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383 Motivic integration and its interactions with model theory and non-Archimedean geometry I,

R. CLUCKERS, J. NICAISE & J. SEBAG (eds)
384 Motivic integration and its interactions with model theory and non-Archimedean geometry II,

R. CLUCKERS, J. NICAISE & J. SEBAG (eds)
385 Entropy of hidden Markov processes and connections to dynamical systems, B. MARCUS,

K. PETERSEN & T. WEISSMAN (eds)
386 Independence-friendly logic, A.L. MANN, G. SANDU & M. SEVENSTER
387 Groups St Andrews 2009 in Bath I, C.M. CAMPBELL et al (eds)
388 Groups St Andrews 2009 in Bath II, C.M. CAMPBELL et al (eds)
389 Random fields on the sphere, D. MARINUCCI & G. PECCATI
390 Localization in periodic potentials, D.E. PELINOVSKY
391 Fusion systems in algebra and topology M. ASCHBACHER, R. KESSAR & B. OLIVER



CHAPMAN: “FM” — 2011/5/9 — 12:40 — PAGE iii — #3

London Mathematical Society Lecture

Note Series: 392

Surveys in Combinatorics 2011

Edited by

ROBIN CHAPMAN
University of Exeter



CHAPMAN: “FM” — 2011/5/9 — 12:40 — PAGE iv — #4

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107601093

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-60109-3 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.



Contents

Preface page vii

1 Counting planar maps, coloured or uncoloured 1

Mireille Bousquet-Mélou

2 A survey of PPAD-completeness for computing

Nash equilibria 51

Paul W. Goldberg

3 Hypergraph Turán problems 83

Peter Keevash

4 Some new results in extremal graph theory 141

V. Nikiforov

5 The cyclic sieving phenomenon: a survey 183

Bruce Sagan

6 Order in building theory 235

Koen Thas

7 Graphs, colours, weights and hereditary properties 333

Andrew Thomason

8 Random geometric graphs 365

Mark Walters

9 Transversals in latin squares: a survey 403

Ian Wanless

v





Preface

The Twenty-Third British Combinatorial Conference was organised by

the University of Exeter. It was held in Exeter in July 2011. The British

Combinatorial Committee had invited nine distinguished combinatori-

alists to give survey lectures in areas of their expertise, and this volume

contains the survey articles on which these lectures were based.

In compiling this volume I am indebted to the authors for preparing

their articles so accurately and professionally, and to the referees for

their rapid responses and keen eye for detail. I would also like to thank

Roger Astley, Silvia Barbina and Clare Dennison at Cambridge Uni-

versity Press for their advice, assistance and patience. Finally, without

the previous efforts of editors of earlier Surveys and the guidance of the

British Combinatorial Committee, the preparation of this volume would

have been quite impossible.

Robin Chapman

University of Exeter

January 2011

vii





Counting planar maps, coloured or uncoloured

Mireille Bousquet-Mélou

Abstract

We present recent results on the enumeration of q-coloured planar maps,
where each monochromatic edge carries a weight ν. This is equivalent to weight-
ing each map by its Tutte polynomial, or to solving the q-state Potts model on
random planar maps. The associated generating function, obtained by Olivier
Bernardi and the author, is differentially algebraic. That is, it satisfies a (non-
linear) differential equation. The starting point of this result is a functional
equation written by Tutte in 1971, which translates into enumerative terms
a simple recursive description of planar maps. The proof follows and adapts
Tutte’s solution of properly q-coloured triangulations (1973-1984).

We put this work in perspective with the much better understood enumera-
tion of families of uncoloured planar maps, for which the recursive approach al-
most systematically yields algebraic generating functions. In the past 15 years,
these algebraicity properties have been explained combinatorially by illumi-
nating bijections between maps and families of plane trees. We survey both
approaches, recursive and bijective.

Comparing the coloured and uncoloured results raises the question of de-
signing bijections for coloured maps. No complete bijective solution exists at
the moment, but we present bijections for certain specialisations of the gen-
eral problem. We also show that for these specialisations, Tutte’s functional
equation is much easier to solve that in the general case.

We conclude with some open questions.

1 Introduction

A planar map is a proper embedding in the sphere of a finite connected graph,
defined up to continuous deformation. The enumeration of these objects has been a
topic of constant interest for 50 years, starting with a series of papers by Tutte in
the early 1960s; these papers were mostly based on recursive descriptions of maps
(e.g. [103]). The last 15 years have witnessed a new burst of activity in this field,
with the development of rich bijective approaches [98, 39], and their applications
to the study of random maps of large size [78, 85]. In such enumerative problems,
maps are usually rooted by orienting one edge. Figure 1 sets a first exercise in map
enumeration.

Figure 1: There are 9 rooted planar maps with two edges.

1



2 Mireille Bousquet-Mélou

Planar maps are not only studied in combinatorics and probability, but also in
theoretical physics. In this context, maps are considered as random surfaces, and
constitute a model of 2-dimensional quantum gravity. For many years, maps were
studied independently in combinatorics and in physics, and another approach for
counting them, based on the evaluation of certain matrix integrals, was introduced
in the 1970s in physics [42, 18], and much developed since then [55, 88]. More
recently, a fruitful exchange started between the two communities. Some physicists
have become masters in combinatorial methods [35, 37], while the matrix integral
approach has been taken over by some probabilists [71].

From the physics point of view, it is natural to equip maps with additional struc-
tures, like particles, trees, spins, and more generally classical models of statistical
physics. In combinatorics however, a huge majority of papers deal with the enumer-
ation of bare maps. There has been some exceptions to this rule in the past few
years, with combinatorial solutions of the Ising and hard-particle models on planar
maps [34, 38, 39]. But there is also an earlier, and major, exception to this rule:
Tutte’s study of properly q-coloured triangulations (Figure 2).

Figure 2: A (rooted) triangulation of the sphere, properly coloured with 4 colours.

This ten years long study (1973-1984) plays a central role in this paper. For
a very long time, it remained an isolated tour de force with no counterpart for
other families of planar maps or for more general colourings, probably because the
corresponding series of papers [110, 108, 107, 109, 111, 112, 113, 114, 115, 116]
looks quite formidable. Our main point here is to report on recent advances in the
enumeration of (non-necessarily properly) q-coloured maps, in the steps of Tutte. In
the associated generating function, every monochromatic edge is assigned a weight ν:
the case ν = 0 thus captures proper colourings. In physics terms, we are studying
the q-state Potts model on planar maps. A third equivalent formulation is that we
count planar maps weighted by their Tutte polynomial — a bivariate generalisation
of the chromatic polynomial, introduced by Tutte, who called it the dichromatic
polynomial. Since the Tutte polynomial has numerous interesting specialisations,
giving for example the number of trees, forests, acyclic orientations, proper colourings
of course, or the partition function of the Ising model, or the reliability and flow
polynomials, we are covering several models at the same time.

We shall put this work in perspective with the (much better understood) enumer-
ation of uncoloured maps, to which we devote Sections 3 and 4. We first present in
Section 3 the robust recursive approach found in the early work of Tutte. It applies
in a rather uniform way to many families of maps, and yields for their generating
functions functional equations that we call polynomial equations with one catalytic
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variable. A typical example is (3.1). It is now understood that the solutions of these
equations are always algebraic, that is, satisfy a polynomial equation. For instance,
there are 2 · 3n

(

2n
n

)

/((n + 1)(n + 2)) rooted planar maps with n edges, and their
generating function, that is, the series

M(t) :=
∑

n≥0

2 · 3n

(n + 1)(n + 2)

(

2n

n

)

tn,

satisfies

M(t) = 1 − 16t + 18tM(t) − 27t2M(t)2.

Thus algebraicity is intimately connected with (uncoloured) planar maps. In
Section 4, we present two more recent bijective approaches that relate maps to plane
trees, which are algebraic objects par excellence. Not only do these bijections give
a better understanding of algebraicity properties, but they also explain why many
families of maps are counted by simple formulas.

In Section 5, we discuss the recursive approach for q-coloured maps. The cor-
responding functional equation (5.3) was written in 1971 by Tutte —who else?—,
but was left untouched since then. It involves two “catalytic” variables, and it has
been known for a long time that its solution is not algebraic. The key point of this
section, due to Olivier Bernardi and the author, is the solution of this equation, in
the form of a system of differential equations that defines the generating function of
q-coloured maps. This series is thus differentially algebraic, like Tutte’s solution of
properly coloured triangulations. Halfway on the long path that leads to the solution
stands an interesting intermediate result: when q 6= 4 is of the form 2 + 2 cos(jπ/m),
for integers j and m, the generating function of q-coloured planar maps is algebraic.
This includes the values q = 2 and q = 3, for which we give explicit results. We also
discuss certain specialisations for which the equation becomes easier to solve, like the
enumeration of maps equipped with a bipolar orientation, or with a spanning tree.

Since we are still in the early days of the enumeration of coloured maps, it is
not surprising that bijective approaches are at the moment one step behind. Still, a
few bijections are available for some of the simpler specialisations mentioned above.
They are presented in Section 6. We conclude with open questions, dealing with
both uncoloured and coloured enumeration.

This survey is sometimes written in an informal style, especially when we de-
scribe bijections. Proofs are only given when they are new, or especially simple and
illuminating. The reference list, although long, is certainly not exhaustive. In par-
ticular, the papers cited in this introduction are just examples illustrating our topic,
and should be considered as pointers to the relevant literature. More references are
given further in the paper. Two approaches that have been used to count maps are
utterly absent from this paper: methods based on characters of the symmetric group
and symmetric functions [68, 69], which do not exactly address the same range of
problems, and the matrix integral approach, which is powerful [55], but is not always
fully rigorous. The Potts model has been addressed via matrix integrals [51, 56, 123].
We refer to [15] for a description our current understanding of this work.
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2 Definitions and notation

2.1 Planar maps

A planar map is a proper embedding of a connected planar graph in the oriented
sphere, considered up to orientation preserving homeomorphism. Loops and mul-
tiple edges are allowed. The faces of a map are the connected components of its
complement. The numbers of vertices, edges and faces of a planar map M , denoted
by v(M), e(M) and f(M), are related by Euler’s relation v(M) + f(M) = e(M) + 2.
The degree of a vertex or face is the number of edges incident to it, counted with
multiplicity. A map is m-valent if all its vertices have degree m. A corner is a sector
delimited by two consecutive edges around a vertex; hence a vertex or face of degree
k defines k corners. The dual of a map M , denoted M∗, is the map obtained by
placing a vertex of M∗ in each face of M and an edge of M∗ across each edge of M ;
see Figure 3.

For counting purposes it is convenient to consider rooted maps. A map is rooted
by orienting an edge, called the root-edge. The origin of this edge is the root-vertex.
The face that lies to the right of the root-edge is the root-face. In figures, we take the
root-face as the infinite face (Figure 3). This explains why we often call the root-face
the outer (or: infinite) face, and its degree the outer degree. The other faces are said
to be finite. From now on, every map is planar and rooted. By convention, we include
among rooted planar maps the atomic map m0 having one vertex and no edge. The
set of rooted planar maps is denoted M.

A map is separable if it is atomic or can be obtained by gluing two non-atomic
maps at a vertex. Observe that both maps with one edge are non-separable.

Figure 3: A rooted planar map and its dual (rooted at the dual edge).

2.2 Power series

Let A be a commutative ring and x an indeterminate. We denote by A[x] (resp.
A[[x]]) the ring of polynomials (resp. formal power series) in x with coefficients in
A. If A is a field, then A(x) denotes the field of rational functions in x, and A((x))
the field of Laurent series1 in x. These notations are generalised to polynomials,
fractions and series in several indeterminates. We denote by bars the reciprocals of
variables: that is, x̄ = 1/x, so that A[x, x̄] is the ring of Laurent polynomials in
x with coefficients in A. The coefficient of xn in a Laurent series F (x) is denoted

1A Laurent series is a series of the form
∑

n≥n0
a(n)xn, for some n0 ∈ Z.
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by [xn]F (x). The valuation of a Laurent series F (x) is the smallest d such that xd

occurs in F (x) with a non-zero coefficient. If F (x) = 0, then the valuation is +∞. If
F (x; t) is a power series in t with coefficients in A((x)), that is, a series of the form

F (x; t) =
∑

n≥0,i∈Z

f(i; n)xitn,

where for all n, almost all coefficients f(i; n) such that i < 0 are zero, then the
positive part of F (x; t) in x is the following series, which has coefficients in xA[[x]]:

[x>]F (x; t) :=
∑

n≥0,i>0

f(i; n)xitn.

We define similarly the non-negative part of F (x; t) in x.
A power series F (x1, . . . , xk) ∈ K[[x1, . . . , xk]], where K is a field, is algebraic (over

K(x1, . . . , xk)) if it satisfies a polynomial equation P (x1, . . . , xk, F (x1, . . . , xk)) = 0.
The series F (x1, . . . , xk) is D-finite if for all i ≤ k, it satisfies a (non-trivial) linear
differential equation in xi with coefficients in K[x1, . . . , xk]. We refer to [81, 82] for a
study of these series. All algebraic series are D-finite. A series F (x) is differentially
algebraic if it satisfies a (non-necessarily linear) differential equation with coefficients
in K[x].

2.3 The Potts model and the Tutte polynomial

Let G be a graph with vertex set V (G) and edge set E(G). Let ν be an inde-
terminate, and take q ∈ N. A colouring of the vertices of G in q colours is a map
c : V (G) → {1, . . . , q}. An edge of G is monochromatic if its endpoints share the
same colour. Every loop is thus monochromatic. The number of monochromatic
edges is denoted by m(c). The partition function of the Potts model on G counts
colourings by the number of monochromatic edges:

PG(q, ν) =
∑

c:V (G)→{1,...,q}

νm(c).

The Potts model is a classical magnetism model in statistical physics, which includes
(for q = 2) the famous Ising model (with no magnetic field) [120]. Of course, PG(q, 0)
is the chromatic polynomial of G.

If G1 and G2 are disjoint graphs and G = G1 ∪ G2, then clearly

PG(q, ν) = PG1
(q, ν) PG2

(q, ν). (2.1)

If G is obtained by attaching G1 and G2 at one vertex, then

PG(q, ν) =
1

q
PG1

(q, ν) PG2
(q, ν). (2.2)

The Potts partition function can be computed by induction on the number of
edges. If G has no edge, then PG(q, ν) = q|V (G)|. Otherwise, let e be an edge of G.
Denote by G\e the graph obtained by deleting e, and by G/e the graph obtained by
contracting e (if e is a loop, then it is simply deleted). Then

PG(q, ν) = PG\e(q, ν) + (ν − 1) PG/e(q, ν). (2.3)
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Indeed, it is not hard to see that ν PG/e(q, ν) counts colourings for which e is
monochromatic, while PG\e(q, ν) − PG/e(q, ν) counts those for which e is bichro-
matic. One important consequence of this induction is that PG(q, ν) is always a
polynomial in q and ν. We call it the Potts polynomial of G. Since it is a polynomial,
we will no longer consider q as an integer, but as an indeterminate, and sometimes
evaluate PG(q, ν) at real values q. We also observe that PG(q, ν) is a multiple of q:
this explains why we will weight maps by PG(q, ν)/q.

Up to a change of variables, the Potts polynomial is equivalent to another, maybe
better known, invariant of graphs, namely the Tutte polynomial TG(µ, ν) (see e.g.
[19]):

TG(µ, ν) :=
∑

S⊆E(G)

(µ − 1)c(S)−c(G)(ν − 1)e(S)+c(S)−v(G),

where the sum is over all spanning subgraphs of G (equivalently, over all subsets of
edges) and v(.), e(.) and c(.) denote respectively the number of vertices, edges and
connected components. For instance, the Tutte polynomial of a graph with no edge
is 1. The equivalence with the Potts polynomial was established by Fortuin and
Kasteleyn [62]:

PG(q, ν) =
∑

S⊆E(G)

qc(S)(ν − 1)e(S) = (µ − 1)c(G)(ν − 1)v(G) TG(µ, ν), (2.4)

for q = (µ − 1)(ν − 1). In this paper, we work with PG rather than TG because
we wish to assign real values to q (this is more natural than assigning real values to
(µ − 1)(ν − 1)). However, one property looks more natural in terms of TG: if G and
G∗ are dual connected planar graphs (that is, if G and G∗ can be embedded as dual
planar maps) then

TG∗(µ, ν) = TG(ν, µ).

Translating this identity in terms of Potts polynomials thanks to (2.4) gives:

PG∗(q, ν) = q(ν − 1)v(G∗)−1 TG∗(µ, ν)

= q(ν − 1)v(G∗)−1 TG(ν, µ)

=
(ν − 1)e(G)

qv(G)−1
PG(q, µ), (2.5)

where µ = 1+q/(ν−1) and the last equality uses Euler’s relation: v(G)+v(G∗)−2 =
e(G).

3 Uncoloured planar maps: the recursive approach

In this section, we describe the first approach that was used to count maps:
the recursive method. It is based on very simple combinatorial operations (like
the deletion or contraction of an edge), which translate into non-trivial functional
equations defining the generating functions. A recent theorem, generalising the so-
called quadratic method, states that the solutions of all equations of this type are
algebraic. Since the recursive method applies to many families of maps, numerous
algebraicity results follow.



Counting planar maps, coloured or uncoloured 7

3.1 A functional equation for planar maps

Consider a rooted planar map, distinct from the atomic map. Delete the root-
edge. If this edge is an isthmus, one obtains two connected components M1 and
M2, and otherwise a single component M , which we can root in a canonical way
(Figure 4). Conversely, starting from an ordered pair (M1, M2) of maps, there is a
unique way to connect them by a new (root) edge. If one starts instead from a single
map M , there are d + 1 ways to add a root edge, where d = df(M) is the degree of
the root-face of M (Figure 5).

M1

M

M2

Figure 4: Deletion of the root-edge in a planar map.

M1

M

M2

Figure 5: Reconstruction of a planar map.

Hence, to derive from this recursive description of planar maps a functional equa-
tion for their generating function, we need to take into account the degree of the
root-face, by an additional variable y. Hence, let

M(t; y) =
∑

M∈M

te(M)ydf(M) =
∑

d≥0

ydMd(t)

be the generating function of planar maps, counted by edges and outer-degree. The
series Md(t) counts by edges maps with outer degree d. The recursive description of
maps translates as follows:

M(t; y) = 1 + y2tM(t; y)2 + t
∑

d≥0

Md(t)(y + y2 + · · · + yd+1)

= 1 + y2tM(t; y)2 + ty
yM(t; y) − M(t; 1)

y − 1
. (3.1)
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Indeed, connecting two maps M1 and M2 by an edge produces a map of outer-degree
df(M1) + df(M2) + 2, while the d + 1 ways to add an edge to a map M such that
df(M) = d produce d + 1 maps of respective outer degree 1, 2, . . . , d + 1, as can be
seen on Figure 5. The term 1 records the atomic map.

The above equation was first written by Tutte in 1968 [105]. It is typical of the
type of equation obtained in (recursive) map enumeration. More examples will be
given in Section 3.2. One important feature in this equation is the divided difference

yM(t; y) − M(t; 1)

y − 1
,

which prevents us from simply setting y = 1 to solve for M(t; 1) first, and then for
M(t; y). The parameter df(M), and the corresponding variable y, are said to be
catalytic for this equation — a terminology borrowed to Zeilberger [122].

Such equations do not only occur in connection with maps: they also arise in the
enumeration of polyominoes [24, 59, 101], lattice walks [31, 3, 52, 76, 96], permuta-
tions [25, 28, 121]... The solution of these equations has naturally attracted some
interest. The “guess and check” approach used in the early 1960s is now replaced by a
general method, which we present below in Section 3.3. This method implies in par-
ticular that the solution of any (well-founded) polynomial equation with one catalytic
variable is algebraic. It generalises the quadratic method developed by Brown [46] for
equations of degree 2 that involve a single additional unknown series (like M(t; 1)
in the equation above) and also the kernel method that applies to linear equations,
and seems to have first appeared in Knuth’s Art of Computer Programming [76,
Section 2.2.1, Ex. 4] (see also [2, 31, 96]).

Contraction vs. deletion. Before we move to more examples, let us make a
simple observation. Another natural way to decrease the edge number of a map is
to contract the root-edge, rather than delete it (if this edge is a loop, one just erases
it). When one tries to use this to count planar maps, one is lead to introduce the
degree of the root-vertex as a catalytic parameter, and a corresponding variable x in
the generating function. This yields the same equation as above:

M(t; x) = 1 + x2tM(t; x)2 + t
∑

d≥0

Md(t)(x + x2 + · · · + xd+1).

As illustrated by Figure 6, the term 1 records the atomic map, the second term
corresponds to maps in which the root-edge is a loop, and the third term to the
remaining cases. In particular, the sum (x + x2 + · · · + xd+1) now describes how to

M2
M1

Figure 6: Contraction of the root-edge in a planar map.
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distribute the adjacent edges when a new edge is inserted. Given that the contraction
operation is the dual of the deletion operation, it is perfectly natural to obtain the
same equation as before. The reason why we mention this alternative construction
is that, when we establish below a functional equation for maps weighted by their
Potts (or Tutte) polynomial, we will have to use simultaneously these two operations,
as suggested by the recursive description (2.3) of the Potts polynomial. This will
naturally result in equations with two catalytic variables x and y.

3.2 More functional equations

The recursive method is extremely robust. We illustrate this by a few exam-
ples. Two of them — maps with prescribed face degrees, and Eulerian maps with
prescribed face degrees — actually cover infinitely many families of maps. Some of
these examples also have a colouring flavour.

Maps with prescribed face degrees. Consider for instance the enumeration of
triangulations, that is, maps in which all faces have degree 3. The recursive deletion
of the root-edge gives maps in which all finite faces have degree 3, but the outer face
may have any degree: these maps are called near-triangulations. We denote by T
the set of near-triangulations. The deletion of the root-edge in a near triangulation
gives either two near-triangulations, or a single one, the outer degree of which is at
least two (Figure 7). In both cases, there is unique way to reconstruct the map we
started from. Let T (t; y) ≡ T (y) be the generating function of near-triangulations,
counted by edges and by the outer degree:

T (t; y) =
∑

M∈T

te(M)ydf(M) =
∑

d≥0

ydTd(t).

Figure 7: Deletion of the root-edge in a near-triangulation.

The above recursive description translates into

T (y) = 1 + ty2T (y)2 + t
T (y) − T0 − yT1

y
, (3.2)

where T0 = 1 counts the atomic map. We have again a divided difference, this time
at y = 0. Its combinatorial interpretation (“it is forbidden to add an edge to a map of
outer degree 0 or 1”) differs from the interpretation of the divided difference occurring
in (3.1) (“there are multiple ways to add an edge”). Still, both equations are of the
same type and will be solved by the same method. Note that we have omitted the
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variable t in the notation T (y), which we will do quite often in this paper, to avoid
heavy notation and enhance the catalytic parameter(s).

Consider now bipartite planar maps, that is, maps that admit a proper 2-colouring
(and then a unique one, if the root-vertex is coloured white). For planar maps, this is
equivalent to saying that all faces have an even degree. Let B(t; y) =

∑

d≥0 Bd(t)yd

be the generating function of bipartite maps, counted by edges (variable t) and by
half the outer degree (variable y). Then the deletion of the root-edge translates as
follows (Figure 8):

B(y) = 1 + tyB(y)2 + t
∑

d≥0

Bd(y + y2 + · · · + yd)

= 1 + tyB(y)2 + ty
B(y) − B(1)

y − 1
. (3.3)

This is again a quadratic equation with one catalytic variable, y.

Figure 8: Deletion of the root-edge in a bipartite map.

More generally, it was shown by Bender and Canfield [6] that the recursive ap-
proach applies to any family of maps for which the face degrees belong to a given set
D, provided D differs from a finite union of arithmetic progressions by a finite set.
In all cases, the equation is quadratic, but may involve more than a single additional
unknown function. For instance, when counting near-quadrangulations rather than
near-triangulations, Eq. (3.2) is replaced by

Q(y) = 1 + ty2Q(y)2 + t
Q(y) − Q0 − yQ1 − y2Q2

y2
,

where Qi counts near-quadrangulations of outer degree i. Bender and Canfield solved
these equations using a theorem of Brown from which the quadratic method is de-
rived, proving in particular that the resulting generating function is always algebraic.
Their result only involves the edge number, but, when D is finite, it can be refined
by keeping track of the vertex degree distribution [29].

Eulerian maps with prescribed face degrees. A planar map is Eulerian if all
vertices have an even degree. Equivalently, its faces admit a proper 2-colouring (and
a unique one, if the root-face is coloured white). Of course, Eulerian maps are the
duals of bipartite maps, so that their generating function (by edges, and half-degree of
the root-vertex) satisfies (3.3). But we wish to impose conditions on the face degrees
of Eulerian maps (dually, on the vertex degrees of bipartite maps). This includes as
a special case the enumeration of (non-necessarily Eulerian) maps with prescribed
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face degrees, discussed in the previous paragraph: indeed, if we require that all black
faces of an Eulerian map have degree 2, each black face can be contracted into a
single edge, leaving a standard map with prescribed (white) face degrees.

Generally speaking, it is difficult to count families of maps with conditions on the
vertex degrees and on the face degrees (and being Eulerian is a condition on vertex
degrees). However, it was shown in [29] that the enumeration of Eulerian maps such
that all black faces have degree in D• and all white faces have degree in D◦ can be
addressed by the recursive method when D• and D◦ are finite. This is also true when
D• = {m} and D◦ = mN (such maps are called m-constellations).

Let us take the example of Eulerian near-triangulations. All finite faces have
degree 3, while the infinite face, which is white by convention, has degree 3d for some
d ∈ N. In order to decompose these maps, we now delete all the edges that bound
the black face adjacent to the root-edge (Figure 9). This leaves 1, 2 or 3 connected
components, which are themselves Eulerian near-triangulations, and which we root
in a canonical way. Let E(z; y) ≡ E(y) =

∑

d≥0 Ed(z)yd be the generating function
of Eulerian near-triangulations, counted by black faces (variable z) and by the outer
degree, divided by 3 (variable y). The above decomposition gives:

E(y) = 1 + zyE(y)3 + 2zE(y)(E(y) − E0) + z(E(y) − E0) + z
E(y) − E0 − yE1

y
.

This is a cubic equation with one catalytic variable, which is routinely solved by the
method presented below in Section 3.3.

Figure 9: Decomposition of Eulerian near-triangulations.

The enumeration of Eulerian triangulations is often presented as a colouring
problem [36, 54], for the following reason: a planar triangulation admits a proper
3-colouring of its vertices if and only if it is (properly) face-bicolourable, that is,
Eulerian2. Moreover, fixing the colours of the endpoints of the root-edge determines
completely the colouring. More generally, let us say that a q-colouring is cyclic if
around any face, one meets either the colours 1, 2, . . . q, 1, 2, . . . , q, in this order, or
q, q−1, . . . , 1, q, q−1, . . . , 1. Then for q ≥ 3, a planar map admits a cyclic q-colouring
if and only if it is Eulerian and all its face degrees are multiples of q. In this case, it
has exactly 2q cyclic colourings. The m-constellations defined above are of this type
(with m = q).

Other families of maps. Beyond the two general enumeration problems we have
just discussed, the recursive approach applies to many other families of planar maps:

2It is easy to see that the condition is necessary: around a face, in clockwise order, one meets
either the colours 1, 2, 3 in this order, or 3, 2, 1, and all faces that are adjacent to a 123-face are of
the 321-type. The converse is easily seen to hold by induction on the face number, using Figure 9.
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loopless maps [8, 119], maps with higher connectivity [43, 47, 67], dissections of a
regular polygon [44, 45, 103], triangulations with large vertex degrees [13], maps
on surfaces of higher genus [5, 7, 65]... The resulting equations are often fruitfully
combined with composition equations that relate the generating functions of two
families of maps, for instance general planar maps and non-separable planar maps
(see. e.g., [104, Eq. (6.3)] or [103, Eq. (2.5)]).

3.3 Equations with one catalytic variable and algebraicity theorems

In this section, we state a general theorem that implies that the solutions of
all the functional equations we have written so far are algebraic. We then explain
how to solve in practice these equations. The method extends the quadratic method
that applies to quadratic equations with a unique additional unknown series [68,
Section 2.9].

Let K be a field of characteristic 0, typically Q(s1, . . . , sk) for some indeterminates
s1, . . . , sk. Let F (y) ≡ F (t; y) be a power series in K(y)[[t]], that is, a series in t with
rational coefficients in y. Assume that these coefficients have no pole at y = 0. The
following divided difference (or discrete derivative) is then well-defined:

∆F (y) =
F (y) − F (0)

y
.

Note that
lim
y→0

∆F (y) = F ′(0),

where the derivative is taken with respect to y. The operator ∆(i) is obtained by
applying i times ∆, so that:

∆(i)F (y) =
F (y) − F (0) − yF ′(0) − · · · − yi−1/(i − 1)! F (i−1)(0)

yi
.

Now

lim
y→0

∆(i)F (y) =
F (i)(0)

i!
.

Assume F (t; y) satisfies a functional equation of the form

F (y) ≡ F (t; y) = F0(y) + t Q
(

F (y), ∆F (y), ∆(2)F (y), . . . , ∆(k)F (y), t; y
)

, (3.4)

where F0(y) ∈ K(y) and Q(y0, y1, . . . , yk, t; y) is a polynomial in the k + 2 indeter-
minates y0, y1, . . . , yk, t, and a rational function in the last indeterminate y, having
coefficients in K. This equation thus involves, in addition to F (y) itself, k additional
unknown series, namely F (i)(0) for 0 ≤ i < k.

Theorem 3.1 ([29, 15]) Under the above assumptions, the series F (t; y) is alge-
braic over K(t, y).

In practice, one proceeds as follows to obtain an algebraic system of equations
defining the k unknown series F (i)(0). An example will be detailed further down.
Write (3.4) in the form

P (F (y), F (0), . . . , F (k−1)(0), t; y) = 0, (3.5)
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for some polynomial P (y0, y1, . . . , yk, t; y), and consider the following equation in Y :

∂P

∂y0
(F (Y ), F (0), . . . , F (k−1)(0), t; Y ) = 0. (3.6)

On explicit examples, it is usually easy to see that this equation admits k solutions
Y0, . . . , Yk−1 in the ring of Puiseux series in t with a non-negative valuation (a Puiseux
series is a power series in a fractional power of t, for instance a series in

√
t). By

differentiating (3.5) with respect to y, it then follows that

∂P

∂y
(F (Y ), F (0), . . . , F (k−1)(0), t; Y ) = 0. (3.7)

Hence the following system of 3k algebraic equations holds: for i = 0, . . . , k − 1,

P (F (Yi), F (0), . . . , F (k−1)(0), t; Yi) = 0,

∂P

∂y0
(F (Yi), F (0), . . . , F (k−1)(0), t; Yi) = 0, (3.8)

∂P

∂y
(F (Yi), F (0), . . . , F (k−1)(0), t; Yi) = 0.

This system involves 3k unknown series, namely Yi, F (Yi), and F (i)(0) for 0 ≤ i < k.
The fact that the series F (i)(0) are derivatives of F plays no particular role. Observe
that the above system consists of k times the same triple of equations, so that
elimination in this system is not obvious [29] (and will often end up being very
heavy). When k = 1, however, obtaining a solution takes three lines in Maple.
Consider for instance the equation (3.2) we have obtained for near-triangulations.
Eq. (3.6) reads in this case

Y = t + 2tY 3T (Y ),

and it is clear that it has a unique solution, which is a formal power series in t with
constant term 0. Indeed, the coefficient of tn in Y can be determined inductively in
terms of the coefficients of T . Then (3.7) reads

T (Y ) = 1 + 3tY 2T (Y )2 − tT1.

These two equations, combined with the original equation (3.2) taken at y = Y , form
a system of three polynomial equations involving Y, T (Y ) and T1, from which Y and
T (Y ) are readily eliminated by taking resultants. This leaves a polynomial equation
for the unknown series T1, which counts near-triangulations of outer degree 1:

T1 = t2 − 27t5 + 30 t3T1 + t(1 − 96 t3)T1
2 + 64 t5T1

3.

One can actually go further and obtain simple expressions for the coefficients of T1.
The above equation admits rational parametrisations, for instance

t3 = X(1 − 2X)(1 − 4X), t T1 =
X(1 − 6X)

1 − 4X
,

and the Lagrange inversion formula yields the number of near-triangulations of outer
degree 1 having 3n + 2 edges (hence n + 2 vertices) as

2 · 4n(3n)!!

n!!(n + 2)!
,

where n!! = n(n − 2)(n − 4) · · · (n − 2⌊n−1
2 ⌋). The existence of such simple formulas

will be discussed further, in connection with bijective approaches (Section 4).
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Algebraicity results. The general algebraicity result for solutions of polynomial
equations with one catalytic variable (Theorem 3.1), combined with the wide appli-
cability of the recursive method, implies that many families of planar maps have an
algebraic generating function. In the following theorem, the term generating function
refers to the generating function by vertices, faces and edges (of course, one of these
statistics is redundant, by Euler’s formula).

Theorem 3.2 ([6, 29]) For any set D ⊂ N that differs from a finite union of
arithmetic progressions by a finite set, the generating function of maps such that all
faces have their degree in D is algebraic. If D is finite, this holds has well for the
refined generating function that keeps track of the number of i-valent faces, for all
i ∈ D.

For any finite sets D◦ and D• in N, the generating function of face-bicoloured
maps such that all white (resp. black) faces have their degree in D◦ (resp. D•) is
algebraic. This holds as well for the generating function that keeps track of the
number of i-valent white and black faces, for all i ∈ N.

Finally, the generating function of face-bicoloured planar maps such that all black
faces have degree m, and all white faces have their degree in mN, is algebraic.

Where is the quadratic method? To finish this section, let us briefly sketch
why the above procedure for solving equations with one catalytic variable generalises
the quadratic method. The first two equations of (3.8) show that y0 = F (Yi) is a
double root of P (y0, F (0), . . . , F k−1(0), t; Yi). Hence y = Yi cancels the discriminant
of P (y0, F (0), . . . , F k−1(0), t; y), taken with respect to y0. When P has degree 2
in y0, it is easy to see that the third equation of (3.8) means that Yi is actually a
double root of the discriminant [29, Section 3.2]: this is the heart of the quadratic
method, described in [68, Section 2.9]. That each series Yi is a multiple root of
the discriminant actually holds for equations of higher degree, but this is far from
obvious [29, Section 6].

4 Uncoloured planar maps: bijections

So far, we have emphasised the fact that many families of planar maps have an
algebraic generating function. It turns out that many of them are also counted by
remarkably simple numbers, which have a strong flavour of tree enumeration. Both
observations raise a natural question: is it possible to explain the algebraicity and/or
the numbers more combinatorially, via bijections that would relate maps to trees?

We present in this section two bijections between planar maps and some families
of trees that allow one to determine very elegantly the number of planar maps having
n edges. The first bijection also explains combinatorially why the associated generat-
ing function is algebraic. The second one has other virtues, as it allows to record the
distances of vertices to the root-vertex. This property has proved extremely useful
is the study of random maps of large size and their scaling limit [49, 78, 80, 86, 85].
Both bijections could probably qualify as Proofs from The Book [1]. Both are robust
enough to be generalised to many other families of maps, as discussed in Section 4.2.
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4.1 Two proofs from The Book?

Both types of bijections involve families of maps with bounded vertex degrees (or,
dually, bounded face degrees). So let us first recall why planar maps are equivalent
to planar 4-valent maps (or dually, to quadrangulations).

Take a planar map, and create a vertex in the middle of each edge, called e-
vertex to distinguish it from the vertices of the original map. Then, turning inside
each face, join by an edge each pair of consecutive e-vertices (Figure 10). The e-
vertices, together with these new edges, form a 4-valent map. Root this map in a
canonical way. This construction is a bijection between rooted planar maps with n
edges and rooted 4-valent maps with n vertices.

Figure 10: A planar map with n edges and the corresponding 4-valent planar map
with n vertices (dashed lines).

Four-valent maps and blossoming trees. The first bijection, due to Schaef-
fer [98], transforms 4-valent maps into blossoming trees. A blossoming tree is a
(plane) binary tree, rooted at a leaf, such that every inner node carries, in addition
to its two children, a flower (Figure 11). There are three possible positions for each
flower. If the tree has n inner nodes, it has n flowers and n + 2 leaves. Flowers and
leaves are called half-edges.

Figure 11: A blossoming tree with n = 4 inner nodes.

One obtains a blossoming tree by opening certain edges of a 4-valent map (Fig-
ure 12). Take a 4-valent map M . First, cut the root-edge into two half-edges, that
become leaves: the first of them will be the root of the final tree. Then, start walk-
ing around the infinite face in counterclockwise order, beginning with the root edge.
Each time a non-separating3 edge has just been visited, cut it into two half-edges:
the first one becomes a flower, and the second one, a leaf. Proceed until all edges

3An edge is separating if its deletion disconnects the map, non-separating otherwise; a map is a
tree if and only if all its edges are separating.
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are separating edges; this may require to turn several times around the map. The
final result is a blossoming tree, denoted Ψ(M).

Figure 12: Opening the edges of a 4-valent map gives a blossoming tree.

Conversely, one can construct a map by matching leaves and flowers in a blos-
soming tree T as follows (Figure 13, left). Starting from the root, walk around
the infinite face of T in counterclockwise order. Each time a flower is immediately
followed by a leaf in the cyclic sequence of half-edges, merge them into an edge in
counterclockwise direction; this creates a new finite face that encloses no unmatched
half-edges. Stop when all flowers have been matched. At this point, exactly two
leaves remain unmatched (because there are n flowers and n + 2 leaves). Observe
that the same two leaves remain unmatched if one starts walking around the tree
from another position than the root. The tree T is said to be balanced if one of the
unmatched leaves is the root leaf. In this case, match it to the other unmatched leaf
to form the root-edge of the map Φ(T ). Again, the complete procedure may require
to turn several times around the tree. We discuss further down what can be done if
T is not balanced.

Proposition 4.1 ([98]) The map Ψ is a bijection between 4-valent planar maps with
n vertices and balanced blossoming trees with n inner nodes. Its reverse bijection is Φ.

With this bijection, it is easy to justify combinatorially the algebraicity of the
generating function of 4-valent maps.

Corollary 4.2 The generating function of 4-valent planar maps, counted by vertices,
is

M(t) = T (t) − tT (t)3

where T (t), the generating function of blossoming trees (counted by inner nodes),
satisfies

T (t) = 1 + 3tT (t)2.

Proof By decomposing blossoming trees into two subtrees and a flower, it should
be clear that their generating function T (t) satisfies the above equation. Via the
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bijection Ψ, counting maps boils down to counting balanced blossoming trees. Their
generating function is T (t) − U(t), where U(t) counts unbalanced blossoming trees.
Consider such a tree, and look at the flower that matches the root leaf (Figure 13).
This flower is attached to an inner node. Delete this node: this leaves, beyond the
flower, a 3-tuple of blossoming trees. This shows that U(t) = tT (t)3. �

Figure 13: An unbalanced blossoming tree gives rise to three blossoming trees.

This bijection was originally designed [98] to explain combinatorially the simple
formulas that occur in the enumeration of maps in which all vertices have an even
degree — like 4-valent maps.

Corollary 4.3 The number of 4-valent rooted planar maps with n vertices is

2 · 3n

(n + 1)(n + 2)

(

2n

n

)

.

Proof We will prove that the above formula counts balanced blossoming trees of
size n. Clearly, the total number of blossoming trees of this size is

tn =
3n

n + 1

(

2n

n

)

(because binary trees are counted by the Catalan numbers
(

2n
n

)

/(n + 1)). Marking a
blossoming tree at one of its two unmatched leaves is equivalent, up to a re-rooting
of the tree, to marking a balanced blossoming tree at one of its n + 2 leaves. This
shows that 2tn = (n + 2)bn, where bn counts balanced blossoming trees, and the
result follows. �

A more general construction. A variant Φ of the above bijection sends pairs
(T, ǫ) formed of a (non-necessarily balanced) blossoming tree T and of a sign ǫ ∈
{+, −} onto rooted 4-valent maps with a distinguished face. This construction works
as follows. In the tree T , one matches flowers and leaves as described above. The
two unmatched leaves are then used to form the root edge, the orientation of which
is chosen according to the sign ǫ. This gives a 4-valent rooted map. One then marks
the face of this map located to the right of the half-edge where T is rooted. For
example, the two maps associated with the (unbalanced) tree of Figure 13 are shown
in Figure 14.



18 Mireille Bousquet-Mélou

Figure 14: The two maps associated to the tree of Figure 13 via the map Φ.

This construction is bijective. Since a 4-valent map with n vertices has n+2 faces,
it proves that the number mn of such maps satisfies (n + 2)mn = 2 · 3n

(

2n
n

)

/(n + 1).
The bijection Φ described earlier can actually be seen as a specialisation of Φ: If

T is balanced, and one chooses to orient the root edge of the map in such a way it
starts with the root half-edge of the tree, the map M one obtains satisfies Ψ(M) = T .
The distinguished face is in this case the root-face, and is thus canonical.

Quadrangulations and labelled trees. The second bijection starts from the
duals of 4-valent maps, that is, from quadrangulations. It transforms them into well
labelled trees. A labelled tree is a rooted plane tree with labelled vertices, such that:

– the labels belong to {1, 2, 3, . . .},
– the smallest label that occurs is 1,
– the labels of two adjacent vertices differ by 0, ±1.

The tree is well labelled if, in addition, the root vertex has label 1.
This bijection was first found by Cori & Vauquelin in 1981 [50], but the simple

description we give here was only discovered later by Schaeffer [49, 99]. As above,
there are two versions of this bijection: the most general one sends rooted quadran-
gulations with n faces and a distinguished (or: pointed) vertex v0 onto pairs (T, ǫ)
formed of a labelled tree with n edges T and of a sign ǫ ∈ {+, −}. Equivalently,
it sends rooted quadrangulations with a pointed vertex v0 such that the root edge
is oriented away from v0 (in a sense that will be explained below) to labelled trees.
The other bijection is a restriction, which sends rooted quadrangulations (pointed
canonically at their root-vertex) onto well labelled trees.

So let us describe directly the more general bijection Λ. Take a rooted quadran-
gulation Q with a pointed vertex v0, such that the root-edge is oriented away from
v0. By this, we mean that the starting point of the root-edge is closer to v0 than the
endpoint, in terms of the graph distance4. Label all vertices by their distance to v0.
The labels of two neighbours differ by ±1. If the starting point of the root-edge has
label ℓ, then the endpoint has label ℓ + 1. The labelling results in two types of faces:
when walking inside a face with the edges on the left, one sees either a cyclic sequence
of labels of the form ℓ, ℓ + 1, ℓ, ℓ + 1, or a sequence of the form ℓ, ℓ + 1, ℓ + 2, ℓ + 1.
In the former case, create an edge in the face joining the two corners labelled ℓ + 1.
In the latter one, create an edge from the “first” corner labelled ℓ + 1 (in the order
described above) to the corner labelled ℓ + 2. See Figure 15 for an example. The set

4The fact that Q is a quadrangulation, and hence a bipartite map, prevents two neighbour
vertices to be at the same distance from v0.
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of edges created in this way forms a tree, which we root at the edge created in the
outer face of Q, oriented away from the endpoint of the root-edge of Q (Figure 16).
This tree, Λ(Q), contains all vertices of Q, except the marked one.

01 3 2 01

1

3 2

12

12

2 1

2

Figure 15: From a rooted quadrangulation with a pointed vertex to a labelled tree
(in dashed lines).

ℓ + 1ℓ

ℓ + 1 ℓ

ℓ

ℓ + 1 ℓ + 2

ℓ + 1 ℓ + 1

ℓ + 2

ℓ

ℓ + 1

QQ Q

Figure 16: How to root the tree Λ(Q). The only vertices that are shown are those
of the root-face of Q.

The reverse bijection V works as follows (see Figure 17 for an example). Start
from a labelled tree T . Create a new vertex v0, away from the tree. Then, visit the
corners of the tree in counterclockwise order. From each corner labelled ℓ, send an
edge to the next corner labelled ℓ − 1 (or to v0 if ℓ = 1). This set of edges forms a
quadrangulation Q. Each face of Q contains an edge of T . Choose the root-edge of
Q in the face containing the root-edge of T , according to the rules of Figure 16.

1

1 2 3

1

1

2
1

v0

Figure 17: From a labelled tree (dashed lines) to a rooted quadrangulation with a
pointed vertex.

Proposition 4.4 The map Λ sends bijectively pointed rooted quadrangulations with



20 Mireille Bousquet-Mélou

n faces such that the root-edge is oriented away from the pointed vertex to labelled
trees with n edges. The reverse bijection is V .

When specialised to rooted quadrangulations pointed canonically at their root-
vertex, Λ induces a bijection Λ between rooted quadrangulations and well labelled
trees.

Let us now discuss the consequences of this bijection, in terms of algebraicity
and in terms of closed formulas. It is possible to use Λ to prove that the generating
function of rooted quadrangulations is algebraic [50], and satisfies the system of
Corollary 4.2, but this is not as simple as the proof of Corollary 4.2 given above. What
is simple is to use Λ to count quadrangulations, and hence recover Corollary 4.3.

This alternative proof works as follows. First, observe that there are 3nCn labelled
trees with n edges, where Cn =

(

2n
n

)

/(n + 1) counts rooted plane trees with n edges.
Indeed, 3nCn is clearly the number of trees labelled 0 at the root vertex, such that
the labels are in Z and differ by at most 1 along edges. If ℓ0 denotes the smallest label
of such a tree, adding 1−ℓ0 to all labels gives a labelled tree, and this transformation
is reversible. Now, the above proposition implies that 3nCn = (n + 2)qn/2, where
qn is the number of quadrangulations with n faces. Indeed, there are n + 2 ways to
point a vertex in such a quadrangulation, and half of these pointings are such that
the root-edge is oriented away from the pointed vertex.

4.2 More bijections

Even though it is difficult to invent bijections, the two bijections presented above
have now been adapted to many other map families, including the two general families
described in Section 3.2: maps with prescribed face degrees (or, dually, prescribed
vertex degrees), and Eulerian maps with prescribed face degrees (dually, bipartite
maps with prescribed vertex degrees).

On the “blossoming” side, Schaeffer’s bijection [98] was originally designed, not
only for 4-valent maps, but for maps with prescribed vertex degrees, provided these
degrees are even. The case of general degrees was solved (bijectively) a few years
later by a trio of theoretical physicists, Bouttier, Di Francesco and Guitter [35].
The equations they obtain differ from those obtained by Bender & Canfield via the
recursive method [6]. See [29, Section 10] for the correspondence between the two
solutions. The case of bipartite maps with prescribed vertex degrees was then solved
by Schaeffer and the author [34]. The special case of m-constellations was solved
earlier in [33].

On the “labelled” side, the extensions of the Cori-Vauquelin-Schaeffer bijection
(which applied to quadrangulations) to maps with prescribed face degrees, and to
Eulerian maps with prescribed face degrees, came in a single paper, again due to
Bouttier et al. [37].

Other bijections of the blossoming type exist for certain families of maps that
are constrained, for instance, by higher connectivity conditions, by forbidding loops,
or for dissections of polygons [63, 94, 95]. On the labelled side, there exist bijections
for non-separable maps [53, 74], for d-angulations with girth d [17], and for maps
of higher genus [48]. But the trees are then replaced by more complicated objects,
namely one-face maps of higher genus.



Counting planar maps, coloured or uncoloured 21

All these bijections shed a much better light on planar maps, by revealing their
hidden tree-like structure. As already mentioned, they often preserve important
statistics, like distances to the root-vertex. In terms of proving algebraicity results,
two restrictions should be mentioned:

– when the degrees are not bounded, it takes a bit of algebra to derive, from the
system of equations that describes the structure of trees, polynomial equations
satisfied by their generating functions,

– these bijections usually establish the algebraicity of the generating function of
maps that are doubly marked (like rooted maps with a distinguished vertex, or
with a distinguished face). The argument used to prove Corollary 4.2 has in
general no simple counterpart.

5 Coloured planar maps: the recursive approach

We have now reviewed two combinatorial approaches (one recursive, one bijective)
for the enumeration of families of planar uncoloured maps. We now move to the
central topic of this paper, namely the enumeration of coloured planar maps, and
compare both types of problems.

A first simple observation is that algebraicity will no longer be the rule. Indeed,
it has been known for a long time [91] that the generating function of planar maps,
weighted by their number of spanning trees (which is the specialisation µ = ν = 1 of
the Tutte polynomial [102]) is:

∑

M∈M

te(M) TM (1, 1) =
∑

n≥0

1

(n + 1)(n + 2)

(

2n

n

)(

2n + 2

n + 1

)

tn.

The asymptotic behaviour of the nth coefficient, being κ 16nn−3, prevents this series
from being algebraic [60]. The transcendence of this series implies that it cannot
be described by a polynomial equation with one catalytic variable (Theorem 3.1).
However, it is not difficult to write an equation with two catalytic variables for
maps weighted by their Tutte (or Potts) polynomial. This equation is based on the
recursive description (2.3). We present this equation in Section 5.1, and another one,
for triangulations, in Section 5.2.

The whole point is now to solve equations with two catalytic variables. Much
progress has been made in the past few years on the linear case. The equations for
coloured maps are not linear, but they become linear (or quasi-linear, in a sense that
will be explained) for certain special cases, like the enumeration of maps equipped
with a spanning tree or a bipolar orientation. Sections 5.3 and 5.4 are devoted to
these two simpler problems. They show how the kernel method, which was originally
designed to solve linear equations with one catalytic variable [2, 31, 96], can be
extended to equations with two catalytic variables. Sections 5.3 and 5.4 actually
present two variants of this extension.

We then return to the general case. Following the complicated approach used by
Tutte to count properly coloured triangulations [116], we obtain two kinds of results:

– when q 6= 4 is of the form 2 + 2 cos jπ/m, for integers j and m, the generating
function of q-coloured maps satisfies also an equation with a single catalytic
variable, and is thus algebraic. Explicit results are given for q = 2 and q = 3;
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– in general, the generating function of q-coloured maps satisfies a non-linear
differential equation.

These results, due to Olivier Bernardi and the author [15, 14], are presented without
proof in Sections 5.5 and 5.6. We do not make explicit the differential equation
satisfied by the generating function of q-coloured maps, but give an (explicit) system
of differential equations, which we hope to simplify in a near future.

5.1 A functional equation for coloured planar maps

Let M be the set of rooted maps. For M in M, recall that dv(M) and df(M)
denote respectively the degrees of the root-vertex and root-face of M . We define the
Potts generating function of planar maps by:

M(x, y) ≡ M(q, ν, t, w; x, y) =
1

q

∑

M∈M

te(M)wv(M)−1xdv(M)ydf(M) PM (q, ν). (5.1)

Since there is a finite number of maps with a given number of edges, and PM (q, ν) is
a multiple of q, the generating function M(x, y) is a power series in t with coefficients
in Q[q, ν, w, x, y]. Keeping track of the number of vertices allows us to go back and
forth between the Tutte and Potts polynomial, thanks to (2.4).

Proposition 5.1 The Potts generating function of planar maps satisfies:

M(x, y) = 1 + xywt (qy + (ν − 1)(y − 1)) M(x, y)M(1, y)

+xyt(xν − 1)M(x, y)M(x, 1) (5.2)

+xywt(ν − 1)
xM(x, y) − M(1, y)

x − 1
+ xyt

yM(x, y) − M(x, 1)

y − 1
.

Observe that (5.2) characterises M(x, y) entirely as a series in Q[q, ν, w, x, y][[t]]
(think of extracting recursively the coefficient of tn in this equation). Note also that
when ν = 1, then PM (q, ν) = qv(M), so that we are essentially counting planar maps
by edges, vertices, and by the root-degrees dv and df. The variable x is no longer
catalytic: it can be set to 1 in the functional equation, which becomes an equation
for M(1, y) with a single catalytic variable y.

Proof This equation is not difficult to establish using the recursive definition of
the Potts polynomial (2.3) in terms of deletion and contraction of edges. Of course,
one chooses to delete or contract the root-edge of the map. Let us sketch the proof
to see where each term of the equation comes from. Equation (2.3) gives

M(x, y) = 1 + M\(x, y) + (ν − 1)M/(x, y),

where the term 1 is the contribution of the atomic map m0,

M\(x, y) =
1

q

∑

M∈M\{m0}

te(M)wv(M)−1xdv(M)ydf(M) PM\e(q, ν),

and

M/(x, y) =
1

q

∑

M∈M\{m0}

te(M)wv(M)−1xdv(M)ydf(M) PM/e(q, ν),
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where M\e and M/e denote respectively the maps obtained from M by deleting and
contracting the root-edge e.
A. The series M\. We consider the partition M \ {m0} = M1 ⊎ M2 ⊎ M3, where
M1 (resp. M2, M3) is the subset of maps in M\{m0} such that the root-edge is an
isthmus (resp. a loop, resp. neither an isthmus nor a loop). We denote by M (i)(x, y),
for 1 ≤ i ≤ 3, the contribution of Mi to the generating function M\(x, y), so that

M\(x, y) = M (1)(x, y) + M (2)(x, y) + M (3)(x, y).

• Contribution of M1. Deleting the root-edge of a map in M1 leaves two maps M1

and M2, as illustrated in Figure 4 (left). The Potts polynomial of this pair can be
determined using (2.1). One thus obtains

M (1)(x, y) = qxy2tw M(1, y)M(x, y),

as the degree of the root-vertex of M1 does not contribute to the degree of the
root-vertex of the final map.
• Contribution of M2. Deleting the root-edge of a map in M2 leaves two maps
M1 and M2 attached by their root vertex, as illustrated in Figure 6. The Potts
polynomial of this pair can be determined using (2.2). One thus obtains

M (2)(x, y) = x2yt M(x, 1)M(x, y),

as the degree of the root-face of M1 does not contribute to the degree of the root-face
of the final map.
• Contribution of M3. Deleting the root-edge of a map in M3 leaves a single map
M . If the outer degree of M is d, there are d + 1 ways to add a new (root-)edge to
M , as illustrated in Figure 5 (right). However, a number of these additions create a
loop, and thus their generating function must be subtracted. One thus obtains

M (3)(x, y) = xt
∑

d≥0

Md(q, ν, t, w; x)(y + y2 + · · · + yd+1) − xyt M(x, 1)M(x, y),

where Md(q, ν, w, t; x) is the coefficient of yd in M(x, y). This gives

M (3)(x, y) = xyt
yM(x, y) − M(x, 1)

y − 1
− xyt M(x, 1)M(x, y),

and finally

M\(x, y) = qxy2tw M(1, y)M(x, y) + x(x − 1)yt M(x, 1)M(x, y)

+ xyt
yM(x, y) − M(x, 1)

y − 1
.

B. The series M/. The study of this series is of course very similar to the previous
one, by duality. One finds:

M/(x, y) = x2yt M(x, 1)M(x, y) + xy(y − 1)tw M(1, y)M(x, y)

+ xytw
xM(x, y) − M(1, y)

x − 1
.

Adding the series 1, M\ and (ν − 1)M/ gives the functional equation. �
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Remark. Equation (5.2) is equivalent to an equation written by Tutte in 1971:

M̃(x, y) = 1 + xyw(yµ − 1)M̃(x, y)M̃(1, y) + xyz(xν − 1)M̃(x, y)M̃(x, 1)

+ xyw

(

xM̃(x, y) − M̃(1, y)

x − 1

)

+ xyz

(

yM̃(x, y) − M̃(x, 1)

y − 1

)

, (5.3)

where M̃(x, y) counts maps weighted by their Tutte polynomial [106]:

M̃(x, y) ≡ M̃(µ, ν, w, z; x, y) =
∑

M∈M

wv(M)−1zf(M)−1xdv(M)ydf(M) TM (µ, ν).

We call the above series the Tutte generating function of planar maps. The rela-
tion (2.4) between the Tutte and Potts polynomials and Euler’s relation (v(M) +
f(M) − 2 = e(M)) give

M(q, ν, t, w; x, y) = M̃

(

1 +
q

ν − 1
, ν, (ν − 1)tw, t; x, y

)

,

from which (5.2) easily follows.

5.2 More functional equations

In a similar fashion, one can write a functional equation for coloured non-separable
planar maps [84]. It is equivalent to (5.2) via a simple composition argument [15, Sec-
tion 14]. Writing equations for coloured maps with prescribed face degrees is harder,
as the contraction of the root-edge changes the degree of the finite face located to
the left of the root-edge. This is however not a serious problem if one counts proper
colourings of triangulations (the faces of degree 2 that occur can be “smashed” into
a single edge), and in 1971, Tutte came up with the following equation, the solution
of which kept him busy during the following decade:

T (x, y) = xy2q(q − 1) +
xz

yq
T (1, y)T (x, y)

+ xz
T (x, y) − y2T2(x)

y
− x2yz

T (x, y) − T (1, y)

x − 1
(5.4)

where T2(x) = [y2]T (x, y). The series T (x, y) defined by this equation is

T (x, y) =
∑

T

zf(T )−1xdv(T )ydf(T ) PT (q, 0), (5.5)

where the sum runs over all non-separable near-triangulations (maps in which all
finite faces have degree 3). Note that the number of edges and the number of vertices
of T can be obtained from f(T ) and df(T ), using

v(T ) + f(T ) = 2 + e(T ) and 2 e(T ) = 3(f(T ) − 1) + df(T ). (5.6)

There seems to be no straightforward extension to the Potts generating function5,
and it is not until recently that an equation was obtained for the Potts generating

5Although another type of functional equation is given in [56, Sec. 3] for the Potts generating
function of cubic maps, using matrix integrals.
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function Q(x, y) of quasi-triangulations [15]. We refer to that paper for the precise
definition of this class of maps, which is not so important here. What is important
is that the series Q(0, y) is the Potts generating function of near-triangulations:

Q(0, y) ≡ Q(q, ν, t, z; 0, y) =
1

q

∑

T ∈T

te(T )zf(T )−1ydf(T ) PT (q, ν).

Proposition 5.2 The Potts generating function of quasi-triangulations satisfies

Q(x, y) = 1 + zt
Q(x, y) − 1 − yQ1(x)

y
+ xzt(Q(x, y) − 1) + xyztQ1(x)Q(x, y)

+ yzt(ν − 1)Q(x, y)(2xQ1(x) + Q2(x)) + y2t

(

q +
ν − 1

1 − xztν

)

Q(0, y)Q(x, y)

+
yt(ν − 1)

1 − xztν

Q(x, y) − Q(0, y)

x
(5.7)

where Q1(x) = [y]Q(x, y) and Q2(x) = [y2]Q(x, y) =
(1 − 2xztν)

ztν
Q1(x).

Tutte’s equation (5.4) for non-separable, properly coloured near-triangulations can
be recovered from this proposition [15, Section 14]. In Section 5.4, we will use the
following (equivalent) equation for the generating function of quasi-triangulations,
weighted by their Tutte polynomial:

Q̃(x, y) = 1 + tz
Q̃(x, y) − 1 − yQ̃1(x)

y
+ xtz

(

Q̃(x, y) − 1
)

+ xytzQ̃1(x)Q̃(x, y)

+ tzy(ν − 1)Q̃(x, y)
(

2xQ̃1(x) + Q̃2(x)
)

+ y2t

(

µ +
txν z

1 − xν tz

)

Q̃(0, y)Q̃(x, y) +
yt

1 − xν tz

Q̃(x, y) − Q̃(0, y)

x
, (5.8)

where Q̃1(x) = [y]Q̃(x, y) and Q̃2(x) = [y2]Q̃(x, y) =
(1 − 2xztν)

ztν
Q̃1(x). We call the

specialisation Q̃(0, y) the Tutte generating function of near-triangulations:

Q̃(0, y) ≡ Q̃(q, ν, t, z; 0, y) =
∑

T ∈T

te(T )zf(T )−1ydf(T ) TT (µ, ν).

5.3 A linear case: bipolar orientations of maps

Let G be a connected graph with a root-edge (s, t). A bipolar orientation of G is
an acyclic orientation of the edges of G such that s is the single source and t the single
sink. Such orientations exist if and only if G is non-separable. It is known [70, 77]
that the number of bipolar orientations of G is:

(−1)v(G) ∂ PG

∂q
(1, 0).

This number is also called the chromatic invariant of G [19, p. 355]. This expression
implies that the generating function of (non-atomic) planar maps equipped with a
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bipolar orientation, counted by edges (t), non-root vertices (w), degree of the root-
vertex (x) and of the root-face (y) is

B(t, w; x, y) = − ∂

∂q

(

qM(q, 0, t, −w; x, y) − q
)∣

∣

q=1
= −∂M

∂q
(1, 0, t, −w; x, y),

where M(x, y) is the Potts generating function of planar maps, defined by (5.1) (we
have used M(1, 0, t, w; x, y) = 1). By differentiation, it is easy to derive from (5.2) an
equation with two catalytic variables satisfied by B(x, y). Using again M(1, 0, t, w; x, y) =
1, this equation is found to be linear:

(

1 +
xytw

1 − x
+

xyt

1 − y

)

B(x, y) = xy2wt +
x2ywt

1 − x
B(1, y) +

xy2t

1 − y
B(x, 1). (5.9)

Similarly, using (5.6), one finds that the generating function of planar near-
triangulations equipped with a bipolar orientation, counted by non-root faces (z),
degree of the root-vertex (x) and of the root-face (y) is

B⊳(z; x, y) = −∂T

∂q
(0, iz; x, iy),

where i2 = −1 and T (q, z; x, y) is Tutte’s generating function for coloured non-
separable near-triangulations, defined by (5.5). Given that T (1, z; x, y) = 0, the
equation satisfied by B⊳ is again linear:

(

1 − xz

y
− zx2y

x − 1

)

B⊳(x, y) = xy2 − xzyB⊳
2(x) − zx2yB⊳(1, y)

x − 1
(5.10)

with B⊳
2(x) = [y2]B⊳(x, y).

In the past few years, much progress has been made in the solution of linear
equations with two catalytic variables [27, 26, 32, 30, 89, 90]. It is now understood
that a certain group of rational transformations, which leaves invariant the kernel of
the equation (the coefficient of B(x, y)) plays an important role. In particular, when
this group is finite, the equation can often be solved in an elementary way, using
what is sometimes called the algebraic version of the kernel method [27, 30]. This is
the case for both (5.9) and (5.10). We detail the solution of (5.10), and explain how
to adapt it to solve (5.9).

Proposition 5.3 The number of bipolar orientations of near-triangulations having
m + 1 vertices is

(3m)!

(4m2 − 1)m!2(m + 1)!
.

The number of bipolar orientations of near-triangulations having m + 1 vertices and
a root-face of degree j is

j(j − 1)(3m − j − 1)!

m!(m + 1)!(m − j + 1)!
. (5.11)

For m ≥ 2, the number of bipolar orientations of near-triangulations having m + 1
vertices, a root-vertex of degree i and a root-face of degree j is

(i − 1)(j − 1)(2m − j − 2)!(3m − i − j − 1)!

(m − 1)!m!(m − j + 1)!(2m − i − j + 1)!

(

(2j + i − 6)m + i + 3j − j2 − ij
)

.

The corresponding generating functions in 1, 2 and 3 variables are D-finite.
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The last two formulas are due to Tutte [110, Eqs. (32) and (34)]. He also derived
them from the functional equation (5.10), but his proof involved a lot of guessing,
while ours is constructive. The first formula in Proposition 5.3 seems to be new.

Proof It will prove convenient to set x = 1/(1 − u). After multiplying (5.10) by
(x − 1)/x2/y, the equation we want to solve reads:

uȳ (1 − u − z(yū + ȳ)) B⊳

(

1

1 − u
, y

)

= uy − R(u) − S(y), (5.12)

with ū = 1/u, ȳ = 1/y, R(u) = zuB⊳
2

(

1
1−u

)

and S(y) = zB⊳(1, y). Let K(u, y) =

1 − u − z(yū + ȳ) be the kernel of this equation. This kernel is invariant by the
transformations:

Φ : (u, y) 7→ (yzū, y) and Ψ : (u, y) 7→ (u, uȳ).

Both transformations are involutions, and, by applying them iteratively to (u, y),
one obtains 6 pairs (u′, y′) on which K(·, ·) takes the same value:

(u, y)
Φ−→(yzū, y)

Ψ−→(yzū, zū)
Φ−→(zȳ, zū)

Ψ−→(zȳ, uȳ)
Φ−→(u, uȳ)

Ψ−→(u, y). (5.13)

For each such pair (u′, y′), the corresponding specialisation of (5.12) reads

(u′/y′) K(u, y)B⊳(1/(1 − u′), y′) = u′y′ − R(u′) − S(y′).

We form the alternating sum of the 6 equations of this form obtained from the
pairs (5.13). The series R(·) and S(·) cancel out, and, after dividing by K(u, y), we
obtain:

uȳB⊳

(

1

1 − u
, y

)

− zūB⊳

(

1

1 − yzū
, y

)

+ yB⊳

(

1

1 − yzū
, zū

)

− uȳB⊳

(

1

1 − zȳ
, zū

)

+ zūB⊳

(

1

1 − zȳ
, uȳ

)

− yB⊳

(

1

1 − u
, uȳ

)

=
uy − y2zū + yz2ū2 − z2ȳū + zuȳ2 − u2ȳ

1 − u − z(yū + ȳ)
.

The above identity holds in the ring of formal power series in z with coefficients in
Q(u, y), which we consider as a sub-ring of Laurent series in u and y. Recall that
B⊳(x, y) has coefficients in xy2Q[x, y]. Hence, in the left-hand side of this identity,

the terms with positive exponents in u and y are exactly those of uȳB⊳
(

1
1−u , y

)

. It

follows that the latter series is the positive part (in u and y) of the rational function

R(z; u, y) :=
uy − y2zū + yz2ū2 − z2ȳū + zuȳ2 − u2ȳ

1 − u − z(yū + ȳ)
.

It remains to perform a coefficient extraction. One first finds:

1

1 − u − z(ȳ + yū)
=
∑

n≥0

∑

a≥−n

n
∑

b=−n

znuayb

(

n
b+n

2

)( b+n
2 + n + a

n

)
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where the sum is restricted to triples (n, a, b) such that n + b is even. An elementary
calculation then yields the expansion of R(z; u, y), and finally

B⊳

(

z;
1

1 − u
, y

)

=
∑

n≥0

∑

i≥0

n+2
∑

j=2

znuiyj
(i + 1)(j − 1)(i + j)

(

3n+j
2 + i − 1

)

!
(

n−j
2 + 1

)

!
(

n+j
2 + i + 1

)

!
(

n+j
2

)

!
, (5.14)

where the sum is restricted to triples (n, i, j) such that n + j is even. In particular,
the case u = 0 shows that the number of bipolar orientations of near-triangulations
having n finite faces and a root-face of degree j is

(j − 1)j
(

3n+j
2 − 1

)

!
(

n−j
2 + 1

)

!
(

n+j
2 + 1

)

!
(

n+j
2

)

!
,

which coincides with (5.11), given that the number of vertices of such maps is 1 +
(n + j)/2.

The first formula of the proposition is then obtained by summing over j. The
third one is easily verified using (5.14). However, it can also be derived from (5.14)
if one prefers a constructive proof. One proceeds as follows. First, observe that if
a rational function R(u) is of the form P (1/(1 − u)), for some Laurent polynomial
P , then P (x) coincides with the expansion of R(1 − x̄) as a Laurent series in x̄. In
particular, if P (x) ∈ xQ[x], then P (x) is the positive part in x of the expansion of
R(1 − x̄) in x̄. The coefficient of znyj in B⊳(z; x, y) is precisely in xQ[x], so that we
can apply this extraction procedure to the right-hand side of (5.14). We first express
the coefficient of znyj as a rational function of u, using

∑

i≥0

ui

(

a + b + i

a

)

=
1

ub(1 − u)a+1
−

b−1
∑

j=0

1

ub−j

(

a + j

a

)

.

Then, we set u = 1 − x̄, expand in x̄ this rational function, and extract the positive
part in x. For the above series, this gives:

[x>]
∑

i≥0

ui

(

a + b + i

a

)

= [x>]
xa+1

(1 − x̄)b
−

b−1
∑

j=0

1

(1 − x̄)b−j

(

a + j

a

)

= [x>]
xa+1

(1 − x̄)b

=
a
∑

k=0

xa+1−k

(

k + b − 1

k

)

.

Combining these two ingredients yields the third formula of the proposition.
Finally, the form of these three formulas, together with the closure properties of

D-finite series [81, 82], imply that the associated generating functions are D-finite.
�

The same method allows us to solve the linear equation (5.9) obtained for bipolar
orientations of general maps. One sets x = 1 + u and y = 1 + v. It is also convenient
to write

B(x, y) = xy2tw + x2y2t2w G(x, y).
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The equation satisfied by G reads

uv (1 − t(1 + ū)(1 + v̄)(u + vw)) G(1 + u, 1 + v) =

uv − tu(1 + u)G(1 + u, 1) − twv(1 + v)G(1, 1 + v).

The relevant transformations Φ and Ψ are now

Φ : (u, v) 7→ (ūwv, v) and Ψ : (u, v) 7→ (u, uv̄w̄).

Again, they generate a group of order 6. One finally obtains that G(1 + u, 1 + v) is
the non-negative part (in u and v) of the following rational function:

(1 − ūv̄)(uv̄ − wū)(ūv − v̄w̄)

1 − t(1 + ū)(1 + v̄)(u + vw)
.

A coefficient extraction, combined with Lemma 6 of [26], yields the following results.

Proposition 5.4 For 1 ≤ m < n, the number of bipolar orientations of planar maps
having n edges and m + 1 vertices is

2

(n − 1)n2

(

n

m − 1

)(

n

m

)(

n

m + 1

)

.

For 1 ≤ m < n and 2 ≤ j ≤ m + 1, the number of bipolar orientations of planar
maps having n edges, m + 1 vertices and a root-face of degree j is

j(j − 1)

(n − 1)n2

(

n

m

)(

n

m + 1

)(

n − j − 1

m − j + 1

)

.

For n ≥ 3, 1 ≤ m < n, 2 ≤ i ≤ n − m + 1 and 2 ≤ j ≤ m + 1, the number of bipolar
orientations of planar maps having n edges, m + 1 vertices, a root-vertex of degree i
and a root-face of degree j is

(i − 1)(j − 1)

(n − 1)n

(

n

m

)[(

n − j − 1

n − m − 2

)(

n − i − 1

m − 2

)

−
(

n − j − 1

n − m − 1

)(

n − i − 1

m − 1

)]

.

The associated generating functions are D-finite.

The solution we have sketched is very close to [26, Section 2]. Eq. (5.9) was also
solved independently by Baxter [4], but his solution involved some guessing, while
the one we have presented here is constructive.

5.4 A quasi-linear case: spanning trees

When µ = ν = 1, the Tutte polynomial TG(µ, ν) gives the number of spanning
trees of G. The equations (5.3) and (5.8) that define the Tutte generating functions
of our main two families of planar maps turn out to be much easier to solve in this
case.
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Consider first general planar maps, and Tutte’s equation (5.3). We replace w by
wt and z by zt so that t keeps track of the edge number. When µ = ν = 1, the
equation reads:

(

1 − x2ywt

x − 1
− xy2zt

y − 1
− xyzt(x − 1)M̃(x, 1) − xywt(y − 1)M̃(1, y)

)

M̃(x, y) =

1 − xyzt

y − 1
M̃(x, 1) − xywt

x − 1
M̃(1, y). (5.15)

Observe that, up to a factor (x − 1)(y − 1), the same linear combination of M̃(x, 1)
and M̃(1, y) appears on the right- and left-hand sides. This property was observed,
but not fully exploited, by Tutte [117]. Bernardi [10] showed that it allows us to
solve (5.15) using the standard kernel method usually applied to linear equations
with two catalytic variables [26]. We thus obtain a new proof of the following result,
due to Mullin [91]. Using Mullin’s terminology, we say that a map equipped with a
distinguished spanning tree is tree-rooted.

Proposition 5.5 The number of tree-rooted planar maps with n edges is

(2n)!(2n + 2)!

n!(n + 1)!2(n + 2)!
.

The number of tree-rooted planar maps with i + 1 vertices and j + 1 faces is

(2i + 2j)!

i!(i + 1)!j!(j + 1)!
.

The associated generating functions are D-finite.

Proof Set

S(u, v) ≡ S(w, z, t; u, v) =
1

(1 − ut)(1 − vt)
M̃

(

w, z, t2;
1

1 − ut
,

1

1 − vt

)

.

Eq. (5.15) can be rewritten as

(1 − t(u + v + wū + zv̄)) S(u, v) =
(

1 − uvt2S(u, v)
)

(1 − tzv̄S(u, 0) − twūS(0, v)) .
(5.16)

Observe that the (Laurent) polynomial (1 − t(u + v + wū + zv̄)) is invariant by the
transformation u 7→ wū. Seen as a polynomial in v, it has two roots. Exactly one
of them, denoted V ≡ V (w, z, t; u) is a formal power series in t with coefficients in
Q[w, z, u, ū], satisfying

V = t
(

z + (u + wū)V + V 2
)

. (5.17)

In (5.16), specialise v to V . The left-hand side vanishes, and hence the right-hand
side vanishes as well. Since its first factor is not zero, there holds

tzuS(u, 0) + twV S(0, V ) = uV.

Now replace u by wū in (5.16), and specialise again v to V . This gives

tzwūS(wū, 0) + twV S(0, V ) = wūV.
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By taking the difference of the last two equations, we obtain

tzuS(u, 0) − tzwūS(wū, 0) = (u − wū)V. (5.18)

Since S(u, 0) is a series in t with coefficients in Q[w, z, u], this equation implies that
tzuS(u, 0) is the positive part in u of (u − wū)V . The number TR(i, j) of tree-
rooted planar maps having i + 1 vertices and j + 1 faces is the coefficient of wizjti+j

in M̃(w, z, t; 1, 1), that is, the coefficient of wizjt2i+2j in S(u, 0), or the coefficient
of wizj+1t2i+2j+1u in tzuS(u, 0). The Lagrange inversion formula, applied to (5.17),
yields

[wizjtnun+1−2i−2j ]V =
(n − 1)!

i!(j − 1)!j!(n + 1 − i − 2j)!
. (5.19)

Hence

TR(i, j) = [wizj+1t2i+2j+1u] (tzuS(u, 0))

= [wizj+1t2i+2j+1u0]V − [wi−1zj+1t2i+2j+1u2]V (by (5.18)),

which, thanks to (5.19), gives the second result of the proposition. The first one
follows by summing over all pairs (i, j) such that i + j = n. Alternatively, one can
apply the Lagrange inversion formula to the equation satisfied by V when w = z = 1,
which is V = t(1 + uV )(1 + ūV ). �

Similarly, we can derive from the functional equation (5.8) defining the Tutte-
generating function of quasi-triangulations the number of tree-rooted near-triangulations
having a fixed outer degree and number of vertices. This result is also due to
Mullin [91], but the proof is new.

Proposition 5.6 The number of tree-rooted near-triangulations having i+1 vertices
and a root-face of degree d is

d

(i + 1)(4i − d)

(

3i − d

i

)(

4i − d

i

)

.

The associated generating function is D-finite.

Proof We specialise to µ = ν = z = 1 the equation (5.8) that defines the Tutte-
generating function of quasi-triangulations. We then replace Q̃2(x) by its expression
in terms of Q̃1. Again, the same linear combination of Q̃1(x) and Q̃(0, y) occurs in
the right- and left-hand sides, and the equation can be rewritten as

(

1 − tȳ − xy(1 − tx) − ty

x(1 − tx)

)

Q̃(x, y) =

(

1 − tȳ − tR1(x) − ty

x(1 − tx)
Q̃(0, y)

)

(

1 − xyQ̃(x, y)
)

(5.20)

where R1(x) = x + Q̃1(x). Let us denote u := x(1 − xt). Equivalently, we introduce
a new indeterminate u and set

x = X(u) :=
1 −

√
1 − 4ut

2t
.
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The (Laurent) polynomial (1 − tȳ − uy − tūy) occurring in the left-hand side of (5.20)
is invariant by the transformation y 7→ tuȳ/(t + u2). As a polynomial in u, it has
two roots. One of them is a power series in t with constant term 0, satisfying

U = t
y + Uȳ

1 − Uy
. (5.21)

In (5.20), specialise x to X(U). The left-hand side vanishes, leaving

tUR1(X(U)) + tyQ̃(0, y) = U(1 − tȳ).

If we first replace y by tȳU/(t + U2) = t/(1 − tȳ) in (5.20) before specialising x to
X(U), we obtain instead

tUR1(X(U)) +
t2

1 − tȳ
Q̃

(

0,
t

1 − tȳ

)

= tȳU.

By taking the difference of the last two equations, one finds:

tyQ̃(0, y) − t2

1 − tȳ
Q̃

(

0,
t

1 − tȳ

)

= U(1 − 2tȳ).

Since Q̃(0, y) is a series in t with coefficients in Q[y], this equation implies that
tyQ̃(0, y) is the positive part in y of U(1 − 2tȳ). The Lagrange inversion formula,
applied to (5.21), gives:

[tny3i−n+2]U =
1

n

(

n

i + 1

)(

n + i − 1

i

)

.

This yields

[tny3i−n]Q̃(0, y) =
1

n + 1

(

n + 1

i + 1

)(

n + i

i

)

− 2

n

(

n

i + 1

)(

n + i − 1

i

)

=
3i − n

(i + 1)(n + i)

(

n

i

)(

n + i

i

)

,

which is equivalent to the proposition, as a near-triangulation with n edges and outer
degree 3i − n has i + 1 vertices. �

5.5 When q is a Beraha number: Algebraicity

We now report on more difficult results obtained recently by Olivier Bernardi and
the author [15] by following and adapting Tutte’s enumeration of properly q-coloured
triangulations [116].

For certain values of q, it is possible to derive from the equation with two catalytic
variables defining M(x, y) an equation with a single catalytic variable (namely, y)
satisfied by M(1, y). For instance, one can derive from the case q = 1 of (5.2) that
M(y) ≡ M(1, y) satisfies

M(y) = 1 + y2tνwM(y)2 + νty
yM(y) − M(1)

y − 1
.
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This is only a moderately exciting result, as the latter equation is just the standard
functional equation (3.1) obtained by deleting recursively the root-edge in planar
maps.

But let us be persistent. When q = 2, one can derive from (5.2) that M(y) ≡
M(1, y) satisfies a polynomial equation with one catalytic variable, involving two
additional unknown series, namely M(1) and M ′(1). This equation is rather big
(see [15, Section 12]), and we do not write it here. No combinatorial way to derive
it is known at the moment. When ν = 0, the series M ′(1) disappears, and one
recovers the standard equation (3.3) obtained by deleting recursively the root-edge
in bipartite planar maps.

This construction works as soon as q 6= 0, 4 is of the form 2 + 2 cos(jπ/m),
for integers j and m. These numbers generalise Beraha’s numbers (obtained for
j = 2), which occur frequently in connection with chromatic properties of planar
graphs [9, 58, 72, 73, 87, 97]. They include the three integer values q = 1, 2, 3. Given
that the solutions of polynomial equations with one catalytic variable are always
algebraic (Theorem 3.1), the following algebraicity result holds [15].

Theorem 5.7 Let q 6= 0, 4 be of the form 2 + 2 cos jπ/m for two integers j and m.
Then the series M(q, ν, t, w; x, y), defined by (5.2), is algebraic over Q(q, ν, t, w, x, y).

A similar method works for quasi-triangulations.

Theorem 5.8 Let q 6= 0, 4 be of the form 2 + 2 cos jπ/m for two integers j and m.
Then the series Q(q, ν, t, z; x, y), defined by (5.7), is algebraic over Q(q, ν, t, z, x, y).

For the two integer values q = 2 (the Ising model) and q = 3 (the 3-state Potts
model), we have applied the procedure described in Section 3.3 to obtain explicit
algebraic equations satisfied by M(q, ν, t, 1; 1, 1) and Q(q, ν, t, 1; 1, 1). However, when
q = 3, we could only solve the case ν = 0 (corresponding to proper colourings). The
final equations are remarkably simple. We give them here for general planar maps.
For triangulations, these equations are not new: the Ising model on triangulations
was already solved by several other methods (including bijective ones, see Section 6.3
for details), and properly 3-coloured triangulations are just Eulerian triangulations,
as discussed in Section 3.2. With the help of Bruno Salvy, we have also conjectured
an algebraic equation of degree 11 for the generating function of properly 3-coloured
cubic maps (maps in which all vertices have degree 3). By the duality relation (2.5),
this corresponds to the series Q(q, ν, t, 1; 1, 1) taken at q = 3, ν = −2.

Theorem 5.9 The Potts generating function of planar maps M(2, ν, t, w; x, y), de-
fined by (5.1) and taken at q = 2, is algebraic. The specialisation M(2, ν, t, w; 1, 1)
has degree 8 over Q(ν, t, w).

When w = 1, the degree decreases to 6, and the equation admits a rational
parametrisation. Let S ≡ S(t) be the unique power series in t with constant term 0
satisfying

S = t

(

1 + 3 ν S − 3 ν S2 − ν2S3
)2

1 − 2 S + 2 ν2S3 − ν2S4
.
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Then

M(2, ν, t, 1; 1, 1) =
1 + 3 ν S − 3 ν S2 − ν2S3

(1 − 2 S + 2 ν2S3 − ν2S4)2 ×
(

ν3S6 + 2 ν2(1 − ν)S5 + ν (1 − 6 ν)S4 − ν (1 − 5 ν)S3 + (1 + 2 ν)S2 − (3 + ν)S + 1
)

.

Theorem 5.10 The Potts generating function of planar maps M(3, ν, t, w; x, y), de-
fined by (5.1) and taken at q = 3, is algebraic.

The specialisation M(3, 0, t, 1; 1, 1) that counts properly three-coloured planar
maps by edges, has degree 4 over Q(t), and admits a rational parametrisation. Let
S ≡ S(t) be the unique power series in t with constant term 0 satisfying

t =
S(1 − 2 S3)

(1 + 2S)3 .

Then

M(3, 0, t, 1; 1, 1) =
(1 + 2 S)

(

1 − 2 S2 − 4 S3 − 4 S4
)

(1 − 2 S3)2 .

5.6 The general case: differential equations

The culminating, and final point in Tutte’s study of properly coloured triangula-
tions was a non-linear differential equation satisfied by their generating function. For
the more complicated problem of counting maps weighted by their Potts polynomial,
we have come with a system of differential equations that defines the corresponding
generating function [14]. One compact way to write this system is as follows.

Theorem 5.11 Let β = ν − 1 and

∆(t, v) = (qν + β2) − q(ν + 1)v + (βt(q − 4)(wq + β) + q)v2.

There exists a unique triple (A(t, v), B(t, v), C(t, v)) of polynomials in v with coeffi-
cients in Q[q, ν, w][[t]], having degree 4, 2 and 2 respectively in v, such that

A(0, v) = (1 − v)2, A(t, 0) = 1,
B(0, v) = 1 − v, C(t, 0) = w(q + 2β) − 1 − ν,

and

1

C(t, v)

∂

∂v

(

v4C(t, v)2

A(t, v)∆(t, v)2

)

=
v2

B(t, v)

∂

∂t

(

B(t, v)2

A(t, v)∆(t, v)2

)

. (5.22)

Let Ai(t) (resp. Bi(t)) denote the coefficient of vi in A(t, v) (resp. B(t, v)). Then
the Potts generating function of planar maps, M(1, 1) ≡ M(q, ν, t, w; 1, 1), defined
by (5.1), is related to A and B by

12 t2w
(

qν + β2
)

M(1, 1) − A2(t) + 2 B2(t) − 8 t (w(q + 2β) − ν − 1) B1(t) + B1(t)2

= 4 t
(

1 − 3 (β + 2)2t + (6 (β + 2)(q + 2 β)t + q + 3 β) w − 3 t(q + 2 β)2w2
)

.
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Comments
1. Let us write

A(t, v) =

4
∑

j=0

Aj(t)vi, B(t, v) =

2
∑

j=0

Bj(t)vi, C(t, v) =

2
∑

j=0

Cj(t)vi.

The differential equation (5.22) then translates into a system of 9 differential equa-
tions (with respect to t) relating the 11 series Aj , Bj , Cj . However, A0(t) = A(t, 0)
and C0(t) = C(t, 0) are given explicitly as initial conditions, so that there are really
as many unknown series in t as differential equations. Observe moreover that no
derivative of the series Cj(t) arise in the system. This is why we only need initial
conditions for the series Aj(t) and Bj(t). They are prescribed by the values of A(0, v)
and B(0, v).
2. The form of the above result is very close to Tutte’s solution of properly coloured
planar triangulations, which can be stated as in Theorem 5.12 below. However,
Tutte’s case is simpler, as it boils down to only 4 differential equations. This ex-
plains why Tutte could derive from his system a single differential equation for the
generating function of properly coloured triangulations. More precisely, it follows
from the theorem below that, if t = z2 and H ≡ H(t) = t2T2(1),

2q2(1 − q)t + (qt + 10H − 6tH ′)H ′′ + q(4 − q)(20H − 18tH ′ + 9t2H ′′) = 0. (5.23)

So far, we have not been able to derive from Theorem 5.11 a single differential
equation for coloured planar maps.

Theorem 5.12 Let

∆(v) = v + 4 − q.

There exists a unique pair (A(z, v), B(z, v)) of polynomials in v with coefficients in
Q[q][[z]], having degree 3 and 1 respectively in v, such that

A(0, v) = 1 + v/4, A(z, 0) = 1,
B(0, v) = 1,

and

−4z

v

∂

∂v

(

v3

A(z, v)

)

=
1

B(z, v)∆(v)

∂

∂z

(

B(z, v)2

A(z, v)

)

.

Let Ai(z) (resp. Bi(z)) denote the coefficient of vi in A(z, v) (resp. B(z, v)). Then
the face generating function of properly q-coloured planar near-triangulations having
outer-degree 2, denoted T2(q, z; 1) and defined by (5.4), is related to A and B by

20 z4(q − 4)T2(q, z; 1)/q − 2 B1(z)2 −
(

96 z2 − 24 z2q + 1
)

B1(z) + 2 A2(z)

− 2 z2
(

10 − q + 432 z2 − 216 z2q + 27 z2q2
)

= 0.

6 Some bijections for coloured planar maps

Certain specialisations of the Potts generating function of planar maps can be
determined using a purely bijective approach.
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6.1 Bipolar orientations of maps

The numbers that arise in the enumeration of bipolar orientations of planar maps
(Proposition 5.4) are known to count other families of objects: Baxter permutations
(not the same Baxter as in [4]!), pairs of twin trees, and certain configurations of non-
intersecting lattice paths. Several bijections have been established recently between
bipolar orientations and these families [20, 57, 64]. Let us mention, however, that
the only family that is simple to enumerate is that of non-intersecting lattice paths
(via the Lindström-Gessel-Viennot theorem). Hence bijections with this family are
the only ones that really provide a self-contained proof of Proposition 5.4.

Regarding bipolar orientations of triangulations (Proposition 5.3), we are cur-
rently working on certain bijections with Young tableaux of height at most 3, in
collaboration with Nicolas Bonichon and Éric Fusy.

6.2 Spanning trees

It is not hard to count in a bijective manner tree-rooted maps with i + 1 ver-
tices and j + 1 faces (Proposition 5.5). The construction below, which is usually
attributed to Lehman and Walsh [118], is actually not far from Mullin’s original
proof [91]. Starting from a tree-rooted map (M, T ), one walks around the tree T in
counterclockwise order, starting from the root-edge of M (Figure 18, left), and:

– when an edge e of T is met, one walks along this edge, and writes a when e is
met for the first time, ā otherwise;

– when an edge e not in T is met, one crosses the edge, and writes b when e is
met for the first time, b̄ otherwise.

This gives a shuffle of two Dyck words6 u and v, one of length 2i on the alphabet
{a, ā} (since there are i edges in T ), one of length 2j on the alphabet {b, b̄} (since
there are j edges not in the tree). The number of such shuffles is

(

2i + 2j

2i

)

CiCj ,

where Ci =
(

2i
i

)

/(i + 1) is the number of Dyck words of length 2i. The construction
is easily seen to be bijective, and this gives the second result of Proposition 5.5.

As already explained, the first result of Proposition 5.5 follows by summing over
all i, j such that i + j = n. A direct bijective proof was only obtained in 2007 by
Bernardi [12]. It transforms a tree-rooted map into a pair formed of a plane tree and
a non-crossing partition. See [16] for a recent extension to maps of higher genus.

Mullin’s original construction [91] decouples the tree-rooted map (M, T ) into two
objects (Figure 18, right):

– a plane tree with j edges, which is the dual of T and corresponds to the Dyck
word v on {b, b̄} described above,

6A Dyck word on the alphabet {a, ā} is a word that contains as many occurrences of a and ā,
and such that every prefix contains at least as many a’s as ā’s. A shuffle of two Dyck words can be
seen as a walk in the first quadrant of Z2, starting and ending at the origin.
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– a plane tree T ′, which consists of T and of 2j half-edges; this tree can be seen
as the Dyck word u shuffled with the word c2j .

The vertex degree distribution of M coincides with the degree distribution of T ′, and
Mullin used this property to count tree-rooted maps with prescribed vertex degrees
(or dually, with prescribed face degrees, since a map and its dual have the same
number of spanning trees). Indeed, it is easy to count trees with a prescribed degree
distribution [100, Thm. 5.3.10]. In particular, the number of plane trees with root-
degree d, such that nk non-root vertices have degree k, for k ≥ 1, and carrying in
addition 2j half-edges, is

T ′(d, j, n1, n2, . . .) :=
d(2j − 1 +

∑

k nk)!

(2j)!
∏

k nk!
,

so that the number of tree-rooted maps (M, T ) in which the root-vertex has degree
d and nk non-root vertices have degree k, for k ≥ 1, is

1

j + 1

(

2j

j

)

T ′(d, j, n1, n2, . . .) =
d(2j − 1 +

∑

k nk)!

j!(j + 1)!
∏

k nk!
,

where j = e(M) − v(M) + 1 = (d +
∑

k(k − 2)nk)/2 is the excess of M (and also
the number of faces, minus 1). In particular, the number of tree-rooted maps (M, T )
having a root-vertex of degree d and 2i − d non-root vertices of degree 3 is

d(4i − d − 1)!

i!(i + 1)!(2i − d)!
,

since such maps have excess i. This is the dual statement of Proposition 5.6.

T’

Figure 18: Left: The tour of a tree-rooted map gives an encoding by a shuffle of
Dyck words, here bbaab̄b̄ābb̄ā. Right: Alternatively, one can decouple a tree-rooted
map into the dual plane tree (dashed lines) and a plane tree T ′ carrying half-edges.

6.3 The Ising model (q = 2)

As observed in [34], a simple transformation relates the Potts generating function
of maps at q = 2 to the enumeration of bipartite maps by vertex degrees.

Proposition 6.1 Let B(t, v, w; x) be the generating function of planar bipartite maps,
counted by edges (t), non-root vertices of degree 2 (variable v), non-root vertices of
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degree 6= 2 (variable w), and degree of the root-vertex (x). Let M(q, ν, t, w; x, y) be
the Potts generating function of planar maps, defined by (5.1). Then

M

(

2, tv,
t

1 − t2v2
, w; x, 1

)

= B(t, v + w, w; x).

This identity can be refined by keeping track of the number of non-root vertices of
each degree and colour. Let

M(ν, t, x1, x2, . . . , y1, y2, . . . ; x) =
∑

M

νm(M)te(M)xdv(M)
∏

i≥1

x
v◦
i
(M)

i y
v•
i
(M)

i ,

where the sum runs over all 2-coloured maps M rooted at a black vertex, m(M) is
the number of monochromatic edges in M , and v◦

i (M) (resp. v•
i (M)) is the number

of non-root white (resp. black) vertices of degree i. Let

B(t, x1, x2, . . . , y1, y2, . . . ; x) =
∑

M

te(M)xdv(M)
∏

i≥1

x
v◦
i
(M)

i y
v•
i
(M)

i ,

where the sum runs over all bipartite maps, properly bicoloured in such a way the
root-vertex is black. Then

M

(

tv,
t

1 − t2v2
, x1, x2, . . . , y1, y2, . . . ; x

)

= B(t, x1, v+x2, x3, . . . , y1, v+y2, y3, . . . ; x).

Proof We establish directly the second identity, which implies the first one by
specialising each xi and yi to w. Take a 2-coloured planar map M , rooted at a
black vertex. On each edge, add a (possibly empty) sequence of square vertices of
degree 2, in such a way the resulting map is properly bicoloured. An example is
shown on Figure 19. Every monochromatic edge receives an odd number of square
vertices, while every dichromatic edge receives an even number of these vertices.
Each addition of a vertex of degree 2 also results in the addition of an edge. Since M
can be recovered from the bipartite map by erasing all square vertices, the identity
follows. �

Figure 19: A 2-coloured map and one of the associated bipartite maps.

Recall from Sections 3 and 4 that the enumeration of bipartite maps with pre-
scribed vertex degrees can be addressed via the recursive method (and equations
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with one catalytic variable) [29], bijections with blossoming trees [34], or bijections
with labelled trees [37]. In particular, the last two approaches explain bijectively7 the
algebraicity of the associated generating function, at least when the vertex degrees
are bounded.

7 Final comments and questions

We conclude with a number of questions raised by this survey. The first type
of question asks what problems have an algebraic solution. Of course, all methods
(recursive, bijective, or via matrix integrals...) are welcome to answer them. We
then go on with a list of problems that have been solved by a recursive approach,
but are still waiting for a purely bijective proof. We also mention questions dealing
with asymptotic properties of maps.

7.1 Algebraicity

Theorem 3.2 states several algebraicity results for maps with prescribed face
degrees. By comparing the results dealing with general maps to those dealing with
Eulerian maps, it appears that our understanding of Eulerian maps with unbounded
degrees is probably still incomplete.

Question 7.1 Let D• and D◦ be two subsets of N. Under what conditions on these
sets is the generating function of Eulerian maps such that all black (resp. white) faces
have their degree in D• (resp. D◦) algebraic?

This question can in principle be addressed via the equations of [34, 37]. Algebraicity
is known to hold when D• and D◦ are finite, and when D• = {m} and D◦ = mN.
A natural sub-case that could be addressed first is the following8.

Question 7.2 Is the generating function of Eulerian planar maps in which all face
degrees are multiples of m algebraic?

Recall that for m ≥ 3, these are the maps that admit a cyclic m-colouring (Sec-
tion 3.2). Algebraicity has already been proved when m = 2, that is, for maps that
are both Eulerian and bipartite [83, 93].

Eulerian maps are required to have even vertex-degrees. But one could think of
other restrictions than parity.

Question 7.3 Under what condition is the generating function of maps in which
both the vertex degrees and the face degrees are constrained algebraic?

This question seems of course very hard to address. A positive answer is known in
at least one case: the generating function of triangulations in which all vertices have
degree at least d is algebraic for all d [13, 66].

7up to minor restrictions imposed at the root of the map
8Having raised the question, the author has started to explore it... and come with a positive

answer [22]. Algebraicity can be proved either via the equations of [34], or via a bijection with
(m + 1)-constellations.
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7.2 Bijections

Our first question may seem surprising at first sight.

Question 7.4 Design bijections between families of trees and families of planar
maps with unbounded degrees.

Indeed, it seems that all bijections that can be used to count families of maps with
unbounded degrees use a detour via maps with bounded degrees. The simplest
example, presented in Section 4, is that of general planar maps: we have first shown
that they are in bijection with 4-valent maps (or, dually, quadrangulations), before
describing two types of bijections between 4-valent maps and trees. We could actually
content ourselves with this situation: after all, isn’t a combination of two beautiful
bijections twice as beautiful as a single bijection? But there exist problems with
an algebraic solution, dealing with maps with unbounded degrees, that have not
been solved by a direct bijection so far, like the Ising model on general planar maps
(Theorem 5.9), or the hard-particle model on general planar maps [29]. Discovering
such bijections could also give an algebra-free proof of the fact that maps in which
all degrees are multiples of m are algebraic; the bijection of [35] gives indeed a proof,
but requires a bit of algebra. Moreover, this could be a purely bijective way to
address the questions raised above on the algebraicity of Eulerian maps in which all
face degrees are multiples of m.

Question 7.5 Design bijections for q-coloured maps.

This can take several directions:

• find bijections for the special values of q (like q = 3) that are known to yield
algebraic generating functions (Theorems 5.7 and 5.8);

• find bijections for specialisations of the Potts generating function of maps, like
those presented in Section 6 for spanning trees and bipolar orientations;

• finally, one would dream of designing bijections that would establish directly
differential equations for coloured maps, starting with the (relatively simple?)
case of triangulations (see (5.23)). The author is currently working on an
interesting construction of Bouttier et al. [39], which allows to count spanning
forests on maps and to derive certain differential equations in a simpler way
than the recursive approach [23].

Finally, we have discussed in Section 4 two families of bijections, but a third one
could exist, as suggested by Bernardi’s beautiful construction for loopless triangula-
tions [11].

Question 7.6 Is the bijection of [11] the tip of some iceberg?

7.3 Asymptotics of maps

Question 7.7 What is the asymptotic number of properly q-coloured planar maps
having n edges?
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This question has been studied by Odlyzko and Richmond [92] for triangulations,
starting from the differential equation (5.23). For q ∈ [15/11, 4]∪ [5, ∞), they proved
that the number of properly q-coloured triangulations with n faces is of the form
κµnn−5/2. The exponent −5/2 is typical in the enumeration of (uncoloured) planar
maps.

The asymptotic behaviour of the number of n-edge q-coloured planar maps has
been worked out in [15] for q = 2 and q = 3, using the explicit results of Theorems 5.9
and 5.10. Again, the exponent is −5/2. The same question can be asked when a
parameter ν 6= 0 weights monochromatic edges. For q = 2, the exponent is still −5/2,
except at the critical value ν = (3 +

√
5)/2, where it becomes −7/3. See [75, 21] for

similar results on maps of fixed vertex degree.
The proofs of these results use the solutions of the difficult functional equa-

tions (5.2) and (5.4). It would be extremely interesting to be able to understand the
asymptotic behaviour of these numbers (or the singular behaviour of the associated
series) directly from these equations. At the moment, we do not known how to do
this, even in the case of one catalytic variable.

Question 7.8 Develop a “singularity analysis” [61] for equations with catalytic vari-
ables.

Finally, the asymptotic geometry of random uncoloured maps has attracted a
lot of attention in the past few years [40, 41, 49], and a limit object, the Brownian
map, has been identified [78, 85, 86]. Similar questions can be addressed for maps
equipped with an additional structure.

Question 7.9 Is there a scaling limit for maps equipped with a spanning tree? a
spanning forest? for properly q-coloured maps?

The final section of [79] suggests a partial, and conjectural answer to this question for
maps equipped with certain statistical physics models, including the Ising model. Of
course, the first point is to determine how the average distance between two vertices
of these maps scales.
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A survey of PPAD-completeness for computing
Nash equilibria

Paul W. Goldberg

Abstract

PPAD refers to a class of computational problems for which solutions are
guaranteed to exist due to a speci�c combinatorial principle. The most well-
known such problem is that of computing a Nash equilibrium of a game. Other
examples include the search for market equilibria, and envy-free allocations
in the context of cake-cutting. A problem is said to be complete for PPAD
if it belongs to PPAD and can be shown to constitute one of the hardest
computational challenges within that class.

In this paper, I give a relatively informal overview of the proofs used in
the PPAD-completeness results. The focus is on the mixed Nash equilibria
guaranteed to exist by Nash’s theorem. I also give an overview of some recent
work that uses these ideas to show PSPACE-completeness for the computation
of speci�c equilibria found by homotopy methods. I give a brief introduction
to related problems of searching for market equilibria.
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1 Total Search Problems

Suppose that you enter a maze without knowing anything in advance about its
internal structure. Let us assume that it has only one entrance. To solve the maze,
we do not ask to �nd some central chamber whose existence has been promised by the
designer. Instead you need to �nd either a dead end, or else a place where the path
splits, giving you a choice of which way to go; see Figure 1. Observe that this kind
of solution is guaranteed to exist, and does not require any kind of promise. This is
because, if there are no places where the explorer has a choice, then the interior of
the maze (at least, the parts accessible from the entrance) is, topologically, a single
path leading to a dead end. If you are asked to �nd either a dead end or a split
of a path, this is informally an example of a (syntactic) total search problem | the
problem description has been set up so as to guarantee that there exists a solution;
the word \total" refers to the fact that every problem instance has a solution.

A maze of the sort in Figure 1 could of course be solved in linear time by checking
each location. Consider now a more challenging problem de�ned as follows:

De�nition 1.1 Circuit maze is a search problem on a 2n � 2n grid | the maze
is speci�ed using a boolean circuit C that takes as input a bit string of length O(n)
that represents the location (coordinates) of a possible wall or barrier between 2
adjacent grid points. C has a single output bit that indicates whether in fact a
barrier exists at that location.

A naive search for a grid point that corresponds to a dead end or a split of a path is
no longer feasible, so the search problem becomes nontrivial. Notice that not only
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Figure 1: The left-hand maze (with a single entrance on the left) has 5 solutions
marked with crosses. Note that while solutions need not be accessible starting from
the entrance, at least one will be accessible. The right-hand maze illustrates how
there need not be any solutions when there are 2 entrances. In general, an odd
number of entrances guarantees the existence of a solution.

must some solution exist, but in addition it is easy to use C to check the validity of
a claimed solution.

The problem of �nding, or computing, a Nash equilibrium of a game (de�ned in
Section 3) is analogous. Nash’s theorem [53] assures us in advance that every game
has a Nash equilibrium, and ultimately it works by applying a similar combinatorial
principle (explained below) to the one that is being used to assure ourselves that
maze problems of the sort de�ned above must have a solution.

1.1 NP Total Search Problems

Why can we not apply a more standard notion of computational hardness, such
as NP-hardness, to the problem of Nash equilibrium computation? It turns out to
be due precisely to its special status as a total search problem, as informally de�ned
above.

Standard NP-hard problems do indeed have associated optimisation problems
that are total search problems, but they are not NP total search problems. Consider
for example the (NP-complete) travelling salesman problem, commonly denoted
TSP. This has an associated optimisation problem, in which we seek a tour of
minimal length that visits all the cities. By de�nition, such a minimal-length tour
must exist, so this total search problem is NP-hard. But it is not, as far as we know,
a member of NP | given a solution there is no obvious e�cient way to check its
optimality.

The complexity class PPAD (along with related classes introduced by Papadim-
itriou [57]) was intended to capture the computational complexity of a relatively
small number of problems that seem not to have polynomial-time algorithms, but
where there is a mathematical guarantee that every instance has a solution, and
furthermore, given a solution, the validity of that solution may be checked in polyno-
mial time. Each class of problems (see Section 1.3) has an associated combinatorial
principle that guarantees that one has a total search problem.

A simple result due to Megiddo [51] shows that if such a problem is NP-complete,
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then NP would have to be equal to co-NP| it is proved as follows.

Suppose we have a reduction from any NP-hard problem (e.g. sat) to any NP
total search problem (e.g. Nash). Thus, from any sat-instance (a propositional
formula) we can e�ciently construct a Nash-instance (a game) so that given any
solution (Nash equilibrium) to that Nash-instance we can (e�ciently) derive an
answer to the sat-instance. That reduction could then be used to construct a
nondeterministic algorithm for verifying that an unsatis�able instance of sat indeed
has no solution: Just guess a solution of the Nash-instance, and check that it indeed
fails to identify a solution for the sat-instance.

The existence of such a nondeterministic algorithm for sat (one that can verify
that an unsatis�able formula is indeed unsatis�able, hence implying that NP=co-
NP) is an eventuality that is considered by complexity theorists almost as unlikely
as P=NP. We conclude that Nash is very unlikely to be NP-complete.

1.2 Reducibility among total search problems

Suppose we have two total search problems X and Y . We say that X is reducible
to Y in polynomial time if the following holds. There should be functions f and g
both computable in polynomial time, such that given an instance IX of X, f(IX) is
an instance of Y , and given any solution S to f(IX), g(S) is a solution to IX . Thus,
if we had a polynomial-time algorithm that solves Y , the reduction would construct
a polynomial-time algorithm for X. So, such a reduction shows that Y is \at least
as hard" as X.

While reductions in the literature are of the above form, one could use a less
restrictive de�nition, called a Turing reduction, in which problem X reduces to
problem Y provided that we we can write down an algorithm that solves X in
polynomial time, provided that it has access to an \oracle" for problem Y . As a
consequence, if Y does in fact have a polynomial-time algorithm then so does X.
However, the reductions used in the literature to date about total search problems,
are of the more restricted type.

1.3 PPAD, and some related concepts

PPAD, introduced in [57], stands for \polynomial parity argument on a directed
graph". It is de�ned in terms of a rather arti�cial-looking problem End of the
line, which is the following:1

De�nition 1.2 An instance of End of the line consists of two boolean circuits
S and P each of which has n inputs and n outputs, such that P (0n) = 0n 6= S(0n).
Find a bit vector x such that P (S(x)) 6= x or S(P (x)) 6= x 6= 0n. 2

S and P (standing for successor and predecessor) implicitly de�ne a digraph G on
2n vertices (bit strings of length n) in which each vertex has indegree and outdegree
at most 1. (v; w) is an arc of G (directed from v to w) if and only if S(v) = w

1This is called End-of-Line in [13], which is arguably a better name since the \line" is not
unique, and there is no requirement that we �nd the end of any speci�c line.

2Chen et al. [13] de�ne it in terms of a single circuit that essentially combines S and P , that
takes an n-bit vector v as input, and outputs 2n bits that correspond to S(v) and P (v).
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and P (w) = v. By construction, 0n has indegree 0, and either has outdegree 1,
or P (S(0n)) 6= 0n (in which case 0n is a solution). Notice that G permits e�cient
local exploration (the neighbours of any vertex v are easy to compute from v) but
non-local properties are opaque. We shall refer to a graph G that is represented in
this way as an (S; P )-graph.

The \parity argument on a directed graph" refers to a more general observation:
de�ne an \odd" vertex of a graph to be one where the total number of incident
edges is an odd number. Then notice that the number of odd vertices must be an
even number. Indeed, this observation applies generally to undirected graphs, but
we apply it here to (S; P )-graphs, in particular those (S; P )-graphs where vertex
0n actually has an outgoing arc (so has odd degree). These (S; P )-graphs have an
associated total search problem, of �nding an alternative odd-degree vertex. One
could search for such a vertex by, for example

� checking each bit string in order, looking up its neighbours to see if it’s an odd
vertex, or

� following a directed path starting at some vertex; an endpoint other than 0n

must be reached,

but since G is exponentially large, these naive approaches will take exponential time
in the worst case.

De�nition 1.3 A computational problem X belong to the complexity class PPAD
provided that X reduces to End of the line in polynomial time. Problem X is
PPAD-complete provided that X is in PPAD, and in addition End of the line
reduces to X in polynomial time.

Thus End of the line stands in the same relationship to PPAD, that Circuit
sat does to NP (although NP is not actually de�ned in terms of Circuit sat,
an equivalent de�nition would say that NP-complete problems are those that are
polynomial-time equivalent to Circuit sat, and a member of NP is a problem that
can be reduced to Circuit sat).

The above de�nition of PPAD is the one used in [22]; it is noted there that there
are many alternative equivalent de�nitions3. Since End of the line is by construc-
tion a total search problem, it follows that members of PPAD are necessarily also
total search problems.

How hard is \PPAD-complete"? PPAD lies \between P and NP" in the
sense that if P were equal to NP, then all PPAD problems would be polynomial-
time solvable, while the assumption that \PPAD-complete problems are hard"
implies P not equal to NP. It is a fair criticism of these results that they do not
carry as much weight as do NP-hardness results, partly for this reason, and partly
because there are only a handful of PPAD-complete problems, while thousands of
problems have been shown to be NP-complete.

Why, then, do we take PPAD-completeness as evidence that a problem cannot
be solved in polynomial time? One argument is that End of the line is de�ned

3The original de�nition of [57] is in terms of a Turing machine rather than circuits.
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in terms of unrestricted circuits, and general boolean circuits seem to be hard to
analyse via polynomial-time algorithms. We should also note the oracle separation
results of [4] in this context.

Related complexity classes Other combinatorial principles are considered in [57],
that guarantee totality of corresponding search problems. For example, consider the
pigeonhole principle, that given a function f : X �! Y , if X and Y are �nite
and jXj > jY j, there must exist x; x0 2 X such that f(x) = f(x0). Now de�ne an
associated computational problem:

De�nition 1.4 The problem Pigeonhole circuit has as instances, directed boolean
circuits having the same number of inputs and outputs. Let f be the function com-
puted by the circuit. The problem is to identify either two distinct bit strings x,
x0 with f(x) = f(x0), or a bit string x with f(x) = 0 (where 0 is the all-zeroes bit
string).

Note that by construction, this a total search problem, and it is an NP total search
problem since it is computationally easy to check that a given solution is valid. At
the same time, it seems to be hard to �nd a solution, although it is unlikely to be
NP-hard, due to Megiddo’s result. The complexity class PPP [57] (for \polynomial
pigeonhole principle") is de�ned as the set of all total search problems that are
reducible to Pigeonhole circuit.

The pigeonhole principle is a generalisation of the parity argument on a directed
graph. To see this, notice that the function f : X �! Y can map a vertex v of
an End of the line graph to the adjacent vertex connected by an arc from v, or
to itself if v has outdegree 0. PPAD is a subclass of PPP| End of the line
reduces to Pigeonhole circuit; it would be nice to obtain a reduction the other
way and show equivalence, but that has not been achieved.

If we have an undirected graph of degree at most 2 with a known endpoint, then
the search for another endpoint is also a total search problem. The corresponding
complexity class de�ned in [57] is PPA. The Circuit maze problem that we con-
sidered informally at the start, belongs to PPA. As it happens, the problem is likely
to be complete for PPA.

2 Sperner’s lemma, and an associated computational problem

Sperner’s lemma is the following combinatorial result, that can be used to prove
Brouwer’s �xed point theorem.

Theorem 2.1 [64] Let fv0; v1; : : : ; vdg be the vertices of a d-simplex S, and suppose
that the interior of S is decomposed into smaller simplices using additional vertices.
Assign each vertex a colour from f0; 1; : : : dg such that vi gets colour i, and a vertex
on any face of S must get one of the colours of the vertices of that face. Interior ver-
tices may be coloured arbitrarily. Then, this simplicial decomposition must include
a panchromatic simplex, i.e. one whose vertices has all distinct colours.

Proof The proof can be found in many places, so here we just give a sketch for
the 2-dimensional case. Let us de�ne the computational problem Sperner (dis-
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Figure 2: An example to illustrate Sperner’s lemma.
The solid lines show the triangle and the simplicisation (triangulation, since we are in
2 dimensions.) The dashed lines add an additional sequence of topological triangles
along one side of the triangulation; as a result of those lines, there is only one edge
coloured 0-1 when viewed from the exterior.
The arrows are the directed edges of the corresponding graph.
The shaded triangles are trichromatic (End-of-line solutions in the corresponding
graph).

cussed in more detail below) to be the problem of exhibiting a trichromatic triangle.
Essentially, the proof consists of a reduction from Sperner to End of the line!

Choose any two of the colours, say 0 and 1. We begin by adding some further
triangles to the triangulation as shown in Figure 2 by the dotted lines: by adding
a sequence of triangles that have the original extremal vertex coloured 1, together
with two consecutive vertices on the 1-0 edge, we end up with a triangulation that
has only one 0/1-coloured edge on the exterior.

Construct a directed graph G whose vertices are triangles of this extended trian-
gulation. Add a directed edge of G between any two triangles that are adjacent and
separated by a 0/1-edge; the direction of the edge is so as to cross with 0 on its left
and 1 on its right. Consequently, there is a single edge coming into the triangulation
from the outside. It is simple to check that in G, trichromatic triangles correspond
exactly with degree-1 vertices, solutions to End of the line. This completes the
reduction. �

To de�ne a challenging computational problem involved with searching for a panchro-
matic Sperner simplex, we need to work with Sperner triangulations that are repre-
sented so compactly that it becomes infeasible to just check every simplex. Hence,
we consider exponentially-large simplicial decompositions that satisfy the boundary
conditions required for Sperner’s lemma.
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Figure 3: Embedding a triangulated grid inside an instance of Sperner’s lemma

Informally, the computational problem Sperner [57] (with parameter n) takes as
input a Sperner triangulation that contains an number of vertices that is exponential
in n. The vertices |and their colours| cannot be explicitly listed, since problem
instances are supposed to be written down with a syntactic description length that is
polynomial in n. Instead, an instance is speci�ed by a circuit C that takes as input
the coordinates of a vertex and outputs its colour. This means that the vertices
should lie on a regular grid, and C takes as input a bit string that represents the
coordinates of a vertex.

Figure 3 shows one way to do this in 2 dimensions (assume that the central grid
has exponentially-many points). There is no restriction on how C may colour the
vertices labelled �; the other labels are �xed boundary conditions to ensure that any
trichromatic triangle lies within the grid. A 3-dimensional version would just require
some choice of simplicial decomposition of a cube, which would then be applied to
each small cube in the corresponding 3-d grid.

2-dimensional Sperner is known to be PPAD-complete [10]; previously it was
known from [57] that 3-dimensional Sperner is PPAD-complete. One interesting
feature of the PPAD-completeness results for Nash equilibrium computation, is
that normal-form games do not incorporate generic boolean circuits in an obvious
way. Contrast that with Sperner as de�ned above, where a problem instance
incorporates a generic boolean circuit to determine the colour of a vertex. We
continue by explaining Nash equilibrium computation in more detail, and how it is
polynomial-time equivalent to Sperner.
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3 Games and Nash Equilibria

A game G speci�es a �nite set of k � 2 players, where each player i has a �nite
set Si of (at least two) actions or pure strategies. Let S = S1� : : :�Sk be the set of
pure strategy pro�les, thus an element of S represents a choice made by each player
i of a single pure strategy from his set Si. Finally, given any member of S, G needs
to specify real-valued utilities or payo�s to each player that result from that pure
strategy pro�le. Let ui

s denote the payo� to player i that results from s 2 S.
Informally, a Nash equilibrium is a set of strategies |one for each player| where

no player has an \incentive to deviate" i.e. play some alternative strategy. After
giving some examples, we provide a precise de�nition, along with some notation. In
general, Nash equilibria do not exist for pure strategies; it is usually necessary to
allow the players to randomise over them, as shown in the following examples.

Rock-paper-scissors:

rock paper scissors

rock (0; 0) (�1; 1) (1;�1)
paper (1;�1) (0; 0) (�1; 1)

scissors (�1; 1) (1;�1) (0; 0)

A typical payo� matrix for Stag hunt:

hunt stag hunt hare

hunt stag (8; 8) (0; 1)
hunt hare (1; 0) (1; 1)

Generalised matching pennies: the row player \wins" (and collects a payment
from the column player) whenever both players play the same strategy.

1 2 � � � n

1 (1;�1) (0; 0) � � � (0; 0)
2 (0; 0) (1;�1) (0; 0)
...

...
. . . (0; 0)

n (0; 0) � � � (0; 0) (1;�1)

Figure 4: Payo� matrices for example games. Each entry of a matrix contains two
numbers: the row player’s payo� and the column player’s payo�.

Example 3.1 The traditional game of rock-paper-scissors �ts in to the basic paradigm
considered here. The standard payo� matrix shown in Figure 4 awards one point
for winning and a penalty of one point for losing. The unique Nash equilibrium has
both players randomising uniformly over their strategies, for an expected payo� of
zero.

Example 3.2 The stag hunt game [60] has two players, each of whom has two
actions, corresponding to hunting either a stag, or a hare. In order to catch a stag,
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both player must cooperate (choose to hunt a stag), but either player can catch a
hare on his own. The bene�t of hunting a stag is that the payo� (half share of a
stag) is presumed to be substantially larger than an entire hare.

A typical choice of payo�s (Figure 4) to reect this dilemma could award 8 to
both players when they both hunt a stag, 0 to a player who hunts a stag while the
other player hunts a hare, and 1 to a player who hunts a hare. Using these payo�s,
there are 3 Nash equilibria: one where both players hunt a stag, one where both
players hunt a hare, and one where each player hunts a stag with probability 1

8 and
a hare with probability 7

8 .

Example 3.3 Generalised matching pennies (Figure 4) is a useful example to present
here, since it is used as an ingredient of the PPAD-completeness proof for Nash.

The game of matching pennies is a 2-player game, whose basic version has each
player having just two strategies, \heads" and \tails". The row player wins whenever
both players make the same choice, otherwise the column player wins. In the original
version, a win e�ectively means that the losing player pays one unit to the winning
player; here we modify payo�s so that a win for the column player just results in
zero payo�s (he avoids paying the row player). With that modi�cation, generalised
matching pennies is the extension to n actions rather than just 2.

There is a unique Nash equilibrium in which both players use the uniform dis-
tribution over their pure strategies, and it is easy to see that no other solution is
possible.

Comments. The Stag Hunt example shows that there may be multiple equilibria,
that some equilibria have more social welfare than others, and that some are more
\plausible" that others (thus, it seems reasonable to expect one of the two pure-
strategy equilibria to be played, rather than the randomised one). The topic of
equilibrium selection considers formalisations of the notion of plausibility, and the
problem of computing the relevant equilibria. Of course, it is at least as hard to
compute one of a subset of equilibria as it is to compute an unrestricted one. For
example, it is NP-complete to compute equilibria that guarantee one or both players
a certain level of payo�, or that satisfy various other properties that are e�ciently
checkable [18, 35].

If we know the supports of a Nash equilibrium (the strategies played with non-
zero probability) then it would be straightforward to compute a Nash equilibrium,
since it then reduces to a linear programming problem. Thus (as noted by Papadim-
itriou in [55]) the search for a Nash equilibrium is |in the 2-player case| essentially
a combinatorial problem.

Nash equilibrium and �-Nash equilibrium; de�nition and notation. A
mixed strategy for player i is a distribution on Si, that is, jSij nonnegative real
numbers summing to 1. We will use xi

j to denote the probability that player i
allocates to strategy j 2 Si. If some or all players use mixed strategies, this results
in expected payo�s for the players. A best response by a player is a strategy (possibly
mixed) that maximises that player’s expected payo�; the assumption is that players
do indeed play to maximise expected payo�s.
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Call a set of k mixed strategies xi
j a Nash equilibrium if, for each player i, i’s

expected payo�
P

s2S u
i
s

Qk
r=1 x

r
sr is maximized over all mixed strategies of i. That

is, a Nash equilibrium is a set of mixed strategies from which no player has an
incentive to deviate. Let S�i = S1 � : : : � Si�1 � Si+1 � : : : � Sk, the set of pure
strategy pro�les of players other than i. For s 2 S�i, let xs =

Q

r 6=i;r2[k] x
r
sr and ui

js

be the payo� to i when i plays j and the other players play s. It is well-known (see,
e.g., [56]) that the following is an equivalent condition for a set of mixed strategies
to be a Nash equilibrium:

8i; j; j0
X

s2S�i

ui
jsxs >

X

s2S�i

ui
j0sxs =) xi

j0 = 0: (3.1)

Also, a set of mixed strategies is an �-Nash equilibrium for some � > 0 if the
following holds:

8i; j; j0
X

s2S�i

ui
jsxs >

X

s2S�i

ui
j0sxs + � =) xi

j0 = 0: (3.2)

The celebrated theorem of Nash [53] states that every game has a Nash equilibrium.

Comments. An �-Nash equilibrium is a weaker notion than a Nash equilibrium;
a Nash equilibrium is an �-Nash equilibrium for � = 0, and generally an �-Nash
equilibrium is an �0-Nash equilibrium for any �0 > �.

Why focus on approximate equilibria? Approximate equilibria matter from
the computational perspective, because for games of more than 2 players, a solution
(Nash equilibrium) may be in irrational numbers, even when the utilities ui

s that
specify a game, are themselves rational numbers [53]. The problem of computing
a Nash equilibrium |as opposed to just knowing that one exists| requires us to
specify a format or syntax in which to output the quantities that make up a solution
(i.e. the probabilities xi

s).
In [23] (an expository paper on the results of [22]) we noted an analogy between

equilibrium computation and the computation of a root of an odd-degree polynomial
f in a single variable. For both problems, there is a guarantee that a solution really
exists, and the guarantee is based on the nature of the problem rather than a promise
that the given instance has a solution. Furthermore, in each problem we have to deal
with the issue of how to represent a solution, since a solution need not necessarily
be a rational number. And, in both cases a natural approach is to switch to some
notion of approximate solution: instead of searching for x with f(x) = 0, search for
x with jf(x)j < �, which ensures that x can be written down in a standard syntax.

3.1 Some reductions among equilibrium problems

By way of example, consider the well-known result (that predates the PPAD-
hardness of Nash; see [55] Chapter 2 for further background) that symmetric 2-
player games are as hard to solve as general ones.

Given a n�n game G, construct a symmetric 2n�2n game G0 = f(G), such that
given any Nash equilibrium of G0 we can e�ciently reconstruct a Nash equilibrium
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of G. To begin, let us assume that all payo�s in G are positive | the reason why
this assumption is �ne, is that if there are any negative payo�s, then we can add a
su�ciently large constant to all payo�s and obtain a strategically equivalent version
(i.e. one that has the same Nash equilibria).

Now suppose we solve the 2n � 2n game G0 =

�

0 G
GT 0

�

, where we assume

that entries contain payo�s to both players, and the zeroes represent n�n matrices
of payo�s of zero to both players.

Let p and q denote the probabilities that players 1 and 2 use their �rst n actions,
in some given solution. If we label the rows and columns of the payo� matrix with
the probabilities assigned to them by the players, we have

q 1� q
p

1� p

�

0 G
GT 0

�

If p = q = 1, both players receive payo� 0, and both have an incentive to change
their behaviour, by the assumption that G’s payo�s are all positive (and similarly if
p = q = 0). So we have p > 0 and 1� q > 0, or alternatively, 1� p > 0 and q > 0.

Assume p > 0 and 1 � q > 0 (the analysis for the other case is similar). Let
fp1; :::; png be the probabilities used by player 1 for his �rst n actions, fq1; : : : qng
the probabilities for player 2’s second n actions.

q (q1:::qn)
(p1; :::pn)

1� p

�

0 G
GT 0

�

Note that p1 + : : :+ pn = p and q1 + : : :+ qn = 1� q. Then (p1=p; : : : ; pn=p)
and (q1=(1� q); : : : ; qn=(1� q)) are a Nash equilibrium of G. To see this, consider
the diagram; they should form a best response to each other for the top-right part.

This is an example of the kind of reduction de�ned in Section 1.2. In the context
of games, this kind of reduction is called in [1] a Nash homomorphism. Abbott et
al. [1] reduce general 2-player games to win-lose 2-player games (where payo�s are 0
or 1). Various other Nash homomorphisms have been derived independently of the
work relating Nash to PPAD. An important one is Bubelis [8] that reduces (in a
more algebraic style) k-player games to 3-player games. The result also highlights a
key distinction between k-player games (for k � 3) and 2-player games; in 2-player
games the solutions are rational numbers (provided that the payo� in the games are
rational) while for 3 or more players, the solutions may be irrational. The reduction
of [8] preserves key algebraic properties of the quantities xi

j in a solution, such as
their degree (i.e the degree of the lowest-degree polynomial with integer coe�cients
satis�ed by xi

j). Since we have noted that 2-player games have solutions in rational
numbers, this kind of reduction could not apply to 2-player games.

3.2 The \in PPAD" result

A proof that Nash equilibrium computation belongs to PPAD necessarily in-
corporates a proof of Nash’s theorem itself (for approximate equilibrium), in that a
reduction from �-Nash to End of the line assures us that �-Nash is a total search
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problem, since it is clear that End of the line is. To derive Nash’s theorem itself,
that an exact equilibrium exists, the summary as in [57] is as follows: Consider an
in�nite sequence of solutions to �-Nash for smaller and smaller �. Since the space
of mixed-strategy pro�les is compact, these solutions have a limit point, which must
be an exact solution.

3.3 The Algebraic Properties of Nash Equilibria

A reader who is interested on the combinatorial aspects of the topic can skip most
of this subsection; the main point to note is that since a Nash equilibrium is not
necessarily in rational numbers, this motivates the focus on approximate equilibria
(i.e. �-Nash equilibria), to ensure that there is a natural syntax in which to output
a computed solution to a game. Since any exact equilibrium is an approximate
one, any hardness result for approximate equilibria applies automatically to exact
ones. The question of polynomial-time computation of approximate equilibria was
introduced in [37] in order to �nesse the irrationality of exact solutions. However,
algorithms for approximate equilibria go back earlier, notably Scarf’s algorithm [62].

For positive �, an �-Nash equilibrium need not be at all close to a true Nash
equilibrium. Etessami and Yannakakis [31] show that even for exponentially small �,
an �-Nash equilibrium may be at variation distance 1 from any true Nash equilibrium,
for a 3-player game. Furthermore, they also show that computing an approximate
equilibrium that is within variation distance � from a true one (an �-near equilibrium)
is square-root-sum hard. This refers to the following well-known computational
problem:

De�nition 3.4 The square root sum problem takes as input two sets of positive
integers, say fx1; : : : ; xng and fy1; : : : ; yng. The question is: is the sum of the
square roots of the �rst set, greater than the sum of square roots of the second?

The problem is not known to belong to NP, although neither is it known to be hard
for any well-known complexity class. In terms of upper-bounding the complexity of
this problem, and also for that matter, computing an �-near equilibrium, we may
note that the criteria for a set of numbers xi

j to be an �-near equilibrium can be
expressed in the existential theory of real arithmetic, which places the problem in
PSPACE [58].

The fact that Nash equilibrium probabilities can be irrational numbers (while
payo�s are rational numbers) appears in an example in Nash’s paper [53]. He de-
scribes a simple poker-style game with 3 players and a unique (irrational) Nash
equilibrium. We noted earlier that any game with rational payo�s has Nash equi-
libria probabilities that are algebraic numbers. But even for a 3-player game, if
n is the number of actions, the solution may require algebraic numbers of degree
exponentially large in n; as noted in [37], the constructions introduced there give us
a exible way to construct, from a given polynomial p, an arithmetic circuit whose
�xpoints are the roots of p, and [37] shows how to construct a 4-player game whose
equilibria encode those �xpoints. The paper of Bubelis [8] gave an \algebraic" re-
duction from any k-player game (for k > 3) to a corresponding 3-player game, in a
way that preserves the algebraic properties of the solutions. Consequently 3-player
games have the same feature of 4-player games identi�ed in [37]. The reduction
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of [8] can in addition be used to show that 3-player games are as computationally
hard to solve as k-players, but it does not highlight the expressive power of games
as arithmetic circuits. Recently, Feige and Talgam-Cohen [32] give a reduction from
(approximate) k-player Nash to 2-player Nash, that does not explicitly proceed via
End of the line.

Is Nash equilibrium computation ever harder than PPAD? Daskalakis
et al. [20] show that most standard classes of concisely-represented games (such
as graphical games and polymatrix games) have equilibrium computation problems
that reduce to 2-Nash and so belong to PPAD. Schoenebeck and Vadhan [63] study
the question for \circuit games", a very general concise representation of games
where payo�s are given by a boolean circuit. In this context they obtain hardness
results, but this is not an NP total search problem. The zero-sum version [33] is
also hard.

4 Brouwer functions, and discrete Brouwer functions

Brouwer’s �xpoint theorem states that every continuous function from a convex
compact domain to itself, must have a �xpoint, a point x for which f(x) = x.

Proving Brouwer’s �xpoint theorem using Sperner’s lemma Suppose to
begin with that the domain in question is the d-simplex �d. We have continuous
f : �d �! �d and we seek a point x 2 �d with f(x) = x. Suppose f is evaluated
on a set S of \sample points" in �d, and at each point x 2 S, consider the value
of f(x) � x. If the d + 1 vertices of �d are given distinct colours f0; 1; : : : ; dg, we
colour-code any x 2 S according to the direction of f(x)�x: we give it the colour of
a vertex which is at least as distant from f(x) as from x. Such a colouring respects
the constraints of Sperner’s lemma. If S is used as the vertices of a simplicial
decomposition, a panchromatic simplex becomes a plausible location for a �xpoint
(f is displacing co-located vertices in all di�erent directions). One obtains a �xpoint
from the limit of increasingly �ne simplicial decompositions.

The result can then be extended to other domains that are topologically equiv-
alent to simplices, such as cubes/cuboids, as used in the constructions we describe
here.

In de�ning an associated computational total search problem \�nd the point x",
we need to identify a syntax or format in which to represent a class of continuous
functions. The format should ensure that f can be computed in time polynomial
in f ’s description length (so that solutions x are easily checkable, and the search
problem is in NP). The class of functions that we de�ne are based on discrete
Brouwer functions, de�ned in detail below in Section 4.1.

Discrete Brouwer functions form the bridge between the discrete circuit problem
End of the line and the continuous, numerical problem of computing a Nash
equilibrium.

Consider the following obvious fact4 that if we colour the integers f0; : : : ; ng such
that

4pointed out in [13] (Section 5.1)
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� each integer is coloured either red or black, and

� 0 is coloured red, and n is coloured black

then there must be two consecutive numbers that have di�erent colours.
Now suppose that n is exponentially large, but for any number x in the range

f0; : : : ; ng we have an e�cient test to identify the colour of x. In that case, we still
have an e�cient search for consecutive numbers that have opposite colours, namely
we can use binary search. If bn=2c is coloured black, we would search for the pair
of numbers in the range f0; : : : ; bn=2cg, otherwise we would search in the range
fbn=2c; : : : ; ng, and so on.

Now consider a 2-dimensional version with pairs of numbers (x; y), x; y 2 f0; : : : ; ng,
where pairs of numbers are coloured as follows.

� if x = 0, (x; y) is coloured red,

� if y = 0 and x > 0 then (x; y) is coloured yellow,

� if x; y > 0 and either x = n or y = n (or both), then (x; y) is coloured black.

Thus, we have �xed the colouring of the perimeter of the grid of points, but we
impose no constraints on how the interior should be coloured. We claim that there
exists a square of size 1 that has all 3 colours, but notice that binary search no
longer �nds such a square e�ciently5. The fact that such a square exists is due to
Sperner’s lemma, whose proof envisages following a path that enters the n�n grid,
ending up at a trichromatic square; intuitively, this can be achieved by entering at
the point on the perimeter where red and yellow are adjacent, and walking around
the outside of the red region. Since there is only one exterior red/yellow interval,
we are guaranteed to reach a stage where the red region is no longer bounded by
yellow points, but by black points.

4.1 Discrete Brouwer functions

We next give a detailed de�nition of discrete Brouwer functions (DBFs), together
with an associated total search problem (on an exponential-sized domain), that is
used in the reductions from End of the line to the search for a Nash equilibrium
of a game. Figure 5 shows how an End of the line graph is encoded by a DBF.

De�nition 4.1 Partition the unit d-dimensional cube K into \cubelets"| 2dn axis
aligned cubes of edge length 2�n. A Brouwer-mapping circuit (in d dimensions)
takes as input a bit string of length dn that represents the coordinates of a cubelet,
and outputs its colour, subject to boundary constraints that generalise the 2-D case
discussed above. A Discrete Brouwer function (DBF) is the function computed by
such a circuit, and its syntactic complexity is the size of the circuit that represents
it, which we restrict to be polynomial in n.

5Hirsch et al. [45] give lower bounds for algorithms that search for �xed points based on function
evaluation. In this setting, an algorithm that searches for a �xed point of f has \black-box access"
to f ; f may be computed on query points but the internal structure of f is hidden. They contrast
the one-dimension case with the 2-dimensional case by showing that in 2 dimensions, the search for
an approximate �xed point of a Lipschitz continuous function in 2D, accurate to p binary digits,
requires 
(cp) for some constant c, in contrast to 1D where bisection may be used.
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Figure 5: The �gure shows how the line graph (v0; v1); (v1; v3); (v3; v2) is encoded as
a discrete Brouwer function in two dimensions.
The function colours the grid as a long thin red/yellow strip on a black background.
Each vertex vi is associated with a horizontal line segment close to the x-axis (circled
in the diagram). Each edge (vi; vj) is associated with a \bridge" from the right-hand
side of vi’s line segment to the left-hand side of vj ’s.
Each bridge consists of three red/yellow line segments, going up, across and down.
The y-coordinate of the horizontal segment y(i; j) should e�ciently encode the values
i and j (for example, y(i; j) = i+N:j where N is the number of x-values possible).
Hence no two bridges can have overlapping horizontal sections. Unfortunately, a
horizontal section may need to cross a vertical section of a di�erent bridge, as shown
in the diagram. Here a crossover gadget of [10] (Figure 6) may be used.
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Figure 6: The crossover gadget referred to in Figure 5.
To avoid all three colours meeting in the vicinity of the crossing of two red/yellow
path segments: the simple solution is to re-connect the paths in a way that the
topological structure of the red-yellow line no longer mimics the structure of the
End of the line graph from which it was derived. The 3-dimensional version,
invented in [57] and re�ned in [22] does not require crossover gadgets.

This gives rise to the total search problem of �nding a vertex that belongs to
cubelets of all the di�erent colours (a \panchromatic cubelet"). A super�cial dif-
ference between the presentation of this concept in [22] compared with [13] is that
[22] associates each cubelet with a colour while [13] associated each vertex with a
colour, and the search is for a cubelet that has vertices of all colours.

5 From Discrete Brouwer functions to Games

The reduction is broken down into two stages: �rst we take a circuit C repre-
senting a DBF and encode it as an arithmetic circuit C 0 that computes a continuous
function from Kd to Kd, where Kd is the d-dimensional unit cube. Then we express
C 0 as a game G in such a way that given any Nash equilibrium of G, we can e�ciently
extract the coordinates of a �xpoint of C 0.

Figure 7 gives the general idea of how to construct a continuous function f
from a DBF, in such a way that �xpoints of the continuous function correspond
to solutions of the DBF. The idea is that each colour in the range of the DBF
corresponds to a direction of f(x)�x. For a colour that lies on the boundary of the
discretised cube, we choose a direction away from that boundary, so that f avoids
displacing points outside the cube. Indeed, this is where we require the boundary
constraints on the colouring of DBFs. Points at the centres of the cubelets of the
DBF will be displaced in the direction of that cubelet’s colour, while points on or
near the boundary of two or more cubelets should get directions that interpolate the
individual colour-directions (which is necessary for continuity). A natural choice for
these colour-directions results in the following property: For a proper subset of these
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Figure 7: The top left-hand diagram shows a simple discrete Brouwer function in 2
dimensions, and the arrows in the bottom left-hand diagram show the direction of
the corresponding continuous Brouwer function f within each small square.
The right-hand diagram is a magni�ed view of the bottom right-hand section of
the continuous Brouwer function, showing how the direction of the function (i.e the
direction of f(x)� x) can be interpolated on the boundaries of the small squares.
It is always possible to smoothly interpolate between 2 di�erent directions without
introducing �xed points of f . But, in the vicinity of the point where all 3 colours
meet, there will necessarily be a point x where f(x) = x.

directions, their average cannot be zero. On the other hand, a weighted average of
all the directions can indeed be zero.

Arithmetic circuits The papers [13, 22] show how to construct arithmetic cir-
cuits that compute these kinds of continuous functions. An arithmetic circuit con-
sists of a directed graph each of whose nodes belongs to one of a number of distinct
types, such as addition and multiplication. Each node will compute a real num-
ber, and the type of a node dictates how that number is obtained. For example,
an addition node should have 2 incoming arcs, and it will compute the sum of the
values located at the adjacent nodes for those two arcs; it may also have a number
of outgoing arcs that allow its value to feed in to other nodes.

A signi�cant di�erence between the circuits of [22] and those of [13] is that
the latter do not allow nodes that compute the product of two computed quantities
(located at other nodes with incoming edges). They do allow the multiplication of
a computed quantity by a constant. The result of this is
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� The functions that can be computed are more constrained; however they are
still expressive enough to simulate the behaviour of DBF circuits,

� two-player normal-form games can simulate the circuits of [13], while three-
player games are required to simulate circuits that can multiply a pair of
computed quantities.

The more general circuits introduced in [22] correspond to the algebraic complexity
class FIXP of Etessami and Yannakakis [31]; the ones without these product nodes
correspond to PPAD, the linear version of FIXP, called LINEAR-FIXP in [31].

Interpolating the directions For a point x that is not on a cubelet boundary,
one can design a polynomial-sized arithmetic circuit that compares the values of
its coordinates against various numbers, eventually determining which cubelet it
belongs to. Its colour assigned by the original DBF can be computed using a further
component of the arithmetic circuit, that simulates the DBF. A further component
of the circuit can translate the colour to a direction-vector, which gets added to x
to yield f(x).

For x on or close to a cubelet boundary, both papers [13, 22] perform the inter-
polation as follows. f is computed not just at x, but also at a small cluster of points
in the vicinity of x. Then the average value of f(x0) is computed, for all points x0

in this cluster. [13] show how this can be done in non-constant dimension, which
allows a stronger hardness-of-approximation result to be obtained; see below. For
constant dimension this clustering trick can be avoided; [38] shows the interpolation
can be done more directly, and without the multiplication nodes discussed above.

Encoding approximate solutions, and snake embeddings Snake embed-
dings, invented by Chen et al. [13] allow hardness results for �-approximate solutions
where � is inverse polynomial in n. A snake embedding maps a discrete Brouwer
function F to a lower-dimension DBF F 0, in such a way that a solution to F 0 e�-
ciently encodes a solution to F , and the number of cubelets along the edges decreases
by a constant factor. Applying these repeatedly, we obtain a DBF in �(n) dimen-
sions where the cubelets have O(1) edge length. The coordinates of points in the
cube can be perturbed by relatively large amounts without leaving a cubelet.

5.1 Graphical Games

Graphical games were introduced in [47, 50] as a succinct means of representing
certain games having many players. In a graphical game, each player has an associ-
ated vertex of an underlying graph G. The payo� to a player at vertex v is assumed
to depend only on the behaviour of himself and his neighbours. Consequently, for a
low-degree graph, the payo�s can be described much more concisely than would be
allowed by normal form.

Graphical games were used by Daskalakis et al. [22] as an intermediate stage
between discrete Brouwer functions, and normal-form games. That is, it was shown
in [22] how a discrete Brouwer function can be converted into a graphical game GG
such that any Nash equilibrium of GG encodes a solution to the discrete Brouwer
function. Essentially, the underlying graph of GG has the same structure as the
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arithmetic circuit derived from the DBF, and the probabilities in the Nash equilib-
rium correspond to the quantities computed in the circuit. Chen et al [13] reduce
more directly from discrete Brouwer functions to 2-player games.

5.2 From graphical to normal-form games

Recall the game of generalised matching pennies (GMP) from Example 3.3. The
construction used in [13, 22] starts with a \prototype" zero-sum game consisting of a
version of GMP where all strategies have been duplicated, as shown in the following
payo� matrix R for the row player (M is some large positive quantity).

R =

0

B

B

B

B

B

B

B

B

B

@

M M 0 0 � � � 0 0
M M 0 0 � � � 0 0
0 0 M M � � � 0 0
0 0 M M � � � 0 0
...

...
...

...
. . .

...
...

0 0 0 0 � � � M M
0 0 0 0 � � � M M

1

C

C

C

C

C

C

C

C

C

A

Having noted that GMP has a unique equilibrium in which both players randomise
uniformly, we next note that in the above game, each player will randomise uniformly
over pairs of duplicated strategies. So, each player allocates probability 1

n to each
such pair. Within each pair, that allocation of 1

n may be split arbitrarily; G imposes
no constraints on how to divide it.

The idea next, is to add certain quantities to the payo�s (that are relatively
small in comparison with M) so that a player’s choice of how to split between a
pair of \duplicated" strategies may a�ect the opponents’ choice for other pairs of
his strategies. It can be shown that in Nash equilibria of the resulting game,

� the probability allocated to any strategy-pair is not exactly 1
n but is fairly

close, since the value of M dominates the other payo�s that are introduced,

� the probabilities p and p0 allocated to the members of a strategy-pair are used
to represent the number p=(p+ p0) 2 [0; 1],

� the numbers thus represented can be made to a�ect each others’ values in the
same way that players in a graphical game, having just 2 pure strategies f0; 1g,
a�ect each others’ probabilities of playing 1.

6 Easy and hard classes of games

The PPAD-completeness results for normal-form games have led to a line of re-
search addressing the very natural question of what types of games admit polynomial-
time algorithms, and which ones are also PPAD-hard. In particular, with regard
to PPAD-hardness, the general aim is to obtain hardness results for games that are
more and more syntactically restricted; the �rst results, for 4 players [21], then 3
players [12, 25], and then 2 players [11] can be seen as the initial chapter in this nar-
rative. In this section, our focus is on results on the frontier of PPAD-completeness
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and membership of P. We do not consider games where solutions can be shown to ex-
ist by means of a potential function argument (known to be equivalent to congestion
games [52, 59]).

While normal-form games are the most natural ones to consider from a theoret-
ical perspective, there are many alternative ways to specify a game. It is, after all,
unnatural to write down a description of a game in normal form; only for very small
games is this feasible.

6.1 Hard equilibrium computation problems

So, one natural direction is to look for PPAD-hardness results for more restricted
types of games than the ones currently known to be PPAD-hard.

Restricted 2-player games We currently know that 2-player games are hard to
solve even when they are sparse [13, 14]; the problem Sparse bimatrix denotes
the problem of computing a Nash equilibrium for 2-player games having a constant
bound on the number of non-zero entries in each row and column. (For example,
Theorem 10.1 of [13] show that 2-player games remain PPAD-hard when rows and
columns have up to 10 non-zero entries.) 2-player games are also PPAD-complete
to solve when they have 0/1 payo�s [1]6.

Restricted graphical games It is shown in [30] that degree-2 graphical games
are solvable in polynomial time, but PPAD-complete for graphs with constant
pathwidth (it is an open question precisely what pathwidth is required to make
the problem PPAD-complete).

Ranking games Brandt et al. [5] study ranking games from a computational-
complexity viewpoint. Ranking games are proposed as model of various real-world
competitions; the outcome of the players’ behaviour is a ranking of its participants,
thus is maps any pure-strategy pro�le to a ranking of the players. Let ui

r be the
payo� to player i that results from being ranked r-th, where we assume ui

r � ui
r+1

(players prefer to be ranked �rst to being ranked second, and so on.)
In the 2-player case, any ranking game is strategically equivalent to a zero-sum

game. For more than 2 players, one can apply the observation of [54] that any
k-player game is essentially equivalent to a k + 1-player zero-sum game, where the
additional player is given payo�s that set the total payo� to zero, but takes no part
in the game, in that his actions do not a�ect the other players’ payo�s. Using this,
it is easy to reduce 2-player win-lose games to 3-player ranking games.

Polymatrix games A polymatrix game is a multiplayer game in which any player’s
payo� is the sum of payo�s he obtains from bimatrix games with the other players.
A special case of interest is where there is a limit on the number of pure strategies
per player. In general, these polymatrix games are PPAD-complete [20], which also
follows from [22] | speci�cally Section 6 of [22] presents a PPAD-hardness proof

6The paper of Abbott et al. [1] appeared before the �rst PPAD-hardness results for games, and
reduced the search for Nash equilibria of general 2-player games to the search for Nash equilibria
in 0=1-payo� 2-player games (i.e. win-lose games).
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for 2-Nash by using graphical game gadgets that have the feature that the payo�
to a vertex can be expressed as the sum of payo�s of 2-player games with his neigh-
bours. (This extension to 2-Nash applies the observation that it is unnecessary to
have a player who computes the product of his neighbours; such a vertex has payo�s
that cannot decompose as the sum of bimatrix games.)

6.2 Polynomial-time equilibrium computation problems

In reviewing some of the computational positive results (types of games that
have polynomial-time algorithms) we focus on games where the search problem
is guaranteed to be total due to being in PPAD, as opposed to potential games
for example, where equilibria can be shown to exist due to a potential function
argument.

Restricted win-lose games The papers [2, 16] identify polynomial-time algo-
rithms for subclasses of the win-lose games shown to be hard by [1]. A win-lose
game has an associated bipartite graph whose vertices are the pure strategies of the
two players. We add an edge from s to s0 if when the players play s and s0, the player
of s obtains a payo� of 1. Addario-Berry et al. [2] study the special case when this
graph is planar, and obtain an algorithm based on a search in the graph for certain
combinatorial structures within the graph, that runs in polynomial time for planar
graphs. Codenotti et al. [16] study win-lose games in which the number of winning
entries in each row or column is at most 2. Their approach also involves searching
for certain structures within a corresponding digraph.

Approximate equilibria The main question is: for what values of � > 0 can
one compute �-Nash equilibria in polynomial time? The question has mainly been
considered in the 2-player case. Note that [13] established that there is not a fully
polynomial-time approximation scheme for computing �-Nash equilibria. However,
it is also known that for any constant � > 0, the problem is subexponential [49].

There has not been much progress in the past couple of years on reducing the
value of � that is obtainable; the papers cited in [22] represent the state of the art in
this respect. Perhaps the simplest non-trivial algorithm for computing approximate
Nash equilibria is the following, due to Daskalakis et al. [24]. Figure 8 shows a
generalisation of the algorithm of [24], to k players, obtained independently in [6, 40].
These papers also obtain the lower bounds for solutions having constant support.
The approximation guarantee is 1� 1

k ; it is noted in [6] that one can do slightly better
by using a more sophisticated 2-player algorithm at the midpoint of the procedure.

Ranking games A restriction of the ranking games mentioned above, to those
having \competitiveness-based strategies" were recently proposed in [36] as a sub-
class of ranking games that seems to have better computational properties, while
still being able to capture features of many real-world competitions for rank. In
these games, a player’s strategies may be ordered in a sequence that reects how
\competitive" they are. If we let fa1; : : : ; ang be the actions available to a player,
then each aj has two associated quantities, a cost cj and a return rj , where return is
a monotonically increasing function of cost. Given any pure-strategy pro�le, players
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1. For i = 1; 2; : : : ; k � 1

(a) Player i allocates probability 1� 1
k+1�i to some arbitrary strategy

2. For i = k; k � 1; : : : ; 1

(a) Player i allocates his remaining probability to a best response to the
strategy combination played so far.

Figure 8: Approximation algorithm for k-player Nash

are ranked on the returns of their actions and awarded prizes from that ranking.
The payo� to a player is the value of the prize he wins, minus the cost of his action.
This results in a trade-o� between saving on cost, versus spending more with the
aim of a larger prize. Notice that, in contrast to unrestricted ranking games [5], this
restriction allows games with many players to be written down concisely.

Anonymous games Anonymous games represent a useful way to concisely de-
scribe certain games having a large number of players | in an anonymous game,
each player has the same set of pure strategies fa1; : : : ; akg, and the payo� to player
i for playing aj depends only on i and the total number of players to play aj (but not
the identities of those players; hence the phrase \anonymous game"). Daskalakis and
Papadimitriou [26] give a polynomial-time approximation scheme for these games,
but note that it is an open problem whether an exact equilibrium may be computed
in polynomial time.

Polymatrix games Daskalakis and Papadimitriou [27] show that polymatrix
games may be solved exactly when the bimatrix games between pairs of players
are zero-sum. This result is applied in [36] to a subclass of the games studied there,
speci�cally ranking games where prize values are a linearly decreasing function of
rank placement.

7 The Complexity of Path-following Algorithms

In this section we report on recent progress [38] that shows an even closer analogy
between equilibrium computation and the problem End of the line. Namely, that
the solutions found by certain well-known \path-following" algorithms have the same
computational complexity as the search for the solution to End of the line that
is obtained by following the line. Speci�cally, both are PSPACE-complete.

Consider the algorithm for End of the line that works by simply \following
the line" from the given starting-point 0n until an endpoint is reached. Clearly
this takes exponential time in the worst case, but in fact we can say something
stronger. Let Oeotl denote the problem \other end of this line", which requires as
output, the endpoint reached by following directed edges from the given starting-
point. Papadimitriou observed in [57] that the following holds:

Theorem 7.1 [57] Oeotl is PSPACE-complete.
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Notice that a solution to Oeotl is apparently no longer in NP, since while we can
check that it solves End of the line, there is no obvious way to e�ciently check
that it is the correct end-of-line, i.e. the one connected to the given starting-point.

Proof (sketch) We reduce from the problem of computing the �nal con�guration
of a polynomial space bounded Turing machine (TM).

The proof uses the fact that polynomial-space-bounded Turing machines can be
simulated by polynomial-space-bounded reversible Turing machines [19]. By a con-
�guration of a TM computation we mean a complete description of an intermediate
state of computation, including the contents of the tape, and the state and location
of the TM on the tape. Reversible TMs have the property that given an interme-
diate con�guration, one can readily obtain not just the subsequent con�guration,
but also the previous one; this is done by memorising a carefully-chosen subset of
previous con�gurations that the machine uses in the course of a computation [19].

From there, it is straightforward to simulate a reversible Turing machine using
the two circuits S and P of an instance of Oeotl. Each vertex v of an (S; P )-graph
encodes a con�guration of a linear-space-bounded TM; S computes the subsequent
con�guration, and P computes the previous con�guration. �

In the context of searching for Nash equilibria, a number of algorithms have
been proposed that work by following paths is a graph G associated with game G,
where G is derived from G via a reduction to End of the line. Examples include
Scarf’s algorithm [62] (for approximate solutions of k-player games) and the Lemke-
Howson algorithm [48] (an exact algorithm for 2-player games). These algorithms
were proposed as being in practice more computationally e�cient than a brute-force
approach. Related algorithms include the linear tracing procedure and homotopy
methods [39, 41, 42, 43, 44] discussed below: in these papers the motivation is
equilibrium selection | in cases where multiple equilibria exist, we seek a criterion
for identifying a \plausible" one.

Homotopy methods for Game Theory In topology, a homotopy refers to a
continuous deformation from some geometrical object to another one. Suppose we
want to solve game G. Let G0 denote another game obtained by changing the nu-
merical utilities of G in such a way that there is some \obvious" equilibrium; for
example, we could change the payo�s so that each player obtains 1 for playing his
�rst strategy, and 0 for any other strategy, regardless of the behaviour of the other
player(s). Then, we can continuously deform G0 to get back to G. For t 2 [0; 1] let
Gt be a game whose payo�s are weighted averages of those in G0 with those in G: we
write this as Gt = (1� t)G0 + tG. A homotopy method for solving G involves keeping
track of the equilibria of Gt, which should move continuously as t increases from 0
to 1. There should be a continuous path from the known equilibrium of G0 to some
equilibrium of G (an application of Browder’s �xed point theorem [7].) The catch
is, that in following this path it may be necessary for t to go down as well as up.

The main theorem of [38] is that

Theorem 7.2 [38] It is PSPACE-complete to compute any of the equilibria that
are obtained by the Lemke-Howson algorithm.
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The Lemke-Howson algorithm is usually presented as a discrete path-following
algorithm, in which a 2-player game has an associated degree-2 graph G as
follows. Vertices of G are mixed strategy pro�les that are characterised by the
subset of the players’ strategies that are either played with probability zero, or
are best responses to the other player’s mixed strategy. To be a vertex of G, a
mixed-strategy pro�le should satisfy one of the following:

� All pure strategies are labelled, or

� All but one pure strategies are labelled, and one pure strategy is labelled
twice, due to being both a best response, and for being played with proba-
bility zero.

In the �rst case, we either have a Nash equilibrium, or else we have assigned
probability zero to all strategies. In the second case, it can be shown that there
are two \pivot" operations that we may perform, that remove one of the duplicate
labels of the doubly-labelled strategy, and add a label to some alternative strategy;
see von Stengel [65] for details. These operations correspond to following edges
on a degree-2 graph.

Viewed as a homotopy method (see Herings and Peeters [44] Section 4.1) the
algorithm works as follows. For a n� n game G with players 1 and 2, choose any
i 2 f1; 2g and j 2 [n] and give player i a large bonus payo� for using strategy ai

j ;

the bonus should be large enough to make ai
j a dominating strategy for player i.

Hence, there is a unique Nash equilibrium consisting of pure-strategy ai
j together

with the pure best response to ai
j . Now, we reduce that bonus to zero, and the

equilibrium should change continuously; however, the requirement that we keep
track of a continuously changing equilibrium means that in general, the bonus
cannot reduce monotonically to zero; it may have to go up as well as down.

The choice of ai
j at the start of the homotopy corresponds to the initial \dropped

label" in the discrete path-following description.

Figure 9: Two views of the Lemke-Howson algorithm

Savani and von Stengel [61] established earlier that the Lemke-Howson does in-
deed take exponentially many steps in the worst case; this new result, then, says
that moreover there are no \short cuts" to the solution obtained by Lemke-Howson,
subject only to the very weak assumption that PSPACE-hard problems require
exponential time in the worst case. (The PPAD-hardness of Nash already estab-
lished that these solutions are hard to �nd subject to the hardness of PPAD, but
the hardness of PPAD is a stronger assumption.)

Proof (the main ideas) Recall the role of discrete Brouwer functions in the reduc-
tions from End of the line to Nash, as discussed in Section 4. Suppose G = G1

is associated with a discrete Brouwer function having the kind of structure indi-
cated in Figure 5; the bottom left-hand corner looks roughly like the top right-hand
\t = 1" diagram in Figure 10. Suppose that G0 is associated with a DBF in which
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t=1/2 t=3/4

t=1t=0

Figure 10: Homotopy for Brouwer function in the plane
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the line-encoding structure has been stripped out: the top left \t = 0" diagram in
Figure 10.

Consider the linear homotopy between the corresponding continuous Brouwer
functions F0 and F1; Ft(x) = (1� t)F0(x) +F1(x). Ft colours the square according
to the direction of Ft(x)�x. Figure 10 (the bottom half) shows how these colourings
may evolve for intermediate values of t. For intermediate values of t, in regions where
F0 = F1 we have Ft(x) = F0(x) = F1(x) for all t. This means that �xpoints of
Ft cannot be located in the region where F1 gets the colour 0 (or black). So, a
continuous path of �xpoints necessarily follows the line of non-black regions of F1,
and necessarily ends up at the end of that particular line. The crossover gadget
(Figure 6) would break this correspondence with Oeotl; we �x that by moving to
3-dimensions, where the gadget is not needed. �

8 From Games to Markets

The PPAD-completeness results for variants of Nash has led, more recently, to
PPAD-completeness results for the problems of computing certain types of market
equilibria. We continue by giving the general idea and intuition, then we proceed
to the formal de�nitions. For more details on the background to this topic, see
Chapters 5,6 of [55]; here we aim to focus on giving a brief overview of more recent
PPAD-completeness results.

Suppose we have a set G of goods and a set T of traders. Each trader i in T has a
utility function f i that maps bundles of goods to non-negative real values. Assume
the goods are divisible, so f i is a mapping from vectors of non-negative numbers
(the quantity of each good in a bundle) to non-negative real numbers. A standard
assumption is that f i should be continuous, and non-decreasing when restricted to
an individual good (it doesn’t hurt to receive a bigger quantity), and concave (there
is non-increasing marginal utility). Now, suppose that each good j gets a (non-
negative real) unit price pj . A trader with some given budget can then identify
(from f i) the optimal bundle of goods that his budget will purchase (where optimal
bundles need not be unique). In general, the aim is to identify prices for goods such
that each trader can exchange an initial allocation for an optimal one that has the
same total price, so that the total quantity of each good is conserved. Under some
fairly mild conditions, it can be shown that such prices always exist. Intuitively, if
all traders try to exchange their initial allocations for ones that are optimal, and
there is too much demand for good j as a result, then we can �x that problem by
raising the price of j.

De�nition 8.1 In an Arrow-Debreu market [3], each trader has an initial endow-
ment consisting of a bundle of goods. Suppose that the prices are set such that the
following can happen: each trader exchanges his endowment for an optimal bundle
having the same total value, and furthermore, the total quantity of each good is
conserved. In that case, we say that these prices allow the market to clear. It is
shown in [3] that there always exist prices that allow the market to clear.

A Fisher market is a special case of an Arrow-Debreu market, in which traders
are initially endowed with quantities of money, and there are �xed quantities of
goods for sale; in this case the prices should ensure that if each trader buys a bundle
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of goods that is optimal for his budget, then all goods are sold. This can be seen to
be a special case of Arrow-Debreu market, by regarding money as one of the goods
in G.

The existence proof of market-clearing prices [3] works by expressing a market
satisfying the relevant constraints in terms of an abstract economy, a generalisation
of the standard notion of a game, and applying Nash’s theorem. So, indirectly the
proof uses Brouwer’s �xed point theorem. This indicates that PPAD is the relevant
complexity class for studying the hardness of computing a price equilibrium. Results
about the computational complexity of �nding market-clearing prices are in terms
of the types of utility functions of the traders.

Interesting classes of utility functions include the following (where (x1; : : : ; xm)
denotes a vector of quantities of m goods):

1. Additively separable functions, where a trader’s function f i(x1; : : : ; xm) is of
the form f i(x1; : : : ; xm) =

Pm
j=1 f

i
j(xj). We still need to specify the structure

of the functions f i
j in order to have a well-de�ned problem.

2. piecewise linear: in conjunction with additively separable, this would require
that each function f i

j(xj) be piecewise linear, and the syntactic complexity of

such a function would be the total number of pieces of the functions f i
j . More

generally, without the additively separable property, f i could take the form
f i(x1; : : : ; xm) = mina2A f

i
a(x1; : : : ; xm) where A indexes a �nite set of linear

functions, and f i
a(x1; : : : ; xm) =

Pm
j=1 �

a
jxj for non-negative coe�cients �a

j .

3. Leontiev economies: In a Leontiev economy we have f i(x1; : : : ; xm) = minj2[m] �
i
jxj ,

a special case of the piecewise linear functions above; note that these functions
are not however additively separable.

Polynomial-time algorithms Linear utility functions take the form f i(x1; : : : ; xm) =
Pm

j=1 �
i
jxj | they are both additively separable and piecewise linear, but not Leon-

tiev; they were initially considered in [34], and are known to be solvable in polynomial
time [28, 46] in the case of Fisher markets. For the Arrow-Debreu case, Devanur
and Vazirani [29] give a strongly polynomial-time approximation scheme but leave
open the problem of �nding an exact one in polynomial time.

PPAD-hardness results The �rst such result applied to Leontiev economies, for
which there is a reduction from 2-player games [17]. Chen et al. [9] show that it
is PPAD-complete to compute an Arrow-Debreu market equilibrium for the case
of additively separable, piecewise linear and concave utility functions. Chen and
Teng [15] show that it is PPAD-hard to compute Fisher equilibrium prices, from
utility functions that are additively separable and piecewise linear concave; this
is done by reduction from Sparse bimatrix [14]. Vazirani and Yannakakis [66]
show that �nding an equilibrium in Fisher markets is PPAD-hard in the case of
additively-separable, piecewise-linear, concave utility functions. On the positive
side, they show that with these utility functions, market equilibria can however be
written down with rational numbers.
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Hypergraph Tur�an problems

Peter Keevash

Abstract

One of the earliest results in Combinatorics is Mantel’s theorem from 1907
that the largest triangle-free graph on a given vertex set is complete bipartite.
However, a seemingly similar question posed by Tur�an in 1941 is still open: what
is the largest 3-uniform hypergraph on a given vertex set with no tetrahedron?
This question can be considered a test case for the general hypergraph Tur�an
problem, where given an r-uniform hypergraph F , we want to determine the
maximum number of edges in an r-uniform hypergraph on n vertices that does
not contain a copy of F . To date there are very few results on this problem,
even asymptotically. However, recent years have seen a revitalisation of this
�eld, via signi�cant developments in the available methods, notably the use of
stability (approximate structure) and ag algebras. This article surveys the
known results and methods, and discusses some open problems.
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1 Introduction

The Tur�an number ex(n; F ) is the maximum number of edges in an F -free r-
graph on n vertices.1 It is a long-standing open problem in Extremal Combinatorics
to develop some understanding of these numbers for general r-graphs F . Ideally, one
would like to compute them exactly, but even asymptotic results are currently only
known in certain cases. For ordinary graphs (r = 2) the picture is fairly complete.
The �rst step was taken by Tur�an [190], who solved the case when F = Kt is a
complete graph on t vertices. The most obvious examples of Kt-free graphs are
(t�1)-partite graphs. On a given vertex set, the (t�1)-partite graph with the most
edges is complete and balanced , in that the part sizes are as equal as possible (any
two sizes di�er by at most 1). Tur�an’s theorem is that this construction always gives
the largest Kt-free graph on a given vertex set, and furthermore it is unique (up to
isomorphism). This result inspired the development of Extremal Graph Theory,
which is now a substantial �eld of research (see [19]). For general graphs F we
still do not know how to compute the Tur�an number exactly, but if we are satis�ed
with an approximate answer the theory becomes quite simple: it is enough to know
the chromatic number of F . Erd}os and Stone [62] showed that if �(F ) = t then
ex(n; F ) � ex(n;Kt) + o(n2). As noted in [58], since (t � 1)-partite graphs are F -
free, this implies that ex(n; F ) = ex(n;Kt) + o(n2). When F is not bipartite this
gives an asymptotic result for the Tur�an number. When F is bipartite we can only

1An r-graph (or r-uniform hypergraph) G consists of a vertex set and an edge set, each edge
being some r-set of vertices. We say G is F -free if it does not have a (not necessarily induced)
subgraph isomorphic to F .
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deduce that ex(n; F ) = o(n2); in general it is a major open problem to determine
even the order of magnitude of Tur�an numbers for bipartite graphs. However, we
will not consider these so-called ‘degenerate’ problems here.

By contrast with the graph case, there is comparatively little understanding of
the hypergraph Tur�an problem. Having solved the problem for F = Kt, Tur�an [191]
posed the natural question of determining ex(n; F ) when F = Kr

t is a complete r-
graph on t vertices. To date, no case with t > r > 2 of this question has been solved,
even asymptotically. Erd}os [54] o�ered $500 for the solution of any case and $1000
for a general solution. A comprehensive survey of known bounds on these Tur�an
numbers was given by Sidorenko [180], see also the earlier survey of de Caen [41];
a survey of more general Tur�an-type problems was given by F�uredi [79]. Our focus
will be on �xed F and large n, rather than the ‘covering design’ problems which
occur for small n (see [180]). Despite the lack of progress on the Tur�an problem for
complete hypergraphs, there are certain hypergraphs for which the problem has been
solved asymptotically, or even exactly, and most of these results have been obtained
since the earlier surveys. These special cases may only be scratching the surface of
a far more complex general problem, but they are nevertheless interesting for the
rich array of di�erent ideas that have been developed for their solutions, ideas that
one may hope can be applied or developed to much greater generality. Thus we feel
it is most helpful to organise this survey around the methods; we conclude with a
summary of the results for easy reference.

The contents by section are as follows: 1: Introduction, 2: Basic arguments, 3:
Hypergraph Lagrangians, 4: Link graphs and multigraphs, 5: Stability, 6: Counting,
7: Flag algebras, 8: The remaining exact results, 9: Bounds for complete hyper-
graphs, 10: The in�nitary perspective, 11: Algebraic methods, 12: Probabilistic
methods, 13: Further topics, 14: Summary of results.

We use the following notation. Suppose G is an r-graph. We write V (G) for
the vertex set of G and E(G) for the edge set of G. We write v(G) = jV (G)j and
e(G) = jE(G)j. We often identify G with its edge set, so that jGj means jE(G)j. For
X � V (G), the induced subhypergraph G[X] has vertex set X and edge set all edges
of G that are contained in X. We often abbreviate ‘subhypergraph’ to ‘subgraph’.
A k-set is a set of size k. Usually G has n vertices, and asymptotic notations such
as o(1) refer to the limit for large n.

2 Basic arguments

We start with a simple but important averaging argument of Katona, Nemetz and
Simonovits [101]. Suppose G is an r-graph on n vertices with �

�

n
r

�

edges. We say that
G has density d(G) = �, as this is the fraction of all possible r-sets that are edges.
Now �x any r � m < n and consider restricting G to subsets of its vertex set of size
m. It is easy to check that the average density of these restrictions is also �. Taking

m = n� 1, for any �xed r-graph we see that
�

n
r

��1
ex(n; F ) �

�

n�1
r

��1
ex(n� 1; F ).

Indeed, if � =
�

n�1
r

��1
ex(n � 1; F ) then we cannot have an F -free r-graph on n

vertices with density more than �, as the averaging argument would give a restriction
to n � 1 vertices with at least the same density, contradicting the de�nition of
ex(n � 1; F ). Thus the ratios

�

n
r

��1
ex(n; F ) form a decreasing sequences of real

numbers in [0; 1]. It follows that they have a limit, which is called the Tur�an density ,
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and denoted �(F ).
Determining the Tur�an density is equivalent to obtaining an asymptotic result

ex(n; F ) � �(F )
�

n
r

�

, provided that we are in the ‘non-degenerate’ case when �(F ) >
0. An r-graph F is degenerate if and only if it is r-partite, meaning that the vertices
of F can be r-coloured so that every edge has exactly one vertex of each colour. One
direction of this implication is clear: if F is not r-partite then the complete r-partite
r-graph on n vertices gives a non-zero lower bound for the Tur�an density. It has
about (n=r)r edges, so we obtain the bound �(F ) � r!=rr. The other direction is
a result of Erd}os [50]: if F is r-partite then �(F ) = 0, and in fact ex(n; F ) < nr�c

for some c = c(F ) > 0. We note for future reference that this argument shows that
there are no Tur�an densities in the range (0; r!=rr). We will return to the question
of what values may be taken by Tur�an densities in Section 13.1.

A similar averaging argument establishes the important ‘supersaturation’ phe-
nomenon discovered by Erd}os and Simonovits [59]. Informally, this states that once
the density of an r-graph G exceeds the Tur�an density of F , we not only �nd a copy
of F , but in fact a constant fraction of all v(F )-sets from V (G) span a copy of F .

Lemma 2.1 (Supersaturation) For any r-graph F and a > 0 there are b; n0 > 0
so that if G is an r-graph on n > n0 vertices with e(G) > (�(F ) + a)

�

n
r

�

then G
contains at least b

�

n
v(F )

�

copies of F .

Proof Fix k so that ex(k; F ) � (�(F ) + a=2)
�

k
r

�

. There must be at least 1
2a
�

n
k

�

k-sets K � V (G) inducing an r-graph G[K] with e(G[K]) > (�(F ) + 1
2a)
�

k
r

�

.2

Otherwise, we would have
P

K e(G[K]) �
�

n
k

�

(�(F ) + 1
2a)
�

k
r

�

+ 1
2a
�

n
k

��

k
r

�

= (�(F ) +

a)
�

n
k

��

k
r

�

. But we also have
P

K e(G[K]) =
�

n�r
k�r
�

e(G) >
�

n�r
k�r
�

(�(F ) + a)
�

n
r

�

=

(�(F ) + a)
�

n
k

��

k
r

�

, so this is a contradiction. By choice of k, each of these k-sets

contains a copy of F , so the number of copies of F in G is at least 1
2a
�

n
k

�

=
�n�v(F )
k�v(F )

�

=

1
2a
�

n
v(F )

�

=
�

k
v(F )

�

, i.e. at least b = 1
2a
�

k
v(F )

��1
fraction of all v(F )-sets span a copy of

F . �

Supersaturation can be used to show that ‘blowing up’ does not change the
Tur�an density. The t-blowup F (t) of F is de�ned by replacing each vertex x of F
by t ‘copies’ x1; � � � ; xt and each edge x1 � � �xr of F by the corresponding complete
r-partite r-graph of copies, i.e. all xa1

1 � � �xarr with 1 � a1; � � � ; ar � t. Then we have
the following result.

Theorem 2.2 (Blowing up) �(F (t)) = �(F ).

First we point out a special case that will be used in the proof. When F = Kr
r

consists of a single edge we trivially have ex(n; F ) = 0 and so �(F ) = 0. Also
F (t) = Kr

r (t) is the complete r-partite r-graph with t vertices in each part. Then
the result of Erd}os mentioned above gives �(F (t)) = 0.

Proof By supersaturation, for any a > 0 there is b > 0 so that if n is large and
G is an r-graph on n vertices with e(G) > (�(F ) + a)

�

n
r

�

then G contains at least

2In fact, large deviation estimates imply that almost all k-sets K � V (G) have this property
when k is large.
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b
�

n
v(F )

�

copies of F . Consider an auxiliary v(F )-graph H on the same vertex set as
G where edges of H correspond to copies of F in G. For any T > 0, if n is large

enough we can �nd a copy K of K
v(F )
v(F ) (T ) in H. We colour each edge of K by one

of v(F )! colours, corresponding to which of the v(F )! possible orders the vertices of
F are mapped to the parts of K. Now a standard result of Ramsey theory implies

that for large enough T there is a monochromatic copy of K
v(F )
v(F ) (t), which gives a

copy of F (t) in G. �

One application of blowing up is to deduce the Erd}os-Stone theorem from Tur�an’s
theorem: if �(H) = t then H is contained in Kt(s) for some s, so �(H) = �(Kt) =
t�2
t�1 .

Another useful perspective on blowing up is a formulation in terms of homomor-
phisms. Given r-graphs F and G we say f : V (F )! V (G) is a homomorphism if it
preserves edges, i.e. f(e) 2 E(G) for all e 2 E(F ). Note that f need not be injec-
tive; if it is then F is a subgraph of G. We say that G is F -hom-free if there is no
homomorphism from F to G. Clearly, G is F -hom-free if and only if G(t) is F -free
for every t. We can make analogous de�nitions to the Tur�an number and density
for homomorphic copies of F : we let exhom(n; F ) be the maximum number of edges

in an F -hom-free r-graph on n vertices, and �hom(F ) = limn!1
�

n
r

��1
exhom(n; F ).

Then blowing up implies that �hom(F ) = �(F ).

We can in principle approximate �(F ) to any desired accuracy by an exhaustive
search of small examples. For suppose that m < n and we have found that H is
a largest F -hom-free r-graph on m vertices with �

�

m
r

�

edges. Then averaging gives
�(F ) � �. On the other hand, for any t, the blowup H(t) is an F -free r-graph on tm

vertices with tr � �
�

m
r

�

edges, so �(F ) � limt!1
�

tm
r

��1
tr�
�

m
r

�

= �
Qr�1
i=1 (1 � i=m).

Thus by examining all r-graphs on m vertices one can approximate �(F ) to within
an error of O(r2=m). Simple brute force search becomes infeasible even for quite
small values of m on very powerful computers. However, more sophisticated search
techniques can be much faster, and in some cases they give the best known bounds:
see Section 7.

3 Hypergraph Lagrangians

The theory in this section was developed independently by Sidorenko [173] and
Frankl and F�uredi [69], generalising work of Motzkin and Straus [135] and Zykov
[193]. Suppose G is an r-graph on [n] = f1; � � � ; ng. Recall that the t-blowup
G(t) of G is obtained by replacing each vertex by t copies. More generally, we
can have di�erent numbers of copies of each vertex: for any vector t = (t1; � � � ; tn)
we let G(t) be obtained by replacing vertex i with ti copies, where as before, each
edge is replaced by the corresponding complete r-partite r-graph of copies. Then
e(G(t)) = pG(t) :=

P

e2E(G)

Q

i2e ti. Note that pG(t) is a polynomial where for each
edge e of G we have the monomial

Q

i2e ti in variables corresponding to the vertices
of e.

Now suppose that F is an r-graph and G is F -hom-free. We will derive an
expression for the best lower bound on �(F ) that can be obtained from blowups of G.
Note that G(t) is an F -free r-graph on jtj :=

Pn
i=1 ti vertices with density d(G(t)) =
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�jtj
r

��1
pG(t1; � � � ; tn). Then �(F ) � limm!1 d(G(tm)) = r!pG(t1=jtj; � � � ; tn=jtj).

Thus we want to maximise pG(x) over the set S of all x = (x1; � � � ; xn) with xi � 0
for 1 � i � n and jxj = 1. (Sometimes S is called the standard simplex .) We
denote this maximum by �(G) = maxx2S pG(x): it is known as the Lagrangian
of G. Note that the maximum is achieved by some x 2 S, as S is compact and
pG(x) is continuous. Also, x can be approximated to arbitrary precision by vectors
(t1=jtj; � � � ; tn=jtj) with integral ti. We deduce that �(F ) � b(G) := r!�(G), where
we refer to b(G) as the blowup density of G.3 We have the following approximate
bound for the blowup density by the usual density: b(G) � r!pG(1=n; � � � ; 1=n) =
r!n�re(G) = d(G) � O(1=n). Since �(F ) is the limit supremum of d(G) over F -
hom-free G, we deduce that �(F ) is also the supremum of b(G) over F -hom-free
G.

We say that G is dense if every proper subgraph G0 satis�es b(G0) < b(G). This
is equivalent to saying that the maximum of pG(x) over x 2 S is only achieved by
vectors x with xi > 0 for 1 � i � n, i.e. lying in the interior of S. Then �(F ) is
clearly also the supremum of b(G) over F -hom-free dense G. We say that G covers
pairs if for every pair of vertices i; j in G there is an edge of G containing both i
and j. We claim that if G is dense then G covers pairs. This can be seen from
the following simple variational argument. Suppose on the contrary that there is
no edge containing both i and j for some pair i; j. Then if we consider pG(x) with
any �xed values for the other variables xk, k 6= i; j we obtain some linear function
axi + bxj + c of xi and xj . However, a linear function cannot have an internal strict
maximum, so the maximum value of pG(x) can be achieved with one of xi or xj
equal to 0. This contradicts the assumption that G is dense, so we deduce that G
covers pairs.

We can now derive several results from the theory above. First we recover the
results for ordinary graphs (r = 2). Note that only complete graphs cover pairs, so
only complete graphs can be dense. We have b(Kt) = 1 � 1=t, so complete graphs
are dense. Suppose that G is a Kt-free graph on n vertices. Then b(G) = b(G0)
for some dense subgraph G0, which must be Ks for some s < t. We deduce that
2e(G)=n2 = 2pG(1=n; � � � ; 1=n) � b(G) = b(G0) = 1� 1=s � t�2

t�1 . This gives Tur�an’s
theorem in the case when n is divisible by t� 1. (This argument is due to Motzkin
and Strauss [135].) Also, Kt is F -hom-free if and only if �(F ) > t. Since �(F ) is
the supremum of b(G) for F -hom-free dense G we deduce the Erd}os-Stone theorem.

Next we give some hypergraph results. Let Hr
t be the r-graph obtained from

the complete graph Kt by extending each edge with a set of r � 2 new vertices.
More precisely, Hr

t has vertices xi for 1 � i � t and ykij for 1 � i < j � t and

1 � k � r � 2 and edges xixjy
1
ij � � � y

r�2
ij for 1 � i < j � t. We will refer to Hr

t

as an extended complete graph. (Sometimes ‘expanded’ is used, but we will use this
terminology in a di�erent context later.) Natural examples of Hr

t+1-free r-graphs
are the blowups Kr

t (s) of the complete r-graph on t vertices. To see that these are
Hr
t+1-free note that Kr

t is Hr
t+1-hom-free, as any map from Hr

t+1 to Kr
t will map

some pair xi, xj to the same vertex, so cannot be a homomorphism. On the other

3Given the simple relationship between b(G) and �(G) it is arguably unnecessary to give them
both names. However, the name Lagrangian is widely used, so should be mentioned here, whereas
blowup density is more descriptive and often notationally more convenient.
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hand, if G covers pairs and has at least t+ 1 vertices then it cannot be Hr
t+1-hom-

free: to de�ne a homomorphism f : V (Hr
t+1)! V (G) we arbitrarily choose distinct

vertices as f(x1); � � � ; f(xt+1), then for each 1 � i < j � t + 1 we �x an edge eij
containing f(xi)f(xj) and map ykij , 1 � k � r � 2 to eij n ff(xi); f(xj)g. It follows

that �(Hr
t+1) = b(Kr

t ) = r!t�r
�

t
r

�

=
Qr�1
i=1 (1� i=t).

The previous result is due to Mubayi [138], who also gave an exact result for
the following family of r-graphs including Hr

t . Let Hrt be the set of r-graphs F that
have at most

�

t
2

�

edges, and have some set T of size t such that every pair of vertices
in T is contained in some edge. We extend our earlier de�nitions to a family F of
r-graphs in the obvious way: we say G is F-free if it does not contain any F in F ,
and then we can de�ne ex(n;F) and �(F) as before. Mubayi [138] showed that the
unique largest Hrt+1-free r-graph on n vertices is the balanced blowup of Kr

t . This
was subsequently re�ned by Pikhurko [155], who showed that for large n, the unique
largest Hr

t+1-free r-graph on n vertices is the balanced blowup of Kr
t .

More generally, suppose F is any r-graph that covers pairs. For any t � v(F ) we
de�ne a hypergraph HF

t as follows. We label the vertices of F as v1; � � � ; vv(F ). We
add new vertices vv(F )+1; � � � ; vt. Then for each pair of vertices vi; vj not both in F

we add another r � 2 new vertices ukij , 1 � k � r � 2 and the edge vivju
1
ij : : : u

r�2
ij .

Thus every pair of vertices in F is contained in an edge of HF
t (although HF

t does
not cover pairs because of the new vertices ukij). As an example, if we take F to

be the r-graph with no vertices then HF
t = Hr

t as de�ned above. The following
theorem generalises Mubayi’s density result.

Theorem 3.1 If F is an r-graph that covers pairs and t � v(F ) satis�es �(F ) �
b(Kr

t ) =
Qr�1
i=1 (1� i=t) then �(HF

t+1) = b(Kr
t ).

Proof The same argument used for Hr
t+1 shows that Kr

t is HF
t+1-hom-free, so

�(HF
t+1) � b(Kr

t ). For the converse, it su�ces to show that any HF
t+1-hom-free

dense G satis�es b(G) � b(Kr
t ). This holds by monotonicity if G has at most t

vertices, so we can assume G has at least t + 1 vertices. Now we claim that G is
F -hom-free. To see this, note that since F covers pairs, any homomorphism f from
F to G is injective, i.e. maps F to a copy of F in G. Then f can be extended
to a homomorphism from HF

t+1 to G, by the same argument used for Hr
t+1. This

contradicts our choice of G, so G is F -hom-free. Then b(G) � �(F ) � b(Kr
t ). �

The argument of the above theorem is due to Sidorenko [174] where it is given in
the special case when F is the 3-graph with 3 edges on 4 vertices and t = 4. We will
see later (Section 6) that �(F ) � 1=3. Since b(K3

4 ) = 3=8 > 1=3 we deduce that in
this case �(HF

4 ) = 3=8. Another simple application is to the case when F consists of
a single edge. Then �(F ) = 0, so �(HF

t+1) = b(Kr
t ) for all t � r. The corresponding

exact result for this con�guration when n is large is given by Mubayi and Pikhurko
[141]; we will call it the generalised fan, as they call the case t = r a fan. As it has
not been explicitly pointed out in the earlier literature, we remark that for every
r-graph F that covers pairs, the theorem above gives an in�nite family of r-graphs
for which we can determine the Tur�an density.

Sidorenko [174] also applied his method to give the asymptotic result for a con-
struction based on trees that satisfy the Erd}os-S�os conjecture. This conjecture (see
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[51]) states that if T is a tree on k vertices and G is a graph on n vertices with
more than (k� 2)n=2 edges then G contains T . Although this conjecture is open in
general, it is known to hold for many families of trees (e.g. Sidorenko proves it in this
case when some vertex is adjacent to at least (k�2)=2 leaves, and a proof for large k
has been claimed by Ajtai, Koml�os, Simonovits and Szemer�edi). Suppose that T is
a tree satisfying the Erd}os-S�os conjecture. Let F be the r-graph obtained from T by
adding a set S of r� 2 new vertices to every edge of T (note that it is the same set
for each edge). Let F 0 be the r-graph obtained from F by adding an edge for each
uncovered pair consisting of that pair and r � 2 new vertices (i.e. F 0 = HF

v(F )). We

call F 0 an extended tree. The result is �(F 0) = b(Kr
k+r�3), provided that k � Mr,

where Mr is a small constant that can be explicitly computed. For example M3 = 2,
so when r = 3 we have �(F 0) = b(Kr

k) for all k � 2.

We conclude this section with an application of general optimisation techniques
to Tur�an problems given by Bul�o and Pelillo [31]. Suppose that G is a k-graph and
consider minimising the polynomial h(x) = pG(x) + a

P

i x
k
i over x in S, where G is

the complementary k-graph whose edges are the non-edges of G. The intuition for
this function is that the �rst term is minimised when x is supported on a clique of G,
whereas the second term is minimised when x = (1=n; � � � ; 1=n), so in combination
one might expect a maximum clique to be optimal. It is shown in [31] that this
is the case when 0 < a < 1

k(k�1) . One can immediately deduce a bound on the

Tur�an number of Kk
t+1. Indeed, the minimum of h(x) is achieved by putting weight

1=t on the vertices of a Kk
t , giving value at1�k. On the other hand, substituting

x = (1=n; � � � ; 1=n) gives an upper bound of jGjn�k + an1�k. This gives jGjn�k +
an1�k � at1�k, so ex(n;Kk

t+1) �
�

n
k

�

� at(n=t)k + an for any 0 < a < 1
k(k�1) . We

will see later that this is not as good as bounds obtained by other methods, but the
technique is interesting and perhaps more widely applicable.

4 Link graphs and multigraphs

This section explores the following constructive strategy that can be employed
for certain Tur�an problems. Given an r-graph G and a vertex x of G, the link (or
neighbourhood) G(x) is the (r�1)-graph consisting of all S � V (G) with jSj = r�1
and S [fxg 2 E(G). Suppose we are considering the Tur�an problem for an r-graph
F of the following special form: there is some X � V (F ) such that every edge e of F
is either contained in X or has exactly one point in X. Then the strategy for �nding
F is to �rst �nd a copy of the subgraph F [X], then extend it to F by consideration
of the links of the vertices in X.

Our �rst example will be to the following question of Katona. Say that an r-
graph G is cancellative if whenever A;B;C are edges of G with A [ C = B [ C we
have A = B. For example, an (ordinary) graph G is cancellative if and only if it
is triangle free. Katona asked for the maximum size of a cancellative 3-graph of n
vertices. This was answered as follows by Bollob�as [20].

Theorem 4.1 The unique largest cancellative 3-graph on n vertices is 3-partite.

It is not hard to see that a 3-partite 3-graph is cancellative. The largest 3-
partite 3-graph on n vertices is clearly complete and balanced (meaning as before
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that the 3 parts are as equal as possible). We denote this 3-graph by S3(n) and
write s3(n) = e(S3(n)). We will sketch a short proof given by Keevash and Mubayi
[106] using link graphs. In this application of the method, the subgraph F [X]
described above will just be a single edge e = xyz. The links G(x), G(y) and
G(z) are pairwise edge-disjoint graphs, for if, say, we had edges xab and yab then
xab [ xyz = yab [ xyz contradicts G being cancellative. We consider their union U
restricted to V (G) n fx; y; zg as a 3-edge-coloured graph. Any triangle in U must
be ‘rainbow’ (use all 3 colours), as if, say, ab and ac both have colour x and bc has
colour y then xab [ bcy = xac [ bcy contradicts G being cancellative.

Proof Suppose G is a cancellative 3-graph on n vertices. For simplicity we just
show the inequality e(G) � s3(n), though the uniqueness statement also follows
easily. We use induction on n. The result is obvious for n � 4 so suppose n � 5. If
any triple of vertices is incident to at most s3(n)�s3(n�3) edges then we can delete
it and apply induction. Thus we can assume that every triple is incident to more
than s3(n)�s3(n�3) = t3(n)�n+1 edges, where t3(n) denotes the number of edges
in the balanced complete 3-partite ‘Tur�an graph’ on n vertices. Now consider an
edge e = xyz. Note that there are at most n� 3 edges that intersect e in 2 vertices,
otherwise there would be some w that forms an edge with 2 pairs of e, but G is
cancellative. Since e is incident to at least t3(n)�n+ 2 edges (including itself), the
number of edges in U is at least t3(n)�n+2�(n�3)�1 = t3(n�3)+1. By Tur�an’s
theorem U contains a K4; let its vertex set be abcd. This K4 is 3-edge-coloured in
such a way that every triangle is rainbow, which is only possible when it is properly
3-edge-coloured, i.e. each colour is a matching of two edges. Finally we consider the
7-set S = xyzabcd. The colouring of abcd implies that every pair of vertices in S is
contained in an edge of G, so have disjoint links. But by averaging, the total size of
the links of vertices in S is at least 7

3(t3(n)� n+ 2) >
�

n
2

�

, contradiction. �

A similar argument was applied in [106] to give a new proof of a theorem of
Frankl and F�uredi [66]. Note that a 3-graph is cancellative if and only if it does not
contain either of the following 3-graphs: F4 = f123; 124; 134g, F5 = f123; 124; 345g.
Thus we can write Bollob�as’ theorem as ex(n; fF4; F5g) = s3(n). This was improved
in [106] to the ‘pure’ Tur�an result ex(n; F5) = s3(n) for large n. (This was the
�rst hypergraph Tur�an theorem.) The original proof required n � 3000; this was
improved to n � 33 in [106], where the extremal example S3(n) was also charac-
terised. Very recently, Goldwasser [86] has determined ex(n; F5) and characterised
the extremal examples for all n: S3(n) is the unique extremal example for n > 10,
the ‘star’ (all triples containing some �xed vertex) is the unique extremal example
for n < 10, and both S3(n) and the star are extremal for n = 10. A new proof
of the asymptotic form of the Frankl-F�uredi theorem had previously been given by
Mubayi and R�odl [143]. That paper applied the link method to obtain several other
bounds on Tur�an densities. They also gave 5 speci�c 3-graphs each of which has
Tur�an density 3=4. One of these, denoted F (3; 3), is obtained by taking an edge
abc, three additional vertices d, e, f , and all edges with one vertex from abc and two
from def .

We remark that induction arguments as in the above proof are often very useful
for Tur�an problems. Above it was convenient to consider deleting triples, but usually
one considers deleting a single vertex. Then in order to prove the statement e(G) �
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f(n) for an F -free r-graph G on n vertices one can assume that the minimum
degree of a vertex in G is more than f(n)� f(n� 1). (This argument gives one of
the simplest proofs of Tur�an’s theorem.) A caveat is that this induction argument
depends on being able to prove a base case, which is not always convenient, as the
desired bound may not even be true for small n. Then the following proposition is
a more convenient method for obtaining a minimum degree condition. (The proof
is to repeatedly delete vertices with degree less than the stated bound: a simple
calculation shows that this process terminates and that the �nal graph has many
vertices.)

Proposition 4.2 For any �; � > 0 and n0 � r � 2 there is n1 so that any r-graph
on n � n1 vertices with at least (� + 2�)

�

n
r

�

edges contains an r-graph on m � n0

vertices with minimum degree at least (� + �)
�

m�1
r�1

�

.

Our next example using links is by de Caen and F�uredi [42], who were the
originators of the method. They gave a surprisingly short proof of a conjecture of
S�os [183] on the Tur�an number of the Fano plane. The Fano plane is an ubiquitous
object in combinatorics. It is the unique 3-graph on 7 vertices in which every pair
of vertices is contained in exactly one edge. It can be constructed by identifying the
vertices with the non-zero vectors of length 3 over F2 (the �eld with two elements),
and the edges with triples fx; y; zg with x+ y = z. It is easy to check that the Fano
plane is not bipartite, in that for any partition of its vertex set into two parts, at
least one of the parts must contain an edge. Thus a natural construction of a Fano-
free 3-graph on n vertices is to take the balanced complete bipartite 3-graph: the
vertex set has two parts of size bn=2c and dn=2e, and the edges are all triples that
intersect both parts. S�os conjectured that this construction gives the exact value
for the Tur�an number of the Fano plane. The following result from [42] veri�es this
conjecture asymptotically (see Section 5 for the exact result).

Theorem 4.3 ex(n;Fano) � 3
4

�

n
3

�

.

As in the previous example, the construction starts with a single edge e = xyz.
We combine the links to create a 3-edge-coloured link multigraph L = G(x)+G(y)+
G(z), where + denotes multiset union; note that unlike the previous example the
links need not be edge-disjoint. To �nd a Fano plane we need to �nd the same
object which appeared in the previous proof: a properly 3-edge-coloured K4. (Since
an edge may have more than one colour, this means we can select a colour for each
edge to obtain the required colouring.) To prove an asymptotic result we can assume
that G has at least (3=4 + 2�)

�

n
3

�

edges for some small � > 0, and then that G has
minimum degree at least (3=4 + �)

�

n
2

�

by Proposition 4.2. However, the argument
now seems to get stuck at the point of using this lower bound on the links to �nd a
properly 3-edge-coloured K4.

The key idea is to instead start with a copy of K3
4 , with the intention of using

one of its edges as the edge e above. Since G has edge density more than 3=4,
averaging shows that it has a 4-set wxyz of density more than 3=4, i.e. spanning K3

4

(we will see better bounds later on the Tur�an density of K3
4 ). Now we consider the

4-edge-coloured link multigraph L, obtained by restricting G(w)+G(x)+G(y)+G(z)
to V (G) n fw; x; y; zg. It su�ces to �nd a properly 3-edge-coloured K4. This can
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be achieved by temporarily forgetting the colours of the edges and just counting
multiplicities. Thus we consider L as a multigraph with edge multiplicities at most
4 and at least (3+4�)

�

n
2

�

edges. Such a multigraph must have a 4-set abcd that spans
at least 21 edges in L: this is a special case of a theorem of F�uredi and K�undgen
[80]. Finally we put the colours back. We may consider the bipartite graph B in
which one part B1 is the 4-set wyxz, the other part B2 is the 3 matchings of size 2
formed by abcd, and edges in B correspond to edges of G in the obvious way, e.g. we
join w to fab; cdg if wab and wcd are edges. Since L[abcd] is at most 3 edges from
being complete, the same is true of B. This implies (e.g. using Hall’s theorem) that
B has a matching that covers B2. This gives the proper 3-edge-colouring of abcd
required to prove the theorem.

5 Stability

Many extremal problems have the property that there is a unique extremal ex-
ample, and moreover any construction of close to maximum size is structurally close
to this extremal example. For example, in the Tur�an problem for the complete
graph Kt, Tur�an’s theorem determines ex(n;Kt) and describes the unique extremal
example as the balanced complete (t � 1)-partite graph on n vertices. More struc-
tural information is given by the Erd}os-Simonovits Stability Theorem [182], which
may be informally stated as saying that any Kt-free graph G on n vertices with
e(G) � ex(n;Kt) is structurally close to the extremal example. More precisely, we
have the following statement.

Theorem 5.1 For any � > 0 there is � > 0 such that if G is a Kt-free graph
with at least (1 � �)ex(n;Kt) edges then there is a partition of the vertices of G as
V1 [ � � � [ Vt�1 with

P

i e(Vi) < �n2.

As well as being an interesting property of extremal problems, this phenomenon
gives rise to a surprisingly useful tool for proving exact results. This stability method
has two stages. First one proves a stability theorem, that any construction of close to
maximum size is structurally close to the conjectured extremal example. Armed with
this, we can consider any supposed better construction as being obtained from the
extremal example by introducing a small number of imperfections into the structure.
The second stage is to analyse any possible imperfection and show that it must lead
to a suboptimal con�guration, so in fact the conjectured extremal example must be
optimal.

This approach can be traced back to work of Erd}os and Simonovits in the 60’s
in extremal graph theory (see [182]). More recently it was applied independently
by Keevash and Sudakov [110] and by F�uredi and Simonovits [84] to prove the
conjecture of S�os mentioned above in an exact form: for large n the unique largest
Fano-free 3-graph on n vertices is the balanced complete bipartite 3-graph. Since
then it has been applied to many problems in hypergraph Tur�an theory and more
broadly in combinatorics as whole. We will discuss the other Tur�an applications
later; we refer the reader to [107] for an application in extremal set theory and some
further references using the method.

To understand how the method works in more detail, it is helpful to consider
the ‘baby’ case of the Tur�an problem for the 5-cycle C5. This is not hard to
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handle by other means, but is su�ciently simple to illustrate the method with-
out too many technicalities. Since �(C5) = 3, the Erd}os-Stone theorem gives
ex(n;C5) � ex(n;K3) = bn2=4c. In fact ex(n;C5) = bn2=4c for n � 5. We will
sketch a proof of this equality for large n. This is a special case of a theorem of
Simonovits, that if F is a graph with �(F ) = t and �(F n e) < t for some edge e of
F then ex(n; F ) = ex(n;Kt) for large n. (We say that such graphs F are critical :
examples are cliques and odd cycles.) The �rst step is the following stability result
(we state it informally, the precise statement is similar to that in Theorem 5.1).

Lemma 5.2 Suppose G is a C5-free graph on n vertices with e(G) � n2=4. Then
G is approximately complete bipartite.

Proof (Sketch.) First we claim that we can assume G has minimum degree �(G) �
n=2. This is a similar statement to that in Proposition 4.2, although we cannot
apply that result, as we cannot remove too many vertices if we want to obtain the
structure of G. The solution is to use the same vertex deletion argument and use
the bound from the Erd}os-Stone theorem to control the number of vertices deleted.
The calculation is as follows, for some small � > 0. If e(G) > (1 � �)n2=4 then
we can delete at most �1=2n vertices of proportional degree less than 1=2 � �1=2,
otherwise we arrive at a C5-free graph G0 on n0 = (1� �1=2)n vertices with e(G0) >

e(G)�
Pn

i=(1��1/2)n+1(1=2��1=2)i > (1��)n2=4��1=2n2=2+�1=2
�

�

n+1
2

�

�
�

n0+1
2

�

�

=

n02=4� �n2=2 + �(1� �1=2=2)n2 �O(n) > (1 + �)n02=4, contradiction.

Thus we can assume that �(G) � n=2. Next we choose a 4-cycle abcd in G. These
are plentiful, as G has edge density about 1=2, whereas the 4-cycle is bipartite, so has
zero Tur�an density. Now we note that the neighbourhoods N(a) and N(b) cannot
share a vertex x other than c or d, otherwise axbcd is a 5-cycle. Furthermore each
of these neighbourhoods does not contain a path of length 3, e.g. if wxyz is a path
of length 3 in N(a) then awxyz is a 5-cycle. Thus each is very sparse, e.g. N(a)
cannot have average degree at least 6, as it is not hard to show that it would then
have a subgraph of minimum degree at least 3, and so a path of length 3. Thus we
have found two disjoint sets of size about n=2 containing only O(n) edges. �

The second step is to re�ne the approximate structure and deduce an exact
result.

Theorem 5.3 ex(n;C5) = bn2=4c for large n.

Proof (Sketch.) Suppose G is a maximum size C5-free graph on n vertices. We
claim that we can assume G has minimum degree �(G) � bn=2c. For suppose we
have proved the result under this assumption for all n � n0. Then suppose that
n is much larger then n0 and repeatedly delete vertices while the minimum degree
condition fails. A similar calculation to that in the lemma shows that this process
terminates with a C5-free graph G0 on n0 � n0 vertices with �(G0) � bn0=2c, and
moreover if any vertices were deleted we have e(G0) > bn02=4c, contradiction. Thus
we can assume �(G) � bn=2c.

By the lemma G is approximately complete bipartite. Consider a bipartition
V (G) = A[B that is optimal, in that e(A)+e(B) is minimised. Then e(A)+e(B) <
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�n2, for some small � > 0. Also, A and B each have size about n=2, say (1=2��1=2)n,
otherwise e(G) < jAjjBj+ �n2 < n2=4, contradicting G being maximum size. Write
dA(x) = jN(x) \ Aj and dB(x) = jN(x) \ Bj for any vertex x. Note that for any
a 2 A we have dA(a) � dB(a), otherwise we could improve the partition by moving
a to B. Similarly, dB(b) � dA(b) for any b 2 B.

Next we claim that the ‘bad degrees’ must be small, e.g. that dA(a) < cn for
all a 2 A where c = 2�1=2. For suppose this fails for some a. Then N(a) \ A and
N(a) \B both have size at least cn. Moreover they span a bipartite graph with no
path of length 3, so only O(n) edges. This gives (cn)2�O(n) > e(A)+e(B) ‘missing
edges’ between A and B, so e(G) < jAjjBj � n2=4, contradiction.

Finally we claim that there are no ‘bad edges’, i.e. that (A;B) gives a bipartition
of G. For suppose that aa0 is an edge in A. Then jNB(a) \NB(a0)j > d(a) � cn +
d(a0) � cn � jBj > (1=2 � 5�1=2)n. But there is no path ba00b0 with b; b0 2 B0 =
NB(a)\NB(a0) and a00 2 A0 = A n fa; a0g, so A0 and B0 span a bipartite graph with
only O(n) edges - a very emphatic contradiction! �

The above proof illustrates a template that is followed by many (but not all)
applications of the stability method. In outline, the steps are: (i) G has high
minimum degree, (ii) G has approximately correct structure, so consider an optimal
partition, (iii) the bad degrees are small, (iv) there are no bad edges. For example,
the deduction in [110] of the exact result for the Fano plane from the stability result
follows this pattern. It is instructive to note that as well as the link multigraph
method of the previous section, considerable use is made of an additional property
of the Fano plane: there is a vertex whose deletion leaves a 3-partite 3-graph (any
vertex has this property). It is an intriguing problem to understand what properties
of an r-graph F make it amenable to either of the two steps of the stability method,
i.e. whether a stability result holds, and whether it can be used to deduce an exact
result.

A variant form of the stability approach is to prove a statement analogous to the
following theorem of Andr�asfai, Erd}os and S�os [7]: any triangle-free graph G on n
vertices with minimum degree �(G) > 2n=5 is bipartite. The approach taken in [84]
to the exact result for the Fano plane is to prove the following statement: if � > 0,
n is large, and G is a Fano-free 3-graph on n vertices with �(G) > (3=4� �)

�

n
2

�

then
G is bipartite. One might think that this is a stronger type of statement than the
stability result, but in fact it is equivalent in di�culty: it follows by exactly the
same proof as that of the re�nement argument sketched above (the second stage of
the stability method). It would be interesting, and probably rather more di�cult,
to determine the smallest minimum degree for which this statement holds. For
example, in the Andr�asfai-Erd}os-S�os theorem the bound 2n=5 is tight, as shown by
the blowup of a 5-cycle; what is the analogous ‘second-best’ construction for the
Fano plane? (Or indeed, for other hypergraph Tur�an results...?)

We conclude this section by mentioning a nice application of the stability method
to showing the ‘non-principality’ of Tur�an densities. If F is a set of graphs then it
is clear that �(F) = minF2F �(F ); one can say that the Tur�an density for a set of
graphs is ‘principal’, in that it is determined by just one of its elements. However,
Balogh [10] showed that this is not the case for hypergraphs, con�rming a conjecture
of Mubayi and R�odl [143]. Mubayi and Pikhurko [142] showed that even a set of two
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hypergraphs may not be principal. Let F denote the Fano plane and let F 0 be the
‘cone’ of Kt, i.e. the 3-graph on f0; � � � ; tg with edges 0ij for 1 � i < j � t. Note that
F 0 is not contained in the blowup of K3

t , so �(F 0)! 1 as t!1. Thus we can choose
t so that minf�(F ); �(F 0)g = �(F ) = 3=4. Now we claim that �(fF; F 0g) < 3=4. To
see this, consider a large Fano-free 3-graph G with edge density 3=4� o(1). Then G
is approximately a complete bipartite 3-graph. But the complete bipartite 3-graph
contains many copies of F 0, and these cannot all be destroyed by the approximation,
so G contains a copy of F 0, as required.

6 Counting

The arguments in this section deduce bounds on the edge density of an F -free r-
graph G from counts of various small subgraphs. The averaging argument discussed
in Section 2 gives the essence of this idea, but this uses F -freeness only to say that r-
graphs containing F have a count of zero in G. However, there are various methods
that can extract information about other counts. Arguments using the Cauchy-
Schwartz inequality or non-negativity of squares play an important role here. We
will illustrate this in the case when F is the (unique) 3-graph on 4 vertices with 3
edges (we called this F4 in Section 4). First consider what can be obtained from a
basic averaging argument. If G is an F -free 3-graph then every 4-set of G has at
most 2 edges, i.e. density at most 1=2. It follows that the density of G is at most
1=2.

For an improvement, consider the sum S =
P

xy

�

d(x;y)
2

�

, where the sum is over
unordered pairs of vertices xy and d(x; y) denotes the number of edges containing
xy. Note that S counts the number of unordered pairs ab such that axy and bxy are
edges. Since we are assuming that every 4-set has at most 2 edges, this is exactly
the number of 4-sets abxy with 2 edges. On the other hand, the Cauchy-Schwartz
inequality (more precisely, convexity of the function f(t) =

�

t
2

�

) gives S �
�

n
2

��

d
2

�

,
where d is the average value of d(x; y). We have

�

n
2

�

d =
P

xy d(x; y) = 3e(G) =

3�
�

n
3

�

, where � denotes the edge density of G, so S � 1
4�

2n4 +O(n3). For an upper
bound on S, we can double-count pairs (T; e) where T is a 4-set with 2 edges and
e is an edge of T . This gives 2S � (n� 3)e(G), so S � 1

12�n
4 + O(n3). Combining

the bounds on S we obtain � � 1=3 +O(1=n) as a bound on the density of G.

It is remarkable that the Tur�an problem is still open for such a seemingly sim-
ple 3-graph { we do not even know its Tur�an density! For many years the above
argument (due to de Caen [38]) gave the best known upper bound. More recently
it has been improved in a series of papers [134, 136, 186, 144, 158]; the current
best bound is 0:2871 due to Baber and Talbot [9]. The best known lower bound is
�(F ) � 2=7 = 0:2857 � � � , due to Frankl and F�uredi [67]. It is worth noting their
unusual iterative construction. For most Tur�an problems, the known or conjectured
optimal construction is obtained by dividing the vertex set into a �xed number of
parts and de�ning edges by consideration only of intersection sizes with the parts.
However, this construction is obtained by �rst blowing up a particular 3-graph on
6 vertices, then iteratively substituting copies of the construction inside each of the
6 parts. The 3-graph in question has the 10 edges 123, 234, 345, 451, 512, 136, 246,
356, 416, 526. This has blowup density 3!10

63 = 5
18 , so the overall density is given by

the geometric series 5
18

P

i�0(1=36)i = 2
7 . If this is indeed the optimal construction,
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as conjectured in [136], then its complicated nature gives some indication as to why
it has so far eluded proof. It is also an intriguing example from the point of view of
the �niteness questions discussed in [123, 156] (see Section 7).

Our next example of a counting argument, due to Sidorenko [175], gives a bound
on the Tur�an density that depends only on the number of edges. If F is an r-graph
with f edges then the bound is �(F ) � f�2

f�1 . Before proving this we set up some
notation. Suppose that G is an r-graph on n vertices. Label the vertices of F as
fv1; � � � ; vtg for some t and the edges as fe1; � � � ; efg. Let x = (x1; � � � ; xt) denote
an arbitrary t-set of vertices in G. We think of the map �x : vi 7! xi as a potential
embedding of F in G. Write ei(x) for the indicator function that is 1 if �x(ei) is an

edge of G or 0 otherwise. Then F (x) =
Qf
i=1 ei(x) is 1 if �x is a homomorphism

from F to G or 0 otherwise. Now suppose that G is F -free. Then F (x) can only
be non-zero if xi = xj for some i 6= j. If we choose x randomly this has probability
O(1=n), so EF (x) = O(1=n).

Now comes a trick that can only be described as pulling a rabbit out of a
hat. We claim that the following inequality holds pointwise: F (x) � e1(x) +
Pf

i=2 e1(x)(ei(x)� 1). To see this, note that since F (x) and all the ei(x) are f0; 1g-
valued, the only case where the inequality is not obvious is when F (x) = 0 and
e1(x) = 1. But then F (x) = 0 implies that ei(x) = 0 for some i, and then the term
e1(x)(ei(x)�1) gives a �1 to cancel e1(x), so the inequality holds. Taking expected

values gives EF (x) �
Pf

i=2 Ee1(x)ei(x)� (f � 2)Ee1(x). Now Ee1(x) = �+O(1=n),
where � is the edge density of G. Also, the Cauchy-Schwartz inequality implies
that Ee1(x)ei(x) � �2 + O(1=n) for each i (this is similar to the lower bound on
S in the previous example). We deduce that (f � 1)�2 � (f � 2)� � O(1=n), i.e.
� � f�2

f�1 +O(1=n), as required.

It is an interesting question to determine the extent to which this bound can
be improved. When f = 3 no improvement is possible for general r, as the bound
of 1=2 is achieved by the triangle for r = 2, or the ‘expanded triangle’ for even r
(see [111]). For r = f = 3 there are only two non-degenerate cases to consider,
namely the 3-graphs F4 and F5 discussed in Section 4. The Tur�an number of F5

is given by the complete 3-partite 3-graph, which has density 2=9. Then from the
discussion of F4 above we see that when r = f = 3 the bound of 1=2 is quite far
from optimal. We do not know if 1=2 can be achieved when f = 3 and r � 5 is
odd. A re�nement of Sidorenko’s argument given in [102] shows that the bound
�(F ) � f�2

f�1 can be improved if r is �xed and f is large. One might think that the
worst case is when F is a complete r-graph, which would suggest an improvement to
�(F ) � 1 � 
(f�(r�1)=r) (see [102] for further discussion). Another general bound
obtained by the Local Lemma will be discussed later in the section on probabilistic
methods.

The above two examples show that the ‘right’ counting argument can be sur-
prisingly e�ective, but they do not give much indication as to how one can �nd this
argument. For a general Tur�an problem there are so many potential inequalities that
might be useful that one needs a systematic approach to understand their capabili-
ties. The most signi�cant steps in this direction have been taken by Razborov [158],
who has obtained many of the sharpest known bounds on Tur�an densities using his
theory of ag algebras [156]. We will describe this in Section 7, but �rst we note that
earlier steps in this direction appear in the work of de Caen [39] and Sidorenko [172].
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We briey describe the quadratic form method in [172], as it has some additional
features that are not exploited by other techniques. Suppose G is an r-graph on

[n]. Let y be the vector in R( n
r�1), where co-ordinates correspond to (r � 1)-sets of

vertices, and the entry for a given (r � 1)-set is its degree, i.e. the number of edges
containing it. Let u be the all-1 vector. Writing (�; �) for the standard inner product,
we have (u; u) =

�

n
r�1

�

, (y; u) = rjGj and (y; y) = rjGj+ p, where p is the number of

ordered pairs of edges that intersect in r�1 vertices. Let G = f[n]ne : e 2 E(G)g be
the complementary (n� r)-graph and de�ne y, u, p similarly. Note that the degree
of an (n� r�1)-set in G is equal to the number of edges of G in the complementary
(r+ 1)-set. Note also that p = p. Let Qi be the number of (r+ 1)-sets that contain
at least i edges. Thus y has Qi � Qi+1 co-ordinates equal to i. For any t � 1 we
have the inequality (y� (r+ 1)u; y� tu) �

Pt
i=0(r+ 1� i)(t� i)(Qi�Qi+1). Then

come some algebraic manipulations which we will just summarise: (i) use summation
by parts, (ii) substitute Q0 = (u; u) =

�

n
r+1

�

, (iii) rewrite in terms of y and u. The

resulting inequality is (y; y)+((1+t=r)(n�r)+1)(y; u)+
Pt

i=1(t+r+2�2i)Qi � 0.

Now we come to the crux of the method, which is an inequality for (y; u) for
general vectors y, u satisfying a quadratic inequality as above. The inequality is that
if (y; y) � 2a(y; u) + b(u; u) � 0 then (y; u) � (a �

p
a2 � b)(u; u). To see this add

�(y�su; y�su) � 0 to the �rst inequality, which gives 2(s�a)(y; u) � (s2�b)(u; u),

so (y; u) � b�s2

2(a�s)(u; u) for s � a; the optimal choice is s = a �
p
a2 � b (note that

the �rst inequality implies a2 � b � 0). For example, let us apply the inequality to
3-graphs in which every 4-set spans at least t edges, where t 2 f1; 2; 3g (it turns out
that we should choose the same t above). Then Qi =

�

n
4

�

for 0 � i � t. We apply the

general inequality with a = 1
2((1 + t=3)(n� 3) + 1) � 1

2(1 + t=3)n and b =
Pt

i=1(t+

5 � 2i)
�

n
4

��

n
2

��1 � 1
3 tn

2. Then s=n � (1 + t=3)=2 �
p

(1 + t=3)2=4� t=3 = t=3, so
jGj = 1

3(y; u) � tn
9

�

n
2

�

� t
3

�

n
3

�

. In particular we have re-proved the earlier example
(in complementary form). An interesting additional feature of this method is that
one can obtain a small improvement by exploiting integrality of the vectors y and
u. Instead of adding the inequality �(y � su; y � su) � 0 above, one can use
�(y � bscu; y� (bsc+ 1)u) � 0. This does not alter the asymptotic bound, but can
be used to improve Tur�an bounds for small n, which in turn can be used in other
asymptotic arguments.

7 Flag algebras

A systematic approach to counting arguments is provided by the theory of ag
algebras. This is abstract and di�cult to grasp in full generality, but for many
applications it can be boiled down to a form that is quite simple to describe. Our
discussion here will be mostly based on the nice exposition given in [9]. The starting
point is the following description of the averaging bound. Given r-graphs H and G
we write iH(G) for the ‘induced density’ of H in G. This is de�ned as the probability
that a random v(H)-set in V (G) induces a subgraph isomorphic to H; we think of
H as �xed and G as large. For example, if H is a single edge then iH(G) = d(G) is
the edge density of G. Fix some ‘ � r, and let G‘ denote the set of all r-graphs on ‘
vertices (up to isomorphism). Then we can write d(G) =

P

H2G` iH(G)d(H). Now
suppose F is an r-graph and let F‘ denote the set of all F -free r-graphs on ‘ vertices.
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If G is F -free then iH(G) = 0 for H 2 G‘ n F‘, so d(G) =
P

H2F` iH(G)d(H). In
particular we have the averaging bound d(G) � maxH2F` d(H), but this is generally
rather weak. The idea of the method is to generate further inequalities on the
densities iH(G) that improve this bound. If we have an inequality

P

H2F` cHiH(G) �
0 then we have d(G) �

P

H2F` iH(G)(d(H) + cH) � maxH2F`(d(H) + cH), which
may be an improvement if some coe�cients cH are negative.

These inequalities can be generated by arguments similar to that used on the
sum S =

P

xy

�

d(x;y)
2

�

in Section 6 when F is the 3-graph with 4 vertices and 3
edges. In this context, one should view that argument as generating an inequality
for a 4-vertex con�guration (two edges) from two 3-vertex con�gurations (edges)
that overlap in two points. We will use this as a running example to illustrate the
ag algebra de�nitions. In general, we will consider overlapping several pairs of r-
graphs along a common labelled subgraph. To formalise this, we de�ne a type � to
consist of an F -free r-graph on k vertices together with a bijective labelling function
� : [k]! V (�) for some k � 0 (if k < r then � has no edges, and if k = 0 it has no
vertices). Then we de�ne a �-ag to be an F -free r-graph H containing an induced
copy of �, labelled by �. In our example we take � = xy to be a 3-graph with 2
vertices and no edges, labelled as �(1) = x and �(2) = y. Then we take H = e� to
be a single edge xyz, with the same labelling �(1) = x and �(2) = y.

Next we de�ne induced densities for ags. Let � be the set of all injective maps
� : [k] ! V (G). For any �xed � 2 � we de�ne iH;�(G) as the probability that a
random v(H)-set S in V (G) containing the image of � induces a �-ag isomorphic
to H. Note that iH;�(G) can only be non-zero if �([k]) induces a copy of � that can
be identi�ed with � in such a way that � = �. If this holds, then iH;�(G) is the
probability that G[S] induces a copy of the underlying r-graph of H consistent with
the identi�cation of �([k]) with �. We can relate ag densities to normal densities
by averaging over � 2 �; we have E�iH;�(G) = p�(H)iH(G), where we also let H
denote the underlying r-graph of the �-ag H, and p�(H) is the probability that a
random injective map � : [k] ! V (H) gives a copy of the type �. In our example,
for any u; v 2 V (G) we consider the function � de�ned by �(1) = u and �(2) = v;
we denote this function by uv. Then ieσ ;uv(G) is the probability that a random

vertex w 2 V (G) n fu; vg forms an edge with uv, i.e. ieσ ;uv(G) = d(u;v)
n�2 . Then we

have Euvieσ ;uv(G) = 1
n(n�1)

P

u

P

v 6=u
d(u;v)
n�2 = 6e(G)

n(n�1)(n�2) = d(G) = ie(G); note that

p�(e) = 1.

Given two �-ags H and H 0 we have the approximation iH;�(G)iH0;�(G) =
iH;H0;�(G) + o(1), where we de�ne iH;H0;�(G) to be the probability that when we in-
dependently choose a random v(H)-set S and a random v(H 0)-set S0 in V (G) subject
to S \ S0 = �([k]) we have G[S] �= H and G[S0] �= H as �-ags. Here the o(1) term
tends to zero as v(G) ! 1: this expresses the fact that random embeddings of H
and H 0 are typically disjoint outside of �([k]). Note that we can compute iH;H0;�(G)
by choosing a random ‘-set L containing S [ S0 for some ‘ � v(H) + v(H 0) � k
and conditioning on the �-ag J induced by L. Writing F�‘ for the set of �-ags
on ‘ vertices we have iH;H0;�(G) =

P

J2Fσ`
iH;H0;�(J)iJ;�(G). Thus we can express

iH;H0;�(G) as a linear combination of ag densities iJ;�(G), where the coe�cients
iH;H0;�(J) are given by a �nite computation.

In our running example we consider H = H 0 = e�. Then ieσ ;eσ ;uv(G) is the
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probability that a random pair w;w0 of vertices in V (G) n fu; vg each form an edge

with uv, i.e. ieσ ;eσ ;uv(G) =
�

d(u;v)
2

��

n�2
2

��1
. We can also compute this by conditioning

on J = G[L] for a random 4-set L containing uv. Let J denote the �-ag on 4
vertices where 2 vertices are labelled x and y, and there are 2 edges, both containing
x and y. Then ieσ ;eσ ;uv(G) = iJ;uv(G); note that this uses our particular choice
of F , otherwise we would have additional terms corresponding to the 3-edge and

4-edge con�gurations. Averaging over uv we get 1
n(n�1)

P

u

P

v 6=u
�

d(u;v)
2

��

n�2
2

��1
=

p�(J)iJ(G) = 1
6 iJ(G), i.e. iJ(G) =

�

n
4

��1P

uv

�

d(u;v)
2

�

, similarly to the calculation of

S =
P

uv

�

d(u;v)
2

�

in Section 6.

Now we consider several �-ags F1; � � � ; Fm, assign them some real coe�cients
a1; � � � ; am and consider the inequality (

Pm
i=1 aiiFi;�(G))2 � 0. Expanding the

square and using the identity for overlapping ags we obtain
Pm

i;j=1 aiajiFi;Fj ;�(G) �
o(1). Then we convert this into an inequality for densities of subgraphs (rather than
ags) by averaging over � 2 �. Provided that we have chosen ‘ � v(Fi) + v(Fj)� k
we can compute the average E�iFi;Fj ;�(G) by choosing a random ‘-set L and condi-
tioning on the subgraph H 2 F‘ induced by L. Let �H be the set of all injective
maps � : [k] ! V (H). Then E�iFi;Fj ;�(G) =

P

H2F` bij(H)iH(G), where bij(H) =
E�2�H iFi;Fj ;�(H). In any application H and F1; � � � ; Fm are �xed small r-graphs, so
these coe�cients bij(H) can be easily computed. Finally we have an inequality of
the required form:

P

H2F` cHiH(G) � o(1), where cH =
Pm

i;j=1 aiajbij(H).

Continuing the previous example, let � = xy, let F0 be the �-ag on 3 vertices
with no edges, taken with coe�cient a0 = �1, and let F1 = e� be the �-ag on 3
vertices with one edge, taken with coe�cient a1 = 2. There are three 3-graphs in F4,
which we label H0, H1 and H2 according to the number of edges. The coe�cients
bij(Hk) may be computed as follows: b00(H0) = 1, b00(H1) = 1=2, b00(H2) = 1=6,
b01(H0) = 0, b01(H1) = 1=4, b01(H2) = 1=3, b11(H0) = 0, b11(H1) = 0, b11(H2) =
1=6. Then we obtain the coe�cients cH0 = 1, cH1 = �1=2, cH2 = �1=2, so the
inequality iH0(G)�iH1(G)=2�iH2(G)=2 � o(1). We also have the averaging identity
d(G) = iH1(G)=4 + iH2(G)=2. Adding the inequality o(1) � iH0(G)=3� iH1(G)=6�
iH2(G)=6 gives d(G) � iH0(G)=3+ iH1(G)=12+ iH2(G)=3 � 1=3+o(1), so we recover
the previous bound.

The reader may now be thinking that this is more obscure than the earlier
argument and we are no nearer to a systematic approach! Indeed, there is no
obvious way to choose � and the �-ags F1; � � � ; Fm; in results so far these have
been obtained by guesswork and computer experimentation. However, once these
have been �xed an optimal inequality can be determined by solving a semide�nite
program. (We refer the reader to [122] for background information on semidef-
inite programming that we will use below.) We �rst remark that once we have
chosen � and the �-ags F1; � � � ; Fm we can sum several inequalities of the form
(
Pm

i=1 aiiFi;�(G))2 � 0. Equivalently, we can �x a positive semide�nite m by m ma-
trix Q = (qij)

m
i;j=1 and use the inequality

Pm
i;j=1 qijiFi;�(G)iFj ;�(G) � 0. Averaging

over � gives
P

H2F` cH(Q)iH(G) � o(1), where cH(Q) =
Pm

i;j=1 qijbij(H). We can
write cH(Q) = Q � B(H), where B(H) is the matrix (bij(H))mi;j=1 (note that it is
symmetric) and X � Y = tr(XY ) denotes inner product of symmetric matrices. We
obtain a bound �(F ) � V + o(1), where V is the solution of the following optimisa-
tion problem in the variables fqijgmi;j=1 (we write Q � 0 to mean that Q is positive
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semide�nite):

V = inf
Q�0

max
H2F`

d(H) + cH(Q):

This formulation is amenable to solution by computer, at least when ‘ is small,
so that F‘ is not too large. Razborov [158] has applied this method to re-prove many
results on Tur�an densities that were obtained by other methods, and to obtain the
sharpest known bounds for several Tur�an problems that are still open. At this point
we recall the question of Tur�an mentioned earlier: what is the largest 3-graph on
n vertices with no tetrahedron? Tur�an proposed the following construction: form
a balanced partition of the n vertices into sets V0, V1, V2, and take the edges to
be those triples that either have one vertex in each part, or have two vertices in
Vi and one vertex in Vi+1 for some i, where V3 := V0. One can check that this
construction gives a lower bound �(K4

3 ) � 5=9. Until recently, the best known upper

bound was �(K3
4 ) � 3+

p
17

12 = 0:593592 � � � , given by Chung and Lu [32]. Razborov
[158] announced computations that suggest the bound �(K3

4 ) � 0:561666. These
computations were also veri�ed in [9], so the bound is probably correct. Here we
should stress that, unlike some computer-aided mathematical arguments where there
is potential to doubt whether they are really ‘proofs’, the ag algebra computations
described here can in principle be presented in a form that can be veri�ed (very
tediously) by hand. However, there is not much point in doing this for a bound that
is very unlikely to be tight, so this bound is likely to remain unrigorous!

The main result of [158] is the following asymptotic result for the tetrahedron
problem under an additional assumption: if G is a 3-graph on n vertices in which no
4-set of vertices spans exactly 1 edge or exactly 4 edges then e(G) � (5=9+o(1))

�

n
3

�

.
This is given by an explicit ag computation that can be veri�ed (laboriously) by
hand.4 This was subsequently re�ned by Pikhurko [154] using the stability method to
give an exact result: for large n, the Tur�an construction for no tetrahedron gives the
unique largest 3-graph on n vertices in which no 4-set of vertices spans exactly 1 edge
or exactly 4 edges. It is interesting to contrast the uniqueness and stability of this
restricted problem with the full tetrahedron problem, where there are exponentially
many constructions that achieve the best known bound, see [26, 117, 64, 78].

We briey describe the elegant Fon-der-Flaass construction [64] here. Suppose
that � is an oriented graph with no induced oriented 4-cycle. Let G be the 3-graph
on the same vertex set in which abc is an edge if it induces a subgraph of � which
either has an isolated vertex or a vertex of outdegree 2. It is not hard to see that
any 4-set contains at least one edge of G, so the complement of G is K3

4 -free. The
picture below (from [64]) illustrates a suitable class of orientations of a complete
tripartite graph. The parts A, B, C are represented by line segments. They are
partitioned into subparts, represented by subsegments, e.g. A is partitioned into
parts labelled by ‘1; ‘2; � � � . The direction of edges is represented by an arrow in
the appropriate rhombus. A weakened form of Tur�an’s conjecture raised in [64]
is whether all constructions of this type have density at least 4=9. Some progress
towards this was recently made by Razborov [159].

4It is easy to verify that the matrices used in the argument are positive de�nite without the
oating point computations referred to in [158]; for example one can just verify that all symmetric
minors have positive determinant (symmetric Gaussian elimination is a more e�cient method).



Hypergraph Tur�an problems 101

m = 0 if and only if T contains no vertices at a distance 2 from one another. This is pos- 

sible only if every connected component of T is a complete graph. This proves the lemma. 

2. Construction of Kostochka'S (3, 4)-Graphs. THEOREM 2. In the notation of the pre 

vious section, let n = 3k; let F be a digraph satisfying the conditions of Theorem i and T 

the union of three complete graphs of dimension k. Then G(F) has at least ~(n) edges. If 

]E I = ~(n), then G(F) is isomorphic to one of the graphs constructed by Kostochka in [i], 

and any of the latter graphs is G(F) for some F. 

Proof. Let a I ..... a, be the inner semidegrees of the vertices of F. We have a I + ... 

+ a n = 3k 2 a n d  b y  Lemma 1 

]El= $ 2 ,  ((~a.) +_yt (~) )  = -g-t ~ri=,~ ~ai -- + k ' +  k(k-l)(k-2)2  9 

This expression achieves its minimum when a~ ---- . . . = a .  =k 

to 3k k (k -- ~ (k -- 1) (k -- 2) 
2 + k 2 = q) (n).  

and the minimum is equal 

Now let F satisfy the conditions of the theorem and assume that exactly k arcs are in- 

cident into each of its vertices. 

We introduce the following notation: A, B, C are the connected components of T (by 

assumption, IAI = IBI = IC] = k). If v EV, X E V, then F v is the set of endpoints of ar- 

rows incident out of v, X v = X flr v. 

Denote the elements of the sets A, B, C by symbols ai, bi, c i in such a way that 

lB, , l>lB,, l>. . .  ~>lB,k[, 

ICb, l ~ . . .  >lCbkl, IAc, I ~ . - .  >IAo~I. 

Then B a , ~ B . , ~ . . . ~ B %  (and s i m i l a r l y  f o r  b i and c i ) .  I ndeed ,  i f  t h e r e  e x i s t e d  e lements  
x~Bai" \ Bai+l and y~Bai+l ~ B  % then t h e r e  would be a d i r e c t e d  c y c l e  o f  l e n g t h  4 on the  
vertices x, y, a i ,  ai+l 

Partition the set A into sets A, = {at ..... as,}, A s = {al,+x ..... az,+6} etc., in such a way 

that a i and uj are in the same A s if and only if Bai=Ba j. Similarly we form sets 

and 

B1 = {bl . . . . .  br~,}, 

C ,  = { c l  . . . . .  c . ,},  

B= ----- {b,,,,+l . . . . .  b.,,+,,,,} . . . .  

C= = {c,,,+1 . . . . .  c.,+.,} . . . . .  

We shall prove that s = mi = ni for any i. (In particular, A, B, and C are partitioned 

into the same number of subsets.) The graph F can be represented visually as follows. 

Represent the sets A, B, and C by segments of length k, as in the figure. The direc- 

tion of an arrow between ai, bj is indicated in the appropriate cell of a rhombus construc- 

ted on sides A and B. 

Do the same for B and C, and for C and A. It follows from the previously established 

properties of F that the rhombus on sides A and B is divided by a polygonal line into two 

B 

A 

i JF~ L 

k 

Fig. i 

C 

782 It is natural to ask whether all hypergraph Tur�an problems can be solved using
ag algebras (at least in principle, given enough computation). A related general
question posed by Lov�asz [123] is whether every linear inequality

P

H cHiH(G) � 0
valid for all graphs G can be expressed as a �nite sum of squares. Razborov [156]
posed a similar question in terms of a certain ‘Cauchy-Schwartz’ calculus. Both
these questions were recently answered in the negative by Hatami and Norine [92].
Furthermore, they proved that the problem of determining the validity of a linear
inequality is undecidable. Their proof is a reduction to Matiyasevich’s solution to
Hilbert’s tenth problem, which shows undecidability of the problem of determining
whether a multivariate polynomial with integer coe�cients is non-negative for every
assignment of integers to its variables. There does not seem to be a direct conse-
quence of their results for deciding inequalities of the form a�(F ) � b for r-graphs
F and integers a and b, but perhaps this problem may also be ‘di�cult’, or even
undecidable.

8 The remaining exact results

Exact results for hypergraph Tur�an numbers are so rare that we can �nish o�
a description of the known results in this section. By exact results we mean that
the Tur�an number is determined for large n (it would be of course be nice to know
it for all n, but then this section would already be �nished!) We have mentioned
earlier the exact results for F5 (which implies that for cancellative 3-graphs), the
Fano plane, extended complete graphs and generalised fans. Sidorenko [175, 176]
and Frankl [65] considered the Tur�an problem for the following 2k-graph which we
call the expanded triangle C2k

3 . The vertex set is K1 [K2 [K3 where K1, K2 and
K3 are disjoint k-sets, and there are three edges K1 [ K2, K1 [ K3 and K2 [ K3.
Thus the expanded triangle is obtained from a graph triangle by expanding each
vertex into a k-set. Suppose that G is a 2k-graph on n vertices with no expanded
triangle. There is a natural auxiliary graph J on k-sets of vertices, where we join
two k-sets in J if their union is an edge of G. Then J is triangle-free, and applying

Mantel’s theorem gives the bound �(C2k
3 ) � 1=2. For a construction, consider a

partition of n vertices into two roughly equal parts, and take the edges to be all
2k-sets that intersect each part in an odd number of vertices: we call this complete
oddly bipartite. To see that this does not contain the expanded triangle, consider
an attempted embedding and look at the intersection sizes of the k-sets K1, K2 and
K3 with one of the parts. Some two of these have the same parity, so combine to
form an edge with an even intersection with this part. This gives a lower bound
that matches the upper bound asymptotically, so �(C2k

3 ) = 1=2.
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Keevash and Sudakov [111] proved an exact result, con�rming a conjecture of
Frankl, that for large n, the unique largest 2k-graph on n vertices with no expanded
triangle is complete oddly bipartite. One should note that the number of edges is this
construction is maximised by a partition that is slightly unbalanced (by an amount of
order

p
n). Finding the optimal partition sizes is in fact an open problem, equivalent

to �nding the minima of binary Krawtchouck polynomials. Nevertheless, known
bounds on this problem are su�cient to allow an application of the stability method,
with the conclusion that the optimal construction is complete oddly bipartite, even
if we do not know the exact part sizes. Sidorenko also considered the expanded
clique C2k

r , obtained by expanding each vertex of Kr into a k-set. Applying Tur�an’s
theorem to the auxiliary graph J on k-sets gives �(C2k

r ) � r�2
r�1 . On the other hand,

Sidorenko only gave an asymptotic matching lower bound in the case when r is of
the form 2p+ 1. The construction is to partition n vertices into 2p parts, labelled by
the vector space Fp2, and take edges to be all 2k-sets whose labels have a non-zero
sum. This is C2k

r -free, as for any r k-sets, the labels of some two will have the
same sum (by the pigeonhole principle), so form an edge whose labels sum to zero.
This raised the question of what happens for r not of this form. One might think
that a combinatorial problem of this nature will not depend on a number theoretic
condition, so there ought to be other constructions. However, we showed in [111]
that this is not the case, in a somewhat di�erent application of the stability method.
We studied structural properties of a putative C4

r -free 4-graph with density close
to r�2

r�1 and showed that they give rise to certain special proper edge-colourings of
Kr�1. It then turns out that these special edge-colourings have a natural F2 vector
space structure on the set of colours, so we get a contradiction unless r is of the
form 2p + 1.

It would be interesting to give better bounds for other r. We present here a new
construction showing that �(C4

4 ) � 9=14 = 0:6428 � � � ; this is not far from the upper
bound of 2=3 (which we know is not sharp). Partition a set V of n vertices into sets
A, B, C, where A is further partitioned as A = A1 [A2. We will optimise the sizes
of these sets later. We say that S � V has type ijk if jS \ Aj = i, jS \ Bj = j,
jS\Aj = k. Let G be the 4-graph in which 4-tuples of the following types are edges:
(i) all permutations of 310, (ii) 121 and 112 (but not 211), (iii) 400 with 3 vertices in
one Ai and 1 vertex in the other. We claim that G is C4

4 -free. To see this, suppose
for a contradiction that we can choose 4 pairs of vertices such that any pair of these
pairs forms an edge of G. We can naturally label each pair as AA, BB, CC, AB,
AC or BC. Since every pair of pairs forms an edge, we see that each label apart
from AA can occur at most once, and at most one of AA, BB, CC can occur. Now
consider cases according to how many times AA occurs. If AA does not occur, then
BB and CC can account for at most one pair, so the other 3 pairs must be AB,
AC, BC; however, AB and AC do not form an edge. If AA occurs once or twice
then BB, CC and BC cannot occur, so we must have AB and AC; however, again
these do not form an edge. If AA occurs at least 3 times then some two AA’s do
not form an edge, as the restriction of G to A is C4

3 -free. In all cases we have a
contradiction, so G is C4

4 -free. Computations show that the optimal set sizes are
jA1j = jA2j = (7 �

p
21)=28 and jBj = jCj = (7 +

p
21)=28, and that then G has

density 9=14. Since this relatively simple construction gives a density quite close to
the easy upper bound, we conjecture that it is optimal.
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The question of improving the auxiliary graph bound described above gives rise
to the following ‘coloured Tur�an problem’ that seems to be of independent interest.
(A similar problem is also discussed in Section 13.4.) Suppose H is a C4

4 -free 4-
graph on n vertices with �

�

n
4

�

. Let J be the K4-free auxiliary graph on pairs: J has

N =
�

n
2

�

vertices and � �
�

N
2

�

edges. If � is close to 2=3 then for a ‘typical’ triangle
xyz in J the common neighbourhoods Nxy, Nxz, Nyz partition most of V (J) into
3 independent sets. These must account for almost all of the missing edges. Going
back to the original set of n vertices, we can interpret Nxy, Nxz, Nyz as a 3-edge-
colouring of (most of) the

�

n
2

�

pairs, such that any choice of a pair of disjoint pairs
of the same colour gives a non-edge of H. Counting then implies that almost all
non-edges are properly 3-edge-coloured. It is not hard to see that this is impossible,
but the question is to quantify the extent to which this property is violated. For
example, what is the minimum number of 4-cycles in which which precisely one pair
of opposite edges has both edges of the same colour?

Now we will return to cancellative r-graphs. Bollob�as conjectured that the natu-
ral generalisation of his theorem for cancellative 3-graphs should hold, namely that
the largest cancellative r-graph on n vertices should be r-partite. This was proved
by Sidorenko [173] in the case r = 4. Note that there are four con�gurations that are
forbidden in a cancellative 4-graph, there is the 4-graph expanded triangle mentioned
above, and another three which are formed by taking two edges as abcx, abcy and a
third edge that contains xy and intersects abc in either 0, 1 or 2 vertices. Sidorenko
showed that even just forbidding these last three con�gurations but allowing the
expanded triangle one obtains the same result, that the largest such 4-graph is 4-
partite. This was further re�ned by Pikhurko [152] who showed that it is enough to
forbid just one con�guration, the generalised triangle fabcx; abcy; uvxyg: for large
n, the largest 4-graph with no generalised triangle is 4-partite.

Sidorenko’s argument is an instructive application of hypergraph Lagrangians.
We will sketch the proof that if G is a cancellative 4-graph then e(G) � (n=4)4,
which is tight when n is divisible by 4. Since e(G)=n4 = pG(1=n; � � � ; 1=n) � �(G)
it su�ces to prove that the Lagrangian �(G) is at most 4�4. We can assume that
G covers pairs; then it follows that any two vertices in G have disjoint link 3-
graphs (or we get one of Sidorenko’s three forbidden con�gurations). Recall that
�(G) = maxx2S pG(x) where S is the set of all x = (x1; � � � ; xn) with xi � 0 for
all i and

P

i xi = 1. Suppose that the maximum occurs at some x with xi >
0 for 1 � i � m and xi = 0 for i > m (without loss of generality). We can
discard all i > m and then regard the maximum as being at an interior point of the
corresponding region Sm de�ned for the vector x = (x1; � � � ; xm). Next comes an
ingredient from the theory of optimisation we have not yet mentioned: the gradient
of pG(x) is normal to the constraint plane

P

i xi = 1, i.e. the partial derivatives
@ipG(x), 1 � i � m are all equal to some constant c. We can compute it by c =
c
P

i xi =
P

xi@ipG(x) = rpG(x) = r�(G). Also, since vertices have disjoint links,
any monomial xaxbxc occurs at most once in

P

i @ipG(x), somr�(G) =
P

i @ipG(x) �
maxx2S

P

1�a<b<c<m xaxbxc = m�3
�

m
3

�

. This gives the required bound if m = 4 or
m � 6, and we cannot have m = 5 if G covers pairs, so we are done.

Pikhurko’s proof is an ingenious combination of Sidorenko’s argument with the
stability method. And what happens for larger r? Shearer [170] showed that the
Bollob�as conjecture is false for r � 10. The intermediate values are still open.
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Suppose now that we alter the general problem and just forbid the con�gurations
analogous to those in Sidorenko’s result; thus we consider r-graphs such that there
do not exist two edges that share an (r � 1)-set T and a third edge containing
the two vertices not in T . When r = 5 and r = 6 this problem was solved by
Frankl and F�uredi [70]: the extremal constructions are the blowups of the small
Witt designs, the (11; 5; 4)-design for r = 5 and the (12; 6; 5)-design for r = 6. They
obtain the bounds e(G) � 6

114n
5 when r = 5, with equality only when 11jn, and

e(G) � 11
125n

6 when r = 6, with equality only when 12jn. (The exact result for
all large n remains open.) The proofs involve some intricate computations with
hypergraph Lagrangians. They make the following appealing conjecture that would
have greatly simpli�ed some of these computations were it known. Consider the
problem of maximising the Lagrangian �(G) for r-graphs G on m edges. Is the
maximum attained when G is an initial segment of the colexicographic order?

Some further exact results can be grouped under the general umbrella of ‘books’.
The r-book with p pages is the r-graph obtained by taking p � r edges that share
a common (r � 1)-set T , and one more edge that is disjoint from T and contains
the vertices not in T . For example, the generalised triangle of Pikhurko’s result
mentioned above is the 4-book with 2 pages. F�uredi, Pikhurko and Simonovits [83]
gave an exact result for the 4-book with 3 pages: for large n the unique extremal
4-graph is obtained by a balanced partition into two parts and taking edges as all
4-sets with 2 vertices in each part. Next consider r-graphs that do not have an
r-book with r pages. A nice reformulation of this property is to say that such r-
graphs G have independent neighbourhoods: for any (r�1)-set T , the neighbourhood
N(T ) = fx 2 V (G) : T [ fxg 2 E(G)g does not contain any edges of G. F�uredi,
Pikhurko and Simonovits [82] gave an exact result for 3-graphs with independent
neighbourhoods: for large n, the unique extremal 3-graph is obtained by taking
a partition into two parts A, B and taking edges as all 3-sets with 2 vertices in
A and 1 vertex in B (the optimal class sizes are jAj = 2n=3, jBj = n=3 when n
is divisible by 3). F�uredi, Mubayi and Pikhurko [81] gave an exact result for 4-
graphs with independent neighbourhoods: for large n, the unique extremal 4-graph
is complete oddly bipartite (the same construction as for the expanded triangle).
There is a conjecture in [81] for general r that the largest r-graphs with independent
neighbourhoods are obtained by a partition into two parts A, B and taking edges
as all r-sets that intersect B in an odd number of vertices, but are not contained in
B. The results mentioned above con�rm this for r = 3 and r = 4. However, the
conjecture was disproved for r � 7 by Bohman, Frieze, Mubayi and Pikhurko [17].
The conjecture would have implied that r-graphs with independent neighbourhoods
have edge density at most 1=2. In fact, the construction in [17]. shows that the
maximum edge density is roughly 1 � 2 log r

r , which approaches 1 for large r. The
authors of [17] believe that the conjecture is true for r = 5 and r = 6.

There is one more exact result (to the best of this author’s knowledge). We ask
the expert readers to take note, as it seems to be have been overlooked in earlier
bibliographies on this subject. The motivating problem is the Tur�an problem for
K3

5 , where Tur�an conjectured that the complete bipartite 3-graph gives the extremal
construction. This was disproved for n = 9 by Sur�anyi (the a�ne plane over F3) and
for all odd n � 9 by Kostochka and Sidorenko (see construction 5 in [180]). However,
they did not disprove the asymptotic conjecture, so it may be that �(K3

5 ) = 3=4.
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Zhou [192] obtained an exact result when one forbids a larger class of 3-graphs that
includes K3

5 . Say that two vertices x; y in a 3-graph G are t-connected if there are
vertices a; b; c such that every triple with 2 vertices from abc and 1 from xy is an
edge. Say that xyz is a t-triple if xyz is an edge and each pair in xyz is t-connected.
For example, K3

5 is a t-triple. The result of [192] is that the unique largest 3-graph
on n vertices with no t-triple is complete bipartite. Note that the 3-graph F (3; 3)
mentioned earlier is an example of a t-triple, so the result of [143] strengthens the
asymptotic form of Zhou’s result (but not the exact result).

9 Bounds for complete hypergraphs

We return now to the original question of Tur�an, concerning the Tur�an numbers
for the complete hypergraphs Kr

t . None of the Tur�an densities �(Kr
t ) with t > r > 2

has yet been determined, so here we have a more modest goal of giving reasonable
bounds. Most of these can be found in an excellent survey of Sidorenko [180], to
which we refer the reader for full details. We will not reproduce this here, but
instead outline the ideas behind the main bounds, summarise the other bounds,
and also mention a few more recent developments. For the purpose of this section
it is convenient to change to the ‘complementary’ notation that was preferred by
many early writers on Tur�an numbers. They de�ne the ‘Tur�an number’ T (n; k; r)
to be the minimum number of edges in an r-graph G on n vertices such that any
subset of k vertices contains at least one edge of G. Note that G has this property
if and only if the ‘complementary’ r-graph of r-sets that are not edges of G is
Kr
k-free; thus T (n; k; r) + ex(n;Kr

k) =
�

n
r

�

. They also de�ne the density t(k; r) =

limn!1
�

n
r

��1
T (n; k; r); thus t(k; r) + �(Kr

k) = 1.
We start with the lower bound on t(k; r), which is equivalent to an upper bound

on �(Kr
k). The trivial averaging argument gives t(k; r) �

�

k
r

��1
. In general, the best

known bound is t(k; r) �
�

k�1
r�1

��1
, due to de Caen [38]. This follows from his exact

bound of T (n; k; r) � n�k+1
n�r+1

�

k�1
r�1

��1�n
r

�

. This in turn is deduced from a hypergraph
generalisation of a theorem of Moon and Moser that relates the number of cliques
of various sizes in a graph. Suppose that G is an r-graph on n vertices and let Nk

be the number of copies of Kr
k in G. Then the inequality is

Nk+1 �
k2Nk

(k � r + 1)(k + 1)

�

Nk

Nk�1
� (r � 1)(n� k) + k

k2

�

; (9.1)

provided that Nk�1 6= 0. Given this inequality, the bound on T (n; k; r) follows
from some involved calculations; the main step is to show by induction on k that

Nk � Nk�1
r2(kr)
k2( n

r�1)
(e(G)�F (n; k; r)), where F (n; k; r) = (r�1(n�r+1)�

�

k�1
r�1

��1
(n�

k + 1))
�

n
r�1

�

. Inequality (9.1) is proved by the following double counting argument.
Let P be the number of pairs (S; T ) where S and T are each sets of k vertices, such
that S spans a Kr

k , T does not span a Kr
k , and jS\T j = k�1. For an upper bound on

P , we enumerate theNk�1 copies ofKr
k�1 and let ai be the number ofKr

k ’s containing

the ith copy. Since
PNk�1

i=1 ai = kNk we have P =
PNk�1

i=1 ai(n � k + 1 � ai) �
(n� k + 1)kNk �N�1

k�1k
2N2

k . For a lower bound, we enumerate the copies of Kr
k as

B1; � � � ; BNk , and let bi be the number of Kr
k+1’s containing the ith copy. For each
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Bj , there are n � k � bj ways to choose x =2 Bj such that Bj [ fxg does not span
a Kr

k+1. Given such an x, there is some C � Bj of size k � 1 such that C [ fxg is
not an edge. Then for each y 2 Bj n C the pair (Bj ; Bj [ x n y) is counted by P .

This gives P �
PNk

j=1(n� k� bj)(k� r� 1) = (k� r� 1)((n� k)Nk � (k+ 1)Nk+1.
Combining with the lower bound and rearranging gives the required inequality.

Next we consider the upper bound on t(k; r), which is equivalent to a lower
bound on �(Kr

k). The best general construction is due to Sidorenko [171]; it implies

the bound t(k; r) �
�

r�1
k�1

�r�1
. For comparison with the lower bound, note that

�

r�1
k�1

�r�1
�

k�1
r�1

�

=
Qr�1
i=1

k�i
k�1

r�1
r�i ; if k is large compared to r, the ratio of the bounds

is roughly (r � 1)r�1(r � 1)!�1, which is exponential in r, but independent of k. To
explain the construction, we will rephrase it here using the following simple fact.

The lorry driver puzzle. A lorry driver needs to follow a certain closed route.
There are several petrol stations along the route, and the total amount of fuel in
these stations is su�cient for the route. Show that there is some starting point from
which the route can be completed.

The construction is to divide n vertices into k�1 roughly equal partsA1; : : : ; Ak�1,
and say a set B of size r is an edge of G if there is some j such that

Ps
i=1 jB\Aj+ij �

s+ 1 for each 1 � s � r � 1 (where Ai := Ai�k+1 if i > k � 1). To interpret this in
the lorry driver framework, consider any set K of size k, imagine that each element
of K represents a unit of fuel, and that it takes k

k�1 units of fuel to drive from Ai to
Ai+1. Then K contains enough fuel for a complete circuit, so the lorry driver puzzle
tells us that there is some starting point from which a complete circuit is possible.
(For completeness we now give the solution to the puzzle. Imagine that the driver
starts with enough fuel to drive around the route and consider the journey starting
from an arbitrary point, in which she still picks up all the fuel at any station, even
though she doesn’t need it. Then the point at which the fuel reserves are lowest
during this route can be used as a starting point for another route which satis�es
the requirements.) Let B be the set of the �rst r elements of K that are encoun-
tered on this circuit (breaking ties arbitrarily). Since r � (r � 1) k

k�1 , the lorry can
advance distance r � 1 using just the fuel from B. This implies that B is an edge,
as ds k

k�1e = s + 1 for 1 � s � r � 1. Thus any set of size k contains an edge, as
required.

It is not obvious how to estimate the number of edges in the construction without
tedious calculations, so we will give a simple combinatorial argument here. It is
convenient to count edges together with an order of the vertices in each edge, thus
counting each edge r! times. We can form an ordered edge B = x1 : : : xr using the
following three steps: (i) choose the starting index j, (ii) assign each x‘ to one of
the parts Aj+i, 1 � i � r � 1, (iii) choose a vertex for each x‘ within its assigned

part. Clearly there are k � 1 choices in step (i) and
�

n
k�1

�r
+ O(nr�1) choices in

step (iii). In step (ii) there are (r � 1)r ways to assign the parts if we ignore the
required inequalities on the intersection sizes (i.e. that there should be enough fuel
for the lorry). Now we claim that given any assignment, there is exactly one cyclic
permutation that satis�es the required inequalities. More precisely, if we assign bi of
the x‘’s to Aj+i for 1 � i � r�1, then there is exactly one c with 1 � c � r�1 such
that the shifted sequence b0i = bc+i (where bi := bi�r+1 for i > j + r � 1) satis�es
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Ps
i=1 b

0
i � s + 1 for each 1 � s � r � 1. To see this consider a lorry that makes a

circuit of Aj+i, 1 � i � r � 1, where as before each of the x‘’s is a unit of fuel, but
now it takes one unit of fuel to advance from Ai to Ai+1, and the lorry is required
to always have one spare unit of fuel. Clearly a valid starting point for the lorry
is equivalent to a shifted sequence satisfying the required inequalities. As in the
solution to the original puzzle, we imagine that the driver starts with enough fuel
to drive around the route and consider the journey starting from an arbitrary point.
Then the point at which the fuel reserves are lowest during this route is a starting
point for a route where there is always one spare unit of fuel. Furthermore, this is
the unique point at which the fuel reserves are lowest, and so it gives the unique
cyclic permutation satisfying the required inequalities. We deduce that there are
(r � 1)r�1 valid assignments in step (ii). Putting everything together, the number

of edges is r!�1 � (k � 1) � (r � 1)r�1 � (1 +O(1=n))
�

n
k�1

�r
�
�

r�1
k�1

�r�1
�

n
r

�

.

Having discussed the general case in detail, we now summarise some better
bounds that have been found in speci�c cases. One natural case to focus on is
t(r + 1; r) = 1 � �(Kr

r+1). For large r, a construction of Sidorenko [181] gives the

best known upper bound, which is t(r+ 1; r) � (1 + o(1)) log r
2r . Other known bounds

are e�ective for small r; these are t(r + 1; r) � 1+2 ln r
r by Kim and Roush [114] and

t(2s+1; 2s) � 1=4+2�2s by de Caen, Kreher and Wiseman [43]. On the other hand,
the known lower bounds are very close to the bound t(r+1; r) � 1=r discussed above
in the general case. Improvements to the second order term were given by Chung
and Lu [32], who showed that t(r + 1; r) � 1

r + 1
r(r+3) +O(r�3) when r is odd, and

by Lu and Zhao [129], who obtained some improvements when r is even, the best
of which is t(r + 1; r) � 1

r + 1
2r3 + O(r�4) when r is of the form 6k + 4. Thus the

known upper and lower bounds are separated by a factor of (1=2 + o(1)) log r. As a
�rst step towards closing this gap, de Caen [41] conjectured that r � t(r+ 1; r)!1
as r !1.

We have already discussed the known bounds for K3
4 in Section 7. For K4

5 the
following nice construction was given by Giraud [85]. Suppose M is an m by m
matrix with entries equal to 1 or 0. We de�ne a 4-graph G on n = 2m vertices
corresponding to the rows and columns of M . Any 4-set of rows or 4-set of columns
is an edge. Also, any 4-set of 2 rows and 2 columns inducing a 2 by 2 submatrix with
even sum is an edge. We claim that any 5-set of vertices of G contains an edge. This
is clear if we have at least 4 rows or at least 4 columns, so suppose without loss of
generality that we have 3 rows and 2 columns. Then in the induced 3 by 2 submatrix
we can choose 2 rows whose sums have the same parity, i.e. a 2 by 2 submatrix with
even sum, which is an edge. To count edges in G, �rst note that we have 2

�

m
4

�

from
4-sets of rows and 4-sets of columns. Also, for any pair i; j of columns, we can divide
the rows into two classes Oij and Eij according to whether the entries in columns i
and j have odd or even sum. Then the number of 2 by 2 submatrices using columns
i and j with even sum is

�jOij j
2

�

+
�jEij j

2

�

� 2
�

m=2
2

�

. Furthermore, for some values of
m there is a construction that achieves equality for every pair i; j: take a Hadamard
matrix, i.e. a matrix with �1 entries in which every pair of columns is orthogonal,
then replace the �1 entries by 0.

This shows that t(5; 4) � limm!1
�

2m
4

��1
�

2
�

m
4

�

+ 2
�

m=2
2

��

m
2

�

�

= 5=16; equiva-

lently �(K4
5 ) � 11=16 = 0:6875. Sidorenko [180] conjectured that equality holds.
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Markstr�om [131] gave an upper bound �(K4
5 ) � 1753

2380 = 0:73655 � � � . This was
achieved by an extensive computer search to �nd all extremal 4-graphs for n � 16.
Based on this evidence, he made the stronger conjecture that this construction (mod-
i�ed according to divisibility conditions) is always optimal for n � 12. Markstr�om
[133] has also compiled a web archive of small constructions for various hypergraph
Tur�an problems. For K3

5 the Tur�an numbers were computed for n � 13 by Boyer,
Kreher, Radziszowski and Sidorenko [25]. The collinear triples of points of the
projective plane of order 3 form the unique 3-graph on 13 vertices such that ev-
ery 5-set contains at least one edge. It follows that t(5; 3) � 52=

�

13
3

�

= 2=11, i.e.
�(K3

5 ) � 9=11. As we mentioned in Section 8, Tur�an conjectured that �(K3
5 ) = 3=4,

corresponding to the complete bipartite 3-graph.

More generally, Tur�an conjectured that �(K3
t+1) = 1 � (2=t)2. Together with

Mubayi we found the following family of examples establishing the lower bound
(previously unpublished). It is convenient to work in the complementary setting;
thus we describe 3-graphs of density (2=t)2 such that every (t + 1)-set contains at
least one edge. Let D be any directed graph on f1; : : : ; tg that is the vertex-disjoint
union of directed cycles (we allow cycles of length 2, but not loops). Let V1; � � � ; Vt
be a balanced partition of a set V of n vertices. Let G be the 3-graph on V where
the edges consist of all triples that are either contained within some Vi or have 2
points in Vi and 1 point in Vj , for every directed edge (i; j) of D. Then G has

t
�

n=t
3

�

+ t
�

n=t
2

�

n=t � (2=t)2
�

n
3

�

edges. Also, if S � V does not contain any edge of G,
then S has at most 2 points in each part, and whenever it has 2 points in a part it
is disjoint from the next part on the corresponding cycle, so we must have jSj � t.
Thus G has the required properties.

10 The in�nitary perspective

A new perspective on extremal problems can be obtained by stepping outside of
the world of hypergraphs on �nite vertex sets, and viewing them as approximations
to an appropriate ‘limit object’. This often leads to more elegant formulations of
results from the �nite world, after one has put in the necessary theoretical ground
work to make sense of the ‘limit’. That alone may justify this perspective for those
of a theoretical bent, though others will ask whether it can solve problems not
amenable to �nite methods. Since the theory itself is quite a recent development, it
is probably too soon to answer this latter question, other than to say that elegant
reformulations usually lead to progress in mathematics.

We will approach the subject by �rst returning to ag algebras (see Section 7),
which we will now describe in the theoretical framework of [156]. Recall that the aim
when applying ag algebras to Tur�an problems was to generate a ‘useful’ inequality
of the form

P

H cHiH(G) � 0, valid for any F -free r-graph G. We can package
the coe�cients cH as a ‘formal sum’

P

H cHH in RF , by which we mean the real
vector space of formal �nite linear combinations of F -free r-graphs. We can think
of any F -free r-graph G as acting on RF via the map

P

H cHH 7!
P

H cHiH(G);
we will identify this map with G. Our goal will be to understand F -free r-graphs
purely as appropriate maps on formal �nite linear combinations. First we note that
certain elements always evaluate to zero, so they should be factored out. If H is
an F -free r-graph and ‘ � v(H) then iH(G) =

P

J2F` iH(J)iJ(G), so the linear
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combination H �
P

J2F` iH(J)J is mapped to zero by G. Let K be the subspace
generated by all such combinations in the kernel, and let A = RF=K be the quotient
space. Now we make A into an algebra by de�ning a multiplication operator: we
let HH 0 =

P

J2Fv(H)+v(H0)
iH;H0(J)J , where iH;H0(J) is the probability that when

V (J) is randomly partitioned as S [ S0 with jSj = v(H) and jS0j = v(H 0) we have
J [S] �= H and J [S0] �= H 0. (One needs to prove that this is well-de�ned.) Then
we have G(HH 0) = G(H)G(H 0) + o(1) when v(G) is large, so the map G is an
‘approximate homomorphism’ from A to R. One �nal property to bear in mind is
that G(H) := iH(G) is always non-negative. (A similar construction gives rise to an
algebra A� = RF�=K� for any type �; we have just described the case when j�j = 0
for simplicity.)

Now we come to the point of the above discussion: it gives an approximate
characterisation of F -free r-graphs, in the following sense. Given an r-graph G, we
can identify the map G : RF ! R de�ned above with the vector (iH(G))H2F 2
[0; 1]F ; we will also identify this vector with G. The space [0; 1]F is compact in the
product topology, so any sequence of r-graphs contains a convergent subsequence.
Let � be the set of homomorphisms � from A to R such that �(H) � 0 for every
H in F . The following key result is Theorem 3.3 in [156]: for any convergent
sequence of F -free r-graphs, the limit is in �; conversely, any element of � is the
limit of some sequence of F -free r-graphs. (For simplicity, we have stated this result
just for F -free r-graphs, but there is a much more general form that applies to
ags in theories.) This result establishes a correspondence between the �nite world
inequalities

P

H cHiH(G) � o(1) for r-graphs G (which we were interested in above)
and inequalities �(

P

H cHH) � 0 for � in � in the in�nitary world. In particular, the
Tur�an density �(F ) = lim supG2F d(G) can be rewritten as �(F ) = max�2� �(e).
Note the maximum value �(F ) is achieved by some extremal homomorphism � 2 �
(this is because � is compact and � 7! �(e) is continuous). This permits ‘di�erential
methods’ (see section 4.3 of [156]), i.e. deriving inequalities from the fact that any
small perturbations of � must reduce �(e), which are potentially very powerful. For
example, perturbation with respect to a single vertex is analogous to the deletion
argument in Proposition 4.2, but general perturbations do not have any obvious
analogue in the �nite setting.

Graph limits were �rst studied by Borgs, Chayes, Lov�asz, S�os and Vesztergombi
(2003 unpublished and [24]) and by Lov�asz and Szegedy [126]. A substantial theory
has been developed since then, of which we will only describe a couple of ingredients
here: a convenient description of limit objects and the equivalence of various notions
of convergence. The starting point is a very similar notion of convergence to that
used by [156]. Let tH(G) denote the homomorphism density of H in G, de�ned
as the probability that a random map from VH to VG is a homomorphism. Say
that a sequence G1; G2; : : : is left-convergent if tH(Gi) converges for every H. (It is
not hard to see via inclusion-exclusion that using induced densities is equivalent.)
The limit objects can be described as graphons, which are symmetric measurable5

functions W : [0; 1]2 ! [0; 1]. For such a function we can de�ne the homomorphism

5We will assume in this discussion that the reader is familiar with the basics of measure theory.
A careful exposition for the combinatorial reader that �lls in much of this background is given
in [153]. Note also that we are using a more restricted de�nition of ‘graphon’ than the original
de�nition given in [126].



110 Peter Keevash

density of H in W as tH(W ) =
R
Q

ij2E(H)W (xi; xj)dx, where x = (x1; � � � ; xv(H))

and the integral is over [0; 1]v(H). We can recover tH(G) as a case of this de�nition
by de�ning a graphon WG as a step function based on the adjacency matrix of G.
Label V (G) by [n], partition [0; 1]2 into n2 squares of side 1=n, and set WG equal
to 1 on subsquare (i; j) if ij is an edge, otherwise 0. Then tH(G) = tH(WG). The
main result of [126] is that for any left-convergent sequence (Gi) there is a graphon
W such that tH(Gi) ! tH(W ) for every graph H, and conversely, any graphon W
can be obtained in this way from a left-convergent sequence (Gi). This gives an
intuitive picture of a graph limit as an ‘in�nite adjacency matrix’. A more formal
justi�cation of this intuition is given by the W -random graph G(n;W ). This is a
random graph on [n] de�ned by choosing independent X1; � � � ; Xn uniformly in [0; 1]
and connecting vertices i and j with probability W (Xi; Xj). Corollary 2.6 of [126]
shows that G(n;W ) converges to W with probability 1.

An alternative description of convergence is given by the cut-norm on graphons,

de�ned by kWk2 = supS;T�[0;1]

�

�

�

R

S�T W (x; y) dx dy
�

�

�
. First we need to take account

of the lack of uniqueness in graphons. Suppose � : [0; 1] ! [0; 1] is a measure-
preserving bijection and de�ne W � by W �(x; y) = W (�(x); �(y)). Then W � is
equivalent to W in the sense that tH(W �) = tH(W ) for any H. We de�ne the
cut-distance between two graphons as �2(W;W 0) = inf� kW � � W 0k2, where the
in�mum is over all measure-preserving bijections. Then another equivalent de�nition
of convergence for (Gi), given in [24], is to say that �2(WGi ;W ) ! 0 for some
graphon W . Furthermore, W is essentially unique, in that if Gn !W and Gn !W 0

then �2(W;W 0) = 0. The equivalence classes [W ] = fW 0 : �2(W;W 0) = 0g are
named graphits by Pikhurko [153], in a paper that introduces an analytic approach
to stability theorems. Theorem 15 in [153] contains a characterisation of stability
that can be informally stated as follows: an extremal graph problem is stable if and
only if there is a unique graphit that can be obtained by limits of approximately
extremal graphs. (We say that an r-graph F is stable if for any � > 0 there is � > 0
and n0 such that for any two F -free r-graphs G and G0 on n > n0 vertices, each
having at least (�(F )� �)

�

n
r

�

edges, we can obtain G0 from G by adding or deleting
at most �nr edges.) The analytic proof of the Erd}os-Simonovits stability theorem
given in [153] is much more complicated than a straightforward approach, but may
point the way to other stability results that cannot be obtained by simpler methods.

The limit theory above also has close connections with the theory of regularity
for graphs and hypergraphs, which are explored by Lov�asz and Szegedy [127]. We
start with the Szemer�edi’s Regularity Lemma, which is a fundamental tool in modern
graph theory. Our discussion here will be rather brief; for an extensive survey we
refer the reader to [116]. Roughly speaking, the regularity lemma allows any graph
G to be approximated by a weighted graph R, in which the size of R depends only
the desired accuracy of approximation, but is independent of the size of G. A precise
statement of the lemma (in its simplest form) is as follows: for any � > 0, there is
a number m = m(�), such that for any number n, and any graph G on n vertices,
there is a partition of V (G) as V1 [ � � � [ Vr for some r � m, so that all but at most
�n2 pairs of vertices belong to induced bipartite subgraphs Gij := G(Vi; Vj) that
are ‘�-regular’. We have not yet de�ned ‘�-regular’: this is a notion that captures
the idea that the bipartite subgraph G(Vi; Vj) looks like a random bipartite graph.
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The formal de�nition is as follows. Suppose G is a bipartite graph with parts A
and B. The density of G is d(G) = jE(G)j

jAjjBj . We say that G is �-regular if for any

A0 � A, B0 � B with jA0j > �jAj, jB0j > �jBj, writing G0 for the bipartite subgraph
of G induced by A0 and B0 we have d(G0) = d(G) � �. Note that the de�nition �ts
well with the randomness heuristic: standard large deviation estimates imply that
a random bipartite graph is �-regular with high probability.

After applying Szemer�edi’s Regularity Lemma, we can use the resulting partition
to de�ne an approximation of G. This is the reduced graph R, de�ned on the vertex
set [r] = f1; � � � ; rg. The vertices of R correspond to the parts V1; � � � ; Vr (which are
also known as clusters). The edges of R correspond to pairs of clusters that induce
bipartite subgraphs that look random and are su�ciently dense: we �x a ‘density
parameter’ d, and include an edge ij in R with weight dij := d(Gij) whenever Gij
is �-regular with dij � d. A key property of this approximation of G by R is that
it satis�es a ‘counting lemma’, whereby the number of copies of any �xed graph
in G can be accurately predicted by the weighted number of copies of this graph
in R. For example, we have the following Triangle Counting Lemma. Suppose
1 � i; j; k � r and write Tijk(G) for the set of triangles in G with one vertex

in each of Vi, Vj and Vk. Write dijk =
jTijk(G)j
jVijjVj jjVkj for the corresponding ‘triangle

density’, i.e. the proportion of all triples with one vertex in each of Vi, Vj and Vk
that are triangles. Suppose 0 < � < 1=2 and Gij , Gik and Gjk are �-regular. Then
dijk = dijdikdjk � 20�. Note that this corresponds well to the randomness intuition:
if the graphs were indeed random, with each edge being independently selected with
probability equal to the corresponding density, then the probability of any particular
triple uvw being a triangle would be the product of the probabilities for each of its
three pairs uv, uw, vw being edges. Furthermore, there is a Counting Lemma for
general subgraphs along similar lines, which starts to indicate the connection with
the notion of convergence discussed above using subgraph densities.

The following weaker form of the regularity lemma was obtained by Frieze and
Kannan [77]. Given a partition P of V (G) as V1 [ � � � [ Vr, for S; T � V (G) we
write eP (S; T ) =

Pr
i;j=1 dij jVi\SjjVj \T j. Note that eP (S; T ) is the expected value

of eG(S; T ) (the number of edges of between S and T ) if each Gij were a random
bipartite graph of density dij . The result of [77] is that there is a partition P into r �
22=�2 classes such that jeG(S; T )�eP (S; T )j � �n2 for all S; T � V (G). This is rather
weaker than the regularity lemma, as it has replaced a uniformity condition holding
locally for most pairs of classes by a global uniformity condition. The compensation
is that the number of classes needed is much smaller, only an exponential function, as
opposed to the tower bound that is necessary in the regularity lemma (see [87]). The
weak regularity lemma can be reformulated in analytic language as follows (Lemma
3.1 of [127]): for any graphon W and � > 0 there is a graphon W 0 that is a step
function with at most 22=�2 steps such that kW �W 0k2 � �. The full regularity
lemma, indeed even a stronger form due to Alon, Fischer, Krivelevich and Szegedy
[4], can also be obtained from an analytic form. The key fact is that graphits form
a compact metric space with the distance �2 de�ned above (Theorem 5.1 of [127]).
This implies the following (Lemma 5.2 of [127]): let h(�; r) > 0 be an arbitrary �xed
function; then for any � there is m = m(�) such that any graphon W can be written
as W = U + A + B, where U is a step function with r � m steps, kAk2 � h(�; r)
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and kBk1 � �. Informally, this says that one can change W by a small function
B to obtain a function U +A which corresponds to an extremely regular partition.
Regular approximation results of this type were �rst obtained in [162, 187].

Regularity theory for hypergraphs is much more complicated, so we will only
make a few comments here and refer the reader to the references for more infor-
mation. The theory was �rst developed independently in di�erent ways by R�odl et
al. [148, 163, 162] and Gowers [89]. Alternative perspectives and re�nements were
given in [8, 94, 187, 188]. The analytic theory discussed above is generalised to
hypergraphs by Elek and Szegedy [46, 47] as follows. For any sequence of r-graphs
G1; G2; : : : which is convergent in the sense that tH(Gi) converges for every r-graph
H, there is a limit object W , called a hypergraphon, such that tH(Gi)! tH(W ) for
every r-graph H. Hypergraphons are functions of 2r � 1 variables, corresponding
to the non-empty subsets of [r], that are symmetric under permutations of [r]. The
need for 2r�1 variables (actually 2r�2, as [r] is unnecessary) reects the fact that a
complete theory of hypergraph regularity needs to consider the simplicial r-complex
generated by an r-graph, and regularise k-sets with respect to (k � 1)-sets for each
2 � k � r (see Section 5 of [88] for further explanation of this point).

In the case of 3-graphs we consider a function W (x1; x2; x3; x12; x13; x23) from
[0; 1]6 to [0; 1] that is symmetric under permutations of 123. Given a �xed 3-graph
H, we can de�ne the homomorphism density of H in W similarly to above by
tH(W ) =

R
Q

e2HWedx, where x = (x1; � � � ; xv(H)) and the integral is over [0; 1]v(H)

as before, and We is evaluated according to some �xed labelling e = e1e2e3 by We =
W (xe1 ; xe2 ; xe3 ; xe1e2 ; xe1e3 ; xe2e3). Similarly to the graph case, any 3-graph G can
be realised by a hypergraphon WG that is a step function (which need only depend
on the �rst 3 co-ordinates). Some intuition for hypergraphons can be obtained
by consideration of the W -random 3-graph G(n;W ). This can be de�ned as a
random 3-graph on [n] by choosing independent random variables Xi, 1 � i � n
and Xij , 1 � i < j � n uniformly in [0; 1] and including the edge ijk for i <
j < k with probability W (Xi; Xj ; Xk; Xij ; Xik; Xjk). Theorem 12 of [47] shows
that G(n;W ) converges to W with probability 1. If we approximate W by a step
function then this gives us the following informal picture of a regularity partition
of a 3-graph G: a piece of the partition is obtained by taking three classes Vi,
Vj , Vk, then three ‘random-like’ bipartite graphs Vij � Vi � Vj , Vik � Vi � Vk,
Vjk � Vj � Vk, and then a ‘random-like’ subset of the triangles formed by Vij , Vik
and Vjk. Further generalisations of the theory from graphs to hypergraphs given in
[47] are the equivalence of various de�nitions of convergence (Theorem 14), and a
formulation of regularity as compactness (Theorem 4).

We conclude this section with a concrete situation where hypergraph regularity
theory gives some insight into Tur�an problems. This is via the removal lemma,
a straightforward consequence of hypergraph regularity theory that can be easily
stated as follows. For any b > 0 and r-graph F there is a > 0, so that if G is a
r-graph on n vertices with fewer than anv(F ) copies of F , then one can delete at
most bnr edges from G to obtain an F -free r-graph. This was used by Pikhurko [155,
Lemma 4] to show that if the Tur�an problem for F is stable then so is the Tur�an
problem for any blowup F (t). A sketch of the proof is as follows. Suppose that
0 < 1=n � a � b � c, and G1 and G2 are F (t)-free r-graphs on n vertices, each
having at least (�(F (t))�b)

�

n
r

�

edges. SinceG1 andG2 are F (t)-free, supersaturation
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implies that they each have at most anv(F ) copies of F . The removal lemma implies
that one can delete at most bnr edges from G1 and G2 to obtain F -free r-graphs
G01 and G02, each having at least (�(F )� 2b)

�

n
r

�

edges (recall that �(F (t)) = �(F )).
Now by stability of F we can obtain G02 from G01 by adding or deleting at most cnr

edges. Thus we can obtain G2 from G1 by adding or deleting at most 2cnr edges,
so F (t) is stable. In particular, this enables the application of the stability method
in [155] to the extended complete graph Hr

t (see Section 3); stability of Hr
t follows

from stability of Hrt , which was proved by Mubayi [138].

11 Algebraic methods

Kalai [98] proposed the following conjecture generalising Tur�an’s tetrahedron
problem. Suppose that G is a 3-graph on [n] = f1; � � � ; ng such that every 4-set of
vertices spans at least one edge (thus G is the complement of a K3

4 -free 3-graph).
Fix s � 1 and consider the following matrix Ms(G). The rows are indexed by edges
of G. The columns are divided into s blocks, each of which contains

�

n
2

�

columns
indexed by all pairs of vertices. The entry in row e and column uv in block i is �xi;w
if e = uvw for some w or is 0 otherwise, where fxi;w : 1 � i � s; w 2 V (G)g are
indeterminate variables, and the sign is positive if w lies between u and v, otherwise
negative. Let rs(G) be the rank of Ms(G). The conjecture is that

rs(G) �
s
X

i=1

��

n� 2i

2

�

�
�

i

2

��

= s

�

n

2

�

� 2

�

s+ 1

2

�

n+ 3

�

s+ 2

3

�

:

Note that the sum in the conjecture is maximised when s = bn=3c, and the value
obtained is the number of edges in (the complementary form of) Tur�an’s conjecture.

What is the motivation for this conjecture? The de�nition of Ms(G) is reminis-
cent of the incidence matrices, which have seen many applications in Combinatorics
(see [75]). The (pair) incidence matrix for G has rows indexed by edges of G,
columns by pairs of vertices, and the entry in row e and column uv is 1 if e = uvw
for some w or is 0 otherwise. Thus Ms(G) is obtained by concatenating s copies of
the incidence matrix and replacing the 1’s by certain weights. In the case s = 1,
we can set all the variables xw := x1;w equal to 1 without changing the rank: to
see this note that the variables cancel if we multiply each column uv by xuxv and
divide each row uvw by xuxvxw. Thus we obtain the signed incidence matrix , which
is obtained from the incidence matrix by attaching signs according to the order of
u; v; w as above.

To understand signed incidence matrices it is helpful to start with graphs. Sup-
pose G is a graph on [n]. Then the signed incidence matrix has rows indexed by
edges of G, columns indexed by [n], and a row ij with i < j has �1 in column i, 1
in column j, and 0 in the other columns. Note that the set of rows corresponding
to a cycle in G can be signed so that the sum is zero, so is linearly dependent. Con-
versely, it is not hard to show by induction that a set of rows corresponding to an
acyclic subgraph is linearly independent. Another way to say this is that the signed
incidence matrix is a linear representation of the cycle matroid of G. (We refer the
reader to [149] for an introduction to Matroid Theory.) Thus the maximum rank is
n� 1, with equality if and only if G is connected.
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Kalai [97] developed a ‘hyperconnectivity’ theory for graphs using generalised
signed incidence matrices. Similarly to the 3-graph case, when G is a graph, we
de�ne the matrix Ms(G), which has rows indexed by E(G), s blocks of columns
each indexed by [n], and a row uv with u < v has xi;v in column u of block i, �xi;u
in column v of block i, and is 0 otherwise. The resulting matrix is then considered to
be a linear representation of the s-hyperconnectivity matroid . The maximum possible
rank is sn�

�

s+1
2

�

. Any G achieving this maximum is called s-hyperconnected . One
result of [97] is that any s-hyperconnected graph is s-connected, in the usual sense
that deleting any s � 1 vertices leaves a connected graph. Another is that Ks+2

is a circuit, i.e. a minimally dependent set in the matroid, which leads us to an
interesting digression on saturation problems.

The saturation problem for H is to determine s(n;H), de�ned as the minimum
number of edges in a maximal H-free graph on n vertices. Thus we want an H-free
graph G such that adding any new edge to G creates a copy of H, and G has as few
edges as possible. Suppose that G is Ks+2-saturated. Then for any pair uv =2 E(G)
there is a copy of Ks+2 in G [ uv, which is a circuit, so uv is in the span of G. It
follows that G spans the entire s-hyperconnectivity matroid. In particular, G has
at least sn �

�

s+1
2

�

edges. This bound is tight, as may be seen from the example
Ks+En�s, i.e. a clique of size s completely joined to an independent set of size n�s.
More generally, the same argument applies to any G that has the weaker property
that there is a sequence G = G0; G1; : : : ; Gt = Kn, where each Gi+1 is obtained from
Gi by adding an edge that creates a copy of Ks+2 in Gi+1 that was not present in
Gi. Thus Kalai showed that such G also must have at least sn�

�

s+1
2

�

edges, giving
a new proof of a conjecture of Bollob�as [19, Exercise 6.17]. See the recent survey
[63] for more information on saturation problems.

Now we return to consider the meaning of the signed incidence matrix for 3-
graphs. First we give another interpretation for graphs. We can think of the signed

incidence matrix for Kn as a linear map from F(n2) to Fn, for some �eld F, acting
on row vectors from the right. Then an edge uv with u < v is mapped to the vector
v � u, where we are identifying edges and vertices with their corresponding basis
vectors. Geometrically, this is a boundary operation: we think of the line segment
from u to v as having boundary points u and v, with the sign indicating the order.
Similarly, we can think of the signed incidence matrix for K3

n as a linear map from

F(n3) to F(n2), where an edge uvw with u < v < w is mapped to �vw + uw � uv. It
is convenient to write vu = �uv. Then we can think of the boundary operation as
taking a 2-dimensional triangle uvw to its bounding cycle, oriented cyclically as wv,
vu, uw. This cycle has ‘no boundary’, in that if we apply the boundary operation
to wv+ vu+ uw we get v�w+w� u+ u� v = 0. In general, an oriented cycle has
no boundary, which conforms to the geometric picture of it as a closed loop. The

cycles generate the cycle space, which is the subspace of F(n3) of vectors that have
no boundary, i.e. are mapped to zero by the signed incidence matrix.

Now consider a 3-graph G on [n]. We can create a simplicial complex C which has
G as its two-dimensional faces, and the complete graph Kn as its one-dimensional
faces; i.e. we take the 1-skeleton of the n-simplex and glue in triangles according to
the edges of G. We interpret the rows of the signed incidence matrix of G as the
boundary cycles of the triangles. These generate the boundary space of G, which is
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a subspace of the cycle space of Kn. The quotient space is the �rst homology space
H1(C): it is a measure of the number of 1-dimensional ‘holes’ in the complex C.
A lower bound on r1(G) is equivalent to an upper bound on the �rst Betti number
�1(C) = dimH1(C), so the case s = 1 of Kalai’s conjecture can be rephrased as say-
ing that �1(C) � n�2: this was proved by Kalai (unpublished). He also established
the corresponding algebraic generalisation of Tur�an’s theorem on complete graphs.

Kalai also introduced a procedure of algebraic shifting , which is an intriguing
and potentially powerful tool for a variety of combinatorial problems. In general,
‘shifting’ or ‘compression’ refers to a commonly employed technique in extremal set
theory, where a problem for general families is reduced to the problem for an initial
segment in some order; e.g. most proofs of the Kruskal-Katona theorem have this
avour. We refer the reader to [99] for a survey; here we just give a very brief taste of
the operation and its properties. Suppose G is a k-graph on [n] and X = (xij)

n
i;j=1

is a matrix of indeterminates. Let X^k be the
�

n
k

�

by
�

n
k

�

matrix indexed by k-
sets, in which the (S; T )-entry is the determinant of the k by k submatrix of X
corresponding to S and T . Let M(G) be the submatrix of X^k formed by the
rows corresponding to edges of G. Now construct a basis for the column space of
M(G) by the greedy algorithm, at each step choosing the �rst column not in the
span of those chosen previously. The k-sets indexing the chosen columns give the
(exterior) shifted family �(G). This rather obscure process has some remarkable
properties. Bj�orner and Kalai [16] showed that it preserves the face numbers and
Betti numbers of any simplicial complex. Even for a graph G, the presence of certain
edges in �(G) encodes non-trivial information. For example, 23 appears i� G has a
cycle, 45 appears i� G is non-planar, and dn appears i� G is d-hyperconnected. It
seems computationally hard to compute �(G), although the randomised algorithm
of substituting random constants for the variables and using Gaussian elimination is
very likely to give the correct result. Potential applications are discussed in Section
6 of [99], but they still are yet to be realised!

Another application of homological methods was given by Csakany and Kahn
[37]. A d-simplex is a collection of d+1 sets with empty intersection, every d of which
have nonempty intersection. A few examples serve to illustrate that many common
extremal problems have a forbidden con�guration that is a simplex: the Erd}os-Ko-
Rado theorem [57] forbids 2 disjoint sets, which is a 1-simplex; the Ruzsa-Szemer�edi
(6; 3)-theorem [165] forbids the special triangle f123; 345; 561g, which is a 2-simplex;
the Tur�an tetrahedron problem forbids the 3-simplex K3

4 . Chv�atal [33] posed the
problem of determining the largest r-graph on n vertices with no d-simplex (Erd}os
[52] had posed the triangle problem earlier). He conjectured that when r � d+1 � 2
and n > r(d+ 1)=d the maximum number of edges is

�

n�1
r�1

�

, with equality only for a
star (all sets containing some �xed vertex). The known cases are r = d+ 1 (Chv�atal
[33]), �xed r; d and large n (Frankl and F�uredi [68]), d = 2 (Mubayi and Verstra�ete
[145]), and 
(n) < r < n=2�O(1) (Keevash and Mubayi [107]).

Csakany and Kahn gave new proofs of Chv�atal’s result (and also a similar result
of Frankl and F�uredi on the special triangle). They work with homology over the �eld
F2, which has the advantage that there is no need to worry about signs (+1 = �1),
so boundary maps are given by incidence matrices. They note that a star G is
acyclic, meaning that the boundary map is injective on the space generated by the
edges of G. Furthermore, for any acyclic G the size of G is equal to the dimension of
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its boundary space, which is at most
�

n�1
r�1

�

, as this is the dimension of the boundary
space of the complete r-graph Kr

n. Thus it su�ces to consider the case when G has
a non-trivial cycle space. Next they show that all minimal cycles in G are copies
of Kr

r+1, and that no edge can overlap a Kr
r+1 in precisely r � 1 points. Thus each

cycle substantially reduces the dimension of the boundary space for the acyclic part
of G, and (omitting some substantial details) the result follows after some rank
computations.

We mention one �nal application of algebraic methods with a di�erent avour.
Suppose G is a graph on [n]. Assign variables x1; � � � ; xn to the vertices and consider
the polynomial fG(x) =

Q

ij2E(G)(xi � xj). Thus fG vanishes i� xi = xj for some
edge ij. Note that G has independence number �(G) < k i� fG belongs to the
ideal I of polynomials in Z[x] that vanish on any assignment x with at least k equal
variables. Li and Li [121] showed that I is generated by the polynomials fG(x) for
graphs G that are a disjoint union of k � 1 cliques, and moreover the sizes of the
cliques may be taken as equal as possible. One can also show that the degree of any
polynomial in I is at least the degree of the generators. Applying this to fG for any
G with �(G) < k, the resulting lower bound on the number of edges gives a proof of
Tur�an’s theorem (in complementary form). It would be interesting to obtain similar
generalisations for other Tur�an problems.

12 Probabilistic methods

While probabilistic methods are generally very powerful in Combinatorics, they
seem to be less e�ective for Tur�an problems, perhaps because the extremal construc-
tions tend to be quite orderly. Some exceptions to this are random constructions for
the tetrahedron codegree problem (see Section 13.2) and the bipartite link problem
(see Section 13.6). For certain bipartite Tur�an problems the best known construc-
tions are random, although these are in cases where the upper bound is quite far
from the lower bound, so it is by no means an indication that the best construction is
random. Consider the Tur�an problem for the complete bipartite graph Kr;r. K�ovari,
S�os and Tur�an [105] obtained the upper bound ex(n;Kr;r) = O(n2�1=r). A simple
probabilistic lower bound due to Erd}os and Spencer [61] is obtained by taking the
random graph Gn;p and deleting an edge from each copy of Kr;r. Then the expected

number of edges has order �(pn2)��(pr
2
n2r), so choosing p = �(n�2=(r+1)) gives

a lower bound of order 
(n2�2=(r+1)). Recently, Bohman and Keevash [18] obtained
a small improvement to 
(n2�2=(r+1)(log n)1=(r2�1)) from the analysis of the H-free
process. However, there is still a polynomial gap between the bounds.

Lu and Sz�ekely [128] applied the Lov�asz Local Lemma to Tur�an problems (among
others). The general framework is as follows. Suppose that A1; � � � ; An are ‘bad’
events. A graph G on [n] is a negative dependency graph for the events if P(Ai j
\j2SAj) � P(Ai) for any i and S such that there are no edges from i to S and
P(\j2SAj) > 0. The general form of the local lemma states that if there are
x1; � � � ; xn 2 [0; 1) such that P(Ai) � xi

Q

j:ij2E(G)(1�xj) for all i then P(\ni=1Ai) �
Qn
i=1(1�xi) > 0, i.e. there is a positive probability that none of the bad events occur.

This is applied to give the following packing result for hypergraphs. Suppose that
H1 and H2 are r-graphs such that Hi has mi edges and every edge of Hi intersects
at most di other edges of Hi, for i = 1; 2. Suppose that n � maxfv(H1); v(H2)g and
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(d1 + 1)m2 + (d2 + 1)m1 � 1
e

�

n
r

�

, where e is the base of natural logarithms. Then
there are edge-disjoint embeddings of H1 and H2 on the same set of n vertices. This
result is in turn used to deduce several results, including the following Tur�an bound.
Suppose that F is an r-graph such that every edge intersects at most d other edges.
Then �(F ) � 1� 1

e(d+1) . This may be compared with the result of Sidorenko men-

tioned above (Section 6) that bounds �(F ) in terms of the number of edges in F .
In many cases the bound in terms of d is an improvement, but the appearance of e
makes it seem very unlikely that it is ever tight!

13 Further topics

This section gives a brief taste of a few areas of research closely related to the
Tur�an problem. It is necessarily incomplete, both in the selection of topics and in
the choice of references for each topic. The topics by subsection are 13.1: Jumps,
13.2: Minimum degree problems, 13.3: Di�erent host graphs, 13.4: Coloured Tur�an
problems, 13.5: The speed of properties, 13.6: Local sparsity, 13.7: Counting sub-
graphs.

13.1 Jumps

Informally speaking, ‘jumps’ refer to the phenomenon that r-graphs of a certain
density are often forced to have large subgraphs with a larger density. For example,
the Erd}os-Stone theorem implies that a large graph of density bigger than 1 � 1=t
contains blowups Kt+1(m) of Kt+1, so has large subgraphs of density more than
1� 1=(t+ 1). Another example is the result of Erd}os mentioned earlier (Section 2)
that a large r-graph of positive density contains complete r-partite r-graphs Kr

r (m),
so has large subgraphs of density more than r!=rr. Formally, the density d is a jump
for r-graphs if there is some c > 0 such that for any � > 0 and m � r there is n0

su�ciently large such that any r-graph on n vertices with density at least d+ � has
a subgraph on m vertices with density at least d+ c. For example, every d 2 [0; 1) is
a jump for graphs, and every d 2 [0; r!=rr) is a jump for r-graphs. Deciding whether
r!=rr is a jump for r-graphs is a long-standing open problem of Erd}os [53]. In fact,
Erd}os made the stronger conjecture that every d 2 [0; 1) is a jump for r-graphs, but
this was disproved by Frankl and R�odl [72]. The distribution of jumps and non-
jumps is not at all understood, and very few speci�c examples are known. Further
examples of non-jumps are given by Frankl, Peng, R�odl and Talbot [71] and Peng,
e.g. [150]. On the positive side, Baber and Talbot [9] recently applied ag algebras
to show that every d 2 [0:2299; 0:2316) is a jump for 3-graphs.

We give a brief sketch of the Frankl-R�odl method, as applied in [71] to prove that
5=9 is not a jump for 3-graphs. One uses the following reformulation: d is a jump
for r-graphs if and only if there is a �nite family F of r-graphs with Tur�an density
�(F) � d and blowup density b(F ) > d for all F 2 F . Suppose for a contradiction
that 5=9 is a jump for 3-graphs. Choose F with �(F) � 5=9 and b(F ) > 5=9 for
all F 2 F . Let t be large and G be the Tur�an construction with parts of size t.
Now the idea is to add O(t2) random edges inside each part, obtaining G� such that
b(G�) > 5=9, but b(H) � 5=9 for any small subgraph H of G� (here we are omitting
a lot of the proof). Since b(G�) > 5=9 and �(F) � 5=9, a su�ciently large blowup
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G�(m) must contain some F 2 F . We can write F � H(m) for some small subgraph
H of G�. But then b(F ) � b(H(m)) = b(H) � 5=9 contradicts the choice of F , so
5=9 is not a jump for 3-graphs.

13.2 Minimum degree problems

Tur�an problems concern the maximum number of edges in an F -free r-graph,
but it is also natural to ask about the maximum possible minimum degree. More
precisely, there is a minimum s-degree parameter �s(G) for each 0 � s � r�1, de�ned
as the minimum over all sets S of s vertices of the number of edges containing S.
Then we can de�ne a generalised Tur�an number exs(n; F ) as the largest value of
�s(G) attained by an F -free r-graph G on n vertices. Note that �0(G) = e(G), so
ex0(n; F ) = ex(n; F ) is the usual Tur�an number. We can also de�ne generalised

Tur�an densities �s(F ) = lims!1 exs(n; F )
�

n�s
r�s
��1

(it is non-trivial to show that
the limit exists). A simple averaging argument shows that �i(F ) � �j(F ) when
i � j. The vertex deletion method in Proposition 4.2 shows that �1(F ) = �0(F ) =
�(F ), so minimum 1-degree problems are not essentially di�erent to Tur�an problems.
However, in general we obtain a rich source of new problems, and it is not apparent
how they relate to each other. The case s = r�1 was introduced by Mubayi and Zhao
[146] under the name of codegree density . Their main result is that for r � 3 there
are no jumps for codegree problems. In particular, the set of codegree densities is
dense in [0; 1). Moreover, they conjecture that any d 2 [0; 1) is the codegree density
of some family.

As for Tur�an problems, there are few known results for codegree problems, even
asymptotically. The tetrahedron K3

4 is again one of the �rst interesting examples.
Here the asymptotically best known construction is to take a random tournament
on [n] and say that a triple ijk with i < j < k is an edge if i has one edge coming in
and one edge coming out. This shows that the codegree density of the tetrahedron
is at least 1=2. For an upper bound, nothing better is known than the bounds for
the usual Tur�an density, which are also upper bounds on the codegree density by
averaging. One known result is for the Fano plane, where Mubayi [137] showed
that the codegree density is 1=2. Tur�an and codegree problems for other projective
geometries were considered in [103, 113, 104]. An exact codegree result for the Fano
plane was obtained by Keevash [104]: if G is a Fano-free 3-graph on n vertices, where
n is large, and �2(G) � n=2, then n is even and G is a balanced complete bipartite
3-graph. The argument used a new ‘quasirandom counting lemma’ for regularity
theory, which extends the usual counting lemma by not only counting copies of
a particular subgraph, but also showing that these copies are evenly distributed.
Even for graphs, this quasirandom counting lemma has consequences that are not
immediately obvious; for example, given a tripartite graph G in which each bipartite
graph is dense and �-regular (for some small �), for any choice of dense graphs
H1; H2; H3 inside the parts V1; V2; V3 of G, there are many copies of K3(2) in G in
which the pairs inside each part are edges of the graphs H1; H2; H3. Results of this
type are potentially very powerful in assembling hypergraphs from smaller pieces.

Minimum degree conditions also lead to the study of spanning con�gurations.
Here we look for conditions on a hypergraph G on n vertices that guarantee a
particular subgraph F that also has n vertices. The prototype is Dirac’s theorem
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[44] that every graph on n � 3 vertices with minimum degree at least n=2 contains
a Hamilton cycle. Other classical minimum degree result for graphs is the Hajnal-
Szemer�edi theorem [91] that minimum degree (1 � 1=t)n gives a perfect packing
by copies of Kt (when t divides n). A generalisation by K�omlos, Sark�ozy and
Szemer�edi [115] states that the same minimum degree even gives the (t�1)th power
of a Hamilton cycle (when n is large). Another generalisation by K�uhn and Osthus
[120] determines the threshold for packing an arbitrary graph H up to an additive
constant (the precise statement is technical). An example result for hypergraphs is
a theorem of R�odl, Ruci�nski and Szemer�edi [160] that any r-graph on n vertices with
minimum codegree (1 + o(1))n=2 has a ‘tight’ Hamilton cycle, i.e. a cyclic ordering
of the vertices such that every consecutive r-set is an edge. We refer the reader to
the surveys [119] for graphs and [161] for hypergraphs.

13.3 Di�erent host graphs

A range of new problems open up when we consider additional properties for
Tur�an problems, besides that of not containing some forbidden r-graph. For any host
r-graph H and �xed r-graph F , we may de�ne ex(H;F ) as the maximum number
of edges in an F -free subgraph of H. Thus the usual Tur�an number ex(n; F ) =
ex(Kr

n; F ) is the case when H is complete. We stick to graphs (r = 2) for simplicity.

In principle one can consider any graph H, but some host graphs seem particular
natural. An important case is when H is given by a random model, e.g. the Erd}os-
R�enyi random graph Gn;p. This is motivated by considerations of resilience of
properties. Here we consider some property of Gn;p (i.e. a property that holds with
high probability) and ask how resilient it is when some edges are deleted. For
example, if p is not ‘too small’, Gn;p not only has a triangle, but one even needs
to delete asymptotically half of the edges to destroy all triangles. Equivalently, any
triangle-free subgraph of Gn;p has asymptotically at most half of its edges. This
is tight, as any graph has a bipartite subgraph that contains at least half of its
edges. To clarify what ‘too small’ means, note that if the number of triangles is
much smaller than the number of edges then such a result will not hold, as one can
delete one edge from each triangle with negligible e�ect. This suggests p = n�1=2 as
a threshold for the problem, which is indeed the case (this follows from a result of
Frankl and R�odl [74]). There is a large literature on generalising this result, which
we do not have space to go into here. A comprehensive generalisation to many
extremal problems was recently given independently by Schacht [169] and Conlon
and Gowers [36]. Among these results is Tur�an’s theorem for random graphs, that
when p is not too small the largest Kt+1-free subgraph of Gn;p has asymptotically
1 � 1=t of its edges; again the threshold for p is the value for which the number of
Kt’s is comparable with the number of edges. Similar results apply for hypergraph
Tur�an problems, and to certain extremal problems from number theory, such as
Szemer�edi’s theorem on arithmetic progressions. Another direction of research is
that started by Sudakov and Vu [185] on local resilience. Here the question is how
many edges one needs to delete from each vertex to destroy a certain property of
Gn;p. This is a better question for global properties such as Hamiltonicity, which
one can destroy by deleting all edges at one vertex: this is not a signi�cant global
change, but a huge local change.



120 Peter Keevash

The above only concerns the case when the host graph H is random. Mubayi and
Talbot [144] consider Tur�an problems with colouring conditions, which could also
be viewed from the perspective of a constrained host graph. Say that an r-graph
G is strongly t-colourable if there is a t-colouring of its vertices such that no edge
has more than one vertex of the same colour. (They call this ‘t-partite’, but we use
this term di�erently in this paper; our use of ‘t-partite’ is equivalent to their use of
‘t-colourable’.) Their main result (in our language) is that the asymptotic maximum
density of an F -free r-graph on n vertices that is strongly t-colourable is equal to
the maximum blowup density b(G) over all hom-F -free r-graphs G on t vertices. For
example, the maximum density in a strongly 4-colourable K3

4 -free 3-graph is 8=27;
this is achieved by a construction with 4 parts of sizes n=3; 2n=9; 2n=9; 2n=9, with
edges equal to all triples with one vertex in the large part and the other two vertices
in two di�erent smaller parts. Chromatic Tur�an problems were considered earlier
by Talbot [186] as a tool for obtaining bounds on Tur�an density of the 3-graph on
4 vertices with 3 edges. (These chromatic bounds were subsequently improved by
Markstr�om and Talbot [132].) Here the problem is to estimate the maximum density
of an F -free r-graph on n vertices that is t-partite. Mubayi and Talbot solved this
problem for the extended complete graph, in the sense that they have a procedure for
computing the maximum density, which is in principle �nite, although not practical
except in small cases. They conjecture that the natural example is optimal, but
can only prove this for r = 2 and r = 3. One example of their result shows that
chromatic Tur�an densities can be irrational: the maximum density of a bipartite
K3

6 -free 3-graph is (13
p

13� 35)=27 � 0:4397, achieved by blowing up K3
5 � e.

Another case which has received a lot of attention is when H = Qn is the graph
of the n-cube, i.e. V (H) consists of all subsets of [n] and edges join sets that di�er in
precisely one element. Erd}os [55] posed the problem of determining the maximum
proportion of edges in a C4-free subgraph of Qn. Noting that any consecutive levels
of the cube span a C4-free subgraphs, a lower bound of 1=2 is obtained by taking
the union of the subgraphs spanned by levels 2i and 2i+1 for 0 � i < n=2. The best
known upper bound is approximately 0:6226, due to Thomason and Wagner [189].
We will not attempt to survey the literature on these problems, but refer the reader
to Conlon [34] for a simpler proof of many of the known results and several references.
We draw the reader’s attention to the problem of deciding whether ex(Qn; C10) has
the same order of magnitude as e(Qn); this is the only unsolved instance of this
problem for cycles (the answer is ‘yes’ for C4 and C6; ‘no’ for C8 and longer cycles).

We also remark that even ‘vertex Tur�an problems’ in the cube seem to be hard.
For example, what is the smallest constant ad such that there is a set of � ad2

n

vertices in the n-cube that hits every subcube of dimension d? This problem was
introduced by Alon, Krech and Szab�o [5], who showed log d

2d+2 � ad � 1
d+1 ; there

is a surprisingly large gap between the upper and lower bounds! A variant on
this problem introduced by Johnson and Talbot [96] is to �nd a particular subset
F � V (Qd): what is the large constant �F such that there exists S � V (Qn) of size
jSj � �F 2n such that there is no subgraph embedding i : Qd ! Qn with i(F ) � S?
In particular, they conjecture that �F = 0 for jF j �

�

d
d=2

�

(it is not hard to see that

this can be false for larger F ). Bukh (personal communication) observed that this
conjecture is equivalent to the following hypergraph Tur�an problem. For r � s > t
we de�ne the following r-graph SrKt

s, which may be regarded as a ‘suspension’
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of Kt
s. The vertex set of SrKt

s is the union of disjoint sets S of size s and A of
size r � t. The edges consist of all r-tuples containing A. The conjecture is that
limr!1 �(SrKt

s) = 0 for any s; t. Even the case s = 4 and t = 2 is currently
open! The case s = 3 and t = 2 is straightforward: SrK2

3 just consists of (any)
3 edges on a set of r + 1 vertices, so �(SrK2

3 ) � 2=(r + 1). However, it is an
interesting problem to determine the order of magnitude of �(SrK2

3 ) for large r:
Alon (communication via Bukh) gave a lower bound of order (log r)=r2. In general,
given the apparent di�culty of determining Tur�an densities exactly, it seems that
such problems involving additional limits may be a fruitful avenue for developing
the theory.

13.4 Coloured Tur�an problems

There are a variety of generalisations of the Tur�an problem that allow additional
structures, such as directed edges, multiple edges, or coloured edges. Even for
graphs this leads to rich theories and several unsolved problems. Brown, Erd}os and
Simonovits initiated this �eld with a series of papers on problems for digraphs and
multigraphs. For multigraph problems, we �x some positive integer q and consider
multigraphs with no loops and edge multiplicity at most q. Then given a family F
of multigraphs, we want to determine ex(n;F), de�ned as the maximum number of
edges in a multigraph not containing any F in F . A further generalisation allows
directions on the edges; for simplicity we ignore this here. In the case q = 1 this
is the usual Tur�an problem. For q = 2 (or digraphs), it is shown in [27] that any
extremal problem has a blowup construction that is asymptotically optimal. Here a
blowup is de�ned by taking some symmetric t�t matrix A whose entries are integers
between 0 and q, dividing a vertex set into t parts, and putting aij edges between
any pair of vertices u; v with u in part i and v in part j (we may have i = j).

Similarly to the usual Tur�an problem, one can de�ne the blowup density b(A)
which is the density achieved by this construction: formally b(A) is the maximum
value of xtAx over the standard simplex S of all x = (x1; � � � ; xn) with xi � 0
for 1 � i � n and

P

xi = 1. Say that such a matrix is dense if any proper
principal submatrix has lower blowup density. It is shown in [28] that for any dense
matrix A there is a �nite family F such that A is the unique matrix whose blowup
gives asymptotically optimal constructions of F-free multigraphs. Furthermore, for
q = 2 (or digraphs), in [29] they describe an algorithm that determines all optimal
matrices for a given family (the algorithm is �nite, but not practical). Simpler
proofs of these results were given by Sidorenko [178], who also showed that analogous
statements do not hold for q > 2, thus disproving a conjecture of Brown, Erd}os and
Simonovits. Brown, Erd}os and Simonovits also conjectured that all densities are
jumps (as for graphs), but this was disproved by R�odl and Sidorenko [164] for q � 4.
The conjecture is true for q = 2, but is open for q = 3.

Another coloured variant on many problems of extremal set theory, including
Tur�an problems, was introduced by Hilton [93] and later by Keevash, Saks, Sudakov
and Verstra�ete [109]. Given a list of set systems, which we think of as colours, we
call another set system multicoloured if for each of its sets we can choose one of the
colours it belongs to in such a way that each set gets a di�erent colour. Given an
integer k and some forbidden con�gurations, the multicoloured extremal problem
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is to choose k colours with total size as large as possible subject to containing no
multicoloured forbidden con�guration. Let f be the number of sets in the forbidden
con�guration. One possible extremal construction for this problem is to take f � 1
colours to consist of all possible sets, and the other colours to be empty. Another
construction is to take all k colours to be equal to some �xed family that is of
maximum size subject to not containing a forbidden con�guration. In [109] we
solved the multicolour version of Tur�an’s theorem, by showing that one of these two
constructions is always optimal. In other words, if G1; � � � ; Gk are graphs on the
same set of n vertices for which there is no multicoloured Kt, then

Pk
i=1 e(Gi) is

maximised either by taking
�

t
2

�

� 1 complete graphs and the rest empty graphs, or
by taking all k graphs equal to some �xed Tur�an graph Tt�1(n). Simple calculations
show that there is a threshold value kc so that the �rst option holds for k < kc and
the second option holds for k � kc. This proved a conjecture of Hilton [93] (although
we were not aware of this paper at the time of writing). It would be interesting to
understand which other extremal problems exhibit this phenomenon of having only
two extremal constructions. It is not universal, as shown by an example in [109],
but it does hold for several other classical problems of extremal set theory, as shown
in [21] and [112].

A related problem posed by Diwan and Mubayi (unpublished) concerns the min-
imum size of a colour, rather than the total size of colour. Speci�cally, for any n
and a �xed graph F with edges coloured red or blue, they ask for the threshold m
such that, given any red graph and blue graph on the same set of n vertices each
with more than m edges, one can �nd a copy of F with the speci�ed colouring.
They pose a conjecture when F is a coloured clique, and prove certain cases of their
conjecture. Their proof uses a stronger result which replaces the minimum size of
a colour by a weighted linear combination of the colours. Such problems have been
recently studied in a much more general context by Marchant and Thomason [130],
who gave applications to the probability of hereditary graph properties (see Section
13.5).

We conclude this subsection with another coloured generalisation studied by
Keevash, Mubayi, Sudakov and Verstra�ete [108]. For a �xed graph H, we ask
for the maximum number of edges in a properly edge-coloured graph on n vertices
which does not contain a rainbow H, i.e. a copy of H all of whose edges have di�erent
colours. This maximum is denoted ex�(n;H), and we refer to it as the rainbow Tur�an
number of H. For any non-bipartite graph H we showed that ex�(n;H) � ex(n;H),
and for large n we have ex�(n;H) = ex(n;H) when H is critical (e.g. a clique or
an odd cycle). Bipartite graphs H are a source of many open problems. The case
when H = C2k is an even cycle is particularly interesting because of its connection
to additive number theory. We conjecture that ex�(n;C2k) = O(n1+1=k), which
would generalise a result of Ruzsa on B�k-sets in abelian groups. (We proved it for
k = 2 and k = 3.) More generally, there is considerable scope to investigate number
theoretic consequences of extremal results on coloured graphs, as applied to Cayley
graphs.
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13.5 The speed of properties

Suppose P is a graph property, i.e. a set of graphs that is closed under isomor-
phism. We consider properties P that are hereditary , meaning that they are closed
under taking induced subgraphs, or even monotone, meaning that they are closed
under taking arbitrary subgraphs. A monotone property can be characterised as the
set of F-free graphs, for some (possibly in�nite) family F . Similarly, a hereditary
property can be characterised as the set of induced-F-free graphs, for some F , i.e.
graphs with no copy of any F in F as an induced subgraph. The speed s(n) of P is
the number of labelled graphs in P on [n]. There is a large literature on the speed
of properties, too large to adequately cite here, so we refer the reader to [3] as a
recent paper with many references.

Consider the problem of counting F -free graphs on [n], for some �xed graph
F . By taking all subgraphs of any �xed F -free graph of maximum size ex(n; F ) we
obtain at least 2ex(n;F ) distinct F -free graphs. In fact, this is essentially tight for
non-bipartite graphs F , as Erd}os, Frankl and R�odl [56] showed an upper bound of
2(1+o(1))ex(n;F ). (The case when F is bipartite is another story, see [15] for some re-
cent results.) The corresponding generalisation to hereditary properties was proved
by Alekseev [1] and by Bollob�as and Thomason [22]. They showed that the speed
of P is 2(1�1=r+o(1)n2=2, where r is a certain parameter of P known as the ‘colouring
number’ (informally, it is the maximum number of parts in a partite construction
for graphs in P, where each part is complete or empty, and the graph is otherwise
arbitrary). These results have been re�ned to give more precise error terms and
even a description of the structure of almost all graphs in a hereditary property. For
monotone properties the results are due to Balogh, Bollob�as and Simonovits [11, 12],
and for hereditary properties to Alon, Balogh, Bollob�as and Morris [3]. Bollob�as
and Thomason [23] studied a generalisation in which a property is measured by its
probability of occurring in the random graph G(n; p) (thus the speed corresponds
to p = 1=2). This generalised problem exhibits extra complexities, analysed by
Marchant and Thomason [130] (see Section 13.4).

It is natural to pose the same questions for hypergraph properties. Dotson and
Nagle [45] and Ishigami [95] showed that the speed of a hereditary r-graph property
P is 2ex(n;P)+o(nr). Here ex(n;P) is the maximum size of an r-graph G on [n] on
n vertices such that there exists an r-graph H on [n] that is edge-disjoint from G
such that H [G0 2 P for every subgraph G0 of G. (In the case when P is monotone
this is the usual Tur�an number, i.e. the maximum size of an r-graph in P.) In
principle this is analogous to the Alexeev-Bollob�as-Thomason result, but we lack
a concrete description of ex(n;P) analogous to the colouring number (even in the
monotone case, which is the point of this survey!) In the case of the Fano plane a
re�ned result was obtained by Person and Schacht [151], who showed that almost
every Fano-free 3-graph on n vertices is bipartite. One might expect similar results
to hold for other Tur�an problems where we know uniqueness and stability of the
extremal construction. This has been established by Balogh and Mubayi [13, 14] for
cancellative 3-graphs and 3-graphs with independent neighbourhoods.
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13.6 Local sparsity

Brown, Erd}os and S�os [30] generalised the hypergraph Tur�an problem by asking
for the maximum number of edges in an r-graph satisfying a ‘local sparsity’ condition
that bounds the number of edges in any set of a given size. Write exr(n; v; e) for
the maximum number of edges in an r-graph on n vertices such that no set of v
vertices spans at least e edges. For example ex3(n; 4; 4) = ex(n;K3

4 ). A result of
[30] is exr(n; e(r� k) + k; e) = �(nk) for any 1 � k � r; the upper bound follows by
noting that any k-set belongs to at most e�1 edges, and the lower bound by taking
a random r-graph of small constant density and deleting all edges in e(r�k)+k-sets
with at least e edges. They described the case r = 3, v = 6, e = 3 as ‘the most
interesting question we were unable to answer’. This was addressed by the celebrated
‘(6,3)-theorem’ of Ruzsa and Sz�emeredi [165] that n2�o(1) < ex3(n; 6; 3) < o(n2). It
would be very interesting to tighten these bounds: this is connected with regularity
theory (see Section 10) and bounds for Roth’s theorem (see [90, 166].) Further
results on the general problem are n2�o(1) < exr(n; 3(r � 1); 3) < o(n2) in [56],
exr(n; e(r� k) + k+ blog2(e)c; e) < o(nk) in [167], exr(n; 4(r� k) + k+ 1; 4) < o(nk)
for k � 3 in [168], and nk�o(1) < exr(n; 3(r � k) + k + 1; 3) < o(nk) in [6]. An
interesting open problem is to determine whether ex3(n; 7; 4) is o(n2).

A weighted generalisation of this problem is to determine the largest total weight
exZ(n; k; r) that can be obtained by assigning integer weights to the edges of a graph
on n vertices such that any set of k vertices spans a subgraph of weight at most r.
(We stick to graphs for simplicity.) Note that negative weights are allowed, but for
comparison with multigraph problems one can also consider the analogous quantity
exN(n; k; r) in which weights have to be non-negative. We remarked earlier that
the example exN(n; 4; 20) � 3

�

n
2

�

was crucial in determining the Tur�an density of
the Fano plane. In general, F�uredi and K�undgen [80] have determined exZ(n; k; r)
asymptotically for all k and r, but there remain several interesting open problems,
such as determining exact values and extremal constructions, and obtaining similar
results for exN(n; k; r).

Another generalisation is to specify exactly what numbers of edges are allowed
in any set of a given size. In Section 7 we discussed the problem for 3-graphs in
which every 4-set spans 0, 2 or 3 edges. In Section 6 we mentioned the lower bound
�(F ) � 2=7 given by Frankl and F�uredi [67] when F is the 3-graph with 4 vertices
and 3 edges. The main result of [67] is an exact result for 3-graphs in any 4-set spans
0 or 2 edges. In fact they classify all such 3-graphs: they are either obtained by
(i) blowing up the 3-graph on 6 vertices described in Section 6, or (ii) by placing n
points on a circle and taking the edges as all triples that form a triangle containing
the centre (assume that the centre is not on the line joining any pair). It is easy to
check that the blowup construction (i) is larger for n � 6. A related problem is a
conjecture of Erd}os and S�os [60] that any 3-graph with bipartite links has density
at most 1=4. Construction (ii) is an example that would be tight for this conjecture.
Another example is to take a random tournament and take the edges to be all
triples that induce cyclic triangles. In Section 9 we mentioned the improvements
on �(Kr

r+1) given by Lu and Zhao [129]. These were based on a structural result
for r-graphs in which every (r + 1)-set contains 0 or r edges, answering a question
of de Caen [41]: if r = 2 then G is a complete bipartite graph, and if r � 3 and
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n > r(p�1), where p is the smallest prime factor of r�1, then G is either the empty
graph or a star (all r-sets containing some �xed vertex).

13.7 Counting subgraphs

A further generalisation of the Tur�an problem is to look not only for the threshold
at which a particular r-graph F appears, but how many copies of F are guaranteed
by a given number of edges. Even the most basic case counting triangles in graphs is
a di�cult problem that was open for many years. The following asymptotic solution
was recently given by Razborov [157] using ag algebras. Among graphs on n vertices
with edge density between 1�1=t and 1�1=(t+1), the asymptotic minimum number
of triangles is achieved by a complete (t + 1)-partite graph in which t parts are of
equal size and larger than the remaining part. (One can give an explicit formula
in terms of the edge density, but the resulting expression is rather unwieldy.) It is
conjectured that the same example minimises the number of copies of Ks for any s.
Nikiforov [147] established this for s = 4, and also re-proved Razborov’s result for
s = 3 by di�erent means. In general, Bollob�as (see [19, Chapter 6]) showed a lower
bound that is equal to the conjecture for densities of the form 1� 1=t, and a linear
function on each interval [1 � 1=t; 1 � 1=(t + 1)]. Very recently, Reiher announced
an asymptotic solution to the full conjecture.

The problem takes on a di�erent avour when one considers graphs where the
number of edges exceeds the Tur�an number, but is asymptotically the same. For
example, Rademacher (unpublished) extended Mantel’s result by showing that a
graph on n vertices with n2=4 + 1 edges contains at least bn=2c triangles (which is
tight). This was extended by Erd}os [49] and then by Lov�asz and Simonovits [125],
who showed that if q < n=2 then n2=4 + q edges guarantee at least qbn=2c triangles.
Mubayi [139, 140] has extended these results in several directions. For a critical
graph F he showed that there is � > 0 such that if n is large and 1 � q < �n then
any graph on n vertices with ex(n; F )+q edges contains at least qc(n; F ) copies of F .
Here c(n; F ) is the minimum number of copies of F created by adding a single edge
to the Tur�an graph, which is easy to compute for any particular example, although a
general formula is complicated. The bound is sharp up to an error of O(qc(n; F )=n).
For hypergraphs he obtains similar results in many cases where uniqueness and
stability of the extremal example is known.

For bipartite graphs F there is an old conjecture of Sidorenko [177] that random
graphs achieve the minimum number of copies of F . A precise formulation may be
given in terms of homomorphisms. Recall that the homomorphism density tF (G) is
the probability that a random map from V (F ) to V (G) is a homomorphism. Then
the conjecture is that tF (G) � d(G)e(F ), where d(G) = te(G) is the edge density
of G. This may be viewed as a correlation inequality for the events that edges of
F are embedded as edges of G. It also has an equivalent analytic formulation as
tF (W ) � te(W )e(F ) for any graphon W , which is worth noting as integrals similar to
tF (W ) appear in other contexts (e.g. Feynmann integrals in quantum �eld theory).
Sidorenko was a pioneer of the analytic approach, and surveyed many of his results
in [179]. Recent partial results on the Sidorenko conjecture include a local form by
Lov�asz [124] and an approximate form by Conlon, Fox and Sudakov [35]. Note that
examples in [177] show that the natural hypergraph generalisation of the conjecture
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Figure 1: The exact results

is false.

In the other direction, one may ask to maximise the number of copies of a �xed
r-graph F in an r-graph G, given the number of edges and vertices in G. We start
with the case when F = Kr

t is a clique. This turns out not to depend on the
number of vertices in G. For example, when e(G) =

�

m
r

�

the extremal example is
Kr
m, which has

�

m
t

�

copies of Kr
t . In general the extremal example is determined by

the Kruskal-Katona theorem [118, 100]. Results for general graphs were obtained
by Alon [2] and for hypergraphs by Friedgut and Kahn [76]. Here we do not expect
precise answers, but just seek the order of magnitude. The result of [76] is that the
maximum number of copies of an r-graph F in an r-graph G with e edges has order
e�
�(F ), where ��(F ) is the fractional independence number of F .

Going back to cliques in graphs, S�os and Straus [184] proved the following (gen-
eralisation of a) conjecture of Erd}os [48]. Suppose G is a graph and let Nt de-
note the number of Kt’s in G. If Nk+1 = 0 (i.e. G is Kk+1-free) and t � 0 then

Nt+1 �
�

k
t+1

��

k
t

��(t+1)=t
N

(t+1)=t
t . Note that equality holds if G is a blowup of Kk.

Repeated application gives a bound for the number of Kt’s in a Kk+1-free graph in
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terms of the number of edges N2: we have Nt �
�

k
t

��

k
2

��t=2
N
t=2
2 . The proof uses

a far-reaching generalisation of the Lagrangian method considered in Section 3. In
fact, it is hard to appreciate the scope of the method in the generality presented
in [184], and it may well have applications in other contexts yet to be discovered.
The idea is to assign a variable xT to each Kt in G and consider the polynomial
fG(x) =

P

S

Q

T�S xT in the variables x = (xT ), where the sum is over all Kt+1’s
S in G. Let � be the maximum value of fG(x) over all x with every xT � 0 and
P

T x
t
T = 1 (note the power). A general transfer lemma in [184] implies that a

maximising x can be chosen with the property that the vertices incident to variables
of positive weight induce a complete subgraph. This implies that x is supported on
the Kt’s contained in some clique, which has size at most k, since Nk+1 = 0. The

maximum is achieved with equal weights
�

k
t

��1=t
, which gives � =

�

k
t+1

��

k
t

��(t+1)=t
.

On the other hand, setting every xT equal to N
�1=t
t is a valid assignment, and gives

a lower bound � � Nt+1N
�(t+1)=t
t , so the result follows.

14 Summary of results

This survey has been organised by methods, so for easy reference we summarise
the results here. The exact results are illustrated in Figure 1 (some in�nite families
are indicated by a representative example). A list follows: F5 [66] (generalising
cancellative 3-graphs [20]), Fano plane [84, 110], expanded triangle [111], generalised
4-graph triangle = 4-book with 2 pages [152] (generalising cancellative 4-graphs
[173]), 4-book with 3 pages [83], 3-graphs with independent neighbourhoods [82],
4-graphs with independent neighbourhoods = 4-book with 4 pages [81], extended
complete graphs [155] (re�ning [138]), generalised fans [141], extended trees [174], 3-
graph 4-sets with 1, 3 or 4 edges [67] 3-graph 4-sets with 1 or 4 edges [154] (re�ning
[158]), 3-graph t-triples [192]. Besides these, there is an ‘almost exact’ result for
generalised 5-graph and 6-graph triangles [70], and asymptotic results (i.e. exact
Tur�an densities) for expanded cliques [176] and 5 3-graphs related to F (3; 3) [143].
Many further asymptotic results follow from Theorem 3.1.
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Some new results in extremal graph theory

Vladimir Nikiforov

Abstract

In recent years several classical results in extremal graph theory have been
improved in a uniform way and their proofs have been simpli�ed and stream-
lined. These results include a new Erd}os-Stone-Bollob�as theorem, several sta-
bility theorems, several saturation results and bounds for the number of graphs
with large forbidden subgraphs.

Another recent trend is the expansion of spectral extremal graph theory,
in which extremal properties of graphs are studied by means of eigenvalues of
various matrices. One particular achievement in this area is the casting of the
central results above in spectral terms, often with additional enhancement. In
addition, new, speci�c spectral results were found that have no conventional
analogs.

All of the above material is scattered throughout various journals, and since
it may be of some interest, the purpose of this survey is to present the best of
these results in a uniform, structured setting, together with some discussions of
the underpinning ideas.
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1 Introduction

The purpose of this survey is to give a systematic account of two recent lines of
research in extremal graph theory. The �rst one, developed in [14],[15],[16],[63, 68],
improves a number of classical results grouped around the theorem of Tur�an. The
main progress is along the following three guidelines: replacing �xed parameters by
variable ones; giving explicit conditions for the validity of the statements; developing
and using tools of general scope. Among the results obtained are a new Erd}os-
Stone-Bollob�as theorem (see Section 2.2), several stability theorems (see Section
2.4), several saturation results, and bounds for the number of graphs without given
large subgraphs.

The second line of research, developed in [13],[69, 82], can be called spectral ex-
tremal graph theory, where connections are sought between graph properties and the
eigenvalues of certain matrices associated with graphs. As a result of this research,
much of classical extremal graph theory has been translated into spectral statements,
and this translation has also brought enhancement. Among the results obtained are
spectral forms of the Tur�an theorem and the Erd}os-Stone-Bollob�as theorem, several
stability theorems, along with new bounds for the Zarankiewicz problem (What is
the maximum number of edges in a graph with no Ks;t?).

In the course of this work a few tools were developed, which help to cast system-
atically some classical results and their proofs into spectral form. The use of this
machinery is best exhibited in [66], where we gave a new stability theorem and also
its spectral analog - Theorems 2.19 and 3.10 below. As an illustration, in Section 5
we outline the proofs of these two results.

We believe that ultimately the spectral approach to extremal graph theory will
turn out to be more fruitful than the conventional one, albeit it is also more di�cult,
and is still underdeveloped. Indeed, most statements in conventional terms can be
cast and proved in spectral terms, but in addition to that, there are a lot of speci�c
spectral results (say, Theorem 3.22) with no conceivable conventional setting.

The rest of the survey is organized as follows. To keep the beginning straight-
forward, the bulk of the necessary notation and the basic facts have been shifted
to Section 6, although some de�nitions are given also where appropriate. Section 2
covers the conventional, nonspectral problems, while Section 3 presents the spectral
results. In Section 4, we have collected some basic and more widely applicable state-
ments, which we have found useful on more than one occasion. Finally Section 5
presents some proof techniques for illustration, and in fact these are the only proofs
in this survey.
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2 New results on classical extremal graph problems

In extremal graph theory one investigates how graph properties depend on the
value of various graph parameters. In a sense almost all of graph theory deals with
extremal problems, but there is a bundle of results grouped around Tur�an’s theorem
[89], that undoubtedly constitutes the core of extremal graph theory. To state this
celebrated theorem, which has stimulated researchers for more than six decades,
recall that for n � r � 2; the Tur�an graph Tr (n) is the complete r-partite graph of
order n whose class sizes di�er by at most one. We let tr (n) = e (Tr (n)) :

Theorem 2.1 If G is a graph of order n; with no complete subgraph of order r+ 1;
then e (G) � tr (n) with equality holding only when G = Tr (n) :

Here is a more popular, but slightly weaker version, which we shall call the
concise Tur�an theorem:

If G is a graph of order n; with e (G) > (1� 1=r)n2=2; then G contains a
complete subgraph of order r + 1:

No doubt, Tur�an’s theorem is a nice combinatorial statement and it is not too
di�cult to prove as well. However, its external simplicity is incomparable with its
real importance, since this theorem is a cornerstone on which rest much more general
statements about graphs. Thus, in this survey, we shall meet the Tur�an graph Tr (n)
and the numbers tr (n) on numerous occasions.

2.1 The extremal problems that are studied

Among the many questions motivated by Tur�an’s theorem, the ones that we will
discuss in Section 2 fall into the following three broad classes:

(1) Which subgraphs are present in a graph G of order n whenever e (G) >
tr (n) and n is su�ciently large?

As we shall see, here the range of e (G) � tr (n) determines di�erent problems:
when e (G)� tr (n) = o (n) we have saturation problems, and when e (G)� tr (n) =
o
�

n2
�

, we have Erd}os-Stone type problems.

Other questions that we will be interested in give rise to the so called stability
problems, concerning near-maximal graphs without forbidden subgraphs.

(2) Suppose that Hn is a graph which is present in any graph G of order n
whenever e (G) > tr (n) ; but Hn is not a subgraph of the Tur�an graph Tr (n). We
can ask the following questions:

- What can be the structure of an Hn-free graph G of order n if e (G) > tr (n)�
f (n) ; where f (n) � 0 and f (n) = o

�

n2
�

?

- What can be the structure of an Hn-free graph G of order n; with minimum
degree � (G) > (1� c) � (tr (n)) for some su�ciently small c > 0?

Obviously these two general questions have lots of variations, many of which are
intensively studied due to their applicability in other extremal problems.
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Finally, recall that a long series of results deals with the number of graphs having
some monotone or hereditary properties. Here we will discuss a similar and natural
question which, however, goes beyond this paradigm:

(3) Let fHng be a sequence of graphs with v (Hn) = o (log n) : How many Hn-free
graphs of order n are there?

2.2 Erd}os-Stone type problems

We write Kr (s1; :::; sr) for the complete r-partite graph with class sizes s1; :::; sr;
and set for short

Kr (p) = Kr (p; :::; p) and Kr (p; q) = Kr (p; :::; p; q) :

Let us recall the fundamental theorem of Erd}os and Stone [42].

Theorem 2.2 For all c > 0 and natural r; p; there is an integer n0 (p; r; c) such
that if G is a graph of order n > n0 (p; r; c) and e (G) � (1� 1=r + c)n2=2; then G
contains a Kr+1 (p).

Noting that tr (n) t (1� 1=r)n2=2; we see the close relation of Theorem 2.2
to Tur�an’s theorem. In fact, Theorem 2.2 answers a fairly general question: what
is the maximum number of edges e (n;H) in a graph of order n that does not con-
tain a �xed (r + 1)-chromatic subgraph H? Theorem 2.2 immediately implies that
e (n;H) � (1� 1=r + o (1))n2=2: On the other hand, Tr (n) contains no (r + 1)-
chromatic subgraphs, and so, e (n;H) = (1� 1=r + o (1))n2=2:

Write g (n; r; c) for the maximal p such that every graph G of order n with

e (G) � (1� 1=r + c)n2=2

contains a Kr+1 (p) : For almost 30 years the order of magnitude of g (n; r; c) re-
mained unknown; it was established �rst by Bollob�as and Erd}os in [8], as given
below. This simplest quantitative form of the Erd}os-Stone theorem we call the
Erd}os-Stone-Bollob�as theorem.

Theorem 2.3 There are constants c1; c2 > 0 such that

c1 log n � g (n; r; c) � c2 log n:

Subsequently the function g (n; r; c) was determined with great precision in [9],
[21], [10], [52], to name a few milestones. However, since Szemer�edi’s Regularity
Lemma is a standard tool in this research, the results are con�ned to �xed c; and n
extremely large.

To overcome these restrictions, in [63], we proposed a di�erent approach, based
on the expectation that the presence of many copies of a given subgraph H must
imply the existence of large blow-ups of H: As a by-product, this approach gave
results in other directions as well, which otherwise do not seem too close to the
Erd}os-Stone theory; two such topics are outlined in 2.2.2 and 2.2.3.
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2.2.1 Re�ning the Erd}os-Stone-Bollob�as theorem The general idea above is
substantiated for cliques in the following two theorems, given in [63].

Theorem 2.4 Let r � 2; let c and n be such that

0 < c < 1=r! and n � exp
�

c�r
�

;

and let G be a graph of order n: If kr (G) > cnr; then G contains a Kr (s; t) with
s = bcr log nc and t > n1�cr�1

:

In a nutshell, Theorem 2.4 says that if a graph contains many r-cliques, then it
has large complete r-partite subgraphs. Hence, to obtain Theorem 2.3, all we need
to prove is that the hypothesis of the Erd}os-Stone theorem implies the existence of
su�ciently many r-cliques. This implication is fairly standard, and so we obtain the
following explicit version of the Erd}os-Stone-Bollob�as theorem.

Theorem 2.5 Let r � 2; let c and n be such that

0 < c < 1 and n � exp
�

(rr=c)r+1
�

;

and let G be a graph of order n: If e (G) � (1� 1=r + c)n2; then G contains a
Kr (s; t) with

s =
j

(c=rr)r+1 log n
k

and t > n1�(c=rr)r :

In the two theorems above, we would like to emphasize the three principles
outlined in the introduction: �rst, the fundamental parameter c may depend on n;
e.g., letting c = 1= log log n; the conclusion is meaningful for su�ciently large n;
note that this fact can be veri�ed precisely because the conditions for validity are
stated explicitly. Also, the proof of these theorems relies on more basic statements
of wider applicability - Lemma 4.1 and Lemma 4.2.

Another observation about this setup is the peculiarity of the graphs Kr (s; t)
in the conclusions of the above theorems: if the statement holds for some c; then it
holds also for all positive c0 < c as long as n is large enough. That is to say, when
n increases, in addition to the graphs Kr (s; t) guaranteed by the theorems, we can
�nd other, larger and more lopsided graphs Kr (s0; t0) with s0 < s and t0 > t: This
same observation can be made on numerous other occasions below, and usually we
shall omit it to avoid repetition.

Let us note that Theorem 2.3 implies also the following assertion, which strength-
ens the observation of Erd}os and Simonovits [43]:

Theorem 2.6 Let r � 3 and let F1; F2; : : : be (r + 1)-chromatic graphs satisfying
v (Fn) = o (log n) : Then

max fe (G) : G 2 G (n) and Fn * Gg =
r � 1

2r
n2 + o

�

n2
�

:

Thus Theorem 2.6 solves asymptotically the Tur�an problem for families of for-
bidden subgraphs whose order grows not too fast with n: Moreover, the condition
v (Fn) = o (log n) can be sharpened further using the bounds given by Ishigami in
[52].
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2.2.2 Graphs with many copies of a given subgraph In this subsection we shall
apply the basic idea above to arbitrary subgraphs of graphs, including induced ones.

Let us �rst de�ne a blow-up of a graph H: given a graph H of order r and positive
integers k1; : : : ; kr, we write H (k1; : : : ; kr) for the graph obtained by replacing each
vertex u 2 V (H) with a set Vu of size ku and each edge uv 2 E (H) with a complete
bipartite graph with vertex classes Vu and Vv:

We are interested in the following generalization of Theorem 2.4: Suppose that
a graph G of order n contains cnr copies of a given subgraph H on r vertices. How
large a \blow-up" of H must G contain?

The following theorem from [64] is an analog of Theorem 2.4 for arbitrary sub-
graphs.

Theorem 2.7 Let r � 2; let c and n be such that

0 < c < 1=r! and n � exp
�

cr
2
�

;

and let H be a graph of order r: If G 2 G (n) and G contains more than cnr copies

of H; then G contains an H (s; : : : s; t) with s =
j

cr
2

log n
k

and t > n1�cr�1
:

A similar theorem is conceivable for induced subgraphs, but note the obvious
bump: the complete graph Kn has �

�

n2
�

edges, i.e. K2’s, but contains no induced
4-cycle, i.e. K2 (2) : To come up with a meaningful statement, we need the following
more exible version of a blow-up:

We say that a graph F is of type H (k1; : : : ; kr) ; if F is obtained from H (k1; : : : ; kr)
by adding some (possibly zero) edges within the sets Vu; u 2 V (H) :

This de�nition in hand, we can state the induced graph version of Theorem 2.7,
also from [64].

Theorem 2.8 Let r � 2; let c and n be such that

0 < c < 1=r! and n � exp
�

cr
2
�

;

and let H be a graph of order r: If G 2 G (n) and G contains more than cnr induced
copies of H; then G contains an induced subgraph of type H (s; : : : s; t) ; where s =
j

cr
2

log n
k

and t > n1�cr�1
:

For constant c, the above theorems give the correct order of magnitude of the
subgraphs of type H (s; : : : s; t) ; namely, log n for s and n1�o(c) for t: When c depends
on n; the best bounds on s and t are apparently unknown.

2.2.3 Complete r-partite subgraphs of dense r-graphs In this subsection graph
stands for r-uniform hypergraph for some �xed r � 3. We use again Kr (s1; : : : ; sr)
to denote the complete r-partite r-graph with class sizes s1; : : : ; sr:

In the spirit of the previous topics, it is natural to ask: Suppose that a graph
G of order n contains cnr edges. How large a subgraph Kr (s) must G contain?

As shown by Erd}os and Stone [42] and Erd}os [32], s � a (log n)1=(r�1) for some
a = a (c) > 0; independent of n.
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In [65] this fundamental result was extended in three directions: c may depend
on n; the complete r-partite subgraph may have vertex classes of variable size, and
the graph G is taken to be an r-partite r-graph with equal classes. The last setup
is obviously more general than just taking r-graphs.

The following three theorems are given in [65].

Theorem 2.9 Let r � 3; let c and n be such that

0 < c � r�3 and n � exp
�

1=cr�1
�

;

and let the positive integers s1; : : : ; sr�1 satisfy s1s2 � � � sr�1 � cr�1 log n: Then every
graph with n vertices and at least cnr=r! edges contains a Kr (s1; : : : ; sr�1; t) with
t > n1�cr�2

:

Instead of this theorem it is easier and more e�ective to prove a more general
one for r-partite r-graphs.

Theorem 2.10 Let r � 3; let c and n be such that

0 < c � r�3 and n � exp
�

1=cr�1
�

;

and let the positive integers s1; : : : ; sr�1 satisfy s1s2 � � � sr�1 � cr�1 log n: Let U1; : : : ; Ur
be sets of size n and E � U1 � � � � � Ur satisfy jEj � cnr: Then there exist
V1 � U1; � � � ; Vr � Ur satisfying V1 � � � � � Vr � E and

jV1j = s1; � � � ; jVr�1j = sr�1; jVrj > n1�cr�2
:

In turn, Theorem 2.10 is deduced from a counting result about r-partite r-
graphs, which generalizes the double counting argument of K�ovari, S�os and Tur�an
for bipartite graphs [57].

Theorem 2.11 Let r � 2 and let c and n be such that

2r exp

�

�1

r
(log n)1=r

�

� c � 1:

Let G be an r-partite r-graph with parts U1; : : : ; Ur of size n; and with edge set
E � U1 � � � � � Ur satisfying jEj � cnr: If the positive integers s1; s2; : : : ; sr satisfy
s1s2 � � � sr � log n; then G contains at least

� c

2r

�rs1���sr
�

n

s1

�

� � �
�

n

sr

�

:

complete r-partite subgraphs with precisely si vertices in Ui for every i = 1; : : : ; r:

Following Erd}os [32] and taking a random r-graph G of order n and density 1�",
a straightforward calculation shows that with probability tending to 1, G does not
contain a Kr (s; : : : ; s) for s > A (log n)1=(r�1) ; where A = A (") is independent of
n: That is to say, Theorems 2.9 and 2.10 are essentially tight.
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2.3 Saturation problems

Saturation problems concern the type of subgraphs one necessarily �nds in graphs
of order n; with tr (n) + o

�

n2
�

edges. Among all possible saturation problems we
will consider only the most important case: which subgraphs necessarily occur in
graphs of order n and size tr (n)+1? Tur�an’s theorem says that such graphs contain
a Kr+1; but one notes that they contain much larger supergraphs of Kr+1.

Our �rst theorem completes an un�nished investigation started by Erd}os in 1963,
in [31]. We also present several results related to joints - a class of important
subgraphs, whose study was also initiated by Erd}os.

2.3.1 Unavoidable subgraphs of graphs in G (n; tr (n) + 1) Let s1 � 2; and write
K+
r (s1; s2; :::; sr) for the graph obtained from Kr (s1; s2; :::; sr) by adding an edge to

the �rst part. For short, we also set

K+
r (p) = K+

r (p; :::; p) and K+
r (p; q) = K+

r (p; :::; p; q) :

In [31] Erd}os gave the following result:

Theorem 2.12 For every " > 0; there exist c = c (") > 0 and n0 (") such that if G
is a graph of order n > n0 (") and e (G) >

�

n2=4
�

, then G contains a

K+
2

�

bc log nc ;
�

n1�"�� :

For some time there was no generalization of this result for K+
r (s; t) until Erd}os

and Simonovits [41] came up with a similar assertion valid for all r � 2.

Theorem 2.13 Let r � 2; q � 1; and let n be su�ciently large. If G is a graph of
order n with tr (n) + 1 edges, then G contains a K+

r (q) :

In a sense Theorem 2.13 is best possible as any graph H that necessarily occurs
in all su�ciently large graphs G 2 G (n; tr (n) + 1) can be imbedded in K+

r (q) for
q su�ciently large. To see this, just add an edge to the Tur�an graph Tr (n) and
note that all (r + 1)-partite subgraphs of this graph are edge-critical with respect to
the chromatic number. However, Theorem 2.12 suggests that stronger statements
are possible, and indeed, in [67], we extended both Theorems 2.12 and 2.13 to the
following one.

Theorem 2.14 Let r � 2; let c and n be such that

0 < c � r�(r+7)(r+1) and n � e2=c;

and let G be a graph of order n: If e (G) > tr (n), then G contains a

K+
r

�

bc log nc ;
l

n1�
p
c
m�

:

As usual, in Theorem 2.14 c may depend on n within the given con�ne. Note
also that if the conclusion holds for some c; it holds also for positive c0 < c; provided
n is su�ciently large. This implies Erd}os’s Theorem 2.12.
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2.3.2 Joints and books Erd}os [35] proved that if r � 2 and n > n0 (r) ; every
graph G = G (n; tr (n) + 1) has an edge that is contained in at least nr�1= (10r)6r

cliques of order (r + 1) : This fundamental fact seems so important, that in [14] we
found it necessary to give the following de�nition:

An r-joint of size t is a collection of t distinct r-cliques sharing an edge.

Note that two r-cliques of an r-joint may share up to r� 1 vertices and that for
r > 3 there may be many non-isomorphic r-joints of the same size. We shall write
jsr (G) for the maximum size of an r-joint in a graph G; in particular, if 2 � r � n
and r divides n; then jsr (Tr(n)) =

�

n
r

�r�2
.

In this notation, the above result of Erd}os reads: if r � 2; n > n0 (r) ; and
G 2 G (n; tr (n) + 1) ; then

jsr+1 (G) � nr�1

(10r)6r : (2.1)

In fact, the study of js3 (G), also known as the booksize of G, was initiated by
Erd}os even earlier, in [30], and was subsequently generalized in [34] and [35]; it seems
that he foresaw the importance of joints when he restated his general result in 1995,
in [36]. A quintessential result concerning joints is the \triangle removal lemma" of
Ruzsa and Szemer�edi [87], which can be stated as a lower bound on the booksize
js3 (G) when G is a graph of a particular kind.

In fact joints help to obtain several of the results mentioned in this survey, e.g.,
the general stability Theorem 2.19 and its spectral version, Theorem 3.10. Later,
we shall give also spectral conditions for the existence of large joints, in Theorem
3.8.

In [14], Bollob�as and the author enhanced the bound of Erd}os (2.1) to the fol-
lowing explicit one.

Theorem 2.15 Let r � 2; n > r8; and let G be a graph of order n: If e (G) � tr (n) ;
then

jsr+1 (G) >
nr�1

rr+5

unless G = Tr (n) :

In [16] an analogous theorem is given in the case when G has many r-cliques,
rather than edges. More precisely, letting kr (G) stand for the number of r-cliques
of a graph G; we have

Theorem 2.16 Let r � 2; n > r8; and let G be a graph of order n: If ks(G) �
ks (Tr(n)) for some s; (2 � s � r) ; then

jsr+1 (G) >
nr�1

r2r+12

unless G = Tr (n).

Note that Theorems 2.15 and 2.16 cannot be improved too much, as shown by
the graph G obtained by adding an edge to Tr(n): we have ks(G) � ks(Tr(n)) but
jsr+1(G) � dn=rer�1. However, the best bound in Theorem 2.15 is known only
for 3-joints. Usually a 3-joint of size t is called a book of size t: Edwards [28], and
independently Khad�ziivanov and Nikiforov [56] proved the following theorem.



150 V. Nikiforov

Theorem 2.17 If G is a graph of order n with e (G) >
�

n2=4
�

; then it contains a
book of size greater than n=6:

This theorem is best possible in view of the following graph. Let n = 6k: Partition
[n] into 6 sets A11; A12; A13; A21; A22; A23 with jA11j = jA12j = jA13j = k � 1 and
jA21j = jA22j = jA23j = k + 1: For 1 � j < k � 3 join every vertex of Aij to every
vertex of Aik and for j = 1; 2; 3 join every vertex of A1j to every vertex of A2j : The
resulting graph has size >

�

n2=4
�

+ 1 and its booksize is k + 1 = n=6 + 1:

A more recent presentation of these results can be found in [12].

2.4 Stability problems

This subsection has three parts. First we sharpen the classical stability theorem
of Erd}os [33],[34] and Simonovits [88], which gives information about the structure
of graphs without �xed forbidden subgraphs and whose size is close to the maximum
possible. Second, we give several speci�c stability theorems for speci�c forbidden
subgraphs, where stronger conclusions are possible. Lacking a better term, we call
such cases strong stability.

Finally, we discuss the structure of Kr-free graphs of large minimum degree.
This is a rich area with many results and a long history. It is not customary to
consider it in the context of stability problems, but we believe this is the general
category where this area belongs, since most of its statements can be phrased so
that large minimum degree of a Kr-free graph implies a certain structure.

2.4.1 A general stability theorem Let F be a �xed (r + 1)-partite graph F and
G be a graph of order n: The theorem of Erd}os and Stone implies that if " > 0 and
e (G) > (1� 1=r + ")n2=2; then G contains F; when n is su�ciently large. On the
other hand, Tr (n) is r-partite and therefore does not contain F; although

e (Tr (n)) = tr (n) t (1� 1=r)n2=2:

Erd}os and Simonovits [33],[34],[88] noticed that if a graph G of order n contains no
copy of F and has close to (1� 1=r)n2=2 edges, then G is similar to Tr (n).

Theorem 2.18 Let r � 2 and let F be a �xed (r + 1)-partite graph. For every � > 0;
there is an " > 0 such that if G is a graph of order n with e (G) > (1� 1=r � ")n2=2;
then either G contains F or G di�ers from Tr (n) in fewer than �n2 edges.

A closer inspection of this statement reveals that " depends both on � and on
F: To investigate this dependence, we simplify the picture by assuming that F is a
complete (r + 1)-graph. Moreover, radically departing from the setup of �xed F , we

assume that F = Kr+1

�

bc log nc ;
l

n1�
p
c
m�

for some c > 0: Note that for a given

n the single real parameter c characterizes F completely. It turns out with this
selection of F we still can get an enhancement of Theorem 2.18, as proved in [66].

Theorem 2.19 Let r � 2; let c; " and n be such that

0 < c < r�3(r+14)(r+1); 0 < " < r�24; n > e1=c;
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and let G be a graph of order n: If e (G) > (1� 1=r � ")n2=2, then one of the
following statements holds:

(a) G contains a Kr+1

�

bc log nc ;
l

n1�
p
c
m�

;

(b) G di�ers from Tr (n) in fewer than
�

"1=3 + c1=(3r+3)
�

n2 edges.

Note that, as usual, c may depend on n: A natural question is how tight Theorem
2.19 is. The complete answer seems di�cult since two parameters, " and c; are
involved. First, the factor

�

"1=3 + c1=(3r+3)
�

in condition (b) is far from the best one,
but is simple. However for �xed c condition (a) is best possible up to a constant
factor. Indeed, let � > 0 be su�ciently small. A randomly chosen graph of order n
with (1� �)n2=2 edges contains no K2 (bc0 log nc ; bc0 log nc) and di�ers from Tr (n)
in more that c00n2 edges for some positive c0 and c00; independent of n.

2.4.2 Strong stability For certain forbidden graphs condition (ii) of Theorem
2.19 can be strengthened. Such particular stability theorems can be of interest in
applications, e.g., Ramsey problems. We start with a theorem in [84], which gives a
particular stability condition for Kr+1-free graphs.

Theorem 2.20 Let r � 2 and 0 < " � 2�10r�6, and let G be a Kr+1-free graph of
order n: If e (G) > (1� 1=r � ")n2=2; then G contains an induced r-partite graph H
of order at least (1� 2 3

p
")n and with minimum degree � (H) � (1� 1=r � 4 3

p
")n:

Note that the stability condition in this theorem is stronger than condition (b)
of Theorem 2.19. Indeed, the classes of H are almost equal, it is almost complete,
and contains almost all vertices of G: This type of conclusion is the purpose of the
three theorems below. In the �rst two of them the premise \Kr+1-free" will be
further weakened; but Theorem 2.20 is still of interest, because it is proved for all
conceivable n.

The following two theorems have been proved in [67] and [14].

Theorem 2.21 Let r � 2; let c; " and n be such that

0 < c < r�(r+7)(r+1)=2; 0 < " < r�8=8; n > e2=c;

and let G be a graph of order n: If e (G) > (1� 1=r � ")n2=2, then one of the
following statements holds:

(a) G contains a K+
r

�

bc log nc ;
l

n1�2
p
c
m�

;

(b) G contains an induced r-partite subgraph H of order at least
�

1�
p

2"
�

n;
with minimum degree

� (H) >
�

1� 1=r � 2
p

2"
�

n:

Theorem 2.22 Let r � 2; let c and n be such that

r � 2; 0 < " < r�8=32; n > r8;

and let G be a graph of order n: If e (G) > (1� 1=r � ")n2=2; then one of the
following statements holds:

(a) jsr+1 (G) >
�

1� 1=r3
�

nr�1=rr+5;
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(b) G contains an induced r-partite subgraph H of order at least (1� 4
p
")n;

with minimum degree

� (H) >
�

1� 1=r � 6
p
"
�

n:

As one can expect, the analogous statement for books is quite close to the best
possible [12].

Theorem 2.23 Let 0 < " < 10�5 and let G be a graph of order n: If e (G) >
(1=4� ")n2; then either G contains a book of size at least (1=6� 2 3

p
")n or G con-

tains an induced bipartite graph H of order at least (1� 3
p
")n and with minimal

degree � (H) � (1=2� 4 3
p
")n:

2.4.3 Kr-free graphs with large minimum degree A famous theorem of Andr�asfai,
Erd}os and S�os [1] shows that if r � 2 and G is a Kr+1-free graph of order n and
with minimum degree satisfying

� (G) >

�

1� 3

3r � 1

�

n; (2.2)

then G is r-partite. They also gave an example showing that equality in (2.2) is not
su�cient to get the same conclusion.

In particular, for r = 2 this statement says that every triangle-free graph of order
n with minimum degree � (G) > 2n=5 is bipartite. On the other hand, Hajnal [41]
constructed a triangle-free graph of order n with arbitrary large chromatic number
and with minimum degree � (G) > (1=3� ")n: In view of Hajnal’s example, Erd}os
and Simonovits [41] conjectured that all K3-free graphs of order n with � (G) > n=3
are 3-chromatic. However, this conjecture was disproved by H�aggkvist [49], who
described for every k � 1 a 10k-regular, 4-chromatic, triangle-free graph of order
29k: The example of H�aggkvist is based on the Mycielski graph M3; also known
as the Gr�otzsch graph, which is a 4-chromatic triangle-free graph of order 11. To
construct M3; let v1; : : : ; v5 be the vertices of a 5-cycle and choose 6 other vertices
u1; : : : ; u6: Join ui to the neighbors of vi for all i = 1; : : : ; 5, and �nally join u6 to
u1; : : : ; u5:

Other graphs that are crucial in these questions are the triangle-free, 3-chromatic
Andr�asfai graphs A1; A2; : : : ; �rst described in [3]: set A1 = K2 and for every i � 2
let Ai be the complement of the (i� 1)-th power of the cycle C3i�1:

To state the next structural theorems we need the following de�nition: a graph G
is said to be homomorphic to a graph H; if there exists a map f : V (G)! V (H)
such that uv 2 E (G) implies that f (u) f (v) 2 E (H).

In [53], Jin generalized the case r = 2 of the theorem of Andr�asfai, Erd}os and
S�os and a result of H�aggkvist from [49] in the following theorem.

Theorem 2.24 Let 1 � k � 9; and let G be a triangle-free graph of order n: If

� (G) >
k + 1

3k + 2
n;

then G is homomorphic to Ak:
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Note that this result is tight: taking the graph Ak+1, and blowing it up by a
factor t; we obtain a triangle-free graph G of order n = (3k + 2) t vertices, with
� (G) = (k + 1)n= (3k + 2) ; which is not homomorphic to Ak:

Note also that all graphs satisfying the premises of Theorem 2.24 are 3-chromatic.
Addressing this last issue, Jin [54], and Chen, Jin and Koh [22] gave a �ner charac-
terization of all K3-free graphs with � > n=3:

Theorem 2.25 Let G be a triangle-free graph of order n; with � (G) > n=3: If
� (G) � 4; then M3 � G: If � (G) = 3 and

� (G) >
k + 1

3k + 2
n;

then G is homomorphic to Ak:

Finally, Brandt and Thomass�e [20] gave the following ultimate result.

Theorem 2.26 Let G be a triangle-free graph of order n: If � (G) > n=3; then
� (G) � 4:

It is natural to ask the same questions for Kr-free graphs with large minimum
degree. Contrary to expectation, the answers are by far easier. First, the graphs
of Andr�asfai, Hajnal and H�aggkvist are easily generalized by joining them with
appropriately chosen complete (r � 3)-partite graphs.

In particular, for every " there exists a Kr+1-free graph of order n with

� (G) >

�

1� 2

2r � 1
� "
�

n

and arbitrary large chromatic number, provided n is su�ciently large.

Hence, the main question is: how large � (G) can be when G is a Kr+1-free graph
of order n with � (G) > (1� 2= (2r � 1))n: The answer is:

Theorem 2.27 Let r � 2 and let G be a Kr+1-free graph of order n: If

� (G) >

�

1� 2

2r � 1

�

n;

then � (G) � r + 2:

This theorem leaves only two cases to investigate, viz., � (G) = r+1 and � (G) =
r + 2. As one can expect, when � (G) is su�ciently large, we have � (G) = r + 1:
The precise statement extends Theorem 2.24 as follows.

Theorem 2.28 Let r � 2; 1 � k � 9; and let G be a Kr+1-free graph of order n: If

� (G) >

�

1� 2k � 1

(2k � 1) r � k + 1

�

n

then G is homomorphic to Ak +Kr�2:
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As a corollary, under the premises of Theorem 2.28, we �nd that � (G) � r + 1:
Also Theorem 2.28 is best possible in the following sense: for every k and n; there
exists an (r + 1)-chromatic Kr+1-free G of order n with

� (G) �
�

1� 2k � 1

(2k � 1) r � k + 1

�

n� 1

that is not homomorphic to Ak +Kr�2.
Using the example of H�aggkvist, we construct for every n an (r + 2)-chromatic,

Kr+1-free graph G with

� (G) �
�

1� 19

19r � 9

�

n� 1;

which shows that the conclusion of Theorem 2.28 does not necessarily hold for
k � 10:

To give some further structural information, we extend Theorem 2.26 as follows.

Theorem 2.29 Let r � 2 and G be a Kr+1-free graph of order n with

� (G) >

�

1� 2

2r � 1

�

n:

If � (G) � r + 2; then M3 +Kr�2 � G: If � (G) � r + 1 and

� (G) >

�

1� 2k � 1

(2k � 1) r � k + 1

�

n

then G is homomorphic to Ak +Kr�2:

This result is best possible in view of the examples described prior to Theorem
2.29.

We deduce the proofs of Theorems 2.27, 2.28 and 2.29 by induction on r from
Theorems 2.26, 2.24 and 2.25 respectively. The induction step, carried out uniformly
in all the three proofs, is based on the crucial Lemma 4.5. This lemma can be applied
immediately to extend other results about triangle-free graphs.

The new results in this subsection, together with Lemma 4.5 have been published
in [68]. Since the �rst version of that paper was made public, the author learned
that similar research has been undertaken independently by W. Goddard and J.
Lyle [48].

2.5 The number of graphs with large forbidden subgraphs

An intriguing question is how many graphs with given properties there are.
For certain natural properties such as \G is Kr-free" or \G has no induced graph
isomorphic to H" satisfactory answers have been obtained. Thus, given a graph
H; write Pn (H) for the set of all labelled graphs of order n not containing H: A
classical result of Erd}os, Kleitman and Rothschild [38] states that

log2 jPn (Kr+1)j = (1� 1=r + o (1))

�

n

2

�

: (2.3)
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Ten years later, Erd}os, Frankl and R�odl [37] showed that the conclusion in (2.3)
remains valid if Kr+1 is replaced by an arbitrary �xed (r + 1)-chromatic graph H.

In fact, as shown in [15], the conclusion in (2.3) also remains valid if Kr+1 is
replaced by a sequence of forbidden graphs whose order grows with n. Until recently
such results seemed to be out of reach; however, the framework laid out in [63] and
[64] has opened new possibilities. Here is the theorem that directly generalizes the
Erd}os-Frankl-R�odl result.

Theorem 2.30 Given r � 2 and 0 < " � 1=2; there exists � = � (") > 0 such that
for n su�ciently large,

(1� 1=r)

�

n

2

�

� log2

�

�

�
Pn
�

Kr+1

�

b� log nc ;
l

n1�
p
�
m��

�

�

�
� (1� 1=r + ")

�

n

2

�

:

(2.4)

Note that the real contribution of Theorem 2.30 is the upper bound in (2.4)
since the lower bound follows by counting the labelled spanning subgraphs of the
Tur�an graph Tr (n) : Let us mention that the proof of Theorem 2.30 does not use
Szemer�edi’s Regularity Lemma, which is a standard tool for such questions.

Similar statements can be proved for forbidden induced subgraphs, where the role
of the chromatic number is played by the coloring number �c of a graph property,
introduced �rst in [17], and de�ned below.

Let 0 � s � r be integers and let H (r; s) be the class of graphs whose vertex sets
can be partitioned into s cliques and r� s independent sets. Given a graph property
P, the coloring number �c (P) is de�ned as

�c (H) = max fr : H (r; s) � P for some s 2 [r]g

Also, given a graph H; let us write P�n (H) for the set of graphs of order n not
containing H as an induced subgraph. Alexeev [2] and, independently Bollob�as and
Thomason [17],[18] proved that the exact analog of the result of Erd}os, Frankl and
R�odl holds:

If H is a �xed graph and r = �c (P�n (H)), then

log2 jP�n (H)j = (1� 1=r + o (1))

�

n

2

�

: (2.5)

This result also can be extended by replacing H with a sequence of forbidden
graphs whose order grows with n: To this end, recall the de�nition of a graph of
type H (k1; : : : ; kh) ; where H is a �xed labelled graph of order h and k1; : : : ; kh
are positive integers (Subsection 2.2.2): Informally, a graph of type H (k1; : : : ; kh) is
obtained by �rst \blowing-up" H to H (k1; : : : ; kh) and then adding (possibly zero)
edges to the vertex classes of the \blow-up" but keeping intact the edges across
vertex classes.

Now, given a labelled graph H and positive integers p and q; let Pn (H; p; q)
be the set of labelled graphs of order n that contain no induced subgraph of type
H (p; : : : ; p; q).

Here is the result for forbidden induced subgraphs, also from [15].
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Theorem 2.31 Let H be a labelled graph and let r = �c (P�n (H)) : For every " > 0;
there is � = � (") > 0 such that for n su�ciently large

(1� 1=r)

�

n

2

�

� log2

�

�

�
Pn
�

H; b� log nc ;
l

n1�
p
�
m��

�

�
� (1� 1=r + ")

�

n

2

�

: (2.6)

In a sense Theorems 2.30 and 2.31 are almost best possible, in view of the
following simple observation, which can be proved by considering the random graph
Gn;p with p! 1:

Given r � 2 and " > 0; there exists C > 0 such that the number Sn of labelled

graphs which do not contain K2 (dC log ne ; dC log ne) satis�es Sn � (1� ") 2(n2):

3 Spectral extremal graph theory

Generally speaking, spectral graph theory investigates graphs using the spectra
of various matrices associated with graphs, such as the adjacency matrix. For an
introduction to this topic we refer the reader to [23].

Given a graph G with vertex set fv1; : : : ; vng ; the adjacency matrix of G is a
matrix A = [aij ] of size n given by

aij =

�

1; if (vi; vj) 2 E (G) ;
0; otherwise.

Note that A is symmetric and nonnegative, and much is known about the spectra
of such matrices. For instance, the eigenvalues of A are real numbers, which we shall
denote by �1 (G) ; : : : ; �n (G) ; indexed in non-increasing order. The value � (G) =
�1 (G) is called the spectral radius of G and has maximum absolute value among all
eigenvalues.

Another matrix that we shall use is the Laplacian matrix L; de�ned as D (G)�
A (G) ; where D (G) is the diagonal matrix of the row-sums of A; i.e., the degrees of
G: The eigenvalues of the Laplacian are denoted by �1 (G) ; : : : ; �n (G) ; indexed in
non-decreasing order.

A third matrix associated with graphs is the Q-matrix or the \signless Lapla-
cian", de�ned as Q = D+A: The eigenvalues of Q are denoted by q1 (G) ; : : : ; qn (G) ;
indexed in non-increasing order. The Q-matrix has received a lot of attention in re-
cent years, see, e.g., [24],[25] and [26]. The Laplacian and the Q-matrix are positive
semi-de�nite matrices, and �1 (G) = 0:

3.1 The spectral problems that are studied

How large can be the spectral radius � (G) when G is a Kr-free graph of order n?
Such questions come easily to the mind when one studies extremal graph problems.
In fact, with any extremal problem of the type \What is the maximum number of
edges in a graph G of order n with property P?" goes a spectral analog: \What is
the maximum spectral radius of a graph G of order n with property P?" This is not
merely a super�cial analogy since if we have a solution of the spectral problem, then
by the fundamental inequality

� (G) � 2e (G) =n; (3.1)



Some new results in extremal graph theory 157

we immediately obtain an upper bound on e (G) as well. The use of this implication
is illustrated on several occasions below; in particular, for the Zarankiewicz problem
we obtain the sharpest bounds on e (G) known so far.

On the other hand, inequality (3.1) suggests a way to conjecture spectral results
by taking known nonspectral extremal statements that involve the average degree
of a graph and replacing the average degree by � (G) : More often than not, the
resulting statement is correct and even stronger, but of course it needs its own
proof. To create suitable proof tools we painstakingly built several technical but
rather exible statements such as Theorem 4.8 and Lemma 4.6.

This smooth machinery is su�cient to prove spectral analogs of most of the
extremal problems discussed in Section 2 and of several others as well. Among these
results are: various forms of Tur�an’s theorem, the Erd}os-Stone-Bollob�as theorem,
conditions for large joints and for odd cycles; a general stability theorem and several
strong stability theorems, an asymptotic solution of the general extremal problem for
non-bipartite forbidden subgraphs, the Zarankiewicz problem, su�cient conditions
for paths and cycles, su�cient conditions for Hamilton paths and cycles.

Despite these successful translations, more can be expected from spectral ex-
tremal graph theory, which seems inherently richer than the conventional one. In-
deed, we give also a fair number of spectral results that have no conventional analog,
for example, results involving the smallest eigenvalue of the adjacency matrix or the
spectral radius of the Laplacian matrix.

3.2 Spectral forms of the Tur�an theorem

In 1986, Wilf [90] showed that if G is a graph of order n with clique number
! (G) = !; then

� (G) � (1� 1=!)n: (3.2)

Note �rst that in view of the inequality � (G) � 2e (G) =n; (3.2) implies the
concise Tur�an theorem:

e (G) � (1� 1=!)n2=2: (3.3)

However, inequality (3.2) opens many other new possibilities. Indeed, if we combine
(3.2) with other lower bounds on �(G), e.g., with

�2(G) � 1

n

X

u2V (G)

d2 (u) ;

we obtain other forms of (3.3). An in�nite class of similar lower bounds is given in
[70].

Below we sharpen inequality (3.2) in two ways.

A concise spectral Tur�an theorem In 1970 Nosal [85] showed that every triangle-
free graph G satis�es � (G) �

p

e (G): This result was extended in [69] and [75] in
the following theorem, conjectured by Edwards and Elphick in [29]:

Theorem 3.1 If G is a graph of order n and ! (G) = !; then

�2 (G) � 2 (1� 1=!) e (G) : (3.4)
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If G has no isolated vertices, then equality is possible if and only if one of the
following conditions holds:

(a) ! = 2 and G is a complete bipartite graph;
(b) ! � 3 and G is a complete regular !-partite graph.

In view of (3.3), we see that

�2 (G) � 2 (1� 1=!)m � 2 (1� 1=!) (1� 1=!)n2=2 = ((1� 1=!)n)2 ;

and so (3.4) implies (3.2).
As shown in [69], inequality (3.4) follows from the celebrated result of Motzkin

and Straus [61]:

Let G be a graph of order n with cliques number ! (G) = !: If (x1; : : : ; xn) is a
vector with nonnegative entries, then

X

uv2E(G)

xuxv �
! � 1

2!

0

@

X

u2V (G)

xu

1

A

2

: (3.5)

On the other hand, this result follows in turn from the concise Tur�an theorem,
as shown in [71]. The implications

(3.4) =) (3.3) =) MS =) (3.4)

justify regarding inequality (3.4) as a exible spectral form of the concise Tur�an
theorem.

Next we extend Theorem 3.1 in a somewhat unexpected direction. Recall that,
a k-walk in a graph G is a sequence of vertices v1; :::; vk of G such that vi is adjacent
to vi+1 for i = 1; :::; k � 1; write wk (G) for the number of k-walks in G: Observing
that 2e (G) = w2 (G) ; we see that the following theorem, given in [70] , extends
inequality (3.4).

Theorem 3.2 If r � 1 and G is a graph with clique number ! (G) = !; then

�r (G) � (1� 1=!)wr (G) : (3.6)

Suppose that G has no isolated vertices and equality holds for some r � 1.
(i) If r = 1, then G is a regular complete !-partite graph.
(ii) If r � 2 and ! > 2, then G is a regular complete !-partite graph.
(iii) If r � 2 and ! = 2, then G is a complete bipartite graph, and if r is odd,

then G is regular.

It is somewhat surprising that for r � 2 the number of vertices of G is not
relevant in this theorem.

A precise spectral Tur�an theorem Since Wilf’s inequality (3.2) becomes equality
only when ! divides n; one can expect that some �ne tuning is still possible. Indeed,
in [72] we sharpened inequality (3.2), bringing it the closest possible to the Tur�an
theorem.
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Theorem 3.3 If G is a graph of order n with no complete subgraph of order r+ 1,
then � (G) � � (Tr (n)) : Equality holds if and only if G = Tr (n) :

Here is an equivalent, shorter form of this statement: If G 2 G (n) and ! (G) =
!; then � (G) < � (T! (n)) unless G = T! (n) :

Note also that � (T2 (n)) =
p

bn2=4c; for ! � 3 there is also a closed expression
for � (T! (n)) ; but it is somewhat cumbersome.

Spectral radius and independence number One wonders if there is a theorem
about the independence number � (G), similar to the Tur�an theorem. One obvious
answer is obtained by restating the concise Tur�an theorem in complementary terms

2e (G) � n2=� (G)� n;

which immediately implies that � (G) � n=� (G) � 1 as well. Note that here the
spectral statement follows from the conventional one. However, a proof by induction
on � gives the following sharper result.

Theorem 3.4 If G 2 G (n) and � (G) = �, then � (G) � dn=�e � 1:

In a di�erent direction, for connected graphs and some special values of �; more
speci�c results have been proved in [91].

Also, by the well-known inequality q1 (G) � 2�1 (G) ; Theorem 3.4 proves Con-
jecture 27 from [50].

3.3 A spectral Erd}os-Stone-Bollob�as theorem

Having seen various spectral forms of the Tur�an theorem, one can expect that
many other results that surround it can be cast in spectral form as well; and this is
indeed the case. The following theorem, given in [78], is the spectral analog of the
Erd}os-Stone-Bollob�as theorem, more precisely, of Theorem 2.5.

Theorem 3.5 Let r � 3; let c and n be such that

0 < c < 1=r!; n � exp ((rr=c)r) ;

and let G be a graph of order n. If

� (G) � (1� 1= (r � 1) + c)n; (3.7)

then G contains a Kr (s; t) with s � b(c=rr)r log nc and t > n1�cr�1
:

Let us emphasize that the functionality of Theorem 2.5 is entirely preserved:
in particular, c may depend on n; e.g., letting c = 1= log log n; the conclusion is
meaningful for su�ciently large n:

Since � (G) � 2e (G) =v (G) ; Theorem 3.5, in fact, implies Theorem 2.5. Other
lower bounds on � (G) ; such as those given in [70], imply other new versions of this
theorem.

Suppose that c is a su�ciently small constant. Choosing randomly a graph G of
order n with

�

(1� 1= (r � 1) + 2c)n2=2
�

edges, we have � (G) � (1� 1= (r � 1) + c)n,
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but G contains no K2 (bC logc ; bC log nc) for some C > 0; independent of n: Hence,
for constant c; Theorem 3.5 is best possible up to a constant factor.

We close this topic with a consequence of Theorem 3.5, given in [78], that solves
asymptotically the following general extremal problem: Given a family F of non-
bipartite forbidden subgraphs; what is the maximum spectral radius of a graph of
order n containing no member of F .

Theorem 3.6 Let r � 3 and let F1; F2; : : : be r-partite graphs satisfying v (Fn) =
o (log n) : Then

max f� (G) : G 2 G (n) and Fn * Gg =

�

1� 1

r � 1

�

n+ o (n) : (3.8)

It is likely that in the setup of Theorem 3.6 the condition v (Fn) = o (log n) can
be sharpened.

3.4 Saturation problems

The precise spectral Tur�an theorem implies that if G is a graph of order n with
� (G) > � (Tr (n)) ; then G contains a Kr+1: Since this setting is analogous to the
case when e (G) > tr (n) ; one would expect much larger supergraphs of Kr+1. In
fact, as we shall see, all results from Subsection 2.3 have their spectral analogs. In
addition, it is not di�cult to show that if G is a graph of order n; then the inequality
e (G) > e (Tr (n)) implies the inequality � (G) > � (Tr (n)) : Therefore, the spectral
theorems below imply the corresponding nonspectral extremal results, albeit with
somewhat narrower ranges of the parameters.

We start with the spectral analog of Theorem 2.14, given in [76].

Theorem 3.7 Let r � 2; let c and n be such that

0 < c � r�(2r+9)(r+1); n � exp (2=c) ;

and let G be a graph of order n: If � (G) > � (Tr (n)) ; then G contains a

K+
r

�

bc log nc ;
l

n1�
p
c
m�

:

Theorem 3.7 is essentially best possible since for every " > 0; choosing randomly
a graph G of order n with e (G) =

�

(1� ")n2=2
�

; we see that � (G) > (1� ")n; but
G contains no K2 (bc log nc) for some c > 0; independent of n:

The theorem corresponding to Theorem 2.15 is given in [76]. We state it here in
a somewhat re�ned form.

Theorem 3.8 Let r � 2; n > r15; and let G be a graph of order n: If � (G) �
� (Tr (n)) ; then

jsr+1 (G) > nr�1=r2r+4

unless G = Tr (n) :
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Theorem 3.8 and its stability complement Theorem 3.12 are crucial in the proof
of several other spectral extremal results.

It is easy to see the Tur�an graph T2 (n) contains no odd cycles and that � (T2 (n)) =
p

bn2=4c: Hence the following theorem gives a sharp spectral condition for the ex-
istence of odd cycles.

Theorem 3.9 Let G be a graph of su�ciently large order n: If � (G) >
p

bn2=4c;
then G contains a cycle of length t for every t � n=320:

This theorem, given in [79], is motivated by the following result of Bollob�as ([6],
p. 150): if G is a graph of order n with e (G) >

�

n2=4
�

, then G contains a cycle of
length t for every t = 3; : : : ; dn=2e :

3.5 Stability problems

We shall show that most stability results from Subsection 2.4 have their spectral
analogs. However, we could not �nd spectral analogs of the stability problems that
involve minimum degree (Subsection 2.4.3).

We �rst state a general spectral stability result, and then two stronger versions
for speci�c graphs. We give here only Theorems 3.11 and 3.12 since they are im-
portant for various applications, but our machinery helped to deduce many others
of somewhat lesser importance, and they can be found in [76] and [79].

The following analog of Theorem 2.19 was given in [76].

Theorem 3.10 Let r � 2; let c; " and n be such that

0 < c < r�8(r+21)(r+1); 0 < " < 2�36r�24; n > exp (1=c) ;

and let G be a graph of order n: If � (G) > (1� 1=r � ")n, then one of the following
statements holds:

(a) G contains a Kr+1

�

bc logc ;
l

n1�
p
c
m�

;

(b) G di�ers from Tr (n) in fewer than
�

"1=4 + c1=(8r+8)
�

n2 edges.

The proofs of Theorem 2.19 and 3.10, given in [76] illustrate the isomorphism
between the sets of tools developed for the spectral and nonspectral problems. The
texts of the two proofs are almost identical, while the di�erences come from the use
of di�erent tools. We refer the reader to Section 5 for more details.

The next two theorems are crucial for several applications. The �rst one, proved
in [13], is a spectral equivalent of Theorem 2.20.

Theorem 3.11 Let r � 2 and 0 � " � 2�10r�6; and let G be a Kr+1-free graph of
order n: If

� (G) � (1� 1=r � ")n; (3.9)

then G contains an induced r-partite graph H of order at least
�

1� 3�1=3
�

n and
minimum degree

� (H) >
�

1� 1=r � 6"1=3
�

n:

Finally, we have a spectral stability theorem for large joints, proved in [76].
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Theorem 3.12 Let r � 2; let " and n be such that

0 < " < 2�10r�6; n � r20;

and let G be a graph of order n: If � (G) > (1� 1=r � ")n; then G satis�es one of
the conditions:

(a) jsr+1 (G) > nr�1=r2r+5;
(b) G contains an induced r-partite subgraph H of order at least

�

1� 4"1=3
�

n

with minimum degree � (H) >
�

1� 1=r � 7"1=3
�

n:

3.6 The Zarankiewicz problem

What is the maximum spectral radius of a graph of order n with no Ks;t? This is a
spectral version of the famous Zarankiewicz problem: what is the maximum number
of edges in a graph of order n with no Ks;t? Except for few cases, no complete
solution to either of these problems is known. For instance, Babai and Guiduli [5]
have shown that

� �
�

(s� 1)1=t + o (1)
�

n1�1=t:

Using a di�erent method, in [82] we improved this result as follows:

Theorem 3.13 Let s � t � 2; and let G be a Ks;t-free graph of order n:
(i) If t = 2; then

� (G) � 1=2 +
p

(s� 1) (n� 1) + 1=4: (3.10)

(ii) If t � 3; then

� (G) � (s� t+ 1)1=t n1�1=t + (t� 1)n1�2=t + t� 2: (3.11)

On the other hand, in view of the inequality 2e (G) � � (G)n; we see that if G
is a Ks;t-free graph of order n; then

e (G) � 1

2
(s� t+ 1)1=t n2�1=t +

1

2
(t� 1)n2�2=t +

1

2
(t� 2)n: (3.12)

This is a slight improvement of a result of F�uredi [46] and this seems the best known
bound on e (G) so far.

For some values of s and t the bounds given by (3.10) and (3.11) are tight as we
now demonstrate.

The case t = 2 For s = t = 2 inequality (3.10) shows that every K2;2-free graph
G of order n satis�es

� (G) � 1=2 +
p

n� 3=4:

This bound is tight because equality holds for the friendship graph (a collection of
triangles sharing a single common vertex).

Also, Erd}os-Renyi [40] showed that if q is a prime power, the polarity graph ERq
is a K2;2-free graph of order n = q2 +q+1 and q (q + 1)2 =2 edges. Thus, its spectral
radius � (ERq) satis�es

� (ERq) �
q3 + 2q2 + q

q2 + q + 1
> q + 1� 1

q
= 1=2 +

p

n� 3=4� 1p
n� 1

;
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which is also close to the upper bound.

For s > 2; equality in (3.10) is attained when G is a strongly regular graph in
which every two vertices have exactly s� 1 common neighbors. There are examples
of strongly regular graphs of this type; here is a small selection from Gordon Royle’s
webpage:

s n � (G)
3 45 12
4 96 20
5 175 30
6 36 15

We are not aware whether there are in�nitely many strongly regular graphs in which
every two vertices have the same number of common neighbors. However, F�uredi
[47] has shown that for any n there exists a Ks;2-free graph Gn of order n such that

e (Gn) � 1

2
n
p
sn+O

�

n4=3
�

;

and so,

� (Gn) �
p
sn+O

�

n1=3
�

;

thus (3.10) is tight up to low order terms.

The case s = t = 3 The bound (3.11) implies that if G is a K3;3-free graph of
order n; then

� (G) � n2=3 + 2n1=3 + 1.

On the other hand, a construction due to Alon, R�onyai and Szab�o [4] implies
that for all n = q3 � q2; where q is a prime power, there exists a K3;3-free graph Gn
of order n with

� (Gn) � n2=3 +
2

3
n1=3 + C

for some constant C > 0: Thus, the bound (3.11) is asymptotically tight for s =
t = 3: The same conclusion can be obtained from Brown’s construction of K3;3-free
graphs [19].

The general case As proved in [4], there exists c > 0 such that for all t � 2 and
s � (t� 1)! + 1, there is a Ks;t-free graph Gn of order n with

e (Gn) � 1

2
n2�1=t +O

�

n2�1=t�c
�

:

Hence, for such s and t we have

� (G) � n1�1=t +O
�

n1�1=t�c
�

;

thus, the bound (3.11) and also the bound of Babai and Guiduli give the correct
order of the main term.
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3.7 Paths and cycles

We give now some results about the maximum spectral radius of graphs of order
n without paths or cycles of speci�ed length. Writing Ck and Pk for the cycle and
path of order k, let us de�ne the functions

fl (n) = max f� (G) : G 2 G (n) and Cl * Gg ;

gl (n) = max f� (G) : G 2 G (n) and Cl * G; and Cl+1 * Gg ;

hl (n) = max f� (G) : G 2 G (n) and Pl * Gg :

For these functions we shall show below some exact expressions or at least good
asymptotics. It should be noted that except for fl (n) when l is odd, these questions
are quite di�erent from their nonspectral analogs.

The lower bounds on f2l (n) ; gl (n) and hl (n) are given by two families of graphs,
which for su�ciently large n give the exact values of hl (n), and perhaps also of f2l (n)
and gl (n) :

Suppose that 1 � k < n.
(1) Let Sn;k be the graph obtained by joining every vertex of a complete graph

of order k to every vertex of an independent set of order n � k; that is, Sn;k =
Kk _Kn�k;

(2) Let S+
n;k be the graph obtained by adding one edge within the independent set

of Sn;k:

Note that Pl+1 * Sn;k and Cl * Sn;k for l � 2k + 1: Likewise, Pl+1 * Sn;k and
Cl * Sn;k for l � 2k + 2:

Therefore,

h2k (n) � � (Sn;k) = (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4;

h2k+1 (n) � �
�

S+
n;k

�

= (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4 + 1=n+O
�

n�3=2
�

;

g2k (n) � � (Sn;k) = (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4;

g2k+1 (n) � �
�

S+
n;k

�

= (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4 + 1=n+O
�

n�3=2
�

;

f2k+2 (n) � �
�

S+
n;k

�

= (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4 + 1=n+O
�

n�3=2
�

:

Below we shall give also rather close upper bounds for these functions.

Forbidden odd cycle In view of Theorem 3.9, we �nd that if l is odd and n > 320l;
then

fl (n) =
p

bn2=4c:

The smallest ratio n=l for which this equation is still valid is not known.
Clearly, for odd l we have fl (n) � n=2; which is in sharp contrast to the value

of fl (n) for even l:

Forbidden cycle C4 The value of f4 (n) is essentially determined in [72]:

Let G be a graph of order n with � (G) = �. If C4 * G; then

�2 � � � n� 1: (3.13)
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Equality holds if and only if every two vertices of G have exactly one common
neighbor, i.e., when G is the friendship graph.

An easy calculation implies that

f4 (n) = 1=2 +
p

n� 3=4 +O (1=n) ;

where for odd n the O (1=n) term is zero. Finding the precise value of f4 (n) for
even n is an open problem.

Here is a considerably more involved bound on the spectral radius of a C4-free
graph of given size, given in [77].

Theorem 3.14 Let m � 9 and G be a graph with m edges. If � (G) >
p
m; then G

has a 4-cycle.

This theorem is tight, for all stars are C4-free graphs with � (G) =
p
m: Also,

let Sn;1 be the star of order n with an edge within its independent set. The graph
Sn;1 is C4-free and has n edges, but � (G) >

p
n for 4 � n � 8; while � (S9;1) = 3.

Forbidden cycle C2k The inequality (3.13) can be generalized for arbitrary even
cycles as follows: if C2k+2 * G; then

�2 � (k � 1)� � k (n� 1) :

In fact, a slightly stronger assertion was proved in [81].

Theorem 3.15 Let k � 1 and G be a graph of order n: If

� (G) > k=2 +
p

kn+ (k2 � 4k) =4;

then C2l+2 � G for every l = 1; : : : ; k.

In view of the graph S+
n;k; Theorem 3.15 implies that

(k � 1) =2 +
p
kn+ o (n) � f2k+2 (n) � k=2 +

p
kn+ o (n) : (3.14)

The exact value of f2k+2 (n) is not known for k � 2; and �nding this value seems
a challenge. Nevertheless, the precision of (3.14) is somewhat surprising, given that
the asymptotics of the maximum number of edges in C2k+2-free graphs of order n is
not known for k � 2.

Forbidden pair of cycles fC2k; C2k+1g Let us consider now the function gl (n). To
begin with, Favaron, Mah�eo, and Sacl�e [45] showed that if a graph G of order n
contains neither C3 nor C4; then � (G) �

p
n� 1: Since the star of order n has no

cycles and its spectral radius is
p
n� 1; we see that

g3 (n) =
p
n� 1.

We do not know the exact value of gl (n) for l > 3; but we have the following theorem
from [81].
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Theorem 3.16 Let k � 1 and G be a graph of order n: If

� (G) > (k � 1) =2 +

q

kn+ (k + 1)2 =4;

then C2k+1 � G or C2k+2 � G:

Theorem 3.16, together with the graphs Sn;k and S+
n;k, gives

(k � 1) =2 +
p
kn+ o (n) � g2k+1 (n) � k=2 +

p
kn+ o (n) ;

g2k (n) = (k � 1) =2 +
p
kn+ �

�

n�1=2
�

:

Forbidden path Pk The function hk (n) is completely known for large n: As proved
in [81]:

Theorem 3.17 Let k � 1; n � 24k and let G be a graph of order n:
(i) If � (G) � � (Sn;k) ; then G contains a P2k+2 unless G = Sn;k:

(ii) If � (G) � �
�

S+
n;k

�

; then G contains a P2k+3 unless G = S+
n;k:

Theorem 3.17, together with the graphs Sn;k and S+
n;k, implies that for every

k � 1 and n � 24k; we have

h2k (n) = � (Sn;k) = (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4;

h2k+1 (n) = �
�

S+
n;k

�

= (k � 1) =2 +
p

kn� (3k2 + 2k � 1) =4 + 1=n+O
�

n�3=2
�

:

3.8 Hamilton paths and cycles

In [86], Ore found the following su�cient condition for the existence of Hamilton
paths and cycles.

Theorem 3.18 Let G be a graph of order n. If

e (G) �
�

n� 1

2

�

(3.15)

then G contains a Hamiltonian path unless G = Kn�1 +K1: If the inequality (3.15)
is strict, then G contains a Hamiltonian cycle unless G = Kn�1 + e:

In the line above and further, Kn�1 + e denotes the complete graph Kn�1 with
a pendent edge.

Recently, Fiedler and Nikiforov [44] deduced a spectral version of Ore’s result.

Theorem 3.19 Let G be a graph of order n: If

� (G) � n� 2; (3.16)

then G contains a Hamiltonian path unless G = Kn�1 +K1: If the inequality (3.16)
is strict, then G contains a Hamiltonian cycle unless G = Kn�1 + e:



Some new results in extremal graph theory 167

A subtler spectral condition for Hamiltonicity was obtained using the spectral
radius of the complement of a graph.

Theorem 3.20 Let G be a graph of order n and �
�

G
�

be the spectral radius of its
complement. If

�
�

G
�

�
p
n� 1;

then G contains a Hamiltonian path unless G = Kn�1 +K1: If

�
�

G
�

�
p
n� 2;

then G contains a Hamiltonian cycle unless G = Kn�1 + e:

Zhou [92], adopting the same technique, proved a similar result for the signless
Laplacian, which has been subsequently re�ned in [83] to the following one:

Theorem 3.21 Let G be a graph of order n and q
�

G
�

be the spectral radius of the
Q-matrix of its complement.

(i) If
q
�

G
�

� n; (3.17)

then G contains a Hamiltonian path unless G is the union of two disjoint complete
graphs or n is even and G = Kn=2�1;n=2+1:

(ii) If
q
�

G
�

� n� 1; (3.18)

then G contains a Hamiltonian cycle unless G is a union of two complete graphs
with a single common vertex or n is odd and G = Kbn=2c;dn=2e:

Note that if the inequality in (3.17) or (3.18) is strict, then the corresponding
conclusion holds with no exception. Also, as it turns out, Theorem 3.21 considerably
strengthens the classical degree conditions for Hamiltonicity by Ore [86].

3.9 Clique number and eigenvalues

If a triangle-free graph is su�ciently dense, then it contains large independent
sets and the modulus of its smallest eigenvalue cannot be very small. A more general
statement of such type has been proved in [11] for graphs of bounded clique number.
Somewhat later, the following explicit dependence was found in [70].

Theorem 3.22 If G 2 G (n;m) and ! (G) = !, then

�n (G) < � 2

!

�

2m

n2

�!

n: (3.19)

Inequality (3.19) captures pretty well the situation in dense graphs, that is, if
G is a dense graph with �n (G) = O

�

n1�c� for some c 2 (0; 1=2) ; then G contains
cliques of order 
 (log n).

Moreover, as shown in [70], inequality (3.19) is tight up to a constant factor
for several classes of sparse graphs, but complete investigation of this issue seems
di�cult.

In [75], inequality (3.19) was used to derive a lower bound on � (G) ; thus giving
other cases of tightness.
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Theorem 3.23 Let G 2 G (n;m) ; d = 2m=n; and � =
�

��n
�

G
��

� : If d � 2; then

� (G) >

�

n

d+ 1
� 1

��

log
d+ 1

�
� log log (d+ 1)

�

:

Inequality (3.19) is concise, but it is di�cult to use because the right-hand side
is exponential in ! (G). The following two somewhat simpler bounds, given in [74],
stem from Tur�an’s theorem and some inequalities that will be given in the next
subsection.

Theorem 3.24 Let G 2 G (n;m) ; d = 2m=n; and ! (G) = !: Then

! � 1 +
dn

(n� d) (d� �n (G))
:

Equality holds if and only if G is a complete regular !-partite graph.

Similar inequalities [72] exist also for the Laplacian eigenvalues.

Theorem 3.25 Let G = G (n;m) ; d = 2m=n and ! (G) = !: Then

! � 1 +
dn

�n (G) (n� d)
;

with equality holding if and only if G is a regular complete !-partite graph.
Also,

� (G) � 1 +
(n� 1� d)n

(n� �2 (G)) (1 + d)
;

with equality holding if and only if G is the union of � (G) disjoint cliques of equal
order.

Note that both bounds in the last theorem imply the concise Tur�an theorem.

3.10 Number of cliques and eigenvalues

It turns out that the numbers of various cliques of a graph are closely related
to its most important eigenvalues. Bollob�as and Nikiforov [13] proved the following
chain of inequalities, which were useful on several occasions.

Theorem 3.26 Let G be a graph with ! (G) = ! � 2 and � (G) = �: For every
r = 2; : : : ; !;

�r+1 � (r + 1) kr+1 (G) +
r
X

s=2

(s� 1) ks (G)�r+1�s:

Observe that, with r = ! � 1, Theorem 3.26 gives the following inequality from
[69]; it has been applied to obtain a two line proof of the spectral precise Tur�an
theorem in [72].

Theorem 3.27 If G is a graph with ! (G) = ! � 2 and � (G) = �; then

�! � k2 (G)�!�2 + 2k3 (G)�!�3 + � � �+ (! � 1) k! (G) :
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Another important consequence of Theorem 3.26, also in [13], gives a lower bound
on the number of cliques of any order as stated below.

Theorem 3.28 If r � 2 and G 2 G (n) ; then

kr+1 (G) �
�

� (G)

n
� 1 +

1

r

�

r (r � 1)

r + 1

�n

r

�r+1
:

The remaining two theorems of this subsection are given in [74] and have multiple
uses. The �rst one relates the numbers of triangles, edges and vertices of a graph
with the smallest eigenvalue of its adjacency matrix.

Theorem 3.29 If G 2 G (n;m) ; then

�n (G) � 3n3k3 (G)� 4m3

nm (n2 � 2m)
(3.20)

with equality if and only if G is a regular complete multipartite graph.

Inequality (3.20) should be regarded as a multifaceted relation that can be used
for di�erent purposes. By way of illustration, let us restate it as a lower bound on
k3 (G) ; getting

k3 (G) �
�n (G)

�

nm
�

n2 � 2m
��

+ 4m3

3n3
; (3.21)

with equality holding for regular complete multipartite graphs. However, for all
dense quasi-random graphs we have �n (G) = o (n) and 3k3 (G) = 4 (1 + o (1))m3=n2:
This implies that

4m3

3n3
+ o (1)

m3

n3
= k3 (G) � o (1)mn+

4m3

3n3
;

and we reach the somewhat paradoxical conclusion that inequality (3.21) is tight up
to low order additive terms for almost all graphs, since almost all graphs are dense
and quasi-random.

Statements similar to Theorem 3.29 have been obtained in [74] for the largest
Laplacian eigenvalue �n (G) as well.

Theorem 3.30 If G 2 G (n;m) ; then

6nk3 (G) � (n+ �n (G))
X

u2V (G)

d2 (u)� 2nm�n (G)

with equality if and only if G is a complete multipartite graph, and

�n (G) � 2m2 � 3nk3 (G)

m (n2 � 2m)
n;

with equality if and only if G is a regular complete multipartite graph.
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3.11 Chromatic number

Let G be a graph of order n: One of the best known results in spectral graph
theory is the inequality of A.J. Ho�man [51]

� (G) � 1 +
�1 (G)

��n (G)
; (3.22)

However, it seems that there is a lot more to �nd in this area. Indeed, in [73] we
proved the following alternative bound.

Theorem 3.31 For every graphs of order n;

� (G) � 1 +
�1 (G)

�n (G)� �1 (G)
: (3.23)

Equality holds if and only if every two color classes of G induce a regular bipartite
graph of degree j�n (G)j.

When G is obtained from Kn by deleting an edge, inequality (3.23) gives � (G) =
n � 1; while (3.22) gives only � (G) � n=2 + 2: By contrast, for a su�ciently large
wheel W1;n, i.e., a vertex joined to all vertices of a cycle of length n, (3.23) gives
� � 2; while (3.22) gives � � 3:

However, such comparisons are not too informative since, in [73], both (3.23)
and (3.22) have been deduced from the same matrix theorem.

4 Some useful tools

In this section we present some results that we have found useful on multiple
occasions. The selection and the arrangement of these results does not follow any
particular pattern.

We start with an inequality stated by Moon and Moser in [60]; it seems that
Khad�ziivanov and Nikiforov [55] were the �rst to publish its complete proof, see also
[58], Problem 11.8. The inequality has been used in many questions, say in the proof
of Theorem 2.5.

Lemma 4.1 Let 1 � s < t < n, and let G be a graph of order n; with kt (G) > 0.
Then

(t+ 1) kt+1 (G)

tkt (G)
� n

t
� (s+ 1) ks+1 (G)

sks (G)
� n

s
: (4.1)

The following two simple lemmas were used to obtain a number of results in
Section 2. The �rst one was proved in [63], and the second one in [67].

Lemma 4.2 Let r � 2; let c; n;m; s be such that

0 < c � 1=2; n � exp
�

c�r
�

; s = bcr log nc � (c=2)m+ 1;

and let G be a bipartite graph with parts A and B of size m and n: If e (G) � cmn;
then G contains a K2 (s; t) with parts S � A and T � B such that jSj = s and
jT j = t > n1�cr�1

.
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Lemma 4.3 Let �; c; n;m be such that

0 < � � 1; 1 � c log n � �m=2 + 1;

and let G be a bipartite graph with parts A and B of size m and n: If e (G) � �mn;
then G contains a K2 (s; t) with parts S � A and T � B such that jSj = bc log nc
and jT j = t > n1�c log�=2.

The following lemma, given in [78], strengthens a classical condition for the
existence of paths given by Erd}os and Gallai [39]. It has been used to obtain results
about forbidden cycles and elsewhere.

Lemma 4.4 Suppose that k � 1 and let the vertices of a graph G be partitioned
into two sets U and W .

(i) If
2e (U) + e (U;W ) > (2k � 2) jU j+ k jW j ;

then there exists a path of order 2k or 2k + 1 with both ends in U:
(ii) If

2e (U) + e (U;W ) > (2k � 1) jU j+ k jW j ;

then there exists a path of order 2k + 1 with both ends in U:

The following lemma from [68] was used to prove Theorems 2.27, 2.28 and 2.29,
but may be used to carry over other stability results from triangle-free graphs to
Kr-free graphs for r > 3:

Lemma 4.5 Let r � 3 and let G be a maximal Kr+1-free graph of order n: If

� (G) >

�

1� 2

2r � 1

�

n;

then G has a vertex u such that the vertices not joined to u are independent.

The following lemma, given in [79], bounds the minimal entry of eigenvectors to
the spectral radius of the adjacency matrix. This can be useful in various situations,
e.g., in conjunction with Lemma 4.7 from [81] and Theorem 4.8 it can be used to
prove upper bounds on � (G) by induction. Both lemmas have been used to prove
several results in Section 3.

Lemma 4.6 Let G be a graph of order n with minimum degree � (G) = � and
� (G) = �: If (x1; : : : ; xn) is a unit eigenvector to �; then

min fx1; : : : ; xng �

s

�

�2 + �n� �2
:

Lemma 4.7 Let G be a graph of order n and let (x1; : : : ; xn) be a unit eigenvector
to � (G) : If u is a vertex satisfying xu = min fx1; : : : ; xng ; then

� (G� u) � � (G)
1� 2x2

u

1� x2
u

:
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The theorem below, given in [79], has been used to prove the spectral analog of
several nonspectral results.

Theorem 4.8 Let �; �; ;K and n be such that

0 < 4� � 1; 0 < 2� � 1; 1=2� �=4 �  < 1; K � 0; n � (42K + 4) =�2�;

and let G be a graph of order n: If

� (G) > n�K=n and � (G) � ( � �)n;

then there exists an induced subgraph H � G with jHj � (1� �)n; satisfying one of
the following conditions:

(a) � (H) >  (1 + ��=2) jHj ;
(b) � (H) >  jHj and � (H) > ( � �) jHj :

The abundance of parameters in Theorem 4.8 may obstruct its understanding.
In summary, the theorem can be applied when one has to prove that if � (G) is
su�ciently large then G contains some subgraph F: If � (G) is not large enough, by
tossing away not too many low degree vertices, one gets a graph H in which either
both � (H) and � (H) are large enough or � (H) is considerably above the expected
average. Most likely, either of these properties will help to �nd a copy of F in H:
The many parameters ensure greater exibility.

In [11], using interlacing, Bollob�as and Nikiforov gave the following inequality,
which has been used to prove several results involving the minimum eigenvalue of
the adjacency matrix, e.g., Theorem 3.22.

Theorem 4.9 If G 2 G (n;m) ; then for every partition V (G) = V1 [ V2;

�n (G) � 2e (V1)

jV1j
+

2e (V2)

jV2j
� 2m

n
:

Note that this inequality is analogous to the well-known inequality for the Lapla-
cian (see Mohar, [59]):

�n (G) � e (V1; V2)

jV1j jV2j
n;

and in fact for regular graphs both inequalities are identical.

5 Illustration proofs

The purpose of this section is to illustrate the use of the tools developed for
translating nonspectral into spectral results. To this end we shall sketch the proofs
of Theorems 2.19 and 3.10.

The structure of both proofs is identical. In both proofs we shall use Theorem
2.4 from Section 2.2. The main di�erence comes from the fact that in the proof of
Theorem 2.19 we use Theorem 2.22 while in the proof of Theorems 3.10 we use the
analogous spectral result Theorem 3.12.

Proof of Theorem 2.19 LetG be a graph of order n with e (G) > (1� 1=r � ")n2=2:
De�ne the procedure P as follows:
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While jsr+1 (G) > nr�1=rr+6 do
Select an edge contained in

�

nr�1=rr+6
�

cliques of order r + 1 and remove
it from G:

Set for short � = c1=(r+1)rr+6 and assume �rst that P removes at least
�

�n2
�

edges before stopping. Then

kr+1 (G) � �nr�1=rr+6 = c1=(r+1)nr+1;

and Theorem 2.4 implies that

Kr+1

�

bc lnnc ; : : : ; bc lnnc ;
l

n1�
p
c
m�

� G:

Thus, in this case condition (a) holds, completing the proof.
Assume therefore that P removes fewer than

�

�n2
�

edges before stopping. Writ-
ing G0 for the resulting graph, we see that

e
�

G0
�

> e (G)� �n2 > (1� 1=r � "� �)n2=2

and jsr+1 (G0) < nr�1=rr+6: Here we want to apply Theorem 2.22 and so we check
for its prerequisites. First, from log n � 1=c � r3(r+14)(r+1) we easily get n > r8:
Also,

"+ � < r�8=8:

Now, Theorem 2.22 implies that G0 contains an induced r-partite subgraph G0

satisfying

jG0j �
�

1�
p

2 ("+ �)
�

n and � (G0) >
�

1� 1=r � 2
p

2 ("+ �)
�

n:

By routine calculations we �nd that G di�ers from Tr (n) in fewer than

�

� +
�

2r2 � r
�
p

2 ("+ �)
�

n2 <
�

"1=3 + c1=(3r+3)
�

n2

edges, and condition (b) follows, completing the proof of Theorem 2.19. �

Proof of Theorem 3.10 LetG be a graph of order n with � (G) > (1� 1=r � ")n:
De�ne the procedure P as follows:

While jsr+1 (G) > nr�1=r2r+5 do
Select an edge contained in

�

nr�1=r2r+5
�

cliques of order r+ 1 and remove
it from G:

Set for short � = c1=(r+1)r2r+5 and assume �rst that P removes at least
�

�n2
�

edges before stopping. Then

kr+1 (G) � �nr�1=r2r+5 = c1=(r+1)nr+1;

and Theorem 2.4 implies that

Kr+1

�

bc lnnc ; : : : ; bc lnnc ;
l

n1�
p
c
m�

� G:

Thus, in this case condition (a) holds, completing the proof.
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Assume now that P removes fewer than
�

�n2
�

edges before stopping. Write G0

for the resulting graph; we obviously have jsr+1 (G0) � nr�1=r2r+5: Letting � (X)
be the largest eigenvalue of a Hermitian matrix X; recall Weyl’s inequality

� (B) � � (A)� � (A�B) ;

holding for any Hermitian matrices A and B: Also, recall that � (H) �
p

2e (H) for
any graph H: Applying these results to the graphs G and G0; we �nd that

�
�

G0
�

� � (G)�
p

2�n �
�

1� 1=r � "�
p

2�
�

n:

Here we want to apply Theorem 3.12 and so we check for its prerequisites. First,
from log n � 1=c � r8(r+21)(r+1) we easily get n > r20: Also,

"+
p

2� < 2�10r�6:

Now, Theorem 3.12 implies that G0 contains an induced r-partite subgraph G0;
satisfying

jG0j �
�

1� 4
�

"+
p

2�
�1=3

�

n and � (G0) >

�

1� 1=r � 7
�

"+
p

2�
�1=3

�

n:

By routine calculations we �nd that G di�ers from Tr (n) in fewer than

�

� +
�

7r2 � 3r
�

�

"+
p

2�
�1=3

�

n2 <
�

"1=4 + c1=(8r+8)
�

n2

edges, and condition (b) follows, completing the proof of Theorem 3.10. �

6 Notation and basic facts

Throughout the survey our notation generally follows [7]. Given a graph G; we
write:

- V (G) for the vertex set of G;
- E (G) for the edge set of G and e (G) for jE (G)j ;
- � (G) for the independence number of G (see below);
- � (G) and � (G) for the minimum and maximum degrees of G;
- ! (G) for the clique number of G (see below);
- ks (G) for the number of s-cliques of G (see below);
- G� u for the graph obtained by removing the vertex u 2 V (G) ;
- � (u) for the set of neighbors of a vertex u; and d (u) for j� (u)j ;
- e (X) for the number of edges induced by a set X � V (G) ;
- e (X;Y ) for the number of edges joining vertices in X to vertices in Y; where

X and Y are disjoint subsets of V (G) ;

We write G(n) for the set of graphs of order n and G (n;m) for the set of graphs
of order n and size m:

Also, [n] stands for the set f1; 2; : : : ; ng :

Mini glossary
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clique - a subgraph that is complete. An s-clique has s vertices; ks (G) stands
for the number of s-cliques of G;

clique number - the size of the largest clique of G; denoted by ! (G) ;
chromatic number - the minimum number of independent sets that partition

V (G) ; denoted by � (G) ;
disjoint union of two graphs G and H is the union of two vertex disjoint copies

of G and H: The disjoint union of G and H is denoted by G+H;
independent set - a set of vertices of G that induces no edges;
independence number - the size of the largest independent set of G; denoted

by � (G) ;
join of two vertex disjoint graphs G and H is the union of G and H together

with all edges between G and H: The join of G and H is denoted by G _H;
joint - a set of cliques of the same order sharing an edge. An r-joint of size t

consists of t cliques of order r;
book of size t - a 3-joint of size t; that is to say, a collection of t triangles

sharing an edge;
homomorphic graph - a graph G is said to be homomorphic to a graph H; if

there exists a map f : V (G) ! V (H) such that uv 2 E (G) implies f (u) f (v) 2
E (H) ;

graph property - a family of graphs closed under isomorphisms;
hereditary property - graph property closed under taking induced subgraphs;
monotone property - graph property closed under taking subgraphs;
H-free graph: a graph that has no subgraph isomorphic to H;
friendship graph - a collection of triangles sharing a single common vertex;
k-th power of a cycle Cn - a graph with vertices f1; 2; : : : ; ng ; and (i; j) is an

edge if i� j = �1;�2; � � � ;�k mod n;
Kr and Kr - the complete and the edgeless graph of order r;
Kr (s1; s2; :::; sr) - the complete r-partite graph with class sizes s1; s2; :::; sr: We

set for short

Kr (p) = Kr (p; :::; p) and Kr (p; q) = Kr (p; :::; p; q) ;

r-uniform hypergraph - a hypergraph whose edges are subsets of r vertices;
Tur�an graph Tr (n) - given n � r � 2; this is the complete r-partite graph

whose class sizes di�er by at most one. We let tr (n) = e (Tr (n)). If t is the
remainder of n mod r; then

tr (n) =
r � 1

2r

�

n2 � t2
�

+

�

t

2

�

;

which in turn implies that

r � 1

2r
n2 � r

8
� tr (n) � r � 1

2r
n2;

Tur�an problem - given a family of graphs F; �nd the maximum number of
edges in a graph of order n, having no subgraph belonging to F ;

quasi-random graph - informally, an almost regular graph, in which the second
largest in modulus eigenvalue is much smaller than the spectral radius;
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spectral radius of a graph - in general, the spectral radius of a matrix is the
largest modulus of its eigenvalues. For a graph, this is usually the spectral radius of
its adjacency matrix, which is an eigenvalue itself;

Laplacian matrix - the matrix L = D � A; where A is the adjacency matrix
and D is the diagonal matrix of the row-sums of A; that is the degrees of G;

Q-matrix, also known as signless Laplacian - the matrix Q = D +A;
Szemer�edi’s Regularity Lemma - an important result of analytical graph

theory, which states that every graph can be approximated by graphs of bounded
order. For background on this lemma we refer the reader to [7], Section IV.5;

Zarankiewicz problem - a class of problems aiming to determine the maximum
number of edges in a graph with no Ks;t: There are several variations, most of which
are only partially solved. See [7] for details.

Acknowledgement I am most grateful to the referee for the e�cient and kind
help.
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The cyclic sieving phenomenon: a survey

Bruce E. Sagan

Abstract

The cyclic sieving phenomenon was defined by Reiner, Stanton, and White
in a 2004 paper. Let X be a finite set, C be a finite cyclic group acting on X,
and f(q) be a polynomial in q with nonnegative integer coefficients. Then the
triple (X, C, f(q)) exhibits the cyclic sieving phenomenon if, for all g ∈ C, we
have

#Xg = f(ω)

where # denotes cardinality, Xg is the fixed point set of g, and ω is a root of
unity chosen to have the same order as g. It might seem improbable that sub-
stituting a root of unity into a polynomial with integer coefficients would have
an enumerative meaning. But many instances of the cyclic sieving phenomenon
have now been found. Furthermore, the proofs that this phenomenon hold of-
ten involve interesting and sometimes deep results from representation theory.
We will survey the current literature on cyclic sieving, providing the necessary
background about representations, Coxeter groups, and other algebraic aspects
as needed.
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1 What is the cyclic sieving phenomenon?

Reiner, Stanton, and White introduced the cyclic sieving phenomenon in their
seminal 2004 paper [58]. In order to define this concept, we need three ingredients.
The first of these is a finite set, X. The second is a finite cyclic group, C, which
acts on X. Given a group element g ∈ C, we denote its fixed point set by

Xg = {y ∈ X : gy = y}. (1.1)

We also let o(g) stand for the order of g in the group C. One group which will
be especially important in what follows will be the group, Ω, of roots of unity. We
let ωd stand for a primitive dth root of unity. The reader should think of g ∈ C
and ωo(g) ∈ Ω as being linked because they have the same order in their respective
groups. The final ingredient is a polynomial f(q) ∈ N[q], the set of polynomials in
the variable q with nonnegative integer coefficients. Usually f(q) will be a generating
function associated with X.

Definition 1.1 The triple (X, C, f(q)) exhibits the cyclic sieving phenomenon (ab-
breviated CSP) if, for all g ∈ C, we have

#Xg = f(ωo(g)) (1.2)
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where the hash symbol denotes cardinality.

Several comments about this definition are in order. At first blush it may seem
very strange that plugging a complex number into a polynomial with nonnegative
integer coefficients would yield a nonnegative integer, much less that the result
would count something. However, the growing literature on the CSP shows that
this phenomenon is quite wide spread. Of course, using linear algebra it is always
possible to find some polynomial which will satisfy the system of equations given
by (1.2). And in Section 3 we will see, via equation (3.4), that the polynomial can
be taken to have nonnegative integer coefficients. But the point is that f(q) should
be a polynomial naturally associated with the set X. In fact, letting g = e (the
identity element of C) in (1.2), it follows that

f(1) = #X. (1.3)

In the case #C = 2, the CSP reduces to Stembridge’s “q = −1 phenomenon”
[83, 84, 85]. Since the Reiner-Stanton-White paper, interest in cyclic sieving has
been steadily increasing. But since the area is relatively new, this survey will be
able to at least touch on all of the current literature on the subject. Cylic sieving
illustrates a beautiful interplay between combinatorics and algebra. We will provide
all the algebraic background required to understand the various instances of the
CSP discussed.

The rest of the paper is organized as follows. Most proofs of cyclic sieving
phenomena fall into two broad categories: those involving explicit evaluation of
both sides of (1.2), and those using representation theory. In the next section, we
will introduce our first example of the CSP and give a demonstration of the former
type. Section 3 will provide the necessary representation theory background to
present a proof of the second type for the same example. In the following section,
we will develop a paradigm for representation theory proofs in general. Since much
of the work that has been done on CSP involves Coxeter groups and permutation
statistics, Section 5 will provide a brief introduction to them. In Section 6 we discuss
the regular elements of Springer [78] which have become a useful tool in proving CSP
results. Section 7 is concerned with Rhoades’ startling theorem [60] connecting the
CSP and Schützenberger’s promotion operator [70] on rectangular standard Young
tableaux. The section following that discusses work related to Rhoades’ result. In
Section 9 we consider generalizations of the CSP using more than one group or more
than one statistic. Instances of the CSP related to Catalan numbers are discussed
in Section 10. The penultimate section contains some results which do not fit nicely
into one of the previous sections. And the final section consists of various remarks.

2 An example and a proof

We will now consider a simple example of the CSP and show that (1.2) holds by
explicitly evaluating both sides of the equation. For n ∈ N, let [n] = {1, 2, . . . , n}.
A multiset on [n] is an unordered family, M , of elements of [n] where repetition
is allowed. Since order does not matter, we will always list the elements of M in
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weakly increasing order: M = i1i2 . . . ik with 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n. The set
for our CSP will be

X =

((

[n]

k

))

def
= {M : M is a multiset on [n] with k elements.}. (2.1)

To illustrate, if n = 3 and k = 2 then X = {11, 22, 33, 12, 13, 23}.
For our group, we take one generated by an n-cycle

Cn = 〈(1, 2, . . . , n)〉.

Then g ∈ Cn acts on M = i1i2 . . . ik by

gM = g(i1)g(i2) . . . g(ik) (2.2)

where we rearrange the right-hand side to be in increasing order. Returning to the
n = 3, k = 2 case we have C3 = {e, (1, 2, 3), (1, 3, 2)}. The action of g = (1, 2, 3) is

(1, 2, 3)11 = 22, (1, 2, 3)22 = 33, (1, 2, 3)33 = 11,
(1, 2, 3)12 = 23, (1, 2, 3)13 = 12, (1, 2, 3)23 = 13.

(2.3)

To define the polynomial we will use, consider the geometric series

[n]q = 1 + q + q2 + · · ·+ qn−1. (2.4)

This is known as a q-analogue of n because setting q = 1 gives [n]1 = n. Do not
confuse [n]q with the set [n] which has no subscript. Now, for 0 ≤ k ≤ n, define the
Gaussian polynomials or q-binomial coefficients by

[

n
k

]

q

=
[n]q!

[k]q![n− k]q!
(2.5)

where [n]q! = [1]q[2]q · · · [n]q. It is not clear from this definition that these rational
functions are actually polynomials with nonnegative integer coefficients, but this is
not hard to prove by induction on n. It is well known that #(

([n]
k

)

) =
(

n+k−1
k

)

. So,
in view of (1.3), a natural choice for our CSP polynomial is

f(q) =

[

n + k − 1
k

]

q

.

We are now in a position to state our first cyclic sieving result. It is a special
case of Theorem 1.1(a) in the Reiner-Stanton-White paper [58].

Theorem 2.1 The cyclic sieving phenomenon is exhibited by the triple

(

((

[n]

k

))

, 〈(1, 2, . . . , n)〉,
[

n + k − 1
k

]

q

)

.
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Before proving this theorem, let us consider the case n = 3, k = 2 in detail. First
of all note that

f(q) =

[

3 + 2− 1
2

]

q

=

[

4
2

]

q

=
[4]q!

[2]q![2]q!
=

[4]q[3]q
[2]q

= 1 + q + 2q2 + q3 + q4.

Now we can verify that #Xg = f(ωo(g)) case by case. If g = e then o(g) = 1, so let
ω = 1 and compute

f(ω) = f(1) = 6 = #X = #Xe.

If g = (1, 2, 3) or (1, 3, 2) then we can use ω = exp(2πi/3) to obtain

f(ω) = 1 + ω + 2ω2 + ω3 + ω4 = 2 + 2ω + 2ω2 = 0 = #Xg

as can be seen from the table (2.3) for the action of (1, 2, 3) which has no fixed
points.

In order to give a proof by explicit evaluation, it will be useful to have some more
notation. Another way of expressing a multiset on [n] is M = {1m1 , 2m2 , . . . , nmn}
where mi is the multiplicity of i in M . Exponents equal to one are omitted as are
elements of exponent zero. For example, M = 222355 = {23, 3, 52}. Define the
disjoint union of multisets L = {1l1 , 2l2 , . . . , nln} and M = {1m1 , 2m2 , . . . , nmn} to
be

L ⊔M = {1l1+m1 , 2l2+m2 , . . . , nln+mn}.
Let Sn denote the symmetric group of permutations of [n]. Note that (2.2)

defines an action of any g ∈ Sn on multisets and need not be restricted to elements of
the cyclic group. We will also want to apply the disjoint union operation ⊔ to cycles
in Sn, in which case we consider each cycle as a set (which is just a multiset with
all multiplicities 0 or 1). To illustrate, (1, 4, 3) ⊔ (1, 4, 3) ⊔ (3, 4, 5) = {12, 33, 43, 5}.
To evaluate #Xg we will need the following lemma.

Lemma 2.2 Let g ∈ Sn have disjoint cycle decomposition g = c1c2 · · · ct. Then
gM = M if and only if M can be written as

M = cr1 ⊔ cr2 ⊔ · · · ⊔ crs

where the cycles in the disjoint union need not be distinct.

Proof For the reverse direction, note that if c is a cycle of g and c is the correspond-
ing set then gc = c since g merely permutes the elements of c amongst themselves.
So g will also fix disjoint unions of such cycles as desired.

To see that these are the only fixed points, suppose that M is not such a disjoint
union. Then there must be some cycle c of g and i, j ∈ [n] such that c(i) = j but i
and j have different multiplicities in M . It follows that gM 6= M which completes
the forward direction. �

As an example of this lemma, if g = (1, 2, 4)(3, 5) then the multisets fixed by g of
cardinality at most 5 are {3, 5}, {1, 2, 4}, {32, 52}, and {1, 2, 3, 4, 5}. We now apply
the previous lemma to our case of interest when Cn = 〈(1, 2, . . . , n)〉. In the next
result, we use the standard notation d|k to signify that the integer d divides evenly
into the integer k.



Cyclic sieving phenomenon 187

Corollary 2.3 If X = (
([n]

k

)

) and g ∈ Cn has o(g) = d, then

#Xg =











(

n/d + k/d− 1

k/d

)

if d|k,

0 otherwise.

Proof Since g is a power of (1, 2, . . . , n) and o(g) = d, we have that g’s disjoint
cycle decomposition must consist of n/d cycles each of length d. If d does not divide
k, then no multiset M of cardinality k can be a disjoint union of the cycles of g. So,
by Lemma 2.2, there are no fixed points and this agrees with the “otherwise” case
above.

If d|k then, by the lemma again, the fixed points of g are those multisets obtained
by choosing k/d of the n/d cycles of g with repetition allowed. The number of ways
of doing this is the binomial coefficient in the “if” case. �

To evaluate f(ωo(g)), we need another lemma.

Lemma 2.4 Suppose m, n ∈ N satisfy m ≡ n (mod d), and let ω = ωd. Then

lim
q→ω

[m]q
[n]q

=







m

n
if n ≡ 0 (mod d),

1 otherwise.

Proof Let m ≡ n ≡ r (mod d) where 0 ≤ r < d. Since 1 + ω + ω2 + · · ·+ ωd−1 = 0,
cancellation in (2.4) yields

[m]ω = 1 + ω + ω2 + · · ·+ ωr−1 = [n]ω.

So if r 6= 0 then [n]ω 6= 0 and [m]ω/[n]ω = 1, proving the “otherwise” case.
If r = 0 then we can write n = ℓd and m = kd for certain nonnegative integers

k, ℓ. It follows that

[m]q
[n]q

=
(1 + q + q2 + · · ·+ qd−1)(1 + qd + q2d + · · ·+ q(k−1)d)

(1 + q + q2 + · · ·+ qd−1)(1 + qd + q2d + · · ·+ q(ℓ−1)d)
.

Canceling the 1 + q + q2 + · · · qd−1 factors and plugging in ω gives

lim
q→ω

[m]q
[n]q

=
k

ℓ
=

m

n

as desired. �

To motivate the hypothesis of the next result, note that if o(g) = d and g ∈ Cn

then d|n by Lagrange’s Theorem.

Corollary 2.5 If ω = ωd and d|n, then

[

n + k − 1
k

]

ω

=











(

n/d + k/d− 1

k/d

)

if d|k,

0 otherwise.
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Proof In the equality above, consider the numerator and denominator of the left-
hand side after canceling factorials. Since d|n, the product [n]ω[n+1]ω · · · [n+k−1]ω
starts with a zero factor and has every dth factor after that also equal to zero, with
all the other factors being nonzero. The product [1]ω[2]ω · · · [k]ω is also of period d,
but starting with d−1 nonzero factors. It follows that the number of zero factors in
the numerator is always greater than or equal to the number of zero factors in the
denominator with equality if and only if d|k. This implies the “otherwise” case.

If d|k, then using the previous lemma

[

n + k − 1
k

]

ω

= lim
q→ω

(

[n]q
[k]q
· [n + 1]q

[1]q
· [n + 2]q

[2]q
· · · [n + k − 1]q

[k − 1]q

)

=
n

k
· 1 · · · 1 · n + d

d
· 1 · · · 1 · n + 2d

2d
· 1 · · ·

=
n/d

k/d
· n/d + 1

1
· n/d + 2

2
· · ·

=

(

n/d + k/d− 1

k/d

)

as desired. �

Comparing Corollary 2.3 and Corollary 2.5, we immediately have a proof of
Theorem 2.1.

3 Representation theory background and another proof

Although the proof just given of Theorem 2.1 has the advantage of being ele-
mentary, it does not give much intuition about why the equality (1.2) holds. Proofs
of such results using representation theory are more sophisticated but also provide
more insight. We begin this section by reviewing just enough about representations
to provide another demonstration of Theorem 2.1. Readers interested in more in-
formation about representation theory, especially as it relates to symmetric groups,
can consult the texts of James [35], James and Kerber [34], or Sagan [65].

Given a set, X, we can create a complex vector space, V = CX, by considering
the elements of X as a basis and taking formal linear combinations. So if X =
{s1, s2, . . . , sk} then

CX = {c1s1 + c2s2 + · · ·+ cksk : ci ∈ C for all i}.

Note that when an element of X is being considered as a vector, it is set in boldface
type. If G is a group acting on X, then G also acts on CX by linear extension. Each
element g ∈ G corresponds to an invertible linear map [g]. (Although this is the
same notation as for [n] with n ∈ N, context should make it clear which is meant.)
If B is an ordered basis for V then we let [g]B denote the matrix of [g] in the basis
B. In particular, [g]X is the permutation matrix for g acting on X.

To illustrate these concepts, if X = {1, 2, 3} then

CX = {c11 + c22 + c33 : c1, c2, c3 ∈ C}.
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The group G = 〈(1, 2, 3)〉 acts on X and so on CX. For g = (1, 2, 3) and the basis
X the action is

(1, 2, 3)1 = 2, (1, 2, 3)2 = 3, (1, 2, 3)3 = 1.

Putting this in matrix form gives

[(1, 2, 3)]X =





0 0 1
1 0 0
0 1 0



 . (3.1)

In general, a module for G or G-module is a vector space V over C where G acts
by invertible linear transformations. Most of our modules will be left modules with
G acting on the left. Consider the general linear group GL(V ) of invertible linear
transformations of V . If V is a G-module then the map ρ : G → GL(V ) given by
g 7→ [g] is called a representation of G. Equivalently, if V is a vector space, then a
representation is a group homomorphism ρ : G→ GL(V ). If G acts on a set X then
the space CX is called the permutation module corresponding to X.

Given a G-module, V , the character of G on V is the function χ : G→ C given
by

χ(g) = tr[g]

where tr is the trace function. Note that χ is well defined since the trace of a linear
transform is independent of the basis in which it is computed. We can now make a
connection with the left-hand side of (1.2). If a group G acts on a set X, then the
character of G on CX is given by

χ(g) = tr[g]X = #Xg (3.2)

since [g]X is just the permutation matrix for g’s action.

To see how the right side of (1.2) enters in this context, write f(q) =
∑l

i=0 miq
i

where mi ∈ N for all i. Now suppose there is another basis, B, for CX with the
property that every g ∈ C is represented by a diagonal matrix of the form

[g]B = diag(1, . . . , 1
︸ ︷︷ ︸

m0

, ω, . . . , ω
︸ ︷︷ ︸

m1

, . . . , ωl, . . . , ωl

︸ ︷︷ ︸

ml

) (3.3)

where ω = ωo(g). (This may seem like a very strong assumption, but in the next
section we will see that it must hold.) Computing the character in this basis gives

χ(g) = tr[g]B =
l

∑

i=0

miω
i = f(ω). (3.4)

Comparing (3.2) and (3.4) we immediately get the CSP. So cyclic sieving can merely
amount to basis change in a C-module.

Sometimes it is better to use a C-module other than CX to obtain the right-
hand side of (1.2). Two G-modules V, W are G-isomorphic or G-equivalent , written
V ∼= W , if there is a linear bijection φ : V → W which preserves the action of G,
i.e., for every g ∈ G and v ∈ V we have φ(gv) = gφ(v). The prefix “G-” can be
omitted if the group is understood from context. To obtain f(ω) as a character,
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any module isomorphic to CX will do. So we may pick a new module with extra
structure which will be useful in the proof.

We are now ready to set up the tools we will need to reprove Theorem 2.1. Let
V ⊗k denote the k-fold tensor product of the vector space V . If we take V = C[n]
which has basis B = {i : 1 ≤ i ≤ n}, then V ⊗k has a basis of the form

{i1 ⊗ i2 ⊗ · · · ⊗ ik : ij ∈ B for 1 ≤ j ≤ k}.

In general, for any V , every basis B of V gives rise to a basis of V ⊗k consisting of
k-fold tensors of elements of B.

When V = C[n], we consider the space of k-fold symmetric tensors, Symk(n),
which is the quotient of V ⊗k by the subspace generated by

i1 ⊗ i2 ⊗ · · · ⊗ ik − ig(1) ⊗ ig(2) ⊗ · · · ⊗ ig(k) (3.5)

for all g ∈ Sk and all tensors i1 ⊗ i2 ⊗ · · · ⊗ ik. Note that, while we are quotienting
by such differences for all tensors, it would suffice (by linearity) to just consider the
differences obtained using k-fold tensors from some basis. Let i1i2 · · · ik denote the
equivalence class of i1 ⊗ i2 ⊗ · · · ⊗ ik. These classes are indexed by the k-element
multisets on [n] and form a basis for Symk(n). So, for example,

Sym2(3) = {c111 + c222 + c333 + c412 + c513 + c623 : ci ∈ C for all i}.

The cyclic group Cn = 〈(1, 2, . . . , n)〉 acts on C[n] and so there is an induced
action on Symk(n) given by

g(i1i2 · · · ik) = g(i1)g(i2) · · · g(ik). (3.6)

Note that when defining Symk(n) by (3.5), one has Sk acting on the subscripts to
permute the places of the vectors. In contrast, the action in (3.6) has Sn acting on
the basis elements themselves. Comparing (3.6) with (2.2), we see that Symk(n) ∼=
C(

([n]
k

)

) as Cn-modules. We will work in the former module for our proof.
If g ∈ Cn then let [g] and [g]′ denote the associated linear transformations on

C[n] and Symk(n), respectively. By way of illustration, when n = 3 and k = 2 we
calculated the matrix [(1, 2, 3)]{1,2,3} in (3.1). On the other hand, the table (2.3)
becomes

[(1, 2, 3)]′{11,22,33,12,13,23} =

















0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

















.

Similarly, let χ and χ′ be the respective characters of Cn acting on C[n] and Symk(n).
Now suppose we can find a basis B = {b1, b2, . . . , bn} for C[n] which diagonalizes

[g], say
[g]B = diag(x1, x2, . . . , xn).

Since B is a basis for C[n],

B′ = {bi1bi2 · · ·bik : 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n}
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is a basis for Symk(n). This is the crucial property of the space of symmetric tensors
which makes us choose to work with them rather than in the original permutation
module. Since each element of B is an eigenvector for [g] acting on C[n], the same
is true for B′ and [g]′ acting on Symk(n). More precisely,

g(bi1bi2 · · ·bik) = g(bi1)g(bi2) · · · g(bik) = xi1xi2 · · ·xikbi1bi2 · · ·bik .

It follows that

[g]′B′ = diag(xi1xi2 · · ·xik : 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n)

and

χ′(g) =
∑

1≤i1≤i2≤...≤ik≤n

xi1xi2 · · ·xik . (3.7)

To illustrate, if n = 3 and [g]a,b,c = diag(x1, x2, x3), then in Sym2(3) we have

g(aa) = x2
1aa, g(bb) = x2

2bb, g(cc) = x2
3cc,

g(ab) = x1x2ab, g(ac) = x1x3ac, g(bc) = x2x3bc,

so that

χ′(g) = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3. (3.8)

The expression on the right-hand side of (3.7) is called a complete homogeneous
symmetric polynomial and denoted hk(x1, x2, . . . , xn). It is called “complete ho-
mogeneous” because it is the sum of all monomials of degree k in the xi. It is a
symmetric polynomial because it is invariant under permutation of the subscripts
of the variables. The theory of symmetric polynomials is intimately bound up with
the representations of the symmetric and general linear groups. Equation (3.8) dis-
plays h2(x1, x2, x3). To make use of (3.7), we need to related complete homogeneous
symmetric functions to q-binomial coefficients. This is done by taking the principal
specialization which sets xi = qi−1 for all i.

Lemma 3.1 For n ≥ 1 and k ≥ 0 we have

hk(1, q, q2, . . . , qn−1) =

[

n + k − 1
k

]

q

. (3.9)

Proof We do a double induction on n and k. For n = 1 we have hk(1) = xk
1|x1=1 =

1 and
[

k
k

]

q
= 1. For k = 0 it is also easy to see that both sides are 1.

Assume that n ≥ 2 and k ≥ 1. By splitting the sum for hk(x1, x2, . . . , xn) into
those terms which do not contain xn and those which do, we obtain the recursion

hk(x1, x2, . . . , xn) = hk(x1, x2, . . . , xn−1) + xnhk−1(x1, x2, . . . , xn).

Specializing yields

hk(1, q, q2, . . . , qn−1) = hk(1, q, q2, . . . , qn−2) + qn−1hk−1(1, q, q2, . . . , qn−1).
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Using the definition of the Gaussian polynomials in terms of q-factorials (2.5), it
is easy to check that

[

n
k

]

q

=

[

n− 1
k

]

q

+ qn−k

[

n− 1
k − 1

]

q

.

Substituting n + k − 1 for n, we see that the right-hand side of (3.9) satisfies the
same recursion as the left-hand side, which completes the proof. �

Proof (of Theorem 2.1) Recall that [(1, 2, . . . , n)] is a linear transformation
from C[n] to itself. The map has characteristic polynomial xn − 1 with roots
1, ωn, ω2

n, . . . , ωn−1
n . Since these roots are distinct, there exists a diagonalizing basis

B of C[n] with
[(1, 2, . . . , n)]B = diag(1, ωn, ω2

n, . . . , ωn−1
n ).

Now any g ∈ Cn is of the form g = (1, 2, . . . , n)i for some i and so, since we have a
diagonal representation,

[g]B = diag(1i, ωi
n, ω2i

n , . . . , ω(n−1)i
n ) = diag(1, ω, ω2, . . . , ωn−1)

where ω = ωi
n is a primitive o(g)-th root of unity. The discussion leading up to

equation (3.7) and the previous lemma yield

χ′(g) = hk(1, ω, ω2, . . . , ωn−1) =

[

n + k − 1
k

]

ω

.

As we have already noted, Symk(n) ∼= C(
([n]

k

)

), and so by (3.2)

χ′(g) = #

((

[n]

k

))g

.

Comparing the last two equations completes the proof that the CSP holds. �

4 A representation theory paradigm

We promised to show that the assumption of [g] having a diagonalization of the
form (3.3) is not a stretch. To do that, we need to develop some more representation
theory which will also lead to a paradigm for proving the CSP.

A submodule of a G-module V is a subspace W which is left invariant under the
action of G in that gw ∈ W for all g ∈ G and w ∈ W . The zero subspace and V
itself are the trivial submodules . We say that V is reducible if it has a nontrivial
submodule and irreducible otherwise. For example, the S3-module C[3] is reducible
because the 1-dimensional subspace generated by the vector 1+2+3 is a nontrivial
submodule. It turns out that the irreducible modules are the building blocks of
all other modules in our setting. The next result collects together three standard
results from representation theory. They can be found along with their proofs in
Proposition 1.10.1, Theorem 1.5.3, and Corollary 1.9.4 (respectively) of [65].

Theorem 4.1 Let G be a finite group and consider G-modules which are vector
spaces over C.



Cyclic sieving phenomenon 193

(a) The number of pairwise inequivalent irreducible G-modules is finite and equals
the number of conjugacy classes of G.

(b) (Maschke’s Theorem) Every G-module can be written as a direct sum of irre-
ducible G-modules.

(c) Two G-modules are equivalent if and only if they have the same character. �

We note that if G is not finite or if the ground field for our G-modules is not C

then the analogue of this theorem may not hold. Also, the forward direction of
(c) is trivial (we have already been using it in the last section), while the backward
direction is somewhat surprising in that one can completely characterize a G-module
through the trace alone.

Let us construct the irreducible representations of a cyclic group C with #C = n.
The dimension of a G-module V is its usual vector space dimension. If dim V = 1
then V must be irreducible. So what do the dimension one modules for C look like?
Let g be a generator of C and let V = C{v} for some vector v. Then gv = cv for
some scalar c. Furthermore

v = ev = gnv = cnv.

So cn = 1 and c is an nth root of unity. It is easy to verify that for each nth root
of unity ω, the map ρ(gj) = [ωj ] defines a representation of C as j varies over the
integers. So we have found n irreducible G-modules of C, one for each nth root of
unity: V (0), V (1), . . . , V (n−1). They clearly have different characters (the trace of a
1-dimensional matrix being itself) and so are pairwise inequivalent. Finally, C is
Abelian and so has #C = n conjugacy classes. Thus by (a) of Theorem 4.1, we have
found all the irreducible representations.

Now given any C-module, V , part (b) of Theorem 4.1 says we have a module
isomorphism

V ∼=
n−1
⊕

i=0

aiV
(i)

where aiV
(i) denotes a direct sum of ai copies of V (i). Since each of the summands

is 1-dimensional, there is a basis B simultaneously diagonalizing the linear transfor-
mations [g] for all g ∈ C as in (3.3). We can also explain the multiplicities as follows.
Extend the definition of V (i) to any i ∈ N by letting V (i) = V (j) if i ≡ j (mod n).
Now given any polynomial f(q) =

∑

i≥0 miq
i with nonnegative integer coefficients,

define a corresponding C-module

Vf =
⊕

i≥0

miV
(i). (4.1)

Reiner, Stanton, and White identified the following representation theory paradigm
for proving that the CSP holds.

Theorem 4.2 The cyclic sieving property holds for the triple (X, C, f(q)) if and
only if one has CX ∼= Vf as C-modules.

Proof Note that #Xg and f(ωo(g)) are the character values of g ∈ C in the modules
CX and Vf , respectively. So the result now follows from Theorem 4.1 (c). �
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5 Coxeter groups and permutation statistics

We will now present some basic definitions and results about Coxeter groups
which will be needed for later use. The interested reader can find more information
in the books of Björner and Brenti [9] or Hiller [31]. A finite Coxeter group, W , is a
finite group having a presentation with a set of generators S, and relations for each
pair s, s′ ∈ S of the form

(ss′)m(s,s′) = e,

where the m(s, s′) are positive integers satisfying

m(s, s′) = m(s′, s);
m(s, s′) = 1 ⇐⇒ s = s′.

One can also define infinite Coxeter groups, but we will only need the finite case
and may drop “finite” as being understood in what follows. An abstract group W
may have many presentations of this form, so when we talk about a Coxeter group
we usually have a specific generating set S in mind which is tacitly understood. If
we wish to be explicit about the generating set, then we will refer to the Coxeter
system (W, S). Note that since m(s, s) = 1 we have s2 = 1 and so the elements of S
are involutions. It follows that one can rewrite (ss′)m(s,s′) = e by bringing half the
factors to the right-hand side

s s′ s s′ s · · ·
︸ ︷︷ ︸

m(s,s′)

= s′ s s′ s s′ · · ·
︸ ︷︷ ︸

m(s,s′)

.

Probably the most famous Coxeter group is the symmetric group, Sn. Here
we take the generating set of adjacent transpositions S = {s1, s2, . . . , sn−1} where
si = (i, i + 1). The Coxeter relations take the form

s2i = 1,
sisj = sjsi for |i− j| ≥ 2,
sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 1.

The third equation is called the braid relation. (Other authors also include the
second equation and distinguish the two by using the terms long and short braid
relations). We will often refer back to this example to illustrate Coxeter group
concepts.

A Coxeter group, W , is irreducible if it can not be written as a nontrivial product
of two other Coxeter groups. Irreducible finite Coxeter groups were classified by
Coxeter [13]. A list of these groups is given in Table 1. The rank of a Coxeter
group, rk W , is the minimum cardinality of a generating set S and the subscript in
each group name gives the rank. If S has this minimum cardinality then its elements
are called simple. The middle column displays the Coxeter graph or Dynkin diagram
of the group which has the set S as its vertices with an edge labeled m(s, s′) between
vertices s 6= s′. By convention, if m(s, s′) = 2 (i.e., s and s′ commute) then one
omits the edge, and if m(s, s′) = 3 then the edge is displayed without a label. A
Coxeter group can be realized as the symmetry group of a regular polytope if and
only if its graph contains only vertices of degree one and two. So all these groups
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Group Diagram Polytope

An
t t t t t symmetric group Sn+1,

group of the simplex

Bn
t t t t t

4
hyperoctahedral group,

group of the cube/octahedron

Dn
t t t t

t

t

��

@@
-

E6
t t t t t

t

-

E7
t t t t t t

t

-

E8
t t t t t t t

t

-

F4
t t t t

4
group of the 24-cell

H3
t t t

5
group of the dodecahedron/icosahedron

H4
t t t t

5
group of the 120-cell/600-cell

I2(m) t t
m

group of the m-gon

Table 1: The irreducible finite Coxeter groups

except Dn, E6, E7, and E8 have corresponding polytopes which are listed in the last
column.

There is an important function on Coxeter groups which we will need to define
generating functions for instances of the CSP. Given w ∈ W we can write w =
s1s2 · · · sk where the si ∈ S. Note that here si is just an element of S and not
necessarily the ith generator. Such an expression is reduced if k is minimal among
all such expressions for w and this value of k is called the length of w, written
ℓ(w) = k. When W is of type An−1, i.e., the symmetric group Sn, then there
is a nice combinatorial interpretation of the length function. Write w in one-line
notation as w = w1w2 . . . wn where wi = w(i) for i ∈ [n]. The set of inversions of w
is

Inv w = {(i, j) : i < j and wi > wj}.
So Inv w records the places in w where there is a pair of out-of-order elements. The
inversion number of w is inv w = # Inv w. For example, if

w = w1w2w3w4w5 = 31524 (5.1)

then Inv w = {(1, 2), (1, 4), (3, 4), (3, 5)} and inv w = 4. It turns out that for type A,

ℓ(w) = inv w. (5.2)

We can now make a connection with the q-binomial coefficients as follows. Given
a Coxeter system (W, S) and J ⊂ S, there is a corresponding parabolic subgroup WJ
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which is the subgroup of W generated by J . It can be shown that each coset wWJ

has a unique representative of minimal length. Let W J be the set of these coset
representatives and set

W J(q) =
∑

w∈WJ

qℓ(w). (5.3)

If W = Sn with S = {s1, s2, . . . , sn−1} as before, then remove sk from S to
obtain J = S \ {sk} (which generates a maximal parabolic subgroup). So

(Sn)J
∼= Sk ×Sn−k

consists of all permutations permuting the sets {1, 2, . . . , k} and {k +1, k +2, . . . , n}
among themselves. Thus multiplying w ∈ Sn on the right by an element of (Sn)J

merely permutes {w1, w2, . . . , wk} and {wk+1, wk+2, . . . , wn} among themselves. (We
compose permutations from right to left.) Using (5.2), we see that the set of minimal
length coset representatives is

(Sn)J = {w ∈ Sn : w1 < w2 < . . . < wk and wk+1 < wk+2 < . . . < wn}. (5.4)

A straightforward double induction on n and k, much like the one used to prove
Lemma 3.1, now yields the following result.

Proposition 5.1 For W = Sn and J = S \ {sk} we have

W J(q) =

[

n
k

]

q

for any 0 ≤ k ≤ n (where for k = 0 or n, J = S). �

As has already been mentioned, the symmetry groups of regular polytopes only
yield some of the Coxeter groups. However, there is a geometric way to get them all.
A reflection in R

n is a linear transformation rH which fixes a hyperplane H pointwise
and sends a vector perpendicular H to its negative. A real reflection group is a group
generated by reflections. It turns out that the finite real reflection groups exactly
coincide with the finite Coxeter groups; see the papers of Coxeter [12, 13]. (A
similar result holds in the infinite case if one relaxes the definition of a reflection.)
Definitions for Coxeter groups are also applied to the corresponding reflection group,
e.g., a simple reflection is one corresponding to an element of S. The text of Benson
and Grove [27] gives a nice introduction to finite reflection groups. For example, to
get Sn one can use the reflecting hyperplanes Hi,j with equation xi = xj . If ri,j

is the corresponding reflection then ri,j(x1, x2, . . . , xn) is just the point obtained by
interchanging the ith and jth coordinates and so corresponds to the transposition
(i, j) ∈ Sn.

We end this section by discussing permutation statistics which are intimately
connected with Coxeter groups as we have seen with the statistic inv. A statistic
on a finite set X is a function st : X → N. The statistic has a corresponding weight
generating function

f st(X) = f st(X; q) =
∑

y∈X

qst y.
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w 123 132 213 231 312 321
inv w 0 1 1 2 2 3
maj w 0 2 1 2 1 3
des w 0 1 1 1 1 2
exc w 0 1 1 2 1 1

Table 2: Four statistics on S3

From Table 2 we see that on X = S3

f inv(S3) =
∑

w∈S3

inv w = 1 + 2q + 2q2 + q3 = (1 + q)(1 + q + q2) = [3]q!

In fact, this holds for any n (not just 3); see Proposition 5.2 below. And the reader
should compare this result with Proposition 5.1 which gives the generating function
for inv over another set of permutations.

There are three other statistics which will be important in what follows. The
descent set of a permutation w = w1w2 . . . wn is

Des w = {i : wi > wi+1}.

We let des w = # Des w. Using the descents, one forms the major index

maj w =
∑

i∈Desw

i.

Continuing the example in (5.1), Des w = {1, 3} since w1 > w2 and w3 > w4, and so
maj w = 1 + 3 = 4. The major index was named for Major Percy MacMahon who
introduced the concept [49] (or see [50, pp. 508-549]).

We say that two statistics st and st′ on X are equidistributed if f st(X) = f st′

(X).
In other words, the number of elements in X with any given st value k equals the
number having st′ value k. Comparing the first two rows of Table 2, the reader
should suspect the following result which is not hard to prove by induction on n.

Proposition 5.2 We have
∑

w∈Sn

qinvw = [n]q! =
∑

w∈Sn

qmajw.

So f inv(Sn) = fmaj(Sn). �

Any statistic on Sn equidistributed with inv (or maj) is said to be Mahonian, also
in tribute to MacMahon.

The last permutation statistic we need comes from the set of excedances which
is

Exc w = {i : w(i) > i}.
One can view excedances as “descents” in the cycle decomposition of w. As usual,
we let exc w = # Exc w. In our running example Exc w = {1, 3} since w1 = 3 > 1
and w3 = 5 > 3. Comparing the distributions of des and exc in Table 2, the reader
will see a special case of the following proposition whose proof can be found in the
text of Stanley [80, Proposition 1.3.12].
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Proposition 5.3 We have fdes(Sn) = f exc(Sn). �

Any permutation statistic equidistributed with des (or exc) is said to be Eule-
rian. The polynomial in Proposition 5.3 is called the Eulerian polynomial , An(q),
although some authors use this term for the polynomial qAn(q). The first few Eu-
lerian polynomials are

A0(q) = 1,

A1(q) = 1,

A2(q) = 1 + q,

A3(q) = 1 + 4q + q2,

A4(q) = 1 + 11q + 11q2 + q3,

A5(q) = 1 + 26q + 66q2 + 26q3 + q4.

The exponential generating function for these polynomials

∑

n≥0

An(q)
tn

n!
=

1− q

et(q−1) − q
(5.5)

is attributed to Euler [39, p. 39].

6 Complex reflection groups and Springer’s regular elements

Before stating Theorem 2.1, we noted that it is a special case of one part of
the first theorem in the Reiner-Stanton-White paper. To state the full result, we
need another pair of definitions. Let g ∈ SN have o(g) = n. Say that g acts
freely on [N ] if all of g’s cycles are of length n. So in this case n|N . For example,
g = (1, 2)(3, 4)(5, 6) acts freely on [6]. Say that g acts nearly freely on [N ] if either
it acts freely, or all of its cycles are of length n except one which is a singleton. In
the latter case, n|N − 1. So g = (1, 2)(3, 4)(5, 6)(7) acts nearly freely on [7]. Finally,
say that the cyclic group C acts freely or nearly freely on [N ] if it has a generator g
with the corresponding property. The next result is Theorem 1.1 in [58]. In it,

(

[N ]

k

)

= {S : S is a k-element subset of [N ]}. (6.1)

Theorem 6.1 Suppose C is cyclic and acts nearly freely on [N ]. The following two
triples

(

((

[N ]

k

))

, C,

[

N + k − 1
k

]

q

)

(6.2)

and
(

(

[N ]

k

)

, C,

[

N
k

]

q

)

(6.3)

exhibit the cyclic sieving phenomenon. �
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Note that Theorem 2.1 is a special case of (6.2) since C = 〈(1, 2, . . . , N)〉 acts
freely, and so also nearly freely, on [N ]. At this point, the reader may have (at least)
two questions in her mind. One might be why the multiset example was chosen to
explain in detail rather than the combinatorially simpler set example. The reason
for this is that the representation theory proof for the latter involves alternating
tensors and so one has to worry about signs which do not occur in the symmetric
tensor case. Another puzzling aspect might be why having a nearly free action is
the right hypothesis on C. To clarify this, one needs to discuss complex reflection
groups and Springer’s regular elements.

A complex (pseudo)-reflection is an element of GLN (C) (= GL(CN )) which fixes a
unique hyperplane in C

N and has finite order. Every real reflection can be considered
as a complex reflection by extending the field. But the complex notion is more
general since a real reflection must have order two. A complex reflection group is
a group generated by complex reflections. As usual, we will only be interested in
the finite case. Irreducible complex reflection groups are defined as in the real case,
i.e., they are the ones which cannot be written as a nontrivial product of two other
complex reflection groups. The irreducible complex reflection groups were classified
by Shephard and Todd [75]. The book of Lehrer and Taylor [47] gives a very lucid
treatment of these groups, even redoing the Shephard-Todd classification.

Call an element g in a finite complex reflection group W regular if it has an
eigenvector which does not lie on any of the reflecting hyperplanes of W . An eigen-
value corresponding to this eigenvector is also called regular . In type A (i.e., in
the case of the symmetric group) we have the following connection between regular
elements and nearly free actions.

Proposition 6.2 Let W = AN−1. Then g ∈ W is regular if and only if it acts
nearly freely on [N ].

Proof Assume that o(g) = n and that g acts nearly freely. Suppose first that n|N
and

g = (1, 2, . . . , n)(n + 1, n + 2, . . . , 2n) · · · .

Other elements of order n can be treated similarly. Now (1, 2, . . . , n) acting on C
n

has eigenvalue ω−1 = ω−1
n with eigenvector [ω, ω2, . . . , ωn]t (t denoting transpose)

all of whose entries are distinct. So

v = [ω, ω2, . . . , ωn, 2ω, 2ω2, . . . , 2ωn, 3ω, 3ω2, . . . , 3ωn, . . .]t

is an eigenvector for g lying on none of the hyperplanes xi = xj . In the case that
n|N − 1, one can insert a 0 in v at the coordinate of the fixed point and preserve
regularity.

Now suppose g does not act nearly freely. Consider the case when g has cycles
of lengths k and l where k, l ≥ 2 and k 6= l. Without loss of generality, say k < l
and

g = (1, 2, . . . , k)(k + 1, k + 2, . . . , k + l) · · · .

Suppose v = [a1, a2, . . . , aN ]t is a regular eigenvector for g. Then [a1, a2, . . . , ak]t

must either be an eigenvector for g′ = (1, 2, . . . , k) or be the zero vector. But if v
lies on none of the hyperplanes then the second possibility is out because k ≥ 2.



200 Bruce Sagan

The eigenvectors for g′ are [ωi
k, ω2i

k , . . . , ωki
k ]t with corresponding eigenvalues ω−i

k for
1 ≤ i ≤ k. Since everything we have said also applies to g′′ = (k +1, k +2, . . . , k + l),
the eigenvalue ω of g must be a root of unity with order dividing gcd(k, l). But
gcd(k, l) ≤ k < l, so the eigenvectors of g′′ with such eigenvalues will all have
repeated entries, a contradiction. One can deal with the only remaining case (when
g has at least two fixed points) similarly. �

In addition to the previous proposition, we will need the following general result,
It is easy to prove from the definitions and so is left to the reader.

Lemma 6.3 Let V be a G-module.

(a) If W ⊆ V is a G-submodule then the quotient space V/W is also G-module.

(b) If H ≤ G is a subgroup, then V is also an H-module. �

Also, we generalize the notation (1.1): if V is a G-module then the invariants of G
in V are

V G = {v ∈ V : gv = v for all g ∈ G}.
Springer’s Theorem relates two algebras. To define the first, note that a group

G acts on itself by left multiplication. The corresponding permutation module C[G]
is called the group algebra and it is an algebra, not just a vector space, because one
can formally multiply linear combinations of group elements. The group algebra
is important in part because it contains every irreducible representation of G. In
particular, the following is true. See Proposition 1.10.1 in [65] for more details.

Theorem 6.4 Let G be a finite group with irreducible modules V (1), V (2), . . . , V (k)

and write C[G] = ⊕imiV
(i). Then, for all i,

mi = dim V (i).

so every irreducible appears with multiplicity equal to its degree. Taking dimensions,
we have

k
∑

i=1

(

dim V (i)
)2

= #G �

The second algebra is defined for any subgroup W ≤ GLN (C). Thinking of
x1, x2, . . . , xN as the coordinates of CN , W acts on the algebra of polynomials S =
C[x1, x2, . . . , xN ] by linear transformations of the xi. For example, if W = SN then
W acts on S by permuting the variables. The algebra of coinvariants of W is the
quotient

A = S/SW
+ (6.4)

where SW
+ is the ideal generated by the invariants of W in S which are homogeneous

of positive degree. Note that by Lemma 6.3(a), W also acts on A.
Now let g be a regular element of W of order n and let C = 〈g〉 be the cyclic

group it generates. We also let ω = ωn. Define an action of the product group W×C
on the group algebra C[W ] by having W act by multiplication on the left and C act
by multiplication on the right. These actions commute because of the associative
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law in W , justifying the use of the direct product. We also have an action of W ×C
on A: We already noted in the previous paragraph how W acts on A, and we let C
act by

g(xi) = ωxi (6.5)

for i ∈ [N ]. The following is a beautiful theorem of Springer [78] as reformulated by
Kraśkiewicz and Weyman [40].

Theorem 6.5 Let W be a finite complex reflection group with coinvariant algebra
A, and let C ≤ W be cyclically generated by a regular element. Then A and the
group algebra C[W ] are isomorphic as W × C modules. �

Although A and C[W ] are isomorphic, the former has the advantage that it is
graded, i.e., we can write A = ⊕d≥0Ad where Ad are the elements in A homogeneous
of degree d. (This is well defined because the invariant ideal we modded out by
is generated by homogeneous polynomials.) And any graded algebra over C has a
Hilbert series

Hilb(A; q) =
∑

d≥0

dimC Adqd.

It is this series and the previous theorem which permitted Reiner, Stanton, and
White to formulate a powerful cyclic sieving result. In it and in the following corol-
lary, the action of the cyclic group on left cosets is by left multiplication.

Theorem 6.6 Let W be a finite complex reflection group with coinvariant algebra
A, and let C ≤W be cyclically generated by a regular element g. Take any W ′ ≤W
and consider the invariant algebra AW ′

. Then cyclic sieving is exhibited by the triple
(

W/W ′, C, Hilb(AW ′

; q)
)

.

Proof By Theorem 6.5 we have an isomorphism φ : A→ C[W ] of W ×C modules.
So by Lemma 6.3(b) they are also isomorphic as C-modules. Since the actions of C
and W ′ commute, the invariant algebras AW ′

and C[W ]W
′

are also C-modules and
φ restricts to an isomorphism between them.

By (6.5), the action of g on the dth graded piece of AW ′

is just multiplication
by ωd. But this is exactly the same as the action on the dth summand in the C-
module VHilb(AW ′

) as defined for any generating function f by equation (4.1). So

AW ′ ∼= VHilb(AW ′
) as C-modules.

As far as C[W ]W
′
, consider the set of right cosets W ′ \W . Note that

∑

i cigi ∈
C[W ] will be W ′-invariant if and only if the coefficients ci are constant on each
right coset. So C[W ]W

′
is C-isomorphic to the permutation module C(W ′ \W ) with

C acting on the right. But since C is Abelian, this is isomorphic to the module
C(W/W ′) for the left cosets with C acting (as usual) on the left.

Putting the isomorphisms in last three paragraphs together and using Theo-
rem 4.2 completes the proof. �

We can specialize this theorem to the case of Coxeter groups and their parabolic
subgroups. One only needs the fact [31, §IV.4] that, for the length generating
function defined by (5.3),

W J(q) = Hilb(AWJ ; q).
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Corollary 6.7 Let (W, S) be a finite Coxeter system and let J ⊆ S. Let C ≤W be
cyclically generated by a regular element g. Then the triple

(

W/WJ , C, W J(q)
)

satisfies the cyclic sieving phenomenon. �

If we specialize even further to type A, then we obtain the CSP in (6.3). To
see this, note first that g being regular is equivalent to its acting nearly freely by
Proposition 6.2. For J = S \{sk}, the action on left cosets SN /(SN )J is isomorphic

to the action on
([n]

k

)

as can be seen using the description of the minimal length
representatives (5.4). Finally, Proposition 5.1 shows that the generating function is
correct.

7 Promotion on rectangular standard Young tableaux

Rhoades [60] proved an amazing cyclic sieving result about rectangular Young
tableaux under the action of promotion. While the theorem is combinatorially easy
to state, his proof involves deep results about Kazhdan-Lusztig representations [36]
and a characterization of the dual canonical basis by Skandera [77]. We will start
by giving some background about Young tableaux.

A partition of n ∈ N is a weakly decreasing sequence of positive integers λ =
(λ1, λ2, . . . , λl) such that

∑

i λi = n. We use the notation λ ⊢ n for this concept
and call the λi parts. For example, the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1),
and (1, 1, 1, 1). We will use exponents to denote multiplicities just as with multisets.
So (1, 1, 1, 1) = (14), (2, 1, 1) = (2, 12), and so forth. We will sometimes drop the
parentheses and commas to simplify notation. Partitions play an important role in
number theory, combinatorics, and representation theory. See the text of Andrews [1]
for more information.

Associated with any partition λ = (λ1, λ2, . . . , λl) is its Ferrers diagram, also
denoted λ, which consists of l left-justified rows of dots with λi dots in row i. We
let (i, j) stand for the position of the dot in row i and column j. For example, the
partition λ = (5, 4, 4, 2) has diagram

λ =

• • • • •
• • •
• • • •
• •

(7.1)

where the (2, 3) dot has been replaced by a square. Note that sometimes empty
boxes are used instead of dots. Also we are using English notation, as opposed to
the French version where the parts are listed bottom to top.

If λ ⊢ n is a Ferrers diagram, then a standard Young tableau, T , of shape λ is a
bijection T : λ → [n] such that rows and columns increase. We let SYT(λ) denote
the set of such tableaux and also

SYTn =
⋃

λ⊢n

SYT(λ).
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Also define
fλ = # SYT(λ).

To illustrate,

SYT(3, 2) =

{

1 2 3
4 5

,
1 2 4
3 5

,
1 2 5
3 4

,
1 3 4
2 5

,
1 3 5
2 4

}

so f (3,2) = 5. We let Ti,j denote the element in position (i, j) and write sh T to
denote the partition which is T ’s shape. In Rhoades’ theorem, the cyclic sieving set
will be X = SYT(nm), a set of standard Young tableaux of rectangular shape.

Partitions and Young tableaux are intimately connected with representations of
the symmetric and general linear groups. Given g ∈ Sn, its cycle type is the partition
gotten by arranging g’s cycle lengths in weakly decreasing order. For example,
g = (1, 5, 2)(3, 7)(4, 8, 9)(6) has cycle type λ = (3, 3, 2, 1). Since the conjugacy
classes of Sn consist of all elements of the same cycle type, they are naturally
indexed by partitions λ ⊢ n. So by Theorem 4.1 (a), the partitions λ also index the
irreducible Sn-modules, V λ. In fact (see Theorem 2.6.5 in [65])

dim V λ = fλ. (7.2)

and there are various constructions which use Young tableaux of a given shape to
build the corresponding representation. Note that from Theorem 6.4 we obtain

∑

λ⊢n

(

fλ
)2

= n! (7.3)

If one ignores its representation theory provenance, equation (7.3) can be viewed
as a purely combinatorial statement about tableaux. So one could prove it com-
binatorially by finding a bijection between Sn and pairs (P, Q) of standard Young
tableaux of the same shape λ, with λ varying over all partitions of n. The algorithm
we will describe to do this is due to Schensted [68]. It was also discovered by Robin-
son [62] in a different form. A partial Young tableau will be a filling of a shape with
increasing rows and columns (but not necessarily using the numbers 1, . . . , n). We
first describe insertion of an element x into a partial tableau P with x 6∈ P .

1. Initialize with i = 1 and p = x.

2. If there is an element of row i of P larger than p, then remove the left-most
such element and put p in that position. Now repeat this step with i replaced
by i + 1 and p replaced with the removed element.

3. When one reaches a row where no element of that row is greater then p, then
p is placed at the end of the row and insertion terminates with a new tableau,
Ix(P ).

The removals are called bumps and are defined so that at each step of the algorithm
the rows and columns remain increasing. For example, if

T =
1 3 5 6
2 8 9
7
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then inserting 4 gives

1 3 5 6 ← 4
2 8 9
7

,
1 3 4 6
2 8 9 ← 5
7

,
1 3 4 6
2 5 9
7 ← 8

,
1 3 4 6
2 5 9
7 8

= I4(T ).

We can now describe the map w 7→ (P, W ). Given w = w1w2 . . . wn in 1-line
notation, we build a sequence of partial tableaux P0 = ∅, P1, . . . , Pn = P where ∅ is
the empty tableau and Pk = Iwk

Pk−1 for all k ≥ 1. At the same time, we construct
a sequence Q0 = ∅, Q1, . . . , Qn = Q where Qk is obtained from Qk−1 by placing k
in the unique new position in Pk+1. To illustrate, if w = 31452 then we obtain

Pk :
∅

,
3

,
1
3

,
1 4
3

,
1 4 5
3

,
1 2 5
3 4

= P,

Qk :
∅

,
1

,
1
2

,
1 3
2

,
1 3 4
2

,
1 3 4
2 5

= Q.

This procedure is invertible. Given (Pk, Qk) then we find the position (i, j) of k in
Qk. We reverse the bumping process in Pk starting with the element in (i, j). The
element removed from the top row of Pk then becomes the kth entry of w. This

map is called the Robinson-Schensted correspondence and denoted w
R−S7→ (P, Q).

We have proved the following result.

Theorem 7.1 For all n ≥ 0, the map w
R−S7→ (P, Q) is a bijection

Sn
R−S←→ {(P, Q) : P, Q ∈ SYTn, sh(P ) = sh(Q)}. �

In order to motivate the polynomial for Rhoades’ CSP, we describe a wonderful
formula due to Frame, Robinson, and Thrall [23] for fλ. The hook of (i, j) is the set
of cells to its right in the same row or below in the same column:

Hi,j = {(i, j′) ∈ λ : j′ ≥ j} ∪ {(i′, j) ∈ λ : i′ ≥ i}.

The corresponding hooklength is hi,j = #Hi,j . The hook of (2, 2) in λ = (5, 4, 4, 2)
is indicated by crosses is the following diagram

• • • • •
• × × ×
• × • •
• ×

and so h2,2 = 5. The next result is called the Frame-Robinson-Thrall Hooklength
Formula.

Theorem 7.2 If λ ⊢ n then

fλ =
n!

∏

(i,j)∈λ

hi,j

. �
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To illustrate this theorem, the hooklengths for λ = (3, 2) are as follows

hi,j :
4 3 1
2 1

so f (3,2) = 5!/(4 · 3 · 2 · 12) = 5 as before. The polynomial which will appear in
Rhoades’ cyclic sieving result is a q-analogue of the Hooklength Formula

fλ(q) =
[n]q!

∏

(i,j)∈λ

[hi,j ]q
(7.4)

where λ ⊢ n.

The only thing left to define is the group action and this will be done using
Schützenberger’s promotion operator [70]. Define (i, j) to be a corner of λ if neither
(i + 1, j) nor (i, j + 1) is in λ. The corners of λ displayed in (7.1) are (1, 5), (3, 4),
and (4, 2). Given T ∈ SYT(λ) we define its promotion, ∂T , by an algorithm.

1. Replace T1,1 = 1 by a dot.

2. If the dot is in position (i, j) then exchange it with with Ti+1,j or Ti,j+1,
whichever is smaller. (If only one of the two elements exist, use it for the
exchange.) Iterate this step until (i, j) becomes a corner.

3. Subtract 1 from all the elements in the array, and replace the dot in corner
(i, j) by n to obtain ∂T .

The exchanges in the second step are called slides. Note that the slides are con-
structed so that at every step of the process the array has increasing rows and
columns and so ∂T ∈ SYT(λ). By way of illustration, if

T =
1 3 5
2 4 6
7

(7.5)

then we get the sliding sequence

• 3 5
2 4 6
7

,
2 3 5
• 4 6
7

,
2 3 5
4 • 6
7

,
2 3 5
4 6 •
7

,
1 2 4
3 5 7
6

= ∂T.

It is easy to see that the algorithm can be reversed step-by-step, and so promotion
is a bijection on SYT(λ). Thus the operator generates a group 〈∂〉 acting on standard
Young tableaux of given shape. In general, the action seems hard to describe, but
things are much nicer for certain shapes. In particular, we have the following result
of Haiman [30].

Theorem 7.3 If λ = (nm) then ∂mn(T ) = T for all T ∈ SYT(λ). �
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For example, if λ = (32) then ∂ has cycle decomposition

∂ =

(

1 2 3
4 5 6

,
1 2 5
3 4 6

,
1 3 4
2 5 6

) (

1 2 4
3 5 6

,
1 3 5
2 4 6

)

(7.6)

from which one sees that ∂6 is the identity map in agreement with the previous
theorem.

We can now state one of the main results in Rhoades’ paper [60].

Theorem 7.4 If λ = (nm) then the triple

(

SYT(λ), 〈∂〉, fλ(q)
)

exhibits the cyclic sieving phenomenon. �

Rhoades also has a corresponding theorem for promotion of semistandard Young
tableaux of shape λ, a generalization of standard Young tableaux where repeated
entries are allowed which will be discussed in Section 9. The polynomial used is the
principal specialization of the Schur function sλ, a symmetric function which can
be viewed either as encoding the character of the irreducible module V λ or as the
generating function for semistandard tableaux. Both the standard and semistandard
results were originally conjectured by Dennis White.

8 Variations on a theme

We will now mention several papers which have been inspired by Rhoades’ work.
Stanley [81] asked if there were a more elementary proof of Theorem 7.4. A step
in this direction for rectangles with 2 or 3 rows was given by Petersen, Pylyavskyy,
and Rhoades [53] who reformulated the theorem in a more geometric way. We will
describe how this is done in the 2-row case in detail.

A (complete) matching is a graph, M , with vertex set [2n] and n edges no two
of which share a common vertex. The matching is noncrossing if it does not contain
a pair of edges ab and cd with

a < c < b < d (8.1)

Equivalently, if the vertices are arranged in order around a circle, say counter-
clockwise, then no pair of edges intersect. The 5 noncrossing matchings on [6] are
displayed in Figure 1 below. There is a bijection between SYT(n2) and noncrossing
matchings on [2n] as follows.

A ballot sequence of length n is a sequence B = b1b2 . . . bn of positive integers
such that for all prefixes b1b2 . . . bm and all i ≥ 1, the number of i’s in the prefix
is at least as great as the number of (i + 1)’s. (One thinks of counting the votes
in an election where at every stage in the count, candidate i is doing at least as
well as candidate i + 1.) If λ ⊢ n then there is a map from tableaux T ∈ SYTn to
ballot sequences of length n: let bm = i if m is in the ith row of T . The T in (7.5)
has corresponding ballot sequence B = 1212123. It is easy to see that the row and
column conditions on T force B to be a ballot sequence. And it is also a simple
matter to construct the inverse of this map, so it is a bijection.
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Figure 1: The action of ∂ on matchings

To make the connection with noncrossing matchings, suppose T ∈ SYT(n2)
and form a corresponding sequence of parentheses by replacing each 1 in its ballot
sequence by a left parenthesis and each 2 with a right. Now match the parentheses,
and thus their corresponding elements of T , in the usual way: if a left parenthesis
is immediately followed by a right parenthesis they are considered matched, remove
any matched pairs and recursively match what is left. The fact that the parentheses
form a ballot sequence ensures that one gets a noncrossing matching. And the fact
that one starts with a tableau of shape (n, n) ensures that the matching will be
complete. For example,

T =
1 2 4 5
3 6 7 8

7→ 1 2 3 4 5 6 7 8
( ( ) ( ( ) ) )

7→M : 18, 23, 47, 56

where numbers are shown above the corresponding parentheses and the matching is
specified by its edges. Again, an inverse is simple to construct so we have a bijection.

Applying this map to the tableaux displayed in (7.6) gives the matching descrip-
tion of ∂ in Figure 1. Clearly these cycles are obtained by rotating the matchings
clockwise, and it is not hard to prove that this is always the case. As mentioned
in [53], this interpretation of promotion was discovered, although never published,
by Dennis White. Note that this viewpoint makes it clear that ∂2n(T ) = T , a spe-
cial case of Theorem 7.3. Petersen, Pylyavskyy, and Rhoades use this setting and
Springer’s theory of regular elements to give a short proof of the following result
which is equivalent to Theorem 7.4 when m = 2.

Theorem 8.1 Let NCM(2n) be the set of noncrossing matchings on 2n vertices and
let R be rotation clockwise through an angle of π/n. Then the triple

(

NCM(2n), 〈R〉, f (n,n)(q)
)

exhibits the cyclic sieving phenomenon. �

This trio of authors applies similar ideas to the 3-row case by replacing noncrossing
matchings with A2 webs. Webs were introduced by Kuperberg [45] to index a basis
for a vector space used to describe the invariants of a tensor product of irreducible
representations of a rank 2 Lie algebra.

Westbury [87] was able to generalize the Petersen-Pylyavskyy-Rhoades proof
to a much wider setting. To understand his contribution, consider the coinvariant
algebra, A, for a Coxeter group W as defined by (6.4). If V λ is an irreducible module
of W , then the corresponding fake degree polynomial is

F λ(q) =
∑

d≥0

mdqd (8.2)
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where md is the multiplicity of V λ in the dth graded piece of A. We can extend this
to any representation V of W by linearity. That is, write V =

∑

λ nλV λ in terms of
irreducibles and then let

F V (q) =
∑

λ

nλF λ(q).

Since the coinvariant algebra is W -isomorphic to the regular representation, Theo-
rem 6.4 for W = An and (7.2) imply that

F λ(1) = fλ (8.3)

so that the fake degree polynomial is a q-analogue of the number of standard Young
tableaux. It can be obtained from the q-Hooklength Formula (7.4) by multiplying
by an appropriate power of q.

The next result, which can be found in Westbury’s article [87], follows easily
from Proposition 4.5 in Springer’s original paper [78].

Theorem 8.2 Let W be a finite complex reflection group and let C ≤ W be cycli-
cally generated by a regular element g. Let V be a W -module with a basis B such
that gB = B. Then the triple

(

B, C, F V (q)
)

exhibits the cyclic sieving phenomenon. �

Petersen-Pylyavskyy-Rhoades used webs of types A1 and A2 for the bases B, and
the irreducible symmetric group modules V (n,n) and V (n,n,n) to determine the fake
degree polynomials. Westbury is able to produce many interesting results by using
other bases and any highest weight representation of a simple Lie algebra. Crystal
bases and Lusztig’s theory of based modules [48, Ch. 27–28] come into play.

A CSP related to Rhoades’ was studied by Petersen and Serrano [54]. Consider
the Coxeter group Bn with generating set {s1, s2, . . . , sn} where s1 is the special
element corresponding to the endpoint of the Dynkin diagram adjacent to the edge
labeled 4. Every finite Coxeter group has a longest element which is w0 with l(w0) >
l(w) for all w ∈ W \ {w0}. Let R(w0) denote the set of reduced expressions for w0

in Bn where ℓ(w0) = n2. We will represent each such expression by the sequence
of its subscripts. For example, in B3 the expression w0 = s1s3s2s3s1s2s3s1s2 would
become the word 132312312. Act on R(w0) by rotation, i.e., remove the first element
of the sequence and move it to the end. In our example, 132312312 7→ 323123121.
(One has an analogous action in any Coxeter system (W, S) with S simple where, if
si rotates from the front of w0, then at the back it is replaced by sj = w0siw0 which
is also simple. In type Bn, one has the nice property that si = sj .) For the final
ingredient, it is easy to see that the definitions of the permutation statistics from
Section 5 all make sense when applied to sequences of integers.

The main theorem of Petersen and Serrano [54] can now be stated as follows.
We will henceforth use CN to denote a cyclic group of cardinality N .

Theorem 8.3 In Bn, let Cn2 be the cyclic group of rotations of elements of R(w0).
Then the triple

(

R(w0), Cn2 , q−n(n
2
)fmaj(R(w0; q))

)
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exhibits the cyclic sieving property. �

They prove this result by using bijections due to Haiman [29, 30] to relate promotion
on tableaux of shape (nn) to rotation of words in R(w0). In fact, they also show

q−n(n
2
)fmaj(R(w0; q)) = f (nn)(q)

where the latter is the q-analogue of the Hooklength Formula (7.4). The tableaux
version of the previous theorem also appeared in [60], but the proof had gaps which
Petersen and Serrano succeeded in filling.

Pon and Wang [55] have made steps towards finding an analogue of Rhoades’
result for staircase tableaux. The staircase shape is the one corresponding to the
partition scn = (n, n − 1, . . . , 1). Note that scn ⊢

(

n+1
2

)

. The following result of
Edelman and Greene [15] shows that staircase tableaux are also well behaved with
respect to promotion.

Theorem 8.4 We have ∂(n+1

2
)(T ) = T t for all T ∈ SYT(scn) where t denotes

transpose. �

Haiman [30] has a theory of “generalized staircases” which considers for which par-
titions λ ⊢ N , ∂N (T ) has a nice description for all T ∈ SYT(λ). It includes Theo-
rems 7.3 and 8.4.

Note that we have ∂n(n+1)(T ) = T for all T ∈ SYT(nn+1) as well as for all
T ∈ SYT(scn). So it is natural to try and relate these two sets of tableaux and
the action of promotion on them. In particular, Pon and Wang define an injection
ι : SYT(scn) → SYT(nn+1) commuting with ∂. To construct this map, we need
another operation of Schützenberger called evacuation [69]. Given T ∈ SYT(λ)
where λ ⊢ N , we create its evacuation, ǫ(T ), by doing N promotions. After the ith
promotion, one puts N−i+1 in the ending position of the dot and this element does
not move in any further promotions. The slide sequence for a promotion terminates
when the position (i, j) of the dot is such that (i+1, j) is either outside λ or contains
a fixed element, and the same is true of (i, j + 1). We will illustrate this on

T =
1 3 6
2 4
5

(8.4)

where fixed elements will be typeset in boldface:

T =
1 3 6
2 4
5

∂7→
1 2 5
3 6
4

∂7→
1 4 5
2 6
3

∂7→
1 3 5
2 6
4

∂7→
1 2 5
3 6
4

∂7→
1 2 5
3 6
4

∂7→
1 2 5
3 6
4

= ǫ(T ).

Now given T ∈ SYT(scn) we define ι(T ) as follows. Construct ǫ(T ) and comple-
ment each entry, x, by replacing it with n(n + 1) + 1 − x. Then reflect the result-
ing tableau in the anti-diagonal. Finally, paste T and the reflected-complemented
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tableau together along their staircase portions to obtain ι(T ) of shape (nn+1). Con-
tinuing the example (8.4), we see that the complement of ǫ(T ) is

12 11 8
10 7
9

so that

ι(T ) =

1 3 6
2 4 8
5 7 11
9 10 12

.

As mentioned, Pon and Wang [55] prove the following result about their map ι.

Theorem 8.5 We have

∂(ι(T )) = ι(∂(T )).

for all T ∈ SYT(scn). �

To get a CSP for staircase tableaux, one needs an appropriate polynomial. The
previous theorem permits one to obtain information about the cycle structure of
the action of ∂ on staircase tableaux from what is already know about rectangular
tableaux. It is hoped that this will aid in the search for the correct polynomial.

9 Multiple groups and multiple statistics

It is natural to ask whether the cyclic sieving phenomenon can be extended to
other groups. Indeed, it is possible to define an analogue of the CSP for Abelian
groups by considering them as products of cyclic groups. For this we will also need
to use multiple statistics, one for each cyclic group. In this section we examine this
idea, restricting to the case of two cyclic groups to illustrate the ideas involved.

Bicyclic sieving was first defined by Barcelo, Reiner, and Stanton [4]. Recall that
Ω is the (infinite) group of roots of unity.

Definition 9.1 Let X be a finite set. Let C, C ′ be finite cyclic groups with C ×C ′

acting on X, and fix embeddings ω : C → Ω, ω′ : C ′ → Ω. Let f(q, t) ∈ N[q, t]. The
triple (X, C × C ′, f(q, t)) exhibits the bicyclic sieving phenomenon or biCSP if, for
all (g, g′) ∈ C × C ′, we have

#X(g,g′) = f(ω(g), ω′(g′)). (9.1)

Note that in the original definition of the CSP we did not insist on an embedding
of C in Ω but just used any root of unity with the same order as g (although Reiner,
Stanton, and White did use an embedding in the definition from their original paper).
But this does not matter because if evaluating f(q) ∈ R[q] at a primitive dth root
of unity gives a real number, then any dth root will give the same value. But
in the definition of the biCSP the choice of embeddings can make the difference
whether (9.1) holds or not. To illustrate this, we use an example from a paper of
Berget, Eu, and Reiner [5].
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Take X = {1, ω, ω2} where ω = exp(2πi/3) and let C = C ′ = X. Define the
action of any (α, β) ∈ C × C ′ on γ ∈ X by

(α, β)γ = αβγ

where on the right multiplication is being done in C. Finally, consider the polynomial

f(q, t) = 1 + ut + u2t2.

If for the embeddings one takes identity maps, then it is easy to verify case-by-case
that (X, C×C ′, f(q, t)) exhibits the biCSP. But if one modifies the embedding of C ′

to be the one which takes ω → ω−1 then this is false. For example, consider (ω, ω)
whose action on X is the cycle (1, ω2, ω). Using the first embedding pair we find
f(ω, ω) = 1 + ω2 + ω = 0 reflecting the fact that there are no fixed points. However,
if one uses the second pair then the computation is f(ω, ω−1) = 1 + 1 + 1 = 3 which
does not agree with the action.

Part of the motivation for studying the biCSP was to generalize the notion
of a bimahonian distribution to other Coxeter groups W . It was observed by
Foata and Schützenberger [19] that certain pairs of Mahonian statistics such as
(maj(w), inv(w)) and (maj(w), maj(w−1)) had the same joint distribution over Sn.
To define a corresponding bivariate distribution on W , consider a field automorphism
σ lying in the Galois group Gal(Q[exp(2πi/m)]/Q) where m is taken large enough
so that the extension Q[exp(2πi/m)] of Q contains all the matrix entries of all ele-
ments in the reflection representation of W . Use the fake degree polynomials (8.2)
to define the σ-bimahonian distribution on W by

F σ(q, t) =
∑

V λ

F σ(λ)(q)F λ(t)

where the sum is over all irreducible V λ, and V σ(λ) and V λ are the modules defined
(via Theorem 4.1 (c)) by the characters

χσ(λ)(w) = σ(χλ(w)) and χλ(w) = χλ(w)

for all w ∈W .
To apply Springer’s theory in this setting, suppose g and g′ are regular elements

of W with regular eigenvalues ω and ω′, respectively. Consider the embeddings of
C = 〈g〉 and C ′ = 〈g′〉 into Ω uniquely defined by mapping g 7→ ω−1 and g′ 7→ (ω′)−1.
(The reason for using inverses should be clear from the proof of Proposition 6.2.)
Given σ as above, pick s ∈ N so that σ(ω) = ωs. In this setting, Barcelo, Reiner,
and Stanton [4] prove the following result.

Theorem 9.2 Let W be a finite complex reflection group with regular elements g, g′.
With the above notation, consider the σ-twisted action of 〈g〉× 〈g′〉 on W defined by

(g, g′)w = gsw(g′)−1.

Then the triple
(

W, 〈g〉 × 〈g′〉, F σ(q, t)
)

exhibits the bicyclic sieving phenomenon. �



212 Bruce Sagan

Reiner, Stanton and White had various conjectures about biCSPS exhibited by
action on nonnegative integer matrices via row and column rotation. These were
communicated to Rhoades and proved by him in [61]. To talk about them, we will
need some definitions. A composition of n of length l is a (not necessarily weakly
decreasing) sequence µ = (µ1, µ2, . . . , µl) of nonnegative integers with

∑

i µi = n.
We write µ |= n and ℓ(µ) = l. A semistandard Young tableau of shape λ and content
µ is a function T : λ → P (where P is the positive integers) such that rows weakly
increase, columns strictly increase, and µk is the number of k’s in T . For example,

T =
1 1 1 2 3 5
2 3 3 3
5 5

is a semistandard tableau of shape (6, 4, 2) and content (3, 2, 4, 0, 3). We write ct T =
µ to denote the content and let

SSYT(λ, µ) = {T : sh T = λ and ct T = µ}.

The Kostka numbers are

Kλ,µ = # SSYT(λ, µ).

Note that if λ ⊢ n then Kλ,(1n) = fλ, the number of standard Young tableaux.

Just like fλ, the Kλ,µ have a nice representation theoretic interpretation. Given
µ = (µ1, µ2, . . . , µl) |= n there is a corresponding Young subgroup of Sn which is

Sµ = S{1,2,...,µ1} ×S{µ1+1,µ1+2,...,µ1+µ2} × · · · ×S{n−µl+1,n−µl+2,...,n}

where for any set X we let SX be the group of permutations of X. Consider the usual
action of Sn on left cosets Sn/Sµ and let Mµ be the corresponding permutation
module. Decomposing into Sn-irreducibles gives

Mµ =
∑

λ

Kλ,µV λ,

so that the Kostka numbers give the multiplicities of this decomposition. The poly-
nomials which appear in these biCSPs are a q-analogue of the Kλ,µ called the Kostka-
Foulkes polynomials, Kλ,µ(q). We will not give a precise definition of them, but just
say that they can be viewed in a couple of ways. One is as the elements of transition
matrices between the Schur functions and Hall-Littlewood polynomials (another ba-
sis for the algebra of symmetric functions over the field Q(q)). Another is as the
generating function for a statistic called charge on semistandard tableaux which was
introduced by Lascoux and Schützenberger [46].

Knuth [38] generalized the Robinson-Schensted correspondence in Theorem 7.1
to semistandard tableaux. Given compositions µ, ν |= n let Matµ,ν denote the set
of all matrices with nonnegative integer entries whose row sums are given by µ and
whose column sums are given by ν. For example,

Mat(2,1),(1,0,2) =

{[

1 0 1
0 0 1

]

,

[

0 0 2
1 0 0

]}

.
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Note that Mat(1n),(1n) is the set of n× n permutation matrices.
Given M ∈ Matµ,ν we first convert the matrix into a two-rowed array with the

columns lexicographically ordered (the first row taking precedence) and column i
j

occurring Mi,j times. To illustrate,

M =

[

1 2 0
1 0 1

]

7→ 1 1 1 2 2
1 2 2 1 3

.

Now use the same insertion algorithm as for the Robinson-Schensted correspondence
to build a semistandard tableau P from the elements of the bottom line of the array,
while the elements of the top line are placed in a tableau Q to maintain equalities
of shapes,

Pk :
∅

,
1

,
1 2

,
1 2 2

,
1 1 2
2

,
1 1 2 3
2

= P,

Qk :
∅

,
1

,
1 1

,
1 1 1

,
1 1 1
2

,
1 1 1 2
2

= Q.

We denote this map by M
R−S−K7→ (P, Q). Reversing the steps of the algorithm is

much like the standard tableau case once one realizes that during insertion equal
elements enter into Q from left to right. Also, it should be clear that applying this
map to permutation matrices corresponds with the original algorithm. So the full
Robinson-Schensted-Knuth Theorem [38] is as follows.

Theorem 9.3 For all µ, ν |= n, the map M
R−S−K7→ (P, Q) is a bijection

Matµ,ν
R−S−K←→ {(P, Q) : ct P = ν, ct Q = µ, sh P = sh Q}. �

To motivate Rhoades’ result, note that by specializing Theorem 9.2 to type A,
one can obtain the following theorem.

Theorem 9.4 Let Cn × Cn act on n× n permutation matrices by rotation of rows
in the first component and of columns in the second. Then

(

Mat(1n),(1n), Cn × Cn, ǫn(q, t)
∑

λ⊢n

Kλ,(1n)(q)Kλ,(1n)(t)

)

exhibits the bicyclic sieving phenomenon, where

ǫn(q, t) =

{

(qt)n/2 if n is even,
1 if n is odd.

�

It is natural to ask for a generalization of this theorem to tableaux of arbitrary con-
tent, and that is one of the conjectures demonstrated by Rhoades in [61]. The proof
uses a generalization of the R-S-K correspondence due to Stanton and White [82].

Theorem 9.5 Let µ, ν |= n have cyclic symmetries of orders a|ℓ(µ) and b|ℓ(ν),
respectively. Let Cℓ(µ)/a×Cℓ(ν)/b act on Matµ,ν by a-fold rotation of rows in the first
component and b-fold rotation of columns in the second. Then

(

Matµ,ν , Cℓ(µ)/a × Cℓ(ν)/b, ǫn(q, t)
∑

λ⊢n

Kλ,µ(q)Kλ,ν(t)

)
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exhibits the bicyclic sieving phenomenon. �

Rather than considering two Mahonian statistics, one could take one Mahonian
and one Eulerian. Given two statistics, st and st′ on a set X we let

f st,st′

(X; q, t) =
∑

y∈X

qst ytst
′ y.

Through their study of Rees products of posets, Shareshian and Wachs [72, 73, 74]
were lead to consider the pair (maj, exc). They proved, among other things, the
following generalization of (5.5)

∑

n≥0

fmaj,exc(Sn; q, t)
xn

[n]q!
=

(1− tq) expq(x)

expq(qtx)− qt expq(x)
,

where

expq(x) =
∑

n≥0

xn

[n]q!
.

(Actually, they proved a stronger result which also keeps track of the number of
fixed points of w, but that will not concern us here.)

Sagan, Shareshian, and Wachs [67] used the Eulerian quasisymmetric functions
as developed in the earlier papers by the last two authors, as well as a result of
Désarménien [14] about evaluating principal specializations at roots of unity, to
demonstrate the following cyclic sieving result. Note the interesting feature that
one must take the difference maj− exc.

Theorem 9.6 Consider the action of the symmetric group on itself by conjugation
and let S(λ) denote the conjugacy class of permutations of cycle type λ ⊢ n. Then
the triple

(

S(λ), 〈(1, 2, . . . , n)〉, fmaj,exc
(

S(λ); q, q−1
) )

exhibits the cyclic sieving phenomenon. �

10 Catalan CSPs

We will now consider cyclic sieving phenomena where analogues of the Catalan
numbers play a role. These will include noncrossing partitions and facets of cluster
complexes. Noncrossing matchings have already come into play in Theorem 8.1.

A set partition of a finite set X is a collection π = {B1, B2, . . . , Bk} of nonempty
subsets such that ⊎iBi = X where ⊎ denotes disjoint union. We write π ⊢ X and the
Bi are called blocks . A set partition π ⊢ [n] is called noncrossing if condition (8.1)
never holds when a, b are in one block of π and c, d are in another. Equivalently, with
the usual circular arrangement of 1, . . . , n, the convex hulls of different blocks do not
intersect. Let NC(n) denote the set of noncrossing partitions of [n]. Noncrossing
partitions were introduced by Kreweras [44] and much information about them can
be found in the survey article of Simion [76] and the memoir of Armstrong [2].

The noncrossing partitions are enumerated by the Catalan numbers

# NC(n) = Catn
def
=

1

n + 1

(

2n

n

)

.
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(Often in the literature Cn is used to denote the nth Catalan number, but this
would conflict with our notation for cyclic groups.) These numbers have already
been behind the scenes as we also have # SYT(n, n) = # NCM(2n) = Catn. There
are a plethora of combinatorial objects enumerated by Catn, and Stanley maintains
a list [79] which the reader can consult for more examples.

A q-analogue of Catn,

Catn(q) =
1

[n + 1]q

[

2n
n

]

q

,

was introduced by Fürlinger and Hofbauer [25]. The following result follows from
Theorem 7.2 in Reiner, Stanton, and White’s original paper [58] where they proved
a more refined version which also keeps track of the number of blocks.

Theorem 10.1 Let Cn act on NC(n) by rotation. Equivalently, let g ∈
〈(1, 2, . . . , n)〉 act on π = {B1, B2, . . . , Bk} ∈ NC(n) by gπ = {gB1, gB2, . . . , gBn}
where gBi is defined by (2.2). Then the triple

( NC(n), Cn, Catn(q) )

exhibits the cyclic sieving phenomenon. �

In [8], Bessis and Reiner generalize this theorem to certain complex reflection
groups. First consider a finite Coxeter group W of rank n. It can be shown that we
always have a factorization

f ℓ(W ; q) =
∑

w∈W

qℓ(w) =
n

∏

i=1

[di]q

where the positive integers d1 ≤ d2 ≤ . . . ≤ dn are called the degrees of W . For
example, if W = An

∼= Sn+1, then by equation (5.2) and Proposition 5.2 we have

f ℓ(An; q) = [2]q[3]q · · · [n + 1]q

so that di = i + 1 for 1 ≤ i ≤ n. Table 3 lists the degrees of the irreducible finite
Coxeter groups.

There is another description of the degrees which will clarify their name and
is valid for complex reflection groups, not just Coxeter groups. Let W be a finite
group acting irreducibly (i.e., having no invariant subspace) on C

n by reflections.
We call n the rank of W and write rk W = n. Let Xn = {x1, x2, . . . , xn} be a set
of variables. Then the invariant space C[Xn]W is a free algebra. Each algebraically
independent set of homogeneous generators has the same set of degrees which we will
call d1, d2, . . . , dn. These di are exactly the same as in the Coxeter setting. Returning
to An again, we have the natural action on C[Xn+1]. But each of the reflecting
hyperplanes xi = xj is perpendicular to the hyperplane x1 + x2 + · · · + xn+1 = 0,
and so to get a space whose dimension is the rank, we need to consider the quotient
C[Xn+1]

An/(x1 + x2 + · · · + xn+1). It is well known that the algebra C[Xn+1]
An

is generated freely by the complete homogeneous symmetric polynomials hk(Xn+1)
where 1 ≤ k ≤ n + 1. But in the quotient h1(Xn+1) = x1 + x2 + · · ·+ xn+1 = 0, so
we only need to consider the generators of degrees 2, 3, . . . , n + 1.
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Group Degrees

An 2, 3, 4, . . . , n + 1
Bn 2, 4, 6, . . . , 2n
Dn 2, 4, 6 . . . , 2n− 2, n
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
H3 2, 6, 10
H4 2, 12, 20, 30

I2(m) 2, m

Table 3: The degrees of the irreducible finite Coxeter groups

It will also be instructive to see how one can modify the length definition in
the complex case. Let R denote the set of reflections in W . So if W is a finite
Coxeter group with generating set S then R = {wsw−1 : w ∈ W, s ∈ S}. In any
finite complex reflection group, define the absolute length of w ∈ W , ℓR(w), to be
the shortest length of an expression w = r1r2 · · · rk with ri ∈ R for all i. We have
another factorization

f ℓR(W ; q) =
∑

w∈W

qℓR(w) =
n

∏

i=1

(1 + (di − 1)q)

where the di are again the degrees of W .
There is one last quantity which we will need to define the analogue of NC(n).

It is called the Coxeter number , h, of a complex reflection group W . Unfortunately,
there are two competing definitions of h. One is to let h = dn, the largest of the
degrees. The other is to set h = (#R + #H)/n where H is the set of reflecting hy-
perplanes of W . But happily these two conditions coincide when W is well generated
which means that it has a generating set of reflections of cardinality rk W = n. Note
that this includes the finite Coxeter groups. Under the well-generated hypothesis,
W will also contain a regular element g of order h. As defined by Brady and Watt
in the real case [10] and Bessis in the complex [6, 7], the noncrossing elements in W
are

NC(W ) = {w ∈W : ℓR(w) + ℓR(w−1g) = ℓR(g)}.
We note that ℓR(g) = rk W = n. We will let 〈g〉 act on NC(W ) by conjugation.
(One needs to check that this is well defined.)

To see how this relates to NC(n), map each element of NC(An−1) to the partition
whose blocks are the cycles of π considered as unordered sets. (A similar idea is
behind Lemma 2.2.) Then this is a bijection with NC(n). To illustrate,let n = 3
and g = (1, 2, 3). A case-by-case check using the definition yields

NC(A2) = {(1)(2)(3), (1, 2)(3), (1, 3)(2), (1)(2, 3), (1, 2, 3)}.

So the image of this set is all partitions of [3] which is NC(3) since (8.1) can not be
true with only three elements.
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The polynomial in the cyclic sieving result will be

Cat(W ; q) =
n

∏

i=1

[h + di]q
[di]q

.

For example

Cat(An−1; q) =
n−1
∏

i=1

[n + i + 1]q
[i + 1]q

= Catn(q).

It can be shown [6, 10] that

Cat(W ; 1) = # NC(W ).

We can now state the Bessis-Reiner result [8].

Theorem 10.2 Let the finite irreducible complex reflection group W be well gener-
ated. Let g be a regular element of order h and let 〈g〉 act on NC(W ) by conjugation.
Then

( NC(W ), 〈g〉, Cat(W ; q) )

exhibits the cyclic sieving phenomenon. �

The Catalan numbers can be generalized to the Fuss-Catalan numbers which are
defined by

Catn,m =
1

mn + 1

(

(m + 1)n

n

)

.

Note that Catn,1 = Catn. The Fuss-Catalan numbers count, among other things,
the m-divisible noncrossing partitions in NC(mn), i.e., those which have all their
block sizes divisible by m. So, for example, Cat2,2 =

(

6
2

)

/5 = 3 corresponding to the
partitions {12, 34}, {14, 23}, and {1234}. (As usual, we are suppressing some set
braces and commas.)

A natural q-analogue of the Fuss-Catalan numbers for any well-generated finite
complex reflection group of rank n is

Cat(m)(W ; q) =
n

∏

i=1

[mh + di]q
[di]q

.

Armstrong [2] has constructed a set counted by Cat(m)(W ; 1). As before, consider
a regular element g of W having order h. Define

NC(m)(W ) =







(w0, w1, . . . , wm) ∈W m+1 : w0w1 · · ·wm = g,

m
∑

i≥0

ℓR(wi) = ℓR(g)







.

Armstrong also defined two actions of g on NC(m)(W ) and made corresponding
cyclic sieving conjectures about them. These have been proved by Krattenthaler [41]
for the two infinite 2-parameter families of finite irreducible well-generated complex
reflection groups, and by Krattenthaler and Müller [42, 43] for the exceptional ones.
One of the actions is

g(w0, w1, w2, . . . , wm) = (gwmg−1, w0, w1, . . . , wm−1). (10.1)

This generates a group C(m+1)h acting on NC(m)(W ).
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Φ Π

An e1 − e2, e2 − e3, . . . , en−1 − en, en − en+1

Bn e1 − e2, e2 − e3, . . . , en−1 − en, en

Cn e1 − e2, e2 − e3, . . . , en−1 − en, 2en

Dn e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en

Table 4: The simple roots in types A-D

Theorem 10.3 Let the finite irreducible complex reflection group W be well gen-
erated. Let g be a regular element of order h and let C(m+1)h act on NC(m)(W )
by (10.1). Then

(

NC(m)(W ), C(m+1)h, Cat(m)(W ; q)
)

exhibits the cyclic sieving phenomenon. �

We should mention that Gordon and Griffeth [26] have defined a version of the
q-Fuss-Catalan polynomials for all complex reflection groups which specializes to
Cat(m)(W ; q) when W is well generated. The primary ingredients of their construc-
tion are Rouquier’s formulation of shift functors for the rational Cherednik algebras
of W [64], and Opdam’s analysis of permutations of the irreducible representations
of W arising from the Knizhnik-Zamolodchikov connection [51]. Furthermore, plug-
ging roots of unity into the Gordon-Griffeth polynomials yields nonnegative integers.
But finding a corresponding CSP remains elusive.

There is another object enumerated by Cat(W ; 1) when W is a Coxeter group,
namely facets of cluster complexes. Cluster complexes were introduced by Fomin
and Zelevinsky [22] motivated by their theory of cluster algebras. To define them, we
need some background on root systems. Rather than take an axiomatic approach,
we will rely on examples and outline the necessary facts we will need. The reader
wishing details can consult the texts of Fulton and Harris [24] or Humphreys [33].

To every real reflection group W is associated a root system, Φ = ΦW , which
consists of a set of vectors called roots perpendicular to the reflecting hyperplanes.
Each hyperplane has exactly two roots perpendicular to it and they are negatives of
each other. We require that Φ span the space on which W acts. So, as above, when
W = An we have to restrict to the hyperplane x1 + x2 + · · · + xn+1 = 0. Finally,
W must act on Φ. To illustrate, if W = An then the roots perpendicular to the
hyperplane xi = xj are taken to be ±(ei − ej) where ei is the ith unit coordinate
vector. Let Π = {α1, α2, . . . , αn} be a set of simple roots which correspond to the
simple reflections s1, s2, . . . , sn. For groups of type A-D the standard choices for
simple roots are listed in Table 4. Note that there are two root systems Bn and Cn

associated with the type B group depending on whether one considers it as the set
of symmetries of a hypercube or a hyperoctahedron, respectively. In fact, this group
is sometimes referred to as BCn.

One can find a hyperplane H which is not a reflecting hyperplane such that all
αi ∈ Π lie on the same side of H. Since the roots come in opposite pairs, half of them
will lie on the same side of H as the simple roots and these are called the positive
roots , Φ>0. The rest of the roots are called negative. The simple roots form a basis
for the span 〈Φ〉 and every positive root can be written as a linear combination of
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α1

α1 + α2α2

−α1

−α2

Figure 2: The roots in Φ≥−1 for type A2

the simple roots with positive coefficients. In type A one can take H to be any plane
of the form c1x1 + c2x2 + · · · + cn+1xn+1 = 0 where c1 > c2 > . . . > cn+1 > 0. In
this case Φ>0 = {ei − ej : i < j} and we can write

ei − ej = αi + αi+1 + · · ·+ αj−1

where αk = ek − ek+1 ∈ Π for 1 ≤ k ≤ n.
Take the union of the positive roots with the negatives of the simple roots to get

Φ≥−1 = Φ>0 ∪ (−Π).

For example, if Φ is of type A2, then Φ≥−1 = {α1, α2, α1+α2,−α1,−α2} as displayed
in Figure 2.

Take any partition [n] = I+⊎I− such that the nodes indexed by I+ in the Dynkin
diagram of W are totally disconnected, and the same is true for I−. Note that this
means that the reflections in Iǫ commute for ǫ ∈ {+,−}. Next, define a pair of
involutions τ± : Φ≥−1 → Φ≥−1 by

τǫ(α) =











α if α = −αi for i ∈ I−ǫ,
(

∏

i∈Iǫ

si

)

(α) otherwise.

Since the roots in Iǫ commute, the product is well defined. Returning to our example,
let I+ = {1} and I− = {2}, Table 5 displays the images of each root in Φ≥−1 under
τ+ and τ−.

Consider the product Γ = τ−τ+ (where maps are composed right-to-left) and the
cyclic group 〈Γ〉 it generates acting on Φ≥−1. In the running example, Γ consists of
a single cycle

Γ = ( α1, −α1, α1 + α2, −α2, α2 ).

This map induces a relation of compatibility , α ∼ β, on Φ≥−1 defined by the following
two conditions.
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α τ+(α) τ−(α)

α1 −α1 α1 + α2

α2 α1 + α2 −α2

α1 + α2 α2 α1

−α1 α1 −α1

−α2 −α2 α2

Table 5: The images of τ+ and τ−

1. For −αi ∈ −Π and β ∈ Φ>0 we have −αi ∼ β if and only if αi does not occur
in the simple root expansion of β.

2. For all α, β ∈ Φ≥−1 we have α ∼ β if and only if Γ(α) ∼ Γ(β).

In our example, −α1 ∼ α2 by the first condition. Then repeated application of the
second yields α ∼ β for all α, β ∈ Φ≥−1 when W = A2.

The cluster complex , ∆(Φ), is the abstract simplicial complex (i.e., a family
of sets called faces closed under taking subsets) consisting of all sets of pairwise
compatible elements of Φ≥0. So in the A2 case, ∆(Φ) consists of a single facet
(maximal face) which is all of Φ≥−1. The faces of ∆(Φ) can be described in terms of
dissections of polygons using noncrossing diagonals. Using this interpretation, Eu
and Fu [16] prove the following result.

Theorem 10.4 Let W be a finite Coxeter group and let Φ be the corresponding root
system. Let ∆max(Φ) be the set of facets of the cluster complex ∆(Φ). Then the
triple

( ∆max(Φ), 〈Γ〉, Cat(W ; q) )

exhibits the cyclic sieving phenomenon. �

In fact, Eu and Fu strengthened this theorem in two ways: by looking at the faces of
dimension k and by considering an m-divisible generalization of the cluster complex
due to Fomin and Reading [20].

11 A cyclic sieving miscellany

Here we collect some topics not previously covered. These include methods for
generating new CSPs from old ones, sieving for cyclic polytopes, and extending
various results to arbitrary fields.

Berget, Eu, and Reiner [5] gave various ways to construct CSPs and we will
discuss one of them now. Let f(q) =

∑l
i=0 miq

i ∈ N[q] satisfy f(1) = n. Let
Xn = {x1, x2, . . . , xn} be a set of variables and let p(Xn) be a polynomial symmetric
in the xi. The plethystic substitution of f into p is

p[f ] = p(1, . . . , 1
︸ ︷︷ ︸

m0

, q, . . . , q
︸ ︷︷ ︸

m1

, . . . , ql, . . . , ql

︸ ︷︷ ︸

ml

).

Note that since p is symmetric, it does not matter in what order one substitutes
these values. For a concrete example, let f(q) = 1 + 2q and p(X3) = h2(x1, x2, x3)
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as in (3.8). Then h2[f ] = h2(1, q, q) = 1 + 2q + 3q2. If f(q) = [n]q then p[f ] =
p(1, q, . . . , qn−1) is the principal specialization of p. Plethysm is useful in describing
the representations of wreath products of groups.

We will also need the elementary symmetric polynomials

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<...<ik≤n

xi1xi2 · · ·xik ,

i.e., the sum of all square-free monomials of degree k in the xi. For example,
e2(x1, x2, x3) = x1x2 + x1x3 + x2x3. It is well known that the algebra symmetric
polynomials in the variables Xn is freely generated by e1(Xn), e2(Xn), . . . , en(Xn)
and this is sometimes called the Fundamental Theorem of Symmetric Polynomials.
The ei(Xn) are dual to the hj(Xn) in a way that can be made precise.

Finally, it will be convenient to extend some of our concepts slightly. We will use
notations (2.1) and (6.1) replacing [n] with any set. We can also consider symmetric
functions which are formal power series in the variables X = {x1, x2, x3, . . .} which
are invariant under all permutations of variables and are of bounded degree. For
example, the complete homogeneous symmetric function is

hk(X) =
∑

1≤i1≤i2≤...≤ik

xi1xi2 · · ·xik .

In this case, we can still make a plethystic substitution of a polynomial f(q) by
letting xi = 0 for i > n = f(1). One of the results of Berget, Eu, and Reiner [5] is
as follows.

Theorem 11.1 If a triple (X, C, f(q)) exhibits the cyclic sieving phenomenon, then
the triple

( ((

X

k

))

, C, hk[f(q)]

)

does so as well.

If, in addition, #C is odd then the triple

( (

X

k

)

, C, ek[f(q)]

)

also exhibits the cyclic sieving phenomenon. �

Some remarks about this theorem are in order. First of all, the authors actually
prove it for C a product of cyclic groups and multi-cyclic sieving, but this does not
materially alter the demonstration. The proof uses symmetric tensors for the first
part (much in the way they were used in Section 3) and alternating tensors in the
second. So the restriction on #C is there to control the sign. Finally, it is instructive
to note how the first part implies our old friend, Theorem 2.1. Indeed, it is clear
that the triple ([n], 〈(1, 2, . . . , n)〉, [n]q) exhibits the CSP: Only the identity element
of the group has fixed points and there are n of them, while for d|n we have

[n]ωd
=

{

n if d = 1,
0 otherwise.
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Now applying Lemma 3.1 and the previous theorem completes the proof.

Eu, Fu, and Pan [17] investigated the CSP for faces of cyclic polytopes. The
moment curve in dimension d is γ : R→ R

d defined parametrically by

γ(t) = (t, t2, . . . , td).

Given real numbers t1 < t2 < . . . < tn, the corresponding cyclic polytope is the
convex hull

CP(n, d) = conv{γ(t1), γ(t2), . . . , γ(tn)}.

A good reference for the theory of convex polytopes is Ziegler’s book [88].

It is known that the γ(ti) are the vertices of CP(n, d). Also, its combinatorial
type (i.e., the structure of its faces) does not depend on the parameters ti. Let
fk(n, d) denote the number of faces of CP(n, d) of dimension k which is well defined
by the previous sentence. We also let CPk(n, d) denote the set of such faces. Cyclic
polytopes are famous, in part, because they have the maximum number of faces in
all dimensions k among all polytopes with n vertices in R

d.

In what follows, we will assume d is even. There is a formula for the face numbers
(for all d). In particular, for 0 ≤ k < d and d even

fk(n, d) =

d/2
∑

j=1

n

n− j

(

n− j

j

)(

j

k + 1− j

)

.

The reader will not be surprised that we will use the q-analogue

fk(n, d; q) =

d/2
∑

j=1

[n]q
[n− j]q

[

n− j
j

]

q

[

j
k + 1− j

]

q

.

Let g ∈ 〈(1, 2, . . . , n)〉 act on the vertices of CP(n, d) by sending vertex γ(ti) to
γ(tg(i)). For even d this induces an automorphism of CP(n, d) in that it sends faces
to faces. We can now state the main result of Eu, Fu, and Pan [17].

Theorem 11.2 Suppose d is even and 0 ≤ k < d. Then the triple

( CPk(n, d), 〈(1, 2, . . . , n)〉, fk(n, d; q) )

exhibits the cyclic sieving phenomenon. �

For odd d the n-cycle does not necessarily induce an automorphism of CP(n, d) and
so there can be no CSP. However, in this case there are actions of certain groups of
order 2 and it would be interesting to find CSPs for them.

Reiner, Stanton, and Webb [57] considered extending Springer’s theory to ar-
bitrary fields. Broer, Reiner, Smith, and Webb [11] continued this work and also
extended various invariant theory results of Chevalley, Shephard-Todd, and Mitchell
such as describing the relationship between the coinvariant and group algebras. Let
V be an n-dimensional vector space over a field k, and let G be a finite subgroup
of GL(V ) generated by (pseudo)-reflections which are defined as in the complex
case. Then G acts on the polynomial algebra S = k[x1, x2, . . . , xn]. Assume that
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SG is a (free) polynomial algebra so that SG = k[f1, f2, . . . , fn] for polynomials
f1, f2, . . . , fn.

To define regular elements, one must work in the algebraic closure k of k. Let
V = V ⊗k k. Call an element g ∈ G regular if it has an eigenvector v ∈ V lying
on none of the reflecting hyperplanes H = H ⊗k k for reflections in G. It can be
shown that in this case o(g) is invertible in k. This implies that the 〈g〉-submodules
of any G-module are completely reducible, meaning that they can be written as a
direct sum of irreducibles. (Recall that complete reducibility is not guaranteed over
arbitrary fields as it is over C by Maschke’s Theorem, Theorem 4.1 (b).)

Now consider any subgroup H ≤ G. The cyclic sieving set will be the cosets
G/H acted upon by left multiplication of the regular element g. For the function
we will take the quotient Hilb(SH ; q)/ Hilb(SG; q). But one has to make sure that
this is in N[q] and not just a rational function. Reiner, Stanton, and Webb [57]
explained why this must be a polynomial with integer coefficients. But in stating
their CSP they had to assume extra conditions on H so that they could prove the
coefficients were nonnegative. They also asked whether it was possible to prove the
CSP without these hypotheses, and this was done in by Broer, Reiner, Smith, and
Webb [11] thus generalizing Theorem 6.6.

Theorem 11.3 Let V be a finite-dimensional vector space over a field k. Let G be
a finite subgroup of GL(V ) for which SG is a polynomial algebra. Let g be a regular
element of G acting on G/H by left multiplication. Then for any H ≤ G, the triple

(

G/H, 〈g〉, Hilb(SH ; q)

Hilb(SG; q)

)

exhibits the cyclic sieving phenomenon. �

12 Remarks

12.1 Alternate definitions

In their initial paper [58], Reiner, Stanton, and White gave a second, equivalent,
definition of the CSP. While this one has not come to be used as much as (1.2), we
mention it here for completeness.

Given a group G acting on a set X, denote the stabilizer subgroup of y ∈ X by

Gy = {g ∈ G : gy = y}.

If x, y are in the same orbit O then their stabilizers are conjugate (and if G is Abelian
they are actually equal). So if y ∈ O then call s(O) = #Gy the stabilizer-order of
O which is well defined by the previous sentence.

Suppose f(q) =
∑

i≥0 miq
i ∈ N[q] and define coefficients ai for 0 ≤ i < n by

f(q) ≡ a0 + a1q + · · ·+ an−1q
n−1 (mod 1− qn).

Equivalently,

ai =
∑

j≡i (modn)

mj .
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Definition 12.1 Suppose #X = n, C is a cyclic group acting on X, and the ai

are as above. The triple (X, C, f(q)) exhibits the cyclic sieving phenomenon if, for
0 ≤ i < n,

ai = #{O : s(O)|i}. (12.1)

Note that if (12.1) is true then a0 counts the total number of C-orbits, while
a1 counts the number of free orbits (those of size #C). In fact, one can use these
equations to determine how many orbits there are of any size using Möbius inversion.
Returning to our original example with C = 〈(1, 2, 3)〉 and 2-element multisets on
[3], the orbits were

O1 = (11, 22, 33), O2 = (12, 23, 13).

On the other hand

f(q) = 1 + q + 2q2 + q3 + q4 ≡ 2 + 2q + 2q2 (mod 1− q3)

indicating that there are 2 orbits total with both of them being free. The coefficient
a2 = 2 as well since a free orbit’s stabilizer-order of 1 will divide any other.

The proof that these two definitions are equivalent is via the representation
theory paradigm, Theorem 4.2. The main tool is Frobenius reciprocity.

In a personal communication, Reiner has pointed out that it might also be inter-
esting to define cyclic sieving with more general polynomials. One possibility would
be to allow negative integral coefficients which could be useful, for example, when
considering quotients of Hilbert series. Note that this issue arose in the genesis of
Theorem 11.3. Another extension could be to Laurent polynomials, that is, ele-
ments of Z[q, q−1]. Such polynomials might come up when considering a bivariate
generating function f(q, t) where one lets t = q−1. We have already seen such a
substitution in Theorem 9.6, although in that case it turns out that the generating
function remains an ordinary polynomial.

12.2 More on Catalan CSPs

We have just begun to scratch the surface of the connection between Catalan
combinatorics and cyclic sieving. We have already mentioned how polygonal dissec-
tions is behind the work of Eu and Fu on cluster complexes [16] as in Theorem 10.4.
We will now describe an open problem and some ongoing work about triangulations,
i.e., dissections where every face is a triangle.

Let P be a regular n-gon. Let Tn denote the set of triangulations T of P using
nonintersecting diagonals. It is well known that

#Tn+2 = Catn .

We will act on triangulations by clockwise rotation. So, for example, for the pentagon
these is only one cycle
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Figure 3: Two triangulations, one proper (left) and one not (right)

Reiner, Stanton, and White [58] proved the following theorem in this setting.
(In fact, they proved a stronger result about dissections using noncrossing diagonals
where one fixes the number of diagonals.)

Theorem 12.2 Let Cn+2 act on Tn+2 by rotation. Then the triple

( Tn+2, Cn+2, Catn(q) )

exhibits the cyclic sieving phenomenon. �

Their proof was of the sort where one evaluates both sides of (1.2) directly.
But as mentioned before, these proofs often lack the beautiful insights one obtains
from using representation theory. It would be very interesting to find such a proof,
perhaps by finding an appropriate complex reflection group along with a basis and
fake degree polynomial which would permit the use of Westbury’s Theorem 8.2.

One can also consider colored triangulations. Label (“color”) the vertices of
the polygon P clockwise 1, 2, 1, 2, . . .. (When n is odd, there will be an edge of
P with both endpoints labeled 1.) Call a triangulation proper if it contains no
monochromatic triangle. (This terminology is both by analogy with proper coloring
of graphs and in honor of Jim Propp who first conjectured (12.2).) In Figure 3, the
left-hand triangulation is proper while the one on the right is not. Let Pn be the set
of proper triangulations of an n-gon. Sagan [66] proved that

#PN+2 =























2n

2n + 1

(

3n

n

)

if N = 2n where n ∈ N,

2n+1

2n + 2

(

3n + 1

n

)

if N = 2n + 1 where n ∈ N.

(12.2)

Note that for N = 2n we have #PN+2 = 2n Cat2,n.
Roichman and Sagan [63] are studying CSPs for colored dissections. In the

triangulation case, notice that when n is odd then there is no action of Cn on Pn

because it is possible for the rotation of a proper triangulation to be improper as
in Figure 3. So it only makes sense to consider a rotational CSP for n even. They
have proved that one does indeed have such a phenomenon, although the necessary
q-analogue for the factor of 2n is somewhat surprising.
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Theorem 12.3 Let N = 2n and let CN+2 act on PN+2 by rotation. Then the triple



 PN+2, CN+2,
[2]q2

(

[2]n−1
q − [2]

⌈n/2⌉−1
q + 2⌈n/2⌉−1

)

[2n + 1]q

[

3n
n

]

q





exhibits the cyclic sieving phenomenon. �

12.3 A combinatorial proof

One could hope for purely combinatorial proofs of CSPs. Since it may not be
clear exactly what this would entail, consider the following paradigm. First of all,
we would need to have a combinatorial expression for f(q), namely some statistic
on the set X such that

f st(X; q) = f(q). (12.3)

Suppose further that, for each g ∈ C, one has a partition of X

π = πg = {B1, B2, . . . , Bk}

satisfying the following criterion where ω = ωo(g):

f st(Bi; ω) =

{

1 if i ≤ #Xg,
0 if i > #Xg.

(12.4)

In other words, the initial blocks correspond to the fixed points of g and their weights
evaluate to 1 when plugging in ω, while the weights of the rest of the blocks get zeroed
out under this substitution. (In practice, the Bi for i ≤ #Xg are singletons each
with weight qj where o(g)|j, while for i > #Xg the sum of the weights in the block
form a geometric progression which becomes zero since 1+ω+ · · ·+ωd−1 = 0 for any
proper divisor d of o(g).) In this case, one automatically has cyclic sieving because,
using equations (12.3) and (12.4) as well as the fact that we have a partition

f(ω) = f st(X; ω) =
∑

i≥0

f st(Bi; ω) = 1 + · · ·+ 1
︸ ︷︷ ︸

#Xg

+0 + · · ·+ 0 = #Xg.

Roichman and Sagan [63] have succeeded in using this method to prove Theo-
rem 6.1. They are currently working on trying to apply it to various other cyclic
sieving results.

Note added in proof

Since this article was written six new papers have appeared related to the cyclic
sieving phenomenon. For completeness’ sake, we briefly describe each of them here.

In [3], Armstrong, Stump, and Thomas constructed a bijection between non-
crossing partitions and nonnesting partitions which sends a complementation map
of Kreweras [44], Krew, to a function of Panyushev [52], Pan. Using this construc-
tion they are able to prove two CSP conjectures in the paper of Bessis and Reiner [8]
about Krew and Pan. The first refines Theorem 10.2 in the case that W is a finite
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Coxeter group since Krew2 coincides with the action of the regular element. The
second follows from the first using the bijection.

Kluge and Rubey [37] have obtained a cyclic sieving result for rotation of Ptolemy
diagrams. These diagrams were recently introduced in a paper of Holm, Jørgensen,
and Rubey [32] as a model for torsion pairs in the cluster category of type A. Their
result is related to the generalization of Theorem 12.2 mentioned just before its
statement, except that certain diagonals are allowed to cross and one keeps track of
the number of regions of various types rather than the number of diagonals. But
the polynomial in both cases is a product of q-binomial coefficients, so it would be
interesting to find a common generalization.

Noncrossing graphs on the vertex set [n] can be defined analogously to noncross-
ing polygonal dissections by arranging the vertices around a circle and insisting that
the resulting graph be planar. Flajolet and Noy [18] showed that the number of
connected noncrossing graphs with n vertices and k edges is given by

1

n− 1

(

3n− 3

n + k

)(

k − 1

n− 2

)

Following a personal communication of S.-P. Eu, Guo [28] has shown that one has
a CSP using these graphs, rotation, and the expected q-analogue of the expression
above.

Another way to generalize noncrossing dissections into triangles is to define a
k-triangulation of a convex n-gon to be a maximal collection of diagonals such that
no k + 1 of them mutually cross. So ordinary triangulations are the case k = 1.
In a personal communication, Reiner has conjectured a CSP for such triangulations
under rotation generalizing Theorem 12.2. In [71], Serrano and Stump reformulated
this conjecture in terms of k-flagged tableaux (certain semistandard tableaux with
bounds on the entries). But the conjecture remains open.

As has already been mentioned, there is no representation theory proof of Theo-
rem 12.2. The same is true of the Eu and Fu’s result, Theorem 10.4. In an attempt
to partially remedy this situation, Rhoades [59] has used representation theory and
cluster multicomplexes to prove related CSPs. His tools include a notion of non-
crossing tableaux due to Pylyavskyy [56] and geometric realizations of finite type
cluster algebras due to Fomin and Zelevinsky [21].

Westbury [86] has succeeded in generalizing Rhoades’s original result [60] just
as he was able to do for the special case considered by Petersen, Pylyavskyy, and
Rhoades [53] for two and three rows. It turns out that the same tools (crystal bases,
based modules, and regular elements) can be used.
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Order in building theory

Koen Thas

Abstract

A notorious open problem in Combinatorics is the so-called \Prime Power
Conjecture", which states that the order of a �nite projective plane is a prime
power. Projective planes are important examples of Tits buildings of rank
2, and the latter class is widely considered as the central class of point-line (=
rank 2) geometries. In this paper, we consider prime power and other parameter
conjectures for buildings of all ranks, not restricting ourselves to the �nite case.
The rank 2 case will play a prominent role (due to the simple fact that they
are all around the higher rank buildings). Among the topics which will pass,
are Moufang sets, various aspects of �nite and in�nite projective planes (such
as ag-transitivity), parameter conjectures for the other generalized polygons,
locally �nite polygons, etc. The paper also contains several new constructions
and explores connections with other problems and �elds. The paper ends with a
discussion of recent developments in the theory of Absolute Arithmetic (over the
\�eld with one element, F1"), and some mysterious interrelations with several
aspects which are touched in the present text.
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Notation

2X : power set of X
Aut(S ): automorphism group of S , with S a geometry, group, etc.
R�: R n f1g with R a group and 1 its identity
Fq: �nite �eld with q elements
PG(n; q): n-dimensional projective space over Fq
P(V ): projective space associated to the vector space V
G=H: left coset space, where H is a subgroup of G
X(F): set of F-rational points of the variety X
F1: \�eld with one element"
[n]‘: 1 + ‘+ � � �+ ‘n�1

bZ: pro�nite completion of Z
K: the Krasner hyper�eld

1 Introduction

Initially, the purpose of the theory of buildings was primarily to understand the
exceptional Lie groups from a geometrical point of view. The starting point appeared
to be the observation that it is possible to associate with each complex analytic
semisimple group a certain well-de�ned geometry, in such a way that the \basic"
properties of the geometries thus obtained and their mutual relationships can be
easily read from the Dynkin diagrams of the corresponding groups. The de�nition
of these geometries was suggested by the following reconstruction method of the
complex projective space PG(n;C) from the projective linear group PGLn+1(C):

(i) the linear subspaces of the projective space PG(n;C) can be represented by
their stabilizers in PGLn+1(C) (which, by a theorem of Lie, are the maximal
connected nonsemisimple subgroups of PGLn+1(C));
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(ii) the conjugacy classes of these subgroups represent the set of all points, the
set of all lines, : : :, and the set of all hyperplanes of PG(n;C) (for arbitrary
complex semisimple groups, the conjugacy classes of the maximal connected
nonsemisimple subgroups are called maximal parabolic subgroups);

(iii) two linear subspaces are incident if and only if the intersection of the cor-
responding subgroups contains a maximal connected solvable subgroup of
PGLn+1(C).

Generalizing the above example, it seemed natural to associate with an arbitrary
complex semisimple group G a geometry consisting of a set (the set of maximal
parabolic subgroups), partitioned into classes (the conjugacy classes), parametrized
by the vertices of the Dynkin diagram M of G, and endowed with an incidence
relation as follows: two maximal parabolic subgroups are incident if their intersection
contains a maximal connected solvable subgroup (the \Borel subgroup"). Now we
have the following two essential properties:

(D1) let M be the Dynkin diagram, � the associated geometry, x an object in �,
and v(x) the vertex of M corresponding to the class of x; then the residue
of x in � | that is, the geometry consisting of all objects of � distinct from
x but incident with x, with the partition and incidence relation induced by
those by � | is the geometry associated with the diagram obtained from M
by deleting v(x) and all strokes containing it;

(D2) when one knows the geometries associated with the Dynkin diagrams of rank
2 (that is, those having two vertices), Assertion (i) \almost" characterizes that
geometry uniquely.

As the theory of algebraic semisimple groups over an arbitrary �eld emerged, it
then became apparent that the same geometrical theory would apply to the group
G(K) of rational points of an arbitrary isotropic algebraic semisimple group G de-
�ned over any �eld K, as:

� such a group G(K) also has \parabolic subgroups";

� the conjugacy classes of the maximal parabolic subgroups are parametrized by
the vertices of the so-called \relative Dynkin diagram" of G over K;

� for the geometry consisting of the set of all maximal parabolic subgroups par-
titioned into conjugacy classes and endowed with a suitable incidence relation,
the relation between residues and subdiagrams which was explained in (D1)
holds.

Then J. Tits noticed that all the geometries associated with a diagram consisting
of a single stroke with multiplicity n � 2, n � 3, satis�ed the following important
property:

(GPn) For any two elements x and y of the geometry, there is a sequence x =
x0; x1; : : : ; xm = y of elements so that xi and xi+2 are incident and xi 6= xi+2

for all i = 0; 1; : : : ;m � 2, with m � n, and if m < n, then the sequence is
unique.
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At that point, geometries of type M | which are the direct precursors of build-
ings | were introduced, their de�nition being directly inspired by the latter ob-
servation(s). Property (GPn) is the main axiom for the generalized polygons or
generalized n-gons; the concept of a generalized polygon was formally introduced in
the literature by Tits in his famous paper on trialities [122]. An important class of
buildings is formed by the spherical buildings | they include in particular all �nite
buildings | which have a certain rank (dimension), and precisely when the rank is
2, the concept of a thick spherical building coincides with that of a thick generalized
polygon. In fact, all other rank 2 buildings are trees without vertices of valency 1.

The class of generalized 3-gons coincides with the class of axiomatic projective
planes. To each such plane is associated a parameter n called the \order", which
expresses the fact that any line is incident with a constant (n+ 1) number of points,
and any point is incident with a constant (also n+ 1) number of lines. In fact, such
(possibly di�erent) constants exist for any generalized polygon. When n is �nite,
the following conjecture needs no introduction.

Conjecture 1.1 (Prime Power Conjecture) The order of a �nite projective plane
is a prime power.

The classical examples of �nite projective planes consist of those that are coor-
dinatized over a �nite �eld | the so-called \Desarguesian planes". They of course
satisfy the statement of the conjecture. In general, �nite projective planes are coor-
dinatized by plenary ternary rings (R; T ), and so it is an open question as to whether
jRj is a prime power. The Prime Power Conjecture (PPC) for projective planes is
without a doubt the most important open problem in projective plane theory.

As projective planes are members of the class of generalized polygons, and the
latter are the rank 2 members of spherical buildings, it makes sense to address a more
general \Prime Power Conjecture" for general buildings. In fact, as we will describe,
\PPC" will mean a whole set of conjectures related to this question (and by abuse
of terminology, I will often speak about \PPC theory"). In the �nite case, roughly
speaking, a PPC would state something about natural parameters associated to a
�nite spherical building (such as the number of lines through a point), typically them
being a polynomial evaluated at some prime power. But we want to consider an even
larger set of conjectures: �rst of all, we do not want to consider only �nite buildings,
and second of all, we want to develop conjectures about the structural theory which
underlies the arithmetic. A good example is given by the class of translation planes,
which are projective planes endowed with a certain group action. In the �nite case,
one can associate a �eld called \kernel" to such a plane, and the translation group
appears to be a vector space over this �eld. Since the number of a�ne points (with
respect to some special line) is exactly the number of points of this vector space,
we have a positive answer to the PPC for these planes. PPC theory in this case is
the vector space representation. In the in�nite case, one can de�ne the kernel in the
same way, ending up with a skew �eld instead of a �eld, and with a (left or right)
vector space over this skew �eld. So there still is a valid PPC theory in the in�nite
case, even without mentioning the word \parameter" explicitly. If one wants to do
so, observe that we now can work with a concept of dimension, and state arithmetic
properties.
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translation plane �! kernel �! vector space �! PPC (1.1)

As soon as the dimension of an axiomatic projective space is at least 3, a famous
theorem of Veblen and Young states that it can be coordinatized over a skew �eld
(and so in the �nite case over a �eld), in other words, we can reconstruct the space
from some vector space Kn, where K is a skew �eld. This observation is the essence
of PPC theory for projective spaces. As there is lack of a good algebraic theory in
the rank 2 case (many examples are known that cannot appear as projective spaces
over a skew �eld), we will endow planes (and more general geometries) with natu-
ral group actions, and then develop PPC theory, such as in the case of translation
planes. If the rank is 1, PPC theory follows from the mere de�nition of the projec-
tive line.

For general spherical buildings of rank at least 3, there is a Veblen-Young avail-
able which hands us an immediate PPC theory: Tits classi�ed them in a precise
way. In the rank 2 case, the same obstruction arises as before, and as we will see,
there even are \free constructions" which allows one to easily construct general-
ized n-gons for any n. Again, extra algebraic assumptions will be needed in order
to pursue our goals. And again, in the rank 1 case PPC theory follows from the
appropriate de�nition of building.

So the low dimensional cases will be emphasized.

In all ranks (and especially rank 2), numerous characterizations exist of the (�-
nite) classical buildings. Although all these are crucial for PPC theory (since, for
one, they lead to examples which are the main motivation for prime power conjec-
tures), we will not survey such characterizations | only will we tersely comment on
that in the projective plane section. Many detailed papers are available on charac-
terizations of �nite classical polygons; so we refer to these for more.

Considering the free constructions, it could seem unlikely to the reader that in-
teresting PPC theories can emerge for general generalized polygons. But in fact, this
is not the case. As we will see, on the contrary an extremely rich set of PPC theories
exists, with many (wide) open questions, and many interesting known results. We
will show that there even is a deep PPC theory concerning thin buildings (which
are often considered as the trivial examples | think of a triangle as a thin example
of a projective plane); there, the underlying coordinate structure will be the \�eld
with one element" F1, and a whole set of problems and conjectures will turn up in
the most unexpected way.

I have omitted a very important part of the theory, namely the topological poly-
gons. The latter are generalized n-gons for which the point set and line set are
endowed with a topology, such that projection of elements at distance n � 1 is a
continuous function. The presence of topologies allows one to study the polygons
in a discretized way, and many topological polygons behave in some sense just like
�nite examples. A beautiful example is a result of Knarr [64] and Kramer [67], which
states that for a compact connected generalized n-gon with a point space of �nite
topological dimension, n necessarily is in f3; 4; 6g. There is a very rich and deep
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PPC theory for topological polygons (and many results are known about topological
parameters), and it simply would take me too far to also handle these in the present
paper. Chapter 9 of [132] is an excellent starting point. I also refer the reader to [89].

I will touch most of the objects under consideration only very briey, although
at some points, proofs are provided. The main goal is to sketch a playground which
is rather small and well-understood in rank one, rich and controlled in dimension at
least three, and very mysterious when the rank is two.

2 Some notions from Group Theory

We review some basic notions of Group Theory.

We usually denote a permutation group by (G;X), where G acts on X.

We denote permutation action exponentially and let elements act on the right,
such that each element g of G de�nes a permutation g : X ! X of X and the
permutation de�ned by gh, g; h 2 G, is given by

gh : X ! X : x 7! (xg)h: (2.1)

We denote the identity element of a group often by id or 1; a group G without
its identity is denoted G�.

Let G be a group, and let g; h 2 G. The conjugate of g by h is gh = h�1gh. The
commutator of g and h is equal to

[g; h] = g�1h�1gh: (2.2)

Note that the commutator map

 : G�G 7! G : (g; h) 7! [g; h] (2.3)

is not symmetrical; as [g; h]�1 = [h; g], we have that [g; h] = [h; g] if and only if
[g; h] is an involution. The commutator of two subsets A and B of a group G is
the subgroup [A;B] generated by all elements [a; b], with a 2 A and b 2 B. The
commutator subgroup of G is [G;G] = G0. Two subgroups A and B centralize each
other if [A;B] = f1g. The subgroup A normalizes B if Ba = B, for all a 2 A, which
is equivalent with [A;B] � B.

Inductively, we de�ne the nth central derivative Ln+1(G) = [G;G][n] of G as
[G; [G;G][n�1]], and the nth normal derivative [G;G](n) as [[G;G](n�1); [G;G](n�1)].
For n = 0, the 0th central and normal derivative are by de�nition equal to G itself.
The series

L1(G); L2(G); : : : (2.4)

is called the lower central series of G. If, for some natural number n, [G;G](n) = f1g,
and [G;G](n�1) 6= f1g, then we say that G is solvable (soluble) of length n. If
[G;G][n] = f1g and [G;G][n�1] 6= f1g, then we say that G is nilpotent of class n.

A group G is called perfect if G = [G;G] = G0.
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The center of a group is the set of elements that commute with every other
element, i.e.,

Z(G) = fz 2 Gj[z; g] = 1;8g 2 Gg: (2.5)

Clearly, if a group G is nilpotent of class n, then the (n� 1)th central derivative is
a nontrivial subgroup of Z(G).

For a prime number p, a p-group is a group of order pn, for some natural number
n 6= 0. A Sylow p-subgroup of a �nite group G is a p-subgroup of some order pn

such that pn+1 does not divide jGj. Let � be a set of primes dividing jGj for a �nite
group G. Then a �-subgroup is a subgroup of which the set of prime divisors is �.

The following result is basic.

Theorem 2.1 ([46], Chapter 1) A �nite group is nilpotent if and only if it is the
direct product of its Sylow subgroups.

A Hall �-subgroup of a �nite group G, where � � �(G), and �(G) is the set of
primes dividing jGj, is a subgroup of size

Q

p2� p
np , where pnp denotes the largest

power of p that divides jGj.

Theorem 2.2 (Hall’s Theorem [46], Chapter 6) let G be a �nite solvable group
and � a set of primes. Then

(a) G possesses a Hall �-subgroup;

(b) G acts transitively on its Hall �-subgroups by conjugation;

(c) Any �-subgroup of G is contained in some Hall �-subgroup.

Let p and q be primes. A pq-group is a group of order paqb for some natural
numbers a and b. A classical result of Burnside states the following.

Theorem 2.3 ([46], Chapter 4) A pq-group is solvable.

Suppose (G;X) is a permutation group which satis�es the following properties:

(1) G acts transitively but not sharply transitively on X;

(2) there is no nontrivial element of G with more than one �xed point in X.

Then (G;X) is a Frobenius group (or G is a Frobenius group in its action on X).
De�ne N � G by:

N = fg 2 Gjf(g) = 0g [ f1g; (2.6)

where f(g) is the number of �xed points of g in X. Then N is called the Frobenius
kernel of G (or of (G;X)), and we have the following well-known result.

Theorem 2.4 (Theorem of Frobenius [46], Chapter 2) N is a normal regu-
lar subgroup of G.
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Let R be a �nite group. The Frattini group �(R) of R is the intersection of all
proper maximal subgroups, or is R if R has no such subgroups.

A group is simple if it does not contain any proper nontrivial normal subgroups.
A group G is almost simple if

S � G � Aut(S); (2.7)

with S a simple group and Aut(S) its automorphism group.

3 Projective spaces

In this section, we want to describe a PPC theory for projective spaces. For
this purpose, we need to introduce projective spaces axiomatically. Using the classic
Veblen-Young theorem, PPC theory can be handled completely as soon as the rank
is at least 3. If the rank is 1, PPC theory follows from the mere de�nition of the
projective line. The obstruction will come from the rank 2 case.

3.1 Axiomatic projective spaces

Consider an axiomatic projective space of rank k, k � �1. It is de�ned as
follows. An axiomatic projective space is a set P (the set of points), together with
a set of subsets of P (the set of lines) | all of which have at least three elements,
and a symmetric incidence relation, satisfying these axioms:

� Each two distinct points p and q are incident with exactly one line.

� Axiom of Veblen: when L contains a point of the line through p and q 6= p
(di�erent from p and q), and of the line through q and r 6= q (di�erent from q
and r), it also contains a point on the line through p and r.

� There is a point p and a line L that are disjoint.

The last axiom is there to prevent degenerations.
If the number of points of the space is �nite, we speak of a �nite projective space.
A subspace of the projective space is a subset X, such that any line containing

two points of X is a subset of X. The full space and the empty space are also
considered as subspaces.

The (geometric) dimension of the space is said to be n if that is the largest
number for which there is a strictly ascending chain of subspaces of the form

; = X�1 � X0 � � � � � Xn = P: (3.1)

The following result is the classical result of Veblen-Young;

Theorem 3.1 (Veblen-Young [136]) An axiomatic projective space of dimension
at least 3 is isomorphic to a PG(n;R) for some natural number n � 3 and division
ring R.
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Here, PG(n;R) is the n-dimensional projective space over R; it is obtained by
considering the left vector space Rn+1, and de�ning a new space

(Rn+1 n f0g)= � (3.2)

by imposing the equivalent relation �, which is just left proportionality. If R is a
�nite �eld Fq, PG(n;Fq) is also denoted by PG(n; q).

In the �nite case, the result states that axiomatic projective spaces of dimension
at least three are unique.

Corollary 3.2 (PPC for projective spaces of dimension � 3) A �nite axiomatic
projective space of dimension at least 3 is Desarguesian, so is isomorphic to a
PG(n; q) for some natural number n � 3 and �nite �eld Fq.

For the planar case, the result is not true (in the �nite nor in�nite case) |
projective planes have been constructed, both �nite and in�nite, which do not arise
from vector spaces over division rings. In fact, by the idea of \free construction"
(explained further in the paper for all generalized polygons), there is no hope that
classi�cation is feasible. In the �nite case, the same could be said. But still, one type
of general classi�cation | and perhaps the only one | is exactly the development
of PPC theory.

3.2 A�ne spaces

Let P be an n-dimensional projective space, and � be any hyperplane. The
geometry which P induces on the point set of P n � is an n-dimensional a�ne
space. (One can also approach a�ne spaces axiomatically | we will encounter such
axioms for dimension 2 later on. An axiomatic a�ne space can then be \projectively
completed" to a projective space by adjoining a hyperplane \at in�nity".)

3.3 Collineations of spaces

An automorphism or collineation of a projective space is an incidence and type
preserving bijection (so point set, line set, etc. are preserved) of the set of subspaces
to itself.

It can be shown that any automorphism of a �nite dimensional space PG(n;R),
n � 2, necessarily has the following form:

� : xT 7! A(x�)T ; (3.3)

where A 2 GLn+1(R), � is an automorphism of R, the homogeneous coordinate
x = (x0; x1; : : : ; xn) represents a point of the space (which is determined up to a
scalar), and x� = (x�0 ; x

�
1 ; : : : ; x

�
n) (recall that x�i is the image of xi under �).

The set of automorphisms of a projective space naturally forms a group, and in
case of PG(n;R), n � 3, this group is denoted by P�Ln+1(R). The normal sub-
group of P�Ln+1(R) which consists of all automorphisms for which the companion
automorphism � is the identity, is the projective general linear group, and denoted
by PGLn+1(R). So

PGLn+1(R) = GLn+1(R)=Z(GLn+1(R)); (3.4)
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where Z(GLn+1(R)) is the central subgroup of all scalar matrices of GLn+1(R).
Similarly one de�nes

PSLn+1(R) = SLn+1(R)=Z(SLn+1(R)); (3.5)

where Z(SLn+1(R)) is the central subgroup of all scalar matrices of SLn+1(R) with
unit determinant.

For notions such as \translations", \homologies", etc. we refer the reader to any
standard textbook.

Now let P be an n-dimensional (axiomatic) projective space, � be any hyper-
plane, and A the corresponding a�ne space. It can be shown that any automorphism
of A is induced by an automorphism of P that stabilizes �. (In the notation of each
of the groups de�ned above for projective spaces, one replaces \P" by \A" and lowers
the dimension by one. So, for example, consider PG(2; q), and construct AG(2; q)
by leaving out the line L, together with its points. Then AGL2(q) �= PGL3(q)L is
the general linear automorphism group of AG(2; q).)

3.4 Reconstructing the space from its group

For having a better understanding of the concept of a general building, we want
to say some words on how the geometry of the space is completely encapsulated in
the automorphism group. (The contrast with the planar case couldn’t be bigger!)

Let P be a �nite (n-)dimensional projective space over some division ring R.
Consider any R-base B. De�ne a simplicial complex (in the next section to be
formally de�ned, and called \chamber") C � C (B), by letting it be the union of all
possible subspaces of P generated by subsets of B. (Let it also contain the empty
set.) De�ne a \ag" or \apartment" in C as a maximal chain (so of length n + 1)
of subspaces in C . Let F be such a �xed ag.

Consider the special projective linear group K := PSLn+1(R) of P. Then note
that K acts transitively on the pairs (C (B0); F 0), where B0 is any R-base and F 0 is
a ag in C (B0).

Put B = KC and N = KF ; then note the following properties:

� hB;Ni = K;

� put H = B \N � N and N=H = W ; then W obviously is isomorphic to the
symmetric group Sn+1 on n+ 1 elements. Note that a presentation of Sn+1 is:

hsijs2
i = 1; (sisi+1)3 = 1; (sisj)

2 = 1; i; j 2 f1; : : : ; n+ 1g; j 6= i� 1i: (3.6)

� BsiBwB � BwB [BsiwB whenever w 2W and i 2 f1; 2; : : : ; n+ 1g;

� siBsi 6= B for all i 2 f1; 2; : : : ; n+ 1g.

Now let K �= PSLn+1(R) be as above, and suppose that B and N are groups
satisfying these properties. De�ne a geometry B(B;N) as follows.
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� Its varieties are left cosets in K of the groups hB;Bsii =: Pi, i = 1; : : : ; n+ 1;

� two varieties gPi and hPj are incident if they intersect nontrivially.

Then B(B;N) is isomorphic to PG(n;R).

3.5 Low dimensional cases

For dimension n = 1, our de�nition of axiomatic space doesn’t make much sense.
Here we rather start from a division ring R, and de�ne P, the projective line over
R, as being the set (R2 n f0g)= �, where � is de�ned by (left) proportionality. So
we can write

P = f(0; 1)g [ f(1; ‘)j‘ 2 Rg: (3.7)

Now PSL2(R) acts naturally on P; in fact, we have de�ned the projective line as a
permutation group equipped with the natural doubly transitive action of PSL2(R).
De�ning a geometry as we did for higher rank projective spaces, through the \(B;N)-
pair structure" of PSL2(R), one obtains the same notion of projective line.

Restricting to �nite �elds, we obtain the following very simple

Proposition 3.3 (PPC for projective lines) A �nite projective line has q + 1
points, for some prime power q.

The 2-dimensional case is di�erent, still. Here, other than in the 1-dimensional
case, one obtains a nontrivial geometry; the axioms now boil down to just demanding
that each two di�erent points are incident with precisely one line, that, dually, any
two distinct lines intersect in precisely one point, and that there exists a nonincident
point-line pair (\anti-ag"). So we need not require additional algebraic structure
in order to have interesting objects. Here we cannot say much about the order of
the plane a priori.

We will come back to this issue in much more detail in a later section (x10).

3.6 Representation by diagram

We represent the presentation of Sn+1 as above in the following way (this will
be explained in more detail in the next section):

An+1: : : : (n � 0)

(The number of vertices is n + 1 | each vertex corresponding to an involution
in the generating set of involutions | and we have an edge between vertices si and
sj if and only if jj � ij = 1.)
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4 Buildings and BN-pairs

Recall that a (combinatorial) simplicial complex is a pair (S ; Y ), where Y is a
set and S � 2Y , such that Y 2 S and

U � V 2 S =) U 2 S : (4.1)

We are ready to introduce buildings. We will not provide each result with a speci�c
reference | rather, we refer the reader to [7].

4.1 Combinatorial de�nition

A chamber geometry is a geometry � = (C1;C2; : : : ;Cj ; I) of rank j (so � has j
di�erent kinds of varieties and I is an incidence relation between the elements such
that no two elements belonging to the same Ci, 1 � i � j, can be incident) so that
the simplicial complex (C ; X), where C = [ji=1Ci and S � C is contained in X if
and only if every two distinct elements of S are incident, is a chamber complex (as
in, e.g., [132]). A building (C ; X) is a thick chamber geometry (C1;C2; : : : ;Cj ; I) of

rank j, where C = [ji=1Ci, together with a set A of thin chamber subgeometries,
so that:

(i) every two chambers are contained in some element of A ;

(ii) for every two elements � and �0 of A and every two simplices F and F 0,
contained in both � and �0, there exists an isomorphism � 7! �0 which �xes
all elements of both F and F 0.

If all elements of A are �nite, then the building is called spherical. Let us men-
tion for the sake of completeness, that there also is a very subtle graph theoretical
de�nition of the notion of buildings which was observed by E. E. Shult, see [93], and
which also works for in�nite rank. Later in this section, we will introduce buildings
as a certain type of colored graph.

4.2 Coxeter groups and systems

We need to introduce the notions of \Coxeter system" and \Coxeter diagram".

4.2.1 Coxeter groups A Coxeter group is a group with a presentation of type

hs1; s2; : : : ; snj(sisj)mij = 1i; (4.2)

where mii = 1 for all i, mij � 2 for i 6= j, and i; j are natural numbers bounded
above by the natural number n. If mij = 1, no relation of the form (sisj)

mij is
imposed. All generators in this presentation are involutions. The natural number n
is the rank of the Coxeter group.
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A Coxeter system is a pair (W;S), where W is a Coxeter group and S the set of
generators de�ned by the presentation. Di�erent Coxeter systems can give rise to
the same Coxeter group, even if the rank is di�erent.

Recall that a dihedral group of rank n, denoted Dn, is the symmetry group of a
regular n-gon in the real plane.

4.2.2 Coxeter matrices A square n� n-matrix (M)ij is a Coxeter matrix if it is
symmetric and de�ned over Z [ f1g, has only 1s on the diagonal, and if mij � 2
if i 6= j. Starting from a Coxeter matrix (M)ij , one can de�ne a Coxeter group
hs1; s2; : : : ; snj(sisj)mij = 1i, and conversely.

4.2.3 Coxeter diagrams Let (W;S) be a Coxeter system. De�ne a graph, called
\Coxeter diagram", as follows. Its vertices are the elements of S. If mij = 3, we
draw a single edge between si and sj ; if mij = 4, a double edge, and if mij � 5,
we draw a single edge with label mij . If mij = 2, nothing is drawn. If the Coxeter
diagram is connected, we call (W;S) irreducible. If it has a �nite number of vertices,
we call (W;S) spherical.

The irreducible, spherical Coxeter diagrams were classi�ed by H. S. M. Coxeter
[23]; the complete list is the following.

An: : : : (n � 1)

Cn: : : : (n � 2)

Dn: : : : (n � 4)

En: : : : (n = 6; 7; 8)

F4:

H3:

5

H4:

5
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I2(m):

m

(m � 5)

4.3 BN-Pairs and buildings

A group G is said to have a BN-pair (B;N), where B;N are subgroups of G, if:

(BN1) hB;Ni = G;

(BN2) H = B \ N � N and N=H = W is a Coxeter group with distinct generators
s1; s2; : : : ; sn (at some stages in this paper the value n =1 is allowed);

(BN3) BsiBwB � BwB [BsiwB whenever w 2W and i 2 f1; 2; : : : ; ng;

(BN4) siBsi 6= B for all i 2 f1; 2; : : : ; ng.

The group B, respectively W , is a Borel subgroup, respectively the Weyl group,
of G. The natural number n is called the rank of the BN-pair. If jW j <1, the BN-
pair is spherical. It is irreducible if the corresponding Coxeter system is. Sometimes
we call (G;B;N) also a Tits system.

4.3.1 Buildings as group coset geometries To each Tits system (G;B;N) one
can associate a building BG;B;N in a natural way, through a group coset construction.
For that reason we introduce the standard parabolic subgroups Pi := hB;Bsii for
i = 1; 2; : : : ; n.

� Varieties: (or \subspaces") are elements of the left coset spaces G=Pi, i =
1; 2; : : : ; n.

� Incidence: gPi is incident with hPj , i 6= j, if these cosets intersect nontriv-
ially.

The building BG;B;N is spherical when the BN-pair (B;N) is; note that this is
in accordance with the aforementioned synthetic de�nition of \spherical building"
(taken that there is already a BN-pair around). It is irreducible when (B;N) is
irreducible.

4.3.2 G as an automorphism group The group G acts as a collineation group,
by multiplication on the left, on BG;B;N . The kernel K of this action is the biggest
normal subgroup of G contained in B, and as such equal to

K =
\

g2G
Bg: (4.3)

The group G=K acts faithfully on BG;B;N and the stabilizer of the ag F =
fP1; P2; : : : ; Png is B=K. If K = f1g, we say that the Tits system is e�ective.
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Let � be an apartment of BG;B;N , and let its elementwise stabilizer be S; then
NS is the global stabilizer of �. We can write

S =
\

w2W
Bw: (4.4)

Theorem 4.1 Let (G;B;N) be a Tits system with Weyl group W . Then the geom-
etry BG;B;N is a Tits building. Setting

K =
\

g2G
Bg and S =

\

w2W
Bw; (4.5)

we have that G=K acts naturally and faithfully by left translation on BG;B;N . Also,
B is the stabilizer of a unique ag F and NS is the stabilizer of a unique apart-
ment containing F , and the triple (G=K;B=K;NS=K) is a Tits system associated
with BG;B;N . Moreover, G=K acts transitively on the sets (A;F 0), where A is an
apartment and F 0 is a maximal ag (chamber) in A.

The Tits system (G;B;N) is called saturated precisely when N = NS, with S
as above. Replacing N by NS, every Tits system is \equivalent" to a saturated one.

4.3.3 Bruhat decomposition Let G be a group with a spherical, saturated, ef-
fective BN-pair (B;N). Then the \Bruhat decomposition" tells us that

G = BWB =
a

w2W
BwB; (4.6)

where W = N=(B \N) is the Weyl group.

4.3.4 Classi�cation of BN-pairs If the rank of an abstract spherical building is
at least 3, Tits showed in a celebrated work [123] that it is always associated to a
BN-pair in the way explained above, and this deep observation led him eventually
to classify all �nite BN-pairs of rank � 3 (cf. [123, 11.7]).

So Tits realized a far reaching generalization of the Veblen-Young theorem for
spherical buildings, which roughly could be formulated as follows.

Theorem 4.2 (Classi�cation of spherical buildings) An irreducible spherical
building of rank at least 3 arises from a simple algebraic group (of relative rank at
least 3) over an arbitrary division ring.

4.4 Buildings as colored graphs

For our purpose, a second approach to buildings seems to be in order.
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4.4.1 Colored graphs A graph is a pair (V;E) where V is a set (of \points" or
\vertices") and E is a set of two-element subsets (\edges") of V . It is nothing else
than a rank 2 geometry with thin lines. Two vertices lying on the same edge are
called neighbors. An edge colored graph � = (V;E;  ) is a graph (V;E) together
with a surjective map

 : E ! I; (4.7)

where I is the set of \colors"; the rank of the edge colored graph � is jIj. An
isomorphism between edge colored graphs de�ned on the same color set is a graph
isomorphism preserving colors. A subgraph of an edge colored graph � is just an
ordinary subgraph endowed with the induced edge coloring. For any subset J � I,
EJ denotes the edge set of � whose color is contained in J . A J-residue now is a
connected component of the subgraph (V;EJ), and a panel is a J-residue for some
subset J consisting of a single element of I.

4.4.2 Chamber systems We now rephrase the notion of chamber system in terms
of edge colored graphs. A chamber system is an edge colored graph � = (V;E;  )
such that each panel is a complete graph containing at least two vertices. In a
chamber system, the vertices are also called chambers. If � is a chamber system,
each chamber is contained in at least one edge of each color, and the color set of
each J-residue is J . A chamber system is thin if each panel contains precisely two
chambers (and then panels and edges become the same thing), and thick if every
panel contains more than two chambers.

4.4.3 Chamber systems from certain groups Let G be a group generated by a
subset fsiji 2 Ig consisting of involutions, I being some index set, and put V = G.
Two elements x and y of V are joined by an edge with color i whenever x�1y = ri.
Then (V;E) becomes a thin chamber system with color set I.

4.4.4 Bipartite graphs A bipartite graph (V;E) is a graph such that there is a
partition of V in two subsets V1; V2 such that every edge contains an element of each
of these subsets. Let (V;E) be a bipartite graph, put � = E, and let I = f1; 2g.
Then � becomes an edge colored graph with color set I if two elements u and v of �
are joined whenever ju \ vj = 1, and giving this edge the color i if the single vertex
in u\ v is in Vi. As such, we obtain a one-to-one correspondence between connected
bipartite graphs for which every vertex has degree at least 2, and connected chamber
systems of rank 2.

4.4.5 Buildings as edge colored graphs Let (W;S) be a Coxeter system, and
� = (V;E) the corresponding Coxeter graph. Then �� denotes the thin chamber
system obtained from W and S as just explained.
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Now let � = (V;E) be a Coxeter diagram with vertex set I, and let �� be as
above. A building of type � is a chamber system � with color set I containing a
collection A of subgraphs (called \apartments" as before), each isomorphic to ��,
for which

(i) each pair of chambers is contained in some apartment;

(ii) each apartment is convex (every minimal path in � beginning and ending in
an apartment A 2 A is completely contained in A).

Notions such as \spherical", \rank", \irreducible", etc. are now naturally de-
�ned.

We single out the next observation for the sake of convenience.

Proposition 4.3 The chamber system �� is a building of type �. It is the unique
thin building of this type.

For later purposes, especially the functor

A : building of type �! �� (4.8)

will be essential.

4.4.6 Some more words about classi�cation If � is a Coxeter diagram which is
spherical but not irreducible, then every building of type � is a direct product of
irreducible buildings of type �i, where i 2 f1; 2; : : : ; rg and �1;�2; : : : ;�r are the
connected components of �.

Let � be a building and for each chamber C of �, let E2(C) be the subgraph
consisting of the union of all the rank 2 residues of � that contain C. A famous
theorem of Tits ([123, Theorem 4.1.2]) states that if � is an irreducible spherical
Coxeter diagram of rank at least 3, and if � and �0 are two thick buildings of type
�, then any isomorphism

� : E2(C)! E2(C 0) (4.9)

for some chamber C 2 � and C 0 2 �0, extends to an isomorphism from � to �0.

It turns out that this observation leads to the fact that once an irreducible,
spherical (combinatorial) building � has rank at least 3, it admits an automorphism
group G with a (spherical, irreducible) BN-pair (B;N) such that

BG;B;N
�= �: (4.10)

5 Buildings of rank 1

Combinatorially, a building of rank 1 is just a set without any further structure.
Therefore one usually requires a set together with a certain group action if one con-
siders rank 1 buildings. As was noted in the previous section, any building of rank
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at least 3 admits an automorphism group with a BN-pair of the same rank as the
building. So a natural approach to rank 1 buildings seems to be to consider sets
admitting a permutation group with a BN-pair of rank 1.

First suppose that (G;X) is a doubly transitive (faithful) permutation group,
with jXj > 2. Let x; y 2 X be distinct points. Then with B = Gx and N = Gfx;yg,
it is easy to see that (B;N) is a BN-pair of rank 1 | the corresponding Coxeter
group is just the group of order 2.

Now consider a group G with a BN-pair (B;N) of rank 1. Then putting
X := fleft cosets of B in Gg, it is clear that G acts doubly transitively on X
by left multiplication (as a special case of the Bruhat decomposition | see also [46,
Theorem 7.2(ii)]).

So as a �rst try, we could consider doubly transitive groups.

5.1 The �nite doubly transitive groups

Let G be a �nite doubly transitive group. Below, if K is a group, Aut(K)
denotes its automorphism group. Also, q denotes any prime power, unless otherwise
speci�ed. Then either I) G belongs to one of the following classes (the possible
2-transitive permutation representations can be found in [33]; for de�nitions of the
groups, see [22], or also x5.2):

� Symmetric groups Sn n � 2:

� Alternating groups An; n � 4;

� Projective special linear groups PSLn(q) � G � P�Ln(q), n � 2;

� Symplectic groups Sp2m(2), m � 3;

� Projective special unitary groups G , with PSU3(q) � G � P�U3(q);

� Suzuki groups Sz(q) � G � Aut(Sz(q)) (q = 22e+1, e � 1);

� Ree groups R(q) � G � Aut(R(q)) (q = 32e+1, e � 0);

� Mathieu groups M11;M12; M23 and M24;

� the Mathieu group M22 � G � Aut(M22);

� The Higman-Sims group HS;

� The Conway group CO3;

or (II) G has a regular normal subgroup N which is elementary abelian of order
m = pd, where p is a prime. One can identify G with a group of a�ne transformations

x 7! �(x) + c (5.1)

of Fpd . One usually calls this case the \a�ne case".
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Theorem 5.1 (PPC for �nite doubly transitive groups) The parameter of a
rank 1 building associated to a doubly transitive group is related to a prime power.�

This approach lacks several properties which one wants to incorporate in a
\good" theory for rank 1 buildings. The most important one seems to be the fact
that �nite BN-pairs arise which are not split; as Tits showed, BN-pairs of rank at
least 3 are automatically split (both in the �nite and spherical case). And as we
will see later, �nite BN-pairs of rank 2 also are split. It turns out that, especially
in the in�nite case, the splitness condition yields a theory which is more interesting
(less wild). In the in�nite case, it seems a hopeless task to classify doubly transitive
permutation groups (even for the �nite case, one needs the full strength of CFSG
(Classi�cation of Finite Simple Groups) to end up with a classi�cation); one of the
reasons (also in the �nite case) is the fact that we do not have the right geometric
modules at hand which help to understand the groups. Also, the classi�cation of
(�nite and in�nite) split BN-pairs of rank 2 (= Moufang polygons) becomes easier
once a good theory for (�nite and in�nite) split BN-pairs of rank 1 (= Moufang sets,
cf. the next section) is available, cf. Fong and Seitz [39, 40] for the �nite case, and
Tits and Weiss [131] for the general case.

(As another minor setback, the symmetric and alternating groups occur, and
those certainly do not have the geometric structure we want (here). We will see
later that they appear as the natural Chevalley groups associated to projective ge-
ometries de�ned over the \�eld with one element". In some sense, they appear there
as groups with maximal geometric rank, contrary to the fact that here they would
have minimal geometric rank.)

5.2 Moufang sets

Nowadays, split BN-pairs of rank 1 are usually called \Moufang sets", following
Tits [129]. Call a permutation group (G;X) (jXj > 2) a Moufang set if for each
x 2 X there is a normal subgroup Ux of Gx which acts sharply transitively on
X n fxg. Sometimes we also write (X; (Ux)x2X) for (G;X).

The groups Ux will be called root groups. The elements of Ux are often called
root elations. If Ux is abelian for some x 2 X, then Ux is abelian for all x 2 X
and we call the Moufang set a translation Moufang set . (Later, we will also meet
translation buildings of higher rank, cf. x10.1 and x14.)

The group S generated by the Ux is called the little projective group of the
Moufang set. A permutation of X that normalizes the set of subgroups fUyjy 2 Xg,
is called an automorphism of the Moufang set. The set of all automorphisms of the
Moufang set is a group G, called the full projective group of the Moufang set. Any
group H, with S � H � G, is called a projective group of the Moufang set. We have
the following easy lemma | see e.g. [104] for a proof.

Lemma 5.2 (i) The little projective group S of a Moufang set (X; (Ux)x2X) acts
doubly transitively on the set X.
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(ii) A permutation group H (acting on X) is a projective group if and only if
Ux �Hx, for every x 2 X.

Finite Moufang sets were classi�ed in the 1970’s by work of Shult [92] and Hering,
Kantor and Seitz [49]. It will be clear from Theorem 5.3 and the discussion following
it, that a satisfying geometric theory is underlying buildings of rank 1 (although we
only highlight the �nite case here).

Theorem 5.3 (Classi�cation of �nite rank 1 buildings [92, 49]) Let
M = (X; (Ux)x2X) be a �nite Moufang set with little projective group S and full
projective group G. Then one of the following cases occurs.

(2T) S acts sharply doubly transitively on X, there is a prime number p and a pos-
itive integer n such that jXj = pn, and S contains a normal sharply transitive
subgroup N , which is an elementary abelian p-group.

(Ch) S is a Chevalley group, there exists a prime number p and a positive integer n
such that jXj = pn + 1, and Ux is a p-group of nilpotency class at most 3. We
have one of the following cases:

| S �= PSL2(pn), pn � 4, is simple and X is the projective line PG(1; pn);

| n is a multiple of 3, S �= PSU3(pn=3), pn � 27, is simple and X is the
Hermitian unital UH(pn=3);

| p = 2, n = 2n0 is even, n0 is odd, S �= Sz(2n
0
), n0 � 3, is simple and X

is the Suzuki-Tits ovoid OST (2n
0
);

| p = 3, n = 3n0, n0 is odd, S �= R(3n
0
), n0 � 1, is simple for n0 � 3,

and X is the Ree-Tits unital UR(3n
0
); if n0 = 1, then R(3) �= P�L2(8)

has a simple subgroup of index 3, which coincides with the commutator
subgroup of S.

In all cases, we have that G is the full automorphism group of S. Also, the
root groups are precisely the Sylow p-subgroups of S.

It should be noted that in the papers [92, 49], the term \split BN-pair of rank
1" is used instead of \Moufang set".

Concerning the sharply doubly transitive case, it follows from Frobenius’ Theo-
rem that there is a normal sharply transitive subgroup N acting on X. The group
Ux, for arbitrary x 2 X, clearly acts transitively on N� by conjugation, hence all
elements in N have the same order and N is a p-group. Since every p-group has
a nontrivial center, and since Ux acts transitively on N�, we see that N must be
elementary abelian. It follows that jXj is a prime power. The standard example
here acts on a �nite �eld Fq, for some prime power q, and the actions are given by

Fq ! Fq : x 7! ax+ b; (5.2)

with a 2 Fq n f0g and b 2 Fq. The normal sharply transitive subgroup consists of
the maps with a = 1.
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A second class of examples is given by a slight modi�cation of the previous
example. If q is odd and a perfect square, then we retain the previous maps with a
a square in Fq n f0g, and substitute the other maps with the maps

Fq ! Fq : x 7! ax
p
q + b; (5.3)

with a a nonsquare in Fq. We call it the nonstandard example related to Fq.
We now turn to the examples under (Ch), the Chevalley type groups.

As a general remark, we would like to point out that in the following descrip-
tions we are primarily interested in the �nite case, but we choose the notation in
such a way that also the general (in�nite) case is covered, disregarding nevertheless
noncommutative �elds.

5.2.1 The case PSL2(q) This is the prototype of all Moufang sets. Let K be any
(�nite) �eld, and denote by PG(1;K) the projective line over K. So we may identify
PG(1;K) with the set of all 1-dimensional subspaces of a given 2-dimensional vector
space K � K. The elements of PG(1;K) can be written as (a; b), with a; b 2 K,
(a; b) 6= (0; 0) and (a; b) identi�ed with (ca; cb) for all c 2 K�. We set O = (0; 1)
and 1 = (1; 0). We de�ne UO as the (multiplicative) group of matrices (k)O :=
�

1 k
0 1

�

, k 2 K, U1 consists of the matrices (k)1 :=

�

1 0
k 1

�

, for all k 2 K,

and the action of a matrix M on an element (a; b) is by right multiplication (a; b)M
(conceiving (a; b) as a (2� 1)-matrix).

In such a way, we have a Moufang set acting on PG(1;K) [104]. Since U1
is abelian, we have a translation Moufang set. We denote this Moufang set by
M (PG(1;K)). The little projective group is equal to PSL2(K) and is simple if
jKj � 4. For jKj = 2, we have the unique Moufang set on 3 points, and for jKj = 3,
we obtain the unique Moufang set on 4 points. Both are improper Moufang sets,
isomorphic to the standard examples related to F3 and F4, respectively.

5.2.2 The case PSU3(q) Let K be a �eld having some quadratic Galois extension
F. This means that F admits some �eld involution � and the elements of F �xed by
� are precisely those of the sub�eld K. In order to treat all characteristics at the
same time, we introduce the following notation.

For an arbitrary i 2 F nK, we can write any element k 2 F as

k�i� ki�

i� i�
+
k � k�

i� i�
i; (5.4)

with both (ki��k�i)(i�� i)�1 and (k�k�)(i� i�)�1 in K. So F can be regarded as
a 2-dimensional vector space over K and the map F ! K : x 7! x + x� is K-linear,
nontrivial, hence surjective with 1-dimensional kernel. We denote the inverse image
of the element k 2 K by K(k).

Now we de�ne our set X. It is the set of all projective points (x0; x1; x2), up
to a multiplicative nonzero factor, of the projective plane PG(2;F) satisfying the
equation x0x

�
2 + x�0x2 = x1x

�
1 . We can write

X = f(1; 0; 0)g [ f(k; x; 1)jx 2 F; k 2 K(xxσ)g; (5.5)
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and also

X = f(0; 0; 1)g [ f(1; x; k)jx 2 F; k 2 K(xxσ)g: (5.6)

We set O = F(0; 0; 1) and 1 = F(1; 0; 0). The group of collineations U1 =
f(x; k)1jx 2 F; k 2 K(xxσ)g, where (x; k)1 is the collineation of PG(2;F) de�ned
by the linear transformation with matrix

0

@

1 0 0
x� 1 0
k x 1

1

A ; (5.7)

acts sharply transitively on Xnf1g (on the right!) and �xes1. Likewise, the group
UO = f(x; k)Ojx 2 F; k 2 K(xxσ)g, where (x; k)O is the collineation of PG(2;F)
de�ned by the linear transformation with matrix

0

@

1 x k
0 1 x�

0 0 1

1

A ; (5.8)

�xes O and acts sharply transitively on X n fOg.
We obtain a Moufang set, which we denote by M (H(2;F; �)), or when jKj = q,

briey by M (H(2; q2)), since in this case � is uniquely determined and given by
� : x 7! xq. We call it a Hermitian Moufang set.

The little projective group of M (H(2;F; �)) is the unitary group PSU3(F; �),
denoted just PSU3(q) when jKj = q. It is a simple group whenever jKj � 3 and has
order q3(q3 + 1)(q2 � 1)=(q+ 1; 3). Note that jXj = q3 + 1 in this case. For jKj = 2,
PSU3(2) is isomorphic to the sharply doubly transitive nonstandard example re-
lated to F9, and hence is not simple (but solvable).

5.2.3 The case Sz(q) Let K be a �eld of characteristic 2, and denote by K2 its
sub�eld of all squares. Suppose that K admits some Tits endomorphism �, i.e., the
endomorphism � is such that it maps x� to x2, for all x 2 K. If jKj = 2n, then n
must be odd, say n = 2e + 1, and � maps x to x2e+1

, for all x 2 K. Let K� denote
the image of K under �. In the �nite case K� = K. Let L be a subspace of the vector
space K over K�, such that K� � L (this implies that L n f0g is closed under taking
multiplicative inverse). In the �nite case L = K. We also assume that L generates
K as a ring. We now de�ne the Suzuki-Tits Moufang set M (Sz(K; L; �)).

Let X be the following set of points of PG(3;K), where the coordinates with
respect to some given basis are:

X = f(1; 0; 0; 0)g [ f(a2+� + aa0 + a0
�
; 1; a0; a)ja; a0 2 Lg: (5.9)

One now calculates that

X = f(0; 1; 0; 0)g [ f(1; a2+� + aa0 + a0
�
; a; a0)ja; a0 2 Lg: (5.10)
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We set 1 = (1; 0; 0; 0) and O = (0; 1; 0; 0). Let (x; x0)1 be the collineation of
PG(3;K) determined by

(x0 x1 x2 x3) 7! (x0 x1 x2 x3)

0

B

B

@

1 0 0 0

x2+� + xx0 + x0� 1 x0 x
x 0 1 0

x1+� + x0 0 x� 1

1

C

C

A

; (5.11)

and let (x; x0)O be the collineation of PG(3;K) determined by

(x0 x1 x2 x3) 7! (x0 x1 x2 x3)

0

B

B

@

1 x2+� + xx0 + x0� x x0

0 1 0 0
0 x1+� + x0 1 x�

0 x 0 1

1

C

C

A

: (5.12)

De�ne the groups

U1 = f(x; x0)1jx; x0 2 Lg and UO = f(x; x0)Ojx; x0 2 Lg: (5.13)

Both groups U1 and UO act on X, as an easy computation shows (for UO use the
second description of X above), and they act sharply transitively on X nf(1; 0; 0; 0)g
and X n f(0; 1; 0; 0)g, respectively.

We obtain a Moufang set M (Sz(K; L; �)), called a Suzuki-Tits Moufang set .
The group Sz(K; L; �) is the Suzuki group generated by U1 and UO. If jKj = q,
then we denote it by Sz(q). One has jSz(q)j = q2(q2 + 1)(q � 1) and jXj = q2 + 1.
All Suzuki groups are simple groups unless jKj = 2. The group Sz(2) is a sharply
doubly transitive standard Moufang set related to F5.

In order to understand better the structure of U1, we can identify each point
(a2+� + aa0 + a0�; 1; a0; a) of X n f1g with the ordered pair (a; a0). Then the unique
element of U1 that maps (0; 0) to (b; b0) is given by

(b; b0)1 : (a; a0) 7! (a+ b; a0 + b0 + ab�): (5.14)

The root group U1 is hence given abstractly by the set f(a; a0)1ja; a0 2 Lg with
operation (a; a0)1 � (b; b0)1 = (a+ b; a0 + b0 + ab�)1.

Remark The Moufang set M (Sz(K; L; �)) can also be de�ned as the set of absolute
points of a polarity in a certain generalized quadrangle.

5.2.4 The case R(q) Let K be a �eld of characteristic 3, and denote by K3 its
sub�eld of all third powers. In the �nite case, K3 is just K. Suppose that K admits
some Tits endomorphism �, i.e., the endomorphism � is such that it maps x� to
x3, for all x 2 K. In the �nite case, jKj is a power of 3 with odd exponent, say
jKj = 32e+1, and � maps x to x3e+1

. Let K� denote the image of K under �. In the
�nite case, again necessarily K� = K.

We now de�ne the Ree-Tits Moufang set M (R(K; �)).
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For a; a0; a00 2 K, we put

f1(a; a0; a00) = �a4+2� � aa00� + a1+�a0
�

+ a00
2

+ a0
1+� � a0a3+� � a2a0

2
;

f2(a; a0; a00) = �a3+� + a0
� � aa00 + a2a0;

f3(a; a0; a00) = �a3+2� � a00� + a�a0
�

+ a0a00 + aa0
2
:

Let X be the following set of points of PG(6;K), where the coordinates with
respect to some given basis are:

X = f(1; 0; 0; 0; 0; 0; 0)g [ (5.15)

f(f1(a; a0; a00);�a0;�a;�a00; 1; f2(a; a0; a00); f3(a; a0; a00))ja; a0; a00 2 Kg:
A tedious calculation shows that

X = f(0; 0; 0; 0; 1; 0; 0)g [ (5.16)

f(1; f2(a; a0; a00); f3(a; a0; a00); a00; f1(a; a0; a00);�a0;�a)ja; a0; a00 2 Kg:
We set 1 = (1; 0; 0; 0; 0; 0; 0) and O = (0; 0; 0; 0; 1; 0; 0). Let (x; x0; x00)1 be the

collineation of PG(6;K) determined by

(x0 x1 x2 x3 x4 x5 x6) =: x 7! (5.17)

x

0

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0
p 1 0 �x 0 x2 �x00 � xx0
q x� 1 x0 � x1+� 0 r s
x00 0 0 1 0 x �x0

f1(x; x0; x00) �x0 �x �x00 1 f2(x; x0; x00) f3(x; x0; x00)
x0 � x1+� 0 0 0 0 1 �x�

x 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

A

;

with

p = x3+� � x0� � xx00 � x2x0;

q = x00
�

+ x�x0
�

+ x0x00 � xx02 � x2+�x0 � x1+�x00 � x3+2�;

r = x00 � xx0 + x2+�;

s = x0
2 � x1+�x0 � x�x00;

and let, with the same notation, (x; x0; x00)O be the collineation of PG(6;K) deter-
mined by

(x0 x1 x2 x3 x4 x5 x6) =: x 7! (5.18)

x

0

B

B

B

B

B

B

B

B

@

1 f2(x; x0; x00) f3(x; x0; x00) x00 f1(x; x0; x00) �x0 �x
0 1 �x� 0 x0 � x1+� 0 0
0 0 1 0 x 0 0
0 �x x0 1 �x00 0 0
0 0 0 0 1 0 0
0 x2 �x00 � xx0 x p 1 0
0 r s x1+� � x0 q x� 1

1

C

C

C

C

C

C

C

C

A

:



Order in building theory 259

It may be noted for the computations that (x; x0; x00)O = (x; x0; x00)g1, with g the
collineation of PG(6;K) determined by

(x0; x1; x2; x3; x4; x5; x6) 7! (x4; x5; x6;�x3; x0; x1; x2): (5.19)

De�ne the groups

U1 = f(x; x0; x00)1jx; x0; x00 2 Kg and UO = f(x; x0; x00)Ojx; x0; x00 2 Kg: (5.20)

The groups U1 and UO both act on X, as an easy computation shows (for UO
use the second description of X above), and they act sharply transitively on X n
f(1; 0; 0; 0; 0; 0; 0)g and X n f(0; 0; 0; 0; 1; 0; 0)g, respectively.

We obtain a Moufang set, which we denote by M (R(K; �)) and call a Ree-Tits
Moufang set . Its little projective group, generated by U1 and UO, is the Ree group
R(K; �). If jKj = q, then we denote the corresponding Ree group by R(q). In this
case we have jR(q)j = q3(q3 + 1)(q � 1). All Ree groups are simple groups unless
q = 3, in which case R(3) �= P�L2(8). Hence [R(3);R(3)] �= PSL2(8) is simple,
but not sharply doubly transitive, because it has order 504.

Following Section 7.7.7 of [132], we can now de�ne U1 abstractly as follows.
De�ne

(a; a0; a00) := (f1(a; a0; a00);�a0;�a;�a00; 1; f2(a; a0; a00); f3(a; a0; a00)): (5.21)

Then the unique element of U1 that maps (0; 0; 0) to (x; x0; x00) is given by

(x; x0; x00)1 : (a; a0; a00) 7! (a+ x; a0 + x0 + ax�; a00 + x00 + ax0 � a0x� ax1+�): (5.22)

The root group U1 can now be de�ned as the set f(a; a0; a00)1ja; a0; a00 2 Kg with
operation

(a; a0; a00)1� (b; b0; b00)1 = (a+ b; a0+ b0+ ab�; a00+ b00+ ab0� a0b� ab1+�)1: (5.23)

Remark The Moufang set M (R(K; �)) can also be de�ned as the set of absolute
points of a polarity in a certain generalized hexagon, see 7.7 of [132].

Corollary 5.4 (PPC for BN-pairs of rank 1) The parameter of a rank 1 build-
ing is a prime power or a prime power minus 1. �

5.3 General Moufang sets

It is certainly not the goal to go into the details of the theory of general Moufang
sets. Rather, we refer the reader to the excellent and detailed lecture notes of De
Medts and Segev [26], and the references therein.
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6 Generalized polygons

When the rank of a �nite building B is 2, it is, in general, not possible to
associate to B a BN-pair in a \natural way"; this is because when the type of B
is I2(3) or B2, nonclassical examples exist that do not admit Chevalley groups as
ag-transitive automorphism groups. Even more so, there exist such examples not
admitting ag-transitive, and even point-transitive automorphism groups; we will
encounter examples further in the paper. For the types I2(3) = G2 and 2F4 = I2(8)

(which are the only other types possible | see the result of Feit-Higman quoted
below), no such examples are known. So in the rank 2 case, one wants to endow the
building with a BN-pair structure in order to be able to classify.

Conjecture 6.1 (Tits [123]) If a �nite building � of irreducible type and rank
2 is such that Aut(�) permutes transitively the pairs consisting of a chamber and
an apartment containing it (that is, if � is associated with a BN-pair), then � is
isomorphic to the building of an absolutely simple group over a �nite �eld, or with
the building of a Ree group of type 2F4 over a �nite �eld.

Using the list of �nite simple groups, F. Buekenhout and H. Van Maldeghem
answered Tits’s question a�rmatively in [9].

Theorem 6.2 ([9]) If a thick �nite generalized polygon � admits a BN-pair, then
� is isomorphic to the building of an absolutely simple group over a �nite �eld, or
to the building of a Ree group of type 2F4 over a �nite �eld.

However, obviously Tits had a classi�cation free proof in mind. The classi�cation
of �nite BN-pairs of rank 2 in automorphism groups of generalized 3-gons (projec-
tive planes) is a classical result | we will come back to it later in much more detail.
Only �nite polygons are considered in this context; we will see later | notably in
x9 | that when �niteness is not presumed, generalized n-gons admitting a group
with a BN-pair exist for any n � 4, with the additional property that they are not
classical (in the sense that they do not satisfy the Moufang property | which we
will consider below | contrary to any other spherical building of rank more than 2).

6.1 Combinatorial de�nition

Combinatorially, a generalized n-gon (n � 3) is a point-line geometry � =
(P;B; I) for which the following axioms are satis�ed:

(i) � contains no ordinary k-gon (as a subgeometry), for 2 � k < n;

(ii) any two elements x; y 2 P [B are contained in some ordinary n-gon (as a
subgeometry) in �;

(iii) there exists an ordinary (n+ 1)-gon (as a subgeometry) in �.

A generalized polygon is a generalized n-gon for some n.
By (iii), generalized polygons have at least three points per line and three lines

per point. Note that (i) and (ii) reect the essence of (GPn) of the introduction, and
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note also that the generalized 3-gons are precisely the projective planes. A geometry
� which satis�es (i) and (ii) is a weak generalized n-gon. If (iii) is not satis�ed for
�, then � is called thin. Otherwise, it is called thick. Sometimes we will speak of
\thick (respectively thin) generalized n-gon" instead of \thick (respectively thin)
weak generalized n-gon".

The relation between buildings and generalized polygons, as observed by Tits in
[129], is now as follows:

(S) Suppose (C ; X), C = C1 [ C2, is a spherical building of rank 2. Then � =
(C1;C2; I) is a generalized polygon. Conversely, suppose that � = (P;B; I)
is a generalized polygon, and let F be the set of its ags. Then (P [B; ; [
ffvgjv 2 P [Bg [F ) is a chamber geometry of rank 2. Declaring the thin
chamber geometry corresponding to any ordinary subpolygon an apartment, we
obtain a spherical building of rank 2.

So, in view of (D1), generalized polygons truly are the essential particles of
buildings, as was already emphasized by (GPn) in the precursorial introduction of
buildings.

6.2 Parameters of GPs

The following proposition is easy to prove (cf. [132, 1.5.3]).

Proposition 6.3 (Order of polygons) For each thick generalized n-gon �, n �
3, there are (not necessarily �nite) constants s and t so that each point is incident
with t+ 1 lines and each line is incident with s+ 1 points.

We then say that � has order or parameters (s; t). We also use these concepts
for any rank 2 geometry.

6.3 Feit-Higman

A famous result of Feit and Higman states that the possible n-values in the
notion of generalized n-gon are severely restricted when considering the �nite case.

Theorem 6.4 (Feit and Higman [36]) Let � be a �nite weak generalized n-gon
of order (s; t). Then either (s; t) = (1; 1) (that is, � is an ordinary n-gon), or

n 2 f3; 4; 6; 8; 12g: (6.1)

A �nite thick generalized n-gon only exists if and only if n 2 f3; 4; 6; 8g; also, st is
a perfect square if n = 6 and 2st is a perfect square if n = 8.

Some other arithmetic information is known about the parameters, but we will
encounter this in due course (e.g., in x11 and x16). By the Feit-Higman result, the
(thick) �nite generalized polygons are the combinatorial geometries associated to
the following Coxeter graphs.

A2:
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B2:

I2(m):

m

(m 2 f6; 8g)

6.4 Duality

There is a point-line duality for GPs of order (s; t) for which in any de�nition or
theorem the words \point" and \line" are interchanged and also the parameters. If
� = (P;B; I) is a GP of order (s; t), its dual

�D = (B;P; I) (6.2)

is a GP of order (t; s).

6.5 Collinearity and concurrency

Suppose � = (P;B; I) is a GP. Let x and y be (not necessarily distinct) points
of the GP �; we write x � y and call these points collinear, provided that there is
some line L such that xILIy. Dually, for L;M 2 B, we write L � M when L and
M are concurrent. For X 2P [B, put

X? = fY 2P [BjX � Y g: (6.3)

By this de�nition we have that X 2 X?. For a set ; 6= A �P or B, we de�ne
A? as being \X2AX?; also, A?? := (A?)?. The latter notion only makes real
sense for generalized n-gons with n = 4 due to (i) in the combinatorial de�nition
mentioned above. (For instance, when n = 3, A? = A?? = P (or B) for all A. If
n � 5 and A contains noncollinear points then jA?j � 1, etc.)

6.6 Automorphisms

An automorphism of a generalized polygon � = (P;B; I) is a bijection of P[B
which preserves P, B and incidence. The full set of automorphisms of a GP forms
a group in a natural way | the automorphism group of �, denoted Aut(�). If B is
an automorphism group of a generalized polygon � = (P;B; I), and R is a subset
of P, B[R] is the subgroup of B �xing R pointwise (in this notation, a line is also
considered to be a point set, so that for a line M , B[M ] is the subgroup of B �xing
M pointwise). Similarly, if A � P [B, then B[A] is the subgroup of A �xing A
elementwise. Elements of Aut(�)[x] for the point x 2P are called whorls (about x).

6.7 Polygons as graphs

Let S = (P;B; I) be a generalized n-gon. The (point-line) incidence graph
(V;E) of S is de�ned by taking V = P [ B, where an edge is drawn between
vertices if the corresponding elements in S are incident; (V;E) then is a bipartite
graph of diameter n and girth 2n. Vice versa, such graphs de�ne GPs. Note that
we already met this graph theoretical viewpoint.
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Let the graph corresponding to S be denoted by �. We call (x0; : : : ; xk) a
(simple) path if the xi are pairwise distinct and xi is adjacent to xi+1 for i =
0; : : : ; k � 1. The natural graph theoretic distance function on � is denoted by \d"
or sometimes \dn". The set of elements at distance i from some element x 2 � is
denoted by �i(x). Elements at distance n are called opposite.

The following lemma is a special case of [63].

Lemma 6.5 If � is a generalized n-gon and � 2 Aut(�), there exists some x 2 �
with

d(x; �(x)) � n� 1: (6.4)

Sometimes, we will switch from generalized polygons to their point-line incidence
graphs without explicitly saying so; as such, we can use the terminology of distances,
etc.

6.8 Generation

We say that a generalized n-gon � = (P;B; I) is generated by a subset A �
P [B if no generalized n-gon properly contained in � contains A; � is said to be
�nitely generated if it is generated by a �nite subset. Similarly, a subpolygon �0 of
� is generated by A �P [B if �0 is the smallest subpolygon of � containing A.

7 The classical examples and their duals

We describe the classical examples of �nite thick GPs. By the Feit-Higman
Theorem, we only have to consider the cases n = 3; 4; 6; 8. Classical polygons are
de�ned by the fact that they are fully embedded in some �nite projective space.
Recall that a full embedding of a rank 2 geometry � = (P;B; I) in a projective
space P, is an injection

� : P ,!P(P); (7.1)

with P(P) the point set of P, such that

(E1) h�(P)i = P;

(E2) for any line L 2 B (seen as a point set), L� is a line of P.

From the point of view of Group Theory, no distinction can be made between
a generalized polygon and its point-line dual | they have the same automorphism
group.

We list the �nite thick classical GPs below, together with some information about
their automorphism groups. For details, the reader is referred to [132, Chapters 2-
3-4].
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7.1 The case n = 3

There is only one class of classical examples, being the Desarguesian planes
PG(2; q) coordinatized over a �nite �eld Fq. The automorphism group was already
introduced earlier.

7.2 The case n = 4

Generalized quadrangles (GQs) represent the richest class of polygons if one is
considering classical examples.

7.2.1 Orthogonal quadrangles Consider a nonsingular quadric Q of Witt index
2, that is, of projective index 1, in PG(3; q), PG(4; q), PG(5; q), respectively. So
the only linear subspaces of the projective space in question lying on Q are points
and lines. The points and lines of the quadric form a generalized quadrangle which is
denoted by Q(3; q), Q(4; q), Q(5; q), respectively, and has order (q; 1), (q; q), (q; q2),
respectively. As Q(3; q) is a grid, its structure is trivial.

Recall that Q has the following canonical form:

(1) X0X1 +X2X3 = 0 if d = 3;

(2) X2
0 +X1X2 +X3X4 = 0 if d = 4;

(3) f(X0; X1) + X2X3 + X4X5 = 0 if d = 5, where f is an irreducible binary
quadratic form.

Denote the automorphism group of Q(4; q) by P�O5(q), and put PSL5(q) \
P�O5(q) =: PSO5(q) =: O5(q). The automorphism group of Q(5; q) is P�O6(q),
and PSL6(q) \P�O6(q) =: PSO6(q) =: O�6 (q).

7.2.2 Hermitian quadrangles Next, let H be a nonsingular Hermitian variety in
PG(3; q2). The points and lines of H form a generalized quadrangle H(3; q2), which
has order (q2; q). Now let H be a nonsingular Hermitian variety in PG(4; q2). The
points and lines of H form a generalized quadrangle H(4; q2) of order (q2; q3).

The variety H has the following canonical form:

Xq+1
0 +Xq+1

1 + � � �+Xq+1
d = 0: (7.2)

Denote the automorphism group of H(3; q2) by P�U4(q), and put PSL4(q) \
P�U4(q) =: PSU4(q) =: U4(q). The automorphism group of H(4; q2) is P�U5(q),
and PSL5(q) \P�U5(q) =: PSU5(q) =: U5(q).
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7.2.3 Symplectic quadrangles The points of PG(3; q) together with the totally
isotropic lines with respect to a symplectic polarity, form a GQ W(q) of order (q; q).

A symplectic polarity � of PG(3; q) has the following canonical form:

X0Y3 +X1Y2 �X2Y1 �X3Y0: (7.3)

The automorphism group of W(q) is P�Sp4(q), while PSL4(q) \P�Sp4(q) =:
Sp4(q) =: S4(q).

7.3 The case n = 6

Let K be a �eld, and consider PG(d;K), with d � 2. Choose a basis, a line L, and
two distinct points x and y on L with coordinates (x0; x1; : : : ; xd) and (y0; y1; : : : ; yd).

The

�

d+ 1
2

�

-tuple (pij)0�i�j�d, where

pij =

�

�

�

�

xi xj
yi yj

�

�

�

�

= xiyj � xjyi; (7.4)

is up to a nonzero scalar multiple, independent of the choice of points x and y of
L. So L de�nes a unique point pL = (pij)0�i�j�d of PG((d + 2)(d� 1)=2;K). The
coordinates of pL are the Grassmann coordinates of L. (For d = 3, these points lie
on a quadric called the Klein quadric, and then the Grassmann coordinates are also
called \Pl�ucker coordinates".)

7.3.1 Split Cayley hexagons Let K = Fq be a �nite �eld, and consider the
parabolic quadric Q(6; q) in PG(6; q) with equation

X0X4 +X1X5 +X2X6 = X2
3 : (7.5)

Consider the lines of Q(6; q) with Grassmann coordinates

p12 = p34 p54 = p32 p20 = p35

p65 = p30 p01 = p36 p46 = p31:
(7.6)

Then the points of Q(6; q) together with these lines de�ne a generalized hexagon
H(q) of order q, called the split Cayley hexagon. The automorphism group of H(q)
is induced by collineations of PG(6; q); moreover, Aut(H(q)) �= G2(q) o Aut(Fq),
while PSL7(q)H(q)

�= G2(q).

7.3.2 Twisted triality hexagons The absolute points and absolute lines of a tri-
ality of the hyperbolic quadric Q+(7; q3) in PG(7; q3) form a generalized hexagon
T(q3; q) of order (q3; q) (q any prime power), called the twisted triality hexagon. Its
automorphism group is induced by automorphisms of PG(7; q3), and Aut(T(q3; q)) �=
3D4 o Aut(Fq), while PSL8(q)T(q3;q)

�= 3D4(q).
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The split Cayley hexagons and the twisted triality hexagons are the only known
�nite hexagons up to duality.

7.4 The case n = 8

Only one class of classical octagons exists up to duality.

The Ree-Tits octagons We do not aim at precisely de�ning the Ree-Tits octagons.
The reader is referred to [132] for a detailed account. We only give a very short in-
direct description. Let M be a �nite metasymplectic space, that is, a building of
type F4, of which the planes are de�ned over the �nite �eld Fq, q a power of 2. This
building corresponds to the following Coxeter diagram:

F4:

Suppose also that M admits a polarity (see [132, x2.5]) so that q is an odd
power of 2. Then the absolute points and lines of this polarity form, together with
the natural incidence, a generalized octagon of order (q; q2) which we denote by
O(q), and which admits a Ree group of type F4 as an automorphism group which
acts transitively on the ordered ordinary 8-gons (that is, which admits a BN-pair
structure).

Together with its point-line duals, the Ree-Tits octagons are the only �nite gen-
eralized octagons known presently.

7.5 Other examples

The only examples known of generalized (2k+ 1)-gons with k > 1, and of gener-
alized 2k-gons with k > 4, are de�ned through so-called \free constructions", which
will be handled in detail in x9. For the gonalities 3; 4 and 6 explicit constructions
are known of nonclassical examples; when n = 3 or 4, such constructions are known
in the �nite case. No nonclassical generalized octagons are known without invoking
at some point a free construction. We refer to [132, x3.8] for more details.

8 Split BN-pairs and the Moufang condition

In 1974, Tits published his book [123] containing the classi�cation of all thick
spherical buildings of rank at least 3. In an addendum, he introduces the Mou-
fang condition for spherical buildings | and thus also for generalized polygons and
quadrangles | motivated by his claim that the classi�cation of all Moufang poly-
gons would considerably simplify the classi�cation of spherical buildings of higher
rank. Tits started this programme himself already in the sixties, and he soon had a
classi�cation of all Moufang hexagons, although he never published this.

In the meantime, J. R. Faulkner studied certain simple groups | Chevalley
groups of rank 2 | by means of their so-called \Steinberg representation". He ob-
tained in [34] a wealth of classi�cation results and examples of Moufang hexagons
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and quadrangles under the ostensibly stronger hypotheses of these commutation re-
lations (but they follow from the Moufang condition anyway; this was not yet known
to Faulkner, who only derived these relations if there are no involutive root elations).
In fact, Faulkner also showed how one can classify certain types of spherical build-
ings using his results. But since these results were not complete (characteristic 2
was missing for the quadrangles, for instance), they were not popular.

Independently, Tits worked on his programme, and he was able to classify the
Moufang octagons in [128], and to prove that no Moufang n-gons exist unless n =
3; 4; 6; 8 (see [125, 127]). The latter result was also proved by Richard Weiss [137],
who derived it in a more general context in a simpler way. The case n = 3 amounts
to projective planes and was treated long before (the terminology stems from this
case). Hence only the case of Moufang quadrangles was missing. However, Tits knew
how to derive the Steinberg relations from the Moufang property, and he considered
this as a �rst step in the classi�cation. This result was published in 1994, see [130].

In the �nite case, Fong and Seitz published two papers [39, 40] in which they
classify �nite groups admitting a split BN-pair of rank 2. As a corollary, one also
has a classi�cation of all �nite Moufang quadrangles.

Until 1993, Tits only mentions the word \conjecture" when talking and writing
about the list of Moufang quadrangles. He emphasized the fact that no proof was
written down, and that everything was still only in his head. In the meantime,
some more results became available. Thas, Payne and Van Maldeghem proved in
[102] that every �nite half Moufang GQ is a Moufang GQ, using typically �nite
arguments. A similar approach was used by Van Maldeghem, Thas and Payne in
[135] to show that any �nite 3-Moufang GQ is a Moufang GQ (a result that was
generalized by Van Maldeghem and Weiss to arbitrary �nite polygons in [134]). In
1998, Van Maldeghem [133] proved that the 2-Moufang condition for thick GQs is
equivalent with the 3-Moufang condition. Hence, at this moment, all equivalences
were proved in the �nite case (without invoking the classi�cation of �nite simple
groups).

In 1993, Tits started to lecture again about Moufang polygons, with the idea
to �nish the classi�cation, write it down (only the case of projective planes and
octagons was published) and publish it. Richard Weiss, who was in the audience,
persuaded Tits to do this jointly, and the result was that in 1997, the classi�cation
of Moufang quadrangles was completed | with an additional new class. At �rst, the
conjecture of Tits was that all Moufang quadrangles were related to classical groups,
algebraic groups or mixed groups of relative rank 2, and he had an explicit list. The
new example was not only missing in the list, it did not seem to be related to any
classical, algebraic or mixed group. Until M�uhlherr and Van Maldeghem [70] show
that it arises as �xed point structure in a certain mixed building of type F4. This
was somehow overlooked by Tits since this construction process is not captured by
the theory of algebraic groups, but it is a \mixed analogue" of it. The explicit list of
Tits turned out to be incomplete, but his conjecture that all Moufang quadrangles
arise from classical groups, algebraic groups or mixed groups of relative rank 2 was
still true; he simply overlooked that there also exist mixed groups of relative rank 2
(he only lists mixed groups of absolute rank 2).

In September 2002, the full classi�cation of Moufang generalized polygons ap-
peared in a book [131].
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8.1 Split BN-pairs

Let G be a group with a BN-pair (B;N) of rank 2, and let P1; P2 be the two
maximal parabolic subgroups containing B. For i = 1; 2, let si 2 G normalize N
and Pi, but not P3�i. Put H = B \N , as before.

A BN-pair (B;N) is called split if Property (z) below holds:

(z) There exists a normal nilpotent subgroup U of B such that B = U(B \N).

In a celebrated work, P. Fong and G. M. Seitz determined all �nite split BN-pairs
of rank 2 (the B2-case being the most complicated type to handle):

Theorem 8.1 (Fong and Seitz [39, 40]) Let G be a �nite group with a split BN-
pair of rank 2. Then G is an almost simple group related to one of the following
classical Chevalley/Ree groups:

(1) PSL3(q);

(2) PSp4(q) �= O5(q);

(3) PSU4(q) �= O�6 (q);

(4) PSU5(q);

(5) G2(q);

(6) 3D4(q);

(7) a Ree group of type 2F4.

Equivalently, a thick �nite generalized polygon is isomorphic, up to duality, to one
of the classical examples if and only if it veri�es the Moufang condition (de�ned in
the next section).

8.2 The Moufang condition

Let � be a generalized n-gon, n � 3.

If G � Aut(�), we denote by G
[i]
x0 the subgroup of G �xing all elements of �i(x0)

and for elements x0; : : : ; xk, we set

G[i]
x0;x1;:::;xk

= G[i]
x0
\G[i]

x1
\ : : : \G[i]

xk
: (8.1)

For every simple path (x0; : : : ; xn) of length n + 1 and every i with 0 � i � n,

we have Gx0;:::;xn \G
[1]
xi;xi+1 = f1g; see [132, 4.4.2(v)].

For 2 � k � n, the generalized n-gon � is said to be k-Moufang with respect

to G � Aut(�) if for each simple k-path (x0; : : : ; xk) the group G
[1]
x1;:::;xk�1 acts

transitively on the set of 2n-cycles through (x0; : : : ; xk).
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Theorem 8.2 ([132], 6.8.2) If � is 4-Moufang with respect to some group G, then
� is n-Moufang with respect to the same group G.

If � is n-Moufang, we also say that � is a Moufang polygon, and that � satis�es
the Moufang condition. If Gx0;x1 acts transitively on the set of 2n-cycles through
(x0; x1) for all paths (x0; x1) (sometimes referred to as the 1-Moufang condition),
then G acts transitively on the set of ordered 2n-cycles of �. This is equivalent to
G having a spherical BN-pair of rank 2, which we will see is in general too weak to
allow a classi�cation.

We call a generalized n-gon � almost 2-Moufang with respect to G if for every
�nite set A � �1(x1), and any path (x0; x1; x2) the group GA acts transitively on
the 2n-cycles containing (x0; x1; x2). Similarly, one can de�ne almost 3-Moufang for
paths (x0; x1; x2; x3) and �nite subsets A � �1(x1) [ �1(x2). It was shown in [97]
that the 2-Moufang condition implies the Moufang condition for generalized n-gons
with n � 6.

It is not our intention to survey what is known about global Moufang conditions;
we refer to [103, 118] for this purpose. We just mention one generalization of the
Fong-Seitz theorem in the �nite quadrangular case.

Theorem 8.3 ([119]) A thick �nite generalized quadrangle is isomorphic, up to
duality, to one of the classical examples if and only if for each point there exists
an automorphism group �xing it linewise and acting transitively on the set of its
opposite points.

Later, we will axiomatize generalized quadrangles which resemble this property
locally, that is, having a point for which there exists an automorphism group �xing
it linewise and acting (sharply) transitively on the set of its opposite points. It
appears that almost all �nite GQs have such a point (or line), and that a beautiful
PPC theory already emerges from this general local condition.

8.3 The power of primes

Inspired by techniques developed initially only for BN-pairs of type B2, the
author proved the following result for general �nite BN-pairs of rank 2.

Theorem 8.4 ([112, 115]) Let G be a �nite group with an irreducible e�ective
BN-pair of rank 2, and suppose that the parameters of the associated building are
powers of 2. Then the BN-pair is split, hence G is an almost simple group related to
one of the classical Chevalley/Ree groups mentioned in Theorem 8.1. Equivalently,
a thick �nite generalized n-gon for which the associated parameters are powers of 2
is isomorphic, up to duality, to one of the classical examples if and only if Aut(S )
acts transitively on its ordered ordinary n-gons.

In the odd case similar results are available under extra hypotheses.
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The theorem shows how PPC theory can have strong implications for global
assumptions. (While usually global assumptions lead to extra information about
PPC theory.)

9 Free construction

In this section we will show that classi�cation of generalized polygons is not a
feasible problem, due to the existence of so-called \free constructions". The idea is
very simple: start with a con�guration A of points and lines which does not violate
the axioms of generalized n-gon (for given n), and iterate a chain of geometries

A0 = A � A1 � A2 � : : : (9.1)

of which the �rst one is A, and such that the union [iAi completes A to a generalized
n-gon. For all natural n � 3, it will turn out that in such a way generalized n-gons
can be \freely constructed" over any such set A.

Then, we will describe an iterating process taken from Model Theory, and re-
cently described by Tent, by which one can easily construct, for each natural n � 3,
generalized n-gons admitting a BN-pair which are not Moufang (so for which the
BN-pair is not split). Such examples were �rst found by Tits in [126].

These constructions underline (again) the stark contrast between the �nite and
the in�nite case (since all polygons in the aforementioned constructions are, of
course, in�nite). The global assumption of BN-pair is not enough to classify gener-
alized n-gons | there is not even a Feit-Higman/Tits-Weiss theorem possible which
restricts the values of n. (So when searching for good local properties to develop a
reasonable PPC theory, one has to be very careful so as to not end up in a more
general local version of the situation given by, say, BN-pairs.)

9.1 Free constructions

For our purpose, it is convenient to pass to the graph theoretic version of gener-
alized polygons (considering the point-line incidence graph); a generalized n-gon is
then a bipartite graph with valencies at least 3, diameter n and girth 2n. (Without
the assumption on the valencies, such a graph is a weak n-gon.)

We here construct generalized n-gons for all n � 3 which are almost 2-Moufang,
but not Moufang (and in fact not even almost 3-Moufang). Recall that Moufang
generalized n-gons exist only for n = 3; 4; 6; 8.

The following well-known construction shows the existence of many generalized
n-gons for any n � 3.

9.1.1 Free n-completion Let �0 be a connected bipartite graph not containing
any k-cycles for k < 2n. Then we obtain the free n-completion of �0 in stages, in
the following way:

� at stage i � 1 we obtain �i from �i�1 by adding a new path of length n � 1
for each pair of elements x; y at distance n+ 1 in �i�1.
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Then

� =
[

�i (9.2)

is called the free n-completion of �0 and we say that � is freely generated over
�0. If �0 contains at least two pairs x1; y1 and x2; y2 of elements with d(x1; y1) =
d(x2; y2) = n+ 1 in �0 and d(x1; x2) is prime to n, then � is a generalized n-gon |
see [132, 1.3.13].

The following is obvious.

Theorem 9.1 If �0
�= �0 then also their free n-completions are isomorphic.

The converse need not hold: the free n-completions of �0 and �i are obviously
the same for any i 2 N. However, there is a necessary criterion for the free comple-
tions of connected bipartite graphs to be isomorphic, which can be stated in terms
of the rank function �n.

For any �nite graph � = (V;E) with vertex set V and edge set E we de�ne

�n(�) = (n� 1)jV j � (n� 2)jEj: (9.3)

We say that the �nite graph �0 is n-strong in some graph � (and we write
�0 �n �) if �0 � �, and if for each �nite graph A � � for which �0 � A we have
�n(�0) � �n(A). If A �n B and C � B, then A \ C �n C.

Proposition 9.2 (Tent [98]) The following are equivalent for a generalized n-gon
� generated by a �nite connected set �0:

(i) � is the free n-completion of �0;

(ii) � �n �.

Corollary 9.3 ([98]) The class of generalized n-gons freely generated over a �nite
connected subgraph is countably in�nite. �

9.2 Amalgamation

In [98], Tent uses Fra��ss�e’s Amalgamation technique for a �rst order language
to obtain new generalized polygons. Fra��ss�e’s Theorem states the following (see [55,
7.1.2] for a proof, and more details on the terminology):

Theorem 9.4 Suppose L is a �rst-order language and C is a class of �nitely gen-
erated L-structures which is closed under �nitely generated substructures, satisfying
the following additional properties:

� Joint Embedding Property. For A ;B 2 C , there is some E 2 C such
that both A and B are embeddable in E ;
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� Amalgamation Property. For A ;B;E 2 C , and embeddings e : A ,!
B, f : A ,! E , there is some D 2 C and embeddings g : B ,! D , h : E ,! D
such that the following diagram commutes

A
e�! B

#f #g
E

h�! D

(9.4)

Then there is a countable L-structure M , unique up to isomorphism, satisfying:

(i) every �nitely generated substructure of M is isomorphic to an element of C ;

(ii) every element of C embeds into M ;

(iii) if A 2 C , then Aut(M ) acts transitively on the set of substructures of M
isomorphic to A .

The model M is also called the Fra��ss�e limit of the class C . Note that Fra��ss�e
limits are existentially closed (that is, if there is some existential sentence which is
true in some extension of the structure, then it is already true in that structure).

We now �x a �rst order language

L = ffkjk 2 Ng (9.5)

containing binary functions fk. Any (partial) generalized n-gon becomes an L-
structure if we interpret these functions as follows:

fk(x; y) = xk (9.6)

if (x = x0; : : : ; xk; : : : ; y) is the unique shortest path from x to y. If there is no
unique such path, then we let

fk(x; y) = x: (9.7)

Notice that edges of the graph can be de�ned in this language: in a generalized
n-gon � the pair (x; y) is an edge if and only if

f1(x; y) = y: (9.8)

Thus, the axioms of a generalized n-gon are expressible in this language. Clearly,
the language L has the following property: If � is a generalized n-gon and A � �,
then the L-substructure hAi of � generated by A is the same as the (possibly weak)
sub n-gon generated by A in �.

Let Cn be the class of all �nitely generated L-substructures of all free n-completions
of �nite connected bipartite graphs not containing any k-cycles for k < 2n.

Then Cn is countable by Corollary 9.3 and closed under �nitely generated L-
substructures.

Remark Cn contains in particular the following structures:

(i) the empty structure (making the Joint Embedding Property a special case of
the Amalgamation Property);
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(ii) all paths of length at most n, and more generally any \hat-rack", i.e., any path
(x0; : : : ; xk), k � n, together with �nite subsets of �1(xi), i = 1; : : : ; k � 1;

(iii) a 2n-cycle, and more generally all �nite weak n-gons containing at most 2
thick elements (at distance n);

(iv) any �nite generalized n-gon;

(v) arbitrarily large �nite discrete sets if n is even and a discrete set of order two
if n is odd.

In order to show that one may apply Fra��ss�e’s Theorem to our class Cn, it su�ces
to show that the Amalgamation Property holds for this class (as the empty structure
is included in Cn, which makes the Joint Embedding Property a special case of the
Amalgamation Property).

Lemma 9.5 (Tent [98]) Cn has the Amalgamation Property.

9.3 BN-Pairs

We are now ready to state the result by Tent about BN-pairs.

Theorem 9.6 (Tent [98]) For all n � 3 there is a countable generalized n-gon �n
whose automorphism group acts transitively on all �nitely generated Ln-substructures
of given isomorphism type.

Corollary 9.7 ([98]) In particular, G = Aut(�n) has the following transitivity
properties.

(i) G acts transitively on ordered 2n-cycles, so G has a BN-pair.

(ii) For any x 2 �n, Gx acts highly transitively on �1(x), i.e., Gx acts k-transitively
for any k 2 N0 on �1(x).

(iii) G acts transitively on �nite weak n-gons of the same cardinality. In particular,
�n is almost 2-Moufang.

(iv) Let  = (x0; x1; : : : ; x2n = x0) be a 2n-cycle. Then the pointwise stabilizer of
 acts highly transitively on �1(x1) n fx0; x2g.

(v) For any �nite set A of vertices of �, the elements Fix(GA) �xed by GA form
exactly the substructure of �n generated by A.

(vi) �n is not almost-3-Moufang.

In particular, � is not Moufang.
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10 The prime power conjecture for projective planes

The class of generalized 3-gons coincides with that of projective planes. The
prime power conjecture for projective planes states:

Conjecture 10.1 (PPC for planes) The order of a �nite projective plane is a
prime power.

The following seminal theorem is available.

Theorem 10.2 (Bruck and Ryser [8]) If n is the order of a �nite projective
plane and n � 1 mod 4 or n � 2 mod 4, then n is the sum of two integer squares.

Besides the result of Bruck-Ryser, no other restrictions on the parameters are
known for general axiomatic planes. Usually, one requires further algebraic (group
theoretic) conditions.

10.1 Translation planes

A translation plane � is a projective plane which has some line L for which
there is an automorphism group T which �xes L pointwise and which acts sharply
transitively on the set of points not incident with L. The group T is the translation
group (corresponding to L), L is a translation line. (As we will see below, we can
indeed speak of \the" translation group, since it is unique.) An a�ne plane for
which there is a sharply transitive group on the points that �xes all parallel classes
is also called translation plane. In that case, the line at in�nity is a translation line
of the projective completion.

Most of what we recall can be found in the monograph of Knarr [65].

10.2 Finite order

Suppose that the order of the plane is �nite. Recall that any translation group is
abelian (we will prove this below for general planes). Let z be any point of the �nite
(projective) translation plane �, which has order n, where z is supposed to be not
incident with the translation line L. Denote the n+1 lines on z by L0; L1; : : : ; Ln, let
T denote the translation group, and for any i 2 f0; 1; : : : ; ng, put TLi =: Li. Let R
be the ring of endomorphisms � of T for which T�j � Tj for every j 2 f0; 1; : : : ; ng.
(Addition and scalar multiplication are just the expected ones.) We call R the kernel
of the translation plane. A well-known fact is the following:

Proposition 10.3 R is a (commutative) �eld, and T is an R-vector space.

Corollary 10.4 T is an elementary abelian p-group for some prime p, so that n is
a prime power. �
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The fact that T is a vector space allows us to interpret T = fTiji = 0; 1; : : : ; ng
in the corresponding projective space PG(2k � 1; q) = �; here jRj = q = ph, and
n2 = q2k. This interpretation yields the Andr�e-Bruck-Bose representation for �nite
translation planes; T becomes a (k�1)-spread of �, and if one embeds � as a hyper-
plane in a PG(2k; q), say �, then � is isomorphic to the projective plane for which
the points are the points of � n �, and the lines are the k-subspaces of � which meet
� in an element of T . Now T becomes the translation group of � with axis �, in its
usual action, and so it is unique.

10.3 In�nite order

In the in�nite case, we can do pretty much the same as in the �nite case. Let �
be a (projective) translation plane with translation line U and translation group H.
Call a collineation of a plane axial if it �xes some line pointwise, and call it central
if it �xes a point linewise. Now note the following.

Proposition 10.5 A collineation of a projective plane is axial if and only if it is
central.

(The proof is easy; let � be an axial collineation of some plane �, and let M be
its axis (the line �xed pointwise by � | it is unique if and only if � is not trivial). If
u is a point which is not �xed by �, uu� is a �xed line, so any point either is �xed,
or incident with a �xed line. If � is not central, then it now easily follows that the
entire plane must be elementwise �xed, contradiction.)

(A-C)-Obstruction

As we will later see, similar properties do not hold for generalized quadrangles,
not even in the �nite case. This obstruction is the essential reason why several
problems concerning parameters or classi�cation of quadrangles still are open, or
become very hard to handle, while they can be handled smoothly for planes. We
call it \(A-C)-obstruction" throughout these notes.

Let H be as above. It easily follows by the observation that if V 6= U is a line,
HV �xes U \ V linewise, that is, HV is a group of central collineations with center
U \V , and HV acts sharply transitively on V nfU \V g. Denote the group of central
collineations in H with center cIU by H(c). Then obviously we have the following
two facts:

� if u; v are distinct points on U , [H(u); H(v)] = f1g;

� with u and v as above, we have that hH(u); H(v)i = H(u)H(v) = H. (Written
additively, we have that H = H(u)�H(v).)

Combining both properties, it follows that H is abelian.

Now de�ne R as above; then it can be easily shown that R is a skew �eld.
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Theorem 10.6 R is a skew �eld, and T is a left R-vector space. �

In the same way as in the �nite case, we have an Andr�e-Bruck-Bose construction
of � through the use of spreads, and vice versa.

10.4 Generalized translation planes

Motivated by the satisfactory treatment of PPC theory for translation planes, it
makes one wonder whether generalizations come at little cost. For instance, let � be
a �nite projective plane, and suppose that E is an automorphism group of � which
�xes some line L, and acts sharply transitively on the points not incident with L. Is
it known that the order n of � is a prime power? The answer is no. The strongest
result known is probably the following.

Theorem 10.7 (Blokhuis, Jungnickel and Schmidt [5]) Let G be an abelian
automorphism group of order n2 of a projective plane of order n. Then n is a prime
power.

Under these assumptions either the plane is a translation plane (up to duality),
or it is a \plane of type (b)" (up to duality); there are three point orbits, being a
singleton fxg, the n points di�erent from x of some line L incident with x, and the
n2 points o� L. More generally, let a permutation group (H;X) be quasiregular if
H acts sharply transitively on each orbit (modulo the kernel). So in particular, any
abelian automorphism group has this property. The following theorem distinguishes
eight classes of \large" quasiregular permutation groups acting on �nite projective
planes.

Theorem 10.8 (Dembowski and Piper [25]) Let G be a collineation group act-
ing quasiregularly on the points and lines of a projective plane of order n, and assume

jGj > n2 + n+ 1

2
: (10.1)

Let t denote the number of point orbits and F denote the incidence structure con-
sisting of the �xed points and �xed lines. Then one of the following holds.

(a) jGj = n2 + n+ 1, t = 1, F = ;. Here G is transitive.

(b) jGj = n2, t = 3, F is a ag, that is, an incident point-line pair.

(c) jGj = n2, t = n + 2, F is either a line and all its points or, dually, a point
together with all its lines.

(d) jGj = n2 � 1, t = 3, F is an antiag | a nonincident point-line pair.

(e) jGj = n2 �
p
n, t = 2, F = ;. In this case one of the point orbits is precisely

the set of points of a Baer subplane (a subplane of order
p
n).

(f) jGj = n2�n, t = 5, F consists of two points, the line joining them and another
line through one of the two points.
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(g) jGj = n2 � 2n+ 1, t = 7, F consists of the vertices and sides of a triangle.

(h) jGj = (n2�
p
n+ 1)2, t = 2

p
n+ 1, F = ;. In this case there are t� 1 disjoint

subplanes of order
p
n�1 whose point sets constitute t�1 orbits, each of length

n�
p
n+ 1.

So the planes of Theorem 10.7 fall under (b) and (c) of Theorem 10.8. The
planes of (c) are (dual) translation planes.

The paper [44] extensively considers the projective planes described in the latter
theorem, with an emphasis on the status of the PPC for the respective classes. We
refer to that paper, and also to its companion paper [43], for the details.

10.5 Local versus global dichotomy

A theme that will occur over and over in the present paper is the dichotomy
between local and global theory. Till now, we considered groups which act transi-
tively on the points of some a�ne plane, so that we have a \global action" from the
viewpoint of the a�ne plane. Still, from the viewpoint of its projective completion,
we have a \local action" | the group �xes some line. Let us thus review some basic
global actions for projective planes. Before doing this, the reader is already no-
ticed for the fact that, at least conjecturally, it will become clear that global theory
probably always is only leading to Desarguesian planes (when restricting to �nite
structures). Any existing conjecture on �nite planes with a point-transitive auto-
morphism group states that it is eventually Desarguesian. Still, on the other hand, it
makes perfectly clear how di�cult the theory really is | many of these conjectures
are wide open, even with respect to the mere fact that a simple corollary of such a
conjecture is that the PPC would follow.

10.6 Ostrom-Wagner

One of the �rst results on global theory was the now famous Ostrom-Wagner
theorem.

Theorem 10.9 (Ostrom and Wagner [71]) Let � be a �nite projective plane of
order n admitting a doubly transitive automorphism group G on the point set. Then
n is a prime power, G contains PSL3(n) and � is Desarguesian.

The strong global assumption indeed leads to the fact that the order is a prime
power, but not at little cost: the plane is coordinatized over a commutative �eld. So
we need to relax the action as much as possible in order to handle more classes of
planes. (However, as already mentioned, conjecturally \global" leads to \classical".)
A �rst try is the assumption of \ag-transitivity", which is a natural property lying
in between point-transitivity and point-2-transitivity.
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10.7 Flag-transitive and point-primitive planes

A projective plane is called ag-transitive if it admits an automorphism group
which acts transitively on its ags; such a groups is a ag-transitive group.

We start with some \elementary" results (prior to the classi�cation of �nite
simple groups).

Theorem 10.10 (Higman and McLaughlin [52]) If q is a prime-power di�er-
ent from 2 and 8, then any ag-transitive collineation group of PG(2; q) contains
all elations of PG(2; q).

Theorem 10.11 (Roth [88]) Suppose either n2+n+1 or n+1 is a prime. Then a
ag-transitive group G is either doubly-transitive (on points and lines) or it contains
a sharply ag-transitive subgroup.

In the doubly-transitive case, the plane is Desarguesian by the Ostrom-Wagner
result. If G is nonsoluble, then it is doubly-transitive; this is a consequence (both for
n2 +n+ 1 and n+ 1 a prime) of a result of Burnside which states that a nonsoluble
transitive permutation group of prime degree is doubly-transitive. If G is soluble,
then a result of Galois is applied, saying that a soluble transitive permutation group
of prime degree is soluble if and only it is either regular (= sharply transitive), or a
Frobenius group [33].

A group G is called a geometric ABA-group [52] if G contains the groups A and
B for which G = ABA, if AB \BA = A [B, and if A 6� B and B 6� A.

Remark Any group admitting a BN-pair is a geometric ABA-group, due to its
Bruhat decomposition. More on this matter can be found in [52], especially x8 of
loc. cit.

A (Steiner) 2-design is a point-line incidence structure, consisting of two nonempty
disjoint sets called points and lines, together with an incidence relation I, such that

(1) each point is incident with a constant number (� 2) of lines and

(2) each line is incident with a constant number (� 2) of points, and

(3) through every two distinct points there is precisely one line.

A ag-transitive representation of a group H on a design � is a homomorphism of
G onto an automorphism group of � acting ag-transitively. Higman and McLaugh-
lin proved in [52] that a group G admits a ag-transitive representation on a 2-design
if and only if G is a geometric ABA-group (through a very simple coset geometry
representation). Such a group always acts primitively (i.e. there are no nontrivial
blocks of imprimitivity) on the points of the design, which translates to the fact that
in an ABA-group A is maximal. Using these observations, the following was proved.
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Theorem 10.12 (Higman and McLaughlin [52]) If � is a �nite ag-transitive
projective plane of order n with n odd and n not a fourth power, and if n is a square
of a natural number m for which m � �1 mod 4, or n is not a square and n2 +n+1
is not a prime, then � is Desarguesian.

McLaughlin noted in Dembowski [24] that, using the ideas of [52], in fact the
following is also true.

Theorem 10.13 (Higman and McLaughlin [52, 24]) If � is a �nite
ag-transitive projective plane of order n with n odd and n not a fourth power, or
n is not a square and n2 + n+ 1 is not a prime, then � is Desarguesian.

Theorem 10.14 (Ott [73]) Let (�; G) be a �nite ag-transitive projective plane
of order n (where the notation is obvious). Then the following are equivalent.

(1) The size of G is odd.

(2) G acts sharply ag-transitively.

(3) G acts on the points of � as a Frobenius group.

If one of these conditions hold, then n is even and n2 + n+ 1 is a prime number.

Ott’s results are very geometrical in nature, and some strong results have very
elementary proofs. We recall some more theorems of Ott in this direction.

Theorem 10.15 (Ott [73]) Let (�; G) be a �nite ag-transitive projective plane
of order n. Then n is the power of a prime or G acts sharp-transitively on the ags.

Theorem 10.16 (Ott [72]) Let (�; G) be a �nite ag-transitive projective plane
of order n. If n is odd, then n is the power of a prime.

So, by Theorems 10.14, 10.15 and 10.16, we have that for a �nite ag-transitive
projective plane � of order n admitting a ag-transitive group G, either n is the
power of a prime, or n is even, G acts ag-regularly and n2+n+1 is a prime number.

A cyclic projective plane is a projective plane admitting a cyclic transitive
collineation group.

Theorem 10.17 (Fink [37]) Let � be a �nite projective plane of order n, which
admits a group G acting transitively on the ags and which has odd order. Then
either n 2 f2; 8g or else � is a nonDesarguesian cyclic plane determined by a dif-
ference set D in the cyclic group (Fp;+), where p = n2 +n+ 1 is prime and n even.
The set D may be taken to be the set of n-th powers in the multiplicative group of
Fp.

Di�erence sets are de�ned later in this section.

Note. If � is the Desarguesian projective plane of order 8, then the Singer
groupG together with the \multipliers" generate a ag-regular automorphism group,
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where D is the set of 8-th powers in the multiplicative group of F73. More details
appear below.

Fink also obtained the following result.

Theorem 10.18 (Fink [38]) Let � be a �nite ag-transitive projective plane of
order n where n is not a fourth power. If � admits a collineation group G such that
G is ag-transitive but not regular on ags, then � is Desarguesian and G contains
the little projective group.

The following theorem is perhaps the strongest result in the study of �nite ag-
transitive projective planes; the proof provides a heavily group theoretical analysis
to obtain a list of the odd degree primitive permutation representations of all non-
sporadic nearly simple groups. The classi�cation of �nite simple groups is not used
to obtain the latter result, but for applications, such as Theorem 10.19 stated below,
a tedious case-by-case analysis of the sporadic simple groups is needed.

Theorem 10.19 (Kantor [60]) Let � be a �nite point-primitive projective plane
of order n (that is, suppose there is a group G acting primitively on the points of
�). If n is odd, then � is Desarguesian. If � is not Desarguesian, then n is even,
n2 +n+ 1 is a prime, G is a Frobenius group and jGj divides (n+ 1)(n2 +n+ 1) or
n(n2 + n+ 1).

As a ag-transitive group of a �nite projective plane is point-primitive, Theorem
10.19 applies. In that case, if � is not Desarguesian, jGj = (n+ 1)(n2 + n+ 1), and
hence the action is regular. The proof of Theorem 10.19 is independent of Theorems
10.14, 10.15 and 10.16; as such, those theorems are completely covered by it. By
e.g. Theorem 10.19, G contains a (necessarily unique) normal subgroup of prime
order n2 + n+ 1 acting sharply transitively on the points of �.

Theorem 10.20 (Feit [35]) Let � be a �nite ag-transitive projective plane of
order n, and suppose � is not Desarguesian. Then n � 0 mod 8, n is not the
power of a prime, n2 + n + 1 is a prime, and if d is a divisor of n, then dn+1 � 1
mod n2 + n+ 1. Furthermore, q > 14; 400; 008.

To prove that if d is a divisor of n, then dn+1 � 1 mod n2 + n + 1, Feit makes
the well-known observation that, under the assumptions of Theorem 10.20,

(*) the unique group of order n+1 of the multiplicative group of Fp, p = n2 +n+1,
can be taken as a di�erence set in (Fp;+),

see, e.g., Theorem 10.17, and then applies the multiplier theorem of Hall, Jr. [48].

In [35], Feit also made the following number theoretical conjecture:

Conjecture 10.21 (W. Feit) Let n be an even natural number so that n2 + n+ 1
is a prime, and for which 2n+1 � 1 mod n2 + n + 1. Suppose also that n + 1 � 0
mod 3. Then n is a power of 2.



Order in building theory 281

Remark In [35], W. Feit claims that if � and n are as in Theorem 10.20, then n is
not a power of 2, and in [74], U. Ott claims that any ag-transitive �nite projective
plane has prime power order. Together with the above theorem, these two results
would imply the nonexistence of nonDesarguesian ag-transitive �nite projective
planes. Unfortunately, both proofs appear to contain mistakes: Feit uses a lemma
of B. Gordon, W. H. Mills and L. R Welch [45] (in the proof of [35, Theorem A])
which is proved only under much more restrictive hypotheses in [45], and there is a
mistake in [74] in deriving [74, Formula (18)] from [74, Formula (17)], as is pointed
out in [138].

In the paper of Feit cited above, it is proved that under the assumptions of The-
orem 10.20 every divisor d of n must satisfy dn+1 � 1 (mod n2 + n + 1), and also
that n must be larger than 14; 400; 008. An elementary proof of the �rst assertion
is given in a recent paper by the author [107], which also contains a survey of the
most important results on �nite ag-transitive projective planes since 1961 and some
related problems.

10.8 Fermat surfaces and Fermat curves

A general construction of potential examples of �nite projective planes, known
in the literature as the method of di�erence sets, is as follows. Suppose we have a
�nite (not necessarily abelian) group F containing a subset D for which the map

D �D n fdiagonalg ! F�

(x; y) 7! xy�1
(10.2)

is bijective, so that jF j = n2 + n + 1, where jDj = n + 1. Then we obtain a �nite
projective plane � = �(F;D) of order n by taking both the set of points and the set
of lines of � to be the elements of F , with the incidence relation that a point x and
a line y are incident if and only if yx�1 belongs to D. We will be concerned with
the special case of this described by the following proposition, which is essentially a
restatement of a result of J. Fink [37].

We call a prime number or prime power special if it has the form q = n2 + n+ 1
and every element of the �nite �eld Fq is a di�erence of two nonzero nth powers.
We call a �nite projective plane ag-regular if it has a group of automorphisms that
acts regularly (simply transitively) on the ags.

Proposition 10.22 (Fink [37]) If q = n2+n+1 is a special prime or prime power
with n > 1, then �(Fq; (F�q )n) is a ag-regular �nite projective plane. Conversely, if
� is a ag-regular �nite projective plane of order n, and if the number p = n2 +n+1
is prime, then p is special and � �= �(Fp; (F�p )n).

We also have the following stronger result:

Theorem 10.23 (Thas and Zagier [120]) Let n be the order of a ag-transitive
�nite projective plane �. Then at least one of the following holds:
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(a) n is a prime power and � �= PG(2;Fn) ;

(b) p = n2 + n+ 1 is a special prime and � �= �(Fp; (F�p )n) .

Notice that the two alternatives occurring in the theorem are not necessarily
exclusive: it is possible that the number n is both a prime power and is associated
to a special prime p = n2 + n + 1, and in this case the projective plane � of this
order, while still unique, has both forms PG(2;Fn) and � �= �(F; (F�p )n). This can
happen for only two values of n, namely n = 2 (p = 7) and n = 8 (p = 73). Let us
look in detail at the exceptional case n = 2 to see how the isomorphism between the
two di�erently-de�ned projective plane structures works.

So consider the case n = 2. We de�ne an automorphism A of PG(2;F2) of
order 7 by

A : (x : y : z) 7! (y : z : x+ y) : (10.3)

Then every point of PG(2;F2) has the form pi = Ai(p0) for a unique i 2 Z=7Z,
where p0 is the point (1 : 0 : 0) :

i 0 1 2 3 4 5 6
pi (1 : 0 : 0) (0 : 0 : 1) (0 : 1 : 0) (1 : 0 : 1) (0 : 1 : 1) (1 : 1 : 1) (1 : 1 : 0)

(10.4)
and every line in PG(2;F2) has the form Lj = Aj(L0) for a unique j 2 Z=7Z, where
L0 is the line fx = 0g :

j 0 1 2 3 4 5 6

Lj x = 0 x = z x+ y + z = 0 y = z x = y z = 0 y = 0 (10.5)

Then Lj = fpj+1; pj+2; pj+4) for every j, so the correspondence

(pi; Lj) 7! (i; j) (10.6)

de�nes an isomorphism between the Desarguesian projective plane fpoints in PG(2;F2),
lines in PG(2;F2), usual incidenceg and the special projective plane fi 2 F7; j 2
F7; i� j 2 Dg, where D = (F�7 )2 = h2i = f1; 2; 4g. The automorphism

B : (x : y : z) 7! (x : y + z : y) (10.7)

of PG(2;F2) �xes p0 and L0 and sends pi to p2i and Lj to L2j , and the group of au-
tomorphisms generated by A and B, with the relations A7 = B3 = 1, BAB�1 = A2,
acts regularly on the ags of PG(2;F2).

Let n > 8. We have seen that a nonDesarguesian �nite ag-transitive projective
plane of order n exists if and only if p = n2 +n+1 is a special prime, i.e., if and only
if p is prime and every element of the �nite �eld Fp is the di�erence of two elements
of D = (F�p )n. In this section we give a number of elementary number-theoretical
statements about n and p which are equivalent to this property. All are taken from
[120]. These involve the Fermat surface
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Figure 1: The unique projective plane of order 2 (\Fano plane").

S : Xn
0 +Xn

1 = Xn
2 +Xn

3 ; (10.8)

the Fermat curves

F� : Xn
0 �Xn

1 = �Xn
2 (� 2 F�p ); (10.9)

and the Gaussian periods

! =
X

a2D

�a =
1

n

X

x2F�p

�x
n
; 
 =

X

x2F
�x

n
= 1 + n! ; (10.10)

where � = �p denotes a primitive pth root of unity. All of these are classical objects,
much studied in Number Theory. In particular, the Gaussian periods, which are
de�ned for any prime number p and divisor n of p� 1, generate the unique sub�eld
of degree n of the cyclotomic �eld Q(�) and were introduced for essentially this
purpose by Gauss.

It appears that the prime p = n2 + n + 1 is special if and only if the Fermat
surface S has no nontrivial Fp-rational points (by \trivial points" of S over Fp
we mean points (x0; x1; x2; x3) 2 S(Fp) with either x0x1x2x3 = 0 or fxn0 ; xn1g =
fxn2 ; xn3g); if and only if the Fermat curves F� all have the same number of Fp-
rational points; and if and only if the absolute value of the Gaussian period ! is the
square-root of a rational integer.

We denote by X(F) the set of F-rational points of any variety X de�ned over a
�nite �eld F and by jX(F)j its cardinality.

Theorem 10.24 ([120]) Suppose that p = n2 +n+ 1 is prime. Then the following
are equivalent:

(a) p is special;

(b) the map � : D�D r (diagonal)! F�p sending (x; y) to x� y is bijective;

(c) the surface S has no nontrivial points over Fp ;

(d) jF�(Fp)j > 3n for every � 2 F�p ;
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(e) jF�(Fp)j < 2n2 + n for every � 2 F�p ;

(f) jF�(Fp)j = n2 + n or n2 + 2n for every � 2 F�p ;

(g) jS(Fp)j < 2n4 + 5n3 + 4n ;

(h) jS(Fp)j = 2n4 + n3 + 4n2 + 4n ;

(i) j!j2 2 Q ;

(j) j!j =
p
n ;

(k) trQ(�)=Q(j
j4) = n8 + n7 � 2n4 � 4n3 � 5n2 � 3n .

More results of this kind can be found in [120].

The above considerations were generalized in the following way in [120]. Let p
be an arbitrary prime number. Then any subgroup of F�p has the form

Dn = fxn j x 2 F�p g = fx 2 F�p j xk = 1g (10.11)

for some divisor n of p� 1 and k = (p� 1)=n. We de�ne the Gaussian period !n as
before by

!n =
X

x2Dn

�x =
1

n

X

a2F�p

�a
n

= trQ(�)=Kn
�

�
�

; (10.12)

where � is a primitive pth root of unity and Kn is the unique sub�eld of Q(�) of
degree n over Q. We further de�ne tn(�) for � 2 Fp as the number of representations
of � as the di�erence of two elements of Dn, and call the pair (p; n) special if this
number is independent of � for � 6= 0. Since

X

� 6=0

tn(�) = jDnj2 � jDnj = k2 � k; (10.13)

this common value must then be equal to (k � 1)=n, which must therefore be an
integer. In particular, except in the trivial case when k = 1 an n = p�1, one always
has k � n+ 1 and p � n2 + n+ 1, so that the case considered before is extremal.

Theorem 10.25 ([120]) Let p = nk + 1 be prime. Then the following are equiva-
lent:

(i) the pair (p; n) is special;

(ii) tn(�) = (k � 1)=n for all � 6= 0 ;

(iii) the surface S has precisely n3k + n2(k � 1)2 + 4nk Fp-rational points;

(iv) j!nj2 is a rational number;

(v) j!nj2 = k � (k � 1)=n .
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Suppose (p; n) is special, k = (p � 1)=n. De�ne a point-line incidence structure
� as follows:

� the points of � are the elements of Fp;

� the lines or blocks of � also consist of the elements of Fp; and

� a point � 2 Fp is incident with a block � 2 Fp if and only if �� � 2 Dn.

Thus there are p points and p blocks, each point is incident with k blocks and
each block is incident with k points, any two distinct points are contained in exactly
(k� 1)=n distinct blocks, and any two distinct blocks intersect in exactly (k� 1)=n
distinct points. Hence � is a 2{(p; k; (k � 1)=n) symmetric block design. It is clear
that for a 2 Dn and b 2 Fp the map

x 7! ax+ b (10.14)

from Fp to itself de�nes an automorphism of � in a natural way and that the group
of these automorphisms acts regularly on the ags (= incident point-block pairs)
of �. The only known examples of such designs other than �nite projective spaces
(of dimension at least 3) follow from [14, 68, 75]. These constructions are essentially
covered by Theorem 10.26 (and Theorem 10.27) of [120] stated below, where among
other results the existence results of [14, 68, 75] are re-proved in an alternative
fashion.

Theorem 10.26 ([120]) Let p be a prime and nj(p� 1). Then (p; n) is special in
each of the following �ve cases:

(i) n = 1, p arbitrary, j!nj2 = 1,

(ii) n = 2, p � 3 (mod 4), j!nj2 = (p+ 1)=4,

(iii) n = 4, p = 4b2 + 1 with b odd, j!nj2 = (3p+ 1)=16,

(iv) n = 8, p = 64b2 + 9 = 8d2 + 1 with b and d integral, j!nj2 = (7p+ 1)=64,

(v) n = p� 1, p arbitrary, j!nj2 = 1,

the corresponding values of !n being given by

(i) !1 = �1,

(ii) !2 =
�1 + i

p
p

2
,

(iii) !4 =

p
p� 1

4
� i
r

p+
p
p

8
,

(iv) !8 =

p
p� 1

8
+

r

p+ 3
p
p

32
+ i

rp
p� 1

16

s

p
p�

r

p+ 3
p
p

2
.

(v) !p�1 = � .
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Cases (i) and (v) of this theorem are trivial and do not lead to interesting de-
signs, but the families (ii), (iii) and (iv) yield three in�nite or potentially interesting
classes of ag-regular symmetric designs. Note that the family (iii) is quite sparse:
the only primes up to 40000 belonging to this class are 5, 37, 101, 197, 677, 2917,
4357, 5477, 8101, 8837, 12101, 15877, 16901, 17957, 21317, 22501, and 28901. Fam-
ily (iv), corresponding to the prime solutions of a Pell’s equation, is even thinner,
though conjecturally still in�nite: the �rst prime of this form is our old acquain-
tance p = 73, with b = 1 and d = 3; the next two are 104411704393 (b = 40391,
d = 114243) and 160459573394847767113 (b = 1583407981, d = 4478554083), with
12 and 21 digits, respectively, and the next four have 103, 119, 425, and 615 decimal
digits, respectively.

Theorem 10.27 ([120]) Assume that p = kn+1 is prime and that (p; n) is special.
Then

(i) If n > 1, then n is even and k is odd.

(ii) If n � 8, then (p; n) belongs to one of the families of Theorem 10.26.

10.9 Singer groups

Let � be any rank r geometry. (The rank is not important here, so one can
put r = 2 for starters.) A Singer group G on the elements of type i � r � 1 is an
automorphism group of � which acts sharply transitively on the elements of type i.
We require that there is no kernel of the action, that is, no element of G� �xes all
i-elements. Here, we only consider Singer groups with respect to points (without
loss of generality, by duality). We already encountered such groups in various guises:
a�ne translation planes and cyclic projective planes are examples. (In the latter
case, one usually speaks of \Singer cycles".) In fact, a�ne planes admitting a Singer
group are precisely the planes of type (b).

For �nite projective planes admitting Singer groups, many results are known;
see, e.g., [43, 44]. The Main Conjecture is the following:

Conjecture 10.28 A �nite projective plane admitting a Singer group is Desargue-
sian, and whence satis�es the PPC.

However, to obtain a solution of this conjecture, one would �rst want to obtain
that the order of the plane be a prime power (think also of the discussion about
sharply ag-transitive planes in relation to the parameters). Although transitivity
is a much weaker condition than doubly transitivity, cf. the Ostrom-Wagner result,
the regularity of the action adds a strong extra condition. Still, even for Singer
cycles (and hence also for abelian Singer groups), the conjecture remains unsolved.
So the next problem might be a lot harder to handle.

Conjecture 10.29 A �nite projective plane admitting a transitive group is Desar-
guesian, and whence satis�es the PPC.
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Note that when the group is abelian, the action must be sharply transitive.

When the planes are in�nite, the theory is entirely di�erent; they need not be
coordinatized over a skew �eld when admitting a Singer group. We will mention
examples in the �nal section of this paper (on Absolute Arithmetic), where the
classi�cation of projective planes admitting sharply transitive automorphism groups
will occur as a crucial element in a problem about so-called hyper�eld extensions
related to the \�eld with one element".

10.10 Further references

This section only gives a �rst taste on the status of the theory for planes. Much
more has been done. An excellent survey consists of the two papers by Ghinelli and
Jungnickel [43, 44].

11 Generalized quadrangles

We start this section with a combinatorial de�nition of generalized quadrangles
with an order.

11.1 Combinatorial de�nition

A generalized quadrangle (GQ) of order (s; t), s; t 2 N0, is a point-line incidence
geometry S = (P;B; I) satisfying the following axioms:

(i) each point is incident with t+ 1 lines and two distinct points are incident with
at most one line;

(ii) each line is incident with s+ 1 points;

(iii) if p is a point and L is a line not incident with p, then there is a unique point-
line pair (q;M) such that pIMIqIL.

In this de�nition, s and t are allowed to be in�nite cardinals.

A thin GQ of order (s; 1) is also called a grid, while a thin GQ of order (1; t) is
a dual grid. A GQ of order (1; 1) is both a grid and a dual grid | it is an ordinary
quadrangle. If s = t, then S is also said to be of order s.

Suppose (p; L) 62 I. Then by projLp, we denote the unique point on L collinear
with p. Dually, projpL is the unique line incident with p concurrent with L.

11.2 Regularity and antiregularity

Let x and y be distinct points. Then jfx; yg?j = s + 1 or t + 1, according as
x � y or x 6� y, respectively. When x 6� y, we have that jfx; yg??j = s + 1 or
jfx; yg??j � t + 1 according as x � y or x 6� y, respectively. If x � y, x 6= y, or if
x 6� y and jfx; yg??j = t+ 1, we say that the pair fx; yg is regular. The point x is
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regular provided fx; yg is regular for every y 2P n fxg, z 6� x. Regularity for lines
is de�ned dually.

We will need the following easy lemma, the proof of which we leave to the reader.

Lemma 11.1 If S is a thick GQ of order (s; t) and S has a regular pair of lines,
then s � t. �

The pair of points fx; yg, x 6� y, is antiregular if jfx; yg? \ z?j � 2 for all
z 2P nfx; yg. The point x is antiregular if fx; yg is antiregular for each y 2P nx?.
The same terminology is used in the dual setting.

11.3 Subquadrangles

A subquadrangle, or also subGQ, S 0 = (P 0;B0; I0) of a GQ S = (P;B; I)
is a GQ for which P 0 � P, B0 � B, and where I0 is the restriction of I to
(P 0 �B0) [ (B0 �P 0).

As soon as �nite GQs have certain subquadrangles, one can obtain extra infor-
mation about parameters. The next theorem sums up some of this information,
which is required later when considering construction processes of in�nite ovoids.

Theorem 11.2 ([83], 2.2.2) Let S 0 be a proper subquadrangle of the GQ S , where
S has order (s; t) and S 0 has order (s; t0) (so t > t0). Then the following hold.

(1) t � s; if s = t, then t0 = 1.

(2) If s > 1, then t0 � s; if t0 = s � 2, then t = s2.

(3) If s = 1, then 1 � t0 < t is the only restriction on t0.

(4) If s > 1 and t0 > 1, then
p
s � t0 � s and s3=2 � t � s2.

(5) If t = s3=2 > 1 and t0 > 1, then t0 =
p
s.

(6) Let S 0 have a proper subquadrangle S 00 of order (s; t00), s > 1. Then t00 = 1,
t0 = s and t = s2.

For the sake of convenience, we provide the interested reader with some basic
recognition theorems of subquadrangles which are especially handy when considering
�xed points structures of automorphisms. All these theorems have natural analogues
for in�nite quadrangles, which are just as handy. The proofs are left to the reader
as an exercise.

Theorem 11.3 ([83], 2.3.1) Let S 0 = (P 0;B0; I0) be a substructure of the GQ S
of order (s; t) so that the following two conditions are satis�ed:

(i) if x; y 2 P 0 are distinct points of S 0 and L is a line of S such that xILIy,
then L 2 B0;

(ii) each element of B0 is incident with s+ 1 elements of P 0.
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Then there are four possibilities:

(1) S 0 is a dual grid, so s = 1;

(2) the elements of B0 are lines which are incident with a distinguished point of
P, and P 0 consists of those points of P which are incident with these lines;

(3) B0 = ; and P 0 is a set of pairwise noncollinear points of P;

(4) S 0 is a subquadrangle of order (s; t0).

The following result is now easy to prove.

Theorem 11.4 ([83], 2.4.1) Let � be an automorphism of the GQ S = (P;B; I)
of order (s; t). The substructure S� = (P�;B�; I�) of S which consists of the �xed
elements of � must be given by (at least) one of the following:

(i) B� = ; and P� is a set of pairwise noncollinear points;

(i)0 P� = ; and B� is a set of pairwise nonconcurrent lines;

(ii) P� contains a point x so that y � x for each y 2P�, and each line of B� is
incident with x;

(ii)0 B� contains a line L so that M � L for each M 2 B�, and each point of P�

is incident with L;

(iii) S� is a grid;

(iii)0 S� is a dual grid;

(iv) S� is a subGQ of S of order (s0; t0), s0; t0 � 2.

Finally, we recall a result on �xed elements structures of whorls.

Theorem 11.5 ([83], 8.1.1) Let � be a nontrivial whorl about p of the thick GQ
S = (P;B; I) of order (s; t). Then one of the following must hold for the �xed
element structure S� = (P�;B�; I�).

(1) y� 6= y for each y 2P n p?.

(2) There is a point y, y 6� p, for which y� = y. Put V = fp; yg? and U = V ?.
Then V [ fp; yg �P� � V [ U , and L 2 B� if and only if L joins a point of
V with a point of U \P�.

(3) S� is a subGQ of order (s0; t), where 2 � s0 � s=t � t, and hence t < s.

12 Parameters of generalized quadrangles

In this section we mention several basic results on parameters of �nite GQs.
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12.1 Standard restrictions on parameters

Let S = (P;B; I) be a (�nite) GQ of order (s; t). Then S has v = jPj =
(1 + s)(1 + st) points and b = jBj = (1 + t)(1 + st) lines; see [83, 1.2.1]. Also, we
have that

st(1 + s)(1 + t) � 0 mod s+ t; (12.1)

and, for s 6= 1 6= t, we have t � s2 and, dually, s � t2 (inequalities of Higman [51]);
see [83, 1.2.2, 1.2.3].

12.2 Orders of the known �nite GQs

The orders (s; t) of the known �nite GQs are

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(s; 1); s 2 N0;
(1; t); t 2 N0;
(q; q); q any prime power;
(q; q2); q any prime power;
(q2; q); q any prime power;
(q2; q3); q any prime power;
(q3; q2); q any prime power;
(q � 1; q + 1); q any prime power;
(q + 1; q � 1); q any prime power:

(12.2)

The prime power conjecture for �nite GQs states the converse.

Conjecture 12.1 (PPC for �nite quadrangles) For a thick GQ of order (s; t)
with s � t, we have that t 2 fs; s+ 2;

p
s3; s2g, with t a prime power in the �rst and

last two cases, and t� 1 a prime power when t = s+ 2.

Most of the known results on Conjecture 12.1 are contained in the present notes.

For st in�nite, we will see that the situation is very di�erent.

12.3 Generalized quadrangles with small parameters

The proofs of all the results in this section are contained in Chapter 6 of Payne
and Thas [83]. We will need the next theorem in the discussion below.

Theorem 12.2 ([83], 3.2.1, 3.2.2 and 3.2.3) The following isomorphisms hold.

(i) Q(4; q) �= W(q)D;

(ii) Q(4; q) �= W(q) if and only if q is even;

(iii) Q(5; q) �= H(3; q2)D.

Let S = (P;B; I) be a �nite GQ of order (s; t); 1 < s � t.
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12.3.1 s = 2 By Section 12.1, s + t divides st(s + 1)(t + 1) and t � s2. Hence
t 2 f2; 4g. Up to isomorphism there is only one GQ of order 2 and only one GQ of
order (2,4). It follows that the GQs W(2) and Q(4; 2) are self-dual and mutually
isomorphic. It is easy to show that the GQ of order 2 is unique.

The uniqueness of the GQ of order (2,4) was proved independently at least �ve
times, by Seidel [90], Shult [91], Thas [99], Freudenthal [41] and Dixmier and Zara
[32].

12.3.2 s = 3 Again by 12.1 we have t 2 f3; 5; 6; 9g. Any GQ of order (3; 5)
must be isomorphic to the GQ T�2(O) [83] arising from the unique hyperoval in
PG(2; 4), any GQ of order (3; 9) must be isomorphic to Q(5; 3), and a GQ of order
3 is isomorphic to either W(3) or to its dual Q(4; 3). Finally, there is no GQ of
order (3,6).

The uniqueness of the GQ of order (3,5) was proved by Dixmier and Zara [32],
the uniqueness of the GQ of order (3,9) was proved independently by Dixmier and
Zara [32] and Cameron (see Payne and Thas [82]), the determination of all GQs of
order 3 is due independently to Payne [77] and to Dixmier and Zara [32]. Dixmier
and Zara [32] proved that there is no GQ of order (3,6).

12.3.3 s = 4 Using 12.1 it is easy to check that t 2 f4; 6; 8; 11; 12; 16g. Nothing
is known about t = 11 or t = 12. In the other cases unique examples are known,
but the uniqueness question is settled only in the case t = 4. The proof of this
uniqueness that appears in Payne and Thas [83] is that of Payne [78, 79], with a gap
�lled in by Tits.

12.4 From quadrangles to planes

Often, it is possible to relate di�erent generalized polygons to each other through
certain combinatorial properties. In such cases, the respective PPCs are induced.

In this section, we give two standard examples: the �rst one relates nets (which
are generalizations of a�ne planes) to generalized quadrangles via the regularity
property; the second one via antiregularity. Other such connections can be found in
[132, x1.9] (for instance, between hexagons and quadrangles).

12.4.1 Nets and GQs A net of order k and degree r is a point-line incidence
geometry N = (P;B; I) satisfying the following axioms:

(i) each point is incident with r lines (r � 2, r 2 N) and two distinct points are
incident with at most one line;

(ii) each line is incident with k points (k � 2, r 2 N);

(iii) if p is a point and L is a line not incident with p, then there is a unique line
M incident with p and not concurrent with L.
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Theorem 12.3 ([83], 1.3.1) Let x be a regular point of a thick GQ S = (P;B; I)
of order (s; t). Then the following rank 2 incidence structure is the dual of a net of
order s and degree t+ 1.

� The point set is x? n fxg;

� the line set is the set of spans fu; vg??, where u and v are noncollinear
points of x? n fxg, and

� incidence is the natural one.

If in particular s = t, there arises a dual a�ne plane of order s.

In the case s = t, the incidence structure �x with point set x?, with line set the
set of spans fu; vg??, where u and v are di�erent points in x?, and with the natural
incidence, is a projective plane of order s.

The construction naturally generalizes to the in�nite case. The same can be said
about the construction in the next section.

12.4.2 Antiregularity and planes Let Y and X be di�erent concurrent lines in a
thick GQ � of order s, and suppose X is antiregular. Put X \ Y = z, and de�ne a
rank 2 incidence structure �(X;Y ) = (P;B; I) as follows.

� Points are the elements of X? not through z.

� Lines are of two types:

{ sets fZ;Xg? n fY g, with Z 2 Y ?, Z 6 Iz;
{ the points of X n fzg.

� Incidence is the expected one.

Then �(X;Y ) is an a�ne plane of order s. Generalizations of this observation
can be found in [114].

13 Elation quadrangles

In this section we consider a large class of �nite GQs, called elation generalized
quadrangles (EGQs). EGQs are the natural analogues for generalized quadrangles
as translation planes are for projective planes. One di�erence is that elation groups
need not be abelian, as is the case for planes. This obstructs the de�nition of a
kernel (or representation in projective space). In the next section, we will therefore
consider a subclass of EGQs, namely those with an abelian elation group, called
\translation generalized quadrangles".

Each known �nite generalized quadrangle is, up to duality, an EGQ, or can
be constructed from one by \Payne derivation" [113]1, which goes as follows. Let

1Except for the Hermitian quadrangles H(4; q2), the same can be said about STGQs, which we
will encounter later on.
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S = (P;B; I) be a thick GQ of �nite order s, with regular point x. De�ne a rank
2 geometry

P(S ; x) = @x(S ): (13.1)

� Points are the points of P n x?.

� Lines are the elements of B not incident with x, and sets fx; zg?? n fxg,
z 6� x.

� Incidence is \containment".

Then S (P; x) is a GQ of order (s� 1; s+ 1), which is called the Payne derivative
of S with respect to x. (If S is an in�nite GQ, then asking that Nx is a projective
plane is necessary and su�cient for P(S ; x) to be a GQ.) We say that

S =

Z

S (P; x)dx (13.2)

is the Payne integral of S (P; x) with respect to x. A GQ can have nonisomorphic
Payne integrals [28].

A speci�c (but general by the remarks above) case of the prime power conjecture
for generalized quadrangles is the following version posed in the 1980’s:

Conjecture 13.1 (W. M. Kantor) The parameters (s; t) of an EGQ are powers
of the same prime.

Frohardt solved it a�rmatively in [42] when s � t. In this section, we will
overview his elegant combinatorial proof.

13.1 Elation generalized quadrangles

Let S = (P;B; I) be a GQ. If there is an automorphism group H of S which
�xes some point x 2P linewise and acts sharply transitively on P n x?, we call x
an elation point, and H elation group. (Note that several | even nonisomorphic |
elation groups can be associated to the same elation point [113].) If a GQ has an
elation point, it is called an elation generalized quadrangle or, shortly, \EGQ". We
frequently will use the notation (S x; H) to indicate that x is an elation point with
associated elation group H. Sometimes we also write S x if we don’t need to specify
the elation group.

13.2 Kantor families

Suppose (S x; H) = (P;B; I) is a �nite thick EGQ of order (s; t), and let z be
a point of P n x?. Let L0; L1; : : : ; Lt be the lines incident with x, and de�ne ri and
Mi by LiIriIMiIz, 0 � i � t. De�ne, for i = 0; 1; : : : ; t, Hi = HLi and H�i = Hri ,
and set J = fHij0 � i � tg.

Then we have the following properties:
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� jHj = jP n x?j = s2t;

� J is a set of t+ 1 subgroups of H, each of order s;

� for each i = 0; 1; : : : ; t, H�i is a subgroup of H of order st containing Hi as a
subgroup.

Moreover, the following two conditions are satis�ed:

(K1) HiHj \Hk = f1g for distinct i; j and k;

(K2) H�i \Hj = f1g for distinct i and j.

Conversely, let H be a group of order s2t and J (respectively J �) be a set
of t + 1 subgroups Hi (respectively H�i ) of H of order s (respectively of order st),
and suppose (K1) and (K2) are satis�ed. We call H�i the tangent space at Hi, and
(J ;J �) is said to be a Kantor family or 4-gonal family of type (s; t) in H. Some-
times we will also say that J is a (Kantor, 4-gonal) family of type (s; t) in H.

Notation. If (J ;J �) is a Kantor family in H, and A 2J , then A� denotes
the tangent space at A.

Let (J ;J �) be a Kantor family of type (s; t) in the group H of order s2t, taken
that s 6= 1 6= t. De�ne a rank 2 incidence structure S (H;J ) as follows.

� Points of S (H;J ) are of three kinds:

(i) elements of H;

(ii) left cosets gH�i , g 2 H, i 2 f0; 1; : : : ; tg;
(iii) a symbol (1).

� Lines are of two kinds:

(a) left cosets gHi, g 2 H, i 2 f0; 1; : : : ; tg;
(b) symbols [Hi], i 2 f0; 1; : : : ; tg.

� Incidence. A point g of type (i) is incident with each line gHi, 0 � i � t. A
point gH�i of type (ii) is incident with [Hi] and with each line hHi contained
in gH�i . The point (1) is incident with each line [Hi] of type (b). There are
no further incidences.

It is easy to prove that S (H;J ) is a GQ of order (s; t), and H acts by left
multiplication as an elation group for the point (1). The next theorem is now
clear.

Theorem 13.2 ([58]) If we start with an EGQ (S x; H) to obtain J as above,
then we have that S x �= S (H;J ). So a group of order s2t admitting a 4-gonal
family is an elation group for a suitable elation generalized quadrangle.
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13.3 Parameters of elation quadrangles

In this section, we use the following notation: if p is a prime divisor of the nat-
ural number m, then mp is the largest power of p dividing m, and mp0 is de�ned as
m=mp. Also, �(m) is the set of primes dividing m. Similarly, de�ne m� and m�0

for any set of primes �. If G is a �nite group, �(G) is de�ned as �(jGj). If R is a
�nite group, we denote its set of Sylow p-subgroups by Sylp(R) (this set could be
the empty set).

Let (S x; G) be a thick EGQ of order (s; t). Starting from a point z 6� x,
construct the 4-gonal family (J ;J �) as above, and put J = fG0; G1; : : : ; Gtg,
while J � = fG�0; G�1; : : : ; G�t g.

Lemma 13.3 (i) If A and B are distinct elements of J , and g 2 G, then A� \
Bg = f1g.

(ii) Let S � \A2JA�, and suppose S � G. For any subgroup K � G, de�ne

K = KS=S, and if g 2 G, put g = gS. If A and B are distinct elements of J ,

and g 2 G, then A� \Bg
= f1g. In particular, with f1g = S, we obtain (i).

Proof. (i). As jGj = s2t, jA�j = st, jBj = s and A� \ B = f1g, we have that
G = A�B. Let a 2 A� and suppose a 2 Bg. Write g�1 = hb with h 2 A� and b 2 B.
Put c = ah, so that c 2 A� and cb 2 B. The latter expression implies that c 2 B, so
c = 1. It follows that a = 1.

(ii). Suppose A� \ Bg 6= f1g for some A;B 6= A 2 J and g 2 G. Then there
are a 2 A� and b 2 B for which AgS = bS. As S is normal in G, it is a group of
symmetries about x. It follows that b 2 A�g. By (i) this is only possible when b = 1.

�

The following lemma has a surprisingly easy proof.

Lemma 13.4 Let p be a prime, and assume that tp > 1. Then

tp0 < sp: (13.3)

Proof. Take A 2 J , and let P 2 Sylp(G) contain a Sylow p-subgroup A�p of
A�. For each B 2J nfAg, let Bp 2 Sylp(B). Then B is G-conjugate to a subgroup
QB of P . By Lemma 13.3, we have that the groups A�p, QB and B are mutually
disjoint. So

jA�pj+
X

B2J nfAg

jQ�Bj � jP j: (13.4)

Since jA�pj = sptp, jQ�Bj = sp � 1 for all B 2 J n fAg, and since jP j = s2
ptp, this

implies that

sptp + t(sp � 1) � s2
ptp: (13.5)
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Hence tptp0(sp � 1) � sptp(sp � 1). As tp > 0 and sp > 1, we have tp0 < sp. �

Lemma 13.5 One of the following occurs:

(i) s is a prime power;

(ii) t < s, (s; t) = gcd(s; t) 6= 1, s has exactly two prime divisors and every element
of J is solvable.

Proof. Let k = j�(s)j. By the previous lemma, taking products over all p 2 �(s)
yields

tk =
Y

(tp; tp0) <
Y

sptp = s
Y

tp � st: (13.6)

So tk�1 < s, and Higman’s inequality now leads us to k � 2.

Suppose now that k = 2, and that �(s) = fp; qg. Then any element of J is a
pq-group, so solvable by Burnside’s paqb-theorem.

Finally, since t2 < t�(s)s � t�(s)t
2, it follows that (s; t) 6= 1. �

The following intermediate result is interesting.

Lemma 13.6 Assume that G has a normal Hall �-subgroup H. Then either s� = 1
or �(t) � �. In particular, if G is nilpotent, then G is a p-group.

Proof. For each A 2J , de�ne AH = A \H and A�H = A� \H. Set

JH = fAH jA 2J g and J �
H = fA�H jA� 2J �g: (13.7)

Then either s� = 1, or (JH ;J
�
H) is a Kantor family of type (s�; t�) in H. Since

in the latter case S (H;JH) is a subGQ of order (s�; t�), by Theorem 11.2 we have

jJ j � 1 = jJH j � 1 � t�; (13.8)

so that t = t� and �(t) � �.

Suppose now that p divides s and that G has a normal Sylow p-subgroup. Then
�(t) = fpg. �

We are ready to obtain Frohardt’s proposition on Kantor’s conjecture. The proof
di�ers a bit from the original one, and is taken from [113].

Theorem 13.7 If either j�(s)j = 1 or G is solvable, then �(G) � �(s). In particu-
lar, if �(s) = fpg, then G is a p-group.

Proof. For every A 2J choose a Hall (or Sylow) �-subgroup SA of G such that
A � SA and SA contains a Hall �-subgroup of A�. Since G has at most jGj�0 = t�0

distinct Hall �-subgroups and jJ j = t�t�0 + 1, the pigeonhole principle shows that
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there is a Hall �-subgroup S of G with S = SA for at least t� + 1 members of J .
Fix such and S, and let

JS = fA 2J jSA = Ag: (13.9)

If we set A+ = A� \ S for all A 2JS and

J �
S = fA+jA 2JSg; (13.10)

then (JS ;J
�
S ) is a Kantor family of type (s; t0), where t0 � t�. So t0 = t�. Let S 0

be the corresponding subGQ of order (s; t�). Of course, S 0x is an EGQ with elation
group S. Consider a C 2 J which is not contained in JS ; then we use Lemma
13.4 to obtain

jSCj � jGj = s2t = s2t�t�0 < s2t�s� � jSj � jCj: (13.11)

Whence jS \ Cj � 2 for any such C. Since S 0 is a subGQ, this implies readily
that C 2JS | in other words, S 0 = S and t� = t. �

Putting Lemma 13.5 and Theorem 13.7 together, we obtain

Theorem 13.8 (PPC for EGQs) If S is a thick EGQ of order (s; t) with s � t,
then st is a prime power. �

13.4 In�nite EGQs

It is easy to generalize the concept of Kantor family to the in�nite case. The
correspondence between EGQs and Kantor families remains.

Let E be a multiplicatively written group. Let F be a set of nontrivial subgroups
of E and let � be a map from F to the set of subgroups of E mapping each A 2 F
to a subgroup A� containing A properly. Let F � = fA�jA 2 Fg. The triple
(E;F ;F �) is a Kantor family if the following axioms hold.

� A�B = E for all A;B 2 F with A 6= B.

� A� \B = f1g for all A;B 2 F with A 6= B.

� AB \ C = f1g for all A;B;C 2 F with A 6= C 6= B 6= A.

� E = A�
S

([B2FAB) for each A 2 F .

It is easy to see that one can construct an EGQ S (E;F ) from a Kantor family,
for which E acts as an elation group; everything works as in the �nite case.

As already mentioned, we want to associate a (skew) �eld to a quadrangle just
as we did for projective planes. This is what we will do in the next section for a
subclass of the class of EGQs.
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14 Translation quadrangles

If the elation group of an EGQ is abelian, we speak of a translation generalized
quadrangle (TGQ). The elation group is then usually called \translation group", the
elation point \translation point". A �rst major di�erence with EGQs is that the
elation group of a �nite TGQ is unique, see [84, 104]. (For �nite EGQs, we already
remarked that this is not necessarily the case.) For in�nite TGQs, the same is true.

Theorem 14.1 A thick TGQ (S x; T ) has a unique translation group.

Proof. Since T is abelian, it is straightforward to see that any line incident with x
is an axis of symmetry (if (F ;F �) is the associated Kantor family in T , A� T for
any A 2 F ). So for each line U on x, all symmetries with axis U are contained in
T , and T is generated by the symmetries with axis a line through x. �

Such as was the case for translation planes, the fact that the translation group
of a TGQ is abelian allows us to de�ne a kernel in much the same way as for planes.
The interesting thing here is that it immediately leads to a solution of a PPC for
�nite TGQs, but, moreover, in even characteristic it is precise, in the sense that we
know what t=s is. Also, it allows one to represent TGQs in projective spaces in an
Andr�e-Bruck-Bose type setting. We will give sketches of some proofs for the sake of
convenience, as we did in the previous section.

When the number of points of the TGQ is in�nite, we will see that although to
some extent the theory is analogous to that of (in�nite) translation planes, some
obstructions do arise.

14.1 The kernel

Each �nite TGQ S of order (s; t) with translation point (1) has a kernel K,
which is a �eld with multiplicative group isomorphic to the group of all collineations
of S �xing the point (1) and any given point not collinear with (1) linewise. We
will introduce the kernel in detail in this section.

Let (S x; G) be a TGQ with translation group G and with Hi; H
�
i ;J , etc.,

as before. The kernel K of S x is the set of all endomorphisms � of G for which
H�
i � Hi, 0 � i � t. With the usual addition and multiplication of endomorphisms

K is a ring.

Theorem 14.2 ([83], 8.5.1) The ring K is a �eld, so that H�
i = Hi; (H

�
i )� = H�i

for all i = 0; 1; : : : ; t and all � 2 K0 = Knf0g.

Proof. The only GQs with s = 2 and t > 1 are W(2) and Q(5; 2), in which
cases we can check the theorem (in these cases K = f0;1g). So from now on we may
assume that s > 2.

If each � 2 K0 is an automorphism of G, then clearly K is a �eld. So suppose
some � 2 K0 is not an automorphism. Then

hH0; H1; : : : ;Hti = G � G� = hH�
0 ; H

�
1 ; : : : ;H

�
t i; (14.1)
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with G 6= G�, implying H�
i 6= Hi for some i. Let g� = 1, G 2 H�i . If i; j; k are

mutually distinct and g0 2 Hj with fg0g 6= Hj \H�kg�1, then we have gg0 = hh0 with
h 2 Hk; h

0 2 Hl, for a uniquely de�ned l, with l 6= k; j. Hence h�h0� = g0�, implying
that h� = h0� = g0� = 1 (by (K1)). Since g0 was any one of s � 1 elements of Hj ,
jker(�) \ Hj j � s � 1 > s=2, implying Hj � ker(�). This implies Hj � ker(�) for
each j, with j 6= i, so that Gi � ker(�), where

Gi = hHj jj 2 f0; 1; : : : ; tg n figi: (14.2)

Each � 2 Hi can be written as

�1�2�3; (14.3)

with �1; �2; �3 elements of respectively Hj ; Hj0 ; Hj00 for some j; j0; j00 2 f0; 1; : : : ; tgn
fig (exercise), so we have G = Gi. This says � = 0, a contradiction. Hence we
have shown that K is a �eld and H�i = Hi for i = 0; 1; : : : ; t and � 2 K0. Since H�i
is the set theoretic union of Hi together with all those cosets of Hi disjoint from
S

fHij0 � i � tg, we also have (H�i )� = H�i . So for each line U on x, all symmetries
with axis U are contained in T , and T is generated by the symmetries with axis a
line through x. �

For each sub�eld F of K there is a vector space (G;F) whose vectors are the
elements of G, and whose scalars are the elements of F. Vector addition is the group
operation in G, and scalar multiplication is de�ned by g� = g�; g 2 G;� 2 F. It is
easy to verify that (G;F) is indeed a vector space. As Hi is a subspace of (G;F), we
have jHij � jFj. It follows that s � jKj.

Theorem 14.3 ([83], 8.5.2 | PPC for �nite TGQs) The group G is elemen-
tary abelian, so s and t must be powers of the same prime.

Proof. Let jFj = q, so q is a prime power. As Hi and H�i may be viewed as
subspaces of the vector space (G;F), we have s = jHij = qn and st = jH�i j = qn+m,
hence t = qm, n, m 2 N. �

We also mention the following more precise result for the even case.

Theorem 14.4 ([104], 3.10.1(ii) | PPC for �nite TGQs, II) For a thick
TGQ of order (s; t) with st even, we have s 2 ft; t2g.

Geometric interpretation

Let S (1) be a �nite TGQ with translation group G. We keep using the notation
of above. Since every element of K0 is an automorphism of G �xing the 4-gonal
family J elementwise, it is straightforward to see that such an element induces a
whorl of the TGQ about (1). Moreover, each such element must �x the identity
of G, so it induces an element stabilizing some �xed point y not collinear with the
translation point. Let � be any whorl about (1), and � any symmetry about a line
through (1). Then clearly �� is also a symmetry about that line. As G is generated
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by the symmetries about the lines incident with (1), it follows that G is a normal
subgroup of the group of all whorls about (1). Now consider any whorl ’ about
(1) and y. Then G’ = G, and so ’ induces an automorphism of G that �xes J
elementwise. Hence ’ 2 K.

We have proved the following theorem.

Theorem 14.5 The multiplicative group K0 induces the group of all whorls about
(1) and y. �

14.2 T(n;m; q)s and translation quadrangles

In this section, we introduce the notion of T(n;m; q).

Suppose H = PG(2n+m� 1; q) is the �nite projective (2n+m� 1)-space over
Fq. Now de�ne a set O = O(n;m; q) of subspaces as follows: O is a set of qm + 1
(n� 1)-dimensional subspaces of H, denoted PG(i)(n� 1; q), and often also by �i,
so that

(i) every three generate a PG(3n� 1; q);

(ii) for every i = 0; 1; : : : ; qm, there is a subspace PG(i)(n+m�1; q), also denoted
by �i, of H of dimension n+m� 1, which contains PG(i)(n� 1; q) and which
is disjoint from any PG(j)(n� 1; q) if j 6= i.

If O satis�es these conditions for n = m, then O is called a pseudo-oval or a
generalized oval or an [n � 1]-oval of PG(3n � 1; q). A [0]-oval of PG(2; q) is just
an oval of PG(2; q). For n 6= m, O(n;m; q) is called a pseudo-ovoid or a generalized
ovoid or an [n� 1]-ovoid or an egg of PG(2n+m� 1; q). A [0]-ovoid of PG(3; q) is
just an ovoid of PG(3; q).

The space PG(i)(n+m�1; q) is the tangent space of O(n;m; q) at PG(i)(n�1; q);
it is uniquely determined by O(n;m; q) and PG(i)(n� 1; q). Sometimes we will call
an O(n; n; q) also an \egg" or a \generalized ovoid" for the sake of convenience.

From any egg O(n;m; q) arises a GQ T(n;m; q) = T(O) which is a TGQ of
order (qn; qm) for some base-point (1). This goes as follows. Let H be embedded
in a PG(2n+m; q) = H 0.

� The Points are of three types.

(i) The points of H 0 nH.

(ii) The subspaces PG(n+m; q) of H 0 which intersect H in a PG(i)(n+m�
1; q).

(iii) A symbol (1).

� The Lines are of two types.

(a) The subspaces PG(n; q) of PG(2n+m; q) which intersect H in an element
of the egg.
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(b) The elements of the egg O(n;m; q).

� Incidence is de�ned as follows. The point (1) is incident with all the lines of
type (b) and with no other lines. A point of type (ii) is incident with the unique
line of type (b) contained in it and with all the lines of type (a) contained in
it. Finally, a point of type (i) is incident with the lines of type (a) containing
it.

Conversely, any TGQ can be seen in this way, that is, as a T(n;m; q) associated
to an O(n;m; q) in PG(2n+m� 1; q).

Theorem 14.6 ([83], 8.7.1) The geometry T(n;m; q) is a TGQ of order (qn; qm)
with translation point (1) and for which Fq is a sub�eld of the kernel. Moreover, the
translations of T(n;m; q) induce translations of the a�ne space AG(2n + m; q) =
PG(2n+m; q)nPG(2n+m�1; q). Conversely, every TGQ for which Fq is a sub�eld
of the kernel is isomorphic to a T(n;m; q).

Proof. It is routine to show that T(n;m; q) is a GQ of order (qn; qm). A trans-
lation of AG(2n+m; q) de�nes in a natural way an elation about (1) of T(n;m; q).
It follows that T(n;m; q) is an EGQ with abelian elation group G, where G is
isomorphic to the translation group of AG(2n + m; q), and hence T(n;m; q) is a
TGQ with translation group G. It also follows that Fq is a sub�eld of the kernel of
T(n;m; q): with the group of all homologies of PG(2n+m; q) having a center y not
in PG(2n+m� 1; q) and axis PG(2n+m� 1; q) corresponds in a natural way the
multiplicative group of a sub�eld of the kernel (recall Theorem 14.5).

Conversely, consider a TGQ S x with translation group G for which Fq = F is a
sub�eld of the kernel. If s = qn and t = qm, then [(G;F) : F] = 2n+m. Hence with
S x \corresponds" an a�ne space AG(2n+m; q). The cosets Hig of a �xed Hi are
the elements of a parallel class of n-dimensional subspaces of AG(2n+m; q), and the
cosets H�i g of a �xed H�i are the elements of a parallel class of (n+m)-dimensional
subspaces of AG(2n + m; q). The interpretation in PG(2n + m; q) together with
(K1) and (K2) prove the last part of the theorem. �

Corollary 14.7 For any O(n;m; q) we have n � m � 2n.

Proof. The GQ T(n;m; q) is a TGQ, and so any line incident with the trans-
lation point is regular. By Lemma 11.1, t � s, hence m � n. By the inequality of
Higman we have that t � s2, and so m � 2n. �

14.3 In�nite TGQs

If one is considering in�nite TGQs, things get harder. We still can de�ne the
kernel as in the �nite case, but it is a long-standing open problem as to whether it
is a division ring (although some special cases are known). Once one knows that the
kernel of some TGQ is a division ring, the TGQ can be represented in projective
space in the same way as in the �nite case, through generalizations of ovoids. So a
�rst step in PPC theory for in�nite TGQs should read as follows:
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Conjecture 14.8 The kernel of a TGQ is a division ring.

TGQs satisfying this conjecture are called \linear" | we have seen that in the
�nite case any TGQ is linear. Let �x be a linear TGQ with kernel K, and let
(F ;F �) be the associated Kantor family in the abelian translation group E; we
see E as a vector space over K. Then each element of F , respectively F �, can
be seen as a linear subspace of E, and each element of F , respectively F �, has
the same (possibly in�nite) dimension over K. We call these dimensions the \K-
dimensions" or \K-parameters" (and use the same terminology relative to sub�elds
of the kernel). Without any other (major) restriction, there is no hope of making a
more subtle Higman-type PPC (on the dimensions of s and t over the division ring,
taken that the TGQ is linear) than this. There are many reasons. For one, Niels
Rosehr obtained the next theorem:

Theorem 14.9 ([87]) Let K be any in�nite division ring, and let n;m 2 N0 be
arbitrary, but such that n � m. Then there exists a linear TGQ �x of order (s; t)
with kernel containing K, such that the K-dimensions of s and t are n and m,
respectively.

Rosehr obtains this theorem by constructing an egg in PG(2n + m � 1;K) by
trans�nite recursion. A corollary of Theorem 14.9 is:

Corollary 14.10 For every n;m 2 N0 with s � t and every in�nite skew �eld K,
there is a linear TGQ with K-parameters (n;m) and kernel K.

For other related trans�nite constructions of ovoid-like objects, we refer to [4].
We note that in many constructions of this type (and also for instance in [87]), the
following lemma (and variations) is used.

Lemma 14.11 Let S be any subset of a projective space PG(n;K) over an in�nite
skew �eld K, with n �nite. If jSj < jKj + 12, then for any point u outside S, there
is a hyperplane containing u and disjoint from S.

The proof is easy, and uses induction on n, combined with passing to some
appropriate quotient space. The fact that n is �nite is not really essential, but the
inequality

jSj < jKj+ 1 (14.4)

is.

Remark Note that similar trans�nite constructions for ovoids cannot work for
in�nite dimensional projective spaces P over �nite �elds (in the hope to construct
\locally �nite" TGQs | see a later section). Any �nite dimensional linear subspace
� would intersect the ovoid O in an ovoid of �, or would be contained in a tangent
space, and then one easily obtains a contradiction by considering three distinct �nite
dimensional spaces (of dimension at least 2)

P1 ,! P2 ,! P; (14.5)

2Here j � j denotes the cardinality.
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all meeting O, respectively, in an ovoid Pi \ O, and hence giving rise to a tower of
three �nite thick full TGQs. This contradicts Theorem 11.2 and the fact that any
line incident with the translation point is regular.

In fact, we will later show that it is not di�cult to construct linear TGQs of
order (@;@0) with @ and @0 di�erent cardinals. In fact, we will mention a construc-
tion of in�nite classical (orthogonal) quadrangles Q(QjNj; �) with the latter property
(for some quadratic form �), and these even have the property that every point is a
translation point.

14.4 PPC for general TGQs

Recently, the author of the present text showed that Conjecture 14.8 is indeed
true, up to possibly some exceptional examples (that hopefully are killed soon),
hence obtaining a rather complete PPC theory for general TGQs. We refer to the
upcoming paper [116] for the details.

15 Skew translation quadrangles

Recall for the sake of convenience that a point u of a GQ S is a center of
symmetry if there exists a group S of automorphisms of S which �xes u? elemen-
twise, such that for any two noncollinear points v; w 2 u?, S acts transitively on
fv; wg? n fug. This action necessarily is sharply transitive, and in the �nite case,
when the parameters are (s; t), this requirement is equivalent to demanding that
jSj = t. The elements of S are symmetries about u. (Note that any dual root on a
center of symmetry is Moufang.)

An EGQ (S x; G) is called a skew translation generalized quadrangle (STGQ)
provided the point x is a center of symmetry, the symmetries about which are con-
tained in G. As we will see, for this type of EGQ Kantor’s conjecture is true. Call
an STGQ (S x; G) central if the symmetries about the elation point are contained
in the center of G. No noncentral STGQs are known. The conjecture that there
are no such STGQs is the \Centrality conjecture", and is showed in [114] to be the
most important problem when classifying �nite STGQs.

We �rst introduce a more general concept.

15.1 F-Factors

Let S be a thick EGQ, and let (F ;F �) be the associated Kantor family. Let
F = F [F �. A nontrivial subgroup X of the elation group G is an F-factor of G if

(U \X)(V \X) = X for all U; V 2 F satisfying UV = G: (15.1)
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De�ne FX = fU \XjU 2 Fg and F �X = fU� \XjU� 2 F �g. We say that X
is \of type (�; �)" if jXj = �2� , jA \Xj = � and jA� \Xj = �� for all A 2 F (in
[47] it is shown that such integers �; � always exist).

Theorem 15.1 ([47]) Let X be an F-factor of type (�; �) in G. Then necessarily
one of the following cases occurs:

(a) � = 1, jXj = � � t and X is a subgroup of \A2FA
�;

(b) � > 1, � = t and (FX ;F
�
X) is a Kantor family in X of type (�; �).

If we are in Case (b) of Theorem 15.1, we call X a thick F-factor. An F-factor X
in G is normal if X is a normal subgroup of G. In [47] Hachenberger obtained the
following partial classi�cation of normal F-factors in Kantor families. Since Case (a)
of Theorem 15.1 is not of particular interest for now, one may suppose essentially
without loss of generality that � = t.

Theorem 15.2 ([47]) Let G be a group of order s2t admitting a Kantor family
(F ;F �) of type (s; t), with s; t > 1, and having a normal F-factor X of type (�; �)
with � = t. Then one of the following cases occurs:

(a) G is a group of prime power order;

(b) � > 1, jGj has exactly two prime divisors, and X is a Sylow subgroup of G for
one of these primes.

Theorem 15.2 led Hachenberger to prove a well-known conjecture of S. E. Payne,
which amounted to showing that G is a p-group if X is of type (1; t) | see [47] |
in other words, the parameters of any thick STGQ are powers of a prime. In [47]
Hachenberger conjectured that Case (b) of Theorem 15.2 cannot occur. In [110], we
completed his classi�cation by proving that this conjecture is indeed true.

In the next section, we focus on the independent proof of X. Chen of Payne’s
conjecture.

15.2 Parameters of STGQs

We consider �nite EGQs (S x; G) with Kantor family (F ;F �) and parameters
(s; t).

Lemma 15.3 Suppose S = \A2FA
�, and that jSj = r. If sp > 1, then kp0r � sp

where k = t=r.

Proof. We know that jGj = s2t and jGj = s2k. If P is a Sylow p-group of G
then its size is s2

pkp. If B is an element of F , clearly B \ S = f1g, so

B = BS=S �= B=(B \ S) �= B: (15.2)
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So if R is a Sylow p-subgroup of B, then its size is sp. Take A 2 F , and now let P
be a Sylow p-subgroup of G that contains a Sylow p-subgroup PA� of A�. For each
B 2 F n fAg let PB be a subgroup of P that is conjugate to a Sylow p-subgroup of
B. By Lemma 13.3(ii) the members of fPA�g [ fPBjB 2 F n fAgg have pairwise
trivial intersection. Then

jPA� j+
X

B2FnfAg

jP�B j � jP j; (15.3)

so that jPA� j = spkp; jPBj = sp, and jP j = s2
ptp lead us to

spkp + t(sp � 1) � s2
pkp: (15.4)

Whence rkpkp0(sp � 1) � spkp(sp � 1). If sp > 1, then rkp0 � sp. �

Theorem 15.4 Let G be a group of order s2t admitting a Kantor family (F ;F �)
of type (s; t). If S = \A2FA

� is a normal subgroup of G and jSj �
p
s, then G is a

p-group.

Proof. Suppose that G is not a p-group; then we already know that s has at
least two prime divisors. Let p and q be such primes. Then from Lemma 15.3 we
have rkp0 � sp and rkq0 � sq. One of the equalities holds only if r = sp and kp0 = 1,
or r = sq and kq0 = 1. So one of the equalities is strict. It follows that

r2kp0kq0 < spsq � s: (15.5)

Note that r2kp0kq0 = trkp;q0 , so that tr < s. But then r �
p
s would contradict

Higman’s inequality. �

Corollary 15.5 (PPC for �nite STGQs) If (S x; G) is an STGQ, then G is a
p-group. �

15.3 Singer groups for quadrangles

We met (point) Singer groups of projective and a�ne planes as automorphism
groups acting sharply transitively on the points. In x10.9, we introduced the concept
of Singer groups for general incidence geometries. There is a deep theory available
for GQs, especially developed in [27, 28, 30, 31, 29]. Erroneously, the theory seems
to be closer to classi�cation than that of projective planes, certainly in the case of
PPC type problems. In [27], the authors showed that when a �nite GQ admits an
abelian Singer group, it must be isomorphic to some @x(S ), where S is a TGQ of
order s, s a power of 2, and x the (necessarily regular) translation point. The Singer
group is uniquely determined as the translation group of S . The next theorem
immediately follows:

Theorem 15.6 A �nite cyclic thick generalized quadrangle does not exist.
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Proof. Since a cyclic group is abelian, the quadrangle should be isomorphic
to some @x(S ), with S x a TGQ. Since the Singer group should be induced by the
translation group of S x, it should be elementary abelian, implying that it is a group
of prime order, contradiction (the order of the translation group should be a cube). �

So when the Singer group is abelian, we know that the order is (s � 1; s + 1)
for s some power of 2. (Note that even when one assumes a cyclic Singer group
acting on a �nite projective plane, it is not known yet whether the order of the
plane is a prime power.) In general, such a result is not known for �nite GQs, but as
especially the recent preprint [29] shows, the classical Payne derived GQ @x(W(q)),
where x is any point of W(q), even contains \many" nonisomorphic (nonabelian)
Singer groups. Also, in [29], many classes of nonclassical Payne derived GQs are
displayed with Singer groups.

Remark With regards to PPC theory, one has to be careful, since in [30] an
example is given of a GQ of order (5; 3) admitting a point-Singer group (which is
not a p-group | its order is 96). It could be an exceptional example.

The reader notices that when a thick GQ S of order s with regular point x
admits an automorphism group K which �xes x and acts sharply transitively on the
points opposite x, then K induces a (point) Singer group on @x(S ). (The converse
is not necessarily true, as [29] shows.) Since S is the GQ-analogue (with respect
to @x(S )) of the projective completion of an a�ne plane (noting that projective
completion in the GQ sense need not be unique), this situation of such a Singer
group occurring for @x(S ) is the GQ analogue of the planes of type (b) which we
encountered earlier. The role of the translation planes in the classi�cation of planes
of type (b) is now played by elation quadrangles. We have the following correspon-
dence:

a�ne plane
projective completion�������������! projective plane

(with Singer group) (type (b) plane)

# #

Payne derivation @x(S )
Payne integration�����������! S

(with induced Singer group) (type (b) quadrangle)

(15.6)

The reader is referred to the survey [30] and the preprint [29] for the details.

15.4 Appendix: Translation and elation polygons

One possible de�nition for \elation generalized n-gon" could be an n-gon � con-
taining a point x and an automorphism group H that �xes each line incident with x
and acts sharply transitively on �n(x). For n � 5, almost no interesting results are
known, and no nonclassical polygons have been constructed, see x4.9 of [132]. One
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could then proceed to de�ne \translation polygons" by demanding that the group
be abelian. It is easy to see that such structures only can exist for n 2 f3; 4g. (The
fact that the group is abelian forces the polygon to have ordinary quadrangles, see
[132, 4.9.7].)

16 Buildings with mixed parameters

The phenomenon that certain natural parameters (such as the number of points
in some subspace of prescribed type and the number of subspaces of that same type
through a point) associated to buildings occur as di�erent cardinals seems to be
isolated if one of the parameters is assumed to be �nite. Still, it is not so rare once
these parameters are both taken to be in�nite. In this section, we give some remarks
and examples.

By no means we aim to be complete | rather, the examples should serve as a
starting point for the interested reader.

16.1 Locally �nite polygons

Consider a thick generalized n-gon � with s + 1 points on each line and t + 1
lines through each point, where st is allowed to be in�nite.

Theorem 16.1 ([132], 1.5.3) If n is odd, then s = t. (Meaning that they are equal
if �nite, and otherwise have the same cardinality.)

Proof. Let �0 be an ordinary (n+ 1)-gon in �. Let x be a point of �0, and let L be
the line in �0 opposite x. Then by projection, the lines incident with x (in �) are in
bijective correspondence with the points of L. �

If n is even, though, we have seen that there are �nite examples where s 6= t,
a most striking example being n = 8 in which case the theorem of W. Feit and G.
Higman [36] implies that if st is �nite, 2st is a perfect square and so s is never equal
to t. If both s and t are �nite, they are bounded by each other; to be more speci�c,
s � t2 � s4 for n = 4 and n = 8 and s � t3 � s9 for n = 6 (see [132, 1.7.2]). (For
other even values of n, � cannot exist by the Feit-Higman result.)

An old and notorious question, �rst posed by Jacques Tits in the 1960’s, now
asks about the existence of locally �nite generalized polygons. In other words, do
there exist, up to duality, (thick) generalized polygons with a �nite number of points
incident with a line, and an in�nite number of lines through a point? (It can be
found as Problem 5 in the \Ten Most Famous Open Problems" chapter of Van
Maldeghem’s book [132], see also x10 of [100], etc.) Note that in Van Maldeghem’s
book [132], such generalized polygons are called semi-�nite.

There is only a very short list of results on Tits’s question. All of them comprise
the case n = 4. P. J. Cameron [10] showed in 1981 that if n = 4 and s = 2, then t is
�nite. In [6] A. E. Brouwer shows the same thing for n = 4 and s = 3 and the proof
is purely combinatorial (unlike an unnpublished but earlier proof of Kantor, see



308 Koen Thas

[132]). More recently, G. Cherlin used Model Theory (in [13]) to handle the gener-
alized 4-gons with �ve points on a line. For other values of n and s, nothing is known.

We will provide some more details about Cherlin’s approach in the next section.
The surprising thing is that although we start from a purely combinatorial problem,
automorphism groups naturally come into play.

16.2 Indiscernibles

Let � be a generalized polygon. An ordered set L of lines is indiscernible if
for any two increasing sequences M1;M2; : : : ;Mn and M 01;M

0
2; : : : ;M

0
n (of the same

length n) of lines of L , there is an automorphism of � mapping Mi onto M 0i for
each i. It is indiscernible over D, if D is a �nite set of points and lines �xed by the
automorphisms just described.

By combining the Compactness Theorem and Ramsey’s Theorem [54] (in a the-
ory which has a model in which a given de�nable set is in�nite), one can prove the
following.

Theorem 16.2 (Cherlin [13]) Suppose there is an in�nite locally �nite general-
ized n-gon with �nite lines. Then there is an in�nite locally �nite generalized n-gon
� containing an indiscernible sequence L of parallel lines, of any speci�ed order
type. The sequence may be taken to be indiscernible over the set D of all points
incident with one �xed line L of �.

So as soon as locally �nite polygons exist, there must exist examples with in-
teresting automorphism groups (in [13] this is only stated for quadrangles, but the
observation is independent of the gonality). In [117], the author uses this observa-
tion as a starting point of an isomorphism theory for locally �nite polygons.

Let n = 4, and � be as in Theorem 16.2. Choose �xed labels f1; 2; : : : ; kg for the
points incident with L. By projection, each point on a line of L has a well-de�ned
label. Let M;M 0 be distinct lines of L . Then �(M;M 0) 2 Sk is de�ned (on the
labels) by projecting each point of M to M 0.

Proposition 16.3 ([13]) (i) �(M;M 0) = ��1(M 0;M).

(ii) � is independent of the choice of M < M 0 (this follows from the fact that
for any (M;M 0) and (M 00;M 000) with M < M 0 and M 00 < M 000, there is an
automorphism in A mapping (M;M 0) onto (M 00;M 000)).

(iii) �(M;M 0) cannot have a �xed letter (here indiscernibility is used).

We proceed with an observation from Cherlin [13]. Let q < r, and consider lines

Mq < Mr < cMr < cMq: (16.1)

Fix a label i, and suppose M�q is the line which connects the point on Mq with

label i with a (unique) point of cMq, say with label j. De�ne M�r similarly. Then
�(M�q ;M

�
r ) involves the transposition (ij) [13].

Cherlin uses this observation to obtain short proofs (by way of contradiction) of
the next
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Theorem 16.4 ([13]) Let � be a thick GQ of order (k�1; t) with k 2 f4; 5g. Then
t <1.

As soon as k � 6, things get messy.

If A and B are di�erent subsets of L , then it can be shown (see [117]) that

hfLg [Ai 6= hfLg [Bi: (16.2)

Let U � L have cardinality at least 4, and let U; V;W;X be distinct lines in
U . By considering the chain of full subGQs

hL;Ui � hL;U; V i � hL;U; V;W i � hfLg [U i; (16.3)

it follows by Theorem 11.2 that the latter must be locally �nite, while being gener-
ated by a �nite number of points if we choose U to be �nite. For future reference,
we call such GQs (GPs) \Burnside quadrangles" (\Burnside polygons").

Remark The Burnside problem, posed by William Burnside in 1902 and one of
the oldest and most inuential questions in Group Theory, asks whether a �nitely
generated group in which every element has �nite order must necessarily be a �nite
group. Such groups indeed exist, and are usually called Burnside groups. Since
the quadrangles we encountered are geometric analogues of such groups, the term
Burnside polygon seems in place. For more on Burnside’s problem, we refer to [139].
Note that since Burnside groups do exist, a straightforward adaptation of Theorem
16.2 holds true for this class of groups.

16.3 Quadrangles of orthogonal type

Let I be an in�nite uncountable set, and consider the vector space QjIj consisting
of all jIj-tuples (qi)i2I , qi 2 Q, with only a �nite number of nonzero entries. We
assume w.l.o.g. that I contains the symbols 0 and 1. De�ne the following quadratic
form:

� : X2
0 +X2

1 �
X

i2Inf0;1g

X2
i : (16.4)

Then � has Witt index 2, and the corresponding classical orthogonal quadrangle
Q(jIj;Q; �) (cf. [132, Chapter 2]) is a Moufang generalized quadrangle with jQj
points per line and jIj lines on a point. It is fully embedded in the projective space
P(QjIj) (cf. [132, Chapter 2]).

Remark (i) Note that orthogonal quadrangles are (linear) TGQs for any point
(cf. [132, 3.4.8] and [132, 4.9.8]). So the above construction can be easily
translated in terms of eggs.

(ii) Clearly, this example is a prototype of a class of quadrangles with a wealth of
members having parameters with similar arithmetic properties.
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It should not be too hard to inductively construct eggs which produce TGQs
with similar arithmetic properties as the orthogonal quadrangles described above
(note that Lemma 14.11 can not be used in its present form).

The example presented in this section was communicated to me by Hendrik Van
Maldeghem, who is gratefully acknowledged.

16.4 Projective spaces PG(jNj; q)

Consider the following chain of projective spaces over Fq (where each of the
inclusions is a natural full embedding):

PG(�1; q) � PG(0; q) � PG(1; q) � : : : � PG(i; q) � : : : (16.5)

with i 2 N. The union of these spaces de�nes a projective space PG(jNj; q) which
is of countably in�nite dimension over Fq. It has a �nite number of subspaces of
given �nite dimension r in each �nite ‘-dimensional subspace (over Fq), ‘ � r, but a
countably in�nite number of subspaces of a given dimension ‘ � r + 1 (and in�nite
co-dimension) through any r-space. (So, for instance, the point-line geometry of
PG(jNj; q) is a locally �nite geometry with parameters (q; jNj).))

Again, many similar projective spaces can be constructed yielding parameters of
di�erent cardinal type. For instance, more generally, one can consider an Fq-vector
space

F!q =
M

i2!
Fq (16.6)

for a speci�ed cardinal number !, and construct P(F!q ), etc.; Fq can also be replaced
by any skew �eld in this construction.

Theorem 16.5 For any two cardinal numbers @ and @0, there exists a projective
space for which the point-line geometry has parameters (@;@0).

Proof. The only thing we have to show is that there are �elds of any given
cardinality. First note that for an integral domain R, we have the natural injections

R ,! Q(R) ,! R�R; (16.7)

where Q(R) is the �eld of fractions of R. So

jRj = jQ(R)j: (16.8)

Now let ! be any in�nite cardinal. Consider any commutative ring C, and a set
fXigi of indeterminates of size !. Then

jC[fXigi]j = max(!; jCj): (16.9)

The theorem now follows, by putting, e.g., C := Q. �
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Note that it also follows that for any cardinal !, there exist buildings of rank 1
with ! points (by considering, e.g., the natural action of PSL2(Q(Q[fXigi2!]))).

For polar spaces, similar considerations can be made.

16.5 Other buildings of higher rank

As was highlighted throughout this paper, GPs are the corner stones of spherical
buildings of higher rank, and the most essential problems of the type considered in
this section can be reduced to parameter problems in the rank 2 case. We leave
details to the reader.

17 Thin buildings and the �eld F1

Till now, we have only considered and encountered parameter problems for thick
buildings. Still, as we will see, there is also a rich theory available for thin buildings.
Rather than thinking about the number of lines through a point or similar arith-
metic properties, more essential here is the structural theory below these questions
(think again of developing the theory of TGQs just to h�ave information about the
parameters). In this section, we want to consider (certain) thin buildings as limits
of buildings de�ned over, say, a �nite �eld, where the number of �eld elements tends
to 1, instead of de�ning them as \just" buildings with, e.g., thin lines.

In a paper which was published in 1957 [121], Tits made a seminal and provoca-
tive remark which alluded to the fact that through a certain analogy between the
groups GLn(q) (or PGLn(q), q any prime power) and the symmetric groups Sn,
one should interpret Sn as a Chevalley group \over the �eld of characteristic one":

lim
q!1

PGLn(q) = Sn: (17.1)

Only much later serious considerations were made about Tits’s point of view,
and nowadays a deep theory is being developed on the philosophy over F1.

In fact, underlying this idea is the fact that thin (spherical) buildings are well-
de�ned objects, and with a natural de�nition of automorphism group, the latter
would become Weyl groups in thick buildings of the same type de�ned over \real
�elds" if one considers the appropriate building. So although for instance a thin
building of type An is present in any thick building PG(n; q) over any �nite �eld Fq,
we cannot de�ne it as an incidence geometry over any �eld, since the cardinality of
the latter should be one. Still, the automorphism group of the underlying geometry
(which is just 2X if X is the point set of the thin geometry) would precisely be the
Weyl group of the associated thick building | namely the symmetric group on n+1
letters.

The geometry of algebraic curves underlying the structure of global �elds of
positive characteristic lies at the base of the solution of several deep and fundamental
questions in Number Theory. As we will see below, several formulas of combinatorial
nature (such as the number of subspaces of a �nite projective space), still keep a
meaningful value if evaluated at q = 1. Such results seem to suggest the existence of
a mathematical object which is a nontrivial limit of �nite �elds Fq with q ! 1. The
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goal would be to de�ne an analogue, for number �elds, of the geometry underlying
the arithmetic theory of function �elds, cf. [19]. In [95], C. Soul�e associated a zeta
function to any su�ciently regular counting-type function N(q) by considering the
limit

�N (s) := lim
q!1

Z(q; q�s)(q � 1)N(1); s 2 R: (17.2)

Here Z(q; q�s) is the evaluation at T = q�s of the Hasse-Weil zeta function

Z(q; T ) = exp(
X

r�1

N(qr)
T r

r
): (17.3)

For the consistency of (17.2), one requires that N(q) is de�ned over all real num-
bers q � 1 and not just only for prime powers. For many examples of algebraic
varieties (such as projective spaces), it is known that N(q) extends unambiguously
to the real positive numbers, and often the associated zeta function is easy to com-
pute [19]. As mentioned in [19], another basic example which is easy to handle is
provided by a Chevalley group diagram. In [21] it was shown that they are varieties
over F1 in the sense of Soul�e [95]. We will consider this class in more detail below.

Another motivation for the introduction of F1-geometry stems from the search
for a proof of the Riemann hypothesis. In the early 90s, Deninger gave criteria for a
category of motives that would provide a geometric framework for translating Weil’s
proof of the Riemann hypothesis for global �elds of positive characteristic to number
�elds. (One wants to see Spec(Z) as a curve over F1, so as to be able to de�ne

Spec(Z)�Spec(F1) Spec(Z); (17.4)

Weil’s proof of the Riemann hypothesis for a curve over a �nite �eld makes essential
use of such a product C �Fq C of two copies of a curve.) In particular, the Riemann
zeta function �(s) should have a cohomological interpretation, where an H0, an H1

and an H2 -term are involved. Manin proposed in [69] to interpret the H0-term
as the zeta function of the \absolute point" Spec(F1) and the H2-term as the zeta
function of the \absolute Tate motive" or the \a�ne line over F1".

In this �nal section, we mention some aspects of (Algebraic and Incidence) ge-
ometry over F1, and we especially look for certain aspects of prime power/parameter
conjectures. Needless to say, we will be sketchy on some parts, and only very few
aspects of this emerging theory are mentioned; the reader is referred to the papers
cited below (and the references therein) for details and more.

17.1 Bad approach

There is a well-known recipe which relates to any generalized n-gon a thin gener-
alized 2n-gon in a canonical way. It can be described for general rank 2 geometries,
as follows. Let � = (P;B; I) be a rank 2 geometry. Let F be its set of ags:

F := ffx; Lgj(x; L) 2 Ig: (17.5)
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The double of � is the geometry 2� := (P [B;F ;2). The following proposition
is obvious.

Proposition 17.1 (i) For any rank 2 geometry �, 2� is a thin rank 2 geometry.

(ii) We have a natural injection Aut(�) ,! Aut(2�). �

Although we obtain, in a functorial way, a thin generalized 2n-gon from a thick
generalized n-gon �, it is not the natural way to associate to � a polygon \over F1".
The reason follows directly from the desired properties such an F1-polygon should
have, cf. the next section. (It is not a universal object in the sense explained below,
since it is a function of the parameters of the initial object, and as such it is not
a well-de�ned limit object. Also, the injection of (ii) should rather be a projection
for obvious reasons.) For similar reasons, degenerate polygons (such as the plane
without order displayed in the �gure) also are bad candidates.

As we will see, the natural way to do it will be through the functor

A : B! A; (17.6)

from the category of (spherical) buildings to the category of apartments of such
buildings.

In the next section, we take a closer look at projective spaces.

17.2 The projective space PG(n;F1), and PGLn+1(F1)

So for instance, projective geometry in this context would be something like

lim
q!1

PG(n; q) =: PG(n; 1): (17.7)

The object PG(n; 1) should have several properties:

| all lines should have precisely 2 di�erent points;

| it should be a \universal object", in the sense that it should be a subgeometry
of any thick projective space (de�ned over any �eld, if at all de�ned over one)
of dimension at least n;

| it should, of course, still carry the axiomatic structure of a projective space;

| it should give a geometric meaning to (certain) arithmetic formulas which
express (certain) combinatorial properties of the �nite thick geometries, eval-
uated at q = 1.

Let n; q 2 N, and de�ne [n]q = 1 + q + � � � + qn�1. (For q a prime power,
[n]q = jPG(n; q)j.) Put [0]q! = 1, and de�ne

[n]q! := [1]q[2]q : : : [n]q: (17.8)
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Figure 2: A degenerate projective plane.

Let R be a ring, and let x; y; q be \variables" for which yx = qxy. Then there

are polynomials

�

n
k

�

q

in q with integer coe�cients, such that

(x+ y)n =
n
X

k=0

�

n
k

�

q

xkyn�k: (17.9)

Then
�

n
k

�

q

=
[n]q!

[k]q![n� k]q!
; (17.10)

and if q is a prime power, this is the number of (k � 1)-dimensional subspaces of
PG(n� 1; q).

It is clear that a projective plane de�ned over F1 should be an ordinary triangle
(since that is the only thin plane containing an anti-ag); we should only be admit-
ting thin lines, and then we are already done (in this case!). So it is nothing else
than a chamber in the building of any thick projective plane. Adopting this point of
view, it is easily seen that, more generally, projective n-spaces over F1 are just sets
X of cardinality n+ 1 endowed with the geometry of 2X : any subset (of cardinality
0 � r + 1 � n + 1) is a subspace (of dimension r). It is important to note that
these spaces still satisfy the Veblen-Young axioms, and that they are the only such
incidence geometries with thin lines.

Proposition 17.2 Let n 2 N [ f�1g. The projective space PG(n;F1) is the com-
plete graph on n + 1 vertices endowed with the induced geometry of subsets, and
PGLn+1(F1) �= Sn+1. �

Note that over F1,

P�Ln+1(F1) �= PGLn+1(F1) �= PSLn+1(F1): (17.11)

The number of k-dimensional linear subspaces of PG(n;F1), with k � n 2 N,
equals
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�

n+ 1
k + 1

�

1

=

�

n+ 1
k + 1

�

: (17.12)

In this setting, a�ne spaces (or vector spaces) over F1, say of dimension n 2 N,
now are naturally de�ned as follows:

Proposition 17.3 Let n 2 N. The a�ne space AG(n;F1) � Fn1 is a single distin-
guished point 0, together with n edges consisting only of that point, endowed with
the induced geometry of subsets of edges. We have that AGLn+1(F1) �= Sn. �

So a�ne n-spaces over F1 can be regarded as data

(0; (Sn; X)); (17.13)

where 0 is a distinguished point, and (Sn; X) represents the natural action of the
symmetric group Sn on a set X of n letters; X corresponds to the set of \directions"
determined by the space. (In some texts, a�ne spaces over F1 are identi�ed with
complete graphs, but in that case, we do not see any structural di�erence between
a�ne and projective spaces; in fact, an a�ne space cannot be constructed anymore
in the usual sense by deleting a hyperplane from a projective space | only the point
0 remains.)

Projective completion boils down to adding a second point on each edge, and
then naturally extending the subgeometry structure. In this point of view, transla-
tion groups of AG(n;F1) are trivial.

17.3 Algebraic varieties over F1

We �rst describe Soul�e’s approach to algebraic varieties.

17.3.1 Soul�e’s approach Let R be a certain category of rings and E the category
of sets. An a�ne variety over F1 is de�ned to be a pair X = (X;AX), where X is
a subfunctor of the functor

R ! E (17.14)

represented by an a�ne variety XZ over Z and AX is a C-algebra with an evaluation
map AX ! C for each C-valued point of X. For any object R of R, X(R) is �nite
and the inclusion X ,! XZ admits a universal property for morphisms from X to
functors represented by varieties over Z.

Let us denote by A the category of a�ne varieties over F1 and by Spec(R) the
a�ne variety over F1 represented by an object R of R. A general variety over F1 is
de�ned to be a pair X = (X;AX), where X is a contravariant functor

A ! E (17.15)
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that is a subfunctor of the one represented by a variety XZ over Z and AX is a
C-algebra with a map AX ! AB for each element of X(B). For any object R of
R, X(Spec(R)) is �nite and the injection X ,! XZ has the same universal prop-
erty as in the a�ne case. The variety XZ corresponds to the base change of X over Z.

17.3.2 Varieties according to Connes-Consani In the above de�nition of variety,
a problem arises when one is already considering �nite projective spaces; it seems
that in this approach the de�nition of PG(d; 1) of above is not compatible with that
given by the previous subsection. In [95], the cardinality of PG(d;F1n) is shown to
be N(2n+ 1), where N(x) = [d+ 1]x. But for n = 1, we then obtain the obstruction

jPG(d; 1)j = N(3) =
3d+1 � 1

2
: (17.16)

In Connes and Consani [19], a slightly more re�ned de�nition of variety is intro-
duced so as to make both approaches compatible again. Their de�nition of algebraic
variety is described by the following data:

(a) a covariant functor from the category of �nite abelian groups to the category
of graded sets

X =
a

k�0

X(k) : Fab ! S ; (17.17)

(b) an a�ne variety XC over C;

(c) a natural transformation eX connecting X to the functor

Fab ! S : D ! Hom(Spec(C[D]); XC): (17.18)

A triple (X;XC; eX) is a gadget over F1. Such a gadget is called graded if

X =
a

k�0

X(k) : Fab ! S (17.19)

takes values in the category of Z�0-graded sets. It is �nite when the set X(D) is
�nite for all D 2 Fab.

An a�ne variety in the sense of Connes-Consani is a �nite, graded gadget sat-
isfying some extra technical condition, and varieties over F1n can then be naturally
de�ned. The authors show in loc. cit. that this viewpoint is in accordance with the
synthetic approach of above.

17.4 Algebraic groups over F1 and F1-buildings

Note again that since F1 expresses the idea of an Absolute Arithmetic, it is clear
that the buildings of a certain prescribed type T over F1 should be present in any
thick building of the same type.
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Motivated by the properties which a building over F1 of type T should have,
we are ready to de�ne such geometries (and their groups) in general. Let B =
(C1;C2; : : : ;Cj ; I) be a thick building of rank j and type T (given by one of the
Coxeter diagrams below), and let A be its set of thin chamber subgeometries. Sup-
pose (B;N) is a saturated e�ective BN-pair associated to B; its Weyl group W is a
Coxeter group de�ned by one of the Coxeter graphs below.

Proposition 17.4 A building of rank j and type T de�ned over F1 is isomorphic to
any element of A . Its automorphism group is isomorphic to the Coxeter group W . �

An: : : : (n � 1)

Cn: : : : (n � 2)

Dn: : : : (n � 4)

En: : : : (n = 6; 7; 8)

F4:

I2(m):

m

(m � 5)

17.4.1 Generalized polygons In particular, generalized n-gons over F1 are or-
dinary n-gons, and their automorphism groups are dihedral groups Dn. It follows
that the corner stones of the (spherical) buildings of rank at least 3 over F1 are the
ordinary n-gons with n = 3; 4; 6; 8 (since these gonalities are the only ones which do
occur in the corresponding thick buildings). Still, it is important to note that in the
rank 2 examples, all positive integer values for n occur (except n = 0; 1; 2).

17.4.2 Quadrics We give one �nal explicit example | it concerns quadrics.

Let n 2 N0. A quadric of projective dimension 2n or 2n + 1 over F1 is a set Q
of 2(n + 1) points arranged in pairs x0; y0; x1; y1; : : : ; xn; yn, and its subspaces are
the subsets not containing any couple (xi; yi). The Witt index of the so de�ned
quadrics is n. The quadrics in dimension 2n have the further property that the
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Figure 3: Generalized 1-gon over F1.

maximal singular subspaces (n-spaces consisting of n+ 1 points) are partitioned in
two types, namely those containing an even number of points of fa0; a1; : : : ; ang and
those containing an odd number. Automorphisms are permutations of the set Q
(which preserve the given pairing in the 2n-dimensional case).

17.4.3 Trees as F1-geometries If we allow the value 1 = n in the de�nition of
generalized n-gon, we obtain a point-line geometry � without closed paths, such that
any two points or lines are contained in a path without end points. So � becomes a
tree (allowing more than 2 points per line) without end points. Its apartments are
paths without end points, and the Weyl group is an in�nite dihedral group (generated
by the reections about two di�erent adjacent vertices of such an apartment). So in
this setting, a generalized 1-gon over F1 is a tree of valency 2 without end points.
(Note that in the nondiscrete setting | that is, generalized @-gons for any cardinal
number @ > jNj | similar apartments arise with more points.)

Consider, for instance, G = SL2(Fq((t�1))). Then G has a BN-pair (B;N),
where

B = f
�

a b
c d

�

2 SL2(Fq[[t�1]])jc � 0 mod t�1g; (17.20)

and N is the subgroup of G consisting of elements with only 0 on the diagonal or
only 0 on the antidiagonal. Its Weyl group is an in�nite dihedral group generated
by

s1 =

�

0 �1
1 0

�

and s2 =

�

0 �t
1=t 0

�

: (17.21)

The corresponding building (de�ned in the same way as before) is a generalized
1-gon with q+1 points per line and q+1 lines per point. Its apartments are exactly
the trees we introduced earlier in this section.
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17.5 Zeta functions over F1

In [69], Manin proposes to develop Algebraic Geometry over F1, and predicts
that zeta functions of varieties over F1 should have a simple form. For the projective
space PG(d; 1), d 2 N0, it should look something like

�PG(d;1)(s) =
1

Qd
i=0(s� i)

: (17.22)

Recall that for an irreducible, smooth and projective algebraic curve X over a
prime �eld Fp, the counting function is of the form

#X(Fq) = N(q) = q �
X

�

�r + 1; q = pr (17.23)

where the �’s are the complex roots of the characteristic polynomial of the Frobenius
endomorphism acting on the �etale cohomology H1(X 
Fp;Q‘) of the curve (‘ 6= p).

In [95], C. Soul�e, inspired by Manin’s paper [69], associated a zeta function to
any su�ciently regular counting-type function N(q) by considering the limit

�N (s) := lim
q!1

Z(q; q�s)(q � 1)N(1); s 2 R: (17.24)

Here Z(q; q�s) is the evaluation at T = q�s of the Hasse-Weil zeta function

Z(q; T ) = exp(
X

r�1

N(qr)
T r

r
): (17.25)

One computes that if N(X) = a0 + a1X + � � �+ anX
n, then

�XjF1
(s) =

1
Qn
i=0(s� i)ai

; (17.26)

which is in accordance with the aforementioned example for projective F1-spaces.

Remark In [18, 19], the authors show that there is a unique \counting distribu-
tion" N(q) whose associated zeta function (�a la Soul�e) is the complete Riemann
zeta function. This distribution has all the desired properties, like being positive for
q > 1 and having the value

N(1) = �1 (17.27)

as required by the Euler characteristic �(C ) of the curve C . It is given by the
following equation

N(q) = q � d

dq

0

@

X

�2Z
order(�)

q�+1

�+ 1

1

A+ 1; (17.28)

where Z is the set of nontrivial zeros of the Riemann zeta function and the derivative
is taken in the sense of distributions. The above formula also provides a strong
indication that the hypothetical curve C = Spec(Z) is related to the interpretation
of the explicit formulae as a trace formula using the noncommutative geometric
framework of the ad�ele class space (cf. below).
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17.6 The hyperring of ad�ele classes

In a recent paper [20], the authors discovered unexpected connections between
hyperrings and (axiomatic) projective geometry, foreseen with certain group actions.
Denoting the pro�nite completion of Z by bZ (and noting that it is isomorphic to the
product

Q

p Zp of all p-adic integer rings), the integral ad�ele ring is de�ned as

AZ = R� bZ; (17.29)

endowed with a suitable topology. Let K be a global �eld (that is, a �nite extension
of Q, or the function �eld of an algebraic curve over Fq | the latter is a �nite �eld
extension of the �eld of rational functions Fq(X)). The ad�ele ring of K is given by
the expression

AK =
Y

�

0
K� ; (17.30)

which is the restricted product of local �elds K� , labeled by the places of K.
If K is a number �eld, the ad�ele ring of K can be de�ned to be the tensor product

AK = K
Z AZ: (17.31)

The ad�ele class space is important especially for two reasons:

� it gives a spectral realization of zeros of L-functions;

� it gives a trace formula interpretation of the explicit formulas.

We need a few more de�nitions.

17.6.1 Hyperrings and hyper�elds Let H be a set, and \+" be a \hyperopera-
tion" on H, namely a map

+ : H �H ! (2H)�; (17.32)

where (2H)� = 2H n f;g. For U; V � H, denote f[(u+ v)ju 2 U; v 2 V g by U + V .
Then (H;+) is an abelian hypergroup provided the following properties are satis�ed:

� x+ y = y + x for all x; y 2 H;

� (x+ y) + z = x+ (y + z) for all x; y; z 2 H;

� there is an element 0 2 H such that x+ 0 = 0 + x for all x 2 H;

� for all x 2 H there is a unique y 2 H (=: �x) such that 0 2 x+ y;

� x 2 y + z =) z 2 x� y.

Proposition 17.5 ([19]) Let (G; �) be an abelian group, and let K � Aut(G). Then
the following operation de�nes a hypergroup structure on H = fgK jg 2 Gg:

gK1 � gK2 := (gK1 � gK2 )=K: (17.33)
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A hyperring (R;+; �) is a nonempty set R endowed with a hyperaddition + and
the usual multiplication � such that:

� (R;+) is an abelian hypergroup with neutral element 0;

� (R; �) is a monoid with multiplicative identity 1;

� for all u; v; w 2 R we have that u�(v+w) = u�v+u�w and (v+w)�u = v�u+w�u;

� for all u 2 R we have that u � 0 = 0 = 0 � u;

� 0 6= 1.

A hyperring (R;+; �) is a hyper�eld if (R n f0g; �) is a group.

17.6.2 The Krasner hyper�eld The Krasner hyper�eld K is the hyper�eld
(f0; 1g;+; �) with additive neutral element 0, usual multiplication with identity 1,
and satisfying the hyperrule

1 + 1 = f0; 1g: (17.34)

In the category of hyperrings, K can be seen as the natural extension of the
commutative pointed monoid F1, that is, (K; �) = F1. As remarked in [21], the
Krasner hyper�eld encodes the arithmetic of zero and nonzero numbers, just as
F2 does for even and odd numbers. From this viewpoint, it is of no surprise that
projective geometry will come into play.

17.7 Hyper�eld extensions of the Krasner hyper�eld K

Let R be a commutative ring, and let G be a subgroup of its multiplicative
group. The following operations de�ne a hyperring on the set R=G of G-orbits in
R under multiplication.

� Hyperaddition. x+ y := (xG+ yG)=G for x; y 2 R=G.

� Multiplication. xG � yG := xyG for x; y 2 R=G.

Proposition 17.6 ([20]) Let K be a �eld with at least three elements. Then the
hyperring K=K� is isomorphic to the Krasner hyper�eld. If, in general, R is a
commutative ring and G � K� is a proper subgroup of the group of units of R,
then the hyperring R=G de�ned as above contains K as a subhyper�eld if and only
if f0g [G is a sub�eld of R.

Remark Consider a global �eld K. Its ad�ele class space HK = AK=K� is the
quotient of a commutative ring AK by G = K�, and f0g [ G = K, so it is a
hyperring extension of K.



322 Koen Thas

A K-vector space is a hypergroup E provided with a compatible action of K. As
0 2 K acts by retraction (to f0g � E) and 1 2 K acts as the identity on E, the
K-vector space structure is completely determined by the hypergroup structure. It
follows that a hypergroup E is a K-vector space if and only if

x+ x = f0; xg for x 6= 0: (17.35)

Let E be a K-vector space, and de�ne P := E n f0g. For x; y 6= x 2P, de�ne
the line L(x; y) as

x+ y [ fx; yg: (17.36)

It can be easily shown | see [86] | that (P; fL(x; y)jx; y 6= x 2 Pg) is a projective
space. Conversely, if (P;L ) is the point-line geometry of a projective space with
at least 4 points per line, then a hyperaddition on E := P [ f0g can be de�ned as
follows:

x+ y = xy n fx; yg for x 6= y; and x+ x = f0; xg: (17.37)

Now let H be a hyper�eld extension of K, and let (P;L ) be the point-line
geometry of the associated projective space; then A. Connes and C. Consani [20]
show that H� induces a so-called \two-sided incidence group" (and conversely, start-
ing from such a group G, there is a unique hyper�eld extension H of K such that
H = G [ f0g). By the Veblen-Young result, this connection is reected by the next
theorem.

Proposition 17.7 ([20]) Let H � K be a �nite commutative hyper�eld extension
of K. Then one of the following cases occurs:

(i) H = K[G] for a �nite abelian group G.

(ii) There exists a �nite �eld extension Fq � Fqm such that H = Fqm=F�q .

(iii) There exists a �nite nonDesarguesian projective plane admitting a sharply
point-transitive automorphism group G, and G is the abelian incidence group
associated to H.

Sketch of Proof. Let H � K be a �nite commutative hyper�eld extension of
K; we know that to this extension there is associated a thick projective n-space. If
its dimension is at least 3, the space is Desarguesian by the Veblen-Young result,
and we are in (ii) since the extension is commutative (see [20] for details). If the
dimension is 2, we are in (ii) or (iii). If the dimension is 1 we are in (i). �

In case (i), there is only one line (otherwise we have to be in the other cases), so
for all x; y; x0; y0 2 H n f0g with x 6= y and x0 6= y0, we must have

L(x; y) = (x+ y) [ fx; yg = (x0 + y0) [ fx0; y0g = L(x0 + y0) = H n f0g: (17.38)

In other words, hyperaddition is completely determined:
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8

<

:

x+ 0 = x for x 2 H
x+ x = f0; xg for x 2 H�

x+ y = H n f0; x; yg for x 6= y 2 H�
(17.39)

Remark Note that there exist in�nite hyper�eld extensions H � K for which
H� �= Z and not coming from Desarguesian projective spaces in the above sense, see
M. Hall [48].
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Graphs, colours, weights and hereditary properties

Andrew Thomason

Abstract

Graphs whose edges are coloured with two colours are naturally related to
induced subgraphs of ordinary graphs. This leads to an extremal theory for
coloured graphs, in which the edges are given weights. We describe the theory,
explaining its connections with the study of hereditary graph properties and
noting recent progress.

1 Coloured graphs

Every graph H corresponds in a natural way to a complete graph on the same
set V (H) of vertices, whose edges are coloured red and blue: an edge of the complete
graph is coloured red if it is present in H and is coloured blue if it is absent from
H. In the normal way of things there is nothing to be gained by thinking about the
2-coloured complete graph instead of the original graph, but there are circumstances
in which the 2-coloured representation has merit. This is particularly true if H is
an induced subgraph of some other graph, because the presence of the blue edges in
the coloured complete graph emphasises that the absence of an edge from H is just
as important as the presence of an edge.

Various questions about induced subgraphs have been studied quite intensively
over the last couple of decades, and it turns out that some of these can be reduced
to extremal questions about coloured graphs. This is what motivates the work that
is surveyed in this article. The relationship with induced subgraphs is the reason
why we use only two colours on the edges. It will be clear once we give some of the
definitions that we could just as well consider more colours, and we shall point out
later some applications where more than two colours are appropriate. But some of
the more significant results hold only in the case of two colours, and so by and large
we shall stick with just two.

Having said that, it will be helpful in the discussion to introduce a third colour,
green. This colour is used in a different way to the two main colours, though: roughly
speaking, it is used on edges where we are not bothered whether the colour is red
or blue. Once again, this usage is motivated by the applications. In order to make
what we mean precise, it is convenient to extend our perspective to multigraphs.

We begin, then, by defining 2-coloured multigraphs and their extremal functions.
We then discuss ‘types’, which describe the extremal structures. At that point,
in §4, we describe the applications which have motivated the earlier definitions.
In §5 and §6 we highlight some theoretical and some practical aspects of the general
theory, whereas in §7 we give more detail about how the theory applies in a few
specific examples. We finish with two conjectures and some remarks on proofs.

Much of the extremal theory of coloured graphs was worked out by Marchant
and the author in [39]. However, that paper is necessarily dense and detailed, and
our aim here is to give a readable introduction to the area.
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2 2-coloured multigraphs

Definition 2.1 A 2-coloured multigraph H is a multigraph whose edge set is the
disjoint union of two simple graphs Hr and Hb on the same vertex set V (H). The
underlying simple graph of H is denoted by Hu. The order of H, denoted |H|, is
the number of vertices, namely |V (H)|.

Thus two vertices are adjacent in Hu if and only if they are joined in at least
one of Hr and Hb. We think of the edges of Hr as being coloured red and the edges
of Hb as being coloured blue.

The coloured graphs described at the start of this article were 2-coloured multi-
graphs in which Hu is a complete graph and the edge sets of Hr and Hb are disjoint.
Often, but not always, it will be the case for the coloured multigraphs we con-
sider that the underlying graph is complete. When we refer to a complete coloured
multigraph this is what we mean, that the underlying graph is complete.

However, it will not always be the case that Hr and Hb are disjoint, and indeed
it is important that they are sometimes allowed to overlap. One way to think of
such a 2-coloured multigraph H is that it is a colouring of the underlying simple
graph Hu with three colours red, blue and green: red edges of Hu are those in Hr

but not Hb, blue edges are those in Hb but not Hr, and green edges are those in
both Hr and Hb.

Definition 2.2 A 2-coloured multigraph G contains H, written H ⊂ G, if there is
an injection f : V (H) → V (G) such that f(x)f(y) ∈ E(Gr) whenever xy ∈ E(Hr)
and f(x)f(y) ∈ E(Gb) whenever xy ∈ E(Hb).

This definition is the natural definition of a subgraph in the world of 2-coloured
multigraphs. But let us see what it means if we think of G and H as red-blue-green
coloured simple graphs. From this point of view, G contains H if H is a subgraph
of G in such a way that the colouring is respected, except that green edges of G act
as a kind of “wildcard”, because a green edge of G can represent an edge of H of
any colour, red, blue or green (or no edge at all, of course). In particular, if G is a
complete graph with every edge green then G contains every H with |H| ≤ |G|.

2.1 Extremal multigraphs in former times

The natural extremal question for 2-coloured multigraphs is, given a 2-coloured
multigraph H and an integer n, what is the largest size of a 2-coloured multigraph
G with |G| = n and H 6⊂ G?

But this statement makes no sense unless we decide what is meant by the size
of G. It is how we do this that lies at the heart of all that is to follow. Before giving
our definition, we comment briefly on some alternatives that have appeared in the
literature.

The most straightforward way to define the size of G is as the total number of
edges, namely e(Gr) + e(Gb). If the colours on the edges are ignored, this equates
to the definition of Brown, Erdős and Simonovits, who in a series of papers [19,
20, 21] (surveyed by Brown and Simonovits in [22]) studied the maximum number
of edges in a multigraph G that contains no fixed multigraph H and whose edge
multiplicity is bounded by some number k. Clearly a bound on the edge multiplicity
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is needed, since otherwise G could have any number of edges between just two
vertices without containing H; of course, in the situation of 2-coloured multigraphs,
the edge multiplicity is at most two by definition.

But the work in [19, 20, 21] takes no account of colours, and for our purposes
the colours are essential. It is sometimes still enough just to count the total number
of edges; for example, Füredi and Simonovits [33], in the course of their solution of
the extremal problem for the Fano plane, made use of the maximum total number
of edges in a 4-coloured multigraph containing no properly 3-coloured K4. An al-
ternative approach to recognizing the colours was taken by Diwan and Mubayi [23],
who obtained interesting results when defining the size to be the minimum of e(Gr)
and e(Gb).

A well-known work in the extremal theory of multigraphs is that of Füredi and
Kundgen [32], who allowed integral weights to be placed on the edges of a multigraph,
the size being defined as the total weight. Extending work of Bondy and Tuza [17],
they determined the maximum size of a multigraph if the total weight of edges
within any set of k vertices is bounded. But once again this work takes no account
of colours.

2.2 Weights

Our approach here, motivated as ever by the applications, is to use just two edge
weights, one for each colour, and to take the size of a 2-coloured multigraph to be
the total weight.

Definition 2.3 Let 0 ≤ p ≤ 1 and let p + q = 1. The p-weight of a 2-coloured
multigraph G is

wp(G) = pe(Gr) + (1 − p)e(Gb) = pe(Gr) + qe(Gb)

where e(Gr) and e(Gb) are the numbers of edges in Gr and Gb.

It is important to see how this definition relates to the idea of a 2-coloured
multigraph as a simple graph coloured red, blue and green. In this case, red edges
have weight p, blue edges have weight q, and green edges, which represent a red edge
parallel to a blue edge, have weight 1.

2.3 The two extremal functions

We can now define the natural extremal function for 2-coloured multigraphs. In
general, rather than forbid just one graph H, we can forbid any member of a class H
of graphs. (From now on we shall often refer in this way to a 2-coloured multigraph
as a graph when there is no danger of confusion. If we really are referring to a graph
in the standard sense, we might use the term “ordinary” graph for emphasis.)

Definition 2.4 Given a class H of 2-coloured multigraphs, we define

exp(H, n) = max { wp(G) : |G| = n, H 6⊂ G for all H ∈ H } .

If H = {H} we may write exp(H, n) instead of exp({H}, n).
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Figure 1: The 2-coloured multigraph C∗
6 ; dashed edges are red and solid edges blue.

This extremal function is relevant to some of the applications we have in mind
but it turns out that, for the more interesting and important applications, we need
instead to take the maximum taken over all complete graphs G.

Definition 2.5 Given a class H of 2-coloured multigraphs, we define

kexp(H, n) = max { wp(G) : |G| = n, G complete, H 6⊂ G for all H ∈ H } .

The letter ‘k’ in ‘kex’ is to emphasise that the maximum is taken over complete
graphs. Clearly kexp(H, n) ≤ exp(H, n), and the inequality can be strict. One
example is H = C7, described in §7.6, but here is another that is simpler to analyse.

Example 2.6 Let C∗
6 be the 2-coloured multigraph of order 6 in which the red

graph is a 6-cycle with a diagonal and the blue graph is the complement of the red,
as shown in Figure 1.

Evidently C∗
6 is not contained in a complete 5-partite graph coloured green, and

so exp(C∗
6 , n) ≥ 4

5

(

n
2

)

+ O(n) holds for all p. But this example fails to give a lower
bound for kexp(C∗

6 , n). One colouring of the complete graph of order n that does give
a lower bound for exp(C∗

6 , n) is that obtained by splitting the vertices into two classes
of (close to) n/2 vertices each, colouring the edges within the classes red and those
between the classes green. Since the blue subgraph of C∗

6 is not bipartite (it contains
a triangle), this colouring gives the lower bound kexp(C∗

6 , n) ≥ (1 − q/2)
(

n
2

)

+ O(n).
Another colouring is to split the vertices into three classes, the edges in the first
being blue and in the other two being red, with edges between the two red classes
being blue and the edges between the blue and red classes being green. It is not too
difficult to check that this 2-coloured multigraph does not contain C∗

6 . Its weight
depends on the relative sizes of the classes, and again it is easily checked that the
weight is greatest when the classes are in proportions (close to) q : p : p. Thus we
obtain the lower bound kexp(C∗

6 , n) ≥ (1 − p/(1 + 2p))
(

n
2

)

+ O(n).
The first lower bound for kexp(C∗

6 , n) is better when p > 1/2 and the second
is better when p < 1/2. It can be shown (see §7.4.2) that these bounds give the
correct value of kexp(C∗

6 , n) (at least, to within the term O(n)). Since both bounds
are smaller than 4

5

(

n
2

)

+ O(n) for 1/3 < p < 3/5, we have kexp(C∗
6 , n) < exp(C∗

6 , n)
for p in this range (for large n).

As suggested by this example, we will find life simpler if we take limiting weights
as n → ∞, in the following way.
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Definition 2.7 Given a class H of 2-coloured multigraphs, we define

µp(H) = lim
n→∞

exp(H, n)

(

n

2

)−1

and κp(H) = lim
n→∞

kexp(H, n)

(

n

2

)−1

.

The limits are easily shown to exist. From now on, our interest will be in finding
κp(H) and µp(H) for classes H of 2-coloured multigraphs.

2.4 General properties of the extremal functions

Before proceeding, we make some general remarks about these extremal functions
for 2-coloured multigraphs.

First, note that they contain ordinary graph extremal functions. If G is a col-
lection of ordinary graphs then the classical extremal function for G is ex(G, n) =
max{e(F ) : |F | = n, G 6⊂ F for all G ∈ G}. Let H be the graphs in G with all
their edges coloured red, so H is a class of 2-coloured multigraphs. Then evidently
ex1(H, n) = kex1(H, n) = ex(G, n), since extremal graphs for G correspond, when
coloured red, to extremal graphs for H (and we can add blue edges without creating
forbidden subgraphs or changing the weight). Now the result of Erdős and Stone [31]
and the work of Erdős and Simonovits [25, 26, 28, 52] show that, while the limit

limn→∞ ex(G, n)
(

n
2

)−1
can be given explicitly, the exact value of ex(G, n) is often

hard to come by. For general classes H the calculation of kexp(H, n) and exp(H, n)
can get intricate even for very small graphs, as shown in §7.1. These observations
strengthen our resolve to concentrate on the limits κp(H) and µp(H).

In fact, if H contains both a monochromatic red graph and a monochromatic
blue graph, then Ramsey’s theorem implies that kexp(H, n) doesn’t exist when n is
large. From now on we exclude this pathological case.

Suppose a class H contains only monochromatic graphs of the same colour, say
red. Then κ0(H) = µ0(H) = 1, because an all-blue complete graph is extremal,
and κ1(H) ≤ µ1(H) < 1 by the previous observations. The classes of most interest,
though, do not contain monochromatic graphs, and for such classes it is evident
that κ0(H) = µ0(H) = κ1(H) = µ1(H) = 1. From the definition we have κp(H) ≤
µp(H) ≤ 1 for all p.

How do the functions κp and µp vary with p? The following result was noted by
Alon and Stav [5], by Balogh and Martin [10] and in [39].

Theorem 2.8 For every class H, both κp(H) and µp(H) are continuous and convex
as functions of p for p ∈ [0, 1].

3 Types

The colourings given in Example 2.6 as lower bounds for kexp(C∗
6 ) have a simple

structure: the graph is partitioned into a small number of classes of equivalent
vertices. Colourings of this kind are important and we discuss them now.

Definition 3.1 A type is a complete graph, whose vertices are coloured red and
blue, and whose edges are coloured red, blue and green. A weak type is the same,
except that the colour white may be used both on vertices and on edges.
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The idea of a type is that it is a shorthand for describing a partition and colouring
of a large complete graph. A weak type similarly describes a partition of a graph
that need not be complete.

Definition 3.2 Let τ be a type. The basic property Q(τ) consists of all complete
2-coloured graphs G whose vertex set has a partition {Vv : v ∈ V (τ)} indexed by
the vertices of τ , such that the edges within Vv are all the same colour as v and, if
uv is red or blue, the edges between Vu and Vv are all the same colour as uv: if uv
is green then the edges between Vu and Vv may be coloured in any way (and not
necessarily the same colour).

If τ is a weak type then Q(τ) is defined similarly, except that if v or uv is white
then there are no edges within Vv or between Vu and Vv. Thus the graphs in Q(τ)
are complete except for where edges are forbidden by the white colour.

The 2-coloured multigraphs in Example 2.6, giving lower bounds on κp(C∗
6 ), can

now be described as lying in the classes Q(ρ) and Q(σ), where ρ is the type consisting
of two red vertices joined by a green edge, and σ has one blue and two red vertices,
with two green edges and one blue edge (that between the red vertices).

Definition 3.3 The 2-coloured graph H is said to be τ -colourable if it is contained
in some member of Q(τ).

If H is not τ -colourable then graphs in Q(τ) can be used to give lower bounds
on kexp(H, n) (or on exp(H, n) if τ is a weak type). The obvious question then is:
which graphs in Q(τ) have greatest p-weight? Clearly, whenever uv is a green edge
of τ we should make all the edges between Vu and Vv green, so the question remains,
if |G| = n, how should the relative sizes of the partition classes {Vv : v ∈ V (τ)} be
chosen so as to maximize the p-weight?

Suppose that |Vv| = yvn, where 0 ≤ yv ≤ 1 and
∑

v∈V (τ) yv = 1. Then

wp(G) = p
∑

v is red

(

yvn

2

)

+ q
∑

v is blue

(

yvn

2

)

+ p
∑

uv is red

yuyvn2 + q
∑

uv is blue

yuyvn2

Definition 3.4 The weight wp(v) of a vertex v ∈ V (τ) is defined to be p if v is red
and q if v is blue; likewise the weight wp(uv) of an edge uv is defined to be 0, p,
q or 1 according as uv is white, red, blue or green. Let Wp(τ) be the symmetric
|τ | × |τ | matrix whose uu entry is wp(u) and whose uv entry is wp(uv). The p-value
of τ is

λp(τ) = max
z∈∆

ztWp(τ)z = max
z∈∆

∑

u∈V (τ)

z2
uwp(u) + 2

∑

uv∈E(τ)

zuzvwp(uv) ,

where ∆ = ∆(|τ |) is the simplex {z ∈ [0, 1]|τ | : z1 + . . . + z|τ | = 1}.

It can be seen that, in the previous calculation, wp(G) = ytWp(τ)y
(

n
2

)

+ O(n),
where y = (yv)v∈V (τ). Hence the maximum p-weight of a graph of order n in Q(τ)
is λp(τ)

(

n
2

)

+ O(n). Therefore, if no graph in the class H is τ -colourable, we have
κp(H) ≥ λp(τ) if τ is a type, or µp(H) ≥ λp(τ) if τ is a weak type.
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3.1 Types and extremal functions

The above observations are straightforward enough, but do they have anything
to do with the actual value of the extremal functions κp(H) and µp(H) in general?
They do. The next theorem is a natural one in extremal graph theory, and it states
that the extremal functions κp(H) and µp(H) can be approximated arbitrarily closely
by the p-weights of graphs in Q(τ), for suitably chosen types (or weak types) τ .

Theorem 3.5 Let H be a class of 2-coloured multigraphs. Then

κp(H) = sup {λp(τ) : τ is a type, no graph in H is τ -colourable} and

µp(H) = sup {λp(τ) : τ is a weak type, no graph in H is τ -colourable} .

The theorem shows that the extremal functions can be estimated by considering
2-coloured graphs G of a very simple kind, namely those in Q(τ) for some type or
weak type τ . We remind the reader, though, that the exact extremal graphs need
not be of this precise form: see 7.1 for some examples.

Theorem 3.5 can be found in Balogh and Martin [10, Theorem 11]; an equivalent
form was given by Bollobás and the author [16, Theorem 1.1], and it is implicit in
Alon and Stav [6, Lemma 3.4]. These authors all used Szemerédi’s regularity lemma.
But in [39] a direct proof was given, in terms of “extensions”, an idea analogous to
that of the “augmentations” of Brown, Erdős and Simonovits [19, 20, 21]. We
describe the notion briefly.

Let (Gn)∞
n=1 be a sequence of 2-coloured complete multigraphs with |Gn| ≥ n.

We say that (Gn) contains the type τ if every member of Q(τ) is contained in
some Gn. We also define the degree of a vertex v ∈ V (Gn) to be p times the number
of red edges incident with v plus q times the number of blue edges, and we write
δp(Gn) for the minimum of the vertex degrees.

Lemma 3.6 Let δ = lim infn→∞(δp(Gn)/|Gn|). Let τ be a type contained in (Gn).
Let x = (x1, . . . , x|τ |) ∈ ∆. Then (Gn) contains a type σ, having a vertex v such
that σ − v = τ and

∑

u∈V (τ)

xuwp(uv) ≥ δ .

The type σ, consisting of τ plus an extra vertex, is called an extension of τ .
To prove the first claim in Theorem 3.5, take a sequence (Gn) of extremal graphs
for κp(H). It can be arranged that δ = κp(H). If we have a type τ contained in (Gn)
but with λp(τ) < δ (there is always such a type with |τ | = 1), we find an extension σ
with the property stated in Lemma 3.6. It is then easily shown that λp(σ) > λp(τ).
Repeated applications lead to a proof of the claim. Lemma 3.6 holds too if types
are replaced by weak types, and so the second claim of Theorem 3.5 follows in the
same way.

As mentioned earlier, Theorem 3.5 is of a somewhat generic nature in extremal
graph theory. But the following theorem, though superficially similar, is quite dif-
ferent in kind. It states that, for κ, the supremum is attained. It is the fundamental
theorem in regard to 2-coloured multigraphs.
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Theorem 3.7 ([39, Theorem 3.23]) Let H be a class of 2-coloured multigraphs.
Then

κp(H) = max {λp(τ) : τ is a type, no graph in H is τ -colourable} .

An analogous theorem in the extremal theory of multigraphs was proved for
multigraphs of maximum multiplicity 2 by Brown, Erdős and Simonovits [21, Theo-
rem 5], and the proof of Theorem 3.7, which uses extensions, is based on that proof.
It is not known whether the multigraph theorem holds for multiplicity greater than 2.
Likewise it is not known whether the supremum for µ in Theorem 3.5 is attained.

Of course, what we want to be able to do is to calculate κp(H) for a given class H.
In the light of Theorem 3.7, this comes down to finding a suitable type τ that yields
the exact value. Unfortunately the proof of Theorem 3.7 seems to give no clue as to
how large such a τ must be, and there is no known algorithm for finding κp(H) in
general.

Nevertheless it is possible to calculate κp(H) in some cases. Sometimes this can
be done directly, but more often Theorem 3.7 is the start of the argument. Later
we shall discuss how this is done, and give some examples, including one (in §7.8.2)
where Lemma 3.6 is used. But first we describe some of the applications that
motivated the study of 2-coloured multigraphs.

4 Applications

Here we describe two applications for the function κp(H), namely the probability
of hereditary graph properties, and the edit distance of hereditary graph properties.
We also give an application of µp(H) to Ramsey-type games.

The applications to be discussed were investigated before a theory of 2-coloured
multigraphs was developed. However, that earlier work is not superseded by the
present material, but is rather complemented by it. Previous authors in effect showed
that the questions they were interested in can be converted into questions about what
we are calling here 2-coloured multigraphs. Hence by studying these multigraphs
we can feed back insight into the original applications.

4.1 Hereditary graph properties

A graph property P is a class of graphs closed under isomorphism; it is hereditary
if it is closed under the taking of induced subgraphs. It is customary to say that
graphs in the class P “have the property P”.

In the last two decades there has been a significant amount of study of the size of
hereditary graph properties, by which is meant the number of graphs on n vertices
having the property. More precisely, let Pn be the set of labelled graphs on vertex
set {1, 2, . . . , n} that are in P; then the size is |Pn|.

Bollobás [12] wrote an excellent and wide-ranging survey of hereditary properties
of graphs and other structures for the last but one British Combinatorial Conference.
We refer the reader to that survey for fuller information and more detail, but we
recap just a little in order to make clear the application of 2-coloured multigraphs
to hereditary graph properties.
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Given a class F of ordinary graphs, the class Forb(F), consisting of graphs
having no induced subgraph isomorphic to a member of F , is a hereditary property.
Conversely every hereditary property P can be written as P = Forb(F) for some F
(for example, take F to be the graphs not in P).

There is a simple connection between hereditary graph properties and 2-coloured
multigraphs.

Definition 4.1 Given a graph F , let cc(F ) be the complete 2-coloured multigraph
with vertex set V (F ), in which the edges of F are coloured red and the edges of the
complement of F are coloured blue (so there are no green edges). Moreover, given
a graph property P, let H(P) = {cc(F ) : F /∈ P}.

Thus the graph F corresponds to the 2-coloured complete graph cc(F ) in the
way described at the outset of this article. It is useful to have a notation for the
graphs corresponding to members of Q(τ) (defined in Definition 3.2).

Definition 4.2 Let τ be a type. Then P(τ) is the class of (ordinary, simple, un-
coloured) graphs G for which V (G) has a partition {Vv : v ∈ V (τ)}, such that G[Vu]
is complete or empty according as u is red or blue, and the bipartite graph with
vertex classes Vu and Vv is complete or empty according as uv is red or blue (if uv
is green then there is no condition on the bipartite graph).

So the set of 2-coloured graphs in Q(τ) that are simple, i.e., have no green edges,
is precisely {cc(F ) : F ∈ P(τ)}.

Remark Notice that P(τ) is defined for types and not for weak types. The notion
of a type naturally captures the notion of presence or absence of edges in ordinary
graphs. Hence, in the light of Theorem 3.5, it is κp rather than µp that is more
relevant to the discussion of hereditary properties.

4.1.1 The number of graphs with a given property (The material in this sub-
section, apart from the 2-coloured aspect, is covered more fully in [12, Section 5].)
Prömel and Steger [43] were the first to study the size of certain hereditary proper-
ties. Let F be a single graph and let P = Forb({F}). Let t be the maximum integer
for which the following statement is true: there is some integer s, 0 ≤ s ≤ t, such
that the vertices of F cannot be partitioned into t sets, s of which span complete
subgraphs and the other t − s of which span independent sets. It follows that there

are at least 2(1−1/t+o(1))(n2) graphs in Pn because, if we partition {1, . . . , n} into t
parts as near equal as possible, filling in s of them with edges and leaving the re-
maining t − s empty, then any way of adding edges between the classes will give rise
to a graph in P. Prömel and Steger [43] showed that this bound is tight, namely,

|Pn| = 2(1−1/t+o(1))(n2).

We can state this nicely in terms of the simplest kind of types.

Definition 4.3 The type τ(a, b) has a red vertices and b blue vertices, all edges
being green.
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The set of 2(1−1/t+o(1))(n2) graphs just described is therefore P(τ(s, t − s))n.
Moreover, t can be defined as the maximum order of a type τ(a, b) such that
P(τ(a, b)) ⊂ P . Equivalently, it is the maximum order of a type τ(a, b) such that
cc(F ) is not τ(a, b)-colourable. (In [12, Section 5], P(τ(a, b)) is denoted C(a + b, a).)

Alekseev [2] and Bollobás and the author [15] extended this result to general

hereditary properties: for any hereditary property P, we have |Pn| = 2(1−1/t+o(1))(n2),
where

t = max{a + b : P(τ(a, b)) ⊂ P}
= max{a + b : H is not τ(a, b)-colourable for any H ∈ H(P)} .

4.1.2 The probability of a hereditary property Let G(n, p) be a random graph
on n vertices in which edges are chosen independently at random with probability p.

The previous statement that |Pn| = 2(1−1/t+o(1))(n2) is equivalent to the statement

Pr[G(n, 1/2) ∈ P ] = 2(−1/t+o(1))(n2). It is natural to ask what happens if p 6= 1/2.
This was investigated by Bollobás and the author [16], who defined the function

cn,p(P) by Pr[G(n, p) ∈ P] = 2−cn,p(P)(n2). The limit cp(P) = limn→∞ cn,p(P) exists
(see Alekseev [1]) and so

Pr[G(n, p) ∈ P] = 2(−cp(P)+o(1))(n2) .

The original motivation in [16] for studying cp(P) was to find the P-chromatic
number of a random graph. The P-chromatic number χP(G) of a graph G is the
smallest number of subsets in a partition of V (G) such that the subgraph induced
by each subset lies in P. Thus if P is the property of having no edges then χP(G)
is the ordinary chromatic number. Scheinerman [49] conjectured that χP(G(n, p))
is concentrated, and this was proved in [16], where it was shown that χP(G(n, p)) =
(cp(P) + o(1))n/2 log2 n. The case p = 1/2 was settled earlier in [14].

How can we determine the value of cp(P)? From the previous remarks we know
that if p = 1/2 then cp(P) = 1/t, where t = max{a + b : P(τ(a, b)) ⊂ P}. However,
as shown in [14], the types τ(a, b) with all green edges do not suffice to capture cp(P)
if p 6= 1/2, and this was the reason for introducing the more general types with red
and blue edges also. It was then shown in [16] that

cp(P) = inf{ Hp(τ) : P(τ) ⊂ P}
where Hp(τ) = min

x∈∆

[

−
∑

v∈V (τ)

x2
v log2 wp(v) − 2

∑

uv∈E(τ)

xuxv log2 wp(uv)
]

,

and an example was put forward to show that the infimum cannot be replaced by a
minimum. (The notation Hp(τ) was used for the function because of its relation to
entropy; it should not be confused with the notation Hr and Hb used elsewhere in
this article for the red and blue subgraphs of a 2-coloured multigraph H.)

The definition of Hp(τ) appears close to that of λp(τ) in Definition 3.4, and
indeed a little manipulation (see Marchant and the author [40]) gives

Hp(τ) = −(log2 p + log2 q)
[

1 − λp′(τ)
]

where p′ =
log q

log p + log q
.
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The equation for cp(P) can therefore be rewritten

cp(P) = −(log2 p + log2 q)
[

1 − sup{λp′(τ) : P(τ) ⊂ P}
]

.

Recall now from §4.1.1 that, in the language of 2-coloured multigraphs, we have
{τ : P(τ) ⊂ P} = {τ : no graph in H(P) is τ(a, b)-colourable}. Theorem 3.5 shows
that sup{λp′(τ) : P(τ) ⊂ P} = κp′(H(P)). But Theorem 3.7 shows that this
supremum is attained: that is, it is a maximum. Here is a summary in the language
of probability.

Theorem 4.4 Let P be a hereditary property and let 0 ≤ p ≤ 1. Then

cp(P) = −(log2 p + log2 q)
[

1 − κp′(H(P))
]

where p′ =
log q

log p + log q
.

Moreover, κp′(H(P)) = max {λp′(τ) : P(τ) ⊂ P} .

The import of Theorem 3.7 is that the equation cp(P) = inf{Hp(τ) : P(τ) ⊂ P},
written above, could in fact have been written cp(P) = min{Hp(τ) : P(τ) ⊂ P}.
But, as mentioned before, an example was given in [16] to show that the infimum is
not always a minimum. How is this contradiction to be resolved? Well, the example
in [16] was when P is the property of being a union of complete graphs and p < 1/2.
It was proved in [16] that if P(τ) ⊂ P and if τ has at least two vertices then cp(P) <
Hp(τ), which is correct. But it does not imply cp(P) 6= min{Hp(τ) : P(τ) ⊂ P}.
As pointed out by Uri Stav (personal communication), it was overlooked that there
is a τ with a single vertex in the set {τ : P(τ) ⊂ P}, namely the type τ(0, 1)
with a single blue vertex. Then P(τ(0, 1)) consists of graphs with no edges at all,
an apparently very small sub-property of P. However it is readily checked that
cp(P(τ(0, 1))) = cp(P) = − log2 q.

The relationship between hereditary properties and 2-coloured complete graphs
makes it possible to compute actual probabilities that were unknown before: for
example,

if p ≥ 1/5 then Pr[G(n, p) contains no induced K3,3] = p

[

log q

log p+2 log q

]

(n2)+o(n2)
.

Because of Theorem 4.4 this calculation comes down to computing κp(H) for some H,
and ways to do this are described later in this article.

4.2 Edit distance

The notion of edit distance referred to here is that between graphs. The distance
from a graph G to a property P is

Dist(G, P) = min { |E(J)△E(G)| : J ∈ P, V (J) = V (G) }

and the edit distance from the class of all n-vertex graphs to P is

Dist(n, P) = max { Dist(G, P) : |G| = n }.

As usual, we normalize and define

ed(P) = lim
n→∞

Dist(n, P)

(

n

2

)−1

.
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It is not obvious, a priori, that this limit exists, but it does, as we shall see.
The study of edit distance in this form was initiated in recent times by Axen-

ovich, Kézdy and Martin [8] because of applications in biology, and by Alon and
Stav [5] because of applications in computer science, especially property testing.
(We remark that, in computer science, the term “edit distance” is sometimes used
for the Levenshtein distance between two sequences, whereas the distance here is
closer to the Hamming distance, insofar as the Levenshtein distance allows insertions
and deletions [35].)

It is difficult to say much about properties in general and so we restrict our
attention to hereditary properties. The fundamental fact about the edit distance
of a hereditary property P is that the furthest graph from P is a random graph.
To be more precise, there is some probability p∗ = p∗(P) for which Dist(n, P) =
Dist(G(n, p∗), P) + o(n2) holds almost surely. This striking result was proved by
Alon and Stav [5], building on ideas of Alon and Shapira [4]. But the proof gives no
hint as to the value of p∗.

It is also shown in [5] that the limit of the expectation

ep(P) = lim
n→∞

EDist(G(n, p), P)

(

n

2

)−1

exists. Hence ed(P), defined above, exists and ed(P) = ep∗(P). Now the definition
of edit distance means that ep(P) ≤ ed(P), and it follows that ep∗(P) = maxp ep(P).
In other words, p∗ is the value of p that maximizes ep(P), and the maximum value
is the quantity we are seeking, namely ed(P).

Where do 2-coloured multigraphs fit into all this? Consider H(P) as defined in
Definition 4.1. Let G be a complete 2-coloured multigraph of order n with H 6⊂ G
for all H ∈ H(P). Given a random graph G(n, p) on the same vertex set as G,
edit it to a graph J by deleting those edges in G(n, p) which are blue (not green)
in G, and by adding those edges not already in G(n, p) which are red (not green)
in G. Thus cc(J) ⊂ G (it is here that the completeness of G is crucial, and that
green edges of G contain both red and blue edges), and so cc(J) /∈ H(P). It follows
that J ∈ P , and thus Dist(n, P) ≤ |E(J)△E(G(n, p))|. Now the expected value of
|E(J)△E(G(n, p))| is p times the number of blue (not green) edges plus q times the
number of red (not green) edges, which equals

(

n
2

)

−wp(G). This holds for any G; by
choosing G with the maximum possible weight kexp(H(P), n) we find, in the limit,
that ep(P) ≤ 1 − κp(H(P)).

The inequality is in fact tight. This is implicit in [5] and explicit in Balogh and
Martin [10, Theorem 11] (though their terminology differs from that here).

Theorem 4.5 Let P be a hereditary property. Then ep(P) = 1 − κp(H(P)) holds
for all p. In particular, ed(P) = maxp ep(P) = 1 − minp κp(H(P)).

Proof For those readers familiar with Szemerédi’s Regularity Lemma we outline
the reason why the theorem holds, though such readers will also spot that there
are significant technical issues to be overcome before the outline becomes a proof.
Because Dist(G(n, p), P) is concentrated near its mean, as shown in [5], there is
with high probability some J ∈ P with |E(J)△E(G(n, p))| = ep(P)

(

n
2

)

+ o(n2).
Given a partition of J into k parts, the density of G(n, p) between each pair of
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sets in this partition will be close to p. Now construct the 2-coloured multigraph
G whose vertices are the k parts and whose edges are blue/red/green according as
the pairs have density in J close to zero/close to one/neither of these. Then with
high probability |E(J)△E(G(n, p))| ≥ (

(

k
2

)

− wp(G))(n
k )2 + o(n2). But G cannot

contain a member of H(P), that is, cc(F ) where F /∈ P , for otherwise, by the
properties of the Regularity Lemma, we could find a copy of F induced in J . Thus
wp(G) ≤ kexp(H(P), k) = κp(H(P))

(

k
2

)

+ o(k2). Consequently

ep(P)

(

n

2

)

+ o(n2) ≥ (1 − κp(H(P)))

(

k

2

)

(n

k

)2
+ o(n2)

which is what we need. �

Both Axenovich, Kézdy and Martin [8] and Alon and Stav [6] have evaluated
ed(P) for several hereditary properties. In general, to evaluate ed(P) we must find
the minimum value of κp(H(P)) as a function of p. Fortunately, this does not mean
we need to evaluate κp(H(P)) for all p. Theorem 2.8 shows that a local minimum
is the global minimum, so it suffices to guess p∗ and to evaluate κp(H(P)) for p
near to p∗. Balogh and Martin [10] made use of this to show that ed(P) = 3 − 2

√
2

if P = Forb({K3,3}), the property of containing no induced K3,3 (an outstanding
unresolved question in [6]).

4.3 Ramsey games

Richer’s colour-label game [44] developed originally out of the Canonical Ramsey
Theorem of Erdős and Rado [27], and it gave rise to the first study of the extremal
properties of 2-coloured multigraphs. The connection between graph games and
Ramsey theory in general is a beautiful one, well set out by Beck [11]. Richer’s
game in its final form moved away from the standard pattern of Ramsey games, but
the title of this subsection is retained for historical reasons.

The game is played by two players on the edges of a complete graph Kn. Before
the game, some 2-coloured complete graph H is fixed, which has no green edges
(this is equivalent to specifying an ordinary graph F with H = cc(F )). The players
play alternately, the first player generating a red-blue colouring of the edges of Kn

and the second player marking some of the edges. When it is the first player’s turn
he chooses some pre-agreed number of edges and colours them. The second player,
in turn, selects any edge (coloured or not) and marks it. The first player wins if, at
the end of the game (when all of Kn is coloured), there is a copy of H in Kn, all of
whose edges are marked. Whether the second player can win depends, of course, on
the pre-agreed number of edges that the first player colours at each turn.

A simplified, two-move, version of this game has the first player selecting outright
a red/blue colouring of Kn and the second player then marking some prescribed
number of edges. The first player wins if the second player cannot avoid marking a
copy of H. The quantity of interest here is ℓ(H), the minimum value of ℓ such that
if the second player must mark ℓ

(

n
2

)

edges then the first player is guaranteed a win
(for large n).

More precisely, let ℓp(H, n) be the minimum number of edges the second player
must be made to mark in order that the first player can find a winning colouring
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with ⌈p
(

n
2

)

⌉ red edges. Let ℓp(H) = limn→∞ ℓp(H, n)
(

n
2

)−1
(the existence of of which

follows from the proof of the next theorem) and then define ℓ(H) = minp ℓp(H).
The next theorem is reminiscent of Theorem 4.5, but it is the incomplete extremal

function µp(H), rather than κp(H), that comes in to play.

Theorem 4.6 ([39, Theorem 4.1]) In the simplified game, ℓp(H) = µp(H), and
so ℓ(H) = minp µp(H).

Proof Again, we just outline the proof in order to give the flavour of the connection
with 2-coloured multigraphs. A little more detail is given [39]. Once again we make
use of Szemerédi’s lemma. We assume the first player must colour p

(

n
2

)

edges red
and that the second player must mark ℓ

(

n
2

)

edges.
If ℓ < µp(H), player two picks a (not necessarily complete) 2-coloured graph G

with |G| = n, H 6⊂ G and wp(G) ≥ ℓ
(

n
2

)

. After player one has 2-coloured the Kn,
player two chooses a bijection f : V (G) → V (Kn) maximizing the number of edges
in E(Gr) ∪ E(Gb) that map to an edge of the same colour. Since Kn has p

(

n
2

)

red
edges, in a random bijection an edge in E(Gr) has probability p of mapping to a red
edge, so the number of agreeing edges in f is at least the expected number wp(G).
For every edge uv that agrees, player two marks f(u)f(v). Since the marked edges
have the same colour as a subgraph of G, they do not contain a copy of H, so player
two wins. Hence ℓp(H, n) ≥ µp(H)

(

n
2

)

.
If ℓ > µp(H) + 6ǫ, then player one colours Kn randomly with red probability p.

Player two then marks ℓ
(

n
2

)

edges; call the red and blue marked subgraphs Mr and
Mb. Partition V (Kn) into k > 2/ǫ classes so that the partition is regular both in
Mr and Mb. Let J be the 2-coloured multigraph whose vertices are the k parts and
whose edges are red/blue/green according as the pair is regular and of density not
close to zero in Mr/Mb/both (so J might not be complete). The number of marked
edges is at most (n/k)2wp(J) + 4ǫ

(

n
2

)

, the second (error) term accounting for sparse

or irregular pairs and edges inside classes. Thus wp(J) ≥ (µp(H) + ǫ)
(

k
2

)

≥ ex(H, k)
if k is large, so J contains a copy of H. A corresponding copy of H can now be
recovered in Mr ∪ Mb, giving player one the win. Hence ℓp(H, n) ≤ (µp(H) + 6ǫ)

(

n
2

)

for large n. �

Random colourings are always good for player one, even for the full colour-label
game, as the proof shows, though sometimes other colourings are just as good.

The colour-label game is actually a special case of the game originally studied
by Richer, involving an extra parameter 0 ≤ t ≤

(

|H|
2

)

specified in advance, in which
player one wins if player two marks at least t edges of some copy of H. This is
equivalent to saying that player two must avoid marking the edges of a copy of a
graph in Ht, which is the set of spanning 2-coloured subgraphs of H with exactly t
edges (so the graphs in Ht are not complete unless t =

(

|H|
2

)

). We can then define
ℓp(H, t) and ℓ(H, t) analogously to ℓp(H) and ℓ(H).

Theorem 4.7 For the above game, ℓp(H, t) = µp(Ht) and ℓ(H, t) = minp µp(Ht).

Proof The previous proof carries over for the new game more or less verbatim
until the very end, at which point, rather than J containing a copy of H, it contains
a copy of a spanning subgraph H ′ of H having t edges. The pairs corresponding to
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edges of H ′ are regular in Mr or Mb, and the pairs corresponding to edges of H \ H ′

are regular in the red and blue edges of Kn, because the colouring is random. Thus
we can recover a copy of H in Kn in which t edges, the edges common to H ′, are
marked. �

5 Finiteness and stability

Here we address a couple of natural questions about finiteness and stability.

5.1 Finiteness

Given a class H of 2-coloured multigraphs, must there be a finite sub-class H0

such that κp(H) = κp(H0)? The corresponding question in classical extremal graph
theory has a positive answer, as does the question for multigraphs of multiplicity 2,
as proved by Brown, Erdős and Simonovits [21]. But Rödl and Sidorenko [46] showed
that the answer is negative for multigraphs of multiplicity at least four. So how do
2-coloured multigraphs behave?

The answer depends on the value of p. For some values of p, the answer is
negative.

Theorem 5.1 ([39, Theorem 3.28]) Let l ≥ 5 be an integer and let p = 1/l.
Then there exists a family H of 2-coloured multigraphs for which there is no finite
sub-family H0 ⊂ H either with κp(H0) = κp(H) or with µp(H0) = µp(H).

The proof of this theorem is based on the beautiful counterexamples given by
Rödl and Sidorenko [46], and the fact that the proof works only for some p ≤ 1/5 is
due to the relationship between the edge multiplicities in the counterexamples and
the weights of the edges in the 2-coloured multigraphs.

In fact, when p = 1/2, there is always a suitable finite H0 ⊂ H. This is because
the only types that are relevant to the case p = 1/2 are types τ(a, b) of Definition 4.3,
with just green edges (this claim, implicit in §4.1.1, is proved in §7.3). Theorem 3.7
then becomes

κ1/2(H) = max {λ1/2(τ(a, b)) : no graph in H is τ(a, b)-colourable} .

It is easily shown (see Example 6.3) that λ1/2(τ(a, b)) = 1 − 1/2(a + b). If t =
max{a+b : no graph in H is τ(a, b)-colourable} then, for each j with 0 ≤ j ≤ t+1,
we can choose Hj ∈ H which is τ(t + 1 − j, j)-colourable. Put H0 = {H0, . . . , Ht+1}.
Then H0 ⊂ H and κ1/2(H0) = κ1/2(H).

5.2 Stability

Stability is the name given to the phenomenon where all graphs that are extremal
or close to extremal must have similar structure. The archetypal occurrence of
stability is in classical extremal graph theory (see Simonovits [52]).

By Theorem 3.7, for any class of 2-coloured multigraphs H there is a type τ such
that no graph in H is τ -colourable and κp(H) = λp(τ). Let (Gn)∞

n=1 be an extremal
sequence for H; that is, Gn is a 2-coloured multigraph with |Gn| = n, such that Gn

contains no member of H and wp(Gn) = κp(H)
(

n
2

)

+ o(n2). By Theorem 3.7 we can
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find such a sequence with Gn ∈ Q(τ); a stability result would assert that for any
extremal sequence, Gn is close to a member of Q(τ).

No stability result can hold if there are two minimal types τ1 and τ2 that both
satisfy Theorem 3.7, since both Q(τ1) and Q(τ2) contain extremal sequences. (It
is not immediate that an extremal sequence in Q(τ1) is not close to a sequence in
Q(τ2) but it is true — c.f. the proof of [39, Theorem 3.23]).

Alon and Stav [7] have proved certain stability results in the case where p = 1/2
and there is a unique τ(a, b) satisfying Theorem 3.7; we don’t give more detail
because the results are phrased in terms of edit distance and another metric.

More generally, we might settle for a version of stability in which any extremal
sequence must be close to one of a finite number of structures (rather than some
unique structure). However, all hope that even such a weakened stability might hold
in general, either for κp or for µp, is dashed by the next theorem. The term ‘p-core’
in the theorem, meaning minimal, is made precise in Definition 6.1.

Theorem 5.2 Let t ≥ 4 be an integer and let p = 1/t. Let H be the complete
2-coloured multigraph of order t + 1 consisting of a red star K1,t with all other
edges being blue. Then there are infinitely many p-core types τ such that H is not
τ -colourable and λp(τ) = κp(H) = µp(H).

We shall see in §7.5.2 why this theorem is true. The example is modified from
a counterexample given by Sidorenko [51] to a stability conjecture for multigraphs
with edge multiplicity at least three.

6 Working with types

How can we work out the value of κp(H) for some given class H of 2-coloured
multigraphs? We know from Theorem 3.7 that there is some type τ , no graph in H
being τ -colourable, with κp(H) = λp(τ). Now it might be, as seen in Theorem 5.2,
that there are infinitely many genuinely different such types. But it is necessary
only to find one type in order to evaluate κp(H). The results in this section are
aimed at simplifying the search for such a type.

First of all, it is clear that if there is some sub-type σ ⊂ τ , obtained by removing
vertices of τ , with λp(σ) = λp(τ) then we need not worry about τ and can use σ
instead.

Definition 6.1 A type or weak type τ is called p-core if λp(σ) < λp(τ) for every
proper σ ⊂ τ .

It is clear that Theorem 3.7 is true for a p-core type τ .

Remark We say p-core rather than just ‘core’ because a type can be p-core for
some p but not all. For example, the types τ(a, b) are core for all p, whereas the
type having two red vertices joined by a blue edge is p-core only for p < 1/2.

Remark The notion of Hp-core was used in [16] but the definition differs slightly
for reasons related to the discussion in §4.1.2; a type is Hp-core in [16] if and only if
it is p′-core here, where p′ = log q/(log p + log q).
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The following lemma about the optimal weighting of a p-core type has been
observed by several authors.

Lemma 6.2 Let τ be a p-core type or weak type with p-value λ = λp(τ). Let x ∈ ∆

satisfy xtW x = λ, where W = Wp(τ). Then W x = λe, where e is the all one vector.
In other words, xuwp(u) +

∑

uv∈E(τ) xvwp(uv) = λ holds for all u ∈ V (τ).

Example 6.3 Let τ = τ(a, b). Suppose τ is p-core. An optimal weighting x satisfies
xuwp(u) + (1 − xu) = λ. Thus xu(1 − wp(u)) = 1 − λ, so xu = (1 − λ)/q if u is red
and xu = (1 − λ)/p if u is blue. Since

∑

xu = 1 we find λ = 1 − pq/(ap + bq). If
τ is not p-core then λ ≥ 1 − pq/(ap + bq) by using this weighting x. But then τ
contains some p-core sub-type τ(a′, b′), so λ = 1 − pq/(a′p + b′q) < 1 − pq/(ap + bq),
a contradiction. Hence τ(a, b) is p-core for all p and λp(τ) = 1 − pq/(ap + bq).

Sidorenko has given an elegant characterization of p-core types and weak types.

Theorem 6.4 (Sidorenko [51]) A type or weak type τ is p-core if and only if its
matrix W = Wp(τ) satisfies

• W is non-singular and all components of W −1e are positive, and

• ytW y < 0 for every non-zero vector y with ety = 0.

Theorem 6.4 is strong but can be delicate to apply. A simpler observation that
can be helpful is that, if τ consists of two disjoint types ρ and σ joined by green
edges, then τ is p-core if and only if both ρ and σ are p-core. For example, this
implies immediately that τ(a, b) is p-core.

But the theorem about p-core types of greatest practical use is the next one. Its
proof is via extensions.

Theorem 6.5 ([39, Theorem 3.23]) Let τ be a p-core type. Then all edges of τ
are green, apart from

• if p < 1/2, when some edges joining two red vertices might be blue, or

• if p > 1/2, when some edges joining two blue vertices might be red.

It follows immediately, for example, that the only 1/2-core types are τ(a, b).
The proof of Theorem 6.5 is based on that of Brown, Erdős and Simonovits [21,
Theorem 5]. It is possible to prove something for weak types but the result is less
strong, though it is still true that if, say, p < 1/2 then blue vertices are joined only
by green edges.

7 Examples

To what extent is it possible to calculate κp(H) and µp(H) in cases of interest?
We look now at some specific examples and see how the general theory can be
applied to reduce the work. Most of the examples except §7.3 (the simple case when
p = 1/2) involve just one forbidden graph, but in §7.7 an example is given in which
p 6= 1/2 and H contains two graphs. The example in §7.8.2 involves the use of
extensions.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: The 2-coloured multigraphs with three vertices and no isolates.

Remark In many cases, the 2-coloured multigraphs H in the examples are com-
plete and have no green edges. In other words, H = cc(F ) where Hr = F and
Hb = F ; for instance we consider H = cc(Cn) and H = cc(Kt,t). In such cases we
shall generally just write H = Cn for brevity, so for instance κp(Kt,t) should, strictly
speaking, be κp(cc(Kt,t)).

7.1 Graphs with three vertices

There are ten 2-coloured multigraphs H of order 3 without isolated vertices
(to within a swap of red and blue), and these are shown in Figure 2. Richer [44]
evaluated ex(H, n) for them.

H ex(H, n) µp(H) = κp(H)

(a) p
(

n
2

)

+ q⌊n
2 ⌋ p

(b) max{p
(

n
2

)

, q
(

n
2

)

} max{p, q}
(c) p

(

n
2

)

+ q⌊n2

4 ⌋ p + q/2

(d) max{q
(

n
2

)

, ⌊n2

4 ⌋, p
(

n
2

)

+ q⌊n
2 ⌋} max{p, q}

(e) max{q
(

n
2

)

, p
(

n
2

)

+ q⌊n
2 ⌋} max{p, q}

(f) max{q
(

n
2

)

, p
(

n
2

)

+ q⌊n2

4 ⌋} max{p + q/2, q}
(g) max{p

(

n
2

)

+ q⌊n
2 ⌋, q

(

n
2

)

+ p⌊n
2 ⌋} max{p, q}

(h) max{p
(

n
2

)

+ q⌊n
2 ⌋, q

(

n
2

)

+ p⌊n
2 ⌋} max{p, q}

(i) max{p
(

n
2

)

+ q⌊n2

4 ⌋, q
(

n
2

)

+ p⌊n
2 ⌋} max{p + q/2, q}

(j) max{p
(

n
2

)

+ q⌊n2

4 ⌋, q
(

n
2

)

+ p⌊n2

4 ⌋} max{p + q/2, q + p/2}

The form of the extremal graphs G can readily be guessed from the graph H and
from the form of the function ex(H, n). For example, the extremal graph for (a) is
a red complete graph with ⌊n/2⌋ blue edges added; we might write Gr = Kn and



Graphs, colours, weights and hereditary properties 351

Gb = ⌊n/2⌋K2 (these blue edges become green in the red/blue/green viewpoint).
The two possible extremal graphs for (i) are Gr = Kn, Gb = K⌊n/2⌋,⌈n/2⌉ and
Gr = ⌊n/2⌋K2 and Gb = Kn. The values of µp(H) are immediate by taking the

limit limn→∞ ex(H, n)
(

n
2

)−1
.

The most interesting example is perhaps (d), where there are three extremal
graphs: for most values of p, one of the two graphs Gr = Kn, Gb = Kn or Gr = Kn,
Gb = ⌊n/2⌋K2 is optimal, but for the very narrow range (1 − 1/(2⌈n/2⌉ − 1))/2 <
p < 1/2 the graph Gr = Gb = K⌊n/2⌋,⌈n/2⌉ is better. This third extremal graph has
no effect on µp(H), however.

Because the extremal graphs in every case except (d) are complete, it follows that
kex(H, n) = ex(H, n) in these cases. In case (d), the extremal graphs are complete
except when (1 − 1/(2⌈n/2⌉ − 1))/2 ≤ p ≤ 1/2. Thus κp(H) = µp(H) for p 6= 1/2,
and by Theorem 2.8 the same is true when p = 1/2. In fact, for case (d), if G is
complete and H 6⊂ G then it is easy to see that Gb must be a union of complete
graphs, and none of these except K2 components can contain a red edge. From this
it quickly follows that Gr = Kn, Gb = Kn and Gr = Kn, Gb = ⌊n/2⌋K2 are the
only two extremal graphs, so kex(H, n) = max{q

(

n
2

)

, p
(

n
2

)

+ q⌊n
2 ⌋}.

7.1.1 Finding κ(H) and µ(H) directly The examples just given show that, even
for very small H, finding the exact values of ex(H, n) and kex(H, n) can be quite
intricate.

However, it is much easier to find the limiting values κp(H) and µp(H). Let us
look again at H in case (d). By Theorem 3.7 there is some p-core type τ such that
κp(H) = λp(τ) and H is not τ -colourable. Now τ cannot have a green edge else
H is τ -colourable (by placing one edge of H in one class and the other vertex in
another class). Since τ has only red or blue vertices and edges we have at once from
the definition that λp(τ) ≤ max{p, q}. Moreover Theorem 6.5 shows that the only
p-core types τ with no green edges that satisfy λp(τ) = max{p, q} are the single
vertex types τ(1, 0) and τ(0, 1).

Finding µp(H) is trickier in general because Theorems 3.7 and 6.5 don’t apply,
but for this particular H it is not difficult. We do know by Theorem 3.5 that µp(H)
can be approximated arbitrarily closely with weak types τ such that H is not τ -
colourable. If τ has a green edge then its end-vertices must be white, else H would
be τ -colourable. Hence τ can have some white vertices, joined by green, and all
other edges and vertices must be red or blue. It is not hard to see that such a weak
type must have λp(τ) = max{p, q, 1/2} = max{p, q}. Moreover the green graph
cannot contain a triangle. The only such weak type of maximum weight with more
than one vertex has two white vertices joined by a green edge, corresponding to the
extremal graph Gr = Gb = K⌊n/2⌋,⌈n/2⌉.

7.2 Graphs with four vertices

There are 140 2-coloured multigraphs of order 4 without isolates, so we do not
attempt to find their extremal functions. Richer [44] picks out the example of the
complete H with Hr = K4 − e and Hb = 2K2, for which he shows κp(H) = µp(H) =
max{p + q/2, 1 − pq}. The extremal types are τ(2, 0) and τ(1, 1).

If we restrict ourselves just to complete H with no green edges, in other words,



352 Andrew Thomason

H = cc(F ) for some F , then there are only six graphs to consider (to within a swap
of red and blue). Alon and Stav [6] and Balogh and Martin [10] found ed(Forb(F )) =
1 − minp κp(H) for all these six graphs. The value of κp(H) for all such H and for
all p was given in [39, Example 5.9]. Richer [44], in studying the function ℓ(H, t)
described in §4.3, found minp µp(H) for each graph and also minp µp(H) for various
collections H of them.

We remark that in all cases the relevant types are τ(a, b) for small a and b.

7.3 The case p = 1/2

By Theorem 6.5, a 1/2-core type τ has only green edges, and so it is of the
form τ = τ(a, b). Example 6.3 shows λ1/2(τ(a, b)) = 1 − 1/2(a + b) = 1 − 1/2|τ |.
Hence, for any class H, we have κ1/2(H) = 1 − 1/2t where t = max{a + b :
no graph in H is τ(a, b)-colourable}.

If P is a hereditary property then we can apply the above to H = H(P), as
in §4.1. Theorem 4.4 then gives c1/2(P) = 1 − 1/t, which is the result of §4.1.1.

7.4 Types other than τ(a, b): two specimen cases

As mentioned in §4.1.2, the types τ(a, b) are not always enough to determine the
value of cp(P), and in the light of Theorem 4.4 this means that Theorem 3.7 is not
always satisfied by a type with only green edges. Here are two specific examples.

7.4.1 A graph of order 9 The first example of a graph H for which minp κp(H)
is given by a type other than τ(a, b) was exhibited by Balogh and Martin [10] in
their study of edit distance. Their graph is H = cc(F ), where F is the graph
with vertex set {0, 1, 2, 3, 4, 5, 6, 7, 8}, in which ij is an edge if i − j ∈ {±1, ±2}
(mod 9) or i ≡ j ≡ 0 (mod 3). Martin [41] has subsequently proved that κp(H) =
max{1 − p/3, 1 − p/(1 + 4p), 1 − q/2}. The types involved are τ(0, 3), τ(2, 0), and
a third type with 5 blue vertices, two independent red edges and the remaining
edges green. This third type has the greatest p-value of the three when 1/2 <
p < (1 +

√
17)/8. It follows that minp κp(H) occurs at p∗ = (1 +

√
17)/8 and

ed(Forb(F )) = 1 − κp∗(H) = (7 −
√

17)/16.

7.4.2 A graph of order 6 A simpler example of a graph H for which the types
τ(a, b) are insufficient is H = C∗

6 described in Example 2.6. As an illustration of some
of the techniques that can be used, we prove κp(C∗

6 ) = max{1 − pq, 1 − p/(1 + 2p)}.
We skip routine checks; more detail is in [39, Example 5.10].

To find a lower bound on κp(C∗
6 ) we need types τ for which C∗

6 is not τ -colourable.
Let σ be the type with one blue and two red vertices, the red vertices being joined
by a blue edge and the other edges being green. It is not difficult to check that
σ is p-core for 0 < p < 1/2 and that λp(σ) = 1 − p/(1 + 2p). As described in
Example 2.6, C∗

6 is neither σ-colourable nor τ(2, 0)-colourable. Thus κp(C∗
6 ) ≥

max{1 − pq, 1 − p/(1 + 2p)}.

To establish an upper bound on κp(C∗
6 ) we begin by checking that if τ ∈

{τ(0, 2), τ(2, 1), ρ1, ρ2, ρ3} then C∗
6 is τ -colourable. Here, ρ1 is the type with three

red vertices joined by two green and one blue edges, ρ2 has one blue vertex joined
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to three red vertices by green edges, other edges being blue, and ρ3 has a red vertex
joined to two blue vertices by green edges, the other edge being red.

Now let τ be a p-core type satisfying Theorem 3.7 for C∗
6 . If p < 1/2 then,

by Theorem 6.5, all edges of τ are green except perhaps for blue edges joining red
vertices. Since τ(0, 2) 6⊂ τ , τ has at most one blue vertex. If τ has a blue vertex
then it has at most two red vertices, else ρ2 ⊂ τ . The red vertices cannot be joined
by green because τ(2, 1) 6⊂ τ . Thus τ ⊂ σ. If, on the other hand, τ has no blue
vertices, then each vertex can have at most one incident green edge, else ρ1 ⊂ τ .

We can now use the following simple but useful lemma.

Lemma 7.1 Let τ be a p-core type whose vertices are all red, each joined to at most
d others by green edges. Then λp(τ) ≤ max{q, 1 − q/(d + 1)}.

So if p < 1/2 we have λp(τ) ≤ max{q, 1 − q/2} < 1 − p/(1 − 2p)) = λp(σ).

Now suppose p > 1/2. In this case, Theorem 6.5 shows that red vertices of τ
meet only green edges. Since ρ1 6⊂ τ and τ(2, 1) 6⊂ τ , this means if τ has two red
vertices then τ = τ(2, 0). If τ has only blue vertices then all the edges are red, since
τ(0, 2) 6⊂ τ , so λp(τ) ≤ p < 1−q/2. So τ has exactly one red vertex, and at least two
blue vertices else λp(τ) ≤ λp(τ(1, 1)) = 1 − pq < 1 − q/2. Hence, by Theorem 6.5,
ρ3 ⊂ τ , a contradiction.

We have now shown that if p 6= 0, 1
2 , 1 then the only optimal types are σ and

τ(2, 0), and so κp(C∗
6 ) = max{1 − pq, 1 − p/(1 + 2p)}.

7.5 Split graphs

A split graph is a graph whose vertex set can be covered by a clique and an
independent set — that is, it is precisely a member of the class P(τ(1, 1)). This
structure makes it possible to say quite a lot about their extremal functions. On the
other hand, graphs in P(τ(2, 0)) and P(τ(0, 2)) are very hard to analyse. The reason
for this disparity seems to lie in Theorem 6.5, which says that if τ is p-core and has
vertices of both colours then τ(1, 1) ⊂ τ , so every split graph is τ -colourable. This
fact, plus the symmetry of the definition, opens up the analysis of split graphs.

A specific example of a split graph is Ks + Kt. The edit distance of K1 + K3

was computed by Alon and Stav [6], and the same was done for Ks + Kt in general
by Balogh and Martin [10]. Let H = cc(Ks + Kt), which we abbreviate to H =
Ks + Kt. The value of κp(Ks + Kt) was given in [39, Example 5.5]. More generally,
let H = cc(F ) where F is a split graph. Write ω for the clique number and α for
the independence number of F ; note that either ω + α = |H| or ω + α = |H| + 1.

Let τ be a p-core type with κp(H) = λp(τ). As already noted, the vertices
of τ are all the same colour. Suppose they are red. No vertex can have degree
|H| − ω in green else H would be τ -colourable, since the edges of τ are blue or
green. Hence, by Lemma 7.1, λp(τ) ≤ max{q, 1 − q/(|H| − ω)}. Likewise if all
vertices are blue we obtain λp(τ) ≤ max{p, 1 − p/(|H| − α)}. Therefore κp(H) ≤
max{1 − p/(|H| − α), 1 − q/(|H| − ω)}.

If ω+α = |H|+1 then equality holds, because H is neither τ(|H|−ω, 0)-colourable
nor τ(0, |H| − α)-colourable. But if ω + α = |H| the inequality can be strict; for
example, it is easily shown that if F is the path of length 3 then κp(H) = max{p, q}
(a special case of [39, Example 5.8]).
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Marchant [37, 38] has found bounds on kexp(n, Ks + Kt) by a direct argument
not related to the methods of this article. He showed

κ

(

n

2

)

≤ kexp(n, Ks + Kt) ≤ exp(n, Ks + Kt) ≤ κ

(

n + 1

2

)

.

where κ = max{1 − p/s, 1 − q/(t − 1)}. Richer [44], and independently Diwan and
Mubayi [23], obtained similar bounds when s = 1 and p = 1/t.

7.5.1 Green split graphs Let H be the graph in the previous example but where
the red edges have been turned green: that is, the red graph is the same as before
but the blue graph is Ks+t. Note that kexp(n, H) = exp(n, H) because H has no
red edges, and so any white (i.e. missing) edges in an extremal graph can safely be
replaced by red edges.

Marchant [37, 38] proved the same inequalities for H as those just mentioned
for Ks + Kt, but with instead κ = max{1 − p/s, 1 − q/(s + t − 1)}. It follows that
κp(H) = λp(H) = κ.

7.5.2 Stars and stability Return now to the graphs H = Ks + Kt, and take
the case s = 1. Then κp(H) = µp(H) = max{q, 1 − q/(t − 1)}. The p-core type
τ = τ(t − 1, 0) satisfies λp(τ) = 1 − q/(t − 1) and H is not τ -colourable, so τ satisfies
Theorem 3.7 for H.

Now we can take any (t − 2)-regular graph G and turn it into a type τG by
painting its vertices red, its edges green, and painting the missing edges blue. The
2-coloured graph H is not τG-colourable for any such type τG. By taking the weight
vector with xu = 1/|τG| for every vertex u, we obtain λp(τ) ≥ q − (1 − pt)/|τG|. In
the specific case p = 1/t this means λ1/t(τG) ≥ q. On the other hand, Lemma 7.1
shows λ1/t(τG) ≤ max{q, 1 − q/(t − 1)} = q. So λ1/t(τG) = q = κ1/t(H).

It follows that, if τG is p-core when p = 1/t, then τG satisfies Theorem 3.7 for H.
A simple argument [39, Theorem 5.6], adapted from Sidorenko [51], shows that τG

is indeed p-core provided G is connected and p ≤ 1/t. For t ≥ 4 there is a boundless
supply of connected (t − 2)-regular graphs G, and so Theorem 5.2 is verified.

In fact, τG can be p-core for larger values of p than 1/t. When t = 4 and G is a
cycle, a restful calculation involving Sidorenko’s criterion (Theorem 6.4) shows that
τG is p-core if and only if p < 1/(2 + 2 cos(2π/n)).

7.6 Short cycles

The cycles form one of the simplest classes of graphs. Let H = cc(Cn) where Cn

is a cycle of length n, abbreviated as usual to H = Cn. We ignore the case n = 3
since H is then monochromatic (see §2.4).

Alon and Stav evaluated ed(Forb(C4)) and, using arguments similar to those
elsewhere in this section, it is easy to show that κp(C4) = 1 − pq.

The 5-cycle already needs work. Marchant [37, 38] proved by induction that

κ

(

n

2

)

− n

2
≤ kexp(n, C5) ≤ exp(n, C5) ≤ κ

(

n + 1

2

)

, κ = max
{

1 − p

2
, 1 − q

2

}

.

So κp(C5) = µp(C5) = max{1 − p/2, 1 − q/2}, the types being τ(2, 0) and τ(0, 2).



Graphs, colours, weights and hereditary properties 355

Marchant also gives a direct argument for C7, but it is much more complex than
that for C5. He proves

κ

(

n

2

)

− n

2
≤ kexp(n, C7) ≤ κ

(

n

2

)

+ 2n µ

(

n

2

)

− n

2
≤ exp(n, C7) ≤ µ

(

n + 1

2

)

,

where

κ = max

{

1 − p

2
, 1 − pq

1 + p
, 1 − q

3

}

and µ = max

{

1 − p

2
,
5

6
, 1 − q

3

}

.

Clearly κp(C7) = κ and µp(C7) = µ. The relevant types for κp(C7) are τ(0, 2),
τ(2, 1) and τ(3, 0). The type τ(2, 1) is optimal in the range 1/3 < p < 1/2. When
considering µp(C7), the type τ(2, 1) is superseded in the same range by the weak
type consisting of 6 white vertices joined by green. Thus H = C7 gives another
example of a graph where κp(H) < µp(H) for some p.

In classical extremal graph theory the behaviour of even cycles is quite different
from that of odd cycles, but such a dichotomy is not in evidence here. Using the
methods of this article it is easy to show κp(C6) = max{1 − q/2, 1 − pq}, the types
being τ(2, 0) and τ(1, 1). Because C6 is τ(3, 0)-colourable, the following lemma
comes in handy: its simple proof rests on Mantel’s theorem [36] (the triangle case
of Turán’s theorem [55]).

Lemma 7.2 ([39, Lemma 5.11]) Let τ be a type whose vertices are all red and
which contains no green triangle. If p ≤ 1/2 then λp(τ) ≤ (p − q)/|τ | + q + p/2 ≤
1 − p/2.

Life gets tougher, though, for larger cycles. Martin [41] has managed to evaluate
κp(Cn) for n ≤ 9, and also κp(C10) for most p. Hence he can compute the edit
distance of Forb(Cn) for n ≤ 10. Here are the values for 8 ≤ n ≤ 10.

κp(C8) = max{1 − pq/(1 + p), 1 − q/3}
κp(C9) = max{1 − p/2, 1 − q/4}
κp(C10) = max{1 − pq/(1 + 2p), 1 − q/4} for p ≥ 1/7

7.7 More than one forbidden graph

Classical extremal graph theory is profoundly shaped by the Erdős-Stone the-
orem [31], one consequence of which is that the extremal function for a class of
graphs is the minimum of the extremal functions for the individual graphs, at least
in the limit as n → ∞. A similar phenomenon does not hold for hypergraphs or for
multigraphs, though explicit examples are not so easy to come by, due in large part
to the difficulty of evaluating the extremal functions themselves.

Theorem 5.1 shows that the phenomenon does not hold either for 2-coloured
multigraphs in general. Here is a simple explicit example [39, Example 5.12].

Let H1 be the graph of order 4 with Hr = K1,3 and Hb = K4, discussed in §7.5.1.
Then κp(H1) = max{q, 1 − q/3}. Let H2 be a green K3; by Mantel’s theorem [36]
κp(H2) = 1/2 + max{p/2, q/2}.

Now put H = {H1, H2}. Suppose p < 1/2 and κp(H) = λp(τ), where τ is a
p-core type such that neither H1 nor H2 is τ -colourable. If τ has a blue vertex then
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there can be no other vertex, else H1 would be τ -colourable by Theorem 6.5; thus
λp(τ) ≤ q. If τ has only red vertices then no vertex has three green edges, and there
is no triangle. Lemma 7.2 shows λp(τ) ≤ 3/4 if |τ | ≤ 4 and the proof of Lemma 7.1
shows the same if |τ | ≥ 4. Hence κp(H) ≤ max{q, 3/4} if p ≤ 1/2.

So for 1/4 < p < 1/2 we have 3/4 = κp({H1, H2}) < min{κp(H1), κp(H2)} =
min{1 − q/3, 1 − p/2}.

7.8 Complete bipartite graphs

As mentioned in §7.5, whereas τ(1, 1)-colourable graphs can be easy to analyse,
this is far from true for τ(2, 0)-colourable graphs (or, equivalently, τ(0, 2)-colourable
graphs). We outline here what is known about complete bipartite graphs. Let
H = cc(Ks,t) with s ≤ t, abbreviated to H = Ks,t.

We observe at once that Ks,t is not τ(s − 1, 1)-colourable, and so κp(Ks,t) ≥
1 − pq/(1 + p(s − 2)). For s = t = 2 we have equality for all p, as mentioned in §7.6.
The next lemma, proved via Theorem 6.5, gives information about when equality
fails.

Lemma 7.3 ([39, Lemma 5.14]) Let τ be a p-core type such that Ks,t, s ≤ t, is
not τ -colourable and κp(Ks,t) = λp(τ). Then either τ = τ(s − 1, 1) and κp(H) =
1 − pq/(1 + p(s − 2)), or all the vertices of τ are red. If p > 1/2 then τ = τ(s − 1, 1)
if t = s and τ = τ(t − 1, 0) otherwise.

Hence the value of κp(Ks,t) is known for p ≥ 1/2. But for p < 1/2 the evaluation
of κp(Ks,t) is difficult and presents interesting features, even for s = 2. Different
kinds of behaviour are illustrated by the following three examples.

7.8.1 H = K2,t The case K2,2 has already been mentioned, and Martin and
McKay [42] proved that τ(1, 1) is optimal for K2,3 for all p < 1/2. However, it
was shown in [39, Example 5.16] that τ(1, 1) is non-optimal for K2,t if t ≥ 4 and
1/3 < p < 1/2, though no clue was offered as to the correct value.

Martin and McKay [42] managed to find the value of κp(K2,4) for all p. For
p < 1/5 the optimal type is τ(1, 1) and for p > 1/3 it is τ(3, 0). But remarkably,
the optimal type τ for 1/5 < p < 1/3 comes from a (15, 6, 1, 3) strongly regular
graph, the so-called “generalized quadrangle” GQ(2, 2). The type τ is obtained
from cc(GQ(2, 2)) by painting the 15 vertices red. It can then be calculated that
κp(K2,4) = max{1 − pq, 7(1 + q)/15, 1 − q/3}.

7.8.2 H = K3,3 This graph was already highlighted for attention by Richer [44]
and by Diwan and Mubayi [23] (see §8). The problem of finding ed(Forb(K3,3)) was
raised as an interesting case by Alon and Stav (see [6]); the value was found by
Balogh and Martin [10].

Let τ be a p-core type for which K3,3 is not τ -colourable and κp(K3,3) = λp(τ).
We know by Lemma 7.3 that if τ 6= τ(2, 1) then p < 1/2 and all the vertices of τ
are red. In the latter case τ cannot contain a green triangle, so Lemma 7.2 shows
λp(τ) ≤ 1 − p/2 < 1 − pq/(1 + p) = λp(τ(2, 1)) if p > 1/3. Hence τ(2, 1) is optimal
for p > 1/3 and κp(K3,3) = 1 − pq/(1 + p) in this range. The function 1 − pq/(1 + p)
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has a local minimum at
√

2 − 1 > 1/3 and so, by Theorems 2.8 and 4.4, we obtain
Balogh and Martin’s result [10] that ed(Forb(K3,3)) = 3 − 2

√
2.

In [39, §5.4] it is shown that κp(K3,3) = 1 − pq/(1 + p) continues to hold for
p ≥ 1/9. In the same way that we used τ(3, 0) 6⊂ τ to show the equation for
p ≥ 1/3, the proof for p ≥ 1/9 involves finding two classes of types that cannot be
subtypes of τ . Unlike any of the examples discussed up to now, the argument is long
and makes heavy use of extensions via Lemma 3.6 to find these types.

However, it turns out that κp(K3,3) = 1 − pq/(1 + p) is not true for all p. For
the equation to fail, Lemma 7.3 says τ must be of the form τG for some graph G,
as described in §7.5.2. To avoid K3,3 being τ -colourable, G must contain neither K3

nor K3,3. A little calculation shows that, if G has average degree d, then there is
some value of p for which λp(τG) > 1 − pq/(1 + p) provided (d + 3)2 > 8|G|. This
means G must be quite dense for a K3,3-free graph — random graphs are not good
enough — but Brown’s graphs [18] work. As a result, κp(K3,3) > 1 − pq/(1 + p) for
p ≤ 1/124. The types here are large: the smallest one, which works in the range
1/219 ≤ p ≤ 1/124, is the Brown graph for the prime 19 and it has 13718 vertices.

These facts suggest it is unlikely that κp(K3,3) can be evaluated for all p without
first finding the ordinary graph extremal function for K3,3.

7.8.3 H = K7,7 The type τ(6, 1) has p-value 1 − pq/(1 + 5p). This is minimized
when p = (

√
6 − 1)/5 and the minimum value is (18 + 2

√
6)/25 < 11/12. Let G be

K6,6 with a 1-factor removed. Then K7,7 is not τG-colourable, and λp(τG) ≥ 11/12
for all p. It follows that minp κp(K7,7) is not the same as minp(λp(τ(6, 1)), so the
edit distance for Forb(K7,7) is not realised by λp(τ(6, 1)). The edit distance in this
case remains unknown: it is not 11/12 because a better value is obtained by taking
G to be K13 and removing 5 independent edges and a path of length 2.

Similar remarks apply to Kt,t for all t ≥ 7.

8 Richer’s conjectures

Motivated by Theorem 4.6, Richer [44] made an interesting conjecture about
minp κp(H), perhaps reminiscent of the Erdős-Stone theorem [31].

Conjecture 8.1 (Richer [44]) Let H be a 2-coloured complete graph with no green
edges. Then

min
p

µp(H) ≤ 1 − 1

|H| .

A stronger conjecture would be minp µp(H) ≤ 1 − 1/(|H| − 1), which is more
in line with extremal graph theory. However, this inequality does not always hold.
Suppose H = Kt,t, as in §7.8, or, more generally, |H| = 2t and the components of
Hr are complete equipartite bipartite graphs. Then H is not τ(t − 1, 1)-colourable
so minp µp(H) ≥ minp λp(τ(t − 1, 1)) = 1 − 1/(t + 2

√
t − 1). This is greater than

1 − 1/(|H| − 1) for t ∈ {2, 3, 4}.
Nevertheless, the stronger conjecture might hold if |H| /∈ {4, 6, 8}.
A closely related conjecture was made by Diwan and Mubayi [23], who conjec-

tured that a 2-coloured multigraph G of order n that does not contain H satis-
fies min{e(Gr), e(Gb)} ≤ (1 − 1/(|H| − 1))n2/2, apart from the special cases just
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cited. Certainly min{e(Gr), e(Gb)} ≤ wp(G) so the asymptotic version of Diwan
and Mubayi’s conjecture is implied by the strong form of Conjecture 8.1.

Since κp(H) ≤ µp(H), Conjecture 8.1 implies minp κp(H) ≤ 1 − 1/|H|. This
inequality is already known, though. Axenovich, Kézdy and Martin [8] proved that
ed(Forb(Hr)) ≥ 1/2t, where t = max{a + b : H is not τ(a, b)-colourable}. By The-
orem 4.5 this is equivalent to minp κp(H) ≤ 1 − 1/2t. In fact, κ1/2(H) ≤ 1 − 1/2t.
To see this, note that if λ1/2(τ) > 1 − 1/2t then the proportion of edges of τ that
are green must exceed 1 − 1/t, in which case τ contains a green Kt+1 by Turán’s
theorem. This means τ(a, b) ⊂ τ for some a, b with a+b = t+1, so H is τ -colourable.
(This is essentially the proof in [8].)

Richer [44] proved Conjecture 8.1 for |H| ≤ 5 and proved that minp µp(H) ≤
1 − 3/(5|H| − 5) in general. This was improved by Marchant [37, 38].

Theorem 8.2 (Marchant [37, 38]) Let H be a 2-coloured complete graph with no
green edges. Then

min
p

µp(H) ≤ 1 − 2

3|H| − 3
.

Richer gave a second conjecture, weaker than the first. To state it we must define
certain weak types analogous to the types τ(a, b).

Definition 8.3 The weak type τ(a, b, c) has a red, b blue and c white vertices, all
edges being green.

Hence τ(a, b) = τ(a, b, 0). By an argument similar to that of Example 6.3, it is
easily shown that τ(a, b, c) is p-core for all p and λp(τ(a, b, c)) = 1−pq/(ap+bq+cpq).

Richer’s second conjecture was the following theorem, which he proved but with
|H| + 8 in place of H. By developing his ideas Marchant gave a full proof.

Theorem 8.4 (Marchant [37, 38]) Let H be a 2-coloured complete graph with no
green edges. Then there exists p, 0 ≤ p ≤ 1, such that

λp(τ(a, b, c)) ≤ 1 − 1

|H|

for every weak type τ(a, b, c) for which H is not τ(a, b, c)-colourable.

Thus if Conjecture 8.1 is to fail then it must do so for an H for which the optimal
type at the minimizing probability does not have just green edges.

9 Further remarks

We close with comments on a couple of further related issues.

9.1 Szemerédi’s Regularity Lemma — is it needed?

Apart from the applications mentioned in §4, the proofs of the theorems in this
article make no use of Szemerédi’s Regularity Lemma, one of the most fundamental
tools in graph theory [54].



Graphs, colours, weights and hereditary properties 359

On the other hand, the proofs of the applications use Szemerédi’s lemma in an
essential way. This is described, as far as the applications in §4.1.1 and §4.1.2 are
concerned, in Bollobás’s article [12, §5].

When a result is proved using Szemerédi’s lemma, the question is sometimes
asked whether there is a proof which avoids using the lemma. This can be because
it is felt that a sledgehammer is being used to crack a nut, though it is equally
reasonable to view the lemma as a basic and natural fact with an elementary proof.
But another reason to avoid its use is that it introduces constants that are mind-
numbingly large, as Gowers [34] showed.

An example of a theorem in which Szemerédi’s Lemma was heavily used is that
of Bollobás and Nikiforov [13], giving the following strengthening of the theorem of
Prömel and Steger in §4.1.1.

Theorem 9.1 (Bollobás and Nikiforov [13]) Let F be a graph, P = Forb(F )
and t = max{a + b : P(τ(a, b) ⊂ P}. Then for every ǫ > 0 there exists δ > 0

such that, amongst any 2(1−1/t+ǫ)(n2) graphs with vertex set {1, . . . , n}, there is one
containing at least δn|F | induced copies of F .

The proof given in [13] uses Szemerédi’s lemma multiple times: it is a combi-
nation of the Prömel-Steger theorem [43] and the removal lemma of Alon, Fisher,
Krivelevich and Szegedy [3], both of which rely heavily on Szemerédi’s lemma for
their proofs.

The question, then, is asked in [13] whether Theorem 9.1 can be proved without
Szemerédi’s lemma. The answer is that it can.

First of all, the main theorem of §4.1.1, which includes the Prömel-Steger theo-
rem, was proved by Alekseev [2] inter alia, and Alekseev’s proof, unlike that of [15],
does not use Szemerédi’s lemma. It rests instead on the well-known shattering
lemma proved by Sauer [47], by Shelah [50] and by Vapnik and Chervonenkis [56].

Thus Szemerédi’s lemma is excised from one half of the proof in [13], and the job
is completed by avoiding the removal lemma entirely and using a theorem of Sax-
ton [48]. The statement of Saxton’s theorem is reminiscent of Erdős and Simonovits’s
supersaturation theorem [29, Theorem 1]. In particular it is not necessary to know
the number of graphs with no induced copy of F , and as such it extends in the sense
of §4.1.2 to the case p 6= 1/2.

Theorem 9.2 (Saxton [48]) Let F be a graph, let P = Forb(F ) and let 0 < p < 1.
Then for every ǫ > 0 there exists δ > 0 such that, if G is a class of graphs with vertex

set {1, . . . , n} and Pr[G(n, p) ∈ G] ≥ 2ǫ(n2) Pr[G(n, p) ∈ P], then some graph in G
contains at least δn|F | induced copies of F .

So Szemerédi’s lemma is not needed in Theorem 9.1, nor in §4.1.1. Is it needed in
the more general §4.1.2? It appears that the results of [16] might be proved instead
by means of extensions. The results of §4.3 might also be amenable to the same
treatment. We do not offer details here, though.

That leaves the edit distance application in §4.2. When making their study
of edit distance Alon and Stav [5] noticed that there was a very close connection
between what they were doing and what was done in [15], but there were subtle
differences which prevented them using the results from [15] directly. Curiously,
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this disconnection resurfaces here: whilst it looks as though extensions will work
in §4.1.2, Szemerédi’s lemma seems at present to be intrinsic to the study of edit
distance, as it is to the study of property testing (as might be inferred from [3]. For
more on this subject, including hypergraph extensions, see [4, 45, 9]).

9.2 The relationship between κp and µp

So far we have concentrated on the parameter κp rather than on µp, because
of its greater importance in applications. On the other hand, µp might appear the
more natural parameter. What is the relationship between these two?

Given that µp is the unconstrained extremal function and κp is the same but
where the underlying graph is complete, the relationship between µp and κp is
somewhat reminiscent of the relationship between Turán’s theorem and Ramsey’s
theorem. Ramsey-Turán theory was an attempt to explore that relationship: we do
not describe it in detail here but refer the reader instead to the survey by Simonovits
and Sós [53].

Given a graph H, Ramsey-Turán asks for the value of the function

ex(H, n, α) = max{e(G) : |G| = n, H 6⊂ G, α(G) ≤ α }

where α(G) is the independence number of G. Clearly ex(H, n, n) is the ordinary
extremal function and the idea is that for small values of α the study of ex(H, n, α)
approaches Ramsey theory in some way. One of the most studied problems was to
find

lim
ǫ→0

lim
n→∞

ex(H, n, ǫn)

(

n

2

)−1

.

In like manner, given a 2-coloured multigraph H, we might define

exp(H, n, α) = max { wp(G) : |G| = n, H 6⊂ G , α(G) ≤ α }

where the independence number α(G) of the 2-coloured multigraph G is the inde-
pendence number of the underlying graph Gu. We could then define

µǫ
p(H) = lim

n→∞
exp(H, n, ǫn)

(

n

2

)−1

and µ0
p(H) = lim

ǫ→0
µǫ

p(H) .

If G is a complete 2-coloured multigraph G then α(G) = 1, and so κp(H) ≤
µǫ

p(H) for all ǫ > 0. Thus κp(H) ≤ µ0
p(H). It seems natural to ask whether

κp(H) = µ0
p(H) holds.

Clearly there are graphs H for which κp(H) = µ0
p(H), because κp(H) ≤ µǫ

p(H) ≤
µp(H) holds for all H and we have seen plenty of examples where κp(H) = µp(H).
But there are also graphs H for which κp(H) < µ0

p(H). An example due to Saxton
is as follows.

Let H = cc(tKt): that is, H consists of t red cliques of order t with blue edges
in between. Given ǫ > 0 there is a triangle-free graph of order n and independence
number at most ǫn which is sparse — that is, it has o(n) edges (Erdős [24]). Let
F be the graph consisting of k copies of this graph with all edges in between the
copies (that is, F is complete k-partite with a copy of this graph inserted into each
class); then F contains no complete subgraph of order greater than 2k. Let G be
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the 2-coloured graph obtained by painting every edge of F green. Then α(G) ≤ ǫ|G|
and wp(G) = (1 − 1/k + o(1))

(

|G|
2

)

. Moreover if k = ⌊(t2 − 1)/2⌋ then H 6⊂ G. This
shows that µ0

p(H) ≥ 1 − 2/(t2 − 2). The construction is the same as that used by
Erdős and Sós [30] when studying the Ramsey-Turán function for K2k+1.

On the other hand, κp(H) ≤ 1 − min{p, q}/(2t − 2). For otherwise there is some
δ > 0 and a sequence (Gn) of 2-coloured complete graphs not containing H with
|Gn| = n and wp(G) ≥ (1 − min{p, q}(1/(2t − 2) − δ))

(

n
2

)

. Let Fn be the graph
consisting of the green edges of Gn. Then Fn has at least (1 − 1/(2t − 2) + δ)

(

n
2

)

edges. By the Erdős-Stone theorem [31], for large n the graph Fn contains a complete
(2t−1)-partite subgraph J with R(t) vertices in each class, where R(t) is the ordinary
two colour Ramsey number. Consider the subgraph of Gn spanned by the vertices
of J . The edges of J are green and, since Gn is complete, each class of J spans
a monochromatic copy of Kt, by the definition of R(t). At least t classes contain
monochromatic copies of the same colour. If these t copies of Kt are all red they
span a copy of H in Gn, and the same is true too if they are all blue, because the
edges of Gn between the Kts are all green.
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[54] E. Szemerédi, Regular partitions of graphs, in Problèmes combinatoires et
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Random geometric graphs

Mark Walters

Abstract

Suppose that we place n points in a square, uniformly at random, and form
a graph by joining two if they are within some distance r of each other. What
does the resulting graph look like? And how does it vary as r changes?

Alternatively, we could form a graph by placing the n points uniformly at
random as before, but this time joining each point to its k nearest neighbours.

Both of these models are random but have some structure coming from the
underlying planar topology. This structure gives them a very different behaviour
from that of the ‘ordinary’ random graphs.

We survey the known results about these models and some other closely
related models, and summarise some of the techniques used in proving such
results.

1 Introduction

Most combinatorialists would define the start of random graph theory by the
seminal papers of Erdős and Rényi ([17, 18, 19, 20]) published in 1959–61, which
introduced the standard random graph model. However, roughly simultaneously
(1961), Gilbert [29] introduced a different random graph model which has only re-
cently risen to prominence. In this model the vertices have some (random) geometric
layout and the edges are determined by the position of the vertices. We shall call
graphs formed in this way random geometric graphs.

We want to place points uniformly throughout the plane in such a way that
they occur with a positive ‘density’. This is the idea of a Poisson process. For the
reader’s convenience we very briefly recall the important features of such a process.
(Alternatively, see e.g., Section 6.8 of [34] for background on Poisson processes,
or [44] for an in-depth study of their properties.)

Definition A Poisson process P of density one in R2 is a random subset of R2

defined by the following two properties:

1. the number of points in any (measurable) set A is Poisson distributed with
mean the (Lebesgue) measure of A,

2. if A, B are disjoint (measurable) subsets of R2 then the number of points in
A is independent from the number of points in B.

Gilbert’s original model was defined as follows: pick points in R2 according to a
Poisson process P of density one and join two if their distance is less than some
parameter r. We see that the expected number of neighbours of a point is exactly
the expected number of points of P within distance r, which is the expected number
of points in a disc of area A = πr2. In other words the expected degree of a vertex
is exactly A. Thus, although we have defined the graph in terms of the radius r,
it is more natural to parametrise in terms of the area A = πr2; we write G(A) for
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the resulting graph. We shall, however, reserve the symbol r for the corresponding
radius.

Having constructed this graph we can ask all the normal graph theoretic ques-
tions: does the graph have a giant (infinite) component, is it connected, what is
the chromatic number? Some of these are applicable to the model as it stands, but
many of them only really make sense for finite graphs. For example, it is easy to
see that the graph is not connected for any r (somewhere there will be an isolated
vertex), and that the chromatic number is infinite for any r > 0. Thus, we introduce
a finite version of the model: we restrict the model to a square Sn of area n (so side
length

√
n) which ensures the expected number of vertices is n. We call the resulting

graph G(n, A). We note that the graph G(n, A) does not (usually) have exactly n
vertices, but the expected number of vertices is n and, since the standard deviation
of the number of vertices is only

√
n, it is (highly) unlikely to be very far from n.

We shall not be interested in results for fixed n, but rather in the asymptotic
behaviour as n goes to infinity. More precisely, we have A = A(n) and we will look
at the properties of the sequence of graphs G(n, A(n)). However, we will suppress
the notation where this is no ambiguity and speak of the graph G(n, A).

We briefly remark that rather than placing points according to a Poisson process
we could place exactly n points uniformly at random inside the square Sn. Since,
conditional on a Poisson process having n points in a region A, they are uniformly
distributed over that region (see e.g., [44]) the resulting graph (usually called the
Binomial model) is very similar to the Gilbert model. It is, however, more difficult
to analyse because knowing what happens in one small part of the box affects the
behaviour throughout the box. This is analogous to the difference between G(n, m)
and G(n, p) in ordinary random graphs. Owing to the increased complexity these
dependencies introduce, and the fact that it does not naturally generalise to an
infinite graph on the whole plane, we shall not consider the Binomial model in this
paper.

One practical application of this model is to wireless networks (see the next
section). In this application the Gilbert model is very inefficient. For example,
to make it likely that the network is connected the area needs to be quite large
(logarithmic; see Section 2.4) and since, in a wireless network, power is roughly
proportional to area the power consumption is high (so battery life is reduced etc.)
Indeed things are even worse: there is a lot of interference.

It is natural to consider whether we could alleviate these problems by reducing
the power and range in regions of high density. We do this by adjusting the range
to that of the kth nearest neighbour. More precisely, we take a Poisson process P of
density one in the plane (respectively the square Sn) and place an undirected edge
between each point and its (a.s. unique) k nearest neighbours. Call the resulting
graph K(k) (respectively K(n, k)). We consider this model in Section 3.

1.1 Motivation

Although these models are natural objects for ‘pure mathematical’ study, and
in this paper we view them from that perspective, they also have ‘real world’ appli-
cations.
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First, we imagine a network of radio transmitters, each of some fixed range1 r,
spread across the plane at random. The resultant communication network is exactly
the graph defined by Gilbert. Indeed, this was a scenario Gilbert mentioned when
originally defining his model. In the years following the original paper, there were
several papers about the model which had this application in mind (see e.g., [45, 72,
37, 73, 42, 62, 55]). Recently there has been a rapid proliferation of wireless devices
(mobile phones, wireless computing etc) and this has provided a significant impetus
to the field. Indeed, there are far too many papers to give even a representative
sample; we just mention Penrose’s book [60] which includes many of the results of
the first half of this paper (and very much more), the book of Meester and Roy [51]
which concentrates on percolation rather than more general properties of random
geometric graphs, and the survey paper of Balister, Bollobás and Sarkar [3] which
has a rather different emphasis from this paper (for example, they give significant
attention to other models of random geometric graphs such as Voronoi percolation).
In addition, many of the above sources deal with the higher dimensional analogues
of these models.

There is another rather more surprising application: to statistics. Indeed, this
application has historically been the more important. A common statistical question
is to ask whether a collection of (possibly multi-variate) data comes from a single
distribution or multiple distributions. One technique is to treat the data as points in
an appropriate dimension space and ask whether they are “randomly” distributed.
For example if the data is bi-variate we can plot each point in the plane (or a subset
of the plane), construct a graph as above, and ask whether the resulting graph is
‘typical’. See, for example [26, 27, 32, 66, 68, 79, 40, 77]. (A related example, which
is probably rather more familiar, is that of constructing a minimal spanning tree on
the point set, and asking whether it is ‘typical’.)

The second motivation, in particular, suggests that we should be interested not
just in the properties of (graphs formed from) uniformly distributed point sets but
other underlying densities (e.g., normally distributed points). These have been stud-
ied but, for simplicity, we shall not consider more general distributions: see the cited
references and, in particular, Penrose’s book [60] for details.

1.2 Notation and conventions

As mentioned in the introduction, when dealing with the graphs G(n, A) and
K(n, k) we will be proving asymptotic results. Thus, we introduce one convenient
abbreviation. For an event B depending on G(n, A) we say that B occurs with high
probability (abbreviated whp) if

lim
n→∞

P (B(G(n, A))) = 1,

and similarly for K(n, k). We reserve ‘almost sure’ (a.s.) for events which genuinely
have probability one such as no two points of the Poisson process having the the
same distance from a third. To avoid clutter in our results, where appropriate, we
will implicitly ignore such events (for example, we shall write ‘is’ to mean ‘is with
probability 1’).

1even here the area is a natural measure: it corresponds to the power of each transmitter
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On occasion we will want to talk about a geometric graph on some particular
set of points P: we use the notation G(P, A) to denote the Gilbert model with
parameter A formed on the point set P.

We will be making frequent reference to the Poisson distribution and we shall
use Po(λ) to denote a Poisson random variable with mean λ.

We will use standard notation for asymptotic bounds: o, O, Ω and ω. Formally,
for two functions f and g we say that f = o(g) (respectively (f = O(g), f = Ω(g)
and f = ω(g)) if f/g → 0 (respectively is bounded above, is bounded away from
zero, tends to infinity). If f = O(g) and f = Ω(g) we write f = Θ(g).

2 The Gilbert Model

2.1 Degrees

We start by looking at the maximum and minimum degrees. In the infinite
graph it is easy to see (by considering infinitely many disjoint discs of radius r) that
there are vertices of any finite degree, but no vertices of infinite degree (since the
probability a given vertex has infinite degree is zero and there are only countably
many vertices).

Hence we turn to the finite graph G(n, A). Before discussing more exact results
we give a simple but important example: that of when the minimum degree δ stops
being zero (obviously for small r the minimum degree is zero and for large r it is
non-zero).

By the definition of the Poisson process, the probability a particular vertex is
isolated is e−A (for convenience we ignore vertices near the boundary of Sn, see
Section 2.12 for details). The expected number of vertices is n so the expected
number of isolated vertices is ne−A which strongly suggests that A = log n is the
threshold: that is if A = (1 − ε) log n then δ = 0 whp, and if A = (1 + ε) log n then
δ > 0 whp.2

We see that when asking about the maximum and minimum degree we are es-
sentially asking (at least for A ≪ n) what is the maximum (minimum) of n in-
dependent Poisson random variables with mean A = πr2; i.e., ∆ is approximately
the value of k such that P(Po(πr2) ≥ k) = 1/n and δ is the value of k such that
P(Po(πr2) ≤ k) = 1/n. Arguing along these lines one can prove (Chapter 6 of
Penrose [60])

Theorem 2.1 Let G = G(n, A) as above and let ∆ and δ be the maximum (respec-
tively minimum) degree of G. Then the following all hold whp.

1. If A < n−ε for some ε > 0 then ∆ is bounded and δ = 0.

2. If A = o(log n) but A is not less than n−ε for any ε > 0, then δ = 0 and

∆ = (1 + o(1))
log n

log((log n)/A)
.

In particular ∆ is o(log n) and ω(A).

2We have just looked at the expectation; for a formal proof we would need something more such
as checking that the variance is small.
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3. If A = c log n for some constant c then ∆ = Θ(log n) and

(a) If c < 1 then δ = 0,

(b) if c > 1 then δ = Θ(log n).

4. If A = ω(log n) then δ and ∆ are both (1 + o(1))A.

The first regime is not very interesting: the area is rapidly going to zero so the
average degree is rapidly going to zero. The fourth regime is called the super-
connectivity regime and this regime tends to be comparatively easy to analyse:
every vertex has essentially the same degree and indeed in some heuristic sense
every ‘relevant’ set of area A has about A points in it.

The middle two regimes are of the most interest: for reasons that will become
apparent they are called the sub-connectivity and connectivity regimes respectively.3

We include one observation: if A = A(n) satisfies A = o(log n) then

∆(G(n, λA)) = (1 + o(1))∆(G(n, A))

for λ > 0; that is in the sub-connectivity regime multiplying the area by a con-
stant does not change the maximum degree significantly. On the other hand it is
immediate that if A = ω(log n) then

∆(G(n, λA)) = λ(1 + o(1))∆(G(n, A))

i.e., the maximum degree is proportional to the area in the super-connectivity regime.

Much tighter bounds on the degree are known. In fact, and this is a feature we
will see of many ‘local events’, throughout the sub-connectivity regime the maximum
degree is very tightly constrained: it must take one of two possible values (again see
Chapter 6 of Penrose [60]).

Theorem 2.2 Suppose that G = G(n, A) with A = A(n) = o(log n) then there
exists a sequence jn such that ∆(G(n, A)) ∈ {jn, jn + 1} whp.

In this case, the numbers jn are known explicitly: suppose that k satisfies P(Po(A) >
k) > 1/n but P(Po(A) > k + 1) < 1/n. Then jn is either k or k − 1. (Indeed, it is
known exactly when each of these possibilities occurs.)

2.2 Clique number

Next we consider the clique number cl(G). We start with the most trivial of
observations: cl(G) ≤ ∆(G) + 1. Also, for any point set P we have cl(G(P, πr2)) ≥
∆(G(P, π(r/2)2)) + 1 since, by the triangle inequality, any two points within a disc
of radius r/2 are joined. We remark that, in the sub-connectivity regime, this is
sufficient to give the asymptotic behaviour of the clique number.

We observe that in this argument the fact that the disc of radius r/2 was centred
at a point of the process was irrelevant: if any disc of radius r/2 contains k points
then these k points form a clique. Of course there are other ways for a large clique

3We remark that this terminology is not completely standard. For example, in his book [60]
Penrose includes the first regime in the sub-connectivity regime.
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to occur: we just need lots of points in some set of diameter r. Trivially this set
need not fit into a disc of radius r/2. However, the following theorem, which is a
slight strengthening of Theorem 6.15 of [60], shows that the largest clique is almost
contained in a disc of radius r/2.

Theorem 2.3 For any fixed ε > 0 the largest clique in G(n, A) is, whp, contained
in a disc of radius (1 + ε)r/2.

Proof The Bieberbach isodiametric inequality (see e.g. page 32 of [47]) states that
any set of diameter r has area at most πr2/4. To prove Theorem 2.3 we need a
stronger bound when we add the condition that the set is not contained in a disc
of radius (1 + ε)r/2; i.e., that the circumradius is at least (1 + ε)r/2. The following
lemma is exactly what we require (Hernández Cifre [41] based on Scott [69]).

Lemma 2.4 Suppose that U is a (measurable) set with diameter d and circumradius
R. Then the area of U is at most

3

2

[

d2

(

π

3
− arccos

√
3R

d

)

−
√

3R
(

R −
√

d2 − 3R2
)

]

.

Applying this lemma in our situation we see that there is a δ > 0 such that any set
of diameter r and circumradius at least (1 + ε)r/2 has area at most (1 − δ)πr2/4.

The idea is that such sets have noticeably smaller area than a disc of radius r/2
and, hence, do not contain as many points. However, to make this argument work
we need to bound the number of such sets in some way. To do this we use the
following tessellation argument.

We tile the square Sn with tiles of side length ηr for some small constant η.
Suppose that G(n, A) contains a k-clique H which is not contained in a disc of
radius (1 + ε)r/2. By definition H has diameter at most r. Let ˜H be the collection
of tiles that contain a vertex of H. The diameter of ˜H is at most r(1 + 2

√
2η) and

the circumradius of ˜H is at least (1 + ε)r/2. Hence, provided η was chosen small
enough, Lemma 2.4 implies | ˜H| ≤ (1 − δ/2)πr2/4.

How many possible choices for ˜H are there? Well there are O(n/r2) choices for
the first tile. Every other tile must lie within r of that tile, so there are only a fixed
number (less than 4/η2) of possible choices for each tile. Since the total number of
tiles in ˜H is at most a constant, there are O(n/r2) choices for the collection ˜H.

We see that the size of the largest clique not contained in a disc of radius (1 +
ε)r/2 is bounded above by the maximum of O(n/r2) Poisson random variables with
mean (1 − δ/2)πr2/4, whereas cl(G) is bounded below by the maximum of n/r2

independent Poisson random variables with mean πr2/4 (consider disjoint discs of
radius r/2). The result follows by simple computation. �

We remark that the bounds at the end of this proof are essentially the same as
the bounds for the maximum degree in the graph G(n, r/2) (i.e., the maximum of
O(n/r2) random variables with mean πr2/4). Thus we expect the maximum degree
in the graph with radius r/2 to be essentially the same as the clique number in the
graph with radius r. The following theorem shows this is true (we omit the proof:
see Theorem 6.15 of [60])
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Theorem 2.5 Suppose that r → ∞. Then, whp,

cl(G(n, A)) = (1 + o(1))∆(G(n, r/2)).

Exactly as with the maximum degree (see the previous section), in the sub-
connectivity regime, the clique number is even more tightly controlled (Müller [53]).

Theorem 2.6 Suppose that A = o(log n). Then there exist a sequence of numbers
jn such that cl(G(n, A)) ∈ {jn, jn+1} whp.

In fact Müller proves rather more, he shows that two point concentration occurs for
a large class of local properties.

2.3 The Giant Component

The next question we consider is ‘when does this graph have an infinite compo-
nent?’ This is exactly a ‘percolation’ question and our initial ideas will be based on
comparing G(A) with percolation on a square lattice.

We use the idea of tessellation: tile the plane with squares of side length r/
√

5:
this is chosen so that any two points in adjacent squares (i.e., squares sharing a side)
are joined. There is a natural correspondence from the tiles to vertices in Z2 and
we use this correspondence to construct a site percolation model on Z2 as follows.
Declare a vertex of Z2 open if the corresponding square in the tessellation contains
at least one point. Obviously, by the definition of a Poisson process, the sites are
open independently each with probability 1 − exp(−r2/5).

Now suppose that there is an infinite component C in this site percolation on
Z2. We can ‘lift’ this back to an infinite component in G(A); indeed, the set of all
points in tiles corresponding to sites in C form an infinite connected set in G(n, A).
(Note this set need not be a component as there may be points in other tiles that
are joined to this infinite connected set.)

Hence, if

P(a site in Z2 is open) = 1 − exp(−r2/5) > pc(Z
2, site),

where pc(Z
2, site) denotes the critical probability for site percolation on the square

lattice, then the graph G(A) has an infinite component. Using the best rigorous
bounds for the critical probability pc(Z

2, site) ≤ 0.679492 (Wierman [76]), we see
that this guaranteed to be true if r > 2.39 or equivalently if A > 17.9.

Conversely tile the plane with squares of side length r (so no points in tiles
that are not adjacent or diagonally adjacent are joined). Once again we use the
correspondence between tiles and Z2, and again we declare a site in Z2 to be open
if it contains a point of the process. Hence, we have

P(a site in Z2 is open) = 1 − exp(−r2).

Suppose that G(A) contains an infinite component. Then the set of all vertices
in Z2 which contain a point of this infinite component are a connected subset of the
graph on Z2 formed by including not only the normal edges but also the diagonal
edges. Moreover since no tile contains infinitely many points of the Poisson process
(a.s.) this connected set must be infinite.
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Thus, we have shown that if there is no infinite component in the corresponding
square lattice (with diagonals) then there is no infinite component in G(A). Hence
if

P(a site in Z2 is open) < pc(Z
2 with diagonal edges, site), (2.1)

then G(A) does not contain an infinite component (almost surely). Since the lat-
tices Z2, and Z2 with diagonals are matching pairs (that is they are dual in a site
percolation sense)

pc(Z
2 with diagonal edges, site) = 1 − pc(Z

2, site).

(a combination of the results of Fisher [22], Fisher and Essam [23], and Kesten [43];
see Chapter 11 of Grimmett [33] for an exposition).

Combining these results we see that equation 2.1 holds if exp(−r2) > pc(Z
2, site)

which is guaranteed by A < 1.214. Thus, if A < 1.214 then G(A) a.s. has no infinite
component.

This technique of tiling and comparing the model with a known percolation
model is very widely applicable but, as in this example, tends to give quite weak
bounds. One way of viewing this method is that we approximate the graph G by a
new graph ̂G where points of the process are joined whenever their corresponding
tiles are joined in the corresponding lattice. In the first case we chose the tiling such
that ̂G is a subgraph of G and in the second case such that G is a subgraph of ̂G.
In each case, we were able to apply known results to ̂G and deduce results about G.

There are two places where this argument is far from tight. First, our approxi-
mation of the graph G(n, A) by a graph on tiles is not a very close approximation.
For example in the first case we had to choose the tile side length so that every pair
of points in adjacent tiles were joined so frequently points in tiles at distance two
are joined; i.e., G has many more edges than ̂G.

Secondly, we had to use the rigorous bound (0.679492) for pc(Z
2, site) which

is quite a long way from the ‘answer’ given by computer simulations of 0.592746
(Ziff [80]). In other words we approximated by a model that itself does not have
good (rigorous) bounds.

There are some ways we can improve this tessellation method (see below) but
these improvements are not necessary for two of its key uses. First, it is useful
for initial ‘back of the envelope’ calculations to work out the approximate order
of magnitude of thresholds (e.g., are they constant or logarithmic etc). Secondly,
and more importantly, it is useful to rule out ‘unlikely cases’. We shall give some
examples later but for the moment let us consider an analogous case in the normal
random graph model G(n, p). When proving that the threshold for connectivity is
p = (log n)/n the proof has two parts: one ruling out small components (including
isolated vertices) and one very easy part ruling out two large components where
crude arguments are sufficient.

One way to improve the above bounds is by using different lattices: in particular
we can tessellate the plane with hexagons rather than squares, so the correspond-
ing lattice is triangular. This is one lattice where the critical probability for site
percolation is known exactly: it is 1/2 (Kesten [43]). Applying the same argument
as above shows that for A > 10.9 there is an infinite component: indeed this was
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essentially proved by Gilbert in the original paper [29].4

We remark that we could use much smaller tiles in our tessellation: this obviously
makes ̂G a much closer approximation to G, but at the cost of giving us a much
more unusual graph on the underlying lattice so we no longer have good bounds on
pc. However, in some circumstances, this sort of tessellation is useful.

There has only been a small improvement to this bound of 10.9 (Hall [38]; Philips,
Panwar and Tantawi [62] claim better but give no proof).

Theorem 2.7 The critical area Ac for percolation in the model G(n, A) satisfies
Ac < 10.6.

The improvement was obtained by taking slightly different regions: hexagons with
the corners rounded rather than true hexagons. These rounded hexagons are still
disjoint but now do not cover the whole plane. The size of the underlying true
hexagons needs to be a little larger to get probability at least 1/2 that each region
contains a point, but the maximum distance between points in adjacent regions is
reduced.

However significantly better lower bounds are known. These use a different
technique: that of comparison with a branching process. Since this technique is
very standard we only sketch the argument.

Suppose that we ‘explore’ the Poisson process as follows. We start at a point of
the process v. Let A0 = {v}. Then look in the disc of radius r about that point for
other points. Let A1 be the set of such points. Then look in discs of radius r about
each of the points of A1 and place all new points found in A2. Repeat. This process
can naturally be coupled with a dominating branching process in which each node
has number of children Poisson distributed with mean |A|. Hence, if |A| < 1 the
branching process dies almost surely. The branching process dominates the original
exploration so we see that the probability v is in an infinite component is zero. Since
this is true for every point in the Poisson process we see that G(A) has no infinite
component almost surely.

This bound can be improved by the following observation: after the first step
each new point found must be in ‘unexplored space’; in particular it cannot be
in the disc about the current point’s parent. Thus the unexplored area is at most
(π/3+

√
3/2)r2. Hence, by a simple calculation, the branching process almost surely

dies if A < 1.64 (see Gilbert’s original paper [29]5).
Observe that the above bound on the unexplored area is only attained if the

child is actually at distance r from its parent: further improvements can be made
by giving each vertex found a ‘type’ depending on its distance from its parent and
comparing with a typed branching process. Using this method Hall [38] obtained:

Theorem 2.8 The critical area Ac for percolation in the model G(n, A) satisfies
Ac > 2.18.

2.3.1 Computer Simulations It is of course easy to simulate G(A) with a com-
puter, or more accurately, to simulate finite subsections of this model and ‘extrapo-
late’ from the behaviour on these finite regions to that of the infinite plane. Indeed,

4At the time pc was not known to be 1/2 and Gilbert proved his bound conditional on pc = 1/2.
5a typographic error causes it to be incorrectly stated as 1.75 in the paper
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Gilbert did this in his original 1961 paper obtaining an estimate of Ac = 3.2 (careful
programming of a three million dollar IBM7090 mainframe allowing him to simulate
3000 points).

Since then many others have estimated Ac including [64, 70, 28, 67]. Most
recently Quintanilla, Torquato and Ziff [63], using significant computer time and a
very careful choice of algorithm, obtained the current best estimate of 4.51223 ±
0.00005.

In almost all cases the extrapolation from finite regions to the infinite plane is
not justified: more precisely it is usually clear that the method works asymptotically
but the speed of convergence is unclear.

One exception is the following ‘in-between’ result of Balister, Bollobás, Sarkar
and Walters [9] giving a rigorous 99.99% confidence interval of [4.508, 4.515] (this
strange sounding statement is explained below). As this method has been used
to prove some completely rigorous bounds for some related percolation models we
briefly describe it.

The key step is a rigorous extrapolation from finite regions to the infinite model.
We tessellate the plane with (large) square tiles and we make the obvious identifica-
tion between tiles and vertices in Z2 as usual. This time, however, our comparison
will be with a bond percolation process on Z2.

We take an event in the original model on R2 that depends on the Poisson
process inside two neighbouring tiles and nothing outside of these two tiles. If the
event occurs we declare the corresponding bond in the corresponding Z2 lattice open.

As a practical example let us give one such event: namely the event that the
largest component in G(A)|T1

is joined to the largest component in G(A)|T2
inside

T1 ∪ T2. We shall denote this event by T1 ↔ T2.

Of course, these bonds are not independent. However, bonds which do not have
a tile in common are independent. More precisely, we call a bond percolation model
1-independent if for any two collections of bonds B1 and B2 that do not share an
endpoint, the bonds in B1 are independent of the bonds in B2.

We use the following result of [9].

Theorem 2.9 Suppose that P is a 1-independent bond measure on Z2 and that
each edge is present with probability at least 0.8639. Then, a.s., there is an infinite
component: i.e., the model percolates.

Applying this to our example we see that if

P(T1 ↔ T2) > 0.8639 (2.2)

then we have an infinite component in the 1-independent model on Z2 which, by the
definition of this event, lifts back to an infinite connected set in the original model.
The important feature is that this event looks at one fixed finite region of the plane
(namely, two neighbouring tiles) and, just from the behaviour in this finite region,
we can rigorously deduce the behaviour in the whole plane.

In most cases (see Section 3.3 for an exception) this finite region is still too large
for us to prove anything rigorous, and we resort to Monte-Carlo methods for this
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finite event. However, by using this method there is exactly one possible source of
error: we could be very unlucky in the random numbers.6

Let us consider this more precisely. We fix the tiling of the plane and define a
random variable Au in some way, and then prove rigorously that with probability
at least 99.99% equation 2.2 holds when the area A on which the event T1 ↔ T2

implicitly depends is taken to be Au. Then [0, Au] is a (random as always) 99.99%
one-sided confidence interval for Ac.

How do we get such a random variable? We fix some value A′, try a large number
(e.g. 200) of random configurations with A = A′ and count how many times the
event T1 ↔ T2 occurs. If it occurs more than 190 times we set our random variable
Au = A′ and otherwise we set Au = ∞. This ‘works’ because if P(T1 ↔ T2) < 0.8639
it is very unlikely to occur 190 times in 200 trials (easy to check by summing the
binomial distribution). Of course, if Au = ∞ this bound gives no information so we
want to pick A′ close to Ac but still make sure the event T1 ↔ T2 occurs at least
190 times. However, for the validity of the method it does not matter how we pick
the value A′.

Having defined our confidence interval we obtained the ‘upper bound’ given
earlier of 4.515 by evaluating Au once. Using the same idea we obtained the ‘lower
bound’ of 4.508.

2.4 Connectivity

Now let us turn to connectivity. As we saw in Section 2.1 the infinite graph
G(A) is never connected since it will always have minimum degree zero (i.e., it will
contain isolated vertices). Indeed, we saw there that if A < log n then δ = 0, and
thus the graph G(n, A) is not connected.

Turning to the upper bound, first let us see what a simple tessellation argument
gives. Tile the square Sn with tiles of side length7 r/

√
5. If every such square

contains a point of the process then the resulting graph is obviously connected.

Hence if,

P(there is an empty square) ≤ 5n/r2 exp(−r2/5) → 0

the graph G(n, A) is connected whp. This corresponds to r2/5 ≈ log n or A ≈
5π log n. Combining these two we see that the threshold for connectivity is A =
Θ(log n).

However, very much tighter results are known. Before we state them we need
a little more notation. For a fixed point set P and a monotone graph property Π
define H(P, Π), the hitting area for Π, by

H(P, Π) = inf{A : G(P, A) has property Π}
6In practice, there are two other possible errors: first, as with any other computer method, there

could be a bug in our computer program, and secondly our random numbers may not be random
(e.g., they may come from a pseudo-random number generator). The latter problem can be avoided
by using a hardware random number generator.

7Strictly we need to change the size slightly to guarantee that the whole square Sn is divisible
by the tile size. This effect is tiny and we ignore it.
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Theorem 2.10 (Penrose [58]) For almost all point sets P we have

H(P, connected) = H(P, no isolated vertices)

This theorem is telling us exactly what the obstruction for connectivity is: it is the
existence of isolated vertices. The threshold for isolated vertices is essentially trivial
to calculate: indeed we did such a calculation for the lower bound mentioned above.
We do, however, need to be careful about points close to the boundary but we defer
discussion of this technicality until Section 2.12.

Since the events ‘vertex v is isolated’ are local events they are nearly independent.
Hence the number of such isolated vertices is approximately Poisson (see e.g., [12]
or [1]) (more precisely the number of isolated vertices converges in distribution to
a Poisson random variable as n tends to infinity). Using this fact it is easy to give
an explicit formula for the probability that there are no isolated vertices, which by
Theorem 2.10 implies G is connected.

Theorem 2.11
P(G(n, log n + c) is connected) = e−e−c

.

(A similar result was proved independently by Gupta and Kumar [35] a few years
after Penrose.)

The proof splits into two pieces, first we show that the graph is very unlikely to
contain two large components, and then we show that, in fact, all components must
be single vertices.

Lemma 2.12 Suppose that c > 0. Then there is a C such that, whp, the graph
G(n, c log n) does not contain two components each of (Euclidean) diameter at least
C

√
log n.

The ideas used in proving this lemma are used in many other proofs so we give
a fuller explanation than elsewhere.

We use a tessellation argument. Tile the square Sn with tiles of side length
r/

√
20. This is chosen so that points in neighbouring tiles have distance at most

r/2. The argument consists of the following four steps:

1. each component must meet many tiles

2. all tiles adjacent to the component are empty

3. there must be many such tiles by the edge isoperimetric inequality for the grid

4. the probability that these neighbouring tiles are all empty is small.

Before we discuss each of these steps we note that the first two steps are trivial and
the third easy, but the final step is rather more subtle so will discuss it in rather
more detail.

Suppose that U and V are two components each of diameter at least C
√

log n.
Let ˜U be the set of tiles that meet a vertex or an edge of U which we identify with
the corresponding subset of Z2. Obviously, since ˜U includes all tiles meeting an edge
of U , ˜U is a connected8 subset of the lattice Z2. Define ˜V similarly.

8we ignore the zero probability event that an edge goes through the corner of a tile
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Step 1 Since each component has diameter at least C
√

log n, it meets at least
C

√
log n/(r/

√
20) = C

√

20π/c tiles. Let c1 =
√

20π/c.

Step 2 First some notation: for any collection A of tiles define ∂A, the boundary
of A to be the set of tiles in Ac adjacent to a tile in A.

Now, observe that the minimum distance between edges of two distinct compo-
nents is at least r/2. Indeed suppose not. This minimum distance must be obtained
between a vertex and an edge, and the edge has length at most r so the distance
between the vertex and one of the ends is at most r, so the two components are
joined which is a contradiction.

Hence, every tile in ∂ ˜U is empty since if any tile in ∂ ˜U contains a point of the
process it would be at most r/2 from an edge of ˜U and, thus, joined to U .

Step 3 One would expect that the boundary of a set is (at least) roughly the square
root of the size of the set itself, and this is exactly what the edge isoperimetric
inequality for the grid (Bollobás and Leader [14]) states.

Applying it to ˜U shows that ∂ ˜U contains at least

min{2

√

|˜U |, 2

√

|˜U c|}

tiles. By Step 1 |˜U | is at least c1C and since ˜U c ⊃ ˜V we see that |˜U c| is also at least
c1C. Therefore ∂ ˜U contains at least 2

√
c1C tiles.

Step 4 One might think that this is sufficient: but whilst it is very unlikely that
a particular collection of 2

√
c1C tiles is empty there are a vast number of possible

collections of tiles. To complete Step 4 we need to reduce this number in some
way. We would like to say that the collection of boundary tiles has some special
form. A natural candidate is that the boundary is connected (since it sort of looks
like we can walk around it). However, a moment’s reflection leads us to consider
an annulus: this has a boundary consisting of two pieces: the inner and the outer
boundary. (Also, but unimportantly, we need to be able to step round corners: that
is the boundary pieces are connected in the lattice with diagonals included.)

We make use of the following fact, which in topological terms is saying that the
square is unicoherent (see e.g., [16]).

Lemma 2.13 If A and Ac are connected subsets of the lattice Z2 then ∂A is con-
nected in the lattice with diagonals.

There is no reason to believe that ˜U c is connected (e.g., ˜U could be an annular
component) so we use a standard complementing trick. Let ˜U1 be the component
of ˜V c that contains ˜U . Then ˜U1 is connected by definition and ˜U c

1 is also connected

(since every other component of ˜V c is connected to ˜V outside of ˜U c
1).

Applying the edge isoperimetric inequality and Lemma 2.13 to ˜U1 rather than
˜U we see that ∂ ˜U1 contains at least 2

√
c1C tiles and is connected in the lattice with

diagonals.

To complete the proof we just use the following standard bound on the number
of connected subgraphs of the lattice (see e.g. Problem 45 of [13]):
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Figure 1: The rectangle R and the empty area (shaded).

Lemma 2.14 Suppose that G is a graph with maximum degree ∆ and that v ∈
V (G). The number of connected subgraphs of G with n vertices that contain v is at
most (e∆)n.

We have seen that ∂ ˜U1 is a (diagonally) connected set of at least 2
√

c1C empty
tiles. The number of diagonally connected sets of size u containing a particular tile
is at most (8e)u so the total number of diagonally connected sets of size at least u
is at most n(8e)u. Hence the probability that there is a diagonally connected set of
u tiles all of which are empty is is at most

n(8e)u exp(−ur2/20),

which tends to zero if u > 20π/c (recall πr2 = A = c log n).
Hence, provided that we choose C > 100π2/c2c1 we see that, whp, there do not

exist two components of diameter at least C
√

log n.

Lemma 2.15 Suppose that C is as in Lemma 2.12 with c = 0.9. Then whp, the
graph G(n, log n − 1

2 log log n) does not contain a component consisting of more than
one point and diameter at most C

√
log n.

(In fact the bound can be tightened a little: the lemma holds for A = log n−log log n;
see Penrose [60].)

Suppose that H is such a component. First we show that H cannot be too small;
in particular we show that whp, the diameter of H is at least η = (log log n)2/

√
log n.

Indeed, suppose not. Let x be a point of H. We see that B(x, η), the ball of
(Euclidean) radius η centred at x, would contain at least one other point and the
region B(x, r) \ B(x, η) would be empty. The probability that this event occurs at
a particular vertex is at most

(1−exp(πη2)) exp(−(A−πη2)) ≤ 2πη2 exp(−A) = O

(√
log n(log log n)4

n log n

)

= o(1/n).

Since there are n points, the probability that this event occurs at any vertex is o(1),
so whp there is no such point and, thus, no such H.

Now suppose that H has diameter d > η. Let J be the convex hull of H. Let t1
and t2 be horizontal tangents to J above and below J respectively and let t3 and t4
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be vertical tangents to J to the left and right of J . These four tangents describe a
circumscribed rectangle R containing J (see Figure 1). We see that R has diameter
at least η. Let η′ be the length of the longer side, so η′ ≥ η/

√
2. Let xi for 1 ≤ i ≤ 4

be the points where ti intersects J (so each xi ∈ H).

It is easy to see that the area of
⋃4

i=1 B(xi, r) \ R is at least

A + (1 + o(1)2rη′ ≥ A + (1 + o(1)2rη/
√

2 > A + η
√

log n = A + (log log n)2

and that this region is empty. The probability that four particular points have this
region empty is at most

exp(−(A + ηr)) ≤ exp(− log n + 1
2 log log n − (log log n)2) = o

(

1

n(log n)3

)

.

How many ways of choosing four such points are there? There are n choices for
x1 but, having chosen x1, there are only O(log n) choices for the other three (they
must be within C

√
log n of x1). Hence, the total number of ways of choosing four

such points is O(n(log n)3). Therefore, the probability that there exist four points
x1, x2, x3, x4 within C

√
log n of each other with

⋃4
i=1 B(xi, r)\R empty tends to zero

and we see that, whp, no such rectangle exists and thus, that no such component
exists.

Lemmas 2.12 and 2.15 together with the earlier observation that isolated vertices
occur all the way up to A = log n suffice to prove Theorem 2.10.

2.5 Higher Connectivity

The same techniques as in the previous section can be used to prove bounds for
κ-connectivity for κ ≥ 2.

Theorem 2.16 (Penrose [59]) For any fixed κ

H(P, minimum degree κ) = H(P, κ-connected).

There is one slight change, the obstruction moves to the boundary of Sn; that is,
for κ > 1 a vertex of degree at most κ is at least as likely to occur near the boundary
of Sn as in the centre. We discuss this further in Section 2.12. For the moment we
only state what this gives as a threshold.

Theorem 2.17 Suppose that κ ≥ 2 and A = log n + (2κ − 3) log log n + c. Then

P(G(n, A) is κ-connected) → f(c)

where f(c) is a function of c with limc→−∞ f(c) = 0 and limc→∞ f(c) = 1.

(The function f is known but complicated.)

In other words the threshold for κ-connectivity is A = log n + (2κ − 3) log log n.
We remark that the reason this is not correct for κ = 1 is the difference in the
boundary behaviour.
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2.6 Hamiltonicity and Matchings

Hamiltonicity is another standard graph property to consider. Moreover, its
intrinsic interest is increased by the greater difficulty in finding the threshold for
Hamiltonicity in ‘ordinary’ G(n, p) random graphs (see e.g., [12]). It does not,
however, seem a natural property from a wireless network perspective.

An obvious necessary condition for Hamilitonicity is that the graph be 2-connected
(which by Theorem 2.16 is whp the same as the graph having minimum degree two).
It is natural to ask, as Penrose did, whether this is also a sufficient condition in the
sense that

H(P, Hamiltonian) = H(P, 2-connected). (2.3)

Progress on this was slow, Petit [61] proved that A/ log n → ∞ implies the existence
of a Hamilton cycle, and this was improved by Dı́az, Mitsche and Pérez [15] to
A = (1 + ε) log n. Whilst this was a good step towards (2.3) the condition already
implies that the graph G(n, A) is ε′ log n connected for some ε′ > 0.

Then three groups proved it independently, resulting in the two papers Balogh,
Bollobás, Krivelevich, Müller and Walters [11] and a little later Müller, Pérez and
Wormald [54]. The latter authors also proved that as soon as the graph is 2κ-
connected then there exist κ disjoint Hamilton cycles. Since the argument is rather
involved we shall only sketch some of the key steps.

First we tessellate Sn with squares of side length
√

log n/c for some large constant
c. We form the tessellation graph ̂G by joining two points if the centres of their tiles

are at most (c − 2)
√

logn
π apart. Let r be the hitting radius for 2-connectivity.

Since, the threshold for 2-connectivity of G is A = log n + log log n we may assume
πr2 > log n and thus that ̂G is a subgraph of G. Further, since c is large the
tessellation graph ̂G is a fairly close approximation to G.

Almost all of these tiles contain many points: formally, 1 + o(1) of the tiles
contain at least 100 points. Moreover, since almost all the tiles contain at least 100
points, there is a vast connected component in ̂G: indeed it contains 1 + o(1) of all
tiles. We call the tiles in this component the easy tiles and the remaining (few) tiles
difficult.

Since there are so few difficult tiles they exists in several well separated small
‘clumps’. Using the 2-connectedness of the graph it is possible to construct a Hamil-
ton path for each clump (this is the complicated part of the proof, see [11] for
details). Having dealt with all the difficult squares is is easy to join all these short
paths and all the vertices in easy tiles together into a Hamilton cycle in G.

It may seem surprising that we can use the approximate tessellation graph to
prove a precise hitting time result like Theorem 2.3. The reason this works is that
when dealing with the intricate part of the results (dealing with a clump of difficult
tiles) we do not use the tessellation graph but the 2-connectedness directly. We use
the tessellation graph to identify small locally difficult parts of the graph and then to
join these local parts together. Thus, by using the tessellation graph we reduce the
problem from an intractable global problem to a more manageable local problem.
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2.7 Chromatic number

Next we turn to the chromatic number. We saw earlier that the clique number
cl(G) is well determined, and obviously the clique number is a lower bound for the
chromatic number. The following theorem describes the situation accurately.

Theorem 2.18 (McDiarmid [48]) Suppose that G = G(n, A) as usual.

1. If A = o(log n) then

χ(G) = (1 + o(1))cl(G) = (1 + o(1))∆(G).

2. If A = ω(log n) then

χ(G) = (1 + o(1))

√
3

2π
A = (1 + o(1))

√
3

2π
∆(G) = (1 + o(1))

2
√

3

π
cl(G).

The case A = o(log n) of the theorem is simple: obviously

cl(G(n, A)) ≤ χ(G(n, A))) ≤ ∆(G(n, A))

and in this range cl(G(n, A)) = (1 + o(1))∆(G(n, A)) (see Sections 2.1 and 2.2).
For A = ω(log n) we obtain a lower bound as follows. We bound the size of the

maximal independent set. Suppose that W is an independent set in G(n, A). Since
the discs B(w, r/2), for w ∈ W , must be disjoint we instantly have a bound of

|W | <
n + 4r

√
n + r

πr2/4
= (1 + o(1))

4n

πr2

(the second two terms in the numerator of the first fraction are to deal with effects
near the boundary). However, using Thue’s Theorem (see e.g., [56] or [65]) on disc
packing we can improve this to

|W | <
π

2
√

3
(1 + o(1))

4n

πr2

which gives a bound of

χ ≥ (1 + o(1))

√
3

2π
πr2 = (1 + o(1))

√
3

2π
A.

The upper bound uses the following deterministic result: let T (d) denote the unit
triangular lattice but with edges between any two vertices at (Euclidean) distance d.
Then χ(T (d)) = (1 + o(1))d2 (see e.g., [50]).

We tile the plane with hexagons with centres at distance εr so that the centres
are the vertices of an εr scaled copy of the unit triangular lattice; thus, if we join
any two of these vertices whenever they are at Euclidean distance at most r we get
an εr scaled copy of T (1/ε). Suppose that h is the maximum number of points in
any of these hexagons. Since we are in the super-connectivity regime h = (1 + o(1))
times the area of one of these hexagons (i.e. (

√
3/2)ε2r2). Hence,

χ ≤ (1 + o(1))

√
3

2
ε2r2χ(T (1/ε)) = (1 + o(1))

√
3

2π
A
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The other bounds follow immediately from Sections 2.1 and 2.2. We note that
2
√
3

π ≈ 1.103, so even in the super-connectivity regime the chromatic number is only
a little bigger than the obvious lower bound of the clique number.

The behaviour for A = Θ(log n) is also known (McDiarmid and Müller [49]):

the chromatic number increases from (1 + o(1))cl(G) to (1 + o(1))2
√
3

π cl(G) as the
constant in the ‘Θ’ increases from zero to infinity.

Although the chromatic number is not a ‘local property’, for A = o(log n) The-
orem 2.18 says it is essentially the same as the clique number. This suggests that
the chromatic number of a random geometric graph is very close to a local property
and, indeed, once again we have two point concentration (Müller [53]).

Theorem 2.19 Suppose that A = o(log n). Then there exist a sequence of numbers
jn such that χ(G(n, A)) ∈ {jn, jn+1} whp.

2.8 Coverage

Since the graphs we are interested in come with an actual embedding we can ask
some questions which are not strictly graph theoretical, but involve the embedding
itself. One example is the following (Gilbert [30]; for an earlier heuristic argument
see Moran and Fazekas de St Groth [52]).

Theorem 2.20 Suppose that P is a Poisson distributed point set in Sn. Then the
discs B(x, r) for x ∈ P cover all of Sn whp if and only if A− log n− log log n → +∞.

One way of viewing this result is that it is saying that wherever we add a new point
it will be connected into the network: that is, whp the network is completely robust
to the addition of new vertices. (In a sense this is analogous to the graph property
of 2-connectedness which requires that the graph remains connected if any vertex is
deleted, not just a typical vertex).

We make a brief remark about the proof and why the stated threshold arises.
Suppose that we draw discs of radius r about each of the points of the process.
Gilbert’s crucial observation is the following lemma. Define a crossing point to be
the intersection point of the boundary of two of the discs in Sn or the intersection
point of the boundary of a disc and the boundary of Sn.

Lemma 2.21 The square Sn is covered by discs if and only if every crossing point
is in the interior of some (other) disc (and we have at least one crossing point).

This lemma reduces the problem of checking coverage at the uncountably many
points in Sn to that of checking a manageable finite subset.

The number of such intersection points is of the order of nA (there are n discs
each with roughly 4A intersections), and each intersection point has an e−A chance
of being uncovered. Hence, if A = log n+log log n the expected number of uncovered
intersection points is

e−AnA = e−(logn+log logn)n(log n + log log n) ≈ 1

i.e., we are around the threshold. Of course this is only a heuristic but it easy to
make precise.
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Similar results are known in higher dimensions, and for the same related question
where we require every point in Sn to be covered multiple times (Hall [39]). For
example, he showed that, if we want to cover every point in the torus Tn some
constant s times, the threshold is A = log n + s log log n. (The result in the torus Tn

is simpler than in the square Sn since it avoids boundary effects; see Section 2.12.) In
other words, the threshold for covering every point s times is only a tiny bit larger
than the threshold for covering once. Balister, Bollobás, Sarkar and Walters [7]
proved the surprising fact that at this threshold, not only is Tn s-covered, but the
points can be partitioned into s classes each of which covers Tn (more precisely, whp
the hitting time for these two events are the same).

2.9 Higher Dimensions

The Gilbert model can be defined in any dimension, and many of the above
results can be proved in this more general setting. However, the higher-dimensional
case is less studied for two reasons: first, one of the main applications (namely
wireless networks) is naturally two dimensional. Secondly the extra difficulties in
high dimensions tend not to be graph theoretic but more topological; for example
arguments can no longer use planarity. Also, the boundary becomes both more
significant and more complicated (there are many different dimension boundary
faces): see Section 2.12.

We mention one result: that of the critical volume needed for percolation (Pen-
rose [57]).

Theorem 2.22 Let Ac(d) denote the critical volume for percolation in d-dimensions.
Then Ac(d) → 1 as d → ∞.

This is what one would expect; the branching process argument implies that 1 is
a lower bound in all dimensions, and as the dimension increases the balls become
more and more disjoint so the percolation process becomes more and more like the
branching process.

2.10 Other norms and neighbourhoods

Throughout this section we have defined neighbourhoods in terms of the Eu-
clidean norm. Much of the above can be done in other norms but this tends to be
of less interest: the natural applications use the Euclidean norm. In most cases the
results are fairly similar (although, of course, details like the value of the critical
area Ac differ).9 There is one exception: the l∞ and l1 norms can behave differently.
There are two (related reasons) for this; first, the balls are not strictly convex, and
secondly the balls tessellate space: that is they fit together perfectly.

The model can also be extended to non-convex neighbourhoods. For example
each transmitter may be able to transmit to the annular region of all points between
distance r and (1+ε)r. This has an interesting property: that the area-threshold for
an infinite component tends to 1 as ε goes to 0 (Balister, Bollobás and Walters [8]

9As far as we are aware this has not been proved, but the values given by computer simulations
are significantly different.
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or Franceschetti, Booth, Cook, Meester and Bruck [24]). Recall that, by comparison
with a branching process, one is a lower bound for regions of any shape.

Of course, broadcasting to annular regions has little (if any) real world appli-
cation, so this result raises the question of whether there is any real world shape
for which the same threshold holds. In [10] Balister, Bollobás and Walters proved
that randomly oriented directional transmitters have this property. (Formally, the
neighbourhoods are randomly oriented sectors of a disc.)

In contrast, there is essentially no change in the connectivity results (e.g., Theo-
rem 2.11) for different norms or shapes: indeed, if the expected number of neighbours
of a node is less than log n, then whp, at least one node will be isolated.

2.11 Sharpness of Monotone Properties

For any monotone graph property Π it is natural to ask how sharp the transition
is. More precisely, we let r(p) denote the value of r such that G(n, A) has property
Π with probability p, and we ask for bounds on the width w(ε) = r(1 − ε) − r(ε).

In [31] Goel, Rai and Krishnamachari proved the following very general result
about sharpness. (Note they used a different normalisation so their result looks
rather different.)

Theorem 2.23 Let G = G(n, A) and Π be a monotone graph property. Then
w(ε) = O((log n)3/4). Further, there is a monotone graph property with constant
width (depending on ε).

Before discussing the idea of the proof we briefly comment on this result. At first
glance the upper and lower bounds on the width appear quite close: a log factor
apart. However, as we have seen, most of the interesting graph properties have
thresholds which are O(log n) for area, i.e., O(

√
log n) for radius, and the above

theorem does not say anything in this case. It is, however, a much sharper transition
than is guaranteed to occur in ordinary Erdős-Rényi random graphs (Friedgut and
Kalai [25]).

Their proof technique is interesting. For two n-points sets P and Q in Sn and a
matching between them, we define the matching distance to be the longest edge in
the matching. We define the bottleneck matching distance from P to Q to be the
minimum matching distance over all possible matchings from P to Q.

They rediscovered the following result (first proved by Leighton and Shor [46])

Theorem 2.24 Let P and Q be two random uniformly distributed n-points sets in
Sn. Then whp the bottleneck matching distance from P to Q is O((log n)3/4).

It is easy to see that if two point sets P and Q have bottleneck matching distance d
then the graphs G(P, πr2) ⊂ G(Q, π(r + 2d)2). Hence, Theorem 2.24 roughly says
that, for some constant C, the graph G(n, πr2) is whp a subgraph of G(n, π(r +
C(log n)3/4)2). Hence, if G(n, πr2) has some chance of having property Π then
G(n, (r + C(log n)3/4)2) has it whp.

They also proved the analogous result in higher dimensions (using a higher di-
mensional version of Theorem 2.24 first proved by Shor and Yukich [71]). In fact,
in higher dimensions the result is rather tighter: the width is O((log n)1/d); i.e.,
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sharpness covers all of the super-connectivity regime. (It still does not say anything
useful in the connectivity or sub-connectivity regimes however).

2.12 Boundary Effects

We conclude this section with a brief discussion of the boundary effects that we
ignored earlier. We see that the arguments in Section 2.1 are not correct near the
boundary: vertices near the boundary of Sn do not have a neighbourhood of area A
since some of the disc will lie outside Sn. Indeed, a point on the edge of Sn would
only have neighbourhood area A/2, and a point in a corner of Sn only A/4.

To see how this can impact our arguments suppose that we look at the threshold
for connectivity, so A ≈ log n. The probability that a ‘central’ vertex is isolated
is e−A and the are approximately n central vertices. In comparison the probability
that a vertex near the boundary of Sn is isolated is around e−A/2 (since half the area
is outside Sn) and there are order

√
n such vertices. Hence, to a first approximation,

when the expected number of isolated central vertices is one, the expected number
of isolated boundary vertices is also one.

If we do the calculation for boundary vertices a little more accurately we find that
the area for a boundary vertex is actually about A/2 + O(r) (since it is not ‘on the
edge’ but some constant distance from it) and this means that central obstructions
do indeed dominate. [We remark that the corners are not relevant, although the
probability a vertex near a corner is isolated is much larger (e−A/4) there are very
few of them O(log n).]

However, for closely related problems, the boundary can be crucial. Indeed, if
we look for minimum degree κ (or equivalently, by Theorem 2.16, κ-connectivity)
we find that the threshold for central vertices is log n + (κ − 1) log log n whereas the
threshold for boundary vertices is log n + (2κ − 3) log log n. Hence the threshold for
minimum degree κ is

max (log n + (κ − 1) log log n, log n + (2κ − 3) log log n) .

We see that the first term is bigger for κ = 1, they are equal for κ = 2 and that
the second term is bigger for all κ ≥ 3 (which is why Theorem 2.17 is not true for
κ = 1). This tells us that for κ = 1 the obstruction (an isolated vertex) is central,
for κ = 2 the obstruction (a vertex of degree 1) can be central and it can be near
the boundary, and that for κ ≥ 3 the obstruction (a vertex of degree κ − 1) is near
the boundary.

The boundary also dominates the connectivity/isolated vertex threshold in three
or more dimensions; of course, in higher dimensions there are many different types
(dimensions) of boundary. A similar argument to that given above for two dimen-
sions shows that the obstruction for connectivity (an isolated vertex) will occur near
a two-dimensional face.

As we have seen the boundary effects cannot always be ignored, and they fre-
quently require special treatment in proofs. There are two closely related models
which can help in avoiding these boundary effects, and thus are amenable to simpler
proofs.

The first one is obvious: work on a torus Tn rather than Sn. Obviously this
removes all the boundary. It is often a good place to work when sketching ini-
tial proofs. However, it does have one undesirable consequence: arguments often
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mention things like the ‘left most point’ of a component, and it is unclear what, if
anything, that would mean on a torus.

The second option is to work in the square Sn, but to allow points outside of Sn

as well. For example, when considering coverage of Sn (see Section 2.8) we consider
points throughout the plane (in fact we only care about points within distance r of
Sn) and ask whether they cover Sn. By doing this we make the probability that
a point of Sn is covered independent of which point is chosen, and again this can
simplify the arguments.

Of course whether results about these simpler models are of interest depends on
the circumstances!

3 The k-nearest neighbour model

Recall from the introduction that we defined the k-nearest neighbour model by
taking a Poisson process P of density one and placing an undirected edge between
each point and its k nearest neighbours. We called the resulting graph K(k) or
K(n, k) as appropriate.

The results in the previous section showed that the reason a large radius was
necessary to obtain a connected network was to avoid isolated vertices (or possibly
other small components). Since the k-nearest neighbour model obviously has min-
imum degree at least k, there is hope that the average disc size (so total power)
needed to ensure connectivity will be smaller.

There are other minor variants on this model (for example joining points if
they are both k-nearest neighbours of each other) which we discuss in Section 3.4.
However, the model defined here is the most widely studied.

3.1 Neighbourhood Radius

When we discussed the Gilbert model we started by looking at the minimum and
maximum degrees; that is not a very interesting question for the k-nearest neighbour
model. Indeed, every vertex has ‘out-degree’ k, and it is easy to see that every vertex
has degree between k and 6k (we give more precise bounds in Section 3.5.3). However
this is not really the analogous question: in the Gilbert model we fixed the radius
and asked about the degree. In this model we are fixing the degree (strictly the
out-degree) so we should ask for bounds on the ‘radius’, that is the longest edge and
the shortest non-edge; we denote these by R and r respectively, and we let A and
a be the corresponding areas (so A = πR2 and a = πr2). The following theorem
follows easily from bounding the Poisson distribution (see e.g., [4]; alternatively it
can be deduced by ‘inverting’ Theorem 2.1).

Theorem 3.1 Suppose that G is the graph K(n, k) and that a and A are as above.

1. If k = o(log n) then a = o(k) and A = (1 + o(1)) log n.

2. If k = Θ(log n) then a and A are both Θ(log n)

3. If k = ω(log n) then a and A are both (1 + o(1))k.
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Empty

k + 1 points k + 1 points

Empty

(a) (b)

Figure 2: Two configurations which disconnect the graph K(n, k). In (a) each shaded
square contains (at least) k + 1 points and each white square is empty (contains no
points). The centre tile is disconnected in K(n, k). The figure in (b) shows a
rotationally symmetric variant (see Section 3.2.1).

Obviously G(n, a) is a subgraph of K(n, k) which in turn is is a subgraph of G(n, A),
and so this theorem, together with results for the Gilbert model, can be used to prove
results for the k-nearest neighbour model, but with a loss of accuracy coming from
the difference between a and A.

In particular we see that if k = ω(log n) then K(n, k) is essentially the same as
G(n, A) (formally for any ε > 0 we have G(n, (1 − ε)k) ⊂ K(n, k) ⊂ G(n, (1 + ε)k)).

Of course, much tighter results could be proved, including explicit bounds in
place of the Θ and o; however, in most cases the above theorem is sufficient.

3.2 Connectivity

Obviously, by construction, this model has no isolated vertices; indeed the min-
imum degree is at least k. However, as in the Gilbert model it is easy to see that
the infinite graph K(k) is never connected (Xue and Kumar [78]). Indeed, using a
tessellation, if we have the configuration in Figure 2 consisting of one tile with at
least k + 1 points surrounded by 24 tiles with no points surrounded by 24 more tiles
each containing at least k + 1 points) we can see that there are no edges from points
in the central square to the rest of G. This has positive probability so will occur
somewhere in the plane.

Indeed, if we look for such a configuration where each tile has area k we see
that the probability each shaded tile contains at least k + 1 points is about 1/2, and
the probability all the remaining tiles are empty is e−24k. Thus the total event has
probability about 2−25e−24k = Θ(e−24k). The tessellation contains n/(49k) disjoint
7 × 7 boxes where this event could occur, so heuristically (but easily rigorisably) if
k = ( 1

24 − ε) log n the event will occur somewhere; i.e., the threshold for K(n, k) to
be connected is at least 1

24 log n (see [78] again).

On the other hand if we again consider a tessellation and suppose that every tile
contains at least one and at most M points, then the 49M -nearest neighbour graph
is connected: indeed, with this choice of k every point in one tile is joined to every
point in a neighbouring tile. If we use tiles of area, say, 2 log n, then the it is easy
to check that whp every tile contains a point. Moreover, provided that M = C log n
for a sufficiently large constant C we see that no tile contains more than M points
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k + 1 points

Empty

1 point
k + 1 points

Empty

(b)(a)

Figure 3: Two configurations. In (a) the central disc has radius one third of the
outer disc; thus the central points have no out edges to the rest of G (i.e., they are an
out-component); in (b) the central point has zero in-degree (i.e., is an in-component).

and, thus, whp the graph K(n, 49C log n) is connected.

We briefly remark as an alternative that we can see from Theorem 3.1 that for
c sufficiently large

K(n, c log n) ⊃ G(n, (1 + ε) log n)

for some ε > 0 and thus is connected whp by Penrose’s result for the Gilbert model
(Theorem 2.11 from the previous section). See González-Barrios and Quiroz [32],
or [78].

Once again, we see that threshold for connectivity is Θ(log n).

Having made this observation it is natural to ask what is the actual threshold.
More formally, we have seen that if c is a small constant then the graph K(n, c log n)
is not connected whp, and if c is a large constant then K(n, c log n) is connected
whp. What is the critical value c = c∗ where the transition from not connected to
connected occurs? However, it does not even appear to be obvious that there is such
a critical value.

Before discussing some of the current proof techniques for this model we sum-
marise the ‘state of the art’. The best current bounds are given in the following the-
orem.

Theorem 3.2 If k < 0.3043 log n then the graph K(n, k) is not connected whp.
Conversely, if k > 0.4125 log n then K(n, k) is connected whp.

The lower bound was proved by Balister, Bollobás, Sarkar and Walters in [4] and
the upper bound by Walters [75] improving on the upper bound of 1/ log 7 ≈ 0.5139
proved in [4].

It is interesting that just above the threshold the graph is connected but, in the
underlying directed graph, there are vertices with zero in-degree and components
with zero out-degree. Indeed, the two constructions in Figure 3 are likely to occur
for k < 1

log 9 log n ≈ 0.455 log n and k < 0.5739 log n respectively: see Section 3.2.1
for further details.

It is now known that there is a critical constant (Balister, Bollobás, Sarkar and
Walters [5]).
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Theorem 3.3 There is a constant c∗ such that if c < c∗ then K(n, ⌊c log n⌋) is not
connected whp, and if c > c∗ then K(n, ⌊c log n⌋) is connected whp.

Having found that there is indeed a critical value for this transition it is natural
to ask how ‘rapid’ the transition from not-connected to connected is. Indeed, this
question has been widely studied for many transitions in the normal random graph
G(n, p). This was answered by Falgas-Ravry and Walters in [21].

Theorem 3.4 There exist constants C > 0 and α > 0 such that for any ε = Ω(n−α)
with

P(K(n, k) is connected) ≥ ε

we have
P(K(n, k + ⌊C log(1/ε)⌋) is connected) > 1 − ε.

In other words, the ‘window’ for connectivity is of width roughly a constant (c.f.
Theorem 2.11 which shows the same behaviour in the Gilbert model).

As we saw in Section 2.12, arguments about the graph G(n, A) have to deal with
boundary effects, often giving rise to extra cases that need to be considered. The
same is true in the k-nearest neighbour model although, intuitively, the boundary
should be less of problem as the range is automatically increased (i.e., we still join
to k points). The results in [4] suggested that points near the boundary are not an
obstruction to connectivity but were not quite strong enough to prove this. More
recently Walters [75] proved:

Theorem 3.5 Suppose k > 0.272 log n. Then whp all vertices within distance log n
of the boundary of Sn are contained in the giant component.10

The utility of this result arises not from the exact bound stated but in that it is
smaller than the lower bound on c∗ given in Theorem 3.2. That is if k is around
c∗ log n then the graph has no small boundary components. Thus, proofs around
the connectivity threshold no longer need to consider the extra cases caused by the
existence of small components near the boundary.

3.2.1 Lower bounds There is only one natural way to try and prove a lower
bound: come up with a disconnecting configuration (like the example in Figure 2a
discussed at the start of this section) that is likely to occur. In fact, the proof of
Theorem 3.3 indicates that there is necessarily some such configuration.

It is reasonable to believe, but unproven, that the extremal configuration is
rotationally symmetric. This leads us to consider the configuration defined as follows
(see Figure 2b): let r be such that πr2 = k. Consider three concentric discs D1, D3

and D5 of radius r, 3r and 5r respectively. Suppose that there are at least k + 1
points in D1, no points in D3 \ D1 and that any disc D of radius 2r centred on the
boundary of D3 contains at least k + 1 points (necessarily outside D3). Then the
graph K(n, k) is not connected: indeed the points J in D1 are disconnected from
the rest of G, since the first two conditions ensure there are no out-edges from J
to G \ J and the third condition ensures that there are no in-edges from a point in
G \ J (necessarily outside D3) to J .

10For k = Θ(log n) there is a giant component consisting of 1−o(1) of all vertices: see Section 3.3.
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How likely is this event? Well the probability that there are at least k + 1 points
in D1 is about 1/2 and the probability D3/D1 is empty is e−8πr2 = e−8k. Finally,
the probability that every disc D contains at least k + 1 points is 1 − o(1) since
the area of D \ D3 is significantly greater than πr2 so the probability that it does
not contain at least k + 1 points is tiny. (There are infinitely many discs to check,
but by reducing the radius slightly we can reduce to a fixed finite number of discs;
alternatively it is easy to prove using a very fine tessellation.)

Overall we see that the probability of this event is about e−8k/2. We can place
Θ(n/ log n) disjoint discs of radius 5r in Sn; in each of these disc the above discon-
necting event occurs with probability e−8k/2 and, since the discs are disjoint these
events are independent. Hence, if k = (1/8 − ε) log n the probability G is connected
is at most

(1 − e−8k/2)n/ logn =

(

1 − 1

2n1−8ε

)n/ logn

→ 0;

that is, we have shown that c∗ ≥ 1/8.

There are some ways we can improve this bound: we can shrink the whole
configuration. That makes the first and third condition less likely, but significantly
increases the probability of the second condition (the empty area is much smaller).
If we optimise this scaling we obtain a bound of 0.2739 log n (see discussion in the
proof of Theorem 5 of [4]).

However, this construction can be further improved. Rather than asking for
uniform density in D5 \ D3 we can have a varying density which is largest near the
boundary of D3. (This helps as points near the boundary of D3 are in more of
the discs D occurring in the third condition.) Optimising this varying density for a
rotationally symmetric configuration is relatively easy (Theorem 5 of [4]) and this
gave the lower bound in Theorem 3.2.

3.2.2 Proof techniques In this section we discuss two proof techniques which
seem to have wide applicability to the k-nearest model. For both of these techniques
it would be nice to have one underlying result which can be applied in each case;
unfortunately, however, the details have to be adapted to work in each individual
situation.

First we observe that using a very similar argument to Lemma 2.12 we can prove
that the graph does not have two large components (see [4]). Formally

Lemma 3.6 Suppose that k = Ω(log n). Then there is a C such that, whp, the
graph K(n, k) does not contain two components each of order at least C log n.

In other words, around the threshold for connectivity all the interesting obstructions
are small: within a constant multiple of the smallest they could possibly be.

The first technique we will discuss is that of the circumscribed hexagon (intro-
duced in [4]). Suppose that G′ is a small component in K(n, k) which is not near the
boundary of Sn. We can circumscribe a hexagon H around G′: formally we consider
the six tangents to the convex hull of G′ which are inclined at angles 0, π

3 , and 2π
3

to the horizontal. These tangents form the hexagon H containing G′, as shown in
Figure 4. (Note this hexagon could be degenerate: some sides could have length
zero.) By definition each tangent ti intersects G′ in a point Pi ∈ V (G′) (some of the
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Figure 4: The circumscribed hexagon H

Pi may coincide). Let Di be the k-nearest neighbour disc for Pi. Consider P1: since
G′ is a component all neighbours of P1 lie in G′ so, in particular, lie in the hexagon
H. Hence, all k neighbours of P1 lie in D1 ∩ H and D1 \ H is empty. We shall apply
this observation to each of the six points P1, . . . , P6.

The exterior angle bisectors of H divide the exterior of H into six (disjoint)
regions H1, . . . , H6 as shown in Figure 4. Let Ai = Di ∩Hi and let A be the smallest
of the sets Di ∩ H. We see that each Ai is empty and that A contains k points; that
is there are k points in A ∪⋃6

i=1 Ai and they all lie in A. Moreover, for each i,

|Ai| = |Di ∩ Hi| ≥ |Di ∩ H| ≥ |A|.

so

|A| ≤ 1

7

∣

∣

∣

∣

∣

A ∪
6
⋃

i=1

Ai

∣

∣

∣

∣

∣

. (3.1)

For any collection of sets A, A1, . . . , A6 satisfying (3.1) the probability that there are
exactly k points in the union and they all lie in A is at most 7−k.

We have established that, if there is a small component, then there are seven
regions A, A1, . . . , A6 in this special layout. How many ways of choosing these regions
are there? The regions are defined by the 6 points giving the hexagon, together with
the 6 points defining the k-nearest neighbour radii. There are n ways of choosing the
first point, but having chosen that point there are only O(log n) ways of choosing
the remaining points (since they all lie within distance O(

√
log n) of the first point

chosen.). Hence the number of ways of choosing these 12 points is O(n(log n)11).
Thus, provided that n(log n)117−k → 0, whp no such hexagon exists: i.e., there is
no small component. This gives the upper bound 0.51 log n.

Many other results also use this technique e.g., [5, 21, 75]. It is useful as it
provides a reasonable handle on the structure of these small components.
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The second technique is a type of tessellation argument. We demonstrate the
technique for one specific example: the event G is connected. Hence we assume that
we are in the connectivity regime k = Θ(log n).

We fix a large constant M and we consider tiles in Sn of side length M
√

log n.
Fix a specific tile T and with a slight abuse of notation define 1

2T to be the square
of half the side length of T with the same centre as that of T . Define AT to be the
event that the k-nearest neighbour graph GT formed on the points of P that lie in
T has a component entirely contained in 1

2T .
We wish to relate the connectedness of the entire graph to the events AT . We

start with a trivial lemma: it essentially follows from the fact that G has no long
edges (and a similar argument applied to GT ).

Lemma 3.7 Suppose that 0.3 log n < k < log n and that G = K(n, k). Then,
provided M is sufficiently large, whp, every tile T in Sn of side length M

√
log n has

the following property. The set of edges in G which meet a vertex in 1
2T is the same

as the corresponding set in GT .

In other words there are no edges from outside T into 1
2T and the extra edges formed

when we ignore the points outside T do not reach into 1
2T . In particular, G has a

component wholly contained in 1
2T if and only if GT does; i.e., if and only if the

event AT occurs.
We can place n/(M2 log n) disjoint tiles in Sn, and the Poisson process in each

tile is independent, so

P(G is not connected) ≥ P(AT occurs for any tile T ) = 1 − (1 − P(AT ))n/M log n.

On the other hand, suppose we cover Sn with a collection of (overlapping) tiles
T such that every set of diameter at most (M/8)

√
log n is contained in the square

1
2T for some T ∈ T (which we can do using 16n/(M log n) tiles). Now, if G is not
connected then, assuming M is sufficiently large, by Lemma 3.6 we see that one of
the components has diameter at most M/8

√
log n and thus that the event AT occurs

for some T ∈ T . Hence

P(G is not connected) ≤ 16n

M log n
P(AT ).

Roughly speaking, these two inequalities show that the transition from not con-
nected to connected corresponds to the transition from P(AT ) ≫ logn

n to P(AT ) ≪
logn

n . In other words, we can focus on the relatively simple event AT , and deduce
the global behaviour in Sn. For example, Theorems 3.3 and 3.4 were proved using
two (quite different) careful analyses of the event AT .

3.3 The Giant Component

As in the Gilbert model we ask when does the (infinite) k-nearest neighbour
model contain an infinite component. Using a tessellation argument similar to that
in Section 2.3 we can prove that if k is some large constant (of the order of a few
hundred) then the model percolates (Häggström and Meester [36] or rather later
Teng and Yao [74]). Thus we see that there is some critical threshold kc such that
percolation occurs if and only if k ≥ kc.
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Figure 5: The ‘bond event’ in the proof of Theorem 3.8

However, it is not immediately obvious that even just connecting to the (one)
nearest neighbour does not give an infinite component. To see that this is the case
suppose that there is an infinite path in the graph. Along this path the edge lengths
either increase or decrease monotonically. If we head in the decreasing direction
then either the path terminates (the final vertex’s nearest neighbour is the previous
vertex on the path) or it does not. The former case must have probability zero since
otherwise a positive fraction of vertices would terminate an infinite path.

The latter case is a little more difficult to rule out. Start from one edge of
the path, say length r, and pass along the path in the direction of decreasing edge
length. At each vertex there is a chance at least exp(−πr2) that the disc of radius
r about the vertex contains no new points of the process (i.e., the path terminates).
Since there are infinitely many vertices in the path where it could fail it will fail
somewhere (a.s.).

We have shown that kc ≥ 2 and that kc is at most a few hundred. Since the
critical constant kc is inherently an integer there is some hope that the exact value
could be found, although the wide gap in the bounds is not promising.

Recently Balister and Bollobás [2] proved the first ‘good’ bound for kc.

Theorem 3.8 The critical constant kc for 2-dimensional k-nearest neighbour per-
colation is at most 11.

We give some of the key steps of the proof. The proof compares the percolation
model with a 1-independent bond percolation on Z2. First we consider a rectangle B
as shown in Figure 5 with side lengths s and 2s (s to be optimised later) made up of
two adjacent squares T1 and T2. We consider two discs D1 and D2 of radius r (again
to be optimised later) centred in the left square and right square of the rectangle
respectively. We shall declare the corresponding bond in Z2 open if the following
holds: that each vertex in D1 can be joined to a vertex in D2 regardless of the process
outside B, and the same from D2 to D1, and that D1 and D2 are non-empty.

With this definition of open it is easy to see that an infinite component in this one-
independent model on Z2 ‘lifts’ back to an infinite component in G. By Theorem 2.9
we ‘just’ need to show the probability of the event above is at least 0.8639; of course
the main step in the argument is the proof of this bound, but we have reduced the
problem to the analysis of a finite region.
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We very briefly sketch the proof of the bound. Let L be the line between the
centres of D1 and D2, and let S be the ‘sausage’ shaped convex hull of D1 ∪ D2.
The aim is to show that every point u in the S \ D2 has a neighbour v ‘further
along’ towards D2 in the sense that the disc centred on the line L with v on its
left boundary is nearer D2 than the corresponding disc through u is (see Figure 5
again).

The authors show that with r ≈ 3.1 and s ≈ 11.6 the probability that there is any
point in S \ D2 that does not have such a neighbour is less than 0.065291 and, thus,
that the probability the edge is open (i.e., paths exist in both directions) is at least
0.869 > 0.8639 as required. Showing this involves some unpleasant calculations,
including bounding some complicated integrals.

Computer simulations (e.g., Section 7 of [4]), including the confidence interval
method with confidence better than 10−100 (see [2]), indicate that, in fact, kc = 3.
Indeed, these simulations suggest that for k = 3 the giant component contains 98.5%
of all vertices! That is 3 is ‘much bigger’ than the critical constant kc.

We remark that in sufficiently high dimensions Häggström and Meester [36]
proved that the critical constant is equal to two.

3.4 Related Models

3.4.1 Directed graphs The k-nearest neighbour model naturally gives a directed
graph (which we previously treated as a simple graph) so we can ask directed graph
questions, for example is the graph directed connected? The best result is the
following (Balister, Bollobás, Sarkar and Walters [4]).

Theorem 3.9 Let ~K be the directed k-nearest neighbour graph ~K(n, k). If k >
0.7209 log n then ~K is whp not directed connected, whereas if k < 0.9967 log n then
~K is connected whp. In particular the threshold for directed connectivity is strictly
less than log n.

Note that, in the directed graph model, there can be vertices with zero in-
degree: and indeed this is where the lower bound comes from (using a density
varying argument similar to that in Section 3.2.1). The authors conjecture that this
is in fact extremal.

3.4.2 A different undirected graph In most of this section we formed an undi-
rected graph by placing an undirected edge whenever an edge occurs with either
orientation. An alternative is to place an edge only when both orientations occur.

This is actually a fairly natural model from a real-world perspective: most wire-
less transmission protocols require acknowledgements from the recipient of the infor-
mation (so if there is no acknowledgement the information can be resent). Whilst,
the acknowledgement need not follow the reverse of the original route it may be
convenient for it to do so.

Despite this, not many results have been proved about this model. The paper
of Balister and Bollobás [2] is an exception: they proved that for k = 15 there is
percolation in this model.

As far as we are aware, there are no results about the connectivity of this graph
(apart from the obvious Θ(log n) bound that can be read out of the arguments at



Random geometric graphs 395

the start of Section 3.2). However, since the obstructions for small out-components
and small in-components look very different it is reasonable to believe that any
obstruction to connectivity in this model is actually an ‘in-obstruction’ or an ‘out-
obstruction’. Hence we make the following conjecture.

Conjecture 3.10 Suppose that k is such that ~K(n, k) is connected whp. Then the
above model is connected whp.

3.5 Other results

3.5.1 Coverage As for the Gilbert model one can ask when do the k-nearest
neighbour discs cover the whole of Sn. In [4] Balister, Bollobás, Sarkar and Walters
proved that the threshold is essentially the same as that for having a vertex of
in-degree zero: i.e., the bounds in Theorem 3.9 apply in this case too.

3.5.2 Higher connectivity As we saw there is no ‘nice’ obstruction for connec-
tivity in the k-nearest neighbour model and the upper and lower bounds for the
critical constant c∗ are still a significant distance apart. Thus, it is not reasonable
to hope for a good bound for the thresholds for higher order connectivity. However,
there are good bounds on the gap between connectivity and higher order connec-
tivity (Falgas-Ravry and Walters [21] improving on Balister, Bollobás, Sarkar and
Walters [6]):

Theorem 3.11 There is a constant c such that for any k = k(n) for which K(n, k)
is connected whp, the graph K(n, k + ⌊cs log log n⌋) is s-connected whp.

Essentially this result is proved by showing that the probability that K(n, k) is 2-
connected is not too much smaller than that of being connected, and then applying
the sharpness result Theorem 3.4.

3.5.3 Degree, Clique Size and Chromatic Number These turn out to be easy.
The minimum degree of G is exactly k. Indeed, take the vertex v with the k-nearest
neighbour disc of largest radius. By definition no point outside this disc sends any
edges in to v so v has degree exactly k. Moreover, exactly the same argument shows
that every subgraph H of G has minimum degree at most k; i.e., G is k-degenerate.
It follows immediately that χ(G) ≤ k + 1 (curiously this does not seem to have been
observed before).

For k < 1
log 9 log n then the construction in Figure 3a shows that G has a clique

of size k + 1 whp and, thus, that cl(G) = χ(G) = k + 1.

On the other hand for k = ω(log n) then K(n, k) and G(n, A) (with A = k)
are almost the same graph so by the corresponding results for the Gilbert model
(Theorems 2.5 and 2.18) the clique size will be (1 + o(1))k/4, and the chromatic

number will be (1 + o(1))
√
3

2π k.

The maximum degree is at most 6k: indeed, any 60 degree sector about a vertex
can contain at most k neighbours (consider the furthest neighbour in the sector).
With the extra observation that the 120 degree sector about the furthest neighbour
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contains at most k−1 other neighbours this bound reduces to 5k.11 Moreover, this is
easily obtainable provided that k is at most c log n for some small constant c (place
k points in small regions near the corners of a pentagon about the vertex).

Finally, for k = ω(log n) the graph K(n, k) is approximately G(n, A) with A = k,
and the maximum degree will be (1 + o(1))k.

3.5.4 Hamilton Cycles This is rather less well understood than in the Gilbert
model (see Section 2.6) where we saw that the obvious necessary condition for the
existence of a Hamilton cycle (2-connectivity) is in fact sufficient. Balogh, Bollobás,
Krivelevich, Müller and Walters [11] proved the following weaker result.

Theorem 3.12 Suppose that G = K(n, k) is 5 · 107 connected whp. Then G is
Hamiltonian.

In Section 2.6 we used a tessellation argument with a fine tessellation. This meant
that the tessellation graph was a good approximation to the genuine graph and that
was sufficient to prove the result. In the k-nearest neighbour graph the natural
tessellation graph, even with small tiles, is not a close approximation (since the
k-nearest neighbour discs vary in size significantly) and that is the reason why the
authors needed the extra connectivity in the result above. However, they conjectured
that 2-connectivity is sufficient: that is, as soon as the graph becomes 2-connected
it is Hamiltonian.

3.5.5 Higher dimensions An easy modification of the argument at the beginning
of Section 3 shows that in any dimension the threshold for connectivity is k =
Θ(log n), and the proof of Theorem 3.3 could be modified to show the existence of a
critical constant c∗(d) in any dimension d. Thus, we can ask what is the asymptotic
behaviour of c∗(d) as d → ∞.

The hexagon argument (see Section 3.2.2) is inherently two dimensional, but we
can use a variant: applying the argument to a (hyper)-cube instead of the hexagon.
This yields that c∗(d) = O(1/ log(d)).

In particular we see that c∗(d) tends to zero as d increases. However, the speed
of this convergence is not known. The lower bounds discussed in Section 3.2.1 can
be modified to work in high dimensions giving a bound c∗(d) = Ω(1/d), but there is
a significant gap between this and the upper bound mentioned above.

3.5.6 Other norms Any norm could be used in defining the k-nearest neighbour
model, but we are not aware of any significant results in other norms.
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Transversals in latin squares: a survey

Ian M. Wanless

Abstract

A latin square of order n is an n�n array of n symbols in which each symbol
occurs exactly once in each row and column. A transversal of such a square is
a set of n entries containing no pair of entries that share the same row, column
or symbol. Transversals are closely related to the notions of complete mappings
and orthomorphisms in (quasi)groups, and are fundamental to the concept of
mutually orthogonal latin squares.

Here we survey the literature on transversals and related notions. We cover
(1) existence and enumeration results, (2) generalisations of transversals includ-
ing partial transversals and plexes, (3) the special case when the latin square
is a group table, (4) a connection with covering radii of sets of permutations,
(5) transversals in arrays that generalise the notion of a latin square in various
ways.

1 Introduction

By a diagonal of a square matrix we will mean a set of entries that contains
exactly one representative from each row and column. A transversal is a diagonal
in which no symbol is repeated. A latin square of order n is an n � n array of n
symbols in which each symbol occurs exactly once in each row and in each column.
The majority of this survey1 looks at transversals (and their generalisations) in latin
squares. In a transversal of a latin square every symbol must occur exactly once,
although in x10 we will consider transversals of more general matrices where this
property no longer holds.

Historically, interest in transversals arose from the study of orthogonal latin
squares. A pair of latin squares A = [aij ] and B = [bij ] of order n are said to be
orthogonal mates if the n2 ordered pairs (aij ; bij) are distinct. It is simple to see
that if we look at all n occurrences of a given symbol in B, then the corresponding
positions in A must form a transversal. Indeed,

Theorem 1.1 A latin square has an orthogonal mate i� it has a decomposition into
disjoint transversals.

For example, below there are two orthogonal latin squares of order 8. Subscripted
letters are used to mark the transversals of the left hand square which correspond

1The present survey extends and updates an earlier survey [123] on the same theme.
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to the positions of each symbol in its orthogonal mate (the right hand square).

1a 2b 3c 4d 5e 6f 7g 8h

7b 8a 5d 6c 2f 4e 1h 3g

2c 1d 6a 3b 4g 5h 8e 7f

8d 7c 4b 5a 6h 2g 3f 1e

4f 3e 1g 2h 7a 8b 5c 6d

6e 5f 7h 8g 1b 3a 2d 4c

3h 6g 2e 1f 8c 7d 4a 5b

5g 4h 8f 7e 3d 1c 6b 2a

a b c d e f g h
b a d c f e h g
c d a b g h e f
d c b a h g f e
f e g h a b c d
e f h g b a d c
h g e f c d a b
g h f e d c b a

(1.1)

It was conjectured by no less a mathematician than Euler [54] that orthogo-
nal latin squares of order n exist i� n 6� 2 mod 4. This conjecture was famously
disproved by Bose, Shrikhande and Parker who in [16] showed instead that:

Theorem 1.2 There is a pair of orthogonal latin squares of order n i� n =2 f2; 6g.

More generally, there is interest in sets of mutually orthogonal latin squares
(MOLS), that is, sets of latin squares in which each pair is orthogonal in the above
sense. The literature on MOLS is vast (start with [31, 39, 40, 87]) and provides am-
ple justi�cation for studying transversals. In the interests of keeping this survey to
a reasonable size, we will not discuss MOLS except as far as they bear directly and
speci�cally on questions to do with transversals. While Theorem 1:1 remains the
original motivation for studying transversals, subsequent investigations have shown
that transversals are interesting objects in their own right. Despite this, a num-
ber of basic questions about their properties remain unresolved. In 1995, Alon et
al. [6] bemoaned the fact that \There have been more conjectures than theorems on
latin transversals in the literature." While there are still some frustratingly simply
conjectures that remain unresolved, the progress in the last �ve years has �nally
rendered the lament from [6] untrue. Much of that progress has resulted from the
discovery of a new tool called the \Delta Lemma".

2 The Delta Lemma

The deceptively simple idea behind the Delta Lemma occurred to two sets of
researchers simultaneously and independently in 2005, leading eventually to the
publications [49, 57]. Variants of the Lemma have also been used in [21, 37, 48, 50,
51, 101, 124].

To use the Delta Lemma it is useful to think of a latin square as being a set of
entries, each of which is a (row, column, symbol) triple. It is convenient to index the
rows, columns and symbols of a latin square of order n with Zn, in which case the
square can be viewed as a subset of Zn � Zn � Zn. The latin property insists that
distinct entries agree in at most one coordinate.

In its simplest form the Delta Lemma is this:

Lemma 2.1 Let L be a latin square of order n indexed by Zn. De�ne a function
� : L! Zn by �(r; c; s) = r + c� s. If T is a transversal of L then, modulo n,

X

(r;c;s)2T

�(r; c; s) =

(

0 if n is odd;
1
2n if n is even:

(2.1)
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The proof is a triviality, since by de�nition r, c and s take every value in Zn

once in T . Yet the simplicity of the result belies its power. The function � can be
thought of as measuring the di�erence of a latin square from the cyclic group. It is
uniformly zero on the addition table of Zn, which leads to an immediate corollary:

Theorem 2.2 The addition table of Zn has no transversals when n is even.

This fact was proved by Euler [54], making it one of the �rst theorems ever
proved about transversals2. Variants of the Delta Lemma can be used to show that
many other groups lack transversals. We will revisit the question of which groups
have a transversal in x6.

As � measures the di�erence of a latin square from Zn it is at its most powerful
when applied to latin squares where most entries agree with Zn. In many such
cases, the few entries that have � 6= 0 can readily be seen to have restrictions on
the transversals that include them. This approach was used in [124] to show:

Theorem 2.3 For every order n > 3 there exists a latin square which contains an
entry that is not included in any transversal.

Given Theorem 1:1, an immediate corollary is:

Theorem 2.4 For every order n > 3 there is a latin square that has no orthogonal
mate.

The even case of this result was already known in Euler’s day (Theorem 2:2),
and the case of n � 1 mod 4 was shown by Mann [92] in 1944 (see Theorem 4:6).
However, despite prominence as an open problem [14, x3.3], [15, X.8.13], [46], [79,
p.181] and [118], the n � 3 mod 4 case resisted until the discovery of the Delta
Lemma. With that history spanning back to the 18th century, it is remarkable that
within 5 years the Delta Lemma has provided no fewer than four di�erent proofs of
Theorem 2:4, underscoring that it is the right tool for the job.

The �rst two proofs [57, 124] were simultaneous. Evans obtained Theorem 2:4
using a version of the Delta Lemma but without showing Theorem 2:3. In Evans’
version of the Delta Lemma rows, columns and symbols have indices chosen from
Zm for some m smaller than the order of the square. Obviously, this necessitates
some duplication of indices, but nevertheless, for any assignment of indices, there is
a single value that must be the sum of the � function along any transversal.

Two further proofs of Theorem 2:4, both via Theorem 2:3, are given in [48, 51].
Although some of the earlier proofs are really quite neat, Egan’s proof in [48] deserves
recognition as the proof from \The Book". Here it is:

Proof [of Theorem 2:3] In light of Theorem 2:2, we need only consider odd n > 3.

2Euler used the name \formule directrix" for a transversal. Subsequently, in some statistical
literature (e.g. [62]) a transversal was called a directrix.
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De�ne a latin square L = [Lij ] of order n, indexed by Zn, by

Lij =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if (i; j) 2 f(0; 0); (1; n� 1)g;
0 if (i; j) 2 f(1; 0); (2; n� 1)g;
j + 2 if i = 0 and j 2 f1; 3; 5; : : : ; n� 2g,
j if i = 2 and j 2 f1; 3; 5; : : : ; n� 2g,
i+ j otherwise.

To check that the entry (1; 0; 0) is not in any transversal T of L, observe that
�(1; 0; 0) = 1. Any other entries which might lie in T , namely the ones that do not
share any coordinate with (1; 0; 0), have � value in f�2; 0; 2g. Since the entries with
� = �2 all share a row, at most one of them can be in any transversal. Likewise
for the entries with � = +2. As n > 3, it is impossible to satisfy (2.1). �

As a coda to this proof, we observe that a similar argument shows that the entry
(1; n� 1; 1) is not in any transversal.

Evans [57] demonstrates that his variant of the Delta Lemma can be used to
explain a number of classical results about transversals. In addition to the above,
the Delta Lemma can be (and in many cases was) used to prove the Theorems
numbered 3.1, 3.4, 3.5, 4.2, 4.3, 4.5, 4.6, 8.3, 8.4, 8.7, 8.8, 8.9, 8.10, 10.7, 10.8 and
10.11 in this survey. For such a simple device it is immensely powerful!

3 Entries not in transversals

As shown by Theorem 2:3, some latin squares have an entry that is not in
any transversal. In extreme cases, such as Theorem 2:2, the latin square has no
transversals at all. We now look at some further results of this nature.

A latin square of order mq is said to be of q-step type if it can be represented by
a matrix of q � q blocks Aij as follows

A11 A12 � � � A1m

A21 A22 � � � A2m
...

...
. . .

...
Am1 Am2 � � � Amm

where each block Aij is a latin subsquare of order q and two blocks Aij and Ai0j0

contain the same symbols i� i+ j � i0 + j0 mod m. The following classical theorem
is due to Maillet [90] (and was rediscovered by Parker [99]).

Theorem 3.1 Suppose that q is odd and m is even. No q-step type latin square of
order mq possesses a transversal.

As we will see in x6, this rules out many group tables having transversals. In
particular, as we saw in Theorem 2:2, no cyclic group of even order has a transversal.
By contrast, there is no known example of a latin square of odd order without
transversals.

Conjecture 3.2 Each latin square of odd order has at least one transversal.
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� Order n
2 3 4 5 6 7 8 9

0 1 1 1 2 54 267 932 19 270 833 530
1 11 13 165 18 066
2 26 1 427 1 853
3 12 253 54
4 1 12 508 21
5 6 89 7
6 1 8 65 7
7 3 33 1
8 4 48 1
9 25
10 1 27 1
11 1 9
12 1 2 6 9
13 1 2
14 2
16 1 1 1 27
18 1
20 1
28 1
36 6 1
64 33

Total 1 1 2 2 12 147 283 657 19 270 853 541

Table 1: Species of order n 6 9 according to their number of transversal-free entries.

This conjecture is known [94] to be true for n 6 9. It is attributed to Ryser [104]
and has been open for forty years. In fact, Ryser’s original conjecture was somewhat
stronger: for every latin square of order n, the number of transversals is congruent
to n mod 2. In [11], Balasubramanian proved the even case.

Theorem 3.3 In any latin square of even order the number of transversals is even.

Despite this, it has been noted in [3, 25, 113] (and other places) that there
are many counterexamples of odd order to Ryser’s original conjecture. Hence the
conjecture has now been weakened to Conjecture 3:2 as stated.

Latin squares of moderate order are typically blessed with many transversals,
although it is clear that some rare cases have restrictions. One measure of the
restrictions on transversals is �(L), the number of transversal-free entries in a latin
square L. The value of � for latin squares of order up to 9 is shown in Table 1,
from [51]. The entries in the table are counts of the number of species3. This table,
together with tests on random latin squares of larger order suggests that almost
all latin squares of large order have a transversal through every entry (i.e. � = 0).
Nevertheless, we have the following result, which was implicitly shown in [124] and

3A species or main class, is an equivalence class of latin squares each of which has essentially
the same structure. See [39, 87] for the de�nition.
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explicitly stated in [51].

Theorem 3.4 For all n > 4, there exists a latin square L of order n with �(L) > 7.

This result is likely to be far short of best possible. Clearly, � can be as large as
n2 for even n, by Theorem 2:2. For odd n we also know the following, from [51].

Theorem 3.5 For all odd m > 3 there exists a latin square of order 3m that con-
tains an (m � 1) � m latin subrectangle consisting of entries that are not in any
transversal.

In this example �=n2
> m(m�1)=(3m)2 � 1=9, so at least a constant fraction of

the entries are transversal free as n = 3m!1. This raises the following interesting
question [51]:

Question 3.6 Is lim inf
n!1

max
L

1
n2 �(L) > 0, where L ranges over squares of order n?

4 Disjoint transversals

Motivated by Theorem 1:1, we next consider sets of disjoint transversals. Such
a set will be described as maximal if it is not a subset of a strictly larger set of
disjoint transversals. For a given latin square L we consider two measures of the
number of disjoint transversals in L. Let � = �(L) be the largest cardinality of any
set of disjoint transversals in L, and let � = �(L) be the smallest cardinality of any
maximal set of disjoint transversals in L. Clearly 0 6 � 6 � 6 n. We will also be
interested in �(n) and �(n), which we de�ne to be the minimum of �(L) and �(L),
respectively, among all latin squares L of order n.

Example 4.1 A latin square of order n has � = n i� it has an orthogonal mate, by
Theorem 1:1. For n = 6 there is no pair of orthogonal squares (see Theorem 1:2), but
we can get close. Finney [62] gives the following example which contains 4 disjoint
transversals indicated by the subscripts a; b; c and d.

1a 2 3b 4c 5 6d

2c 1d 6 5b 4a 3
3 4b 1 2d 6c 5a

4 6a 5c 1 3d 2b

5d 3c 2a 6 1b 4
6b 5 4d 3a 2 1c

This square has � = 4, and � = 3 (the di�erent shadings show a maximal set of 3
disjoint transversals).

Table 2 shows the species of order n 6 9, counted according to their maximum
number � of disjoint transversals. Table 3 shows the species of order n = 9 cate-
gorised according to their values of � and �. The data in both tables was computed
in [51].

Evidence for small orders (such as that in Table 2) led van Rees [118] to conjec-
ture that, as n!1, a vanishingly small proportion of latin squares have orthogonal
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� n = 2 3 4 5 6 7 8 9

0 1 0 1 0 6 0 33 0
1 - 0 0 1 0 1 0 0
2 0 - 0 0 2 5 7 0
3 - 1 - 0 0 24 46 3
4 - - 1 - 4 68 712 23
5 - - - 1 - 43 71 330 142 915
6 - - - - 0 - 209 505 61 613
7 - - - - - 6 - 18 922 150 935
8 - - - - - - 2 024 -
9 - - - - - - - 348 498 052

Total 1 1 2 2 12 147 283 657 19 270 853 541

Table 2: Latin squares of order n 6 9 with � disjoint transversals.

�
� 3 4 5 6 7 9 Total

1 0 7 36 000 0 0 0 36 007
2 2 4 6 765 528 873 5 8 177
3 1 12 100 150 61 085 18 786 989 798 340 588 766 19 127 739 812
4 0 0 0 135 160 264 7 909 243 143 069 507
5 0 0 0 32 32
6 0 0 5 5
7 0 1 1

Total 3 23 142 915 61 613 18 922 150 935 348 498 052 19 270 853 541

Table 3: Species of order 9 categorised according to � and �.

mates. However, the trend seems to be quite the reverse (see [93, 124]), although
no rigorous way of establishing this has yet been found.

For even orders, [50] showed that � can achieve many di�erent values4:

Theorem 4.2 For each even n > 6 and each j � 0 mod 4 such that 0 6 j 6 n,
there exists a latin square L of order n with �(L) = j.

In [51] it was shown that � = 1 is also achievable for even n > 10, as a corollary
of:

Theorem 4.3 For all even n > 10, there exists a latin square of order n that has
transversals, but in which every transversal coincides on a single entry5.

It is not possible for a latin square of order n to have � = n� 1. Theorems 4.2
and 4.3, together with small order examples, led the authors of [51] to conjecture
that for large even orders, all other values of � are achievable:

Conjecture 4.4 For all even n > 10 and each m 2 f0; 1; : : : ; n� 3; n� 2; ng there
exists a latin square of order n such that �(L) = m.

4We will see in Theorem 6:1 that the situation is markedly di�erent for group tables.
5If n is a multiple of 16 then every transversal in the construction includes two speci�c entries.
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For odd orders n, there is not even a conjecture as to which values of � can be
achieved, except that Conjecture 3:2 predicts that � must be positive. This leads
naturally to a discussion of �(n), the minimum value of � among the latin squares
of order n. Clearly, �(n) = 0 for all even n by Theorem 2:2, so we are concerned
with the case when n is odd. If Conjecture 3:2 is true, then �(n) > 1 for all odd n.
Our best general upper bound currently is:

Theorem 4.5 If n > 3 then �(n) 6 1
2
(n+ 1).

This result was �rst explicitly stated in [51], although it follows immediately
from the only known proof6 of Theorem 2:4 that does not go via Theorem 2:3. The
n � 3 mod 4 case of Theorem 4:5 was implicitly shown by Evans [57], 62 years after
the n � 1 mod 4 had been shown by Mann [92], who proved:

Theorem 4.6 Let L be a latin square of order 4k + 1 containing a latin subsquare
S of order 2k. Let U be the set of entries in L that do not share a row, column or
symbol with any element of S. Then every transversal of L contains an odd number
of elements of U .

In Theorem 4:6, simple counting shows that U has 2k + 1 elements and hence
�(L) 6 2k + 1 = (n+ 1)=2.

There appears to be room to improve on the upper bound for �(n) stated in
Theorem 4:5. The known values of �(n) for odd n are �(1) = �(5) = �(7) = 1 and
�(3) = �(9) = 3. It would be of interest to determine if �(n) < 1

2n for n > 3. In
particular [51]:

Question 4.7 Is �(n) bounded as n!1?

Next we consider �(n), the minimum value of � among the latin squares of order
n. Although we know little about the size of �(n) for odd n, we can narrow �(n)
down to a very small set of possible values. A result in [50] proved that

�(n) 6

(

1 if n � 1 mod 4;

3 if n � 3 mod 4:

Even this strong restriction leaves some potential for improvement. The known
values of �(n) for odd n are �(3) = 3 and �(1) = �(5) = �(7) = �(9) = 1. If
Conjecture 3:2 is correct then �(n) > 1 for all odd n, but at this stage it is still
plausible that equality holds for odd n > 3.

Finally, we remark that if transversals are not disjoint then they intersect. It is
obvious that two transversals of an n� n latin square can never share exactly n� 1
or n� 2 entries. However, [28] shows that they can intersect in any other way:

Theorem 4.8 For all odd n > 5 and every integer t 2 f0; 1; 2; : : : ; n � 3; ng there
exist two transversals of the addition table of Zn that intersect in exactly t entries.

6Theorem 2:4 is a direct corollary of Theorem 4:5.
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5 Partial transversals

We have seen in Theorems 2.2 and 3.1 that not all latin squares have transversals,
which prompts the question of how close we can get to �nding a transversal in such
cases. We de�ne a partial transversal7 of length k to be a set of k entries, each
selected from di�erent rows and columns of a latin square such that no two entries
contain the same symbol. A partial transversal is completable if it is a subset of
some transversal, whereas it is non-extendible if it is not contained in any partial
transversal of greater length.

Since not all squares of order n have a partial transversal of length n (i.e. a
transversal), the best we can hope for is to �nd one of length n � 1. Such par-
tial transversals are called near transversals. The following conjecture has been
attributed to Brualdi (see [39, p.103]) and Stein [111] and, in [52], to Ryser. For
generalisations of it, in terms of hypergraphs, see [2].

Conjecture 5.1 Every latin square has a near transversal.

A claimed proof of this conjecture by Deriyenko [42] contains a fatal error, as
mentioned in [40, p.40] and discussed in detail in [25]. More recently, a paper [77]
appeared in the maths arXiv claiming to prove Conjecture 5:1. However, the paper
was subsequently withdrawn when it was discovered that the proof was invalid. By
copying the method of Theorem 3:3, Akbari and Alireza [3] managed to show that
the number of non-extendible near transversals in any latin square is divisible by 4.
Unfortunately in many cases that number can be zero, as we will see in Corollary 6.6.

The best reliable lower bound to date states that there must be a partial transver-
sal of length at least n�O(log2 n). This was shown by Shor [108], and the implicit
constant in the ‘big O’ was very marginally improved by Fu et al. [64]. Subsequently
Hatami and Shor [73] discovered an error in [108] (duplicated in [64]) and corrected
the constant to a higher one. Nonetheless, the important thing remains that the
bound is n � O(log2 n). This improved on a number of earlier bounds including
2
3n + O(1) (Koksma [83]), 3

4n + O(1) (Drake [45]) and n �
p
n (Brouwer et al. [17]

and Woolbright [126]).
It has also been shown in [25] that every latin square possesses a diagonal in

which no symbol appears more than twice. An earlier claimed proof of this result
[22, Thm 8.2.3] is incomplete.

Conjecture 5:1 has been open for decades and has now gained a degree of no-
toriety. A much simpler problem is to consider the shortest possible length of a
non-extendible partial transversal. It is easy to see the impossibility of a non-
extendible partial transversal having length strictly less than 1

2n, since there would
not be enough ‘used’ symbols to �ll the submatrix formed by the ‘unused’ rows and
columns. However, for all n > 4, non-extendible partial transversals of length

�

1
2n
�

can easily be constructed using a square of order n which contains a subsquare S of
order

�

1
2n
�

and a partial transversal containing the symbols of S but not using any
of the same rows or columns as S.

The antithesis of non-extendibility is for a partial transversal to be completable in
the sense that it is a subset of some transversal. Theorems 3.4, 3.5 and 4.3 all furnish

7In some papers (e.g. [64, 73, 108]) a partial transversal of length k is de�ned slightly di�erently
to be a diagonal on which k di�erent symbols appear.
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examples where even some partial transversals of length 1 fail to be completable. An
interesting open question concerns the completability of short partial transversals
in cyclic groups. Gr�uttm�uller [68] de�ned C(k) to be the smallest odd integer such
that it is possible to complete every partial transversal of length k in Zn for any odd
n > C(k). He showed that C(1) = 1 and C(2) = 3. It is not proved that C(k) even
exists for k > 3, but if it does then Gr�uttm�uller [69] showed that C(k) > 3k� 1. He
also provided computational evidence to suggest that this bound is essentially best
possible. Further evidence that C(3) = 9 was given by Cavenagh et al. [27], who
proved:

Theorem 5.2 For any prime p > 7, every partial transversal of length 3 in the
addition table of Zp is completable.

To complement this result, [110] gives a method for completing short partial
transversals in Zn when n has many di�erent prime factors.

6 Finite Groups

By using the symbols of a latin square to index its rows and columns, each latin
square can be interpreted as the Cayley table of a quasigroup [39]. In this section
we consider the important special case when that quasigroup is associative; in other
words, it is a group. The extra structure in this case allows for much stronger results.
For example, let LG be the Cayley table of a �nite group G. Suppose that we know
of a transversal of LG that comprises a choice from each row i of an element gi.
Let g be any �xed element of G. Then if we select from each row i the element gig
this will give a new transversal. Moreover, as g ranges over G the transversals so
produced will be mutually disjoint. Hence:

Theorem 6.1 If the Cayley table of a �nite group has a single transversal then it
has a decomposition into disjoint transversals.

In other words, using the notation of x4, the only two possibilities if jGj = n are
that �(LG) = 0 or �(LG) = n.

6.1 Complete Mappings and Orthomorphisms

Much of the study of transversals in groups has been phrased in terms of the
equivalent concepts of complete mappings and orthomorphisms8. Mann [91] in-
troduced complete mappings for groups, but the de�nition works just as well for
quasigroups. It is this: a permutation � of the elements of a quasigroup (Q;�) is a
complete mapping if � : Q 7! Q de�ned by �(x) = x � �(x) is also a permutation.
The permutation � is known as an orthomorphism of (Q;�), following terminology
introduced in [78]. All of the results of this paper could be rephrased in terms of
complete mappings and/or orthomorphisms because of our next observation.

Theorem 6.2 Let (Q;�) be a quasigroup and LQ its Cayley table. Then � : Q 7! Q
is a complete mapping i� we can locate a transversal of LQ by selecting, in each row

8These two concepts are so closely related that some references (e.g. [75, 107]) confuse them.
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x, the entry in column �(x). Similarly, � : Q 7! Q is an orthomorphism i� we can
locate a transversal of LQ by selecting, in each row x, the entry containing symbol
�(x).

There are also notions of near complete mappings and near orthomorphisms that
correspond naturally to near transversals [12, 40, 55].

Orthomorphisms and complete mappings have been used to build a range of
di�erent combinatorial designs and algebraic structures including MOLS [12, 55, 91],
generalized Bhaskar Rao designs [1], diagonally cyclic latin squares [27, 121], left
neo�elds [12, 40, 55], Bol loops [96] and atomic latin squares [122]. This wide
applicability and the intimate connection with transversals, as demonstrated by
Theorem 6:2, justi�es a closer look at orthomorphisms (or equivalently, at complete
mappings). Various special types of orthomorphisms have been considered, with the
focus often on orthomorphisms with a particularly nice algebraic structure. Such
orthomorphisms have the potential to be exploited in a variety of applications, so
we now examine them in some detail.

An orthomorphism of a group is canonical [12, 13, 40, 110] (also called normalized
[31] or standard [75]) if it �xes the identity element9. In the following we will suppose
that � is an orthomorphism in a group G with identity ". For the sake of simplicity
we will assume that G is abelian and � is canonical, although in some of the following
categories these restrictions may be relaxed if so desired.

1. Linear orthomorphisms: � is linear if �(x) = �x for some �xed � 2 G. Clark
and Lewis [30] show that the number of such linear orthomorphisms of Zn is

Y

pjn

pa�1(p� 2);

where the product is over prime divisors of n and a = a(p; n) is the greatest
integer such that pa divides n.

2. Quadratic orthomorphisms: Suppose G is the additive group of a �nite �eld
F and let � denote the set of non-zero squares in F . If there are constants
�1; �2 2 F such that � can be de�ned as x 7! �1x for x 2 � and x 7! �2x for
x =2 �, then we say � is a quadratic orthomorphism. Linear orthomorphisms
are a special case of quadratic orthomorphisms for which �1 = �2. Note that
� is an index 2 subgroup of the multiplicative group of F , and the non-squares
form a coset of �.

3. Cyclotomic orthomorphisms: These generalise the quadratic orthomorphisms.
Take any non-trivial subgroup H of the multiplicative group of F and choose
a multiplier �i for each coset of H. Multiply every element in the coset (some-
times called a cyclotomy class) by the chosen multiplier. If the resulting map is
an orthomorphism then we say it is a cyclotomic orthomorphism. See [55] for
more information on cyclotomic orthomorphisms, including the special cases
of linear and quadratic orthomorphisms.

9Some references (e.g. [55]) de�ne all \orthomorphisms" to be canonical, but that is undesirable
since it leaves no easy way to talk about the orthomorphisms which are not canonical.
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4. Regular orthomorphisms: Let �0 be the restriction of � to G n f"g. The or-
thomorphism � is k-regular if the permutation �0 is regular in the sense that
it permutes all elements of G n f"g in cycles of length k. This notion was
introduced in [63] and later studied in [107]. The special case when �0 has a
single cycle of length jGj � 1 corresponds to the idea of an R-sequencing of G
(see [40, Chap.3]).

5. Involutory orthomorphisms: If � = ��1 then
�

fx; �(x)g : x 2 G n f"g
	

is a
starter10 in G. Conversely every starter in G de�nes an orthomorphism of G
that is its own inverse.

6. Strong orthomorphisms: A permutation that is both an orthomorphism and a
complete mapping is called a strong orthomorphism [8] (alternatively, a strong
complete mapping [59] or a strong permutation [74]). They exist in an abelian
group G if and only if the Sylow 2-subgroups and Sylow 3-subgroups of G
are either trivial or non-cyclic [59]. Strong orthomorphisms are connected to
strong starters, see [31, 74] for de�nitions and details.

7. Polynomial orthomorphisms: If G is the additive group of a ring R and there
exists any polynomial p(x) over R such that �(x) = p(x) for all x 2 G then
we say that � is a polynomial orthomorphism. For example, linear ortho-
morphisms are polynomial, as is any orthomorphism of a �nite �eld. In fact,
[97, 119] any orthomorphism of a �eld of order q > 4 is realised by a polynomial
of degree at most q � 3. In contrast, [110] showed that for any odd composite
n there is a non-polynomial orthomorphism of Zn. The polynomials of small
degree that produce orthomorphisms are classi�ed in [97]. Note that quadratic
orthomorphisms are polynomial, but are not produced by quadratic polyno-
mials (indeed no orthomorphism is produced by a quadratic polynomial).

8. Compound orthomorphisms: Let d be a divisor of n. An orthomorphism � of
Zn is de�ned to be d-compound if �(i) � �(j) whenever i � j mod d. This
notion was introduced in [110] where compound orthomorphisms were used,
among other things, for completing partial orthomorphisms.

9. Compatible orthomorphisms: An orthomorphism � of Zn is compatible if it
is d-compound for all divisors d of n. Every polynomial orthomorphism is
necessarily compatible. The converse holds only for certain values of n, as
characterised in [110]. The same paper contains a formula for the number
of compatible orthomorphisms of Zn expressed in terms of the number of
orthomorphisms of Zp for prime divisors p of n.

Having seen in Theorem 6:2 that transversals, orthomorphisms and complete
mappings are essentially the same thing, we will adopt the practice of expressing
our remaining results in terms of transversals even when the original authors used
one of the other notions.

10A starter is a pairing of the non-zero elements of an additive group such that every non-zero
element can be written as the di�erence of the two elements in some pair. Starters are useful for
creating numerous di�erent kinds of designs [31].
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6.2 Which groups have transversals?

We saw in x3 that the question of which latin squares have transversals is far
from settled. However, if we restrict our attention to group tables, the situation is
a lot clearer.

Consider these �ve propositions for the Cayley table LG of a �nite group G:

(i) LG has a transversal.

(ii) LG can be decomposed into disjoint transversals.

(iii) There exists a latin square orthogonal to LG.

(iv) There is some ordering of the elements of G, say a1; a2; : : : ; an, such that
a1a2 � � � an = ", where " denotes the identity element of G.

(v) The Sylow 2-subgroups of G are trivial or non-cyclic.

The fact that (i), (ii) and (iii) are equivalent comes directly from Theorem 1:1
and Theorem 6:1. Paige [98] showed that (i) implies (iv). Hall and Paige [72] then
showed11 that (iv) implies (v). They also showed that (v) implies (i) if G is a soluble,
symmetric or alternating group. They conjectured that (v) is equivalent to (i) for
all groups.

It was subsequently noted in [41] that both (iv) and (v) hold for all non-soluble
groups, which proved that (iv) and (v) are equivalent. A much more direct and
elementary proof of this fact was given in [117]. Thus the Hall-Paige Conjecture
could be rephrased as the statement that all �ve conditions (i){(v) are equivalent.

For decades there was incremental progress, as the Hall-Paige Conjecture was
shown to hold for various groups, including the linear groups GL(2; q), SL(2; q),
PGL(2; q) and PSL(2; q) (see [56] and the references therein). Then a very signi�-
cant breakthrough was obtained by Wilcox [125] who reduced the problem to show-
ing it for the sporadic simple groups (of which the Mathieu groups have already been
handled in [36]). Evans [58] then showed that the only possible counterexample was
Janko’s group J4. Finally, in unpublished work Bray claims to have showed that J4

has a transversal, thereby proving the important theorem:

Theorem 6.3 Conditions (i); (ii); (iii); (iv); (v) are equivalent for all �nite groups.

An interesting �rst step towards �nding non-associative analogues of Theo-
rem 6:3 was taken by Pula [100]. Regarding the non-associative analogue of condition
(iv) above, it was shown in [19] that for all n > 5 there exists a loop12 of order n in
which every element can be obtained as a product of all n elements in some order
and with some bracketing.

While Theorem 6:3 settles the question of which groups have a transversal13, it
remains an interesting open question as to whether Conjecture 5:1 holds for groups.
A related concept is the idea of a sequenceable group. A group of �nite order n is

11As shown in [120], the fact that (i) implies (v) is actually a special case of Theorem 3:1.
12A loop is a quasigroup with an identity element [39].
13From now on we will sometimes refer to groups having transversals (or near transversals etc.)

when strictly speaking it is the Cayley table of the group that has these structures.
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called sequenceable if its elements can be labelled in an order a1; a2; : : : ; an such that
the products a1; a1a2; a1a2a3; : : : ; a1a2 � � � an are distinct. This idea was introduced
by Gordon [67] who showed that abelian groups are sequenceable i� they have a non-
trivial cyclic Sylow 2-subgroup (in other words if condition (v) above fails). Since
then, many non-abelian groups have been shown to be sequenceable as well (see [40,
Chap 3] or [31, p.350] for details). The importance of this idea for our purposes is
that the entries (a1a2 � � � ai; ai+1; a1a2 � � � ai+1) for i = 1; 2; : : : ; n � 1 form a near
transversal of a sequenceable group. Hence we have this folklore result:

Theorem 6.4 If a �nite group is sequenceable then it has a near transversal.

The converse of Theorem 6:4 is false. For example, the dihedral groups of order
6 and 8 have near transversals but are not sequenceable. All larger dihedral groups
are sequenceable [88]. Indeed, it has been conjectured by Keedwell [80] that all
non-abelian groups of order at least 10 are sequenceable.

For abelian groups, an important result was proved by Hall [71]. Recast into the
form most useful to us, it is this:

Theorem 6.5 Let LG be the Cayley table of an abelian group G of �nite order n,
with identity 0. Suppose b1; b2; : : : ; bn is a list of (not necessarily distinct) elements
of G. A necessary and su�cient condition for LG to possess a diagonal on which
the symbols are b1; : : : ; bn (in some order), is that

P

bi = 0.

Since the sum of the elements in an abelian group is the identity if condition (v)
above holds, and is the unique involution in the group otherwise, we have:

Corollary 6.6 If a �nite abelian group has a non-trivial cyclic Sylow 2-subgroup
then it possesses non-extendible near transversals, but no transversals. Otherwise it
has transversals but no non-extendible near transversals.

This corollary has been rediscovered several times, most recently by Stein and
Szab�o [113]. They also show that for p prime, Zp has no diagonal with exactly two
distinct symbols on it. Again, this is a direct corollary of Theorem 6:5. We will see
yet a third result that follows easily from Theorem 6:5 in Theorem 10:8.

6.3 How many transversals does a group have?

We turn next to the question of how many transversals a given group may have.
In this subsection and the next, we will be concerned with estimating the number
of transversals, as well as demonstrating that it must satisfy certain congruences.
Analogous questions for more general latin squares will be considered in x7.

Using theoretical methods it seems very di�cult to �nd accurate estimates for
the number of transversals in a latin square (unless, of course, that number is zero).
This di�culty is so acute that there are not even good estimates for zn, the number
of transversals of the cyclic group of order n. Clark and Lewis [30] conjecture that
zn > n(n � 2)(n � 4) � � � 3 � 1 = n! o(

p

e=n
n
) for odd n, while Vardi [116] makes a

stronger prediction:
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Conjecture 6.7 There exist real constants 0 < c1 < c2 < 1 such that

cn
1n! 6 zn 6 c

n
2n!

for all odd n > 3.

Vardi makes this conjecture14 while considering a variation on the toroidal n-
queens problem. The toroidal n-queens problem is that of determining in how many
di�erent ways n non-attacking queens can be placed on a toroidal n�n chessboard.
Vardi considered the same problem using semiqueens in place of queens, where a
semiqueen is a piece which moves like a toroidal queen except that it cannot travel on
right-to-left diagonals. The solution to Vardi’s problem provides an upper bound on
the toroidal n-queens problem. The problem can be translated into one concerning
latin squares by noting that every con�guration of n non-attacking semiqueens on
a toroidal n � n chessboard corresponds to a transversal in a cyclic latin square L
of order n, where Lij � i � j mod n. Note that the toroidal n-queens problem is
equivalent to counting diagonals which simultaneously yield transversals in L and
L0, where L0ij = i+ j mod n.

Cooper and Kovalenko [34] were the �rst to prove the upper bound in Con-
jecture 6:7 by showing zn = o(0:9154nn!), and this was subsequently improved to
zn = o(0:7072nn!) in [84]. In Theorem 7:2 we will see a stronger bound, that applies
to all latin squares, not just to cyclic groups.

Finding a lower bound of the form given in Conjecture 6:7 is still an open prob-
lem. However, [32, 103, 107] do give some lower bounds, each of which applies only
for some n. The following better bound was found in [28], although it is still a long
way short of proving Vardi’s Conjecture:

Theorem 6.8 If n is odd and su�ciently large then zn > (3:246)n.

Estimates for the rate of growth of zn are given by Cooper et al. [33], who arrived
at a value around 0:39nn! and Kuznetsov [85, 86] who favours the slightly smaller
0:37nn!. Acting on a hunch, the present author proposes:

Conjecture 6.9

lim
n!1

1

n
log(zn=n!) = �1:

Of course, at this stage it is not even known that this limit exists.

6.4 Congruences and divisors

We next consider congruences satis�ed by the number of transversals in a group
table. An immediate corollary of the proof of Theorem 6:1 is that for any group the
number of transversals through a given entry of the Cayley table is independent of
the entry chosen. Hence (see Theorem 3.5 of [40]) we get:

Theorem 6.10 The number of transversals in the Cayley table of a group G is
divisible by jGj, the order of G.

14Vardi’s actual statement is not very concrete. Conjecture 6:7 is the present author’s interpre-
tation of Vardi’s intention.
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McKay et al. [94] also showed the following simple results, in the spirit of The-
orem 3:3:

Theorem 6.11 The number of transversals in any symmetric latin square of order
n is congruent to n modulo 2.

Corollary 6.12 Let G be a group of order n. If G is abelian or n is even then the
number of transversals in G is congruent to n modulo 2.

Corollary 6.12 cannot be generalised to non-abelian groups of odd order, given
that the non-abelian group of order 21 has 826 814 671 200 transversals.

Theorem 6.13 If G is a group of order n 6� 1 mod 3 then the number of transver-
sals in G is divisible by 3.

We will see below that the cyclic groups of small orders n � 1 mod 3 have a
number of transversals which is not a multiple of three.

Let zn be the number of transversals in the cyclic group of order n and let
z0n = zn=n denote the number of transversals through any given entry of the cyclic
square of order n. Since zn = z0n = 0 for all even n by Theorem 2:2 we shall assume
for the following discussion that n is odd. The initial values of z0n are known from
[105] and [106]. They are

z01 = z03 = 1; z05 = 3; z07 = 19; z09 = 225; z011 = 3 441; z013 = 79 259;

z015 = 2 424 195; z017 = 94 471 089; z019 = 4 613 520 889; z021 = 275 148 653 115;

z023 = 19 686 730 313 955; z025 = 1 664 382 756 757 625:

Interestingly, if we take these numbers modulo 8 we �nd that this sequence begins
1,1,3,3,1,1,3,3,1,1,3,3,1. We know from Theorem 6:11 that z0n is always odd for odd
n, but it is an open question whether there is any deeper pattern modulo 4 or 8. The
initial terms of z0n mod 3 are 1,1,0,1,0,0,2,0,0,1,0,0,2. We know from Theorem 6:13
that z0n is divisible by 3 when n � 2 mod 3. In fact we can say more:

Theorem 6.14 Let n be an odd number. If n > 5 and n 6� 1 mod 3 then z0n is
divisible by 3. If n is a prime of the form 2� 3k + 1 then z0n � 1 mod 3.

Theorem 6:14 is from [110]. In the same paper, the sequence z0n mod n was
completely determined:

Theorem 6.15 If n is prime then z0n � �2 mod n, whereas if n is composite then
z0n � 0 mod n.

A nice fact about zn is that it is the number of diagonally cyclic latin squares
of order n. Equivalently, zn is the number of quasigroups on the set f1; 2; : : : ; ng
which have the transitive automorphism (123 � � �n). Moreover, z0n is the number of
such quasigroups which are idempotent. See [20, 121] for more details and a survey
of the many applications of such objects.
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n Number of transversals in groups of order n

3 3
4 0, 8
5 15
7 133
8 0, 384, 384, 384, 384
9 2 025, 2 241

11 37 851
12 0, 198 144, 76 032, 46 080, 0
13 1 030 367
15 36 362 925
16 0, 235 765 760, 237 010 944, 238 190 592, 244 744 192, 125 599 744,

121 143 296, 123 371 520, 123 895 808, 122 191 872, 121 733 120,
62 881 792, 62 619 648, 62 357 504

17 1 606 008 513
19 87 656 896 891
20 0, 697 292 390 400, 140 866 560 000, 0, 0
21 5 778 121 715 415, 826 814 671 200
23 452 794 797 220 965

Table 4: Transversals in groups of order n 6 23.

6.5 Groups of small order

We now discuss the number of transversals in general groups of small order. For
groups of order n � 2 mod 4 there can be no transversals, by Theorem 6:3. For each
other order n 6 23 the number of transversals in each group is given in Table 4.
The groups are ordered according to the catalogue of Thomas and Wood [115]. The
numbers of transversals in abelian groups of order at most 16 and cyclic groups of
order at most 21 were obtained by Shieh et al. [107]. The remaining values in Table
4 were computed by Shieh [105]. McKay et al. [94] then independently con�rmed
all counts except those for cyclic groups of order > 21, correcting one misprint in
Shieh [105].

Bedford and Whitaker [13] o�er an explanation for why all the non-cyclic groups
of order 8 have 384 transversals. The groups of order 4, 9 and 16 with the most
transversals are the elementary abelian groups of those orders. Similarly, for orders
12, 20 and 21 the group with the most transversals is the direct sum of cyclic groups
of prime order. It is an open question whether such a statement generalises.

Question 6.16 Is it true that a direct sum of cyclic groups of prime order always
has at least as many transversals as any other group of the same order?

By Corollary 6.12 we know that in each case covered by Table 4 (except the non-
abelian group of order 21), the number of transversals must have the same parity
as the order of the square. It is remarkable though, that the groups of even order
have a number of transversals which is divisible by a high power of 2. Indeed, any
2-group of order n 6 16 has a number of transversals which is divisible by 2n�1. It
would be interesting to know if this is true for general n. Theorem 6:10 does provide
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a partial answer, but there seems to be more to the story.

7 Number of transversals

In this section we consider the question of how many transversals a general latin
square can have. We de�ne t(n) and T (n) to be respectively the minimum and
maximum number of transversals among the latin squares of order n.

In x6 we have already considered zn, the number of transversals in the addition
table of Zn, which is arguably the simplest case. Since t(n) 6 zn, Theorem 2:2 tells
us that t(n) = zn = 0 for even n. It is unknown whether there is any odd n for
which t(n) = 0, although Conjecture 3:2 asserts there is not. In any case, for lower
bounds on t(n) we currently can do no better than to observe that t(n) > 0, and
to note that t(1) = 1, t(3) = t(5) = t(7) = 3 and t(9) = 68. A related question,
for which no work seems to have been published, is to �nd an upper bound on t(n)
when n is odd.

Turning to the maximum number of transversals, we have zn 6 T (n) and hence
Theorem 6:8 gives a lower bound on T (n) for odd n. In fact, the bound applies for
even n as well [28]:

Theorem 7.1 Provided n is su�ciently large, T (n) > (3:246)n.

It is clear that T (n) 6 n! since there are only n! di�erent diagonals. An expo-
nential improvement on this trivial bound was obtained by McKay et al. [94], who
showed:

Theorem 7.2 For n > 5,

15n=5
6 T (n) 6 cnpn n!

where c =

q

3�
p

3
6 e

p
3=6 � 0:6135.

As a corollary of Theorem 7:2 we can infer that the upper bound in Conjecture 6:7
is true (asymptotically) with c2 = 0:614. This also yields an upper bound for the
number of solutions to the toroidal n-queens problem.

The lower bound in Theorem 7:2 is very simple and is weaker than Theorem 7:1.
The upper bound took considerably more work, although it too is probably far from
the truth.

The same paper [94] reports the results of an exhaustive computation of the
transversals in latin squares of orders up to and including 9. Table 5 lists the
minimum and maximum number of transversals over all latin squares of order n for
n 6 9, and the mean and standard deviation to 2 decimal places.

Table 5 con�rms Conjecture 3:2 for n 6 9. The following semisymmetric15

latin squares are representatives of the unique species with t(n) transversals for

15A latin square is semisymmetric if it is invariant under cyclically permuting the roles of rows,
columns and symbols. See [39] for more details.
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n t(n) Mean Std Dev T (n)

2 0 0 0 0
3 3 3 0 3
4 0 2 3.46 8
5 3 4.29 3.71 15
6 0 6.86 5.19 32
7 3 20.41 6.00 133
8 0 61.05 8.66 384
9 68 214.11 15.79 2241

Table 5: Transversals in latin squares of order n 6 9.

n 2 f5; 7; 9g. In each case the entries in the largest subsquares are shaded.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

3 2 1 5 4 7 6
2 1 3 6 7 4 5
1 3 2 7 6 5 4
5 6 7 4 1 2 3
4 7 6 1 5 3 2
7 4 5 2 3 6 1
6 5 4 3 2 1 7

2 1 3 6 7 8 9 5 4
1 3 2 5 4 9 6 7 8
3 2 1 4 9 5 7 8 6
9 5 4 3 2 1 8 6 7
8 4 6 2 5 7 1 9 3
4 7 9 8 3 6 5 1 2
5 8 7 9 6 2 3 4 1
6 9 8 7 1 4 2 3 5
7 6 5 1 8 3 4 2 9

n Lower Bound Upper Bound

10 5 504 75 000
11 37 851 528 647
12 198 144 3 965 268
13 1 030 367 32 837 805
14 3 477 504 300 019 037
15 36 362 925 2 762 962 210
16 244 744 192 28 218 998 328
17 1 606 008 513 300 502 249 052
18 6 434 611 200 3 410 036 886 841
19 87 656 896 891 41 327 486 367 018
20 697 292 390 400 512 073 756 609 248
21 5 778 121 715 415 6 803 898 881 738 477

Table 6: Bounds on T (n) for 10 6 n 6 21.

In Table 6 we reproduce from [94] bounds on T (n) for 10 6 n 6 21. The upper
bound is somewhat sharper than that given by Theorem 7:2, though proved by the
same methods. The lower bound in each case is constructive and likely to be of the
same order as the true value. When n 6� 2 mod 4 the lower bound comes from the
group with the highest number of transversals (see Table 4). When n � 2 mod 4 the
lower bound comes from a so-called turn-square, many of which were analysed in
[94]. A turn-square is obtained by starting with the Cayley table of a group (typically
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a group of the form Z2 � Zm for some m) and \turning" some of the intercalates
(that is, replacing a subsquare of order 2 by the other possible subsquare on the
same symbols). For example,

5 6 2 3 4 0 1 7 8 9
6 2 3 4 0 1 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8

0 1 7 8 9 5 6 2 3 4
1 7 8 9 5 6 2 3 4 0
7 8 9 5 6 2 3 4 0 1
8 9 5 6 7 3 4 0 1 2
9 5 6 7 8 4 0 1 2 3

(7.1)

has 5504 transversals. The ‘turned’ entries have been shaded. The study of turn-
squares was pioneered by Parker (see [18] and the references therein) in his unsuc-
cessful quest for a triple of MOLS of order 10. He noticed that turn-squares often
have many more transversals than is typical for squares of their order, and used this
as a heuristic in the search for MOLS.

It is has long been suspected that T (10) is achieved by (7.1). This suspicion was
strengthened by McKay et al. [93] who examined several billion squares of order
10, including every square with a non-trivial symmetry, and found none had more
than 5504 transversals. Parker was indeed right that the square (7.1) is rich in
orthogonal mates16. However, using the number of transversals as a heuristic in
searching for MOLS is not fail-safe. For example, the turn-square of order 14 with
the most transversals (namely, 3 477 504) does not have any orthogonal mates [94].
Meanwhile there are squares of order n with orthogonal mates but which possess
only the bare minimum of n transversals (the left hand square in (1.1) is one such).

Nevertheless, the number of transversals does provide a useful species invariant
for squares of small orders where this number can be computed in reasonable time
(see, for example, [82] and [120]). It is straightforward to write a backtracking
algorithm to count transversals in latin squares of small order, though this method
currently becomes impractical if the order is much over 20. See [75, 76, 107] for some
algorithms and complexity theory results17 on the problem of counting transversals.

8 Generalised transversals

There are several ways to generalise the notion of a transversal. We have already
seen one of them, namely the partial transversals in x5. In this section we collect
results on another generalisation, namely plexes.

16It has 12 265 168 orthogonal mates [89], which is an order of magnitude greater than Parker
estimated.

17An unfortunate feature of the analysis in [75] of the complexity of counting transversals in cyclic
groups is that it hinges entirely on a technicality as to what constitutes the input for the algorithm.
The authors consider the input to be a single integer that speci�es the order of group. However,
their conclusions would be very di�erent if the input was considered to be a Cayley table for the
group in question, which in the context of counting transversals is a more natural approach.



Transversals in latin squares 423

A k-plex in a latin square of order n is a set of kn entries which includes k
representatives from each row and each column and of each symbol. A transversal
is a 1-plex.

Example 8.1 The shaded entries form a 3-plex in the following square:

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 2 4
4 6 2 5 3 1
5 4 6 2 1 3
6 3 5 1 4 2

The name k-plex was coined in [120] only fairly recently. It is a natural extension
of the names duplex, triplex, and quadruplex which have been in use for many years
(principally in the statistical literature, such as [62]) for 2, 3 and 4-plexes.

The entries not included in a k-plex of a latin square L of order n form an
(n � k)-plex of L. Together the k-plex and its complementary (n � k)-plex are an
example of what is called an orthogonal partition of L. For discussion of orthogonal
partitions in a general setting see Gilliland [66] and Bailey [10]. For our purposes,
if L is decomposed into disjoint parts K1, K2; : : : ;Kd where Ki is a ki-plex then we
call this a (k1; k2; : : : ; kd)-partition of L. A case of particular interest is when all
parts have the same size. We call a (k; k; : : : ; k)-partition more briey a k-partition.
For example, the marked 3-plex and its complement form a 3-partition of the square
in Example 8.1. By Theorem 1:1, �nding a 1-partition of a square is equivalent to
�nding an orthogonal mate.

Some results about transversals generalise directly to other plexes, while others
seem to have no analogue. Theorem 3:3 and Theorem 6:1 seem to be in the lat-
ter class, as observed in [94] and [120] respectively. However, Theorem 6:10 does
generalise to the following [50]:

Theorem 8.2 Let m be the greatest common divisor of positive integers n and k.
Suppose L is the Cayley table of a group of order n. The number of k-plexes in L is
a multiple of n=m.

Also, Theorems 3.1 and 6.3 showed that not every square has a transversal, and
similar arguments work for any k-plex where k is odd [120]:

Theorem 8.3 Suppose that q and k are odd integers and m is even. No q-step type
latin square of order mq possesses a k-plex.

Theorem 8.4 Let G be a group of �nite order n with a non-trivial cyclic Sylow
2-subgroup. The Cayley table of G contains no k-plex for any odd k but has a
2-partition and hence contains a k-plex for every even k in the range 0 6 k 6 n.

The situation for even k is quite di�erent to the odd case. Rodney [31, p.143]
conjectured that every latin square has a duplex. He subsequently strengthened this
conjecture, according to Dougherty [44], to the following:
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Conjecture 8.5 Every latin square has the maximum possible number of disjoint
duplexes. In particular, every latin square of even order has a 2-partition and every
latin square of odd order has a (2; 2; 2; : : : ; 2; 1)-partition.

Conjecture 8:5 was stated independently in [120]. It implies Conjecture 3:2 and
also that every latin square has k-plexes for every even value of k up to the order
of the square. Thanks to [50], Conjecture 8:5 is now known to be true for all latin
squares of orders 6 9. It is also true for all groups18, as can be seen by combining
Theorem 6:3 and Theorem 8:4.

If a group has a trivial or non-cyclic Sylow 2-subgroup then it has a k-plex for
all possible k. Otherwise it has k-plexes for all possible even k but for no odd k.
It is worth noting that other scenarios occur for latin squares which are not based
on groups. For example, the square in Example 8.1 has no transversal but clearly
does have a 3-plex. It is conjectured in [120] that there exist arbitrarily large latin
squares of this type.

Conjecture 8.6 For all even n > 4 there exists a latin square of order n which has
no transversal but does contain a 3-plex.

Another possibility was shown by a family of squares constructed in [49].

Theorem 8.7 For all even n there exists a latin square of order n that has k-plexes
for every odd value of k between bn=4c and d3n=4e (inclusive), but not for any odd
value of k outside this range.

Interestingly, there is no known example of odd integers a < b < c and a latin
square which has an a-plex and a c-plex but no b-plex.

The union of an a-plex and a disjoint b-plex of a latin square L is an (a+ b)-plex
of L. However, it is not always possible to split an (a + b)-plex into an a-plex and
a disjoint b-plex. Consider a duplex which consists of 1

2n disjoint intercalates (latin
subsquares of order 2). Such a duplex does not contain a partial transversal of length
more than 1

2n, so it is a long way from containing a 1-plex.

We say that a k-plex is indivisible if it contains no c-plex for 0 < c < k. The
duplex just described is indivisible19. Indeed, for every k there is an indivisible
k-plex in some su�ciently large latin square. This was �rst shown in [120], but
\su�ciently large" in that case meant at least quadratic in k. This was improved
to linear as a corollary of our next result, from [21, 50]. An indivisible partition is a
partition of a latin square into indivisible plexes.

Theorem 8.8 For every k > 2 and m > 2 there exists a latin square of order mk
with an indivisible k-partition.

In particular, for all even n > 4 there is a latin square of order n composed of
two indivisible 1

2n-plexes. Egan [48] recently showed an analogous result for odd
orders.

18For an alternative proof that Cayley tables of groups have at least one duplex, see [117].
19In contrast, it is known that any 3-plex that forms a latin trade is divisible; in fact it must

divide into 3 disjoint transversals. See [26] for details.
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Theorem 8.9 If n = 2k + 1 > 5 then there is a latin square of order n with an
indivisible (k; k; 1)-partition and an indivisible (k; k + 1)-partition.

The previous two theorems mean that some squares can be split in \half" in a
way that makes no further division possible. This is slightly surprising given that
latin squares typically have a vast multitude of partitions into various plexes. For a
detailed study of the indivisible partitions of latin squares of order up to 9, see [50].

It is an open question for what values of k and n there is a latin square of order n
containing an indivisible k-plex. However, Bryant et al. [21] found the answer when
k is small relative to n.

Theorem 8.10 Let n and k be positive integers satisfying 5k 6 n. Then there exists
a latin square of order n containing an indivisible k-plex.

It is also interesting to ask how large k can be relative to n. De�ne �(n) to be the
maximum k such that some latin square of order n contains an indivisible k-plex.
From Theorems 8.8 and 8.9 we know �(n) > dn=2e. Even though the numerical
evidence (e.g. from [50]) suggests that latin squares typically contain many plexes,
we are currently unable to improve on the trivial upper bound �(n) 6 n. A proof of
even the weak form of Conjecture 8:5 would at least show �(n) < n for n > 2. The
values of �(n) for small n, as calculated in [50], are shown in Table 7.

n 1 2 3 4 5 6 7 8 9

�(n) 1 2 1 2 3 4 5 5 6 or 7

Table 7: �(n) for n 6 9.

So far we have examined situations where we start with a latin square and ask
what sort of plexes it might have. To complete the section we consider the reverse
question. We want to start with a potential plex and ask what latin squares it might
be contained in. We de�ne20 a k-protoplex of order n to be an n� n array in which
each cell is either blank or �lled with a symbol from f1; 2; : : : ; ng, and which has
the properties that (i) no symbol occurs twice within any row or column, (ii) each
symbol occurs k times in the array, (iii) each row and column contains exactly k
�lled cells. We can then sensibly ask whether this k-protoplex is a k-plex. If it is
then we say the partial latin square is completable because the blank entries can be
�lled in to produce a latin square. Donovan [43] asks for which k and n there exists
a k-protoplex of order n that is not completable. The following partial answer was
shown in [120].

Theorem 8.11 If 1 < k < n and k > 1
4n then there exists a k-protoplex of order n

that is not completable.

Gr�uttm�uller [69] showed a related result by constructing, for each k, a non-
completable k-plex of order 4k � 2 with the additional property that the plex is
the union of k disjoint transversals. Daykin and H�aggkvist [38] and Burton [23]
independently conjectured that if k 6 1

4n then every k-protoplex is completable. It

20Our de�nition of protoplex is very close to what is known as a \k-homogeneous partial latin
square", except that such objects are usually allowed to have empty rows and columns [26].
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seems certain that for k su�ciently small relative to n, every k-protoplex is com-
pletable. This has already been proved when n � 0 mod 16 in [38]. Alspach and
Heinrich [7] ask more speci�cally whether there exists an N(k) with the property
that if k transversals of a partial latin square of order n > N(k) are prescribed then
the square can always be completed. Gr�uttm�uller’s result just mentioned shows that
N(k) > 4k � 1, if it exists. A related result due to Burton [23] is this:

Theorem 8.12 For k 6 1
4n every k-protoplex of order n is contained in some

(k + 1)-protoplex of order n.

An interesting generalisation of plexes was recently introduced by Pula [101].
A k-plex can be viewed as a function from the entries of a latin square to the set
f0; 1g, such that the function values add to k along any row, any column or for
any symbol. Pula generalises this idea to a k-weight , which he de�nes exactly the
same way, except that the function is allowed to take any integer value. He shows
that the Delta Lemma still works with this more general de�nition and uses it to
obtain analogues of several classical results, including Theorem 3:1. Perhaps more
tantalisingly, he shows that Ryser’s Conjecture (Conjecture 3:2) and the weak form
of Rodney’s Conjecture (Conjecture 8:5) are simple to prove for k-weights; every
latin square has a 2-weight and all latin squares of odd order have a 1-weight.
However, the analogue of Conjecture 5:1 for 1-weights is still an open question.

9 Covering radii for sets of permutations

Several years ago, a novel approach to Conjecture 3:2 and Conjecture 5:1 was
opened up by Andre K�ezdy and Hunter Snevily in unpublished notes. These notes
were then utilised in the writing of [25], from which the material in this section is
drawn. To explain the K�ezdy-Snevily approach, we need to introduce some termi-
nology.

Consider the symmetric group Sn as a metric space equipped with Hamming
distance. That is, the distance between two permutations g; h 2 Sn is the number
of points at which they disagree (n minus the number of �xed points of gh�1). Let
P be a subset of Sn. The covering radius cr(P ) of P is the smallest r such that the
balls of radius r with centres at the elements of P cover the whole of Sn. In other
words every permutation is within distance r of some member of P , and r is chosen
to be minimal with this property. The next result is proved in [24] and [25].

Theorem 9.1 Let P � Sn be a set of permutations. If jP j 6 n=2, then cr(P ) = n.
However, there exists P with jP j = bn=2c+ 1 and cr(P ) < n.

This result raises an obvious question. Given n and s, what is the smallest set
S of permutations with cr(S) 6 n � s? We let f(n; s) denote the cardinality of
the smallest such set S. This problem can also be interpreted in graph-theoretic
language. De�ne the graph Gn;s on the vertex set Sn, with two permutations being
adjacent if they agree in at least s places. Now the size of the smallest dominating
set in Gn;s is f(n; s).

Theorem 9:1 shows that f(n; 1) = bn=2c+1. Since any two distinct permutations
have distance at least 2, we see that f(n; n� 1) = n! for n > 2. Moreover, f(n; s) is
a monotonic increasing function of s (by de�nition).
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The next case to consider is f(n; 2). K�ezdy and Snevily made the following
conjecture:

Conjecture 9.2 If n is even, then f(n; 2) = n; if n is odd, then f(n; 2) > n.

The K�ezdy{Snevily Conjecture has several connections with transversals [25].

Theorem 9.3 Let S be the set of n permutations corresponding to the rows of a
latin square L of order n. Then S has covering radius n � 1 if L has a transversal
and has covering radius n� 2 otherwise.

Corollary 9.4 If there exists a latin square of order n with no transversal, then
f(n; 2) 6 n. In particular, this holds for n even.

Hence Conjecture 9:2 implies Conjecture 3:2, as K�ezdy and Snevily observed.
They also showed:

Theorem 9.5 Conjecture 9:2 implies Conjecture 5:1.

In other words, to solve the longstanding Ryser and Brualdi conjectures it may
su�ce to answer this: How small can we make a subset S � Sn which has the
property that every permutation in Sn agrees with some member of S in at least
two places?

In Corollary 9.4 we used latin squares to �nd an upper bound for f(n; 2) when n
is even. For odd n we can also �nd upper bounds based on latin squares. The idea is
to choose a latin square with few transversals, or whose transversals have a partic-
ular structure, and add a small set of permutations meeting each transversal twice.
For n 2 f5; 7; 9g, we now give a latin square for which a single extra permutation
(shaded) su�ces, showing that f(n; 2) 6 n+ 1 in these cases.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

1 3 4 2 5

1 2 3 4 5 6 7
2 3 1 5 4 7 6
3 1 2 6 7 4 5
4 5 6 7 1 2 3
5 4 7 1 6 3 2
6 7 4 2 3 5 1
7 6 5 3 2 1 4

3 2 1 7 6 5 4

1 3 2 4 6 5 7 9 8
2 1 3 5 4 6 8 7 9
3 2 1 7 9 8 4 6 5
4 6 5 9 8 7 1 3 2
5 4 6 8 7 9 3 2 1
6 5 4 2 1 3 9 8 7
7 9 8 1 3 2 5 4 6
8 7 9 3 2 1 6 5 4
9 8 7 6 5 4 2 1 3

5 4 6 1 3 2 9 8 7

In general, we have the following [25]:

Theorem 9.6 f(n; 2) 6 4
3n+O(1) for all n.

The reader is encouraged to seek out [25] and the survey by Quistor� [102] for
more information on covering radii for sets of permutations.
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10 Generalisations of latin squares

There are a number of di�erent ways in which the de�nition of a latin square
can be relaxed. In this section we consider such generalisations, and what can be
said about their transversals. In this context, it is worth clarifying exactly what we
mean by a transversal. For a rectangular matrix we will always assume that there
are no more rows than there are columns. In such a case, a diagonal will mean a
selection of cells that includes one representative from each row and at most one
representative from each column. As before, a transversal21 will mean a diagonal in
which no symbol is repeated. Of course, in situations where the number of symbols
in the matrix exceeds the number of rows, this no longer means that every symbol
must occur within the transversal. A partial transversal of length ‘ will be a selection
of ‘ cells no two of which share their row, column or symbol. In an m � n matrix,
a near transversal is a partial transversal of length m� 1.

A matrix is said to be row-latin if it has no symbol that occurs more than once in
any row. Similarly, it is column-latin if no symbol is ever repeated within a column.
Stein [111] de�nes an n � n matrix to be an equi-n-square if each of n symbols
occurs n times within the matrix. In this terminology, a latin square is precisely a
row-latin and column-latin equi-n-square. Stein [111] was able to show a number of
interesting results including these:

Theorem 10.1 In an equi-n-square there is a row or column that contains at leastp
n distinct symbols.

Theorem 10.2 An equi-n-square has a partial transversal of length at least

n
�

1� 1
2!

+ 1
3!
� � � � � 1

n!

�

� (1� 1=e)n � 0:63n:

Theorem 10.3 Suppose a positive integer q divides n > 2. If each of n2=q symbols
occurs q times in an n�n matrix then there is a partial transversal of length exceeding
n� 1

2q.

Stein [111] also makes the following conjectures, some of which are special cases
of others in the list:

1. An equi-n-square has a near transversal.

2. Any n � n matrix in which no symbol appears more than n � 1 times has a
transversal.

3. Any (n� 1)� n matrix in which no symbol appears more than n times has a
transversal.

4. Any (n� 1)� n row-latin matrix has a transversal.

5. For m < n, any m� n matrix in which no symbol appears more than n times
has a transversal.

21Usage in this article follows the majority of the latin squares literature. For more general
matrices the word ‘transversal’ has been used (for example, in [5, 6, 111, 114]) to mean what we
are calling a diagonal. Other papers call diagonals ‘sections’ [113, 61] or ‘1-factors’ [3]. When
‘transversal’ is used to mean diagonal, ‘latin transversal’ is used to mean what we are calling a
transversal.
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6. Any (n � 1) � n matrix in which each symbol appears exactly n times has a
transversal.

7. For m < n, any m � n matrix in which no symbol appears more than m + 1
times has a transversal.

Example 10.4 Drisko [47] gives counterexamples to Stein’s Conjecture 5, whenever
m < n 6 2m� 2. The construction is simply to take m � 1 columns that have the
symbols in order [1; 2; 3; : : : ;m]T and the remaining columns to be [2; 3; : : : ;m; 1]T .
It is easy to argue directly that the resulting matrix has no transversal22. Taking
m = n� 1 we see immediately that Stein’s Conjectures 3, 6 and 7 also fail.

A weakened form of Stein’s Conjecture 5 can be salvaged. Stein’s response to
Example 10.4 was to propose a new conjecture [112] that all column-latin matrices
have a near transversal. For \thin" matrices we can do even better. In Drisko’s
original paper [47] he proved the following result, which was subsequently gener-
alised to matroids by Chappell [29], and later proved in a slightly di�erent way by
Stein [112]:

Theorem 10.5 Let n > 2m� 1. Any m�n column-latin matrix has a transversal.

H�aggkvist and Johansson [70] showed that every large enough and thin enough
latin rectangle23 not only has a transversal, but has an orthogonal mate:

Theorem 10.6 Suppose 0 < " < 1. If n is su�ciently large and m < "n then every
m� n latin rectangle can be decomposed into transversals.

m n = 2 3 4 5 6 7

2 1 5 7 9 11 13
3 2 3 7 8 10
4 3 4 5 8
5 3 5
6 4

Table 8: L(m;n) for small m;n.

Stein and Szab�o [113] introduce the function L(m;n) which they de�ne as the
largest integer i such that there is a transversal in every m� n matrix that has no
symbol occurring more than i times. Table 8, reproduced from [113], shows the value
of L(m;n) for small m and n. The examples that show L(5; 5) < 4 and L(6; 6) < 5
yield counterexamples to Stein’s Conjecture 2. So of the seven conjectures listed
above, only Conjectures 1 and 4 remain. In addition to the values in Table 8, Stein
and Szab�o show that L(2; n) = 2n � 1 for n > 3 and L(3; n) = b(3n � 1)=2c for
n > 5 and prove the lower bound L(m;n) > n �m + 1. Akbari et al. [4] showed
that L(m;n) = b(mn� 1)=(m� 1)c if m > 2 and n > 2m3. Parker is attributed in
[112, 113] with a construction proving the following result, which also follows from
Example 10.4:

22This can also easily be proved by a variant of the Delta Lemma.
23A latin rectangle is row-latin and column-latin and also must use the same symbols in each row.
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Theorem 10.7 If n 6 2m� 2 then L(m;n) 6 n� 1.

Various results have been shown using the probabilistic method. Erd}os and
Spencer [53] showed that L(n; n) > (n � 1)=16. Fana�� [60] took the direct gener-
alisation to rectangular matrices, showing L(m;n) > 1

8n(n � 1)=(m + n � 2) + 1.
Alon et al. [6] showed that there is a small " > 0 such that if no symbol occurs
more than "2m times in a 2m� 2m matrix, then the matrix can be decomposed into
transversals. They claim the same method can be adapted to show the existence of
a number of pairwise disjoint transversals in matrices of a similar type, but whose
order need not be a power of 2.

Akbari and Alireza [3] de�ne l(n) to be the smallest integer such that there is a
transversal in every n�n matrix that is row-latin and column-latin and contains at
least l(n) di�erent symbols. They show that l(1) = 1, l(2) = l(3) = 3, l(4) = 6, and
l(5) > 7. Theorem 2:2 shows that l(n) > n for all even n. Establishing a meaningful
upper bound on l(n) remains an interesting open challenge. The authors of [3]
conjecture that l(n)�n is not bounded as n!1. They also prove that l(2a�2) > 2a

for a > 3, which follows from:

Theorem 10.8 Let a; b be any two elements of an elementary abelian 2-group G, of
order 2m

> 4. Let M be the matrix of order 2m � 2 formed from the Cayley table of
G by deleting the rows and columns indexed by a and b. Then M has no transversal.

Although Akbari and Alireza did not do so, it is simple to derive this result from
Theorem 6:5, given that the sum of all but two elements of an elementary abelian
group can never be the identity. A related new result by Arsovski [9] is this:

Theorem 10.9 Any square submatrix of the Cayley table of an abelian group of odd
order has a transversal.

This result was originally conjecture by Snevily [109]. He also conjectured that
in Cayley tables of cyclic groups of even order, the only submatrices without a
transversal are subgroups of even order or \translates" of such subgroups. This
conjecture (which remains open) does not generalise directly to all abelian groups
of even order, as Theorem 10:8 shows.

Theorem 10:9 was �rst proved24 for prime orders by Alon [5] and for all cyclic
groups by Dasgupta et al. [35]. Gao and Wang [65] then showed it is true in arbitrary
abelian groups for submatrices whose order is less than

p
p, where p is the smallest

prime dividing the order of the group. In related work, Fana�� [61] showed that there is
a transversal in any square submatrix of the addition table of Zn (for arbitrary n)25,
provided the rows selected to form the submatrix are su�ciently close together
relative to n. He also showed existence of a partial transversal in certain submatrices
satisfying a slightly weaker condition.

Finally, we briey consider arrays of dimension higher than two. A latin hyper-
cube of order n is an n�n�� � ��n array �lled with n symbols in such a way that no
symbol is repeated in any line of n cells parallel to one of the axes. A 3-dimensional

24In fact Alon showed a stronger result that allows rows to be repeated when selecting the
submatrix. His proof uses the fascinating combinatorial nullstellensatz. For related work, see [81].

25Although, given [35], this result is only of interest when n is even.
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latin hypercube is a latin cube and a 2-dimensional latin hypercube is a latin square.
Furthermore, any 2-dimensional \slice" of a latin hypercube is a latin square. By
a transversal of a latin hypercube of order n we mean a selection of n cells no two
of which agree in any coordinate or share the same symbol. The literature contains
some variation on the de�nitions of both latin hypercubes and transversals thereof
[95]. Perhaps the most interesting work in this area is by Sun [114], who conjec-
tured that all latin cubes have transversals26. Generalising this conjecture (and
Conjecture 3:2) on the basis of the examples catalogued in [95], we propose:

Conjecture 10.10 Every latin hypercube of odd dimension or of odd order has a
transversal.

The restriction to odd dimension or odd order is required. Let Zn;d denote the d-
dimensional hypercube whose entry in cell (x1; x2; : : : ; xd) is x1+x2+� � �+xd mod n.
Then, by direct generalisation of Theorem 2:2, we have:

Theorem 10.11 If n and d are even, there are no transversals in Zn;d.

Sun [114] showed that if d is odd and n is arbitrary then Zn;d has a transversal.
In fact, any k � k � � � � � k subarray of Zn;d has a transversal, where 1 6 k 6 n.

11 Concluding Remarks

We have only been able to give a brief overview of the fascinating subject of
transversals in this survey. Space constraints have forced the omission of much wor-
thy material, including proofs of most of the theorems quoted. However, even this
brief skim across the surface has shown that many basic questions remain unan-
swered and much work remains to be done.

The subject is peppered with tantalising conjectures. Even the theorems in many
cases seem to be far from best possible, leaving openings for future improvements.
It is hoped that this survey may motivate and assist such improvements.
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