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Hereditary and Monotone Properties
of Combinatorial Structures

Béla Bollobás1

Abstract

A hereditary property of graphs is a collection of (isomorphism classes of)
graphs which is closed under taking induced graphs, and contains arbitrarily
large structures. Given a family F of graphs, the family P(F) of graphs con-
taining no member of F as an induced subgraph is a hereditary property, and
every hereditary property of graphs arises in this way. A hereditary property of
other combinatorial structures is defined analogously. A property is monotone
if it is closed under taking (not necessarily induced) substructures.

Given a property P, we write Pn for the number of distinct structures with
vertices labelled 1, . . . , n, and call the function n 7→ |Pn| the labelled speed of
P. Similarly, the unlabelled speed is n 7→ |Pn|, where Pn is the set of distinct
structures with n unlabelled vertices. The study of hereditary properties is on
the borderline of extremal, enumerative, and probabilistic combinatorics. Thus,
for a family F of graphs, the problem of determining the speed of P(F) is a
natural extension of the basic question in extremal graph theory concerned with
the maximal number of edges in a graph of order n containing no member of F
as a subgraph.

For many a combinatorial structure (graphs, posets, partitions, words, etc.),
there is a surprising phase transition: the speed jumps from one range to a much
higher one. Thus the speed of a property is either not much larger than a certain
function f(n) or is at least as large as a function F which is much larger than
f . Although the jumps may look fairly similar for a variety of combinatorial
structures, much of the time their proofs need new ideas, and give deep insights
into the structures.

In the past few decades, much research has been done on hereditary and
monotone properties of a number of combinatorial structures: the aim of this
paper is to review some of these results, with special emphasis on the most
recent results.

1 Introduction

The roots of the theory we are about to discuss go back to the basic problem of
extremal graph theory: given a graph F , what is ex(n;F ), the maximal number of
edges in a graph of order n not containing F as a subgraph? The traditional starting
point of extremal graph theory, Turán’s theorem [118], proved in 1941, answers this
question when F is a complete graph. A few years later, Erdős and Stone [69] proved
that slightly more edges than are needed to guarantee a complete (r + 1)-graph as
a subgraph also guarantee a complete (r + 1)-partite graph with s vertices in each
class, provided the number of vertices is greater than a certain function of r and s.
(For considerable extensions of this theorem, see [38], [40], [41], [57], [80].)

With this result, Erdős and Stone had given very good bounds on ex(n;F ) for
every F decades before the function ex(n;F ) was even defined and the problem of

1Research supported in part by NSF grants CCR-0225610, DMS-0505550 and W911NF-06-1-
0076.
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2 B. Bollobás

determining it was posed. Indeed, the Erdős–Stone theorem is often viewed as the
fundamental theorem of extremal graph theory (see [36]).

In the 1960s, Erdős and Simonovits [61, 62, 67, 68, 114] launched the study of
the more general function ex(n;F), the maximal number of edges in a graph of order
n without a subgraph belonging to a certain family F of graphs. Putting it slightly
differently, let PF be the class (‘property’) of graphs containing no element of F as
a subgraph. (For a good reason, in §2 we shall use a different notation.) Thus, for
F = {Kr+1}, PF is the class of Kr+1-free graphs, i.e., the property of not containing
a complete graph of order r + 1. Then ex(n;F) is the maximal size of a graph of
order n belonging to PF .

Erdős, Kleitman and Rothschild [64] studied a very different problem concerning
PF in the case when F consists of a single complete graph, Kr+1, namely the number
of graphs on [n] = {1, . . . , n} that belong to PF , with F = {Kr+1}. Ten years or so
later, this result was extended in two directions. First, Erdős, Frankl and Rödl [63]
extended this ‘asymptotic enumeration’ result to that of PF for F = {F}, where
F is any fixed graph. Second, the ‘asymptotic structure’ of Kr+1-free graphs was
determined by Kolaitis, Prömel and Rothschild [90].

In addition, in a series of papers, Prömel and Steger [102, 103, 104, 105, 106]
followed up a suggestion of Erdős, and investigated the number and asymptotic
structure of graphs that contain no induced quadrilaterals and other induced sub-
graphs. Not surprisingly, the problems involving induced subgraphs turned out to
be much harder than those concerning subgraphs. The reason is that the property
of not containing a certain graph is monotone: if G has this property P then every
subgraph of G has P. On the other hand, the property P∗ of not containing a certain
graph as an induced subgraph is only hereditary: if G has P∗ then every induced
subgraph of G has P∗, but a non-induced subgraph need not have this property. We
shall see in §2 and the rest of the paper that this distinction is rather important.

In 1994, Scheinerman and Zito [112] gave a new direction to the study of (general)
hereditary properties, when they showed that the growth of the number of graphs as
the function of the order of the graphs with a hereditary property is very restricted:
no matter what property we take, only a handful of ranges of growth are possible.
(Later, we shall state this more precisely.) Thus the innovation of Scheinerman and
Zito was that rather than attempting the asymptotic enumeration of graphs not
containing certain induced subgraphs (like quadrilaterals), we try to get information
about the growth rate of every hereditary property, no matter how it is defined.

Since the appearance of this seminal paper of Scheinerman and Zito, much re-
search has been done on the ‘growth’ and structure of hereditary and monotone
properties. In this paper, we shall give a brief account of these developments, and
shall sketch some related results concerning other combinatorial structures. It is re-
grettable that, for lack of space, we can give only a fraction of the results we should
like to give. Also, we do not always give the results in chronological order, and fail
to give as much emphasis to a number of contributions as they deserve.

The rest of the paper is organized as follows. First, we define general monotone
and hereditary properties of graphs, and then we introduce ways of measuring their
sizes. In §4 we prove an isoperimetric inequality concerning projections of bodies,
and apply it to fast-growing hereditary properties of graphs and hypergraphs. In
the next two sections, forming the heart of this paper, we discuss the possible ranges
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of growth of hereditary properties of graphs: the highest range in §5, and the other
ranges in §6. The next section is devoted to monotone properties: we shall give some
results that have been proved only for monotone properties, although they may well
be true for hereditary ones as well.

In §8 we discuss the unlabelled speed of a hereditary property, and in §9 we
describe some of the delicate structural results that enable us to obtain good bounds
on the P-chromatic number of a random graph for a hereditary property P. The
natural question as to how far a graph can be from a hereditary property is examined
in §10. In §11 we turn to other combinatorial structures: we shall touch on properties
of posets, permutations, ordered hypergraphs and partitions. Finally, §12 is about
properties of words.

I should like to emphasize that the choice of topics and results has been strongly
influenced by my own preferences: similar papers could be written emphasizing a
rather different set of topics. Needless to say, this short review cannot do justice
to the wealth of results in the active area of hereditary properties of combinatorial
structures.

2 Hereditary and Monotone Properties

We shall study properties of various combinatorial structures, with emphasis on
(finite) graphs. Much of the time, it is easy to extend the notions from graphs to
other structures, mutatis mutandis. Our terminology and notation are standard,
see, e.g., [37]. Thus, V (G) denotes the vertex set of a graph G and E(G) its edge
set; the number of vertices, |G| = |V (G)|, is the order of G, and the number of edges,
e(G) = |E(G)|, is its size. For a graph G and vertex x ∈ V (G), we write G− x for
the graph obtained from G by deleting x and the edges incident with it. Also, Ck

denotes a k-cycle, and Kr is a complete graph of order r.
A property of graphs is an infinite collection P of graphs closed under isomor-

phism. Without any restriction, a property is too general to be of much interest,
but even mild restrictions lead to interesting and difficult problems. Our main aim
in this paper is to study hereditary and monotone properties.

A property P of graphs is hereditary if it is closed under taking induced subgraphs.
Equivalently, P is hereditary if whenever G ∈ P and x ∈ V (G), the graph G−x also
belongs to P. Also, a property P is monotone decreasing or, simply, monotone, if it
is closed under taking subgraphs: if G ∈ P and H ⊂ G, i.e., H is a (not necessarily
induced) subgraph of G, then H ∈ P. The complement P of a monotone decreasing
property P is a monotone increasing property: if G ∈ P and G ⊂ H then H ∈ P.
(The complement P is defined as usual: every graph belongs to either P or P, but
not both.)

Clearly, a monotone (decreasing) property is hereditary, but the converse does
not hold. For example, the class of planar graphs is monotone, as is the class of
triangle-free graphs, but the class of perfect graphs is hereditary but not monotone.

A useful class of hereditary properties is obtained by taking an infinite graph
G and letting P(G) be the collection of finite induced subgraphs of G. Clearly,
P(G) is a hereditary property. For example, for the infinite complete graph K∞
and the infinite star K1,∞ we have P(K∞) = {Kn : n ∈ N} and P(K1,∞) = {H :
H is a star or an empty graph}. Similarly, we may take P(G1, G2, . . . ) =

⋃
i P(Gi)
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for any finite or infinite set of graphs {Gi}.
We shall always assume that our properties are non-trivial: not only are there

infinitely many graphs with the property, but there are also infinitely many graphs
without the property. Occasionally we shall emphasize that we make this assump-
tion.

Every property P is defined by its complement; however, hereditary and mono-
tone properties are also characterized by much smaller classes. Thus, given a set F
of (finite) graphs, let P = Her(F) be the class of graphs containing no member of
F as an induced subgraph. We call F the set of forbidden induced subgraphs for P.
Clearly, P is a hereditary property, and F ⊂ P. By definition, P = Her(P) for every
hereditary property P, but to study P it is better to choose a small set F ⊂ P with
P = Her(F). The smallest such set F consists of the minimal elements of P, i.e., of
the graphs F ∈ P whose every proper induced subgraph belongs to P. For example,
F0 = {C4, C6, C8, . . . } may be such a set: if Her(F) = Her(F0) then F ⊃ F0.

Similarly, given a family F of graphs, let P = Mon(F) be the class of graphs
containing no member of F as a (not necessarily induced) subgraph; clearly, P
is a monotone property. As before, F is the set of forbidden graphs defining the
monotone property P; the minimal elements of P form the unique minimal set of
forbidden graphs for P. A (monotone or hereditary) property defined by a single
forbidden graph is said to be principal; not surprisingly, the first properties to be
studied were principal.

By definition, Mon(F) ⊂ Her(F) for every family F . For example, if F = {K4}
then Mon(F) = Her(F) is the class of graphs containing no complete graph on four
vertices, i.e., the set of K4-free graphs, but if F = {C6} then Mon(F) is the class
of C6-free graphs, while Her(F) contains, e.g., all connected graphs whose blocks
are complete graphs. To describe the principal monotone property Mon(C6) as a
hereditary property, i.e., by forbidding induced subgraphs, we have to take the family
F ′ of all (non-isomorphic) Hamiltonian graphs of order 6: for this family F ′ we do
have Mon(C6) = Her(F ′). (Strictly speaking, we should have written Mon({C6})
for the property, but to reduce the clutter, here and elsewhere we omit the braces.)
In fact, a principal monotone property is also a principal hereditary property if and
only if a single complete graph is forbidden.

The notions of hereditary and monotone graphs have natural extensions to other
combinatorial structures; here we shall note only some of these. First of all, every-
thing above carries over verbatim to multigraphs, directed graphs, oriented graphs,
hypergraphs, directed hypergraphs, and so on. A less trivial extension is obtained
if, rather than considering the class of all graphs on finite sets of vertices, we con-
sider subgraphs of certain ‘ground graphs’. Thus, writing Qn for the graph of the
n-dimensional cube on [2]n with 2n vertices and n2n−1 edges (with each vertex hav-
ing degree n), we may consider subgraphs of these cubes. In fact, we shall consider
only spanning subgraphs, subgraphs whose vertex set is the entire set V (Qn) = [2]n.
The definition of a monotone property is as before; however, some care is needed
to define a hereditary property. Let P be a set of subgraphs of the cubes Q0, Q1,
Q2, . . . with each G ∈ P having vertex set V (Qn) for some n. Then P (as a set
of subgraphs of the cubes) is hereditary if whenever G ⊂ Qn (with V (G) = V (Qn))
belongs to P, every face (subcube) of Qn induces a graph that also belongs to P.
(Needless to say, it suffices to demand that the restriction of G to each of the 2n
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one-codimensional faces belongs to P.) For example, the set of spanning subgraphs
of cubes containing no 3-dimensional subcube minus an edge is a hereditary (but
not monotone) property.

Instead of the cubes Qn, we may take the grids Pn
` ; here Pn

` has vertex set [`]n,
and the edge set is as usual (so that [`] is the path on [`] = {1, . . . , `}). In defining
a hereditary property, from a grid Pn

` we pass on to any of its subgrids (isomorphic
to P k

` for some k) or just to any of its one-codimensional subgrids.
Another natural example of a collection of graphs with restricted ground sets

is the set of subgraphs of the symmetric groups Sn. The vertex set of Sn as a
graph is the set Sn of n! permutations of [n], and two permutations, π, ρ ∈ Sn, are
adjacent if one is obtained from the other by multiplying it (on the right, say) by a
transposition. (Thus our graph is just the Cayley graph of the group Sn, with the
transpositions as the generators.) Although Sn is used for three different objects
(the symmetric group, the set of n! elements of this group, and the graph with this
vertex set), this multiple usage is unlikely to lead to any confusion. Note that the
graph Sn has n! vertices, and each vertex has degree

(
n
2

)
.

To define a hereditary property of subgraphs of the symmetric groups (with each
G ⊂ Sn spanning the vertex set of Sn), we represent a permutation π of [n] as a
sequence x1x2 . . . xn with xi = π(i). Given a position i and a value k, the set Si,k;n

of sequences x = x1x2 . . . xn with xi = k is naturally identified with the set Sn−1; a
sequence x ∈ Si,k;n is mapped into Sn−1 as follows: we delete k (from position i),
decrease by one each term that is greater than k, and decrease by one the position
of each term after the ith position. (Turning this around, this gives an embedding
of Sn−1 into Sn.) For example, for i = 4 and k = 3 the sequence 526341 ∈ S4,3;6 is
mapped into 42531 ∈ S5. In the definition of a hereditary property we demand that
the restriction of a graph G ⊂ Sn in P to such a set belongs to P for all choices of
i and k.

Rather than subgraphs of the symmetric groups, we may consider sets of per-
mutations, with a suitable (and natural definition) of a hereditary property. These
properties have been studied extensively, and we shall review some of the results
in this paper. We shall also consider posets, tournaments, oriented graphs, and
ordered graphs; as we shall see, the problems and results concerning them are inti-
mately connected.

For lack of space, we shall concentrate on properties of graphs: much of the
time it will be clear how the notions to be defined can be carried over to other
combinatorial structures.

3 Measures of Properties

There are several natural ways of measuring the size of a property of graphs.
Each of these measures is a function f(n) of the order n of the set of graphs in
the property, and we are interested in the growth of this function as n → ∞. For
some pleasant properties we may even be able to determine the exact value of f(n)
– however, this is the exception rather than the rule.

Every graph property P is the disjoint union of its levels: P = ∪∞n=1Pn, where
Pn is the set of (isomorphism classes of) graphs in P with n vertices. We call the
function n→ |Pn| the unlabelled speed of P. Similarly, the labelled speed or, simply,
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the speed of P is the function n → |Pn|, where Pn is the set of graphs with vertex
set [n] that are in P.

Clearly, no labelled speed can be more than 2(n
2), the speed of the trivial prop-

erty of all graphs. Similarly, the unlabelled speed of a property is at most that of
the trivial property, which is about 2(n

2)/n!, since almost every graph has a trivial
automorphism group.

As an example of a non-trivial property, if P = P(K1,∞), i.e., P consists of the
empty graph and all the stars (i.e., each G ∈ P is either empty or a star) then

|Pn| = n+ 1 and |Pn| = 2.

Also, let R be the set of graphs consisting of a (possibly trivial) star and isolated
vertices. Then

|Rn| =
n∑

i=3

i

(
n

i

)
+

(
n

2

)
+ 1 ∼ n 2n−1,

and
|Rn| = n.

Given a property P, if G ∈ Pn then Pn contains all graphs on [n] that are
isomorphic to G, so the labelled speed |Pn| is at least as large as the number of
non-isomorphic labellings of G. Also, trivially,

|Pn|/n! ≤ |Pn| ≤ |Pn|, (3.1)

so for large speeds the logarithms of the labelled and unlabelled speeds are about
the same.

For large speeds it is customary to take the logarithmic density cn of the set of
graphs of order n in a property P: this is defined by

|Pn| = 2cn(n
2).

As we shall see in §4, Theorem 4.4, if P is hereditary then the sequence (cn) is
monotone decreasing and so tends to a limit c ≥ 0, the asymptotic logarithmic
density or entropy of the property P, so that

|Pn| = 2(c+o(1))(n
2).

Clearly, this formula is informative for c > 0 but too crude for c = 0, in which case
we have to use finer measures to distinguish the speeds.

For a monotone property there is another natural measure, its size. The size
e(Pn) of a monotone property P at level n is the maximum of the size of a graph in
Pn, and its normalized size dn is the density of of this graph:

e(Pn) = dn

(
n

2

)
= max{|E(G)| : G ∈ Pn}.

The size of P is the sequence (e(Pn)), and its normalized size is (dn).
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The size and the speed of a monotone property P are intimately related: if one
is large, so is the other. First,

|Pn| ≥ 2e(Pn), (3.2)

since if G ∈ Pn then Pn contains all 2e(G) subgraphs of G. This inequality states
precisely that cn ≥ dn. Second,

|Pn| ≤
e(Pn)∑
m=0

((
n
2

)
m

)
, (3.3)

since the right-hand side above is the total number of graphs on [n] with at most
e(Pn) edges.

The problem of determining the size of a monotone property predates by several
decades the study of the speed (labelled or unlabelled) of a hereditary property: if
P = Mon(F) then eP(n) is precisely the extremal function ex(n;F) for the family
F of forbidden graphs, i.e., e(Pn) = ex(n;F). Indeed, Mantel [96] showed over a
hundred years ago that ex(n;K3) = bn2/4c, and the extension of this easy result
from triangles to complete graphs, proved by Turán [118] in 1941, was the starting
point of extremal graph theory:

ex(n;Kr+1) = e(Tr(n)) =
(

1− 1
r

) (
n

2

)
+O(n). (3.4)

Here Tr(n) is the r-partite Turán graph of order n, the complete r-partite graph
with n vertices and as equal classes as possible, i.e., the unique (up to isomorphism,
as always) r-colourable graph of order n with maximal size. Thus, if n = rk + s,
0 ≤ s < r, then the size tr(n) = e(Tr(n)) of the Turán graph Tr(n) is as follows:

tr(n) =
(
n

2

)
− s

(
k + 1

2

)
− (r − s)

(
k

2

)
=

(
n

2

)
− r

(
k

2

)
− s.

In particular, (
1− 1

r

) (
n

2

)
< tr(n) ≤

(
1− 1

r

)
n2

2
.

In 1946, Erdős and Stone [69] proved a considerable extension of Turán’s theorem.
Their result, which can be considered to be the Fundamental Theorem of extremal
graph theory, states, roughly, that a graph of order n with slightly more than tr(n)
edges contains not only a complete (r+ 1)-graph with one vertex in each class (i.e.,
Kr+1), as guaranteed by Turán’s theorem, but one with many vertices in each class.

Theorem 3.1 Given ε > 0 and r, s ∈ N, there is an n0 = n0(ε, r, s) such that if
n ≥ n0 then (

1− 1
r

) (
n

2

)
< tr(n) ≤ ex(n,Kr+1) <

(
1− 1

r
+ ε

) (
n

2

)
,

where Kr+1(s) is the complete (r + 1)-graph with s vertices in each class. �
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In fact, the Erdős-Stone theorem has a formulation which seems to say more
than the original form, Theorem 3.1. Note that, trivially, if the chromatic number
χ(F ) of a graph F is r+ 1 then F 6⊂ Tr(n) for every n, and F ⊂ Kr+1(s) if s is large
enough, say, s ≥ |F |. Hence, if r + 1 = minF∈F χ(F ) then

tr(n) ≤ ex(n;F) ≤ ex(n;Kr(s)),

provided s is large enough. Hence, Theorem 3.1 has the following reformulation,
first noted by Erdős and Simonovits [67].

Theorem 3.1′. Let F be a family of graphs with r + 1 = minF∈F χ(F ) ≥ 2. Then(
1− 1

r

) (
n

2

)
≤ ex(n;F) =

(
1− 1

r

) (
n

2

)
+ o(n2).

Equivalently, if (dn) is the normalized size of the monotone property P = Mon(F)
then

lim
n→∞ dn = 1− 1/r. �

For r = 1 it is easy to improve the very weak bound in Theorem 3.1′. Indeed, if
minF∈F χ(F ) = 2 so that F0 ⊂ K2(s) for some F0 ∈ F and s ≥ 1, then

ex(n;F) ≤ ex(n;F0) ≤ ex (n;K2(s)) = O(n2−1/s).

For a hereditary property the above naive definition of the size is clearly inade-
quate since the very small property of being complete (and so having speed 1) would
have maximal size,

(
n
2

)
. In order to define the size in such a way that inequality

(3.2) holds for hereditary properties as well (in fact, for all properties), we need a
little preparation. First, a pregraph G̃ is a triple (V ; Ẽ, Ñ), where V is a finite set,
the set of vertices, and Ẽ and Ñ are disjoint subsets of V (2), the set of unordered
pairs of vertices; Ẽ is the set of edges and Ñ is the set of non-edges of G̃. A graph
G = (V,E) is said to extend G̃ if G contains every edge of G̃, but no non-edge:

Ẽ ⊂ E ⊂ V (2) \ Ñ .
We say that G̃ belongs to Pn if every graph extending G̃ belongs to Pn.

The size e(G̃) of a pregraph G̃ is |V (2) \ (Ẽ ∪ Ñ)|, so that there are 2e( eG) graphs
extending it. Finally, the size e(Pn) of the nth level Pn of a property P and the
normalized size dn of Pn are given by

e(Pn) = dn

(
n

2

)
= max{e(G̃) : G̃ ∈ Pn }.

The size of a property P is the sequence (e(Pn)), and its normalized size is (dn).
A graph G = (V,E) is naturally identified with the pregraph G̃ = (V ; ∅, V (2)\E),

so that the extensions of G̃ are precisely the subgraphs of G; with this identification
we find that e(G) = e(G̃). Hence, for a monotone property P, the two definitions
do give the same value for e(Pn). Furthermore, as 2m graphs extend a pregraph of
size m, (3.2) holds for every property P; equivalently,

cn ≥ dn

for every property P. We shall see later that for a hereditary property the sequences
(cn) and (dn) converge to the same limit. There is no obvious analogue of inequality
(3.3) for hereditary properties (let alone general properties).
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4 The Cover Inequality, the Box Theorem, and Large Hereditary
Properties

The main aim of this section is to show that every hereditary property of hyper-
graphs has an asymptotic logarithmic density, i.e., the sequence (cn) tends to a limit.
(The existence of a limit is more or less content-free if our property is so small that,
trivially, cn → 0, so in this section we shall be interested in ‘large’ properties.) As we
shall see, this result is an easy consequence of an inequality concerning projections
of sets in Rn; we shall start with this inequality.

We shall call a compact convex subset of Rn which is the closure of its interior a
body in Rn. Let (v1, . . . , vn) be the standard basis of Rn, so that Rn is the linear span
of these vectors: Rn = lin{v1, . . . , vn}. For a subset A of [n] = {1, . . . , n}, write kA

for the orthogonal projection of a body K onto lin{vj : j ∈ A}, and denote by |KA|
the |A|-dimensional volume of KA. In particular, |K| = |K[n]| is the volume of K.
With β(K) = (|KA| : A ⊂ [n]) = (|KA|)A⊂[n] ∈ RP(n) = R2n

, the map K → β(K)
can be considered to measure the size of the boundary of K. (As usual, P(n) is the
collection of all 2n subsets of [n].)

By a cover of [n] we mean a multiset C of subsets of [n] such that each element
i ∈ [n] is in at least one of the members of C. A k-cover is a cover in which each
element of [n] is in exactly k of the members of C. Note that the sets in a cover need
not be distinct; for example, {{1, 2}, {1, 2}, {3}, {3}} is a 2-cover of [3]. A uniform
cover of [n] is a k-cover for some k ≥ 1. We call the 1-cover {[n]} of [n] trivial and
all other covers non-trivial.

A uniform cover of [n] which is not the disjoint union of two uniform covers of
[n] is said to be irreducible. A simple compactness argument tells us that there are
only a finite number of irreducible uniform covers of [n]. In fact, writing D(n) for
the number of irreducuble covers of [n], Huckeman, Jurkat and Shapley proved (see
Graver [77]) that D(n) ≤ (n+ 1)(n+1)/2 for all n. (For related results see Alon and
Berman [7] and Füredi [74].)

The following Cover Inequality and its proof are from Bollobás and Thoma-
son [42]; the result also follows from Shearer’s inequality (see [58]) concerning en-
tropy. This inequality is a considerable extension of the classical Loomis–Whitney
inequality [92] (see also [53, page 95] and [79, page 162]; the inequality was redis-
covered by Allan [6], who gave a more streamlined proof), which claims it for the
(n−1)-uniform cover {[n]\{i}}ni=1 of [n], or for the

(
n−1
k−1

)
-cover of [n] by all k-subsets.

Theorem 4.1 Let K be a body in Rn, and let C be a k-cover of [n]. Then

|K|k ≤
∏
A∈C
|KA|.

Proof We apply induction on n. As the case n = 1 is trivial, we turn to the
induction step. For each x ∈ R let K(x) be the section of K consisting of points
with nth coordinate equal to x, so that |K| = ∫ |K(x)| dx. Let us split C as follows:
C′ = {A ∈ C; n ∈ A}, so that |C′| = k, and C′′ = C \ C′. Then {A \ {n}; A ∈ C′}∪C′′
is a k-cover of [n− 1], so, by the induction hypothesis,∏

A∈C′
|K(x)A\{n}|

∏
A∈C′′

|K(x)A| ≥ |K(x)|k.
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Moreover, we have

|KA| =
∫
|K(x)A\{n}| dx for A ∈ C′

and
|KA| ≥ |K(x)A| for A ∈ C′′.

Consequently, by Hölder’s inequality,

|K| =
∫
|K(x)| dx ≤

∫ [ ∏
A∈C′
|K(x)A\{n}|

∏
A∈C′′

|K(x)A|
]1/k

dx

≤
[ ∏

A∈C′′
|KA|

]1/k ∫ ∏
A∈C′
|K(x)A\{n}|1/k dx

≤
[ ∏

A∈C′′
|KA|

]1/k ∏
A∈C′

[∫
|K(x)A\{n}| dx

]1/k

=

[∏
A∈C
|KA|

]1/k

,

as claimed. �

Now, let us turn to the boundary function β(K) = (|KA|)A⊂[n] ∈ R2n
. What is

the solution of the isoperimetric problem for this ‘boundary’: what body K ⊂ Rn

of volume 1 should we choose to minimize all boundary volumes |KA|? In other
words, if K is a body of volume 1 such that no volume |KA| can be decreased
without increasing some other boundary volume |KB|, what is K? The answer is
surprisingly simple: a box, a rectangular parallelepiped whose sides are parallel to
the coordinate axes. This result, the Box Theorem of Bollobás and Thomason [42],
should surely have been discovered by the 19th century geometers, but they missed
it.

Theorem 4.2 Let K be a body in Rn. Then there is a box B in Rn, with |B| = |K|
and |BA| ≤ |KA| for every A ⊂ [n].

Proof If k ≥ 1 and C is an irreducible k-cover of [n], by Theorem 4.1 we have∏
A∈C
|KA| ≥ |K|k;

also, rather trivially, ∏
i∈S

|K{i}| ≥ |KS |

for every S ⊂ [n]. Since there are only finitely many irreducible uniform covers, this
gives us a finite set of inequalities involving the numbers {|KA|; A ⊂ [n]}.

Let {xA; A ⊂ [n]} be a collection of positive numbers with xA ≤ |KA| and
x[n] = |K|, which are minimal subject to satisfying all the above inequalities with
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xA in place of |KA| for all A. Note that we are applying only a finite number of
constraints to the xA, but that nevertheless

∏
A∈C xA ≥ |K|k for every k-cover C,

since every cover is a disjoint union of irreducible uniform covers.
As the numbers x{i}, i ∈ [n], are minimal, for each i there is an inequality

involving x{i} in which equality holds. If the inequality is of the first kind, then we
have a ki-cover Ci of [n] with {i} ∈ Ci and

∏
A∈Ci

xA = |K|ki . The same is true if the
inequality is of the second kind, namely

∏
i∈S x{i} = xS for some S ⊂ [n], because

in this case the minimality of xS implies
∏

A∈C xA = |K|ki for some ki-cover C of [n]
containing S, and we can take Ci = (C \ {S}) ∪ {{i} : i ∈ S}.

Now, set C =
⋃n

i=1 Ci and k =
∑n

i=1 ki. Then C is a k-cover of [n] containing {i}
for all i ∈ [n], and

∏
A∈C xA = |K|k. But C′ = C \ {{i} : i ∈ [n]} is a (k− 1)-cover of

[n], so
∏

A∈C′ xA ≥ |K|k−1, which implies that
∏n

i=1 x{i} ≤ |K|. Since {{i} : i ∈ [n]}
is a 1-cover of [n], the reverse inequality also holds here, and hence, in fact, equality
holds.

Finally, note that, for any A ⊂ [n], the set {A}∪ {{i}; i /∈ A} is a 1-cover of [n],
so

|K| ≤ xA

∏
i/∈A

x{i} ≤
∏
i∈A

x{i}
∏
i/∈A

x{i} = |K|,

whence xA =
∏

i∈A x{i}. Consequently, the box B, of side length x{i} in the direction
of vi, satisfies |B| = |K| and |BA| = xA ≤ |KA| for all A ⊂ [n]. �

Note that the Cover Inequality (Theorem 4.1) is a trivial consequence of BTBT
(Theorem 4.2). In fact, BTBT implies more: if the volume of a box can be bounded
in terms of the volumes of a certain collection of projections, then the same bound
holds for all bodies.

An easy consequence of the Cover Inequality is that every hereditary property
has an asymptotic logarithmic density, as we remarked in §2. This can be seen by
representing each k-uniform hypergraph on [n] by a unit cube in RN , where N =

(
n
k

)
and the coordinates are indexed by the k-subsets of [n]. Rather than spelling out
this argument, we deduce it from an inequality concerning traces of set systems.

Given a system F of subsets of [n] and a subset A ⊂ [n], the trace of F on A is
FA = {F ∩ A : F ∈ F}. In the present context, it is perhaps more natural to call
FA the projection of F onto A.

Theorem 4.3 Let F be a set of subsets of [n], and let C be a k-cover of [n]. If c ≥ 1
is such that |FA| ≤ c|A| for all A ∈ C, then |F| ≤ cn.

Proof Let us associate to each subset A ∈ [n] its characteristic vector vA =∑
i∈A vi ∈ Rn. Let I be the unit cube and write I + vA for the translate of I

by vA. Finally, put K =
⋃

F∈F (I + vA). This is the set that corresponds to K:
indeed, |K| = |F|, and |KA| = |FA| for all A ⊂ [n]. Applying Theorem 4.1 to the
body K and its projections KA we find that

|F|k = |K|k ≤
∏
A∈C
|KA| ≤

∏
A∈C

c|A| = c
P

A∈C |A| = ckn,

because C is a k-cover of [n]. �
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It is just as easy to show that every hereditary property of uniform hypergraphs
has an asymptotic logarithmic density or entropy, so this is what we shall show.
Let us spell out the notions we need to state this result. A property P of r-uniform
hypergraphs is an infinite class of r-uniform hypergraphs which is closed under
isomorphism, and P is hereditary if every induced subgraph of every member of P
is also in P. As always, Pn is the set of hypergraphs in P with vertex set [n]. The
logarithmic density of P at level n is cn ≥ 0, defined by

|Pn| = 2cn(n
r).

Note that eventually 0 < cn < 1 unless P consists of hypergraphs with no edges
only, or complete hypergraphs only, or of all hypergraphs. As pointed out in [42], an
easy consequence of Theorem 4.3 is that the sequence (cn) is monotone decreasing;
in particular, as shown by Alekseev [3] (see also [4]), it is convergent.

Theorem 4.4 Let P be a hereditary property of r-uniform hypergraphs and let
|Pn| = 2cn(n

r). Then cn−1 ≥ cn for n ≥ 2. In particular, the asymptotic logarithmic
density c = limn→∞ cn exists.

Proof Let us identify a hypergraph with the subset of [n](r) which is its edge set
where, as usual, [n](r) is the set of r-subsets of [n].

This identification turns Pn into a set system on [n](r). Let A(i) be the set of
r-subsets of [n] \ {i}. Then Pn

A(i), the projection of the set system Pn onto A(i), is
the set of hypergraphs induced by the hypergraphs in Pn on the vertex set [n] \ {i}.
Since P is hereditary, |Pn

A(i)| ≤ |Pn−1| for every such A(i).

Now the sets A(i), 1 ≤ i ≤ n, form an (n−1)-cover of [n](r). Also |A(i)| = (
n−1

r

)
and |Pn

A(i)| ≤ |Pn−1| = 2cn−1|A(i)|. By Theorem 4.3,

|Pn| ≤ 2cn−1|[n](r)| = 2cn−1(n
r),

completing the proof. �

As we shall see in the next section, for r = 2, i.e., for graphs, the limit lim cn has
a simple description in terms of the property and its family of forbidden induced
subgraphs; however, for r ≥ 3 very little is known about the dependence of the limit
on the property, and about the set of limit points.

5 Hereditary Properties of Graphs

In this section we return to the study of graphs rather than hypergraphs. Our
main aim is to describe the limit c in Theorem 4.4 for graphs, and to give a simple
characterization of the properties with a given limit. In particular, we shall see
that, as in the Erdős–Stone theorem, only countably many values appear as limits:
0, 1/2, 2/3, 3/4, . . . and 1, for the trivial property of all graphs.

To prepare the ground, we have to introduce some notions. First, let G be
a graph, 0 ≤ s ≤ r integers, and ψ a map V (G) → [r]. Following Prömel and
Steger [104], we call ψ an (r, s)-colouring of G if G[ψ−1(i)] is complete for 1 ≤ i ≤ s
and is empty otherwise.
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For example, the complete graph Kr has no (r − 1, 0)-colouring, but it is (1, 1)-
colourable. Also, the quadrilateral C4 is (2, 2)-colourable and (2, 0)-colourable, but
not (2, 1)-colourable.

Note that a graph G is (r, 0)-colourable if and only if χ(G) ≤ r, since an (r, 0)-
colouring is just an r-colouring in the usual sense. Note also that a graph is (r, r)-
colourable if and only if its complement is r-colourable. Now let

Cn(r, s) = {G : V (G) = [n] and G is (r, s)-colourable}
and set

C(r, s) =
⋃
n≥1

Cn(r, s),

so that C(r, s) is the property of being (r, s)-colourable, and Cn(r, s) is the nth level
of this property.

It is easily shown that

e(Cn(r, s)) = tr(n) ≥ (1− 1/r)
(
n

2

)
and

|Cn(r, 0)| = |Cn(r, r)| ≤ |Cn(r, s)| = 2(1−1/r)n2/2+O(n)

for every s; here C(r, 0) is the property of being r-colourable, and C(r, r) is the
property of having an r-colourable complement.

Then the colouring number r(P) of a hereditary property P is defined by

r(P) = max{r : there exists 0 ≤ s ≤ r such that P ⊃ C(r, s) },
that is, r(P) is the largest integer r such that, for some s, the property P contains
every (r, s)-colourable graph. By our remarks above,

cn ≥ dn ≥ 1− 1/r(P) (5.1)

for our sequences (cn), (dn).
Clearly, if P = Her(F) is the hereditary property given by a family F of forbidden

graphs then

r(P) = max{r : for some 0 ≤ s ≤ r no F ∈ F is (r, s)-colourable }
= max{r : F ∩ C(r, s) = ∅ for some 0 ≤ s ≤ r }.

For example, as C4 is not (2, 1)-colourable, but it is (3, s)-colourable for every s,
0 ≤ s ≤ 3, the property Her(C4) of not containing an induced quadrilateral has
colouring number 2.

Since a graph of order r is (r, s)-colourable for every s, 0 ≤ s ≤ r, it follows that
r(P) is finite if P is non-trivial. Note also that the only (1, 0)-colourable graphs are
empty, and the only (1, 1)-colourable graphs are complete, so by Ramsey’s theorem
r(P) ≥ 1.

For a monotone property, (r, s)-colourability can be replaced by colourability
since every (r, s)-colourable graph contains an r-colourable subgraph, so that if P =
Mon(F) then

r(P) = max{r : no F ∈ F is r-colourable } = min
f∈F

χ(F )− 1.
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Extending results of Prömel and Steger [104] concerning specific and principal
hereditary properties, Bollobás and Thomason [44] proved that, in fact, the trivial
inequalities (5.1) are close to best possible.

Theorem 5.1 Let P be a non-trivial hereditary property of graphs with colouring
number r = r(P). Then c = d = 1 − 1/r: the asymptotic logarithmic density and
asymptotic normalized size of P are both 1 − 1/r. Thus, if |Pn| = 2cn(n

2) and
e(Pn) = dn

(
n
2

)
then

lim
n→∞ cn = lim

n→∞ dn = 1− 1/r(P).

Furthermore, there is an s, 0 ≤ s ≤ r, such that P ⊃ C(r, s) and

|Pn| = |Cn(r, s)| 2o(n2). �

We see from this result that not only are there only countably many well-
separated ranges for the speeds: 2o(n2), 2(1−1/2+o(1))n2/2, 2(1−1/3+o(1))n2/2, and so
on, but also in each of these ranges there are two properties of minimal speed:
in the range 2(1−1/r+o(1))n2/2 the property C(r, 0) of being r-colourable has the
smallest speed, and so does the property C(r, r) consisting of the complementary
graphs. Thus from 2(1−1/(r−1)+o(1))n2/2 the speed has to jump to at least |Cn(r, 0)| =
|Cn(r, r)| = 2(1−1/r)n2/2+O(n).

The proof of Theorem 5.1 is based on the three fundamental results of combi-
natorics: Ramsey’s theorem [107], the Erdős–Stone theorem [69], and Szemerédi’s
Regularity Lemma [116]. Only the very simplest case of Ramsey’s theorem is needed,
that the diagonal graph Ramsey function is finite: R(k) < ∞ for every k. On the
other hand, one needs a little more than the Erdős–Stone theorem, as formulated in
Theorem 3.1: we have to find a Kr+1(s) that spans no ‘forbidden’ edge.

Theorem 5.2 Given r ≥ 1, t ≥ 1 and ε > 0, there exist δ = δ(r, t, ε) and n0 =
n0(r, t, ε) such that the following holds. Let F and G be graphs on the same vertex
set of order n ≥ n0 with e(F ) ≤ δn2 and

e(G) ≥
(

1− 1
r

+ ε

) (
n

2

)
.

Then G contains a Kr+1(t) subgraph that spans no edge of F . �

The most important ingredient of the proof of Theorem 5.1 is SRL, Szemerédi’s
Regularity Lemma [116]. Before we can state it, we need a basic definition.

Given a graph G = (V,E), and subsets A,B,⊂ V , the density d(A,B) is defined
as

d(A,B) =
e(A,B)
|A||B| ,

where e(A,B) is the number of A-B edges. A pair (A,B) is (ε, δ)-uniform if

|d(A′, B′)− d(A,B)| ≤ ε

whenever A′ ⊂ A, B′ ⊂ B, |A′| ≥ δ|A| and |B′| ≥ δ|B|. Here is then SRL; due to
its importance, we state it as a theorem.
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Theorem 5.3 For all ε, δ, η > 0 there is an M = M(ε, δ, η) such that the vertex set
of every graph G can be partitioned into M sets U1, . . . , UM of sizes differing by at
most 1, such that at least (1−η)M2 of the (ordered) pairs (Ui, Uj) are (ε, δ)-uniform.
�

The smaller M can be taken the more powerful SRL is; unfortunately, when
ε = δ = η, all we know about it that it is at most a tower of 2s of height proportional
to ε−5. It is somewhat disappointing that, in spite of the easy and seemingly wasteful
proof of SRL, one can not guarantee a small bound on M(ε, δ, η): as proved by
Gowers [76] it can not be less than of tower type in 1/δ, even when ε and η are kept
large.

To prove Theorem 5.1, Bollobás and Thomason [44] used the results above to
deduce the theorem below stating, very roughly, that every large family of graphs
has a member with many induced subgraphs. Thus, in order to find every member
of Ck(r, s) as an induced subgraph, we do not have to take induced subgraphs of
many members of the family: it suffices to find one which on its own contains every
member of Ck(r, s) as an induced subgraph.

Theorem 5.4 Let r, k ∈ N, r ≥ 2 and ε > 0 be given. Then there exists n0 =
n0(r, k, ε) such that if n > n0 and Qn is a collection of at least 2(1−1/r+ε)(n

2) labelled
graphs with vertex set [n], then Qn contains a graph G0 such that for some s, 0 ≤
s ≤ r + 1, every member of Ck(r + 1, s) is an induced subgraph of G0. �

To all intents and purposes, Theorem 5.4 is stronger than Theorem 5.1. Indeed,
let P be a non-trivial hereditary property of graphs with colouring number r = r(P).
Our task is to prove that lim supn→∞ cn ≤ 1 − 1/r. Suppose that this is false, so
that there exists ε > 0 such that |Pn| > 2(1−1/r+ε)(n

2) for infinitely many values of
n. Theorem 5.4 implies that for each integer k there is an integer sk, 0 ≤ sk ≤ r+1,
such that for some n every graph in Ck(r + 1, sk) is an induced subgraph of some
G0 ∈ Pn. A fortiori, as P is hereditary, Ck(r + 1, sk) ⊂ Pk. Consequently, for some
value of s, we have Ck(r+ 1, s) ⊂ Pk for infinitely many k, and hence for all k. But
this contradicts the definition of r(P), completing the proof of Theorem 5.1.

To conclude this section, let us note a striking difference between monotone and
hereditary properties concerning the (very crude) measure c = d. For monotone
properties, the measure of the intersection of finitely many properties is just the
minimum of the measures: if P1 and P2 are monotone properties then

c(P1 ∩ P2) = min{c(P1), c(P2)}. (5.2)

Indeed, (5.2) holds since for Pi = Mon(Fi), i = 1, 2, we have

min {χ(F ) : F ∈ F1 ∪ F2} = min
{

min{χ(F ) : F ∈ F1},min{χ(F ) : F ∈ F2}
}
.

However, equality (5.2) does not hold for hereditary properties since the defini-
tion of the colouring number depends on the existence of an extra variable, s. For
example, let P1 = Mon(K4) = Her(K4) and P2 = Her(C7), so that P1 is monotone
and P2 is hereditary. What are the colouring numbers of P1, P2 and P1∩P2? Since
χ(K4) = 4, we have r(P1) = 3. Also, C7 is (4, s)-colourable for every s, but not
(3, 3)-colourable, so r(P2) = 3 as well. What about the intersection? The graph K4
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is (3, s)-colourable for every s ≥ 1, and C7 is (3, 0)-colourable, so r(P1 ∩ P2) ≤ 2.
Finally, neither K4 nor C7 is (2, 0)-colourable, so r(P1 ∩ P2) ≥ 2, implying that
r(P1 ∩ P2) = 2. By Theorem 5.1, this shows that

c(P1) = c(P2) = 2/3, but c(P1 ∩ P2) = 1/2,

i.e., P1 and P2 are ‘large’ properties: |Pn
1 | ≈ 2n2/3 and |Pn

2 | ≈ 2n2/3, whereas their
intersection is much smaller: |Pn| ≈ 2n2/4.

6 Classifying Labelled Speeds

As we have already remarked, the study of general hereditary properties of graphs
started with the discovery of Scheinerman and Zito [112] that the speed |Pn| is
severely constrained. (Here, and throughout this section, P stands for a (non-
trivial) property of graphs.) Later Balogh, Bollobás and Weinreich [27, 28, 29,
30] considerably sharpened and extended this result by characterizing the possible
speeds and the structures giving rise to those speeds. In this brief section we shall
give only a fraction of the results and describe only some of the structures.

Note that when talking of possible speeds (e.g., that the speed is polynomial) we
have to mean that the speed |Pn| has the stated properties (e.g., it is a polynomial
in n) provided n is large enough. Indeed, we are always free to add small graphs to
the property if we make sure that the property remains hereditary. For example, let
P consist of all complete graphs and all graphs of order at most 100. Then |Pn| is
2(n

2) for n ≤ 100, and one for n > 100. In view of this, we call two properties, P and
Q, equivalent if |Pn| = |Qn| for n large enough, i.e., the symmetric difference P4Q
consists of finitely many elements. Using this terminology, |Pn| = f(n) means that
there is a property Q equivalent to P such that |Qn| = f(n) for every n.

In the theorem below we have collected assertions from [112, 44, 27] and [30]. We
write B(n) for the nth Bell number, the number of partitions of an n-element set,
so that B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, and B(n) ∼ ((1 + o(1))n/ log n)n.

Theorem 6.1 Let P be a hereditary property of graphs. Then one of the following
cases holds for sufficiently large n.

(i) |Pn| is identically zero, one or two.
(ii) There is an integer k > 0 such that |Pn| is a polynomial of degree k in n.

(iii) There is an integer k > 1 such that |Pn| has exponential order of the form∑k
i=1 pi(n)in, where pi(n) is a polynomial in n, with pk(n) non-zero.
(iv) There is an integer r > 1 such that |Pn| = n(1−1/r+o(1)).
(v) B(n) ≤ |Pn| = 2o(n2).

(vi) There is an integer r > 1 such that |Pn| = 2(1−1/r+o(1))n2/2. �

We call a property P polynomial if |Pn| = O(nk) for some fixed k, exponential
if |Pn| 6= O(nk) for every k and |Pn| = no(n), and factorial if kn ≤ |Pn| ≤ n(1−ε)n

for every k > 0 and some ε > 0, for all n large enough. By Theorem 6.1, in each
of these ranges the growth rate of |Pn| is much more restricted than the definitions
indicate. As we shall see, in the superfactorial range (v), when |Pn| ≥ n(1+o(1))n, a
fair amount of oscillation is possible. On the other hand, by Theorem 4.4, in the
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high range covered by (vi) we have monotonicity after a suitable normalization; in
particular, the labelled speed is a well-behaved function.

Note that Theorem 5.1 tells us (vi) and the second half of (v): either |Pn| = 2o(n2)

or |Pn| = 2(1−1/r+o(1))n2/2 for some r > 1.
Let us emphasize that in several ranges there are ‘hard boundaries’: minimal

and maximal speeds. Starting with the top speeds, if P is a hereditary property
with |Pn| = 2(1−1/r+o(1))n2/2 for some r ≥ 2, then

|Pn| ≥ |Cn(r, 0)| = 2(1−1/r+o(1))n2/2

for every n, where, as before, Cn(r, 0) is the set of r-colourable graphs with vertex
set [n]. Indeed, by Theorem 5.1,

P ⊃ C(r, s)
for some s, 0 ≤ s ≤ 1, and one can check that if n is large enough,

|Cn(r, s)| > |Cn(r, 0)| = |Cn(r, r)|
for all s, 1 ≤ s ≤ r − 1. Thus, either |Pn| ≤ 2(1−1/r+o(1))n2/2 or |Pn| is at least as
large as the number of r-colourable graphs with vertex set [n].

As shown in [30], the jump from speeds of the type n(1−1/k+o(1))n to n(1+o(1))n

is similarly clean. This time there are again two (complementary) properties with
minimal speeds. Let S denote the property that consists of all graphs whose com-
ponents are cliques, and set S = {G : G ∈ S}, i.e., let S be the class of complete
k-partite graphs for k ≥ 1. Clearly, |Sn| = Sn| is the number of partitions of [n]
into (any number of) sets, i.e., the nth Bell number B(n). Parts (iv) and (v) of the
theorem above tell us that if |Pn| ≥ n(1+o(1))n then |Pn| ≥ B(n).

At the other end of the range, it is not surprising that it is rather easy to
prove precise results for small speeds. For example, as noted by Scheinerman and
Zito [112], either |Pn| ≤ 2 for n large enough (and if G ∈ P then G is either empty
or complete), or else |Pn| ≥ n − 1 for every n. Indeed, if |Pn| ≥ 3 then there is a
graph G ∈ P which is neither empty nor complete. Hence it contains a vertex x
with 1 ≤ d(x) ≤ n−2. Giving x label 1, we see that there are at least

(
n−1
d(x)

)
ways of

labelling G, so |Pn| ≥ n−1. Furthermore, if 2 ≤ d(x) ≤ n−3 then |P| ≥ (
n−1
d(x)

)
> n.

A little more analysis tells us that |Pn| > n unless Pn consists of the n stars on
[n] or their complements. Now, if a hereditary property contains the star K1,n then
it also contains the empty graph on n vertices. Consequently, if P is a hereditary
property then either |Pn| ≤ 2 for every n, or else |Pn| ≥ n+ 1 for every n ≥ 3.

With a little work one can show that for linear speeds there is not only a min-
imum, but also a maximum. In fact, as shown in [27], the entire polynomial range
is divided into well-separated subranges with minima and maxima: for every k ≥ 1,
the set of speeds of order Θ(nk) has minimal and maximal members. To define the
minimal speeds, let L1 be the property we have just encountered consisting of stars
and empty graphs, so that |Ln

1 | = n+1. (In fact, this is also the property R we gave
as an example in §3.) Also, let Lk consist of graphs made up of a clique of order at
most k and isolated vertices, so that

|Ln
k | =

(
n

k

)
+

(
n

k − 1

)
+ · · ·+

(
n

2

)
+ 1.
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The maximal speeds are given by slightly more complicated properties. We say
that two vertices of a graph, x and y, are twins or equivalent, and write x ∼ y, if
they are joined to the same set of vertices outside {x, y}: if z 6= x, y then z is joined
to x if and only if it is joined to y. This relation ∼ is an equivalence relation, so our
terminology is justified; we call its equivalence classes homogeneous sets. Clearly,
the subgraph induced by a homogeneous set is either complete or empty. Note that
the vertex set V of a graph G with precisely two equivalence classes has a bipartition
V = V1 ∪ V2 such that each Vi spans either a complete graph or an empty graph,
and G contains either all the edges from V1 to V2 or none of them.

For polynomial speeds there must be a very large homogeneous set. Let Uk be
the hereditary property consisting of all graphs in which all but at most k of the
vertices are equivalent. Thus U1 consists of the stars and the empty graphs together
with the complements of these graphs, so that |Un

1 | = 2n− 2. It is easy to see that

|Un
k | ≤

1
k!

2(k+1
2 )+1nk

for k ≥ 2.
Here is then the result from [27] for polynomial speeds.

Theorem 6.2 Let P be a hereditary property with |Pn| = Θ(nk) for some k ≥ 1,
and let Lk and Uk be the properties defined above. Then

|Ln
k | ≤ |Pn| ≤ |Un

k |. �

As stated in Theorem 6.1 (iii), not only do we have these bounds, but |Pn| itself
is a polynomial. In fact, more is true.

Theorem 6.3 If |Pn| = O(nk) then, for n large enough, |Pn| is a polynomial. More
precisely, there are integers aj, 0 ≤ aj ≤ 2(j+1

2 )+1, depending on P such that

|Pn| =
k∑

j=1

ak

(
n

j

)
if n is large enough. Furthermore, for each k ∈ N, there are only finitely many
non-equivalent hereditary properties with polynomial growth Θ(nk). �

For exponential properties one has to work harder to show that their speeds are
severely restricted. In this range the rough order of the speed is determined by the
numbers and sizes of homogeneous sets. More precisely, given a property P, write
`P for the maximal number of homogeneous sets in a graph G ∈ P. As shown in
[27], `P < ∞ if and only if |Pn| = Θ(kn) for some k. Assuming that `P < ∞, let
kP be the maximal k such that for every s ≥ 1 there is a graph G ∈ P with k
homogeneous classes, each with at least s vertices. Polynomial speeds arise when
kP = 1. If kP ≥ 2 then |Pn| is exponential, and the following theorem holds.

Theorem 6.4 Let P be a hereditary property with parameters `P and kP , as above.
If `P <∞ then there exist polynomials p1, . . . , pk with integer coefficients such that
k = kP , pk is not the zero polynomial, and |Pn| =

∑k
i=1 pi(n)in if n is sufficiently

large. �
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In order to prove the results above, we have to study the structure of a property,
i.e., the structure of the graphs making up the property. Having decided what the
structure is like, counting the graphs is a simple matter. Here we shall describe
briefly the structure of polynomial and exponential properties. Let G(A,B) denote
a graph whose vertex set is partitioned into two classes, A and B: the anchor and
the body of the graph. We call G(A,B) a template, as we shall use it to construct a
family of graphs. A template is allowed to contain loops, but only at the vertices of
B. This notation suggests that when we construct graphs from G(A,B) as a code,
the vertices in B will be ‘blown up’ into many vertices, while those in A will just
‘anchor’ the new graph.

Let x1, . . . , xb be an enumeration of the vertices in B, so that |B| = b. Given a
template GA,B and non-negative integers m1, . . . ,mb, we denote by G(A;B · (mi)b

1)
the graph obtained from GA,B by replacing each xi by mi vertices, and joining two
new vertices if the original vertices were joined by an edge or loop. (note that mi = 0
is allowed.) Thus, H = G(A;B · (mi)b

1) has |A|+ ∑b
i=1mi vertices; also, two of the

mi vertices replacing xi are joined by an edge if and only if GA,B has a loop at xi,
and a vertex replacing xi is joined to a vertex replacing xj if and only if xixj is
an edge of GA,B. We say that H has been obtained from GA,B by blowing up the
vertices of B, or multiplying each vertex xi by mi.

Let us use a template G(A,B) to define a family P(GA,B) of graphs as follows:

P(G(A,B)) = {G : G ∼= G(A;B · (mi)b
1), mi ≥ 1 for every i}.

Clearly, P(G(A,B)) is a hereditary property of graphs; with a slight change of
notation, we write Pn(G(A,B)) for the set of graphs in P(G(A,B)) with vertex set
[n].

Using templates, the structure of a polynomial hereditary property P is easily
described: there is a finite set of templates GAi,Bi , i = 1, . . . , `, with each Bi a single
vertex or a vertex with a loop, such that Pn = ∪`

i=1Pn(Ai, Bi) if n is large enough.
Exponential properties are more complicated: in this case the templates deter-

mining the properties are not restricted. However, surprisingly, every exponential
property is equivalent to a property determined by finitely many templates; this is
an important step in the proof of Theorem 6.4.

Theorem 6.5 Let P be an exponential hereditary graph property. Then there are
finitely many templates, G1(A1, B1), . . . , Gs(As, Bs), such that

Pn =
s⋃

i=1

Pn(Gi(Ai, Bi))

if n is sufficiently large. �

The results above seem to indicate that the unlabelled speed of a hereditary prop-
erty is a rather pleasant, well-behaved function. Indeed, we know from Theorem 6.1
that the limits

lim
n→∞

log |Pn|
n

and lim
n→∞

log |Pn|
n2

exist for every hereditary property P. However, this is somewhat misleading: in the
penultimate range, (part (v) of Theorem 6.1) the speed may ‘oscillate’ so much that
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the limit
lim

n→∞
log log |Pn|

log n
does not exist. In fact, in a large range we can come close to prescribing the exact
value of |Pn| even for a monotone property P.

Theorem 6.6 Let 1 < c < c′ and ε > 1/c. Let f(n) be a function such that
nc′n < f(n) < 2n2−ε

for all n. Then there are integer sequences (ri) and (si) and a
monotone property P such that

(1) |Pn| = n(c+o(1))n whenever n = ri,
(2) |Pn| > f(n)− n! whenever n = si,
(3) |Pn| ≤ f(n) for all n,
(4) |Pn| ≥ n(c+o(1))n. �

Note that the bounds in the oscillation above, c and ε, depend on each other. It
has not been ruled out that this dependence is unnecessary, i.e., the assertions above
would hold whenever c > 1 and ε > 0. In [28] it was conjectured that this is not the
case, and the dependence is necessary: for all c > 1 there is an ε > 0 such that if P is
a hereditary property and |Pn| ≥ 2n2−ε

holds infinitely often, then |Pn| ≥ n(c+o(1))n,
and, conversely, for all d > 1 there is a δ > 0 such that if |Pn| ≤ ndn infinitely often
then |Pn| ≤ 2n2−δ+o(1)

.

7 Monotone Properties

For monotone properties the speeds and structures are even more restricted
than for hereditary properties. For example, polynomial monotone properties are
easily identified. Indeed, for a monotone property P, let v∗(P) be the supremum
of the order of a graph G ∈ P without isolated vertices. It is easily seen that if
v∗(P) = k <∞ then (

n

k

)
≤ |Pn| ≤ k!

(
n

k

)
,

hence, as pointed out in [29], a monotone property P has polynomial speed if and
only if v∗(P) < ∞. With considerably more work, it is shown in [28] that if the
speed of a monotone property is exponential then its size is linear in n: e(P) = O(n).

Another easy result is that, as shown in [28], in the superfactorial range B(n) ≤
|Pn| = 2o(n2) (case (v) of Theorem 6.1) the upper bound can be improved consider-
ably.

Theorem 7.1 Let P be a monotone property with |Pn| = 2o(n2). Then there is a
t ≥ 1 such that |Pn| ≤ 2n2−1/t+o(1)

.

Proof Let P = Mon(F) be a monotone property with speed |Pn| = 2o(n2). If no
member of F were bipartite, then P would contain the property B consisting of
bipartite graphs, so we should have 2bn2/4c ≤ |Bn| ≤ |Pn|. Hence, F ∈ F for some
bipartite graph F . We may clearly assume that F is a non-empty bipartite graph:
let t be the order of a larger set in a bipartition.

We claim that |Pn| ≤ 2n2−1/t+o(1)
. Suppose for a contradiction that for some

ε > 0 the inequality |Pn| ≥ 2n2−1/t+ε
holds for infinitely many values of n. Inequality
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(3.3) is easily seen to imply that for infinitely many n we have e(Pn) ≥ n2−1/t, i.e.,
e(Gn) ≥ n2−1/t for some Gn ∈ Pn. By a theorem of Kővári, Sós and Turán [91] (see
also [36]), if n is large enough then such a Gn contains the complete bipartite graph
Kt,t. But then F ⊂ Kt,t ⊂ Gn, a contradiction. �

Balogh, Bollobás and Simonovits [25] considerably sharpened the upper bound
in Theorem 5.1 (i.e., Theorem 6.1 (vi)) for monotone properties. (As we remarked
earlier, for monotone, rather than hereditary, properties this was proved by Erdős,
Frankl and Rödl [63].) Recall that for a monotone property P = Mon(F) the
colouring number r(P) is one less than the minimal chromatic number of a forbidden
graph: r(P) = min{χ(F ) : f ∈ F} − 1.

Theorem 7.2 For every monotone property P there is a constant γ = γ(P) > 0
such that

|Pn| ≤ 2(1−1/r)n2/2+O(n2−γ). �

In fact, Balogh, Bollobás and Simonovits [25] proved more: they determined the
exact order of the error term in the exponent above.

The proof of Theorem 7.2 is rather involved: it is based on Szemerédi’s Regular-
ity Lemma[116], and the Stability Theorem of Erdős and Simonovits (see [61, 67, 68,
114]). In a subsequent paper, Balogh, Bollobás and Simonovits [26] went consider-
ably further: they proved the stability result that almost all graphs in P = Mon(P)
are rather close to the Turán graph Tr(n), where r = r(P).

It is likely that, as conjectured in [28], Theorem 7.2 holds for hereditary prop-
erties as well. It is almost certain that new methods are needed to prove this
conjecture, since the proof of Theorem 7.2 seems to break down irretrievably.

8 Unlabelled Speed

Recall that the unlabelled speed of a hereditary property P is the function n 7→
|Pn| where Pn is the set of (isomorphism classes of) graphs in P with n vertices. In
(3.1) we noted the triviality that the labelled and unlabelled speeds differ by at most
a factor n!, so we shall study the unlabelled speed of a hereditary property P with
labelled speed not much larger than n!. More precisely, we shall be interested in
properties covered by cases (i)–(iv) of Theorem 6.1, and the lower end of the range
in (v). In particular, we are not interested in the high range covered by (vi).

As shown in [30], the jump from speeds of the type n(1−1/k+o(1))n to n(1+o(1))n

is similarly clean. This time there are again two (complementary) properties with
minimal speeds. Let S denote the property that consists of all graphs whose com-
ponents are cliques, and set S = {G : G ∈ S}, i.e., let S be the class of complete
k-partite graphs for k ≥ 1. Clearly, |Sn| = Sn| is the number of partitions of [n]
into (any number of) sets, i.e., the nth Bell number B(n). Parts (iv) and (v) of the
theorem above tell us that if |Pn| ≥ n(1+o(1))n then |Pn| ≥ B(n).

Balogh, Bollobás, Saks and Sós [24] proved fairly precise results about the unla-
belled speed of a property in cases (i)–(iv) of Theorem 6.1. As in Theorems 6.2–6.4,
the unlabelled speed |Pn| greatly depends on the homogeneous sets found in a graph
G ∈ P. Of special importance are homogeneous k-partite graphs, graphs G with
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V (G) = V1 ∪ · · · ∪ Vk such that any two vertices belonging to the same part Vi are
twins.

We have already encountered the property S consisting of graphs in which every
component is a complete graph, and the complementary property S of complete
k-partite graphs for k = 1, 2, . . . . We know that these properties S and S have the
smallest labelled speed in Theorem 6.1 (v), namely |Sn| = |Sn| = B(n), the nth Bell
number. The unlabelled speed of these properties is |Sn| = |Sn| = S(n), the number
of partitions of a set with n indistinguishable elements into nonempty subsets, so
that S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 5, S(5) = 7 and S(6) = 11.

Before we state the main result from [24], we introduce two more properties and
their complements. Let T denote the property consisting of all star forests, i.e.,
graphs whose components are stars, and put T = {G : G ∈ T }. Also, denote by
F the property consisting of all the path forests, i.e., graphs whose components are
paths, and set F = {G : G ∈ F}. Clearly, each of T , T , F and F has unlabelled
speed S(n), and labelled speed greater than B(n).

Theorem 8.1 For every hereditary graph property P one of the following assertions
holds.
(i) There are integers `, t and C such that if n is large enough then every graph
G ∈ Pn is such that for some set V0 of at most C vertices, the graph G− V0 is the
symmetric difference of a homogeneous `-partite graph and a graph in which every
component has at most t vertices. The unlabelled speed Pn is polynomially bounded;
even more, there is a positive integer k and a rational number c such that

|Pn| = c · nk +O(nk−1). (8.1)

(ii) If n is large enough, |P| ≥ S(n). Furthermore, equality holds for infinitely many
n if and only if for n large enough P the n unlabelled slice of one of the six hereditary
properties S,S, T , T ,F and F . �

It would be good to prove more precise results. For example, it is very likely
that if (8.1) holds then, for large enough n, the unlabelled speed |Pn| is essentially
a polynomial.

9 Colouring Random Graphs with Hereditary Properties

As customary, denote by Gn,p a random graph with vertex set [n], whose edges
are selected independently, with probability p. The probability space of these graphs
is G(n, p). In particular, G(n, 1/2) is the space of all 2(n

2) graphs on [n] with the
uniform distribution.

What can one say about the chromatic number χ(Gn,p) of a random graph
Gn,p with p = p(n), 0 < p(n) < 1? This was perhaps the most important question
proposed and left open by Erdős and Rényi [65, 66], when around 1960 they founded
the theory of random graphs (see [33]). After partial results by Grimmett and
McDiarmid [78], Matula [98], Bollobás and Erdős [39], Shamir and Spencer [113],
and others , in 1988 it was proved [34] that if 0 < p < 1 is fixed and q = 1− p then

χ(Gn,p) = (1 + o(1))
n

2 log1/q n
(9.1)
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for almost everyGn,p. Substantial extensions of this result were proved by  Luczak [94,
95], Frieze and  Luczak [73], Alon and Krivelevich [11], Achlioptas and Naor [1]. The
proofs of these results are based on martingale inequalities (see [35]).

Here we are concerned with certain generalized colourings introduced by Schein-
erman [111]. For a property P, a P-colouring of a graph G = (V,E) with k colours
is a partition V = V1 ∪ · · · ∪ Vk of the vertex set such that every class Vi induces a
P-graph: G[Vi] ∈ P, i = 1, . . . , k. The P-chromatic number χP(G) of a graph G is
the minimal number of classes in a P-colouring of G. Thus χC(1,0)(G) = χ(G) and
χC(1,1)(G) = χ(G), where, as before, C(r, s) is the property of being (r, s)-colourable.
Scheinerman [111] was the first to study the P-chromatic number of random graphs:
he noted that if P is a hereditary property then either C(1, 0) ⊂ P or C(1, 1) ⊂ P
so χP(G) ≤ max{χ(G), χ(G)}, which implies that χP(Gn,p) = O(n log n) for ev-
ery fixed 0 < p < 1 and hereditary property P. In fact, it is easily seen that
χP(Gn,p) = Θ(n log n).

In 1995, Bollobás and Thomason [43] proved an analogue of (9.1) for a general
hereditary property in the case p = 1/2: if P is a non-trivial hereditary property of
graphs with colouring number r = r(P), then

χP(Gn,1/2) =
(

1
2r

+ o(1)
)

n

log2 n
(9.2)

for almost every Gn,1/2.
To prove (9.2), one shows that χP(Gn,1/2) is unlikely to be much smaller than

n/(2r log2 n) since |Pn| = 2(1−1/r+o(1))n2/2, and it is unlikely to be much larger than
n/(2r log2 n) since C(r, s) ⊂ P for some s with 0 ≤ s ≤ r.

Unlike other graph parameters, for which results concerning Gn,1/2 are just about
equivalent to those about Gn,p for fixed p 6= 1/2, the P-chromatic number of Gn,p

is much easier to determine for p = 1/2 than for p 6= 1/2. However, it is easy
to obtain a good lower bound from the following result, which is a consequence of
Theorem 4.2.

Theorem 9.1 Let P be a hereditary graph property, let 0 < p < 1 and let the
constants ek,p(P) be defined by P(Gk,p ∈ P) = 2−ek,p(P)(k

2). Then ek,p(P) increases
with k. In particular, ek,p(P) tends to a limit ep(P) as k → ∞. Furthermore,
ep(P) > 0 if P is non-trivial, i.e., if not every graph has P. �

Theorem 9.1 implies that, for ε > 0, the expected number of induced subgraphs
of order k in a random graph Gn,p having property P is o(1) for k ≥ (2/ep +ε) log2 n,
and tends to infinity for k ≤ (2/ep − ε) log2 n. From this it follows that

χP(Gn,p) ≥ (ep + o(1))n/(2 log2 n) (9.3)

almost surely.
The proof of (9.2) was based on the fact that for p = 1/2 the constant ep(P)

has a simple interpretation in terms of the values (r, s) for which C(r, s) ⊂ P.
Unfortunately, for p 6= 1/2 this is no longer true: ep(P) cannot be characterized
solely in terms of these values (r, s). Nevertheless, Bollobás and Thomason [45]
proved that, as conjectured in [43] and claimed by (9.2) for p = 1/2, (9.3) holds
with equality.
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Theorem 9.2 Let P be a hereditary graph property, 0 < p < 1, and ep = ep(P) the
constant defined in Theorem 9.1. Then

χP(Gn,p) = (ep + o(1))n/(2 log2 n)

almost surely. �

The proof of Theorem 9.2 is considerably more difficult than that of (9.1): not
only does it use martingale inequalities and Szemerédi’s Regularity Lemma, but also
relies heavily on a careful analysis of the structure of a general hereditary property.

The product
∏

γ∈Γ Pγ of hereditary properties Pγ , γ ∈ Γ, is the class of graphs
G with vertex sets

⋃
γ∈Γ Vγ such that G[Vγ ] ∈ Pγ for every γ ∈ Γ. A hereditary

property is irreducible if it is not the product of two other hereditary properties. It
is easily shown that every hereditary property is the product of a finite collection of
irreducible hereditary properties. Also, if P =

∏
γ∈Γ Pγ then

ep(P)−1 =
∑
γ∈Γ

ep(Pγ)−1.

One can show that if Theorem 9.2 holds for the properties P1, . . . ,Pk, then
it holds for

∏k
i=1 Pi as well. Consequently, it suffices to prove Theorem 9.2 for

irreducible properties.
In fact, the heart of the proof of Theorem 9.2 is the assertion that it holds for

every ‘typed’ property P = P(τ). A type is a labelled graph, with the vertices and
the edges coloured black or white. Given a type τ , the property P(τ) consists of
those graphs G for which V (G) has a partition

⋃
t∈V (τ) Vt such that G[Vt] is complete

or empty according as t is black or white, and moreover, if the edge tu is in τ then
G[Vt, Vu] is a complete or empty bipartite graph according as the edge tu is black or
white. To prove that Theorem 9.2 holds for typed properties P(τ) we have to give
a careful analysis of the maximal number of induced edge-disjoint subgraphs of a
given order having property P.

10 The Distance from a Hereditary Property

Following Axenovitch, Kézdi and Martin [17] (see also [18]), define the edit dis-
tance of two graphs, G1 and G2, on the same vertex set as

4(G1, G2) = |E(G1)4E(G2)|,

i.e., the minimal number of edges whose deletion and addition turns G1 into G2.
Also, given a graph property P and a graph G on [n], write 4(G,P) for the edit
distance of G from P:

4(G,P) = min{4(G,H) : H ∈ Pn}.

Finally, set
ed(n,P) = max{4(G,P) : V (G) = [n]}.

Thus ed(n,P) is the maximal number of edges we may have to alter to make a graph
on [n] have property P.
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What can we say about ed(n,P) for various hereditary properties? Axenovitch,
Kézdi and Martin [17], who posed this question, proved that for a principal heredi-
tary property P = Her(H) with colouring number r we have(

1
2r

+ o(1)
)
≤ ed(n,P) ≤ 1

r

(
n

2

)
.

In fact, in [17] it was also proved that for some families P of graphs ed(n,P) is the
lower bound above.

Alon and Stav [14] have gone considerably further: they proved that ed(n,P) is
essentially attained on a random graph Gn,p.

Theorem 10.1 Given a hereditary property P, there is a constant p = p(P), 0 <
p < 1, such that if ε > 0 then

P
(
ed(n,P)− ed(Gn,p,P) ≥ εn2

)→ 0,

as n→∞. �

The result above and its proof are related to testable properties, i.e., properties
P for which there is a probabilistic algorithm that samples small portions of a
graph, and decides whether the graph belongs to P. Alon, Fischer, Krivelevich and
Szegedy [8, 9] proved that every principal hereditary property is testable, and this
result was extended to all hereditary properties by Alon and Shapira [12] (see also
Lovász and Szegedy [93]). The proof of Theorem 10.1 by Alon and Stav was based on
the techniques in [12] and [45]. Concerning monotone properties, Alon, Shapira and
Sudakov [13] gave a polynomial time algorithm for approximating the edit distance
of an input graph from a monotone property.

In [15], Alon and Stav went further: they showed that for a hereditary property
P not in the highest range, the probability p(P) is 0, 1, or 1/2.

Theorem 10.2 Let P be a hereditary graph property of speed |Pn| = 2o(n2). Then
one of the following assertions holds.

1. e(G) = o(n2) for every G ∈ Pn; ed(n,P) = (1 + o(1))
(
n
2

)
, and p(P) = 1.

2. e(G) = o(n2) for every G ∈ Pn; ed(n,P) = (1 + o(1))
(
n
2

)
, and p(P) = 0.

3. There is a constant c > 0 such that for every n there are graphs G1, G2 ∈ Pn

with e(G1) > cn2 and e(G1) > cn2; ed(n,P) = (1
2 + o(1))

(
n
2

)
, and p(P) = 1

2 . �

Alon and Stav determined the probability p(P) for several frequently used hered-
itary property. For example, they proved that if P = Her(K1,3), i.e., P is the
probability of being claw-free, then p(P) = 1

3 and ed(n,P) = (1
3 + o(1))n

2 .

11 Posets, Permutations, Ordered Hypergraphs, and Partitions

The aim of this brief section is to draw attention to the work on a variety of
structures, rather than give an account of the results and proofs.

Let us start with posets. Kleitman and Rothschild [88] were the first to give
good bounds on Nn, the number of posets on [n]. To get a (pretty good) lower
bound on Nn, partition [n] into two classes at random, V1 and V2, say, then select
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edges v1v2 from V1 to V2 with probability 1/2, and declare v1 greater than v2. From
this it is easy to see that Nn ≥ 2n2/4. Kleitman and Rothschild [88] proved that this
lower bound is not too far from an upper bound; the method of proof in this paper
was used by Erdős, Kleitman and Rothschild [64] to prove their result on Kr+1-free
graphs. As we mentioned in §1, this result was a precursor of the study of general
hereditary properties.

A few years later Kleitman and Rothschild [89] improved their own result con-
siderably, and another twenty years later Brightwell, Prömel and Steger [52] proved
an astonishingly precise and surprising result: not only did they determine the
asymptotic value of Nn with great precision, but also discovered that it depends
substantially on the parity of n.

Theorem 11.1 There is an absolute constant C > 1 such that

Nn =
(
1 +O(C−n)

) n∑
s=0

(
n

s

)
2(s+1)(n−s).

Furthermore,

Nn = (1 +O(1/n))ϕi(n)2
(n+1)2/4

(
n

bn/2c
)
,

where i(n) is 1 if n is odd, and 2 if it is even; also ϕ1 =
∑∞

j=−∞ 2−(j+1/2)2 =
2.1289312 · · · and ϕ2 =

∑∞
j=−∞ 2−j2

= 2.1289368 · · · . �

Brightwell, Grable and Prömel [51] considered the speed of the principal heredi-
tary property P(P ) of posets not containing a fixed poset P . Clearly, if P has height
at least 3, i.e., does not contain elements x < y < z, then P(P ) contains all posets of
height 2. In particular, if [n] = V1∪V2 is a partition of [n] then Pn(P ) contains every
poset on [n] in which x > y implies that x ∈ V1 and y ∈ V2, so |Pn(P )| ≥ 2n2/4.
Brightwell, Grable and Prömel [51] proved that, in fact, |Pn(P )| = 2(1+o(1))n2/4

whenever P has height at least 3. On the other hand, if P has height 2 then
|Pn(P )| = 2o(n2). Even more, they proved that |Pn(P )| ≤ n!cn for some constant c
if and only if P is either an antichain or one of ten small partial orders.

Since posets are in one-to-one correspondence with the closures of oriented
graphs, Theorem 11.1 is also a result about certain hereditary properties of ori-
ented graphs. (To spell it out, an acyclic oriented graph

−→
G corresponds to the poset

on V (
−→
G) in which u > v if

−→
G contains a u− v path oriented from u to v.)

Concerning general properties of oriented graphs, Alekseev and Sorochan [5]
proved that for the labelled speed there is a large jump in the highest range.

Theorem 11.2 The labelled speed of a hereditary property of oriented graphs is
either 2o(n2) or at least 2n2/4+o(n2). �

Turning to permutations, we take Sn to be the set of permutations of [n], and
write π ∈ Sn as the sequence π(1)π(2) . . . π(n). Given a permutation π = x1x2 . . . xn

of [n], if ρ = y1y2 . . . yk is obtained from π by deleting n−k terms of π and fitting the
others into [k], while keeping their order, then we say that π contains ρ. Otherwise
π is said to avoid ρ. More formally, a permutation π ∈ Sn is said to contain a
permutation ρ ∈ Sk if there are 1 ≤ n1 < · · · < nk such that π(ni) < π(nj) if
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and only if ρ(i) < ρ(j). For example, 36182475 contains 321: keeping 8, 7 and 5,
the order of these terms is the same as that of 3, 2 and 1. Also, there is only one
permutation π ∈ Sn that avoids 21 ∈ S2, the increasing permutation π = 12 . . . n.

A property P of permutations is taken to be a subset of
⋃
Sn. We call P

hereditary if it is closed under containment; Pn = P ∩ Sn is the set of permutations
of length n in P, and the function n 7→ |Pn| is the speed of P. Given a permutation
ρ ∈ Sk, write P(ρ) for the hereditary property of permutations avoiding ρ. Note
that if π is a non-trivial hereditary property then P ⊂ P(ρ) for some ρ, in fact, for
every ρ /∈ P. Thus, properties of type P(ρ) are the largest non-trivial hereditary
properties.

What can we say about the range of speeds n 7→ |Pn|? If P is the trivial property
consisting of all permutations then |Pn| = n! = n(1+o(1))n. What about the speed of
a non-trivial hereditary property? R.P. Stanley and H.S. Wilf conjectured that such
a speed is at most cn for some constant c depending on P. (This conjecture was first
published by Bóna [46, 47].) Equivalently, for every permutation ρ there is a constant
c such that |Pn(ρ)| ≤ cn. In fact, Arratia [16] showed that, as expected, |Pn(ρ)|1/n

tends to a limit for every ρ, since |Pn(ρ)| is submultiplicative; consequently, if the
Stanley–Wilf conjecture is true then for every permutation ρ there is a constant
c(ρ) ≥ 1 such that |Pn(ρ)| = c(ρ)(1+o(1))n.

The Stanley–Wilf conjecture was proved by Bóna [46, 47, 48, 49] in some special
cases, and Alon and Friedgut [10] came close to proving it in full when they gave
an upper bound only slightly larger than cn. In spite of this progress, a proof of the
conjecture itself seemed to be out of reach. Thus it was quite a surprise when the
combined efforts of Klazar [84], and Marcus and Tardos [97] brought about a very
elegant and rather simple proof of the full Stanley–Wilf conjecture. The starting
point was a conjecture made by Hajnal and Füredi [75] 1992 concerning extremal
properties of 0–1 matrices. Then, in 2000, Klazar [84] proved that this conjecture
implied the Stanley–Wilf conjecture. Finally, in 2004, Marcus and Tardos [97] proved
the Hajnal–Füredi [75] conjecture, and so the Stanley–Wilf conjecture as well.

To state these results, we have to extend the notion of containment from per-
mutations to 0–1 matrices. Let A = (aij) be an n × n matrix and B = (bij) a
k × k matrix with the entries 0s and 1s. We say that A contains b if there are
1 ≤ n1 < · · · < nk ≤ n such that aninj = 1 whenever bij = 1. In particular, if A
is the matrix of a permutation π and B is that of ρ then A contains B if and only
if π contains ρ. We write ||A|| for the sum of entries of a 0–1 matrix A, i.e., the
number of 1s in A. Here is then the theorem conjectured by Füredi and Hajnal [75]
and proved by Marcus and Tardos [97].

Theorem 11.3 For every k there is a constant ck such that if A is an n×n matrix
whose entries are 0s and 1s and ||A|| ≥ ckn then it contains every k×k permutation
matrix. �

To prove Theorem 11.3, Marcus and Tardos gave a beautiful combinatorial argu-
ment based on the pigeon-hole principle to find a recursive estimate for the maximal
number of ones in a 0–1 matrix not containing a given permutation matrix, and
deduced from this a bound for ck. This bound is expected to be very far from the
best possible value for ck.
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As we remarked above, before Theorem 11.3 was proved, Klazar [84] had proved
that it implied the Stanley–Wilf conjecture.

Theorem 11.4 For every permutation ρ ∈ Sk there is a constant c such that
|Pn(ρ)| ≤ cn for every n. �

Not much is known about the constant c(ρ) = |Pn(ρ)|1/n which Theorem 11.4
guarantees to be finite. Arratia conjectured that if ρ ∈ Sk then c(ρ) ≤ (k− 1)2, but
Albert, Elder, Rechnitzer, Westcott and Zabrocki [2] disproved this conjecture by
showing that c(ρ) > 9.47 for the permutation ρ = 4231. (In fact, the estimated value
of c(4231) is between 11 and 12.) Furthermore, Bóna [50] showed that, contrary to
expectations, c(ρ) need not be rational; in particular, for c(12453) = 9 + 4

√
2.

In fact, c(ρ) cannot be too small either: improving a result of M. Petkovšek
(see [119, Theorem 4]), P. Valtr (see [81]) proved that for every c, 0 < c < e−3 =
0.04978 . . . there is a k(c) such that if k > k(c) and ρ ∈ Sk then c(ρ) > ck2.

Concerning general hereditary properties of permutations, Kaiser and Klazar [81]
proved that the speed is considerably restricted. To state this result, for a fixed
integer k, we write Fn,k for the generalized Fibonacci numbers defined as follows:
Fn,k = 0 for n < 0, Fn,1 = 1, and

Fn,k = Fn−1,k + Fn−2,k + · · ·+ Fn−k,k

for n > 0. Thus, as a function of n, Fn,k grows roughly like αn
k , where αk is the

largest positive real root of xk − xk−1− xk−2− · · · − 1. Clearly, for k = 2 we get the
standard Fibonacci numbers.

Theorem 11.5 Let P be a non-trivial hereditary property of permutations. Then
P is either bounded, or exactly one of the following possibilities holds.

(i) There are integers k, ` ≥ 1 such that

Fn,k ≤ |Pn| ≤ n`Fn,k

for every n.
(ii) |Pn| ≥ 2n−1 for every n. �

Let us say a few words about ordered graphs and partitions. An ordered hy-
pergraph H = (V,E,<) is a hypergraph H = (V,E) with a linear order < on
its vertex set V . Thus, V is a finite set of vertices, and E, the set of edges, is
a collection of subsets of V . We shall also assume that every edge has at least
two vertices. (Equivalently, we could demand that the edge set contains every
singleton.) We call K = (U,F,<) an induced sub-hypergraph of H if U ⊂ V ,
F = {e ∩ U : e ∈ E, |e ∩ U | ≥ 2}, and the ordering on U is the restriction of <
to U . Hereditary properties are defined in the obvious way, as are sub-hypergraphs
and monotone properties.

Let us remark that a permutation π of [n] is encoded by the graph Gπ on [n] in
which i is joined to j, i < j, if π reverses their order, i.e., π(i) > π(j). Furthermore,
it is easily seen that for a hereditary property P of permutations the family GP =⋃∞

n=1{Gπ : π ∈ Pn} is a hereditary property of ordered graphs. Thus ordered
graphs and their hereditary properties generalize permutations and their hereditary
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properties. In view of these remarks, Balogh, Bollobás and Morris [22] extended
Theorem 11.5 when they proved that the assertions hold for hereditary properties
of ordered graphs as well.

A partition of [n] is an unordered collection of disjoint, non-empty sets {A1, . . . , Ak}
with

⋃
Ai = [n]. Note that a partition can be thought of as an ordered graph in

which every component is a clique.
Properties of ordered hypergraphs, partitions, and other related structures were

studied in detail by Klazar [85, 86] and Balogh, Bollobás and Morris [20]–[23]. In
particular, in [21] several results were proved, each of which generalizes the Klazar–
Marcus–Tardos theorem, Theorem 11.4.

The theorem below was conjectured by Klazar [85] and proved independently by
Balogh, Bollobás and Morris [21], and Klazar and Marcus [87]: it claims that the
speed of a hereditary property jumps from the exponential range to the factorial,
and there is a unique minimal property in the factorial range.

Theorem 11.6 Let P be a hereditary property of partitions. If for every constant
c > 0 we have |PN | > cN for some N then

|Pn| ≥
bn/2c∑
k=0

(
n

2k

)
k! = nn/2+o(n)

for every n. This lower bound is best possible, and there is a unique hereditary
property of partitions with this speed. �

Balogh, Bollobás and Morris [21] also proved that exactly the same bounds hold
for monotone properties of ordered graphs as well. They also made the much stronger
conjecture that precisely the same result is true for hereditary properties of ordered
hypergraphs. The rather special case of this conjecture concerning graphs is also
open. However, in [21] the conjecture was proved for hereditary graph properties
consisting of graphs of size o(n2).

Theorem 11.7 Let P be a hereditary property of graphs such that for some function
f(n) = o(n2) we have e(G) ≤ f(n) for every G ∈ Pn and every n. If for every c > 0
we have |PN | ≥ cN for some N , then

|Pn| ≥
bn/2c∑
k=0

(
n

2k

)
k! = nn/2+o(n) (11.1)

for every n. �

In fact, this theorem is deduced from the result that (11.1) holds for properties
not containing the complete bipartite graph Kt,t for t large enough.

To conclude this section, let us say a few words about tournaments, complete
oriented graphs. Balogh, Bollobás and Morris [23] proved that the unlabelled speed
jumps from polynomial to exponential. More precisely, define a Fibonacci-type
sequence of integers by setting F ∗

0 = F ∗
1 = F ∗

2 = 1, and F ∗
n = F ∗

n−1 +F ∗
n−3 for n ≥ 3,

so that F ∗
n = c(1+o(1))n as n → ∞, where c = 1.47 . . . is the largest real root of the

polynomial x3 = x2 + 1.
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Theorem 11.8 Let P be a hereditary property of tournaments. Then either
(i) |Pn| = Θ(nk) for some k ∈ N, or
(ii) |Pn| ≥ F ∗

n for every 4 6= n ∈ N.
Moreover, this lower bound is attained on a unique property. �

To describe the unique property T of tournaments in the theorem above, for
a1, . . . , am, ai ∈ {1, 3}, let T = T (a1, . . . , am) be the tournament with vertex set{
x(i, j) : i ∈ [m], j ∈ [ai]

}
, in which x(i, j) sends an edge to x(k, `) if either i < k,

or i = k and `− j ≡ 1 (mod 3). (Thus T has
∑m

i=1 ai vertices; if ai = 1 from every
i then T is the transitive tournament on m vertices; if ai = 3 for every i then T is
obtained from the transitive tournament on m vertices by replacing each vertex by a
cyclic triangle.) Let T be the family of (isomorphism classes) of such tournaments.
It is easy to check that T is a hereditary property of tournaments. As the sequence
(a1, . . . , am) can be reconstructed from a tournament T = T (a1, . . . , am), it follows
that |Tn| = F ∗

n for every n, so in Theorem 11.8 (ii) equality is indeed attained on
the property T . However, the proof of the inequality is a different matter. In fact,
unlike in the case of unlabelled graphs and ordered graphs, in proving Theorem 11.8
we cannot make use of the classification of labelled speeds of graphs in Theorem 6.1.

12 Words

For a set A and a natural number n, a word of length n over the alphabet A,
or, simply, an n-word, is a sequence w = w1w2 . . . wn = (wi)n

1 with wi ∈ A for
every i. A finite word is an n-word for some n. A Z-word over A is a Z-sequence
w = . . . w−2w−1w0w1w2 . . . with wi ∈ A for every i, and an N-word is an N-sequence
w = w1w2 . . .. Thus AZ is the set of Z-words, and AN is the set of N-words. An
infinite word is a Z-word or an N-word. From now on we take A = {0, 1}: this
assumption makes no difference to the results.

An n-block of a word w = (wi) is an n-word of the form wj+1wj+2 . . . wj+n for
some j; a block is an n-block for some n. Note that a word of length N has N−n+1
n-blocks; in particular, a word of length n + 1 has two blocks of length n. A word
(wi) is p-periodic or periodic with period p if wi+p = wi whenever wi+p and wi are
letters of w. An N-word (wi) is eventually periodic if (wi)i≥k is periodic for some
k ≥ 1.

A set P of finite words over an alphabet A is said to be hereditary if any block
of a word in P is also in P. For example, if W is a set of (finite or infinite) words,
then the set P(W ) formed by the blocks of the words in W is clearly hereditary.
If W consists of a single word w then we write P(w) for P(W ). Given a property
P, we denote by Pn the set of n-words in P; thus, Pn(w) is the set of n-blocks
of w. The cardinality |Pn| as a function of n is called the speed or complexity
of P; similarly, n 7→ |Pn(w)| is the complexity of the word w. For example, if
w = . . . 010101 . . . , then P3(w) = {010, 101}, and |Pn(w)| = 2 for n ≥ 2. Also, if
W = {. . . 00100 . . . , . . . 11011 . . . , . . . 000111 . . . } then Pn(W ) = 3n− 1 for n ≥ 3.

The basic result concerning the complexity of an infinite word is the following
theorem of Morse and Hedlund [99].
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Theorem 12.1 (i) Let w be a Z-word such that |Pk(w)| ≤ k for some k. Then there
is an n such that w is n-periodic, |P`(w)| = n for every ` ≥ n, and |P`(w)| ≥ `+ 1
for every ` < n.

(ii) Let v be an N-word such that |Pk(v)| ≤ k for some k. Then there are integers
m ≤ n such that v is eventually m-periodic and |P`(v)| = n for every ` ≥ n− 1. �

This theorem is best possible in the sense that there are words w such that
|Pn(w)| = n + 1 for every n. Indeed, a simple example is . . . 0001000 . . . , the word
containing only one 1. A less trivial example is the Fibonacci word

01 0 01 010 01001 01001010 . . .

constructed from the sequence of finite words a1, a2, . . . defined as follows: a1 = 0,
a2 = 01 and for k ≥ 3 the word ak+1 is the concatenation of ak and ak−1 (in this
order): ak+1 = akak−1. Equivalently, the Fibonacci sequence is obtained from 0
by repeatedly substituting 01 for 0, and 0 for 1. Thus a3 = 01 0, a4 = 010 01,
a5 = 01001 010, and so on. In fact, much work has been done on the infinite words
w with |Pn(w)| = n+ 1, called Sturmian words; see, e.g., Berthé [31] and Berthé.

To see that in (ii) we cannot demand that n = m, take the N-word w =
0001100110011 . . . . Here n = 2 and m = 5, and |P`| = 5 for every ` ≥ 4.

The complexity of an infinite word has been studied in great detail in many
papers (see, e.g., [56], [59], [70, 71], [82, 83], [117] ), but general hereditary properties
have hardly been considered. Here we shall present some results of Balogh and
Bollobás [19] concerning the slow-growing functions that may arise as complexities
of general hereditary properties.

As in [19], we define a word graph over an alphabet A as a directed graph with
loops whose edges (including loops) are decorated with elements of A such that no
two edges with the same initial vertex have the same decoration and all the edges
with the same terminal vertex have the same decoration. (In particular, there is at
most one loop at every vertex.)

Given k ≥ 2, the k-word graph or de Bruijn graph Gk(w) of a word w is defined
as follows. The vertex set is the set of k-words in w, and a vertex u sends an edge
of decoration i to a vertex v if w contains a (k + 1)-word ending in i whose first
k-word is u and second (and last) k-word is v. Equivalently, v is obtained from u by
omitting its first letter and adding i as its last letter. For a set W , the word graph
of W is Gk(W ) =

⋃
w∈W Gk(w). Clearly, Gk(W ) is a word graph as defined above.

(To obtain the usual de Bruijn graph, take for W the set of all (k+1)-words.) These
word graphs play an important role in the study of complexity. To illustrate this,
we reproduce the proof of the Morse–Hedlund theorem from [19]. First, note the
following simple characterization of k-word graphs.

Lemma 12.2 (i) A word graph G is a k-word graph iff any two walks of length at
most k ending in the same vertex have the same sequence of decorations, and any
two walks of length k with the same sequence of decorations end in the same vertex.
If every vertex is the terminal vertex of a walk of length k then the alphabet of the
k-word graph is the set formed by the decorations of the edges.

(ii) A k-word graph is of the form Gk(w) for some n-word w iff it has a (directed)
walk of length n− k + 1 passing through all edges. �
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Now, in proving Theorem 12.1(i), we may assume that |P1(w)| = 2. If two
words in Pk+1(w) have different initial k-words then they are themselves different.
Consequently, the complexity |Pk(w)| is a monotone increasing function of k, and so
|Pn−1(w)| = |Pn(w)| = n for some n, i.e., the (n− 1)-word graph G = Gn−1(w) has
n vertices and n edges. Since G has a walk containing all the edges, and every vertex
in G has indegree at least 1 and outdegree at least 1, the graph G is an (oriented)
n-cycle. Therefore, the word w is n-periodic and |P`(w)| = n for every ` ≥ n, as
claimed, proving (i).

Part (ii) needs only a little more work. Indeed, proceeding as in (i), we find
that in the word graph Gn−1(v) of the word v = v1v2 . . . every vertex has outdegree
at least 1 and, with the exception of at most one vertex (the word v1 . . . vn−1), all
vertices have indegree at least 1. This implies that Gn−1(v) is a cycle together with a
path ending on the cycle. (This path may have length 0.) Consequently, v becomes
periodic (of some period m ≤ n) if we omit its initial segment formed by the letters
not in the blocks corresponding to the vertices of Gn−1(v) forming this cycle, and
|P`(w)| = n for every ` ≥ n. This completes the proof of Theorem 12.2.

Another tool in the study of the complexity of a property is the following funda-
mental theorem of Fine and Wilf [72] concerning periods of words. As usual, given
natural numbers p and q, we write (p, q) for their greatest common divisor.

Theorem 12.3 Let w be a word of length n with periods p and q. If (p, q) is not a
period of w then n ≤ p+ q − (p, q)− 1, and this inequality is best possible. �

By a careful analysis of word graphs, Bollobás and Balogh [19] proved the fol-
lowing extension of Theorem 12.1.

Theorem 12.4 Let P be a hereditary property of finite words over an alphabet A.
Then the complexity |Pn| is either bounded, or at least n+ 1 for every n. �

It is tempting to conjecture that, as in the Morse–Hedlund theorem, Theo-
rem 12.1, if the speed of a hereditary property is bounded then it is eventually
constant. In fact, this is far from the case: the complexity may oscillate consider-
ably, even if it is bounded. Indeed, for s ≥ 1 there is a hereditary property P of
finite words such that

lim sup
n→∞

|Pn| = s2 and lim inf
n→∞ |P

n| = 2s− 1;

also, |P4rs| = s2 and |P(4r−2)s| = 2s− 1 for every r ≥ 1.
Similarly, for s ≥ 1 there is a hereditary property P of finite words such that

lim sup
n→∞

|Pn| = s(s+ 1) and lim inf
n→∞ |P

n| = 2s;

also, |P4rs| = s(s+ 1) and |P(4r−2)s| = 2s for every r ≥ 1.
However, if |Pn| ≤ n for some n, then the complexity is not only bounded,

but cannot even be larger than in the examples above, even if we do not demand
oscillation.
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Theorem 12.5 Let P be a hereditary property of finite words over an alphabet A
such that |Pn| = m ≤ n. Then for all k ≥ n+m we have |Pk| ≤ b(m+1)/2c · d(m+
1)/2e. Furthermore, this inequality is sharp. �

Turning to words of higher complexity, Ferenczi [71] constructed an N-word w
with lim infn→∞ |Pn(w)|/n = 2, and lim supn→∞ |Pn(w)|/nβ = ∞ for every β. In
[19] it was shown that for a property P(w) with lim infn→∞ |Pn(w)|/n = 2 much
wilder oscillation is possible: it may happen that, as n → ∞ through some sub-
sequence, |Pn(w)| grows at an almost exponential rate. More precisely, given a
function α(n) = o(logn) with α(n)→∞, there is an N-word w such that

lim inf
n→∞ |P

n(w)|/n = 2, and lim inf
n→∞ |P

n(w)|/2n/α(n) =∞.

The function n 7→ |Pn(w)| is not the only way of measuring the richness of the
structure of an infinite word. For example, an interesting measure was introduced
by Kamae and Zamboni [82]. Let τ = {τ1, . . . , τk} ⊂ N, and for a word w = (wi)
let Pτ (w) be the set of words of the form wτ1+twτ2+t . . . wτk+t. (Note that for
τ = {1, . . . , k} we have Pτ (w) = Pk(w).) Then pw(k) = max|τ |=k |Pτ (w)| is the
maximal pattern complexity of w.

Kamae and Zamboni [82, 83] proved that, in the analogue of the Morse–Hedlund
theorem for maximal pattern complexity, the cut-off is at 2k − 1, rather than k.

Theorem 12.6 An infinite word w over a finite alphabet is eventually periodic if
and only if pw(k) ≤ 2k − 1 for some k. �

Rather than arranging the letters in a linear order, using N or Z as the index set,
we may consider multi-dimensional patterns. Thus, a d-dimensional infinite word
over an alphabet A is an element of AZd

(or ANd
). A word w = (wn) is periodic if

there is a vector p ∈ Zd such that wn+p = wn for every n ∈ Zd. A fair amount of
work has been done on multi-dimensional words (see, e.g., [32], [54, 55], [60], [108],
[109, 110], [115], [117]), although, not surprisingly, most of this work concerns the
case d = 2.

The natural analogue of the notion of complexity of a word w ∈ AZd
is the

box complexity function Nw(b1, . . . , bd), the number of distinct b1 × · · · × bd-blocks
in w. What corresponds to the Morse–Hedlund theorem for box complexity? As
shown by the word w consisting of a single 1 entry in a sea of 0s, we may have
Nw(b1, . . . , bd) = b1 . . . bd + 1 for all (bi)d

1 without w being periodic. For d = 2,
Nivat [100] conjectured that this example is best possible and so the exact analogue
of the Morse–Hedlund theorem holds: if there are positive integers b1 and b2 such
that Nw(b1, b2) ≤ b1b2 then w is periodic.

Epifanio, Koskas and Mignosi [60] were the first to prove a weak form of Ni-
vat’s conjecture when they showed that w is indeed periodic if the condition is
strengthened to b1b2/144. Quas and Zamboni [101] went further: they showed that
a 2-dimensional word w is periodic if Nw(b1, b2) = b1b2/12 for some b1, b2 ≥ 1. How-
ever, it seems that these results are still rather far from a proof of Nivat’s beautiful
conjecture.
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Mathematics of Paul Erdős, II, Algorithms Combin. 14, Springer, Berlin, 1997, pp. 70–
78.

[45] B. Bollobás and A. Thomason, The structure of hereditary properties and colourings
of random graphs, Combinatorica 20 (2000), 173–202.

[46] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled
trees and planar maps, J. Comb. Theory, Ser. A, 80 (1997), 257–272.
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Ordering Classes of Matrices of 0’s and 1’s

Richard A. Brualdi

Abstract

In this article we consider various ways in which certain subclasses of (0, 1)-
matrices may be ordered. In the case of general (0, 1)-matrices, this is equivalent
to ordering bipartite graphs; in the case of symmetric (0, 1)-matrices with zero
trace, this is equivalent to ordering graphs. Except for the Bruhat order and
its generalizations, these orders are only quasiorders and we emphasize the
extremal cases.

1 Introduction

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be positive integral vectors
satisfying

r1 + r2 + · · ·+ rm = s1 + s2 + · · ·+ sn.

The class A(R,S) consists of all m by n (0,1)-matrices whose row sum vector is
R and whose column sum vector is S. This class may be empty without further
restrictions on R and S; in particular, A(R,S) 6= ∅ implies that ri ≤ n for each i
and sj ≤ m for each j. The nonemptiness is not affected by reordering the entries
of R and S, and so we assume that R and S are nonincreasing:

n ≥ r1 ≥ r2 ≥ · · · ≥ rm and m ≥ s1 ≥ s2 ≥ · · · ≥ sn.

The conjugate of R is the vector R∗ = (r∗1, r∗2, . . . , r∗n) where

r∗j = |{i : 1 ≤ i ≤ m, ri ≥ j}| (i = 1, 2, . . . n).

The vector R∗ satisfies

r∗1 ≥ r∗2 ≥ · · · ≥ r∗n and r∗1 + r∗2 + · · ·+ r∗n = r1 + r2 + · · ·+ rm.

The vector R∗ is the column sum vector of the perfectly nested matrix A(R,n) with
row sum vector R such that the 1’s in each row occur in its initial positions (and so
the 1’s in each column also occur in the initial positions). The matrix A(R,n) is the
unique matrix in the class A(R,R∗). Clearly, each matrix in A(R,S), if nonempty,
can be obtained from A(R,n) by shifting 1’s to the right in each row. The class
A(R,S) can be identified with the class of bipartite graphs with a bipartition into
sets X and Y of sizes m and n with R and S being the degree sequences of vertices
in X and Y , respectively.

The dominance order (or majorization order) is the partial order defined on
nonincreasing vectors U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) of the same
length n by U � V if and only if

u1 + u2 + · · ·+ uk ≤ v1 + v2 + · · ·+ vk (k = 1, 2, . . . , n)

with equality for k = n. The Gale-Ryser theorem asserts that A(R,S) is nonempty
if and only if S � R∗. One important property of A(R,S) is a certain connectivity
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property due to Ryser: Given matrices A1 and A2 in A(R,S), then A1 can be
transformed into A2 by a sequence of interchanges

L2 =
[

0 1
1 0

]
↔

[
1 0
0 1

]
= I2

each of which replaces a submatrix of A1 equal to L2 with I2, or the other way
around. Such a sequence of interchanges applied to a matrix in A(R,S) always
results in a matrix in A(R,S).

Let k and n be positive integers with k ≤ n, and let R = S be the constant
vector (k, k, . . . , k) of length n. Then A(R,S) is clearly nonempty and we denote
this class by A(n, k). The class A(n, 1) is the class of permutation matrices of order
n, and hence can be identified with the symmetric group Sn, that is, with the group
of permutations of {1, 2, . . . , n}.

For later reference we introduce several other classes of matrices.

(1) The class As(R) of all symmetric (0, 1)-matrices with row and column sum
vector R. (The class of graphs with a loop possible at each vertex having
degree sequence R, but note that loops will only contribute 1 to degrees.)

(2) The class As
0(R) of all symmetric (0, 1)-matrices with row and column sum

vector R and with zero trace. (The class of graphs with degree sequence R.)

(3) The class As
0(n, k) of all symmetric (0, 1)-matrices of order n with zero trace

having k 1’s in each row and column. (The class of regular graphs with n
vertices having degree k.) Note that if n is odd, then k must be even for this
class to be nonempty.

(4) The class A(n|τ) of all (0, 1)-matrices of order n with exactly τ 1’s (τ ≤ n2).

(5) The class As
0(n|τ) of all symmetric (0, 1)-matrices of order n with zero trace

and exactly τ 1’s above the main diagonal (τ ≤ n(n − 1)/2). (The class of
graphs with n vertices and τ edges.)

(6) The class As
0(n|τ, irr) of all symmetric, irreducible (0, 1)-matrices of order n

with zero trace and exactly τ 1’s above the main diagonal (n − 1 ≤ τ ≤
n(n− 1)/2). (The class of connected graphs with n vertices and τ edges.)

(7) The class Z+(R,S) of all nonnegative integral matrices (matrices each of whose
entries is a nonnegative integer) with row sum vector R and column sum vector
S. This class is nonempty if and only if the sum of the entries of R equals the
sum of the entries of S.

2 Bruhat order on A(R,S)

Let π and τ be permutations in Sn. Then π precedes τ in the Bruhat order,
written π �B τ , provided π can be obtained from τ by a sequence of inversion-
reducing transpositions of the form

(i1, . . . , ik, . . . , il, . . . , in)→ (i1, . . . , il, . . . , ik, . . . , in) where ik > il.
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In terms of the corresponding permutation matrices P and Q, we have P �B Q if and
only if P can be obtained from Q by a sequence of (one-sided) interchanges L2 → I2.
The Bruhat order is a partial order on the symmetric group Sn with the identity per-
mutation 1, 2, . . . , n (with no inversions) as the unique minimal permutation and the
anti-identity permutation n, n−1, . . . , 2, 1 (with n(n−1)/2 inversions) as the unique
maximal permutation. The partially ordered set (Sn,�B) is graded by the number
of inversions. In terms of matrices, the minimal (in the Bruhat order) permutation
matrix of order n is the identity matrix In, and the maximal permutation matrix is
the permutation matrix Ln with 1’s in positions (1, n), (2, n−2), . . . , (n−1, 2), (n, 1).

There are many equivalent ways to define the Bruhat order on permutations
[3, 15, 19, 26]. One of these (see [3]) goes like this. Let σ = i1, i2, . . . , in and
τ = j1, j2, . . . , jn be permutations of {1, 2, . . . , n}. For each k with 1 ≤ k ≤ n−1, let
ik1, ik2, . . . , ikk be the increasing rearrangement of i1, i2, . . . , ik. Let jk1, jk2, . . . , jkk

be defined in a similar way. Then σ �B τ if and only if ikp ≤ jkp for all p and k
with 1 ≤ p ≤ k ≤ n − 1. For example, if σ = 2, 1, 4, 5, 3 and τ = 3, 1, 5, 4, 2, then
σ �B τ because of the entrywise inequalities satisfied by the arrays

1 2 4 5
1 2 4
1 2
2

and

1 3 4 5
1 3 5
1 3
3

.

The number of comparisons in this criterion equals
(
n
2

)
and this was reduced in [3].

The above characterization of the Bruhat order on Sn can be rephrased allowing
for the possibility of extension to more general classes A(R,S). For an m by n
matrix A = [aij ], let

σij(A) =
i∑

k=1

j∑
l=1

akl (i = 1, 2, . . . ,m; j = 1, 2, . . . , n),

the sum of the entries of A in its leading i by j submatrix. Define an m by n matrix
by

ΣA = [σij(A); i = 1, 2, . . . ,m; j = 1, 2, . . . , n].

For real matrices X = [xij ] and Y = [yij ] of the same size, we write X ≥ Y provided
xij ≥ yij for all i, j, and X > Y provided X ≥ Y but X 6= Y . Then (see e.g. [26, 5])
for permutation matrices P and Q of order n,

P �B Q if and only if ΣP ≥ ΣQ.

The Bruhat order on permutations (the class A(n, 1)) was extended to general
nonempty classes A(R,S) in [9]. Each of the two equivalent ways to define the
Bruhat order on A(n, 1) makes sense for A(R,S): For A1, A2 ∈ A(R,S),

(B) (Bruhat order on A(R,S)) A1 �B A2 provided that ΣA1 ≥ ΣA2 .

(B̂) (Secondary Bruhat order on A(R,S)) A1 � bB A2 provided that A1 can be
obtained from A2 by a sequence of L2 → I2 interchanges.
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On A(n, 1), A1 �B A2 if and only if A1 � bB A2. There was an implicit conjecture
in [9] that these two partial orders are identical on A(R,S) as they are on A(n, 1).
It is straightforward to verify that

A1 � bB A2 implies that A1 �B A2,

that is, the Bruhat order is a refinement of the secondary Bruhat order. The follow-
ing example from [7] shows that this conjecture is false. Consider the class A(6, 3)
and three of its matrices

A =



1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0
0 0 0 1 1 1
0 1 1 0 1 0
0 1 1 0 0 1

 , C =



0 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 0 0
1 0 0 0 1 1
0 1 1 0 1 0
0 1 1 0 0 1

 , (2.1)

and

D =



0 0 0 1 1 1
1 1 0 1 0 0
1 0 1 1 0 0
1 0 0 0 1 1
0 1 1 0 1 0
0 1 1 0 0 1

 . (2.2)

Then

ΣA =



1 1 1 1 2 3
2 2 3 4 5 6
3 4 5 7 8 9
3 4 5 8 10 12
3 5 7 10 13 15
3 6 9 12 15 18

 , ΣC =



0 0 0 1 2 3
1 1 2 4 5 6
2 3 4 7 8 9
3 4 5 8 10 12
3 5 7 10 13 15
3 6 9 12 15 18

 ,

and

ΣD =



0 0 0 1 2 3
1 2 2 4 5 6
2 3 4 7 8 9
3 4 5 8 10 12
3 5 7 10 13 15
3 6 9 12 15 18

 ,

from which it follows that

ΣA > ΣD > ΣC and so A ≺B D ≺B C.

The following theorem from [7] characterizing the cover relation for the secondary
Bruhat order shows that C covers both D and A in the secondary Bruhat order.
This implies that D and A are incomparable in the secondary Bruhat order, and
hence the Bruhat order and secondary Bruhat order are already different on A(6, 3).

For A a matrix of size m by n, and I ⊆ {1, 2, . . . ,m} and J ⊆ {1, 2, . . . , n},
A[I, J ] denotes the submatrix of A determined by the row indices in I and column
indices in J .
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Theorem 2.1 Let A = [aij ] be a matrix in A(R,S) where A[{i, j}, {k, l}] = L2. Let
A′ = [a′ij ] be the matrix obtained from A by the L2 → I2 interchange that replaces
A[{i, j}, {k, l}] = L2 with I2. Then A covers A′ in the secondary Bruhat order on
A(R,S) if and only if

(i) apk = apl (i < p < j),

(ii) aiq = ajq (k < q < l),

(iii) apk = 0 and aiq = 0 imply apq = 0 (i < p < j, k < q < l), and

(iv) apk = 1 and aiq = 1 imply apq = 1 (i < p < j, k < q < l).

Theorem 2.1 generalizes the characterization of the cover relation on A(n, 1).
In terms of permutations of {1, 2, . . . , n}, this characterization asserts that if π =
(i1, . . . , ip, . . . , iq, . . . , in) is a permutation with p < q and ip > iq, and if the per-
mutation τ = (i1, . . . , iq, . . . , ip, . . . , in) is obtained from π by the transposition that
interchanges ip and iq, then τ is covered by π in the Bruhat order if and only if
each it with p < t < q satisfies it < iq or it > ip. In terms of the correspond-
ing permutation matrices P and Q, respectively, this means that the submatrix
P [{p, p + 1, . . . , q}, {iq, iq + 1, . . . , ip}] has exactly two 1’s and these 1’s are in the
upper right and lower left corners. The corresponding submatrix of Q has its 1’s in
the upper left and lower right corners.

Although, in general, the Bruhat order is a proper refinement of the secondary
Bruhat order on A(n, 3), we have the following theorem [7].

Theorem 2.2 On A(n, 2) the Bruhat order and secondary Bruhat order are iden-
tical.

The class A(n, n) contains a unique matrix. In the Bruhat order on the class
A(n, 1), In is the unique minimal matrix and Ln is the unique maximal matrix. From
this it follows that in the class A(n, n − 1) the unique minimal matrix is Jn − Ln

and the unique maximal matrix is Jn − In, where Jn denotes the matrix of order n
each of whose entries equals 1. In general we have the following result [7].

Theorem 2.3 Let n and k be integers with 1 ≤ k ≤ n. Then in the secondary
Bruhat order, the class A(n, k) has a unique minimal matrix if and only if k =
1, n− 1, n or n = 2k.

A characterization of the cover relation for the Bruhat order on A(R,S) is not
known.

An algorithm is given in [9] to construct a minimal matrix in a nonempty class
A(R,S). For classes A(n, k) it specializes as described below. Let Jp,q denote the p
by q matrix of all 1’s; if p = q, this is abbreviated to Jp.

Algorithm to Construct a Minimal Matrix in the Bruhat order on A(n, k)

1. Let n = qk + r where 0 ≤ r < k.

2. If r = 0, then A = Jk ⊕ · · · ⊕ Jk, (q Jk’s) is a minimal matrix.

3. Else, r 6= 0.
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(a) If q ≥ 2, let

A = X ⊕ Jk ⊕ · · · ⊕ Jk, (q − 1 Jk’s, X has order k + r),

and let n← k + r.

(b) Else, q = 1, and let

A =
[
Jr,k Ok

X Jk,r

]
, (X has order k),

and let n← k and k ← k − r.
(c) Proceed recursively with the current values of n and k to determine X.

For example, the algorithm produces the minimal matrix
J7,11 O7

J3,4 O3

I4 J4,3
O7,4

O4,7 J4

J11,7


in A(18, 11).

The minimal matrices in A(n, 2) and A(n, 3) have been characterized, but there
does not appear to be a useful characterization of the minimal matrices in A(n, k)
for k ≥ 4.

3 Bruhat order on Z+(R, S)

Recall that Z+(R,S) is the class of all nonnegative integral matrices with row
sum vector R = (r1, r2, . . . , rm) and column sum vector S = (s1, s2, . . . , sn), and
that this class is nonempty provided

r1 + r2 + · · ·+ rm = s1 + s2 + · · ·+ sn.

We can carry over the definitions of Bruhat order and secondary Bruhat order to
Z+(R,S). For matrices A1 and A2 in Z+(R,S):

(B) A1 �B A2 provided that Σ(A1) ≥ Σ(A2) (entrywise), and

(B̂) A1 � bB A2 if and only if A1 can be obtained from A2 by a sequence of L2 → I2
interchanges of the form[

a b
c d

]
→

[
a+ 1 b− 1
c− 1 d+ 1

]
(3.1)

where b, c ≥ 1.

As with A(R,S), it is obvious that A1 � bB A2 implies that A1 �B A2. That
A1 �B A2 implies that A1 � bB A2 follows in much the same way (but more easily)
as for permutation matrices A1 and A2. Hence we have the following.
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Theorem 3.1 The Bruhat order and secondary Bruhat order coincide on classes
Z+(R,S).

Let A = [aij ] be a matrix in Z+(R,S) which is minimal in the Bruhat order.
For each i and j with 1 ≤ i < m and 1 ≤ j < n, the two submatrices of A weakly
above and weakly to the right of aij , and weakly below and weakly to the left of
aij , respectively, must, except for aij , be zero matrices; otherwise an interchange of
the type (3.1) applied to A results in a matrix below A in the Bruhat order. This
implies that Z+(R,S) contains a unique minimal element and, similarly, a unique
maximal element. The unique minimal element has a “snake-like pattern” starting
in the upper left corner and ending in the lower right corner; the unique maximal
element has a “snake-like pattern” starting in the upper right corner and ending in
the lower left corner. For example, if R = (3, 7, 1, 1, 3, 7) and S = (2, 4, 2, 5, 5, 4),
then the unique matrices in Z+(R,S) which are minimal and maximal in the Bruhat
order are, respectively,

2 1 0 0 0 0
0 3 2 2 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 2 0
0 0 0 0 3 4

 and



0 0 0 0 0 3
0 0 0 1 5 1
0 0 0 1 0 0
0 0 0 1 0 0
0 0 1 2 0 0
2 4 1 0 0 0

 .

(In general, the snake-like patterns may be disconnected depending on the relation-
ships between the components of R and S.)

4 Ordering A(R,S) by shape of insertion tableau

Let λ = (λ1, λ2, . . . , λp) and µ = (µ1, µ2, . . . , µq) be two partitions of the same
integer τ . A Young diagram of shape λ is a left-justified arrangement of τ boxes
in p rows where there are λi boxes in row i, (i = 1, 2, . . . , p). A Young tableau of
shape λ and content µ results from a Young diagram of shape λ by inserting in each
of its boxes one of the integers 1, 2, . . . , q where (i) the elements in each row are
weakly increasing, (ii) the elements in each column are strictly increasing, and (iii)
the integer j occurs µj times, (j = 1, 2, . . . , q). For example,

1 1 1 2 3
2 2 3 3
4 4 5
5

is a Young tableau of shape λ = (5, 4, 3, 1) and content µ = (3, 3, 3, 2, 2). The Kostka
number Kλ,µ is the number of Young tableaux of shape λ and content µ. It is a
basic fact [19] that Kλ,µ 6= 0 if and only if µ � λ where as before � denotes the
dominance order.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be two nonincreasing, positive
integral vectors with

τ = r1 + r2 + · · ·+ rm = s1 + s2 + · · ·+ sn.
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Thus R and S are partitions of the integer τ . Let κ(R,S) denote the number of
matrices in A(R,S). Then (see [19, 4, 5])

κ(R,S) =
∑

λ

Kλ,RKλ∗,S =
∑

λ

Kλ∗,RKλ,S ,

where the summations extend over all partitions λ of τ .
We have Kλ∗,RKλ,S 6= 0 if and only if R � λ∗ and S � λ. Using the fact that

conjugation reverses a dominance order relation between two partitions of the same
integer, we see that

κ(R,S) =
∑

S�λ�R∗
Kλ∗,RKλ,S .

These facts are consequences of the Knuth correspondence [24] (see also [4, 5]),
which is a bijection between m by n (0,1)-matrices and ordered pairs of Young
tableaux of conjugate shape. Applied toA(R,S) it gives a bijection between matrices
in A(R,S) and ordered pairs (P,Q) of Young tableaux, where P is a Young tableau
of some shape λ and content S and Q is a Young tableau of shape λ∗ and content
R, and S � λ � R∗.

The Knuth correspondence is based on an operation called column-bumping
which we illustrate by an example taken from [4]. Let

A =

 1 0 1
1 1 0
1 0 0

 ∈ A(R,S),

where R = (2, 2, 1) and S = (3, 1, 1). First describe A by a generalized permutation
array in lexicographic order:

ΘA =
(

1 1 2 2 3
1 3 1 2 1

)
=

(
ik
jk

)
(k = 1, · · · , 5), (4.1)

where the ordered pairs (ik, jk) are the positions of A occupied by its 1’s.
Start with P and Q as empty tableaux (corresponding to the unique (empty)

partition of 0). We recursively construct P and Q simultaneously by inserting in P
the element jk of the second row of ΘA by column-bumping, working from bottom
to top and left to right, to maintain strict increasing in columns, and then inserting
in Q the element ik in the “conjugate square of the new square created.” In the
example given, this produces:

1→ 1
3
→ 1 1

3
→ 1 1

2 3
→ 1 1 1

2 3

(After starting with the first 1, the 3 is inserted at the end of column 1, since that
does not violate the strict increasing requirement. In inserting the second 1, the
second 1 bumps the first 1 which is then put in a new column. In inserting the 2,
2 bumps 3 and 3 is inserted at the end of the second column, since that does not
violate the strict increasing requirement. Finally, the third 1 bumps the 1 in the
first column, which then bumps the 1 in the second column, which then is inserted
in a new column.)
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and

1→ 1 1 → 1 1
2

→ 1 1
2 2

→
1 1
2 2
3

.

Thus our matrix A corresponds to the pair (P,Q) of Young tableaux of conjugate
shape and content S = (3, 1, 1) and R = (2, 2, 1), where

P =
1 1 1
2 3

and Q =
1 1
2 2
3

.

P is the insertion tableau (of content S), and Q is the recording tableau (of content
R) corresponding to the matrix A.

The insertion tableau has an important property [20] (a proof is also given in
[5]). Consider the second row

j1, j2, . . . , jp (4.2)

of column indices in the generalized permutation array. The number of integers
(occupied boxes) in the first column of the insertion array P is the maximal number
of terms in a strictly increasing subsequence of (4.2). In general, the number of
integers (occupied boxes) in the first k columns of the insertion array P equals the
maximal number of terms in a subsequence of (4.2) which is the union of k strictly
increasing subsequences (k = 1, 2, . . .).

In [4] the Knuth correspondence was used to define a (quasi) partial order on a
class A(R,S). Let A and B be matrices in A(R,S) whose insertion tableaux in the
Knuth correspondence have shapes λA and λB, respectively. Then A precedes B in
the Knuth order, written A ≤K B provided that λA � λB. (If in defining the Knuth
partial order we use the shape of the recording tableau in place of the shape of the
insertion tableau, then the dual order results.)

The Knuth correspondence is a bijection. Assume that S � λ � R∗. Then start-
ing with a pair (P,Q) of Young tableaux of conjugate shapes λ and λ∗, respectively,
where P has content S and Q has content R, we can invert the bumping operation
(see [19, 5]) and obtain a matrix A in A(R,S) whose insertion tableau has shape λ.
In the extreme cases of λ = S and λ = R∗, direct algorithms are given in [4] to con-
struct such an A that do not depend on choosing the pair (P,Q). These algorithms
are variants of the well-known algorithm of Ryser to construct a canonical matrix
in A(R,S).

Algorithm: λ = R∗

(0) Begin with the m by n matrix A(R;n) with row sum vector R and column
sum vector R∗.

(1) Shift sn of the last 1’s in sn rows of A(R;n) to column n, choosing those 1’s
in the rows with the largest sums but, in the case of ties, giving preference to
the topmost rows.
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(2) The matrix left in columns 1, 2, . . . , n− 1 of A(R;n) is a matrix A(R′′;n− 1)
with row sum vector R′′ determined by R and the 1’s chosen to be shifted. (In
general, unlike the vector R′ in Ryser’s algorithm, the vector R′′ will not be
nondecreasing.) We now repeat with A(R′′;n−1) in place of A(R;n) and sn−1

in place of sn. We continue like this until we arrive at a matrix Ã′ in A(R,S).

If A(R,S) 6= ∅, this algorithm terminates with a matrix in A(R,S) whose inser-
tion tableau has shape R∗.

Algorithm: λ = S

(0) Begin with the m by n matrix A′(S;m) with row sum vector S∗ and column
sum vector S.

(1) Shift rm of the last 1’s in rm columns of A′(S;m) to row m, choosing those 1’s
in the columns with the largest sums but, in the case of ties, giving preference
to the rightmost columns.

(2) The matrix left in rows 1, 2, . . . ,m − 1 of A′(S;m) is a matrix A′(S′′;m − 1)
with column sum vector S′′ determined by S and the 1’s chosen to be shifted.
(By choice of 1’s to be shifted, the vector S′′ is nondecreasing.) We now repeat
with A′(S′′;m− 1) in place of A′(S;m) and rm−1 in place of rm. We continue
like this until we arrive at a matrix Ã′′ in A(R,S).

This algorithm, the “transpose” of Ryser’s algorithm, terminates with a matrix
in A(R,S) whose insertion tableau has shape S.

We illustrate the algorithm λ = R∗ with the following example from [4]. Let
R = (4, 4, 3, 3, 2) and S = (4, 3, 3, 3, 3), and let λ = R∗ = (5, 5, 4, 2). Applying the
algorithm and using obvious notation, we get:

1 1 1 1 0 4
1 1 1 1 0 4
1 1 1 0 0 3
1 1 1 0 0 3
1 1 0 0 0 2

→


1 1 1 0 1 3
1 1 1 0 1 3
1 1 0 0 1 2
1 1 1 0 0 3
1 1 0 0 0 2

→


1 1 0 1 1 2
1 1 0 1 1 2
1 1 0 0 1 2
1 1 0 1 0 2
1 1 0 0 0 2

→


1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 0 1 1
1 1 0 1 0 2
1 1 0 0 0 2

→


0 1 1 1 1 0
1 0 1 1 1 1
1 0 1 0 1 1
1 1 0 1 0 1
1 1 0 0 0 1

→


0 1 1 1 1 0
1 0 1 1 1 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 0 0 0 0

 .
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Thus the matrix obtained is

Ã′ =


0 1 1 1 1
1 0 1 1 1
1 0 1 0 1
1 1 0 1 0
1 1 0 0 0

 ,
and its corresponding generalized permutation array is(

1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5
2 3 4 5 1 3 4 5 1 3 5 1 2 4 1 2

)
.

The corresponding insertion tableau P, with intermediate results according to
the five groups of column indices, is:

2
3
4
5

→
1 2
3 3
4 4
5 5

→
1 1 2
3 3 3
4 4 5
5 5

→
1 1 1 2
2 3 3 3
4 4 4 5
5 5

→
1 1 1 1 2
2 2 3 3 3
4 4 4 5
5 5

which has shape R∗ = (5, 5, 4, 2). The recording tableau Q, having shape R∗∗ = R
and content R, must be of the form

1 1 1 1
2 2 2 2
3 3 3
4 4 4
5 5

.

Canonical constructions for a matrix in A(R,S) whose corresponding insertion
tableau has shape λ are not known in the nonextreme cases S ≺ λ ≺ R∗.

5 Bruhat order on symmetric matrices

Let S∗n denote the set of all symmetric permutation matrices of order n. As a
permutation of {1, 2, . . . , n}, σ is a set of pairwise disjoint transpositions and fixed
points. The number of symmetric permutation matrices of order n, enumerated
according to the number of fixed points, equals∑

k∗

(
n

k

)
(n− k)!

2(n−k)/2 · ((n− k)/2)!
=

∑
k∗

n!
k! · 2(n−k)/2 · ((n− k)/2)!

where the summation is over those k between 0 and n such that n− k is even.
The Bruhat order on Sn induces a Bruhat order on S∗n. If n = 3, we have

(1, 2, 3) �B (1, 3, 2), (2, 1, 3) �B (3, 2, 1).

Since the identity permutation (1, 2, . . . , n) and anti-identity permutation (n, n −
1, . . . , 2, 1) are symmetric, they are the unique minimal and maximal permutations
in the Bruhat order on S∗n.
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A single interchange L2 → I2 applied to a symmetric permutation matrix Q,
where L2 is a principal submatrix of order 2 of Q, results in a symmetric permutation
matrix below Q in the Bruhat order. Otherwise, a sequence of two symmetrically
situated L2 → I2 interchanges (overlapping or disjoint) gives the following two types
of interchanges:

L3 =

 0 0 1
0 1 0
1 0 0

→
 1 0 0

0 0 1
0 1 0

 = I1 ⊕ L2

and

L4 = L2 ⊗ L2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

→


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = L2 ⊗ I2

which, when applied to a principal submatrix of Q of orders 3 and 4, respectively,
result in a symmetric permutation matrix below Q in the Bruhat order.

Theorem 5.1 If P and Q are symmetric permutation matrices of order n, then
P �B Q if and only if P can be obtained from Q by a sequence of principal symmetric
interchanges of the form L2 → I2, L3 → I1⊕L2, and L2⊗L2 → L2⊗I2. The matrix
Q covers P in the Bruhat order on S∗n if and only if the submatrix of Q of consecutive
rows and columns determined by the L2’s in these interchanges contain no other ones
other than those displayed.

We remark that if we restrict ourselves to the set of symmetric permutation
matrices with no fixed points, then only the L4 → L2⊗L2 interchanges are possible.

Now consider the classes As(R) and As
0(R) of symmetric (0, 1)-matrices with

row and column sum vector R with unrestricted trace and trace zero, respectively
(equivalently, graphs with degree sequence equal to R in which loops may or may
not be permitted). The Bruhat and secondary Bruhat orders on A(R,R) induce
Bruhat and secondary Bruhat orders on As(R) and As

0(R), respectively. Recall the
matrices A, C, and D in A(6, 3) defined in (2.1) and (2.2) where A is smaller than
D in the Bruhat order but incomparable in the secondary Bruhat order because C
covers both A and D in the secondary Bruhat order. Let

A′ =
[
O6 A
AT O6

]
, C ′ =

[
O6 C
CT O6

]
, and D′ =

[
O6 D
DT O6

]
(5.1)

be matrices in As
0(12, 3) (and so in As(12, 3)). Since ΣA > ΣD > ΣC , it follows

that ΣA′ > ΣD′ > ΣC′ and hence A′ ≺B D′ ≺B C ′. Suppose there were a matrix
X in As(12, 3) such that D′ ≺ bB X ≺ bB C ′. Since the secondary Bruhat order is a
refinement of the Bruhat order, X has the form[

O6 U
UT O6

]
.

This implies that D ≺ bB U ≺ bB C a contradiction. Thus C ′ covers D′ in the secondary
Bruhat order, and similarly C ′ covers A′ in the secondary Bruhat order. Thus D′

and A′ are incomparable in the secondary Bruhat order on As
0(12, 3) and As(12, 3).
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We now consider briefly the classes As
0(n, k). According to a result of Punnim

[28], there exists a k-regular graph of order n having a complete subgraph Kk+1 of
order k+1 (so a connected component equal to Kk+1) if n = k+1 or n ≥ 2k+2, and
having a complete subgraph of order m = bn/2c if k + 2 ≤ n ≤ 2k + 1. In addition,
no regular graph with n vertices of degree k can have a larger complete subgraph.
Thus, if n = k + 1 or n ≥ 2k + 2, k + 1 is the largest possible order of a principal
submatrix of the form J− I in a matrix belonging to As

0(n, k); if k+2 ≤ n ≤ 2k+1,
then m is the largest such order. Note that if n is odd, then k must be even in order
that As

0(n, k) be nonempty. It now follows that in the Bruhat order on As
0(n, k) with

n ≥ 2k + 2, there is a minimal matrix of the form (Jk+1 − Ik+1)⊕X where X is a
minimal matrix in As

0(n− k− 1, k). Thus we need only consider k+ 1 < n ≤ 2k+ 1,
and we now make this assumption. If n is even, say n = 2m, then there exists a
matrix in As

0(2m, k) of the form

A =
[
Jm − Im M
M t Jm − Im

]
,

where M is a matrix in A(m, k − m + 1). If we choose M to be a matrix that
is minimal in the Bruhat order on the class A(m, k − m + 1), then A is clearly a
minimal matrix in the Bruhat order on As

0(2m, k). Now consider the special case in
which n = 2k + 1, where k = m = 2h. Then a minimal matrix in the Bruhat order
can be constructed as follows:

Jk − Ik jh Oh,h

oh Ih Oh,h−1
ok

jT
h oT

h

Ih
Oh,h

Oh−1

0 oT
h jT

h−1

oT
h

Jk−1 − Ik−1

jT
h−1

jk

oT
k jT

k 0



,

where jh is the column vector of h 1’s and oh is the column vector of h 0’s.

6 Ordering by spectral radius (index)

In this section all matrices are square. Let A be a (0, 1)-matrix of order n (a
bipartite graph with bipartition into two sets of size n). By the Perron-Frobenius
theory of nonnegative matrices, A has a nonnegative eigenvalue ρ(A) such that
|λ| ≤ ρ(A) for every eigenvalue λ of A. The number ρ(A) is the spectral radius or
index of A. The spectral radius lies between the minimum r̃ and maximum r row
sums. If the matrix is irreducible and r̃ 6= r, then there is strict inequality at both
ends.

Let R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) be positive vectors such that
A(R,S) is nonempty. One can attempt to order matrices in A(R,S) according to
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spectral radius:
A1 ≤ρ A2 provided that ρ(A1) ≤ ρ(A2).

Since the spectral radius depends on the entries of a matrix in a very complicated
way it does not seem realistic to expect to be able to say anything general and
substantial about this order when restricted to matrices in A(R,S). If 1 ≤ k ≤ n
and R = S = (k, k, . . . , k), a constant vector of all k’s, then the spectral radius
is constant on A(R,S). This naturally leads to consideration of a nearly-constant
vector with two different components k and k+1 (1 ≤ k ≤ n−1). Since the spectral
radius is invariant under simultaneous row and column permutations, without loss
of generality we take

R = Rn(k; p) = (k + 1, . . . , k + 1︸ ︷︷ ︸
p

, k, . . . , k︸ ︷︷ ︸
n−p

) (1 ≤ p ≤ n− 1)

and S a rearrangement of R, that is, S = Rn(k; p)Q for some permutation matrix
Q of order n. The problem seems difficult enough already when Q = In, that is,
S = Rn(k; p). We call classes of the form An(k; p) = A(Rn(k; p), Rn(k; p)) nearly-
regular classes.

A simple example reveals the difficulty even in this nearly-regular case. Consider
An(1; p). If n = 3 and p = 2, then the spectral radius of a matrix with these
parameters is one of 2, 1.8019, 1.7549, 1.6180, respectively realized by 1 1 0

1 1 0
0 0 1

 ,
 1 1 0

1 0 1
0 1 0

 ,
 1 1 0

0 1 1
1 0 0

 ,
 1 0 1

0 1 1
1 0 0

 .
If p ≥ 2 and n ≥ 4, the maximum spectral radius equals 2. This is because there is
a matrix in An(1; p) with an irreducible component equal to J2, that is, of the form
J2 ⊕ A′ where A′ ∈ An−2(1, p − 2). If p = 1, the possibilities, up to simultaneous
row and column permutations are

P ′
k ⊕Q (Q a permutation matrix) (6.1)

where P ′
k is obtained from the full-cycle permutation matrix Pk of some order k by

replacing the 0 in position (1, 1) with a 1, and 0 1 1
1 0 0
1 0 0

⊕Q (Q a permutation matrix). (6.2)

For example,

P ′
6 =



1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 .

The characteristic polynomial of P ′
k is (λ − 1)λk−1 − 1. The spectral radius of P ′

k

is between 1 and 2, and it is easy to see from the characteristic polynomial that
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the maximal spectral radius, namely (1 +
√

5)/2, occurs when k = 2. The spectral
radius of (6.2) is

√
2. Hence the maximum spectral radius is (1 +

√
5)/2 if p = 2 and

n ≥ 4.
Next we recall a theorem of Schwarz [30].

Theorem 6.1 Let n2 nonnegative numbers be given. Of all the matrices of order
n whose n2 entries are the given numbers, the largest spectral radius occurs among
those matrices for which the entries in each row and in each column are weakly
decreasing.

The method used by Schwarz to prove this theorem is to first show that if a
smaller entry precedes a larger entry in a row, the two entries can be interchanged
without decreasing the spectral radius. In this way the entries in each row can
be arranged to be weakly decreasing. Repeating on columns does not change the
weakly decreasing property of the entries in each row.

Theorem 6.1 implies that the maximum spectral radius among all (0, 1)-matrices
with a specified row sum vector R but an unspecified column sum vector occurs at a
matrix where the 1’s are in the initial positions of each row; so, under the assumption
that R is nonincreasing, the 1’s in each column are also in the initial positions. If
R = Rn(2; p), the maximum spectral radius ρ for such matrices occurs for

J3 =

 1 1 1
1 1 1
1 1 1

 (p ≥ 3; ρ = 3) and J ′3 =

 1 1 1
1 1 1
1 1 0

 (p = 2; ρ = 1 +
√

3).

Now let p = 1. With the use of the method of Schwarz, it is not difficult to show
that given a matrix A with row sum vector Rn(2; 1), there is a (0,1)-matrix B of
order 3 with two 0’s whose spectral radius is at least as large as that of A. The
largest spectral radius of such a B is ρ = 1 +

√
2 attained by both

J ′′3 =

 1 1 1
1 1 0
1 0 1

 and

 1 1 1
1 1 0
1 1 0

 (p = 1).

Since the column sum vector of the matrices J3, J
′
3 and J ′′3 is the same as its row

sum vector, it remains to consider if and how they can be realized as a principal
submatrix of a matrix in An(2; p). We have the following observations:

(i) p ≥ 4 and n ≥ 6: there is a matrix inAn(2; p) having J3 as a leading submatrix.

(ii) p = 3 and n ≥ 5: there is a matrix having J3 as a leading submatrix.

(iii) p = 2, and n = 3 or n ≥ 5: there is a matrix having J ′3 as a leading submatrix.

(iv) p = 1, and n = 3 or n ≥ 5: there is a matrix having J ′′3 as a leading submatrix.

Left to consider are R5(2; 4) = (3, 3, 3, 3, 2), R4(2; 3) = (3, 3, 3, 2), R4(2; 2) =
(3, 3, 2, 2) and R4(2; 1) = (3, 2, 2, 2). Using MATLAB, one determines that the
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maximal spectral radius occurs, respectively, at the following matrices:
1 1 1 0 0
1 1 1 0 0
1 1 0 1 0
0 0 1 1 1
0 0 0 1 1

 ,


1 1 1 0
1 1 1 0
1 1 0 1
0 0 1 1

 ,


1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1

 ,


1 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1

 .

We now consider Rn(k; p) in general. Using the Schwarz method, the maximal
spectral radius for this row sum vector (with the column sum vector unrestricted)
equals the spectral radius of:

Jk+1 if p ≥ k + 1, and

Jp
k+1 =

[
Jk+1,k αp

]
if 1 ≤ p ≤ k. (6.3)

where α is a column with p 1’s followed by k + 1− p 0’s.

Lemma 6.2 Let p be a positive integer with p ≤ k. The matrix Jp
k+1 in (6.3) and

the matrix

Lp
k+1 =


Jp Jp,k+1−p

Jk+1−p,p Jk+1−p − Ik+1−p

 (6.4)

in Ak+1(k; p) have the same spectral radius.

Proof Each of the matrices (6.3) and (6.4) is irreducible. By the Perron-Frobenius
theory each has a positive eigenvector (unique up to positive multiples) correspond-
ing to its spectral radius. Let x = (x1, x2, . . . , xk+1)T be a positive eigenvector for
the spectral radius of Jp

k+1. Then Jp
k+1x = ρ(Jp

k+1)x implies that x1 = · · · = xp

and xp+1 = · · · = xk+1. From this it follows that Lp
k+1x = ρ(Jp

k+1)x and ρ(Lp
k+1) =

ρ(Jp
k+1). �

Thus provided we can realize Jk+1 or the matrix (6.4) as a principal submatrix
of a matrix in An(k; p), we will have determined which matrix in An(k; p) has the
largest spectral radius. If p = k + 1 and either n = p or n ≥ 2k + 1, or if p > k + 1
and n ≥ 2k + 2, then we have a matrix in An(k; p) of the form Jk+1 ⊕ A and so
ρ = k + 1. If p < k and either n = k + 1 or n ≥ 2k − 1, then we have a matrix in
A(p; k) of the form

Lp
k+1 ⊕A =


Jp Jp,k+1−p

Jk+1−p,p Jk+1−p − Ik+1−p

⊕A
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which therefore has the largest spectral radius. We observe that the matrix Lp
k+1

is a symmetric matrix. Thus the largest spectral radius is attained by a symmetric
matrix in these cases.

The determination of the maximum spectral radius for matrices in An(k; p) has
now been reduced to a finite problem: the three possibilities are

p = k + 1 and p < n ≤ 2k,
p > k + 1 and n ≤ 2k + 1, and
p < k and k + 1 < n ≤ 2k.

It appears to be a very difficult problem to determine which matrix has the largest
spectral radius.

One can relax the condition that the rows and columns contain a specified num-
ber of 1’s by prescribing only the total number of 1’s, that is, by considering the
class A(n|τ) of all (0, 1)-matrices of order n with exactly τ 1’s (τ ≤ n2). By The-
orem 6.1 the maximum spectral radius occurs among those matrices whose 1’s are
concentrated in the upper left corner and have a staircase pattern. Such a matrix
corresponds to a partition of τ :

τ = r1 + r2 + · · ·+ rn where r1, r2, . . . rn and n ≥ r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, (6.5)

(here we include terms equal to 0 corresponding to row sums equal to 0). The
column sum vector for such a matrix is the conjugate partition τ∗ (again including
0’s to correspond to zero column sums). In [8] the question was raised to determine
which partition (6.5) of τ gives the largest spectral radius. It was shown in [8] that
for τ = k2 and k2 + 1, respectively, the partitions

(k, k, . . . , k,︸ ︷︷ ︸
k

0, . . . , 0), and (k + 1, k, . . . , k︸ ︷︷ ︸
k

, 0, 0, . . . , 0) and (k, k, . . . , k︸ ︷︷ ︸
k

, 1, 0, . . . , 0)

give the maximum spectral radii, and this spectral radius equals k in both cases. If
k = 2 there is only one other partition that gives spectral radius k, namely, (2, 1, 1).
Friedland [18] proves that for τ = k2 + 2k, the maximal spectral radius occurs for
the partition

(k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
k

, k, 0 . . . , 0).

Following up on a counterexample of Coppersmith to a conjecture reported in [8],
he also showed that for τ = k2 + 2k−3, the maximum spectral radius occurs for the
partition

(k + 1, . . . , k + 1︸ ︷︷ ︸
k−1

, k − 1, k − 1, 0, . . . , 0).

It was conjectured in [18] that for τ = k2 + l, where 1 ≤ l ≤ 2k, there is a partition
giving the maximum spectral radius that has k + 1 positive components with each
component at most k + 1. By our comments above, this has been proved for l =
1, 2k, 2k − 3 and for fixed l when k is sufficiently large depending on l.

We now turn to the class As
0(n|τ) of symmetric (0, 1)-matrices of order n with

zero trace and exactly τ 1’s above the main diagonal (graphs with n vertices and
τ edges). Using a biquadratic form, Brualdi and Hoffman [8] proved the analogue
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of Schwarz’s result for this class: the maximum spectral radius for a class As(n|τ)
occurs for a matrix A = [aij ] with a stepwise pattern, that is, for i < j, aij = 1
implies that apq = 1 whenever p < q ≤ j and p ≤ i. They showed that if τ =

(
d
2

)
,

then the maximum spectral radius of matrices in As
0(n, τ) is d−1 and that a matrix

A ∈ As
0(n|τ) with spectral radius d− 1 satisfies

PAP T = (Jd − Id)⊕On−d

for some permutation matrix P . Resolving a conjecture in [8], Rowlinson [29] (see
also [14]) proved the following result.

Theorem 6.3 Let τ =
(
d
2

)
+t where 0 < t < d. Let Kd,t be the matrix in As(d+1|τ)

obtained from Jd − Id by attaching a new last column and row with t 1’s in their
initial positions. Then a matrix A in As(n|τ) has maximum spectral radius if and
only if there is a permutation matrix P such that

PAP T = Kd,t ⊕On−d−1.

The determination of the maximal spectral radius of the classAs(n|τ, irr), n−1 ≤
τ ≤ n(n − 1)/2 (index of connected graphs with n vertices and τ edges) is more
difficult and has been solved in only some cases. A matrix in the class As(n|n−1, irr)
is the adjacency matrix of a tree on n vertices and it is well-known that the minimum
spectral radius occurs uniquely for a path and the maximal spectral radius occurs
uniquely for the star K1,n−1. Brualdi and Solheid [11] showed that even in the
irreducible case, the maximum spectral radius occurs only at a matrix whose rows
and columns can be simultaneously permuted to a matrix with a stepwise pattern (so
the connected graph with the maximal index contains a star K1,n−1 as a spanning
tree; in particular, only the star has maximum spectral radius when τ = n−1). The
cases with τ = n+ k, 1 ≤ k ≤ 5 were considered in [11] where graphs Gn,k and Hn,k

(see below for a general definition of these graphs) were identified such that Gn,k

uniquely gave the maximal spectral radius for k = 0, 1, 2, while for k = 3, 4, or 5,
Gn,k gives the maximal spectral radius for some small values of n and Hn,k uniquely
gives the maximal spectral radius for all sufficiently large n.

We now define the graphs Gn,k and Hn,k as graphs with adjacency matrices in
As(n|τ, irr), n − 1 ≤ τ ≤ n(n − 1)/2. Let k =

(
d−1
2

)
+ t − 1 where 0 ≤ t ≤ d − 2.

Then Gn,k is the graph on n vertices with τ = n + k edges, having a complete
subgraph Kd and an independent set of n − d vertices each of which is joined by
an edge to the same vertex of Kd, with one of the vertices in the independent set
joined by an edge to t other vertices of Kd. If 0 ≤ t < n − d, the graph Hn,k is
the graph on n vertices with τ = n+ k edges, having a complete subgraph Kd and
an independent set of n− d vertices each of which is joined by an edge to the same
vertex of Kd, with one vertex of the stable set joined to t other vertices of the stable
set. Cvetković and Rowlinson [12] extended the above results by showing that for
any k ≥ 6 and n large enough, Hn,k uniquely gives the maximum spectral radius
of the class As(n|n + k, irr). Bell [2] considered the case of k =

(
d−1
2

) − 1 for some
d > 4 (so τ = n − 1 +

(
d−1
2

)
, the number of edges of a tree on n vertices together

with those of a complete graph Kd−1) and showed that there is a function

g(d) =
1
2
d(d+ 5) + 7 +

32
d− 4

+
16

(d− 4)2
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such that if n ≤ g(d), then Gn,k gives the maximum spectral radius, while if n ≥ g(d)
then Hn,k gives the maximum spectral radius. Some bounds on this maximum
spectral radius are also given in [2].

It has been conjectured [1] (see also [31]) that there is a function g(k) such that
a graph with adjacency matrix in As(n|n+ k, irr) of maximum index is isomorphic
to Gn,k if n < f(k), is isomorphic to Gn,k or Hn,k if n = f(k), and is isomorphic to
Hn,k if n > f(k).

Finally we note that Sections 1 and 3 of [13] contain a discussion of the ordering
of particular types of graphs by spectral radius, by spectra, and by spectral moments.

7 Ordering by rank

One can also order matrices in a nonempty class A(R,S) by rank (over the real
field):

A1 ≤r A2 provided that rk(A1) ≤ rk(A2).

As with the spectral radius, it is difficult to say anything substantial about this
order for general A(R,S). Let

r̃k(R,S) = min{rk(A) : A ∈ A(R,S)}
and

rk(R,S)) = max{rk(A) : A ∈ A(R,S)}
be, respectively, the minimum and maximum rank possible for a matrix in A(R,S).
An interchange I2 ↔ L2 can alter the rank by at most one. This follows since if A2 is
obtained from A1 by a single interchange, taking place e.g. in the leading submatrix
of order 2, then the matrices B1 and B2 obtained from A1 and A2, respectively,
by adding column 1 to column 2 differ only in column 1 and thus differ in rank by
at most 1. Since A1 and A2 have the same ranks as B1 and B2, respectively, the
ranks of A1 and A2 differ by at most 1. Thus, by Ryser’s theorem on interchanges,
all values between the minimum and maximum ranks are attainable by matrices in
A(R,S).

We now confine our attention to the regular classes A(n, k) consisting of all
matrices of order n with k 1’s in each row and column, and let r̃kn(k) and rkn(k)
denote the minimum and maximum ranks for these classes. The maximum rank
problem for these classes has a very neat answer due to Newman [27] and Houck
and Paul [21].

Theorem 7.1 Let n and k be integers with 0 ≤ k ≤ n. Then

rkn(k) =


0 if k = 0,
1 if k = n,
3 if k = 2 and n = 4,
n otherwise.

Thus, except for trivial cases, only for n = 4 and k = 2 does there not exist a
nonsingular matrix in A(n, k).

Determining the minimum rank of matrices in A(n, k) is more difficult and is
resolved in only certain special cases [10].
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Theorem 7.2 For n ≥ 2 we have

r̃kn(2) =
{
n/2 if n is even,
(n+ 3)/2 if n is odd.

For n ≥ 3 we have

r̃kn(3) =
{
n/3 if n is divisible by 3,
bn/3c+ 3 otherwise.

An inequality that is used in the proof of Theorem 7.2 is

r̃kn(k) ≥ dn/ke (7.1)

with equality if and only if k divides n.
The upper bound for the minimum rank,

r̃kn(k) ≤ bn/kc+ k

is a consequence of a general construction of a matrix in A(n, k) [10] which we
illustrate for n = 11 and k = 4. The matrix J4 O4,7

O7,4
O3 J3,4

J4,3 I4


has rank 6. Hence using the characterization of equality in (7.1), we see that 5 ≤
r̃k11(4) ≤ 6.

As already mentioned, all possible ranks between the minimum and maximum
ranks are attainable by matrices in A(n, k). Thus the number of possible ranks is
rkn(k)− r̃kn(k) + 1. For a positive integer r, Jorgenson [22] defined Rr to be the set
of all numbers k/n for which there exists a matrix in A(n, k) with rank equal to r
and showed that |Rr| < 2r2

, in particular, Rr is a finite set.
Little seems to be known about the order of matrices in As(R) or As

0(R) with
respect to rank. Under the assumption that a matrix in As

0(R) has no identical
rows (the corresponding graph does not have two vertices joined to the same set of
vertices), in [25] there is an implicit lower bound1 on the rank, namely 2 log2 n − c
where c is a constant.

One can also order matrices in A(R,S) by determinant, permanent, and term
rank but we do not pursue this line of investigation further here, and instead refer
the interested reader to [5].

8 Higher-dimensional permutation arrays

In this section we describe some work of Erikkson and Linusson [16, 17] concern-
ing generalizations of permutation matrices and its Bruhat order.

The natural way to generalize permutation matrices to higher dimensions is the
following. Let n and d be positive integers and let P = [pi1i2...id ] be a d-dimensional

1As pointed out by a referee.
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(0, 1)-array of order n. Let k be a positive integer with 0 ≤ k ≤ d. Define a k-
dimensional flat of P to be the k-dimensional array obtained from P by fixing d− k
coordinate positions at values between 1 and n and allowing the other k coordinate
positions to independently vary between 1 and n; notationally,

P [i1 = a1, i2 = a2, . . . , id−k = ad−k]

is a k-dimensional flat obtained by fixing coordinate position ij at aj for j =
1, 2, . . . , d − k. There are

(
d
k

)
k-dimensional flats. A (d, n, k)-permutation array

is a d-dimensional (0, 1)-array of order n such that each k-dimensional flat con-
tains exactly one 1. A (d, n, 0)-permutation array is an array of all 1’s; a (d, n, d)-
permutation array is an array with exactly one 1. The permutation matrices of
order n are the (2, n, 1)-permutation arrays. Latin squares of order n are equiva-
lent to (3, n, 1)-permutation arrays. We can picture a (d, 2, 1)-permutation array as
a d-dimensional unit cube with a 0 or 1 at each of its 2d vertices. Combinatorial
constructs known as orthogonal arrays of strength k and index 1 are equivalent to
(d, n, d− k)-permutation arrays. Thus the existence of (d, n, k)-permutation arrays
is equivalent to the existence of certain orthogonal arrays. For more on this theme
see [6, 23] and the many references contained therein.

Eriksson and Linusson [16, 17] have proposed another definition of a permutation
array in higher dimensions based on the following three properties of permutation
matrices:

(i) Every row and column contains (at least) one 1.

(ii) In each leading submatrix the number of rows containing a 1 equals the number
of columns containing a 1.

(iii) The collection of 1’s is minimal with respect to (i) and (ii), that is, replacing
a 1 by a 0 leads to a contradiction of (i) or (ii).

To get to their definition requires some preliminary work.
Let P = [pi1i2...id ] be a d-dimensional (0, 1)-array of order n. For each posi-

tion (j1, j2, . . . , jd) with 1 ≤ j1, j2, . . . , jd ≤ n, let P [(j1, j2, . . . , jd)] be the leading
subarray of P consisting of all entries at positions (i1, i2, . . . , id) ≤ (j1, j2, . . . , jd)
(componentwise ordering). For each coordinate index l with 1 ≤ l ≤ d, define the
rank of P along the lth axis, denoted rkl(P ) to be the number of values x (1 ≤ x ≤ n),
of the index il such that there is at least one 1 in some position with lth coordinate
equal to x. If rkl(P ) = r for all l = 1, 2, . . . , d, then P is rankable with rank r,
denoted rankP = r. For example, the 3-dimensional array of order 2 given by∣∣∣∣ 0 0

0 1

∣∣∣∣ (lower level)
∣∣∣∣ 0 1

1 0

∣∣∣∣ (upper level)

is rankable with rank 2. The array P is totally rankable provided that every leading
subarray P [(j1, j2, . . . , jd)] is rankable. If P is totally rankable, then the rank array
of P is the d-dimensional nonnegative integral array rankP of order n whose entry
in position (j1, j2, . . . , jd) is rankP [(j1, j2, . . . , jd)]. A (d, n, d−1)-permutation array
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is totally rankable. Another example of a totally rankable array taken from [16] is

0 0 0
0 0 0
0 1 0

(level 1)
0 1 0
0 0 0
1 0 0

(level 2)
0 0 0
0 0 1
0 0 0

(level 3)

with corresponding rank array

0 0 0
0 0 0
0 1 1

(level 1)
0 1 1
0 1 1
1 2 2

(level 2)
0 1 1
0 1 2
1 2 3

(level 3).

Let P and Q be totally rankable d-dimensional (0, 1)-arrays of order n. Then P
and Q are rank-equivalent provided they have the same rank array, that is, for each
(j1, j2, . . . , jd) and each coordinate index l, we have

rklP [(j1, j2, . . . , jd)] = rklQ[(j1, j2, . . . , jd)].

Rank-equivalence partitions the set of totally rankable d-dimensional (0, 1)-arrays
of order n.

Theorem 8.1 [16] If P is a totally rankable d-dimensional (0, 1)-array of order n,
then there exists a unique rankable d-dimensional (0, 1)-array of order n that is rank-
equivalent to P and has the smallest number of 1’s. In fact, the rank-equivalence
classes form intervals in the componentwise ordering.

In view of Theorem 8.1, a d-dimensional permutation array of order n is defined
to be a totally rankable d-dimensional (0, 1)-array P of order n with the fewest
number of 1’s in its rank-equivalence class, equivalently, replacing any 1 of P with
a 0 results in a permutation array that is not totally rankable. A 2-dimensional
permutation array of order n is a permutation matrix. In [16] the rank arrays
of permutation arrays (equivalently, totally rankable arrays) are characterized. In
addition, an efficient algorithm is given to generate all d-dimensional permutation
arrays of order n.

Let Pd,n denote the set of all d-dimensional permutation arrays of order n, and
let P,Q ∈ Pd,n. In [16, 17] the Bruhat order2 is defined on Pd,n by

P �B Q if and only if rankP [(ii, i2, . . . , id)] ≥ rankQ[(ii, i2, . . . , id)]

for every position (i1, i2, . . . , in). If d = 2, this coincides with the Bruhat order
on permutation matrices. The set P(d, 2), partially ordered using this Bruhat or-
der, is isomorphic to the lattice of partitions of a set of d elements under refine-
ment. The correspondence between permutation arrays P in P(d, 2) and partitions
of {1, 2, . . . , d} is thus: Let there be q 1’s in P , at positions xs = (is1, i

s
2, . . . , i

s
d),

1 ≤ s ≤ q. Since n = 2, each isj equals 1 or 2. Let Xs be the set of positions j in
{1, 2, . . . , d} for which isj = 1. ThenX1, X2, . . . , Xq is a partition of {1, 2, . . . , d}. The

2Actually we are reversing the order defined in [16, 17] in order to agree with the usual way, as
adopted in this paper, of defining the Bruhat order on permutations.
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largest permutation array in the Bruhat order on P(d, 2) is the “identity” permuta-
tion array with 1’s in positions (1, 1, . . . , 1) and (2, 2, . . . , 2); this permutation array
corresponds to the partition of {1, 2, . . . , d} with only one part, namely {1, 2, . . . , d}
(the empty set corresponding to (2, 2, . . . , 2) is ignored). The smallest permutation
array in this Bruhat order is the permutation array with d 1’s where these 1’s are in
those positions (1, 2, 2, . . . , 2), (2, 1, 2, . . . , 2), . . . , (2, 2, . . . , 1); this permutation array
corresponds to the partition {1}, {2}, . . . , {d} of {1, 2, . . . , d}.
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of Mathematics and its Applications 66, Cambridge University Press (1997),
69–72.

[15] B. Drake, S. Gerrish, and M. Skandera, Two new criteria for comparison in the
Bruhat order, Electron. J. Combin., 11 (2004), #N6.

[16] K. Eriksson and S. Linusson, A combinatorial theory of higher-dimensional
permutation arrays, Advances in Appl. Math. 25 (2000), 194–211.

[17] K. Eriksson and S. Linusson, A decomposition of FL(n)d indexed by permuta-
tion arrays, Advances in Appl. Math. 25 (2000), 212–227.

[18] S. Friedland, The maximal eigenvalue of 0-1 matrices with prescribed number
of ones, Linear Algebra Appl. 69 (1985), 33–69.

[19] W. Fulton, Young Tableaux With Applications to Representation Theory and
Geometry, vol. 35 of London Mathematical Society of Student Texts, Cambridge
University Press (1997).

[20] C. Greene, An extension of Schensted’s theorem, Advances in Math. 14 (1974),
254–265.

[21] D.J. Houck and M.E. Paul, Nonsingular 0-1 matrices with constant row and
column sums, Linear Algebra Appl. 50, (1978), 143–152.

[22] L.K. Jorgenson, Rank of adjacency matrices of directed (strongly) regular
graphs, Linear Algebra Appl. 407 (2005), 233–241.

[23] W.B. Jurkat and H.J. Ryser, Extremal configurations and decomposition the-
orems, J. Algebra 8 (1968), 194-222.

[24] D.E. Knuth, Permutation matrices and generalized Young tableaux, Pacific J.
Math. 34 (1970), 709–727.

[25] A. Kotlov and L. Lovász, The rank and size of graphs, J. Graph Theory 23
(1996), 185–189.

[26] P. Magyar, Bruhat order for two flags and a line, J. Algebraic Combin. 21
(2005), 71–101.

[27] M. Newman, Combinatorial matrices with small determinants, Canad. J. Math.
30 (1978), 756-762.

[28] N. Punnim, The clique numbers of regular graphs, Graphs Combin. 18 (2002),
781–785.

[29] P. Rowlinson, On the maximal index of graphs with a prescribed number of
edges, Linear Algebra Appl. 110 (1988), 43–53.

[30] B. Schwarz, Rearrangements of square matrices with non-negative elements,
Duke Math. J., 31 (1964), 45–62.



Ordering Matrices 65
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Cycle decompositions of complete graphs

Darryn Bryant

Abstract

The problem of decomposing complete graphs into cycles of specified lengths
dates back to the mid-nineteenth century when Kirkman solved the case where
all the cycles have length three. The case where all of the cycles are of an
arbitrary uniform length wasn’t completely solved until just over one hundred
and fifty years later. The general problem where the specified cycle lengths vary
remains unsolved. This article gives an historical overview of the problem and
describes various cycle decomposition techniques that have been developed.

1 Introduction

1.1 Overview

A decomposition of a graph K is a set D = {G1, G2, . . . , Gt} of subgraphs of K
such that E(G1)∪E(G2)∪· · · ∪E(Gt) = E(K) and E(Gi)∩E(Gj) = ∅ for i �= j. In
the case where the subgraphs are cycles we have a cycle decomposition. The purpose
of this article is to survey results on cycle decompositions and to illustrate some of
the techniques and ideas that have been used to obtain them. The most natural
graphs to decompose are complete graphs. The complete graph of order n is denoted
by Kn. There is no cycle decomposition of Kn when n is even, and so in this case it
is natural to consider cycle decompositions of Kn− I, the complete graph of order n
with the edges of a 1−factor removed. Whenever the notation Kn − I is used there
is an implication that n is even.

Example 1.1 A decomposition of K6 − I into a 3−cycle, a 4−cycle and a 5−cycle
is shown on the left in the figure below, and a decomposition of K7 into a 4−cycle,
two 5−cycles, and a 7−cycle is shown on the right.

This article focuses on existence questions for cycle decompositions of Kn and
Kn − I. Other results on cycle decompositions can be found in the recent survey
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[28], and results on decompositions into graphs other than cycles can be found in
[17]. There are also several earlier surveys on decompositions into cycles [4, 14, 50]
and a book [16] on graph decompositions.

An obvious necessary and sufficient condition for the existence of a cycle decom-
position of a graph K is that each vertex of K has even degree. However, many very
interesting and difficult problems arise if one asks questions about the existence of
cycle decompositions where the lengths of the cycles are specified. That is, given
a graph K and a sequence m1,m2, . . . ,mt of integers, determine whether there ex-
ists a cycle decomposition D = {G1, G2, . . . , Gt} of K where Gi is an mi−cycle for
i = 1, 2, . . . , t. The following lemma gives some obvious necessary conditions for the
existence of such a decomposition.

Lemma 1.2 Let K be a graph of order n, let m1,m2, . . . ,mt be a sequence of inte-
gers, and suppose there is a decomposition D = {G1, G2, . . . , Gt} of K where Gi is
an mi−cycle for i = 1, 2, . . . , t. Then

1. 3 ≤ mi ≤ n for i = 1, 2, . . . , t;

2. the number of edges in K is m1 +m2 + · · · +mt; and

3. each vertex of K has even degree.

Of course, in many instances there are further obvious necessary conditions. For
example, if K is bipartite then each mi must be even. However, in the case of cycle
decompositions of Kn and Kn− I it seems likely that the necessary conditions given
in Lemma 1.2 are also sufficient. The problem of proving this was posed by Alspach
[3] in 1981 and remains unsolved. The special case of this problem where all the
cycles have the same length is the subject of Section 2, and the general problem is
discussed in Section 3.

It is worth mentioning that cycle decomposition problems are NP-complete in
general. In fact, deciding whether an arbitrary graph has a decomposition into
subgraphs each isomorphic to a given graph G is NP-complete if and only if G has
a component with three or more edges [30, 38]. It should also be mentioned that
Wilson [65] has shown that for any simple graph G, there exists an integer N(G) such
that for all n ≥ N(G) and satisfying certain obvious necessary numerical conditions,
there is a decomposition of Kn into subgraphs each isomorphic to G.

1.2 Definitions and notation

A decomposition of a graph K into subgraphs each isomorphic to a graph G is
called a G−decomposition of K. A graph (or set S of graphs) in a decomposition
uses an edge xy if xy occurs in the graph (or in a graph in S). The cycle with
m vertices and m edges is called an m−cycle and is denoted by Cm. The path
with m+ 1 vertices and m edges is called an m−path and is denoted by Pm+1. The
m−cycle with vertices v1, v2, . . . , vm and edges v1v2,v2v3,. . .,vm−1vm,vmv1 is denoted
by (v1, v2, . . . , vm). A connected graph with all vertices of even degree is a closed
trail.

The complete multipartite graph with r parts of sizes k1, k2, . . . , kr is denoted
by Kk1,k2,...,kr . The graph obtained from Kn when the edges of a complete subgraph
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of order v are removed is called the complete graph of order n with a hole of size v
and is denoted by Kn −Kv, the hole consisting of the vertices of Kv. For a graph
G and set S of vertices not in G, S ∨G denotes the graph with vertex set S ∪ V (G)
and edge set E(G) ∪ {xy : x ∈ S, y ∈ V (G)}.

We will often generate cycle decompositions via the action of permutations on
starter cycles. For any graph G and any permutation π acting on the vertices of
G, π(G) is defined to be the graph with vertex set V (π(G)) = {π(v) : v ∈ V (G)}
and edge set E(π(G)) = {π(u)π(v) : uv ∈ E(G)}. For any set S of graphs and any
permutation π acting on the vertices of the graphs in S, π(S) = {π(G) : G ∈ S}.

Definition 1.3 The circulant graph of order n with connection set S ⊆ {1, 2, . . . ,
�n2 �}, denoted Circ(n, S), has vertex set Zn and edge set given by joining x to x+ s
for each x ∈ Zn and each s ∈ S.

Circulant graphs are a family of Cayley graphs, which are defined similarly but
with an arbitrary underlying group rather than the cyclic group Zn. For n odd
Kn
∼= Circ(n, {1, 2, . . . , n−1

2 }), and for n even Kn − I ∼= Circ(n, {1, 2, . . . , n−2
2 }).

In many of the constructions we discuss, the vertex set of Kn is either Zn or
Zn−1 ∪ {∞}, and when n is even the vertex set of Kn − I is either Zn or Zn−2 ∪
{∞1,∞2}. In the latter case, the edges of the removed 1−factor are ∞1∞2 and
those edges joining x to x + n−2

2 for x = 0, 1, 2 . . . , n−4
2 . The permutation ρ of the

following definition is then often used to generate cycles of the decomposition.

Definition 1.4 The permutations (0, 1, 2, . . . , n − 1), (0, 1, 2, . . . , n − 1)(∞) and
(0, 1, 2, . . . , n − 1)(∞1)(∞2) are each denoted by ρn. Where the value of n is clear
from the context, we use just ρ rather than ρn.

When cycle decompositions involving the generation of cycles under the permutation
ρn are illustrated in figures, the vertices of Zn are arranged in cyclic order around
the circumference of a circle with ∞, or ∞1 and ∞2 (if they are involved), in the
interior of the circle. For any graph G with Zn ⊆ V (G) and for any edge xy of G
with x, y ∈ Zn, we define the length of xy to be the distance (length of the shortest
path) between x and y in the cycle (0, 1, 2, . . . , n− 1).

As we shall see, the “doubling construction” given in the following definition has
been used to prove several results, in particular results on decompositions of Kn−I.
The construction is illustrated in the figure below.

Definition 1.5 Let K be a graph. The graph K(2) is defined by letting K ′ and
K ′′ be vertex disjoint copies of K with corresponding vertices v′ ∈ V (K ′) and
v′′ ∈ V (K ′′) for each v ∈ V (K), and defining K(2) to have vertex set V (K(2)) =
V (K ′)∪ V (K ′′) and edge set E(K(2)) = E(K ′)∪E(K ′′)∪ {u′v′′, u′′v′ : uv ∈ E(K)}.
Moreover, for any decomposition D of a graph K, define

D(2) = {G(2) : G ∈ D}.

Notice that K(2)
r
∼= K2r − I and that for any decomposition D of a graph K, D(2) is

a decomposition of K(2). The following figure shows the graph P (2)
8 .
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As a very simple example of the doubling construction, observe that since there
is a trivial K2−decomposition of Kr for any r ≥ 1, and since K(2)

2 is a 4−cycle, the
doubling construction gives a C4−decomposition of Kn − I for any positive even
integer n.

2 Uniform length cycles

This section deals with cycle decompositions of Kn and Kn − I into cycles of
uniform length and is divided into four subsections. Sections 2.1, 2.2 and 2.3 focus on
decompositions of Kn into m−cycles, and decompositions of Kn − I into m−cycles
are discussed in Section 2.4. Section 2.1 introduces some notation and summarises
results that were obtained up until about the end of the 1980s. Section 2.2 describes
the results which reduced the problem to small values of n for each m, and then the
solution to the problem is discussed in Section 2.3.

2.1 The spectrum problem for m-cycles

The problem of decomposing Kn into cycles of uniform length m is often phrased
in terms of determining, for a given value of m, those values of n for which Kn can
be decomposed into m−cycles. The set of such values of n is called the spectrum
for m−cycles and is denoted by Spec(Cm). The problem of determining Spec(Cm)
is called the spectrum problem for m−cycles. The obvious necessary conditions for
n ∈ Spec(Cm) are n ≥ m for n > 1, n is odd, and m divides n(n−1)

2 . For a given
value of m, an integer satisfying these conditions is said to be m−admissible, or just
admissible if the value of m is clear from the context. The problem of determining
Spec(Cm) is now completely solved [5, 60]: for all m ≥ 3, Spec(Cm) is precisely the
set of all admissible n. We give here an historical overview of the problem including
descriptions and examples of some of the constructions that have been devised.

It is worth making the following remarks concerning admissible values of n.
For any given cycle length m, the admissible integers lie in certain residue classes
modulo 2m. For example, the admissible integers for cycles of length m = 30 are
all n ≡ 1, 21, 25, 45 (mod 60) with n = 1 or n ≥ 45. These admissible residue
classes are sometimes called fibers, see [45]. For all m ≥ 3, n ≡ 1 (mod 2m)
is a fiber, and this is the only fiber when m is a power of 2. For odd m ≥ 3,
n ≡ m (mod 2m) is also a fiber, and when m is a power of an odd prime,
n ≡ 1,m (mod 2m) are the only fibers. For m ≡ 2 (mod 8) we have the fiber
n ≡ m

2 (mod 2m), for m ≡ 6 (mod 8) we have the fiber n ≡ 3m
2 (mod 2m), and these

together with the fiber n ≡ 1 (mod 2m) are the only fibers when m is twice a power
of an odd prime.

Results on m−cycle decompositions of complete graphs date back to 1847 when
Kirkman [47] proved that there is decomposition of Kn into 3-cycles if and only if
n ≡ 1, 3 (mod 6). That is, Spec(C3) = {n : n ≡ 1, 3 (mod 6)}. A decomposition
of Kn into 3−cycles is of course a Steiner triple system. There is an entire text
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[37] devoted to triple systems. Another result from the 1800s is that of Walecki
(see Lucas [51]) concerning the decomposition of Kn and Kn − I into n−cycles, or
Hamilton cycles. Variations of Walecki’s method were used over a hundred years
later in the eventual solution to the spectrum problem for m−cycles. We include
Walecki’s construction here and illustrate it in the figure below.

For odd n, let n = 2r + 1, take Z2r ∪ {∞} as the vertex set of Kn and let D be
the orbit of the n−cycle

(∞, 0, 1, 2r − 1, 2, 2r − 2, 3, 2r − 3, . . . , r − 1, r + 1, r)

under the permutation ρ2r. Then D is a decomposition of Kn into n−cycles. For
even n, let n = 2r + 2, take Z2r ∪ {∞1,∞2} as the vertex set of Kn − I, and let D
be the n−cycle decomposition given by the orbit under the permutation ρ2r of the
n−cycle

(∞1, 0, 1, 2r − 1, 2, 2r − 2, 3, 2r − 3, . . . ,
r

2
,∞2,

3r
2
, . . . , r − 1, r + 1, r)

when r is even and

(∞1, 0, 1, 2r − 1, 2, 2r − 2, 3, 2r − 3, . . . ,
3r + 1

2
,∞2,

r + 1
2

, . . . , r − 1, r + 1, r)

when r is odd. These decompositions are illustrated for the cases n = 12, 13 and 14
in the figure below.

The next results on m−cycle decompositions of Kn appeared in papers of Kotzig
and Rosa in the mid 1960s [48, 55, 56]. Kotzig [48] proved that n ∈ Spec(Cm)
whenever n ≡ 1 (mod 2m) and m ≡ 0 (mod 4), thus settling the spectrum problem
for m−cycles when m is a power of 2. Rosa [55] showed that n ∈ Spec(Cm) for
n ≡ 1 (mod 2m) and m ≡ 2 (mod 4), and he also settled the spectrum problem for
5−cycles and 7−cycles [56]. The decompositions of Kotzig and Rosa were cyclic.
That is, Zn is taken as the vertex set of Kn and the decomposition D satisfies
ρn(D) = D. An example of a cyclic decomposition of K25 into 6−cycles is given by
the orbit under ρ25 of the following two starter cycles.

(0, 1, 3, 7, 19, 8) (0, 3, 10, 20, 15, 9)

Other results on cyclic m−cycle systems can be found in [15, 18, 33, 34, 41, 53] and
in the survey [28].

In the 1970s the spectrum problem for m−cycles was settled for several further
small values of m as indicated in the following table, which also lists earlier results.
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In each case, the spectrum consists of n = 1 and the set of all integers n ≥ m in the
indicated residue classes modulo 2m.

m 3 2α 5, 7 6 10 12 14
Residues 1, 3 1 1,m 1, 9 1, 5 1, 9 1, 21

Year 1847 1965 1966 1975 1978 1978 1978
Reference [47] [48] [56] [59] [13] [13] [13]

In 1980, Alspach and Varma [7] settled the spectrum problem for Cm for the
case m is twice a power of an odd prime. They proved that for m = 2pα where p is
prime and α ≥ 1,

Spec(Cm) = {n : n ≡ 1, m
2 (mod 2m), n �= m

2 } for m ≡ 2 (mod 8),

and
Spec(Cm) = {n : n ≡ 1, 3m

2 (mod 2m)} for m ≡ 6 (mod 8).

In 1988, Jackson [46] proved a similar result for cycles of odd length. He constructed
m−cycle decompositions of Kn for n ≡ 1,m (mod 2m) and all odd m, thus estab-
lishing the entire spectrum for m−cycles when m is a power of an odd prime. For
m = pα where p is an odd prime and α ≥ 1,

Spec(Cm) = {n : n ≡ 1,m (mod 2m)}.

2.2 Reduction of the spectrum problem for m-cycles

In 1978, Bermond, Huang and Sotteau [13] reduced, for each even value of m, the
spectrum problem for m−cycles to one of decomposing Kn into m−cycles for a finite
number of small values of n. In 1989, Hoffman, Lindner and Rodger [45] proved a
similar result for the case m is odd. These results are contained in the following
theorem. They represent important breakthroughs on the spectrum problem for
m−cycles and are critical ingredients in the eventual solution to the problem.

Theorem 2.1 [13, 45] If there exists a decomposition of Kn into m−cycles for all
admissible n in the range m < n < 3m, then there exists a decomposition of Kn into
m−cycles for all admissible n.

For m even, Theorem 2.1 is an easy corollary of the above-mentioned results
of Kotzig [48] and Rosa [55], which proved the existence of m−cycle systems of
Kn for all n ≡ 1 (mod 2m), and the following result of Sotteau [63] on m−cycle
decompositions of complete bipartite graphs.

Theorem 2.2 [63] (Sotteau’s Theorem) There exists an m−cycle decomposition of
Kx,y if and only if x, y and m are even, m divides xy, x ≤ m

2 and y ≤ m
2 .

Suppose m is even and there exists an m−cycle decomposition of Kv. To construct
an m−cycle decomposition of K2mx+v for any x ≥ 1, decompose K2mx+v into a copy
of K2mx+1 and a copy of Kv which intersect in one vertex, and a copy of Kv−1,2mx.
The subgraphs in this decomposition each have a decomposition into m−cycles: Kv

by assumption, K2mx+1 by the results of Kotzig [48] and Rosa [55], and Kv−1,2mx
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by Sotteau’s Theorem [63]. Thus it follows that K2mx+v has a decomposition into
m−cycles. Since the smallest admissible value of n in each fiber is in the range
m ≤ n < 3m (and since Walecki’s construction gives an m−cycle decomposition of
Km − I) Theorem 2.1 is established for even m.

We now outline the construction of Hoffman et al [45] which proves Theorem 2.1
for the case m is odd. The two main ingredients in the proof are Lemma 2.3 and
Lemma 2.5.

Lemma 2.3 [45] Let m ≥ 3 and v ≥ 1 be odd. There exists an m−cycle decomposi-
tion of K2m+v−Kv provided q ≤ m+2r−1 where q and r are given by v = qm−1

2 +r
with 1 ≤ r ≤ m−1

2 .

Note that for m ≥ 5 and v < 3m the condition q ≤ m + 2r − 1 is always satisfied.
A considerable amount of work has been done on decompositions of Kn −Kv into
m−cycles, see [19, 23, 26, 27, 29, 39, 52] and the survey [28]. Results of this kind
are often called “Doyen-Wilson” type results, after the authors of the 1973 article
[39] which considered the problem for 3−cycles.

Lemma 2.3 is proved by taking Zm×{0, 1}∪{∞1 ,∞2, . . . ,∞v} as the vertex set of
K2m+v−Kv, with {∞1,∞2, . . . ,∞v} being the hole. Various clever combinations of
starter m−cycles are then used to generate the decomposition under the permutation
(x, i) �→ (x + 1, i) for x ∈ Zm and i ∈ {0, 1}, and ∞j �→ ∞j for j = 1, 2, . . . , v. We
illustrate some of the features of the construction with the following example.

Example 2.4 A 15−cycle decomposition of K55 −K25.
For any odd integerm, any subsetsD0,D1 of {1, 2, . . . , m−1

2 } and any subsetM of
{0, 1, 2, . . . ,m−1}, define 〈D0,M,D1〉m to be the graph with vertex set Zm×{0, 1}
and edges defined as follows. For i ∈ {0, 1} and each d in Di vertices (x, i) and
(y, i) are joined if x and y are at distance d in the m−cycle (0, 1, 2, . . . ,m − 1).
For each d ∈ M vertices (x, 0) and (y, 1) are joined if x + d ≡ y (mod m). So
K2m

∼= 〈{1, 2, . . . , m−1
2 }, {0, 1, 2, . . . ,m− 1}, {1, 2, . . . , m−1

2 }〉m.
We decompose K55 −K25 into the following six subgraphs and then show that

each of these can be decomposed into 15−cycles.

1. {∞1,∞2, . . . ,∞7} ∨ 〈∅, {12}, ∅〉15
2. {∞8,∞9, . . . ,∞14} ∨ 〈∅, {13}, ∅〉15
3. {∞15,∞16, . . . ,∞21} ∨ 〈∅, {14}, ∅〉15
4. {∞22} ∨ 〈{7}, {1, 2, . . . , 11}, {7}〉15
5. {∞23,∞24,∞25} ∨ 〈{3, 4, 5, 6}, {0}, {3, 4, 5, 6}〉15
6. 〈{1, 2}, ∅, {1, 2}〉15

For any cycle C in {∞1,∞2, . . . ,∞25} ∨K30 denote by ψ(C) the orbit of C under
the permutation (x, i) �→ (x + 1, i) for x ∈ Z15 and i ∈ {0, 1}, and ∞j �→ ∞j

for j = 1, 2, . . . , 25. Now, for any d ∈ {0, 1, 2, . . . , 14}, ψ(C) is a decomposition of
{∞1,∞2, . . . ,∞7} ∨ 〈∅, {d}, ∅〉15 into 15−cycles, where

C = ((0, 0), (d, 1),∞1 , (x1, 0),∞2, (x2, 1),∞3, (x3, 0), . . . , (x6, 1),∞7)
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and x1, x2, . . . , x6 are arbitrary distinct elements of Z15 \ {0, d}. Hence graphs 1, 2
and 3 in the above list each have 15−cycle decompositions.

Also, for d ∈ {1, 2} the graphs 〈{d}, ∅, ∅〉15 and 〈∅, ∅, {d}〉15 are 15−cycles (ig-
noring the isolated vertices) and so graph number 6 in the list can be decomposed
into four 15−cycles. A 15−cycle decomposition of graph 4 is given by ψ(C) where
C is the 15−cycle on the left in the figure below, and a 15−cycle decomposition of
graph 5 is obtained similarly from the 15−cycle on the right.

Lemma 2.5 [45] Let g ≥ 3 and m ≥ 3 with m odd. There is an m−cycle decompo-
sition of the complete multipartite graph K2m,2m,...,2m with g parts of size 2m.

We give the construction used to prove Lemma 2.5. Let Q = {1, 2, . . . , 2g} and
let (Q, ◦) be a commutative quasigroup containing the subquasigroups ({1, 2}, ◦),
({3, 4}, ◦),. . .,({2g − 1, 2g}, ◦). Such quasigroups are well known to exist for all
g ≥ 3. Take Zm × Q as the vertex set of the complete multipartite graph with g
parts of size 2m; the g parts being Zm × {1, 2},Zm × {3, 4}, . . . ,Zm × {2g − 1, 2g}.
For each pair i, j ∈ Q with i < j and {i, j} /∈ {{1, 2}, {3, 4}, . . . , {2g − 1, 2g}} we
include the orbit of the cycle

C = ((0, i), (m−3
2 , j), (1, i), (m−5

2 , j), . . . , (m−3
2 , i), (0, j), (m−1

2 , i ◦ j))

under the permutation (x, i) �→ (x+1, i) for each x ∈ Zm and each i ∈ Q. The cycle
C for the case m = 9 is shown in the figure below.
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We now describe how one obtains Theorem 2.1 for the case m is odd from
Lemmas 2.3 and 2.5. The above-mentioned result of Jackson [46] proves that the
theorem holds for m ≤ 13 so we may assume m ≥ 15. Write n = 2mx + v where
m ≤ v < 3m and x ≥ 1. Since n is admissible, it follows that v is also admissible,
and hence by assumption that there is an m−cycle decomposition of Kv. For x = 1,
decompose K2m+v into one copy of K2m+v −Kv and one copy of Kv, and use the
m−cycle decomposition of K2m+v −Kv given by Lemma 2.3. For x = 2, decompose
K4m+v into one copy of K4m+v − K2m+v and one copy of K2m+v, and use the
m−cycle decomposition of K2m+v just constructed and the m−cycle decomposition
of K4m+v − K2m+v given by Lemma 2.3. It is straightforward to check that the
conditions of Lemma 2.3 are satisfied for K4m+v −K2m+v when m ≥ 15. For x ≥ 3
decompose K2mx+v into one copy of Kv, x copies of K2m+v−Kv, and one copy of the
complete multipartite graph K2m,2m,...,2m with x parts of size 2m. By assumption
Kv has an m−cycle decomposition, K2m+v −Kv has an m−cycle decomposition by
Lemma 2.3, and K2m,2m,...,2m has an m−cycle decomposition by Lemma 2.5. Thus it
follows that K2mx+v has an m−cycle decomposition and Theorem 2.1 is established
for odd m.

Hoffman et al [45] constructed 15−cycle decompositions of K21 and K25, and
21−cycle decompositions of K49 and K57, and thus by Theorem 2.1 settled the
spectrum problem for 15−cycles and 21−cycles, the two smallest unresolved odd
values of m:

Spec(C15) = {n : n ≡ 1, 15, 21, 25 (mod 30)}
and

Spec(C21) = {n : n ≡ 1, 7, 15, 21 (mod 42), n ≥ 21}.
Their constructions also provide an alternative proof of the existence of m−cycle
systems of Kn for all admissible n in the case m is a power of an odd prime, a
case which was settled by Jackson [46]. Subsequently, Bell [11] used Theorem 2.1 to
settle the spectrum problem for m−cycles for

m ∈ {20, 24, 28, 30, 33, 35, 36, 39, 40, 42, 44, 45, 48},
thus settling it for all m ≤ 50, the spectrum for the other values of m ≤ 50 having
already been established by earlier results.

2.3 Solution to the spectrum problem for m-cycles

In [5] Alspach and Gavlas construct m−cycle decompositions of Kn for all odd
m and all admissible n in the range m < n < 3m, which by Theorem 2.1 settles the
spectrum problem for m−cycles when m is odd. Soon after, Šajna [60] extended
their techniques and completed the solution by settling the case m is even. The same
two papers also completely settle the existence problem for m−cycle decompositions
of Kn − I, see Section 2.4.

Theorem 2.6 [5, 60] Let m ≥ 3. There exists an m−cycle decomposition of Kn if
and only if n is odd, n ≥ m for n > 1, and m divides n(n−1)

2 .

We illustrate the techniques used by Alspach, Gavlas and Šajna to settle the
spectrum problem for m−cycles with two examples: a decomposition of K21 into
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15−cycles and a decomposition of K25 into 20−cycles. The general solution is quite
lengthy and contains many techniques not illustrated by these two decompositions.
For example, clever use was made of the result of Bermond et al [12] on decom-
positions of 4−regular Cayley graphs into Hamilton cycles (see Theorem 3.6) to
link paths together into m−cycles. Nevertheless, the decompositions given in the
following two examples serve to give some flavour of the constructions.

Example 2.7 A 15−cycle decomposition of K21.
Take Z20 ∪ {∞} as the vertex set of K21. Let C be the cycle on the left in the

figure below and let C ′ be the cycle on the right. Then the orbits of C and C ′ under
the permutation ρ form the required 15−cycle decomposition of K21.

The orbit of C contains four 15−cycles and uses all the edges of lengths 1, 3 and 6.
The orbit of C ′ contains ten 15−cycles and uses all the edges of lengths 2, 4, 5, 7, 8, 9
and 10 and all the edges incident with ∞.

Example 2.8 A 20−cycle decomposition of K25.
Take Z24 ∪ {∞} as the vertex set of K25 and let C, C ′ and C ′′ be the cycles

shown below on the left, in the centre, and on the right respectively.

Define D to be the orbit of C under the permutation ρ2, let D′ = {ρi(C ′) : i =
0, 2, 4, 6, 8, 10}, and similarly let D′′ = {ρi(C ′′) : i = 0, 2, 4, 6, 8, 10}. A 20−cycle
decomposition of K25 is then given by D ∪ D′ ∪ D′′. To see this, observe that

• D contains three 20−cycles, uses all the edges of lengths 3 and 5, and uses
half the edges of length 2 (namely those joining vertex x to vertex x + 2 for
x = 1, 3, 5, . . . , 23);



Cycle decompositions 77

• D′ and D′′ each contain six 20−cycles, together use all the edges of lengths
1, 4, 6, 7, 8, 9, 10, 11, 12, and together use the other half of the edges of length
2 (namely those joining vertex x to vertex x+ 2 for x = 0, 2, 4, . . . , 22);

• the edges joining ∞ to 1, 3, . . . , 23 are used in D′, and the edges joining ∞ to
0, 2, . . . , 22 are used in D′′.

More recently, Buratti [31] has provided an alternative solution to the spectrum
problem for m−cycles in the case m is odd. A decomposition D of Kn into m−cycles
is 1−rotational if there exists a labeling of the vertex set of Kn with the elements
of Zn−1 ∪ {∞} such that ρn−1(D) = D. Walecki’s n−cycle decompositions of Kn

are examples of 1−rotational decompositions, as are those in Example 2.7. Buratti
constructed 1−rotational m−cycle decompositions of Kn for all admissible n in the
range m ≤ n ≤ 3m, with the exception that there is no 1−rotational m−cycle
decomposition of Kn when m is composite and n = 2m + 1. These exceptional
values of m and n are covered by Jackson’s result [46], so the spectrum problem for
m−cycles with m odd is settled using Theorem 2.1. Other results on 1−rotational
cycle decompositions can be found in [32] and [54] and in the survey [28].

2.4 m-cycle decompositions of complete graphs minus a 1-factor

We extend the definition of the term admissible so that it applies to m−cycle
decompositions of Kn − I, rather than just Kn. Thus, an odd integer n > 1 is
admissible if n ≥ m and m divides n(n−1)

2 , and an even integer n > 2 is admissible
if n ≥ m and m divides n(n−2)

2 .
Like the problem of decomposingKn into m−cycles, the problem of decomposing

Kn − I into m−cycles was solved by first reducing the problem to small values of n
for each value of m. For m even we have the following result, see [5] or [6].

Theorem 2.9 [5, 6] Let m and n be even. If there exists a decomposition of Kn− I
into m−cycles for all admissible n in the range m < n < 2m then there exists a
decomposition of Kn − I into m−cycles for all admissible n.

Theorem 2.9 follows easily from Sotteau’s Theorem (Theorem 2.2). Write n =
qm+ r with 0 ≤ r < m and decompose Kn− I into q− 1 copies of Km− I, one copy
of Km+r−I,

(q−1
2

)
copies of Km,m and q−1 copies of Km,m+r. Each of these graphs

can be decomposed into m−cycles: Km − I by the result of Walecki, Km+r − I by
assumption (since m divides n(n−2)

2 implies m divides (m+r)(m+r−2)
2 ), and Km,m and

Km,m+r by Sotteau’s Theorem. For the case m is odd we have the following result
of Šajna [61]. A partial result of this kind had earlier been obtained by El-Zanati
[40].

Theorem 2.10 [61] Let m be odd and n be even. If there exists a decomposition
of Kn − I into m−cycles for all admissible n in the range m < n < 3m then there
exists a decomposition of Kn − I into m−cycles for all admissible n.

As mentioned above, the existence problem form−cycle decompositions of Kn−I
was completely solved, using Theorem 2.9 and Theorem 2.10, by Alspach and Gavlas
[5] and Šajna [60]. Again, the obvious necessary conditions given in Lemma 1.2 are
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also sufficient, and m−cycle decompositions of Kn − I exist for all admissible even
n.

Theorem 2.11 [5, 60] Let m ≥ 3 and let n be even. There exists an m−cycle
decomposition of Kn − I if and only if n ≥ m for n > 2, and m divides n(n−2)

2 .

The following examples illustrate some of the ideas involved in the proof of
Theorem 2.11. Example 2.12 is for the case m is even which is the case settled by
Alspach and Gavlas [5], and Example 2.13 is for the case m is odd which is the case
settled by Šajna [60].

Example 2.12 A 12−cycle decomposition of K20 − I.
Take Z18∪{∞1,∞2} as the vertex set of K20−I and let the edges of the removed

1−factor be the edges of length 9 and ∞1∞2. Let C be the cycle on the left in the
figure below and let C ′ be the cycle on the right. Then the orbits of C and C ′ under
the permutation ρ form the required 12−cycle decomposition of K20 − I.

The orbit of C contains six 12−cycles and uses all the edges of lengths 1, 3, 4 and 8.
The orbit of C ′ contains nine 12−cycles and uses all the edges of lengths 2, 5, 6, and
7 and all the edges incident with ∞1 and ∞2.

Example 2.13 A 21−cycle decomposition of K56 − I.
We begin with a decomposition of K28 into 21−cycles and 21−paths. The de-

composition of K56− I is obtained from this by using a modification of the doubling
construction given in Definition 1.5. Let K28 have vertex set Z28 and decompose it
into two circulant graphs, namely Circ(28, SC ) and Circ(28, SP ) where SC = {1, 3, 6}
and SP = {2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14}. Thus, using the doubling construction we
have a decomposition of K56 − I into copies of Circ(28, SC)(2) and Circ(28, SP )(2)

(see the remarks following Definition 1.5). We will obtain the required 21−cycle
decomposition of K56− I by showing that each of these graphs has a decomposition
into 21−cycles.

Let C be the cycle shown on the left in the figure below, let P be the path
shown in the centre, and let P ′ be the path shown on the right. Then the orbit of
C under the permutation ρ is a decomposition of Circ(28, SC) into four 21−cycles.
A decomposition of Circ(28, SP ) into fourteen 21−paths is given by the orbit of P
under ρ, and a different decomposition of Circ(28, SP ) into fourteen 21−paths is
given by the orbit of P ′ under ρ. The four bold edges in the figure indicate where
P ′ differs from P .
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We now describe how the decomposition of K56 − I is obtained from the above
decompositions of K28. It is easy to construct an m−cycle decomposition of C(2)

m

for any integer m ≥ 3. At the moment we are interested in odd m and such decom-
positions are obtained by generalising, in the obvious manner, the decomposition of
C

(2)
9 shown in the figure below.

Thus, since we have a 21−cycle decomposition of Circ(28, SC), we have a
C

(2)
21 −decomposition of Circ(28, SC)(2) and hence a 21−cycle decomposition of

Circ(28, SC)(2). We now only need a 21−cycle decomposition of Circ(28, SP )(2).
Unfortunately, there is no m−cycle decomposition of P (2)

m when m is odd. To see
this observe that P (2)

m is bipartite. However, for i = 0, 1, . . . , 13 there is an m−cycle
decomposition of the graph, Gi say, which is obtained from (ρi(P ))(2) by replacing
each of the two original copies of ρi(P ) in (ρi(P ))(2) with ρi(P ′). This decomposition
is illustrated in the figure below.

Since {ρi(P ) : i = 0, 1, 2, . . . , 13} is a decomposition of Circ(28, SP ), {(ρi(P ))(2) :
i = 0, 1, 2, . . . , 13} is a decomposition of Circ(28, SP )(2) and so it follows from the
fact that {ρi(P ′) : i = 0, 1, 2, . . . , 13} is also a decomposition of Circ(28, SP ) that
{Gi : i = 0, 1, 2, . . . , 13} is also a decomposition of Circ(28, SP )(2). Since we have a
21−cycle decomposition of each Gi, we have the required 21−cycle decomposition
of Circ(28, SP )(2).
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We observe that for m odd, n ≥ 2m and n ≡ 2 (mod 4), m−cycle decompositions
of Kn−I are easily obtained by using the doubling construction (see Definition 1.5),
the m−cycle decompositions of C(2)

m mentioned in Example 2.13, and the m−cycle
decompositions of complete graphs constructed by Alspach and Gavlas [5]. It is easy
to check that for these values of m and n, n

2 is admissible whenever n is admissible.
Hence using the doubling construction on an m−cycle decomposition of Kn

2
we

obtain a C(2)
m −decomposition of Kn − I, and decomposing each copy of C(2)

m thus
yields an m−cycle decomposition of Kn − I. This observation reduced the amount
of work that needed to be done in [60] to settle the problem of decomposing Kn− I
into m−cycles for m odd.

We mention two earlier results on decompositions of Kn− I into m−cycles. The
technique of Häggkvist [43], which also gives decompositions into cycles of varying
lengths, in combination with a result of Tarsi [64] on decompositions into paths
yields m−cycle decompositions of Kn− I when m and n(n−2)

2m (the required number
of m−cycles for a decomposition) are both even. The construction for this result is
described at the end of Section 3.2 and the result was used by Alspach and Gavlas
[5] in their proof of Theorem 2.11 for even m. Indeed, when n and m are both
even and n(n−2)

2m is odd, it follows that m ≡ 0 (mod 4). So the result significantly
reduced the amount of work that needed to be done in [5] to settle the problem of
decomposing Kn − I into m−cycles for m even. Finally, it is also worth mentioning
that Alspach and Marshall [6] used Häggkvist’s technique in combination with other
ideas to obtain results on m−cycle decompositions of Kn − I in the case where m
is even and n(n−2)

2m is odd.

3 Cycles of varying lengths

We now turn our attention to the problem of decomposing complete graphs of
odd order, and complete graphs of even order with the edges of a 1−factor removed,
into cycles of varying specified lengths. The following definition introduces some
useful notation.

Definition 3.1 Let M = m1,m2, . . . ,mt be a sequence of integers. An (M)−cycle
decomposition of a graph K is a decomposition D = {G1, G2, . . . , Gt} of K where
Gi is an mi−cycle for i = 1, 2, . . . , t.

When K is a complete graph, or a complete graph of even order with the edges
of a 1−factor removed, the obvious necessary conditions (see Lemma 1.2) for the
existence of an (M)−cycle decomposition of K are given by the following Lemma.

Lemma 3.2 Let n ≥ 3 be an integer and let M = m1,m2, . . . ,mt be a sequence
of integers. If there exists an (M)−cycle decomposition of Kn, then n is odd, 3 ≤
mi ≤ n for i = 1, 2, . . . , t, and m1 + m2 + · · · + mt = n(n−1)

2 . If there exists an
(M)−cycle decomposition of Kn − I, then n is even, 3 ≤ mi ≤ n for i = 1, 2, . . . , t,
and m1 +m2 + · · · +mt = n(n−2)

2 .

The problem of showing that the necessary conditions given in Lemma 3.2 are
also sufficient was posed by Alspach [3] in 1981.
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Problem 3.3 (see [3])

(a) Let n be odd and let M = m1,m2, . . . ,mt be a sequence of integers satisfying
3 ≤ mi ≤ n for i = 1, 2, . . . , t, and m1 +m2 + · · · +mt = n(n−1)

2 . Prove that
Kn has an (M)−cycle decomposition.

(b) Let n be even and let M = m1,m2, . . . ,mt be a sequence of integers satisfying
3 ≤ mi ≤ n for i = 1, 2, . . . , t, and m1 +m2 + · · · +mt = n(n−2)

2 . Prove that
Kn − I has an (M)−cycle decomposition.

Of course, the problem of decomposing Kn and Kn− I into cycles of uniform length
m, which was discussed in the previous section, is a special case of this general
problem.

3.1 Summary of results

The following theorem summarises the results that have been obtained on Prob-
lem 3.3. Many further instances of the problem, not included in the theorem, are
settled by results on other problems. For example, results on the 2−factorisations of
Kn and Kn−I including the Oberwolfach Problem and the Hamilton-Waterloo Prob-
lem yield (M)−cycle decompositions of Kn and Kn − I for various M . See [28] and
[58] for recent surveys of results on 2−factorisations. Another example is the result
of Colbourn and Rosa [36] on maximal partial triple systems with quadratic leaves,
which gives decompositions of Kn into 3−cycles and a relatively small number of
cycles of other lengths. These are just a few of many such examples.

Theorem 3.4 Let n be an integer and let M = m1,m2, . . . ,mt be a sequence of
integers such that 3 ≤ mi ≤ n, for i = 1, 2, . . . , t, m1 + m2 + · · · + mt = n(n−1)

2

when n is odd and m1 +m2 + · · · + mt = n(n−2)
2 when n is even. There exists an

(M)−cycle decomposition of Kn if n is odd, or of Kn− I if n is even, in each of the
following cases.

(1) m1 = m2 = · · · = mt [5, 60].

(2) n ≡ 2 (mod 4), t is even, mi ∈ {4, 6, . . . , n} \ {n − 2} for i = 1, 2, . . . , t,
mi = mi+1 for i = 1, 3, . . . , t− 1 [43].

(3) n ≥ N (N a large fixed constant) and m1,m2, . . . ,mt ≤ �(n− 112)/20� [10].

(4) {m1,m2, . . . ,mt} ⊆ {3, 4, 5} [9].

(5) n ≤ 14 [10].

(6) {m1,m2, . . . ,mt} ⊆ {n − 2, n− 1, n} [44].

(7) {m1,m2, . . . ,mt} ⊆ {3, 4, 6} [44].

(8) {m1,m2, . . . ,mt} ⊆ {2k, 2k+1} for k ≥ 2 [44].

(9) {m1,m2, . . . ,mt} ⊆ {4, 10}, {6, 8}, {6, 10}, {8, 10} [2].

(10) {m1,m2, . . . ,mt} ⊆ {3, n} [25].
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In addition to the results in Theorem 3.4, there are also a few results on partial
cycle decompositions and on problems which are closely related to Problem 3.3.
Some such results are discussed in the sections that follow.

We now discuss some of the results included in Theorem 3.4. Result (1) is the
case of uniform length cycles and was covered in Section 2. Result (2) is a corollary
to Häggkvist’s cycle decomposition lemma which will be described in Section 3.2. In
particular, see Theorem 3.13. Results (3) and (4) are obtained using Balister’s trails
of octahedra method [9, 10] which will be discussed in Section 3.3, and result (5) is also
due to Balister [10]. Result (4) supersedes the earlier result of Adams et al [1] which
dealt with the case {m1,m2, . . . ,mt} ⊆ {3, 5}. The case {m1,m2, . . . ,mt} ⊆ {4, 5}
had also been dealt with previously [24]. Result (5) supersedes an earlier result of
Rosa [57] which dealt with n ≤ 10.

Results (6)-(8) of Theorem 3.4 were proven in a 1989 article of Heinrich, Horák
and Rosa [44] and we now describe the constructions for each of these results in
turn. For {m1,m2, . . . ,mt} ⊆ {n − 2, n− 1, n} the only possibilities are

• an n−cycle decomposition of Kn or Kn − I,
• an (n− 2)−cycle decomposition Kn − I, and

• a decomposition of Kn, n odd, into n−1
2 cycles of length n − 2 and one cycle

of length n− 1.

So only in the last case do we have cycles of more than one length. We illustrate the
solution for this case with a decomposition of K13 into six 11−cycles and a 12−cycle.
The required decomposition D is obtained by taking Z12 ∪ {∞} as the vertex set of
K13 and letting D consist of the orbits under the permutation ρ12 of the two cycles
shown in the figure below. This construction generalises in an obvious manner.

Heinrich et al [44] settled the case {m1,m2, . . . ,mt} ⊆ {3, 4, 6} as follows. Firstly,
the result is proved for n ≤ 17. For other even n, Kn − I is decomposed into copies
of Ks − I with s ∈ {6, 8, 10, 12}. The method for doing this is illustrated shortly.
The known decompositions of Ks − I into 3−cycles, 4−cycles and 6−cycles for
s ∈ {6, 8, 10, 12} are then used in appropriate combinations to obtain all of the
required decompositions of Kn − I. The proof for the case n is odd is simplified
significantly by noting that if the number of 3−cycles is at least n−1

2 , then the
required decomposition can be obtained from the result for Kn−1 − I. Simply form
n−1

2 cycles of length 3 by using the edges of I and the vertex in V (Kn)\V (Kn−1−I),
and then decompose Kn−1 − I into the required number of 4−cycles, 6−cycles and
additional 3−cycles. When n is odd and the number of 3−cycles is less than n−1

2 ,
the constructions are more complicated and use induction on n.
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We now illustrate how Kn − I is decomposed into copies of Ks − I with s ∈
{6, 8, 10, 12} by considering the case n ≡ 10 (mod 12). In this case Kn − I is
decomposed into copies of K6 − I and K10 − I only (in fact there is only one copy
of K10 − I). For n ≡ 10 (mod 12), n = 2r where r ≡ 5 (mod 12) and there thus
exists a decomposition of Kr into 1

3(r(r − 1)/2 − 10) copies of C3 and one copy of
K5. This result was proven by Mendelsohn and Rosa [52] in 1983. The required
decomposition of Kn − I into copies of K6 − I and a K10 − I is obtained from this
decomposition of Kr by using the doubling construction, see Definition 1.5: each
copy of C3 gives rise to a copy of K6− I and the K5 gives rise to a copy of K10− I.
The other residue classes of n modulo 12 are dealt with using similar ideas.

Heinrich et al [44] also settled the case {m1,m2, . . . ,mt} ⊆ {2k, 2k+1}, k ≥ 2.
Briefly, they used several results on cycle decompositions of complete bipartite
graphs, which they proved using Sotteau’s Theorem, and then used the cycle switch-
ing technique illustrated in the figure below to obtain the required decompositions
(of course, the two top left cycles must be vertex disjoint, but the bottom left cycle
may have several vertices other than w, x, y, z in common with each of the two top
left cycles).

Result (9) of Theorem 3.4 is obtained by constructing the required small exam-
ples and applying the following general result from [2].

Theorem 3.5 [2] Let m′ and m′′ be even integers with 4 ≤ m′ < m′′ and let M =
m1,m2, . . . ,mt with mi ∈ {m′,m′′} for i = 1, 2, . . . , t. If the necessary conditions
given in Lemma 3.2 for the existence of (M)−cycle decompositions of Kn and Kn−I
are sufficient for n < 7m′′ then they are sufficient for all n.

Theorem 3.5 relies heavily on Doyen-Wilson type results for its proof. Essentially,
the proof is by induction on n. For various values of v, Kn is decomposed into a
copy of Kn − Kv and a copy of Kv. Then m′−cycle decompositions of Kn − Kv,
or m′′−decompositions of Kn − Kv, are combined with decompositions of Kv into
m′−cycles and m′′−cycles which exist by the inductive hypothesis. This approach
was developed in [24] and used to settle the problem of decomposing Kn and Kn− I
into 4−cycles and 5−cycles.

Result (10) of Theorem 3.4 concerns decompositions of Kn and Kn − I into
3−cycles and n−cycles, or triangles and Hamilton cycles. The result was proved
by considering Kn or Kn − I as circulant graphs. In general, the decompositions



84 D. Bryant

into triangles and Hamilton cycles were obtained by partitioning the connection
set into two parts ST and SH , decomposing Circ(n, ST ) into triangles using Skolem
Sequences and their generalisations (see [62]), and decomposing Circ(n, SH) into
Hamilton cycles using the following theorem of Bermond et al [12].

Theorem 3.6 [12] Every connected 4−regular Cayley graph on a finite abelian group
can be decomposed into two Hamilton cycles.

The following example illustrates one of these decompositions. In some cases the
constructions were more complicated. They involved decomposing some 4− and
6−regular circulant graphs into combinations of triangles and Hamilton cycles.

Example 3.7 A decomposition of K39 into 156 triangles and 7 Hamilton cycles.
We first decompose K39

∼= Circ(39, {1, 2, . . . , 19}) into the two circulant graphs
Circ(39, ST ) and Circ(39, SH) where ST = {1, 2, . . . , 12} and SH = {13, 14, . . . , 19}.
Using a Skolem sequence of order 4, namely 1, 1, 4, 2, 3, 2, 4, 3, we obtain the four
difference triples

(1, 5, 6) (2, 8, 10) (4, 7, 11) (3, 9, 12)

which give rise to the four starter triangles

(0, 1, 6) (0, 2, 10) (0, 4, 11) (0, 3, 12).

The orbits of these under the permutation ρ39 yield a decomposition of Circ(39, ST )
into 4× 39 = 156 triangles.

It remains to decompose Circ(39, SH) into 7 Hamilton cycles. To do this, we
decompose Circ(39, SH) into the following four circulant graphs.

Circ(39, {13, 14}) Circ(39, {15, 16}) Circ(39, {17, 18}) Circ(39, {19})
The first three of these can each be decomposed into two Hamilton cycles by The-
orem 3.6. Since consecutive integers are relatively prime, these graphs are indeed
connected. The last of the four circulant graphs is a Hamilton cycle. Note that n−1

2
is relatively prime to n so that Circ(n, {n−1

2 }) is an n−cycle for all odd n ≥ 3.

3.2 Häggkvist’s cycle decomposition lemma

In 1985 Häggkvist [43] described a technique for the construction of cycle de-
compositions and 2−factorisations containing cycles of even lengths. The following
lemma is the critical ingredient.

Lemma 3.8 [43] Let K be either an m−path or an m−cycle and let G be any
2−regular graph with 2m vertices where each component of G is a cycle of even
length. Then there exists a G−decomposition of K(2).

The proof of the lemma is obvious from the figure below. On the left, we have
an example where K is a path with 12 edges, and a decomposition of K(2) into two
2−regular graphs each consisting of a 4−cycle, a 6−cycle, and a 14−cycle is shown.
On the right, we have an example where K is a 15−cycle, and a decomposition
of K(2) into two 2−regular graphs each consisting of a 6−cycle, a 10−cycle, and a
14−cycle is shown.
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Lemma 3.8 can be used as follows. Suppose D = {G1, G2, . . . , Gt} is a decompo-
sition of Kr where Gi is either an mi−cycle or an mi−path for i = 1, 2, . . . , t. Apply-
ing the doubling construction (see Definition 1.5) to D we obtain a decomposition
{G(2)

1 , G
(2)
2 , . . . , G

(2)
t } of K2r − I. By Lemma 3.8, G(2)

i can be decomposed into two
2mi−cycles for i = 1, 2, . . . , t, and we thus obtain a (2m1, 2m1, 2m2, 2m2, . . . , 2mt,
2mt)−cycle decomposition of K2r − I. This construction gives us the following
lemma.

Lemma 3.9 [43] Suppose there exists a decomposition {G1, G2, . . . , Gt} of Kr where
Gi is either an mi−cycle or an mi−path for i = 1, 2, . . . , t. Then there exists a
(2m1, 2m1, 2m2, 2m2, . . . , 2mt, 2mt)−cycle decomposition of K2r − I.

Of course, in order to use Lemma 3.9, we first require decompositions of complete
graphs into paths and cycles. A 1983 paper of Tarsi [64] contains the following two
results (and some others) on path decompositions.

Theorem 3.10 [64] There exists an m−path decomposition of Kn if and only if m
divides n(n−1)

2 and m ≤ n− 1 for n > 1.

Theorem 3.11 [64] For any positive odd integer n and any sequence m1,m2, . . . ,mt

satisfying 1 ≤ mi ≤ n − 3 for i = 1, 2, . . . , t and m1 + m2 + · · · ,mt = n(n−1)
2 ,

there exists a decomposition {G1, G2, . . . , Gt} of Kn where Gi is an mi−path for
i = 1, 2, . . . , t.

Tarsi [64] conjectures that Theorem 3.11 also holds if n is even and if the upper
bound on the number of edges in the paths is increased to n − 1. Tarsi proved
Theorem 3.11 using the following construction, which was also given in Häggkvist’s
paper [43]. Similar methods were used in the proof of Theorem 3.10.

Let n be odd and consider Walecki’s decomposition of Kn into n−cycles. That
is {C, ρ(C), ρ2(C), . . . , ρk−1(C)} where

C = (∞, 0, 1, 2k − 1, 2, 2k − 2, 3, 2k − 3, . . . , k − 1, k + 1, k)

ρ = ρ2k and k = n−1
2 (see Section 2.1). We define an Eulerian circuit in Kn which

starts at ∞ and traverses the n−cycles of Walecki’s decomposition in the natural
order, that is in the order

C, ρ(C), ρ2(C), . . . , ρk−1(C).
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This Eulerian circuit has the property that travelling along the path, the shortest
distance (smallest number of edges) between two occurrences of the same vertex
is at least n − 2. To see this it is sufficient to consider the distance between the
occurrences of x in C and ρ(C) for each x ∈ Zn ∪ {∞}, and it is straightforward to
verify that the minimum such distance is n − 2. Thus, for s ≤ n − 2 any sequence
of s consecutive vertices in the Eulerian circuit are distinct and hence define an
(s− 1)−path. The decomposition required for Theorem 3.11 is now immediate.

Now, to apply Lemma 3.9 we require a decomposition into either paths or cycles.
The Eulerian circuit constructed in the preceding paragraph has the property that
for any s ≤ n − 2, any sequence of s + 1 consecutive vertices defines either an
s−path or an s−cycle. So the only “missing” values of s are s = n − 1 and s = n.
But we can obtain n−cycles, say α ≤ n−1

2 of them, by removing the first α cycles
of Walecki’s n−cycle decomposition from the Eulerian circuit and including them
in the decomposition. The Eulerian circuit that remains of course has the same
property in terms of distance between occurrences of the same vertex. Thus we
have the following Lemma [43]. We use r instead of n in the lemma so that it is
more convenient to apply.

Lemma 3.12 [43] Let r be odd and let m1,m2, . . . ,mt be any sequence of integers
with mi ∈ {1, 2, . . . , r} \ {r − 1} and m1 + m2 + · · · + mt = k(k−1)

2 . Then there
is a decomposition {G1, G2, . . . , Gt} of Kr where Gi is either an mi−path or an
mi−cycle for i = 1, 2, . . . , t.

Combining Lemma 3.9 with Lemma 3.12 we obtain the following result.

Theorem 3.13 [43] Let n ≡ 2 (mod 4) and let M = m1,m2, . . . ,mt be any sequence
of integers such that

• m1 +m2 + · · ·+mt = n(n−2)
2 ;

• mi ∈ {4, 6, . . . , n} \ {n− 2}; and

• mi = mi+1 for i = 1, 3, . . . , t− 1.

Then Kn − I can be decomposed into t cycles of lengths m1,m2, . . . ,mt.

Finally, we consider the implications of Lemma 3.8 for m−cycle decompositions
of Kn − I. Combining Lemma 3.9 and Theorem 3.10 we immediately obtain an
m−cycle decomposition of Kn− I whenever m and n(n−2)

2m (the number of m−cycles
in the decomposition) are both even with m < n. The case m = n is of course
covered by Walecki’s construction.

3.3 Balister’s trails of octahedra method

In 2001, Balister [10] obtained strong results on Problem 3.3, and on a related
problem concerning decompositions of Kn and Kn − I into closed trails [9]. Here
we give a brief description of his method, focusing on cycle decompositions, to
illustrate the central ideas. Thus we omit many nice constructions as well as the
more technical details. The interested reader can find these in his articles [9, 10].
An essential component of his methods was the use of trails of octahedra. The graph
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of the octahedron, which is denoted by O and is isomorphic to K6− I and K2,2,2, is
shown in the figure below.

Denote the graph shown below by Ov where v is the number of copies of O. In this
case v = 4. Such graphs are referred to as trails of octahedra.

Balister proved the following theorem on cycle decompositions of Ov.

Theorem 3.14 [10] Let v and L be integers and let M = m1,m2, . . . ,mt be a
sequence of integers such that

• m1 +m2 + · · ·+mt = 12v;

• 72 ≤ mi ≤ L for i = 1, 2, . . . , t;

• 12v ≥ 40L.

Then there is an M−cycle decomposition of Ov.

The cycle decompositions of Ov are constructed by linking together path decom-
positions of each copy of O in appropriate combinations. The following seven path
decompositions of O, together with others obtained by symmetry from these, are
used.

[2, 2, 4, 4] [2, 3, 3, 4]

[3, 3, 3, 3] [2, 3, 3, 2 + 2]
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[0 + 2, 0 + 2, 0 + 4, 0 + 4] [0 + 2, 0 + 3, 0 + 3, 0 + 4]

[0 + 3, 0 + 3, 0 + 3, 0 + 3]

The notation [s1, s2, s3, s4] (see the figure above) where si is either an integer or
a sum pi + qi of two integers is useful for describing the path decompositions of O,
and how they can be combined to give cycle decompositions of Ov. A single integer
si corresponds to two vertex disjoint paths in O which together have si edges, whose
initial vertices are the two leftmost vertices of O, and whose final vertices are the
two rightmost vertices of O. A sum pi+qi corresponds to two (not necessarily vertex
disjoint) paths: one with pi edges joining the two leftmost vertices of O, and one
with qi edges joining the two rightmost vertices of O. When pi or qi is zero, no path
is present. The quadruple [s1, s2, s3, s4] denotes a decomposition of O into paths of
types corresponding to s1, s2, s3, s4 (so the sum of the integers in the quadruple is
always 12).

We illustrate how the above path decompositions of O can be combined to give
cycle decompositions of Ov by constructing an (M)−cycle decomposition of O3 with
M = 4, 4, 7, 10, 11. For this, we can use [0 + 2, 0 + 2, 0 + 4, 0 + 4], [2 + 2, 2, 3, 3] and
[2+0, 3+0, 3+0, 4+0]. The paths corresponding to each coordinate in the quadruples
generate the cycles. From the first coordinates of the three quadruples we obtain
two 4−cycles, from the second a 7−cycle, from the third a 10−cycle, and from the
fourth an 11−cycle. This decomposition of O3 is shown in the figure below.

1st coordinate: two 4−cycles 2nd coordinate: a 7−cycle

3rd coordinate: a 10−cycle 4th coordinate: an 11−cycle

In order to make use of cycle decompositions of Ov, decompositions of Kn − I
into long trails of octahedra are required. Such decompositions are constructed from
Steiner triple systems of order r = n

2 . Of particular use are Steiner triple systems for
which the triples can be ordered so that adjacent triples intersect, and non-adjacent
intersecting triples are far apart in the ordering. Steiner triple systems with this
property are constructed using Skolem sequences. Decompositions of Kn − I into
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octahedra are obtained from these Steiner triple systems via the doubling construc-
tion. The resulting octahedra are placed in the same order as their corresponding
triples, and hence are partitioned into long trails of octahedra. Balister [10] used
Steiner triple systems of order 1 (mod 72) and thus obtained cycle decompositions
of Kn − I with n ≡ 2 (mod 144). In particular he proved the following theorem.

Theorem 3.15 [10] Let n ≡ 2 (mod 144) and let M = m1,m2, . . . ,mt be a sequence
of integers satisfying 72 ≤ mi ≤ �n+37

20 � and m1 + m2 + · · · + mt = n(n−2)
2 . Then

there exists an (M)−cycle decomposition of Kn − I.
Balister points out that it is possible to reduce the lower bound of 72 on the cycle

lengths in Theorem 3.14, and hence in Theorem 3.15, by using more complicated
methods from his paper. However, as he also notes, Theorem 3.14 is not true without
some restrictions on the values of mi. He gives the example that for any v, Ov has
no (M)−cycle decomposition for M = 8, 4, 4, . . . , 4 (where the number of 4s in the
sequence is 3v − 2). Theorem 3.15 provides a platform from which the following
general result is proved [10].

Theorem 3.16 [10] There exists a (very large) constant N such that for any n ≥ N
and any sequence M = m1,m2, . . . ,mt satisfying 3 ≤ mi ≤ �n−112

20 � and m1 +m2 +
· · ·+mt = n(n−1)

2 (n odd) or m1 +m2 + · · ·+mt = n(n−2)
2 (n even), there exists an

(M)−cycle decomposition of Kn (n odd) or of Kn − I (n even).

The proof of Theorem 3.16 makes critical use of the following result of Caro and
Yuster [35], which in turn is proved using a result of Gustavsson [42].

Theorem 3.17 [35] For a graph G, let e(G) denote the number of edges in G and
let gcd(G) denote the greatest common divisor of the degrees of the vertices in G. Let
H1,H2, . . . ,Ht be a sequence of graphs with the property that gcd(Hi) = gcd(Hj) for
1 ≤ i ≤ j ≤ t. Then there exists an integer N = N(H1,H2, . . . ,Ht) and a positive
constant γ = γ(H1,H2, . . . ,Ht) such that for any sequence α1, α2, . . . , αt of integers
and any graph G with n > N vertices and minimum degree δ(G) ≥ n(1−γ) satisfying
gcd(H1) divides gcd(G) and α1e(H1) + α2e(H2) + · · · + αte(Ht) = e(G) there is a
decomposition of G consisting of exactly αi copies of Hi for i = 1, 2, . . . , t.

Like Theorem 3.16, this theorem also provides a solution to Problem 3.3 when n
is very large compared with the length of the longest required cycle. The difference
is Theorem 3.16 says that provided n is large enough the cycle lengths can be up to
�n−112

20 �, whereas in Theorem 3.17, n is exponentially larger than the length of the
longest cycle. Of course, Theorem 3.17 says a lot about decompositions into graphs
other than cycles.

Balister also used his trails of octahedra method to completely settle a related
problem on decompositions into closed trails [9]. Of course, a 2−regular closed trail
is a cycle. In fact, Balister’s result solves the more general question of packing closed
trails in Kn.

Theorem 3.18 [9] Let m1,m2, . . . ,mt ≥ 3 and let e = m1 +m2+ · · ·+mt. There is
a subgraph H of Kn such that there is a decomposition {G1, G2, . . . , Gt} of H where
Gi is a closed trail with mi edges for i = 1, 2, . . . , t if and only if
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• e = n(n−1)
2 or e ≤ n(n−1)

2 − 3 for n odd; and

• e ≤ n(n−2)
2 for n even.

For m ∈ {3, 4, 5} a closed trail with m edges is necessarily an m−cycle. Thus,
Theorem 3.18 settles Problem 3.3 for the case m1,m2, . . . ,mt ⊆ {3, 4, 5} (see Result
(5) in Theorem 3.4).

3.4 Cycle repacking

Some new results on cycle decompositions and related problems have recently
been obtained by repacking. That is, the subgraphs in a decomposition D =
{G1, G2, . . . , Gt} are rearranged or repacked to give a new decomposition D′ =
{G′

1, G
′
2, . . . , G

′
t} where G′

i
∼= Gi for i = 1, 2, . . . , t. The initial decomposition D

is a decomposition of some subgraph, K say, of Kn and the new decomposition D′ is
a decomposition of a different subgraph, K ′ say, of Kn. The goal is to repack so that
a desired graph G occurs as a subgraph of the complement of K ′. The graph G can
then be added to the decomposition and the process repeated until a decomposition
of Kn, or of some other desired subgraph of Kn, is obtained. In 1980, Andersen
et al [8] used repacking of 3−cycles in their article on embeddings of partial Steiner
triple systems. We now describe a generalisation of their technique which was given
in [22] and which applies to decompositions into cycles of any lengths.

Let D be an (M)−cycle decomposition of a graph K. For any α, β ∈ V (K), an
edge-coloured multigraph Gα,β is constructed as follows. The vertex set of Gα,β is
V (Gα,β) = V (K) ∪ J where J is a set of new vertices, disjoint from V (K), that is
given by the following construction.

• For each cycle C ∈ D that contains α and not β, a red edge joining the two
neighbours of α in C is added.

• For each cycle C ∈ D that contains β and not α, a blue edge joining the two
neighbours of β in C is added.

• If there is a cycle C ∈ D that contains the edge αβ, say C = (. . . , x, α, β, y, . . .),
then a new vertex v is added to J , the edge xv is added and coloured red, and
the edge yv is added and coloured blue (if C is a 3-cycle then x = y and a
double edge results).

• For each cycle C ∈ D that contains α and β at distance at least 2, say C =
(. . . , x1, α, x2, . . . , y2, β, y1 . . .), two new vertices u and v are added to J , the
edges ux1 and vx2 are added and coloured red, and the edges uy1 and vy2 are
added and coloured blue (if x1 = y1 or x2 = y2 then a double edge results).

The following figure shows the edges added to the graph Gα,β for various cycles.
The edges in the cycles are shown as solid lines, the red edges in Gα,β are shown as
dashed lines, and the blue edges in Gα,β are shown as dotted lines.
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We note some properties of Gα,β . Let A be the set of neighbours in K of α and
let B be the set of neighbours in K of β. Then in Gα,β each x ∈ A \ {β} is incident
with exactly one red edge, each x ∈ B \ {α} is incident with exactly one blue edge,
each x ∈ J is incident with exactly one red and exactly one blue edge, and these are
all the edges of Gα,β . So each component of Gα,β is either an alternating red-blue
path (this includes trivial paths consisting of an isolated vertex) or an alternating
red-blue cycle.

Suppose that for some vertex a1 ∈ V (K)\{α, β}, αa1 ∈ E(K) and βa1 /∈ E(K).
Then there is a component of Gα,β which is a path, say P = a1, a2, . . . , ar, where
r ≥ 2 and a1a2 is red. For 2 ≤ i ≤ r − 1, if ai ∈ V (K) then both edges αai and
βai are in E(K), the edge αar ∈ E(K) if and only if ar−1ar is red, and the edge
βar ∈ E(K) if and only if ar−1ar is blue. So exactly one of αar and βar is in E(K).
Let e1 be the one that is, let e2 be the one that is not, and let K ′ be the graph
obtained from K by replacing the edges αa1 and e1 with βa1 and e2. We now show
how to modify the cycles of D to obtain an (M)−cycle decomposition of K ′.

• In the cycle containing the edge αa1, replace αa1 with the edge βa1.

• For 2 ≤ i ≤ r−1, if ai ∈ V (K) then in the cycle containing the edge αai replace
αai with the edge βai, and in the cycle containing the edge βai, replace βai

with the edge αai.

• If αar ∈ E(K), then in the cycle containing the edge αar, replace αar with
βar.

• If βar ∈ E(K), then in the cycle containing the edge βar, replace βar with
αar.

The figure below shows how various cycles are modified by this procedure under
various scenarios. Shown on the top left is the case where a cycle contains α, does
not contain β, and the red edge xy is in the path P . On the top right is the case
where a cycle contains the edge αβ and xvy (v ∈ J) is in P . On the bottom left
is the case where a cycle contains both α and β, the edge αβ is not in the cycle,
x1v1y1 and x2v2y2 (v1, v2 ∈ J) are both in the path P . On the bottom right is the
case where a cycle contains both α and β, the edge αβ is not in the cycle, x1v1y1

(v1 ∈ J) is in the path P , and x2v2y2 (v2 ∈ J) is not in the path P .
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It is easy to see that this procedure results in an (M)−cycle decomposition of K ′.
The figure below illustrates a small example. At the top is a decomposition of a
graphK into a 4-cycle, a 5-cycle and an 8−cycle. At the bottom is the decomposition
of a graph K ′ into a 4-cycle, a 5-cycle and an 8−cycle. The decomposition of K ′

is obtained by repacking the decomposition of K. The dotted edges at the top are
those in K ′ and not in K, and the dotted edges at the bottom are those in K and
not K ′.
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Note that if G′
α,β was constructed in the same manner using the new decom-

position D′, then it would differ from Gα,β only in that the colours on the path P
have been interchanged. In this sense D′ is constructed from D by interchanging the
colours on P and changing the relevant cycles in the corresponding manner.

It is straightforward to prove the following theorem using this cycle repacking
technique. A partial (M)−cycle decomposition of Kn is an (M)−cycle decomposi-
tion of some subgraph of Kn, and a partial (M)−cycle decomposition is said to be
equitable if for any two vertices α, β ∈ V (Kn), the number of cycles containing α
differs from the number containing β by at most one.

Theorem 3.19 [22] If there is a partial (M)−cycle decomposition of Kn then there
is an equitable partial (M)−cycle decomposition of Kn.

A slight generalisation of the above-described cycle repacking technique was used
in [22] to modify the closed trail decompositions of Balister (see Theorem 3.18) and
obtain the following result. It gives a solution to a variant of Problem 3.3(a) in
which the condition that the subgraphs are cycles is relaxed so that the subgraphs
are arbitrary 2−regular graphs.

Theorem 3.20 [22] Let n ≥ 3 and m1,m2, . . . ,mt be integers. There exists a
decomposition {G1, G2, . . . , Gt} of Kn where Gi is a 2−regular graph with mi edges
for i = 1, 2, . . . , t if and only if n is odd, 3 ≤ m1,m2, . . . ,mt ≤ n, and m1 +m2 +
· · ·+mt =

(
n
2

)
.

New techniques for repacking 3−cycles were developed in [20] and used to prove
Lindner’s Conjecture [49] on embeddings of partial Steiner triple systems. In [21],
some of these new techniques have been generalised to decompositions into cycles of
arbitrary lengths and used to obtain the following result. It shows that one can get
close to the cycle decompositions required to solve Problem 3.3. In fact the result
in [21] is slightly stronger than that given below.

Theorem 3.21 [21] Let n be an integer and let M = m1,m2, . . . ,mt be a sequence of
integers satisfying m1+m2+· · ·+mt ≤

(
n
2

)−3�n2 � and 3 ≤ mi ≤ n for i = 1, 2, . . . , t.
Then there exists a partial (M)−cycle decomposition of Kn.
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Excluding induced subgraphs

Maria Chudnovsky and Paul Seymour

Abstract

In this paper we survey some results concerning the structure and properties
of families of graphs defined by excluding certain induced subgraphs, including
perfect graphs, claw-free graphs, even-hole-free graphs and others.

1 Introduction

All graphs in this paper are finite and simple. Given two graphs, G and H, we
say that H is an induced subgraph of G if V (H) ⊆ V (G), and two vertices of H are
adjacent if and only if they are adjacent in G. Let F be a (possibly infinite) family
of graphs. A graph G is called F-free if no induced subgraph of G is isomorphic
to a member of F . A clique in a graph is a set of vertices all pairwise adjacent,
and a stable set is a set of vertices all pairwise non-adjacent. The complement of a
graph G is the graph G, on the same vertex set as G, and such that two vertices are
adjacent in G if and only if they are non-adjacent in G.

It turns out that many interesting classes of graphs can be characterized as
being F-free for some family F . The class of perfect graphs is, possibly, one of the
most well-known examples. For a graph G, let us denote by χ(G) the chromatic
number of G, and by ω(G) the size of the largest clique in G. A graph G is called
perfect if for every induced subgraph H of G, χ(H) = ω(H). In 1961 Claude Berge
conjectured that being perfect is equivalent to the property of being F-free for a
certain infinite family F [2], and in 2002, in joint work with Neil Robertson and
Robin Thomas, we were able to prove this conjecture [9]. More precisely, Berge
conjectured that a graph is perfect if and only if no induced subgraph of it is a
cycle of odd length at least five, or the complement of one. Today graphs with no
induced subgraph isomorphic to a cycle of odd length at least five or its complement
are called Berge graphs. The main part of our proof of the conjecture was a more
general theorem, that describes the structure of all Berge graphs. More precisely,
we proved that every Berge graph either belongs to one of a few well-understood
families of basic graphs, or admits a certain decomposition (a version of this was
conjectured earlier by Conforti, Cornuéjols and Vušković). Having obtained this
explicit structural result for all Berge graphs, we were able to verify that all of them
are perfect (the other direction of Berge’s conjecture is easy, because odd cycles and
their complements are not perfect, and every induced subgraph of a perfect graph
is).

Theorems following the same general paradigm are known for F-free graphs for
other families F . Some of them are easy—for example it is almost immediate to
see that if F consists of a single graph which is a two-edge path, then every F-free
graph is either complete or disconnected. Others are difficult—take F to be the set
of all even-length cycles, or the set of all cycles of odd length at least five (these
are theorems of Conforti, Cornuéjols, Kapoor, and Vušković [21] and of Conforti,
Cornuéjols, and Vušković [23], respectively).
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One might then ask whether a structural theorem of that kind should exist for
every family F . This question is, of course, not well defined, because we do not know
yet what graphs should be considered basic, and what kinds of decompositions should
be allowed. However, it is of great interest, at least in our opinion, to understand to
what extent forbidding an induced subgraph in a graph impacts the global structure
of the graph. In the last few years, we have been studying F-free graphs for different
families F , in an attempt to get some insight into this question. In this paper we
will describe some of the theorems we came up with, and try to emphasize the
similarities among them.

Let us now mention a conjecture of Erdős and Hajnal [27], that, in a sense, is
concerned with the same question, namely whether forbidding a certain induced
subgraph has a global effect on a graph:

Conjecture 1.1 For every graph H, there exists δ(H) > 0, such that if G is an
{H}-free graph, then G contains either a clique or a stable set of size at least
|V (G)|δ(H).

In Section 4 we will describe a structural result, that was used to solve a special
case of 1.1, where H is a “bull” (we will give a precise definition later). The bull
was one of the smallest subgraphs for which the conjecture was not known, and thus
provided an interesting test case.

Finally, let us mention another problem concerning F-free graphs, and that is
the question of their recognition. We will focus on cases where F consists of all
subdivisions of a given graph, possibly with parity conditions. It turns out that
for some such families F , there exist polynomial time algorithms to test whether a
given graph is F-free, while for others the recognition problem has been shown to
be NP-complete. At the moment we do not understand what causes this difference,
but in the last section of this paper we will survey some related results.

This paper is organized as follows. In Section 2 we describe the decomposition
theorem for Berge graphs. Section 3 contains results about claw-free graphs; there
we also try to explain the difference between a “composition” theorem and a “de-
composition” theorem, and mention some results concerning colouring. Section 4
deals with bull-free graphs and the solution of the Erdős-Hajnal conjecture for them.
In Section 5 we introduce the notion of a “trigraph”, which is an object, slightly
more general than a graph, which was quite useful to us on a number of occasions.
Section 6 is about even-hole-free graphs; there we describe a solution to a conjecture
of Reed, and a colouring property of even-hole-free graphs that it implies. Finally,
in Section 7 we survey some results on testing for the presence of certain induced
subgraphs in a given graph.

2 Perfect Graphs

We start with some definitions. A hole in a graph is an induced cycle with at least
four vertices, and an antihole in a graph is an induced subgraph whose complement
is a cycle with at least four vertices. The length of a hole is the number of edges in
it (and the length of an antihole is the number of edges in its complement.) A path
in G is an induced connected subgraph of G which is either a one-vertex graph, or
such that exactly two of its vertices have degree one, and all the others have degree
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two (this definition is non-standard, but very convenient). An antipath is an induced
subgraph whose complement is a path. The length of a path is the number of edges
in it (and the length of an antipath is the number of edges in its complement). If P
is a path, the set of internal vertices of P is called the interior of P ; and similarly for
antipaths. A path or a hole is called even if it has even length, and odd otherwise.

A graph is called Berge if every hole and antihole in it is even. The goal of
this section is to describe a structural result about Berge graphs, that is used in
[9] in order to prove Berge’s Strong Perfect Graph Conjecture [2], which is now the
following theorem:

Theorem 2.1 A graph is perfect if and only if it is Berge.

We first define the basic graphs. We say that G is a double split graph if V (G) can
be partitioned into four sets {a1, . . . , am}, {b1, . . . , bm}, {c1, . . . , cn}, {d1, . . . , dn} for
some m,n ≥ 2, such that:

• ai is adjacent to bi for 1 ≤ i ≤ m, and cj is non-adjacent to dj for 1 ≤ j ≤ n
• there are no edges between {ai, bi} and {ai′ , bi′} for 1 ≤ i < i′ ≤ m, and all

four edges between {cj , dj} and {cj′ , dj′} for 1 ≤ j < j′ ≤ n
• there are exactly two edges between {ai, bi} and {cj , dj} for

1 ≤ i ≤ m and 1 ≤ j ≤ n, and these two edges have no common end.

(The name is because such a graph can be obtained from what is called a “split
graph” by doubling each vertex). The line graph L(G) of a graph G has vertex set
the set E(G) of edges of G, and e, f ∈ E(G) are adjacent in L(G) if they share an
end in G. In this section, we call a graph G basic if either G or G is bipartite or is
the line graph of a bipartite graph, or is a double split graph. (Note that if G is a
double split graph then so is G.)

Now we turn to the various kinds of decomposition. If X ⊆ V (G) we denote the
subgraph of G induced on X by G|X. First, a special case of the “2-join” due to
Cornuéjols and Cunningham [25] — a proper 2-join in G is a partition (X1,X2) of
V (G) such that there exist disjoint nonempty Ai, Bi ⊆ Xi (i = 1, 2) satisfying:

• every vertex of A1 is adjacent to every vertex of A2, and every vertex of B1 is
adjacent to every vertex of B2,

• there are no other edges between X1 and X2,

• for i = 1, 2, every component of G|Xi meets both Ai and Bi, and

• for i = 1, 2, if |Ai| = |Bi| = 1 and G|Xi is a path joining the members of Ai

and Bi, then it has odd length ≥ 3.

IfX ⊆ V (G) and v ∈ V (G), we say v isX-complete if v is adjacent to every vertex
in X (and consequently v /∈ X), and v is X-anticomplete if v has no neighbours in
X. If X,Y ⊆ V (G) are disjoint, we say X is complete to Y (or the pair (X,Y ) is
complete) if every vertex in X is Y -complete; and being anticomplete to Y is defined
similarly. Our second decomposition is a slight variation of the “homogeneous pair”
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of Chvátal and Sbihi [20]. Let A,B be two disjoint subsets of V (G). The pair (A,B)
is called a homogeneous pair in G if for every vertex v ∈ V (G) \ (A ∪B), v is either
A-complete or A-anticomplete and either B-complete or B-anticomplete. A proper
homogeneous pair in G is a homogeneous pair (A,B) such that, if A1, A2 respectively
denote the sets of all A-complete vertices and all A-anticomplete vertices in V (G),
and B1, B2 are defined similarly, then:

• every vertex in A has a neighbour in B and a non-neighbour in B, and vice
versa

• the four sets A1 ∩B1, A1 ∩B2, A2 ∩B1, A2 ∩B2 are all nonempty.

Let A,B be disjoint subsets of V (G). We say the pair (A,B) is balanced if there
is no odd path between non-adjacent vertices in B with interior in A, and there is
no odd antipath between adjacent vertices in A with interior in B. A set X ⊆ V (G)
is connected if G|X is connected (so ∅ is connected); and anticonnected if G|X is
connected. A skew partition in G (introduced by Chvátal [19]) is a partition (A,B)
of V (G) such that A is not connected and B is not anticonnected. The third kind
of decomposition we use is a balanced skew-partition.

The main result of [9] is the following:

Theorem 2.2 For every Berge graph G, either G is basic, or one of G, G admits a
proper 2-join, or G admits a proper homogeneous pair, or G admits a balanced skew
partition.

Now, since all basic graphs are perfect (for bipartite graphs it is trivial; for
line graphs of bipartite graphs it is a theorem of König [28]; for their complements
it follows from a theorem of Lovász [29], although originally these were separate
theorems of König; and for double split graphs we leave it to the reader); and none
of the decompositions can occur in a minimum size counterexample to 2.1 (for 2-joins
this is a result due to to Cornuéjols and Cunningham [25], for proper homogeneous
pairs due to Chvátal and Sbihi [20], and for balanced skew partitions due to the
authors together with Robertson and Thomas [9]), it follows that no graph is a
minimum size counterexample to 2.1, and therefore 2.1 is true.

However, one can ask for more from a theorem of the kind of 2.2. While 2.2
provides enough insight into Berge graphs in order to prove 2.1, it does not give a
recipe to build all Berge (or, equivalently, perfect) graphs, starting from easy pieces
(unlike, say, the easy theorem we mentioned in the introduction, that says that every
graph with no path of length two can be built by taking disjoint unions of complete
graphs — we remind the reader that paths in this paper are induced subgraphs).
The problem lies, unfortunately, in the most elegant of all the decompositions we
used, the balanced skew-partition. We have tried, but failed, to “reverse” it, that
is turn it into a way to combine two smaller perfect graphs together, to obtain a
bigger perfect graph. This is also the reason why 2.2 does not immediately imply
the existence of a polynomial time recognition algorithm for Berge graphs (we will
come back to this in Section 7).

Another natural question to ask is whether all the basic classes and decomposi-
tions used in 2.2 are necessary. The answer to this question turns out to be “no”,
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because the use of the proper homogeneous pair decomposition can be avoided and
2.2 can be strengthened as follows (this is the main result of [3]):

Theorem 2.3 For every Berge graph G, either G is basic, or one of G, G admits
a proper 2-join, or G admits a balanced skew partition.

In Section 5 we will explain the main idea of the proof of 2.3, which was to
consider more general objects, called “Berge trigraphs”.

3 Claw-free Graphs

A claw is the complete bipartite graph K1.3 (a vertex with three pairwise non-
adjacent neighbours). A graph is called claw-free if it is {K1,3}-free. One well-known
class of claw-free graphs is the class of line graphs; some properties of line graphs
have been generalized to all claw-free graphs. (For example, Edmonds’ matching
algorithm, that finds a maximum weight stable set in a line graph [26], was general-
ized by Minty to solve the maximum weight stable set problem in claw-free graphs
[30].)

However, the question “what does a general claw-free graph look like?” remained
open, and we are now in the process of writing a series of papers answering it
[11, 12, 13, 14, 15]. Unlike in the case of perfect graphs, here we were able to prove
a theorem that says: every claw-free graph can be built starting from graphs that
belong to certain explicitly-constructed basic classes, and gluing them together by
prescribed operations; and all graphs built in this way are claw-free. We do not have
a formal way to tell what graphs should be allowed to count as basic (can the class of
all claw-free graphs be basic?), or what operations are acceptable (is the operation
“add a vertex to a graph that has already been constructed provided it does not
introduce a claw” allowed?), but we do think that we managed to put our finger on
an interesting structural property of claw-free graphs. Informally, all of our basic
graphs are “explicit constructions”, meaning graphs defined by a list of adjacencies,
rather than properties (e.g. being claw-free). For the operations, our criterion was
to “eliminate guessing”. That means, roughly, that instead of constructing just all
claw-free graphs, we constructed pairs (G,X), where G is a claw-free graph, and X
is a “handle” (usually a subset of the vertex set of G, or, in some cases, a partition of
the vertex set), that will be used when we combine G with another claw-free graph in
the construction process. The question of formalizing these ideas is of great interest
to us.

The first step in proving the theorem described in the previous paragraphs is
obtaining a result similar to 2.2 for the class of claw-free graphs. First we need a
number of definitions.

Let G be a graph. If X ⊆ V (G), the graph obtained from G by deleting X is
denoted by G \X. A clique of size three is a triangle, and a stable set of size three
is a triad. Distinct vertices u, v of G are twins (in G) if they are adjacent and have
exactly the same neighbours in V (G) \ {u, v}.

Next, let us explain the decompositions. The first is just that there are two
vertices in G that are twins, or briefly, “G admits twins”. For the second, let (A,B)
be a homogeneous pair, such that A,B are both cliques, and A is neither complete
nor anticomplete to B. In these circumstances we call (A,B) a W-join. (Note that



104 M. Chudnovsky and P. Seymour

there is no requirement that A∪B 	= V (G). If the complement of G is bipartite, then
G admits a W-join except in degenerate cases.) The pair (A,B) is non-dominating
if some vertex of G \ (A ∪ B) has no neighbour in A ∪ B; and it is coherent if the
set of all (A ∪B)-complete vertices in V (G) \ (A ∪B) is a clique.

Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are nonempty
and there are no edges between V1 and V2. We call the pair (V1, V2) a 0-join in G.
Thus G admits a 0-join if and only if it is not connected.

Next, suppose that V1, V2 partition V (G), and for i = 1, 2 there is a subset
Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a clique, and Ai, Vi \ Ai are both nonempty

• A1 is complete to A2

• every edge between V1 and V2 is between A1 and A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for i =

1, 2 there are subsets Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are cliques, Ai ∩Bi = ∅ and Ai, Bi and Vi \ (Ai ∪Bi) are all
nonempty

• A1 is complete to A2, and B1 is complete to B2, and there are no other edges
between V1 and V2, and

• V0 is a clique; and for i = 1, 2, V0 is complete to Ai ∪Bi and anticomplete to
Vi \ (Ai ∪Bi).

We call the triple (V1, V0, V2) a generalized 2-join, and if V0 = ∅ we call the pair
(V1, V2) a 2-join. (This is closely related to, but not the same as, the proper 2-join
from the previous section.)

We use one more decomposition, the following. Let (V1, V2) be a partition of
V (G), such that for i = 1, 2 there are cliques Ai, Bi, Ci ⊆ Vi with the following
properties:

• For i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi

• V1 is complete to V2 except that there are no edges between A1 and A2, between
B1 and B2, and between C1 and C2.

• V1, V2 are both nonempty.

In these circumstances we say that G is a hex-join of G|V1 and G|V2. Note that if
G is expressible as a hex-join as above, then the sets A1 ∪B2, B1 ∪ C2 and C1 ∪A2

are three cliques with union V (G), and consequently no graph G with a stable set
of size four is expressible as a hex-join.

Next, we list some basic classes of graphs.

• Line graphs. We say G ∈ S0 if G is isomorphic to a line graph.
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• The icosahedron. This is the unique planar graph with twelve vertices all
of degree five. For 0 ≤ k ≤ 2, icosa(−k) denotes the graph obtained from the
icosahedron by deleting k pairwise adjacent vertices. We say G ∈ S1 if G is
isomorphic to icosa(0), icosa(−1) or icosa(−2).

• The graphs S2. Let G be the graph with vertex set {v1, . . . , v13}, with
adjacency as follows. v1- · · · -v6 is a hole inG of length 6. Next, v7 is adjacent to
v1, v2; v8 is adjacent to v4, v5, and possibly to v7; v9 is adjacent to v6, v1, v2, v3;
v10 is adjacent to v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is
adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent to v1, v2, v4, v5, v7, v8. We
say H ∈ S2 if H is isomorphic to G \X, where X ⊆ {v11, v12, v13}.

• Circular interval graphs. Let Σ be a circle and let F1, . . . , Fk be subsets
of Σ, each homeomorphic to the closed interval [0, 1], and no three with union
Σ. Let V be a finite subset of Σ, and let G be the graph with vertex set V in
which v1, v2 ∈ V are adjacent if and only v1, v2 ∈ Fi for some i. Such a graph
is called a circular interval graph. If

⋃k
i=1 Fi 	= Σ, we say that G is a linear

interval graph. We write G ∈ S3 if G is a circular interval graph. .

• An extension of L(K6). Let H be the graph with seven vertices h0, . . . , h6,
in which h1, . . . , h6 are pairwise adjacent and h0 is adjacent to h1. Let G be
the graph obtained from the line graph L(H) of H by adding one new vertex,
adjacent precisely to the members of V (L(H)) = E(H) that are not incident
with h1 in H. Then G is claw-free. Let S4 be the class of all graphs isomorphic
to induced subgraphs of G.

• The graphs S5. Let n ≥ 2. Let A = {a1, . . . , an}, B = {b1, . . . , bn} and
C = {c1, . . . , cn} be three cliques, pairwise disjoint. For 1 ≤ i, j ≤ n, let ai, bj
be adjacent if and only if i = j, and let ci be adjacent to aj , bj if and only if
i 	= j. Let d1, d2, d3, d4, d5 be five more vertices, where d1 is A∪B∪C-complete;
d2 is complete to A ∪ B ∪ {d1}; d3 is complete to A ∪ {d2}; d4 is complete to
B ∪ {d2, d3}; d5 is adjacent to d3, d4; and there are no more edges. Let the
graph just constructed be G. We say H ∈ S5 if (for some n) H is isomorphic
to G \X for some X ⊆ A ∪B ∪C.

• 2-simplicial graphs of antihat type. Let n ≥ 0. Let A = {a0, a1, . . . , an},
B = {b0, b1, . . . , bn} and C = {c1, . . . , cn} be three cliques, pairwise disjoint.
For 0 ≤ i, j ≤ n, let ai, bj be adjacent if and only if i = j > 0, and for 1 ≤ i ≤ n
and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and only if i 	= j 	= 0. Let the
graph just constructed be G. We say H ∈ S6 if (for some n) H is isomorphic
to G \X for some X ⊆ A ∪ B ∪ C, and then H is said to be 2-simplicial of
antihat type.

• Antiprismatic graphs. Let us say a graph is antiprismatic if for every triad
u, v,w, every vertex different from u, v,w is adjacent to exactly two of them.
Antiprismatic graphs are claw-free, and we gave a structural description of
them in the first two papers of the series [11],[12]. We will not include it here
for reasons of space.

We can now state the theorem:
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Theorem 3.1 Let G be claw-free. Then either

• G ∈ S0 ∪ · · · ∪ S6, or

• G admits either twins, a non-dominating W-join, a coherent W-join, a 0-join,
a 1-join, a generalized 2-join, or a hex-join, or

• G is antiprismatic.

Similarly to 2.2, we call 3.1 a “decomposition” theorem. But, unlike 2.2, 3.1 can
be converted into what we call a “composition theorem”, meaning a theorem that
allows us to build all claw-free graphs. This is done by “reversing” the decompo-
sitions, to obtain “compositions”. For example, every claw-free graph that admits
twins can be obtained from a smaller claw-free graph by adding a new adjacent copy
of an existing vertex. Moreover, given a claw-free graph, one can do this operation,
and the resulting graph will be claw-free, no matter what vertex has been replicated
(so there is no need to guess the “right” vertex to replicate). Reversing other opera-
tions is more difficult, and the general result we obtain for claw-free graphs is quite
complicated, and we will not include it here.

Instead, let us consider a subclass of claw-free graphs, the class of “quasi-line”
graphs. These are graphs in which the vertex set of the neighbourhood of every
vertex is the union of two cliques. Let Wi be the graph consisting of an antihole H
of length i, and a V (H)-complete vertex v (therefore v 	∈ V (H)); and let F be the
family of graphs consisting of the claw, together with all Wi with odd i ≥ 5. Then
G is a quasi-line graph if and only if G is F-free. In particular, every line graph is
a quasi-line graph.

Circular interval graphs are quasi-line graphs, but there is another way to con-
struct quasi-line graphs, that we explain next. A vertex v ∈ V (G) is simplicial if
the set of neighbours of v is a clique. A strip (G, a, b) consists of a claw-free graph
G together with two designated non-adjacent simplicial vertices a, b called the ends
of the strip. For instance, if G is a linear interval graph, with vertices v1, . . . , vn in
order and with n > 1, then v1, vn are simplicial, and so (G, v1, vn) is a strip, called
a linear interval strip.

Suppose that (G, a, b) and (G′, a′, b′) are two strips. We compose them as follows.
Let A,B be the set of vertices of G \ {a, b} adjacent in G to a, b respectively, and
define A′, B′ similarly. Take the disjoint union of G \ {a, b} and G′ \ {a′, b′}; and let
H be the graph obtained from this by adding all possible edges between A and A′

and between B and B′. Then H is claw-free.
This method of composing two strips is symmetrical between (G, a, b) and (G′, a′, b′),

but we do not use it in a symmetrical way. We use it as follows. Start with a graph
G0 with an even number of vertices and which is the disjoint union of complete
graphs, and pair the vertices of G0. Let the pairs be (a1, b1), . . . , (an, bn), say. For
i = 1, . . . , n, let (G′

i, a
′
i, b

′
i) be a strip. For i = 1, . . . , n, let Gi be the graph obtained

by composing (Gi−1, ai, bi) and (G′
i, a

′
i, b

′
i); then the resulting graph Gn is called a

composition of the strips (G′
i, a

′
i, b

′
i) (1 ≤ i ≤ n). For instance, if for each of the

strips (G′
i, a

′
i, b

′
i) , G′

i is a 3-vertex path with ends a′i, b
′
i, then the effect of composing

with (G′
i, a

′
i, b

′
i) is the identification of ai, bi; and so the graphs that are compositions

of such 3-vertex path strips are precisely line graphs.
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It is easy to check that every graph that is the composition of linear interval
strips is a quasi-line graph, so this gives us a second construction for quasi-line
graphs (and this includes line graphs, since the 3-vertex strip mentioned above is a
linear interval strip).

We can prove the following decomposition theorem for quasi-line graphs [16]:

Theorem 3.2 For every quasi-line graph G, either G is a circular interval graph,
or G is a composition of linear interval strips, or G admits a 0-join, or a W -join.

It is clear how to “reverse” the 0-join decomposition: all one needs to do is take
a disjoint union. The W -join decomposition is trickier, but, it turns out, that one
can avoid it at the expense of expanding the list of basic graphs. (In order to do
that, we use the same idea as in eliminating proper homogeneous pairs from 2.2,
and we will explain it later).

Let us now describe the expanded list of basic graphs. We say that a graph G is
a fuzzy circular interval graph if:

• there is a map φ from V (G) to a circle C (not necessarily injective), and

• there is a set of intervals from C, none including another, and such that no
point of C is an end of more than one of the intervals, so that

• for u, v in G, if u, v are adjacent then {φ(u), φ(v)} is a subset of one of the
intervals, and if u, v are non-adjacent then φ(u) 	= φ(v), and φ(u), φ(v) are
both ends of any interval including both of them.

(If also we required φ to be injective, this would be equivalent to the definition
of a circular interval graph.) If x, y are ends of an interval and the sets φ−1(x)
and φ−1(y) are not complete and not anticomplete to each other, then the pair
(φ−1(x), φ−1(y)) is a W-join, and and these turn out to be the only kinds of W-
joins that we need. (Fuzzy linear interval strips are defined analogously, with the
additional condition that if a, b are the ends of the strip then φ(a), φ(b) are different
from φ(v) for all other vertices v of G.)

We prove [16]:

Theorem 3.3 Every quasi-line graph G can be obtained by taking disjoint unions
of fuzzy circular interval graphs and graphs that are compositions of fuzzy linear
interval strips. Moreover, every graph obtained this way is a quasi-line graph.

Finally, let us mention, that, similarly to the case of Berge graphs, the property
of being claw-free implies that the chromatic number of a graph (and therefore all
its induced subgraphs) is bounded by a function of the size of its largest clique.
It is easy to see that for a claw-free graph G, χ(G) ≤ ω(G)2, and this is not far
from being best possible because every graph with no triad is claw-free. Even if we
insist that G has a triad, it may still have a large triad-free component controlling
the chromatic number, and so χ(G) may still be super-linear in ω(G). However, if
we restrict our attention to connected claw-free graphs with triads, a much better
bound is true [17]:
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Theorem 3.4 Let G be a connected claw-free graph that contains a triad. Then
χ(G) ≤ 2ω(G).

The proof of 3.4 uses our structure theorem for claw-free graphs, but if we replace
χ(G) ≤ 2ω(G) by χ(G) ≤ 4ω(G), there is an easy elementary proof. However, the
factor of 2 is tight. 3.4 can be strengthened further if we assume that G is a quasi-line
graph [8]:

Theorem 3.5 Let G be a quasi-line graph. Then χ(G) ≤ 3
2ω(G).

The proof of 3.5 relies on 3.3, and the factor of 3
2 is tight.

Curiously, we also a get a theorem similar to 3.4 for graphs whose complements
are claw-free [17], and there the proof does not use any of the heavy machinery
described earlier in this section.

Theorem 3.6 Let G be the complement of a connected claw-free graph that contains
a triad. Then χ(G) ≤ 2ω(G).

4 Bull-free Graphs

The bull is the graph B with vertex set

{x1, x2, x3, y, z}
and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.
A graph is called bull-free if it is {B}-free. Obvious examples of bull-free graphs are
graphs with no triangle and graphs with no triad; but there are others. Let us call
a graph G an ordered split graph if there exists an integer n such that the vertex set
of G is the disjoint union of a clique {k1, . . . , kn} and a stable set {s1, . . . , sn}, and
si is adjacent to kj if and only if i+ j ≤ n+ 1. It is easy to see that every ordered
split graph is bull-free. A large ordered split graph contains a large clique and a
large stable set, and therefore the three classes (triangle-free, triad-free and ordered
split graphs) are significantly different.

It turns out, however, that, similarly to claw-free graphs, there is a composition
theorem for bull-free graphs; all bull-free graphs can be built starting from graphs
that belong to a few basic classes, gluing them together by certain operations [4].
The basic classes we need are triangle-free graphs, triad-free graphs, a certain gener-
alization of the ordered split graphs, and a couple of others, that we will not describe
here. Let B denote the set of all bull-free graphs that belong to one of the basic
classes. Next we describe some operations, that are used to combine two smaller
bull-free graphs together, to obtain a new, larger, bull-free graph. For a graph G
and a vertex v of G, we denote by ΓG(v) the set of all vertices of V (G) \ {v} that
are adjacent to v.

Operation O1 is the operation of complementation. The input of O1 is a graph
G1, and the output is the complement of G1.

Operation O2 is the operation of taking the disjoint union of two graphs. The
input of O2 is a pair of graphs G1, G2, and the output is a new graph G3, with
V (G3) = V (G1) ∪ V (G2) and E(G3) = E(G1) ∪ E(G2).
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Operation O3 is defined as follows. The input of O3 is a pair of graphs G1, G2,
and disjoint ordered subsets A1, B1 of V (G1) and A2, B2 of V (G2), with the following
properties:

• A1, B1, A2, B2 are stable sets, with |A1| = |A2| and |B1| = |B2|.
• A1 is complete to B1, and A2 to B2.

• For i = 1, 2 let G′
i be the graph obtained from Gi by adding two new vertices

ai, bi such that {ai} is complete to Ai and {bi} to Bi, and there are no other
edges incident with ai, bi. Then both G′

1 and G′
2 are bull free.

• Let {i, j} = {1, 2}. Let ai, a
′
i ∈ Ai, and let aj , a

′
j be the corresponding vertices

in Aj . If there exists an edge uv of Gi such that ai is complete to {u, v}, and
a′i is adjacent to u and not to v, then ΓGj (aj) ⊆ ΓGj (a

′
j); and the same for Bi

and Bj.

Under these circumstances, the result of applying O3 to G1, G2, A1, B1, A2, B2 is
the graph G3, obtained from the disjoint union of G1 and G2 by identifying the
corresponding vertices of A1 and A2, and the corresponding vertices of B1 and B2.

We would like to remark that operation O3, the way it is defined here, is really
just a decomposition in disguise, but it can be strengthened to get a real composition
operation, see [4].

Operation O4 is the operation of substitution. The input of O4 is a pair of
graphs G1, G2 and a vertex v ∈ V (G1). The output is a new graph G3, with

V (G3) = V (G1) ∪ V (G2) \ {v}
and

E(G3) = E(G1\{v})∪E(G2)∪{xy : x ∈ V (G1)\{v}, y ∈ V (G2), and xv ∈ E(G1)}.
Please note that unlike all the previous operations, O4 is not symmetric between G1

and G2.
The main result of [4] is the following:

Theorem 4.1 Let G be a bull-free graph. Then either G ∈ B, or G can be ob-
tained starting from graphs in B, by repeated applications of operations O1, . . . ,O4.
Conversely, every graph obtained in this way is bull-free.

As in the case of claw-free graphs, we start by proving a “decomposition” theorem
for bull-free graphs, that is, a theorem that says that every bull-free graph is either
basic, or admits a decomposition. Reversing the decompositions yields the opera-
tions O1, . . . ,O4. Another similarity with claw-free graphs (and quasi-line graphs)
is that one can state a decomposition theorem for bull-free graphs that uses very
few basic classes, but needs a decomposition similar to a W -join. The conditions
under which introducing a homogeneous pair in a bull-free graph produces another
bull-free graph are quite complicated, and do not seem to be far from saying “add
a vertex if it does not create a bull”. But again, by considering the more general
structure of “bull-free trigraphs”, we were able to eliminate the use of homogeneous
pairs, at the expense of expanding the list of basic classes.
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In [10] Safra and the first author use 4.1 to settle the Erdős-Hajnal conjecture
for the case when H is the bull, by proving the following:

Theorem 4.2 Let G be a bull-free graph. Then G contains a stable set or a clique
of size |V (G)| 14 .

In order to prove 4.2, it is shown inductively, using 4.1, that every bull-free graph
G can be “fractionally” covered by at most |V (G)| 12 induced subgraphs of G, each of
which is perfect. It follows that there exists an induced subgraph H of G, containing
at least |V (G)|12 vertices, and such that H is perfect. Consequently, H contains a
stable set or a clique of size at least |V (H)| 12 ≥ |V (G)| 14 , and 4.2 follows.

5 Trigraphs

The goal of this section is to introduce the notion of a “trigraph”. A trigraph
T is a 4-tuple (V (T ), E(T ), S(T ), N(T )) where V is the vertex set of T and every
unordered pair of vertices belongs to one of the three disjoint sets: the strong edges
E(T ), the strong non-edges N(T ) and the switchable pairs S(T ), and such that every
vertex of T belongs to at most one switchable pair. Let us say that two vertices u, v
of T are strongly adjacent if {u, v} is a strong edge, strongly anti-adjacent if {u, v} is
a strong non-edge, and semi-adjacent if {u, v} is a switchable pair. In this notation a
graph can be viewed as a trigraph with an empty set of switchable pairs. A realization
of a trigraph T = (V (T ), E(T ), S(T ), N(T )) is a graph G = (V (G), E(G)) such that
V (G) = V (T ), and E(T ) ⊆ E(G) ⊆ E(T ) ∪ S(T ).

Thus trigraphs are objects generalizing graphs, and on a number of occasions,
when dealing with classes of graphs defined by forbidding certain induced subgraphs,
considering trigraphs instead of graphs allowed us to prove stronger theorems for
the class of graphs we were interested in.

We use trigraphs while dealing with Berge graphs, claw-free graphs, and bull-
free graphs. In all three cases the situation is as follows: we were able to prove
a theorem that said “every Berge (claw-free, bull-free) graph either belongs to one
of a few basic classes, or admits one of a few decompositions”, where one of the
decompositions was some variety of a homogeneous pair decomposition, where the
two sets of the homogeneous pair are not complete and not anticomplete to each
other. In all cases, it is possible to define an operation that is the “reverse” of
the homogeneous pair decomposition, let us call it a thickening. Given a list L of
basic graphs, we call a thickened basic graph every graph that can be obtained from a
graph in L by performing thickenings. Now we would like to strengthen the theorem,
and prove that every Berge (claw-free, bull-free) graph is either a thickened basic
graph, or admits one of a few decompositions (none of which is a homogeneous pair
decomposition). The last step is to describe explicitly all thickened basic graphs,
thus eliminating the use of homogeneous pairs.

The approach we use is as follows. Let F be a family of graphs. Let us say that
the family T of trigraphs is F-free, if every graph that is a realization of a trigraph in
T is F-free. Now, instead of considering Berge (claw-free, bull-free) graphs, we turn
to Berge (claw-free, bull-free) trigraphs. For every decomposition we expect to use
for the class of F-free graphs, we define its trigraph analogue, in such a way that if
two vertices of a graph were specified as being adjacent in the graph decomposition,
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they are specified as being strongly adjacent in the trigraph decomposition, and
similarly for pairs that were specified to be non-adjacent. For example, the graph
decomposition “G is disconnected”, becomes the trigraph decomposition “V (T ) can
be partitioned into two non-empty subsets V1 and V2, such that every vertex of V1 is
strongly anti-adjacent to every vertex of V2”. This has the useful consequence that
if T is a trigraph admitting such a decomposition, and ab is a switchable pair in T ,
and we replace a and b by two sets of new vertices, A and B, respectively, making
every vertex of A strongly adjacent to all the vertices of V (T ) \ {a, b} that were
strongly adjacent to a, and strongly anti-adjacent to all the others, and similarly
for B, forming a trigraph T ′, then T ′ admits the same decomposition (this is true
with a few exceptions, but they are dealt with separately). We will refer to this as
“property X”.

For every basic class C of graphs, the corresponding basic class of trigraphs
consists of all F-free trigraphs T , such that some graph of C is a realization of T .

In each of the three cases (Berge, claw-free and bull-free) we were able to prove
that every F-free graph is either basic or admits one of the decompositions in some
list, say, D1, . . . ,Dk, or admits a homogeneous pair. In each case we can then prove
that every F-free trigraph is either basic (in the trigraph sense explained above) or
admits (the trigraph analogue of) one of the decompositions D1, . . . ,Dk, or admits
(the trigraph analogue of) a homogeneous pair. So far this is the same theorem, only
in slightly greater generality. It turns out, however, that this more general version
allows us to prove the strengthened theorem for graphs that we are interested in.

It is enough to prove that every F-free trigraph is either basic (in the trigraph
sense) or admits (the trigraph analogue of) one of the decompositions D1, . . . ,Dk.
Here is the outline of the proof. Suppose this is false and let T be a trigraph that
is not basic, and does not admit any of the decomposition D1, . . . ,Dk, and subject
to that has |V (T )| as small as possible. By the theorem we know for trigraphs, T
admits (the trigraph analogue of) a homogeneous pair (A,B). So every vertex of
V (T ) \ (A ∪ B) is either strongly adjacent to every vertex of A, or strongly anti-
adjacent to every vertex of A, and the same for B. Let T ′ be the trigraph obtained
from T by replacing the set A by a new vertex a, and the set B by a new vertex b,
such that

• a is semi-adjacent to b in T ′

• for every vertex v ∈ V (T ) \ (A ∪ B), v is strongly adjacent to a in T ′ if v is
strongly adjacent to every vertex of A in T , and v is strongly anti-adjacent to
a in T ′ if v is strongly anti-adjacent to every vertex of A in T , and

• for every vertex v ∈ V (T ) \ (A ∪ B), v is strongly adjacent to b in T ′ if v is
strongly adjacent to every vertex of B in T , and v is strongly anti-adjacent to
b in T ′ if v is strongly anti-adjacent to every vertex of B in T .

Then T ′ is F-free (this requires some checking, but we ensure it by imposing
some non-triviality conditions on the decompositions). By the minimality of |V (T )|,
it follows that T ′ is either basic, or admits one of the decompositions D1, . . . ,Dk. If
T ′ is basic then so is T , with a few exceptions. So we may assume that T ′ admits
some decomposition Di. But then, since the pair {a, b} is a switchable pair of T ′, by
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property X, T admits the same decomposition Di. This, however, is a contradiction
to the way T was chosen. This completes the proof.

At first it seems that instead of using trigraphs, one could redefine the decom-
positions and do the whole proof in terms of graphs only. We would like to remark
that despite a certain amount of effort invested in this approach, we were unable to
come up with a consistent set of definitions, and so the idea of using trigraphs seems
crucial.

6 Even-hole-free Graphs

In this section we discuss the family of even-hole-free graphs; these are F-free
graphs where F is the family of all cycles of even length. (Similarly, odd-hole-free
graphs are graphs with no induced odd cycles of length at least five). Unfortunately,
for even-hole-free graphs we do not have a composition theorem similar to 3.3 or
4.1. The best known result of this kind is a theorem similar to 2.2, due to Conforti,
Cornuéjols, Kapoor and Vušković [21], that states that every even-hole-free graph is
either basic or admits a decomposition. This theorem was then used in [22] to design
a polynomial time recognition algorithm for the class of even-hole-free graphs.

However, the following, conjectured by Reed [32], remained open for a while
longer, and was proved only recently by Addario-Berry, Havet, Reed and the authors
in [1] (a bisimplicial vertex in a graph is a vertex whose set of neighbours is the union
of two cliques):

Theorem 6.1 Every non-null even-hole-free graph has a bisimplicial vertex.

At first we directed our effort to trying to find a composition theorem for even-
hole-free graphs, but were unsuccessful. It still seemed, however, that proving a
statement stronger than 6.1, that would contain some information about the location
of the bisimplicial vertices in the graph, would allow us to apply induction and prove
6.1. This direction was a lot more fruitful, and eventually lead to a proof of 6.1,
that we now outline.

Let us start with some definitions. Let G be a graph and let S be a subset of
V (G). The neighbourhood of S, denoted by NG(S), is S together with the set of all
vertices of V (G) \ S with a neighbour in S. The non-neighbourhood of S is the set
V (G)\NG(S). If S consists of a single vertex s, we write NG(s) instead of NG({s}).
A set S of vertices in a graph G is called dominating (in G) if NG(S) = V (G), and
non-dominating otherwise. An induced subgraph H of G is dominating if V (H) is
dominating, and non-dominating otherwise; we denote byNG(H) the setNG(V (H)).
The stronger statement we ended up proving is the following:

Theorem 6.2 Let G be an even-hole-free graph. Then both the following statements
hold:

1. If H is a non-dominating hole in G, then some vertex of V (G) \ NG(H) is
bisimplicial in G.

2. If K is a non-dominating clique in G of size at most two, then some vertex of
V (G) \NG(K) is bisimplicial in G.
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Clearly the second statement of 6.2 with K = ∅ implies 6.1. We remark that
the second statement of 6.2 would be false if we replace “at most two” by “at most
three”. The graph obtained from K4 by choosing a vertex and subdividing once the
edges incident with it is a counterexample.

Let us now describe the proof of 6.2. The proof uses induction. Let G be a graph
such that 6.2 holds for all smaller graphs. First we suppose that G fails to satisfy
the first statement, that is there is a non-dominating hole H in G, but there is no
bisimplicial vertex in the non-neighbourhood of V (H). Now the idea is to examine
the neighbourhood of V (H) and try to find what we call a “useful cutset” in G, that
is, a subset C of V (G) and an edge e with both ends in C such that

• V (G) \ C is the disjoint union of two non-empty sets, L and R, anticomplete
to each other

• C ⊆ N(e) and the non-neighbourhood of e in the graph G|(C ∪ R) is a non-
empty subset of the non-neighbourhood of V (H) in G.

If we find such a cutset C, then it follows, from the minimality of G, that R contains
a vertex v which is bisimplicial in G|(C ∪ R); and since L is anticomplete to R, it
follows that v is a bisimplicial vertex of G, which is a contradiction.

Unfortunately, we do not always succeed in finding a useful cutset; sometimes we
have to make do with a set C and a list u1, .., uk, v1, .., vk of vertices of C (possibly
with repetitions) where ui is non-adjacent to vi in G for every 1 ≤ i ≤ k, such that:

• V (G) \ C is the disjoint union of two non-empty sets, L and R, anticomplete
to each other

• the graph G′ obtained from G|(R ∪ C) by adding the edge uivi for every
1 ≤ i ≤ k is even-hole-free

• for some edge e of G′, C ⊆ NG′(e), and the non-neighbourhood of e in G′ is a
non-empty subset of the non-neighbourhood of V (H) in G

• if v is a bisimplicial vertex of G′ contained in the non-neighbourhood of e, then
v is bisimplicial in G.

Having found such a set C etc, the same argument as in the case of a “genuine”
useful cutset leads to a contradiction.

So G satisfies the first statement of 6.2. Suppose it fails to satisfy the second.
This means that there is a non-dominating clique K of size at most two in G with
no bisimplicial vertex in its non-neighbourhood. An easy argument shows that there
is a hole H of G such that K is included in V (H). Since the first assertion of the
theorem holds for G, we deduce that H is dominating in G. Now we can examine
the structure of G relative to H, and again find variations on the idea of a useful
cutset, such as the one described above, that lead to a contradiction. So G satisfies
the second statement of 6.2 too. This completes the inductive proof.

A graph G is called odd-signable if there exists a function f : E(G) → {0, 1}
such that

∑
e∈E(H) f(e) is odd for every hole H of G. It is natural to ask whether

6.1 is true if we replace “even-hole-free” by “odd-signable”. The answer to this
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question is “no”, and the six vertex graph which is the 1-skeleton of the cube is a
counterexample.

Finally, we would like to point out an easy corollary of 6.1, that, similarly to
the case of perfect graphs, claw-free graphs and quasi-line graphs, establishes a
connection between the property of being F-free, and the fact the the chromatic
number of the graph (and therefore of all induced subgraphs) is bounded by a
function of the size of the largest clique.

Theorem 6.3 Let G be a non-null even-hole free graph. Then χ(G) ≤ 2ω(G)− 1.

Proof. The proof is by induction on |V (G)|. By 6.1 there exists a bisimplicial
vertex v in G. The graph G′ obtained from G by deleting v is another even-hole
free graph, we can assume G′ is non-null, ω(G′) ≤ ω(G), and, inductively, G′ can
be properly coloured with at most 2ω(G) − 1 colours. Let c be such a colouring of
G′. Since v is bisimplicial in G, |NG(v)| ≤ 2ω(G)− 1 and at least one of the 2ω − 1
colours does not appear in NG(v)\{v} in c. Now v can be coloured with this colour,
thus extending c to a proper colouring of G with at most 2ω(G) − 1 colours. This
proves 6.3.

Unfortunately, we do not know if this theorem is sharp, the best example we
know has chromatic number 5

4ω.

7 Detecting Induced Subgraphs

Given an infinite family F of graphs, it is natural to ask whether one can test
in polynomial time if a given graph G is F-free. In this section, will survey some
known results in this direction. For brevity, let us say “testing for F” when we
mean “testing for being F-free”. In all cases the family F we consider consists of
subdivisions of a given graph, possibly with some parity conditions. It turns out
that even in this restricted setting, testing for F can be done in polynomial time for
some families F , and can be shown to be NP -complete for others. At the moment
we do not know the reason for this difference in behaviour.

A pyramid is a graph consisting of a triangle {b1, b2, b3}, called the base, a vertex
a 	∈ {b1, b2, b3}, called the apex, and three paths P1, P2, P3, such that for i, j ∈ 1, 2, 3

• the ends of Pi are a and bi,

• if i 	= j then V (Pi)\{a} is disjoint from V (Pj)\{a} and the only edge between
them is bibj , and

• at most one of P1, P2, P3 has length one.

In this case we say that the pyramid is formed by the paths P1, P2, P3.
Let P be the family of all pyramids. It turns out that testing for P is relatively

easy, and can be done in time O(|V (G)|9) [5]. The idea is as follows. If G contains
a pyramid, then it contains a pyramid P with the number of vertices smallest. We
are going to “guess” some of the vertices of P in G, then find shortest paths in
G between pairs of vertices that we guessed that were joined by a path in P , and
then test whether the subgraph of G formed by the union of these shortest paths
is a pyramid. If the answer is “yes”, then G contains a pyramid, and we stop.
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Surprisingly, it turns out, that choosing the shortest paths with a little bit of care,
we can guarantee that if the answer is “no”, then there is no pyramid in P . We call
this general strategy of testing for a family F a shortest-paths detector for F .

Let us now be more precise. For u, v ∈ V (G) we denote by dG(u, v) the length
of the shortest path of G between u and v. If P is a pyramid, formed by three paths
P1, P2, P3, with apex a and base {b1, b2, b3}, we say its frame is the 10-tuple

a, b1, b2, b3, s1, s2, s3,m1,m2,m3,

where

• for i = 1, 2, 3, si is the neighbour of a in Pi

• for i = 1, 2, 3, mi ∈ V (Pi) satisfies dPi(a,mi)− dPi(mi, bi) ∈ {0, 1}.
A pyramid P in G is optimal if there is no pyramid P ′ with |V (P ′)| < |V (P )|.

Theorem 7.1 [5] Let P be an optimal pyramid, with frame a, b1, b2, b3, s1, s2, s3,m1,
m2,m3. Let S1, T1 be the subpaths of P1 from m1 to s1, b1 respectively. Let F be the
set of all vertices non-adjacent to each of s2, s3, b2, b3.

1. Let Q be a path between s1 and m1 with interior in F , and with minimum
length over all such paths. Then a-s1-Q-m1-T1-b1 is a path (say P ′

1), and
P ′

1, P2, P3 form an optimal pyramid.

2. Let Q be a path between m1 and b1 with interior in F , and with minimum
length over all such paths. Then a-s1-S1-m1-Q-b1 is a path (say P ′

1), and
P ′

1, P2, P3 form an optimal pyramid.

Analogous statements hold for P2, P3.

7.1 can be used to design an algorithm to test for P:

• guess the frame a, b1, b2, b3, s1, s2, s3,m1,m2,m3 of an optimal pyramid P of
G, by trying all 10-tuples of vertices,

• find shortest paths between m1 and b1, and between m1 and s1, not containing
any neighbours of s2, s3, b2, and b3; do the same for m2, b2, s2 and m3, b3, s3,

• test if the union of the six shortest paths, together with the vertex a forms a
pyramid.

Now, by 7.1, the answer if “yes”, if and only if G contains a pyramid. The algorithm
in [5] is similar; it was modified a little to bring the running time down toO(|V (G)|9).

The main result of [5] is a polynomial time algorithm for testing if a graph is
Berge (and therefore perfect). Since every pyramid contains an odd hole, it follows
that every odd-hole-free, and therefore every Berge, graph is P-free.

Even though the algorithm in [5] was found after 2.2 had been proved, it does
not use 2.2. The idea in [5] is to use the shortest-path detector for odd holes.
Unfortunately, there does not seem to be a theorem similar to 7.1 for odd holes,
and so, first, the graph needs to be “prepared” for using a shortest-paths detector.
The first step is to test for P, and a few other families F that are easy to test for,
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and such that every Berge graph is F-free. Now we can assume that the graph in
question is F-free for all these F . The next step is applying “cleaning”, a technique
first proposed in [24]. The idea of cleaning is to find, algorithmically, polynomially
many subsets X1, . . . ,Xk of V (G), such that if G contains an odd hole, then for at
least one value of i ∈ {1, . . . , k} the graph Gi = G\Xi contains an odd hole that can
be found using a shortest-paths detector. Finally, applying a shortest-paths detector
for odd holes to each of G1, . . . , Gk, we detect an odd hole if and only if G contains
one.

In addition to the algorithm just described, [5] contains another algorithm to
test for Bergeness, that instead of a shortest-paths detector for odd holes, uses a
decomposition theorem for odd-hole-free graphs from [23], but we will not describe
this algorithm here. We remark that both algorithms in [5] test for Bergeness, and
not for the family of odd holes. The complexity of testing if a graph contains an
odd hole is still unknown. On the other hand, the problem of testing if a graph
contains an even hole can be solved in polynomial time. There are two known
algorithms. One is due to Conforti, Cornuéjols, Kapoor, and Vušković [22], and the
other to Kawarabayshi and the authors [7]. Both algorithms use cleaning, and then
the former uses a decomposition theorem of [21] for even-hole-free graphs, and the
latter a shortest-paths detector.

There are two other kinds of graphs that are somewhat similar to the pyramid,
called a “theta” and a “prism”. A theta is a graph consisting of two non-adjacent
vertices s, t and three paths P1, P2, P3, each between s and t, such that the sets
V (P1) \ {s, t}, V (P2) \ {s, t}, and V (P3) \ {s, t} are pairwise disjoint, the union
of every pair of P1, P2, P3 is a hole. A prism is a graph consisting of two disjoint
triangles {a1, a2, a3} and {b1, b2, b3} and three paths P1, P2, P3, with the following
properties:

• for i = 1, 2, 3, the ends of Pi are ai and bi,

• P1, P2, P3 are pairwise disjoint , and

• for 1 ≤ i < j ≤ 3, there are precisely two edges between V (Pi) and V (Pj),
namely aiaj and bibj .

Let T be the family of all thetas, and Pr the family of all prisms. Then every
even-hole-free graph is T ∪ Pr-free, and so prisms and thetas play a similar role
for even-hole-free graphs to the one that pyramids play for odd-hole-free graphs. It
turns out, however, that, unlike P, the problem of testing for Pr is NP -complete
(this is a theorem due to Maffray and Trotignon [31]). On the other hand, testing
for T can be done in polynomial time [18]. The problems of testing for P ∪ Pr
and testing for T ∪ Pr can also be solved in polynomial time (see [31] and [6],
respectively).

All the algorithms mentioned above use variations on the ideas of cleaning and
shortest paths detectors (or decomposition theorems), except one, and that is the
algorithm for testing for T . There our approach is different. In order to be able to
test for T , we study a slightly more general problem: given a graph G, and three
vertices v1, v2, v3 of G, does there exist an induced subgraph T of G, such that T is
a tree and v1, v2, v3 ∈ V (T )? We call this the three-in-a-tree problem. It turns out
that the answer to this question is “no” if and only if the graph admits a certain
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structure. This fact allows us to design a polynomial time algorithm for the three-in-
a-tree problem. Now, if {v1, v2, v3} is a triad with a common neighbour w in G, the
degree of each of v1, v2, v3 in G \ {w} is one, and the degree of w in G is three, then
the answer to the three-in-a-tree problem with input (G \ {w}, v1, v2, v3) is “yes” if
and only if G contains a theta using v1, v2, v3, w. On the other hand, if {v1, v2, v3}
is a triangle and no vertex of G has two neighbours in it, then the answer to the
three-in-a-tree problem with input (G, v1, v2, v3) is “yes” if and only if G contains
a pyramid with base {v1, v2, v3}. Thus, our algorithm to solve the “three-in-a-tree”
problem can be used, after some pre-processing, to test both for P and for T (and
this is the only algorithm known to test for T ). This result is particularly pleasing
from our point of view, because this is one of the few times that a composition
theorem and an algorithm appear together in the study of graphs with forbidden
induced subgraphs.
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[28] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre, Math. Ann. 77 (1916), 453-465.



Excluding induced subgraphs 119

[29] L. Lovász, A characterization of perfect graphs, J. Combinatorial Theory, Ser.
B 13 (1972), 95-98.

[30] G.J. Minty, On maximal independent sets of vertices in claw-free graphs, Jour-
nal of Combinatorial Theory, Ser. B 28 (1980), 284–304.

[31] F. Maffray and N. Trotignon, Algorithms for perfectly contractile graphs, SIAM
J. Discrete Math 19(3) (2005), 553-574.

[32] J. Ramirez-Alfonsin and B. Reed (eds.), Perfect Graphs, Wiley, Chichester
(2001), 130.

Maria Chudnovsky
Department of IEOR
Columbia University
New York, NY 10027

USA
mchudnov@columbia.edu

Paul Seymour
Department of Mathematics

Princeton University
Princeton, NJ 08544

USA
pds@math.princeton.edu





Designs and Topology

M.J. Grannell and T.S. Griggs

Abstract

An embedding of a graph in a surface gives rise to a combinatorial design whose
blocks correspond to the faces of the embedding. Particularly interesting graphs
include complete and complete multipartite graphs. Embeddings of these in
which the faces are triangles, Hamiltonian cycles, or Eulerian cycles generate
interesting designs. These designs include twofold, Mendelsohn and Steiner
triple systems, and Latin squares. We examine some of these cases, looking at
construction methods, structural properties and enumeration problems.

1 Context

Throughout this survey we will be predominantly concerned with triangular
embeddings of graphs. These arise naturally in the context of the Heawood map-
colouring conjecture. In its orientable form this asserts that the minimum number
of colours required to colour a map on a surface Sg, the sphere with g handles, is
given by

χ(Sg) =
⌊

7 +
√

1 + 48g
2

⌋
, g ≥ 0.

For g > 0, the conjecture was finally established by Ringel, Youngs and others in
1968. The case g = 0 is the celebrated four colour theorem, finally established by
Appel and Haken [7, 8] in 1976.

To see the connection between the Heawood conjecture and triangular embed-
dings, consider the dual problem obtained by placing a vertex in each region of the
map and joining two vertices whenever the corresponding regions share a common
border. We now require the minimum number of colours to vertex colour the result-
ing dual graph. The extremal case is the complete graph Kn requiring n colours. So
it is natural to ask for the minimum genus g such that Kn may be embedded in Sg.
Using Euler’s formula n+ f − e = 2− 2g, where f denotes the number of faces and
e =

(n
2

)
is the number of edges, we see that g is minimal when f is maximal and

this will happen when the average number of edges per face is as small as possible.
Euler’s formula then gives �(n − 3)(n − 4)/12� as a lower bound for the genus. For
n ≡ 0, 3, 4 or 7 (mod 12), this is achievable by taking all of the faces as triangles.
When n does not lie in one of these congruence classes it is also achievable but a
small number of non-triangular faces are required. The book by Ringel [78] gives
the details and also deals with the nonorientable case of embedding Kn in Nγ , the
sphere with γ crosscaps. In the nonorientable case Euler’s formula is n+f−e = 2−γ
and a lower bound for the minimum genus is �(n − 3)(n − 4)/6�. In the cases n ≡
0 or 1 (mod 3) except n = 7 this is achievable with all the faces as triangles. The
surface of minimum nonorientable genus in which K7 can be embedded is N3.

The connection between graph embeddings and combinatorial designs arises from
the observation that, when a graph is embedded in a surface, the faces that result
can be regarded as the blocks of a design. This design may be thought of as being
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embedded in the surface. The first person to observe the connection between com-
binatorial designs and graph embeddings was Heffter. In a paper dated November
1890 [57] he presents a partition of the integers 1, 2, . . . , 12s + 6, s ≥ 0 into 4s + 2
triples so that for each triple {a, b, c}, a+ b+ c ≡ 0 (mod 12s + 7). He then shows
how, if 4s+3 is prime and the order of 2 modulo 4s+3 is either 4s+2 or 2s+1, these
triples can be used to construct a twofold triple system (for the formal definition
see Section 2) of order 12s + 7, the blocks of which are the triangular faces of an
embedding of the complete graph K12s+7 in an orientable surface. As observed in
both [52] and [78] it is still not known if there are infinitely many such values of s.
But the method is applicable for s = 0, 1, 2, 4, 5, 11 and 14, numbers given explicitly
in [57].

The only other paper published before 1970 which explores the relationship be-
tween combinatorial designs and graph embeddings appears to be that by Emch [36].
Although mainly combinatorial in nature, it does contain diagrams of the embed-
dings of the twofold triple system of order 6 in the projective plane, the embedding
of a pair of Steiner triple systems of order 7 in the torus, as well as an interesting em-
bedding of a pair of Steiner triple systems of order 9 in a pseudosurface formed from
a torus by identifying three pairs of points. We will meet all of these embeddings
later in the paper; see Figures 6.1, 6.2 and 12.1 respectively.

2 Preliminaries

In this section we review terminology taken from combinatorial design theory and
topological graph theory, and we summarize some of the basic results. The principal
item required from design theory is the following definition. A Steiner triple system
of order n is a pair (V,B) where V is an n-element set (the points) and B is a
collection of 3-element subsets (the blocks) of V such that each 2-element subset
of V is contained in exactly one block of B. It is well known that a Steiner triple
system of order n (briefly STS(n)) exists if and only if n ≡ 1 or 3 (mod 6) [62]. If, in
the definition, the words “exactly one block” are replaced by “exactly two blocks”,
then we have a twofold triple system of order n, TTS(n) for short. If a TTS(n) has
no repeated blocks, it is said to be simple. A simple twofold triple system of order
n exists if and only if n ≡ 0 or 1 (mod 3) [28]. A (possibly non-simple) TTS(n) may
be obtained by combining the block sets of two STS(n)s which have a common point
set. An STS(n) can be considered as a decomposition of the complete graph Kn into
triangles (copies of K3); likewise a TTS(n) can be considered as a decomposition of
the twofold complete graph 2Kn (in which there are two edges between each pair of
vertices) into triangles.

Up to isomorphism, there is just one STS(n) for n = 3, 7, 9, while there are two
for n = 13, precisely one of which is cyclic (that is, has an automorphism of order
13). There are 80 STS(15)s [27], of which two are cyclic, and there are 11,084,874,829
STS(19)s [60], of which four are cyclic. The number of nonisomorphic STS(n)s is
nn2/6−o(n2) [83] and, speaking asymptotically, almost all of these have only a trivial
automorphism group [9].

A Mendelsohn triple system of order n is defined in a similar fashion to an STS(n)
except that triples and pairs are taken to be ordered, so that the cyclically ordered
triple (a, b, c) “contains” the ordered pairs (a, b), (b, c) and (c, a). A Mendelsohn
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triple system of order n, MTS(n) for short, exists if and only if n ≡ 0 or 1 (mod 3)
and n �= 6 [73]. An MTS(n) may be considered as a decomposition of the complete
directed graph on n vertices into directed 3-cycles. If the directions are ignored,
then an MTS(n) gives a TTS(n).

A transversal design of order n and block size 3 is a triple (V,G,B) where V is a
3n-element set (the points), G is a partition of V into 3 parts (the groups) each of
cardinality n, and B is a collection of 3-element subsets (the blocks) of V such that
each 2-element subset of V is either contained in exactly one block of B or in exactly
one group of G, but not both. A transversal design of order n and block size 3 is
denoted by TD(3, n); since we only consider block size 3, we will simply speak of a
transversal design of order n. A TD(3, n) may be considered as a decomposition of
the complete tripartite graph Kn,n,n into triangles with the tripartition defining the
groups of the design. A TD(3, n) is equivalent to a Latin square of side n in which
the triples are given by (row, column, entry).

To see the connection between design theory and graph embeddings, consider the
case of an embedding of the complete graph Kn in an orientable surface in which
all the faces are triangles. Taking these triangles with a consistent orientation to
form a set of blocks, the faces of the embedding yield a Mendelsohn triple system of
order n. Similarly, a triangular embedding of Kn in a nonorientable surface gives a
twofold triple system of order n.

We note here that all the surfaces we consider will be, unless otherwise stated,
closed, connected 2-manifolds, without a boundary. That is, in the orientable case,
Sg the sphere with g handles and, in the nonorientable case, Nγ the sphere with γ
crosscaps. The surfaces S1 and S2 are the torus and double torus respectively and
the surfaces N1 and N2 are the projective plane and Klein bottle respectively. Given
a surface embedding of some simple graph G with vertex set V (G), the rotation at a
vertex v ∈ V (G) is the cyclically ordered permutation of vertices adjacent to v, with
the ordering determined by the embedding. The set of rotations at all the vertices of
G is called the rotation scheme for the embedding. In the case of an embedding of G
in an orientable surface, the rotation scheme provides a complete description of the
embedding. This is not generally the case for a nonorientable surface because the
rotation scheme does not enable the faces of the embedding to be unambiguously
reconstructed: some additional information is required. However, in the cases we
consider this will not be an issue, since sufficient extra information to determine the
faces will be known.

Ringel [78] gives the following tests to determine if a rotation scheme represents
a triangular embedding.
Rule ∆: A rotation scheme represents a triangular embedding of a simple graph
G if, for each vertex a ∈ V (G), whenever the rotation at a contains the sequence
. . . bc . . ., then the rotation at b contains either the sequence . . . ac . . . or the sequence
. . . ca . . ..
Rule ∆∗: If the rotations at each vertex can be directed in such a way that for
each vertex a ∈ V (G), whenever the rotation at a contains the sequence . . . bc . . .,
then the rotation at b contains the sequence . . . ca . . ., then the embedding is in an
orientable surface.

We refer the reader to [52, 78] for an explanation of current and voltage graphs
which are used to construct graph embeddings. In Sections 3, 4, 5 and 10 we
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make extensive use of these methods. The origin of current graphs lies in the work
of Gustin [53] who regarded these as combinatorial tools. Voltage graphs were
introduced by Gross [51].

In a surface embedding of Kn, the rotation at each vertex will comprise a single
cycle of length n− 1. As described in [31] this provides a test for an MTS(n), or a
TTS(n), to be embeddable in an orientable, or a nonorientable surface, respectively.
Let (V,B) be a TTS(n). For each x ∈ V , define the neighbourhood graph Gx: its
vertex set is V \ {x}, and two vertices y, z are joined by an edge if {x, y, z} ∈ B.
Clearly, Gx is a union of disjoint cycles. A TTS(n) occurs as a triangulation of
a surface if and only if every neighbourhood graph consists of a single cycle. If
the blocks of the TTS(n) can be ordered to form an MTS(n), then the surface is
orientable, otherwise it is nonorientable.

Of much more interest is the relationship between embeddings of complete graphs
and Steiner triple systems. Suppose that we have an embedding, not necessarily a
triangular embedding, of the complete graph Kn with vertex set V in a surface S
with the property that the faces can be properly 2-coloured, that is, no two faces
with a common edge have the same colour. We will take the colour classes to be black
and white. If either colour class consists entirely of triangles, then these triangles
necessarily form the blocks of an STS(n) on the point set V . We will say that
the STS(n) is embedded in the surface S. If both colour classes consist entirely of
triangles, then we have two STS(n)s , black and white, biembedded in S. Slightly
more generally, we will say that two STS(n)s, say B and W , are biembeddable in a
surface S if there is a face 2-colourable triangular embedding of the complete graph
Kn in S with the black (respectively white) faces forming a system isomorphic with
B (respectively W ).

The first obvious question is whether, given an STS(n), it has an embedding in
an orientable and in a nonorientable surface. It turns out that this question has a
positive answer, and the proof is not difficult. We will show in Section 8 how to
construct a maximum genus embedding of an STS(n) where the faces comprise a set
of black triangles representing the Steiner system, together with a single white face.

A sequence of deeper questions concerns biembeddings of STS(n)s, that is, face
2-colourable triangular embeddings of Kn. We list these in increasing order of diffi-
culty.

1. For each n ≡ 3 or 7 (mod 12) is there a biembedding of some pair of STS(n)s
in an orientable surface? Similarly for each n ≡ 1 or 3 (mod 6) is there such
a biembedding in a nonorientable surface?

2. If such biembeddings exist, how many are there?

3. Given an STS(n), does it have a biembedding with some other STS(n) in an
orientable and in a nonorientable surface?

4. Given a pair of STS(n)s, do they have a biembedding in an orientable and in
a nonorientable surface?

Of course, a necessary condition for a positive answer to questions 3 and 4 in the
orientable case is that n ≡ 3 or 7 (mod 12). A complete answer to question 1 is given
in Section 3. In subsequent sections, principally Sections 4, 5 and 6, we describe
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progress with questions 2, 3 and 4. The remaining sections are devoted to other
related aspects such as Hamiltonian embeddings, biembeddings of Latin squares,
and biembeddings of symmetric configurations.

3 Existence

In this section we establish the existence of biembeddings of STS(n)s. The
orientable case n ≡ 3 (mod 12) and the nonorientable case n ≡ 3 (mod 6) come
from Ringel [78]. For the orientable case n ≡ 7 (mod 12) we turn to graphs first
constructed by Youngs [86]. In each of these cases we present the general solution
either by specifying appropriate current graphs or by giving the logs obtained from
such graphs. For the nonorientable case n ≡ 1 (mod 6) we refer the reader to [49]
which gives explicit current graphs. In both the orientable case n ≡ 3 (mod 12)
and the nonorientable case n ≡ 3 (mod 6), we relate these solutions to the Bose
construction for Steiner triple systems.

We first consider the orientable case n ≡ 3 (mod 12). The current graphs con-
structed by Ringel for this case are index 3 Möbius ladders, and the general form
is shown in Figure 3.1. The ends labelled A should be identified, and likewise the
ends labelled B. The graph is bipartite, which ensures that the resulting embedding
is face 2-colourable. The vertex directions are indicated by solid and hollow cir-
cles, representing clockwise and anticlockwise respectively. Taking account of these
directions we form the logs of the three circuits denoted by [0], [1] and [2] in the
figure.
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Figure 3.1: Orientable current graph for n = 12s + 3.

For the particular case n = 15, the logs are as follows.

[0] : 1 13 9 11 5 12 7 14 2 6 4 10 3 8
[1] : 14 7 8 5 9 4 10 6 11 2 3 1 13 12
[2] : 1 8 7 10 6 11 5 9 4 13 12 14 2 3

From an index 3 current graph with currents in Zn, we may obtain a rotation
scheme for an embedding of Kn with vertex set Zn. The rotation at i ∈ Zn is deter-
mined by adding i modulo n to each element of the log of [a], where i ≡ a (mod 3),
a ∈ {0, 1, 2}.

An alternative approach to obtaining biembeddings of STS(n)s, where n ≡ 3
(mod 12) in orientable surfaces is given in [45] and uses the Bose construction.
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Bose construction

Let (G,+) be an Abelian group of odd order. Thus if i, j ∈ G then i ∗ j = (i+ j)/2
is a well defined element of G. Let V = G×Z3. On V form a collection B of triples
as follows.

(1) 2s + 1 triples of the form {(i, 0), (i, 1), (i, 2)}, i ∈ G,

(2) 3s(2s+1) triples of the form {(i, k), (j, k), (i∗j, k+1)}, i, j ∈ G, i �= j, k ∈ Z3.

Then it is easily verified that (V,B) is a Steiner triple system of order 3|G|.

A biembedding of STS(n)s where n ≡ 3 (mod 12) can now be obtained as
follows. Build a Steiner triple system (V,B), where V = Z4s+1 × Z3, by the Bose
construction as above. Now define two Steiner triple systems (Zn,B0) and (Zn,B1),
both isomorphic to (V,B) using the bijections fm : V �→ Zn, m = 0, 1 given by
fm(i, k) = 3i+(−1)mks where s = 6t+1. It is easy to prove that B0∩B1 = ∅, that is,
the two STS(n)s are disjoint. To show that the pair is biembeddable in an orientable
surface, consider the triples in B0 (respectively B1) as the black (respectively white)
triangles of a biembedding. For each pair of distinct points u, v ∈ Zn, we take the
corresponding black and white triangles, both containing u and v as vertices, and
glue these triangles together along the side uv. Let S be the resulting topological
space; then S is certainly a generalized pseudosurface. We need to prove that, in
fact, S is an orientable surface. This is done by exhibiting the rotation scheme and
showing that it satisfies Ringel’s Rule ∆∗. This is straightforward, though tedious,
and details are given in [45]. Thus, use of the Bose construction provides a proof
of the orientable case n ≡ 3 (mod 12) of the Heawood map-colouring conjecture
by exclusively design-theoretic methods. In fact, the biembeddings so obtained are
isomorphic to those obtained from Ringel’s index 3 current graph construction.

The current graphs constructed by Ringel for the orientable case n ≡ 7 (mod
12) of the Heawood map-colouring conjecture are not bipartite. Nor are the graphs
used in an alternative solution given by Youngs [85]. Hence the embeddings are not
face 2-colourable and are consequently not biembeddings of Steiner triple systems.
As recorded in Section 1, Heffter [57] had already in 1891 shown the existence of
orientable biembeddings of STS(n)s for some n ≡ 7 (mod 12) but the case was not
completed until nearly 80 years later. In [86] Youngs uses what he calls “zigzag
diagrams” to construct index 1 bipartite current graphs, and hence biembeddings
of Steiner triple systems for this case. In this context, index 1 means that there
is a single circuit of the graph which traverses every edge precisely once in each
direction and whose log contains every nonzero element precisely once. Hence for
each i ∈ {1, 2, . . . , (n − 1)/2} either i or −i must appear as a current on one of the
edges and each edge has exactly one of these (n− 1)/2 currents. The biembeddings
thus constructed are cyclic. The general forms of these current graphs are shown in
Figures 3.2 and 3.3 for n = 24m+ 7, m ≥ 2, and n = 24m+ 19, m ≥ 3 respectively.
In each case the ends labelled A should be identified, and likewise the ends labelled
B. For the values n = 7, 19, 31, 43 and 67, Youngs gives specific diagrams.
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Turning now to biembeddings of STS(n)s in nonorientable surfaces, the case n ≡
9 (mod 12) can also be found in [78]. The solution involves another class of index
3 current graphs which Ringel calls “cascades”, and the remark is made that the
method also works for the nonorientable case n ≡ 3 (mod 12), although no details
are given. These were later worked out and are given in [10]. A simpler description
is the following where, as above, [0], [1] and [2] are the logs of the three circuits.

[0] : 1 2 [24t + 12 12t + 8 24t + 24 12t + 14] [−(6t + 2) 6t + 4]
[1] : 1 −1 [−(12t + 6) − (6t + 4) − (12t + 12) − (6t + 7)] [−(6t + 2) 6t + 4]
[2] : −2 −1 [−(12t + 6) − (6t + 4) − (12t + 12) − (6t + 7)] [12t + 4 − (12t + 8)] .

Here the terms inside the square brackets are repeated for t = 0, 1, . . . , 2s − 1 in
the case of n = 12s + 3 and for t = 0, 1, . . . , 2s in the case of n = 12s + 9, with
arithmetic in each case modulo n. In both cases the rotation scheme obtained gives
two isomorphic Steiner triple systems again generated by the Bose construction
with the group G = Zn. To see this, map each i ∈ Zn to (a, b) where a = �i/3�
and b = i − 3a. One of the two STS(n)s is then very clearly a Bose system and by
applying the mapping f((a, b)) = (a+ b, b) it is seen that the second system is also
a Bose system.

An alternative proof from the Bose construction for n ≡ 3 (mod 6) is given in [30]
and is very similar to the construction given above for the orientable case. Build
a Steiner triple system (V,B), where V = Z2s+1 × Z3, by the Bose construction
and define two Steiner triple systems (V,B0) and (V,B1), both isomorphic to (V,B),
using the bijections fm : V �→ V, m = 0, 1, defined as follows.

fm((i, 0)) = (i, 0)
fm((i, 1)) = (i+m, 1)
fm((i, 2)) = (i−m+ 2s, 2).

Verification that this gives a biembedding of the two Steiner triple systems in a
nonorientable surface follows the same procedure as outlined in the orientable case.

Perhaps surprisingly, the existence of a nonorientable biembedding of STS(n)s
for n ≡ 1 (mod 6) was not established until fairly recently [49]. Much of the spectrum
can be obtained from recursive constructions given in [19, 44, 46]. The cases n ≡ 7
or 25 (mod 36), n �= 7, follow immediately from Construction 4.2 given in Section
4 and the known biembeddings for n ≡ 3 or 9 (mod 12). The case n ≡ 13 (mod
36) is more complex but comes from a nonorientable version of Construction 4 of
[46] using a face 2-colourable triangular embedding of the complete tripartite graph
K6,6,6 having a parallel class in one of the colour classes, see [40], a nonorientable
face 2-colourable triangular embedding of K13, see [38], and the n ≡ 3 (mod 12)
case. The case n ≡ 1 (mod 36) then follows from the Construction 4.2 using an
inductive argument. This leaves the cases n ≡ 19 or 31 (mod 36) but the former
would follow immediately if a method for dealing with the latter was known. But in
[49] direct constructions using index 1 current graphs are given in all cases. There
are four general subcases corresponding to n ≡ 1, 7, 13 or 19 (mod 24), as well as
a number of particular cases. Limitations of space preclude us from giving details.
We refer the reader to the original paper where all the current graphs are given in
the same format as in this paper.
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4 Growth estimates

We present two main recursive constructions. These have a degree of flexibility
that enable us to obtain a lower bound on the number of biembeddings of STS(n)s
for values of n lying in certain residue classes. Our first construction is new and
produces biembeddings of STS(3n)s from a biembedding of STS(n)s.

Construction 4.1

Take any biembedding of STS(n)s in either an orientable or a nonorientable surface.
Pick a preferred point ∞ of these designs. Define the cap at ∞ to comprise all the
triangles, both black and white, incident with ∞ in the embedding. Next pick a
preferred white triangle T incident with∞. We distinguish three categories of white
triangles:

(i) those not on the cap at ∞,

(ii) those on the cap at ∞ other than the preferred triangle T ,

(iii) the triangle T .

Next take three copies of the given biembedding on three disjoint surfaces S0, S1

and S2. We use superscripts in a similar way to identify corresponding points on
these surfaces.

For each white triangular face (uvw) of type (i), we “bridge” S0, S1 and S2 by
gluing a torus to the three triangles T i = (uiviwi) in the following manner. Take a
face 2-colourable triangular embedding in a torus of the complete tripartite graph
K3,3,3 having three vertex parts {ui}, {vi} and {wi} and having black faces (uiwivi)
for i = 0, 1, 2 (see Figure 4.1). We use the same labels for the vertices of this graph as
we do for the vertices of the three triangles T i, but initially think of them as distinct
points. (A similar gloss will be used on several occasions.) Now glue the black faces
(uiwivi) on the torus to the white faces (uiviwi) on S0, S1 and S2 respectively, so
that points on the torus and on the surfaces Si with the same label are identified.

u0 v2 w0 u0

w1 u1 v0
w1

v1 w2 u2
v1

u0 v2 w0 u0

Figure 4.1: Toroidal embedding of K3,3,3.
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For each white triangular face (uv∞) of type (ii), we carry out a similar bridging
operation but using a different type of bridge. For this we take a face 2-colourable
triangular embedding of the graph K9−K3 in the nonorientable surface N4, defined
by the following rotation scheme, where the colouration is determined by taking
each (uivi∞i) as a black triangle.

∞0 : u0 v0 v2 u1 u2 v1

∞1 : u1 v1 v0 u2 u0 v2

∞2 : u2 v2 u0 v1 u1 v0

u0 : u1 u2 ∞1 v2 ∞2 v1 ∞0 v0

u1 : u0 u2 ∞0 v2 ∞1 v1 ∞2 v0

u2 : u0 u1 ∞0 v1 v2 ∞2 v0 ∞1

v0 : v1 v2 ∞0 u0 u1 ∞2 u2 ∞1

v1 : v0 v2 u2 ∞0 u0 ∞2 u1 ∞1

v2 : v0 v1 u2 ∞2 u0 ∞1 u1 ∞0

Table 4.1: N4 embedding of K9 −K3.

We glue these bridges to S0, S1 and S2 as before. Note that none of these bridges
contain any edge ∞i∞j.

To complete the construction, we construct a single bridge to join the three
copies of the type (iii) triangle T . For this bridge we take a face 2-colourable
triangular embedding of K9 in the nonorientable surface N5. Such an embedding, a
biembedding of STS(9)s, is given in Section 3 and we can label the vertices so that
the black faces include the triangles (viui∞i) for i = 0, 1, 2. As before, we glue the
white triangle T i = (uivi∞i) on Si to the black triangle (viui∞i) on the bridge.
Note that this bridge contains the three edges ∞i∞j .

It is now routine to check that the resulting embedding represents a biembedding
of two STS(3n)s in a nonorientable surface. �

We now make some observations about the construction that enable us to extend
it. Firstly, the toroidal embedding of K3,3,3 given in Figure 4.1 may be replaced by
one in which the cyclic order of the three superscripts is reversed. The reversed
embedding of K3,3,3 is isomorphic to the original but is labelled differently (see
Figure 4.2). For each white triangular face (uvw) of S we may carry out the bridging
operation across S0, S1, S2 using either the original K3,3,3 embedding or the reversed
embedding. The choice of which of the two to use can be made independently for
each white triangle (uvw). Replacing one bridge by the reversed bridge is an example
of a surface trade; these are discussed more generally in Section 7.
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u0 v1 w0 u0

w2 u2 v0
w2

v2 w1 u1
v2

u0 v1 w0 u0

Figure 4.2: Reversed toroidal embedding of K3,3,3.

As a consequence of this observation, we have the following result.

Theorem 4.1 For n ≡ 3 or 9 (mod 18), there are at least 2n2/54−o(n2) nonisomor-
phic face 2-colourable triangular embeddings of the complete graph Kn, and hence
biembeddings of STS(n)s, in a nonorientable surface.

Proof Take three fixed copies of the same face 2-colourable triangular embedding
of Km, m ≡ 1 or 3 (mod 6), and apply Construction 4.1 while varying the toroidal
bridges. Since there are (m− 1)(m− 3)/6 toroidal bridges and two choices for each
bridge, we may construct 2(m−1)(m−3)/6 differently labelled face 2-colourable embed-
dings of K3m. The maximum possible size of an automorphism class of these is
(3m)!. Hence there are at least 2m2/6−o(m2) nonisomorphic face 2-colourable trian-
gular embeddings of K3m, and replacing 3m by n gives the result. �

Our second observation about the construction is that it is not necessary for
S0, S1 and S2 to contain three copies of the same embedding of Kn. All that the
construction requires is that the three embeddings have the “same” white triangular
faces. To be more precise, by the term “same” we mean that there are mappings
from the vertices of each surface onto the vertices of each of the other surfaces that
preserve the white triangular faces. The sceptical reader may feel dubious that we
can satisfy this requirement without in fact having three identically labelled copies
of a single embedding. However, if we examine the black triangles of the embeddings
generated as described in Theorem 4.1, we will see that it is indeed possible. We
claim that in any two such embeddings, the black triangles are identical. To see
this, note that the black triangles come from four sources, the original surfaces and
the three types of bridges. Those lying on the surfaces S0, S1 and S2 are unaltered
during the construction and therefore are common to both embeddings. Those lying
on the K3,3,3 bridges are the same whether or not the bridges are reversed (see
Figures 4.1 and 4.2). Those lying on N4 bridges and on the N5 bridge are common
to both embeddings. It follows that the 2n2/54−o(n2) nonisomorphic embeddings of
Kn generated by Theorem 4.1 all contain identical black triangles. In each of these
embeddings, by reversing the colours, we produce a plentiful supply of nonisomorphic
embeddings in surfaces Si on which to base a reapplication of the construction. All
of these embeddings of Kn have the “same” white triangles.
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We can select three surface embeddings from this collection to form S0, S1, S2 in
N 3 ways, whereN = 2n2/54−o(n2). TheK3,3,3 bridges may be selected in 2(n−1)(n−3)/6

different ways. Any two of the resulting embeddings of K3n (obtained by varying
the surfaces S0, S1 and S2, and the K3,3,3 bridges) will be differently labelled. These
results lead easily to the next theorem.

Theorem 4.2 For n ≡ 9 or 27 (mod 54), there are at least 22n2/81−o(n2) nonisomor-
phic face 2-colourable triangular embeddings of the complete graph Kn, and hence
biembeddings of STS(n)s, in a nonorientable surface.

Our second construction was first given by Širáň and ourselves in [44]. It produces
biembeddings of STS(3n− 2)s from a biembedding of STS(n)s. It uses many of the
same ingredients as Construction 4.1, and we will be brief in our description of these
common features. However, unlike Construction 4.1, this second construction can
be used to produce both orientable and nonorientable biembeddings.

Construction 4.2

Take any biembedding of STS(n)s in either an orientable or a nonorientable surface
S. Pick a preferred point∞ and define the cap at∞ as before. Delete this cap from S
by removing the point∞, all (open) edges incident with∞ and all (open) triangular
faces incident with∞ to give an embedding of Kn−1 in a surface S∗ with a boundary
D = (u1u2 . . . un−1). Each alternate edge of this Hamiltonian cycle is incident with
a white triangle in S∗; suppose that these edges are u2u3, u4u5, . . . , un−1u1. Next
take three copies of this embedding in three disjoint surfaces S∗i, i = 0, 1, 2, each
with a boundary Di = (ui

1u
i
2 . . . u

i
n−1). The white triangles on S∗0, S∗1 and S∗2 are

bridged as before using toroidal face 2-colourable triangular embeddings of K3,3,3.
After all the white triangles have been bridged we are left with a new connected

triangulated surface with a boundary. We denote this surface by Σ. It has 3n − 3
vertices and the boundary comprises the three disjoint cycles Di, each of length
n−1. In order to complete the construction to obtain a face 2-colourable triangular
embedding of K3n−2, which gives a biembedding of two STS(3n − 2)s, we must
construct an auxiliary triangulated bordered surface T ∗ and paste it to Σ so that
the three holes of Σ will be capped.

The bordered surface T ∗ is constructed from a surface T which has, as vertices,
the points ui

j for i = 0, 1, 2 and j = 1, 2, . . . , n−1 together with one additional point
which we call∞∗. The construction of T uses voltage assignments. Suppose initially
that n ≡ 3 (mod 6).

Let ν be the plane embedding of the multigraph L with faces of length 1 and 3
coloured black and white, as depicted in Figure 4.3.
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Figure 4.3: The plane embedding of the multigraph L.

Figure 4.3 also shows voltages α on directed edges of L, taken in the group Z3 =
{0, 1, 2}. The edges with no direction assigned carry the zero voltage.

The lifted graph Lα has the vertex set {ui
j ; 1 ≤ j ≤ n − 1, i ∈ Z3}. As before,

we use the same letters for vertices of Lα as for vertices of our embedded graph in
Σ, but we initially assume that these graphs are disjoint. The edge set of Lα can be
described as follows. For each fixed l = 1, 3, 5, . . . , n − 2, the six vertices ui

l, u
i
l+1,

i ∈ Z3, induce a complete graph Jl � K6 in Lα. Moreover, two successive complete
subgraphs Jl and Jl+2 (indices mod (n − 1)) are joined by three edges ui

l+1u
i
l+2,

i ∈ Z3. Thus we have a total of 15(n − 1)/2 + 3(n − 1)/2 = 9(n − 1) edges in Lα,
and there are neither loops nor multiple edges.

The lifted embedding να : Lα → T has 4(n− 1) triangular faces: the white ones
are bounded by the triangles (u0

l u
0
l+1u

2
l+1), (u1

l u
1
l+1u

0
l+1), (u2

l u
2
l+1u

1
l+1) and (u0

l u
1
l u

2
l ),

where l = 1, 3, 5, . . . , n − 2, and the black ones are bounded by (u0
l u

1
l−1u

2
l−1),

(u1
l u

2
l−1u

0
l−1), (u2

l u
0
l−1u

1
l−1) and (u0

l u
2
l u

1
l ), where l = 2, 4, . . . , n − 1. In addition,

there are four more faces in the embedding να; three faces, which we denote by
F i, bounded by (n − 1)-gons of the form (ui

1u
i
2 . . . u

i
n−1), i ∈ Z3, and one face F ′

bounded by the (3n−3)-gon (u0
1u

1
2u

1
3u

2
4 . . . u

2
n−2u

0
n−1); here we use the fact that n−1

is coprime with 3. Thus the boundary of F ′ is a Hamiltonian cycle, say B, in Lα.
Now cut out from T the three (open) faces F i, i ∈ Z3, bounded by the above

three disjoint (n−1)-gons, obtaining thereby an orientable bordered surface T ∗. Let
L∗ be the graph obtained from Lα by adding a new vertex∞∗ and joining it to each
vertex of Lα, and keeping all edges in Lα unchanged. We construct an embedding
ν∗ : L∗ → T ∗ from να in an obvious way: in the embedding να (after the removal of
the three open faces), we insert the vertex ∞∗ in the centre of the face F ′ bounded
by the (3n−3)-gon and join this point by open arcs within F ′ to every vertex on the
boundary of F ′ (that is, with every vertex of the Hamiltonian cycle B). Instead of F ′
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we now have (3n−3) new triangular faces on T ∗; they are bounded by 3-cycles of the
form ∞∗ui

ju
i′
j+1. We now colour the new triangular faces as follows: the face of ν∗

bounded by the 3-cycle ∞∗ui
ju

i′
j+1 will be black (respectively white) if the triangular

face of the embedding να containing the edge ui
ju

i′
j+1 is white (respectively black).

It is easy to check that this rule defines a 2-colouring of the triangular embedding
ν∗ : L∗ → T ∗. We thus have 4(n− 1) + (3n− 3) = 7(n− 1) triangular faces on T ∗,
exactly half of which are black.

We are ready for the final step of the construction. The surface Σ has three holes
with boundaries Di = (ui

1u
i
2 . . . u

i
n−1). The bordered surface T ∗ has three holes as

well, whose boundary cycles D∗i can be oriented in the form D∗i = (ui
n−1 . . . u

i
2u

i
1).

It remains to do the obvious: namely, for i = 0, 1, 2 to paste together the boundary
cycles Di and D∗i so that corresponding vertices ui

j get identified. As the result
we obtain a surface Σ#T ∗, known as the connected sum of the bordered surfaces Σ
and T ∗, and a triangular embedding σ : K → Σ#T ∗ of some graph K. It is then
routine to check that K � K3n−2 and that the triangulation is face 2-colourable.

If n ≡ 1 (mod 6) then we amend the voltage assignment on L as follows. We take
one of the two-point subgraphs in Figure 4.3, say that containing u1 and u2, and
replace the voltages 1 by 2 and vice versa, the remaining part of L being unaltered.
The proof then proceeds on the same lines as before with the modified version of L.
Note that this alteration ensures that the lifted embedding still has a (3n − 3)-gon
face even though n− 1 is not coprime with 3. The order of the vertices around this
face differs from that given previously, but it is still possible to insert a new vertex
∞∗ and to complete a 2-colouring of the resulting triangular embedding. �

In Construction 4.2, the surface T ∗ is orientable, as are the toroidal bridges.
Hence, if the original biembedding of STS(n)s is orientable, then the resulting biem-
bedding of STS(3n − 2)s will be orientable. This is always possible for n ≡ 3 or 7
(mod 12).

As with Construction 4.1, we may obtain growth estimates as given in [19] by
Bonnington, Širáň and ourselves.

Theorem 4.3 For n ≡ 1 or 7 (mod 18), there are at least 2n2/54−o(n2) nonisomor-
phic face 2-colourable triangular embeddings of the complete graph Kn, and hence
biembeddings of STS(n)s, in a nonorientable surface.

Theorem 4.4 For n ≡ 1 or 19 (mod 54), there are at least 22n2/81−o(n2) nonisomor-
phic face 2-colourable triangular embeddings of the complete graph Kn, and hence
biembeddings of STS(n)s, in a nonorientable surface.

By starting with orientable embeddings, we also obtain the following results.

Theorem 4.5 For n ≡ 7 or 19 (mod 36), there are at least 2n2/54−o(n2) nonisomor-
phic face 2-colourable triangular embeddings of the complete graph Kn, and hence
biembeddings of STS(n)s, in an orientable surface.

Theorem 4.6 For n ≡ 19 or 55 (mod 108), there are at least 22n2/81−o(n2) non-
isomorphic face 2-colourable triangular embeddings of the complete graph Kn, and
hence biembeddings of STS(n)s, in an orientable surface.
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Not all residue classes that permit face 2-colourable triangular embeddings are cov-
ered by the theorems of this section. In particular, results are not given for n ≡ 13
or 15 (mod 18). We remark that further generalizations of Constructions 4.1 and
4.2 are possible. Some details of these and additional constructions are given in [46]
where more than three copies of the initial embedding are used. These allow some
inroads to be made into these two remaining residue classes modulo 18, but we do
not have full coverage of these values.

An alternative approach is given by Korzhik and Voss [65, 66, 67, 63]. By starting
with suitable current graphs and varying the vertex directions (see Section 5 for what
this means), they construct for all suitably large n in each residue class modulo
12, A2bn nonisomorphic minimum genus embeddings of Kn in both orientable and
nonorientable surfaces. The values of A and b vary with the residue class but in
all cases b > 1/12. As observed in Section 1, in the nonorientable case, minimum
genus embeddings of Kn are triangular embeddings when n ≡ 0 or 1 (mod 3), and
in the orientable case when n ≡ 0, 3, 4 or 7 (mod 12). Since none of Korzhik
and Voss’ embeddings is face 2-colourable, they do not represent embeddings of
Steiner triple systems but, rather, embeddings of twofold triple systems or, in the
orientable case, Mendelsohn triple systems. Although these results cover all residue
classes, the bound is a long way from 2an2

. In a more recent development [64],
Korzhik and Kwak combine the current graph approach with the cut-and-paste
technique of Constructions 4.1 and 4.2 to prove that if 12s + 7 is prime and if
n = (12s + 7)(6s + 7), then the number of nonorientable triangular embeddings of
Kn is at least 2n3/2(

√
2/72+o(1)).

5 Orientable cyclic biembeddings

By a cyclic biembedding we mean a biembedding of two STS(n)s, each of which
has the same cyclic automorphism, and such that this cyclic automorphism extends
to an automorphism of the biembedding. We will assume that this cyclic auto-
morphism is z �→ z + 1 (mod n). A cyclic STS(n) exists for every n ≡ 1 or 3
(mod 6) apart from n = 9 [76], see [25] for details. In the case where n ≡ 3 (mod
6), a cyclic STS(n) contains a unique short orbit and consequently there can be
no cyclic biembeddings. As detailed in Section 3, Youngs [86] produced orientable
cyclic biembeddings for all n ≡ 7 (mod 12) constructed from index 1 current graphs,
and it is this case that we consider in this section. We take as our starting point the
fact that every such biembedding can be obtained in this way from a current graph
having the following properties.

(i) Each vertex has degree 3.

(ii) At each vertex, the sum of the directed currents is 0 (mod 12s+7) (Kirchoff’s
current law).

(iii) For each i ∈ {1, 2, . . . , 6s+3}, either i or −i appears exactly once as a current
on one of the edges and each edge has exactly one of these 6s+ 3 currents.



136 M.J. Grannell and T.S. Griggs

(iv) The directions (clockwise or anticlockwise) assigned to each vertex are such
that a complete circuit is formed, that is, one in which every edge of the graph
is traversed in each direction exactly once.

(v) The graph is bipartite.

Consideration of the degree and the currents shows that these current graphs have
4s + 2 vertices. Furthermore, there can be no loops and, save for the exceptional
case s = 0, no multiple edges. This last fact follows from consideration of the
configuration shown in Figure 5.1.

� �

�

�

y

z

x w

Figure 5.1: A possible multiple edge.

If this forms part of a current graph then w ≡ x and so the whole current graph
comprises two vertices with a triply repeated edge.

There is a close connection between current graphs and solutions of Heffter’s
first difference problem (HDP). In 1897, Heffter [58] posed the following question:
can the integers 1, 2, . . . , 3k be partitioned into k triples 〈a, b, c〉 such that, for each
triple, a+b±c ≡ 0 (mod 6k+1)? Examination of the triples formed by the directed
currents at each vertex in either of the two vertex sets of a bipartite current graph
shows that they form a solution to HDP for k = 2s+ 1.

In view of the above observations, the problem of constructing orientable cyclic
biembeddings of a pair of STS(12s+ 7)s, s > 0, may be reduced to three steps:

(a) Identifying simple connected cubic bipartite graphs having 4s+ 2 vertices.

(b) Assigning directions (clockwise or anticlockwise) at each of the vertices which
then give rise to a complete circuit.

(c) Taking two solutions of HDP and labelling the edges of the graph in such
a way that the triples arising from each of the vertex sets of the bipartition
correspond to these two solutions.

These three steps have a large measure of independence from one another. How-
ever, we cannot exclude the possibility that for a particular graph it may be impossi-
ble to assign vertex directions to give a complete circuit, and, even if this is possible,
it may not be possible to assign the HDP solutions to the edges. We note that a
test for the existence of a complete circuit in a graph G is given by Xuong [84]. It
asserts the existence of such a circuit, equivalent to a one-face orientable embedding
of G, if and only if G has a spanning tree whose co-tree has no component with an
odd number of edges.
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Before proceeding further, it is appropriate to recall how Steiner triple systems
arise from solutions to HDP. Given a difference triple 〈a, b, c〉 with a+b±c ≡ 0 (mod
6k+1), we may form a cyclic orbit by developing the starter {0, a, a+b} or the starter
{0, b, a+ b}. By taking all the difference triples from a solution of HDP and forming
a cyclic orbit from each, a cyclic STS(6k+ 1) is obtained. The converse is also true:
given a cyclic STS(6k + 1), we may obtain a solution to HDP by taking from each
orbit a block {0, α, β} and forming the difference triple 〈α̂, β̂ − α, β̂〉, where

x̂ =
{
x if 1 ≤ x ≤ 3k
6k + 1− x if 3k + 1 ≤ x ≤ 6k

Each solution to HDP produces 2k different STS(6k + 1)s; however, there may
be isomorphisms between these systems. In addition, for a given value of k, there
will generally be many distinct solutions to HDP. In this context, we say that two
solutions to HDP for k = 2s + 1 are multiplier equivalent if one set of difference
triples may be obtained from the other by first multiplying by a constant factor
(mod 6k + 1) and then reducing any residue x in the range 3k + 1 ≤ x ≤ 6k
to 6k + 1 − x. Further, we define a Heffter class to be a class of all solutions
to HDP that are multiplier equivalent. The significance of this definition is that
STS(6k + 1)s obtained from multiplier equivalent solutions to HDP are themselves
multiplier equivalent and hence isomorphic.

For n = 19, all the computations may be done by hand. The only cubic bipartite
graph is K3,3. Fixing the rotation at one vertex of K3,3 there are twelve ways
of assigning vertex directions to produce a complete circuit [15]. There are four
solutions to HDP for k = 3 [22], but only two Heffter classes, namely:

I : 〈1, 3, 4〉 〈2, 7, 9〉 〈5, 6, 8〉
〈1, 4, 5〉 〈2, 6, 8〉 〈3, 7, 9〉
〈1, 5, 6〉 〈2, 8, 9〉 〈3, 4, 7〉

II : 〈1, 7, 8〉 〈2, 3, 5〉 〈4, 6, 9〉
It is then easy to show that there is only one pair of solutions to HDP with which

to label the edges of K3,3 as described above; one solution coming from Heffter class
I and the other from Heffter class II. The resulting orientable cyclic biembeddings
of STS(19)s are then found to lie in just eight isomorphism classes. The rotations
at 0 of these biembeddings together with an identification of the cyclic systems
so biembedded are given in the Table below. They were first listed in [45]. The
references to the cyclic STS(19)s, A1, A2, A3, A4, are as given in [72]. The rotation
at i is obtained by adding i (mod 19) to the rotation at 0.

(1) 1 12 10 6 14 16 15 9 2 5 11 18 3 17 7 8 13 4 A1 A3
(2) 1 8 13 9 2 16 15 6 14 17 7 18 3 5 11 12 10 4 A1 A3
(3) 1 12 2 16 15 9 7 8 14 17 10 6 11 18 3 5 13 4 A2 A3
(4) 1 12 2 5 13 9 7 8 14 16 15 6 11 18 3 17 10 4 A2 A3
(5) 1 8 14 16 15 6 11 12 2 5 13 9 7 18 3 17 10 4 A2 A3
(6) 1 8 14 17 10 6 11 12 2 16 15 9 7 18 3 5 13 4 A2 A3
(7) 1 12 2 16 15 6 11 18 3 5 13 9 7 8 14 17 10 4 A2 A4
(8) 1 8 14 16 15 9 7 18 3 17 10 6 11 12 2 5 13 4 A2 A4

Table 5.1: Rotations at 0 of the eight STS(19) cyclic biembeddings.
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All four cyclic STS(19)s are cyclically biembeddable but none cyclically biembeds
with itself. Only STS(19)s from Heffter class I (A1 and A2) may be cyclically
embedded with STS(19)s from Heffter class II (A3 and A4). The first of these
cyclic biembeddings was also previously given in [70] as well as two further cyclic
embeddings of K19 corresponding to TTS(19)s.

For n = 31, the computations require a computer. There are two cubic bipartite
graphs on 10 vertices and they may be obtained from K5,5 by either removing a
single 10-cycle, or a 6-cycle and a 4-cycle. Fixing the direction at one vertex gives
a total of 160 sets of vertex directions in the former case and 128 sets of vertex
directions in the latter case which result in complete circuits. There are 64 solutions
to HDP for k = 5 [22], which lie in eight Heffter classes. Altogether there are 2,408
isomorphism classes of orientable cyclic biembeddings of STS(31)s, involving 76 of
the 80 cyclic STS(31)s [26]. Of these classes, 64 are cyclic biembeddings of a system
with itself, representing 44 distinct systems. These were first given in [12] and
further details of the argument again appear in [15]. As with n = 19, only systems
from certain pairs of Heffter classes are cyclically biembeddable. The four STS(31)s
which are not cyclically biembeddable all come from one particular Heffter class,
represented by the difference triples 〈1, 5, 6〉, 〈2, 10, 12〉, 〈3, 13, 15〉, 〈4, 7, 11〉, 〈8, 9, 14〉.
These STS(31)s are not cyclically biembeddable with any STS(31) from any Heffter
class. Of course, this does not imply that these four systems have no biembeddings
at all.

For n = 43, there are 13 cubic bipartite graphs on 14 vertices to consider [77].
Of these, two have edge-connectivity 2, and so cannot have currents assigned along
their edges that are different as required by property (iii) above. This is because the
current in one of the two edges of the cutset would have to be equal (but opposite
in direction) to that in the other. The 11 remaining graphs admit direction and
current assignments. Further details are given in [10, 15].

Before leaving this section we remark that [15] gives theoretical reasons, based
on the above analysis, why certain pairs of cyclic STS(n)s cannot be cyclically
biembedded together in an orientable surface. These are sufficient to give a complete
explanation of cyclic biembeddability in orientable surfaces for n = 19 and n = 31,
but not for all n ≡ 7 (mod 12).

6 Enumeration

Our purpose in this section is to briefly summarize the current state of knowledge
about triangular embeddings of the complete graphKn and hence of embeddings and
biembeddings of designs, for small values of n. Specifically we will consider the cases
n = 3, 4, 7, 12 and 15 for embeddings in an orientable surface and n = 6, 7, 9, 10, 12,
13 and 15 for embeddings in a nonorientable surface. We give enumeration results,
by which we mean the number of nonisomorphic embeddings of the specified type.
Automorphisms include those that, for face 2-colourable embeddings, exchange the
colour classes and, in the orientable case, those that reverse the orientation. The
first two cases are trivial. The STS(3) has a unique biembedding in the sphere which
has automorphism group S3 of order 6. There is a unique MTS(4), the embedding
of which in the sphere is also unique. The automorphism group is S4 of order 24
and odd permutations reverse the orientation.
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The next two cases are less trivial but well-known. There is a unique TTS(6) and
its unique embedding in the projective plane is shown below. The automorphism
group is PSL2(5) � A5 realized as 〈z �→ (az+b)/(cz+d), a, b, c, d ∈ GF (5), ad−bc =
1〉. This has order 60, the maximum possible, and acts transitively on flags, that is
ordered triples (v, e, f) where e is an edge incident to vertex v and face f .

0

1

2 3

4∞

ae

bd

c c

b d

a e

Figure 6.1: Embedding of TTS(6) in the projective plane.

The unique biembedding of the STS(7) in the torus has for its automorphism
group the affine linear group AGL(1,7) of order 42. In the realization shown below,
this is 〈z �→ az + b, a, b ∈ GF (7), a �= 0〉. The automorphisms of even order ex-
change the colour classes but preserve the orientation. There is no embedding of the
complete graph K7 in the Klein bottle.
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Figure 6.2: Biembedding of STS(7) in the torus.

Triangulations for n = 9 and n = 10 are necessarily nonorientable. In the for-
mer case there are precisely two embeddings. One of these is a biembedding of
STS(9)s and has automorphism group C3 × S3 of order 18. A realization is ob-
tained by taking one system with block set {012, 345, 678, 036, 147, 258, 048,
156, 237, 057, 138, 246} and the other obtained from this by applying the permu-
tation π = (0 1)(2 6)(4 7)(3)(5)(8). In this realization, the permutations π and
(0 6 7)(1 8 4 3 2 5) generate the automorphism group. The automorphisms of even
order exchange the colour classes. The other embedding is not face 2-colourable and
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is the TTS(9) having the following block set {BC0, CA1, AB2, BC3, CA4, AB5,
A05, B10, C21, A32, B43, C54, A04, B15, C20, A31, B42, C53, 013, 124, 235, 340,
451, 502}. These embeddings were found by Altshuler and Brehm [6], and redis-
covered by Bracho and Strausz [20], from which the given realization is taken. The
automorphism group is C6 of order 6 and is generated by the permutation (0 1 2 3
4 5)(A B C). The two embeddings of K9 correspond to the twofold triple systems
#36 and #35 respectively of the listing of the 36 nonisomorphic TTS(9)s as given
in [25]. Using this listing it is not difficult for the reader to verify these results in-
dependently by examining the neighbourhood graphs of the systems as explained in
Section 2. There are 394 nonisomorphic TTS(10)s without repeated blocks [23]. Of
these, precisely 14 can be embedded. Four have trivial automorphism group, four
have C2 and there is one each with groups C3, C5, S3, C9, A4 and A5, [20].

The next two cases to consider are n = 12 and n = 13. There are 59 noniso-
morphic embeddings of MTS(12)s in an orientable surface [5], and 182,200 noniso-
morphic embeddings of TTS(12)s in a nonorientable surface [35]. There are two
STS(13)s, one is cyclic and the other is not. We will refer to these here as C and
N respectively. There are 615 biembeddings of C with C, of which 36 have an au-
tomorphism group of order 2 and four an automorphism group of order 3; the rest
have only the trivial automorphism. There are 8,539 biembeddings of C with N , of
which ten have an automorphism group of order 3 and the rest have only the trivial
automorphism. Finally, there are 29,454 biembeddings of N with N , of which 238
have an automorphism group of order 2 and the rest have only the trivial automor-
phism. In each case, automorphisms of order 2 exchange the colour classes. These
results come from [38] and were confirmed in [35] where all 243,088,286 nonorientable
triangular embeddings of K13 were determined.

The final case which we consider is n = 15, and is of particular interest. To
quote Ellingham and Stephens, [35], “it is probably infeasible to generate all trian-
gular embeddings of K15 in N22” and “it may be possible to generate all orientable
embeddings of K15 in S11” but “finding them may be a feasible (if still long-term)
project on a large many-processor system”. But the importance of this case is that
n = 15 is the smallest value, apart from the well-known cases of the trivial STS(3)
and unique STS(7), for which biembeddings of STS(n)s in an orientable surface can
be investigated. There are 80 nonisomorphic STS(15)s; a standard numbering and
some of their structural properties are given in [72]. They provide a laboratory for
experimentation and for framing conjectures. However, before we consider orientable
embeddings we first of all deal with the nonorientable case.

In [16], it was shown that every pair of the 80 isomorphism classes of STS(15)
may be biembedded in a nonorientable surface. There are precisely three such
biembeddings of system #1 with itself and five such biembeddings of system #1 with
system #2 [11, 14]. System #1 is the point-line design of the projective geometry
PG(3, 2) and system #2 is obtained from system #1 by making a Pasch trade, see
Section 7. As a consequence of the results concerning the biembeddings of STS(n)s
for n = 9, 13 and 15, we believe that there is reasonable evidence to support the
following conjecture.

Conjecture 6.1 Every pair of STS(n)s, n ≡ 1 or 3 (mod 6) and n ≥ 9, can be
biembedded in a nonorientable surface.



Designs and topology 141

Turning to orientable biembeddings of the STS(15)s, we firstly observe that
there are precisely three systems having an automorphism of order 5. Each of these
systems has a biembedding with itself having an automorphism group of order 10.
One of these is the one originally given by Ringel [78], and which can also be obtained
from the Bose construction, see Section 3 for details. The other two may be obtained
by Ringel’s method from index 3 current graphs [13]. In each case an automorphism
of order 2 with a single fixed point, exchanges the colour classes but preserves the
orientation. In [17] a computer search for biembeddings of the 80 systems, each
with itself, was based on examining all possible automorphisms of order 2 having
a single fixed point and exchanging the colour classes. As a result, it was shown
that 78 of the 80 systems have orientable biembeddings of this type. The exceptions
are systems numbered #2 and #79 in the standard listing. In the case of #2, it
is further shown in [17] not to have an orientable biembedding with itself. It was
also shown that, in the case of #79, any such biembedding can only have the trivial
automorphism group. However more recent and, at the time of writing, unpublished
work by the present authors and Martin Knor has disposed of this possibility. Hence
we can state the following theorem.

Theorem 6.1 Of the 80 nonisomorphic STS(15)s, 78 have a biembedding with
themselves in an orientable surface. The two exceptions which have no such biem-
bedding are #2 and #79 in the standard listing.

An orientable biembedding of system #79 with system #77 having an automor-
phism of order 3 is also given in [17] and is the first known example of a biembedding
of a pair of nonisomorphic STS(15)s, though of course, as described in Section 5,
there are already many known biembeddings of pairs of nonisomorphic STS(n)s for
n = 19 and n = 31.

Again, with Martin Knor, we have established a programme to find further such
biembeddings. Of particular interest is whether there exists a biembedding of system
#2 with some other system. In fact we have discovered such a biembedding and
hence can state another theorem.

Theorem 6.2 Each of the 80 nonisomorphic STS(15)s has a biembedding with some
STS(15) in an orientable surface.

7 Trades

The concept of a trade is well established in combinatorial design theory. Below
we give definitions sufficient for our purposes. A good overview is given in [29] and
the listings we make use of appear in [61]. In this section we describe surface trades
in triangular embeddings. By this we mean replacing one set of triangular faces
with another set that covers the same edges. By applying such trades one may
generally move between nonisomorphic embeddings of the same graph. Referring
to the constructions presented in Section 4, the replacement of one Kn,n,n toroidal
bridge by the reversed bridge provides an example of a surface trade. Underlying any
such surface trade there is a combinatorial trade on some (possibly partial) twofold
triple system. However, the existence of a combinatorial trade amongst the triples
formed by a set of triangular faces does not ensure the existence of a corresponding
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surface trade since applying the trade may transform the surface into a generalized
pseudosurface. The geometrical arrangement of the faces is important both for the
feasibility of the trade and for questions of orientability.

One may also consider surface trades in the context of the “distance” between
different triangular embeddings of a graph G, where distance is defined as the min-
imum number of faces in which two triangular embeddings of G can differ. We
describe below various surface trades which were used in [43] to show that the mini-
mum distance between two different nonorientable triangular embeddings of Kn is at
least 4, a number that increases to 6 if one or both of the embeddings is orientable.
Moreover, these distances are achievable for some values of n.

A triangular embedding of a graph G, with vertex set V of cardinality n, deter-
mines a partial twofold triple system, PTTS(n) = (V,B), where B is the collection
of triples of points of V formed by the vertices of the triangular faces; this has the
property that every pair of points corresponding to an edge of G appears in pre-
cisely two triples (triangular faces of the embedding), but those corresponding to
the edges of the complementary graph do not appear in any triple. When G is a
complete graph Kn, the resulting PTTS(n) is a TTS(n). A combinatorial trade on
a PTTS(n) may be defined as follows.

Suppose that T1 and T2 are disjoint sets of triples taken from a finite base set
U . If every pair of points of U occurs in the triples of T1 with precisely the same
multiplicity (0, 1 or 2) with which it appears in the triples of T2, then the pair
T = {T1, T2} is called a combinatorial trade. The volume of the trade T , vol(T ), is
the common cardinality of T1 and T2, and the foundation of the trade T , found(T ),
is the set of points of U which appear amongst the triples of T1 (or T2).

The rationale for the above definition is that if P1 = (V,B1) is a PTTS(n) whose
triples include those of T1, then by replacing these triples with those of T2, we form
another PTTS(n), P2 = (V,B2) say, and the triples of B1 and B2 cover exactly the
same pairs of points from V with the same multiplicities.

Now consider the effect of making a trade on an embedding. Suppose that M1

is a triangular embedding of the simple connected graph G in some surface S and
that P1 = (V,B1) is the associated PTTS(n). Further suppose that T = {T1, T2}
is a trade with found(T ) ⊆ V and that T1 ⊆ B1. Put B2 = (B1 \ T1) ∪ T2, so that
P2 = (V,B2) is a PTTS(n) covering all the edges of G precisely twice and no other
pairs from V . If we now regard the triples from B2 as triangular faces and sew these
faces together along the common edges, then this operation may or may not result
in a surface embedding M2 of G; the reason that the process may fail to yield such
an embedding is that the sewing operation may yield a generalized pseudosurface.
However, when the operation succeeds in producing a surface embedding, then we
say that T forms a surface trade between the embeddings M1 and M2 of the graph
G.

A variety of interesting questions may be posed concerning trades and embed-
dings. For example, does every combinatorial trade on a PTTS(n) yield at least one
surface trade? Is it possible to characterize those combinatorial trades which, no
matter how they lie on the surface, always transform a surface embedding into a sur-
face embedding (rather than into a generalized pseudosurface embedding)? Which
surface trades are guaranteed to preserve orientability? How many different surface
trades with foundation size less than n must a triangular embedding of Kn possess?
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And if b = b(n) denotes the minimum integer such that any two triangular embed-
dings of Kn may be transformed into one another by a trade of volume at most b,
how does b vary with n? In order to make progress with such questions it is helpful
to have a catalogue of small surface trades.

Apart from the trivial case G = K3, no triangular embedding of a simple con-
nected graph G can give rise to a PTTS(n) with a repeated triple. Furthermore,
in this trivial case, it is clear that no trade exists. We may therefore assume that
G �= K3, and that the associated PTTS(n) does not contain any repeated triples.
We consider here the case of trades T on PTTS(n)s with vol(T ) ≤ 6. Up to iso-
morphism, there are precisely five such combinatorial trades, one having vol(T ) = 4
and the other four having vol(T ) = 6. These five trades are all given in [61], and it
is shown in [18] that there are no further trades T = {T1, T2} having vol(T ) ≤ 6.

The five trades are listed below. The first three have common names as given.
In each case T1 is isomorphic with T2.

1. (Pasch or quadrilateral trade) T1 = {123, 145, 624, 635},
T2 = {124, 135, 623, 645}.

2. (6-cycle trade) T1 = {123, 145, 167, 834, 856, 872},
T2 = {134, 156, 172, 823, 845, 867}.

3. (Semihead trade) T1 = {127, 136, 145, 235, 246, 347},
T2 = {126, 135, 147, 237, 245, 346}.

4. (Trade-X) T1 = {123, 124, 156, 256, 345, 346},
T2 = {125, 126, 134, 234, 356, 456}.

5. (Trade-Y) T1 = {124, 125, 136, 137, 267, 345},
T2 = {126, 127, 134, 135, 245, 367}.

Surface trades are not new. For example, in Figure 1 of [21], which relates to
triangulations of the projective plane, the pair {a, b} gives a geometrical realization
of trade-X, the pair {c, d} a realization of a Pasch trade, and the pair {e, f} a
realization of a semihead trade. Trade-X represents a sequence of diagonal flips.
However, our purpose in this section is to show how one can determine the precise
geometrical circumstances in which a surface trade results from a combinatorial
trade. We give the details for Pasch trades and we summarize the other cases,
leaving the interested reader to consult our joint paper with Bennett, Korzhik and
Širáň [18] for further information.

So, consider the possibility of the triangular faces (defined by their vertex triples)
123, 145, 624, 635 of an embedding M being traded with the triangular faces 124,
135, 623, 645 to form an embedding M ′. Initially we ignore the question of ori-
entability. At the point 1, and up to reversal, there are two possibilities for the
rotation in M , namely

(a) 1 : 23 · · · 45 · · · or

(b) 1 : 23 · · · 54 · · · ,
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where · · · denotes undetermined sections of the rotation.
In M ′ there are faces 124 and 135, but in case (b) the partial rotations 4 · · · 2

and 3 · · · 5 preclude these unless the undetermined sections of these partial rotations
are empty, that is, case (b) has the form 1 : 2354. In this case M also contains
the faces 124 and 135, and so M ′ would have two copies of each of these faces. So
we may exclude case (b). Returning to case (a) and applying similar reasoning at
the other vertices shows that the partial rotations in M and in M ′ at the points
1, 2, . . . , 6 are, up to reversals, as shown in Table 7.1. Note also that these partial
rotations in M and M ′ are isomorphic; for example the permutation (3 4) takes one
to the other.

M M ′

1 : 23 · · · 45 · · · 1 : 24 · · · 35 · · ·
2 : 31 · · · 64 · · · 2 : 36 · · · 14 · · ·
3 : 12 · · · 56 · · · 3 : 15 · · · 26 · · ·
4 : 51 · · · 62 · · · 4 : 56 · · · 12 · · ·
5 : 14 · · · 36 · · · 5 : 13 · · · 46 · · ·
6 : 24 · · · 35 · · · 6 : 23 · · · 45 · · ·
Table 7.1: Partial Pasch surface trade.

Next consider the question of orientability. Assuming a consistent orientation of
M and starting with 1 : 23 · · · 45 · · · , we require 2 : 31 · · · 64 · · · and 4 : 51 · · · 62 · · · .
However, these give respectively 6 : 42 · · · and 6 : 24 · · · , contradicting orientabil-
ity. Therefore a consistent orientation of M , and similarly M ′, is not possible.
Thus a surface trade based on the combinatorial Pasch trade is necessarily between
nonorientable embeddings.

We have shown the necessity of Table 7.1 for the existence of a Pasch surface
trade, but we have not demonstrated that such a trade exists. In order to do
this, take the rows of the partial rotation scheme for M with the undetermined
sections eliminated and then determine any resulting non-triangular faces. From
each such face, eliminate multiple vertices, if any, by the insertion of additional
triangles involving new faces as illustrated below in Figure 7.1, where the twice
repeated vertex x is eliminated from the face F by the insertion of new vertices x1

and x2.

x x

Non-triangular face F

x1 x2

Figure 7.1: Eliminating multiple vertices from face F .

Having completed this elimination, for a non-triangular face without multiple
vertices, insert a new vertex into the interior of that face and join it by non-
intersecting edges to all the vertices on the boundary, thereby forming a triangular
embedding of some simple connected graph.

Application of this algorithm to the case of the Pasch trade given in Table 7.1
give the rotations M and M ′ as shown below in Table 7.2
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M M ′

1 : 23x45y 1 : 24x35y
2 : 31y64z 2 : 36y14z
3 : 12z56x 3 : 15z26x
4 : 51x62z 4 : 56x12z
5 : 14z36y 5 : 13z46y
6 : 24x35y 6 : 23x45y
x : 1364 x : 1364
y : 1265 y : 1265
z : 2354 z : 2354

Table 7.2: Example of a Pasch surface trade.

The same algorithm may be applied to produce examples of other surface trades
from partial rotation schemes; it preserves orientability in the sense that if a partial
rotation scheme is potentially orientable, then the resulting triangular embedding
M will be orientable. This does not, however, ensure that the traded embedding
M ′ is orientable. Also note that it is always possible to render both M and M ′

nonorientable by gluing on a nonorientable triangular embedding which shares a
common face with M and M ′.

The results of [18] for all five surface trades having volume at most 6, are sum-
marized in Table 7.3. In the case of Trade-X, every possible geometric realization
permits a surface trade. In the case of a face 2-colourable embeddingM both Trade-
X and Trade-Y necessarily involve both colour classes. The entry “28” against the
semihead trade reduces to 19 if we allow M and M ′ to be exchanged. This only
arises for semihead trades because the geometric realizations of the partial rotations
in M and M ′ can be nonisomorphic in this case.

Name Number of nonisomorphic Comments
geometric realizations

Pasch 1 M and M ′ are
necessarily nonorientable.

6-cycle 4 In one case it is possible
for one or both of

M and M ′ to be orientable.
Semihead 28 In one case it is possible

for one or both of
M and M ′ to be orientable.

Trade-X 7 In one case it is possible
for both M and M ′ to be orientable,

but not to have one orientable
and the other nonorientable.

Trade-Y 3 In one case it is possible
for one or both of

M and M ′ to be orientable.

Table 7.3: Small surface trades.
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Perhaps the most compelling reason for considering surface trades is the pos-
sibility of using them to obtain lower bounds of the form 2an2

on the numbers of
triangular embeddings ofKn for residue classes not covered by the methods described
in Section 4. Such potential use depends on constructing embeddings having a large
number of independent trades, possibly using current graphs. So far, at least, we
have not been able to implement this strategy.

8 Maximum genus embeddings

Whenever a biembedding of two STS(n)s exists, it represents a minimum genus
face 2-colourable embedding of Kn in a surface and hence may be considered to be
a minimum genus embedding of each of the two STS(n)s involved. From Euler’s
formula, in the orientable case the minimum genus is (n − 3)(n − 4)/12 and in the
nonorientable case it is (n− 3)(n − 4)/6.

Our focus in this section lies at the opposite extreme, namely on cellular em-
beddings of Steiner triple systems of maximum genus. To be precise, we seek a face
2-colourable embedding of a complete graph Kn in a surface in which the black faces
are triangles and so determine an STS(n), while there is just one white face and the
interior of that face is homeomorphic to an open disc. This latter condition ensures
that the embedding is cellular and it precludes artificial inflation of the genus by
the addition of unnecessary handles or crosscaps. In the orientable case, the corre-
sponding genus is (n− 1)(n− 3)/6, and in the nonorientable case, (n− 1)(n− 3)/3.
To avoid trivialities, we shall assume that n > 3 and then the single white face,
which has n(n− 1)/2 edges, may be referred to unambiguously as the large face. In
topological graph theory, graphs which are cellularly embeddable with precisely one
face are called “upper-embeddable”. By analogy with this usage, we use the term
upper-embedding for embeddings of STS(n)s of the type just described, appending
the qualifier “orientable” or “nonorientable” as appropriate.

By contrast with biembeddings, it is easy to prove that for n > 3 every STS(n)
has both an orientable and a nonorientable upper-embedding. It is also possible
to give detailed results about the possible automorphisms of such embeddings. We
represent handles and crosscaps in diagrams as shown in Figure 8.1. The results of
this section are taken from our joint paper with Širáň [47].

Figure 8.1: Representation of handles and crosscaps.

Theorem 8.1 Every STS(n) has an orientable upper-embedding.

Proof The triples of the STS(n) will be represented as black triangles of the em-
bedding. The initial step is to take all of the black triangles containing a fixed point
∞ of the STS(n). From these, one constructs a face 2-coloured planar embedding
of a connected simple graph G on n vertices, having for its faces the (n− 1)/2 black
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triangles incident with ∞, and one white face. The graph G and its embedding are
illustrated in Figure 8.2.

∞

Figure 8.2: The planar embedding of G.

We proceed to add the remaining (n−1)(n−3)/6 triples of the STS(n), one at a
time, increasing the genus by 1 at each step. Consider at any stage the boundary of
the white face. We assume that every point of the STS(n) appears on this boundary
at least once. This assumption is certainly true for the initial embedding illustrated
in Figure 8.2. If the next triple to be added is {u, v,w} then we locate one occurrence
of each of these points on the boundary of the white face, add a handle to the white
face, and paste on the triangle (u, v,w) (or (u,w, v), depending on the order of the
selected points around the white face). This is illustrated in Figure 8.3 which shows
the location of the triangle relative to the handle.

u v

w

A

C B

Figure 8.3: Adding a black triangle.

If the points u, v,w originally divided the boundary of the white face into three
sections A,B and C, then it is easy to see that after the addition of the black
triangle (u, v,w) as shown in Figure 8.3, there still remains just one white face with
boundary A(vw)C(uv)B(wu). This face has three more edges than at the previous
stage and every point of the STS(n) still appears on the boundary. It is also clear
that if the interior of the white face was homeomorphic to an open disc prior to the
addition of the black triangle, then it remains so after this addition. �

We remark that it is not necessary to start with the planar embedding specified
in the proof. All that is required is a planar embedding of some graph G containing
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only black triangles from the STS(n) and a single white face, the interior of which
is homeomorphic to an open disc, incident with all the points of the STS(n).

Theorem 8.2 Every STS(n) with n > 3 has a nonorientable
upper-embedding.

Proof The proof is identical with that of Theorem 8.1 up to the addition of the
final black triangle. This is added to the white face using two crosscaps rather than
one handle. Figure 8.4 illustrates this step. For clarity, the edges uv, vw and wu are
labelled a, b and c respectively.

u v

w

A

C B

a
c

a
b

a

c b

Figure 8.4: Adding the final black triangle.

Using the same notation as in the proof of Theorem 8.1, the boundary of the
white face after the addition of the black triangle (u, v,w) is A(vw)B(vu) C(wu).
The resulting surface has ((n − 1)(n − 3)/6) − 1 handles and 2 crosscaps, giving
nonorientable genus (n− 1)(n − 3)/3. �

It follows from Theorems 8.1 and 8.2 that for each admissible n, the number of
orientable (or nonorientable) upper-embeddings of STS(n)s is at least as great as
the number of STS(n)s.

We next give some results about the possible automorphisms of upper-embeddings
of STS(n)s. We repeat the assumption that n > 3.

Theorem 8.3 If φ is an automorphism of an orientable or nonorientable upper-
embedding of an STS(n) then φ, represented as a permutation of the points, has one
of two forms:
(a) φ comprises a product of disjoint cycles of equal length, or
(b) φ comprises a single fixed point together with a product of disjoint cycles of equal
length.
Furthermore, φ preserves the direction around the large face, and the common cycle
length is odd.

Proof Suppose that φ has two fixed points, a and b. Since φmust preserve the large
face and the edge ab appears somewhere on the boundary of this face, it must fix
the points adjacent to the edge ab on this boundary. By repetition of this argument,
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φ fixes every point of the STS(n). Thus φ is the identity mapping and so is both of
type (a) and type (b). It follows that if φ is not the identity mapping then it can
have at most one fixed point.

Next suppose that φ contains two disjoint cycles of lengths p and q, where 1 <
p < q. Then φp is an automorphism with p fixed points and a cycle of length at
least 2. By the previous paragraph, this is not possible. Hence φ must take one of
the forms (a) or (b) defined in the statement of the theorem.

Now assume that φ has the form (a) and that it reverses the direction around
the large face. Clearly φ is not the identity. Consider any edge ab which is mapped
by φ to an edge a′b′ appearing on the boundary of the large face as shown in Figure
8.5.

a
b

c

a′ b′
c′

Figure 8.5: Points around the large face.

If c is adjacent to b on this boundary then it must be mapped to c′ adjacent to
b′ as shown in Figure 8.5. Proceeding in this fashion we deduce that φ(a′) = a and,
further, that φ2(x) = x for every point x of the STS(n). Since φ is not the identity
and has the form (a), we see that φ must be the product of disjoint transpositions,
contradicting the fact that n is odd.

Next, assume that φ has the form (b) and that it reverses the direction around
the large face. Again, φ is clearly not the identity. Suppose that φ fixes the point∞
(and no other point). Arguing as before we see that φ fixes∞ and contains (n−1)/2
disjoint transpositions. Suppose that three of these are (a1 b1), (a2 b2) and (a3 b3).
Consider the edge a1b1. Since this edge is stabilized by φ, it must appear midway
between two successive occurrences of ∞ on the boundary of the large face. But the
edge a2b2 must also appear midway between the same two successive occurrences of
∞, and the same is true of the edge a3b3. Since there are only two midway positions,
we have a contradiction. We conclude that φ preserves the direction around the large
face.

Finally, consider the cycle length. If φ has the form (a), then the cycle length
is necessarily odd. If φ has the form (b) and the cycle length is k, suppose that
k is even. Then ψ = φk/2 is an automorphism which comprises a fixed point and
(n−1)/2 transpositions. If (a1 b1) is one of these transpositions, then ψ will reverse
the direction of the edge a1b1 and so fails to preserve the direction around the large
face, a contradiction. Thus k must be odd. �
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By using arguments based on voltage graphs, more can be said in case (a) of
Theorem 8.3. The following result is given in [47].

Theorem 8.4 If φ is an automorphism of an orientable upper-embedding of an
STS(n), and if φ comprises a product of disjoint cycles of equal length k, then either
k = 1 (in which case φ is the identity permutation) or k = 3 (in which case n ≡ 3
(mod 6)).

Direct constructions using voltage graphs are then used in [47] to show that the
restrictions described in Theorems 8.3 and 8.4 are, in a sense, best possible. For
automorphisms without a fixed point, the following results are obtained.

Theorem 8.5 If n ≡ 3 (mod 6), then there exists an orientable upper-embedding of
an STS(n) having an automorphism that is a product of disjoint 3-cycles.

Theorem 8.6 If n ≡ 1 or 3 (mod 6) and n > 3, then every cyclic STS(n) has a
nonorientable upper-embedding with a cyclic automorphism. Consequently, if k|n,
then every cyclic STS(n) has a nonorientable upper-embedding having an automor-
phism which is the product of disjoint k-cycles.

For automorphisms with a single fixed point, i.e. case (b) of Theorem 8.3, con-
structions given in [47] yield the following result.

Theorem 8.7 Let S be an STS(n) with an automorphism φ having a single fixed
point and l cycles each of length k, where k is odd and n = kl + 1. Then there
exist both an orientable and a nonorientable upper-embedding of S having φ as an
automorphism.

9 Hamiltonian embeddings

A Hamiltonian embedding of Kn is an embedding of Kn in a surface, which may
be orientable or nonorientable, in such a way that each face is a Hamiltonian cycle.
In a triangular embedding of a complete graph, each face is as small as possible.
At the opposite extreme, for every n there exists an embedding of Kn having a
single face [32]. Around this single face every vertex appears n − 1 times. The
problem of constructing Hamiltonian embeddings of Kn is intermediate between the
two extremes: the face lengths are as large as possible subject to the restriction that
no vertex is repeated on the boundary of any face. In design theory terminology,
if the embedding is face 2-colourable then the faces in each colour class form an n-
cycle system, in other words a decomposition of the edge set of Kn into Hamiltonian
cycles. Whether or not the embedding is face 2-colourable, the complete set of faces
forms a twofold n-cycle system.

In a Hamiltonian embedding of Kn the number of faces is n− 1. In the nonori-
entable case Euler’s formula gives the genus as γ = (n−2)(n−3)/2. In the orientable
case the genus is g = (n − 2)(n − 3)/4, which implies that n ≡ 2 or 3 (mod 4) is a
necessary condition for the embedding. Face 2-colourability requires n to be odd, so
that n ≡ 1 or 3 (mod 4). The recent paper by Ellingham and Stephens [33] estab-
lished the existence of Hamiltonian embeddings in nonorientable surfaces for n = 4
and n ≥ 6. We summarize their results in sufficient detail to give the flavour, giving
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a somewhat simpler construction in the case n ≡ 3 (mod 4). We also present a
novel construction given by Širáň and ourselves in [48] which produces Hamiltonian
embeddings of Kn from triangular embeddings of Kn.

Theorem 9.1 (Ellingham and Stephens) For n = 4 or n ≥ 6, Kn has a Hamil-
tonian embedding in a nonorientable surface. Moreover, when n is odd, there is
such an embedding that is face 2-colourable. There is no orientable or nonorientable
Hamiltonian embedding of K5.

Proof First consider the case n even and write n = 2k + 2. Take Kn to have
vertex set Z2k+1 ∪ {∞}. Let Ci be the Hamiltonian cycle (∞, i, i+ 1, i− 1, i+ 2, i−
2, . . . , i+ k, i− k). The cycle C0 is illustrated in Figure 9.1 and Ci is obtained from
it by rotating i places clockwise.

∞

0

2k 1

2k − 1 2

k + 3 k − 2

k + 2 k − 1

k + 1 k

Figure 9.1: The cycle C0.

The set of 2k + 1 Hamiltonian cycles {Ci : i = 0, 1, . . . , 2k} may be sewn together
along common edges to produce a Hamiltonian embedding of K2k+2. To verify this,
we compute the rotations at ∞ and i. These are as follows.

∞ : 0 k 2k k − 1 2k − 1 k − 2 . . . 2 k + 2 1 k + 1
i : ∞ i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 . . . i− 4 i− 3 i− 2 i− 1

Since each of these is a single cycle of length 2k+ 1, it follows that the construction
produces a Hamiltonian embedding of K2k+2. To see that the embedding is nonori-
entable for k ≥ 1 , delete the point ∞ and the edges incident with ∞, and examine
the boundary of the resulting single face embedding of K2k+1. This has the form

(

C0︷ ︸︸ ︷
0, 1, 2k, 2, 2k − 1, . . . , k − 1, k + 2, k, k + 1, k + 2, k, k + 3, . . . , 0, 1︸ ︷︷ ︸

Ck+1

C1︷ ︸︸ ︷
. . . . . . . . . . . .),

where the bracings indicate the Hamiltonian cycles from which the sections are
derived. Since the edge 01 is encountered twice in the same direction, the embedding
cannot be orientable.
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Next consider the case n = 4s + 3, s ≥ 1. Take K4s+3 to have vertex set
{∞, a0, a1, . . . , a2s, b0, b1, . . . , b2s}. With subscript arithmetic modulo 2s + 1, let Hi

be the Hamiltonian cycle

Hi = (∞aibib2s+ia1+ia2s+ib1+ib2s−1+ia2+ia2s−1+ib2+ib2s−2+i . . .

. . . as+2+ibs−1+ibs+1+ias+ias+1+ibs+i).

The cycle H0 is illustrated in Figure 9.2 and Hi is obtained from it by rotating 2i
places clockwise.

∞

a0 b0
b2s a1

a2s b1

as+2 bs−1

bs+1 as
as+1 bs

Figure 9.2: The cycle H0.

A second Hamiltonian decomposition may be formed from this one by applying the
mapping aj → aj+1 (j = 0, 1, . . . , 2s). This produces Hamiltonian cycles Gi which
may be written most conveniently with the cyclic order reversed as

Gi = (∞bs+ias+2+ias+1+ibs+1+ibs−1+ias+3+i . . .

. . . b1+iaia2+ib2s+ibia1+i).

The set of 4s + 2 Hamiltonian cycles {Hi, Gi : i = 0, 1, . . . , 2s} described above
may be sewn together along common edges to produce a Hamiltonian embedding
of K4s+3. To verify this, we compute the rotations at ∞, ai and bi. These are as
follows.

∞ : a0 bs a1 bs+1 a2 bs+2 . . . a2s bs−1

ai : ∞ bi a1+i b1+i a2+i b2+i . . . a2s+i b2s+i

bi : ∞ a1+i b2s+i ai b2s−1+i a2s+i . . . b1+i a2+i

Since each of these is a single cycle of length 4s+ 2, it follows that the construction
produces a Hamiltonian embedding of K4s+3. Because each of {Hi : i = 0, 1, . . . , 2s}
and {Gi : i = 0, 1, . . . , 2s} is a Hamiltonian decomposition of K4s+3, it also follows
that the Hamiltonian embedding is face 2-colourable. To see that the embedding
is nonorientable for s ≥ 1, delete the point ∞ and the edges incident with ∞, and
examine the boundary of the resulting single face embedding of K4s+2. This has the
form

(

H0︷ ︸︸ ︷
a0b0 . . . bs as+2as+1bs+1 . . . a1︸ ︷︷ ︸

G0

H1︷ ︸︸ ︷
. . . . . . . . . . . . . . .

Hs︷ ︸︸ ︷
asbs . . . b2s a1a0b0 . . . as+1︸ ︷︷ ︸

Gs

Hs+1︷ ︸︸ ︷
. . . . . .),
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where the bracings again indicate the Hamiltonian cycles from which the sections
are derived. Since the edge a0b0 is encountered twice in the same direction, the
embedding cannot be orientable.

For n = 4s + 1, Ellingham and Stephens take a similar Hamiltonian decom-
position of Kn into cycles Hi, again apply a permutation of the vertices to give a
second Hamiltonian decomposition into cycles Gi, and then combine the two decom-
positions to produce the embedding. The permutation required is somewhat more
complicated than that given above for n = 4s + 3. By this method, the embedding
is certainly face 2-colourable, and it is again easily shown to be nonorientable. For
the details, we refer the reader to the original paper [33].

To see that K5 does not have a Hamiltonian embedding, suppose the contrary.
Take the vertices as 0, 1, 2, 3, 4, and delete the vertex 0 together with edges inci-
dent with it to obtain a single-face embedding of K4 whose face boundary may
be taken, without loss of generality, as (1, a, b, 2, c, d, 3, e, f, 4, g, h), where {a, b} =
{3, 4}, {c, d} = {1, 4}, {e, f} = {1, 2} and {g, h} = {2, 3}. Since every edge of K4

must appear twice, it is easy to check that there are precisely four possibilities, all
of which lie in one isomorphism class. One of the possibilities for the face boundary
is (1, 3, 4, 2, 4, 1, 3, 2, 1, 4, 3, 2). Consideration of the rotation at the vertex 2 shows
that this does not produce a surface embedding. �

We next show how Hamiltonian embeddings of Kn may be derived by surface
surgery from triangular embeddings of Kn. Such triangular embeddings exist for n ≡
0 or 1 (mod 3); whether the triangular embedding is in an orientable or nonorientable
surface is immaterial. To avoid trivial cases we assume that n ≥ 4. This work comes
from our joint paper with Širáň [48].

Construction 9.1

Take a triangular embedding of Kn on the vertex set {∞, a1, a2, . . . , an−1} and,
without loss of generality, take the rotation scheme to have the following form.

∞ : a1 a2 a3 a4 . . . an−2 an−1

a1 : ∞ a2 b1,1 b1,2 . . . b1,n−4 an−1

a2 : ∞ a3 b2,1 b2,2 . . . b2,n−4 a1
...

...
...

ai : ∞ ai+1 bi,1 bi,2 . . . bi,n−4 ai−1
...

...
...

an−1 : ∞ a1 bn−1,1 bn−1,2 . . . bn−1,n−4 an−2

where, for each i = 1, 2, . . . , n − 1, (bi,1 bi,2 . . . bi,n−4) is some permutation of
{a1, a2, . . . , an−1} \ {ai−1, ai, ai+1}, with subscript arithmetic modulo n− 1.

From the n lines of the rotation scheme, create n − 1 Hamiltonian cycles by
discarding the first line and, for each i, replacing the line corresponding to ai by the
cycle Ai = (∞aiai+1bi,1bi,2 . . . bi,n−4ai−1). It is easy to see that these cycles form
a Hamiltonian decomposition of 2Kn. The Hamiltonian face corresponding to Ai

is formed from the triangular faces that comprise the rotation at ai in the original
triangular embedding, with the triangle (∞ ai ai+1) removed. It remains to show
that these Hamiltonian faces may be sewn together along common edges to produce
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a Hamiltonian embedding of Kn. In order to prove this, it is only necessary to
prove that the resulting rotation about any vertex comprises a single cycle of length
n− 1, rather than a set of shorter cycles with total length n− 1. This may be done
as in the proof of Theorem 9.1, and the details are given in [48]. To consider the
question of orientability, delete the point ∞ and the edges incident with ∞ from
the embedding to obtain a single face embedding of Kn−1. It is then easy to show
that an orientable triangular embedding of Kn will, by this construction, produce
a nonorientable Hamiltonian embedding of Kn. Although it appears conceivable
that a nonorientable triangular embedding might produce an orientable Hamiltonian
embedding of Kn for n ≡ 3, 6, 7 or 10 (mod 12), we have no examples of this and
examination of the boundary of the single face suggests that such situations are
likely to be rare. �

An advantage of Construction 9.1 is that it produces a large number of noniso-
morphic Hamiltonian embeddings. The following result is proved in [48].

Theorem 9.2 If there exist M nonisomorphic triangular embeddings of Kn, n ≡ 0
or 1 (mod 3), then there exist at least M/4n2(n − 1) nonisomorphic Hamiltonian
embeddings of Kn.

Some easy consequences that follow from this and the results given in Section 4 are
as follows.

Corollary 9.3 For n ≡ 0 or 1 (mod 3) there are at least 2n/6−o(n) nonisomorphic
Hamiltonian embeddings of Kn.

Proof For n ≡ 0 or 1 (mod 3), Korzhik and Voss [67] established that there are
at least 2n/6−o(n) nonisomorphic triangular embeddings of Kn. The result follows
immediately from this and Theorem 9.2. �

Corollary 9.4 For n ≡ 1, 3, 7 or 9 (mod 18) there are at least 2n2/54−o(n2) noniso-
morphic Hamiltonian embeddings of Kn.

Corollary 9.5 The constant 1/54 that appears in the exponent in the preceding
corollary may be improved to 2/81 for n ≡ 1, 3, 7, 9, 19, 21, 25 or 27 (mod 54).

Finally in this section, we mention a further result of Ellingham and Stephens
[34] that gives a recursive construction for orientable Hamiltonian embeddings of
Kn.

Theorem 9.6 Suppose that s ≥ 1 and that K4s+2 has an orientable Hamiltonian
embedding. Then K8s+2 also has an orientable Hamiltonian embedding.

With the aid of an orientable Hamiltonian embedding of K10 found by a com-
puter search, this facilitates the construction of an infinite family of such embed-
dings. Apart from rumours of an orientable Hamiltonian embedding of K30, and the
resulting infinite series, we know of no other orientable cases.
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10 Latin squares

The constructions of Section 4 and their generalizations rely on face 2-colourable
triangular embeddings of complete tripartite graphs Kn,n,n. It is therefore of interest
to investigate these. Note that the faces in each colour class form a decomposition
of Kn,n,n into triples and hence a TD(3, n) transversal design or, equivalently, a
Latin square of side n. If we adopt a similar definition of biembeddability for Latin
squares to that given for Steiner triple systems in Section 2, then a face 2-colourable
triangular embedding of Kn,n,n may be regarded as a biembedding of two Latin
squares of side n. We may reasonably enquire about existence of these for each n,
the number of biembeddings for each n, whether every Latin square is biembeddable,
and whether every pair of Latin squares of the same size is biembeddable. Much
of the material in this Section is taken from our joint papers with Knor and Širáň
[46, 39, 40, 42].

The first result, taken from [40], is the equivalence of face 2-colourability and
orientability.

Theorem 10.1 A triangular embedding of Kn,n,n is orientable if and only if it is
face 2-colourable.

Proof Suppose that Kn,n,n has tripartition {A,B,C}. If an orientable embedding
is given, then triangles with clockwise orientation (A,B,C) may be coloured black
and those with clockwise orientation (A,C,B) may be coloured white. Conversely,
suppose that a face 2-colourable triangular embedding is given. If a black triangle
of the embedding with vertices a ∈ A, b ∈ B, c ∈ C is oriented, say clockwise,
as (A,B,C), then all black triangles incident with a also have clockwise orientation
(A,B,C), while the white triangles incident with a have orientation (A,C,B). Since
the vertices of these triangles span B∪C, all remaining black triangles have clockwise
orientation (A,B,C) and all remaining white triangles have clockwise orientation
(A,C,B). It follows that the rotation scheme for the embedding satisfies Ringel’s
Rule ∆∗ (see Section 2) and therefore represents an orientable embedding. �

The existence of orientable triangular embeddings of Kn,n,n for every n was
established by Ringel and Youngs in [79], and a proof using a voltage graph based
on a dipole with n parallel edges embedded in a sphere is indicated by Stahl and
White [80]. Generalizing this voltage graph slightly to the one shown in Figure 10.1
gives Construction 10.1.

Construction 10.1

Suppose that {a0, a1, . . . , an−1} = {0, 1, . . . , n − 1} and that for 0 ≤ i ≤ n − 1, the
differences ai−ai−1 are coprime with n, where subscripts are taken modulo n. Then
the lift of the embedding M shown in Figure 10.1, with voltages as shown in the
group Zn, gives an embedding of the complete bipartite graph Kn,n in an orientable
surface in which every face is bounded by a Hamiltonian cycle. If, for each i, a new
vertex wi is placed into that face obtained by lifting the 2-gon with voltages ai and
−ai−1, and this new vertex is joined by non-intersecting edges to all the vertices
lying on the boundary of that cycle, then a triangular embedding of Kn,n,n in an
orientable surface is formed. �
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u

v

. . .� � � � �a0 a1 a2 an−2 an−1

Figure 10.1: Dipole embedded in a sphere.

A careful analysis of possible isomorphisms between embeddings obtained from
this construction yields the following growth estimate.

Theorem 10.2 If n is prime then there are at least (n−2)!
6n nonisomorphic orientable

triangular embeddings of the complete tripartite graph Kn,n,n.

For a proof see [42] where results are also given for the case when n is not prime.

The particular case of Construction 10.1 when ai = i for 0 ≤ i ≤ n− 1 results in
one colour class of triangular faces containing all triangles of the form (ujvj+kwk)
and the other containing all triangles of the form (ujvj−k+1wk) for 0 ≤ j, k ≤ n− 1.
The corresponding Latin squares are both copies of the cyclic square

Cn =

0 1 2 . . . n− 1
1 2 3 . . . 0
2 3 4 . . . 1
...

...
...

. . .
...

n− 1 0 1 . . . n− 2

Thus, Construction 10.1 asserts, inter alia, that for each n the cyclic Latin square Cn

is biembeddable with a copy of itself. In fact, as is shown in [42], this embedding is
the unique regular triangular embedding ofKn,n,n in an orientable surface. By saying
that an orientable embedding M of a graph G is regular, we mean that for every two
flags, that is ordered triples (v1, e1, f1) and (v2, e2, f2), where ei is an edge incident
to vertex vi and face fi, 1 ≤ i ≤ 2, there exists an automorphism of M which maps
v1 to v2, e1 to e2, and f1 to f2. Note that this definition requires automorphisms
which reverse the global orientation of the surface. A regular embedding has the
greatest possible number of automorphisms because the image of any one flag under
an automorphism is sufficient to determine the automorphism completely. Thus
the total number of automorphisms in a regular orientable triangular embedding of
Kn,n,n is just the number of flags, which is easily seen to be 12n2. Conversely, an
orientable triangular embedding M of Kn,n,n having 12n2 automorphisms must be
regular.



Designs and topology 157

This regular embedding may be constructed directly from the Latin square Cn

and an isomorphic copy C ′n. Index rows and columns of these squares by the group
Zn so that the entry in row i, column j of Cn is Cn(i, j) = i+ j, and then define C ′n
by C ′n(i, j) = i+ j − 1.

To see how these squares are combined to produce the embedding, consider the
case n = 3, so that

Cn =
0 1 2
1 2 0
2 0 1

C ′n =
2 0 1
0 1 2
1 2 0

Then take the nine points of K3,3,3 to be 0r, 1r, 2r, 0c, 1c, 2c, 0e, 1e, 2e. Black triangles
with clockwise orientation (r, c, e), are read from the first square so that, for exam-
ple, the (0, 2) entry 2 gives the triangle (0r2c2e). White triangles with clockwise
orientation (r, e, c) are read from the second. The resulting rotation scheme is

0r : 0c 0e 1c 1e 2c 2e

1r : 0c 1e 1c 2e 2c 0e

2r : 0c 2e 1c 0e 2c 1e

0c : 0e 0r 2e 2r 1e 1r

1c : 0e 2r 2e 1r 1e 0r

2c : 0e 1r 2e 0r 1e 2r

0e : 0r 0c 1r 2c 2r 1c

1e : 0r 1c 1r 0c 2r 2c

2e : 0r 2c 1r 1c 2r 0c

Returning to the general case, this biembedding has n2 automorphisms of the
form φα,β : (ir, jc, ke) → ((i + α)r, (j + β)c, (k + α + β)e), and these all preserve
the colour classes, the orientation, and the rows, columns and entries. In addi-
tion, the mapping χ : (ir, jc, ke) → (ic,−je,−kr) gives an automorphism of order
3 which permutes rows, columns and entries, but preserves the colour classes and
the orientation. The mapping µ : (ir, jc, ke)→ (ic, jr, ke) gives an automorphism of
order 2 which preserves the colour classes but reverses orientation, and the mapping
ν : (ir, jc, ke) → (−ic,−jr, (−k − 1)e) gives an automorphism of order 2 which re-
verses the colour classes but preserves the orientation. It follows that the group of
automorphisms generated by these mappings has order at least 12n2. Since this is
the maximum possible order, we deduce that this group is the full automorphism
group of the biembedding and that the biembedding is regular.

A useful feature of the cyclic Latin square is that for odd values of n it contains
a transversal and hence any associated biembedding contains a parallel class of
triangles in the corresponding colour class. In particular, for odd n, the regular
biembedding has a parallel class of triangles in each colour. A parallel class in
one colour is required for the K3,3,3 bridges used in the recursive constructions for
biembeddings of Steiner triple systems in Section 4, and for the Kn,n,n bridges used
in generalizations of these constructions. There is a similar recursive construction
for Latin squares first given in [46] which we now present and which enables us to
give lower bounds on the numbers of biembeddings of Latin squares in certain cases.
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Construction 10.2

Take any biembedding of two Latin squares of side n in a (necessarily orientable)
surface S. Next take m copies of the given biembedding on m disjoint surfaces
S0, S1, . . . , Sm−1. We use superscripts in a similar way to identify corresponding
points on these surfaces. We attempt to join these surfaces together to produce
a biembedding of Latin squares of side mn. To do this we will use as bridges
biembeddings of Latin squares of side m. So let T denote the bridging surface
supporting such an embedding, sayM , and assume that the graphKm,m,m embedded
in T has vertex parts {ai}, {bi} and {ci} and that the embedding has black faces
(aicibi) for i = 0, 1, . . . ,m− 1. Note this requires M to have a parallel class of black
triangles.

For each white triangular face (uvw) in S we bridge S0, S1, . . . , Sm−1 using a
copy of M , obtained by renaming ai, bi and ci as ui, vi and wi respectively. The
black face (uiwivi) from the copy of M is glued to the white face (uiviwi) in Si.

It is now routine to check that the resulting embedding represents a biembedding
of two Latin squares of side mn, that is a triangular embedding of Kmn,mn,mn in an
orientable surface. �

As with the constructions of Section 4, certain generalizations are possible. We
may use alternative bridges provided they all have a common parallel class of black
triangles having the same orientation. Likewise, we may vary the embeddings in the
surfaces Si provided that they all have the same white triangles with the same ori-
entations. Reapplication of the construction may also be possible in certain circum-
stances. For reasons of space we cannot present all the ramifications here. However
the following points are worthy of remark as they produce large lower bounds for
the number of biembeddings in many cases. For further details see [46].

Remark Take Construction 10.2 with m = 3, and use as bridges the two differently
labelled K3,3,3 embeddings given in Section 4. Since a face 2-colourable triangular
embedding of Kn,n,n has n2 white faces, varying the bridges gives 2n2

differently
labelled embeddings of K3n,3n,3n. Replacing 3n by n, we may express this by saying
that there are at least 2n2/9 differently labelled orientable triangular embeddings of
Kn,n,n for n ≡ 0 (mod 3). Since the maximum possible size of an isomorphism class
is 6(n!)3, this gives a lower bound of 2n2/9−o(n2) for the number of nonisomorphic
biembeddings of Latin squares when n ≡ 0 (mod 3).

Remark In view of the previous remark, it is clearly useful to have a large sup-
ply of differently labelled orientable triangular embeddings of Km,m,m, all having a
common oriented parallel class of triangular faces in one of the two colour classes.
So, on the assumption that one such embedding, say M , exists, apply to it all per-
mutations which fix this parallel class, including its orientation, and which preserve
the tripartition. There are 3(m!) such permutations. Suppose that π is one of these
permutations and that π is also an automorphism of M . Since π preserves the ori-
entation, the parallel class and the tripartition, π is determined by the image of any
single vertex. Consequently, there are at most 3m such permutations π. It follows
that, provided one such embedding exists, there are at least 3(m!)/3m = (m − 1)!
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differently labelled orientable triangular embeddings of Km,m,m all having a com-
mon oriented parallel class of triangular faces in one of the two colour classes. Hence
for m odd there are at least ((m − 1)!)n2

differently labelled orientable triangular
embeddings of Kmn,mn,mn.

The same bound also holds for those even values of m for which there exists a
biembedding of two Latin squares of side m, at least one of which has a transversal.
Such biembeddings do not exist for m = 2 and m = 4, but they do exist for m = 6
and m = 8 and, in the light of the computational results described below, it would
be surprising if they did not exist for all even m ≥ 10.

The failure of the construction method for m = 2 and m = 4 is not quite the end
of the story. We have one more construction which is new but similar to Construction
10.2. It takes a biembedding of Latin squares of side n and produces a biembedding
of Latin squares of side 2n. The notation is similar to the previous case.

Construction 10.3

Take any biembedding of two Latin squares of side n in a surface S. Next take
two copies of the given biembedding on disjoint surfaces S0 and S1 with the colour
classes on S1 reversed so that a white triangle (u0v0w0) in S0 corresponds to a black
triangle (u1v1w1) in S1. The bridges are formed from copies of a face 2-colourable
embedding M of K2,2,2 in a sphere having vertex parts {a0, a1}, {b0, b1}, {c0, c1}, a
black face (a0c0b0) and a white face (a1c1b1). For each white triangular face (uvw)
in S we bridge S0 and S1 using a copy of M , obtained by renaming ai, bi and ci

as ui, vi and wi respectively. The black (respectively white) face (uiwivi) from the
copy of M is glued to the white (respectively black) face (uiviwi) in Si.

Again it is now routine to check that the resulting embedding represents a biem-
bedding of two Latin squares of side 2n. �

We next turn our attention to some computational results. Again for reasons of
space, we must merely summarize these, pointing out what appear to be interesting
features. Fuller details are given in [40]. When we speak of the number of Latin
squares of side n, we refer to the number of main classes, that is the number of
nonisomorphic TD(3, n) designs. A representative of each main class for n = 4, 5, 6
and 7 is given in [24].

Firstly, for each of n = 1, 2 and 3 there is only one Latin square of side n and
one biembedding. For n = 4 there are two Latin squares of side n, but only one
biembedding which, from above, is the regular biembedding of the cyclic square with
a copy of itself. The other Latin square of side 4 is the Cayley table of the Klein
4-group. This is not biembeddable, either with itself or the cyclic square as can be
easily shown. Let the Latin square be given by

L1 =

4 5 6 7
0 8 9 X Y
1 9 8 Y X
2 X Y 8 9
3 Y X 9 8
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For clarity we represent the rows, columns and entries by different symbols. Without
loss of generality it can be assumed that the rotation about the point 8 is

8 : 0 4 1 5 2 6 3 7

This determines the coordinates of the entry 8 in the Latin square, say L2, with
which we are attempting to biembed L1, namely (row, column) = (0, 7), (1, 4), (2,
5) and (3, 6). Now the only way of completing row 0 and column 4 of the Latin
square L2 without the rotation about either the point 0 or the point 4 not being a
complete cycle is as follows.

L2 =

4 5 6 7
0 X Y 9 8
1 8
2 Y 8
3 9 8

But now it is impossible to place any entry in the (3, 5) position.
There are two Latin squares of side 5 and three biembeddings, but these biem-

beddings all involve two copies of the cyclic square, and the other square is not
biembeddable. For n = 6 there are 12 Latin squares and 29 biembeddings. The
Latin squares of side 6 numbered 3, 4, 7 and 10 in the listing of [24] do not feature
in any of the 29 biembeddings, but the remaining eight squares each have a biem-
bedding with a copy of themselves. For n = 7 there are 147 Latin squares and 23,664
biembeddings of which 4,761 are biembeddings of a Latin square with itself. How-
ever, although every Latin square of side 7 features in some biembedding, several
do not biembed with themselves. But perhaps the most interesting feature of these
biembeddings is that it is possible to partition the set of 147 squares into 16 subsets,
of cardinalities 1, 1, 1, 2, 3, 3, 3, 6, 6, 8, 8, 9, 18, 19, 26 and 33 respectively, so that
within each subset most squares biembed with most squares, and no two squares
from different subsets biembed. More details of this partition appear in [40]. This
bizarre partitioning, which also occurs for the Latin squares of side 6 although in
not such a startling fashion, is wholly unexplained. It may just be a feature for
small values of n but it may be more general and have a deeper significance. It also
suggests that some form of surface trade may be involved.

From the previous paragraph it will be seen that there are six Latin squares, one
each of sides 4 and 5, and four of side 6, that do not feature in any biembeddings.
These include, as well as the Cayley table of the Klein 4-group, that of the non-
Abelian group of order 6, #7 in the listing of [24]. It is an interesting question
whether these squares are the only ones with this property. In an attempt to answer
this question, with Martin Knor we have looked at those Latin squares of side 8 that
come from the Cayley tables of the five groups of order 8. One of these groups is
Z2 × Z2 × Z2 and another is Z4 × Z2, both of which might be considered as close
relatives of the Klein 4-group (= Z2 × Z2). The two non-Abelian groups of order
8, namely the dihedral group D4 and the quaternion group Q are also of interest.
However, we have found that each of the resulting five Latin squares biembeds and
we know of no further cases of non-biembeddable Latin squares. In examining the
biembeddings of these five squares of side 8, we find that, apart from the cyclic
square, these biembeddings never contain two copies of the same square.
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11 Symmetric configurations

The term “configuration” is nowadays used rather loosely; it has come to refer
to any fixed small number of blocks which form part of a design. In this section we
revert to the original meaning and define an (nr, bk) configuration to be an incidence
structure of n points and b lines such that

1. each line contains k points,

2. each point lies on r lines,

3. two different points are connected by at most one line.

If b = n, and therefore r = k, the configuration is said to be symmetric and
denoted by nk. Our interest, in the case where k = 3, is in the problem of biembed-
ding a pair of symmetric configurations of triples in a closed surface. The embedded
graph is the incidence graph of each of the two configurations, where two vertices
are joined by an edge if they occur together in some triple. This graph is 6-regular
and, by Euler’s formula, the supporting surface must be either the torus or the Klein
bottle. Examples of symmetric configurations are the Fano plane or STS(7), which
is the unique 73 configuration, and the Pappus and Desargues configurations which
are 93 and 103 configurations respectively. Already in the nineteenth century enu-
meration results of n3 configurations were available for small values of n. Kantor
[59] showed that there is one 83, three 93 and ten 103 configurations and Martinetti
[71] extended this catalogue by enumerating all 31 113 configurations.

We now have a sequence of questions concerning biembeddings of n3 configu-
rations which are analogous to those asked at the end of Section 2 in relation to
Steiner triple systems.

1. Given an n3 configuration, does it have a biembedding with some other n3

configuration in the torus, the Klein bottle or both? In particular for each
n ≥ 7, is there an n3 configuration which has such a biembedding in one or
the other or both of the surfaces?

2. Given a pair of n3 configurations do they have a biembedding in the torus, the
Klein bottle or both?

3. If such biembeddings exist, how many are there?

An answer to these questions in the case of the torus was provided by Altshuler
[4] and then for both the torus and the Klein bottle by Negami [74, 75]. But all
three papers are written from a different viewpoint; the term “configuration” is not
mentioned at all. In each case, the problem of biembedding symmetric configurations
is related to the classification of which 6-regular graphs have a triangulation in the
torus or the Klein bottle (or both). Negami refers to these as 6-regular toroidal
graphs and 6-regular Klein bottlal graphs respectively, but for the latter we use the
term Klein bottleable graphs. The simpler terms “torus graph” and “Klein bottle
graph” might be thought preferable, but these are used by Negami to describe
embeddings rather than graphs and it would be confusing for us to use them for a
different purpose. In the main, our account and notation follows that given in [74].
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Considering first triangulations of the torus, we define the standard 6-regular
triangulation T (p, q, r) of the torus. To do this consider the triangulation, shown in
Figure 11.1, of the domain

{(x, y) ∈ R2 : 0 ≤ x ≤ r, 0 ≤ y ≤ p},

where p and r are positive integers.

0 1 2 . . . r
0

1

2

.

p

Figure 11.1: Triangulation of {(x, y) ∈ R2 : 0 ≤ x ≤ r, 0 ≤ y ≤ p}.

In order to convert this into a triangulation of the torus, first identify the upper
and lower sides of the rectangle in the usual way to form an open-ended cylinder.
The embedded graph of this triangulation we denote by Hp

r and we make use of
this again when considering embeddability in the Klein bottle. Now glue one of the
boundaries of the cylinder to the other so that the point (0, y), 0 ≤ y ≤ p coincides
with the point (r, y′), 0 ≤ y′ ≤ p if y − y′ ≡ q (mod p), where q is an integer
satisfying 0 ≤ q < p. Informally we make a “twist” in the cylinder before gluing the
two boundaries. This procedure defines the standard triangulation T (p, q, r). Note
that T (p, q, r) is face 2-colourable and that a rotation of the diagram by π gives an
isomorphism between the face sets of the two colour classes. For our purposes, the
main result in both [4] and [74] is the following theorem.

Theorem 11.1 If G is a 6-regular toroidal graph and M is an embedding of G in
the torus, then M is isomorphic to some standard triangulation T (p, q, r).

We remark that different ordered triples (p, q, r) and (p′, q′, r′) can lead to iso-
morphic triangulations. For example, as shown in [74], T (p, q, r) is isomorphic to
T (p, q′, r) if q′ ≡ −(q+ r) (mod p). Also, the embedded graph of T (p, q, r) need not
be simple, although Negami identifies those which are not. He also goes on to prove
that if G is a simple 6-regular toroidal graph, then the embedding is unique up to
isomorphism.

To determine if an n3 configuration has a biembedding in the torus, it therefore
suffices to decide if its incidence graph is isomorphic to the embedded graph of some
T (p, q, r). If this is the case, then the biembedding exists. If it is not the case, then
the configuration has no biembedding in the torus. When the biembedding exists,
it is unique and the two biembedded configurations are isomorphic.
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Also in [74], Negami lists the isomorphism classes for standard triangulations
T (p, q, r) on fewer than 15 vertices. For 11 vertices or less, those with simple em-
bedded graphs comprise T (n, 2, 1), 7 ≤ n ≤ 11 together with T (3, 0, 3). In general,
T (n, 2, 1) is the biembedding of the cyclic symmetric configuration on the base set
{0, 1, 2, . . . , n − 1} generated from the triple {0, 2, 3} under the action of the map-
ping z �→ z+1 (mod n), and the two colour classes that result are isomorphic under
z �→ −z (mod n). The particular case T (3, 0, 3) is the biembedding of the Pappus
configuration with a copy of itself. It follows that the unique 73 and 83 configura-
tions, two of the three 93 configurations and one of each of the ten 103 and 31 113

configurations are biembeddable in the torus, and that the remaining configurations
on 11 vertices or less are not. Further analysis shows that for the 123, 133 and 143

configurations respectively, four of 229, two of 2,036 and two of 21,399 are biembed-
dable in the torus, and the remainder are not. The classification also implies that
any connected cyclic symmetric configuration n3 has a unique biembedding with an
isomorphic copy of itself in the torus. (Here “connected” means that the incidence
graph is connected.) This is because the incidence graph of such a configuration
is isomorphic to the embedded graph of T (p, q, r) for some values of p, q, r. An
alternative and purely combinatorial proof of this result appears in [41].

Turning now to biembeddings of symmetric configurations n3 in the Klein bottle,
the classification of which 6-regular graphs have triangulations in this surface is given
in [75]. This paper is a preprint and seems not to have been published in a journal.
But the results are both important and interesting and deserve to be better known.
We describe the relevant graphs beginning with Hp

r defined above. This has p(r+1)
vertices, those vertices with coordinates (0, j) or (r, j) for 0 ≤ j ≤ p− 1 have degree
4, but all other vertices have degree 6. From the graph Hp

r and its cylindrical
embedding, two families of triangulations of the Klein bottle may be constructed.

The first of these is achieved by identifying, for each y, 0 ≤ y ≤ p, the points
with coordinates (0, y) and (r, p − y). These embeddings are called Klein bottle
triangulations of handle type and denoted by Kh(p, r).

The construction of the second family of triangulations depends on the parity of
p. Again referring to Hp

r , if p = 2m is even, identify the point (0, y) with (0, y +m)
and the point (r, y) with (r, y +m), 0 ≤ y ≤ m. If p = 2m+ 1 is odd, use the graph
Hp

r−1 and join the point (0, y) to (0, y+m) and the point (r− 1, y) to (r− 1, y+m),
0 ≤ y ≤ p, with arithmetic on the second coordinate modulo p. In this second case,
when p is odd, the Klein bottle is formed by placing the additional joins across two
crosscaps. The resulting triangulations, for p even or odd, are called Klein bottle
triangulations of crosscap type and denoted by Kc(p, r).

In both Kh(p, r) and Kc(p, r) the number of vertices is pr and the two families of
triangulations are distinct. The classification theorem given in [75] is now as follows.

Theorem 11.2 If G is a 6-regular Klein bottleable graph and M is an embedding of
G in the Klein bottle, then M is isomorphic to precisely one of Kh(p, r), p ≥ 3, r ≥ 3
or Kc(p, r), p ≥ 5, r ≥ 2.

As with the toroidal graphs, Negami proves that the triangular embedding of any
6-regular Klein bottleable graph is unique. In fact, the triangulations Kh(p, r) are
face 2-colourable while the triangulations Kc(p, r) are not. So, in seeking the answer
to the question of biembeddability of an n3 configuration in the Klein bottle, it is
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only necessary to determine whether or not its incidence graph is isomorphic to the
embedded graph of some Kh(p, r). As in the toroidal case, there is an isomorphism
between the face sets of the two colour classes of Kh(p, r). It remains to consider
the question of whether any symmetric configuration can be biembedded in both
the torus and the Klein bottle. This is not so and follows from the fact that none of
the embedded graphs of T (p, q, r) triangulations are isomorphic to any of those of
Kh(p, r) triangulations. An alternative and perhaps simpler proof, which does not
rely on the above classification, is given in [69].

Combining the results for the torus and the Klein bottle, we have the following
theorem.

Theorem 11.3 A symmetric configuration n3 is biembeddable in the torus if and
only if its incidence graph is isomorphic to the embedded graph of some T (p, q, r). It
is biembeddable in the Klein bottle if and only if its incidence graph is isomorphic to
the embedded graph of some Kh(p, r), p ≥ 3, r ≥ 3. Any such biembedding is unique
and the two n3 configurations that appear in the biembedding are isomorphic. No n3

configuration has a biembedding in both the torus and the Klein bottle.

The third 93 configuration which is not biembeddable in the torus corresponds to
Kh(3, 3) and is therefore biembeddable in the Klein bottle.

Perhaps some readers may feel it is somewhat unsatisfactory that the answer to
the question of the biembeddability of symmetric configurations is given in terms of
whether their incidence graphs are isomorphic to any of the embedded graphs from
T (p, q, r) or Kh(p, r). But this is a situation in which a design-theoretic problem can
be successfully attacked by methods of topological graph theory. This is in contrast
to Section 3, where the existence of an orientable triangulation of the complete graph
Kn, n ≡ 3 (mod 12), was determined by exclusively design-theoretic methods and
shows the interplay between the two areas.

Finally in this section we mention the work of White and in particular the papers
[37, 82]. As the titles imply the emphasis here is on finding topological models of
configurations on appropriate surfaces. The biembedding of the Pappus configura-
tion with itself in the torus appears explicitly in these papers as well as an embedding
of the Desargues configuration in the double torus.

12 Concluding remarks

In this final section, we review some open problems and briefly discuss other
work in this area. We begin with the questions 2 to 4 posed at the end of Section
2, which we consider in reverse order.

The results given in Section 6 show that not every pair of Steiner triple systems
of order n = 15 has an orientable biembedding, and it seems possible that similar
nonexistence results may apply to all n ≡ 3 or 7 (mod 12) with n ≥ 15. However,
for n = 15, the situation regarding nonorientable biembeddings is, as we described,
quite different, with every pair of STS(15)s having at least one biembedding. This
led us to make Conjecture 6.1 that every pair of STS(n)s, n ≡ 1 or 3 (mod 6) and
n ≥ 9, has at least one nonorientable biembedding. A proof of this conjecture would
represent a major step forward.
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Confining our attention to the orientable case, we know that the STS(7) and all
80 STS(15)s have minimum genus embeddings. Does every STS(n), n ≡ 3 or 7 (mod
12) have such an embedding, necessarily a biembedding? We think that the answer
is likely to be in the affirmative though it may be a very difficult result to prove.
But we did show in Section 8 that every STS(n) has a maximum genus embedding
in which the black faces are triangles corresponding to the triples of the STS(n)
and there is just one white face. An intermediate result where the black faces are
triangles and there are (n − 1)/2 white faces, all of which are Hamiltonian cycles,
might be of interest.

The theorems of Section 4 give, for n lying in certain residue classes, a lower
bound of the form 2an2

for the number of biembeddings of STS(n)s in both orientable
and nonorientable surfaces. What is the true order of magnitude of this number?
We can obtain a crude upper estimate by using the known upper bound for the
number of labelled Steiner triple systems of order n, namely (e−1/2n)n

2/6 [83]. It
follows easily from this fact that, in both the orientable and nonorientable cases, the
number of nonisomorphic biembeddings is less than nn2/3.

If it were the case that each pair of STS(n)s has a biembedding, then we could
obtain a lower bound for the number of nonisomorphic biembeddings in a similar
fashion, since the number of such pairs is at least nn2/3−o(n2). So, if the rate of
growth of the number of nonisomorphic biembeddings were really of the order 2an2

then this would imply that almost all STS(n)s are not biembeddable either orientably
or nonorientably. Conjecture 6.1, based on the STS(15) data, therefore constrains
us to the view that the correct rate of growth in the number of biembeddings is
nn2/3−o(n2), at least in the nonorientable case.

Whatever the true rate of growth for biembeddings (that is, face 2-colourable
triangulations of Kn), one would expect to see similar and related growth estimates
for the number of minimum genus embeddings of Kn for all residue classes.

Turning now to other problems associated with biembeddings of pairs of STS(n)s,
we showed in Section 3 how certain Steiner triple systems obtained from the Bose
construction can be biembedded. Specifically, the groups used are cyclic. In the
orientable (respectively nonorientable) cases can the result be generalized to any
Abelian group of order 4s + 1 (respectively 2s + 1)? The Bose construction itself
has a number of generalizations. In the version given in Section 3, the group G is
used to construct a commutative idempotent quasigroup with operation ∗ defined
by i ∗ j = (i + j)/2. But there are many other such quasigroups. Some of these
generalizations may have topological implications.

With regard to the cyclic biembeddings described in Section 5, it seems likely
that infinitely many pairs of cyclic STS(12s + 7)s do not biembed cyclically in an
orientable surface. Indeed, there may be infinitely many cyclic STS(12s + 7)s that
do not appear in any orientable cyclic biembedding. It seems somewhat more likely
that, possibly with finitely many exceptions, each such pair biembeds cyclically in
a nonorientable surface.

Most of the work surveyed in this paper has been concerned with embeddings
of various kinds of triple system. An exception is Section 9 where embeddings of
the complete graph Kn in which each face is a Hamiltonian cycle are considered.
Theorem 9.1 gives a complete solution to the existence of such embeddings in the case
of a nonorientable surface. However, the existence question for orientable surfaces
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is far from settled. But more generally, one could consider embeddings of Kn in
which all the faces are cycles of any constant length. The logical place to begin
would be with quadrangulations. The necessary condition for a quadrangulation of
the complete graph Kn in a nonorientable surface is n ≡ 0 or 1 (mod 4) and in an
orientable surface is n ≡ 0 or 5 (mod 8). In two papers [55, 56], Hartsfield and Ringel
construct such embeddings for n ≡ 1 (mod 4) in the former case and n ≡ 5 (mod
8) in the latter. The necessary and sufficient condition for a 4-cycle system, that is
a decomposition of Kn into 4-cycles, is n ≡ 1 (mod 8). Thus any biembedding of a
pair of 4-cycle systems would necessarily be in a nonorientable surface.

In the case of Latin square biembeddings, face 2-colourability is equivalent to
orientability. The results given in Section 10 show that not every pair has a biembed-
ding, and it seems likely that there are infinitely many such pairs. However, it may
be the case that all but a finite number of Latin squares appear in some biembed-
ding. In fact, we may already have identified all the exceptional non-biembeddable
Latin squares; one each of side 4 and side 5 and four of side 6. But again it may
be difficult to prove that every Latin square, apart from these six exceptions, has a
biembedding. However we do know that every Latin square which is the Cayley ta-
ble of a cyclic group is biembeddable. Does this result extend to the Cayley table of
any group, apart from K4 and D3? Our computational results concerning groups of
order 8 suggest that it might, though these Latin squares do not have biembeddings
with isomorphic copies of themselves, unlike the situation with the cyclic groups.
Other classes of Latin square which would be of particular interest are the composi-
tion tables of Steiner quasigroups and Steiner loops, defined respectively as follows.
Let (V,B) be an STS(n). Define on V an operation ∗ by x ∗ x = x, x ∈ V and
x∗y = z if {x, y, z} ∈ B. Then (V, ∗) is a Steiner quasigroup or squag. Alternatively
define on V ∪ {e} an operation ◦ by x ◦ x = e, e ◦ x = x ◦ e = x, x ∈ V ∪ {e} and
x ◦ y = z if {x, y, z} ∈ B. Then (V, ◦) is a Steiner loop or sloop. Does the Latin
square composition table of every squag or sloop have a biembedding? Finally one
can make estimates and conjectures concerning the growth rate for the number of
biembeddings of Latin squares and these have similar forms to those described above
for Steiner triple systems.

Concerning symmetric configurations, we know that an n3 configuration can only
biembed with itself and that if it does then the biembedding is unique. But relatively
few symmetric configurations seem to have such minimum genus embeddings in the
torus or the Klein bottle. Possibly other higher genus embeddings such as the one
mentioned of the Desargues configuration in the double torus would be interesting.

Our survey has been concerned with embeddings, usually triangulations, of
graphs in surfaces. But some of the ideas can be extended to pseudosurfaces. We
follow [81] in making the definitions. A pseudosurface is the topological space which
results when finitely many identifications of finitely many points each, are made on a
given surface. More precisely, distinct points {pi,j : i = 1, 2, . . . , k, j = 0, 1, . . . ,mi}
on a given surface are identified to form points pi = {pi,j : j = 0, 1, . . . ,mi}, i =
1, 2, . . . , k called singular points or pinch points. The number mi is the multiplicity
of the pinch point pi. It is at these pinch points that a pseudosurface fails to be a
2-manifold. A generalized pseudosurface is the connected topological space which
results when finitely many identifications of finitely many points each, are made
on a topological space of finitely many components each of which is a pseudosur-



Designs and topology 167

face. The points subject to such identifications are also called pinch points and their
multiplicities are defined in the obvious way.

The relationship between twofold triple systems and generalized pseudosurfaces
is given in [3]; there is a one-to-one correspondence between TTS(n)s and trian-
gular embeddings of the complete graph Kn in generalized pseudosurfaces. The
correspondence is explored in greater depth in [68], where details of the generalized
pseudosurfaces associated with twofold triple systems on 10 or less points can be
found. Many of the generalized pseudosurfaces have an irregular structure but cer-
tain twofold triple systems correspond to more regular generalized pseudosurfaces.
The simplest of these, for n ≡ 1 or 3 (mod 6), is a TTS(n) obtained by combin-
ing the block sets of two identical STS(n)s. Each pair of repeated blocks gives a
triangle embedded in a sphere. By identifying points which have the same label, a
generalized pseudosurface is obtained which is the union of s = n(n − 1)/6 spheres
and has n pinch points all of the same multiplicity m = (n − 1)/2. Other gener-
alized pseudosurfaces having a similar structure are obtained as follows. A Steiner
system S(2, 4, n) is a pair (V,B) where V is an n-element and B is a collection of
4-element subsets (the blocks) of V such that each 2-element subset of V is con-
tained in exactly one block of B. Such systems exist if and only if n ≡ 1 or 4 (mod
12) [54]. Each block corresponds to an embedding of a tetrahedron in the sphere.
Again by identifying points which have the same label, a generalized pseudosurface
is obtained which is the union of s = n(n − 1)/12 spheres and has n pinch points
all of multiplicity m = (n− 1)/3. A generalized pseudosurface which is the union of
s = n(n−1)/24 (respectively n(n−1)/60) spheres and has n pinch points all of mul-
tiplicity m = (n− 1)/4 (respectively (n− 1)/5) arises from the decomposition of the
complete graph Kn into octahedra (respectively icosahedra). The former problem
is solved, the spectrum is n ≡ 1 or 9 (mod 24) [50, 1] and is equivalent to the exact
decomposition of the blocks of an STS(n) into Pasch configurations, see Section 7.
The necessary condition for the latter problem is n ≡ 1, 16, 21 or 36 (mod 60) but
only the case n ≡ 1 (mod 60) is resolved [2].

But probably a more interesting problem concerning pseudosurfaces is the fol-
lowing. The necessary and sufficient condition for the biembedding of two STS(n)s
in an orientable surface is n ≡ 3 or 7 (mod 12). But as Emch’s example given below
shows, there does exist a face 2-colourable triangular embedding of the complete
graph K9 in a pseudosurface formed from an orientable surface, in fact the torus,
with three pinch points of multiplicity 1.
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5 8 4 5

1 9 7

9 7 1

3 6 2 3

4 5 8 4

Figure 12.1 Pseudosurface biembedding of STS(9)s

In [78], a rotation scheme is given for an embedding of the complete graph K8 in the
double torus having 16 triangular faces and 2 quadrangular faces, the vertices of the
quadrangular faces comprising all 8 points of the embedding. By placing two new
points, say x and y, one in each quadrangle, inserting edges joining each point to the
vertices of the corresponding quadrangle, and then identifying the two points x and
y, we obtain a triangular embedding of the complete graph K9 in a pseudosurface
having just one pinch point of multiplicity 1. But this embedding is not face 2-
colourable. These two examples naturally lead to the question of determining the
pseudosurface having the least number of pinch points and/or pinch points having
the least multiplicities obtained from an orientable surface for a biembedding of two
STS(n)s when n ≡ 1 or 9 (mod 12).

More research work is needed!
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The number of points on an algebraic curve over a finite
field

J.W.P. Hirschfeld, G. Korchmáros and F. Torres

Abstract

How many points are there on a curve with coordinates in a given finite field
when the curve has (a) no singular points or (b) singular points counted once
or (c) singular points counted with multiplicity?

What is the maximum number of points on a curve of given genus?
Can curves attaining this maximum number be characterised?

1 Introduction

Problems in combinatorics, especially in finite geometry, often require a count of
the number of solutions of an equation in one or more unknowns defined over a finite
field Fq. When two unknowns, say X,Y , occur, the equation is of type f(X,Y ) = 0
with f ∈ Fq[X,Y ], and the geometric approach for solving it depends on the theory
of algebraic curves over finite fields.

Curves over a finite field have applications in the theory of linear error-correcting
codes in two areas: (a) the construction of Goppa or algebraic-geometry codes; (b)
obtaining bounds for the maximum length of codes when given the dimension and
minimum distance.

In cryptography, ciphers are constructed from both elliptic and hyperelliptic
curves

It is natural to think about a plane algebraic curve F of equation f(X,Y ) = 0 as
the set of the points P = (x, y) in the affine plane over the coordinate field K such
that f(x, y) = 0. But important numerical results on curves and their intersections,
such as Bézout’s theorem, have an easier formulation when the following are taken
into consideration.

(i) F is enhanced with its infinite points, that is, when F is viewed as a curve in
the projective plane over K;

(ii) K is algebraically closed, that is, every equation g(X) = 0 with g ∈ K[X] has
at least one solution.

Every field is a subfield of an algebraically closed field. The algebraic closure
Fq of Fq contains a unique finite field of order qn. These finite fields cover Fq. So,
the idea is to work with plane projective curves over F̄q but state the results in the
projective subplane over Fq.

The deepest results on the number of points of an algebraic curve over Fq, such
as the Hasse–Weil theorem, the Serre bound and the Stöhr–Voloch theorem, are
formulated for irreducible, non-singular algebraic curves. Nevertheless, these results
can be applied to singular curves, since every irreducible algebraic curve F defined
over Fq has a non-singular model Γ over Fq, that is, F is birationally equivalent
over Fq to an irreducible non-singular curve Γ. It should be noted that a birational
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map does not ensure that every singular point of F has an image point in Γ. Also,
a singular point of F may have more than one image point in Γ. These phenomena
can cause difficulties but do not significantly worsen the bounds, since an irreducible
curve can have only a few singular points.

The paper starts with basic facts on algebraic curves. Then, the questions posed
in the abstract are addressed for irreducible non-singular curves. Particular results
for plane singular curves are discussed in the later sections.

For more details on all the topics covered, see [15].

2 Background

2.1 Planes

Definition 2.1 Let K be a field.

(i) The affine plane AG(2,K) = A2(K) is a pair (P,L) where

P = {P = (x, y) | x, y ∈ K}, L = {� = aX + bY + c | a, b, c ∈ K},

and a point P = (x, y) lies on a line � = aX + bY + c if ax+ by+ c = 0. When
K = Fq, write AG(2, q).

(ii) The projective plane PG(2,K) = P2(K) is a pair (P,L) where

P = {P = (x, y, z) = (λx, λy, λz) | x, y, z, λ ∈ K; λ �= 0},
L = {� = aX + bY + cZ | a, b, c ∈ K},

and a point P = (x, y, z) lies on a line � = aX + bY + cZ if ax+ by + cz = 0.
When K = Fq, write PG(2, q).

2.2 Plane curves

Definition 2.2 (i) The plane affine curve

F = va(F ) = {P = (x, y) ∈ AG(2,K) | F (x, y) = 0}.

(ii) The degree of F , written degF , is degF .

Any affine transformation sends an affine curve to another having the same
degree. Therefore, degF of an affine curve F is an affine invariant.

Definition 2.3 (i) A component of the affine curve F = va(F ) is an affine curve
G = va(G) such that G divides F .

(ii) The affine curve F = va(F ) is irreducible when it has no proper component,
that is, when F is irreducible.

Any line containing at least n + 1 points from an affine curve F of degree n is a
component of F . To show this, � = va(Y ) may be assumed by covariance. Let
F = va(F (X,Y )). Then |� ∩ va(F )| ≥ n + 1 implies that F (X, 0) has more than n
roots. Therefore, F (X, 0) = 0, and hence X divides F (X,Y ).
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Let F = va(F ) be an affine curve with degF = d, and let � = −bX + aY + c be
a line containing the point P0 = (x0, y0) on F . Then, for any point P = (x, y) ∈ �,

−bx+ ay = −bx0 + ay0,

b(x− x0) = a(y − y0) = abt,

x = x0 + at, y = y0 + bt

for some t ∈ K. Then

F (x, y) = F (x0 + at, y0 + bt) = G(t) = G0 +G1 t+G2 t
2 + . . .+Gd t

d

= Gm tm + . . .+Gd t
d, (2.1)

with Gm �= 0, Gd �= 0.

Definition 2.4 The affine curve F = va(F ) is irreducible when F is irreducible.

Lemma 2.5 The two irreducible curves F1 = va(F1) and F2 = va(F2) are the same
if and only if F2 = λF1 for some λ ∈ K\{0}.

Definition 2.6 If F ∈ K[X,Y ] satisfies

F = F n1
1 Fn2

1 . . . Fns
s

with each Fi irreducible, then F = va(F ) has components Fi = va(Fi) with multi-
plicity ni for i = 1, . . . , s.

The multiplicity of a component is an affine invariant.

Definition 2.7 Let � be a line which is not a component of F .

(i) The integer m of (2.1) is the intersection number of � and F at P0: write

m = I(P0, � ∩ F);

(ii) if m = 1 for some line � through P0, then P0 is a simple or non-singular point
of F ;

(iii) if m ≥ 2 for all lines � through P0, then P0 is a singular or multiple point of
F ;

(iv) if m0 = min{m | � a line through P0}, then m0 is the multiplicity of P0 on F ,
or P0 is an m0-fold point of F , and write

m0 = mP0(F) = mP0(F );

(v) if m > m0 for any line �, then � is a tangent to F at P0.

The intersection number and the multiplicity of a point are affine invariants.

Definition 2.8 If mP (F) = 2, then P is a double point of F . A double point P
with two distinct tangents to F at P is a node, and with only one tangent to F at
P is a cusp. If mP (F) = 3, then P is a triple point of F .
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Remark Let M be a subfield of K and suppose that F is defined over M , that is,
F = v(f(X,Y )) with f(X,Y ) ∈ M [X,Y ]. If P is a double point with two distinct
tangents, neither of them is defined over M , then P is an isolated point over M .

Lemma 2.9 If P0 is a simple point of F , then, in (2.1),

G1 =
∂F

∂X

∣∣∣∣
P0

b − ∂F

∂Y

∣∣∣∣
P0

a.

Corollary 2.10 The tangent to F at a simple point P = (x, y) is

�P =
∂F

∂X

∣∣∣∣
P

(X − x) +
∂F

∂Y

∣∣∣∣
P

(Y − y).

Note the meaning of this corollary: the line �P has intersection multiplicity at least
2 with F at P .

Definition 2.11 A non-singular point P of F is a point of inflexion of F if

I(P, �P ∩ F) ≥ 3.

Here, P is also called an inflexion or, in some sources, a flex; the tangent �P at P is
the inflexional tangent. Tangents and inflexional tangents are covariant.

Remark The behaviour of P = (0, 0) for an affine curve F = va(F ) follows simply
from the form of F . Write

F (X,Y ) = Fm + Fm+1 + . . .+ Fd,

where Fi is homogeneous of degree i in X and Y , and Fm �= 0. Then

(1) if m > 0, the point P lies on F ;

(2) if m = 1, the point P is simple and F1 is the tangent at P ;

(3) if m ≥ 2, the term Fm =
∏
�i, where �1, . . . , �m are the tangents at P ;

(4) if �1, . . . , �m are distinct, then P is an ordinary multiple point.

Definition 2.12 If the plane projective curve F has degree n and singular points
P1, . . . , Pr of multiplicities m1, . . . ,mr, then its genus is

g = 1
2(d− 1)(d− 2)−∑

i
1
2mi(mi − 1).

Remark The genus of a curve is a non-negative birational invariant.
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2.3 Affine and projective curves

Consider the zeros of
F = Y −X3

in the affine plane AG(2, 3) defined over F3 = {0, 1,−1 | 3 = 0}; they are

(0, 0), (1, 1), (−1,−1).

Similarly, the zeros of F ′ = Y 2 −X3 in AG(2, 3) are

(0, 0), (1, 1), (1,−1).

Now consider the homogeneous versions F ∗ = Y Z2 −X3 and F ′∗ = Y 2Z −X3

of these polynomials. Then, in the projective plane PG(2, 3), the zeros of F ∗ are

(0, 0, 1), (1, 1, 1), (−1,−1, 1), (0, 1, 0),

and the zeros of F ′∗ are

(0, 0, 1), (1, 1, 1), (1,−1, 1), (0, 1, 0).

From the affine viewpoint, the curves given by F and F ′ are different, since the
curve given by F ′ has a singularity, a cusp, at the origin, whereas the curve given
by F has no singularity, even though the origin is an inflexion.

From the projective viewpoint, the two curves given by F ∗ and F ′∗ are equivalent,
as the interchange of Y and Z interchanges the polynomials. What is happening
is now revealed. The curve given by F ∗ has a cusp at (0, 1, 0) and an inflexion at
(0, 0, 1); the curve given by F ′∗ has an inflexion at (0, 1, 0) and a cusp at (0, 0, 1).
The point (0, 1, 0) is not seen in the affine version since it lies ‘at infinity’.

Thus, when considering plane curves, it is necessary to encompass the projective
plane so that no singularities get lost.

For any polynomial F ∈ Fq[X,Y ] of degree d, let

F ∗(X,Y,Z) = ZdF (X/Z, Y/Z);

then F ∗ is homogeneous.
A polynomial F ∈ K[X1,X2, . . . ,Xn] is irreducible if it has no non-constant

factors over any extension of K.

Definition 2.13 (i) Given F ∈ Fq[X,Y ] or F ∗ ∈ Fq[X,Y,Z], let

Vi = Vi(F ) = Vi(F ∗) = {(x, y, z) ∈ PG(2, qi) | F ∗(x, y, z) = 0};
that is, Vi is the set of zeros of F ∗ over Fqi .

(ii) The curve F = v(F ) = v(F ∗) = V1 ∪ V2 ∪ . . . ; that is, the curve consists of
points over the ground field Fq and all algebraic extensions.

(iii) A point P is Fqi-rational if its coordinates lie in Fqi ; it has degree i if it is
Fqi-rational but not Fqj -rational for j < i. For Fq-rational, the term rational
is also used.

(iv) The set of K-rational points of F is denoted F(K).
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3 The zeta function

The definition of a curve can be generalised to higher-dimensional space as an al-
gebraic variety of dimension one. For simplicity, in this article the account is mainly
restricted to the plane case, although the results hold in general unless otherwise
specified.

Now, let the curve F be non-singular and let

Ni = |Vi|.

Define the zeta function of F to be the following formal power series:

ζF(T ) = exp(
∑

NiT
i/i).

Theorem 3.1 (Hasse–Weil)

ζF(T ) = f(T )/{(1 − T )(1 − qT )},

where

(i) f(T ) = (1− α1T ) . . . (1− α2gT ) ∈ Z[T ];

(ii) αjαg+j = q, j = 1, . . . , g;

(iii) |αj | = √q, j = 1, . . . , 2g.

Corollary 3.2 (i) Ni = 1 + qi − (αi
1 + . . .+ αi

2g).

(ii) |Ni − (1 + qi)| ≤ 2g
√
qi.

Let f(T ) = 1+c1T+. . .+c2gT
2g. For rational points of F , this gives the following

result.

Corollary 3.3 (i) N1 = 1 + q − (α1 + . . .+ α2g) = 1 + q + c1.

(ii) |N1 − (1 + q)| ≤ 2g
√
q.

Corollary 3.4 For a plane non-singular curve of degree d,

|N1 − (1 + q)| ≤ (d− 1)(d− 2)
√
q.

Corollary 3.5 For g = 0,

(i) ζF(T ) = 1/{(1 − T )(1− qT )};
(ii) N1 = q + 1.

Corollary 3.6 For g = 1,

(i) ζF(T ) = (1 + cT + qT 2)/{(1 − T )(1− qT )};
(ii) q + 1− 2

√
q ≤ N1 ≤ q + 1 + 2

√
q.
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An improvement of Corollary 3.3(ii) due to Serre is the following result, where
	x
 is the integer part of x.

Theorem 3.7 |N1 − (1 + q)| ≤ g	2√q
.

Example 3.8 Let q = 2 and F = X3 + Y 3 + Z3; then

V1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}).

So N1 = 3, c = 0. Hence

ζF(T ) =
1 + 2T 2

(1− T )(1− 2T )

and ∑
NiT

i = log ζF(T ) =
∑

T i/i+
∑

(2T )i/i+
∑

(−1)j−1(2T 2)j/j.

Therefore,

Nh =

⎧⎨⎩
1 + 2h for h odd,
1 + 2h + 2.2h/2 for h ≡ 2 (mod 4),
1 + 2h − 2.2h/2 for h ≡ 0 (mod 4).

4 Equality in the Hasse–Weil bound

The Hermitian curve U2,q is the case that

F = X
√

q+1 + Y
√

q+1 + Z
√

q+1. (4.1)

This gives an example of a curve F in which the upper bound in Corollary 3.3(ii) is
achieved. Here, g = 1

2(q −√q), whence

q + 1 + 2g
√
q = q + 1 + (q −√q)√q = q

√
q + 1 = N1.

In fact,
N2 = q

√
q + 1 = q2 + 1− (q −√q)q = q2 + 1− 2gq,

showing that, over Fq2 , the curve achieves the lower bound.

Definition 4.1 A curve F over Fq is maximal if N1 = q + 1 + 2g
√
q.

Thus U2,q is one example. Note that q is necessarily a square.
So it is natural to ask the following.

Question 4.2 (i) Which are the maximal curves?

(ii) For which genera does a maximal curve exist?

(iii) Classify the maximal curves for a given genus.

Theorem 4.3 If F is maximal curve of genus g defined over Fq, then

g ≤ 1
2(q −√q).
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Proof From Theorem 3.1 (iii) and Corollary 3.3 (ii), it follows that αi = −√q for
all i. Hence, also using Corollary 3.3 (iii),

q + 1 + 2g
√
q = N1 ≤ N2 = q2 + 1− 2gq.

The result follows. �

It also follows that the zeta function of a maximal curve F is

ζF(T ) =
(1 +

√
qT )2g

(1− T )(1− qT )
,

and, of the Hermitian curve, is

ζU2(T ) =
(1 +

√
qT )q−

√
q

(1− T )(1− qT )
.

Also, if F is Fq-maximal and Nm is the number of its Fqm-rational points, then

Nm = qm + 1 + (−1)m−12gqm/2, for m = 1, 2, . . .. (4.2)

Given one maximal curve such as the Hermitian curve, other examples flow from
the following result, which is ascribed to Serre in Lachaud [20].

Theorem 4.4 A curve F ′ whose function field is a subfield of the function field of
a maximal curve F , is also maximal.

Proof (Outline) The inverse roots α′i appearing in the zeta function of F ′ are a
subset of the inverse roots αi for F . �

Theorem 4.5 (Rück–Stichtenoth [21]) If a curve F , defined over Fq, is maximal
and has genus g = 1

2(q −√q), then F is isomorphic to the Hermitian curve U2,q.

A related result that is both weaker and stronger than this last one is the fol-
lowing. Here it is not assumed that F is absolutely irreducible.

Theorem 4.6 ([16]) If F is a plane curve defined over Fq with q > 4, of degree√
q+ 1, with no linear component, and with at least q

√
q+ 1 rational points, then F

is projectively equivalent to the Hermitian curve U2,q.

It may happen that for a given genus g there is no curve over Fq that attains
the Serre bound.

Definition 4.7 (i) Let Nq(g) = maxN1, taken over all non-singular curves of
genus g.

(ii) A curve for which N1 = Nq(g) is optimal.

The simplest case of the Stöhr–Voloch theorem, [22], is the following:

Theorem 4.8 Let F be a plane irreducible curve of degree d over Fq with q odd
such that not all points are inflexions. Then

N1 ≤ 1
2d(q + d− 1).



Curves over a finite field 183

Example 4.9 From Theorem 3.7 it follows that N7(3) ≤ 23, but Theorem 4.8
implies that N7(3) ≤ 20, as a curve of genus 3 can be considered as a plane quartic
and it cannot have an infinite number of inflexions. Now, the curve F = v(F ) over
F7, with

F = X4 + Y 4 + Z4 + 3(X2Y 2 +X2Z2 + Y 2Z2),

has 20 rational points, namely,

(±1,±3, 1), (±3,±1, 1), (±3,±2, 1), (±2,±3, 1), (±2,±2, 1)

Hence N7(3) = 20, and so F is optimal. See Top [23].

5 Examples of maximal curves

Now, consider Theorem 4.4 in order to obtain more maximal curves. Beginning
from the Hermitian curve U2,q, to find curves that it covers, consider the following
curves written in affine form:

Dt = v(X(
√

q+1)/t + Y (
√

q+1)/t + 1),
At = v(Y

√
q + Y −X(

√
q+1)/t).

(5.1)

The curve Dt is a Fermat curve and the curve At is an Artin–Schreier curve; here,√
q ≡ −1 (mod t). Both D1 and A1 are affine forms of U2,q.

Lemma 5.1 With m = (
√
q + 1)/t, the genus and number of rational points for

each of Dt and At is as follows:

(a) Dt : g = 1
2(m− 1)(m− 2),

N1 = 1 + q + (m− 1)(m− 2)
√
q;

(b) At : g = 1
2(m− 1)(

√
q − 1),

N1 = 1 + q + (m− 1)(q −√q).

Corollary 5.2 (a) For A2, the genus g = 1
4(
√
q − 1)2;

(b) for A4, the genus g = 1
8(
√
q − 1)(

√
q − 3);

(c) for D2, the genus g = 1
8(
√
q − 1)(

√
q − 3).

Theorem 5.3 (Fuhrmann–Torres [7]) If a curve F , defined over Fq, is maximal
and has genus g < 1

2(q −√q), then g ≤ 1
4(
√
q − 1)2.

This leads to the following characterisations for q odd and even.

Theorem 5.4 (Fuhrmann–Garcia–Torres [6]) If a curve F , defined over Fq with q
odd, is Fq2-maximal and has genus g = 1

4(
√
q − 1)2, then F is isomorphic to the

Artin–Schreier curve A2.

Theorem 5.5 (Abdón–Torres [1]) If a curve F , defined over Fq with q even and
q ≥ 16, is Fq2-maximal and has genus g = 1

4q(q − 2), then F is isomorphic to the
curve T2 = v(T2), with

T2(X,Y ) = Y q/2 + Y q/4 + . . .+ Y 2 + Y +Xq+1 .
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Corollary 5.2 then raises two questions:

(1) Are A4 and D2 isomorphic?

(2) If so, is a maximal curve of genus g = 1
8 (
√
q − 1)(

√
q − 3) isomorphic to these

curves?

For (1), the following result gives the answer.

Theorem 5.6 The curves,

A4 = v(Y
√

q + Y −X(
√

q+1)/4),
D2 = v(X(

√
q+1)/2 + Y (

√
q+1)/2 + 1),

have the same genus but are not isomorphic.

Theorem 5.7 ([3]) If F is a non-singular, plane, maximal curve of degree
(
√
q + 1)/2, then F is isomorphic to the Fermat curve D2.

This theorem is equivalent to saying that, if F is a maximal curve, which has genus
1
8(
√
q − 1)(

√
q − 3) and a plane non-singular model, then F is isomorphic to D2.

6 Theoretical background

Definition 6.1 (i) For a plane curve F = v(F ) with F ∈ K[X,Y ], its function
field is Σ = K[X,Y ]/(F ).

(ii) The automorphism group AutK(Σ) of the curve is the group of all K-auto-
morphisms of Σ.

(iii) For any subgroup G of AutK(Σ), the set,

ΣG = {z ∈ Σ | σ(z) = z for all σ ∈ G},
is a subfield of Σ, the fixed subfield of G.

(iv) The curve F ′ whose function field is ΣG is the quotient curve of F with respect
to G and denoted by F/G.

(v) Let Σ′ be any subfield of Σ properly containing K. Then the extension Σ/Σ′

is algebraic of degree n = [Σ : Σ′]. If Σ has a finite automorphism group G
of order n such that Σ′ = ΣG, then the extension Σ/Σ′ is a Galois cover of
degree n, and G = Gal(Σ/Σ′).

Let F be an absolutely irreducible plane curve of degree d, which is a (possibly
singular) plane model of a projective, geometrically irreducible, non-singular, alge-
braic curve X defined over Fq. To each point of X there corresponds a place or a
branch of F ; associated to each place is a unique tangent. If P is a place of F and
α = mP (F) is the minimum of the intersection numbers I(P, l ∩ F) for all lines l
through P and so the multiplicity of P on F , then α is the order of P . The tangent
lP at P is the unique line for which I(P, lP ∩ F) > α and β = I(P, lP ∩ F) − α is
the class of P . With respect to the linear system L2 of lines of PG(2,Fq), a point of
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order α = r and class β = s−r is said to have order sequence (0, r, s). This definition
of order sequence can be generalised to curves in higher-dimensional spaces; see [15,
Chapter 7].

A point of inflexion is a point with order sequence (0, 1, s) and s ≥ 3. If F has
only a finite number of points of inflexion, the order sequence of a generic point is
(0, 1, 2) and F is said to be classical for L2.

If F is non-classical, then the order sequence at a generic point is (0, 1, pv), with
pv > 2, or, equivalently, the order sequence of X with respect to γ2

n, the linear series
cut out by lines.

For any curve F , whether classical or non-classical, only a finite number of points
have a different order sequence from the generic one. In the case that F = U2,q with
degree

√
q + 1,

(0, r, s) =

{
(0, 1,

√
q + 1) for P rational,

(0, 1,
√
q) for P generic.

The curve F is Frobenius classical if P q /∈ lP , apart from a finite number of
places; so it is Frobenius non-classical if P q ∈ lP . If the order sequence at P is
(0, 1, pv), then the Frobenius order sequence at P is

(0, ν) with ν = 1 or pv.

Then F is Frobenius classical if ν = 1 and Frobenius non-classical if ν = pv.
Theorem 4.8 is generalised as follows.

Theorem 6.2 (Stöhr–Voloch [22]) Let F be a plane irreducible curve of degree d
over Fq. Then

N1 ≤ 1
2{d(d − 3)ν + (q + 2)d},

where (0, ν) is the Frobenius order sequence.

The most general form of this theorem is the following.

Theorem 6.3 (Stöhr–Voloch [22]) Suppose that

(a) X is an irreducible curve of genus g;

(b) γn
d is a linear series on X of dimension n and order d;

(c) the order sequence on X is (ε0, . . . , εn);

(d) the Frobenius order sequence on X is (ν0, . . . , νn−1).

Then
N1 ≤ 1

n{(2g − 2)(ν0 + . . . + νn−1) + (q + n)d}.
Theorem 6.4 (Hefez–Voloch [12],[13]) Suppose that

(a) F is a plane non-singular curve of degree d;

(b) F is Frobenius non-classical.

Then
N1 = d(q − d+ 2).

An example of this is the Hermitian curve U2,q.
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7 Some optimal curves

For g = 0, every curve is Fq-optimal, as the number of Fq-rational points of
the projective line over Fq is q + 1, while Nq(0) ≤ q + 1 by the Hasse–Weil bound,
Corollary 3.3.

For g = 1, the situation is known and is now described.
With Sq = N1, the number of rational points on a curve F , consider the case

that F is an elliptic curve; equivalently, F is a non-singular plane cubic. For more
details, see [14, Chapter 11].

From Theorem 3.6,

(
√
q − 1)2 ≤ N1 ≤ (

√
q + 1)2.

In fact, the precise values that N1 can take are given by the next result.

Theorem 7.1 (Waterhouse) There exists an elliptic cubic over Fq, q = ph, with
precisely N1 = q+ 1− t rational points, where | t | ≤ 2

√
q, for precisely the values of

t in Table 1.

Table 1: Values of t

t p h

(1) t �≡ 0 (mod p)

(2) t = 0 odd

(3) t = 0 p �≡ 1 (mod 4) even

(4) t = ±√q p �≡ 1 (mod 3) even

(5) t = ±2
√
q even

(6) t = ±√2q p = 2 odd

(7) t = ±√3q p = 3 odd

Let Nq(1) denote the maximum number of rational points on any non-singular
cubic over Fq and Lq(1) the minimum number. The prime power q = ph is excep-
tional if h is odd, h ≥ 3, and p divides 	2√q
.
Remark The only exceptional q < 1000 is q = 128.

Corollary 7.2 The bounds Nq(1) and Lq(1) are as follows:

(i) Nq(1) =
{
q + 	2√q
, if q is exceptional
q + 1 + 	2√q
, if q is non-exceptional;

(ii) Lq(1) =
{
q + 2− 	2√q
, if q is exceptional
q + 1− 	2√q
, if q is non-exceptional.

Proof This is an immediate consequence of Theorem 7.1. �
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Corollary 7.3 The number N1 takes every integer value between q + 1 − 	2√q

and q + 1 + 	2√q
 if and only if (a) q = p or (b) q = p2 with p = 2 or p = 3 or
p ≡ 11 (mod 12).

Corollary 7.4 For q ≤ 128, the values that N1 cannot take between Lq(1) and
Nq(1) are given in Table 2.

Table 2: The values that N1 cannot take between Lq(1) and Nq(1) for q ≤ 128

q Forbidden values
8 7, 11

16 11, 15, 19, 23
25 26
27 22, 25, 31, 34
32 23, 27, 29, 31, 35, 37, 39, 43
49 43, 57
64 51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79
81 67, 70, 76, 79, 85, 88, 94, 97

106, 111, 116, 121, 131, 136, 141, 146
128 109, 111, 115, 117, 119, 121, 123, 125, 127,

131, 133, 135, 137, 139, 141, 143, 147, 149

Corollary 7.5 (i) For q square, there exists a maximal plane cubic curve

(ii) For q non-square, there exists an optimal plane cubic curve

Here are other examples of maximal and optimal curves.

Example 7.6 (a) The Hermitian curve, Example 4.1, is both Fq-optimal and
Fq-maximal for q = p2e.

(b) The DLS curve, Let q0 = 2e and q = 2q20 . The irreducible plane curve

S = v(X2q0(Xq +X) + Y q + Y )

is Fq-optimal and Fq4-maximal for q = 22e+1 with e ≥ 1. This curve is
associated with the Suzuki–Tits ovoid in PG(3, q).

(c) the DLR curve, p = 3, q = 3q20 , with q0 = 3s, s ≥ 1, and

R = v(Y q2 − [1 + (Xq −X)q−1]Y q + (Xq −X)q−1Y −Xq(Xq −X)q+3q0)

is Fq-optimal and Fq6-maximal for q = 32e+1 with e ≥ 1. This curve is
associated with the Ree–Lüneburg unital.
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8 The Frobenius linear series of a maximal curve

It is more convenient from now on to use Fq2 as the underlying field. Thanks to
the following linear equivalence of divisors, further theoretical results on maximal
curves can be obtained; see, for example,[6], [19]:

qP + Φ(P ) ≡ (q + 1)P0; (8.1)

here P0 ∈ X (Fq2). The proof of this remark uses facts concerning Tate modules and
can be seen in [21]. The linear series D = |(q+1)P0| is the Frobenius linear series of
X and it may be assumed that X is embedded in Pr [18], where r is the dimension of
D. From (8.1), dim |qP | = r−1 for every P ∈ X . By the Weierstrass Gap Theorem,
see [15, Section 6.6], an immediate consequence of (8.1) for the non-gap sequence of
X at a point P ∈ X is the following:

0 < m1(P ) < . . . < mr−1(P ) ≤ q < mr(P ). (8.2)

For an Fq2-maximal curve, a number of basic facts are collected in the next
proposition. For P ∈ X , let j0(P ) < j1(P ) < . . . < jr(P ) denote the sequence of
possible intersection multiplicities of X with hyperplanes of Pn. For all but a finite
number of points, the sequence above is constant. This generic sequence is denoted
by replacing ji(P ) by εi

In the case of the Hermitian curve U2,q2 , now written

Hq = v(Y q + Y −Xq+1),

the linear series D is cut out by lines of the plane.
For an Fq2-maximal curve, a number of basic facts are collected in the next

proposition.

Proposition 8.1 With the notation above, the following hold.

(I) If P and Q are Fq2-rational points, then (q + 1)P ≡ (q + 1)Q, and q + 1 is a
non-gap at each P ∈ X (Fq2).

(II) There exists P1 ∈ X (Fq2) such that both q + 1 and q are non-gaps at P1.

(III) The linear series D is complete, base-point-free, simple and defined over Fq2 .
it gives rise to an Fq2-rational curve Γ of PG(r, q) that is Fq2-birationally
equivalent to X .

(IV) The (D, P )-orders at an Fq2-rational point P are precisely

0 < q + 1−mr−1(P ) < . . . < q + 1−m1(P ) < q + 1;

that is, jr−i(P ) +mi(P ) = q + 1 for i = 0, . . . , r − 1.

(V) If P �∈ X (Fq2), then j1(P ) = 1 and so ε1 = 1.

(VI) The integer q is a D-order, and so r ≥ 2.
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(VII) If P ∈ X (Fq4)\X (Fq2) then q − 1 is a non-gap at P ; if P �∈ X (Fq4) then q is
a non-gap at P.

(VIII) If P is an Fq2-rational point of X , then jr−1(P ) < q.

(IX) εr = νr−1 = q, so Γ is Frobenius non-classical, and every Fq2-rational point of
X is in the support of the ramification divisor R of Γ.

(X) If N1 ≥ q3 + 1, then m1(P ) = q for every Fq2-rational point P of X .

(XI) If P ∈ X is not an Fq2-rational point, then

0 ≤ q −mr−1(P ) < . . . < q −m1(P ) < q

are (D, P )-orders at P . In particular, jr(P ) = q.

(XII) If P is an Fq2-rational point then both q and q + 1 are non-gaps at P . In
particular, j1(P ) = 1 for every Fq2-rational point P .

(XIII) Either r = q − (g − 1) or r ≤ 1
2(q + 1).

9 Maximal curves of large genus

The number of rational points on a maximal curve over Fq2 is

q2 + 1 + 2gq.

The Hermitian curve U2,q2 is now written

Hq = v(Y q + Y −Xq+1).

To avoid trivial cases, it is assumed that g > 0, unless otherwise stated.

Theorem 9.1 If X ′ is an Fq2-rational curve covered by an Fq2-maximal curve X ,
with an Fq2-rational covering, then X ′ is also Fq2-maximal.

Example 9.2 (i) For q odd, the irreducible plane curve,

E1
(q+1)/2 = v(Y q + Y −X(q+1)/2), (9.1)

is covered by the Hermitian curve Hq, since K(E1
(q+1)/2) is the subfield K(x2, y) of

K(Hq) = K(x, y). Note that K(x2, y) is a proper subfield of K(Hq) with

yq + y − xq+1 = 0,

as the genus g′ of E1
(q+1)/2 is smaller than 1

2(q2 − q), the genus of Hq. Therefore,
[K(Hq) : K(E1

(q+1)/2)] = 2, and the rational transformation ω : (x, y) �→ (x2, y)
provides a two-fold covering of E1

(q+1)/2 by Hq. Then, g′ = 1
4(q − 1)2.

Since x2, y ∈ Fq2(Hq), then E1
(q+1)/2, ω and the associated two-fold covering are

Fq2-rational, as well. From Theorem 9.1, E1
(q+1)/2 is an Fq2-maximal curve.
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Table 3: Families of curves F = v(F ) containing Fq2-maximal curves

F F

Dr Xr + Y r + 1

E1
m Y q + Y −Xm

Tp Xq+1 − (Y + Y p + Y p2
+ . . . + Y q/p)

T ′3 (Y + Y 3 + . . .+ Y q/3)2 −Xq −X
T ′′

3 Y + Y 3 + . . .+ Y q/3 + cXq+1, cq−1 = −1

K Y q+1 − f(X)

A Y q − Y − f(X)

F0 X(q+1)/3 +X2(q+1)/3 + Y q+1

F ′0 Y X(q−2)/3 + Y q +X(2q−1)/3

G Y q − Y X2(q−1)/3 + ωX(q−1)/3, ωq+1 = −1

Cn XnY + Y n +X

Cn,k XnY k + Y n +Xk

Cm
i Xmi+m +Xmi + Y q+1

Xr Y 2r
+ a1Y

2r−1
+ . . . + ar−1Y

2 + Y +Xq+1

(ii) The corresponding example for q even is the irreducible plane curve,

T2 = v(Xq+1 + Y + Y 2 + Y 4 + . . .+ Y q/2), (9.2)

whose genus is 1
4q(q − 2). Since K(T2) is the subfield K(x, y2 + y) of K(Hq), the

same argument shows that T2 is two-fold covered by the Hermitian curve Hq, and
hence it is an Fq2-maximal curve.

(iii) The curve F0 = v(F0) with

F0 = X(q+1)/3 +X2(q+1)/3 + Y q+1 ;

its genus is 1
6(q2 − q + 4); here, q ≡ 2 (mod 3).

(iv) The curve F ′0 = v(F ′0) with

F ′0 = Y X(q−2)/3 + Y q +X(2q−1)/3 ;

its genus is 1
6(q2 − q − 2); here, q ≡ 2 (mod 3).

(v) For curves of genus 1
6(q2 − q), examples are T ′3 = v(T ′3) with

T ′3 = T(Y )2 −Xq −X, T(Y ) = Y + Y 3 + . . .+ Y q/3,

when q ≡ 0 (mod 3), and G = v(G) when q ≡ 1 (mod 3), with

G = Y q − Y X2(q−1)/3 + ωX(q−1)/3, ωq+1 = −1,
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Every non-trivial automorphism group G of X gives rise to a covering of X .
In Example 9.2 (i), F = Hq/〈α〉 with α : (X,Y ) �→ (−X,Y ). Such a covering
and the corresponding quotient curve X ′ = X/G are Fq2-rational if G is an Fq2-
automorphism group; that is, G is the restriction to X of a subgroup of PGL(r, q2).
Each of the cases, (a), (b), (c), in Example 7.6 of Fq2-maximal curves has a large Fq2-
automorphism group with many non-conjugate subgroups. From this, the existence
of numerous Fq2-rational maximal curves is deduced. The genera of such quotient
curves can often be computed using such theorems as Hurwitz’s, but the problem
of finding an explicit equation has been solved so far only in a few cases.

The existence of an Fq2-maximal curve which is not Fq2-covered by the Hermitian
curveHq is still unknown. Possible candidates are the DLS and DLR curves, or some
of their quotient curves. In this vein, it would help to know if any quotient curves
of the DLS and the DLR curves are quotient curves of Hq.

A partial answer in the negative is given by the following example. Over F272 ,
the Hermitian curve is

H27 = v(Y 27 + Y −X28).

Theorem 9.3 (Garcia and Stichtenoth) [8] The curve C is F272-maximal but is not
a Galois subcover of H27, where

C = v(Y 9 − Y −X7).

There are, however, Fq2-maximal curves with simple equations such as those of
Kummer type,

K = v(Y q+1 − f(X)), (9.3)

and those of Artin–Schreier type,

A = v(Y q − Y − f(X)). (9.4)

The classification of maximal curves is currently out of reach. However, for larger
values of g for which there exists an Fq2-maximal curve, it seems that there are few
curves: see Table 4. This has been shown so far for g ≥ 	16 (q2 − q + 4)
.

10 Non-isomorphic maximal curves

In this section, a 2-parameter family of curves Xm
i is presented; for each fixed m,

there is a large number of non-isomorphic curves all with some identical properties.
With K = Fq, let Xm

i be a non-singular model over K of the plane curve,

Cm
i = v(Xmi+m +Xmi + Y q+1) , (10.1)

where m is a positive divisor of q+1 for which d = (q+1)/m > 3 is prime. The curve
Xm

i is the quotient curve of the Hermitian curve Hq arising from an automorphism
group of H of the same order d. Let D = |(q + 1)P | denote the associated complete
linear series at a point P of Xm

i .

Theorem 10.1 Assume 1 ≤ i ≤ d− 2.
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Table 4: Known Fq2-maximal curves of large genera

Genus g Condition on q Curves

1. 1
2q(q − 1) Hq = Dq+1

2. 1
4(q − 1)2 q ≡ 1 (mod 2) E1

(q+1)/2

3. 1
4q(q − 2) q ≡ 0 (mod 2) T2

4. 1
6(q2 − q + 4) q ≡ 2 (mod 3) F0

5. 1
6(q2 − q) q ≡ 1 (mod 3) G

6. 1
6(q2 − q) q ≡ 0 (mod 3) T ′3

7. 1
6(q2 − q − 2) q ≡ 2 (mod 3) F ′0

8. 1
6(q − 1)(q − 2) q ≡ 2 (mod 3) E1

(q+1)/3

9. 1
6q(q − 3) q ≡ 0 (mod 3) T ′′

3

10. 1
8(q2 − 2q + 5) q ≡ 3 (mod 4)

11. 1
8(q − 1)2 q ≡ 1 (mod 4)

12. 1
8q(q − 2) q ≡ 0 (mod 4)

13. 1
8(q − 1)(q − 3) q ≡ 1 (mod 4) E1

(q+1)/4

14. 1
8(q − 1)(q − 3) q ≡ 3 (mod 4) E1

(q+1)/4,D(q+1)/2

15. 1
8q(q − 4) q ≡ 0 (mod 2) X2

(i) (a) The curves Xm
i and Xm

j are K-equivalent if and only if one of the fol-
lowing equation holds modulo d :

i ≡ j, ij ≡ 1, ij + i+ j ≡ 0 ,
i+ j + 1 ≡ 0, ij + i+ 1 ≡ 0, ij + j + 1 ≡ 0 .

(b) The number of K-isomorphism classes of curves Xm
i is given by

n(d) =

{
1
6(d+ 1) if d ≡ 2 (mod 3),
1
6(d− 1) + 1 if d ≡ 1 (mod 3).

(10.2)

(c) Each of these classes consists of six curves, apart from two exceptions of
sizes 2 and 3. The corresponding indices i are as follows:

(1) i1, i2, where i1 and i2 are the solutions of t2 + t + 1 = 0 (mod d),
with d ≡ 1 (mod 3);

(2) 1, 1
2(d− 1), d − 2.

(ii) The genus of Xm
i is g = 1

2m(q − 2) + 1.
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(iii) The K-automorphism group of Xm
i is

Aut(Xm
i ) =

⎧⎪⎨⎪⎩
Z3 � (Zq+1 × Zm) in case (c)(1),
Z2 � (Zq+1 × Zm) in case (c)(2),
Zq+1 × Zm otherwise.

(iv) When m = 2, the series D has projective dimension 1
2(d + 3). There are at

least six K-rational points P such that, if

(j0 = 0, j1 = 1, . . . , j(d+1)/2, j(d+3)/2)

is the D-order sequence at P, then j(d+1)/2 = d, j(d+3)/2 = q + 1.

(v) When m = 2 and q is prime, then the D-order sequence at a generic point is
(0, 1, . . . , 1

2(d+ 1), q).

Theorem 10.2 (i) The curves Xm
0 and Xm

d−1 are K-isomorphic.

(ii) Xm
0 has genus g = 1

2(m− 1)(q − 1), and is hyperelliptic when m = 2.

(iii) The centre Z of the K-automorphism group AutK(Xm
0 ) is a cyclic group of

order m, and the factor group AutK(Xm
0 )/Z is isomorphic to PGL(2, q).

(iv) The complete linear series on X 2
0 has projective dimension d + 1, and the D-

order sequence at a Weierstrass point is one of

(0, 1, 2, . . . , d, q), (0, 1, 2, 4, 6, . . . , q − 1, q + 1).

(v) The D-order sequence of X 2
0 is (0, 1, . . . , d, q).

11 Singular plane curves

Let f ∈ Fq[X,Y ] be an irreducible polynomial of degree d, and let F = v(f)
be the corresponding irreducible, possibly singular, plane curve. The problem of
counting the number Rq of points in PG(2, q) which lie on F is of interest not only
in the present but also in other contexts.

Note that Rq counts the solutions of the equation f(X,Y ) = 0 in Fq × Fq

together with the homogeneous non-zero solutions of Φ(X,Y ) = 0, where Φ(X,Y )
is the homogeneous polynomial of all terms of degree d in f(X,Y ).

It is natural to compare Rq with Sq = N1, the number of Fq-rational branch
points. If Bq is the number of branches of F centred at points of PG(2, q), and R̃q

is similar to Rq but counts each r-fold point counted in Rq with multiplicity r, then

Sq ≤ Bq ≤ R̃q.

This shows that the problems of determining Sq, Rq , Bq, R̃q are equivalent only when
F is non-singular. Nevertheless, some results on Rq, Bq, R̃q are similar to those on
Sq. In fact, the proof of Theorem 11.1 remains valid when R̃q replaces Rq. This also
finds confirmation in Theorem 11.2, which extends Theorem 11.1, in itself a special
case of Theorem 6.3, and Theorem 6.4 to singular plane curves.
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Theorem 11.1 Assume that K has odd characteristic. Let F be an irreducible
plane curve of degree d defined over Fq. If F has only finitely many points of
inflexion, then the number Sq of Fq-rational points of F satisfies the inequality,

2Sq +N ′ ≤ d(q + d− 1), (11.1)

where N ′ counts the non-Fq-rational points Q ∈ F such that the tangent line at Q
contains the image Qq of Q under the Frobenius collineation.

To see, in a simple case, the differences between Rq, Sq, Bq, R̃q , consider the three
singular plane cubics, N2,N1, and N0, with two, one, and zero tangents over Fq at
the singular point P ; these are cubics with a node, a cusp, and an isolated double
point at P . Then Table 5 is straightforward to verify.

Table 5: Numbers of points on singular cubics

Rq Sq Bq R̃q

N2 q q + 1 q + 1 q + 1

N1 q + 1 q + 1 q + 1 q + 2

N0 q + 2 q + 1 q + 3 q + 3

It may be noted that Bq = R̃q when P is a node. This holds true for curves with
only ordinary singularities centred at points in PG(2, q).

Theorem 11.2 Let F be an irreducible plane curve of degree d and genus g defined
over Fq.

(i) If F is either classical, or non-classical but Frobenius classical, then

Bq ≤ 1
2{(2g − 2) + (q + 2)d}. (11.2)

(ii) If F is Frobenius non-classical with order sequence (0, q′), then

Bq ≤ 1
2{q′(2g − 2) + (q + 2)d}. (11.3)

Theorem 11.3 Let F be a non-classical irreducible plane curve of degree d and
genus g defined over Fq. If F is Frobenius non-classical, and has only tame branches,
then

Bq ≥ (q − 1)d− (2g − 2). (11.4)

Also, equality holds if and only if every non-linear branch of F is centred at a point
in PG(2, q).
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Example 11.4 (1) The Hermitian curve H√q = v(X
√

q+1 +Y
√

q+1 +1) attains the
upper bound (11.3) for q′ = √q, and the lower bound (11.4).

(2) Another example which illustrates Theorems 11.2 and 11.3 for q = p3 and p
odd, is the dual curve C of the plane curve

F = v(Y p2+p+1 − (Xp+1 + 1)pX + (Xp +X)p).

The main properties of C are as follows:

(i) C is a projective singular plane curve defined over Fq birationally equivalent
to C;

(ii) C has degree (p2 + p+ 1)(p + 1), and genus g = (p2 + p)(p2 + p− 1)/2;

(iii) C is a Frobenius non-classical plane curve with ε2 = ν1 = p2;

(iv) C has only one non-linear branch; it is centred at a point in PG(2, q) and has
order p+ 1.

Apply Theorem 11.2:

Bp3 = (p2 + p+ 1)(p + 1)(p3 − 1)− (p2 + p+ 1)(p2 + p− 2)

= (p2 + p+ 1)(p − 1)(p3 + 2p2 + p− 1).

When p = 3, this gives B27 = 1222, N27 = 208.
(3) Now, let q = p = 2, and F = v((X2 +X)(Y 2 + Y ) + 1). Then F is classical

but Frobenius non-classical with ε2 = ν1 = 2. Here, F has two points in PG(2, q),
namely X∞ and Y∞, both singular. Also, X∞ is a double point and both branches
of F centred at X∞ are Fq-rational; the similar property holds for Y∞. Therefore,
F has only linear and hence tame branches. Since F has genus g = 1, so B2 = 4, as
in (11.2).

(4) To illustrate Theorem 11.3, put q = 22e+1, q0 = 2e, with e ≥ 1, and consider
the DLS irreducible plane curve,

F = v(Y q + Y +Xq0(Xq +X)),

of genus q0(q − 1).
It has several interesting properties. First, F is Frobenius non-classical with

ε = ν = q0; in fact,

z0(x, y) = xq/q0+1 + yq/q0, z1(x, y) = x, z2(x, y) = 1.

Also, F has only one singular point, namely Y∞. More precisely, Y∞ is the centre
of exactly one branch of F , and hence Bq = q2 + 1. This branch P has order r = q0
and class s = q; in particular, P is a non-tame branch. Theorem 11.3 fails in the
sense that here equality does not hold in (11.4); the unique singular branch of F is
centred at a point in PG(2, q), but

q2 + 1 > q2 − qq0 − q − q0 + q0 + 2 = (q − 1)(q + q0)− (2g − 2).
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12 Counting points on a plane curve

If F is a non-singular plane curve of degree n defined over Fq, then X can be
identified with F , and the Hasse–Weil bound (3.3) reads as follows:

q + 1− (d− 1)(d − 2)
√
q ≤ Sq ≤ q + 1 + (d− 1)(d − 2)

√
q, (12.1)

where d is the degree of F and Sq = N1 is the number of all Fq-rational points of
F . Now, (12.1) is extended to irreducible singular plane curves defined over Fq.

If a curve is not identified with its non-singular model, then there is some am-
biguity in the definition of an Fq-rational point. For a non-singular plane curve
F defined over Fq, there is a one-to-one correspondence between the Fq-rational
points of F and the Fq-rational places of the associated function field K(F). If F is
singular and X is a non-singular model of F , defined over Fq as well, then F and X
have the same function field and hence they have the same number N1 of Fq-rational
points, but N1 is, in general, different from the number Rq of points of F which lie
in PG(2, q).

This already appeared in Section 11. For instance, if C3 is an irreducible cubic
curve defined over Fq with an isolated double point, then, as for any plane singular
cubic, a non-singular model is a twisted cubic in PG(3, q); so Sq = q + 1 but, from
Table 5, Rq = q + 2.

From now on, F is any irreducible plane curve of degree d and genus g defined
over Fq. To prove the desired result

q + 1− (d− 1)(d − 2) ≤ Rq ≤ q + 1 + (d− 1)(d − 2), (12.2)

it must be shown that (12.1) holds true when N1 is replaced by Rq.
To compare Rq with Sq = N1, certain other parameters for F must be defined,

some of which have appeared previously:

Rq = number of points P ∈ F that lie in PG(2, q);
Sq = N1 = number of Fq-rational points of F ;
R∗q = number of points P ∈ PG(2, q) which are centres of Fq-rational branches;

R̃q = number of points P ∈ F in PG(2, q)
with each r-fold point counted with multiplicity r;

Bq = number of branches of F centred at points of PG(2, q);
Eq = number of singular points of F ;
bP = number of Fq-rational branches of F with centre at P ∈ PG(2, q);
cP = number of all branches of F with centre at P ∈ PG(2, q);
mP = multiplicity of a point P ∈ F .

In Section 11, bounds for Bq were obtained.
Here, F(Fq)∗ stands for the set of all points P ∈ PG(2, q) lying on F . With this

notation,
Sq =

∑
P∈F(Fq)∗ bP , Rq = |F(Fq)

∗|.
Also, R∗q ≤ Sq and equality holds if and only if no two distinct Fq-rational branches
of F have the same centre.

The starting point is an upper bound and a lower bound for Sq −Rq.
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Lemma 12.1 An upper bound:

Sq −Rq ≤ 1
2(d− 1)(d − 2)− g. (12.3)

Lemma 12.2 A lower bound:

Rq − Sq ≤ 1
2(d− 1)(d − 2)− g. (12.4)

Theorem 12.3 Let F be an irreducible plane curve defined over Fq of degree d and
genus g. If Rq is the number of points of PG(2, q) lying on F , then

(i) |Rq − (q + 1)| ≤ g	2√q
+ 1
2(d− 1)(d− 2)− g;

(ii) |Rq − (q + 1)| ≤ 1
2(d− 1)(d − 2)	2√q
; (Serre bound)

(iii) |Rq − (q + 1)| ≤ (d− 1)(d− 2)
√
q. (Hasse–Weil bound)

Under some additional hypotheses, equality can be attained in the above bounds.

Theorem 12.4 (i) Equality occurs in Lemma 12.2 if and only if every singular
point of F is an isolated double point lying in PG(2, q).

(ii) Equality occurs in Lemma 12.1 if and only if every singular point of F is a
node.

The following corollaries show that when equality occurs either in Lemma 12.1
or in Lemma 12.2, q cannot be too small compared to n.

Corollary 12.5 If equality holds in Lemma 12.1, then

(i) (d− 1)(d− 2)− 2g ≤ Sq;

(ii) (d− 1)(d− 2)− 2g ≤ q + 1 + g	2√q
.

Corollary 12.6 Let F be an irreducible singular plane curve of degree d ≥ 3 defined
over Fq for which equality holds in Lemma 12.2.

(i) q ≥ d− 2 + (Sq − 2g − 2)/(d − 2).

(ii) If g = 0, then q ≥ d− 1.

(iii) If d is odd and d ≥ 5, then q ≥ d− 1− 2g/(d − 3).

Remark The above results are sharp for curves of low degree and genus. For g = 2
this is illustrated by two examples. Let

f(X0,X1,X2)
= X2

0 (X2
1 + 2X2

2 ) +X0(X3
1 + 2X1X

2
2 +X3

2 ) + 3X3
1X2 + 3X1X

3
2 ,

g(X0,X1,X2)
= X2

0 (X2
1 −X2

2 ) +X0(X2
1X2 −X3

2 ) + (6X4
3 + 6X2

1X2 − 4X4
2 .

Then the parameters are given in Table 6.
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Table 6: Two curves

Curve q d g Rq Sq Bound on Sq Bound on Rq

F = v(f) 5 4 2 13 12 0 ≤ Sq ≤ 12 0 ≤ Rq ≤ 13

F = v(g) 13 4 2 1 2 2 ≤ Sq ≤ 26 1 ≤ Rq ≤ 27

Proposition 12.7 If C is an irreducible Fq-rational curve of degree d > 1, then
Rq ≤ (d− 1)q + 	d/2
.

Some applications require information on the number of points of PG(2, q) lying
on a plane curve not defined over Fq. An upper bound on this number is as follows.

Lemma 12.8 If an irreducible plane curve of degree d is defined over Fqk but not
over Fq, then the number N of its points lying in PG(2, q) does not exceed d2.

In conclusion, two more bounds are shown, which have applications to arcs in
PG(2, q).

Theorem 12.9 Let C be an algebraic plane curve of degree d defined over Fq with
no Fq-linear components, and let Tq be the number of rational simple points of C. If

√
q > d− 1, (12.5)

then
Tq < d(q + 2− d). (12.6)

Remark It is not true that d2 ≤ q+1+(d−1)(d−2)
√
q for all values of d and q.

Theorem 12.10 Let D2t be a plane algebraic curve of degree 2t defined over Fq

and let Cd be a component of D2t, with degree d ≥ 3 if Cd is Fq-rational. Let Tq be
the number of rational simple points of Cn and let S be the number of its rational
singular points of which D are double points. If

√
q > 2t+ d− 1, (12.7)

then
Tq +D < 1

2d(q + 2− t). (12.8)
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by the Hermitian curve, Finite Fields Appl. 12 (2006), 539–564.

[11] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Families of curves
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On the efficient approximability of constraint
satisfaction problems

Johan H̊astad

Abstract

We discuss some results about the approximability of constraint satisfaction
problems. In particular we focus on the question of when an efficient algo-
rithm can perform significantly better than the algorithm that picks a solution
uniformly at random.

1 Introduction

The most famous problem in theoretical computer science is the question of
whether the two complexity classes P and NP are equal.

Here P is the set of problems1 that can be solved in time which is polynomial
in the size of the input. This is the mathematical definition aimed to correspond to
problems which can be solved efficiently in practice on fairly large instances. One
might object that there are very large polynomials but this has rarely been a problem
and most problems known to be in P are efficiently solvable in the everyday meaning
of the concept.

The class NP is the set of decision problems such that for instances with a positive
answer there is a short proof of this state of affairs that can be verified efficiently.
One of the most famous problems in NP is the traveling salesman problem, TSP,
in which we are given n cites and distances d(ci, cj) between the cities. The task
is, given an upper bound K, to find a tour that visits all the cities and returns to
its origin and is of total length at most K. If there is such a tour then, given the
tour, it is easy to verify that indeed it is of the desired quality. Formally “easy”
should here be interpreted as computable in time which is polynomial in the input
length. Formulated differently there is a proof, sometimes called a certificate, that
the instance has a positive answer and this short proof can be verified efficiently.

The existence of an easily verifiable certificate says little about the difficulty of
finding the certificate. Of course we can always try all certificates but apart from
this general procedure, the existence of the certificate seems to be of little help and
indeed there is no general method to find the optimal tour for TSP in time that is
subexponential in the number of cities n. Note also that the problem is very non-
symmetrical in that it is very hard, in general, to convince someone that indeed there
is no tour shorter than K. In other words there are probably no short certificates
proving tight lower bounds on tour lengths.

The question whether P equals NP is the question of whether, for any decision
problem where a positive answer has a short proof that can be verified efficiently,
this proof can be found efficiently. From an everyday perspective this would seem
absurd in that it rules out the brilliant idea, the idea that is hard to come by but
which can immediately be verified as being excellent. In the terms of mathematical

1To be precise P only contains decision problems but for simplicity let us ignore this formal
definition in this informal discussion.
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research NP=P would, informally, be the same as saying that whenever a theorem
has a short proof then this proof can be found quickly. We all “disprove” this
statement frequently but on the other hand one should not compare mathematicians
to computers.

In any case, most people working in complexity theory have a strong conviction
that NP does indeed contain problems not in P. It seems, however, that a proof
of this requires new insights. To prove that a problem does not belong to P one
is required to prove that any algorithm that solves the given problem must take
a long time. Another way to phrase this is to say that any algorithm that runs
quickly must make a mistake on some input. This quantification over algorithms
is very difficult to handle. There are many ways to proceed in a computation and
for some problems there are very counter-intuitive algorithms that turn out to be
both efficient and correct. Before continuing with our main topic let us take a small
detour.

Consider ordinary arithmetic with large integers. It is easy to add two n-bit
numbers with O(n) operations. This is clearly, up to constants, the best we can do
as each input bit needs to participate in some operation.

Multiplication done the standard, grade school, way requires O(n2) operations
to multiply two n-bit numbers. There are more efficient methods and the most
efficient algorithm [24] is based on the discrete Fourier transform and runs in time
O(n log n log log n). It is unknown if this is best possible or even more embarrassingly
it is unknown whether multiplication can be done in time O(n). In other words we
do not know whether multiplication is a more difficult operation to perform than
addition or whether it is simply that we have not found the best way to do it. It is
not obvious which is the most difficult problem, to prove that NP�= P, or to prove
that multiplication needs super-linear time, but with our inability to prove lower
bounds for computation a major new idea seems to be needed to succeed with either
task. Let us return to our main line of reasoning.

Even if we have not been able to prove that NP contains difficult problem we
have identified the best candidates for such problems; the NP-complete problems.
Loosely speaking a problem in NP is NP-complete if it belonging to P is equivalent
to NP=P. Thus, as we strongly believe that NP�= P, being NP-complete is strong
evidence that a problem is computationally difficult. A slight variant is to prove
that a problem is NP-hard. Such a problem has the property that it belonging to
P implies that NP=P, but as opposed to the NP-complete problem such a problem
need not itself belong to NP. For instance it might not be a decision problem or it
might be a decision problem of even higher complexity.

Many problems are known to be NP-complete and in particular TSP discussed
above is NP-complete. Ever since Cook [5], in 1971, first defined the class of NP-
complete problems, one problem, Satisfiability, has turned out to play a central
role. In Satisfiability we are given a Boolean formula and the question is to find an
assignment that satisfies the formula. One example is given by the formula

ϕ = (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄2 ∨ x4).

This formula has the further property that it is a conjunction of disjunctions of
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literals2 and this type of formula is usually called 3-CNF, where 3 is a bound on the
number of literals in each disjunction (or clause) and CNF is short for Conjunctive
Normal Form. It was proved by Cook that satisfiability of 3-CNF formulas is NP-
complete. One might note that satisfiability of 2-CNF formulas is decidable in
polynomial time and we invite the reader to find an efficient algorithm in this case
when each disjunction only contains at most 2 literals.

The problem of deciding satisfiability of 3-CNF formulas is known as 3-Sat. It
is a prime example of what it is called a Constraint Satisfaction Problem (CSP)
as it is a collection of constraints each on a small set of variables. As 3-Sat would
seem like a rather simple CSP one might expect that most CSPs are NP-complete
and this is indeed correct. Already in 1978 Schaefer [24] constructed the short list
of classes3 of Boolean CSPs for which the problem is in P while in all other cases
it is NP-complete. Over larger domains the situation is more complicated and a
complete characterization over the domain of three values was found only recently
by Bulatov [4]. The general case is still not resolved.

In this paper, however, we focus on the Boolean case where each variable only
takes two values. As mentioned above almost all problems in their basic form are
NP-complete but we turn to a more refined question. Above we described a black
or white world where we want to satisfy all constraints. We now turn to a world of
shades of gray where we want to satisfy as many constraints as possible. Let us try
to formulate the central question.

Consider an instance ϕ of 3-Sat where each clause is of length exactly 3. We
know that it is NP-complete to decide whether we can satisfy all the constraints,
but maybe we are happy if we can satisfy almost all the constraints. It is easy to
see that a random assignment satisfies a fraction 7

8 of the constraints and hence we
want to find an assignment that satisfies significantly more than this fraction. There
are instances where no assignment satisfies more than a fraction 7

8 of the constraints
and hence the question is most interesting when we, for one reason or another, are
guaranteed that there is some unknown assignment that satisfies all, or almost all
of the constraints.

It turns out that for 3-Sat we cannot efficiently find a good assignment even in
this case while for some other NP-complete problems we can find an assignment
that does asymptotically better than a random assignment. The goal of the current
paper is to survey these results.

2 Efficient computation

As our arguments are quite informal almost any definition of efficient compu-
tation would be sufficient. A reader desiring a precise definition can think of the
Turing machine or consult any standard text such as [21].

Many of our efficient algorithms are randomized. Again the precise details are
not important but as we in some cases count the number of possible random choices
let us fix a model.

2A literal is a variable or a negated variable.

30-valid, 1-valid, weakly positive, weakly negative, affine or 2-CNF: consult [24] for definitions.
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We assume that the algorithms have the ability to choose independent random
bits to use in their computations. These random bits are recorded on the work tape
of the Turing machine. As is commonly done we sometimes refer to these bits as
the “random coin flips” made by the algorithm.

3 Maximal constraint satisfaction problems

On the input side it turns out that it is more convenient to use {−1, 1} rather
than {0, 1} for our two possible values. A predicate P of arity k is a mapping
{−1, 1}k → {0, 1}. An instance of Max-CSP-P is given by a collection (Ci)mi=1 of
k-tuples of literals 4. When we want to emphasize the arity of P we call Max-CSP-P
a k-CSP.

For an assignment to the variables, a particular k-tuple is satisfied if P , when
applied to values of the literals, returns 1. For an instance I and an assignment x we
let N(I, x, P ) be the number of constraints of I satisfied by x under the predicate
P .

We could allow positive weights giving different constraints different importance.
As we do allow repetition of the same constraints we can, to a large extent, simulate
weights and the existence of weights turn out not to be of any significant importance
for our discussion.

Definition 3.1 Max-CSP-P is the problem of, given an instance I, to find the
assignment x that maximizes N(I, x, P ).

A key parameter for a Max-CSP is the number of assignments that satisfy the
predicate P .

Definition 3.2 The density, d(P ), of a predicate P on k Boolean variables is defined
as p2−k where p is the number of assignments in {−1, 1}k that satisfy P .

Definition 3.3 A k-CSP where each constraint is a disjunction of at most k literals
is an instance of Max-k-Sat. The subproblem where each constraint is the disjunction
of exactly k literals is denoted by Max-Ek-Sat.

Next we look at linear equations modulo 2. As we use {−1, 1} as our two values
with −1 corresponding to true, addition modulo 2 is in fact multiplication.

Definition 3.4 A k-CSP where each constraint is that a product of at most k
literals equals a constant is an instance of Max-k-Lin. If each product contains
exactly k variables we denote it by Max-Ek-Lin.

Note that, by Gaussian elimination, if all equations can be satisfied then such
an assignment can be found in polynomial time. Thus the interesting case of the
problem is when we cannot satisfy all the constraints.

In this paper we mostly consider linear equations modulo 2 but many results
apply to linear equations modulo m for larger values of m which need not even
be prime. This problem is most natural in the case when the variables are also

4Note that we allow both variables and negated variables.
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allowed to take values modulo m and in such a case we would speak of the problems
Max-k-Lin-m and Max-Ek-Lin-m.

Normally we allow negation of variables for free but to make the next problem
both a Max-CSP and a graph problem we make an exception.

Definition 3.5 A 2-CSP where each constraint is an inequality xi �= xj is an in-
stance of Max-Cut.

To see that Max-Cut is a graph problem think of each pair (i, j) that appears
as a constraint as an edge between vertices i and j in a graph. The task is now to
divide the vertices into two parts in such a way as the number of edges between the
two classes is maximized. Note also that Max-Cut is a special case of Max-E2-Lin
with each equation of the form

xixj = −1.

4 Approximation algorithms

In the best of all worlds we would, given a Max-CSP, efficiently find the optimal
solution. As stated in the introduction, however, for almost all Max-CSPs this is an
NP-hard task and hence we have to ask for less. We focus on algorithms that are
guaranteed to return a reasonably good solution.

Definition 4.1 Let O be a maximization problem and let C ≤ 1 be a real num-
ber. For an instance x of O let OPT (x) be the optimal value. A C-approximation
algorithm is an algorithm that on each input x outputs a number V such that
C ·OPT (x) ≤ V ≤ OPT (x).

One might require the algorithm to return a proof, in the case of a Max-CSP an
assignment of the given quality, that indeed its output satisfies the given condition.
In fact all algorithms we discuss will have this property and thus they do more than
required. On the other hand it turns out that when we prove that some computa-
tional problem is hard we usually prove that already finding the approximate answer
in the above sense is hard.

We have of course a similar definition for minimization problems but as we here
only deal with maximization problems we do not state it formally.

Definition 4.2 An efficient C-approximation algorithm is a C-approximation al-
gorithm that runs in worst case polynomial time.

We also allow randomized approximation algorithms in which case we require
the upper bound V ≤ OPT (x) to always hold while V ≥ C ·OPT (x) is relaxed to
hold only in expectation. Note that the expectation is taken only over the random
coin flips of the algorithm and is assumed to hold for each individual input. In
particular, there is no randomness associated with the input.

Most of the algorithms described can, at an arbitrarily small loss, be derandom-
ized and in any case running the algorithm repeatedly can make sure that, with very
high probability, we get an output within (almost) a factor C of optimal.

The formulation “having approximation ratio C” is sometimes used as an alter-
native to saying “being a C-approximation algorithm”.
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Any Max-CSP-P has an approximation algorithm with constant approximation
ratio.

Theorem 4.3 Max-CSP-Padmits a polynomial time approximation algorithm with
approximation ratio d(P ).

Proof Assume that we are given an instance with m constraints. A random as-
signment satisfies any given constraint with probability d(P ) and thus it satisfied
d(P )m constraints on the average. As the optimal assignment can satisfy at most
all m constraints we get a randomized d(P )-approximation algorithm. �

Let us note that it is not difficult to deterministically find an assignment that
satisfies a fraction d(P ) of the constraints by the method of conditional expectation.
We leave the details to the reader.

The random assignment algorithm finds an assignment that satisfies d(P )m con-
straints independent of OPT (x). If we want to have a better approximation ratio
then it is sufficient to do better in the case when OPT (x) is close to the maximal
value m.

The main classification we study in this paper is inspired by this fact and is
slightly different from approximation ratio. We concentrate on what is needed from
the optimal solution in order for an efficient algorithm to find an assignment that
does significantly better than the naive randomized algorithm used above which
simply picks a random assignment.

Definition 4.4 A Max-CSP given by predicate P on k variables is approximation
resistant on satisfiable instances if for any ε > 0 it is NP-hard to distinguish instances
where all constraints can be simultaneously satisfied from those where only a fraction
d(P ) + ε of the constraints can be simultaneously satisfied.

The existence of the arbitrarily small constant ε is somewhat annoying. It is not
difficult to see that it cannot be the case that it is NP-hard to distinguish satisfiable
instances from instances where exactly a fraction d(P ) of the constraints can be
simultaneously satisfied, and thus some weakening is needed. The chosen weakening
turns out to be convenient but there are other alternatives and in particular one
could ask for ε to be a function of the size of the input and tend to 0 as this size
increases.

While the previous definition does not exactly correspond to a statement about
approximation ratio, the next definition is equivalent to saying that, again up to an
arbitrary ε > 0, the approximation ratio given by Theorem 4.3 is the best possible.

Definition 4.5 A Max-CSP given by predicate P on k variables is approximation
resistant if for any ε > 0 it is NP-hard to distinguish instances where a fraction
(1 − ε) of the constraints can be simultaneously satisfied from those where only a
fraction d(P ) + ε of the constraints can be simultaneously satisfied.

Next we have a class of problems that are of intermediate complexity. It is
possible to find an assignment of non-trivial quality for almost satisfiable instances
but when the quality of the optimal solution is below a certain threshold this is no
longer possible.
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Definition 4.6 A Max-CSP given by predicate P on k variables is somewhat ap-
proximation resistant if it is not approximation resistant and there is some δ > 0
such that for any ε > 0 it is NP-hard to distinguish instances where a fraction
d(P ) + δ of the constraints can be simultaneously satisfied from those where only a
fraction d(P ) + ε of the constraints can be simultaneously satisfied.

Finally we have the class of problems where we can, as soon as the optimum is
significantly better than the random assignment, find an assignment that also does
significantly better than the random assignment.

Definition 4.7 A Max-CSP given by predicate P on k variables is always approx-
imable if for each δ > 0 there is an εδ > 0 and an efficient algorithm that given an
instance where a fraction d(P )+ δ of the constraints can be simultaneously satisfied
finds an assignment that satisfies at least a fraction d(P ) + εδ of the constraints.

We proceed to give some positive results in the next section.

5 Constraints on two variables

The main technique used for deriving efficient approximation algorithms for Max-
CSPs is semi-definite programming which was introduced in this context by Goemans
and Williamson [9] as a tool to attack several problems. As the basic algorithm is
very beautiful and quite easy to state, especially in the case of Max-Cut, we describe
their approach for this problem here.

Let us formalize Max-Cut as a quadratic program

max
x∈{−1,1}n

∑
(i,j)∈E

1− xixj

2
. (5.1)

This sum measures exactly the size of the maximal cut as each term is one if the
edge is cut and zero otherwise. Let us relax (5.1) by introducing variables yij for
the products xixj giving the program

max
y

∑
(i,j)∈E

1− yij

2
.

Allowing the variables yij to be completely independent would, of course, make the
problem uninteresting and the key is to require that the numbers yij form a positive
symmetric semidefinite matrix with ones on the diagonal. Let us write this as follows

max
y�0,yii=1

∑
(i,j)∈E

1− yij

2
. (5.2)

Note that this is a relaxation of the original problems as if yij = xixj then indeed
this matrix fulfills the conditions.

The magic now comes from the fact that the optimization problem (5.2) can, by
a result by Alizadeh [1], be solved to any desired accuracy in polynomial time. For
simplicity of discussion we ignore that we can only find an almost optimal solution
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and assume that we find the true optimum. This slight inaccuracy does not affect
our results as we state them.

Let us phrase the problem (5.2) slightly differently. Remember that an n × n
matrix Y is symmetric positive semidefinite iff there is another n×n matrix V such
that

Y = V TV.

This implies that there are vectors (in fact the columns of V ) such that

yij = (vi, vj)

and the requirement that yii = 1 is equivalent to vi being a unit vector. Thus (5.2)
is equivalent to

max
(‖vi‖=1)n

i=1

∑
(i,j)∈E

1− (vi, vj)
2

. (5.3)

In this formulation it is obvious that (5.3) is a strict generalization of (5.1) as
we can interpret the xi as vectors forced to lie in a single dimension.

While it is easy to interpret a one-dimensional solution as a high dimensional
solution the challenging and interesting part is to take a high dimensional solution
and produce a good one-dimensional solution. The inspired solution by Goemans
and Williamson is to pick a random vector r ∈ Rn and set

xi = sign((r, vi)), (5.4)

where, in the probability 0 event that (r, vi) = 0, we set xi = 1.
Let us analyze this rounding from the approximation ratio perspective. Assume

that the angle between vi and vj is θij. The contribution to the objective function
is then

1− cos θij

2
while the probability that the edge is cut, i.e. that sign((r, vi)) �= sign((r, vj)) is
exactly θij

π . Define the real number αGW by

αGW = min
0≤θ≤π

θ
π

1−cos θ
2

.

The numeric value of αGW is approximately .878. We get the following chain of
inequalities

E

⎡⎣ ∑
(i,j)∈E

1− xixj

2

⎤⎦ =
∑

(i,j)∈E

θij

π
≥ αGW

∑
(i,j)∈E

1− cos θij

2
≥ αGW ·OPT.

The last inequality follows as the maximum of the relaxed problem is at least the
true maximum. We conclude that the given algorithm is an αGW -approximation
algorithm. It is randomized but it can be derandomized [20] with an arbitrarily
small loss in the quality of the obtained solution.
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Let us turn to Max-2-Sat. Remember that we are using −1 to denote true and
hence a clause xi ∨ xj is equivalent to the quadratic expression

3− xi − xj − xixj

4
. (5.5)

Negations are handled in the natural way and a clause x̄i ∨ xj corresponds to

3 + xi − xj + xixj

4
, (5.6)

with similar formulas for the other types of clauses.
The expressions (5.5) and (5.6) look essentially different from the corresponding

terms for Max-Cut in that they contain linear terms and to remedy this we introduce
an extra variable x0 which will always be true. With this trick (5.5) turns into

3 + x0xi + x0xj − xixj

4
, (5.7)

and we can relax this to

3 + (v0, vi) + (v0, vj)− (vi, vj)
4

, (5.8)

with unit length vectors vi. This suggests the following approximation algorithm for
Max-2-Sat.

Make an objective function by summing all quadratic expressions corresponding
to clauses and solve the resulting semi-definite program. To retrieve Boolean values
pick a random vector r and set xi to true if sign((vi, r)) = sign((v0, r)).

It turns out that this algorithm gives an approximation ratio of αGW for Max-
2-Sat, i.e. the same constant as obtained for Max-Cut. To see this note that (5.8)
can be written as

1 + (v0, vi)
4

+
1 + (v0, vj)

4
+

1− (vi, vj)
4

, (5.9)

and the old argument can be applied to each term separately. That we have denom-
inator 4 instead of 2 and that we might have plus signs instead of minus signs does
not affect that analysis.

The fact that signs do not matter implies that the algorithm approximating
Max-Cut can, essentially without change, be applied to Max-E2-Lin giving the same
constant αGW also for this problem.

Let us make a couple of observations about the algorithm for Max-2-Sat. It is
clearly needed to have a non-symmetrical relation between “true” and “false” for
Max-2-Sat while there is complete symmetry between the two sides in Max-Cut.
Thus there is some need for v0 or some other mechanism for breaking the symmetry
between “true” and “false”.

Secondly it turns out that the direction of v0 is very special and this can be
used to obtain better approximation ratios [8, 19]. Using a search over a large set
of rounding procedures Lewin et al [19] obtain an algorithm whose approximation
ratio probably5 is approximately .940.

5This value has only been determined numerically and has not been proved analytically.
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Although it does not follow from the given analysis one can modify the rounding
to show that any Boolean 2-CSP is always approximable according to our definition.
Furthermore, it turns out that this result generalizes to any constant size domain
[13] and thus in our terminology any Max-CSP where each constraint depends on
two variables is always approximable.

6 Some approximation resistant predicates

Let us start by stating one result. We then discuss some consequences and only
later, very briefly, discuss some of the ideas behind the proof.

Theorem 6.1 [12] For any ε > 0 it is NP-hard to approximate Max-E3-Lin within
a factor 1

2 + ε. In other words, Max-E3-Lin is approximation resistant.

Stated in other terms, for any ε > 0 it is NP-hard, given a system of linear
equations modulo 2, to determine whether there is a solution that satisfies a fraction
1− ε of the equations or if no assignment satisfies more than a fraction 1

2 + ε of the
equations.

Note that we cannot strengthen Theorem 6.1 to prove Max-Lin approximation
resistant on satisfiable instances as Gaussian elimination gives an efficient procedure
to determine whether all equations are simultaneously satisfiable. It is possible to
prove a variant of Theorem 6.1 with a sub-constant value for ε. Results along those
lines have been obtained by Khot and Ponnuswami [18].

One can also note that, if variables are allowed to take values in [m], Theorem 6.1
can be extended [12] to give inapproximability 1

m +ε of Max-E3-Lin-m and the result
even extends to equations over non-Abelian groups [7].

Let us postpone the discussion of the proof of Theorem 6.1 and first use it to
obtain results for some other Max-CSPs of interest.

Theorem 6.2 [12] For any ε > 0 it is NP-hard to approximate Max-E3-Sat within
a factor 7

8 + ε. In other words, Max-E3-Sat is approximation resistant.

Proof We give a reduction from Max-E3-Lin. We are given a system of equations
modulo 2 with three variables in each equation and we want to produce an instance
of Max-E3-Sat. Since we are using {−1, 1}, addition modulo 2 is conveniently rep-
resented as multiplication and a linear equation containing three variables can be
written as

xixjxk = b (6.1)

for some indices i, j, and k and b ∈ {−1, 1}. Assume for the time being that b = 1
and consider the following clauses

(xi ∨ xj ∨ x̄k)
(xi ∨ x̄j ∨ xk)
(x̄i ∨ xj ∨ xk)
(x̄i ∨ x̄j ∨ x̄k).
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Then if (6.1) is satisfied so are all four clauses while if (6.1) is not satisfied then
exactly three clauses are true. If b = −1 then we use the four clauses

(xi ∨ xj ∨ xk)
(xi ∨ x̄j ∨ x̄k)
(x̄i ∨ xj ∨ x̄k)
(x̄i ∨ x̄j ∨ xk)

with the same property. Thus if we start with a system of m equations we get 4m
clauses and an assignment that satisfies v of the equations satisfies exactly 3m+ v
clauses. It is now easy to check that the existence of an algorithm which gives a
7
8 + ε approximation for Max-E3-Sat with ε > 0 implies a 1

2 + ε′ approximation for
Max-E3-Lin with ε′ > 0 . Theorem 6.2 follows from Theorem 6.1. �

For Max-E3-Sat we could “hope” for approximation resistance on satisfiable
instances and this is true.

Theorem 6.3 [12] Max-E3-Sat is approximation resistant on satisfiable instances.

There does not seem to be any fast way of deriving Theorem 6.3 from Theo-
rem 6.1 and major parts of the proof have to be modified in a substantial way.

We will only briefly touch upon the ideas of these theorems but before we do
even this we need to discuss proof systems in general.

7 Proof systems

The complexity class NP can be seen as a proof system. We have a prover P
and a verifier V . P finds the witness of membership and sends it to V who then can
efficiently check the proof. As an example, to prove that a formula ϕ is satisfiable
P would supply the satisfying assignment which V then would verify by evaluating
the formula.

In this standard situation V reads the entire proof, but we want to model a
situation where V does spot checks and only reads a small fraction of the proof. We
count the number of bits V reads from the proof and to make this easy to formalize
we envision the proof in the shape of an oracle. Let Σ∗ be the set of all finite binary
strings.

Definition 7.1 An oracle is a function Σ∗ → {0, 1}.
Written proofs are identical with proofs using oracles where reading the i’th bit

of the written proof corresponds to evaluating the oracle function on the binary
representation of i. The entire concept of oracle Turing machines is just to be
able to formally count the numbers of bits accessed by V when checking the proof.
The reader unfamiliar with oracle Turing machine might be more comfortable by
disregarding the notion and simply count the number of bits read by V in a less
formal way.

A typical verifier V π(x, r) is a probabilistic Turing machine where π is the oracle,
x the input and r the (internal) random coins of V . We say that the verifier accepts
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if it outputs 1 (written as V π(x, r) = 1) and otherwise it rejects. As is standard in
complexity theory we identify a decision problems with a language which is simply
the set of inputs with the answer “yes”. We can thus speak of the “language of
satisfiable formulas” and use membership as the primitive notion.

Definition 7.2 Let c and s be real numbers such that 1 ≥ c > s ≥ 0. A probabilistic
polynomial time Turing machine V is a verifier in a Probabilistically Checkable Proof
(PCP) with soundness s and completeness c for a language L iff

• For x ∈ L there exists an oracle π such that Prr[V π(x, r) = 1] ≥ c.

• For x �∈ L, for all π Prr[V π(x, r) = 1] ≤ s.

An important property turns out to be whether the identity of later bits read
by V depends on the values obtained for earlier bits read. If they do, V is called
“adaptive”, with the opposite being called “non-adaptive”.

In the current paper we always have perfect completeness in that a correct proof
of a correct statement is always accepted and hence c is always equal to one in the
above definition. Using smaller values of c might seem counterintuitive but this is
used in the proof of Theorem 6.1.

We are interested in a number of properties of the verifier and one property that
is crucial to us is that V does not use too much randomness.

Definition 7.3 The verifier V uses logarithmic randomness if there is an absolute
constant c such that on each input x and proof π, the length of the random string
r used by V π is bounded by c log |x|.

Using logarithmic randomness makes the total number of possible sets of coin
flips for V polynomial in |x| and hence all such sets can be enumerated in polynomial
time.

We also care about the number of bits V reads from the proof.

Definition 7.4 The verifier V reads c bits in a PCP if, for each outcome of its
random coins and each proof π, V π asks at most c questions to the oracle.

To get a feeling for why we discuss PCPs let us envision a proof of Theorem 6.3.
An NP-hardness proof is essentially always a reduction. To prove that it is NP-hard
to distinguish objects of class X from objects of class Y one describes a polynomial
time algorithm that takes a Boolean formula ϕ as input and produces an output
which is of class X if ϕ is satisfiable while it is of class Y if ϕ is not satisfiable.

In particular to prove Theorem 6.3 we would expect to have a polynomial time
reduction which on input ϕ and a number ε > 0, produces another formula ψ in
3-CNF with the following properties.

• If ϕ is satisfiable so is ψ.

• If ϕ is not satisfiable then any assignment satisfies only a fraction 7
8 + ε of the

clauses of ψ.
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Clearly this would prove Theorem 6.3 as an algorithm A distinguishing satisfiable
formulas from formulas where only a fraction (7

8 + ε) of the clauses can be simulta-
neously satisfied could be used to determine satisfiability. Given ϕ one could simply
compute ψ and then run the algorithm A on input ψ.

Let us see that what we have in our hands is in fact a PCP. The written proof
would now not be a satisfying assignment for ϕ but a satisfying assignment of ψ.
This would be checked by a verifier V that given ϕ first constructs ψ, picks a random
clause of ψ, reads the values of the three variables in the proof and accepts if the
clause is satisfied. Let us check the properties of this verifier.

If ϕ is satisfiable then so is ψ and the prover can specify the oracle accordingly
and hence V would accept with probability 1 giving perfect completeness c = 1.

If ϕ is not satisfiable then no assignment satisfies more than a fraction 7
8 + ε of

the clauses of ψ and hence independently of the proof, the verifier would accept with
probability at most 7

8 + ε.
Note that the only randomness used by V is to pick a random clause of ψ and

since ψ is of polynomial size this can be done with a logarithmic number of random
coins. Finally also note that V only reads three bits of the proof.

Our type of reduction is more or less equivalent to the existence of a PCP which
is limited to reading three bits. Let us sketch the reverse reduction in the case when
the verifier is non-adaptive. The correspondence also exists in the adaptive case but
is less tight.

Suppose there is a PCP to determine if ϕ is satisfiable, which reads 3 bits of the
proof, has completeness one, soundness s, and where the verifier uses a logarithmic
number of random bits and is non-adaptive.

Consider the “proof optimization problem” where we put ourselves in the shoes
of a prover that wants to find the proof that maximizes the probability that the
verifier accepts. Having not determined the proof yet we use a Boolean variable xi

to be determined as the value of the i’th bit of the proof. For each set of coinflips,
r, of V it reads three bits ir1, i

r
2 and ir3 and accepts given a condition Cr(xir1

, xir2
, xir3

)
on these bits. Any condition on three bits can be written as a formula that is a
3-CNF and hence let us assume that Cr is of this form. Then the probability that
V accepts is essentially given by the number of clauses satisfied in the formula

ψ = ∧rCr(xir1
, xir2

, xir3
).

We encourage the reader to work out the details of this reduction. Note that it is
important that the resulting formula is of polynomial size and for this it is crucial
that we only have a polynomial number of different r’s. This is equivalent to saying
that we only have a logarithmic number of random coins.

The existence of a PCP with even the gross behaviour of what we need, i.e.
reading a constant number of bits, completeness one and soundness s, a constant
strictly smaller than 1 and using logarithmic randomness is already mind-boggling.
It is remarkable that it is possible to efficiently verify an arbitrary NP-statement of
arbitrary size reading only a constant number of bits of the proof. The existence of
such a PCP was established in a sequence of papers and the final construction was
given by Arora et el [2].

Theorem 7.5 [2] There is a universal integer c such that any language in NP has a
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PCP with soundness 1/2 and completeness 1 where V uses logarithmic randomness
and reads at most c bits of the proof.

Remark This theorem is often called the “PCP-theorem” or referred to as “ALMSS”
after the initials of the authors.

Remark Although the number of bits read is independent of which language in
NP we are considering, this is not true for the amount of randomness. The number
of random bits is d log n for any language L, but the constant d depends on L.

To establish Theorem 6.1 and Theorem 6.3 one needs to find PCPs with very
good constants. As the construction builds on a number of results it is not possible
to present them here and we refer the interested reader to [12]. Let us give some
results for other Max-CSPs.

8 Constraints on three Boolean variables

Zwick has determined good bounds for the approximation constants for all pred-
icates on three variables [25]. We focus here on the classification into our four groups
which gives us fewer details to consider.

To discuss the results it is convenient to write the predicate as a multilinear
polynomial. We already used this representation when we discussed 2-CSPs but let
us now do it more formally.

Theorem 8.1 Any predicate P on k variables x1, x2 . . . xk, can in a unique way be
written as a real sum

P (x) =
∑

S⊆[k]

cPS
∏
i∈S

xi.

There are a number ways to prove this theorem and readers familiar with the discrete
Fourier transform might realize that the coefficients cPS are exactly the Fourier coef-
ficients. Let us give an example. If P accepts the strings (−1,−1,−1), (−1,−1, 1),
(−1, 1,−1) (1,−1,−1) and (1,−1, 1) then

P (x) =
1
8
(5− x1 − 3x2 − x3 − x1x2 + x1x3 − x2x3 + x1x2x3) (8.1)

For predicates on three variables the question whether c{1,2,3} equals 0 is of crucial
importance.

Theorem 8.2 A predicate P on three variables is always approximable iff cP{1,2,3} =
0.

Sketch of proof. If the coefficient is 0 then P can be written as a real weighted
sum of predicates each depending on two variables. Such sums can be efficiently
approximated as discussed in Section 5.

The proof of the reverse direction uses essentially the same reduction as used in
our sketch of proof of Theorem 6.2 from Theorem 6.1. The fact that cP{1,2,3} �= 0 is
equivalent to P not accepting the same number of strings of even parity and odd
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parity. Assume that P accepts a strings of even parity and b strings of odd parity
where a > b. In our example (8.1) above a = 3 and b = 2.

Now given an equation

xixjxk = 1 (8.2)

we write down the four constraints

P (xi, xj , xk)
P (xi, x̄j , x̄k)
P (x̄i, xj , x̄k)
P (x̄i, x̄j , xk).

An assignment that satisfies (8.2) satisfies a of these constraints while an assignment
that does not satisfy (8.2) satisfies b constraints. Equations of the form xixjxk = −1
are handled by adding one negation. We produce an instance with 4m constraints
where an assignment that satisfies v of the linear equations satisfies bm+ v(a− b)m
of the P -constraints. As d(P ) = (a + b)/8 a small calculation is sufficient to prove
that P is at least somewhat approximation resistant. We leave the details to the
reader.

Next we look at approximation resistance.

Theorem 8.3 A predicate P on three Boolean inputs is approximation resistant iff
it is implied by parity or the negation of parity.

Sketch of proof. Looking more closely at the previous proof, and working out the
numbers, if a = 4 then the given reduction establishes approximation resistance.

The proof that no other predicates are approximation resistant goes by giving
an efficient approximation algorithm for each of the other predicates. We refer to
[25] for the details.

As stated in the introductory sections we allow negation for free. Another degree
of freedom is the order of the inputs to P and hence any two predicates that can
be transformed into each other by negations of inputs together with a permutation
of the inputs are, in our eyes, equivalent. Viewed this way, for d = 4, 5, 6, 7 there
is only one predicate accepting d inputs proved to be approximation resistant by
Theorem 8.3. For each of these predicates we can ask what happens on satisfiable
instances.

As stated several times, parity itself is not approximation resistant on satisfiable
instances while Theorem 6.3 states that the predicate we get that accepts 7 inputs
does indeed have the property. This result can be extended to the predicate that
accepts 6 inputs.

Theorem 8.4 Let P be a predicate on three Boolean inputs implied by parity which
accepts 6 or 7 inputs. Then P is approximation resistant on satisfiable instances.

The only remaining question for predicates on three Boolean inputs with regards
to our classification is whether a predicate P that is implied by parity and which
accepts 5 inputs is approximation resistant on satisfiable instances. Such a predicate
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P has several equivalent formulations but one convenient way is to define it to accept
the input unless exactly one of the three input bits is true. To determine whether this
predicate is approximation resistant on satisfiable instances is still an open question.
We known that it is approximation resistant and there is no obvious way to make
use of the fact that an instance is satisfiable and not only almost satisfiable. In
particular it is NP-complete to determine whether an instance is satisfiable or not.

9 Max-CSP on Boolean variables of higher width

The approximation resistance of predicates on more than three variables has
been studied but results are far less complete.

Some of the results extend without problems and in particular we have the
following.

Theorem 9.1 [12] For any k ≥ 3, parity on k variables as well as any predicate
implied by parity on k variables is approximation resistant.

From this theorem it possible to conclude that always approximable predicates
are very few.

Theorem 9.2 A predicate P is always approximable iff cPS = 0 for any S of size at
least 3.

The proof of this is a very slight generalization of the proof of Theorem 8.2. If
indeed all the coefficients are 0 then we again can write P as a weighted sum of
2-CSPs.

If we have some S of size k ≥ 3 with cPS �= 0 we can use this as a basis of a
reduction in a similar way as was sketched in the proof of Theorem 8.2. We leave
the details to the interested reader.

Theorem 9.2 leads to a full characterization of the always approximable pred-
icates. The only predicate that depends on four variables that has this property
is

P (x) =
2 + x1x3 + x1x4 + x2x3 − x2x4

4

while there is no predicate that depends on at least 5 variables and that is always
approximable.

Hast [11] classified many predicates on four variables as to whether they were ap-
proximation resistant, ignoring whether approximation resistance held for satisfiable
instances.

When we identify predicates that can be made equal by permuting and negating
inputs and ignore the constant predicates there are are 400 different predicates on
four Boolean variables. Of these 79 were determined to be approximation resis-
tant, 275 were found not to be approximation resistant while Hast was not able to
determine the status of the remaining 46 predicates.

It is interesting to look at the division into groups depending on the number of
accepting 4-tuples.
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Accepted inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Non-resistant 1 4 6 19 27 50 50 52 27 26 9 3 1 0 0
Resistant 0 0 0 0 0 0 0 16 6 22 11 15 4 4 1
Unknown status 0 0 0 0 0 0 6 6 23 2 7 1 1 0 0

From this table it seems evident that the more inputs a predicate accepts the more
likely it is to be resistant. This is partly true but not fully true as the following
theorem indicates.

Theorem 9.3 [11] There are predicates on four variables P and Q such that P
implies Q, P is approximation resistant while Q is not approximation resistant.

Setting
P = ((x1 ∨ (x2 = x3)) ∧ (x̄1 ∨ (x2 = x4)))

and
Q = ((x2 = x3) ∨ (x2 = x4))

gives an example. Approximation resistance of P was proved in [10] while an ap-
proximation for Q was given in [25]. The fact that Q only depends on three variables
might be taken as a drawback of this example but this can be remedied. In fact,
if we make Q accept also the string (1, 1,−1 − 1) then it remains only somewhat
approximation resistant.

The intuition that predicates that accept few inputs are easy to approximate
while predicates that accept most inputs are hard to approximate, can, however be
given some formal support.

Theorem 9.4 [11] Any predicate on k variables accepting at most 2	k/2
+1 inputs
is not approximation resistant.

There are, however, some predicates that accept rather few inputs but are still
approximation resistant. A prime example was given by Samarodnitsky and Trevisan
[22].

Theorem 9.5 [22] Assume l1 + l2 + l1l2 = k then there is a predicate PST on k
variables which accepts 2l1+l2 inputs and is approximation resistant.

The predicate is the conjunction of l1l2 linear constraints. It is possible to prove
[11] that any predicate implied by PST is also approximation resistant. This can be
used to prove the following:

Theorem 9.6 [11]Assume l1 + l2 + l1l2 = k then any predicate on k variables that
accepts at least 2k + 1− 2l1l2 inputs is approximation resistant.

H̊astad and Khot [15] extended, at the cost of slightly worse bounds, the work
of Samorodnitsky and Trevisan to achieve approximation resistance on satisfiable
instances.

Theorem 9.7 [15] Assume 2l1 + 2l2 + l1l2 = k then there is a predicate PHK on k
variables which accepts 22l1+2l2 inputs and is approximation resistant on satisfiable
instances.
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10 Exact constants and the unique games conjecture

Many basic questions with regards to approximability of NP-hard questions re-
main. Due to lack of space let us not introduce more problems but instead mention
some recent developments.

The approximation constant αGW obtained for Max-Cut has not been improved
since the original Goemans-Williamson paper over a decade ago. There is now
evidence that it might be the correct constant for Max-Cut. To be more precise
Khot [16] formalized in 2002 a conjecture about a game characterization of NP
known as the “Unique Games Conjecture”, (UGC) . This has turned out to be a
strong conjecture with many important consequences, one [17] being that the Max-
Cut constant αGW is indeed correct.

Of the problems we discussed the approximability of Max-2-Sat can also be
more or less resolved using UGC. Austrin [3] proved that, again assuming UGC, the
numerically found approximation ratio for the algorithm by Lewin et al [19] (around
.940) is an upper bound for the approximation ratio of any efficient approximation
algorithm. Thus in the likely case that [19] did find the correct approximation ratio
for their algorithm the rather natural question of the best approximation constant
for Max-2-Sat might be determined and the true answer is the optimal value of an
ugly but well defined optimization problem and happens to be around .940.

Samorodnitsky and Trevisan [23] proved that if d is the smallest number such
that k ≤ 2d−1 then, based on the UGC, there is an approximation resistant predicate
on k inputs that accepts 2d inputs and thus Theorem 9.4 might be quite close to the
truth. H̊astad [14] used this result to show that, again based on UGC, for large k,
a random predicate P of width k is with high probability approximation resistant.

The truth of the UGC is uncertain and there seems to be no compelling evidence
either to believe it or doubt it. As the number of interesting consequences of UGC
increases, the urgency of proving or disproving it is mounting and UGC is now one
of the main open problems of the area of PCPs and approximability of NP-hard
optimization problems.

11 Conclusions and open problem

We have discussed the classification of Max-CSPs mainly in the Boolean case.
Our knowledge of Max-CSPs over larger domains is far less complete6 and a lot of
work remains to be done. There are results also for larger size domain, in particular
Theorem 6.1, Theorem 9.5 and Theorem 9.7 do extend [12, 6, 15] but as we do not
have space to discuss these problems here we refer to those papers for a discussion.

Approximation resistance on satisfiable instances is possibly the ultimate hard-
ness condition for a CSP. Even though there is some assignment that satisfies all
the constraints, efficient computation cannot do essentially better than picking an
assignment at random. We do believe that already approximation resistance is a
central property of a CSP and much better evidence of hardness than the standard
NP-completeness that is abundant and hence not very informative.

A few open questions have been mentioned in the text. In the best of all worlds

6Indeed, even classical NP-hardness is just resolved for size three domains [4].
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one would have a complete characterization of which predicates fall into which cat-
egory. Currently there is such a characterization only for the miniature class of
always approximable predicates. The optimist could hope for a full characterization
of all our classes. Of course once we have such a characterization there are many
more detailed questions to study.

Acknowledgment. I am grateful to Per Austrin and an anonymous referee for
comments on a preliminary version of this manuscript.
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The Combinatorics of Cryptographic Key
Establishment

Keith M. Martin

Abstract

One of the most important processes involved in securing a cryptographic sys-
tem is establishing the keys on which the system will rely. In this article we
review the significant contribution of combinatorial mathematics to the devel-
opment of the theory of cryptographic key establishment. We will describe
relevant applications, review current research and, where appropriate, identify
areas where further research is required.

1 Introduction

Cryptography provides the core information security services that are necessary
to safeguard electronic communications. The sound management of cryptographic
keys is the fundamental supporting activity that underpins the secure implementa-
tion of cryptography. The purpose of this paper is to demonstrate the significant
contribution of combinatorial mathematics to the development of the theory of cryp-
tographic key establishment.

• Scope: This paper surveys areas of key establishment where combinatorial
models or construction techniques have proven of value. Our aim is not to
provide a comprehensive survey of the literature, but rather to provide suf-
ficient coverage that most relevant work will be (to use the terminology of
Section 7.3.3) at most a “two-hop path” from this review. This paper is not
an attempt to survey the vast research on key establishment in general.

• Detail: The primary aim is to bring these applications of combinatorics to
the attention of the mathematical community within a sensible unifying frame-
work. We thus focus on introducing concepts and providing pointers for further
study. This paper contains no proofs. Combinatorial modelling typically in-
volves the establishment of bounds and constructions. For illustrative purposes
we will tend to focus on constructions in this review.

• Novelty: This article largely describes existing research and will contain few
surprises for those already familiar with the field. That said, as far as we are
aware, the full range of applications covered in this review have not previously
all been presented within a common framework and so it is hoped that this
may be of interest in its own right.

• Applicability: While the schemes in this paper are all of potential interest
to a designer of a real cryptographic system, most are proposed under more
rigorous mathematical security requirements than are demanded by the“real
world”, where security is often (validly) traded off against efficiency and prac-
ticality. Most of the key establishment schemes discussed in this paper are
unlikely to be currently employed in commercial applications. This does not,
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however, preclude them from influencing real designs or prevent them from be-
ing used in the future. They are all of interest in their own right as theoretical
models of what is possible.

The remainder of the paper is structured as follows. In Section 2 we provide some
background to cryptography and key management. We present a framework for
key establishment in Section 3, which sets the context for comparison of schemes
presented elsewhere in the paper. Section 4 contains some brief mathematical pre-
liminaries. Our main review is spread over the subsequent three sections, where in
Section 5 we look at key predistribution, in Section 6 we look at key distribution,
and in Section 7 we look at key agreement. In Section 8 we provide some concluding
remarks.

2 Cryptographic key management

We live in a society where electronic communication has become indispensable
and ubiquitous. Electronic networks pervade all aspects of our professional and pri-
vate lives. Many people, however, fail to appreciate that well-established and under-
stood security safeguards that apply to traditional communication media are often
absent in their electronic counterparts. In fact many of the features of electronic
communication that we most value potentially expose information to previously
unimaginable vulnerabilities.

The simple act of writing a letter suffices to illustrate this well. A traditional
hand-written letter is normally posted in a sealed envelope and delivered to the
specified address by a postal service. Interception of the contents requires physical
access to the letter during the delivery service and breaking of the protective seal.
The recipient can inspect the envelope for damage and may well gain assurance of the
integrity of the contents through physical means, such as inspection of the postmark
and recognition of handwriting. In contrast, an email is normally unprotected. In
order to reach the specified address it is sent over a series of computer networks,
passing through numerous computer servers and network routers on its journey. At
any point its contents could be inspected, copied, forwarded, changed, and even
the name of its sender could be forged. The recipient gains only cosmetic levels
of assurance that the content is genuine and unaltered. Security in this electronic
environment relies more on luck and lack of motivation for attack. If someone really
wants to learn the content of an email then with very little technological expertise
they probably can. With just a few clicks of their mouse button they can also share
it with a significant percentage of the world’s population.

There are of course solutions to most of these electronic security problems, as it
is inconceivable that some of the earliest adopters of commercial electronic networks,
such as the banking industry, could have developed electronic business without suit-
able security mechanisms in place. The science of cryptography underpins the bulk
of these solutions. Cryptography is essentially a toolkit of mathematical techniques,
algorithms and protocols that provide the core security services that are required
in electronic communications. These services include confidentiality (restricting ac-
cess to the contents of communicated data), data integrity (protecting data from
manipulation), data origin authentication (correctly attributing the originator of
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some data) and non-repudiation (providing evidence of the occurrence of a data
exchange that cannot later be denied). We have all used cryptography, even if we
are not always aware that we are doing so, as cryptographic mechanisms are used
to protect banking transactions (for example ATM transactions, Internet banking,
SWIFT transfers), mobile telephone communications, secure web transactions (by
means of the SSL protocol), password storage on computer operating systems, etc.
Most modern computers have the facility to encrypt email (even if we tend not to
use it) and almost everyone carries around at least one plastic card with a chip on
it, whose purpose is primarily to allow cryptographic computations to be performed
when that card is placed in contact with a reader.

Regardless of their purpose or application, most cryptographic mechanisms crit-
ically rely on the use of keys, which are essentially numbers selected at random from
a large space. As the majority of cryptographic mechanisms are published processes
that can be analysed by anyone, the entire security of a cryptographic mechanism
typically relies on the protection of the relevant keys. The nature of these keys
provides a natural broad classification of cryptographic mechanisms into symmetric
mechanisms, where the secret keys employed by the sender and the receiver of data
must be identical, and public-key mechanisms, where only one of the keys needs to
be secret, and the other key can be made public. While for many applications both
symmetric and public-key mechanisms are used in tandem, the fact that symmetric
mechanisms tend to be faster and require shorter keys means that for a range of
applications, symmetric key mechanisms are favoured. We will encounter several
such applications during this paper.

Assuming that strong cryptographic mechanisms are employed and implemented
correctly, it is fair to say that the security of cryptographic mechanisms relies almost
entirely on the secure management of the relevant keys. The phrase key management
tends to be associated with the entire lifecycle of a cryptographic key, including its
creation (key generation), the methods by which it is sent to the relevant users of
the system (key establishment), the techniques that are used to change or refresh it
(key update) and ultimately the means by which it is deleted at the end of its usage
period (key destruction).

The purpose of this paper is to review a number of interesting areas where com-
binatorics has found application in aspects of key management, and in particular key
establishment. We will generally not need to concern ourselves with the purpose, or
indeed even the algorithms, for which these keys are needed. The key establishment
problems that we will look at in detail are mostly intended to support applications
of symmetric cryptography. The reason for this is quite simple. The fundamental
key management challenge in symmetric cryptography is one of key establishment.
We need to arrange for every group of users who wish to engage in a secure commu-
nication exchange to have a common key. It should already be self-evident that this
lends itself to a combinatorial setting. This fundamental problem does not always
exist for public-key cryptography since one of the keys is public. Key management of
public-key cryptography involves quite different challenges, which are mainly beyond
our scope.

There are many introductory texts that provide a basic primer in cryptography.
For a short mathematics-free background read, we recommend [63]. For a more
comprehensive coverage of techniques and methodology we highly recommend [73].
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A good survey of some of the topics considered in this paper is [72]. More generally,
[10] provides an excellent survey on key establishment that goes beyond areas of
combinatorial interest and [18] is probably the definitive work on cryptographic
protocols relating to key establishment. Finally we note that both [7] and [26] include
good reviews of other combinatorial applications to problems arising in information
security.

3 Key establishment framework

In this section we will propose a framework within which the various schemes
that we study can be meaningfully compared. In the remainder of the paper we
will review schemes that have been proposed for a range of applications within this
framework.

We use the term key establishment to indicate that this framework primarily
covers the key management processes directly related to ensuring that the right
keys are established in the right places within the network. We normally assume
the existence of a trusted authority (or TA), which is an entity that is regarded
as trustworthy and secure by all users in the network and that is relied on for
various security critical operations, in particular during initialisation. We will not
be particularly concerned with operations such as key generation, which in most
case we leave to the TA, and key destruction, which in most cases we need to leave
to individual users.

We represent the set of users of our network by U = {U1, . . . , Un} and the TA by
T . It is probably most intuitive if we assume that we are establishing keys in this
network for confidentiality purposes (in other words our keys are encryption keys),
however this need not be the case.

Let C be a collection of subsets of U , which we refer to as a communication
structure, that consists of the collection of subsets of users for whom we wish to
establish common keys. Note that many treatments of key management assume that
cryptographic keys only need to be established between pairs of users. We make no
such restriction here and will often refer to group keys in order to emphasise that we
are establishing keys for general subsets. A group key kA for a set A ∈ C is a value
that all members of A can compute and use to secure joint communication within
the group.

Definition 3.1 Informally, a key establishment scheme for communication struc-
ture C is a set of protocols that allow any set A ∈ C to establish a group key kA. It
consists of the following operational phases:

1. Initialisation. In this phase T generates all the data required to initialise
the scheme. More precisely, this comprises:

• Secret data specific to each user. We denote the secret data specific to
user Ui by ui. This value is only known to T and Ui and we assume
that there exists some secure channel by which ui can be transported
from T to Ui (this channel is regarded as something outside of the key
establishment scheme and could include, for example, physical delivery).
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On receiving ui, user Ui is responsible for ensuring that ui is suitably
protected.

• Public system-wide data, which we denote by Pub. This is made available
by T to all users in U by means of an authenticated channel, the details
of which do not concern us here.

2. Key establishment. In this phase a group of users A ∈ C establish their com-
mon key kA. Whether this process involves the TA, communication between
users, or no communication between scheme entities, is a major distinguisher
between schemes in this paper. We return to this issue shortly (Section 3.1).

3. Update. In this optional phase, the secret and public data are modified. This
may be because the communication structure has changed (for example users
have left the scheme or new users have joined) or because the original keys have
expired (all cryptographic keys have a finite lifetime and eventually need to be
renewed). The simplest update operation is key refreshment, where existing
group keys are simply replaced by new keys.

In the following subsections we specify our framework by identifying issues that
can be used to define specific types of key establishment scheme.

3.1 Broad classification of key establishment schemes

A major distinguisher between different key establishment schemes is the extent
to which communication between entities occurs during the key establishment phase.
Note that the costly secure channels between the TA and users that were employed
during the initialisation phase are not normally regarded as being readily available
throughout the scheme lifetime (if they were available then one easy way to establish
a common key would simply be for the TA to generate one at the time of request
and distribute it over these same secure channels). We identify three potential
operational environments during the key establishment phase:

1. Users have no communication channels available to support key establishment
and thus must be able to do so on their own. We refer to such schemes as
group key predistribution schemes.

2. The TA has some ability to communicate with users during the key establish-
ment phase. We refer to such schemes as group key distribution schemes.

3. Users have some ability to communicate with one another during the key es-
tablishment phase. We refer to such schemes as group key agreement schemes.

Note that these environments apply strictly to the key establishment phase. Most
group key predistribution schemes, for example, require involvement of an online
TA during any update phase.

3.2 Secondary distinguishers

The next set of issues are secondary distinguishers in the sense that they subdi-
vide schemes within the broad categories of Section 3.1.
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3.2.1 Security The security model within which a key establishment scheme op-
erates is a secondary distinguisher. The main threat to the security of a key estab-
lishment scheme that we consider is the ability of users (or outside parties) to obtain
a key that they are not entitled to. There are two different aspects to this security
issue that need to be identified for any given solution:

1. Type of security: The most common two types of security that we will
encounter are:

• Unconditional security : where the security of the scheme is independent
of the resources available to an attacker.
• Computational security; where the scheme can only be broken by an

attacker with sufficient computational resources.

2. Resilience: This specifies the degree of resilience of the scheme to collusion
between users. We will refer to the collection X of subsets of U who, even if
they collude and share all their secret data, are unable to obtain any group
keys to which they are not entitled, as the exclusion structure. This is always
a monotone decreasing set (if B1 ∈ X and B2 ⊆ B1 then B2 ∈ X ). While
general exclusion structures will be considered, the two most common degrees
of resilience we will encounter are:

• Full collusion security: X consists of all subsets of U , meaning that no
collusion of users should be able to determine a key that they are not
entitled to.
• w-security : X consists of all subsets of U of at most size w, meaning that

no collusion of up to w users should be able to determine a key that they
are not entitled to.

3.2.2 Deterministic v probabilistic An important secondary distinguisher be-
tween key establishment schemes is whether they are:

• Deterministic: we can guarantee that a group A ∈ C is able to establish a
common key.

• Probabilistic: we can only guarantee that a group A ∈ C is able to establish a
common key with a certain probability.

3.2.3 Communication channels Schemes also differ in the types of communica-
tion channel that exists between entities involved in the scheme. Two particular
types of channel that we will regularly encounter are:

• Secure: we assume that any information exchanged on such a channel is totally
protected, both in terms of being kept confidential and authentic (unchanged
and from an identified originator).

• Broadcast : we assume that any information exchanged on such a channel is
authentic, but not confidential.

Broadcast channels are much less costly and easier to maintain than secure channels.
For example, publishing some data on an authenticated public noticeboard would
realise a broadcast channel.
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3.2.4 Properties of keys A number of subtle secondary distinguishers concern
the nature and structure of the the group keys. The following definitions will be
useful in this regard. A group key kA established by a group of users A ∈ C is:

• Predistributed : if kA is a function only of the values {ui |Ui ∈ A} and Pub.
In other words, kA is computed only from data made available to the group
members during the initialisation phase (this is necessarily the case for group
key predistribution schemes).

• Independent : if knowledge of other group keys provides no information about
the value of kA.

• Combinatorial : if kA can be represented as a subset of the collective secret
user data of users belonging to A.

3.2.5 Extended capabilities Further secondary distinguishers arise from addi-
tional properties that may be required by specific applications. Examples include:

• Flexibility: the extent to which a key establishment scheme is able to effi-
ciently accommodate an update phase.

• Computational capability: the extent to which entities (particularly users)
have the ability to perform computations.

• Decentralisation: whether roles normally conducted by the TA are required
to be distributed amongst a number of separate entities. This can be for
reasons of scalability, security or reliability.

• Collaboration: the degree of collaboration that is required (or permitted) to
take place between users in order to establish a group key.

• Robustness: a stronger security model might be required for applications
where either the TA or users are not trusted to perform their operations hon-
estly.

• Temporal restrictions: whether key establishment for certain groups is re-
stricted to specific time intervals or limited to a finite number of key estab-
lishment events.

• Traceability: whether it is possible to identify fraudulent users who abuse
the key establishment scheme.

3.3 Evaluation criteria

The previous criteria that we have discussed are largely distinguishers based
on scheme functionality. The following are the most common evaluation criteria
that allow comparisons to be made between functionally similar key establishment
schemes.

• Secret storage: the amount of information that a user needs to keep secure.
As secure storage is expensive, this is an important quantity to minimise.
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• Public storage: the amount of public information that needs to be main-
tained in order to operate the scheme. While it not so important to reduce
this as it is to reduce secret storage, maintaining authenticated public data
induces a cost and keeping this as small as possible is desirable.

• Communication costs: the quantity of data that needs to be exchanged
(whether by expensive secure channels or less expensive broadcast channels)
between entities in the key establishment scheme is something we would like
to minimise.

• Computational costs: we would like to minimise the computational require-
ments for users in the scheme. Efficient computation is particularly important
for applications where users are represented by low-memory devices with lim-
ited computational capabilities.

4 Preliminaries

In this section we briefly review some definitions and notation that we will employ
later. We refer the reader to the combinatorial literature for further details.

4.1 Designs

A set system (I,B) consists of a set I of v elements (points) and a collection B
of subsets (blocks) of I. The degree of x ∈ I is the number of blocks of B containing
x and (I,B) is regular if all points have the same degree r. The rank k of (I,B) is
the size of the largest block in B and we say that (I,B) is uniform if all blocks have
size k.

A regular, uniform set system with |I| = v, |B| = b, and with every t points
occurring on precisely λ blocks is known as a t-(v, b, r, k, λ)-design (we often just
refer to a t-(v, k, λ)-design since b and r can then be uniquely derived). The following
special cases are of particular interest:

• A 2-(s2 + s+ 1, s2 + s+ 1, s+ 1, s+ 1, 1)-design is known as a projective plane.

• A 1-(v, b, r, k, λ)-design (which by definition has λ = r) with the further prop-
erty that any pair of points occur in at most one block is called a (v, b, r, k)-
configuration.

• A t-(v, k, λ)-design whose blocks can be partitioned into parallel classes is said
to be resolvable.

A set system is a group-divisible design GD(nu, k) if v = nu and there exists a
partition H of I into u groups of size n such that:

1. Every H ∈ H intersects a block B ∈ B in at most one point;

2. Every pair of points from different groups occur together in precisely one block.

A transversal design TD(k, n) is a GD(nk, k).
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4.2 Arrays

An orthogonal array OAλ(t, k, v) is a λvt×k array with entries from a set of size
v such that for any tuple (x1, . . . , xt) and any columns C1, . . . , Ct there are precisely
λ rows of the array in which the entry xi occurs in column Ci (for all 1 ≤ i ≤ t).

4.3 Graphs

A graph G = (I, E) consists of a set of of vertices (or nodes) I joined by edges
in E , where E ⊆ I × I. We say that a pair of vertices U and V are adjacent if
{U, V } ∈ E (we will also say that V is a neighbour of U). The degree of a vertex U
is the number of vertices adjacent to U . A graph is regular of degree r if all vertices
have degree r. If the order of adjacent vertices {U, V } matters then we write (U, V )
(if an edge connects U to V ) and we say that G is a directed graph.

A path of length L from U0 to UL is a sequence of edges and vertices of the form
U0, e1, U1, e2, . . . , UL−1, eL, UL, where the vertices Ui and the edges ej are all distinct
and Ui−1 and Ui are adjacent and connected by ei. A cycle is a path from a vertex
to itself of length more than one (a cycle of length one is called a loop). A graph is
connected is every pair of vertices are joined by at least one path.

A complete t-partite graph is a graph whose vertices can be partitioned into t
disjoint subsets such that two vertices are adjacent if and only if they belong to
distinct subsets.

An (n, r, λ, µ)-strongly regular graph is a regular graph on n vertices with degree
r and any two distinct vertices have λ common neighbours if they are adjacent and
µ common neighbours if they are not adjacent.

A tree is a connected graph with no cycles, loops or multiple edges. There thus
exists a unique path between any two vertices. Any vertex of a tree can be chosen
to be the root of the tree, with all edges and vertices descending from this root.
We call this a rooted tree and can interpret it is a directed graph with a natural
ordering induced from the root. Every vertex U in a rooted tree (except the root)
has a unique parent and any other vertex adjacent to U is said to be a child of U .
Any vertex of degree one with no children is called a leaf. A binary tree is a tree
where every vertex has at most two child nodes (in general an a-ary tree is one
where every vertex has at most a child nodes). A chain is a tree consisting of a
single path, where each intermediate vertex has precisely one parent and one child.
A starlike subgraph is a tree in which every path has length at most two.

4.4 Posets

A partially ordered set (poset) is a pair (L,�), where � is a reflexive, anti-
symmetric, transitive binary relation on L. We say that x covers y , denoted y� x,
if y < x and there does not exist z ∈ L such that y < z < x (in this case we also
refer to y as a child of x and x as a parent of y). The Hasse diagram (L,�) of a
poset is the directed graph (L, E) where (x, y) ∈ E if and only if x � y. Note that
every rooted tree is a Hasse diagram for the poset defined by U � V if and only if
U is a parent of V in the rooted tree.
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4.5 Cryptographic primitives

We will use a number of cryptographic primitives as building blocks in some of
the schemes in this paper. We briefly mention three that will see repeated use.

A symmetric encryption algorithm E is a function that converts binary strings
of plaintext into binary strings of ciphertext. More precisely, the ciphertext is a
function of the plaintext and a symmetric keyK, which is shared between sender and
receiver. The receiver of the ciphertext is able to use a related decryption algorithm
to recover the plaintext from the ciphertext using the same key K. Symmetric
encryption algorithms, applied directly as described, provide data confidentiality.
They can be applied in other ways to establish other security services.

A hash function is a function that converts an arbitrary long input into a fixed
length compressed output. A hash function should have the properties that it is
one-way (it is hard to recover an input from a given output) and collision-free (it
is hard to find two inputs with the same output, even though there will be many
such pairs). Hash functions are extremely versatile cryptographic primitives and are
employed widely in cryptographic protocols.

A secret sharing scheme, which is a method of sharing a secret value amongst a
group of participants by distributing related information (shares) in such a way that
only certain specified subsets of the participants (defined by the access structure Γ)
can reconstruct the secret from their shares. If subsets of participants not in the
access structure learn nothing about the secret from their shares then the scheme
is referred to as being perfect. We make the natural restriction that Γ is monotone
(in other words, if X ∈ Γ and X ⊆ Y then Y ∈ Γ). If Γ consist of all subsets of at
least t out of n participants then we refer to a secret sharing scheme for Γ as being
a (t, n)-threshold scheme.

Secret sharing schemes were first proposed in [8, 69] and are of significant com-
binatorial interest in their own right (see [71] for a review). It can be shown that
in perfect secret sharing schemes each participant’s share must be at least as large
as the secret it is protecting. Secret sharing schemes in which each share has this
minimal size are called ideal. Ideal secret sharing schemes are closely related to
matroids [19] and ideal threshold schemes correspond to orthogonal arrays [39].

5 Key predistribution schemes

The first class of key establishment schemes that we will look at are group key
predistribution schemes. Applications suitable for group key predistribution are
those where during key establishment the TA cannot be accessed in any capacity (it
may have ceased to exist, or be impractical or too costly to communicate with it)
and users cannot employ secure communication channels amongst themselves (they
may not be able to afford the computational costs of establishing such channels).

Definition 5.1 A (C,X )-key predistribution scheme (KPS) is a key establishment
scheme with communication structure C and exclusion structure X such that:

1. Given A ∈ C, any Ui ∈ A can compute the group key kA from knowledge of ui

and Pub.
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2. Given disjoint sets B ∈ X and A ∈ C, it is not possible to compute the group
key kA from knowledge of uB and Pub (where uB = {ui |Ui ∈ B}).

Note that the precise meaning of property (2) in Definition 5.1 depends on the
security model within which we are operating. If a KPS is unconditionally secure
then these conditions can be stated information theoretically (see, for example [10]).

The literature contains a wide variety of key predistribution schemes. We will
begin this section by identifying a number of (generic) fundamental KPSs, most of
which have manifested themselves on numerous occasions as published schemes. We
then discuss several different types of KPS that are of combinatorial interest.

5.1 Fundamental schemes

In this section we identify seven fundamental key predistribution schemes, di-
vided into two different classes. These fundamental schemes are a combination of
generic schemes that help to illustrate some of our definitions as well as extremal
schemes that provide useful performance benchmarks for comparison.

5.1.1 Fundamental edge-based KPSs We identify four fundamental schemes in
this class. All four schemes are deterministic, have independent keys, offer full
collusion security and can be established for arbitrary communication structures.

Scheme 5.2 A trivial key predistribution scheme (TKPS) has the following prop-
erties:

• ui = {kA |Ui ∈ A,A ∈ C};

• Pub = ∅;

• kA ∈ ui if and only if Ui ∈ A.

A TKPS offers unconditional security. The most obvious problem with a TKPS is
that the secret information ui that each user has to store is potentially very large. A
further problem with this type of scheme is that if group keys have to be refreshed
during a key update phase then this requires the initialisation phase to be rerun.

This motivates our next fundamental scheme, where E is a secure symmetric
encryption algorithm with key size l and Ek(m) denotes the encryption of plaintext
m using key k.

Scheme 5.3 A trivial key encrypting key predistribution scheme (TKEKPS) has
the following properties:

• ui = {KA |Ui ∈ A,A ∈ C}, where each KA is randomly chosen from {0, 1}l;

• Pub = {EKA
(kA) |A ∈ C};

• KA ∈ ui if and only if Ui ∈ A, with kA obtained by decrypting EKA
(kA).
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A TKEKPS offers computational security, since any attacker with the computational
resources to break the encryption algorithm can obtain group keys. Users have to
store as much secret information as in a TKPS, but refreshing group keys can now
easily be done by the TA updating Pub (more precisely, by replacing EKA

(kA) by
EKA

(k′A), where k′A is the refreshed version of kA).
Our next fundamental scheme offers the minimum possible secret storage and is,

in some sense, the opposite “extreme” to a TKPS.

Scheme 5.4 A direct key encrypting key predistribution scheme (DKEKPS) has
the following properties:

• ui = ki, where each ki is randomly chosen from {0, 1}l;
• Pub = {Eki

(kA) |Ui ∈ A,A ∈ C};
• Eki

(kA) ∈ Pub if and only if Ui ∈ A, with kA obtained by decrypting Eki
(kA).

A TKEKPS also offers computational security. The secret storage is as small as pos-
sible, but this comes at the expense of potentially large public storage requirements
(as large as the secret storage in a TKPS and TKEKPS).

Our fourth fundamental scheme is essentially a refinement of a TKEKPS that
reduces the public storage at the expense of an iterated key derivation process. Let
(C,�) be the poset induced by set containment, where for A,B ∈ C, A � B if and
only if B ⊆ A. For any Ui let rootsi = {C ∈ C |Ui ∈ C and Ui /∈ B for any B �C}.

Scheme 5.5 An iterative key encrypting key predistribution scheme (IKEKPS) has
the following properties:

• ui = ki, where each ki is randomly chosen from {0, 1}l;
• Pub = Pub1 ∪ Pub2, where Pub1 = {Eki

(kC) |C ∈ rootsi} and Pub2 =
{EkB

(kC) |B,C ∈ C, B � C};
• Ui ∈ A if and only if there exists a path (in the Hasse diagram of (C,�))

(Z0, Z1), . . . , (Zm−1, Zm), where Z0 ∈ rootsi and Zm = A. In this case Ui

obtains kZ0 from Pub1 by decrypting Eki
(kZ0) and then iteratively obtains kZi

from Pub2 by decrypting EkZi−1
(kZi).

Thus an IKEKPS offers computational security, has minimal secret storage and
reduced public storage compared to a TKEKPS. This reduction comes at the expense
of greater computational effort to iteratively derive a group key.

We refer to these four schemes as edge-based key predistribution schemes because
they all make use, either in the public or secret data, of the set of edges in the Hasse
diagram of the poset (C,�).

5.1.2 Fundamental node-based KPSs Our next fundamental schemes encode
the structure of the poset (C,�) into the public information by assigning an item
of public data Pubi to each user. For this reason we refer to them as node-based.
Unlike for the edge-based schemes, which were all distinct, the three fundamental
node-based schemes are “nested”, with the first being the most generic and each
subsequent scheme being a special case of the previous scheme.
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Scheme 5.6 A node-based key predistribution scheme (NBKPS) has the following
properties:

• Pub = ∪1≤i≤nPubi, where Pubi is associated with user Ui;

• ui = f(Pubi) for some secret function f known only to the TA, which is chosen
in such a way that there exists a public function g such that for any A ∈ C
and any pair Ui, Uj ∈ A we have that g(ui, PubA) = g(uj , PubA) = kA (where
PubA = ∪Ui∈APubi).

• By choice of f and g it follows that any Ui ∈ A can compute kA.

Scheme 5.6 is clearly only the blueprint of a concept and precise properties of actual
NBKPSs will depend on specific instances. It should be clear however that NBKPSs
demand careful choice of functions and internal structure and are clearly ripe for
combinatorial application.

Our next fundamental scheme represents one particular type of NBKPS. Let
I = {xi | 1 ≤ i ≤ v} be a set of v identifiers, each of which is associated by means of
a secret function f with a randomly chosen key ki = f(xi) from a set K. Let B be a
collection of subsets of I. We will let R = (I,B) collectively be referred to as a key
ring.

Scheme 5.7 A key ring predistribution scheme (KRPS) based on key ring R =
(I,B) is a node-based key predistribution scheme with the following properties:

1. Pubi = Bi is randomly chosen from B (such that ui �= uj if i �= j);

2. ui = {kj |xj ∈ Bi};
3. C ⊆ {A ⊆ U | ∩Ui∈A ui �= ∅};
4. For A ∈ C, group key kA = g(∩Ui∈Aui) for some public combining function

g. In other words, a group A = {U1, . . . , Ut} ∈ C of users check their public
identifier sets Pub1, . . . , Pubt to see which common identifiers they share. They
then establish a group key kA by applying g to the keys ki that correspond the
identifiers in ∩t

j=1Pubj .

KRPSs are examples of group key establishment schemes with combinatorial
keys (see Section 3.2.4). Whether they offer unconditional or computational security
depends on the combining function g. For example, an unconditionally secure scheme
can be obtained if kA = ⊕ki∈Xki, where X = ∩Ui∈Aui.

Our final fundamental node-based scheme is a particular type of KRPS.

Scheme 5.8 A random key predistribution scheme (RKPS) is a key ring predis-
tribution scheme based on key ring R = (I,B), where B = 2I (the collection of all
subsets of I).
In other words, an RKPS involves issuing each user with a set of random keys from
K. An RKPS is thus an example of a probabilistic key establishment scheme. This
may seem like a very strange way of constructing a KPS for a specific communi-
cation structure C, since it involves “getting lucky” with regard to the intersection
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properties of the resulting blocks. However the idea behind a KRPS can be useful
in situations where certain properties of a KPS (such as user storage) have higher
priority than establishing a desired communication structure precisely (we will see
examples of such applications in Section 7.3).

5.2 The BDVHKY scheme

In this section we present an important benchmark NBKPS. If C = {A ⊆
U | |A| = t} and X = {A ⊆ U | |A| ≤ w} then we will also refer to a (C,X )-KPS as a
(t, w)-KPS. We will also refer to communication structures C of this type as thresh-
old communication structures. The following (t, w)-KPS was proposed by Blundo,
De Santis, Vaccaro et al in [17] and is a generalisation of a much earlier (2, w)-KPS
proposed in [9].

Scheme 5.9 The BDVHKY key predistribution scheme (BDVHKY-KPS) is de-
fined as follows, where q ≥ n:
• Pubi = si, where si ∈ GF (q) and Pubi �= Pubj if i �= j;

• The TA (randomly) constructs a secret t-variate polynomial f with coefficients
from GF (q),

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1...itx
i1
1 . . . x

it
t ,

where ai1...it = aj1...jt for any permutation (j1 . . . jt) of the indices {i1, . . . , it}.
• ui = f(Pubi, x2, . . . , xt) = f(si, x2, . . . , xt), a (t − 1)-variate polynomial with

coefficients from GF (q);

• For any A = {Uz1 , . . . , Uzt} ∈ C, the user Uzi computes

kA = uzi(sz1 , . . . , szi−1 , szi+1 , . . . , szt) = f(sz1 , . . . , szt).

The BDVHKY-KPS is an example of a deterministic NBKPS that is not a KRPS.
It offers unconditional w-security. We note that in the BDVHKY-KPS, each user
needs to store a secret t − 1 variate polynomial of degree w of a special form. It
can be shown that this involves the equivalent of storing

(t+w−1
t−1

)
elements of GF (q).

The BDVHKY-KPS is of particular interest because it is shown in [17] that this is
the optimally small user storage for any unconditionally secure (t, w)-KPS.

The following variant of Scheme 5.9 is a generalisation of a scheme proposed in
[52], which uses the random key predistribution scheme (Scheme 5.8) to obtain some
interesting tradeoffs.

Scheme 5.10 The randomised BDVHKY-KPS is similar to Scheme 5.9 except that:

• The TA (randomly) constructs r secret t-variate polynomials f1, . . . , fr with
coefficients from GF (q), each with the property required for Scheme 5.9;

• For each Ui, the TA generates a random subset U [i] = {i1, . . . , ir′} of the set
{1, . . . , r}, which is made public;
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• ui = {fi1(si, x2, . . . , xt), . . . , fir′ (si, x2, . . . , xt)};
• For any A = {Uz1 , . . . , Uzt} ∈ C, if ∩t

j=1U [zj ] �= ∅ then for some l ∈ ∩t
j=1U [zj ]

user Uzi computes kA = fl(sz1 , . . . , szt). (Note that since the sets U [i] are
public, the choice of l can be publicly predetermined.)

Scheme 5.10 is an example of a probabilistic NBKPS, since there is no guarantee
that ∩t

j=1U [zj ] �= ∅. Compared to the BDVHKY-KPS, the scheme also involves
an increased user storage by a magnitude of r′. However the significant gain is in
resilience. The BDVHKY-KPS is only w-secure, whereas in [52] it is shown that
careful selection of the parameters r and r′ in Scheme 5.10 can result in very good
resilience.

We will discuss a further variant of the BDVHKY-KPS in Section 7.3.4. We note
that in [62] it was shown that a number of key predistribution schemes, including
Scheme 5.9 (under certain constraints on the combining function used to determine
the final key), are examples of a wider family of linear key predistribution schemes,
which can be described in linear algebraic terms and permit an inherent duality.

5.3 Key distribution patterns

In this section we look at an interesting family of key ring predistribution schemes
that have arisen in the literature in a number of different guises.

Definition 5.11 Let (C,X ) be a communication and exclusion structure defined
on n users. A (C,X )-key distribution pattern (KDP) is a set system (I,B) with
|B| = n, where each user Ui is associated with a block Bi, such that for any disjoint
pair A ∈ C and B ∈ X we have: ⋂

Ui∈A

Bi �⊆
⋃

Uj∈B

Bj .

When C consists of all t-subsets of users and X consists of all subsets of at most
w users, we will refer to a (t, w)-KDP. In [76], (t, w)-KDPs were noted to correspond
to the following more granularly defined family of set systems:

Definition 5.12 A (t, w, d)-cover-free family (CFF) is a set system (I,B) such that
for any disjoint sets of t blocks A and w blocks B we have:

|
⋂

Bi∈A

Bi \
⋃

Bj∈B

Bj | ≥ d.

The motivation for Definition 5.11 is that a KDP can be used as a key ring to form
a KRPS.

Scheme 5.13 A (C,X )-key distribution pattern predistribution scheme (KDPPS)
is a (C,X )-KRPS that arises by applying Scheme 5.7 with a (C,X )-KDP as the key
ring.

KDPs were first introduced in [56, 57], where (t, w)-KDPs were proposed and
analysed. These structures have subsequently been investigated by a number of
authors who have investigated bounds and constructions for efficient KDPs, partic-
ularly of uniform (t, w)-KDPs of rank k. We now briefly mention some of the work
that has been undertaken on KDP constructions and KDP efficiency.
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5.3.1 KDP constructions We first define two fundamental KDPs.

Scheme 5.14 Given a communication structure C defined on a user set U , a (C, 2U )-
trivial inclusion KDP (TIKDP) is defined as follows.

• For each A ∈ C, associate a point xA ∈ I;

• For each user Ui ∈ U , define a block Bi = {xA |Ui ∈ A}.

Given any A ∈ C, the blocks Bj such that Uj ∈ A have the unique point xA in
common. As no B disjoint from A contains xA, we see that (I,B) is a (C, 2U )-
KDP.

Note that the KDPPS arising from applying a TIKDP in Scheme 5.13 is essentially
Scheme 5.2, the trivial KPS.

Scheme 5.15 Given an exclusion structure X defined on a user set U , a (2U ,X )-
trivial exclusion KDP (TEKDP) is defined as follows.

• For each B ∈ X , associate a point xB ∈ I;

• For each user Ui ∈ U , define a block Bi = {xB |Ui /∈ B}.

Given any subset B ∈ X , none of the blocks Bj such that Uj ∈ B contain point
xU\B, and thus (I,B) is a (2U ,X )-KDP.

The TEKDP for the case where X consists of all subsets of users of size at most w
was first defined in [35].

Both Scheme 5.14 and Scheme 5.15 result in users potentially having to store a
large amount of secret data. A number of combinatorial objects have been used to
construct (t, w)-KDPs that perform much better than these fundamental KDPs.

• In [72] it is shown that a (t+ 1)-(n, k, λ) design with w < (n− t)/(k− t) is the
dual of a (t, w)-KDP.

• In [60], [61] and [67] special finite geometrical structures have been used to
construct KDPs.

• In [64] KDPs were constructed from conics arising from finite projective planes
and affine planes.

• In [74], KDPs are defined from orthogonal and perpendicular arrays.

We note that in [32] a non-constructive existence result for very efficient (t, w)-
KDPs was proven which, when applied to Scheme 5.13, generates a KDPPS that is
essentially a manifestation of the RKPS.
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5.3.2 Efficiency of KDPs Given a fixed number of users n we are particularly
interested in trying to find KDPs of low rank (small block size), since the resulting
KDPPS produced using Scheme 5.13 will have relatively low user storage. A different
(but related) optimisation problem is to minimise v, which corresponds to the num-
ber of different keys in the system. In [65] several lower bounds on the information
storage of KDPs were determined. Subsequently several bounds on (t, w, d)-cover
free families have been proven in [76]. These all indicate that, in general, KDPPSs
are not particularly efficient. However there are several generic techniques in which
KDPPSs can be made more efficient. One such technique was proposed in [72],
based on the following concept:

Definition 5.16 An (n,m, t, q)-resilient function is a function f : [GF (q)]n →
GF (q) such that if t input bits are fixed and the remaining n − t chosen inde-
pendently at random, then every possible element of GF (q) occurs as output with
equal probability.

Let (I,B) be a (C,X )-KDP. For any A ∈ C let IA = ∩Ui∈ABi. Denote cA = |IA|
and dA = max{|IA ∩B| |B ∈ X and A ∩B = ∅}. In other words, each set A in the
communication structure is associated with at least cA − dA identifiers (keys) that
are unknown to any disjoint set in the exclusion structure. The following refinement
to Scheme 5.13 was observed in [72].

Scheme 5.17 Let (I,B) be a (C,X )-KDP and m = min{cA − dA |A ∈ C}.

1. For each A ∈ C choose a public (cA,m, dA, q)-resilient function fA. (Such a
function always exists for suitable large q [72].)

2. Now construct a (C,X )-KDPPS by applying Scheme 5.13 with the (C,X )-KDP
as the key ring and fA as the public combining function for group key kA. (In
other words, using the notation of Scheme 5.7, kA = fA(∩Ui∈Aui).)

A KPS arising from a KDP is likely to benefit from the refinement proposed in
Scheme 5.17 if the KDP has a relatively high value of m (or, in the case of (t, w)-
KDPs, if the KDP is a (t, w, d)-CFF for a high value of d). In [74] some (t, w)-KDPs
were constructed from orthogonal and perpendicular arrays that lend themselves to
this improvement and result in KPSs with good user storage. In [65] an alternative
technique for improving the efficiency of a KDP was proposed, based on the idea of
using an information map to reduce the information content of the keys ki held by
each user.

5.4 Hash-tree key predistribution schemes

We now describe a family of key predistribution schemes whose security is based
on repeated iterations of a cryptographic hash function (see Section 4.5). In a
similar manner to the construction of KDPPSs from KDPs, we first define a com-
binatorial object (in this case an array) from which KPSs can be generated. Recall
from Section 4.4 that a rooted tree T has a natural partial ordering � defined by
parenthood.
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Definition 5.18 Let (C,X ) be a communication and exclusion structure defined on
n users. Let T be a rooted tree with vertices labelled by {0, 1, . . . , d − 1} and let
b be a positive integer. A (C,X ,T )-hash-tree key predistribution pattern (HTKDP)
is a b × n matrix M = (αij), where each column is associated with a unique user,
with entries from {0, 1, . . . , d−1}, such that for any disjoint A ∈ C and B ∈ X there
exists indices (iAB , jAB) such that jAB ∈ A and:

1. α(iAB)j � α(iAB)(jAB) for all j ∈ A;

2. α(iAB)j � α(iAB)(jAB) for all j ∈ B.

In [49] it was shown how a KPS can be constructed from a (C,X ,T )-HTKDP.

Scheme 5.19 Let the b × n matrix M = (αij) with entries from {0, 1, . . . , d − 1}
be a (C,X ,T )-HTKDP. A (C,X ,T )-hash-tree key predistribution scheme (HTKPS)
can be constructed from M and a suitable hash function h as follows:

1. The TA publishes M , T and h as public system parameters.

2. For each 1 ≤ i ≤ b the TA chooses a secret random seed value s0i . For each
1 ≤ j ≤ d− 1 a hash value can then be iteratively computed such that if j is a
child of l in T then sj

i = h(sl
i, j).

3. The TA securely delivers uj = {sα1j

1 , . . . , s
αbj

b } to user Uj.

4. For A ∈ C, define

IA = {1 ≤ i ≤ b | there exists mj ∈ A such that αij � αimj for all j ∈ A}.

Then kA =
∑

i∈IA
s
αimj

i .

Thus we see that in an HTKPS, any user Ul belonging to A can compute kA since
for each i ∈ IA they can iteratively compute s

αimj

i from their component sαil
i of

ul. On the other hand, for any B ∈ X , Definition 5.18 guarantees that α(iAB)mj
�

α(iAB)(jAB). Thus s
α

(iAB)mj

i , and hence kA, cannot be computed by any user in B.
Scheme 5.19 is thus a deterministic KPS that offers computational security, since

the security of group keys kA depends on the security of the underlying hash function.
Following the convention of previous sections, we will refer to a (t, w,T )-HTKDP

and (t, w,T )-HTKPS respectively when C consists of all t-subsets of users and X
consists of all subsets of at most w users.

Example 5.20 Let T be a starlike tree with 7 leaves (where the centre is labelled
0 and the leaves labelled 1, . . . , 7). The following (2, 2,T )-HTKDP on 7 users was
given in [49]:

M =

0 0 3 0 5 6 7
1 0 0 4 0 6 7
0 2 0 4 5 0 7
1 2 3 0 0 0 7
0 2 3 4 0 6 0
1 0 3 4 5 0 0
1 2 0 0 5 6 0

.
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To construct a (2, 2,T )-HTKPS, the TA first generates secret seeds s01, . . . , s
0
7. Seven

copies of T are then labeled with iterations of h as indicated in Figure 1. User U1

s0
1

h(s0
1, 1)

h(s0
1, 2)

h(s0
1, 3)

h(s0
1, 4)

h(s0
1, 5)

h(s0
1, 6)

h(s0
1, 7)

s0
1

h(s0
1, 1)

h(s0
1, 2)

h(s0
1, 3)

h(s0
1, 4)

h(s0
1, 5)

h(s0
1, 6)

h(s0
1, 7)

s0
1

h(s0
1, 1)

h(s0
1, 2)

h(s0
1, 3)

h(s0
1, 4)

h(s0
1, 5)

h(s0
1, 6)

h(s0
1, 7)

s0
7

h(s0
7, 1)

h(s0
7, 2)

h(s0
7, 3)

h(s0
7, 4)

h(s0
7, 5)

h(s0
7, 6)

h(s0
7, 7)

· · · · · ·

Figure 1: Hash iterations based on the starlike tree with 7 leaves

then receives:

u1 = {sα11
1 , sα21

2 , sα31
3 , sα41

4 , sα51
5 , sα61

6 , sα71
7 }

= {s01, s12, s03, s14, s05, s16, s17}
= {s01, h(s02, 1), s03, h(s04, 1), s05, h(s06, 1), h(s07, 1)}.

Similarly, U2 receives:

u2 = {s01, s02, h(s03, 2), h(s04, 2), h(s05, 2), s06, h(s07, 2)}.

The group key k{U1,U2} is constructed by first noting that I{U1,U2} = {1, 2, 3, 5, 6}
and thus that k{U1,U2} = s01 + h(s02, 1) + h(s03, 2) + h(s05, 2) + h(s06, 1).

There are three special cases worth mentioning.

1. If T degenerately consists of just one vertex then a (C,X ,T )-HTKDP is a
(C,X )-KDP, as defined in Section 5.3.

2. Scheme 5.19 was motivated by an earlier scheme in [50] that constructed a
(2, w,T )-HTKDP, where T was a chain and the underlying matrix M was
generated randomly, resulting only in a probabilistic scheme.

3. In [66] a further variant (called HARPS) was proposed for use in wireless
sensor networks (see Section 7.3). This combines the scheme of [50] and the
idea behind the RKPS (Scheme 5.8) by only allocating to each user a value on
a random subset of the b hash chains (instead of all the chains). This reduces
user storage at the expense of a poorer probability that a group will be able
to construct a group key.

5.5 Key assignment schemes

A very interesting class of key predistribution schemes arise from what are known
as information flow policies. These have largely been investigated by researchers in
computer security since they define a type of access control mechanism, but they
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can be considered as a class of group key predistribution schemes. The technique of
key predistribution is particularly appropriate for this type of application because
it allows an information flow policy to be applied “seamlessly”, without users even
necessarily being aware that their actions are being controlled using this type of
scheme. Of particular theoretical interest is that these schemes provide naturally
arising examples of non-threshold communication structures.

Definition 5.21 An information flow policy is a tuple (L, E ,S,O, λ), where:

• (L, E) is a directed graph of security labels (see Figure 2);

• S is a set of subjects (perhaps users of a computer system);

• O is a set of objects (perhaps computer files);

• λ : S ∪O → L is a security function that associates subjects and objects with
security labels.

Top Secret

Confidential

Restricted Admin Restricted Sales

General Admin General Sales

All Staff

Figure 2: Directed graph of security labels

An information flow policy is used to model the access of subjects in S to a set
of objects in O in a hierarchical system, where the directed graph indicates when a
subject can read an object. More precisely, subject S can read object O if and only
if (λ(S), λ(O)) ∈ E . One way of implementing this policy is to use what is known
as a key assignment scheme.

Scheme 5.22 A key assignment scheme for information flow policy (L, E ,S,O, λ)
is a scheme initialised by a TA as follows:

• The TA identifies each label x ∈ L with a cryptographic key kx.

• For each label x ∈ L the TA generates secret information σ(x) and securely
distributes it to all subjects with security label x.

• The TA generates some system-wide public data Pub that is made available to
all subjects using an authenticated channel.

• There exists a function that takes as input labels x, y ∈ L, σ(x) and Pub and
outputs ky if and only if (x, y) ∈ E.
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A key assignment scheme implements the information flow policy since ky can be
used to encrypt objects with security label y, and only subjects with label x, where
(x, y) ∈ E can compute ky and hence decrypt the encrypted object.

It is worth observing at this stage that the vast majority of information flow
policies, and hence key assignment schemes, are defined for hierarchies where the
security labels in L form a poset. Not only are such poset-based schemes easier to
design, but they are also by far the most natural policies to implement in real appli-
cations. In this case we can represent the policy by (L,�,S,O, λ) (more commonly
just denoted by (L,�) when the context is obvious). In this case subject S can read
object O if and only if λ(S) � λ(O).

For any y ∈ L, let ↑ y = {x ∈ L | (x, y) ∈ E} and ↓ y = {z ∈ L | (y, z) ∈ E}. The
following result is immediate from the relevant definitions.

Theorem 5.23 A key assignment scheme for information flow policy (L, E ,S,O, λ)
is a (C,X )-key predistribution scheme where:

• U = L;
• C = {↑ y | y ∈ L};
• X is inherited from the degree of collusion security of the underlying key as-

signment scheme.

• ux = σ(x);

• Pub is the same as for the key assignment scheme;

• For A =↑ y ∈ C, kA = ky.

A key assignment scheme can thus be thought of as a special type of deterministic
computationally secure KPS, where there are as many groups in the communication
structure as there are users, and where the groups can be derived from the vertices of
a directed graph defined on the set of users. Note that it is perhaps more appropriate
to consider a key assignment scheme as a KPS defined on the set S of subjects. In
this case each subject S with security label λ(S) = x is given the same piece of
secret information σ(x) in the resulting KPS. A subject S is thus able to compute
all the group keys k↑y for each y ∈↓ x.

A review of key assignment schemes can be found in [27]. In the remaining
sections we provide examples of some of the techniques used to construct them.

5.5.1 Unconditionally secure key assignment We first observe that uncondition-
ally secure key assignment schemes are not very interesting from either a theoretical
or a practical perspective. One obvious example is the trivial key assignment scheme
(TKAS) based on letting σ(x) = {ky | (x, y) ∈ E}, which gives rise to Scheme 5.2
when interpreted as a KPS. We have already observed in Section 5.1 that such a
scheme has unacceptably high secret storage. The unconditional secure setting was
modelled formally in [34] and it was shown that the TKAS is essentially the best
possible (more precisely it was shown that it can only be slightly improved by first
compressing the representation of the information flow policy and then generating a
TKAS for this slightly simpler policy). As a result, the only key assignment schemes
of real interest are necessarily computationally secure.
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5.5.2 Key assignment for poset policies An extraordinary variety of key assign-
ment schemes for poset policies have been proposed in the literature. In [28] it was
shown that they all fall into five broad classes. When interpreted as KPSs, these
five classes coincide with five of the fundamental KPSs identified in Section 5.1. As
the majority are either IKEKPSs (Scheme 5.5) or NBKPSs (Scheme 5.6) we will
present one example from each of these classes here. While these schemes are not
strictly combinatorial, the fact that they implement communication structures with
interesting combinatorial structure merits their inclusion in this review.

The following key assignment scheme was first proposed in [1] (our version is
based on an observation in [28]) and gives rise to a NBKPS.

Scheme 5.24 The Akl-Taylor key assignment scheme (ATKAS) for a poset-based
policy (L,�) is defined as follows:

• Let n = pq be the product of two large primes and m ∈ Z∗
n (all subsequent

calculations are modulo n). The value n is public, but p, q and m are kept
secret by the TA.

• For each x ∈ L, let Pubx = px, where px is a small prime and Pubx �= Puby if
x �= y (it suffices for {px |x ∈ L} to be chosen to be the first |L| primes). Let
Pub = ∪x∈LPubx.

• For each x ∈ L, let e(x) =
∏

y�x px and σ(x) = kx = me(x).

• If y � x then given x, y, σ(x) = kx and Pub, we can calculate ky as follows:

ky = kp(x,y)
x , where p(x, y) =

∏
z∈(L\↓y)\(L\↓x)

pz.

Thus the ATKAS uses a public labeling of the nodes of the poset (L,�) to generate
a set of exponents e(x) that have the property that e(x)|e(y) if and only if y � x.
This allows keys kx associated with a higher level in the poset to compute keys ky at
lower levels. If y � x then it is impossible to compute ky from kx without knowledge
of m. Calculating m from any kx is believed to be a hard computational problem
known as the RSA problem (see, for example [73], for more information about the
RSA cryptosystem on which this is based). In fact it is possible to show that any
collusion of nodes cannot determine a key that they are not entitled to, assuming
that the RSA problem is hard, and so the ATKAS (and thus its resulting KPS) is
computationally secure with full collusion security.

There have been many variants of the ATKAS proposed (for example [37, 53])
and [27] contains a comprehensive list. Most of these either attempt to optimise the
poset labelling in some way or change its performance with respect to an update
phase. The principle behind all these schemes remain the same.

The next key assignment scheme was proposed by [4] and gives rise to an
IKEKPS.

Scheme 5.25 The AFB key assignment scheme (AFBKAS) for a poset-based policy
(L,�) is defined as follows:
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• Let h be a one-way hash function such that h : {0, 1}∗ → {0, 1}l for some
integer l.

• For each x ∈ L, let σ(x) = kx be randomly selected from {0, 1}l.
• For each x ∈ L, let Pub = {kz − h(kx, z) | z � x}.
• If y � x then given x, y, σ(x) = kx and Pub, we can calculate ky since there

exists a path (z0, z1), . . . , (zm−1, zm), where z0 = x and zm = y. The key kzi

can be iteratively obtained from kzi−1 and Pub by computing h(kzi−1 , zi), from
which kzi = (kzi − h(kzi−1 , zi)) + h(kzi−1 , zi).

To see that the KPS arising from Scheme 5.25 is an IKEKPS (Scheme 5.5), we
observe that there exists an isomorphism between the poset (L,�) and the poset
(C,�∗) associated with the resulting KPS, resulting in the following correspondences
between Scheme 5.5 and Scheme 5.25:

• ↑ x ∈ C corresponds to x ∈ L;

• rootsx for security label x correspond to {x};
• ux in Scheme 5.5 corresponds to kx;

• k↑x in Scheme 5.5 also corresponds to kx;

• If (↑ z) �∗ (↑ x) then Ek↑z
(k↑x) in Scheme 5.5 is defined by kz − h(kx, z).

Note that Pub1 in Scheme 5.5 corresponds to {kx − h(kx, x) |x ∈ L}. This serves
no purpose, as it is essentially an encryption of key kx using key kx and therefore
has been omitted from the description of Scheme 5.25. (In fact Pub1 is redundant
in any KPS arising from a poset-based key assignment scheme.)

There have been many proposals for key assignment schemes that give rise to
IKEKPs, for example [51, 80, 81].

5.5.3 Key assignment for directed graphs We have already observed that most
key assignment schemes are designed for information flow policies based on posets.
It is at least of theoretical interest to investigate schemes for general information
flow policies (general directed graphs).

One method of constructing a key assignment scheme for a general information
flow policy is to embed the policy into a poset and then use a poset-based key
assignment scheme. In [68] such an embedding was exhibited that enables the poset-
based scheme of Akl-Taylor [1] to be extended to a general information flow policy.
The majority of poset-based key assignment schemes are simple, which means that
for any x ∈ L we have σ(x) = kx. The embedding of [68] works by embedding (L, E)
in a poset (L∗,�), creating a simple Akl-Taylor poset-based key assignment scheme
for (L∗,�), and interpreting this as a non-simple scheme for (L, E). In [27] it is
shown that this De Santis decoupling, presented as Scheme 5.26, can be applied to
any simple poset-based key assignment scheme.

Scheme 5.26 The De Santis decoupling generates a key assignment scheme for the
information flow policy (L, E) as follows:
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• Define a poset (L∗,�), where

– L∗ = {xl |x ∈ L} ∪ {xu |x ∈ L},
– xl � xu,

– (y, x) ∈ E implies yl � xu.

• Establish any simple poset-based key assignment scheme for (L∗,�), with key
k∗x for each x ∈ L∗.

• Interpret this as a key assignment scheme for (L, E) where kx = k∗xl
and σ(x) =

k∗xu
.

An illustration of how the De Santis decoupling works is shown in Figure 3. The
upper row of nodes in (L∗,�) represents au, . . . , fu, while the lower row of nodes
represents al, . . . , fl.

a b c

d e f

au bu cu du eu fu

al bl cl dl el fl

(L, E)

(L∗,≤)

Figure 3: The construction of (L∗,�) from (L, E)

6 Group key distribution schemes

Our next class of key establishment schemes, group key distribution schemes,
are appropriate for applications where it is possible (and practical) to communicate
in some way with a trusted entity throughout the lifetime of the scheme. This
scenario is desirable for applications where group keys kA are necessarily generated
at the time of request (not during the initialisation phase as is the case for most key
predistribution schemes).

Definition 6.1 A (C,X )-key distribution scheme (KDS) is a key establishment
scheme with communication structure C and exclusion structure X such that:

1. Given A ∈ C, any Ui ∈ A can compute the group key kA from knowledge of ui

and vi,A, where vi,A is some information obtained by Ui from the TA during
the key establishment phase for key kA.
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2. Given disjoint sets B ∈ X and A ∈ C, it is not possible to compute the
group key kA from knowledge of uB and vB (where uB = {ui |Ui ∈ B} and
vB = {vi,A |Ui ∈ B}).

Note that Definition 6.1 includes the case where the secure channels that were used
to distribute the initial user secret data ui are still available and vi,A = kA if Ui ∈ A,
otherwise vi,A = ∅. This “trivial” solution is in fact one that is often adopted in
real applications where such secure channels exist throughout the scheme lifetime,
however it is of little mathematical interest and so we do not consider it further
here.

6.1 Broadcast encryption

We now look at a well-studied family of group key distribution schemes where,
although the TA is online during the key establishment phase, it no longer maintains
secure channels to the users and must rely on broadcast channels to establish group
keys.

Definition 6.2 A (C,X )-broadcast encryption scheme (BES) is a key distribution
scheme with communication structure C and exclusion structure X such that vi,A =
BA for every user Ui ∈ U , where BA is a public message broadcast to all users in U
at the start of the key establishment phase for kA.

Broadcast encryption schemes were first proposed with applications such as ac-
cess to streamed multimedia services in mind. In this type of application some
digital content, such as a film, is encrypted using kA (where A is the group of users
permitted to access the service) and then BA is broadcast as a header that allows
an authorised user Ui in A to determine kA and hence decrypt the service. There
are two slightly different applications of broadcast encryption, which we illustrate
using the above multimedia service scenario:

1. General broadcast encryption: These schemes are usually designed for as
large a communication structure as possible, since this maximises the possible
number of different groups for whom group keys can be generated. These are
suitable for pay-per-view services, where the groups of users receiving content
are highly variable (for example only a small group from the set of all users
may want to pay to watch a particular football match).

2. Long term group management: These schemes are characterised by a
single large group of users that may change gradually over time. These are
suitable for subscription services, where we only ever want to broadcast to the
entire group of subscribed users, but the make-up of this group is dynamic.

Note that these two applications are far from being mutually exclusive. The main
difference is that while schemes designed for the first scenario should be able to effi-
ciently broadcast to user groups of all sizes, schemes designed for the second scenario
initially associate a group key kH with a single group of users H (from the universe
U of possible users) and should be specifically designed to efficiently cope with rel-
atively small changes to H over time. This scenario is often described in terms
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of maintaining a multicast group, where the term “multicast” arises from internet-
related technology for sending a single message to a designated set of recipients
[22].

One significant difference between proposed broadcast encryption schemes relates
to the computational capabilities of users in the scheme. We say that a broadcast
encryption scheme is suitable for:

• stateless receivers if the users cannot retain information from previous broad-
casts (or have ability to write to memory). This might be the case for example
if the user is a set-top decoder. The decoder is preloaded with decryption keys
that cannot be changed over time. Each time a broadcast message is sent, the
decoder can use these keys to decrypt the broadcast, but it will not retain any
memory of the information it receives (if the same group key is used twice,
the decoder will have to decrypt it on each occasion, as it cannot store any
information supplied to it during a key establishment event).

• stateful receivers if the users can retain information from previous broadcasts
(or have the ability to write to memory). The critical difference in this case
is that if new keys are broadcast to them then users can use these to replace
the keys that were distributed to them on initialisation (in other words users
have the ability to update their secret data).

The motivation for considering a stateless receiver model is that this greatly simpli-
fies the software or hardware needed by the users. Almost all the schemes that we
discuss in this paper are suitable for stateless receivers.(Whether real human users
are stateless or stateful will be left as an open problem!)

6.1.1 Benchmark broadcast encryption schemes We now define two benchmark
broadcast encryption schemes against which others need to be compared. Both are
suitable for stateless receivers. These are analogues of Scheme 5.3 and Scheme 5.4
respectively. Throughout the remainder of this section we assume that E is a secure
symmetric encryption algorithm with key size l and Ek(m) denotes the encryption
of plaintext m using key k.

Scheme 6.3 A trivial broadcast encryption scheme (TBES) has the following prop-
erties:

• ui = {KA |Ui ∈ A,A ∈ C}, where each KA is randomly chosen from {0, 1}l;
• BA = EKA

(kA);

• KA ∈ ui if and only if Ui ∈ A, with kA obtained by decrypting EKA
(kA).

Scheme 6.4 A direct broadcast encryption scheme (DBES) has the following prop-
erties:

• ui = ki, where each ki is randomly chosen from {0, 1}l;
• BA = {Eki

(kA) |Ui ∈ A};
• Eki

(kA) ∈ BA if and only if Ui ∈ A, with kA obtained by decrypting Eki
(kA).
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We thus see that Schemes 6.3 and 6.4 offer extreme ends of the tradeoff between
the size of user secret data ui and the size of the broadcast header BA. Both
schemes are deterministic, computationally secure and have independent keys. In
general the hunt for good broadcast encryption schemes is about finding schemes
with reasonable parameter tradeoffs between these two benchmark schemes.

6.1.2 Broadcast encryption schemes from key predistribution schemes One
simple way of establishing a broadcast encryption scheme suitable for stateless re-
ceivers is to build it onto an existing key predistribution scheme.

Scheme 6.5 If we have a (C,X )-KPS then we can realise a (C,X )-BES as follows:

• ui is the same for both the KPS and the BES;

• BA = Ek∗A(kA), where k∗A is the group key for A ∈ C in the KPS and kA is a
freshly generated group key for A in the BES;

• Only a user Ui in A can establish k∗A from ui and hence decrypt the new group
key kA.

While Scheme 6.5 is attractively simplistic, the main problem with it is that for
broadcast encryption we generally want C to be large, and a KPS for a large C
typically has high user storage requirements.

In [15] a broadcast encryption scheme was suggested that employs a KPS that
establishes keys for groups of l users in order to construct a BES that establishes
keys for groups of t = λl users. This scheme uses a resolvable design defined on t
points to partition the t users into blocks of size l, which are then used to define
a broadcast message. The advantage of this idea is that the user storage required
for the KPS on group size l is smaller than that for group size t. This scheme is
not particularly efficient with respect to broadcast size if we are planning to use a
BES to distribute a group key kA (which in this paper we are), however it has some
merits if the information to be broadcast to the group is longer.

In [72] another interesting family of broadcast encryption schemes were proposed,
which combine a KPS with an ideal secret sharing scheme (see Section 4.5). The
idea is the following:

Scheme 6.6 Let U be a set of users and X be an exclusion structure defined on U .
Suppose that we can find:

1. A set system (U ,B), where |B| = b and for each block Bj ∈ B we can construct
a (2Bj ,Xj)-KPS on user set Bj, where:

(a) The user secret for each Ui ∈ Bj is denoted by uj
i .

(b) The group key for each A ⊆ Bj is denoted by kj
A and is an element of K.

2. An ideal secret sharing scheme (with shares and secrets from K) on participant
set B with access structure Γ such that:

(a) For every Ui ∈ U , we have {Bj |Ui ∈ Bj} ∈ Γ;

(b) For every X ∈ X , we have {Bj |X ∩Bj /∈ Xj} /∈ Γ.
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Then a KIO (2U ,X )-broadcast encryption scheme is defined by:

• For each Ui let ui = {uj
i |Ui ∈ Bj}.

• BA = (Ek1(y1), . . . , Ekb
(yb)), where:

1. (y1, . . . , yb) are shares of the ideal secret sharing scheme corresponding to
secret kA;

2. kj = kj
A∩Bj

for each 1 ≤ j ≤ b;
3. E is a symmetric encryption algorithm with keys from set K.

Although at first glance complex, the intuition behind Scheme 6.6 is straightforward.
If Ui is a member of set A then they can use their secret information uj

i to determine
the group keys kj

A∩Bj
for each KPS that Ui is a member of. These then allow Ui

to decrypt a set of shares yj that correspond to a set in the access structure of the
secret sharing scheme, which means that the shares can be used to reconstruct kA.
On the other hand, a set of users X in the exclusion structure can, in the worst
case, determine a set of group keys that decrypt a set of shares not in the access
structure, hence they obtain no information about the group key kA.

Thus we need to find combinations of set systems, KPSs and ideal secret shar-
ing schemes that allow Scheme 6.6 to be enabled. The KIO broadcast encryption
scheme construction was first proposed in [72] using the Trivial Exclusion KDPs
(Scheme 5.15) from [35] with exclusion parameter w as the KPSs. In particular it
has been shown that the following combinations result in KIO broadcast encryption
schemes:

1. Let (U ,B) be a 2 − (n, b, r, k, λ) design with r > λ
(w

2

)
and choose an ideal

(λ
(w

2

)
+ 1, b)-threshold scheme [72].

2. An improved scheme is obtained by letting (U ,B) be an (n, b, r, λ)-broadcast
key distribution pattern (BKDP) [73], which is a set system of n points, b
blocks, every point on r blocks, every pair of points in at most λ blocks and
r > λ

(w
2

)
. These structures were first defined in [74] using the name threshold

designs and several constructions based on Steiner systems and orthogonal
arrays were provided.

3. A further improvement was made in [75], where it was observed that the KIO
construction technique can be further generalised to allow the ideal secret
sharing scheme to be replaced by a ramp scheme (see [38]), which is a type of
secret sharing scheme that permits smaller share sizes.

Example 6.7 In order to see the kinds of parameter tradeoff that are possible using
KIO, we note that in [74] it was shown that an orthogonal array OA1(t, q, q) can
be used to construct a (qt, q2, q, t− 1)-BKDP. This gives rise to a BES for qt users,
where each user stores at most q + (t − 1)(qt − 1) values and the broadcast BA to
enable any group key kA is of length q2. This compares with user storage of 2qt−1

and broadcast length 1 for the TBES, and user storage of 1 and broadcast length
|A| for the DBES. Given that this construction works for any t < q, it is clear that
the KIO construction provides a balance between the extremes of TBES and DBES,
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especially when t is close to q and A is very large (as is likely to be the case in many
of the applications envisaged for broadcast encryption).

6.1.3 Logical key hierarchies for stateful receivers Using a tree of keys to man-
age a long term group key was first suggested in [77] and [79]. The broadcast en-
cryption scheme that they independently proposed is suitable for stateful receivers.
The basic idea is as follows.

Scheme 6.8 Let H be a subset of m users (chosen from a universe U) who wish to
establish a group key kH . For simplicity, assume that m = 2h. To establish a logical
key hierarchy:

1. Define a (complete) binary tree with m leaves, each associated with a user
from H. Iteratively label this tree with independent keys as follows: root by
k0,0; the left child of ki,j by ki+1,2j; and right child of ki,j by ki+1,2j+1. As-
sociate the users, which we label U0, . . . , Um−1, with the nodes labeled by keys
kh,0, . . . , kh,m−1.

2. For each user Uj let uj = {kx,y | kx,y is on the path from kh,j to k0,0}. Each
user thus holds h+ 1 keys.

3. The key k0,0 is held by every user in H. In order to establish a group key kH

the TA could broadcast BH = Ek0,0(kH). Note however that since this scheme
is intended for stateful receivers (and thus users have the ability to refresh their
keys) it is also possible just to let kH = k0,0, in which case this scheme can
actually be considered as a type of key predistribution scheme.

k3,0 k3,1 k3,2 k3,3

k0,0

U0 U1 U2 U3

k3,4 k3,5 k3,6 k3,7

U4 U5 U6 U7

k2,0 k2,1 k2,2 k2,3

k1,0 k1,1

Figure 4: Logical key hierarchy tree for eight users

Example 6.9 Figure 4 shows the binary tree for a logical key hierarchy for eight
users H. Each user stores four keys. Thus, for example, user U3 stores u3 =
{k3,3, k2,1, k1,0, k0,0}. The group key can be decrypted using (or is) k0,0, which is
stored by every user, and the remaining keys that a user stores all facilitate group
changes. We illustrate this process by an example. Suppose that U5 leaves the
group. It is necessary to replace all the keys held by U5 that are also held by any
other user. The most efficient process for doing this is as follows:
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1. The TA generates new keys k′2,2, k
′
1,1, k

′
0,0;

2. The TA encrypts k′2,2 using key k3,4;

3. The TA encrypts k′1,1 using keys k3,4 and k2,3;

4. The TA encrypts k′0,0 using keys k3,4, k2,3 and k1,0;

5. The TA broadcasts all these encrypted keys;

6. User U4 decrypts k′2,2 and replaces k2,2 with this new key (user U4 can do this
because it is a stateful receiver);

7. Similarly, users U4, U6 and U7 replace k1,1 by k′1,1;

8. Similarly, all users except U5 replace k0,0 by k′0,0.

The scheme has now been updated in such a way that the new group key is deter-
mined using k′0,0, which is a key that the departing user U5 does not know.

It is straightforward to generalise Scheme 6.8 to use a-ary trees rather than binary
trees. Example 6.9 should be sufficient to illustrate how general protocols for leaving
or joining groups of users can be derived.

6.1.4 Schemes based on covers for stateless receivers We now look at a family
of broadcast encryption schemes designed for stateless receivers.

Definition 6.10 Let (I,B) be a set system and for each x ∈ I let β(x) = {B ∈
B |x ∈ B}. We say that (I,B) is a cover-based revocation system (CBRS) if for
every non-empty A ⊆ B there exists IA ⊆ I such that⋃

x∈IA
β(x) = A.

In other words, a set system is a CBRS if for every non-empty collection A of blocks
there exists a subset H of points such that the subsets {β(x) |x ∈ H} form a cover
of A.

Scheme 6.11 Given a cover-based revocation system (I,B) we can define a broad-
cast encryption scheme for stateless receivers as follows:

• Associate each point x ∈ I with a key kx, and associate each block Bi ∈ B with
a user Ui;

• ui = {kx |x ∈ Bi};
• For any subset A of users (corresponding to the set of blocks A), BA =
{Ekx(kA) |x ∈ IA};
• By definition of a CBRS, the only users holding at least one of the keys kx are

those in A.
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Broadcast encryption schemes arising from Scheme 6.11 allow group keys to be estab-
lished for any subset of users (hence C = 2U ), while not permitting any unauthorised
subset access to the group key (full collusion security). It is worth noting however
that such schemes are only practical if there also exists an efficient algorithm for
determining the appropriate cover of keys, given a particular subset of users.

We now describe a manifestation of Scheme 6.11 from [58], based on the binary
tree exhibited in Scheme 6.8.

Scheme 6.12 For simplicity, assume that |U| = m = 2h. To establish a complete
subtree revocation scheme:

1. Define a (complete) binary tree with m leaves as in Scheme 6.8.

2. As in Scheme 6.8, let uj = {kx,y | kx,y is on the path from kh,j to k0,0}. Each
user thus holds h+ 1 keys.

3. In order to establish a group key kA, where A = U \R:

• Form the subtree ST(R) consisting of the paths from the nodes in R to
the root (this is sometimes called the Steiner Tree of nodes R).

• Identify the set K(A) of nodes kx,y of the main tree such that kx,y is not
a node of ST(R) but the parent of kx,y is a node of ST(R) (such nodes
are sometimes referred to as hanging off ST(R), and form a cover of A).

• Let BA = {Ekx,y(kA) | kx,y ∈ K(A)}.

k3,0 k3,1 k3,2 k3,3

k0,0

U0 U1 U2 U3

k3,4 k3,5 k3,6 k3,7

U4 U5 U6 U7

k2,0 k2,1 k2,2 k2,3

k1,0 k1,1

Figure 5: Complete subtree revocation of users U1, U4 and U5

Example 6.13 Figure 5 shows the binary tree for a complete subtree revocation
scheme for eight users in which users R = {U1, U4, U5} are being revoked (in other
words, a group key is being established for A = {U0, U2, U3, U6, U7}). The edges in
bold form ST(R) and the keys connected to ST(R) by dashed edges form K(A). In
this case BA = {Ek3,0(kA), Ek2,1(kA), Ek2,3(kA)}.

Scheme 6.12 was generalised in [2] to a-ary trees and some interesting compres-
sion techniques were proposed for further reducing the user storage.

In [58] it was shown that the following alternative CBRS, which we describe
informally, can be extracted from a different labeling of a complete binary tree.
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Scheme 6.14 For simplicity, assume that |U| = m = 2h. To establish a subset
difference revocation scheme:

1. Define a (complete) binary tree with m leaves whose nodes are labeled from
the root downwards by v1, . . . , v2h+1−1. Associate the users, which we label
U0, . . . , Um−1, with the leaf nodes (labeled by keys v2h , . . . , v2h+1−1).

2. Associate a key kx,y with any pair of nodes vx and vy of the tree such that vy

is a descendent of vx.

3. For each user Uj let uj = {kx,y |Uj is a descendent of vx but not of vy}.
4. In order to establish a group key kA, where A = U \R, run a simple algorithm

(defined in [58]) to find a subset of keys that cover A.

Without going into further details it should be evident that Scheme 6.14 results in
a broadcast encryption scheme with much greater user storage than Scheme 6.12.
However in general Scheme 6.14 has a much smaller broadcast message (resulting
from a smaller cover) than Scheme 6.12 and so represents an alternative tradeoff.

Several variants of these schemes have been proposed in the literature. For exam-
ple: in [36] a modification of the subset difference scheme based on defining layers
of the underlying tree was proposed; in [3] a compression technique for reducing
the user storage of the subset difference scheme was identified; in [55] it was shown
that the complete subtree and subset difference schemes can be combined to obtain
further examples of attractive tradeoffs.

Lastly we note that in [43] it was observed that a (1, w, d)-CFF (see Section 5.3)
provides a restricted notion of a CBRS, where there exists a suitable cover for any
subset of at least |B| − w blocks (and hence up to w users can be revoked).

6.1.5 Broadcast encryption with extended capabilities The attractive applica-
tions of broadcast encryption have resulted in some interesting extensions to the
basic concept being proposed and investigated. We briefly identify two areas where
interesting research has been conducted:

• Traceable broadcast encryption: The problem of piracy of decoder boxes
for commercial information services has led to an interest in incorporating
traceability into the keys allocated to a user in a broadcast encryption scheme.
This means that any group of users who combine their keys to forge a new
decoder can have at least one of their identities revealed if that decoder is
later captured and analysed. This idea was first proposed in [25] and has
subsequently been extensively investigated. Creating suitable distributions
of keys presents a number of interesting combinatorial problems, which were
comprehensively reviewed in [7].

• Self-healing broadcast encryption: If the broadcast channels being used
are unreliable then it is possible that some users may not reliably receive
the broadcast information that allows them to determine a given group key.
The idea behind a self-healing broadcast encryption scheme is that additional
information is broadcast on each occasion that allows valid group members
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to recover any missing group key from a combination of previous and sub-
sequent broadcast messages. This idea is most appropriate for applications
where regular group keys are established over a series of discrete time intervals.
Self-healing broadcast encryption was first proposed in [70] and subsequently
investigated in, for example, [13] and [14].

6.2 Decentralised schemes

One of the concerns of relying on a TA to play a major role during the key
establishment phase is that it becomes a potential central point of failure. This
even applies to the (trivial) key distribution scheme when the TA maintains secure
channels with users throughout the scheme lifetime. One method of mediating
against this, which was first studied in [59], is to have a set TA1, . . . , TAr of r
different TAs, of which at least mmust be involved in the establishment of any group
key. This idea was first suggested for decentralising key predistribution schemes in
[44]. We capture this concept informally in the following definition.

Definition 6.15 An (m, r, C,X )-distributed key distribution scheme (DKDS) is a
(C,X )-KDS with the stronger properties that:

1. Given A ∈ C, any Ui ∈ A can compute the group key kA from knowledge of
ui and {vi,A,j1, . . . , vi,A,jm}, where vi,A,jl

is some information obtained by Ui

from TAl during the key establishment phase for key kA.

2. Given A ∈ C, B ∈ X and a set of m−1 TAs, it is not possible to determine kA

from uA, the private information held by the m− 1 TAs and any information
sent to any user in a previous key establishment event.

Defintion 6.15 was formalised in [11] in an information theoretically secure model
and several bounds on scheme parameters, including TA storage, were established.
These essentially show that a scheme suggested in [59] is optimal. We briefly outline
this optimal DKDS.

Scheme 6.16 Given (C,X ), we let λ = maxB∈X |{A ∈ C |A ∩ B �= ∅} (in other
words, the maximum number of group keys that any set B ∈ X can compute) and
associate each A ∈ C with an element hA ∈ GF (q). Initialise the (m, r, C,X )-DKDS
as follows:

• Each user Ui is issued with a set of keys that allow them to communicate
securely with each of the r TAs.

• TAi (1 ≤ i ≤ m) constructs a random bivariate polynomial fi(x, y) of degree
m− 1 in x, degree λ− 1 in y, and with coefficients from GF (q).

• TAi securely sends the univariate polynomial fi(j, y) to TAj (1 ≤ j ≤ r).
• TAj computes and stores the univariate polynomial tj(y) =

∑m
i=1 fi(j, y) as

their private information.

When user Ui ∈ A wants to establish kA:
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• Ui sends a request to a set of m TAs, say TAi1 , . . . , TAim.

• TAij sends vi,A,ij = tij(hA) to Ui.

• Ui uses Lagrange interpolation to recover kA =
∑m

l=1 fl(0, hA) from the values
{ti1(hA), . . . , tim(hA)}.

Various generalisations and extensions to the basic idea of a DKDS have been studied
in the literature. For example in [12] a tradeoff between storage and security was
exhibited by employing ramp schemes and in [29] a DKDS was proposed which
is more robust against users and TAs who do not follow the specified protocols
correctly.

7 Group key agreement schemes

The third class of key establishment schemes that we look at are those where
users can communicate with one another during the key establishment phase. We
assume that, as for the reasons given at the start of Section 5, there is no trusted
authority available to assist with key establishment after the initialisation phase.
The majority of group key agreement schemes are particularly suited to environ-
ments where the nature of the communication structure is not known in advance.
A group key agreement scheme then allows an ad hoc group to create a group key
amongst themselves. For this reason (motivated by potential applications to secure
teleconferencing) they are sometimes referred to as conference key schemes. In [15]
they are referred to as interactive key distribution schemes.

Our classification of key agreement schemes as any scheme that involves user
interaction unassisted by a trusted authority is highly generic and allows us to group
together several very different types of group key establishment schemes. The vast
majority of group key agreement schemes are based on public key cryptographic
techniques and are mostly beyond the scope of this paper as they do not inherently
involve combinatorial techniques. Many of these, including one that we will look at
in Section 7.2, are based around the classical Diffie-Hellman protocol [30], which we
briefly describe for the simple two-party case.

Scheme 7.1 Let G be a finite multiplicative group of some large prime order q and
let g be a generator of G (these parameters are published during the initialisation
phase). If U1 and U2 wish to establish a key k then:

1. U1 randomly chooses x1 ∈ Z∗
q and sends gx1 to U2;

2. U2 randomly chooses x2 ∈ Z∗
q and sends gx2 to U1;

3. U1 computes k = (gx2)x1 and U2 computes k = (gx1)x2 , both of which are equal
to gx1x2.

The security of the Diffie-Hellman protocol relies on the difficulty of taking discrete
logarithms (see any standard cryptographic text such as [73]). We will not make
any attempt in this paper to review the vast range of extensions and alternatives
to Diffie-Hellman that have been proposed for group key agreement, and refer to
surveys such as [18] and (more recently and exclusive on key agreement) [31].
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7.1 Group key agreement from KPSs and KDSs

In a similar way to our discussion in Section 6.1.2, it is conceptually possible
to construct a group key agreement scheme for either a group key predistribution
scheme or a group key distribution scheme.

Scheme 7.2 If we have a (C,X )-KPS then we can realise a (C,X ) key agreement
scheme as follows:

• Each user stores ui, as issued in the KPS;

• Users Ui ∈ A establish group key kA by utilising secure channels amongst
themselves that are protected by the group key k∗A associated with the KPS.

Precisely how Scheme 7.2 can be manifested very much depends on the mutual trust
between users in the scheme. One simple option is that one user Ui could generate
kA and then distribute it to the others encrypted by k∗A. Another option is that each
user Ui ∈ A generates a component ki

A, which is then distributed encrypted by k∗A.
Each user in A then decrypts the component and forms kA =

∑
Ui∈A k

i
A. Regardless

of how this is done, the resulting key agreement scheme will suffer from limitations
similar to those of Scheme 6.5 that were noted in Section 6.1.2.

Scheme 7.3 If we have a (C,X )-KDS then we can realise a (C,X ) key agreement
scheme as follows:

• During the initialisation phase, each user is provided with data that allows
them to fulfill the role of TA in a (C,X )-KDS;

• Users Ui ∈ A establish group key kA by utilising the group keys ki∗
A associated

with each of the KDSs.

Again there are many ways in which Scheme 7.3 could actually manifest itself. Note
also that there is no need for the individual KDSs strictly to be (C,X )-KDSs, since
it is possible that schemes with smaller communication structures could be cleverly
combined. This is precisely what was done in [6], which was later generalised in
[15]. This scheme used the broadcast encryption scheme based on a resolvable
design discussed in Section 6.1.2 to establish a group key agreement scheme, where
each user in A acted as a TA and broadcast an encrypted component key ki

A, which
was then combined to form the group key kA.

7.2 Key agreement schemes for long term group management

Analogously to the situation discussed in Section 6.1, in dynamic application
environments where group membership regularly changes it may be desirable to
have schemes that allow long term group keys to be established by key agreement
techniques. We have already seen in Section 6.1 that trees underpin a number of
group key distribution schemes. There have been several proposals for tree-based
group key agreement schemes based on Diffie-Hellman. We will describe the basic
set up of just one such scheme, from [42].
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Scheme 7.4 Let H be a subset of m users (chosen from a universe U), G be a
finite multiplicative group of some large prime order q and let g be a generator of
G. During the initialisation phase these parameters are published and users are
issued with information that allows them to communicate with one another using
authenticated public broadcast channels. For simplicity, assume that m = 2h. The
key establishment phase proceeds as follows:

1. Define a (complete) binary tree with m leaves, each associated with a user from
H. Label this tree iteratively as in Scheme 6.8 as follows: root by N0,0; the left
child of Ni,j by Ni+1,2j; and right child of Ni,j by Ni+1,2j+1. Hence the users,
which we label Uh,0, . . . , Uh,m−1, correspond to nodes Nh,0, . . . , Nh,m−1.

2. Each user Uh,j generates a secret value kh,j and publicly broadcasts gkh,j to the
other members of H.

3. Each pair of users Uh,j and Uh,j+1 (for all even 0 ≤ j ≤ m − 1) compute
the Diffie-Hellman key kh−1,j/2 using Scheme 7.1, which is then associated
with node Nh−1,j/2. Both Uh,j and Uh,j+1 securely store kh−1,j/2 and publicly
broadcast gkh−1,j/2 .

4. Each quartet of users Uh,j, Uh,j+1, Uh,j+2, Uh,j+3 (for all j ≡ 0 (mod 4), 0 ≤
j ≤ m− 1) compute the Diffie-Hellman key kh−2,j/4 using Scheme 7.1, which
is then associated with node Nh−2,j/4. All four users securely store kh−2,j/4

and publicly broadcast gkh−2,j/4 .

5. This process is iterated until the last Diffie-Hellman calculation results in k0,0,
which is adopted as the group key kH .

At the end of the above protocol, each user Uh,j holds each key that is associated with
the nodes on the path from Nh,j to the root N0,0, as well as gki,j for each node Ni,j

in the tree.

N2,0 N2,1 N2,2 N2,3

N1,0 N1,1

N0,0

U2,0 U2,1 U2,2 U2,3

Figure 6: Tree-based Diffie-Hellman node allocation on four nodes

Example 7.5 The underlying tree for m = 4 is shown in Figure 6. In this example,
U2,j first generates k2,j and broadcasts gk2,j (1 ≤ j ≤ 4). Users U2,0 and U2,1

conduct a Diffie-Hellman exchange to compute k1,0 = gk2,0k2,1 , and U2,2 and U2,3

conduct a Diffie-Hellman exchange to compute k1,1 = gk2,2k2,3 . Both gk1,0 and gk1,1

are then broadcast. Finally the group key k0,0 = gk1,0k1,1 can be computed by all
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four users. Each user stores all keys on the path from their leaf node to the root.
So, for example, U2,0 stores k2,0, k1,0 and k0,0.

As mentioned in Section 6.1, the main advantage of setting up the key agreement
tree in Scheme 7.4 is that this structure facilitates relatively efficient user join, user
leave, group merge and group partition operations in dynamic environments. We
leave the details of these protocols to [42].

7.3 Wireless sensor network schemes

A very interesting class of key establishment schemes that are of combinatorial in-
terest are those designed for application in wireless sensor networks. These networks
consist of tiny, inexpensive, low-powered sensors fitted with wireless transmitters,
which can be spatially scattered to form an ad hoc network. They are particularly
suited to applications in environments where it is difficult to manually establish a
communication network, such as during disaster relief operations, seismic data col-
lection, wildlife monitoring or military intelligence gathering. Sensors are distributed
around the application environment (perhaps by aeroplane drop) and then attempt
to set up a network in order to exchange and return data. What makes wireless
sensor networks particularly intriguing is that the actual network topology (defined
by a physical graph, whose edges represent sensors that are able to communicate
with one another at a particular instant in time) is not known prior to deployment
and is potentially highly dynamic. Thus we might as well model the physical graph
as a random graph.

There are three factors that influence the choice of key establishment techniques
for wireless sensor networks. The first is the fact that as there is no network controller
after initialisation, there is no entity that can play the role of a TA. This lends itself
to either key predistribution or key agreement schemes. However sensors also have
very limited storage and computational abilities. This presents a dilemma since:

• As we have already seen in Section 5, the cost of relying solely on key predis-
tribution is often substantial secret storage;

• Relying solely on key agreement involves considerable computational costs and
is likely to be hampered by the random nature of the physical graph.

A sensible compromise is thus to predistribute keys “as well as possible”, while also
permitting a limited amount of communication between sensors to take place during
key establishment, effectively making such schemes group key agreement schemes.

7.3.1 A key establishment model for wireless sensor networks The basic idea
behind a wireless sensor network scheme (WSN scheme) for communication struc-
ture C is to first establish a (C∗,X )-key predistribution scheme, where both C and
C∗ are defined on the same set of sensors (users). We refer to C∗ as the network
communication structure. When a set A ∈ C of sensors requires a group key kA:

1. if A ∈ C∗ then they establish kA using the KPS;

2. if A /∈ C∗ then they use some key agreement protocol to establish a key kA,
potentially using other sensors in the network to assist them.
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Note that it is quite reasonable to rely on other sensors to assist in a key agreement
process since the random nature of the physical graph necessitates that nodes typi-
cally rely on one another for message transmission services. One commonly proposed
key agreement technique is to seek a path of secure links in the physical graph that
joins the sensors in A, and then get one of the sensors on this path to generate a
key and securely relay it.

It is clearly desirable to have C∗ matching C as closely as possible. As a result, the
effectiveness of a WSN scheme is often measured in terms of the local connectivity,
which is a notion of the probability that a group of sensors in C either are in C∗
or are “close” to being in C∗ (where “close” is normally measured in terms of the
number of other sensors that need to be involved in establishing kA if A /∈ C∗).

There are a wide variety of different approaches to the design of WSN schemes
and we refer to [21] for a comprehensive survey. We now review a number of inter-
esting applications of combinatorial structures to the design of WSN schemes. We
will mainly restrict our interest here to the case where C = {A ⊆ U | |A| = t} (and
in particular the case t = 2), in which case we will refer to t-wise (pairwise) WSN
schemes.

7.3.2 Using a KPS Any key predistribution schemes that we have already dis-
cussed in Section 5 could potentially be adopted as part of a WSN scheme. Thus be-
fore considering dedicated designs, it is worth considering existing candidate KPSs.
The most appropriate schemes are those with relatively low user storage and fast
key computation. This makes schemes such as tree-based key distribution patterns
(Section 5.4) attractive candidates. Also of interest are probabilistic schemes such
as Scheme 5.8 (the random KPS) and Scheme 5.10, where efficiencies have been
gained at the expense of a slightly unpredictable network communication structure.
However these KPSs have not all been proposed explicitly for WSNs and, in partic-
ular, it is desirable to try to custom-design a KPS that also results in an efficient
key agreement phase.

7.3.3 Key ring WSN schemes We now discuss a class of WSN schemes that are
based on key ring predistribution schemes (fundamental Scheme 5.7). Let t be a
positive integer and let U1, . . . , Un be a collection of sensors. Let R = (I,B) be a
key ring, as defined in Section 5.1.2.

Definition 7.6 A (t, n,R)-key ring WSN scheme (KRWSN) is a WSN scheme aris-
ing from a key ring predistribution scheme based on R, where the (network) com-
munication structure is

C∗ = {A ⊆ U | |A| = t and
⋂

Ui∈A

ui �= ∅}.

In other words, a group U1, . . . , Ut of t sensors check their public identifier sets
Pub1, . . . , Pubt to see if they share any common identifiers. If they do, then they
can establish a group key kA by applying g to the keys ki that correspond to the
identifiers in ∩t

j=1Pubj. If not, then they establish the group key by an alternative
key agreement mechanism.
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The first KRWSN schemes proposed were based on a version of Scheme 5.8,
the random key predistribution scheme, where the key ring was defined by B = Ik

(the collection of all subsets of I of some fixed size k) [24, 33]. Not surprisingly
however, improved schemes can be obtained if the key ring has a more combinatorial
structure. In [20], both projective planes and generalized quadrangles were suggested
as candidate key rings.

Scheme 7.7 Let q be a prime power and R = (I,B) be a projective plane of order
q. For any n ≤ q2 + q + 1 we obtain a (2, n,R)-KRWSN scheme such that:

• Each sensor needs to store q + 1 keys;

• Every pair of sensors shares precisely one common key.

Scheme 7.7 is of course also an example of a KDP (see Section 5.3) and thus could
have been included in Section 7.3.2. The fact that every pair of sensors share a key
means that in this example no key agreement stage is necessary. There is a subtle
problem with this scheme however. Many of the applications for wireless sensor
networks involve a large number of sensors (potentially tens of thousands). This
necessitates a suitable large choice of q in Scheme 7.7, which in turn requires the
storage-limited sensor to hold too many keys. In [47] both transversal designs and
quadratic curves were considered as candidate key rings and shown to have better
properties.

Scheme 7.8 Let q be a prime and R = (I,B) be a transversal design TD(k, q). For
any n ≤ q2 we obtain a (2, n,R)-KRWSN scheme such that:

• Each sensor needs to store k keys;

• Every pair of sensors share precisely zero or one common key;

• The probability that a pair of sensors share a common key is k/(q + 1).

To see that Scheme 7.8 is an improvement on Scheme 7.7, consider the following
example:

Example 7.9 Suppose that we require a WSN with 2400 sensors. If Scheme 7.7 is
used then we need to choose q = 49 and each node is required to store 50 keys. On
the other hand, we could apply Scheme 7.8 with a TD(30, 49) [47], in which case
each node only needs to store 30 keys. In this case any pair of nodes share a key
with probability 0.6. It is further shown in [47] that if we make certain reasonable
assumptions about the valency of the physical graph, the probability that any pair
of sensors either share a key, or are connected in the physical graph to a third sensor
with whom they both share a common key, is very close to 1.

Example 7.9 motivates the hunt for a more general class of combinatorial structures
with similar properties. We say that two sensors Ui and Uj in a WSN can commu-
nicate via a two-hop path if there exists a third sensor Uk such that both Ui and Uk,
and Uj and Uk, share common keys. For a KRWSN scheme this condition equates
to requiring that ui∩uk �= ∅ and uj ∩uk �= ∅. It is particularly advantageous if there
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are several different choices of intermediary node Uk since this increases the chances
that one of them is able to act as a direct relay between Ui and Uj in the physical
graph. The following type of structure was first proposed in [45].

Definition 7.10 Let (I,B) be a (v, b, r, k)-configuration. We say that (I,B) is
a (v, b, r, k, µ)-common intersection design (CID) if for any distinct pair of blocks
Bi, Bj ∈ B we have: |{Bk ∈ B |Bi ∩Bk �= ∅ and Bj ∩Bk �= ∅}| ≥ µ.
Clearly common intersection designs make ideal candidates for KRWSN scheme key
rings, as well as being of intrinsic combinatorial interest in their own right. We
have already seen one example in Scheme 7.8, since a TD(k, q) is an example of a
(qk, q2, q, k, k(k−1))-CID. Since we require µ to be as large as possible in a KRWSN
scheme, an interesting question is to determine the maximum possible µ when fixing
other parameters. Several upper bounds on µ were established in [48] and optimal
CIDs were constructed using group-divisible designs, strongly-regular graphs and
generalized quadrangles. Further investigation of CIDs is certainly merited.

7.3.4 Graph-based WSN schemes Given that one of our goals in a WSN scheme
is to limit the number of hops between sensors who do not share a common key,
another sensible design approach is to base the allocation of keys around a virtual
network graph, whose vertices are sensors and whose edges join sensors who share
a common key (in some sense this is the opposite approach to that taken in Sec-
tion 7.3.3). We restrict our proposals in this section to pairwise WSN schemes, but
the approach could be generalised using hypergraphs. This idea was again first pro-
posed in the literature using random graphs (Scheme 5.8) but we will again see that
combinatorial structures provided a more intuitive basis for construction. We will
use the following generic scheme.

Scheme 7.11 A graph-based WSN scheme (GWSN) for a graph G = (U , E) is a
pairwise WSN scheme based on an underlying node-based KPS where:

• Each edge e ∈ E is associated with a random key ke;

• ui = {ke |Ui is adjacent to e};
• C∗ = {{Ui, Uj} |Ui and Uj are joined by an edge e ∈ E}.

One difference between graph-based schemes and KRWSN schemes in general is that
all graph-based schemes have full collusion security. In order to exploit this we need
to define appropriate graphs on which to base a graph-based WSN scheme. In [46]
it was pointed out that (n, r, λ, µ)-strongly regular graphs make ideal candidates,
since by definition any pair of sensors in the graph that do not share a key are
connected by µ two-hop paths. It was further demonstrated in [46] that careful
choices of strongly regular graph have better local connectivity than schemes based
on a random graph.

One problem with graph-based WSN schemes is that good connectivity often
comes at the expense of requiring a graph where vertices typically have a high
degree (and hence sensors have high storage). A clever efficiency improvement that
can be applied to certain network graphs was observed in [46]:
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Scheme 7.12 let G = (U , E) be a network graph that can be decomposed into star-
like subgraphs. We can then establish a pairwise WSN scheme based on an underlying
node-based KPS where:

• Each Ui is associated with an identifier IDi and a random key ki;

• ui = {ki ∪ {h(kj , IDi) |Ui is connected to a starlike subgraph centred at Uj}},
where h is a hash function;

• C∗ = {{Ui, Uj} |Ui and Uj are joined by an edge e ∈ E}.

The above “trick” allows the sensor storage to be reduced compared to Scheme 7.11,
since Ui only needs to store one key ki for all the edges of the star-like subgraphs
centred at Ui (it still needs to store a key for every other edge adjacent to Ui). This
saving comes at the cost of reducing the security from unconditional to computa-
tional, since security is now dependent on the strength of the hash function.

The last scheme we will look at here is not strictly a graph-based scheme in the
notion of Scheme 7.11, but it is based on a complete t-partite network graph. The
scheme we describe is a generalisation to t-wise (from pairwise) of a scheme from
[46].

Scheme 7.13 Let GN1,...,Nt = (I, E) denote a complete t-partite graph on n vertices,
based on a partition of I into subsets N1, . . . , Nt. The t-partite BDVHKY-KPS for
GN1,...,Nt is defined as follows, where q ≥ n:

• Pubi = si, where si ∈ GF (q) and Pubi �= Pubj if i �= j.

• The TA (randomly) constructs a secret t-variate polynomial f with coefficients
from GF (q),

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1...itx
i1
1 . . . x

it
t .

• If Ui ∈ Ni then ui = f(x1, . . . , xi−1, si, xi+1, . . . , xt).

• C∗ = {A |A contains precisely one member of each Ni}.

• For any A = {Uz1 , . . . , Uzt} ∈ C∗, the user Uzi computes kA = f(sz1 , . . . , szt).

Note that the underlying polynomial in Scheme 7.13 differs from that in Scheme 5.9
by not necessarily being symmetric. The t-partite BDVHKY-KPS provides efficient
key agreement since any t sensors A that are not in C∗ must not contain any members
of some partition subset Nl. Thus there are at least |Nl| common neighbours of the
sensors in A who can potentially act as a two-hop relay to all the sensors in A.
Scheme 7.13 also has better resilience than Scheme 5.9, since now w + 1 sensors
from the same partition subset Ni have to be captured before the scheme is broken.
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7.3.5 Hybrid WSN schemes The last approach that we will briefly mention in-
volves mixing WSN schemes with different properties. The first two ideas each
“randomise” in a different way an underlying combinatorial design in order to cre-
ate schemes that exhibit interesting tradeoffs in comparison to schemes that we have
already seen. The third technique combines schemes in a combinatorial way.

• Recall that key ring WSN schemes based on KDPs, such as Scheme 7.7, suffer
from the fact that if sensor storage is kept low, the number of possible sensors
in the network is restricted. In [20] it was suggested that Scheme 7.7 be
combined with a version of the RKPS (Scheme 5.8), essentially “topping up”
the number of blocks in a projective plane with some random blocks. This
leads to a degradation in the local connectivity but was shown in [20] to offer
interesting tradeoffs between local connectivity and sensor storage.

• Recall that Scheme 7.8 was proposed as an alternative to Scheme 7.7 that
permitted more sensors at the expense of a loss in connectivity. In [23] it
was suggested that this connectivity loss can be avoided by randomly merging
blocks of the underlying transversal design, thus creating a key ring with much
longer blocks but greater connectivity. This idea thus improves connectivity
at the expense of greater sensor storage.

• Recall that Scheme 5.10 was developed from Scheme 5.9 using a randomised
product construction to improve resilience at the expense of a loss of connec-
tivity. In [78] a deterministic product construction that combines multiple
copies of a key predistribution scheme using a generic set system was studied.
Combinatorial properties for desirable set systems were derived and it was
shown that special types of 1-designs known as difference families made good
candidates.

This concept of combining different types of WSN scheme merits further investiga-
tion.

7.4 Multisecret sharing schemes

The previous key agreement schemes that we have looked at involve users having
to collaborate to construct a group key for practical reasons (such as making key
establishment efficient or through restrictions in the connectivity of the network).
We now look at a family of key agreement schemes were users are forced to collabo-
rate to construct a group key for security reasons. This is most likely to happen in
applications where the group keys protect sensitive assets, with no single user being
trusted with the sole authority to access them.

Definition 7.14 Let C = {A1, . . . , Am} be a communication structure defined on
a set U . An access structure for C is a collection Γ = {Γ1, . . . ,Γm} of subsets of U
with the property that:

1. Γi consists of subsets of Ai;

2. Γi is monotone (in other words, if X ∈ Γi and X ⊆ Y ⊆ Ai then Y ∈ Γi).
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We will use an access structure on C to specify the degree of mandatory collaboration
between users that is required before a group key can be established. More precisely,
we will require the property that the group key kAi can be established only if users
belonging to a set in Γi collaborate. This is more clearly specified in the following
definition.

Definition 7.15 Let C = {A1, . . . , Am} be a communication structure and X be
an exclusion structure defined on a set U , and let Γ = {Γ1, . . . ,Γm} be an access
structure for C. A (C,X ,Γ)-multisecret sharing scheme is a (C,X )-key establishment
scheme such that for any set of users B:

1. If (B ∩ Ai) ∈ Γi then there exists a public function g such that g({ui |Ui ∈
B}) = kAi . In other words, the users in B can construct kAi from their
collective set of secret values.

2. If (B ∩ Ai) /∈ Γi and B ∈ X then, even if users in B exchange all their secret
values {ui |Ui ∈ B}, they will not learn any information about kAi .

Note that we have deliberately avoided formulating the notion of not learning any
information and refer to [40] for a combinatorial formalisation and [54] for an
information-theoretic formalisation of this concept. We have also avoided a detailed
discussion of how the users exchange their values ui and apply the public function
g (typically it is either assumed that users share secret channels or that there exists
an entity called a combiner that performs this task for them).

Multisecret sharing schemes are generalisations of secret sharing schemes (see
Section 4.5), which correspond to the case of a scheme with just one group A1

(associated with Γ1) in its communication structure. While bounds on the secret
storage have been established for general multisecret sharing schemes under a couple
of different threat models [16, 54], we will restrict our attention to the special case
of multisecret threshold schemes, defined as follows.

Definition 7.16 A (t, w, λ)-multisecret threshold scheme (MTS) is a special class
of (C,X ,Γ)-multisecret sharing scheme where:

1. C = {A ⊆ U | |A| = t};
2. X = {A ⊆ U | |A| ≤ w};
3. For each Ai ∈ C, Γi = {X ⊆ Ai | |X| ≥ λ}.

A (t, w, 1)-MTS corresponds to a (t, w)-KPS (see Section 5) since in this case there
is no requirement for users to collaborate to construct their group keys. In [40] it
was shown that for most meaningful choices of w, each user in a (t, w, λ)-MTS needs
to be given a secret value ui that is at least

(w+t−2λ+1
t−λ

)
times larger than the size

of any key kAi in the system. This bound is a generalisation of the bound on user
storage for KPSs proved in [17] (see Section 5.2). It is thus of particular interest
to find MTSs that meet this bound. The following are all “degenerate” cases of
optimal MTSs:

• Scheme 5.9 [17] is an optimal (t, w, 1)-MTS;
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• Optimal (n,w, λ)-MTSs (where |U| = n) correspond to optimal secret sharing
schemes (more precisely, if w = λ−1 they correspond to ideal threshold schemes
such as the classical scheme in [69] and for general w they correspond to optimal
ramp schemes, see [38]);

• An optimal (t, w, t)-MTS is easily constructed by letting ui be randomly chosen
in GF (q) and letting kA =

∑
Ui∈A ui for any A ∈ C [40].

However, the task of constructing optimal MTSs with 1 < λ < t appears to be
intriguingly difficult and to date only two constructions are known. In [41] a family
of optimal (t, n − k + 1, 2)-MTSs were constructed and in [5] a family of optimal
(3, w, 2)-MTSs. Both these constructions were based on complex and rather intri-
cate projective geometrical configurations and used a geometrical interpretation of
Scheme 5.9 as a building block.

8 Concluding remarks

In this paper we have reviewed a wide variety of applications of combinatorics ob-
jects, including designs and graphs, to different types of key establishment scheme.
The theory of group key establishment is by no means complete and there are a
number of areas where combinatorics can make further contributions to our under-
standing. Some specific areas where more research would be beneficial include:

• Several combinatorial objects that have direct application to key establishment
merit further investigatory work:

– While a moderate amount of research has been conducted on key distri-
bution patterns (cover free families), there is a great deal of information
about these structures to learn. In particular very little is known about
KDPs for non-threshold communication structures.

– Hash-tree key distribution patterns are relatively newly proposed struc-
tures and more theoretical work needs to be done concerning both con-
structions and performance bounds.

– Cover-based revocation systems have attracted a great deal of interest in
the area of broadcast encryption and greater understanding is needed of
how efficiently these can be implemented.

– Common intersection designs provide an interesting solution to the prob-
lem of key establishment in wireless sensor networks. More knowledge of
how to generate constructions with useful parameters is required.

• There has been some interesting preliminary research conducted on how to
take key establishment schemes with nice mathematical structure and convert
them into more practical schemes with less inherent structure, but better per-
formance. This can either be through merging schemes, extending schemes or
simply using a mathematical scheme as a starting point on which to build a
practical solution (Section 7.3.5 describes some work of this type for group key
agreement schemes). This area certainly merits further investigation.
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• Most of the schemes that we have presented in this review have been discussed
in their most basic form. We have not discussed how they can be extended to
incorporate all of the extended capabilities mentioned in Section 3.2.5. There
remains plenty work to de done in designing schemes with extended capabil-
ities, the most important of which is probably flexibility, in other words the
ability to efficiently process dynamic changes to the communication structure
over time.

It is hoped that this review has provided convincing evidence that combinatorial
mathematics has already made a substantial contribution to the theory of key es-
tablishment, and that we can expect it to continue to do so in future cryptographic
systems.
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Branchwidth of graphic matroids

Frédéric Mazoit and Stéphan Thomassé

Abstract

We prove that the branchwidth of a bridgeless graph is equal to the branch-
width of its cycle matroid. Our proof is based on branch-decompositions of
hypergraphs. By matroid duality, a direct corollary of this result is that the
branchwidth of a bridgeless planar graph is equal to the branchwidth of its
planar dual.

1 Introduction.

The notion of branchwidth was introduced by Robertson and Seymour in their
seminal paper Graph Minors X [3]. Very roughly speaking, the goal is to decompose
a structure S along a tree T in such a way that subsets of S corresponding to disjoint
branches of T are pairwise as disjoint as possible. One can define the branchwidth of
various structures such as graphs, hypergraphs, matroids, submodular functions...
Our goal in this paper is to prove that the definitions of branchwidth for graphs and
matroids coincide in the sense that the branchwidth of a bridgeless graph is equal to
the branchwidth of its cycle matroid. This answers a question of Thomas [5], also
cited in Geelen, Gerards, Robertson and Whittle [1].

Let us now define properly these notions.
Let H = (V,E) be a graph, or a hypergraph, and (E1, E2) be a partition of E.

The border of (E1, E2) is the set of vertices which belong to both an edge of E1 and
an edge of E2. We denote this by δ(E1, E2), or simply by δ(E1).

A branch-decomposition T of H is a ternary tree T and a bijection from the set
of leaves of T into the set of edges of H. In practice, we simply identify the leaves
of T with the edges of H. Observe that every edge e of T partitions T \ e into two
subtrees, and thus corresponds to a bipartition of E, called an e-separation. More
generally, a T -separation is an e-separation for some edge e of T . We will often
identify the edge e of T with the e-separation, allowing us to write, for instance,
δ(e) instead of δ(E1, E2), where (E1, E2) is the e-separation. Let T be a branch-
decomposition of H. The width of T , denoted by w(T ), is the maximum value of
|δ(e)| for all edges e of T . The branchwidth of H, denoted by bw(H), is the minimum
width of a branch-decomposition of H. A branch-decomposition achieving bw(H)
is optimal.

Let us now turn to matroids. Let M be a matroid on ground set E with rank
function r. The width of every non-trivial partition (E1, E2) of E is wm(E1, E2) :=
r(E1) + r(E2) − r(E) + 1. When T is a branch-decomposition of M , i.e. a ternary
tree whose leaves are labelled by E, the width wm(T ) of T is the maximum width of
a T -separation. Again, the branchwidth bwm(M) of M is the minimum width of a
branch-decomposition of M . One nice fact about branchwidth is that it is invariant
under matroid duality (recall that the bases of the dual matroid M∗ of M are the
complements of the bases of M). Indeed, since rM∗(U) = |U |+ rM(E \U)− rM(E)
for all U ⊆ E, wm(E1, E2) is the same in M and in M∗. Note that since branchwidth
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is a measure of how complex the matroid is, it is a useful fact that M and M∗ have
the same branchwidth.

Having defined both the branchwidth of a graph and of a matroid, a very natural
question is to compare them when the matroid M is precisely the cycle matroid of
a graph G, i.e. the matroid MG whose ground set is the set of edges of G and whose
independent sets are the acyclic subsets of edges. A first observation is that they
differ, for instance the branchwidth of the path of length three is 2 whereas the
branchwidth of its cycle matroid is 1. The inequality bw(MG) ≤ bw(G) always
holds, and simply comes from the fact that wm(E1, E2) ≤ |δ(E1, E2)| for every
partition of E which has a nonempty border. To see this, define, when H = (V,E)
is a hypergraph, a component of E to be a minimal - with respect to inclusion -
nonempty subset C ⊆ E such that δ(C) = ∅. Let F be a subset of E. We denote by
c(F ) the number of components of the subhypergraph of H spanned by F , i.e. the
hypergraph (V (F ), F ). The hypergraph H is connected if c(E) = 1 and is moreover
bridgeless if c(E \e) = 1 for all e ∈ E (since our definition is based on edges, we may
have vertices with degree 0 or 1 in a connected bridgeless hypergraph). Observe now
that when (E1, E2) is a separation of the edges of a graph, we have

wm(E1, E2) = r(E1) + r(E2)− r(E) + 1 = n1 − c(E1) + n2 − c(E2)− n+ c(E) + 1,

where n1, n2, n are the number of vertices respectively spanned by E1, E2, E. In
particular,

wm(E1, E2) = |δ(E1, E2)|+ c(E) + 1− c(E1)− c(E2) ≤ |δ(E1, E2)|,
since c(E) + 1− c(E1)− c(E2) ≤ 0 when δ(E1, E2) is not empty.

Let us define a new branchwidth, the matroid branchwidth bwm(H) of a hy-
pergraph H in which the separations (E1, E2) are evaluated with the function
wm(E1, E2) = |δ(E1, E2)|+1+c(E)−c(E1)−c(E2) instead of the function |δ(E1, E2)|.
We also write wm(E1) instead of wm(E1, E2). In particular, when G is a graph, we
have bwm(G) = bwm(MG).

The main result of this paper, Theorem 1, is that when H is connected and
bridgeless, there exists a branch-decomposition T of H achieving bwm(H) such that
every T -separation (E1, E2) is such that c(E1) = c(E2) = 1. Thus we have w(T ) =
wm(T ), and since bwm(H) ≤ bw(H) and T is optimal, we have bwm(H) = bw(H).
This implies in particular that the branchwidth of a bridgeless graph is equal to the
branchwidth of its cycle matroid. Moreover, the case bw(G) > bwm(MG) happens
if and only if the graph G has a bridge, bwm(MG) = 1 and bw(G) = 2. In other
words, if G is a tree that is not a star.

Another consequence of our result concerns planar graphs. The key-fact here is
that planar duality corresponds to matroid duality, i.e. when G is planar and G∗

is the planar dual of G, we have (MG)∗ = MG∗ . Therefore, when G is a planar
bridgeless graph, we derive:

bw(G) = bwm(MG) = bwm((MG)∗) = bwm(MG∗) = bw(G∗).

Which is a new proof of the fact that for bridgeless graphs, the branchwidth
is invariant under taking planar duality. The first proof of this result was a direct
corollary of a result of Seymour and Thomas in [4].
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The paper is organized as follows. In Sections 2 and 3, we analyze the properties
of a possible minimal counterexample H to our main theorem. We get more and
more structure, step by step. At the end of Section 3, the hypergraph H is very
constrained, tripartite, triangle-free etc, but no further simple step follows. The
contradiction is achieved via a particular separation of H. The existence of such a
separation relies on a (technical) partition lemma on multigraphs, the proof of which
is postponed to Section 4.

Unless stated otherwise, we always assume that T is a branch-decomposition of
a hypergraph H = (V,E). Also, when speaking about width, branchwidth, etc, we
implicitly mean the matroid one.

2 Faithful branch-decompositions.

Let (E1, E2) be a T -separation. The decomposition T is faithful to E1 if for
every component C of E1, the partition (C,E \ C) is a T -separation. The border
graph GT has vertex set V and contains as edges all pairs xy for which there exists
a T -separation e such that {x, y} ⊆ δ(e). A branch-decomposition T ′ is tighter
than T if wm(T ′) < wm(T ) or if wm(T ) = wm(T ′) and GT ′ is a subgraph of GT .
Moreover, T ′ is strictly tighter than T if T ′ is tighter than T , and T is not tighter
than T ′. Finally, T is tight if no T ′ is strictly tighter than T .

Lemma 1 Let (E1, E2) be a partition of E. For any union E′
1 of connected compo-

nents of E1 and E2, we both have δ(E′
1) ⊆ δ(E1) and wm(E′

1) ≤ wm(E1).

Proof. Clearly, δ(E′
1) ⊆ δ(E1). Moreover, every vertex of δ(E1) belongs to one

component of E1 and one component of E2. Therefore, if C is a component of E′
1

which is the union of k components of E1 and E2, there are at least k − 1 vertices
of C \ δ(C) which belong to δ(E1), In all, the weight of the separation increased by
k− 1 since we merged k components into one, but it also decreased by at least k− 1
since we lost at least that many vertices on the border. Since this is the case for
every component of E′

1 and of E \E′
1, we have wm(E′

1) ≤ wm(E1).

Lemma 2 Let (E1, E2) be an e-separation of T . Let T1 be the subtree of T \ e with
set of leaves E1. If T is not faithful to E1, we can rearrange T1 in T to form a
tighter branch-decomposition T ′ of H which is faithful to E1.

Proof. Fix the vertex e ∩ T1 as a root of T1. Our goal is to change the binary
rooted tree T1 into another binary rooted tree T ′

1 . For every connected component
C of E1, consider the subtree TC of T1 which contains the root of T1 and has set
of leaves C. Observe that TC is not necessarily binary since TC may contain paths
having internal vertices with only one descendant. We simply replace these paths by
edges to obtain our rooted tree T ′

C . Now, consider any rooted binary tree BT with
c(E1) leaves and identify these leaves with the roots of T ′

C , for all components C of
E1. This rooted binary tree is our T ′

1 . We denote by T ′ the branch-decomposition
we obtain from T by replacing T1 by T ′

1 . Roughly speaking, we merged all subtrees
of T1 induced by the components of E1 together with T \ T1 to form T ′. Let us
prove that T ′ is tighter than T . For this, consider an edge f ′ of T ′. If f ′ /∈ T ′

1 ,
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the f ′-separations of T and T ′ are the same. If f ′ ∈ BT , by Lemma 1, we have
wm(f ′) ≤ wm(e) and δ(f ′) ⊆ δ(e). In both cases T ′ is tighter than T . So the
only case we have to consider is when f ′ is an edge of some tree T ′

C , where C is
a component of E1. Recall that f ′ corresponds to a path P of TC . Let f be any
edge of P . Let (F,E \ F ) be the f -separation of T , where F ⊆ E1. Therefore, the
f ′-separation of T ′ is

(
F ∩C,E \ (F ∩C)

)
. Since F is a subset of E1, the connected

components of F are subsets of the connected components of E1. Thus F ∩ C is
a union of connected components of F . By Lemma 1, we have δ(f ′) ⊆ δ(f) and
wm(f ′) ≤ wm(f).

We have proved that w(T ′) ≤ w(T ) and that GT ′ is a subgraph of GT , thus T ′

is tighter than T .

3 Connected branch-decompositions.

Let F ⊆ E be a set of edges such that c(F ) = 1. The hypergraph on vertex
set V and edge set (E \ F ) ∪ {V (F )} is denoted by H ∗ F . In other words, H ∗ F
is obtained by merging the edges of F into one edge. A partition (E1, E2) of E is
connected if c(E1) = c(E2) = 1. A branch-decomposition T is connected if every
T -separation is connected.

Lemma 3 If T is a tight branch-decomposition of a connected hypergraph H, every
T -separation (E1, E2) is such that E1 or E2 is connected.

Proof. Suppose for contradiction that there exists a T -separation (E1, E2) such
that neither E1 nor E2 is connected. By Lemma 2, we can assume that T is faithful
to E1 and to E2. Let C1 and C2 be respectively the sets of components of E1 and
E2. Consider the graph on set of vertices C1 ∪ C2 where C1C2 is an edge whenever
C1 ∈ C1 and C2 ∈ C2 have nonempty intersection. This graph is connected since H
is connected and is not a star since both E1 and E2 are not connected. Thus, it has
a vertex-partition into two connected subgraphs, each having at least two vertices.
This vertex-partition corresponds to a partition (C′1, C′2) of C1 ∪ C2.

Consider any rooted binary tree BT with |C′1| leaves. Since every C ∈ C′1 is an
element of C1 ∪ C2 and T is faithful to E1 and to E2, (C,E \ C) is an e-separation
of T . We denote by TC the tree of T \ e with set of leaves C. Root TC with the
vertex e ∩ TC in order to get a binary rooted tree. Now identify the leaves of BT
with the roots of TC, for C ∈ C′1. This rooted tree is our T ′

1 . We construct similarly
T ′

2 . Adding an edge between the roots of T ′
1 and T ′

2 gives the branch-decomposition
T ′ of H. By Lemma 1, wm(T ′) ≤ wm(T ) and GT ′ is a subgraph of GT . Let us now
show that GT ′ is a strict subgraph of GT . Indeed, since C′1 is connected and has
at least two elements, it contains C1 ∈ C1 and C2 ∈ C2 such that V (C1) ∩ V (C2) is
nonempty. By construction, every vertex x of V (C1)∩ V (C2) is such that x /∈ δ(C′1)
and x ∈ δ(C1). Similarly, there is a vertex y spanned by C′2 such that y /∈ δ(C′2) and
y ∈ δ(C2). Thus xy is an edge of GT . The selected x is not in the union of the
members of C ′

2 and the selected y is not in the union of the members of C ′
1, so x and

y are not in the vertex-boundary of any separation displayed by G′
T . Consequently

xy is not an edge of GT ′ , contradicting the fact that T is tight.
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Theorem 1 For every branch-decomposition T of a connected hypergraph H, there
exists a tighter branch-decomposition T ′ such that for every T ′-separation (E1, E2)
with c(E1) > 1, E1 consists of components of H \ e, for some e ∈ E2. In particular,
if H is bridgeless, it has an optimal connected branch-decomposition.

Proof. Let us prove the theorem by induction on |V | + |E|. The statement is
obvious if |E| ≤ 3, so we assume now that H has at least four edges. Call a branch-
decomposition achieved if it satisfies the conclusion of Theorem 1. If T is not tight,
we can replace it by a tight branch-decomposition tighter than T . So we may assume
that T is tight.

If there is an edge e ∈ E such that H \ e is not connected, we can assume by
Lemma 2 that T is faithful to E \ e. Let E1 be a connected component of E \ e.
Let T1 be the branch-decomposition induced by T on E1 ∪ e. Let T2 be the branch-
decomposition induced by T on E \ E1. Observe that both E1 ∪ e and E \ E1

are connected, so by the induction hypothesis, there exist two achieved branch-
decompositions T ′

1 and T ′
2 , respectively tighter than T1 and T2. Identify the leaf e

of the tree T ′
1 with the leaf e of T ′

2 and attach a leaf labelled by e to this identified
vertex. Let T ′ denote this branch-decomposition of H. Observe that T ′ is tighter
than T . Moreover, since both T ′

1 and T ′
2 are achieved, T ′ is also achieved.

So we assume now thatH is bridgeless. We can also assume that all the vertices of
H have degree at least two, since we can simply delete the vertices of H with degree
0 or 1, and apply induction. The key-observation is that if there is a connected
T -separation (E1, E2) with |E1| ≥ 2 and |E2| ≥ 2, we can apply the induction
hypothesis on H ∗ E1 and H ∗ E2 and merge the two branch-decompositions to
obtain an optimal connected branch-decomposition of H. Therefore, we assume
that every T -separation (E1, E2) with |E1| ≥ 2 and |E2| ≥ 2 is such that E1 or E2

is not connected. We now orient the edges of T . If (E1, E2) is an e-separation such
that E2 is connected and |E2| > 1, we orient e from E1 to E2. Since H is bridgeless,
every edge of T incident to a leaf is oriented from the leaf. By Lemma 3, every
edge has at least one orientation. And by the key-observation, every edge of T has
exactly one orientation.

This orientation of T has no circuit, thus there is a vertex t ∈ T with outdegree
zero. Since every leaf has outdegree one, t has indegree three. Let us denote by
A,B,C the sets of leaves of the three trees of T \ t. Observe that by construction,
A∪B, A∪C and B ∪C are connected. By Lemma 2, we can assume moreover that
T is faithful to A,B and C. We claim that A is a disjoint union of edges, i.e. the
connected components of A are edges of H. To see this, assume for a contradiction
that a component CA of A is not an edge of H. Since T is faithful to A, (CA, E \CA)
is a T -separation. But this is simply impossible since B∪C being connected, E\CA is
also connected, contrary to the fact that every edge of T has a unique orientation. So
the hypergraph H consists of three sets of disjoint edges A,B,C. Call this partition
the canonical partition of T . Call (A,E \ A), (B,E \ B) and (C,E \ C) the main
T -separations. Note that the width of every other T -separation is at most bwm(H).
Since every vertex of H belongs to two or three edges, it is spanned by at least two
of the sets δ(A), δ(B), δ(C). In particular GT is the complete graph on V , and thus
every optimal branch-decomposition ofH is tighter than T . Therefore, every optimal
branch-decomposition of H has a canonical partition, otherwise we can conclude by
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induction. Set δAB := |δ(A)∩ δ(B)|, δAC := |δ(A)∩ δ(C)|, δBC := |δ(B)∩ δ(C)| and
δABC := |δ(A) ∩ δ(B) ∩ δ(C)|. We now prove some properties of H.

1. Two of the sets A,B,C have at least two edges. Indeed, assume for a con-
tradiction that A = {a} and B = {b}. Since |E| ≥ 4, there are at least two
edges in C. Let c ∈ C. Observe that c intersects both a and b since A∪C and
B ∪ C are connected. Assume without loss of generality that |a ∩ c| ≥ |b ∩ c|.
Now form a new branch-decomposition T ′ by moving c to A, i.e. T ′ has a
separation (A ∪ c,B ∪ (C \ c)) and then four branches with respective leaves
A, c,B, (C \ c). We have

wm(A∪ c,B∪ (C \c)) ≤ |δ(A∪ c)| = |δ(A)|+ |b∩ c|− |a∩ c| ≤ |δ(A)| = wm(A).

In particular T ′ is tighter than T , and since the T ′-separation (A∪c,B∪(C\c))
is connected and both of its branches have at least two vertices, we can apply
induction to conclude.

2. Each set A,B,C has at least two edges. Indeed, assume for a contradiction that
A consists of a single edge a. Observe that since A∪B and A∪C are connected,
a intersects every edge of H. Let b be an edge of B. Call |b ∩ δ(C)| − |b ∩ a|
the excess of an edge b of B. Let us prove that the excess of b is positive.
Indeed, if |b ∩ δ(C)| ≤ |b ∩ a|, we can as previously move b to A in order to
form a tighter branch-decomposition T ′. If moreover (B ∪C) \ b is connected,
we are done since we now have a connected separation (A∪ b, (B ∪C) \ b), on
which we can apply induction. If (B ∪ C) \ b is not connected, the canonical
partition of T ′ must be A, b, (B ∪ C) \ b since the union of each two of these
branches is connected. Since A consists of a single edge, we conclude as in
Fact 1. Similarly, the excess |c ∩ δ(B)| − |c ∩ a| of an edge c ∈ C is positive.
Let s be the minimum excess of an edge es of B ∪ C. Observe that s ≥ 1
and that every b ∈ B satisfies |b ∩ δ(C)| ≥ |b ∩ a| + s. Thus, summing for all
edges of B, we obtain δBC ≥ δAB + s|B|. Similarly, δBC ≥ δAC + s|C|. Note
also that bwm(H) ≥ wm(C) = δBC + δAC − δABC − |C| + 1 and bwm(H) ≥
wm(B) = δBC + δAB − δABC − |B|+ 1. In all

2 bwm(H) ≥ 2δBC − 2δABC + δAC − |C|+ δAB − |B|+ 2.

Then 2bwm(H) ≥ δAB +s|B|+δAC +s|C|−2δABC +δAC−|C|+δAB−|B|+2.
Finally, bwm(H) ≥ δAC + δAB − δABC + 1 + ((s− 1)|C|+ (s− 1)|B|)/2. Since
|δ(A)| = δAC + δAB − δABC , we have bwm(H) ≥ |δ(A)| + s. But then we can
move es to A to conclude since |δ(A ∪ es)| ≤ bwm(H).

3. Observe that canonical partitions A,B,C now satisfy that A,B and C are
disconnected.

4. We have bwm(H) = wm(A). If not, pick two edges a, a′ of A and merge them
together. The hypergraph we obtain is still connected and bridgeless, and
the branch-decomposition still has the same width. Apply induction to get
an achieved branch-decomposition. Then replace the merged edge by the two
original edges. This branch-decomposition T ′ is optimal but does not have
a disconnected canonical partition. Thus we have a contradiction to Fact 3.
Similarly, bwm(H) = wm(B) = wm(C).
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5. We have bwm(H) ≥ β + 1, where β is the maximum size of an edge of H.
Observe that H has no edge of size one. Indeed if such an edge e belongs to,
say, A, it is also included in another edge, say in B. But then moving e to
B would give a canonical partition which does not consist of disjoint edges, a
contradiction. So the size of an edge of H is at least two. In particular every
separation which is not a main one has width at most bwm(H) − 1. Since
the separation (a,E \ a), where a is an edge of H of size β, is not a main
separation, it follows that bwm(H) ≥ β + 1.

6. We have δABC = 0. Indeed, suppose for a contradiction that there exists a
vertex z in δ(A)∩ δ(B)∩ δ(C). Consider the hypergraph Hz obtained from H
by removing the vertex z from all its edges. Observe thatHz is connected since
z is incident to three edges and H is bridgeless. The branch-decomposition T
induces a branch-decomposition Tz of Hz having width at most wm(T ) − 1.
We apply induction on Tz to obtain an achieved branch-decomposition T ′

z of
Hz. Now reinsert the vertex z into the edges of Hz and call T ′ the branch-
decomposition obtained from T ′

z . Let us show that T ′ is optimal. Observe
that if a T ′

z -separation (E1, E2) is connected, adding z will raise by at most
one its width in T ′. Moreover if a T ′

z -separation (E1, E2) is not connected,
say c(E2) > 1, adding z can raise by at most two its width in T ′ (either by
merging three components of E2 into one, or by merging two and increasing
the border by one). Since T ′

z is achieved, E2 is a set of components of E \e for
some edge e of Hz. But then in T ′

z , we have wm(E1, E2) ≤ |δ(E2)| − 3 + 2 ≤
|e|−1 ≤ β−1 ≤ bwm(H)−2, and thus wm(E1, E2) ≤ bwm(H) in T ′. Therefore
T ′ is optimal. Moreover every T ′-separation (E1, E2) is connected. Indeed,
if (E1, E2) is connected in T ′

z , we are done. If E1 is not connected in T ′
z ,

E1 consists of components of Hz \ e, for some edge e of Hz. But since H is
bridgeless, every component of E1 in H must contain z, otherwise they would
be components of H \ e. Consequently E1 is connected in H.

7. Every edge of H is incident to at least four other edges. Indeed, assume for
a contradiction that an edge a of A is incident to only one edge b of B and
at most two edges of C (the case where a is only incident to edges of C is
obvious, we just move a to C and thus decrease the border of A). Moving
a to B increases wm(B) by |a ∩ δ(C)| − |a ∩ b| and does not increase wm(A)
and wm(C). Therefore, if |a ∩ δ(C)| ≤ |a ∩ b|, we can move a to B, and
this new branch-decomposition T ′ is strictly tighter than T since the vertices
of a ∩ b are no longer joined to (δ(A) \ a) ∩ δ(C) in the graph GT ′ . Thus
|a∩ δ(C)| ≥ |a∩ b|+ 1. Moreover, moving a to C increases wm(C) by at most
|a ∩ b| − |a ∩ δ(C)| + 1, since at most two components of C can merge. So
|a ∩ b|+ 1 > |a ∩ δ(C)|, a contradiction.

8. Fact 7 implies in particular that the size of any edge of H is at least four.
It follows that wm(e) ≤ bwm(H) − 3 whenever e is not one of the main T -
separations. Therefore β ≤ bwm(H)− 3.

9. The hypergraph H is triangle-free. Indeed, suppose that there exist three
edges a ∈ A, b ∈ B and c ∈ C and three vertices x ∈ a ∩ b, y ∈ b ∩ c and
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z ∈ c ∩ a. Let H/xyz be the hypergraph obtained by contracting x, y, z to a
single vertex v. The branch-decomposition T induces a branch-decomposition
T /xyz of H/xyz. Note that H/xyz is still connected and bridgeless, and that
wm(T /xyz) = wm(T ) − 1 since we decrease by one the border of every main
separation. By induction, we can find an achieved branch-decomposition T ′

of H/xyz which is tighter than T /xyz. We claim that T ′ is also an achieved
branch-decomposition of H. Consider for this a T ′-separation (E1, E2) of E.
If a, b, c belong to the same part, say E1, the width of (E1, E2) is the same in
H/xyz and in H. If a, b belong to one part and c to the other, the width of
(E1, E2) is one less in H/xyz than in H. Thus bwm(H) ≤ bwm(H/xyz) + 1,
and in particular T ′ is optimal. Finally, since (E1, E2) is connected in H/xyz,
it is also connected in H. Thus, T ′ is achieved.

Now we are ready to finish the proof. Note that bwm(H) = (wm(A) + wm(B) +
wm(C))/3 = (2|V | − |E|)/3 + 1. Consider the line multigraph L(H) of H, i.e. the
multigraph on vertex set A ∪ B ∪ C and edge set V such that v ∈ V is the edge
which joins the two edges e, f of H such that v ∈ e and v ∈ f . The multigraph L(H)
satisfies the hypothesis of Lemma 4 (proved in the next section), thus it admits a
vertex-partition as in the conclusion of Lemma 4. This corresponds to a partition
of A ∪ B ∪ C into two subsets E1 := A1 ∪ B1 ∪ C1 and E2 := A2 ∪ B2 ∪ C2 such
that |δ(E1, E2)| ≤ (2|V | − |E|)/3 + 1 and both E1 and E2 have at least 
|E|/2� − 1
internal vertices. In particular, the separation (E1, E2) has width at most bwm(H).
Let us show that one of wm(A1 ∪ B1), wm(B1 ∪ C1), and wm(C1 ∪ A1) is also at
most bwm(H). For this, observe that the set δ(A1 ∪B1) ∪ δ(B1 ∪ C1) ∪ δ(C1 ∪A1)
covers every vertex of V which is not an internal vertex of E2 twice. Thus

|δ(A1 ∪B1)|+ |δ(B1 ∪ C1)|+ |δ(C1 ∪A1)| ≤ 2|V | − 2
|E|/2� + 2 ≤ 2|V | − |E|+ 3.

Without loss of generality, we can assume that δ(A1 ∪ B1) ≤ (2|V | − |E|)/3 + 1 =
bwm(H), and thus we split E1 into two branches A1∪B1 and C1. We similarly split
E2 to obtain an optimal branch-decomposition T ′ of H. Observe that in the graph
GT ′ , there is no edge between the internal vertices of E1 and E2. This contradicts
the fact that T is tight.

4 The partition Lemma.

Let G be a multigraph on vertex set V and X,Y be two subsets of V . We
denote by e(X,Y ) the number of edges of G between X and Y . We also denote by
e(X) the number of edges in X. The degree of a vertex x in a subset Y of G is
dY (x) := e(x, Y ). When Y = V , we simply write d(x). The underlying degree of x
in Y is the number of neighbours of x in Y , i.e. we forget the multiplicity of edges.
A graph is 2-connected if it is connected and the removal of any vertex leaves it
connected.

Lemma 4 Let G be a 2-connected triangle-free multigraph on n ≥ 5 vertices and
m edges. Assume that its minimum underlying degree is at least four and that its
maximum degree is at most (2m − n)/3 + 1. There exists a partition (X,Y ) of the
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vertex set of G such that e(X) ≥ 
n/2� − 1, e(Y ) ≥ 
n/2� − 1 and e(X,Y ) ≤
(2m− n)/3 + 1.

Proof. Call a partition good if it satisfies the conclusion of Lemma 4. Assume first
that there are vertices x, y such that e(x, y) ≥ 
n/2� − 1. The minimum degree
in V \ {x, y} is at least two, so e(V \ {x, y}) is at least n − 2 and hence at least

n/2� − 1. Thus, if the partition (V \ {x, y}, {x, y}) is not good, we necessarily
have d(x) + d(y)− 2e(x, y) > (2m− n)/3 + 1. By the maximum degree hypothesis,
both d(x) and d(y) are greater than 2e(x, y). Since G is triangle-free, there exists a
partition (X,Y ) where (N(x) ∪ x) \ y ⊆ X and (N(y) ∪ y) \ x ⊆ Y . Observe that
e(X) ≥ d(x) − e(x, y) > e(x, y) ≥ 
n/2� − 1. Similarly e(Y ) ≥ 
n/2� − 1. We then
have:

e(X,Y ) ≤ m− (d(x) + d(y)− 2e(x, y)) < m− (2m− n)/3− 1 = (m+ n)/3− 1.

Moreover, since m ≥ 2n by the minimum degree four hypothesis, we have e(X,Y ) ≤
(2m−n)/3 + 1 and finally (X,Y ) is a good partition. We assume from now on that
the multiplicity of an edge is less than 
n/2� − 1.

Let a+ b = n, where a ≤ b. A partition (X,Y ) of V is an a-partition if |X| ≤ a,
e(X) ≥ a−1, e(Y ) ≥ b−1, e(X,Y ) ≤ (2m−n)/3+1, and the additional requirement
that X contains a vertex of G with maximum degree.

Note that there exists a 1-partition, just consider for this X := {x}, where x
has maximum degree in G (the minimum degree in Y is at least three, ensuring
that e(Y ) ≥ n − 2). We consider now an a-partition (X,Y ) with maximum a. If
a ≥ b− 1, this partition is good and we are done. So we assume that a < b− 1. In
particular e(X) = a− 1.

The key-observation is that there exists at most one vertex y of Y such that
e(Y \ y) < b− 2. Indeed, if there is a vertex of Y with degree one in Y , we simply
move it to X, and we obtain an (a+ 1)-partition (e(X) increases, e(Y ) decreases by
one, and e(X,Y ) decreases). Thus the minimum degree in Y is at least two, and
hence e(Y ) ≥ |Y |. Moreover, if there is a vertex z of Y with degree two in Y , we can
still move it to X: indeed e(X) increases, e(Y \ z) ≥ |Y | − 2 and e(X,Y ) does not
increase. So the minimum degree in Y is at least three (but the minimum underlying
degree may be one). This implies that e(Y ) ≥ 3|Y |/2. Let Y := {y1, . . . , y|Y |} where
the vertices are indexed in order of increasing degree in Y . For every i �= |Y |, we
have e(Y ) ≥ (3(|Y | − 2) + dY (yi) + dY (y|Y |))/2. Furthermore,

e(Y \yi) ≥ (3(|Y |−2)+dY (yi)+dY (y|Y |))/2−dY (yi) ≥ 3(|Y |−2)/2 ≥ |Y |−2 ≥ b−2.

We now discuss the two different cases depending on whether or not there exists
y ∈ Y such that e(Y \ y) < b − 2. In the following, the excess of a vertex y ∈ Y is
exc(y) := dY (y)− dX(y).

• Assume that e(Y \y) ≥ b−2 for every y ∈ Y . We denote by Y ′ the (nonempty)
set of vertices of Y with at least one neighbour in X. We let Y ′′ := Y \Y ′, by
definition every vertex of Y ′′ has underlying degree at least four in Y . Note that
we can move a vertex of Y ′ to X if it does not have positive excess. Denote by
c the minimum excess of a vertex of Y ′. We have c > 0. The sum of the degrees
of the vertices of Y ′ is at least 2e(X,Y ) + c|Y ′|. Now, summing the degrees of
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all the vertices of Y , we get 2e(Y ) + e(X,Y ) ≥ 4|Y ′′|+ 2e(X,Y ) + c|Y ′|, and
hence:

2e(Y ) ≥ e(X,Y ) + 4|Y ′′|+ c|Y ′|. (4.1)

Let y ∈ Y ′ satisfy exc(y) = c. Since the partition (X ∪ y, Y \ y) is not
an (a + 1)-partition, we have e(X,Y ) + c > (2m − n)/3 + 1. Since m =
e(X,Y ) + e(X) + e(Y ), this implies

e(X,Y ) + 3c > 2e(X) + 2e(Y )− n+ 3. (4.2)

Equations (4.1) and (4.2) give:

3c > 2e(X) + 4|Y ′′|+ c|Y ′| − n+ 3. (4.3)

Since e(X) ≥ a − 1 ≥ n − |Y | − 1, we get 3c > n − 2|Y | + 4|Y ′′| + c|Y ′| + 1.
From |Y | = |Y ′| + |Y ′′|, we get 3c > n + 2|Y | + (c − 4)|Y ′| + 1, and finally
n + 2|Y | < (c − 4)(3 − |Y ′|) + 11. If c = 4, we get n + 2|Y | ≤ 10, which is
impossible since n ≥ 5 and |Y | > n/2. If c = 3, we get n + 2|Y | − |Y ′| ≤ 7,
again impossible. If c = 2, we get n + 2|Y | − 2|Y ′| ≤ 4, again impossible. If
c = 1, we get n+ 2|Y | − 3|Y ′| ≤ 1, which can only hold if |Y | = |Y ′| = n− 1.
Thus, X consists of a single vertex, completely joined to Y , contrary to the fact
that G is triangle-free and has minimum underlying degree 4. Finally c > 4,
and consequently |Y ′| < 3. Observe that |Y ′| > 1 since G is 2-connected.
Thus |Y ′| = 2. Let y1, y2 be the vertices of Y ′, indexed in such a way that
e(y1,X)+e(y2, Y

′′) ≥ e(y2,X)+e(y1, Y
′′). Let X1 := X ∪y1 and Y1 := Y \y1.

Since y1 ∈ Y ′, we have e(X1) ≥ a. Moreover e(Y1) ≥ b − 2. We claim that
e(y1, y2) ≤ e(Y ′′). Indeed, since G has minimum underlying degree four, the
minimum degree in Y \ {y1, y2} is at least two. So

e(Y ′′) = e(Y \ {y1, y2}) ≥ |Y | − 2 ≥ 
n/2� − 1 ≥ e(y1, y2).

Thus

e(X1, Y1) = e(y1, y2) + e(y1, Y
′′) + e(y2,X) ≤ e(Y ′′) + e(y2, Y

′′) + e(y1,X).

In particular e(X1, Y1) ≤ e(X1)+e(Y1), or equivalently e(X1, Y1) ≤ m/2. Since
m ≥ 2n, we have e(X1, Y1) ≤ (2m−n)/3+1. So the partition (X1, Y1) is good.

• Now assume that there exists a vertex y ∈ Y such that e(Y \y) ≤ b−3 ≤ |Y |−3.
We denote by Y ′ the set of vertices of Y \ y with at least one neighbour in X.
Set Y ′′ := Y \ (Y ′ ∪ y). Observe that since every vertex of Y ′′ has underlying
degree four in Y , we have e(Y \ y) ≥ 3|Y ′′|/2. Thus, |Y ′′| ≤ (2|Y | − 6)/3.
Since |Y | > 3, we have |Y ′′| < |Y | − 3, and finally |Y ′| ≥ 3. Denote by c the
minimum excess of a vertex of Y ′, again c > 0. Summing the degrees of the
vertices of Y gives 2e(Y ) ≥ e(X,Y ) + 4|Y ′′| + c|Y ′| + exc(y). Equation (4.2)
still holds, so

exc(y) < 3c+n−3−2e(X)−4|Y ′′|−c|Y ′| ≤ 3c−1−e(X)−3|Y ′′|− (c−1)|Y ′|
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since e(X) + |Y ′′| + |Y ′| ≥ n − 2. Therefore exc(y) < −e(X) − 3|Y ′′| − (c −
1)(|Y ′|−3)+2. Since |Y ′| ≥ 3, |Y ′′| ≥ 0, and c ≥ 1, we have exc(y) ≤ 1−e(X).
Recall that the minimum degree in Y is at least three, hence summing the
degrees in Y of the vertices of Y \ y gives 3(|Y | − 1) ≤ 2e(Y \ y) + dY (y) ≤
2b−6+dY (y). Finally, dY (y) ≥ |Y |+3 and by the fact that exc(y) ≤ 1−e(X),
we have dX(y) ≥ |Y |+e(X)+2. In all, we have d(y) ≥ 2|Y |+e(X)+5. Recall
that X contains a vertex x with maximum degree in G. In particular both x
and y have degree at least 2|Y | + e(X) + 5. Observe that dX(x) is at most
e(X), and consequently dY (x) is at least 2|Y | + 5. Now the end of the proof
is straightforward, it suffices to switch x and y to obtain the good partition
(X1, Y1) := ((X ∪ y) \ x, (Y ∪ x) \ y). We now need to consider the value of
e(x, y). Indeed if e(x, y) is at most e(X), we have:

1. e(Y1) ≥ dY1(x) ≥ 2|Y |+ 5− e(x, y) ≥ 2|Y | − e(X) ≥ |Y | ≥ n/2.
2. e(X1) ≥ dX1(y) ≥ |Y |+ e(X) + 2− e(x, y) ≥ n/2.
3. Finally, since the excess of y is at most 1 − e(X), we have dX1(y) +
e(x, y) = dX(y) ≥ dY (y)+ e(X)−1, hence dX1(y) ≥ dY (y)−1. Moreover
dY1(x) ≥ 2|Y | + 5 − e(X) ≥ e(X) + 5 ≥ dX(x) + 5. Thus, e(X1, Y1) =
e(X,Y ) + dY (y) − dX1(y) + dX(x) − dY1(x) ≤ e(X,Y ) − 4. Therefore
e(X1, Y1) ≤ (2m− n)/3 + 1, since (X,Y ) is an a-partition.

To conclude, we just have to show that e(x, y) is at most e(X). Assume for
a contradiction that e(x, y) ≥ a. We consider the partition into X2 := {x, y}
and Y2 := V \ {x, y}. Observe that the minimum underlying degree in Y2 is
at least two. Thus e(Y2) ≥ n− 2 ≥ b− 2. By the maximality of a, (X2, Y2) is
not an (a+ 1)-partition, therefore e(X2, Y2) > (2m− n)/3 + 1, hence

d(x) + d(y)− 2e(x, y) > (2m− n)/3 + 1. (4.4)

We now claim that any partition (X3, Y3) such that (x ∪N(x)) \ y ⊆ X3 and
(y ∪N(y)) \ x ⊆ Y3 is good. Indeed, we have e(X3) ≥ d(x) − e(x, y) ≥ 2|Y |+
e(X) + 5 − n/2 ≥ n/2. Similarly e(Y3) ≥ n/2. So, if (X3, Y3) is not good, we
must have e(X3, Y3) > (2m−n)/3+1. Therefore m−(d(x)+d(y)−2e(x, y)) >
(2m−n)/3+1, and by Equation (4.4), we have m > 2(2m−n)/3+2. Finally
m < 2n − 6 which is impossible since the minimum degree in G is at least
four.

An independent proof of the equality of branchwidth of cycle matroids and graphs
was also given by Hicks and McMurray [2]. Their method is based on matroid
tangles.
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