∅ then return Y and stop.
I2) For each xi ∈ Y dividing t1, let Ti = {t ∈ T | xi does not divide t} .

Call the procedure IndepSet(Y \{xi}, Ti) and denote its result by Li .
I3) Let Lj be one of the sets Li having the largest number of elements.

Return Lj ∪ {xi} and stop.
This is an algorithm which computes a maximal independent set Y mod-
ulo I having the largest number of elements. In particular, it computes
the combinatorial dimension cdim(P/I) = #Y .

Proof. To prove a), we introduce a homogenizing indeterminate x0 and let
P = K[x0, x1, . . . , xn] . Now Lemma 4.3.16.c shows LTσ(Ihom) = LTσ(I)P .
Since we have P/LTσ(I)P ∼= (P/LTσ(I))[x0] , we see that x0 is a non-zero
divisor modulo LTσ(I)P . By Proposition 5.4.6, we have dim(P/LTσ(I)) =
dim(P/LTσ(I)P ) − 1 = dim(P/LTσ(Ihom)) − 1. Now Proposition 5.4.5.e
yields dim(P/LTσ(Ihom)) = dim(P/Ihom). Hence the claim follows from
Proposition 5.6.12.c.

To prove b), we note that a) and the theorem imply that it suffices to
compute an independent set of indeterminates modulo LTσ(I) which consists
of d = dim(P/LTσ(I)) elements. In the light of Proposition 5.7.8, it is clear
that it suffices to do this for

√
LTσ(I) instead. Hence we have to show that

the recursive procedure IndepSet(Y, T ) is an algorithm which computes a
maximal independent set modulo J =

√
LTσ(I) consisting of dim(P/J)

elements.
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First we observe that the recursive procedure is finite, because its recur-
sive calls are applied to pairs (Y, T ) where T has fewer elements. Thus we
eventually arrive at T = ∅ and step I1) returns a result. Then we point out
that step I1) returns the correct result if J = (0), namely Y = {x1, . . . , xn} .
Next we note that

J =
⋂

xi|t1
(J + (xi)) =

⋂
xi|t1

(xi, t2, . . . , ts) =
⋂

xi|t1
((xi) + (tj | xi � tj))

As a consequence of these equalities and Proposition 5.7.6.e, it suffices to
compute a maximal independent set of indeterminates modulo each of the
ideals ((xi) + (tj | xi � tj)) with xi | t1 and to take one having the largest
number of elements. Such a set consists of xi and a maximal independent set
of indeterminates modulo (tj | xi � tj) which has to be chosen from Y \{xi} .
And this is exactly what is computed in steps I2) and I3). Hence the recursive
procedure IndepSet(Y, T ) is correct and we are done. �

Let us use part b) of this corollary to compute some combinatorial di-
mensions.

Example 5.7.11. Let K be a field and P = K[x, y, z] .
a) Let I = (x2 + y2 + z2). Using σ = DegLex , we calculate LTσ(I) = (x2)

and
√

LTσ(I) = (x). Then we set Y = {x, y, z} and T = {x} in step 3).
Now step I2) says that we have to compute IndepSet({y, z}, ∅) recur-
sively, and step I1) yields IndepSet({y, z}, ∅) = {y, z} . Hence step I3)
returns IndepSet(Y, T ) = {y, z} . Thus the output of the algorithm is
that {y, z} is a maximal independent set modulo I . Consequently, we
have dim(P/I) = 2.

b) Let I = (xy2−x, y2z−z). Using σ = DegRevLex , we calculate LTσ(I) =
(xy2, y2z) and

√
LTσ(I) = (xy, yz). Then we set Y = {x, y, z} and

T = {xy, yz} in step 3). Now step I2) says that we have to compute
L1 = IndepSet({y, z}, {yz}) and L2 = IndepSet({x, z}, ∅) recursively.
In the first case, step I2) requires further recursive calls for comput-
ing IndepSet({z}, ∅) and IndepSet({y}, ∅) . Here the answers are {z}
and {y}, respectively, so that we can choose L1 = {z} in step I3).
In the second case, step I1) immediately returns L2 = {x, z} . There-
fore we have to choose L2 in step I3) now, and the algorithm returns
IndepSet(Y, T ) = {x, z} . Altogether, we find that {x, z} is a maximal
independent set modulo I and dim(P/I) = 2.

First secure an independent income,
then practice virtue.

(Greek Proverb)
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5.7.B Transcendence Degrees

The Transcendental Field,
purified of all egological structure,
recovers its primary transparency.

(Jean-Paul Sartre)

The last topic of this section is yet another interpretation of the dimen-
sion of an affine K -algebra – namely as the maximal number of algebraically
independent elements over K . The following definition introduces the neces-
sary terminology. In particular, the notion of a transcendence basis of a field
extension becomes transparent.

Definition 5.7.12. Let R be a K -algebra, and let d ∈ N+ .
a) A set of elements r1, . . . , rd ∈ R is called algebraically independent

over K if the only polynomial f ∈ K[y1, . . . , yd] with f(r1, . . . , rd) = 0
is f = 0.

b) Let L/K be a field extension. A set of d elements r1, . . . , rd ∈ L is called
a (finite) transcendence basis of L/K if {r1, . . . , rd} is algebraically
independent over K and there exists no element rd+1 ∈ L \ {r1, . . . , rd}
such that {r1, . . . , rd+1} is algebraically independent over K .

If a field extension L/K has a finite transcendence basis then all tran-
scendence bases of L/K have the same number of elements. This result is
analogous to the fact that two bases of a finitely generated K -vector space
have the same number of elements. It can be proved as follows.

Proposition 5.7.13. Let L/K be a field extension, let d ∈ N+ , and let
r1, . . . , rd ∈ L be d distinct elements.
a) The set {r1, . . . , rd} is a transcendence basis of L/K if and only if

{r1, . . . , rd} is algebraically independent over K and L is an algebraic
field extension of K(r1, . . . , rd) .

b) Let {r1, . . . , rd} be a transcendence basis of L/K . Then every transcen-
dence basis of L/K consists of d elements.

Proof. To prove the implication “⇒” in a), we let rd+1 ∈ L . Since
{r1, . . . , rd+1} is not algebraically independent, there exists a non-zero poly-
nomial f ∈ K[y1, . . . , yd+1] such that f(r1, . . . , rd+1) = 0. This polyno-
mial has strictly positive degree with respect to yd+1, because {r1, . . . , rd}
is algebraically independent. Therefore we see that rd+1 is algebraic over
the field K(r1, . . . , rd). Conversely, let rd+1 ∈ L . By hypothesis, this el-
ement is algebraic over K(r1, . . . , rd). Thus there is a non-zero polyno-
mial f ∈ K(r1, . . . , rd)[y] such that f(rd+1) = 0. By clearing denomi-
nators, we can find a non-zero polynomial g ∈ K[y1, . . . , yd+1] such that
g(r1, . . . , rd+1) = 0. Hence the set {r1, . . . , rd+1} is not algebraically inde-
pendent.
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Now we show b). Let B = {r1, . . . , rd} and B′ = {r′1, . . . , r′d′} be two
transcendence bases of L/K . Without loss of generality we may assume that
d′ ≥ d . If d = d′ , we are done. So, suppose that d′ > d . If B is a subset
of B′, we immediately get a contradiction to the maximality of B . Otherwise,
it suffices to show that we can exchange in B one element of B \ B′ by an
element of B′ and still have a transcendence basis. By repeating this process,
we can then reach the case B ⊂ B′ eventually. Therefore we now assume that
there exists an index i ∈ {1, . . . , d} such that ri /∈ B′ .

We claim that there exists an index j ∈ {1, . . . , d′} such that B\{ri}∪{r′j}
is algebraically independent. If not, all elements r′1, . . . , r

′
d′ are algebraic over

K(r1, . . . , ri−1, ri+1, . . . , rd) by a). Since B′ is a transcendence basis, the ele-
ment ri is algebraic over K(r′1, . . . , r

′
d′) by a) again. Hence the element ri is

algebraic over K(r1, . . . , ri−1, ri+1, . . . , rd), in contradiction to the algebraic
independence of B .

Finally, we have to show that B \ {ri} ∪ {r′j} is a maximal alge-
braically independent set. Suppose that r ∈ L is a further element such
that B \ {ri} ∪ {r′j , r} is algebraically independent. It suffices to prove that
then one of the sets B ∪ {r′j} or B ∪ {r} is algebraically independent in
order to get a contradiction to the maximality of B . Suppose that both
B ∪{r′j} and B ∪{r} are algebraically dependent. Then r′j is algebraic over
K(r1, . . . , rd), and therefore over K(r1, . . . , rd, r). Moreover, the element ri

is algebraic over K(r1, . . . , ri−1, ri+1, . . . , rd, r). Hence r′j is algebraic over
that field, in contradiction to the assumption that B \ {ri} ∪ {r′j , r} is alge-
braically independent. �

As a consequence of this proposition, we have a new invariant of field
extensions.

Definition 5.7.14. Let L/K be a field extension for which there exists a
finite transcendence basis {r1, . . . , rd} . Then the number trdegK(L) = d is
called the transcendence degree of L/K . If there is no finite transcendence
basis, we set trdegK(L) = ∞ .

Now the dimension of an affine algebra can be characterized as follows.

Proposition 5.7.15. Let I be a proper ideal in P .
a) The number d = dim(P/I) equals the maximal number of algebraically

independent elements {r1, . . . , rd} in P/I over K .
b) Let I be a prime ideal, and let Q(P/I) be the field of fractions of P/I .

Then d = dim(P/I) is the transcendence degree of Q(P/I) over K, and
every maximal independent set of indeterminates modulo I consists of d
elements.

Proof. First we show a). By Theorem 5.7.9, there exists an independent
set Y ⊆ {x1, . . . , xn} modulo I having d elements. Then the K -algebra
homomorphism K[Y ] ↪−→ P/I is injective, and hence the image of the
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elements of Y in P/I are algebraically independent over K . This proves
that there are d algebraically independent elements in P/I . Now suppose
that r1, . . . , rd+1 ∈ P/I are algebraically independent elements over K .
Let y1, . . . , yd+1 be indeterminates. Then the K -algebra homomorphism
ϕ : K[y1, . . . , yd+1] −→ P/I defined by yi �→ ri for i = 1, . . . , d + 1 is
injective. For i = 1, . . . , d + 1, let fi ∈ P be a representative of minimal
degree of ri, and let N = max{deg(f1), . . . ,deg(fd+1)} .

At this point we claim that ϕ(〈K[y1, . . . , yd+1]≤i〉) ⊆ 〈P≤Ni〉/〈I≤Ni〉
for all i ≥ 0. Indeed, let g ∈ K[y1, . . . , yd+1] be a polynomial of de-
gree ≤ i . Then we have ϕ(g) = g(r1, . . . , rd+1) = g(f1, . . . , fd+1) + I and
deg(g(f1, . . . , fd+1)) ≤ N i . This shows ϕ(g) ∈ 〈P≤Ni〉/〈I≤Ni〉 , as claimed.
Using this claim, we conclude that HFa

P/I(Ni) ≥ HFa
K[y1,...,yd+1]

(i) =
(
d+1+i
d+1

)
for all i ≥ 0. Thus HPa

P/I(Nt) is a polynomial of degree ≥ d + 1, in contra-
diction to the fact that d = dim(P/I) = deg HPa

P/I(t).
Now we prove b). In order to show the equality d = trdegK(Q(P/I)),

we let Y ⊆ {x1, . . . , xn} be a set of d indeterminates which are indepen-
dent modulo I . We want to prove that the images of the elements of Y
under the injective K -algebra homomorphism K[Y ] ↪−→ P/I ↪−→ Q(P/I)
form a transcendence basis of Q(P/I) over K . Without loss of generality,
we may assume that Y = {x1, . . . , xd} . For i = 1, . . . , n , let ri ∈ Q(P/I)
be the image of xi in Q(P/I). Clearly, the elements r1, . . . , rd are alge-
braically independent over K . For every i ∈ {d + 1, . . . , n} , there exists
a non-zero polynomial fi ∈ I ∩ K[x1, . . . , xd, xi] because Y is a maxi-
mal independent set of indeterminates modulo I. The polynomial fi has
a strictly positive degree with respect to the indeterminate xi . In the
field Q(P/I) we obtain fi(r1, . . . , rd, ri) = 0, i.e. the element ri is alge-
braic over K(r1, . . . , rd) . Therefore Q(P/I) is an algebraic field extension of
K(r1, . . . , rd) and {r1, . . . , rd} is a transcendence basis of Q(P/I) over K .

The second claim in b) follows from the proof we have just given and the
fact that all transcendence bases of Q(P/I) over K have trdegK(Q(P/I))
elements. �

Combining all characterizations of dimensions proved in the last two sec-
tions, we obtain the following corollary.

Corollary 5.7.16. Let I be a proper ideal in P . Then we have

dim(P/I) = Kdim(P/I) = cdim(P/I)

and this number equals the maximal number of algebraically independent el-
ements in P/I over K . Furthermore, if I is a prime ideal, this number is
also equal to trdegK(Q(P/I)) .

This is the end of our long trip through the realm of dimension theory.
However, if you are not satisfied yet, more work is waiting for you. Tutor-
ial 78 discusses an important notion in commutative algebra and algebraic
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geometry, that of Noether Normalization, while Tutorial 79 features a natural
continuation of the work done in Tutorials 43 and 77.

Exercise 1. Look at the first quote!

Exercise 2. Let K be a field and P = K[x1, . . . , xn] . Write two CoCoA
functions Cdim1(. . .) and Cdim2(. . .) which implement the two methods
for computing the combinatorial dimension of a proper ideal I ⊂ P given
by Proposition 5.7.5 and Corollary 5.7.10.b, respectively. Then apply your
functions to the following cases and compare the timings.

a) I1 = (xy2 − x, y2z − z) in P = Q[x, y, z]
b) I2 = (x4y − 2x2y + y, y2 − y) in P = Q[x, y]
c) I3 = (xy2 − yz2 − xy + z2, x2z − y2z, x3y − y2z2 − x3 + yz2,

y3z − xz3 − xyz + z3) in P = Q[x, y, z]

Exercise 3. Let L/K be a finitely generated field extension, i.e. let L be
a field of the form L = Q(R) where R is a finitely generated K -algebra
and an integral domain.

a) Show that L/K is algebraic (i.e. every element of L is algebraic
over K ) if and only if dimK(L) < ∞ .

b) Let M/L be a further finitely generated field extension. Show that
M/K is algebraic if and only if M/L and L/K are algebraic.

Exercise 4. Let K be a field, let n ≥ 2, let I be an ideal in
K[x1, . . . , xn] , and assume that I ∩ K[xi] �= (0) for i = 1, 2. Prove that
I ∩ K[x1 + x2] �= (0).

Exercise 5. Let K be a field, and let R be a standard graded K -algebra
which is an integral domain.

a) Let Q(R)0 = { f
g
| f, g ∈ R homogeneous , deg(f) = deg(g), g �= 0} .

Show that this is a field.
b) Find the transcendence degree of Q(K[t3, t2u, tu2, u3])0 over K .

Exercise 6. Let K be a field, let P = K[x1, . . . , xn] , and let 1 ≤ m < n .
For every i ∈ {1, . . . , m}, let fi be a polynomial of the form fi = xi − gi

with gi ∈ K[xi+1, . . . , xn] . Furthermore, let g ∈ K[xm+1, . . . , xn] be an
irreducible polynomial, and let I = (f1, . . . , fm, g) .

a) Show that I is a prime ideal.
b) Prove that trdegK(Q(P/I)) = n − m − 1.

Exercise 7. Let A ⊆ B be an extension of affine algebras where B is a
finitely generated A -module. Prove that dim(A) = dim(B) .
Hint: Represent B as a quotient of A[y1, . . . , ys] where y1, . . . , ys are
new indeterminates which correspond to a set of generators of B as an
A -module.
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Tutorial 78: Noether Normalization

The Ark was built by amateurs;
the Titanic by professionals.

(Anonymous)

Let K be a field, let P = K[x1, . . . , xn] , and let I ⊂ P be an ideal. A max-
imal independent set of indeterminates Y ⊆ {x1, . . . , xn} modulo I yields an
injective ring homomorphism K[Y ] ↪−→ P/I . In this tutorial, we are inter-
ested in the K[Y ] -module structure of P/I defined via this ring homomor-
phism. In general, the K[Y ] -module P/I is not finitely generated, and this
may be the case for all maximal independent sets of indeterminates Y mod-
ulo I . As we shall see, it is possible to find algebraically independent elements
x′

1, . . . , x
′
d in P such that the canonical map ϕ : K[x′

1, . . . , x
′
d] ↪−→ P/I

is injective and turns P/I into a finitely generated K[x′
1, . . . , x

′
d] -module.

Such an injective ring homomorphism ϕ is called a Noether normaliza-
tion of P/I . In fact, if the field K is large enough, there exists a linear
change of coordinates such that P/I has a Noether normalization in the new
indeterminates.

Noether normalizations are ubiquitous and versatile tools in Computa-
tional Commutative Algebra. Geometrically, a Noether normalization corre-
sponds to a projection map from Z(I) to a d -dimensional linear subspace
of An whose image is again d -dimensional. Algebraically, it serves to describe
the dimension of an affine algebra in yet another way, and computationally it
can be useful in the calculation of the primary decomposition of I . Beginning
as an amateur, you will emerge from this tutorial as a true professional in
the art of constructing Noether normalizations.
a) Show that the ring Q[x1, x2]/(x1x2) has no Noether normalization in the

given coordinate system. Find a coordinate system in which it does.
Before we can go on, we need some bits of commutative ring theory.

Given an injective ring homomorphism ϕ : R ↪−→ S , an element f ∈ S is
called integral over R if f is a zero of a monic univariate polynomial with
coefficients in R . The map ϕ is called integral if every element of S is
integral over R . If ϕ : R ↪−→ S is a ring extension, i.e. if R is a subring
of S and ϕ is the inclusion map, and if ϕ is integral, we also say that S
is integral over R or that S/R is an integral ring extension. In the
following all rings are assumed to be Noetherian. Let A ↪−→ B ↪−→ C be
injective ring homomorphisms.
b) Assume that B is a finitely generated A -module and C is a finitely

generated B -module. Prove that C is a finitely generated A -module.
Whence Lemma 2.6.3.a shows that C is a finitely generated A -algebra.

c) Given b ∈ B , prove that the following conditions are equivalent.
1) The element b is integral over A .
2) There exists a number i ≥ 0 such that the subring A[b] of B is

generated by {1, b, b2, . . . , bi} as an A -module.
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3) The subring A[b] of B is a finitely generated A -module.
4) The subring A[b] of B is contained in a subring of B which is a

finitely generated A -module.
Hint: To prove 4)⇒1), let S = As1 + · · · + As� be a subring of B con-
taining A[b] . For every i ∈ {1, . . . , �} , write b si as a linear combination
of s1, . . . , s� . Construct a matrix M with det(M) · S = 0 and deduce
that det(M) = 0.

d) Assume that B is integral over A , and C is integral over B . Prove
that C is integral over A .

e) Show that Ã = {b ∈ B | b integral over A} is a ring. It is called the
integral closure of A in B .

f) Assume that B is a field and that B is integral over A . Prove that A
is a field, too. (Hint: For a ∈ A \ {0} , the element 1

a ∈ B is integral
over A .)

g) Suppose that B is a finitely generated A -algebra. Show that B is integral
over A if and only if B is a finitely generated A -module.
Next we study the consequences of these results in the following setting.

Let K be a field, let P = K[x1, . . . , xn] , let Y ⊆ {x1, . . . , xn} , let I ⊂ P
be a non-zero ideal, and let d = dim(P/I). Recall that Y is independent
modulo I if and only if the canonical map ϕ : K[Y ] −→ P/I is injective.
By g), the map ϕ is integral if and only if P/I is finitely generated as a
K[Y ] -module.
h) Let f ∈ P \ {0} and α ∈ N+ . Consider the polynomials y1 = x1 − xα

n ,
y2 = x2 −xα2

n , . . . , yn−1 = xn−1 −xαn−1

n . Show that if α is large enough,
the term of highest degree in the support of f(y1, . . . , yn−1, xn) is a pure
power of xn .

i) Let f ∈ P \K . Prove that there exist elements y1, . . . , yn−1 ∈ P for which
the canonical map K[y1, . . . , yn−1] −→ P/(f) is injective and integral.
Hint: Use h) to show that xn is integral over K[y1, . . . , yn−1] .

j) Let f ∈ P \ {0} , and assume that K is infinite. Show that, for a generic
tuple (a1, . . . , an−1) ∈ Kn−1 , the linear change of coordinates y1 =
x1 − a1xn , y2 = x2 − a2xn , . . . , yn−1 = xn−1 − an−1xn , yn = xn

makes the map K[y1, . . . , yn−1] −→ P/(f) injective and integral.
k) (Noether’s Normalization Lemma) Prove that there exist elements

y1, . . . , yd ∈ P which are algebraically independent over K and have the
property that the ring homomorphism K[y1, . . . , yd] ↪−→ P/I is injective
and integral.
Hint: Use induction on n − d . If n − d > 0, let f ∈ I \ {0} , and
let y1, . . . , yn−1 ∈ P be chosen as in h). Then prove that the map
K[y1, . . . , yn−1]/(I ∩ K[y1, . . . , yn−1]) −→ P/I is injective and integral.
Now use Exercise 7 and the inductive hypothesis.

l) Assuming that K is infinite, show that there exists a linear change of
coordinates given by (y1, . . . , yn) = (x1, . . . , xn)·A , where A ∈ Matn(K)
is a lower triangular matrix having units on the main diagonal, with the
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property that K[y1, . . . , yd] ↪−→ P/I is a Noether normalization. More
generally, show that a generic lower triangular matrix will work.

m) (The Field Theoretic Version of Hilbert’s Nullstellensatz 2.6.6 revisited)
Let m be a maximal ideal in P . Using Noether’s Normalization Lemma,
show that P/m is a finitely generated K -vector space.
In the remaining part of this tutorial we want to examine algorithms for

computing a Noether normalization of P/I . We start with a probabilistic
algorithm whose probability of success is ... 1. In the following we let K be
infinite, I ⊂ P a non-zero ideal, and d = dim(P/I).
n) Choose a lower triangular matrix A ∈ Matn(K) with random entries,

and let (y1, . . . , yn) = (x1, . . . , xn) · A . Explain in what sense the map
K[y1, . . . , yd] ↪−→ P/I is a Noether normalization “with probability 1”.

o) Now suppose that we do not know the dimension of P/I a priori, and
we want to make sure that the matrix A above does indeed give rise to a
Noether normalization. For this purpose, consider the following instruc-
tions.
1) Choose a lower triangular matrix A ∈ Matn(K) with random entries,

and let (y1, . . . , yn) = (x1, . . . , xn) · A .
2) Check whether the elements on the main diagonal of A are non-zero.

If not, continue with step 1).
3) Compute B = A−1 and the ideal J = ϕ(I) where ϕ : P −→ P is the

change of coordinates such that ϕ(xi) is the ith entry of the tuple
(x1, . . . , xn) · B .

4) Compute the reduced Lex-Gröbner basis G of J and d = dim(P/J).
5) If G ∩ K[y1, . . . , yd] �= ∅, continue with step 1).
6) If there exists an index i ∈ {d + 1, . . . , n} such that no element of G

has a leading term which is a pure power of yi, continue with step 1).
7) Return {y1, . . . , yd} and and stop.

Show that this is an algorithm which computes a set {y1, . . . , yd} ⊂ P1

such that K[y1, . . . , yd] ↪−→ P/I is a Noether normalization.
p) Write a CoCoA function RandomNN(. . .) which uses the preceding algo-

rithm to compute a Noether normalization of P/I . Apply this function
to the following ideals in Q[x1, x2, x3, x4] .
1) I1 = (x1x2 − x3x4)
2) I2 = (x1x3 − x2

2, x1x4 − x2x3, x2x4 − x2
3)

3) I3 = (x1x2x3x4 − 1)
q) Using h), adapt the above algorithm to the case of a general base field K .

Write a CoCoA function GeneralNN(. . .) which implements this general
version and apply it to the examples in p).

Strictly speaking, the procedure in o) is not a deterministic algorithm because
if you keep making bad choices for A in step 1), you could end up in an
infinite loop. A procedure of this type is sometimes called a randomized
algorithm or a Las Vegas algorithm. If this worries you, you can make
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the choice of α in h) explicit and use an appropriate variant of q). However,
there are only two possibilities that you really have to go back to step 1)
from step 5) or 6). Either your random number generator has a serious flaw,
or you are the unluckiest person on earth and your random choice hits a
Zariski closed set in an affine space. Excluding these “impossible” events,
you should never have to go back to step 1). At this point you should be
quite satisfied: you have mastered the normalization process and become a
veritable professional.

Tutorial 79: Primary Decompositions II

Decomposition is ...
... a primary part of all ecosystems.

... the undoing of every ideal composition.
... your state of mind after your hard disk dies.

(Anonymous)

The computation of primary decompositions is regarded as one of the
primary tasks of Computational Commutative Algebra. It is also notorious
for being one of the most difficult. In fact, it is so hard that the mere act of
preparing this tutorial destroyed the hard disk of one of our computers. So,
don’t be surprised to find that you are in for quite a challenge!

The concept of primary decomposition first appeared in Volume 1. In
Tutorial 43 we asked you to work out an algorithm for computing the pri-
mary decomposition of zero-dimensional polynomial ideals, albeit under the
additional hypothesis that the base field is perfect. About 300 pages and
four years later, we provided the existence of reduced primary decomposi-
tions in Noetherian rings in Section 5.6.B and studied their computation for
monomial ideals in Tutorial 77.

So, what is left? Why do we bring up this topic once again? There are at
least two major questions which still await an answer: to what extent is the re-
duced primary decomposition of a polynomial ideal uniquely determined, and
how can we compute it in the general (non-zero-dimensional, non-monomial)
case? Since the full treatment of these questions requires substantial effort,
we have decided to structure this tutorial into handy sections, the first of
which deals with the uniqueness question.

As for the computational problem, we introduce and study splitting
elements in the second subsection. Using these elements, we can reduce the
computation of the primary decomposition of one ideal to the computation
of the primary decompositions of two ideals which will hopefully turn out
to be simpler. Then we examine how we can reduce the computation to the
zero-dimensional case by extending and contracting ideals suitably, and fi-
nally we get down to actual algorithms for computing the top-dimensional
and the primary decompositions of arbitrary polynomial ideals.
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Well, not quite arbitrary: for the zero-dimensional algorithm to work, we
need a perfect base field. Unfortunately, our reduction to the zero-dimensional
case introduces a base field of the form K(y1, . . . , ym) which is not perfect
in positive characteristic. Although one can get around this problem using
additional techniques, we prefer to keep this tutorial at a reasonable level of
difficulty. Therefore we avoid further complicated twists in the algorithmic
parts and assume that our base field K has characteristic zero. This has the
obvious advantage that whatever extension of K we want to consider, it will
always remain perfect.

1. Uniqueness of Reduced Primary Decompositions

The primal part of this primer on computing primary decompositions is
primarily devoted to their uniqueness. It requires skillful application of some
non-trivial commutative algebra techniques, for instance localization. If you
deem it too formal, skip ahead to the second part.

Let R be a Noetherian ring, let I be a proper ideal in R having a reduced
primary decomposition I = q1 ∩ · · · ∩qs with primary ideals q1, . . . , qs of R ,
and let pi =

√
qi for i = 1, . . . , s . The ideals qi are called primary compo-

nents of I , and the primes pi are called prime components of I . Recall
that a prime ideal p ⊂ R is called an associated prime of an R -module M
if p = AnnR(m) for some element m ∈ M (see Tutorial 31). The set of all
associated primes of M is denoted by Ass(M).
a) Prove the following rules for associated primes.

1) Ass(R/q) = {p} if q is a p -primary ideal
2) Ass(U) ⊆ Ass(M) ⊆ Ass(U) ∪ Ass(M/U) for submodules U ⊆ M
3) Ass(MS) = {pRS | p ∈ Ass(M), p ∩ S = ∅} for multiplicatively

closed subsets S ⊂ R

b) Show that the set of associated primes of R/I is {p1, . . . , ps} . Hence the
set of prime components of I is uniquely determined.
Hint: Consider the ideals Ji =

⋂
j �=i pi and argue by induction on s .

c) Let pi be a prime component of I . Prove that we can recover the asso-
ciated primary component qi via the formula qi = I :

R
(I :

R
p∞i ). This

process is called isolation of primary components.
d) Let S ⊂ R be a multiplicatively closed subset. Prove that

IRS =
⋂

{i | pi∩S=∅}
qiRS

is a reduced primary decomposition. (Hint: Show that pi ∩S �= ∅ implies
qiRS = RS .)

e) Let pi be a minimal element (with respect to inclusion) in the set
{p1, . . . , ps} . Show that qi = IRS ∩ R for S = R \ pi . In particular,
the pi -primary component of I is uniquely determined.
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f) Let qi be an embedded primary component of I , i.e. let pi be an
associated prime of R/I which is not minimal in {p1, . . . , ps} . Show by
example that qi is in general not uniquely determined.
Hint: Consider R = Q[x1, x2] and I = (x2

1, x1x2).

2. Splitting Elements

The idea behind the algorithms for computing primary decompositions is
based on the notion of a splitting element. The primal motivation why we
introduce this concept derives from the following elementary observations.
Let R be a Noetherian ring, let I ⊆ R be an ideal, and let f ∈ R .
g) Show that I :

R
(f) = I :

R
(f2) implies I = (I :

R
(f)) ∩ (I + (f)).

h) Let � ≥ 1 be such that I :
R

(f)∞ = I :
R

(f)� . Prove that this implies
I = (I :

R
(f �)) ∩ (I + (f �)).

i) Assume that both I :
R

(f)∞ and I + (f) properly contain I . Show that
every prime component of I either contains I :

R
(f)∞ or I + (f) , but

not both. (Hint: Distinguish the cases f ∈ p and f /∈ p .)
Hence an element f ∈ R \

√
I for which the ideal I :

R
(f)∞ properly

contains I can be used to split the computation of the primary decomposition
of I into two parts. This makes us interested in tracking down an element
f ∈ R \

√
I which is a zero divisor for R/I . Such an element f is called a

splitting element for I . Our hope is that if we can find a splitting element,
the primary decompositions of I :

R
(f) and I+(f) will be easier to compute.

Before we start chasing after splitting elements, we need to prepare for the
hunt.

3. Extension and Contraction of Ideals

The strategy for reducing the computation of primary decompositions to
the zero-dimensional case comprises three phases: finding a maximal set of in-
dependent indeterminates Y , extending the given ideal to a zero-dimensional
ideal in a polynomial ring over the field K(Y ) , and contracting the primary
components of that zero-dimensional ideal back to the original polynomial
ring. The processes of extending and contracting ideals can be performed
computationally as follows.

Let K be a field, and let Y = {y1, . . . , ym} and Z = {z1, . . . , zk} be al-
gebraically independent sets of indeterminates over K .
j) Let J be an ideal in K(Y )[Z] , let σ be a term ordering on T(Z),

let {f1, . . . , fr} be a σ -Gröbner basis of J which consists of elements
of K[Y,Z] , and let I = (f1, . . . , fr) ⊆ K[Y,Z] . Show that the contrac-
tion J ∩ K[Y,Z] can be computed using the formula

J ∩ K[Y,Z] = I :
K[Y,Z] (h)∞

where h = lcm(LCσ(f1), . . . ,LCσ(fr)) ∈ K[Y ] .
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k) Let I ⊆ K[Y,Z] be an ideal, let J = I K(Y )[Z] be its extension
to K(Y )[Z] , let τ be an elimination ordering for Z on T(Y,Z), and
let G = {g1, . . . , gs} be a τ -Gröbner basis of I . For i = 1, . . . , s ,
we write LTτ (gi) = tiui with ti ∈ T(Y ) and ui ∈ T(Z) . Prove that
h = lcm(t1, . . . , ts) has the following properties.
1) h /∈ I
2) J ∩ K[Y,Z] = I :

K[Y,Z] (h)∞

4. Computing the Top-Dimensional Decomposition

Next we consider a polynomial ring P = K[x1, . . . , xn] over a field K ,
we let I ⊂ P be an ideal, and we let I = q1 ∩ · · · ∩ qs be a reduced primary
decomposition of I . Using Corollary 5.7.10, we can compute a maximal inde-
pendent set of indeterminates Y ⊆ {x1, . . . , xn} modulo I which consists of
dim(P/I) elements. Without loss of generality we may renumber the ideals
q1, . . . , qs so that there exists an index r ∈ {1, . . . , s} for which we have
qi ∩ K[Y ] = (0) for i = 1, . . . , r and qi ∩ K[Y ] �= (0) for i = r + 1, . . . , s .
Finally, we let Z = {x1, . . . , xn} \ Y .
l) Prove that the extension ideal J = I K(Y )[Z] is zero-dimensional and

J = q1K(Y )[Z] ∩ · · · ∩ qrK(Y )[Z] is a reduced primary decomposition.
m) Let Itop = I K(Y )[Z] ∩ P . Prove that Itop = q1 ∩ · · · ∩ qr is a reduced

primary decomposition of Itop . Observe that we can compute Itop via
the formula Itop = I :

P
(h)∞ as shown in k).

n) Show that we have dim(P/qi) = dim(P/I) for i = 1, . . . , r and
dim(P/qi) < dim(P/I) for i = r + 1, . . . , s .
Hint: Prove that if a is an ideal for which

√
a is prime then a set of

elements is algebraically independent modulo
√

a if and only if it is so
modulo a . Then use Proposition 5.7.15.b.
The ideal Itop is called the top-dimensional part (or the equi-

dimensional part) of the ideal I , and the reduced primary decomposition
Itop = q1 ∩ · · · ∩ qr is called the top-dimensional decomposition of I .
By combining the above results with Tutorial 43, we can compute the top-
dimensional decomposition of I . Assume that K has characteristic zero and
that the ideal I is given by a set of generators.
o) Consider the procedure TopDec(. . .) defined by the following sequence of

instructions.
1) Using the algorithm of Corollary 5.7.10, compute a maximal set of

independent indeterminates Y ⊆ {x1, . . . , xn} modulo I which con-
sists of dim(P/I) elements.

2) Using the function PrimaryDec(. . .) of Tutorial 43.r, compute a
primary decomposition J = Q1 ∩ · · · ∩ Qr of the extension ideal
J = I K(Y )[Z] .

3) For i = 1, . . . , r , compute qi = Qi ∩ P using j). Return the tuple
(q1, . . . , qr).
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Show that TopDec(. . .) is an algorithm which computes the top-dimen-
sional decomposition of I . Write a CoCoA function which implements this
algorithm and apply it to compute the top-dimensional decomposition of
the following ideals.
1) I1 = (x2

1, x1x2) ⊂ Q[x1, x2]
2) I2 = (x1x2, x1x3) ⊂ Q[x1, x2, x3]
3) I3 = (x4

1x2 − 2x2
1x2 + x2, x2

2 − x2) ⊂ Q[x1, x2]
4) I4 = (x1x4 − x2x3, x5x8 − x6x7, x1x6 − x2x5) ⊆ Q[x1, . . . , x8]

5. Computing Primary Decompositions

What about the remaining primary components of I ? How can we find
them? We have arrived at the primary part of this tutorial and we need a
prime idea. We already know how to compute the primary decomposition of
Itop = I :

P
(h)∞ . Next we determine a number � ≥ 1 for which I :

P
(h)∞ =

I :
P

(h�). So, we can use h� as a splitting element!
Let K be a field of characteristic zero, and let I ⊂ P be an ideal given

by a set of generators.
p) Consider the procedure PD(. . .) defined by the following sequence of in-

structions.
1) Let Q = ∅ and J = I .
2) Using the algorithm TopDec(. . .), compute the top-dimensional de-

composition of J . Adjoin the resulting tuple to Q .
3) Let h ∈ P be the polynomial computed by TopDec(. . .) for which

J top = J :
P

(h)∞ . Determine � ≥ 1 such that J :
P

(h)∞ = J :
P

(h�).
4) If J + (h�) �= (1), replace J by J + (h�) and continue with step 2).
5) Let Q = (q1, . . . , qs). Remove from Q all redundant ideals, i.e. all

ideals qi for which
⋂

j �=i qj ⊆ qi . Return the resulting list.
Prove that PD(. . .) is an algorithm which computes a reduced primary
decomposition of I .
Hint: To show finiteness, prove that either dim(P/(J+(h�))) < dim(P/J)
or the number of longest maximal independent sets of indeterminates
modulo the ideal J + (h�) is strictly smaller than the corresponding
number for J since Y is not independent modulo J + (h�).

q) Write a CoCoA function PD(. . .) which implements this algorithm. Apply
your function PD(. . .) to compute the primary decompositions of the
following ideals. (In some cases we have included the result to help you
debug your code.)
1) I1 = (x2

1, x1x2) ⊂ Q[x1, x2]
Result: I1 = q1 ∩ q2 with q1 = (x1) and q2 = (x2

1, x2) (not unique!)
2) I2 = (x1x2, x1x3) ⊂ Q[x1, x2, x3]

Result: I2 = q1 ∩ q2 with q1 = (x1) and q2 = (x2, x3)
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3) I3 = (x4
1x2 − 2x2

1x2 + x2, x2
2 − x2) ⊂ Q[x1, x2]

Result: I3 = q1 ∩ q2 ∩ q3 with q1 = (x2) and q2 = ((x1 + 1)2, x2 − 1)
and q3 = ((x1 − 1)2, x2 − 1)

4) I4 = (x1x4 − x2x3, x5x8 − x6x7, x1x6 − x2x5) ⊆ Q[x1, . . . , x8]
Result: I4 = q1 ∩ q2 ∩ q3 with q1 = (x1, x2, x5x8 − x6x7) and q2 =
(x5, x6, x1x4−x2x3) and q3 = I4+(x4x7−x3x8, x2x7−x1x8, x4x5−
x3x6)

5) I5 = (x4
2−2x1x

2
2x3 +x2

1x
2
3, x3

2x3−x1x2x
2
3−x1x

2
2x4 +x2

1x3x4, x2
2x

2
3−

x1x
3
3 − x3

2x4 + x1x2x3x4, x2
2x

2
3 − 2x1x2x3x4 + x2

1x
2
4, x2x

3
3 − x2

2x3x4 −
x1x

2
3x4 + x1x2x

2
4, x4

3 − 2x2x
2
3x4 + x2

2x
2
4) ⊂ Q[x1, . . . , x4]

6) I6 = (x1x2x3 − x2
1x4, x1x

2
2 − x2

1x3, x2
3x4 − x2x

2
4, x3

3 − x1x
2
4, x2x

2
3 −

x1x3x4, x2x3x4−x1x
2
4, x2

2x4−x1x3x4, x2
2x3−x1x2x4, x1x

2
3−x1x2x4,

x3
2 − x2

1x4) ⊂ Q[x1, . . . , x4]
7) I7 = (x4

3−2x2x
2
3x4 +x2

2x
2
4, x2x

3
3−x2

2x3x4−x1x
2
3x4 +x1x2x

2
4, x2

2x
2
3−

2x1x2x3x4 +x2
1x

2
4, x1x

3
3 +x3

2x4−3x1x2x3x4 +x2
1x

2
4, x3

2x3−x1x2x
2
3−

x1x
2
2x4 + x2

1x3x4, x4
2 − 2x1x

2
2x3 + x2

1x
2
3) ⊂ Q[x1, . . . , x4]
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5.8 General Hilbert Functions

An ignorant person
is one who doesn’t know

what you have just found out.
(Will Rogers)

No matter how the final result may look to you, the story of this section
(and several others in this book) is not nearly as straightforward as the
presentation we finally achieved. When we told some colleagues about our
intention to write something about multivariate Hilbert series, they patted
us on our shoulders and made comments such as “Very Good! Did you know
that I have been using them in my recent paper?” or “Oh yes, I usually teach
those in my lecture course.” However, it turned out to be difficult to get
our hands on a published source for this material in the generality and style
we envisaged. Searching the usual textbooks, we came up with a definition
in [BH93] which in our notation reads as follows.

Let R be an arbitrary Zm -graded K -algebra and M a Zm -graded R -mod-
ule, all of whose homogeneous components are finite-dimensional K -vector
spaces. Then

∑
i=(i1,...,im)∈Zm dimK(Mi) zi1

1 · · · zim
m is called the Hilbert series

of M .
O.K., at least we do have a definition to start with, don’t we? Well,

it would be good to know what kind of series we are using here. Maybe
it is a multivariate Laurent series of the usual kind, i.e. an element of the
localization Z[[z1, . . . , zm]]z1···zm

. No, that can’t be, since if we use W =(
1 1
0−1

)
on P = K[x1, x2] , then the homogeneous component of degree (d1, d2)

of P is K x
d1+d2
1 x

−d2
2 , and therefore the multivariate Hilbert series of P is

HSP (z1, z2) =
∑

(d1,d2)∈Z2 zd1+d2
1 z−d2

2 which has infinitely many terms with
negative exponents.

Since this doesn’t work, maybe we should consider HSM (z1, . . . , zm) as
an element of the Z -module Z[[z1, . . . , zm, z−1

1 , . . . , z−1
m ]] . Again we run into

trouble, because Theorem 5.2.20 and Tutorial 68 clearly suggest that we
should be able to multiply Hilbert series. But there is no way to make
Z[[z1, . . . , zm, z−1

1 , . . . , z−1
m ]] into a ring, because, for instance, the constant

term of (1+ z1 + z2
1 + · · ·) · (1+ z−1

1 + z−2
1 + · · ·) is not defined. What is going

on here?

Everybody is ignorant,
only on different subjects.

(Will Rogers)

At this point it started to dawn on us that we were much more ignorant
on this subject than we had thought. Of course, an ignorant mathematician is
one who doesn’t know your latest result. But maybe the topic of multivariate
Hilbert series really has been covered only scantily hitherto? Once again, the
going is getting a bit tough. Therefore we rise to the challenge and get going!
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The trouble we have just encountered is due to the fact that in the prod-
uct formula (

∑
i∈Zm aizi)·(∑j∈Zm bjzj) =

∑
k∈Zm(

∑
i+j=k aibj) zk , the sum

over all (i, j) such that i + j = k need not be finite. Miraculously, the posi-
tivity of the gradings we consider comes to our rescue once again. In order to
have finite dimensional homogeneous components, we have to assume anyway
that P is graded by a matrix of positive type. But then Proposition 4.1.21.a
yields a monoid ordering σ on Zm which is in fact a well-ordering on the
monomodule generated by the degrees of the homogeneous elements of M .
Thus the sets {i ∈ Zm | ai �= 0} and {j ∈ Zm | bj �= 0} are well-ordered
by σ , and the summation of

∑
i+j=k aibj poses no problem anymore.

The detailed discussion of this question is the topic of Subsection A. Given
a monoid ordering σ on Zm , we define the ring of σ -Laurent series as a
suitable ring contained in Z[[z, z−1]] . These rings are big enough to contain
all Hilbert series we shall be interested in. In particular, the ring of Lex-
Laurent series contains all Hilbert series of finitely generated graded modules
over P for any positive grading. Thus we can proceed in Subsection B to
define multigraded Hilbert functions and multivariate Hilbert series in the
natural way. The basic properties of these objects are generalized from the
standard graded to the multigraded case (see Proposition 5.8.9 and 5.8.13),
and a simple formula for the multivariate Hilbert series of the polynomial
ring is found (see Proposition 5.8.15).

In order to compute the multivariate Hilbert series of finitely generated
graded modules polynomial rings graded by matrices of positive type, we
generalize the results of Section 5.3 and provide an explicit algorithm (see
Theorem 5.8.18). This algorithm also shows that multivariate Hilbert series
have a shape similar to that described in Theorem 5.2.20 — they are given
by the quotient of two multivariate polynomials (see Corollary 5.8.19).

In the last part of the section, we discuss the question of how multivari-
ate Hilbert series transform when we change the grading. In particular, we
obtain an easy description of how multivariate Hilbert series behave under
refinement of the grading. Corollary 5.8.27 has many applications. Some of
them are related to Rees rings, Hadamard series, and Segre products, and
you can find out everything about them by solving Tutorials 81 and 82.

And what is the upshot of our little story? We believe that, in the future,
what you have just found out will be considered to be well-known folklore
of the subject, and only ignorant folks will have to rediscover it themselves.
However, don’t pity them! Doing it yourself is fun and well worth the effort.

The strangest thing about the future is that
then one will call our time the good old days.

(Ernest Hemingway)
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5.8.A Rings of Multivariate Laurent Series

Create a warm, comfortable
and functional environment

with our stylish Laurent Series.
(Furniture Advertisement)

Judging from our introduction, multivariate Hilbert series may appear
to be a nasty bunch. But by creating a functional environment using stylish
rings of multivariate Laurent series, we shall now furnish you with everything
you need to become comfortable in dealing with them.

In this subsection we let R be a ring. Recall that, for us, this always
means a commutative ring with identity. In Definition 5.2.1.b we introduced
the power series ring R[[z1, . . . , zm]] in m indeterminates over R . Every
element f ∈ R[[z1, . . . , zm]] has a unique representation

f =
∑

(i1,...,im)∈Nm

a(i1,...,im) zi1
1 · · · zim

m

with a(i1,...,im) ∈ R for all (i1, . . . , im) ∈ Nm . If we want to be brief, we shall
write f =

∑
i∈Nm ai zi . Multiplication of power series is given by the formula

(
∑

i∈Nm

ai zi) · (
∑

j∈Nm

bj zj) =
∑

k∈Nm

(
∑

i+j=k

aibj) zk

The following proposition follows easily by induction from Proposition 5.2.2.

Proposition 5.8.1. Let f =
∑

i∈Nm ai zi be an element of R[[z1, . . . , zm]] .
a) The element f is a unit in R[[z1, . . . , zm]] if and only if a0 is a unit

in R .
b) If R is an integral domain then R[[z1, . . . , zm]] is also an integral domain.

For the purpose of defining multivariate Hilbert series, the power series
ring R[[z1, . . . , zm]] is not big enough. As we shall see, we need to allow neg-
ative exponents. Sometimes there will even be infinitely many terms having
negative exponents. The following object is big enough to contain all the
series we need.

Definition 5.8.2. The set RZm

is an R -module with respect to component-
wise addition and scalar multiplication. We shall denote an element (ai)i∈Zm

by
∑

i∈Zm ai zi and the module by R[[z, z−1]] . We call it the module of
extended power series.

Unfortunately, the module of extended power series is not a ring with
respect to the usual multiplication. For instance, the constant coefficient of
the product (1+z1 +z2

1 + · · ·) · (1+z−1
1 +z−2

1 + · · ·) would be an infinite sum.
But, as we have seen in the standard graded case, it is important to be able to
multiply Hilbert series. Therefore we have to find a submodule of R[[z, z−1]]
which is both small enough to be a ring and big enough to contain all the
Hilbert series we need. The following definition gets us off the horns of this
dilemma.
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Definition 5.8.3. Let σ be a monoid ordering on Zm .
a) An extended power series f =

∑
i∈Zm ai zi is called a σ -Laurent series

if there exists a subset Σ ⊆ Zm such that ai = 0 for all i /∈ Σ and such
that the restriction of σ to Σ is a well-ordering.

b) The set of all σ -Laurent series is called the σ -Laurent series ring
over R and will be denoted by R[[z, z−1]]σ .

Of course, now we have to prove that R[[z, z−1]]σ really is a ring. The
following lemma isolates the crucial point of the proof.

Lemma 5.8.4. Let Σ be an infinite set, and let σ be a well-ordering on Σ .
Then there exists an infinite strictly increasing sequence i1 <σ i2 <σ · · · of
elements i1, i2, . . . in Σ .

Proof. The sequence i1, i2, . . . is constructed inductively. By assumption, the
set Σ has a minimal element i1 with respect to σ . For every j ≥ 1, the set
Σ \ {i1, . . . , ij} is not empty, and therefore has a minimal element ij+1 with
respect to σ . By construction, the sequence i1, i2, . . . is strictly increasing
with respect to σ . �

Proposition 5.8.5. Let σ be a monoid ordering on Zm . Then the set
R[[z, z−1]]σ of all σ -Laurent series is a ring with respect to componentwise
addition and with respect to the multiplication given by the formula

(
∑

i∈Zm

ai zi) · ( ∑
j∈Zm

bj zj) =
∑

k∈Zm

(
∑

i+j=k

aibj) zk

Proof. Since the union of two subsets of Zm which are well-ordered with
respect to σ is again well-ordered, it is clear that the set R[[z, z−1]]σ is an
R -submodule of R[[z, z−1]] . To show that the above formula yields a well-
defined multiplication, it suffices to show that the sum

∑
i+j=k aibj is finite

for each k ∈ Zm. Let Σ be the set of all i ∈ Zm such that ai �= 0 or bi �= 0.
Suppose that the set {(i, j) ∈ Σ2 | i + j = k} is infinite. Then also the

set Σ′ = {i ∈ Σ | i + j = k for some j ∈ Σ} is infinite, and it is well-ordered
with respect to σ . By the lemma, the set Σ′ contains an infinite ascending
sequence i1 <σ i2 <σ · · · . Therefore, if we let j� = k − i� for � ≥ 1, we have
an infinite strictly decreasing sequence j1 >σ j2 >σ · · · in Σ , in contradiction
to the fact that σ is a well-ordering on Σ .

Finally, we note that the ring axioms can be easily verified for the given
addition and multiplication. �

Let us examine the rings R[[z, z−1]]σ for some term orderings σ .

Example 5.8.6. Let m = 1 and σ = Deg . Then the ring R[[z1, z
−1
1 ]]σ

coincides with the usual Laurent series ring R[[z1]]z1 . In fact, for every
f =

∑
i∈Z aiz

i
1 ∈ R[[z1, z

−1
1 ]]σ , there exists an index i0 ∈ Z such that ai = 0

for i < i0 .
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Example 5.8.7. Let σ = DegLex . Then the ring R[[z, z−1]]σ consists of all
extended power series f =

∑
i∈Zm ai zi for which there is an index d ∈ Zm

such that ai �= 0 implies i ≥DegLex d . In particular, this means that every
index i = (i1, . . . , im) for which ai �= 0 has the property that i1 + · · · + im
is greater than or equal to the first component of d .

The ring R[[z, z−1]]σ certainly contains all extended power series which
have only finitely many terms with negative exponents, and it also contains
some series having infinitely many terms with negative exponents such as
f =

∑
i≥0 zi

1z
−i−1
2 .

5.8.B Hilbert Functions in the General Case

Algebraic symbols are used
when you do not know

what you are talking about.
(Anonymous)

In this subsection we let K be a field and P = K[x1, . . . , xn] a polynomial
ring over K which is graded by a matrix W ∈ Matm,n(Z) of positive type.
Considering Proposition 4.1.19.b, it makes sense to generalize the definition
of Hilbert functions as follows.

Definition 5.8.8. Let M be a finitely generated graded P -module. Then
the map HFM : Zm −→ Z given by (i1, . . . , im) �→ dimK(M(i1,...,im)) for all
(i1, . . . , im) ∈ Zm is called the multigraded Hilbert function of M . If we
want to make the dependence on the grading explicit, we shall also denote it
by HFM,W .

More generally, for a Zm -graded K -algebra R and a graded R -module M
which has finite dimensional homogeneous components, we define the multi-
graded Hilbert function of M in the same way.

The term “multigraded” in this definition is intended to include the pos-
itively Z -graded case, i.e. the case when m = 1 and W is a row of pos-
itive integers. Many properties of Hilbert functions generalize easily from
the standard graded to the multigraded setting. The proof of the following
proposition is obtained by imitating the proofs of Propositions 5.1.14, 5.1.16,
Theorem 5.1.18, and Corollary 5.1.20.

Proposition 5.8.9. (Properties of Multigraded Hilbert Functions)
Let M be a finitely generated graded P -module.
a) For every d ∈ Zm, the Hilbert function of the shifted module M(d) is

given by HFM(d)(i) = HFM (d + i) for all i ∈ Zm .
b) Given finitely generated graded P -modules M ′,M ′′ and an exact se-

quence of graded P -modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we have HFM (i) = HFM ′(i) + HFM ′′(i) for all i ∈ Zm .
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c) Given finitely many finitely generated graded P -modules M1, . . . , Mr , we
have HFM1⊕···⊕Mr

(i) = HFM1(i) + · · · + HFMr
(i) for all i ∈ Zm .

d) Given δ1, . . . , δr ∈ Zm, the graded free P-module F =
⊕r

j=1 P (−δj) has
Hilbert function HFF (i) =

∑r
j=1 HFP (i − δj) for all i ∈ Zm .

e) Let d ∈ Zm . Given a polynomial f ∈ Pd \ {0} , we have

HFM/fM (i) = HFM (i) − HFM/(0:
M

(f))(i − d)

for all i ∈ Zm . In particular, if f is a non-zerodivisor for M, we have
HFM/fM (i) = HFM (i) − HFM (i − d) for all i ∈ Zm .

f) Let δ1, . . . , δr ∈ Zm, let M be a graded submodule of
⊕r

j=1 P (−δj) ,
and let σ be a module term ordering on Tn〈e1, . . . , er〉 . Then we have
HFLTσ(M)(i) = HFM (i) for all i ∈ Zm .

g) Given a field extension K ⊆ L , we have HFM⊗KL(i) = HFM (i) for all
i ∈ Zm .

In order to actually use these rules for computing multigraded Hilbert
functions, we still need to know the multigraded Hilbert function of the poly-
nomial ring. Unfortunately, there is no simple formula as in the standard
graded case (see Proposition 5.1.13).

Proposition 5.8.10. Let W = (wij) ∈ Matm,n(Z) and (i1, . . . , im) ∈ Zm .
Then the value HFP (i1, . . . , im) of the multigraded Hilbert function of P is
the number of solutions (α1, . . . , αn) ∈ Nn of the system of Diophantine
equations ⎧⎪⎪⎨⎪⎪⎩

w11y1 + · · · + w1nyn = i1
w21y1 + · · · + w2nyn = i2

...
...

...
wm1y1 + · · · + wmnyn = im

in the indeterminates y1, . . . , yn .

Proof. To show this claim, we note that dimK(P(i1,...,im)) is the number of
terms xα1

1 · · ·xαn
n of multidegree (i1, . . . , im). Using Definition 4.1.6, we see

that degW (xα1
1 · · ·xαn

n ) = W · (α1, . . . , αn)tr , and this equals (i1, . . . , im)tr if
and only if (α1, . . . , αm) solves the given system of equations. �

Admittedly, this description of HFP is not very illuminating with respect
to the overall structure of this function. To get a deeper insight, we revert
again to the method of using generating functions. In other words, we use
the values of a multigraded Hilbert function as the coefficients of a suitable
extended power series.

Definition 5.8.11. Let M be a finitely generated graded P -module. The
extended power series

HSM (z1, . . . , zm) =
∑

(i1,...,im)∈Zm

HFM (i1, . . . , im) zi1
1 · · · zim

m ∈ Z[[z, z−1]]
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is called the multivariate Hilbert series of M . We shall also denote it
by HSM (z), or by HSM,W (z) if we want to stress the underlying grading.

More generally, for a Zm -graded K -algebra R and a graded R -module M
which has finite dimensional homogeneous components, we define the multi-
variate Hilbert series of M by the same formula.

Again the term “multivariate” in this definition is intended to include the
univariate case. Didn’t we ask for a ring which contains those multivariate
Hilbert series? As we saw in the first subsection, the Z -module Z[[z, z−1]] is
not a ring. Fortunately, the assumption that the grading on P is of positive
type comes to our rescue here.

Remark 5.8.12. Let P be graded by a matrix W ∈ Matm,n(Z) of positive
type.
a) Let τ be one of the monoid orderings on Zm of the type constructed

in the proof of Proposition 4.1.21.a. In part b) of that proposition we
saw that the restriction of τ to the set {d ∈ Zm | MW,d �= 0} is a well-
ordering for every finitely generated graded P -module M. Therefore we
have HSM (z) ∈ Z[[z, z−1]]τ , i.e. the Hilbert series we are interested in
are all contained in the ring of τ -Laurent series over Z .

b) Consider the set H of all Hilbert series of finitely generated graded
P -modules. By Proposition 5.8.9.c, the sum of two such Hilbert series is
again in H . It can be shown that also the product of two Hilbert series
in H is again in H (see Tutorial 68 and Exercise 3). Therefore H is a
subring of Z[[z, z−1]] .

c) Now suppose that P is positively graded by W . Then Corollary 4.2.5
shows that HSM (z) is an element of the ring Z[[z, z−1]]Lex for every
finitely generated graded P -module M. Hence there exists one ring to
rule them all: it contains all Hilbert series of all finitely generated graded
modules for all positive gradings on P .

It is clear that the properties of multigraded Hilbert functions listed in
Proposition 5.8.9 imply analogous properties of multivariate Hilbert series.
For your convenience, we list them in the following proposition which follows
immediately from Proposition 5.8.9 by comparing coefficients.

Proposition 5.8.13. (Properties of Multivariate Hilbert Series)
Let M be a finitely generated graded P -module.
a) For every d = (d1, . . . , dm) ∈ Zm , the Hilbert series of M(d) is given by

HSM(d)(z1, . . . , zm) = z−d1
1 · · · z−dm

m · HSM (z1, . . . , zm) .
b) Given finitely generated graded P -modules M ′,M ′′ and an exact se-

quence of graded P -modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we have HSM (z) = HSM ′(z) + HSM ′′(z) .
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c) Given finitely many finitely generated graded P -modules M1, . . . , Mr , we
have HSM1⊕···⊕Mr

(z) = HSM1(z) + · · · + HSMr
(z) .

d) Given a homogeneous polynomial f ∈ P \{0} of degree d = (d1, . . . , dm) ,
we have

HSM/fM (z) = HSM (z) − zd1
1 · · · zdm

m HSM/(0:
M

(f))(z)

In particular, we have HSM/fM (z) = (1 − zd1
1 · · · zdm

m ) HSM (z) if f is a
non-zerodivisor for M .

e) Let δ1, . . . , δr ∈ Zm, let M be a graded submodule of
⊕r

j=1 P (−δj) ,
and let σ be a module term ordering on Tn〈e1, . . . , er〉 . Then we have
HSLTσ(M)(z) = HSM (z) .

f) Given a field extension K ⊆ L , we have HSM⊗KL(z) = HSM (z) .

Let us compute an actual multivariate Hilbert series.

Example 5.8.14. Let P = K[x1, x2] be graded by W =
(
0 1
1−1

)
. Then we

have P(i1,i2) �= 0 if and only if i1 ≥ 0 and i2 ≥ −i1 . In these degrees we have
dimK(P(i1,i2)) = 1. Therefore we obtain

HSP (z1, z2) =
∑

i1≥0

∑
i2≥−i1

zi1
1 zi2

2 =
( ∑

i1≥0

zi1
1 z−i1

2

)
/(1 − z2) = 1

(1−z1z−1
2 )(1−z2)

This example suggests that there might be a simple formula for the Hilbert
series of a multigraded polynomial ring. Our next theorem delivers a very
satisfactory answer.

Theorem 5.8.15. (Multivariate Hilbert Series of Polynomial Rings)
Let P = K[x1, . . . , xn] be graded by a matrix W = (wij) ∈ Matm,n(Z) of
positive type. Then we have

HSP,W (z1, . . . , zm) =
1

n∏
j=1

(1 − z
w1j

1 · · · zwmj
m )

Proof. To prove this formula, we use induction on n . For n = 1, we
have degW (xi

1) = (iw11, . . . , iwm1). Therefore we obtain HSP (z1, . . . , zm) =∑
i≥0 ziw11

1 · · · ziwm1
m = 1/(1−zw11

1 · · · zwm1
m ), i.e. the formula holds. Now con-

sider the case n > 1 and let dn = degW (xn) = (w1n, . . . , wmn). Then Propo-
sition 5.8.13.d yields HSP/(xn)(z) = (1− zw1n

1 · · · zwmn
m ) HSP (z). Now we use

the canonical isomorphism P/(xn) ∼= K[x1, . . . , xn−1] and the induction hy-
pothesis to finish the proof. �

For instance, in the example above, this formula yields HSP (z1, z2) =
1/((1 − z0

1z1
2)(1 − z1

1z−1
2 )) = 1/((1 − z2)(1 − z1z

−1
2 )), in agreement with our

direct computation. More generally, this theorem allows us to write down a
formula for the multivariate Hilbert series of a finitely generated graded free
P -module.
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Corollary 5.8.16. Given a graded free P -module F =
⊕r

i=1 P (−δi) , where
δi = (δi1, . . . , δim) ∈ Zm for i = 1, . . . , r , we have

HSF (z1, . . . , zm) =
r∑

i=1

(
zδi1
1 · · · zδim

m /
n∏

j=1

(1 − z
w1j

1 · · · zwmj
m )

)
Proof. It suffices to combine the theorem and properties a) and c) of Propo-
sition 5.8.13. �
Remark 5.8.17. Let (i1, . . . , im) ∈ Zm. Using Proposition 5.8.10 and The-
orem 5.8.15, we see that the coefficient of zi1

1 · · · zim
m in the extended power

series 1/
∏n

j=1(1−z
w1j

1 · · · zwmj
m ) is the number of solutions (a1, . . . , an) ∈ Nn

of the system of Diophantine equations⎧⎪⎪⎨⎪⎪⎩
w11a1 + · · · + w1nan = i1
w21a1 + · · · + w2nan = i2

...
...

...
wm1a1 + · · · + wmnan = im

For arbitrary finitely generated graded P -modules, we cannot expect to
have an explicit formula for their multivariate Hilbert series such as the one
in Corollary 5.8.16. But we can find an algorithm for computing this series
by generalizing Proposition 5.3.1 and Theorem 5.3.2.

Theorem 5.8.18. (Computation of Multivariate Hilbert Series)
Let P = K[x1, . . . , xn] be graded by a matrix W = (wij) ∈ Matm,n(Z) of
positive type.
a) Given a non-zero proper monomial ideal I in P, consider the procedure

MultMonHN(I) defined by the following sequence of instructions.
1) Let {t1, . . . , ts} be the minimal monomial system of generators of I .

If s = 1 , let (d1, . . . , dm) = degW (t1) ∈ Zm, return the polynomial
1 − zd1

1 · · · zdm
m , and stop. Otherwise, let J = (t1, . . . , ts−1) .

2) Call the procedures MultMonHN(J) and MultMonHN(J :P (ts)) , and
let p1(z1, . . . , zm) and p2(z1, . . . , zm) be the polynomials which they
return.

3) Let (d1, . . . , dm) = degW (ts) . Return the polynomial p1(z1, . . . , zm)−
zd1
1 · · · zdm

m p2(z1, . . . , zm) and stop.
This is an algorithm which computes the polynomial HNP/I(z1, . . . , zm)
in Z[z1, . . . , zm] satisfying

HSP/I(z1, . . . , zm) = HNP/I(z1, . . . , zm) /
n∏

j=1

(1 − z
w1j

1 · · · zwmj
m )

b) Let r ≥ 1 , let δi = (δi1, . . . , δim) ∈ Zm for i = 1, . . . , r , let N be a
graded submodule of

⊕r
i=1 P (−δi) such that ej /∈ N for j = 1, . . . , r ,

and let M be the graded P -module M =
⊕r

i=1 P (−δi)/N . Consider the
following sequence of instructions.
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1) Compute the componentwise minimum (α1, . . . , αm) of δ1, . . . , δr .
2) Choose a module term ordering σ on Tn〈e1, . . . , er〉 and compute

LTσ(N) using Buchberger’s Algorithm.
3) Let {t1eγ1 , . . . , tseγs

} be a system of generators of LTσ(N) where
t1, . . . , ts ∈ Tn and γ1, . . . , γs ∈ {1, . . . , r} . For i = 1, . . . , r , let
Ii ⊆ P be the monomial ideal generated by {tj | 1 ≤ j ≤ s, γj = i}
and compute HNP/Ii

(z1, . . . , zm) by performing MultMonHN(Ii) .
4) Return the polynomial

HNM (z1, . . . , zm) =
r∑

i=1

zδi1−α1
1 · · · zδim−αm

m · HNP/Ii
(z1, . . . , zm)

and stop.
This is an algorithm which computes the polynomial HNM (z1, . . . , zm)
in Z[z1, . . . , zm] satisfying

HSM (z1, . . . , zm) = zα1
1 · · · zαm

m HNM (z1, . . . , zm) /
n∏

j=1

(1− z
w1j

1 · · · zwmj
m )

Proof. First we show a). Finiteness follows exactly as in the proof of The-
orem 5.3.2. To prove correctness we note that, for s = 1, the claim follows
from Propositions 5.8.13.d and 5.8.15. For s > 1, we use induction on the
recursion and Proposition 5.8.13.d again to conclude that HSP/I(z1, . . . , zm)
has the desired shape.

The proof of b) proceeds exactly as the proof of Proposition 5.3.1, except
that we have to replace the references to Proposition 5.2.15 by references to
the corresponding parts of Proposition 5.8.13. �

This theorem shows that the multivariate Hilbert series of a finitely gen-
erated graded P -module has a shape which generalizes the shape described
in Theorem 5.2.20.

Corollary 5.8.19. For every finitely generated graded P -module M , the
multivariate Hilbert series of M has the form

HSM,W (z1, . . . , zm) =
zα1
1 · · · zαm

m · HNM (z1, . . . , zm)
n∏

j=1

(1 − z
w1j

1 · · · zwmj
m )

where (α1, . . . , αm) is the componentwise minimum of the degree sequence
of M , and where HNM (z1, . . . , zm) is a polynomial in Z[z1, . . . , zm] . We
call this polynomial the multivariate Hilbert numerator of M .

Remark 5.8.20. The preceding theorem is the multivariate version of the
Classical Hilbert Numerator Algorithm 5.3.2. Similarly, it is not difficult to
generalize Theorem 5.3.7 to compute multivariate Hilbert numerators using
strategies. All strategies discussed in Section 5.3 can be used in this case.
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As usual, the best way to appreciate an algorithm is to apply it to some
concrete cases.

Example 5.8.21. Let P = Q[x1, x2, x3, x4] be graded by W =
(
1 2 3 4
0 0 5 8

)
, and

let I = (x2
1, x2, x

3
3). We want to apply the algorithm of Theorem 5.8.18.a to

compute the multivariate Hilbert series of P/I .
In the first step, we form J = (x2

1, x2). In the second step, we compute
the Hilbert numerators of P/J and of P/(J :

P
(x3

3)) recursively. In this
case J :

P
(x3

3) = (x2
1, x2) is equal to J . When we compute HNP/J(z1, z2),

we form J ′ = (x2
1) and J ′′ = J :

P
(x2) = (x2

1) and apply the algorithm
recursively to them. Since J ′ = J ′′ = (x2

1) is a principal ideal, the al-
gorithm yields HNP/J ′(z1, z2) = HNP/J ′′(z1, z2) = 1 − z2

1 . Then we find
HNP/J (z1, z2) = HNP/J ′(z1, z2) − z2

1 HNP/J ′′(z1, z2) = (1 − z2
1)2 in step 3).

Thus the original algorithm computes HNP/I(z1, z2) = HNP/J (z1, z2) −
z9
1z15

2 HNP/(J:
P

(x3
3))

(z1, z2) = (1 − z2
1)2(1 − z9

1z15
2 ). Altogether, we have

HSP/I(z1, z2) =
(1−z2

1)2(1−z9
1z15

2 )

(1−z1)(1−z2
1 )(1−z3

1z5
2)(1−z4

1z8
2)

= (1+z1)(1+z3
1z5

2+z6
1z10

2 )

1−z4
1 z8

2

Example 5.8.22. Let P = Q[x1, x2, x3] be graded by W =
(
1 1 1
0 0−1

)
, and

let I = (x3
1x2, x2x

2
3, x2

2x3, x4
3). We want to apply the algorithm of Theo-

rem 5.8.18.a to compute the multivariate Hilbert series of P/I .
In the first steps, we form the ideals J1 = (x3

1x2, x2x
2
3, x2

2x3) and
J2 = J1 :

P
(x4

3) = (x2) and apply the algorithm recursively to them.
For J2 , it yields HNP/J2(z1, z2) = 1 − z1 in step 1). For J1 , we form
J11 = (x3

1x2, x2x
2
3) and J12 = J1 :

P
(x2

2x3) = (x3
1, x3) and apply the

algorithm recursively to these. Again the computation of HNP/J11(z1, z2)
splits into HNP/(x3

1x2)(z1, z2) = 1 − z4
1 and HNP/(J11:P (x2x2

3))
(z1, z2) =

HNP/(x3
1)

(z1, z2) = 1 − z3
1 . The result is HNP/J11(z1, z2) = (1 − z4

1) −
z3
1z−2

2 (1 − z3
1). Similarly, the computation of HNP/J12(z1, z2) splits into

HNP/(x3
1)

(z1, z2) = 1 − z3
1 and HNP/(J12:P (x3))(z1, z2) = HNP/(x3

1)
(z1, z2) =

1 − z3
1 . The result is HNP/J12(z1, z2) = (1 − z3

1)(1 − z1z
−1
2 ).

Coming back to the computation of HNP/J1(z1, z2) , we now obtain
HNP/J1(z1, z2) = HNP/J11(z1, z2)−z3

1z−1
2 HNP/J12(z1, z2) = 1−z4

1 +(1−z3
1) ·

(z4
1z−2

2 − z3
1z−2

2 − z3
1z−1

2 ). Finally, the algorithm returns HNP/I(z1, z2) =
HNP/J1(z1, z2)−z4

1z−4
2 HNP/J2(z1, z2) = (1−z1)(1−z1z

−1
2 )(−z5

1z−1
2 +z3

1z−3
2 +

z2
1z−2

2 + z3
1 + z2

1z−1
2 + z2

1 + z1z
−1
2 + z1 +1). Therefore the multivariate Hilbert

series of P/I is

HSP/I(z1, z2) =
−z5

1z−1
2 +z3

1z−3
2 +z2

1z−2
2 +z3

1+z2
1z−1

2 +z2
1+z1z−1

2 +z1+1

1−z1

Example 5.8.23. Let P = Q[x1, x2, x3] be graded by W =
(
1 1 1
0 0−1

)
, and

let M be the finitely generated graded P -module M = (P (−
(
3
0

)
) ⊕ P )/N ,

where N = 〈(x1, x
3
1x2), (0, x2x

2
3), (0, x2

2x3), (x3
3, 0), (0, x4

3)〉 . We want to apply
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the algorithm of Theorem 5.8.18.b to compute the multivariate Hilbert series
of M . Let us follow the steps of the algorithm.
1) We compute (α1, α2) = (0, 0).
2) We choose σ = DegRevLexPos and compute LTσ(N) = 〈(x1x2x3, 0),

(x1x
2
3, 0), (x3

3, 0), (0, x3
1x2), (0, x2

2x3), (0, x2x
2
3), (0, x4

3)〉 .
3) We apply the procedure MultMonHN(. . .) to I1 = (x1x2x3, x1x

2
3, x3

3) and
I2 = (x3

1x2, x2
2x3, x2x

2
3, x4

3). It yields HNP/I1(z1, z2) = (1 − z1z
−1
2 ) ·

(−z3
1z−2

2 −z3
1z−1

2 +z2
1z−2

2 +z1z
−1
2 +1) and, for HNP/I2(z1, z2), the result

computed in Example 5.8.22.
4) Return the result HNM (z1, z2) = z3

1 HNP/I1(z1, z2) + HNP/I2(z1, z2) =
(1− z1z

−1
2 )(−z6

1z−2
2 + z5

1z−2
2 − z4

1z−3
2 − z5

1z−1
2 + z3

1z−3
2 + z4

1z−1
2 − z3

1z−2
2 −

z4
1 − z3

1z−1
2 + z2

1z−2
2 + z3

1 + z1z
−1
2 + 1) and stop.

Thus the multivariate Hilbert series of M is HSM (z1, z2) = HNM (z1,z2)

(1−z1)2(1−z1z−1
2 )

=
−z6

1z−2
2 +z5

1z−2
2 −z4

1z−3
2 −z5

1z−1
2 +z3

1z−3
2 +z4

1z−1
2 −z3

1z−2
2 −z4

1−z3
1z−1

2 +z2
1z−2

2 +z3
1+z1z−1

2 +1
(1−z1)2

.

5.8.C Change of Gradings

Instead of using magic,
refiners employ processing technology

to perform their unique brand of metamorphosis.
(Emanueal B. Noél)

In the final part of this section we study the relationship between mul-
tivariate Hilbert series of the same module arising from different metamor-
phoses, such as changes of gradings and refinements. We try to present the
subject so that it should not appear to be a bag of magic tricks. Instead we use
the processing technology developed in the preceding subsection. The basic
question is the following: what happens to the Hilbert series when we change
the grading? In particular, what happens when we use a coarser grading than
our original one?

Given a matrix W ∈ Matm,n(Z) which defines a grading on P and a
matrix A ∈ Mat�,m(Z) with 1 ≤ � ≤ m , the Z -linear map ϕ : Zm −→ Z�

whose defining matrix is A yields a homomorphism of graded rings

(idP , ϕ) : (P, Zm) −→ (P, Z�)

Given a graded module M over (P, Zm), we can equip it with the structure
of a graded (P, Z�)-module by defining

MA·W,e =
{⊕

{d∈Zm|A·d=e} MW,d if e ∈ Im(ϕ),
0 otherwise.

We shall say that the graded module M =
⊕

e∈Z� MA·W,e is obtained from
M =

⊕
d∈Zm MW,d by a change of grading.
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Proposition 5.8.24. Let W ∈ Matm,n(Z) and A = (aij) ∈ Mat�,m(Z) be
two matrices such that the gradings on P = K[x1, . . . , xn] given by W and
by A · W are both of positive type. Let M be a finitely generated P -module
which is graded with respect to the grading given by W. Then the Hilbert
series of M with respect to the grading given by A · W is

HSM,A·W (z1, . . . , z�) = HSM,W (za11
1 · · · za�1

� , . . . , za1m
1 · · · za�m

� )

Proof. The assumption that both W and A ·W define gradings of positive
type implies that rk(W ) = m and rk(A · W ) = � . Therefore the matrix A
has maximal rank rk(A) = � . By the definition of the grading, we have

HSM,A·W ( z1, . . . , z�) =
∑

e∈Z�

∑
{d∈Zm|A·d=e}

dimK(MW,d) ze1
1 · · · ze�

�

=
∑

e∈Z�

∑
{d∈Zm|A·d=e}

dimK(MW,d) za11d1+···+a1mdm
1 · · · za�1d1+···+a�mdm

�

=
∑

e∈Z�

∑
{d∈Zm|A·d=e}

dimK(MW,d) (za11
1 · · · za�1

� )d1 · · · (za1m
1 · · · za�m

� )dm

=
∑

d∈Zm

HFM,W (d)(za11
1 · · · za�1

� )d1 · · · (za1m
1 · · · za�m

� )dm

= HSM,W (za11
1 · · · za�1

� , . . . , za1m
1 · · · za�m

� )

as claimed. �

Example 5.8.25. Let P = K[x1, x2, x3] be graded by W =
(−1 1 2

2 0 1

)
, and let

A =
(
1 1
0 1

)
. Then we have HSP,W (z1, z2) = 1/((1 − z−1

1 z2
2)(1 − z1)(1 − z2

1z2))
and A · W =

(
1 1 3
2 0 1

)
. The Hilbert series of P with respect to the grading

given by A · W is HSP,A·W (z1, z2) = 1/((1 − z1z
2
2)(1 − z1)(1 − z3

1z2)) =
HSP,W (z1, z1z2), in accordance with the proposition.

An important special case occurs when A · W is the submatrix of W
which consists of the first � rows of W . In this case we use the following
terminology.

Definition 5.8.26. Let the polynomial ring P = K[x1, . . . , xn] be graded
by a matrix W ∈ Matm,n(Z), let � ∈ {1, . . . , m} , and let W =

(
U
V

)
, where

U ∈ Mat�,n(Z) and V ∈ Matm−�,n(Z). Then we say that the grading on P
given by W refines the grading given by U , or that the the grading given
by W is a refinement of the grading given by U .

To simplify the notation, we denote the concatenation of d ∈ Z� and
e ∈ Zm−� by (d, e) ∈ Zm . We let o = (0, . . . , 0) ∈ Z� . Then the K-vector
space PU,o =

⊕
e∈Zm−� P(o,e) is a graded K -algebra and for every d ∈ Z� ,

the K-vector space MU,d =
⊕

e∈Zm−� M(d,e) is a graded PU,o -module.
The following corollary allows us to pass from the multivariate Hilbert

series of the module M with respect to the grading given by W to its mul-
tivariate Hilbert series with respect to the grading given by U .
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Corollary 5.8.27. Let U ∈ Mat�,n(Z) be a matrix of positive type, let
V ∈ Matm−�,n(Z) , and let W =

(
U
V

)
∈ Matm,n(Z) .

a) We have HSM,U (z1, . . . , z�) = HSM,W (z1, . . . , z�, 1, . . . , 1) .
b) We have PU,o = K and for every d ∈ Z�, we have dimK(MU,d) =∑

e∈Zm−� dimK(M(d,e)) .

Proof. Claim a) follows from Proposition 5.8.24 by using the change of grad-
ing defined by A = (I� | 0) ∈ Mat�,m(Z). Claim b) is obtained from a) by
comparing coefficients. �

If the grading given by U is not of positive type, the vector space dimen-
sion of PU,o can be infinite. For instance, if we equip P = Q[x, y] with the
grading given by W =

(
1 0
1 1

)
and use U = (1 0), we have PU,o = K[y] . In

the corollary, we substitute z2 = 1 in HSP,W (z1, z2). But in our case this is
not possible since HSP,W (z1, z2) = 1

(1−z1z2)(1−z2)
. However, the ring PU,o is

always a finitely generated K -algebra, as we shall see in Section 6.1.

Exercise 1. Find monoid orderings σ, τ on Zm and an extended power
series f ∈ Z[[z, z−1]] such that f is a σ -Laurent series but not a τ -Laurent
series.

Exercise 2. Find the number of solutions in N4 of the following system
of Diophantine equations.{

a1 + 2a2 + 3a3 + 4a4 = 15
a1 + 3a2 + a4 = 12

Exercise 3. (Note: To do this exercise, you need tensor products of
vector spaces. If necessary, you may want to solve the corresponding parts
of Tutorial 68 first.)
Let K be a field, let the polynomial ring P = K[x1, . . . , xn] be graded
by a matrix W ∈ Matm,n(Z) of positive type, and let M, M ′ be finitely
generated graded P -modules.

a) Show that there exists a finitely generated graded P -module M⊗P M ′

such that (M ⊗P M ′)d =
⊕

i+j=d Mi ⊗K M ′
j for all d ∈ Zm.

b) Conclude that the multivariate Hilbert series of M⊗P M ′ is the prod-
uct HSM (z) · HSM′(z) .

Exercise 4. Let K be a field, and let P = K[x, y] be graded by the ma-
trix W = (1 2). Compute the Hilbert series of P and show that there are

polynomials p1, p2 ∈ Q[t] such that HFP (i) =

{
p1(i) if i ≥ 0 is even,
p2(i) if i ≥ 1 is odd.

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] be graded by a
matrix W = (wij) ∈ Matm,n(Z) of positive type, and let f1, . . . , fs be a
homogeneous regular sequence in P . For i = 1, . . . , s , let (di1, . . . , dim) =
degW (fi) ∈ Zm . Show that

HSP/(f1,...,fs)(z1, . . . , zm) =

∏s
i=1(1−z

di1
1 ···zdim

m )∏n
j=1(1−z

w1j
1 ···zwmj

m )
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Exercise 6. Let K be a field, and let P = K[x1, x2, x3] be graded by
W =

(
1 1 1
0 0−1

)
. Show that the ideal I = (x1x2x3, x1x

2
3, x3

3) has Hilbert nu-

merator HNP/I(z1, z2) = (1−z1z
−1
2 )(−z3

1z−2
2 −z3

1z−1
2 +z2

1z−2
2 +z1z

−1
2 +1).

Exercise 7. Let K be a field, let P = K[x1, x2, x3, x4] be graded by the
matrix W =

(
1 1 2 2
3 3 1 1

)
, and let f = x1x3 −x2x4 . Compute the multivariate

Hilbert series of P/(f) in the following two ways and compare the results:

a) Using Proposition 5.8.13.d.
b) Using the grading defined by

(
1 1 0 0
0 0 1 1

)
and Proposition 5.8.24.

Exercise 8. Let the polynomial ring P = Q[x1, . . . , x5] be graded by
W =

(
1 1 1 2 2
3 1 0 1 0

)
, let U = (1 1 1 2 2), and let I ⊆ P be the ideal generated

by {x1x
8
3−x3

3x
3
4−x2x

2
4x

2
5, x1x

2
4−x5

2, x3
2x4+x1x2x

3
3−x1x

2
3x4} . Using CoCoA,

compute the Hilbert series HSP/I,W (z1, z2) and HSP/I,U (z1) . Verify the
formula of Corollary 5.8.27.a.

Tutorial 80: Hilbert Driven Gröbner Basis Computations II

The best computer is a man,
and it’s the only one

that can be mass-produced
by unskilled labor.

(Wernher Von Braun)

In Tutorial 69 we used the knowledge of the Hilbert series of a graded
module to guide the computation of a homogeneous Gröbner basis. However,
our results were limited to the standard graded setting. This tutorial takes
off where part I ends. The first step is to generalize the Hilbert Driven Buch-
berger Algorithm to the case of an arbitrary positive Z -grading. To perform
this task, all you have to do is to turn your built-in computer on and rework
the first items of Tutorial 69 thoughtfully.

When it comes to the general problem of computing Gröbner bases in a
positively Zm -graded setting with m > 1, unskilled labour is not going to
suffice anymore. If we were to recompute the Hilbert series every time we
have finished the computations in a fixed multidegree, we would slow down
our computer because we do way too much work. This is because the com-
putations in two multidegrees whose first components agree cannot interfere
with each other. In other words, if we find new Gröbner basis elements in one
multidegree, the Hilbert function of the module the Gröbner basis elements
generate does not change in the other multidegree. Hence we recompute the
Hilbert series more selectively and get a nice and fast algorithm.

This leaves us with only one fly in the ointment: how do we know the
Hilbert series of the module whose Gröbner basis we are after? Usually, we
don’t. But sometimes we may be able to apply our neural computer in a
clever way. For these purposes it is an excellent device, and can be used for
free.
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Let K be a field, and let P = K[x1, . . . , xn] be Z -graded by a positive
matrix W ∈ Mat1,n(Z).
a) Given a finitely generated graded P -module M with initial degree α , a

number j ∈ Z , and a graded submodule N ⊆ M such that Ni = Mi for
i < j , prove that the following conditions are equivalent.
1) Nj ⊂ Mj

2) dimK(Mj) − dimK(Nj) > 0
3) There exists a positive integer cj such that HNM (z) − HNN (z) =

cjz
j−α + (terms of higher degree).

Show that cj = dimK(Mj) − dimK(Nj) if these conditions are satisfied.
Let us now apply this observation to generalize the Hilbert Driven Buch-

berger Algorithm. Assume that we are computing a σ -Gröbner basis of
a graded submodule M of F =

⊕r
i=1 P (−δi) using the Homogeneous

Buchberger Algorithm 4.5.5, and also that we have just finished some de-
gree d . Suppose additionally that we know the Hilbert numerator of M
and that a computation of the Hilbert numerator of N = 〈LTσ(G)〉 yields
HNM (z) − HNN (z) = cjz

j−α + (terms of higher degree) with cj > 0.
c) Prove that Ni = Mi for i < j , that j > d , and that there are neither

reduced σ -Gröbner basis elements nor minimal homogeneous generators
of M in degrees d + 1, . . . , j − 1.

d) Show that cj ≤ #Bj +#Wj and that the reduced σ -Gröbner basis of M
contains exactly cj elements of degree j .

e) In the Homogeneous Buchberger Algorithm 4.5.5, replace steps 2), 3)
and 6) by the following instructions.
2’) Let N = 〈LTσ(G)〉 . Compute the polynomial HNM (z)−HNN (z). If

it is zero, return G and stop. Otherwise, let d ≥ α and cd > 0 be
such that HNM (z) − HNN (z) = cdz

d−α + (terms of higher degree).
Form the subset Bd of B , form the subtuple Wd of W , and delete
their entries from B and W , respectively.

3’) If Bd = ∅ or if G contains cd elements of degree d , continue with
step 6’). Otherwise, choose a pair (i, j) ∈ Bd and remove it from Bd .

6’) If Wd = ∅ or if G contains cd elements of degree d , continue with
step 9). Otherwise, choose a vector v ∈ Wd and remove it from Wd .

Show that the resulting sequence of instructions defines an algorithm
which computes a homogeneous σ -Gröbner basis of M . We call it the
Weighted Hilbert Driven Buchberger Algorithm.

f) Implement the Weighted Hilbert Driven Buchberger Algorithm in a
CoCoA function WeightedHDBA(. . .). Apply this function to compute the
PosLex-Gröbner bases of the following ideals or modules. In each case,
use CoCoA first to compute the Hilbert series of Mi via its DegRevLexPos-
Gröbner basis.
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1) M1 = (x2
1 − x5

2, x
3
1 − x4

3, x
4
1 − x4

4) ⊆ Q[x1, x2, x3, x4] graded by the
matrix W = (20 8 15 20)

2) M2 = (x6
1 − x1x3 + x2

2, x4
1x

2
2 − x2

1x2x3 − x2
3, x10

1 − x2
3) ⊆ Q[x1, x2, x3]

graded by the matrix W = (1 3 5)
3) M3 = 〈(0, x2x3, x

2
1x3), (0, x1x

2
3, x1x

3
2 − x1x

2
3), (x5

2x
2
3, x1x

5
3 − x1x

3
4),

(x1x
2
2, x2x3, 0), (x3

1x2, 0, x2x3)〉 ⊆ Q[x1, x2, x3]3 where Q[x1, x2, x3]
is graded by the matrix W = (1 2 3 5)

So far the generalization of the standard graded case has been straightfor-
ward. In the following we treat the truly multigraded setting, i.e. the setting
where P is positively graded by a matrix W ∈ Matm,n(Z) for which m > 1.
We could generalize the Weighted Hilbert Driven Buchberger Algorithm in
the obvious way. But experience shows that the resulting algorithm performs
poorly. How come? Roughly speaking, the reason is that a multigrading splits
the module more than a simple grading, and different multidegrees can be
totally independent of each other. This causes the following effect.

As above, we are assuming that we are computing a σ -Gröbner basis
of a graded submodule M of F =

⊕r
i=1 P (−δi) using the Homogeneous

Buchberger Algorithm 4.5.5, and that we have just finished looping through
steps 3)–8) for some degree d ∈ Zm . Let N = 〈LTσ(G)〉 be the graded
submodule of M generated by the elements of the Gröbner basis found up
to this point.
g) Suppose that W is of the form W =

(
U
V

)
with V ∈ Matm−1,n(Z) and

with a positive matrix U ∈ Mat1,n(Z) . Moreover, suppose that there
exist two distinct degrees d1 =

(
δ
d′
1

)
and d2 =

(
δ
d′
2

)
with δ ∈ Z and

d′1, d
′
2 ∈ Zm−1 for which HFM (di)−HFN (di) > 0 for i = 1, 2. Show that

the submodule N ′ = N + 〈Md1〉 of M satisfies HFN ′(d2) = HFN (d2).
Therefore the process of filling the gap at d1 , i.e. looping through steps

3)–8) in degree d1 until G contains the predicted number of elements of
degree d1 , does not change the Hilbert function of 〈G〉 in degree d2 . Similarly,
filling the gap in degree d2 is independent of filling the gap in degree d1 . So
it would be a waste of time to recompute the Hilbert function of 〈G〉 after
the loop in degree d1 has been completed. This observation suggests the
following procedure.
h) Let W be of the form W =

(
U
V

)
with a positive matrix U ∈ Mat1,n(Z)

and with V ∈ Matm−1,n(Z). In the Homogeneous Buchberger Algo-
rithm 4.5.5, replace steps 1), 2), 3) and 6) by the following instructions.
1’) Let B = ∅ , W = V , δ = min{degU (vi) | i = 1, . . . , s} , G = ∅ ,

and s′ = 0.
2’) Let d be the smallest degree with respect to Lex of an element in B

or in W . If the first component of d equals δ then form the subset Bd

of B, form the subtuple Wd of W , and delete their entries from B
and W , respectively. Otherwise, let N = 〈LTσ(G)〉 . Compute the
polynomial HNM (z)−HNN (z) . If it is zero, return G and stop. If it
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is non-zero, let d ≥ α and cd > 0 be such that HNM (z)−HNN (z) =
cdz

d−α + (terms of higher degree) . Form the subset Bd of B , form
the subtuple Wd of W , and delete their entries from B and W ,
respectively. Replace δ with the first component of d .

3’) If Bd = ∅ or if G contains cd elements of degree d , continue with
step 6’). Otherwise, choose a pair (i, j) ∈ Bd and remove it from Bd .

6’) If Wd = ∅ or if G contains cd elements of degree d , continue with
step 9). Otherwise, choose a vector v ∈ Wd and remove it from Wd .

Show that the resulting sequence of instructions defines an algorithm
which computes a homogeneous σ -Gröbner basis of M . We call it the
Multigraded Hilbert Driven Buchberger Algorithm.

i) Implement the Multigraded Hilbert Driven Buchberger Algorithm in a
CoCoA function MultiHDBA(. . .).

j) Let the polynomial ring Q[x1, . . . , x5] be graded by W =
(
1 1 1 2 2
3 1 0 1 0

)
, and

let I1 = (x1x
8
3 − x3

3x
3
4 − x2x

2
4x

2
5, x1x

2
4 − x5

2, x3
2x4 + x1x2x

3
3 − x1x

2
3x4).

Using CoCoA, compute a DegRevLex-Gröbner basis of I1 . Then determine
the Hilbert numerator of I1 and use it to drive the computation of a
Lex-Gröbner basis of I1 via MultiHDBA(. . .).

k) Let Q[x1, . . . , x6, y1, . . . , y8] be graded by W =
(
2 2 2 2 2 2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0

)
, and

let I2 = (x1−y1y6 +y2y5, x2−y1y7 +y3y5, x3−y1y8 +y4y5, x4−y2y7 +
y3y6, x5 − y2y8 + y4y6, x6 − y3y8 + y4y7). Using the lexicographic term
ordering such that x1 >Lex · · · >Lex x6 >Lex y1 >Lex · · · >Lex y8 , find the
Hilbert numerator of I2 . Then pass it to your function MultiHDBA(. . .)
to compute an Elim(L)-Gröbner basis of I2 where L = {y1, . . . , y8} .
Finally, you may object that the matrix W does not always have a positive

first row. This objection is valid, but it is not difficult to clear this small
hurdle.
l) Let W ∈ Matm,n(Z) be a positive matrix. Write a CoCoA function which

computes a non-singular matrix A ∈ Matm(Z) such that the first row of
A · W consists of positive integers only.

m) Let P be graded by a positive matrix W ∈ Matm,n(Z), and let M
be a graded submodule of a graded free P -module which is given by a
homogenous set of generators. Explain how one can use l) and the Multi-
graded Hilbert Driven Buchberger Algorithm to compute a homogeneous
Gröbner basis of M . (Hint: Use Proposition 4.1.14.)

The best ideas are common property.
(Seneca the Younger)
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Tutorial 81: Rees Rings

There really are only two types
of people in the world,

those that don’t do Math,
and those that take care of them.

(Anonymous)

Rees rings are important tools, both in commutative algebra and in alge-
braic geometry. A thorough explanation of their geometric meaning exceeds
the scope of this book. For us, they are interesting examples for the theory of
multigradings. In fact, you will be surprised to see how well-suited the results
of this section are to defining a natural bigrading on a Rees ring and to com-
puting the corresponding multivariate Hilbert series. One of the applications
of this procedure is that we can take care of the people who don’t do Math.
A more common application is a clever way to compute the Hilbert series of
the powers of an ideal.

Let K be a field, let P = K[x1, . . . , xn] , and let P = K[x1, . . . , xn, t]
where t is a new indeterminate. We equip P with the grading defined by
the matrix U = (0 . . . 0 1) ∈ Mat1,n+1(Z). Let I be an ideal in P which is
generated by polynomials f1, . . . , fs . The Rees ring of I is defined as the
K -vector subspace R(I) =

⊕
d∈N Id td of P .

a) Show that R(I) is a graded K -subalgebra of P with respect to the
grading defined by U .

b) Prove that the polynomials f1 t, . . . , fs t generate the Rees ring R(I) as
a P -algebra.

c) Conclude that we can choose further indeterminates y1, . . . , ys and define
a surjective K -algebra homomorphism ϕ : P [y1, . . . , ys] −→ R(I) such
that ϕ(yi) = fi t for i = 1, . . . , s . Can you equip P [y1, . . . , ys] with a
Z -grading such that ϕ is a homomorphism of graded rings?

d) Write a CoCoA function PresentRees(. . .) which takes f1, . . . , fs and
computes a system of generators of Ker(ϕ) which is homogeneous with
respect to the grading defined in c).
For the remainder of this tutorial, we assume that P is standard graded,

that I is a homogeneous ideal, and that {f1, . . . , fs} is a system of generators
of I consisting of non-zero homogeneous polynomials. Moreover, we now
equip P with the bigrading (i.e. with the Z2 -grading) defined by the matrix
W =

(
U
V

)
∈ Mat2,n+1(Z) where U = (0 . . . 0 1) and V = (1 . . . 1 0) are

matrices in Mat1,n+1(Z).
e) Prove that P is positively graded by W and that the multivariate Hilbert

series of P with respect to this grading is HSP (z1, z2) = 1
(1−z1)(1−z2)n .

f) Show that the Rees ring R(I) is a graded subring of P with respect
to the grading given by W , and that its homogeneous component of
bidegree (d, e) ∈ Z2 is (Id)e td .
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g) Explain how one can equip P [y1, . . . , ys] with a Z2 -grading such that ϕ
is a homomorphism of bigraded rings. Then show that your function
PresentRees(. . .) actually computes a bihomogeneous system of gener-
ators of Ker(ϕ).

h) For i = 1, . . . , s , let di = deg(fi). Prove that the multivariate Hilbert
series of R(I) with respect to the grading given by W has the shape

HSR(I),W (z1, z2) = HNR(I)(z1,z2)

(1−z2)n (1−z1z
d1
2 )···(1−z1zds

2 )

where HNR(I)(z1, z2) ∈ Z[z1, z2] . Write a CoCoA function ReesHN(. . .)
which takes f1, . . . , fs and computes the multivariate Hilbert numerator
HNR(I)(z1, z2) of the Rees ring.

i) Use your function ReesHN(. . .) to compute the multivariate Hilbert nu-
merators of the Rees rings of the following homogeneous ideals.
1) I1 = (x2

1, x1x2, x1x3, x2
2, x2x3, x2

3) in Q[x1, x2, x3]
2) I2 = (x2

2 − x1x3, x2
3 − x2x4, x1x4 − x2x3) in Q[x1, x2, x3, x4]

3) The ideal I3 in Q[x1, . . . , x6] generated by the 3 × 3 minors of the

matrix

⎛⎝x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

⎞⎠ .

j) Now let d ≥ 1. Construct an algorithm which computes the Hilbert series
of Id with respect to the standard grading.
Hint: In order to isolate the coefficient of zd

1 in HSR(I),W (z1, z2), you
may replace 1/(1 − z1z

dj

2 ) by 1 + z1z
dj

2 + · · · + zd
1z

djd
2 etc.

k) Based on this algorithm, write a CoCoA function IdealPowerHN(. . .)
which takes f1, . . . , fs and d and computes the Hilbert numerator
of P/Id with respect to the standard grading.

l) Apply your function IdealPowerHN(. . .) to compute the Hilbert numer-
ators of the following rings.
1) Q[x1, x2, x3]/J4

1 where J1 = (x2
1 − x2x3, x2

2 − x1x3, x2
3 − x1x2)

2) Q[x1, x2, x3, x4]/J3
2 where J2 = (x2x

2
4 − x3

3, x1x4 − x2x3, x2
1x3 − x3

2,
x1x

2
3 − x2

2x4)
3) Q[x1, x2, x3]/J9

3 where J3 = (x1x2, x1x3, x2x3)

We cannot guarantee success,
but we can deserve it.
(George Washington)
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Tutorial 82: Segre Products and Hadamard Series

Teacher: “Now suppose the number of sheep is x ...”
Student: “Yes sir, but what happens

if the number of sheep is not x?”
(Anonymous)

In algebraic geometry, the following construction has been studied inten-
sively. Given a field K , the map

Φ : Pn
K × Pm

K −→ Pnm+n+m
K

((a0 : . . . : an), (b0 : . . . : bm)) �−→ (a0b0 : a0b1 : . . . : anbm)

defines an embedding of projective varieties. If we restrict this map to the
product of two subvarieties V ⊆ Pn

K and W ⊆ Pm
K , the image Φ(V × W ) is

a projective variety in Pnm+n+m
K which is called the Segre product of V

and W. In this tutorial we examine the homogeneous coordinate rings of
Segre products. We define them algebraically, compute a homogeneous pre-
sentation, and study their Hilbert series.

Suppose the Hilbert series of two standard graded K -algebras are given.
Can we use this information to determine the Hilbert series of their Segre
product more efficiently than blindly computing a Gröbner basis of its defin-
ing ideal? The key to answering this question affirmatively is the observation
that the Hilbert series of a Segre product is the Hadamard product of the
individual Hilbert series. On its own, this fact is not enough to construct an
algorithm, but with a little extra effort we shall squeeze an effective procedure
out of it.

But what happens if the Hilbert series of the two algebras are not given?
Well, in general we have to resort to the homogenous presentation of their
Segre product for finding the Hilbert series. But in one special case we can
do much better: for the Hilbert series of the Segre product of two polynomial
rings we shall derive a nice explicit formula in the last part of this tutorial.

Let K be a field, and let R be a bigraded (i.e. Z2 -graded) K -algebra.
Then the Z -graded algebra Diag(R) =

⊕
i∈Z R(i,i) is called the diagonal

subalgebra of R . Diagonal subalgebras of polynomial rings will be the topic
of Exercise 5 in Section 6.1. Here we look at another particular case. Let
{x1, . . . , xn} and {y1, . . . , ym} be two sets of indeterminates. We equip the
polynomial ring R = K[x1, . . . , xn, y1, . . . , ym] with the grading given by the
matrix

W =
(

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

)
i.e. we let degW (xi) =

(
1
0

)
and degW (yj) =

(
0
1

)
.

a) Show that we have Diag(R) = K[xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m] .
b) Using a), construct a natural surjective homomorphism of Z -graded

K -algebras ϕ : K[z11, . . . , znm] −→ Diag(R). Consequently, the diag-
onal subalgebra Diag(R) is a standard graded K -algebra.
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c) Prove that the kernel of ϕ is the binomial ideal generated by all
zi1j1zi2j2 − zi3j3zi4j4 with i1 + i2 = i3 + i4 and j1 + j2 = j3 + j4 .
Hint: The kernel of ϕ is homogeneous and satisfies (Ker(ϕ))≤1 = 0. Re-
duce an arbitrary element of Ker(ϕ) suitably to the form z11f1+z1mf2+
zn1f3 + znmf4 and use induction.
Notice that the ring R can be viewed as the tensor product of the poly-

nomial rings P = K[x1, . . . , xn] and Q = K[y1, . . . , ym] (see Tutorial 68). In
the following we broaden our investigation and look at the diagonal algebra
of the tensor product of two standard graded algebras.

Let P = K[x1, . . . , xn] and Q = K[y1, . . . , ym] be endowed with the
standard grading, let I ⊂ P and J ⊂ Q be homogeneous ideals, and let
T = P/I ⊗K Q/J be the tensor product of P/I and Q/J .
d) Define a Z2 -grading on T such that there exists an isomorphism of

Z2 -graded algebras T ∼= R/(I · R + J · R).
The standard graded K -algebra Diag(P/I ⊗K Q/J) is called the Segre

product of P/I and Q/J and is denoted by Seg(P/I,Q/J). In particular,
we have Seg(P,Q) = Diag(R).
e) Let d ∈ N and f ∈ Pd \ {0} . Prove that we have f · Seg(P,Q) =

f · R ∩ Seg(P,Q) = (fyd
1 , . . . , fyd

m).
f) Show that the homomorphism Seg(P,Q) −→ Seg(P/I,Q/J) given by

f ⊗g �→ (f +I)⊗ (g +J) yields an isomorphism of Z -graded K -algebras

Seg(P,Q)/(I Seg(P,Q) + J Seg(P,Q)) ∼= Seg(P/I,Q/J)

g) Using e) and f), write a CoCoA function SegIdeal(. . .) which takes sys-
tems of generators of I and J and computes a system of generators of
a homogeneous ideal ISeg ⊆ K[z11, . . . , znm] such that Seg(P/I,Q/J) ∼=
K[z11, . . . , znm]/ISeg .

h) Apply your function SegIdeal(. . .) to compute the defining ideal of the
following Segre products.
1) I1 = (0) ⊆ Q[x1, x2, x3] , J1 = (0) ⊆ Q[y1, y2, y3]
2) I2 = (x2

1, x1x2, x
2
2) ⊆ Q[x1, x2] , J2 = (y2

1 , y1y2, y
2
2) ⊆ Q[y1, y2, y3]

3) I3 = (x1x2, x1x3) ⊆ Q[x1, x2, x3] , J3 = (y5
4) ⊆ Q[y1, . . . , y4]

The homogeneous presentation Seg(P/I,Q/J) ∼= K[z11, . . . , znm]/ISeg

can be used to compute the Hilbert series of the Segre product of P/I
and Q/J . However, given the Hilbert series of P/I and Q/J , it is desir-
able to determine the Hilbert series of the Segre product in a more direct
manner. The first indication of how this could work is provided by the fol-
lowing formula.
i) Show that Seg(P/I,Q/J)i

∼= (P/I)i ⊗K (Q/J)i for every i ∈ N .
Let f(z) =

∑
i∈N aiz

i and g(z) =
∑

j∈N bjz
j be two univariate power

series. Then the Hadamard product of f and g is the power series
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Had(f, g)(z) =
∑
i∈N

aibi zi

j) Prove the formula HSSeg(P/I,Q/J)(z) = Had(HSP/I ,HSQ/J)(z).
This result is not yet sufficient to compute Hilbert series of Segre products

because we still lack a finite description of the Hadamard product. A more
detailed study is necessary.

Let d = dim(P/I) and e = dim(Q/J). Thus the Hilbert series of P/I

and Q/J have the form HSP/I(z) = hnP/I(z)

(1−z)d and HSQ/J(z) = hnQ/J (z)

(1−z)e , re-
spectively, where hnP/I(z),hnQ/J(z) ∈ Z[z] are polynomials having constant
coefficient one.
k) Show that the regularity index of Had(HSP/I ,HSQ/J) is less than or

equal to max{ri(P/I), ri(Q/J)} .
l) Using Hilbert polynomials, prove that the dimension of the Segre product

is dim(Seg(P/I,Q/J)) = dim(P/I) + dim(Q/J) − 1
m) Show that the Hilbert series of the Segre product S = Seg(P/I,Q/J) is

of the form HSS(z) = hnS(z)
(1−z)d+e−1 with a polynomial hnS(z) ∈ Z[z] having

deg(hnS(z)) ≤ max{ri(P/I), ri(Q/J)} + d + e − 2 and hnS(0) = 1.
n) Given homogeneous systems of generators of I and J , consider the fol-

lowing sequence of instructions.
1) Using Theorem 5.4.15, compute d = dim(P/I) and e = dim(Q/J),

as well as r = ri(P/I) and s = ri(Q/J).
2) Let � = max{r, s}+ d + e− 2. For i = 0, . . . , � , compute the number

hi = HFP/I(i) · HFQ/J(i).
3) Let H : Z −→ Z be defined by H(i) = hi for 0 ≤ i ≤ � and H(i) = 0

otherwise. Compute cj = ∆d+e−1H(j) for j = 0, . . . , � . Return the
polynomial c0 + c1z + · · · + c�z

� ∈ Z and the number d + e − 1.
Prove that this is an algorithm which computes the simplified Hilbert
numerator hnS(z) and the dimension dim(S) of S = Seg(P/I,Q/J).

o) Write a CoCoA function SegreHS(. . .) which implements the algorithm
of n). Apply this function to the examples in h).
In the last part of this tutorial we return to the case I = J = (0),

i.e. to the Segre product Seg(P,Q) = Diag(R). Our goal is to find an
explicit formula for the Hilbert series of this ring. Given a power series
f(z) =

∑
i∈N ai zi ∈ Z[[z]] , we let ∆f(z) = a0 +

∑
i≥1(ai − ai−1) zi .

p) Show that ∆
(
Had(HSP/I ,HSQ/J)

)
(z) = Had

(
∆(HSP/I),HSQ/J

)
(z) +

Had
(
HSP/I ,∆(HSQ/J)

)
(z) − Had

(
∆(HSP/I),∆(HSQ/J)

)
(z).

Hint: aibi−ai−1bi−1 = (ai−ai−1)bi +ai(bi−bi−1)−(ai−ai−1)(bi−bi−1)

q) Prove that
(
n
i

)(
m
i

)
=
(
n−1

i

)(
m
i

)
+
(
n
i

)(
m−1

i

)
−
(
n−1

i

)(
m−1

i

)
+
(
n−1
i−1

)(
m−1
i−1

)
for i ∈ N and m,n ∈ N+ .

r) Finally, prove the formula
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HSSeg(P,Q)(z) =

∑min{n−1,m−1}
j=0

(
n−1

j

)(
m−1

j

)
zj

(1 − z)n+m−1

Hint: Show ∆(HSSeg(P,Q)) =
∑min{n−1,m−1}

j=0

(
n−1

j

)(
m−1

j

)
zj/(1−z)n+m−2

using a double induction and the formulas proved in the preceding two
items.

Tutorial 83: A Toy Example

Children today are tyrants.
They contradict their parents,

gobble their food,
and tyrannize their teachers.

(Socrates)

A popular children’s toy consists of coloured 90 degree arcs which can
be joined together to form toy rings and other shapes. Let us denote the
available colours by {1, . . . , n} .
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3
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.................................

.................

If we have four colours available, we can create 55 toy rings which are
pairwise different in the sense that no two of them can be transformed into
each other by a movement in 3-dimensional space.
1) There are four unicoloured toy rings.
2) There are twelve toy rings having colour distribution (3, 1), i.e. consisting

of three arcs of one colour and one arc of another colour.
3) There are six toy rings having colour distribution (2, 2) and adjacent arcs

of the same colour.
4) There are six toy rings having colour distribution (2, 2) and opposite arcs

of the same colour.
5) There are twelve toy rings having colour distribution (2, 1, 1) and adja-

cent arcs of the same colour.
6) There are twelve toy rings having colour distribution (2, 1, 1) and oppo-

site arcs of the same colour.
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7) There are three toy rings having colour distribution (1, 1, 1, 1). (Look at
the colour opposite the segment of colour “1”!)

Let us increase the number of available colours.
a) Show that 120 different toy rings can be built using five colours, and for

six colours there are 231 different toy rings.
This result motivates us to investigate the following philosophical question:

What is the deeper meaning of the number 231?
More seriously, we want to study the general problem of how one can count
objects for which certain symmetries have to be taken into account. Of course,
we could extend the above case-by-case argument to n available colours, but
we are more interested in a general strategy. The deeper meaning of the
number 231 should be that it is a value of a suitable multigraded Hilbert
function.

Let us begin by classifying the symmetries of toy rings. We represent a
toy ring by a quadruple (c1, c2, c3, c4) where ci ∈ {1, . . . , n} .
b) Show that the symmetry group G of toy rings is a subgroup of the

permutation group S4 which is isomorphic to the dihedral group D4 of
order eight. (For a definition of D4 , see Tutorial 40.) Write down these
eight permutations.
Next we want to identify toy rings with terms in a suitable polynomial

ring. We represent the possible values 1, . . . , n of the colour ci by the terms
xn−1

i , xn−1
i yi, . . . , y

n−1
i where the indeterminates xi and yi have degree one.

In this way the n possible values of ci are in 1–1 correspondence with the n
terms of degree n − 1 in Q[xi, yi] . Then a toy ring T = (c1, c2, c3, c4) is
represented by the term

tT = xn−c1
1 yc1−1

1 xn−c2
2 yc2−1

2 xn−c3
3 yc3−1

3 xn−c4
4 yc4−1

4 ∈ P = Q[x1, y1, . . . , x4, y4]

c) Equip the ring P with a Z4 -grading such that toy rings correspond to
terms of degree (n−1, n−1, n−1, n−1). Then determine HFP (i, i, i, i)
for i = 3, 4, 5.

d) Prove that the number of terms of the form tT is the (n−1)st value of the
Hilbert function of the fourfold Segre product S =

⊕
i≥0 P(i,i,i,i) ⊆ P.

e) Define 16 further indeterminates Z = {zijk� | i, j, k, � ∈ {0, 1}} and
equip R = Q[Z] with the standard grading. Then show that the map
ϕ : R −→ S defined by zijk� �→ xi

1y
1−i
1 · · ·x�

4y
1−�
4 is a surjective homo-

morphism of Q -algebras.
f) Prove that the ideal I = Ker(ϕ) is generated by the set of all binomi-

als zi1j1k1�1zi2j2k2�2 − zi3j3k3�3zi4j4k4�4 for which i1 + i2 = i3 + i4, . . . ,
�1 + �2 = �3 + �4 .

g) Show that the Hilbert function of S satisfies HFS(i) = (i+1)4 for i ∈ N .
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It remains to identify different terms in S which represent the same toy
ring. The group G acts on S via the map

G × S −→ S
(σ, xα1

1 yβ1
1 · · ·xα4

4 yβ4
4 ) �−→ xα1

σ(1)y
β1
σ(1) · · ·x

α4
σ(4)y

β4
σ(4)

Below we want to show that the function we are looking for is the Hilbert
function of the invariant ring SG = {f ∈ S | fσ = f for all σ ∈ G} , and
that this Hilbert function can be computed using the presentation S ∼= R/I .
h) Let n ≥ 1. Prove that the action of G on S induces an action on the

set of terms of degree n in S , and that the number of orbits of that
operation equals dimQ(SG)n . Explain why this implies that the number
of toy rings for n available colours is given by HFSG(n).

i) Let the group G act on R via (zi1i2i3i4)
σ = ziσ(1)iσ(2)iσ(3)iσ(4) for σ ∈ G .

Prove that for every n ≥ 1, the vector space In is invariant under this
action and that we have (SG)n

∼= (RG)n/(In ∩ RG).
j) Find the orbits of the action of G on the set of indeterminates in R .

Deduce that there are six toy rings for two available colours.
In principle, we could try to use Tutorial 40 to compute a set of algebra

generators of RG . However, in this particular case, the algorithm given there
is too inefficient. In Tutorial 98 we will discuss a more powerful approach.
For the time being, let us assume that we have somehow found a set of
homogeneous polynomials f1, . . . , fm ∈ R such that RG = Q[f1, . . . , fm] . We
form the polynomial ring Q = Q[y1, . . . , ym] and equip it with the Z -grading
given by deg(yi) = deg(fi) for i = 1, . . . , m .
k) How can one find a homogeneous ideal J ⊆ Q such that there exists

an isomorphism of graded Q -algebras Q/J ∼= SG ? Given f1, . . . , fm ,
explain how one can compute J , and hence HFSG .

l) Using the method described at the beginning of this tutorial, show that
we have HFSG(i) = 1

8 i4 + 3
4 i3 + 15

8 i2 + 9
4 i + 1 for every i ∈ N .

So, what is the deeper meaning of the number 231? Although the true
answer to this question may never be known, our toy example suggests that
we should consider 231 as the value of the formula

1
8 54 + 3

4 53 + 15
8 52 + 9

4 5 + 1

One Ring to rule them all,
One Ring to find them,

One Ring to bring them all
and in the darkness bind them.

(J.R.R. Tolkien)
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The simplest form of mathematics is music.
(Socrates)

Here we are at the finale. Like the last movement of a symphony, the pace
of our exposition increases and many themes and variations follow each other
in rapid succession. Consequently, Italian imagination slightly prevails over
German rigour. The sections do not always follow the well trodden path, a
few exercises are like small research projects, and some tutorials take on the
character of sections. Hand in hand with this more liberal style of presentation
goes a steady crescendo of quotes and jokes which play the incidental music
for the final fireworks.

To find out what exactly is going on here, we rejoin the three friends
we met in the introduction of the previous chapter. Their stroll through the
Italian parco has led them to a beautiful villa.
G: Look how nicely the park blends with this villa. What a magical view!
A: Speaking of magic, did you see the magic square in the book we were

talking about? It is called the Jupiter magic square and is contained in
an engraving by Albrecht Dürer dating all they way back to 1514. It has
so many symmetries and special properties that the medieval alchemists
attributed to it healing powers.

C: And what is its connection to Computational Commutative Algebra?
A: That’s quite clear to me: such squares can be counted using multigraded

Hilbert functions. But why is this in the sixth chapter?
C: Aren’t there zillions of magic squares? Can the value of this Hilbert

function really be computed?
A: Aha, now I see. The authors use toric ideals and Hilbert bases to compute

the number of magic squares. These are pretty sophisticated theories
where algebra blends with combinatorics.

G: Are there also some elementary applications?
A: Yes, for instance you can use Hilbert bases to find the solutions of the

equation 3x − 5y + 4z = 0 which consist of triples of natural numbers.
C: Listen! I hear someone playing a familiar tune over there.
G: Indeed! There is going to be a concert in this park and the orchestra has

started practising.
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A: Speaking of which, in Section 6.2 the authors also play an old tune: they
use homogenizations and degree forms for liftings of ideals.

C: Liftings? Are they heavy?
A: Well, they are usually rather difficult to lift properly. At least for mono-

mial ideals good liftings can be constructed using distractions.
G: So, besides gin there are also other distractions in mathematics. I wonder

why people tend to believe that mathematics is a dull subject.
A: Why don’t we stop here and listen to the rehearsal? The tunes they are

playing remind me of the good old days when there were no comput-
ers in mathematics and nobody asked for non-trivial examples or actual
applications.

C: What about these finite sets of points in Section 6.3? Are there non-
trivial examples and actual applications? Probably these Gröbner basis
techniques become wholly impractical as soon as you apply them to a
large point set coming from a real application.

A: Fortunately there is the Buchberger-Möller algorithm which reduces the
task of finding the vanishing ideal of a finite set of points to a manageable
linear algebra problem. With it you can deal with point sets such as those
coming from statistics.

G: Personally, I don’t trust any statistics I didn’t massage myself. Anyway,
when you do actual examples on a computer, don’t you get a lot of
rounding errors? Do you trust these computations?

A: Indeed, this seems to be a problem with Gröbner bases: they are ill-
behaved when you apply them to approximate inputs. This problem of
numerical instability is tackled in Section 6.4 where the authors use bor-
der bases instead of Gröbner bases.

C: Does that mean that everything you told us about Gröbner bases and
their computation was useless? Or is there no way to compute border
bases?

A: No, no! Although border bases can be computed and have many charac-
terizations mimicking the characterizations of Gröbner bases in the first
volume of this book, they seem to work best for zero-dimensional ideals.

G: The pace of this rehearsal is really picking up. The orchestra has just
finished an Argentinian tango, and now they are playing Brazilian samba
and bossa nova at the same time. From this mixture it is not easy to filter
out the leitmotif of their performance.

A: Did you know that one can also filter polynomial rings and modules?
C: What do you mean?
A: Well, the authors show in Section 6.5 that filtrations on polynomial rings

allow them to generalize both the theory of Gröbner bases and Macaulay
bases. Moreover, using adic filtrations, they present many classical com-
mutative algebra results, and they define and compute tangent cones.

G: Tangent cones at singular points of varieties? Are we back to geometry?
A: Exactly.
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G: Can I use Computational Commutative Algebra to study singularities in
detail?

A: Yes, you can, and Tutorial 95 is a good place to start.
C: Didn’t you say that Gröbner basis theory applies to polynomial ideals and

modules? Don’t you need to do computations in local rings for studying
singularities?

A: That is correct. You need Mora’s Algorithm. Hence you will also have to
do Tutorial 93.

C: Wow! That sounds like a lot of work. Is there also something in this book
that I can just enjoy without having to work it out myself?

A: Of course, there’s plenty. There are stories about the good old days,
Brazilian dreams, and of course SAGBI bases.

G: What? SAGBI? Strongly Advertising Gröbner Based Ideas?
A: Almost. It means Subalgebra Analog to Gröbner Bases for Ideals. It was

invented for the purpose of handling subalgebras of polynomial rings com-
putationally, just as Gröbner bases do with ideals. But, being a gardener,
you know that not every sweet root gives birth to sweet grass. Sometimes
SAGBI bases are not finite.

C: Therefore there cannot exist an algorithm to compute them. So, why did
you claim that SAGBI bases are useful for computations?

A: Because there is an enumerative procedure to compute them. If the
SAGBI basis is finite, the procedure finds it after finitely many steps.
However, the procedure is not easy: for instance, you need toric ideals
as a computational tools. But once you have a finite SAGBI basis of a
subalgebra, it is like possessing the key to its hidden secrets.

G: You guys are getting carried away. You don’t even notice the music any-
more. And what about the beautiful geometry of this garden?
With much fanfare the orchestra begins playing the coda of the piece they

are rehearsing.
A: You are right. This flourish of trumpets is the proper introduction to the

last section of this book. The authors allegedly teach you how to prove
geometric theorems automatically.

C: Automatically? Do you mean using a computer? You must be joking.
You mathematicians would be out of a job!

A: Yes and no. Theorems in Euclidean geometry can be translated to state-
ments about polynomials belonging to ideals. And you already know how
to decide ideal membership. But theorem proving turns out to be semi-
automatic at best: you need to find a good polynomial model of your
theorem, must be careful not to overlook degenerate cases, and have to
reinterpret the computer results geometrically.

G: This situation resembles modern gardening where machines help humans
a lot, but they do not replace him. But to call this artificial intelligence
really stretches my imagination.
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A: Indeed, Section 6.7 poses more philosophical questions than it answers.
But there are many wonderful examples, and you are invited to imple-
ment and try out your own Automatic Prover.

G: This path has led us nicely across the entire park. It is the thread of
Ariadne through this labyrinth of trees, bushes and flower beds.

A: Just as the idea of generalizing Gröbner bases guided us through this
final chapter.

C: Are you saying that this ends the project the authors had in mind when
they started it many years ago?
The three friends have rejoined the path along the seashore. The orchestra

has stopped practising, the sounds of the park are dying away, the wind
subsides, and the rays of the setting sun create a pale reflection on the smooth
sea. No more jokes, no more metaphors, and they return along the path to
the little harbour of the village.

The gardening season
officially begins on January 1st,

and ends on December 31.
(Marie Huston)
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6.1 Toric Ideals and Hilbert Bases

In order to make an apple pie from scratch,
you must first create the universe.

(Carl Sagan)

In the beginning the Universe was created.
This made a lot of people angry

and was widely regarded as a bad move.
(Douglas Adams)

To start this chapter in the appropriate way, we go back to one of the
roots of mathematics. In linear algebra students learn how to solve linear
equations with integer coefficients over the field of rational numbers. Solving
them over the integers is still not that difficult, but suppose we are interested
in the solutions consisting of tuples of natural numbers. For example, how
can we describe the set of non-negative integer solutions of the equation
3z1 − 5z2 + 4z3 = 0?

One way to answer this question is to create, from scratch, a whole new
universe: toric ideals and Hilbert bases. We encountered toric ideals briefly in
Tutorials 36 and 38, but Hilbert bases are a new instance of the phenomenon
of “Hilbert inflation” discussed in the introduction of Section 5.4. Fortunately,
they increase the Hilbert inflation rate only by a negligible amount.

How does one go about creating a universe? In spite of the danger of mak-
ing a lot of people angry, we begin the first subsection with the introduction
of some terminology. Given a matrix of integers A = (aij) ∈ Matm,n(Z) , the
toric ideal I(A) is defined to be the kernel of the K -algebra homomorphism
ϕ : P −→ L given by xi �→ ya1i

1 · · · yami
m where P = K[x1, . . . , xn] is a poly-

nomial ring over a field K and L = K[y1, . . . , ym, y−1
1 , . . . , y−1

m ] is a Laurent
polynomial ring. This toric ideal contains a wealth of information about the
set of integer solutions L(A) ⊆ Zn of the system of Diophantine equations
A · (z1, . . . , zn)tr = 0. A case in point is Proposition 6.1.4 where we show
that the elements of L(A) are in 1–1 correspondence with the pure binomials
in I(A), i.e. with the polynomials of the form t − t′ where t, t′ ∈ Tn are
coprime terms.

Hence it becomes imperative to find good ways of computing the toric
ideal associated to an integer matrix. Here we can rework and expand the
ideas in Tutorial 38. In particular, we shall show that a system of generators
of L(A) gives rise to a lattice ideal from which we can compute I(A) via
saturation (see Theorem 6.1.9). But doesn’t all this theory lead us away from
our true goal? Didn’t we claim that finding L(A) is not so difficult and that
we are really interested in the monoid L+(A) = L(A)∩Nn ? And what kind
of description of L+(A) are we looking for?

Those are the questions. To answer them requires even more creations (i.e.
definitions) which we will do in the second subsection. If we partially order
the monoid L+(A) partially by setting (v1, . . . , vn) � (w1, . . . , wn) if vi ≥ wi

for i = 1, . . . , n , the set of minimal elements with respect to � is called the
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Hilbert basis of L+(A). The main results are that the Hilbert basis of L+(A)
is finite, generates L+(A) as a monoid, and can be computed using Gröbner
bases (see Proposition 6.1.12 and Theorem 6.1.17). This computation uses
a most versatile tool: the Lawrence lifting of a matrix. Unlike Lawrence of
Arabia, who spent most of his time in wild desert lands, our Lawrence liftings
are fountains of lush applications and operate in an orderly world of matrices
where columns and rows keep their assigned positions.

To celebrate the beauty and power of Hilbert bases, we end the section
with a number of examples introduced by a homemade couplet. Not only
do we present the full solution of the equation 3z1 − 5z2 + 4z3 = 0, but we
also treat inhomogeneous Diophantine equations and systems of Diophantine
equations. After that, if you thirst for even more, there are exercises con-
taining applications to straight line subalgebras (see Exercise 5), margins of
integer matrices (see Exercise 6), and integer programming (see Exercise 7).
Finally, for the truly insatiable, we have tutorials on the magic of magic
squares (see Tutorial 84), dangerous gaps in monoids (see Tutorial 85), and
the search for the positive type of a matrix (see Tutorial 86).

Although it may be widely regarded as a bad move, we now stop joking
and begin collecting the ingredients for our apple pie.

6.1.A Toric Ideals

The pure and simple truth
is rarely pure and never simple.

(Oscar Wilde)

Let K be a field and P = K[x1, . . . , xn] a polynomial ring over K . Given
further indeterminates y1, . . . , ym , we let L = K[y1, . . . , ym, y−1

1 , . . . , y−1
m ] be

the Laurent polynomial ring in the indeterminates y1, . . . , ym over K . An
element of the form yi1

1 yi2
2 · · · yim

m ∈ L with i1, . . . , im ∈ Z is called an ex-
tended term. The monoid of all extended terms is denoted by Em (see
Tutorial 36).

Definition 6.1.1. Let A = (aij) ∈ Matm,n(Z), and let ti = ya1i
1 ya2i

2 · · · yami
m

for i = 1, . . . , n . We define a K -algebra homomorphism ϕ : P −→ L by
ϕ(xi) = ti for i = 1, . . . , n . Then the ideal I(A) = Ker(ϕ) in P is called the
toric ideal associated to the matrix A , or to the tuple of terms (t1, . . . , tn).

Below we shall show that this definition agrees with the definition in
Tutorial 38 if A ∈ Matm,n(N). Notice that every toric ideal is a prime ideal
because it is the kernel of a homomorphism to an integral domain. The next
proposition implies that toric ideals are special kinds of binomial ideals. Recall
that a binomial in P is a polynomial of the form at + a′t′ with coefficients
a, a′ ∈ K \ {0} and distinct terms t, t′ ∈ Tn . A binomial ideal is an ideal
generated by binomials. The following types of binomials will turn out to be
useful.
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Definition 6.1.2. Let S ⊆ P be a set of polynomials.
a) A binomial in P is called unitary if it is of the form t−t′ with t, t′ ∈ Tn .

The set of all unitary binomials in S will be denoted by UB(S).
b) A binomial in P is called pure if it is of the form t − t′ with coprime

terms t, t′ ∈ Tn . The set of all pure binomials in S will be denoted by
PB(S).

For an extended term t ∈ Em , there exists a unique minimal number
τ(t) ∈ N such that t · (y1 · · · ym)τ(t) ∈ K[y1, . . . , ym] . Now we are ready to
explain one way of computing toric ideals. We warn you right away that this
is not a very efficient method.

Proposition 6.1.3. (Basic Properties of Toric Ideals)
Let t1, . . . , tn ∈ Em , let I ⊆ P be the toric ideal associated to (t1, . . . , tn) ,
and let J ⊆ K[x1, . . . , xn, y1, . . . , ym] be the binomial ideal generated by
{πτ(t1)(x1 − t1), . . . , πτ(tn)(xn − tn)} where π = y1 · · · ym .
a) We have I = (J : π∞) ∩ K[x1, . . . , xn] .
b) Let z be a new indeterminate, and let G be a Gröbner basis of the ideal

J + (πz − 1) with respect to an elimination ordering for {y1, . . . , ym, z} .
Then the toric ideal I is generated by G ∩ K[x1, . . . , xn] .

c) The toric ideal I is generated by pure binomials.

Proof. To prove a), we note that L = K[y1, . . . , ym, y−1
1 , . . . , y−1

m ] is isomor-
phic to the localization K[y1, . . . , ym]π . Given a further indeterminate z ,
Proposition 3.5.6 tells us that L is isomorphic to K[y1, . . . , ym, z]/(πz − 1).
Then we look at the diagram of K -algebra homomorphisms

P = K[x1, . . . , xn]
ϕ−→ K[y1, . . . , ym]π⏐⏐�α

�⏐⏐ψ

K[x1, . . . , xn, y1, . . . , ym]
β−→ K[x1, . . . , xn, y1, . . . , ym]π

where ϕ is the map defined in 6.1.1, where α and β are the canonical injective
homomorphisms, and where the homomorphism of K -algebras ψ is defined
by ψ(yi) = yi for i = 1, . . . , m and ψ(xi) = ti for i = 1, . . . , n . Since this
diagram is commutative, we have I = Ker(ϕ) = α−1(β−1(Ker(ψ))). Hence
it suffices to prove that J : π∞ = β−1(Ker(ψ)).

Let Q = K[x1, . . . , xn, y1, . . . , ym]π . The ideal JQ coincides with the
ideal generated by {x1 − t1, x2 − t2, . . . , xn − tn} . Notice that Q is isomor-
phic to R[x1, . . . , xn] for R = K[y1, . . . , ym]π . Therefore Proposition 3.6.1.a
yields JQ = Ker (ψ) . Hence we have β−1(Ker(ψ)) = β−1(JQ) = J : π∞ by
Proposition 3.5.11.b.

To prove b), we consider the sequence of K -algebra homomorphisms

P
α−→ K[x1, . . . , xn, y1, . . . , ym]

γ−→ K[x1, . . . , xn, y1, . . . , ym, z]



354 6. Further Applications

where α and γ are the canonical injective homomorphisms. Let J̃ be the
ideal generated by J and by πz − 1 in the ring K[x1, . . . , xn, y1, . . . , ym, z] .
Using Theorem 3.5.13.a, we see that γ−1(J̃) = J : π∞ . We may identify P
with its image γ(α(P )) and use a) to conclude that I = α−1(J : π∞) =
α−1(γ−1(J̃)) = J̃ ∩ P . Now the claim follows from Theorem 3.4.5.

To prove c), we observe that J̃ is generated by unitary binomials.
Hence G consists of unitary binomials. The fact that those binomials sat-
isfy gcd(t1, t2) = 1 follows from the observation that I is a prime ideal. �

The algorithm for computing toric ideals implied by part b) of this propo-
sition does not depend on the base field K . Therefore, in practise, a compu-
tationally inexpensive field such as Z/(2) can be used. However, as we said
before, the actual computation of toric ideals can benefit from many other
optimizations (see for instance Tutorial 38). Next we explain the main ideas
behind more efficient implementations of this computation.

For this purpose we use a number of further abbreviations. Given an
integer a ∈ Z , we let a+ = max{a, 0} and a− = max{−a, 0} . Thus we
have a = a+ − a− . For a tuple of integers a = (a1, . . . , an) ∈ Zn , we let
a+ = (a+

1 , . . . , a+
n ) and a− = (a−

1 , . . . , a−
n ) . Hence we get a = a+−a− again.

Moreover, we shall use the convention that xa denotes the extended term
xa1

1 · · ·xan
n . Finally, in analogy to Tutorial 38, the kernel of the Z -linear map

Zn −→ Zm defined by A will be denoted by L(A).

Proposition 6.1.4. Let A = (aij) ∈ Matm,n(Z) be given.

a) For the map �′ : Zn −→ P defined by �′(u) = xu+ − xu−
, we have

�′(L(A)) ⊆ PB(I(A)) . In particular, the restriction of the map �′ yields
a map � : L(A) −→ PB(I(A)) .

b) For the map ϑ′ : UB(P ) −→ Zn defined by ϑ′(xα − xβ) = α − β , we
have ϑ′(PB(I(A))) ⊆ L(A) . In particular, the restriction of the map ϑ′

yields a map ϑ : PB(I(A)) −→ L(A) .
c) The maps � and ϑ are inverse to each other.
d) The toric ideal I(A) is generated by {�(v) | v ∈ L(A)} .

Proof. First we prove a). For u = (u1, . . . , un) ∈ L(A), we have⎧⎪⎪⎨⎪⎪⎩
a11u

+
1 + a12u

+
2 + · · · + a1nu+

n = a11u
−
1 + a12u

−
2 + · · · + a1nu−

n

a21u
+
1 + a22u

+
2 + · · · + a2nu+

n = a21u
−
1 + a22u

−
2 + · · · + a2nu−

n
...

...
...

am1u
+
1 + am2u

+
2 + · · · + amnu+

n = am1u
−
1 + am2u

−
2 + · · · + amnu−

n

Using the terms ti = ya1i
1 · · · yami

m for i = 1, . . . , n , we obtain t
u+

1
1 · · · tu

+
n

n =

t
u−

1
1 · · · tu

−
n

n . Hence we see that x
u+

1
1 · · ·xu+

n
n −x

u−
1

1 · · ·xu−
n

n ∈ I(A). This binomial
is clearly pure.



6.1 Toric Ideals and Hilbert Bases 355

To show b), we observe that xα1
1 · · ·xαn

n − xβ1
1 · · ·xβn

n ∈ PB(I(A)) im-
plies tα1

1 · · · tαn
n = tβ1

1 · · · tβn
n for the extended terms t1, . . . , tn defined above.

Therefore we see that⎧⎪⎪⎨⎪⎪⎩
a11α1 + a12α2 + · · · + a1nαn = a11β1 + a12β2 + · · · + a1nβn

a21α1 + a22α2 + · · · + a2nαn = a21β1 + a22β2 + · · · + a2nβn
...

...
...

am1α1 + am2α2 + · · · + amnαn = am1β1 + am2β2 + · · · + amnβn

Thus we conclude that (α1 − β1, . . . , αn − βn) ∈ L(A) .
Next we prove c). By definition, we have ϑ ◦ � = idL(A) . On the

other hand, let b = xα1
1 · · ·xαn

n − xβ1
1 · · ·xβn

n ∈ PB(I(A)). Then we have
ϑ(b) = (α1 − β1, . . . , αn − βn), and the fact that b is a pure binomial
implies ((α1 − β1)+, . . . , (αn − βn)+) − ((α1 − β1)−, . . . , (αn − βn)−) =
(α1, . . . , αn) − (β1, . . . , βn). Consequently, we get � ◦ ϑ = idPB(I(A)) .

Finally we note that d) follows from c) and Proposition 6.1.3.c. �

This proposition provides us with a first idea for creating a good algorithm
for computing I(A) from scratch. Since there are well-known efficient algo-
rithms for computing a set of generators of L(A), we know many elements
of I(A). How big a part of I(A) can we obtain from a system of generators
of L(A)? To study this question more closely, we introduce a name for such
ideals.

Definition 6.1.5. Let A = (aij) ∈ Matm,n(Z), let L(A) be the kernel of
the Z -linear map Zn −→ Zm defined by A , and let V = {v1, . . . , vr} be a
set of vectors in L(A). Then the ideal IV = (�(v1), . . . , �(vr)) ⊆ P is called
the lattice ideal associated to V .

By definition, the lattice ideal IV is contained in the toric ideal I(A)
of A . The following example shows that this may be a proper inclusion even
when V generates the Z -module L(A) and that adding a “superfluous”
generator to V may enlarge IV properly.

Example 6.1.6. The toric ideal associated to the matrix A =
(

4 0 0 1 1
1 0 4 0 2
0 5 1 4 2

)
is

I(A) = (x3x
2
4 − x2x

2
5, x2

1x
6
2 − x7

4x5, x2
1x

3
2x

3
3 − x4x

7
5,

x2
1x

2
2x

4
3x4 − x9

5, x2
1x

4
2x

2
3 − x3

4x
5
5, x2

1x
5
2x3 − x5

4x
3
5)

and this is a minimal system of generators. It is easy to check that the set
V = {(2, 6, 0,−7,−1), (0, 1,−1,−2, 2)} is a Z -basis of L(A). Obviously, the
ideal IV is properly contained in I(A).

Now consider the set V ′ = V ∪{(2, 3, 3,−1,−7)} where (2, 3, 3,−1,−7) =
(2, 6, 0,−7,−1) − 3(0, 1,−1,−2, 2). This ideal IV ′ = (x2

1x
6
2 − x7

4x5, x2x
2
5 −

x3x
2
4, x2

1x
3
2x

3
3 − x4x

7
5) properly contains IV = (x2

1x
6
2 − x7

4x5, x2x
2
5 − x3x

2
4).
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The following proposition provides a partial converse to this example:
if the addition of a vector to V does not enlarge IV then this vector was
already contained in the span of the previous elements of V .

Proposition 6.1.7. Let A ∈ Matm,n(Z) , let V = {v1, . . . , vr} be a set of
vectors in L(A) , and let v ∈ Zn . If we have t �′(v) ∈ IV for some t ∈ Tn,
then there exist c1, . . . , cr ∈ Z with v = c1v1 + · · · + crvr . In particular, we
see that v ∈ L(A) .

Proof. When we compute a Gröbner basis of IV , forming S-polynomials
and performing reduction steps preserves the property that the polynomials
under consideration are unitary binomials. Therefore the resulting Gröbner
basis consists of unitary binomials. Moreover, when we use Explicit Member-
ship 3.1.9 to express t �′(v) in terms of the generators �(v1), . . . , �(vr), both
the division of t �′(v) by the Gröbner basis and the expression of the Gröbner
basis in terms of the generators use only operations involving integer coeffi-
cients. Hence, if we let V± = V ∪{−v1, . . . ,−vr} , if we use �′(−vi) = −�′(vi),
and if we allow repetition of summands, we get a representation

t �′(v) = txv+ − txv−
=

s∑
i=1

xci(xu+
i − xu−

i )

with ci ∈ Nn and u1, . . . , us ∈ V± . To finish the proof we show that this
representation implies v = u1 + · · · + us . Let c = log(t) ∈ Nn . We proceed
by induction on s . For s = 1, the equation txv+ − txv−

= xc1(xu+
1 − xu−

1 )
implies c+v+ = c1 +u+

1 and c+v− = c1 +u−
1 , and therefore v = v+−v− =

u+
1 − u−

1 = u ∈ V± .
Now consider the case s > 1. Since the term txv+

has to be equal
to one of the terms xcixu+

i , we may renumber u1, . . . , us so that we have
txv+

= xc1xu+
1 . Then the equality c + v+ = c1 + u+

1 yields v − u1 =
v+ − v− − u+

1 + u−
1 = c1 + u−

1 − c − v− . Let c̃ ∈ Nn be the componentwise
minimum of c1 + u−

1 and c + v− , and let t̃ = xc̃ . In this way the vector
ṽ = v − u1 satisfies c̃ + ṽ+ = c1 + u+

1 and c̃ + ṽ− = c + v− . By applying the
inductive hypothesis to the representation

t̃ �′(ṽ) = xc1+u+
1 − xc+v−

=
s∑

i=2

xci(xu+
i − xu−

i )

we obtain ṽ = v − u1 = u2 + · · · + us , i.e. the claim. �

The creation of the algorithm needs one more ingredient.

Proposition 6.1.8. Let V = {v1, . . . , vr} ⊂ Zn , let c1, . . . , cr ∈ Z , and
let v = c1v1 + · · · + crvr . Then there exist a term t ∈ Tn and polynomials
f1, . . . , fr ∈ P such that

t (xv+ − xv−
) =

r∑
i=1

fi (xv+
i − xv−

i )
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Moreover, we have fi =
∑ci

j=1 tij if ci > 0 and fi = −∑−ci

j=1 tij if ci < 0 ,
where the summands tij are pairwise distinct terms.

Proof. First we prove the following claim. Let w1, . . . , ws ∈ Zn , and let
v = w1 + · · · + ws . Then there exist terms t, t1, . . . , ts such that

t (xv+ − xv−
) =

s∑
i=1

ti (xw+
i − xw−

i )

We use induction on s . The case s = 1 is obviously true. For s = 2, the
equality v = w1 + w2 yields v+ + w−

1 + w−
2 = v− + w+

1 + w+
2 , and hence

xw−
1 xw−

2 (xv+ − xv−
) = xw+

1 xw+
2 xv− − xw−

1 xw−
2 xv−

= xv−
xw+

2 (xw+
1 − xw−

1 ) + xv−
xw−

1 (xw+
2 − xw−

2 )

Now consider the case s > 2 and let w = w2 + · · ·+ ws . By induction, there
exist terms t′, t′1, t

′
2, t

′′, t′′2 , . . . , t′′s such that t′(xv+ −xv−
) = t′1(x

w+
1 −xw−

1 )+
t′2(x

w+ − xw−
) and t′′(xw+ − xw−

) =
∑s

i=2 t′′i (xw+
i − xw−

i ). By multiplying
the first equation by t′′ and the second by t′2 , we get t′t′′(xv+ − xv−

) =
t′1t

′′(xw+
1 − xw−

1 ) +
∑s

i=2 t′2t
′′
i (xw+

i − xw−
i ), as desired.

Next we apply this claim to the case wi = civi . It yields terms t, t1, . . . , ts
such that t(xv+ − xv−

) =
∑s

i=1 ti(xciv
+
i − xciv

−
i ). If ci > 0, we can factorize

as follows: xciv
+
i − xciv

−
i = (xv+

i − xv−
i ) ·∑ci

j=1 x(j−1)v+
i x(ci−j)v−

i . Similarly,

if ci < 0, we have a factorization xciv
+
i − xciv

−
i = −(x−civ

−
i − x−civ

+
i ) =

−(xv+
i −xv−

i ) ·
∑−ci

j=1 x(j−1)v+
i x(−ci−j)v−

i . Altogether, we obtain a representa-

tion t (xv+−xv−
) =
∑s

i=1 fi (xv+
i −xv−

i ) with fi =
∑ci

j=1 ti x(j−1)v+
i x(ci−j)v−

i

for ci > 0 and with fi =
∑−ci

j=1 ti x(j−1)v+
i x(−ci−j)v−

i for ci < 0. �

Finally we can start the creation in earnest. The following theorem ex-
plains the difference between a toric ideal and its lattice ideals. It is widely
regarded as a very good move towards an efficient algorithm for computing
toric ideals.

Theorem 6.1.9. (Toric Ideals Via Saturation)
Let A = (aij) ∈ Matm,n(Z) , let L(A) be the kernel of the Z-linear map
Zn −→ Zm defined by A , and let V = {v1, . . . , vr} ⊆ L(A) . Furthermore,
let π = x1x2 · · ·xn . Then the following conditions are equivalent.
a) We have I(A) = IV :

P
π∞ .

b) In the localization Pπ we have I(A)π = (IV )π .
c) The set V generates the Z-module L(A) .

Proof. The implication “a)⇒b)” follows from the fact that π is a unit
in Pπ . To prove “b)⇒a)” we recall that IV :

P
π∞ = IV Pπ ∩ P by Propo-

sition 3.5.11.b. Moreover, since I(A) is a prime ideal and π is obviously
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not one of its elements, we have I(A) = I(A) :
P

π∞ = I(A)Pπ ∩ P . By
combining these equalities with b), we obtain the claim.

Next we show that a) implies c). For a vector v ∈ L(A), Proposition 6.1.4
shows �(v) ∈ I(A) = IV :

P
π∞ . Therefore there exists a number i ≥ 1 such

that πi�(v) ∈ IV . By Proposition 6.1.7, it follows that v is contained in the
Z -module generated by V . Hence V generates all of L(A).

Finally we prove that c) implies a). Given f ∈ P with πi f ∈ IV for some
i ≥ 1, the facts that πi f is contained in the prime ideal I(A) and π /∈ I(A)
imply f ∈ I(A). Thus we have shown the inclusion IV :

P
π∞ ⊆ I(A). To

prove the converse inclusion, we recall that Proposition 6.1.3.c says that I(A)
is generated by pure binomials. So, let b ∈ I(A) be a pure binomial, and let
v = ϑ(b) ∈ L(A) be the unique vector with b = �(v). By assumption, there
exist c1, . . . , cr ∈ Z such that v = c1v1 + · · · + crvr . Now Proposition 6.1.8
implies that there is a term t ∈ Tn such that t�(v) ∈ (�(v1), . . . , �(vr)) = IV .
Consequently, we have πi b = πi�(v) ∈ IV for large enough i , and the proof
is complete. �

Based on this theorem, we can formulate a first version of an efficient
algorithm for computing toric ideals.

Corollary 6.1.10. Let A = (aij) ∈ Matm,n(Z) . Consider the following se-
quence of instructions.
1) Compute a system of generators V = {v1, . . . , vr} of L(A) .
2) For i = 1, . . . , r , write vi = v+

i − v−
i and let �(vi) = xv+

i − xv−
i ∈ P .

Form the lattice ideal IV = (�(v1), . . . , �(vr)) and compute the saturation
I = IV :

P
(x1 · · ·xn)∞ .

3) Return the ideal I and stop.
This is an algorithm which computes the toric ideal I(A) associated to A .

There are many ways to perform step 1) of this algorithm. A common
method is to compute the Hermite normal form of A and to read the so-
lutions off the corresponding unimodular transformation matrix (see [Co93]).
Clearly, this algorithm admits numerous optimizations. For instance, to com-
pute the saturation in step 2) we can use the optimizations suggested by
Tutorial 37.g,i and Tutorial 38.k.

6.1.B Hilbert Bases

Having created the universe of toric ideals and their computation, we return
to our original intent: to make an apple pie from scratch. The dough of this
pie is called its Hilbert basis. Although it requires some more work to really
produce Hilbert bases, we can at least get started by defining them.

As before, we let A = (aij) ∈ Matm,n(Z). We consider the homogeneous
system of linear Diophantine equations A z = 0 and denote by L(A) the
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subgroup of Zn consisting of its solutions. Then we let L+(A) = L(A) ∩ Nn

be the set of its componentwise non-negative solutions. Clearly, the set L+(A)
is a submonoid of Nn .

Next we consider the following partial ordering � on L+(A). Given two
vectors u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ L+(A), we let u � v if
ui ≥ vi for i = 1, . . . , n and if this inequality is strict for some i ∈ {1, . . . , n} .
By Theorem 1.4.19, the ordering Lex is a term ordering on Nn . Therefore its
restriction to L+(A) is a well-ordering. Obviously, u � v implies u >Lex v .
Therefore there exist minimal elements in L+(A) \ {0} with respect to � .

Definition 6.1.11. The set of all minimal elements of L+(A) \ {0} with
respect to the partial ordering � is called the Hilbert basis of L+(A).

As we have seen, the Hilbert basis of L+(A) always exists. Below we shall
show that it is finite and effectively computable. But first we want to prove
that it has the desired property of generating the monoid L+(A).

Proposition 6.1.12. Let A ∈ Matm,n(Z) , and let H be the Hilbert basis
of L+(A) . Then every element of L+(A) can be written as a linear combi-
nation of elements of H with coefficients in N .

Proof. Let S ⊆ L+(A) be the set of all vectors which can be written as a lin-
ear combination of elements of H with coefficients in N . For a contradiction,
assume that L+(A)\S �= ∅ . We have already noted that Lex is a well-ordering
on L+(A). Hence there exists a minimal element u ∈ L+(A) \ S �= ∅ with
respect to Lex. Clearly, we have u /∈ H . Thus there exists a vector v ∈ H
such that u � v . Now we use that fact that u− v ∈ L+(A) to conclude that
u � u−v . This shows u >Lex u−v , and therefore u−v ∈ S . But this implies
u ∈ S , a contradiction. �

Slowly but surely our apple pie is taking shape, but one ingredient is still
missing.

Definition 6.1.13. Let A ∈ Matm,n(Z). Then the matrix A =
(

A 0
In In

)
where In is the identity matrix of size n , is called the Lawrence lifting
of A .

In the following we want to show that the toric ideals of A and A are
closely related. The first connection between A and A is that the map
λ : L(A) −→ L(A) defined by λ(u) = (u,−u) is clearly bijective. But much
more is true. However, before going into the details, we reinterpret I(A) as
follows.

Remark 6.1.14. Recall that the toric ideal I(A) is contained in a polyno-
mial ring P = K[x1, . . . , xn, ξ1, . . . , ξn] having 2n indeterminates. It is the
kernel of the K -algebra homomorphism
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ϕ̄ : P −→ L = K[y1, . . . , ym, w1, . . . , wn, y−1
1 , . . . , y−1

m , w−1
1 , . . . , w−1

n ]

defined by xi �→ tiwi and ξj �→ wj for i, j ∈ {1, . . . , n} . Here the extended
terms ti are defined by ti = ya1i

1 · · · yami
m as in Definition 6.1.1.

To compute I(A), we can simplify the situation by looking at the com-
mutative diagram

P = K[x1, . . . , xn, ξ1, . . . , ξn]
ϕ̄−→ L⏐⏐�Φ

∥∥∥
K[x1, . . . , xn, w1, . . . , wn]

ψ−→ L

where Φ is the K -algebra homomorphism given by Φ(xi) = xi and Φ(ξi) = wi

for i = 1, . . . , n , and where ψ satisfies ψ(xi) = tiwi and ψ(wi) = wi for
i = 1, . . . , n . Since Φ is an isomorphism, we can identify the kernel of ϕ̄ with
the kernel of ψ using this isomorphism.

In this way, we shall from now on identify the toric ideal I(A) with its
image under the isomorphism Φ . In other words, we shall consider I(A) as
the ideal Ker(ψ) in K[x1, . . . , xn, w1, . . . , wn] .

Using this remark, we can now give an in-depth description of I(A).

Proposition 6.1.15. Let A ∈ Matm,n(K) , let A be the Lawrence lifting
of A , and let Q = K[x1, . . . , xn, w1, . . . , wn] .
a) The toric ideal I(A) ⊆ Q has a system of generators consisting of bino-

mials of the form xα1
1 · · ·xαn

n wβ1
1 · · ·wβn

n − xβ1
1 · · ·xβn

n wα1
1 · · ·wαn

n where
α1, . . . , αn, β1, . . . , βn ∈ N .

b) There is a bijection between PB(I(A)) and PB(I(A)) which maps a
binomial xα − xβ to xαwβ − xβwα.

c) There is a bijection between L+(A) and the elements in PB(I(A)) of the
form xα − wα with α ∈ Nn.

Proof. First we prove a). As in Proposition 6.1.3, let π = y1 · · · ym and
J = (πτ(t1)(x1 −w1t1), . . . , πτ(tn)(xn −wntn)). In order to compute the toric
ideal I(A) ⊆ Q we have to eliminate {y1, . . . , ym, z} from the ideal generated
by J and πz−1 in the ring Q = K[x1, . . . , xn, w1, . . . , wn, y1, . . . , ym, z] . We
equip Q with the Zn -grading defined by (In | In | 0) ∈ Matn,2n+m+1(Z)
and observe that the ideal J + (πz − 1) is homogeneous with respect to this
grading. Hence also I(A) is homogeneous with respect to this grading. By
Proposition 6.1.3.c, the toric ideal is generated by pure binomials. Thus the
claim follows from the observation that pure binomials which are homoge-
neous with respect to the defined grading have the desired shape.

To prove b), we look at the sequence

PB(I(A)) ϑ−→ L(A) λ−→ L(A)
�−→ PB(I(A))
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Here the map ϑ is defined by ϑ(xα − xβ) = α− β for xα − xβ ∈ PB(I(A)),
the map λ is given by λ(u) = (u,−u), and the map � satisfies �((u, v)) =
xu+

wv+−xu−
wv−

for u, v ∈ Zn . We have already noted that λ is a bijection.
By Proposition 6.1.4.b, the maps ϑ and � are bijective, too. Therefore the
composition η = � ◦ λ ◦ ϑ is a bijective map η : PB(I(A)) −→ PB(I(A))
which satisfies

η(xα − xβ) = (� ◦ λ)(α − β) = �((α − β, β − α)) = xαwβ − xβwα

for all xα − xβ ∈ PB(I(A)).
Finally, we show c). Given u ∈ L+(A), the corresponding element of

PB(I(A)) is xu−1, and the corresponding element of PB(I(A)) is xu−wu .
Thus the claim follows from b). �

The last part of this proposition yields a bijection between the mini-
mal elements of L+(A) \ {0} with respect to � and the elements xu − wu

in PB(I(A)) with the property that there is no other element xv − wv in
PB(I(A)) for which u � v . Let us call these elements the primitive sepa-
rated binomials in PB(I(A)).

Corollary 6.1.16. Let A ∈ Matm,n(Z) . Then there exists a bijection be-
tween the Hilbert basis of L+(A) and the set of primitive separated binomials
in PB(I(A)) .

Proof. This follows from the observation that the two concepts of minimality
correspond to each other via the bijection proved in part c) of the proposition.

�

Now we put everything into the oven, let it bake for a while and out comes
a beautiful theorem.

Theorem 6.1.17. (Finiteness and Computation of Hilbert Bases)
Let A ∈ Matm,n(Z) , and let G be a reduced Gröbner basis of I(A) . Then
the set H = {α ∈ Nn | xα − wα ∈ G} is finite, and it is the Hilbert basis of
the monoid L+(A) .

Proof. By Proposition 6.1.15, every reduced Gröbner basis G of I(A) con-
sists of pure binomials of the form xαwβ −xβwα with α, β ∈ Nn. By Corol-
lary 6.1.16, it suffices to show that the primitive separated binomials xα−wα

in PB(I(A)) are precisely the elements of the form xα − wα in G .
Let xα −wα be a primitive separated binomial in PB(I(A)). Its leading

term is either xα or wα. Suppose the leading term is xα . Since there exists
an element of G whose leading term divides xα , there is an element of the
form xα′ −wα′

with α � α′ in G . By the definition of a primitive separated
binomial, we get α = α′ and xα − wα ∈ G . If the leading term of xα − wα

is wα , the same argument works.
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Conversely, every element of the form xα −wα in G is a primitive sepa-
rated binomial because an element xα′ −wα′

with α � α′ would have a lead-
ing term which properly divides one of the terms in the support of xα −wα .

�

A first application of this theorem is the result announced at the end of
Section 5.8.

Corollary 6.1.18. Let P be graded by a matrix W ∈ Matm,n(Z) . Then the
K-vector space PW,0 is a finitely generated K -algebra.

Proof. A K-basis of PW,0 is given by the set of terms xα1
1 · · ·xαn

n such that
W · (α1, . . . , αn)tr = 0. Therefore the Hilbert basis of L+(W ) generates PW,0

as a K-algebra. This Hilbert basis is finite by the theorem. �

Our style being ample, this section ends
with pompous examples and boastful comments.

(Martin Kreuzer, not painted on any sundial — yet)

In the last two sections we furnished you with toric ideals, Hilbert bases,
exotic algebraic symbols, and a sophisticated tool for treating refined grad-
ings. Now we find it most fitting to wind up this section with some examples
demonstrating not only the power, but also the flexibility of these instru-
ments. To put it bluntly, we use all this heavy artillery to shoot down a few
innocent looking Diophantine equations. Although you could solve most of
them by hand calculation or other methods, we hope that these examples will
help you to grasp the method and apply it to more complicated situations,
for instance in the exercises and tutorials. Let us begin with the equation
mentioned in the introduction of this section.

Example 6.1.19. Consider the Diophantine equation 3z1 − 5z2 + 4z3 = 0.
To find all triples (a1, a2, a3) ∈ N3 which satisfy this equation, we can
proceed as follows. Let A = (3 −5 4). We use CoCoA to compute the re-
duced DegRevLex-Gröbner basis of the toric ideal of the Lawrence lifting
of A . The result is {x2x

2
3w1−x1w2w

2
3, x3w

3
1w2−x3

1x2w3, x2
1x

2
2x3−w2

1w
2
2w3,

x3
3w

4
1 − x4

1w
3
3, x5

1x
3
2 − w5

1w
3
2, x4

2x
5
3 − w4

2w
5
3, x1x

3
2x

3
3 − w1w

3
2w

3
3} . Thus the set

of primitive separated binomials in PB(I(A)) is

{x2
1x

2
2x3 − w2

1w
2
2w3, x5

1x
3
2 − w5

1w
3
2, x4

2x
5
3 − w4

2w
5
3, x1x

3
2x

3
3 − w1w

3
2w

3
3}

Therefore the Hilbert basis of L+(A) is {(2, 2, 1), (5, 3, 0), (0, 4, 5), (1, 3, 3)} .
In other words, the non-negative solutions of the equation 3z1−5z2+4z3 = 0
are precisely the triples

(a1, a2, a3) = n1(2, 2, 1) + n2(5, 3, 0) + n3(0, 4, 5) + n4(1, 3, 3)

with n1, n2, n3, n4 ∈ N . This Hilbert basis can also be used to determine the
subring PA,0 where P = K[x1, x2, x3] is equipped with the Z -grading given
by A . Corollary 6.1.18 yields PA,0 = K[x2

1x
2
2x3, x5

1x
3
2, x4

2x
5
3, x1x

3
2x

3
3] .
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Inhomogeneous Diophantine equations can be solved using a similar tech-
nique, but require an extra trick.

Example 6.1.20. Consider the Diophantine equation 2z1 +5z2 +3z3 = 11.
We want to find its non-negative integer solutions. They are the non-negative
integer solutions of the homogeneous equation 2z1 + 5z2 + 3z3 − 11z4 = 0
having fourth coordinate one. Let A = (2 5 3 −11). We use CoCoA to compute
the reduced DegRevLex -Gröbner basis of the toric ideal of the Lawrence
lifting of A and obtain the following primitive separated binomials:

{x2x
2
3x4 −w2w

2
3w4, x1x

3
3x4 −w1w

3
3w4, x3

1x2x4 −w3
1w2w4, x4

1x3x4 −w4
1w3w4,

x1x
4
2x

2
4−w1w

4
2w

2
4, x2

1x
3
2x3x

2
4−w2

1w
3
2w3w

2
4, x6

2x3x
3
4−w6

2w3w
3
4, x11

1 x2
4−w11

1 w2
4,

x11
3 x3

4 − w11
3 w3

4, x11
2 x5

4 − w11
2 w5

4}

So, the Hilbert basis of L+(A) is {(0, 1, 2, 1), (1, 0, 3, 1), (3, 1, 0, 1), (4, 0, 1, 1),
(1, 4, 0, 2), (2, 3, 1, 2), (0, 6, 1, 3), (11, 0, 0, 2), (0, 0, 11, 3), (0, 11, 0, 5)} . Since
we are only interested in solutions whose last coordinate is one, it is clear
that the only solutions are (0, 1, 2), (1, 0, 3), (3, 1, 0), and (4, 0, 1).

The situation in this example was particularly favourable because no
Hilbert basis vector has last coordinate zero and the number of solutions
is finite. Our next example is more intricate.

Example 6.1.21. Consider the system of Diophantine equations{
z1 + 4z2 + z3 − 2z4 = 5
2z1 − z2 + z3 − 3z4 = 0

To find its non-negative integer solutions, we determine the non-negative
integer solutions of the associated homogeneous system{

z1 + 4z2 + z3 − 2z4 − 5z5 = 0
2z1 − z2 + z3 − 3z4 = 0

which have last coordinate one. Let A =
(
1 4 1−2−5
2−1 1−3 0

)
. We use CoCoA to com-

pute the reduced DegRevLex -Gröbner basis of the toric ideal of the Lawrence
lifting of A and obtain the following Hilbert basis of L+(A):

{(0, 1, 1, 0, 1), (1, 0, 1, 1, 0), (0, 0, 15, 5, 1), (5, 10, 0, 0, 9), (6, 9, 0, 1, 8),
(7, 8, 0, 2, 7), (8, 7, 0, 3, 6), (9, 6, 0, 4, 5), (10, 5, 0, 5, 4), (11, 4, 0, 6, 3),

(12, 3, 0, 7, 2), (13, 2, 0, 8, 1), (14, 1, 0, 9, 0)}

Since we are interested in elements of L+(A) whose last coordinate is one,
the relevant solutions are those whose last coordinate is zero or one. Let
Z = {n1(1, 0, 1, 1) + n2(14, 1, 0, 9) | n1, n2 ∈ N} . Then we have three families
of solutions, namely (0, 1, 1, 0) + Z , (0, 0, 15, 5) + Z , and (13, 2, 0, 8) + Z .
They were surely not easy to guess at first sight!
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Our last example is a first step towards practical applications of this the-
ory (see also Exercise 6). Furthermore, it shows how the methods introduced
in the last two sections combine to provide us with a powerful toolbox. We
can use multigraded Hilbert series to count solutions of systems of linear Dio-
phantine equations and Hilbert bases to describe those solutions explicitly.

Example 6.1.22. Let us find out how many matrices in Mat2(N) have both
row sums equal to two. We can do this in four ways!

For the first method, we apply the theory developed in Section 5.8. We la-
bel each position in the matrix by an indeterminate. Then we notice that the
matrices

(
a11 a12
a21 a22

)
with a11 + a12 = a21 + a22 = 2 are in 1–1 correspondence

with the power products xa11
1 xa12

2 xa21
3 xa22

4 in P = Q[x1, x2, x3, x4] which
have degree

(
2
2

)
with respect to the grading given by

(
1 1 0 0
0 0 1 1

)
. By Propo-

sition 5.8.15, the bivariate Hilbert series of P with respect to this grading
is

HSP (z1, z2) = 1
(1−z1)2(1−z2)2

Therefore the answer is simply the coefficient of z2
1z2

2 in the expansion of this
series. By expanding the product (1 + z1 + z2

1 + · · ·)2(1 + z2 + z2
2 + · · ·)2 , we

see that the answer is nine.
Alternatively, we can proceed in the following way. First we solve the

homogeneous Diophantine equation z1 + z2 = z3 + z4 as in the previous
examples. Using A = (1 1 −1 −1), the Hilbert basis of L+(A) turns out to
be {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)} . The corresponding matrices(

1 0
1 0

)
,
(
1 0
0 1

)
,
(
0 1
0 1

)
,
(
0 1
1 0

)
have row sums one. We are looking for all their N -linear combinations with
row sums equal to two. For this purpose, we use the above correspondence
and represent them as power products t1 = x1x3 , t2 = x1x4 , t3 = x2x4 ,
and t4 = x2x3 in P . Since their row sums are one, we need to determine
the power products of degree two in the terms ti . To compute the value of
the Hilbert function of the ring Q = Q[t1, t2, t3, t4] in degree two, we use the
surjective Q -algebra homomorphism ϕ : Q[y1, y2, y3, y4] −→ Q defined by
yi �→ ti . Its kernel I is the toric ideal of (t1, t2, t3, t4) and turns out to be
I = (y1y3 − y2y4). Therefore we get

HSQ(z) = HSQ[y1,y2,y3,y4]/I(z) = 1+z

(1−z)3
= 1 + 4z + 9z2 + · · ·

and hence the desired number is HFQ(2) = 9. Using this method, we can
even list the nine solution matrices. They correspond to the images under ϕ
of the nine terms of degree two in Q[y1, y2, y3, y4] whose residue classes form
a Q -basis of Q[y1, y2, y3, y4]/I . We find the following nine matrices:(

1 1
1 1

)
,
(
1 1
2 0

)
,
(
1 1
0 2

)
,
(
2 0
1 1

)
,
(
2 0
2 0

)
,
(
2 0
0 2

)
,
(
0 2
1 1

)
,
(
0 2
2 0

)
,
(
0 2
0 2

)
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The third method is to solve the system of inhomogeneous Diophantine
equations {

z1 + z2 = 2
z3 + z4 = 2

using the technique explained in the preceding example. The Hilbert basis of
the associated homogeneous system is

{(1, 1, 0, 2, 1), (0, 2, 1, 1, 1), (1, 1, 2, 0, 1), (1, 1, 1, 1, 1), (2, 0, 1, 1, 1),
(2, 0, 0, 2, 1), (0, 2, 0, 2, 1), (2, 0, 2, 0, 1), (0, 2, 2, 0, 1)}

It yields the same nine solution matrices. Finally, we present the fourth
method: hand calculation! Unfortunately, this method does not work in more
complicated examples.

Exercise 1. Let K be a field, and let P = K[x, y, z] be graded by
W = (2 −5 1). Find a presentation of PW,0 as an affine K -algebra.

Exercise 2. For every i ≥ 1, find a Diophantine equation

ai1z1 + ai2z2 + ai3z3 = 0

such that the Hilbert basis of L+((ai1 ai2 ai3)) has at least i elements.

Exercise 3. Consider the equation 2z1 + 3z2 + 5z3 = 23.

a) Using a suitable grading on a polynomial ring with three indetermi-
nates, compute the number of non-negative solutions of this equation.

b) Find the solutions by exhaustive search.
c) Compute the Hilbert basis of L+(A) where A = (2 3 5 −23). Use

it to determine the solutions of the above equation.

Exercise 4. Using the first three methods of Example 6.1.22, find the
number of matrices in Mat2(N) with first row sum 10 and second row
sum 14. (Hint: For the second method, consider the Diophantine equation
14z1 + 14z2 = 10z3 + 10z4 .)

Exercise 5. (Diagonal Subalgebras of Polynomial Rings)
In this exercise we explore the concept of a diagonal subalgebra further
(see Tutorial 82). First we recall its definition in the case of a graded
polynomial ring. Let K be a field, and let P = K[x1, . . . , xn] be graded
by W ∈ Mat2,n(Z) of rank two. The K -subalgebra Diag(P ) =

⊕
i∈N P(i,i)

of P is called the diagonal subalgebra of P .

a) Show that the set Γ of all terms in Diag(P ) is a monoid and that
the Hilbert basis of log(Γ ) corresponds to a system of K -algebra
generators of Diag(P ) .

b) Write a CoCoA function DiagGens(. . .) which takes W and computes
a system of K -algebra generators of Diag(. . .) . (Hint: Use the built-in
command HilbertBasis(. . .) .)

c) Apply your function DiagGens(. . .) to the gradings given by the fol-
lowing matrices.
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1) W1 =
(
4 1 8
1 5 3

)
2) W2 =

(
1 1 1 0
0 0 0 3

)
3) W3 =

(
1 4 1 0 0
0 0 0 2 5

)
d) Let d ≥ 2 and W =

(
1 1 ··· 1 0
0 0 ··· 0 d

)
. Prove that the diagonal subalge-

bra of P is generated by the terms in {txn | t ∈ T(x1, . . . , xn−1)d} .
Interpret this result in terms of Veronese subrings (see Tutorial 66).

e) Finally, we generalize diagonal subalgebras of P as follows. Let
(r, s) ∈ Z2 \ {(0, 0)} . Show that Slsa(r,s)(P ) =

⊕
i∈Z P(ir,is) is a

finitely generated K -subalgebra of P . It is called a straight line
subalgebra of P .

f) Write a CoCoA function Slsa(. . .) which takes (r, s) and W and com-
putes a set of K -algebra generators of the straight line subalgebra
Slsa(r,s)(P ) .

Exercise 6. (Margins of Matrices)
Given a matrix W ∈ Matm,n(N) , we define the row margins of W to be
the sums of the entries in each row, and the column margins of W to be
the sums of the entries in each column. In statistics, matrices together with
their row and column margins are called contingency tables. Our goal
in this exercise is to enumerate contingency tables with given margins.
Clearly, the margins have to be non-negative integers. We may assume
that the margins are positive because otherwise the corresponding row or
column of W is zero. Let (r1, . . . , rm) ∈ (N+)m and (c1, . . . , cn) ∈ (N+)n .

a) Consider the following sequence of instructions.

1) Compute the Hilbert basis {v1, . . . , vs} ⊂ Nmn of L+(A) where
A ∈ Matm+n−1,mn(Z) is the coefficient matrix of the following
linear system of equations:

r2z11 + · · · + r2z1n − r1z21 − · · · − r1z2n = 0

r3z11 + · · · + r3z1n − r1z31 − · · · − r1z3n = 0

...

rmz11 + · · · + rmz1n − r1zm1 − · · · − r1zmn = 0

c1z11 + · · · + c1z1n − r1z11 − · · · − r1zm1 = 0

c2z11 + · · · + c2z1n − r1z12 − · · · − r1zm2 = 0

...

cnz11 + · · · + cnz1n − r1z1n − · · · − r1zmn = 0

2) For i = 1, . . . , s , write vi = (w
(i)
jk ) and form the term ti =

∏
j,k

z
w

(i)
jk

jk

in Q[z11, . . . , zmn] . Compute the kernel of the Q -algebra homo-
morphism ϕ : Q[y1, . . . , ys] −→ Q[z11, . . . , zmn] given by yi �→ ti .

3) Equip the ring Q[y1, . . . , ys] with the Z -grading defined by setting

deg(yi) = w
(i)
11 + · · · + w

(i)
1n for i = 1, . . . , s . Compute the value

of the Hilbert function of Q[y1, . . . , ys]/ Ker(ϕ) in degree r1 and
return it.

Prove that this is an algorithm which computes the number of con-
tingency tables with row margins (r1, . . . , rm) and column margins
(c1, . . . , cn) .
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b) Implement the above algorithm in a CoCoA function Contingency(. . .)
which takes (r1, . . . , rm) and (c1, . . . , cn) and computes the number
of contingency tables having these row and column margins.

c) Apply your function Contingency(. . .) to the following tuples of row
and column margins. In each case, list all possible contingency tables.

1) (6, 14), (10, 10) (Hint: There are seven matrices.)
2) (1, 1, 2), (1, 1, 1, 1) (Hint: There are 12 matrices.)
3) (5, 3, 5, 2), (6, 4, 5) (Hint: There are 660 matrices.)

Exercise 7. (Transportation Plans)
Four factories F1, F2, F3, F4 produce, respectively, supplies of 120, 204, 92,
and 55 indivisible units of the same good. Three shops S1, S2, S3 have
respective demands of 183, 190, and 98 units. There is a cost cij associated
with transporting one unit from factory Fi to shop Sj . Let aij be the
number of units of goods to be shipped from factory Fi to shop Sj . The
tuple (a11, a12, . . . , a43) ∈ N12 is called a transportation plan.
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�

�
�

�
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�
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�
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F4

�

S1

�

S2

�

S3

a) Determine the linear system of equations satisfied by a transportation
plan. In other words, find a matrix A ∈ Mat7,12(Z) such that the
transportation plans are the solutions in N12 of the system of linear
equations

A · (z11, z12, . . . , z43)
tr = (120, 204, 92, 55, 183, 190, 98)

b) Assume that the the cost function is given by the table

S1 S2 S3

F1

F2

F3

F4

⎛⎜⎝ 1 1 3
2 1 1
1 1 2
3 2 1

⎞⎟⎠
Show that (120, 0, 0, 14, 190, 0, 0, 0, 92, 49, 0, 6) is a solution and its
cost is 675.

c) Using the toric ideal associated to A and the cost function in b), prove
that a solution of minimal cost is (120, 0, 0, 0, 161, 43, 63, 29, 0, 0, 0, 55)
and that its cost is 471.
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Tutorial 84: Magic Squares

Genoa [...] first seduces you,
puts you under its spell,

and then only little by little
allows you to see its magic.

(Phyllis Macchioni)

About 2200 B.C. the Chinese constructed a magic square by decorating
the back of a divine tortoise. Medieval alchemists believed that magic squares
held the key to converting base metals into gold. What is so magic about
magic squares? Why have these simple mathematical constructions drawn so
much attention ever since ancient times? In this tutorial you will be prompted
to explore some hidden secrets of magic squares, although we cannot promise
that they will enable you to convert base metals into gold.

First of all, what is a magic square? Is it one of the squares of the magic
city of Genova? Or is it a square matrix with non-negative integer entries
such that the rows, the columns, and the two diagonals add up to the same
natural number? In 1514, the German painter and engraver Albrecht Dürer
made his most famous engraving, Melencolia. It contains the following Jupiter
magic square

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Each row, column and diagonal of this square adds up to 34. In fact, this
square is even more special because also the four entries of every 2 × 2 sub-
matrix centered on one of the two diagonals add up to 34, the sum of two
symmetric entries with respect to the center is always 17, and each number
1, 2, . . . , 16 occurs exactly once. Furthermore, the bottom row contains the
engraving’s date, 1514. In view of all these special properties, it is easy to
see why some Renaissance astrologers believed that the charm of this magic
square could cure Melencolia, a depressed state of mind which destroys an
artist’s enthusiasm for his work.

Thus we now introduce the following definition. A matrix M ∈ Matr(N)
is called a magic square if its rows, columns, and its two diagonals all add
up to the same number. This number is then called its magic sum. For
instance, the Jupiter magic square has magic sum 34. Let MQ(r) be the set
of magic squares of size r× r . For every s ∈ N , the set of elements of MQ(r)
whose magic sum is s will be denoted by MQ(r, s). For instance, the only
element of MQ(2, 2) is

(
1 1
1 1

)
. In the following we let K be a field. (Observe

that it does not matter which field we choose, so for actual computations we
may opt for K = Z/(2).)
a) Using Example 6.1.22 as a guide, find a matrix W which defines a grading

on K[x11, x12, x21, x22] such that #MQ(2, s) is a suitable coefficient in
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the expansion of the Hilbert series of P with respect to the grading
defined by W .

b) Using a), compute #MQ(2, 3), #MQ(2, 4) and #MQ(2, 5).
c) More generally, let r ∈ N+ , and let P = K[x11, x12, . . . , xrr] be

a polynomial ring in r2 indeterminates over K . Determine a matrix
W ∈ Mat2r+2,r2(N) such that the coefficient of zs

1z
s
2 · · · zs

2r+2 in the ex-
pansion of the Hilbert Series HSP,W (z1, . . . , z2r+2) is #MQ(r, s).

d) Let us identify a magic square in MQ(r) with a term in P in the same
way as in Example 6.1.22. Show that the elements in MQ(r) are in one-
to-one correspondence with the non-negative solutions of a homogeneous
system of linear Diophantine equations A z = 0 where the matrix A has
entries in {−1, 0, 1} .

e) Let {v1, . . . , v�} be the Hilbert basis of L+(A), and let Q = K[t1, . . . , t�]
be the K -subalgebra of P generated by ti = xvi for i = 1, . . . , � . Show
that #MQ(r, s) = HFQ(s) for every s ≥ 0.

f) Prove that #MQ(2, s) = 1 if s is even and #MQ(2, s) = 0 if s is odd.
g) Show that the Hilbert basis of MQ(3) is

{
(

1 1 1
1 1 1
1 1 1

)
,
(

1 2 0
0 1 2
2 0 1

)
,
(

1 0 2
2 1 0
0 2 1

)
,
(

2 0 1
0 1 2
1 2 0

)
,
(

0 2 1
2 1 0
1 0 2

)
}

Deduce that the magic sum of every magic square of size 3 × 3 is a
multiple of three.

h) Compute the Hilbert basis of MQ(4). Verify that it contains 20 squares,
eight of which have magic sum one, and 12 of which have magic sum
two.

i) Now get some inspiration from Example 6.1.22 and use the powerful
function Toric(. . .) of CoCoA to show that #MQ(4, 34) = 163, 890, 864.
The number of magic squares having the same magic number as the

Jupiter magic square is almost 164 million! Now, is the Jupiter magic square
really so special? In the remaining part of this tutorial we examine this ques-
tion in detail.
j) The Jupiter magic square has the additional property that the four en-

tries of each 2 × 2 submatrix centered on one of the diagonals sum to
its magic number. Such magic squares are called supermagic squares.
Prove that this property leads to 12 further linear equations. Compute
the corresponding Hilbert basis and show that there are 12,186,468 su-
permagic squares in MQ(4, 34).

k) The Jupiter magic square has also the following property: the sum of two
entries which are symmetric with respect to the central point of the square
is always 17. Such magic squares are called associated magic squares.
Prove that every associated magic square of size 4×4 is supermagic, and
that there are 35,208 associated supermagic squares in MQ(4, 34).

l) Furthermore, the Jupiter magic square is a traditional magic square,
i.e. it contains each of the numbers 1, 2, . . . , 16 exactly once. By exploit-
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ing the presentation of the ring Q you used above, construct all associated
supermagic squares of size 4×4. Show that 384 of them are traditional.

m) Finally, there is one last property of the Jupiter magic square that we
have not yet used. Its two central lower positions contain the numbers 15
and 14 to commemorate the engraving’s year of origin. By inspecting
the 384 squares above, prove that there exist four squares having all
the properties of the Jupiter magic square, and that they differ only by
interchanging the first and last columns respectively the second and third
rows. So, all in all, the Jupiter magic square is indeed rather unique!

n) But Albrecht Dürer could have done even better. Show that two of the
four squares in m) have the additional property that their columns are
increasing or decreasing sequences of numbers. This leaves us with one
final assignment: find a nice property of one of these two squares which
makes it unique, and thus maximizes its magic powers!

Tutorial 85: Computing the Gaps

This is the ingenuity gap,
the critical gap between our need

for ideas to solve complex problems
and our actual supply of those ideas.

(Thomas Homer-Dixon)

The purpose of this tutorial is to help you fill a small portion of your
ingenuity gap. To begin with, we try to fill some critical gaps in your postage
stamp collection. For the sake of argument, let us assume that you have a
large supply of 30 cent and 50 cent stamps available, but no other values.
You can easily pay for letters costing 0, 30, 50, 60, 80, 90, and 100 cents,
since 60 = 30 + 30, 80 = 30 + 50, 90 = 30 + 30 + 30, and 100 = 50 + 50.
Overcoming your ingenuity gap, you notice that you can also pay for letters
costing N · 10 cents where N is any integer greater than 10. For instance,
you can add a suitable multiple of 30 to one of the numbers in {80, 90, 100} .
On the other hand, no matter how ingenious you are, you cannot pay exactly
for letters whose postage is not a multiple of ten, nor for those whose postage
is 10, 20, 40, or 70 cents.

Do multivariate Hilbert series and toric ideals have any bearing on this
postage stamp problem? Of course! Otherwise, would we be asking this
rhetorical question? But instead of telling you what we know, instead of
simplifying the intricate, let us generalize the problem. Assuming that you
are collecting the stamps of several countries, which mixed frankings are you
unable to realize given a finite number of combinations of denominations? In
other words, given finitely many tuples b1, . . . , br ∈ Nn , which elements of Nn

are not contained in the submonoid generated by {b1, . . . , br}? These are the
gaps. We seek their computation. You can find them with pure binomials, for
in Computational Commutative Algebra there is no ignorabimus.
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Let r ∈ N+ , let b1, . . . , br ∈ N , and let B = (b1, . . . , br) be the submonoid
of N generated by {b1, . . . , br} . We denote the set N \ B by Gaps(B) or
Gaps(b1, . . . , br) and call its elements the gaps of B .
a) Let b1, b2 ∈ N+ be coprime numbers. Prove that Gaps(b1, b2) is finite.

Hint: There exist a1, a2 ∈ N+ with a1b1 − a2b2 = 1. Add multiples
c(a1b1 − a2b2) with 0 < c < b1 to a big element of B .

b) Prove that Gaps(b1, . . . , br) is finite if and only if gcd(b1, . . . , br) = 1.
Hint: Use a) and induction on r .

c) Let K be a field, let K[x] be standard graded, and let S be the K -sub-
algebra of K[x] generated by {xb1 , . . . , xbr} . Show that one can com-
pute HSS by presenting S as K[y1, . . . , yr]/I where K[y1, . . . , yr] is
graded by W = (b1 b2 · · · br) and I is a suitable toric ideal.

d) Write a CoCoA function GapsHS(. . .) which implements this method and
apply it to compute the Hilbert series of K[xb1 , . . . , xbr ] for the following
tuples (b1, . . . , br).
1) (4, 7)
2) (30, 50)
3) (6, 10, 15)

e) Using b) and d), write a CoCoA function Gaps(. . .) which takes the tuple
(b1, . . . , br), checks whether Gaps(b1, . . . , br) is finite or not, and returns
accordingly, the set of gaps or the message "Infinitely many gaps!".
Apply your function to the examples in d).

f) Let b1, b2 ∈ N+ be coprime numbers. Prove that Hilbert series of the
ring S = K[xb1 , xb2 ] is HSS(z) = 1−zb1b2

(1−zb1 )(1−zb2 )
.

g) In the setting of f), give another proof of a) by showing that 1
1−z −HSS(z)

is a polynomial. (Hint: Note that the residue class of b2 generates the
group Z/b1Z .)

h) Let b1, b2 ∈ N+ be coprime numbers. Show that the largest element in
Gaps(b1, b2) is b1b2 − b1 − b2 .
In the second part of this tutorial we generalize the above setting and find

gaps of submonoids of Nn . Let r, n ∈ N+ , let b1, . . . , br ∈ Nn , and let B be
the submonoid of Nn generated by {b1, . . . , br} . As above, we denote the set
Nn \B by Gaps(B) or Gaps(b1, . . . , br) and call its elements the gaps of B .

Let K be a field and P = K[x1, . . . , xn] . For a = (α1, . . . , αn) ∈ Nn ,
we denote the term xα1

1 · · ·xαn
n by xa . Furthermore, let S be the monomial

K -subalgebra of P generated by xb1 , . . . ,xbr , i.e. let S = K[xb1 , . . . ,xbr ] .
i) Show that S is a Zn -graded subalgebra of P with respect to the grading

given by In ∈ Matn(Z). Prove that one can compute the multivariate
Hilbert series of S as follows.
1) Represent S as a residue class algebra K[y1, . . . , yr]/I where I is a

suitable toric ideal.
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2) Equip the ring K[y1, . . . , yr] with the Zn -grading given by the matrix
W = (b1 · · · br) ∈ Matn,r(Z) and show that I is homogeneous with
respect to this grading.

j) Write a CoCoA function GenGapsHS(. . .) which takes {b1, . . . , br} and
computes the multivariate Hilbert series of S = K[xb1 , . . . ,xbr ] .

k) Apply your function GenGapsHS(. . .) to the following sets {b1, . . . , br} .
1) {6, 10, 15} ⊂ N
2) {(2, 0), (1, 1), (0, 2), (3, 0), (1, 2), (0, 3)} ⊂ N2

3) {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 1), (5, 0, 0), (0, 5, 0), (0, 0, 5)} ⊂ N3

l) Explain how one can use the multivariate Hilbert series of S to decide
whether Gaps(B) is finite or not. Write a CoCoA function GenGaps(. . .)
which takes the tuple (b1, . . . , br), checks whether Gaps(b1, . . . , br) is
finite or not, and returns accordingly, the set of gaps or the message
"Infinitely many gaps!". Apply your function to the examples in k).

Always remember to check carefully whether your proof has a !

Tutorial 86: Matrices of Positive Type

You have to put your money where your mouth is.
(Wall Street Adage)

Only when the last tree is cut,
only when the last river is polluted,

only when the last fish is caught,
will they realise that you can’t eat money.

(Native American Adage)

In Chapter 4 we put our money where our mouth is. We made a wishlist of
good properties a nice grading should have: finitely generated graded modules
should have finite dimensional homogeneous components, there should be a
well-behaved minimal number of homogeneous generators, and there should
be a term ordering on the monoid of degrees of non-zero polynomials. Then
we showed that gradings of positive type have all these wonderful properties,
and from there on we stopped worrying about gradings which don’t. For
instance, the entire treatment of multigraded Hilbert functions in Section 5.8
was based on the assumption that the polynomial ring is graded by a matrix
of positive type. Therefore it is getting time for a confession: you can’t eat
this money, at least not yet. This is to say, given a matrix W ∈ Matm,n(Z),
we have not seen a method for detecting whether or not it is of positive type.

For instance, suppose we want to check if the matrix W =
(−1 5 −5
−2 13 −12

)
is of positive type. So, we want to determine whether there exist z1, z2 ∈ Z
with the property that −z1−2z2 , 5z1+13z2 , and −5z1−12z2 are all positive
integers. Fiddling with some plausible pairs (z1, z2) quickly shows that the
grading given by W is actually a refinement of the standard grading. How-
ever, lacking this happenstance, how should we go about this in a systematic
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way? One way to view the problem is to observe that we want to check if the
system ⎧⎨⎩ −z1 − 2 z2 − z3 = 0

5z1 + 13z2 − z4 = 0
−5z1 − 12z2 − z5 = 0

has solutions in Z2×N3 . This suggests that we should endeavour to generalize
some of the theory in this section to the case where we require that only
certain components of a solution are non-negative. After performing this task
in the first part of the tutorial, the desired algorithm for checking whether a
matrix is of positive type will follow easily.

Being of positive type ourselves, we hope that you will reap rich rewards
from working through this tutorial, that not too many trees had to be cut
for its production, and that the earth will not have to give way to an inter-
planetary bypass anytime soon.

To get going, let us introduce some terminology. Given an integer matrix
A ∈ Matm,n(Z) and a set N ⊆ {1, . . . , n} , we let

LN (A) = {(α1, . . . , αn) ∈ L(A) | αi ≥ 0 for all i ∈ N}

Observe that LN (A) is a monoid and L+(A) = LN (A) for N = {1, . . . , n} .
By PBN (I(A)), we denote the set all of pure binomials xα − xβ for which
no pair (i, j) ∈ N2 satisfies both xi | xα and xj | xβ . Analogously, let
PBN (I(A)) be the set of all N -separated binomials, i.e. the set of all
binomials xαwβ − xβwα for which no pair (i, j) ∈ N2 satisfies both xi | xα

and xj | xβ .
a) Show that the map λ : L(A) −→ L(A) defined by λ(u) = (u,−u)

induces a bijection between LN (A) and LN (A).
b) Prove that the bijection between PB(I(A)) and PB(I(A)) defined in

Proposition 6.1.15.c identifies PBN (I(A)) and PBN (I(A)).
c) Generalize Proposition 6.1.15.c by showing that there is a bijection be-

tween LN (A) and the set of N -separated binomials in PB(I(A)).
d) Generalize Corollary 6.1.16 by proving that there exists a bijection be-

tween the Hilbert basis of the monoid LN (A) and the set of primitive
N -separated binomials in PB(I(A)).

e) Let G be a reduced Gröbner basis of I(A), and let H be the set of
all N -separated binomials in G . Generalize Theorem 6.1.17 by showing
that H is finite and is indeed the Hilbert basis of the monoid LN (A).

f) Write a CoCoA function HBpartial(. . .) which takes the set N and the
matrix A and computes the Hilbert basis of the monoid LN (A).

g) Apply your function HBpartial(. . .) to compute the Hilbert basis of
LN (A) for the following examples.

1) N1 = {1} , A1 =
( 1

1
1

1
5

−5

2
12

−13

)
2) N2 = {1, 2} , A2 =

(
1

−1
0

0
1

−1

2
5

−4

3
−3

7

)
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3) N3 = {1, 4} , A3 =
(

1
1
0

1
0
1

0
1
1

−1
−2
−4

)
h) Now implement a CoCoA function IsPosType(. . .) which takes the ma-

trix A , checks whether it is of positive type, and returns the message
"Matrix not of positive type!" or a tuple (c1, . . . , cm) ∈ Zm such
that c1a1 + · · ·+ cmam has positive entries only. Here a1, . . . , am are the
rows of A . (Hint: Use the method of the example in the introduction of
this tutorial and the function HBpartial(. . .).)

i) Apply your function IsPosType(. . .) to the following matrices.
1)
(−1 5 −5
−2 13 −12

)
2)
(−1 5 5
−3 13 12

)
3)
(

−1 5 −5 1
−1 13 −12 1

2 −1 1 −3

)
4)
(

−1 3 −5 1
3 −6 −4 17

−2 −1 12 −3

)
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6.2 Liftings of Ideals and Distractions

The four branches of arithmetic —
ambition, distraction, uglification and derision.

(Lewis Carroll)

In this section we address the problem of defining and computing liftings
of ideals. Now, what is this supposed to mean? Are they heavy? Are they too
awkward for one person to handle? Should you ask a co-worker for help? Do
you need mechanical help? Maybe. Although we worked together intensely to
provide you with light reading, it is a heavy task to find liftings of ideals with
good properties. Here a lifting of a homogeneous ideal I in the polynomial
ring P = K[x1, . . . , xn] over a field K is a homogeneous ideal J in P =
K[x0, . . . , xn] such that I is obtained by setting x0 �→ 0 in J and x0 is a
non-zero divisor for P/J . For instance, homogenizations are liftings of degree
form ideals (see Corollary 6.2.5).

The main reason why we are interested in lifting ideals will become ev-
ident in the next section where we lift zero-dimensional monomial ideals to
vanishing ideals of projective point sets (see Theorem 6.3.31). For this pur-
pose we are not only looking for some lifting of given monomial ideal, but
a very nice one, namely a lifting which is a radical ideal. To find such nice
liftings, we employ the second branch of arithmetic: distractions. The dis-
traction of a term t = xα1

1 · · ·xαn
n with respect to a tuple π of sequences of

elements of K is the polynomial

Dπ(t) =
α1∏
i=1

(x1 − c1i) ·
α2∏
i=1

(x2 − c2i) · · ·
αn∏
i=1

(xn − cni)

and the distraction of a monomial ideal is obtained by distracting its minimal
monomial system of generators. Distraction is a rather well-behaved opera-
tion on monomial vector subspaces of P (see Proposition 6.2.10). Our main
result, Theorem 6.2.12, says that the homogenization of the distraction of
a monomial ideal is a lifting and a radical ideal. By applying this theorem
you will be able to lift monomial ideals without any effort. To help you mas-
ter this branch of arithmetic a.s.a.p., we now stop distracting you and start
explaining liftings.

Let K be a field, let P = K[x1, . . . , xn] be positively graded by a matrix
W ∈ Mat1,n(Z), and let P = K[x0, . . . , xn] be graded by W = (1 | W ). In
Section 4.3 we considered the dehomogenization F (1, x1, . . . , xn) of a polyno-
mial F ∈ P . Here we study the K -algebra homomorphism P −→ P defined
by x0 �→ 0 and xi �→ xi for i = 1, . . . , n . Given a polynomial F ∈ P , we let
F inf = F (0, x1, . . . , xn), and for an ideal J ⊆ P , we let J inf = (F inf | F ∈ J).
The following remark explains the choice of this notation.

Remark 6.2.1. Suppose that P and P are standard graded. In Tutorial 52
we saw that there exists an injective map ı0 : An −→ Pn defined by
ı0(p1, . . . , pn) = (1 : p1 : . . . : pn).
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a) A homogeneous ideal J in P defines a projective zero-set V = Z+(J)
in Pn .

b) Its dehomogenization Jdeh ⊆ P defines the affine part V ∩ ı0(An) of V
(see Tutorial 52.c).

c) The homogeneous ideal J inf ⊆ P defines V ∩ H inf = V ∩ Z+(x0) , the
set of points at infinity of V (see Tutorial 52.h).

Our next lemma collects some easy results. You should compare its part b)
with Theorem 4.3.22.a which contains a complementary statement.

Lemma 6.2.2. Let f be a polynomial and I an ideal in P , and let J be a
homogeneous ideal in P .
a) We have (fhom)inf = DFW (f) .
b) We have (Ihom)inf = DFW (I) .
c) The ideal J inf is homogeneous.

Proof. To prove a), we may assume that f �= 0. Note that f can be de-
composed into homogeneous components f = f1 + · · · + fs where fi ∈ P is
a homogeneous polynomial and degW (f1) > · · · > degW (fs). By definition,
we have DFW (f) = f1 . For i = 2, . . . , s , let αi = degW (f1)− degW (fi) > 0.
Now the claim follows from fhom = f1 + xα2

0 f2 + · · ·xαs
0 fs .

Claim b) is a consequence of a) and the fact that the map which sends F
to F inf is a homomorphism. For the same reason, if F1, . . . , Fr are homo-
geneous polynomials in P which generate J then J inf = (F1

inf , . . . , Fr
inf).

Hence c) follows from the observation that the polynomials Fi
inf are homo-

geneous. �

Given an ideal I ⊆ P , Proposition 4.3.5.f says that x0 is a non-zerodivisor
for P/Ihom . In fact, homogenizations are characterized by this property, as
the following proposition shows.

Proposition 6.2.3. For a proper homogeneous ideal J ⊆ P , the following
conditions are equivalent.
a) The indeterminate x0 is a non-zerodivisor for P/J .
b) We have J = (Jdeh)hom .
c) We have J inf = DFW (Jdeh) .

Proof. To prove that a) implies b), we apply the characterization of the
homogenization given in Corollary 4.3.7. Since x0 is a non-zerodivisor for
P/J , we have J :

P
(x0)∞ = J . As J is homogeneous, we get J = (Jdeh)hom.

The fact that b) implies c) is an immediate consequence of Lemma 6.2.2.b.
Thus it remains to prove that c) implies a). Suppose that there exists a non-
zero homogeneous polynomial F̃ ∈ P \J such that x0F̃ ∈ J . We choose such
a polynomial F̃ of minimal degree. We write F̃ = xt−1

0 F , where F ∈ P is a
homogeneous polynomial which is not divisible by x0 , and where t ≥ 1.
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By assumption, there exists a homogeneous polynomial G ∈ J such
that DFW (F deh) = Ginf . Since Ginf �= 0, the polynomial G is not di-
visible by x0 , and therefore G = (Gdeh)hom . Now Lemma 6.2.2.a yields
DFW (F deh) = Ginf = ((Gdeh)hom)inf = DFW (Gdeh). Hence there is a homo-
geneous polynomial G′ ∈ P such that F − G = x0G

′ . Here we have G′ /∈ J
because F /∈ G . Since G ∈ J , we have xt

0(F − G) ∈ J . Therefore we get
degW (G′) < degW (F ) and xt+1

0 G′ = xt
0(F − G) ∈ J and G′ /∈ J , in contra-

diction to the minimality of degW (F̃ ). �

For ideals which satisfy the equivalent conditions of this proposition, we
introduce the following name.

Definition 6.2.4. Let I ⊂ P be a homogeneous ideal. A homogeneous
ideal J in P is called a lifting of I with respect to x0 or an x0 -lifting
of I if the following conditions are satisfied:
a) The indeterminate x0 is a non-zero divisor for P/J .
b) We have I = J inf.

In the following we shall find some ideals in P which have a lifting in P .
We start by considering the easiest cases.

Corollary 6.2.5. Let I be a proper ideal in P .
a) The ideal Ihom is an x0 -lifting of DFW (I) .
b) If I is homogeneous, the extension I P is an x0 -lifting of I .

Proof. To prove a), we observe that by Proposition 4.3.5.f, the indeter-
minate x0 is a non-zero divisor for P/Ihom , and Lemma 6.2.2.b yields
(Ihom)inf = DFW (I). Claim b) follows from a), since if I is homogeneous,
then I = DFW (I) and Ihom = I P . �

Our next result gives us more insight into the structure of liftings. Later
it will allow us to lift special ideals and prove useful properties.

Proposition 6.2.6. (Characterization of Liftings)
Let I ⊂ P be a homogeneous ideal, and let {f1, . . . , fs} be a set of homo-
geneous generators of I . For a homogeneous ideal J ⊆ P , the following
conditions are equivalent.
a) The ideal J is an x0 -lifting of I .
b) There are polynomials p1, . . . , ps ∈ P of degree degW (pi) < degW (fi)

for i = 1, . . . , s such that the polynomials gi = fi + pi form a Macaulay
basis of Jdeh and additionally we have J = (ghom

1 , . . . , ghom
s ) .

Proof. First we prove that a) implies b). By Proposition 6.2.3, we have
J = (Jdeh)hom and I = DFW (Jdeh). Thus f1, . . . , fs ∈ DFW (Jdeh), and
so there exist polynomials g1, . . . , gs ∈ Jdeh for which fi = DFW (gi) for
i = 1, . . . , s . In particular, every polynomial gi is of the form gi = fi + pi
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where each pi ∈ P has degree degW (pi) < degW (fi). Now DFW (Jdeh) =
(f1, . . . , fs) = (DFW (g1), . . . ,DFW (gs)) , and thus {g1, . . . , gs} is a Macaulay
basis of Jdeh. Theorem 4.3.19 yields the remaining claim J = (Jdeh)hom =
(ghom

1 , . . . , ghom
s ).

To prove the converse implication, we note that J = (ghom
1 , . . . , ghom

s )
implies Jdeh = (g1, . . . , gs). Since the set {g1, . . . , gs} is a Macaulay basis
of Jdeh , Theorem 4.3.19 yields (Jdeh)hom = (ghom

1 , . . . , ghom
s ) = J . Con-

sequently, by Corollary 6.2.5.a, the ideal J is a lifting of DFW (Jdeh) =
(DFW (g1), . . . ,DFW (gs)) = (f1, . . . , fs) = I . �

The main class of ideals we want to lift in this section are monomial ideals.
The ideals we shall lift to are called distractions. In order to explain the
geometry underlying this algebraic concept, we need a lemma which provides
useful rules for computing with ideals.

Lemma 6.2.7. Let R be a ring, and let I1, I2, I3, I4 be ideals in R .
a) We have the distributive laws

I1(I2 + I3) = I1I2 + I1I3 and (I1 ∩ I2)I3 ⊆ I1I3 ∩ I2I3

b) If I1 ⊇ I2 or I1 ⊇ I3 , we have the modular law

I1 ∩ (I2 + I3) = (I1 ∩ I2) + (I1 ∩ I3)

c) If I1 + I2 = R then I1I2I3 + I4 = (I1I3 + I4) ∩ (I2I3 + I4) .

Proof. In the first distributive law, the inclusion “⊆” holds since I1(I2 +I3)
is generated by elements of the form f1(f2 + f3) = f1f2 + f1f3 with fi ∈ Ii .
The converse inclusion is clear. The second distributive law follows from
(I1 ∩ I2)I3 ⊆ I1I3 and (I1 ∩ I2)I3 ⊆ I2I3 . In the modular law, the inclusion
“⊇” is obviously true. To prove the converse inclusion, we let f ∈ I1∩(I2+I3)
and write f = g + h with g ∈ I2 and h ∈ I3 . Without loss of generality,
assume that I1 ⊇ I2 . Then we have g ∈ I1 , and therefore h = f − g ∈ I1 .
This shows f = g + h ∈ (I1 ∩ I2) + (I1 ∩ I3).

Next we show c). The inclusion “⊆” is clearly true. Using the hypothesis
and a), we calculate

(I1I3+ I4 ) ∩ (I2I3 + I4) = [(I1I3 + I4) ∩ (I2I3 + I4)] (I1 + I2)
= [(I1I3 + I4) ∩ (I2I3 + I4)] I1 + [(I1I3 + I4) ∩ (I2I3 + I4)] I2

⊆ [(I2
1I3 + I1I4) ∩ (I1I2I3 + I1I4)] + [(I1I2I3 + I2I4) ∩ (I2

2I3 + I2I4)]
⊆ I1I2I3 + I1I4 + I2I4 = I1I2I3 + (I1 + I2) I4

= I1I2I3 + I4

and the proof is complete. �
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Now we are ready to prove a fact which implies that ideals generated by
certain products of linear forms are vanishing ideals of very special sets of
points. This aspect will be studied further in the next section. Here we shall
use these special ideals to lift monomial ideals to radical ideals.

Proposition 6.2.8. Let s ≥ 1 , let 1 ≤ i1 < · · · < is ≤ n , and for each
j ∈ {1, . . . , s} let fj ∈ P be a squarefree polynomial which has the form
fj = (xij

− cij1) · · · (xij
− cijdj

) with dj ≥ 1 and cijk ∈ K for k = 1, . . . , dj .
Then the ideal I = (f1, . . . , fs) satisfies

I =
⋂

j1=1,...,d1
:

js=1,...,ds

(xi1 − ci1j1 , . . . , xis
− ci1js

)

Proof. For every ideal which is generated by squarefree polynomials of the
given form, we let ∆(I) = d1 + · · · + ds . We argue by induction on ∆(I).
For ∆(I) = 1 the claim is clearly true because in this case I is generated by
one linear polynomial. Likewise, if all the polynomials fj are linear, there is
nothing to prove.

Now consider the case ∆(I) > 1. Without loss of generality we may
assume that the polynomial f1 has at least two factors. Thus we can write
it in the form f1 = (xi1 − ci11)(xi1 − ci12)f̃1 with f̃1 ∈ P . Then we have
a decomposition I = I1I2 (f̃1) + (f2, . . . , fs) with I1 = (xi1 − ci11) and
I2 = (xi1 − ci12). Since f1 is squarefree, we see that I1 + I2 = P . Therefore
we can apply Lemma 6.2.7.c and get

I = [((xi1 − ci11)f̃1) + (f2, . . . , fs)] ∩ [((xi1 − ci12)f̃1) + (f2, . . . , fs)]

The ideals J1 = ((xi1 − ci11)f̃1) + (f2, . . . , fs) and J2 = ((xi1 − ci12)f̃1) +
(f2, . . . , fs) satisfy ∆(J1) < ∆(I) and ∆(J2) < ∆(I). Now an application of
the inductive hypothesis yields the claim. �

In the following, we let K be an infinite field. We choose n sequences
π1, . . . , πn of elements of K in such a way that each sequence consists of
pairwise distinct elements. Thus we let πi = (ci1, ci2, . . .) with cij ∈ K and
cij �= cik for j �= k .

Definition 6.2.9. Let π = (π1, . . . , πn).
a) For every term t = xα1

1 · · ·xαn
n ∈ Tn , the polynomial

Dπ(t) =
α1∏
i=1

(x1 − c1i) ·
α2∏
i=1

(x2 − c2i) · · ·
αn∏
i=1

(xn − cni)

is called the distraction of t with respect to π .
b) Let I be a monomial ideal in P , and let {t1, . . . , ts} be the unique

minimal monomial system of generators of I . Then we say that the ideal
Dπ(I) = (Dπ(t1), . . . , Dπ(ts)) is the distraction of I with respect to π .
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c) The K -linear map Dπ : P −→ P defined by t �→ Dπ(t) for t ∈ Tn is
called the the π -distraction.

In order to define the distraction Dπ(I), it suffices to specify the first
max{degxi

(tj) | j ∈ {1, . . . , s}} elements of the sequence πi . In particular,
we do not have to assume that K is infinite.

Given two vector subspaces of P , we use the notation V W to denote the
vector subspace of P generated by {vw | v ∈ V,w ∈ W} . If V = 〈v〉 , we
simply write vW instead of 〈v〉W . Moreover, a monomial vector subspace
of P is defined to be a vector subspace generated by terms. In the next
proposition we forget for a moment the grading on P given by W and write
P≤s for the K -vector space of polynomials of standard degree less than or
equal to s .

Proposition 6.2.10. Let π = (π1, . . . , πn) , let Dπ be the π -distraction, and
let V, V1, . . . , Vr be monomial vector subspaces of P .
a) For every s ≥ 1 , we have Dπ(V P≤s) = Dπ(V )P≤s .
b) For every s ≥ 1 , the π -distraction Dπ induces an isomorphism of vector

spaces Dπ : P≤s −→ P≤s . In particular, the map Dπ is bijective.
c) We have

⋂r
i=1 Dπ(Vi) = Dπ(

⋂r
i=1 Vi) .

Proof. First we show a) by induction on s . To prove the formula for s = 1,
it suffices to show that we have Dπ(t P≤1) = Dπ(t)P≤1 for every t ∈ Tn .
Let t = xα1

1 · · ·xαn
n ∈ Tn . Since {1, x1, . . . , xn} is a K-basis of P≤1 , we have

Dπ(t P≤1) = 〈Dπ(t), Dπ(x1t), . . . , Dπ(xnt)〉 . The latter vector space is equal
to 〈Dπ(t), (x1 − c1 α1+1)Dπ(t), . . . , (xn − cn αn+1)Dπ(t)〉 and this is equal to
Dπ(t)P≤1 since also {1, x1 − c1 α1+1, . . . , xn − cn αn+1} is a K-basis of P≤1 .
For s > 1, we use P≤1 P≤s = P≤s+1 and the inductive hypothesis to get
Dπ(V P≤s) = Dπ(V P≤s−1 P≤1) = Dπ(V P≤s−1)P≤1 = Dπ(V )P≤s−1 P≤1 =
Dπ(V )P≤s .

By taking V = K in a), we get that Dπ induces a surjective K -linear map
from P≤s onto itself. This implies b), and c) is an immediate consequence
of b). �

Before we proceed to the main theorem of this section, we insert the
characterization of irreducible monomial ideals we promised in Tutorial 77.

Proposition 6.2.11. A monomial ideal I in P is irreducible if and only
if it is of the form I = (xd1

i1
, . . . , xds

is
) with 1 ≤ i1 < · · · < is ≤ n and

d1, . . . , ds ∈ N .

Proof. First we assume that I is irreducible. Let t1, . . . ts ∈ Tn be a sys-
tem of generators of I . If one of the terms, say t1 , factors non-trivially
into t1 = t′1t

′′
1 with coprime terms t′1, t

′′
1 ∈ Tn , we have a decomposition

I = (t′1, t2, . . . , ts) ∩ (t′′1 , t2, . . . , ts) which contradicts the irreducibility of I .
Hence I is necessarily of the stated form.
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Conversely, suppose that I is of the form I = (xd1
i1

, . . . , xds
is

) with
1 ≤ i1 < · · · < is ≤ n and d1, . . . , ds ∈ N . For a contradiction, assume that
we have I = J1 ∩ J2 with ideals J1, J2 which contain I properly. We choose
f ∈ J1 \ I and g ∈ J2 \ I . By multiplying f and g by suitable terms, we
find elements f̃ ∈ J1 \ I and g̃ ∈ J2 \ I such that (xi1 , . . . , xis

)f̃ ∈ I and
(xi1 , . . . , xis

)g̃ ∈ I . Let t = xd1−1
i1

· · ·xds−1
is

. Since I :
P

(xi1 , . . . , xis
) = (t),

the term t divides both f̃ and g̃ , i.e. there exist f ′, g′ ∈ P for which f̃ = tf ′

and g̃ = tg′ . Using Proposition 5.6.20, it is easy to see that I is a primary
ideal. Then tf ′g′ ∈ (I + (f̃)) ∩ (I + (g̃)) ⊆ J1 ∩ J2 = I shows that we have
f ′g′ ∈

√
I = (xi1 , . . . , xis

). Hence we conclude that f ′ ∈ (xi1 , . . . , xis
) or

g′ ∈ (xi1 , . . . , xis
) , and therefore f̃ ∈ I or g̃ ∈ I , a contradiction. �

The following theorem says that distractions allow us to lift monomial
ideals to radical ideals. It is remarkable that, besides monomial ideals, very
few ideals are known to have liftings which are radical ideals.

Theorem 6.2.12. (Liftings of Monomial Ideals)
Let π = (π1, . . . , πn) , let I ⊂ P be a monomial ideal, and let {t1, . . . , ts} be
its minimal monomial system of generators.
a) The distraction Dπ(I) is an intersection of finitely many ideals which

are generated by linear polynomials.
b) The distraction Dπ(I) is a radical ideal.
c) For every term ordering σ on Tn , the set {Dπ(t1), . . . , Dπ(ts)} is the

reduced σ -Gröbner basis of Dπ(I) .
d) We have Dπ(I)hom = (Dπ(t1)hom, . . . , Dπ(ts)hom) in P . This ideal is an

x0 -lifting of I and a radical ideal.

Proof. First we show a). By Proposition 5.6.17.a, every ideal is a finite in-
tersection of irreducible ideals. Therefore Proposition 6.2.10.c allows us to
assume that I is irreducible, and hence of the shape described in Proposi-
tion 6.2.11. Then the ideal Dπ(I) satisfies the conditions of Proposition 6.2.8
and this proposition yields the claim. For the proof of b) we use a) and the
fact that ideals generated by linear polynomials are prime ideals.

Next we prove c). For s = 1, the claim is obviously true. Now consider
the case s > 1. The rules for computing with leading terms 1.5.3 imply
LTσ(Dπ(ti)) = ti for i = 1, . . . , s . By Theorem 2.3.7, the syzygy module of
the tuple T = (t1, . . . , ts) = (LTσ(Dπ(t1)), . . . ,LTσ(Dπ(ts)) is generated by
the fundamental syzygies {σµν | 1 ≤ µ < ν ≤ s} .

Let 1 ≤ µ < ν ≤ s . We write tµ = xα1
1 · · ·xαn

n and tν = xβ1
1 · · ·xβn

n .
Then we set γi = max{αi, βi} for i = 1, . . . , n . The fundamental syzygy
of tµ and tν is

σµν = xγ1−α1
1 · · ·xγn−αn

n eµ − xγ1−β1
1 · · ·xγn−βn

n eν ∈ P s

For i = 1, . . . , n , we define fi = (xi − ci αi+1) · · · (xi − ci βi
) if αi < βi

and fi = 1 if αi ≥ βi . Moreover, let f ′
i = (xi − ci βi+1) · · · (xi − ci αi

)
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if αi > βi and f ′
i = 1 if αi ≤ βi . Then it is easy to check that

sµν = f1 · · · fn eµ − f ′
1 · · · f ′

n eν ∈ P s is a syzygy of (Dπ(t1), . . . , Dπ(ts)),
and that the σ -leading form of this syzygy in the sense of Definition 2.3.4
is LFσ,T (sµν) = σµν . Therefore Condition D2) of Theorem 2.4.1 is satisfied
and {Dπ(t1), . . . , Dπ(ts)} is a σ -Gröbner basis of Dπ(I).

Moreover, this Gröbner basis is actually the reduced σ -Gröbner basis
of Dπ(I): it is monic, its leading terms {t1, . . . , ts} are the minimal monomial
system of generators of LTσ(Dπ(I)) = I , and the terms in the support of
Dπ(ti)− ti cannot be reduced further, because they are proper divisors of ti .

Finally, we prove d). Since all terms in the support of Dπ(ti) are divisors
of ti , and since P is positively Z -graded by W , we have DFW (Dπ(ti)) = ti
for i = 1, . . . , s . By choosing a term ordering σ which is compatible with
degW and applying Proposition 4.2.15, we see that {Dπ(t1), . . . , Dπ(ts)} is a
Macaulay basis of Dπ(I) and that DFW (Dπ(I)) = I . Hence Theorem 4.3.19
yields Dπ(I)hom = (Dπ(t1)hom, . . . , Dπ(ts)hom). Then Lemma 6.2.2 shows
(Dπ(I)hom)inf = DFW (Dπ(I)) = I . By Proposition 4.3.5.f, the indetermi-
nate x0 is a non-zero divisor for P/Dπ(I)hom . Altogether, it follows that
the ideal Dπ(I)hom = (Dπ(t1)hom, . . . , Dπ(ts)hom) is an x0 -lifting of I . The
fact that it is a radical ideal is a consequence of Proposition 4.3.10.c, be-
cause Dπ(I) is a radical ideal by b), and this property is preserved under
homogenization. �

The following example illustrates the theorem by showing how to lift a
specific monomial ideal.

Example 6.2.13. Let P = Q[x1, x2, x3, x4] be standard graded, and let
I = (t1, t2, t3) be the monomial ideal in P which is minimally generated
by t1 = x3

1x2 , t2 = x1x2x
2
3 , and t3 = x2

1x
4
4 . Now we choose sequences

π1 = (2, 3, 4, . . .), π2 = (5, . . .), π3 = (6, 4, . . .), and π4 = (0, 1, 2, 3, . . .)
where it does not matter which values we choose for the dots because they
are not used. Then we let π = (π1, π2, π3, π4) and compute

Dπ(t1)hom = (x1 − 2x0)(x1 − 3x0)(x1 − 4x0)(x2 − 5x0)
Dπ(t2)hom = (x1 − 2x0)(x2 − 5x0)(x3 − 6x0)(x3 − 4x0)
Dπ(t3)hom = (x1 − 2x0)(x1 − 3x0)x4 (x4 − x0)(x4 − 2x0)(x4 − 3x0)

Now part d) of the theorem says that (Dπ(t1)hom, Dπ(t2)hom, Dπ(t3)hom) is
an x0 -lifting of I and a radical ideal.

If you are looking for further distractions, we invite you to indulge in some
gin (see Exercise 6) or Super Great Spaghetti (see Tutorial 87).

For centuries, people thought the moon was made of green cheese.
Then the astronauts found that the moon is really a big hard rock.

That’s what happens to cheese when you leave it out.
(Age 6, from “Deep Thoughts from Young Minds”)
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Exercise 1. Let K be a field, let P = K[x1, . . . , xn] , let σ be a term
ordering on Tn , and let I be an ideal in P .

a) Prove that if LTσ(I) is a radical ideal then I is radical, too.
b) Show that the converse to part a) is not true in general.
c) Using a), give an alternative proof of the last claim in Theorem 6.2.12.d.

Exercise 2. Let K be a field, let P = K[x, y, z] , and let I be the ideal
(x2y2, x2z, x3, y3, z4) . Write I as an intersection of irreducible monomial
ideals.

Exercise 3. In the setting of Theorem 6.2.12, prove that every subset
of {Dπ(t1), . . . , Dπ(ts)} is the reduced σ -Gröbner basis of the ideal it
generates.

Exercise 4. Let K be a field, and let P = K[x1, . . . , xn] .

a) Let σ be a term ordering on Tn . Characterize all pairs (f, g) ∈ P 2

for which {f, g} is a σ -Gröbner basis of the ideal (f, g) .
b) Characterize all pairs (f, g) ∈ P 2 for which {f, g} is a σ -Gröbner

basis of the ideal (f, g) for every term ordering σ .

Exercise 5. Let K be an infinite field, let P = K[x1, . . . , xn] be standard

graded, let I ⊆ P be a monomial ideal, and let P = K[x0, . . . , xn] be stan-
dard graded. We choose sequences π1, . . . , πn of pairwise distinct elements
of K and set π = (π1, . . . , πn) . Prove that the ideal J = Dπ(I)hom ⊆ P
satisfies ∆ HFP/J(i) = HFP/I(t) for all i ∈ Z .

Exercise 6. (Gin, Strongly Stable Ideals, and Distractions)
Would you like to have more distractions? How about another sip of gin?
Let K be a an infinite field, let P = K[x1, . . . , xn] be standard graded, let
I ⊆ P be a homogeneous ideal, and let σ be a term ordering on Tn. Given
further indeterminates yij , let L = K(yij) , let Y = (yij) ∈ Matn(L) , and
let ΨY : L[x1, . . . , xn] −→ L[x1, . . . , xn] be the homogeneous linear change
of coordinates defined by Y . Recall that the ideal ginσ(I) = LTσ(ΨY(I))
is called the generic initial ideal of I with respect to σ (see Tutorial 75).

a) Show that there exist two matrices L,U ∈ Matn(L) such that L is
lower triangular, U is upper triangular, and we have Y = UL .

b) Prove that we have ginσ(I) = LTσ(ΨLΨU (I)) .
c) For a strongly stable ideal I ⊆ P (as defined in Tutorial 75), show

that ΨU (I) = I .
d) Show that we have LTσ(ΨL(I)) = LTσ(I) for every ideal I ⊆ P .
e) Combine everything to show that a strongly stable ideal I ⊆ P satis-

fies ginσ(I) = I .

Now we consider the monomial ideal I = (x5
1, x

4
1x2, x

4
1x3, x

3
1x

2
2, x

2
1x

3
2) in

P = Q[x1, x2, x3] . For every i ∈ {1, 2, 3} , let πi = (0, 1, 2, . . .) , and let
π = (π1, π2, π3) . Then consider the homogeneous ideal J = Dπ(I)hom

in P = Q[x0, x1, x2, x3] .

f) Show that we have ginσ(J/x0J) = I .

g) Let � ∈ P be a linear form with randomly chosen coefficients. Using
CoCoA, check that we have ginDegRevLex(J/� J) = I .

h) Let σ be the term ordering Ord(V ) on the monoid T(x0, x1, x2, x3) ,

where V =
( 1 1 1 1

0 0 0−1
1 0 0 0
0 1 0 0

)
, and let � ∈ P be a linear form with randomly

chosen coefficients. Using CoCoA, check that we have ginσ(J/� J) �= I .
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Tutorial 87: SuperG Bases

Super Great Spaghetti.
This is definitely not gourmet.

It’s just really good.
(Shirley Corriher)

Are you getting tired of Gröbner bases? What about superG bases? This
is definitely not a piece of extravaganza. It’s just really cool. From Theo-
rem 6.2.12.c we get a remarkable property of a set {Dπ(t1), . . . , Dπ(ts)} of
distractions of terms: every subset is a Gröbner basis. Is this a mere curiosity
or are there other sets of polynomials with this property?

Some examples spring to mind immediately. For instance, a set of terms
has this property. Moreover, given a term ordering σ , every set of polyno-
mials with pairwise coprime leading terms is a σ -Gröbner basis, and the
same is true for every subset. So it is natural to look for less obvious sets
of polynomials with this remarkable property. They are called superG bases
and constitute the topic of this tutorial. For instance, we shall see that the
set of distractions of the minimal monomial generators of a monomial ideal
is a superG basis. Our goal is to find characterizations of superG bases which
allow us to classify them.

Before leaping into action, we have to sound a cautionary note: although
everything here is elementary Gröbner basis theory, some arguments are
rather tricky and involved. If you get stuck hopelessly, you can have a peek at
the paper [CR90] from which the material for this tutorial has been extracted.
That said, let the feast commence!

Let K be a field, let P = K[x1, . . . , xn] and let σ be a term ordering
on Tn . A set of non-zero polynomials {f1, . . . , fr} is called a superG basis
with respect to σ or a σ -superG basis if every subset of {f1, . . . , fr} is
a σ -Gröbner basis of the ideal it generates. A set comprising one non-zero
polynomial is obviously a σ -superG basis. The first interesting question is
therefore when two non-zero polynomials form a σ -superG basis. We start
our investigation by answering this question.
a) For f1, f2 ∈ P \ {0} , prove that the following conditions are equivalent.

1) The set {f1, f2} is a σ -superG basis.
2) The set {f1, f2} is a σ -Gröbner basis of the ideal (f1, f2).
3) We have gcd(LTσ(f1),LTσ(f2)) = LTσ(gcd(f1, f2)).

Hint: Consider the lifting of the fundamental syzygy σ12 .
In the following we want to generalize this characterization. For this pur-

pose we introduce additional notation. Let r ≥ 1, let f1, . . . , fr ∈ P \ {0} ,
and let S = {i1, . . . , is} ⊆ {1, . . . , r} . Then we denote the polynomial
gcd(fi1 , . . . , fis

) by gcdS(f1, . . . , fr). If S is a proper subset of {1, . . . , r} ,
we let S+ be the set of all subsets of {1, . . . , r} containing S and having
#S + 1 elements. This allows us to define
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lcm+
S (f1, . . . , fr) =

{
1 if S = {1, . . . , r}
lcm(gcdT (f1, . . . , fr) | T ∈ S+) if S ⊂ {1, . . . , r}.

Finally, we let facS(f1, . . . , fr) = gcdS(f1,...,fr)

lcm+
S (f1,...,fr)

. These constructions have a
number of super great properties.
b) Show that the following conditions are equivalent.

1) The set {f1, . . . , fr} is a σ -superG basis.
2) For 1 ≤ i < j ≤ r, we have gcd(LTσ(fi),LTσ(fj)) = LTσ(gcd(fi, fj)).
3) For every S ⊆ {1, . . . , r} , we have gcdS(LTσ(f1), . . . ,LTσ(fr)) =

LTσ(gcdS(f1, . . . , fr)).
Hint: Use a) and induction on r . For “2)⇒3)”, prove that it suffices to
show that gcd(f1, . . . , fr) = 1 implies t = gcd(LTσ(f1), . . . ,LTσ(fr)) = 1.
Then use the inductive hypothesis and 2) to get t2 | LTσ(fi).

c) Let K be infinite, let π = (π1, . . . , πn) be a tuple of sequences of pair-
wise distinct elements of K , let I ⊂ P be a proper monomial ideal,
and let {t1, . . . , ts} be the minimal monomial system of generators of I .
Using b), prove that {Dπ(t1), . . . , Dπ(ts)} is a σ -superG basis for every
term ordering σ on Tn .

d) Write a CoCoA function CheckSuperG(. . .) which takes a list of non-zero
polynomials, checks whether they form a superG basis with respect to
the current term ordering, and returns the corresponding Boolean value.
Using distractions and other examples, demonstrate the correctness of
your function.
In the next part of this tutorial we want to derive a second characterization

of superG bases. It will enable us to construct all σ -superG bases having a
given tuple of leading terms.
e) Prove that facS(f1, . . . , fr) ∈ P for every S ⊆ {1, . . . , r} .
f) Let S1, S2 ⊂ {1, . . . , r} be such that S1 �⊂ S2 and S2 �⊂ S1 . Show that

facS1(f1, . . . , fr) and facS2(f1, . . . , fr) are coprime.
Hint: For a common divisor g , prove that g divides gcdS1∪S2

(f1, . . . , fr)
and g2 divides gcdSi

(f1, . . . , fr).
g) For S ⊆ {1, . . . , r} , show that lcm+

S (f1, . . . , fr) =
∏

T⊃S facT (f1, . . . , fr).
Hint: Use descending induction on #S . For S ⊂ {1, . . . , r} , prove that
lcm+

S (f1, . . . , fr) = lcm(
∏

U⊇T facU (f1, . . . , fr) | T ∈ S+) and use f).
h) Using g), prove that fi =

∏
S⊇{i} facS(f1, . . . , fr) for every i ∈ {1, . . . , r} .

i) Based on the results of the preceding parts, we can now prove another
characterization of superG bases. Show that the following conditions are
equivalent.
1) The set {f1, . . . , fr} is a σ -superG basis.
2) For every S ⊆ {1, . . . , r} , we have

LTσ(facS(f1, . . . , fr)) = facS(LTσ(f1), . . . ,LTσ(fr))
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3) For every S ⊂ {1, 2, . . . , r} there exists a polynomial fS ∈ P such
that LTσ(fS) = facS(LTσ(f1), . . . ,LTσ(fr)) and fi =

∏
S⊇{i} fS .

Hint: To show that 1) implies 2), use downward induction on #S and
prove the formula LTσ(lcm+

S (f1, . . . , fr)) = lcm+
S (LTσ(f1), . . . ,LTσ(fr)).

To show that 3) implies 1), prove fi =
∏

S⊇{i,j} fS ·gi with the help of h)
and deduce that gcd(fi, fj) =

∏
S⊇{i,j} fS for 1 ≤ i < j ≤ r .

j) Let {f1, . . . , fr} be a σ -superG basis. Show that the polynomials fS

in condition 3) of part i) are given by fS = facS(f1, . . . , fr) for every
S ⊂ {1, . . . , r} . (Hint: Use descending induction on #S and g).)
The characterization of superG bases contained in i) makes it possible to

classify all possible σ -superG bases having given leading terms. To explain
the method, we use the following example.
k) Let P = K[x, y, z] and σ = DegRevLex . Describe all superG bases

{f1, f2, f3} with LTσ(f)1 = x2y , LTσ(f2) = xz3 , and LTσ(f3) = xy2z .
To be able to use condition 3) of i), prove the following equations:
1) fac{1,2,3}(LTσ(f1),LTσ(f2),LTσ(f3)) = x
2) fac{1,2}(LTσ(f1),LTσ(f2),LTσ(f3)) = 1
3) fac{1,3}(LTσ(f1),LTσ(f2),LTσ(f3)) = y
4) fac{2,3}(LTσ(f1),LTσ(f2),LTσ(f3)) = z
5) fac{1}(LTσ(f1),LTσ(f2),LTσ(f3)) = x
6) fac{2}(LTσ(f1),LTσ(f2),LTσ(f3)) = z2

7) fac{3}(LTσ(f1),LTσ(f2),LTσ(f3)) = y

l) In Q[x, y, z] consider the polynomials f1 = (x+12345)(y +35)(x+125),
f2 = (z2+x+y)(z−1)(x+125), and f3 = (y+35)(y+6)(z−1)(x+125).
Show that {f1, f2, f3} is a DegRevLex-superG basis.

m) Construct an algorithm which takes a term ordering σ on Tn and a
tuple of terms (t1, . . . , tr) and returns a description of all σ -superG
bases {f1, . . . , fr} with LTσ(fi) = ti for i = 1, . . . , r .
Hint: The result should be a set of elements of a larger polynomial ring
which contains additional indeterminates representing the coefficients
which can be chosen arbitrarily.
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6.3 Finite Sets of Points

The more we learn the more primitive
our previous understanding appears,

and the more challenging
the problems become.

(Halton C. Arp)

In the 1970s and early 1980s, algebraic geometry was essentially synony-
mous with Grothendieck’s scheme theory. Most geometers were busily de-
veloping new cohomology theories and proving vanishing theorems in them;
some had never seen the equations of a non-trivial example for their theories.
In this atmosphere the few hardy folks who dared to give talks about such
down-to-earth topics as finite sets of points in affine or projective spaces were
confronted with disinterest or even ridicule. Now, about a quarter of a cen-
tury later, the tide has turned completely: finite sets of points are an active
and well-respected branch of algebraic geometry. How did this change come
about?

When one starts to reduce deep problems in algebraic geometry to their
essential parts, it frequently turns out that at their core lies a question which
has been studied for a long time, and sometimes this question is related
to finite sets of points. For instance, already in the eighteenth century G.
Cramer and L. Euler discussed (in their correspondence) a phenomenon which
is nowadays called the Cayley-Bacharach property and which is dealt with
in Tutorial 88. Later, in 1843, A. Cayley formulated a theorem which was
a vast generalization of what Cramer and Euler had stumbled upon. But
unfortunately the claim was false and the proof invalid. This was not corrected
until 1886, when I. Bacharach used M. Noether’s “AΦ + BΨ ”-theorem to
give a correct statement and a true proof. Many decades later it turned
out that the Cayley-Bacharach property is connected to the “Gorenstein
property” of the homogeneous coordinate ring of a projective point set, and
today a generalization of this property is central to an important conjecture
by D. Eisenbud, M. Green and J. Harris.

What does all of this have to do with Computational Commutative Al-
gebra? We think that finite sets of points provide excellent examples for the
ways in which computer algebra methods can be applied. They show up in
many branches of mathematics besides algebraic geometry, for instance in
interpolation, coding theory, and statistics. Efficient algorithms help us to
compute with larger and larger point sets, to check results and conjectures,
and to discover new ones. In this sense the purpose of the current section is to
introduce you to some modern methods for working on a classical subject and
to show you how Computational Commutative Algebra provides a unifying
approach to different areas of mathematics.

The first subsection begins at the beginning. Given a field K and a
finite set of points X in Kn, geometric properties of X are intrinsically
related to algebraic properties of its affine coordinate ring P/I(X) where
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P = K[x1, . . . , xn] . For instance, it is a simple observation that the number
of points in X equals the vector space dimension of P/I(X). Not quite as
simple is the observation that there exist hypersurfaces passing through all
points of X bar any one of the points. The polynomials defining these hy-
persurfaces are called the separators of X . They can be used to solve the
interpolation problem for X (see Proposition 6.3.6 and Exercise 1). Next we
have a look at affine point sets X of the form X = M1 × · · ·×Mn with finite
subsets Mi ⊆ K (see Proposition 6.3.8) because they are useful in statistics
where they are known as full designs (see Tutorial 92).

Algorithmically, the main task is to compute the vanishing ideal of an
affine point set from the coordinates of the points. In principle this task can
be solved using the Gröbner basis methods explained in the previous chapters.
In fact, we have I(X) = I(p1) ∩ · · · ∩ I(ps) for X = {p1, . . . , ps} . However,
for larger examples this method is not efficient. A much better approach
is the Buchberger-Möller Algorithm 6.3.10 which performs the task using
linear algebra. Moreover, the Buchberger-Möller Algorithm can be modified
to produce the separators as a by-product.

In geometry, it is frequently advisable to embed affine varieties in projec-
tive spaces in order to gain global invariants such as Hilbert functions and
graded Betti numbers. Hence we do the same for affine point sets in the second
subsection. Given a projective point set X ⊆ Pn

K , its homogeneous coordinate
ring R = P/I+(X) , where P = K[x0, . . . , xn] , contains a lot of information
about the geometry of X . It is a standard graded, 1-dimensional K-algebra
whose multiplicity is the number of points in X (see Proposition 6.3.21).
After possibly enlarging the base field K and performing a homogeneous
linear change of coordinates, we may assume that x0 is a non-zero divisor
for R . Geometrically, this means that no point of X lies on the hyperplane
at infinity. Algebraically, it can be expressed by saying that R is a Cohen-
Macaulay ring. The Hilbert function and the regularity index of R are further
data encoding certain aspects of the geometry of X (see Proposition 6.3.23
and Tutorial 88).

Thus it is important to be able to compute the homogeneous vanishing
ideal of a projective point set from given coordinate tuples of the individual
points. One way to do this would be to pass to the situation when there is no
point of X on the hyperplane at infinity, compute the vanishing ideal of the
corresponding affine point set using the Buchberger-Möller Algorithm, and
homogenize the result. But for several reasons it is more useful to adapt the
Buchberger-Möller technique directly to the projective setting by performing
the computation degree-by-degree (see Theorem 6.3.24).

Finally, we use the theory developed in Section 5.5 to classify the possible
Hilbert functions of projective point sets in the third subsection, and we
invite you to study the graded Betti numbers of generic sets of points in
Tutorial 89. Besides the applications of the theory of finite sets of points to
interpolation and to statistics mentioned already, we present an application
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to coding theory in Tutorial 90. It is clear that this section contains only the
first steps of a long journey. But if you follow it attentively, you will be ready
to start exploring some challenging problems of current interest on your own.

6.3.A Affine Point Sets

After having established
Lemmas A, B, and C,

we get a D. Lemma.
(Michael Möller)

Let K be a field, let n ≥ 1, and let P = K[x1, . . . , xn] be a polynomial
ring over K . Recall that, given a field extension K ⊆ L and a subset S ⊆ Ln,
we defined the vanishing ideal I(S) ⊆ P of S by

I(S) = {f ∈ P | f(c1, . . . , cn) = 0 for all (c1, . . . , cn) ∈ S}

In this subsection we want to examine the following special case of this defi-
nition.

Definition 6.3.1. Let K be a field and P = K[x1, . . . , xn] .
a) An element p = (c1, . . . , cn) of Kn is also called a K -rational point.

The numbers c1, . . . , cn ∈ K are called the coordinates of p .
b) A finite set X = {p1, . . . , ps} of distinct K-rational points p1, . . . , ps ∈ Kn

is called an affine point set.
c) The vanishing ideal I(X) ⊆ P of an affine point set X ⊆ Kn is called an

ideal of points.
d) The K -algebra P/I(X) is called the (affine) coordinate ring of X .

The simplest case of an affine point set is a single K -rational point.

Example 6.3.2. Let p = (c1, . . . , cn) ∈ Kn be a K -rational point and
X = {p} . By Proposition 3.6.1.a, the vanishing ideal of X is given by the
ideal I(X) = (x1 − c1, . . . , xn − cn) ⊆ P .

In the following, we let pi = (ci1, . . . , cin) ∈ Kn with cij ∈ K for
i = 1, . . . , s and j = 1, . . . , n , and we let X be the affine point set
X = {p1, . . . , ps} . In the next proposition we collect some basic properties of
the vanishing ideal of X .

Proposition 6.3.3. (Basic Properties of Ideals of Points)
Let X = {p1, . . . , ps} be an affine point set as above.
a) We have I(X) = I(p1) ∩ · · · ∩ I(ps) .
b) The map ϕ : P/I(X) −→ Ks defined by ϕ(f+I(X)) = (f(p1), . . . , f(ps))

is an isomorphism of K -algebras. In particular, the ideal I(X) is zero-
dimensional.
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c) For any term ordering σ on Tn , the set Tn \ LTσ{I(X)} consists of
precisely s terms.

Proof. To prove a), it is sufficient to note that a polynomial f is in I(X)
if and only if it vanishes at every point pi with 1 ≤ i ≤ s . The proof of b)
follows by combining a), the Chinese Remainder Theorem 3.7.4, and the
isomorphisms P/I(pi) ∼= K given by f + I(pi) �→ f(pi). Finally, claim c)
follows from b) and Macaulay’s Basis Theorem 1.5.7. �

Clearly, the formula I(X) = I(p1)∩· · ·∩I(ps) can be used together with
the algorithms of Section 3.2.A to compute a system of generators of I(X) if
the coordinates of p1, . . . , ps are given. However, this method is not efficient
for large sets of points (i.e. when s � 0) because the necessary Gröbner basis
computations become very demanding. A much more efficient method will be
discussed below. Not every zero-dimensional ideal in P is an ideal of points,
as our next example shows.

Example 6.3.4. Let I be the ideal generated by f = x2 + 1 in P = Q[x] .
Then I is zero-dimensional, but there is no affine point set X ⊆ Q such that
I = I(X). The reason is that the polynomial f ∈ I does not vanish at any
point of Q .

Given an affine point set X , the polynomials in I(X) are not the only
interesting ones. If we want to perform polynomial interpolation, we also need
to know the following polynomials.

Definition 6.3.5. Let X = {p1, . . . , ps} ⊆ Kn be an affine point set, and
let X be the tuple (p1, . . . , ps).
a) Let i ∈ {1, . . . , s} . A polynomial f ∈ P is called a separator of pi

from X \ pi if f(pi) = 1 and f(pj) = 0 for j �= i .
b) Let a1, . . . , as ∈ K . A polynomial f ∈ P is called an interpolator for

the tuple (a1, . . . , as) at X if f(pi) = ai for i = 1, . . . , s .

It is clear that separators and interpolators are not unique. Two separa-
tors of pi and two interpolators for a tuple (a1, . . . , as) ∈ Ks differ by an
element of I(X). What is not so clear at this point is whether separators and
interpolators always exist. Our next proposition gives an affirmative answer.

Proposition 6.3.6. Let X = {p1, . . . , ps} ⊆ Kn be an affine point set, and
let X be the tuple (p1, . . . , ps) .
a) For every i ∈ {1, . . . , s} , there exists a separator of pi from X \ pi .
b) For every (a1, . . . , as) ∈ Ks , there exists an interpolator for (a1, . . . , as)

at X .
c) Let Y be an affine point set contained in X . For every pi ∈ X , let fi ∈ P

be a separator of pi from X \ pi , and let fX\Y =
∑

pi∈X\Y fi . Then we
have I(Y) = I(X) + (fX\Y) .
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Proof. Parts a) and b) follow from Proposition 6.3.3.b by taking suitable
preimages under the map ϕ . To prove c), it suffices to show the inclusion
“⊆”, because the reverse inclusion is obviously true. Let f ∈ I(Y). Since
we have (1 − fX\Y)(pi) = 0 for all i such that pi ∈ X \ Y , we see that
f(1 − fX\Y) ∈ I(X) , and therefore f ∈ I(X) + (fX\Y). �

An efficient method for computing separators will be presented below. If
we know the separators f1, . . . , fs of p1, . . . , ps , respectively, we can produce
an interpolator f for (a1, . . . , as) ∈ Ks by setting f =

∑s
i=1 aifi .

Our next topic is the connection between affine point sets and distractions.
The following definition originated in statistics (see Tutorial 92).

Definition 6.3.7. Let M1, . . . , Mn be finite subsets of K . Then the affine
point set X = M1×· · ·×Mn ⊆ Kn is called the full design on (M1, . . . , Mn).

The vanishing ideal of a full design is a special case of a distraction, as
our next proposition shows.

Proposition 6.3.8. For i = 1, . . . , n , let ri ≥ 1 , and let Mi = {ai1, . . . , airi
}

be a subset of the field K consisting of ri distinct elements. Furthermore, let
X = M1 × · · · × Mn be the full design on (M1, . . . , Mn) .
a) The vanishing ideal of X is given by I(X) = (f1, . . . , fn) where we let

fi =
∏ri

j=1(xj − aij) for i = 1, . . . , n .
b) Let π = (π1, . . . , πn) where πi is a sequence of distinct elements of the

field K starting with πi = (ai1, ai2, . . . , airi
, . . .) . Then we have

I(X) = (Dπ(xr1
1 ), . . . , Dπ(xrn

n ))

In particular, the set X is the set of zeros of a distraction.
c) For every term ordering σ , the set {f1, . . . , fn} is the reduced σ -Gröbner

basis of I(X) .
d) For every affine point set Y , there is a unique minimal full design con-

taining Y .

Proof. Claim a) follows from Theorem 6.2.8 and Proposition 6.3.3.a. Claim b)
follows from the definition of the distraction Dπ(xri

i ). Claim c) follows
from b) and Theorem 6.2.12.c. It remains to prove d). For i = 1, . . . , n , we
let Mi be the set of ith coordinates of the points of Y . Then the full design
X = M1 × · · · × Mn contains Y . Clearly, every full design containing Y has
to contain X . Hence X is the unique minimal full design containing Y . �

Corollary 6.3.9. The vanishing ideal of an affine point set in Kn has a
system of generators consisting of n + 1 polynomials.

Proof. Let Y be an affine point set, and let X be the unique minimal full
design containing X . By part a) of the proposition, the ideal I(X) is gener-
ated by n polynomials. Now the claim follows from Propositon 6.3.6.c. �



392 6. Further Applications

In our quest to study affine point sets, one task is still ahead of us: we need
a more efficient way to compute their vanishing ideals than the one which
follows from Proposition 6.3.3.a. Our next theorem can be used to show that
this task can be solved in a number of steps which depends polynomially on n
and s . If you try out an implementation of this algorithm (for instance the
one in CoCoA), you will see immediately how much faster it is than computing
the intersections in Proposition 6.3.3.a.

Before presenting this algorithm, we note that we represent evaluation
vectors as rows of a matrix instead of putting them into the columns. The
reason is that we want to simplify the matrix by using row reductions. Let
us explain briefly what this means. The most important aspect is that an
ordering must be imposed on the columns of the matrix: the most natural
is left-to-right, and by permuting the columns we may assume that this is
indeed the chosen ordering. In a matrix M we say that a row whose first
non-zero element occurs in column c is a reducer for column c ; a zero row
is not a reducer for any column. In the algorithm below, the matrix M is
constructed so that every row is a reducer, and no column has more than
one associated reducer. A row vector may then be reduced against M by
repeatedly subtracting suitable multiples of the reducers in M to eliminate
the first non-zero element in the vector. The process ends when the vector
becomes zero or when there is no reducer in M for the column in which the
first non-zero entry lies.

Theorem 6.3.10. (The Buchberger-Möller Algorithm)
Let σ be a term ordering on Tn , and let X = {p1, . . . , ps} be an affine point
set in Kn whose points pi = (ci1, . . . , cin) are given via their coordinates
cij ∈ K . Consider the following sequence of instructions.
1) Let G = ∅ , O = ∅ , S = ∅ , L = {1} , and let M = (mij) ∈ Mat0,s(K)

be a matrix having s columns and initially zero rows.
2) If L = ∅ , return the pair (G, O) and stop. Otherwise, choose the term

t = minσ(L) and delete it from L .
3) Compute the evaluation vector (t(p1), . . . , t(ps)) ∈ Ks and reduce it

against the rows of M to obtain

(v1, . . . , vs) = (t(p1), . . . , t(ps)) −
∑
i

ai (mi1, . . . , mis)

with ai ∈ K .
4) If (v1, . . . , vs) = (0, . . . , 0) then append the polynomial t −∑i aisi to G

where si is the ith element in S . Remove from L all multiples of t .
Then continue with step 2).

5) Otherwise (v1, . . . , vs) �= (0, . . . , 0) , so append (v1, . . . , vs) as a new row
to M and t −∑i aisi as a new element to S . Add t to O , and add
to L those elements of {x1t, . . . , xnt} which are neither multiples of an
element of L nor of LTσ(G) . Continue with step 2).
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This is an algorithm which returns a pair (G, O) such that G is the reduced
σ -Gröbner basis of I(X) and O = Tn \ LTσ{I(X)} .

Proof. First we exhibit termination. In each iteration either step 4) is per-
formed or step 5). By its construction, the matrix M always has linearly
independent rows. Hence step 5), which adjoins a row to M , can be per-
formed at most s times. Since the set L is enlarged only in step 5) and each
iteration removes one element of L , we arrive at L = ∅ after finitely many
iterations.

To prove correctness, we let G′ be the reduced σ -Gröbner basis of I(X)
and O′ = Tn \ LTσ{I(X)} . Then we simultaneously prove the following
three claims by induction on the number of iterations of the algorithm: after
steps 2)–5) have been performed for some term t , the tuple G consists of the
elements g in G′ such that LTσ(g) ≤σ t , we have O = {t′ ∈ O′ | t′ ≤σ t} ,
and if there exists a term t′ ∈ Tn \ LTσ{I(X)} with t′ >σ t then minσ(L)
is the smallest such term.

This is clearly true after zero iterations, i.e. after step 1) has been exe-
cuted. Now let us follow the steps of one iteration. If step 4) is performed,
i.e. if (v1, . . . , vs) = (0, . . . , 0), then the polynomial t −∑i aisi is contained
in I(X) because we see inductively that the ith row of M is the evalu-
ation vector of si . Moreover, by construction of S , the terms in the sup-
port of si are all smaller than t with respect to σ and contained in O .
Thus t = LTσ(t−∑i aisi) is of the form t = t′ LTσ(g) for some t′ ∈ Tn and
an element g of G′ . By step 5), no element of LTσ(G) divides t . Therefore
the inductive hypothesis implies t′ = 1. Hence t−∑i aisi is an element of G′

and G is still correct after this iteration.
Next, we suppose that (v1, . . . , vs) �= (0, . . . , 0). In order to show t ∈ O′ ,

we argue by contradiction and assume t = t′ LTσ(g) for some t′ ∈ Tn and g
in G′ . Again, the definition of L implies t′ = 1. Thus g is of the form
g = t −∑j bjtj with bj ∈ K and tj ∈ O′ . The inductive hypothesis yields
tj ∈ O . Hence the fact that the evaluation vector of g is zero implies that
(t(p1), . . . , t(ps)) is a linear combination of the rows of M , a contradiction.
Consequently, we have t ∈ O′ , and the set O is still correct after this itera-
tion.

Finally, we show the third claim. If {t′ ∈ Tn \ LTσ{I(X)} | t′ >σ t}
is not empty, its smallest term t̃ with respect to σ is clearly contained in
L∪{x1t, . . . , xnt} . Moreover, the term t̃ is not a multiple of a term in LTσ(G)
because those terms are contained in LTσ(I(X)) by the inductive hypothesis.
Altogether, it follows that t̃ = minσ(L), as we wanted to show.

At the end of the algorithm, i.e. when L = ∅ , we therefore have G = G′

and O = O′ and correctness is proved. �

A small alteration of this algorithm allows us to compute the separators
of X as well.
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Corollary 6.3.11. In the setting of the theorem, replace step 2) by the fol-
lowing instruction.
2’) If L = ∅ then row reduce M to a diagonal matrix and mimic these row

operations on the elements of S (considered as a column vector). Next
replace S by M−1S , return the triple (G, O,S) , and stop. If L �= ∅ ,
choose the term t = minσ(L) and delete it from L .

The resulting sequence of instructions defines again an algorithm. It returns
a triple (G, O,S) such that G is the reduced σ -Gröbner basis of I(X) , such
that O = Tn \ LTσ{I(X)} , and the tuple S contains the separators of pi

from X \ pi for i = 1, . . . , s .

Proof. Throughout the course of the algorithm, the rows of the matrix M
are the evaluation vectors (si(p1), . . . , si(ps)) of the polynomials in S . At
the end of the algorithm, i.e. when L = ∅ , the set O contains s terms.
Hence step 5) shows that at this point M is an upper triangular matrix of
size s× s . When we diagonalize M and mimic the necessary row operations
on S , we get a tuple S whose elements satisfy si(pj) = 0 for i �= j and
mii = si(pi) �= 0. Consequently, the elements of M−1S are the separators
of pi from X \ pi for i = 1, . . . , s . �

Although it is already very efficient, the Buchberger-Möller algorithm can
be improved further. Let us point out some possibilities.

Remark 6.3.12. Assume that we are in the setting of the theorem.
a) In step 2), the term t is either 1 or of the form t = xit

′ for some
term t′ ∈ O . In the latter case we can compute the evaluation vector
(t(p1), . . . , t(ps)) in step 3) more efficiently by storing the evaluation
vector of t′ and multiplying it componentwise by (xi(p1), . . . , xi(ps)) =
(c1i, . . . , csi).

b) If the base field K is the field of rational numbers, the entries of M
grow quickly when we increase the number of points. In this case we
can speed up the algorithm by computing the Gröbner basis G of I(X)
modulo several primes and recombining the results with the help of the
Chinese Remainder Theorem 3.7.4. The details of this modular version
of the Buchberger-Möller algorithm are contained in [Ab00].

For small affine point sets, we can use the Buchberger-Möller algorithm
to calculate the vanishing ideal by hand.

Example 6.3.13. Let X be the affine point set in A2
Q consisting of the five

points p1 = (0, 0), p2 = (0,−1), p3 = (1, 0), p4 = (1, 1), and p5 = (−1, 1),
and let σ = DegLex . We compute I(X) and follow the steps of the algorithm.
1) Let G = ∅ , O = ∅ , S = ∅ , and L = {1} .
2) Choose t = 1 and let L = ∅ .
3) Compute (t(p1), . . . , t(p5)) = (1, 1, 1, 1, 1) = (v1, . . . , v5).
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5) Let M = (1 1 1 1 1), S = (1), O = {1} , and L = {y, x} .
2) Choose t = y and let L = {x} .
3) Compute (t(p1), . . . , t(p5)) = (0,−1, 0, 1, 1) = (v1, . . . , v5).
5) Let M =

(
1 1 1 1 1
0−1 0 1 1

)
, S = (1, y), O = {1, y} , and L = {x, y2} .

2) Choose t = x and let L = {y2} .
3) Compute (t(p1), . . . , t(p5)) = (0, 0, 1, 1,−1) = (v1, . . . , v5).
5) Let M =

(
1 1 1 1 1
0 −1 0 1 1
0 0 1 1−1

)
, S = (1, y, x), O = {1, y, x} , and L = {y2, xy, x2} .

2) Choose t = y2 and let L = {xy, x2} .
3) Compute (t(p1), . . . , t(p5)) = (0, 1, 0, 1, 1) and reduce it against the rows

of M to obtain (v1, . . . , v5) = (0, 1, 0, 1, 1)+(0,−1, 0, 1, 1) = (0, 0, 0, 2, 2).

5) Let M =
(

1 1 1 1 1
0 −1 0 1 1
0 0 1 1−1
0 0 0 2 2

)
, S = (1, y, x, y2 + y), O = {1, y, x, y2} , and

L = {xy, x2, y3} .
2) Choose t = xy and let L = {x2, y3} .
3) Compute (t(p1), . . . , t(p5)) = (0, 0, 0, 1,−1) and reduce it against the

rows of M to obtain (v1, . . . , v5) = (0, 0, 0, 0, 2).

5) Let M =
( 1 1 1 1 1

0 −1 0 1 1
0 0 1 1 −1
0 0 0 2 2
0 0 0 0 2

)
, S = (1, y, x, y2 + y, xy − 1

2y2 − 1
2y),

O = {1, y, x, y2, xy} , and L = {x2, y3, xy2} .
2) Choose t = x2 and let L = {y3, xy2} .
3) Compute (t(p1), . . . , t(p5)) = (0, 0, 1, 1, 1) and (v1, . . . , v5) = (0, . . . , 0).
4) Let G = (x2 + xy − 1

2y2 − x − 1
2y) and L = {y3, xy2} .

2) Choose t = y3 and let L = {xy2} .
3) Compute (t(p1), . . . , t(p5)) = (0,−1, 0, 1, 1) and (v1, . . . , v5) = (0, . . . , 0).
4) Let G = (x2 + xy − 1

2y2 − x − 1
2y, y3 − y) and L = {xy2} .

2) Choose t = xy2 and let L = ∅ .
3) Compute (t(p1), . . . , t(p5)) = (0, 0, 0, 1,−1) and (v1, . . . , v5) = (0, . . . , 0).
4) Let G = (x2 + xy − 1

2y2 − x − 1
2y, y3 − y, xy2 − xy) and L = ∅ .

2) Return (G, O) and stop.
The result of this computation is that G = (x2 + xy − 1

2y2 − x − 1
2y, y3 − y,

xy2 − xy) is the reduced σ -Gröbner basis of I(X) and O = {1, x, y, xy, y2}
represents a Q -basis of Q[x, y]/I(X).

6.3.B Projective Point Sets

The shortest distance between two points
is under construction.

(Noelie Altile)

In Tutorial 35 we introduced projective spaces, and in Tutorials 46 and 52
we studied some of their properties. Since the topics of this subsection are
projective point sets, their homogeneous vanishing ideals and their Hilbert
functions, we shall recall some of the main definitions. Let K be a field, and



396 6. Further Applications

let P = K[x1, . . . , xn] and P = K[x0, . . . , xn] be standard graded polynomial
rings over K .

Definition 6.3.14. For n ≥ 0, we define an equivalence relation ∼ on
Kn+1 \{0} by letting (c0, . . . , cn) ∼ (c′0, . . . , c

′
n) if and only if there exists an

element λ ∈ K such that (c′0, . . . , c
′
n) = (λc0, . . . , λcn).

a) The set of equivalence classes Pn
K = (Kn+1 \ {0})/ ∼ with respect to ∼

is called the n-dimensional projective space over K .
b) The equivalence class p of a tuple (c0, . . . , cn) ∈ Kn+1 \ {0} is called a

(projective) point in Pn
K . We denote it by p = (c0 : c1 : . . . : cn).

c) A finite set of distinct points X = {p1, . . . , ps} ⊆ Pn
K is called a projec-

tive point set.
d) Given a projective point set X = {p1, . . . , ps} ⊆ Pn

K , the homogeneous
ideal

I+(X) = (f ∈ P | f homogeneous, f(p1) = · · · = f(ps) = 0) ⊆ P

is called the homogeneous vanishing ideal of X , and the graded
K-algebra P/I+(X) is called the homogeneous coordinate ring of X .

Notice that the homogeneous vanishing ideal of a projective point set is
well-defined, because if p = (c0 : . . . : cn) = (λc0 : . . . : λcn) are two coor-
dinate tuples representing the same projective point, then f(c0, . . . , cn) = 0
implies f(λc0, . . . , λcn) = λdf(c0, . . . , cn) = 0 for every f ∈ P d . More-
over, it is a radical ideal, since f i(c0, . . . , cn) = 0 for some i ≥ 1 implies
f(c0, . . . , cn) = 0. Clearly, we have I+(X) =

⋂s
i=1 I+({pi}). Our next re-

mark collects some relations between affine and projective point sets which
are special cases of the material discussed in Tutorial 52.

Remark 6.3.15. Let X ⊆ Pn
K be a projective point set.

a) For every i ∈ {0, . . . , n} , there exists an injective map ıi : An
K −→ Pn

K

given by (c1, . . . , cn) �→ (c1 : · · · : ci : 1 : ci+1 : · · · : cn). The images of
ı0, . . . , ın cover Pn

K .
b) The set X ∩ ı0(An

K) is called the affine part of X . We shall identify it
with its preimage Xa = ı−1

0 (X ∩ ı0(An
K)) in An

K . Clearly, the set Xa is
an affine point set.

c) The set H inf = Z+(x0) = {(c0 : · · · : cn) ∈ Pn
K | c0 = 0} is called the

hyperplane at infinity of Pn
K . The n -dimensional projective space is

the disjoint union of its affine part ı0(An
K) and the hyperplane at infinity.

The map H inf −→ Pn−1
K given by (0 : c1 : . . . : cn) �→ (c1 : . . . : cn) is

well-defined and bijective.
d) The projective point set Xinf = X ∩ H inf is called the set of points at

infinity of X . The set X is the disjoint union of its affine part and its
set of points at infinity.



6.3 Finite Sets of Points 397

The following proposition explains the relations between the vanish-
ing ideals of a projective point set, its affine part, and its set of points
at infinity. We recall from Section 6.2 that if J is an ideal in P , then
J inf = (F (0, x1, . . . , xn) | F ∈ J).

Proposition 6.3.16. Let X ⊆ Pn
K be a projective point set.

a) The vanishing ideal of the affine part of X is I(Xa) = I+(X)deh .
b) If X is contained in the affine part of Pn

K then I+(X) = I(Xa)hom .
c) The vanishing ideal of the set of points at infinity of X is given by

I+(Xinf) =
√

I+(X) + (x0) .
d) If we identify H inf with Pn−1

K , the homogeneous vanishing ideal of Xinf

in Pn−1
K is

√
(I+(X))inf .

Proof. First we show the inclusion “⊆” in a). Given f ∈ I(Xa), the ho-
mogeneous polynomial x0 fhom ∈ P vanishes at all points of X . Hence
we have f = (x0 fhom)deh ∈ I+(X)deh . Conversely, let F ∈ I+(X). We
choose an arbitrary point p = (1 : c1 : . . . : cn) ∈ X . Then we have
F deh(c1, . . . , cn) = F (1, c1, . . . , cn) = 0, and therefore F deh ∈ I(Xa). This
proves a).

The inclusion “⊆” in b) follows from a), since I(Xa)hom = (I+(X)deh)hom

contains I+(X) . To prove the converse inclusion, let f ∈ I(Xa) and
p = (1 : c1 : . . . : cn) ∈ X = X ∩ ı0(An

K). Then f(c1, . . . , cn) = 0 implies
fhom(1, c1, . . . , cn) = 0. Hence we obtain fhom ∈ I+(X).

Next we prove c). Given a homogeneous polynomial F ∈ I+(Xinf), we
may assume that no term in the support of F is divisible by x0 . Then we have
F = F deh , and for large enough i there exists a polynomial f ∈ P of degree
deg(f) < deg((F deh)i) such that f(p) = (F deh)i(p) for all p ∈ Xa . Hence we
get F i − x

i deg(F )−deg(f)
0 fhom ∈ I+(X), and thus F ∈

√
I+(X) + (x0). To

prove the converse inclusion, we observe that I+(X) + (x0) ⊆ I+(Xinf) and
that the ideal I+(Xinf) is radical.

Finally, we show d). Given a homogeneous polynomial F ∈ P satisfying
F (p) = 0 for all p ∈ Xinf , we have F ∈

√
I+(X) + (x0) by c). Thus there

exists a number i ≥ 1 and a homogeneous polynomial G ∈ P such that
F i + x0G ∈ I+(X). By substituting x0 �→ 0 in this relation we see that
F i ∈ (I+(X))inf . Conversely, a homogeneous polynomial F ∈ P such that
F i ∈ (I+(X))inf for some i ≥ 1 satisfies F i(p) = 0 for all p ∈ X . In
particular, this implies F (p) = 0 for all p ∈ Xinf . �

Parts c) and d) of this proposition are not true if we do not pass to the
respective radical ideals, as the following example shows.

Example 6.3.17. Let X ⊆ P2
Q be the projective point set consisting of the

points p1 = (0 : 1 : 1), p2 = (1 : 1 : 0), p3 = (1 : 0 : 1), and p4 = (1 : 1 : 1).
Then we have I+(X) = ((x0−x1 +x2)(x0−x2), (x0−x1−x2)(x1−x2)) and
I+(X)+ (x0) = (x0, x2

1 −x2
2, x1x2 −x2

2). Thus the linear polynomial x1 −x2

is contained in I+(Xinf) = (x0, x1 − x2) , but not in I+(X) + (x0).
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Furthermore, if we identify H inf with P1
Q , the polynomial x1 − x2 is

contained in the vanishing ideal of Xinf ⊆ P1
Q , but not in I+(X)inf = (x2

1−x2
2,

x1x2 − x2
2).

The preceding proposition has several useful applications. For instance, it
allows us to compute the homogeneous vanishing ideal of a projective point
set contained in the affine part of Pn

K as follows.

Corollary 6.3.18. Let X = {p1, . . . , ps} ⊆ Pn
K be a projective point set

which is contained in ı0(An
K) , let pi = (1 : ci1 : . . . : cin) for i = 1, . . . , s ,

and let σ be a degree compatible term ordering on Tn . Consider the following
instructions.
1) For i = 1, . . . , s , let p′i = (ci1, . . . , cin) ∈ An

K . Compute the reduced
σ -Gröbner basis G = {g1, . . . , gr} of Xa = {p′1, . . . , p′s} using the
Buchberger-Möller Algorithm 6.3.10.

2) For i = 1, . . . , r , compute the homogenization ghom
i of gi with respect

to x0 .
3) Return Ghom = {ghom

1 , . . . , ghom
r } and stop.

This is an algorithm which computes the reduced σ -Gröbner basis of I+(X) ,
where σ is the extension of σ (see Definition 4.3.13).

Proof. The Buchberger-Möller algorithm returns the reduced σ -Gröbner ba-
sis G of I(Xa). By Proposition 4.3.21, the set Ghom is a σ Gröbner basis
of I(Xa)hom . In fact, it is the reduced σ -Gröbner basis because we have
LTσ(ghom

i ) = LTσ(gi) for i = 1, . . . , r . Now part b) of the proposition yields
the claim. �

Although it is easy to implement and reasonably efficient, the algorithm
described in Corollary 6.3.18 has two drawbacks: it computes the reduced
Gröbner basis of I+(X) only with respect to very special term orderings
on T(x0, . . . , xn), and it requires that X is contained in the affine part of Pn

K .
The homogeneous vanishing ideal of a single projective point is easy to de-
termine, as our next corollary shows.

Corollary 6.3.19. Let p = (c0 : . . . : cn) ∈ Pn
K be a projective point. Then

its homogeneous vanishing ideal is I+({p}) = (cixj − cjxi | 0 ≤ i < j ≤ n) .

Proof. Since one of the coordinates of p has to be non-zero, we may assume
without loss of generality that c0 �= 0. Then we have p = (1 : c1

c0
: . . . : cn

c0
),

and the preceding corollary yields I+({p}) = (x1 − c1
c0

x0, . . . , xn − cn

c0
x0) =

(c0xi − cix0 | 1 ≤ i ≤ n). Since we have cixj − cjxi = ci

c0
(c0xj − cjx0) −

cj

c0
(c0xi − cix0) for 1 ≤ i < j ≤ n , the claim follows. �

Based on this corollary and the formula I+(X) =
⋂s

i=1 I+({pi}), we can
develop a second method for computing the homogeneous vanishing ideal of
a projective point set X = {p1, . . . , ps} ⊆ Pn

K . It is more general than the
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first one because it does not require that the point set is contained in the
affine part of Pn

K . However, as in the affine case, this method is in general
quite inefficient.

A much better algorithm is described below. It is based on a thorough
study of the algebraic properties of the homogeneous coordinate ring of X .
We need the following auxiliary result.

Lemma 6.3.20. Assume that the field K has infinitely many elements.
Given finitely many points p1, . . . , ps ∈ Kn+1 , there exists a linear form
� ∈ P 1 such that �(pi) �= 0 for i = 1, . . . , s .

Proof. For i = 1, . . . , s , let pi = (ci0, . . . , cin) with cij ∈ K . A linear form
� = a0x0 + · · · anxn ∈ P 1 vanishes at the point pi if and only if (a0, . . . , an)
is a zero of ci0x0 + · · ·+ cinxn . Hence we are looking for a point (a0, . . . , an)
in Kn+1 such that the polynomial f =

∏s
i=1(ci0x0 + · · · + cinxn) does not

vanish at this point. By Proposition 5.5.21.a, such a point exists. �

Proposition 6.3.21. (Coordinate Rings of Projective Point Sets)
Let R = P/I+(X) be the homogeneous coordinate ring of a projective point
set X = {p1, . . . , ps} ⊆ Pn

K , and for i = 1, . . . , s let pi denote the image
of I+({pi}) in R .
a) The ring R is a 1-dimensional standard graded K-algebra.
b) We have p1 ∩ · · · ∩ ps = (0) and Min(R) = {p1, . . . , ps} .
c) The canonical R -linear map Φ : R −→ R/p1 × · · · × R/ps given by

r �→ (r + p1, . . . , r + ps) is injective.
d) For i = 1, . . . , s , there exists a homogeneous isomorphism of K -algebras

R/pi
∼= K[x0] .

e) Let � ∈ P 1 . Then we have X ∩ Z+(�) = ∅ if and only if � is a non-zero
divisor for R .

f) We have mult(R) = s .

Proof. First we show a). It is clear that R = P/I+(X) is a standard graded
K -algebra. By Proposition 5.4.5.f, the dimension of R does not change
under a base field extension. Therefore we may assume that K has infi-
nitely many elements. Then the lemma yields a linear form � ∈ P 1 such
that �(pi) �= 0 for i = 1, . . . , s . After performing a linear change of coor-
dinates, we may assume that � = x0 . Thus we have X ∩ H inf = ∅ and
X = ı0(Xa), and Proposition 6.3.16.a shows I(Xa) = I+(X)deh . Therefore
the ring S = R/(x0 − 1) ∼= P/I+(X)deh is the affine coordinate ring of Xa .
Since I(Xa) is a zero-dimensional ideal, we have dim(S) = 0. Now Proposi-
tion 5.6.12.c implies dim(R) = dim(P/I(Xa)hom) = dim(P/I(Xa)) + 1 = 1.

Now we prove b). The claim p1 ∩ · · · ∩ ps = (0) follows from the fact that
I+(X) = I+({p1})∩· · ·∩I+({ps}). To show the inclusion “⊆” in the second
claim, we assume that there exists a minimal prime q ∈ Min(R)\{p1, . . . , ps}
of R . For every i ∈ {1, . . . , s} , choose an element fi ∈ pi \ q . Then we have
f1 · · · fs ∈ p1 ∩ · · · ∩ ps = (0), and hence f1 · · · fs ∈ q , in contradiction to
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fi /∈ q for i = 1, . . . , s . The converse inclusion follows immediately from
Lemma 5.6.14 because every prime ideal of R contains p1 ∩ · · · ∩ ps = (0).

Since c) is a consequence of b), we prove d) next. Let � ∈ P 1 be a linear
form such that �(pi) �= 0. After a linear change of coordinates, we may assume
that � = x0 . Then we have pi = (1 : c1 : . . . : cn) with c1, . . . , cn ∈ K , and
Corollary 6.3.19 yields

R/pi
∼= P/I+({pi}) = P/(x1 − c1x0, . . . , xn − cnx0) ∼= K[x0]

For the proof of the implication “⇒” in e), it suffices to note that � is
not contained in p1 ∪ · · · ∪ ps and to apply Proposition 5.6.17.c. Conversely,
suppose that � ∈ pi . Then Proposition 5.6.32.a implies dim(R/(�)) = 1,
whereas Proposition 5.6.34.c yields dim(R/(�)) = 0, a contradiction.

Finally we show f). By Proposition 5.4.5.f, we may assume that K is
infinite. Using the lemma and a suitable linear change of coordinates, we
see that it suffices to treat the case when X is contained in the affine part
of Pn

K . Hence we have R = P/I(Xa)hom , and using Proposition 5.6.12.d, we
obtain mult(R) = mult(P/I(Xa)). Now an application of Proposition 6.3.3.b
finishes the proof, because mult(P/I(Xa)) = dimK(P/I(Xa)) = s . �

These algebraic properties of the homogeneous coordinate ring of a pro-
jective point set imply that its Hilbert function has certain nice properties.
First we introduce another name for this Hilbert function.

Definition 6.3.22. Let X ⊆ Pn
K be a projective point set with homogeneous

coordinate ring R = P/I+(X). Then the Hilbert function HFR : Z −→ Z
of R is also called the Hilbert function of X and denoted by HFX .

Its first difference function ∆HFX : Z −→ Z is called the Castelnuovo
function of X .

Proposition 6.3.23. Let X = {p1, . . . , ps} ⊆ Pn
K be a projective point set.

a) For i < 0 , we have HFX(i) = 0 , and we have HFX(0) = 1 .
b) Let rX = ri(HFX) . Then we have HFX(i) = s for all i ≥ rX .
c) We have HFX(0) < HFX(1) < · · · < HFX(rX) .

Proof. Let R be the homogeneous coordinate ring of X . Claim a) is true
because R is a standard graded K -algebra. By the definition of ri(HFX), we
have HFX(i) = HPR(i) for all i ≥ rX . Hence b) follows from dim(R) = 1
and Theorem 5.4.15.b. It remains to prove c). By Corollary 5.1.20, we may
assume that K is infinite. Thus we can use Lemma 6.3.20.b and a linear
change of coordinate to get X ⊆ ı0(An

K). Now Proposition 6.3.21.e shows
that x0 is a non-zero divisor for R . Consequently, the ring R = R/(x0)
is a zero dimensional standard graded K -algebra. In particular, we have
Ri+1 = x1Ri+· · ·+xnRi for i ≥ 1. Therefore, if Ri = 0 for some i ≥ 1, then
we have Rj = 0 for all j ≥ i . This means that Ri �= 0 for 0 ≤ i < ri(HFR)
and HFR(i) = HFR(i − 1) + HFR(i) > HFR(i − 1) for 1 ≤ i ≤ ri(HFR) =
ri(HFR) − 1. �
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Based on this knowledge of the shape of the Hilbert function of X , we
can now develop an efficient procedure for computing the homogeneous van-
ishing ideal of X which combines the linear algebra approach underlying the
Buchberger-Möller Algorithm 6.3.10 with the ideas behind the Hilbert-driven
strategies explained in Tutorial 69.

Theorem 6.3.24. (Projective Buchberger-Möller Algorithm)
Let X = {p1, . . . , ps} ⊆ Pn

K be a projective point set, where each point pi is
given by a fixed coordinate tuple pi = (ci0 : · · · : cin) , and let σ be a term
ordering on Tn+1 . Consider the following sequence of instructions.
1) Let G = ∅ , S = ∅ , L = {1} , d = 0 , and let M = (mij) be a matrix

over K with s columns and initially zero rows.
2) Compute the Hilbert series of S = P/(LTσ(g) | g ∈ G) and check whether

HFS(i) = s for all i ≥ d . If this is true, return G and stop. Otherwise,
increase d by one, let S = ∅ , let M = (mij) be a matrix over K with s
columns and zero rows, and let L be the set of all terms in Tn+1

d which
are not multiples of an element LTσ(g) with g ∈ G .

3) If L = ∅ , continue with step 2). Otherwise, choose t = minσ(L) and
remove it from L .

4) For i = 1, . . . , s , compute t(pi) = t(ci0, . . . , cin) . Reduce the vector
(t(p1), . . . , t(ps)) against the rows of M to obtain

(v1, . . . , vs) = (t(p1), . . . , t(ps)) −
∑
i

ai (mi1, . . . , mis)

with ai ∈ K .
5) If (v1, . . . , vs) = (0, . . . , 0) then append the polynomial t−

∑
i aisi to G ,

where si is the ith element of the list S . Continue with step 3).
6) If (v1, . . . , vs) �= (0, . . . , 0) then add (v1, . . . , vs) as a new row to M and

t −∑i aisi as a new element to S . Continue with step 3).
This is an algorithm which returns the reduced σ -Gröbner basis of I+(X) .

Proof. To simplify the notation, we let LTσ(G) = (LTσ(g) | g ∈ G) and
I = I+(X). First we show finiteness of the algorithm. From the construction
we see that each time step 2) is entered, the number of rows of M is exactly
HFP/I(d): all terms of degree d outside LTσ(G) are examined for being a
leading term of an element of I , and a list of representatives of a K -basis
of (P/I)d is constructed in S . By Proposition 6.3.23, we eventually reach
HFP/I(d) = s . Moreover, when d surpasses the largest degree of a minimal
generator of LTσ(I), the condition in step 2) is satisfied and the algorithm
stops.

Now we prove correctness. By construction, the list G contains only el-
ements of I . Hence we always have the inclusion LTσ(G) ⊆ LTσ(I) and
the relations HFP/ LTσ(G)(d) ≥ HFP/ LTσ(I)(d) = HFX(d). When the crite-
rion of step 2) is satisfied, we necessarily have LTσ(G) = LTσ(I) because
if there was a minimal generator t of LTσ(I) in degree i > d , we would
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have HFP/(LTσ(G)+(t))(i) < HFP/ LTσ(G)(i) = s = HFP/I(i), a contradiction.
Therefore the set G is a σ -Gröbner basis of I when the algorithm stops. By
construction, this is the reduced σ -Gröbner basis of I . �

Let us add some remarks about possible variations and optimizations of
this algorithm.

Remark 6.3.25. Assume that we are in the setting of the theorem.
a) The computation of the reduced Gröbner basis in the algorithm of the

theorem proceeds degree by degree. If we stop the computation after
some degree d is finished, the set G is a d -truncated σ -Gröbner basis
of I+(X).

b) The first part of step 2) is a stopping criterion, i.e. a criterion which
tells us whether we have already found all elements of the reduced
Gröbner basis of I+(X). Other stopping criteria can be used instead,
e.g. the one given in [Ab00], Theorem 3.10.

c) Variants of this algorithm can be constructed which also compute sep-
arators. For projective point sets, every point has separators in several
degrees. The minimal degrees of the separators are useful invariants of X .
This aspect is explored more thoroughly in Tutorial 88.

Let us conclude the discussion of the projective Buchberger-Möller algo-
rithm by computing one example by hand.

Example 6.3.26. Let X = {p1, . . . , p7} = P2
K , where K = F2 , and where

p1 = (1 : 0 : 0), p2 = (1 : 0 : 1), p3 = (1 : 1 : 0), p4 = (1 : 1 : 1),
p5 = (0 : 0 : 1), p6 = (0 : 1 : 0), and p7 = (0 : 1 : 1). We want to compute
the reduced Lex -Gröbner basis of the homogeneous vanishing ideal I+(X).
Here are the steps of the projective Buchberger-Möller algorithm.
1) Let G = ∅ , S = ∅ , d = 0, and M ∈ Mat0,7(F2).
2) The Hilbert function of S = P satisfies HFS(d) = 1. Hence we let d = 1,

S = ∅ , M ∈ Mat0,7(F2), and L = {x0, x1, x2} .
3) Choose t = x2 and let L = {x0, x1} .
4) Compute (t(p1), . . . , t(p7)) = (0, 1, 0, 1, 1, 0, 1) = (v1, . . . , v7).
6) Let M = (0 1 0 1 1 0 1) and S = (x2).
3) Choose t = x1 and let L = {x0} .
4) Compute (t(p1), . . . , t(p7)) = (0, 0, 1, 1, 0, 1, 1) = (v1, . . . , v7).
6) Let M =

(
0 1 0 1 1 0 1
0 0 1 1 0 1 1

)
and S = (x2, x1).

3) Choose t = x0 and let L = ∅ .
4) Compute (t(p1), . . . , t(p7)) = (1, 1, 1, 1, 0, 0, 0) = (v1, . . . , v7).
6) Let M =

(
0 1 0 1 1 0 1
0 0 1 1 0 1 1
1 1 1 1 0 0 0

)
and S = (x2, x1, x0).

2) The Hilbert function of S = P satisfies HFS(d) = 3. Hence we let d = 2,
S = ∅ , M ∈ Mat0,7(F2), and L = {x2

0, x0x1, x0x2, x
2
1, x1x2, x

2
2} .

Now we continue to cycle through the loop in steps 3)–6). No Gröbner
basis elements are discovered, and after six loops we arrive at step 2) again.
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2) The Hilbert function of S = P satisfies HFS(d) = 6. Hence we let d = 3,
S = ∅ , M ∈ Mat0,7(F2), and L = {x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2,

x3
1, x

2
1x2, x1x

2
2, x

3
2} .

3) Choose t = x3
2 and let L = {x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2, x

3
1,

x2
1x2, x1x

2
2} .

4) Compute (t(p1), . . . , t(p7)) = (0, 1, 0, 1, 1, 0, 1) = (v1, . . . , v7).
6) Let M = (0 1 0 1 1 0 1) and S = (x3

2).
3) Choose t = x1x

2
2 and let L = {x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2, x

3
1,

x2
1x2} .

4) Compute (t(p1), . . . , t(p7)) = (0, 0, 0, 1, 0, 0, 1) = (v1, . . . , v7).
6) Let M =

(
0 1 0 1 1 0 1
0 0 0 1 0 0 1

)
and S = (x3

2, x1x
2
2).

3) Choose t = x2
1x2 and let L = {x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2, x

3
1} .

4) Compute (t(p1), . . . , t(p7)) = (0, 0, 0, 1, 0, 0, 1) and reduce it against the
rows of M to obtain (v1, . . . , v7) = (0, . . . , 0).

5) Let G = {x2
1x2 + x1x

2
2} .

3) Choose t = x3
1 and let L = {x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2} .

4) Compute (t(p1), . . . , t(p7)) = (0, 0, 1, 1, 0, 1, 1) = (v1, . . . , v7)
6) Let M =

(
0 1 0 1 1 0 1
0 0 0 1 0 0 1
0 0 1 1 0 1 1

)
and S = (x3

2, x1x
2
2, x

3
1).

3) Choose t = x0x
2
2 and let L = {x3

0, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2} .

4) Compute (t(p1), . . . , t(p7)) = (0, 1, 0, 1, 0, 0, 0) and reduce it against the
rows of M to obtain (v1, . . . , v7) = (0, 0, 0, 0, 1, 0, 1).

6) Let M =
( 0 1 0 1 1 0 1

0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 0 0 0 1 0 1

)
and S = (x3

2, x1x
2
2, x

3
1, x0x

2
2 + x3

2).

3) Choose t = x0x1x2 and let L = {x3
0, x

2
0x1, x

2
0x2, x0x

2
1} .

4) Compute (t(p1), . . . , t(p7)) = (0, 0, 0, 1, 0, 0, 0) and reduce it against the
rows of M to obtain (v1, . . . , v7) = (0, 0, 0, 0, 0, 0, 1).

6) Let M =
( 0 1 0 1 1 0 1

0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 0 1

)
and S = (x3

2, x1x
2
2, x

3
1, x0x

2
2+x3

2, x0x1x2+x1x
2
2).

3) Choose t = x0x
2
1 and let L = {x3

0, x
2
0x1, x

2
0x2} .

4) Compute (t(p1), . . . , t(p7)) = (0, 0, 1, 1, 0, 0, 0) and reduce it against the
rows of M to obtain (v1, . . . , v7) = (0, 0, 0, 0, 0, 1, 1).

6) Let M =

(
0 1 0 1 1 0 1
0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 1

)
and S = (x3

2, x1x
2
2, x3

1, x0x
2
2+x3

2, x0x1x2+x1x
2
2,

x0x
2
1 + x2

1x2).
3) Choose t = x2

0x2 and let L = {x3
0, x

2
0x1} .

4) Compute (t(p1), . . . , t(p7)) = (0, 1, 0, 1, 0, 0, 0) and reduce it against the
rows of M to obtain (v1, . . . , v7) = (0, . . . , 0).

5) Let G = {x2
1x2 + x1x

2
2, x2

0x2 + x0x
2
2} .

3) Choose t = x2
0x1 and let L = {x3

0} .
4) Compute (t(p1), . . . , t(p7)) = (0, 0, 1, 1, 0, 0, 0) and reduce it against the

rows of M to obtain (v1, . . . , v7) = (0, . . . , 0).
5) Let G = {x2

1x2 + x1x
2
2, x2

0x2 + x0x
2
2, x2

0x1 + x0x
2
1} .

3) Choose t = x3
0 and let L = ∅ .

4) Compute (t(p1), . . . , t(p7)) = (1, 1, 1, 1, 0, 0, 0) = (v1, . . . , v7).
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6) Let M =

( 0 1 0 1 1 0 1
0 0 0 1 0 0 1
0 0 1 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 1
1 1 1 1 0 0 0

)
and S = (x3

2, x1x
2
2, x3

1, x0x
2
2+x3

2, x0x1x2+x1x
2
2,

x0x
2
1 + x2

1x2, x3
0).

2) Compute LTLex(G) = (x2
0x1, x

2
0x2, x

2
1x2) and HFP/(x2

0x1,x2
0x2,x2

1x2)
(i) = 7

for i ≥ 3. Return G and stop.
Altogether, we find that the reduced Lex-Gröbner basis of I+(X) is the

set G = {x2
0x1 + x0x

2
1, x2

0x2 + x0x
2
2, x2

1x2 + x1x
2
2} .

6.3.C Hilbert Functions of Points

Guiding a group of mathematicians
is like herding cats.

(Anthony V. Geramita)

In this subsection we want to guide you through a complete classification
of all possible Hilbert functions of projective point sets. In Proposition 6.3.23,
we have seen some of their basic properties. Their growth is restricted by the
bounds we proved in Section 5.5.C. Let X = {p1 . . . , ps} ⊆ Pn

K be a projective
point set and HFX : Z −→ Z its Hilbert function.

Remark 6.3.27. For all i ≥ 1, we have HFX(i + 1) ≤ (HFX(i)[i])++ and
∆HFX(i + 1) ≤ (∆HFX(i)[i])++ . This follows from Corollary 5.5.28, be-
cause HFX is the Hilbert function of R = P/I+(X) and ∆HFX is the
Hilbert function of R/(x0) if x0 is a non-zero divisor for R . The last con-
dition can be satisfied since Hilbert functions do not change under base field
extensions, and if K is infinite then we have X ⊆ ı0(An

K) after a suitable
linear change of coordinates.

Thus it is natural to introduce the following notion.

Definition 6.3.28. A function H : Z −→ Z is called an O-sequence if it
has the following properties.
a) For i < 0, we have H(i) = 0, and H(0) = 1.
b) There exists a number r ∈ N such that H(i) = 0 for i ≥ r and H(i) �= 0

for 0 ≤ i < r .
c) For i = 1, . . . , r − 1, we have H(i + 1) ≤ (H(i)[i])++ .

Proposition 6.3.23 and Remark 6.3.27 yield the following result.

Corollary 6.3.29. The Castelnuovo function ∆HX of a projective point
set X is an O-sequence.

Next we ask whether every O-sequence is the Castelnuovo function of a
suitable projective point set. The first step in this direction is provided by
the following proposition.
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Proposition 6.3.30. For an integer function H : Z −→ Z , the following
conditions are equivalent.
a) The function H is an O-sequence.
b) There exists a Lex-segment ideal I ⊆ P such that dim(P/I) = 0 and

H = HFP/I .

Proof. First we show that a) implies b). By Theorem 5.5.32, there exists
a unique Lex-segment ideal I ⊆ P such that H = HFP/I . Since we have
H(i) = 0 for i ≥ r , the K -vector space P/I is finite-dimensional. There-
fore P/I is a zero-dimensional ring. Conversely, Theorem 5.5.32 yields con-
ditions a) and c) of Definition 6.3.28. Moreover, since dim(P/I) = 0 we
conclude that there exists a number r ≥ 1 such that (P/I)r−1 �= 0 and
(P/I)i = 0 for i ≥ r . Now the fact that P/I is a standard graded algebra
implies (P/I)i �= 0 for 0 ≤ i < r . �

At this point we are ready to characterize Hilbert functions of projective
point sets over an infinite base field K .

Theorem 6.3.31. (Hilbert Functions of Projective Point Sets)
Let K be a field with infinitely many elements, and let H : Z −→ Z be an
integer function. Then the following conditions are equivalent.
a) There exists a projective point set X ⊆ Pn

K such that H = HFX .
b) The function ∆H : Z −→ Z is an O-sequence.

Proof. Corollary 6.3.29 shows that a) implies b). To prove the converse im-
plication, we apply Proposition 6.3.30 and get a Lex-segment ideal I ⊆ P
such that dim(P/I) = 0 and HFP/I = ∆H . We choose sequences π1, . . . , πn

of pairwise distinct elements of K and let π = (π1, . . . , πn). By Theo-
rem 6.2.12.d, the ideal J = Dπ(I)hom is an x0 -lifting of I and a radical
ideal. Here x0 is a non-zero divisor for P/J and P/(J +(x0)) ∼= P/I . Hence
we have ∆H = HFP/I = ∆HFP/J . Together with H(i) = HFP/J (i) = 0 for
i < 0 and H(0) = HFP/J(0) = 1, this shows that H = HFP/J . Therefore it
remains to prove that there exists a projective point set X ⊆ Pn

K such that
J = I+(X).

By Theorem 6.2.8, the ideal Dπ(I) is an intersection of finitely many van-
ishing ideals of affine points, i.e. of ideals of the form (x1 − ci1, . . . , xn − cin)
with cij ∈ K . Hence we can use the rule given in Proposition 4.3.10.b
to deduce that J is the intersection of finitely many ideals of the form
(x1 − ci1x0, . . . , xn − cinx0). Since these ideals are the homogeneous van-
ishing ideals of the points (1 : ci1 : · · · : cin) ∈ Pn

K , the claim follows. �

It is clear that the implication “b)⇒a)” of the theorem continues to hold
if K is finite, but has sufficiently many elements. The following example
shows how one can use the proof of the theorem to construct the correspond-
ing projective point set.



406 6. Further Applications

Example 6.3.32. Let K = F5 and H : Z −→ Z be the O-sequence such
that H(1) = H(2) = H(3) = 2, H(4) = 1, and H(i) = 0 for i ≥ 5.
The corresponding Lex-segment ideal in K[x1, x2] is (x4

1, x
2
2). We choose the

sequences π1 = (0, 1, 2, 3) and π2 = (0, 1) and let J = Dπ((x4
1, x

2
2))

hom =
(x2(x2 − x0), x1(x1 − x0)(x1 − 2x0)(x1 − 3x0)). Then J is the homogeneous
vanishing ideal of the projective point set X = {(1 : 0 : 0), (1 : 1 : 0),
(1 : 2 : 0), (1 : 3 : 0), (1 : 0 : 1), (1 : 1 : 1), (1 : 2 : 1), (1 : 3 : 1)} in P2

K . The
Castelnuovo function of X is H .

........................... ................

........

...................

................

x1

x2

• • • •

• • • •

If K has too few elements, the theorem is not true anymore, as our next
example demonstrates.

Example 6.3.33. Let K = F2 and H : Z −→ Z be the O-sequence such
that H(1) = 2, H(2) = H(3) = H(4) = 1, and H(i) = 0 for i ≥ 5. The
2-dimensional projective space over K is a set X which consists of seven
points. Its Hilbert function is HFX : 1 3 6 7 7 · · · (see Example 6.3.26).
We are looking for a subset Y consisting of six of those points such that
HFY : 1 3 4 5 6 6 · · · which does not appear to be unreasonable at first sight.

As in Remark 6.3.27, we may perform a base field extension and a linear
change of coordinates such that x0 becomes a non-zero divisor for the ho-
mogeneous coordinate ring R = P/I+(X) of X . Then the Hilbert function
of R/(x0) is HFR/(x0) = ∆HFX : 1 2 3 1. Since the line Z+(x0) also misses
the points of Y , the polynomial x0 is a non-zero divisor for the homoge-
neous coordinate ring S of Y and we have HFS/(x0) = ∆HFY : 1 2 1 1 1.
Now S/(x0) is supposed to be a residue class ring of R/(x0) , but this is
impossible since (R/(x0))4 = 0 and (S/(x0))4 �= 0.

Finally, we mention a particularly simple and impressive method for con-
structing a point set in P2

K with a given Hilbert function if the characteristic
of K is zero.

Corollary 6.3.34. Let K be a field of characteristic zero and H : Z −→ Z
be an O-sequence with H(1) ≤ 2 . Consider the points in N 2 lying “on and
under” the graph of H in the following sense:
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Then the corresponding projective point set X in the affine part of P2
K

has Castelnuovo function H .

Proof. Let π1 = π2 = (0, 1, 2, . . .), let π = (π1, π2), and let I ⊆ K[x1, x2]
be the Lex-segment ideal corresponding to H . By Proposition 6.2.8, the ideal
J = Dπ(I)hom is the homogeneous vanishing ideal of the projective point set
of the form

...................................... ................
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........
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x

y
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• •

...............................................................
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........................................................................................................................................................................................

........................................................................................................................................................................................
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...............................................................

...............................................................

where the number of points on the diagonal line through (i, 0) is H(i).
Now it suffices to apply the linear change of coordinates given by x0 �→ x0 ,
x1 �→ x1 + x2 , and x2 �→ x2 to obtain the desired projective point set. �

Exercise 1. (Lagrange Interpolation)
Let K be a field, let p1, . . . , ps ∈ K be pairwise distinct elements, let
X = {p1, . . . , ps} ⊆ A1

K , and let q1, . . . , qs ∈ K .

a) For i = 1, . . . , s , show that fi =
∏
j �=i

x−pj

pi−pj
∈ K[x] is a separator of pi

from X \ pi .
b) Prove that q1f1 + · · · + qsfs ∈ K[x] is an interpolator for (q1, . . . , qs)

with respect to (p1, . . . , ps) .

Exercise 2. Let X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ A3
Q . Com-

pute the reduced DegRevLex -Gröbner basis of I(X) by applying the
Buchberger-Möller algorithm.

Exercise 3. Find all polynomials f ∈ Q[x, y] which attain the following
values: f(2, 3) = 1, f(5, 2) = 3, f(−1, 1) = 0, f(2,−5) = −1, and
f(−2,−2) = 10.
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Exercise 4. Let K be a field of characteristic zero, let I ⊆ K[x1, . . . , xn]
be a zero-dimensional monomial ideal, and let σ be a term ordering on Tn .
We identify the terms in Oσ(I) = Tn \ LTσ{I} = {t1, . . . , ts} with the
points pi = log(ti) ∈ An

K , and we let πi = (0, 1, 2, . . .) for i = 1, . . . , n .
Prove that the vanishing ideal of the affine point set X = {p1, . . . , ps}
in An

K is I(X) = (Dπ(t1), . . . , Dπ(ts)) , where π = (π1, . . . , πn) .

Exercise 5. Let X ⊂ P2
Q be a projective point set whose homogeneous

vanishing ideal is of the form I+(X) = (F, G) with homogeneous polynomi-
als F, G ∈ Q[x0, x1, x2] . Show that the following conditions are equivalent.

a) The Castelnuovo function of X has the shape ∆ HFX : 1 1 · · · 1 0 0 · · · .
b) We have min{deg(F ), deg(G)} = 1.

Exercise 6. Let K be a field, let P = K[x0, . . . , xn] be standard
graded, and let X ⊂ Pn

K be a projective point set with the property that
∆ HFX(rX − 1) = ∆ HFX(rX) = 1. Prove that X contains rX + 1 points on
a line.

Exercise 7. Show that the algorithm in Theorem 6.3.24 is not correct if
we replace the first part of step 2) by the following instruction:

Compute the Hilbert series of S = P/(LTσ(g) | g ∈ G) and check whether
HFS(d) = s .

Exercise 8. Classify the possible Castelnuovo functions of five points
in P2

Q .

Tutorial 88: The Cayley-Bacharach Property

“Mullah Nasrudin, can I borrow your clothes-line?”
“Sorry, I am using it to dry flour.”

“How on earth can you dry flour on a clothes-line?”
“It is less difficult than you think
when you do not want to lend it.”

“Mullah Nasrudin, can I borrow your donkey?”
“Sorry, but it is not home today.”

“EEH-AAH!”
“Why are you lying? Your donkey is home!”

“Do you believe me or the donkey?”

In this tutorial we want to acquire some experience in handling projective
point sets. Rather than borrowing the built-in CoCoA command for computing
their homogeneous vanishing ideals, we believe it is more honest and instruc-
tive for you to implement the Projective Buchberger-Möller Algorithm 6.3.24
on your own. You know, you can observe a lot by just watching. Knowing
many examples is a powerful alternative source of experience. And don’t try
to compute vanishing ideals of large point sets using syzygies: it will take
forever. “Good judgement comes from experience”, said Mullah Nasrudin,
“and experience comes from bad judgement.”
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By expending a little extra effort, we can even ferret out the separators
of the point set. These are homogeneous polynomials which vanish at all of
the points except one. Separators are not unique: given a projective point
set X and a point p ∈ X , there is a minimal degree of a separator of p from
X \ {p} . It is called the degree of the point in X and denoted by degX(p).
For every d ≥ degX(p), there is a 1-dimensional space of separators of p
from X \ {p} in degree d . The sequence of the degrees of the points in X
contains information about X and is called its conductor sequence. What
secrets can we tease out of the conductor sequence of a projective point set?
“I can’t tell you the secret of the universe”, said Mullah Nasrudin, “because
then it would not be a secret anymore.”

A particularly interesting situation occurs when all points of the set X
have the maximal possible degree, namely the regularity index of the Hilbert
function of X . This property is called the Cayley-Bacharach property of X . It
has been studied in various guises for more than two centuries. For instance,
you will show that a set of points in the projective plane which is the complete
intersection of two plane curves enjoys this property. What is the Cayley-
Bacharach property good for? Does it have any practical applications? “The
moon is more useful than then sun”, said Mullah Nasrudin, “because in the
night we have more need of light.”

Let K be a field, let (ci0, ci1, . . . , cin) ∈ Kn+1 \ {0} for i = 1, . . . , s ,
and let X ⊆ Pn

K be the projective point set X = {p1, . . . , ps} given by
pi = (ci0 : . . . : cin) for i = 1, . . . , s . We assume that X consists of s distinct
points. Moreover, we equip the polynomial ring P = K[x0, . . . , xn] with the
standard grading, and we choose a term ordering σ in Tn+1 .
a) Write a CoCoA function ProjBuMo(. . .) which implements the Projective

Buchberger-Möller Algorithm 6.3.24. It should take the matrix with rows
p1, . . . , ps as its input and return the reduced σ -Gröbner basis of I+(X).
Hint: First you may want to write a subroutine which reduces a vector
against the rows of a matrix in the sense explained before Theorem 6.3.10.

b) Apply your function ProjBuMo(. . .) to compute the homogeneous van-
ishing ideals of the following projective point sets.
1) X1 = {(1:0:0), (0:1:0), (0:0:1)} ⊆ P2

Q

2) X2 , the set of K -rational points in P2
K where K = Z/(3)

3) X3 = {(1:1:1), (1:1:−1), (−1:1:−1), (−1:1:1), (1:4:1), (1:4:−1),
(−1:4: − 1), (−1:4:1)} ⊆ P2

K where K = Z/(13)
c) Formulate and prove the projective analog of Corollary 6.3.11. Expand

your function BuMo(. . .) to include the new step 2’) which returns also a
list of homogeneous separators of X . Call the new function ExtBuMo(. . .).

d) Using your function ExtBuMo(. . .), compute lists of homogeneous sepa-
rators for the projective point sets in b).

e) Use ExtBuMo(. . .) to solve the following separation problem: find the equa-
tion of a hypersurface containing a given subset Y of X but which does
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not pass through any point of X\Y . Write a CoCoA function CutOut(. . .)
which takes Y ⊆ X and computes the equation of a hypersurface H ⊆ Pn

which cuts out Y , i.e. for which we have Y = X ∩ H .
In the following we let R = P/I+(X) be the homogeneous coordinate ring

of X , we denote its Hilbert function by HFX = HFR , and we let rX = riHFX
.

f) Show that the map ε : RrX
−→ Ks which is defined by sending f+I+(X)

to (f(c10, . . . , c1n), . . . , f(cs0, . . . , csn)) is an isomorphism of K-vector
spaces.

g) Using f), show that for every i ∈ {1, . . . , s} , there exists a homogeneous
separator of pi from X \ {pi} of degree rX .

h) Let 1 ≤ i ≤ s and Y = X \ {pi} . Prove that there is a degree d ∈ N ,
called the degree of pi in X and denoted by degX(pi), such that

HFY(j) =
{

HFX(j) for j < d,
HFX(j) − 1 for j ≥ d.

Furthermore, observe that we have degX(pk) ≤ rX for k = 1, . . . , s .
i) Show that, for any number 1 ≤ t ≤ s , there exists a subset Y ⊆ X

consisting of t points such that the Hilbert function of Y satisfies
HFY(i) = min{t,HFX(i)} for every i ∈ Z .

j) Explain how you can modify your program ExtBuMo(. . .) to compute
a list of homogeneous separators of minimal degrees of X . The tuple
(degX(p1), . . . ,degX(ps)) is called the conductor sequence of X . Write
a CoCoA function ConductorSeq(. . .) which takes the matrix with rows
p1, . . . , ps as input and computes the conductor sequence of X .
Hint: Every time a degree is finished, diagonalize the matrix M as much
as possible, mimic the necessary row operations on S , and put the degrees
of new separators you find into their position in the output tuple.

k) Using your function ConductorSeq(. . .), compute the conductor se-
quences of the projective points sets in b) and of the following examples.
1) X4 = Z+

Q (x1(x1−x0)(x1−2x0), x2(x2−x0)(x2−2x0))\{(1:1:1)} ⊆ P2
Q

2) X5 ⊆ P2
Q given by the picture in Corollary 6.3.34

3) X6 = {(1:0:0), (1:2:2), (1:3:3), (1:4:4), (1:1:0), (1:0:1)} ⊆ P2
Q

The set X is said to have the Cayley-Bacharach property, or to be a
Cayley-Bacharach scheme, if degX(pi) = rX for i = 1, . . . , s . In the last
part of this tutorial we look for examples of Cayley-Bacharach schemes.
l) Write a CoCoA function IsCayleyBacharach(. . .) which takes the matrix

with rows p1, . . . , ps as input and checks whether X has the Cayley-
Bacharach property. Find out which of the sets X1, . . . , X6 have the
Cayley-Bacharach property.

m) Assume that X ⊆ P2
K is a complete intersection of two hypersurfaces,

i.e. assume that there are homogeneous polynomials F,G ∈ K[x0, x1, x2]
of degree a = deg(F ) and b = deg(G) such that I+(X) = (F,G) . Show
that X has the Cayley-Bacharach property by proving the following facts.
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1) We may assume that x0 is a non-zero divisor for R .
2) Let R = R/(x0), and let H ∈ K[x0, x1, x2] be a homogeneous sep-

arator of a point pi from X \ {pi} . Show that the residue class
of h = H(0, x1, x2) is an element of the socle of R , i.e. that it
is annihilated by the homogeneous maximal ideal R+ .
Hint: Multiply H by lines passing through pi .

3) Consider the presentation R ∼= K[x1, x2]/(f, g) with f = F (0, x1, x2)
and g = G(0, x1, x2) . Prove that the socle of R is Ra+b−2 .
Hint: Write x1h = c11f + c12g and x2h = c21f + c22g . Then use
Syz(f, g) = 〈(−g, f)〉 and show deg(h) ≥ a + b − 2.

Can you generalize this result to complete intersections in Pn
K ?

n) Write a CoCoA function IsOSequence(. . .) which takes a list of nonnega-
tive integers, checks if it is an O-sequence, and returns the corresponding
Boolean value.

o) Find all possible Hilbert functions of a projective point set X ⊆ P2
Q

consisting of ten points. Write a CoCoA function AllHF(. . .) to do this
for any number of points in P2

Q and verify your result in some cases. How
far can you compute AllHF(. . .)?

p) Find all Hilbert functions among the ones constructed in n) which have
the property that any projective point set X with this Hilbert function
is a Cayley-Bacharach scheme.

Tutorial 89: Generic Sets of Points

He knows nothing;
and he thinks he knows everything.

That points clearly to a political career.
(George Bernard Shaw)

Not wanting to embark on a political career yet, we admit that there are
numerous problems concerning finite sets of points about which we know very
little. One of the first and most natural questions is what the Hilbert function,
degree sequence, and graded Betti numbers are for the vanishing ideal (or the
homogeneous coordinate ring) of a “generically chosen” projective point set.
Whereas the generic Hilbert function is not difficult to determine, there are
(as of this writing) only partial results about the generic values of the degree
sequence and the graded Betti numbers. In this tutorial we deduce some
basic facts about these numbers. Moreover, we explore the Ideal Generation
Conjecture and the Minimal Resolution Conjecture using CoCoA.

Let K be an infinite field, let P = K[x0, . . . , xn] be a standard graded
polynomial ring over K , let s ≥ 1, let X = {p1, . . . , ps} ⊆ Pn

K be a projective
point set, let I+(X) ⊆ P be the homogeneous vanishing ideal of X , and let
R = P/I+(X) be the homogeneous coordinate ring of X . Assume that P is
a property of projective point sets consisting of s distinct points. In analogy
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with Definition 5.5.19.c, we say that P holds for a generic set of s points
if there exists a non-empty Zariski open subset U of (Kn+1)s such that
property P holds for every projective point set X = {p1, . . . , ps} whose
points pi = (pi0 : . . . : pin) satisfy

((p10, . . . , p1n), . . . , (ps0, . . . , psn)) ∈ U

We say that X has generic Hilbert function (or that X is in generic
position) if HFX(i) = min{s,

(
i+n
n

)
} for all i ≥ 0.

a) Show that a generic set of s points has generic Hilbert function and
the property that no three points are collinear (i.e. no three points are
contained in a line).

b) Let K = Q . Write a CoCoA function GenPoints(. . .) which takes s and
computes an s× (n + 1)-matrix over Q whose rows represent the points
of a projective point set X which has generic Hilbert function and no
three points of which are collinear.
In the following we assume that X has generic Hilbert function. Let α

be the least degree of a non-zero element in I+(X). The Ideal Generation
Conjecture (IGC) predicts the number of the minimal homogeneous gen-
erators of I+(X) and their degrees for a generic set of s points. In the next
part of this tutorial we derive an explicit version of this conjecture and prove
it in some cases.
c) Let d be the unique integer such that

(
d+n

n

)
≤ s <

(
d+1+n

n

)
. Show that

d = α − 1.
d) Prove that there exists an element � ∈ R1 for which S = R/(�) has

Hilbert function HFS(i) = ∆HFX(i) for all i ∈ Z . Conclude that Si = 0
for all i ≥ α + 1.

e) Show that, after a suitable linear change of coordinates, the ring S has
a presentation S ∼= K[y1, . . . , yn]/J where K[y1, . . . , yn] is a standard
graded polynomial ring and J is a homogeneous ideal which has the same
number of minimal homogeneous generators as I+(X) in each degree.

f) Prove that J has minimal homogeneous generators in degrees α and
α + 1 only, and that is has exactly

(
α+n

n

)
− s minimal homogeneous

generators in degree α .
g) Let Φ : S1×Jα −→ Sα+1 be the multiplication map. Show the inequality

rk(Φ) ≤ min{
(
α+1+n

n

)
, n
(
α+n

n

)
− ns} . Deduce that the ideal J has at

least β =
(
α+1+n

n

)
−min{

(
α+1+n

n

)
, n
(
α+n

n

)
−ns} minimal homogeneous

generators in degree α + 1.
The upshot of this discussion is that the ideal I+(X) has exactly

(
α+n

n

)
−s

minimal homogeneous generators in degree α , at least β minimal homoge-
neous generators in degree α + 1, and no other minimal homogeneous gen-
erators. The Ideal Generation Conjecture says that the number of minimal
homogeneous generators in degree α+1 should be exactly β for generic sets
of points.
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h) Write a CoCoA program IGC Points(. . .) which constructs, for any
given s , a set of s points in Pn

Q satisfying IGC. Apply this program
to as many pairs (s, n) as possible.

i) Let α ≥ 2 and 1 ≤ r ≤ α . Prove that there exist terms t1, . . . , tr ∈ T 2
α

such that the multiplication map

Φ : K[x1, x2]1 × (Kt1 ⊕ · · · ⊕ Ktr) −→ K[x1, x2]α+1

satisfies rk(Φ) = min{2r, α + 2} .
j) Using i) and Theorem 6.2.12, prove that for every s ≥ 1 there exists a

projective point set X = {p1, . . . , ps} ⊂ P2
K which has generic Hilbert

function and satisfies IGC.
It can be shown that there exists a Zariski open subset of (Kn+1)s which

corresponds to projective point sets having generic Hilbert function and satis-
fying IGC. If this open set is non-empty, a generic set of s points satisfies IGC.
In the remaining parts of this tutorial we want to generalize IGC. Recall that
the degrees d11 ≤ d12 ≤ · · · ≤ d1r1 of the minimal homogeneous generators
of the ideal I+(X) form its degree sequence, and that its minimal graded
free resolution has the shape

0 →
rn⊕
i=1

P (−dni) −→ · · · −→
r2⊕

i=1

P (−d2i) −→
r1⊕

i=1

P (−d1i) −→ I+(X) → 0

with sequences of integers dj1 ≤ dj1 ≤ · · · ≤ djrj
(see Section 4.8). The

Minimal Resolution Conjecture (MRC) predicts the values of these
degree sequences for generic sets of points. In the following we examine an
explicit version of this conjecture and use CoCoA to prove or disprove it in
special cases.

To simplify the discussion, we let K be a field having infinitely many
elements, and we assume that we have performed a linear change of coor-
dinates such that the projective point set X = {p1, . . . , ps} ⊂ Pn

K satisfies
X ∩ Z+(x0) = ∅ .
k) Prove that we have d11 < d21 < · · · < dn1 .
l) (This part requires some knowledge of homological algebra, in particular

of Tutorial 33.) For i = 1, . . . , n , let Fǐ be the graded free module
Fǐ =

⊕rj

j=1 P (dij). Show that the dual sequence

0 −→ P −→ F1̌ −→ · · · −→ Fnˇ −→ Extn
P

(R,P ) −→ 0

is the minimal graded free resolution of the Ext-module Extn
P

(R,P ).
Deduce that we have dnrn

> dn−1rn−1 > · · · > d1r1 .
Hint: To show that depthI+(X)(P ) = n , embed X in a full design.

m) Write CoCoA functions Alpha(. . .), Ri(. . .), and MGFRdegs(. . .) which
take the ideal I+(X) and compute the numbers α , ri(HFX), and the list
of lists of numbers

((d11, . . . , d1r1), . . . , (dn1, . . . , dnrn
))



414 6. Further Applications

n) Suppose that the projective point set X has generic Hilbert function.
Using d) and Tutorial 64.a, show that dnrn

∈ {α + n − 1, α + n} .
Hint: Prove that ri(HFX) = dnrn

− n .
o) By combining m) and n), prove that the minimal graded free resolution

of I+(X) has the shape

0 −→ P (−α − n + 1)an ⊕ P (−α − n)bn −→ · · · −→
−→ P (−α)a1 ⊕ P (−α − 1)b1 −→ I+(X) −→ 0

if X has generic Hilbert function. Here the numbers ai, bi are non-
negative integers.

p) Show that ri(HFX) = α− 1 if and only if the number of points of X is a
binomial coefficient of the form s =

(
α−1+n

n

)
. Prove that in this case we

have b1 = · · · = bn = 0 and we can calculate the numbers ai recursively
just knowing the Hilbert function of X .

q) Use p) to find the resolution of s =
(
2+n

n

)
points in Pn which don’t lie

on a quadric hypersurface for n = 2, 3, 4, . . . . What do you conjecture
the resolution should be for all n? Use CoCoA to check your conjecture
for as many n as possible!

r) Prove that if, for a generic set of points X , the first syzygy module
of I+(X) begins in degree α + 2 (rather than degree α + 1), then all
the remaining syzygy modules are generated in the highest degree pos-
sible. Conclude that a2 = · · · an = 0 and find formulas for the numbers
a1, b1, b2, . . . , bn .
It is time to provide the explicit statement of the Minimal Resolution

Conjecture. Let m = α
s

(
α+n

n

)
− α , and assume that s is different from(

α−1+n
n

)
. Then the Minimal Resolution Conjecture says that a generic set

of s points satisfies am+1 = bm−1 = 0.
s) (This part involves some tricky calculations with binomial coefficients.)

Let X be a set of points with ri(HFX) = α , and let δ = s−
(
α−1+n

n

)
. Show

that a1 =
(
α+n

n

)
− s , bn = δ , and ai − bi−1 =

(
α−1+n
α−1+i

)(
α−2+i
α−1

)
− δ
(

n
i−1

)
for i = 2, . . . , n .

t) Implement a CoCoA function ExBetti(. . .) which computes the matrix(
a1 ··· an

b1 ··· bn

)
expected by MRC for a generic set of s points.

u) Use CoCoA to verify MRC for small numbers of points in P 2
Q , P 3

Q and P 4
Q .

How far can you go?
v) Compute the minimal graded free resolutions of the homogeneous van-

ishing ideals of several randomly chosen sets of 11 points in P 6
Q and check

that they do not satisfy MRC. Can you do the same for 12 points in P 7
Q

and 13 points in P 8
Q ? Can you find further exceptions to MRC?

Good resolutions are simply checks
that men draw on a bank

where they have no account.
(Oscar Wilde)
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Tutorial 90: Error-Correcting Codes

The fact that our econometric models at the Fed,
the best in the world,

have been wrong for 14 straight quarters,
does not mean that they will not be right

in the 15 th quarter.
(Alan Greenspan)

The goal of coding theory is to transfer information efficiently and safely
across a “noisy” channel, i.e. a channel which modifies some of the transmit-
ted data. Examples of such information transfers are satellite transmissions
and data storage on compact disks or other media. To achieve this goal, we
first equip the message with a certain amount of redundant information. Then
we transfer the resulting code word. The received word may contain errors.
The number of positions in which it differs from the word we sent out is called
its Hamming distance from that code word. Although these Hamming metric
models may not be the best in the world, they will reconstruct the original
message in many cases. Of course, even if this reconstruction has been right
for 14 straight message words, this does not mean that it will be right for the
15th word. Schematically, the basic setup looks as follows.

message −→ encoder
code−→
word

channel
received−→

word
decoder −→ reconstruction

Now we have to fill this abstract scheme with concrete contents. The
first step is to divide the message into suitable units, called words, and to
represent those words mathematically. For an alphabet, we use the elements
of a finite field K . Then a word of length k is a tuple in Kk . The encoder
performs an injective map ε : Kk −→ Kn where n is the length of the code
words. Accordingly, the decoder is a map δ : Kn −→ Kk such that δ ◦ ε is
the identity. The set C = ε(Kk) is called the code and its elements are the
code words.

Let m ∈ Kk be the message word, let c = ε(m) ∈ Kn be the code word
sent out, and let e ∈ Kn be the error introduced by the noisy channel. Thus
the received word is c + e . If there exists a map δ with the property that
δ(c + e) = m for all e having at most t non-zero entries, we say that the
code C is t-error correcting. Naturally, we would like to correct as many
errors as possible. The overhead we have introduced is the redundancy n−k
of the code. Thus a more precise formulation of our goal is that we want to
find codes which correct many errors and have a small redundancy. So, let
us see how many errors we can correct. Even if we will not always be right,
we may take heart from the fact that economists have successfully predicted
ten of the last three recessions.

To search for concrete “good” codes, we specialize further and consider
linear encoders. Let p be a prime number, let e > 0, let q = pe , and let
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K = Fq be the field with q elements. A linear code C over K is a K-sub-
vector space of Kn . The number n is called the length of C , and the number
k = dimK(C) is called the dimension of C .

Given a two tuples v, w ∈ Kn , we define their Hamming distance
η(v, w) as the number of non-zero entries of v − w . Then the minimal
distance of C is d = min{η(v, w) | v, w ∈ C, v �= w} . Sometimes we
combine the three basic numbers and say that C is an [n,k,d]-code.
a) Show that η has the following properties of a metric on Kn .

1) We have η(v, w) ≥ 0 for all v, w ∈ Kn and η(v, w) = 0 if and only
if v = w .

2) The map η is symmetric, i.e. we have η(v, w) = η(w, v) for all tuples
v, w ∈ Kn .

3) The map η satisfies the triangle inequality. This means that we
have η(u,w) ≤ η(u, v) + η(v, w) for all tuples u, v, w ∈ Kn .

b) Prove that the minimal distance of a linear code C is the minimum of
the numbers #{i | ci �= 0} where (c1, . . . , cn) ranges over the set of all
non-zero code words.

c) Show that C is t -error correcting if d ≥ 2t + 1.
d) Prove the Singleton bound d ≤ n− k + 1. This implies that the error-

correcting capability of a linear code is bounded by its redundancy.
Hint: Delete the last d− 1 components of each code word and count the
words of the resulting code.
One way of specifying a linear code is by giving a matrix G ∈ Matk,n(K)

whose rows form a K -basis of C . The matrix G is called a generator matrix
of C .
g) Determine the minimum distance of the linear codes over K = F2 given

by the following generator matrices.
1) G1 =

(
1 0 1 0
0 1 0 1

)
([4,2] cyclic code)

2) G2 =
( 1 0 0 0 1 1 1

0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

)
([7,4] Hamming code)

3) G3 =
(

1 1 ··· 1
v1 v2 ··· v32

)
where {v1, . . . , v32} = K5

([5,1] binary Reed-Muller code)
h) Write a CoCoA function MinDist(. . .) which takes the generator matrix

of a linear code and computes its minimal distance. Use this function to
check your results for the codes in g).
How can we find linear codes coming close to or attaining the Single-

ton bound? The following construction utilizes projective point sets. So, let
X={p1, . . . , ps} ⊆ Pn

K be a projective point set, let R = K[x0, . . . , xn]/I+(X)
be its homogeneous coordinate ring, and let 1 ≤ j < ri(HFX). For every
i ∈ {1, . . . , s} , we write pi = (pi0 : . . . : pin) with elements pik ∈ K .
Then the image of the K-linear map �j : Rj −→ Ks defined by the rule
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�j(f) = (f(p10, . . . , p1n), . . . , f(ps0, . . . , psn)) is called the jth generalized
Reed-Muller code associated to X and is denoted by Cj(X).
i) In the above setting, prove that Cj(X) is a linear code of length s and

dimension k = HFX(j).
j) Determine which of the linear codes defined by the generator matrices

in g) are generalized Reed-Muller codes.
Our next task is to compute the minimal distance of generalized Reed-

Muller codes. For every i ∈ {1, . . . , s − 1} , we say that the projective point
set X is (i,j)-uniform if every subset Y ⊆ X consisting of s − i points
satisfies HFY(j) = HFX(j).
k) Show that X has the Cayley-Bacharach property if and only if X is

(1, ri(HFX) − 1)-uniform.
l) Suppose that X is (i, j)-uniform. Prove that X is (i− 1, j)-uniform and

(i, j − 1)-uniform.
m) Show that we have i ≤ s − HFX(j) if X is (i, j)-uniform. Hence there

exists an region of uniformity of X which looks as follows.
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n) Prove that the minimal distance of Cj(X) is

d = 1 + max{i ∈ {1, . . . , s − 1} | X is (i, j)-uniform }

Hint: Show that d ≥ i + 1 if and only if every f ∈ Rj \ {0} vanishes at
≤ s− i− 1 points of X , and this is equivalent to X being (i, j)-uniform.
So, to find good codes we have to find projective point sets with high

uniformity. Given a generator matrix, the encoder of a linear code is obviously
easy to implement and very efficient. But what about the decoder? As it turns
out, decoding linear codes is in general not that easy. In the last part of this
tutorial we study the most common method, called syndrome decoding,
which admits numerous optimizations.

Let G ∈ Matk,n(K) be a generator matrix for a linear [n, k, d] -code C . A
matrix H ∈ Matn−k,n(K) is called a parity check matrix for C if it has
rank n − k and satisfies G Htr = 0.
o) Show that the code C⊥ ⊆ Kn with generator matrix H consists of

all tuples (c1, . . . , c) ∈ Kn which satisfy c1d1 + · · · + cndn = 0 for all
(d1, . . . , dn) ∈ C . The code C⊥ is called the dual code of C .
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p) Find the parity check matrices of the codes in g).
q) Suppose that G is systematic, i.e. that it has the form G = (Ik | G′)

with a matrix G′ ∈ Matk,n−k(K). Find a parity check matrix of C .
Let H be a parity check matrix for C , let c ∈ C be a code word which

has been sent, and let v = c+e ∈ Kn be the received word. Then the element
vHtr is called the syndrome of v . Given a fixed syndrome s , the set of all
tuples v ∈ Kn with that syndrome s = vHtr is called the coset of s . A
tuple � ∈ Kn with syndrome s and minimal Hamming distance η(�, 0) is
called a coset leader of s .
r) Show that the syndrome of a received word depends only on the error

vector, and not on the code word which has been sent.
s) Assuming that d ≥ 2t+1, prove that any coset containing a tuple v ∈ Kn

with η(v, 0) ≤ t has a unique coset leader. Give an example in which the
coset leader is not unique.

t) Write a CoCoA function CosetLeaders(. . .) which takes G and computes
the list of all pairs (s, �) where � is a coset leader of a syndrome s .

u) Let L be the list computed by the function CosetLeaders(. . .), let G∗

be a left inverse of Gtr , and let v ∈ Kn be a received word. Consider the
Syndrome Decoding Algorithm defined by the following instructions.
1) Compute s = vHtr and use the list L to find all coset leaders of s .
2) If there is more than one coset leader, return "Reconstruction not

unique" and stop.
3) Let � be the unique coset leader, and let c = v− � . Return the tuple

m = G∗ c ∈ Kk .
Prove that if d ≥ 2t + 1 and no more than t errors occurred in the
transmission of a code word c = ε(m), then the Syndrome Decoding
Algorithm correctly reconstructs m .

v) Write a CoCoA function SynDecode(. . .) which implements the Syndrome
Decoding Algorithm. Apply this function to the codes Ci defined by the
matrices Gi in g) and the following words.
1) C1 and v1 = (0, 0, 0, 1)
2) C2 and v2 = (1, 1, 0, 1, 1, 0, 1)
3) C3 and v3 = (0, 1, 0, 1, 0, 1, . . . , 0, 1)
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6.4 Border Bases

Given a choice between two theories,
take the one which is funnier.

(Anonymous)

After smoothly traversing together more than 700 pages of Gröbner basis
territory, we are about to hit some obstacles. We have to confess that Gröbner
bases are not the wholly sacred generating systems of an ideal we may have
led you to believe. (The more sins you confess, the more books you will sell!)
The following two examples highlight a couple of serious glitches.

Example 6.4.1. Consider the polynomial system

f1 = 1
4 x2 + y2 − 1 = 0

f2 = x2 + 1
4 y2 − 1 = 0

The intersection of Z(f1) and Z(f2) in A2(C) consists of the four points
X = {(±

√
4/5, ±

√
4/5)} .
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Using Gröbner basis theory, we describe this situation as follows. The set
{x2− 4

5 , y2− 4
5} is the reduced Gröbner basis of the ideal I = (f1, f2) ⊆ C[x, y]

with respect to σ = DegRevLex . Therefore we have LTσ(I) = (x2, y2),
and the residue classes of the terms in T2 \ LTσ{I} = {1, x, y, xy} form
a C -vector space basis of C[x, y]/I .

Now consider the slightly perturbed polynomial system

f̃1 = 1
4 x2 + y2 + ε xy − 1 = 0

f̃2 = x2 + 1
4 y2 + ε xy − 1 = 0

where ε is a small number. The intersection of Z(f̃1) and Z(f̃2) consists of
four perturbed points X̃ close to those in X .
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This time the ideal Ĩ = (f̃1, f̃2) has the reduced σ -Gröbner basis

{x2 − y2, xy + 5
4ε y2 − 1

ε , y3 − 16ε
16ε2−25 x + 20

16ε2−25 y}

Moreover, we have LTσ(Ĩ) = (x2, xy, y3) and T2 \ LTσ{Ĩ} = {1, x, y, y2} .
A small change in the coefficients of f1 and f2 has led to a big change

in the Gröbner basis of (f1, f2) and in the associated vector space basis
of C[x, y]/(f1, f2), although the zeros of the system have not changed much.
Numerical analysts call this kind of unstable behaviour a representation sin-
gularity.

Example 6.4.2. Consider the ideal I = (x2 + xy + y2, x3, x2y, xy2, y3)
in Q[x, y] . This ideal is symmetric with respect to swapping x and y .
Since the leading term of x2 + xy + y2 is either x2 or y2 , the ideal I
has two possible leading term ideals, namely the ideals J1 = (x2, xy2, y3)
and J2 = (x3, x2y, y2). Neither is symmetric. Thus they do not give rise
to symmetric vector space bases of Q[x, y]/I . However, the set of terms
O = {1, x, y, x2, y2} is symmetric and represents a vector space basis
of Q[x, y]/I .

In other words, Gröbner bases break the symmetry! It is more natural to
compute in Q[x, y]/I using a symmetric basis. Therefore we would like to find
another system of generators of I which has properties similar to a Gröbner
basis, but corresponds to the symmetric vector space basis O of Q[x, y]/I
given above.

What can we do about this? We can introduce a new theory! In this section
we describe the theory of border bases of zero-dimensional polynomial ideals.
Its raison d’être is to address the above shortcomings of Gröbner bases. Let
K be a field, let P = K[x1, . . . , xn] , and let I ⊆ P be a zero-dimensional
ideal. The basic idea of border basis theory is to describe a zero-dimensional
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ring P/I by an order ideal of monomials O whose residue classes form a
K-basis of P/I and by the multiplication table of this basis.

The advantages of using an order ideal rather than an arbitrary set of
terms are manifold. For instance, we can define the border ∂O of O by
∂O =

⋃n
i=1 xiO\O . To describe the multiplicative structure of P/I , it suffices

to know how products xi t ∈ ∂O with t ∈ O can be decomposed in the form
xi t ∈ 〈O〉K +I . Moreover, by defining ∂O = O∪∂O and ∂2O = ∂(∂O) and
repeating this procedure, we can introduce higher borders. Then the index
of a term t with respect to O is the uniquely defined number such that
t ∈ ∂iO . Although it is not quite as well behaved as the degree, it enables us
to introduce the border form of a polynomial.

Having laid the foundations, we can build border basis theory according
to the blueprint in Chapters 1 and 2. Let O = {t1, . . . , tµ} be an order ideal
and ∂O = {b1, . . . , bν} its border. A border prebasis consists of polynomials
of the form gj = bj −

∑µ
i=1 αijti with αij ∈ K and can be used for border

division (see Proposition 6.4.11). It is a border basis if and only if the residue
classes of {t1, . . . , tµ} form a K-basis of P/I . If O represents a vector space
basis of P/I , then an O -border basis of I exists, is uniquely determined
(see Proposition 6.4.17), and generates the ideal (see Proposition 6.4.15).
Furthermore, it is then possible to define and compute normal forms with
respect to O .

In the second subsection we show that border bases can be characterized
by special generation, generation of border form ideals, and confluence of
the associated rewrite relations much as Gröbner bases are. They are also
characterized by the fact that their associated formal multiplication matrices
commute (see Theorem 6.4.30) and have their own “Buchberger criterion”
(see Proposition 6.4.34). Finally, they allow us to overcome the shortcomings
of Gröbner bases mentioned above (see Examples 6.4.22 and 6.4.14) and can
be computed using the Border Basis Algorithm 6.4.36.

So, which theory is it going to be? Gröbner bases or border bases? We
leave this choice to your personal sense of humour.

6.4.A Existence and Uniqueness of Border Bases

Let K be a field, let P = K[x1, . . . , xn] be standard graded, and let Tn be
the monoid of terms in P . The following kind of subset of Tn will be central
to this section.

Definition 6.4.3. Let O be a non-empty subset of Tn .
a) The closure of O is the set O of all terms in Tn which divide one of

the terms of O .
b) The set O is called an order ideal if O = O , i.e. O is closed under

forming divisors.
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Order ideals have many names in the literature. A collection of alterna-
tives is contained in Subsection 0.5 of the introduction. We chose this name
because it indicates that order ideals are the analogs of ideals in the theory
of partially ordered sets. The complement of an order ideal is a monoideal of
terms and vice versa. Given an order ideal, we construct further order ideals
as follows.

Definition 6.4.4. Let O ⊆ Tn be an order ideal.
a) The border of O is the set ∂O = Tn

1 · O \ O = (x1O ∪ . . . ∪ xnO) \ O .
The first border closure of O is the set ∂O = O ∪ ∂O .

b) For every k ≥ 1, we inductively define the (k + 1)st border of O by
∂k+1O = ∂(∂kO) and the (k + 1)st border closure of O by the rule
∂k+1O = ∂kO ∪ ∂k+1O . For convenience, we let ∂0O = ∂0O = O .

The kth border closure of an order ideal is an order ideal for every k ≥ 0.

Example 6.4.5. Let O = {1, x, y, x2, xy, y2, x3, x2y, y3, x4, x3y} ⊂ T2 . Then
the set O is an order ideal. We visualize O and its first two borders as follows.
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Let us collect some properties of borders and border closures.

Proposition 6.4.6. (Basic Properties of Borders)
Let O ⊆ Tn be an order ideal.
a) For every k ≥ 0 , we have a disjoint union ∂kO =

⋃k
i=0 ∂iO . Conse-

quently, we have a disjoint union Tn =
⋃∞

i=0 ∂iO .
b) For every k ≥ 1 , we have ∂kO = Tn

k · O \ Tn
<k · O .

c) A term t ∈ Tn is divisible by a term in ∂O if and only if t ∈ Tn \ O .

Proof. First we show a). The definition of ∂O yields ∂O = O ∪ Tn
1 · O .

Inductively, it follows that ∂k+1O = ∂kO ∪ Tn
1 · ∂kO = ∂kO ∪ Tn

k+1O . The
second part of a) follows from the observation that every term is in ∂kO
for some k ≥ 0, and claim b) is a consequence of ∂k+1O = ∂k+1O \ ∂kO .
Finally, claim c) holds because b) implies that t ∈ ∂kO for some k ≥ 1 is
equivalent to the existence of a factorization t = t′t′′ with deg(t′) = k − 1
and t′′ ∈ ∂O . �

The disjoint union in part a) of this proposition allows us to measure the
“distance” of a term from an order ideal as follows.
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Definition 6.4.7. Let O ⊆ Tn be an order ideal.
a) For every t ∈ Tn, the unique number k ∈ N such that t ∈ ∂kO is called

the index of t with respect to O and is denoted by indO(t).
b) For a polynomial f ∈ P \ {0} , we define the index of f with respect

to O (or the O -index of f ) by indO(f) = max{indO(t) | t ∈ Supp(f)} .

Let us point out some useful properties of the index.

Proposition 6.4.8. Let O ⊆ Tn be an order ideal.
a) For a term t ∈ Tn , the number k = indO(t) is the smallest natural

number such that t = t′t′′ with t′ ∈ Tn
k and t′′ ∈ O .

b) Given two terms t, t′ ∈ Tn , we have indO(t t′) ≤ deg(t) + indO(t′) .
c) For non-zero polynomials f, g ∈ P such that f + g �= 0 , we have the

inequality indO(f + g) ≤ max{indO(f), indO(g)} .
d) For non-zero polynomials f, g ∈ P , we have the inequality

indO(f g) ≤ min{deg(f) + indO(g), deg(g) + indO(f)}

Proof. Claim a) follows from Proposition 6.4.6.b, and b) follows from a).
Claim c) is a consequence of the inclusion Supp(f +g) ⊆ Supp(f)∪Supp(g).
Finally, claim d) follows from b) and Supp(fg) ⊆ {t′ t′′ | t′ ∈ Supp(f),
t′′ ∈ Supp(g)} . �

Unfortunately, using the O -index to order terms has a serious drawback:
this ordering is incompatible with multiplication, i.e. indO(t) ≤ indO(t′) does
not, in general, imply indO(t t′′) ≤ indO(t′ t′′). Our next example is a case
in point.

Example 6.4.9. Let O = {1, x, x2} ⊆ T2 . Then O is an order ideal with
border ∂O = {y, xy, x2y, x3} . The following diagram illustrates the situation.
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Multiplying the terms on both sides of indO(x2) < indO(y) by x2 , we get
indO(x2 · x2) > indO(x2 · y). Similarly, multiplying the terms on both sides
of indO(y) = indO(x2y) by x , we get indO(x · y) < indO(x · x2y).

From now on we let O = {t1, . . . , tµ} be a finite order ideal in Tn , and
we let ∂O = {b1, . . . , bν} be its border. We shall use the residue classes of
the terms in O as a K -basis of the residue class ring of P modulo some
zero-dimensional ideal. For the zero-dimensional ideal, we shall look for a
system of generators which has the following shape.
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Definition 6.4.10. A set of polynomials G = {g1, . . . , gν} is called an
O -border prebasis if the polynomials have the form gj = bj −

∑µ
i=1 αijti

with αij ∈ K for 1 ≤ i ≤ µ and 1 ≤ j ≤ ν .

Border prebases are already sufficient to perform polynomial division with
remainder. The following algorithm provides a fundamental tool in working
with border prebases.

Proposition 6.4.11. (The Border Division Algorithm)
Let O = {t1, . . . , tµ} be an order ideal in Tn , let ∂O = {b1, . . . , bν} be its
border, and let {g1, . . . , gν} be an O -border prebasis. Given a polynomial
f ∈ P , consider the following sequence of instructions.
1) Let f1 = · · · = fν = 0 , c1 = · · · = cµ = 0 , and h = f .
2) If h = 0 , return (f1, . . . , fν , c1, . . . , cµ) and stop.
3) If indO(h) = 0 then write h = c1t1 + · · · + cµtµ with c1, . . . , cµ ∈ K .

Return (f1, . . . , fν , c1, . . . , cµ) and stop.
4) If indO(h) > 0 then let h = a1h1 + · · · + ashs with a1, . . . , as ∈ K \ {0}

and h1, . . . , hs ∈ Tn such that indO(h1) = indO(h) . Determine the
smallest index i ∈ {1, . . . , ν} for which h1 factors as h1 = t′ bi with
a term t′ ∈ Tn of degree indO(h) − 1 . Subtract a1t

′gi from h , add a1t
′

to fi , and continue with step 2).
This is an algorithm which returns a tuple (f1, . . . , fν , c1, . . . , cµ) ∈ P ν ×Kµ

such that
f = f1g1 + · · · + fνgν + c1t1 + · · · + cµtµ

and deg(fi) ≤ indO(f) − 1 for all i ∈ {1, . . . , ν} with figi �= 0 . This repre-
sentation does not depend on the choice of the term h1 in step 4).

Proof. First we show that the instructions can be executed. In step 3) the
fact that indO(h) = 0 implies Supp(h) ⊆ O . In step 4) we write h as a linear
combination of terms and note that at least one of them, say h1 , has to have
index k = indO(h) > 0. By Proposition 6.4.8.a, there is a factorization
h1 = t̃ ti with t̃ ∈ Tn

k and ti ∈ O , and there is no such factorization with
a term t̃ of smaller degree. Since k > 0, we can write t̃ = t′ xj for some
t′ ∈ Tn and j ∈ {1, . . . , n} . Then we have deg(t′) = k − 1, and the fact
that t̃ has the smallest possible degree implies xj ti ∈ ∂O . Thus we see that
h1 = t′ (xj ti) = t′ bk for some bk ∈ ∂O .

Next we prove termination. We show that step 4) is performed only finitely
many times. Let us investigate the subtraction h − a1t

′gi in step 4). By
definition, there is a representation gi = bi −

∑µ
k=1 αkitk such that αki ∈ K

for k = 1, . . . , µ . Hence the subtraction becomes

h − a1t
′gi = a1h1 + . . . + ashs − a1t

′bi + a1t
′

µ∑
k=1

αkitk

Now, since we have a1h1 = a1t
′bi , a term of index indO(h) is removed from h

and replaced by terms of the form t′ t� ∈ ∂k−1O which have strictly smaller
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index. The algorithm terminates after finitely many steps because there are
only finitely many terms of index smaller or equal to that of a given term.

Finally, we prove correctness. To this end, we show that the equation

f = h + f1g1 + · · · + fνgν + c1t1 + · · · + cµtµ

is an invariant of the algorithm. It is satisfied at the end of step 1). A polyno-
mial fi is changed only in step 4). There the subtraction h − a1t

′gi is com-
pensated by the addition (fi + a1t

′)gi . The constants c1, . . . , cµ are changed
only in step 3) in which h is replaced by c1t1+. . .+cµtµ . When the algorithm
stops, we have h = 0. This proves the stated representation of f .

The additional claim that this representation does not depend on the
choice of h1 in step 4) follows from the observation that h1 is replaced
by terms of strictly smaller index. Thus the different executions of step 4)
corresponding to the reduction of several terms of a given index in h do not
interfere with one another. Hence the final result, after all those terms have
been rewritten, is independent of the order in which they are handled. �

Notice that the representation computed by the Border Division Al-
gorithm is optimal in the sense that for every t ∈ Supp(fi) we have
indO(tbi) = deg(t) + 1 and indO(t(gi − bi)) ≤ deg(t) . Let us try out the
Border Division Algorithm in a concrete example.

Example 6.4.12. Let O = {t1, t2, t3} ⊆ T2 be the order ideal given by
t1 = 1, t2 = x , and t3 = y . The border of O is ∂O = {b1, b2, b3} with
b1 = x2 , b2 = xy , and b3 = y2 . The polynomials g1 = x2+x+1, g2 = xy+y ,
and g3 = y2 + x + 1 constitute an O -border prebasis. We want to divide the
polynomial f = x3y2 − xy2 + x2 + 2 by this O -border prebasis.

For easy reference, the next three borders are ∂2O = {x3, x2y, xy2, y3} ,
∂3O = {x4, x3y, x2y2, xy3, y4} , and ∂4O = {x5, x4y, x3y2, x2y3, xy4, y5} . We
apply the Border Division Algorithm and follow its steps.
1) Let f1 = f2 = f3 = 0, c1 = c2 = c3 = 0, and h = x3y2 − xy2 + x2 + 2.

The O -indices of the terms in Supp(h) are 4,2,1 and 0, respectively, so h
has index 4.

4) We have x3y2 = xy2 ·b1 with deg xy2 = ind(h)−1. Thus we let f1 = xy2

and h = x3y2 −xy2 +x2 +2−xy2(x2 +x+1). The terms in the support
of h = −x2y2 − 2xy2 + x2 + 2 have O -indices 3,2,1 and 0, respectively.

4) We have x2y2 = y2 · b1 with deg y2 = ind(h) − 1. Add −y2 to f1 to
obtain f1 = xy2−y2 , and let h = −x2y2−2xy2 +x2 +2+y2(x2 +x+1).
The terms in the support of h = −xy2 +x2 +y2 +2 have O -indices 2,1,1
and 0, respectively.

4) We have xy2 = y · b2 with deg y = ind(h) − 1. Let f2 = −y , and let
h = −xy2 + x2 + y2 + 2 + y(xy + y). The terms in the support of the
polynomial h = x2 + 2y2 + 2 have O -indices 1,1 and 0, respectively.

4) We have x2 = 1 · b1 with deg 1 = ind(h) − 1. Add 1 to f1 to obtain
f1 = xy2 − y2 + 1, and let h = x2 + 2y2 + 2 − 1(x2 + x + 1). The terms
in the support of h = 2y2 −x+1 have O -indices 1,0 and 0, respectively.
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4) We have y2 = 1 · b3 with deg 1 = ind(h) − 1. Add 2 to f3 to obtain
f3 = 2, and let h = 2y2−x+1−2(y2 +x+1). The terms in the support
of h = −3x − 1 have O -indices 0 and 0. Thus we have indO(h) = 0.

3) We have h = −1 · t1 − 3 · t2 + 0 · t3 . The algorithm returns the tuple
(xy2 − y2 + 1,−y, 2, 1, −3, 0) and stops.
Altogether, we have computed the representation

f = (xy2 − y2 + 1)g1 − y g2 + 2 g3 − 1 t1 − 3 t2 + 0 t3

If we perform the algorithm with respect to the tuple (g′1, g
′
2, g

′
3) = (g3, g2, g1),

it computes the representation

f = (x3 + x)g′1 − 1 g′2 + (x2 + 2) g′3 + 1 t1 − 3 t2 − 1 t3

= (x2 + 2)g1 − 1 g2 + (x3 + x) g3 + 0 t1 + 1 t2 − 1 t3

This shows that the order of the polynomials in the O -border prebasis does
affect the outcome of the Border Division Algorithm.

Just as we did with the Division Algorithm in Section 1.6, we use the
result of the Border Division Algorithm to define the normal O -remainder
NRO,G(f) = c1t1 + · · · + cµtµ of a polynomial f with respect to the tuple
G = (g1, . . . , gν). In the above example we have NRO,G(f) = −3x − 1 and
NRO,G′(f) = x − y .

The elements f and NRO,G(f) represent the same residue class in the
ring P/(g1, . . . , gν). In particular, the residue classes of the elements of O
generate the K -vector space P/(g1, . . . , gν). It follows from the above ex-
ample that this system of generators is not necessarily a basis. In fact, we
have 4x − y + 1 = NRO,G′(f) − NRO,G(f) ∈ (g1, . . . , gν). So, it is natural to
introduce the following notion.

Definition 6.4.13. Let G = {g1, . . . , gν} be an O -border prebasis, let G be
the tuple (g1, . . . , gν), and let I ⊆ P be an ideal containing G . The set G
or the tuple G is called an O -border basis of I if one of the following
equivalent conditions is satisfied.
a) The residue classes O = {t̄1, . . . , t̄µ} form a K -vector space basis of P/I .
b) We have I ∩ 〈O〉K = {0} .
c) We have P = I ⊕ 〈O〉K .

Border bases provide us with enough flexibility to be able to keep the
symmetry in Example 6.4.2.

Example 6.4.14. Let P = Q[x, y] and I = (x2 +xy+y2, x3, x2y, xy2, y3).
The set O = {1, x, y, x2, y2} is an order ideal consisting of dimK(P/I) = 5
terms. Since we have ∂O = {x3, x2y, xy, xy2, y3} , the polynomials g1 = x3 ,
g2 = x2y , g3 = xy + x2 + y2 , g4 = xy2 , and g5 = y3 form an O -border pre-
basis of I . Moreover, the conditions of the definition are satisfied because I
is homogeneous and condition c) can be checked degree-by-degree. Thus the
set G = {g1, . . . , g5} is an O -border basis of I .
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Now we show that the definition implicitly contains the fact that an
O -border basis of I actually generates I .

Proposition 6.4.15. Let G be an O -border basis of an ideal I ⊆ P . Then
the ideal I is generated by G .

Proof. By definition, we have (g1, . . . , gν) ⊆ I . To prove the converse in-
clusion, let f ∈ I . Using the Border Division Algorithm 6.4.11, the polyno-
mial f can be expanded as f = f1g1 + . . . + fνgν + c1t1 + . . . + cµtµ , where
f1, . . . , fν ∈ P and c1, . . . , cµ ∈ K . This implies the equality of residue classes
0 = f̄ = c1t̄1+. . .+cµt̄µ in P/I . By assumption, the residue classes t̄1, . . . , t̄µ
are K -linearly independent. Hence c1 = . . . = cµ = 0, and the expansion
of f turns out to be f = f1g1 + . . . + fνgν . �

Having defined a new mathematical object, we look for its existence
and possibly its uniqueness. A necessary condition for the existence of an
O -border basis of I is clearly given by #O = dimK(P/I) . However, our
next example shows that this condition is not sufficient.

Example 6.4.16. Let P = Q[x, y] , and let I be the vanishing ideal of the
set of five points X = {(0, 0), (0,−1), (1, 0), (1, 1), (−1, 1)} in A2

Q . Then we
have dimK(P/I) = 5. In T2 the following order ideals contain five elements:

O1 = {1, x, x2, x3, x4}, O2 = {1, x, x2, x3, y}, O3 = {1, x, x2, y, y2}
O4 = {1, x, x2, y, xy}, O5 = {1, x, y, y2, y3}, O6 = {1, y, y2, y3, y4}

O7 = {1, x, y, xy, y2}

Not all of these are suitable for border bases of I . For example, the residue
classes of the elements of O1 cannot form a K -vector space basis of P/I ,
since x3 − x ∈ I . Similarly, the residue classes of the elements of O6 cannot
form a K -vector space basis of P/I , since y3 − y ∈ I .

Proposition 6.4.17. (Existence and Uniqueness of Border Bases)
Let O = {t1, . . . , tµ} be an order ideal, let I ⊆ P be a zero-dimensional ideal,
and assume that the residue classes of the elements of O form a K -vector
space basis of P/I .
a) There exists a unique O -border basis of I .
b) Let G be an O -border prebasis whose elements are in I . Then G is the

O -border basis of I .
c) Let k be the field of definition of I . Then the O -border basis of I is

contained in k[x1, . . . , xn] .

Proof. First we prove a). Let ∂O = {b1, . . . , bν} . For every i ∈ {1, . . . , ν} ,
the hypothesis implies that the residue class of bi in P/I is linearly dependent
on the residue classes of the elements of O . Therefore I contains a polynomial
of the form gi = bi −

∑µ
j=1 αijtj with αij ∈ K . Then G = {g1, . . . , gν} is an
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O -border prebasis, and hence an O -border basis of I by Definition 6.4.13.
Let G′ = {g′1, . . . , g′ν} be another O -border basis of I . Suppose there exists
an index i ∈ {1, . . . , ν} such that g′i = bi −

∑µ
j=1 α′

ijtj with α′
ij �= αij for

some index j ∈ {1, . . . , µ} , then gi − g′i is a non-zero polynomial in I with
support in O . This contradicts the hypothesis and proves a).

Next we show b). By Definition 6.4.13, it suffices to observe that the
set G is an O -border basis of I and to apply a). Finally, we prove claim c).
Let P ′ = k[x1, . . . , xn] and I ′ = I ∩ P ′ . Given a term ordering σ , the
ideals I and I ′ have the same reduced σ -Gröbner basis by Lemma 2.4.16.
Hence we have Tn \ LTσ{I} = Tn \ LTσ{I ′} , and therefore dimk(P ′/I ′) =
dimK(P/I). The elements of O are contained in P ′ , and they are linearly
independent modulo I ′ . Therefore their residue classes form a k -vector space
basis of P ′/I ′ . Let G′ be the O -border basis of I ′ . Then G′ is an O -border
prebasis whose elements are contained in I . Thus the claim follows from b).

�

Does a given zero-dimensional ideal possess a border basis at all? Using
part a) of the proposition, we can rephrase this question as follows: Given a
zero-dimensional ideal I , are there order ideals such that the residue classes
of their elements form a K -vector space basis of P/I ? The answer is yes,
which we are going to show with the help of Gröbner bases.

Given an order ideal O ⊂ Tn , its complement Tn \ O is the set of terms
of a monomial ideal. Recall that every monomial ideal has a unique minimal
set of generators (see Proposition 1.3.11). The elements of the minimal set
of generators of the monomial ideal corresponding to Tn \ O are called the
corners of O . A picture illustrates the appropriateness of this name.
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Our next proposition helps us clarify the relationship between Gröbner
bases and border bases of a zero-dimensional polynomial ideal.

Proposition 6.4.18. Let σ be a term ordering on Tn , and let Oσ(I) be the
order ideal Tn \ LTσ{I} . Then there exists a unique Oσ(I)-border basis G
of I , and the reduced σ -Gröbner basis of I is the subset of G corresponding
to the corners of Oσ(I) .

Proof. By Macaulay’s Basis Theorem 1.5.7, the residue classes of the el-
ements in Oσ(I) form a K -vector space basis of P/I . Thus Proposi-
tion 6.4.17.a implies the existence and uniqueness of the Oσ(I)-border basis
of I .
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To prove the second claim, we let b ∈ Tn \ Oσ(I) be a corner of Oσ(I).
The element of the reduced σ -Gröbner basis of I with leading term b has the
form b − NFσ,I(b) , where NFσ,I(b) is contained in the span of Oσ(I). Since
the Oσ(I)-border basis of I is unique, this Gröbner basis element coincides
with the border basis element corresponding to b . �

To summarize the discussion, the ideal I does not necessarily have an
O -border basis for every order ideal O consisting of dimK(P/I) terms, but
there is always an O -border basis for O = Tn\LTσ{I} where σ is some term
ordering. However, Examples 6.4.2 and 6.4.14 show that not every border
basis of I arises from a term ordering. In this sense, the theory of border
bases of zero-dimensional ideals generalizes the theory of their Gröbner bases.

The following proposition shows that, when we divide by a border basis,
the normal remainder does not depend on the order of the elements.

Proposition 6.4.19. Let G = (g1, . . . , gν) be the O -border basis of an
ideal I ⊆ P , let π : {1, . . . , ν} −→ {1, . . . , ν} be a permutation, and let
G′ = (gπ(1), . . . , gπ(ν)) be the corresponding permutation of the tuple G . Then
we have NRO,G(f) = NRO,G′(f) for every polynomial f ∈ P .

Proof. The Border Division Algorithm applied to G and G′ , respectively,
yields representations

f = f1g1 + · · · + fνgν + NRO,G(f) = f ′
1gπ(1) + · · · + f ′

νgπ(ν) + NRO,G′(f)

where fi, f
′
j ∈ P . Therefore we have NRO,G(f)−NRO,G′(f) ∈ 〈O〉K ∩I . The

hypothesis that I has an O -border basis implies 〈O〉K ∩ I = {0} . Hence the
claim follows. �

This result allows us to generalize the concept of a normal form to border
basis theory.

Definition 6.4.20. Let G = {g1, . . . , gν} be the O -border basis of I . The
normal form of a polynomial f ∈ P with respect to O is the polynomial
NFO,I(f) = NRO,G(f).

The normal form NFO,I(f) of f ∈ P can be calculated by dividing f
by the O -border basis of I . It is zero if and only if f ∈ I . Further basic
properties of normal forms are collected in the following proposition.

Proposition 6.4.21. (Basic Properties of Normal Forms)
Let O be an order ideal, let I ⊆ P be an ideal which has an O -border basis,
let a1, a2 ∈ K , and let f, f1, f2 ∈ P .
a) If there exists a term ordering σ such that O = Oσ(I) , we have

NFO,I(f) = NFσ,I(f) .
b) We have NFO,I(a1f1 + a2f2) = a1 NFO,I(f1) + a2 NFO,I(f2) .
c) We have NFO,I(NFO,I(f)) = NFO,I(f) .
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d) We have NFO,I(f1 f2) = NFO,I

(
NFO,I(f1) NFO,I(f2)

)
.

Proof. Claim a) follows because both NFO,I(f) and NFσ,I(f) are equal to
the uniquely determined polynomial in f + I whose support is contained
in O . Claims b), c), and d) follow from the same uniqueness. �

Before we continue to examine border bases theory in greater detail, let
us come back to one of the starting questions of this section: are border bases
numerically stable? Let us reconsider Example 6.4.1.

Example 6.4.22. Let P = Q[x, y] , let I = (1
4 x2 + y2 − 1, x2 + 1

4 y2 − 1),
and let Ĩ = (1

4 x2 +y2 +ε xy−1, x2 + 1
4 y2 +ε xy−1) with a small number ε .

Then both I and Ĩ have a border basis with respect to O = {1, x, y, xy} .
The border of O is ∂O = {x2, x2y, xy2, y2} . The O -border basis of I is

{x2 − 4
5 , x2y − 4

5y, xy2 − 4
5x, y2 − 4

5}

The O -border basis of Ĩ is

{x2 + 4
5 εxy − 4

5 , x2y − 16ε
16ε2−25 x + 20

16ε2−25 y,

xy2 + 20
16ε2−25 x − 16ε

16ε2−25 y, y2 + 4
5 εxy − 4

5}

When we vary the coefficients of xy in the two generators from zero to ε ,
we see that one border bases changes continuously into the other (see also
Exercise 2). Thus the border basis behaves numerically stable under small
perturbations of the coefficient of xy .

In addition, this example is another instance of the phenomenon that
Gröbner bases do not preserve the symmetry of the given system of equations,
whereas some border bases do.

6.4.B Characterizations of Border Bases

In this subsection we develop the analogy between border bases and Gröbner
bases further. More precisely, we characterize border bases in several ways
which mimic the characterizations of Gröbner bases in Chapter 2. But we
shall also encounter a characterization of border bases for which no Gröbner
basis analog exists. We continue to use the notation and hypotheses intro-
duced above. In particular, let O = {t1, . . . , tµ} be an order ideal in Tn , let
∂O = {b1, . . . , bν} be its border, let G = {g1, . . . , gν} be an O -border pre-
basis, let G be the tuple (g1, . . . , gν), and let I ⊆ P be the zero-dimensional
ideal generated by G .

The following result is the border basis version of Proposition 2.1.1.

Proposition 6.4.23. (Border Bases and Special Generation)
In the above setting, the set G is an O -border basis of I if and only if the
following equivalent conditions are satisfied.
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A1. For every f ∈ I \ {0} , there exist polynomials f1, . . . , fν ∈ P such that
f = f1g1 + · · · + fνgν and deg(fi) ≤ indO(f) − 1 whenever fi �= 0 .

A2. For every f ∈ I \ {0} , there exist polynomials f1, . . . , fν ∈ P such that
f = f1g1 + · · · + fνgν and max{deg(fi) | i ∈ {1, . . . , ν}, fi �= 0} =
indO(f) − 1 .

Proof. First we show that A1 holds if G is an O -border basis. The Border
Division Algorithm provides us with a representation f = f1g1 + · · ·+fνgν +
c1t1 + · · · + cµtµ with f1, . . . , fν ∈ P and c1, . . . , cµ ∈ K such that we have
deg(fi) ≤ indO(f) − 1 for i = 1, . . . , ν . Then we have c1t1 + · · · + cµtµ ∈ I ,
and the hypothesis implies c1 = · · · = cµ = 0.

Next we prove that A1 implies A2 . If deg(fi) < indO(f)−1 then Propo-
sition 6.4.8.b yields indO(figi) ≤ deg(fi)+indO(gi) = deg(fi)+1 < indO(f).
By Proposition 6.4.8.c, there has to be at least one number i ∈ {1, . . . , ν}
such that deg(fi) = indO(f) − 1.

Finally, assume that A2 holds and that there are c1, . . . , cµ ∈ K with
c1t1 + · · ·+ cµtµ ∈ I . By applying A2 to the polynomial f = c1t1 + · · ·+ cµtµ
in I , we get a representation f = f1g1 + · · · + fνgν with f1, . . . , fν ∈ P
such that max{deg(fi) | i ∈ {1, . . . , ν}, fi �= 0} = indO(f) − 1 = −1. Hence
f1 = · · · = fν = 0, and therefore c1 = · · · = cµ = 0. Consequently, the set G
is an O -border basis. �

In Proposition 2.1.2, Gröbner bases were characterized as sets of polyno-
mials whose leading terms generate the leading term ideal. In the theory of
border bases, leading terms have to be replaced by border forms which are
defined as follows.

Definition 6.4.24. Given f ∈ P, we write f = a1u1 + · · · + asus with
coefficients a1, . . . , as ∈ K \ {0} and terms u1, . . . , us ∈ Tn satisfying
indO(u1) ≥ · · · ≥ indO(us).
a) The polynomial BFO(f) =

∑
{i | indO(ui)=indO(f)} aiui ∈ P is called the

border form of f with respect to O . For f = 0, we let BFO(f) = 0.
b) Given an ideal I ⊆ P , the ideal BFO(I) = (BFO(f) | f ∈ I) is called

the border form ideal of I with respect to O .

For example, the elements of the O -border prebasis G have the border
form BFO(gi) = bi . Now we characterize border bases by their border form
ideal.

Proposition 6.4.25. (Border Bases and Border Form Ideals)
In the above setting, the set G is an O -border basis of I if and only if one
of the following equivalent conditions is satisfied.
B1. For every f ∈ I , the support of BFO(f) is contained in Tn \ O .
B2. We have BFO(I) = (BFO(g1), . . . ,BFO(gν)) = (b1, . . . , bν) .
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Proof. First we show that a border basis satisfies condition B1 . Suppose
that the border form of a polynomial f ∈ I \ {0} contains a term of O
in its support. Then all terms in the support of f are contained in O , i.e.
f = c1t1 + · · ·+ cµtµ for suitable c1, . . . , cµ ∈ K . Now the hypothesis implies
c1 = · · · = cµ = 0, in contradiction to f �= 0.

Next we prove that B1 implies B2 . Since gi ∈ I , we have bi ∈ BFO(I)
for i = 1, . . . , ν . To prove the reverse inclusion, let f ∈ I \ {0} . By B1 and
Proposition 6.4.6.c, every term in the support of BFO(f) is divisible by a
term in ∂O . Hence the border form of f is contained in (b1, . . . , bν).

Finally, we show that B2 implies that G is a border basis. Let c1, . . . , cµ

be elements in K with f = c1t1+· · ·+cµtµ ∈ I . Then all terms in the support
of f have index zero, and thus f = BFO(f). By B2 and Proposition 6.4.6.c,
it follows that c1 = · · · = cµ = 0. �

To characterize border bases in analogy with conditions C1) – C4) of
Proposition 2.2.5, we define the rewrite relation associated to G . Let f ∈ P
be a polynomial, let t ∈ Supp(f) be a multiple of a border term t = t′ bi , and
let c ∈ K be the coefficient of t in f . Then h = f−ct′gi does not contain the
term t anymore. We say that f reduces to h in one step using gi and write
f

gi−→h . The reflexive, transitive closure of the relations
gi−→ , i ∈ {1, . . . , ν} ,

is called the rewrite relation associated to G and is denoted by G−→ . The
equivalence relation generated by G−→ is denoted by G←→ . In stark contrast
to Gröbner basis theory, rewrite relations associated to border prebases are,
in general, not Noetherian. This is demonstrated by the following example.

Example 6.4.26. Let P = Q[x, y] and O = {1, x, y, x2, y2} . Then O is an
order ideal with border ∂O = {xy, x3, x2y, xy2, y3} . Consider the O -border
prebasis G = {g1, . . . , g5} , where g1 = xy − x2 − y2 , g2 = x3 , g3 = x2y ,
g4 = xy2 , and g5 = y3 . The chain of reductions

x2y
g1−→ x3 + xy2 g2−→ xy2 g1−→ x2y + y3 g5−→ x2y

can be repeated indefinitely, and hence G−→ is not Noetherian.

This lack of Noetherianity has adverse consequences for the properties of
the rewrite relation G−→ . For instance, Proposition 2.2.2.a does not hold true
anymore. Fortunately, the equivalence relation G←→ still captures equivalence
modulo I .

Remark 6.4.27. Let G←→ be the rewrite equivalence relation associated to
an O -border prebasis G = {g1, . . . , gν} , and let f1, f2, f3, f4 ∈ P .

a) If f1
G←→ f2 and f3

G←→ f4 then f1 + f3
G←→ f2 + f4 .

b) If f1
G←→ f2 then f1f3

G←→ f2f3 .
c) We have f1

G←→ f2 if and only if f1 − f2 ∈ (g1, . . . , gν).
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These properties can be proved in exactly the same way as the corre-
sponding properties in Proposition 2.2.2.

The definition of a confluent rewrite relation G−→ and an irreducible poly-
nomial f ∈ P with respect to G−→ are the same as in Section 2.2. For example,
any polynomial f with support in O is irreducible with respect to G−→ ; by
Proposition 6.4.6.c, it contains no term that can be reduced. In particular, the
normal remainder NRO,G(f) computed by the Border Division Algorithm is

irreducible with respect to G−→ .

Proposition 6.4.28. (Border Bases and Rewrite Relations)
In the above setting, the set G is an O -border basis of I if and only if the
following equivalent conditions are satisfied.

C1. For f ∈ P , we have f
G−→ 0 if and only if f ∈ I .

C2. If f ∈ I is irreducible with respect to G−→ , we have f = 0 .
C3. For every f ∈ P , there exists an element h ∈ P such that f

G−→h and h

is irreducible with respect to G−→ . The element h is uniquely determined.
C4. The rewrite relation G−→ is confluent.

Proof. First we show that a border basis has property C1 . If a polyno-
mial f ∈ P satisfies f

G−→ 0, it is enough to collect the subtractions per-
formed by the individual reduction steps on the right-hand side to ob-
tain f ∈ (g1, . . . , gν). Conversely, let f ∈ I . We apply the Border Di-
vision Algorithm to f . It performs reduction steps using elements of G
to compute the normal remainder NRO,G(f) ∈ 〈O〉K . Since f ∈ I , we
also have NRO,G(f) ∈ I . The hypothesis that G is a border basis yields

NRO,G(f) ∈ I ∩ 〈O〉K = 0, i.e. we have f
G−→ 0.

To prove that C1 implies C2 , note that C1 shows f
G−→ 0 for f ∈ I .

Thus a polynomial f ∈ I which is irreducible with respect to G−→ has to be
zero. Next we prove that C2 implies C3 . Let f ∈ P . The Border Division
Algorithm performs a reduction f

G−→NRO,G(f), i.e. there exists a reduc-

tion to a polynomial which is irreducible with respect to G−→ . Suppose that
f

G−→h and h is irreducible with respect to G−→ . Then h − NRO,G(f) ∈ I
and the support of this difference is contained in O . Thus it is irreducible
with respect to G−→ and C2 yields h = NRO,G(f). Altogether, the normal
remainder of f has the properties required by C3 .

Now we show that C3 implies C4 . Let f1
G−→ f2 and f1

G−→ f3 be
two reductions. The Border Division Algorithm yields f1

G−→NRO,G(f2)

and f1
G−→NRO,G(f3). Since normal remainders are irreducible with respect

to G−→ , condition C3 implies NRO,G(f2) = NRO,G(f3) . Therefore there are

reductions f2
G−→ f4 and f3

G−→ f4 with f4 = NRO,G(f2) = NRO,G(f3).
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Finally, to show that G is a border basis if it satisfies C4 , we can use
Proposition 6.4.27.c and proceed as in the proof of C4) ⇒ C1) in Proposi-
tion 2.2.5. �

Next we turn to a characterization of border bases which has no Gröbner
basis analog. Since the residue classes of the elements of O generate P/I as
a K -vector space, we can describe the ring structure of this vector space by
describing the effect of multiplying these generators by an indeterminate as
follows.

Definition 6.4.29. Let G = {g1, . . . , gν} be an O -border prebasis, i.e. let
gj = bj − ∑µ

i=1 αijti with αij ∈ K for i = 1, . . . , µ and j = 1, . . . , ν .
Given r ∈ {1, . . . , n} , we define the rth formal multiplication matrix
Xr = (ξ(r)

k� ) of G by

ξ
(r)
k� =

{
δki, if xr t� = ti
αkj , if xr t� = bj

Here we let δki = 1 if k = i and δki = 0 otherwise.
The formal multiplication matrices encode the following procedure. We

multiply an element of 〈O〉K by the indeterminate xr . Whenever xr ti = bj is
contained in the border, we reduce by the corresponding border polynomial gj

so that the result stays in 〈O〉K . Elements v = c1 t1 + . . . + cµ tµ ∈ 〈O〉K
are encoded as column vectors (c1, . . . , cµ)tr ∈ Kµ . Hence xr v corresponds
to Xr (c1, . . . , cµ)tr . Observe that all matrix components ξ

(r)
k� are determined

by the polynomials g1, . . . , gν .
The following theorem characterizes border bases by the property that

their formal multiplication matrices commute.

Theorem 6.4.30. (Border Bases and Commuting Matrices)
Let O = {t1, . . . , tµ} be an order ideal, let G = {g1, . . . , gν} be an O -border
prebasis, and let I = (g1, . . . , gν) . Then the following conditions are equiva-
lent.
a) The set G is an O -border basis of I .
b) The formal multiplication matrices of G are pairwise commuting.

In that case the formal multiplication matrices represent the multiplication
endomorphisms of P/I with respect to the basis {t̄1, . . . , t̄µ} .

Proof. Let X1, . . . ,Xn be the formal multiplication matrices corresponding
to the given O -border prebasis G = {g1, . . . , gν} .

First we prove that a) implies b). Since G is an O -border basis, the set
{t̄1, . . . , t̄µ} is a K -vector space basis of P/I , and each matrix Xr defines a
K -linear map ϕr : P/I −→ P/I . We want to show that ϕr is the endomor-
phism corresponding to multiplication by xr . Consider the expansions
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ϕr(t̄1) = ξ
(r)
11 t̄1 + · · · + ξ

(r)
µ1 t̄µ

...
ϕr(t̄µ) = ξ

(r)
1µ t̄1 + · · · + ξ(r)

µµ t̄µ

In these expansions only two cases occur. The product xr t� either equals
some term ti in the order ideal O or some border term bj ∈ ∂O . In the
former case we have ϕr(t̄�) = t̄i = xr t̄� , and in the latter case we have
ϕr(t̄�) = α1j t̄1 + · · · + αµj t̄µ = b̄j = xr t̄� . From this it follows that the map
ϕr : P/I −→ P/I is multiplication by xr for r = 1, . . . , n . Therefore we have
XrXs = XsXr for r, s ∈ {1, . . . , n} , i.e. the matrices X1, . . . ,Xn are pairwise
commuting.

It remains to show that b) implies a). Without loss of generality, let
t1 = 1. The matrices X1, . . . ,Xn define a P -module structure on 〈O〉K via

f · (c1t1 + . . . + cµtµ) = (t1, . . . , tµ)f(X1, . . . ,Xn)(c1, . . . , cµ)tr

where we set f(X1, . . . ,Xn) = f Iµ for f ∈ K .
First we show that this P -module is cyclic with generator t1 . To do so,

we use induction on degree to show that ti · t1 = ti for i = 1, . . . , µ . Let ei

denote the matrix of size µ× 1 whose ith entry is 1 and whose other entries
are 0. The induction starts with t1 = (t1, . . . , tµ)Iµ · e1 . For the induction
step, let ti = xj tk . Then we have

ti · t1 = (t1, . . . , tµ)ti(X1, . . . ,Xn)e1 = (t1, . . . , tµ)Xj tk(X1, . . . ,Xn)e1

= (t1, . . . , tµ)Xjek = (t1, . . . , tµ)ei = ti

Thus we obtain a surjective P -linear map Θ̃ : P −→ 〈O〉K which satisfies
f �→ f · t1 and an induced isomorphism of P -modules Θ : P/J −→ 〈O〉K
with J = Ker Θ̃ . In particular, the residue classes t1 + J, . . . , tµ + J are
K -linearly independent.

Next we show that I ⊆ J . Let bj = xk t� . Then we have

gj(X1, . . . ,Xn)e1 = bj(X1, . . . ,Xn)e1 −
µ∑

i=1

αijti(X1, . . . ,Xn)e1

= Xk t�(X1, . . . ,Xn)e1 −
µ∑

i=1

αijei = Xk e� −
µ∑

i=1

αijei

=
µ∑

i=1

αijei −
µ∑

i=1

αijei = 0

Therefore we obtain gj ∈ ker Θ̃ for j = 1, . . . , ν and thus I ⊆ J , as desired.
Hence there is a natural surjective ring homomorphism Ψ : P/I → P/J .

Since the set {t1 +I, . . . tµ +I} generates the K -vector space P/I , and since
the set {t1 + J, . . . , tµ + J} is K -linearly independent, both sets must be
bases and I = J . This shows that G is an O -border basis of I . �
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The following example shows that the formal multiplication matrices cor-
responding to an O -border prebasis are not always commuting.

Example 6.4.31. Let P = Q[x, y] and O = {1, x, y, x2, y2} . Then the bor-
der of O is ∂O = {xy, x3, y3, x2y, xy2} . Consider the set of polynomials
G = {g1, g2, g3, g4, g5} with g1 = xy − x2 − y2 , g2 = x3 − x2 , g3 = y3 − y2 ,
g4 = x2y − x2 , and g5 = xy2 − y2 . It is an O -border prebasis of the ideal
I = (g1, . . . , g5). Its multiplication matrices

X =

⎛⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 1 0 1

⎞⎟⎟⎟⎠ and Y =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 1 0
0 1 1 0 1

⎞⎟⎟⎟⎠
do not commute, because

X · Y =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 1 0
1 1 1 0 1

⎞⎟⎟⎟⎠ �= Y · X =

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
1 0 1 0 1

⎞⎟⎟⎟⎠
By the theorem, the set G is not an O -border basis of I .

Based on the preceding theorem, we can now prove an analog of Buch-
berger’s Criterion 2.5.3. The first step is to analyze the commutativity con-
ditions in Theorem 6.4.30 and translate them back into equations for the
coefficients of g1, . . . , gν .

Proposition 6.4.32. For j = 1, . . . , ν , we write gj = bj −
∑µ

i=1 αijti with
αij ∈ K . Given r ∈ {1, . . . , n} , we define a map

� : {1, . . . , µ} −→ N

i �−→
{

j if xrti = tj ∈ O,
k if xrti = bk ∈ ∂O.

Then the O -border prebasis G of I is an O -border basis of I if and only if
the following equations are satisfied for p = 1, . . . , µ and 1 ≤ r < s ≤ n :

(1)
∑

{m|xrtm∈O}
δp�(m)αmk +

∑
{m|xrtm∈∂O}

αp�(m)αmk = αp�

if xrti = tj , xsti = bk, xrbk = b�

(2)
∑

{m|xrtm∈O}
δp�(m)αmk +

∑
{m|xrtm∈∂O}

αp�(m)αmk =∑
{m|xstm∈O}

δp�(m)αmk +
∑

{m|xrtm∈∂O}
αp�(m)αmk if xrti = bj , xsti = bk
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Proof. By Theorem 6.4.30, the set G is an O -border basis if and only if
XrXsei = XsXrei for i = 1, . . . , µ . Translating this back into the language
of 〈O〉K , the resulting condition depends on the position of ti relative to the
border of O . We distinguish four cases.
tk t�
ti tj

First case: xr xs ti ∈ O
Since O is an order ideal, we have tj = xrti ∈ O and tk = xsti ∈ O .

Thus we have XrXsei = Xrek = e� = Xsej = XsXrei , i.e. the commutativity
condition holds by the definition of the formal multiplication matrices.
tk b�

ti tj
Second case: xr xs ti ∈ ∂O and xr ti, xs ti ∈ O

Say, xr ti = tj , xs ti = tk , and xr xs ti = b� . Then we have

Xr Xs ei = Xr ek = (α1�, . . . , αµ�)tr = Xs ej = Xs Xr ei

Again, commutativity follows immediately from the definition of the formal
multiplication matrices.
bk b�

ti tj
Third case: xr ti ∈ O and xs ti ∈ ∂O

Since ∂O and O are order ideals, this case implies xr xs ti ∈ ∂O . Say
xr ti = tj , xs ti = bk , and xr xs ti = b� . The commutativity condition be-
comes Xr (α1k, . . . , αµk)tr = (α1�, . . . , αµ�)tr , i.e.

∑µ
m=1 ξ

(r)
pmαmk = αp� for

p = 1, . . . , µ . According to the definition of the formal multiplication matri-
ces, these conditions are equivalent to equations (1) for p = 1, . . . , µ .
bk ∗
ti bj

Fourth case: xt ti ∈ ∂O and xs ti ∈ ∂O
Say xr ti = bj and xs ti = bk . The commutativity condition becomes

Xr(α1k, . . . , αµk)tr = Xs(α1j , . . . , αµj)tr, i.e.
∑µ

m=1 ξ
(r)
pmαmk =

∑µ
m=1 ξ

(s)
pmαmj

for p = 1, . . . , µ . These conditions are equivalent to equations (2) for
p = 1, . . . , µ .

This covers all cases. Altogether, we have shown that XrXs = XsXr for
1 ≤ r < s ≤ n is equivalent to the set of equations (1), (2). �

Next we want to interpret the equations (1), (2) in terms of the rewrite
relation associated to G . The following definition is motivated by the third
and fourth cases above.

Definition 6.4.33. Let bi, bj ∈ ∂O be two distinct border terms.
a) The border terms bi and bj are called next-door neighbours if we

have bi = xk bj for some k ∈ {1, . . . , n} .
b) The border terms bi and bj are called across-the-street neighbours

if xk bi = x� bj for some k, � ∈ {1, . . . , n} .
c) The border terms bi and bj are called neighbours if they are next-door

neighbours or across-the-street neighbours.
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At this point we are ready to prove the border basis analog of Buchberger’s
Criterion 2.5.3. The S-polynomial of two distinct elements gi, gj ∈ G is
defined by

S(gi, gj) = (lcm(bi, bj)/bi) gi − (lcm(bi, bj)/bj) gj .

Proposition 6.4.34. (Buchberger’s Criterion for Border Bases)
In the above setting, the O -border prebasis G is an O -border basis of I if
and only if one of the following equivalent conditions is satisfied.

D1 . For all 1 ≤ i < j ≤ ν , the S-polynomial S(gi, gj) reduces to zero via G−→ .
D2 . For all neighbours bi and bj , the S-polynomial S(gi, gj) reduces to zero

via G−→ .

Proof. Condition D1 holds if G is a border basis, since S(gi, gj) ∈ I and G
satisfies Condition C1 . Since D1 trivially implies D2 , it remains to prove
that G is a border basis if D2 holds.

Given next-door neighbours b� = xrbk , we calculate

g� − xr gk = (b� −
µ∑

m=1
αm�tm) − xr(bk −

µ∑
m=1

αmktm)

= −
µ∑

m=1
αm�tm +

µ∑
m=1

αmk(xr tm)

= −
µ∑

m=1
αm�tm +

∑
{m|xrtm∈O}

αmkt�(m) +
∑

{m|xrtm∈∂O}
αmkb�(m)

= −
µ∑

m=1
αm�tm +

∑
{m|xrtm∈O}

αmkt�(m) +
∑

{m|xrtm∈∂O}
αmkg�(m)

+
∑

{m|xrtm∈∂O}

(
αmk

µ∑
p=1

αp,�(m)tp
)

Since (g1, . . . , gν) ⊆ I , the coefficient of each tp has to vanish in the sum

−
µ∑

m=1
αm�tm +

∑
{m|xrtm∈O}

αmkt�(m) +
∑

{m|xrtm∈∂O}

(
αmk

µ∑
p=1

αp,�(m)tp
)

This vanishing condition yields exactly equations (1) in Proposition 6.4.32.
Given across-the-street neighbours xrbk = xsbj , we calculate

xr gk − xs gj = xr(bk −
µ∑

m=1
αmktm) − xs(bj −

µ∑
m=1

αmjtm)

= −
µ∑

m=1
αmk(xr tm) +

µ∑
m=1

αmj(xs tm)

= − ∑
{m|xrtm∈O}

αmkt�(m) −
∑

{m|xrtm∈∂O}
αmkb�(m)
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+
∑

{m|xstm∈O}
αmjt�(m) +

∑
{m|xstm∈∂O}

αmjb�(m)

= −
∑

{m|xrtm∈O}
αmkt�(m) −

∑
{m|xrtm∈∂O}

αmkg�(m)

− ∑
{m|xrtm∈∂O}

αmk

µ∑
p=1

αp�(m)tp

+
∑

{m|xstm∈O}
αmjt�(m) +

∑
{m|xstm∈∂O}

αmjg�(m)

+
∑

{m|xstm∈∂O}
αmj

µ∑
p=1

αp�(m)tp

Again the coefficient of each tp has to vanish, and this yields exactly the

equations (2) in Proposition 6.4.32. Altogether, we see that g� − xr gk
G−→ 0

or xr gk − xs gj
G−→ 0, respectively, implies the commutativity of the formal

multiplication matrices, and therefore that G is an O -border basis. �

Let us end this section with a concrete algorithm for computing border
bases. For a description of what we mean by transforming a matrix into row
echelon form, see the discussion before Theorem 6.3.10.

Lemma 6.4.35. Let d ∈ N , let L = Tn
≤d , let V be a K -vector subspace

of 〈L〉K such that (V + x1V + · · ·+ xnV )∩ 〈L〉K = V , let {v1, . . . , vr} be a
K -basis of V , and let σ be a degree compatible term ordering. Consider the
following sequence of instructions.
1) Write L = {�1, . . . , �s} such that �1 >σ �2 >σ · · · >σ �s .
2) For i = 1, . . . , r , write vi = ai1�1 + · · · + ais�s with aij ∈ K . Form the

matrix V = (aij) ∈ Matr,s(K) .
3) Using row operations, transform V into row echelon form. Call the re-

sult W .
4) Let O be the set of terms in L corresponding to the pivot-free columns

of W , i.e. the columns of W in which no row of W has its first non-zero
entry. Return O and stop.

This is an algorithm which computes an order ideal O ⊆ L such that the
residue classes of the terms in O form a K -vector space basis of 〈L〉K/V .

Proof. The procedure is obviously finite. Thus we prove correctness. The
terms in O are linearly independent modulo V because a non-trivial element
in 〈O〉K ∩ V would correspond to a row of W whose first non-zero position
is in a column corresponding to a term of O .

To prove that O is an order ideal, it suffices to show that �i ∈ L\O and
t �i ∈ L imply t �i ∈ L\O for all t ∈ Tn . Given a term �i ∈ L\O , there exists
a vector v ∈ V which corresponds to the row of W whose first non-zero entry
is in position i . Thus we have �i = LTσ(v). Now let �j = t �i ∈ L for some
t ∈ Tn . Then we see that �j = LTσ(t v). Since σ is degree compatible, it
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follows that all elements of Supp(t v) are in L . Hence the term �j corresponds
to a column of the matrix W in which one of its rows has its first non-zero
entry. Thus we have t �i ∈ L \ O , and the proof is complete. �

Theorem 6.4.36. (The Border Basis Algorithm)
Let I ⊆ P be a zero-dimensional ideal generated by a set of non-zero polyno-
mials {f1, . . . , fs} , and let σ be a degree compatible term ordering. Consider
the following sequence of instructions.
1) Let V0 ⊆ P be the K -vector subspace generated by {f1, . . . , fs} .
2) Let d = max{deg(t) | t ∈ Supp(f1) ∪ · · · ∪ Supp(fs)} and L = Tn

≤d .

3) For i = 0, 1, 2, . . . compute Vi+1 = (Vi + x1 Vi + · · ·+ xn Vi)∩ 〈L〉K until
Vi+1 = Vi .

4) Using the lemma, compute an order ideal O ⊆ L such that the residue
classes of the terms in O form a K -vector space basis of 〈L〉K/Vi .

5) Check whether ∂O ⊆ L . If this is not the case, increase d by one, re-
place L by Tn

≤d , replace V0 by Vi , and continue with step 3).
6) Let O = {t1, . . . , tµ} and ∂O = {b1, . . . , bν} . For j = 1, . . . , ν , use linear

algebra to compute the representation b̄j =
∑µ

i=1 αij t̄i of b̄j ∈ 〈L〉K/Vi

in terms of the basis {t̄1, . . . , t̄µ} and let gj = bj −
∑µ

i=1 αijti . Then let
G = {g1, . . . , gν} , return the pair (O, G) , and stop.

This is an algorithm which returns a pair (O, G) where O is an order ideal
and G is the O -border basis of I .

Proof. First we prove finiteness. Since Vi ⊆ Vi+1 for i ≥ 0 and since
dimK(〈L〉K) < ∞ , the sequence V0 ⊆ V1 ⊆ · · · is eventually stationary.
Thus step 3) involves only a finite amount of computation. To show that
the loop in steps 3) – 5) is finite, we have to prove that we eventually
have ∂O ⊆ L . Let σ be a degree compatible term ordering on Tn , and
let H = {h1, . . . , hs′} be the reduced σ -Gröbner basis of I . For j = 1, . . . , s′ ,
there is a representation hj = pj1f1 + · · · + pjsfs with pjk ∈ P . Let
d = max{deg(pjkfk) | j ∈ {1, . . . , s′}, k ∈ {1, . . . , s}} . By construction, we
have H ⊆ Vi after step 3) has been performed for L = Tn

≤d . Now we apply
the algorithm of the lemma. It follows that none of the leading terms LTσ(hj)
is contained in O . Thus we have O ⊆ Tn \ LTσ{I} and #O ≤ dimK(P/I).
Therefore it suffices to repeat the loop until d is larger than this dimension
in order to force ∂O ⊆ L .

Next we prove correctness. When the loop in steps 3) – 5) finishes, we have
∂O ⊆ L . Hence step 6) can be performed and yields G ⊆ Vi ⊆ I . By construc-
tion, the set G is an O -border prebasis. Given two neighbours bj , bk ∈ ∂O ,
the corresponding S-polynomial S(gj , gk) has its support in ∂O ⊆ L . Hence
we can find c1, . . . , cν ∈ K such that S(gj , gk) −∑ν

�=1 c�g� has its support
in O . Since this polynomial is contained in Vi and O represents a K -vector
space basis of 〈L〉K/Vi , it follows that S(gj , gk) −∑ν

�=1 c�g� = 0. Conse-

quently, the S-polynomial S(gj , gk) reduces to zero using G−→ , and Buch-



6.4 Border Bases 441

berger’s Criterion for Border Bases 6.4.34 proves that G is an O -border
basis of the ideal (g1, . . . , gν).

Finally, we show (g1, . . . , gν) = I . The inclusion “⊆” was already ob-
served above. For j = 1, . . . , s , we have fj ∈ V0 ⊆ Vi ⊆ 〈L〉K . Every term in

L\O is a multiple of one of the terms b1, . . . , bν . Therefore we can use G−→ to
reduce fj to an element in 〈O〉K . But that element is also contained in Vi ,
and hence it is zero. In other words, we have fj ∈ (g1, . . . , gν) , and the proof
is complete. �

Let us add some remarks about possible optimizations of this algorithm.

Remark 6.4.37. Assume that we are in the setting of the theorem.
a) Every time step 4) calls the algorithm of the lemma, we can reuse

the result of the previous call: the list of terms corresponding to the
columns of V has been enlarged, and the elements of the previous basis
{v1, . . . , vr} are contained in the current vector space Vi .

b) Since I is a zero-dimensional ideal, there exists for each j ∈ {1, . . . , n} a
non-zero polynomial of minimal degree in I∩K[xj ] . When the algorithm
of the lemma discovers a row of W corresponding to such a polynomial,
we can exclude all proper multiples of its leading term from the further
sets L . The reason is that there has to be an element of the border basis
whose border term divides that leading term.

c) In the algorithm of the lemma, it is not necessary to order the terms
in L with respect to a degree compatible term ordering. We may choose
a different ordering, but in that case it is not sure that the resulting set
of terms O is an order ideal.

To wrap up this section we apply the algorithm of the theorem to the
ideal in Example 6.4.16.

Example 6.4.38. Let P = Q[x, y] , let σ = DegLex , and let I = (f1, f2, f3),
where f1 = x2 + xy − 1

2y2 − x − 1
2y , f2 = y3 − y , and f3 = xy2 − xy . We

follow the steps of the Border Basis Algorithm 6.4.36.
1) Let V0 = 〈f1, f2, f3〉K .
2) Let d = 3 and L = {x3, x2y, xy2, y3, x2, xy, y2, x, y, 1} .
3) Compute V1 = 〈f1, f2, f3, yf1, xf1〉 and V2 = V1 .
4) Form the matrix

V =

⎛⎜⎜⎜⎝
0 0 0 0 1 1 − 1

2 −1 − 1
2 0

0 0 0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0 0 0
0 1 1 − 1

2 0 −1 − 1
2 0 0 0

1 1 − 1
2 0 −1 − 1

2 0 0 0 0

⎞⎟⎟⎟⎠
Since V is already in row echelon form, we let O = {xy, y2, x, y, 1} be
the terms corresponding to the last five columns.
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5) We have ∂O ⊆ L .
6) Since ∂O = {x2, x2y, xy2, y3} , we compute g1 = x2 +xy− 1

2y2 −x− 1
2y ,

g2 = x2y − 1
2y2 − 1

2y , g3 = xy2 − xy , and g4 = y3 − y . Return the pair
(O, G) , where G = {g1, g2, g3, g4} and stop.

Altogether, we have computed the order ideal O = {1, x, y, x2, y2} and the
O -border basis G = {f1, yf1 − f3 + 1

2f2, f3, f2} of I .
Observe that we could have chosen the coefficient of xy as the pivot

element in the first row of V . Then the algorithm would have returned the
order ideal O′ = {1, x, y, x2, y2} and the O′ -border basis G′ = {x3 − x,
x2y − 1

2y2 − 1
2y, xy + x2 − 1

2y2 − x − 1
2y, xy2 + x2 − 1

2y2 − x − 1
2y, y3 − y} .

The order ideal O′ is not of the form T2 \ LTσ{I} for any term ordering σ .

Exercise 1. Let a, b ∈ N+ , and let I be the monoideal in T 2 generated

by {xa, yb} . For every k ≥ 0, describe the k th border of O = T 2 \ I .

Exercise 2. Let P = Q[x, y] , let a, b ∈ Q , and let I ⊆ P be the ideal
generated by f1 = 1

2
x2 + y2 + axy − 1 and f2 = x2 + 1

2
y2 + bxy − 1.

Compute the border basis of I with respect to O = {1, x, y, xy} and show
that it varies continuously with the parameters a, b .

Exercise 3. Let K be a field, let P = K[x1, . . . , xn] , and let A ⊆ P .
We say that A is invariant under the action of the symmetric group (or
that A is symmetric) if f(x1, . . . , xn) ∈ A implies f(xπ(1), . . . , xπ(n)) ∈ A
for every permutation π of {1, . . . , n} .
Now let O = {t1, . . . , tµ} be an order ideal in Tn , and let I ⊆ P be
a zero-dimensional ideal. Assume that the residue classes of the elements
of O form a K -vector space basis of P/I and that both O and I are
symmetric.

a) Prove that the O -border basis of I is also symmetric.
b) Compare this result with Examples 6.4.2 and 6.4.14.

Exercise 4. Let A be the set of all ideals I in P = Q[x, y] having the
property that the residue classes of the elements in {1, x} form a basis
of P/I as a K -vector space. Prove that A can be parametrized by Q4 .

Exercise 5. Let K be a field, let P = K[x1, . . . , xn] , let O be an order
ideal in Tn , and let c1, . . . , cs be the corners of Tn \ O . Moreover, let I
be a zero-dimensional ideal in P which has an O -border basis, and let
g1, . . . , gs be the elements in this border basis corresponding to c1, . . . , cs .
Finally, let J = (g1, . . . , gs) , and assume that there exists a term order-
ing σ such that LTσ(gi) = ci for i = 1, . . . , s . Prove the following claims.

a) dimK(P/J) = dimK(P/I)
b) O = Oσ(I)
c) The set {g1, . . . , gs} is the reduced σ -Gröbner basis of I .

Exercise 6. Let P = Q[x, y] . Apply the Border Basis Algorithm 6.4.36
to the ideal I = (x2 − xy + y2, x3 − x2y, x2y − xy2, xy2 − y3, x3 + y3) . Is
it possible to modify it so that it computes the O -border basis of I with
respect to O = {1, x, y, x2, y2}?
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Tutorial 91: Module Structures on Vector Spaces

If you try to fail, and succeed,
which have you done?

(George Carlin)

Both, of course!
(John Abbott)

Suppose we are given a finite dimensional vector space over a field K and
we want to turn it into a K[x1, . . . , xn] -module. How can we succeed? How
could we fail? Is the result going to be a cyclic K[x1, . . . , xn] -module or not?
How can we check this computationally? Our goal in this tutorial is to guide
you to the answers to these questions. Whether we succeed or fail is still up
in the air — and even if you don’t find the solutions, we hope that you’ll at
least admire the problems.

Let K be a field, let V be a K-vector space, and let P = K[x1, . . . , xn] .
If V carries a P -module structure, multiplication by an indeterminate gives
an endomorphism of V . For i = 1, . . . , n , the P -linear map Φi : V −→ V
defined by v �→ xi v is called the ith multiplication endomorphism of V .
a) Let V be a P -module, i.e. assume that V carries a P -module structure.

Show that the multiplication endomorphisms of V are pairwise commut-
ing elements of the endomorphism ring EndK(V ) , but that this ring is
not commutative if dimK(V ) ≥ 2.

b) Let I ⊆ P be an ideal. Using the canonical homomorphism P −� P/I ,
define a P -module structure on P/I , and show that this P -module is
cyclic.
Thus a P -module structure on V gives rise to a set of n pairwise com-

muting endomorphisms. Now let us find out whether the converse is also true.
Let Φ1, . . . , Φn ∈ EndK(V ) be pairwise commuting.
c) Show that there is a natural way of equipping V with a P -module struc-

ture such that Φi is the ith multiplication endomorphism of V , namely
the structure defined by

P × V −→ V such that (f, v) �→ f(Φ1, . . . , Φn)(v)

d) Prove that the map ηΦ : P −→ EndK(V ) defined by f �→ f(Φ1, . . . , Φn)
is a ring homomorphism.

e) Show that every ring homomorphism η : P −→ EndK(V ) induces a
P -module structure on V via the rule f · v = η(f)(v).
Of particular interest are P -module structures on V for which V is a

cyclic P -module. We want to show that such structures are essentially of the
type given in b). For this we need to consider the annihilator of V , i.e. the
ideal AnnP (V ) = {f ∈ P | f · V = 0} .
f) Let V be equipped with a P -module structure corresponding to a ring

homomorphism η : P −→ EndK(V ) . Prove that AnnP (V ) = ker(η).
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g) Let V be a cyclic P -module. Show that there exist an ideal I ⊆ P and
a P -linear isomorphism Θ : P/I −→ V such that the multiplication
endomorphisms of V are given by the formula Φi = Θ ◦ ϕi ◦ Θ−1 where
ϕi : P/I −→ P/I is the endomorphism corresponding to multiplication
by xi for i = 1, . . . , n . Moreover, prove that I is zero-dimensional if V
is a finite dimensional vector space.
Hint: Let w ∈ V be a generator of the P -module V . Consider the
kernel I of the P -linear map Θ̃ : P −→ V given by 1 �→ w .

h) Let V be a P -module, and let w ∈ V . Show that AnnP (V ) ⊆ AnnP (w).
Furthermore, prove that AnnP (w) = AnnP (V ) if V is a cyclic P -module
with generator w .

i) Let V be a P -module, and let w ∈ V . Show that there exists a P -linear
map Ψw : P/AnnP (V ) −→ V defined by f + AnnP (V ) �→ f · w .
Prove that the map Ψw is an isomorphism of P -modules if and only
if w generates V as a P -module.
Hint: To prove that Ψw is injective if w generates V , consider f ∈ P
such that f + AnnP (V ) ∈ ker(Ψw) and show f(Φ1, . . . , Φn) = 0.
In the remaining parts of this tutorial we let V be a finite-dimensional

K-vector space of dimension µ . We fix a K -basis V = (v1, . . . , vµ) of V .
Thus every endomorphism of V can be represented by a matrix of size µ×µ
over K . In particular, when V is a P -module, then M1, . . . ,Mn denote the
matrices corresponding to the multiplication endomorphisms Φ1, . . . , Φn .

Using the following variant of the Buchberger-Möller algorithm, we can
calculate AnnP (V ) as the kernel of the composite map

η : P −→ EndK(V ) ∼= Matµ(K)

where η is the map defined in e). Moreover, the algorithm provides a vector
space basis of P/AnnP (V ). To facilitate the formulation of this algorithm, we
use the following convention. Given a matrix A = (aij) ∈ Matµ(K) , we order
its entries by letting aij ≺ ak� if i < k , or if i = k and j < � . In this way
we “flatten” the matrix to a vector in Kµ2

. Then we can reduce A against
a list of matrices by using the usual Gaußian reduction procedure.
j) (The Buchberger-Möller Algorithm for Matrices)

Let σ be a term ordering on Tn , and let M1, . . . ,Mn ∈ Matµ(K) be
pairwise commuting. Consider the following sequence of instructions.

M1. Let G = ∅ , O = ∅ , S = ∅ , N = ∅ , and L = {1} .
M2. If L = ∅ , return the pair (G,O) and stop. Otherwise let t = minσ(L)

and delete it from L .
M3. Compute t(M1, . . . ,Mn) and reduce it against N = (N1, . . . ,Nk)

to obtain

R = t(M1, . . . ,Mn) −
k∑

i=1

ciNi with ci ∈ K
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M4. If R = 0, append the polynomial t−∑i cisi to G , where si denotes
the ith element of S . Remove from L all multiples of t . Continue
with step M2.

M5. Otherwise, we have R �= 0. Append R to N and t − ∑i cisi

to S . Append the term t to O , and append to L those elements
of {x1t, . . . , xnt} which are neither multiples of a term in L nor in
LTσ(G). Continue with step M2.

Prove that this is an algorithm which returns the reduced σ -Gröbner
basis G of AnnP (V ) and a list of terms O whose residue classes form a
K-vector space basis of P/AnnP (V ).
Hint: You can proceed as follows:
1) To prove termination, use Corollary 1.3.6.
2) Let I = AnnP (V ), and let H be the reduced σ -Gröbner basis of I .

To show correctness, prove by induction that after a term t has been
treated by the algorithm, the following holds: the list G contains all
elements of H whose leading terms are less than or equal to t , and
the list O contains all elements of Tn \ LTσ(I) which are less than
or equal to t .

3) Show that the polynomial t −∑k
i=1 cisi resulting from step M3 of

the next iteration has leading term t .
4) Prove that the polynomial g = t −∑k

i=1 cisi is an element of H if
R = 0 in step M4.

5) Finally, show that the term t is not contained in LTσ(I) if R �= 0
in step M5.

k) Apply the Buchberger-Möller Algorithm for Matrices to the following
example. Let V = Q3 , let V = (e1, e2, e3) be its canonical basis, and
let V be equipped the the Q[x, y] -module structure defined by

M1 =

⎛⎝ 0 1 1
0 2 1
0 1 1

⎞⎠ and M2 =

⎛⎝ 0 1 0
0 1 1
0 1 0

⎞⎠
Compute the reduced DegLex -Gröbner basis of AnnP (V ) and a K -basis
of P/AnnP (V ).

l) Write a CoCoA function BuMoMat(. . .) which implements the algorithm
of j). Apply your function to the example in k) and compare its result to
yours.
Now we are ready for the main algorithm of this tutorial: we can check ef-

fectively whether a P -module structure given by commuting matrices defines
a cyclic module.
m) (Cyclicity Test)

Let V be a finite dimensional K -vector space with basis V = (v1, . . . , vµ),
and let Φ1, . . . , Φn be pairwise commuting endomorphisms of V given by
their respective matrices M1, . . . ,Mn . We equip V with the P -module
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structure defined by Φ1, . . . , Φn . Consider the following sequence of in-
structions.
C1. Using the Buchberger-Möller Algorithm for Matrices, compute a tu-

ple of terms O = (t1, . . . , tm) whose residue classes form a K -basis
of P/AnnP (V ).

C2. If m �= µ then return "V is not cyclic" and stop.
C3. Let z1, . . . , zµ be new indeterminates and A ∈ Matµ(K[z1, . . . , zµ])

the matrix whose columns are ti(M1, . . . ,Mn) · (z1, . . . , zµ)tr for
i = 1, . . . , µ . Compute the determinant d = det(A) ∈ K[z1, . . . , zµ] .

C4. Check if there exists a tuple (c1, . . . , cµ) ∈ Kµ for which the poly-
nomial value d(c1, . . . , cµ) is non-zero. In this case return "V is
cyclic" and w = c1v1 + · · · + cµvµ . Then stop.

C5. Return "V is not cyclic" and stop.
Prove that this is an algorithm which checks whether V is cyclic and, in
the affirmative case, computes a generator.
Hint: Use i). Examine the images of the basis elements {t̄1, . . . , t̄µ} for
linear independence.

n) Apply the Cyclicity Test to the example in k). Show that V is cyclic and
find a generator.

o) Let V = Q3 , let V = (e1, e2, e3) be its canonical basis, and equip V with
the Q[x, y] -module structure defined by the commuting matrices

M1 =

⎛⎝ 0 0 0
1 0 0
0 0 0

⎞⎠ and M2 =

⎛⎝ 0 0 0
0 0 1
0 0 0

⎞⎠
Apply the Cyclicity Test and show that V is not cyclic although the
dimensions of V and of P/AnnP (V ) coincide.

p) Write a CoCoA function CyclTest(. . .) which takes a list of n commuting
matrices and checks whether they define a cyclic P-module. Apply your
function to the examples in k) and o).
Hint: If the field K is infinite, the check in step C4 can be simplified to
checking d �= 0. For a finite field K , we can, in principle, check all tuples
in Kµ .
We end this tutorial by considering the special case n = 1. Let M be a

matrix representing an endomorphism Φ ∈ EndK(V ), and let V be equipped
with the K[x] -module structure defined by (f, v) �→ f(Φ)(v). When is V a
cyclic P -module? Let us interpret the meaning of the steps of our cyclicity
test in this case.
q) Show that the Buchberger-Möller Algorithm for Matrices yields a monic

polynomial f(x) = xd + cd−1x
d−1 + · · · + c0 , which is the minimal

polynomial of M (and of Φ), and the tuple O = (1, x, x2, . . . , xd−1).
r) Prove that the algorithm stops at step C2 only if the minimal polynomial

and the characteristic polynomial of M differ.
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s) Suppose we reach step C3. Show that then det(M) necessarily is non-
zero and V is a cyclic P -module. In conclusion, steps C3, C4, C5 are
redundant in the univariate case. This corresponds to the well-known fact
that V is a cyclic K[x] -module if and only if the minimal polynomial
and the characteristic polynomial of Φ coincide.

Tutorial 92: Design of Experiments

Probability and statistics will come to be viewed
as the natural tools in mathematical

as well as scientific modelling.
The intellectual world will come to view
logic as a beautiful elegant idealization,

but to view statistics as the standard way
in which we reason and think.

(David Mumford)

If statistics is really going to be the standard way in which we reason
and think, it cannot hurt to stray for a while into the world of scientific
modelling. We invite you to follow us on an excursion into a part of statistics
called design of experiments. To motivate the terminology introduced later,
let us start with an actual statistical problem.

A number of similar chemical plants had been successfully operating for
several years in different locations. In a newly constructed plant the filtration
cycle took almost twice as long as in the older plants. Seven possible causes
of the difficulty were considered by the experts.

1. The water for the new plant was different in mineral content.
2. The raw material was not identical in all respects to that used in the

older plants.
3. The temperature of filtration in the new plant was slightly lower than in

the older plants.
4. A new recycle device was absent in the older plants.
5. The rate of addition of caustic soda was higher in the new plant.
6. A new type of filter cloth was being used in the new plant.
7. The holdup time was lower than in the older plants.

These causes lead to seven variables x1, . . . , x7 . Each of them can as-
sume only two values, namely old and new which we denote by 0 and 1,
respectively. All possible combinations of these values form the full de-
sign D = {0, 1}7 ⊆ A7(Q) (see Definition 6.3.7). Its vanishing ideal is
I(D) = (x2

1 −x1, x2
2 −x2, . . . , x2

7 −x7) in the polynomial ring Q[x1, . . . , x7] .
Our task is to identify an unknown function f̄ : D −→ K , namely the

length of a filtration cycle. This function is called the model, since it is a
mathematical model of the quantity which has to be computed or optimized.
In order to fully identify it, we would have to perform 128 = 27 cycles. This
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is impracticable since it would require too much time and money. On the
other hand, suppose for a moment that we had conducted all experiments
and the result was f̄ = a + b x1 + c x2 for some a, b, c ∈ Q . At this point it
becomes clear that we have wasted many resources. Had we known in advance
that f̄ is given by a polynomial having only three unknown coefficients, we
could have identified them by performing only three suitable experiments!
Namely, if we determine three values of the polynomial a + b x1 + c x2 and
the associated matrix of coefficients is invertible, we can easily find a, b, c by
solving a system of three linear equations in these three unknowns.

However, a priori one does not know that the answer has the shape indi-
cated above. In practice, one has to make some guesses, perform well-chosen
experiments, and possibly modify the guesses until the process yields the de-
sired answer. In the case of the chemical plant, it turned out that only x1

and x5 were relevant for identifying the model.

Motivated by this example, we introduce the statistical jargon which
is commonly used in the design of experiments. Let K be a field. For
i = 1, . . . , n , let �i ≥ 1 and Di = {ai1, ai2, . . . , ai�i

} ⊆ K . Then we say
that the full design D = D1 × · · · × Dn ⊆ An(K) has levels (�1, . . . �n).

The polynomials fi = (xi − ai1) · · · (xi − ai�i
) with i = 1, . . . , n generate

the vanishing ideal I(D) ⊆ P of D . They are called the canonical poly-
nomials of D . For any term ordering σ on Tn , the canonical polynomials
are the reduced σ -Gröbner basis of I(D) (see Proposition 6.3.8). Thus the
order ideal

OD = {xα1
1 · · ·xαn

n | 0 ≤ αi < �i for i = 1, . . . , n}
is canonically associated to D and represents a K -basis of P/I(D).

Our main task is to identify an unknown function f̄ : D −→ K called the
model. Since it is defined on a finite set, it can in principle be determined by
performing all experiments corresponding to the points in D and measuring
the value of f̄ each time. A subset F of a full design D is called a fraction.
We want to choose a fraction F ⊆ D that allows us to identify the model if
we have some extra knowledge about the form of f̄ . In particular, we need
to describe the order ideals whose residue classes form a K -basis of P/I(F ).
Statisticians express this property by saying that such order ideals are iden-
tified by F .

To get better acquainted with these definitions, it is best to reason and
think statistically and solve a few easy problems.
a) Show that every model f̄ : D −→ K is a polynomial function, i.e. that

there exists a polynomial f ∈ P such that f̄(p) = f(p) for all p ∈ D .
b) Consider the full design D = {0, 1, 2, 3} × {0, 1, 2}
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in A2(Q). Determine the canonical polynomials and the order ideal OD .
c) Let F = {p1, . . . , pµ} ⊆ D be a fraction and O = {t1, . . . , tν} ⊆ OD an

order ideal. Prove that the following conditions are equivalent.
1) The order ideal O is identified by the fraction F .
2) The vanishing ideal I(F ) has an O -border basis.
3) We have µ = ν and det(ti(pj)) �= 0.

In the last condition there is one point which needs additional explanation.
How can we choose the fraction F such that the matrix of coefficients is
invertible? In other words, given a full design D and an order ideal O ⊆ OD ,
which fractions F ⊆ D have the property that the residue classes of the
elements of O are a K-basis of P/I(F )? We call this the inverse problem.
Below we develop an algorithm which solves the inverse problem, but before
doing so we need some preparations.

Using distracted fractions, one can show that there always exists at
least one solution of the inverse problem. Let us look at an example to illus-
trate the method.
d) Let D be the full design D = {0, 1, 2, 3} × {0, 1, 2} contained in A2(Q),

and let O = {1, x, y, x2, xy, y2, x3, x2y} ⊂ OD . The order ideal O can
be visualized as follows.
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Use the distracted fraction, i.e. the fraction whose points are the points
marked by bullets in the above sketch, to identify O . For an arbitrary
term ordering σ , find the reduced σ -Gröbner basis of I(F ) and prove
that O = Tn \ LTσ{I(F )} .

e) Let D be a full design, let {f1, . . . , fn} be its canonical polynomials,
let K be the algebraic closure of K , and let I be a proper ideal of
K[x1, . . . , xn] such that I(D) ⊆ I . Show that the ideal I has the follow-
ing properties.
1) The ideal I is a radical ideal. It is the vanishing ideal of a fraction

of D .
2) The ideal I is generated by elements of P , and I ∩ P is a radical

ideal.
3) The polynomials of every border basis of I are elements of P .

Hint: To prove 1), let F = Z(I) and show I = I(F ).
Now we are ready to state the main result of this tutorial. Our goal is to

solve the inverse problem. The idea is to proceed as follows. We are given a
full design D and an order ideal O . By Proposition 6.4.17, there is a 1-1 cor-
respondence between ideals I for which the residue classes of the terms in O
are a K-basis of P/I and border bases whose elements are “marked” by the
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terms in ∂O . Except for the border basis elements which are canonical poly-
nomials of D , we can write them down using indeterminate coefficients and
require that the corresponding formal multiplication matrices are pairwise
commuting. For I to be the vanishing ideal of a fraction contained in D , we
have to make sure that I contains ID . To this end, we require that the nor-
mal O -remainders of the canonical polynomials of D are zero. By combining
these requirements, we come to the following result.
f) (Computing All Fractions)

Let D be a full design with levels (�1, . . . , �n), and let O = {t1, . . . , tµ}
be an order ideal contained in OD with t1 = 1. Consider the following
definitions.
1) Let C = {f1, . . . , fn} be the set of canonical polynomials of D ,

where fi is marked by x�i
i , i.e. LTσ(fi) = x�i

i for any term order-
ing σ .

2) Decompose ∂O into two subsets ∂O1 = {x�1
1 , . . . , x�n

n } ∩ ∂O and
∂O2 = ∂O \ ∂O1 .

3) Let C1 be the subset of C marked by elements of ∂O1 , and let
C2 = C \ C1 .

4) Let η = #(∂O2). For i = 1, . . . , η and j = 1, . . . , µ , introduce new
indeterminates zij .

5) For every bk ∈ ∂O2 , let gk = bk −∑µ
j=1 zkjtj ∈ K(zij)[x1, . . . , xn] .

6) Let G = {g1, . . . , gη} and H = G∪C1 . Let M1, . . . ,Mn be the for-
mal multiplication matrices associated to the O -border prebasis H .

7) Let I(O) be the ideal in K[zij ] generated by the entries of the
matrices MiMj − MjMi for 1 ≤ i < j ≤ n , and by the entries
of the column matrices f(M1, . . . ,Mn) · e1 for all f ∈ C2 where
e1 = (1, 0, . . . , 0)tr .

Then show that I(O) is a zero-dimensional ideal in K[zij ] whose zeros
are in 1-1 correspondence with the solutions of the inverse problem, i.e.
with fractions F ⊆ D such that O represents a K-basis of P/I(F ).
Extended hint: To show that every p = (pij) ∈ ZK(I(O)) yields a frac-
tion F which identifies O , prove the following claims:
1) Let denote the substitution homomorphism zij �→ pij . Then we

have f(M1, . . . ,Mn) · e1 = 0 for every f ∈ C2 .
2) The set H = G ∪ C1 is the O -border basis of the ideal I generated

by it.
3) We have f ∈ I for all f ∈ C2 .
4) The ideal I is the vanishing ideal of a fraction of D .

Conversely, let F ⊆ D be a fraction which identifies O . Find a corre-
sponding zero of I(O) as follows:
1) Let B be the O -border basis of I(F ), write B = B1∪B2 , and show

B1 = C1 .
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2) Write the polynomials in B2 in the form ḡk = bk−
∑µ

j=1 αkjtj where
bk ∈ ∂O2 and αkj ∈ K . Let p = (αij) ∈ Kµη .

3) Prove f(M1, . . . ,Mn) · e1 = NFO,I(F )(f).
4) Show that p is a zero of I(O).

g) Let D be the full design D = {−1, 0, 1} × {−1, 1} with levels (3, 2)
contained in A2(Q). Solve the inverse problem for the order ideal
O = {1, x, y} by following the steps of f). In particular, show that
I(O) = (z12z21 − z11z22 − z21z23 + z13, z21z22 + z23, z22z23 + z21,
z2
22 − 1, z13z22 − z12z23 + z2

23 − z11, z22z23 + z21, z11z12 + z13z21,
z2
12 + z13z22 + z11 − 1, z12z13 + z13z23). Using CoCoA, check that I(O)

is a zero-dimensional, radical ideal of multiplicity 18. This means that
among the 20 =

(
6
3

)
triples of points of D , there are 18 triples which

solve the inverse problem. Show that the two missing fractions are
{(0, 0), (0, 1), (0,−1)} and {(1, 0), (1, 1), (1,−1)} .

h) Let D be the full design D = {−1, 0, 1} × {−1, 0, 1} with levels (3, 3)
contained in A2(Q). Solve the inverse problem for the order ideal
O = {1, x, y, x2, y2} by following the steps of f). In particular, show
that I(O) is the ideal generated by the following 20 polynomials:

z21z23 + z25z31 − z11 z21z22 + z11z24 − z31

z13z21 + z15z31 − z21 z21z32 + z11z34 − z21

z22z23 + z25z32 − z12 + z21 + z24 z2
22 + z12z24 − z32

z13z22 + z15z32 + z11 + z14 − z22 z22z32 + z12z34 − z22

z2
23 + z25z33 − z13 z22z23 + z13z24 + z21 + z25 − z33

z13z23 + z15z33 − z23 z23z32 + z13z34 − z23 + z31 + z35

z23z24 + z25z34 − z14 + z22 z14z24 + z22z24 − z34

z13z24 + z15z34 + z12 − z24 z24z32 + z14z34 − z24

z23z25 + z25z35 − z15 z15z24 + z22z25 + z23 − z35

z13z25 + z15z35 − z25 z25z32 + z15z34 − z25 + z33

Using CoCoA, check that I(O) is a zero-dimensional, radical ideal of mul-
tiplicity 81. This means that among the 126 =

(
9
5

)
five-tuples of points

in D there are 81 five-tuples which solve the inverse problem.
i) Show that one of the zeros of the ideal I(O) in h) is the point p ∈ Q15

whose coordinates are

z11 = 0 z12 = 0 z13 = − 1
2 z14 = 0 z15 = − 1

2

z21 = 0 z22 = −1 z23 = − 1
2 z24 = 1 z25 = − 1

2

z31 = 0 z32 = −1 z33 = − 1
2 z34 = 1 z35 = − 1

2

Find the corresponding O -border basis and the fraction defined by this
basis. (It is our old friend from Example 6.4.16!)

j) In view of our discussion in this section, it is natural to ask how many
of the 81 fractions F found in h) have the property that O is not of the
form Tn \LTσ{I(F )} for any term ordering σ . One can prove that 36 of
those 81 fractions are of that type. Try to find as many of these as possible



452 6. Further Applications

(See also Exercise 5). This is a surprisingly high number which shows
that border bases provide sometimes a much more flexible environment
for working with zero-dimensional ideals than Gröbner bases do.
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6.5 Filtrations

Lua,[...] Moon,[...]
Desmetaforizada Without the metaphors

Desmitificada,[...] Without the mythology,[...]
Gosto de ti assim: I like you as you are:

Coisa em si, Object that you are,
- Satélite. - A satellite.

(Manuel Bandeira, Brazilian poet)

Sometimes you are in a melancholic mood and you think back to the good
old days when a friend of yours was declaiming sagacious Brazilian poems by
Manuel Bandeira. Quite naturally, the flow of your memories carries you to
a romantic night under the full moon on a Brazilian beach. You realize that,
despite your efforts to think of it as a mere satellite hovering over a stretch
of sand, a touch of magic emanates from this scenery. Suddenly a mixture of
samba and forrò fills your mind. An old bossa nova overlaps the rhythm of
a traditional frevo, and the combination is both mesmerizing and addictive.

As you try to filter the tunes and thoughts, the shrill ring of your telephone
pulls you back to reality. Now the necessary filtrations are of a totally differ-
ent nature. So, what are we talking about here? After discussing briefly which
kind of filtrations we are not looking at, we define a filtration Φ on an alge-
bra R over a field K as a family of K-vector subspaces Φ = {FγR | γ ∈ Zm}
of R which obeys a few natural rules (see Definition 6.5.1). We show that this
definition generalizes several settings considered in earlier chapters, e.g. those
for the theories of Macaulay bases and Gröbner bases (see Examples 6.5.3
and 6.5.4). If we require the filtration to be reasonably well-behaved, i.e. to
be orderly and separated, we can introduce leading forms with respect to Φ
as elements of a ring called the associated graded ring. Here an important
difference with the earlier theories surfaces. So far we have never noticed
the associated graded ring of K[x1, . . . , xn] because it was always isomor-
phic to K[x1, . . . , xn] (see Proposition 6.5.8). Using leading forms, we can
then define leading form ideals and Φ -standard bases, the generalization of
Macaulay and Gröbner bases.

After studying the basic properties of these constructions, we apply them
in the second subsection to a very different kind of filtration. Given an ideal I
of R , the I -adic filtration Φ is defined by the powers of I , i.e. by the family
Φ = {I−γ | γ ∈ Z} . (The minus sign serves to make this an ascending
filtration. For γ ≥ 0, we define I−γ = R .) We show that for these filtrations
the properties of being orderly and separated coincide. The proof of this result
uses some beautiful pieces of commutative algebra: the Artin-Rees Lemma
(see Theorem 6.5.20) and Krull’s Intersection Theorem (see Theorem 6.5.21).

Then we come to the central computational result of this section. Based
on Lazard’s Method (see Theorem 6.5.25), we explain an algorithm for com-
puting tangent cones at the origin. Geometrically, tangent cones generalize
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the notion of a tangent line to a curve at a smooth point. But don’t worry, for
us they are algebraic objects which can be computed. In fact, their compu-
tation corresponds to finding the leading form ideal of an ideal with respect
to the (x1, . . . , xn)-adic filtration on K[x1, . . . , xn] (see Corollary 6.5.26).

Here the section stops, but the real fun is just about to begin. We have
prepared for you three major tutorials. The first tutorial deals with Mora’s
Algorithm for computing standard bases (see Tutorial 93), the second shows
you how to define and compute Hilbert functions of filtered rings (see Tu-
torial 94), and the third gives you a glimpse of the vast ocean of theory
concerning singular points on algebraic varieties (see Tutorial 95). And we
are not referring to that singular little point on the horizon: a small boat
sailing slowly into the Brazilian twilight.

O barquinho vai, a tardinha cai ...

6.5.1 General Filtrations

The poly-ring panel filter is perfect
for a number of filtration applications.

(Air Filtration Product Advertisement)

In the last tutorial we encountered filtrations in a chemical plant. So,
what is a filtration? A dictionary suggests the following definition.

Filtration: the physical or mechanical process of separating insoluble
particulate matter from a fluid, such as air or liquid, by passing the
fluid through a filter medium that will not allow the particulates to pass
through it.

However, we want to filter polynomial rings, not fluids. In that case, even
the well advertised poly-ring panel filter is not perfect. Clearly, we need a
different kind of device. Let K be a field, let P = K[x1, . . . , xn] , and let R
be a K-algebra.

Definition 6.5.1. Let m ≥ 1, let σ be a monoid ordering on Zm, and
for every γ ∈ Zm let FγR denote a K-vector subspace of R . The family
Φ = {FγR | γ ∈ Zm} is said to be a (Zm, σ)-filtration on R if the following
conditions are satisfied:
a) FγR ⊆ Fγ′R for all γ, γ′ ∈ Zm with γ ≤σ γ′

b)
⋃

γ∈Zm FγR = R

c) (FγR) · (Fγ′R) ⊆ Fγ+γ′R for all γ, γ′ ∈ Zm

d) 1 ∈ F0R and 1 /∈ FγR if γ <σ 0
When the indexing set Zm and the ordering σ are clear, the family Φ is
simply called a filtration on R .
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You may not have noticed, but we have already encountered a number
of filtrations on the polynomial ring P, although we have never identified
them explicitly as such. The simplest example is the filtration induced by the
degree of a polynomial. This filtration was used implicitly in Section 5.6.

Example 6.5.2. Let σ be the monoid ordering < on Z , and let P be
standard graded. For γ ∈ Z , let FγP = {f ∈ P \ {0} | deg(f) ≤ γ} ∪ {0} .
Then the family Φ = {FγP | γ ∈ Z} is a (Z, σ)-filtration on P . It is called
the standard degree filtration on P .

More generally, if P is graded by a matrix and the degrees are ordered
by Lex as in Section 4.2, there exists a filtration associated to this grading.

Example 6.5.3. Let P be graded by a matrix W ∈ Matm,n(Z). For every
γ ∈ Zm , let FγP = {f ∈ P \ {0} | degW (f) ≤Lex γ} ∪ {0} . Then it is easy to
check that Φ = {FγP | γ ∈ Zm} is a (Zm, Lex)-filtration on P . It is called
the degW -filtration on P .

Later we shall see that Macaulay bases are related to filtrations. In fact,
Gröbner bases, too, are related to filtrations. The basic link is given by the
following example.

Example 6.5.4. Let σ be a term ordering on Tn . Using the isomorphism
of monoids log : Tn −→ Nn , we can view σ as a monoid ordering on Nn ,
and using Proposition 1.4.14, we can extend σ uniquely to a monoid ordering
on Zn which we denote by σ again. For every γ ∈ Zn , we define the vector
space FγP = {f ∈ P \ {0} | log(LTσ(f)) ≤σ γ} ∪ {0} . Then it is easy to
see that Φ = {FγP | γ ∈ Zn} is a (Zn, σ)-filtration on P . It is called the
σ -Gröbner filtration on P .

Both degW -filtrations and Gröbner filtrations are special cases of the fol-
lowing more general construction. If P is graded by a matrix W ∈ Matm,n(Z)
and we use a term ordering σ to compare the degrees, we can define a
(Zm, σ)-filtration on P by letting FγP = {f ∈ P \{0} | degW (f) ≤σ γ}∪{0}
for all γ ∈ Zn . Before studying filtrations any further, we have to generalize
them to modules, of course.

Definition 6.5.5. Let M be an R -module, let m ≥ 1, let σ be a monoid
ordering on Zm, and let Φ be a (Zm, σ)-filtration on R . Furthermore, for
every γ ∈ Zm let FγM be a K-vector subspace of M .

The family Ψ = {FγM | γ ∈ Zm} is called a (Zm, σ)-filtration on M
which is compatible with Φ if the following conditions are satisfied:
a) FγM ⊆ Fγ′M for all γ, γ′ ∈ Zm with γ ≤σ γ′

b)
⋃

γ∈Zm FγM = M

c) (FγR) · (Fγ′M) ⊆ Fγ+γ′M for all γ, γ′ ∈ Zm

We simply say that Ψ is a filtration on M if it is clear which ordering σ
and which filtration Φ on R we are considering.
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If the polynomial ring P is graded by a matrix W ∈ Matm,n(Z) and M is
a graded P -module, there exists a natural degW -filtration on M compatible
with the degW -filtration on P , namely the filtration given by the vector
spaces FγM = {v ∈ M \ {0} | degW (v) ≤Lex γ} ∪ {0} for γ ∈ Zm .

Aside from the fact that it is easy to find examples, one fundamental
question remains unanswered: Why do we want to filter polynomial rings
and modules? This brings us to the Leitmotiv of this section. Filtrations are
a hidden thread connecting several topics we have discussed, for instance
Gröbner bases and Macaulay bases. But they are not only an abstract gen-
eralization, they also enable us to treat standard bases and tangent cones in
the second subsection. For this purpose we need some additional bits of the
general theory.

In the following we want to produce a graded ring from a filtered one and
a graded module over that graded ring from a filtered module. Let R be a
K-algebra, let m ≥ 1, and let σ be a monoid ordering on Zm . Moreover, let
Φ = {FγR | γ ∈ Zm} be a (Zm, σ)-filtration on R , let M be an R -module,
and let M be equipped with a (Zm, σ)-filtration Ψ = {FγM | γ ∈ Zm}
which is compatible with Φ . For any γ ∈ Zm , we denote the K-vector space⋃

γ′<σγ Fγ′M by F<σγM .

Remark 6.5.6. Let γ, γ′ ∈ Zm . To define a product

(FγR/F<σγR) × (Fγ′R/F<σγ′R) −→ Fγ+γ′R/F<σγ+γ′R

we let a1 and a2 be the residue classes of two elements a1 ∈ FγR and
a2 ∈ Fγ′R . Then we set a1 · a2 = a1 a2 . This yields a well-defined element
in Fγ+γ′R/F<σγ+γ′R because we have a1 a2 ∈ Fγ+γ′R by Definition 6.5.1.c
and for a3 ∈ F<σγR and a4 ∈ F<σγ′R we have

(a1 + a3) (a2 + a4) = a1 a2 + a1a4 + a2a3 + a3a4 = a1 a2

It is straightforward to check that the K-vector space
⊕

γ∈Zm FγR/F<σγR
becomes a Zm -graded K-algebra if we equip it with this multiplication.

Likewise, we can equip the K-vector space
⊕

γ∈Zm FγM/F<σγM with
the well-defined scalar multiplication induced by

(FγR/F<σγR) × (Fγ′M/F<σγ′M) −→ Fγ+γ′M/F<σγ+γ′M

Definition 6.5.7. The Zm-graded K-algebra grΦ(R) =
⊕

γ∈Zm FγR/F<σγR
is called the associated graded ring of R with respect to the filtration Φ .
The K-vector space grΨ (M) =

⊕
γ∈Zm FγM/F<σγM , equipped with the

scalar multiplication defined above, is a Zm -graded grΦ(R)-module. It is
called the associated graded module of M with respect to Ψ .

Sometimes associated graded rings and associated graded modules are
easy to describe.
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Proposition 6.5.8. Let W ∈ Matm,n(Z) , and let P be equipped with the
grading given by W and the degW -filtration Φ . Moreover, let M be a graded
P -module, and let Ψ be the degW -filtration on M .

Let λ : P −→ grΦ(P ) be the map of Zm -graded rings defined as follows.
Given γ ∈ Zm and a homogeneous polynomial f ∈ Pγ , let λ(f) be the residue
class of f in grΦ(P )γ = FγP/F<LexγP . Extend this definition to P by sending
a polynomial to the sum of the images of its homogeneous components.
a) The map λ is an isomorphism of Zm -graded K -algebras.
b) If we view grΨ (M) as a P -module via λ , there is an isomorphism of

graded P -modules µ : M −→ grΨ (M)
c) Given a term ordering σ and the σ -Gröbner filtration Φ′ on P , we have

a natural isomorphism of Zn -graded K-algebras P −→ grΦ′(P ) which
maps a term t to its residue class in grΦ′(P )log(t) .

Proof. For each γ ∈ Zm , the restriction of the map λ to Pγ is the com-
position of the inclusion Pγ ↪−→ FγP with the canonical surjective map
FγP −� FγP/F<LexγP . It is injective because we have Pγ ∩ F<LexγP = {0} .
It is surjective because the residue class of a polynomial in FγP is the residue
class of its homogeneous component of degree γ . Thus the map λ is bijective.
By the construction of the multiplication in grΦ(P ), it is an isomorphism of
graded K-algebras. This proves claim a). Claims b) and c) follow in the same
way. �

Our next proposition clarifies the behaviour of filtrations and associated
graded modules under the processes of forming submodules and residue class
modules.

Proposition 6.5.9. Let N be an R -submodule of M .
a) For every γ ∈ Zm , we define the K-vector subspace FγN = (FγM)∩N .

Then the family Ψ̃ = {FγN | γ ∈ Zm} is a (Zm, σ)-filtration on N . It is
called the induced filtration on N .

b) The canonical K-linear maps FγN/F<σγN −→ FγM/F<σγM give rise
to a homogeneous injective grΦ(R)-linear map α : grΨ̃ (N) −→ grΨ (M) .

c) For every γ ∈ Zm , we let Fγ(M/N) = (FγM)/(FγN) . Then the family
Ψ = {Fγ(M/N) | γ ∈ Zm} is a (Zm, σ)-filtration on M/N .

d) The canonical maps FγM/F<σγM −→ Fγ(M/N)/F<σγ(M/N) yield a
homogeneous surjective grΦ(R)-linear map β : grΨ (M) −→ grΨ (M/N) .

e) The sequence

0 −→ grΨ̃ (N) α−→ grΨ (M)
β−→ grΨ (M/N) −→ 0

is an exact sequence of Zm -graded grΦ(R)-modules.

Proof. Since a) amounts only to a simple check of definitions, we start by
proving claim b). The only non-trivial claim is that the map α is injective.
Given an element v ∈ FγN which satisfies α(v + F<σγN) = 0, we have
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v ∈ (F<σγM)∩ (FγN) = (F<σγM)∩N , and this vector space equals F<σγN
because we have

(F<σγM) ∩ N =
( ⋃
γ′<σγ

Fγ′M
)
∩ N =

⋃
γ′<σγ

Fγ′N = F<σγN

Claims c) and d) follow immediately from the definitions. Hence it remains
to prove the exactness of the sequence in e). The only non-trivial part is that
the elements of Ker(β) are contained in the image of α . Let v ∈ FγM be an
element for which we have v̄ = v + F<σγM ∈ Ker(β). Thus the residue class
of v in FγM/FγN is contained in some vector space FδM/FδN with δ <σ γ .
Using the isomorphism of K-vector spaces FδM/FδN ∼= (FδM + N)/N , we
see that v ∈ (FδM) + N . We choose w ∈ FδM and u ∈ N such that
v = w + u . Now the claim follows from u = v − w ∈ N ∩ FγM = FγN and
α(ū) = v̄ − w̄ = v̄ . �

Since the passage from a filtered ring to its associated graded ring is a
useful technique in commutative algebra, we introduce the following benign
properties of filtrations which will aid us in mastering this technique.

Definition 6.5.10. Let M be a filtered R -module as above.
a) The filtration Ψ is called orderly if for every element v ∈ M \{0} there

exists an element γ ∈ Zm such that v is contained in FγM but not in
F<σγM . In this case γ is called the order of v with respect to Ψ and
is denoted by ordΨ (v).

b) The filtration Ψ is called separated if we have
⋂

γ∈Zm FγM = {0} .
c) Let Ψ be orderly, and let v ∈ M \ {0} be an element of order γ . Then

the residue class of v in grΨ (M)γ = FγM/F<σγM is called the leading
form of v with respect to Ψ and is denoted by LFΨ (v). For v = 0, we
set LFΨ (v) = 0.

If Ψ is orderly, every non-zero element of M has a unique order with re-
spect to Ψ and a well-defined leading form. Furthermore, an orderly filtration
is separated because every non-zero element of M is contained in exactly one
set FγM \ F<σγM . There do exist filtrations which are not separated (and
therefore not orderly). For instance, the (Z, <)-filtration Φ on Q[x] defined
by FγQ[x] = Q[x] for γ ≥ 0 and FγQ[x] = (x) for γ < 0 is obviously not
separated. Moreover, there are separated filtrations which are not orderly
(see Exercise 1). Finally, we note that the leading form LFΨ (v) of a non-zero
element v ∈ M is a homogeneous element of grΨ (M) of degree ordΨ (v).

Let us examine degW -filtrations and Gröbner filtrations with respect to
these properties.

Example 6.5.11. Let W ∈ Matm,n(Z), let the polynomial ring P be
equipped with its degW -filtration Φ , and let a graded P -module M be
equipped with its degW -filtration Ψ . Then the filtrations Φ and Ψ are or-
derly. For every v ∈ M \ {0} , we have ordΨ (v) = degW (v). Furthermore, if
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we let γ = ordΨ (v), the isomorphism FγM/F<LexγM ∼= Mγ identifies LFΨ (v)
with DFW (v).

Example 6.5.12. Let σ be a term ordering on Tn . Then the σ -Gröbner
filtration Φ on P is orderly. For a non-zero polynomial f ∈ P , we have
ordΦ(f) = log(LTσ(f)). Furthermore, if we let γ = (γ1, . . . , γn) = ordΦ(f)
and t = xγ1

1 · · ·xγn
n , the isomorphism FγP/F<σγP ∼= K · t identifies LFΦ(f)

with LMσ(f).

Having introduced the leading form of an element with respect to a fil-
tration, we now proceed to define leading form modules.

Definition 6.5.13. Let N be an R -submodule of M , and let both Φ and Ψ
be orderly.
a) The graded grΦ(R)-submodule LFΨ (N) = 〈LFΨ (v) | v ∈ N〉 of grΨ (M)

is called the leading form module of N with respect to the filtration Ψ .
b) A set of elements {v1, . . . , vs} ⊆ N is called a Ψ -standard basis of N if

we have LFΨ (N) = 〈LFΨ (v1), . . . ,LFΨ (vs)〉 . If it is clear which filtration
we are considering, we simply say that {v1, . . . , vs} is a standard basis
of N .

Remark 6.5.14. Several special cases of standard bases have been studied
before.
a) Let W ∈ Matm,n(Z), let the polynomial ring P be equipped with the

degW -filtration Φ , and let I ⊆ P be an ideal. Then we have LFΦ(I) =
DFW (I), and a Φ -standard basis of I is simply a Macaulay basis of I
with respect to the grading given by W .

b) Let σ be a term ordering on Tn , let P be equipped with the σ -Gröbner
filtration Φ , and let I ⊆ P be an ideal. Then we have LFΦ(I) = LTσ(I),
and a Φ -standard basis of I is nothing but a σ -Gröbner basis of I .

In contrast to Macaulay bases and Gröbner bases, a standard basis of an
ideal need not generate it, as our next example shows.

Example 6.5.15. Let P = K[x, y] be graded by W = (−1 −1), let Φ be
the degW -filtration on P , and let I = (x − x2, xy). Since we have I ⊆ (x)
and LFΦ(x − x2) = x , we see that LFΦ(I) = (x). Hence {x − x2} is a
Φ -standard basis of I , but clearly not a set of generators.

Using leading form modules, we reformulate part e) of Proposition 6.5.9
as follows.

Corollary 6.5.16. Let N be a submodule of M , and assume that both fil-
trations Φ and Ψ are orderly. Then there exists a homogeneous isomorphism
of grΦ(R)-modules β̄ : grΨ (M)/LFΨ (N) ∼= grΨ (M/N) .

Proof. It suffices to note that the image of the map α in the proposition is
exactly LFΨ (N). �
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For σ -Gröbner filtrations and degW -filtrations, we have seen in Sec-
tions 2.5 and 4.2 how we can compute standard bases. In the next subsection
we meet a new kind of filtration which leads to interesting new standard
bases.

6.5.B Adic Filtrations and Tangent Cones

In the following we let R be a finitely generated K-algebra and I ⊆ R an
ideal.

Definition 6.5.17. Let σ be the monoid ordering < on Z . For every γ ∈ Z ,
let FγR = I−γ where we use the convention that Iδ = R for δ ≤ 0. Then
the family Φ = {FγR | γ ∈ Z} is clearly a (Z, σ)-filtration on R . It is called
the adic filtration with respect to I or the I -adic filtration on R .

In the case of an I -adic filtration Φ , we shall write LFI instead of LFΦ

and grI(R) instead of grΦ(R). For adic filtrations, the associated graded ring
satisfies grI(R)−γ

∼= Iγ/Iγ+1 for every γ ≥ 0 and grI(R)−γ = 0 for γ < 0.
The following example introduces a useful adic filtration. For a generalization,
see Proposition 6.5.24.

Example 6.5.18. Let P = K[x1, . . . , xn] be graded by W = (−1 · · · −1),
let m = (x1, . . . , xn), and let I ⊆ m be an ideal of P .
a) For γ > 0, we have Pγ = grm(P )γ = 0. For γ ≤ 0, the elements

of Pγ are the homogeneous polynomials of standard degree −γ . Hence
we have Pγ ⊆ m−γ . The map ϕγ which is the composition of this in-
clusion with the canonical map m−γ −� m−γ/m−γ−1 is bijective since
we have m−γ =

⊕∞
i=γ Pi for all γ ≤ 0. From this it follows easily that

the map ϕ =
⊕

γ∈Z ϕγ : P −→ grm(P ) is an isomorphism of Z -graded
K-algebras.

b) The m -adic filtration Φ on P is orderly and we have ordΦ(f) = degW (f)
for every f ∈ P \ {0} . If we identify the leading form of a non-zero
polynomial f with its preimage under the isomorphism ϕ , it corresponds
to the homogeneous component of f of lowest degree with respect to the
standard grading.

c) If we identify LFm(I) with its preimage under the isomorphism ϕ , we
get an isomorphism of Z -graded K-algebras grm/I(P/I) ∼= P/LFm(I)
(see Corollary 6.5.16).

Next we study the question of whether adic filtrations are orderly. The
following remark points out that, for these special filtrations, it is sufficient
to ask whether they are separated.

Remark 6.5.19. Assume that the I -adic filtration Φ on R is separated. For
every element a ∈ R\{0} there exists a number i ≥ 0 such that a ∈ Ii\Ii+1 .
Hence the filtration Φ is orderly. Consequently, the properties of being orderly
and of being separated are equivalent for I -adic filtrations.
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The following theorem is the basic tool for answering our question. In its
proof we use the Rees ring R(I) of I which was also the topic of Tutorial 81.
This ring is the Z -graded R -algebra R(I) =

⊕
d∈Z R(I)d with R(I)d = Id

for all d ∈ Z .

Theorem 6.5.20. (The Artin-Rees Lemma)
Let R be a finitely generated K-algebra, and let I and J be ideals in R .
Then there exists a number c ∈ N such that we have Id ∩ J = Id−c(Ic ∩ J)
for every d ≥ c .

Proof. By Hilbert’s Basis Theorem 2.4.6, the ring R is Noetherian. Hence
there exists a finite system of generators {a1, . . . , am} of I . We define an
R -algebra homomorphism ε : R[x1, . . . , xm] −→ R(I) by ε(xi) = ai ∈ R(I)1
for i = 1, . . . , m . The map ε is clearly surjective. In particular, it follows
from Hilbert’s Basis Theorem 2.4.6 that R(I) is a Noetherian ring, too.

If we equip R[x1, . . . , xm] with the standard grading, the map ε is also
homogeneous. Now we observe that

⊕
d∈N(Id ∩ J) is a homogeneous ideal

of R(I). Let f1, . . . , fs ∈ R[x1, . . . , xm] be homogeneous polynomials which
generate the ideal J̃ = ε−1(

⊕
d∈N(Id∩J)). Let c be the maximum of the de-

grees of f1, . . . , fs . Since we have J̃c =
∑s

i=1 R[x1, . . . , xm]c−deg(fi) fi , it fol-
lows that the ideal

⊕
d≥c J̃d has a system of generators {g1, . . . , gt} consisting

of homogeneous polynomials of degree c . Let q ∈ Id ∩ J with d ≥ c . Then
there exists a homogeneous polynomial p ∈ R[x1, . . . , xm]d whose image is
ε(p) = q . Using Corollary 1.7.11, we find a representation p =

∑t
i=1 higi with

homogeneous polynomials hi ∈ R[x1, . . . , xm] of degree deg(hi) = d− c ≥ 0.
Consequently, we obtain q =

∑t
i=1 ε(hi)ε(gi) ∈ Id−c(Ic ∩J). Since the other

inclusion is obvious, the proof is complete. �

The Artin-Rees Lemma implies the following important property of the
intersection ideal

⋂
γ∈N Iγ .

Theorem 6.5.21. (Krull’s Intersection Theorem)
Let R be a finitely generated K-algebra, let I be an ideal in R , and let
J =

⋂
γ∈N Iγ .

a) We have J = I J .
b) There exists an element a ∈ I such that (1 − a)J = 0 .
c) The ideal J consists of all elements b ∈ R satisfying (1 − a)b = 0 for

some element a ∈ I .
d) If R is an integral domain and I ⊂ R , the I -adic filtration on R is

orderly.

Proof. First we prove a). The inclusion I J ⊆ J is obviously true. We use
the Artin-Rees Lemma to find a number c ∈ N such that J = Id ∩ J =
Id−c(Ic ∩ J) for every d ∈ N . In particular, for d = c + 1 we get J ⊆ I J .

Next we prove b). Let {b1, . . . , bs} be a system of generators of J . By a),
there exist elements aij ∈ I such that bi =

∑s
j=1 aijbj for i = 1, . . . , s . Thus
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the matrix A = (aij) ∈ Mats(R) satisfies (Is − A) · (b1, . . . , bs)tr = 0. By
multiplying this equation on the left by the adjoint matrix of (Is − A), we
get det(Is − A) bi = 0 for i = 1, . . . , s . When we expand this determinant,
we see that it is of the form 1 − a with a ∈ I . Hence we have (1 − a)bi = 0
for i = 1, . . . , s , and the claim is proved.

Since b) implies one inclusion in c), we now prove the other inclusion. Let
b ∈ R be such that (1 − a)b = 0 for some a ∈ I . Then b = ab = a2b = · · ·
implies b ∈ ⋂i≥1 Ii = J , as we wanted to show. Finally, we note that claim d)
follows immediately from c). �

Krull’s Intersection Theorem can be used in two ways: we can construct
adic filtrations which are not orderly, and we can prove that certain adic
filtrations are orderly. Let us demonstrate this by a couple of examples.

Example 6.5.22. Let R = K[x, y]/(x−xy), and let I ⊆ R be the principal
ideal generated by the residue class ȳ of y . Then we have (1− ȳ) x̄ = 0, and
Krull’s Intersection Theorem yields x̄ ∈ ⋂γ≥0 Iγ . Since we have x̄ �= 0, the
I -adic filtration on R is not separated, and therefore not orderly.

Example 6.5.23. Let Γ be a monoid on which there exists a term order-
ing τ , let R be a finitely generated, Γ -graded K-algebra, and let I ⊂ R
be a homogeneous ideal. Then we have I ⊆ R+ =

⊕
γ>τ0 Rγ and the ideal

J =
⋂

i≥0 Ii satisfies J = I J ⊆ (R+)J by Krull’s Intersection Theorem.
Now the Graded Version of Nakayama’s Lemma 1.7.15 yields J = 0. Hence
the I -adic filtration on R is separated, and therefore orderly.

In the remainder of this section let K be a field, let P = K[x1, . . . , xn] ,
let y1, . . . , ym be further indeterminates, let Q = K[x1, . . . , xn, y1, . . . , ym] ,
and let n be the ideal generated by {x1, . . . , xn} in Q . We generalize and
extend Example 6.5.18 as follows.

Proposition 6.5.24. Let Q be graded by W = (−1 −1 · · · −1 0 · · · 0)
where W ∈ Mat1,n+m(Z) contains n entries −1 and m entries zero.
a) The n-adic filtration on Q is identical to the degW -filtration.
b) For each γ ∈ Z , let ϕγ : Qγ −→ (grn(Q))γ = n−γ/n−γ−1 be the com-

position of the inclusion Qγ ⊂ n−γ with the canonical surjective map
n−γ −� n−γ/n−γ−1 . Then the map ϕ =

⊕
γ∈Z ϕγ : Q −→ grn(Q) is an

isomorphism of Z-graded K-algebras.
c) The n-adic filtration on Q is orderly.
d) For every f ∈ Q \ {0} , we have ϕ(DFW (f)) = LFn(f) .
e) For every ideal J ⊆ Q , we have ϕ(DFW (J)) = LFn(J) .

Proof. To prove a), we note that nγ is a monomial ideal for every γ ≥ 1.
Therefore we have f ∈ nγ if and only if all terms t ∈ Supp(f) satisfy t ∈ nγ ,
and this is equivalent to degW (t) ≤ −γ for all t ∈ Supp(f). Hence we see
that both filtrations satisfy FγQ = {f ∈ Q \ {0} | degW (f) ≤ −γ} ∪ {0}
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for every γ ∈ Z . The other claims follow from a) and the corresponding
results for degW -filtrations in the first subsection (see Proposition 6.5.8 and
Example 6.5.11). �

Given an ideal J ⊆ Q , we would like to compute a standard basis of J
with respect to the n -adic filtration. Using the isomorphism ϕ of part b) of
the proposition, we identify Q and grn(Q). This means that we are look-
ing for a Macaulay basis with respect to the grading given by the matrix
W = (−1 −1 · · · −1 0 · · · 0). Unfortunately, we cannot use the method of
Corollary 4.2.16 because it requires the grading to be non-negative. Our next
theorem does the trick.

Theorem 6.5.25. (Lazard’s Method)
Let J ⊆ Q be an ideal, and let {f1, . . . , fs} ⊆ Q \ {0} be a system of genera-
tors of J . Choose a homogenizing indeterminate x0 and equip the polynomial
ring Q = K[x0, . . . , xn, y1, . . . , ym] with the grading defined by deg(xi) = 1
for i = 0, . . . , n and deg(yj) = 0 for j = 1, . . . , m . Furthermore, let σ
be an elimination ordering for x0 on the monoid of terms of Q , and let
{G1, . . . , Gt} be a homogeneous σ -Gröbner basis of the ideal (fhom

1 , . . . , fhom
s )

in Q . Then we have LFn(J) = (LFn(Gdeh
1 ), . . . ,LFn(Gdeh

t )) .

Proof. Let J = (fhom
1 , . . . , fhom

s ) ⊆ Q . The inclusion “⊇” is a consequence
of the observation that Gdeh

i ∈ Jdeh = ((fhom
1 )deh, . . . , (fhom

s )deh) = J for
i = 1, . . . , t . To prove the inclusion “⊆”, let f ∈ J \ {0} . By Corollary 4.3.8,
there exists a number � ≥ 0 such that x�

0 fhom ∈ J . Therefore LTσ(x�
0 fhom)

is a multiple of LTσ(Gi) for some index i ∈ {1, . . . , t} .
Now let f = f1 + · · · + fr be the decomposition of f into homoge-

neous components with respect to the grading given by deg(xi) = 1 for
i = 1, . . . , n and deg(yj) = 0 for j = 1, . . . , m . Here fk is homogeneous of
degree dk ≥ 0 and we may assume that d1 < · · · < dr . It follows that we have
fhom = xdr−d1

0 f1 + · · ·+x
dr−dr−1
0 fr−1 +fr and LTσ(fhom) = xdr−d1

0 LTσ(f1)
because σ is an elimination ordering for x0 . Moreover, the fact that the
n -adic filtration is the degW -filtration on Q implies LFn(f) = f1 .

In a similar way, using Proposition 4.3.2.h we know that Gi = xα
0 (Gdeh

i )hom

for some α ≥ 0, and so conclude that LTσ(Gi) = xβ
0 LTσ(LFn(Gdeh

i )) for
some β ≥ 0. Altogether, it follows that the term x�+dr−d1

0 LTσ(LFn(f))
is a multiple of xβ

0 LTσ(LFn(Gdeh
i )). Let us denote the restriction of σ to

the terms of Q by σ′ . Then we know that LTσ′(LFn(f)) is a multiple of
LTσ′(LFn(Gdeh

i )) for some i ∈ {1, . . . , t} . Since f ∈ J\{0} was arbitrary, this
shows that {LFn(Gdeh

1 ), . . . ,LFn(Gdeh
t )} is a σ′ -Gröbner basis of LFn(J). In

particular, it is a system of generators. �

The case m = 0 deserves a special mention. In this case we have
n = m = (x1, . . . , xn). Given an ideal J ⊆ P , the zero set of LFm(J) is
also called the tangent cone of J at the origin. So, using this geometric
terminology, the problem is how to effectively compute polynomials which
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define the tangent cone of J at the origin. The theorem immediately yields
the following algorithm.

Corollary 6.5.26. (The Tangent Cone Algorithm)
Let P = K[x1, . . . , xn] be standard graded, let m = (x1, . . . , xn) , and let
J ⊆ m be an ideal which is generated by a set of non-zero polynomials
{f1, . . . , fs} . Consider the following sequence of instructions.
1) Let P = K[x0, . . . , xn] be standard graded, and let J be the ideal

(fhom
1 , . . . , fhom

s ) in P .
2) Let σ be an elimination ordering for x0 on T(x0, . . . , xn) . Compute a

homogeneous σ -Gröbner basis {G1, . . . , Gt} of J .
3) Return the ideal (LFm(Gdeh

1 ), . . . ,LFm(Gdeh
t )) .

This is an algorithm which computes the ideal LFm(J) defining the tangent
cone of J at the origin.

Notice that Corollary 6.5.16 also provides us with a description of the
associated graded ring of P/J in this setting. Specifically, we have

grm/J(P/J) ∼= K[x1, . . . , xn]/(LFm(Gdeh
1 ), . . . ,LFm(Gdeh

t ))

Let us compute a tangent cone using this algorithm.

Example 6.5.27. Let the ring P = Q[x1, x2, x3, x4] be standard graded, let
m = (x1, x2, x3, x4), and let J = (x1x2 − x2

3, x2
2 − x5

4). We follow the steps
of the Tangent Cone Algorithm.
1) Equip the ring P = Q[x0, . . . , x4] with the standard grading, and let

J = (x1x2 − x2
3, x3

0x
2
2 − x5

4).
2) Let σ = Ord(V ) be the elimination ordering for x0 defined by the matrix

V =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 1 1 1 1
0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0

⎞⎟⎟⎟⎠
We compute the reduced σ -Gröbner basis of J . We obtain the result
{x1x2 − x2

3, x3
0x

2
2 − x5

4, x3
0x2x

2
3 − x1x

5
4, x3

0x
4
3 − x2

1x
5
4} .

3) Return the ideal (x1x2 − x2
3, x2

2, x2x
2
3, x4

3) and stop.
Altogether, we have computed LFm(J) = (x1x2 − x2

3, x2
2, x2x

2
3, x4

3).

The tangent cone at the origin contains information about the geometric
nature of the origin as a point on Z(J) (see Tutorial 95).
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Exercise 1. Let K be a field, let P = K[x, y] , and let Φ be the filtration
Φ = {F(a,b)P | (a, b) ∈ Z2} where

F(a,b)P =
{ {f ∈ P | degx(f) ≤ a} if either a > 0 or a = 0 and b ≥ 0,

0 if either a < 0 or a = 0 and b < 0.

a) Show that Φ is a (Z2, Lex)-filtration on P .
b) Show that Φ is separated but not orderly.

Exercise 2. Let K be a field, let R be a finitely generated K-algebra,
and let R be equipped with an orderly filtration Φ .

a) Prove that for all f, g ∈ R we have either LFΦ(f) LFΦ(g) = LFΦ(fg)
or LFΦ(f) LFΦ(g) = 0.

b) Show that if grΦ(R) is an integral domain then also R is an integral
domain.

c) Find an example where R is an integral domain, but grΦ(R) is not.

Exercise 3. Let K be a field, let P = K[x1, . . . xn] , let m be the ideal
(x1, . . . , xn) , let f ∈ m , and let I = (f) . Show that there exists a natural
isomorphism grm/I(P/I) ∼= P/(LFm(f)) .

Exercise 4. With the same assumptions as in Definition 6.5.17, let M be
a P -module. We define a (Z, σ)-filtration on M by setting FγM = I−γM
for γ ∈ Z and call it the I -adic filtration on M .

a) Show that grI(M) is a Z -graded grI(P )-module in a natural way.
b) Let J ⊆ P be an ideal. Give an example where the I -adic filtration

on the P -module J and the filtration induced on J by the I -adic
filtration on P are different.

c) Show that if J = (f) and f is a non-zerodivisor for P/Id for every
d > 0 then the two filtrations in b) coincide.

d) Let P = Q[x1, . . . , x9] , and let I ⊆ P be the ideal generated by

the 2×2-minors of the matrix M =
( x1 x2 x3

x4 x5 x6
x7 x8 x9

)
. Using CoCoA, show

that x1 is a non-zerodivisor for P/I and that x1 det(M) ∈ I2. Deduce
that in part c) it is not sufficient to assume that f is a non-zerodivisor
for P/I .

Exercise 5. Let R = K[[x1, . . . , xn]] be the power series ring in n
indeterminates over a field K , and let m = (x1, . . . , xn) . Prove that
grm(R) ∼= K[x1, . . . , xn] .

Exercise 6. Let K be a field, let P = K[x1, . . . , x4] be standard graded,

and let J ⊆ P be the ideal generated by f1 = x2
1x2 + x4

1x4 + x6
3 and

f2 = x1x
2
2 . Compute the ideal defining the tangent cone of J at the

origin.
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Tutorial 93: Mora’s Algorithm

How much can we generalize Gaußian reduction
in order to compute Gröbner bases?

(Teo Mora)

What happens if we want to solve the ideal membership problem in a
localization of the polynomial ring? For instance, let P = K[x1, . . . , xn] be
a polynomial ring over a field K , let S ⊂ P be the multiplicatively closed
subset 1 + (x1, . . . , xn) = {1 + f | f ∈ (x1, . . . , xn)} , and let p1, . . . , ps ∈ P
be non-zero polynomials which generate an ideal IS = p1PS + · · · + psPS in
the localization PS . Notice that this localization is canonically isomorphic to
the localization of P at the maximal ideal (x1, . . . , xn). To check whether
a given polynomial q ∈ P satisfies q

1 ∈ IS , we have to find out whether
there exist elements u ∈ S and a1, . . . , as ∈ P which satisfy the equation
uq = a1p1 + · · · + asps with u ∈ S . Since there is no obvious a priori
bound on the degree of u , it is not clear how we could try to generalize
Gaußian reduction (or its generalization, the Buchberger algorithm) to solve
this problem. Fortunately, we can call into play an algorithm invented by
Teo Mora which converts the world of localized rings to the Gröbner basis
theology.

In the following we let K be a field, we let P = K[x1, . . . , xn] be standard
graded, we let S = 1 + (x1, . . . , xn) , and we let σ be a monoid ordering
on Tn . We assume that σ is degree-anticompatible, i.e. that it is of the
form σ = Ord(W ) with a non-singular matrix W ∈ Matn(Z) whose first row
is (−1 · · · −1). Moreover, we let Φ be the degW -filtration on P . Our main
goal in this tutorial is to develop an algorithm for computing Φ -standard
bases in this setting.
a) Generalize Example 6.5.4 to monoid orderings σ and show that Φ is the

σ -Gröbner filtration in this more general sense. Moreover, for a non-zero
polynomial f ∈ P , prove that LFΦ(f) = LMσ(f). Conclude that we
have LFΦ(I) = LTσ(I) for every ideal I ⊆ P .
Now let us see how Φ -standard bases can be used to solve the ideal

membership problem in PS . A map which assigns to each polynomial f ∈ P
and each tuple of polynomials G = (g1, . . . , gs) ∈ P s a polynomial WRσ,G(f)
is called a weak remainder if it has the following properties.
1) WRσ,G(0) = 0
2) If WRσ,G(f) �= 0 then LTσ(WRσ,G(f)) /∈ (LTσ(g1), . . . ,LTσ(gs)).
3) There exist polynomials u ∈ S and a1, . . . , as ∈ P satisfying the equation

uf = a1g1 + · · · + asgs + WRσ,G(f) and LTσ(aigi) ≤σ LTσ(f) for all i
with aigi �= 0.
Below we shall show that a weak remainder map exists and that it can

be computed effectively. Let I ⊆ P be an ideal, and let G = (g1, . . . , gs) be
a Φ -standard basis of I .
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b) Prove that a polynomial f ∈ P satisfies f
1 ∈ IPS if and only if

WRσ,G(f) = 0. Hence the knowledge of a standard basis enables us
to check ideal membership in PS effectively.

c) Let P = Q[x1, x2] , and let I ⊆ P be the ideal generated by f1 = x7
1x

10
2 ,

f2 = x8
1 − x7

1x
2
2 , and f3 = x10

2 − x2
1x

9
2 . Show that G = (f2, f3) is a

Φ -standard basis of I , that f1 /∈ (f2, f3), and that WRσ,G(f1) = 0.
Hence the statement of b) does not hold in the ring P .

d) Let J ⊆ P be an ideal such that JPS ⊆ IPS and LTσ(J) = LTσ(I).
Prove that this implies JPS = IPS and IPS = g1PS + · · · + gsPS . In
other words, a Φ -standard basis generates the localized ideal.

e) Using the example in c) show that we may have (g1, . . . , gs) ⊂ I in d).
Thus a Φ -standard basis of an ideal in P is not necessarily a system of
generators.
Next we need an algorithm for computing weak remainders. To prove the

correctness of the algorithm, it will be convenient to describe a homogeneous
version first. For this purpose we introduce further notation and hypotheses.
Given a non-zero polynomial f ∈ P, we write its decomposition into homo-
geneous components in the form f = f1 + · · ·+ fr where fi is homogeneous
of some degree di and d1 < · · · < dr . Then the number ec(f) = dr − d1

is called the écart of f . (This is a French term whose English meaning is
something like “range”.) Now we let x0 be a new indeterminate, we equip
P = K[x0, . . . , xn] with the standard grading, and we let the term ordering σ
on Tn+1 be the extension of σ by (1 1 · · · 1) (see Definition 4.3.13). Observe
that σ is an elimination ordering for x0 .

f) Prove that every f ∈ P \ {0} satisfies LTσ(fhom) = x
ec(f)
0 LTσ(f).

g) Let F,G1, . . . , Gs ∈ P be non-zero homogeneous polynomials. Consider
the following sequence of instructions.

H1) Let H = F and L = {G1, . . . , Gs} .
H2) Let L′ = {G ∈ L | LTσ(G) divides xα

0 LTσ(H) for some α ∈ N} .
For each G ∈ L′ , let αG be the minimal number α ∈ N for which
LTσ(G) divides xα

0 LTσ(H). If L′ = ∅ return H and stop.
H3) Otherwise, choose G ∈ L′ with minimal αG . If αG > 0 then ap-

pend H to L .
H4) Replace H by (H̃deh)hom , where H̃ = xαG

0 H − x
αG
0 LMσ(H)
LMσ(G) G .

H5) If H = 0, return H and stop. Otherwise, continue with step H2).
Prove that this is an algorithm which computes a homogeneous poly-
nomial H ∈ P such that there exist further homogeneous polynomials
U,A1, . . . , As ∈ P having the following properties:
g1) U F = A1G1 + · · · + AsGs + H .
g2) LTσ(U) = xα

0 for some α ∈ N
g3) The polynomials UF,A1G1, . . . , AsGs,H are all homogeneous of the

same degree.
g4) No leading term LTσ(Gi) divides xβ

0 LTσ(H) for any β ∈ N .
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Hint: For finiteness, argue as in the proof of the usual Division Algo-
rithm 1.6.4. To prove correctness, proceed by induction on the iterations
of the algorithm. Start with U = 1 and Ai = 0. For the element G cho-
sen in step 2), distinguish the cases G ∈ {G1, . . . , Gs} and G = Hi , the
value of H after the ith iteration. In both cases update U and the Ai

so that equation g1) remains true.
h) (The Weak Remainder Algorithm)

Let f ∈ P and G = (g1, . . . , gs) ∈ P s . Consider the following sequence
of instructions.

W1) Let h = f and L = {g1, . . . , gs} .
W2) Let L′ = {g ∈ L | LMσ(g) divides LMσ(h)} . If L′ = ∅ , return h

and stop.
W3) Otherwise, choose g ∈ L′ with minimal ec(g). If ec(g) > ec(h) then

append h to L .
W4) Replace h by h − LMσ(h)

LMσ(g) g .
W5) If h = 0, return h and stop. Otherwise, continue with step W2).
Prove that this sequence defines an algorithm which computes a weak
remainder h = WRσ,G(f). (Hint: Dehomogenize the algorithm in g).)

i) Apply the Weak Remainder Algorithm to the following examples where
P = Q[x1, x2, x3] is equipped with the term ordering σ = Ord

( −1 −1 −1
0 0 −1
0 −1 0

)
.

1) f = x2
1 + x3

2 + x3
3 + x4

1 + x5
2 , G = (x1, x2)

2) f = x2
1 + x2

2 + x3
3 , G = (x1 − x1x2, x2

2 + x3
1, x3

3 − x4
1)

3) f = x1 + x2
1 + x3

1 + x4
1 , G = (x1 + x2

1 + x3
1)

j) Write a CoCoA function WeakRem(. . .) which takes a polynomial f ∈ P
and a tuple G = (g1, . . . , gs) ∈ P s and computes the weak remainder
WRσ,G(f) with respect to the term ordering σ given by the negative of
the matrix defining the current term ordering. Apply your function to
the examples in i) and compare its results to your hand calculations.
The last part of this tutorial contains the actual algorithm for computing

Φ -standard bases. Some of the proofs here are more demanding than usual
— you will be asked to rework part of the material in Volume 1. Of course,
you may also choose to believe the results and try your hand at their im-
plementation instead. For polynomials f1, f2 ∈ P , let S(f1, f2) denote the
S-polynomial of f1 and f2 .
k) Prove the analog of Buchberger’s Criterion 2.5.3 in the present setting.

Let I ⊆ P be an ideal, and let G = (g1, . . . , gs) be a tuple of polynomials
in I whose images in PS generate the ideal IPS . Prove that the following
conditions are equivalent.
1) G is a Φ -standard basis of I .
2) For all i, j ∈ {1, . . . , s} , an application of the algorithm in g) to

S(ghom
i , ghom

j ) and (ghom
1 , . . . , ghom

s ) yields H = 0.
3) For all i, j ∈ {1, . . . , s} , we have WRσ,G(S(gi, gj)) = 0.
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Hint: To prove that 2) implies 1), start from g1) with F = S(Gi, Gj) and
construct a lifting sij of σij as in the proof of Proposition 2.5.2. Then
consider equation g1) for F = fhom with f ∈ I \ {0} and show that
LTσ(AiGi) �= LTσ(AjGj) whenever i �= j .

l) (Mora’s Algorithm)
Let I ⊆ P be an ideal, and let {f1, . . . , fs} ⊆ I be a set of polynomi-
als whose images in PS generate the ideal IPS . Consider the following
sequence of instructions.

M1) Let s′ = s , let B = {(i, j) | 1 ≤ i < j ≤ s} , and let G = (g1, . . . , gs)
with gi = fi for i = 1, . . . , s .

M2) If B = ∅ , return the result G and stop. Otherwise, choose a pair
(i, j) ∈ B and delete it from B .

M3) Compute Sij = S(gi, gj) and S′
ij = WRσ,G(Sij) . If the result is

S′
ij = 0, continue with step M2).

M4) Increase s′ by one. Append gs′ = S′
ij to G and the set of pairs

{(i, s′) | 1 ≤ i < s′} to B . Then continue with step M2).
Prove that this is an algorithm which computes a Φ -standard basis G
of I . (Hint: Imitate the proof of Buchberger’s Algorithm and use the
above analog of Buchberger’s Criterion.)

m) Apply Mora’s Algorithm to compute the Φ -standard bases for the fol-
lowing ideals in P = Q[x1, x2] with respect to the degW -filtration Φ
defined by W =

(−1−1
0 1

)
.

1) f1 = x3
1x

3
2 , f2 = x4

1 − x5
2

2) f1 = x1 − x4
2 , f2 = x2

2 − x3
1

3) f1 = x4
1 − x3

1x
2
2 , f2 = x4

2 − x2
1x

3
2

4) f1 = x8
1 − x7

1x
2
2 , f2 = x10

2 − x2
1x

9
2

n) Write a CoCoA function SBasis(. . .) which takes a list of polynomials and
computes a Φ -standard basis of the ideal they generate. Assume that Φ
is the degW -filtration given by the negative of the matrix defining the
current term ordering.

o) Apply your function SBasis(. . .) to compute Φ -standard bases of the
examples in m) and of the following examples, where Φ is given by the
matrix W =

( −1 −1 −1
1 0 0
0 1 0

)
.

1) f1 = x2
1 + x2

2 + x2
3 , f2 = x1x2 + x3

2 + x3
3 , f3 = x5

1 + x1x
6
2 + x7

3

2) f1 = x2 + x3 − x2
1 − x2

2 , f2 = x3 − x2
1 − x2

2 , f3 = x2
1 − x2x3

3) f1 = x1 − x2
2x3 , f2 = x3 − x3

2 , f3 = x2
1 + x3

1 − x2x
3
3 − x5

3

p) Play some games of mor(r)a!

The scientific theory I like best
is that the rings of Saturn are composed

entirely of lost airline luggage.
(Mark Russell)
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Tutorial 94: Hilbert Functions of Primary Ideals

Husband: “I saw you making faces at me all the time,
but you notice I not only bid this grand slam but I made it.

What can you say about that?”
Wife: “If you had played it right you would have lost it.”

(Benjamin Graham)

Is it possible to introduce and compute Hilbert functions and Hilbert
series for filtered rings? For instance, can we do it for an affine algebra
R = K[x1, . . . , xn]/I with respect to its (x̄1, . . . , x̄n)-adic filtration? In this
tutorial we bid a grand slam: we propose to solve this problem not only for
the ideal (x̄1, . . . , x̄n), but for any ideal q primary to it. The idea behind
the definition is straightforward enough: the vector space dimension of each
R/qi is finite and can be combined to form a q -adic Hilbert function HFR,q .

But it is far less obvious how one could possibly compute this function, or
rather its associated Hilbert series. The first steps are to notice that to find
this function is equivalent to finding the Hilbert function of the associated
graded ring, and that the associated graded ring is generated as an algebra
by the residue classes of a system of generators of I . The next step is more
tricky. We produce a presentation of the associated graded ring as a residue
class ring of a larger polynomial ring where the generators of the ideal become
residue classes of indeterminates. Then it appears as if we had played it right
but lost it: the natural grading on this larger polynomial ring is not of positive
type and does not allow the computation of Hilbert series.

At this point we have to play our final trump card. By passing to another
associated graded ring with respect to a different filtration, we get a homo-
geneous presentation with respect to a positive bigrading. The corresponding
multigraded Hilbert series can be computed and yields the desired Hilbert
series via a change of grading. We’ve done it! Now stop making faces and get
going!

Let K be a field, let P = K[x1, . . . , xn] , let I ⊆ P be an ideal, and let
R = P/I . Moreover, we let m = (x1, . . . , xn) ⊆ P , we assume that there
exists an m -primary ideal q ⊆ P containing I , and we denote the residue
class ideals of m and q in R by m and q , respectively. In this setting, our
goals are to define and compute a Hilbert function which measures the growth
of the q -adic filtration of R .
a) For an ideal a ⊆ m ⊆ P, show that a is m -primary if and only if one of

the following equivalent conditions holds.
1) We have

√
a = m .

2) There exists a number i ≥ 1 such that mi ⊆ a ⊆ m .
3) We have dimK(P/a) < ∞ .

b) Using a), write a CoCoA function IsPrimary(. . .) which checks whether
a given ideal a of P yields an m-primary ideal a of R .
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c) Apply your function IsPrimary(. . .) to show that the ideal a is an
m -primary ideal in the following examples. We use P = Q[x, y, z] .
1) I = (0) and a = (x, y, z)2

2) I = (x2y − z7) and a = (x2 − y3, y4, z5)
3) I = (xy, xz, yz) and a = (x, y2, yz, z2)
4) I = (x2y3 − x3yz + xz3 − y2z2, xz2 − y2z) and a = (x3, xz, y2, z3)

d) Prove that dimK(R/qi) is finite for every i ≥ 1.
Based on this result we let the q-adic Hilbert function of R be the

map
HFR,q : Z −→ N given by i �−→ dimK(R/q i+1)

where we set qi = R for i ≤ 0. Furthermore, the associated Hilbert series

HSR,q(z) =
∑
i≥0

dimK(R/q i+1) zi =
∑
i≥0

HFR,q(i) zi

is called the q-adic Hilbert series of R . Next we want to find an effective
way to compute q -adic Hilbert series. Let Φ be the q -adic filtration of R , let
{f1, . . . , fm} ⊂ P be a system of generators of q , and let {g1, . . . , gs} ⊂ P
be a system of generators of I . The idea underlying our algorithm is based
on the following observations.
e) Show that we have HSR,q(z) = 1

1−z HSgrq(R)(z−1).
f) Prove that the residue classes {f̄1, . . . , f̄m} form a system of R/q -algebra

generators of the associated graded ring grq(R). Here f̄i denotes the
residue class of fi in q/q2 .

g) Let y1, . . . , ym be further indeterminates, let Q = P [y1, . . . , ym] , and let
J = (y1 − f1, . . . , ym − fm) be the diagonal ideal in Q . Construct an
isomorphism of K -algebras ϕ : R −→ Q/J having the property that the
image of q is the ideal q̃ ⊆ Q/J generated by the set of residue classes
{y1 + J, . . . , ym + J} .

h) Show that the isomorphism ϕ induces an isomorphism of K-algebras
ϕ : grq(R) −→ grq̃(Q/J) which maps f̄i to ȳi , the image of yi in q̃/q̃2 .

i) Now use Corollary 6.5.16 and Proposition 6.5.24 to get an isomorphism
of Z -graded K-algebras ψ : grq(R) −→ Q/J̃ where Q is graded by
deg(xi) = 0 and deg(yj) = −1, and where J̃ is a homogeneous ideal
of Q with respect to this grading. Describe explicitly how J̃ is obtained
from the generators of I and q .
Unfortunately, the above grading on Q is of non-negative type but not

of positive type. Therefore the homogeneous components of Q are not finite
dimensional and we cannot yet use e) and i) to compute the q -adic Hilbert
series of R . However, now the results of Section 5.8.C come to our rescue.
j) Let n be the residue class ideal of (x1, . . . , xn)Q in Q/J̃ , and let Ψ be

the n -adic filtration on Q/J̃ . In the same way as above, construct an
isomorphism of Z -graded K-algebras ı : grn(Q/J̃) −→ Q/Ĵ where Q
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is graded by deg(xi) = −1 and deg(yj) = 0, and where Ĵ ⊆ Q is a
homogeneous ideal with respect to this grading. Describe explicitly how
the elements of Ĵ are obtained from the elements of J̃ .

k) Show that Ĵ is in fact a homogeneous ideal with respect to the bigrading
on Q given by W =

(
0 ··· 0 1 ··· 1
1 ··· 1 0 ··· 0

)
. Since this grading is positive, we can

compute the multigraded Hilbert series HSQ/Ĵ, W (z1, z2).
l) Prove that we have HSgrq(R)(z) = HSQ/Ĵ, W (z−1, 1) and deduce the for-

mula HSR,q(z) = 1
1−z HSQ/Ĵ, W (z, 1).

m) By way of some examples, examine what happens to HSQ/Ĵ, W (z, 1)
when q contains I , but is not m -primary.

n) Implement a CoCoA function PrimaryHS(. . .) which takes I and q and
computes the q -adic Hilbert series HSR,q(z) of R .

o) Apply your function PrimaryHS(. . .) to the examples in c).

Tutorial 95: Singularities

Mathematics is like chequers
in being suitable for the young,

not too difficult, amusing,
and without peril to the state.

(Plato)

This is the third and final tutorial of this section. We have seen that adic
filtrations and standard bases open up the world of localized rings to effective
computation, and that this world has its own species of Hilbert functions
and Hilbert series. What is the geometric meaning of all this? Although the
details are beyond the scope of this book, we can imagine the elements of a
ring of the form R = K[x1, . . . , xn](x1,...,xn)/I as “germs” of functions near
the origin o . This means that we identify two functions if they are equal on a
neighbourhood of o . Thus the ring R captures some aspects of the geometry
of the variety V = Z(I) near the origin. In particular, we shall see that
this ring R contains the information specifying whether o is a regular or a
singular point of V , and in the latter case that computations in R allow us
to say something about the nature of the singularity.

Singularity theory may or may not be without peril to the state. However,
it is surely a difficult topic. If this tutorial should turn out to be arduous and
not too amusing for you, we suggest that you skip some of the most onerous
proofs and concentrate on the examples and the programs to get a feeling for
the chequered and varied world of singularities.

Let K be a field, let K be an algebraic closure of K , let P = K[x1, . . . , xn]
be standard graded, and let I ⊂ P be a radical ideal for which we have
I ⊆ (x1, . . . , xn). Geometrically speaking, this means that V = Z(I) ⊆ An

K
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is an affine variety which contains the point o = (0, . . . , 0) and that I is the
vanishing ideal of V in P (see Section 2.6). The affine K -algebra R = P/I
is called the affine coordinate ring of V . Let m ⊂ R be the maximal ideal
generated by the residue classes of x1, . . . , xn . (Observe that this notation
differs from the one chosen in the section. To simplify the presentation, we
decided to use m instead of m .) The localization RS of R at the multiplica-
tive set S = R \ m is also denoted by Rm and is called the local ring of V
at o .
a) Prove that the ring Rm contains exactly one maximal ideal, namely the

ideal mRm .
b) Show that the map J �→ JRm defines a 1–1 correspondence between the

ideals J ⊆ R with J ∩S = ∅ and the ideals in Rm . Moreover, show that
this correspondence induces a bijection between the set of prime ideals
p ⊂ R with p ∩ S = ∅ and the set of prime ideals of Rm .

c) Prove the inequalities Kdim(Rm) ≤ dim(R) ≤ µ(m). Here µ(m) de-
notes the minimal number of generators of m . Furthermore, prove that
Kdim(Rm) ≤ µ(mRm) = dimK(m/m2). (Hint: Use b) and Proposi-
tion 5.4.6.)
The number µ(mRm) is called the embedding dimension of Rm and

is denoted by edim(Rm). The ring Rm is called a regular local ring if we
have Kdim(Rm) = edim(Rm), otherwise it is called a singular local ring.
Geometers express these properties as follows. The point o is called a regular
point of the variety V if Rm is a regular local ring. Otherwise, the point o
is called a singular point or a singularity of V . To get some insight into
the geometric meaning of these notions, we examine a number of examples.
d) Let P = Q[x, y] . For the plane curves given by the following equations,

determine whether o = (0, 0) is a singular point. Moreover, compute
their tangent cones at the origin.
1) C1 = Z(y − x2) (parabola)

............................... ................

........

.......................

................

x

y

•

................................................................................................................................................................
..................
.................
.................
.................
................
................
....

2) C2 = Z(x2 − y2) (two crossing lines) Here o is called a node.

............................... ................

........

.......................

................

x

y

•

......................
.......................
......................
.......................
......................
.......................
......................
...........................................................................................................................................................................

3) C3 = Z(x2 − y2 + x3) (elliptic curve having a node at p)
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............................... ................
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.......................

................

x

y

•........................................................................................
...................
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..................
..................
.................
..............

...................................................................................................................
4) C4 = Z(y2 − x3) (cuspidal cubic) Here p is called a cusp.

............................... ................
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.......................
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x

y
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...................
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5) C5 = Z(3xy − x3 − y3) (folium of Descartes)
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x

y
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.................
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.........................................................................................................................................................

6) C6 = Z(4x2y2 − (x2 + y2)3) (four-leafed rose)
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y
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.........................................................................................................

Our next goal is to find an algorithm which enables us to check whether o
is a singularity or not. The key result is called the Jacobian criterion.
Let {f1, . . . , fs} be a set of non-zero polynomials which generate I . Then
the Jacobian matrix of the tuple F = (f1, . . . , fs) is defined to be the
matrix Jac(F) =

(
∂fi

∂xj

)
∈ Mats,n(P ). Since the Jacobian matrix uses partial

derivatives, it is convenient to assume char(K) = 0 for the remainder of this
tutorial.
e) Show that we have edim(Rm) = n − rk

(
Jac(F)(0, . . . , 0)

)
. Conclude

that Rm is a regular local ring if and only if the rank of the matrix
Jac(F)(0, . . . , 0) ∈ Mats,n(K) is n − dim(Rm).
Hint: Compare the dimensions of m/m2 and (x1, . . . , xn)/(x1, . . . , xn)2 .

f) (This part is quite difficult. Attempt to solve it only on a day when you
feel very brave.) Show that the m -adic Hilbert series HSR,m(z) of R
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defined in the preceding tutorial has the shape HSR,m(z) = p(z)
(1−z)d for

some polynomial p(z) ∈ Q[z] with p(1) �= 0 and with d = Kdim(Rm).
Hint: Imitate the proof of Theorem 5.6.36. Prove that the number d does
not change when you replace m by an m -primary ideal and that it goes
down by one when you replace R by R/(a) for some non-zero divisor a
of R .

g) Using e) and f), construct an algorithm for checking whether o is a
regular point of V or a singularity. Implement this algorithm in a CoCoA
function IsSingular(. . .). Apply your function to the examples in d) and
to the following varieties in A3

Q
defined over P = Q[x, y, z] . (If possible,

sketch them!)
1) V1 = Z(x2 + y2 − z2) (circular cone)
2) V2 = Z(xy, xz) (a line and a plane)
3) V3 = Z(x2 − y2) (two planes)
4) V4 = Z(x − y2 − z2) (paraboloid)
5) V5 = Z(x − y2, x − z3) (twisted cubic curve)
6) V6 = Z(x2 − yz2)
7) V7 = Z(x2 + y3 − yz2)
8) V8 = Z(xyz + x4 + y4 + z4)
9) V9 = Z(x2 + y4z2 − 2y3z3 + y2z4 + y7 + z7)

Now that we know how to decide whether o is a singularity of V or
not, we can ask the same question for other points of V . Here we say that
a point p ∈ V is a singularity of V (resp. a regular point of V ) if the
point o is a singularity (resp. a regular point) of the affine variety obtained
by performing a linear change of coordinates which maps p to o . The set of
all singular points of V is denoted by Sing(V ) and is called the singular
locus of V .
h) Show that the notion of a singularity of V is well-defined, i.e. that it

does not depend on the linear change of coordinates we choose.
i) Let p = (p1, . . . , pn) ∈ V , let P = K[x1, . . . , xn] , let p be the ideal

(x1 − p1, . . . , xn − pn) in P , and let P p be the localization of P at the
multiplicative set P \ p . Prove that we have

rk
(
Jac(F)(p1, . . . , pn)

)
≤ n − dim(P p/(f1, . . . , fs)P p)

and that p is a singularity of V if and only if we have a strict inequality
here.

j) Suppose that V is equi-dimensional of dimension d = dim(V ), i.e.
that we have dim(P/q) = d for every minimal prime q of I . Show that
we have Sing(V ) = Z(I + J) where J is the ideal generated by the
minors of size (n−d) × (n−d) of the Jacobian matrix Jac(F).

k) Write a CoCoA function Sing(. . .) which takes I , checks whether the
affine variety V = Z(I) is equidimensional, and computes the ideal defin-
ing the singular locus of V in that case.
Hint: Use the built-in CoCoA function EquiIsoDec(. . .).
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Having found the singularities of an equidimensional variety V , we are
interested in studying their properties. Does Sing(V ) consist only of a few
isolated points? Are they singular because they are contained in several ir-
reducible components of V ? How does V “look” locally in the vicinity of
a singular point? Can we distinguish different types of singularities? These
are difficult questions. In what follows we try to answer them partially in a
special case.

Let V be a hypersurface, i.e. assume that V = Z(f) is defined by a single
polynomial f ∈ P , let p = (p1, . . . , pn) ∈ K

n
, and let p be the corresponding

maximal ideal p = (x1 − p1, . . . , xn − pn) ⊆ P . We introduce the following
notions.
1) The point p is called an isolated critical point of f if the ideal

( ∂f
∂x1

, . . . , ∂f
∂xn

)P p is pP p -primary.
2) The point p is called an isolated singularity of V if (f, ∂f

∂x1
, . . . , ∂f

∂xn
)P p

is a pP p -primary ideal.
3) The number Milp(V ) = dimK(P p/( ∂f

∂x1
, . . . , ∂f

∂xn
)P p) ∈ N∪{∞} is called

the Milnor number of V at p .
4) The number Tjup(V ) = dimK(P p/(f, ∂f

∂x1
, . . . , ∂f

∂xn
)P p) ∈ N ∪ {∞} is

called the Tjurina number of V at p .
The Milnor number and the Tjurina number allow us a first insight into

the nature of a singularity. In the following we assume that we have moved
the point p to the origin o = (0, . . . , 0).
l) Show that Milo(V ) < ∞ if and only if o is an isolated critical point of f .

m) Prove that Tjuo(V ) < ∞ if and only if o is an isolated singularity of V .
n) Show that Milo(V ) > 0 if and only if o is a critical point of f , i.e. if

and only if o ∈ Z(( ∂f
∂x1

, . . . , ∂f
∂xn

)).
o) Prove that Tjuo(V ) > 0 if and only if o ∈ Sing(V ).
p) Show that C2 – C6 , V1 , V7 – V9 are precisely the varieties among the

examples in d) and g) which have an isolated singularity at o .
q) Write CoCoA functions Milnor(. . .) and Tjurina(. . .) which compute the

Milnor number and the Tjurina number of V at o , respectively. Apply
your functions to the isolated singularities found in p).
Assume that o is an isolated singularity of V . Then o is called a node if

the Hessian matrix Hess(F) =
(

∂2f
∂xi∂xj

)
∈ Matn(P ) is non-singular at o ,

i.e. if we have det(Hess(F)(0, . . . , 0)) �= 0.
r) Show that o is a node of V if and only if Milo(V ) = 1, and that this is

also equivalent to Tjuo(V ) = 1.
s) Write a CoCoA function IsNode(. . .) which checks whether o is a node

of V = Z(I). Determine the nodes among the isolated singularities found
in p).
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6.6 SAGBI Bases

Boo Barkee revealed his love for mathematics
when he licked a draft of the paper about SAGBI.

(From “Subalgebra Analog to Gröbner Bases for Ideals”)

Two mathematicians were walking in a forest. They were discussing the
question whether it is possible to generalize Gröbner bases to subalgebras.
Suddenly they realized that they had forgotten the sheets of scrap paper on
which they had scribbled some new results. They decided to turn around and
head home where they had left the dog Boo. And when they arrived, they
were astonished to see that Boo had revealed his love for mathematics. He had
been playing with the sheets, licking them, and spreading them all around the
house. The revelation motivated further development of the theory and they
invented the acronym “Subalgebra Analogs to Gröbner Bases for Ideals”.
This happened in the good old days. Boo has now passed away, but what
has become of SAGBI bases since then? How should we integrate a theory
for subalgebras with theories for ideals and modules?

We learn from history that we do not learn from history.
Trying to learn from Chapter 2, we want to define a subalgebra analog to

Gröbner bases. A careful reading of the previous section suggests how we can
go about this: given a subalgebra S of a polynomial ring P = K[x1, . . . , xn]
over a field K and a term ordering σ on Tn , the σ -Gröbner filtration on P
induces a filtration Ψ on S . A subset G ⊆ S \ {0} is called a σ -SAGBI
basis of S if the leading terms {LTσ(g) | g ∈ G} generate the K -algebra
grΨ (S). Although this approach is the correct one, we have to be extremely
cautious because subalgebras of P need not be finitely generated. For in-
stance the subalgebra S of P = K[x, y] defined by S = K[x, xy, xy2, xy3, . . .]
is not finitely generated. After we identify grΨ (S) with the K -subalgebra
K[LTσ(f) | f ∈ S \ {0}] of S , we discover that some K -subalgebras S ⊆ P
have no finite SAGBI basis whatsoever (see Examples 6.6.7 and 6.6.8). Fortu-
nately, SAGBI bases do share some of the good properties of Gröbner bases.
They generate the subalgebra (see Proposition 6.6.3) and they satisfy the
SAGBI analogs of Conditions B) in Section 2.1 (see Corollary 6.6.5.c). In
several special cases, we prove that finite SAGBI bases exist, e.g. for sub-
algebras of K[x] (see Proposition 6.6.9), for systems of generators having
algebraically independent leading terms (see Proposition 6.6.11), and for sub-
algebras containing elements fi with LTσ(fi) ∈ K[xi] for i = 1, . . . , n (see
Proposition 6.6.13).

Those who fail to learn from history are doomed to repeat it.
So, how far does the analogy between Gröbner bases and SAGBI bases ex-

tend? Are we doomed to repeat everything we did in Chapter 2? In the second
subsection we dig deeper and deeper into this topic and try to recreate The-
orem 2.4.1 in the SAGBI world. The SAGBI basis analogs of Conditions A)
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in Section 2.1 and Conditions C) in Section 2.2 are straightforward to in-
troduce (see Propositions 6.6.14 and 6.6.18). The most difficult aspect is the
characterization of Gröbner bases by the lifting of syzygies. In SAGBI basis
theory, the module of syzygies has to be replaced by the ideal of algebraic
relations. Then everything works as expected. We construct the fundamental
SAGBI diagram (see Proposition 6.6.22) and formulate the SAGBI equiva-
lents of Conditions D) in Section 2.3 (see Proposition 6.6.23). Finally, our
historical excursion reaches port in Theorem 6.6.25 which says that all these
Conditions A), B), C), and D) characterize SAGBI bases.

Everytime history repeats itself the price goes up.
Having worked our way through such a formidable chunk of theory, we

naturally want to compute SAGBI bases. The third subsection is devoted to
this task. As before we want to redo the construction of Buchberger’s Algo-
rithm in Section 2.5 but before we even start we have to face the reality that
prices have gone up much more than the official estimate predicted. There is
no hope to find an algorithm because, as we saw, not every K -subalgebra of P
has a finite SAGBI basis. Hence the best we can hope for is an enumerating
procedure. This is a procedure which looks, smells, and tastes like an algorithm
but it comes without the guarantee of finiteness. Using T-polynomials, the
SAGBI analogs of S-polynomals, we derive the SAGBI Basis Criterion 6.6.28,
the SAGBI analog of the Buchberger’s Criterion 2.5.3. Then we introduce the
SAGBI Basis Procedure, the SAGBI analog of Buchberger’s Algorithm 2.5.5.
This procedure entails further “sagbities”, the SAGBI analogs of subtleties,
because one cannot add new SAGBI basis elements one at a time. Rather, it
is essential that the irreducible reductions of all T-polynomials are appended
simultaneously, as the Tricky Example 6.6.30 shows.

The only thing we learn from history is that we learn nothing.
Is this really true? We hope not. Instead, we would like you to study

reduced and truncated SAGBI bases in Tutorial 96, and we would like to
entice you to employ subalgebras of polynomial rings for gluing points (see
Exercise 8) and for computing invariants using a Hilbert-driven strategy (see
Tutorial 98).

Although the details are beyond the scope of this book, let us point out
that SAGBI bases have a geometric interpretation, too. Suppose there ex-
ists a finite σ -SAGBI basis G = {g1, . . . , gs} of S . The K -algebra ho-
momorphism K[y1, . . . , ys] −→ S defined by yi �→ gi corresponds to a
“parametrized” affine variety. Similarly, the map K[y1, . . . , ys] −→ S de-
fined by yi �→ LTσ(gi) corresponds to a “toric” variety. In the language of
algebraic geometry one can express this situation by saying that a SAGBI
basis gives rise to a “deformation” of an arbitrary parametrized variety into
a toric variety. This is the SAGBI analog of the flat family we discussed in
Section 4.3.B. Once again history repeats itself but on a different level and
with some new twists.
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6.6.A Definition and Basic Properties of SAGBI Bases

In the following we let K be a field, P = K[x1, . . . , xn] a polynomial ring
over K , and S ⊆ P a finitely generated K-subalgebra. Thus there are poly-
nomials f1, . . . , fs ∈ P such that S = K[f1, . . . , fs] . In other words, the
ring S is the image of the K-algebra homomorphism ϕ : K[y1, . . . , ys] −→ P
defined by ϕ(yi) = fi . Given a filtration on P , we can introduce an induced
filtration on S in the same way as we did for ideals (see Proposition 6.5.9).

Proposition 6.6.1. Let m ≥ 1 , let σ be a monoid ordering on Zm , and let
Φ = {FγP | γ ∈ Zm} be a (Zm, σ)-filtration on P .
a) For every γ ∈ Zm , let FγS = (FγP )∩S . The family Ψ = {FγS | γ ∈ Zm}

is a (Zm, σ)-filtration on S . It is called the induced filtration on S .
b) The canonical K-linear maps FγS/F<σγS −→ FγP/F<σγP give rise to a

homogeneous injective K-algebra homomorphism ı : grΨ (S) ↪−→ grΦ(P ) .
c) If Φ is an orderly filtration then Ψ is also orderly, and the map ı satisfies

ı(LFΨ (f)) = LFΦ(f) for all f ∈ S \ {0} . Consequently, the image of ı
is the K-subalgebra K[LFΦ(f) | f ∈ S \ {0}] of grΦ(P ) .

Proof. Claim a) is clearly true. The proof of b) is analogous to the proof of
Proposition 6.5.9.b. Claim c) follows immediately from b). �

The most interesting situation arises when Φ is a Gröbner filtration. Re-
call that in this case we have an isomorphism grΦ(P ) ∼−→P (see Proposi-
tion 6.5.8.c). Using the composition grΨ (S) ↪−→ grΦ(P ) ∼−→P , we can iden-
tify LFΨ (f) with LMσ(f) for every f ∈ S \ {0} . This identification will be
used throughout the section without further mention.

In the following we let σ be a term ordering on Tn , we let Φ be the
σ -Gröbner filtration on P , and we let Ψ be the induced filtration on S .
Note that the above identification implies grΨ (S) = K[LTσ(f) | f ∈ S \ {0}] .
In particular, this associated graded ring is an integral domain because it is
a K-subalgebra of P . To simplify the notation, we write K[T ] instead of
K[f | f ∈ T ] when T is a subset of P . Likewise, for T ⊆ P \ {0} , we let
LTσ(T ) = {LTσ(f) | f ∈ T} .

Definition 6.6.2. A set G ⊆ S \ {0} is called a σ -SAGBI basis of S if
we have grΨ (S) = K[LTσ(G)] .

Clearly, this notion is the subalgebra analog to the notion of a standard
basis. Since standard bases for Gröbner filtrations are Gröbner bases, we
recover the meaning of the acronym “SAGBI” once again: Subalgebra Analog
to Gröbner Bases for Ideals. It is obvious that every K-subalgebra has a
SAGBI basis, because the set S \ {0} is a σ -SAGBI basis of S for every
term ordering σ . However, this set is not really an exciting SAGBI basis
since it is not finite. A standard basis of an ideal need not generate it (see
Example 6.5.15), but SAGBI bases do not share this bad behaviour, as the
following result shows.
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Proposition 6.6.3. Every σ -SAGBI basis of S is a system of K-algebra
generators of S .

Proof. Let G ⊆ S \ {0} be a σ -SAGBI basis of S . For a contradiction,
assume that K[G] ⊂ S . Let f ∈ S \ K[G] be an element whose lead-
ing term is minimal with respect to σ . Since LTσ(f) ∈ K[LTσ(G)] , there
exist elements g1, . . . , g� ∈ G , and exponents a1, . . . , a� ∈ N+ such that
LTσ(f) = LTσ(g1)a1 · · ·LTσ(g�)a� . Hence the leading term of the polyno-
mial h = f − LCσ(f) LCσ(ga1

1 . . . ga�

� )−1ga1
1 · · · ga�

� satisfies the inequality
LTσ(h) <σ LTσ(f). Thus we get h ∈ K[G] , contradicting f /∈ K[G] . �

The ring grΨ (S) is a monomial subalgebra of P , i.e. a subalgebra for
which there exists a set of K-algebra generators consisting of terms. For every
m ≥ 1 and every Zm -grading on P given by a matrix W ∈ Matm,n(Z),
a monomial subalgebra is a graded subalgebra of P with respect to this
grading. Moreover, monomial subalgebras have the following properties.

Proposition 6.6.4. Let S ⊆ P be a monomial subalgebra, and let G be a
set of terms which generates the K-algebra S .
a) Every term in the support of a polynomial in S is a power product of

terms in G . In particular, the term itself is contained in S .
b) Among all sets of terms which generate the K-algebra S there is a

unique minimal element with respect to inclusion. We call it the minimal
monomial system of algebra generators of S .

c) If S is a finitely generated K-algebra, its minimal monomial system of
algebra generators is finite.

Proof. First we show a). Every f ∈ S is of the form f =
∑

α∈Nn cαgα1
1 · · · gαs

s

with cα ∈ K and g1, . . . , gs ∈ G . Thus we see that every term in the support
of f is a power product of g1, . . . , gs .

To prove b), it suffices to show that two irredundant monomial systems
of algebra generators T1 and T2 of S are equal. For a contradiction, suppose
that T1 �= T2 . Since T1 and T2 are irredundant, we find t1 = minσ(T1 \ T2)
and t2 = minσ(T2 \T1). Without loss of generality we may assume t1 <σ t2 .
Since t1 is a power product of terms in T2 and smaller with respect to σ
than any element in T2 \ T1 , it has to be a power product of elements in
T2 ∩ T1 . This contradicts the hypothesis that T1 is irredundant.

Finally we show c). By a), the terms in the support of the polynomials
of a finite set of K-algebra generators of S are a finite monomial system of
K-algebra generators of S . By b), this set contains the minimal monomial
system of K-algebra generators of S . �

When we apply this proposition to the monomial subalgebra grΨ (S) of P ,
we obtain the following result.
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Corollary 6.6.5. Let S be a K-subalgebra of P .
a) Every term in grΨ (S) is a leading term of an element of S .
b) The ring grΨ (S) has a unique minimal monomial system of algebra gen-

erators consisting of leading terms LTσ(f) where f ∈ S \ {0} . In partic-
ular, there exists a finite σ -SAGBI basis of S if and only if this minimal
monomial system of algebra generators is finite.

c) For a set G ⊆ P \ {0} with S = K[G] , the following conditions are
equivalent.
B1) We have grΨ (S) = K[LTσ(G)] , i.e. G is a σ -SAGBI basis of S .
B2) The monoid {LTσ(f) | f ∈ S\{0}} is generated by the set of leading

terms {LTσ(f) | f ∈ G} .

Proof. The first claim follows from the proposition and the observation that
a power product of leading terms is a leading term. Claims b) and c) follow
immediately from the proposition. �

When the polynomial ring P is graded by a matrix, subalgebras generated
by homogeneous polynomials are also graded and Hilbert functions can be
defined for them as follows.

Proposition 6.6.6. Let P be graded by a matrix W ∈ Matm,n(Z) , and
let S ⊆ P be a K-subalgebra generated by a set of non-zero homogeneous
polynomials.
a) For every d ∈ Zm let Sd = Pd ∩ S . Then we have S =

⊕
d∈Zm Sd and

this decomposition turns S into a Zm -graded K-subalgebra of P .
b) If W is of positive type, we have HFS(d) = HFgrΨ (S)(d) for all d ∈ Zm .
c) Suppose that S = K[f1, . . . , fs] with homogeneous non-zero polyno-

mials f1, . . . , fs ∈ P , and let di = degW (fi) for i = 1, . . . , s . Let
y1, . . . , ys be further indeterminates, and let K[y1, . . . , ys] be equipped
with the Zm -grading given by U = (d1 · · · ds) . Then the surjective
K-algebra homomorphism ε : K[y1, . . . , ys] −→ S defined by ε(yi) = fi

for i = 1, . . . , s is homogeneous. It induces an isomorphism of graded
K-algebras ε̄ : K[y1, . . . , ys]/J −→ S where J is a homogeneous ideal.

Proof. To prove a), it suffices to show the claim S =
∑

d∈Zm(Pd ∩ S).
Notice that this sum is direct, since it is so in P. Let F ⊆ P \ {0} be
a homogeneous system of generators of the K-algebra S, and let f ∈ S.
Then there exist elements f1, . . . , fs ∈ F and a polynomial g ∈ K[y1, . . . , ys]
such that f = g(f1, . . . , fs) . We write g = c1t1 + · · · + crtr with coefficients
c1, . . . , cr ∈ K \ {0} and terms t1, . . . , tr ∈ T(y1, . . . , ys). Then we have
f = c1t1(f1, . . . , fs)+ · · ·+ csts(f1, . . . , fs) and the fact that the polynomials
ti(f1, . . . , fs) are homogeneous yields the claim.

Now we show b). First we claim that every term t ∈ grΨ (S) is the lead-
ing term of a polynomial in S . Namely, given a term t ∈ grΨ (S), there exist
g1, . . . , g� ∈ S and a1, . . . , a� ∈ N+ such that t = (LTσ(g1))a1 · · · (LTσ(g�))a� ,
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and this yields t = LTσ(ga1
1 · · · gas

s ). Next we consider a degree d ∈ Zm . We
note that Sd is the K -vector space generated by all homogeneous polynomi-
als of degree d which are contained in S . It is a finite dimensional K-vector
space because it is a subspace of Pd and Pd is finite dimensional since W
is of positive type. Using linear reductions, we may assume that there is a
K -basis of Sd consisting of polynomials with pairwise distinct leading terms
with respect to σ . These leading terms are the only possible leading terms
of elements of Sd . By our initial claim, the leading terms of the polynomials
in Sd generate grΨ (S)d . This completes the proof of b).

Finally, to show c), it suffices to remark that ε is homogeneous because
degU (yi) = di = degW (fi) for i = 1, . . . , s . �

We have already seen that infinite SAGBI-bases always exist. But what
about finite SAGBI-bases? In the following examples we exhibit subalgebras
of P which have no finite SAGBI basis at all.

Example 6.6.7. Let P = K[x1, x2] be standard graded, and let S ⊆ P be
the K-subalgebra S = K[f1, f2, f3] where f1 = x1 + x2 , f2 = x1x2 , and
f3 = x1x

2
2 . We want to show that S has no finite σ -SAGBI basis, no matter

which term ordering σ we use. The proof consists of several steps.
1) Since we have x2

1x2 = (x1 + x2)x1x2 − x1x
2
2 = f1f2 − f3 ∈ S , we can

represent S as S = K[x1 + x2, x1x2, x2
1x2, x1x

2
2] . In particular, we see

that S is invariant under the interchange of x1 and x2 .
2) Using Proposition 6.6.6.c, we construct an isomorphism of graded K-al-

gebras ε̄ : K[y1, y2, y3]/J −→ S which satisfies ε̄(yi + J) = fi . Here
K[y1, y2, y3] is graded by the matrix W = (1 2 3) and J is a homo-
geneous ideal with respect to this grading. We compute the ideal J by
implicitization (see Corollary 3.6.3) and get J = y3

2 − y1y2y3 + y2
3 . Since

this is a principal ideal generated by a homogeneous polynomial of de-
gree 6, the Hilbert series of S is

HSS(z) = 1−z6

(1−z)(1−z2)(1−z3) = 1−z+z2

(1−z)2 = (1 − z + z2)(1 + 2z + 3z2 + · · ·)
= 1 + z + 2z2 + 3z3 + · · ·

by Proposition 5.8.9.d and Theorem 5.8.10. In particular, we see that
HFS(i) = HFP (i) − 1 for all i > 1.

3) We want to show that every σ -SAGBI basis of S is infinite. By 1), we
may assume that x1 >σ x2 . We claim that we have xa

1x
b
2 ∈ grΨ (S) for

all a > 0 and b ≥ 0 but xb
2 /∈ grΦ(S) for b > 0.

To prove this claim, we note that since x1 = LTσ(f1) ∈ grΨ (S) it suffices
to treat the case a = 1. Now we use induction on b . Clearly, the claim
holds for b ∈ {0, 1, 2} because we have x1x2 = LTσ(f2) ∈ grΨ (S) and
x1x

2
2 = LTσ(f3) ∈ grΨ (S). For b ≥ 3, the claim follows by induction

using the formula x1x
b
2 = f1 x1x

b−1
2 − f2 x1x

b−2
2 .
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4) By combining the results of steps 2) and 3), it follows for every d ≥ 1
that (grΨ (S))d = K xd

1 ⊕ · · · ⊕ K x1x
d−1
2 . From this we deduce that we

have grΨ (S) = K[x1, x1x2, x1x
2
2, . . .] . This ring is not a finitely generated

K-algebra because x1x
d
2 /∈ K[x1, x1x2, . . . , x1x

d−1
2 ] for every d ≥ 1 since

degx1
(x1x

d
2) = 1. Consequently, the K-algebra S has no finite σ -SAGBI

basis, as we wanted to show.

Our next example is similar, but slightly more involved. It will be
used later to study our algorithm for computing SAGBI bases (see Exam-
ple 6.6.30).

Example 6.6.8. Let P = Q[x1, x2] be standard graded, and let S ⊆ P be
the Q -subalgebra S = Q[f1, f2, f3] where f1 = x1 −x2 , f2 = x1x2 −x2

2 , and
f3 = x1x

2
2 . We want to show that S has no finite σ -SAGBI basis, no matter

which term ordering σ we use. Again the proof consists of several steps.
1) Using Proposition 6.6.6.c, we construct an isomorphism of graded K-al-

gebras ε̄ : K[y1, y2, y3]/J −→ S where K[y1, y2, y3] is graded by the
matrix W = (1 2 3) and J is a homogeneous ideal with respect to
this grading. We compute the ideal J by implicitization and obtain
J = (y2

1y2
2 − y3

2 − y3
1y3). Therefore the Hilbert series of S is

HSS(z) = 1−z6

(1−z)(1−z2)(1−z3) = 1 + z + 2z2 + 3z3 + · · ·

and we get HFS(i) = HFP (i) − 1 for all i > 1.
2) Next we choose a term ordering σ on T2 for which x1 >σ x2 . To show

that xa
1x

b
2 ∈ grΨ (S) for a > 0 and b ≥ 0 it suffices to deal with the case

a = 1 because x1 = LTσ(f1) ∈ grΨ (S). The proof that x1x
b
2 ∈ grΨ (S)

for b ≥ 0 is divided into two steps.
3) For 0 ≤ b ≤ 4 we have x1 = LTσ(f1), x1x2 = LTσ(f2), x1x

2
2 = LTσ(f3),

and we can check that

x1x
3
2 = LTσ(f4) for f4 = x1x

3
2 − x4

2 = f1f3 − f2
2 ∈ S

x1x
4
2 = LTσ(f5) for f5 = x1x

4
2 − x5

2 = f2f3 − f1f4 ∈ S

4) Now we use induction in steps of three. The base cases b = 2, b = 3, and
b = 4 were treated in step 3). For b ≥ 5, we claim that

fb+1 = x1x
3c−1
2 − c−1

c x3c
2 = − c−1

c (f2f3c−2 − f3f3c−3) if b+1 = 3c

fb+1 = x1x
3c
2 − x3c+1

2 = −(f2f3c−1 − f3f3c−2) if b+1 = 3c+1
fb+1 = x1x

3c+1
2 − x3c+2

2 = − c
c−1 (f2f3c − f3f3c−1) if b+1 = 3c+2

There are three possibilities. If b + 1 = 3c + 3, this follows from

fb+1 = f3(c+1) = x1x
3c+2
2 − c

c+1 x3c+3
2

= − c
c+1

(
(x1x2 − x2

2)(x1x
3c
2 − x3c+1

2 ) − x1x
2
2(x1x

3c−1
2 − c−1

c x3c
2 )
)

= − c
c+1 (f2f3c+1 − f3f3c)
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Secondly, if b + 1 = 3c + 4, it follows from

fb+1 = f3(c+1)+1 = x1x
3c+3
2 − x3c+4

2

= −(x1x2 − x2
2)(x1x

3c+1
2 − x3c+2

2 ) + x1x
2
2(x1x

3c
2 − x3c+1

2 )
= −(f2f3c+2 − f3f3c+1)

Thirdly, if b + 1 = 3c + 5, it follows from

fb+1 = f3(c+1)+2 = x1x
3c+4
2 − x3c+5

2

= − c+1
c

(
(x1x2 − x2

2)(x1x
3c+2
2 − c

c+1 x3c+3
2 )

−x1x
2
2(x1x

3c+1
2 − x3c+2

2 )
)

= − c+1
c (f2f3c+3 − f3f3c+2)

In all three cases we have LTσ(fb+1) = x1x
b
2 ∈ grΨ (S), as we wanted to

show.
5) Now the argument continues as in the preceding example. We conclude

that grΨ (S) = Q[x1, x1x2, x1x
2
2, . . .] and that S has no finite σ -SAGBI

basis.
6) Finally, if σ is a term ordering on T2 with x2 >σ x1 , we can use a similar

argument as in steps 3) and 4) to show that for every d ≥ 1 there exists
an element xd−1

1 x2 + cdx
d
1 ∈ S with cd ∈ Q . Since x2 = LTσ(f1), we get

grΨ (S) = K[x2, x1x2, x
2
1x2, . . .] , and hence there is no finite σ -SAGBI

basis of S .
Altogether, we have shown that S has no finite SAGBI basis.

The remaining part of this subsection is devoted to providing some sit-
uations in which finite SAGBI bases do exist. The first result of this kind
concerns the univariate case.

Proposition 6.6.9. Let P = K[x] , and let S ⊆ P be a K-subalgebra.
a) The K-algebra S is finitely generated.
b) Let σ be a term ordering. Then S has a finite σ -SAGBI basis.

Proof. To prove a), we let S be a K -subalgebra of P . If S = K , there
is nothing to prove. So we may assume that there exists a non-constant
polynomial f in S . We let S0 = K[f ] and observe that P is generated by
{1, x, . . . , xdeg(f)−1} as an S0 -module. Now Lemma 2.6.5 implies that S is
an affine K-algebra.

Next we prove b). Let Ψ be the σ -Gröbner filtration on P . The associated
graded ring grΨ (S) is a graded K-subalgebra of P . By a), it is a finitely
generated K-algebra. Since it is also graded, it is generated by finitely many
powers of x . Now the claim follows from Corollary 6.6.5.a. �

By combining this proposition with the algorithm for computing finite
SAGBI bases given in the third subsection, we can sometimes simplify sub-
algebras of K[x] considerably.
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Example 6.6.10. Let K be a field, let P = K[x] , and let S ⊆ P be
the K-subalgebra S = K[x3 − x, x4, x5 − 1] ⊆ P . When we compute a
Deg-SAGBI basis of S (see Example 6.6.31), we find that G = {x} is one.
In this way SAGBI bases allow us to discover that S = K[x] .

If we know this equality beforehand, it is easy to check it with the help of
the Subalgebra Membership Test 3.6.7. In fact, we obtain the representation

x = −(x3 − x)3 + x4(x5 − 1) − 3(x3 − x)x4 + x4 − (x3 − x)

which would have been difficult to guess. This means that it would have been
difficult to guess that S = K[x] .

Before we are able to deal with the computation of SAGBI bases, we need
to develop the theory significantly further. We begin with some additional
cases where finite SAGBI bases exist.

Proposition 6.6.11. Let f1, . . . , fs ∈ P \ {0} , and let S = K[f1, . . . , fs] .
If the leading terms LTσ(f1), . . . ,LTσ(fs) are algebraically independent then
{f1, . . . , fs} is a σ -SAGBI basis of S .

Proof. Given f ∈ S \ {0} , there exists a polynomial g ∈ K[y1, . . . , ys]
such that f = g(f1, . . . , fs). Let m ∈ Supp(g) be a term for which
m(LTσ(f1), . . . ,LTσ(fs)) is maximal with respect to σ . In the computation
of g(f1, . . . , fs) , the term m(LTσ(f1), . . . ,LTσ(fs)) does not cancel because
for m′ ∈ Supp(g) and ti ∈ Supp(fi) we have

m′(t1, . . . , ts) ≤σ m′(LTσ(f1), . . . ,LTσ(fs)) ≤σ m(LTσ(f1), . . . ,LTσ(fs))

and the last inequality is strict for m′ �= m since otherwise m−m′ would be
a non-trivial algebraic relation among LTσ(f1), . . . ,LTσ(fs) . Hence the term
m(LTσ(f1), . . . ,LTσ(fs)) equals LTσ(f). Consequently, we have shown that
LTσ(f) ∈ K[LTσ(f1), . . . ,LTσ(fs)] and the claim follows. �

The following example provides a nice application of this proposition to
the algebra of symmetric polynomials. Recall that a polynomial is called
symmetric if it is invariant under all permutations of the indeterminates. In
Tutorial 12 we showed that the algebra of symmetric polynomials is generated
by the elementary symmetric polynomials si =

∑
j1<···<ji

xj1 · · ·xji
where

i ∈ {1, . . . , n} . Here we get an even stronger statement.

Corollary 6.6.12. (Symmetric Polynomials and SAGBI Bases)
Let S ⊆ P be the K-subalgebra consisting of all symmetric polynomials, and
let s1, . . . , sn be the elementary symmetric polynomials.
a) The set {s1, . . . , sn} is a σ -SAGBI basis of S .
b) The set {s1, . . . , sn} is algebraically independent.



486 6. Further Applications

Proof. Up to renaming the indeterminates, we may assume that we have
x1 >σ x2 >σ · · · >σ xn . Consequently, the leading terms LTσ(si) = x1 · · ·xi

of the elementary symmetric polynomials are algebraically independent.
Hence the proposition shows that {s1, . . . , sn} is a σ -SAGBI basis of S .

To prove b), we argue as in the proof of the proposition and show
that for a non-zero polynomial g ∈ K[y1, . . . , yn] we have the relation
LTσ(g(s1, . . . , sn)) ∈ K[LTσ(s1), . . . ,LTσ(sn)] , and thus g(s1, . . . , sn) �= 0.

�

The next proposition is yet another finiteness result for SAGBI bases.

Proposition 6.6.13. Let S be a K-subalgebra of P , let σ be a term or-
dering on Tn , and let Ψ be the filtration on S induced by the σ -Gröbner
filtration on P . Suppose that for each i ∈ {1, . . . , n} there exists an inte-
ger αi > 0 such that xαi

i ∈ grΨ (S) . Then grΨ (S) is a finitely generated
K-algebra. In particular, there exists a finite σ -SAGBI-basis of S .

Proof. Let T = {xβ1
1 · · ·xβn

n ∈ Tn | βj < αj for j = 1, . . . , n} , and let A be
the affine K-algebra A = K[xα1

1 , . . . , xαn
n ] . Since every term in P is the prod-

uct of an element of T with a power product of the terms xα1
1 , . . . , xαn

n , we see
that T generates P as an A -module. Thus the inclusions A ⊆ grΨ (S) ⊆ P
show that also grΨ (S) is a finitely generated A -module. Now we apply
Lemma 2.6.3 to the inclusions K ⊆ A ⊆ grΨ (S) and get the claim. �

6.6.B Characterization of SAGBI Bases

Many a man fails as an original thinker
simply because his memory is too good.

(Friedrich Nietzsche)

To write the following subsection, we had to do a lot of original thinking.
Although our memory is not bad and we remember Chapter 2 quite well, our
intention to develop the theory of SAGBI bases in analogy with the theory
of Gröbner bases led us onto a bumpy road. One difference between Gröbner
bases and SAGBI bases has surfaced already in the previous subsection: we
have to pay the price that finite SAGBI bases need not exist at all. So, let
us go slowly and try to work out SAGBI versions of the characterizations of
Gröbner bases in Chapter 2 using a step-by-step approach. We begin at the
beginning and ask for a SAGBI version of special generation (see Proposi-
tion 2.1.1).

Proposition 6.6.14. Let S ⊆ P be a K-subalgebra, let σ be a term ordering
on Tn , and let G ⊆ P \ {0} . Then the following conditions are equivalent.
A1) For each f ∈ S\{0} , there are g1, . . . , gs ∈ G and h ∈ K[y1, . . . , ys] with

f = h(g1, . . . , gs) and LTσ(f) ≥σ LTσ(t(g1, . . . , gs)) for all t∈Supp(h) .
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A2) For each f ∈ S\{0} , there are g1, . . . , gs ∈ G and h ∈ K[y1, . . . , ys] with
f = h(g1, . . . , gs) and LTσ(f) = maxσ{LTσ(t(g1, . . . , gs)) | t∈ Supp(h)} .

Proof. Since Condition A2) obviously implies A1), it suffices to prove the
reverse direction. The inequality “≥σ ” in A2) follows immediately from A1).
The inequality “≤σ ” in A2) follows from Proposition 1.5.3.a. �

Both conditions can be rephrased by using t(LTσ(g1), . . . ,LTσ(gs)) in-
stead of LTσ(t(g1, . . . , gs)). Later we shall see that A1) and A2) characterize
SAGBI bases. For the time being, we merely note that they are not always
satisfied.

Example 6.6.15. Let P = K[x] , let σ = Deg , and let S ⊆ P be the
K-subalgebra generated by G = {g1, g2, g3} where g1 = x3 − x , g2 = x4 ,
and g3 = x5 − 1 (see Example 6.6.10). Then h = y2

1 + y1y3 − y2
2 + y1 + 2y2

yields h(g1, g2, g3) = x2 . However, we have

LTσ(x2) = x2 <σ min
σ

{LTσ(g1), LTσ(g2), LTσ(g3)}

Therefore Conditions A1) and A2) do not hold for this set G .

To prove a SAGBI analog of Proposition 2.2.5, we need to introduce some
terminology.

Definition 6.6.16. Let σ be a term ordering on Tn , and let G ⊆ P \ {0} .
a) Let f1 ∈ P , and suppose there exist a constant c ∈ K , polynomials

g1, . . . , gs ∈ G , and a term t ∈ K[y1, . . . , ys] such that the polynomial
f2 = f1 − c t(g1, . . . , gs) satisfies t(LTσ(g1), . . . ,LTσ(gs)) /∈ Supp(f2).
Then we say that f1 subalgebra reduces to f2 in one step and we
write f1

G−→ss f2 . The passage from f1 to f2 is called a subalgebra
reduction step.

b) The transitive closure of the relations G−→ss is called the subalgebra

rewrite relation defined by G and is denoted by G−→s .
c) An element f1 ∈ P with the property that there exists no subalgebra

reduction step f1
G−→ss f2 for which f2 �= f1 is called irreducible with

respect to G−→s .
d) The equivalence relation defined by G−→s will be denoted by G←→s .

As in the case of the rewrite relations in Gröbner basis theory, the effect
of a subalgebra reduction step f1

G−→ss f2 is that a term in the support of f1

is replaced by other terms, all of which are smaller with respect to σ . Notice
that c = 0 yields the trivial subalgebra reduction step f1

G−→ss f1 and that
a constant polynomial f = c ∈ K can be subalgebra reduced to zero using
0 = f − c · 1. Subalgebra rewrite relations have properties similar to the
rewrite relations in Section 2.2.
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Proposition 6.6.17. Let σ be a term ordering on Tn , and let G ⊆ P \{0} .

a) If f1, f2 ∈ P satisfy f1
G−→s f2 and f2

G−→s f1 then f1 = f2 .
b) If f1, f2 ∈ P satisfy f1

G−→s f2 and if g ∈ G then we have gf1
G−→s gf2 .

c) The rewrite relation G−→s is Noetherian, i.e. every chain of subalgebra
reduction steps f1

G−→ss f2
G−→ss · · · becomes eventually stationary.

d) If f1, f2 ∈ P satisfy f1
G−→ss f2 and if f3 ∈ P then there exists a poly-

nomial f4 ∈ P such that f1 + f3
G−→s f4 and f2 + f3

G−→s f4 .
e) If f1, f2, f3, f4 ∈ P satisfy f1

G←→s f2 and f3
G←→s f4 , we have the equiv-

alence f1 + f3
G←→s f2 + f4 .

f) If f1, f2 ∈ P satisfy f1
G←→s f2 and if f3 ∈ K[G] then we have

f1f3
G←→s f2f3 .

g) For f ∈ P , we have f
G←→s 0 if and only if f ∈ K[G] .

h) For f1, f2 ∈ P , we have f1
G←→s f2 if and only if f1 − f2 ∈ K[G] .

Proof. The only parts whose proofs differ slightly from the proofs of the
corresponding parts of Proposition 2.2.2 are b) and g). To show b), it suf-
fices to consider a single subalgebra reduction step f1

G−→ss f2 . We write
f2 = f1 − c t(g1, . . . , gs) with c ∈ K , t ∈ T(y1, . . . , ys) and g1, . . . , gs ∈ G .
Letting t′ = t ys+1 , we obtain gf2 = gf1−c t′(g1, . . . , gs, g). Clearly, the term
LTσ(t′(g1, . . . , gs, g)) = LTσ(t(g1, . . . , gs) g) = LTσ(t(g1, . . . , gs)) LTσ(g) is
not contained in Supp(gf2) . Therefore we have gf1

G−→ss gf2 .
It remains to show g). If f

G←→s 0, we collect the elements citi(g1, . . . , gs)
used in the various subalgebra reduction steps and obtain a representation
f =

∑
i ±citi(g1, . . . , gs) ∈ K[G] . Conversely, given a polynomial f ∈ P with

such a representation, it suffices by e) to prove ti(g1, . . . , gs)
G←→s 0, and this

follows from gj
G←→s 0 and f). �

Now we are ready to imitate Proposition 2.2.5 and characterize SAGBI
bases by the confluence of their associated subalgebra rewrite relation.

Proposition 6.6.18. Let G ⊆ P \ {0} and S = K[G] . The following con-
ditions are equivalent.

C1) For an element f ∈ P , we have f
G−→s 0 if and only if f ∈ S .

C2) If f ∈ S is irreducible with respect to G−→s then we have f = 0 .
C3) For every element f1 ∈ P , there is a unique element f2 ∈ P for which

f1
G−→s f2 and f2 is irreducible with respect to G−→s .

C4) The subalgebra rewrite relation G−→s is confluent.

Proof. In the light of Proposition 6.6.17, the proof is the same as the proof
of Proposition 2.2.5. �
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Again we postpone the task of showing that the conditions in this propo-
sition actually characterize SAGBI bases and content ourselves with pointing
out that they are not satisfied by every set of generators G .

Example 6.6.19. In the setting of Example 6.6.15, we have already seen
that x2 ∈ S . Let G = {g1, g2, g3} . Condition C2) is not satisfied since x2 is
irreducible with respect to G−→s .

Here we can also construct an explicit counterexample to confluence. Since
x8−g2

2 = 0, we have x8 G−→s 0. On the other hand, since x8−g1g3 = x6+x3−x
and x6 + x3 − x − g2

1 = 2x4 + x3 − x2 − x and 2x4 + x3 − x2 − x − 2g2 =
x3 − x2 − x and x3 − x2 − x − g1 = −x2 , we have x8 G−→s −x2 . Now the
element −x2 is irreducible with respect to G−→s . Therefore the subalgebra
rewrite relation G−→s is not confluent.

At this point our plan to produce SAGBI versions of everything in Chap-
ter 2 hits a serious obstacle. How should we formulate the lifting of syzygies?
What are “syzygies” in the subalgebra world? The solution is an old friend
from Section 3.6 who deserves an official name.

Definition 6.6.20. Let g1, . . . , gs ∈ P and G = (g1, . . . , gs). Then the ideal
{h ∈ K[y1, . . . , ys] | h(g1, . . . , gs) = 0} is called the ideal of algebraic
relations of G and is denoted by Rel(G) or by Rel(g1, . . . , gs).

In the following we let P ′ = K[y1, . . . , ys] . The ideal of algebraic re-
lations of G is the kernel of the K-algebra homomorphism λ : P ′ −→ P
given by yi �→ gi for i = 1, . . . , s . It can be computed using implicitization
(see Corollary 3.6.3). Next we want to construct a subalgebra version of the
fundamental diagram and show some properties analogous to the ones in
Proposition 2.3.6.

Definition 6.6.21. Let G = (g1, . . . , gs) ∈ P s be a tuple of non-zero poly-
nomials, and let σ be a term ordering on Tn .
a) We equip the polynomial ring P ′ = K[y1, . . . , ys] with the Tn -grading

given by degσ,G(yi) = LTσ(gi) for i = 1, . . . , s and degσ,G(1) = 1. This
is called the induced grading or the grading induced by (σ,G).

b) For every polynomial f ∈ P ′ \ {0} , we define its σ -degree by

degσ,G(f) = maxσ{degσ,G(t) | t ∈ Supp(f)}

c) For every polynomial f ∈ P ′ \ {0} , we write f = c1t1 + · · · + crtr with
c1, . . . , cr ∈ K\{0} and pairwise distinct terms t1, . . . , tr ∈ T(y1, . . . , ys),
and we let d = degσ,G(f). Then we define the σ -leading form of f by

LFσ,G(f) =
∑

{i | degσ,G(ti)=d}
citi

For f = 0, we let LFσ,G(f) = 0.
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The induced grading will play the role of the grading defined in Proposi-
tion 2.3.3. For a term t ∈ T(y1, . . . , ys), the definition of the induced grading
implies degσ,G(t) = LTσ(t(g1, . . . , gs)). Taking σ -leading forms yields a map
LFσ,G : P ′ −→ P ′ . Moreover, we define a map LM : P −→ P which sends 0
to 0 and f to LMσ(f) if f �= 0. Last but not least we let Λ : P ′ −→ P be
the K-algebra homomorphism defined by Λ(yi) = LMσ(gi) for i = 1, . . . , s .
In this way we get the following fundamental SAGBI diagram.

Proposition 6.6.22. Let S = K[g1, . . . , gs] be the K-subalgebra of P gen-
erated by G = (g1, . . . , gs) ∈ P s , let σ be a term ordering on Tn , and let Ψ
be the filtration on S induced by the σ -Gröbner filtration on P .
a) We have a diagram with exact rows

0 −→ Rel(G) −→ P ′ λ−→ S −→ 0⏐⏐�LF

⏐⏐�LM

0 −→ Rel(LMσ(G)) −→ P ′ Λ−→ grΨ (S)

b) For every f ∈ P ′ \ Rel(G) we have
1) LTσ(λ(f)) ≤σ degσ,G(f) ,
2) LF(f) ∈ Rel(LMσ(G)) if and only if LTσ(λ(f)) <σ degσ,G(f) ,
3) Λ(LF(f)) = LM(λ(f)) if and only if LTσ(λ(f)) = degσ,G(f) .

c) For every f ∈ Rel(G) , we have LF(f) ∈ Rel(LMσ(G)) . Therefore the
map LF induces a map LF |Rel(G) : Rel(G) −→ Rel(LMσ(G)) which we
denote by LF again.

Proof. To show a) it suffices to note that Λ(f) = f(LMσ(g1), . . . ,LMσ(gs))
is contained in grΨ (S) for every f ∈ P ′ . Now we prove b). We write
f = c1t1 + · · · + crtr with c1, . . . , cr ∈ K \ {0} and pairwise distinct terms
t1, . . . , tr ∈ T(y1, . . . , ys). Then the first formula follows from

LTσ(λ(f)) = LTσ(c1t1(g1, . . . , gs) + · · · + crtr(g1, . . . , gs))
≤ maxσ{LTσ(t1(g1, . . . , gs)), . . . ,LTσ(tr(g1, . . . , gs))}
= maxσ{degσ,G(t1), . . . ,degσ,G(tr)} = degσ,G(f)

Next we prove the second claim in b). Without loss of generality there
exists 1 ≤ r′ ≤ r such that LF(f) = c1t1 + · · · + cr′tr′ . Then we have
LF(f) ∈ Rel(LMσ(G)) if and only if

∑r′

i=1 ci(ti(LMσ(g1), . . . ,LMσ(gs))) = 0,
i.e. if and only if

∑r′

i=1 ci LMσ(ti(g1, . . . , gs)) = 0. If this holds true, we see
that

LTσ(λ(f)) = LTσ(c1t1(g1, . . . , gs) + · · · + crtr(g1, . . . , gs))
<σ LTσ(t1(g1, . . . , gs)) = degσ,G(f)

Conversely, if
∑r′

i=1 ci LMσ(ti(g1, . . . , gs)) �= 0, a similar calculation shows
that LTσ(λ(f)) = degσ,G(f). For the proof of the third claim in b) we note
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that LTσ(λ(f)) �= degσ,G(f) implies by 1) and 2) that we have Λ(LF(f)) = 0.
Since λ(f) �= 0, we then get LMσ(λ(f)) �= 0 = Λ(LF(f)). Conversely, if
LTσ(λ(f)) = degσ,G(f), the claim follows from

LMσ(λ( f )) = LMσ(c1t1(g1, . . . , gs) + · · · + crtr(g1, . . . , gs))
= LMσ(c1t1(g1, . . . , gs)) + · · · + cr′tr′(g1, . . . , gs))
= c1 LMσ(t1(g1, . . . , gs)) + · · · + cr′ LMσ(tr′(g1, . . . , gs))
= c1t1(LMσ(g1), . . . ,LMσ(gs)) + · · · + cr′tr′(LMσ(g1), . . . ,LMσ(gs))
= Λ(c1t1 + · · · + cr′tr′) = Λ(LF(f))

Finally we show c). We write f = c1t1 + · · ·+ crtr as above and use λ(f) = 0
to get that the coefficient of degσ,G(f) in

∑r
i=1 citi(g1, . . . , gs) is zero. Hence

we have Λ(LF(f)) = Λ(
∑r′

i=1 citi) =
∑r′

i=1 ci LMσ(ti(g1, . . . , gs)) = 0. �

As in Section 2.3, we say that an polynomial f ∈ P ′ is a lifting of f̄ ∈ P ′

if we have LF(f) = f̄ . Using the preceding proposition, we can prove the
equivalence of the following conditions.

Proposition 6.6.23. Let σ be a term ordering on Tn , and let G ∈ P s . The
following conditions are equivalent.
D1) Every homogeneous element of Rel(LMσ(G)) with respect to the induced

grading has a lifting in Rel(G) .
D2) There exists a system of generators of Rel(LMσ(G)) consisting of ele-

ments which are homogeneous with respect to the induced grading and
have a lifting in Rel(G) .

D3) There exists a finite system of generators of Rel(LMσ(G)) consisting of
elements which are homogeneous with respect to the induced grading and
have a lifting in Rel(G) .

Proof. It suffices to show the implication “D2) ⇒ D1)”. Let E be a set,
let {f̄i}i∈E be a homogeneous system of generators of Rel(LMσ(G)) , and
let fi ∈ P ′ be a lifting of f̄i for every i ∈ E . Given a homogeneous el-
ement h̄ ∈ P ′ , there exist i1, . . . , ir ∈ E and c1, . . . , cr ∈ K \ {0} and
t1, . . . , tr ∈ T(y1, . . . , ys) such that h̄ =

∑r
j=1 cjtj f̄ij

. Clearly, we may
assume that degσ,G(tj f̄ij

) = degσ,G(h̄) for j = 1, . . . , r . Now we have
LF(tjfij

) = tj LF(fij
) = tj f̄ij

, and hence degσ,G(tjfij
) = degσ,G(h̄). This,

in turn, implies LF(
∑r

j=1 cjtjfij
) =

∑r
j=1 cjtj f̄ij

= h̄ , which concludes the
proof. �

Our usual example shows that it is not always possible to lift all algebraic
relations in Rel(LMσ(G)).

Example 6.6.24. In the setting of Example 6.6.15, the ideal of algebraic
relations Rel(LMσ(G)) = Rel(x3, x4, x5) contains the polynomial y1y3 − y2

2 .
This polynomial is homogeneous with respect to the induced grading because
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degσ,G(y1y3) = x8 = degσ,G(y2
2). Since λ(y1y3 − y2

2) = −x6 − x3 + x , the
element y1y3 − y2

2 is not contained in Rel(G).
Furthermore, any lifting of y1y3 − y2

2 would have to be of the form
f = y1y3 − y2

2 + c0 + c1y1 + c2y2 + c3y3 + c4y
2
1 + c5y1y2 with c0, . . . , c5 ∈ K .

Setting λ(f) = 0 yields c5 = 0, c4 = 1, c3 = 0, c2 = 2, c1 = 1, and c0 = 0.
But then λ(y1y3 − y2

2 + y1 + 2y2 + y2
1) = x2 shows that the resulting poly-

nomial f is still not contained in Rel(G) , and therefore y1y3 − y2
2 has no

lifting.

Finally we have all the conditions we want and we are ready to enunciate
the fundamental result of this subsection.

Theorem 6.6.25. (Characterization of SAGBI Bases)
Let σ be a term ordering on Tn , let S = K[G] be the K-subalgebra of P

generated by a set of polynomials G ⊆ P \ {0} , let G−→s be the subalgebra
rewrite relation defined by G , and let Ψ be the filtration on S induced by the
σ -Gröbner filtration on P . Then the following conditions are equivalent.
A1) For each f ∈ S\{0} , there are g1, . . . , gs ∈ G and h ∈ K[y1, . . . , ys] with

f = h(g1, . . . , gs) and LTσ(f) ≥σ LTσ(t(g1, . . . , gs)) for all t ∈ Supp(h) .
A2) For each f ∈ S\{0} , there are g1, . . . , gs ∈ G and h ∈ K[y1, . . . , ys] with

f = h(g1, . . . , gs) and LTσ(f) = maxσ{LTσ(t(g1, . . . , gs)) | t∈Supp(h)} .
B1) The set G is a σ -SAGBI basis of S . By definition, this means that we

have grΨ (S) = K[LTσ(G)] .
B2) The monoid {LTσ(f) | f ∈ S \ {0}} is generated by {LTσ(g) | g ∈ G} .
C1) For an element f ∈ P , we have f

G−→s 0 if and only if f ∈ S .
C2) If f ∈ S is irreducible with respect to G−→s then we have f = 0 .
C3) For every element f1 ∈ P , there is a unique element f2 ∈ P for which

f1
G−→s f2 and f2 is irreducible with respect to G−→s .

C4) The subalgebra rewrite relation G−→s is confluent.
D1) For every tuple G = (g1, . . . , gs) of elements of G , every homogeneous

element of Rel(LMσ(G)) has a lifting in Rel(G) .
D2) For every tuple G = (g1, . . . , gs) of elements of G , there exists a ho-

mogeneous system of generators of Rel(LMσ(G)) consisting entirely of
elements which have a lifting in Rel(G) .

D3) For every tuple G = (g1, . . . , gs) of elements of G , there exists a finite
homogeneous system of generators of Rel(LMσ(G)) consisting entirely
of elements which have a lifting in Rel(G) .

Proof. By Corollary 6.6.5.c and Propositions 6.6.14, 6.6.18, and 6.6.23, the
conditions in each block are equivalent. To show that B2) implies A1), we
argue as in the proof of Proposition 2.1.3. The only changes are that LTσ(f)
is of the form t(LTσ(g1), . . . ,LTσ(gs)) for some elements g1, . . . , gs ∈ G and
some term t ∈ K[y1, . . . , ys] , and that we use f − LCσ(f)

LCσ(t(g1,...,gs)) t(g1, . . . , gs)
to get the desired contradiction.
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To prove “A2) ⇒ C2)” by contradiction, we suppose that there is an
element f ∈ S \ {0} which is irreducible with respect to G−→s . By A2),
there exists a representation f = h(g1, . . . , gs) with g1, . . . , gs ∈ G and with
h ∈ K[y1, . . . , ys] having LTσ(f) = maxσ{LTσ(t(g1, . . . , gs)) | t ∈ Supp(h)} .
Let t ∈ Supp(h) be the term for which this maximum is achieved. Then the
element f ′ = f − LCσ(f)

LCσ(t(g1,...,gs)) t(g1, . . . , gs) satisfies f
G−→s f ′ and f ′ �= f ,

a contradiction.
Since the implication “C1) ⇒ A2)” follows by collecting the elements

of S used in the reduction steps f
G−→s 0, we show “A2) ⇒ D1)” next. Let

G = (g1, . . . , gs) ∈ Gs , and let f ∈ Rel(LMσ(G)) \ {0} be homogeneous
with respect to the induced grading. We may suppose that λ(f) �= 0, since
otherwise f would be a lifting of itself. Using A2), we get a representation
λ(f) = h(g1, . . . , gs) with g1, . . . , gs ∈ G and h ∈ K[y1, . . . , ys] such that
LTσ(λ(f)) = maxσ{LTσ(t(g1, . . . , gs)) | t ∈ Supp(h)} . It follows that we have
f − h ∈ Ker(λ) = Rel(G) and LTσ(λ(f)) = LTσ(λ(h)) = degσ,G(h). Since
LF(f) = f and Λ(LF(f)) = 0, Proposition 6.6.22.b2 yields the inequality
LTσ(λ(f)) <σ degσ,G(f). Altogether, we get degσ,G(f) >σ degσ,G(h) and
LF(f − h) = LF(f) = f , i.e. f − h is a lifting of f .

Now we prove the implication “D1) ⇒ A2)”. For a contradiction, as-
sume that some f ∈ S \ {0} cannot be represented as in A2). We write
f = h(g1, . . . , gs) with g1, . . . , gs ∈ G and h ∈ K[y1, . . . , ys] . Let this
representation be chosen such that degσ,G(h) is minimal. We cannot have
degσ,G(h) = LTσ(f) because otherwise the representation satisfies A2).
Hence Proposition 6.6.22.b1 shows that LTσ(f) <σ degσ,G(h). Then Propo-
sition 6.6.22.b2 yields LF(h) ∈ Rel(LMσ(G)). By D1), there exists an el-
ement h′ ∈ Rel(G) with LF(h′) = LF(h). In particular, this means that
degσ,G(h−h′) <σ degσ,G(h) and λ(h−h′) = λ(h) = f which contradicts the
minimality of degσ,G(h).

Finally we observe that A2) implies B1) because for every representation
f = h(g1, . . . , gs) there exists a term t ∈ Supp(h) such that LTσ(f) =
LTσ(t(g1, . . . , gs)) = t(LTσ(g1), . . . ,LTσ(gs)) ∈ K[LTσ(G)] . �

Notice that we have been very careful in this theorem not to assume
finiteness of G . In fact, if we wanted to continue to imitate Chapter 2 we
would have to prove the existence of finite σ -SAGBI bases which is impossible
given Examples 6.6.7 and 6.6.8. On the other hand, it is possible to continue
the imitation and speak of normal forms, a subalgebra membership test and
reduced SAGBI bases — this is done in Tutorial 96.

It’s kind of fun
to do the impossible.

(Walt Disney)
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6.6.C Computation of SAGBI Bases

A strategic turmoil may renew stalled negotiation.
(Moss Sweedler)

At this point we are ready to discuss the algorithmic aspects of SAGBI
basis theory. The first question is: are there meaningful algorithms at all?
Indeed, we have seen that in certain cases no finite SAGBI basis exists. On
the other hand, we have also seen that for some particular subalgebras finite
SAGBI bases do exist, and we would like to compute them. Moreover, if we
start with a graded subalgebra of P , it is reasonable to expect that finite
truncated SAGBI bases always exist, and if this is the case we would like to
compute them, too, independent of whether the overall SAGBI basis is finite
or not.

In computer science there is a specific notion which generalizes that of an
algorithm, namely the notion of a procedure. A procedure is a sequence of
instructions having the look and feel of an algorithm, except that finiteness is
not guaranteed. In fact, for computing SAGBI bases, there exists something
slightly better: an enumerating procedure. This means that, if a finite
result exists, it is found after finitely many steps, and if the result is infinite,
it is the union of all elements computed at some point by the procedure.
The goal of this subsection is to show that an enumerating procedure for
computing SAGBI bases does indeed exist. Furthermore, in Tutorial 96 we
shall see that this procedure also computes truncated SAGBI bases in the
homogeneous case.

As usual, we let K be a field and P = K[x1, . . . , xn] . Moreover, we fix a
term ordering σ on Tn . In the following we frequently use the assumption
that certain given polynomials are monic. This is clearly no serious restric-
tion and it will help us keep the description lighter. We need two tools for
constructing a SAGBI basis procedure. The first tool is a SAGBI version
of Definition 2.5.1. For terms t1, . . . , ts ∈ Tn , Definitions 6.1.1 and 6.6.20
imply that the ideal Rel(t1, . . . , ts) is the toric ideal associated to the tu-
ple (t1, . . . , ts). By Proposition 6.1.3.c, toric ideals are generated by pure
binomials.

Definition 6.6.26. Let g1, . . . , gs ∈ P \ {0} be monic polynomials, and let
b = t1 − t2 be a pure binomial in Rel(LTσ(G)), where t1, t2 ∈ T(y1, . . . , ys).
Then the polynomial b(g1, . . . , gs) ∈ P is called the T-polynomial of b .

T-polynomials will be for the computation of SAGBI bases what S-poly-
nomials are for the computation of Gröbner bases. The letter “T” reminds
us of the “toric origin” of these polynomials and also of the fact that the pair
(log(t1), log(t2)) was called a tête à tête in the pioneering paper [RS90]. If a
T-polynomial reduces to zero, the corresponding pure binomial can be lifted
as follows.
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Proposition 6.6.27. Let G ⊆ P \ {0} be a set of monic polynomials, let
G = (g1, . . . , gs) ∈ Gs , and let b = t1 − t2 ∈ Rel(LTσ(G)) be a pure binomial.
If we have b(g1, . . . , gs)

G−→s 0 then b has a lifting in Rel(G) .

Proof. If b(g1, . . . , gs) = 0 then b is a lifting of itself. Thus we may as-
sume b(g1, . . . , gs) �= 0. By collecting the terms used in the reduction
steps of b(g1, . . . , gs)

G−→s 0, we obtain a representation b(g1, . . . , gs) =
h(g1, . . . , gs) with h ∈ K[y1, . . . , ys] which satisfies condition A2). Since b is
homogeneous with respect to the induced grading, we see that Λ(LF(h)) =
Λ(h) = 0, and Proposition 6.6.22.b2 yields degσ,G(b) >σ LTσ(h(g1, . . . , gs)) =
degσ,G(h). Therefore the polynomial p = b− h ∈ Rel(G) satisfies LF(p) = b ,
i.e. it is a lifting of b . �

The second tool is the SAGBI variant of the Buchberger Criterion 2.5.3.

Proposition 6.6.28. (The SAGBI Basis Criterion)
Let G ⊆ P \ {0} be a set of monic polynomials, let S = K[G] , and let Ψ
be the filtration on S induced by the σ -Gröbner filtration on P . Then the
following conditions are equivalent.
a) The set G is a σ -SAGBI basis of S .
b) For every tuple G = (g1, . . . , gs) of elements of G , there exists a set B

of pure binomials in K[y1, . . . , ys] which generates the ideal Rel(LTσ(G))
and which satisfies b(g1, . . . , gs)

G−→s 0 for all b ∈ B .

Proof. First we show that a) implies b). If G is a σ -SAGBI basis of S

then b(g1, . . . , gs)
G−→s 0 holds for every pure binomial b ∈ Rel(LTσ(G)) by

Theorem 6.6.25. Conversely, if b) holds then Proposition 6.6.27 shows that
every b ∈ B has a lifting in Rel(G). Thus condition D3) of Theorem 6.6.25
holds. �

Having gathered the necessary tools, we are well equipped to elaborate
the promised enumerating procedure for SAGBI bases. Since we need a finite
set of input data, we assume that the subalgebra whose SAGBI basis we want
to compute is finitely generated.

Theorem 6.6.29. (The SAGBI Basis Procedure)
Let σ be a term ordering on Tn , let G = {g1, . . . , gs} ⊆ P \ {0} be a set
of monic polynomials, let G = (g1, . . . , gs) , and let S = K[G] be the K-
subalgebra of P generated by G . Consider the following sequence of instruc-
tions.
1) Let s′ = s , let H = G , and let H = G .
2) Using Proposition 6.1.3 or Corollary 6.1.10, compute a set B of pure

binomials which generates the ideal Rel(LTσ(H)) in K[y1, . . . , ys′ ] .
3) If B = ∅ , return the tuple H and stop. Otherwise, let B′ = ∅ .
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4) For every b ∈ B , reduce the T-polynomial b(g1, . . . , gs′) via H−→s until
an irreducible element b′ ∈ P is found, and if b′ �= 0 , adjoin the element
LCσ(b′)−1 b′ to the set B′ .

5) If B′ = ∅ then return the tuple H and stop. Otherwise, let t = #B′ ,
increase s′ by t , and append the elements gs′−t+1, . . . , gs′ of B′ to H
and H .

6) Using Proposition 6.1.3 or Corollary 6.1.10, compute a set B of pure
binomials which generate the ideal Rel(LTσ(H)) in K[y1, . . . , ys′ ] . Re-
place B by its subset consisting of those elements which involve at least
one of the indeterminates ys′−t+1, . . . , ys′ . Then continue with step 3).

This is an enumerating procedure. The set of all elements contained in H at
some point is a σ -SAGBI basis of S . The procedure stops if and only if S
has a finite σ -SAGBI basis. In this case it returns a tuple H of polynomials
which form a σ -SAGBI basis of S .

Proof. First we show that the set H of elements contained in H at some
point during the course of the procedure is a σ -SAGBI basis of S . If the
procedure stops in step 3), we have Rel(LTσ(G)) = 0. Hence the leading terms
{LTσ(g1), . . . ,LTσ(gs)} are algebraically independent and H = (g1, . . . , gs)
is a σ -SAGBI basis of S by Proposition 6.6.11.

Otherwise, we use the SAGBI Basis Criterion 6.6.28. Let {g1, . . . , gs′} be
a finite subset of H . By possibly enlarging it we may assume that we have
H = (g1, . . . , gs′) after some execution of step 5) is completed. Let B be the
system of generators of Rel(LTσ(H)) consisting of pure binomials which is
the result of the first part of step 6). We write B as a disjoint union of B1

and B2 where B2 are the elements selected in the second part of step 6). For
b ∈ B1 , the polynomial b′ ∈ P has been computed in an earlier execution of
step 4). We either found b′ = 0 or b′ �= 0 has already been appended to H .
In both cases it follows that we have b(g1, . . . , gs)

H−→s 0. For b ∈ B2 , the
polynomial b′ ∈ P will be computed in the next execution of step 4). Either
we find b′ = 0 or b′ will be appended to H in the next execution of step 5).
In both cases it follows that we have b(g1, . . . , gs)

H−→s 0 using the set H

after the next execution of step 5). Altogether, we have b(g1, . . . , gs)
H−→s 0

for all b ∈ B , as we had to show.
If the procedure stops, this argument proves that the returned tuple H

is a finite σ -SAGBI basis of S . Now suppose that S has a finite σ -SAGBI
basis. Since H is a σ -SAGBI basis of S , Proposition 6.6.4 implies that the
generating set {LTσ(h) | h ∈ H} of grΨ (S) = K[LTσ(g) | g ∈ S \ {0}]
contains the minimal monomial set of algebra generators, and that the latter
set is finite. So, after performing step 5) finitely many times, we have a
set H for which {LTσ(h) | h ∈ H} contains the minimal monomial set
of algebra generators. Therefore this set H is a σ -SAGBI basis of S . By
Proposition 6.6.28, we will therefore get B′ = ∅ in the next execution of
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step 5) and the procedure stops. Thus we have now proved all claims of the
theorem. �

The SAGBI basis procedure is full of “sagbities”. To appreciate some of
them, have a look at the following example.

Example 6.6.30. (The Tricky Example)
Let P = Q[x1, x2] , let σ = DegLex , and let S ⊆ P be the Q -subalgebra
generated by G = {g1, g2, g3, g4} where g1 = x2

1x2 , g2 = x2
1 − x2

2 , g3 =
x2

1x
2
2 − x4

2 , and g4 = x2
1x

4
2 . Let us follows the steps of the SAGBI basis

procedure.
1) Let s′ = 4, H = {g1, g2, g3, g4} , and H = (g1, g2, g3, g4).
2) We compute B = {y2

3 − y2y4, y2y3 − y2
1} .

4) For b1 = y2
3 − y2y4 we compute b1(g1, g2, g3, g4)

H−→s −x2
1x

6
2 + x8

2 = b′1 .
For b2 = y2y3 − y2

1 we compute b2(g1, g2, g3, g4)
H−→s x6

2 = b′2 .
5) Let t = 2, s′ = 6, g5 = −b′1 , g6 = b′2 , H = {g1, . . . , g6} , and H =

(g1, . . . , g6).
6) We compute Rel(LTσ(H)) and get the set B = {y2y6 − y5, y2

2y6 − y3y4,
y2
1y6 − y2

4} of elements involving y5, y6 .
4) For b3 = y2y6 − y5 we compute b3(g1, . . . , g6) = 2g5

H−→s 0. For b4 =
y2
2y6−y3y4 we compute b4(g1, . . . , g6) = −g3g6

H−→s 0. For b5 = y2
1y6−y2

4

we compute b5(g1, . . . , g6) = 0.
5) Since B′ = ∅ , the procedure returns H = (g1, . . . , g6) and stops.

The upshot of this computation is that S has a finite σ -SAGBI basis,
namely G ∪ {x2

1x
6
2 − x8

2, x6
2} .

So, what is so tricky about this example? Suppose you want to modify the
procedure described in Theorem 6.6.29 and make it more similar to Buch-
berger’s Algorithm 2.5.5. You might be tempted to modify steps 4) and 5) so
that every time a new element b′ �= 0 is found, it is appended to H and H
and the new set B is computed. The tricky aspect of our example is that
this modified approach does not work!

Let us examine what happens. After we compute b′1 = −x2
1x

6
2 + x8

2 , we
append g5 = −b′1 to H and H and compute the set of new pure binomials
B = {y2

4 −y3y5, y3y4−y2y5} . In the next round we start with b2 = y2
4 −y3y5

and compute b′2 = 2x2
1x

10
2 − x12

2 . The modified procedure continues in this
way appending elements to H and H indefinitely. The reason is that the
elements g2, g3, g4 generate a subalgebra S′ ⊆ P which is isomorphic to the
one in Example 6.6.8 which does not have a finite σ -SAGBI basis. In every
even degree d ≥ 2, the associated graded ring grΨ ′(S′) has the K-basis
{xd

1, xd−2
1 x2

2, . . . , x
2
1x

d−2
2 } . No new element appended to H and H by the

procedure can benefit for the possibility to reduce it using g1 . Therefore the
procedure does not terminate!

With the help of the SAGBI basis procedure, we can also compute the
SAGBI basis mentioned in Example 6.6.10.
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Example 6.6.31. Let P = K[x] , let σ = Deg , and let S ⊆ P be the K-sub-
algebra generated by g1 = x3 − x , g2 = x4 , and g3 = x5 − 1. Let us follow
the steps of the SAGBI basis procedure.
1) Let s′ = 3, H = {g1, g2, g3} and H = (g1, g2, g3).
2) We compute B = {y2

2 − y1y3, y2
1y2 − y2

3 , y3
1 − y2y3} .

4) For b1 = y2
2 − y1y3 we compute b1(g1, g2, g3)

H−→s −x2 = b′1 . For b2 =
g2
1g2−g2

3 we compute b2(g1, g2, g3)
H−→s −x2 +1 = b′2 . For b3 = y3

1 −y2y3

we compute b3(g1, g2, g3)
H−→s −x = b′3 .

5) Let t = 3, s′ = 6, g4 = −b′1 , g5 = −b′2 , g6 = −b′3 , H = {g1, . . . , g6}
and H = (g1, . . . , g6).

6) We compute Rel(LTσ(H)) and get the set B = {y5 − y4, y2
6 − y4,

y4y6 − y1, y2
4 − y2, y1y4 − y3} of elements involving y4, y5, y6 .

4) For b4 = y5 − y4 we compute b4(g1, . . . , g6)
H−→s 0. For b5 = y2

6 − y4

we compute b5(g1, . . . , g6) = 0. For b6 = y4y6 − y1 we compute
b6(g1, . . . , g6)

H−→s 0. For b7 = y2
4 − y2 we compute b7(g1, . . . , g6) = 0.

For b8 = y1y4 − y3 we compute b8(g1, . . . , g6)
H−→s 0.

5) Since B′ = ∅ , the procedure returns H = (g1, . . . , g6) and stops.
By looking at the leading terms of the computed SAGBI basis, we imme-

diately see that, in fact, the subset {g6} = {x} is a σ -SAGBI basis of S .
Therefore we have discovered that S = K[x] , a result which we can check
using the method explained in Example 6.6.10 and Corollary 3.6.7.

By adding the appropriate amount of bookkeeping to the SAGBI Basis
Procedure, we could formulate a version which is analogous to the Extended
Buchberger Algorithm 2.5.11, i.e. a version which also computes the subalge-
bra representations of the elements of H in terms of the original subalgebra
generators. For instance, in the preceding example, it would compute the
representation

x = −(x3 − x)3 + x4(x5 − 1) − 3(x3 − x)x4 + x4 − (x3 − x)

mentioned in Example 6.6.10.

Exercise 1. Let S = K[x, xy− y2, xy2] ⊆ K[x, y] where K is a field of
characteristic zero.

a) Let σ be a term ordering for which x >σ y . Show that S does not
have a finite σ -SAGBI basis.

b) Let σ be a term ordering for which y >σ x . Show that S has a finite
σ -SAGBI basis.

Exercise 2. Formulate and prove a subalgebra analog of the Division
Algorithm 1.6.4.



6.6 SAGBI Bases 499

Exercise 3. Formulate and prove a subalgebra analog of the Extended
Buchberger Algorithm 2.5.11. Use this algorithm to verify the representa-
tion of x as an element of K[x3 − x, x4, x5 − 1] given above.

Exercise 4. Let K be a field. Show x2
3 ∈ K[x2

1 − x3, x1x2 + x3, x2
2 − x3]

in two ways: using the Subalgebra Membership Test 3.6.7 and using an
extended version of the SAGBI Basis Procedure 6.6.29.

Exercise 5. Let K be a field, let P = K[x11, . . . , x14, x21, . . . , x24] , and
let S ⊆ P be the K-subalgebra generated by the 2×2-minors of the matrix(

x11 x12 x13 x14
x21 x22 x23 x24

)
. Show that the six minors are a DegLex-SAGBI basis of S

where we let x11 > x12 > · · · > x24 .

Exercise 6. Let K be a field, let P = K[xij | 1 ≤ i, j ≤ 3] , and let
S ⊆ P be the K-subalgebra generated by the 2×2-minors of the matrix
(xij) ∈ Mat3(P ) . Find a SAGBI basis of this algebra with respect to the
lexicographic term ordering σ induced by the ordering xij >σ xk� ⇐⇒
(i, j) >Lex (k, �) on the indeterminates.

Exercise 7. Let K be a field, let P = K[x] , and let S be the set of all
polynomials f ∈ P with f(1) = f(−1).

a) Prove that S is a K-subalgebra of P .
b) Show that S is finitely generated and isomorphic to the coordinate

ring of a plane node, as described in Tutorial 95.d.
c) Give a “geometric interpretation” of this fact.

Exercise 8. (Gluing Points)
Let K be a field, let P = K[x1, . . . , xn] , and let I be an ideal in P . We
denote the set {c + f | c ∈ K, f ∈ I} by K + I .

a) Show that K + I is a K-subalgebra of P .
b) Consider the case where P = K[x1, x2] and I = (x1) . Prove that

K + I is not a finitely generated K-algebra.
c) Let X = {p1, . . . , ps} ⊆ Kn be an affine point set. Prove that K+I(X)

is a finitely generated K -algebra.
d) Show that the K-subalgebra K + I(X) of P considered above has a

finite σ -SAGBI basis for every term ordering σ .
e) Compute a finite set of K-algebra generators of K + I(X) for the

case X = {(1, 0), (−1, 0)} . Can you explain the difference between
this example and that of Exercise 7?

Exercise 9. Let K be a field, and let S be the subalgebra K[x2
1, x1x2, x

2
2]

of K[x1, x2] . Find a set of generators of the S -module SyzS(x1x2, x
2
2) .

Exercise 10. Let K be a field, let P = K[x1, . . . , xn] , let S ⊆ P
be a K -subalgebra, let σ be a term ordering on Tn , and let Ψ be the
filtration on S induced by the σ -Gröbner filtration on P . Prove that we
have grΨ (S) = P if and only if S = P .
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Tutorial 96: Variations on the SAGBI Theme

Opera is ...
when a guy gets stabbed in the back

and instead of bleeding he sings.
(Edward Gardner)

This tutorial could serve as the starting point for several magna opera
which elaborate on the idea of creating a subalgebra analog to Gröbner basis
theory. Here we content ourselves with sketching some variations on this main
theme. We hope that instead of bleeding you dry, they will inspire you to sing
along. The libretto is available for free: just have a look at what we did with
Gröbner bases in Chapters 2 and 4. Thus we shall perform the following
variations: normal forms with respect to subalgebras, reduced SAGBI bases,
homogeneous SAGBI bases, truncated SAGBI bases, and a Hilbert driven
coda.

In the following let K be a field, let P = K[x1, . . . , xn] be a polynomial
ring, let σ be a term ordering on Tn , let G = {g1, . . . , gs} ⊆ P \ {0} be a
set of monic polynomials, let G−→s be the subalgebra rewrite relation defined
by G , and let S = K[G] be the K-subalgebra of P generated by G .

First Variation: Normal Forms

Given a Gröbner basis of an ideal, the normal form of a polynomial with
respect to the ideal is the normal remainder of this polynomial after division
by the Gröbner basis, and it does not depend on the choice of the Gröbner
basis. Our first topic is to construct subalgebra analogs of normal forms. In
this variation we assume that G ⊆ S \ {0} is a σ -SAGBI basis of S .
a) Show that for every f ∈ P there exists a unique polynomial fG ∈ P

with the properties that f − fG ∈ S and Supp(fG) ∩ K[LTσ(G)] = ∅ .
Hint: Use Condition C3) of Theorem 6.6.25.
The element fG is called the normal form of f with respect to S . It is

denoted by NFσ,S(f), or simply by NFS(f) if it is clear which term ordering
we are considering.
c) Let f, f1, f2 ∈ P . Prove the following rules for normal forms.

1) NFS(NFS(f)) = NFS(f)
2) NFS(f1 − f2) = NFS(f1) − NFS(f2)
3) NFS(f1f2) = NFS(NFS(f1)NFS(f2))

d) Write a CoCoA function NFS(. . .) which takes f and G and computes the
normal remainder NFS(f). Apply this function to the following examples
where σ = DegLex .
1) f = x4

1x
2
2 + x2

1x
4
2 , G = {x2

1 − 1, x2
2 − 1} ⊆ Q[x1, x2]

2) f = x3
1 + x2

1x2 , G = {x1 + x2, x1x2} ⊆ Q[x1, x2]
3) f = x4

1 +x3
1x2 +x2

1x
2
2 +x4

2 , G = {x2
1−x2

2, x2
1x2, x2

1x
2
2−x4

2, x2
1x

4
2, x6

2,
x2

1x
6
2 − x8

2} ⊆ Q[x1, x2]
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e) Show that a polynomial f satisfies f ∈ S if and only if NFS(f) = 0. Thus
the existence of a finite SAGBI basis of S yields an efficient subalgebra
membership test.

Second Variation: Reduced SAGBI Bases

Let G ⊆ S\{0} be a σ -SAGBI basis of S . Imitating Definition 2.4.12, we
say that G is a reduced σ -SAGBI basis of S if the following conditions
are satisfied. (Recall that a σ -SAGBI basis is by definition monic.)
1) The set {LTσ(g1), . . . ,LTσ(gs)} is the minimal monomial system of al-

gebra generators of K[LTσ(G)] .
2) For i = 1, . . . , s , we have Supp(gi − LTσ(gi)) ∩ K[LTσ(G)] = ∅ .

Now existence and uniqueness of reduced σ -SAGBI bases can be shown ex-
actly as in Gröbner basis theory (see Theorem 2.4.13).
f) Prove that there exists a unique reduced σ -SAGBI basis of S .
g) Write a CoCoA function ReducedSAGBI(. . .) which takes G and computes

the reduced σ -SAGBI basis of S .
h) Using your function ReducedSAGBI(. . .) and the DegRevLex-SAGBI ba-

sis G = {x1x2 − x2
3, x4

1 − x2
2x

2
3} of S = Q[G] , show that the reduced

DegRevLex-SAGBI basis of S is {x2x3 − x2
3, x4

1 − x4
3} .

Third Variation: Homogeneous SAGBI Bases

For this variation, we equip P with the standard grading. We assume
that G consists of monic homogeneous polynomials, but it is not necessarily
a σ -SAGBI basis of S = K[G] .
i) (The Homogeneous SAGBI Basis Procedure)

Consider the following sequence of instructions.
1) Let B = ∅ , W = G , H = ∅ , H = ∅ , and s′ = 0.
2) Let d be the smallest degree of an element in B or in W . Form the

subset Bd of B , form the subset Wd of W , and delete their entries
from B and W , respectively.

3) Let B′ = ∅ . For every b ∈ Bd , reduce the T-polynomial b(g1, . . . , gs′)
via H−→s until an irreducible element b′ ∈ P is found, and if b′ �= 0,
adjoin the element LCσ(b′)−1b′ to the set B′ .

4) If B′ �= ∅ then let t = #B′ , increase s′ by t , and append the
elements gs′−t+1, . . . , gs′ of B′ to H and H .

5) Let W ′ = ∅ . For every g ∈ Wd , reduce g via H−→s until an irre-
ducible element g′ ∈ P is found, and if g′ �= 0, adjoin the element
LCσ(g′)−1g′ to the set W ′ .

6) If W ′ �= ∅ then let t = #W ′ , increase s′ by t , and append the
elements gs′−t+1, . . . , gs′ of W ′ to H and H .
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7) If B′ �= ∅ or W ′ �= ∅ , compute a set B of pure binomials which
generate Rel(LTσ(H)) in K[y1, . . . , ys′ ] . Replace B by its sub-
set B>d . (Here B is homogeneous with respect to the grading given
by deg(yi) = deg(gi).)

8) If B = ∅ and W = ∅ , return the tuple H and stop. Otherwise,
continue with step 2).

Show that this is an enumerating procedure. The set of all elements
contained in H at some point is a homogeneous σ -SAGBI basis of S .
The procedure stops if and only if S has a finite σ -SAGBI basis. In
this case it returns a deg-ordered tuple H of polynomials which form a
homogeneous σ -SAGBI basis of S .

j) Apply the Homogeneous SAGBI Basis Procedure to the Tricky Exam-
ple 6.6.30. Compare its result to the result of the SAGBI Basis Proce-
dure 6.6.29.

Fourth Variation: Truncated SAGBI Bases

Let P be standard graded and G ⊆ S \ {0} be a homogeneous system
of generators of S = K[G] . Since the Homogeneous SAGBI Basis Procedure
proceeds degree by degree, we can interrupt its computations after a particu-
lar degree d is finished. In this way we construct SAGBI variants of truncated
Gröbner bases. Formally, given a homogeneous σ -SAGBI basis H of S and
a number d ∈ N , we say that H≤d is a d-truncated σ -SAGBI basis of S .
k) Write a CoCoA function TruncSAGBI(. . .) which takes G and d and com-

putes a d -truncated σ -SAGBI basis of S .
l) Apply your function TruncSAGBI(. . .) to the following examples.

1) d = 3, G = {x2
1 − x2x3, x1x2 + x2

3, x2
2 − x2

3} ⊆ Q[x1, x2, x3]
2) d = 5, G = {x1 + x2, x1x2, x1x

2
2} ⊆ Q[x1, x2]

3) d = 6, G = {x1 − x2, x1x2 − x2
2, x1x

2
2} ⊆ Q[x1, x2]

m) Explain how one can use truncated SAGBI bases to devise an efficient ho-
mogeneous subalgebra membership test which works even if S has
no finite SAGBI basis. Write a CoCoA function IsInSubalg(. . .) which
implements this test and apply it to check whether f ∈ K[G] holds in
the following examples.
1) f = x1x

4
2 − x5

2 , G = {x1 − x2, x1x2 − x2
2, x1x

2
2} ⊆ Q[x1, x2]

2) f = x4
3 , G = x2

1 − x2
3, x1x2 + x2

3, x2
2 − 2x2

3} ⊆ Q[x1, x2, x3]
3) f = x4

3 , G = x2
1 − x2

3, x1x2 + x2
3, x2

2 − x2
3} ⊆ Q[x1, x2, x3]

Give me a laundry list
and I’ll set it to music.
(Gioacchino A. Rossini)
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Finale: Hilbert Driven SAGBI Basis Computations

The last variation in this tutorial is based on the idea of imitating the
methods of Tutorial 69 in the subalgebra setting. In other words, we are
looking for a Hilbert driven SAGBI basis procedure. Rather than developing
the full theory, we sketch the motive using a specific example: the Tricky
Example 6.6.30.

Let P = Q[x1, x2] , let σ = DegLex , and let S = K[G] be the subalgebra
of P generated by G = {x2

1−x2
2, x2

1x2, x2
1x

2
2−x4

2, x2
1x

4
2} . We assume that we

know the Hilbert series of the K-algebra K[LTσ(f) | f ∈ S \{0}] . In the case
at hand, it is HSS(z) = 1+z4+z6

(1−z2)(1−z3) = 1+z2 +z3 +2z4 +z5 +4z6 +2z7 + · · · .
n) Use the result of Example 6.6.30 and CoCoA to verify this Hilbert series.
o) Now let us start the SAGBI Basis Procedure 6.6.29. Initially, we have

K[LTσ(g1), . . . ,LTσ(g4)] = K[x2
1, x

2
1x2, x

2
1x

2
2, x

2
1x

4
2] . Using CoCoA, check

that the Hilbert series of this algebra is 1+z4

(1−z2)(1−z3) = 1+z2 +z3 +2z4 +
z5 + 3z6 + 2z7 + · · · . This shows that the SAGBI basis is still incomplete
and that we are missing an element of degree 6.

p) After performing steps 4) and 5), we have K[LTσ(g1), . . . ,LTσ(g6)] =
K[x2

1, x
2
1x2, x

2
1x

2
2, x

2
1x

4
2, x

6
2] . (Notice that LTσ(g5) = LTσ(g1) LTσ(g6)] .)

Using CoCoA, check that the Hilbert series of this algebra is 1+z4+z6

(1−z2)(1−z3) .
Therefore we have now computed the entire SAGBI basis and we can
stop. We do not have to go through steps 4) and 5) again, as we did
in Example 6.6.30. Instead, we conclude that {g1, . . . , g6} is the SAGBI
basis of S .

Tutorial 97: Gröbner and SAGBI Bases Under Composition

$100 placed at 7 percent interest
compounded quarterly for 200 years

will increase to more than $100,000,000,
by which time it will be worth nothing.

(Lazarus Long)

How much are we expecting to gain if we compose a SAGBI basis with
an endomorphism of the polynomial ring? In most cases we gain apparently
nothing, in the sense that we end up with another SAGBI basis. But, hey, this
is a remarkable performance! Can we prove it? Under which conditions is the
SAGBI basis property preserved? And what happens to Gröbner bases under
composition? What are the exact conditions for the Gröbner basis property to
be preserved? Can we check these conditions using the computer? Obviously,
it is easy to go on and on asking questions. What profit are you to pocket
from answering them? Will the answers be worth anything by the time you
have found them? For sure you will acquire a large pool of knowledge, and
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possibly even wisdom. So, let us propose a scheme of work which allows you
to assuage your thirst for learning.

Let K be a field, let P = K[x1, . . . , xn] , let σ be a term ordering on Tn ,
and let f1, . . . , fn ∈ P \ {0} . Then there exists a unique K-algebra homo-
morphism ϕ : P −→ P with ϕ(xi) = fi for i = 1, . . . , n . Given a finite set of
polynomials G ⊆ P , we say that G is a σ -Gröbner basis if it is a σ -Gröbner
basis of the ideal it generates. Similarly, we say that G is a σ -SAGBI basis if
it is a σ -SAGBI basis of the K-subalgebra of P it generates. In this tutorial
we address the following two problems.
1) Are there conditions on the map ϕ which guarantee that, for every

σ -Gröbner basis G , the set ϕ(G) is also a σ -Gröbner basis?
2) Are there conditions on the map ϕ which guarantee that, for every

σ -SAGBI basis G , the set ϕ(G) is also a σ -SAGBI basis?
Since the map ϕ is determined by the tuple F = (f1, . . . , fn), we are

looking for conditions on this tuple which entail the desired properties. To
this end, the following notion will come in handy. We say that the map ϕ is
compatible with σ if t1 >σ t2 implies LTσ(ϕ(t1)) >σ LTσ(ϕ(t2)) for all
t1, t2 ∈ Tn . Let Φ : P −→ P denote the K-algebra homomorphism defined
by Φ(xi) = LTσ(fi) for i = 1, . . . , n . In this setting it is not very difficult to
solve the second problem.
a) Prove that Φ(t) = LTσ(ϕ(t)) for every t ∈ Tn . Conclude that ϕ is

compatible with σ if and only if t1 >σ t2 implies Φ(t1) >σ Φ(t2) for all
t1, t2 ∈ Tn .

b) Assume that ϕ is compatible with σ . For every f ∈ P \ Ker(ϕ), show
that we have LTσ(ϕ(f)) = Φ(LTσ(f)).

c) Let G = {g1, . . . , gs} ⊆ P \ {0} be a σ -SAGBI basis. Prove that ϕ(G)
is a σ -SAGBI basis if ϕ is compatible with σ .
Hint: It suffices to show LTσ(ϕ(f)) ∈ K[LTσ(ϕ(G))] for all polynomials
f ∈ K[G]\Ker(ϕ). Write LTσ(f) = LTσ(g1)α1 · · ·LTσ(gs)αs with αi ∈ N
and use b).

d) Let V ∈ Matn(Z) be a non-singular matrix, and let v1, . . . , vn be the
rows of V . Show that there exists a Q -basis {b1, . . . , bn} of Qn having
the following properties:
1) b1, . . . , bn ∈ Zn

2) 〈vi, bj〉 = 0 for 1 ≤ i < j ≤ n
3) 〈vi, bi〉 > 0 for 1 ≤ i ≤ n

Here 〈 , 〉 denotes the standard scalar product.
Hint: First find bn with

( v1
:

vn−1

)
bn = 0. Then extend {bn} to a basis of

the kernel of
( v1

:
vn−2

)
, etc.

e) In the setting of d), prove that a vector d ∈ Zn satisfies V · d >Lex 0 if
and only if c d =

∑
j≥i ajbj with c, ai ∈ N+ and ai+1, . . . , an ∈ Z for

some i ∈ {1, . . . , n} .



6.6 SAGBI Bases 505

f) Let σ = Ord(V ) be given by a non-singular matrix V ∈ Matn(Z), let
{b1, . . . , bn} be chosen as in d), let Φ(xi) = xα1i

1 · · ·xαni
n for i = 1, . . . , n ,

and let A = (αij) ∈ Matn(N) . Show that A is non-singular and that the
following conditions are equivalent.
1) The map ϕ is compatible with σ .
2) For every d ∈ Zn with V · d ≥Lex 0, we have V · A · d ≥Lex 0.
3) For i = 1, . . . , n , the first non-zero entry of V ·A · bi is the i th entry

and this entry is positive.
g) Write a CoCoA function IsCompatible1(. . .) which takes a tuple F and

checks whether the K-algebra homomorphism ϕ : P −→ P it defines is
compatible with σ .

h) Using your function IsCompatible1(. . .), show that the following sets of
polynomials are DegLex-SAGBI bases of Q -subalgebras of Q[x1, x2, x3] .
1) F1 = {(x1x2 + 1)3, (x2

2 + x1)4, (x2
3 + x2)5}

2) F2 = {(x1 + x3)3x3
2, (x2 + x3)3x3

3, x4
3}

3) F3 = {(x1 + 1)(x2 + 1), (x2 + 1)(x3 + 1), (x3 + 1)3}
Next we describe a more intrinsic approach to the problem of check-

ing compatibility. Let V ∈ Matn(Z) be a non-singular matrix with rows
v1, . . . , vn , and let σ = Ord(V ).
i) Prove that there exists a matrix W ∈ Matn(Z) whose rows are pairwise

orthogonal with respect to 〈 , 〉 which defines the same term ordering σ .
A matrix W with this property is called an orthogonalization of V .
Hint: Imitate the Gram-Schmidt orthonormalization procedure
as follows. The first row of W is v1 of V . The second row of W is
obtained from v2 by subtracting a suitable multiple of v1 and clearing
denominators, and so on.

j) Write a CoCoA function Orthog(. . .) which takes a non-singular ma-
trix V ∈ Matn(Z) and computes an orthogonalization of V .

k) We say that two matrices W1,W2 ∈ Matn(Z) are row-wise propor-
tional if there exist positive rational numbers λ1, . . . , λn such that the
ith row of W1 equals λi times the ith row of W2 for i = 1, . . . , n . Show
that any two orthogonalizations of V are row-wise proportional.

l) Let Φ(xi) = xα1i
1 · · ·xαni

n for i = 1, . . . , n , and let A = (αij) ∈ Matn(N).
Show that ϕ is compatible with σ if and only if the orthogonalizations
of V and V · A are row-wise proportional.

m) Write a CoCoA function IsCompatible2(. . .) which takes a tuple F and
uses l) to check whether the K-algebra homomorphism ϕ : P −→ P
it defines is compatible with σ . Using this function, verify your answer
to h).

n) Assume that n = 2, and let Φ(xi) = xα1i
1 xα2i

2 for i = 1, 2. Prove that ϕ
is compatible with σ if and only if we have α11 + α21 = α12 + α22 and
α11 > α12 .

o) Give examples of pairs (F , G) satisfying the following conditions.
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1) The map ϕ is compatible with σ , the set G is not a σ -Gröbner
basis, but ϕ(G) is a σ -Gröbner basis.

2) The map ϕ is not compatible with σ , the set G is a σ -Gröbner basis,
but ϕ(G) is not a σ -Gröbner basis. (Hint: Try F = (x1, x2, x3, x2)
and G = {x2

1, x1x2, x2
3 + x2

4} .)
Having found a satisfactory solution to the second problem, we turn our

attention to the first, i.e. to Gröbner bases under composition. The following
example shows that it is not sufficient to assume that ϕ is compatible with σ .
p) Let P = Q[x1, x2, x3] , let σ = Lex , let F = (x1x2, x

2
2, x

2
3), and let

G = {x1 + x3, x2 + x3} . Prove the following claims.
1) The map ϕ is compatible with σ .
2) The set G = {f1, f2} is a σ -Gröbner basis.
3) The set ϕ(G) is not a σ -Gröbner basis.

Thus we have to require additional properties of the map ϕ if we want it
to preserve the Gröbner basis property. We say that ϕ is compatible with
non-divisibility if t1 � t2 implies Φ(t1) � Φ(t2) for all t1, t2 ∈ Tn .
q) Prove that the following conditions are equivalent.

1) The map ϕ is compatible with non-divisibility.
2) For all t1, t2 ∈ Tn with t1 � t2 , we have LTσ(ϕ(t1)) � LTσ(ϕ(t2)).
3) There exist a permutation π : {1, . . . , n} −→ {1, . . . , n} and natural

numbers α1, . . . , αn such that Φ(xi) = xαi

π(i) for i = 1, . . . , n .

Hint: Prove “3)⇒1)” by contradiction. If no such permutation exists, one
of the terms Φ(xi) involves at least two indeterminates. Then there exists
a term Φ(xi) which involves only indeterminates dividing

∏
j �=i Φ(xj).

Now use the fact that xi does not divide any power product
∏

j �=i x
αj

j .
r) Let ϕ be compatible with non-divisibility. Using Proposition 1.2.7.a

and q), show that we have Φ(gcd(t1, t2)) = gcd(Φ(t1), Φ(t2)) for all
t1, t2 ∈ Tn.

s) Let ϕ be compatible with σ and non-divisibility, and let G = {g1, . . . , gs}
be a σ -Gröbner basis consisting of non-zero polynomials in P . Prove
that ϕ(G) is a σ -Gröbner basis.
Hint: Let σij = 1

ci
tijεi − 1

cj
tjiεj be the fundamental syzygy of LTσ(gi)

and LTσ(gj) . Show that 1
ci

Φ(tij)εi− 1
cj

Φ(tji)εj is the fundamental syzygy
of Φ(LTσ(gi)) and Φ(LTσ(gj)). Then use b) and Conditions D) of The-
orem 2.4.1.

t) Write a CoCoA function IsNonDivisible(. . .) which takes a tuple F and
checks whether the map ϕ it defines is compatible with non-divisibility.

u) Using your functions IsCompatible(. . .) and IsNonDivisible(. . .), show
that the following sets are Lex-Gröbner bases in Q[x1, x2, x3] .
1) G1 = {(x2

1 + x2
2)

3, (x2
2 + x2

3)
3, x8

3}
2) G2 = {(x2

1 + x2x3)5, (x2
2 + x2

3)
5, x10

3 }
3) G3 = {(x2

2 + x2
3)x

2
3 − x2

1 − x2x3, (x2
3 + 1)(x2

1 + x2x3), (x2
1 + x2x3)2}
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Tutorial 98: Molien’s Theorem

Television – a medium.
So called because it is neither rare nor well-done.

(Ernie Kovacs)

I wish there was a knob on the TV to turn up the intelligence.
There’s one marked Brightness, but it doesn’t work.

(Eugene P. Gallagher)

57 channels and nothing on. It is time to turn up our brightness and
apply it to compute invariants more efficiently than in Tutorial 40. There we
asked you to prove that there are only finitely many fundamental invariants,
and we constructed an elementary algorithm for their computation. However,
that was not very well done because even for seemingly innocent examples
the computation was quite lengthy. In this tutorial we use Molien’s Theorem
which gives us an explicit formula for the Hilbert series of a ring of invariants.
This enables us to compute the fundamental invariants intelligently via a
Hilbert driven strategy.

First we recall the basic setting of invariant theory. Let K be a field,
and let P = K[x1, . . . , xn] be standard graded. The group GLn(K) of all
invertible n × n -matrices acts on P via A ◦ f = f(A · x) where A = (aij)
and A · x = (a11x1 + · · · + a1nxn, . . . , an1x1 + · · · + annxn).

Given a finite subgroup G ⊆ GLn(K), we say that a polynomial f is
invariant under G if f(A · x) = f(x) for all A ∈ G . The set of all poly-
nomials in P which are invariant under G form a graded K-subalgebra PG

of P which is called the ring of invariants. There are finitely many homo-
geneous polynomials f1, . . . , fs such that PG = K[f1, . . . , fs] .

Since PG is a finitely generated, positively Z -graded K-algebra, we con-
sider its Hilbert series MSG(z) =

∑
i≥0 dimK(PG)i zi ∈ Q[[z]] and call it the

Molien series of PG .
a) Define a homogeneous presentation PG ∼= K[y1, . . . , ys]/IG and explain

how one can use it to compute the Molien series of a ring of invariants.
Write a CoCoA function MolienSeries(. . .) which takes a list of matri-
ces in Matn(K) representing the elements of G as in Tutorial 40 and
computes the Molien series of PG .

b) Apply your function MolienSeries(. . .) to compute the Molien series of
the rings of invariants of the ten groups in Tutorial 40.a.

c) Find the Molien series of the ring of symmetric polynomials (see Tutor-
ial 12 and Corollary 6.6.12).

d) Let V = {v ∈ Kn | A v = v for all A ∈ G} ⊆ Kn be the invariant vector
subspace of G . Prove the formula

dimK(V ) = 1
#G

∑
A∈G

trace(A)

Hint: Show that the average matrix B = 1
#G

∑
A∈G A satisfies B2 = B

and consider its rank and its eigenvalues.
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e) Assume char(K) = 0. Prove Molien’s Theorem which states that the
Molien series of a ring of invariants is given by the formula

MSG(z) = 1
#G

∑
A∈G

1
det(In−z A)

Hint: Show that you may assume that K is algebraically closed. Then
proceed degree by degree. A matrix A ∈ G induces a diagonalizable
linear transformation on P1 with eigenvalues λ1, . . . , λn . Find the eigen-
values of the induced transformation on Pd and show that its trace is∑

i1+···+in=d λi1
1 · · ·λin

n . Then use d).

f) Write a CoCoA function MolienFormula(. . .) which takes a list of matrices
in Matn(K) representing the elements of G and computes the rational
function given by Molien’s Theorem.

g) Apply your function MolienFormula(. . .) to the examples in Tutor-
ial 40.a and compare the results with the output of MolienSeries(. . .).

h) The knowledge of the Molien series of a ring of invariants can be used
to compute the fundamental invariants using a Hilbert-driven approach.
Write a CoCoA function HDrivenInvariants(. . .) which modifies the al-
gorithm of Tutorial 40.g by stopping the computation in a given degree
when the Hilbert function of the subring of PG computed so far agrees
with the Hilbert function of PG in that degree.

i) Apply your function HDrivenInvariants(. . .) to the examples in Tuto-
rial 40.a. Compare its efficiency to that of the function Invariants(. . .)
of Tutorial 40.h.
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6.7 Automatic Theorem Proving

Post nubila phoebus.
Auf Regen folgt Sonne.

Na regen komt zonneschijn.
Après la pluie le beau temps.

Dopo la pioggia viene il sereno.
After the rain comes the rainbow.

Depois da tempestade vem a bonança.
Después de la lluvia viene el buen tiempo.

A famous physicist once remarked that there are only two kinds of math
books: those you cannot read beyond the first sentence, and those you cannot
read beyond the first page. So, probably you arrived here by chance while
browsing this book. You will not be surprised by the fact that the pattern of
this section differs from the rest of the book. Instead, if you arrived here after
reading the entire book, we are happy to see that we produced an exception to
the physicist’s classification. In this case you have endured many difficulties.
You have been strong enough to pass through hail storms, snow blizzards,
howling gales, and impenetrable fog. It is time for some relief. Finally the
sun starts to shine and a beautiful rainbow appears. Gone are the tedious
and difficult proofs, gone is the pain of checking every single step: in this
section we are about to learn how proofs can automatically be produced
by the computer! Isn’t this a true case of artificial intelligence? Or is it an
unrealizable dream?

The hope of automatically proving all theorems in a specific part of math-
ematics from a small set of axioms was dashed by Kurt Gödel with his famous
incompleteness theorem. But what about using machines to prove at least
some theorems? Although this subject has a long history, it really got off the
ground with the advent of electronic computers. To examine it in detail, we
concentrate our attention on a well-studied classical subject. We want to ex-
plain methods for automatically proving theorems from Euclidean geometry.
These methods use Gröbner bases and are meant to provide instances of how
computers can help humans with the largely unknown process of proving the-
orems. Although the entirety of Euclidean geometry looks like a small pond
when compared with the ocean of mathematics, you will see that dangerous
cross-currents are lurking beneath the apparently calm surface of the water.

Treacherous phenomena start appearing as soon as the first subsection
commences. The first counter current comes from the question of what con-
stitutes a correct proof. Should we accept a proof given by a computer? Or
should we only rely on what we can verify ourselves? Remember, errors in
mathematical books and scholarly papers are commonplace! Some are irrele-
vant, some are not. For an example of particularly nice deception, check out
“Theorem” 6.7.1. Whether the majority of mathematicians accept a given
proof as correct depends more on the general consensus than on the logical
correctness of each step, because nobody is able to follow all steps starting
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from the axioms and ending up with a given claim. Have you ever meditated
about the distance which separates the axioms from any profound statement,
say in algebraic geometry? But the worst has yet to come.

The process of representing the geometric hypothesis of a statement in
Euclidean geometry by polynomial equations is intrinsically subjective. De-
pending on the chosen model we may very well come to different conclusions
about the validity of a geometric theorem. Furthermore, if we represent the
hypotheses by polynomials having real coefficients and we want to manipulate
them automatically, we face the problem that the field R is not computable.
In addition, our translation of the claim that a certain thesis polynomial fol-
lows from the hypothesis polynomials hinges on the applicability of Hilbert’s
Nullstellensatz which, in turn, requires the base field to be algebraically closed
(see for instance Theorem 6.7.3). The next problem which arises is that it is
easy to overlook geometric non-degeneracy conditions which have to be im-
posed to make the theorem true (see Theorem 6.7.4). All of this goes a long
way to show that the process of transforming a geometric statement into a
problem of Computational Commutative Algebra such as ideal membership
is highly non-automatic.

To underpin the actual proving process with a suitable algebraic basis, we
start the second subsection by introducing the notion of an algebraically true
statement. This means that we formulate a model T for a geometric state-
ment and check whether the thesis polynomial is contained in the radical of
the hypothesis ideal Ih(T ). Here the field of definition introduced in Sec-
tion 2.4 allows us to work in the polynomial ring P = K[x1, . . . , xn] over an
algebraic number field K (see Theorem 6.7.9). As expected, the field of defi-
nition depends on the choice of a model (see Theorem 6.7.8). Less expected is
the squall triggered by the discovery that most geometric statements are al-
gebraically false, even many theorems which we know to be true in Euclidean
geometry.

To understand what is happening here, we have to analyze a few cases in
detail (see Theorem 6.7.10 and Example 6.7.12). Recall that a radical ideal
such as

√
Ih(T ) can be written as an intersection p1∩· · ·∩ps of prime ideals.

The result of our analysis is that a geometric theorem can be algebraically
true on some prime components of

√
Ih(T ) but not on all. This is frequently

due to the fact that there exist geometric non-degeneracy conditions which
are not obvious from the geometric picture but which are essential to make
the theorem algebraically true. Since the prime decomposition of an ideal
is usually difficult to compute, we have to endure yet another rain shower.
But this time around the sun swiftly returns. By requiring a condition of
the form f �= 0 with a well-chosen polynomial f ∈ P , we can eliminate the
prime components of

√
Ih(T ) on which the theorem is algebraically false.

Moreover, the condition ideal, i.e. the ideal of all such conditions, is not
difficult to compute. Using the condition ideal, we can change the hypothesis
ideal to the optimal hypothesis ideal. In other words, we can change the
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hypothesis of the geometric theorem such that we exclude precisely the bad
components of the radical of the initial hypothesis ideal.

Alas, the appearance of this beautiful rainbow on the horizon does not
prevent one last aggravation. After we have computed the optimal hypothesis
ideal, we discover that most of the time we have no reasonable geometric
interpretation for the new set of hypotheses. We have proved a theorem,
but we do not know which! This brings us to the last step on our way to
sunny climes. Given a set of generators G of the condition ideal, we say that
the minimal conditions in G are those which remove the bad components
of
√

Ih(T ) and as little else as possible. Minimal conditions provide us with
a much wider choice, and with a bit of luck we can find one which has a nice
geometric meaning. Putting everything together, we obtain the Automatic
Prover 6.7.25, an algorithm which takes over a large part of the process of
proving geometric theorems. Still, it is a misnomer: semiautomatic prover
would surely be more appropriate, but much less flashy.

Finally, in Tutorial 99, we turn the tables on you. Instead of asking you
to implement the Automatic Prover, we fling the code at you and ask you
to make sense of it, and to use it to prove some geometric theorems. You
will notice that not just this final tutorial, but the entire section is written
in a style which differs significantly from the rest of the book: it is frequently
more narrative and occasionally less precise than what you have become used
to. The upshot of this section is that artificial intelligence is in some sense an
oxymoron. So, soak up the sun and tell everyone to lighten up!

6.7.A The Tribulations of Automation

Someone who thinks logically
is a nice contrast to the real world.

(Anonymous)

In this subsection we show you a few geometric theorems whose proofs
contain obstacles to their automation. Even very elementary proofs can con-
tain hidden pitfalls. For instance, the proof of the following theorem uses the
standard technique taught in high school.

Geometric Theorem 6.7.1. Every triangle is isosceles.

Proof. Let ∆ABC be a triangle. Consider the following picture.
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It suffices to prove AC = BC . Let D be the intersection of the perpen-
dicular bisector of AB and the internal bisector of ∠ACB . We drop the
perpendiculars from D to AC and to BC and call their endpoints E and F
respectively. Then we have ∆CDE ∼= ∆CDF because ∠ECD = ∠DCF and
∠DEC = ∠CFD = 90o . In particular, this shows that DE = DF . Together
with AD = BD and ∠AED = ∠BFD = 90o , we obtain ∆ADE ∼= ∆BDF .
Hence we see that AC = AE + EC = BF + FC = BC . �

What is wrong with this proof? If you feel a little nervous about this
example, or you are surprised by this apparent paradox, please relax and you
will discover the trick. You will understand that the logic of the proof is a
nice contrast to the real world. The picture is misleading because the point D
lies outside the triangle!

As the Greek philanderer Isosceles used to say,
there are three sides to every triangle.

(Anonymous)

In order to prove geometric theorems automatically, we have to find a
more standardized and less fallible procedure. In analytic geometry we usually
perform the following steps.
1) We introduce Cartesian coordinates in the Euclidean plane or space.
2) We translate the hypotheses and thesis into algebraic relations among the

fundamental geometric data such as coordinates of points and lengths of
segments.

3) Let these algebraic relations be expressed as the vanishing of suitable
polynomials. Then we prove the theorem by showing that the thesis poly-
nomial is a consequence of the hypothesis polynomials.
Of course, all of these steps require additional clarification to make them

accessible to automation. To begin with, we shall see that it is practically
impossible to automate the entire process. For instance, the choice of the
coordinate system and some clever simplifications of the input data are part
of a preprocessing which has to be done before we can even pass the problem
to the computer. The example mentioned in the introduction of Section 3.4
is a case in point.
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Geometric Theorem 6.7.2. (Heron’s Formula)
Let a , b , and c be the lengths of the sides of a triangle, let p = (a+ b+ c)/2 ,
and let s be the area of the triangle. Then s is determined by the formula
s2 = p(p − a)(p − b)(p − c) .

Automatic Proof. To perform step 1) of the above method, we choose an
orthogonal system of coordinates. Using the possibility to position the coor-
dinate axes freely, we arrange them as follows.
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Now we have to translate the hypotheses into polynomial relations among
the input data. We use Pythagoras’ Theorem to deduce that b2 = (a−x)2+y2

and c2 = x2+y2 . Furthermore, we observe that 2s = ay . We can collect these
polynomials and form the ideal I = (b2 − (a − x)2 − y2, c2 − x2 − y2, 2s − ay)
in the polynomial ring R[x, y, a, b, c, s] . The simultaneous vanishing of these
polynomials corresponds to the geometrical arrangement in the diagram. The
thesis corresponds to the vanishing of f = s2 − p(p − a)(p − b)(p − c) where
p = (a + b + c)/2.

Finally we have to prove that the thesis polynomial follows from the
hypothesis polynomials. This means that every set of concrete values of
a, b, c, x, y, and s satisfying the hypothesis polynomials is a zero of the thesis
polynomial. This task can indeed be solved using Gröbner basis because we
can show that f ∈ I . Then we may conclude that ZR(I) ⊆ ZR(f).

There is still one obstacle here: in principle it is not possible to perform
computations over the base field R . However, this problem can be overcome
easily by showing that f is contained in I ∩ Q[a, b, c, x, y, s] . �

Notice that, as we explained in the introduction of Section 3.4, in this
particular case we could also have discovered the thesis polynomial if we had
not known it beforehand. Clearly, in this proof it is not possible to automate
the first two steps. But what about the third step? Does it always work so
nicely? Unfortunately, it does not, as the next theorem shows.

Geometric Theorem 6.7.3. Cubes of equal volume have equal sides.

Automatic Proof. Let us try to follow the above steps again. We choose the
coordinate system so that the origin of one of the cubes is one of its ver-
tices and the other vertices are (a, 0, 0), (0, a, 0), (0, 0, a), (a, a, 0), (0, a, 0),
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(0, a, a), and (a, a, a) where a is the length of one side. Then we move the
other cube to the same position, i.e. so that its vertices are (0, 0, 0), (b, 0, 0),
etc., where b is the length of one side.

The hypothesis polynomial is a3 − b3 , and the thesis polynomial is a − b .
The thesis polynomial does not follow from the hypothesis polynomial in the
sense that not only a−b /∈ (a3−b3), but even a−b /∈

√
(a3 − b3) ⊆ R[a, b] . We

cannot use Hilbert’s Nullstellensatz 2.6.16 to translate the desired inclusion
of zero sets into an ideal-theoretic inclusion because it requires the base field
to be algebraically closed.

In fact, if we let c1, c2 ∈ C \ R be the two conjugate complex cubic roots
of unity, we have a3−b3 = (a−b)(a−c1b)(a−c2b). Hence the variety defined
by the hypothesis polynomial has one real component and two complex com-
ponents, and only the real component corresponds to the thesis polynomial.
Therefore the theorem is indeed true over the real numbers, although our
automatic proof attempt failed. Of course, the theorem should be considered
false over the complex numbers, since for instance 23 = (−1 +

√
3 i)3 . �

Even if we were able to pass this hurdle, the following obstacle apparently
forces us to realize that we are at a dead end.

Geometric Theorem 6.7.4. (Diagonal Bisection)
The diagonals of a rectangle cross each other at their midpoints.

Automatic Proof. Let the vertices of the rectangle be called A,B,C,D , and
let O be the point of intersection of the two diagonals AC and BD . We
introduce an orthogonal system of coordinates as shown in the following
picture.
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Then we denote the coordinates of the relevant points by A = (0, 0),
B = (x1, 0), C = (x1, x2), D = (0, x2), and M = (x3, x4). We have to show
that AM = CM and BM = DM .

Since we have already expressed the fact that ABCD is a rectangle, the
only hypotheses still to be translated are that M belongs to the line AC as
well as to the line BD . By some elementary considerations, this yields the
hypothesis polynomials h1 = x1x4 − x2x3 and h2 = x1x2 − x2x3 − x1x4 .
The desired equations AM = CM and BM = DM correspond to the thesis
polynomials t1 = x2

1 +x2
2−2x1x3−2x2x4 and t2 = x2

1−x2
2−2x1x3 +2x2x4 .
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To prove the theorem is suffices to show that ZR(h1, h2) ⊆ ZR(t1, t2).
Let K ⊇ Q be the base field which we intend to use for the computation.
We have already seen that Hilbert’s Nullstellensatz translates the desired
containment to an algebraic verification only if the base field is algebraically
closed. However, the worst is yet to come. The nasty surprise is that no
matter over which field K we work, the statements t1 ∈

√
(h1, h2) and

t2 ∈
√

(h1, h2) are always false! �

The reason for this failure of our automatic procedure is that we are really
looking for the inclusion ZR+(h1, h2) ⊆ ZR+(t1, t2). If we use the hypotheses
h1 + h2 = x2(x1 − 2x3) and h1 − h2 = x1(2x4 − x2), we see that x1 > 0
and x2 > 0 imply x1 = 2x3 and x2 = 2x4 , Then the theses follow from
t1, t2 ∈ (x1 − 2x3, x2 − 2x4). So, the automatic proof is thwarted by the fact
that the hypothesis polynomials allow some degenerate cases in which the
theorem is false. Had we defined x3 = 1

2x1 and x4 = 1
2x2 and then asked

if AMC and BMD are collinear, there would have been no problem. So
the provability of a geometric theorem depends on how we encode it as an
algebraic problem.

It happens that many theorems from Euclidean geometry turn out to
be false in the algebraic setting, simply because the algebraic translation of
some condition encodes more cases than intended. This certainly happens in
the preceding proof. We end our little collection of curiosities with an even
simpler case.

Geometric Theorem 6.7.5. Let L be a straight line in the Euclidean
plane, let A,B ∈ L , and let C be a point in the plane. Then if C is aligned
with A and B , we have C ∈ L .

Automatic Proof. Let us try to prove this apparently trivial theorem auto-
matically. We choose the coordinate system such that L is the x -axis and
A = (0, 0) the origin. Then we write B = (x, 0) and C = (a, y). Now we
have to express the hypothesis. At first glance we are tempted to use the
hypothesis polynomial h = y . However, a more complete description of the
hypothesis is given by h̃ = xy since this polynomial takes also the case A = B
into account. As the thesis polynomial is clearly t = y , we would like to show
y ∈
√

(xy) which is clearly not true. Indeed, this is not surprising because in
the case A = B every point C is aligned with A and B .

Suppose we want to prove the theorem only in the case A �= B . Alge-
braically, this means that we consider only the zeros of (xy) : (x) = (y).
Using this hypothesis, the thesis polynomial satisfies t ∈ (y), and the theo-
rem is proved. �

In this proof the hypothesis ideals (xy) and (y) lead to dramatically
different results: using (xy), the thesis is false, but using (y) it is true. It
is not always easy to make a full a priori analysis of the degenerate cases
of a geometric theorem. Even then the radical of the hypothesis ideal need



516 6. Further Applications

not be a prime ideal. For instance, it is perfectly legitimate to consider a
hypothesis of the following type: “Let ∆ABC be a triangle which is isosceles
or right angled.” In this case the radical of the hypothesis ideal will probably
have at least two prime components, even if we eliminate degenerate cases
beforehand. To get some control over all these cases, we have to put our
automatic proofs on a stronger theoretical footing. This is our goal in the
next two subsections.

6.7.B Algebraically True Statements

The real world is complex.
True statements may be false.

(Anonymous)

The simplest case of automatic theorem proving occurs when we can de-
duce the thesis just by showing ideal membership. Let us describe the process
in detail. Given a statement in Euclidean geometry, we introduce a coordinate
system and encode the hypotheses as polynomials h1, . . . , hr and the thesis
as a polynomial t . This means that we assign indeterminates x1, . . . , xn to
some unknown quantities and formulate the geometric hypotheses and theses
in terms of those quantities. Each concrete instance of the geometric theo-
rem then corresponds to a tuple (a1, . . . , an) ∈ Rn such that the hypothesis
polynomials are satisfied, i.e. to a point in ZR(h1, . . . , hr). Of course, these
tuples are also real zeros of the radical

√
(h1, . . . , hr). Thus we are led to the

following definition.

Definition 6.7.6. Suppose we are given a statement in Euclidean geometry
whose hypotheses and thesis can be expressed by the vanishing of polynomials
in R[x1, . . . , xn] .
a) A tuple of polynomials T = (h1, . . . , hr, t) ∈ R[x1, . . . , xn]r+1 is called

a model for the statement if h1, . . . , hr express its hypotheses and t
expresses its thesis. The ideal Ih,R(T ) = (h1, . . . , hr) is called the hy-
pothesis ideal of T , and t is called the thesis polynomial of T .

b) The model T is said to be algebraically true if we have t ∈
√

Ih,R(T ).
Otherwise, we say that it is algebraically false. If it is clear which model
we are considering, we simply say that the statement is algebraically true
or algebraically false.

For instance, Heron’s formula 6.7.2 is algebraically true, whereas the state-
ments of Theorems 6.7.3 and 6.7.4 are algebraically false. Notice that in prin-
ciple it is possible for a geometric theorem to be algebraically true even if the
hypothesis ideal does not have real zeros. In the following we shall assume
that we start with an actual geometric object which satisfies the hypothesis
ideal, so that this case is avoided.
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Furthermore, we have already noted that R[x1, . . . , xn] is not a com-
putable ring. We have to perform the computation over a smaller base field.
Usually the hypothesis and thesis polynomials appearing in actual geometric
statements have rational coefficients; and in virtually all cases the coefficients
are algebraic numbers. Therefore the field of definition of an ideal introduced
in Section 2.4.C helps us to pass to the smallest possible base field.

Proposition 6.7.7. Let Q be the field of algebraic numbers, let f1, . . . , fr

be polynomials in Q[x1, . . . , xn] , and let I = (f1, . . . , fr) . Then the field of
definition of I is a finite extension of Q .

Proof. The claim follows immediately from Theorem 2.4.17, since the prime
field of R is Q and the polynomials of a reduced Gröbner basis of I have
finitely many coefficients. �

Given a statement in Euclidean geometry and a model T = (h1, . . . , hr, t),
the field of definition K of the ideal generated by {h1, . . . , hr, t} is also called
the field of definition of T , or of the statement if it is clear which model
we are considering. We let Ih,K(T ) = Ih,R(T ) ∩ K[x1, . . . , xn] . If it is clear
over which field of definition we are working, we shall simply write Ih instead
of Ih,K .

The following geometric theorem illustrates the dependence of the field of
definition on the choice of the model.

Geometric Theorem 6.7.8. (The Golden Mean)
Let AB be a line segment, let BC be perpendicular to AB and have half
its length, let D be the intersection of AC with the circle centered on C
and passing through B , and let E be the intersection of AB with the circle
centered on A and passing through D . Then the point E is the golden mean
of AB , i.e. it satisfies the golden ratio AB

AE = 1
2 (1 +

√
5) .
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Automatic Proof 1. First we introduce an orthogonal system of coordinates
as shown in the picture. We let A = (0, 0), B = (x1, 0), D = (x2, x3), and
E = (x4, 0), and obtain C = (x1,

x1
2 ). In this way we have already expressed

the hypothesis that BC is perpendicular to AB and has half its length. It
remains to express the hypotheses that D is contained in the line AC , that
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BC = CD , and that AD = AE . This yields the hypothesis polynomials
h1 = x1x2−2x1x3 , h2 = x2

1−2x1x2 +x2
2−x1x3 +x2

3 , and h3 = x2
2 +x2

3−x2
4 .

The thesis polynomial is t = 2x1 − (1 +
√

5)x4 .
The field of definition of the model (h1, h2, h3, t) is Q(

√
5). By perform-

ing the appropriate computations in Q(
√

5)[x1, x2, x3, x4] , we see that the
theorem is not algebraically true. �

Automatic Proof 2. An alternative way of posing the problem is to require
that AE is the golden section of AB , i.e. that AB

AE = AE
BE . In this model

the thesis polynomial is t̃ = x4
1 − 2x3

1x4 + x2
1x

2
4 − x4

4 . The field of definition
of the model (h1, h2, h3, t̃) is Q . In this case we perform all computations in
Q[x1, x2, x3, x4] . It turns out that the theorem is not algebraically true using
this model either. It is interesting to observe that the two approaches lead to
different computations. �

This theorem is examined further in Tutorial 99. Our next result allows
us to check computationally whether a model for a geometric statement is
algebraically true.

Proposition 6.7.9. Let T = (h1, . . . , hr, t) ∈ R[x1, . . . , xn]r+1 be a model
for a statement in Euclidean geometry, and let K be the field of definition of
this model. Then the following conditions are equivalent.
a) The model T is algebraically true, i.e. we have t ∈

√
Ih,R(T ) .

b) We have t ∈
√

Ih(T ) .

Proof. Since b) clearly implies a), it suffices to prove that a) implies b). Let
i > 0 be such that ti ∈ Ih,R(T ) ⊆ R[x1, . . . , xn] . By assumption, we know
that t ∈ K[x1, . . . , xn] . Therefore Proposition 2.6.12 implies that we have
ti ∈ Ih,R(T ) ∩ K[x1, . . . , xn] = Ih(T ) , and this proves the claim. �

In view of this proposition we shall from now on always work over the field
of definition of a model T . Hence we can check computationally whether T is
algebraically true. But this does not solve all problems we encountered in the
first subsection. For instance, we saw that Theorem 6.7.4 is algebraically false.
Should we conclude that the diagonals of a rectangle are not crossing each
other at their midpoint? Let us examine a similar theorem more carefully.

Geometric Theorem 6.7.10. (Diagonal Trisection)
The two lines passing through a vertex of a square and the midpoints of the
opposite sides cut the opposite diagonal into three equal parts.

Automatic Proof. First we introduce Cartesian coordinates and place the
square as in the following picture.
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Let x1 be the length of the side of the square. Then we have A = (0, 0),
B = (x1, 0), C = (x1, x1), D = (0, x1), M = (x1/2, 0), and N = (x1, x1/2).
Moreover, let P = (x2, x2) where x2 is a further indeterminate. By symme-
try, we have Q = (x1 − x2, x1 − x2). In this way we have already expressed
that P and Q are contained in the line AC and that AP = CQ . The re-
maining hypotheses are that D , P , and M are aligned and that D , Q ,
and N are aligned. Both lead to the hypothesis polynomial h = x2

1 − 3x1x2 .
Hence the hypothesis ideal is the principal ideal Ih(T ) = (h). The thesis
polynomial is obtained expressing the equality AP = PQ . Hence it is given
by t = x2

1 − 4x1x2 +3x2
2 . The field of definition of this model is obviously Q .

When we check whether t ∈
√

HQ(T ), the answer is no. Therefore the state-
ment is algebraically false. �

Now should be start doubting Euclid? No, we should try to discover why
this statement turned out to be algebraically false. Fortunately, this is not dif-
ficult. The hypothesis ideal Ih(T ) = (x2

1 −3x1x2) = (x1(x1 −3x2)) describes
two different situations. One is given by x1 = 0, a component over which
the statement is algebraically false. The other one is given by x1 − 3x2 = 0,
and the thesis polynomial satisfies t ∈ (x1 − 3x2). Therefore the statement
is algebraically true (hence a theorem) if x1 �= 0, i.e. if the square is not a
point. Below we will see that the case x1 = 0 is not a limit case, but a truly
different component. This situation suggests the following definition. Recall
that a radical ideal in a Noetherian ring is the intersection of its minimal
primes (see Proposition 5.6.15.a).

Definition 6.7.11. Suppose we are given a statement in Euclidean geom-
etry. Let K be the field of definition of a model T = (h1, . . . , hr, t) for
it. Furthermore, let p1, . . . , ps be the minimal primes of

√
Ih(T ), so that√

Ih(T ) = p1 ∩ · · · ∩ ps is its primary decomposition, and let i ∈ {1, . . . , s} .
We say that the model T is algebraically true on the component pi if
we have t ∈ pi . If it is clear which model we are considering, we also say that
the statement is algebraically true on pi .



520 6. Further Applications

Therefore a statement can be algebraically false, but true on some of the
components, as it happens in the case of Diagonal Trisection 6.7.10. Now let
us go back to the Diagonal Bisection 6.7.4.

Example 6.7.12. In the setting of Theorem 6.7.4, it is easy to check that
the field of definition of T is Q and its hypothesis ideal satisfies Ih(T ) =√

Ih(T ) = p1 ∩ p2 ∩ p3 ∩ p4 where p1 = (x1 − 2x3, x2 − 2x4), p2 = (x2, x4),
p3 = (x1, x3), and p4 = (x1, x2). Since both thesis polynomials are contained
in p1 ∩ p4 , but not in p2 and not in p3 , the statement is algebraically true
only on p1 and p4 .

It is clear how we should interpret the components p2 , p3 , and p4 . The
vanishing of p2 represents degeneration to the line segment AB . The van-
ishing of p3 represents degeneration to the line segment AD . Finally, the
vanishing of p4 represents the case when the rectangle degenerates to the
point A . But what is the geometric interpretation of the generators of p1 ?
Obviously, the rectangles corresponding to the tuples which are zeros of p1 ,
but not p2∩p3∩p4 are the non-degenerate ones. So, the result of our refined
automatic proof is that the model is algebraically true for non-degenerate
rectangles and for certain (but not all) degenerate cases.

Still more can be deduced from an even finer analysis of this theorem.
There are degenerate cases where the theorem is algebraically true, namely
the points of ZR(p4) for which the corresponding geometric situation is not a
limit of non-degenerate rectangles. To help visualize the following discussion,
we introduce a schematic picture. Notice that it is of a different nature than
the other pictures in this section. For i = 1, . . . , 4, let Li ⊂ P3

R be the line
defined by pi .
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It is easy to check that L1 and L4 are skew, as are L2 and L3 . The
points of intersection are P12 = (2:0:1:0), P13 = (0:2:0:1), P24 = (0:0:1:0),
and P34 = (0:0:0:1). These lines and points can be interpreted as follows.
a) The set L1 \ {P12, P13} represents the non-degenerate rectangles.
b) The point P12 represents the cases where the rectangle has degenerated

to the side AB and where M is the midpoint of AB . Notice that these
degenerate rectangles are continuous limits of non-degenerate ones.
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c) Similarly, the point P13 represents the cases where the rectangle has
degenerated to the side AD and where M is the midpoint of AD . Again
these degenerate rectangles are continuous limits of non-degenerate ones.

d) The line L2 represents the cases where the rectangle has degenerated to
the side AB and where M is any point on the line containing AB . It is
thus hardly surprising that the model turns out to be algebraically false
on the corresponding component p2 .

e) The line L3 represents the cases where the rectangle has degenerated
to the side AD and where M is any point on the line containing AD .
Again the model is algebraically false on this component.

f) The line L4 represents the case where the rectangle has degenerated
to the point A and where M is any point in the plane. The model is
algebraically true on this component, but this component does clearly not
correspond to a meaningful geometric theorem. Notice that the cases with
M �= A are not even continuous limits of actual geometric situations.

In the light of this example the question arises of how to avoid components
on which a model is algebraically true but geometrically meaningless. To
investigate this problem further we need more tools. They are developed in
the next subsection.

6.7.C Optimal Hypothesis Ideals and Minimal Conditions

How about proving a theorem
without knowing which?

(from “Mathematical Nightmares”)

In general, the radical of the hypothesis ideal Ih(T ) of a geometric state-
ment is not prime, but since it is a radical ideal it can be expressed as the
intersection of several prime ideals. One way to proceed could be first to
compute

√
Ih(T ) , then to determine its prime decomposition, and finally to

check on which prime components of the hypothesis ideal the model T is
algebraically true.

However, this approach is impractical for two reasons. The first reason is
the complexity of computing the primary decomposition of the radical of an
ideal. If you were brave enough to work out the details of Tutorial 79, you will
certainly be aware of this. The second reason is even more important: is the
difficulty of understanding the geometric meaning of some components. After
a lengthy computation we might find out that we have proved a theorem, but
we do not know which.

Another possibility which may happen is that the thesis polynomial does
not belong to any of the prime components of the hypothesis ideal. Then the
statement should be considered to be absolutely false. In Theorem 6.7.18 we
shall see that it is possible to detect this case without computing the primary
decomposition of the radical of the hypothesis ideal.
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In the following we suppose we are given a statement in Euclidean ge-
ometry. We let h1, . . . , hr ∈ R[x1, . . . , xn] be polynomials expressing the
hypotheses of the statement, and we let t ∈ R[x1, . . . , xn] be its thesis poly-
nomial. Now let K be the field of definition of the model T = (h1, . . . , hr, t).
Since the polynomial ring P = K[x1, . . . , xn] contains {h1, . . . , hr, t} , we can
perform all necessary computations in P . In particular, we shall use the hy-
pothesis ideal Ih(T ) = Ih,R(T )∩P . The following technical lemma is routine,
but very useful for translating geometric conditions into algebra.

Lemma 6.7.13. Let R be a Noetherian ring, let I and J be ideals in R ,
and let f, g ∈ R \ {0} .
a) The following conditions are equivalent.

1) We have g ∈
√

I : f∞ .
2) We have f ∈ √

I : g∞ .
3) We have 1 ∈ I : (fg)∞ .

b) We have
√

I :
R

J∞ =
√

I :
R

J =
√

I :
R

√
J .

c) We have I :
R

J∞ = (1) if and only if J ⊆
√

I .
d) We have f ∈

√
I :

R
(I :

R
f∞)∞ .

e) We have I :
R

f∞ ⊆
√

I if and only if f is a non-zero divisor for R/
√

I .

Proof. First we prove a). We begin by showing that 1) implies 3). Since
g ∈

√
I : f∞ , there exists a number i ≥ 0 such that gi ∈ I : f∞ . Therefore

there exists a number j ≥ 0 such that (gf)j ∈ I , and hence 1 ∈ I : (fg)j .
To prove the converse implication, let j ≥ 0 be a number with 1 ∈ I : (fg)j .
Then we have gj ∈ I : f∞ , and thus g ∈

√
I : f∞ . The equivalence of 2)

and 3) follows in the same way because condition 3) is symmetric in f and g .
Now let us prove the first equality of b). To show the inclusion “⊆”, we

choose an element g ∈
√

I :
R

J∞ . Thus we have gi ∈ I :
R

J∞ for some
i ≥ 0. Hence it follows that (gJ)j ⊆ I for some j ≥ 0, and therefore
gJ ⊆

√
I . This shows that we have g ∈

√
I :

R
J , as claimed. Conversely, let

g ∈
√

I :
R

J . Then there is a number k ≥ 0 such that (gJ)k ∈ I . Thus we
obtain g ∈

√
I :

R
Jk ⊆

√
I : J∞ .

To prove the second equality, it suffices to show
√

I :
R

J ⊆
√

I :
R

√
J ,

since the other inclusion is obvious. Let g ∈ R be an element with gJ ⊆
√

I .
Then there is a number i ≥ 0 such that (gJ)i ⊆ I . Let h ∈

√
J . Then we

have hj ∈ J for some j ≥ 0. Hence it follows that (ghj)i ∈ I , and therefore
gh ∈

√
I . Since h ∈

√
J was chosen arbitrarily, we get g

√
J ⊆

√
I , and the

claim follows.
It is clear that c) is a consequence of b) since I :

R
J∞ = (1) is equivalent

to
√

I :
R

J∞ = (1). Thus we prove d) next. Let {g1, . . . , gs} be a system of
generators of I :

R
f∞ . Then there is a number i ≥ 0 such that gjf

i ∈ I for
j = 1, . . . , s . Therefore we have f i(I :

R
f∞) ⊆ I . Now f i ∈ I :

R
(I :

R
f∞),

and the claim follows.
Finally we prove e). Suppose that I :

R
f∞ ⊆

√
I . Then we see that we

have
√

I :
R

f∞ ⊆
√

I . Therefore b) yields
√

I :
R

f =
√

I . Consequently, the
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element f is a non-zero divisor for R/
√

I . To prove the converse implication,
let f ∈ R be a non-zero divisor for R/

√
I , i.e. an element with

√
I :

R
f =

√
I .

Then b) implies
√

I :
R

f∞ =
√

I and thus I :
R

f∞ ⊆
√

I :
R

f∞ =
√

I . �

Conditional truth of geometric theorems is defined as follows.

Definition 6.7.14. Let T = (h1, . . . , hr, t) be a model for a geometric state-
ment, and let f ∈ P .
a) We say that T (or the statement) is algebraically true under the

condition f �= 0 if we have t ∈
√

Ih(T ) :
P

f∞ .
b) The ideal Ic(T ) = Ih(T ) :

P
t∞ is called the condition ideal of the

model T (or of the statement).
c) A condition f ∈ P is called trivial if we have f ∈

√
Ih(T ).

d) Let
√

Ih(T ) = p1 ∩ · · · ∩ ps with prime ideals p1, . . . , ps of P be the
primary decomposition of

√
Ih(T ). The model T (or the statement) is

said to be absolutely false if we have t /∈ pi for i = 1, . . . , s .

The following proposition explains the choices of these names.

Proposition 6.7.15. Let T = (h1, . . . , hr, t) be a model for a geometric
statement, and let f ∈ P be such that T is algebraically true under the
condition f �= 0 .
a) Every tuple (a1, . . . , an) ∈ Rn which is a zero of the hypothesis ideal

Ih(T ) and for which f(a1, . . . , an) �= 0 , i.e. every instance of the state-
ment which satisfies the hypotheses and the condition f �= 0 , is contained
in the zero set of the thesis polynomial t .

b) We have f ∈
√

Ic(T ) . In other words, the radical of the condition ideal
contains all conditions under which T is algebraically true.

Proof. To prove a), we choose i ≥ 0 such that ti ∈ Ih(T ) :
P

f∞ and j ≥ 0
such that tif j ∈ Ih(T ). For every (a1, . . . , an) ∈ ZR(Ih(T ))\ZR(f), it follows
from (tif j)(a1, . . . , an) = 0 that we have t(a1, . . . , an) = 0, as we wanted
to show. Claim b) follows from the lemma because t ∈

√
Ih(T ) :

P
f∞ is

equivalent to f ∈
√

Ih(T ) :
P

t∞ =
√

Ic(T ). �

Of course, we could also have defined
√

Ic(T ) to be the condition ideal.
However, the definition we use has the advantage that it avoids the poten-
tially costly computation of a radical while Theorem 6.7.18 below is valid
nevertheless. Let us have a look at some condition ideals.

Example 6.7.16. In the setting of Theorem 6.7.3, the condition ideal is
Ic(T ) = (a3 − b3) :

P
(a − b)∞ = (a2 + ab + b2). Hence this theorem is

algebraically true under the condition a2 +ab+ b2 �= 0. Since the polynomial
a2 + ab + b2 has no real zeros except (0, 0), we conclude that the theorem is
algebraically true over R .
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Next we determine the condition ideal in the case of the theorem on
diagonal bisection.

Example 6.7.17. In the setting of Theorem 6.7.4, we have Ih(T ) = (h1, h2)
where h1 = x1x4 − x2x3 and h2 = x1x2 − x2x3 − x1x4 . The natural
non-degeneracy condition is x1x2 �= 0. Under this condition, the theo-
rem is algebraically true because the ideal Ih(T ) : (x1x2)∞ is equal to
the ideal (x1 − 2x3, x2 − 2x4) which contains the two thesis polynomials
t1 = x2

1 + x2
2 − 2x1x3 − 2x2x4 and t2 = x2

1 − x2
2 − 2x1x3 + 2x2x4 . The two

polynomials t1 and t2 yield the same condition ideal Ic(T ) = Ih(T ) :
P

t∞1 =
Ih(T ) :

P
t∞2 = (x1x2, x1x4, x2x3, x3x4). Thus the theorem is also alge-

braically true under the condition x3x4 �= 0, i.e. under the condition that
the point M is not contained in one of the coordinate axes. This agrees with
our analysis in Example 6.7.12.

Our next theorem provides efficient ways for checking whether a statement
is algebraically true or absolutely false.

Theorem 6.7.18. Let T = (h1, . . . , hr, t) be a model of a statement in
Euclidean geometry, let K be its field of definition, and let P = K[x1, . . . , xn] .
a) The model T is algebraically true if and only if the following equivalent

conditions hold true.
1) We have Ic(T ) = (1) .
2) We have

√
Ih(T ) :

P
Ic(T )∞ =

√
Ih(T )

b) The model T is absolutely false if and only if the following equivalent
conditions hold true.
1) We have Ic(T ) ⊆

√
Ih(T ) .

2) We have Ih(T ) :
P

Ic(T )∞ = (1) .
c) If the model T is neither algebraically true nor absolutely false, we have

a chain of strict inclusions√
Ih(T ) ⊂

√
Ih(T ) :

P
Ic(T )∞ ⊂ (1)

Proof. First we prove a). By Proposition 6.7.9, the model T is algebraically
true if and only if t ∈

√
Ih(T ). Therefore Lemma 6.7.13.c shows that T

is algebraically true if and only if 1) holds true. Since it is clear that 1)
implies 2), it remains to show that 2) implies that T is algebraically true.
This follows from Lemma 6.7.13.d.

Now we prove b). By Lemma 6.7.13.e, the model T is absolutely false if
and only if 1) holds. The equivalence of 1) and 2) is clear. Finally, we note
that the first inclusion in c) follows from a) and the second inclusion follows
from b). �

This theorem indicates that most of the information about the validity
of T is contained in the ideal Ih(T ) :

P
Ic(T )∞ . In particular, we see that if T
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is neither algebraically true nor absolutely false, the revised model T ′ whose
hypothesis ideal is Ih(T ′) = Ih(T ) :

P
Ic(T )∞ and whose thesis polynomial

is t is algebraically true. But we can provide an even more detailed description
of this hypothesis ideal.

Definition 6.7.19. The ideal Iopt(T ) = Ih(T ) :
P

Ic(T )∞ ⊆ P is called the
optimal hypothesis ideal of T .

In order to explain why this ideal deserves its name, we need a further
technical result.

Lemma 6.7.20. Let R be a Noetherian ring, let I be an ideal in R , and let
g ∈ R . Let

√
I = p1 ∩ · · · ∩ ps ∩ ps+1 ∩ · · · ∩ ps+t be the prime decomposition

of
√

I , and assume that g ∈ p1 ∩ · · · ∩ ps and g /∈ pi for i = s + 1, . . . , s + t .
a) We have

√
I :

R
g∞ = ps+1 ∩ · · · ∩ ps+t .

b) We have
√

I :
R

(I :
R

g∞)∞ = p1 ∩ · · · ∩ ps .

Proof. To show a), we recall from Lemma 6.7.13.b that we have
√

I :
R

g∞ =√
I :

R
g . Now it is easy to check that

(p1 ∩ · · · ∩ ps+t) :
R

g =
s+t⋂
i=1

(pi :
R

g) = ps+1 ∩ · · · ∩ ps+t

because pi :
R

g = pi if g /∈ pi and pi :
R

g = R otherwise.
Next we prove b). By Lemma 6.7.13.b, we have

√
I :

R
(I :

R
g∞)∞ =√

I :
R

√
(I :

R
g∞). Hence the claim follows from a) and the equality

(p1∩· · ·∩ps+t) :
R

(ps+1∩· · ·∩ps+t) =
s+t⋂
i=1

(pi :
R

(ps+1∩· · ·∩ps+t)) = p1∩· · ·∩ps

which is a consequence of the fact that pi :
R

(ps+1 ∩ · · · ∩ ps+t) is equal to pi

for i = 1, . . . , s and equal to R for i = s + 1, . . . , s + t . �

Now we are ready to discuss the optimality of the optimal hypothesis
ideal.

Proposition 6.7.21. Let
√

Ih = p1∩. . .∩ps+t be the prime decomposition of
the radical of the hypothesis ideal of T , and let the numbering of the ideals pi

be chosen such that t ∈ p1 ∩ · · · ∩ ps and t /∈ pi for i = s + 1, . . . , s + t .
a) We have

√
Iopt(T ) = p1 ∩ · · · ∩ ps . Hence the prime components

of
√

Iopt(T ) are exactly the components on which T is algebraically true.
b) The model T is algebraically true if and only if

√
Iopt(T ) =

√
Ih(T ) .

c) The model T is absolutely false if and only if Iopt(T ) = (1) .

Proof. To prove a), we use part b) of the lemma to get
√

Iopt(T ) =√
Ih(T ) :

P
Ic(T )∞ =

√
Ih(T ) :

P
(Ih(T ) :

P
t∞)∞ = p1 ∩ · · · ∩ ps . Claims b)

and c) follow immediately from a) and Theorem 6.7.18. �
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At first glance this could be the final point of our investigation. However, if
we do the computation in the case of the theorem on diagonal bisection 6.7.4,
a surprise is in store for us.

Example 6.7.22. In the setting of Theorem 6.7.4, the optimal hypothesis
ideal is Iopt(T ) = (Ih :

P
(Ih :

P
(t1, t2)∞)∞) = (x2

1 − 2x1x3, x1x2 − 2x1x4,
x2

2 − 2x2x4, x2x3 − x1x4). But what is the geometric meaning of these hy-
potheses? We have proved a theorem but we do not know exactly which!
Suppose that we are able to compute the primary decomposition of the
ideal

√
Iopt . We get the two components p1 = (x1 − 2x3, x2 − 2x4) and

p4 = (x1, x2). As we observed before, we know how to interpret p4 but it is
not clear what p1 means geometrically.

This example suggests that it could be better to describe the validity of a
geometric statement not by listing the components on which it is true, but by
excluding the components on which it is algebraically false. The advantage is
that we can do that by excluding a hypersurface, i.e. by imposing a single non-
vanishing condition. The disadvantage is that we could inadvertently throw
away a component on which the theorem is algebraically true, for instance if
we impose the condition x1x2 �= 0 in the Diagonal Bisection Theorem 6.7.4.
Such is life.

In any event, it is worthwhile examining the effect of various conditions
further. The ideal Ic(T ) may contain polynomials which are also elements of√

Ih(T ) and other polynomials which are not. A polynomial f of the first
kind should be considered useless since it yields Ih(T ) :

P
f∞ = (1). In this

case the statement that T holds under the condition f �= 0 is trivially true
and therefore boring. A polynomial f of the second kind yields a proper ideal√

Ih(T ) :
P

f∞ =
√

Ih(T ) :
P

f which contains
√

Ih(T ) strictly. Therefore
the condition f �= 0 excludes some prime components of

√
Ih(T ) but not

all. The problem is that it possibly excludes some prime components on
which the statement is algebraically true. Nevertheless, there always exist
polynomials f of the second kind such that the condition f �= 0 yields
exactly the optimal hypothesis ideal. Aren’t they the optimum we could hope
for? Unfortunately not. Experience shows that these “optimal” polynomials
rarely admit a humanly comprehensible geometric interpretation.

To improve our chances of finding conditions which have a nice geometric
interpretation and also yield a theorem which is algebraically true on as many
components as possible, we introduce the following definition.

Definition 6.7.23. Let S ⊆ Ic(T ). A polynomial f ∈ S is called a minimal
condition in S if Ih :

P
f∞ is minimal with respect to inclusion in the set

of ideals {Ih :
P

g∞ | g ∈ S} .

Is it always possible to find non-trivial minimal conditions? The following
proposition provides a case when this is true.
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Proposition 6.7.24. Let G be a set of generators of the condition ideal
Ic(T ) of a model T of a geometric statement. If T is not absolutely false
then every minimal condition in G is non-trivial.

Proof. Since T is not absolutely false, Theorem 6.7.18.b implies that Ic(T )
is not contained in

√
Ih(T ). Hence there is at least one non-trivial condi-

tion f ∈ G . Then we have Ih(T ) :
P

f∞ ⊂ Ih(T ) :
P

g∞ = (1) for every trivial
condition g ∈ G . Therefore g is not a minimal condition in G . �

Our goal is to find as many minimal conditions in some set of generators
of the condition ideal as possible. In this way we increase our chances of
finding one for which we have a geometric interpretation. In this sense the
following algorithm automates the process of proving a geometric theorem
as much as possible. Its purpose is to find an optimal set of hypotheses and
a set of minimal conditions under which the theorem is algebraically true.
Although it may exclude some components on which the theorem is true,
these are usually components corresponding to degenerate cases.

Theorem 6.7.25. (The Automatic Prover)
Let T = (h1, . . . , hr, t) be a model of a statement in Euclidean geometry.
Let K be the field of definition of T , let P = K[x1, . . . , xn] , and let Ih(T )
be the ideal (h1, . . . , hr) . Consider the following sequence of instructions.
1) Compute the ideal Ic(T ) = Ih(T ) :

P
t∞ . If 1 ∈ Ic(T ) , return "The

model is algebraically true." and stop.
2) Let G ⊆ P \ {0} be a set of generators of Ic(T ) . For every f ∈ G ,

compute the ideal If = Ih(T ) :
P

f∞ . If 1 ∈ If for all f ∈ G , return
"The model is absolutely false." and stop.

3) Determine the polynomials g1, . . . , gs ∈ G for which Igi
is minimal with

respect to inclusion in the set of ideals {If | f ∈ G} , and let S be the
set {g1, . . . , gs} .

4) Compute the ideal Iopt(T ) = Ih(T ) :
P

Ic(T ) . Then return the pair
(S, Iopt(T )) and stop.
This is an algorithm which decides whether T is algebraically true or

absolutely false. If T is neither algebraically true nor absolutely false, the
algorithm finds a set of minimal conditions for T and the optimal hypothesis
ideal.

Proof. Since finiteness is clear, it suffices to prove correctness. By Theo-
rem 6.7.18.a, the model T is algebraically true if and only if 1 ∈ Ic(T ).
Thus step 1) gives the correct answer.

In step 2) we check whether we have 1 ∈ Ic(T ) :
P

f∞ for all f ∈ G .
This is equivalent to 1 ∈

√
Ih(T ) :

P
f∞ =

√
Ih(T ) :

P
f , and therefore

to f ∈
√

Ih(T ). Hence step 2) checks whether we have Ic(T ) ⊆
√

Ih(T ). By
Theorem 6.7.18.b, this holds if and only if T is absolutely false. Consequently,
step 2) gives the correct answer.
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If T is neither algebraically true not absolutely false, steps 3) and 4)
do nothing but compute the minimal conditions and the optimal hypothesis
ideal for T via their definitions. �

The result of the automatic prover depends on the choice of the system of
generators of Ic(T ) in step 2). This choice influences our chances of finding
minimal conditions in step 3) which have a meaningful geometric interpre-
tation. Of course, we could also compute the optimal conditions, but as we
mentioned before, the chances that these have reasonable geometric interpre-
tations are slim. Thus the usability of the result of the algorithm depends on
a certain amount of human intervention. It is really a semiautomatic prover.
The following optional preprocessing step can be used to change the theorem
we try to prove another one for which the Automatic Prover works better.

Remark 6.7.26. Suppose we insert in the Automatic Prover the following
step 0).
0) (Optional preprocessing)

Let f ∈ P be the product of all degeneracy conditions to be excluded a
priori. Replace Ih(T ) be the ideal Ih(T ) :

P
f∞ . Let T ′ be a model given

by a system of generators this new hypothesis ideal and the thesis t .
If we then apply the further steps to the model T ′ , we get an algorithm

which decides whether T ′ is algebraically true or absolutely false. For in-
stance, in Theorem 6.7.10 it is obvious that we should assume x1 �= 0. Thus
we can substitute the old hypothesis ideal Ih = (x2

1 − 3x1x2) with the new
hypothesis ideal Ih′ = Ih :

P
x∞

1 = (x1 − 3x2) and get immediately an alge-
braically true model.

So, what is the upshot of this section? It has become clear that comput-
ers are best at computing. Proving theorems is not really an “automatic”
procedure and contains several steps which cannot be left to a computer:
modelling the geometric setting, finding reasonable non-degeneracy condi-
tions, and determining whether the computed minimal or optimal conditions
have a reasonable geometric interpretation seem to be activities which are
difficult to automate.

Are we now ready for the rainbow and the sunshine? No, first we have to
weather one last tutorial. One last gust of rain, one last battle with program
code and semiautomatic proofs. But, hey, isn’t that what we really love?

I have a beautiful proof
of the incorrectness of your theorem,

but this margin is too small for it.
(Anonymous)
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Tutorial 99: To Prove or Not to Prove

Proof by general agreement: “All in favor?”
Proof by tautology: “It’s true because it’s true.”

Proof by plausibility: “It sounds good, it must be true.”
Proof by intimidation: “Don’t be stupid; of course it’s true.”

Proof by generalization: “It works for 17, so it works for all integers.”
Proof by authority: “Don Knuth says it’s true, so it must be!”

Proof by convenience: “It would be nice if it were true.”
Proof by insignificance:“Whoreallycares,anyway?”

Proof by necessity: “It had better be true.”

(from “Ontological Proofs of the Existence of Good Provers”)

In this last tutorial of the book, we change our strategy. Instead of asking
to write CoCoA functions, we provide you with some. But then it is your job
to analyze them and to use them to study interesting examples. We start with
some CoCoA functions which transform the algorithm of Theorem 6.7.25 into
executable code. The goal is to find “good” minimal conditions under which
a geometric statement is algebraically true. We hope that with the help of
these functions you can prove ... something.

Computing a Minimal Set of Conditions

Define MinimalConditions(L)
MinConditions := [];
Foreach ElementOfL In L Do
Inserted := FALSE;
I := 1;
While I <= Len(MinConditions) And Not Inserted Do

If MinConditions[I].Ideal = ElementOfL.Ideal Then
Append(MinConditions[I].Polys, ElementOfL.Poly);
Inserted := TRUE;

ElsIf MinConditions[I].Ideal > ElementOfL.Ideal Then
MinConditions[I] := Record(Ideal=ElementOfL.Ideal,

Polys=[ElementOfL.Poly]);
Inserted := TRUE;

ElsIf MinConditions[I].Ideal < ElementOfL.Ideal Then
Inserted := TRUE;

EndIf;
I := I+1;

EndWhile;
If Not Inserted Then

Append(MinConditions, Record(Ideal=ElementOfL.Ideal,
Polys=[ElementOfL.Poly]));

EndIf;
EndForeach;
Return [X.Polys | X In MinConditions]

EndDefine;
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The Automatic Prover

Define AutoProver(Hypotheses,Thesis)
ConditionIdeal := Saturation(Ideal(Hypotheses),Ideal(Thesis));
If ConditionIdeal = Ideal(1) Then
Return Record(Statement=TRUE);

EndIf;
Conditions := Gens(ConditionIdeal);
ConditionIdealList :=
[ Record(Ideal=Saturation(Ideal(Hypotheses),Ideal(C)),

Poly=C) | C In Conditions];
If [ X In ConditionIdealList | X.Ideal <> Ideal(1) ] = [] Then
Return Record(Statement=FALSE, Conditions=[]);

EndIf;
Return Record(Statement=FALSE,

Conditions=MinimalConditions(ConditionIdealList),
OptimalHypothesisIdeal=IntersectionList([I.Ideal |

I In ConditionIdealList]));
EndDefine;

Now let us start proving! First we prove that these functions do what
they are supposed to do.
a) Explain how the above CoCoA functions implement the steps of the Au-

tomatic Prover 6.7.25.

The Golden Mean Revisited
Next we go back to the setting of the theorem about the golden mean 6.7.8.

We begin with the model given in the “Automatic Proof 1”.
b) In the preprocessing phase, exclude the possibility that the segment AB

degenerates to a point. Find the new hypothesis ideal Ih(T ′).
c) Using the function AutoProver(. . .), show that the theorem is neither

algebraically true not completely false. Find a minimal set of conditions
and the optimal hypothesis ideal.

d) Show that f = {2x3
1 + (1 +

√
5)x2

1x4 − (3 −
√

5)x1x
2
4 + (1 −

√
5)x3

4}
is a minimal condition for T ′ and that there exists a factorization
f = (2x1 − (1 −

√
5)x4)(x1 + 1

2 (1 −
√

5)x4)(x1 + 1
2 (1 +

√
5)x4).

Hint: Use an elimination ordering for {x2, x3} .
e) Conclude that the theorem is true under the condition that we have

x1 /∈ {−1
2 (1 +

√
5)x4,± 1

2 (1−
√

5)x4} . What is the geometric meaning of
this condition?
It is also possible to use the model described in the “Automatic Proof 2”

of Theorem 6.7.8.
f) Show that the condition ideal is Ic(T ) = (f1, f2, f3) with polynomials

f1 = x2
1 + x1x4 − x2

4 , f2 = 5x3 − 2x1 − x4 , and f3 = 5x2 − 4x1 − 2x4 .
g) Prove that each condition fi is minimal and that all three of them yield

the same saturation ideal Ih(T ) :
P

f∞
i .
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h) Show that the theorem is algebraically true under the condition that we
have x1 /∈ {−1

2 (1+
√

5)x4, − 1
2 (1−

√
5)x4} . Compare this result with e).

Hint: Use x2
1 + x1x4 − x2

4 = (x1 + 1
2 (1 +

√
5)x4)(x1 + 1

2 (1 −
√

5)x4).

Isosceles and Right-Angled Triangles
Geometric Theorem. For every triangle which is either isosceles or right-
angled, the center of the circumscribed circle belongs to one of the sides of
the triangle.
Automatic Proof: First we introduce a Cartesian coordinate system as in the
following picture.
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A B

C

D

In this coordinate system we have A = (0, 0), B = (x1, 0), C = (x2, x3),
and D = (x4, x5). Our next task is to construct a suitable model.
i) Show that the hypothesis AD = BD yields h1 = 2x1x4 − x2

1 , and the
hypothesis AD = CD yields h2 = x2

2 + x2
3 − 2x2x4 − 2x3x5 .

j) Without loss of generality assume that the triangle is isosceles or right-
angled with a right angle at C . Show that the hypothesis “AC = BC or
AC ⊥ BC ” yields h3 = x3

1x2 − 3x2
1x

2
2 + 2x1x

3
2 − x2

1x
2
3 + 2x1x2x

2
3 .

k) Prove that the thesis polynomial is t = x1x5 and that the field of defin-
ition is Q .

l) Using the function AutoProver(. . .), show that the theorem is neither
algebraically true not completely false. Find a minimal set of conditions
and the optimal hypothesis ideal.

m) Show that {x3x4−x3x2, x3
3−x3x

2
4−2x2

3x5} is a minimal set of conditions,
and that the two conditions yield the same new hypothesis ideal. Con-
clude that the original theorem becomes true under the conditions that
x2 �= x4 and x3 �= 0. What is the correct formulation of the theorem?

n) Now let us introduce a preprocessing step. Suppose you want to avoid
the cases where the triangle degenerates to a line segment. Show that
this can be done by replacing Ih(T ) with Ih(T ′) = Ih(T ) :

P
(x1x3)∞

and by using the thesis polynomial t′ = x5 .
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o) Using the function AutoProver(. . .), show that the new model T ′ is
neither algebraically true nor completely false. Find a minimal set of
conditions and the optimal hypothesis ideal.

p) Is it possible to interpret the optimal hypothesis ideal of T ′ geometri-
cally? Under which additional conditions is T ′ algebraically true?

Tangents and Secants to a Circle
Geometric Theorem. Let P be a point outside a circle C , let T be the
point of contact of a tangent line to C which contains P , and let A and B
be the points of intersection of a secant line of C through P . Then we have
PA · PB = (PT )2 .
Automatic Proof: First we introduce a Cartesian coordinate system as in the
following picture.
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Let M be the center of the circle C . Let the coordinates of the points in the
picture be M = (x1, y1), T = (x2, y2), A = (x3, 0), and B = (x4, 0).
q) Show that one model for this statement is T = (h1, h2, h3, t) where

h1 = (x2−x1)2+(y2−y1)2−(x3−x1)2−y2
1 , h2 = (x3−x1)2−(x4−x1)2 ,

h3 = x2(x2 − x1) + y2(y2 − y1), and t = x2
2 + y2

2 − x3x4 .
r) Prove that the field of definition of this model is Q . Then use the Au-

tomatic Prover to show that the model is neither algebraically true nor
completely false, and that a minimal set of conditions is {x3 − x4} .
This result comes somehow as a little surprise. It means that the model

is false on the component corresponding to A = B , i.e. when we do not
specify that A and B are two distinct points of intersection of the secant
line with the circle. This is a typical situation where it is very easy to overlook
a degeneracy condition.

Feet and Midpoints
Geometric Theorem. In every triangle the circle passing through the feet of
the three perpendiculars intersects the sides of the triangle in their midpoints.

Automatic Proof: First we introduce a Cartesian coordinate system and label
the points as follows. We let A,B,C be the vertices of the triangle, we let
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D,E,F be the feet of the perpendiculars, we let M be the center of the circle
through the feet of the perpendiculars, and we let N be the midpoint of the
side AB . By symmetry, it suffices to prove the result for the midpoint of just
one side.
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To begin with, we let the coordinates of the various points be given by A =
(0, 0), B = (x1, 0), C = (x2, x3), D = (x2, 0), E = (x4, x5), F = (x6, x7),
M = (x8, x9), and N = (x1/2, 0). As usual, the next step is to translate the
geometric setting into hypothesis and thesis polynomials.
s) Show that F ∈ AC yields the polynomial h1 = −x3x6+x2x7 , AC ⊥ FB

yields the polynomial h2 = x1x2 − x2x6 − x3x7 , E ∈ CB yields the
polynomial h3 = −x1x3 + x3x4 + x1x5 − x2x5 , AE ⊥ BC yields the
polynomial h4 = −x1x4+x2x4+x3x5 , DM = EM yields the polynomial
h5 = −x2

2 + x2
4 + x2

5 + 2x2x8 − 2x4x8 − 2x5x9 , and DM = FM yields
the polynomial h6 = x2

2 − x2
6 − x2

7 − 2x2x8 + 2x6x8 + 2x7x9 .
t) Show that the thesis DM = MN corresponds to the thesis polynomial

t = 1/4x2
1 −x2

2 −x1x8 +2x2x8 . Deduce that the field of definition of this
model is Q .
To simplify the analysis, we suggest that in the preprocessing phase you

exclude some degenerate cases.
u) Explain that, to exclude the possibility that the triangle degenerates to

a line segment, it suffices to replace the hypothesis ideal by the ideal
Ih(T ′) = (h1, . . . , h6) :

P
(x1x3)∞ .

v) Using the Automatic Prover, show that the theorem is neither alge-
braically true nor completely false and that a minimal set of conditions
is {x2x5 − x5x6} .

w) Conclude that the theorem is algebraically true if x5 �= 0 and x2 �= x6 .
What is the geometric meaning of these conditions?

x) Compute the optimal hypothesis ideal of T ′ . Can you interpret its gen-
erators geometrically?
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A Strange Parallelogram
Our last example features an automatic proof of a really strange state-

ment. Of course, the Automatic Prover doesn’t care.

Geometric Theorem. Given a parallelogram ABCD , the intersection point
of the diagonals lies on the side AB .
Automatic Proof: First we introduce Cartesian coordinates as in the following
picture.
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Next we write A = (0, 0), B = (x1, 0), C = (x2, x3), D = (x4, x5), and
M = (x6, x7) where M denotes the intersection point of the diagonals. Now
we start the semiautomatic process.
y) Show that the hypothesis AB ‖ CD yields the polynomial h1 =

−x1x3 + x1x5 , the hypothesis AD ‖ BC yields the polynomial h2 =
−x3x4 − x1x5 + x2x5 , the hypothesis M ∈ AC yields the polynomial
h3 = −x3x6 + x2x7 , and the hypothesis M ∈ BD yields the polynomial
h4 = −x1x5 + x5x6 + x1x7 − x4x7 .

z) Prove that the thesis polynomial is t = x7 . Using the Automatic Prover,
show that the theorem is neither algebraically true nor completely false.
Compute the optimal hypothesis ideal and a minimal set of conditions.
Can you interpret the results geometrically? Conclude that the state-
ment is algebraically true for parallelograms which degenerate to a line
segment.

The trouble with Automatic Theorem Proving is over.



A. The ABC of CoCoA

A: Writing a good program
is like writing a good paper,

but a program also needs to be fast.
(John Abbott)

B: Writing a good program
is like writing a good paper,

but a compiler is a lot fussier than a referee.
(Anna Maria Bigatti)

C: In mathematics
important things are very simple,

but simple things are very difficult.
(Massimo Caboara)

Since the first volume of this book appeared, the computer algebra system
CoCoA has evolved further and many new features and functions have been
added. In this appendix we bring you up-to-date and give you more hints on
how to make the most out of the program. First we recapitulate the crucial
information: you can download CoCoA freely from the web page

http://cocoa.dima.unige.it/

Not only will you find there a download area with versions of the program
for various operating systems, but you can also access a large amount of
additional material: installation instructions, information about CoCoA con-
ferences and the international CoCoA schools, links to the CoCoA discussion
groups, and so on.

Before getting down to the nitty-gritty details of CoCoA usage and CoCoA
programming, let us delve a bit into the philosophy of CoCoA. If you have
tried your hand at some of our 99 tutorials, you will already have experienced
one of the main purposes of CoCoA, namely that of providing a user-friendly
and easily accessible tool for teaching Computational Commutative Algebra.
A further goal is to assist mathematicians in their research. Even if they are
not experts in computer programming it enables them to access the power
and versatility of a modern computer algebra system without having to create
machine-language-like code. For instance, in CoCoA a loop is created by typing

For I:=1 To N Do <Commands> EndFor;

rather than something like
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for(i=1;i<=n;i++){<Commands>}

And what happens if you are past the prototyping stage? Suppose you want
to implement a function which is not interpreted but compiled and executed
at the same speed as the built-in functions. With most computer algebra sys-
tems, you have reached the end of the line. Their source code is proprietary or
incomprehensible. Not so with CoCoA: the latest version, CoCoA 5, is available
as a C++ library, ready for you to expand or include in your own application.
A detailed discussion of the CoCoA 5 library would not only exceed the scope
of this appendix, it would also violate the down-to-earth spirit of this book.
However, you can easily obtain it from the above web site.

In the next two appendices, we are going to discuss the following topics:
• how to use the graphical interface of CoCoA
• further tips and tricks for program development
• additional CoCoA programming techniques
• how to use CoCoA in your research
• how to interpret and use the parser’s error messages



B. One Graphical Interface for Everybody

We are M CENSORED t.
Resistance is futile.

You will be assimilated.
(Anonymous)

Whether you have a computer operating under Linux, Macintosh OS X,
or a current version of the Microsoft Windows operating system, there is a
version of CoCoA whose graphical interface behaves essentially the same. In
this section we describe this interface, including some of its lesser known but
useful features, and give you hints how to employ it to full advantage.

After installing the graphical interface of CoCoA, you normally start it by
double-clicking on its desktop symbol. You are greeted by a text similar to

-------------------------------------------------------
--- ___/ ___/ \ ---
-- / _ \ / _ \ , \ --
-- \ | | \ | | ___ \ --
--- ____, __/ ____, __/ _/ _\ ---
-------------------------------------------------------
-- Version : 4.4 --
-- Online Help : type ? or ?keyword --
-- Web site : http://cocoa.dima.unige.it --
-------------------------------------------------------

and a line telling you about the current base ring. In fact, this message is
displayed in the upper part of a new window. This region is called the output
pane. Not surprisingly, the lower region is called the input pane. Initially the
input pane sports the title Interactive (0). Let us discuss the working of
these panes separately.

B.1 The Output Pane

As you may already have guessed, the purpose of the output pane is to display
the results of CoCoA’s computations. For instance, if we type 1+1; in the input
pane and hit <Ctrl + Enter>, we get the output
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1+1;
2
-------------------------------

in the output pane. It shows that CoCoA passed what is affectionately known
as its “sanity test”. In the output pane you cannot do much editing, but
you can save its contents to a file (using the command Save Output As in
the File menu), or you can copy and paste text from the output pane to
the input pane. To achieve the latter task, mark the text in the output pane
using the mouse, hit <Ctrl + C>, focus on the input pane by clicking on it,
and hit <Ctrl + V>. That’s it!

B.2 The Input Pane

Enter any 11-digit prime number to continue...
(Anonymous)

The input pane offers a much more varied environment than the output
pane. Its initial page is part of what is called the interactive document. You
can open up to nine further documents, called CoCoA documents, which have
a slightly different behaviour.

The interactive document consists of one or more pages. After typing some
CoCoA commands in one of these pages, you can pass them to CoCoA’s parser
in several ways: by pressing <Ctrl + Enter>, by clicking on the gear-wheel
in the toolbar, or by using the entry Execute current command set in the
CoCoA menu. In each case CoCoA will perform the required computations and
open a new interactive page.

A CoCoA document consists of only one page. You can execute the whole
page in the same way you execute an interactive page, or you can mark part
of the page with the mouse and execute it analogously. No new page is created
after you execute a command set in a CoCoA document. You can save CoCoA
documents to a file using <Ctrl + S>, and you can read them back into your
CoCoA session by pressing <Ctrl + O> and selecting the desired file. If you
have several documents open, you can move from one to the other by clicking
on the appropriate tab above the input pane or via the command <Alt + N>
where N is the number of the document.

In each page you have all the usual editing commands available, includ-
ing <Ctrl + C> for copying the selected text to the clipboard, <Ctrl + X>
for cutting the selected text and moving it to the clipboard, <Ctrl + V>
for pasting the text from the clipboard, and <Ctrl + Q> for quitting the
application.
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B.3 The History

Those who fail to learn history
are doomed to repeat it;

those who fail to learn history correctly –
why, they are simply doomed.
(Achem Dro’hm, C.Y. 4971)

The idea underlying the division of the interactive document into separate
pages is to introduce the concept of command history. You can imagine the
history in the following way:

page 1 page 2 page 3 page 4

where the doubly framed rectangle represents the history cursor, i.e. the
current position in the history. The history cursor can be moved using the
keys <Alt + Left Arrow> and <Alt + Right Arrow> or the corresponding
entries in the CoCoA menu. The current position of the history cursor is shown
in the status bar of the input pane next to the label HI. While working on
various pages of the command history, you have a number of useful shortcuts
available:
1) <Ctrl + Enter> Execute the current command set, append it to the end

of the history, and move the history cursor there.
2) <Alt + Enter> Append the current command set to the history, but do

not execute it.
3) <Shift + Enter> Replace the current interactive page, but do not exe-

cute the command set.
4) <Shift + Ctrl + Enter> Execute the current command set, append it

to the end of the history, but do not move the history cursor there. (This
is useful when you are editing a command set and executing it from time
to time to see whether it works or not.)

5) <Ctrl + Del> Delete the current page from the history.
The interactive document with its command history pages enables you to

quickly enter and debug sequences of CoCoA commands. While you are doing
this, the output pane keeps track of your inputs and CoCoA’s replies. Take
your time to learn the history correctly and you will not be doomed.
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B.4 More Bells and Whistles

The number you have entered is imaginary.
Please divide by 0 and try again.

The number you have entered is irrational.
Please rotate your keyboard by 90◦ and try again.

(Anonymous)

The graphical interface of CoCoA offers you several further conveniences.
In the Settings menu you can choose whether the input and output lines are
wrapped at the window border (option Normal Wordwrap), at column 100
(option Fixed Wordwrap), or at the maximal possible number of columns
(option No Wordwrap). Moreover, by activating the option Autoindenting in
this menu, you can simplify the input of user-defined functions: whenever the
interface recognizes a command like Define or For, it automatically indents
the following lines by four additional spaces.

Last but not least you can also use the word completion mode. Activation
is achieved via the entry Autocompleting in the Settings menu, or by typing
<Ctrl + Ins>. When autocompletion is on, the interface suggests possible
completions for any keyword whose initial characters you type. You can cycle
through the possible completions using <Up Arrow> and <Down Arrow>.

For instance, suppose you want to compute the vanishing ideal of a
projective point set whose coordinates you know. After you type Ide,
CoCoA starts offering possible command completions starting with Ideal.
If you press the <Down> key several times, it offers the possible completion
IdealOfProjectivePoints. To accept this completion, you have two possi-
bilities. If you hit the <Right> key, the desired completion is performed and
the cursor is positioned at the end of the word. If you hit the <Left> key,
the word is completed, a pair of parentheses is appended, and the cursor
is positioned after (. In this way, you are immediately ready to input the
coordinates of the points and you never forget to close the parentheses.

B.5 The Programming Environment

The owl and the pussycat went to sea
In a beautiful pea green boat

They took some honey
And plenty of money

Wrapped up in a five pound note
(Edward Lear)

To wrap up the discussion above, let us suggest a way to use the graphical
interface for developing CoCoA functions and packages, e.g. for solving the
programming parts of the tutorials in this book.
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1) Open a new CoCoA document using the entry New in the File menu or
using the key combination <Ctrl + N>.

2) Type your first function into the input pane, using Autoindenting and
Autocompleting as described above.

3) When you have finished typing, save your file using the entry Save in
the File menu, or using the key combination <Ctrl + S>. Give it the
desired name, e.g. MyFile.coc.

4) Send the contents of the document containing your program to CoCoA by
pressing <Ctrl + Enter>.

5) Activate the interactive document. Define the ring over which you intend
to work, and enter the data to which you want to apply your function.
Use separate interactive pages for the base ring and the data.

6) On the next interactive page, call your function with the necessary argu-
ments. Check the parser’s messages (if any) and the output.

7) If something is still wrong, activate MyFile.coc and correct your function
definition. Resend it to CoCoA. Then return to the interactive document
and try your function again. If the result is now the expected one, try
out the function using modified inputs by going back to he appropriate
page in the command history.

8) Finally, when you are done correcting, save your file MyFile.coc again.
After that you can try your hand at the next function. If you work on

the same package for a number of CoCoA sessions, you may also want to put
a suitable source command into your file userinit.coc. In this way, your
programs are automatically loaded each time you start CoCoA.

Finally, after a lot of effort, you have done it! CoCoA has completed a hard
computation, and a huge Gröbner basis G consisting of 2000 polynomials is
in the memory. What next? Of course, you can print the Gröbner basis in
the output pane by typing G; in the interactive document. From there you
could cut-and-paste it to a standard text editor. But if the output is many
thousands of lines long, this is quite cumbersome. A much better idea is to
use CoCoA’s built-in facilities for this purpose. To print the list G nicely to a
file, you should use something like the following sequence of instructions.

Set Indentation;
D:=OpenOFile("MyGBasis.coc");
PrintLn "G:=" On D;
Print G On D;
PrintLn ";" On D;
Close(D);

The end result will be a file called MyGBasis.coc on your hard disk which
contains the list G in a nicely formatted way. To read it back, it suffices to
make sure that you are using the correct base ring and to type

<< "MyGBasis.coc";
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The best way to accelerate a M CENSORED h
is at 9.8 m/s2 .

(Marcus Dolengo)

After having worked their way through the appendices A, B, C of Com-
putational Commutative Algebra 1, many readers were encouraged to try
to solve their own problems with CoCoA. However, sometimes they had to
contend with unforeseen obstacles: the computation started but took forever,
essential CoCoA functionality seemed to be missing, or there were bugs which
successfully escaped detection. If you were one of those readers, this appendix
is dedicated to you. We want to show you that it is neither advisable to speed
up your computer at 9.8 m/s2 nor necessary to erase CoCoA from memory.
Instead, we suggest you work your way through yet another appendix. The
reward will be plenty of tricks for watching and managing your computations,
for finding that elusive crucial example, for moving between rings effortlessly,
for creating and utilizing new data types, as well as for exposing and eradi-
cating errors.

C.1 Trust Is Good, Control Is Better

Computing Gröbner bases, Hilbert bases, border bases, SAGBI bases, and
even SuperG bases is not always as easy as we would like it to be. On oc-
casion, you pass the corresponding commands to CoCoA, the program starts
computing, continues computing, keeps computing ... After waiting patiently
for a while, you begin to wonder whether the computation will ever stop.
Will your memory suffice? Is your life-span going to be long enough? And
just how long are you willing to wait? Clearly, you need to keep tabs on
what is happening inside your chips. There are several possibilities at your
disposal.

Firstly, you can watch the computation from the outside. Most operating
systems offer you some program to monitor the system performance: the
amount of memory allocated to the CoCoA program, the percentage of CPU
usage it gets, and the amount of allocated memory which has been swapped to
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the hard disk. Using this information, you can frequently get the big picture,
i.e. you can make educated guesses as to whether you may be running out
of memory soon, or whether CoCoA is mainly computing with data stored on
the hard disk and the processor is mostly swapping these data in and out of
the main memory.

Secondly, you can furnish your programs with Time commands to deter-
mine the execution time of an instruction. For instance, if you include the
commands

Time G:=GBasis(I);
PrintLn;

in your function then CoCoA will display the time it took to compute the
Gröbner basis G on a separate line, and then continue with the remaining
commands of your function.

Thirdly, you can place suitable Print or PrintLn commands at strategic
locations in your program. For instance, suppose that a possibly difficult toric
ideal has to be found. In this case you could type something like

T:=Toric(M);
PrintLn "Toric ideal T has been computed ...";

Upon execution of your function you get some feedback about how many lines
of code were processed successfully and where the computation got stuck.

Fourthly, if the problem is a particularly nasty Gröbner basis (and it
often is!), you should resort to the wonderful interactive Gröbner framework
of CoCoA. To start an interactive Gröbner basis computation of an ideal I ,
you type

GB.Start_GBasis(I);

Then there are several ways to proceed. For instance, to perform the first
1000 steps of the Gröbner basis computation and be fully informed what is
going on, you should use

Set Verbose;
GB.Steps(I,1000);

Then CoCoA will print a dot for each step of the computation it has finished,
and every 100 steps you will get some intermediate statistics:

IPs IVs Gens GBases MinGens MinDeg
------------------------------------
335 0 41 86 37 6
------------------------------------

From this you see how far your computation has progressed. The data have
the following meaning:
IPs number of critical pairs still to be processed
IVs number of generators still to be processed
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Gens number of generators of the original ideal or module
GBases number of Gröbner basis elements found so far
MinGens number of minimal generators found so far
MinDeg minimal degree of a generator or critical pair still to be processed

Depending on this information, you decide how to continue. For instance,
you can complete the Gröbner basis computation using GB.Complete(I);
The part of the Gröbner basis computed so far is contained in I.GBasis.
After possibly appending the original generators, you can also try to compute
the Gröbner basis of the ideal or module generated by this list.

The following CoCoA program automates some of these interactive com-
mands. It computes N steps of the Gröbner basis of the ideal or list of polyno-
mials I , prints additional intermediate statistics (namely the minimal degree
of a Gröbner basis element and the number of polynomials of minimal degree)
every 100 steps, and returns the partial Gröbner basis. It is easy to adapt it
to your own needs.

Define StepsGB(I,N)
If Type(I)=LIST Then I:=Ideal(I) EndIf;
Set Verbose;
$cocoa/gb.Start_GBasis(I);
TotalSteps:=0;
For J:=1 To Div(N,100) Do
$cocoa/gb.Steps(I,100);
TotalSteps:=TotalSteps+100;
PrintLn "Total steps computed: ",TotalSteps;
DegList:=[Deg(F) | F In I.GBasis];
MinDegGB:=Min([D| D In DegList]);
PrintLn "Minimal degree in GB: ",MinDegGB;
PrintLn "Number of polys of min degree: ",
Len([D In DegList | D=MinDegGB]);

EndFor;
Return I.GBasis;

EndDefine;

Observe that we had to use the command $cocoa/gb.Start GBasis(I);
because the global alias GB is not recognized inside a function. Furthermore,
observe that the result of an interactive Gröbner basis computation is not
always the reduced Gröbner basis; it is necessary to append the command
ReducedGBasis(I); to achieve this result.

A further useful technique available in the interactive Gröbner framework
is degree truncation. Before starting the computation, you enter the command
I.DegTrunc:=D; where D is the degree in which you want to truncate. In this
way, no generators or critical pairs of degree larger than D will be processed.
For instance, this technique is useful if I is homogeneous and you need to
solve an ideal membership problem.
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Finally, let us mention that the Gröbner framework can also be applied
to compute minimal generators, syzygies, and free resolutions interactively.
The corresponding commands
GB.Start MinGens – start an interactive minimal generator calculation
GB.Start Syz – start an interactive syzygy computation
GB.Start Res – start an interactive resolution computation
and their options are explained in the CoCoA manual.

C.2 The Best Place to Find a Helping Hand

The above is the result of
exhaustive research, careful analysis,

and prolonged deliberation...
after which I flipped a coin.

(Anonymous)

In this section we propose some methods for using CoCoA to support
your mathematical research. How can a computer algebra system do that?
Normally, CoCoA is not much help in proving theorems — except for the
geometric theorems mentioned in Section 6.7, of course. More often it is
possible to decide whether a statement has a chance of becoming a theorem
at all, either by checking many examples or by discovering a counterexample.
Hence, to study a certain subject, it may be useful to create a collection
of pertinent computer algebra routines. In particular, we provide explicit
suggestions for the following three tasks.
1) Create and examine “generic” or “random” examples.
2) Search systematically for examples having special properties and stop if

you find one.
3) Create auxiliary rings, do computations there, and move data to and fro.
4) Implement new data types and functions to handle them.

Seek and You Shall Find

Anyone who considers arithmetical methods
of producing random digits is, of course,

in a state of sin.
(John von Neumann)

Suppose we want to study the following Artinian version of the Minimal
Resolution Conjecture (MRC) we discussed in Tutorial 89.

Conjecture. Let K be an infinite field, let P = K[x1, . . . , xn] be standard
graded, let s ≥ n + 2 , let α ≥ 1 be chosen such that

(
α−1+n

n

)
≤ s <

(
α+n

n

)
,

and let V ⊆ Pα be a generic K-vector subspace of dimension
(
α+n

n

)
−s . Then
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the minimal graded free resolution of the ideal I = V ⊕ Pα+1 ⊕ Pα+2 ⊕ · · ·
has the shape

0 −→ P (−α − n + 1)an ⊕ P (−α − n)bn −→ · · · −→
−→ P (−α)a1 ⊕ P (−α − 1)b1 −→ I −→ 0

where the numbers ai, bi are the numbers predicted by MRC.

To test this conjecture in many cases, we could do with three auxiliary
CoCoA functions: CreateI(. . .) to generate random ideals I of the desired
kind, GrBetti(. . .) to compute the matrix of graded Betti numbers of I , and
ExBetti(. . .) to list the matrix of expected Betti numbers. The first function
requires us to create random homogeneous polynomials of some degree D via
Randomized(DensePoly(D)). Otherwise, it appears to be straightforward to
write.

Define CreateI(S)
N:=NumIndets();
A:=Alpha(S);
V:=[Randomized(DensePoly(A)) | J In 1..(Bin(A+N,N)-S)];

Return Ideal(V)+Ideal(Indets())^(A+1);
EndDefine;

Here Alpha(. . .) is the support function

Define Alpha(S)
N:=NumIndets();
A:=0;
While S>= Bin(A+N,N) Do

A:=A+1;
EndWhile;

Return A;
EndDefine;

The artifice to make the second function work is to employ the Gröbner
framework. After calling Res(I) , we can access the matrix of graded Betti
numbers via GB.GetBettiMatrix(I). Short as it may be, this function in-
cludes three subtleties:

Define GrBetti(I)
R:=Res(I);
M:=Untagged($cocoa/gb.GetBettiMatrix(I));
N:=NumIndets();
A:=Min([J In 1..Len(M) | M[J,N]<>0]);
B:=NewMat(2,N);
For J:=1 To N Do

B[1,J]:=M[A-1+J,N+1-J];
B[2,J]:=M[A+J,N+1-J];
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EndFor;
Return B;
EndDefine;

Firstly, by assigning the resolution to an object R , we avoid having it printed
in the output pane. Secondly, the global alias GB does not work inside a
function and has to be substituted with $cocoa/gb. And thirdly, the result
of GB.GetBettiMatrix(I) is a tagged matrix. By untagging it, we get a
normal matrix (see below). The function ExBetti(. . .) was written by you
in Tutorial 89.t.

Now let us shift the point of view somewhat. Suppose we work over a
finite field. We want to find a homogeneous ideal in P = K[x1, . . . , xn] for
which P/I has generic Hilbert function and for which the linear strand of
the minimal graded free resolution is as long as possible. This means that we
want the longest subtuple of (a1, . . . , an) with non-zero values. Our strategy
to find such examples is to create random ideals and compute the length of
the linear strand of the resolution until we find interesting ones.

One way of doing this is to use a While- or Repeat-loop and compute
until we find something. For instance, in the case K = Z/(3), n = 5 and
s = 10 we can write

Use S::=Z/(3)[x[1..5]];
Repeat

I:=CreateI(10);
B:=GrBetti(I);
L:=NonZero(B[1]);

Until Len(L)<>3;

After thousands of iterations we find an example whose resolution has a
linear strand of length four. Another way of searching goes as follows. First
we define a random number seed in the global memory. For instance, the
command

MEMORY.CurrentSeed:=12345;

creates such a seed and the function

Define NewSeed()
C:=MEMORY.CurrentSeed;
S:=Mod(C*37,32003);
MEMORY.CurrentSeed:=S;

Return S;
EndDefine;

generates a new seed in {1, 2, . . . , 32002} and updates the global variable.
Then we include the command

Seed(NewSeed());
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in the function which creates our examples. If the search uncovers an interest-
ing example and stops, the value of the global random number seed enables us
to reconstruct the example. This method is particularly useful if the desired
example consists of a large amount of data or a long computation.

Do we really have to compute hundreds or even thousands of examples
until we discover a new species? Clearly, our chances of success depend on
how exotic an animal we look for. But in this game cheating is very much
allowed. For example, if you want more syzygies, it may prove worthwhile to
fudge your random number generator so that it creates sparse polynomials.

When You’re Through Changing You’re Through

All truth passes through three stages.
First, it is ridiculed.

Second, it is violently opposed.
Third, it is accepted as being self-evident.

(Arthur Schopenhauer)

Another common task is to perform computations in various rings dur-
ing the execution of a user-defined function. For instance, suppose we want
to implement the method of Tutorial 51.f to compute the ideal I of al-
gebraic relations of a tuple of polynomials (f1, . . . , fn) ∈ K[y1, . . . , ym]n

where K is a field. The ring P = K[x1, . . . , xn] which contains I should
be constructed inside the function. Moreover, we need the auxiliary ring
Q = K[x0, . . . , xn, y1, . . . , ym] which ought to be destroyed when we have
finished using it. Several CoCoA commands come in handy here:
Using <RingName> Do <Commands> EndUsing – do computations in another
ring without changing the current ring
BringIn <Object> – bring objects from another ring into the currently used
ring
Destroy <RingName> – destroy a ring which is no longer needed

Let us see how we can combine these ingredients to cook up the desired
function.

Define Implicit(F)
M:=NumIndets();
N:=Len(F);
DF:=[Deg(F[J]) | J In 1..N];
D:=Concat([1],DF,[1|J In 1..M]);
C:=Characteristic();
If C=0 Then

P::=Q[x[1..N]];
Qbar::=Q[x[0..N],y[1..M]],Weights(D);

Else
P::=Z/(C)[x[1..N]];
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Qbar::=Z/(C)[x[0..N],y[1..M]],Weights(D);
EndIf;
Using Qbar Do

FQ:=BringIn(F);
Fhom:=Homogenized(x[0],FQ);
Jbar:=Ideal([x[I]-Fhom[I] | I In 1..N]);
E:=Elim(y[1]..y[M],Jbar);
Edeh:=Subst(E,x[0],1);

EndUsing;
Using P Do

I:=BringIn(Gens(Edeh));
EndUsing;
Destroy Qbar;

Return P::Ideal(I);
EndDefine;

For instance, using the ring S::=Q[y[1..2]] and the tuple F=[y[1]y[2],
y[1]^2+y[2]^2, y[1]^3+y[2]^3] we obtain

Implicit(F);
P :: Ideal(-2x[1]^3 + 3x[1]^2x[2] - x[2]^3 + x[3]^2)
-------------------------------

With the help of Memory(); and RingEnvs(); you can check that not only has
the ring Qbar been destroyed, but also all objects defined over this ring. To
harness the full power of the function Implicit(...) the call to Elim(...)
should be substituted with the insertion of a special elimination function for
homogeneous settings.

Sometimes the simple way of moving polynomials from one ring to an-
other via the BringIn(. . .) command does not work. In this case you have
to define a ring map. For example, assume that we want to define the Q -al-
gebra homomorphism ϕ : Q[x1, x2, x3] −→ Q[y1, y2] given by ϕ(x1) = y1y2 ,
ϕ(x2) = y2

1 + y2
2 , and ϕ(x3) = y3

1 + y3
2 in CoCoA, and we want to compute

ϕ(−2x3
1 + 3x2

1x2 − x3
2 + x2

3). To achieve this, we apply the CoCoA commands
RMap(. . .) and Image(. . .) as follows.

P1::=Q[x[1..3]];
Use P2::=Q[y[1..2]];
Phi:=RMap(y[1]y[2],y[1]^2+y[2]^2,y[1]^3+y[2]^3);
Image(P1::Poly(-2x[1]^3+3x[1]^2x[2]-x[2]^3+x[3]^2),Phi);

The result is zero, in agreement with the above implicitization. This self-
evident truth shows that we are through with changing rings!



C. More on CoCoA Programming 551

Only Dead Fish Swim with the Stream

A man can surely heat his stove by burning his furniture,
yet he should not be deluded into believing

that he has discovered a wonderful new method
for heating his premises.

(Ludwig von Mises)

When man discovered object oriented programming and its applicability
to the construction of computer algebra systems, he thought that all he had
to do is create a class for every data type he encountered in Computational
Commutative Algebra, and that he had discovered a wonderful new method
for computing everything. Alas, it turned out that these general classes are
too inefficient to be of practical value. CoCoA offers you a few important data
types which are highly optimized for good performance.

But what if the application you have in mind is not mainstream? Is there
a way to make your own data types in CoCoA? How is it possible to define
functions which apply to these new data types?

Let us assume that you are working with graphs, e.g. that you are trying
to solve Tutorial 26 or 71. It is natural to define a new data type called
"Graph". In CoCoA, you can use the built-in data type Record(...) for this
purpose. A record consists of a sequence of fields. A field is defined by an
equation <FieldName> = <Object> where <FieldName> is an identifier and
<Object> is, well, a CoCoA object. The function

Define Graph(N,L)
If Not (Type(N)=INT And N>0) Then

Error("Positive integer expected.");
EndIf;
If Not Type(L)=LIST Then Error("List expected.") EndIf;
M:=Len(L);
G:=Record(VertNo=N,EdgeNo=M, Edges=L);

Return Tagged(G,"Graph");
EndDefine;

does some type checking and creates a record for a graph. It expects the
graph to be entered in the format

G:=Graph(5,[[1,2],[1,5],[2,3],[2,4],[2,5],[3,4],[3,5],[4,5]]);

This definition corresponds to the following graph.
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Notice that the above function does not return the record directly, but at-
taches a tag first. A tag is a string which you can think of as an identifier for
your new data type. E.g., the query Type(G); now yields

TAGGED("Graph")
-------------------------------

Tags allow you to define special routines for printing and describing objects
of your new data type. If you want to be fancy, create functions
Print Graph() – to print graphs in the format you want; if you then type
G; the graph G will be printed according to the new fashion
Describe Graph() – to output an explicit description of the graph
Help Graph() – to generate the reply to the request Help("Graph");

So, what can we do with this newly defined data type? For example, the
following function creates its graph ideal in a suitable polynomial ring P .

Define GraphIdeal(G)
If Not Type(G)=TAGGED("Graph") Then

Error("Expected a graph");
EndIf;
N:=G.VertNo;
M:=G.EdgeNo;
P::=Z/(2)[x[1..N]];
Using P Do

I:=[x[Pair[1]]*x[Pair[2]] | Pair In G.Edges];
EndUsing;

Return P::Ideal(I);
EndDefine;

Note how we accessed the fields of the record G containing our graph: the
object G.EdgeNo contains the value of the field EdgeNo of the graph G. Next
we could define a function

Define MaxDisconnect(G)
I:=GraphIdeal(G);
Using P Do

Return Dim(P/I);
EndUsing;

EndDefine;

to compute the size of a maximal disconnected subgraph (see Tutorial 71.k),
and so on.

In the hope that these hints will help you cross the sea of data, record,
types and functions, we now invite you to venture out on your own. And keep
in mind that if you want to get back safely, you will sometimes have to swim
against the stream.
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C.3 To Err Is Human

Errare humanum est –
perseverare diabolicum.

(Latin Proverb)

No matter how hard we try, occasionally even the best CoCoA program-
mers produce an error. In this section we want to point out some ideas on how
you can minimize the number of your errors, how you can find and correct
them, and how you can avoid making the same error again in the future.

Better Safe than Sorry

Let us begin with the topic of error prevention. It is often a good idea to
check the data type of the objects you deal with. Make sure that the ideal
you were supposed to use as a function argument is actually an ideal by
starting your function with a command such as

If Type(I)<>IDEAL Then Error("Expected an ideal!") EndIf;

If you plan to use your function with several types of arguments, perform the
necessary type conversions first. To generate a function which works for both
ideals and lists of polynomials, the above example could be extended to

If Not(Type(I) IsIn [IDEAL,LIST]) Then
Error("Expected an ideal or a list!");

ElsIf Type(I)=LIST Then
I:=Ideal(I);

EndIf;

Another method to prevent errors is to modularize your programs. Sup-
pose you are implementing the Homogeneous Buchberger Algorithm 4.5.5. We
can think of a number of useful subroutines which you may want to write:
NextDegree(...), PairLoop(...), GensLoop(...), or UpdatePairs(...)
come to mind. By debugging those functions separately, you can decrease the
likelihood of an error in your main program substantially. Furthermore, you
can then collect these subroutines in a CoCoA package and reuse them on
other occasions.

So, what is a CoCoA package? From the outside, it is nothing but a file
having the extension .cpkg and containing CoCoA functions. You can load it
with the source command just as you would load any .coc file. From the
inside, it starts with something like Package $contrib/MyPkgName, contin-
ues with some function definitions, and ends with EndPackage; To access
a function called MyFunc(...), you have to type MyPkgName.MyFunc(...).
The advantage of doing this extra typing is that if there are two functions
with the same name, the first one will not be overwritten when you load the
second. To keep the overhead to a minimum, you can also define an alias for
your package, e.g. you can enter
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Alias My := $contrib/MyPkgName;

and thenceforth refer to your function by typing My.MyFunc(...).
The third method for preventing errors is the do-it-yourself method. (The

best place to find a helping hand is at the end of your arm.) To apply this
method, you proceed as follows. First you think of an example which is neither
too difficult nor too trivial for your function. Then you compute this example
step by step in the interactive document. Finally, you copy the commands
you used one by one into the CoCoA document, all the time modifying them
suitably to fit the general scheme. In this way you should get a function which
computes the correct result in at least one case.

Last but not least there is a clever way to produce good CoCoA code: look
through the packages which come with CoCoA and get inspired!

Keep Your Wits and Get the Message

ERROR: parse error in line 911 of device
(CoCoA Error Message)

Our second topic is error discovery. The most frequent way you find out
that you committed an error is via the above well-known CoCoA error mes-
sage. Its subtlety is revealed when you realize that the line number does not
necessarily correspond to the actual line in which the error occurred. But
don’t get angry. In most cases you can detect the error by following one
simple instruction:

Starting from the line number in the error message,
scan your file upwards until you find the line

where you forgot to put the ; Done!
In the remaining cases, ask yourself the following questions.
1) Did I remember to close all parentheses? (If this error happens frequently,

use autocompletion and <Left> whenever possible, or use an editor which
automatically creates parentheses in pairs.)

2) Did I put the arguments of the built-in CoCoA functions in their correct
order? (The CoCoA manual is really helpful here...)

3) Did I close every control structure (e.g. For or While or If) with its
corresponding End-command (e.g. EndFor or EndWhile or EndIf)?

4) Did I use := for assignments and = for logical comparisons and ::= for
ring definitions correctly everywhere?
Another trick the parser uses to confuse you is to claim that it does

not recognize a user-defined variable although you have defined it absolutely
correctly. What is behind is probably a forgotten ; or ) which led the parser
astray. If you don’t find the error by simply reading the input carefully,
you might want to insert suitable PrintLn commands to check intermediate
results of your program, or you could comment out parts of the code to
localize the problem.
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This bring us to the topic of local versus global objects which is a recurrent
source of errors. Most CoCoA objects you create are stored in the working
memory. For instance, if you have an ideal I := Ideal(x, y); over the ring R
and you switch to the ring S , typing I; leads to the reply

R :: Ideal(x, y)
-------------------------------

If you define a function which uses an ideal J as its argument and contains
an assignment to an ideal I, it is possible to apply this function to the ideal I
in R because the names J and I are local to the function. If you want to
use some objects globally, i.e. in the working memory and in user-defined
functions, you have to write a statement such as

MEMORY.N:=4;

which creates the integer N in the global memory. Then you can access N
from inside a function by a command such as

NewN:=MEMORY.N;

Finally, we remind you that the command Use <Ringname> is not allowed in
user-defined functions and that global aliases (such as GB or HP) cannot be
used either.

This list of sources for trouble is not intended to be comprehensive; maybe
it is not even comprehensible. But we hope that it enables you to limit your
search for remaining errors to the really difficult ones: mathematical errors.

Good Riddance to Those Beastly Bugs

Just because you’re paranoid doesn’t mean
they aren’t out to get you.

(Anonymous)

Our last topic is error digestion. What happens after you have successfully
discovered and eliminated an error? Does life continue as usual? We hope not.
To prevent yourself from introducing the same error again in a later stage of
the programming project, you should keep the following tenet in mind.

Every bug becomes a test.
This means that it is good practise to write a short test function which

applies your program to compute a case in which the error occurred. The test
function checks whether the computed result is correct. All test functions are
combined in a package called the test suite for your program. In the main
CoCoA program, test suites have usually a filename ending in .ts and can be
managed using the ts lib.cpkg package. Here is the official way to perform
the CoCoA sanity test:
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Alias TSL := $ts/ts_lib;
Test := Record[ Id = "SanityTest"];
Test.Input := "1+1;";
Test.ExpectedOutput :=
"2
-------------------------------
";
TSL.RegisterTest(Test);
TSL.Do();

The result should be a file called SanityTest.result on your computer
which contains the message Succeeded and the message

-- TestSanityTest : Succeeded

in the output pane. Alas, if the test fails, you receive the message FAILED!
(What else?)

Lastly, if all attempts fail and you get a bit paranoid, there is still a final
resort. Get a good night’s sleep! In the bright light of a new day, bugs will
be spirited away. And remember that even the most powerful man on earth
has to admit:

You cannot win the war on error.

C.4 Can’t Stop!

A trend in motion continues
until it actually stops!

(James Dines)

Has this appendix been all work and no play? Well, this is about to stop.
You can now use CoCoA to play the board game Can’t Stop! invented by
Sid Sackson. As for the rules and the necessary equipment, check out the link
provided in the CoCoA manual entry of CantStop.cpkg. You get it by typing
the command

$contrib/CantStop.Man();

Moreover, this manual entry will inform you about the available functions and
computer opponents. To start a game against one of the computer opponents,
simply type

CantStop.Play("Me","ComputerAnna");

and off you go! The package CantStop.cpkg also offers you advice on the
probability of success for different moves and allows you to play computer
assisted games against human opponents.



D. Suggestions for Further Reading

Financial genius is a rising stock market.
(John Kenneth Galbraith)

Mathematical genius is a benevolent referee.
(Anonymous Referee)

In the introduction to the first volume we wrote that we had decided
not to cite anything anywhere. Why then did we write an entire appendix
full of references? We still do not believe in the merits of a very extended
bibliography. Mathematics is evolving continuously, and many bibliographies
are already outdated when they appear. As its title suggests, the intention
of this appendix is a different one. We would like to provide you with some
ideas of where to look if you want to know more about the subjects treated
or mentioned in the two volumes. Our selection is by no means meant to
imply any judgement on the merits or relevance of other works. It is merely
a very subjective list of some books and papers which we know and deem
reasonable possibilities for what to read next.

The bibliography of Volume 2 is disjoint from that of Volume 1. So, if
we refer to [AL94] and you do not find the reference here, look at the end
of Volume 1. A number of tutorials are based on joint papers of the authors
with L. Bazzotti, M. Caboara, G. Dalzotto, and A. Kehrein which are not
quoted individually.

D.1 Chapter 1

In the last few years, a number of new introductory text books on various as-
pects of computer algebra have appeared. In particular, the books [Co99],
[Ei02], [GP02], [Stu02], [GG03], [GKW03], [Sc03], [CLS04], [Ste04], and
[DE05] contain additional material on many of the topics we discussed.

The presentation of Berlekamp’s algorithm in Tutorial 6 is modelled on
the version in D. Knuth’s well-known book [Kn97]. If you want to know
Robbiano’s classification of term orderings explicitly, look at [Ro86].

Tutorials 12, 40 and 98 offer some glimpses into computational as-
pects of invariant theory. Good places to study this theory further are the
books [Stu93] and [DK02].
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In Tutorial 13 we encounter for the first time the connection between
Computational Commutative Algebra and combinatorics. Further examples
appear in Tutorials 36 and 38 about integer programming and in Section 6.1
about toric ideals and Hilbert bases. To learn more about this topic, we
suggest the books [Stu96] and [MS05].

D.2 Chapter 2

Most of the material in this chapter is standard and contained in virtually
every book on Gröbner bases. Tutorial 25 is the first time we discuss possi-
ble optimizations of Buchberger’s algorithm; further suggestions are made in
Tutorials 59 and 69. Some of the best implementations of this algorithm are
the ones by J.-C. Faugère described in his papers [Fa99] and [Fa02].

Tutorial 26, and later Tutorials 65 and 71, provide some links between
Computational Commutative Algebra and graph theory. More results in this
direction are contained in [Vi01] and [Lo04].

Tutorial 27 is the first in a long list of tutorials which treat the interrela-
tions between Computational Commutative Algebra and algebraic geometry.
Further items on this list are Tutorials 35, 39, 46, 52, 55, 88, 89 and 95. There
exist a number of computer algebra books whose primary topic is computa-
tional algebraic geometry, for instance [CLS92], [CLS04], [Ei02] and [Sc03].
Some of them lead up to very advanced algorithms in this area.

D.3 Chapter 3

A more general application of Gröbner bases to the theory of splines than the
one in Tutorial 28 is contained in Chapter 8 of [CLS04]. The applications of
Gröbner bases to operations on ideals and modules discussed in Sections 3.1 –
3.6 are contained in most of the textbooks cited above. For other classical
topics in commutative algebra see for instance [Ku80], [Mat86] and [BH93].

Section 3.7 gives a brief account of some applications of Gröbner bases to
solving systems of polynomial equations. Specialized books about this topic
are [Ste04] and [DE05], and there are also some relevant chapters in [BW93]
and [Co99].

Tutorials 43, 77 and 79 give some pointers to the computation of primary
decompositions of polynomial ideals. A more thorough treatment, including
further references, is available in [Va98], [GP02] and Chapter 5 of [DE05].

Finally, the topic of modern portfolio theory is discussed extensively by
its founder H. Markowitz in [Mar91].
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D.4 Chapter 4

For another computationally oriented book containing some parts of the the-
ory of multigraded rings and modules, we refer you to [MS05]. The special
properties of degrev type orderings and their relations to generic initial ideals
and distractions (explained in Section 4.4, Tutorial 75, and Section 6.2) were
studied for instance in the papers [BS87] and [BCR05].

The technique of idealization we use for computing minimal homogeneous
presentations and minimal graded free resolutions in Sections 4.7 and 4.8
were introduced into commutative algebra by M. Nagata in [Na62]. Other
algorithms for these purposes are, for instance, explained in [AL94], [GP02],
and [CLS04].

D.5 Chapter 5

Good introductions to Hilbert functions and related problems from the theo-
retical point of view are [BH93] and [Val96]. Tutorial 65 is based on a preprint
of M. Katzman. If you want to learn more about Ehrhart polynomials (see
Tutorial 67), we suggest the books [Stu96] and [MS05].

Different algorithms for computing Hilbert series are compared in [Bi97].
The book [Ga00] discusses Hilbert-driven Gröbner basis computations (see
Tutorial 69) and their application to the computation of invariants (see Tu-
torial 98).

The application of Computational Commutative Algebra to photogram-
metry mentioned in Tutorial 72 is just one of the many techniques in [May93].
An extensive discussion of generic initial ideals is contained in [Gr96]. Inde-
pendent sets of indeterminates are also treated in [BW93]. Their applica-
tion to computing Noether normalizations is presented for instance in [Va98]
and [GP02].

D.6 Chapter 6

The theory of finite sets of points and algorithms for dealing with them are
developed further in [GKR93], [Ab00] and [AKR05]. The articles [DGO85]
and [EGH96] discuss the history and applications of the Cayley-Bacharach
property. An algorithm for computing the resolutions in Tutorial 89 is ex-
plained in [BK96]. Tutorial 90 uses the results of J.P. Hansen in [Ha94].

Section 6.4 deals with connections between Computational Commutative
Algebra and numerical analysis. A good recent textbook on this subject has
been written by H. Stetter (see [Ste04]). Moreover, there are related chapters
in [DE05].
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The theory of SAGBI bases was initiated by the foundational papers
[RS90] and [KM89]. Besides our Section 6.6, further recent additions to this
theory are contained in [CHV96], Chapter 11 of [Stu96], and [TUO03]. Tu-
torial 97 is based on [Ho98] and [No02].

Finally, if you want to know more about automatic theorem proving, e.g.
more examples where it succeeds, we suggest that you start with the classical
books [Wu94] and [Ch88] and continue with Project 1 in [Co99].



E. Hints for Selected Exercises

Talk is cheap because supply exceeds demand.
(Anonymous)

E.1 Hints for Exercises in Chapter 4

Exercise 4.1.2. If a K -algebra S is graded by W, it is also graded by λ W for
every λ ∈ Z .

Exercise 4.1.3. Using a), reduce the proof of b) to the case of a term f .

Exercise 4.1.6. For d), consider F = P 2 and M = 〈e1 + e2〉 .
Exercise 4.1.12. Write t = xα1

1 · · ·xαn
n . The set of all (α1, . . . , αn) such that

degW (t) = d is the solution set of a system of Diophantine equations.

Exercise 4.1.14. To prove b)⇒a), argue by contradiction. Assume that d ∈ Σ
is the smallest degree with respect to τ such that K[a1, . . . , as]d ⊂ Ad .

Exercise 4.1.15. For every d ∈ Zm, look at the K-linear map ϕd : Md −→ Md .

Exercise 4.2.1. Imitate the proof of Proposition 4.2.3.

Exercise 4.2.2. Let w1, . . . , wm be the rows of W , and let b1, . . . , bm−1 ∈ Z be
such that b1w1+· · ·+bm−1wm−1 has positive entries in the positions corresponding
to the non-zero columns of W . Then use v = a1w1 + · · · + am−1wm−1 + wm with
ai = cbi and c � 0.

Exercise 4.2.6. The leading term of x2 − y2 is either x2 or y2 .

Exercise 4.2.2. Dehomogenize F , factor, and homogenize again.

Exercise 4.3.3. Use Proposition 3.5.11.b.

Exercise 4.3.5. Show that the inclusion in b) is an equality if the degree form
of f is a non-zerodivisor for P/ DFW (I) .

Exercise 4.3.11. First prove Ihom = (y2x1 − y1x2, x2
1, x1x2, x2

2) .

Exercise 4.4.2. Use Proposition 4.2.3.

Exercise 4.4.3. Consider the case m = n .

Exercise 4.4.7. Specialize Corollary 4.4.15 suitably.

Exercise 4.5.7. Use Proposition 2.5.8.
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Exercise 4.6.3. Construct a sequence of homogeneous K -linear maps

M/(P+ · M)
ϕ−→ M/(P+ · M ′ ∩ M)

ψ−→ M ′/(P+ · M ′)

where M ′ = M + 〈g〉 , ϕ is surjective and ψ is injective, but not bijective. Then
show that dimK(M ′/(P+ ·M ′)) ≤ dimK(M/(P+ ·M ′∩M))+1 and conclude that a)
and b) are equivalent. To prove that b) and c) are equivalent, use the modular law
(see Exercise 4 of Section 3.2).

Exercise 4.6.6. Apply Buchberger’s Algorithm with Minimalization 4.6.3.

Exercise 4.7.4. For d), consider the ideal (x1, x2, x
2
3, x

2
4) = (x1, x2, x

2
3−x1x2, x

2
4+

x1x2) in Q[x1, . . . , x4] .

Exercise 4.7.6. To answer b), consider all ideals in P which are generated by
P -linear forms in e1, . . . , er .

Exercise 4.8.2. To prove b), assume that α , β are inverse to each other. Then
prove that the isomorphism S ⊕ F ′ ∼= F ⊕ S′ induces an isomorphism S ∼= S′ .

Exercise 4.8.3. The general shape is

0 → P (−n) → P (−n + 1)n → · · · → P (−2)(
n
2) → P (−1)n → (x1, . . . , xn) → 0

E.2 Hints for Exercises in Chapter 5

Exercise 5.1.1. By induction on r , show that ∆rf(i) = (i− r) ! · pr(i) for i � 0
with pr ∈ Z[t] . Now use Proposition 5.1.11.a.

Exercise 5.1.5. Construct a homogeneous exact sequence of graded P -modules

0 −→ (f1f2) −→ (f1)
⊕

(f2) −→ (f1, f2) −→ 0

Exercise 5.2.2. Use Theorem 5.2.6.

Exercise 5.2.3. Apply the Binomial Theorem to (1− t)n and multiply the result
by (1 − t)−n using Lemma 5.2.9. Then compare coefficients.

Exercise 5.2.5. Use Corollary 5.2.17.

Exercise 5.2.6. Construct a homogeneous exact sequence

0 −→ P/(I ∩ J) −→ P/I ⊕ P/J −→ P/(I + J) −→ 0

Exercise 5.2.10. Use Proposition 5.1.7.c.

Exercise 5.3.5. Use Proposition 5.3.6 and the multiplication sequence correspond-
ing to the element xα1

1 · · ·xαn
n .

Exercise 5.3.6. Use Proposition 3.7.1.

Exercise 5.3.7. To prove a), deal with the case m = 1 first. Then use induction
on M . In order to show b), prove the formula

HNP/I(z) = 1 − zα1 + (zα1 − zα2) HNP/J1(z) + · · ·
+(zαm−1 − zαm) HNP/Jm−1(z) + zαm HNP/Jm(z)

by forming suitable colon ideals. To find further examples in e), you may look at
strongly stable monomial ideals (see Tutorial 75).
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Exercise 5.4.2. Find the coefficient of z4 .

Exercise 5.4.4. Take suitable linear polynomials f1, f2, f3 .

Exercise 5.4.6. Use the homogeneous exact sequence

0 −→ SyzP (f1, . . . , fn) −→ P (−2)n −→ (f1, . . . , fn) −→ 0

Exercise 5.4.8. Use Exercise 10 of Section 5.2.

Exercise 5.5.2. Use a Lex-segment space of the dimension suggested by Exam-
ple 5.5.6.

Exercise 5.5.4. Use Proposition 5.4.8.

Exercise 5.5.5. Get some inspiration from Exercise 9 of Section 2.6.

Exercise 5.5.10. For the proof of a), use Theorem 5.5.32. For b), construct a
suitable Lex-segment ideal.

Exercise 5.5.11. To prove a), use Proposition 5.5.13.c, the equality
(

a
b

)
=
(

a
a−b

)
and Corollary 5.5.34.

Exercise 5.6.9. To prove that b) implies a), let m1, . . . , mr be the maximal ideals
in R . Show that the natural homomorphism ϕ : R −→ ∏r

i=1 R/mi is bijective.

Exercise 5.7.1. Check out the 24th factor!

Exercise 5.7.3. Using induction, reduce the proof to the case L = K(a) with
a ∈ L .

Exercise 5.7.4. Consider I ∩ K[x1, x2] .

Exercise 5.7.7. Use the combinatorial dimension to prove that dim(A) ≤ dim(B) .
Use the affine dimension to prove that dim(B) ≤ dim(A) .

Exercise 5.8.1. For a), consider a Laurent series with support in {(a1, a2) ∈ Z2 |
2a1 + a2 ≥ 0 and a2 ≥ 0} and use σ = Lex and τ = DegLex .

Exercise 5.8.5. Use the multiplication sequence corresponding to fs and induc-
tion on s .

E.3 Hints for Exercises in Chapter 6

Exercise 6.1.1. Proceed as in Example 6.1.19.

Exercise 6.1.2. Consider the equation z1 + z2 − iz3 = 0.

Exercise 6.1.7. Combine Tutorial 36 with the method of computing toric ideals
explained in Section 6.1. The matrix A is the coefficient matrix of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z11 + z12 + z13 = 120
z21 + z22 + z23 = 204
z31 + z32 + z33 = 92
z41 + z42 + z43 = 55

z11 + z21 + z31 + z41 = 183
z12 + z22 + z32 + z42 = 190
z13 + z23 + z33 + z43 = 98

For c), use a cost compatible term ordering and compute a suitable normal form.
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Exercise 6.2.4. First consider the leading term of gcd(f, g) with respect to σ .
Then generalize.

Exercise 6.2.5. Combine Theorem 6.2.12.d and Proposition 5.1.16.c.

Exercise 6.2.6. To show a), find the LU-decomposition of Y−1 using standard
linear algebra. Then invert. For c), it suffices to prove the inclusion “⊆” and com-
pare the Hilbert functions. Simlarly, in order to show d), it suffices to prove the
inclusion “⊇” and compare the Hilbert functions.

Exercise 6.3.4. Use Proposition 6.2.8.

Exercise 6.3.6. Show that without loss of generality we may assume X ⊆ D+(x0) .

Let R = P/(I+(X) + (x0)) . Use the line defined by (AnnR(RrX−1))1 .)

Exercise 6.3.7. Apply the modified algorithm to the projective point set X =
{(1 : c1 : c2) | c1, c2 ∈ {−1, 0, 1, 2}} \ {(1 : 2 : 2)} ⊂ P2

Q .

Exercise 6.3.8. If the five points are on a line, use Exercise 6.3.5. Then distinguish
the cases that four points are on a line and that no four points are on a line.

Exercise 6.4.3. Apply a permutation π to the elements of G . The use parts a)
and b) of Proposition 6.4.17.

Exercise 6.4.4. Let O = {1, x} . Use Propositions 6.4.15 and 6.4.17 to describe the
elements of A via their O -border bases. Then apply Theorem 6.4.30 to construct
a set of equations defining A . Finally, examine these equations.

Exercise 6.4.5. For the proof of a), use the inequalities

#O ≤ dimK(P/J) ≤ dimK(P/(LTσ(g1), . . . , LTσ(gs))) = #O
For the proof of b), show that the residue classes of the elements of O generate P/I
and that Oσ(I) ⊆ O . Then apply a). Finally, use Proposition 6.4.18 to prove c).

Exercise 6.4.6. Modify the ordering of the columns of V in Lemma 6.4.35.

Exercise 6.5.4. For the solution of b) and c), notice that the two filtrations are
equal if and only if IdJ = Id ∩ J for all d ≥ 1.

Exercise 6.5.6. Proceed as in Example 6.5.27. You should obtain the result
LFm(J) = (x2

1x2, x1x
2
2, x2x

6
3, x8

1x
2
4) .

Exercise 6.6.4. Note that, with suitable weights, the subalgebra is graded. Hence
it suffices to compute the SAGBI basis up to a certain degree.

Exercise 6.6.5. You may use CoCoA to compute the toric ideal.

Exercise 6.6.6. Besides the nine minors, there are two further SAGBI basis
elements of degree four.

Exercise 6.6.7. Show that S = K + K(x2 − 1) + K(x3 − x) + · · · .
Exercise 6.6.8. To prove c), choose a term ordering σ and show that P, considered
as a (K + I(X))-module, is generated by Oσ(I(X)) . Then apply Lemma 2.6.5.
For the proof of d), you have to refine this argument by looking at the proof of
Lemma 2.6.5.

Exercise 6.6.9. Prove that SyzS(x1x2, x
2
2) = 〈(x1x2,−x2

1), (x2
2,−x1x2)〉 .

In the end, everything is a gag.
(Charlie Chaplin)
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1. Special Symbols

N+ set of positive integers {1, 2, 3, . . .}
∞ infinite number
A ∼= B object A is isomorphic to object B
IP set of all integer valued polynomials in Q[t]
IP≤r set of all integer valued polynomials of degree ≤ r
q ↔ q′ corresponding pair
T(V ) monomial basis of a lex-segment space
R set of radical monomial ideals of a polynomial ring
I set of all monomial ideals of a polynomial ring
Dn dihedral group of order 2n
≺ partial ordering by componentwise comparison
X affine or projective point set
O order ideal in Tn

T model for a statement in Euclidean geometry

2. Sets and Tuples

Z+(I) projective zero set of a homogeneous ideal
H inf hyperplane at infinity in Pn

K

V inf points at infinity of a projective variety
S≤d set of homogeneous elements of degree ≤ d in S
Sd set of homogeneous elements of degree d in S
V≤d subtuple of homogeneous elements of degree ≤ d in a tuple
Vd subtuple of homogeneous elements of degree d in a tuple
Vd(Pn) d th Veronese variety
L(A) set of integer solutions of a system of Diophantine equations
L+(A) set of non-negative solutions of a Diophantine system
LN (A) set of partially non-negative solutions of a Diophantine system
UB(S) set of all unitary binomials in S
PB(S) set of all pure binomials in S
PBN (S) set of all N -separated pure binomials in S
MQ(r) set of magic squares of size r × r
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MQ(r, s) set of magic squares of size r × r whose magic sum is s
Xa affine part of a projective point set
Xinf points at infinity of a projective point set
Oσ(I) order ideal of I with respect to σ
Cj(X) jth Reed-Muller code associated to a projective point set
C⊥ dual code of a linear code
∂O border of an order ideal
∂iO higher borders of an order ideal

3. Functions

HFM (d) value of the Hilbert function of a module in degree d
∆f difference function of an integer function
∆rf rth difference function of an integer function
∆qf q -difference function of an integer function
Σf summation function of an integer function
bini binomial integer Laurent function
EFS Ehrhart function of a set
HFa

P/I(d) value of the affine Hilbert function of an affine algebra
HFM,W (d) value of the multigraded Hilbert function of a module
HFX(d) value of the Hilbert function of a projective point set
η(v, w) Hamming distance of two tuples
HFR,q(d) value of the q -adic Hilbert function of R in degree d

4. Orderings

σW extension of σ by W
Pos−τ module term ordering “position first”
τ−Pos module term ordering “τ first”
Deg−τ−Pos module term ordering “degree first”

5. Polynomials and Vectors

degW (f) degree of f with respect to the grading given by W
∂f
∂xi

partial derivative of f

DFW (v) degree form of a vector
fhom homogenization of a polynomial
F deh dehomogenization of a polynomial
HRσ,G(f) head reduction remainder of a polynomial
∆p(t) difference polynomial p(t) − p(t − 1)
HPf (t) associated polynomial of an integer function of polynomial

type
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HPM (t) Hilbert polynomial of a module
LSupp(f) logarithmic support of a polynomial
EPS(t) Ehrhart polynomial of a set
hnM (z) simplified Hilbert numerator of a module
‖a‖ Euclidean norm of a vector in Rn

a × b vector product in R3

HPa
P/I(t) affine Hilbert polynomial of an affine algebra

xa extended term xa1
1 · · ·xan

n where a = (a1, . . . , an)
Dπ(t) distraction of a term
F inf image under x0 �→ 0 of a homogeneous polynomial
NRO,G(f) normal O -remainder of a polynomial
NFO,I(f) normal form of f with respect to an order ideal
BFO(f) border form of a polynomial
S(f, g) S-polynomial of two polynomials
LFΨ (v) leading form of a vector with respect to a filtration
LFI(f) leading form of f with respect to an I -adic filtration
WRσ,G(f) weak remainder of a polynomial
LFσ,G(f) σ -leading form of f with respect to an induced grading
NFσ,S(f) normal form of f with respect to a subalgebra

6. Power Series and Laurent Series

HSf (z) associated Laurent series of an integer Laurent function
HSM (z) Hilbert series of a module
HNM (z) Hilbert numerator of a module
Verd(f) d th Veronese series of a Laurent series
HSa

P/I(z) affine Hilbert series of an affine algebra
HNa

P/I(z) affine Hilbert numerator of an affine algebra
hna

P/I(z) simplified affine Hilbert numerator of an affine algebra
HSM,W (z) multivariate Hilbert series of a module
HNM (z1, . . . , zm) multivariate Hilbert numerator of a module
Had(f, g)(z) Hadamard product of two univariate power series
HSR,q(z) q -adic Hilbert series of a ring
MSG(z) Molien series of a ring of invariants

7. Rings and Fields

R+ sums of homogeneous elements of positive degree in R
K[f1, . . . , fs] subalgebra of K[x1, . . . , xn] generated by f1, . . . , fs

R[[z1, . . . , zn]] (formal) power series ring
R[[z]]z ring of Laurent series
R[z, z−1] ring of Laurent polynomials
R(d) d th Veronese subring of R
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K[Y ] K-subalgebra of a polynomial ring generated by the polyno-
mials in Y

R[[z, z−1]]σ σ -Laurent series ring
R(I) Rees ring of an ideal
Diag(R) diagonal subalgebra of a bigraded ring
Seg(R,S) Segre product of two standard graded algebras
SG invariant ring of S under the action of G
Slsa(r,s)(P ) straight line subalgebra of a polynomial ring
EndK(V ) endomorphism ring of a vector space
grΦ(R) associated graded ring with respect to a filtration
grI(R) associated graded ring with respect to an I -adic filtration

8. Ideals and Modules

MW,d homogeneous elements of degree d with respect to the grading
given by W

M(d) module obtained by shifting degrees
I+(S) homogeneous vanishing ideal of S ⊆ Pn

K

DFW (M) degree form module
Ihom homogenization of an ideal
Ideh dehomogenization of an ideal
IW W -homogeneous part of an ideal
Imon monomial part of an ideal
〈M≤d〉 submodule generated by the homogeneous elements of degree

≤ d in a module
R � M idealization of a module
ı(M) ideal of a module in its idealization
IM idealization ideal of a module
ĨM ideal of the presentation of a module
M ⊗K L module obtained by base field extension
V ⊗K W tensor product of vector spaces
V

�
�-reduction of a vector subspace of the polynomial ring

Lex(I) Lex-segment ideal associated to I
ginσ(I) generic initial ideal
Itop top-dimensional (or equi-dimensional) part of an ideal
R[[z, z−1]] module of extended power series
ISeg defining ideal of a Segre product
I(A) toric ideal associated to a matrix
IV lattice ideal associated to a set of vectors
Dπ(I) distraction of a monomial ideal
I inf image under x0 �→ 0 of a homogeneous ideal
BFO(I) border form ideal of I with respect to an order ideal
FγM γth vector space of a filtration of M
grΨ (M) associated graded module with respect to a filtration
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F<σγM union of all Fγ′M for which γ′ <σ γ
LFΨ (N) leading form module of a submodule
LFI(J) leading form ideal of J with respect to an I -adic filtration
Rel(G) ideal of algebraic relations of G
Ih,K(T ) hypothesis ideal of a model
Ic(T ) condition ideal of a model
Iopt(T ) optimal hypothesis ideal of a model

9. Matrices

Madj adjoint matrix
Ta associated antisymmetric matrix of a vector in R3

a ⊗ b Kronecker product of two vectors in R3

A Lawrence lifting of a matrix
Jac(F) Jacobian matrix of a tuple of polynomials
Hess(F) Hessian matrix of a tuple of polynomials

10. Mathematical Operators

topdegW (f) top degree of a polynomial
logxi

(t) exponent of xi in a term
deg((i, j)) degree of a critical pair
µ(M) minimal number of generators of a module
βij(M) graded Betti numbers of a module
αf initial degree of an integer Laurent function
α(M) initial degree of a module
ri(f) regularity index of an integer function of polynomial type
ri(M) regularity index of a module
Σdeg(I) total degree of a monomial ideal
hv(M) h-vector of a module
dim(M) dimension of a module
mult(M) multiplicity of a module
n[i] binomial representation of n in base i
Topi(n) top binomial representation of n in base i
codimK(V ) codimension of a vector subspace
ria(P/I) affine regularity index of an affine algebra
Min(R) set of all minimal primes of a ring
Kdim(R) Krull dimension of a ring
cdim(R) combinatorial dimension of a ring
trdegK(L) transcendence degree of a field extension L/K
Ass(M) set of associated primes of a module
a+, a− positive and negative part of a tuple if integers
Gaps(B) set of gaps of a submonoid of Nn
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gcdS(f1, . . . , fr) greatest common divisor of a subset
lcm+

S (f1, . . . , fr) modified least common multiple of a subset
facS(f1, . . . , fr) quotient of gcdS(f1, . . . , fr) by lcm+

S (f1, . . . , fr)
rX regularity index of a projective point set
degX(p) degree of a point in a projective point set
indO(f) index of f with respect to an order ideal
ordΨ (v) order of a vector with respect to a filtration
ec(f) écart of a polynomial
edim(Rm) embedding dimension of a local ring
Sing(V ) singular locus of an affine variety
Milp(V ) Milnor number of an affine variety at a point
Tjup(V ) Tjurina number of an affine variety at a point

G−→ss subalgebra reduction step using an element of G
G−→s subalgebra rewrite relation defined by G
G←→s equivalence relation defined by G−→s

degσ,G(f) σ -degree of f with respect to an induced grading
trace(A) trace of a matrix
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de Recerca Matemàtica, Barcelona 1996

[GP02] G.-M. Greuel and G. Pfister, A Singular introduction to commutative al-
gebra, Springer, Berlin 2002

[Ha94] J.P. Hansen, Points in uniform position and maximum distance separable
codes, in: F. Orecchia and L. Chiantini (eds.), Zero-Dimensional Schemes, Proc.
Conf. Ravello 1992, de Gruyter, Berlin 1994

[Ho98] H. Hong, Groebner bases under composition I, J. Symb. Comput. 25 (1998),
643–663

[KM89] D. Kapur and K. Madlener, A completion procedure for computing a
canonical basis of a k -subalgebra, in: E. Kaltofen and S. Watt (eds.), Proc.
Conf. Computers and Mathematics 1989, MIT Press, Cambridge 1989

[KK04] A. Kehrein and M. Kreuzer, Characterizations of border bases, J. Pure
Appl. Algebra 196 (2005), 251–270

[Kn97] D.E. Knuth, The art of computer programming 1: fundamental algorithms,
Addison-Wesley, Reading 1997

[Lo04] J. de Loera, R. Hemmeke, J. Tauzer, and R. Yoshida, Effective lattice point
counting in rational convex polytopes, J. Symb. Comput. 38 (2004), 1273–1302

[Mar91] H. Markowitz, Portfolio selection, Blackwell Publ., Oxford 1991
[Mat86] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cam-

bridge 1986
[May93] S. Maybank, Theory of reconstruction from image motion, Springer Series

in Information Sc. 28, Springer, Berlin 1993
[MS05] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate

Texts in Math. 227, Springer, New York 2004
[Na62] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math. 13,

Wiley, New York 1962
[No02] P. Nordbeck, SAGBI bases under composition, J. Symb. Comput. 33 (2002),

67–76
[Ro86] L. Robbiano, On the theory of graded structures, J. Symb. Comput. 2

(1986), 139–170
[RS90] L. Robbiano and M. Sweedler, Subalgebra bases, in: W. Bruns and A. Simis

(eds.), Commutative algebra, Proc. Workshop Salvador 1988, Lect. Notes in
Math. 1430, Springer, Berlin 1990, pp. 61–87

[Sc03] H. Schenck, Computational algebraic geometry, London Math. Soc. Stud.
Texts 58, Cambridge Univ. Press, Cambridge 2003

[Ste04] H. Stetter, Numerical polynomial algebra, SIAM, Philadelphia 2004
[Stu93] B. Sturmfels, Algorithms in invariant theory, Texts and Monographs in

Symbolic Computation, Springer, Wien 1993
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Index

absolutely false model, 523
across-the-street neighbour, 437
addition of an indeterminate, 76
adic
– filtration, 460
– Hilbert function, 471
– Hilbert series, 471
– Hilbert series computation, 472
– module filtration, 465
adjoint matrix, 142
affine
– algebra, 305
– cone, 31
– coordinate ring, 473
– dimension, 283
– Hilbert function, 280
– Hilbert function computation, 281
– Hilbert numerator, 282
– Hilbert polynomial, 283
– Hilbert series, 282
– multiplicity, 283, 297
– part, 67, 376, 396
– point set, 389
– regularity index, 283
– simplified Hilbert numerator, 283
– variety, 67
Albrecht Dürer magic square, 368
Alexander duality, 299
algebraically independent set, 308
algebraically true
– checking, 524
– model, 516
– on a component, 519
– under a condition, 523
algorithm, 4
– Las Vegas, 314
– random, 314
almost non-zerodivisor, 290, 294
Alt+Pause, 273
annihilator

– finite dimensional, 290
– homogeneous, 20
– of a module, 20, 239
– of a vector space, 443
– of an element, 316
Artin-Rees lemma, 461
associated
– antisymmetric matrix, 249
– graded module, 456
– graded ring, 456
– magic square, 369
– multiplication matrix, 434
– prime, 316
automatic
– prover, 527, 530
– proving with preprocessing, 528
– theorem proving, 509
average matrix, 507

base cases, 218, 225, 227
Betti
– diagram, 170
– number, 122, 123, 154, 192, 274
– number computation, 169
bigrading, 339
binomial, 352
– ideal, 352
– N -separated, 373
– primitive N -separated, 373
– primitive separated, 361
– pure, 353, 494
– representation, 255
– unitary, 353
binomial representation
– operations, 256, 272
Boo Barkee, 477
border
– basis, 419, 426
– closure, 422
– division algorithm, 424
– form, 431

575



576 Index

– form ideal, 431
– of an order ideal, 422
– prebasis, 424
border basis, 426
– algorithm, 440
– and border form ideal, 431
– and commuting matrices, 434
– and Gröbner basis, 428
– and rewrite relations, 433
– and special generation, 430
– Buchberger criterion, 438
– characterization, 430
– existence, 427
– generates the ideal, 427
– is numerically stable, 430
– keeps symmetry, 426
– uniqueness, 427
Buchberger algorithm
– generalization, 95
– Hilbert driven, 230
– homogeneous version, 89
– optimization, 97, 111
– with minimalization, 102
Buchberger criterion
– for border bases, 438
– for SAGBI bases, 495
Buchberger-Möller algorithm, 392
– expanded version, 409
– for matrices, 444
– implementation, 409
– modular version, 394
– projective version, 401

calculus interruptus, 85
camera
– displacement, 247
– map, 248
– position, 247
canonical polynomial, 448
Can’t Stop, 556
Castelnuovo function, 400, 404
Cayley-Bacharach
– property, 387, 408, 410
– scheme, 410
– theorem, 410
change of grading, 332
characteristic equation, 249
chess, 206, 244
– solution ideal, 245
classical Hilbert numerator algorithm,

217
closure of a set of terms, 421
CoCoA, 7

– ABC, 535
– graphical interface, 537
– library, 536
– programming, 540, 543
– strategy, 223
code
– [n, k, d] , 416
– dual, 417
– error-correcting, 415
– generalized Reed-Muller, 417
– linear, 416
– minimal distance, 416
– systematic, 418
– word, 415
coding theory, 415
coffee, 279
collinear points, 412
combinatorial dimension, 302
– computation, 303, 306
– equals dimension, 305
– of monomial ideals, 305
– properties, 304
commuting
– endomorphisms, 443
– matrices, 434
compatible
– algebra homomorphism, 504
– filtration, 455
– term ordering, 34
– with non-divisibility, 506
complete intersection
– free resolution, 167
– Hilbert series, 334
– homogeneous, 205
– ideal, 192
– monomial, 218
– set-theoretic, 82
– socle, 411
– type, 192, 205
condition
– ideal, 523
– trivial, 523
conductor sequence, 410
conjecture
– ideal generation, 412
– minimal resolution, 413
contingency table, 366
contraction ideal, 317
coordinate ring, 389
– affine, 473
– homogeneous, 31, 396
corner of an order ideal, 428
corresponding pair, 248
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coset leader, 418
critical pair, 89
– between to critical pairs, 112
– degree, 89
critical point, 476
curve, 83
– elliptic, 473
– rational normal, 84
– twisted cubic, 67, 82, 192
cusp, 474
cyclicity test, 445

decoding, 417
Dedekind’s lemma, 142
deeper meaning of 231, 345
deg-ordered
– matrix, 119
– tuple, 89
degenerate cases, 520
degree
– anticompatible monoid ordering, 466
– compatible term ordering, 34
– filtration, 455
– initial, 122
– matrix, 18
– of a critical pair, 89
– of a vector, 37
– pair, 118, 122, 123
– sequence, 121, 154
– top, 46, 61
– total, 218
– transcendence, 309
degree form, 37, 42, 43
– module, 38, 43
DegRev type term ordering, 69
– characterization, 70
DegRevLex module term ordering, 69
dehomogenization, 46
– of a module, 62
– of a polynomial, 46
– of a vector, 61
– of an ideal, 48
– of Gröbner bases, 54
– rules, 46, 48, 52, 62
design of experiments, 447
diagonal
– bisection, 514
– ideal, 29
– subalgebra, 341, 365
– subalgebra generators, 365
– trisection, 518
difference function, 180
dihedral group, 345

dimension, 234
– combinatorial, 302
– computation, 243
– embedding, 473
– equals Krull dimension, 295
– equals transcendence degree, 309
– Krull, 291
– of a module, 234, 239
– of a union, 238
– of an affine algebra, 283
– of an algebra, 237
– properties, 235, 236
Diophantine equation, 362
– and extended power series, 329
– and magic squares, 369
– and multigraded Hilbert functions,

326
– inhomogeneous, 363
distracted fraction, 449
distraction
– and gin, 383
– Hilbert function, 383
– ideal structure, 379
– is SuperG basis, 383
– of a monomial ideal, 379
– of a term, 379
distributive law for ideals, 378
dual code, 417
dulcis in fundo, 33, 178

écart, 467
Ehrhart
– function, 210, 212
– polynomial, 212
elliptic curve, 473
embedded primary component, 317
embedding dimension, 473
enumerating procedure, 494
equal cubes theorem, 513
equi-dimensional
– part of an ideal, 318
– variety, 475
error correction capability, 415
error-correcting code, 415
essential
– matrix, 249
– variety, 250
Euclidean geometry, 516
Euler’s formula, 27
extended
– power series, 323, 329
– term, 208, 352
extension
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– ideal, 317
– of a monoid ordering, 52
– of a term ordering, 69
– simultaneous, 126

Fibonacci sequence, 199
field of definition of a model, 517
filtration, 454
– adic, 460
– by degree, 455
– by leading term, 455
– compatible, 455
– cycle, 447
– leading form, 458
– on a module, 455
– on an algebra, 454
– orderly, 458, 460
– separated, 458
– standard degree, 455
finite point set, 387
flat family, 57
folium of Descartes, 474
four-leafed rose, 474
fraction, 448
– computation, 450
– distracted, 449
full design, 391, 447
– and distraction, 391
– vanishing ideal, 391
fundamental
– SAGBI diagram, 490
– syzygy, 88, 97, 112

gaps, 370
– and multivariate Hilbert series, 371
– computation, 371
– filling, 337
gcd strategy, 221
general fiber, 57
generator matrix, 416
generic
– element, 262
– Hilbert function, 412
– initial ideal, 275, 383
– linear form, 264
– minimal graded free resolution, 414
– polynomial, 211
– position, 412
– property, 262
– set of points, 411
gin, 275
– and distractions, 383
gluing points, 499

golden mean, 517, 530
good generator strategy, 218
Gorenstein property, 387
Gotzmann
– persistence theorem, 270
– representation, 271
Gröbner basis
– and border basis, 428
– and homogenization, 56
– breaks symmetry, 420
– computation, 96
– Hilbert driven computation, 228
– homogeneous, 87
– idealization, 125
– is numerically unstable, 420
– reduced, 79
– truncated, 92
– under composition, 504
Gröbner filtration, 455, 479
graded
– associated module, 456
– associated ring, 456
– Betti number, 122, 123, 154, 169,

192, 274
– endomorphism, 28
– free module, 21
– homomorphism, 21
– module, 16, 20, 22, 88
– polynomial ring, 16, 18
– ring homomorphism, 29
– Schanuel lemma, 167
– subalgebra, 481
– submodule, 88
grading
– non-negative, 35
– of non-negative type, 23, 25, 86
– of positive type, 23, 25, 86, 327, 372
– positive, 33, 35, 87
– refinement, 333
– standard, 17
– transformation, 19, 22, 36, 332
Gram-Schmidt orthonormalization

procedure, 505
grand slam, 470
graph
– ideal, 246
– totally disconnected, 246
Green
– reduction theorem, 265
– theorem for Hilbert functions, 267

H-basis, 38
h-vector, 234
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Hadamard product, 342
Hamming
– distance, 416
– metric, 416
head reduction, 112
hedonic deflator, 232
Hermite normal form, 358
Heron’s formula, 513
Hessian matrix, 476
higher borders, 422
Hilbert
– basis, 359
– Burch theorem, 168
– driven Buchberger algorithm, 230,

335
– driven computation, 228, 335
– driven invariant computation, 508
– driven SAGBI basis procedure, 503
– field theoretic nullstellensatz, 314
– function, 185
– graded syzygy theorem, 149
– Nullstellensatz, 31
– numerator, 204, 234
– polynomial, 239
– series, 202
Hilbert basis
– computation, 361
– finiteness, 361
– of a monoid, 359
Hilbert function
– affine, 280
– affine computation, 281
– and graded free resolutions, 191
– and leading term modules, 188
– basic properties, 186
– characterization, 269
– computation, 188
– is of polynomial type, 190
– multigraded, 325
– of a graded subalgebra, 481
– of a module, 185
– of a polynomial ring, 186, 326
– of a projective point set, 400, 405
– of primary ideals, 470
– unimodal, 271
Hilbert numerator
– affine, 282
– classical algorithm, 217
– computation, 216
– computation using strategies, 219
– multivariate, 330
– of a module, 204
– of a monomial ideal, 225

– of ideal powers, 340
– rules, 205
– simplified, 234
– simplified affine, 283
Hilbert polynomial
– affine, 283
– basic properties, 240
– computation, 241
– Gotzmann representation, 271
– of a module, 239
– of an algebra, 241
Hilbert series
– affine, 282
– basic properties, 203
– computation, 226
– Macaulay’s theorem, 204
– multivariate, 327, 329
– of a complete intersection, 334
– of a module, 202
– of a tensor product, 334
– shape theorem, 204
history, 477, 539
hit and run, 222
homogeneous
– annihilator, 20
– Buchberger algorithm, 89, 111
– complete intersection, 205
– coordinate ring, 31, 396
– Gröbner basis, 87, 96
– ideal, 22
– linear change of coordinates, 185
– linear map, 21, 28
– matrix, 118, 119
– part of an ideal, 63
– polynomial, 18
– presentation, 118, 120, 130
– prime avoidance, 289
– radical ideal, 20
– radical membership test, 75
– SAGBI basis, 501
– SAGBI basis procedure, 501
– saturation, 20
– subalgebra membership test, 502
– submodule membership test, 99
– vanishing ideal, 31, 396
homogenization, 46
– and Gröbner bases, 56
– and implicitization, 64
– and Macaulay bases, 55
– and reduced Gröbner bases, 79
– as a free module, 57
– characterization, 50, 376
– computation, 50, 56, 75
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– of a Gröbner basis, 79
– of a module, 60, 62
– of a polynomial, 46
– of a vector, 61
– of an ideal, 48
– rules, 46, 48, 51, 59, 62
– via DegRev type orderings, 75
homogenizing indeterminate, 45, 61
homomorphism
– induced, 21
– of graded algebras, 29
– of graded modules, 21
horizontal strategy, 138, 161
hyperplane at infinity, 67
hypersurface, 476
hypothesis
– ideal, 516
– optimal ideal, 525
– polynomial, 512

I -adic filtration, 460
– on a module, 465
ideal
– binomial, 352
– contraction, 317
– defining the idealization, 125
– diagonal, 29
– distributive law, 378
– extension, 317
– generation conjecture, 412
– homogeneous, 22
– homogeneous part, 63
– irreducible, 286
– irreducible monomial, 380
– lattice, 30, 355
– minimal prime, 285
– modular law, 378
– monomial, 18, 21, 298
– monomial part, 63
– of a graph, 246
– of a presentation, 129
– of a projective point set, 396
– of algebraic relations, 489
– of conditions, 523
– of points, 389
– of relations, 208
– optimal hypothesis, 525
– powers, 340
– primary, 286
– radical, 285
– strongly stable, 383
– symmetric, 442
– toric, 30, 352

– vanishing, 31
– zero-dimensional, 291
idealization, 123
– and Gröbner bases, 125
– and minimal generators, 127
– computation, 143
– ideal, 125
– of a graded submodule, 124
– of a homogeneous presentation, 129
– of a module, 123
IGC, 412
ignorabimus, 194, 370
image reconstruction, 248
implicitization, 64, 489
– Hilbert driven approach, 230
independent
– maximal set, 302
– set of indeterminates, 302
indeterminate
– independent, 302
– strategy, 220
index
– of a polynomial, 423
– of a term, 423
induced
– filtration, 479
– homomorphism, 21
– term ordering, 97
ingenuity gap, 370
initial degree, 122
integer
– function, 180
– function of polynomial type, 183, 200
– programming, 367
– valued polynomial, 181
integral
– closure, 313
– element, 312
– ring extension, 312
– ring map, 312
interpolation problem, 388
interpolator, 390, 407
intersection theorem of Krull, 461
invariant
– polynomial, 507
– ring, 507
– subset, 442
– theory, 507
– vector space, 346
inverse problem, 449
irreducible
– ideal, 286
– monomial ideal, 380
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irredundant system of generators, 25,
26

isolated
– critical point, 476
– singularity, 476
isolation of primary components, 316
isosceles, 511, 512, 531

Jacobian
– criterion, 474
– matrix, 474
jump and run, 223
Jupiter magic square, 368

K -rational point, 389
knight moves, 206
Kronecker product, 249
Krull
– dimension, 291, 295
– intersection theorem, 461

� -reduction, 261
Lagrange interpolation, 388, 407
lapalissade, 14
lattice ideal, 30, 355
Laurent
– function, 180, 200
– polynomial, 197
– series, 197, 200, 324
– term, 208
Lawrence lifting, 359
Lazard’s method, 463
leading form, 458
– module, 459
Leitmotiv, 456
lemma
– Noether normalization, 313
– of Artin-Rees, 461
– of Dedekind, 142
– of Schanuel, 167
– of Zorn, 297
levels of a full design, 448
Lex-segment, 258
– growth, 260
– ideal, 268, 269, 276, 405
– space, 258
lifting, 377
– by distraction, 381
– characterization, 377
– of a monomial ideal, 381
– of a relation, 491
– of an ideal, 377
– of homogeneous ideals, 377
linear code, 416

– decoding, 417
– dimension, 416
– dual, 417
– generalized Reed-Muller, 417
– generator matrix, 416
– length, 416
– minimal distance, 416
– parity check matrix, 417
– Singleton bound, 416
– systematic, 418
local ring, 473
logarithmic support, 211

Macaulay
– growth theorem, 267
– growth theorem for ideals, 268
– representation, 255
– theorem for Hilbert series, 204
Macaulay basis, 38, 43
– and homogenization, 55
– characterization, 42
– computation, 39, 41
– in a flat family, 58
magic
– square, 368
– sum, 368
magic square, 368
– associated, 369
– Jupiter, 368
– supermagic, 369
– traditional, 370
margins of matrices, 366
matrix
– adjoint, 142
– associated antisymmetric, 249
– average, 507
– deg-ordered, 119
– essential, 249
– Hessian, 476
– homogeneous, 118
– invertible homogeneous, 119
– Lawrence lifting, 359
– margins, 366
– multiplication by xi , 434
– non-negative, 35
– of non-negative type, 23
– of positive type, 23, 372
– orthogonalization, 505
– positive, 35
– row-wise proportional, 505
maximal independent set, 302
McCoy’s theorem, 168
melencolia, 368
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Milnor number, 476
minimal
– condition, 526
– distance of a code, 416
– generator bounds, 273
– graded free resolution, 148, 151
– homogeneous presentation, 118, 120,

130, 144
– monomial algebra generators, 480
– prime, 285
– resolution conjecture, 413
– separator, 410
– system of generators, 24, 26, 100, 127
minimalization
– computation, 110
– of a reduced Gröbner basis, 106
– of resolutions, 151
– using Buchberger’s algorithm, 102
model, 447, 516
– absolutely false, 523
– algebraically true, 516, 519
– field of definition, 517
– identification, 448
modular law for ideals, 378
module
– degree form, 38, 43
– monomial, 27
– structure on a vector space, 443
Molien
– series, 507
– theorem, 508
monomial
– ideal, 18, 21, 298, 305
– ideal distraction, 379
– irreducible ideal, 380
– minimal subalgebra generators, 480
– module, 27
– part of an ideal, 63
– self-dual ideal, 300
– strongly stable ideal, 275
– subalgebra, 480
Mora’s algorithm, 469
morra game, 469
MRC, 413
Mullah Nasruddin, 408
multigraded Hilbert function, 325
multiplication
– endomorphism, 443
– matrix, 434
– sequence, 187, 203
multiplicity, 234
– of a module, 234
– of a union, 238

– of an affine algebra, 283, 297
– properties, 235
multivariate
– Hilbert numerator, 330
– Hilbert series, 327, 329

Nakayama’s Lemma
– graded version, 26
neighbour, 437
– across-the-street, 437
– next-door, 437
Newton polytope, 211
next-door neighbour, 437
node, 473, 476
Noether normalization, 312
– lemma, 313
non-divisibility, 506
non-negative
– grading, 35
– matrix, 35
non-zerodivisor
– almost, 290
normal form
– in an order ideal, 429
– properties, 429
– subalgebra analog, 500
normal remainder
– in an order ideal, 426
Nullstellensatz, 31

O-sequence, 404
– characterization, 405
opera, 500
optimal hypothesis ideal, 525
order, 458
order ideal, 6, 421
– corner, 428
– identified by a fraction, 448
orderly filtration, 458, 460
orthogonalization, 505

pair of pairs, 112
parabola, 473
parity check matrix, 417
partial
– derivative, 27, 474
– monoid ordering, 41, 42
passegiata, 173
photogrammetry, 247
pivot, 218
point
– critical, 476
– gluing, 499
– singular, 473
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point set
– affine, 389
– affine coordinate ring, 389
– affine part, 396
– finite, 387
– full design, 391
– generic, 411
– having generic Hilbert function, 412
– Hilbert function, 400, 405
– homogeneous coordinate ring, 396,

399
– homogeneous vanishing ideal, 396
– ideal computation, 392
– in generic position, 412
– minimal generators, 412
– of an order ideal, 408
– points at infinity, 396
– projective, 396
– reduced Gröbner basis, 398
– region of uniformity, 417
– under Castelnuovo function, 406
– vanishing ideal, 389
points at infinity, 67, 376, 396
polynomial
– binomial, 352
– canonical, 448
– generic, 211
– homogeneous, 18
– hypothesis, 512
– integer valued, 181
– interpolator, 390
– powers, 210
– separator, 390
– symmetric, 485
– thesis, 512
positive
– grading, 33, 35
– matrix, 35
postulazione, 173
power series, 195
– extended, 323
– Hadamard product, 342
– multivariate, 196
– rational, 197, 198
– ring, 196
presentation
– computation, 130, 144
– homogeneous, 118
– horizontal computation, 138
– idealization, 129
– minimal, 116
– uniqueness, 122
– vertical computation, 132

primary
– component, 316
– component isolation, 316
– decomposition, 284
– embedded component, 317
– ideal, 286
– ideal test, 470
primary decomposition
– computation, 315, 319
– existence, 287
– homogeneous, 288
– of monomial ideals, 298
– uniqueness, 316
prime
– associated, 316
– avoidance, 287
– component, 316
– homogeneous avoidance, 289
primitive separated binomial, 361
procedure, 4, 494
– enumerating, 4, 494
– recursive, 216
projective
– Buchberger-Möller algorithm, 401
– closure, 66
– n -dimensional space, 396
– Nullstellensatz, 31
– point, 396, 398
– point set, 396
– variety, 30
– zero-set, 30, 376
pure binomial, 353, 494

radical membership test, 75
rational normal curve, 84
received word, 415
recursive procedure, 216
reduced
– Gröbner basis minimalization, 106
– SAGBI basis, 501
reduction
– in a subalgebra, 487
– modulo an indeterminate, 77
redundancy, 415
Reed-Muller code, 417
Rees ring, 339
refinement of a grading, 333
region of uniformity, 417
regular
– local ring, 473
– point of a variety, 473
regular sequence
– characterization, 203
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– free resolution, 167
– of indeterminates, 80
regularity index, 183, 239
– affine, 283
– of a module, 239
relation ideal, 208, 489
representation singularity, 420
resolution, 148
– and Hilbert functions, 191
– computation, 154, 161, 170
– existence, 152
– finiteness, 149
– horizontal computation, 161
– local minimalization, 151
– minimal graded free, 151
– Schreyer’s algorithm, 160
– uniqueness, 153, 167
– vertical computation, 155
rewrite relation, 43
– for a subalgebra, 487
– Noetherian, 488
ring
– associated graded, 456
– graded homomorphism, 29
– graded polynomial, 16, 18
– Laurent polynomial, 197
– Laurent series, 197
– local, 473
– of invariants, 507
– of power, 346
– power series, 196
– regular local, 473
– σ -Laurent series, 324
– toy, 344
road runner, 223
row-wise proportional, 505
running
– further, 222
– hit and run, 222
– jump and run, 223
– one, 220
– road runner, 223
– two, 221

SAGBI basis, 479
– and confluent rewrite relation, 488
– and lifting of relations, 491
– and special generation, 486
– characterization, 486, 492
– computation, 494, 495
– criterion, 495
– extended procedure, 498
– finite, 484–486

– for symmetric polynomials, 485
– fundamental diagram, 490
– generates the subalgebra, 480
– Hilbert driven procedure, 503
– history, 477
– homogeneous, 501
– homogeneous procedure, 501
– normal form, 500
– not finite, 482
– procedure, 495
– reduced, 501
– truncated, 502
– under composition, 504
– univariate, 484
scaling ambiguity, 248
Schanuel’s lemma, 167
Schreyer’s resolution algorithm, 160
Segre
– fourfold product, 345
– ideal, 342
– product, 342
self-dual monomial ideal, 300
separated filtration, 458
separator, 390, 407
– computation, 394
– existence, 390
– of minimal degree, 410
set-theoretic complete intersection, 82
σ -Laurent series, 324
– ring, 324
Singleton bound, 416
singular
– locus, 475
– point, 473
singularity, 473
– isolated, 476
– node, 476
– test, 475
socle, 411
special fiber, 57
splitting element, 317, 319
standard
– basis, 459
– basis characterization, 468
– basis computation, 469
– degree filtration, 455
– graded algebra, 17
statistics, 366, 391, 447, 544
straight line subalgebra, 366
strategy
– CoCoA, 223
– gcd, 221
– good generator, 218
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– horizontal, 138, 161
– indeterminate, 220
– to compute Hilbert numerators, 219
– vertical, 132, 155
strongly stable ideal, 275
subalgebra
– diagonal, 341, 365
– graded, 481
– membership test, 502
– minimal monomial generators, 480
– monomial, 480
– Noetherian rewrite relation, 488
– reduction, 487
– rewrite relation, 487
– straight line, 366
summation function, 181
super great spaghetti, 384
SuperG basis, 384
– characterization, 385, 386
supermagic square, 369
symmetric
– border basis, 442
– polynomial, 485
syndrome, 418
– decoding, 417
system of generators
– characterize minimal, 101
– homogeneous, 26
– irredundant, 25, 26
– minimal, 24, 26, 100
systematic linear code, 418
syzygy
– fundamental, 88, 97, 112
– theorem of Hilbert, 149
– transformation, 122

T-polynomial, 494
tail reduction, 112
tangent cone, 463
– algorithm, 464
tensor product
– of graded modules, 334
– of vector spaces, 227
term ordering
– characterization of DegRev type, 70
– degree-anticompatible, 466
– DegRevLex for modules, 69
– induced, 97
– of DegRev type, 69
the real McCoy, 168
theorem
– Green’s reduction theorem, 265
– Hilbert’s graded syzygy theorem, 149

– Krull’s intersection theorem, 461
– Macaulay’s growth theorem, 267, 268
– of Cayley-Bacharach, 410
– of Green for Hilbert functions, 267
– of Hilbert-Burch, 168
– of McCoy, 168
– of Molien, 508
– persistence, 270
thesis polynomial, 512, 516
Tjurina number, 476
top
– binomial representation, 255
– degree, 46, 61
top-dimensional
– decomposition, 318
– part of an ideal, 318
toric ideal, 30, 352
– basic properties, 353
– computation, 353, 358
– generated by pure binomials, 354
– via saturation, 357
total degree, 218
toy
– example, 344
– ring, 344
traditional magic square, 370
transcendence
– basis, 308
– degree, 309
transportation plan, 367
tricky example, 497, 503
trivial condition, 523
truncated Gröbner basis, 92
– application, 98
– characterization, 93
– computation, 92
truncated SAGBI basis, 502
tuple
– deg-ordered, 89
twisted cubic curve, 67, 82, 192
twisted pair ambiguity, 248

uniformity of a point set, 417
unimodal Hilbert function, 271
unimodular matrix, 358
unitary binomial, 353
universal property
– of the localization, 197
– of the tensor product, 227
useless condition, 526

variety
– equi-dimensional, 475
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– essential, 250
– projective, 30
– regular point, 473
– singularity, 473
– Veronese, 209
Veronese
– series, 209
– subring, 209
– surface, 67
– variety, 209
vertical strategy, 132, 155

weak remainder, 466
– computation, 468

weight vector, 18
weighted Hilbert driven Buchberger

algorithm, 336

Zariski
– closed, 262, 315
– open, 262
– topology, 30, 263
zero-set
– of an ideal, 262
– projective, 30, 376
Zorn’s lemma, 297
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