
This fascinating look at combinatorial games, that is, games not involving

chance or hidden information, offers updates on standard games such as Go

and Hex, on impartial games such as Chomp and Wythoff’s Nim, and on

aspects of games with infinitesmal values, plus analyses of the complexity of

some games and puzzles and surveys on algorithmic game theory, on playing

to lose, and on coping with cycles. The volume is rounded out with an up-to-

date bibliography by Aviezri S. Fraenkel and, for readers eager to get their

hands dirty, a list of unsolved problems by Richard K. Guy and Richard J.

Nowakowski.

Highlights include some of Aaron N. Siegel’s groundbreaking work on loopy

games, the unveiling by Eric J. Friedman and Adam S. Landsberg of the use

of renormalization to give very intriguing results about Chomp, and Teigo

Nakamura’s “Counting liberties in capturing races of Go.”

Like its predecessors, this book should be on the shelf of all serious games

enthusiasts.
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Preface

The June 2005 Combinatorial Game Theory Workshop was held at the Banff In-

ternational Research Station (BIRS) and organized by Elwyn Berlekamp, Martin

Mueller, Richard J. Nowakowski, and David Wolfe. It attracted researchers from

Asia, Europe, and North America. The highlights were many and the results

already have had a great impact in the field.

Aaron N. Siegel had his hand in quite a few of the highlights. Some of his

groundbreaking work is presented in “Loopy games,” with applications given in

“Coping with cycles” and “Backsliding Toads and Frogs.” His work with J. P.

Grossman, “Reductions of partizan games,” showed that the reduced canonical

form of a game exists. This approximation to the canonical form has already

proved very useful; it has been used, for example, in the Mesdal ensemble’s

analysis of Partizan Splittles as well as in the analysis of other games.

In “Advances in losing,” Thane E. Plambeck surveys the state of the art for

last-player-to-move-loses games. Even more advances in this area were made

during the conference, primarily by Plambeck and Siegel. Indeed, the approach

of forming a monoid of game positions in order to discover the structure of

winning and losing positions in a misère game has subsequently matured suffi-

ciently that the BIRS Games Workshop in January 2008, had misère games as

one of its main themes.

Eric J. Friedman and Adam S. Landsberg unveiled the use of renormaliza-

tion, a technique from physics, to give very intriguing results about Chomp.

This caught the participants off guard and engendered much discussion. It is

surprising that a technique known for giving approximations gave such definite

results. Like the previous two topics, there is much to be said and explored here.

Another talk that excited many of the participants was Teigo Nakamura’s

“Counting liberties in Go capturing races.” By popular demand, that talk was

extended by an hour. Chilling by 2 is the main idea, but its application is the

first ever to appear in analysis of real games, and it appears in a very surprising

context.

ix



x PREFACE

This volume includes many other interesting papers. To help the reader drill

down to a particular topic, the articles are grouped into a number of separate

areas of interest.

� Surveys, which is self-expanatory;

� Standards, which refers to well-known partizan games such as Go, Hex, and

others;

� Complexity of some games and some puzzles;

� Impartial games such as Chomp and Wythoff’s Nim;

� Theory of the small, that is, aspects of games with infinitesimal values;

� Columns, to wit: Aviezri S. Fraenkel’s updated bibliography of combinatorial

games, and an expanded and reorganized “Unsolved problems in combinato-

rial games,” by Richard K. Guy and Richard J. Nowakowski, for those eager

to get their hands dirty.

As editors, we would like to thank the organizers and participants for helping

making the workshop a great experience.

As participants and organizers, we would like to recognize and thank the

BIRS organization and staff: the former for giving us the chance to hold the

workshop in such a wonderful setting and the latter for ensuring that the par-

ticipants and organizers only had to worry about the scientific aspect of the

workshop.

Lastly, a big thanks to Silvio Levy for the final preparation of this document.

Michael H. Albert

Richard J. Nowakowski
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Playing games with algorithms:
Algorithmic Combinatorial Game Theory

ERIK D. DEMAINE AND ROBERT A. HEARN

ABSTRACT. Combinatorial games lead to several interesting, clean problems

in algorithms and complexity theory, many of which remain open. The pur-

pose of this paper is to provide an overview of the area to encourage further

research. In particular, we begin with general background in Combinatorial

Game Theory, which analyzes ideal play in perfect-information games, and

Constraint Logic, which provides a framework for showing hardness. Then we

survey results about the complexity of determining ideal play in these games,

and the related problems of solving puzzles, in terms of both polynomial-time

algorithms and computational intractability results. Our review of background

and survey of algorithmic results are by no means complete, but should serve

as a useful primer.

1. Introduction

Many classic games are known to be computationally intractable (assuming

P ¤ NP): one-player puzzles are often NP-complete (for instance Minesweeper)

or PSPACE-complete (Rush Hour), and two-player games are often PSPACE-

complete (Othello) or EXPTIME-complete (Checkers, Chess, and Go). Surpris-

ingly, many seemingly simple puzzles and games are also hard. Other results

are positive, proving that some games can be played optimally in polynomial

time. In some cases, particularly with one-player puzzles, the computationally

tractable games are still interesting for humans to play.

We begin by reviewing some basics of Combinatorial Game Theory in Sec-

tion 2, which gives tools for designing algorithms, followed by reviewing the

A preliminary version of this paper appears in the Proceedings of the 26th International Symposium on Mathe-

matical Foundations of Computer Science, Lecture Notes in Computer Science 2136, Czech Republic, August

2001, pages 18–32. The latest version can be found at http://arXiv.org/abs/cs.CC/0106019.

3
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relatively new theory of Constraint Logic in Section 3, which gives tools for

proving hardness. In the bulk of this paper, Sections 4–6 survey many of the

algorithmic and hardness results for combinatorial games and puzzles. Sec-

tion 7 concludes with a small sample of difficult open problems in algorithmic

Combinatorial Game Theory.

Combinatorial Game Theory is to be distinguished from other forms of game

theory arising in the context of economics. Economic game theory has many

applications in computer science as well, for example, in the context of auctions

[dVV03] and analyzing behavior on the Internet [Pap01].

2. Combinatorial Game Theory

A combinatorial game typically involves two players, often called Left and

Right, alternating play in well-defined moves. However, in the interesting case

of a combinatorial puzzle, there is only one player, and for cellular automata

such as Conway’s Game of Life, there are no players. In all cases, no random-

ness or hidden information is permitted: all players know all information about

gameplay (perfect information). The problem is thus purely strategic: how to

best play the game against an ideal opponent.

It is useful to distinguish several types of two-player perfect-information

games [BCG04, pp. 14–15]. A common assumption is that the game terminates

after a finite number of moves (the game is finite or short), and the result is a

unique winner. Of course, there are exceptions: some games (such as Life and

Chess) can be drawn out forever, and some games (such as tic-tac-toe and Chess)

define ties in certain cases. However, in the combinatorial-game setting, it is

useful to define the winner as the last player who is able to move; this is called

normal play. If, on the other hand, the winner is the first player who cannot

move, this is called misère play. (We will normally assume normal play.) A

game is loopy if it is possible to return to previously seen positions (as in Chess,

for example). Finally, a game is called impartial if the two players (Left and

Right) are treated identically, that is, each player has the same moves available

from the same game position; otherwise the game is called partizan.

A particular two-player perfect-information game without ties or draws can

have one of four outcomes as the result of ideal play: player Left wins, player

Right wins, the first player to move wins (whether it is Left or Right), or the

second player to move wins. One goal in analyzing two-player games is to

determine the outcome as one of these four categories, and to find a strategy

for the winning player to win. Another goal is to compute a deeper structure to

games described in the remainder of this section, called the value of the game.

A beautiful mathematical theory has been developed for analyzing two-player

combinatorial games. A new introductory book on the topic is Lessons in Play
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by Albert, Nowakowski, and Wolfe [ANW07]; the most comprehensive refer-

ence is the book Winning Ways by Berlekamp, Conway, and Guy [BCG04]; and a

more mathematical presentation is the book On Numbers and Games by Conway

[Con01]. See also [Con77; Fra96] for overviews and [Fra07] for a bibliography.

The basic idea behind the theory is simple: a two-player game can be described

by a rooted tree, where each node has zero or more left branches corresponding

to options for player Left to move and zero or more right branches corresponding

to options for player Right to move; leaves correspond to finished games, with

the winner determined by either normal or misère play. The interesting parts

of Combinatorial Game Theory are the several methods for manipulating and

analyzing such games/trees. We give a brief summary of some of these methods

in this section.

2.1. Conway’s surreal numbers. A richly structured special class of two-

player games are John H. Conway’s surreal numbers1 [Con01; Knu74; Gon86;

All87], a vast generalization of the real and ordinal number systems. Basically,

a surreal number fL j Rg is the “simplest” number larger than all Left options

(in L) and smaller than all Right options (in R); for this to constitute a number,

all Left and Right options must be numbers, defining a total order, and each

Left option must be less than each Right option. See [Con01] for more formal

definitions.

For example, the simplest number without any larger-than or smaller-than

constraints, denoted f j g, is 0; the simplest number larger than 0 and without

smaller-than constraints, denoted f0 j g, is 1; and the simplest number larger

than 0 and 1 (or just 1), denoted f0; 1 j g, is 2. This method can be used to

generate all natural numbers and indeed all ordinals. On the other hand, the

simplest number less than 0, denoted f j 0g, is �1; similarly, all negative integers

can be generated. Another example is the simplest number larger than 0 and

smaller than 1, denoted f0 j 1g, which is 1

2
; similarly, all dyadic rationals can be

generated. After a countably infinite number of such construction steps, all real

numbers can be generated; after many more steps, the surreals are all numbers

that can be generated in this way.

Surreal numbers form an ordered field, so in particular they support the oper-

ations of addition, subtraction, multiplication, division, roots, powers, and even

integration in many situations. (For those familiar with ordinals, contrast with

surreals which define ! �1, 1=!,
p

!, etc.) As such, surreal numbers are useful

in their own right for cleaner forms of analysis; see, e.g., [All87].

What is interesting about the surreals from the perspective of combinatorial

game theory is that they are a subclass of all two-player perfect-information

1The name “surreal numbers” is actually due to Knuth [Knu74]; see [Con01].
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Let x D xLjxR be a game.

� x � y precisely if every xL < y and every yR > x.

� x D y precisely if x � y and x � y; otherwise x ¤ y.

� x < y precisely if x � y and x ¤ y, or equivalently, x � y and x 6� y.

� �x D �xRj � xL.

� x C y D xL C y; x C yLjxR C y; x C yR.

� x is impartial precisely if xL and xR are identical sets and recursively

every position (2 xL D xR) is impartial.

� A one-pile Nim game is defined by

�n D �0; : : : ; �.n � 1/j � 0; : : : ; �.n � 1/;

together with �0 D 0.

Table 1. Formal definitions of some algebra on two-player perfect-infor-
mation games. In particular, all of these notions apply to surreal numbers.

games, and some of the surreal structure, such as addition and subtraction, car-

ries over to general games. Furthermore, while games are not totally ordered,

they can still be compared to some surreal numbers and, amazingly, how a game

compares to the surreal number 0 determines exactly the outcome of the game.

This connection is detailed in the next few paragraphs.

First we define some algebraic structure of games that carries over from

surreal numbers; see Table 1 for formal definitions. Two-player combinatorial

games, or trees, can simply be represented as fL j Rg where, in contrast to

surreal numbers, no constraints are placed on L and R. The negation of a game

is the result of reversing the roles of the players Left and Right throughout the

game. The (disjunctive) sum of two (sub)games is the game in which, at each

player’s turn, the player has a binary choice of which subgame to play, and

makes a move in precisely that subgame. A partial order is defined on games

recursively: a game x is less than or equal to a game y if every Left option of

x is less than y and every Right option of y is more than x. (Numeric) equality

is defined by being both less than or equal to and more than or equal to. Strictly

inequalities, as used in the definition of less than or equal to, are defined in the

obvious manner.

Note that while f�1 j 1g D 0 D f j g in terms of numbers, f�1 j 1g and f j g
denote different games (lasting 1 move and 0 moves, respectively), and in this

sense are equal in value but not identical symbolically or game-theoretically.

Nonetheless, the games f�1 j 1g and f j g have the same outcome: the second

player to move wins.
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Amazingly, this holds in general: two equal numbers represent games with

equal outcome (under ideal play). In particular, all games equal to 0 have the

outcome that the second player to move wins. Furthermore, all games equal to

a positive number have the outcome that the Left player wins; more generally,

all positive games (games larger than 0) have this outcome. Symmetrically, all

negative games have the outcome that the Right player wins (this follows auto-

matically by the negation operation). Examples of zero, positive, and negative

games are the surreal numbers themselves; an additional example is described

below.

There is one outcome not captured by the characterization into zero, positive,

and negative games: the first player to move wins. To find such a game we

must obviously look beyond the surreal numbers. Furthermore, we must look

for games G that are incomparable with zero (none of G D 0, G < 0, or G > 0

hold); such games are called fuzzy with 0, denoted G k 0.

An example of a game that is not a surreal number is f1 j 0g; there fails to

be a number strictly between 1 and 0 because 1 � 0. Nonetheless, f1 j 0g is a

game: Left has a single move leading to game 1, from which Right cannot move,

and Right has a single move leading to game 0, from which Left cannot move.

Thus, in either case, the first player to move wins. The claim above implies that

f1 j 0g k 0. Indeed, f1 j 0g k x for all surreal numbers x, 0 � x � 1. In contrast,

x < f1 j 0g for all x < 0 and f1 j 0g < x for all 1 < x. In general it holds that a

game is fuzzy with some surreal numbers in an interval Œ�n; n� but comparable

with all surreals outside that interval. Another example of a game that is not a

number is f2 j 1g, which is positive (> 0), and hence Right wins, but fuzzy with

numbers in the range Œ1; 2�.

For brevity we omit many other useful notions in Combinatorial Game The-

ory, such as additional definitions of summation, superinfinitesimal games � and

", mass, temperature, thermographs, the simplest form of a game, remoteness,

and suspense; see [BCG04; Con01].

2.2. Sprague–Grundy theory. A celebrated early result in Combinatorial

Game Theory is the characterization of impartial two-player perfect-information

games, discovered independently in the 1930’s by Sprague [Spr36] and Grundy

[Gru39]. Recall that a game is impartial if it does not distinguish between the

players Left and Right (see Table 1 for a more formal definition). The Sprague–

Grundy theory [Spr36; Gru39; Con01; BCG04] states that every finite impartial

game is equivalent to an instance of the game of Nim, characterized by a single

natural number n. This theory has since been generalized to all impartial games

by generalizing Nim to all ordinals n; see [Con01; Smi66].

Nim [Bou02] is a game played with several heaps, each with a certain number

of tokens. A Nim game with a single heap of size n is denoted by �n and is
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called a nimber. During each move a player can pick any pile and reduce it to

any smaller nonnegative integer size. The game ends when all piles have size

0. Thus, a single pile �n can be reduced to any of the smaller piles �0, �1, . . . ,

�.n�1/. Multiple piles in a game of Nim are independent, and hence any game

of Nim is a sum of single-pile games �n for various values of n. In fact, a game

of Nim with k piles of sizes n1, n2, . . . , nk is equivalent to a one-pile Nim game

�n, where n is the binary XOR of n1, n2, . . . , nk . As a consequence, Nim can

be played optimally in polynomial time (polynomial in the encoding size of the

pile sizes).

Even more surprising is that every impartial two-player perfect-information

game has the same value as a single-pile Nim game, �n for some n. The number

n is called the G-value, Grundy-value, or Sprague–Grundy function of the game.

It is easy to define: suppose that game x has k options y1; : : : ; yk for the first

move (independent of which player goes first). By induction, we can compute

y1 D �n1, . . . , yk D �nk . The theorem is that x equals �n where n is the

smallest natural number not in the set fn1; : : : ; nkg. This number n is called the

minimum excluded value or mex of the set. This description has also assumed

that the game is finite, but this is easy to generalize [Con01; Smi66].

The Sprague–Grundy function can increase by at most 1 at each level of the

game tree, and hence the resulting nimber is linear in the maximum number of

moves that can be made in the game; the encoding size of the nimber is only

logarithmic in this count. Unfortunately, computing the Sprague–Grundy func-

tion for a general game by the obvious method uses time linear in the number

of possible states, which can be exponential in the nimber itself.

Nonetheless, the Sprague–Grundy theory is extremely helpful for analyzing

impartial two-player games, and for many games there is an efficient algorithm

to determine the nimber. Examples include Nim itself, Kayles, and various

generalizations [GS56b]; and Cutcake and Maundy Cake [BCG04, pp. 24–27].

In all of these examples, the Sprague–Grundy function has a succinct charac-

terization (if somewhat difficult to prove); it can also be easily computed using

dynamic programming.

The Sprague–Grundy theory seems difficult to generalize to the superficially

similar case of misère play, where the goal is to be the first player unable to

move. Certain games have been solved in this context over the years, including

Nim [Bou02]; see, e.g., [Fer74; GS56a]. Recently a general theory has emerged

for tackling misère combinatorial games, based on commutative monoids called

“misère quotients” that localize the problem to certain restricted game scenarios.

This theory was introduced by Plambeck [Pla05] and further developed by Plam-

beck and Siegel [PS07]. For good descriptions of the theory, see Plambeck’s
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survey [Plaa], Siegel’s lecture notes [Sie06], and a webpage devoted to the topic

[Plab].

2.3. Strategy stealing. Another useful technique in Combinatorial Game The-

ory for proving that a particular player must win is strategy stealing. The basic

idea is to assume that one player has a winning strategy, and prove that in fact

the other player has a winning strategy based on that strategy. This contradiction

proves that the second player must in fact have a winning strategy. An example

of such an argument is given in Section 4.1. Unfortunately, such a proof by

contradiction gives no indication of what the winning strategy actually is, only

that it exists. In many situations, such as the one in Section 4.1, the winner is

known but no polynomial-time winning strategy is known.

2.4. Puzzles. There is little theory for analyzing combinatorial puzzles (one-

player games) along the lines of the two-player theory summarized in this sec-

tion. We present one such viewpoint here. In most puzzles, solutions subdivide

into a sequence of moves. Thus, a puzzle can be viewed as a tree, similar to

a two-player game except that edges are not distinguished between Left and

Right. With the view that the game ends only when the puzzle is solved, the

goal is then to reach a position from which there are no valid moves (normal

play). Loopy puzzles are common; to be more explicit, repeated subtrees can

be converted into self-references to form a directed graph, and losing terminal

positions can be given explicit loops to themselves.

A consequence of the above view is that a puzzle is basically an impartial two-

player game except that we are not interested in the outcome from two players

alternating in moves. Rather, questions of interest in the context of puzzles are

(a) whether a given puzzle is solvable, and (b) finding the solution with the

fewest moves. An important open direction of research is to develop a general

theory for resolving such questions, similar to the two-player theory.

3. Constraint logic

Combinatorial Game Theory provides a theoretical framework for giving pos-

itive algorithmic results for games, but does not naturally accommodate puzzles.

In contrast, negative algorithmic results — hardness and completeness within

computational complexity classes — are more uniform: puzzles and games have

analogous prototypical proof structures. Furthermore, a relatively new theory

called Constraint Logic attempts to tie together a wide range of hardness proofs

for both puzzles and games.

Proving that a problem is hard within a particular complexity class (like NP,

PSPACE, or EXPTIME) almost always involves a reduction to the problem from

a known hard problem within the class. For example, the canonical problem to



10 ERIK D. DEMAINE AND ROBERT A. HEARN

reduce from for NP-hardness is Boolean Satisfiability (SAT) [Coo71]. Reducing

SAT to a puzzle of interest proves that that puzzle is NP-hard. Similarly, the

canonical problem to reduce from for PSPACE-hardness is Quantified Boolean

Formulas (QBF) [SM73].

Constraint Logic [DH08] is a useful tool for showing hardness of games and

puzzles in a variety of settings that has emerged in recent years. Indeed, many

of the hardness results mentioned in this survey are based on reductions from

Constraint Logic. Constraint Logic is a family of games where players reverse

edges on a planar directed graph while satisfying vertex in-flow constraints.

Each edge has a weight of 1 or 2. Each vertex has degree 3 and requires that

the sum of the weights of inward-directed edges is at least 2. Vertices may be

restricted to two types: AND vertices have incident edge weights of 1, 1, and 2;

and OR vertices have incident edge weights of 2, 2, and 2. A player’s goal is to

eventually reverse a given edge.

This game family can be interpreted in many game-theoretic settings, ranging

from zero-player automata to multiplayer games with hidden information. In

particular, there are natural versions of Constraint Logic corresponding to one-

player games (puzzles) and two-player games, both of bounded and unbounded

length. (Here we refer to whether the length of the game is bounded by a polyno-

mial function of the board size. Typically, bounded games are nonloopy while

unbounded games are loopy.) These games have the expected complexities:

one-player bounded games are NP-complete; one-player unbounded games and

two-player bounded games are PSPACE-complete; and two-player unbounded

games are EXPTIME-complete.

What makes Constraint Logic specially suited for game and puzzle reductions

is that the problems are already in form similar to many games. In particular, the

fact that the games are played on planar graphs means that the reduction does

not usually need a crossover gadget, whereas historically crossover gadgets have

often been the complex crux of a game hardness proof.

Historically, Constraint Logic arose as a simplification of the “Generalized

Rush-Hour Logic” of Flake and Baum [FB02]. The resulting one-player un-

bounded setting, called Nondeterministic Constraint Logic [HD02; HD05], was

later generalized to other game categories [Hea06b; DH08].

4. Algorithms for two-player games

Many bounded-length two-player games are PSPACE-complete. This is fairly

natural because games are closely related to Boolean expressions with alternat-

ing quantifiers (for which deciding satisfiability is PSPACE-complete): there

exists a move for Left such that, for all moves for Right, there exists another

move for Left, etc. A PSPACE-completeness result has two consequences. First,
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being in PSPACE means that the game can be played optimally, and typically

all positions can be enumerated, using possibly exponential time but only poly-

nomial space. Thus such games lend themselves to a somewhat reasonable ex-

haustive search for small enough sizes. Second, the games cannot be solved

in polynomial time unless P = PSPACE, which is even “less likely” than P

equaling NP.

On the other hand, unbounded-length two-players games are often EXPTIME-

complete. Such a result is one of the few types of true lower bounds in com-

plexity theory, implying that all algorithms require exponential time in the worst

case.

In this section we briefly survey many of these complexity results and related

positive results. See also [Epp] for a related survey and [Fra07] for a bibliogra-

phy.

Figure 1. A 5 � 5 Hex
board.

4.1. Hex. Hex [BCG04, pp. 743–744] is

a game designed by Piet Hein and played

on a diamond-shaped hexagonal board; see

Figure 1. Players take turns filling in empty

hexagons with their color. The goal of a

player is to connect the opposite sides of

their color with hexagons of their color. (In

the figure, one player is solid and the other

player is dotted.) A game of Hex can never tie, because if all hexagons are

colored arbitrarily, there is precisely one connecting path of an appropriate color

between opposite sides of the board.

John Nash [BCG04, p. 744] proved that the first player to move can win by

using a strategy-stealing argument (see Section 2.3). Suppose that the second

player has a winning strategy, and assume by symmetry that Left goes first.

Left selects the first hexagon arbitrarily. Now Right is to move first and Left

is effectively the second player. Thus, Left can follow the winning strategy

for the second player, except that Left has one additional hexagon. But this

additional hexagon can only help Left: it only restricts Right’s moves, and if

Left’s strategy suggests filling the additional hexagon, Left can instead move

anywhere else. Thus, Left has a winning strategy, contradicting that Right did,

and hence the first player has a winning strategy. However, it remains open to

give a polynomial characterization of a winning strategy for the first player.

In perhaps the first PSPACE-hardness result for “interesting” games, Even

and Tarjan [ET76] proved that a generalization of Hex to graphs is PSPACE-

complete, even for maximum-degree-5 graphs. Specifically, in this graph game,

two vertices are initially colored Left, and players take turns coloring uncol-

ored vertices in their own color. Left’s goal is to connect the two initially Left
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vertices by a path, and Right’s goal is to prevent such a path. Surprisingly, the

closely related problem in which players color edges instead of vertices can be

solved in polynomial time; this game is known as the Shannon switching game

[BW70]. A special case of this game is Bridgit or Gale, invented by David

Gale [BCG04, p. 744], in which the graph is a square grid and Left’s goal is

to connect a vertex on the top row with a vertex on the bottom row. However,

if the graph in Shannon’s switching game has directed edges, the game again

becomes PSPACE-complete [ET76].

A few years later, Reisch [Rei81] proved the stronger result that determining

the outcome of a position in Hex is PSPACE-complete on a normal diamond-

shaped board. The proof is quite different from the general graph reduction of

Even and Tarjan [ET76], but the main milestone is to prove that Hex is PSPACE-

complete for planar graphs.

4.2. More games on graphs: Kayles, Snort, Geography, Peek, and Interac-

tive Hamiltonicity. The second paper to prove PSPACE-hardness of “interest-

ing” games is by Schaefer [Sch78]. This work proposes over a dozen games

and proves them PSPACE-complete. Some of the games involve propositional

formulas, others involve collections of sets, but perhaps the most interesting are

those involving graphs. Two of these games are generalizations of “Kayles”,

and another is a graph-traversal game called Edge Geography.

Kayles [BCG04, pp. 81–82] is an impartial game, designed independently by

Dudeney and Sam Loyd, in which bowling pins are lined up on a line. Players

take turns bowling with the property that exactly one or exactly two adjacent

pins are knocked down (removed) in each move. Thus, most moves split the

game into a sum of two subgames. Under normal play, Kayles can be solved

in polynomial time using the Sprague–Grundy theory; see [BCG04, pp. 90–91],

[GS56b].

Node Kayles is a generalization of Kayles to graphs in which each bowl

“knocks down” (removes) a desired vertex and all its neighboring vertices. (Al-

ternatively, this game can be viewed as two players finding an independent set.)

Schaefer [Sch78] proved that deciding the outcome of this game is PSPACE-

complete. The same result holds for a partizan version of node Kayles, in which

every node is colored either Left or Right and only the corresponding player can

choose a particular node as the primary target.

Geography is another graph game, or rather game family, that is special from

a techniques point of view: it has been used as the basis of many other PSPACE-

hardness reductions for games described in this section. The motivating example

of the game is players taking turns naming distinct geographic locations, each

starting with the same letter with which the previous name ended. More gener-

ally, Geography consists of a directed graph with one node initially containing
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a token. Players take turns moving the token along a directed edge. In Edge

Geography, that edge is then erased; in Vertex Geography, the vertex moved

from is then erased. (Confusingly, in the literature, each of these variants is

frequently referred to as simply “Geography” or “Generalized Geography”.)

Schaefer [Sch78] established that Edge Geography (a game suggested by R.

M. Karp) is PSPACE-complete; Lichtenstein and Sipser [LS80] showed that

Vertex Geography (which more closely matches the motivating example above)

is also PSPACE-complete. Nowakowski and Poole [NP96] have solved special

cases of Vertex Geography when the graph is a product of two cycles.

One may also consider playing either Geography game on an undirected

graph. Fraenkel, Scheinerman, and Ullman [FSU93] show that Undirected Ver-

tex Geography can be solved in polynomial time, whereas Undirected Edge

Geography is PSPACE-complete, even for planar graphs with maximum degree

3. If the graph is bipartite then Undirected Edge Geography is also solvable in

polynomial time.

One consequence of partizan node Kayles being PSPACE-hard is that decid-

ing the outcome in Snort is PSPACE-complete on general graphs [Sch78]. Snort

[BCG04, pp. 145–147] is a game designed by S. Norton and normally played on

planar graphs (or planar maps). In any case, players take turns coloring vertices

(or faces) in their own color such that only equal colors are adjacent.

Generalized hex (the vertex Shannon switching game), node Kayles, and Ver-

tex Geography have also been analyzed recently in the context of parameterized

complexity. Specifically, the problem of deciding whether the first player can

win within k moves, where k is a parameter to the problem, is AW[�]-complete

[DF97, ch. 14].

Stockmeyer and Chandra [SC79] were the first to prove combinatorial games

to be EXPTIME-hard. They established EXPTIME-completeness for a class of

logic games and two graph games. Here we describe an example of a logic game

in the class, and one of the graph games; the other graph game is described in

the next section. One logic game, called Peek, involves a box containing several

parallel rectangular plates. Each plate (1) is colored either Left or Right except

for one ownerless plate, (2) has circular holes carved in particular (known) po-

sitions, and (3) can be slid to one of two positions (fully in the box or partially

outside the box). Players take turns either passing or changing the position of

one of their plates. The winner is the first player to cause a hole in every plate

to be aligned along a common vertical line. A second game involves a graph

in which some edges are colored Left and some edges are colored Right, and

initially some edges are “in” while the others are “out”. Players take turns either

passing or changing one edge from “out” to “in” or vice versa. The winner is

the first player to cause the graph of “in” edges to have a Hamiltonian cycle.
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(Both of these games can be rephrased under normal play by defining there to

be no valid moves from positions having aligned holes or Hamiltonian cycles.)

4.3. Games of pursuit: Annihilation, Remove, Capture, Contrajunctive,

Blocking, Target, and Cops and Robbers. The next suite of graph games es-

sentially began study in 1976 when Fraenkel and Yesha [FY76] announced that

a certain impartial annihilation game could be played optimally in polynomial

time. Details appeared later in [FY82]; see also [Fra74]. The game was proposed

by John Conway and is played on an arbitrary directed graph in which some of

the vertices contain a token. Players take turns selecting a token and moving

it along an edge; if this causes the token to occupy a vertex already containing

a token, both tokens are annihilated (removed). The winner is determined by

normal play if all tokens are annihilated, except that play may be drawn out

indefinitely. Fraenkel and Yesha’s result [FY82] is that the outcome of the game

can be determined and (in the case of a winner) a winning strategy of O.n5/

moves can be computed in O.n6/ time, where n is the number of vertices in the

graph.

A generalization of this impartial game, called Annihilation, is when two

(or more) types of tokens are distinguished, and each type of token can travel

along only a certain subset of the edges. As before, if a token is moved to a

vertex containing a token (of any type), both tokens are annihilated. Determining

the outcome of this game was proved NP-hard [FY79] and later PSPACE-hard

[FG87]. For acyclic graphs, the problem is PSPACE-complete [FG87]. The

precise complexity for cyclic graphs remains open. Annihilation has also been

studied under misère play [Fer84].

A related impartial game, called Remove, has the same rules as Annihilation

except that when a token is moved to a vertex containing another token, only

the moved token is removed. This game was also proved NP-hard using a re-

duction similar to that for Annihilation [FY79], but otherwise its complexity

seems open. The analogous impartial game in which just the unmoved token

is removed, called Hit, is PSPACE-complete for acyclic graphs [FG87], but its

precise complexity remains open for cyclic graphs.

A partizan version of Annihilation is Capture, in which the two types of

tokens are assigned to corresponding players. Left can only move a Left token,

and only to a position that does not contain a Left token. If the position contains

a Right token, that Right token is captured (removed). Unlike Annihilation,

Capture allows all tokens to travel along all edges. Determining the outcome

of Capture was proved NP-hard [FY79] and later EXPTIME-complete [GR95].

For acyclic graphs the game is PSPACE-complete [GR95].

A different partizan version of Annihilation is Contrajunctive, in which play-

ers can move both types of tokens, but each player can use only a certain subset
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of the edges. This game is NP-hard even for acyclic graphs [FY79] but otherwise

its complexity seems open.

The Blocking variations of Annihilation disallow a token to be moved to a

vertex containing another token. Both variations are partizan and played with

tokens on directed graph. In Node Blocking, each token is assigned to one of

the two players, and all tokens can travel along all edges. Determining the

outcome of this game was proved NP-hard [FY79], then PSPACE-hard [FG87],

and finally EXPTIME-complete [GR95]. Its status for acyclic graphs remains

open. In Edge Blocking, there is only one type of token, but each player can use

only a subset of the edges. Determining the outcome of this game is PSPACE-

complete for acyclic graphs [FG87]. Its precise complexity for general graphs

remains open.

A generalization of Node Blocking is Target, in which some nodes are marked

as targets for each player, and players can additionally win by moving one of

their tokens to a vertex that is one of their targets. When no nodes are marked

as targets, the game is the same as Blocking and hence EXPTIME-complete

by [GR95]. In fact, general Target was proved EXPTIME-complete earlier by

Stockmeyer and Chandra [SC79]. Surprisingly, even the special case in which

the graph is acyclic and bipartite and only one player has targets is PSPACE-

complete [GR95]. (NP-hardness of this case was established earlier [FY79].)

A variation on Target is Semi-Partizan Target, in which both players can move

all tokens, yet Left wins if a Left token reaches a Left target, independent of

who moved the token there. In addition, if a token is moved to a nontarget

vertex containing another token, the two tokens are annihilated. This game is

EXPTIME-complete [GR95]. While this game may seem less natural than the

others, it was intended as a step towards the resolution of Annihilation.

Many of the results described above from [GR95] are based on analysis of

a more complex game called Pursuit or Cops and Robbers. One player, the

robber, has a single token; and the other player, the cops, have k tokens. Players

take turns moving all of their tokens along edges in a directed graph. The cops

win if at the end of any move the robber occupies the same vertex as a cop,

and the robber wins if play can be forced to draw out forever. In the case of a

single cop (k D 1), there is a simple polynomial-time algorithm, and in general,

many versions of the game are EXPTIME-complete; see [GR95] for a summary.

For example, EXPTIME-completeness holds even for undirected graphs, and for

directed graphs in which cops and robbers can choose their initial positions. For

acyclic graphs, Pursuit is PSPACE-complete [GR95].
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Figure 2. A natural
starting configuration
for 10 � 10 Checkers,
from [FGJC78].

4.4. Checkers (Draughts). The standard 8 � 8

game of Checkers (Draughts), like many clas-

sic games, is finite and hence can be played

optimally in constant time (in theory). Indeed,

Schaeffer et al. [SBBC07] recently computed

that optimal play leads to a draw from the ini-

tial configuration (other configurations remain

unanalyzed). The outcome of playing in a gen-

eral n � n board from a natural starting po-

sition, such as the one in Figure 2, remains

open. On the other hand, deciding the outcome

of an arbitrary configuration is PSPACE-hard

[FGJC78]. If a polynomial bound is placed on

the number of moves that are allowed in be-

tween jumps (which is a reasonable generaliza-

tion of the drawing rule in standard Checkers

[FGJC78]), then the problem is in PSPACE and hence is PSPACE-complete.

Without such a restriction, however, Checkers is EXPTIME-complete [Rob84b].

On the other hand, certain simple questions about Checkers can be answered

in polynomial time [FGJC78; DDE02]. Can one player remove all the other

player’s pieces in one move (by several jumps)? Can one player king a piece

in one move? Because of the notion of parity on n � n boards, these ques-

tions reduce to checking the existence of an Eulerian path or general path, re-

spectively, in a particular directed graph; see [FGJC78; DDE02]. However,

for boards defined by general graphs, at least the first question becomes NP-

complete [FGJC78].

4.5. Go. Presented at the same conference as the Checkers result in the previous

section (FOCS’78), Lichtenstein and Sipser [LS80] proved that the classic Asian

game of Go is also PSPACE-hard for an arbitrary configuration on an n�n board.

Go has few rules: (1) players take turns either passing or placing stones of their

color on positions on the board; (2) if a new black stone (say) causes a collection

of white stones to be completely surrounded by black stones, the white stones

are removed; and (3) a ko rule preventing repeated configurations. Depending

on the country, there are several variations of the ko rule; see [BW94]. Go does

not follow normal play: the winner in Go is the player with the highest score at

the end of the game. A player’s score is counted as either the number of stones

of his color on the board plus empty spaces surrounded by his stones (area

counting), or as empty spaces surrounded by his stones plus captured stones

(territory counting), again varying by country.
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Figure 3. A simple form of ko in Go.

The PSPACE-hardness proof

given by Lichtenstein and Sipser

[LS80] does not involve any sit-

uations called kos, where the

ko rule must be invoked to

avoid infinite play. In con-

trast, Robson [Rob83] proved

that Go is EXPTIME-complete

under Japanese rules when kos

are involved, and indeed used judiciously. The type of ko used in this reduction

is shown in Figure 3. When one of the players makes a move shown in the

figure, the ko rule prevents (in particular) the other move shown in the figure to

be made immediately afterwards.

Robson’s proof relies on properties of the Japanese rules for both the upper

and lower bounds. For other rulesets, all that is known is that Go is PSPACE-

hard and in EXPSPACE. In particular, the “superko” variant of the ko rule (as

used in, e.g., the U.S.A. and New Zealand), which prohibits recreation of any

former board position, suggests EXPSPACE-hardness, by a result of Robson for

no-repeat games [Rob84a]. However, if all dynamical state in the game occurs

in kos, as it does in the EXPTIME-hardness construction, then the game is still

in EXPTIME, because then it is an instance of Undirected Vertex Geography

(Section 4.2), which can be solved in time polynomial in the graph size. (In this

case the graph is all the possible game positions, of which there are exponentially

many.)

There are also several results for more restricted Go positions. Wolfe [Wol02]

shows that even Go endgames are PSPACE-hard. More precisely, a Go endgame

is when the game has reduced to a sum of Go subgames, each equal to a

polynomial-size game tree. This proof is based on several connections between

Go and combinatorial game theory detailed in a book by Berlekamp and Wolfe

[BW94]. Crâşmaru and Tromp [CT00] show that it is PSPACE-complete to

determine whether a ladder (a repeated pattern of capture threats) results in a

capture. Finally, Crâşmaru [Crâ99] shows that it is NP-complete to determine

the status of certain restricted forms of life-and-death problems in Go.

4.6. Five-in-a-Row (Gobang). Five-in-a-Row or Gobang [BCG04, pp. 738–

740] is another game on a Go board in which players take turns placing a stone

of their color. Now the goal of the players is to place at least 5 stones of their

color in a row either horizontally, vertically, or diagonally. This game is similar

to Go-Moku [BCG04, p. 740], which does not count 6 or more stones in a row,

and imposes additional constraints on moves.
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Reisch [Rei80] proved that deciding the outcome of a Gobang position is

PSPACE-complete. He also observed that the reduction can be adapted to the

rules of k-in-a-Row for fixed k. Although he did not specify exactly which

values of k are allowed, the reduction would appear to generalize to any k � 5.

4.7. Chess. Fraenkel and Lichtenstein [FL81] proved that a generalization of

the classic game Chess to n � n boards is EXPTIME-complete. Specifically,

their generalization has a unique king of each color, and for each color the

numbers of pawns, bishops, rooks, and queens increase as some fractional power

of n. (Knights are not needed.) The initial configuration is unspecified; what

is EXPTIME-hard is to determine the winner (who can checkmate) from an

arbitrary specified configuration.

4.8. Shogi. Shogi is a Japanese game along lines similar to Chess, but with

rules too complex to state here. Adachi, Kamekawa, and Iwata [AKI87] proved

that deciding the outcome of a Shogi position is EXPTIME-complete. Recently,

Yokota et al. [YTKC01] proved that a more restricted form of Shogi, Tsume-

Shogi, in which the first player must continually make oh-te (the equivalent of

check in Chess), is also EXPTIME-complete.

Figure 4. Starting
configuration in the
game of Othello.

4.9. Othello (Reversi). Othello (Reversi) is a

classic game on an 8�8 board, starting from the

initial configuration shown in Figure 4, in which

players alternately place pieces of their color

in unoccupied squares. Moves are restricted to

cause, in at least one row, column, or diagonal,

a consecutive sequence of pieces of the oppo-

site color to be enclosed by two pieces of the

current player’s color. As a result of the move,

the enclosed pieces “flip” color into the current

player’s color. The winner is the player with

the most pieces of their color when the board is

filled.

Generalized to an n�n board with an arbitrary

initial configuration, the game is clearly in PSPACE because only n2 �4 moves

can be made. Furthermore, Iwata and Kasai [IK94] proved that the game is

PSPACE-complete.

4.10. Hackenbush. Hackenbush is one of the standard examples of a combina-

torial game in Winning Ways; see, e.g., [BCG04, pp. 1–6]. A position is given by

a graph with each edge colored either red (Left), blue (Right), or green (neutral),

and with certain vertices marked as rooted. Players take turns removing an edge
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of an appropriate color (either neutral or their own color), which also causes all

edges not connected to a rooted vertex to be removed. The winner is determined

by normal play.

Chapter 7 of Winning Ways [BCG04, pp. 189–227] proves that determining

the value of a red-blue Hackenbush position is NP-hard. The reduction is from

minimum Steiner tree in graphs. It applies to a restricted form of hackenbush

positions, called redwood beds, consisting of a red bipartite graph, with each

vertex on one side attached to a red edge, whose other end is attached to a blue

edge, whose other end is rooted.

4.11. Domineering (Crosscram) and Cram. Domineering, also called cross-

cram [BCG04, pp. 119–126], is a partizan game involving placement of hori-

zontal and vertical dominoes in a grid; a typical starting position is an m � n

rectangle. Left can play only vertical dominoes and Right can play only hori-

zontal dominoes, and dominoes must remain disjoint. The winner is determined

by normal play.

The complexity of Domineering, computing either the outcome or the value

of a position, remains open. Lachmann, Moore, and Rapaport [LMR00] have

shown that the winner and a winning strategy can be computed in polynomial

time for m 2 f1; 2; 3; 4; 5; 7; 9; 11g and all n. These algorithms do not compute

the value of the game, nor the optimal strategy, only a winning strategy.

Cram [Gar86], [BCG04, pp. 502–506] is the impartial version of Domineer-

ing in which both players can place horizontal and vertical dominoes. The

outcome of Cram is easy to determine for rectangles having an even number

of squares [Gar86]: if both sides are even, the second player can win by a

symmetry strategy (reflecting the first player’s move through both axes); and if

precisely one side is even, the first player can win by playing the middle two

squares and then applying the symmetry strategy. It seems open to determine

the outcome for a rectangle having two odd sides. The complexity of Cram for

general boards also remains open.

Linear Cram is Cram in a 1�n rectangle, where the game quickly splits into a

sum of games. This game can be solved easily by applying the Sprague–Grundy

theory and dynamic programming; in fact, there is a simpler solution based on

proving that its behavior is periodic in n [GS56b]. The variation on Linear Cram

in which 1�k rectangles are placed instead of dominoes can also be solved via

dynamic programming, but whether the behavior is periodic remains open even

for k D 3 [GS56b]. Misère Linear Cram also remains unsolved [Gar86].
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Figure 5. A
Dots-and-Boxes
endgame.

4.12. Dots-and-Boxes, Strings-and-Coins, and

Nimstring. Dots-and-Boxes is a well-known chil-

dren’s game in which players take turns drawing hor-

izontal and vertical edges connecting pairs of dots in

an m � n subset of the lattice. Whenever a player

makes a move that encloses a unit square with drawn

edges, the player is awarded a point and must then

draw another edge in the same move. The winner

is the player with the most points when the entire

grid has been drawn. Most of this section is based

on Chapter 16 of Winning Ways [BCG04, pp. 541–

584]; another good reference is a recent book by Berlekamp [Ber00].

Gameplay in Dots-and-Boxes typically divides into two phases: the open-

ing during which no boxes are enclosed, and the endgame during which boxes

are enclosed in nearly every move; see Figure 5. In the endgame, the “free

move” awarded by enclosing a square often leads to several squares enclosed in

a single move, following a chain; see Figure 6. Most children apply the greedy

algorithm of taking the most squares possible, and thus play entire chains of

squares. However, this strategy forces the player to open another chain (in the

endgame). A simple improved strategy is called double dealing, which forfeits

the last two squares of the chain, but forces the opponent to open the next chain.

The double-dealer is said to remain in control; if there are long-enough chains,

this player will win (see [BCG04, p. 543] for a formalization of this statement).

1.

Left opens a chain

R

R

R R

R

R

Right could claim
3 squares, but then
must move again

2a.

Or Right could take
all but 2 squares
and double-deal

2b.
R

R

3.
R L L

Left wins 2 squares
but is forced to open

the next chain

Figure 6. Chains and double-dealing in Dots-and-Boxes.

A generalization arising from the dual of Dots-and-Boxes is Strings-and-

Coins [BCG04, pp. 550–551]. This game involves a sort of graph whose vertices

are coins and whose edges are strings. The coins may be tied to each other and

to the “ground” by strings; the latter connection can be modeled as a loop in
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the graph. Players alternate cutting strings (removing edges), and if a coin is

thereby freed, that player collects the coin and cuts another string in the same

move. The player to collect the most coins wins.

Another game closely related to Dots-and-Boxes is Nimstring [BCG04, pp.

552–554], which has the same rules as Strings-and-Coins, except that the winner

is determined by normal play. Nimstring is in fact a special case of Strings-and-

Coins [BCG04, p. 552]: if we add a chain of more than nC1 coins to an instance

of Nimstring having n coins, then ideal play of the resulting string-and-coins

instance will avoid opening the long chain for as long as possible, and thus the

player to move last in the Nimstring instance wins string and coins.

Winning Ways [BCG04, pp. 577–578] argues that Strings-and-Coins is NP-

hard as follows. Suppose that you have gathered several coins but your opponent

gains control. Now you are forced to lose the Nimstring game, but given your

initial lead, you still may win the Strings-and-Coins game. Minimizing the

number of coins lost while your opponent maintains control is equivalent to

finding the maximum number of vertex-disjoint cycles in the graph, basically

because the equivalent of a double-deal to maintain control once an (isolated)

cycle is opened results in forfeiting four squares instead of two. We observe

that by making the difference between the initial lead and the forfeited coins

very small (either �1 or 1), the opponent also cannot win by yielding control.

Because the cycle-packing problem is NP-hard on general graphs, determining

the outcome of such string-and-coins endgames is NP-hard. Eppstein [Epp]

observes that this reduction should also apply to endgame instances of Dots-and-

Boxes by restricting to maximum-degree-three planar graphs. Embeddability of

such graphs in the square grid follows because long chains and cycles (longer

than two edges for chains and three edges for cycles) can be replaced by even

longer chains or cycles [BCG04, p. 561].

It remains open whether Dots-and-Boxes or Strings-and-Coins are in NP or

PSPACE-complete from an arbitrary configuration. Even the case of a 1�n grid

of boxes is not fully understood from a Combinatorial Game Theory perspective

[GN02].

4.13. Amazons. Amazons is a game invented by Walter Zamkauskas in 1988,

containing elements of Chess and Go. Gameplay takes place on a 10�10 board

with four amazons of each color arranged as in Figure 7 (left). In each turn, Left

[Right] moves a black [white] amazon to any unoccupied square accessible by

a Chess queen’s move, and fires an arrow to any unoccupied square reachable

by a Chess queen’s move from the amazon’s new position. The arrow (drawn

as a circle) now occupies its square; amazons and shots can no longer pass over

or land on this square. The winner is determined by normal play.
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Figure 7. The initial position in Amazons
(left) and an example of black trapping a
white amazon (right).

Gameplay in Amazons

typically split into a sum

of simpler games because

arrows partition the board

into multiple components.

In particular, the endgame

begins when each compo-

nent of the game contains

amazons of only a single

color, at which point the

goal of each player is sim-

ply to maximize the number

of moves in each compo-

nent. Buro [Bur00] proved

that maximizing the num-

ber of moves in a single component is NP-complete (for n � n boards). In a

general endgame, deciding the outcome may not be in NP because it is difficult

to prove that the opponent has no better strategy. However, Buro [Bur00] proved

that this problem is NP-equivalent [GJ79], that is, the problem can be solved

by a polynomial number of calls to an algorithm for any NP-complete problem,

and vice versa.

Like Conway’s Angel Problem (Section 4.16), the complexity of deciding the

outcome of a general Amazons position remained open for several years, only to

be solved nearly simultaneously by multiple people. Furtak, Kiyomi, Takeaki,

and Buro [FKUB05] give two independent proofs of PSPACE-completeness:

one a reduction from Hex, and the other a reduction from Vertex Geography.

The latter reduction applies even for positions containing only a single black

and a single white amazon. Independently, Hearn [Hea05a; Hea06b; Hea08a]

gave a Constraint Logic reduction showing PSPACE-completeness.

Figure 8. One move
in Konane consisting
of two jumps.

4.14. Konane. Konane, or Hawaiian Checkers,

is a game that has been played in Hawaii since

preliterate times. Konane is played on a rectan-

gular board (typically ranging in size from 8�8

to 13�20) which is initially filled with black and

white stones in a checkerboard pattern. To be-

gin the game, two adjacent stones in the middle

of the board or in a corner are removed. Then,

the players alternate making moves. Moves are

made as in Peg Solitaire (Section 5.10); indeed,

Konane may be thought of as a kind of two-
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player peg solitaire. A player moves a stone of his color by jumping it over

a horizontally or vertically adjacent stone of he opposite color, into an empty

space. (See Figure 8.) Jumped stones are captured and removed from play. A

stone may make multiple successive jumps in a single move, so long as they are

in a straight line; no turns are allowed within a single move. The first player

unable to move wins.

Hearn proved that Konane is PSPACE-complete [Hea06b; Hea08a] by a re-

duction from Constraint Logic. There have been some positive results for re-

stricted configurations. Ernst [Ern95] derives Combinatorial-Game-Theoretic

values for several interesting positions. Chan and Tsai [CT02] analyze the 1�n

game, but even this version of the game is not yet solved.

4.15. Phutball. Conway’s game of Philosopher’s Football or Phutball [BCG04,

pp. 752–755] involves white and black stones on a rectangular grid such as a

Go board. Initially, the unique black stone (the ball) is placed in the middle

of the board, and there are no white stones. Players take turns either placing

a white stone in any unoccupied position, or moving the ball by a sequence of

jumps over consecutive sequences of white stones each arranged horizontally,

vertically, or diagonally. See Figure 9. A jump causes immediate removal of the

white stones jumped over, so those stones cannot be used for a future jump in

the same move. Left and Right have opposite sides of the grid marked as their

goal lines. Left’s goal is to end a move with the ball on or beyond Right’s goal

line, and symmetrically for Right.

Figure 9. A single move in Phutball consisting of four jumps.

Phutball is inherently loopy and it is not clear that either player has a winning

strategy: the game may always be drawn out indefinitely. One counterintuitive

aspect of the game is that white stones placed by one player may be “corrupted”

for better use by the other player. Recently, however, Demaine, Demaine, and

Eppstein [DDE02] found an aspect of Phutball that could be analyzed. Specif-

ically, they proved that determining whether the current player can win in a

single move (“mate in 1” in Chess) is NP-complete. This result leaves open the

complexity of determining the outcome of a given game position.

4.16. Conway’s Angel Problem. A formerly long-standing open problem was

Conway’s Angel Problem [BCG04]. Two players, the Angel and the Devil,

alternate play on an infinite square grid. The Angel can move to any valid
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position within k horizontal distance and k vertical distance from its present

position. The Devil can teleport to an arbitrary square other than where the

Angel is and “eat” that square, preventing the Angel from landing on (but not

leaping over) that square in the future. The Devil’s goal is to prevent the Angel

from moving.

It was long known that an Angel of power k D 1 can be stopped [BCG04], so

the Devil wins, but the Angel was not known to be able to escape for any k > 1.

(In the original open problem statement, k D 1000.) Recently, four independent

proofs established that a sufficiently strong Angel can move forever, securing

the Angel as the winner. Máthé [Mát07] and Kloster [Klo07] showed that k D 2

suffices; Bowditch [Bow07] showed that k D 4 suffices; and Gács [Gác07]

showed that some k suffices. In particular, Kloster’s proof gives an explicit

algorithmic winning strategy for the k D 2 Angel.

4.17. Jenga. Jenga is a popular stacked-block game invented by Leslie Scott

in the 1970s and now marketed by Hasbro. Two players alternate moving in-

dividual blocks in a tower of blocks, and the first player to topple the tower

(or cause any additional blocks to fall) loses. Each block is 1 � 1 � 3 and

lies horizontally. The initial 3 � 3 � n tower alternates levels of three blocks

each, so that blocks in adjacent levels are orthogonal. (In the commercial game,

n D 18.) In each move, the player removes any block that is below the topmost

complete (3-block) level, then places that block in the topmost level (starting a

new level if the existing topmost level is complete), orthogonal to the blocks in

the (complete) level below. The player loses if the tower becomes instable, that

is, the center of gravity of the top k levels projects outside the convex hull of

the contact area between the kth and .k C 1/st layer.

Zwick [Zwi02] proved that the physical stability condition of Jenga can be

restated combinatorially simply by constraining allowable patterns on each level

and the topmost three levels. Specifically, write a 3-bit vector to specify which

blocks are present in each level. Then a tower is stable if and only if no level

except possibly the top is 100 or 001 and the three topmost levels from bottom

to top are none of the following:

010; 010; 100; 010; 010; 001; 011; 010; 100; 110; 010; 001.

Using this characterization, Zwick proves that the first player wins from the

initial configuration if and only if n D 2 or n � 4 and n � 1 or 2 .mod 3/, and

gives a simple characterization of winning moves. It remains open whether such

an efficient solution can be obtained in the generalization to odd numbers k > 3

of blocks in each level. (The case of even k is a second-player win by a simple

mirror strategy.)
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5. Algorithms for puzzles

Many puzzles (one-player games) have short solutions and are NP-complete.

In contrast, several puzzles based on motion-planning problems are harder —

PSPACE-hard. Usually such puzzles occupy a bounded board or region, so they

are also PSPACE-complete. A common method to prove that such puzzles are in

PSPACE is to give a simple low-space nondeterministic algorithm that guesses

the solution, and apply Savitch’s theorem [Sav70] that PSPACE = NPSPACE

(nondeterministic polynomial space). However, when generalized to the entire

plane and unboundedly many pieces, puzzles often become undecidable.

This section briefly surveys some of these results, following the structure of

the previous section.

5.1. Instant Insanity. Given n cubes, each face colored one of n colors, is it

possible to stack the cubes so that each color appears exactly once on each of

the 4 sides of the stack? The case of n D 4 is a puzzle called Instant Insanity

distributed by Parker Bros. In one of the first papers on hardness of puzzles and

games people play, Robertson and Munro [RM78] proved that this generalized

Instant Insanity problem is NP-complete.

The cube stacking game is a two-player game based on this puzzle. Given

an ordered list of cubes, the players take turns adding the next cube to the top

of the stack with a chosen orientation. The loser is the first player to add a

cube that causes one of the four sides of the stack to have a color repeated more

than once. Robertson and Munro [RM78] proved that this game is PSPACE-

complete, intended as a general illustration that NP-complete puzzles tend to

lead to PSPACE-complete games.

5.2. Cryptarithms (Alphametics, Verbal Arithmetic). Cryptarithms or al-

phametics or verbal arithmetic are classic puzzles involving an equation of

symbols, the original being Dudeney’s SENDCMOREDMONEY from 1924

[Dud24], in which each symbol (e.g., M) represents a consistent digit (between

0 and 9). The goal is to determine an assignment of digits to symbols that

satisfies the equation. Such problems can easily be solved in polynomial time

by enumerating all 10! assignments. However, Eppstein [Epp87] proved that it

is NP-complete to solve the generalization to base �.n3/ (instead of decimal)

and �.n/ symbols (instead of 26).

5.3. Crossword puzzles and Scrabble. Perhaps one of the most popular puz-

zles are crossword puzzles, going back to 1913 and today appearing in almost

every newspaper, and the subject of the recent documentary Wordplay (2006).

Here it is easiest to model the problem of designing crossword puzzles, ignoring

the nonmathematical notion of clues. Given a list of words (the dictionary), and
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a rectangular grid with some squares obstacles and others blank, can we place a

subset of the words into horizontally or vertically maximal blank strips so that

crossing words have matching letters? Lewis and Papadimitriou [GJ79, p. 258]

proved that this question is NP-complete, even when the grid has no obstacles

so every row and column must form a word.

Alternatively, this problem can be viewed as the ultimate form of crossword

puzzle solving, without clues. In this case it would be interesting to know

whether the problem remains NP-hard even if every word in the given list must

be used exactly once, so that the single clue could be “use these words”. A re-

lated open problem is Scrabble, which we are not aware of having been studied.

The most natural theoretical question is perhaps the one-move version: given

the pieces in hand (with letters and scores), and given the current board configu-

ration (with played pieces and available double/triple letter/word squares), what

move maximizes score? Presumably the decision question is NP-complete. Also

open is the complexity of the two-player game, say in the perfect-information

variation where both players know the sequence in which remaining pieces will

be drawn as well as the pieces in the opponent’s hand. Presumably determining

a winning move from a given position in this game is PSPACE-complete.

5.4. Pencil-and-paper puzzles: Sudoku and friends. Sudoku is a pencil-

and-paper puzzle that became popular worldwide starting around 2005 [Del06;

Hay06]. American architect Howard Garns first published the puzzle in the May

1979 (and many subsequent) Dell Pencil Puzzles and Word Games (without a by-

line and under the title Number Place); then Japanese magazine Monthly Nikolist

imported the puzzle in 1984, trademarking the name Sudoku (“single numbers”);

then the idea spread throughout Japanese publications; finally Wayne Gould

published his own computer-generated puzzles in The Times in 2004, shortly

after which many newspapers and magazines adopted the puzzle. The usual

puzzle consists of an 9 � 9 grid of squares, divided into a 3 � 3 arrangement of

3�3 tiles. Some grid squares are initially filled with digits between 1 and 9, and

some are blank. The goal is to fill the blank squares so that every row, column,

and tile has all nine digits without repetition.

Sudoku naturally generalizes to an n2 � n2 grid of squares, divided into an

n � n arrangement of n � n tiles. Yato and Seta [YS03; Yat03] proved that this

generalization is NP-complete. In fact, they proved a stronger completeness

result, in the class of Another Solution Problems (ASP), where one is given

one or more solutions and wishes to find another solution. Thus, in particular,

given a Sudoku puzzle and an intended solution, it is NP-complete to determine

whether there is another solution, a problem arising in puzzle design. Most

Sudoku puzzles give the promise that they have a unique solution. Valiant and

Vazirani [VV86] proved that adding such a uniqueness promise keeps a problem
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NP-hard under randomized reductions, so there is no polynomial-time solution

to uniquely solvable Sudokus unless RP D NP.

ASP-completeness (in particular, NP-completeness) has been established for

six other paper-and-pencil puzzles by Japanese publisher Nikoli: Nonograms,

Slitherlink, Cross Sum, Fillomino, Light Up, and LITS. In a Nonogram or Paint

by Numbers puzzle [UN96], we are given a sequence of integers on each row and

column of a rectangular matrix, and the goal is to fill in a subset of the squares

in the matrix so that, in each row and column, the maximal contiguous runs

of filled squares have lengths that match the specified sequence. In Slitherlink

[YS03; Yat03], we are given labels between 0 and 4 on some subset of faces in

a rectangular grid, and the goal is to draw a simple cycle on the grid so that each

labeled face is surrounded by the specified number of edges. In Kakuro or Cross

Sum [YS03], we are given a polyomino (a rectangular grid where only some

squares may be used), and an integer for each maximal contiguous (horizontal

or vertical) strip of squares, and the goal is to fill each square with a digit between

1 and 9 such that each strip has the specified sum and has no repeated digit. In

Fillomino [Yat03], we are given a rectangular grid in which some squares have

been filled with positive integers, and the goal is to fill the remaining squares

with positive integers so that every maximal connected region of equally num-

bered squares consists of exactly that number of squares. In Light Up (Akari)

[McP05; McP07], we are given a rectangular grid in which squares are either

rooms or walls and some walls have a specified integer between 0 and 4, and

the goal is to place lights in a subset of the rooms such that each numbered wall

has exactly the specified number of (horizontally or vertically) adjacent lights,

every room is horizontally or vertically visible from a light, and no two lights

are horizontally or vertically visible from each other. In LITS [McP07], we are

given a division of a rectangle into polyomino pieces, and the goal is to choose

a tetromino (connected subset of four squares) in each polyomino such that the

union of tetrominoes is connected yet induces no 2�2 square. As with Sudoku,

it is NP-complete to both find solutions and test uniqueness of known solutions

in all of these puzzles.

NP-completeness has been established for a few other pencil-and-paper games

published by Nikoli: Tentai Show, Masyu, Bag, Nurikabe, Hiroimono, Heya-

wake, and Hitori. In Tentai Show or Spiral Galaxies [Fri02d], we are given a

rectangular grid with dots at some vertices, edge midpoints, and face centroids,

and the goal is to divide the rectangle into exactly one polyomino piece per

dot that is two-fold rotationally symmetric around the dot. In Masyu or Pearl

Puzzles [Fri02b], we are given a rectangular grid with some squares containing

white or black pearls, and the goal is to find a simple path through the squares

that visits every pearl, turns 90ı at every black pearl, does not turn immediately



28 ERIK D. DEMAINE AND ROBERT A. HEARN

before or after black pearls, goes straight through every white pearl, and turns

90ı immediately before or after every white pearl. In Bag or Corral Puzzles

[Fri02a], we are given a rectangular grid with some squares labeled with positive

integers, and the goal is to find a simple cycle on the grid that encloses all labels

and such that the number of squares horizontally and vertically visible from each

labeled square equals the label. In Nurikabe [McP03; HKK04], we are given a

rectangular grid with some squares labeled with positive integers, and the goal is

to find a connected subset of unlabeled squares that induces no 2�2 square and

whole removal results in exactly one region per labeled square whose size equals

that label. McPhail’s reduction [McP03] uses labels 1 through 5, while Holzer

et al.’s reduction [HKK04] only uses labels 1 and 2 (just 1 would be trivial) and

works without the connectivity rule and/or the 2�2 rule. In Hiroimono or Goishi

Hiroi [And07], we are given a collection of stones at vertices of a rectangular

grid, and the goal is to find a path that visits all stones, changes directions by

˙90ı and only at stones, and removes stones as they are visited (similar to

Phutball in Section 4.15). In Heyawake [HR07], we are given a subdivision

of a rectangular grid into rectangular rooms, some of which are labeled with

a positive integer, and the goal is to paint a subset of unit squares so that the

number of painted squares in each labeled room equals the label, painted squares

are never (horizontally or vertically) adjacent, unpainted squares are connected

(via horizontal and vertical connections), and maximal contiguous (horizontal

or vertical) strips of squares intersect at most two rooms. In Hitori [Hea08c],

we are given a rectangular grid with each square labeled with an integer, and

the goal is to paint a subset of unit squares so that every row and every column

has no repeated unpainted label (similar to Sudoku), painted squares are never

(horizontally or vertically) adjacent, and unpainted squares are connected (via

horizontal and vertical connections).

A different kind of pencil-and-paper puzzle is Morpion Solitaire, popular in

several European countries. The game starts with some configuration of points

drawn at the intersections of a square grid (usually in a standard cross pattern).

A move consists of placing a new point at a grid intersection, and then drawing a

horizontal, vertical, or diagonal line segment connecting five consecutive points

that include the new one. Line segments with the same direction cannot share a

point (the disjoint model); alternatively, line segments with the same direction

may overlap only at a common endpoint (the touching model). The goal is to

maximize the number of moves before no moves are possible. Demaine, De-

maine, Langerman, and Langerman [DDLL06] consider this game generalized

to moves connecting any number k C 1 of points instead of just 5. In addition

to bounding the number of moves from the standard cross configuration, they

prove complexity results for the general case. They show that, in both game
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models and for k � 3, it is NP-hard to find the longest play from a given pattern

of n dots, or even to approximate the longest play within n1�" for any " > 0.

For k > 3, the problem is in fact NP-complete. For k D 3, it is open whether

the problem is in NP, and for k D 2 it could even be in P.

A final NP-completeness result for pencil-and-paper puzzles is the Battleship

puzzle. This puzzle is a one-player perfect-information variant on the classic

two-player imperfect-information game, Battleship. In Battleships or Battleship

Solitaire [Sev], we are given a list of 1 � k ships for various values of k; a

rectangular grid with some squares labeled as water, ship interior, ship end, or

entire (1 � 1) ship; and the number of ship (nonwater) squares that should be in

each row and each column. The goal is to complete the square labeling to place

the given ships in the grid while matching the specified number of ship squares

in each row and column.

Several other pencil-and-paper puzzles remain unstudied from a complexity

standpoint. For example, Nikoli’s English website2 suggests Hashiwokakero,

Kuromasu (Where is Black Cells), Number Link, Ripple Effect, Shikaku, and

Yajilin (Arrow Ring); and Nikoli’s Japanese website3 lists more.

1 2 4
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1 2 3 4
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Figure 10. 15 puzzle: Can you get from
the left configuration to the right in 16 unit
slides?

5.5. Moving Tokens: Fif-

teen Puzzle and general-

izations. The Fifteen Puz-

zle or 15 Puzzle [BCG04,

p. 864] is a classic puzzle

consisting of fifteen square

blocks numbered 1 through

15 in a 4 � 4 grid; the re-

maining sixteenth square in

the grid is a hole which per-

mits blocks to slide. The

goal is to order the blocks to be increasing in English reading order. The (six)

hardest solvable positions require exactly 80 moves [BMFN99]. Slocum and

Sonneveld [SS06] recently uncovered the history of this late 19th-century puz-

zle, which was well-hidden by popularizer Sam Loyd since his claim of having

invented it.

A natural generalization of the Fifteen Puzzle is the n2 �1 puzzle on an n�n

grid. It is easy to determine whether a configuration of the n2 � 1 puzzle can

reach another: the two permutations of the block numbers (in reading order)

simply need to match in parity, that is, whether the number of inversions (out-

2http://www.nikoli.co.jp/en/puzzles/

3http://www.nikoli.co.jp/ja/puzzles/
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of-order pairs) is even or odd. See, e.g., [Arc99; Sto79; Wil74]. When the puzzle

is solvable, the required numbers moves is �.n3/ in the worst case [Par95]. On

the other hand, it is NP-complete to find a solution using the fewest possible

slides from a given configuration [RW90]. It is also NP-hard to approximate

the fewest slides within an additive constant, but there is a polynomial-time

constant-factor approximation [RW90].

6

5

4

3

2

1

Figure 11. The Tricky
Six Puzzle [Wil74],
[BCG04, p. 868] has six
connected components
of configurations.

The parity technique for determining solvability

of the n2 � 1 puzzle has been generalized to a class

of similar puzzles on graphs. Consider an N -vertex

graph in which N �1 vertices have tokens labeled 1

through N � 1, one vertex is empty (has no token),

and each operation in the puzzle moves a token to

an adjacent empty vertex. The goal is to reach one

configuration from another. This general puzzle en-

compasses the n2 � 1 puzzle and several other puz-

zles involving sliding balls in circular tracks, e.g.,

the Lucky Seven puzzle [BCG04, p. 865] or the puz-

zle shown in Figure 11. Wilson [Wil74], [BCG04,

p. 866] characterized when these puzzles are solvable, and furthermore charac-

terized their group structure. In most cases, all puzzles are solvable (forming

the symmetric group) unless the graph the graph is bipartite, in which case half

of the puzzles are solvable (forming the alternating group). In addition, there

are three special situations: cycle graphs, graphs having a cut vertex, and the

special example in Figure 11.

Even more generally, Kornhauser, Miller, and Spirakis [KMS84] showed how

to decide solvability of puzzles with any number k of labeled tokens on N

vertices. They also prove that O.N 3/ moves always suffice, and ˝.N 3/ moves

are sometimes necessary, in such puzzles. Calinescu, Dumitrescu, and Pach

[CDP06] consider the number of token “shifts” — continuous moves along a

path of empty nodes — required in such puzzles. They prove that finding the

fewest-shift solution is NP-hard in the infinite square grid and APX-hard in

general graphs, even if the tokens are unlabeled (identical). On the positive

side, they present a 3-approximation for unlabeled tokens in general graphs, an

optimal solution for unlabeled tokens in trees, an upper bound of N slides for

unlabeled tokens in general graphs, and an upper bound of O.N / slides for

labeled tokens in the infinite square grid.

Restricting the set of legal moves can make such puzzles harder. Consider a

graph with unlabeled tokens on some vertices, and the constraint that the tokens

must form an independent set on the graph (i.e., no two tokens are adjacent

along an edge). A move is made by sliding a token along an edge to an adjacent
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vertex, subject to maintaining the nonadjacency constraint. Then the problem of

determining whether a sequence of moves can ever move a given token, called

Sliding Tokens [HD05], is PSPACE-complete.

BB

B

B

Y G

Figure 12. A Subway Shuffle
puzzle with one red car (bottom
right), four blue cars, one yellow
car, and one green car. White
nodes are empty. Moving the
red car to the circled station re-
quires 43 moves.

Subway Shuffle [Hea05b; Hea06b] is an-

other constrained token-sliding puzzle on a

graph. In this puzzle both the tokens and the

graph edges are colored; a move is to slide

a token along an edge of matching color to

an unoccupied adjacent vertex. The goal

is to move a specified token (the “subway

car you have boarded”) to a specified ver-

tex (your “exit station”). A sample puzzle

is shown in Figure 12. The complexity of

determining whether there is a solution to a

given puzzle is open. This open problem is

quite fascinating: solving the puzzle empiri-

cally seems hard, based on the rapid growth

of minimum solution length with graph size

[Hea05b]. However, it is easy to determine whether a token may move at all by

a sequence of moves, evidently making the proof techniques used for Sliding

Tokens and related problems useless for showing hardness. Subway Shuffle can

also be seen as a generalized version of 1 � 1 Rush Hour (Section 5.7).

Another kind of token-sliding puzzle is Atomix, a computer game first pub-

lished in 1990. Game play takes place on a rectangular board; pieces are either

walls (immovable blocks) or atoms of different types. A move is to slide an

atom; in this case the atom must slide in its direction of motion until it hits a

wall (as in the PushPush family, below (Section 5.8)). The goal is to assemble

a particular pattern of atoms (a molecule). Huffner, Edelkamp, Fernau, and

Niedermeier [HEFN01] observed that Atomix is as hard as the .n2 �1/-puzzle,

so it is NP-hard to find a minimum-move solution. Holzer and Schwoon [HS04a]

later proved the stronger result that it is PSPACE-complete to determine whether

there is a solution.

Lunar Lockout is another token-sliding puzzle, similar to Atomix in that the

tokens slide until stopped. Lunar Lockout was produced by ThinkFun at one

time; essentially the same game is now sold as “Pete’s Pike”. (Even earlier,

the game was called “UFO”.) In Lunar Lockout there are no walls or barriers;

a token may only slide if there is another token in place that will stop it. The

goal is to get a particular token to a particular place. Thus, the rules are fairly

simple and natural; however, the complexity is open, though there are partial

results. Hock [Hoc01] showed that Lunar Lockout is NP-hard, and that when the
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target token may not revisit any position on the board, the problem becomes NP-

complete. Hartline and Libeskind-Hadas [HLH03] show that a generalization

of Lunar Lockout which allows fixed blocks is PSPACE-complete.

5.6. Rubik’s Cube and generalizations. Alternatively, the n2 � 1 puzzle can

be viewed as a special case of determining whether a permutation on N items

can be written as a product (composition) of given generating permutations, and

if so, finding such a product. This family of puzzles also includes Rubik’s Cube

(recently shown to be solvable in 26 moves [KC07]) and its many variations.

In general, the number of moves (terms) required to solve such a puzzle can be

exponential (unlike the Fifteen Puzzle). Nonetheless, an O.N 5/-time algorithm

can decide whether a given puzzle of this type is solvable, and if so, find an

implicit representation of the solution [Jer86]. On the other hand, finding a

solution with the fewest moves (terms) is PSPACE-complete [Jer85]. When

each given generator cyclically shifts just a bounded number of items, as in the

Fifteen Puzzle but not in a k � k � k Rubik’s Cube, Driscoll and Furst [DF83]

showed that such puzzles can be solved in polynomial time using just O.N 2/

moves. Furthermore, �.N 2/ is the best possible bound in the worst case, e.g.,

when the only permitted moves are swapping adjacent elements on a line. See

[KMS84; McK84] for other (not explicitly algorithmic) results on the maximum

number of moves for various special cases of such puzzles.

Figure 13. Dad’s
Puzzle [Gar64]:
moving the large
square into the
lower-left corner
requires 59 moves.

5.7. Sliding blocks and Rush Hour. A classic ref-

erence on a wide class of sliding-block puzzles is by

Hordern [Hor86]. One general form of these puzzles

is that rectangular blocks are placed in a rectangular

box, and each block can be moved horizontally and

vertically, provided the blocks remain disjoint. The

goal is usually either to move a particular block to a

particular place, or to rearrange one configuration into

another. Figure 13 shows an example which, accord-

ing to Gardner [Gar64], may be the earliest (1909) and

is the most widely sold (after the Fifteen Puzzle, in

each case). Gardner [Gar64] first raised the question

of whether there is an efficient algorithm to solve such

puzzles. Spirakis and Yap [SY83] showed that achieving

a specified target configuration is NP-hard, and conjec-

tured PSPACE-completeness. Hopcroft, Schwartz, and Sharir [HSS84] proved

PSPACE-completeness shortly afterwards, renaming the problem to the “Ware-

houseman’s Problem”. In the Warehouseman’s Problem, there is no restriction

on the sizes of blocks; the blocks in the reduction grow with the size of the
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containing box. By contrast, in most sliding-block puzzles, the blocks are of

small constant sizes. Finally, Hearn and Demaine [HD02; HD05] showed that it

is PSPACE-hard to decide whether a given piece can move at all by a sequence

of moves, even when all the blocks are 1�2 or 2�1. This result is best possible:

the results above about unlabeled tokens in graphs show that 1 � 1 blocks are

easy to rearrange.

A popular sliding-block puzzle is Rush Hour, distributed by ThinkFun, Inc.

(formerly Binary Arts, Inc.). We are given a configuration of several 1 � 2,

1 � 3, 2 � 1, and 3 � 1 rectangular blocks arranged in an m � n grid. (In the

commercial version, the board is 6 � 6, length-two rectangles are realized as

cars, and length-three rectangles are trucks.) Horizontally oriented blocks can

slide left and right, and vertically oriented blocks can slide up and down, pro-

vided the blocks remain disjoint. (Cars and trucks can drive only forward or

reverse.) The goal is to remove a particular block from the puzzle via a one-

unit opening in the bounding rectangle. Flake and Baum [FB02] proved that

this formulation of Rush Hour is PSPACE-complete. Their approach is also the

basis for Nondeterministic Constraint Logic described in Section 3. A version

of Rush Hour played on a triangular grid, Triagonal Slide-Out, is also PSPACE-

complete [Hea06b]. Tromp and Cilibrasi [Tro00; TC04] strengthened Flake

and Baum’s result by showing that Rush Hour remains PSPACE-complete even

when all the blocks have length two (cars). The complexity of the problem

remains open when all blocks are 1 � 1 but labeled whether they move only

horizontally or only vertically [HD02; TC04; HD05]. As with Subway Shuffle

(Section 5.5), solving the puzzle (by escaping the target block from the grid)

empirically seems hard [TC04], whereas it is easy to determine whether a block

may move at all by a sequence of moves. Indeed, 1�1 Rush Hour is a restricted

form of Subway Shuffle, where there are only two colors, the graph is a grid,

and horizontal edges and vertical edges use different colors. Thus, it should be

easier to find positive results for 1 � 1 Rush Hour, and easier to find hardness

results for Subway Shuffle. We conjecture that both are PSPACE-complete, but

existing proof techniques seem inapplicable.

5.8. Pushing blocks. Similar in spirit to the sliding-block puzzles in Section 5.7

are pushing-block puzzles. In sliding-block puzzles, an exterior agent can move

arbitrary blocks around, whereas pushing-block puzzles embed a robot that can

only move adjacent blocks but can also move itself within unoccupied space.

The study of this type of puzzle was initiated by Wilfong [Wil91], who proved

that deciding whether the robot can reach a desired target is NP-hard when the

robot can push and pull L-shaped blocks.

Since Wilfong’s work, research has concentrated on the simpler model in

which the robot can only push blocks and the blocks are unit squares. Types
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of puzzles are further distinguished by how many blocks can be pushed at

once, whether blocks can additionally be defined to be unpushable or fixed

(tied to the board), how far blocks move when pushed, and the goal (usually

for the robot to reach a particular location). Dhagat and O’Rourke [DO92]

initiated the exploration of square-block puzzles by proving that PUSH-*, in

which arbitrarily many blocks can be pushed at once, is NP-hard with fixed

blocks. Bremner, O’Rourke, and Shermer [BOS94] strengthened this result to

PSPACE-completeness. Recently, Hoffmann [Hof00] proved that PUSH-* is

NP-hard even without fixed blocks, but it remains open whether it is in NP or

PSPACE-complete.

Several other results allow only a single block to be pushed at once. In this

context, fixed blocks are less crucial because a 2�2 cluster of blocks can never

be disturbed. A well-known computer puzzle in this context is Sokoban, where

the goal is to place each block onto any one of the designated target squares.

This puzzle was proved NP-hard by Dor and Zwick [DZ99] and later PSPACE-

complete by Culberson [Cul98]. Later this result was strengthened to configu-

rations with no fixed blocks [HD02; HD05]. A simpler puzzle, called PUSH-1,

arises when the goal is simply for the robot to reach a particular position, and

there are no fixed blocks. Demaine, Demaine, and O’Rourke [DDO00a] prove

that this puzzle is NP-hard, but it remains open whether it is in NP or PSPACE-

complete. On the other hand, PSPACE-completeness has been established for

PUSH-2-F, in which there are fixed blocks and the robot can push two blocks at

a time [DHH02].

Figure 14. A Push-1
or PushPush-1 puzzle:
move the robot to the X
by pushing light blocks.

A variation on the PUSH series of puzzles, called

PUSHPUSH, is when a block always slides as far as

possible when pushed. Such puzzles arise in a com-

puter game with the same name [DDO00a; DDO00b;

OS99]. PUSHPUSH-1 was established to be NP-hard

slightly earlier than PUSH-1 [DDO00b; OS99]; the

PUSH-1 reduction [DDO00a] also applies to PUSH-

PUSH-1. PUSHPUSH-k was later shown PSPACE-

complete for any fixed k � 1 [DHH04]. Hoffmann’s

reduction for PUSH-* also proves that PUSHPUSH-*

is NP-hard without fixed blocks.

Another variation, called PUSH-X, disallows the

robot from revisiting a square (the robot’s path

cannot cross). This direction was suggested in

[DDO00a] because it immediately places the puzzles in NP. Demaine and Hoff-

mann [DH01] proved that PUSH-1X and PUSHPUSH-1X are NP-complete. Hoff-
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mann’s reduction for PUSH-* also establishes NP-completeness of PUSH-*X

without fixed blocks.

Friedman [Fri02c] considers another variation, where gravity acts on the

blocks (but not the robot): when a block is pushed it falls if unsupported. He

shows that PUSH-1-G, where the robot may push only one block, is NP-hard.

River Crossing, another ThinkFun puzzle (originally Plank Puzzles by An-

drea Gilbert [Gil00]), is similar to pushing-block puzzles in that there is a unique

piece that must be used to move the other puzzle pieces. The game board is a

grid, with stumps at some intersections, and planks arranged

Figure 15. A River Crossing puzzle.
Move from start to end.

between some pairs of stumps,

along the grid lines. A special

piece, the hiker, always stands on

some plank, and can walk along

connected planks. He can also pick

up and carry a single plank at a

time, and deposit that plank be-

tween stumps that are appropriately

spaced. The goal is for the hiker to

reach a particular stump. Figure 15 shows a sample puzzle. Hearn [Hea04;

Hea06b] proves that River Crossing is PSPACE-complete, by a reduction from

Constraint Logic.

5.9. Rolling and tipping blocks. In some puzzles the blocks can change their

orientation as well as their position. Rolling-cube puzzles were popularized

by Martin Gardner in his Mathematical Games columns in Scientific American

[Gar63; Gar65; Gar75]. In these puzzles, one or more cubes with some labeled

sides (often dice) are placed on a grid, and may roll from cell to cell, pivoting

on their edges between cells. Some cells may have labels which must match

the face-up label of the cube when it visits the cell. The tasks generally involve

completing some type of circuit while satisfying some label constraints (e.g.,

by ensuring that a particular labeled face never points up). Recently Buchin

et al. [BBDC07] formalized this type of problem and derived several results.

In their version, every labeled cell must be visited, with the label on the top

face of the cube matching the cell label. Cells can be labeled, blocked, or free.

Blocked cells cannot be visited; free cells can be visited regardless of cube

orientation. Such puzzles turn out to be easy if labeled cells can be visited

multiple times. If each labeled cell must be visited exactly one, the problem

becomes NP-complete.

Rolling-block puzzles were later generalized by Richard Tucker to puzzles

where the blocks no longer need be cubes. In these puzzles, the blocks are

k �m�n boxes. Typically, some grid cells are blocked, and the goal is to move
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a block from a start position to an end position by successive rotations into

unblocked cells. Buchin and Buchin [BB07] recently showed that these puzzles

are PSPACE-complete when multiple rolling blocks are used, by a reduction

from Constraint Logic.

A commercial puzzle involving blocks that tip is the ThinkFun puzzle TipOver

(originally the Kung Fu Packing Crate Maze by James Stephens [Ste03]). In

this puzzle, all the blocks are 1�1�n (“crates”) and initially vertical. A tipper

stands on a starting crate, and attempts to reach a target crate. The tipper may

tip over a vertical crate it is standing on, if there is empty space in the grid for

it to fall into. The tipper may also move between connected crates (but cannot

jump diagonally). Unlike rolling-block puzzles, in these tipping puzzles once a

block has tipped over it may not stand up again (or indeed move at all). Hearn

[Hea06a] showed that TipOver is NP-complete, by a reduction from Constraint

Logic.

A two-player tipping-block game inspired by TipOver, called Cross Purposes,

was invented by Michael Albert, and named by Richard Guy, at the Games at

Dalhousie III workshop in 2004. In Cross Purposes, all the blocks are 1�1�2,

and initially vertical. One player, horizontal, may only tip blocks over hori-

zontally as viewed from above; the other player, vertical, may only tip blocks

over vertically as viewed from above. The game follows normal play: the last

player to move wins. Hearn [Hea08a] proved that Cross Purposes is PSPACE-

complete, by a reduction from Constraint Logic.

Figure 16. Central peg solitaire (Hi-Q):
initial and target configurations.

5.10. Peg Solitaire (Hi-Q).

The classic peg solitaire

puzzle is shown in Fig-

ure 16. Pegs are arranged

in a Greek cross, with the

central peg missing. Each

move jumps a peg over an-

other peg (adjacent hori-

zontally or vertically) to the

opposite unoccupied posi-

tion within the cross, and

removes the peg that was jumped over. The goal is to leave just a single peg,

ideally located in the center. A variety of similar peg solitaire puzzles are given

in [Bea85]. See also Chapter 23 of Winning Ways [BCG04, pp. 803–841].

A natural generalization of peg solitaire is to consider pegs arranged in an

n � n board and the goal is to leave a single peg. Uehara and Iwata [UI90]

proved that it is NP-complete to decide whether such a puzzle is solvable.
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On the other hand, Moore and Eppstein [ME02] proved that the one-dimen-

sional special case (pegs along a line) can be solved in polynomial time. In

particular, the binary strings representing initial configurations that can reach a

single peg turn out to form a regular language, so they can be parsed using reg-

ular expressions. (This fact has been observed in various contexts; see [ME02]

for references as well as a proof.) Using this result, Moore and Eppstein build a

polynomial-time algorithm to maximize the number of pegs removed from any

given puzzle.

Moore and Eppstein [ME02] also study the natural impartial two-player game

arising from peg solitaire, duotaire: players take turns jumping, and the winner

is determined by normal play. (This game is proposed, e.g., in [Bea85].) Sur-

prisingly, the complexity of this seemingly simple game is open. Moore and

Eppstein conjecture that the game cannot be described even by a context-free

language, and prove this conjecture for the variation in which multiple jumps

can be made in a single move. Konane (Section 4.14) is a natural partizan two-

player game arising from peg solitaire.

5.11. Card Solitaire. Two solitaire games with playing cards have been ana-

lyzed from a complexity standpoint. With all such games, we must generalize

the deck beyond 52 cards. The standard approach is to keep the number of suits

fixed at four, but increase the number of ranks in each suit to n.

Klondike or Solitaire is the classic game, in particular bundled with Microsoft

Windows since its early days. In the perfect information of this game, we sup-

pose the player knows all of the normally hidden cards. Longpré and McKenzie

[LM07] proved that the perfect-information version is NP-complete, even with

just three suits. They also prove that Klondike with one black suit and one red

suit is NL-hard; Klondike with any fixed number of black suits and no red suits

is in NL; Klondike with one suit is in AC0Œ3�; among other results.

FreeCell is another common game distributed with Microsoft Windows since

XP. We will not attempt to describe the rules here. Helmert [Hel03] proved that

FreeCell is NP-complete, for any fixed positive number of free cells.

5.12. Jigsaw, edge-matching, tiling, and packing puzzles. Jigsaw puzzles

[Wil04] are another one of the most popular kinds of puzzles, dating back to the

1760s. One way to formalize such puzzles is as a collection of square pieces,

where each side is either straight or augmented with a tab or a pocket of a

particular shape. The goal is to arrange the given pieces so that they form exactly

a given rectangular shape. Although this formalization does not explicitly allow

for patterns on pieces to give hints about whether pieces match, this information

can simply be encoded into the shapes of the tabs and pockets, making them

compatible only when the patterns also match. Deciding whether such a puzzle

has a solution was recently shown NP-complete [DD07].
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A closely related type of puzzles is edge-matching puzzles [Hau95], dating

back to the 1890s. In the simplest form, the pieces are squares and, instead

of tabs or pockets, each edge is colored to indicate compatibility. Squares

can be placed side-by-side if the edge colors match, either being exactly equal

(unsigned edge matching) or being opposite (signed edge matching). Again

the goal is to arrange the given pieces into a given rectangle. Signed edge-

matching puzzles are common in reality where the colors are in fact images of

lizards, insects, etc., and one side shows the head while the other shows the

tail. Such puzzles are almost identical to jigsaw puzzles, with tabs and pockets

representing the sign; jigsaw puzzles are effectively the special case in which

the boundary must be uniformly colored. Thus, signed edge-matching puzzles

are NP-complete, and in fact, so are unsigned edge-matching puzzles [DD07].

An older result by Berger [Ber66] proves that the infinite generalization of

edge-matching puzzles, where the goal is to tile the entire plane given infinitely

many copies of each tile type, is undecidable. This result is for unsigned puzzles,

but by a simple reduction in [DD07] it holds for signed puzzles as well. Along

the same lines, Garey, Johnson, and Papadimitriou [GJ79, p. 257] observe that

the finite version with a given target rectangle is NP-complete when given arbi-

trarily many copies of each tile type. In contrast, the finite result above requires

every given tile to be used exactly once, which corresponds more closely to real

puzzles.

A related family of tiling and packing puzzles involve polyforms such as

polyominoes, edge-to-edge joinings of unit squares. In general, we are given a

collection of such shapes and a target shape to either tile (form exactly) or pack

(form with gaps). In both cases, pieces cannot overlap, so the tiling problem is

actually a special case in which the piece areas sum to the target areas. One of the

few positive results is for (mathematical) dominoes, polyominoes (rectangles)

made from two unit squares: the tiling and (grid-aligned) packing problems can

be solved in polynomial time for arbitrary polyomino target shapes by perfect

and maximum matching, respectively; see also the elegant tiling criterion of

Thurston [Thu90]. In contrast, with “real” dominoes, where each square has a

color and adjacent dominoes must match in color, tiling (and hence packing)

becomes NP-complete [Bie05]. The tiling problem is also NP-complete when

the target shape is a polyomino with holes and the pieces are all identical 2 � 2

squares, or 1 � 3 rectangles, or 2 � 2 L shapes [MR01]. The packing prob-

lem [LC89] and the tiling problem [DD07] are NP-complete when the given

pieces are differently sized squares and the target shape is a square. Finally, the

tiling problem is NP-complete when the given pieces are polylogarithmic-area

polyominoes and the target shape is a square [DD07]; this result follows by

simulating jigsaw puzzles.



ALGORITHMIC COMBINATORIAL GAME THEORY 39

5.13. Minesweeper. Minesweeper is a well-known imperfect-information com-

puter puzzle popularized by its inclusion in Microsoft Windows. Gameplay

takes place on an n � n board, and the player does not know which squares

contain mines. A move consists of uncovering a square; if that square contains

a mine, the player loses, and otherwise the player is revealed the number of

mines in the 8 adjacent squares. The player also knows the total number of

mines.

There are several problems of interest in Minesweeper. For example, given a

configuration of partially uncovered squares (each marked with the number of

adjacent mines), is there a position that can be safely uncovered? More gen-

erally, what is the probability that a given square contains a mine, assuming a

uniform distribution of remaining mines? A different generalization of the first

question is whether a given configuration is consistent, i.e., can be realized by

a collection of mines. A consistency checker would allow testing whether a

square can be guaranteed to be free of mines, thus answering the first question.

An additional problem is to decide whether a given configuration has a unique

realization.

Kaye [Kay00b] proves that testing consistency is NP-complete. This result

leaves open the complexity of the other questions mentioned above. Fix and

McPhail [FM04] strengthen Kaye’s result to show NP-completeness of deter-

mining consistency when the uncovered numbers are all at most 1. McPhail

[McP03] also shows that, given a consistent placement of mines, determining

whether there is another consistent placement is NP-complete (ASP-complete-

ness from Section 5.4).

Kaye [Kay00a] also proves that an infinite generalization of Minesweeper is

undecidable. Specifically, the question is whether a given finite configuration

can be extended to the entire plane. The rules permit a much more powerful

level of information revealed by uncovering squares; for example, discovering

that one square has a particular label might imply that there are exactly 3 adja-

cent squares with another particular label. (The notion of a mine is lost.) The

reduction is from tiling (Section 5.12).

Hearn [Hea06b; Hea08b] argues that the “natural” decision question for Mine-

sweeper, in keeping with the standard form for other puzzle complexity results,

is whether a given (assumed consistent) instance can (definitely) be solved,

which is a different question from any of the above. He observes that a simple

modification to Kaye’s construction shows that this question is coNP-complete,

an unusual complexity class for a puzzle. The reduction is from Tautology.

(If the instance is not known to be consistent, then the problem may not be in

coNP.) Note that this question is not the same as whether a given configuration

has a unique realization: there could be multiple realizations, as long as the
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player is guaranteed that known-safe moves will eventually reveal the entire

configuration.

5.14. Mahjong solitaire (Shanghai). Majong solitaire or Shanghai is a com-

mon computer game played with Mahjong tiles, stacked in a pattern that hides

some tiles, and shows other tiles, some of which are completely exposed. Each

move removes a pair of matching tiles that are completely exposed; there are

precisely four tiles in each equivalence class of matching. The goal is to remove

all tiles.

Condon, Feigenbaum, Lund, and Shor [CFS97] proved that it is PSPACE-

hard to approximate the maximum probability of removing all tiles within a

factor of n", assuming that there are arbitrarily many quadruples of matching

tiles and that the hidden tiles are uniformly distributed. Eppstein [Epp] proved

that it is NP-complete to decide whether all tiles can be removed in the perfect-

information version of this puzzle where all tile positions are known.

5.15. Tetris. Tetris is a popular computer puzzle game invented in the mid-

1980s by Alexey Pazhitnov, and by 1988 it became the best-selling game in

the United States and England. The game takes place in a rectangular grid

(originally, 20�10) with some squares occupied by blocks. During each move,

the computer generates a tetromino piece stochastically and places it at the top

of the grid; the player can rotate the piece and slide it left or right as it falls

downward. When the piece hits another piece or the floor, its location freezes

and the move ends. Also, if there are any completely filled rows, they disappear,

bringing any rows above down one level.

To make Tetris a perfect-information puzzle, Breukelaar et al. [BDHC04]

suppose that the player knows in advance the entire sequence of pieces to be de-

livered. Such puzzles appear in Games Magazine, for example. They then prove

NP-completeness of deciding whether it is possible to stay alive, i.e., always be

able to place pieces. Furthermore, they show that maximizing various notions of

score, such as the number of lines cleared, is NP-complete to approximate within

an n1�" factor. The complexity of Tetris remains open with a constant number of

rows or columns, or with a stochastically chosen piece sequence as in [Pap85].

5.16. Clickomania (Same Game). Clickomania or Same Game [BDDC02] is a

computer puzzle consisting of a rectangular grid of square blocks each colored

one of k colors. Horizontally and vertically adjacent blocks of the same color

are considered part of the same group. A move selects a group containing at

least two blocks and removes those blocks, followed by two “falling” rules; see

Figure 17 (top). First, any blocks remaining above created holes fall down in

each column. Second, any empty columns are removed by sliding the succeed-

ing columns left.
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Figure 17. The falling rules for removing a group in Clickomania (top), a
failed attempt (middle), and a successful solution (bottom).

The main goal in Clickomania is to remove all the blocks. A simple example

for which this is impossible is a checkerboard, where no move can be made. A

secondary goal is to maximize the score, typically defined by k2 points being

awarded for removal of a group of k blocks.

Biedl et al. [BDDC02] proved that it is NP-complete to decide whether all

blocks can be removed in a Clickomania puzzle. This complexity result holds

even for puzzles with two columns and five colors, and for puzzles with five

columns and three colors. On the other hand, for puzzles with one column (or,

equivalently, one row) and arbitrarily many colors, they show that the maximum

number of blocks can be removed in polynomial time. In particular, the puzzles

whose blocks can all be removed are given by the context-free grammar S !
� j SS j cSc j cScSc where c ranges over all colors.

Various cases of Clickomania remain open, for example, puzzles with two

colors, and puzzles with O.1/ rows. Richard Nowakowski suggested a two-

player version of Clickomania, described in [BDDC02], in which players take

turns removing groups and normal play determines the winner; the complexity

of this game remains open.

A related puzzle is called Vexed, also Cubic. In this puzzle there are fixed

blocks, as well as the mutually annihilating colored blocks. A move in Vexed

is to slide a colored block one unit left or right into an empty space, where-

upon gravity will pull the block down until it contacts another block; then any
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touching blocks of the same color disappear. Again the goal is to remove all the

colored blocks. Friedman [Fri01] showed that Vexed is NP-complete.4

5.17. Moving coins. Several coin-sliding and coin-moving puzzles fall into the

following general framework: rearrange one configuration of unit disks in the

plane into another configuration by a sequence of moves, each repositioning a

coin in an empty position that touches at least two other coins. Examples of such

puzzles are shown in Figure 18. This framework can be further generalized to

nongeometric puzzles involving movement of tokens on graphs with adjacency

restrictions.

In three moves In seven moves

In 18 moves

In 24 moves

Figure 18. Coin-moving puzzles in which each move places a coin adjacent
to two other coins; in the bottom two puzzles, the coins must also remain
on the square lattice. The top two puzzles are classic, whereas the bottom
two were designed in [DDV00].

Coin-moving puzzles have been analyzed by Demaine, Demaine, and Verrill

[DDV00]. In particular, they study puzzles as in Figure 18 in which the coins’

centers remain on either the triangular lattice or the square lattice. Surprisingly,

their results for deciding solvability of puzzles are positive.

4David Eppstein pointed out that all that was shown was NP-hardness; the problem was not obviously

in NP (http://www.ics.uci.edu/~eppstein/cgt/hard.html). Friedman and R. Hearn together showed that it is in

NP as well (personal communication).
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For the triangular lattice, nearly all puzzles are solvable, and there is a poly-

nomial-time algorithm characterizing them. For the square lattice, there are

more stringent constraints. For example, the bounding box cannot increase by

moves; more generally, the set of positions reachable by moves given an infinite

supply of extra coins (the span) cannot increase. Demaine, Demaine, and Verrill

show that, subject to this constraint, there is a polynomial-time algorithm to

solve all puzzles with at least two extra coins past what is required to achieve

the span. (In particular, all such puzzles are solvable.)

5.18. Dyson Telescopes. The Dyson Telescope Game is an online puzzle pro-

duced by the Dyson corporation, whimsically based on their telescoping vacuum

cleaners. The goal is to maneuver a ball on a square grid from a starting position

to a goal position by extending and retracting telescopes on the grid. When a

telescope is extended, it grows to its maximum length in the direction it points

(parameters of each telescope), unless it is stopped by another telescope. If the

ball is in the way, it is pushed by the end of the telescope. When a telescope is

retracted, it shrinks back to unit length, pulling the ball with it if the ball was at

the end of the telescope.

Demaine et al. [DDFC08] showed that determining whether a given puzzle

has a solution is PSPACE-complete in the general case. On the other hand, the

problem is polynomial for certain restricted configurations which are nonethe-

less interesting for humans to play. Specifically, if no two telescopes face each

other and overlap when extended by more than one space, then the problem is

polynomial. Many of the game levels in the online version have this property.

5.19. Reflection puzzles. Two puzzles involving reflection of directional light

or motion have been studied from a complexity-theoretic standpoint.

In Reflections [Kem03], we are given a rectangular grid with one square

marked with a laser pointed in one of the four axis-parallel directions, one or

more squares marked as light bulbs, some squares marked one-way in an axis-

parallel direction, and remaining squares marked either empty or wall. We are

also given a number of diagonal mirrors and/or T-splitters which we can place

arbitrarily into empty squares. The light then travels from the laser; when it

meets a diagonal mirror, it reflects by 90ı according to the orientation of the

mirror; when it meets a splitter at the base of the T, it splits into both orthogonal

directions; when it meets a one-way square, it stops unless the light direction

matches the one-way orientation; when it meets a light bulb, it toggles the bulb’s

state and stops; and when it meets a wall, it stops. The goal is to place the mirrors

and splitters so that each light bulb gets hit an odd number of times. This puzzle

is NP-complete [Kem03].
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In Reflexion [HS04b], we are given a rectangular grid in which squares are

either walls, mirrors, or diamonds. Also, one square is the starting position

for a ball and another square is the target position. We may release the ball

in one of the four axis-parallel directions, and we may flip mirrors between

their two diagonal orientations while the ball moves. The ball travels like a

ray of light, reflecting at mirrors and stopping at walls; at diamonds, it turns

around and erases the diamond. The goal is to reach the target position. In this

simplest form, Reflexion is SL-complete which actually implies a polynomial-

time algorithm [HS04a]. If some of the mirrors can be flipped only before the

ball releases, the puzzle becomes NP-complete. If some trigger squares toggle

other squares between wall and empty, or if some squares contain horizontally

or vertically movable blocks (which also cause the ball to turn around), then the

puzzle becomes PSPACE-complete.

5.20. Lemmings. Lemmings is a popular computer puzzle game dating back to

the early 1990s. Characters called lemmings start at one or more initial locations

and behave deterministically according to their mode, initially just walking in

a fixed direction, turning around at walls, and falling off cliffs, dying if it falls

too far. The player can modify this basic behavior by applying a skill to a

lemming; each skill has a limited number of such applications. The goal is

for a specified number of lemmings to reach a specified target position. The

exact rules, particularly the various skills, are too complicated to detail here.

Cormode [Cor04] proved that such puzzles are NP-complete, even with just one

lemming. Membership in NP follows from assuming a polynomial upper bound

on the time limit in a level (a fairly accurate modeling of the actual game);

Cormode conjectures that this assumption does not affect the result.

6. Cellular automata and life

Conway’s Game of Life is a zero-player cellular automaton played on the

square tiling of the plane. Initially, certain cells (squares) are marked alive or

dead. Each move globally evolves the cells: a live cell remains alive if between

2 and 3 of its 8 neighbors were alive, and a dead cell becomes alive if it had

precisely 3 live neighbors.

Many questions can be asked about an initial configuration of Life; one key

question is whether the population will ever completely die out (no cells are

alive). Chapter 25 of Winning Ways [BCG04, pp. 927–961] describes a reduc-

tion showing that this question is undecidable. In particular, the same ques-

tion about Life restricted within a polynomially bounded region is PSPACE-

complete. More recently, Rendell [Ren05] constructed an explicit Turing ma-

chine in Life, which establishes the same results.
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There are other open complexity-theoretic questions about Life.5 How hard

is it to tell whether a configuration is a Garden of Eden, that is, a state that cannot

result from another? Given a rectangular pattern in Life, how hard is it to extend

the pattern outside the rectangle to form a Still Life (which never changes)?

Several other cellular automata, with different survival and birth rules, have

been studied; see, e.g., [Wol94].

7. Open problems

Many open problems remain in Combinatorial Game Theory. Guy and Nowa-

kowski [GN02] have compiled a list of such problems.

Many open problems also remain on the algorithmic side, and have been

mentioned throughout this paper. Examples of games and puzzles whose com-

plexities remain unstudied, to our knowledge, are Domineering (Section 4.11),

Connect Four, Pentominoes, Fanorona, Nine Men’s Morris, Chinese checkers,

Lines of Action, Chinese Chess, Quoridor, and Arimaa. For many other games

and puzzles, such as Dots and Boxes (Section 4.12) and pushing-block puz-

zles (Section 5.8), some hardness results are known, but the exact complexity

remains unresolved. It would also be interesting to consider games of imper-

fect information that people play, such as Scrabble (Section 5.3, Backgammon,

and Bridge. Another interesting direction for future research is to build a more

comprehensive theory for analyzing combinatorial puzzles.
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ABSTRACT. We survey recent developments in the theory of impartial com-

binatorial games in misere play, focusing on how Sprague–Grundy theory of

normal-play impartial games generalizes to misere play via the indistinguisha-

bility quotient construction [P2]. This paper is based on a lecture given on 21

June 2005 at the Combinatorial Game Theory Workshop at the Banff Interna-

tional Research Station. It has been extended to include a survey of results on

misere games, a list of open problems involving them, and a summary of Mis-

ereSolver [AS2005], the excellent Java-language program for misere indistin-

guishability quotient construction recently developed by Aaron Siegel. Many

wild misere games that have long appeared intractable may now lie within the

grasp of assiduous losers and their faithful computer assistants, particularly

those researchers and computers equipped with MisereSolver.

1. Introduction

We’ve spent a lot of time teaching you how to win games
by being the last to move. But suppose you are baby-sitting
little Jimmy and want, at least occasionally, to make sure you
lose? This means that instead of playing the normal play rule
in which whoever can’t move is the loser, you’ve switched to
misere play rule when he’s the winner. Will this make much
difference? Not always. . .

That’s the first paragraph from the thirteenth chapter (“Survival in the Lost

World”) of Berlekamp, Conway, and Guy’s encyclopedic work on combinatorial

game theory, Winning Ways for your Mathematical Plays [WW].

And why “not always?” The misere analysis of an impartial combinatorial

game often proves to be far more difficult than it is in normal play. To take a

typical example, the normal play analysis of Dawson’s Chess [D] was published
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as early as 1956 by Guy and Smith [GS], but even today, a complete misere

analysis hasn’t been found (see Section 10.1). Guy tells the story [Guy91]:

[Dawson’s chess] is played on a 3�n board with white pawns
on the first rank and black pawns on the third. It was posed
as a losing game (last-player-losing, now called misere) so
that capturing was obligatory. Fortunately, (because we still

don’t know how to play misere Dawson’s Chess) I assumed,
as a number of writers of that time and since have done,
that the misere analysis required only a trivial adjustment of
the normal (last-player-winning) analysis. This arises because
Bouton, in his original analysis of Nim [B1902], had observed
that only such a trivial adjustment was necessary to cover
both normal and misere play. . .

But even for impartial games, in which the same options
are available to both players, regardless of whose turn it is
to move, Grundy & Smith [GrS1956] showed that the gen-
eral situation in misere play soon gets very complicated, and
Conway [ONAG], (p. 140) confirmed that the situation can
only be simplified to the microscopically small extent noticed
by Grundy & Smith.

At first sight Dawson’s Chess doesn’t look like an impartial
game, but if you know how pawns move at Chess, it’s easy
to verify that it’s equivalent to the game played with rows of
skittles in which, when it’s your turn, you knock down any
skittle, together with its immediate neighbors, if any.

So misere play can be difficult. But is it a hopeless situation? It has often

seemed so. Returning to chapter 13 in [WW], one encounters the genus theory

of impartial misere disjunctive sums, extended significantly from its original

presentation in chapter 7 (“How to Lose When You Must”) of Conway’s On

Numbers and Games [ONAG]. But excluding the tame games that play like Nim

in misere play, there’s a remarkable paucity of example games that the genus

theory completely resolves. For example, the section “Misere Kayles” from the

1982 first edition of [WW] promises

Although several tame games arise in Kayles (see Chapter 4),
wild game’s abounding and we’ll need all our [genus-theoretic]
resources to tackle it. . .

However, it turns out Kayles isn’t “tackled” at all — after an extensive table of

genus values to heap size 20, one finds the slightly embarrassing question

Is there a larger single-row P-position?
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It was left to the amateur William L. Sibert [SC] to settle misere Kayles using

completely different methods. One finds a description of his solution at end of

the updated Chapter 13 in the second edition of [WW], and also in [SC]. In

2003, [WW] summarized the situation as follows (p. 451):

Sibert’s remarkable tour de force raises once again the ques-
tion: are misere analyses really so difficult? A referee of a
draft of the Sibert–Conway paper wrote “the actual solution
will have no bearing on other problems,” while another wrote
“the ideas are likely to be applicable to some other games. . . ”

1.1. Misere play — the natural impartial game convention? When nonmath-

ematicians play impartial games, they tend to choose the misere play conven-

tion1. This was already recognized by Bouton in his classic paper “Nim, A

Game with a Complete Mathematical Theory,” [B1902]:

The game may be modified by agreeing that the player who
takes the last counter from the table loses. This modifica-
tion of the three pile [Nim] game seems to be more widely
known than that first described, but its theory is not quite so
simple. . .

But why do people prefer the misere play convention? The answer may lie in

Fraenkel’s observation that impartial games lack boardfeel, and simple Schaden-

freude2:

For many MathGames, such as Nim, a player without prior
knowledge of the strategy has no inkling whether any given
position is “strong” or “weak” for a player. Even two posi-
tions before ultimate defeat, the player sustaining it may be
in the dark about the outcome, which will stump him. The
player has no boardfeel. . . [Fraenkel, p. 3].

If both players are “in the dark,” perhaps it’s only natural that the last player

compelled to make a move in such a pointless game should be deemed the

loser. Only when a mathematician gets involved are things ever-so-subtly shifted

toward the normal play convention, instead — but this is only because there is

a simple and beautiful theory of normal-play impartial games, called Sprague–

Grundy theory. Secretly computing nim-values, mathematicians win normal-

play impartial games time and time again. Papers on normal play impartial

games outnumber misere play ones by a factor of perhaps fifty, or even more3.

1“Indeed, if anything, misere Nim is more commonly played than normal Nim. . . ” [ONAG], p. 136.

2The joy we take in another’s misfortune.

3Based on an informal count of papers in the [Fraenkel] CGT bibliography.
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In the last twelve months it has become clear how to generalize such Sprague–

Grundy nim-value computations to misere play via indistinguishability quotient

construction [P2]. As a result, many misere game problems that have long ap-

peared intractable, or have been passed over in silence as too difficult, have now

been solved. Still others, such as a Dawson’s Chess, appear to remain out of

reach and await new ideas. The remainder of this paper surveys this largely

unexplored territory.

2. Two wild games

We begin with two impartial games: Pascal’s Beans — introduced here for

the first time — and Guiles (the octal game 0.15). Each has a relatively simple

normal-play solution, but is wild4 in misere play. Wild games are characterized

by having misere play that differs in an essential way5 from the play of misere

Nim. They often prove notoriously difficult to analyze completely. Neverthe-

less, we’ll give complete misere analyses for both Pascal’s Beans and Guiles by

using the key idea of the misere indistinguishability quotient, which was first

introduced in [P2], and which we take up in earnest in Section 5.

3. Pascal’s Beans

Pascal’s Beans is a two-player impartial combinatorial game. It’s played

with heaps of beans placed on Pascal’s triangle, which is depicted in Figure 1.

A legal move in the game is to slide a single bean either up a single row and to

the left one position, or alternatively up a single row and to the right one position

in the triangle. For example, in Figure 1, a bean resting on the cell marked 20

could be moved to either cell labelled 10.

The actual numbers in Pascal’s triangle are not relevant in the play of the

game, except for the 1’s that mark the border positions of the board. In play of

Pascal’s Beans, a bean is considered out of play when it first reaches a border

position of the triangle. The game ends when all beans have reached the border.

3.1. Normal play. In normal play of Pascal’s Beans, the last player to make a

legal move is declared the winner of the game. Figure 2 shows the pattern of

nim values that arises in the analysis of the game. Using the figure, it’s possible

to quickly determine the best-play outcome of an arbitrary starting position in

Pascal’s Beans using Sprague–Grundy theory and the nim addition operation

˚. Provided one knows the Z2 � Z2 addition table in Figure 3, all is well — the

4See Chapter 13 (“Survival in the Lost World”) in [WW] and Section 7 in this paper for more information

on wild misere games.

5To be made precise in Section 7.



ADVANCES IN LOSING 61

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
:::

:::
:::

Figure 1. The Pascal’s Beans board.

P-positions (second-player winning positions) are precisely those that have nim

value zero (that is, �0), and every other position is an N-position (or next-player

win), of nim value �1, �2, or �3.

�0

�0 �0

�0 �1 �0

�0 �2 �2 �0

�0 �1 �0 �1 �0

�0 �2 �2 �2 �2 �0

�0 �1 �0 �0 �0 �1 �0

�0 �2 �2 �1 �1 �2 �2 �0

�0 �1 �0 �0 �0 �0 �0 �1 �0
:::

:::
:::

Figure 2. The pattern of single-bean nim-values in normal play of Pascal’s
Beans. Each interior value is the minimal excludant (or mex) of the two
nim values immediately above it. The boldface entries form the first three
rows of an infinite subtriangle whose rows alternate between �0 and �1.

˚ �0 �1 �2 �3

�0 �0 �1 �2 �3

�1 �1 �0 �3 �2

�2 �2 �3 �0 �1

�3 �3 �2 �1 �0

Figure 3. Addition for normal play of Pascal’s Beans.
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3.2. Misere play. In misere play of Pascal’s Beans, the last player to make a

move is declared the loser of the game. Is it possible to give an analysis of misere

Pascal’s Beans that resembles the normal play analysis? The answer is yes — but

the positions of the triangle can no longer be identified with nim heaps �k, and

the rule for the misere addition is no longer given by nim addition. Instead, both

the values to be identified with particular positions of the triangle and the desired

misere addition are given by a particular twelve-element commutative monoid

M, the misere indistinguishability quotient6 of Pascal’s Beans. The monoid M

has an identity 1 and is presentable using three generators and relations:

M D h a; b; c j a2 D 1; c2 D 1; b3 D b2c i:

Assiduous readers might enjoy verifying that the identity b4 D b2 follows

from these relations, and that a general word of the form aibj ck (i; j ; k � 0)

will always reduce to one of the twelve canonical words

M D f1; a; b; ab; b2; ab2; c; ac; bc; b2c; abc; ab2cg:

Amongst the twelve canonical words, three represent P-position types

P D fa; b2; acg;

and the remaining nine represent N-position types:

N D f1; b; ab; ab2; c; bc; b2c; abc; ab2cg:

Figure 4 shows the identification of triangle positions with elements of M.

1

1 1

1 a 1

1 b b 1

1 a b2 a 1

1 b c c b 1

1 a b2
b

2 b2 a 1

1 b c ab
2

ab
2 c b 1

1 a b2
b

2
b

2
b

2 b2 a 1
:::

:::
:::

Figure 4. Identifications for single-bean positions in misere play of Pascal’s
Beans. The values are elements of the misere indistinguishability quotient
M of Pascal’s Beans. The boldface entries form the first three rows of an
infinite subtriangle whose rows alternate between the values b2 and ab2.

6See Section 5.
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Although we’ve used multiplicative notation to represent the addition opera-

tion in the monoid M, we use it to analyze general misere-play Pascal’s Beans

positions just as we used the nim values of Figure 2 and nim addition in normal

play. For example, suppose a Pascal’s Beans position involves just two beans —

one placed along the central axis of the triangle at each of the two boxed po-

sitions in Figure 4. Combining the corresponding entries a and b2 as monoid

elements, we obtain the element ab2, which we’ve already asserted is an N-

position. What is the winning misere-play move? From the lower bean, at the

position marked b2, the only available moves are both to a cell marked b. This

move is of the form

ab2 ! ab;

that is, the result is another misere N-position type (here ab). So this option is

not a winning misere move. But the cell marked a has an available move is to

the border. The resulting winning move is of the form

ab2 ! b2;

that is, the result is b2, a P-position type.

4. Guiles

Guiles can be played with heaps of beans. The possible moves are to remove

a heap of 1 or 2 beans completely, or to take two beans from a sufficiently large

heap and partition what is left into two smaller, nonempty heaps. This is the

octal game 0.15.

4.1. Normal play. The nim values of the octal game Guiles fall into a period

10 pattern. See Figure 5.

1 2 3 4 5 6 7 8 9 10

0+ 1 1 0 1 1 2 2 1 2 2

10+ 1 1 0 1 1 2 2 1 2 2

20+ 1 1 0 1 1 2 2 1 2 2

30+ 1 1 0 1 1 � � �

Figure 5. Nim values for normal play 0.15.
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4.2. Misere play. Using his recently-developed Java-language computer pro-

gram MisereSolver, Aaron Siegel [PS] found that the misere indistinguishability

quotient Q of misere Guiles is a (commutative) monoid of order 42. It has the

presentation

Q D h a; b; c; d; e; f; g; h; i j

a2 D 1; b4 D b2; bc D ab3; c2 D b2; b2d D d;

cd D ad; d3 D ad2; b2e D b3; de D bd; be2 D ace;

ce2 D abe; e4 D e2; bf D b3; df D d; ef D ace;

cf 2 D cf; f 3 D f 2; b2g D b3; cg D ab3; dg D bd;

eg D be; fg D b3; g2 D bg; bh D bg; ch D ab3;

dh D bd; eh D bg; f h D b3; gh D bg; h2 D b2;

bi D bg; ci D ab3; di D bd; ei D be; f i D b3;

gi D bg; hi D b2; i2 D b2 i:

In Figure 6 we show the single-heap misere equivalences for Guiles. It is a

remarkable fact that this sequence is also periodic of length ten — it’s just that

the (aperiodic) preperiod is longer (length 66), and a person needs to know the

monoid Q! The P-positions of Guiles are precisely those positions equivalent to

one of the words

P D f a; b2; bd; d2; ae; ae2; ae3; af; af 2; ag; ah; ai g:

1 2 3 4 5 6 7 8 9 10

0C a a 1 a a b b a b b

10C a a 1 c c b b d b e

20C c c f c c b g d h i

30C ab2 abg f abg abe b3 h d h h

40C ab2 abe f 2 abg abg b3 h d h h

50C ab2 abg f 2 abg abg b3 b3 d b3 b3

60C ab2 abg f 2 abg abg b3 b3 d b3 b3

70C ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

80C ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

90C ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

100C

Figure 6. Misere equivalences for Guiles.

Knowledge of the monoid presentation Q, its partition into N- and P-position

types, and the single-heap equivalences in Figure 6 suffices to quickly determine
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the outcome of an arbitrary misere Guiles position. For example, suppose a

position contains four heaps of sizes 4, 58, 68, and 78. Looking up monoid

values in Figure 6, we obtain the product

a � d � d � d D ad3

D a � ad2 .relation d3 D ad2/

D d2 .relation a2 D 1/

We conclude that 4 C 58 C 68 C 78 is a misere Guiles P-position.

5. The indistinguishability quotient construction

What do these two solutions have in common? They were both obtained via

a computer program called MisereSolver, by Aaron Siegel. Underpinning Mis-

ereSolver is the notion of the indistinguishability quotient construction. Here,

we’ll sketch the main ideas of the indistinguishability quotient construction only.

They are developed in detail in [P2].

Suppose A is a set of (normal, or alternatively, misere) impartial game po-

sitions that is closed under the operations of game addition and taking options

(that is, making moves). Unless we say otherwise, we’ll always be taking A to

be the set of all positions that arise in the play of a specific game � , which we

fix in advance. For example, one might take

� D Normal-play Nim;

A D All positions that arise in normal-play Nim;

or

� D Misere-play Guiles;

A D All positions that arise in misere-play Guiles:

Two games G; H 2 A are then said to be indistinguishable, and we write

the relation G � H , if for every game X 2 A, the sums G C X and H C X

have the same outcome (that is, are both N-positions, or are both P-positions).

Note in particular that if G and H are indistinguishable, then they have the same

outcome (choose X to be the endgame — that is, the terminal position, with no

options).

The indistinguishability relation � is easily seen to be an equivalence relation

on A, but in fact more is true — it’s a congruence on A [P2]. This follows

because indistinguishability is compatible with addition; that is, for every set of

three games G; H; X 2 A:

G � H ÷ .G C X / � .H C X /: (5-1)
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Now let’s make the definition

�G D f H 2 A j G � H g:

We’ll call �G the congruence class of A modulo � containing G. Because �

is a congruence, there is a well-defined addition operation

�G C �H D �.G C H /

on the set A=� of all congruence classes �G of A modulo �

Q D Q.� / D A=� D f �G j G 2 A: g (5-2)

The monoid Q is called the indistinguishability quotient of � . It captures the

essential information of “how to add” in the play of game � , and is the central

figure of our drama.

The natural mapping

˚ W G ‘ �G

from A to A=� is called a pretending function (see [P2]). Figures 4 and 6

illustrate the (as it happens, provably periodic [P2]) pretending functions of

Pascal’s Beans and Guiles, respectively. We shall gradually come to see that

the recovery of Q and ˚ from � is the essence of impartial combinatorial game

analysis in both normal and misere play.

When � is chosen as a normal-play impartial game, the elements of Q work

out to be in 1-1 correspondence with the nim-heap values (or G-values) that

occur in the play of the game � . For if G and H are normal-play impartial games

with G D �g and H D �h, one easily shows that G and H are indistinguishable

if and only if g D h. Additionally, in normal play, every position G satisfies the

equation

G C G D 0:

As a result, the addition in a normal-play indistinguishability quotient is an

abelian group in which every element is its own additive inverse. The addition

operation in the quotient Q is nim addition. Every normal play indistinguisha-

bility quotient is therefore isomorphic to a (possibly infinite) direct product

Z2 � Z2 � � � � ;

and a position is a P-position precisely if it belongs the congruence class of the

identity (that is, �0) of this group. In this sense “nothing new” is learned about

normal play impartial games via the indistinguishability quotient construction —

instead, we’ve simply recast Sprague–Grundy theory in new language. The fun

begins when the construction is applied in misere play, instead.
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6. Misere indistinguishability quotients

In misere play, the indistinguishability quotient Q turns out to be a commu-

tative monoid whose structure intimately depends upon the particular game �

that is chosen for analysis. We need to cover some background material first.

6.1. Preliminaries. Consider the following three concepts in impartial games:

(i) The notion of the endgame (or terminal position), that is, a game that has no

options at all.

(ii) The notion of a P-position, that is, a game that is a second-player win in

best play of the game.

(iii) The notion of the sum of two identical games, that is, G C G.

In normal play, these three notions are indistinguishable — wherever a person

sees (1) in a sum S , he could freely substitute (2) or (3) (or vice-versa, or any

combination of such substitutions) without changing the outcome of S .

The three notions do not coincide in misere play. Let’s see what happens

instead.

The misere endgame. In misere play, the endgame is an N-position, not a P-

position: even though there is no move available from the endgame, a player

still wants it to be his turn to move when facing the endgame in misere play,

because that means his opponent just lost, on his previous move.

Misere outcome calculation. After the special case of the endgame is taken

care of, the recursive rule for outcome calculation in misere play is exactly as

it is in normal play: a non-endgame position G is a P-position if and only if all

its options are N-positions. Misere games cannot be identified with nim heaps,

in general, however — instead, a typical misere game looks like a complicated,

usually unsimplifiable tree of options [ONAG], [GrS1956].

Misere P-positions. Since the endgame is not a misere P-position, the simplest

misere P-position is the nim-heap of size one, that is, the game played using

one bean on a table, where the game is to take that bean. To avoid confusion

both with what happens in normal play, and with the algebra of the misere

indistinguishability quotient to be introduced in the sequel, let’s introduce some

special symbols for the three simplest misere games:o D The misere endgame, that is, a position with no moves at all.1 D The misere nim heap of size one, that is, a position with one move (to o/:2 D The misere nim heap of size two, that is, the game fo; 1g:

Two games that we’ve intentionally left off this list are f1g and 1C1. Assid-

uous readers should verify they are both indistinguishable from o.
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Misere sums involving P-positions. Suppose that G is an arbitrary misere P-

position. Consider the misere sum

S D 1C G: (6-1)

Who wins S? It’s an N-position — a winning first-player move is to simply

take the nim heap of size one, leaving the opponent to move first in the P-position

G. In terms of outcomes, equation (6-1) looks like

N D P C P: (6-2)

Equation (6-2) does not remind us of normal play very much — instead, we

always have P C P D P in normal play. On the other hand, it’s not true that

sum of two misere P-positions is always a misere N-position — in fact, when two

typical misere P-positions G and H are added together with neither equal to 1,

it usually happens that their sum is a P-position, also. But that’s not always the

case — it’s also possible that two misere impartial P-positions, neither of which

is 1, can nevertheless result in an N-position when added together. Without

knowing the details of the misere P-position involved, little more can be said in

general about the outcome when it’s added to another game.

Misere sums of the form G CG. In normal play, a sum G CG of two identical

games is always indistinguishable from the endgame. In misere play, it’s true

that both oCo and 1C1 are indistinguishable from o, but beyond those two sums,

positions of the form G C G are rarely indistinguishable from o. It frequently

happens that a position G in the play of a game � has no H 2 A such that GCH

is indistinguishable from o. This lack of natural inverse elements makes the

structure of a typical misere indistinguishability quotient a commutative monoid

rather than an abelian group.

The game 2C 2. The sum 2C 2
is an important one in the theory of impartial misere games. It’s a P-position in

misere play: for if you move first by taking 1 bean from one summand, I’ll take

two from the other, forcing you to take the last bean. Similarly, if you choose

to take 2 beans, I’ll take 1 from the other. So whereas in normal play one has

the equation

.�2 C �2/ � � 0;

it’s certainly not the case in misere play that

.2C 2/ � o;
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since the two sides of that proposed indistinguishability relation don’t even have

the same outcome. But perhaps

2C 2 ?
� 1 (6-3)

is valid? The indistinguishability relation (6-3) looks plausible at first glance —

at least the positions on both sides are P-positions. To decide whether it’s possi-

ble to distinguish between 2C2 and 1, we might try adding various fixed games

X to both, and see if we ever get differing outcomes:

Misere Misere Misere

game outcome of outcome of

X 2C 2C X 1C Xo P P1 N N2 N N1C 2 N N2C 2 P N

The two positions look like they might be indistinguishable, until we reach the

final row of the table. It reveals that .2C2/ distinguishes between .2C2/ and1. So equation (6-3) fails. Since a set of misere game positions A that includes2 and is closed under addition and taking options must contain all of the games1, 2, and 2C 2, we’ve shown that a game that isn’t She-Loves-Me-She-Loves-

Me-Not always has at least two distinguishable P-position types. In normal play,

there’s just one P-position type up to indistinguishability — the game �0.

6.2. Indistinguishability versus canonical forms. In normal play, Sprague–

Grundy theory describes how to determine the outcome of a sum G C H of

two games G and H by computing canonical (or simplest) forms for each

summand — these turn out to be nim-heap equivalents �k. In both normal and

misere play, canonical forms are obtained by pruning reversible moves from

game trees (see [GrS1956], [ONAG] and [WW]).

In [ONAG], Conway succinctly gives the rules for misere game tree simpli-

fication to canonical form:

When H occurs in some sum we should naturally like to
replace it by [a] simpler game G. Of course, we will normally
be given only H , and have to find the simpler game G for
ourselves. How do we do this? Here are two observations
which make this fairly easy:

(i) G must be obtained by deleting certain options of H .
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(ii) G itself must be an option of any of the deleted options
of H , and so G must be itself be a second option of H , if
we can delete any option at all.

On the other hand, if we obey (1) and (2), the deletion is
permissible, except that we can only delete all the options of
H (making G = 0 [the endgame]) if one of the them is a
second-player win.

Unlike in normal play, the canonical form of a misere game is not a nim heap

in general. In fact, many misere game trees hardly simplify at all under the

misere simplification rules. Figure 7, which duplicates information in [ONAG]

(its Figure 32), shows the 22 misere game trees born by day 4.

o D fg 2CC D f2Cg 2C3o D f2C; 3; og1 D fog 2Co D f2C; og 2C31 D f2C; 3; 1g2 D fo; 1g 2C1 D f2C; 1g 2C32 D f2C; 3; 2g

3 D fo; 1; 2g 2C2 D f2C; 2g 2C32o D f2C; 3; 2; og
4 D fo; 1; 2; 3g 2C2o D f2C; 2; og 2C321 D f2C; 3; 2; 1g2C D f2g 2C21 D f2C; 2; 1g 2C321o D f2C; 3; 2; 1; og

3C D f3g 2C21o D f2C; 2; 1; og2C 2 D f3; 2g 2C3 D f2C; 3g

Figure 7. Canonical forms for misere games born by day 4.

Whereas only one normal-play nim-heap is born at each birthday n, over 4

million nonisomorphic misere canonical forms are born by day five. The number

continues to grow very rapidly, roughly like a tower of exponentials of height n

([ONAG]). This very large number of mutually distinguishable trees has often

made misere analysis look like a hopeless activity.

Indistinguishability identifies games with different misere canonical forms.

The key to the success of the indistinguishability quotient construction is that

it is a construction localized to the play of a particular game � . It therefore

has the possibility of identifying misere games with different canonical forms.

While it’s true that for misere games G, H with different canonical forms that

there must be a game X such that G C X and H C X have different outcomes,

such an X might possibly never occur in play of the fixed game � that we’ve

chosen to analyze. Indistinguishability quotients are often finite, even for games

� that involve an infinity of different canonical forms amongst their position

sums.
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7. What is a wild misere game?

Roughly speaking, a misere impartial game � is said to be tame when a

complete analysis of it can be given by identifying each of its positions with

some position that arises in the misere play of Nim. Tameness is therefore an

attribute of a set of positions, rather than a particular position. Games � that

are not tame are said to be wild. Unlike tame games, wild games cannot be

completely analyzed by viewing them as disguised versions of misere Nim.

7.1. Tame games. Conway’s genus theory was first described in chapter 12

of [ONAG]. It describes a method for calculating whether all the positions of

particular misere game � are tame, and how to give a complete analysis of � ,

if so. For completeness, we’ve summarized the genus theory in the Appendix

(page 81).

For misere games � that genus theory identifies as tame, a complete analysis

can be given without reference to the indistinguishability quotient construction.

Various efforts to extend genus theory to wider classes of games have been made.

Example settings where progress has been made are the main subject of papers

by of Ferguson [F2], [F3] and Allemang [A1], [A2], [A3].

Indistinguishability quotients for tame games. In this section, we reformulate

the genus theory of tame games in terms of the indistinguishability quotient

language.

Suppose S is some finite set of misere combinatorial games. We’ll use the

notation cl.S/ (the closure of S) to stand for the smallest set of games that

includes every element of S and is closed under addition and taking options.

Putting A D cl.S/ and defining the indistinguishability quotient

Q D A=�;

the natural question arises, what is the monoid Q? Figure 8 shows answers for

S D f1g and S D f2g.

Presentation for

S monoid Q Order Symbol Name

f1g h a j a2 D 1 i 2 T1 First tame quotient

f2g h a; b j a2 D 1; b3 D b i 6 T2 Second tame quotient

Figure 8. The first and second tame quotients.

T1 is called the first tame quotient. It represents the misere play of She-

Loves-Me, She-Loves-Me-Not. In T1, misere P-positions are represented by the

monoid (in fact, group) element a, and N-positions by 1.
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T2, the second tame quotient, has the presentation

h a; b j a2 D 1; b3 D b i:

It is a six-element monoid with two P-position types fa; b2g. The prototypical

game � with misere indistinguishability quotient T2 is the game of Nim, played

with heaps of 1 and 2 only. See Figures 9 and 10.

1
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a
�
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b
@

@@I
�
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ab
�
���

�	

@
@@R

b2
@

@I@
@R

ab2

Figure 9. The misere impartial game theorist’s coat of arms, or the Cayley
graph of T2. Arrows have been drawn to show the action of the generators
a (the doubled rungs of the ladder) and b (the southwest-to-northeast-ori-
ented arrows) on T2. See also Figure 10.

The general tame quotient. For n � 2, the n-th tame quotient is the monoid

Tn with 2n C 2 elements and the presentation

Tn D h a; b; c; d; e; f; g; : : :
„ ƒ‚ …

n�1 generators

j a2 D 1; b3 D b; c3 D c; d3 D d; e3 D e; : : : ;

b2 D c2 D d2 D e2 D � � � i:

Tn is a disjoint union of its two maximal subgroups Tn D U [ V: The set

U D f1; ag

is isomorphic to Z2. The remaining 2n elements of Tn form the set

V D f aai bbi cci ddi eei � � � j ai D 0 or 1

bi D 1 or 2

Each of ci ; di ; ei ; : : : D 0 or 1 g:

and have an addition isomorphic to

Z2 � � � � � Z2
„ ƒ‚ …

n copies

:
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Misere indistinguishability

Position type quotient element Outcome Genus

Even #1’s only 1 N 0120

Odd #1’s only a P 1031

Odd #2’s

and b N 220

Even #1’s

Odd #2’s

and ab N 331

Odd #1’s

Even #2’s (� 2)

and b2 P 002

Even #1’s

Even #2’s (� 2)

and ab2 N 113

Odd #1’s

Figure 10. When misere Nim is played with heaps of size 1 and 2 only,
the resulting misere indistinguishability quotient is the tame six-element
monoid T2. For more on genus symbols and tameness, see Section 7. See
also Figure 9.

The elements a and b2 are the only P-position types in Tn.

8. More wild quotients

8.1. The commutative monoid R8. The smallest wild misere indistinguisha-

bility quotient R8 has eight elements, and is unique up to isomorphism [S1]

amongst misere quotients with eight elements. Its monoid presentation is

R8 D h a; b; c j a2 D 1; b3 D b; bc D ab; c2 D b2 i:

The P-positions are fa; b2g.

0.75. An example game with misere quotient R8 is the octal game 0.75. The first

complete analysis of 0.75 was given by Allemang using his generalized genus

theory [A1]. Alternative formulations of the 0.75 solution are also discussed at

length in the appendix of [P] and in [A2]. See Figure 11, left.
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1 2

0C 1 a

2C b a

4C b c

6C b c

8C b ab2

10C b ab2

12C b ab2

14C : : :

1 2 3 4 5 6 7 8

0C a 1 a b 1 a 1 ab

8C a c a b 1 ac 1 ab

16C a c a b 1 ac 1 ab

Figure 11. The pretending function for misere play of 0.75 (left) and 0.34.

8.2. Flanigan’s games. Jim Flanigan found solutions to the wild octal games

0.34 and 0.71; a description of them can be found in the “Extras” of chapter 13

in [WW]. It’s interesting to write down the corresponding misere quotients.

0.34. The misere indistinguishability quotient of 0.34 has order 12. There are

three P-position types. The pretending function has period 8 (see Figure 11,

right).

Q0.34 D h a; b; c j a2 D 1; b4 D b2; b2c D b3; c2 D 1 i; P D fa; b2; acg

0.71. The game 0.71 has a misere quotient of order 36 with the presentation

Q0.71 D h a; b; c; d j a2 D 1; b4 D b2; b2c D c; c4 D ac3; c3d D c3; d2 D 1 i:

The P-positions are fa; b2; bc; c2; ac3; ad; b3d; cd; bc2dg. The pretending

function appears in Figure 12.

1 2 3 4 5 6

0C a b a 1 c 1

6C a d a 1 c 1

12C a d a 1 c 1

18C : : :

Figure 12. The pretending function for misere play of 0.71.

8.3. Other quotients. Hundreds more such solutions have been found amongst

the octal games. The forthcoming paper [PS] includes a census of such results.
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9. Computing presentations and MisereSolver

How are such solutions computed? Aaron Siegel’s recently developed Java

program MisereSolver [AS2005] will do it for you! Some details on the algo-

rithms used in MisereSolver are included in [PS]. Here, we simply give a flavor

of the some ideas underpinning it and how the software is used.

9.1. Misere periodicity. At the center of Sprague–Grundy theory is the equa-

tion G CG D 0, which always holds for an arbitrary normal play combinatorial

game G. One consequence of G C G D 0 is the equation

G C G C G D G;

in which all we’ve done is add G to both sides. In general, in normal play,

.k C 2/ � G D k � G:

holds for every k � 0.

In misere play, the relation

.G C G/ � o
happens to be true for G D o and G D 1, but beyond that, it is only seldom true

for occasional rule sets � and positions G. On the other hand,

.G C G C G/ � G

is very often true in misere play, and it is always true, for all G, if � is a tame

game. And in wild games � for which the latter equation fails, often a weaker

equation such as

.G C G C G C G/ � .G C G/;

is still valid, regardless of G.

These considerations suggest that a useful place to look for misere quotients

is inside commutative monoids having some (unknown) number of generators

x each satisfying a relation of the form

xkC2 D xk

for each generator x and some value of k � 0.

9.2. Partial quotients for heap games. A heap game is an impartial game

� whose rules can be expressed in terms of play on separated, noninteracting

heaps of beans. In constructing misere quotients for heap games, it’s useful to

introduce the n-th partial quotient, which is just the indistinguishability quotient

of � when all heaps are required to have n or fewer beans.
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9.3. MisereSolver output of partial quotients. Here is an (abbreviated) log of

MisereSolver output of partial quotients for 0.123, an octal game that is studied

in great detail in [P2]. In this output, monomial exponents have been juxtaposed

with the generator names (so that b2c, for example, appears as b2c). The pro-

gram stops when it discovers the entire quotient — the partial quotients stabilize

in a monoid of order 20, whose single-heap pretending function ˚ is periodic

of length 5.

C:\work>java -jar misere.jar 0.123

=== Normal Play Analysis of 0.123 ===

Max : G(3) = 2

Period: 5 (5)

=== Misere Play Analysis of 0.123 ===

-- Presentation for 0.123 changed at heap 1 --

Size 2: TAME

P = {a}

Phi = 1 a 1

-- Presentation for 0.123 changed at heap 3 --

Size 6: TAME

P = {a,b2}

Phi = 1 a 1 b b a b2 1

-- Presentation for 0.123 changed at heap 8 --

Size 12: {a,b,c | a2=1,b4=b2,b2c=b3,c2=1}

P = {a,b2,ac}

Phi = 1 a 1 b b a b2 1 c

-- Presentation for 0.123 changed at heap 9 --

Size 20: {a,b,c,d | a2=1,b4=b2,b2c=b3,c2=1,b2d=d,cd=bd,d3=ad2}

P = {a,b2,ac,bd,d2}

Phi = 1 a 1 b b a d2 1 c d a d2 1 c d a d2 1 c d a d2 1

=== Misere Play Analysis Complete for 0.123 ===

Size 20: {a,b,c,d | a2=1,b4=b2,b2c=b3,c2=1,b2d=d,cd=bd,d3=ad2}

P = {a,b2,ac,bd,d2}

Phi = 1 a 1 b b a d2 1 c d a d2 1 c d a d2 1 c d a d2 1

Standard Form : 0.123

Normal Period : 5

Normal Ppd : 5

Normal Max G : G(3) = 2

Misere Period : 5

Misere Ppd : 5

Quotient Order: 20

Heaps Computed: 22

Last Tame Heap: 7
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9.4. Partial quotients and pretending functions. Let’s look more closely at

the MisereSolver partial quotient output in order to illustrate some of the subtlety

of misere quotient presentation calculation.

In Figure 13, we’ve shown three pretending functions for 0.123. The first

is just the normal play pretending function (that is, the nim-sequence) of the

game, to heap six. The second table shows the corresponding misere pretending

function for the partial quotient to heap size 6, and the final table shows the initial

portion of the pretending function for the entire game (taken over arbitrarily

large heaps).

With these three tables in mind, consider the following question:

When is 4 C 4 indistinguishable from 6 in 0.123?

Normal 0.123

n 1 2 3 4 5 6 7 8 9 10

G.n/ �1 �0 �2 �2 �1 �0 � � � � � � � � � � � �

Misere 0.123 to heap 6: ha; b j a2 D 1; b3 D bi, order 6

n 1 2 3 4 5 6

˚.n/ a 1 b b a b2

Complete misere 0.123 quotient, order 20

ha; b; c; d j a2 D 1; b4 D b2; b2c D b3; c2 D 1; b2d D d; cd D bd; d3 D ad2i

n 1 2 3 4 5 6 7 8 9 10

˚.n/ a 1 b b a d2 1 c d � � �

Figure 13. Iterative calculation of misere partial quotients differs in a
fundamental way from normal play nim-sequence calculation because sums
at larger heap sizes (for example, 8C9) may distinguish between positions
that previously were indistinguishable at earlier partial quotients (e.g., 4C4
and 6, to heap size six).

Let’s answer the question. In normal play (the top table), 4 C 4 is indistin-

guishable from 6 because

G.4 C 4/ D G.4/ C G.4/ D �2 C �2 D �0 D G.6/:

And in the middle table, 4C4 is also indistinguishable from 6, since both sums

evaluate to b2. But in the final table,

˚.4 C 4/ D ˚.4/ C ˚.4/ D b � b D b2 ¤ d2 D ˚.6/;
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Figure 14. Misere coin-sliding on a directed heptagon with two additional
edges. An arbitrary number of coins are placed at the vertices, and two
players take turns sliding a single coin along a single directed edge. Play
ends when the final coin reaches the topmost (sink) node (labelled o).
Whoever makes the last move loses the game. The associated indistin-
guishability quotient is a commutative monoid of order 14 with presenta-
tion h a; b; c j a2 D 1; b3 D b; b2c D c; c3 D ac2 i and P-positions
f a; b2; bc; c2g. See Section 9.5 and Figure 15.

that is, 4C4 can be distinguished from 6 in play of 0.123 when no restriction is

placed on the heap sizes. In fact, one verifies that the sum 8 C 9, a position of

type cd , distinguishes between 4 C 4 and 6 in 0.123.

The fact that the values of partial misere pretending functions may change in

this way, as larger heap sizes are encountered, makes it highly desirable to carry

out the calculations via computer programs that know how to account for it.

9.5. Quotients from canonical forms. In addition to computing quotients

directly from the Guy–Smith code of octal games [GS], MisereSolver also can

take as input the a canonical form of a misere game G. It then computes the

indistinguishability quotient of its closure cl(G). This permits more general

games than simply heap games to be analyzed.

A coin-sliding game. For example, suppose we take G D f2C; og, a game listed

in Figure 7. In the output script below, MisereSolver calculates that the indis-

tinguishability quotient of cl(G) is a monoid of order 14 with four P-position

types:

-- Presentation for 2+0 changed at heap 1 --

Size 2: TAME

P = {a}

Phi = 1 a

-- Presentation for 2+0 changed at heap 2 --

Size 6: TAME

P = {a,b2}

Phi = 1 a b b2

-- Presentation for 2+0 changed at heap 4 --

Size 14: {a,b,c | a2=1,b3=b,b2c=c,c3=ac2}
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P = {a,b2,bc,c2}

Phi = 1 a b c2 c

Figure 9.5 shows a coin-sliding game that can be played perfectly using this

information. Figure 15 shows how the canonical forms at each vertex correspond

to elements of the misere quotient.

Canonical form o 1 2 2C f2C; og
Quotient element 1 a b c2 c

Figure 15. Assignment of single-coin positions in the heptagon game to
misere quotients elements.

10. Outlook

At the time of this writing (December 2005), the indistinguishability quotient

construction is only one year old. Several aspects of the theory are ripe for

further development, and the misere versions of many impartial games with

complete normal play solutions remain to be investigated. We have space only

to describe a few of the many interesting topics for further investigation.

10.1. Infinite quotients. Misere quotients are not always finite. Today, it

frequently happens that MisereSolver will “hang” at a particular heap size as

it discovers more and more distinguishable position types. Is it possible to im-

prove upon this behavior and discover algorithms that can handle infinite misere

quotients?

Dawson’s chess. One important game that seems to have an infinite misere quo-

tient is Dawson’s Chess. In the equivalent form 0.07, (called Dawson’s Kayles),

Aaron Siegel [PS] found that the order of its misere partial quotients Q grows

as indicated in Figure 16:

Heap size 24 26 29 30 31 32 33 34

jQj 24 144 176 360 520 552 638 1.?/

Figure 16. Is 0.07 infinite at heap 34?

Since Redei’s Theorem (see [P2] for discussion and additional references) as-

serts that a finitely generated commutative monoid is always finitely presentable,

the object being sought in Figure 16 (the misere quotient presentation to heap

size 34) certainly exists, although it most likely has a complicated structure of

P- and N-positions. New ideas are needed here.
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Infinite, but not at bounded heap sizes. Other games seemingly exhibit infinite

behavior, but appear to have finite order (rather than simply finitely presentable)

partial quotients at all heap sizes. One example is .54, which shows consider-

able structure in the partial misere quotients output by MisereSolver. Progress

on this game would resolve difficulties with an incorrect solution of this game

that appears in the otherwise excellent paper [A3]. Siegel calls this behavior

algebraic periodicity.

10.2. Classification problem. The misere quotient classification problem asks

for an enumeration of the possible nonisomorphic misere quotients at each order

2k, and a better understanding of the category of commutative monoids that

arise as misere quotients7. Preliminary computations by Aaron Siegel suggest

that the number of nonisomorphic misere quotients grows as follows:

Order 2 4 6 8 10 12

# quotients 1 0 1 1 1? 6?

Figure 17. Conjectured number of nonisomorphic misere quotients at
small orders.

Evidently misere quotients are far from general commutative semigroups —

by comparison, the number of nonisomorphic commutative semigroups at orders

4, 6, and 8 are already 58, 2143, and 221805, respectively [Gril, p. 2].

10.3. Relation between normal and misere play quotients. If a misere quo-

tient is finite, does each of its elements x necessarily satisfy a relation of the

form xkC2 Dxk , for some k �0? The question is closely related to the structure

of maximal subgroups inside misere finite quotients. Is every maximal subgroup

of the form .Z2/m, for some m?

At the June 2005 Banff conference on combinatorial games, the author con-

jectured that an octal game, if misere periodic, had a periodic normal play nim

sequence with the two periods (normal and misere) equal. Then Aaron Siegel

pointed out that 0.241, with normal period two, has misere period 10. Must the

normal period length divide the misere one, if both are periodic?

10.4. Quaternary bounties. Again at the Banff conference, the author dis-

tributed the list of wild misere quaternary games in Figure 18.

The author offered a bounty of $25 dollars/game to the first person to exhibit

the misere indistinguishability quotient and pretending function of the games in

the list. Aaron Siegel swept up 17 of the bounties [PS], but .3102, .3122, .3123,

and .3312 are still open.

7It can be shown that a finite misere quotient has even order [PS].
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..0122; 120; 12/ ..0123; 120; 12/ ..1023; 21420; 11/ ..1032; 21420; 12/

..1033; 120; 11/ ..1231; 21420; 8/ ..1232; 21420; 9/ ..1233; 21420; 9/

..1321; 21420; 9/ ..1323; 21420; 10/ ..1331; 120; 8/ ..2012; 120; 5/

..2112; 120; 5/ ..3101; 120; 4/ ..3102; 020; 5/ ..3103; 120; 4/

..3112; 21420; 7/ ..3122; 21420; 4/ ..3123; 131; 6/ ..3131; 21420; 6/

..3312; 21420; 5/

Figure 18. The twenty-one wild four-digit quaternary games (with first
wild genus value and corresponding heap size).

10.5. Misere sprouts endgames. Misere Sprouts (see [WW], 2nd edition, Vol

III) is perhaps the only misere combinatorial game that is played competitively

in an organized forum, the World Game of Sprouts Association. It would be

interesting to assemble a database of misere sprout endgames and compute the

indistinguishability quotient of their misere addition.

10.6. The misere mex mystery. In normal play game computations for heap

games, the mex rule allows the computation of the heap nC1 nim-heap equiva-

lent from the equivalents at heaps of size n and smaller. The misere mex mystery

asks for the analogue of the normal play mex rule, in misere play. It is evidently

closely related to the partial quotient computations performed by MisereSolver.

10.7. Commutative algebra. A beginning at application of theoretical results

on commutative monoids to misere quotients was begun in [P2]. What more

can be said?

Appendix: Genus theory

We summarize Conway’s genus theory, first described in [ONAG, chapter 12]

and used extensively in Winning Ways. It describes a method for calculating

whether all the positions of particular game � are tame, and how to give a

complete analysis of � , if so. The genus theory assigns to each position G a

particular symbol

genus.G/ D G�.G/ D gg0g1g2���: (A-1)

where the g and the gi’s are always nonnegative integers. We’ll define this genus

value precisely and illustrate how to calculate genus values for some example

games G, below.

To look at this in more detail, we need some preliminary definitions before

giving definition of genus values.

A.8. Grundy numbers. Let �k represent the nim heap of size k. The Grundy

number (or nim value) of an impartial game position G is the unique number

k such that G C �k is a second-player win. Because Grundy numbers may be
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defined relative to normal or misere play, we distinguish between the normal

play Grundy number GC.G/ and its counterpart G�.G/, the misere Grundy

number.

In normal play, Grundy numbers can be calculated using the rules GC.0/ D 0,

and otherwise, GC.G/ is the least number (from 0,1,2, . . . ) that is not the Grundy

number of an option of G (the so-called minimal excludant, or mex).

When normal play is in effect, every game with Grundy number GC.G/ D k

can be thought of as the nim heap �k. No information about best play of the

game is lost by assuming that G is in fact precisely the nim heap of size k.

Moreover, in normal play, the Grundy number of a sum is just the nim-sum of

the Grundy numbers of the summands.

The misere Grundy number is also simple to define [p. 140, bottom][ONAG]:

G�.0/ D 1. Otherwise, G�.G/ is the least number (from
0,1,2, . . . ) which is not the G�-value of any option of G.
Notice that this is just like the ordinary “mex” rule for com-
puting GC, except that we have G�.0/ D 1; and GC.0/ D 0.

Misere P-positions are precisely those whose first genus exponent is 0.

A.9. Indistinguishability vs misere Grundy numbers. When misere play

is in effect, Grundy numbers can still be defined — as we’ve already said —

but many distinguishable games are assigned the same Grundy number, and

the outcome of a sum is not determined by Grundy numbers of the summands.

These unfortunate facts lead directly to the apparent great complexity of many

misere analyses.

Here is the definition of the genus, directly from [ONAG], now at the bottom

of page 141:

In the analysis of many games, we need even more information
than is provided by either of these values [GC and G�], and
so we shall define a more complicated symbol that we call
the G�-value, [or genus ], G�.G/. This is the symbol

gg0g1g2���

where

g D GC.G/

g0 D G�.G/

g1 D G�.G C 2/

g2 D G�.G C 2C 2/

: : : D : : :
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where in general gn is the G�-value of the sum of G with n

other games all equal to [the nim-heap of size] 2.

At first sight, the genus symbol looks to be an potentially infinitely long

symbol in its “exponent.” In practice, it can be shown that the gi’s always fall

into an eventual period two pattern. By convention, a genus symbol is written

down with a finite exponent with the understanding that its final two values

repeat indefinitely.

The only genus values that arise in misere Nim are the tame genera

0120; 1031

„ ƒ‚ …

Genera of normal play �0 (resp, �1) Nim
positions involving nim heaps of size 1 only

and

002; 113; 220; 331; 446; : : : ; nn.n˚2/; : : :
„ ƒ‚ …

Genera of �n normal-play Nim positions
involving at least one nim heap of size � 2:

Figure 19. Correspondence between normal play nim positions and tame
genera.

The value of genus theory lies in the following result [ONAG, Theorem 73]:

Theorem: If all the positions of some game � have tame
genera, the genus of a sum G C H can be computed by
replacing the summands by Nim-positions of the same genus
values, and taking the genus value of the resulting sum.

In order to apply the theorem to analyze a tame game � , a person needs to

know several things:

(i) How to compute genus symbols for positions G of a game � ;

(ii) That every position of the game � does have a tame genus;

(iii) The correspondence between the tame genera and Nim positions.

We’ve already given the correspondence between normal-play Nim positions

and their misere genus values, in Figure (19). We’ll defer the most complicated

part — how to compute genera, and verify that they’re all tame — to the next

section.
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The addition rule for tame genera is not complicated. The first two symbols

have the Z2 addition

0120 C 0120 D 0120

0120 C 1031 D 1031

1031 C 1031 D 0120

Two positions with genus symbols of the form nn.n˚2/ add just like Nim

heaps of �n. For example,

220 C 331 D 113:

The symbol 0120 adds like an identity, for example:

446 C 0120 D 446:

When 1031 is added to a nn.n˚2/, it acts like 113:

446 C 1031 D 557:

It has to emphasized that these rules work only if all positions in play of � are

known to have tame genus values. If, on the other hand, even a single position

in a game � does not have a tame genus, the game is wild and nothing can be

said in general about the addition of tame genera.

A.10. Genus calculation in octal game 0.123. Let’s press on with genus theory,

illustrating it in an example game, and keeping in mind the end of Chapter 13

in [WW]:

The misere theory of impartial games is the last and most

complicated theory in this book. Congratulations if you’ve

followed us so far. . .

Genus computations, and the nature of the conclusions that can be drawn

from them, are what makes Chapter 13 in Winning Ways complicated. In this

section we illustrate genus computations by using them to initiate the analysis

of a particular wild octal game (0.123). Because the game 0.123 is wild, genus

theory will not lead to a complete analysis of it. A complete analysis can never-

theless be obtained via the indistinguishability quotient construction; for details,

see [P2].

The octal game 0.123 can be played with counters arranged in heaps. Two

players take turns removing one, two or three counters from a heap, subject to

the following additional conditions:

(i) Three counters may be removed from any heap;

(ii) Two counters may be removed from a heap, but only if it has more than two

counters; and
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+ 1 2 3 4 5

0+ 1 0 2 2 1

5+ 0 0 2 1 1

10+ 0 0 2 1 1

15+ � � �

Figure 20. Normal play nim values of 0.123.

(iii) One counter may be removed only if it is the only counter in that heap.

Normal play of 0.123. The nim sequence of 0.1238 is periodic of length 5,

beginning at heap 5. See Figure 20.

Misere play genus computations for 0.123. We exhibit single-heap genus

values of 0.123 in Figure 21. It’s possible to prove that this sequence is also

periodic of length 5. However, a periodic genus sequence is not the same thing

as a complete misere analysis. Let’s see what happens instead.

+ 1 2 3 4 5

0+ 1031 0120 220 220 1031

5+ 002 0120 21420 120 1031

10+ 002 0120 21420 120 1031

15+ � � �

Figure 21. G*-values of 0.123.

There are some tame genus symbols in Figure 21. They are

0 D 01202020��� D 0120

1 D 10313131��� D 1031

2 D 22020202��� D 220

Despite the presence of these tame genera, the game is still wild — the first

wild genus value, 21420, occurs at heap 8. Conway’s Theorem 73 on tame games

therefore does not apply, since it requires all positions to have tame genera in

order for the game to be treated as misere Nim. We can say nothing about

how genera add — even the tame genera — without examining the game more

closely.

Here’s what we can (and cannot) do with Figure 21.

8See Winning Ways, Chapter 4, p. 97, “Other Take-Away Games;” also Table 7(b), p. 104.
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+ h1 h2 h3 h4 h5 h6 h7 h8 h9

h1 0120 1031 331 331 0120 113 1031 30531 031

h2 0120 220 220 1031 002 0120 21420 120

h3 002 002 331 220 220 0420 302

h4 002 331 220 220 0420 302

h5 0120 113 1031 30531 031

h6 002 002 220 113

h7 0120 21420 120

h8 0120 302

h9 002

Figure 22. Some genus values of games hi C hj in 0.123.

Single heaps. We can determine the outcome class of single-heap 0.123 posi-

tions. The first superscript in a heap’s genus symbol is 0 if and only if that heap

size is a P -position. The single heap P -positions of 0.123 therefore occur at

heap sizes

1; 5; 6; 10; 11; 15; 16; 20; 21; : : :

For example, the genus of the heap of size 7 has its first superscript = 1. It is

therefore an N -position. The winning move is 7 ! 5.

Multiple heaps. Using Figure 21, we cannot immediately determine the out-

come class of 0.123 positions involving multiple heaps. However, the figure

does provide a basis for investigating multiheap positions. For example, Figure

22 is a table that shows the genera of two-heap positions up to heap size nine.

A.11. Genus calculation algorithm. Here’s how the genus of a particular sum

G D h8 C h5 was computed from the earlier single-heap values in Figure 21.

First, we rewrote genus(G) in terms of its options:

genus.G/ D genus.h8 C h5/ D genus.fh6 C h5; h5 C h5; h8 C h3; h8 C h2g/

The genus of a nonempty game G D fA; B; : : :g can be calculated from the

genus of its options A; B; : : : using the mex-with-carrying algorithm (˘ symbols

represent positions with no carry):

carry. / D ˘˘05313

carry. ˚ 1/ D ˘˘14202

genus.h6 C h5/ D 1131313:::

genus.h5 C h5/ D 0120202:::

genus.h8 C h3/ D 0420202:::

genus.h8 C h2/ D 2142020:::



ADVANCES IN LOSING 87

genus.G/ D 3053131:::

The result genus.G/ D 3053131::: D 30531 was computed columnwise, work-

ing from left to right. First, the “base” and “first superscript” results

GC.G/ D mex.f1; 0; 0; 2g/ D 3

and

G�.G/ D mex.f1; 1; 4; 1g/ D 0

were computed from the corresponding four positions in each option of G, with

no carries present. The “carry out” is then  D 0. The second superscript result

G�.G C �2/ D mex.f3; 2; 2; 4; 0; 1g/ D 5

involved a similar computation, but with two carry values

f;  ˚ 1g D f0; 1g:

thrown into the mex calculation (they’re shown in bold). See the more complete

description of this algorithm in the section titled “But What if They’re Wild?”

asks the Bad Child ([WW], page 410). It’s also illustrated in [ONAG, p. 143].
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Coping with cycles

AARON N. SIEGEL

ABSTRACT. Loopy games are combinatorial games in which repetition is per-

mitted. The possibility of nonterminating play inevitably raises difficulties,

and several theories have addressed these by imposing a variety of assumptions

on the games under consideration. In this article we survey some significant

results on partizan loopy games, focusing on the theory developed in the 1970s

by Conway, Bach and Norton.

1. Introduction

A substantial portion of combinatorial games research focuses on games with-

out repetition — those that are guaranteed to terminate after some finite number

of moves. Such games are highly tractable, both theoretically and computa-

tionally, and the full force of the classical partizan theory can be brought to bear

upon them. The great success of this theory has produced a vast body of splendid

results, but it has also resulted in an unjust neglect of games with repetition.

In the late 1970s, John Conway and his students, Clive Bach and Simon

Norton, introduced a disjunctive theory of partizan games with repetition —

called loopy games because their game graphs may contain cycles. They showed

that in many interesting cases, such games admit canonical forms. The past few

years have witnessed some significant applications of this theory, to games as

diverse as Fox and Geese, Hare and Hounds, Entrepreneurial Chess, and one-

dimensional Phutball. In light of these advances, it is time for a reappraisal of

the theory with an eye to the future.

A short history. The first disjunctive theory of loopy games is due to Cedric

A. B. Smith and Aviezri Fraenkel. They showed (independently) that the usual

Sprague–Grundy theory generalizes well to loopy games. In particular, many

impartial loopy games are equivalent to nimbers, and the remainder are char-

acterized by their nimber-valued options. Over a period of several decades,
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Fraenkel and his students explored this theory in depth. They constructed nu-

merous examples and studied both their solutions and their computational com-

plexity.

The partizan theory was introduced by Robert Li, who studied Zugzwang

games, those in which it is a disadvantage to move. Li showed that Zugzwang

games are completely characterized by a certain pair of ordinary numbers. Soon

thereafter, Conway, Bach and Norton extended Li’s theory to a much broader

class of games. They showed that many loopy games  — including most po-

sitions encountered in actual play — decompose into a pair of much simpler

games, called the sides of  . Their theory was published in the first edition of

Winning Ways, together with a handful of examples, most notably the children’s

game Fox and Geese.

Intermittent progress was made over the next twenty years, but it was not until

2003 that loopy games saw a full-fledged revival. John Tromp and Jonathan

Welton had recently detected an error in the Winning Ways analysis of Fox and

Geese, and Berlekamp set out to repair it. His corrected analysis appears in the

second edition of Winning Ways. Berlekamp’s effort led to the development of

new algorithms, which in turn paved the way for a re-examination of several

other loopy games mentioned in Winning Ways.

In this survey, the Winning Ways theory is introduced first, so that earlier

developments — notably those of Smith, Fraenkel and Li — can be presented

in the modern context. Section 2 is an expository overview of some interest-

ing properties of loopy games, with a focus on Fox and Geese. Much of that

material is formalized in Section 3, and in Section 4 we tackle the theory of

sides as it appears in Winning Ways. Each of these sections also addresses some

related topics. Section 5 discusses several specific partizan games that have been

successfully analyzed with this theory. In Section 6, we discuss the generalized

Sprague–Grundy theory and its relationship to partizan games. Section 7 gives

an overview of the Smith–Flanigan results on conjunctive and selective sums.

Finally, in Section 8 we survey the development of algorithms for loopy games.

Two topics are notably absent from this survey. The first is the immense body

of work on loopy impartial games, assembled over several decades by Aviezri

Fraenkel and his students. Their work includes an extensive theoretical and

algorithmic analysis of the generalized Sprague–Grundy theory; many beauti-

ful examples; and connections to other fields, including combinatorial number

theory and error-correcting codes. The present article is focused mainly on the

partizan theory, and so does not do justice to their achievement; a forthcoming

book by Fraenkel surveys this material in far more detail and accuracy than we

could hope to achieve here.
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The combinatorial theory of Go is another major omission. This might seem

surprising, since Go is without question the most significant loopy game that has

been subjected to a combinatorial analysis. However, there is good reason for its

omission. Although Go is fundamentally disjunctive in nature, its unique koban

rule implies an interrelationship between all components on the board. This

gives rise to a rich and fascinating temperature theory that has been explored by

many researchers, including Berlekamp, Fraser, Kao, Kim, Müller, Nakamura,

Snatzke, Spight, and Takizawa, to list just a few. However, this temperature

theory appears to be incompatible with the canonical theory that is the focus

of our discussion. Because Go is so prominent, its body of results is vast; yet

because it is so singular, these appear disconnected from other theories of loopy

games. Thus while Go desperately deserves its own survey, this article is not

the appropriate place for it.

This apparent dichotomy also raises the first — and arguably the most impor-

tant — open problem of this survey.

OPEN PROBLEM. Formulate a temperature theory that applies to all loopy

games.

Notation and preliminaries. Following Winning Ways, we denote loopy games

by loopy letters  , ı, ˛, ˇ, : : :. If  is loopy, we define the associated game graph

G as follows. G has one vertex, V˛, for each subposition ˛ of  (including 

itself), and there is an edge directed from V˛ to Vˇ just if there is a legal move

from ˛ to ˇ. When  is partizan, we color the edge bLue, Red, or grEen,

depending on whether Left, Right, or Either player may move from ˛ to ˇ.

An abbreviated notation is often useful. In many loopy games, repetition is

limited to simple pass moves. In such cases we can borrow the usual brace-and-

slash notation used to describe loopfree games, enhanced with the additional

symbol pass. For example, if we write  D f0 j passg, we mean that Left has

a move from  to 0, and that Right has a move from  back to  . Likewise, if

ı D f0 j pass jj �1g, this means that Right has a move from ı to �1, and that

Left has a move from ı to f0 j passg D  . For comparison, the game graph of ı

is shown in Figure 1.

The main complication introduced by loopy games is the possibility of non-

terminating play. The simplest way to resolve this issue is to declare all infinite

ı

�1

R

0
R

L

L

R

Figure 1. The game graph of ı D f0 j pass jj �1g.
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plays drawn, and this will be our assumption throughout Sections 2 and 3. We

will often say that a player survives the play of a game if he achieves at least a

draw.

2. Loops large and small

Fox and Geese is an old children’s game played on an ordinary checkerboard.

Four geese are arranged against a single fox as in Figure 2. The geese (controlled

by Left) move as ordinary checkers, one space diagonally in the forward direc-

tion, while the fox (controlled by Right) moves as a checker king — one space

in any diagonal direction. Neither animal may move onto an occupied square,

and there are no jumps or captures. The geese try to trap the fox, while the fox

tries to escape.



Figure 2. The usual starting position in Fox and Geese.

Fox and Geese has a curious feature: the game must end if played in isolation,

because the geese will eventually run out of moves, whether or not they trap the

fox. However, from a combinatorial perspective the game is certainly loopy.

The fox may return to a previous location, and this results in local repetition if

Left’s intervening moves occur in a different component.

Before turning to a more formal treatment of loopy games and canonical

forms, let us briefly investigate the behavior of Fox and Geese. Consider first

the happy affair of an escaped fox (Figure 3). The geese have exhausted their

supply of moves, and though Left has a tall Hackenbush stalk at his disposal,

his situation is hopeless. Inevitably, he will run out of moves, and the fox will

still be dancing about the checkerboard, none the worse for wear.

It is clear that an escaped fox ˛ is more favorable to Right than any (finite)

Hackenbush stalk we might assemble. In an informal sense, we have established
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ı

ı

ı

ı

ı

ı

ı

ı

ı

ı 9
>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

L

Figure 3. Hackenbush is hopeless facing an escaped fox.

that

˛ < �n;

for every integer n.

It is equally clear that the fox’s precise location on the checkerboard is ir-

relevant; all that matters is that she has an indefinite supply of moves at her

disposal. The many distinct positions that arise as she moves about the board are

all equivalent, and ˛ can be written as a single pass move for Right: ˛ Df j passg,

with game graph shown in Figure 4.

˛ R ˇ L ıL R

Figure 4. The games ˛ D off, ˇ D on, and ı D dud.

The game ˛ is normally known as off, and its inverse — from which Left can

pass — is naturally enough called on.1 One might expect that on C off D 0, but

this is not the case: in their sum either player may pass, so that on C off is a

draw, while 0 is a second-player win.

In fact it is easy to see that on C off C  is drawn, no matter what game 

we include in the sum: both players have an inexhaustible supply of moves; so

neither has anything to fear. Therefore on C off is a deathless universal draw,

which we abbreviate by dud, and we have the identity

dud C  D dud

for all  .

1The name is set-theoretic in origin: ON is standard notation for the class of all ordinal numbers, and the

game on behaves much like an ill-founded relation, an entity that exceeds all the ordinals.
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 D �R �
L

Figure 5. A trapped fox has value over.

Soon we shall put all of this on formal footing, but first consider one more

example to illustrate the remarkable properties of loopy games. In Figure 5 the

Fox is trapped. She is forced to shuttle indefinitely between the two lower-right-

hand spaces, and at any moment the geese may choose to end the game. It is

clear this game is positive, for Left may win at any time. Its abbreviated graph,

known as over, is also pictured in Figure 5.

Just how large is over? The reader might wish to confirm that, for any n,

n � " < over <
1

2n
;

by showing that Left can win the appropriate differences. over is larger than

every loopfree infinitesimal, but smaller than every positive number.

3. Stoppers

When  is loopy, there are typically three possible outcomes: Left wins (if

he gets the last move); Right wins (if she gets the last move); or a Draw (if play

never terminates). This divides loopy games into nine outcome classes, since

the outcome might depend on who moves first:

Left moves first

Left Draw Right
wins wins

Right Left wins L OP P

moves Draw ON D LP
first Right wins N LN R

We denote by o. / the outcome class of  . The outcome classes are naturally

partially-ordered as shown in Figure 6.

As always in combinatorial game theory, we define equality by indistin-

guishability in sums:

 D ı if o. C ˛/ D o.ı C ˛/ for all loopy games ˛:
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L

ON OP

N D P

LN LP

P

Figure 6. The partial order of loopy outcome classes.

As remarked in Section 2, it is not always true that  � D 0. Second player

can always assure a draw by playing the mirror image strategy, but in general

this does not guarantee a win. For this reason, loopy games do not form a group,

and we are forced to consider instead the monoid of loopy games, equipped with

the natural partial order:

 � ı if o. C ˛/ � o.ı C ˛/ for all loopy games ˛:

The theory of loopy games is motivated by two fundamental questions.

� Does every loopy game admit a unique simplest form, analogous to the canon-

ical form of a loopfree game?

� Can one specify an effective equivalent definition of  � ı?

It turns out that both of these questions are easiest to answer for an important

special class of loopy games called stoppers. They can also be resolved quite

nicely for a larger class, the stopper-sided games, that encompasses most posi-

tions arising in studies of actual (playable) games.

A loopy game  is a stopper if there is no infinite alternating sequence of

play proceeding from any subposition of  . The games on, off, and over, which

we met in Section 2, are all stoppers, but dud is not. Further, every position that

arises in Fox and Geese is a stopper, since the geese are constrained to make

finitely many moves throughout the game.

If  is a stopper, then  is guaranteed to terminate when played in isolation.

This property is central to the following characterization.

THEOREM 1 (CONWAY). Let ; ı be stoppers. Then

 � ı iff Left, playing second, can survive  � ı:
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PROOF. For the forward direction, suppose  � ı, and let ˛ D �ı. Certainly

Left can survive ı C ˛, by playing the mirror image strategy; then it follows

directly from the definition of � that he can survive  C ˛.

For the reverse direction, fix any loopy game ˛. We must show that:

(i) If Left can survive ı C ˛ playing first (second), then he can survive  C ˛

playing first (second).

(ii) If Left can win ı C ˛ playing first (second), then he can win  C ˛ playing

first (second).

First suppose that Left is second player in case (i). We describe a strategy for

playing  C ˛ that guarantees at least a draw.

Before play begins, Left constructs two dummy games: one copy of ı C ˛,

and one copy of  � ı. Whenever Right makes a move in  C ˛, Left copies

the move to the appropriate dummy game: if Right moves in the  component,

Left copies the move to  � ı; while if Right moves in the ˛ component, Left

copies the move to ı C ˛.

Now Left responds with his survival move in the dummy game. If this move

is in the ı or �ı component, Left immediately makes the mirror image move

in the other dummy game, and responds accordingly. Successive responses in

the ı and �ı components produce an alternating sequence of moves proceeding

from a subposition of ı. Since ı is a stopper, this cannot go on forever, and

eventually Left’s response must occur in the  or ˛ component. At that point

Left copies it back to  C ˛ and awaits Right’s next move.

If Left keeps to this strategy, he will never run out of moves in  C ˛. This

proves case (i). In case (ii), Left uses the same technique, but follows his winning

strategy in ı C ˛. This guarantees that eventually, ı C ˛ will reach a terminal

position. At that point the ˛ component of  C ˛ is terminal; therefore, since 

is a stopper, it must eventually terminate as well. So the game will necessarily

end, and since Left has survived, Right cannot have made the last move.

If Left is first player, the argument is exactly the same. He makes his initial

move in the ı C ˛ dummy component, according to his first-player survival (or

winning) strategy for ı C ˛, and continues accordingly. ˜

Stoppers also admit a clean canonical theory: if  is a stopper, then we can

eliminate dominated options and bypass reversible ones, just as for loopfree

games. The proofs are straightforward applications of Theorem 1.

A stopper is in simplest form if it has no dominated or reversible options.

THEOREM 2 (CONWAY). If  and ı are stoppers in simplest form with  D ı,

then for every  L there is a ıL with  L D ıL, and vice versa; and likewise for

Right options.

PROOF. See [5, Section 10]. ˜
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on D fpass j g over D f0 j passg upon D fpass j �g
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�
R

�

L

�
R

R

�

�

L

�
R

�

L

�
R

L

�
R�on D f0 jj 0 j �ong �over D f0 jj 0 j �overg

Figure 7. Simple stoppers.

Several simple stoppers. Figure 7 shows some of the simplest stoppers in

canonical form. The reader might wish to verify some of their remarkable prop-

erties, which clarify their behavior in the partial-order of games:

� on �  for all  .

� n � " < over < 2�n for all n.

� "!n < upon < "!n C "n for all n.

� �over �  for every all-small game  > 0, but �over >�x for every number

x > 0.

� �on is the smallest positive game: if  > 0, then �on �  .

With the exception of �over, all of these values arise frequently in playable

games. Also common is upon C �, which has the canonical form f0; pass j 0g.

In all of these examples, the only loops are simple pass moves (1-cycles).

Stoppers with longer cycles exist, but are much less common in nature. A typical

example is the game � shown in Figure 8, which has a 4-cycle in canonical form.

��
E

�
L

�
R

�

L

�
L

�
R

�
L

R

Figure 8. A stopper with a canonical 4-cycle.

Stoppers in canonical form can never have 2-cycles or 3-cycles; see [30] (this

volume) for a proof, together with examples of stoppers with canonical n-cycles

for all n � 4.



100 AARON N. SIEGEL

Idempotent Loopfree Games Absorbed

on D fpass j g All games

over D f0 j passg All infinitesimals

starn D f0 jj 0; �n j 0; passg (n � 2)
�n and "2, but not �m

for any m ¤ n

In D f0k0; passj0; #Œn�2��g .n � 2/

Jn D f0k0; #Œn�1��j0; passg .n � 2/

�
"n but not "n�1

"on D f0 jj 0 j 0; passg “Almost tiny” all-smalls (such as

f0jj0j�g), but not "n for any n�over D f0 jj 0 j underg All tinies, but no all-smalls�xunder D f0 jj 0 j �xoverg (x > 0) �x#n for all n, but not �x�2�n

Tx D f0 jj 0 j �x; passg (x > 0) �y for all y > x, but not �x�xover D f0 jj 0 j �xunderg (x > 0) �xC2�n for all n, but not �x"n�on D f0 jj 0 j offg None (except 0)

Figure 9. A variety of idempotents.

Idempotents. It is easy to see that on C on D on: certainly on C on � on,

but we also know that on �  for all  . Slightly less obvious is the fact that

overCover D over, and here Theorem 1 is useful. To show that overCover �

over, we need simply exhibit a second-player survival strategy for Left in

over C under C under;

where under D �over D fpass j 0g.

This is not difficult: so long as any under components remain, Left makes

pass moves. This guarantees that, if Right ever destroys both under compo-

nents (by moving from under to 0), the over component will still be present.

Therefore, if Right destroys both under components, Left can win the game by

moving from over to 0.

This example illustrates a striking feature of the monoid of loopy games: the

presence of explicit idempotents. Figure 9, reproduced from [27], lists many

more. Each idempotent � is listed together with some of the loopfree games that

it absorbs (where � absorbs  if � C  D �). It’s also worth noting that each

idempotent � in Figure 9 has a “negative variant” �� and a “neutral variant” �� �,

both of which are also idempotents (though of course, � � � is not a stopper).

Berlekamp [2] describes several other idempotents that do not appear to have

explicit representations as loopy games. These include � and Et , which play
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central roles in the atomic weight and orthodox theories, respectively. It would

be interesting to describe a formal system that encompasses these in addition to

the idempotents of Figure 9.

Pseudonumbers. The psuedonumbers form an interesting subclass of infinite

stoppers.

DEFINITION 3. A stopper x is said to be a pseudonumber if, for every follower

y of x (including x itself), we have yL < yR for all yL; yR.

So a surreal number is just a well-founded pseudonumber. It is not hard to

show that x is a pseudonumber if and only if, for every follower y of x, each

yL � y and y � each yR. Then as a consequence of Li’s Theorem (Theorem 9

in Section 4, below), the only finite pseudonumbers are on, off, and the dyadic

rationals and their sums with over and under. However, there are many infinite

pseudonumbers. A typical example is the game

bZ D f0; 1; 2; : : : j passg D ! W off:

It is not hard to check that bZ � n for any integer n. Furthermore, it is the least

pseudonumber with this property: if y � n for all n, then y � bZ. Therefore bZ is

a least upper bound for the integers. This generalizes:

THEOREM 4. The pseudonumbers are totally ordered by �. Furthermore, every

set X D fx; y; z; : : : g of pseudonumbers has a least upper bound, given by

bX D fx; y; z; : : : j passg D fx; y; z; : : : j g W off:

PROOF. See [27, Section 1.8]. ˜

Contrast this with surreal numbers, which certainly do not admit tight bounds.

However, while they acquire some analytic structure, pseudonumbers lose the

rich algebraic structure of the surreal numbers: they are not even closed under

addition, since (say) on C off is not a stopper.

Pseudonumbers might seem fanciful, but astonishingly, Berlekamp and Pear-

son recently discovered positions in Entrepreneurial Chess with offside bZ (see

Section 5 for a description). Like all good numbers, bZ also makes an appearance

in Blue-Red Hackenbush (Figure 10).

4. Sides

As we have seen, stoppers generalize the canonical theory of loopfree games

in a straightforward way. Most loopy games, however, are not stoppers.

A typical example is the game Hare and Hounds, which has experienced

occasional bouts of popularity dating back to the late nineteenth century. The
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Figure 10. A Blue-Red Hackenbush position of value bZ D ! W off.
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Figure 11. Hare and Hounds: (a) the starting position; (b) an endgame
position.
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Figure 12. The position of Figure 11(b) is a second-player win.

game can played on an n � 3 board for any odd n � 5; the starting position on

the 5 � 3 board is shown in Figure 11(a).

The play resembles Fox and Geese. Left controls three hounds (black circles)

and Right the lone hare (white circle). Each player, on his turn, may move any
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one of his units to an adjacent unoccupied intersection. The only restriction is

that the hounds may never retreat — they can only advance or move sideways.

There are no jumps or captures. The hounds win if they trap the hare (that is,

if it is Right’s turn and she has no moves available); the hare wins if this never

happens.

Since the hounds are allowed to move sideways, Hare and Hounds is not

always a stopper. It has another notable feature: if play never terminates, then

the game is declared a win for Right. This differs from the other games we have

studied, in which infinite plays are drawn. However, we will see that it actually

makes the game simpler, since it causes many positions to reduce to stoppers

that otherwise would not.

For example, consider the endgame position  of Figure 11(b). If Right

makes either of her available moves, then the hounds can certainly trap her; see

Figure 12(i) and (ii). Conversely, if Left moves first, then the hare can evade

capture indefinitely by following the pattern shown in Figure 12(iii). (The reader

might wish to verify that if the hounds ever deviate from this pattern, then the

hare can escape outright.) Therefore  is a second-player win, and we conclude

that  D 0.

In the late 1970s, Conway, Bach and Norton made a breakthrough in the

study of loopy games [5]. They observed, first of all, that games such as Hare

and Hounds — where infinite plays are wins for one of the players — can often

be brought into the theory of stoppers in a coherent way. Furthermore, their

presence actually simplifies the analysis of games where infinite plays are drawn.

To understand this relationship, let  be an arbitrary loopy game with infinite

plays drawn, and suppose we wish to know whether Left can win  . Then we

might as well assume that infinite plays are wins for Right. Likewise, if we wish

to know whether Left can survive  , then we might as well assume that infinite

plays are wins for Left. Therefore, we can determine the outcome class of 

by considering each of these two variants in turn. As it turns out, the variants

often reduce to stoppers, even when  itself does not; and in such cases, this

reduction yields a substantial simplification.

Therefore, we now drop the assumption that all infinite plays are drawn. We

assume that each game  comes equipped with one of three winning conditions:

Left wins infinite plays; Right wins infinite plays; or infinite plays drawn. We

say that  is free if infinite plays are draws and fixed otherwise.

When  is free, we denote by  C and  � the matching fixed games with

infinite plays redefined as wins for Left and Right, respectively. When  is

fixed, we simply put  C D  � D  .

If infinite play occurs in a sum

˛ C ˇ C � � � C ;
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we assume that Left (Right) wins the sum if he wins on every component in

which play is infinite. If there are any draws, or if several components with

infinite play are split between the players, the outcome of the sum is a draw.

When we consider the definition of �, we suppose now that ˛ ranges over

all fixed games in addition to free ones:

 � ı if o. C ˛/ � o.ı C ˛/ for all fixed or free loopy games ˛:

The main result is the following, called the Swivel Chair Theorem in Winning

Ways. It is a direct generalization of Theorem 1.

THEOREM 5 (SWIVEL CHAIR THEOREM). The following are equivalent, for

any loopy games  , ı:

(i)  � ı;

(ii) Left, playing second, can survive both  C � ıC and  � � ı�.

PROOF. See [3, Chapter 11] or [5, Section 2]; it’s very similar to the proof of

Theorem 1. ˜

Note the key implication of Theorem 5: how  compares with other games

depends only on  C and  �. Thus when  C and  � are equivalent to stoppers

sC and t�, the behavior of  is completely characterized by s and t . In such

cases we call s and t the sides of  (the onside and offside respectively), and we

say that  is stopper-sided. It is customary to write

 D s & t;

and with s and t in simplest form, this should be regarded as a genuine canonical

representation for  .

For example, consider the game dud D fpass j passg. We know that onC �

dudC (since onC is the largest game of all). But also, Left can survive the game

dudC � onC

by passing indefinitely in the dud component, where he wins infinite plays. We

conclude that dudC D onC, and by a symmetric argument dud� D off�. This

gives the identity

dud D on & off:

If  D s & t , then the outcome class of  is determined by those of s and t .

Since s and t are stoppers, their outcomes fall into the usual classes: positive,

negative, fuzzy or zero. This yields a total of sixteen possibilities for  . How-

ever, since  C �  �, we know that sC � t�; and since s and t are stoppers,

this implies that s � t . This restriction rules out seven possibilities, leaving

the remaining nine in one-to-one correspondence with the nine outcome classes

discussed in Section 3. This correspondence is summarized in Figure 13.
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s

> 0 6? 0 D 0 < 0

< 0 D LN LP R

t
6? 0 ON N � �

D 0 OP � P �

> 0 L � � �

Figure 13. The outcome class of  D s & t is determined by those of s

and t .

The sides of  therefore carry a great amount of information. Given their

applicability, it is natural to ask how they might be computed in general. Winning

Ways introduced a method called sidling that yields a sequence of increasingly

good approximations to the sides of  . Sometimes this sequence converges

to the true onside and offside; but more often than not, it fails to converge.

Nonetheless, sidling has been applied to obtain some interesting results, notably

by David Moews in his 1993 thesis [21] and a subsequent article on Go [22].2

More recent discoveries include effective methods for computing sides (when

they exist); see [30] in this volume for discussion.

Carousels. Stopper-sided decompositions are both useful and extremely com-

mon. However, there do exist loopy games that are not stopper-sided. In the

1970s, Clive Bach produced the first example of such a game, known as Bach’s

Carousel, by specifying its game graph explicitly. Much more recently, similar

“carousels” have been discovered on 11 � 3 boards in Hare and Hounds. See

Figure 14 for an example and [27] for further discussion.
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Figure 14. A carousel in Hare and Hounds. Here ` D f0; #!2�j0; #!2�g.

2In order to bring Go into the canonical theory, Moews considered Go positions together with explicitly

kobanned moves. Means and temperatures as defined by Berlekamp cannot be recovered from the resulting

canonical forms. Nonetheless, Moews’ analysis yields interesting information about Go positions that is not

captured by thermography.
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What about sums of stoppers? Winning Ways gives an example, due to Bach,

of certain infinite stoppers whose sum is not stopper-sided. But the following

question remains open:

QUESTION. Is the sum of finite stoppers necessarily stopper-sided?

Finally, the following question was posed in Winning Ways and remains open.

QUESTION (BERLEKAMP–CONWAY–GUY). Is there an alternative notion of

simplest form that works for all finite loopy games?

Degrees, classes, and varieties. When  is loopy, it is often the case that

 �  ¤ 0. Provided  �  is stopper-sided, we define the degree of loopiness

(or degree)  ı by

 ı D Onside. �  /:

If  is equivalent to a loopfree game, then  ı D 0; otherwise  ı > 0. For

example, it is not hard to check that onı D on, overı D over, and uponı D

"on D f0 j �upon�g.

For a fixed idempotent �, the games of degree � tend to group naturally into

classes and varieties that interact in predictable ways. These were investigated

in Winning Ways for the idempotent

� D
˚
02

ˇ̌̌̌
fon j 04g

	
:

However, since the publication of the first edition of Winning Ways, there has

been little effort to move the theory forward. For this reason, we omit a full dis-

cussion and instead refer the reader to Winning Ways. It is perhaps time to study

classes and varieties in more detail, in light of recent discoveries concerning

other aspects of loopy games.

OPEN PROBLEM. Investigate the class structure of each idempotent in Figure 9.

Zugzwang games. Although the theory of sides is due to Conway and his

students, its acknowledged inspiration is an earlier study by Robert Li, a student

of Berlekamp’s in the 1970s [20]. Li investigated so-called Zugzwang games —

those in which it is a disadvantage to move — and found that they generalize

ordinary numbers in a straightforward way.

DEFINITION 6.  is a Zugzwang game if, for every follower ı of  , each ıL < ı

and ı < each ıR.

Li’s Theorem completely classifies all loopy Zugzwang games:

THEOREM 7 (LI). Let  be a loopy game. Then the following are equivalent:

(a)  is equal to some Zugzwang game;
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(b) There exist dyadic rationals x and y, x � y, such that

 D x & y:

PROOF. See [20, Section 4]. ˜

Li also studied a mild generalization of Zugzwang games, which he called weak

Zugzwang games.

DEFINITION 8.  is a weak Zugzwang game if, for every follower ı of  , each

ıL � ı and ı � each ıR.

Note that for loopfree games G, the weak and strong Zugzwang notions co-

incide, since necessarily G ¤ GL; GR. For loopy games, however, there are

several further weak Zugzwang games.

THEOREM 9 (LI). Let  be a loopy game. Then the following are equivalent:

(a)  is equal to some weak Zugzwang game;

(b)  D x & y, where x � y and each of x; y is one of the following:

(i) on;

(ii) off;

(iii) A dyadic rational;

(iv) z C over for some dyadic rational z; or

(v) z C under for some dyadic rational z.

PROOF. See [20, Section 6]. ˜

Li’s results are intrinsically interesting, and also quite remarkable, given that he

had none of the modern machinery of loopy games at his disposal.

5. Some specific partizan games

Several partizan games have been successfully analyzed using the disjunctive

theory. We briefly survey the most important examples.

Fox and Geese. This game has been largely solved by Berlekamp, who showed

that the critical position of Figure 15 has the exact value 1 C 2�.n�8/, where

n � 8. CGSuite has confirmed that the 8�8 starting position (Figure 2) has value

2Cover. Many other interesting values arise; these are summarized in Winning

Ways and in slightly more detail in [27].

Berlekamp’s analysis leaves little to be discovered about Fox and Geese

proper. Nonetheless, we can ask interesting questions about certain variants

of the game. Murray [23] describes a variant from Ceylon, Koti keliya, which

is played with six geese (“dogs” or “cattle”) on the 12 � 12 board, with the fox
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:::

Figure 15. This critical position on an n � 8 board has value 1 C 2�.n�8/

(n � 8).

(“leopard”) permitted two moves per turn. It is unclear whether these moves

must be in the same direction. Although a full solution to the 12 � 12 board

appears to be out of reach computationally, it is interesting to observe how the

fox’s increased mobility affects play on smaller boards. As one might expect,

it is far easier for the fox to escape, and positions whose values are large neg-

ative numbers become quite common. In fact, the following conjecture seems

justified:

over

over over

over over

over over

:::

over 0

overj0 overj0

over over

over over

:::

Figure 16. Conjectured values of n � 4 Fox and Geese (n � 5).

0 0

� � �

0 0 0

� � �

:::

� � �

0 0 0

� � �

0 0 0

:::

Figure 17. Conjectured values of n � 6 Fox and Geese (n � 8).
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CONJECTURE. The critical position of Figure 15, played with Ceylonese rules,

has value �2n C 11 for all n � 6.

Finally, there is overwhelming experimental evidence for the following two con-

jectures.

CONJECTURE. The diagrams of Figure 16 are valid on the n�4 Fox and Geese

board, for all n � 5. Furthermore, the range of values that appear on the n � 4

board can be classified completely.

(In the diagrams of this and the next figure, the geese are fixed, and conjectured

values are shown for each possible placement of the fox.)

CONJECTURE. The diagrams of Figure 17 are valid on the n�6 Fox and Geese

board, for all n � 8.

Backsliding Toads and Frogs. Backsliding Toads and Frogs was introduced in

Winning Ways. The game is played on a 1 � n strip populated by several toads

(controlled by Left, facing right) and frogs (controlled by Right, facing left). See

Figure 18 for a typical starting position. There are two types of moves. Either

player may slide one of his animals one space in either direction. Alternatively,

he may choose to jump in the facing direction (toads to the right, frogs to the

left). Players must jump over exactly one enemy (never a friendly animal) and

must land on an unoccupied space. Jumps do not result in capture.

Figure 18. A typical starting position in Backsliding Toads and Frogs.

Readers familiar with ordinary Toads and Frogs will recognize the only differ-

ence between the two games: in the ordinary version, the animals are constrained

to slide in the facing direction; in the loopy variant, they may slide backwards as

well. This single difference has a monumental impact on the values that arise.

The most obvious effect is that almost all positions in the Backsliding variant

are loopy; for example, the position of Figure 18 has the remarkable value

fon jj 0 j �1

2
g & f1

2
j 0 jj offg:

Positions in the Backsliding variant tend to have substantially simpler canon-

ical forms than those in the loopfree version. For example, Erickson [8] noted

that in ordinary Toads and Frogs, the “natural starting positions” of the form

Tm˜kFn are often quite complicated. In the Backsliding version, the only val-

ues (among all possibilities for k; m; n) are 0, �, on, off, dud, on & fon j offg,

fon j offg & off, and the single anomalous value given above.
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Nonetheless, Backsliding Toads and Frogs exhibits positions of value n and

2�n, as well as positions of temperature n and 2�n, for all n � 0. See [27,

Chapter 3] or [29] for a complete discussion.

Hare and Hounds. Hare and Hounds exhibits asymptotic behavior much like

Fox and Geese: the position shown in Figure 19, on a .4nC5/�3 or .4nC7/�3

board, has the exact value �n.

The mathematical analysis of Hare and Hounds began in the 1960s, when

Berlekamp demonstrated a winning strategy for the hare on large boards. He

was close to proving that Figure 19 has value �n, but the canonical theory had

not yet been invented.

Hare and Hounds exhibits many interesting values, including �2 (rare among

partizan games); "2, "3, and "4 (but not, it seems, "5); and a bewildering

variety of stoppers. See [27, Chapter 4] or [28] (this volume) for examples of

these, as well as a proof that Figure 19 has value �n.
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Figure 19. This critical position on the .4nC5/�3 or .4nC7/�3 board
(shown here on the 9 � 3 board) has value �n.

Chess. Noam Elkies has observed several loopy values in Chess (in addition

to many loopfree ones). See [6] for his constructions of over and tis D 1 & 0.

More recently, Elkies has produced positions of values upon and �on [7]; see

Figure 20. (The kings have been omitted from these diagrams in order to focus

on the essential features of each position, but they can easily be restored without

affecting the positions’ values, using techniques outlined by Elkies [6].)

Entrepreneurial Chess. Entrepreneurial Chess is played on a quarter-infinite

chessboard, with just the two kings and a White rook (Figure 21). In addition

to his ordinary king moves, Left (Black) has the additional option of “cashing

out.” When he cashes out, the entire position is replaced by the integer n, where

n is the sum of the rank and column values indicated in the diagram. Thus Left

stands to gain by advancing his king as far to the upper-right as possible; and

Right, with his rook, will eventually be able to stop him.

Entrepreneurial Chess was invented by Berlekamp, and has been studied ex-

tensively by Berlekamp and Pearson [4]. They have discovered many interesting
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0Z0Z0Z0ZZ0Z0Z0Z00o0Z0Z0ZoPZpZ0Z00ZpOpZ0ZO0Z0o0Z00O0ZPZ0Zm0ZBZ0Z0

0ZbZ0Z0ZZpZpZ0Z00o0O0Z0ZOPZpZ0Z0pZ0O0Z0ZO0Z0Z0Z00Z0Z0Z0ZZ0Z0Z0Z0
upon D fpassj�g �on D f0k0joffg

Figure 20. Loopy values in chess.
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� � �

Figure 21. Entrepreneurial Chess.

values. For example, the position shown in Figure 21, left, has value 7 C over:

Left can cash out for 7 points at any time, and in the meantime Right is con-

strained to shuttle his king between the squares adjacent to his rook. Berlekamp

and Pearson’s results also include a detailed temperature analysis of a wide class

of positions.

A particularly interesting position  arises in the pathological case when Left

has captured Right’s rook, as in Figure 21, right. The onside of  is on, since

Left need never cash out. Now consider the offside. Left must cash out eventu-

ally, since infinite plays are wins for Right, but he can defer this action for as

long as necessary. Thus we have the remarkable identity

 D on & bZ;

where bZ D f0; 1; 2; : : : j passg is the pseudonumber defined in Section 3. This

identity can be verified formally using the theory presented in Section 4.



112 AARON N. SIEGEL

˛

0

R

�L

R

�
L

E

�
R

�

L

0
R

�
L L

�
R

L

�

R

L
�2

L

�
RR

�
L

R
L

�

L

L

� R

L

�

R

E

�
L

�

R

0
L

�
RR

�
L

R

�

L

R
�2

R

�
L L

�
R

L
R

R

˛ D ˘ � � � � � � ˘

ˇ

0

R
�

L

R

�

L

R

�
L

R�

L

L

�

R

L

�

R
L

�

L

0
L

�2

L

�
RR

�
L

R

"� L

�

L

R

�2

R

�
L L

�
R

L

#�R

R

R

�
L

0

R

�
L

0

L�

R

L

�

R

L

�
R

L
�

R

R

�

L

R

�

L
R R

L

�
R

0

L

R

ˇ D ˘ � � � � � � � � ˘

Figure 22. Some cycles that arise naturally in One-Dimensional Phutball.

One-Dimensional Phutball. Some extraordinary loopy positions in 1D Phutball

were discovered jointly by Richard Nowakowski, Paul Ottaway, and myself. A

few of these are shown in Figure 22. The game of Phutball, and the notation used

here to describe the positions, are explained in [19]. It is interesting that although

Phutball obviously allows for alternating cycles, all positions yet studied are

equivalent to stoppers.

QUESTION. Is every position in One-Dimensional Phutball equivalent to a stop-

per?
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These Phutball positions contain the most complicated loops yet detected. More-

over, the corresponding position on the 1�12 board (˘�� � � � � � � � � ˘) is a stopper

whose canonical game graph has 168 vertices and a 23-cycle. However, all

of these examples are “tame” in the sense that every cycle alternates just once

between Left and Right edges. It is possible to construct “wild” stoppers with

more complicated cycles (see [30] in this volume), but nonetheless we have the

following open problem.

OPEN PROBLEM. Find a position in an actual combinatorial game (Phutball

or otherwise) whose canonical form is a stopper containing a wild cycle.

6. Impartial loopy games

Not surprisingly, impartial loopy games were studied long before partizan

ones. In 1966, ten years before the publication of On Numbers and Games,

Cedric A. B. Smith generalized the Sprague–Grundy theory to games with cy-

cles.

For  to be impartial, of course, infinite plays must be considered draws. We

therefore have three outcome classes: the usual N - and P-positions, and also

D-positions (called O-positions in Winning Ways).

Now consider an arbitrary impartial game  . If all the options of  are known

to be nimbers �a, �b, �c, : : :, then certainly  D�n, where nDmex.a; b; c; : : :/:

the usual Sprague–Grundy argument applies. But some games  are equivalent

to nimbers even though some of their options are not.

For instance, consider the example of Figure 23. It is not hard to see that

 D �2: in  C �2, second player wins by mirroring moves to 0 or �; while if

first player moves to ı C �2, second player reverses to �2 C �2 D 0. However,

the subposition ı is not equivalent to any nimber, since first player can always

draw ı C �n by moving to the infinite loop.



0�ı�

�2

Figure 23. ı is not a nimber, but  D �2.

Roughly speaking,  D �2 because 2 is the mex of its nimber-valued options,

and all other options reverse out, in the usual sense, to positions of value �2.

Care is needed, however, to avoid circular definitions: the analysis of Figure 23
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� 0 �

ı

�

Figure 24. It’s tempting to declare  D ı D �2 (cf. Figure 23); but  C�2

and ı C �2 are both draws.

works because the reversing move is “already known” to be �2. Indeed, Fig-

ure 24 shows that we cannot indiscriminately draw conclusions about the value

of  without a definite starting point.

These concerns led Smith to formulate the key notion of a rank function. The

idea, motivated by Figures 23 and 24, is that we can safely assign Grundy values

to subpositions of  provided they are ranked in order of precedence. Formally,

DEFINITION 10. Let  be a game, let A be the set of all followers of  , and

fix a partial function G W A ! N. Then G is a Grundy function if there exists a

map R W A ! N (a rank function for G) such that:

(i) If G.˛/ D n and k < n, then there is some option ˇ of ˛ with R.ˇ/ < R.˛/

and G.ˇ/ D k.

(ii) If G.˛/ D n and ˇ is any option of ˛ with R.ˇ/ < R.˛/, then G.ˇ/ ¤ n.

(iii) Suppose G.˛/ D n and ˇ is any option of ˛. If G.ˇ/ is undefined, or

if R.ˇ/ � R.˛/, then there exists an option ı of ˇ with R.ı/ < R.˛/ and

G.ı/ D n.

Conditions (i) and (ii) imply that G.˛/ obeys the mex rule, taken over all options

of ˛ with strictly lower rank. Condition (iii) implies that any remaining options

reverse out to positions of lower rank than ˛. The main result is that there is

a unique maximal Grundy function associated to  (where G is maximal if its

domain cannot be expanded).

THEOREM 11 (SMITH). Let G; H W A ! N be two Grundy functions for  .

If G and H are maximal, then G D H .

PROOF. See [31, Section 9]. ˜

So we can safely refer to the Grundy function G of  . It is a remarkable fact

that G completely characterizes the behavior of  .

LEMMA 12 (SMITH). Let  be a game with Grundy function G. If G. / D n,

then  D �n; if G. / is undefined, then  is not equal to any nimber.

PROOF. See [31, Section 9]. ˜
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When G. / is undefined, we write

 D 1abc���

to mean that the nimber-valued followers of  are exactly �a, �b, �c, : : :. We

can now describe the outcome class of any sum of impartial games.

THEOREM 13 (SMITH).

(a) 1abc��� C �n is an N -position if n is one of a; b; c; : : :; otherwise it’s a

D-position.

(b) 1abc��� C 1def ��� C � � � is always a D-position.

PROOF. See [31, Section 9]. ˜

The parallel between Smith’s theory and the classical Sprague–Grundy theory

breaks down in one important respect. If  D �n, then we can be quite certain

that  C X and �n C X have the same outcomes, even when X is partizan.

However, there exist games ˛ and ˇ, both “equal to” 10, whose outcomes are

distinguished by a certain partizan game (see Figure 25). There is no contradic-

tion: ˛ and ˇ indeed behave identically, provided they occur in sums comprised

entirely of impartial games. One could say that the Sprague–Grundy theory

embeds nicely in the partizan theory, while the Smith generalization does not.

˛

0

E

�
E

E
ˇ

0E

�
E

E

�
E

E

˛ D f0; dud j 0; dudg ˇ D f0; ˛ j 0; ˛g

Figure 25. Right can draw ˛ C 1 moving first, while ˇ C 1 is a win for
Left, no matter who moves first. Therefore ˛ ¤ ˇ; yet no impartial game
distinguishes them.

This is an interesting fact, one that does not seem to appear elsewhere in the

literature; and it raises an equally intriguing question:

OPEN PROBLEM. Classify all impartial loopy games, relative to all partizan

ones.

Additional subtraction games. Additional subtraction games are just like or-

dinary subtraction games, except that their subtraction sets may contain negative

numbers (so that players are permitted to add to a nonempty heap in certain fixed

quantities). Such games are more interesting than one might expect. Several

examples are mentioned in Winning Ways, and several related classes of games
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were studied by Fraenkel and Perl [12] and Fraenkel and Tassa [14] in the 1970s.

The additional subtraction games cry out for further investigation.

OPEN PROBLEM. Extend the analysis of additional subtraction games.

The annihilation game. The annihilation game is an impartial game played

on an arbitrary directed graph. At the start of the game, tokens are placed on

the vertices of the graph, at most one per vertex. A move consists of sliding a

token to an adjacent vertex, and whenever two tokens occupy the same vertex,

they are both immediately removed from the game (the annihilation rule).

If the game is played on a loopfree graph, then the annihilation rule has no

effect, since identical loopfree games ordinarily sum to zero. On loopy graphs,

however, the effect is significant.

The annihilation game was proposed by Conway in the 1970s. Shortly there-

after, it was solved by Aviezri Fraenkel and his student Yaacov Yesha [16]. They

specified a polynomial-time algorithm for determining the generalized Sprague–

Grundy values of arbitrary positions. Interested readers should consult Fraenkel

and Yesha’s 1982 paper on the subject [17].

Infinite impartial games. The Smith–Fraenkel results completely resolve the

disjunctive theory of finite impartial games. It is therefore natural to seek gen-

eralizations of the theory to infinite games. In the infinite case, one must allow

ordinal-valued Grundy functions, even among loopfree games: for example, the

game

�! D f0; �; �2; �3; : : : g

has Grundy value !.

In the same paper that introduced the loopy Sprague–Grundy theory [31],

Smith noted that his results generalize in a completely straightforward manner

to infinite games with ordinal-valued Grundy functions. The definitions and

theorems are essentially the same, with the functions G and R permitted to take

on arbitrary ordinal values.

A more substantive result is due to Fraenkel and Rahat [13]. They identified

a class of infinite loopy games whose Grundy values are nonetheless guaranteed

to be finite. Their result can be summarized as follows:

DEFINITION 14. Let G be a graph. A path of G (of length n) is a sequence of

distinct vertices

V0; V1; V2; : : : ; Vn

such that there is an edge directed from each Vi to ViC1. We say that the path

starts at V0.

DEFINITION 15. Let G be a graph. A vertex V is said to be path-bounded if

there is an integer N such that every path starting at V has length � N . G is
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said to be locally path-bounded if every vertex of G is path-bounded. (There

need not exist a single bound that extends uniformly over all vertices.)

Note that all loopfree graphs are locally path-bounded.

THEOREM 16 (FRAENKEL–RAHAT). Let  be a (possibly infinite) impartial

game. If the graph of  is locally path-bounded, then the Grundy function for 

is finite wherever it is defined.

PROOF. See [13, Section 3]. ˜

7. Conjunctive and selective sums

Although disjunctive sums have received the most attention, several authors

have investigated the behavior of loopy games under other types of compound.

The two most prominent are conjunctive and selective sums:

� In the conjunctive sum ˛ ^ ˇ ^ � � � ^  , a player must move in every

component. If any component is terminal, then there are no legal moves.

� In the selective sum ˛ _ ˇ _ � � � _  , a player may move in any number of

components (but at least one).

This line of research, like so many others, was pioneered by Cedric Smith [31],

who focused on the impartial case. Smith’s results are best described in terms

of the Steinhaus remoteness of a position. If  is a loopy game, we define the

remoteness R.ı/, for each follower ı of  , as follows:

DEFINITION 17. Let  be an impartial game, let A be the set of all followers

of  , and fix a function R W A ! N [ f1g. Then R is a remoteness function

provided that, for each ı 2 A :

� If ı is terminal, then R.ı/ D 0.

� If R.˛/ is even for at least one option ˛ of ı, then

R.ı/ D 1 C minfR.˛/ W ˛ is an option of ı with R.˛/ eveng:

� If R.˛/ is odd for every option ˛ of ı, then

R.ı/ D 1 C maxfR.˛/ W ˛ is an option of ıg:

It is not hard to check that every game admits a unique remoteness function R.

The remoteness function tells us quite a bit about  : it’s a P-position if R. /

is even, an N -position if R. / is odd, and a D-position if R. / D 1.

Furthermore, if the winning player strives to achive victory as quickly as

possible, and the losing player tries to postpone defeat for as long as possible,

then the magnitude of R. / determines exactly how long the game will last.

Smith’s main results are summarized by the following theorem.
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THEOREM 18 (SMITH). Let ˛, ˇ, : : :,  be impartial loopy games. Then:

(a) R.˛ ^ ˇ ^ � � � ^  / D minfR.˛/; R.ˇ/; : : : ; R. /g.

(b) If R.˛/, R.ˇ/, : : :, R. / are all even, then

R.˛ _ ˇ _ � � � _  / D R.˛/ C R.ˇ/ C � � � C R. /:

If R.˛/, R.ˇ/, : : :, R. / are all finite, and k of them are odd (k � 1), then

R.˛ _ ˇ _ � � � _  / D R.˛/ C R.ˇ/ C � � � C R. / � k C 1:

Finally, if any of R.˛/, R.ˇ/, : : :, R. / is infinite, then

R.˛ _ ˇ _ � � � _  / D 1:

PROOF. See [31, Sections 6 and 7]. ˜

Theorem 18 enables us to find the outcome of any conjunctive or selective sum,

provided we know the remoteness of each component. The remoteness function

can therefore be regarded as an analogue of the Grundy function.

Partizan games. Smith’s results were substantially extended by Alan Flanigan,

who studied partizan loopy games under conjunctive and selective sums, as well

as two additional types of compound, the continued conjunctive and shortened

selective sums. We summarize Flanigan’s results for conjunctive sums here. The

remaining cases are beyond the scope of this paper; interested readers should

consult Flanigan’s 1979 thesis [9] and two subsequent papers [10; 11].

First note that we can define partizan remoteness functions RL and RR for  .

They are defined just as in the impartial case; but we only consider moves for the

player in question, minimaxing over the opponent’s remoteness function applied

to each option.

DEFINITION 19. Let  be a partizan game, let A be the set of all followers of

 , and fix functions RL; RR W A ! N [ f1g. Then RL; RR are partizan re-

moteness functions provided that the following conditions (and their equivalents

with Left and Right interchanged) are satisfied for each ı 2 A :

� If ı has no Left options, then RL.ı/ D 0.

� If RR.ıL/ is even for at least one ıL, then

RL.ı/ D 1 C minfRR.ıL/ W RR.ıL/ is eveng:

� If RR.ıL/ is odd for every ıL, then

RL.ı/ D 1 C maxfRR.ıL/g:

Smith’s result for conjunctive sums is virtually unchanged in the partizan con-

text.
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THEOREM 20 (SMITH–FLANIGAN). Let ˛, ˇ, : : :,  be (partizan) loopy games.

Then for X D L; R, we have

RX .˛ ^ ˇ ^ � � � ^  / D minfRX .˛/; RX .ˇ/; : : : ; RX . /g:

PROOF. See [9, Chapter II.2]. ˜

Since the outcome class of  is determined by the parities of RL. / and RR. /,

this is all we need to know.

Flanigan also noted that the analysis of conjunctive sums (but not selective

sums) extends to infinite games: one can suitably define ordinal-valued remote-

ness functions, taking suprema instead of maxima when R is odd; then Theo-

rem 20 generalizes verbatim.

8. Algorithms and computation

Computation is an essential part of combinatorial game theory. This is par-

ticularly true in the study of loopy games, since they are especially difficult to

analyze by hand.

The basic algorithm for determining the outcome class of an impartial loopy

game was introduced by Fraenkel and Perl [12] in 1975. The strategy is to iterate

over all vertices V of the game graph of  , assigning labels as summarized in

Algorithm 1.

THEOREM 21 (FRAENKEL–PERL). Algorithm 1 correctly labels the subsposi-

tions of  according to their outcome classes, and concludes in time O.n2/ in

the number of vertices.

PROOF. See [12, Section 3]. ˜

In fact, Fraenkel observes that we can improve slightly upon Algorithm 1: tra-

verse the vertices of  just once; and whenever a label is assigned to V , re-

examine all unlabeled predecessors of V . With this modification, the algorithm

runs in time O.n/ in the number of edges. Since game graphs tend to have

relatively low edge density, this will usually be an improvement.

For each vertex V of the game graph of  :

� If all options of V have been labeled N , then label V by P . (This includes

the case where V is terminal.)

� If any option of V has been labeled P , then label V by N .

The algorithm continues until no more vertices can be labeled, whereupon

all remaining vertices are labeled by D .

Algorithm 1. Computing the outcome class of an impartial game  .



120 AARON N. SIEGEL

Let G be the game graph of  .

(i) Put k D 0.

(ii) For each vertex V of G:

� If all options of V have been labeled N , then label V by P .

� If any option of V has been labeled P , then label V by N .

(iii) For each unlabeled vertex V , all of whose options are now labeled: if

each option of V has an option labeled P , then label V by P as well.

(iv) Label all remaining (unlabeled) vertices by D .

(v) For each vertex V labeled P , define G.V / D k and remove V from G.

(vi) If all remaining vertices of G are labeled D , then stop: we are done.

(vii) Clear all N labels (but retain all D labels).

(viii) Put k D k C 1 and return to Step 2.

Algorithm 2. Computing the generalized Sprague–Grundy value of  .

Fraenkel and Perl have also given an algorithm for computing the generalized

Sprague–Grundy values of impartial loopy games (Algorithm 2); see Fraenkel

and Yesha [18] for further discussion.

THEOREM 22 (FRAENKEL–PERL). Algorithm 2 correctly defines the maximal

Grundy function for  , and concludes in time O.n3/ in the number of vertices.

PROOF. See [12, Section 4]. ˜

Algorithm 1 is virtually unchanged in the partizan case. Given a game  with

graph G, one first constructs the corresponding state graph S. The vertices of S

consist of pairs .V; X /, where V is a vertex of G and X is either L or R. There

is an edge directed from .U; L/ to .V; R/ just if there is a Left edge directed

from U to V , and so on. Algorithm 1 can then be applied directly to S. This

was noticed independently by Shaki [26], Fraenkel and Tassa [15], and Michael

Albert [1].

Comparison. Algorithm 1 suffices to compare stoppers. Recall from Section 3

that if  and ı are stoppers, then  � ı if and only if Left, playing second, can

survive  � ı. So to test whether  � ı, we simply compute the state graph of

 � ı and apply Algorithm 1. If V is the start vertex (corresponding to  � ı

itself), then  � ı if and only if .V; R/ is not marked N .

One can extend these ideas in order to compare arbitrary games, but the al-

gorithms are somewhat more involved. See [30] in this volume for a discussion.

Simplification and strong equivalence. Fraenkel and Tassa [15] studied var-

ious simplification techniques in detail. They identified certain situations in
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which one can safely simplify an arbitrary (free) loopy game  . These tech-

niques yield a good algorithm for determining whether  is equivalent to a

loopfree game. We summarize their results.

DEFINITION 23. Let  be a free loopy game.

(a) A Left option  L is strongly dominated if Left, playing second, can win the

game  L0

�  L for some other Left option  L0

.

(b) A Left option  L is strongly reversible if Left, playing second, can win the

game  �  LR for some Right option  LR .

(c) If ı is any free loopy game, then  and ı are strongly equivalent if either

player can win  � ı playing second. In this case we write 
�
D ı.

Strongly dominated and strongly reversible Right options are defined analo-

gously.

Note that 
�
D  if and only if  �  D 0, i.e., if and only if  is equivalent to a

loopfree game.

THEOREM 24 (FRAENKEL–TASSA). Let  be a free loopy game and let ı be

any follower of  . Let  0 be obtained from  by either:

(a) Replacing ı with a strongly equivalent game ı0; or

(b) Eliminating a strongly dominated option of ı; or

(c) Bypassing a strongly reversible option of ı.

Then  D  0.

THEOREM 25 (FRAENKEL–TASSA). Let  be a free loopy game and assume

that:

(i)  is equivalent to a loopfree game (i.e.,  �  D 0); and

(ii) No follower of  has any strongly dominated or strongly reversible options.

Then  is itself loopfree.

THEOREM 26 (FRAENKEL–TASSA). Let  be a free loopy game. If , for each

subposition of  , we repeatedly eliminate strongly dominated options and by-

pass strongly reversible ones, then the process is guaranteed to terminate. We

will eventually arrive at a form for  that contains no strongly dominated or

strongly reversible options.

Thus if  is equivalent to a loopfree game, then Theorems 24 through 26 yield

an algorithm for computing its canonical form: eliminate strongly dominated

options and bypass strongly reversible ones until none remain.

Theorem 24 fails if the strong notions of domination and reversibility are

replaced by their naive weakenings. This is a major obstacle to developing a
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general canonical theory of loopy games. These issues are discussed at length,

and partially resolved, in [30] in this volume.
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On day n

DAVID WOLFE

ABSTRACT. We survey the work done to date about games born by day n.

1. Introduction

Both number theory and combinatorial game theory are interesting in large

part because of the wonderful interplay between algebraic and combinatorial

structure. Here we survey some general results that investigate either the additive

structure or the partial order of the games born by day n.

The games born by day n, Gn, have game trees of height at most n. More

formally, Gn is defined inductively:

G0
def
D f0g;

Gn
def
D

˚

fGL jGRg W GL; GR � Gn�1

	

:

G1 consists of games whose left and right options are subsets of G0, i.e., either

fg or f0g. This yields four games born by day 1, those being

0 D f j g; 1 D f0 j g; �1 D f j0g; � D f0 j0g:

We can draw the partial order of these four games to get

1

0 �

�1

�� @@

@@ ��

On day 2, left and right options are subsets of the day 1 lattice. Since there

are 16 subsets of G1, this yields at most 16 � 16 D 256 games born by day 2.

125
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Left

Right

�1 0; � 0 � 1 ?

1 ˙1 1j0; � 1j0 1j� 1� 2

0; � 0;�j�1 �2 "�
"

1
2 1

0 0j�1 #� �

� �j�1 #

�1 �1� �1
2

0

? �2 �1

Figure 1. The 22 games born by day 2 organized by Left and Right

options.

Note, however, that we can restrict our attention to only those subsets without

dominated options, i.e., the antichains in G1. There are six such antichains

f1g; f0; �g; f0g; f�g; f�1g; fg

roughly sorted so that those Left most wishes to be her option list are listed

first. This leaves us with at most 36 games born by day 2. Of these 36, many

are equal, leaving the 22 distinct games shown in Figure 1.

2. Games as a group

Under game addition, although the games born by day n > 0 do not form a

group, it is natural to investigate the group generated by the games born by day

n, which we will denote Jn. On day 0, we have just the singleton J0 D f0g.

G1 D f0; 1; �1; �g, and sums of these games consist of integers n and n�. Since

� C � D 0, we have that J1 is isomorphic to Z � Z2.

Moews [1991] investigates J2 and J3. He shows that J2 has the basis

1=2; �2; A; "; ˛; ˙1
2
; ˙1;

where

A D f1 j0g � f1 j�g, ˛ D f1 j0g � f1 j0; �g:

A has order 4 since ACA D �, while ˛ > 0 has atomic weight 0 and is therefore

linearly independent with ". So, we have that J2 is isomorphic to Z
3 �Z4 �Z

3
2
.

Let In be the group of infinitesimal games within Jn. Then I2 is Z
2�Z4�Z2

and J2=I2 is Z � Z
2
2
.
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Moews employs a combination of computation and mathematical ingenuity

to describe J3=I3, but leaves open I3 (and therefore J3.) His key result that

J3=I3 D Z
7 � Z4 � Z

8
2

has a reasonably technical proof.

3. Games as a partial order

Games born by day n form a distributive lattice, but the collection of all

short games, G D
S

n�0 GŒn�, is not a lattice [Calistrate et al. 2002]. The key to

identifying the lattice structure is to explicitly construct the join (or least upper

bound) and meet (or greatest lower bound) of two elements. Since the partial

order is self-dual (i.e., each game has a negative and G � H exactly when

�H � �G), we will only state theorems in terms of the join operation, and

leave it to the reader to construct the symmetric assertions concerning the meet

operation.

For the day n lattice, define the join in terms of the operation

dGe
def
D fH 2 Gn�1 W H 6� Gg

The notation dGe, and G1 _G2 below, take the current day n for granted. Then

the join of two games is given by

G1 _ G2
def
D

˚

GL
1 ; GL

2 j dG1e \ dG2e
	

Note that G1 _ G2 is in Gn since its left and right options are all in Gn�1.

It is now a reasonable graduate level exercise to prove that the join operation

above exactly reflects the partial order of games born by day n, and that join

distributes over a symmetrically defined meet.

The Hasse diagram of the lattices for days 1 and 2 is shown on the left side

of Figure 2. One property of distributive lattices is that they are graded or

ranked, where the partial order can be drawn with edges only going between

adjacent levels. The lattices for days n � 3 all share the property that the middle

level is the widest (i.e., has the most games). It is still open, but should be

computationally feasible, to organize and describe the exact structure of the day

3 lattice of 1474 games.

In a lattice, the join irreducible elements are those elements that cannot be

formed by the join of other elements. Looking at the Hasse diagram of the

lattice, a join irreducible element has exactly one element immediately below

it in the lattice. (The single element at the bottom is not considered a join

irreducible for it is the join of the empty set.) The right side of Figure 2 shows

the partial order of the day 2 join irreducibles.
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Figure 2. Left: day 1 and day 2 lattices. Right: join irreducibles from day 2.

Birkhoff [1940] showed (amazingly) that there is a natural one-to-one cor-

respondence of finite partial orders with finite distributive lattices, where that

correspondence is via the partial order on join irreducibles. As shown in [Fraser

et al. 2005], the join irreducibles from the GnC1 lattice are exactly those games

of the form g or fg j�ng where g 2 Gn.

As an immediate corollary of this fact (and Birkhoff’s construction of the

distributive lattice from its join irreducibles), all maximal chains on day n are

of length exactly one plus double the number of games born by day n � 1.

Aaron Siegel [2005] showed that the distributive lattice for Gn has exactly two

automorphism, i.e., one order-preserving symmetry. In particular, he defines a

companion g� of each element g 2 Gn by

g� D

8

ˆ

ˆ

<

ˆ

ˆ

:

� if G D 0,

f0; .GL/� j.GR/�g if G > 0,

f.GL/� j.GR/�g if G is incomparable with 0,

f.GL/� j0; .GR/�g if G < 0,

This is the only nontrivial automorphism which preserves the partial order on

Gn. Further, this automorphism also preserves birthday (for games other than
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0 and �) and atomic weight of all-small games. He defines the longitude of a

game G by the difference in ranks between G and G _G�; this is some measure

of how far G is from the “spine” of self-companions.

4. The all-small lattice

An all-small game is one in which Left has an option if and only if Right has

one as well. On day 1, 0 and � are all-small, while 1 and �1 are not. Day 2 has

7 all-small games:

" "�

0 �2 �

# #�

�
�

�

@
@

@

�
�

�

@
@

@

@
@

@ �
�

�

@
@

@

�
�

�

In his thesis, Aaron Siegel [2005] proved that, subject to a minor caveat, the

all-small games born on day n also form a distributive lattice. The caveat is that

one must adjoin a single element to the top (and, symmetrically, bottom) of the

lattice which is the join of the two maximal elements .n�1/ �" and .n�1/ �"�.

This lattice also has the unique nontrivial automorphism given by g� above.

There are 67 all-smalls born by day 3, and a figure of the lattice appears in

Siegel’s thesis. He also computes the 534,483 all-smalls born on day 4 and has

found that while the middle level of this lattice remains the largest, its thickest

level, as measured by maximum longitude, is not the middle level.

5. Counting games

The fact that there are 1474 games born by day 3 has been known for some

time. Dean Hickerson found them by hand sometime around 1974, though he

may not have been the first. The best known upper and lower bounds on the

number of games born by day n for larger values of n are given in [Wolfe and

Fraser 2004], and depend upon observations made (in personal communications)

by Dean Hickerson and Dan Hoey.

Consider the lattice of games born by Gn. Call a pair .T; B/ of antichains

in this lattice admissible if T > B (i.e., each game in T exceeds each game

in B.) The new games born by day n C 1 are in one-to-one correspondence

with admissible pairs from day n. This fact can be used to bound the number of

games g.n/ born by day n recursively by,

g.n C 1/ � g.n/ C 21Cg.n/:
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The bound can be tightened somewhat to

g.n C 1/ � g.n/ C 2g.n/ C 2;

or even further to

g.n C 1/ � g.n/ C
�

g.n � 1/2 C 5
2
g.n � 1/ C 2

�

� 2g.n/�2g.n�1/

For n � 2, the right-hand side is upper bounded by

�

2g.n � 1/2=4g.n�1/
�

� 2g.n/:

For lower bounds, Wolfe and Fraser show that g.n/ �2g.n�1/˛

where ˛ >:51

and ˛ ! 1 as n ! 1. For their proofs, they exploit knowledge of the join

irreducibles of the day n lattice mentioned in Section 3.

It would be of interest to tighten these bounds, particularly if doing so en-

tailed describing the relationships between day n and day n C 1 in more detail.

Is the middle level of each lattice the widest? Are the level sizes monotonic

nondecreasing down to the middle level? (There are four levels with 5 games

in the day 3 all-smalls.) Determine bounds on the number of all-smalls born by

day n.

6. Further work

There are several other directions for further work besides those mentioned

in the body of the survey.

While all of the above results were stated for short games (i.e., games born

by day n for n < !), proofs by induction imply similar results for G˛ where ˛ is

a transfinite ordinal [Siegel 2006]. However, Aaron Siegel’s results concerning

the all-small lattice do not generalize so easily, for it is not clear what ordinal

multiples of " should be.

Berlekamp (personal communication) has suggested other possible defini-

tions for games born by day n, Gn, depending on how one defines G0. The usual

definition is 0-based, as G0 D f0g. Other natural definitions are integer-based

(where G0 are integers) or number-based. While these two alternatives do not

yield distributive lattices, perhaps there is still combinatorial structure worth

investigating.
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Goal threats, temperature
and Monte-Carlo Go

TRISTAN CAZENAVE

ABSTRACT. Keeping the initiative, i.e., playing sente moves, is important in

the game of Go. This paper presents a search algorithm for verifying that

reaching a goal is sente on another goal. It also presents how goals are evalu-

ated. The evaluations of the goals are based on statistics performed on almost

random games. Related goals, such as goals and associated threatened goals,

are linked together to form simple subgames. An approximation of the tem-

perature is computed for each move that plays in a simple subgame. The move

with the highest temperature is chosen. Experimental results show that using

the method improves a Go program.

Figure 1. Examples of connections and connection threats.
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1. Introduction

In Figure 1, if White plays at H, G and H are connected. Playing at H also

threatens to connect H and L. However the connection between G and H is not

sente on the connection between H and L: if White plays at H, Black answers at

L, and White has to play at J to keep G and H connected. We say the connection

between G and H is not sente on the connection between H and L.

On the other hand, for Black, the connection between I and J is sente on

the connection between J and K. If Black plays at J, I and J are connected.

Playing at J also threatens to connect J and K. The connection (I,J) is sente on

the connection (J,K) because whatever White plays after Black J, either it does

not threaten the connection between I and J, or it threatens it, but Black has an

answer that both connects I and J, and keeps the threat of connecting J and K.

Moreover, all these connections are related. If White connects G and H, it

prevents Black from connecting I and J. If Black connects I and J, it prevents

White from connecting G and H. We aggregate them in a single structure in order

to evaluate the White move at H and the Black move at J. If Val.G;H / is the

evaluation of the connection (G,H), Val.I;J / the evaluation of the connection

(I,J), and Val.I;J /;.J ;K / the evaluation of connecting both (I,J) and (J,K), we

approximate the temperature of the White move at H with the temperature of

the subgame fVal.G;H /jjVal.I;J /jVal.I;J /;.J ;K /g.

A common approach to Go programming is to compute the status of tactical

goals. Examples of tactical goals are connecting two strings, capturing a string

or making a group live. The status of a tactical goals is assessed using heuristic

search. Once unsettled goals are found, they are evaluated and the one with

the highest evaluation is played. Recently, I have shown how to evaluate unset-

tled goals using a Monte-Carlo approach [Cazenave and Helmstetter 2005a]. It

consists in evaluating an unsettled goal with the average of the random games

where it has been reached. I build on this approach in this paper.

Besides finding the moves that play unsettled tactical goals, an important

aspect of Go is to also find the tactical goals that are threatened by each move.

In order to do this a program needs an algorithm that verifies a goal is sente on

another goal. This algorithm is presented in this paper as a search algorithm. It

uses search at each node of the main search to assess the statuses of the goal

and of the associated threatened goal.

The evaluation of a threat uses the Monte-Carlo method, it consists in com-

puting the average of all the random games where the goal and the threatened

goal have been reached. Once the goals and the associated threats have been

evaluated, they are aggregated in a single structure that is used to approximate

the temperature of moves.
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The rest of the paper is organized as follows. The second section discusses

related work. The third section details the tactical goals used and how the pro-

gram computes their status. The fourth section gives a search algorithm that

verifies if reaching a goal is sente on another goal. The fifth section explains

how goals are evaluated with a Monte-Carlo algorithm. The sixth section details

the evaluation of moves given the evaluation of goals. The seventh section gives

experimental results.

2. Related work

The use of search for assessing dependencies between goals in the game of Go

[Cazenave and Helmstetter 2005b] is related to the search algorithm we present.

The evaluation of goals with Monte-Carlo Go [Cazenave and Helmstetter 2005a]

is related to the evaluation of goals and threatened goals in this paper. Related

goals are aggregated in a structure. The structure and the evaluation of goals

are used to build a combinatorial game. Thermography [Berlekamp et al. 1982]

can be used to play in a sum of combinatorial games. In Go endgames, it has

already been used to find better than professional play [Spight 2002], relying

on a computer assisted human analysis. A simple and efficient strategy based

on thermography is Hotstrat, it consists in playing in the hottest game. Hotstrat

competes well with other strategies on random games [Cazenave 2002]. Another

approach used to play in a sum of hot games is to use locally informed global

search [Müller and Li 2005; Müller et al. 2004]. In this paper, we use Hotstrat

to evaluate the subgames built with goals evaluations.

3. Tactical goals

This section deals with tactical goals of the game of Go and the related search

algorithms that compute the status of the goals. Examples of tactical goals are

connecting two strings, or capturing a string. Traditional Go programs spend

most of their time searching tactical goals. The search finds moves that reach

the goals, and these moves are then used by Go programs to choose the best

move according to the evaluation of the associated goals.

3.1. Possible goals. Goals that appear frequently in a Go game are connection,

separation [Cazenave 2005], capture and life. Goals are associated to evaluation

functions that take values in the interval [Lost,Won]. Usually Won is a large

integer and returning Won means the goal is reached, Lost is the opposite of

Won and returning Lost means the goal cannot be reached. We make the dis-

tinction between positive and negative goals. A positive goal is well defined and

when the associated evaluation function returns Won, it is certain that the goal is
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reached. Connection, separation, capture and life are positive goals. For exam-

ple, the evaluation function for connections returns Won when the two stones to

connect are part of the same string. Negative goals are the opposite of positive

goals. The opposite of connection is disconnection, the opposite of separating is

unseparating, the opposite of capturing is escaping and the opposite of living is

killing. Negative goals are often ill-defined: when the evaluation returns Won for

a negative goal it is not sure that it is reached. For example, the evaluation func-

tion returns Won for disconnections when the two strings to disconnect have a

distance greater than four. However, there are cases when strings have a distance

greater than four and can still be connected. Symmetrically, when the evaluation

function returns Lost for a positive goal, it is not sure it cannot be reached.

Positive and negative goals can also be mixed. For example for the connection

goal, our algorithm also verifies that the string that contains the two intersections

to connect cannot be simply captured.

The empty connection goal consists in finding if an empty intersection can

be connected to a string.

3.2. Finding relevant goals. For each possible goal, the program assesses if it

has chances to be reached. For connections, it selects pairs of strings that are

at a distance less than four. For empty connections, for all strings, it selects

liberties of order one to four, as well as liberties of adjacent strings that have

less than three liberties. Once the goals are selected, the program uses search to

assess their status.

3.3. Searching goals. The algorithm we use to search goals is the Generalized

Threats Search algorithm [Cazenave 2003]. It is fast and ensures that when a

search with a positive goal returns Won the goal can be reached. For all possible

goals, the program first searches if the color of the positive goal can reach the

goal by playing first. If it is the case the program performs a second search

to detect if the color of the positive goal can still reach the goal even if the

opposite color starts playing. If both searches return Won or if the first search

returns Lost, the goal is not settled and it is not necessary to play in relation to

it. If the first search returns Won and the second search returns Lost then the

goal is unsettled.

3.4. The traces. Two traces are associated to each search. The positive trace

is a set of intersections that can possibly invalidate the result of a search that

returns Won. The negative trace is a set of intersections that can possibly change

the result of a search that returns Lost.

Figure 2 gives an example of a positive trace: the trace of the search where

White tries to disconnect the two black stones but Black succeeds connecting

them.
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Figure 2. Positive trace of a won connection.

3.5. Finding all moves related to unsettled goals. In order to evaluate the

threats associated to the moves that reach the goal, a program has to find all

the moves that reach an unsettled goal, and all the moves that prevent it being

achieved. The program currently uses heuristic functions to generate a set of

moves that can possibly reach the goal. It could also use the negative trace of

the search that returns Lost when the opposite color of the goal plays first. It

uses the positive trace of the search that returns Won when the color of the goal

plays first, in order to generate all the moves that can possibly prevent the goal

being achieved. For each of these moves, it plays it and then performs a search

to verify if it achieves the goal for moves of the goal color, or prevents it being

achieved for moves of the opposite color.

3.6. Finding threatening moves for goals. It is interesting to look for threats

in two cases. The first case is when the positive goal search returns Lost when

the goal color plays first. In this case, all the moves of the color of the goal on

the intersections of the negative trace are tried. For each move, it is played and

a search for the goal with the color of the goal starting first is tried. If the search

returns Won, then the move is a threat to reach the goal. The second case is when

the goal search returns Won when the opposite color of the goal plays first. In

this case all the moves of the opposite color of the goal, on the intersections of

the positive trace are tried. For each move, it is played and a search for the goal

with the opposite color playing first is performed. If the search does not return

Won then the move is a threat to prevent from reaching the goal.

4. A search algorithm for verifying threats

This section describes how the potential threats are found and details the

search algorithm used to verify that reaching a goal threatens another goal.
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4.1. Finding moves and threats to search. For each move that reaches a goal

and that is also a threat on another goal, a search for a threat is performed. The

move is played and then the search algorithm for verifying threats is called at a

min node.

For example in problem 14 of Figure 5, the move at E achieves the goal of

connecting A and B, and it is also a threat to disconnect C and D. So the White

move at E is played and the search algorithm is called at a min node to verify

that the connection of A and B threatens the disconnection of C and D. This is

not always the case. For example in problem 7, the Black move at B connects A

and B, and the move at B threatens to connect B and C. However the connection

of A and B is not sente on the connection of B and C, because when Black plays

B, White answers at C both threatening to disconnect A and B, and removing

the threat of connecting B to C.

4.2. The search algorithm. A simple idea that comes to mind when trying to

model threats is to play two moves in a row and use search on a double goal

[Cazenave and Helmstetter 2005b] to verify whether both goals are achieved

even if the opponent moves first. However this approach does not work as can be

seen in Figure 3. In this figure, if Black plays at B and C in a row, White cannot

prevent him from connecting A, B and C. However playing at B, connecting A

and B, is not sente on the connection of B and C. If Black plays at B, White can

prevent the threat in sente as in the right hand diagram of figure 3.

An empty connection problem White prevents the threat in sente

Figure 3. Black B does not threaten Black C.

As the search algorithm on double goals does not work, we have designed a

new search algorithm that verifies that when a first goal can be achieved, it also

threatens a second goal. The first goal is called the goal, the threatened goal is

called the threat goal.

The search algorithm is a selective alpha-beta, where verifications of the sta-

tus of goals are searched at each node.
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The pseudocode for max nodes is given below:

1. MaxNode (int alpha, int beta) {

2. search goal with max playing first;

3. if (goal cannot be reached)

4. return Lost;

5. search goal with min playing first;

6. if (goal can be reached with min playing first)

7. return Won;

8. if (threatGoal is Lost)

9. return Lost;

10. for max moves m that reach the goal {

11. try move m;

12. tmp = MinNode (alpha, beta);

13. undo move;

14. if (tmp > alpha) alpha = tmp;

15. if (alpha >= beta) return alpha;

16. }

17. return alpha;

18. }

At max nodes, the first important thing is to verify that the goal can be achieved

(lines 1–4). If not, the search stops as it is necessary to reach the goal for the

algorithm to send back Won. If the goal can be achieved when Min plays first,

then Min has just played a move that does not threaten the goal, and has therefore

lost the initiative. So Max has reached the goal and has kept the initiative (lines

5–7). In this case the algorithm returns Won because the goal has been achieved

keeping the initiative and while continuing to threaten the threat goal as it has

been verified in the upper min node (compare the MinNode pseudocode). If

the goal is not achieved and the threat goal is lost, then Min has succeeded in

preventing Max from threatening the threat goal, so the algorithm returns Lost

(lines 8–9). The only Max moves to try are the moves that achieve the goal,

so the algorithm tries them and calls the MinNode function after each of them

(lines 10–16).

The code for the MinNode function is as follows:

1. MinNode (int alpha, int beta) {

2. search goal with max playing first;

3. if (goal cannot be reached)

4. return Lost;

5. search goal with min playing first->traceMin;

6. if (goal cannot be reached with min playing first)
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7. return Lost;

8. search threatGoal with max playing first->traceMax;

9. if (threatGoal cannot be reached)

10 return Lost;

11. if (intersection of traceMin and traceMax is empty)

12. return Won;

13. for min moves m in traceMin and traceMax {

14. try move m;

15. tmp = MaxNode (alpha, beta);

16. undo move;

17. if (tmp < beta) beta = tmp;

18. if (alpha >= beta) return beta;

19. }

20. return beta;

21. }

At min nodes, the program starts verifying Max can achieve the goal if it plays

first (lines 2–4), then it verifies that he can achieve the goal even if Min plays

first (lines 5–7). The positive trace of this search is memorized in traceMin as

it will be useful later to select the Min moves to try. Then the program verifies

if the threat goal can still be achieved by Max in order to verify that Max keeps

threatening it (lines 8–10). The positive trace of the threat goal is memorized

in traceMax. The only moves that Min tries are on the intersection of TraceMin

and TraceMax (lines 13–19).

For negative goals, the search is performed for the opposite positive goal, and

the algorithm takes the opposite of the result of the search. For example, if the

threat goal is to disconnect, at min nodes, the algorithm searches the connection

goal with the disconnecting color playing first. If the search does not return

Won, it considers that the disconnection can be achieved.

5. Evaluation of goals

This section deals with the approximate evaluation of how many points reach-

ing a goal can gain. We use Monte-Carlo simulations to evaluate the importance

of goals.

5.1. Standard Monte-Carlo Go. Standard Monte-Carlo Go consists in playing

a large number of random games. The moves of the random games are chosen

randomly among the legal moves that do not fill the player’s eyes. A player

passes in a random game when his only legal moves are on his own eyes. The

game ends when both players pass. At the end of each random game, the score

of the game is computed using Chinese rules (in our case, it consists in counting
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one point for each stone and each eye of the player’s color, and subtracting

the player’s count from its opponent count). The program computes, for each

intersection, the mean results of the random games where it has been played

first by one player, and the mean for the other player. The value of a move is

the difference between the two means. The program plays the move of highest

value.

5.2. Evaluation of unsettled goals. The only simple goals that need to be

evaluated are the unsettled ones. For each of these, the program computes the

mean score of the games where it has been achieved during the game. It also

computes the mean score of the games where it has not been achieved. The

difference between the two means gives an evaluation of the importance of the

goal.

5.3. Evaluation of threatened goals. For each move of each unsettled goal,

the program searches for all the possible associated threat goals. For each com-

bination of a goal and a threat goal, the program computes the mean value of

the random games where they have both been achieved.

For a combination of two positive goals, things are simple. The program tests

at each move of each random games if both goals have been achieved. If it is

the case the game counts. If it is not the case at the end of the game, the game

does not count.

For goals that are a combination of a positive goal and of a negative goal

we have a special treatment. For example for connection moves that threaten a

disconnection, there are four intersections to take into account. The intersections

to connect are s1 and s2, the intersections to disconnect are s3 and s4. The

following tests are performed at each move of each random game :

� if s1 or s2 are empty or of the opposite color of the connection, the random

game does not count.

� if s1 and s2 are in the same string, and if s3 or s4 are empty or of the color

of the connection, the random game counts.

� if s3 and s4 are in the same string, the random game does not count.

At the end of a random game, if the two strings s1 and s2 have been connected,

and s3 and s4 have not, the random game counts.

6. Evaluation of moves

This section explains the different values computed for each move, details

how the values are computed for the empty connection goal and for the con-

nection goal, and eventually gives the evaluation of the moves based on these

values.
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6.1. Values computed for each move. There are basically four values that

may be computed for a move. The value of achieving the associated goal (the

FriendValue), the value for the opposite color of preventing the goal from being

achieved (the EnemyValue), the value of reaching both the goal and the best

associated threat goal (the FriendThreatValue), and the value for the opposite

color of preventing the goal from being achieved and achieving another enemy

threat goal (the EnemyThreatValue).

6.2. Values for empty connection moves. For each empty connection move,

the program finds the set of empty connections of the opposite color that are

invalidated by the move. The EnemyValue is set to the value of the highest in-

validated enemy empty connection. The EnemyThreatValue is set to the highest

threat associated to the selected enemy empty connection. The FriendValue is set

to the evaluation of reaching the empty connection, and the FriendThreatValue

is set to the value of the highest threat goal associated to the empty connection.

The only empty connection threats computed for a friend empty connection goal,

are the threats of empty connection to an intersection that is not already empty

connected to a friend group. Similarly, enemy empty connection threats do not

empty connect to intersections already empty connected to enemy groups.

6.3. Values for connection moves. For connection moves, the FriendValue is

the evaluation of achieving the connection, the EnemyValue is the value of not

achieving the connection, the FriendThreatValue is the best evaluation among all

the threat goals associated to the connection move, and the EnemyThreatValue

is the best threat associated to the disconnection.

6.4. Evaluation of moves given their associated values. Once the four values

are computed for each move of each unsettled goal, an approximation of the

temperature of the moves can be computed. The computation of an approximate

temperature given these values is based on the computation of the temperature of

the game ffFriendThreatValue j FriendValueg jj fEnemyValue j EnemyThreat-

Valuegg.

The thermograph is exact for connection values since all the enemy’s op-

tions have the same EnemyValue, and all the friend’s options have the same

FriendValue. However, for empty connections there are different options for

the enemy that lead to different EnemyValue, instead of reflecting this in the

thermograph, we only take the best the subgame with the best EnemyValue. So

we only compute an approximation of the temperature for empty connections.

When there are no friend threats, FriendThreatValue is set to FriendValue,

and when there are no enemy threats, EnemyThreatValue is set to EnemyValue.

The code for computing the approximate temperature given the four values is

as follows (ABS is the absolute value):



GOAL THREATS, TEMPERATURE AND MONTE-CARLO GO 145

1. temperature (EnemyThreatValue, EnemyValue,

FriendValue, FriendThreatValue) {

2. tempEnemy = ABS(EnemyThreatValue - EnemyValue)/2;

3. tempFriend = ABS(FriendThreatValue - FriendValue)/2;

4. width = ABS(FriendValue-EnemyValue);

5. if (tempFriend - tempEnemy > width)

6. return tempEnemy + width;

7. else if (tempEnemy - tempFriend > width)

8. return tempFriend + width;

9. else

10. return ABS(FriendThreatValue/4 + FriendValue/4 -

EnemyValue/4 - EnemyThreatValue/4);

11. }

When the program does not use threats, it returns ABS(FriendValue - Enemy-

Value)/2.

7. Experimental results

We have measured the speed and the correctness of the search algorithm that

verifies if goals are sente on other goals. We have also measured the benefits

a program gets when taking into account the values of threats, and the average

time it takes to compute threats.

For the experiments we have only used the connection goal and the empty

connection goal. The machine used is a 3.0 GHz Pentium 4. The search algo-

rithm that detects threats has been programmed using templates for the goals.

It means that the same search code is used for any combination of goals. The

search uses iterative deepening, transposition tables, two killer moves and the

history heuristic.

7.1. The test suite for threats. The problems used to test the algorithms are

given in Figure 5. In the first eleven problems, an empty connection between A

and B threatens (or not) an empty connection between B and C. Problem number

twelve is an example of a problem where an empty connection between A and

B threatens a connection between A and C. Problem thirteen shows an empty

connection between A and B that threatens to disconnect C and D. In problem

fourteen, the black move at E connects A and B, and threatens to disconnect C

and D.

Table 1 gives the number of moves played in the search algorithm and the

time it takes for each of the problems of the test suite. All the problems are

correctly solved by the search algorithm.
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Problem moves time (ms)

1 2,095 10

2 34,651 50

3 59,704 90

4 6,063 30

5 68,209 90

6 2,522 30

7 24 10

8 4,982 20

9 91,774 120

10 2,083 10

11 17 20

12 263 10

13 10,529 30

14 1,341 20

total 284,405 540

Table 1. Nodes and time for the threat problems.

7.2. Integration in a Go program. The use of connection threats has been

tested in a Monte-Carlo based program which evaluates goals. The program

is restricted to connection and empty connection goals. The threats used are

only connection threats: the empty connections that threaten empty connections,

the empty connections that threaten connections, the empty connections that

threaten disconnections and the connections that threaten disconnections.

The experiment consists in playing one hundred 9 � 9 games against Gnugo

3.6, fifty as Black and fifty as White. At each move of each game, the program

plays ten thousand random games before choosing its move. Table 2 gives the

mean score, the variance, the number of won games and the average time per

move of the program with and without connection threats against Gnugo 3.6.

Using connection threats enables to gain approximately nine points per 9 � 9

game, and sixteen more games on a total of one hundred games. This is an

Algorithm mean std deviation won games time (s)

Without threats �22.33 24.80 11/100 5.7

With connection threats �13.02 25.06 27/100 11.9

Table 2. Score and time for the Go program with and without connection

threats.
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encouraging result given that the program only uses connections and connection

threats. An interesting point is that the mean of the games where the Monte-

Carlo based program was black, is �6:9 including komi, and the mean with

white is �19:1 also including komi. The program is much better with black

than with white. Looking at the games, a possible explanation is that the Monte-

Carlo program does not use any life and death search, it loses eight games by

75.5 as white, and only one game by 86.5 as black. Many of the games it loses

completely are due to lack of life and death search and evaluation.

7.3. Over-evaluation of threats. The values computed for goals with the

Monte-Carlo algorithm already take into account, to a certain extent, the threats

associated to the goals. In some cases, this can be misleading for the program

as it overevaluates the value of some threats. An example is given in Figure

1. White B threatens White C, and invalidates Black E. The connection (A,B)

evaluates to �2:2, (D,E) to 12.4, (A,B) and (B,C) to �14:2. So the temperature

of White B is evaluated to 10.3. The connection (G,H) evaluates to �5:8, (I,J)

to 8.1, (G,H) and (H,L) to �9:4, (I,J) and (J,K) to 15.5. So the temperature of

White H evaluates to 9.7. The program prefers White B to White H, which is

bad.

One problem here is overevaluation of the threat for White of connecting

(A,B) and (B,C). In the random games where both connections are reached, one

half of the games also have C and F connected, which makes a big difference in

the final score. However, if Black plays well, C and F never get connected, and

the value of the threat is much lower. A possible solution to the problem of the

overevaluation of threats could be to make the program play better during the

Monte-Carlo games [Bouzy 2005].

8. Conclusion and future work

An algorithm to verify if reaching a goal threatens another goal has been

described, as well as its incorporation in a Go program. It has also been shown

how unsettled goals and the associated threat goals, found by this algorithm,

can be evaluated in a Monte-Carlo Go framework. An approximation of the

temperature has been used to evaluate moves given the related goal evaluations.

Results on a test suite for threats have been detailed. The use of connection

threats in a Go program improves its results by approximately nine points for

9 � 9 games against Gnugo 3.6.

There are many points left for future work. First, it would be interesting

to test the algorithm with other goals than connection ones. Second, the pro-

gram currently often overestimates the values of threats. An improvement of the

Monte-Carlo algorithm in order to make it play less randomly could address this
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Figure 4. Moves can avoid threats.

point. Third, the interactions between goal threats and combination of goals are

also interesting to explore. Fourth, the program currently evaluates the value of

playing threats but does not take into account the value of playing moves that

invalidate threats: for example, in Figure 4, the Black moves at C and D both

connect A and B, Black D invalidates the threat of White E, but Black C does

not invalidate the threat of White E. Eventually, work remains to be done to take

into account the different options of the enemy when building the thermograph

for empty connections.
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1 (Yes) 2 (Yes) 3 (Yes)

4 (Yes) 5 (No) 6 (Yes)

7 (No) 8 (Yes) 9 (Yes)

10 (No) 11 (Yes) 12 (Yes)

13 (Yes) 14 (Yes)

Figure 5. The test suite.
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A puzzling Hex primer

RYAN B. HAYWARD

ABSTRACT. We explain some analytic methods that can be useful in solving

Hex puzzles.

1. Introduction

Solving Hex puzzles can be both fun and challenging. In this paper — a

puzzling companion to Hex and Combinatorics [5] and Dead Cell Analysis in

Hex and the Shannon Game [2], both written in tribute to Claude Berge — we

illustrate some theoretical concepts that can be useful in this regard.

We begin with a quick review of the rules, history, and classic results of Hex.

For an in depth treatment of these topics, see [5].

The parallelogram-shaped board consists of an m�n array of hexagonal cells.

The two players, say Black and White, are each assigned a set of coloured

stones, say black and white respectively, and two opposing sides of the board,

as indicated in our figures by the four stones placed off the board. In alternating

turns, each player places a stone on an unoccupied cell. The first player to

connect his or her two sides wins.

In the fall of 1942 Piet Hein introduced the game, then called Polygon, to the

Copenhagen University student science club Parenthesis. Soon after, he penned

an article on the game for the newspaper Politiken [6; 8; 9]. In 1948 John

Nash independently reinvented the game in Princeton [4; 10], and in 1952 he

wrote a classified document on it for the Rand Corporation [11]. In 1957 Martin

Gardner introduced Hex to a wide audience via his Mathematical Games column

[3], later reprinted with an addendum as a book chapter [4].

For Hex played on an m�n board, the game cannot end in a draw (Hein

[6], Nash [11]); for m D n, there exists a winning strategy for the first player

The support of NSERC is gratefully acknowledged.
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(Hein, Nash [11]; see also [3]); for m < n, there exists a winning strategy for

the player whose sides are closer together, even if the other player moves first

(Gardner/Shannon [4]); for arbitrary Hex positions, determining the winner is

PSPACE-complete (Reisch [12]).

To start our discussion, consider Puzzle 1:

a

a

b

b

c

c

d

d

e

e

f

f

g

g1

1

2

2

3

3

4

4

5

5

6

6

7

7

Puzzle 1. An easy warm-up. White to play and win.

2. Virtual connections

One useful Hex concept is that of a virtual connection, namely a subgame in

which one player can establish a connection even if the opponent moves first. In

Puzzle 1, as shown in the left diagram of in Figure 1 below, the cell set fd7; e7g

forms a ‘bridge’ virtual connection between the white stone at e6 and the white

border on the upper right side. If Black ever plays at one of these two bridge

cells, White can then make the connection by playing at the other. Similarly,

the white border on the lower left side is virtually connected to the two white

stones at fd3; e2g via the cell set fc1; c2; c3; d1; d2; e1g: if Black plays at any of

c1; c2; c3; d1; d2 White can then play at e1, whereas if Black plays at e1 White

can then play at c2 and subsequently make use of the resulting bridge cell sets

fc1; d1g and fc3; d2g.

As suggested by Figure 1, left, the gap between the two white groups is an

obvious place to look for a winning move; the right diagram shows such a move

at e4. After this move, the new stone is virtually connected by the upper eight
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Figure 1. Two white virtual connections (left) and, after a winning move,
a side-to-side white virtual connection (right).
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marked cells to the upper white side, and by a bridge to fd3; e2g, and so then by

the lower six marked cells to the lower white side, yielding a virtual connection

joining the two white sides. Thus e4 is a winning move for Puzzle 1.

3. Mustplay regions

Are there any other winning moves for Puzzle 1?

Hex is a game in which it is easy to blunder. Even from obviously won

positions, there are usually many moves that lead to quick losses. Since there

are no draws in Hex, one way to answer the above question is to first check

whether any losing moves can be identified. A weak connection is a subgame

in which one player can force a connection if allowed to play first. Does the

opponent have any side-to-side, and so win-threatening, weak connections?

A virtual connection for a player is winning if it connects the player’s two

sides; a win-set is the set of cells of a winning virtual connection. Analogously,

a weak connection for a player is win-threatening if it connects the player’s two

sides; a weak win-set is the cell set of a win-threatening weak connection. The

first three parts of Figure 2 show three black weak win-sets for Puzzle 1.

Figure 2. For Puzzle 1, three black weak win-sets and the resulting white
mustplay region. This region has only one cell, so White has only one
possible winning move.

Notice in the figure that, in order to prevent Black from winning, White’s next

move must intersect each of Black’s weak win-sets, since any weak connection

that is not intersected by White’s move can be turned into a virtual connection

on Black’s subsequent move. More generally, at any point in a Hex game, a

move is winning if it intersects all of an opponent’s weak win-sets.1

1The converse of this statement holds as long as the opponent has at least one weak win-set; then a move

is winning if and only if it intersects all of an opponent’s weak win-sets. However, if the player about to
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A gamestate specifies a boardstate, or board configuration, and whose turn it

is to move. With respect to a player, a gamestate, and a collection of opponent

weak win-sets, we call the combined intersection of these weak win-sets the

mustplay region, since a player ‘must play’ there or lose the game.

As shown in Figure 2, the white mustplay region associated with the three

weak connections is fe4g. We have already seen that e4 is a winning move for

Puzzle 1; our mustplay analysis tells us that every other move loses. So, to

answer the question from the start of this section, there are no other winning

moves for Puzzle 1.

4. A Hex solver based on mustplay analysis

There is a straightforward way to solve any Hex puzzle: completely explore

the search tree resulting from all possible continuations of the puzzle. This

approach is usually impractical, as the number of different gamestates in the

search tree is exponential in the number of unoccupied cells. Since solving

Hex puzzles is PSPACE-complete, there is unlikely to be any ‘fast’, namely

polynomial time, Hex-solving algorithm. Nonetheless, the search tree can often

be pruned using various techniques. In particular, in this section we illustrate an

algorithm that uses mustplay regions to prune the search tree.

To demonstrate, consider Puzzle 2. To start, we first look for a white win-set.

Finding none, we next look for a black weak win-set. You may have already

found one, for example using d4; Figure 3 shows three such black weak win-sets.

The associated white mustplay region, shown in the last diagram of Figure 3, is

the intersection of the black weak win-sets, namely fc4; c5; d4; e3; e4; f2; f4g.

If White has a winning move, it is at one of these cells.
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Puzzle 2. A more challenging problem. White to play and win.

Figure 4 shows what happens as, in no particular order, we next consider the

moves of this mustplay region. In the first diagram we make the white move

at c5; by continuing to recursively apply our algorithm, we eventually discover

that Black wins the resulting gamestate with the black win-set as shown. At this

move is so far ahead in the game that the opponent has no weak win-set, then the intersection of all of the

opponent’s weak win-sets is the empty set; thus the converse does not hold in such cases.
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Figure 3. For Puzzle 2, three black weak win-sets and the resulting white
mustplay region.

point we undo the white move, so the black win-set becomes a black weak win-

set. We next use this black weak win-set to update the white mustplay region;

it becomes reduced to fc4; d4; e3; e4; f2; f4g. In similar fashion, we eventually

discover that the next three white moves considered, namely d4; e3; e4, also lose

for White; the resulting black weak win-sets are shown in Figure 4. Notice that

the last of these weak win-sets does not contain f4, so by this point the white

mustplay region has been reduced to fc4; f2g.

Figure 4. Black weak win-sets after moves c5, d4, e3, e4 respectively.

Figure 5 shows what happens as we consider these last two possible moves.

The white move at f2 loses, but the white move at c4 wins. Thus c4 is the unique

winning move for Puzzle 2.

We have omitted all the details from the recursive calls of this algorithm. We

leave as exercises for the reader to verify that the five weak win-sets and the one
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Figure 5. A black weak win-set after f2, and a white win-set after c4.
Thus c4 wins for White.

win-set shown in Figures 3–5 are correct.2 As a guide, the reader might find it

useful to follow Figure 6 on page 160; it gives a version of this algorithm due

to Jack van Rijswijck [14].

Another exercise is to solve Puzzle 3, created by Claude Berge. There is

more than one solution; running down the upper-left region is straightforward,

while breaking through to the upper-right side is more difficult. Try to find a

win-set with no unnecessary cells. One such win-set appears in the last section

(page 159).

Puzzle 3. White to play and win. By Claude Berge [1].

5. Dead cell analysis

Mustplay analysis yields a set of cells that is critical to a gamestate’s outcome.

A different form of analysis is based on recognizing individual cells that are

irrelevant. We illustrate this ‘dead cell analysis’ by working through Puzzle 4,

created by Piet Hein.

2The most challenging of these exercises is the last one, namely to show that c4 wins for White. The

strongest next moves for Black include c3, c5, c6, d3, and e2; respective winning replies for White include

d3, e4, e5, e4, and d3. For other exercises on small boards, see the opening theory link on Jack van Rijswijck’s

Queenbee webpage [13].
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Puzzle 4. White to play and win. By Piet Hein [7].

A completion of a boardstate is any boardstate obtained by filling all vacant

cells of the given boardstate with any combination of black and/or white stones.

A cell of a boardstate is dead if, for every possible completion, changing the

colour of the stone on the given cell does not alter the winner of the completion.

A cell is live if it is not dead.

For example, the boardstate of Puzzle 4 has 25 vacant cells and so has 2
25

completions. We leave it to the reader to consider a sample of these completions

and verify that in each case, changing the colour of the stone at cell d1 does not

change the winner of the completion. Thus, in this boardstate d1 is dead.

A gamestate is undecided if neither player has yet won. A useful feature of

dead cells is that placing or removing a stone of either colour at a dead cell does

not alter the gamestate’s winner. Therefore every undecided gamestate with a

winning move has a winning move to a live cell.

Thus, dead cells can be safely pruned from the search tree of a gamestate.

Happily for Hex puzzlers, dead cells can be recognized without having to

consider all of a boardstate’s completions. The left diagram in Figure 6 is the

white adjacency graph for the Puzzle 4 boardstate. The nodes of the graph

correspond to the vacant board cells; additionally, two terminal nodes represent

the white borders. In the graph, a pair of nodes is joined by an edge if the

corresponding cells touch or are joined by connecting white stones.

A path is induced if it has no ‘shortcuts’, namely if the only edges among

vertices of the path are between pairs of vertices that are consecutive in the

path. The following characterization is an easy consequence of the definition of

dead.

T

T

T

T

Figure 6. White and black adjacency graphs for Puzzle 4.
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A cell with a stone is live if and only if that cell is live after removing that

stone. A vacant cell of a boardstate is live if and only if the cell is in some

induced terminal-to-terminal path in each of the boardstate’s adjacency graphs.

Notice that the white adjacency graph for Puzzle 4 has no induced terminal-

to-terminal path that contains d1. Thus d1 is dead in Puzzle 4, as are a1 and c1.

The number of dead cells in a gamestate is often small. However, considering

cells that can be ‘killed’ allows further possible moves to be ignored. In Puzzle

4 it would be pointless for White to play at the white-vulnerable cell e2, since a

Black response at d3 would kill a white stone at f2.

This line of reasoning can be continued. Black has a ‘second-player kill’

strategy for ff2; f3g: if White ever plays at one of these cells, Black can reply

at the other, leaving one cell black and the other dead. We say this set is black-

captured, since assuming that these cells are already occupied by black stones

does not change the theoretical outcome of the game. As an exercise, the reader

should verify that ff1; e2; f2; f3g is black-captured. It suffices to find, for the

subgame played on these cells, a second-player strategy for Black that leaves

every stone black or dead.

The notion of dominated is analogous to the notion of captured. In Puzzle 4

fa6; b5; b6g is white-dominated, since White has a first-player strategy for the

subgame on these cells that leaves every stone white or dead. The first move

in this strategy is to b5, so for this strategy b5 is white-dominating and the

remaining cells are white-dominated. When White is searching for a winning

move, it is sufficient to consider among the cells of a white-dominated set only

the dominating cell since after moving there the remaining cells become white-

captured.

To summarize these ideas, let us complete our analysis of Puzzle 4. It is

White’s turn to move. The cells in fa1; c1; d1g, ff1; e2; f2; f3g, and fa2; b2g are

respectively dead, black-captured, and white-captured. After white- and black-

captured stones have been added to the board, the cells in fd3; f4; f5g are white-

vulnerable, as they would be killed by respective responses, and subsequent

black-capturing, at d4; e4; e5. The sets fb4; a4; b3g, fb5; a6; b6g, fe5; d6; e6g,

ff5; e6; f6g are white-dominated by b4; b5; e5; f5 respectively.

This analysis is illustrated in the first diagram of Figure 7, where dead cells

are indicated with grey circles, captured stones are marked with dots, white-

vulnerable cells are marked by ‘v’, and white-dominated cells are marked by

‘x’. Any cell that is marked can be ignored in the search for a winning move,

so there are only six cells left to consider.

As can be seen from Figure 7, right, which shows a win-set found after the

captured stones have been added, a4 is a winning move for Puzzle 4. We leave

it to the reader to check whether there are any other winning moves.
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Figure 7. Dead, captured, white-dominated, and white-vulnerable cells of
Puzzle 4 (left), and, after dead and captured stones are added, a black
weak win-set (right).

6. A win-set for Puzzle 3

Berge designed Puzzle 3 (page 156) to be a study rather than a puzzle, so

there is more than one winning move. A solution that involves play in the upper

right region of the board appears in [5].

Another solution is to start at c11, and use the threat of connecting the top

white group of three stones with the white line ending at e5 to force play towards

the lower white border. A win-set for this solution, verified by a computer

program written by Van Riswijck, is shown in Figure 8. This win-set is minimal,

in that it contains no unnecessary cells; if any cell of the win-set is removed and

black stones are then placed at all vacant cells and the one removed cell of the

win-set, then White can no longer win. As a final exercise, we leave it to the

reader to find a winning strategy that uses only the cells of this win-set. An

answer appears in Van Rijswijck’s doctoral thesis [15].
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Figure 8. A white win-set for Puzzle 3.
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Appendix: A mustplay-based Hex solver due to Jack van Rijswijck

Algorithm WINVALUE

Input: .B; �/, where B is a board configuration and � is the player to move

Output: .v; X /, where v is 1/-1 if � wins/loses and X is a win-set

if (B has a winning chain for �) then return .C1; ?/

if (B has a winning chain for opponent of �) then return .�1; ?/

W  ? [W is the cell set of a winning virtual connection]

M  unoccupied cells of B [M is the must-play]

while (M ¤?)

m any cell in M

B
0 board configuration after adding to B at cell m a stone of �’s

� 0 opponent of �

.v; S/ WINVALUE.B0; � 0/

if (v D�1) then return .C1; S [fmg/

W  W [S ; M  M \S

endwhile

return .�1; W /
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[3] Martin Gardner. Mathematical games. Scientific American, 197, 1957. July pp. 145–

150; August pp. 120–127; October pp. 130–138.

[4] Martin Gardner. The Scientific American Book of Mathematical Puzzles and Di-

versions, chapter The game of Hex, pages 73–83. Simon and Schuster, New York,

1959.



A PUZZLING HEX PRIMER 161

[5] Ryan Hayward and Jack van Rijswijck. Hex and combinatorics (formerly Notes on

Hex). Discrete Mathematics, 306:2515–2528, 2006.

[6] Piet Hein. Vil de laere Polygon? Article in Politiken newspaper, 26 December 1942.

[7] Piet Hein. Polygon. Article in Politiken newspaper, 3 February 1943.

[8] Thomas Maarup. Hex – everything you always wanted to know about Hex but were

afraid to ask. Master’s thesis, Department of Mathematics and Computer Science,

University of Southern Denmark, Odense, Denmark, 2005.

[9] Thomas Maarup. Hex webpage, 2005. See http://maarup.net/thomas/hex/.

[10] Sylvia Nasar. A Beautiful Mind. Touchstone, New York, 1998.

[11] John Nash. Some games and machines for playing them. Technical Report D-

1164, Rand Corp., 1952.

[12] Stefan Reisch. Hex ist PSPACE-vollständig. Acta Informatica, 15:167–191, 1981.
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Tigers and Goats is a draw

LIM YEW JIN AND JURG NIEVERGELT

ABSTRACT. Bagha Chal, or “Moving Tiger”, is an ancient Nepali board game

also known as Tigers and Goats. We briefly describe the game, some of its

characteristics, and the results obtained from an earlier computer analysis. As

in some other games such as Merrill’s, play starts with a placement phase

where 20 pieces are dropped on the board, followed by a sliding phase during

which pieces move and may be captured. The endgame sliding phase had

been analyzed exhaustively using retrograde analysis, yielding a database con-

sisting of 88,260,972 positions, which are inequivalent under symmetry. The

placement phase involves a search of 39 plies whose game tree complexity is

estimated to be of the order 1041. This search has now been completed with the

help of various optimization techniques. The two main ones are: confronting a

heuristic player with an optimal opponent, thus cutting the search depth in half;

and constructing a database of positions halfway down the search tree whose

game-theoretic value is determined exhaustively. The result of this search is

that Tigers and Goats is a draw if played optimally.

1. Introduction

Bagha Chal, or “Moving Tiger”, is an ancient Nepali board game, which

has recently attracted attention among game fans under the name Tigers and

Goats. This game between two opponents, whom we call “Tiger” and “Goat”,

is similar in concept to a number of other asymmetric games played around

the world — asymmetric in the sense that the opponents fight with weapons of

different characteristics, a feature whose entertainment value has been known

since the days of Roman gladiator combat.

On the small, crowded board of 5 x 5 grid points shown in Figure 1, four

tigers face up to 20 goats. A goat that strays away from the safety of the herd

and ventures next to a tiger gets eaten, and the goats lose if too many of them get

swallowed up. A tiger that gets trapped by a herd of goats is immobilized, and

the tigers lose if none of them can move. Various games share the characteristic

163
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that a multitude of weak pieces tries to corner a few stronger pieces, such as

“Fox and Geese” in various versions, as described in “Winning ways” [BCG

2001] and other sources.

The rules of Tigers and Goats are simple. The game starts with the four tigers

placed on the four corner spots (grid points), followed by alternating moves with

Goat to play first. In a placement phase, which lasts 39 plies, Goat drops his

20 goats, one on each move, on any empty spot. Tiger moves one of his tigers

according to either of the following two rules:

– A tiger can slide from his current spot to any empty spot that is adjacent and

connected by a line.

– A tiger may jump in a straight line over any single adjacent goat, thereby

killing the goat (removing it from the board), provided the landing spot be-

yond the goat is empty.

If Tiger has no legal move, he loses the game; if a certain number of goats have

been killed (typically five), Goat loses.
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Figure 1. Left: The position after the only (modulo symmetry) first Goat
move that avoids an early capture of a goat. At Right: Tiger to move
can capture a goat, but thereafter Goat suffocates the tigers with a forcing
sequence of 5 plies (challenge: find it).

These rules are illustrated in Figure 2, which also show that Goat loses a goat

within 10 plies unless his first move is on the center spot of a border.

The 39-ply placement phase is followed by the sliding phase that can last for-

ever. Whereas the legal Tiger moves remain the same, the Goat rule changes: on

his turn to play, Goat must slide any of his surviving goats to an adjacent empty

spot connected by a line. If there are 17 or fewer goats on the board, 4 tigers

cannot block all of them and such a move always exists. In some exceptional

cases (which arise only if Goat cooperates with Tiger) with 18 or more goats,

the 4 tigers can surround and block off a corner and prevent any goat moves.

Since Goat has no legal moves, he loses the game.
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Figure 2. Goat has 5 distinct first moves (ignoring symmetric variants).
All but the first move shown in Figure 1 lead to the capture of a goat
within at most 10 plies, as these two forcing sequences show. At right,
Tiger’s last move 8 sets up a double attack against the two goats labeled
1 and 3.

Although various web pages that describe Tigers and Goats offer advice on

how to play the game, we have found no expert know-how about strategy and

tactics. Plausible rules of thumb about play include the following. First, it is

obvious that the goats have to hug the border during the placement phase — any

goat that strays into the center will either get eaten or cause the demise of some

other goat. Goat’s strategy sounds simple: first populate the borders, and when at

full strength, try to advance in unbroken formation, in the hope of suffocating the

tigers. Unfortunately, this recipe is simpler to state than to execute. In contrast,

we have found no active Tiger strategy. It appears that the tigers cannot do much

better than to wait, “doing nothing” (just moving back and forth), until near the

end of the placement phase. Their goal is to stay far apart from each other, for

two reasons: to probe the full length of the goats’ front line for gaps, and to make

it hard for the goats to immobilize all four tigers at the same time. Tiger’s big

chance comes during the sliding phase, when the compulsion to move causes

some goat to step forward and offers Tiger a forcing sequence that leads to

capture. Thus, it seems that Tiger’s play is all tactics, illustrating chess Grand-

master Tartakover’s famous pronouncement: “Tactics is what you do when there

is something to do. Strategy is what you do when there is nothing to do”.

2. Results of a previous investigation

Our earlier investigation with the goal of solving Tigers and Goats had given

us partial results and a good understanding of the nature of this game, but we

fell short of achieving an exhaustive analysis in the sense of determining the

outcome: win, loss or draw, under optimal play. Here we summarize the main

insights reported in [Lim 2004].
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Size and structure of the state space. The first objective when attacking any

search problem is to learn as much as possible about the size and structure of the

state space in which the search takes place. For Tigers and Goats it is convenient

to partition this space into 6 subspaces:

S0: all the positions that can occur during the placement phase,

including 4 tigers and 1 to 20 goats.

Sk : for k D 1 : : : 5, all the positions that can occur during the sliding phase,

with 4 tigers, 21 � k goats, and k empty spots on the board.

Notice that any position in any S1 to S5 visually looks exactly like some position

in S0, yet the two are different positions: in S0, the legal Goat moves are to drop

a goat onto an empty spot, whereas in S1 to S5, the legal moves are to slide one

of the goats already on the board. For each subspace S1 to S5, a position is

determined by the placement of pieces on the board, which we call the board

image, and by the player whose turn it is to move. Thus, the number of positions

in S1 to S5 is twice the number of distinct board images.

For S0, however, counting positions is more difficult, since the same board

image can arise from several different positions, depending on how many goats

have been captured. As an example consider an arbitrary board image in S5,

hence with 16 goats and 5 empty spots. This same board image could have

arisen, as an element of S0, from ten different positions, in which 0, 1, 2, 3,

or 4 goats have been captured, and in each case, it is either Tiger’s or Goat’s

turn to move. Although for board images in S1 through S4 the multiplier is less

than 10, these small subspaces do not diminish the average multiplier by much.

Thus, we estimate that the number of positions in S0 is close to 10 times the

number of board images in S0, which amounts to about 33 billion.

Since the game board has all the symmetries of a square that can be rotated

and flipped, many board positions have symmetric “siblings” that behave iden-

tically for all game purposes. Thus, all the spaces S0 to S5 can be reduced in

size by roughly a factor of 8, so as to contain only positions that are pairwise

inequivalent. Using Polya’s counting theory [Polya 1937] we computed the

exact size of the symmetry-reduced state spaces S1 to S5, and of the board

images of S0, as shown in Table 1.

S0 is very much larger than all of S1 to S5 together, and has a more com-

plex structure. Due to captures during the placement phase, play in S0 can

proceed back and forth between more or fewer goats on the board, whereas

play in the sliding phase proceeds monotonically from Sk to SkC1. These two

facts suggest that the subspaces are analyzed differently: S1 to S5 are analyzed

exhaustively using retrograde analysis, whereas S0 is probed selectively using

forward search [Gasser 1996].
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# of board images # of positions

S0 3,316,529,500 �33,000,000,000

S1 33,481 66,962

S2 333,175 666,350

S3 2,105,695 4,211,390

S4 9,469,965 18,939,930

S5 32,188,170 64,376,340

Table 1. Number of distinct board images and positions for corresponding
subspaces

Database and statistics for the sliding phase. Using retrograde analysis [Wu

2002] we determined the game-theoretic value of each of the 88,260,972 po-

sitions in the spaces S1 to S5, i.e., during the sliding phase. A Tiger win is

defined as the capture of 5 goats, a Tiger loss as the inability to move, and a

draw (by repetition) is defined as a position where no opponent can force a win,

and each can avoid a loss. Table 2 shows the distribution of won, drawn and

lost positions.

Number of goats captured

4 3 2 1 0

Wins
913,153 1,315,111 882,523 252,381 30,609

(2.8%) (13.9%) (41.9%) (75.8%) (91.4%)

Draws
8,045,787 6,226,358 1,199,231 80,706 2,812

(25.0%) (65.7%) (57.0%) (24.2%) (8.4%)

G
o
at

to
m

o
v
e

Losses
23,229,230 1,928,496 23,941 88 60

(72.2%) (20.4%) (1.1%) (0.03%) (0.2%)

Total 32,188,170 9,469,965 2,105,695 333,175 33,481

Wins
30,469,634 6,260,219 465,721 6,452 146

(94.7%) (66.1%) (22.1%) (1.9%) (0.4%)

Draws
1,569,409 2,918,104 1,353,969 197,537 9,468

(4.9%) (30.8%) (64.3%) (59.3%) (28.3%)

T
ig

er
to

m
o
v
e

Losses
149,127 291,642 286,005 129,186 23,867

(0.5%) (3.1%) (13.6%) (38.8%) (71.3%)

Table 2. Endgame database statistics. Percentages are relative to totals
for a given player to move.
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Goats captured 1 2 3 4 5

Complexity 1:28�1024 4:23�1036 8:92�1038 3:09�1040 4:88�1041

Table 3. Estimated tree complexity for various winning criteria.

Game tree complexity. The search space S0, with approximately 33 billion

positions, is too large for a static data structure that stores each position exactly

once. Hence it is generated on the fly, with portions of it stored in hash tables.

As a consequence, the same position may be generated and analyzed repeatedly.

A worst case measure of the work thus generated is called game tree complexity.

The size of the full search tree can be estimated by a Monte Carlo technique as

described by [Knuth 1975]. For each of a number of random paths from the root

to a leaf, we evaluate the quantity F D1Cf1Cf1�f2Cf1�f2�f3C� � �, where

fj is the fan out, or the number of children, of the node at level j encountered

along this path. The average of these values F , taken over the random paths

sampled, is the expected number of nodes in the full search tree. Table 3 lists

the estimated game tree complexity (after the removal of symmetric positions)

of five different “games”, where the game ends by capturing 1 to 5 goats during

the placement phase. These estimates are based on 100,000 path samples.

Cutting search trees in half. A 39-ply search with a branching factor that

often exceeds a dozen legal moves is a big challenge. Therefore, the key to

successful forward searches through the state space S0 of the placement phase

is to replace a 39-ply search with a number of carefully designed searches that

are effectively only 20 plies deep. This is achieved by 1) formulating hypotheses

of the type “player X can achieve result Y”, 2) programming a competent and

efficient heuristic player X that generates only one or a few candidate moves

in each position, and 3) confronting the selective player X with his exhaustive

opponent who tries all his legal moves. If this search that alternates selective

and exhaustive move generation succeeds, the hypothesis Y is proven. If not,

one may try to develop a stronger heuristic player X, or weaken the hypothesis,

e.g. from “X wins” to “X can get at least a draw”. Using such searches designed

to verify a specific hypothesis we were able to prove several results including

the following:

(i) Tiger can force the capture of a single goat within 30 plies, but no sooner.

(ii) Tiger can force the capture of two goats within 40 plies, i.e., by the end of

the placement phase, but not earlier.

(iii) After the most plausible first two moves (the first by Goat, the second by

Tiger) Goat has a drawing strategy.
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Heuristic attackers and defenders. In order to make these searches feasible

we had to develop strong heuristic players. Given our lack of access to human

expertise, we developed player programs that learn from experience by being

pitted against each other — a topic described in [Lim 2005]. For example, the

proof that Tiger can kill a certain number of goats requires a strong Tiger that

tries to overcome an exhaustive Goat. Conversely, the proof that Goat has a

drawing strategy after the most plausible opening requires a strong heuristic

Goat that defies an exhaustive Tiger.

Goat has at least a draw. After Goat’s most reasonable first move, Tiger has 6

symmetrically distinct replies at ply 2. Using the same techniques and software

as described above, further computer runs that stretched over a couple of months

proved that Goat has a successful defense against all of them. Having shown

that Goat can ensure at least a draw, the next question is “does Goat have a

winning strategy?”.

Insights into the nature of the game. We were unable to discover easily

formulated advice to players beyond plausible rules-of-thumb such as “goats

cautiously hug the border, tigers patiently wait to spring a surprise attack”. On

the other hand, our database explains the seemingly arbitrary number “five” in

the usual winning criterion “Tiger wins when 5 goats have been killed”. This

magic number “5” must have been observed as the best way to balance the

chances. We know that Tiger can kill some goats, so Tiger’s challenge must be

more ambitious than “kill any one goat”. On the other hand, we see from Table

2 that there is a significant jump in number of lost positions for Goat from three

goats captured to four goats captured. It is therefore fairly safe to conjecture

that once half a dozen goats are gone, they are all gone — Goat lacks the critical

mass to put up resistance. But as long as there are at least 16 goats on the board

(at most 4 goats have been captured), the herd is still large enough to have a

chance at trapping the tigers.

Table 2 also shows that unless Tiger succeeds in capturing at least two goats

during the placement phase, he has practically no chance of winning. If he

enters the sliding phase facing 19 goats, less than 2% of all positions are won

for Tiger, regardless of whether it is his turn to move or not. The fact that Tiger

can indeed force the capture of 2 goats within 40 plies, that is, by the end of the

placement phase (see page 168), is another example of how well-balanced the

opponents’ chances are.

3. Proving Tiger’s draw

The previous investigation, with the result that Goat has at least a draw, had

brought us tantalizingly close to determining the game-theoretic value of Tigers
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and Goats. Computing the endgame database had been relatively straightfor-

ward, but the 39-ply forward search had not yielded to the judicious application

of established techniques. Experience had shown that by approximating a 39-

ply search by various 19-ply and 20-ply searches (see “Cutting search trees in

half”, page 168), we were able to answer a variety of questions. It appeared

plausible that by formulating sufficiently many well-chosen hypotheses this ap-

proach would eventually yield a complete analysis of the game. We conjectured

that Tiger also has a drawing strategy, and set out to try to prove this using the

same techniques that had yielded Goat’s drawing strategy.

The asymmetric role of the two opponents, however, made itself felt at this

point: the searches pitting a heuristic Tiger player against an exhaustive Goat

progressed noticeably more slowly than those involving a heuristic Goat versus

an exhaustive Tiger. In retrospect we interpret this different behavior as due

to the phenomenon “Tiger’s play is all tactics”. Positional considerations —

keep the goats huddled together — make it easy to generate one or a few “prob-

ably safe” Goat’s moves, even without any look-ahead at the immediate con-

sequences. For Tiger, on the other hand, neither we nor apparently the neural

network that trained the player succeeded in recognizing “good moves” without

a local search. An attempt to make Tiger a stronger hunter (by considering the

top 3 moves suggested by the neural network followed by a few plies of full-

width search) is inconsistent with the approach of “cutting the tree in half” and

made the search unacceptably slow.

Thus, a new approach had to be devised. The experience that 20-ply forward

searches proved feasible suggests a more direct approach: compute a database

of positions of known value halfway down the search tree. Specifically, we

define halfway position as one arising after 19 plies, i.e., after the placement

of 10 goats, with Tiger to move next. The value of any such position can be

computed with a search that ends in the endgame database after at most 20 plies.

If sufficiently many such “halfway positions” are known and stored, searches

from the root of the tree (the starting position of the game) will run into them

and terminate the search after at most 19 plies.

The problem with this approach is that the number of halfway positions is

large, even after symmetric variants have been eliminated. Because of captures

not all 10 goats placed may still be on the board, hence a halfway position has

anywhere between 6 and 10 goats, and correspondingly, 15 to 11 empty spots.

Using the terminology of Section 2, the set of halfway positions is (perhaps

a subset of) the union of S11, S12, S13, S14 and S15, where Sk is the set

of all symmetrically inequivalent positions containing 4 tigers, 21 � k goats,

and k empty spaces. S11, with about equally as many goats as empty spots,

is particularly large. On the assumption that in any subspace Sk the number
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of symmetrically inequivalent positions is close to 1/8 of the total, S11 contains

about 550 million inequivalent positions. The union of S11 through S15 contains

about 1:6� 109 positions. This number is about 25 times larger than the largest

endgame database we had computed before, namely S5.

The approach to overcome the problem of constructing a large halfway data-

base exploits two ideas. First, the database of halfway positions of known value

need not necessarily include all halfway positions. In order to prove that Tiger

has a drawing strategy, the database need only include a sufficient number of

positions known to be drawn or a win for Tiger so that any forward search is

trapped by the filter of these positions. Second, the database of halfway positions

is built on the fly: whenever a halfway position is encountered whose value

is unknown, this position is entered into the database and a full-width search

continues until its value has been computed.

Although there was no a priori certainty that this approach would terminate

within a reasonable time, trial and error and repeated program optimization over

a period of five months led to success. Table 4 contains the statistics of the

halfway database actually constructed. For each of S15 through S11, it shows

the number of positions whose value was actually computed, broken down into

the two categories relevant from Tiger’s point of view, win-or-draw vs. loss.

Estimated
# Captured # Win or Draw # Loss Total state space size

4 17,902,335 0 17,902,335 85,804,950

3 33,152,214 0 33,152,214 183,867,750

2 64,336,692 17,944 64,354,636 321,768,563

1 84,832,697 329,183 85,161,880 464,776,813

0 15,857,243 91,676 15,948,919 557,732,175

Total 216,081,181 438,803 216,519,984 1,613,950,251

Table 4. Halfway database statistics: the number of positions computed
and their value from Tiger’s point of view: win-or-draw vs. loss

Although the construction of the halfway database is intertwined with the

forward searches — a position is added and evaluated only as needed — logically

it is clearest to separate the two. We discuss details of the forward searches in

the next section.

4. Implementation, optimization, verification

Our investigation of Tigers and Goats has been active, on and off, for the past

three years. The resources used have varied form a Pentium 4 personal computer
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to a cluster of Linux PC workstations. Hundreds of computer runs were used

to explore the state space, test and confirm hypotheses, and verify results. The

longest continuous run lasted for five months as a background process on an

Apple PowerMac G5 used mainly for web surfing.

The algorithmic search techniques used are standard, but three main chal-

lenges must be overcome in order to succeed with an extensive search problem

such as Tigers and Goats. First, efficiency must be pushed to the limit by adapt-

ing general techniques to the specific problem at hand, such as the decision

described above on how to combine different search techniques. Second, pro-

grams must be optimized for each of the computer systems used. Third, the

results obtained must be verified to insure they are indeed correct. We address

these three issues as follows.

Domain-specific optimizations. The two databases constructed, of endgame

positions and halfway positions, limit all forward searches to at most 20 plies.

Still, performing a large number of 20-ply searches in a tree with an average

branching factor of 10 remains a challenge that calls for optimization wherever

possible.

The most profitable source of optimizations is the high degree of symmetry of

the game board. Whereas the construction of the two databases of endgame and

halfway positions is designed to avoid symmetric variants, this same desirable

goal proved not to be feasible during forward searches — it would have meant

constructing a database consisting of all positions.

Instead, the goal is to avoid generating some, though not necessarily all, sym-

metrically equivalent positions when this can be done quickly, namely during

move generation. Although the details are cumbersome to state, in particular

for Tiger moves, the general idea is straightforward. Any position that arises

during the search is analyzed to determine all active symmetries. Thereafter,

among all the moves that generate symmetric outcomes, only that one is retained

that generates the resulting position of lowest index. This analysis guarantees

that all immediate successors to any given position are inequivalent. Because

of transpositions, of course, symmetric variants will appear among successor

positions further down in the tree. Table 5 shows the effect of this symmetry-

avoiding move generation for the starting position. Although there is a con-

siderable reduction in the number of positions generated, the relative savings

diminish with an expanding horizon.
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Naı̈ve move Symmetry-avoiding Number of
Ply generator move generator distinct positions

1 21 5 5

2 252 36 33

3 5,052 695 354

4 68,204 9,245 2,709

5 1,304,788 173,356 18,906

6 18,592,000 2,441,126 93,812

Table 5. Number of positions created by different move generators.

System-specific optimization. Our previous result for Tigers and Goats used

a cluster of eight Linux PC workstations with a simple synchronous distributed

game-tree search algorithm. However, there are fundamental problems with

synchronous algorithms, discussed in [Brockington 1997], that limit their effi-

ciency. Furthermore, the cluster was becoming more popular and was constantly

overloaded. We therefore decided against implementing a more sophisticated

asynchronous game-tree search and instead relied on a sequential program run-

ning on a single dedicated processor.

We focused our attention on improving the sequential program to run on an

Apple PowerMac G5 1.8 GHz machine running Mac OS-X. Firstly, the neural

network code was optimized using the Single Instruction Multiple Data (SIMD)

unit in the PowerPC architecture called AltiVec. AltiVec consists of highly

parallel operations which allow simultaneous execution of up to 16 operations in

a single clock cycle. This provided a modest improvement of about 15% to the

efficiency of neural network evaluations of the board, but sped up the overall

efficiency of the search much more as the neural network is used repeatedly

within the search to evaluate and reorder the moves.

Next, we moved many of the computations off-line. For example, the moves

for Tiger at each point on the board in every combination of surrounding pieces

were precomputed into a table so that the program simply retrieved the table

and appended it to the move list during search. Operations like the indexing

of the board and symmetry transformation were also precomputed so that the

program only needed to retrieve data from memory to get the result. Finally, we

recompiled the software with G5-specific optimizations.
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Verification. Two independent re-searches confirm different components of the

result. They used separately coded programs written in C, and took 2 months to

complete.

The first verification search used the database of halfway positions to confirm

the result at the root, namely, “Tiger has a drawing strategy”. Notice that this

verification used only the positions marked as win-or-draw in the database.

The second verification search confirmed the halfway positions marked as

win-or-draw by searching to the endgame database generated by the retrograde

analysis described in [Lim 2004]. All other positions can be ignored, as they

have no effect on the first search.

Another program was written in C to ‘reprove’ the results. This program

had the benefit of a posteriori knowledge that the game is a draw, and this fact

allowed us to concentrate on using aggressive forward pruning techniques to

verify the result. The program used the same domain-specific optimizations

such as symmetry reduction and the halfway databases.

The halfway database was optimized for size by storing the boolean eval-

uation of each position using a single bit. Depending on the type of search,

this boolean evaluation could mean “Goat can at least draw” or “Tiger can at

least draw”. Due to this space optimization the halfway positions and endgame

databases could be stored in memory, thereby avoiding disk accesses and speed-

ing up the search by orders of magnitude.

As Tiger is able to force the capture of two goats only by the end of the place-

ment phase, at ply 40, the search for “Goat can at least draw” used an aggressive

forward pruning strategy of pruning positions which had two or more goats

already captured. The halfway database was set at ply 23, when 12 goats have

already been placed and it is Tiger’s turn to move. The search confirmed that

“Goat can at least draw” in approximately 7 hours while visiting 7,735,443,119

nodes.

The program was also able to confirm that “Tiger can at least draw”. Due

to the large game-tree complexity of this search, two intermediate databases

were placed at ply 21 and ply 31. These databases contribute towards effi-

ciency in two ways: first, they terminate some searches early, and second, they

generate narrower search trees. The latter phenomenon is due to the fact that

these databases are free of symmetrically equivalent positions. In exchange

for a large memory footprint of approximately 2 GB, search performance was

dramatically improved. The searched confirmed that “Tiger can at least draw”

in approximately 48 hours while visiting 40,521,418,103 nodes.
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5. Conclusion

The theory of computation has developed powerful techniques for estimating

the asymptotic complexity of problem classes. By contrast, there is little or no

theory to help in estimating the concrete complexity of computationally hard

problem instances, such as determining the game-theoretic value of Tigers and

Goats. Although the general techniques for attacking such problems have been

well-known for decades, there are only rules of thumb to guide us in adapting

them to the specific problem at hand in an attempt to optimize their efficiency

[Nievergelt 2000].

The principal rule of thumb we have followed in our approach to solving

Tigers and Goats is to precompute the solutions of as many subproblems as can

be handled efficiently with the storage available, both in main memory (hash-

tables) and disks (position data bases). If the net of these known subproblems is

dense enough, it serves to truncate the depth of many forward searches, an effect

that plays a decisive role since the computation time tends to grow exponentially

with search depth. Beyond such rules of thumb, at the present state of knowl-

edge about exhaustive search there is not much more we can do than persistent

experimentation. Developing a technology that gives us quantitative estimates

of the complexity of computationally hard problems remains a challenge.
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Note about references

We are not aware of any widely available publications on Tigers and Goats.

Searching the web for Tigers and Goats, or Bagha Chal in various spellings,

readily leads to a collection of web sites that describe the game and/or let you

play against a computer program.
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Counting liberties in Go capturing races

TEIGO NAKAMURA

ABSTRACT. Applications of combinatorial game theory to Go have, so far,

been focused on endgames and eyespace values, but CGT can be applied to

any situation that involves counting. In this paper, we will show how CGT can

be used to count liberties in Go semeai (capturing races).

Our method of analyzing capturing races applies when there are either no

shared liberties or only simple shared liberties. It uses combinatorial game

values of external liberties to give an evaluation formula for the outcome of

the capturing races.

1. Introduction

Combinatorial game theory (CGT) [1][2] has been applied to many kinds of

existing games and has produced a lot of excellent results. In the case of Go,

applications have focused on endgames [3][4][6][7][10] and eyespace values

[5] so far, but CGT can be applied to any situation that involves counting. In

this paper, we will show another application of CGT to Go, that is, to count

liberties in capturing races. A capturing race, or semeai, is a particular kind of

life and death problem in which two adjacent opposing groups fight to capture

each other’s group. In addition to the skills involved in openings and endgames,

skills in winning capturing races are an important factor in a player’s strength

at Go. In order to win a complicated capturing race, various techniques, such

as counting liberties, taking away the opponent’s liberties and extending self-

liberties, are required in addition to wide and deep reading. Expert human play-

ers usually count liberties for each part of blocks involved in semeai and sum

them up. A position of capturing races can also be decomposed into independent

subpositions, as in the cases of endgames and eyespaces.

We propose a method to analyze capturing races having no shared liberty or

only simple shared liberties. The method uses combinatorial game values of

177
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external liberties. We also prove an evaluation formula to find the outcome of

the capturing races.

2. Capturing races

Terminology. Figure 1 shows an example of capturing races in Go. Both Black

and White blocks of circled stones have only one eye and want to capture the

opponent’s block to make the second eye. In order to describe capturing races,

we use the following terminology.

external liberty

shared liberty
eye liberty

essential block

Figure 1. Example of a capturing race.

ESSENTIAL BLOCK: A block is a maximal connected set of stones of the same

color and the adjacent empty points of a block are called liberties. If a block

loses all its liberties, it is captured and removed from the board. An essential

block is a block of Black or White stones which must be saved from capture.

Capturing an essential block immediately decides a semeai.

SAFE BLOCK: A block which is alive or assumed to be safe. Nonessential

blocks surrounding an essential block are usually regarded as safe blocks.

NEUTRAL BLOCK: A block other than an essential block and a safe block.

Saving or capturing such blocks does not decide a semeai.

LIBERTY REGION: A region which is surrounded by at least one essential block

and some other essential blocks and safe blocks. Liberty regions contain only

empty points and neutral blocks. A liberty region is called an external region

if its boundary does not consist of essential blocks of different color. A liberty

region is called an eye region if its boundary consists entirely of essential

blocks of the same color.

EXTERNAL LIBERTY: A liberty of an essential block in an external liberty re-

gion.
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SHARED LIBERTY: A common liberty of a Black essential block and a White

essential block.

PLAIN LIBERTY: A liberty of an essential block that is also adjacent to an

opponent’s safe block. A plain liberty can be filled without any additional

approach moves by the opponent.

EYE LIBERTY: A liberty in an eye liberty region. An amount of liberty count

in an eye liberty region is greater than or equal to the number of eye liberties

[8]. Eye liberties behave like external liberties in capturing races.

ATTACKER AND DEFENDER: In an external liberty region, the player who owns

the essential block is called the defender and the opponent is called the at-

tacker.

Related research. Müller [8] gives a detailed discussion of capturing races.

He classifies semeais into nine classes in terms of types of external and shared

liberties and eye status. Figure 2 shows some examples of his classification.y x y xy x y xyyx y xyxxy xyyyxxx
(a) class 0

yx x y y xyxy x y y xyx xx yyyy xyxxxyyy xxyyyyxxxxxxx
(b) class 1yxyyx y yyxyxyyx y yxyx xxyy yyxyxxxyxyyy xyyyyyxxxxxx

(c) class 2

y x y a xy xyy xxy x y xyyxyy xyyxxxx
(d) class 3

Figure 2. Müller’s semeai classes.

He gives an evaluation formula for class 0 and class 1 semeais, which have

exactly one essential block of each color and only plain external and shared

liberties, and have no eye or only one eye in nakade shape.
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Formula 1: Müller’s semeai formula� �
�W Advantage of external liberties for the attacker

(difference in the number of liberties for each player’s essential blocks)

S W Number of shared liberties

F D

�

S if S D 0 or defender has an eye;

S � 1 if S > 0 and defender has no eye:

The attacker can win the semeai if � � F:

� �

This is a really simple formula but it is enough to decide complicated semeais

such as one eye versus no eye semeais and big eye versus small eye semeais.

Nevertheless, it is only applicable to the restricted classes of semeais whose

liberties are all plain liberties, that is, all the liberty counts are numbers. Gener-

ally, liberty counts are not numbers in the higher class of semeais, but are games

whose values change with each player’s move.

3. Analysis of capturing races using CGT

Although we must take into account the territory score to analyze a Go end-

game using CGT, we don’t need to assign the terminal score explicitly because

the score comes out of CGT itself if we forbid pass moves, which are permitted

in Go, and permit a return of one prisoner to the opponent as a move instead

of playing on the board. In the case of eyespace values, we have to assign the

terminal score explicitly as the number of distinct eyes, but we can easily find

the terminal nodes and ignore plays beyond the nodes, that is, plays to numbers,

because once the defender makes a secure eye space, the attacker cannot destroy

it. But in the case of capturing races, even though the number of liberties of

essential blocks is taken into account, there remains a subtle problem of how to

assign the terminal scores. Unlike eyespace values, no secure liberty exists in

capturing races, because the attacker can always fill the defender’s liberties one

by one. Even eye liberties are not secure. The attacker can fill liberties inside

the eye.

How to count liberties. To model capturing races, we define the game SemGo,

which has the same rules as Go except for scoring. In SemGo, the terminal

score is basically the number of liberties of essential blocks, but it is exactly

the number of the opponent’s moves which are required to take away all the

liberties. By convention, Black is Left and White is Right; Black scores are

positive and White scores are negative.
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Figure 3 shows some examples of CGT values of SemGos. In Figure 3(a),

White’s essential block has three liberties, but Black cannot directly attack

White’s external liberty, because if he simply fills the liberty, Black’s attacking

block gets to be in atari, and White can capture Black’s five stones and White’s

essential block is alive. So, Black needs to spend one move to protect at the

point of his false eye prior to attacking. Generally, liberty scores in external

liberty regions are greater than or equal to the number of liberties of essential

blocks. In Figure 3(b), if White plays first, the score is zero, but if Black plays

first, the number of liberties becomes three. In Figure 3(c), Black can connect

his two stones and the score becomes four, if he plays first.xxxxxxxx<<<<<xxx< <xx xxx< < xx<xx<<<<<<<xxxxxxxxxx
(a) �4

yyyyyy yy yyy�yyyyy
(b) f3 j 0g

yyyyyy x yy yyy�yyyyy
(c) f4 j 0g

Figure 3. CGT values of SemGos.

Although it seems easy to obtain a CGT expression from a position of SemGo,

we have to resolve the subtle problem of how we can find the terminal nodes

and assign scores to them. As long as liberties of essential blocks exist, both

players still have legal moves in SemGo, but not all moves are useful for both

players. The attacker always has good moves, because he can fill the defender’s

liberties one by one. The defender, on the other hand, may not have any useful

moves. If the defender cannot extend his own liberties by at least one, he should

not play any more. It is always a bad move to take away his own liberties. In

order to obtain CGT expressions, we have to prune the useless moves explicitly

in contrast to endgames and eyespace values.

Figure 4 on the next page shows the key idea of pruning in SemGo. The

position in Figure 4(a) has exactly one dame and the ordinary CGT value is

f0 j 0g D �. In part (b) of the figure, Black’s essential block has one liberty

and Black’s option of reducing his own liberty should be pruned. We assign the

value one to the root node of the resulting game tree in part (c). Part (d) and (e)

show the case of White’s essential block.

The process for assigning the terminal value is summarized in the sidebar on

the next page.
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0 0

{0 | 0} = *

(a) Only one simple dame

0 0

{0 | 0} = *

(b) Black’s essential block

0

1

(c) Ditto, pruned

0 0

{0 | 0} = *

(d) White’s essential block

0

-1

(e) Ditto, pruned

Figure 4. How should we assign the terminal score?

Process for Assigning Terminal Score� �
(i) Play out all legal moves for both players until the essential block has no

liberty.

� At present, it doesn’t matter whether the move is good or bad.

� All the leaf nodes are zero.

� In practice, however, we can count the number of liberties when they

become plain liberties.

(ii) Execute the following operations from bottom to top.

� If the temperature of a node is less than or equal to one, prune the

defender’s branch.

� If the resulting node becomes either of the following forms, replace it:

f j ng ÷n C 1;

f�n j g÷�n � 1:

� This replacement operation is exactly contrary to conventional CGT.

� �
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Figures 5 and 6 illustrate the process for assigning the terminal score. A

number between parentheses denotes the temperature of the node. All three

positions in Figure 5 have the same score of 1, even if Black poses a threat to

gain the number of liberties at the bottom position. In Figure 6 on the next page,

the threat on White is immediately reversed by Black’s fill, and White’s option

is pruned.

0

1

0

1

0

4 0

2(2)

0(0)

0

1

0 0

0(0)

0

0 0

0(0)

0(0)

Figure 5. Process for assigning the terminal score: some positions having
only one liberty.

Evaluation method. The winning condition of SemGo is different from that

of endgames and eyespaces, because we cannot define the winner as the player

who plays the last move. In SemGo the player who fills all the liberties of all of

the opponent’s essential blocks in all summands is the winner. Suicidal moves

are forbidden except for the last winning move. In the case of endgames and

eyespaces, the fact that the smallest incentive for a move is infinitesimal, that is

0-ish and cooling by one, or chilling, plays a very important role in analyzing

positions. But in the case of SemGo , the smallest incentive is 1-ish, because the

attacker always has a move to fill the opponent’s liberties one by one. Therefore,
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-4

-3

-2 -2 -2 -BIG

Figure 6. The game tree of Figure 3(a).

cooling by 1 makes SemGo 0-ish and another cooling by 1 gives us the winner.

That is to say, cooling by 2 is the most important technique for analysis of

SemGo positions.

The procedure below illustrates how to evaluate games of SemGo. We as-

sume that each summand is a position of an external liberty region and no shared

liberty region exists.

The resulting value rounded up and down in cases 2 and 3 is called the ad-

justment value.

Evaluation Method of SemGo� �
Suppose that G is SemGo and g is the game of “G cooled by 2”.

CASE 1: g is an integer:

If g > 0, Black wins. If g < 0, White wins. If g D 0, the first player

wins.

CASE 2: n < g < n C 1 (for an integer n):

If Black plays first, he can round up g to n C 1 in keeping his turn.

If White plays first, he can round down g to n in keeping his turn.

Check the resulting value using the conditions of case 1.

CASE 3: g <> n (g is not comparable to an integer n):

If Black plays first, he can round up g to n C 1 in keeping his turn.

If White plays first, he can round down g to n�1 in keeping his turn.

Check the resulting value using the conditions of case 1.

� �
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4. Examples

4.1. Partial board problems. Figure 7 shows some simple (!) problems of

capturing races and Figure 9 shows the analyses of these problems using our

method described in the previous section. The recommended winning move is

and the other winning move is in Figure 9.

(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4

Figure 7. Semeai problems (Black plays first).
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4 0

2(2)

(a) Upper left subgame

6

4

2 (2)

0

4(2)

(b) Upper right subgame

Figure 8. Game trees of the upper common parts.

The positions in parts (a)–(c) of Figure 7 all have the same upper part of

Black’s essential block and are decomposed into three subgames. Figure 8(a)

shows the game tree of the upper left subgame of Figure 7(a)–(c). The game

is f4 j 0g and after cooling by 2, the value 2� is obtained. Figure 8(b) shows

the game tree of the upper right subgame. The game is f6 j f4 j 0gg and after

cooling by 2, the value 4" is obtained. The integer part of each subgame’s value

is shown by small Black and White dots, or markings, in Figure 9, as used in

[3]. In Problem 1, the cooled value of the lower part is �7 and the total value

is 2� C 4" C .�7/ D �1"�. Black’s adjustment value of �1"� is 0 and he

can win if he plays first. The only winning move for Black is to play to �.

Black can get tedomari as shown in Figure 10(a). But if Black plays to " in his

(a) Problem 1: total = �1"� (b) Problem 2: total = �1"

Figure 9. Analysis using CGT (continued on next page).
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(c) Problem 3: total = �1

2
"� (d) Problem 4: total = �7

8

Figure 9 (continued). Analysis using CGT.

first move, White gets tedomari and White wins as shown in Figure 10(b). In

Problem 2, the lower subgame is f�5 j �9g and the cooled value is �7�. The

total value is 2� C 4" � 7� D �1". Black can round up the value to 0 and win.

Unlike Problem 1, Black should play to ", which is the only winning move in

this problem. Figure 11(a) shows a winning sequence and Figure 11(b) shows

a failure. In Problem 3, the lower subgame is f�5 j �8g and the cooled value

(a) Success: Black gets tedomari (b) Failure: White gets tedomari

Figure 10. Solution of Problem 1.
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(a) Success: Black gets tedomari, (b) Failure: White gets tedomari,

because a and b are miai. because a and c are miai.

Figure 11. Solution of Problem 2.

is �61

2
. The total value is 2� C 4" � 61

2
D �1

2
"�. Since 0 > �1

2
"� > �1,

Black’s adjustment value is 0 and he can win the semeai. In this problem, there

are two winning moves for Black. Both plays to " and � lead Black toward

a win. In Problem 4, the upper subgame is f�5 j �8g and the cooled value is

�61

2
. The subgame of lower left is fff8 j 5g j 3g j 1g and the cooled value is 27

8
.

The subgame of lower right is ff6 j 3g j 1g and the cooled value is 23

4
. So the

total value is �61

2
C 27

8
C 23

4
D �7

8
and Black’s adjustment value is 0. Since

all the subgames are numbers, Black’s winning move is to play to the subgame

with the largest denominator.

4.2. Whole board problems. Figure 12 shows two examples of whole board

problems. Both problems are really complicated and may stump high-dan pro-

fessionals. Problem 5 can be decomposed into six subgames whose values are

not integers (Figure 13(a)). Figure 14 shows the game trees and cooled values

of these subgames, and Figure 13(b) illustrates the values of all subgames and

the winning moves. The total score is �1"	, because Black has two more

liberties and White has ten more liberties outside of the above six subgames.

Since 0 > �1"	 > �1, Black can round up the value to 0 and win the semeai if

he plays first. The recommended winning move shown as in Figure 13

is to attack 	, but in this case, attacking # also leads Black toward a win.

Figure 15(a)–(h) shows a winning sequence. Although the actual battle ends

at Black’s move 11 (Figure 15(b)), a total of 49 moves is required by the end

of the capturing race where the essential block is finally captured. Figure 15(i)
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(a) Problem 5 (b) Problem 6

Figure 12. Whole board problems.

is an example of failure. If Black plays to *�, Black cannot win even if Black

plays both 	 and # afterward.

The position of Problem 6 is decomposed into thirteen subgames as shown

in Figure 16(a). The game value and its atomic weight for each subgame is

shown in Figure 16(b). The total value is �1-ish and is fuzzy with �1. Black’s

adjustment value is 0 and Black can win. Black’s only winning move is to

play to the subgame C. Figure 16(c) illustrates a winning sequence. The battle

continues up to Black’s move 27. At this point, the number of liberties of Black’s

A B

D

EC

F

(a) Subgames (b) Game values

Figure 13. Solution of Problem 5.
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A : 2�

4 0

2(2)

B : �2�

0 -4

-2(2)

D : 2#

4 (2)

26

0

2 (2)

C : 3�

5

5 0

5/2 (5/2) 0

5 1

3(2)

0

prune

0 (0)

E : �4	

{+BIG | -4}

-4+BIG

-6

-4 (2)

F : 6*�

04

2(2)6

8 4(2)

6(2)

Figure 14. Game tree and cooled value of each subgame.
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essential block is 22 and the number of liberties of White’s essential block is 21,

so Black wins the semeai regardless of who moves first from here. Figure 16(d)

shows an interesting game tree whose cooled value has "� as an infinitesimal.xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx •xx xy yy yyyyyyxxxy xyxxyx yxxxyyyxx��xxxx yxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxy x •yy yyyy xy xxxy yxxy yxxy x xy yyx xxy�yxy xy x y yxy> xy xy x yyyxy xxy xyyyyy yxyyyy •xxyy y y yxy xyy xy xxyx�yxxy xxyxxy x xy xyyyxyy x

xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx •xx xy yy yyyyyyxxxy xyxxyx yxxxyyyxxyxxxxx yxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxy x •yy Byyyy xy xxxy yxxy yxxy x xy yyxGPxxy yxy xy x y yxyy xy xy x yyyxy xxy xyyyyy yxyyyy	xxyy y yDyxy xyy xy xxyxxyxxy xxyxxy x ��xy�xyyyxyy x

xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx • xx xy yy yyyyyyxxxy xyxxyx yxxxyyyxxyxxxxx yxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxy��x •yyGRyyyyy xy��xxxy yxxy yxxy��x xy yyxyxxyGXyxy xy x y yxyy��xy xy x yyyxy��xxy xyyyyy yxyyyyxxxyyGVy yyyxy xyy xyGTxxyxxyxxy xxyxxyHPxHRxx xxyyyxyy x
(a) Success: 1–5 (b) Success: 6–11 (c) Success: 12–22xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx • xx xy yy yyyyyyxxxy xyxxyx yxxxyyyxxyxxxxx yxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxyxx •yyyyyyyy xyxxxxy yxxy yxxyxx xy yyxyxxyyyxy xy x y yxyyxxy xy x yyyxyxxxy xyyyyy yxyyyyxxxyyyyHTyyyxyHXxyy��xyy yxxyxxy��xxyxxyy yxxHVxxyyyxyy��x

xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx • xx xy yyIPyyyyyyxxxy xyxxyx IT yxxxyyyxxyxxxxxIRyxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxyxx •yyyyyyyy xyxxxxy yxxy yxxyxx xy yyxyxxyyyxy xy x y yxyyxxy xy x yyyxyxxxy xyyyyy yxyyyyxxxyyyyyyyyxyy�yyxxyy y yxxyIV���yxxyy y yxxyyy�yyxx

xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx • xx xy yy yyyyyyxxxy xyxxyx yxxxyyyxxyxxxxx yxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxy��x •yyGRyyyyy xy��xxxy yxxy yxxy��x xy yyxyxxyGXyxy xy x y yxyy��xy xy x yyyxy��xxy xyyyyy yxyyyyxxxyyGVy yyyxy xyy xyGTxxyxxyxxy xxyxxyHPxHRxx xxyyyxyy x
(d) Success: 23–28 (e) Success: 29–36 (f) Success: 37–42xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx • xx xy yyyyyyyyyxxxy xyxxyxyy yxxxyyyxxyxxxxxyyxxyxxyy yxJTyyyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxyxx •yyyyyyyy xyxxxxy yxxy yxxyxx xy yyxyxxyyyxy xy x y yxyyxxy xy x yyyxyxxxy xyyyyy yxyyyyxxxyyyyyyyyxyyyyyxxyy y yxxyyÆ�JVyxxyy y yxxyyyÆ�yyxx

xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx • xx xy yyyyyyyyyxxxy xyxxyxyy yxxxyyyxxyxxxxxyyxxyxxyy yxyyyyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxyxx •yyyyyyyyJXxyxxxxy yxxy yxxyxx xy yyxyxxyyyxy xy x y yxyyxxy xy x yyyxyxxxy xyyyyy yxyyyyxxxyyyyyyyyxyyyyyxxyy y yxxyyÆ�yyxxyy y yxxyyyÆ�yyxx

xxy yxxxx xxy y y yx xx xy yx xx xy y y • yxx •xx xy yy yyyyyyxxxy xyxxyx yxxxyyyxx� xxxx yxxyxxyy yx yyyyxxyx xyyyxyyyxxx xyyxxxxxxxxxxy x •yy >yyyy xy xxxy yxxy yxxy x xy yyx	xxy�yxy xy x y yxy� xy xy x yyyxy xxy xyyyyy yxyyyyBxxyy y yDyxy xyy xy xxyx�yxxy xxyxxy x GPxy�xyyyxyy x
(g) Success: 43–46 (h) Success: 47–49 (i) Failure: 1–10

Figure 15. Example sequence to win.

5. Corridors

Corridors are simple positions that are precisely analyzable and hence give

us good examples. In SemGo, corridors of width three exactly correspond to

the corridors of width one in endgames, and corridors of width one or two have

integer values. Figure 17(a) shows some examples of corridors of width three.

The game tree of the corridor is shown in Figure 18 and all the corridors in
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A

B

C

D
E

F
G

H

I

J

K
L

M

(a) Subgames

value atomic
value weight

A 13

4
0

B 2 f	3 j 03g �3

C 3 f	1 j 0g �1

D 3"� 1

E 13

4
0

F 3 0

G �1 0

H �21

2
0

I �4# �1

J �2� 0

K �1 0

L �3 f0 j �2g 1

M �2 f02 j�3g 2

Total �1 ish �1

(b) Game values

(c) Sequence to win

7 3

5 1

ff7 j 3g ; 5 j 1g
cool by 2

÷

3 f0; � j 0g D 3"�

(d) Game tree of subgame D

Figure 16. Analysis of Problem 6.
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(a) Three corridors of width three (b) Cooled value of each corridor

Figure 17. Which move is the largest?

0

2

4

2n2n+x

Figure 18. Game tree of the corridor.

Figure 17(a) are described using n and x: n D 3; x D 8 for the top corridor,

n D 4; x D 5 for the middle, and n D 5; x D 4 for the bottom.

Now we can answer the question “Which move is best: a, b, or c?” Using the

cooled value of each corridor shown in Figure 17(b), we conclude b > a > c. In

order to verify b > a, we use the difference game shown in Figure 19. In Figure

19(a), the right side is a mirror image of the left side except that Black’s essential

block has one more liberty in the top center and White has just played at the

point corresponding to b. It is obvious that Black can win the game if he plays at

b in his first move and follows a symmetric strategy supposing that an essential

block cannot make two eyes without capturing the opponent’s essential block.

But if Black plays at a, White gets tedomari and Black loses. Figure 19(b)
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(a) Problem (Black plays first) (b) An example of losing sequence

Figure 19. Difference semeai game.

shows an example of a losing sequence. Whatever sequence Black plays after

his first move at a, White can win the difference game.

Figure 20 is a catalog of corridors in SemGo.

Figure 20. Catalog of corridors.



COUNTING LIBERTIES IN GO CAPTURING RACES 195

6. Summary and future work

In this paper, we described a new genre of applications of CGT to the game

of Go. We proposed a method of counting liberties in capturing races using

CGT and analyzed some complicated semeai problems which seem to be hard

to solve even for the most experienced players. Although we have assumed that

SemGo positions have no shared liberty regions so far, we can easily extend

the applicability of our method to SemGo positions with some simple shared

liberties.

Formula 2 : Extended semeai formula� �
G W Entire semeai game with the exclusion of shared liberty regions

�0W Adjustment value of Cool.G; 2/ for the attacker

S W Number of shared liberties

F D

�

S if S D 0 or defender has an eye,

S � 1 if S > 0 and defender has no eye.

The attacker can win the semeai if �0 � F:

� �

Formula 2 is a straightforward improvement of Müller’s semeai formula to be

applied to the higher class of semeais. In Formula 2, we use the adjustment value

of the sum of external liberty regions instead of a simple number of liberties.

Analyzing capturing races poses various problems. In shared liberty regions,

a player can be an attacker and a defender at the same time. Properties of com-

plicated shape of shared liberty regions are still unknown. Kos in capturing

races have different characteristics from kos in endgames and capturing races

with kos are also difficult to analyze. In order to truly analyze Go positions, we

have to integrate all the analyses of eyespaces, capturing races and endgames

into a unified description.
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Backsliding Toads and Frogs

AARON N. SIEGEL

ABSTRACT. Backsliding Toads and Frogs is a variant of Toads and Frogs in

which virtually all positions are loopy. The game is an excellent case study of

Conway’s theory of sides. In this paper, we completely characterize the values

of all natural starting positions. We also exhibit positions with the familiar

values n and 2�n, as well as positions with temperatures n and 2�n, for all n.

1. Introduction

The game of Toads and Frogs was introduced in Winning Ways [Berlekamp

et al. 2001]. It is played on a 1�n strip, populated by some number of toads and

frogs. Left plays by moving any toad one space to the right; Right by moving

any frog one space to the left. If either player’s move is blocked by the opponent,

he may choose to leap over her, provided the next square is empty. Jumps do not

result in capture. As usual, the winner is the player who makes the last move.

The variant Backsliding Toads and Frogs was also introduced in Winning

Ways. Here both players have the additional option of retreating by one space,

though reverse jumps are still prohibited. Unlike standard Toads and Frogs, the

backsliding variant is loopy. As we will see, this additional rule has a monu-

mental effect on the play of the game.

Figure 1 shows a typical position shortly after the start of the game. Each

player has one advancing move and one backsliding move available, and Left

has the additional option of leaping over Right’s frog.

Standard Toads and Frogs was studied extensively by Erickson [1996], whose

results include an analysis of certain natural starting positions, as well as the ob-

servation that other starting positions have great canonical complexity. However,

Figure 1. A typical position in Backsliding Toads and Frogs.
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aside from a few very small positions analyzed in Winning Ways, the backsliding

version has been scarcely investigated. This is likely due to the enormous diffi-

culty in calculating its values; a direct analysis by hand is exceedingly difficult,

and until very recently the tools for a machine analysis were not available.

The present research relied upon a large database of positions assembled us-

ing CGSuite’s implementations of the algorithms introduced in [Siegel 2009b].

(See http://www.cgsuite.org/ for CGSuite.) However, all of the results presented

in this paper, with the exception of the museum pieces in Section 6, are fully

verifiable by hand, and their proofs, as presented here, do not rely in any way on

the computer’s output. The transition from calculations to mathematical proofs

followed a familiar pattern: a careful analysis of the database led first to a se-

ries of promising conjectures, and then ruled out many misdirections and false

hypotheses, until the solutions could be isolated.

One striking result is that, in contrast to the standard version, all natural start-

ing positions have simple values. Nonetheless, Backsliding Toads and Frogs is

quite an interesting game if one considers arbitrary starting positions. Many

typical values occur, including n, 2�n, " and over, as well as values with tem-

perature n and 2�n.

In Section 2, we introduce some notation and prove a key lemma. In Sec-

tion 3, we analyze positions with just one frog, and in Section 4, those where the

groups of toads and frogs are initially separated. Section 5 contains positions

with the familiar values mentioned above. Finally, Section 6 lists some of the

more interesting values obtained by computer search.

By the end of this paper we will be able to solve this problem:

Figure 2. What is the outcome if Left plays first? If Right plays first?

2. Preliminaries

We assume familiarity with the theory of loopy games as presented in Chapter

11 of Winning Ways. See [Siegel 2009a] for a gentle introduction.

It is convenient to use Erickson’s notation for Toads and Frogs positions. A T

represents a toad, an F a frog, and an open box ˜ an empty space on the board.

Superscripts indicate repetition, so for example,

T3
˜

2F3 is the position TTT˜˜FFF:
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The Ts and Fs in a position will occasionally be subscripted, as in

TT1T2˜
2F1F2F:

The subscripts do not affect the actual composition of the position; they are

merely labels used to reference specific toads and frogs in the discussion that

follows. Additionally, we will use the symbol �̃ to represent an arbitrary se-

quence of zero or more empty spaces. For instance, the generality �̃T3 �̃F3

would include the previous example.

Define the configuration of a position to be that position with all empty spaces

removed. Thus the configuration depends only on the relative locations of the

toads and frogs, and not on the number of spaces that separate them. For exam-

ple, the configuration of the position noted above is TTTFFF. Note that sliding

moves do not affect a game’s configuration, while jumps change it irrevocably.

In many of the proofs that follow, the goal is to show that X � 0 for a certain

position X . Elsewhere, however, we wish to show that X D on, or that the

onside of X is on. In virtually all cases, the necessary relation is established

by exhibiting an explicit winning strategy for Left. However, the shapes of the

strategies differ in subtle ways depending on the specific goal. The differences

are worth highlighting here:

(a) To show that X � 0 for some position X , we consider X played in isolation,

and show that Left, playing second, can get the last move in finite time.

(b) To show that the onside of X is on, we allow Right infinitely many pass

moves, and show that Left can play so as never to run out of moves.

(c) To show that X D on, we proceed as in (b), with the further restriction that

Right must be forced to pass infinitely many times.

Note that (c) does not require Left to reach a state where Right is permanently

out of moves in X . Indeed, in some cases where X D on, it’s possible for Right

to make infinitely many moves in X . In such cases, Left can ensure that Right

is temporarily out of moves infinitely often; but for Left to claim a free move,

he must mobilize Right for some finite amount of time.

We close this section with a key result:

LEMMA 1 (THE DECOMPOSITION LEMMA). Let X and Y be arbitrary posi-

tions. Then:

(a) X TTY � X C Y and X FFY � X C Y .

(b) If X contains no empty spaces, then X TY � Y and Y FX � Y .

PROOF. If Left never moves his pair of toads in X TTY , he can guarantee that

X and Y never interact. This establishes (a), and (b) is similar: if Left never

moves his extra toad in X TY , then the entire subposition X is immobilized. ˜
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3. Positions with one Frog

With just one toad and one frog, the position always has value 0 or �, and the

value depends only on the relative position of the toad and frog (and not on the

size of the board):

LEMMA 2.

�̃F˜
kT �̃ D 0 if k is even, � if k is odd;

�̃T˜
kF �̃ D � if k is even, 0 if k is odd,

except for the trivial case where there are no moves available to either player.

PROOF. We first show that �̃F˜
kT �̃ D 0 if k is even. By symmetry, it suffices

to show that Left can win playing second. Since no jumps are possible, every

move reverses the parity of the distance k. Therefore, the distance will always

be odd when Left has the move, so he can always slide toward the left end of

the board. Eventually the position will reach FT �̃ , and Right will be without

a move. If k is initially odd, then moving to 0 is the only option available to

either player, so the value is �.

Next we show that �̃T˜
kF �̃ D 0 if k is odd. As before, it suffices to show

that Left can win playing second. He begins by advancing until the toad and

frog are adjacent. Since every sliding move reverses the parity of k, the meeting

must occur immediately following an advance by Right, resulting in the position

�̃TF˜ �̃ . At this point Left jumps, and since the toad and frog remain adjacent,

the resulting position has value 0. If k is initially even, then moving to 0 is the

only option available to either player, so the value is � (except in the trivial case

when no moves are available to either player). ˜

With several toads against just one frog, the position always has value on except

in a few pathological cases:

LEMMA 3. Suppose m � 2. Then:

�̃FTm D 0I

�̃F˜Tm D fon j 0gI

All other positions involving m toads and one frog have value on, except for the

trivial case where there are no moves available to either player.

PROOF. Case 1: The frog is to the left of all toads, so that no further jumps are

possible. If at least one toad has an empty space to its right, the value is on, as

follows. On his move, Left advances his left-most toad toward the frog. If this

is not possible, he moves any other toad arbitrarily. Eventually the left-most

toad will trap the frog at the end of the board, and Left’s remaining toads will

still be free to move about indefinitely.



BACKSLIDING TOADS AND FROGS 201

The two special cases in the statement of the lemma follow immediately.

Case 2: The frog is between two toads. We will show that Left can achieve

infinitely many free moves against Right. Note that Right can jump only finitely

many times; after the last jump, we are in a Case 1 position with an empty space

available to Left (the one just vacated by the frog).

Left plays as follows. If there is intervening space between the frog and its

adjacent toads, Left moves a surrounding toad toward the frog. Within finite

time the frog will be sandwiched between two toads. Right’s only move from

such a position (if any) is to jump. If Left is to move from such a position,

he simply makes any available move. This might give Right the opportunity

to make an extra sliding move, but Left can reverse this by tightening the gap

again. In that event Left makes two moves to Right’s one, gaining a free move.

Case 3: The frog is to the right of all toads. Here Left simply advances the

rightmost toad toward the frog. If the rightmost toad is adjacent to the frog, Left

makes any other move (jumping permitted). Eventually Right’s only move will

be to jump. Any jump leads to a Case 2 position. ˜

4. Natural starting positions

In this section we consider positions of the form Tm
˜

kFn, where the toads

and frogs form two disconnected armies. These were termed .m; n/k-positions

in Winning Ways. The main result is the chart of Figure 3.

These values are, on the whole, much simpler than those for ordinary Toads

and Frogs. The basic reason is that either player, if undisturbed, can assure

himself infinitely many free moves by maneuvering just three of his amphibians

into a “fortress”:

T˜TTX

Notice that it does not matter whether X contains zero or a hundred frogs. The

Decomposition Lemma implies that the value of this position is at least T˜CX ;

and since T˜ D on, the overall position must have onside on. This fundamental

strategy accounts for the prevalence of duds in the table.

The cases m D 1 and n D 1 were established in section 3 for all k. We verify

the rest of the table with a series of lemmas. We study the easier limiting cases

first, and then go back and fill in the gaps.

The first lemma establishes the dud values in the k � 3 section of the chart:

LEMMA 4. If m; k � 3, then for all n, Tm
˜

kFn has onside on.

PROOF. Left, on his first two moves, advances each of the two front toads. Since

k � 3, Right is powerless to interfere even if she moves first, so Left establishes

a fortress:

Tm�2
˜T2 � � �
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n
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1 0
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2 �
off
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hot : : :
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| D 0 if k is odd, � if k is even

Figure 3. The value of Tm
˜

kFn, for all k, m, n.

Since m � 3, Left has at least one toad remaining in the rear, which he is now

free to shuttle indefinitely. ˜

By symmetry, we know that if n; k � 3, then the offside of Tm
˜

kFn is off, for

all m. Therefore, if m; n; k � 3, we may conclude that Tm
˜

kFn D dud. A

similar theme establishes the dud values for k D 2:

LEMMA 5. If m � 4, then for all n, Tm
˜

2Fn has onside on.

PROOF. There are no problems if Left moves first: he can establish a fortress

before Right can interfere. The remaining difficulty is Right’s immediate move

to Tm
˜F˜Fn�1, which Left counters with a move to

Tm�1
˜TF˜Fn�1:

If Right does anything other than jump, then Left can establish a fortress im-

mediately. If Right jumps, Left responds by advancing his toad, leaving the
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position

Tm�1F1˜T˜Fn�1:

There are now two possibilities:

� If Right takes any action other than backsliding F1, Left jumps to the position

Tm�2
˜F1TTX:

By the Decomposition Lemma, this position is � Tm�2
˜F1 C X . But since

m � 2 � 2, we know from Lemma 3 that Tm�2
˜F1 D on. So the onside of

the sum must be on.

� If Right backslides F1, then Left can advance to

Tm�2
˜T1F1T˜Fn�1:

From this position Left can shuttle his rear toads indefinitely. If Right ever

jumps with F1, Left responds by advancing T1, establishing a virtual fortress

just as before. ˜

When k D 1, all values with m; n � 3 are zero:

LEMMA 6. If m � 3, then for all n, Tm
˜Fn � 0.

PROOF. We can assume that m D 3, since Left can simply ignore any additional

toads. With Left playing second, all Right moves in the following sequence are

forced:

TTT˜FFn�1

**UUU

TTTF˜Fn�1

ttiii

TT˜FTFn�1

**UUU

TTF˜TFn�1

ttiii

T˜FTTFn�1

**UUU

TF˜TTFn�1

ttiii

˜FTTTFn�1

**UUU

F˜TTTFn�1

ttiii

FT˜TTFn�1

whereupon Right cannot move. ˜

Next we study those positions where Right has exactly two frogs. The following

lemma verifies that T2
˜

kF2 D� for k �2. The remaining case k D1 is analyzed

in Winning Ways and can easily be checked by showing that the sum �CT2
˜F2

is a second-player win.
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LEMMA 7. If k � 1, then TT˜
kF˜F D 0.

PROOF. We show that either player, moving second, can force a win in fi-

nite time. Clearly, by symmetry, it suffices to show that Left can win either

TT˜
kF˜F or T˜T˜

kFF playing second; we will exhibit a strategy that suc-

ceeds in both cases.

Let p be the sum of the distance between the two toads and the distance

between the two frogs. The following facts are apparent: p is initially odd;

each sliding move changes the parity of p; and each jump maintains the parity

of p. So on Left’s move, p will be even just if an even number of jumps have

occurred.

The remainder of the proof exhaustively describes Left’s winning strategy.

The strategy is broken down by configuration: at each stage, Left guarantees

that the next configuration will be reached within a finite number of moves.

Eventually the position will reach the configuration FTFT, whereupon we will

see that Left can force a win.

Configuration TTFF: Left either jumps or advances a toad. One of these options

must be available unless the position has the form �̃TTFF �̃ . Since k > 0, such

a position cannot be reached on Right’s opening move. So Left has had an

opportunity to move, and therefore there is an empty space behind the pair of

toads. Left backslides, jumping on the next move if Right does not.

Configuration TFTF: Left either jumps with the front toad or advances either

toad. If neither option is available, the position must be �̃TF �̃TF; but that

position has even p, and since there has been exactly one jump, it cannot occur

on Left’s move.

Configuration TFFT: Left either jumps, advances the rear toad, or backslides

the front toad. One of these options must be available unless the position is

�̃TFFT �̃ , in which case Left moves either toad and jumps on the next move if

Right does not.

Configuration FTTF: If Left is following our strategy, he will never jump to

this configuration, so it must have been reached by a Right jump. Therefore,

at the outset, there must be at least one empty space between the toads. Left

plays to maintain this space: On his move, if possible, he either advances the

front toad, backslides the rear toad, or jumps to a new configuration. If none of

these options is available, the position must be �̃F1T1 �̃˜T2F2. In this case,

Left backslides T2, reaching �̃F1T1 �̃T2˜F2. Left now counters each F1 move

by backsliding T1. Eventually Right will be forced to advance F2 and permit a

jump.

Configuration FTFT: If Left jumps into this configuration, then Right’s first

move cannot be a jump, so Left is guaranteed at least one move in this configu-
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ration. Left always backslides the rear toad if possible; otherwise he backslides

the front toad. This guarantees that Right will never be allowed to jump from

this configuration. The only positions from which Left cannot backslide either

toad are those of the form �̃FT �̃FT �̃ ; but those have even p, and so cannot

occur on Left’s move (as this configuration can only be reached after exactly

three jumps). So play continues like this until the position reaches FTFT �̃ ,

whereupon Right is without a move, and Left has won. ˜

Note: It is not true that all positions with two toads, two frogs, and two empty

spaces have value 0 or �. For example, ˜F˜TFT has the value � & f0 j offg.

Three toads are sufficient to overpower Right’s two frogs:

LEMMA 8. If m � 3, then Tm
˜

kF2 D on.

PROOF. It suffices to prove that T3
˜

kF2 D on, since Left can ignore any ad-

ditional toads. We will exhibit a strategy for Left that forces Right to make

infinitely many pass moves. The strategy is broken down into two major phases.

In the first phase, Left ignores his rear toad completely. For each configuration

K of the four remaining amphibians, our strategy will guarantee that, if Right

passes only finitely many times at K, then the next configuration will eventually

be reached. When the configuration reaches FTFT, the second phase of the

strategy begins, and Left mobilizes his third toad.

We begin by describing the first phase, broken down by configuration.

Configuration TTFF: On his move, Left jumps if possible; otherwise he ad-

vances either toad. If neither option is available, the position must be �̃T1TFF �̃ .

Since Left is guaranteed at least one move in this configuration, there must be

an empty space behind T1, so he backslides. If Right responds by passing, Left

advances T1, returning to an earlier position with an intervening pass move.

Right’s only other options are to jump or to allow a jump.

Configuration TFTF: Left jumps with the front toad if possible (never the rear

toad); otherwise he advances either toad. If neither option is available, the po-

sition must be �̃T1F1 �̃T2F2. If there is space between the toad/frog pairs,

Left backslides T2, reaching �̃T1F1 �̃T2˜F2. From this position Left counters

each F1 backslide by advancing T1. Eventually Right must either jump with F1,

advance F2, or pass. If he advances F2, Left jumps immediately with T2; while

if he passes, Left advances T2, having just gained a move.

Finally, if Left is ever to move from �̃T1F1T2F2, he backslides T1. If Right

passes, Left advances again, gaining a move; if Right advances F1, Left back-

slides T2 to �̃T1F1T2˜F2. Again Right must either jump, allow a jump with

T2, or pass, granting Left a free move.

Configuration FTTF: If Left is following our strategy, he will never jump into

this configuration. So when the configuration is first reached, Right has just
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leapt into it, and there is at least one space between the toads. Left’s moves

are, in order of preference: jump; advance the front toad; backslide the rear

toad; backslide the front toad. By following this strategy, Left guarantees that

the position �̃FTTF will never arise, so at least one of these options is always

available. The analysis is similar to the above.

Configuration TFFT: Left jumps if possible; otherwise he moves either toad

toward the frogs. If neither option is available, the position must be �̃TFFT �̃ .

In this case Left slides either toad (it’s possible that only one is mobile), and

Right must either pass, jump, or permit a jump. If he passes, then Left returns

to �̃TFFT �̃ .

Once the configuration reaches FTFT, the second phase of Left’s strategy

begins. The full configuration, including Left’s extra toad, is T1F1T2F2T3. If

Right moves first in this configuration, then Left’s previous move must have

been a jump with T2 or T3. So Right’s first move cannot be to jump with F2.

Likewise, since T1 begins on the far left-hand side of the board, Right’s first

move cannot be to jump with F1. Therefore Left is guaranteed at least one

move in this configuration.

On his move, Left picks one of the following options, listed in order of pref-

erence.

1. Backslide T2 or T3, preferring T2 except from the position

T1F1˜T2 �̃F2 �̃T3 �̃ .

2. Shuttle T1 between the two squares at the far left-hand side of the board.

3. Advance T2.

4. Advance T3.

There are three possible ways play might continue:

� Right never jumps again. Here a careful check of Left’s strategy reveals that

Right is forced to pass infinitely many times.

� Right eventually jumps with F1. Since T1 never leaves the two left-hand

squares, the resulting position must be FTX for some X containing two toads

and one frog. From Lemma 3 we know that X D on; but by the Decomposi-

tion Lemma, FTX � X .

� Right eventually jumps with F2. As we have observed, this cannot happen on

Right’s first move. Consider Left’s previous move. It was not a T2-backslide,

since T2 and F2 must now be adjacent. So either Left was unable to backslide,

or he chose not to. If he was unable to, then it is because F1 and T2 were

adjacent; since they no longer are, Left must have just advanced T2. This

means T1 is immobile and the position (before Right’s jump) is exactly Z D

T1F1˜T2F2 �̃T3 �̃ . If Left chose not to backslide, then again the position is

exactly Z, since otherwise backsliding T2 is top priority. So Right’s jump is
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to the position T1F1F2T2 �̃T3 �̃ . By the Decomposition Lemma, this position

has value on. ˜

This covers all cases with two frogs (or, by symmetry, two toads). All that

remains now are the peculiar values along the k D 2, m or n D 3 band. The

specific case k D 2, m D n D 3 can be verified computationally. A final lemma

completes the analysis.

LEMMA 9. If m � 4, then Tm
˜

2F3 D on & hot.

PROOF. The onside is given by Lemma 5. If Right moves first in the offside, he

can establish a fortress, so we know the offside is fH j offg for some H . Finally,

a quick computation establishes that T3
˜T˜F3 D on. Increasing the number of

toads cannot reduce this value, so this verifies that H D on in all cases. ˜

5. Some familiar values

In ordinary Toads and Frogs, it is easy to construct positions of positive in-

teger value n: simply place a single toad at the far left of an otherwise-empty

.n C 1/-length board. Naive constructions fail in the backsliding version, how-

ever: if n > 0 then such a position has value on.

With somewhat more effort, though, it is possible to construct positions of

value n and 2�n in Backsliding Toads and Frogs. Further, from these we can

derive positions of temperature n and 2�n.

THEOREM 10.

.TFFT/n
˜ D nI

˜.TF/nTTFF D 2�n:

A few Lemmas are needed to prove Theorem 10:

LEMMA 11. If a Backsliding Toads and Frogs position contains just one empty

space, then its value is a stopper.

PROOF. We need to show that there are no infinite alternating lines of play

from any such position. Since each jump changes the position irrevocably, it

suffices to show that there can be no infinite alternating sequence of sliding

moves. But after any such move, the only sliding options are to return to the

previous position, or to slide in the same direction as the previous move. The

first is only available to the same player who just moved. So all moves in any

alternating sequence of sliding moves must be in the same direction. Therefore

any such sequence must terminate. ˜

Lemma 11 is fundamentally important, because it is relatively easy to compare

two stoppers  and ı. To show that  � ı, we just need to check that Left can
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play so as never to run out of moves in ı �  . (See [Berlekamp et al. 2001] for

a proof of this fact.)

Our first application of this technique is the following lemma, which concerns

“dead pairs” of toads and frogs. These occur in positions of the form FTX and

X FT, where a toad and a frog face away from each other at the far edge of the

board. The key result is that dead pairs do not change the value of positions

with just one empty space.

LEMMA 12 (DEAD PAIRS LEMMA). Let X be any position with just one empty

space. Then

FTX D X D X FT:

PROOF. By symmetry it suffices to prove just the first equality. Decomposition

implies that FTX � X . To show X � FTX , it suffices to show that Left, playing

second, never runs out of moves in X � FTX (since by Lemma 11 both games

are stoppers).

Left’s strategy for playing second from X C .�X /FT is summarized as fol-

lows. Left copies Right’s move in the opposite component until Right moves

the dead frog. If Right jumps with the dead frog, then the second component

becomes � � � FT˜T, with no empty spaces except the one indicated. This clearly

has value on, guaranteeing Left an infinite supply of moves. Suppose instead

that Right slides the dead frog. This necessarily leaves the position

˜Y C .�Y /F˜T

for some sequence Y with no empty spaces, whereupon Left can backslide his

dead toad:

˜Y C .�Y /FT˜:

Now write Y D FnZ with n maximal. Right’s only possible move is to

F˜Fn�1Z C .�Y /FT˜;

which Left can answer by moving to

F˜Fn�1Z C .�Y /F˜T:

Now there are three possible options for Right:

� If Right backslides her previous move, Left does the same, returning to a

prior position.

� If Right moves to

F˜Fn�1Z C .�Y /˜FT;

then Left simply responds with

F˜Fn�1Z C .�Z/Tn�1
˜TFT;
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and resumes his initial strategy of mirroring Right’s moves until the next time

Right activates the dead frog.

� Finally, suppose Right has another frog available:

FF˜Fn�2Z C .�Y /F˜T:

Then necessarily n � 2, so the second component is � � � TTF˜T. By Decom-

position this is �TF˜T. But Lemma 3 showed that TF˜TDon, guaranteeing

Left an infinite supply of moves. ˜

LEMMA 13.

.TF/n
˜ D 0 if n is even, � if n is odd.

PROOF. n D 0 is trivial. For even n > 0, it suffices to see that .TF/n
˜ is a

second-player win. By induction and the Dead Pairs Lemma, Left’s only move

is to jump to a position of value �, which clearly loses. If Right moves first,

then Left’s moves are all forced until Right chooses to jump, reaching:

.TF/kF0T0˜.TF/k0

with k C k 0 D n � 1. Left’s strategy now depends on the parity of k 0. If k 0 is

odd, then by induction (and symmetry) ˜.TF/k0

D �. By Decomposition the

full position has value � �; so Left, with the move, has won. If k 0 is even, then

Left advances T0 immediately, and after Right’s forced response the position is

.TF/k
˜F0T0.TF/k0

:

Now since k 0 is even and n � 1 is odd, k must be odd. So k � 1 and Left can

respond by jumping to

.TF/k�1
˜F1T1F0T0.TF/k0

:

By induction, .TF/k�1 D 0. Henceforth Left follows his winning strategy for

.TF/k�1
˜, until Right chooses to move F1. Then Left backslides T1, and after

Right’s forced move backslides T0, reaching

X T˜.TF/k0

for some sequence X . Since k 0 is even, ˜.TF/k0

D 0. By Decomposition the

position has value � 0, and since it is Right’s move, Left has won.

When n is odd, Left’s only move is to jump to a position of value 0. Right’s

only move is to

Z D .TF/n�1T˜F0;

so the proof is completed by showing that Z is a second-player win. Right’s

only move from Z is to return to .TF/n
˜, from which Left can move to 0 (as
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we already observed). Finally, if Left makes his only move from Z, then Right

leaps with F0, and after a pair of forced moves the position reaches:

.TF/n�1
˜F0T:

By induction and the Dead Pairs Lemma, this is a zero position. ˜

PROOF OF THEOREM 10.. For the first sequence, observe that in .TFFT/n
˜

Right has no legal move, and if Left moves first then the following three-move

sequence is forced:

.TFFT/n
˜

ssffffff

.TFFT/n�1TFF˜T
++WWWW

.TFFT/n�1TF˜FT
ssgggg

.TFFT/n�1
˜FTFT

By induction and the Dead Pairs Lemma, the result has value n � 1. Note that

it is disastrous for Right to ignore Left’s opening move, since Left can then

backslide for two free moves.

Next we show that ˜.TF/nTTFF D 2�n. The proof is by induction on n. The

base case is easily verified: ˜TTFF D 1. For the general case, we show that

˜.TF/nTTFF � 2�n

is a second-player win. Suppose first that Left is playing second. If Right jumps

with his only mobile frog, Left reduces to

FT˜.TF/n�1TTFF � 2�nC1:

By induction and the Dead Pairs Lemma, this is a zero position. If instead Right

reduces �2�n to 0, Left makes backsliding moves until the position

.TF/n
˜TTFF

is reached. Now Left’s move depends on the parity of n:

� If n is even, Left backslides, and after a forced sequence the position X D

.TF/nC1
˜TF is reached with Right to move. But Lemma 13 showed that

.TF/nC2
˜ D 0, and since X occurs after Left’s only response to Right’s

opening move, we must have X � 0.

� If n is odd, then by Decomposition .TF/n
˜TTFF � .TF/n

˜ D �, so Left

must have a winning move.

If Right plays second from ˜.TF/nTTFF � 2�n, his opening strategy is sim-

ilar: he counters any Left backslides with advancing moves. There are three

possibilities.
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� Case 1: The position .TF/nT˜TF0F � 2�n is reached with Right to move.

Then Right jumps with F0; by Lemma 13 the resulting position has value

�2�n or �2�n�, a win for Right.

� Case 2: Left jumps at some point before the above position is reached, to

.TF/k
˜FT.TF/k0

TTFF � 2�n:

By Decomposition this is � .TF/k
˜�2�n. Since .TF/k

˜D0 or � by Lemma

13, Right has won.

� Case 3: Left plays from �2�n to �2�nC1 before either of the above occur.

Then Right backslides until reaching ˜.TF/nTTFF � 2�nC1, and jumps to

FT˜.TF/n�1TTFF � 2nC1:

By induction and the Dead Pairs Lemma, this position is exactly equal to

0. Note that if Left prematurely moves to �2nC2, Right can return to his

opening strategy, having gained appreciably. ˜

Essentially as a corollary, we have:

THEOREM 14. There exist positions with arbitrarily large finite temperature,

and with arbitrarily small positive temperature. In particular:

(a) For n � 1, .TFFT/nTTF˜F D fn� j 0g.

(b) For n � 0, TTF˜F.TF/nTTFF D
˚

2�n�2�
ˇ

ˇ 0
	

.

PROOF. (a) We first show that .TFFT/nT˜FTF D n�. Left’s only move is to the

position A D .TFFT/n
˜TFTF and Right’s is to B D .TFFT/nTF˜TF; we will

show that AD B D n. First we describe Left’s strategy as second player in A�n.

He plays just as if the position were .TFFT/n
˜ � n (following Theorem 10)

until Right chooses to move one of the extra frogs, which necessarily gives the

position Y FT˜T0F�m, where Y ˜�m � 0. Then Left backslides T0, initiating

a forced sequence that leads to the position Y ˜FTFT � .m � 1/, with Left to

move. Since Y > m�1, the Dead Pairs Lemma implies that Left has a winning

move.

If Left plays second in B �n, he reduces immediately to A�n unless Right’s

first move is to jump. In that case the opening sequence forces the position

.TFFT/n
˜FTFT�n, with Right to move, so by the Dead Pairs Lemma Left has

won.

Next suppose Right plays second in B � n. If Left begins by backsliding,

then a forcing sequence ensues ending in .TFFT/n
˜FTFT � n, and Right has

won. If Left jumps instead, Right makes his only available move, to

.TFFT/nF˜T0TF � n:
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Now if Left backslides T0, then a typical forcing sequence leads to a win for

Right. His only other move is to .TFFT/n�1TFF˜FTTTF � n; but then Right

can simply move in �n, leaving Left without a move.

Finally, suppose Right plays second in

A � n D .TFFT/n�1TFF1T1˜T2F2TF � n:

If Left backslides T2, Right advances F2, reducing the position to B �n. If Left

advances T1, Right backslides F1 and follows the strategy outlined in the proof

of Theorem 10 for winning .TFFT/n � n. This guarantees that F1 will never

move again, thereby immobilizing T2 and ensuring that Left’s extra toads do

not break the strategy.

This establishes that .TFFT/nT˜FTF D n�. Thus .TFFT/nTTFF˜ D 0,

since Left has no move from that position, and Right’s only move allows Left a

response to n� (n � 1). This suffices to confirm (a).

(b) As a simple corollary of Theorem 10, Left’s only move is to a position of

value 2�n�2�. Right’s only move is to the position

Z D TTFF˜.TF/nTTFF:

The proof is completed by showing that Z D 0. To see that Z � 0: If Right

begins with a jump, it must be to TTFFFT˜.TF/n�1TTFF. By Decomposition

and Theorem 10, this position has value � 2�.n�1/, so Left has won. If in-

stead Right’s first move is to backslide, then Left jumps to T˜FTF.TF/nTTFF.

Theorem 10 implies that this position has value 2�n�2�, so again Left has won.

To see that Z � 0: Right begins by countering each backslide with an advanc-

ing move. Notice that, by symmetry, �Z D TTFF.TF/n
˜TTFF. Since Z � 0,

we know that �Z � 0, so if Left does not jump before the position reaches �Z,

then Right has won. But Left can only jump to

TTFF.TF/k
˜FT.TF/k0

TTFF

for some k; k 0, and by Decomposition and Lemma 13, this position has value

� �2�k . Again Right has won. ˜

6. A little museum

In this section we show some positions with particularly interesting values.

All of the museum pieces were obtained by an exhaustive computer search using

CGSuite. There are a number of surprises, including a position with offside " on

a board of length 14. This seems to be the smallest board on which " appears

in any context.
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TFF˜TTF D ˙.1�/ TTFFF˜TTTFF D ˙1

Some simple switches of temperature 1.

F˜TTTFFF˜T D ˙.f1 j �g; f1 j 0g/

A pure infinitesimal other than 0; �.

T˜F˜TTFFFT D 1 & over T˜TT˜FFFFT D on & over

Some positions with offside over.

F˜TTTFFTFT˜TFF D
˚˚

1
ˇ

ˇ �
	

;
˚

1
ˇ

ˇ 0
	

ˇ

ˇ

˚

�
ˇ

ˇ �1

8
�

	

;
˚

0
ˇ

ˇ �1

8
�

		

& ˙
�˚

1

8
�

ˇ

ˇ �
	

;
˚

1

8
�

ˇ

ˇ 0
	�

A pure infinitesimal with distinct sides.

˜FTTF˜TFTFTTFF D 1

8
& " ˜FTTFTFTTFT˜FTFFFT D � & �1*

˜FTTF˜TFTFTFTTFF D 1

16
& 1=2

On large boards, familiar values mysteriously arise.

TTT˜FFFFT˜TFFT˜ D upon� & � TF˜FT˜TF˜TTFFFT D 1 & upon

Some higher-order loopy infinitesimals.

F˜TTTFTFTF˜TFF D
n

˚

1
ˇ

ˇ �
	

;
˚

1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

8
�

ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ �1

8

	

ˇ

ˇ

ˇ

˚

�
ˇ

ˇ �1

2
�

	

;
˚

1

8
�

ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ �1

8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �1

2
�

	

o

&
n

˚

1

8
�

ˇ

ˇ �
	

;
˚

1

8
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

8

ˇ

ˇ "
ˇ

ˇ

ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �1

8

	

ˇ

ˇ

ˇ

˚

�
ˇ

ˇ �1

2
�

	

;
˚

1

8

ˇ

ˇ "
ˇ

ˇ

ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �1

8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �1

2
�

	

o

The most complicated value known.

7. A solution

We can now solve the problem presented at the beginning of this paper. By

Theorem 14 we know that the first position has value f0 j �2�g. The analysis

of Section 4 demonstrates that the middle position has value �. Finally, the last

position is one of the special values reported in Section 6: 1

8
& ".

Adding these together gives a value of

˚

1

8
�j�15

8

	

& f"� j �2"g
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for the overall position. The onside is fuzzy, and the offside is negative: Right

can win playing first; while if Left plays first he holds the game to a draw.
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New results in loopy games

AARON N. SIEGEL

ABSTRACT. We strengthen the usual notion of simplest form for stoppers

and show that under the stronger definition, equivalence coincides with graph-

isomorphism. We then show that the game graph of a canonical stopper con-

tains no 2- or 3-cycles, but may contain n-cycles for all n � 4.

We also introduce several new methods for simplifying games  whose

graphs contain alternating cycles. These include a generalization of dominated

and reversible moves.

1. Introduction

A loopy game is a combinatorial game in which repetition is permitted. The

history and basic theory of loopy games are discussed in [Siegel 2009]. In this

article we focus on two fundamental problems left unresolved by Winning Ways.

Long irreducible cycles. The first problem concerns the cycles that appear

in the game graph of a stopper. Conway showed that every stopper s admits

a simplest form [Conway 1978], so one would expect that certain cycles are

intrinsic to the play of s. All canonical stoppers discussed in Winning Ways

are plumtrees: their graphs contain only 1-cycles. It is therefore natural to ask

whether longer canonical cycles are possible, and to attempt to characterize the

structure of such cycles.

Conway defined the simplest form of s to be a representation with no domi-

nated or reversible moves. This is not quite strong enough for our purposes, as

illustrated by the example t shown in Figure 1. Certainly t has no dominated or

reversible options, but it is easy to check that t D on. Thus while t technically

has a 2-cycle, it is reducible in the sense that t has an alternate representation

with just a 1-cycle.

215
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t �

L

&&

L

ff D ’&%$ !"#� Lhh

Figure 1. A 2-cycle that reduces to on.

In Section 3 of this paper, we introduce a stronger notion of simplicity, the

graph-canonical form of a stopper. We show that if s and t are stoppers in graph-

canonical form and s D t , then s and t have isomorphic game graphs. Then in

Section 4, we investigate the types of cycles that can appear in a graph-canonical

stopper s. We show that every such cycle of length n > 1 must contain at least

two edges of each color. This rules out 2-cycles and 3-cycles; however, we give

examples of graph-canonical stoppers with n-cycles for all n � 4.

Simplification of alternating cycles. The second problem concerns the sim-

plification of games with alternating cycles. If  is an arbitrary loopy game,

it is desirable to know whether  is stopper-sided, and if so to compute its

sides. Previously, this problem was addressed by the technique known as sidling

[Berlekamp et al. 2001; Conway 1978; Moews 1996], which produces a se-

quence of approximations to the sides of  . If the sidling sequences converge,

then they necessarily converge to the sides of  , but there are many important

cases in which they fail to converge.

In Section 5, we introduce generalizations of dominated and reversible op-

tions that apply to arbitrary loopy games. These can be used to obtain useful

simplifications of  C and  �. Often, the simplified forms are already stoppers,

even in cases where sidling fails. In addition, the new methods are computa-

tionally more efficient than sidling procedures.

Finally, the Appendix (page 228) describes algorithms for comparing arbi-

trary games. A simplification engine can be built on these algorithms by using

the techniques of Section 5. All of these algorithms and techniques have been

implemented in CGSuite (see http://www.cgsuite.org/), with important applica-

tions to the analysis of actual games (see [Siegel 2009] for further discussion).

2. Preliminaries

We assume the reader is familiar with the theory of loopy games, as presented

in Winning Ways. Sufficient background can be obtained from [Siegel 2009] in

this volume. We briefly summarize some of the most relevant facts.

We denote loopy games by Greek letters  , ı, ˛, ˇ, . . . . If every infinite play

of  is drawn, then  is said to be free, and this will be the assumption when

nothing is said to the contrary. When  is free, we denote by  C and  � the

matching games with draws redefined as wins for Left and Right, respectively.
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Infinite play in a sum ˛ C ˇ C � � � C  is assumed to be drawn unless the

same player wins on every component in which play is infinite. In particular, if

 and ı are free, then the following are equivalent:

(i)  C � ıC;

(ii) Left can survive ıC �  C playing second;

(iii) Left, playing second in ı �  , can guarantee that either he gets the last

move, or infinitely many moves occur in the ı component.

(i) () (ii) by the definition of �, and (ii) () (iii) by the definition of sum

(and the fact that � C D .� /�). (iii) is a key characterization, and it will be

used repeatedly in the proofs and algorithms that follow.

If s and t are stoppers, then the following conditions are all equivalent:

s � t I sC � tCI s� � t�I s� � tCI Left can survive t � s playing second:

Finally, throughout this paper we will assume that all games have a finite

number of positions. Some results generalize to games with infinitely many

positions; but it is usually clear when this is the case, and since the generalization

will not be needed it is simpler to keep things finite.

Strategies. Often we will know that Left can survive some game  and wish

to show that he can survive a closely related game  0. (For example,  0 might

be obtained by eliminating a dominated option of  .) In the loopfree case,

this is typically handled by examining relationships between the followers of

 . However, when  is loopy, altering the options of  might also affect the

structure of its followers. Because of this interdependence, we will usually need

to take a global view of the structure of  , and here it is useful to reason in terms

of strategies.

DEFINITION 1. Let  be a loopy game and let A denote the set of followers

of  . A Left strategy for  is a partial mapping S W A ! A such that, whenever

ı 2 A has a Left option, then S.ı/ is defined, and S.ı/ D some ıL.

We refer to S.ı/ as the move recommended by S .

DEFINITION 2. Let S be a Left strategy for  . S is a first-player survival

(winning) strategy if Left, playing first from  , survives (wins) every line of

play in which he plays according to S .

Right strategies and second-player strategies are defined analogously. We say

that Left (Right) survives (wins)  playing first (second) if there exists an ap-

propriate strategy.

DEFINITION 3. Let S be a Left strategy for  . S is a complete survival strategy

if, for each ı 2A that Left can survive as first player, he can survive ı by playing

according to S .
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Note that a complete survival strategy recommends good moves from every fol-

lower of  , even those that would never be encountered if  itself were played

according to S . Complete survival strategies always exist; this can be estab-

lished by “pasting together” survival strategies.

LEMMA 4. Let  be any loopy game. Then there exists a complete Left survival

strategy for  .

PROOF. First we inductively construct a sequence of strategies Sn, as follows.

Let S0 be a first-player Left survival strategy for any subposition 0 from which

Left has a survival move. Given Sn and n, let An be the set of positions that

can be reached, with Left to move, by some line of play proceeding from n,

throughout which Left plays according to Sn. If
S

i�n Ai contains every fol-

lower of  from which Left has a survival move, then stop. Otherwise, choose

any nC1 62
S

i�n Ai from which Left has a survival move, and let SnC1 be the

corresponding first-player Left survival strategy. Now define a strategy S by

S.ı/ D Sn.ı/ where n is least such that ı 2 An:

(S.ı/ may be chosen arbitrarily if ı 62 An for any n.) We claim that S is a

complete Left survival strategy for  .

To see this, let ı be some follower of  from which Left has a survival move,

and suppose Left plays ı according to S . Let ı D ı0, ı1, ı2, : : : be the consec-

utive positions reached with Left to move (so ıiC1 D .S.ıi//
R for each i). We

first show that Left has a survival move from each ıi . This is obviously true for

ı0. For the inductive step, let n be least such that ıi 2 An. Then S.ıi/ D Sn.ıi/;

since Sn is a survival strategy for ıi , and ıiC1 D .Sn.ıi//
R , Left has a survival

move from ıiC1.

If play is finite, we are done: Left must have made the last move. Otherwise,

consider any ıi , and let n be least such that ıi 2 An. Since ıiC1 is reached from

ıi by play according to Sn, we also have ıiC1 2 An. It follows that, for some

n0 and i0, we have

S.ıi/ D Sn0
.ıi/ for all i � i0:

Since Sn0
is a survival strategy for ıi0

, and the outcome does not depend on any

finite initial segment of moves, Left has survived. ˜

Graphs. Throughout this paper, a graph will be a directed graph with separate

Left and Right edge sets. We will use calligraphic letters G, H, : : : to denote

graphs.

Just as every game has an associated graph, we can define games by specify-

ing a graph and a start vertex. Given a graph G and a vertex v of G, let Gjv be the

graph obtained by removing from G all vertices not reachable from v. Denote

by Gv the free game whose graph is Gjv and whose start vertex is v. Note that a
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game is not the same as its graph; this distinction will often be essential. Thus

when we write Gu DGv , we mean that Gu and Gv are game-theoretically equal in

the sense of the usual order-relation, whereas u D v means that u and v represent

the exact same vertex. Clearly u D v implies Gu DGv , but the converse certainly

need not be true.

DEFINITION 5. A path directed from u to v is an alternating path if its edges

alternate colors. The path is Left-alternating or Right-alternating if the first edge

out of u is blue or red, respectively. An alternating cycle is an alternating path

of even length that starts and ends at the same vertex. We say that an edge is

cyclic if it belongs to an alternating cycle, and a graph is alternating cycle-free

if it contains no alternating cycles (equivalently, no cyclic edges).

Note that s is a stopper if and only if its graph is alternating cycle-free.

If u and v are vertices of a graph G, we write u
L

�v to indicate that G has

a Left edge directed from u to v; likewise u
R

�v indicates a Right edge. We

sometimes write e W u
L

�v to mean that e is the (unique) Left edge directed

from u to v.

3. Fusion

Recall the simplest form theorem for stoppers [Berlekamp et al. 2001; Con-

way 1978; Siegel 2009]:

THEOREM 6 (SIMPLEST FORM THEOREM). Let s and t be stoppers. Assume

that s D t , and that neither s nor t has any dominated or reversible options.

Then for every sL there is a tL with sL D tL, and vice versa; and likewise for

Right options.

If s and t satisfy this criterion along with all their followers, then they are equiv-

alent in play. However, their graphs might still differ fundamentally. Consider

the two examples s and t shown in Figure 2. s D t D over, and neither game

has any dominated or reversible options, but their representations are clearly

different.

A further simplification solves this problem. Suppose s is a stopper whose

game graph contains two equivalent vertices, u and v, and assume that no fol-

lowers of s have any dominated or reversible options. Then we can replace u

t �
L //

s
››

�
L //R

$$

t �
L //

�

R

››
�

L //R
%%

Figure 2. Two forms of over.
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t
L //

R
››

�

�
L //R

%%
�

÷

t 0

L

fflffl?
??

??
??

R

››
�

L //R
%%

�

÷

t 00 L //R
’’

�

Figure 3. Fusion further simplifies stoppers.

and v with a single vertex, redirecting edges as appropriate, without changing

the value of s or any of its followers. Repeated application of this “fusion”

process ultimately produces a game with no two equivalent vertices, and this

representation is unique up to graph isomorphism. In the example above, t can

be reduced to s with two applications of fusion, as illustrated in Figure 3.

LEMMA 7 (FUSION LEMMA). Let G be alternating cycle-free, with no dom-

inated or reversible edges. Suppose u; v are two distinct vertices of G and

Gu D Gv . Let H be the graph obtained by deleting v and replacing every edge

a ! v with an edge a ! u of the same color. Then H is alternating cycle-free

and Gw D Hw for every vertex w ¤ v.

A cautionary note: fusion might fail when s is not a stopper, or when s is a

stopper but is not in simplest form. Figure 4 gives an example:  D ı D 2 & 0,

but if we fuse ı to  , then the resulting vertex has value 3 & 0.

PROOF OF LEMMA 7. First we show that H is alternating cycle-free. Assume

instead (for contradiction) that H contains an alternating cycle. We can assume

the cycle involves a redirected edge, since otherwise it would already be present

in G. So the cycle involves u, and we can assume without loss of generality that

it is Left-alternating out of u. We will construct a sequence .vn/1
nD0

of vertices

of G such that for all n, Gvn
DGvnC1

and there is an even-length Left-alternating

path from vn to vnC1.

Let v0 D u, v1 D v. Since H contains a Left-alternating cycle out of u that

involves a redirected edge, G must contain an even-length Left-alternating path

from u to v. This establishes the base case.
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Now given vn and vnC1, we construct vnC2 as follows. We know that vnC1 is

a Left-alternating follower of vn. But GvnC1
D Gvn

, so by repeated application

of the Simplest Form Theorem, there is a Left-alternating follower vnC2 of vnC1

satisfying GvnC2
D GvnC1

. Since the path from vn to vnC1 has even length, so

does the path from vnC1 to vnC2. This defines .vn/1
nD0

.

But G is finite, so there must be some m < n with vm D vn. It follows that

there is an alternating cycle in G involving vn, contradicting the assumption that

G is alternating cycle-free. This shows that H is alternating cycle-free.

Next fix w, and let s D Gw, t D Hw. We wish to show that s D t . Since

both are stoppers, it suffices to show that Left, playing second, never runs out

of moves in s � t or t � s. We will prove the s � t case; the proof for t � s is

similar.

Let S be a complete Left survival strategy for s � s. Define the strategy S 0

for s � t as follows: S 0 is equivalent to S except when S recommends a move

from Ga �Gb to Ga � Gv . In that case, S 0 recommends a move from Ga �Hb

to Ga �Hu. We claim that S 0 is a second-player Left survival strategy for s � t .

To see this, note that whenever Ga � Gv, then also Ga � Gu. Since S is a

complete survival strategy, this implies that if Left plays second from s � t , then

any position Ga �Hb reached according to S 0 will satisfy Ga � Gb . Therefore

Left, playing according to S 0, will never run out of moves. This completes the

proof. ˜

DEFINITION 8. A stopper s is said to be in graph-canonical form if s is in

simplest form and Gu ¤ Gv for any two vertices u ¤ v of s.

THEOREM 9. Suppose s; t are stoppers in graph-canonical form with s D t .

Then the game graphs of s and t are isomorphic.

PROOF. Let s D Gu, t D Hv . For every vertex a of G, we know that there is a

vertex b of H with Ga DHb , and vice versa. (b can be obtained by repeated ap-

plication of the Simplest Form Theorem.) Since G and H contain no equivalent

vertices, it follows that there is a bijection f W V .G/ ! V .H/ with f .u/ D v

such that Ga D Hf .a/ for all vertices a of G.

To see that f is a graph-homomorphism, suppose G contains a Left edge

a
L

�a0. Write b D f .a/, so that Ga DHb . Since Ga �Hb , Right has a survival

response from Ga0 �Hb . It cannot be to any GR
a0 , since this would imply that

GLR
a D GR

a0 � Hb D Ga;

contradicting the assumption that G contains no reversible moves. So Ga0 �Hb0

for some vertex b0 of H with b
L

�b0.

Now since Ga �Hb , Left has a survival response from Ga�Hb0 . It cannot be

to any HR
b0 , since (as above) this would imply that Hb �HLR

b , contradicting the
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assumption that H has no reversible moves. So GL
a � Hb0 for some GL

a . Thus

GL
a � Hb0 � Ga0 , and since G contains no dominated options, GL

a D Hb0 D Ga0 .

Therefore f .a0/ D b0, so H contains a Left edge f .a/
L

�f .a0/. The proof for

Right edges is identical. ˜

4. Long irreducible cycles

In this section, we show that if s is a stopper in graph-canonical form, then

every cycle in s of length greater than one must contain at least two edges of each

color. In particular, s contains no 2- or 3-cycles. Longer cycles are possible,

however: the game � shown in Figure 5 is in graph-canonical form and has a 4-

cycle. Soon we will see that there exist graph-canonical stoppers t with n-cycles

for all n � 4. Such cycles are irreducible in the sense that any representation

of t must contain at least an n-cycle.

DEFINITION 10. Let G be a graph. A cycle in G is long if it contains at least

two edges. A cycle in G is monochromatic if all edges in the cycle are the same

color; bichromatic otherwise.

LEMMA 11. Let s be a stopper in graph-canonical form. Then s contains no

long monochromatic cycles.

PROOF. By symmetry, it suffices to prove the lemma for cycles consisting en-

tirely of blue edges. So let s0, s1, : : :, sn be a sequence of subpositions of s,

with siC1 D sL
i for 0 � i < n and s0 D sn. We will show that

s0 � s1 � s2 � � � � � sn D s0;

so in fact all subpositions in the sequence must be equivalent.

Left’s survival strategy for siC1�si is simple. As long as Right moves around

the cycle in the �si component, Left does the same in siC1, staying one move

ahead of her. This continues until Right chooses to break the cycle. At that point

the position must be either sR
jC1

� sj or sjC1 � sL0

j (sL0

j ¤ sjC1), for some j .

In the first case, we have

sR
jC1 D sLR

j ;

and since sj has no reversible options, this implies that sR
jC1

6� sj . So Left must

have a winning move from sR
jC1

� sj . Likewise, in the second case, we have

0 �
Roo L // � R //

L

››

0

� �
L

oo

R

OO

�
L

//
R

oo �

Figure 5. A stopper that is not equivalent to any plumtree.
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sjC1 D sL
j , and since sj has no dominated options, this implies that sjC1 6� sL0

j .

So again Left has a winning move; and we have shown that he can survive any

line of play.

This shows that each si � siC1, and hence

s0 D s1 D s2 D � � � D sn: ˜

LEMMA 12. Let s be a stopper in graph-canonical form. Then s contains no

long cycles with just a single red edge.

PROOF. Toward a contradiction, let s0, s1, : : :, sn (n � 2) be a sequence of

subpositions of s, with siC1 D sL
i for 0 � i < n and s0 D sR

n . We first show that

s0 � s1 � s2 � � � � � sn�1: .|/

To show that si � siC1, we proceed just as in the previous lemma; the only

difference occurs when Right has moved to the position sn � sn. Then Left

responds by playing to sn � s0. If Right continues to s0 � s0, then Left plays to

s1 � s0 and resumes moving around the cycle as before; while if Right makes

any other move, then the absence of any dominated or reversible options hands

the win to Left, as in Lemma 11.

This proves (|), so in particular s0 � sn�1. But s0 D sR
n D sLR

n�1
, contradicting

the assumption that sn�1 has no reversible moves. This completes the proof. ˜

By symmetry, if s is a stopper in graph-canonical form, then s contains no long

cycles with just a single blue edge. Therefore every long cycle in s must include

at least two edges of each color.

Unicycles

DEFINITION 13. A stopper s is said to be a unicycle provided that:

(i) The graph of s has just one cycle; and

(ii) Each position on the cycle has just two options: a move to the next position

on the cycle, and a move for the other player to a loopfree game.

We say that s is an n-unicycle if its cycle is an n-cycle.

For example, � (Figure 5) is a 4-unicycle. In fact, there exist n-unicycles for all

n � 4. Figure 6 gives an elegant example for all n � 6, in which 0 is the only

loopfree subposition. Figure 7 is an interesting 13-unicycle: 0 and � are the

only loopfree subpositions; furthermore, the cycle is alternating except for the

single pair of consecutive Left edges. The 13-unicycle generalizes to a .4nC1/-

unicycle for all n � 1 (in particular, this gives an example of a 5-unicycle).

We can classify unicycles more precisely by considering the specific sequence

of blue and red edges associated to each cycle. For example, � has the pattern

LLRR. Then a P -unicycle is a unicycle whose cycle matches the pattern P .
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Figure 6. A particularly elegant n-unicycle (n � 6). It is assumed that
there are at least three blue edges and at least three red edges in the cycle,
though there need not be equally many of each color.
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Figure 8. A 9-unicycle whose pattern cannot be realized if the exits are
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By Lemmas 11 and 12, we know that if there exists a P -unicycle, then P

must have at least two edges of each color. Furthermore, P cannot be strictly

alternating, since every unicycle is a stopper. As it turns out, these are the

only restrictions up to length 9: if P has at most nine edges and meets both

restrictions, then there exists a P -unicycle whose loopfree subpositions are all

nimbers. P D LLRLLRLLR is an interesting example: Figure 8 gives a P -

unicycle with exits to 0, �, �2 and �3, but there are no P -unicycles with exits

restricted to 0, � and �2 (or any other combination of just three nimbers). All

of these facts can be verified using CGSuite.

The same is true for patterns of length 10, with one possible exception: Q D

LLLRLRRRLR. It appears that there are no Q-unicycles whose exits are re-

stricted to nimbers. However, if exits to arbitrary loopfree games are allowed,

then the question remains open.

OPEN PROBLEM. Determine the patterns P for which there exists a P -unicycle.

In particular, is there an LLLRLRRRLR-unicycle?

Note that the number of patterns of length n is equal to the number of directed

binary necklaces of length n. This is sequence A000031 in Sloane’s encyclope-

dia (http://www.research.att.com/~njas/sequences/) and is given by

1

n

X

d jn

2n=d'.d/;

where ' is the Euler phi-function.
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5. Simplification of alternating cycles

This section introduces a suitable generalization of dominated and reversible

moves to games with alternating cycles. All of the results are stated in terms of

 C, but of course they dualize to  �.

DEFINITION 14. Let  be a free loopy game. Then:

(a) A Left option  L is said to be onside-dominated if . L0

/C � . L/C for

some other  L0

.

(b) A Right option  R is said to be onside-dominated if . R0

/C � . R/C for

some other  R0

such that no alternating cycle contains the edge 
R

� R0

.

(c) A Right option  R is said to be onside-reversible if . RL/C �  C for some

 RL.

(d) A Left option  L is said to be onside-reversible if . LR/C �  C for some

 LR such that no alternating cycle contains the edges 
L

� L R
� LR .

The additional constraints in Definitions 14(b) and (d) are necessary, as demon-

strated by examples such as Bach’s Carousel [Berlekamp et al. 2001]. Of course,

the point of these definitions is the following Lemma.

LEMMA 15. Let  be a free loopy game and let ı be any follower of  . Suppose

 0 is obtained from  by either:

(a) Eliminating some onside-dominated option of ı; or

(b) Bypassing some onside-reversible option of ı.

Then  C D . 0/C.

PROOF. We prove the lemma for onside-dominated Right options and onside-

reversible Left options; the remaining cases are easier.

(a) Suppose that .ıR0

/C � .ıR/C and  0 is obtained by eliminating ı
R

�ıR.

Clearly  C � . 0/C, so we must show that  C � . 0/C. Let S be a complete

Left survival strategy for  C �  C, and define S 0 as follows: S 0 is identical

to S , except that any recommendation from �ıC to �.ıR/C is replaced by a

recommendation to �.ıR0

/C.

If Left plays according to S 0, then since S is a complete survival strategy and

.ıR0

/C � .ıR/C, the position ˛C � ˇC reached after Left’s move will always

satisfy ˛C � ˇC. Therefore Left never runs out of moves. To complete the

proof, we need to show that the play, if infinite, was not ultimately confined to

the negative component. So assume that play was infinite. First suppose that

Left was forced to deviate only finitely many times from S . Then after a finite

initial sequence of moves, Left followed the survival strategy S . Therefore there

must have been infinitely many plays in the positive component.
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But by the assumptions of Definition 14, ı is not a Left-alternating follower of

the dominating option ıR0

. Thus between any two deviations from S , there must

occur at least one play in the positive component. So if Left deviated infinitely

many times from S , then again, infinitely many plays must have occurred in

the positive component. This shows that S 0 is also a Left survival strategy for

 C �  C. Since S 0 never makes use of the edge ı ! ıR, it also suffices for

 C � . 0/C. This completes the proof.

(b) Suppose that .ıLR/C � ıC and  0 is obtained by bypassing ıL through

ıLR . Let S be a complete Left survival strategy for  C �  C, and consider the

game  C � . 0/C. Note that whenever Left can survive some ˛C � ıC, then

˛C � ıC � .ıLR/C, so he can also survive ˛C�.ıLR/C. Thus he has a survival

response to each ˛C � .ıLRL/C. It follows that Left never runs out of moves

if he simply plays  C � . 0/C according to S . But each time Right plays from

�ıC to some �.ıLRL/C, the assumptions of Definition 14 guarantee a move in

the positive component before the next time �ıC is reached. By an argument

similar to (a), S suffices as a Left survival strategy for  C � . 0/C.

To complete the proof, we must define a second-player Left survival strategy

S 0 for . 0/C �  C. Let S 0 be identical to S , except at positions of the form

.ı0/C �ˇC, where ı0 is the subposition of  0 corresponding to ı. Then there are

two cases.

Case 1: If Left has a survival move from .ıLR/C � ˇC, then let

S 0
�

.ı0/C � ˇC
�

D S
�

.ıLR/C � ˇC
�

:

That is, S 0 makes the same recommendation from .ı0/C � ˇC that S makes

from .ıLR/C �ˇC. This is always valid, by definition of bypassing a reversible

move.

Case 2: Otherwise, we have .ıL/C 6� ˇC, so Left’s move from ıC � ˇC to

.ıL/C � ˇC is losing, and therefore S does not recommend it (except possibly

when every Left move from ıC � ˇC is losing). In this case, S 0 simply follows

the recommendation given by S .

If Left plays . 0/C �  C according to S 0, then he never runs out of moves.

As before, to complete the proof we must show that the play, if infinite, was not

ultimately confined to the negative component. The proof is much the same as

in (a): we show that each deviation from S must have been followed by a play

in the positive component.

But Left only deviates from S at Case 1 positions of the form .ı0/C � ˇC.

Until some move is made in the positive component, Left’s plays in �ˇC are

identical to those recommended by S from .ıLR/C � ˇC. Since Case 1 states

that Left can survive from .ıLR/C � ˇC, and since S is a complete survival
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strategy, this implies that some move must eventually occur in the positive com-

ponent. ˜

We can also generalize the Fusion Lemma.

LEMMA 16 (GENERALIZED FUSION LEMMA). Let G be an arbitrary graph.

Suppose u; v are two distinct vertices of G with GC
u DGC

v , and assume that there

is no alternating path from u to v of even length. Let H be the graph obtained

by deleting v and replacing every edge a ! v with an edge a ! u of the same

color. Then GC
w D HC

w for every vertex w ¤ v.

SKETCH OF PROOF. The proof is similar to that of Lemma 15, so we just sketch

it. In playing GC
a �H

C
b

(or HC
a � G

C
b

), Left follows a fixed strategy for GC
a �

G
C
b

, moving to �HC
u (HC

u ) whenever a move to �GC
v (GC

v ) is recommended.

The assumptions on u and v ensure that fusion introduces no “new” alternating

cycles, so two deviations in the negative component imply an intervening move

in the positive one. ˜

Appendix:

Algorithms for comparing games

The most basic computational task is the comparison of games, since com-

parisons form the basis for all simplifications. When G and H are loopfree, a

straightforward recursion can determine whether G � H . Where loopy games

are concerned, the situation is more complicated. Recall that if s and t are

stoppers, then s � t just if Left, playing second, can survive t � s. There is a

relatively simple algorithm for testing this condition. If s D Gu and t D Hv ,

then the basic idea is to determine those vertices of the direct sum G ˚H from

which Right can force a win. Since this might depend on who has the move, we

consider separately the pairs .A; L/ and .A; R/, where A is a vertex of G ˚H;

we will refer to such pairs as states. It is convenient to define an associated state

graph:

DEFINITION 17. Let G be a game graph. Then the state graph S of G is the

(monochromatic) directed graph defined as follows. The vertices of S are pairs

.A; L/ and .A; R/, where A is a vertex of G. Its edges are constituted as follows:

� S contains an edge .A; L/ ! .B; R/ if and only if G contains a Left edge

A ! B.

� S contains an edge .A; R/ ! .B; L/ if and only if G contains a Right edge

A ! B.

� S contains no edges .A; L/ ! .B; L/ (or .A; R/ ! .B; R/), for any A; B.

When we speak of predecessors, successors or outedges of a state .A; X /, we

mean predecessors, successors or outedges of .A; X / in the state graph.
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Begin by marking as LOSING all states .A; L/ with no successors. Then

iteratively:

� Mark as LOSING all states .A; R/ with a LOSING successor.

� Mark as LOSING all states .A; L/ from which all successors are marked

LOSING.

Stop when no further vertices can be marked.

Algorithm 1. Comparing stoppers.

The algorithm for comparing stoppers is summarized as Algorithm 1. Starting

from those states .A; L/ with no successors, the states of G ˚ H from which

Right can force a win are iteratively identified. Then s � t just if .u ˚ v; R/

is unmarked: if Right can win from u ˚ v, then he can do so in n moves, for

some n; but then .u ˚ v; R/ will be marked on the n-th stage of the iteration.

This idea is not new. Three decades ago, Fraenkel and Perl [1975] gave

a similar procedure for determining the P- and N -positions of an impartial

loopy game. The partisan version of the algorithm was introduced several years

later by Shaki [1979]. It was rediscovered independently and brought to my

attention by Michael Albert (personal communication, 2004).

The algorithm can be refined to guarantee that each state is examined at most

once per outedge. The improved version is summarized as Algorithm 2. A huge

advantage of this refinement is that it allows substantial prunings. Traversing

the states “top-down,” and stopping as soon as a winner is determined, yields

significant time savings when prunings are desirable. Note that wins for both

players are determined, and not just for Right; occasionally this will quickly

identify Left as the winner and permit an early pruning.

Comparing general games. If ; ı are arbitrary loopy games, then the compar-

ison process is substantially more difficult. Recall that  � ı if and only if Left,

playing second, can survive both ıC �  C and ı� �  �; see [Siegel 2009]. For

clarity, and since the two cases are exactly symmetric, we consider just ıC� C.

Now Left survives ıC �  C if and only if either

(a) he gets the last move, or

(b) infinitely many plays occur in ı.

Thus if play is infinite, but is entirely confined to the � C component, then Left

has lost. We can eliminate condition (a) from consideration by first applying the

stopper-comparison algorithm (Algorithm 2); the remaining task is to identify

those states from which Right can keep the play indefinitely in � C.

The solution is to make several passes through the graph. At the start of

each pass, some states will already be marked as a WIN FOR R, and the goal
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Visit each state .A; X / at most once (in any order) and perform the following

steps:

(1) Mark .A; X / VISITED.

(2)

� If any successor of .A; X / is already marked as a WIN FOR X , then mark

.A; X / as a WIN FOR X .

� If every successor of .A; X / is already marked as a WIN FOR Y (Y ¤ X ),

then mark .A; X / as a WIN FOR Y .

(3) If we just marked .A; X / as a win for either player, then examine each

predecessor .B; Y / of .A; X / such that

� .B; Y / is marked VISITED; and

� the winner of .B; Y / has not been determined.

If we marked .A; X / as a WIN FOR Y , then immediately mark .B; Y / as a

WIN FOR Y . If we marked .A; X / as a WIN FOR X , then rescan the succes-

sors of .B; Y /, and if they are all marked as a WIN FOR X , then mark .B; Y /

as a WIN FOR X .

If this determines the winner of .B; Y /, repeat step 3 with .B; Y / in place of

.A; X /.

Algorithm 2. Comparing stoppers, refined.

is to identify new ones. Now suppose that, from some state .A; X /, Right can

guarantee that either a state marked WIN FOR R will be reached, or no further

plays will ever occur in ı. Clearly .A; X / must be a WIN FOR R as well. Call

a state BAD if it meets this test; GOOD otherwise. During each pass through the

graph, we first identify all GOOD states, and then mark each BAD state as a WIN

FOR R. The algorithm terminates when a pass completes with no new states

identified as a WIN FOR R.

The procedure for identifying GOOD states is straightforward. For example,

suppose that for some state .A; L/, there exists an outedge in ı to a state that is

not known to be a WIN FOR R. Then .A; L/ can be marked GOOD immediately.

The GOOD markers can then be back-propagated just as WIN markers were in

the stoppers case.

In the worst case, each pass would identify just one GOOD state, so the al-

gorithm is ostensibly O.jV j � jEj/, where jV j is the number of vertices and jEj

the number of edges in the state graph. In practice, however, more than a few

passes are rarely necessary, and the algorithm is effectively O.jEj/.

The algorithm is summarized in detail as Algorithm 3.
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First execute Algorithm 2 to identify states from which one of the players

can force a win in finite time. Then:

(1) Visit each vertex A at most once and perform the following steps.

(a) If the winner of .A; L/ is not yet determined, and either:

� .A; L/ has an outedge in ı to a state whose winner is not yet determined;

or

� .A; L/ has an outedge to a state marked GOOD,

then mark .A; L/ GOOD.

(b) If the winner of .A; R/ is not yet determined, and every successor of

.A; R/ in  is marked either WIN FOR L or GOOD, then mark .A; R/ GOOD.

(c) If either of the previous steps caused a state .A; X / to be marked GOOD,

then examine all  -predecessors .B; Y / of .A; X / such that:

� .B; Y / is marked VISITED; and

� The winner of .B; Y / is not yet determined; and

� .B; Y / is not marked GOOD.

If Y D L, then immediately mark .B; Y / GOOD. If Y D R, then rescan

the  -successors of .B; Y /, and if they are all marked either WIN FOR L or

GOOD, then mark .B; Y / GOOD.

If this causes .B; Y / to be marked GOOD, then repeat step 1(c) with .B; Y /

in place of .A; X /.

(2) Visit each state .A; X / a second time and perform the following steps:

(a) If the winner of .A; X / is not yet determined, and .A; X / is not marked

GOOD, then mark .A; X / as a WIN FOR R.

(b) If the previous step caused a state .A; X / to be marked as a WIN FOR R,

then examine all VISITED predecessors .B; Y / of .A; X / whose winner is

not yet determined.

If Y D R, then immediately mark .B; Y / as a WIN FOR R. If Y D L, then

rescan the successors of .B; Y /, and if they are all marked as a WIN FOR R,

then mark .B; Y / as a WIN FOR R.

If this determines the winner of .B; Y /, then repeat step 2(b) with .B; Y / in

place of .A; X /.

(3) Clear all VISITED and GOOD markers. If the previous step caused any

new states to be marked as a WIN FOR R, then repeat starting with step 1.

Otherwise, stop.

Algorithm 3. Testing whether Left can survive ıC �  C.
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A library of eyes in Go, I:
A life-and-death definition consistent

with bent-4

THOMAS WOLF

ABSTRACT. In the game of Go we develop a consistent procedural definition

of the status of life-and-death problems. This computationally efficient pro-

cedure determines the number of external ko threats that are necessary and

sufficient to win, and in the case of positions of the type of bent-4-in-the-

corner it finds that they are unconditionally dead in agreement with common

practice. A rigorous definition of the status of life-and-death problems became

necessary for building a library of monolithic eyes (eyes surrounded by only

one chain). It is also needed for comparisons of life-and-death programs when

solving automatically thousands of problems to analyse whether different re-

sults obtained by different programs are due to different status definitions or

due to bugs.

1. Introduction

1.1. Overview. In this contribution we describe a project whose aim was to built

a data base of eyes together with their life-and-death status which at least reflects

one aspect of ko accurately: the number of necessary external ko threats for the

weaker side to win. The procedure how to determine this number is described

in Section 2. After that we seem to be ready for determining the status of a life-

and-death problem if there would not be the bent-4-in-the-corner positions (in

the following called bent-4) which are characterized in Section 3 and force us

in Section 4 to refine the procedure that we take as the (procedural) definition

of the status of a life-and-death problem. In the appendix we discuss current

limitations of the program GOTOOLS which is the implementation behind this

article.
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1.2. The key problem. The discussion in sections 2–4 is rather detailed and

arguments are developed why procedures and rulings were designed as they are.

In order not to lose sight and have an orientation when reading them we already

now want to address the key problem.

In this contribution we consider the procedural definition of the status of

life-and-death problems, i.e., of positions that are isolated from the rest of the

board through a single solid chain of stones that has enough external safe lib-

erties to live statically. The procedure as outlined in Section 2 is capable of

7

6 � � �
5 � � �
4 � � È
3 � � � �
2 � � � �
1 � � �

a b c d e

Diagram 1

classifying nearly all types of common and also strange

life-and-death positions correctly within some approx-

imations (like treating life and seki alike as listed in

the appendix) and up to mastering the computational

complexity. The only exception encountered so far is

a class of bent-4-type positions as defined in Section

3, which includes, for example, the one on the right.

Positions of this class are characterized essentially by

(a) having a ko status when evaluated according to the

straight forward rules of Section 2 and (b) the key prop-

erty that at some stage of optimal play, the side for

which this ko is unfavourable (White in Diagram 1)

has as single best move only the passing move.

The combination of these 2 properties has severe consequences. If there are

only removable kos on the board (e.g. cuts, but no seki) then Black can wait

until later in the game and protect all potential ko-threats (that is, ‘remove’

potential ko threats) at no cost before starting the ko. In that case the status

would be an unconditional loss for White which also is what Go players expect

from a computer Go program to find1. A fundamental principle of the orthodox

procedure in Section 2 is that a position is alive or seki unless the attacker can

prove how to kill it (unconditionally or through ko). But in bent-4-type problems

the best move for the attacker is to pass, at least during the ‘hot’ phase of the

game when playing elsewhere (tenuki) has some benefit. In other words, bent-

4-type positions do not have a single solution for the best move, they have two:

(1) if playing elsewhere is beneficial then the single best move for the attacker is

to pass, (2) if playing elsewhere is not beneficial, and if the attacker is asked to

prove that the position is not a seki then the best move for Black in Diagram 1 is

to play on b1. Situation 2 is mastered in a straight forward manner, as described

in Section 2. The challenge is situation 1: To satisfy the conflicting requests in

this case (i.e., to find that the position is not alive/seki and that passing is the

1At times when GOTOOLS solving life and death problems online under [5] did not find bent-4 to be

dead, many error reports were submitted by users.
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best move for the attacker) in a consistent, local procedure, without having to

check special cases separately, is the goal of Section 4. Once both situations can

be handled, all that is needed is an extra boolean input parameter specifying for

which of the two situations the computation shall be valid.

1.3. Notation. Throughout this paper we will call the side that builds eyes and

tries to live as White and the side trying to kill as Black. The side moving next in

a position will be called First and the other Second. To have finite and effective

searches the right to pass is strongly regulated. In this article we will derive,

modify and collect rulings which include statements when passing is allowed.

In these rulings we will use � and � instead of Black and White to get a more

compact formulation. We will follow common terminology and call a position

which contains an empty point that is forbidden for one side due to the ko rule

as a ko-banned position and all other positions regular. When the text refers

to ko threats then these are always external ko threats (ko threats outside of the

problem).

2. The ko status of a life-and-death problem

The program GOTOOLS (described in more detail in [1] and with restrictions

listed in the appendix) is the implementation behind the theory in this article. It

performs an ˛=ˇ search with only two possible outcomes: life/seki or death; it

is therefore called a boolean search below. If the status is ko then it repeats the

search to find the number of external ko threats needed by the weaker side to

win.

2.1. Reruns with successively more ko-threats. In a first search no side is

allowed to recapture a ko. If for one side, say First, all moves fail in a position

in depth d then the result of this computation is not only the loss but attached

is always a boolean variable ko-chance which, if true, means that the outcome

could have been different if First would have had a ko-threat. If that is the case,

the previous move by Second at depth d �1 is a winning move but attached to it

is ko-chance = true. This is how this information moves upwards in the search

tree.

In any position at depth d ko-chance is set to true if

� the position is ko-banned and recapturing the ko would not have violated any

cycle rules (see below), but was not possible due to a lack of ko threats, or

� any one of the winning moves of Second at depth d C 1 returned ko-chance

= true.

For example, First has 5 possible moves in some position in depth d . The first

tried move fails and has ko-chance = false. The second move of First fails too
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but the counterproving move of Second in depth d C1 returns ko-chance = true.

The third move of First happens to win, thus search in this level stops. Thus the

ko-chance of First from the second try becomes irrelevant. What is relevant is

whether Second has a ko-chance from any one of its losing tries at depth d C1.

If so, then not only will be reported to level d � 1 which move of First won but

also that Second has a ko-chance for this move.

At the end of the first computation the program knows whether in the verifi-

cation tree of the search (the minimal tree to be searched where the final winner

plays only winning moves and the loser all possible moves) the loser still has a

ko-chance, that is, a chance to win if it had one more external ko threat initially.

In such a case a second run, and if necessary more runs, are performed with

successively more external ko threats initially allocated to the loser. This is

continued until either the loser wins or loses without having a ko-chance in the

last run or until a maximum of km external ko threats are reached after which

the status is regarded as an unconditional loss for the side that lost so far. In

our calculations km D 5, which could easily be changed to an arbitrary high but

fixed value.

2.2. The different ko status. We now come to the different possible status of a

position. If the maximal number of allowed ko threats is km then 2km C 2 dif-

ferent status may result, each characterized by a numerical value. The possible

outcomes sorted from most beneficial to least beneficial for First are:

Value : Status

km C 1 : an unconditional win for 1st,

km : a win for 1st unless 2nd has km external ko threats more than 1st,

...

1 : a win for 1st unless 2nd has 1 external ko threat more than 1st,

�1 : a loss for 1st unless 1st has 1 external ko threat more than 2nd,

...

�km : a loss for 1st unless 1st has km external ko threats more than 2nd,

�km � 1 : an unconditional loss for 1st.

For example, in Diagram 2 the status is km C 1 for any side moving first, as

both can win unconditionally by playing on b1. In Diagram 3 both sides would

pass as the position is unconditionally dead; that is, the status is km C1 if Black

moves first and �km � 1 if White moves first.

Status values are chosen so that if the outcome is the same for both sides

moving first, then the status values just differ by a sign. For example, if the

outcome is that White needs one ko threat in order to win, no matter who moves
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4 È
3 � � � � �
2 � � � � �
1 � �

a b c d e f

Diagram 2

4 È
3 � � � � �
2 � � � � �
1 � � �

a b c d e f

Diagram 3

first, then the status value for White moving first is �1 and the status value for

Black moving first is C1. In other words, if the outcome is independent of who

moves first then the sum of the two status values is zero. But that is exactly the

case when passing does not do any harm, i.e., passing is one of the best moves

of both sides as in Diagram 3. Conversely, if the sum of the status values is

nonzero then it is beneficial for both sides to move first. In Diagram 2 the sum

has the maximum value 2km C 2. In the context of this paper a move belongs

to the best moves if no other move generates a higher numerical status value.

LEMMA. If for a regular position (such that both sides can be considered to

move first) passing belongs to the best moves of one side then passing does also

belong to the best moves of the other side.

Proof (indirect): We assume that passing belongs to the best moves of, say,

White. Then, if passing would not be one of the best moves of Black, then if

Black would pass then White could make a move, such that the status for Black

would be worse than if Black would not pass. In other words, if passing is not

one of Black’s best moves then passing is also not one of White’s best moves

which contradicts our assumption.

If passing belongs to the best moves of both sides then we call the position

settled if it is unconditionally dead or alive/seki, otherwise it has a ko status and

we call it calm.

A clarification: To make clear that the terms ‘best move’ and ‘calm’ do de-

pend on the type of computation performed, we should use boolean-best move

and boolean-calm if they are determined in a boolean search but to keep the

text better readable, we will continue to use simply ‘best move’ and ‘calm’

although we exclusively refer to a boolean search. It is necessary to make this

remark, because not all boolean-best moves are truly best moves2 and thus not

all boolean-calm positions are truly calm positions as seen in a collection of

boolean-calm positions in [4].

Diagram 4 on the next page is an example of a (boolean-) calm position. Here

2A move of White giving seki is boolean-best but not truly best if there is another move reaching life.
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Black needs one exterior ko threat to kill, re-

gardless of who moves first (White passing

or playing on m2, Black passing or playing

anywhere apart from m2 which would be fol-

lowed by White on m1: seki). Therefore,

the status for White moving first is 1 and for

Black moving first �1, giving a zero sum.

6
5 � � � � �
4 � � � � � � � � È
3 � � � � � � �
2 � � � � � �
1 � � � � � �

e f g h j k l m n o p q

Diagram 4

LEMMA. For a regular position the sum of status values for both sides moving

first is never negative.

(This lemma is typical for games that allow passing and have no zugzwang.)

Proof (indirect): Assume the sum of both status values is < 0. Then at least one

of both status values must be negative. Let X be the side with the most negative

of both status values, namely sX < 0. Even if the opponent of X would have

no better first move than to pass, then the achieved status value would still be

�sX > 0 from passing, giving a sum of at least zero in contradiction to the

assumption.

3. Characterization of bent-4-type positions

The collection of plausible rules from Section 2 and the appendix describes a

finite procedure with a definite result. This result is essentially identical to what

one expects from real Go apart from limitations in the appendix and apart from

the 4 bent-4 positions

8
7
6 � � � � �
5 �
4 � � � È �
3 � � �
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1 � � �

a b c d e f

Diagram 5

8
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6 �
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4 � �
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1 � � �

a b c d e f

Diagram 6
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a b c d e f g

Diagram 7

7
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5 �
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1 � � �

a b c d e f g

Diagram 8

including those created by filling of external liberties of White, rotation, reflec-

tion and swapping colours.

When computed in accordance with the procedure definition given in the

above sections, for example in Diagram 5, the first 7 moves of Black would fill

White’s liberties , each followed by a pass of White and further � b1 (giving 4

bent black stones in the corner, hence the name ‘bent 4 in the corner’), � b3,� a2, � a1, � b1 resulting in a ko where White needs an external ko threat to

live, independent of who moves first.
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An essential difference between bent-4 and the position in diagram 4 is that in

bent-4 passing is the only best (internal) move for White. Hence Black has the

option to wait long enough until later in the game and then protect all potential

white ko threats3, fill outside liberties of White, produce an L-shaped throw-in

chain which is caught by White and then play on a2 and start a ko in the corner,

which Black captures first, i.e., White needs an external ko threat. As Black had

enough time to remove at least all removable ko-threats, the position on its own

is commonly regarded as dead, although its value in a real game, depends on

the situation on the board and the rules used.4

When evaluated according to Section 2 these four positions have the following

more general properties.

DEFINITION 1. Any position that has the following three properties is said to

be of bent-4-type:

1. The initial position does not have a ko-forbidden point.

2. The status is a ko in which side X needs at least one external ko threat (more

than the other side) to win.

3. Passing is the single best first move for X (apart from playing on dame

points).

Comments

� From 3 it follows that passing is also one of the best moves of the opponent

of X .

� In bent-4 (diagrams 5–8) we have X D White and dame points would be

external liberties of White, like a5 in diagram 5.

� There are many positions which satisfy criteria 2 and 3 for X D Black (the

attacker) but not 1–3, i.e. they have a ko-forbidden point. In a search of

all positions that involve a single white eye with up to 11 internal points no

position showed up satisfying criteria 1–3 for X D Black (i.e. X D attacker)

and only diagrams 5–8 satisfy criteria 1–3 for X D White.

� Larger bent-4-type positions are possible (Chi-Hyung Nam, personal com-

munication). In Diagram 9 the best move for Black is to pass whereas White

can always provoke a favourable ko by playing � e17, � f17, � e19, � f18,� c19 (i.e. here X D Black).

3This may not be possible, for example, in the case of an infinite source of ko threats, like a double-ko-

seki somewhere else on the board, or a seki which for White is less costly to lose than bent-4 and for Black

more costly to lose than bent-4.

4According to the Japanese 1989 rules, bent-4 positions are even unconditionally dead. More precisely,

in the confirmation phase of the game the so-called ‘pass-for-ko rule’ implies an unconditional loss for White

(see [2]). In the Japanese 2003 rules of Robert Jasiek, during the hypothetical-analysis (stage 2 of the game,

following stage one, which is the alternating-sequence of moves) White would also have to ko-pass, leading

to the capture of the white stones before White would be able to recapture the ko (see [3]).
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14
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Diagram 9
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Diagram 10

In Diagram 10 the best move for White is to pass whereas Black can always

provoke a favourable ko by playing � h18, � g19, � c19, � h19 (i.e. here

X D White).

The question to be answered in the following section is: Can one have a con-

sistent boolean search which on one hand evaluates anything to be alive/seki

which can not be killed by a nonpassing move and on the other hand evaluates

bent-4-type positions to be dead but the killing move is a pass?

4. Modification of the status defining procedure

4.1. The passing rules so far. To define the boolean search completely one must

clarify under which circumstances passing is allowed. The standard passing

rules in GOTOOLS that do not yet take care of bent-4 are:

Ruling I:

1. In a regular position,

(a) if � moves next then

(i) if � recaptured a ko two moves earlier using one of its ko threats, and� passed afterwards then � is not allowed to pass

(ii) else � is allowed to pass.

(b) � is not allowed to pass

2. In a ko-banned position,

(a) if First (the side moving next) has no external ko threat it may pass,

(b) if First has an external ko threat it may not pass.

If the position contains a point that is ko-forbidden then both sides may pass

(rule 2). A refinement (rule 2b) is necessary in order not to lose unnecessarily
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despite of having ko threats and thus unnecessarily require reruns with more and

more external ko threats.

To treat seki as a situation in which White cannot be killed, it is necessary

to allow White to pass also in regular positions (rule 1a-ii). This rule needs

an exception in form of 1a-i. If White would be allowed to pass under the

circumstances of 1a-i then Black could recapture the ko and a so-called negative-

value 4 move cycle would be created in which White wasted an external ko-

threat (see ‘Handling cycles’ on page 245).

Black, on the other hand, should not be allowed to pass in a regular position

(rule 1b) because afterwards White could pass too and White could not be killed.

This rule creates a problem with bent-4 positions in diagrams 5–8 for which the

best move for Black is to pass. The key to get bent-4-type positions right must

therefore involve a change of the passing rules.

4.2. Passing for bent-4-type positions. One way to solve the problem with

bent-4-type positions would be to perform an extra computation if in the first

run the status turns out to be a favourable ko for Black and if there is initially

no ko-forbidden point (that is, if it is regular). In this additional search one

would test whether Black can win if it passes as first move. This may work

for diagrams 5–8 but a bent-4-type position could only result within one branch

of a larger tree-search and the status of the larger problem may depend on the

correct solution of the bent-4-type subbranch. We therefore need a ‘local’ rule

(local in the sense of the whole search tree) about the right to pass and not a

separate computation.

The key idea is to allow Black to pass if White has an external ko threat, that

is, to replace rule 1b in ruling I by the rules

(1b-i) if � has no external ko threats then � is not allowed to pass,

(1b-ii) if � has at least one external ko threat then � is allowed to pass.

But after a type 1b-ii passing of Black, White could pass too and would not be

found to be dead. It seems to be necessary to forbid White to pass after a type

1b-ii passing of Black, but this does not work either as can be seen from the

problem in Diagram 11.

5
4 � � � � � � � È
3 � � � � � � � � � �
2 � � � � � � � � � �
1 � � � � � �

a b c d e f g h j k l m

Diagram 11. Black to move first.
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The solution sequence is �� f1, �� e1, �� c1, Æ� a1, �� f1 such that White needs

one external ko threat to live. Therefore, during the solution of this problem it

comes to a second run in which White has one external ko threat. With one

extra ko threat for White in the second run, the move �� f1 fails and all other

alternatives have to be investigated, like �� pass. Therefore, in the second run

eventually rule 1b-ii is applied yielding �� pass, �� f1, �� pass. The resulting

position is a seki, but to recognize it White must be allowed to pass with Æ� (and

it must be forbidden for Black to pass afterwards to have a finite algorithm).

Like with bent-4 the crucial situation takes place in the second run when White

has an external ko threat. The question is, what are natural rules which in a run

where White has a ko threat,

� for bent-4 after �� pass forbids �� pass but

� for Diagram 11 after �� pass, �� f1, �� pass, allows Æ� pass (and forbids ��
pass) ?

All Black’s passes are of type 1b-ii. The difference between both situations is:

if there would be no extra White ko threat

� in bent-4 after �� pass, �� pass then Black still wins,

� in Diagram 11 after �� pass, �� f1, �� pass, 4. Æ� pass Black can not win

which in both cases is what we want. But that cannot be found out in a second

run in which White has an extra external ko threat, unless one lets White pay

the price of losing all external ko threats if White wants to pass after a Black

type 1b-ii pass.

If White cannot win after losing all ko threats, then this is a situation where

passing is one of Black’s best moves which improves a favourable ko to an

unconditional kill as Black can wait until the end of the game before starting

the ko. We therefore modify rule 1a-ii and get:

Ruling II:

1. In a regular position,

(a) if � moves next then

(i) if � recaptured a ko two moves earlier using one of its ko threats, and� passed afterwards then � is not allowed to pass, else

(ii) if � has at least one external ko threat and if � has done a type 1b-ii

pass in the sequence of moves up to now then � is allowed to pass but

has to give up all external ko threats for any following moves, else

(iii) if � has no external ko threats or if � has at least one external ko

threat and � has not done a type 1b-ii pass in the sequence of moves up

to now then � is allowed to pass without giving up ko threats.
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(b) if � moves next then

(i) if � has no external ko threats then � is not allowed to pass,

(ii) if � has at least one external ko threat then � is allowed to pass.

2. In a ko-banned position,

(a) if First (the side moving next) has no external ko threat it may pass,

(b) if First has an external ko threat it may not pass (but should instead play

the ko threat and then recapture).

Comments

� These rules about passing are part of a boolean search, they make no statement

whether passing is a good or bad move in a particular situation. It may very

well be that one of the above rules forbids passing in a situation where passing

is the only correct move. Nevertheless, the above ruling is correct, because

in such a situation, nonoptimal moves have been made earlier by that side

(which is forbidden to pass now) in the sequence of moves leading to this

situation. The following diagrams 12–15, also known as mannen ko, give an

example. The letter K marks a ko-forbidden point.5

7
6 � � �
5 � � � �
4 � � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f

Diagram 12

7
6 � � �
5 � � � �
4 K � � � �
3 � � � � �
2 � � � �
1 � � � �

a b c d e f

Diagram 13� to move next

7
6 � � �
5 � � � �
4 � � � �
3 � � � � �
2 � � � �
1 � � � �

a b c d e f

Diagram 14

7
6 � � �
5 � � � �
4 � � � � �
3 K � � � �
2 � � � �
1 � � � �

a b c d e f

Diagram 15� to move next

5In all 4 positions both sides have the option to pass which leads to seki. In Diagram 12 Black can enforce

a ko by playing on a1 or c2 which is about unconditional life or death and which is unfavourable for Black.

In Diagram 14 White can enforce a ko, unfavourable for White, by playing on a1 or c2. In a boolean search

with seki = life the single best move for White in all 4 positions is to pass and the status is an unfavourable ko

for Black.
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We consider Diagram 15 and a run in which White has one external ko

threat available. We assume further, White (nonoptimally) uses the ko threat

to recapture the ko (leading to Diagram 13) and Black passes (correctly)

leading to Diagram 14. According to rule 1a-i in this situation White is not

allowed to pass although the passing move is the correct move for White. If

White loses in this position because it may not pass then this has only the

consequence that White has to try a different move two moves earlier and do

the correct move there and pass. But the fact that the proper move is forbidden

has a consequence for programming. GoTools runs a hash data base in which

intermediate results are stored. If White loses in a position where passing

was forbidden due to rules 1a-i, 1a-ii or 2b then the status of these positions

and of positions in sub trees may not enter the database.

� Rules 1a-i and 1b-ii are applicable as well after swapping attacker (Black)

and defender (White) but we do not have to change our ruling because this

case is already included. The symmetry between attacker and defender is

broken by treating seki = life and not seki = death. Rule 1a-i after swapping

Black $ White is included in rule 1b-i because in rule 1a-i the side which

is forbidden to pass had at least initially ko threats whereas in rule 1b-ii it

is the opposite side of the side that is allowed to pass which has a ko threat.

In other words, rule 1a-i after swapping colours does not forbid any passing

which is not already forbidden by rule 1b-i. For the same reason, rule 1b-ii

after swapping colours does not allow any passing for White which is not

already allowed by rule 1a-iii.

5. Summary

In this article we develop a consistent procedural definition of the status of

life-and-death problems. The procedure performs a boolean search which has

as a consequence minor limitations described in the appendix but which, on the

positive side,

� determines how many external ko threats are needed for the weaker side to

win,

� evaluates bent-4-type positions as dead and as the best move for the attacker

to pass, and

� it is efficient because it does a boolean search and minimizes the number of

passes done during the search.

The implementation in the program GOTOOLS proved to be consistent when

evaluating the status of more than 2 � 108 eyes with up to 11 inner points being

surrounded by only one chain as reported in [4].
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Appendix: Limitations

Boolean search. Because the outcome of life-and-death fights is polarized

(life/seki or death) the value of such all-or-nothing fights is naturally high and

it is critical to determine the status of the position and the best moves of both

sides as early as possible. Thus, even with near unlimited computing power one

would rather use it to solve problems earlier in the game even if one is limited to

do a boolean search than optimizing the territorial value of life but being slow.

The risk of losing few points by applying boolean search can be lowered by

checking different first moves each in a boolean search and selecting that one of

the optimal moves which in addition seems to give the most outside influence.

Seki equal life. Apart from the given position on the board we need for the

definition of a life-and-death problem also one or more chains of one colour

identified which are to fight for life (in this paper White tries to live) and possibly

a side moving first, otherwise both sides moving first are considered. Having

only two possible outcomes it is more appropriate to classify seki as life than

as death. For example, if the White chain in Diagram 16 would be regarded

as unconditionally alive then White would have 10 points more compared to

treating it as a seki (which it is).

È È� � � � � � � � � �� � � � � � � � � �� � � � � � � �
Diagram 16

The error in regarding White as dead would be larger: 22 points. Neverthe-

less, this is a serious limitation as a difference of, for example, 10 points is not

negligible. If one has already at the starting position intruding black stones then

one can confirm seki with a boolean search by checking whether they can be

caught. This should work for the classification of monolithic eyes, although it is

not done in this paper. On the other hand, an extra run will not be able to detect

seki if the intruding black chains do not already exist in the initial position.

Handling cycles. For the boolean search we need a rule how to handle cycles.

The side moving next, in this paper called First, is not allowed to restore a

position encountered earlier in the sequence of moves that are already done

� if in the resulting cycle the opposite side Second has caught more stones than

First (otherwise repeating this cycle sufficiently often would result in a loss

of First exceeding the value of the life-and-death problem), or
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� if First had spent external ko threats in this cycle and Second not (in the

computation described in section 2, only one side is allowed to use external

ko threats to recapture kos), or

� if First = Black because repeating this loop would mean that White at least

reaches seki, and so wins.

With these rules for handling cycles and rules about passing discussed in Section

4.1, every search must be finite as problems of finite size can have only finitely

many moves before the position must repeat.

Value of tenuki. A more serious restriction in our life-and-death computations

comes from trying the passing move only as a last resort. Therefore, strictly

speaking, the determined status and winning move are only correct under the

assumption that playing elsewhere (passing in the life-and-death fight, or tenuki)

has negligible value, as is typically the case towards the end of the game. Es-

pecially when comparing different kos, the result may depend on the value of a

passing move. Since the number of available external ko threats and the value

of a passing move are in general incomparable, one ideally would have to de-

termine the status for any combination of both, i.e., for the number of external

ko threats and the number of passes. Our computations cover the special case

where passing has negligible value.

External ko threats. As explained in Section 2, the number of external ko

threats is limited in practical computations to 5 but could easily be changed to

any large value.
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ABSTRACT. We describe the generation of a library of eyes surrounded by

only one chain which we call monolithic eyes. Apart from applying the library

in the life-and-death program GOTOOLS it also can be used as a source for the

study of unusual positions in Go as done in the second half of the paper.

1. Introduction

In using principles of combinatorial game theory it has been discussed in

the literature how in the game of Go one can assign values to eyes in order to

decide whether a position lives unconditionally, simply by adding these values

and checking whether or not their sum reaches the value of two (see Landman

[1]). These concepts are applied in computer Go programs (as in [3]) and a

computer generated library of eye shapes is available from Dave Dyer [2].

In this contribution we describe the generation of a library of eyes surrounded

by only one chain which we call monolithic eyes. Compared to Dyer’s library

our database has a number of extensions: an evaluation of the number of ko

threats needed to live or to kill the eye, the consideration of a larger number of

external liberties and of an extra attached eye, larger eye sizes, the determination

of all winning moves and others.

In the following section we describe a procedure to bring any set of empty

or occupied points into a unique position by using shifts and symmetries of the

board. The purpose is to avoid the generation of equivalent eyes as described in

Section 3. The evaluation of eyes is done with the program GoTools [4] as out-

lined in Section 4. Computational aspects including a listing of optimizations,

comments about performed consistency tests, usefulness and availability follow

in Section 5.

249
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The database of monolithic eyes is a rich source of strange positions. In

Section 6 we give two examples of how to inspect it: by looking for boolean-

calm eyes, i.e., eyes which are not settled but where passing belongs to the

boolean-best moves1 of both sides; and by checking for eyes where the boolean-

best attacking move depends in a nonmonotonic way on the number of external

liberties.

A summary concludes the paper.

2. Unique representations

If positions in the game of Go are to be stored then there is the option either

to store all 8 versions obtained from rotation and reflection of a single position,

or to move the position into a unique location and to store it only once. The first

version is probably faster, whereas the second is definitely memory saving. Our

choice follows partially from the intended use of the database of monolithic

eyes which is to be applied in the program GoTools. Much of the execution

time of this program is spent on tasks other than evaluating eyes. The speed of

the eye database is therefore not crucial which is a reason to use the memory-

saving approach. Another reason is that eyes which are not located in the corner

have to be shifted to a norm position anyway, and performing a rotation and

reflection in the same step does not take much more time. We therefore took the

second option and bring each eye into a norm position through shift, rotation

and reflection before storing or looking up the position in a database.

We have three cases: eyes in the corner, on the edge and in the centre of the

board. For eyes in the corner we have no shift, the rotation is apparent as we

rotate each eye into the lower left corner and only the reflection has to be decided

by comparing successively two points, one on either side of the board diagonal.

Eyes on the edge are rotated to the lower edge of the board. A horizontal centre

of the eye is determined as the average of the extreme x-values of inner points

of the eye. The middle of the eye can have an integer or a half integer value.

For both cases we have a procedure to decide whether a reflection is needed.

Finally, for mid-board problems we have the three cases that the centre of the

problem falls onto a point of the board, between two points on a line or on the

centre between 4 points. For each of these cases we have a procedure to start

with points close to the centre of the position and to move gradually away in

comparing points. Through the computation of dipole, quadrupole and octupole

moments (in analogy to the distribution of electrostatic charges in physics) we

continue with the computation until the symmetry is completely broken, i.e.

1In [4] we define ‘boolean-best’ moves as all the moves reaching the best possible result in a boolean

search with only two outcomes: life/seki or death. In other words, moves achieving seki are regarded as good

as moves achieving life.
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* * *

+ * * + * + * +

* *

ref rot2 rot1+ref ref, rot2

*

*

* + * + +

*

*

rot1+ref, rot2 rot1, rot2 ref, rot1, rot2

Figure 1. Examples for the possible symmetry types of positions

until a rotation around the centre of the position and a reflection are completely

determined or until all points of the positions (in the application all inner points

of the eye) have been considered and, as a by-product, the exact remaining

symmetries of the position are determined. The 7 possible remaining symme-

tries can be visualized with the examples in figure 1 where + marks the centre

of rotation, * a single stone, ref stands for a reflection symmetry on the x; y

diagonal, rot1 for a 90 degree rotation counterclockwise around + and rot2

for a 180 degree rotation counterclockwise around +.

The procedure to norm-locate a position (i.e. to put it into a unique place

through shift, rotation and reflection) is used repeatedly when creating all es-

sentially different positions (to have them evaluated later). It is also used when

applying the database during a life and death computation to norm-locate any

encountered monolithic eye in order to look it up in the database. The norm-

locating procedure does not only output the new position but also the transfor-

mation leading to it. The purpose is to use the inverse transformation on the

moves stored in the database to obtain the moves that should be done in the

encountered position.

3. The generation of positions

To identify a position in the database we generate a hash code according to

Zobrist [7], which is the standard technique in computer Go. The hash codes

have to be large enough to avoid clashes for over 2 �108 eyes of size up to 11 but

should be as short as possible to save memory. It turns out that a 32 bit code is

too short but we confirmed that a randomly chosen 64 bit code was sufficiently

large.
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In this article the monolithic eye is made from white

stones and Black is the attacker. Monolithic eyes are rep-

resented completely through their interior which includes

empty, black and white points, not the eye enclosing stones,

like � on a3 in Diagram 1 to the right.

4 È
3 � � �
2 �
1 � �

a b c d

Diagram 1
The computation starts with three eyes of size 1: one in

the lower left corner, one in the middle of the lower edge

and one in the centre of the board. Eyes of increasing size are successively

generated. The generation of all eyes of size s proceeds in four steps.

At first all internally empty eyes, like the eye of size 11 in Diagram 2, are

generated by extending all internally empty eyes of size s � 1 in all possible

directions. Duplicate eyes are avoided by storing a hash code for each empty

eye in a database. At this stage all eyes with internal isolated stones are excluded.

For example, an eye like in Diagram 1 is excluded when generating eyes of size

three but it would come up when generating all eyes of size four.

In the second step all possible legal combinations of white stones within each

eye are generated as, for example, the eye in diagram 3, with the restriction that

extra white stones may not be attached to the white eye enclosure as the inner

size would be reduced. Hence, white stones could not be put on points like c2

in Diagram 2. On the other hand, white stones on a1 and b2 (for example) are

allowed, even if they split the monolithic eye into two or more nonmonolithic

eyes. For each resulting position all possible legal combinations of additional

internal black stones are generated, such as the eye in Diagram 4.

Finally, for all eyes which include one or more ko-fights the position is dupli-

cated once for each empty potential ko point which in the duplicate position is

marked as forbidden. The position in diagram 4 would therefore appear twice,

once without the forbidden ko point (Diagram 4) and once with the forbidden

ko point, like the point marked as K in Diagram 5. If the point a2 in Diagram

4 would be occupied by Black or White then b1 could not be a ko-forbidden

point as the position could not have resulted from White making a move on c1

and capturing a single black stone on b1.

6
5 � �
4 � � È
3 � � �
2 �
1 �

a b c d e f

Diagram 2

6
5 � �
4 � � È
3 � � �
2 � �
1 � � �

a b c d e f

Diagram 3

6
5 � �
4 � � È
3 � � � � �
2 � � �
1 � � � �

a b c d e f

Diagram 4

6
5 � �
4 � � È
3 � � � � �
2 � � �
1 � K � � �

a b c d e f

Diagram 5

With nearly 2 � 108 eyes of size 11 a hash database holding all of them to

exclude duplicates would be too large. Fortunately, it only needs to be big
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enough to hold all empty eyes of one size to exclude duplicate empty eyes of

same shape. If two empty eyes are not symmetric to each other (by reflection,

rotation or shift) then they cannot become symmetric by putting extra stones

in. But if an empty eye has a symmetry, for example a reflection symmetry,

then filling it with stones will produce positions which are pairwise equivalent

with respect to this symmetry. The hash database therefore has also to be big

enough to hold all eyes which are generated from a single empty eye through

input stones.

Three diagrams in figure 2 illustrate the growth of the numbers of positions

in dependence on the size of eyes for corner, edge and centre eyes.

Comments

� Because of log.0/ D �1 we replaced 0 on the vertical axis each time by 1

to have log.1/ D 0.

� Growth factors are remarkably constant and allow to estimate the number of

eyes of larger sizes.

� The number of positions grows only little by adding white throw-in stones. It

grows most for corner positions as for edge and centre eyes most inner points

are on the edge of the eye which cannot be occupied by further white stones

without decreasing the inner size.

� The number of extra positions due to an initial ko grows faster than other

numbers and is highest for corner eyes, again because for corner eyes the

surface of the eye (the number of inner points neighbour to the enclosing

chain) is smallest.

4. The evaluation of positions

To evaluate the eyes we use the program GOTOOLS. It performs a boolean

search which has, for example, the consequence that seki is treated as life. Other

consequences and limitations are described in the appendix of [6] in this volume.

A strength of GOTOOLS is that it is able to determine how many ko threats are

needed for the weaker side to win. When evaluating eyes, beginning with size 1

and increasing the size successively, GOTOOLS already makes use of the hash

database filled with data for smaller eyes.

Because GOTOOLS is a life-and-death program it cannot evaluate whether the

position is at least ‘worth one eye’ so that it could live if it had another ‘eye’.2

We compensate this weakness by investigating the position twice, first on its

2In this article the word eye normally denotes a whole position consisting of a white chain with stones

inside and a surrounding black enclosure. Only in this paragraph the phrase ‘worth one eye’ is a short form

of saying ‘one protected liberty which has to be the last liberty taken for capture’ with the understanding that

two such liberties ensure life.
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Figure 2. Numbers of generated positions.

own in order to find out whether it is ‘worth two eyes’ and if not then we attach

externally a secure 1-point-eye and investigate it again to find out whether it is

‘worth at least one eye’. The information whether a position is ‘worth 1

2
eye’

(i.e. ‘worth one eye’ if White moves first and ‘worth no eye’ if Black moves first)

or similarly ‘worth 1 1

2
eyes’ follows from evaluating it for both sides moving

first.3

The status of the eye and/or the boolean-best moves often depend on the num-

ber of external liberties. Therefore computations are done for 0 to 31 external

3with the exception that if an initial ko forbidden point is present then only the side for which this point

is forbidden may move first
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s a b c d e f g

1 3 3 100.0 1.000 76 < 0:1 < 0:1s

2 10 10 100.0 1.000 220 < 0:1 < 0:1s

3 56 55 98.2 1.036 868 < 0:1 0.4s

4 321 259 80,7 1.062 4,180 < 0:1 2.5s

5 1,938 809 41.7 1.116 15,004 < 0:1 7.7s

6 12,477 2,917 23.4 1.243 58,540 0.1 27.4s

7 82,808 9,955 12.0 1.464 233,572 2.5 2m 31.9s

8 565,104 41,831 7.4 1.608 1,040,548 2.5 13m 51.4s

9 3,931,849 196,402 5.0 1.659 6,601,924 5.2 1h 32m 26s

10 27,800,486 965,405 3.5 1.716 33,118,212 18.4 11h 6m 1.2s

11 199,169,127 4,990,259 2.5 1.739 215,042,444 45.1 3d 11h 19m

Table 1. Numbers of positions, sizes of final databases, evaluation times.

Meaning of columns: s, size of eye; a, all positions of this size; b, positions

not unconditionally alive; c, percentage of positions not unconditionally

alive; d , average number of records for each not unconditionally alive eye;

e, size of final read-only hash database in bytes; f , maximal time in seconds

for the evaluation of one eye; g, total time for all positions of this size.

liberties for two cases: the eye on its own and one extra external 1-point eye

being attached. Only in the case that the eye has no internal liberty, at least one

external eye or liberty has to be present.

Table 1 gives an overview of the number of positions, the percentage of those

which are not unconditionally alive, the average number of records to be stored

for each not unconditionally alive position and times needed to evaluate the most

expensive single eye and all eyes of each size. All times are measured on a 3GHz

Pentium IV. Programs are written in FreePascal (http://www.freepascal.org).

5. Computational aspects

5.1. Optimizations. The following are observations and ideas that allow to

make the computer programs more efficient.

� Because the database is generated only once, it can afterwards be converted

to a read-only database saving one pointer for each record and thus memory.

� From table 1 it follows that a large proportion of all eyes are unconditionally

alive. We do not need to store them. If we do not find an eye with a size that

is covered by the database then we simply conclude that the eye is uncondi-

tionally alive. This works because we generated and evaluated all eyes up to

the maximal considered size (currently 11).
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� If we store only a small fraction of all eyes, we do not have to guarantee that

there are no clashes between hash codes of eyes which are not stored. To

ensure that there is no clash between any two stored eyes and not between a

stored eye and an eye that is not stored, shorter hash codes are sufficient in

the final read-only version.

� Column d in table 1 shows the average number of records that each (not

unconditionally alive) eye contributes to the database. The larger the eye, the

more likely the status and/or the boolean-best moves depend on the number

of external liberties and the more records are needed for the eye. The pointers

between these records have a 32 bit size but if the database has to hold eyes

only of size � 10 then the number of stored records is much smaller than 232,

so we can use some of the bits to encode part of the hash code. Column e

in table 1 shows the memory requirement for a hash database including only

eyes up to this size.

� In the process of evaluating an eye of inner size n the eye either keeps its size,

or its inner size shrinks. Any smaller eye that appears has already been inves-

tigated, because we evaluate eyes of successively increasing size. Therefore,

either it is found in the database, then the information can already be used,

or it is not found and then it is clear that it must be unconditionally alive.

The situation is different if throw-in stones are placed which change the

eye (i.e. its content and thus the eye) but in a way that its inner size is still

n. Because not all eyes of size n have already been investigated, one cannot

conclude that it is unconditionally alive if it is not found in the database.

Nevertheless, one can look it up and use the information if the eye is found.

� When studying an empty eye of size n then other eyes of size n with more

throw-in stones appear, but when studying an eye of size n with many throw-

in stones then it is rare that eyes of same size with fewer throw-in stones

turn up in this evaluation. To increase the chance that appearing eyes of that

size have already been investigated, one can evaluate eyes with many interior

stones first and empty ones later.

� In the worst case each of the 2 � 108 eyes would be evaluated 128 times (D

2 � 2 � 32 for both sides moving first, with/without extra eye and each time

0-31 external liberties) but this can always be sped up. If, for example, Black

moves first and the eye has no external liberty and no extra eye is attached

and Black loses then Black will always lose and White will always win.

� In each of the at most 128 computations of an eye, all possible first moves

are checked to determine all moves giving the best status. After the first com-

putation determining the status of the problem and one of the (boolean-)best

moves is completed, any computation checking another first move can be

stopped early (i.e. one can avoid ko reruns with more ko threats as described
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in the section on the ko status in [6]) as soon as it is clear that the status will

be suboptimal.

5.2. Safety. The program GOTOOLS which evaluated the positions operates

apart from the permanent monolithic eye database also a temporary hash data-

base which is cleared before a new eye is considered. For any new entry to be

stored, both databases check whether this entry is consistent with the content

so far. For example, if for a position it is already known that White moving

next will lose despite having one external ko threat, then a new entry saying

that White even loses with two ko threats is consistent, but a new entry saying

that White wins in this position without ko threat would create an inconsistency.

For the eye database, further consistency checks result from the requirement that

Black must not do worse when White has fewer external liberties and/or no extra

external eyes compared to White having an external eye. Equivalently, White

must not do worse when having more external liberties or extra eyes. These

consistency checks, having been done thousands of billions of times during the

generation of the database, led to the fixing of a number of bugs (mainly linked

to the proper handling of ko in connection with the temporary database) and to

the development of ‘bent-4 compatibility’ reported in [6].

5.3. Efficiency and availability. The monolithic eye database is a single perma-

nent read-only file with a size depending on the size of eyes stored (see column

e in table 1). To use the database, a module within the program GOTOOLS

norm-transforms any monolithic eye encountered during a computation by per-

forming a rotation, reflection and shift as necessary, generates a hash code, finds

the relevant entry in the database (depending on the number of external liber-

ties and on who moves next) and decodes the information (status and moves).

The size of the database grows exponentially with the size of eyes to be stored

and the frequency to encounter monolithic eyes falls quickly with increasing

eye size. Being able to read the status and first moves for a big eye from a

database is especially time-saving; on the other hand, loading a large database

takes considerable time when starting the program, and the large amount of

memory required may make cache memory less effective, slowing down the

whole program. Therefore the online version of GOTOOLS on [5] uses only a

database including eyes of size up to 8.

6. Unusual positions in the database

The database of monolithic eyes is a rich resource for simple but also special

positions. Because of the large number of eyes a human visual inspection is out

of the question. To filter out interesting positions automatically, one needs to

come up with criteria that make a position interesting. These criteria depend on
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how positions are evaluated and which data about the positions are available.

The positions in our database are computed with the program GoTools. As

described in more detail in [6], the possible status are unconditional life, death

or characterized by the number of external ko threats needed for the weaker side

to win. The status and all first moves that result in this status are determined

for both sides moving first, for 0-31 external liberties and for the two cases that

an additional 1-point eye is attached or not. Given these data for all monolithic

eyes in the corner, on the edge and in the centre of the board, what are criteria

that make life and death positions interesting?

The filters applied in this section are not unique, they are examples and one

may come up with other criteria people are interested in. Also, limitations like

seki = life have their consequences on what one can find. For example, mannen-

ko as shown in [6], Section 4.2, Diagrams 10–13, is a seki type position but both

sides can start an unfavourable ko about unconditional life or death. Because the

ko is unfavourable to whoever starts it, the seki is in some sense stable. In this

paper we treat seki = life with the consequence that these positions are simply

unfavourable ko’s for Black, so passing is the boolean-best move for White.

6.1. Calm positions. A first class of positions we want to explore has the

property that passing is one of the best moves for both sides. To be more precise,

passing is one of the boolean-best moves, i.e. one of the moves that achieve the

best possible result in a boolean search where seki is

treated as life. If such a position is not settled, i.e. if it is

not unconditionally dead or alive/seki then we called it

boolean-calm in [6] and gave an example there. Treat-

ing seki = life means that the ‘double-ko seki’ in Di-

agram 6 is regarded as settled and thus not listed as a

boolean-calm position, although both sides have pass-

ing as one of their boolean-best moves.

6
5 � � � � �
4 � � � � �
3 � � � � �
2 � � � � �
1 � � � � �

a b c d e f g

Diagram 6

A convention: For readability, from now on we will write ‘calm’ instead of

’boolean-calm’ and ‘best’ instead of ’boolean-

best’. One should keep this in mind as other-

wise statements in this section become wrong.

Passing is often not one of the truly best moves,

for example, in Diagram 7 where �� pass, ��
on h1 is boolean-best for � , achieving a seki

whereas �� on a1 achieves life.

5
4 È È
3 � � � � � � � �
2 � � � � � � � � �
1 � � � � � �

a b c d e f g h j k

Diagram 7

If passing is one of the best moves of both sides, then the status does not

depend on who moves first, i.e. such positions have only one status. Ko-banned

positions (i.e. positions with a ko-forbidden point) can have only one side mov-

ing next and hence cannot be calm.
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size corner edge center total

� 4 0 0 0 0

5 4 0 0 4

6 6 0 0 6

7 69 34 0 103

8 232 109 0 341

9 405 197 0 602

10 746 98 2 846

11 2817 470 11 3298

Table 2. Numbers of calm eyes in the corner, on the edge and in the

centre

Table 2 lists the number of calm position for different eye sizes. For each

size only a very small percentage is calm, each position only for one or very few

specific numbers of external liberties. In this sense these positions are special,

although not as exotic as bent-4. The numbers in table 2 serve merely as an

illustration, as many positions are equivalent, not by rotation or reflection of the

whole position but by deforming the eye, deforming the black throw-in chain(s)

and rearranging internal liberties without changing anything substantially.

To construct a strange position with a large area that involves many chains,

nesting eyes and multiple ko’s does not seem to be too difficult. It is more of a

challenge to embody the spirit of a strange position in as few stones as possible.

By generating eyes beginning with minimal size, such minimal positions will

be found. An example is discussed in the subsection about size 6 eyes below.

Bent-4-type positions. One way for a position to be strange is when its status

depends on the global situation on the board. The simplest are straight ko’s

where the side with more threats wins. The next level of strangeness is reached

when the status does not depend on the number of threats on the board, but on

the type of threats, whether they are removable (like cuts) or unremovable (seki).

This is the case when the local position is a ko, and somewhere in any optimal

sequence of moves, the side for which the ko is unfavourable has the passing

move as the only best/feasible move. Such positions have been called bent-4-

type positions in [6], Section 3. From all the investigated eyes up to size 11,

the 4 bent-4 positions in [6], Section 3, were the only ones with this property.

They are commonly regarded as dead, because Black (the side for whom the

ko is favourable) can wait arbitrarily long before making moves at no cost that

eliminate removable ko-threats of White and then starting the favourable ko.

Therefore, the program GOTOOLS had been modified as described in [6] so that
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bent-4-type positions are evaluated as an unconditional loss for the side with

the passing move as single best move. It is with this version of GoTools that

the monolithic eye database has been computed, therefore bent-4 is evaluated

as unconditionally dead and will not be found below in our search for calm

positions.

Eyes of size 5. Starting with eyes of small size we find that eyes need at least 5

inner points to have a status that is not unconditionally dead or alive and to allow

both sides to pass without penalty. Up to rotation and reflection there are 4 such

positions. One of them is shown in Diagram 8. The other three have the same

black throw-in stones but the liberty at b2 is located at c1, b3 or a4. In all four

positions the eye has exactly one external liberty and

the status is that White needs one external ko-threat to

live.4 If a position/eye can only be calm if it has one

or more external liberties then in ‘real Go’ (with seki

¤ life) they cannot be a seki because it does not harm

Black to occupy these liberties. Therefore these four

positions are not seki’s.

6

5 � � � �
4 � � �
3 � � � �
2 � � �
1 � � � �

a b c d e

Diagram 8

The reader can find solution sequences for all posi-

tions in this paper by solving the problems in [5].

Eyes of size 6. There are two types of calm positions of size 6. One is the

position in Diagram 9 where White needs one ko-threat to live.

7

6

5 � � �
4 � � � �
3 � � � �
2 � � � �
1 � � �

a b c d e f g

Diagram 9

7

6 � � � �
5 � � �
4 � � �
3 � � �
2 � � � � �
1 � �

a b c d e f g

Diagram 10

In the other 5 positions Black needs one ko-threat to kill. These are:

(i) Diagram 10 with 0, 1 or 2 external liberties for the eye, and

(ii) the same diagram but with � added on b1 and 0, 1 or 2 external liberties,

or

4If there were no external liberty of White then Black moving first can catch and if there are two external

liberties, White can live moving first, so in both cases this is not a calm position. The difference to bent-4 is

that White can start the Ko at b2 and does not have to pass.
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(iii) � added on a1 and 0 external liberties, or

(iv) � added on a4 or b3 and 0 external liberties.

In cases 3 and 4 the only good move for White is to pass which does not make

the position to be of bent-4-type because the ko is favourable for White. To be

of bent-4-type the ko would have to be unfavourable for the side with passing

as the single best move.

From these five positions we chose the one in Diagram 10 as the representative

position — the ‘mother’ position — because all other ones can be reached from

it. Positions in Diagram 10, cases 2 and 3 are versions of a ‘10,000 year ko’ or,

also called ‘mannen ko’. Compared to the usually known and published form

(see [6], Section 4.2, Diagrams 10-13) the form in Diagram 10 needs a smaller

eye and fewer stones, supporting the claim that from all strange positions the

database provides the more interesting minimal versions.

Eyes of size 7. For all calm eyes of size 7 Black needs exactly one external

ko-threat to kill.

7

6 � � �
5 � � �
4 � � � �
3 � � � �
2 � � � �
1 � � �

a b c d e f

Diagram 11

7

6 � � � �
5 � � � �
4 � � �
3 � � � �
2 � � �
1 � � �

a b c d e f

Diagram 12

Most of the positions are related to the eyes in Diagrams 11 and 12. The position

in Diagram 12 is a ‘mother position’ for a number of calm positions, including

mannen ko and is itself calm for 1–3 external liberties.
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Eyes of size 8. Like for size 7, in all calm eyes of size 8 Black needs exactly

one external ko-threat to kill. Due to the increasing number of calm eyes we

can only give examples. Many eyes are enlarged variations of mannen ko. Here

are two other examples. The position in Diagram 14 is calm for 0–2 external

liberties.

7

6 � � � �
5 � � � �
4 � � �
3 � � � �
2 � �
1 � �

a b c d e f

Diagram 13

7

6 � � � �
5 � � � �
4 � �
3 � � � � �
2 � � � �
1 � � � �

a b c d e f

Diagram 14

Eyes of size 9. Calm eyes of size 9 are large enough that for some of them Black

now needs 2 ko-threats to kill (e.g. Diagram 15 with 0 or 1 external liberty), or,

that the black throw-in stones are strong enough that White needs an extra eye

and one ko-threat to live (e.g. Diagram 16)5. The position in Diagram 17 is

strange in that it is calm with 2 external liberties (as shown) with Black needing

2 ko-threats, it is also calm with zero external liberties and the different status

that Black needs 1 ko-threat to kill, but it is not calm for one external liberty.

8
7
6 � � � �
5 � � � �
4 � � � �
3 � � �
2 � � � � �
1 � � �

a b c d e f

Diagram 15

8
7
6
5 � � � �
4 � � � � � � � �
3 � � � � � � �
2 � � � � � � �
1 � � � � � � �

a b c d e f g h j

Diagram 16

8
7 � � � �
6 � � � �
5 � �
4 � � � �
3 � � � �
2 � � � �
1 � � �

a b c d e f

Diagram 17

Eyes of size 10. Calm eyes of size 10 can, similarly to size 9, have the status

that Black needs 2 ko-threats (Diagrams 18, 19), Black needs one ko-threat

(Diagram 20 for 0–2 external liberties), or, White needs one ko-threat (Diagram

21).

5Already an eye of size 8 is large enough to house a black living position so that even an extra white eye

and many external liberties are not enough, but we are talking here only about calm eyes.
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8
7
6
5 � � � � � � �
4 � � � � � � �
3 � � � � �
2 � � � � � �
1 � � � � � �

a b c d e f g h

Diagram 18

8
7 � � �
6 � � � � �
5 � � � � �
4 � � �
3 � � � �
2 � � �
1 � � � � �

a b c d e f

Diagram 19

8
7
6
5 � � � � � � �
4 � � � � � �
3 � � � � � � � �
2 � � � � � � � �
1 � � � � �

e f g h j k l m n o p

Diagram 20

8
7 � � �
6 � � � � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f

Diagram 21

Eyes of size 11. A novelty of size 11 calm eyes is that Black may need 3 ko-

threats to kill as in Diagram 22. The same diagram with 1 external liberty does

not give a calm position but with zero external liberties the position is again calm

with Black needing only 2 ko-threats to kill. In Diagram 23 Black needs also

2 ko-threats, in Diagram 24 with 0–2 external liberties Black needs 1 ko-threat

and in Diagram 25 White needs 1 ko-threat.

8
7 � � � � �
6 � � � � �
5 � �
4 � � � �
3 � � � �
2 � � � �
1 � � �

a b c d e f

Diagram 22

8
7 � � �
6 � � � �
5 � � � �
4 � � � �
3 � � �
2 � � � �
1 � � �

a b c d e f

Diagram 23

8
7 � � �
6 � �
5 � � � � �
4 � � �
3 � � � � �
2 � � � �
1 � � �

a b c d e f

Diagram 24

8
7 � � � �
6 � � � �
5 � � �
4 � � �
3 � � � � �
2 � � � � �
1 � � �

a b c d e f

Diagram 25

7. The influence of external liberties

In this section we search the database for eyes which change their character

and/or best first moves with the number of external liberties of the eye.
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7.1. Positions with a solution strategy depending on the number of external

liberties. The smallest eye where a different number of external liberties re-

quires different first moves has size 4. In Diagram 26 with

ko-forbidden point a1 White moving first has to fight the

ko and after playing a ko threat White has to play on a1

otherwise Black goes there. If White had one more external

liberty then White could afford to squeeze Black by playing

on a3 and live.

6
5 � � �
4 � � � �
3 � �
2 � � � �
1 K � � �

a b c d e

Diagram 26
For size 5 there are 10 such positions. They are of the

type above when White plays first. If Black plays first then

in all of them Black can catch White if there are no outside liberties. If there is

at least one then in these positions Black must start a ko either by playing inside

the eye or taking the last outside liberty.

In this example and most others a higher number of external liberties allowed

White to go for a more ambitious aim, i.e. a complete win instead of a ko. The

different aims required different first moves. The following example is more

exotic in that the result is the same but the different nature of external liberties

dictates different approaches which require different first moves.

In Diagram 27 White has to create 2 eyes and this can be prevented only by�� a2. Other attempts fail: �� a1, �� b1 or �� b1, �� a2.

6
5 � � � �
4 � � � �
3 � � � � �
2 � � �
1 � �

a b c d e f g

Diagram 27

6
5 � � � �
4 � � � �
3 � � � � � �
2 � � � � �
1 � � �

a b c d e f g h

Diagram 28

In Diagram 28 two external liberties are exchanged for a single safe one.

Thus, White does not need to split the left eye. Here �� a2 is useless. Instead

Black can catch directly with �� b1 which was useless in Diagram 27. If there

are no or few external liberties, Black may be able to catch the monolithic eye

by building up strength inside, for example, by having a long and thin shape

that is able to enclose an own eye inside. The situation is different if the eye

has many external liberties where the only strategy for Black may be to prevent

White from splitting the eye into two eyes by going for a compact and thick

throw-in shape.

7.2. Nonmonotonic lists of best moves. If the number of external liberties

of a monolithic eye is decreased then the situation (i.e. the status value) should

definitely not get better for the monolithic eye (i.e. for White), no matter what
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the shape and the internals are. Can one make a similar ‘monotony’ statement

for the list of best moves? Let us look at the eye in the following diagrams with

2, 3 and 4 external liberties. To minimize comments underneath the diagrams,

ko-threats and ko-answers are not explicitly listed as they become clear from

the move sequences in the diagrams.

7
6 � � � �
5 � � � � �
4 � È �
3 � � � �
2 � � � � �
1 � � �

a b c d e f� to move first

Diagram 29

7
6 � � � �
5 � � � � �
4 �� ��� � �� �
3 � � � �� �
2 � � � � �
1 �� � �� � �

a b c d e fÆ� pass �� pass�� @ a2 	� @ ���
� pass

Diagram 30

7
6 � � � �
5 � � � � �
4 �� ��� � �� �
3 � � � �� �
2 � � � � �
1 �� � �� � �

a b c d e f�� pass Æ� pass�� @ a2 	� @ ���
� pass

Diagram 31

For one and two external liberties (Diagram 29) the two moves �� a1 (Diagram

30) and �� d3 (Diagram 31) are fully equivalent. In both cases Black needs one

external liberty (and White can pass or play elsewhere three times).

7
6 � � � � �
5 � � � �
4 � È �
3 � � � �
2 � � � � �
1 � � �

a b c d e f� to move first

Diagram 32

7
6 � � � � �
5 � � � ��� �
4 �� �� � 	� �
3 � � � �� �
2 � � � � �
1 �� � �� � �

a b c d e fÆ� @ a2 �� @ ���� pass �
� @ b1��� @ �� ��� pass

Diagram 33

7
6 � � � � �
5 � � � �� �
4 	� ��� � �� �
3 � � � �� �
2 � � � � �
1 �� � �� � �

a b c d e f�� pass Æ� pass�� pass �
� @ a2��� @ �� ��� pass

Diagram 34

For three external liberties (Diagram 32) the move �� d3 (Diagram 34) is the

better one if we only compare the number of ko-threats, as it needs only one

ko-threat compared to �� a1 (Diagram 33) which needs two ko-threats.

Diagrams 33 and 34 are also useful as an illustration that counting the num-

ber of possible passes for both sides does matter but will also complicate the

characterization of positions. Depending on what the value of the passing move

is in a game, either �� a1 as in Diagram 33 is the best move, costing Black two

ko-threats and two passing moves of White, or �� d3 as in Diagram 34 which



266 THOMAS WOLF AND MATTHEW PRATOLA

costs Black only one ko-threat but four passing moves of White. Passing moves

could be used by White either to protect removable ko-threats or to gain points

somewhere else on the board.

7
6 � � � � �
5 � � � �
4 � È �
3 � � � �
2 � � � � � �
1 � � �

a b c d e f g� to move first

Diagram 35

7
6 � � � � �
5 � � � ��� �
4 �� �� � 	� �
3 � � � �� �
2 � � � � � �
1 �� � �� � ��� �

a b c d e f gÆ� @ a2 �� @ ���� pass �
� @ b1��� @ �� ��� pass�Æ� @ b1 ��� @ ����� pass

Diagram 36

7
6 � � � � �
5 � � � �� �
4 Æ� �� � È �
3 � � � �� �
2 � � � � � �
1 �� � �� � �

a b c d e f g�� @ �� �� @ b1

Diagram 37

At last, for four external liberties (Diagram 35) �� d3 gives Black an uncondi-

tional loss (Diagram 37) whereas �� a1 in Diagram 36 at least leads to a ko in

which Black needs three ko-threats.

To summarize, what we call ‘nonmonotonicity’ is that for one and two exter-

nal liberties, the moves a1 and d3 are equivalent, for three liberties, d3 is better

(at least at the end of game when passing has little value) and for four and more

liberties again a1 is better.

Finally, the eye we looked at earlier, but now without external liberty, provides

yet another unusual situation. In Diagram 38 the point a1 is ko-forbidden. The

best first move for Black is to pass and the best answer of White is to pass too

after which Black should play on a1 as shown in Diagram 39. This is a nice

counterproof to the often met belief that two consecutive passes end a Go game.

7
6 � � � �
5 � � � �
4 � �
3 � � � � �
2 � � � � �
1 K � � �

a b c d e f

Diagram 38

7
6 � � � �
5 � � � �
4 �� 	� � �
3 � � � � �
2 � � � � �
1 �� � Æ� � �

a b c d e f�� pass �� pass�� @ a2 �� @ ���� pass

Diagram 39
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8. Summary

The database of monolithic eyes described in this contribution offers a number

of features that other libraries of monolithic eyes do not have.

� We cover eyes of size up to 11 compared to size 7 plus incomplete groups of

size 8 provided in [2].

� All possible internal configurations with stones of both colours inside are

considered.

� We include eye positions that have an initial ko forbidden point.

� Each eye is evaluated for both sides moving first, with 0-31 external liberties

and again with 1 external eye and in addition 0-31 external liberties.

� In each such evaluation all moves giving the best status are determined in-

cluding the passing move if it is one of them.

� In all evaluations of eyes that result in ko, the number of external ko threats

that are necessary in order to win are determined. Weaknesses of the com-

putation are addressed in the appendix of [6]. The two main ones are 1) the

number of passes is not maximized, which is correct if passing has no value,

and 2) seki is treated as life.

Despite limitations in evaluating the eyes, the database is still a good source of

unusual positions. We gave examples of eyes which are not settled and where

nevertheless passing belongs to the best moves of both sides. In the last subsec-

tion we show an eye where the best attacking move depends on the number of

external liberties of the eye in a nonmonotonic way, i.e. the best move alternates

with an increasing number of external liberties.

It would be interesting to see whether positions shown in Section 6 are also

special from the point of view of a thermographic analysis.
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The complexity of the Dyson Telescopes puzzle
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ROBERT A. HEARN, AND TIMO VON OERTZEN

ABSTRACT. We give a PSPACE-completeness reduction from QBF (quanti-

fied Boolean formulas) to the Dyson Telescopes puzzle where opposing tele-

scopes can overlap in at least two spaces. The reduction does not use tail ends

of telescopes or initially partially extended telescopes. If two opposing tele-

scopes can overlap in at most one space, we can solve the puzzle in polynomial

time by a reduction to graph reachability.

1. Introduction

The complexity of many motion-planning problems has been studied exten-

sively in the literature. This work has recently focused on very simple com-

binatorial puzzles (one-player games) that nonetheless exhibit the theoretical

difficulty of general motion planning; see, e.g., [1]. Two main examples of this

pursuit are a suite of pushing-block puzzles, culminating in [2; 3], and a suite

of problems involving sliding-block puzzles [4]. In pushing-block puzzles, an

agent must navigate an environment and push blocks in order to reach a goal

configuration, while avoiding collisions. The variations of pushing blocks be-

gan with several versions that appeared in video games (the most classic being

Sokoban), and continued to consider simpler and simpler puzzles with the goal

of finding a polynomially solvable puzzle. Nonetheless, all reasonable pushing-

block puzzles turned out to be NP-hard, and many turned out to be PSPACE-

complete, with no problems known to be in NP, except in one trivial case where

solution paths are forced to be short. Similarly, sliding-block puzzles are usually

PSPACE-complete, even in very simple models.

Fleischer’s work was partially supported by a grant from the National Natural Science Fund China (grant

no. 60573025).

271



272 DEMAINE, DEMAINE, FLEISCHER, HEARN, AND OERTZEN

In this paper we consider a motion-planning puzzle, the Dyson Telescopes

puzzle. It takes the form of an enjoyable computer game [5], invented and

developed by the Dyson company to advertise a vacuum cleaner called “Tele-

scope” that is retractable like an astronomical telescope. The puzzle is perhaps

most closely related to sliding blocks, in the sense that the agent is outside

the environment. At any time, the agent can extend or retract one of several

“telescopes”, each of which has a specified, fixed length in extended form.

Erickson [6] posed the complexity of the problem in 2003. The complexity

remained open despite fairly extensive pursuit—it seemed nearly impossible to

build gadgets that required multiple entrances. Thus we hoped that it would be

the first “interesting” yet polynomially solvable motion-planning puzzle.

We prove that the Dyson Telescopes puzzle is indeed polynomially solvable

in a fairly natural situation in which the extended forms of opposing telescopes

(two telescopes on the same row or column, pointing towards each other) overlap

in at most one space. However, some of Dyson’s puzzles do not satisfy this

restriction. We prove that this small flexibility in the general form of the problem

in fact makes the problem PSPACE-complete.

The polynomial-time algorithm for the restricted form of the telescopes game

is particularly interesting because such puzzles are nonetheless enjoyable for

humans to play. All but a few of the hundreds of levels of the puzzle on the

Dyson homepage [5] (mainly the Grandmaster levels) do not have opposing

telescopes that overlap in more than one square. Therefore we expect that our

algorithm can be used to design enjoyable instances of the telescope game, enu-

merating over puzzles within this restricted family (either by hand or by some

automatic process), and automatically computing which puzzles are solvable.

Our algorithm can also find the shortest solution, for most reasonable weighting

functions, enabling the puzzle designer to find the hardest puzzle according to a

particular difficulty measure, such as the solution requiring the longest sequence

of moves or requiring a “difficult to see” sequence of moves.

1.1. Description of the problem. In the Dyson Telescopes puzzle, the goal is

to maneuver a ball on a two-dimensional square grid from a starting position

to a goal position, by extending and retracting telescopes on the grid; refer to

Figure 1. An instance of the problem consists of an n � m grid, a number of

telescopes on this grid, and the ball’s starting position and goal position. Each

telescope is specified by its position, its direction (up, right, down, left), and its

length, i.e., the number of spaces it can be extended. Each telescope can be in

either an extended or a retracted state. Initially, all telescopes are retracted. A

move is made by changing the state of a telescope.

If a telescope is extended, it will expand in its direction until it is blocked

(i.e., there is a telescope occupying the space where the telescope would extend
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(a) Start (b) 1st step (c) 2nd step (d) 3rd step (e) 4th step

Figure 1. This example depicts a sample situation from the original game
where all telescopes have length 3. We can solve this instance as follows:
We extract the first telescope to push the ball to the right, where we then
can push it downwards into the row of the lower telescope; when we extend
and retract the lower telescope, it will finally pull the ball back to the goal
position.

to next), or until it reaches its full length. If a ball blocks the extension of the

telescope, the ball is pushed in the direction of the telescope, either until it is

blocked by another telescope or until the pushing telescope is fully extended; see

Figure 1(d). On the back side of the telescope (i.e., in the opposite direction as

the telescope extends), there is a one-space tail. When the telescope is extended,

this tail is retracted.

If an extended telescope is retracted, it is retracted all the way until it occupies

only its base space. If the space behind the telescope is not occupied, its tail will

be extended and occupy this space (and possibly push the ball). If the telescope

end touches the ball when being retracted, it pulls the ball with it, so that the ball

will move to the position directly in front of the retracted telescope; see again

Figure 1(d).

We prove that it is PSPACE-complete to determine whether a given problem

instance has a series of telescope movements that moves the ball from the start-

ing position to the goal position (think of the goal square as a hole; the ball

will fall down as soon as it is pushed across the goal square). We do this by

constructing a circuit solving QBF, using gadgets of telescope configurations

to simulate Boolean variables, logical gates, etc. If opposing telescopes are not

allowed to overlap in more than one space, we give a polynomial time algorithm

to find a solution.

Alternative versions of the game allow the telescopes to be partially extended

in the initial state, or to not consider a tail end of the telescopes. We show that

these modifications do not change the complexity of the problem.
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2. Gadgets used in the reduction

In this section, we introduce various gadgets made from configurations of

telescopes. These gadgets usually have some entrances and exits labeled by

capital letters. We usually describe all the possible paths along which the ball

can travel from an entrance to an exit.

2.1. Basic gadgets. We use the symbols in Figure 2 for simple tracks, simple

crossings, division of the path, and union of paths, which are easy to implement.

We assume that passage through one-way, split and join gadgets is possible only

in the appropriate directions. Figure 3 shows the join and split gadgets.

(a) Track (b) Crossing (c) Split (d) Join

Figure 2. Simple gadgets.

(a) Join (b) Split

Figure 3. Details of the join and split gadgets.

Figure 4 shows a pair of opposing telescopes (the number on a telescope indi-

cates its length). The pair is said to be active if one of the telescopes is extended

with its end between the black and the white dot, and inactive otherwise.

2

2

5 5

2

try

no

yes

Figure 4. Opposing telescopes.
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If the pair is inactive and the ball enters from try, it can only leave the gadget

at no. On its way from try to no, it may activate the pair as follows. First, we

retract all telescopes in the gadget. Then we extend the left telescope to full

length (so that it covers the white dot square) and extend the right telescope

until it is blocked by the left telescope just to the right of the white dot square

(i.e., we extend it by three spaces). Then we retract the left telescope, put the

ball into the gadget along the try path, and push it to the white dot square. Then

we pull the ball to the no exit by retracting the right telescope. Note that this

action leaves the pair in an active state.

If the pair is active and the ball enters from try, then the right telescope must

be extended to just cover the white dot square. Then we can push the ball to the

black dot square, where it can be picked up by the top telescopes so that it can

leave the gadget at yes. We can also leave the pair at the no exit. In both cases,

we may choose to leave the opposing pair either active or inactive.

Note that the ball can exit the gadget via yes and no, but it cannot enter the

gadget at these points. We may lengthen the left and right telescopes (increasing

the size of the gaps) and vertically flip the sides of the try, yes, or no pathways

without changing the properties of the gadget, as long as we maintain the two-

space overlap of the left and the right telescopes.

2.2. Variable gadget. When we move the ball from try to yes in an active

opposing pair we may leave the pair active. To force it become inactive, we

construct a reset gadget, shown schematically in Figure 5. Each grey rectangle

represents an opposing pair. A single telescope extends along the lower pathway

r , crossing the path of the lower telescope of ˇ and ending in the path of the

lower telescope of  . The ball cannot enter ˇ directly; it must first enter  .

LEMMA 1. The ball can always move through a reset gadget from in to out, but

this forces the opposing pair ˛ to become inactive.

PROOF. The ball can only pass along path r if the lower telescopes of both ˇ

and  are retracted. If an opposing telescope is also retracted, the corresponding

pair will become inactive. If both upper telescopes of ˇ and  are extended to

keep the opposing pairs active, ˛ must be inactive. Since the ball can leave the

gadget only if both ˇ and  are active, this is only possible if ˛ is inactive. Note

that the initial states of the opposing pairs are not important because we can

activate ˇ and  (deactivating ˛). ˜

We attach three independent reset gadgets to a single opposing pair ˛ to con-

struct a variable gadget, shown in Figure 6. Here, each pair .ˇi ; i/ corresponds

to one reset gadget; the internal reset pathways are not shown. This is our

workhorse gadget, forming the basis of all the following constructions. We say

that the variable gadget is open (closed) if ˛ is active (inactive).
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no

try

r

out

in

no

try

yesyes

α
β γ

Figure 5. Reset gadget.

α
β1 γ1

β2 γ2β3 γ3

try

C

E
A

D B

F

in

in

out

out

in

out

noyes

Figure 6. Variable gadget.

LEMMA 2. In a variable gadget, traversal from either A or C to B is always

possible, and may open the gadget. Traversal from C to D is possible precisely

if the gadget is open, and forces it to close. Traversal from E to F is always

possible, and forces the gadget to close. No other traversals are possible.

PROOF. By properties of opposing telescopes, Lemma 1, and the pathways

shown in Figure 6. ˜

2.3. 3SAT gadget. Given a 3CNF formula W (a propositional formula in

conjunctive normal form with three disjuncts per clause) with m clauses and n

variables, we construct a 3SAT gadget, shown in Figure 7, to test the formula.

We use an m�3 array of variable gadgets. The three gadgets in row i correspond

to the variables in clause i .

For each variable v and truth value b 2 f0; 1g, we connect the A-B lines of

all variable gadgets corresponding to v D b into a chain. We also connect the

E-F lines of all variable gadgets corresponding to v D 1�b into another chain.

We concatenate these two chains by joining the last B line of the first chain to

the first E line of the second chain. Finally we connect the first A line of the

chain to an input channel .v D b/in, and the last F line in the chain to an output

channel .v D b/out of our 3SAT gadget.

We connect together the D lines of the three variable gadgets on row i and

the C lines of the three variable gadgets on row i C1, so that it is possible to go

from any of the three D lines to any of the three C lines. We connect an input

channel test to the C lines of row 1. We connect the D lines of row m to an

output channel pass.

Thus, the 3SAT gadget has 4nC2 ports (in.v D b/ for each v and b, one test

input, and as many outputs).

LEMMA 3. Consider a 3SAT gadget for a formula W . If the ball enters at

.v D b/in, it can only exit the gadget at .v D b/out. This may open all gadgets
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… ……

test

pass
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E
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E
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E

B

F

D

C

v1
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E
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E
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D

C

v3

A

E

B

F

D

C

v4

A

E

B

F

D

C

v1

(v = 1)1 in

(v = 1)1 out

(v = 1)
n in

(v = 0)
n in

(v = 1)
n out

(v = 0)
n out

Figure 7. A 3SAT gadget. Shown are the test path and the path .v1 D1/in
to .v1 D 1/out , where v1 appears only in the first three clauses (twice
positive, once negated).

corresponding to v D b and must close all gadgets corresponding to v D 1 � b.

The ball can also move from test to any .v D b/out, and this must close all

gadgets corresponding to v D 1 � b.

There exists an assignment v1 D b1; : : : ; vn D bn satisfying W if and only if

the ball can traverse the gadget from test to pass (after first traversing it from

.vi D bi/in to .vi D bi/out, for i D 1; : : : ; n).

PROOF. If the ball enters at .v D b/in, it first reaches a chain of A-B channels

through variable gadgets. It must follow the chain because in a variable gadget

the only way from A leads to B. This may open all these gadgets. After the

chain of A-B channels, the ball must traverse a chain of E-F channels which is

also possible in only one way. This forces the corresponding variable channels

to close.
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If the ball enters at test, it follows a chain of C -D channels through vari-

able gadgets. It may exit a variable gadget corresponding to v D b at B and

then follow the chain of A-B channels as above. It may open some gadgets

corresponding to v D b, but then must close all gadgets in the E-F chain corre-

sponding to v D 1 � b. This ensures that no variable is assigned more than one

truth value (i.e., if any variable gadget corresponding to v D b is open, then all

variable gadgets corresponding to v D 1 � b are closed, and vice versa).

So, if a path from test to pass of open variable gadgets exists, the correspond-

ing variable assignment satisfying W can be read off. On the other hand, for

each solution v1 D b1; : : : ; vn D bn of W , the n traversals from .vi D bi/in to

.vi D bi/out are possible, opening a path from test to pass. ˜

3. PSPACE-completeness

We now show that the Dyson Telescopes puzzle is PSPACE-complete. It is

easy to see that the problem is in PSPACE, since the state of all telescopes and

the ball position can be stored in linear memory. To show hardness, we reduce

the problem from Quanitified Boolean Formulas (QBF).

3.1. Countdown unit. We need a countdown unit that can be traversed at most

2n times. The gadget is shown in Figure 8. We chain together n C 1 variable

gadgets, linking each gadget’s B exit to the next gadget’s C entry. We combine

the D exits into an overall exit line, and link the last variable gadget’s B exit to

another exit of the countdown unit.

restart

step

in

…

C

Variable n

B

D

C

Variable 0

B

D

C

Variable 1

B

D

Figure 8. Countdown unit.

LEMMA 4. When the ball enters the countdown unit for the first time, it can

leave it at restart. After the gadget has been traversed from in to restart, it can

be at most 2n times traversed from in to step, before it must again be traversed

from in to restart.

PROOF. If all variable gadgets are closed, the ball can only leave them at B.

After moving from in to restart, all or some of the gadgets may be open. But then

the in-step channel can be used at most 2n times, as can be seen by induction. ˜
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3.2. Reduction from QBF. Let

W D 8v1;19v1;28v2;19v2;2 : : : 8vn;19vn;2f .v1;1; : : : ; vn;2/

be a quantified boolean formula with a 3CNF formula f . We build a gadget to

test W using a 3SAT gadget for f , one countdown unit of size n, and a chain

of n additional variable gadgets. The construction is shown in Figure 9.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

v1,1

in

out

vn,2

in

out

vn,1

in

out

vn-1,2

out

… …

BF

C

in

restartstep

D

Variable 1

3SAT

goal

start

test

pass

E

BF

C

D E

Variable n

Countdown

Figure 9. Reduction from QBF.

Each D exit of the variable gadgets is linked to the C entry of the previous

gadget. Each F exit is linked to the E entry of the next variable gadget, however

not directly but via (1) the .vi;1 D 0/ channel of the 3SAT gadget, and then (2)

either the .vi;2 D 0/ or the .vi;2 D 1/ channel of the 3SAT gadget. The B exit of

each variable gadget is also linked to the E entry of the next gadget, via (1) the

.vi;1 D 1/ channel of the 3SAT gadget, and then (2) either the .vi;2 D 0/ or the

.vi;2 D 1/ channel of the 3SAT gadget. The .vn;2 D 0/ and .vn;2 D 1/ channels

of the 3SAT gadget are linked to the in entry of the countdown unit, whose step

exit is linked via the test channel of the 3SAT gadget to the last variable gadget’s

C entry. The first gadget’s D exit is linked to the goal. The starting point is also

linked to the in entry of the countdown unit. The restart exit of the countdown

unit is linked to the first variable gadget’s E entry point.

THEOREM 5. W is true if and only if the ball can move from start to goal.
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PROOF. We first describe how we can systematically test the formula for all

possible truth assignments according to the quantifiers in W .

Initially, we must traverse the countdown unit from in to restart. Whenever

the ball leaves the countdown unit at restart, it institutes a restart of the variable

gadgets: all of them must be passed from E to F , so all of them are closed,

and all variables with universal quantifiers are set to 0; all other variables can

be chosen freely.

Next we can test the 3SAT gadget with the current choice of variables truth

assignment. If we can pass the gadget successfully, the ball ends up at the C

entrance of the gadget of the last variable n. Since this gadget is closed, the ball

can only leave it at B, and we open the gadget while passing through. Since

we leave the gadget at B we can now set vn;1 to 1 and then choose a new

arbitrary value for vn;2. Then we test the 3SAT gadget again with this new truth

assignment. But this time we can leave the gadget for variable n at D, pass

through the gadget for variable n � 1, opening it, and set vn�1;1 to 1. Then we

can choose a new value for vn�1;2, traverse the gadget for variable n along E-F ,

thereby closing it, and reset vn;1 to 0. Finally we can choose a new value for

vn;2.

In this way, the chain of variable gadgets enumerates all possible settings of

variables with universal quantifiers. Whenever we open a variable gadget, its

corresponding 8-variable is set to 1, and whenever we use the E-F channel to

close the gadget, we reset its 8-variable to 0. For the corresponding 9-variables

we can choose arbitrary values. A gadget can only be opened if all gadgets

below (i.e., with higher index) have already been opened, so the gadgets act as

a counter which must be passed at least 2n times to reach the goal.

Every time this counter is increased (i.e., reaches the entry of the countdown

unit), it must pass the countdown unit and the 3SAT test channel. If the ball

were to traverse the 3SAT unit from test to any .v D b/out, then the countdown

unit would have to be passed more often than the counter given by the additional

variable gadgets. But these must be passed 2n times to reach goal. Since the

countdown unit does not allow more than 2n traversals from A to B, it would

have to be left at restart before we reach goal, which would reset the whole

structure. Therefore, the ball cannot move from test to any other exit than pass

if it wants to reach goal.

By the same argument, whenever a variable gadget is traversed from C to B,

it must be opened, otherwise more than 2n passages are required to reach goal,

and the whole structure is reset.

If the 3SAT gadget is tested with every possible variable setting for the vari-

ables with universal quantifiers and a choice of values for the variables with

existential quantifiers, W is true. If on the other hand W is true, there is such a
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selection for each possible setting for variables with universal quantifiers, and a

path from start to goal exists. ˜

4. Opposing telescopes that overlap in at most one space

In this section, we show that the Dyson Telescopes puzzle is in P if opposing

telescopes cannot overlap in more than one space. Let D denote an instance of

such a problem, and let T1; : : : ; Tn denote the telescopes. A constellation of the

telescopes is an assignment of integers to the telescopes describing how far the

telescopes are extended.

A direct traversal from Ti to Tj is a sequence of telescope extensions and

retractions such that the ball is initially attached to Ti , finally attached to Tj ,

and in between it is not pushed or sucked by any other telescope. A traversal

from T1 to Tn is a sequence of direct traversals, where the ball is first attached

to T1 and ends up attached to Tn.

We first assume that D has no opposing pairs. Then we can define an induced

directed graph GD with the telescopes as vertices and an edge from Ti to Tj if

� Ti and Tj are orthogonal. Let f be the space in which they overlap.

� Ti and Tj can be extended at least up to the space before f .

� f is either the first space in front of Ti , the first space not reachable by Ti (i.e.,

the space to which the ball would be pushed if Ti was completely extended),

or there is a third telescope Tk that can be extended to the space after f in

the extension path of Ti .

LEMMA 6. Assume D has no opposing pairs. If the ball is attached to a tele-

scope Ti , then a direct traversal from Ti to another telescope Tj is possible

precisely if there is an edge from Ti to Tj in GD , independent of the current

constellation of D.

PROOF. If there is an edge from Ti to Tj , then obviously a direct traversal is

possible.

Assume a direct traversal is possible in some constellation. Then Ti and Tj

must be able to reach a common space f . Since there are no opposing pairs of

telescopes, Ti and Tj must be orthogonal. Then, f is the only space reachable

by both telescopes. We can transfer the ball from Ti to f if f is either the first

or last reachable space of Ti , or if the space after f in the path of Ti is blocked

by another telescope Tk . In any case, the edge .Ti ; Tj / exists in GD . ˜

Now assume D contains an opposing pair as shown in Figure 10, where A

and B overlap in at most one space, denoted by the black dot (if it exists).

There may also be a third telescope C pointing to this space (or even extending

beyond). There might even be a forth telescope (not shown, it can be handled
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Aout Bout

Bin

A

C

B

Ain

Figure 10. Opposing telescopes with at most one overlapping space.

analogously) opposing C and extending up to or beyond the black dot space.

We define the graph GD as before, but for the opposing pair we must add some

additional edges as described below. For a telescope T , let Tin denote the set of

all telescopes with an edge pointing to T , and Tout the set of telescopes to which

T points in GD . Note that C may or may not be in Ain and Bin, depending on

the overall configuration of the at most four telescopes covering the black dot

square and the initial position of the ball. Actually, for the construction below

it is sufficient to assume that C is not in Ain and Bin.

LEMMA 7. Traversal from any telescope in Ain [ Bin to C (if it exists) and any

telescope in Aout [ Bout is possible in every constellation of D.

PROOF. If C exists, we can move the ball from any telescope T 2 Ain to C as

follows. First, we retract A, B, T , and C . Then we extend A completely. If we

now extend B, it will be stopped just right of the black dot. Now we can retract

A and move the ball from T to the line of A, which is possible since there is an

edge from T to A in GD . If we then extend A, the ball will come to rest on the

black dot, where we can pick it up with C .

All other traversals are trivially possible. ˜

Although the traversal from T to C in the proof above is done via A, it is

impossible to traverse directly from A to C without prior preparation of the

opposing pair if C extends exactly to the square above the black dot square. If

the ball is initially placed in the opposing pair and the pair is not initially set up

such that traversal to C is possible, C cannot be reached directly. This means

we should add the following edges to GD for each opposing pair .A; B/ with

one space overlap (and maybe an orthogonal telescope C pointing to the overlap

space):

� edges A ! B and B ! A;

� edges T ! C for all T 2 Ain [ Bin, if C exists;
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� edge A! C , if C exists and can be extended to block A or B, or B is initially

extended immediately to the right of the overlap space;

� edge B ! C , if C exists and can be extended to block A or B, or A is initially

extended immediately to the left of the overlap space.

Note that in the second case the edges T ! C are a shortcut for T ! A ! C

because we do not always want to add edge A ! C to the graph (depending on

the initial placement of the ball).

LEMMA 8. Let D be an instance of the Dyson Telescopes puzzle with no op-

posing pair having more than one space overlap. Let GD be the induced graph

with edges as described above. Then, D has a solution exactly if there exists a

path in GD from a telescope that reaches the starting position of the ball to a

telescope that reaches the goal position.

PROOF. If there is a sequence of telescope movements that move the ball from

start to goal, this induces a sequence of telescopes. If the start position of the

ball is within an opposing pair .A; B/ and both telescopes are initially retracted,

the ball cannot leave the segment between A and B via C . But paths from A

and B to all nodes of Aout and Bout exist in GD , so the first telescope moves

until the ball leaves the segment between A and B are reflected by edges in GD .

If the ball starts within the pair and one of the telescopes is not extended such

that leaving at C would be possible, this is also reflected in GD . Afterwards, all

direct traversals of the winning strategy correspond to edges in GD .

If on the other hand a path in GD exists, it can easily be translated to a

sequence of ball traversals (either direct or through opposing pairs) that gives a

strategy to move the ball from start to goal. ˜

COROLLARY 9. The Dyson Telescopes puzzle is in P if opposing telescopes can

overlap in at most one space.

5. Summary and outlook

We showed that, in general, the problem of deciding whether the ball can

move from start to goal in a setting of the Dyson Telescopes puzzle is PSPACE-

complete. We also gave a polynomial-time algorithm if opposing pairs are re-

stricted to at most one space of overlap.

Both the PSPACE-completeness proof and the algorithm for the restricted

case also work if the back ends of the telescopes are taken into account and

if the telescopes can initially be arbitrarily (partially) extended. Note that the

PSPACE-hardness proof requires rather along telescopes. It would be inter-

esting to investigate the complexity status of the problem with bounded-length

telescopes.
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Amazons, Konane, and Cross Purposes are
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ABSTRACT. Amazons is a board game which combines elements of Chess

and Go. It has become popular in recent years, and has served as a useful

platform for both game-theoretic study and AI games research. Buro showed

that simple Amazons endgames are NP-equivalent, leaving the complexity of

the general case as an open problem.

Konane is an ancient Hawaiian game, with moves similar to peg solitaire.

Konane has received some attention in the combinatorial game theory commu-

nity, with game values determined for many small positions and one-dimen-

sional positions. However, its general complexity seems not to have been

previously addressed.

Cross Purposes was invented by Michael Albert, and named by Richard

Guy at the Games at Dalhousie III workshop, in 2004. It is played on a Go

board. Cross Purposes is a kind of two-player version of the popular puzzle

Tipover: it represents stacks of crates tipping over and blocking others from

tipping over.

We show that generalized versions of these games are PSPACE-complete.

We give similar reductions to each game from one of the PSPACE-complete

two-player formula games described by Schaefer. Our construction also pro-

vides an alternate proof that simple Amazons endgames are NP-equivalent.

1. Introduction

Combinatorial game theory is concerned with the attempt to find and analyze

winning strategies for combinatorial games, or for tractable families of game

positions. However, it is a curious fact that with few exceptions, any game or

puzzle that is interesting to humans, and whose worst-case complexity is known,

During the preparation of this paper, the author learned that a group including Buro et al. was simultaneously

preparing a paper showing Amazons to be PSPACE-complete [7].
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is computationally as hard as possible based on very general characteristics of

the game. By hardness here we mean computational complexity of determining

the existence of a winning strategy for a given player, from a given position. For

example, Minesweeper is a one-player game (puzzle), with a bounded number

of moves; it is NP-complete [11]. Sliding-block puzzles do not have a bound

on the number of moves; this raises the complexity to PSPACE-complete [10].

Two-player, bounded-move games, such as Hex, are also generally PSPACE-

complete [14]. Other games can be even harder: Chess, Checkers, and Go

(Japanese Rules), as two-player games with no bound on the number of moves,

are EXPTIME-complete [6; 16; 15]. There are harder games still.

Amazons, Konane, and Cross Purposes are all two-player games with a poly-

nomially bounded number of moves. We should therefore expect them to be

PSPACE-complete, merely on the grounds that they are interesting games to

play, and therefore presumably are as complex as possible given their general

characteristics.

In the terminology of combinatorial game theory, all three games also follow

the normal play convention: the first player who cannot move loses. Addition-

ally, all three games are played on a square grid, with pieces that move, or are

captured, or are transformed. These shared characteristics will enable us to use

the same proof technique to show all of them PSPACE-hard. Only the specific

gadgets differ among the three proofs. Our proof technique seems simpler than

that used for many game results, and may have wider applicability. In particular,

the generic crossover construction seems likely to simplify new hardness proofs.

As with most hardness results, the hardness of these games only applies di-

rectly to particular configurations explicitly constructed to have computational

properties. It does not say anything about the difficulty of determining the win-

ner from a standard initial game configuration, or even from reasonable positions

that might arise in actual play. Indeed, Hex is PSPACE-complete in general, but

a simple strategy-stealing argument shows that from an empty board, it is a first-

player win. Nonetheless, a hardness result for a game indicates that there are

limits to the degree to which it can be theoretically analyzed.

Conway, Berlekamp, and Guy argue against a tendency to dismiss hard prob-

lems as uninteresting [2, page 225]:

Some people consider a class of problems “finished” when it has been

shown to be NP-hard. Philosophically this is a viewpoint we strongly

oppose. Some games which are NP-hard are very interesting!

Our view is just the reverse of that argued against: interesting games are almost

of necessity hard. Showing a game to be hard is an indication that the game is

interesting! That is the spirit in which these results are presented.
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Outline. Section 2 describes the reduction to be used for each game. Sections 3,

4, and 5 detail the background, history, rules, and hardness proofs for Amazons,

Konane, and Cross Purposes, respectively. Section 6 summarizes our results.

2. Reduction framework

Formula game. Schaefer [17] showed that deciding the winner of the following

two-person game is PSPACE-complete: Let A be a positive CNF formula (i.e., a

propositional formula in conjunctive normal form in which no negated variables

occur). Each player on his move chooses a variable occurring in A which has

not yet been chosen. After all variables have been chosen, player one wins if A

is true when all variables chosen by player one are set to true and those chosen

by player two are set to false.

We will refer to this game as the formula game. Our hardness reductions

consist of constructing game configurations which force the two players to ef-

fectively play a given formula game.

Given a positive CNF formula A, we build logic and wiring gadgets corre-

sponding to the variables and the formula, as shown schematically in Figure 1.

(We use standard digital logic symbols for AND and OR.) If player one plays

first in a variable, a signal is enabled to flow out from it; if player two plays first,

that signal is blocked. When a signal arrives at or leaves from a gadget, we will

speak of that input or output as activating. By splitting the signals, allowing

them to cross, and feeding them into a network of logic gates, we may construct

a particular signal line that player one may eventually activate only if A is true

under the selected variable assignment. For each game, we arrange for player

one to win just when he can activate that output signal.

x y z w

player one win

Figure 1. Reduction schematic. The circuit shown corresponds to the

positive CNF formula .x _ y/ ^ : : : ^ .x _ z _ w/.
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?
?

(a) Half crossover (b) Crossover

Figure 2. Crossover gadgets.

Generic crossover. Crossover gadgets are often among the most complicated

and difficult to construct in game hardness reductions. Rather than construct

three separate crossover gadgets, we give a generic construction for crossing

signals, given the existence of AND, OR, split, and choice gadgets. This means

that in addition to the basic wiring and logic gadgets, we merely need to con-

struct a choice gadget for each game. A choice gadget allows one, but not both,

outputs to activate if the input activates. (Note that while there are traditional

digital-logic methods for crossing signals in planar circuits, they require invert-

ers, which do not fit well into our problem formalism.)

We develop the ability to cross signals in two steps. The first step is the

half-crossover gadget, shown in Figure 2(a). Using half crossovers, we can

make a full crossover gadget, shown in Figure 2(b). Splits are shown with a

forking symbol, choice gadgets with a question mark, and half crossovers with

a plus symbol. These have the expected properties: e.g., if the left input of the

leftmost choice gadget in Figure 2(a) activates, then either, but not both, of its

right outputs may activate; similarly, if the left input of the leftmost split gadget

in Figure 2(b) activates, then both of its right outputs may activate. We note that

this crossover construction is essentially the same as that used in [10]; the only

difference is that in [10], the gates are reversible.

The half crossover has the property that if either input activates, either output

may activate; if both inputs activate, both outputs may activate. Suppose the left

input activates. Then the player propagating the signal may activate the left (i.e.,

upper) output of the left choice, then the top OR and the top output; or he may

choose to activate the right output of the left choice, then the bottom OR, then

the right output of the right choice, and the right output. Similarly, if the bottom
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input is activated, the signal may be directed to either output. If both inputs are

activated, then by making the correct choices both outputs may be activated.

For the crossover gadget, we want the left input to be able to propagate

only to the right output, and likewise vertically. First, it is clear that if one

input activates, the corresponding output may also activate; simply choose the

straight-through path to activate for each half crossover. The splits and ANDs

then propagate the signal across the gadget. If both inputs activate, activating

both half-crossover outputs allows both crossover outputs to activate.

Suppose the left split’s input has not activated. Then at most one input to

the left AND may activate, because the bottom-left half crossover can have at

most one input, and thus output, activate. Therefore, the left AND’s output may

not activate. By the same reasoning, the right AND may not activate either. A

similar argument shows that if the bottom split’s input has not activated, the top

AND may not activate. Therefore, the gadget serves to cross signals, as needed.

3. Amazons

Amazons was invented by Walter Zamkauskas in 1988. Both human and

computer opponents are available for Internet play, and there have been several

tournaments, both for humans and for computers.

Amazons has several properties which make it interesting for theoretical

study. Like Go, its endgames naturally separate into independent subgames;

these have been studied using combinatorial game theory [1; 18]. Amazons has

a very large number of moves available from a typical position, even more than

in Go. This makes straightforward search algorithms impractical for computer

play. As a result, computer programs tend to incorporate explicit high-level

knowledge of Amazons strategy [13; 12]. By showing that generalized Amazons

is PSPACE-complete, we provide strong evidence that there is a practical limit

to the degree of analysis possible from an arbitrary position.

As mentioned in the footnote on the first page, Furtak, Kiyomi, Uno, and

Buro independently showed Amazons to be PSPACE-complete at the same time

as the author [7]. (The original version of the present paper, containing only

the Amazons proof, is available at [8].) Curiously, [7] already contains two

different PSPACE-completeness proofs: one reduces from Hex, and the other

from Generalized Geography. The paper is the result of the collaboration of two

groups which had also solved the problem independently, then discovered each

other. Thus, after remaining an open problem for many years, the complexity

of Amazons was solved independently and virtually simultaneously by three

different groups, using three completely different approaches, each of which

leverages different aspects of the game to construct gadgets. This is a remarkable

fact. The reduction from Generalized Geography provides the strongest result:
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it shows that Amazons is PSPACE-complete even when each player only has a

single Amazon. In contrast, the Hex reduction and the present formula game

reduction each require a large number of Amazons.

Amazons rules. Amazons is normally played on a 10�10 board. The standard

starting position, and a typical endgame position, are shown in Figure 3. (We

indicate burned squares by removing them from the figures, rather than marking

them with tokens.) Each player has four amazons, which are immortal chess

queens. White plays first, and play alternates. On each turn a player must first

move an amazon, like a chess queen, and then fire an arrow from that amazon.

The arrow also moves like a chess queen. The square that the arrow lands on

is burned off the board; no amazon or arrow may move onto or across a burned

square. There is no capturing. The first player who cannot move loses.

Amazons is a game of mobility and control, like Chess, and of territory, like

Go. The strategy involves constraining the mobility of the opponent’s amazons,

and attempting to secure large isolated areas for one’s own amazons. In the

endgame shown in Figure 3, Black has access to 23 spaces, and with proper play

can make 23 moves; White can also make 23 moves. Thus from this position,

the player to move will lose.

Figure 3. Amazons start position and typical endgame position.

3.1. PSPACE-completeness. We follow the reduction framework outlined in

Section 2. The game consists of a variable selection phase, during which all

play occurs in variable gadgets, followed by a phase in which White attempts to

activate a signal pathway leading to a large supply of extra moves, enabling him

to win. Black is supplied with enough extra moves of his own to win otherwise.



AMAZONS, KONANE, AND CROSS PURPOSES ARE PSPACE-COMPLETE 293

Basic wiring. Signals propagate along wires. Figure 4(a) shows the construc-

tion of a wire. Suppose that amazon A is able to move down one square and

shoot down. This enables amazon B to likewise move down one and shoot down;

C may now do the same. This is the basic method of signal propagation. When

an amazon moves backward (in the direction of input, away from the direction

of output) and shoots backward, we will say that it has retreated.

Figure 4(a) illustrates two additional useful features. After C retreats, D may

retreat, freeing up E. The result is that the position of the wire has been shifted

by one in the horizontal direction. Also, no matter how much space is freed up

feeding into the wire, D and E may still only retreat one square, because D is

forced to shoot into the space vacated by C.

Figure 4(b) shows how to turn corners. Suppose A, then B may retreat. Then

C may retreat, shooting up and left; D may then retreat. This gadget also has

another useful property: signals may only flow through it in one direction. Sup-

pose D has moved and shot right. C may then move down and right, and shoot

right. B may then move up and right, but it can only shoot into the square it just

vacated. Thus, A is not able to move up and shoot up.

By combining the horizontal parity-shifting in Figure 4(a) with turns, we may

direct a signal anywhere we wish. Using the unidirectional and flow-limiting

properties of these gadgets, we can ensure that signals may never back up into

outputs, and that inputs may never retreat more than a single space.

Splitting a signal is a bit trickier. The split gadget shown in Figure 4(c)

accomplishes this. A is the input; G and H are the outputs. First, observe that

A

C

D

E

B

(a) Wire, parity, flow limiter

A

B

C

D

(b) Turn, one way

A

B

C

D

E F

G

H

(c) Split

Figure 4. Amazons wiring gadgets.
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until A retreats, there are no useful moves to be made. C, D, and F may not

move without shooting back into the square they left. A, B, and E may move

one unit and shoot two, but nothing is accomplished by this. But if A retreats,

then the following sequence is enabled: B down and right, shoot down; C down

and left two, shoot down and left; D up and left, shoot down and right three; E

down two, shoot down and left; F down and left, shoot left. This frees up space

for G and H to retreat, as required.

Logic. The variable gadget is shown in Figure 5(a). If White moves first in

a variable, he can move A down, and shoot down, allowing B to later retreat.

If Black moves first, he can move up and shoot up, preventing B from ever

retreating.

The AND and OR gadgets are shown in Figures 5(b) and 5(c). In each, A and

B are the inputs, and D is the output. Note that, because the inputs are protected

with flow limiters — Figure 4(a) — no input may retreat more than one square;

otherwise the AND might incorrectly activate.

A

B

(a) Variable

C

D

B

A

(b) AND

C

D

B

A

(c) OR, choice

Figure 5. Amazons logic gadgets.

In an AND gadget, no amazon may usefully move until at least one input

retreats. If B retreats, then a space is opened up, but C is unable to retreat there;

similarly if just A retreats. But if both inputs retreat, then C may move down

and left, and shoot down and right, allowing D to retreat.

Similarly, in an OR gadget, amazon D may retreat if and only if either A or

B first retreats.



AMAZONS, KONANE, AND CROSS PURPOSES ARE PSPACE-COMPLETE 295

Choice. For the generic crossover construction to work, we need a choice

gadget. The existing OR gadget suffices, if we reinterpret the bottom input as

an output: if if B retreats, then either C or A, but not both, may retreat.

Winning. We will have an AND gadget whose output may be activated only

if the formula is true under the chosen assignment. We feed this signal into a

victory gadget, shown in Figure 6. There are two large rooms available. The

sizes are equal, and such that if White can claim both of them, he will win, but

if he can claim only one of them, then Black will win.

A

B

roomroom

Figure 6. Amazons victory gadget.

If B moves before A has retreated, then it must shoot so as to block access

to one room or the other; it may then enter and claim the accessible room. If

A first retreats, then B may move up and left, and shoot down and right two,

leaving the way clear to enter and claim the left room, then back out and enter

and claim the right room.

THEOREM 1. Amazons is PSPACE-complete.

PROOF. Given a positive CNF formula A, we construct a corresponding Ama-

zons position, as described above. The reduction may be done in polynomial

time: if there are k variables and l clauses, then there need be no more than

.kl/2 crossover gadgets to connect each variable to each clause it occurs in; all

other aspects of the reduction are equally obviously polynomial.

If the players alternate choosing variables, then when all variables have been

chosen, White will be able to activate wires leading from only those variables

he has chosen; these are just the variables assigned to true in the formula game.

Since A contains no negated variables, White will thus be able eventually to

reach both rooms of the victory gadget just if A is true under the variable as-

signment corresponding to the players’ choices. White will then have more

moves available than Black, and win; otherwise, Black’s extra room will give

him more moves than White, and Black will win.

Suppose a player makes a move which does not choose a variable, before

all variables have been chosen. This can have no effect on the other player,

apart from allowing him to choose two variables in a row, because the Black
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and White amazons may only interact within variable gadgets. A player who

chooses two variables in a row may finish with at least the same set of variables

chosen as he would otherwise. Therefore, not playing in accordance with the

formula game does not allow a player to win if he could not otherwise win.

Therefore, a player may win the Amazons game if and only if he may win

the corresponding formula game, and Amazons is PSPACE-hard.

Since the game must end after a polynomial number of moves, it is possible

to perform a search of all possible move sequences using polynomial space,

thus determining the winner. Therefore, Amazons is also in PSPACE, and thus

PSPACE-complete. ˜

3.2. Simple Amazons endgames. A simple Amazons endgame is an Amazons

position in which the Black and White amazons are completely separated by

burned squares. There can thus be no interaction between the amazons, and

the winner is determined by which player can make the most moves in his own

territory. Buro [3] showed that it is NP-complete to decide whether a player may

make a given number of moves from an individual territory containing only his

amazons. Buro first proved NP-completeness of the Hamilton circuit problem

for cubic subgraphs of the integer grid, and then reduced from that problem. As

a result, deciding the outcome of a simple Amazons endgame is NP-equivalent

(that is, it can be decided with a polynomial number of calls to an algorithm

for an NP-complete problem, and vice versa). Our gadgets provide a simple

alternate proof.

THEOREM 2. Deciding the outcome of a simple Amazons endgame is NP-

equivalent.

PROOF. We reduce SAT to a single-color Amazons position. Given a propo-

sitional formula A, we construct the same position as in Theorem 1, with the

following modifications. We remove the Black amazons, then connect each vari-

able output to the input of a choice gadget. We connect one choice output path

to the non-negated occurrences of the corresponding variable in the formula,

and the other output path to the negated occurrences.

Then, White may reach both rooms of the victory gadget if and only if A

is satisfiable, by choosing the correct set of choice output paths. Therefore,

it is NP-hard to decide whether a player may make a given number of moves

from a position containing only his amazons. We may nondeterministically

guess a satisfying move sequence and verify it in polynomial time; therefore,

the problem is NP-complete. As in [3], it follows automatically that deciding

the winner of a simple Amazons endgame is NP-equivalent. ˜
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4. Konane

Konane is an ancient Hawaiian game, with a long history. Captain Cook

documented the game in 1778, noting that at the time it was played on a 14�17

board. Other sizes were also used, ranging from 8�8 to 13�20. The game was

usually played with pieces of basalt and coral, on stone boards with indentations

to hold the pieces. King Kamehameha the Great was said to be an expert player;

the game was also popular among all classes of Hawaiians.

More recently, Konane has been the subject of combinatorial game-theoretic

analysis [5; 4]. Like Amazons, its endgames break into independent games

whose values may be computed and summed. However, as of this writing, even

1�n Konane has not been completely solved, so it is no surprise that complicated

positions can arise.

Konane rules. Konane is played on a rectangular board, which is initially filled

with black and white stones in a checkerboard pattern. To begin the game, two

adjacent stones in the middle of the board or in a corner are removed. Then, the

players take turns making moves. Moves are made as in peg solitaire – indeed,

Konane may be thought of as a kind of two-player peg solitaire. A player moves

a stone of his color by jumping it over a horizontally or vertically adjacent stone

of the opposite color, into an empty space. Stones so jumped are captured, and

removed from play. A stone may make multiple successive jumps in a single

move, as long as they are in a straight line; no turns are allowed within a single

move. The first player unable to move wins.

4.1. PSPACE-completeness. The Konane reduction is similar to the Ama-

zons reduction; the Konane gadgets are somewhat simpler. As before, the game

consists of a variable selection phase, during which all play occurs in variable

gadgets, followed by a phase in which White attempts to activate a signal path-

way leading to a large supply of extra moves, enabling him to win. Black is

supplied with enough extra moves of his own to win otherwise.

Basic wiring. A Konane wire is simply a string

of alternating black stones and empty spaces. By

capturing the black stones, a white stone traverses

the wire. Note that in Konane, in contrast with the

Amazons reduction, signals propagate by stones

moving forwards, capturing opposing stones.

. . .

. . .

Figure 7. Konane wire, turn.

Turns are enabled by adjoining wires as shown

in Figure 7; at the end of one wire, the white

stone comes to rest at the beginning of another,

protected from capture by being interposed be-
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tween two black stones. If the white stone tried to traverse the turn in the other

direction, it would not be so protected, and Black could capture it. Thus, as in

the Amazons reduction, the turn is also a one-way device, and we assume that

gadget entrances and exits are protected by turns to ensure that signals can only

flow in the proper directions.

Conditional gadget. A single gadget serves the purpose of AND, split, and po-

sitional parity adjustment. It has two input / output pathways, with the property

that the second one may only be used if the first one has already been used. This

conditional gadget is shown in Figure 8; the individual uses are outlined below.

input 2

input 1

output 1

output 2

. . .

. . .

. . .

. . .

Figure 8. Konane wiring: conditional.

Observe that a white stone arriving at input 1 may only leave via output 1, and

likewise for input 2 and output 2. However, if White attempts to use pathway

2 before pathway 1 has been used, Black can capture him in the middle of the

turn. But if pathway 1 has been used, the stone Black needs to make this capture

is no longer there, and pathway 2 opens up.

Split, parity. If we place a white stone within the wire feeding input 2 of a

conditional gadget, then both outputs may activate if input 1 activates. This

splits the signal arriving at input 1.

If we don’t use output 1, then this split configuration also serves to propagate

a signal from input 1 to output 2, with altered positional parity. This enables us

to match signal parities as needed at the gadget inputs and outputs.

Logic. The variable gadget consists of a white stone at the end of a wire,

as in Figure 9(a). If White moves first in a variable, he can traverse the wire,

landing safely at an adjoining turn. If Black moves first, he can capture the white
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stone and prevent White from ever

traversing the wire.

The AND gadget is a conditional

gadget with output 1 unused. By

the properties of a conditional gad-

get, a white stone may exit output 2

only if white stones have arrived

at both inputs. The OR gadget is

shown in Figure 9(b). The inputs

are on the bottom and left; the out-

put is on the top. Clearly, a white

stone arriving via either input may

leave via the output.

. . .

(a) Variable

. . .
. . .

. . .

(b) OR, choice

Figure 9. Konane logic gadgets.
Choice. For the generic crossover

to work, we need a choice gadget.

As was the case with Amazons, the OR gadget suffices, if we relabel the bottom

input as an output: a white stone arriving along the left input may exit via either

the top or the bottom. (For Konane, it turns out that crossover is a trivial gadget

to make in any case.)

Winning. We will have an AND gadget whose output may be activated only if

the formula is true under the chosen assignment. We feed this signal into a long

series of turns, providing White with enough extra moves to win if he can reach

them. Black is provided with his own series of turns, made of white wires, with

a single black stone protected at the end of one of them, enabling Black to win

if White cannot activate the final AND.

THEOREM 3. Konane is PSPACE-complete.

PROOF. Given a positive CNF formula A, we construct a corresponding Konane

position, as described above. As in the Amazons construction, the reduction is

clearly polynomial. Also as in Amazons, White may reach his supply of extra

moves just when he can win the formula game on A.

Therefore, a player may win the Konane game if and only if he may win the

corresponding formula game, and Konane is PSPACE-hard. As before, Konane

is clearly also in PSPACE, and therefore PSPACE-complete. ˜

5. Cross Purposes

Cross Purposes was invented by Michael Albert, and named by Richard Guy,

at the Games at Dalhousie III workshop, in 2004. It was introduced to the author

by Michael Albert at the 2005 BIRS Combinatorial Game Theory Workshop.
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Figure 10. An initial Cross Purposes configuration, and two moves.

Cross Purposes is a kind of two-player version of the popular puzzle Tipover,

which is NP-complete [9]. It is easy to construct many interesting combinatorial

game values from Cross Purposes positions.

Cross Purposes rules. Cross Purposes is played on the intersections of a Go

board, with black and white stones. In the initial configuration, there are some

black stones already on the board. A move consists of replacing a black stone

with a pair of white stones, placed in a row either directly above, below, to the

left, or to the right of the black stone; the spaces so occupied must be vacant

for the move to be made. See Figure 10. The idea is that a stack of crates,

represented by a black stone, has been tipped over to lie flat. Using this idea,

we describe a move as tipping a black stone in a given direction.

The players are called Vertical and Horizontal. Vertical moves first, and play

alternates. Vertical may only move vertically, up or down; Horizontal may only

move horizontally, left or right. All the black stones are available to each player

to be tipped, subject to the availability of empty space. The first player unable

to move loses.

5.1. PSPACE-completeness. The Cross Purposes construction largely follows

those used for Amazons and Konane; we build the necessary gadgets to force

the two players to effectively play a formula game.

One new challenge in constructing the gadgets is that each player may only

directly move either horizontally or vertically, but not both. Yet, for formula

game gadgets to work, one player must be able to direct signals two dimension-

ally. We solve this problem by restricting the moves of Horizontal so that, after

the variable selection phase, his possible moves are constrained so as to force

him to cooperate in Vertical’s signal propagation. (We assume that the number

of variables is even, so that it will be Vertical’s move after the variable selection

phase.) An additional challenge is that a single move can only empty a single

square, enabling at most one more move to be made, so it is not obviously

possible to split a signal. Again, we use the interaction of the two players to

solve this problem.
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We do not need a supply of extra moves at the end, as used for Amazons

and Konane; instead, if Vertical can win the formula game, and correspondingly

activate the final AND gadget, then Horizontal will have no move available, and

lose. Otherwise, Vertical will run out of moves first, and lose.

Basic wiring. Signals flow diagonally, within surrounding corridors of white

stones. A wire is shown in Figure 11(a). Suppose that Vertical tips stone A

down, and suppose that Horizontal has no other moves available on the board.

Then his only move is to tip B left. This then enables Vertical to tip C down.

The result of this sequence is shown in Figure 11(b).

The turn gadget is shown in Figure 11(c); its operation is self-evident. Also

. . .

. . .

A B

C

(a) Wire

. . .

. . .

(b) Wire, after three moves

. . .

(c) Turn, free input

Figure 11. Cross Purposes wiring.
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. . .

. . .
. . 

.

. . 
.

A B

C

D

input 2 input 1

output 1output 2

Figure 12. Cross Purposes conditional gadget.

shown in Figure 11(c) is a free input for Vertical: he may begin to activate this

wire at any time. We will need free inputs in a couple of later gadgets.

Conditional gadget. As with Konane, a single conditional gadget, shown in

Figure 12, serves the role of split, parity adjustment, and AND. A signal arriving

along input 1 may only leave via output 1, and likewise for input 2 and output 2;

these pathways are ordinary turns embedded in the larger gadget. However, if

Vertical attempts to use pathway 2 before pathway 1 has been used, then after

he tips stone A down, Horizontal can tip stone B left, and Vertical will then have

no local move. But if pathway 1 has already been used, stone B is blocked from

this move by the white stones left behind by tipping C down, and Horizontal has

no choice but to tip stone D right, allowing Vertical to continue propagating the

signal along pathway 2.

Split, parity. As with Konane, if we give Vertical a free input to the wire

feeding input 2 of a conditional gadget, then both outputs may activate if input 1

activates. This splits the signal arriving at input 1.

If we don’t use output 1, then this split configuration also serves to propagate

a signal from input 1 to output 2, with altered positional parity. This enables us

to match signal parities as needed at the gadget inputs and outputs. We must be

careful with not using outputs, since we need to ensure that Vertical has no free

moves anywhere in the construction; unlike in the previous two constructions,

in Cross Purposes, there is no extra pool of moves at the end, and every available

move within the layout counts. However, blocking an output is easy to arrange;
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. . .

(a) Variable

. . . . . 
.

. . 
.

A B

(b) OR

. . .

. . .

. . .

A B

(c) Choice

Figure 13. Cross Purposes logic gadgets.

we just terminate the wire so that Horizontal has the last move in it. Then

Vertical gains nothing by using that output.

Logic. The variable gadget is shown in Figure 13(a). If Vertical moves first in a

variable, he can begin to propagate a signal along the output wire. If Horizontal

moves first, he will tip the bottom stone to block Vertical from activating the

signal.

The AND gadget is a conditional gadget with output 1 unused. By the prop-

erties of the conditional gadget, output 2 may activate only if both inputs have

activated.

The OR gadget is shown in Figure 13(b). The inputs are on the bottom;

the output is on the top. Whether Vertical activates the left or the right input,

Horizontal will be forced to tip stone A either left or right, allowing Vertical
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?free input

OR input

OR input

Figure 14. Protected Or.

to activate the output. Here we must again be careful with available moves.

Suppose Vertical has activated the left input, and the output, of an OR. Now

what happens if he later activates the right input? After he tips stone B down,

Horizontal will have no move; he will already have tipped stone A left. This

would give Vertical the last move even if he were unable to activate the final

AND gadget; therefore, we must prevent this from happening. We will show

how to do so after describing the choice gadget.

Choice. For the generic crossover to work, we need a choice gadget. As with

Amazons and Konane, the existing OR gadget suffices, if we reinterpret it. This

time the gadget must be rotated. The rotated version is shown in Figure 13(c).

The input is on the left, and the outputs are on the right. When Vertical activates

the input, and tips stone A down, Horizontal must tip stone B left. Vertical may

then choose to propagate the signal to either the top or the bottom output; either

choice blocks the other.

Protecting the OR Inputs. As mentioned above, we must ensure that only one

input of an OR is ever able to activate, to prevent giving Vertical extra moves.

We do so with the circuit shown in Figure 14. Vertical is given a free input to

a choice gadget, whose output combines with one of the two OR input signals

in an AND gadget. Since only one choice output can activate, only one AND

output, and thus one OR input, can activate. Inspection of the relevant gadgets

shows that Vertical has no extra moves in this construction; for every move he

can make, Horizontal has a response.

Winning. We will have an AND gadget whose output may be activated only if

the formula is true under the chosen assignment. We terminate its output wire

with Vertical having the final move. If he can reach this output, Horizontal will

have no moves left, and lose. If he cannot, then since Horizontal has a move in

reply to every Vertical move within all of the gadgets, Vertical will eventually

run out of moves, and lose.

THEOREM 4. Cross Purposes is PSPACE-complete.
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PROOF. Given a positive CNF formula A, we construct a corresponding Cross

Purposes position, as described above. As before, the reduction is clearly poly-

nomial. Also as before, Vertical may activate a particular AND output, and thus

gain the last move, just when he can win the formula game on A.

Therefore, a player may win the Cross Purposes game if and only if he may

win the corresponding formula game, and Cross Purposes is PSPACE-hard.

As before, Cross Purposes is clearly also in PSPACE, and therefore PSPACE-

complete. ˜

6. Conclusion

We have shown that generalized versions of Amazons, Konane, and Cross

Purposes are PSPACE-complete, indicating that it is highly unlikely that an

efficient algorithm for optimal play exists for any of them. Their hardness is

also additional evidence, if any were needed, that the games are interesting –

they are sufficiently rich games to represent abstract computations.

Additionally, we have demonstrated a simple proof technique for showing

planar, two-player, bounded move games hard. The generic crossover, in par-

ticular, seems likely to make further proofs along these lines easier. It would

be interesting to revisit some classic game hardness results, to see whether the

proofs can be simplified with these techniques.
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ABSTRACT. In a monotonic sequence game, two players alternately choose

elements of a sequence from some fixed ordered set. The game ends when the

resulting sequence contains either an ascending subsequence of length a or a

descending one of length d . We investigate the behaviour of this game when

played on finite linear orders or Q and provide some general observations for

play on arbitrary ordered sets.

1. Introduction

Monotonic sequence games were introduced by Harary, Sagan and West in

[6]. We paraphrase the description of the rules as follows:

From a deck of cards labelled with the integers from 1 through n, two

players take turns choosing a card and adding it to the right hand end of

a row of cards. The game ends when there is a subsequence of a cards in

the row whose values form an ascending sequence, or of d cards whose

values form a descending sequence.

The parameters a, d , and n are set before the game begins. There are two

possible methods for determining the winner of the game. In the normal form

of the game, the winner is the player who places the last card (which forms an

ascending or descending sequence of the required length). In the misère form

of the game, that player is the loser. In [6] these are called the achievement and

avoidance forms of the game respectively.

As a consequence of the Erdős–Szekeres theorem [5], the game cannot end

in a draw if n > .a � 1/.d � 1/. It is therefore natural to attempt to classify the

parameters .a; d; n/ according to whether the first player can force a win, the

second player can force a win, or either player can ensure at least a draw. Some

results towards such a classification were presented in [6] and the problem of

extending and generalising these results was posed there and by Sagan in [8].

309
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In this paper we will report on some progress on this and related problems.

As regards the original game, we have been able to extend the computer-assisted

analysis to decide many instances which were left open in [6]. We also provide

some general results concerning the long run behaviour of these games (that is,

for fixed a and d but large n). However, most of the work reported here deals

with variations of the original game. In particular, we consider the case where

the deck of cards is Q rather than a finite linear order. Finally, we examine some

other variations of the game obtained either by relaxing the rules, or by playing

with a deck of cards that is partially ordered. We list some open problems in the

final section of the paper.

We adopt, and in some cases adapt, the notation and terminology of Winning

Ways [1; 2; 3; 4] in discussing our results. This differs somewhat from that used

in [6] so, where necessary, we will also provide translations of the results from

that paper.

2. The general framework

Any version of the monotonic sequence game specifies at the outside, a deck

D which is simply some partially ordered set, and two positive integer param-

eters a and d which we call the critical lengths of ascending and descending

sequences respectively. There are two players, A and B (for convenience in

assigning pronouns, A is assumed to be male and B female), who alternately

choose an element which has not previously been chosen from the deck and add

it to a sequence whose elements consist of the cards chosen up to this point.

This sequence will be called the board. Conventionally, A plays first while B

plays second. In the basic form of the game the board is constructed from left to

right. That is, if the current board is bc � � � v and the next player chooses a value

w 2 D then the new board is bc � � � vw. An ascending subsequence of length a or

a descending subsequence of length d of the board is called a critical sequence.

As soon as the board contains a critical sequence the game ends. In normal play,

the winner is the player whose move terminated the game. In misère play that

player is the loser. We henceforth assume that a; d � 2 since the cases a D 1 or

d D 1 are completely trivial. If the deck is exhausted without creating a critical

sequence, then the game is considered drawn. If the deck is infinite then the

game is also considered drawn if play proceeds without termination. By default

we assume that normal play is being considered unless otherwise noted.

PROPOSITION 1. If D is finite and contains a chain of length greater than

.a � 1/.d � 1/, or D is infinite and contains no infinite antichain then no draws

are possible in either normal or misère play.
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PROOF. In the first case any supposedly drawn board would contain all the

elements of the specified chain. However, by the Erdős–Szekeres theorem any

such sequence contains a critical sequence. In the latter case a similar result

follows from the well-known observation that, as a consequence of Ramsey’s

theorem, any infinite sequence of elements from a partially ordered set contains

an infinite subsequence which is either ascending, descending, or an antichain.

Since the last possibility is ruled out by hypothesis, one of the former two must

apply, and the play producing that sequence could not have been drawn. ˜

OBSERVATION 2. If D has a fixed-point-free order-preserving involution then

the second player can force at least a draw.

B’s strategy is to play the image of A’s move under the involution, unless she

has an immediate win available. Since no chain can involve both a point and

its image she thereby never plays a suicidal move, that is one which makes it

possible for Alexander to win the game on his next turn, and hence she cannot

lose.

OBSERVATION 3. If a D d and D has a fixed point free order reversing involu-

tion i with the property that whenever x and xi are comparable, one is minimal

and the other maximal, then the second player can force at least a draw.

Again the strategy for B is to play a winning move if one exists, and otherwise

the image of A’s previous move. The minimality/maximality criterion guaran-

tees that in the resulting sequence of plays no chain can arise using both x and

xi unless a D d D 2 which is trivially a second player win.

This observation applies to play on the cube 2n or equivalently on the lattice

of subsets of a set. In particular it is easy to check that for a D d D 3 play on 23

is a second player win though cooperatively the two players can play to a draw.

Since D, a and d are fixed parameters of any particular game, all the relevant

information about a position is contained in its board. A board which could arise

in play may not have a proper prefix containing either an ascending sequence

of length a or a descending sequence of length d . Subject to this condition we

may define the type of a board to be one of N , P or D. We say that the type

is N (next) if the player whose turn it is to move (that is, the next player) has

a winning strategy. The type is P (previous) if the previous player (that is, the

player who is not next) has a winning strategy. Finally, the type is D (drawn) if

each player has a strategy that guarantees her or him at least a draw.

A board which contains the entire deck or which contains a critical sequence

is called a terminal board. A terminal board containing a critical sequence is of

type P in normal play and N in misère play, while a terminal board that does

not contain a critical sequence is of type D. Otherwise, the type of a board,

X , is determined by the set of types of the boards that can be obtained in one
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further move. We call these boards the children of X . If this set contains any

board of type P then the type of X is N . If all the boards in this set are of type

N then the type of X is P . Otherwise, the type of X is D.

These rules may not be immediately sufficient for determining the type of

an arbitrary board when arbitrarily long plays or even draws with infinite play

are possible. However, even in this case the boards are partitioned into the

three types above. The algorithm for performing the partitioning is to begin by

labelling all the terminal boards according to the winning conditions. Then in-

ductively any currently unlabelled boards which either have a child of type P , or

all of whose children have type N , are labelled appropriately. After completing

this induction, any boards remaining unlabelled are of type D.

Our principal goal will be to determine the type of the empty board – that

is, to determine whether the first player has a winning strategy, or failing that,

whether he can force a draw. We denote this type by Wnor.a; d; D/ for normal

play, or Wmis.a; d; D/ for misère play.

3. Double bumping

Given a sequence of distinct elements v D v1v2 � � � from a linearly ordered

set C , a well known algorithm due to Schensted [9] determines (explicitly) the

length of the longest increasing subsequence of any prefix v1v2 � � � vk and (im-

plicitly) the elements of such a sequence. This is sometimes called the “bump-

ing” algorithm. An increasing sequence w D w1w2 � � � wm is maintained as the

elements of v are processed in order. When vi is processed, w is modified as

follows: if wm < vi then vi is appended to w; otherwise vi bumps (that is,

replaces) the smallest element of w that is larger than vi .

It is easy to check that, after processing v1v2 � � � vk the element wj of w is the

least maximum element of an ascending subsequence of v1v2 � � � vk of length

j . In particular, the length of w is equal to the length of the longest ascending

subsequence obtained to that time.

Of course there is a dual algorithm that allows one to keep track of the length

of the longest descending subsequence. In this version an element is either

prepended to the sequence being maintained (if smaller than all the elements of

the sequence), or it bumps the immediately smaller element.

For the purposes of analysing some forms of the monotonic sequence game

it will be useful to be able to combine these two algorithms into a single one.

However, in doing so, we need to keep track of whether the elements in the

single ordered sequence which we are maintaining represent elements of the

ascending or descending type – that is, whether an element takes part in the

sequence w of the original algorithm, the corresponding sequence m in the dual

algorithm, or both.
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Initially we will do this by marking the elements with overlines (if they belong

to w), underlines (if they belong to m) or both (if both). Thus we maintain a

single marked sequence which we shall call the recording sequence. The double

bumping form of the combined algorithm can then be described as follows.

� Initially set the recording sequence to be empty, and process the elements of

the permutation in order from left to right.

� Repeatedly, until the permutation is exhausted:

– insert the next element of the permutation into the recording sequence with

both an underline and an overline (maintaining the increasing order of the

recording sequence);

– delete the first overline if any to its right and the first underline if any to its

left;

– remove any naked elements (ones which no longer have an underline or an

overline).

For example, when we process the permutation 514263 in this way we obtain

5 ! 15 ! 145 ! 1245 ! 1246 ! 12346

Frequently the precise identity of the elements of the recording sequences

will not be important, but only their type (that is, what decoration they have).

This remark will be exactly true when we deal with monotonic sequence games

on Q, and is still of some relevance in the case of monotonic sequence games

on finite chains. For typographical purposes it is easier to record type sequences

as colours rather than bars, and so we will also call them colour sequences.

Specifically we associate the colour Blue with an underline, and Red with an

overline. Elements having both underlines and overlines will be called Purple.

An element is reddish if it is Red or Purple, and bluish if it is Blue or Purple.

The process of the double bumping algorithm on the permutation above, purely

in terms of colours is

P ! PB ! RPB ! RPBB ! RPBP ! RRPBB:

Of course the length of the colour sequence corresponding to a permutation

is not more than the length of the permutation itself. Different permutations

can easily have the same colour sequence (e.g. 231 and 213 both have colour

sequence PP ) and indeed permutations of different sizes can have the same

colour sequence (e.g. 312 and 2143 both have colour sequence RPB).

It is clear that only some sequences of colours can occur as a result of applying

the double bumping algorithm. We call such colour sequences admissible. In

terms of colour, when we add a new element, we insert a Purple somewhere

in the sequence and remove the red tinge from the first reddish element to the
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right (deleting it entirely if it were Red) and the blue tinge from the first bluish

element to the left. In particular, a colour sequence can never begin with Blue

nor end with Red. In fact we can completely characterise the admissible colour

sequences. Recall that a factor of a sequence is a subword consisting of a block

of consecutive elements from the sequence.

PROPOSITION 4. The language of admissible colour sequences consists pre-

cisely of the empty sequence, together with those sequences which contain at

least one P , do not begin with B nor end with R, and do not contain RB as a

factor.

PROOF. Necessity is relatively straightforward. Each insertion leaves a P so a

nonempty admissible sequence must contain a P . Of the remaining conditions,

the first two conditions are obviously preserved by any legitimate insertion. To

see that the final condition is preserved as well consider an insertion which

supposedly creates an RB factor. It could not create both the R and the B since

only an insertion between those two elements could do that. Suppose, without

loss of generality, that the newly created element was the B. Then previously

that element was represented by a P . But in order to eliminate its reddish tinge,

the insertion would have had to be after any preceding R, so we could not get

the RB factor as claimed.

The proof of sufficiency is by induction. We show that if w is a nonempty

sequence of the form described, then there is some parent word v also of the form

described such that w can be obtained from v by the bumping algorithm. That

this suffices is based on the observation that for any starting word u (admissible

or not), after ad C1 bumps the resulting word must contain at least d C1 bluish

or a C 1 reddish (red or purple elements). Thus the backwards chain of parents

from w is bounded in length by the product of the number of bluish elements

and the number of reddish elements in w, and can only terminate in the empty

sequence which is admissible.

If w D P the result is clear, so we may assume that the length of w is at least

two. Suppose first that w D Pu. If u D Bu0 let v D Pu0 (which still has the

form required) and note that v produces w by an insertion on the left hand side.

If u begins with a P or an R let v D Ru which is admissible and produces w

by an insertion on the left hand side.

Now suppose that w D RiPu with i > 0 and let w0 D Pu. Then w0 is

admissible, and by the case just proven we can find v0 which produces w0 by an

insertion into the first position. Let v D Riv0. Then v produces w by insertion

after the first block of R’s. ˜

The number of nonempty admissible words is enumerated by the sequence of

alternate Fibonacci numbers
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1; 3; 8; 21; 55; 144; : : :

This is easily established by standard transfer matrix approaches or by the ob-

servation that the association

R ! 01 B ! 10 P ! 00

almost provides a bijection between admissible colour sequences and binary

sequences of even length which contain no consecutive 1’s.

4. Finite chains

In this section we assume throughout that the deck is a finite chain which, for

convenience, we take to be

Œn� D f1; 2; : : : ; ng

with the usual ordering. This was the basic situation investigated by Harary,

Sagan and West in [6]. On the theoretical front we have relatively little to add to

their results in this area, however, we have extended their computational results

considerably.

PROPOSITION 5. For fixed a and d both sequences

Wnor.a; d; Œn�/ and Wmis.a; d; Œn�/

for n D 1; 2; 3; : : : are eventually constant.

PROOF. Since we know that a play of the game with parameters a and d cannot

last more than .a � 1/.d � 1/ C 1 moves, the existence of a winning strategy

for either player, in either termination condition, can be expressed as a first

order sentence in the language of linear orders. Consider, for example, the case

of a first player win in normal play. In this case this sentence begins with an

existential quantifier, followed by a long alternation of quantifiers representing

the moves which might be chosen by the two players. These quantifiers are fol-

lowed by a quantifier free formula expressing the condition “the first ascending

sequence of length a or descending sequence of length d arising in this play

occurred after a move made by the first player”. The other cases are all similar.

However, it is well known that the theory of finite linear orders admits quan-

tifier elimination (see [7], specifically sections 2.7 and A.6 and their exercises).

In particular, any sentence in this language is either true in .Œn�; </ for all suf-

ficiently large n or false in .Œn�; </ for all sufficiently large n. Since one of the

statements “the game is of type N ” and “the game is of type P” must be true

for every n > .a�1/.d �1/, it must be the case that the same one is true for all

sufficiently large n. ˜
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The proof above is a little unsatisfying from the standpoint of attempting to

understand the structure of the monotonic sequence game played with a finite

deck. By essentially recreating the quantifier elimination for the theory of finite

linear orders but tailoring it to the situation at hand we can make it somewhat

more concrete. As a side-effect we obtain improved bounds for the onset of the

“long term behaviour” of such games.

Specifically, consider boards that arise in the play of the monotonic sequence

game. Suppose that the colour sequence at this point c1c2 � � � ck . There is an

associated sequence of gap lengths g0; g1; � � � gk where gi is the number of cards

remaining in the deck between the elements representing ci�1 and ci . Note that

this is not necessarily the same as the difference between these elements minus

one, as some of the intervening elements may have been played earlier but no

longer form part of the colour sequence.

The basic idea of the argument is to divide gaps into two categories large and

small. All gaps whose length is larger than a certain number (which may depend

on the colour sequence and the position of the gap relative to that sequence) will

be considered large. We aim to show that if two boards have the same colour

sequences and corresponding gaps are either both large or both small and of

equal length then we can emulate the following play in one game within the other

game and vice versa. This Tweedledum–Tweedledee argument then establishes

that the two games have the same outcome type (and in fact the same nim-value

or Grundy number). The first part of the argument must establish just what the

bounds are for large gaps.

Imagine for the moment that the next play of the game will be a card from

the deck that lies in some particular gap. Among the values in the board below

this card there will be some maximal increasing sequence whose length, r , is

the number of reddish elements lying below the gap. Likewise there is some

maximal decreasing sequence on the board whose length, b is the number of

bluish elements lying above the gap. Within this particular gap, the game will

certainly end if we create an increasing sequence of length a�r or a decreasing

one of length d � b. That is, within the gap we are essentially playing a game

with parameters a � r and d � b (the play within this gap may influence plays

in other gaps, but only by reducing their associated parameters). Suppose that

we temporarily let B.x; y/ denote some value which is “big enough” to define

a large gap for parameters x and y. A play into such a gap leaves two gaps, a

lower one with parameters x and y �1 and an upper one with parameters x �1

and y. Since we must ensure that we can match small gaps exactly and create

corresponding large gaps it will be sufficient to have

B.x; y/ � B.x � 1; y/ C B.x; y � 1/ C 1:
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If we choose equality and note that we may take B.x; 1/ D B.1; y/ D 1 then

simple algebraic manipulation shows that we may choose

B.x; y/ D 2

�

x C y � 2

x � 1

�

� 1:

Henceforth we take this as the definition of B.x; y/ and hence of what consti-

tutes a large gap.

PROPOSITION 6. For fixed a and d , any two boards having the same colour

sequence with the property that corresponding gaps are either both large, or

otherwise equal have the same outcome type.

PROOF. As promised, the proof is what is known as a Tweedledum–Tweedledee

argument [1] or a back and forth argument [7]. The idea is that any move made

in either position has one or more matching moves on the other position which

preserve the equality of colour sequences and corresponding gaps. Specifically,

a move in a small gap is mirrored by the obvious corresponding move of the

other position. A move in a large gap leaves either large gaps on either side or

one small gap and one large gap. In either case there is a corresponding move

in the other position leaving two large gaps, or one small gap (of the same size)

and a large gap.

Suppose, for the sake of argument, that the first position has a second player

winning strategy. We devise a second player winning strategy in the second

position as follows. Given a move in the second game to which we must reply,

we consider a matching move in the first game. Our strategy there will dictate

a certain response to this move. We make the matching response in the second

game. Proceeding in this way, we cannot fail to win in the second game (in

fact we will win in precisely the same number of moves as we win the matched

sequence of plays in the first game). All the other cases are very similar. ˜

In particular, any two games beginning with an empty board and having decks

of size 2
�

aCd�2
a�2

�

� 1 or larger must have the same outcome type. As indicated

by the computations below, this bound appears to be somewhat extravagant,

though not as much so as the naı̈ve bound arising from a direct translation of

the quantifier elimination for the theory of finite linear orders which would be

2.a�1/.d�1/ � 1.

4.1. Computational results: normal play. We will assume throughout that

a � d because the outcome type for parameters .a; d/ is the same as that for

parameters .d; a/. We begin by recapitulating results from [6] recast into our

notation.

If d D 2 then any move other than the smallest remaining element at that time

gives your opponent a “win in one”. So the outcome type is determined by the
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parity of a and we have

Wnor.a; 2; n/ D

8

ˆ

<

ˆ

:

D if n < a;

N if a � n is odd;

P if a � n is even.

For d D 3 then, depending on parity, the first player can choose to play either

the largest or second largest element of the deck as his first move. This more or

less reduces the game to the d D 2 case, and provided that n > a and a is even,

or n > a C 1 and a is odd Wnor.a; 3; n/ D N , with the remaining cases being

drawn.

Finally, [6] showed that Wnor.4; 4; n/ D N for n � 9. A winning strategy is

to play near the middle, and to ensure after your second move that all remaining

moves must be the smallest or largest remaining element.

We implemented a straightforward game tree traversal algorithm to determine

the outcome type of the empty board for various combinations of the parameters

.a; d; n/. Although the observations made in the proof of Proposition 6 could

improve the efficiency of this algorithm (by storage and reuse of previously

computed outcomes for equal or equivalent colour and gap sequences) such

time improvement would come at significant cost in space, and complexity of

the underlying code. Since we could extend the results of [6] considerably using

just the raw improvement in computing power between 1983 and now, we did

not choose to pursue these improvements. Our program permitted computations

with deck sizes up to 20 in a few minutes on a standard desktop machine. Note

that whenever a type P position is found, two other positions are immediately

known to be of type N , namely

Wnor.a; d; n/ D P )

Wnor.a C 1; d; n C 1/ D N and Wnor.a; d C 1; n C 1/ D N ;

since the first player can reduce the game to the preceding case by playing the

smallest (respectively largest) element as his first move.

We give our new computational results in the following form: first we specify

the smallest nondrawn game of that type and its winner; then a sequence of

values until we (appear) to reach an eventually constant block. Thus, the first

line below means that Wnor.5; 4; n/ D D for n � 10, and Wnor.5; 4; n/ D N for

11 � n � 20.

.5; 4; 11/ 2 N

.6; 4; 14/; .6; 4; 15/ 2 P; .6; 4; 16/ 2 N

.5; 5; 15/ 2 N

.7; 4; 15/; .7; 4; 16/ 2 N ; .7; 4; 17/ 2 P; .7; 4; 18/ 2 N :
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4.2. Computational results: misère play. We also computed results for

misère play. In this case it appears to be true that the game is drawn much

less frequently, and so the data include some more interesting observations. In

this case, the table below lists the sequence of outcome types for the various

combinations of parameters a and d with n ranging from 1 through 20.

a d Misère winner

3 3 DDDNN NNNNN NNNNN NNNNN

4 3 DDDDP NNNNN NNNNN NNNNN

5 3 DDDDD NPPPN NNNNN NNNNN

6 3 DDDDD DDNNN NNNNN NNNNN

7 3 DDDDD DDDPN NNNNN NNNNN

8 3 DDDDD DDDDN PPNNN NNNNN

9 3 DDDDD DDDDD DNNNN NNNNN

4 4 DDDDD NPNNN NNNNN NNNNN

5 4 DDDDD DDNNN PNNNN NNNNN

6 4 DDDDD DDDDN PNPPN NNNNN

7 4 DDDDD DDDDN PNNNN NNNNN

8 4 DDDDD DDDDD DNNND NNNNP

9 4 DDDDD DDDDD DDDNP NPNND

5 5 DDDDD DDDDD DNPNP NNNNN

6 5 DDDDD DDDDD DNPNN NPNNN

7 5 DDDDD DDDDD DNDNP NPNNP

Most of the blocks of trailing N ’s do seem to represent long run behaviour.

The evidence supporting this is that the smallest winning first move is also con-

stant across these blocks.

The cases a D 8; 9, d D 4 seem particularly interesting. First of all, with

a D 8 there is the interposed D at n D 15. Thus, with a 14 or 16 card deck the

first player can force the second player to make an ascending sequence of size

8 or a descending one of size 4 but with a 15 card deck he cannot! A further

oddity of this sequence concerns the fact that for a D 9, d D 4, the second player

wins n D 15. This means that the second player can force the first to create an

ascending sequence of length 9 or a descending one of length 4 in a 15 card deck,

but can’t force an ascending sequence of length 8 or a descending sequence of

length 4 in the same deck. Why can’t the first player simply follow an “at least

draw” strategy from the latter case to get the same result in the former case?

Because there is a hidden assumption in this strategy – that the second player

will never create an ascending sequence of length 8 or a descending sequence

of length 4 either.
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4.3. Computation: further remarks. As noted above the program used to ob-

tain these results was exceedingly straightforward. Essentially, every response

to every move was examined from lowest to highest. Only when a response

of type P was found (permitting the current board to be labelled as N ) was

any pruning done. Likewise, no heuristic choices of responses were considered.

This alone would probably improve the efficiency of the program considerably

since it was observed that in many cases if y was a good countermove to first

move x (and was quite different from x) then it was also a good countermove

to x C 1. Secondly, storage and reuse of previously computed results, or some

form of “orderly” generation based on Proposition 6 would permit even more

pruning. For example, the first three moves 10; 5; 20 and 10; 20; 5 result in

identical colour sequences and gaps, so have the same outcome type.

However, beyond some obvious observations and conjectures which we pro-

pose in the final section, our opinion is that the data (particularly for the misère

version) suggest rather “noisy” behaviour for small values of n. So, the benefits

of pursuing these optimisations seems rather limited.

5. Dense linear order

We now consider playing the monotonic sequence game with Q (or any other

dense linear order without endpoints) as the deck.

PROPOSITION 7. For any a; d � 1, Wnor.a; d; Q/ D Wmis.a � 1; d � 1; Q/.

PROOF. In order to win the normal game, you cannot ever create an ascending

chain of length a � 1 or a descending chain of length d � 1 since your oppo-

nent would then have the opportunity to win immediately. Conversely, if your

opponent creates such a sequence on the board then you can win immediately.

So the outcome of the misère .a � 1; d � 1; Q/ game is the same as that of the

normal .a; d; Q/. ˜

We note that the proposition above requires only that the deck not have a max-

imal or minimal element. Owing to this proposition we restrict our attention to

the normal form of the game.

The outcome type of a particular board depends only on the relative ordering

among the elements currently on the board. This is clear, since with two boards

having the same relative ordering among their elements, there is an order pre-

serving bijection from Q to itself which maps one board to the other. Any

strategy which applies to the first board, then also applies to the second by

taking its image under this bijection. However, in fact all that we need to know

in order to determine the outcome of a game is the colour sequence of the board.

As noted previously, different boards and even boards of different sizes can have

the same colour sequence.
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PROPOSITION 8. For any a; d � 1, and playing with Q as a deck, the outcome

type of a particular board is determined by the colour sequence of that board.

PROOF. First we observe that the colour sequence of the board is sufficient to

determine whether or not the game has ended since the length of the longest

ascending (descending) sequence on the board is equal to the number of reddish

(bluish) elements of its colour sequence.

Next we note that given the colour sequence of a board, the possible colour

sequences which can be obtained by making a single move are determined. Any

move involves the insertion of a P somewhere in the existing colour sequence,

and then “first higher red reduction” and “first lower blue reduction”. Moreover,

because the deck is dense, any such insertion can be made.

So, in terms of determining the outcome, we need only know the colour

sequence of the current board, exactly as claimed. ˜

In considering the basic form of the monotonic sequence game with parameters

.a; d; Q/ we will work almost exclusively with the colour sequences. We define

the children of a colour sequence to be all those sequences that can be obtained

from it in a single move. A colour sequence is terminal if it contains a reddish,

or d bluish elements.

As before, we will assume that a � d and for a few values of d we are able

to determine the type of the general game with parameters .a; d; Q/.

THEOREM 9. For d � 5 the types of the monotonic sequence games with pa-

rameters .a; d; Q/ are as follows:

(i) For a � 2, Wnor.a; 2; Q/ D P .

(ii) For a � 3, Wnor.a; 3; Q/ D N precisely when a is odd.

(iii) For a � 4, Wnor.a; 4; Q/ D N .

(iv) For a � 5, Wnor.a; 5; Q/ D N .

PROOF. Throughout the argument we consider an equivalent version of the

monotonic sequence game with parameters .a; d; Q/. In this version, a suicidal

move i.e. one which creates an ascending sequence of length a�1 or a descend-

ing sequence of length d �1 on the board is forbidden, unless forced. Since the

player with a winning strategy in the original game will never make a suicidal

move, and the other player may choose not to so until forced, the outcome type

of the modified game is the same as that of the original.

For parameters .a; 2; Q/ the game is truly trivial, since the very first move is

suicidal.

For the parameters .a; 3; Q/, any move below an element already played is

suicidal. So, in the modified form, the two players alternately add to an increas-

ing sequence, and clearly the first player wins only if a is odd.
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Now consider parameter sequences of the form .a; 4; Q/. We will show that

the set of colour sequences representing nonterminal P-positions in this game

is

P4 D fP; Ra�3PBg [ fRiP 2 j 0 � i � a � 5g:

To establish this result we must show that for any position which can arise in

the play of .a; 4; Q/, if it is not in P4 then it has a child which is in P4 or a

terminal position, and if it is in P4 then there is no such child. The second part

is easily checked.

Suppose that we have a colour sequence w which is not terminal and not in

P4. If it has three or more bluish elements, then it has a terminal child. Suppose

that w has exactly one bluish element. Then it is of the form RiP for some

0 < i � a � 2. If i D a � 2 it has a terminal child. If i < a � 2 then an insertion

just before the last R yields Ri�1P 2 which is in P4 unless i D a � 3. In that

case, inserting before the P yields Ra�3PB.

Next consider the case where w has two bluish elements, both purple. Ig-

noring positions with terminal children, it must be of the form RiPRj P where

either j > 0 or i D a � 4. If j > 0 inserting before the last R yields RiCj P 2

while inserting before the last P yields RiCjC1PB and one of these two is in

P4. If j D 0 and i D a�4 then inserting between the two P ’s yields Ra�3PB.

Finally consider the case of one purple and one blue element. Then w is

RiPB for some i . If i � a � 5 then moving at the right hand end produces

RiP 2, while if i D a � 4, moving just after the P produces Ra�3PB.

Thus for the parameters .a; 4; Q/ we have established that P 2 P and hence

the initial position is in N .

We give a similar argument for the parameter sequences of the form .a; 5; Q/.

In this case though we do not provide an exhaustive listing of the type P nonter-

minal colour sequences, but only a sufficient set of these. By this we mean that

we provide a set P5 of colour sequences, and an argument that the following

conditions hold:

� P 2 P5;

� if w 2 P5 and v is a child of w, then v has a child which is either terminal or

in P5;

� no w 2 P5 has a terminal child.

This establishes that P 2P , since from any position not in P5 the player whose

turn it is to move can simply take either the immediate win, or the move guar-

anteed by the second of the conditions above. We take

P5 D
˚

P; RPB
	

[
˚

RiPRPB W 0 � i � a � 6
	

[
˚

RiRPBP W 0 � i � a � 6
	

[
˚

Ra�5P 3; Ra�3PB2
	

:
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The first part of the verification is routine. From the initial position P the sec-

ond player can ensure that after her play, the resulting code will be RPB by

always replying “in the second position”. Likewise from RPB she can always

guarantee that her opponent’s next move will be from one of PRPB or RPBP .

Now suppose that 0 � i � a � 7 and that a single move has been made from

RiPRPB or RiRPBP . If this move occurs below the first P it creates a descent

of length 4 and can be countered by an immediate win (i.e. it is suicidal). In

all of the remaining cases there is a counter move to one of RiC1PRPB or

RiC1RPBP .

If a single move has been made from Ra�6PRPB or Ra�6RPBP which is

nonsuicidal, then again there are only a few positions near the end of the colour

sequence that need to be examined, and each of these allows a response to either

Ra�5P 3 or Ra�3PB2.

The final cases to consider are moves from Ra�5P 3. There are only two

nonsuicidal moves and they both permit replies to Ra�3PB2. ˜

We have strong experimental evidence that the monotonic sequence game with

parameters .a; d; Q/ and a; d � 4 always has type N . Computation has estab-

lished this result for 4 � d � 8 and any a with d � a � 16. We can establish

this result for the symmetrical form of the game:

THEOREM 10. Let a � 4. The monotonic sequence game with parameters

.a; a; Q/ has type N .

PROOF. The argument we provide uses a form of strategy stealing together with

symmetry. That is, we show that if the second player had a winning strategy

then the first player could appropriate it for his own use. This contradiction

implies that it must be the first player who has a winning strategy.

If the result were false then the type of the colour sequence P would have

to be N . As the moves from P to RP and PB are symmetrical (under order

reversal) both these positions would have to be of type P .

In particular the two children PP and RPB of RP would both lie in N . The

children of PP are PBP , RPB and PRP . By assumption, RPB 2 N . By

symmetry PBP and PRP have the same type, so these two positions would

have type P . The children of PRP and PBP would all be of type N . These

include the positions

RPP; RRPB; RPB2; PPB:

However, these are all the children of RPB, so RPB must be of type P , con-

tradicting our assumption. ˜

Finally, for this section, we consider an extended form of the monotonic se-

quence game when the deck is Q. In this extension, a chosen card can be inserted
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anywhere in the board, in other words you are allowed to choose the position as

well as the value of the next element to insert in the sequence. A useful model

of this game is that the players alternately choose points in the open unit square

(or the plane, but using the square saves paper) subject to the condition that no

two chosen points can lie on a vertical or horizontal line. The game ends when

there are either a points such that the segments connecting them all have positive

slope, or d such that the segments connecting them all have negative slope. We

refer to such sequences of points as increasing or decreasing respectively.

This extra power reduces the analysis of the game to a simple parity argument

owing to the following lemma:

LEMMA 11. Let a set of fewer than rs points in the open unit square be given

no two of which lie on a horizontal or vertical line. If the longest increasing

sequence of points has length at most r and the longest decreasing sequence of

points has length at most s then it is possible to add an additional point without

creating a sequence of r C 1 increasing or s C 1 decreasing points.

PROOF. View the points as a permutation. To avoid trivialities, suppose that

there is indeed an increasing subsequence of length r and a decreasing subse-

quence of length s. Under these conditions, it is well known that the permutation

has a decomposition into s disjoint increasing subsequences, I1 through Is ,

each of length at most r which can be obtained by a simple greedy algorithm.

Since the number of elements of the permutation is less than rs, one of these

subsequences, without loss of generality I1, will contain at most r � 1 points.

Now consider a decomposition of the permutation into r disjoint decreasing sub-

sequences D1 through Dr each of length at most s (which can also be obtained

by a greedy algorithm). Since for each i and j , jDi \ Ij j � 1 any of the Di of

size s must intersect each Ij . However, some Di has empty intersection with I1

(since there are r D’s and at most r �1 points in I1). Without loss of generality,

suppose it is D1 and note that necessarily jD1j < s.

Now return to thinking of the elements of the permutation as points in the

square. It is possible to find a point .x; y/ whose addition to D1 forms a de-

creasing sequence, and whose addition to I1 forms an increasing sequence. Such

a point can be obtained by “connecting the dots” for D1, and connecting the ends

horizontally to the sides of the square. Do likewise for I1 only connect the ends

vertically. The resulting two paths have a point P in common. Suppose that P

lies in a vertical or horizontal line determined by any of the finitely many points

in the set. In that case, it is possible to perturb P slightly, so that this is no

longer true and so that P ’s addition to D1 forms a decreasing sequence, and its

addition to I1 forms an increasing one, without otherwise changing P ’s relative

horizontal or vertical position with respect to the elements of the set. The point

P thus satisfies the lemma since its addition still permits the partitioning of the
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set of points into r decreasing sequences of size at most s, and s increasing

sequences of size at most r . ˜

In terms of the extended monotonic sequence game with parameters .a; d; Q/

the lemma above implies that for the first .a � 2/.d � 2/ moves neither player

can be forced to play suicidally. However, at this point, by the Erdős–Szekeres

theorem the next move is necessarily suicidal. Since the parity of ad is the same

as that of .a � 2/.d � 2/ we obtain:

THEOREM 12. The extended monotonic sequence game with parameters

.a; d; Q/

has type N if ad is odd, and type P if ad is even.

6. Observations and open problems

It appears that the monotonic sequence game, particularly with normal ter-

mination criteria, has a fairly strong bias towards the first player. Specifically,

our computational results suggest the following pair of conjectures:

� For any a � d � 3 and all sufficiently large n, Wnor.a; d; n/ D Wmis.a; d; n/ D

N .

� For any a � d � 3, Wnor.a; d; Q/ D N .

We would be surprised (assuming the correctness of these conjectures) if similar

results did not also hold for other infinite linear orders (not models of the theory

of almost all finite partial orders) such as N or Z.

In the finite form of the game it appears that the last D occurring in the

sequence Wmis.a; d; n/ is generally closer to position a C d than to position

.a � 1/.d � 1/. It would be of interest to determine a good upper bound for

the position of this last D (the same observation and question applies to the

sequence Wnor.a; d; n/ though the computational evidence is less compelling).

Likewise, the “long run behaviour” of these games seems to become established

well before the bound obtained using the argument of Proposition 6. That the

trailing sequences of N ’s observed in the computational results do generally rep-

resent long run behaviour is supported by a more detailed examination of these

positions showing that there is a large central block of equivalent moves, which

extends by a single element each time the deck size is increased (extensions to

CGSUITE [10] were used for some of these computations).

Another area of interest to investigate would be the behaviour of the extended

form of the game played with a finite deck. In this form, players take turn

naming pairs .i; �i/ subject to the constraint that the chosen values form part

of the graph of some permutation of f1; 2; : : : ; ng (and with termination based
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on increasing or decreasing sequences as normally). An equivalent formulation

has the players placing nonattacking rooks on a (generalised) chessboard.
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The game of End-Wythoff

AVIEZRI S. FRAENKEL AND ELNATAN REISNER

ABSTRACT. Given a vector of finitely many piles of finitely many tokens. In

End-Wythoff, two players alternate in taking a positive number of tokens from

either end-pile, or taking the same positive number of tokens from both ends.

The player first unable to move loses and the opponent wins. We characterize

the P -positions .ai ; K; bi/ of the game for any vector K of middle piles, where

ai ; bi denote the sizes of the end-piles. A more succinct characterization can

be made in the special case where K is a vector such that, for some n 2 Z�0,

.K; n/ and .n; K/ are both P -positions. For this case the (noisy) initial behav-

ior of the P -positions is described precisely. Beyond the initial behavior, we

have bi � ai D i , as in the normal 2-pile Wythoff game.

1. Introduction

A position in the (impartial) game End-Nim is a vector of finitely many piles

of finitely many tokens. Two players alternate in taking a positive number of to-

kens from either end-pile (“burning-the-candle-at-both-ends”). The player first

unable to move loses and the opponent wins. Albert and Nowakowski [1] gave

a winning strategy for End-Nim, by describing the P -positions of the game.

(Their paper also includes a winning strategy for the partizan version of End-

Nim.)

Wythoff’s game [8] is played on two piles of finitely many tokens. Two

players alternate in taking a positive number of tokens from a single pile, or

taking the same positive number of tokens from both piles. The player first

unable to move loses and the opponent wins. From among the many papers on

this game, we mention just three: [2], [7], [3]. The P -positions .a0

i; b0

i/ with

a0

i � b0

i of Wythoff’s game have the property: b0

i � a0

i D i for all i � 0.

Keywords: combinatorial games, Wythoff’s game, End-Wythoff’s game, P -positions.
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Richard Nowakowski suggested to one of us (F) the game of End-Wythoff ,

whose positions are the same as those of End-Nim but with Wythoff-like moves

allowed. Two players alternate in taking a positive number of tokens from either

end-pile, or taking the same positive number of tokens from both ends. The

player first unable to move loses and the opponent wins.

In this paper we characterize the P -positions of End-Wythoff. Specifically,

in Theorem 1 the P -positions .ai ; K; bi/ are given recursively for any vector of

piles K.

The rest of the paper deals with values of K, deemed special, such that .n; K/

and .K; n/ are both P -positions for some n 2 Z�0. Theorem 3 gives a slightly

cleaner recursive characterization than in the general case. In Theorems 4 and

5, the (noisy) initial behavior of the P -positions is described, and Theorem 6

shows that after the initial noisy behavior, we have bi � ai D i as in the normal

Wythoff game. Before all of that we show in Theorem 2 that if K is a P -

position of End-Wythoff, then .a; K; b/ is a P -position if and only if .a; b/ is a

P -position of Wythoff.

Finally, in Section 4, a polynomial algorithm is given for finding the P -

positions .ai; K; bi/ for any given vector of piles K.

2. P -positions for general End-Wythoff games

DEFINITION 1. A position in the game of End-Wythoff is the empty game,

which we denote by .0/, or an element of
S

1

iD1 Z
i
�1

, where we consider mirror

images identical; that is, .n1; n2; : : : ; nk/ and .nk ; nk�1; : : : ; n1/ are the same

position.

NOTATION 1. For convenience of notation, we allow ourselves to insert extra-

neous 0s when writing a position. For example, .0; K/, .K; 0/, and .0; K; 0/

are all equivalent to K.

LEMMA 1. Given any position K, there exist unique lK ; rK 2 Z�0 such that

.lK ; K/ and .K; rK / are P -positions.

PROOF. We phrase the proof for lK , but the arguments hold symmetrically for

rK .

Uniqueness is fairly obvious: if .n; K/ is a P -position and m ¤ n, then

.m; K/ is not a P -position because we can move from one to the other.

For existence, if K D .0/, then lK D rK D 0, since the empty game is a

P -position. Otherwise, let t be the size of the rightmost pile of K. If any of

.0; K/; .1; K/; : : : ; .2t; K/ are P -positions, we are done. Otherwise, they are all

N -positions. In this latter case, the moves that take .1; K/; .2; K/; : : : ; .2t; K/

to P -positions must all involve the rightmost pile. (That is, none of these moves

take tokens only from the leftmost pile. Note that we cannot make this guarantee
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for .0; K/ because, for example, .0; 2; 2/D .2; 2/ can reach the P -position .1; 2/

by taking only from the leftmost pile.)

In general, if L is a position and m < n, then it cannot be that the same move

takes both .m; L/ and .n; L/ to P -positions: if a move takes .m; L/ to a P -

position .m0; L0/, then that move takes .n; L/ to .m0 C n � m; L0/, which is an

N -position because we can move to .m0; L0/.

In our case, however, there are only 2t possible moves that involve the right-

most pile: for 1 � i � t , take i from the rightmost pile, or take i from both

end-piles. We conclude that each of these moves takes one of .1; K/, .2; K/,

: : : , .2t; K/ to a P -position, so no move involving the rightmost pile can take

.2t C 1; K/ to a P -position. But also, no move that takes only from the left-

most pile takes .2t C1; K/ to a P -position because .n; K/ is an N -position for

n < 2t C 1. Thus .2t C 1; K/ cannot reach any P -position in one move, so it is

a P -position, and lK D 2t C 1. ˜

We now state some definitions which will enable us to characterize P -positions

as pairs at the 2 ends of a given vector K. For any subset S � Z�0, S ¤ Z�0,

let mex S D min.Z�0 n S/ = least nonnegative integer not in S .

DEFINITION 2. Let K be a position of End-Wythoff, and let l D lK and r D rK

be as in Lemma 1. For n 2 Z�1, define

dn D bn � an

An D f0; lg [ fai W 1 � i � n � 1g
Bn D f0; rg [ fbi W 1 � i � n � 1g
Dn D f�l; rg [ fdi W 1 � i � n � 1g;

where

an D mex An (1)

and bn is the smallest number x 2 Z�1 satisfying both

x … Bn; (2)

x � an … Dn: (3)

Finally, let

A D
1
[

iD1

ai and B D
1
[

iD1

bi :

Note that the definitions of A and B ultimately depend only on the values of

l and r . Thus, Theorem 1 below shows that if K and L are positions with

lK D lL and rK D rL, then the pairs .ai ; bi/ that form P -positions when placed

as end-piles around them will be the same.
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THEOREM 1.

PK D
1
[

iD1

.ai ; K; bi/

is the set of P -positions of the form .a; K; b/ with a; b 2 Z�1.

K D .1; 2/ K D .1; 3/ K D .2; 3/ K D .1; 2; 2/

l D 0 0 l D 4 –4 l D 5 –5 l D 1 –1

r D 0 0 r D 1 1 r D 3 3 r D 1 1

i ai bi di ai bi di ai bi di ai bi di

1 1 2 1 1 3 2 1 1 0 2 2 0

2 2 1 –1 2 2 0 2 4 2 3 5 2

3 3 5 2 3 6 3 3 2 –1 4 7 3

4 4 7 3 5 4 –1 4 5 1 5 3 –2

5 5 3 –2 6 10 4 6 10 4 6 10 4

6 6 10 4 7 5 –2 7 12 5 7 4 –3

7 7 4 –3 8 13 5 8 6 –2 8 13 5

8 8 13 5 9 15 6 9 15 6 9 15 6

9 9 15 6 10 7 –3 10 7 –3 10 6 –4

10 10 6 –4 11 18 7 11 18 7 11 18 7

11 11 18 7 12 20 8 12 8 –4 12 20 8

12 12 20 8 13 8 –5 13 21 8 13 8 –5

13 13 8 –5 14 23 9 14 23 9 14 23 9

14 14 23 9 15 9 –6 15 9 –6 15 9 –6

15 15 9 –6 16 26 10 16 26 10 16 26 10

Table 1. The first 15 outer piles of P -positions for some values of K.

PROOF. Since moves are not allowed to alter the central piles of a position, any

move from .a; K; b/ with a; b > 0 will result in .c; K; d/ with c; d � 0. Since

.l; K/ D .l; K; 0/ and .K; r/ D .0; K; r/ are P -positions, they are the only P -

positions with c D 0 or d D 0. Thus, to prove that PK is the set of P -positions

of the desired form, we must show that, from a position in PK , one cannot reach

.l; K/, .K; r/, or any position in PK in a single move, and we must also show

that from any .a; K; b/ … PK with a; b > 0 there is a single move to at least one

of these positions.

We begin by noting several facts about the sequences A and B.

(a) We see from (1) that anC1 D
�

an C 1; if an C 1 ¤ l

an C 2; if an C 1 D l
for n � 1, so A is

strictly increasing.
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(b) We can also conclude from (1) that A D Z�1 n flg.

(c) It follows from (2) that all elements in B are distinct. The same conclusion

holds for A from (1).

We show first that from .am; K; bm/ 2 PK one cannot reach any element of PK

in one move:

(i) .am � t; K; bm/ D .an; K; bn/ 2 PK for some 0 < t � am. Then m ¤ n but

bm D bn, contradicting (c).

(ii) .am; K; bm � t/ D .an; K; bn/ 2 PK for some 0 < t � bm. This implies that

am D an, again contradicting (c).

(iii) .am � t; K; bm � t/ D .an; K; bn/ 2 PK for some 0 < t � am. Then

bn � an D bm � am, contradicting (3).

It is a simple exercise to check that .am; K; bm/ 2 PK cannot reach .l; K/ or

.K; r/.

Now we prove that from .a; K; b/ … PK with a; b > 0, there is a single move

to .l; K/, .K; r/, or some .an; K; bn/ 2 PK .

If a D l , we can take all of the right-hand pile and reach .l; K/. Similarly, if

b D r , we can move to .K; r/ by taking the left-hand pile.

Now assume a ¤ l and b ¤ r . We know from (b) that a 2 A, so let a D an. If

b > bn, then we can move to .an; K; bn/. Otherwise, b < bn, so b must violate

either (2) or (3).

If b 2 Bn, then b D bm with m < n (because b ¤ r and b > 0). Since am < an

by (a), we can move to .am; K; bm/ by drawing from the left pile.

If, on the other hand, b � an 2 Dn, then there are three possibilities: if b �
an D bm � am for some m < n, then we can move to .am; K; bm/ by taking

b � bm D an � am > 0 from both end-piles; if b � an D �l , then drawing

b D an � l from both sides puts us in .l; K/; and if b � an D r , then taking

an D b � r from both sides leaves us with .K; r/. ˜

3. P -positions for special positions

Examining Table 1 reveals a peculiarity that occurs when l D r .

DEFINITION 3. A position K is special if lK D rK .

In such cases, if .ai ; bi/ occurs in a column, then .bi ; ai/ also appears in that col-

umn. Examples of special K are P -positions, where l D r D0, and palindromes,

where .l; K/ is the unique P -position of the form .a; K/, but .K; r/ D .r; K/

is also a P -position, so l D r . However, other values of K can also be spe-

cial. We saw .1; 2/—a P -position—and .1; 2; 2/ in Table 1; other examples are

.4; 1; 13/; .7; 5; 15/; and .3; 1; 4; 10/, to name a few.

We begin with the special case lK D rK D 0.
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THEOREM 2. Let K be a P -position of End-Wythoff . Then .a; K; b/ is a P -

position of End-Wythoff if and only if .a; b/ is a P -position of Wythoff .

PROOF. Induction on a C b, where the base a D b D 0 is obvious. Suppose

the assertion holds for a C b < t , where t 2 Z�1. Let a C b D t . If .a; b/ is an

N -position of Wythoff, then there is a move .a; b/ ! .a0; b0/ to a P -position

of Wythoff, so by induction .a0; K; b0/ is a P -position hence .a; K; b/ is an N -

position. If, on the other hand, .a; b/ is a P -position of Wythoff, then every

follower .a0; b0/ of .a; b/ is an N -position of Wythoff, hence every follower

.a0; K; b0/ of .a; K; b/ is an N -position, so .a; K; b/ is a P -position. ˜

The remainder of this paper deals with other cases of special K. We will see

that this phenomenon allows us to ignore the distinction between the left and the

right side of K, which will simplify our characterization of the P -positions. We

start this discussion by redefining our main terms accordingly. (Some of these

definitions are not changed, but repeated for ease of reference.)

DEFINITION 4. Let r D rK , as above. For n 2 Z�1, define

dn D bn � an;

An D f0; rg [ fai W 1 � i � n � 1g;
Bn D f0; rg [ fbi W 1 � i � n � 1g;
Vn D An [ Bn;

Dn D frg [ fdi W 1 � i � n � 1g;

where

an D mex Vn (4)

and bn is the smallest number x 2 Z�1 satisfying both

x … Vn; (5)

x � an … Dn: (6)

As before, A D
S

1

iD1 ai and B D
S

1

iD1 bi .

With these definitions, our facts about the sequences A and B are somewhat

different:

(A) The sequence A is strictly increasing because 1�m<n÷ an D mex Vn >

am, since am 2 Vn.

(B) It follows from (5) that all elements in B are distinct.

(C) Condition (5) also implies that bn � an D mex Vn for all n � 1.

(D) A [ B D Z�1 n frg due to (4).



THE GAME OF END-WYTHOFF 335

(E) A \ B is either empty or equal to fa1g D fb1g. First, note that an ¤ bm

for n ¤ m, because m < n implies that an is the mex of a set containing

bm by (4), and if n < m, then the same conclusion holds by (5). If r D 0,

then bi � ai ¤ 0 for all i , so A \ B D ?. Otherwise r > 0, and for n D 1,

the minimum value satisfying (5) is mexf0; rg D a1, and in this case a1 also

satisfies (6); that is, 0 D a1 � a1 … frg. Therefore, b1 D a1, and bi � ai ¤ 0

for i > 1, by (6).

THEOREM 3. If K is special, then

PK D
1
[

iD1

.ai ; K; bi/ [ .bi ; K; ai/

is the set of P -positions of the form .a; K; b/ with a; b 2 Z�1.

Table 2 lists the first few such .ai ; bi/ pairs for several special values of K. Note

that the case K D .0/ corresponds to Wythoff’s game.

PROOF. As in the proof for general K, we need to show two things: from

a position in PK one cannot reach .r; K/, .K; r/, or any position in PK in a

single move, and from any .a; K; b/ … PK with a; b > 0 there is a single move

to at least one of these positions.

It is a simple exercise to see that one can reach neither .r; K/ nor .K; r/ from

.am; K; bm/ 2 PK , so we show that it is impossible to reach any position in PK

in one move:

(i) .am�t; K; bm/2PK for some 0< t �am. We cannot have .am�t; K; bm/D
.an; K; bn/ because it contradicts (B). If .am � t; K; bm/ D .bn; K; an/, then

an D bm, so m D n D 1 by (E). But then am � t D bn D am, a contradiction.

(ii) .am; K; bm � t/ 2 PK for some 0 < t � bm. This case is symmetric to (i).

(iii) .am � t; K; bm � t/ 2 PK for some 0 < t � am. We cannot have .am �
t; K; bm �t/ D .an; K; bn/ because it contradicts (6). If .am �t; K; bm �t/ D
.bn; K; an/, then bm � am D �.bn � an/. But (C) tells us that bm � am � 0

and bn � an � 0, so bm � am D bn � an D 0, contradicting (6).

Similar reasoning holds if one were starting from .bm; K; am/ 2 PK .

Now we prove that from .a; K; b/ … PK with a; b > 0 there is a single move

to .r; K/, to .K; r/, to some .an; K; bn/ 2 PK , or to some .bn; K; an/ 2 PK .

We assume that a � b, but the arguments hold symmetrically for b � a.

If a D r , we can move to .r; K/ by taking the entire right-hand pile. Other-

wise, by (D), a is in either A or B. If a D bn for some n, then b � a D bn � an.

Since .a; K; b/ … PK , we have b > an, so we can move b to an, thereby reaching

.bn; K; an/ 2 PK .
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K D .0/ K D .10/ K D .15; 15/ K D .8; 6; 23/

r D 0 r D 6 r D 10 r D 14

i ai bi di ai bi di ai bi di ai bi di

1 1 2 1 1 1 0 1 1 0 1 1 0

2 3 5 2 2 3 1 2 3 1 2 3 1

3 4 7 3 4 7 3 4 6 2 4 6 2

4 6 10 4 5 9 4 5 8 3 5 8 3

5 8 13 5 8 10 2 7 11 4 7 11 4

6 9 15 6 11 16 5 9 14 5 9 15 6

7 11 18 7 12 19 7 12 18 6 10 17 7

8 12 20 8 13 21 8 13 20 7 12 20 8

9 14 23 9 14 23 9 15 23 8 13 18 5

10 16 26 10 15 25 10 16 25 9 16 25 9

11 17 28 11 17 28 11 17 28 11 19 29 10

12 19 31 12 18 30 12 19 31 12 21 32 11

13 21 34 13 20 33 13 21 34 13 22 34 12

14 22 36 14 22 36 14 22 36 14 23 36 13

15 24 39 15 24 39 15 24 39 15 24 39 15

16 25 41 16 26 42 16 26 42 16 26 42 16

17 27 44 17 27 44 17 27 44 17 27 44 17

18 29 47 18 29 47 18 29 47 18 28 46 18

19 30 49 19 31 50 19 30 49 19 30 49 19

20 32 52 20 32 52 20 32 52 20 31 51 20

Table 2. The first 20 outer piles of P -positions for some values of K. Note
that B, while usually strictly increasing, need not always be, as illustrated
at K D .8; 6; 23/, i D 9.

If a D an for some n, then if b > bn, we can move to .an; K; bn/ 2 PK .

Otherwise we have, a D an � b < bn. We consider 2 cases.

I. b � an 2 Dn. If b � an D r , then we can take b � r D an from both ends

to reach .K; r/. Otherwise, b � an D bm � am for some m < n, and b � bm D
an �am > 0 since an > am by (A). Thus we can move to .am; K; bm/ 2 PK by

taking an � am D b � bm from both an and b.

II. b � an … Dn. This shows that b satisfies (6). Since b < bn and bn is the

smallest value satisfying both (5) and (6), we must have b 2 Vn. By assumption,

b > 0. If b D r , then we can move to .K; r/ by taking the entire left-hand pile.

Otherwise, since b � an > am for all m < n, it must be that b D bm with m < n.

We now see from (A) that am < an, so we can draw from the left-hand pile to

obtain .am; K; bm/ 2 PK . ˜
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LEMMA 2. For m; n 2 Z�1, if f0; : : : ; m � 1g � Dn, m … Dn and an C m … Vn,

then bn D an C m and f0; : : : ; mg � DnC1.

PROOF. We have x < an ÷ x 2 Vn, and an � x < an Cm ÷ x �an 2 Dn, so

no number smaller than an C m satisfies both (5) and (6). The number an C m,

however, satisfies both since, by hypothesis, an C m … Vn and m … Dn, so

bn D an C m. Since bn � an D m, f0; : : : ; mg � DnC1. ˜

LEMMA 3. For m 2 Z�1, if Dm D f0; : : : ; m � 1g, then bn D an C n for all

n � m.

PROOF. We see that m … Dm. Also, am C m … Vm: it cannot be in Am because

A is strictly increasing, and it cannot be in Bm because if it were, we would

get m D bi � am < bi � ai 2 Dm, a contradiction. So Lemma 2 applies, and

bm D am C m.

This shows that DmC1 D f0; : : : ; mg, so the result follows by induction. ˜

LEMMA 4. If 1 � m � r < am C m � 1 and Dm D fr; 0; 1; : : : ; m � 2g, then

dm D m � 1. Thus, for m � n � r , dn D n � 1.

PROOF. For 0 < i < m we have ai < am by (A) and di < m � 1 since we

cannot have di D r . Hence am C m � 1 > ai C di D bi . Also by hypothesis,

am Cm�1 > r , so am Cm�1 62 Vm. Since m�1 62 Dm, Lemma 2 (with n D m

and m D m � 1) implies dm D m � 1.

For m�n� r , the condition in the lemma holds inductively, so the conclusion

holds, as well. ˜

We will now begin to note further connections between the P -positions in End-

Wythoff and those in standard Wythoff’s Game, to which end we introduce some

useful notation.

NOTATION 2. The P -positions of Wythoff’s game—i.e., the 2-pile P -positions

of End-Wythoff, along with .0; 0/ D .0/—are denoted by
S

1

iD0.a0

i ; b0

i/, where

a0
n D bn�c and b0

n D bn�2c for all n 2 Z�0, and � D .1 C
p

5/=2 is the golden

ratio. We write A0 D
S

1

iD0 a0

i and B0 D
S

1

iD0 b0

i .

An important equivalent definition of A0 and B0 is, for all n 2 Z�0 (see [3]),

a0

n D mexfa0

i; b0

i W 0 � i � n � 1g;
b0

n D a0

n C n:

The following is our main lemma for the proof of Theorem 4.

LEMMA 5. Let n 2 Z�0. If a0
n C 1 < r , then anC1 D a0

n C 1. If b0
n C 1 < r , then

bnC1 D b0
n C 1.
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PROOF. Note that a0

0
C 1 D b0

0
C 1 D 1. If 1 < r , then a1 D mexf0; rg D 1, and

1 satisfies both (5) and (6), so b1 D 1. So the result is true for n D 0.

Assume that the lemma’s statement is true for 0 � i � n � 1 .n � 1/, and

assume further that a0
n C1 < r . Then a0 D 0 < a0

n C1. Also, a0

i C1 < a0
n C1 < r

for 0 � i � n � 1 because A0 is strictly increasing. But, aiC1 D a0

i C 1 for

0 � i � n � 1 by the induction hypothesis, so ai < a0
n C 1 for 1 � i � n. Thus,

we have shown that a0
n C 1 … AnC1.

Let m be the least index such that b0
m C 1 � r , and let j D minfm; ng. Then

b0

i�1
C 1 < r for 1 � i � j , so bi D b0

i�1
C 1 by the induction hypothesis. We

know that b0
r D a0

s ÷ r D s D 0, so b0

i�1
¤ a0

n because n � 1. Therefore

bi D b0

i�1
C 1 ¤ a0

n C 1, so a0
n C 1 … BjC1.

If j D n, then we have shown that a0
n C 1 … VnC1. Otherwise, j D m. For

k �mC1 we have dk �m by (6), since di Dbi�ai Db0

i�1
C1�.a0

i�1
C1/D i�1

for 1 � i � m by our induction hypothesis. Also, ai � amC1 for i � m C 1, by

(A). Therefore, for i � m C 1, bi D ai C di � amC1 C m D .a0
m C 1/ C m D

b0
m C 1 � r > a0

n C 1. Thus we see that a0
n C 1 … fbi W i � m C 1g, and we have

shown that a0
n C 1 … VnC1.

Now, 02VnC1, and if 1�x <a0
nC1, then 0�x�1<a0

n, so x�12fa0

i ; b0

i W0�
i < ng. Thus, for some i with 0 � i < n, either x D a0

i C1 D aiC1 or x D b0

i C1 D
biC1 by the induction hypothesis, so x 2 VnC1. Hence a0

nC1 D mex VnC1. This

proves the first statement of the lemma: anC1 D mex VnC1 D a0
n C 1.

Note that if b0

i C 1 < r for some i 2 Z�0, then a fortiori a0

i C 1 < r . Hence

by the first part of the proof, aiC1 D a0

i C 1. Thus,

b0

i C 1 < r ÷ aiC1 D a0

i C 1: (7)

For the second statement of the lemma, assume that the result is true for

0 � i � n � 1 .n � 1/, and that b0
n C 1 < r . Then, for 0 � i � n � 1, we

know aiC1 D a0

i C 1 by (7), and biC1 D b0

i C 1 by the induction assumption.

Therefore di D i � 1 for 1 � i � n, so bnC1 cannot be smaller than anC1 C n.

Also anC1 D a0
n C 1 by (7).

Consider anC1 C n D a0
n C 1 C n D b0

n C 1. We have 0 < b0
n C 1 < r , and for

1 � i � n, ai � bi D b0

i�1
C 1 < b0

n C 1. This implies that b0
n C 1 … VnC1, and

we conclude that bnC1 D b0
n C 1. ˜

COROLLARY 1. Let n 2 Z�0. If anC1 < r , then anC1 D a0
n C 1. If bnC1 < r ,

then bnC1 D b0
n C 1.

PROOF. Note that anC1 > 0. Since A0 [ B0 D Z�0, either anC1 D a0

i C 1 or

anC1 D b0

i C1. If a0

i C1 D anC1 < r , then anC1 D a0

i C1 D aiC1 by Lemma 5,

so i D n. If b0

i C 1 D anC1 < r , then anC1 D b0

i C 1 D biC1 by Lemma 5, so

i D n D 0 by (E), and a1 D b1 D b0

0
C 1 D a0

0
C 1. The same argument holds

for bnC1. ˜
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COROLLARY 2. For 1 � n � r � 1, n 2 A if and only if n � 1 2 A0 and n 2 B if

and only if n � 1 2 B0.

PROOF. This follows from Lemma 5 and Corollary 1. ˜

THEOREM 4. If r D a0
n C 1, then for 1 � i � r , di D i � 1. Furthermore, for

1 � i � n, ai D a0

i�1
C 1 and bi D b0

i�1
C 1.

PROOF. If r D 1, then n D 0. In this case, note that a1 D b1 D 2, so d1 D 0,

and that the second assertion of the theorem is vacuously true.

Otherwise, r � 2, and we again let m be the least index such that b0
m C1 � r .

Note that m � 1 because b0

0
C 1 D 1 < r . Thus b0

m ¤ a0
n D r � 1, so in fact

b0
m C 1 > r . For 1 � i � m, since a0

i�1
� b0

i�1
and B0 is increasing, we have

a0

i�1
C 1 � b0

i�1
C 1 � b0

m�1
C 1 < r , so ai D a0

i�1
C 1 and bi D b0

i�1
C 1 by

Lemma 5. We see that di D i � 1 for 1 � i � m, so DmC1 D fr; 0; : : : ; m � 1g.

Notice that amC1 C m > r because either amC1 > r and the fact is clear, or

amC1 < r , so amC1 D a0
m C 1 by Corollary 1, which implies that amC1 C m D

a0
m C 1 C m D b0

m C 1 > r . Also, m C 1 � b0

m�1
C 2 (because 1 C 1 D b0

0
C 2

and B0 is strictly increasing) and b0

m�1
C 1 < r , so m C 1 � b0

m�1
C 2 � r . We

can now invoke Lemma 4 to see that di D i � 1 for m C 1 � i � r , so we have

di D i � 1 for 1 � i � r .

Since n � a0
n < r , in particular di D i �1 for 1 � i � n. With i in this range,

we know a0

i�1
C 1 < a0

n C 1 D r , so we get ai D a0

i�1
C 1 by Lemma 5, and

since di D i � 1, bi D ai C i � 1 D a0

i�1
C 1 C i � 1 D b0

i�1
C 1. ˜

THEOREM 5. If r D b0
n C 1, then for 1 � i � r , di D i � 1 except as follows:

� If n D 0, there are no exceptions.

� If a0
n C 1 2 B0, then dnC1 D n C 1 and dnC2 D n.

� If n D 2, then d3 D 3, d4 D 4 and d5 D 2.

� Otherwise, dnC1 D n C 1, dnC2 D n C 2, dnC3 D n C 3, and dnC4 D n.

PROOF. One can easily verify the theorem for 0 � n � 2—that is, when r D 1

(first bullet), 3 (second bullet), or 6 (third bullet). So we assume n � 3.

Lemma 5 tells us that for 1 � i � n, ai D a0

i�1
C1 and bi D b0

i�1
C1 because

a0

i�1
C1 � b0

i�1
C1 < b0

nC1 D r . This implies that di D i �1 for 1 � i � n. This

is not the case for dnC1: a0
n C1 < b0

n C1 D r , so anC1 D a0
n C1, but anC1 Cn D

b0
n C 1 D r , which cannot be bnC1. We must have bnC1 � anC1 C n, however,

and ai � bi < r D anC1 Cn for 1 � i � n, so we see that anC1 CnC1 … VnC1;

thus bnC1 D anC1 C n C 1 D a0
n C n C 2 D b0

n C 2, and dnC1 D n C 1.

If a0
n C1 2 B0, then a0

nC1
D a0

n C2 (because B0 does not contain consecutive

numbers) and a0

nC1
C1 D a0

nC3 � a0
nCn D b0

n D r �1, so Lemma 5 tells us that

anC2 D a0

nC1
C1D a0

nC3. Now, anC2CnD a0
nCnC3>a0

nCnC2D bnC1 �bi
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for all i � n C 1, so bnC2 D anC2 C n, and we see dnC2 D n. That is, we have

anC1; bi ; anC2; : : : ; r; bnC1; bnC2.

This gives us DnC3 D fr; 0; : : : ; n C 1g. Also, 5 < b0

2
C 1 D 6 so, since B0 is

strictly increasing and n C 3 � 5, we know n C 3 < b0
n C 1 D r . Furthermore,

r < bnC1 D anC1 C n C 1 < anC3 C n C 2. Therefore, we can cite Lemma 4 to

assert that di D i � 1 for n C 3 � i � r .

If, on the other hand, a0
n C 1 … B0, then a0

n C 1 D a0

nC1
. Note that a0

3
C 1 D

5 D b0

2
and a0

4
C 1 D 7 D b0

3
, so we can assume n � 5. We have a0

nC1
C 1 D

a0
n C 2 < a0

n C n D b0
n < r , so anC2 D a0

nC1
C 1 D a0

n C 2, and we find that

anC2 C n D a0
n C n C 2 D bnC1 2 VnC2. Also, a difference of n C 1 already

exists, but anC2 C n C 2 is not in VnC2, as it is greater than all of the previous

B values. So we get bnC2 D anC2 C n C 2, and dnC2 D n C 2. We have the

following picture: anC1; anC2; : : : ; r; bnC1; �; bnC2.

Now, since a0
n C 1 2 A0, a0

n C 2 must be in B0 because A0 does not contain

three consecutive values. Because a0
n C 3 � a0

n C n D b0
n D r � 1, we have

anC2 C 1 D a0
n C 3 2 B by Corollary 2. Also, a0

n C 3 2 A0 because B0 does not

contain consecutive values, and a0
n C 4 � r � 1, so a0

n C 4 2 A. We therefore

have anC1; anC2; bj ; anC3; : : : ; r; bnC1; �; bnC2. Since anC3 C n D bnC2 and

differences of n C 1 and n C 2 already occurred, we get bnC3 D anC3 C n C 3,

and dnC3 D n C 3, and the configuration is

anC1; anC2; bj ; anC3; : : : ; r; bnC1; �; bnC2; �; �; bnC3:

If n D 5, then r D b0

5
C 1 D 14, and one can check that anC3 D a8 D 12

and anC4 D a9 D 13 D anC3 C 1. If n � 6, then anC3 C 2 D anC1 C 5 �
anC1 C n � 1 D r � 1. The sequence B0 does not contain consecutive values,

so either anC3 2 A0 or anC3 C 1 2 A0, and therefore either anC3 C 1 2 A or

anC3 C 2 2 A. So regardless of the circumstances, either anC4 D anC3 C 1 or

anC4 D anC3 C 2.

This means that either anC4 C n D anC3 C n C 1 D bnC2 C 1 or anC4 C n D
anC3 C n C 2 D bnC2 C 2. In either case, this spot is not taken by an earlier bi ,

so bnC4 D anC4 C n, and dnC4 D n.

A few moments of reflection reveal that 4 � a3. Since A is strictly increasing,

this gives us that 5 � a4 and, in general, n C 5 � anC4. We now have n C 5 �
anC4 < r < bnC1 D anC1 CnC1 < anC5 CnC4, and DnC5 D fr; 0; : : : ; nC3g,

so Lemma 4 completes the proof. ˜

THEOREM 6. If n � r C 1, then dn D n.

PROOF. The smallest n which fall under each of the bullets of Theorem 5 are

n D 0, n D 1, n D 2, and n D 5, respectively. (n D 3 and n D 4 fall under the

second bullet.) Notice that nC2 � b0
n C1 when n � 1 since 1C2 � b0

1
C1 D 3

and B0 is strictly increasing. Similarly, n C 3 � b0
n C 1 when n � 2 since
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2C3 � b0

2
C1 D 6, and nC4 � b0

n C1 when n � 3 because 3C4 � b0

3
C1 D 8.

Therefore, we see that all of the exceptions mentioned in Theorem 5 occur before

index r C 1 D b0
n C 2.

Theorems 4 and 5, combined with this observation, reveal that DrC1 D
f0; : : : ; rg, whether r D a0

n C 1 or r D b0
n C 1. Thus, by Lemma 3, dn D n

for n � r C 1. ˜

4. Generating P -positions in polynomial time

Any position of End-Wythoff is specified by a vector whose components are

the pile sizes. We consider K to be a constant. The input size of a position

.a; K; b/ is thus O.log a C log b/. We seek an algorithm polynomial in this

size.

Theorem 6 shows that we can express A and B beyond r as

an = mex.X [ fai ; bi W r C 1 � i < ng/; n � r C 1,

bn = an C n; n � r C 1,

where X D VrC1. This characterization demonstrates that the sequences gen-

erated from special End-Wythoff positions are a special case of those studied

in [4], [5], [6]. In [4] it is proved that a0
n � an is eventually constant except

for certain “subsequences of irregular shifts”, each of which obeys a Fibonacci

recurrence. That is, if i and j are consecutive indices within one of these sub-

sequences of irregular shifts, then the next index in the subsequence is i C j .

This is demonstrated in Figure 1.

Relating our sequences to those of [4] is useful because that paper’s proofs

give rise to a polynomial algorithm for computing the values of the A and B

sequences in the general case dealt with there. For the sake of self-containment,

we begin by introducing some of the notation used there and mention some of

the important theorems and lemmas.

DEFINITION 5. Let c 2 Z�1. (For Wythoff’s game, c D 1.)

a0

n D mexfa0

i; b0

i W 1 � i < ng; n � 1I
b0

n D a0

n C cn; n � 1I
m0 D minfm W am > max.X /gI
sn D a0

n � an; n � m0I
˛n D anC1 � an; n � m0I
˛0

n D a0

nC1 � a0

n; n � 1I
W D f˛ng1

nDm0
I

W 0 D f˛0

ng1

nD1:



342 AVIEZRI S. FRAENKEL AND ELNATAN REISNER

Figure 1. With r D 6, the distance between consecutive indices of
P -positions which differ from Wythoff’s game’s P -positions. (That is,
ni is the subsequence of indices where .an; bn/ ¤ .a0

n; b0
n/.) Note that

every third point can be connected to form a Fibonacci sequence.

F W f1; 2g� ! f1; 2g� is the nonerasing morphism

F W 2 ! 1c2;

1 ! 1c�12:

A generator for W is a word of the form u D ˛t � � � ˛n�1, where an D bt C1;

similarly, a generator for W 0 is a word u0 D ˛0
r � � � ˛0

m�1
, where a0

m D b0
r C 1.

We say that W; W 0 are generated synchronously if there exist generators u; u0,

such that u D ˛t � � � ˛n�1; u0 D ˛0
t � � � ˛0

n�1
(same indices t; n), and

8k � 0; Fk.u/ D ˛g � � � ˛h�1 ” Fk.u0/ D ˛0

g � � � ˛0

h�1;

where ah D bg C 1.

A well-formed string of parentheses is a string # D t1 � � � tn over some alphabet

which includes the letters ‘(’, ‘)’, such that for every prefix � of # , j�j. � j�j/
(never close more parentheses than were opened), and j#j. D j#j/ (don’t leave

opened parentheses).

The nesting level N.#/ of such a string is the maximal number of opened

parentheses. More formally, let p1; : : : ; pn satisfy pi D 1 if ti D . , pi D �1 if

ti D / , and pi D 0 otherwise. Then
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N.#/ D max1�k�n

� k
X

iD1

pi

�

:

With these definitions in mind, we cite the theorems, lemmas, and corollaries

necessary to explain our polynomial algorithm.

THEOREM 7. There exist p 2 Z�1;  2 Z, such that, either for all n � p; sn D  ;

or else, for all n � p; sn 2 f � 1; ;  C 1g. If the second case holds, then:

1. sn assumes each of the three values infinitely often.

2. If sn ¤  then sn�1 D snC1 D  .

3. There exists M 2 Z�1, such that the indices n � p with sn ¤  can be

partitioned into M disjoint sequences, fn.i/
j g1

jD1
; i D 1; : : : ; M . For each of

these sequences, the shift value alternates between  � 1 and  C 1:

s
n

.i/

j

D  C 1 ÷ s
n

.i/

j C1

D  � 1I

s
n

.i/

j

D  � 1 ÷ s
n

.i/

j C1

D  C 1:

THEOREM 8. Let fnj g1

jD1
be one of these subsequences of irregular shifts. Then

it satisfies the following recurrence:

8j � 3; nj D cnj�1 C nj�2:

COROLLARY 3. If for some t � m0; bt C1 D an and b0
t C1 D a0

n, then the words

u D ˛t � � � ˛n�1;

u0 D ˛0

t � � � ˛0

n�1;

are permutations of each other.

LEMMA 6 (SYNCHRONIZATION LEMMA). Let m1 be such that am1
D bm0

C1.

Then there exists an integer t 2 Œm0; m1�, such that bt C1 D an and b0
t C1 D a0

n.

COROLLARY 4. If for some t � m0, bt C 1 D an and b0
t C 1 D a0

n, then W; W 0

are generated synchronously by u; u0, respectively.

In comparing u and u0, it will be useful to write them in the following form:
�

u

u0

�

D
�

˛t � � � ˛n�1

˛0
t � � � ˛0

n�1

�

;

and we will apply F to these pairs:

F

��

u

u0

��

WD
�

F.u/

F.u0/

�

:

Since u; u0 are permutations of each other by Corollary 3, if we write them out

in this form, then the columns
�

1
2

�

and
�

2
1

�

occur the same number of times.
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Thus we can regard
�

u
u0

�

as a well-formed string of parentheses: put ‘�’ for
�

1
1

�

or
�

2
2

�

, and put ‘(’, ‘)’ for
�

1
2

�

,
�

2
1

�

alternately such that the string remains well-

formed. That is, if the first nonequal pair we encounter is
�

1
2

�

, then ‘(’ stands

for
�

1
2

�

and ‘)’ stands for
�

2
1

�

until all opened parentheses are closed. Then we

start again, by placing ‘(’ for the first occurrence different from
�

1
1

�

;
�

2
2

�

.

EXAMPLE 1.
�

122

221

�

� .�/;

�

1221

2112

�

� . /. /;

�

22211211

21112122

�

� �..�/. //:

LEMMA 7 (NESTING LEMMA). Let u.0/ 2 f1; 2g�, and let u0.0/ be a permu-

tation of u.0/. If c D 1 and u.0/ or u0.0/ contains 11, put u WD F.u.0//; u0 WD
F.u0.0//. Otherwise, put u WD u.0/; u0 WD u0.0/. Let # 2 f�, (, )g� be the paren-

theses string of
� u

u0

�

. Then successive applications of F decrease the nesting

level to 1. Specifically,

(I) If c > 1, then N.#/ > 1 ÷ N.F.#// < N.#/.

(II) If c D 1,

(a) N.#/ > 2 ÷ N.F.#// < N.#/;

(b) N.#/ D 2 ÷ N.F2.#// D 1.

LEMMA 8. Under the hypotheses of the previous lemma, if N.#/ D 1, then

F2.#/ has the form

� � � . / � � � . / � � � . / � � � ; (8)

where the dot strings consist of ‘�’ letters and might be empty. Further appli-

cations of F preserve this form, with the same number of parentheses pairs; the

only change is that the dot strings grow longer.

We now have the machinery necessary to sketch the polynomial algorithm for

generating the sequences A and B. There is a significant amount of initial

computation, but then we can use the Fibonacci recurrences from Theorem 8 to

obtain any later values for sn, and thus for an and bn as well. Here are the initial

computations:

� Compute the values of A and B until an D bt C 1 and a0
n D b0

t C 1. The

Synchronization Lemma assures us that we can find such values with m0 �
t � m1, where m1 is the index such that am1

D bm0
C 1. Corollary 4 tells us

that W; W 0 are generated synchronously by uD˛t : : : ˛n�1; u0 D˛0
t : : : ˛0

n�1
.

� Iteratively apply F to u and u0 until the parentheses string of w D Fk.u/ and

w0 D Fk.u0/ is of the form (8). We know this will eventually happen because

of Lemmas 7 and 8.

� Let p and q be the indices such that w D p̨ : : : ˛q and w0 D ˛0
p : : : ˛0

q .

Compute A up to index p, and let  D a0
p � ap . At this point, noting the
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differences between w and w0 gives us the initial indices for the subsequences

of irregular shifts. Specifically, if letters i; i C 1 of the parentheses string of
�

w
w0

�

are ‘( )’, then i C 1 is an index of irregular shift. Label these indices of

irregular shifts n
.1/
1

; : : : ; n
.M /
1

and, for 1 � i � M , let

oi D s
n

.i/

1

�  2 f�1; 1g:

(The oi indicate whether the i-th subsequence of irregular shifts begins offset

by C1 or by �1 from the regular shift,  .)

� Apply F once more to w and w0. The resulting sequences will again have

M pairs of indices at which w0 ¤ w; label the indices of irregular shifts

n
.1/
2

; : : : ; n
.M /
2

.

With this initial computation done, we can determine an and bn for n � n
.1/
1

as

follows: for each of the M subsequences of irregular shifts, compute successive

terms of the subsequence according to Theorem 8 until reaching or exceeding n.

That is, for 1 � i � M , compute n
.i/
1

; n
.i/
2

; : : : until n
.i/
j � n. Since the n

.i/
j are

Fibonacci-like sequences, they grow exponentially, so they will reach or exceed

the value n in time polynomial in log n. If we obtain n D n
.i/
j for some i; j ,

then

sn D
�

 C oi if j is odd;

 � oi if j is even;

since each subsequence alternates being offset by C1 and by �1, by Theorem 7.

If, on the other hand, every subsequence of irregular shifts passes n without

having a term equal n, then sn D  . Once we know sn, we have an D a0
n � sn

and bn D an C n. This implies bnC1 � bn 2 f2; 3g, hence the mex function

implies anC1 �an 2 f1; 2g. Therefore an � 2n, and the algorithm is polynomial.

In the case of sequences deriving from special positions of End-Wythoff, we

must compute the value of r before we can begin computing A and B. After

that, the initial computation can be slightly shorter than in the general case, as

we are about to see.

The only fact about m0 that is needed in [4] is that anC1 � an 2 f1; 2g for

all n � m0. For the A and B sequences arising from special positions of End-

Wythoff, this condition holds well before m0, as the following proposition il-

lustrates.

PROPOSITION 1. For all n � r C 1, 1 � anC1 � an � 2.

PROOF. n � r C 1 implies that bnC1 � bn D anC1 C n C 1 � an � n D anC1 �
an C1 � 2. That is, from index r C1 onward, B contains no consecutive values.

Therefore, since we know that r C1 � arC1 � an, (D) tells us that if an C1 … A,

then an C 1 2 B, so an C 2 … B, so an C 2 2 A, again by (D). This shows that

anC1 � an � 2. ˜
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Therefore, in the first step of the initial computation, we are guaranteed to reach

synchronization with r C 1 � t � m, where m is the index such that am D
brC1 C1. Now, am0

> br because br 2 VrC1 D X . Also, br � ar , so am0
> ar

and am0
� arC1, which implies by (A) that m0 � r C 1. Thus, this is an

improvement over the bounds in the general case. Furthermore, note that as r

grows larger, this shortcut becomes increasingly valuable.

5. Conclusion

We have exposed the structure of the P -positions of End-Wythoff, which

is but a first study of this game. Many tasks remain to be done. For ex-

ample, it would be useful to have an efficient method for computing lK and

rK . The only method apparent from this analysis is unpleasantly recursive: if

K D .n1; : : : ; nk/, then to find lK , compute the P -positions for .n1; : : : ; nk�1/

until reaching .lK ; n1; : : : ; nk�1; nk/, and to find rK , compute P -positions for

.n2; : : : ; nk/ until reaching .n1; n2; : : : ; nk ; rK /.

Additionally, there are two observations that one can quickly make if one

studies special End-Wythoff positions for different values of r . Proving these

conjectures would be a suitable continuation of this work:

� For r 2 Z�0,  D 0.

� If r 2 f0; 1g, then M , the number of subsequences of irregular shifts, equals

0. If r D b0
n C 1 and a0

n C 1 2 B0, then M D 1. Otherwise, M D 3.

Furthermore, evidence suggests that, with the appropriate bounds, Theorem 6

can be applied to any position of End-Wythoff rather than only special positions.

In general, it seems that bn �an D n for n > maxflK ; rK g, if we enumerate only

those P -positions with the leftmost pile smaller than or equal to the rightmost

pile. This is another result that would be worth proving.
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On the geometry of combinatorial games:
A renormalization approach

ERIC J. FRIEDMAN AND ADAM S. LANDSBERG

ABSTRACT. We describe the application of a physics-inspired renormaliza-

tion technique to combinatorial games. Although this approach is not rigorous,

it allows one to calculate detailed, probabilistic properties of the geometry of

the P-positions in a game. The resulting geometric insights provide expla-

nations for a number of numerical and theoretical observations about various

games that have appeared in the literature. This methodology also provides

a natural framework for several new avenues of research in combinatorial

games, including notions of “universality,” “sensitivity-to-initial-conditions,”

and “crystal-like growth,” and suggests surprising connections between com-

binatorial games, nonlinear dynamics, and physics. We demonstrate the utility

of this approach for a variety of games — three-row Chomp, 3-D Wythoff’s

game, Sprague–Grundy values for 2-D Wythoff’s game, and Nim and its gener-

alizations — and show how it explains existing results, addresses longstanding

questions, and generates new predictions and insights.

1. Introduction

In this paper we introduce a method for analyzing combinatorial games based

on renormalization. As a mathematical tool, renormalization has enjoyed great

success in virtually all branches of modern physics, from statistical mechanics

[Goldenfeld 1992] to particle physics [Rivasseau 2003] to chaos theory [Feigen-

baum 1980], where it is used to calculate properties of physical systems or

objects that exhibit so-called ‘scaling’ behavior (i.e., geometric similarity on

different spatial scales). In the present context we adapt this methodology to the

study of combinatorial games. Here, the main “object” we study is the set of

This material is based in part upon work supported by the National Science Foundation under Grant No.

CCF-0325453.
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Figure 1. The underlying geometries of combinatorial games. Shown are
the IN-sheet structures for Chomp, Nim, and 3-D Wythoff’s game.

P-positions1 of the game, viewed as a geometric entity in the abstract position

space of the game (see, e.g., Figure 1, which will be explained later). As we

will show, this geometric object exhibits a strong scaling property, and hence

can be analyzed via a suitably adapted renormalization technique. Since all

critical information about a game is encoded in this geometry, as a methodol-

ogy renormalization has broad explanatory powers and impressive (numerically

verifiable) predictive capabilities, as will be demonstrated through examples.

When we compare renormalization to other traditional analytical techniques

for analyzing combinatorial games, such as Sprague–Grundy theory, nimbers,

algebraic approaches, and so on [Berlekamp et al. 1979; Bouton 1902; Sprague

1936; Grundy 1939; Conway 1976], several significant distinctions, advantages,

and disadvantages emerge:

I: As a mathematical technique, the renormalization procedure described

here does not, at present, possess the strict level of rigor needed for formal

mathematical proof. In this respect, this renormalization procedure for games

‘suffers’ the same defect as the renormalization of modern physics: even though

renormalization is a highly successful, well-established technique in physics

1In games without ties or draws, every game position is either of type N (Next player to move wins) or P

(Previous player wins).
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that is routinely used to correctly predict physical phenomena with (sometimes

unwarranted!) accuracy, there are very few cases where it has been rigorously

proven to be correct. In this same spirit, we hope that the reader will find the

insights provided by the renormalization analysis of games to be sufficiently

compelling so as to warrant its serious consideration as a practical and powerful

method of analysis for combinatorial games, despite its non-rigorous status at

present.

II: Unlike Sprague–Grundy theory [Bouton 1902; Sprague 1936; Grundy

1939] and its extensions to numbers and nimbers [Berlekamp et al. 1979] which

have proven extremely successful for analyzing games that can be decomposed

(i.e., expressed as a disjunctive sum of simpler games) such as Dots-and-Boxes

[Berlekamp 2000] and Go endgames [Berlekamp 1994], the renormalization

approach to games works equally well for decomposable and non-decomposable

games. Indeed, many interesting games, such as the early play in chess and

Go, have resisted analysis using traditional methods due to their intrinsic non-

decomposability. Very little is in fact understood about the optimal strategies

in non-decomposable games, even such “elementary” ones as Chomp. We will

demonstrate how renormalization can readily handle a non-decomposable game

such as Chomp and raise the possibility that such an approach could be extended

to more complex games such as go, chess or checkers.

III: One of the interesting features of renormalization is that it results in

probabilistic information about the game, despite the fact that we consider only

purely deterministic games (i.e., games of no chance). In particular, rather

than providing a description of the exact locations (in position space) of the P-

positions of a game, renormalization only specifies the probability that a given

position is P. However, there are often relatively sharp boundaries associated

with these probabilities. So even though renormalization cannot give us the

precise (point-by-point) geometry of the game, it will allow us to calculate its

broad, overall geometric features, which in fact provides significant informa-

tion about the game. Indeed, we believe that this inherent “imprecision” in the

methodology, rather than being a shortcoming, is in fact what allows renormal-

ization to proceed and what gives it its power. We conjecture that for many

combinatorial games there do not exist any simple formulas or polynomial-time

algorithms for efficiently computing the exact location of the P-positions, but

that probabilistic information is possible. By sacrificing exact geometric infor-

mation about the game for probabilistic information, significant insights into

“hard” combinatorial games can be obtained. This is reminiscent of chaotic

dynamical systems and strange attractors in which there does not exist formu-

las for specific trajectories [Cvitanovic 1989], but global information about the

overall structure of attractor does exist. We discuss this further in later sections,
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but comment here that this view is supported by numerical evidence on the

“sensitive dependence on initial conditions” displayed by the game Chomp and

discussed in Section 3.2.

IV: The renormalization analysis brings to light several previously unex-

plored features of combinatorial games, and indeed in certain respects we con-

sider these new lines of inquiry to be one of the highlights of this new ap-

proach. In Section 3.1 we introduce the notion of universality, and describe

how renormalization provides a natural classification scheme for combinatorial

games, wherein games can be grouped into “universality classes” such that all

members of a class share key features in common. In Section 3.2 we show how it

is possible to discuss the “sensitivity” of a game to certain types of perturbations

(i.e., rule changes) within the renormalization framework. And in Section 3.3 we

describe how this method reveals unexpected similarities between the geometric

structures seen in games and various crystal-growth models and aggregation

processes in physics.

V: As a final comment, we emphasize that as a new approach to combinatorial

games, renormalization is still very much in its infancy; its limitations, short-

comings, and scope of applicability are not fully understood at present. Hence,

in what follows we will simply give a number of worked examples of this method

applied to specific games, so that the reader might develop a working feel for

how the procedure is actually implemented, and perhaps appreciate its potential

utility.

2. Renormalization framework

We begin with a schematic overview of the general renormalization proce-

dure.

The first step is to create a natural geometry for the game. Towards this end,

consider the abstract “space” of all positions of a game. Typically, this space can

be realized by mapping game positions to a subset of the integer lattice Z
d for

some dimension d > 1. The set of all P-positions in this d-dimensional position

space, which we call the “P-set”, is the key geometric ‘object’ for study.

To proceed, we next define various sets of .d � 1/-dimensional hyperplanes

(“sheets”) that foliate position space. Here, we will let x 2 Z specify the index

of a sheet, and y 2 Z
d�1 the coordinates on the sheet. As we will see, there exist

various types of recursion relations and nonlinear operators that relate the differ-

ent sheets to one another. These sheets will prove instrumental for determining

the overall geometric structure of the game’s P-set.

There are several basic types of foliating sheets to consider. The first are the

P-sheets. These simply mark the location of the game’s P-positions within each

hyperplane. More precisely, define Px , the P-sheet at level x, to be a .d � 1/-
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dimensional, semi-infinite matrix consisting of zeros and ones, with ones mark-

ing the locations of the P-positions (i.e., Px.y/ D 1 if game position Œx; y� 2 Z
d

is a P-position and 0 otherwise). We will be interested in the geometric patterns

(of the ones and zeros) on these sheets, since, taken together, they capture the

full geometry of the P-set in d-dimensional position space.

A second type of foliating sheets are the instant-N sheets (IN-sheets for short).

They are constructed as follows: Following [Zeilberger 2004], we declare an N-

position in the game, Œx; y�, to be an IN if there exists a legal move from that

position to some P-position Œx0; y0� on a lower sheet, x0 < x. The IN-sheets are

simply hyperplanes through position space that mark the locations of the IN’s

(i.e., defining matrix Wx to be the IN-sheet at level x, set Wx.y/ D 1 if position

Œx; y� is an IN and 0 otherwise). As we will see, their key significance lies in the

fact that the P-sheets (and, ultimately, the P-set itself) can be computed directly

from the IN-sheets via the relation Px D MWx , where M denotes a “supermex”

operator (a generalization of the standard Mex operator). Hence, we can think

of the IN-sheets as effectively encoding the critical information about the game.

Moreover, they will prove useful for visualizing a game’s geometric features.

Now, in many examples (e.g., the first three discussed in this paper), it is

possible to write down a recursion relation on the IN-sheets:

Wx D RWx�1:

As will become clear, this is the key step in the renormalization analysis, since

it allows the IN-sheet at level x to be generated directly from its immediate

predecessor.2

We note, however, that in general it is not always possible to construct a

recursive formulation on the IN-sheets themselves, as shown in our 4th example.

In such cases, we show how to construct auxiliary sheets V 1
x ; : : : ; V k

x for which

a (vector) recursion relation of the form Vx D RVx�1 does exist. (The Wx can

then be computed from the vector of sheets Vx .) For ease of presentation we

will assume for the remainder of this section that there exists a direct recursion

relation for the IN-sheets themselves (making auxiliary sheets unnecessary);

however, we will demonstrate the alternate case in an example.

Thus far, the overall scheme is as follows (see Figure 2): We first recursively

generate the IN-sheets using the recursion operator R, then use the supermex

operator M to construct the P-sheets. The final key to the renormalization

2We remark that for all the games considered here, a judicious choice of position-space coordinates allows

one to recursively compute the P-sheet at level x, Px , from all the preceding sheets, P0; P1; : : : Px�1.

However, this type of ‘infinite’-dimensional recursive formulation is not directly useful for renormalization

purposes, since one has to know all preceding sheets just to compute the current one; to apply renormalization

effectively we require a ‘finite’-dimensional recursion relation, like that for the IN-sheets. (Nonetheless, the

assumption that Px can be expressed in terms of all preceding sheets is useful for other parts of the analysis,

and we will assume that this is always the case.)
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Figure 2. Foliating sheets and associated operator relations.

scheme is the observation that the IN-sheets exhibit a form of ‘geometrical

invariance’. Loosely speaking, the geometric patterns on sheets at different x

levels all look similar to one another (i.e., they exhibit “scaling” — here, shape-

preserving growth with increasing x). This allows for a compact description of

Wx for large x. In the examples considered we will see that, in some sense,

the sheets Wx converge to a specific geometry. However, understanding and

defining this ‘convergence’ relies on two key observations:

The first is that since the geometric structures (i.e. patterns of 0’s and 1’s) on

these IN-sheets ‘grow’ with increasing x (but maintain their overall shape), we

must re-scale (shrink) the sheets with larger x values to see the convergence.

We will introduce a rescaling operator S for this purpose. Second, while the

precise structure (point by point) of the IN-sheets does not converge, the overall

probabilistic structure (i.e., densities of points) on the IN-sheets does converge.

Formally, we must define a probability measure on the sheets for this purpose.

Hence, the asymptotic behavior of the IN-sheets (i.e., their ‘invariant geom-

etry’) is described by the limiting probability measure W D limx!1.SR/xW0.

Here, we think of the operator R as ‘growing’ an IN-sheet at a given level to

the next higher level (since RWx D WxC1), and we think of the operator S as

inducing a simple geometrical rescaling of the grown sheet back to the original

size. Repeated application of these growing and rescaling operators, starting at

the initial sheet W0, yields the desired limiting probability measure W. How-

ever, since this limit is independent of the initial sheet W0 for most interesting

cases, we can alternatively express W as a fixed point of the equation

W D SRW:

This “renormalization” equation (with SR the “renormalization operator”) is

our key equation. It states that the invariant measure on a sheet is unchanged if

you grow the sheet and then rescale it, thereby expressing the invariance of the
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(a) (b) 
Figure 3. The game of Chomp. Left: the starting configuration of three-
-row (M D 3) Chomp. Right: a sample game configuration after play has
begun (describable by coordinates Œx; y; z�).

geometry on the different IN-sheets. The solution to this equation will provide

a complete probabilistic description of the game (including the geometry of its

P-positions), and will allow us to understand much about the game. As will be

illustrated, in practice the above renormalization equation is most easily solved

by deriving a series of related algebraic self-consistency conditions.

We now present several examples. All the games we have chosen share

certain features in common. First, they are all impartial games, and do not

allow draws or ties. They are also all poset games for which it is possible

to define a complete ordering on position space such that the position values

strictly decrease during play. Whether these conditions are inherent limitations

on the scope of applicability of the renormalization methodology remains to be

seen, although we strongly suspect that they are not. For convenience, we have

chosen all of our examples to have three-dimensional position spaces, so as to

make the visualization of the resulting patterns (and the analytic calculations)

more transparent.

2.1. Chomp. We focus first on the game of Chomp, which is, in some sense,

among the simplest of the “unsolved” games. Its history is marked by some

significant theoretical advances [Gale 1974; Schuh 1952; Zeilberger 2001; Zeil-

berger 2004; Sun 2002; Byrnes 2003], but it has yet to succumb to a complete

analysis in the 30 years since its introduction by Gale [1974] and Schuh [1952].

(Chomp is an example of a non-decomposable game, where traditional methods

so far have not proven to be especially effective.)

The rules of Chomp are easily explained. Play begins with an M � N array

of tokens, with the (dark) token in the southwest corner considered “poison”

(Figure 3, left). On each turn a player selects a token and removes (“chomps”)

it along with all tokens to the north and east of it. (Figure 3, right, shows a

sample token configuration after two chomps.) Players alternate turns until one

player takes the poison token, thereby losing the game.

For simplicity, we consider here the case of three-row .M D 3/ Chomp, a

subject of recent study [Zeilberger 2001; Zeilberger 2004; Sun 2002; Byrnes
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2003]. To start, note that the token configuration at any stage of play can be

described (using Zeilberger’s coordinates) by the position p D Œx; y; z�, where

x; y; z specify the number of columns of height three, two, and one, respectively

(Figure 3, right). (Note here that the first coordinate x will eventually serve as

our sheet index, and Œy; z� the coordinates within a sheet.)

In these coordinates, the game’s starting position is Œx; 0; 0�, while the opening

move must be to a position of the form Œx�r; r; 0�, Œx�s; 0; s� or Œx�t; 0; 0� (these

are the “children” of the starting position). Every position may be classified

as either an N-position — if a player starting from that position can guarantee

a win under perfect play — or as a P-position otherwise (draws and ties not

being possible). The computation of N- and P-positions rests on the standard

observation that all children of a P-position must be N-positions, and at least

one child of an N-position must be a P-position. For example, position Œ0; 0; 1�

(where only the poison token remains) is a P-position by definition, so Œ0; 1; 0�

must be an N-position since its child is Œ0; 0; 1�. (Note that a winning move in

the game is always from an N-position to a P-position.)

An intriguing feature of Chomp, as shown by Gale [1974], is that the player

who moves first can always win under optimal play (i.e., Œx; 0; 0� is an N-

position). The proof uses an elegant strategy-stealing argument: Consider the

“nibble” move to Œx � 1; 1; 0�. If this is a winning move, then we are done. If it

is not a winning move, then the second player must have a winning response, in

which case the first player could have chosen this as the opening move instead

of the nibble, leading to a win. Observe that this argument provides no infor-

mation as to what the desired opening move for the first player should be (or

even whether it is unique), only that it exists — a longstanding question that the

renormalization analysis will address.

In previous numerical studies of the game by Brouwer [2004] and others,

several linear scaling relations were noticed. For example, for every x (under

� 80; 000) there is a P-position of the form Œx; 0; z� where z D 0:7x˙1:75; other

sequences with similar linear scaling behavior were also observed. Zeilberger

[2001], Sun [2002] and Byrnes [2003] also find more complex patterns in the

P-positions, including periodic orbits and intimations of possible chaotic-like

behavior. The existence of these numerically observed scaling behaviors pro-

vides the first hint that some type of renormalization approach may be possible,

as we now describe.

To begin, we introduce the foliating sheets, indexed by their x values, as

in [Zeilberger 2004]. (As noted previously, sheet index x here corresponds to

the first coordinate of Chomp’s three-dimensional position space Œx; y; z�.) For

any x, recall that the P -sheet Px is a two-dimensional, semi-infinite matrix

that marks the location of all P -positions at the specified x value. The .y; z/th
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element of this matrix is denoted Px.y; z/. (We note for future reference the

easily proven fact that for every x there exists at most one z, call it z�.x/,

such that Œx; 0; z�.x/� is a P-position, i.e. Px.0; z�.x// D 1.) The IN-sheets

are defined as in the previous section: Wx.y; z/ D 1 if Œx; y; z� is an IN, and 0

otherwise3.

As noted earlier, the IN-sheet Wx contains all the necessary information for

computing the corresponding P -sheet Px , and, moreover, one can calculate

WxC1 directly from Wx . To see this, we define the following operators:

Identity I : for any sheet A, let .IA/.y; z/ D A.y; z/.

Left shift L: for any sheet A, let .LA/.y; z/ D A.y C 1; z/.

Diagonal D: for any x the action of D on the P-sheet Px is given by

.DPx/.z�.x/ � t; t/ D 1 for 0 � t � z�.x/;

.DPx/.y; z/ D Px.y; z/ otherwise.

Supermex M: for any x the action of M on Wx is defined via the following

algorithm:

(1) Set MWx D 0, Tx D Wx , y D 0.

(2) Let zs be the smallest z such that Tx.y; z/ D 0 and set .MWx/.y; zs/ D 1,

Tx.y C t; zs � t/ D 1 for all 0 � t � zs .

(3) If zs D 0 stop; else let y ! y C 1 and go to step 2.

A direct computation shows (see [Friedman and Landsberg 2007] for details):

Px D MWx; WxC1 D L.I C DM/Wx :

Thus, defining R � L.I C DM/ yields WxC1 D RWx : (These relations all

follow simply from a careful application of the game rules.) This provides the

setting for a renormalization analysis. (For future reference, we also mention

one additional relation which is sometimes of use: Wx D
Px

tD1
Lt DPx�t ,

where all sums are binary and interpreted as logical OR’s. This relation follows

from the observation that the IN positions at level x are generated from the

parents4 of P-positions at all lower levels.)

Numerical solution of the recursion equation WxC1 D RWx reveals an inter-

esting structure for the IN-sheets (Wx), characterized by several distinct regions

(Figure 4a). Most crucially, the IN-sheets at different x levels ‘scale’ (see, e.g.,

Figure 4b): their overall geometric structures are identical (in a probabilistic

sense) up to a linear scale factor. In particular, the boundary-line slopes and

densities of points in the interior regions of the sheets Wx are the same for all

3This definition differs in a small but important way from the “instant-winner” sheets introduced in [Zeil-

berger 2004].

4A parent of position p is defined as any position from which it is possible to reach p in a single move.
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Figure 4. The geometry of Chomp. (a) the IN-sheet geometry Wx for
three-row Chomp, shown for x D 700. Here, IN locations in the y-z plane
(i.e., the 1’s in the matrix) are shown in black. (b) The IN-sheet Wx for
x D 350. Comparison with W700 illustrates the geometric invariance of
the sheets. (c) The geometry of Px , shown for x D 350. The P-sheets
also exhibit geometrical invariance, i.e., the Px for all x exhibit identical
structure (in the probabilistic sense) up to an overall scale factor.

x (though the actual point-by-point locations of the instant-N positions within

the sheets will differ).

Thus, the invariant geometry W of the sheets satisfies the renormalization

fixed-point equation W D SRW, with operators S and R defined above. We

now show how to analyze this equation, and ultimately determine the structure of

Chomp’s P-set. We point out that a direct, formal assault on the renormalization

equation would require that the renormalization operator be carefully defined on
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the space of probability distributions over IN-sheets, which proves somewhat

delicate. In practice, the desired result can be more easily obtained through a

somewhat less formal procedure, as we now describe.

We begin by considering the structure of a typical P-sheet Px (Figure 4c).

Numerically, it is found to consist of three (diffuse) lines (heretofore called P-

lines) that may be characterized by six fundamental geometric parameters: a

lower P-line of slope mL and density of points �L, an upper line of slope mU

and density �U , and a flat line extending to infinity. The upper and lower P-lines

originate from a point whose height (i.e., z-value) is ˛x. The flat line (with

density one) is only present with probability  in randomly selected P -sheets.

Our goal is to determine analytical values for these six geometric parameters that

characterize the P-set. (Recall that the IN-sheet geometry can be directly linked

with this P -sheet geometry via Wx D
P

x

tD1
Lt DPx�t .) Hence, a determination

of the parameters mL; �L; mU ; �U ; ˛;  will provide a complete probabilistic

description of the entire geometric structure of the game5

To get at this geometry, we will derive a set of algebraic self-consistency

equations relating the six geometric parameters. Intuitively, these equations

arise from the demand that as an IN-sheet at level x (Wx) ‘grows’ to WxC1

under the action of the recursion operator R, its overall geometry is preserved.

The key to actually implementing this analysis is to observe that the P-positions

in sheet Px (i.e., the 1’s of the matrix; see Figure 4c) are constrained to lie along

certain boundaries in Wx (Figure 4b); the various interior regions of Wx remain

“forbidden” to P-positions. Geometric invariance of the sheets demands that

these forbidden regions be preserved as an IN-sheet grows under the recursion

operator. Each such forbidden region yields a constraint on the allowable geom-

etry of the Wx’s, and may be formulated as an algebraic equation relating the

hitherto unknown parameters mL; �L; mU ; �U ; ˛;  that define the P-sheets. In

all, we find six independent geometric constraints:

�U

1 C mU

D 1; (2-1)

1

1 C ˛
� �L

1 C mL

D 1; (2-2)

5Here, we will not be addressing the interesting issue of the small ‘scatter’ of points around the P-lines.

Numerical simulations show that the range of scatter is in fact extremely narrow (e.g., the distance from a

P-position to the idealized P-line is always less than 5 for x < 1; 000, and does not appear to increase with

x). Despite its smallness, the scatter is not at all irrelevant, and indeed, we believe it is largely the scatter

that makes a purely deterministic analysis of Chomp hard. Our probabilistic description provides a means of

bypassing much of this difficulty while still extracting useful information about the game. We will revisit this

notion briefly in Section 4.



360 ERIC J. FRIEDMAN AND ADAM S. LANDSBERG

. � 1/
mL

˛ � mL

C 1

1 C ˛
D 1; (2-3)

�U C �L D 1; (2-4)

˛�L

˛ � mL

�

mU � mL

.mU � mL/˛ C mL

�

C 1

1 C ˛
D 1; (2-5)

�L

˛ � mL

� ˛

˛ C 1

�

1 � �U

˛ � mU

�

D 0: (2-6)

These six constraints arise as follows (see Figure 4a): (1) arises from for-

bidden region III; (2) from region II; (3) from the bottom row of region I; (4)

from operator M in regions I,II,III; (5) from the lower part of region I; and (6)

from the upper part of region I. To illustrate we derive constraint (3) here. (For

detailed derivations of the others see [Friedman and Landsberg 2007].)

Recall that Wx D
Px

tD1
LtDPx�t , so that the IN-sheet at level x is ‘built up’

from a series of earlier P-lines (coming from lower-level sheets) and diagonal

lines (associated with operator D). Constraint (3) arises because the lower P-

lines and diagonal lines each contribute points (i.e., instant-N’s) to the bottom-

most row of region I and completely fill it up, thereby rendering it forbidden.

Now, the density of the diagonal lines along the bottom row of Wx can be

computed from elementary geometry to be .1C ˛/�1. The density of the lower

P-lines is �mL=.˛ � mL/. However, each lower P-line will only contribute a

point to the bottom row (at z D 0) with probability .1� /, since this equals the

probability that the flat P-line doesn’t exist (by step 3 in the supermex algorithm).

Hence, the actual density of points contributed by the lower P-lines to the bottom

row becomes �.1 �  /mL=.˛ � mL/. Summing this density with that of the

diagonals and equating to unity yields constraint (3) (i.e., this is the condition

that the bottom row of the IN-sheets always remains forbidden to P-positions

even as the sheets grow.)

Taken together, the above six constraints may be solved exactly, yielding

precise values for the geometric parameters of the game. These are:

˛ D 1p
2
; �L D 1 � 1p

2
; �U D 1p

2
;

mL D �1 � 1p
2
; mU D �1 C 1p

2
;  D

p
2 � 1:

Thus, we have found the renormalization fixed point, and hence have a com-

plete (probabilistic) characterization of the game of Chomp — i.e., the global

geometric structure of its P-set.

With this geometric insight, it becomes straightforward to explain virtually all

numerical properties of the game previously reported in the literature, including
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various numerical conjectures by Brouwer [2004], along with a variety of new

results. As an illustration of its utility, we show how this geometric result lets

us decide (in a probabilistic sense) the optimal first move of the game, which

has been a longstanding open question.

To start, recall that the possible opening moves from the starting position

Œx; 0; 0� are to positions of the form Œx�r; r; 0�, Œx�s; 0; s� or Œx�t; 0; 0� (bearing

in mind that the desired (winning) opening move will be to a P-position). The

last of these, Œx � t; 0; 0�, can never be a P-position, by Gale’s strategy-stealing

argument. Next consider Œx � r; r; 0�, which we will refer to as an “r”-position.

From the geometric structure of the P -sheets, a simple calculation shows that the

only accessible P-position of this form is for r.x/ � ˛x=.˛ � mL/. Likewise,

the only possible P-position of the form Œx � s; 0; s� (i.e., an “s”-position) is

for s.x/ � ˛x=.˛ C 1/. (Note that we use � here since these are asymptotic

values; for any finite x there are small deviations owing to the slight scatter

of P-positions around the P-lines in Figure 4c.) Thus, the P-set geometry has

allowed us to identify the asymptotic locations of the only two possible winning

opening moves in the game! Moreover, since r.x/ < s.x/, the “s”-position is a

child of the “r”-position, so only one of these two positions can be an actual P-

position (for a given x). Hence the winning opening move is unique — a result

which was previously only known numerically [Brouwer 2004] for x values up

to a certain level. Taking this further, we can also compute the probabilities

that this unique winning opening move will be to the “r”-position or to the “s”-

position, as follows: For each starting position Œx; 0; 0� from x D 1 : : : xmax there

is an associated “r”-position Œx � r.x/; r.x/; 0�, which may or may not be a P-

position. The total number of actual “r”-type P-positions with an x-value less

than or equal to xmax �r.xmax/ is just  .xmax �r.xmax//. So the fraction of “r”-

positions which are actually P-positions is  .xmax � r.xmax//=xmax D
p

2 � 1:

Thus, the winning opening move is to the “r”-position with probability
p

2 �1,

and to the “s”-position with probability 2 �
p

2.

The ease with which the above results were obtained (once the P-set geometry

was determined) illustrates the utility of this geometrically based, renormaliza-

tion approach as a potentially powerful tool for analyzing games.

2.2. Nim. We next consider three-heap Nim [Bouton 1902]. Note that this

simple game is decomposable and “solvable” (in the sense that a simple criterion

exists for deciding if a given position is N or P). In this game we let Œx; y; z�

represent the heights of the three heaps. An allowed move in Nim consists of

reducing a single position coordinate by an arbitrary amount. As in Chomp, we

will let the various hyperplanes be indexed by x, and the coordinates within each

plane by Œy; z�. (Note that while these coordinates break the natural permutation

symmetry of the heaps, the resulting analysis is not affected.)
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Figure 5. IN-sheet geometry for ordinary Nim: W128 (left) and W256

(right). (Note here that the instant-N positions have been color-coded
based on the order in which they were recursively generated; the black
background corresponds to non-instant-N’s.

A straightforward calculation based on the game rules shows that the IN-

sheets are related to the P-sheets by

Wx D
x�1
X

x0D0

Px0 ; .�/

where addition denotes the logical OR operation. This relation simply reflects

the fact that the IN’s at level x are, by definition, determined by the parents of

the P-positions at the lower levels.

We define the action of the supermex operator M on Wx via the following

algorithm:

(1) Set MWx D 0, Tx D Wx , y D 0.

(2) Let zs be the smallest z such that Tx.y; z/ D 0 and set .MWx/.y; zs/ D 1,

Tx.y C t; zs/ D 1 for all 0 � t .

(3) Let y ! y C 1 and go to step 2.

This yields the relation,

Px D MWx; .��/

as the reader may verify. Combining .�/ and .��/ yields the desired recursion

formula,

WxC1 D RWx;

with R D I C M and I the identity operator.

The IN-sheets are readily constructed using this recursion operator. Figure 5

displays the sheet geometry Wx for x D 128 and x D 256. Again, we observe
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that the geometry of the game’s IN-sheets scale (linearly with x), just as in

the preceding case of Chomp. As before, one could construct algebraic self-

consistency conditions that exploit this scaling, and thereby develop a geomet-

ric characterization of the sheets. This is unnecessary here since the game of

Nim is easily solvable, and all sheets can be directly constructed using nimbers

instead. So for the moment we will content ourselves with having set up the

basic renormalization framework for the game. However, we will revisit this

issue when we discuss a modified (nontrivial) version of Nim later in this paper.

Before moving to our next example, we remark briefly on one unique feature

of Nim (not seen in the earlier Chomp example). In Chomp, all Wx’s (regard-

less of x) look geometrically similar up to linear rescaling. In Nim, the sheets

exhibit linear scaling, but also display a periodicity (in x) in powers of 2. For

instance, the sequence W128; W256; W512; : : : exhibits geometric invariance (up

to rescaling), as does the sequence W100; W200; W400; : : :. However, the basic

patterns for these two sequences will differ somewhat (e.g., Figure 1b illustrates

the geometry for this second sequence.) The existence of this periodicity means

that the original renormalization equation will not have a true fixed point; how-

ever, in practice this can be handled by using a slightly modified renormalization

equation which exploits this periodicity (loosely speaking, W2x D .SR/xWx),

but we do not pursue this further. (Nim is the only one of our examples to

display this feature.)

2.3. 2-D Wythoff’s game and Sprague–Grundy values. In our next example

we show how renormalization can be used to compute the Sprague–Grundy

values of a game. We illustrate here with Wythoff’s game [Wythoff 1907],

whose Grundy values have been the subject of a recent study by Nivasch [2004].

Wythoff’s game is equivalent to two-heap Nim, where in addition to removing

an arbitrary number from either heap a player can also remove the same number

from both heaps. Thus if coordinates Œy; z� represent the heights of the two heaps

then a legal move reduces either of the coordinates by an arbitrary amount, or

both by the same amount.

It is well known that the P-positions of Wythoff’s game are all of the form

.b�kc; b�2kc/ and .b�2kc; b�kc/ for all positive integers k > 0, where � D

.
p

5 C 1/=2 is the golden ratio [Wythoff 1907]. Thus, they lie near the lines

through the origin with slopes � and ��1. However, the characterization of

the Sprague–Grundy values for Wythoff’s game is significantly more difficult.

Nivasch [2004] has shown that these Grundy values also lie ‘close’ to these

lines; specifically, that a position with Grundy value g is bounded within a

distance O.g/ of these lines. We show that this result follows directly from a

straightforward renormalization analysis — although our proof is not rigorous,

whereas Nivasch’s is.
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The general procedure for computing the Sprague–Grundy values of a game

via renormalization is straightforward: Add a single Nim heap to be played in

conjunction (i.e., disjunctive sum) with the game of interest, and then do ordi-

nary renormalization on the combined game. In the present case we represent

the position space of the combined game by coordinates Œx; y; z�, where a player

can either move in Wythoff’s game, Œy; z�, or play on the Nim pile by reducing x

by an arbitrary amount. Then, a standard argument shows that Wythoff position

Œy; z� has Grundy value x if Œx; y; z� is a P-position of the combined game.

Thus the sheets Px correspond to the set of all positions in Wythoff’s game

with Grundy value x.

As in Nim, we use the IN-sheets and note that6

Wx D
x�1
X

x0D0

Px0 :

One can compute M from the properties of Wythoff’s game:

(1) Set MWx D 0, Tx D Wx , y D 0.

(2) Let zs be the smallest z such that Tx.y; z/ D 0 and set .MWx/.y; zs/ D 1,

Tx.y C t; zs/ D 1; Tx.y C t; zs C t/ D 1 for all 0 � t .

(3) Let y ! y C 1 and go to step 2.

Combining this supermex algorithm with the preceding expression yields the

recursion operator

R D I C M:

We now analyze the invariant geometry of the game, and show how it explains

Nivasch’s result.

A representative IN-sheet and P-sheet are shown in Figure 6. We will focus

on the outer regions of these graphs (i.e., the large Œy; z� regime), avoiding the

more complicated structures near the origin. Here, the IN-sheet consists of two

(thick) lines, an upper and lower one, whose slopes we denote by mU ; mL. The

P-sheet also exhibits two related lines (P-lines) of the same slopes as in the

IN-sheet (we neglect the fact that closer inspection shows that each P-line is a

double line, as this will not affect the calculation). We let �U ; �L denote the

density of points (i.e., P-positions) along these lines (per unit horizontal).

The renormalization analysis of the invariant geometry is simplified by the

observation that the regions of Figure 6 labeled I, II, III, IV are entirely devoid

of P-positions. (More precisely, if the P-sheet and IN-sheet plots are superim-

posed, the P-positions do not appear in the four labeled regions.) These four

regions are thus “forbidden.” The fact that they contain no P-positions provides

6This holds true for a sum of any game with a single Nim pile, which arises whenever one analyzes the

Sprague–Grundy values.
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Figure 6. IN-sheet and P-sheet associated with the Sprague–Grundy val-
ues of Wythoff’s game: W100 (left) and P100 (right). Note that a 45o-line
has been artificially added to the W100 plot so as to demarcate regions II
and III.

constraints that allow us to compute analytical values for the four parameters

mU ; mL; �U ; �L that characterize the invariant geometry of the P-set.

The absence of P-positions in the forbidden regions is due to the fact that

these empty regions get completely filled up (during the supermex operation

Px D MWx) by parents of the P-positions. (Note that these parents cannot

themselves be P-positions.) Within any given sheet, the parents of a position

Œy; z� lie along three lines (one vertical, one horizontal, and one diagonal): V D
fŒy Ck; z� j k > 0g, H D fŒy; z Ck� j k > 0g, and D D fŒy Ck; z Ck� j k > 0g.

Forbidden region (I) gets completely covered by the vertical lines V arising from

(parents of) P-positions along the lower and upper P-lines. The density of these

(per unit y) is given by �LC�U which must equal 1, since they can’t overlap and

must completely fill the region. Likewise, Forbidden region (IV) is completely

filled by horizontal lines arising from the upper and lower P-lines. Since their

densities (per unit z) are �i=mi ; i DL; U , it follows that �L=mLC�U =mU D1.

Forbidden region (II) is filled by the diagonal lines emerging from the upper P-

line. Elementary geometry shows the density of these lines to be �U =.mU �1/,

yielding �U =.mU �1/ D 1. (We note that horizontal lines from the upper P-line

and vertical lines from the lower P-line also contribute to region (II), but since

neither of these — either alone or in combination — is sufficient to completely

fill the region, and since they are not well correlated with the diagonal line, it

must be the case that the diagonal lines alone are sufficient to fill the region.)

A similar argument for region (III) shows that the diagonals emerging from the

lower P-line completely fill the region, yielding �L=.1 � mL/ D 1.

Solving these four constraints we find that mU D � D m�1

L
and �U D ��1,

�L D 1 � ��1, which agree with numerical observations. Thus, we see that
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the Sprague–Grundy values lie near the rays defined by the game’s P-positions,

in agreement with Nivasch’s result. It is also straightforward to show that the

deviation from these lines must be O.x/ (where x corresponds to the Grundy

value). This follows from the game’s recursion relation, WxC1 D .I CM/Wx D
Wx C Px , which shows that an IN-sheet at level x is built up from a series of

lower-level P-sheets (whose total number is x). Since the P-positions in the P-

sheets can never overlap with one another as they are being laid down to form

the IN-sheet, it follows that the width of the two N-sheet lines must be O.x/,

also in agreement with [Nivasch 2004].

The geometric picture emerging from our analysis actually suggests a way to

compute a crude estimate for the tightness of this bound. This bound is related

to the width of the two (thick) lines in the sheet Wx , which we can calculate as

follows: Consider a section of horizontal extent S of one of these lines. The area

occupied by this section of line is just that of a rectangle with length S
p

1 C m2

and thickness w (where m denotes the slope of the line, either mU or mL). The

total number of points making up this area is just �Sx (since the thick line is

built from x P-lines, each one contributing �S points, with �D�U or �L). Since

this area is completely filled, it must have density 1. Solving, we find that the

line thickness is w D x=.�
p

1 C �2/. Thus, our probabilistic estimate is that,

asymptotically speaking, a game position with Grundy value g will roughly lie

within a distance of g=.�
p

1 C �2/ of the known P-lines. (Here, asymptotic

refers to game positions with suitably large values of Œy; z�, so that we are far

from the complex structure located near the origin of Figure 6.)

In summary, this analysis illustrates how the renormalization method can be

used to rather easily (albeit nonrigorously) obtain results that are difficult to ob-

tain by more traditional methods, including Sprague–Grundy results. Moreover,

this type of geometric analysis reveals insights that are less apparent by other

means. In the present case, for instance, we find a complex structure near the

origin of the IN- and P-sheets, which (to our knowledge) has not been recognized

before. Separate treatments of the local and asymptotic structures in this game

would presumably allow one to derive even tighter analytical bounds than were

obtained in [Nivasch 2004].

2.4. Three-dimensional Wythoff’s game. As our last example, we consider a

3-D generalization of the ordinary (2-D) Wythoff’s game, for which, as far as

we know, relatively little is known. Here, we will not carry out the complete

renormalization analysis, but will derive the necessary analytical operators and

recursion relations (which in this case will require the use of auxiliary sheets in

addition to the IN-sheets), and also numerically illustrate the geometric scaling

property of these sheets.
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The rules of the game are as follows: Letting Œx; y; z� denote the three heap

sizes, one can remove one or more tokens from a single heap, or the same

number from any pair of heaps. Other versions of the game are also possible:

For instance, one could replace the rule about removing tokens from any pair of

heaps with one allowing removal of an equal number of tokens from all three

heaps, or keep all the original rules and supplement them with this additional

one. In any case, the derivation of the recursion operators for these alternate

versions will be entirely analogous to the game version we will illustrate here.

We note that in this example there does not exist a recursion relation among

the IN-sheets. This is related to the set of legal moves in the game. In this

case, there are three distinct types of legal moves from a higher sheet at level

x to a lower sheet at level x0, with x0 < x. These are the ‘straight’ move

Œx; y; z� ! Œx0; y; z� and the two ‘diagonal’ moves Œx; y; z� ! Œx0; y�.x�x0/; z�

and Œx; y; z� ! Œx0; y; z � .x � x0/�. We will require one auxiliary sheet for

each of these moves, V 1; V 2; V 3. The first sheet, associated with the straight

move, is constructed as a sum (logical OR’s): V 1
x D

Px�1

x0D0
Px0 . The second

sheet is constructed via right-shifted sums (i.e., shifts along the y-axis in Œy; z�

space) V 2
x D

Px�1

x0D0 Yx�x0

Px0 and the third via ‘upward’-shifts along the z-axis,

V 3
x D

P

x�1

x0D0
Zx�x0

Px0 .7 We also note that the IN-sheets can be expressed as

sums (logical ORs) of the auxiliary sheets, Wx D V 1
x C V 2

x C V 3
x , and that the

supermex operator for this game is the same as that for our previous example,

the Sprague–Grundy values for 2-dimensional Wythoff’s game. Thus Px D
MWx D M.V 1

x C V 2
x C V 3

x ).

The key observation is that the auxiliary sheets have been constructed so as

to obey a recursion relation:

V 1

xC1
D V 1

x C M.V 1
x C V 2

x C V 3
x /;

V 2

xC1
D YV 2

x C YM.V 1
x C V 2

x C V 3
x /;

V 3

xC1
D ZV 2

x C ZM.V 1
x C V 2

x C V 3
x /;

and hence can be recursively generated from one another. The IN-sheets and

the P-sheets can in turn be derived from these.

Plots of the IN-sheets and P-sheets for this game are given in Figure 7. They

display complex probabilistic geometrical structures (which, as in our other ex-

amples, exhibit scaling behavior). In theory one should be able to compute

the fixed points of the renormalization operator for this game, although this is

clearly a complicated calculation that we leave for the future.

Lastly we remark that the IN-sheets for the other versions of 3-D Wythoff

mentioned above can be constructed straightforwardly, and display similar (but

7Note that when right-shifting (resp. up-shifting), we fill in new columns (resp. rows) with 0’s.
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Figure 7. IN-sheet and P-sheet for three-dimensional Wythoff’s game:
W100 (left) and P100 (right).

not identical) complex geometrical structure and obey analogous scaling rela-

tions.

3. Implications and new directions

Apart from being a practical tool for garnering new insight into specific

games, the renormalization methodology opens up several interesting new lines

of inquiry into combinatorial games in general, as we now discuss.

3.1. Perturbations, structural stability, and universality in combinatorial

games. Having established a renormalization framework, it is natural to inquire

about the stability of the associated renormalization fixed point. In other words,

is the underlying geometry of a game stable to perturbations? In the present

context, we perturb a game by adding one (or more) new points to one of its

IN-sheets. We then repeatedly operate on the modified sheet with the recursion

operator R, and examine the perturbation’s effect on the asymptotic geometry.

We can think of such a perturbation to an IN-sheet as creating a variant of the

original game with slightly modified rules: In these variant games, one or more

of the P-positions of the original game have been arbitrarily “declared” (by the

perturbation) to now be N-positions. How does the geometry of these variant

games compare to the original?

In the game of three-row Chomp, a numerical analysis shows that for a wide

range of perturbations the system quickly returns to the same renormalization

fixed point (in the probabilistic sense) as in the original game, i.e., the overall

geometric structure seen in Figure 4 re-emerges. Thus, adopting terminology

from physics, we would say that these variant games lie in the same “univer-

sality class” as ordinary Chomp. In this manner, renormalization provides a

natural classification scheme for combinatorial games: games can be grouped



RENORMALIZATION AND THE GEOMETRY OF COMBINATORIAL GAMES 369

y

Z

200 400 600

200

400

600

Figure 8. The geometry of generic Nim, illustrated for W256.

into universality classes based on the nature of their associated renormalization

fixed point. (We note that, like Chomp, the three-dimensional Wythoff’s game

discussed in the preceding section also appears to be structurally stable.)

Interestingly, not all games are stable to perturbations (i.e., the perturbation

may create a game in a different universality class). For the game of ordinary

Nim [Bouton 1902] considered earlier, we find that its IN-sheet geometry is

structurally unstable to perturbations (i.e., the renormalization fixed point is

unstable), resulting in a radically different geometry. Figure 8 shows the ge-

ometry8 of a typical variant of Nim. We emphasize that this new geometry is

stable and reproducible — it is the typical geometry that one observes if one

makes a random perturbation to ordinary Nim. Hence we think of these variants

of Nim as forming their own universality class, with Nim an outlier. In this

manner we can see that Nim has a highly delicate (and non-generic) underlying

geometric structure.

Why do some games like Chomp and 3-D Wythoff’s game possess stable

underlying geometries, while a game like Nim does not? We observe that Nim,

unlike Chomp, is a solvable9, decomposable game, and we believe that its in-

herent instability in the renormalization setting says something deep about the

computational complexity of the game. Thus, we are led to this conjecture:

8We note that the Wx sheets display a weak periodicity in x in powers of 2, as was the case for ordinary

Nim.

9i.e., a simple algorithm exists for determining if a given position in Nim is N or P
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Conjecture: Solvable combinatorial games are structurally unstable to per-

turbations (and hence have unstable sheet geometries), while generic, complex

games will be structurally stable.

— a suggestion which, if true, would relate geometric structure, dynamical sta-

bility, and computational complexity! We note an analogous feature from dy-

namical systems theory — that of integrability in Hamiltonian systems. For in-

tegrable systems, the solution to the problem can be reduced to quadratures and

is characterized by simple behaviors: fixed points, periodic and quasiperiodic

orbits. However, integrable systems are highly susceptible to perturbations, and

adding a random perturbation will typically render the system non-integrable,

destroying (some of) its simple structures and leading to much more complex

dynamics, as described by the Poincaré–Birkhoff theorem[Arnold and Avez

1968]. Indeed, most many-degree-of-freedom Hamiltonian systems are non-

integrable; integrable ones are exceptional. In this same way, our intuition here

is that games which are solvable are rather non-generic — i.e., solvability is a

delicate, rare feature that will break under most perturbations.

3.2. Sensitivity to initial conditions. One of the hallmarks of the modern

understanding of dynamical systems and chaos theory is the concept of “sensi-

tivity to initial conditions.” Colloquially, this is the idea that a butterfly flapping

its wings in New York can alter the weather in Chicago a few days later. More

formally, it implies that one cannot predict the long term behavior of a dynamical

system due to the rapid growth of small uncertainties. (See [Devaney 1986] for

an elementary introduction.)

In this section, we will show that games can exhibit a related behavior. To

do this, we will view the game’s asymptotic distribution (i.e., the IN-sheet or

P-sheet geometry) as a type of attractor.

We start, as in the preceding section, by perturbing an IN-sheet Wx in a

game, and then iterate (with R). Here, we explicitly assume the game to be

structurally stable. We then examine how the precise locations of P-positions in

sheets Px0 , x0 � x are affected by the initial perturbation. (Recall that by the

structurally stability assumption, the same probabilistic structure will emerge in

the perturbed and unperturbed cases, but the actual point-by-point locations of

the P-positions in the P-set will differ.)

We illustrate this idea with the game of Chomp. Consider Figure 9. The blue

data demonstrates that Chomp’s attractor appears to exhibit a form of sensitivity

to initial conditions. It was generated by changing a single IN on sheet W100

and then plotting (as a function of iteration number) the fractional discrepancy

between the locations of the P-positions for the perturbed and unperturbed initial

conditions (restricting here to P-positions on the lower and upper P-lines in Px).
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Figure 9. Dependence on initial conditions. The figure shows the fraction
of P-positions affected by a small initial perturbation to an IN-sheet, as a
function of iteration number.

Remarkably, after only 25 iterations, over half the losing positions have shifted

their locations, while still remaining on the attractor. (The red data is similarly

computed for an initial perturbation to P400, while the green data shows a rolling

average of the corresponding effect for P-positions lying on the flat line of Px .)

Note that despite the strong sensitivity on initial conditions, it is somewhat sur-

prising that the growth of a perturbation appears to be roughly linear, rather than

exponential. The resolution of this remains an open problem (as does the formal

definition and analysis of Lyapunov exponents in this setting).

3.2.1. Renormalization and correlations. This sensitivity to initial conditions

provides some justification for the renormalization procedure. We note that

the main (unproven) assumption used in the renormalization analysis is that

the various P-lines (at different x levels sufficiently far apart) were essentially

uncorrelated with one another. (This was used implicitly, for instance, in the

derivation of a few of the algebraic constraints given in Sections 2.1 and 2.3.)

In the limit of large x we believe that this is justified because these lines are

determined by sheets with large differences in x values, and since the system

displays sensitive dependence on initial conditions, the precise point-by-point

details of distant sheets should be uncorrelated in the limit.10 Thus, we see

that the renormalization analysis and assumptions about correlations are self-

consistent.

10We remark that this lack of correlation is not a universal trait of all renormalization analyses. For

example, in one of the most famous uses of renormalization, the phase transition in Ising Models (and many

other phase transitions), in the ‘frozen’ case, correlation lengths in fact become infinite. [Ising 1925; Cipra

1987].
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3.3. Accretion, crystal growth, and tightness of bounds. We observe here that

the “growth” (with increasing x) of the geometric structures Wx (e.g., Figure 1)

for games such as Wythoff’s game, Nim and Chomp is suggestive of certain

crystal growth and aggregation processes in physics [Gouyet 1995; Bar-Yam

1997]. This semblance arises because the recursion operators governing the

game evolution (in particular, the supermex operator M) typically act by attach-

ing new points to the boundaries of the current (IN-sheet) structures. Although

the details vary, this type of attachment-to-boundaries process is a common fea-

ture of many physical growth models (e.g., crystal growth, diffusion-limited

aggregation, directional solidification, etc.). Viewed this way, the procedure

offers a means of transforming the study of a combinatorial game into that

of a shape-preserving growth process - and with it the hope that some of the

tools which physicists have developed for analyzing such growth models may

be brought to bear on combinatorial games. Most promising in this context

would be a PDE description of the evolving boundaries in the game geometry,

or a non-markovian diffusion formulation.

4. Open questions

Clearly this work raises many open questions and research problems. We

provide a list of some of the key ones below:

1. Making renormalization rigorous: Despite its apparent practical capa-

bilities as a tool for analyzing combinatorial games, it would be extremely

valuable to make this renormalization approach mathematically rigorous. A

first step would be to prove that, for stable games, the fixed point of the

renormalization procedure is globally attracting, i.e., all initial conditions

converge to the fixed point, or as is more likely, almost all converge. The

local version of this stability problem is far more tractable, as it reduces to

the computation of the spectrum of the linearization of the renormalization

operator at the fixed point and standard techniques should suffice.

2. 3-D Wythoff’s Game and Generic (‘perturbed’) Nim: Solve analytically

for the invariant geometry in these games, which have interesting and com-

plex IN-sheets.

3. Four-row Chomp: Solve for the renormalization fixed point in four-row

Chomp. Two approaches seem promising and both could be combined with

automated procedures described in Item 5 below.

(i) Consider three-dimensional sheets and apply the analogous renormal-

ization procedure as used for three-row Chomp. (This can be done in a

straightforward manner.)
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(ii) Given a four-row position .w; x; y; z/; fix w and then apply this analysis

of Chomp to the subgame with the last three coordinates. Note that in this

case, the renormalization equations become inhomogeneous, of the form

W D RW C B, where B comes from the solutions with smaller w.

4. Sprague–Grundy values for (2-D) Wythoff’s game Analyze the complex

structure of the sheets found near the origin (i.e., for small position values).

5. Automated Renormalization: Design an algorithm for analytically com-

puting the renormalization fixed point, in the spirit of Zeilberger’s automated

analysis of Chomp. (An example of an automated renormalization procedure,

in a very different setting is given in [Friedman and Landsberg 2001].)

6. NP-Hardness of Combinatorial Games: Prove that some game which can

be solved by renormalization techniques is NP-hard.

7. Hardness of Perturbed Games: Provide a class of solvable games such

that ‘most’ perturbations lead to games that are ‘difficult’ to solve.

8. Partisan Games: Apply renormalization techniques to partisan games.

9. Accretion and Partial Differential Equations: Apply modern tools from

accretion theory to a combinatorial game. In particular, find a PDE approxi-

mation to the renormalization operator to compute the fixed points.

10. Lyapunov Exponents: Formally define and calculate Lyapunov exponents

to describe the sensitivity to initial conditions of an interesting game.

11. Our analysis of Chomp appears to suggest that one can answer the following

two new and fundamental questions in complexity theory in the affirmative.

(i) Probabilistic Solutions of Hard Problems (“betting on NP”): Our re-

sults suggest that the computation of P-positions in 3-rowed Chomp is not

polynomial. (Note that it is not clear whether the problem is in NP or

even NP-hard.) Thus we do not expect to find simple formulas or fast

algorithms. Nonetheless, this analysis implies that we can compute prob-

abilistic estimates. This raises the question of whether such estimates are

possible in complexity theory and raises the following challenging (but

fundamental) problem: For an NP-complete (or NP-hard) problem, find a

polynomial time algorithm which can accurately estimate the probability

that a word is in the language. This would not allow one to solve NP-

hard problems (which is not possible if P 6D NP ), but would allow one

to “bet effectively” on such problems. Clearly one needs a more precise

formulation to allow one to sensibly evaluate the notion of ‘probability’.

One possibility is a computational formulation of the notion of ‘calibration’

from Bayesian analysis [Dawid 1982].

(ii) Stochastic NP-Hard Problems: A dual to the previous problem is to

consider a set of NP-complete (or NP-hard) languages, generated stochas-

tically and ask whether there exists a polynomial time algorithm which,
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given a word, can estimate the fraction of languages that it is a member of.

For example, one could take a traveling salesman problem on a computer

network and assume that each link exists with probability p 2 Œ0; 1�. Then

one could ask for the probability that a given graph has an expected tour

less than some fixed length.

12. Difficult Combinatorial Games: Clearly the proof of this new approach

is in the pudding. What other combinatorial games can be analyzed using

these methods?

5. On the application of renormalization to games

First, we want to emphasize that (at least) some games of no chance have

interesting and revealing underlying geometric structures. This suggests that

simply computing the geometric structure in a game’s position space could, in

and of itself, lead to new and potentially powerful insights into a game (even

in the absence of a full-blown renormalization analysis). For example, as we

saw, the plot of Sprague–Grundy values for 2-D Wythoff’s game reveals an

interesting structure near the origin.

Second, we wish to reiterate that the renormalization approach to games

is still very much in its infancy, with much unexplored terrain — its scope of

applicability and limitations are not fully understood. Its primary limitation at

present is that, like many renormalization procedures, making it fully rigorous is

likely to prove challenging, and most renormalization results do not constitute

formal mathematical proofs. Nonetheless, at a minimum, one can view the

renormalization results for a game as representing strong conjectures, and then

seek independent formal proofs of these conjectures. An alternative is that one

can ignore rigor and simply compute — as is done in modern physics — to help

understand the complex structure of non-decomposable combinatorial games.

Given our lack of knowledge about the solutions of such games, we suggest that

this last approach might be extremely valuable.
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GABRIEL NIVASCH

ABSTRACT. We present two new results on Wythoff’s Grundy function G.

The first one is a proof that for every integer g � 0, the g-values of G are

within a bounded distance to their corresponding 0-values. Since the 0-values

are located roughly along two diagonals, of slopes � and ��1, the g-values

are contained within two strips of bounded width around those diagonals. This

is a generalization of a previous result by Blass and Fraenkel regarding the

1-values.

Our second result is a convergence conjecture and an accompanying recur-

sive algorithm. We show that for every g for which a certain conjecture is true,

there exists a recursive algorithm for finding the n-th g-value in O.log n/ arith-

metic operations. Our algorithm and conjecture are modifications of a similar

result by Blass and Fraenkel for the 1-values. We also present experimental

evidence for our conjecture for small g.

1. Introduction

The game of Wythoff [10] is a two-player impartial game played with two

piles of tokens. On each turn, a player removes either an arbitrary number of

tokens from one pile (between one token and the entire pile), or the same number

of tokens from both piles. The game ends when both piles become empty. The

last player to move is the winner.

Wythoff’s game can be represented graphically with a quarter-infinite chess-

board, extending to infinity upwards and to the right (Figure 1). We number the

rows and columns sequentially 0; 1; 2; : : : . A chess queen is placed in some cell

This work was done when the author was at the Weizmann Institute of Science in Rehovot, Israel. The

author was partially supported by a grant from the German-Israeli Foundation for Scientific Research and

Development.
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Figure 1. Graphic representation of Wythoff’s game.

of the board. On each turn, a player moves the queen to some other cell, except

that the queen can only move left, down, or diagonally down-left. The player

who takes the queen to the corner wins.

Wythoff found a simple, closed formula for the P -positions of his game. Let

� D .1C
p

5/=2 be the golden ratio. Then:

THEOREM 1.1 (WYTHOFF [10]). The P -positions of Wythoff’s game are given

by

.b�nc; b�2nc/ and .b�2nc; b�nc/; (1-1)

for nD 0; 1; 2; : : : .

1.1. Impartial games and the Sprague–Grundy function. We briefly review

the Sprague–Grundy theory of impartial games [1].

An impartial game can be represented by a directed acyclic graph GD .V; E/.

Each position in the game corresponds to a vertex in G, and edges join vertices

according to the game’s legal moves. A token is initially placed on some vertex

v 2 V . Two players take turns moving the token from its current vertex to one

of its direct followers. The player who moves the token into a sink wins.

Given two games G1 and G2, their sum G1 CG2 is played as follows: On

each turn, a player chooses one of G1, G2, and moves on it, leaving the other

game untouched. The game ends when no moves are possible on G1 nor on G2.

Let N D f0; 1; 2; : : :g be the set of natural numbers. Given a finite subset

S � N, let mex S D min.N n S/ denote the smallest natural number not in S .

Then, given a game G D .V; E/, its Sprague–Grundy function (or just Grundy

function) G W V !N is defined recursively by

G.u/Dmex
˚

G.v/
ˇ

ˇ .u; v/ 2E
	

; for u 2 V: (1-2)



MORE ON THE SPRAGUE–GRUNDY FUNCTION FOR WYTHOFF’S GAME 379

This recursion starts by assigning sinks the value 0.

The Grundy function G satisfies the following two important properties:

1. A vertex v 2 V is a P -position if and only if G.v/D 0.

2. If G D G1CG2 and v D .v1; v2/ 2 V1 �V2, then G.v/ is the bitwise XOR,

or nim-sum, of the binary representations of G.v1/ and G.v2/.

Clearly, the sum of games is an associative operation, as is the nim-sum opera-

tion. Therefore, knowledge of the Grundy function provides a winning strategy

for the sum of any number of games.

The following lemma gives some basic bounds on the Grundy function.

LEMMA 1.2. Given a vertex v, let nv be the number of direct followers of v,

and let pv be the number of edges in the longest path from v to a leaf . Then

G.v/� nv and G.v/� pv .

PROOF. The first bound follows trivially from equation (1-2). The second bound

follows by induction. ˜

The following lemma shows that the Grundy function of a game-graph can be

calculated up to a certain value g using the mex property.

LEMMA 1.3. Given a game-graph G D .V; E/ and an integer g � 0, let H be a

function H W V ! f0; : : : ; g;1g such that for all v 2 V ,

1. if H.v/� g then

H.v/Dmex fH.w/ j .v; w/ 2EgI
2. if H.v/D1 then

mex fH.w/ j .v; w/ 2Eg> g:

Then G.v/DH.v/ whenever H.v/� g, and G.v/ > g whenever H.v/D1.

In the function H, the labels1 are placeholders that indicate values larger than

g. Theorem 1.3 is easily proven by induction; see [6].

1.2. Notation and terminology. From now on, G will denote specifically the

Grundy function of Wythoff’s game. Thus, G W N�N!N is given by

G.x; y/Dmex
�

fG.x0; y/ j 0� x0 < xg [
fG.x; y0/ j 0� y0 < yg [ (1-3)

fG.x� k; y � k/ j 1� k �min .x; y/g
�

:

Table 1 shows the value of G for small x and y. This matrix looks quite

chaotic at first glance, as has been pointed out before [1]. And indeed, it is

still an open problem to compute G in time polynomial in the size of the input

(meaning, to compute G.x; y/ in time O..log xC log y/c/ for some constant c).
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15 15 16 17 18 10 13 12 19 14 0 3 21 22 8 23 20

14 14 12 13 16 15 17 18 10 9 1 2 20 21 7 11 23

13 13 14 12 11 16 15 17 2 0 5 6 19 20 9 7 8

12 12 13 14 15 11 9 16 17 18 19 7 8 10 20 21 22

11 11 9 10 7 12 14 2 13 17 6 18 15 8 19 20 21

10 10 11 9 8 13 12 0 15 16 17 14 18 7 6 2 3

9 9 10 11 12 8 7 13 14 15 16 17 6 19 5 1 0

8 8 6 7 10 1 2 5 3 4 15 16 17 18 0 9 14

7 7 8 6 9 0 1 4 5 3 14 15 13 17 2 10 19

6 6 7 8 1 9 10 3 4 5 13 0 2 16 17 18 12

5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13

4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 10

3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18

2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17

1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1. The Grundy function of Wythoff’s game.

Nevertheless, as we will see now, several results on G have been established.

But let us first introduce some notation.

A pair .x; y/ is also called a point or a cell. If G.x; y/D g, we call .x; y/ a

g-point or a g-value.

Note that by symmetry, G.x; y/ D G.y; x/ for all x; y. We refer to this

property as diagonal symmetry.

We will consistently use the following graphical representation of G: The

first coordinate of G is plotted vertically, increasing upwards, and the second

coordinate is plotted horizontally, increasing to the right.

Thus, we call row r the set of points .r; x/ for all x � 0, and column c the

set of points .x; c/ for all x � 0. Also, diagonal e is the set of points .x; xCe/

for all x if e � 0, or the set of points .x� e; x/ for all x if e < 0. (Note that we

only consider diagonals parallel to the movement of the queen.)

We also define, for every integer g � 0, the sequence of g-values that lie on

or to the right of the main diagonal, sorted by increasing row. Formally, we let

Tg D
�

.a
g
0
; b

g
0

/; .a
g
1
; b

g
1

/; .a
g
2
; b

g
2

/; : : :
�

(1-4)

be the sequence of g-values having a
g
n � b

g
n , ordered by increasing a

g
n . We also
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Figure 2. First terms of the sequences T0 (framed squares) and T20 (filled
squares).

let p
g
n D .a

g
n ; b

g
n /. Note that, by Theorem 1.1, we have

p0
n D .b�nc; b�2nc/:

For example, Figure 2 plots the first points in T0 and T20. A pattern is im-

mediately evident: The 20-values seem to lie within a strip of constant width

around the 0-values. This is true in general. In fact, we will prove something

stronger as one of the main results of this paper.

We also let d
g
n D b

g
n � a

g
n be the diagonal occupied by the point p

g
n .

Finally, we place the a, b, and d coordinates of g-points into sets, as follows:

Ag D fag
i j i � 0g; Bg D fbg

i j i � 0g; Dg D fdg
i j i � 0g: (1-5)

1.3. Previous results on Wythoff’s Grundy function. We now give a brief

overview of previous results on the Grundy function of Wythoff’s game.

It follows directly from formula (1-3) that no row, column, or diagonal of G

contains any g-value more than once. In fact, it is not hard to show that every row

and column of G contains every g-value exactly once [2; 4]. Furthermore, every

diagonal contains every g-value exactly once [2], although this is somewhat

harder to show. We will rederive these results in this paper.

It has also been shown that every row of G is additively periodic. This result

was first proven by Norbert Pink in his doctoral thesis [8] (published in [3]),

and Landman [4] later found a simpler proof. Both [3] and [4] derive an upper

bound of 2O.x2/ for the preperiod and the period of row x.
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The additive periodicity of G has important computational implications: It

means that G.x; y/ can be computed in time

2O.x2/CO.x2 log y/;

which is linear in log y for constant x. See [6] for details.

Blass and Fraenkel [2] obtained several results on the sequence T1 of 1-

values, as defined above (1-4). They showed that the n-th 1-value is within a

bounded distance to the n-th 0-value. Specifically,

8� 6� < a1
n��n < 6� 3� ;

�3� < b1
n ��2n < 8� 3�

(1-6)

(Theorem 5.6, Corollary 5.13 in [2]).

They also presented a recursive algorithm for computing the n-th 1-value

given n. We will not get into the details of the algorithm, but suffice it to say

that the recursion is carried out to a logarithmic number of levels. Further, if the

computation done at each level were shown to be constant, then the algorithm

would run in O.log n/ steps altogether. For the computation at each level to be

constant, certain arrangements in the sequence of 0- and 1-values must occur

infinitely many times with at least constant regularity. The authors did not man-

age to prove this latter property, so they left the polynomiality of their algorithm

as a conjecture.

1.4. Our results. In this paper we make two main contributions on the function

G. The first one is a generalization of the result for the 1-values described above.

We will prove that for every g, the point p
g
n is within a bounded distance to p0

n ,

where the bound depends only on g, not on n. Our theoretical bound turns

out to be much worse than the actual distances seen in practice. We present

experimental data and compare them to our theoretical result.

Our second contribution is a modification and generalization of Blass and

Fraenkel’s recursive algorithm. We present a conjecture, called the Convergence

Conjecture, which claims a certain property about the sequences T0 through

Tg. We show that for every g for which the conjecture is true, there exists an

algorithm that computes p
g
n in O.log n/ arithmetic operations, where the factor

implicit in the O notation depends on g.

We present experimental results that seem to support the conjecture for small

g. We finally use our recursive algorithm to predict the value of several points

p
g
n for small g and very large n.

1.5. Significance of our results. Suppose we are playing the sum of Wythoff’s

game with some other game, like a Nim pile. Our winning strategy, then, is to

make the Grundy values of the two games equal. Suppose that the position in
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Figure 3. A supporter from a row lower than x.

Wythoff has Grundy value m, and the Nim pile is of size n. Then, if m < n, we

should reduce the Nim pile to size m, and if m > n, we should move in Wythoff

to a position with Grundy value n.

How do the results in this paper help us in this scenario? The first result,

regarding the location of the g-values, is of no practical help: It gives us only

the approximate location of the g-values, not their precise position.

The recursive algorithm, on the other hand, has much more practical sig-

nificance. If the conjecture is true for small values of g, then we can play

on sums where the Nim pile is of size � g. And even if there are sporadic

counterexamples to the conjecture, the recursive algorithm will probably give

the correct answer in most cases, so it is a good heuristic.

1.6. Organization of this paper. The rest of this paper is organized as follows.

In Section 2 we prove the closeness of the g-values to the 0-values, and in Sec-

tion 3 we present the Convergence Conjecture and its accompanying recursive

algorithm. The Appendix (page 407) contains some proofs omitted from Section

2.5.

2. Closeness of the g-values to the 0-values

In this Section we will prove that for every g, the point p
g
n is within a bounded

distance to p0
n , where the bound depends only on g. We begin with some basic

results on G.

LEMMA 2.1 (LANDMAN [4]). Given x and g, there exists a unique y such that

G.x; y/D g. Moreover,

g�x � y � gC 2x: (2-1)

PROOF. Uniqueness follows trivially from the definition of G.

As for existence, for any x, y, the longest path from cell .x; y/ to the corner

.0; 0/ has length xCy, so by Lemma 1.2, g� xCy, implying the lower bound

in (2-1).
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Next, let y be an integer such that G.x; y0/ ¤ g for all y0 < y. At most g

such points .x; y0/ have a value smaller than g, so at least y�g of them have a

value larger than g. Each of the latter points must be “supported” by a g-point

in a lower row, either vertically of diagonally down (see Figure 3). No two such

supporters can share a row, so there are at most x of them. On the other hand,

each supporter can support at most two points in row x. Therefore, y�g � 2x,

yielding the upper bound of (2-1). ˜

The following result was also known already to Landman [5]:

LEMMA 2.2. Given g�0, there exists a unique integer x such that G.x; x/Dg.

Moreover,

g=2� x � 2g: (2-2)

PROOF. As before, uniqueness follows from the definition of G. And the lower

bound follows from equation (2-1).

For the upper bound, suppose x is such that G.y; y/ ¤ g for all y < x. At

most g of such points .y; y/ have value smaller than g, so at least x�g of them

have value larger than g. By diagonal symmetry, for each of the latter points

there exist two g-points, one to the left of .y; y/ and the other one below it.

Therefore, there are at least 2.x � g/ g-points below and to the left of point

.x; x/. No two of them can share a column, so 2.x�g/� x, or x � 2g. ˜

Recall the definition of the sets Ag, Bg, and Dg (1-5). By Lemmas 2.1 and 2.2,

together with diagonal symmetry, we have jAg \Bgj D 1 and Ag [Bg D N

for all g. Therefore, we could say that the sequences fag
i g and fbg

i g are “almost

complementary”. We will show later on that Dg D N for all g.

2.1. Algorithm WSG for computing Tg. On page 385 we show a greedy

algorithm that computes, given an integer g � 0, the sequences Th and the sets

Ah, Bh, Dh for 0� h� g. This algorithm was first described in [2].

The idea behind the algorithm is simple: We traverse the rows in increasing

order, and for each row, we go through the values h D 0; : : : ; g in increasing

order. If the current row needs an h-point on or to the right of the main diagonal

(because it contains no h-point to the left of the main diagonal), then we greedily

find the first legal place for an h-point, and insert the h-point there. We also

reflect the h-point with respect to the main diagonal, into a higher row (so that

higher row will not receive an h-point to the right of the main diagonal).

Of course, since this algorithm works row by row, it takes exponential time.

For simplicity, we do not specify when the algorithm halts, although we could

make it halt after, say, computing the first n terms of Tg.

We will rely heavily on this algorithm later on, in our analysis of Tg.

The correctness of Algorithm WSG follows easily from Lemma 1.3; see [6]

for the details.
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Algorithm WSG (Wythoff Sprague–Grundy)

1. Initialize the sets Ah, Bh, Dh, and the sequences Th, to ?, for 0� h� g.

2. For r D 0; 1; 2; : : : do:

3. For hD 0; : : : ; g do:

4. If r 62 Bh then:

5. � find the smallest d D 0; 1; 2; : : : for which:

6. ı .r; r C d/ 62 Tk for all 0� k < h,

7. ı r C d 62Bh, and

8. ı d 62Dh;

9. � append .r; r C d/ to Th;

10. � insert r into Ah;

11. � insert r C d into Bh;

12. � insert d into Dh.

2.2. Statement of the main Theorem. Recall from Theorem 1.1 that the 0-

values of Wythoff’s game are given by

.a0
n; b0

n/D .b�nc; b�2nc/:

Graphically, the 0-values lie close to a straight line of slope ��1 that starts at

the origin.

Our main result for this Section is the following:

THEOREM 2.3. For every Grundy value g � 0 and every diagonal e � 0, there

exists an n such that

dg
n D e

(i.e., every diagonal e contains a g-value).

Further, for every g � 0 there exist constants ˛g, ˇg, such that

jag
n � a0

nj � ˛g; jbg
n � b0

nj � ˇg; for all n

(i.e., the n-th g-value is close to the n-th 0-value).

Our strategy for proving Theorem 2.3 is as follows. We first show that for every

g there is a g-value in every diagonal, and furthermore, for every g there exists

a constant ıg such that

jdg
n � nj � ıg for all n: (2-3)

In other words, the g-values occupy the diagonals in roughly sequential order.
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Figure 4. Queen in a triangular lattice.

Then we show how equation (2-3), together with the almost-complementarity

of the sequences fag
ng and fbg

n g, implies that jag
n � �nj and jbg

n � �2nj are

bounded.

Note that for g D 0, Theorem 1.1 gives us

d0
n D b0

n � a0
n D .b�ncC n/�b�nc D nI

in other words, the 0-values occupy the diagonals in sequential order. This can

be confirmed easily by following Algorithm WSG with g D 0.

2.3. Nonattacking queens on a triangle. The following is a variation on the

well-known “eight queens problem”. We will use its solution in proving bound

(2-3).

We are given a triangular lattice of side n, as shown in Figure 4. A queen

on the lattice can move along a straight line parallel to any of the sides of the

triangle. How many queens can be placed on the lattice, without any two queens

attacking each other?

LEMMA 2.4. The maximum number of nonattacking queens that can be placed

on a triangular lattice of side n is exactly

q.n/D
j2nC 1

3

k

:

A simple proof of this fact is given by Vaderlind et al. in [9, Problem 252].

Another proof is given in [7].

2.4. d
g
n is close to n. We will now prove bound (2-3). For convenience, in

this subsection we fix g, and we write an D a
g
n , bn D b

g
n , dn D d

g
n , pn D p

g
n .

Whenever we refer to h-points, h < g, we will say so explicitly.

Recall that the points pn are ordered by increasing row an, so that an > am

if and only if n > m.

In this subsection we will make extensive use of Algorithm WSG.
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Figure 5. Point pm skips diagonal e.

Observe that Algorithm WSG does not place a g-point on certain rows r ,

because it skips row r on line 4. Then such an r is not added to Ag (line 10).

We call such an r a skipped row.

Similarly, sometimes a certain column c is never inserted into Bg (line 11),

because no point pm falls on that column. In that case, we call column c a

skipped column.

Let us define the notion of a g-point skipping a diagonal. Intuitively, point

pm skips diagonal e if Algorithm WSG places point pm to the right of diagonal

e, while diagonal e does not yet contain a g-point (see Figure 5). Formally:

DEFINITION 2.5. Diagonal e is empty up to row r if there is no point pn with

dn D e and an � r .

DEFINITION 2.6. Point pm is said to skip diagonal e if dm > e and e is empty

up to row am.

Our goal in this subsection is to derive a bound on jdn � nj. We will derive

separately upper bounds for dn � n and n � dn. We do this by bounding the

number of diagonals that a given point can skip, and the number of points that

can skip a given diagonal:

LEMMA 2.7. If no point pn skips more than k diagonals, then dn � n � k for

all n. If no diagonal is skipped by more than k points, then n�dn � k for all n.

PROOF. For the first claim, suppose by contradiction that dn � n > k for some

n. Then, of the dn diagonals 0; : : : ; dn � 1, only n can be occupied by points

p0; : : : ; pn�1. Therefore, point pn skips at least kC 1 diagonals.

For the second claim, suppose by contradiction that n� dn > k for some n.

Then, of the n points p0; : : : ; pn�1, only dn can fall on diagonals 0; : : : ; dn�1.

Therefore, diagonal dn is skipped by at least kC 1 points. ˜

Let us inspect why a g-point skips a diagonal according to Algorithm WSG.

Suppose point pm skips diagonal e, and let C D .am; am C e/ be the cell on

diagonal e on the row in which pm was inserted. Then, point pm skipped di-

agonal e, either because cell C was already assigned some value k < g (WSG
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Figure 6. Points pm active with respect to diagonal e and row r .

line 6), or because there was already a point pm0 directly below cell C (WSG

line 7).

We need a further definition: Let e be a diagonal and r be a row, such that

diagonal e is empty up to row r �1. Draw a line from the intersection of row r

and diagonal e vertically down. If a point pm is strictly below row r , and on or

to the right of the said vertical line, then we say that pm is active with respect

to diagonal e and row r (see Figure 6). In other words:

DEFINITION 2.8. If diagonal e is empty up to row r�1, then point pm is active

with respect to diagonal e and row r if am < r and bm � r C e.

We can bound the number of active g-points:

LEMMA 2.9. The number of g-points active with respect to any diagonal e and

any row r is at most g.

PROOF. By assumption, diagonal e is empty up to row r � 1.

We will show that for every r 0 � r , if diagonal e contains k h-points, h < g,

below row r 0, then there can be at most k active g-points with respect to diagonal

e and row r 0. This implies our Lemma, since there are at most g h-points, h < g,

on diagonal e.

We prove the above claim by induction on r 0. If r 0 D 0 then clearly k D 0

and there are no active g-points with respect to e and r 0.

Suppose our claim is true up to row r 0, and let us examine Algorithm WSG

on row r 0 itself. If no point pm is inserted on row r 0, then the number of active

g-points does not increase when we go from row r 0 to row r 0C 1. And if point

pm is inserted on row r 0 and it skips diagonal e, it must be for one of the two

reasons mentioned above. If there is an h-point, h < g, on the intersection of

row r 0 with diagonal e, then the number k of our claim increases by 1 when we

go to row r 0C 1. And if there is no such h-point, then there must be an earlier

point pm0 directly below the intersection of e and r 0. But then pm0 is active with

respect to e and r 0, but not with respect to e and r 0C1, so the number of active

g-points stays the same when we go from row r 0 to row r 0C 1.
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Figure 7. pn� is the point pn with maximum dn.

So in either case, the inductive claim is also true for row r 0C 1. ˜

We can now bound the number of diagonals a given g-point can skip:

LEMMA 2.10. A point pm can skip at most 2g diagonals.

PROOF. Let e0 be the first diagonal skipped by point pm. For every diagonal e

skipped by pm, there must be either an active g-point with respect to diagonal

e0 and row am, or an h-point, h < g, on cell .am; amCe/. There can be at most

g of the latter, and by Lemma 2.9, at most g of the former. ˜

We proceed to bound the number of g-points that can skip a given diagonal. For

this we need a lower bound on the number of skipped columns in an interval of

consecutive columns:

LEMMA 2.11. An interval of k consecutive columns contains at least k=3�2g

skipped columns.

PROOF. Consider the points pn that lie within the given interval of columns.

Let pn� be the point pn with maximum dn (see Figure 7). The number of

points pn with n > n� is at most 2g by Lemma 2.10. And the points pn with

n < n� are confined to a triangular lattice; but this situation is isomorphic to the

nonattacking queens of subsection 2.3!

The triangular lattice has side at most k�2 (since the lattice cannot reach the

column of pn� nor the preceding column). Therefore, the number of points pn

with n < n� is at most

j2.k � 2/C 1

3

k

� 2k=3� 1:

Thus, the total number of points pn is at most 2k=3�1C2gC1D 2k=3C2g,

so the number of skipped columns is at least k=3� 2g. ˜
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Figure 8. Points pm0 between rows am and amC�.

COROLLARY 2.12. An interval of k consecutive rows contains at least k=3�2g

points pn.

PROOF. By diagonal symmetry: If column c is a skipped column, then row c

contains a point pn. ˜

LEMMA 2.13. Suppose point pm skips diagonal e, and let �Ddm�e. Suppose

diagonal e is empty up to row amC� (see Figure 8). Then �� 15g.

PROOF. Let us bound the number of points pm0 in the interval between row

amC 1 and row amC�. For every such pm0 , either dm0 < dm, or bm0 > bm,

or both (see Figure 8). In the former case, pm skips diagonal dm0 , and in the

latter case, pm0 is active with respect to diagonal e and row amC�C 1. So by

Lemmas 2.9 and 2.10, there are at most 3g such points pm0 .

Therefore, by Corollary 2.12, we must have

�=3� 2g � 3g;

so �� 15g. ˜

COROLLARY 2.14. The number of points pn that can skip a given diagonal e

is at most 16g.

PROOF. Every point that skips diagonal e must lie on a different diagonal.

Therefore, Lemma 2.13 already implies that diagonal e must eventually be oc-

cupied by a point pn.

Now, consider the points pm, m < n, that skip diagonal e D dn. Partition

these points into two sets: those having bm > bn and those having bm < bn.

By Lemma 2.9, there are at most g points in the first set, since each such

point is active with respect to the diagonal and row of pn. And every point in

the second set satisfies the assumptions of Lemma 2.13, so there are at most 15g

such points. Therefore, diagonal e is skipped by no more than 16g points. ˜
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We used somewhat messy arguments, but we have finally proven:

THEOREM 2.15. For every Grundy value g and every diagonal e, there exists a

g-point with d
g
n D e. Furthermore,

�16g � dg
n � n� 2g: ˜

2.5. The g-values are close to the 0-values. We proceed to show the existence

of the constants ˛g and ˇg of Theorem 2.3. In order to understand the idea

behind our proof, it is helpful to look first at the following proof that the ratio

between consecutive Fibonacci numbers tends to �:

CLAIM 2.16. Let Fn be the n-th Fibonacci number. Then Fn=Fn�1! �.

PROOF. Let xn D Fn��Fn�1. Then,

xnC1 D FnC1��Fn D .FnCFn�1/��Fn

D���1.Fn��Fn�1/D���1xn: (2-4)

Therefore, xn! 0, since j���1j< 1. Therefore,

Fn

Fn�1

D xn

Fn�1

C�! �: ˜

Next, we introduce the following notation, which will help make our arguments

clearer:

DEFINITION 2.17. Given sequences ffng and fgng, we write

fn � gn

if, for some k, jfn�gnj � k for all n.

Note that the relation � is transitive: If fn � gn and gn � hn, then fn � hn.

In this subsection we make a few claims that are intuitively obvious. We

therefore decided to defer their proofs to the Appendix, in order not to interrupt

the main flow of the arguments. Our first intuitive claim is the following:

LEMMA 2.18. Let fxng be a sequence that satisfies xnC1� cxn for some jcj<1.

Then fxng is bounded as a sequence.

The main result of this subsection is the following somewhat general theorem:

THEOREM 2.19. Let a0 < a1 < a2 < � � � be a sequence of increasing natural

numbers, and let b0; b1; b2; : : : be a sequence of distinct natural numbers. Let

AD fan j n� 0g, B D fbn j n� 0g. Suppose the following conditions hold:

1. jA\Bj is finite;

2. A[B D N;

3. bn� an � n.
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Then an � �n and bn � �2n.

Note that, in particular, our Wythoff sequences fag
ng and fbg

n g satisfy all of the

above requirements, so the above theorem yields Theorem 2.3, as desired.

PROOF OF THEOREM 2.19.

We start with the following claim, which we prove in the Appendix:

LEMMA 2.20. Regarding the sequences fang and fbng in the statement of the

Theorem:

(a) There is a constant k such that for all n, the number of bm > bn, m < n, is

at most k.

(b) There is a constant k 0 such that for all n, the number of bm < bn, m > n, is

at most k 0.

(c) an � an�1 and bn � bn�1.

(Note that, for our sequences fag
ng and fbg

n g, the lemmas of Section 2.4 already

give bounds on the number of m’s in Lemma 2.20(a,b). But we still want to

prove Theorem 2.19 in general.)

Now, for n� 0, define

xn D �n� an;

and let

f .n/D
ˇ

ˇA\f0; 1; 2; : : : ; bn� 1g
ˇ

ˇ

be the number of a’s smaller than bn.

By Lemma 2.20(a,b), the number of b’s smaller than bn is � n, so by condi-

tions 1 and 2 of our Theorem, the number of a’s smaller than bn is � bn � n.

And by condition 3 we have bn� n� an. Therefore,

f .n/� an: (2-5)

Further, af .n/ is the first a that is � bn (by the definition of f .n/), so af .n/�
bn by Lemma 2.20(c). Therefore (compare with (2-4)),

xf .n/ D �f .n/� af .n/ � �an� bn � �an� an� n

D ��1an� nD���1xn: (2-6)

The following lemma is proven in the Appendix:

LEMMA 2.21. There exists an integer n1 such that f .n/ > n for all n� n1.

Now, choose n1 as in Lemma 2.21, and recursively define the integer sequence

n1; n2; n3; : : : , by niC1Df .ni/. This sequence, therefore, is strictly increasing.

Also let n0 D 0.
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Define the sequence fyj g1jD0
by

yj D max
nj �i�nj C1

jxi j; for j � 0: (2-7)

We want to show that fyj g is bounded as a sequence, which would imply that

fjxnjg is bounded as a sequence. But it follows from equation (2-6) that:

LEMMA 2.22. The sequence fyj g satisfies yjC1 � ��1yj .

The full proof of Lemma 2.22 is given in the Appendix.

Lemmas 2.22 and 2.18 together imply that fyj g is bounded as a sequence,

so fjxnjg is bounded as a sequence, as desired. Therefore, an � �n, and by

condition 3 of our Theorem, bn � �2n. ˜

This completes the proof of the existence of the constants ˛g and ˇg of Theorem

2.3.

2.6. Experimental results. In this subsection we present experimental results

on a few aspects of the function G.

Experimental bounds on d
g
n�n. Let us compare the rigorous bound of�16g�

d
g
n � n� 2g given by Theorem 2.15 with data obtained experimentally.

Figure 9 shows a histogram of d
g
n �n for gD 30, counting points up to row

5 � 106.

Table 2 shows the extreme values of d
g
n �n achieved for different g by points

lying in rows up to 5 � 106. In each case we show the earliest appearance of the

extremal value.

We notice an interesting phenomenon: For g � 7 the maximum is achieved

by the zeroth point p
g
0
D .0; g/. This phenomenon is due to the fact that the

sequence Tg tends to start with an anomalous behavior that “smooths out” over

time.

-30 -20 -10 0 10 20 30
dn
g
-n1

10

100

1000

10000

100000.

count

Figure 9. Histogram of d
g
n � n for g D 30, counting points up to row

5 � 106.
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Table 3 shows the maximum d
g
n � n achieved by points having n � 100, for

g � 7. We see that as g grows, the maximum achieved decreases substantially

from Table 2.

g min d
g
n � n n max d

g
n � n n

0 0 0 0 0

1 �4 57 2 282

2 �6 35745 3 38814

3 �8 149804 4 2335

4 �10 569350 5 15486

5 �11 1245820 6 2638

6 �11 30165 7 1974933

7 �11 75459 7 0

8 �12 701260 8 0

9 �13 17972 9 0

10 �13 516328 10 0

11 �14 722842 11 0

12 �16 2853838 12 0

13 �17 2860809 13 0

14 �18 2814039 14 0

15 �18 2597774 15 0

16 �18 1027151 16 0

17 �18 2979529 17 0

18 �19 789978 18 0

19 �20 22347 19 0

20 �21 2548028 20 0

21 �19 277362 21 0

22 �20 30200 22 0

23 �23 1412268 23 0

24 �22 684205 24 0

25 �23 349878 25 0

26 �24 2087092 26 0

27 �24 617166 27 0

28 �24 2343474 28 0

29 �26 27 29 0

30 �27 1872274 30 0

Table 2. Extreme values of d
g
n � n for given g, for points p

g
n having

a
g
n � 5 � 106.
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g max d
g
n � n n g max d

g
n � n n

7 7 131307 19 14 594141

8 8 20735 20 14 2482469

9 9 1056831 21 14 90130

10 9 258676 22 15 347510

11 10 987102 23 15 323425

12 10 1295870 24 16 129240

13 10 90426 25 17 1880006

14 11 453415 26 17 36662

15 11 61780 27 18 332552

16 12 509772 28 18 370321

17 12 86093 29 19 2425182

18 13 32439 30 18 444272

Table 3. Maximum value of d
g
n � n for given g, for points p

g
n having

n� 100 and a
g
n � 5 � 106.

The conclusion from these observations is the following: The bounds ob-

served experimentally for d
g
n �n are much tighter than those given by Theorem

2.15. Therefore, either the theoretical bound is much looser than necessary, or

it is a worst-case bound that is achieved very rarely in practice.

The converse of Theorem 2.3. Theorem 2.3 implies that if G.a; b/ is bounded

with a � b, then jb � �aj is bounded. Is the converse also true? Namely, does

a bound on jb � �aj imply a bound on G.a; b/? Or, on the contrary, are there

arbitrarily large values very close to 0-values? We do not know the answer, but

we explored this question experimentally.

We looked for the cells with the largest Grundy value lying at a given Man-

hattan distance from the closest 0-value. (The Manhattan distance between

.a1; b1/ and .a2; b2/ is defined as ja2� a1j C jb2 � b1j.) We looked up to row

106, calculating points up to g D 199. Our results are shown in Table 4.

The first column in Table 4 lists the cell with the largest Grundy value at

a given Manhattan distance from the closest 0-value, for cells in rows � 106.

Some cells are labelled “� 200” because they were not assigned any Grundy

value � 199.

The second column in Table 4 lists the cell with the largest Grundy value at

a given Manhattan distance from the closest 0-value, restricted to cells between

rows 600 and 106. (Only entries differing from the first column are shown.)

We see a very significant difference in the Grundy values between the first

and second columns. This phenomenon is due to the fact that the sequences Tg
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row � 600

distance cell G value cell G value

1 (283432, 458601) 82

2 (944634, 1528447) 96

3 (44, 67) 89 (82399, 133320) 81

4 (49, 86) 115 (665224, 1076349) 82

5 (58, 86) 116 (402997, 652071) 103

6 (62, 110) 147 (538568, 871413) 99

7 (97, 168) � 200 (839162, 1357804) 108

8 (95, 167) � 200 (182922, 295987) 115

9 (87, 155) � 200 (319656, 517229) 122

10 (85, 154) � 200 (927492, 1500730) 125

Table 4. Large Grundy values at a given Manhattan distance from the
closest 0-value.

Figure 10. First terms of the sequence T200.

tend to start by passing very close to the 0-points, before “smoothing out”. This

can be seen in Figure 10, which plots the beginning of T200.

3. A recursive algorithm for the n-th g-value

In this Section we will present our so-called Convergence Conjecture and

show how, if the conjecture is true, it leads to a recursive algorithm for find-
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ing the n-th g-point in O.f .g/ log n/ arithmetic operations, where f is some

function on g.

To do this, we will first show how Algorithm WSG (page 385) can be consid-

ered, in a certain sense, as a finite-state automaton that receives input symbols

and jumps from state to state as it calculates rows one by one.

Consider Algorithm WSG as it is about to start inserting points in row r . For

each h, 0 � h � g, there are cells on row r that cannot take an h-point: some

because they have an h-point below them, some because they have an h-point

diagonally below, and others because they have already been assigned a value

k < h.

We will show how we can represent this information about row r , which we

will call its state, in such a way that there is a finite number of states among

all rows. We will further consider the set of h-points to be inserted in row r

as a single symbol out of a finite alphabet of symbols. Then, knowing the state

of row r and the said symbol, we can correctly place along row r the relevant

h-points, and compute the state of row r C 1.

(Here we ignore the fact that the points to be inserted at row r are determined

by the points inserted in lower rows.)

Let us develop these ideas formally.

3.1. A finite-state algorithm. Let us fix g. The variable h will always take the

values 0� h� g.

In this Section, whenever we refer to an h-point, we mean a point .x; y/

with G.x; y/D h and x � y. Points with x � y will be referred to as reflected

h-points. A point with x D y is both reflected and unreflected.

DEFINITION 3.1.

1. indexh.r/ D
ˇ

ˇAh \ f0; : : : ; r � 1g
ˇ

ˇ is the number of h-points strictly below

row r . It is also the index of the first h-point on a row � r .

2. Dh.r/Dfdh
n j 0�n < indexh.r/g is the set of diagonals occupied by h-points

on rows < r .

3. firstdh.r/Dmex Dh.r/ denotes the first empty diagonal on row r .

4. ocdiagh.r/ D fd 2 Dh.r/ j d > firstdh.r/g is the set of occupied diagonals

after the first empty diagonal on row r .

Note that

indexh.r/D firstdh.r/Cjocdiagh.r/j: (3-1)

This is because there are indexh.r/ occupied diagonals on row r : diagonals

0 through firstdh.r/� 1, and jocdiagh.r/j additional ones.

5. Similarly, Bh.r/D fbh
n j 0 � n < indexh.r/g is the set of columns occupied

by h-points on rows < r .
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6. We let occolh.r/D fb� r j b 2 Bh.r/; b � r � firstdh.r/g. This set has the

following interpretation: Identify each cell on row r by the diagonal it lies

on, i.e., cell .r; b/ is identified by b� r . Then occolh.r/ represents the set of

cells on row r on a diagonal � firstdh.r/ that lie on a column occupied by a

lower h-point.

LEMMA 3.2. The expression

�

max ocdiagh.r/
�

� firstdh.r/ (3-2)

is bounded for all r , and so is jocdiagh.r/j.

PROOF. Expression (3-2) corresponds to the maximum distance between a free

diagonal and a subsequent occupied diagonal on row r ; and this is bounded by

Theorem 2.3. And since ocdiagh.r/ only contains integers > firstdh.r/, its size

is also bounded. ˜

LEMMA 3.3. max occolh.r/ < max ocdiagh.r/ for all h; r .

PROOF. Suppose a cell on row r lies on a column occupied by a lower h-point.

Then a cell on row r further to the right lies on the diagonal occupied by that

h-point. ˜

LEMMA 3.4. For g D 0 we can compute explicitly the quantities of Definition

3.1. In particular,

index0.r/D firstd0.r/D d��1re; (3-3)

ocdiag0.r/D occol0.r/D?: (3-4)

PROOF. index0.r/ is the index of the first 0-point on a row� r . Since a0
nDb�nc,

the first n that gives a0
n� r is nDd��1re. (3-3) follows from the fact that the 0-

points fill the diagonals in sequential order. And the second part of (3-3) follows

from (3-1). ˜

DEFINITION 3.5. We define the following “normalized” quantities by subtract-

ing index0.r/:

n indexh.r/Dindexh.r/� index0.r/;

n firstdh.r/Dfirstdh.r/� index0.r/;

n ocdiagh.r/Dfd � index0.r/ j d 2 ocdiagh.r/g;
n occolh.r/Dfc � index0.r/ j c 2 occolh.r/g:

LEMMA 3.6. The quantities n indexh.r/ and n firstdh.r/, as well as the ele-

ments of n ocdiagh.r/ and n occolh.r/, are bounded in absolute value for all r .

PROOF. This follows from Theorem 2.3. ˜
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DEFINITION 3.7. The state of a given row r consists of

n indexh.r/; n firstdh.r/; n ocdiagh.r/; n occolh.r/;

for 0� h� g.

By Lemma 3.6 we have:

COROLLARY 3.8. There is a finite number of distinct states among all rows

r � 0. ˜

Note that the state of a row r always satisfies

n indexh.r/D n firstdh.r/Cjn ocdiagh.r/j: (3-5)

Note also that if g D 0 there is a single state for all rows:

n index0.r/D n firstd0.r/D 0; n ocdiag0.r/D n occol0.r/D?:

DEFINITION 3.9. Given row r , we denote by

insert.r/D fh j r 2Ah; 0� h � gg

the set of h-points that Algorithm WSG must insert in this row.

Definitions 3.7 and 3.9 enable us to reformulate Algorithm WSG as a finite-

state automaton that jumps from state to state as it reads symbols from a finite

alphabet ˙ . The automaton is in the state of row r when it begins to calculate

row r , and after reading the symbol insert.r/, it goes to the state of row r C 1.

The input alphabet is ˙ D 2f0;:::;gg, the set of all possible values of insert.r/.

Algorithm FSW (page 400) spells out in detail this finite-state formulation.

(This algorithm is not equivalent to Algorithm WSG because it does not calcu-

late the sets insert.r/ from previous rows, but only receives them as input.)

3.2. Convergence of states. Suppose we run Algorithm FSW starting from

some row r1, giving it as input the correct values of insert.r1/, insert.r1C 1/,

: : : , but with a different initial state

n index0
h; n firstd0

h; n ocdiag0
h; n occol0h; 0� h� g; (3-7)

instead of (3-6). Then the algorithm will output 4-tuples .h; n; ah
n; b0h

n/, where

the b-coordinates of the points will not necessarily be correct.

Could it happen that at some row r > r1 the algorithm reaches the correct

state for row r? If that happens, then for all subsequent rows the algorithm will

be in the correct state, since the state of a row depends only on the state of the

previous row. Therefore, for all rows � r the algorithm will output the correct

4-tuples .h; n; ah
n; bh

n/.
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Algorithm FSW (Finite-State Wythoff)

Input: Integer g; integers r1, r2 (initial and final rows); state at row r1, given

by the variables

n indexh; n firstdh; n ocdiagh; n occolh; for 0� h� gI (3-6)

sets insert.r1/; : : : ; insert.r2/ (points to insert in rows r1; : : : ; r2).

Output: h-points in rows r1 through r2, given as 4-tuples

.h; n; ah
n; bh

n/ for 0� h� g; r1 � ah
n � r2:

1. For r D r1; : : : ; r2 do:

2. � Let S  ? [location of points inserted in this row].

3. � For hD 0; : : : ; g do:

4. ı If h 2 insert.r/ then:

5. � find the smallest d�n firstdh which is in none of the sets n ocdiagh,

n occolh, and S ;

6. � output the 4-tuple
�

h; n indexhC index0.r/; r; r C d C index0.r/
�

[note that index0.r/ can be calculated by Lemma 3.4];

7. � let n indexh n indexhC 1;

8. � insert d into n ocdiagh, n occolh, and S ;

9. � while n firstdh 2 n ocdiagh do n firstdh n firstdhC 1.

10. ı Subtract 1 from each element of n occolh [since r increases by 1: see

Definition 3.1–6].

11. ı Remove from n ocdiagh and n occolh all elements < n firstdh.

12. � If n index0 D 1 then [renormalize]:

13. ı subtract 1 from n indexh and n firstdh for all h;

14. ı subtract 1 from each element of n ocdiagh and n occolh for all h.

Denote by

n index0
h.r/; n firstd0

h.r/; n ocdiag0
h.r/; n occol0h.r/; 0� h� g; r � r1;

the state of the algorithm at row r when run with the initial state (3-7). We

assume that the initial state (3-7) is consistent with property (3-5).

Observe that if n index0
h.r1/ ¤ n indexh.r1/, this difference will persist in

all subsequent rows, since changes to n indexh (at lines 7 and 13 of Algorithm
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FSW) depend only on the input symbol insert.r/. Therefore, convergence can

only occur if the initial state contains the correct values of n indexh.r1/ for all

h.

Now, we make the following conjecture:

CONJECTURE 3.10 (CONVERGENCE CONJECTURE). For every g there exists

a constant Rg such that for every row r1, if Algorithm FSW is run starting from

row r1 with the initial “dummy” state

n index0
h D n firstd0

h D n indexh.r1/;

n ocdiag0
h D n occol0h D?;

for 0� h� g; (3-8)

and with the correct values of insert.r1/, insert.r1C 1/; : : : , then the algorithm

will converge to the correct state within at most Rg rows.

3.3. Experimental evidence for convergence. We tested Conjecture 3.10

experimentally as follows: For some constant rmax we precalculated the state

of row r and the value of insert.r/ for all r between 0 and rmax. We then

ran Algorithm FSW starting from each row r , 0 � r � rmax, with the dummy

initial state (3-8), comparing at each step whether the algorithm’s internal state

converged to the correct state of the current row. We carried out this experiment

for different values of g.

Our results are as follows: For gD 0 convergence always occurs after 0 rows;

i.e., convergence is immediate.

For gD 1 the maximum time to convergence found was 45 rows. In fact, up

to row 107 there are 3019 instances of convergence taking 45 rows.

For g D 2 the maximum found was 72 rows. Below row 107 there are 91

instances of convergence taking 72 rows.

For g D 3 the maximum of 140 rows to convergence is achieved only once

below row 107.

For larger values of g we ran our experiment until row 106. Table 5 shows our

findings. In each case we indicate the largest number of rows to convergence,

and the starting row that achieves the maximum (or the first such starting row

in case there are several).

Finally, Figure 11 shows a histogram of the time to convergence for g D 10

up to row 106. The shape of the curve suggests that there might be instances

of higher convergence times that occur very rarely. However, we still find it

plausible that a theoretical maximum Rg exists.

Note that Conjecture 3.10 could also be true only up to a certain value of g.
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rows to starting

g convergence row

0 0 0

1 45 2201

2 72 72058

3 140 804421

4 180 862429

5 235 732494

6 395 685531

7 395 685531

8 461 827469

9 630 59948

10 909 443109
:::

15 2041 8662
:::

20 4136 896721

Table 5. Maximum number of rows to convergence for different g up to
row 106, and first starting row that achieves the maximum.

0 200 400 600 800 1000
rows1

10

100

1000

count

Figure 11. Histogram of the number of rows to convergence for g D 10,
up to row 106.

3.4. The recursive algorithm. We now show how Conjecture 3.10 leads to an

algorithm for computing point p
g
n in O.f .g/ log n/ arithmetic operations, where

f is some function on the constant Rg of Conjecture 3.10 and the constants ˛g,

ˇg of Theorem 2.3.
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Algorithm RW below is a recursive algorithm that receives as input an integer

g and an interval Œr1; r2� of rows, and calculates all h-points, 0� h� g, in that

interval.

Algorithm RW (Recursive Wythoff)

Input: Integer g; integers r1, r2 (initial and final rows).

Output: indexh.r1/ for 0 � h � g; set S of h-points in rows r1 through r2,

given as 4-tuples .h; n; ah
n; bh

n/ for 0� h� g; r1 � ah
n � r2.

1. Let r0 r1�Rg.

2. Let L and H be lower and upper bounds for ah
n���1bh

n for 0� h� g and

all n, according to Theorem 2.3. [Note that ah
n < ��1rCL implies bh

n < r ,

and ah
n > ��1r CH implies bh

n > r .]

3. Let r 0
1
 d��1r0CLe; r 0

2
 b��1r2CHc.

4. If r 0
2
� r0 or r 0

1
� 2g then:

5. � calculate and return the desired points by starting from row 0 using Al-

gorithm WSG;

6. else:

7. � call Algorithm RW recursively and get indexh.r 0
1
/ and the set S 0 of h-

points in rows r 0
1

through r 0
2

for 0� h� g;

8. � calculate insert.r0/; : : : ; insert.r2/ as

insert.r/D
˚

h
ˇ

ˇ @n for which .h; n; ah
n; r/ 2 S 0

	

for r0 � r � r2;

9. � let th be the number of h-points in S 0 with bh
n < r0, for 0� h� g;

10. � calculate indexh.r0/ as indexh.r0/D r0C1�indexh.r 0
1
/�th, for 0�h�g

[see explanation];

11. � calculate n indexh.r0/ as n indexh.r0/ D indexh.r0/ � index0.r0/, for

0� h� g;

12. � run Algorithm FSW from rows r0 to r2 starting from the dummy state

n index0
h D n firstd0

h D n indexh.r0/;

n ocdiag0
h D n occol0h D?;

0� h� g;

using insert.r0/; : : : ; insert.r2/; get set T of 4-tuples .h; n; ah
n; b0h

n/ for

r0 � ah
n � r2;

13. � return indexh.r1/ for 0� h� g, and the 4-tuples in T with r1 � ah
n � r2.
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Figure 12. Points and reflected points in rows r0 through r2.

The idea behind Algorithm RW is the following: To calculate the h-points

between rows r1 and r2, we run Algorithm FSW starting from row r0 D r1 �
Rg and the dummy initial state (3-8). Then, by Conjecture 3.10, the 4-tuples

obtained from row r1 on will be the correct ones .h; n; ah
n; bh

n/.

We face two problems, however:

� To run Algorithm FSW we also need to know insert.r0/; : : : ; insert.r2/, i.e.,

which h-points to insert between rows r0 and r2.

� For the dummy initial state (3-8) we need to know indexh.r0/ for 0� h� g,

i.e., how many h-points there are below r0.

We solve both problems with a recursive call, in which we calculate all the

reflected h-points that lie between rows r0 and r2, to the left of the main diagonal

(see Figure 12). By the definition of L and H (line 2 of Algorithm RW), all

these reflected h-points lie between columns r 0
1

and r 0
2

as computed in line 3. Of

course, finding these reflected h-points is equivalent to finding the unreflected

originals.

Once we have the reflected h-points, constructing insert.r0/; : : : ; insert.r2/

is simple, since every row r , r0� r � r2 that does not contain a reflected h-point

must contain an h-point, and vice versa.

And computing indexh.r0/ is also no problem, once we know indexh.r 0
1
/

from the recursive call. Recall that indexh.r0/ is the number of h-points on rows

0; : : : ; r0�1. Let kh be the number of reflected h-points on rows 0; : : : ; r0�1.

Then

indexh.r0/C kh D r0C 1;

since there is one h-point on the main diagonal, which is counted twice.

To calculate kh, note that all reflected h-points before column r 0
1

lie below

row r0, and there are indexh.r 0
1
/ such reflected h-points. Therefore,

kh D indexh.r 0
1/C th;
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where th is the number of reflected h-points below row r0 that lie on or after

column r 0
1
, as in line 9. Putting all this together, we get

indexh.r0/D r0C 1� indexh.r 0
1/� th;

as in line 10.

The above calculation is only valid if the h-point on the main diagonal lies

before column r 0
1
. That is why we check for the case r 0

1
� 2g at line 4 (recall

Lemma 2.2).

Finally, the check r 0
2
� r0 at line 4 prevents making a recursive call if the new

interval Œr 0
1
; r 0

2
� is not strictly below the old interval Œr0; r2�.

If we cannot make a recursive call (for either of the two possible reasons), we

calculate the h-points in the standard way, using Algorithm WSG starting from

row 0.

3.5. Algorithm RW’s running time. If we want to use Algorithm RW to cal-

culate a single point p
g
n , we must first estimate its row number a

g
n . By Theorem

2.3, we can bound it between r1 D d�nCL0e and r2 D b�nCH 0c for some

constants L0, H 0 that depend on g.

Whenever Algorithm RW makes a recursive call, it goes from an interval of

length �r D r2� r1 to an interval of length �r 0 D r 0
2
� r 0

1
, where

�r 0 D ��1�r C .H �LC��1Rg/

(ignoring the rounding to integers). After repeated application of this transfor-

mation, the interval length converges to the constant

�r� D �2.H �L/C�Rg:

The number of recursive calls is O.log n/, since each interval is � times

closer to the origin than its predecessor. And in the base case of the recursion,

Algorithm WSG runs for at most a bounded number of rows, taking constant

time.

Therefore, altogether Algorithm RW runs in O.f .g/ log n/ steps, for some

function f that depends on the constants Rg, ˛g, and ˇg, as claimed.

3.6. Application of Algorithm RW. Let us discuss how to apply Algorithm RW

to the problem raised in the Introduction, namely playing the sum of Wythoff’s

game with a Nim pile.

Suppose we are given the sum of a game of Wythoff in position .a; b/, a� b,

with a Nim pile of size g, where a and b are very large and g is relatively small.

Suppose Conjecture 3.10 is true for this value of g, and we know the value of

Rg.
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Figure 13. Intervals in which to look for a successor with Grundy value g

to position .a; b/.

We have to determine whether G.a; b/ is larger than, smaller than, or equal

to g. By Theorem 2.3, we can only have G.a; b/� g if jb��aj � kg for some

constant kg that depends on ˛g and ˇg.

Therefore, if jb��aj> kg, we know right away that G.a; b/ > g. If, on the

other hand, jb � �aj � kg, then we use Algorithm RW to find all the h-points,

h� g, in the vicinity of .a; b/, and we check whether .a; b/ is one of them.

If we find that G.a; b/D g, then the overall game is in a P -position, so there

is no winning move. If G.a; b/ D h < g, then our winning move is to reduce

the Nim pile to size h. And if G.a; b/ > g, then our winning move consists

of moving in Wythoff’s game to a position with Grundy value g. There are at

most three alternatives to check — moving horizontally, vertically, or diagonally.

Therefore, the winning move can be found by making at most three calls to

Algorithm RW with bounded-size intervals, as shown schematically in Figure

13.
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g p
g

1012
g p

g

1012
g p

g

1012

0 .aC 49; bC 49/ 7 .aC 50; bC 46/ 14 .aC 49; bC 54/

1 .aC 50; bC 50/ 8 .aC 51; bC 51/ 15 .aC 47; bC 51/

2 .aC 49; bC 50/ 9 .aC 51; bC 56/ 16 .aC 49; bC 43/

3 .aC 50; bC 49/ 10 .aC 49; bC 52/ 17 .aC 53; bC 51/

4 .aC 50; bC 51/ 11 .aC 51; bC 49/ 18 .aC 48; bC 52/

5 .aC 50; bC 52/ 12 .aC 49; bC 53/ 19 .aC 52; bC 61/

6 .aC 49; bC 51/ 13 .aC 50; bC 55/ 20 .aC 49; bC 39/

where aD 1 618 033 988 700 and b D 2 618 033 988 700.

Table 6. Predicted value of p
g

1012
for 0� g � 20.

3.7. Algorithm RW in practice. We wrote a C++ implementation of Algorithm

RW. For the constants L and H we used experimental lower and upper bounds

for a
g
n � ��1b

g
n , to which we added safety margins. For the constant Rg we

added a safety margin to the values shown in Table 5.

We checked our program’s results against those produced by the nonrecursive

Algorithm WSG. The results were in complete agreement as far as we tested.

We also used our recursive program to predict the trillionth g-values for g

between 0 and 20. We used L D �15:0, H D 15:0 (which are a safe distance

away from the experimental bounds of�12:4 and 11:3), and R20D8000 (almost

twice the value in Table 5).

Our predictions are shown in Table 6. The program actually performed this

calculation in just twenty seconds. These predictions might be verified one day

with a powerful computer.

To conclude, note that if there are only sporadic counterexamples to Conjec-

ture 3.10 for a certain value of Rg, then Algorithm RW is still likely to give

correct results in most cases. Algorithm RW will only fail if one of the rows r0

in the different recursion levels constitutes the initial row of a counterexample

to Conjecture 3.10. But, as we showed earlier, the number of recursion levels is

logarithmic in the magnitude of the initial parameters.

Appendix: Lemmas of Section 2.5

We relegated some proofs in Section 2.5 to this Appendix.

LEMMA 2.18. Let fxng be a sequence that satisfies xnC1� cxn for some jcj<1.

Then fxng is bounded as a sequence.

PROOF. Let k be the constant such that jxnC1�cxnj � k, as in Definition 2.17;

and let d D k=.1�jcj/. Let I be the real interval I D Œ�d; d �. It can be verified
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that if xn 2 I , then xnC1 2 I , and if xn 62 I , then jxnC1j�d � jcj .jxnj�d/; in

other words, the distance between xn and I is multiplied by a factor of at most

jcj. Therefore, since jcj< 1, the sequence fxng is “attracted” towards I . ˜

LEMMA 2.20. Regarding the sequences fang and fbng in the statement of The-

orem 2.19:

(a) There is a constant k such that for all n, the number of bm > bn, m < n, is

at most k.

(b) There is a constant k 0 such that for all n, the number of bm < bn, m > n, is

at most k 0.

(c) an � an�1 and bn � bn�1.

PROOF. According to condition 3 in the Theorem, let L and H be such that

nCL � bn� an � nCH for all n:

Suppose bm > bn, with m < n. Then

bn � anC nCL; bm � amCmCH:

But an� am � n�m, so 0 < bm� bn � 2.m� n/CH �L; so

m > n� H �L

2
:

Therefore, for every n there are at most .H �L/=2 possible values for m. This

proves claim (a). Claim (b) follows analogously.

For claim (c), let k D an � an�1. Then, by condition 2 in the Theorem, the

interval

I D fan�1C 1; : : : ; an� 1g;
whose size is k�1, is a subset of B. Let i be the smallest index and j the largest

index such that both bi and bj are in I . Then bj �bi � k�2 and j � i � k�2.

But we have

bj � aj C j CL; bi � ai C i CH; aj � ai � j � i;

so

k � 2� bj � bi � 2.j � i/CL�H � 2k � 4CL�H;

so

k �H �LC 2;

proving that an � an�1. Moreover

bn� bn�1 � .anC nCH /� .an�1C n� 1CL/ � 2.H �L/C 3

and

bn� bn�1 � .anC nCL/� .an�1C n� 1CH / �L�H C 2;
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since an� an�1 � 1. Therefore, bn � bn�1. ˜

LEMMA 2.21. There exists an integer n1 such that f .n/ > n for all n� n1.

PROOF. The number of a’s smaller than an is exactly n, so the number of b’s

smaller than an is � an � n. On the other hand, bn � bn�1, so the number of

b’s smaller than an goes to infinity as n!1. Therefore, an � n!1. But

an � f .n/ (equation (2-5) in Section 2.5). Therefore, f .n/�n!1, which is

even stronger than our claim. ˜

LEMMA 2.22. The sequence fyj g defined in (2-7) satisfies yjC1 � ��1yj .

PROOF. First note that if fcng and fdng are sequences such that cn � dn, then

by equation (2-5) and Lemma 2.20(c) we have f .cn/ � f .dn/. We also have

xcn
� xdn

.

For each j � 0, let m.j /, nj � m.j / � njC1, be the index for which the

maximum yj D jxm.j/j is achieved.

We claim that for each j � 1 there exists an integer p.j / in the range nj �
pj � njC1 such that

f .p.j //�m.j C 1/: (A-9)

Indeed, at the one extreme we have f .nj /DnjC1�m.jC1/, while at the other

we have f .njC1/ D njC2 � m.j C 1/. Thus, there exists some intermediate

value p.j / such that f .pj /�m.jC1/ and f .pjC1/�m.jC1/. This choice

of p.j / satisfies (A-9).

Therefore, using equation (2-6),

yjC1 D jxm.jC1/j � jxf .p.j//j � ��1jxp.j/j � ��1jxm.j/j D ��1yj :

So

yjC1 � hj � ��1yj (A-10)

for some sequence fhj g.
Similarly, for each j � 1 there exists an integer q.j / in the range nj � q.j /�

njC1 such that

f .m.j //� q.j C 1/

for all j � 1. Specifically, let

q.j C 1/Dmin
˚

max ff .m.j //; njC1g; njC2

	

:

(It is not hard to show that if f .n/>f .n0/, n<n0, then f .n/�f .n0/ is bounded.)

Therefore, using again equation (2-6),

yjC1 � jxq.jC1/j � jxf .m.j//j � ��1jxm.j/j D ��1yj I

so yjC1 � h0
j � ��1yj for some sequence fh0

j g. This, together with (A-10),

implies that yjC1 � ��1yj . ˜
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Yellow-Brown Hackenbush

ELWYN BERLEKAMP

ABSTRACT. This game is played on a sum of strings. In its “restricted”

form, Left, at her turn, picks a bichromatic string and removes its highest

yeLLow branch. Right, at his turn, picks a bichromatic string and removes

its highest bRown branch. As in the well-known game of bLue-Red Hacken-

bush, all higher branches, being disconnected, also disappear. But in yellow-

brown Hackenbush, unlike blue-red Hackenbush, all moves on monochromatic

strings are illegal. This makes all values of yellow-brown Hackenbush all-

small.

This paper presents an explicit solution of restricted yellow-brown Hacken-

bush. The values are sums of basic infinitesimals that have appeared in many

other games found in Winning Ways.

Yellow-Brown (YB) Hackenbush is played on sums of strings. Each mixed

string is played analogously to LR Hackenbush. Left can remove a yeLLow

branch, and all other branches (if any) above it; Right can remove a bRown

branch and all other branches (if any) above it. But yellow-brown strings differ

from blue-red strings in an important respect:

Neither player is allowed to move on any monochromatic string.

That rule ensures that all stopping positions are 0, and that all YB values are

infinitesimal.

There are (at least) two variations of YB Hackenbush: restricted and unre-

stricted. In the restricted variation, each player is allowed at most a single option

on any string, namely, his branch which is highest above the ground. Although

this restriction would have no effect on the values of LR Hackenbush, it has

a major effect on YB Hackenbush. In the unrestricted YB Hackenbush, either

player can move to 0 by playing his lowest branch, so all nonzero values are

confused with 0.

We now present a complete solution for restricted YB strings.
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To each YB string we may associate a number x which is the value of the

corresponding LR Hackenbush string. It is not hard to see, recursively, that the

value of the YB string is

v D

Z 0

0

x

Although this operator,
R 0

0 , is nonlinear, it can be used to compute the value v.

This value can be expressed in terms of a basis of standard infinitesimals. The

key to accomplishing this is another number, namely

y D dxe C 1
2

� x:

Here are the values corresponding to some short YB strings:

String x y v

Y 1 .1 0

YYBBB 1.001 .011 *�

YYBB 1.01 .01 "

YYBBYB 1.0101 .0011 2:"Œ2�

YYBBY 1.011 .001 "Œ2�

YYBBYY 1.0111 .0001 "Œ3�

YYB 1.1 0 �

where the basis infinitesimals in the v column are defined by

"Œ1� D 0 j �

"Œ2� D "Œ1� j �

"Œ3� D "Œ2� j �

: : :

"Œn C 1� D "Œn� j �

In general, if y D
Pn

iD1 Yi2
�i , where each Yi equals 0 or 1, with Y1 D 0 and

Yn D 1, then our asserted value is

v.y/ D � C

n
X

iDl

Yi

�

"

� i
X

jD1

.1 � Yi/

�

�

�

;
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where "Œn� is defined above. So, for example, consider the string

Y Y B B B Y B Y Y B Y B B B Y

Using the well-known rule for Blue-Red Hackenbush strings (see Winning Ways,

vol. 1), we have the binary expansion of x, namely

Y Y B B B Y B Y Y B Y B B B Y

x D 1
„ƒ‚…

� 0 0 1 0 1 1 0 1 0 0 0 1 1

from which we proceed as follows:

x D 1 � 0 0 1 0 1 1 0 1 0 0 0 1 1

y D � 0 1 0 1 0 0 1 0 1 1 1 0 1
„ƒ‚…

v D � C "Œ1��

C "Œ2��

C "Œ4��

C 3:"Œ5��

C "Œ6��

SKETCHED PROOF. The negatives of the Left incentives of the basis infinitesi-

mals are positive infinitesimals of increasingly higher orders:

" D ��L"Œ1� � ��L"Œ2� � � � � � �L"Œj � > 0

In real analysis, one expects equations such as

" � "2 � � � � � "k > 0;

so, by analogy, it is common to denote ��L"Œj � by "j , even though no multi-

plication is defined nor intended.

Then

"Œj � D "Œj � 1�C "j

D

j
X

iD1

"i :

For every j ,

� 6?

j
X

iD1

"i

but

� <

j�1
X

iD1

"i C "j C "j :
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Both sequences of incentives increase

�L."Œj �/ < �L."Œj C 1�/

�R."Œj �/ < �R."Œj C 1�/:

Therefore, in any sum of nonnegative integer multiples of "Œj �, each player’s

dominant move is on a term with maximum superscript.

The cases
y D :1;

and y D 0;

v D "Œ0� D 0

v D �

are degenerate. In the general nondegenerate case, 0 < y < 1
2

,

y D

n
X

iD1

Yi2
�i for each Yi D 0 or 1:

Let m be the integer for which Ym D 0, but Yi D 1 for m < i � n.

Let

k D

n
X

iD1

.1 � Yi/ D

m
X

iD1

.1 � Yi/:

Then

v.y/ D � C

m
X

iD1

Yi

�

"

� i
X

jD1

.1 � Yj /

�

�

�

C .n � m/:."Œk��/

We now explore properties of this asserted value, leading to a sketched proof

that it is indeed the value of the corresponding restricted YB Hackenbush string.

We notice that since 0 < y < 1
2

, v.y/ is positive. From v.y/, Right has

a unique dominant incentive, "Œk��. Left has two dominant incentives, � and

#k . However, Left’s move of incentive � reverses to another position whose

incentive is dominated by #k , and so we have the equation

v.y/ D
˚

v.y/ C #k
ˇ
ˇ v.y/ � "Œk� �

	

: (0-1)

If n D m C 1, this is canonical form. However, if n � m C 2, then Left’s move

is reversible. It continues to reverse to 0, and the canonical form is

v.y/ D
˚

0
ˇ
ˇ v.y/ � "Œk��

	

; if n � m C 2: (0-2)

The canonical positions of the number y include:

yL D y � 2�n;

yR D y C 2�n;

yRL D y C 2�n � 2�m;

yL D yRL C .2�m � 21�n/:
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The asserted YB values satisfy

v.y/ D v.yL/ C "Œk��;

v.yR/ D v.yRL/ C "Œk � 1��;

v.y/ D v.yRL/ D .n � m/:."Œk��/;

v.yL/ D v.yRL/ C .n � m � 1/:."Œk��/;

(0-3)

and

v.y/ > v.yR/: (0-4)

If n D m C 1, then in view of (0-3), (0-1) becomes

v.y/ D fv.yR/ j v.yL/g (0-5)

We next show that (0-5) remains valid if n � m C 2.

From (0-2), we have

v.y/ D f0 j v.yL/g:

Relation (0-4) implies that v.yR/ 6? v.y/, and so the Gift Horse principle ensures

that

v.y/ D f0 j v.yL/g D f0; v.yR/ j v.yL/g

D fv.yR/ j v.yL/g; because v.yR/ � 0:

Thus, (0-5) is valid for any n > m. Since y D 1
2

� x, this recursion implies

that if there is any value of y for which the asserted YB string value is incorrect,

it must be degenerate. But we have verified the degenerate cases, and so the

asserted values are correct for all restricted YB strings. ˜

Historical note

This game arose in the early 1990s when I was studying a variety of overheat-

ing operators and trying (in vain) to get more understanding of the conditions

under which they are linear and/or monotonic. In my graduate seminars on

game theory, we considered numbers overheated from 1 to infinity. We called

them “vaporized numbers” and observed their close relationship to numbers

overheated from 0 to 0. We then invented this game. Several graduate students

participated in those discussions. In spring 1994, I wrote a preliminary ver-

sion of this paper and distributed it to the class. Shortly thereafter Kuo-Yuen

Kao studied some similar games, and included them in his unpublished doctoral

thesis at UNC Charlotte.

The invention of Clobber in 2002 rekindled widespread interest in properties

of infinitesimals and led me to begin a slow and sporadic search which culmi-

nated in finding this paper buried deep in my files.
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Ordinal partizan End Nim

ADAM DUFFY, GARRETT KOLPIN, AND DAVID WOLFE

Introduction

Partizan End Nim is a game played by two players called Left and Right.

Initially there are n stacks of boxes in a row, each stack containing at least one

box. Players take turns reducing the number of boxes from the stack on their

respective side (Left removes from the leftmost stack, while Right removes from

the rightmost stack). For example, the position 3 j 5 j 2 (or, denoted more tersely,

352) has three boxes in its leftmost pile, five boxes in the middle pile, and two

boxes in the rightmost pile. When the game starts, Left can only remove boxes

from the pile of size three, and Right can only remove boxes from the pile of size

two. The first player that cannot move loses. This particular position should be

a win for the first player (whether that be Left or Right). The first player should

remove a whole pile, for the stack of size 5 dominates the remaining stack.

Notice that if one player has a legal move from a position, the other player can

also legally move, making the game all small, as defined in [3, p. 101] and [2,

vol. 1, p. 221].

In our version of Partizan End Nim, piles are not limited to finite size. A

move in Partizan End Nim requires the player to change the size of the closest

pile to a smaller ordinal number (possibly 0). For instance, a move from a pile

of size !, the smallest nonfinite ordinal, consists of changing the size of that

pile to some finite ordinal height. A player can move a pile of size ! C1 to any

natural number or to a pile of size !.

For an example of a position with ordinal pile sizes, the reader can confirm

that Left can win from the three pile position .!C!C1/ j .!C!/ j .!C1/

whether she moves first or second. Moving first, Left can remove the leftmost

pile since the middle pile is larger than the rightmost pile. The strategy that Left

This research was supported by a Research, Scholarship, and Creativity Grant from Gustavus Adolphus

College.
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uses when playing second depends on Right’s move. If Right takes the whole

rightmost pile, then Left’s winning move is to remove one box from the leftmost

pile. On the other hand, if Right changes the size of the rightmost pile to either

! or some natural number, then the winning move for Left is to remove the

entire leftmost pile.

The results and proofs presented here parallel and tighten those found in [1]

by allowing for ordinal pile sizes. We give an efficient recursive method to

compute the outcome of (and winning moves from) any position. The reader

who is not fond of ordinal numbers can safely skip the following section and

assume all pile sizes are finite.

Ordinal numbers

Ordinal numbers generalize the natural numbers, allowing us to define trans-

finite numbers. In this paper, we will represent ordinal numbers as sets by giving

a standard recursive definition.

For sets X; Y , define X < Y if X � Y , the natural partial ordering of sets.

DEFINITION 1. The segment of X determined by ˛, written X˛ , is defined by

X˛ D fx 2 X j x < ˛g.

DEFINITION 2. An ordinal is a well-ordered set X such that ˛ D X˛ for all

˛ 2 X .

From this definition, we are able to reach the following conclusions:

� If X is an ordinal, then for all ˛ 2 X , ˛ is also an ordinal.

� If X is an ordinal, then for all ˛ 2 X , ˛ � X .

� The set of all ordinals is well-ordered.

� For ordinals ˛ and ˇ, ˛ < ˇ ” ˛ � ˇ ” ˛ 2 ˇ.

Now, we define the first ordinal, �, to be 0. From this, we can define 1 D

f0g D f�g, 2 D f0; 1g D f�; f�gg, and so on. The least transfinite ordinal is

defined as ! D f0; 1; 2; 3; 4; : : :g. Since ordinals are well-ordered, the principle

of mathematical induction applies to them. (See, for example, [4, 1.7; 3.1])

Next, we will describe some properties of ordinal numbers.

DEFINITION 3. If we have two ordinals, ˛ and ˇ, then the ordinal sum of ˛ and

ˇ is defined by

˛ C ˇ D ˛ [ f˛ C ˇ0gˇ02ˇ

and the ordinal difference of ˛ and ˇ, with ˛ � ˇ, is defined by

˛ � ˇ D f˛0 � ˇg˛0�ˇ;˛02˛ .
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Ordinal addition is not commutative, but it is associative. For example, 1C! D

!, while ! C 1 D f1; 2; 3; : : : ; !g > !. With these definitions, we are able to

make the following observations:

OBSERVATION 4. If ˇ0 2 ˇ, then .˛ C ˇ0/ 2 .˛ C ˇ/.

OBSERVATION 5. If ˛0 2 ˛, then .˛0 � ˇ/ 2 .˛ � ˇ/.

Now, we will show that our definitions for ordinal addition and subtraction ob-

serve the following identities:

LEMMA 6. Let ˛ and ˇ be ordinals. Then

.ˇ C ˛/ � ˇ D ˛ and ˇ C .˛ � ˇ/ D ˛ (if ˛ � ˇ).

PROOF.

.ˇ C ˛/ � ˇ D .ˇ [ fˇ C ˛0g/ � ˇ

D f.ˇ C ˛0/ � ˇg

D f˛0g (by induction)

D ˛I

ˇ C .˛ � ˇ/ D ˇ C f˛0 � ˇg˛0�ˇ

D ˇ [ fˇ C .˛0 � ˇ/g˛0�ˇ

D ˇ [ f˛0g˛0�ˇ (by induction)

D f˛0g

D ˛: ˜

Note that .˛ Cˇ/�ˇ and .˛ �ˇ/Cˇ need not equal ˛. For example, .1C!/�

! D 0 and .! � 1/ C 1 D ! C 1.

Partizan End Nim

In this section, we will define a recursive algorithm that determines the out-

come class of a game of Partizan End Nim.

DEFINITION 7. An outcome class describes which player has a winning strategy.

The four possible outcome classes are N, P, L, and R. A game is in:

� N if the first player always has a winning strategy.

� P if the second player always has a winning strategy.

� L if the Left player always has a winning strategy.

� R if the Right player always has a winning strategy.
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For the remainder of this paper, we’ll encode a position by a string of ordinals, x.

We can append and/or prepend additional piles to the string by concatenation, as

in ˛xˇ. For instance, if x D 3526 is a position with 4 piles, we might construct

a 6 pile game ˛xˇ, where ˛ D ! and ˇ D ! C 3.

DEFINITION 8. Let R.x/ be defined as the minimum ordinal ˇ such that xˇ

is a win for Right moving second, where ˇ � 0. Similarly, define L.x/ as the

minimum ˛ such that ˛x is a win for Left moving second.

OBSERVATION 9. Using these definitions, we are able to determine the outcome

class of ˛xˇ for ordinals ˛; ˇ > 0 as follows:

˛xˇ 2

8

ˆ

ˆ

<

ˆ

ˆ

:

L if ˛ > L.xˇ/ and ˇ � R.˛x/;

R if ˛ � L.xˇ/ and ˇ > R.˛x/;

N if ˛ > L.xˇ/ and ˇ > R.˛x/;

P if ˛ � L.xˇ/ and ˇ � R.˛x/:

DEFINITION 10. The triple point of x is .L.x/; R.x//.

We show in the next proposition that the triple point of x determines the outcome

class of any game of the form ˛xˇ.

PROPOSITION 11. We can determine the outcome class of any game ˛xˇ for

ordinals ˛; ˇ > 0 using just L.x/ and R.x/:

˛xˇ 2

8

ˆ

ˆ

<

ˆ

ˆ

:

N if ˛ � L.x/ and ˇ � R.x/;

P if ˛ D L.x/ C  and ˇ D R.x/ C  for some  > 0;

L if ˛ D L.x/ C  and ˇ < R.x/ C  for some  > 0;

R if ˛ < L.x/ C  and ˇ D R.x/ C  for some  > 0:

PROOF. First, assume that ˛ � L.x/ and ˇ � R.x/. If Left removes all of ˛,

Right cannot win since any move is to xˇ0 where ˇ0 < ˇ and ˇ was the least

value such that Right wins moving second on xˇ. Symmetrically, Right can also

win moving first by removing all of ˇ. Thus, ˛xˇ 2 N.

Next, assume that ˛ D L.x/ C  and ˇ D R.x/ C  for some  > 0. Also,

assume that Left moves first. If Left changes the size of ˛ to ˛ D L.x/ C  0

where 0 <  0 <  , Right simply responds by moving on ˇ to ˇ D R.x/C 0. By

induction, this position is in P. On the other hand, if Left changes the size of ˛

to ˛0 where ˛0 � L.x/, Right can win by removing ˇ as shown in the previous

case. Thus, Left loses moving first. Symmetrically, Right also loses moving

first. So, ˛xˇ 2 P.

Finally, assume ˛ D L.x/C and ˇ < R.x/C for some  > 0. If ˇ � R.x/,

Left can win moving first by removing all of ˛ as shown in the first case. If

ˇ > R.x/, Left wins moving first by changing the size of ˛ to L.x/C 0, where

 0 is defined by ˇ D R.x/C 0, which is in P by induction. Left can win moving
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b

.L.x/; R.x//
r�

�
�

��
P

x

ˇ

˛

N

R

L

Figure 1. Outcome classes of the game ˛xˇ for all ordinals ˛ and ˇ.

The unfilled circle represents the triple point, .L.x/; R.x//, which has an

outcome class of N. The filled circle is the point .L.x/C1; R.x/C1/ and

the games on the line originating from the filled circle, which are of the

form .L.x/ C ; R.x/ C  / where  > 0, have an outcome class of P.

second from ˛xˇ by making the same responses as in the previous case. Thus,

˛xˇ 2 L. ˜

OBSERVATION 12. Suppose we have a string of piles called x. If we were to

list the outcome classes of xˇ as ˇ increases from 1 through the ordinals, we

would get one of the following results:

� a string (possibly empty) of N’s followed by R’s, or,

� a string of L’s (again possibly empty) followed by a single P, and then R’s.

OBSERVATION 13. If ˛xˇ 2 P, then .˛C /x.ˇC / 2 P for all ordinals  > 0.

Notice that by using Proposition 11, the triple point of x determines the outcome

classes of all games of the form ˛xˇ. Figure 1 represents the outcome classes

of the game ˛xˇ.

Finally, we will give a recursive algorithm to compute R.x/ and L.x/, which

allows us to efficiently analyze any Partizan End Nim position.

PROPOSITION 14. The functions R.x/ and L.x/ can be computed recursively

using:

R.˛x/ D

�

0 if ˛ � L.x/,

R.x/ C .˛ � L.x// if ˛ > L.x/,

L.xˇ/ D

�

0 if ˇ � R.x/,

L.x/ C .ˇ � R.x// if ˇ > R.x/.

For the base case, R.x/ D L.x/ D 0 when x is empty.

PROOF. As already shown in Proposition 11, Left loses moving first on ˛x

where ˛ � L.x/, so R.˛x/ D 0. On the other hand, assume that ˛ > L.x/. We
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know from Lemma 6 that ˛ D L.x/ C .˛ � L.x//, so let  D .˛ � L.x//. By

Proposition 11, the least value of ˇ that lets Right win moving second on ˛xˇ

is ˇ D R.x/ C  D R.x/ C .˛ � L.x//. ˜

An algorithm to compute R.x/ and L.x/ using the above recurrence can be

written to take �.n2/ ordinal operations, where n is the number of piles in x,

since there are 1

2
n.n C 1/ consecutive subsequences of a row of n piles.

Some examples

As an example, we will determine who wins from

3 j 5 j 2 j 3 j 3 j 1 j 9

when Left moves first and when Right moves first. Fix x D 52331. We wish to

compute L.x/ and R.x/ using Proposition 14. For single-pile positions, L.˛/ D

R.˛/ D ˛, because R.˛/ D R./ C .˛ � L.// D 0 C .˛ � 0/ D ˛. For 2-pile

positions, we have

R.˛ˇ/ D

�

0 if ˛ � ˇ,

˛ if ˛ > ˇ,
L.˛ˇ/ D

�

0 if ˛ � ˇ,

ˇ if ˛ < ˇ.

We can compute L.52331/ by first calculating L.w/ and R.w/ for each shorter

substring of piles:

w L(w) R(w)

523 0 2

233 6 2

331 1 6

5233 1 0

2331 0 7

52331 2 12

For instance, R.523/ D R.23/ C .5 � L.23// D 0 C .5 � 3/ D 2.

For the original position ˛xˇ D3x9, we have 3>L.x/D2 and 9�R.x/D12,

and hence, by Observation 9, 3523319 is an L-position.

As a last example, we will tabulate L.x/ for three 3-pile positions, the first

of which is from the introduction:

x

left pile middle pile right pile L.x/

!C!C1 !C! !C1 0

!C!C1 !C!C1 !C1 !C1

!C!C1 !C!C2 !C1 !C!C!C1
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A small change to an individual pile size (in this case, the middle pile) can have

a large effect on the triple-point.

Open question

While the values of arbitrary Partizan End Nim positions appear quite com-

plicated, we conjecture that the atomic weights are all integers.
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Reductions of partizan games

J.P. GROSSMAN AND AARON N. SIEGEL

ABSTRACT. The reduced canonical form of a game G, denoted by G, is the

simplest game infinitesimally close to G. Reduced canonical forms were intro-

duced by Calistrate [2], who gave a simple construction for computing G. We

provide a new correctness proof of Calistrate’s algorithm, and show that his

techniques generalize to produce a family of reduction operators. In addition,

we introduce a completely new construction of G, motivated by Conway’s

original canonical-form construction.

1. Introduction

Although canonical forms sometimes reveal substantial information about the

structure of combinatorial games, they are often too complicated to be of any

great use. Many of the most interesting games — including Clobber, Amazons,

and Hare and Hounds — give rise to some massively complex canonical forms

even on relatively small boards. In such cases, a method for extracting more

specific information is highly desirable. The familiar temperature theory, and

the theory of atomic weights for all-small games, can be viewed as efforts to

address this problem.

In 1996, Dan Calistrate [2] introduced another type of reduction. Calistrate

observed that in certain situations, infinitesimal differences are of secondary

importance. He proposed associating to each game G a reduced canonical form,

G, such that G D H whenever G � H is infinitesimal.

Calistrate’s original construction defined G to be the simplest game equivalent

to G modulo an infinitesimal, where simplicity is measured in terms of the

number of edges in the complete game tree. He gave a method for calculating

G and claimed that the map G ‘ G was a homomorphism. However, his proof

of this assertion contained a flaw.

427



428 J.P. GROSSMAN AND AARON N. SIEGEL

Section 2 reviews Calistrate’s construction, introduces some important defi-

nitions and notation, and establishes some basic results regarding infinitesimals.

Section 3 introduces the group of even-tempered games. In Section 4, we give

a natural definition of reduced canonical form, and show that it matches Calis-

trate’s construction. In Section 5, we show that many of our results generalize to

a broad family of homomorphisms of the group of games. Section 6 establishes

the relationship between these homomorphisms and reduced canonical forms.

Finally, Section 7 poses some interesting open problems.

2. Preliminaries

Throughout this paper we use the equivalent terms form and representation to

denote a particular formal representation of a game G. Given a game G D fGL j

GRg, we will use the terms followers to mean all subpositions of G, including G

itself; proper followers to mean all subpositions of G, excluding G; and options

to mean the immediate subpositions GL, GR.

A game " is an infinitesimal if, for every positive number x, we have �x <

" < x. Let Inf denote the set of infinitesimals; clearly Inf is a subgroup of G,

the group of games. When G � H is infinitesimal, we say that G and H are

infinitesimally close, and write G �Inf H . We will sometimes say that H is

G-ish (G infinitesimally sh ifted).

DEFINITION 2.1. If G is a game (in any form) and " 0 is an infinitesimal,

then G reduced by ", denoted by G", is defined by

G" D

�

G if G is a number;
˚

GL
"

� " j GR
"

C "
	

otherwise.

When no restriction is placed on the game ", this operation is commonly known

as unheating. It is not immediately evident that G" D H" whenever G D H ,

but this will emerge in Section 5. In fact, we will prove the stronger statement

that G" D H" if and only if G and H are infinitesimally close. The special case

" D � was first considered by Calistrate, who defined an additional operator to

effect a further reduction:

DEFINITION 2.2 (CALISTRATE). If G is a game (in any form), then the �-

projection of G, denoted by p.G/, is defined by

p.G/ D

�

x if G D x or x C � for some number x,
˚

p.GL/ j p.GR/
	

otherwise.

We can then define G D p.G�/. Calistrate claimed that G is the simplest game

infinitesimally close to G. While this statement is correct, Calistrate’s proof
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relied on the assertion that G ‘ G is a homomorphism, which is false. For

example, let G D f1j0g and H D f2k1j0g. Then G D G and H D H , so

G C H D G C H D f2; f3j2gk1g; but G C H D f3j2k1g:

We will give an alternate proof that G is the simplest game infinitesimally

close to G. We shall have occasion to consider other mappings that select rep-

resentatives of each Inf-equivalence class. Proceeding in maximum generality:

DEFINITION 2.3. A mapping � W G ! G is a reduction (modulo Inf) if

(i) for all G, �.G/ �Inf G;

(ii) if x is a number, then �.x/ D x; and

(iii) for all G; H with G �Inf H , we have �.G/ D �.H /.

If � is a reduction, then we say that �.G/ is the reduced form of G .under �/.

Note that we do not require our reductions to be homomorphisms. The definition

on its own is not terribly restrictive, but serves as a useful checklist for verifying

candidate mappings with other desirable properties. We will show that G ‘ G

is a reduction, and also that G ‘ G" is both a reduction and a homomorphism

for any infinitesimal " 0.

Infinitesimals and stops. We will make extensive use of an equivalent def-

inition of infinitesimal that is given in terms of the stops of a game. Recall,

from Winning Ways, that the Left (Right) stop of G is equal to the first number

reached when G is played optimally in isolation, with Left (Right) moving first.

Formally:

DEFINITION 2.4. The Left and Right stops of G, denoted by L0.G/ and R0.G/,

are defined recursively by

L0.G/ D

�

G if G is a number,

max R0.GL/ otherwise;

R0.G/ D

�

G if G is a number,

min L0.GR/ otherwise.

The following facts about stops, and their relationship to infinitesimals, will be

used throughout the rest of this paper. Some proofs can be found in [3]; the rest

are simple exercises left to the reader.

PROPOSITION 2.5. Let G; H be any games.

(a) G is an infinitesimal if and only if L0.G/ D R0.G/ D 0.

(b) R0.G/ C R0.H / � R0.G C H / � R0.G/ C L0.H /;

L0.G/ C L0.H / � L0.G C H / � R0.G/ C L0.H /.
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(c) If G � H , then L0.G/ � L0.H / and R0.G/ � R0.H /.

(d) L0.G/ � R0.GL/ and R0.G/ � L0.GR/ for all GL; GR, even when G is

a number.

Infinitesimal comparisons. We can define infinitesimal comparisons in a man-

ner similar to our definition of infinitesimally close:

DEFINITION 2.6. G �Inf H if and only if G � H C " for some infinitesimal ";

G �Inf H is defined similarly.

Note that G �Inf H if and only if G �Inf H and G �Inf H . We will see shortly

that in these definitions it suffices to take " to be some multiple of " or #. We

begin with:

LEMMA 2.7. If R0.G/ � 0, then G � n � # for some n.

PROOF. Choose n > birthday.G/ C 1. Then Left, playing second, can win

GCn�" as follows: He makes all of his moves in G, playing optimally, until that

component reaches a number x. Then, since L0.H / � R0.H / for all followers

H of G, we must have x � 0. By the assumptions on n, Left still has a move

to 0 available in the n � " component (even if all of Right’s moves were in that

component), so he wins on his next move. ˜

By symmetry, if L0.G/ � 0, then G � n � " for some n.

COROLLARY 2.8. Let G and H be games.

(a) G �Inf H if and only if G � H � n � # for some n.

(b) G is infinitesimal if and only if n � # � G � n � " for some n.

PROOF. Follows immediately from Lemma 2.7 and Proposition 2.5(a). ˜

Lemma 2.7 also allows us to restate a well-known incentive theorem in terms

of infinitesimal comparisons:

THEOREM 2.9. If G is not a number, then G has at least one Left incentive and

at least one Right incentive that are �Inf 0.

PROOF. Let GL be any Left option with R0.GL/ D L0.G/. Then

R0.GL � G/ � R0.GL/ C R0.�G/ D L0.G/ � L0.G/ D 0:

Hence GL�G �Inf 0 by Lemma 2.7. The proof for Right incentives is identical.

˜

We conclude with a theorem that is intuitive yet difficult to prove without the

preceding machinery; the theorem states that if the options of a game are in-

finitesimally perturbed, the resulting game is infinitesimally close to the original.
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THEOREM 2.10. If G D fGL j GRg is not a number and G0 D fGL0

j GR0

g is

a game with GL0

�Inf GL and GR0

�Inf GR , then G0 �Inf G.

PROOF. By symmetry it suffices to show that G � G0 �Inf 0, or equivalently

(Corollary 2.8) that G �G0 Cn �" � 0 for sufficiently large n. If Right moves in

G or �G0, Left answers with the corresponding move in �G0 or G and wins with

n large enough by Corollary 2.8. If Right moves to G�G0C.n�1/ �"�, then by

Theorem 2.9 there is some GR �Inf G, so Left moves in �G0 to �GR0

�Inf �GR .

Again, Left wins with n large enough by Corollary 2.8 since G �GR0

�Inf 0. ˜

Note that Theorem 2.10 fails if G is a number. For example, 0 �Inf �, but

f0j1g D 1

2
and f�j1g D 0.

3. Temper

By Proposition 2.5, infinitesimal differences do not change the final score

of a game; they affect only who has the move when that score is reached.

This observation motivates one of the most natural reduced-form constructions.

Loosely speaking, call a game G even-tempered if, no matter how G is played,

the first player will have the move when G reaches a number. If G and H are

infinitesimally close and even-tempered then we should expect that G D H ,

since we have effectively discarded the particularities of who has the move and

when. This is indeed the case, and in fact we can prove a stronger statement:

For any game G, G� is the unique even-tempered game infinitesimally close to

G. We begin with a formal definition of temper.

DEFINITION 3.1. Let G be a fixed representation of a game.

(a) G is even-tempered if G a number, or every option of G is odd-tempered;

(b) G is odd-tempered if G is not a number and every option of G is even-

tempered;

(c) G is well-tempered if G is even-tempered or odd-tempered.

We will call a game even- (odd-, well-) tempered if it has some even- (odd-,

well-) tempered representation. Although temper is a property of the form of

a game and can be destroyed by adding new dominated options, the following

provides justification for treating it as a property of games:

THEOREM 3.2. Let G be a game in any form. If G is even- (odd-) tempered,

then so is its canonical form.

PROOF. If G is a number then both G and its canonical form are necessarily

even-tempered, so assume that it is not. By induction we may assume that

all proper followers of G are canonical. It then suffices to show that temper is
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preserved when dominated options are eliminated or reversible moves bypassed.

For dominated options this is trivial, so suppose some GLR � G.

Consider the case where GLR is a number. Then G ¤GLR, so by the Number

Avoidance Theorem, Left has a winning move from G � GLR to some GL0

�

GLR . Thus GL0

�GLR . But since GLR is a number, we have GLR >GLRL, so

any GLRL is dominated by GL0

and hence does not contribute to the canonical

form of G.

If GLR is not a number then neither is GL (since it was assumed canonical),

and since GL is odd- (even-) tempered, so is every GLRL. ˜

A simple corollary is that a game cannot be both odd- and even- tempered since

its canonical form cannot be both. The main theorem of this section is the

following:

THEOREM 3.3. Let G be a game in any form. Then G� is the unique G-ish

even-tempered game.

Theorem 3.3 implies that G� D H� whenever G D H , which is not immediately

clear from the definition of G�. For now, we must specify a representation for

G in order to compute G�. Several lemmas are critical to the proof of Theorem

3.3.

LEMMA 3.4. Let G; H be any games.

(a) If G and H are both even- (odd-) tempered, then G C H is even-tempered.

(b) If G is even-tempered and H is odd-tempered, then GCH is odd-tempered.

PROOF. If G and H are both numbers then so is G C H , and the conclusion

follows. If G is a number and H is not, then by the Number Avoidance Theorem

G C H D
˚

G C H L j G C H R
	

:

By induction G C H L and G C H R have the same temper as H L and H R .

Finally, if neither G nor H is a number, then

G C H D
˚

GL C H; G C H L j GR C H; G C H R
	

:

By induction and assumption on G; H all options have the same temper. Fur-

thermore, they are odd-tempered if G and H have the same temper, and even-

tempered otherwise. ˜

LEMMA 3.5. Let G be a game in any form. Then G� is even-tempered and

infinitesimally close to G.

PROOF. The conclusion is trivial if G is a number. If G is not a number then

G� D
˚

GL
� C � j GR

� C �
	

, and the result follows from induction, Lemma 3.4,

Theorem 2.10, and the fact that � is odd-tempered. ˜
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LEMMA 3.6. If G is even-tempered and R0.G/ � 0, then G � 0.

PROOF. We may assume that G is in canonical form. Since R0.G/ � 0, Left,

playing second, can assure that when the play reaches a number, the result is

� 0. By Theorem 3.2, this necessarily happens after an even number of moves,

so Left has made the last move. Thus, Left can win G as second player. ˜

PROOF OF THEOREM 3.3. Lemma 3.5 shows that G� is even-tempered. For

uniqueness, suppose G and H are infinitesimally close even-tempered games.

Then R0.G �H / D 0. But G �H is even-tempered, so by Lemma 3.6, we have

G � H � 0; by symmetry G � H D 0. ˜

As a simple corollary, G� C � is the unique odd-tempered game infinitesimally

close to G. A more substantial corollary is the following theorem.

THEOREM 3.7. The map G ‘ G� is a well-defined homomorphism of the group

of games.

PROOF. First, Theorem 3.3 shows that G� does not depend on the form of G.

Now fix games G; H . Lemma 3.5 implies that

.G C H /� �Inf G C H �Inf G� C H�:

Also, from Lemmas 3.4 and 3.5, we know that .G CH /� and G� CH� are both

even-tempered. It follows from Theorem 3.3 that they are equal. ˜

As a final note, Lemma 3.4 shows that the well-tempered games W and the

even-tempered games E are subgroups of the group of games. Moreover, the

mapping G ‘ G C � induces a perfect pairing of even- and odd- tempered

games, so that

W D E [ fG C � W G 2 Eg:

Thus, the index of E in W is 2.

4. Reduced canonical forms

In this section we will show that every game G has a reduced canonical form

G. G is infinitesimally close to G, and it is the simplest such game, in a sense

that we will define shortly.

DEFINITION 4.1. Let G be any game.

(a) A Left option GL is Inf-dominated if GL �Inf GL0

for some other Left

option GL0

.

(b) A Left option GL is Inf-reversible if GLR �Inf G for some GLR .

The definitions for Right options are similar.
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EXAMPLE (i). Let G D f1; f2j1gk0g. Then 1 is an Inf-dominated Left option of

G, since f2j1g � 1 C " � 0.

EXAMPLE (ii). Let H D f1; f2j0gk0g. Then f2j0g is Inf-reversible through 0,

since H � 0 C " � 0.

DEFINITION 4.2. A game G is said to be in reduced canonical form if, for every

follower H of G, either

(i) H is a number in simplest form, or

(ii) H is not numberish, and contains no Inf-dominated or Inf-reversible op-

tions.

This definition of reduced canonical form appears radically different from Cal-

istrate’s, but we will soon see that his construction meets our criteria. The main

theorems exactly parallel the corresponding results for canonical forms [3]:

THEOREM 4.3. For any game G, there is a game G in reduced canonical form

with G �Inf G.

THEOREM 4.4. Suppose that G and H are in reduced canonical form. If G �Inf

H , then G = H .

Theorem 4.4 guarantees that the G found in Theorem 4.3 is unique. The fol-

lowing lemma is instrumental to the proof of Theorem 4.3.

LEMMA 4.5. Let G be a well-tempered game.

(a) If G �Inf x for some number x, then G D x or x C �.

(b) If G is in canonical form, then G has no Inf-dominated or Inf-reversible

options.

(c) p.G/ �Inf G.

PROOF. (a) x is the unique even-tempered x-ish game, so if G is even-tempered

then G D x. Likewise, x C � is the unique odd-tempered x-ish game, so if G

is odd-tempered then G D x C �.

(b) First suppose (for contradiction) that GL �Inf GL0

for distinct Left options

GL; GL0

. Since G is even- (odd-) tempered, both GL and GL0

are odd- (even-)

tempered. Therefore GL0

� GL is even-tempered. But since GL �Inf GL0

, we

know that R0.GL0

�GL/ � 0. By Lemma 3.6, this implies that GL0

�GL � 0,

contradicting the assumption that G is in canonical form.

Next suppose (for contradiction) that GLR �Inf G. Consider the case where

GL is a number. Then GLR is also a number and GL < GLR . Furthermore, by

Theorem 2.9, there is some GL0

�Inf G. Hence

GL < GLR �Inf G �Inf GL0

:
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Since GLR and GL necessarily differ by more than an infinitesimal, this gives

us GL < GL0

, contradicting the assumption that G is in canonical form.

Finally, if GL is not a number, then GLR is well-tempered and has the same

temper as G. So G � GLR is even-tempered. But R0.G � GLR/ � 0, so by

Lemma 3.6 we have G � GLR � 0, again contradicting the assumption that G

is in canonical form.

(c) follows immediately from induction and Theorem 2.10. ˜

PROOF OF THEOREM 4.3. We will show that p.G�/ has the desired properties,

where we use the canonical form of G� to compute p.G�/. Let H be a follower

of p.G�/; then H D p.H 0/ for some follower H 0 of G�. Since G� is well-

tempered and in canonical form, the same is true of H 0.

If H is numberish, then by Lemma 4.5(c), so is H 0. By Lemma 4.5(a), we

have H 0 D x or x C � for some number x; then by definition, H D x. This

verifies condition (i) in the definition of reduced canonical form.

If H is not numberish, then by Lemma 4.5(c), neither is H 0. By Lemma

4.5(b), H 0 has no Inf-dominated or Inf-reversible options. Since all followers

of H are infinitesimally close to followers of H 0, the same must be true of H .

This completes the proof. ˜

We are now ready to prove uniqueness (Theorem 4.4).

PROOF OF THEOREM 4.4. Suppose G and H are in reduced canonical form and

G �Inf H . If either of G; H is numberish then both must be, so by the definition

of reduced canonical form, both are numbers; hence G D H .

Now suppose that neither G nor H is numberish, and consider H �G. Since

R0.H � G/ � 0, by Corollary 2.8 we have

H � G C n � " � 0

for suitably large n. Consider the game after Right moves to �GL:

H � GL C n � "

Left must have a winning response. It cannot be to any H � GLR C n � ", since

this would imply

G �Inf H �Inf GLR;

contradicting the assumption that G has no Inf-reversible options. Furthermore,

by Theorem 2.9, H has a Left incentive that exceeds n � # (assuming n is suffi-

ciently large). Since n � # is the unique Left incentive of n � ", Left must have a

winning move in H , to

H L � GL C n � ":
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Therefore H L �Inf GL. By an identical argument, there is some GL0

with

GL0

�Inf H L. But G has no Inf-dominated options, so in fact

GL0

�Inf H L �Inf GL:

By induction, GL D H L, so every Left option of G is a Left option of H .

Symmetrical arguments show that G and H have exactly the same Left and

Right options. ˜

If G is any game, the value of G is unchanged when dominated options are elim-

inated or reversible ones bypassed. We can similarly eliminate Inf-dominated

options and bypass Inf-reversible ones, preserving the value of G up to an in-

finitesimal.

LEMMA 4.6. If G is not a number and G0 is obtained from G by eliminating an

Inf-dominated option, then G0 �Inf G.

PROOF. Suppose that GL0

�Inf GL for Left options GL, GL0

of G. Then we

can find H �Inf GL such that GL0

� H , so, by Theorem 2.10,

G D fGL; GL0

; : : : j GRg �Inf fGL0

; H; : : : j GRg D fGL0

; : : : j GRg: ˜

LEMMA 4.7. If G is not numberish and G0 is obtained from G by bypassing an

Inf-reversible option, then G0 �Inf G.

Note that the assumption of Lemma 4.7 (G not numberish) is stronger than the

assumption of Lemma 4.6 (G not a number). If G is numberish, Inf-reversible

moves cannot in general be bypassed. For example, let G D 	2 D f2j0k0g.

Then GLR D 0 �Inf G, but if we replace GL D f2j0g with the Left options of

0, then the resulting game is G0 D fj0g D �1 6�Inf G.

PROOF OF LEMMA 4.7. Suppose that G is not numberish, and G0 is obtained

from G by bypassing some Inf-reversible option GL0 through GL0R0 . We must

show that G � G0 C n � " � 0 and G0 � G C n � " � 0 for sufficiently large n.

First consider G � G0 C n � " � 0. Right has three possible opening moves; we

show that, in each case, Left has a winning response.

(a) If Right moves to G �G0 C .n�1/ �"�, then by Theorem 2.9 Left can move

to G � GR C .n � 1/ � "� with GR �Inf G which wins for large enough n.

(b) Suppose Right moves to G �GL0R0L Cn �". Since GL0R0 �Inf G, we have

G � GL0R0 C n � " � 0 for large enough n, so G � GL0R0L C n � " 0 and

therefore Left has a winning move.

(c) If Right makes any other move in G or �G0, Left makes the corresponding

move in the other component leaving n � ".

Now consider G � G0 C n � " � 0. Once again, there are three cases.
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(d) Suppose that Right moves to G0 �G C.n�1/ �"�. Since G is not a number,

by Theorem 2.9 we can choose some GL �Inf G. If we can choose GL ¤ GL0 ,

Left moves to GL � G C .n � 1/ � "� and wins for large n. If GL0 is the only

choice, the proof of Theorem 2.9 shows that R0.GL0/ D L0.G/. We also have

from Proposition 2.5 that R0.GL0R0/ � R0.G/ since GL0R0 �Inf G. Finally,

since G is not numberish, we have R0.G/ < L0.G/. Putting these inequalities

together gives us

R0.GL0R0/ � R0.G/ < L0.G/ D R0.GL0/ � L0.GL0R0/

and therefore GL0R0 is not a number. It follows that L0.GL0R0/ � L0.G0/

since every Left option of GL0R0 is also a Left option of G0 (by Proposition

2.5(d) this is true even if G0 is a number). Similarly, R0.G0/ � R0.G/, since

they have the same Right options and G is not a number. Hence

R0.G0/ � R0.G/ < L0.G/ � L0.GL0R0/ � L0.G0/

so in fact G0 is also not a number. It follows from Theorem 2.9 that Left can

win by moving to G0 � GR C .n � 1/ � "�, where GR �Inf G0.

(e) If Right moves to G0 � GL0 C n � " then Left moves to G0 � GL0R0 C n � ",

which we now show is a loss for Right.

If Right moves to either GR � GL0R0 C n � " or G0 � GL0R0 C .n � 1/ � "�,

Left can win with n large enough since �GL0R0 �Inf �G and we have already

shown that GR � G C n � " 0 and G0 � G C .n � 1/ � "� 0. If Right moves

to G0 �GL0R0L C n � ", Left makes the corresponding move in G0 leaving n � "

and wins.

(f) Finally, if Right makes any other move in G0 or �G, Left makes the corre-

sponding move in the other component leaving n � ". ˜

Lemmas 4.6 and 4.7 suggest an algorithm for computing G. If G is numberish,

we take G D L0.G/. Otherwise, by Theorem 2.10, we may assume that every

option of G is in reduced canonical form. G can then be obtained by iteratively

eliminating Inf-dominated options and bypassing Inf-reversible ones until none

remain.

This algorithm bears a pleasing similarity to the classical procedure for com-

puting the canonical form of G, but it is somewhat less efficient than simply

calculating p.G�/. Nonetheless, Theorem 2.10 and Lemmas 4.6, 4.7 can be

useful in practice; see, for example, Mesdal [4, Section 7] in this volume.

THEOREM 4.8. If G is not numberish, then G can be computed by repeating

the following steps in any order:

(i) Replacing options with simpler options infinitesimally close to the original;

(ii) Eliminating Inf-dominated options;
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(iii) Bypassing Inf-reversible options.

PROOF. Since each step simplifies the game, the steps must at some point come

to an end. Theorem 2.10 shows that step (i) does not change the game by more

than an infinitesimal, and Lemmas 4.6 and 4.7 show that neither do steps (ii)

or (iii). Thus, the final game is infinitesimally close to the original, and if no

more steps are possible then all numberish followers are numbers and there are

no Inf-dominated or Inf-reversible moves. It follows by Theorem 4.4 that this

game is G. ˜

5. Reduction by "

Having observed one reduction that is also a homomorphism, it is natural to

look for others. In this section we show that for any infinitesimal "  0, the

mapping G ‘ G" is both a reduction and a homomorphism. In the process we

will show that G" is well-defined, but for now we must still agree upon a specific

representation of G in order to compute G".

LEMMA 5.1. L0.G"/ D L0.G/ and R0.G"/ D R0.G/.

PROOF. This is immediate if G is a number. Otherwise, by induction and

Proposition 2.5, we have

L0.G"/ D maxfR0.GL
"

� "/g D maxfR0.GL
"

/g D maxfR0.GL/g D L0.G/;

and similarly for R0. ˜

LEMMA 5.2. If R0.G/ � 0, then G" � 0; if L0.G/ � 0, then G" � 0.

PROOF. Suppose R0.G/ � 0. If G" is a number, then G" D R0.G"/ D R0.G/ �

0. Otherwise, suppose that Right moves in G" to GR
"

C ". If GR
"

is a number,

then

GR
"

D L0.GR
"

/ D L0.GR/ � R0.G/ � 0;

so by choice of ", GR
"

C " 0 and Left has a winning move. Finally, if GR
"

is

not a number, Left moves to GRL
"

, choosing GRL so that R0.GRL/ D L0.GR/.

Since L0.GR/ � R0.G/ � 0, by induction GRL
"

� 0, so Left wins. The proof

for L0.G/ is identical. ˜

THEOREM 5.3. G is infinitesimal if and only if G" D 0.

PROOF. If G is infinitesimal then R0.G/ D L0.G/ D 0, so 0 � G" � 0 by

Lemma 5.2. Conversely, suppose G" D 0. Then by Lemma 5.1,

R0.G/ D R0.G"/ D 0 D L0.G"/ D L0.G/;

so G is infinitesimal. ˜
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THEOREM 5.4. Using the representation �G D f�GR j �GLg, we have

.�G/" D �.G"/:

PROOF. Trivial if G is a number; otherwise, by induction:

.�G/" D
˚

.�GR/" � " j .�GL/" C "
	

D
˚

�.GR
"

/ � " j �.GL
"

/ C "
	

D �
˚

GL
"

� " j GR
"

C "
	

D �.G"/: ˜

LEMMA 5.5. Let G; H be any games.

(a) If G C H � 0, then G" C H" � 0.

(b) If G C H  0, then G" C H" C " 0.

PROOF. If G and H are numbers, (a) and (b) are immediate. Otherwise, we

may assume that G is not a number, and we proceed by simultaneous induction

on (a) and (b).

(a) Suppose that GCH �0 and that Right moves in G"CH" to GR
"

CH"C" (we

can assume that Right’s move is in G" by symmetry and the Number Avoidance

Theorem). Since GR C H  0, by induction GR
"

C H" C " 0, so Left wins;

hence G" C H" � 0.

(b) If G C H  0 then Left has a winning move, say to GL C H � 0 (again,

by symmetry and the Number Avoidance Theorem we can assume that Left’s

winning move is in G). Then GL
"

C H" � 0 by induction, so Left also has a

winning move from G" C H" C ". ˜

COROLLARY 5.6. If G � H , then G" � H".

PROOF. Using Theorem 5.4 and Lemma 5.5,

G C .�H / � 0 ) G" C .�H /" � 0 ) G" � H": ˜

THEOREM 5.7. If G D H , then G" D H".

PROOF. Follows immediately from Corollary 5.6 since G � H and H � G. ˜

By Theorem 5.7, G" does not depend on the formal representation of G. There-

fore, the mapping G ‘ G" is well-defined. We next show that it is a homomor-

phism.

LEMMA 5.8. If x is a number, then .G C x/" D G" C x.
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PROOF. The conclusion is trivial if G is a number. Otherwise, G C x is not a

number, so by induction and the Number Translation Theorem

.G C x/" D
˚

GL C x j GR C x
	

"

D
˚

.GL C x/" � " j .GR C x/" C "
	

D
˚

GL
"

� " C x j GR
"

C " C x
	

If G" is not a number, then this is equal to G" C x by the Number Translation

Theorem. Otherwise, there is some number z such that

GL
"

� "� z�GR
"

C ":

Translating by x, we have that

GL
"

� " C x� z C x�GR
"

C " C x;

and since .G C x/" D fGL
"

� " C x j GR
"

C " C xg, it follows that .G C x/" is a

number. Then by Lemma 5.1, we conclude that

.G Cx/" D L0..G Cx/"/ D L0.G Cx/ D L0.G/Cx D L0.G"/Cx D G" Cx:

˜

The following theorem establishes that reduction by " is a projection: an idem-

potent homomorphism.

THEOREM 5.9. Let G, H be any games. Then:

(a) .G C H /" D G" C H".

(b) G" �Inf G.

(c) .G"/" D G".

PROOF. (a) This reduces to Lemma 5.8 if either G or H is a number. Otherwise,

there are two cases. First, if x D G C H is a number, then by Theorem 5.4 and

Lemma 5.8 we have

.G C H /" � G" D x � G" D .x � G/" D H":

Finally, if none of G, H , G C H are numbers, then by induction

.G CH /" D
˚

.GL CH /" �"; .G CH L/" �" j .GR CH /" C"; .G CH R/" C"
	

D
˚

.GL
"

�"/CH"; G" C.H L
"

�"/ j .GR
"

C"/CH"; G" C.H R C"/
	

D G" CH":

(b) follows by induction and Theorem 2.10.

(c) Using (a), (b), and Theorem 5.3, we obtain

0 D .G" �G/" D .G"/" �G": ˜
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THEOREM 5.10. The mapping G ‘ G" is a reduction.

PROOF. G �Inf G" by Theorem 5.9, and x" D x for numbers x by definition.

Finally, if G �Inf H , then G D H C ı for some infinitesimal ı, so by Theorems

5.3 and 5.9, G" D H" C ı" D H". ˜

We conclude with a theorem on incentives for games reduced by " whose elegant

proof makes it deserving of presentation.

THEOREM 5.11. If G" is not a number, then G" has at least one Left incentive

and at least one Right incentive that are � �".

PROOF. By Theorem 2.9, there is some Left option GL
"

� " of G" and some

infinitesimal ı such that

.GL
"

� "/ � G" � ı:

Reducing by " gives .GL
"

/" � "" � .G"/" � ı" by Theorem 5.9(a) and Corollary

5.6, which implies GL
"

� G" � 0 by Theorems 5.3 and 5.9(c), and finally

.GL
"

� "/ � G" � �":

The proof for Right incentives is identical. ˜

6. All-small reductions

Our final task is to relate the two reductions presented thus far. Recall that a

game is all-small if all of its followers are infinitesimal. We will see that when

" is all-small, G" can be computed by adding appropriate multiples of " to the

stops of G. We begin with a simple observation:

LEMMA 6.1. If G" is not a number, then there is some GL
"

with R0.GL
"

/ >

R0.G"/.

PROOF. Since G" is not a number, G is not numberish. Hence L0.G/ > R0.G/,

so we can choose any GL
"

where R0.GL/ D L0.G/. ˜

The following theorem strengthens Theorem 2.9 when " is all-small.

THEOREM 6.2 (ALL-SMALL AVOIDANCE THEOREM). If "  0 is all-small

and G" is not a number, then G" has at least one Left incentive and at least one

Right incentive that exceed every incentive (Left and Right) of ".

The hypothesis that " is all-small is essential. For example, if we take G D ˙1

and " D 2, then G" D ˙f3j1k1g. We can verify that the Left incentive of G" is

less than the Right incentive of 2.

PROOF OF THEOREM 6.2. We will show that G" has a Left incentive that ex-

ceeds every incentive of "; the proof for Right incentives is identical. First, for
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any game H , we define the Left and Right parities pL.H /, pR.H / as follows.

If H is numberish, then pL.H / D pR.H / D 0. Otherwise,

pL.H / D

�

1 if pR.H L/ D 0 for every H L with R0.H L/ D L0.H /,

0 if pR.H L/ D 1 for any such H L.

pR.H / is defined similarly, with L and R interchanged.

Since G" is not a number, neither is G, so there is some GL with R0.GL/ D

L0.G/. If pL.G/ D 0 then we can choose such GL with pR.GL/ D 1, so we

can guarantee that at least one of pR.GL/, pL.G/ is 1. We claim that for each

(Left or Right) incentive � of ",

.GL
"

� "/ � G" � �:

Observe that pR.�H / D pL.H / and pL.�H / D pR.H / (proof by simple

induction). It therefore suffices to prove the following: if Right moves from any

position of the form

A" CB" �"��; with R0.A/CR0.B/ D 0, pR.A/CpR.B/ � 1; (6-1)

then Left can either win outright, or respond to another position of the same

form. The following proof makes heavy use of the inequality R0.A C B/ �

R0.A/ C R0.B/ from Proposition 2.5(b).

Since pR.A/ C pR.B/ � 1, A" and B" cannot both be numbers. It follows

that Right can never move in .�" � �/, since by Lemma 6.1 this would allow

Left to move in one of A" or B" leaving a position H with R0.H / > 0 (here

we use the fact that " is all-small which implies that none of its incentives or

followers contribute to the stops of the entire game).

Next suppose that Right moves in A" from (6-1). By the Number Avoidance

Theorem, we may assume that A" is not a number. There are three cases.

Case 1: AR
"

is not a number. Then Left moves to ARL
"

with R0.ARL/ D

L0.AR/ � R0.A/. In this case the position is

H D ARL
"

C B" � " � �; with R0.ARL/ C R0.B/ � 0.

If the inequality is strict, then since �"�� is infinitesimal, R0.H / > 0 and Left

wins outright. Otherwise, either pR.B/ D 1 or pR.A/ D 1; in the latter case

pL.AR/ D 0, so Left can choose ARL with pR.ARL/ D pR.A/ D 1. In both

cases, Left leaves a smaller position of the form (6-1).

Case 2: AR
"

is a number, but B" is not. Then R0.AR/ D L0.AR/ � R0.A/, so

by Lemma 6.1 Left can move in B" leaving a position H with R0.H / > 0, and

Left wins outright.
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Case 3: Both AR
"

and B" are numbers. Then AR
"

D L0.AR/ � R0.A/ D

�R0.B/ D �B". If the inequality is strict, then Left wins outright. Otherwise,

the overall position is

.AR
"

C "/ C B" � " � � D ��:

But � is an incentive, so necessarily �� 0, whence �� 0.

This exhausts Right’s moves in A" from (6-1). The situation is identical if

Right moves in B", so the proof is complete. ˜

COROLLARY 6.3 (ALL-SMALL TRANSLATION THEOREM). If G is not a num-

ber, n is an integer and " 0 is all-small, then G" C n � " D fGL
"

C .n � 1/ � " j

GR
"

C .n C 1/ � "g.

PROOF. This is trivial if n = 0. Otherwise the game is either G" C"C"C� � � or

G" �"�"�� � �; in either case the Left and Right incentives of ˙" are dominated

by incentives of G" by Theorem 6.2. ˜

This translation theorem allows us to quickly compute G" from its definition

by absorbing the ˙" terms in the followers of G" until we reach the stops. It is

straightforward (although the notation is cumbersome) to determine the multiple

of " which must be added to each stop:

DEFINITION 6.4. Let GX Y Z ::: be a follower of G where each of X; Y; Z; : : :

denotes a Left or Right option. The weight wG.GX Y Z :::/ of GX Y Z ::: is the

number of Left options in X; Y; Z; : : : minus the number of Right options in

X; Y; Z; : : :

Note that we have already encountered the concept of weight disguised as temper

in Section 3; a representation of a game is even- (odd-) tempered if the stops

all have even (odd) weight. As an example, in the game f2k1j0g, the stop 2

has weight 1 since it is reached by a single Left move, the stop 1 has weight 0

since it is reached by a Right move followed by a Left move, and the stop 0 has

weight -2 since it is reached by two Right moves.

THEOREM 6.5. If " 0 is all-small, then G" is the game obtained from G by

replacing each stop H with H � w
G

.H / � ".

PROOF. Since G �Inf G, we have G" D .G/". With this observation, the theorem

follows immediately from Corollary 6.3 and the definition of reduction by "

applied to G. ˜

For example, if G D f2k1j0g then G" D f2#k1j*g. Note that for " D �, Theorem

6.5 agrees with our results from Sections 3 and 4 as it states that G� is obtained

from G by adding � to the stops having odd weight.



444 J.P. GROSSMAN AND AARON N. SIEGEL

7. Conclusion and open problems

The reduced canonical form is a valuable tool in the study of combinatorial

games; see [4, Section 7] in this volume for an example of its successful appli-

cation. However, there are several potentially useful directions in which these

ideas can be extended.

Section 5 does not completely characterize the reductions that are also ho-

momorphisms. For example, the reader might wish to verify that the mapping

� given by

�.G/ D

�

G if G is a number,
˚

�.GL/��;�.GL/��2 j �.GR/C�;�.GR/C�2
	

otherwise

is both a reduction and a homomorphism. In fact, we could replace � and

�2 by any finite set of infinitesimals  0: the results of Section 5 all apply

with virtually unchanged proofs. It would be interesting to investigate other

reduction-homomorphisms (if indeed they exist).

OPEN PROBLEM. Give a complete characterization of all reduction-homo-

morphisms � W G ! G.

Another important question is: to what extent can these constructions be gen-

eralized to groups other than Inf? In particular, if K is any subgroup of G, then

we can define a reduction modulo K as a map that isolates a unique element of

each K-equivalence class.

As a typical example, consider the group of infinitesimals of order n:

Infn D fG W k � #n < G < k � "n for some kg:

OPEN PROBLEM. Give an effective construction for reduction modulo Infn (or

some other useful class of games).

There are many interesting games in which all positions are infinitesimals, and

reduction modulo Inf is obviously unhelpful in studying such games. The theory

of atomic weights is sometimes useful, but quite often one encounters large

classes of positions with atomic weight zero. In such cases, reduction modulo

Inf2 could be a productive tool.

Generalizing beyond short games, reduced canonical forms can be suitably

defined for a certain class of well-behaved loopy games known as stoppers (see

[1] or [6] for a definition). That construction is beyond the scope of this paper,

but see [5, Section 5.4] for a complete discussion.
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Partizan Splittles

G. A. MESDAL III�

ABSTRACT. Splittles is a nim variant in which a move consists of removing

tokens from one heap, and (optionally) splitting the remaining heap into two.

The possible numbers of tokens that can legally be removed are fixed, but the

two players might have different subtraction sets. The nature of the game, and

the analysis techniques employed, vary dramatically depending on the subtrac-

tion sets.

1. Introduction

Partizan Splittles is a game played by two players, conventionally called Left

and Right. A position in the game consists of a number of heaps of tokens and

a move requires a player to choose a heap, remove some positive number, s,

of tokens from the heap and optionally to split the remaining heap (if there are

two or more tokens remaining) into two heaps. Two sets of positive integers SL

and SR are fixed in advance, and there is an additional restriction that when Left

moves she must choose s 2 SL, while Right must choose s 2 SR at his turn. The

sets SL and SR are called the subtraction sets of Left and Right respectively.

It is sometimes convenient to represent a position pictorially by one-dimen-

sional blocks of boxes rather than heaps of tokens. A move is to remove a

contiguous block of boxes; moves in the middle of a block are tantamount to

splitting a heap.

In this paper, we address several possible restrictions on SL and SR , each

of which yields a game whose analysis requires different techniques from com-

binatorial game theory. For some choices of SL and SR, canonical forms are

This work was conducted at the third meeting of Games at Dalhousie in Halifax, Nova Scotia, in June of

2004. The authors are Michael Albert, Elwyn Berlekamp, William Fraser, J. P. Grossman, Richard Guy, Matt

Herron, Lionel Levine, Richard Nowakowski, Paul Ottaway, Aaron Siegel, Angela Siegel, and David Wolfe.
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readily available, while for others, canonical forms are complex and uninfor-

mative, while temperature theory and the relatively new techniques of reduced

canonical forms reveal a great deal of information.

While impartial octal games [BCG01] are well-studied, there has been sur-

prisingly little work on partizan variants. In a partizan octal game, the two

players have different octal codes indicating their legal moves. Each code is a

sequence of octal digits, d0:d1d2d3 : : :, where each di includes a 1, 2, and/or 4,

indicating whether it is legal to remove i tokens and leave 0, 1, and/or 2 heaps,

respectively. In Partizan Splittles, the octal codes consist entirely of 0s and 7s.

For instance, if SL D f1; 4g and SR D f1; 5g, then the game is 0.7007 versus

0.70007.

Thane Plambeck [Pla95], as well as Calistrate and Wolfe, have unpublished

results in the game where players cannot split into two heaps; the octal codes

for these games consist entirely of 0s and 3s.

2. f1; oddsg versus f1; oddsg

Our first example is simple.

THEOREM 1. If 1 is an element of both subtraction sets and all the elements of

both subtraction sets are odd numbers, then

Gn D

�

0 if n is even,

� if n is odd.

PROOF. Each move changes the parity of the total number of tokens in all the

heaps, and in the final position, which has zero tokens, this total is even. Thus,

the game is she-loves-me she-loves-me-not. ˜

3. f1g versus fkg

THEOREM 2. If SL D f1g and SR D fkg, then Gn is arithmetic-periodic with

period k and saltus fk � 1 j 0g. In particular,

Gn D

�

n if n < k,

fk�1 j 0g C Gn�k if n � k.

We can write Gn more naturally with period 2k and saltus k � 1 as

Gn D

8

<

:

n if n < k,

fn�1 j n�kg if k � n < 2k,

k � 1 C Gn�2k if n � 2k.

PROOF. The proof follows in part from the fact that the conjectured saltus is

exactly Gk . So the theorem asserts that one can treat a single heap as a collection
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of heaps of size k and (possibly) a single remaining heap of size less than k

without changing its value. For instance:

D
„ ƒ‚ …

k

„ ƒ‚ …

k

Clearly, Ga D a for 0 � a < k, since only Left can move from such a position.

Likewise, Gk D fk � 1 j 0g.

In a general position, it suffices to show that any move that straddles a period

boundary is dominated by one that does not, for then the game reduces to its “de-

composed” form. Left’s moves never straddle a boundary. As for Right’s moves,

assume inductively that shorter positions achieve their conjectured values and

decompose at period boundaries. Observe that if aCb DkCc for 0�a; b; c <k,

then Ga C Gb D a C b D k C c exceeds Gk C Gc D fk � 1 j 0g C c. Hence,

Right prefers the latter move, avoiding a boundary. ˜

4. f1; 2kg versus f1; 2k C 1g

In this case, too, we can find exact values for all Gn. The sequence is

arithmetic-periodic with period 4k and saltus "!2. (Note that "!2 D "C"2 D

f" j �g, and that "2 D f0 j #�g is positive and infinitesimal with respect to ".)

THEOREM 3. If SL D f1; 2kg and SR D f1; 2k C 1g then

G4jkCi D

8

ˆ̂
<

ˆ̂
:

0 C j:"!2 if i is even and 0 � i < 2k,

� C j:"!2 if i is odd and 0 � i < 2k,

" C j:"!2 if i is even and 2k � i < 4k,

"� C j:"!2 if i is odd and 2k � i < 4k.

That is, the values are given by

2k
‚ …„ ƒ

0 � 0 � : : : 0 �

" "� " "� : : : " "�

Period 4k, saltus "!2

PROOF. When n < 4k, it is easy to confirm that the proposed values of Gn are

correct. It thus suffices to show that GnC4k �Gn D "!2. Assume, inductively,

that the conjectured values are correct for heap sizes less than n C 4k. First,

moves by either player that split �Gn into �Ga � Gb can be countered by

splitting GnC4k into GaC4k C Gb , leaving zero by induction.
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GnC4k � Gn � "!2

GnCG2k�Gn�"!2

GnCG2k�Gn�"

GnC2k�1CG2k�Gn�"!2

GnCG2k�2CG2k�Gn�"!2

D GnC0C"�Gn � "!2 < 0

GnC4k�Gn��

GnCG2k�1�Gn��

GnC4k � Gn � "!2

GnCG2k�1�Gn�"!2

GnCG2k�1�Gn��

GnC4k�Gn�"

GnCG2k�Gn�"

Figure 1. Diagrams showing GnC4k D Gn C "!2. The first tree shows

Right’s winning responses to Left’s moves, while second shows how Left

wins when Right moves first. Except in one case, the response leaves a

game equal to 0.

Next, observe that Left’s moves from GnC4k that leave a heap of size 2k

are at least as good as her other moves. Similarly, Right’s dominant splitting

moves from GnC4k remove 2k C1 tokens, leaving a heap of size 2k �1. (When

convincing yourself of these last assertions, it helps to keep in mind that all

Ga C Gb for fixed a C b have the same �-parity, and alternate rows add " and

"2.) Figure 1 summarizes how the second player wins in response to Left’s

(respectively, Right’s) options not yet dispensed with. ˜

COROLLARY 4. The values in the last theorem remain unchanged when

� Left has additional odd options, and/or

� Left has additional options exceeding 2k, and/or

� Right has additional odd options between 1 and 2k C 1.

PROOF. In all cases these new options are dominated. ˜

5. f1; othersg versus f1; 3; 5; : : : ; 2k C 1g

While the actual values might be quite complex and depend on the specific

choice for SL, we can describe a few properties of the sequence Gn.

THEOREM 5. Suppose 1 2 SL, and either SR D f1; 3; 5; : : : ; 2k C 1g for some

k or SR D f1; 3; 5; : : :g. The following relations hold:
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Gn � GnC2 (5-1)

G2nC1 D G2n C � (5-2)

Gn � Gi C Gj .for SR finite and n � i � j � 2k even/ (5-3)

PROOF. For (5-1), in most sequences of play, Left wins GnC2 �Gn by matching

options naturally, removing the same number of tokens as Right did from the

opposite heap. Left can then leave a position of the form GaC2 CGb �Ga �Gb ,

for a; b � 0, which is � 0 by induction. The only exception is if Right removes

n C 1 from the first heap. In this case, Left removes n � 1 from the second,

leaving G1 � G1 D 0.

We show (5-1) and (5-1) in tandem by induction. In particular, we assume

that (5-1) holds for n0 � n when proving (5-1), but that (5-1) holds for n0 < n

when proving (5-1).

For (5-1), we wish to show the second player wins on the difference game

G2nC1 � G2n � � D G2nC1 � G2n � G1:

We can depict this game as

Left’s moves Right’s moves

f1; othersg f1; 3; 5; : : : ; 2k C 1g

f1; 3; 5; : : : ; 2k C 1g f1; othersg

The roles of the players are reversed in the second row, it being the negative

of the game G2n C G1. So in the second row, Left removes elements from SR

while Right removes elements from SL.

If either player removes r boxes from the top row, leaving a block of length i

odd (and, perhaps a second block of either parity), the other player can counter

symmetrically by removing r boxes from the bottom, leaving a block of length

i�1. The resulting position is 0 by induction. The reverse is also true; the second

player can respond to moves on the bottom row that leave an even-length block.

Pictorially, moves A on top leaving one end odd match up with moves A0 on

bottom leaving the same end even and one shorter.

odd

even

A
‚ …„ ƒB

�
„ ƒ‚ …

A0
B0

Also shown are moves B which take a single box from one end of the top row,

which match up with the move B0 taking the lone box on the bottom row.

So we are left with cases that split the top row into two even-length heaps

or that split the bottom row into two odd-length heaps. Only Right can do the
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latter, for it requires removing an even number. Left’s responses parallel Right’s

moves as below. If Right removes C R on the top, Left’s reply of C RL wins by

application of (5-1) then multiple applications of (5-1). Similarly Left wins after

Right’s DR and Left’s DRL.

�

EL

‚ …„ ƒ
C R

‚ …„ ƒ

„ ƒ‚ …

C RL

DRL

‚ …„ ƒ

„ ƒ‚ …

DR

We are now left with the single case when Left removes an odd number

from the top row, splitting it into two even-sized heaps, as in EL above. Right

responds by removing as large an (odd) number as possible from one of these

two even-sized heaps. If one of the heaps is of size � 2k C2 (or SR is infinite),

Right leaves that heap a singleton, canceling the single box on the second row,

and wins by (5-1). Otherwise, he has taken away 2k C 1, and wins by (5-1)

and (5-1).

Lastly, to prove (5-1), we show that Left wins moving second on Gn�Gi�Gj :

�

The gap in the bottom row is of even length and at least 2k. Left can respond

to moves that fail to straddle the gap as below:

�

A
‚…„ƒ

„ƒ‚…

A0

BR

‚…„ƒBRL

In particular moves outside the gap match up with moves in the other row, win-

ning by induction. Left responds to moves inside the gap by responding on the

odd side: Since the gap was of even length, and Right can remove only odd

numbers, the gap is split into an even length and an odd length. Left then wins

by application of (5-1) to both sides.

A Right move that straddles the gap can only straddle one side. Left responds

by removing a like number from the side below Right’s move:

�

C R

‚ …„ ƒ

„ ƒ‚ …

C RL

Since the parity of the number of boxes in each row is preserved, each segment

can be shortened to an even length by an even number of applications of (5-1),
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which, since �C� D 0 and � D ��, leave the game value unchanged. Left then

proceeds to win by (5-1) applied to both sides. ˜

6. Odd versus Even

In this section we consider the partizan splitting game where SL is the set

of all (positive) odd integers and SR is the set of all (positive) even integers. A

salient feature is that the endgame is overwhelmingly favorable to Left: G1 D

1, but there are no positions with negative right stop, since Left has a move

from every nonterminal position. One would expect, therefore, that Left should

prefer to split each position into as many components as possible, preferably

odd in size, while Right should aim to annihilate each component as quickly

as possible. Since Right will naturally give preference to destroying the largest

heaps, one might also expect that Left would prefer to split each heap as evenly

as possible.

As is so often the case, the canonical forms of Odd versus Even are a mess,

but the orthodox moves — as defined by Berlekamp [Ber96], Definition 10 —

realize these intuitions precisely. Left’s orthodox strategy is to split as evenly

as possible; Right’s is to consume the largest available heap. Furthermore, we

will see that from positions of the form G2k�1 — where it is most crucial that

Left split evenly — these are the unique orthodox options (Theorem 11).

The game also exhibits a fascinating logarithmic behavior: if Left and Right

play orthodox strategies, with Left splitting evenly and Right consuming what he

can, then the game will last for O.log n/ moves. Furthermore, from positions

of the form G2k �1 — where it is most crucial that Left split evenly — Left’s

only orthodox move is the even split. By contrast, we note that, G31 has seven

canonical Left options.

The main result is the following theorem, which gives the mean, m.Gn/, and

temperature, t.Gn/, of every single-heap Odd versus Even position.

THEOREM 6. Fix n � 1 and let k be such that 2k � n < 2kC1. Then m.Gn/ D �n

and t.Gn/ D �n, where

�n D
bn=2c C 1

2k
C

k

2
� 1I �n D

�

�n if n is even,

�n C 1 if n is odd.

To prove Theorem 6, we will define Hn to be the auxiliary game where SL D f1g

and SR is the set of even integers. We will first show that m.Hn/ D �n and

t.Hn/ D �n, and then argue that the means and temperatures do not change

when Left’s subtraction set includes other odd integers.

We will need several lemmas. The first shows that if n is odd, then Hn D

Hn�1 C 1 (canonically). This reduces Theorem 6 to the case where n is even.
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LEMMA 7. Let n be odd. Then

HnC1 � Hn < 1; (6-1)

Hn � Hn�1 D 1: (6-2)

PROOF. We proceed by induction on n.

To prove (6-1), consider

1 C Hn � HnC1:

Left can win by moving immediately to 1 C Hn; this value is positive since

R0.Hn/ � 0. If Right moves to 1 C Ha C Hb � HnC1, Left counters to 1 C

Ha CHb �HaC1 �Hb . This is a winning move by induction on (6-1) or (6-1),

depending on whether a is odd or even, respectively. If Right moves to 1 C

Hn � Ha � Hb , then since n C 1 is even, a C b is odd and hence one of a; b

(say a) must be odd. Left counters to 1 C Ha�1 C Hb � Ha � Hb , which is 0

by induction.

To prove (6-1) we show that

Hn � Hn�1 � 1

is a second-player win. If Right moves to Ha C Hb � Hn�1 � 1, then since n is

odd, aCb is also odd and hence one of a; b (say a) must be odd. Left counters to

Ha CHb �Ha�1 �Hb �1, which by induction is equal to 0. Likewise, if Right

moves to Hn � Ha � Hb � 1, then since n � 1 is even, a C b is odd and hence

one of a; b (say a) must be even. Left counters to HaC1 C Hb � Ha � Hb � 1.

Finally, if Right moves to Hn �Hn�1, Left simply responds with Hn�1 �Hn�1.

Conversely, if Left moves to Ha C Hb � Hn�1 � 1, then since n > 1 we can

assume without loss of generality that a>0. Right counters to HaCHb�Ha�1�

Hb � 1. By induction, this is 0 if a is odd, and negative if a is even. If instead

Left moves to Hn �Ha �Hb �1, then since n�1 is even, aCb is odd and hence

one of a; b (say a) must be odd. Right counters to HaC1 C Hb � Ha � Hb � 1,

which is negative by induction on (6-1). ˜

The rather dry arithmetic of the �n and �n is described in the next two lemmas.

LEMMA 8. Fix n > 2 and let k be such that 2k � n < 2kC1. Then

�n � �n�2 D
1

2k
:

PROOF. We may assume that n is even, for if n0 D n C 1 is odd, we have

2k � n; n0 < 2kC1 � and

�n0 � �n0�2 D �n � �n�2 D
1

2k
:
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We separate cases into n D 2k and n ¤ 2k .

If n D 2k ,

�2k � �2k�2 D
�

2k�1C1

2k
C

k

2
� 1

�

�
�

.2k�1�1/C1

2k�1
C

k�1

2
� 1

�

D
�

1

2
C

1

2k
C

k

2
� 1

�

�
�

1 C
k

2
�

1

2
� 1

�

D
1

2k
:

If n ¤ 2k ,

�n � �n�2 D
�

n=2C1

2k
C

k

2
� 1

�

�
�

.n�2/=2C1

2k
C

k

2
� 1

�

D
�

n

2kC1
C

1

2k
C

k

2
� 1

�

�
�

n

2kC1
C

k

2
� 1

�

D
1

2k
: ˜

Lemma 8 shows that the �n are (nonstrictly) increasing; and therefore, up to

parity, so are the �n. Furthermore, up to parity, the rate of increase is decreasing.

This fact will be critical in the proof of Theorem 6, since it quantifies the intuition

that Left prefers to split as evenly as possible.

LEMMA 9. Fix n > 2 and let k be such that 2k � n < 2kC1. Then

�n C �n�1 D
n C 1

2k
C k � 1:

PROOF. Again, we separate into the same two cases. If n D 2k ,

�2k C �2k�1 D
�

2k�1C1

2k
C

k

2
� 1

�

C
�

.2k�1�1/C1

2k�1
C

k�1

2

�

D
�

1

2
C

1

2k
C

k

2
� 1

�

C
�

1 C
k

2
�

1

2

�

D
1

2k
C k:

Since n=2k D 1, this yields the desired equality.

When n ¤ 2k , notice that exactly one of n, n � 1 is odd, and in either case

bn=2c C b.n � 1/=2c D n � 1. So,

�n C �n�1 D
�bn=2c C 1

2k
C

k

2
� 1

�

C
�b.n � 1/=2c C 1

2k
C

k

2
� 1

�

D
.n�1/C2

2k
C k � 2 D

nC1

2k
C k � 2:

Since exactly one of n, n � 1 is odd, we have �n C �n�1 D �n C �n�1 C 1, as

needed. ˜

PROOF. (of Theorem 6) As noted in the exposition, we first show that m.Hn/ D

�n and t.Hn/ D �n, and then generalize to the Gn. The proof is by induction on

n. The base cases H1 D 1 and H2 D f1 j 0g are easily verified. At odd stages of
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the induction, the result is an immediate corollary of Lemma 7, so fix an even

n > 2.

Left has a move to H L
n D Hn=2 C Hn=2�1. By induction, we know that

m.H L
n / D m.Hn=2/ C m.Hn=2�1/ D �n=2 C �n=2�1

and since 2k�1 � n=2 < 2k , Lemma 9 implies that

�n=2 C �n=2�1 D
n=2 C 1

2k�1
C .k � 1/ � 1 D

bn=2c C 1

2k�1
C k � 2:

Furthermore,

t.H L
n / � maxf�n=2; �n=2�1g D �n=2:

Now Right can remove the entire heap, moving to H R
n D 0. Therefore

m.H L
n / � m.H R

n /

2
D

m.H L
n /

2
D

bn=2c C 1

2k
C

k

2
� 1 D �n:

Now certainly �n > �n=2. Therefore

m.H L
n / � m.H R

n /

2
> maxft.H L

n /; t.H R
n /g:

If H L
n and H R

n were the only options of Hn, then by an elementary thermo-

graphic argument, we would have

t.Hn/ D �n and m.Hn/ D
m.H L

n / C m.H R
n /

2
D

m.H L
n /

2
D �n D �n:

Certainly both players have other options available, so we conclude the proof

by showing that H L
n and H R

n are thermally optimal at all temperatures t � �n=2.

Since �n=2 is an upper bound for t.H L
n /, it suffices to show that, for any other

options H L0

n , H R0

n , we have m.H L0

n / � m.H L
n / and m.H R0

n / � m.H R
n /.

This is trivial in the case of Right options, since no Odd versus Even position

can have negative mean.

Therefore, consider some arbitrary Left option Ha C Hb , with a > b and

a C b D n � 1. We necessarily have a � n=2 and n=2 � 1 � b, with a � n=2 D

.n=2�1/�b. Now since exactly one of n=2, n=2�1 is odd, repeated applications

of Lemma 8 imply that

�a � �n=2 � �n=2�1 � �b :

It follows that

�a C �b < �n=2 C �n=2�1

and hence, since a C b and n=2 C .n=2 � 1/ are both odd,

�a C �b < �n=2 C �n=2�1:
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This completes the proof for the Hn. To conclude, we show (again by induc-

tion on n) that Left’s additional options in Gn convey no thermographic advan-

tage. For suppose Left has a move from Gn to GaCGb , where aCb D n�2c�1

for some c � 0. By induction we may assume that m.Gi/ D �i and t.Gi/ D �i

for all i < n. But just as before, we have

�a C �b � �aC2c C �b � �n=2 C �n=2�1

so that Ga C Gb is thermally dominated at temperatures t � �n=2. ˜

We conclude with a neat little theorem on orthodox moves.

DEFINITION 10. Let G be a game and fix t � 0. A Left option GL is said to be

orthodox at temperature t if Rt .G
L/ D Lt .G

L/ C t . Likewise, a Right option

GR is orthodox at temperature t if Lt .G
R/ D Rt .G/� t . We say that an option

is orthodox if it is orthodox at temperature t.G/.

That is, an orthodox move is one that achieves the best possible score at tem-

perature t.G/.

THEOREM 11. Let k > 2 and n D 2k �1. Left’s only orthodox move from Gn is

to GL
n D G2k�1�1 C G2k�1�1.

PROOF. Since n is odd, Left must split Gn into two heaps that are either both

even or both odd. It is easily seen that those options with both heaps even are

badly dominated, so it suffices to show that GL
n is strictly optimal among those

options with both heaps odd.

By Lemma 8,

�2k�1�1 � �2k�1�3 D
1

2k�2
; but �2k�1C1 � �2k�1�1 D

1

2k�1
:

Therefore,

�2k�1C1 C �2k�1�3 < �2k�1�1 C �2k�1�1:

Repeated application of Lemma 8 also shows that

�a C �b � �2k�1C1 C �2k�1�3

for every other choice of a; b both odd with a C b < n. Therefore GL
n has the

strictly highest mean among the Left options of Gn. But we also know that

t.G2k�1�1 C G2k�1�1/ � �2k�1�1 < �n

so GL
n is the unique optimal move at temperature �n. ˜
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7. f1; oddsg versus f2; 4g

Suppose SL is any set of odd numbers containing 1, and SR D f2; 4g. The

values Gn for these games can be quite complex. For example, when SL Df1; 3g

the canonical form of G14 contains 611 stops! Furthermore, the exact value of

Gn depends strongly on the specific set SL (if SL D f1g then the canonical form

of G14 has only 6 stops). Although it is not practical to solve for Gn exactly,

we can find a very good approximation for Gn. In particular, let f .n/ be the

arithmetic-periodic sequence with period 4 and saltus 3/4 defined by

f .n/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 if n D 0,

1 if n D 1,

1=2 if n D 2,

3=2 if n D 3,

f .n � 4/ C 3=4 if n � 4.

The main theorem of this section is that Gn is infinitesimally close to f .n/�1�

for any choice of SL that contains 1 and zero or more other odd numbers. We

begin by briefly reviewing some definitions and results that will be required.

Infinitesimals. Write L0.G/ and R0.G/ for the Left and Right stops of G,

respectively. A game G is infinitesimal if L0.G/ D R0.G/ D 0. Write G �Inf H

when G and H differ by an infinitesimal; we also say that G is H -ish. If

G �Inf H , then L0.G/ D L0.H / and R0.G/ D R0.H /. The converse is in

general not true, but if x is a number and L0.G/ D R0.G/ D x, then it is true

that G �Inf x, in which case we say that G is numberish.

Write G �Inf H if there is some infinitesimal " such that G � H C ", and

similarly for G �Inf H . A Left option GL of G is Inf-dominated if GL0

�Inf GL

for some other Left option GL0

, and similarly for Right options.

In [GS07] it is shown that if G �Inf H , then L0.G/ � L0.H / and R0.G/ �

R0.H /. More importantly, they show:

PROPOSITION 12. If G is not a number and G0 is obtained from G by repeatedly

(i) eliminating Inf-dominated options, and

(ii) replacing any option H with H 0 �Inf H , then G0 �Inf G.

Norton multiplication. Fix a game U > 0. The Norton product G �U is defined

by

G �U D

8

<̂

:̂

0 or

G times
‚ …„ ƒ

U C U C � � � C U or

�G times
‚ …„ ƒ

�U � U � � � � � U if G is an integer,
˚

GL � U C .U C I/
ˇ
ˇ GR � U � .U C I/

	

otherwise.
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where I ranges over all Left and Right incentives of G. We will use the following

properties of Norton multiplication, which are proved in [BCG01].

PROPOSITION 13. Let U be any positive game. Then:

(i) If G D H , then G � U D H � U (independence of form).

(ii) G � H if and only if G � U � H � U (monotonicity).

(iii) .G C H / � U D G � U C H � U (distributivity).

For our purposes, we take U D 1�. Since the only Left or Right incentive of 1�

is �, we have

G�1� D
˚

GL�1� C 1 j GR �1� � 1
	

when G is not an integer. We note that G�1� is equal to G overheated from 1�

to 1, an operation defined in [BCG01]. It is easy to verify by induction that if x

is a number then L0.x�1�/ D dxe and R0.x�1�/ D bxc.

LEMMA 14. If x D a=4 for some integer a, then

f.x � 1=4/�1� C 1 j .x C 1=4/�1� � 1g D x�1�

PROOF. If x is not an integer, then x Dfx � 1=4 j x C 1=4g, so the result follows

from the definition of Norton multiplication and Proposition 13(i). Otherwise,

by symmetry, it suffices to show that Right has no winning move from

f.x � 1=4/�1� C 1 j .x C 1=4/�1� � 1g � x�1�:

If Right moves in the first component, then the resulting game is

.x C 1=4/�1� � 1 � x�1� D .1=4/�1� � 1

which we can verify is  0, so Left wins. If Right moves in the second compo-

nent, which has the effect of subtracting �, then Left responds in the first, and

the resulting game is

.x � 1=4/�1� C 1 � x�1� � � D .�1=4/�1� C 1� D .3=4/�1�

which we can verify is � 0, so again Left wins. ˜

PROOF OF MAIN RESULT. We will now show that Gn �Inf f .n/�1�. Our proof

is by induction. Suppose the result holds for all m < n. It is convenient to

assume that n � 4; for n < 4 we can easily validate the result by hand. We begin

by showing that in the game Gn, there are only one Left and one Right option

that need to be considered.

LEMMA 15. The Left options of Gn are Inf-dominated by

Gn�4 C G3 �Inf .f .n/ C 3=4/�1�:
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The Right options are Inf-dominated by

Gn�4 �Inf .f .n/ � 3=4/�1�:

PROOF. The Left options of Gn are Gn�k�a C Gk with a 2 SL. Since f .m/ <

f .m C 2/ for all m and Gm �Inf f .m/�1� for m < n, Gn�k�a C Gk �Inf

Gn�k�1 C Gk so we may assume that a D 1. Next, since f is arithmetic-

periodic with period 4, Gn�k�1 C Gk �Inf Gn�kC3 C Gk�4 for k � 4, so we

may assume that k < 4. This leaves us with four options to consider, which are

infinitesimally close to:

f .n � 1/�1�; .f .n � 2/ C 1/�1�; .f .n � 3/ C 1=2/�1�; .f .n � 4/ C 3=2/�1�

It is easy to verify that for all m we have

f .m/C3=2 � f .mC3/; f .m/C1=2 � f .mC2/; f .m/C1 � f .mC1/;

from which it follows that .f .n�4/C3=2/�1� D .f .n/C3=4/�1� Inf-dominates

the others.

The proof for the Right options is similar. Since f .m/ < f .m C 2/ and

f is arithmetic-periodic with period 4, we need only consider the four options

Gn�k�4 C Gk with k < 4, which are infinitesimally close to

f .n � 4/�1�; .f .n � 5/ C 1/�1�; .f .n � 6/ C 1=2/�1�; .f .n � 7/ C 3=2/�1�

The same three inequalities as before show that f .n�4/�1� D .f .n/�3=4/�1�

Inf-dominates the others (note that for n D 4; 5; 6, not all the other options exist,

but this does not affect the result). ˜

Next we show that Gn has the same Left and Right stops as f .n/�1�.

LEMMA 16. L0.Gn/ D df .n/e and R0.Gn/ D bf .n/c.

PROOF. First we compute maxfR0.GL
n /g and minfL0.GR

n /g. By Lemma 15,

maxfR0.GL
n /g D R0..f .n/ C 3=4/�1�/ D bf .n/ C 3=4c D df .n/e:

The last equality follows from the fact that f .n/ is of the form a=4 for some

integer a. Similarly,

minfL0.GR
n /g D L0..f .n/ � 3=4/�1�/ D df .n/ � 3=4e D bf .n/c:

If Gn is not a number then we are done, as then L0.Gn/ D maxfR0.GL
n /g and

R0.Gn/ D minfL0.GR
n /g. If Gn is a number then Gn D L0.Gn/ D R0.Gn/,

but

L0.Gn/ � maxfR0.GL
n /g D df .n/e � bf .n/c D minfL0.GR

n /g � R0.Gn/

so in fact we must have equality throughout, which means that f .n/ is also an

integer, and again we are done. ˜
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From Lemma 16 it follows immediately that when f .n/ is an integer, Gn �Inf

f .n/ �Inf f .n/�1�. Finally, if f .n/ is not an integer, then by Lemma 16, Gn is

not numberish. So by Lemma 15, Proposition 12 and Lemma 14,

Gn �Inf f.f .n/ C 3=4/�1� j .f .n/ � 3=4/�1�g

�Inf f.f .n/ � 1=4/�1� C 1 j .f .n/ C 1=4/�1� � 1g D f .n/�1�: ˜
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Unsolved problems in Combinatorial Games

RICHARD K. GUY AND RICHARD J. NOWAKOWSKI

We have sorted the problems into sections:

� A. Taking and Breaking

� B. Pushing and Placing Pieces

� C. Playing with Pencil and Paper

� D. Disturbing and Destroying

� E. Theory of Games

They have been given new numbers. The numbers in parentheses are the old

numbers used in each of the lists of unsolved problems given on pp. 183–189

of AMS Proc. Sympos. Appl. Math. 43 (1991), called PSAM 43 below; on

pp. 475–491 of Games of No Chance, hereafter referred to as GONC; and on

pp. 457–473 of More Games of No Chance (MGONC). Missing numbers are of

problems which have been solved, or for which we have nothing new to add.

References [year] may be found in Fraenkel’s Bibliography at the end of this

volume. References [#] are at the end of this article. A useful reference for

the rules and an introduction to many of the specific games mentioned below is

M. Albert, R. J. Nowakowski and D. Wolfe, Lessons in Play: An Introduction

to the Combinatorial Theory of Games, A K Peters, 2007 (LIP).

A. Taking and breaking games

A1 (1). Subtraction games with finite subtraction sets are known to have pe-

riodic nim-sequences. Investigate the relationship between the subtraction set

and the length and structure of the period. The same question can be asked

about partizan subtraction games, in which each player is assigned an individual

subtraction set. See Fraenkel and Kotzig [1987].

[A move in the game S.s1; s2; s3; : : : / is to take a number of beans from a

heap, provided that number is a member of the subtraction-set, fs1; s2; s3; : : : g.

Analysis of such a game and of many other heap games is conveniently recorded

465
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by a nim-sequence,

n0n1n2n3 : : : ;

meaning that the nim-value of a heap of h beans is nh; i.e., that the value of a

heap of h beans in this particular game is the nimber �nh.]

For examples see Table 2 in ~ 4 on p. 67 of the Impartial Games paper in

GONC.

It would now seem feasible to give the complete analysis for games whose

subtraction sets have just three members, though this has so far eluded us.

Several people, including Mark Paulhus and Alex Fink, have given a complete

analysis for all sets f1; b; cg and for sets fa; b; cg with a < b < c < 32.

In general, period lengths can be surprisingly long, and it has been suggested

that they could be superpolynomial in terms of the size of the subtraction set.

However, Guy conjectures that they are bounded by polynomials of degree at

most
�n

2

�
in sn, the largest member of a subtraction set of cardinality n. It would

also be of interest to characterize the subtraction sets which yield a purely peri-

odic nim-sequence, i.e., for which there is no preperiod.

Angela Siegel [18] considered infinite subtraction sets which are the comple-

ment of finite ones and showed that the nim-sequences are always arithmetic

periodic. That is, the nim-values belong to a finite set of arithmetic progres-

sions with the same common difference. The number of progressions is the

period and their common difference is called the saltus. For instance, the game

SfO4; O9; b26; b30g (in which a player may take any number of beans except 4, 9, 26

or 30) has a preperiod of length 243, period-length 13014 and saltus 4702.

For infinite subtraction games in general there are corresponding questions

about the length and purity of the period.

We note that Question A2 on the 2006-12-02 Putnam exam is the subtraction

game with subtraction set fp�1 W p primeg. Show that there are infinitely many

heap sizes which are P-positions.

A2 (2). Are all finite octal games ultimately periodic?

[If the binary expansion of the k-th code digit in the game with code

d0 � d1d2d3 : : :

is

dk D 2ak C 2bk C 2ck C : : : ;

where 0 � ak < bk < ck < : : : , then it is legal to remove k beans from a heap,

provided that the rest of the heap is left in exactly ak or bk or ck or . . . nonempty

heaps. See WW, 81–115. Some specimen games are exhibited in Table 3 of ~ 5

of the Impartial Games paper in GONC.]
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Resolve any number of outstanding particular cases, e.g., �6 (Officers), �04,

�06, �14, �36, �37, �64, �74, �76, �004, �005, �006, �007, �014, �015, �016, �024, �026,

�034, �064, �114, �125, �126, �135, �136, �142, �143, �146, �162, �163, �164, �166,

�167, �172, �174, �204, �205, �206, �207, �224, �244, �245, �264, �324, �334, �336,

�342, �344, �346, �362, �364, �366, �371, �374, �404, �414, �416, �444, �564, �604,

�606, �744, �764, �774, �776 and Grundy’s Game (split a heap into two unequal

heaps; WW, pp. 96–97, 111–112; LIP, p. 142), which has been analyzed, first

by Dan Hoey and later by Achim Flammenkamp, as far as heaps of 235 beans.

1401–

1024–

512–

256–

Figure 1. Plot of 11000000 nim-values of the octal game �007.

Perhaps the most notorious and deserving of attention is the game �007, one-

dimensional Tic-Tac-Toe, or Treblecross, which Flammenkamp has pushed to

225. Figure 1 shows the first 11 million nim-values, a small proportion of which

are � 1024; the largest, G.6193903/ D 1401 is shown circled. Will 2048 ever

be reached?

Achim Flammenkamp has settled �106: it has the remarkable period and

preperiod lengths of 328226140474 and 465384263797. For information on the

current status of each of these games, see Flammenkamp’s web page at http://

www.uni-bielefeld.de/~achim/octal.html.

A game similar to Grundy’s, and which is also unsolved, is John Conway’s

Couples-Are-Forever (LIP, p. 142) where a move is to split any heap except a

heap of two. The first 50 million nim-values haven’t displayed any periodicity.

See Caines et al. [1999]. More generally, Bill Pulleyblank suggests looking at

splitting games in which you may only split heaps of size > h, so that h D 1

is She-Loves-Me-She-Loves-Me-Not and h D 2 is Couples-Are-Forever. David

Singmaster suggested a similar generalization: you may split a heap provided



468 RICHARD K. GUY AND RICHARD J. NOWAKOWSKI

that the resulting two heaps each contain at least k beans: k D 1 is the same as

h D 1, while k D 2 is the third cousin of Dawson’s Chess.

Explain the structure of the periods of games known to be periodic.

In Discrete Math., 44(1983) 331–334, Problem 38, Fraenkel raised questions

concerning the computational complexity (see E1 below) of octal games. In

Problem 39, he and Kotzig define partizan octal games in which distinct octals

are assigned to the two players. The article by Mesdal, in this volume, shows

that in many cases, if the game is “all-small” (WW, pp. 229–262, LIP, pp. 183–

207), then the atomic weights are arithmetic periodic. In Problem 40, Fraenkel

introduces poset games, played on a partially ordered set of heaps, each player

in turn selecting a heap and then removing a nonnegative number of beans from

this heap and from each heap above it in the ordering, at least one heap being

reduced in size. For posets of height one, new regularities in the nim-sequence

can occur; see Horrocks and Nowakowski [2003].

Note that this includes, as particular cases, Subset Takeaway, Chomp or Divi-

sors, and Green Hackenbush forests. Compare Problems A3, D1 and D2 below.

A3 (3). Hexadecimal games have code digits dk in the interval from 0 to f

(= 15), so that there are options splitting a heap into three heaps. See WW,

116–117.

Such games may be arithmetically periodic. Nowakowski has calculated

the first 100000 nim-values for each of the 1-, 2- and 3-digit games. Richard

Austin’s theorem 6.8 in his thesis [1976] and the generalization by Howse and

Nowakowski [2004] suffice to confirm the arithmetic periodicity of several of

these games.

Some interesting specimens are �28 = �29, which have period 53 and saltus 16,

the only exceptional value being G.0/D0; �9c, which has period 36, preperiod 28

and saltus 16; and �f6 with period 43 and saltus 32, but its apparent preperiod of

604 and failure to satisfy one of the conditions of the theorem prevent us from

verifying the ultimate periodicity. The game �205200c is arithmetic periodic

with preperiod length of 4, period length of 40, saltus 16 except that 40k C 19

has nim-value 6 and 40k C 39 has nim-value 14. This regularity, (which also

seems to be exhibited by �660060008 with a period length of approximately

300,000), was first reported in Horrocks and Nowakowski [2003] (see Problem

A2.) Grossman and Nowakowski [7] have shown that the nim-sequences for

�200. . . 0048, with an odd number of zero code digits, exhibit “ruler function”

patterns. The game �9 has not so far yielded its complete analysis, but, as far

as analyzed (to heaps of size 100000), exhibits a remarkable fractal-like set of

nim-values. See Howse and Nowakowski [2004]. Also of special interest are �e;

�7f (which has a strong tendency to period 8, saltus 4, but, for n � 100; 000, has

14 exceptional values, the largest being G.94156/ D 26614); �b6 (which “looks
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octal”); �b33b (where a heap of size n has nim-value n except for 27 heap sizes

which appear to be random); and �817264517

Figure 2. Plot of 200000 nim-values for the hexadecimal game �817264517

[why 817264517 ?] whose nim-values appear to form a lattice of ruler functions

with slopes slightly less than 1
2

and �1
2

(see Figure 2). The largest value in the

range calculated is G.206265/ D 101458.

Other unsolved hexadecimal games are �1x, where x 2 f8; 9; c; d; e; f g;

�2x, a � x � f ; �3x, 8 � x � e; �4x, x 2 f9; b; d; f g; �5x, 8 � x � f ;

�6x, 8 � x � f ; �7x, 8 � x � f ; �9x, 1 � x � a; �9d; �bx, x 2 f6; 9; dg;

�dx, 1 � x � f ; �fx with x 2 f4; 6; 7g.

A4 (53). N -heap Wythoff Game. Given N � 2 heaps of finitely many tokens,

whose sizes are p1; : : : ; pN with p1 � � � � � pN . Players take turns removing

any positive number of tokens from a single heap or removing .a1; : : : ; aN / from

all the heaps — ai from the i-th heap — subject to the conditions (i) 0 � ai � pi

for each i , (ii)
PN

iD1 ai > 0, (iii) a1 ˚ � � � ˚ aN D 0, where ˚ is nim addition.

The player making the last move wins and the opponent loses. Note that the

classical Wythoff game is the case N D 2.

For N � 3, Fraenkel makes the following conjectures.

Conjecture 1. For every fixed set K WD .A1; : : : ; AN �2/ there exists an integer

m D m.K/ (i.e, m depends only on K), such that

.A1; : : : ; AN �2; AN �1
n ; AN

n /; AN �2 � AN �1
n � AN

n

with AN �1
n < AN �1

nC1
for all n � 1, is the n-th P-position, and

AN �1
n D mex

�
fAN �1

i ; AN
i W 0 � i < ng [ T

�
; AN

n D AN �1
n C n
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for all n � m, where T D T .K/ is a (small) set of integers.

That is, if you fix N � 2 of the heaps, the P-positions resemble those for

the classical Wythoff game. For example, for N D 3 and A1 D 1, we have

T D f2; 17; 22g, m D 23.

Conjecture 2. For every fixed K there exist integers a D a.K/ and M D M.K/

such that AN �1
n D bn�c C "n C a and AN

n D AN �1
n C n for all n � M , where

� D .1 C
p

5/=2 is the golden section, and "n 2 f�1; 0; 1g.

In Fraenkel and Krieger [2004] the following was shown, inter alia: Let t 2
Z�1, ˛ D .2 � t C

p
t2 C 4/=2 (˛ D � for t D 1), T � Z�0 a finite set,

An D .mex fAi ; Bi W 0 � i < ng [ T /, where Bn DAnCnt . Let sn WDbn˛c�An.

Then there exist a 2 Z and m 2 Z�1, such that for all n � m, either sn D a, or

sn D aC"n, "n 2 f�1; 0; 1g. If "n ¤ 0, then "n�1 D "nC1 D 0. Also the general

structure of the "n was characterized succinctly.

This result was then applied to the N -heap Wythoff game. In particular, for

N D 3 (so that K D A1) it was proved that A2
n D mex

�
fA2

i ; A3
i W 0 � i < ng[T

�
,

where T D

fx � K W 9 0 � k < K s:t: .k; K; x/ is a P � positiong [ f0; : : : ; K � 1g

The following upper bound for A3
n was established: A3

n � .K C3/A2
n C2K C2.

It was also proved that Conjecture 1 implies Conjecture 2.

In Sun and Zeilberger [2004], a sufficient condition for the conjectures to hold

was given. It was then proved that the conjectures are true for the case N D 3,

where the first heap has up to 10 tokens. For those 10 cases, the parameter

values m; M; a; T were listed in a table.

Sun [2005] obtained results similar to those in Fraenkel and Krieger [2004],

but the proofs are different. It was also proved that Conjecture 1 implies Con-

jecture 2. A method was given to compute a in terms of certain indexes of the

Ai and Bj .

A5 (23). Burning-the-Candle-at-Both-Ends. Conway and Fraenkel ask us

to analyze Nim played with a row of heaps. A move may only be made in

the leftmost or in the rightmost heap. When a heap becomes empty, then its

neighbor becomes the end heap.

Albert and Nowakowski [2001] have determined the outcome classes in im-

partial and partizan versions (called End-Nim, LIP, pp. 210, 263) with finite

heaps, and Duffy, Kolpin and Wolfe, in this volume, extend the partizan case to

infinite ordinal heaps. Wolfe asks for the actual values.

Nowakowski suggested to analyze impartial and partizan End-Wythoff: take

from either end-pile, or the same number from both ends. The impartial game is

solved by Fraenkel and Reisner, in this volume, Fraenkel [1982] asks a similar
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question about a generalized Wythoff game: take from either end-pile or take

k > 0 from one end-pile and ` > 0 from the other, subject to jk � `j < a, where

a is a fixed integer parameter (a D 1 is End-Wythoff).

There is also Hub-and-Spoke Nim, proposed by Fraenkel. One heap is the

hub and the others are arranged in rows forming spokes radiating from the hub.

Albert notes that this game can be generalized to playing on a forest, i.e., a graph

each of whose components is a tree. The most natural variant is that beans may

only be taken from a leaf (valence 1) or isolated vertex (valence 0).

The partizan game of Red-Blue Cherries is played on an arbitrary graph. A

player picks an appropriately colored cherry from a vertex of minimum degree,

which disappears at the same time. Albert et al.[1] show that if the graph has a

leaf, then the value is an integer. See also McCurdy [10].

A6 (17). Extend the analysis of Kotzig’s Nim (WW, 515–517). Is the game

eventually periodic in terms of the length of the circle for every finite move set?

Analyze the misère version of Kotzig’s Nim.

A7 (18). Obtain asymptotic estimates for the proportions of N-, O- and P-

positions in Epstein’s Put-or-Take-a-Square game (WW, 518–520).

A8. Gale’s Nim. This is Nim played with four heaps, but the game ends when

three of the heaps have vanished, so that there is a single heap left. Brouwer

and Guy have independently given a partial analysis, but the situation where the

four heaps have distinct sizes greater than 2 is open. An obvious generalization

is to play with h heaps and play finishes when k of them have vanished.

A9. Euclid’s Nim is played with a pair of positive integers, a move being to

diminish the larger by any multiple of the smaller. The winner is the player

who reduces a number to zero. Analyses have been given by Cole and Davie

[1969], Spitznagel [1973], Lengyel [2003], Collins [2005], Fraenkel [2005] and

Nivasch [2006]. Gurvich [8] shows that the nim-value, gC.a; b/ for the pair

.a; b/ in normal play is the same as the misère nim-value, g�.a; b/ except for

.a; b/ D .kFi ; kFiC1/ where k > 0 and Fi is the i-th Fibonacci number. In this

case, gC.kFi ; kFiC1/ D 0 and g�.kFi ; kFiC1/ D 1 if i is even and the values

are reversed if i is odd.

We are not aware of an analysis of the game played with three or more inte-

gers.

A10 (20). Some advance in the analysis of D.U.D.E.N.E.Y (WW, 521–523) has

been made by Marc Wallace, Alex Fink and Kevin Saff.

[The game is Nim, but with an upper bound, Y , on the number of beans that

may be taken, and with the restriction that a player may not repeat his opponent’s

last move. If Y is even, the analysis is easy.]
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We can, for example, extend the table of strings of pearls given in WW,

p. 523, with the following values of Y which have the pure periods shown,

where D=Y C2, E=Y C1. The first entry corrects an error of 128r C31 in WW.

256r C 31 DEE 512r C 153 DEE 1024r C 415 DEE

512r C 97 DDEDDDE 512r C 159 DEE 512r C 425 DE

1024r C 103 DE 512r C 225 DDE 512r C 487 DEE

128r C 119 DEE 512r C 255 E 1024r C 521 DDDE

1024r C 127 DEEE 512r C 257 DDDDE 1024r C 607 DDE

512r C 151 DDDEE 512r C 297 DDEDEDE 1024r C 735 DEEE

It seems likely that the string for Y D 22kC1 C 22k � 1 has the simple period E

for all values of k. But the following evidence of the fraction, among 2k cases,

that remain undetermined:

k D 3 5 6 7 8 9 10 11 12 13 14 15 16 17

fraction 1
2

5
16

9
32

11
64

21
128

33
256

60
512

97
1024

177
2048

304
4096

556
8192

974
16384

1576
32768

2763
65536

suggests that an analysis will never be complete.

Moreover, the periods of the pearl-strings appear to become arbitrarily long.

A11 (21). Schuhstrings is the same as D.U.D.E.N.E.Y, except that a deduction

of zero is also allowed, but cannot be immediately repeated (WW, 523–524). In

Winning Ways it was stated that it was not known whether there is any Schuh-

string game in which three or more strings terminate simultaneously. Kevin Saff

has found three such strings (when the maximum deduction is Y D 3430, the

three strings of multiples of 2793, 3059, 3381 terminate simultaneously) and he

conjectures that there can be arbitrarily many such simultaneous terminations.

A12 (22). Analyze Dude, i.e., unbounded D.U.D.E.N.E.Y, or Nim in which you

are not allowed to repeat your opponent’s last move.

Let Œh1; h2; : : : ; hk I m�, hi � hiC1, be the game with heaps of size h1 through

hk , where m is the move just made and m D 0 denotes a starting position. Then

[4], for k D 1 the P-positions are Œ.2s C1/22j I .2s C1/22j �; for k D 2 they are

Œ.2s C1/22j ; .2s C1/22j I 1�; and for k � 3 the heap sizes are arbitrary, the only

condition being that the previous move was 1. The nim-values do not seem to

show an easily described pattern.

A13. Nim with pass. David Gale would like to see an analysis of Nim played

with the option of a single pass by either of the players, which may be made

at any time up to the penultimate move. It may not be made at the end of the

game. Once a player has passed, the game is as in ordinary Nim. The game

ends when all heaps have vanished.

A14. Games with a Muller twist. In such games, each player specifies a

condition on the set of options available to her opponent on his next move.
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In Odd-or-Even Nim, for example, each player specifies the parity of the

opponent’s next move. This game was analyzed by Smith and Stănică [2002],

who propose several other such games which are still open (see also Gavel and

Strimling [2004]).

The game of Blocking Nim proceeds in exactly the same way as ordinary Nim

with N heaps, except that before a given player takes his turn, his opponent is

allowed to announce a block, .a1; : : : ; aN /; i.e., for each pile of counters, he

has the option of specifying a positive number of counters which may not be

removed from that pile. Flammenkamp, Holshouser and Reiter [2003, 2004]

give the P-positions for three-heap Blocking Nim with an incomplete block

containing only one number, and ask for an analysis of this game with a block

on just two heaps, or on all three. There are corresponding questions for games

with more than three heaps.

A15 (13). Misère analysis has been revolutionized by Thane Plambeck and

Aaron Siegel with their concept of the misère quotient of a game [13], though

the number of unsolved problems continues to increase.

Let A be some set of games played under misère rules. Typically, A is the

set of positions that arise in a particular game, such as Dawson’s Chess. Games

H; K 2 A are said to be equivalent, denoted by H � K, if H C X and K C X

have the same outcome for all games X 2 A. The relation � is an equivalence

relation, and a set of representatives, one from each equivalence class, forms the

misère quotient, QDA=�. A quotient map ˚ WA!Q is defined, for G 2A,

by ˚ W G D ŒG��.

Plambeck and Siegel ask the specific questions:

(1) The misère quotient of �07 (Dawson’s Kayles) has order 638 at heap size

33. Is it infinite at heap size 34? Even if the misère quotient is infinite at

heap 34 then, by Redei’s theorem [6, p. 142], [14], it must be isomorphic to

a finitely-presented commutative monoid. Call this monoid D34. Exhibit a

monoid presentation of D34, and having done that, exhibit D35, D36, etc, and

explain what is going on in general. Given a set of games A, describe an algo-

rithm to determine whether the misère quotient of A is infinite. Much harder:

if the quotient is infinite, give an algorithm to compute a presentation for it.

(2) A quotient map ˚ WA!Q is said to be faithful if, whenever ˚.G/ D ˚.H /,

then G and H have the same normal-play Grundy value. Is every quotient map

faithful?

(3) Let .Q;P/ be a quotient and S a maximal subgroup of Q. Must S \P be

nonempty? (Note: it’s easy to get a “yes” answer in the special case when S is

the kernel)
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(4) Give complete misère analyses for any of the (normal-play periodic) octal

games that show “algebraic-periodicity” in misère play. Some examples are �54,

�261, �355, �357, �516 and �724. Give a precise definition of algebraic periodic-

ity and describe an algorithm for detecting and generalizing it. This is a huge

question: if such an algorithm exists, it would likely instantly give solutions to

at least a half-dozen unsolved 2- and 3-digit octals.

(5) Extend the classification of misère quotients. We have preliminary results

on the number of quotients of order n � 18 but believe that this can be pushed

far higher.

(6) Exhibit a misère quotient with a period-5 element. Same question for period

8, etc. We’ve detected quotients with elements of periods 1, 2, 3, 4, 6, and

infinity, and we conjecture that there is no restriction on the periods of quotient

elements.

(7) In the flavor of both (5) and (6): What is the smallest quotient containing a

period 4 (or 3 or 6) element?

Plambeck also offers prizes of US$500.00 for a complete analysis of Daw-

son’s Chess, �137 (alias Dawson’s Kayles, �07); US$200.00 for the “wild qua-

ternary game”, �3102; and US$25.00 each for �3122, �3123 and �3312.

The website http://www.miseregames.org contains thousands of misère quo-

tients for octal games.

Siegel notes that Dawson first proposed his problem in 1935, making it per-

haps the oldest open problem in combinatorial game theory. [Michael Albert

offers the alternative “Is chess a first player win?”] It may be of historical interest

to note that Dawson showed the problem to one of the present authors around

1947. Fortunately, he forgot that Dawson proposed it as a losing game, was able

to analyze the normal play version, rediscover the Sprague–Grundy theory, and

get Conway interested in games.

B. Pushing and placing pieces

B1 (5). The game of Go is of particular interest, partly because of the loopiness

induced by the “ko” rule, and many problems involve general theory: see E4

and E5.

Elwyn writes:

I attach one region that has been studied intermittently over the past several

years. The region occurs in the southeast corner of the board (Figure 3).

At move 85 Black takes the ko at L6. What then is the temperature at

N4 ? This position is copied from the game Jiang and Rui played at MSRI

in July 2000. In 2001, Bill Spight and I worked out a purported solu-

tion by hand, assuming either Black komaster or White komaster. I’ve
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A B C D E F G H J K L M N
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Figure 3. Jiang v. Rui, MSRI, July, 2000.

recently been trying to get that rather complicated solution confirmed by

GoExplorer, which would then presumably also be able to calculate the

dogmatic solution. I’ve been actively pursuing this off and on for the past

couple weeks, and haven’t gotten there yet.

Elwyn also writes:

Nakamura has shown [this volume] how capturing races in Go can be an-

alyzed by treating liberties as combinatorial games. Like atomic weights,

when the values are integers, each player’s best move reduces his oppo-

nent’s resources by one. The similarities between atomic weights and

Nakamura’s liberties are striking.

Theoretical problem: Either find a common formulation which includes much

or all of atomic weight theory and Nakamura’s theory of liberties, OR find some

significant differences.

Important practical applied problem: Extend Nakamura’s theory to include

other complications which often arise in Go, such as simple kos, either internal

and/or external.

B2. A simpler game involving kos is Woodpush (see LIP, pp. 214, 275). This

is played on a finite strip of squares. Each square is empty or occupied by a

black or white piece. A piece of the current player’s color retreats: Left retreats

to the left and Right to the right — to the next empty square, or off the board if

there is no empty square; except, if there is a contiguous string containing an

opponent’s piece then it can move in the opposite direction pushing the string

ahead of it. Pieces can be moved off the end of the strip. Immediate repetition
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of a global board positions is not allowed. A “ko” threat must be played first.

For example

Left Right Left Right

LRR˜ ! ˜LRR ! LR˜R ! ko-threat ! R˜˜R

Note that Right’s first move to LRR˜ is illegal because it repeats the immedi-

ately prior board position and Left’s second move to ˜LRR is also illegal so

he must play a ko-threat. Also note that in ˜LRR˜, Right never has to play

a ko-threat since he can always push with either of his two pieces — with Left

moving first,

Left Right

˜LRR˜ ! ˜˜LRR ! ˜LR˜R

! ko-threat ! Right answers ko-threat

! ˜˜LRR ! ˜LRR˜

Berlekamp, Plambeck, Ottaway, Aaron Siegel and Spight (work in progress) use

top-down thermography to analyze the three piece positions. What about more

pieces?

B3 (40). Chess. Noam Elkies [2002] has examined Dawson’s Chess, but played

under usual Chess rules, so that capture is not obligatory.

He would still welcome progress with his conjecture that the value �k occurs

for all k in (ordinary Chess) pawn endings on sufficiently large chessboards.

Thea van Roode has suggested Impartial Chess, in which the players may

make moves of either color. Checks need not be responded to and Kings may

be captured. The winner could be the first to promote a pawn.

B4 (30). Low and Stamp [2006] have given a strategy in which White wins the

King and Rook vs. King problem within an 11 � 9 region.

B5. Nonattacking Queens. Noon and Van Brummelen [2006] alternately place

queens on an n � n chessboard so that no queen attacks another. The winner is

the last queen placer. They give nim-values for boards of sizes 1 � n � 10 as

1121312310 and ask for the values of larger boards.

B6 (55). Amazons. Martin Müller [11] has shown that the 5 � 5 game is a first

player win and asks about the 6 � 6 game.

B7. Conway’s Philosopher’s Football, or Phutball, is usually played on a

Go board with positions .i; j /, �9 � i; j � 9 and the ball starting at (0,0).

For the rules, see WW, pp.752–755. The game is loopy (see E5 below), and

Nowakowski, Ottaway and Siegel (see [17]) discovered positions that contained

tame cycles, i.e., cycles with only two strings, one each of Left and Right moves.

Aaron Siegel asks if there are positions in such combinatorial games which are
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stoppers but contain a wild cycle, i.e., one which contains more than one alter-

nation between Left and Right moves. Demaine, Demaine and Eppstein [2002]

show that it is NP-complete to decide if a player can win on the next move.

Phlag Phutball is a variant played on an n�n board with the initial position of

the ball at .0; 0/ except that now only the ball may occupy the positions .2i; 2j /

with both coordinates even. This eliminates “tackling”, and is an extension of 1-

dimensional Oddish Phutball, analyzed in Grossman and Nowakowski [2002].

The .3; 2nC1/ board (i.e. .i; j /, i D0; 1; 2 and �n�j �n) is already interesting

and requires a different strategy from that appropriate to Oddish Phutball.

B8. Hex. (LIP, pp. 264–265) Nash’s strategy stealing argument shows that Hex

is a first player win but few quantitative results are known.

Garikai Campbell [2004] asks:

(1) For each n, what is the shortest path on an n � n board with which the

first player can guarantee a win?

(2) What is the least number of moves in which the first player can guarantee

a win?

B9 (54). Fox and Geese. Berlekamp and Siegel [17, Chapter 2] and WW

pp.669–710, “analysed the game fairly completely, relying in part on results

obtained using CGSuite.” On p. 710 of WW the following open problems are

given.

1. Define a position’s span as the maximum occupied row-rank minus its

minimum occupied row-rank. Then quantify and prove an assertion such as

the following: If the backfield is sufficiently large, and the span is sufficiently

large, and if the separation is sufficiently small, and if the Fox is neither already

trapped in a daggered position along the side of the board, nor immediately

about to be so trapped, then the Fox can escape and the value is off.

2. Show that any formation of three Geese near the centre of a very tall board

has a “critical rank” with the following property: If the northern Goose is far

above, and the Fox is far below, then the value of the position is either positive,

HOT, or off, according as the northern Goose is closer, equidistant, or further

from the critical rank than the Fox.

3. Welton asks what happens if the Fox is empowered to retreat like a Bishop,

going back several squares at a time in a straight line ? More generally, suppose

his straight-line retreating moves are confined to some specific set of sizes. Does

f1,3g, which maintains parity, give him more or less advantage than f1,2g ?

4. What happens if the number of Geese and board widths are changed ?

In Aaron Siegel’s thesis there are several other questions:

5. In the critical position, with Geese at [we use the algebraic Chess notation

of a, b, c, d, . . . for the files and 1, 2, 3, . . . , n for the ranks] (b,n), (d,n), (e,n�1),
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(g,n�1), and Fox at (c,n�1), which has value 1C2�.n�8/ on an n�8 board with

n � 8 in the usual game, is the value �2nC11 for all n � 6 when played with

“Ceylonese rules” ? (Fox allowed two moves at each turn.)

6. On an n � 4 board with n � 5 and Geese at (b,n) and (c,n�1) do all Fox

positions have value over ? With the Geese on (b,n) and (d,n) are only other

values 0 at (c,n�1) and foverj0g at (b,n�2) and (d,n�2) ?

7. On an n� 6 board with n � 8 and Geese at (b,n), (d,n) and (e,n�1) do the

positions (a,n�2kC1), (c,n�2kC1), (e,n�2kC1), all have value 0, and those

at (b,n�2k), (d,n�2k), (f,n�2k) all have value Star?̇ And if the Geese are at

(b,n), (d,n) and (f,n) are the zeroes and Stars interchanged ?

B10. Hare and Hounds. Aaron Siegel asks if the positions of increasing board

length shown in Figure 4, on the left, are increasingly hot, and, on the right, have

arbitrarily large negative atomic weight. He also conjectures that the starting

position on a 6nC5 � 3 board, for n > 0, has value

�.n�1/ C

�
b; c j0k0

0
0 : : :

0

�

Figure 4. Sequences of Hare and Hounds positions.
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where there are 2n C 4 zeroes and slashes and

b D
˚
0; a

0; f0joffg
	
; c D

˚
0

 #!2�j0k0
	
; a D f0; #!2� j 0; #!2�g:

B11 (4). Extend the analysis of Domineering (WW, pp. 119–122, 138–142;

LIP pp. 1–7, 260).

[Left and Right take turns to place dominoes on a checker-board. Left ori-

ents her dominoes North-South and Right orients his East-West. Each domino

exactly covers two squares of the board and no two dominoes overlap. A player

unable to play loses.]

See Berlekamp [1988] and the second edition of WW, 138–142, where some

new values are given. For example David Wolfe and Dan Calistrate have found

the values (to within ‘-ish’, i.e., infinitesimally shifted) of 4 � 8, 5 � 6 and 6 � 6

boards. The value for a 5 � 7 board is

�
3
2

ˇ̌
ˇ̌˚5

4
j�1

2

	
;
n

3
2

ˇ̌
ˇ�1

2
;
˚

3
2
j�1

	�1j�3
o  �1;

˚
3
2

ˇ̌
�1

2

�1
	ˇ̌
ˇ̌�3

�
:

Lachmann, Moore and Rapaport [2002] discovered who wins on rectangular,

toroidal and cylindrical boards of widths 2, 3, 5 and 7, but do not find their

values. Bullock [3, p. 84] showed that 19�4, 21�4, 14�6 and 10�8 are wins

for Left and that 10 � 10 is a first player win.

Berlekamp notes that the value of a 2�n board, for n even, is only known to

within“ish”, and that there are problems on 3 � n and 4 � n boards that are still

open.

Berlekamp asks, as a hard problem, to characterize all hot Domineering po-

sitions to within “ish”. As a possibly easier problem he asks for a Domineering

position with a new temperature, i.e., one not occurring in Table 1 on GONC,

p. 477. Gabriel Drummond-Cole (2002) found values with temperatures be-

tween 1.5 and 2. Figure 5 shows a position of value ˙2� and temperature 2.

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

9
>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

L R

Figure 5. A Domineering position of value ˙2�.
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Shankar and Sridharan [2005] have found many Domineering positions with

temperatures other than those shown in Table 1 on p. 477 of GONC. Blanco and

Fraenkel [2] have obtained partial results for the game of Tromineering, played

with trominoes in place of (or, alternatively, in addition to) dominoes.

C. Playing with pencil and paper

C1 (51). Elwyn Berlekamp asks for a complete theory of “Icelandic” 1 � n

Dots-and-Boxes, i.e., with starting position as in Figure 7.

Figure 6. Starting position for “Icelandic” 1 � n Dots-and-Boxes.

See Berlekamp’s book [2000] for more problems about this popular children’s

(and adults’) game and see also WW, pp. 541–584; LIP, pp. 21–28, 260.

C2 (25). Extend the analysis of the Conway–Paterson game of Sprouts in either

the normal or misère form. (WW, pp. 564–568).

[A move joins two spots, or a spot to itself by a curve which doesn’t meet

any other spot or previously drawn curve. When a curve is drawn, a new spot

must be placed on it. The valence of any spot must not exceed three.]

C3 (26). Extend the analysis of Sylver Coinage (WW, 575–597).

[Players alternately name different positive integers, but may not name a

number which is the sum of previously named ones, with repetitions allowed.

Whoever names 1 loses.] Sicherman [2002] contains recent information.

C4 (28). Extend Úlehla’s or Berlekamp’s analysis of von Neumann’s game

from directed forests to directed acyclic graphs (WW, 570–572; Úlehla [1980]).

[Von Neumann’s game, or Hackendot, is played on one or more rooted trees.

The roots induce a direction, towards the root, on each edge. A move is to delete

a node, together with all nodes on the path to the root, and all edges incident

with those nodes. Any remaining subtrees are rooted by the nodes that were

adjacent to deleted nodes.]

C5 (43). Inverting Hackenbush. Thea van Roode has written a thesis [15]

investigating both this and Reversing Hackenbush, but there is plenty of room

for further analysis of both games.

In Inverting Hackenbush, when a player deletes an edge from a component,

the remainder of the component is replanted with the new root being the pruning

point of the deleted edge. In Reversing Hackenbush, the colors of the edges are

all changed after each deletion. Both games are hot, in contrast to Blue-Red
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Hackenbush (WW, pp. 1–7; LIP, pp. 82, 88, 111–112, 212, 266) which is cold,

and Green Hackenbush (WW, pp. 189–196), which is tepid.

C6 (42). Beanstalk and Beans-Don’t-Talk are games invented respectively by

John Isbell and John Conway. See Guy [1986]. Beanstalk is played between

Jack and the Giant. The Giant chooses a positive integer, n0. Then J. and G. play

alternately n1, n2, n3, : : : according to the rule niC1 D ni=2 if ni is even, D

3ni ˙ 1 if ni is odd; i.e. if ni is even, there’s only one option, while if ni is odd

there are just two. The winner is the person moving to 1.

We still don’t know if there are any O-positions (positions of infinite remote-

ness).

C7 (63). The Erdős–Szekeres game [5] (and see Schensted [16]) was intro-

duced by Harary, Sagan and West [1985]. From a deck of cards labelled from 1

through n, Alexander and Bridget alternately choose a card and append it to a

sequence of cards. The game ends when there is an ascending subsequence of

a cards or a descending subsequence of d cards.

The game appears to have a strong bias towards the first player. Albert et al.,

in this volume, show that for d D 2 and a � n the outcome is N or P according

as n is odd or even, and is O (drawn) if n < a. They conjecture that for a � d � 3

and all sufficiently large n, it is N with both normal and misère play, and also

with normal play when played with the rationals in place of the first n integers.

They also suggest investigating the form of the game in which players take

turns naming pairs .i; �i/ subject to the constraint that the chosen values form

part of the graph of some permutation of f1; 2; : : : ; ng.

D. Disturbing and destroying

D1 (27). Extend the analysis of Chomp (WW, 598–599, LIP 19, 46, 216).

David Gale offers $300.00 for the solution of the infinite 3-D version where

the board is the set of all triples .x; y; z/ of non-negative integers, that is, the

lattice points in the positive octant of R
3. The problem is to decide whether it

is a win for the first or second player.

Chomp (Gale [1974]) is equivalent to Divisors (Schuh [1952]). Chomp is

easily solved for 2 � n arrays, Sun [2002], and indeed a recent result by Steven

Byrnes [2003] shows that any poset game eventually displays periodic behavior

if it has two rows, and a fixed finite number of other elements. See also the

Fraenkel poset games mentioned near the end of A2.

Thus, most of the work in recent years has been on three-rowed Chomp. The

situation becomes quite complicated when a third row is added, see Zeilberger

[2001] and Brouwer et al. [2005]. A novel approach (renormalization) is taken

by Friedman and Landsberg in their article in this volume (see also [12]). They
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demonstrate that three-rowed Chomp exhibits certain scaling and self-similarity

patterns similar to chaotic systems. Is there a deterministic proof that there is

a unique winning move from a 3 � n rectangle? The renormalization approach

is based on statistical methods and has caused some controversy and so the

technique seems worthy of further investigation.

Transfinite Chomp has been investigated by Huddleston and Shurman [2002].

An open question is to calculate the nim value of the position ! � 4; they con-

jecture it to be ! �2, but it could be as low as 46, or even uncomputable! Perhaps

the most fascinating open question in Transfinite Chomp is their Stratification

Conjecture, which states that if the number of elements taken in a move is < !i ,

then the change in the nim-value is also < !i .

D2 (33). Subset Take-away. Given a finite set, players alternately choose

proper subsets subject to the rule that once a subset has been chosen no proper

subset can be removed. Last player to move wins.

Many people play the dual, i.e. a nonempty subset must be chosen and no

proper superset of this can be chosen. We discuss this version of the game which

now can be considered a poset game with the sets ordered by inclusion.

The .nI k/ Subset Take-away game is played using all subsets of sizes 1

through k of a n-element set. In the .nI n/ game one has the whole set (i.e.

the set of size n) as an option, so a strategy-stealing argument shows this must

be a first player win.

1. Gale and Neyman [1982], in their original paper on the game, conjectured

that the winning move in the .nI n/ game is to remove just the whole set. This

is equivalent to the statement that the .nI n � 1/ game is a second-player win,

which has been verified only for n � 5.

2. A stronger conjecture states that .nI k/ is a second player win if and only

if k C 1 divides n. This was proved in the original paper only for k D 1 or 2.

See also Fraenkel and Scheinerman [1991].

D3 (39). Sowing or Mancala games. There appears to have been no advance on

the papers mentioned in MGONC, although we feel that this should be a fruitful

field of investigation at several different levels.

D4. Annihilation games. k-Annihilation. Initially place tokens on some of the

vertices of a finite digraph. Denote by �out.u/ the outvalence of a vertex u. A

move consists of removing a token from some vertex u, and “complementing”

t WD min.k; �out.u// (immediate) followers of u, say v1; : : : ; vt : if there is a

token on vj , remove it; if there is no token there, put one on it. The player

making the last move wins. If there is no last move, the outcome is a draw. For

k D 1, there is an O.n6/ algorithm for deciding whether any given position is in

P, N, or O; and for computing an optimal next move in the last 2 cases (Fraenkel



UNSOLVED PROBLEMS IN COMBINATORIAL GAMES 483

and Yesha [1982]). Fraenkel asks: Is there a polynomial algorithm for k > 1?

For an application of k-annihilation games to lexicodes, see Fraenkel and Rahat

[2003].

D5. Toppling dominoes (LIP, pp. 110–112, 274) is played with a row of vertical

dominoes each of which is either blue or red. A player topples one of his/her

dominoes to the left or to the right.

David Wolfe asks if all dyadic rationals occur as a unique single row of domi-

noes and if that row is always palindromic (symmetrical).

D6. Hanoi Stick-up is played with the disks of the Towers of Hanoi puzzle,

starting with each disk in a separate stack. A move is to place one stack on top

of another such that the size of the bottom of the first stack is less than the size of

the top of the second; the two stacks then fuse (and) into one. The only relevant

information about a stack are its top and bottom sizes, and it’s often possible

to collapse the labelling of positions: so for instance, starting with 8 disks and

fusing 1and7 and 2and5

we have stacks 0 1 and 7 2 and 5 3 4 6

which can be relabelled 0 1 and 3 1 and 2 1 2 3

in which the legal moves are still the same. John Conway, Alex Fink and others

have found that the P-positions of height � 3 in normal Hanoi Stickup are

exactly those which, after collapsing, are of the form 0a 01b 1c 12d 2e with

min.a C b C c; c C d C e; a C e/ even, except that if a C e � a C b C c and

a C e � c C d C e then both a and e must be even (02 can’t be involved in a

legal move so can be dropped).

They also found the normal and misère outcomes of all positions with up to

six stacks, but there is more to be discovered.

D7 (56). Are there any draws in Beggar-my-Neighbor ? Marc Paulhus showed

that there are no cycles when using a half-deck of two suits, but the problem for

the whole deck (one of Conway’s “anti-Hilbert” problems) is still open.

E. Theory of games

E1 (49). Fraenkel updates Berlekamp’s earlier questions on computational com-

plexity as follows:

Demaine, Demaine and Eppstein [2002] proved that deciding whether a player

can win in a single move in Phutball (WW, pp. 752–755; LIP, p. 212) is NP-

complete. Grossman and Nowakowski [2002] gave constructive partial strate-

gies for 1-dimensional Phutball. Thus, these papers do not show that Phutball

has the required properties.
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Perhaps Nimania (Fraenkel and Nešetřil [1985]) and Multivision (Fraenkel

[1998]) satisfy the requirements. Nimania begins with a single positive integer,

but after a while there is a multiset of positive integers on the table. At move

k, a copy of an existing integer m is selected, and 1 is subtracted from it. If

m D 1, the copy is deleted. Otherwise, k copies of m � 1 are adjoined to the

copy m�1. The player first unable to move loses and the opponent wins. It was

proved: (i) The game terminates. (ii) Player I can win. In Fraenkel, Loebl and

Nešetřil [1988], it was shown that the max number of moves in Nimania is an

Ackermann function, and the min number satisfies 22n�2

� Min.n/ � 22n�1

.

The game is thus intractable simply because of the length of its play. This

is a provable intractability, much stronger than NP-hardness, which is normally

only a conditional intractability. One of the requirements for the tractability of

a game is that a winner can consummate a win in at most O.cn/ moves, where

c > 1 is a constant, and n a sufficiently succinct encoding of the input (this much

is needed for nim on 2 equal heaps of size n).

To consummate a win in Nimania, player I can play randomly most of the

time, but near the end of play, a winning strategy is needed, given explicitly.

Whether or not this is an intricate solution depends on the beholder. But it

seems that it’s of even greater interest to construct a game with a very simple

strategy which still has high complexity!

Also every play of Multivision terminates, the winner can be determined in

linear time, and the winning moves can be computed linearly. But the length of

play can be arbitrarily long. So let’s ask the following: Is there a game which

has

1. simple, playable rules,

2. a simple explicit strategy,

3. length of play at most exponential; and

4. is NP-hard or harder.

Theorem [Tung 1987]. Given a polynomial P .x; y/ 2 ZŒx; y�, the problem of

deciding whether 8x9yŒP .x; y/ D 0� holds over Z�0, is co-NP-complete.

Define the following game of length 2: player I picks x 2 Z�0, player II picks

y 2 Z�0. Player I wins if P .x; y/ ¤ 0, otherwise player II wins. For winning,

player II has only to compute y such that P .x; y/ D 0, given x, and there are

many algorithms for doing so.

Also Jones and Fraenkel [1995] produced games, with small length of play,

which satisfy these conditions.

So we are led to the following reformulation of Berlekamp’s question: Is

there a game which has

1. simple, playable rules,
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2. a finite set of options at every move,

3. a simple explicit strategy,

4. length of play at most exponential;

5. and is NP-hard or harder.

E2. Complexity closure. Aviezri Fraenkel asks: Are there partizan games G1,

G2, G3 such that: (i) G1, G2, G3, G1 CG2, G2 CG3 and all their options have

polynomial-time strategies, (ii) G1 C G3 is NP-hard?

E3. Sums of switch games. David Wolfe considers a sum of games G, each

of the form akbjc or ajbkc where a, b, and c are integers specified in unary. Is

there a polynomial time algorithm to determine who wins in G, or is the problem

NP-hard?

E4 (52). How does one play sums of games with varied overheating operators?

Sentestrat and Top-down thermography (LIP, p. 214):

David Wolfe would like to see a formal proof that sentestrat works, an algo-

rithm for top-down thermography, and conditions for which top-down thermog-

raphy is computationally efficient.

Aaron Siegel asks the following generalized thermography questions.

(1) Show that the Left scaffold of a dogmatic (neutral ko-threat environment;

LIP, p. 215) thermograph is decreasing as function of t. (Note, this is NOT

true for komaster thermographs.) [Dogmatic thermography was invented by

Berlekamp and Spight. See [19] for a good introduction.]

(2) Develop the machinery for computing dogmatic thermographs of double

kos (multiple alternating 2-cycles joined at a single node).

In the same vein as (2):

(3) Develop a temperature theory that applies to all loopy games.

Siegel thinks that (3) is among the most important open problems in combi-

natorial game theory. The temperature theory of Go appears radically different

from the classical combinatorial theory of loopy games (where infinite plays

are draws). It would be a huge step forward if these could be reconciled into a

“grand unified temperature theory”. Problem (2) seems to be the obvious next

step toward (3).

Conway asks for a natural set of conditions under which the mapping G ‘R
�

G is the unique homomorphism that annihilates all infinitesimals.

E5. Loopy games (WW, pp. 334–377; LIP, pp. 213–214) are partizan games

that do not satisfy the ending condition. A stopper is a game that, when played

on its own, has no ultimately alternating, Left and Right, infinite sequence of

legal moves. Aaron Siegel reminds us of WW, 2nd ed., p.369, where the authors

tried hard to prove that every loopy game had stoppers, until Clive Bach found

the Carousel counterexample. Is there an alternative notion of simplest form
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that works for all finite loopy games, and, in particular, for the Carousel? The

simplest form theorem for stoppers is at WW, p.351.

Siegel conjectures that, if Q is an arbitrary cycle of Left and Right moves

that contains at least two moves for each player, and is not strictly alternating,

then there is a stopper consisting of a single cycle that matches Q, together

with various exits to enders, i.e., games which end in a finite, though possibly

unbounded, number of moves. [Note that games normally have Left and Right

playing alternately, but if the game is a sum, then play in one component can

have arbitrary sequences of Left and Right moves, not just alternating ones.]

A long cycle is tame if it alternates just once between Left and Right, other-

wise it is wild. Aaron Siegel writes:

I can produce wild cycles “in the laboratory,” by specifying their game

graphs explicitly. So the question is to detect one “in nature”, i.e., in an

actual game with (reasonably) playable rules such as Phutball [Problem

B7].

Siegel also asks under what conditions does a given infinitesimal have a well-

defined atomic weight, and asks to specify an algorithm to calculate the atomic

weight of an infinitesimal stopper g. The algorithm should succeed whenever

the atomic weight is well-defined, i.e., whenever g can be sandwiched between

loopfree all-smalls of equal atomic weight.

E6 (45). Elwyn Berlekamp asks for the habitat of �2, where �2 D f0; �j0; �g.

Gabriel Drummond-Cole [2005] has found Domineering positions with this

value. See, for example, Figure 7, which also shows a Go position, found by

Nakamura and Berlekamp [2003], whose chilled value is �2. The Black and

White groups are both connected to life via unshown connections emanating

upwards from the second row. Either player can move to � by placing a stone

at E2, or to 0 by going to E1.

¨ ¨

¨

¨ ¨

A B C D E F G H

1

2

3

Figure 7. A Domineering position and a Chilled Go position of value �2.

E7. Partial ordering of games. David Wolfe lets g.n/ be the number of games

born by day n, notes that an upper bound is given by g.nC1/ � g.n/C2g.n/C2,



UNSOLVED PROBLEMS IN COMBINATORIAL GAMES 487

and a lower bound for each ˛ < 0 is given by g.nC1/ � 2g.n/˛

, for n sufficiently

large, and asks us to tighten these bounds.

He also asks what group is generated by the all-small games (or — much

harder — of all games) born by day 3. Describe the partial order of games born

by day 3, identifying all the largest “hypercubes” (Boolean sublattices) and how

they are interconnected. These questions have been answered for day 2; see

Wolfe’s article “On day n” in this volume.

Berlekamp suggests other possible definitions for games born by day n, Gn,

depending on how one defines G0. Our definition is 0-based, as G0 D f0g. Other

natural definitions are integer-based (where G0 are integers) or number-based.

These two alternatives do not form a lattice, for if G1 and G2 are born by day

k, then the games

Hn WD
n
G1; G2

 G1; fG2j�ng
o

form a decreasing sequence of games born by day k C 2 exceeding any game

G � G1; G2, and the day k C 2 join of G1 and G2 cannot exist. What is the

structure of the partial order given by one of these alternative definitions of

birthday?

The set of all short games does not form a lattice, but Calistrate, Paulhus

and Wolfe [2002] have shown that the games born by day n form a distributive

lattice Ln under the usual partial order. They ask for a description of the exact

structure of L3. Siegel describes L4 as “truly gigantic and exceedingly difficult

to penetrate” but suggests that it may be possible to find its dimension and the

maximum longitude, long4.G/, of a game in L4, which he defines as

longn.G/ D rankn.G _ G�/ � rankn.G/

where rankn.G/ is the rank of G in Ln and G� is the companion of G,

G� D

8
ˆ̂<
ˆ̂:

� ifG D 0

f0; .GL/� j .GR/�gif G > 0

f.GL/� j 0; .GR/�gif G < 0

f.GL/� j .GR/�g if G k 0

The set of all-small games does not form a lattice, but Siegel forms a lattice

L0
n by adjoining least and greatest elements 4 and 5 and asks: do the elements

of L0
n have an intrinsic “handedness” that distinguishes, say, .n�1/�" from .n�1/�"

C � ?

E8. Aaron Siegel asks, given a group or monoid, K, of games, to specify a

technique for calculating the simplest game in each K-equivalence class. He

notes that some restriction on K might be needed; for example, K might be the

monoid of games absorbed by a given idempotent.
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E9. Siegel also would like to investigate how search methods might be integrated

with a canonical-form engine.

E10 (9). Develop a misère theory for unions of partizan games (WW, p. 312).

E11. Four-outcome-games. Guy has given a brute force analysis of a par-

ity subtraction game [9] which didn’t allow the use of Sprague–Grundy theory

because it wasn’t impartial, nor the Conway theory, because it was not last-

player-winning. Is there a class of games in which there are four outcomes,

N ext, Previous, Left and Right, and for which a general theory can be given?

Acknowledgement

We have had help in compiling this collection from all those mentioned, and

from others. We would especially like to mention Elwyn Berlekamp, Aviezri

Fraenkel, Thane Plambeck, Aaron Siegel and David Wolfe. All mistakes are

deliberate and designed to keep the reader alert.

References

[those not listed here may be found in Fraenkel’s Bibliography]

[1] M. H. Albert, J. P. Grossman, S. McCurdy, R. J. Nowakowski and D. Wolfe,

Cherries, preprint, 2005. [Problem A5]
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Combinatorial Games: selected bibliography
with a succinct gourmet introduction

AVIEZRI S. FRAENKEL

1. What are combinatorial games?

Roughly speaking, the family of combinatorial games consists of two-player

games with perfect information (no hidden information as in some card games),

no chance moves (no dice) and outcome restricted to (lose, win), (tie, tie) and

(draw, draw) for the two players who move alternately. Tie is an end position

such as in tic-tac-toe, where no player wins, whereas draw is a dynamic tie:

any position from which a player has a nonlosing move, but cannot force a win.

Both the easy game of Nim and the seemingly difficult chess are examples of

combinatorial games. And so is go. The shorter terminology game, games is

used below to designate combinatorial games.

2. Why are games intriguing and tempting?

Amusing oneself with games may sound like a frivolous occupation. But

the fact is that the bulk of interesting and natural mathematical problems that

are hardest in complexity classes beyond NP , such as Pspace, Exptime and

Expspace, are two-player games; occasionally even one-player games (puzzles)

or even zero-player games (Conway’s “Life”). Some of the reasons for the high

complexity of two-player games are outlined in the next section. Before that

we note that in addition to a natural appeal of the subject, there are applications

or connections to various areas, including complexity, logic, graph and matroid

theory, networks, error-correcting codes, surreal numbers, on-line algorithms,

biology — and analysis and design of mathematical and commercial games!

491
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But when the chips are down, it is this “natural appeal” that lures both ama-

teurs and professionals to become addicted to the subject. What is the essence

of this appeal? Perhaps the urge to play games is rooted in our primal beastly

instincts; the desire to corner, torture, or at least dominate our peers. A common

expression of these vile cravings is found in the passions roused by local, na-

tional and international tournaments. An intellectually refined version of these

dark desires, well hidden beneath the façade of scientific research, is the consum-

ing drive “to beat them all”, to be more clever than the most clever, in short — to

create the tools to Mathter them all in hot combinatorial combat! Reaching this

goal is particularly satisfying and sweet in the context of combinatorial games,

in view of their inherent high complexity.

With a slant towards artificial intelligence, Pearl wrote that games “offer a

perfect laboratory for studying complex problem-solving methodologies. With

a few parsimonious rules, one can create complex situations that require no less

insight, creativity, and expertise than problems actually encountered in areas

such as business, government, scientific, legal, and others. Moreover, unlike

these applied areas, games offer an arena in which computerized decisions can

be evaluated by absolute standards of performance and in which proven human

experts are both available and willing to work towards the goal of seeing their

expertise emulated by a machine. Last, but not least, games possess addictive

entertaining qualities of a very general appeal. That helps maintain a steady

influx of research talents into the field and renders games a convenient media

for communicating powerful ideas about general methods of strategic planning.”

To further explore the nature of games, we consider, informally, two sub-

classes.

(i) Games People Play (playgames): games that are challenging to the point that

people will purchase them and play them.

(ii) Games Mathematicians Play (mathgames): games that are challenging to

mathematicians or other scientists to play with and ponder about, but not

necessarily to “the man in the street”.

Examples of playgames are chess, go, hex, reversi; of mathgames: Nim-type

games, Wythoff games, annihilation games, octal games.

Some “rule of thumb” properties, which seem to hold for the majority of

playgames and mathgames are listed below.

I. Complexity. Both playgames and mathgames tend to be computationally

intractable. There are a few tractable mathgames, such as Nim, but most

games still live in Wonderland: we are wondering about their as yet unknown

complexity. Roughly speaking, however, NP-hardness is a necessary but not
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a sufficient condition for being a playgame! (Some games on Boolean for-

mulas are Exptime-complete, yet none of them seems to have the potential

of commercial marketability.)

II. Boardfeel. None of us may know an exact strategy from a midgame position

of chess, but even a novice, merely by looking at the board, gets some feel

who of the two players is in a stronger position – even what a strong or weak

next move is. This is what we loosely call boardfeel. Our informal definition

of playgames and mathgames suggests that the former do have a boardfeel,

whereas the latter don’t. For many mathgames, such as Nim, a player without

prior knowledge of the strategy has no inkling whether any given position is

“strong” or “weak” for a player. Even when defeat is imminent, only one

or two moves away, the player sustaining it may be in the dark about the

outcome, which will stump him. The player has no boardfeel. (Even many

mathgames, including Nim-type games, can be played, equivalently, on a

board.)

Thus, in the boardfeel sense, simple games are complex and complex

games are simple! This paradoxical property also doesn’t seem to have an

analog in the realm of decision problems. The boardfeel is the main ingredient

which makes PlayGames interesting to play.

III. Math Appeal. Playgames, in addition to being interesting to play, also have

considerable mathematical appeal. This has been exposed recently by the

theory of partizan games established by Conway and applied to endgames of

go by Berlekamp, students and associates. On the other hand, mathgames

have their own special combinatorial appeal, of a somewhat different flavor.

They appeal to and are created by mathematicians of various disciplines, who

find special intellectual challenges in analyzing them. As Peter Winkler called

a subset of them: “games people don’t play”. We might also call them, in

a more positive vein, “games mathematicians play”. Both classes of games

have applications to areas outside game theory. Examples: surreal numbers

(playgames), error correcting codes (mathgames). Both provide enlighten-

ment through bewilderment, as David Wolfe and Tom Rodgers put it.

IV. Existence. There are relatively few successful playgames around. It seems

to be hard to invent a playgame that catches the masses. In contrast, math-

games abound. They appeal to a large subclass of mathematicians and other

scientists, who cherish producing them and pondering about them. The large

proportion of mathgames-papers in the games bibliography below reflects this

phenomenon.

We conclude, inter alia, that for playgames, high complexity is desirable.

Whereas in all respectable walks of life we strive towards solutions or at least

approximate solutions which are polynomial, there are two less respectable hu-
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man activities in which high complexity is appreciated. These are cryptography

(covert warfare) and games (overt warfare). The desirability of high complexity

in cryptography — at least for the encryptor! — is clear. We claim that it is also

desirable for playgames.

It’s no accident that games and cryptography team up: in both there are ad-

versaries, who pit their wits against each other! But games are, in general,

considerably harder than cryptography. For the latter, the problem whether the

designer of a cryptosystem has a safe system can be expressed with two quanti-

fiers only: 9 a cryptosystem such that 8 attacks on it, the cryptosystem remains

unbroken? In contrast, the decision problem whether White can win if White

moves first in a chess game, has the form: “9898 � � � move: White wins?”,

expressing the question whether White has an opening winning move — with

an unbounded number of alternating quantifiers. This makes games the more

challenging and fascinating of the two, besides being fun! See also the next

section.

Thus, it’s no surprise that the skill of playing games, such as checkers, chess,

or go has long been regarded as a distinctive mark of human intelligence.

3. Why are combinatorial games hard?

Existential decision problems, such as graph hamiltonicity and Traveling

Salesperson (Is there a round tour through specified cities of cost � C ?), involve

a single existential quantifier (“Is there. . . ?”). In mathematical terms an exis-

tential problem boils down to finding a path — sometimes even just verifying its

existence — in a large “decision-tree” of all possibilities, that satisfies specified

properties. The above two problems, as well as thousands of other interesting

and important combinatorial-type problems are NP-complete. This means that

they are conditionally intractable, i.e., the best way to solve them seems to

require traversal of most if not all of the decision tree, whose size is exponential

in the input size of the problem. No essentially better method is known to date

at any rate, and, roughly speaking, if an efficient solution will ever be found

for any NP-complete problem, then all NP-complete problems will be solvable

efficiently.

The decision problem whether White can win if White moves first in a chess

game, on the other hand, has the form: Is there a move of White such that for

every move of Black there is a move of White such that for every move of Black

there is a move of White : : : such that White can win? Here we have a large

number of alternating existential and universal quantifiers rather than a single

existential one. We are looking for an entire subtree rather than just a path in the

decision tree. Because of this, most nonpolynomial games are at least Pspace-
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hard. The problem for generalized chess on an n � n board, and even for a

number of seemingly simpler mathgames, is, in fact, Exptime-complete, which

is a provable intractability.

Put in simple language, in analyzing an instance of Traveling Salesperson,

the problem itself is passive: it does not resist your attempt to attack it, yet it

is difficult. In a game, in contrast, there is your opponent, who, at every step,

attempts to foil your effort to win. It’s similar to the difference between an

autopsy and surgery. Einstein, contemplating the nature of physics said, “Der

Allmächtige ist nicht boshaft; Er ist raffiniert” (The Almighty is not mean; He

is sophisticated). NP-complete existential problems are perhaps sophisticated.

But your opponent in a game can be very mean!

Another manifestation of the high complexity of games is associated with a

most basic tool of a game : its game-graph. It is a directed graph G whose

vertices are the positions of the game, and .u; v/ is an edge if and only if there

is a move from position u to position v. Since every combination of tokens

in the given game is a single vertex in G, the latter has normally exponential

size. This holds, in particular, for both Nim and chess. Analyzing a game means

reasoning about its game-graph. We are thus faced with a problem that is a priori

exponential, quite unlike many present-day interesting existential problems.

A fundamental notion is the sum (disjunctive compound) of games. A sum

is a finite collection of disjoint games; often very basic, simple games. Each of

the two players, at every turn, selects one of the games and makes a move in it.

If the outcome is not a draw, the sum-game ends when there is no move left in

any of the component games. If the outcome is not a tie either, then in normal

play, the player first unable to move loses and the opponent wins. The outcome

is reversed in misère play.

If a game decomposes into a disjoint sum of its components, either from the

beginning (Nim) or after a while (domineering), the potential for its tractability

increases despite the exponential size of the game graph. As Elwyn Berlekamp

remarked, the situation is similar to that in other scientific endeavors, where

we often attempt to decompose a given system into its functional components.

This approach may yield improved insights into hardware, software or biolog-

ical systems, human organizations, and abstract mathematical objects such as

groups.

If a game doesn’t decompose into a sum of disjoint components, it is more

likely to be intractable (Geography or Poset Games). Intermediate cases happen

when the components are not quite fixed (which explains why misère play of

sums of games is much harder than normal play) or not quite disjoint (Welter).

Thane Plambeck has recently made progress with misère play, and we will be

hearing more about this shortly.
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The hardness of games is eased somewhat by the efficient freeware package

“Combinatorial Game Suite”, courtesy of Aaron Siegel.

4. Breaking the rules

As the experts know, some of the most exciting games are obtained by break-

ing some of the rules for combinatorial games, such as permitting a player to

pass a bounded or unbounded number of times, i.e., relaxing the requirement

that players play alternately; or permitting a number of players other than two.

But permitting a payoff function other than (0,1) for the outcome (lose, win)

and a payoff of (1

2
; 1

2
) for either (tie, tie) or (draw, draw) usually, but not al-

ways, leads to games that are not considered to be combinatorial games; or to

borderline cases.

5. Why is the bibliography vast?

In the realm of existential problems, such as sorting or Traveling Salesperson,

most present-day interesting decision problems can be classified into tractable,

conditionally intractable, and provably intractable ones. There are exceptions, to

be sure, such as graph isomorphism, whose complexity is still unknown. But the

exceptions are few. In contrast, most games are still in Wonderland, as pointed

out in ~ 2(I) above. Only a few games have been classified into the complexity

classes they belong to. Despite recent impressive progress, the tools for reducing

Wonderland are still few and inadequate.

To give an example, many interesting games have a very succinct input size,

so a polynomial strategy is often more difficult to come by (Richard Guy and

Cedric Smith’s octal games; Grundy’s game). Succinctness and non-disjointness

of games in a sum may be present simultaneously (Poset games). In general,

the alternating quantifiers, and, to a smaller measure, “breaking the rules”, add

to the volume of Wonderland. We suspect that the large size of Wonderland, a

fact of independent interest, is the main contributing factor to the bulk of the

bibliography on games.

6. Why isn’t it larger?

The bibliography below is a partial list of books and articles on combinatorial

games and related material. It is partial not only because I constantly learn of

additional relevant material I did not know about previously, but also because

of certain self-imposed restrictions. The most important of these is that only

papers with some original and nontrivial mathematical content are considered.

This excludes most historical reviews of games and most, but not all, of the
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work on heuristic or artificial intelligence approaches to games, especially the

large literature concerning computer chess. I have, however, included the com-

pendium Levy [1988], which, with its 50 articles and extensive bibliography,

can serve as a first guide to this world. Also some papers on chess-endgames

and clever exhaustive computer searches of some games have been included.

On the other hand, papers on games that break some of the rules of combi-

natorial games are included liberally, as long as they are interesting and retain a

combinatorial flavor. These are vague and hard to define criteria, yet combina-

torialists usually recognize a combinatorial game when they see it. Besides, it

is interesting to break also this rule sometimes! We have included some refer-

ences to one-player games, e.g., towers of Hanoi, n-queen problems, 15-puzzle

and peg-solitaire, but only few zero-player games (such as Life and games on

“sand piles”). We have also included papers on various applications of games,

especially when the connection to games is substantial or the application is in-

teresting or important.

High-class meetings on combinatorial games, as in Columbus, OH (1990), at

MSRI (1994, 2000, 2005), at BIRS (2005) resulted in books, or a special issue

of a journal — for the Dagstuhl seminar (2002). During 1990–2001, Theoreti-

cal Computer Science ran a special Mathematical Games Section whose main

purpose was to publish papers on combinatorial games. TCS still solicits papers

on games. In 2002, Integers — Electronic J. of Combinatorial Number Theory

began publishing a Combinatorial Games Section. The combinatorial games

community is growing in quantity and quality!

7. The dynamics of the literature

The game bibliography below is very dynamic in nature. Previous versions

have been circulated to colleagues, intermittently, since the early 1980’s. Prior

to every mailing updates were prepared, and usually also afterwards, as a result

of the comments received from several correspondents. The listing can never

be “complete”. Thus also the present form of the bibliography is by no means

complete.

Because of its dynamic nature, it is natural that the bibliography became a

“dynamic survey” in the Dynamic Surveys (DS) section of the Electronic Jour-

nal of Combinatorics (ElJC) and The World Combinatorics Exchange (WCE).

The ElJC and WCE are on the World Wide Web (WWW), and the DS can be

accessed at http://www.combinatorics.org (click on “Surveys”). The ElJC has

mirrors at various locations. Furthermore, the European Mathematical Informa-

tion Service (EMIS) mirrors this Journal, as do all of its mirror sites (currently

over forty of them). See http://www.emis.de/tech/mirrors.html.
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8. An appeal

I ask readers to continue sending to me corrections and comments; and in-

form me of significant omissions, remembering, however, that it is a selected

bibliography. I prefer to get reprints, preprints or URLs, rather than only titles —

whenever possible.

Material on games is mushrooming on the Web. The URLs can be located

using a standard search engine, such as Google.

9. Idiosyncrasies

Most of the bibliographic entries refer to items written in English, though

there is a sprinkling of Danish, Dutch, French, German, Japanese, Slovakian and

Russian, as well as some English translations from Russian. The predominance

of English may be due to certain prejudices, but it also reflects the fact that

nowadays the lingua franca of science is English. In any case, I’m soliciting

also papers in languages other than English, especially if accompanied by an

abstract in English.

On the administrative side, technical reports, submitted papers and unpub-

lished theses have normally been excluded; but some exceptions have been

made. Abbreviations of book series and journal names usually follow the Math

Reviews conventions. Another convention is that de Bruijn appears under D, not

B; von Neumann under V, not N, McIntyre under M not I, etc.

Earlier versions of this bibliography have appeared, under the title “Selected

bibliography on combinatorial games and some related material”, as the master

bibliography for the book Combinatorial Games, AMS Short Course Lecture

Notes, Summer 1990, Ohio State University, Columbus, OH, Proc. Symp. Appl.

Math. 43 (R. K. Guy, ed.), AMS 1991, pp. 191–226 with 400 items, and in the

Dynamic Surveys section of the Electronic J. of Combinatorics in November

1994 with 542 items (updated there at odd times). It also appeared as the master

bibliography in Games of No Chance, Proc. MSRI Workshop on Combinatorial

Games, July, 1994, Berkeley, CA (R. J. Nowakowski, ed.), MSRI Publ. Vol. 29,

Cambridge University Press, Cambridge, 1996, pp. 493–537, under the present

title, containing 666 items. The version published in the palindromic year 2002

contained the palindromic number 919 of references. It constituted a growth of

38%. It appeared in ElJC and as the master bibliography in More Games of No

Chance, Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley,

CA (R. J. Nowakowski, ed.), MSRI Publ. Vol. 42, Cambridge University Press,

Cambridge, pp. 475-535. The current update (mid-2003), in ElJC, contains 1001

items, another palindrome.
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39. I. Althöfer [1988], Nim games with arbitrary periodic moving orders, Internat.

J. Game Theory 17, 165–175.
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393. E. Duchêne and S. Gravier [2008], Geometrical extensions of Wythoff’s game,

Discrete Math. to appear.

394. P. Duchet [1980], Graphes noyau-parfaits, Ann. Discrete Math. 9, 93–101.

395. P. Duchet [1987], A sufficient condition for a digraph to be kernel-perfect, J.

Graph Theory 11, 81–85.



522 AVIEZRI S. FRAENKEL

396. P. Duchet [1987], Parity graphs are kernel-M-solvable, J. Combin. Theory

(Ser. B) 43, 121–126.

397. P. Duchet and H. Meyniel [1981], A note on kernel-critical graphs, Discrete

Math. 33, 103–105.

398. P. Duchet and H. Meyniel [1983], Une généralisation du théorème de Richardson
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Sorting a bridge hand, Discrete Math. 241, 289–300, Selected papers in honor of

Helge Tverberg.



COMBINATORIAL GAMES: SELECTED BIBLIOGRAPHY 525

449. H. Eriksson, K. Eriksson and J. Sjöstrand [2001], Note on the lamp lighting
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eds., appeared also in Integers, Electr. J. of Combinat. Number Theory 7(2),

special volume in honor of Ron Graham, #A13, 11 pp., MR2337047. http://

www.integers-ejcnt.org/vol7(2).html

534. A. S. Fraenkel [2007], Why are games exciting and stimulating?, Math Horizons

pp. 5–7; 32–33, special issue: “Games, Gambling, and Magic” February. German

translation by Niek Neuwahl, poster-displayed at traveling exhibition “Games &

Science, Science & Games”, opened in Göttingen July 17 – Aug 21, 2005.



530 AVIEZRI S. FRAENKEL

535. A. S. Fraenkel [2008], Games played by Boole and Galois, Discrete Appl. Math.

156, 420–427.

536. A. S. Fraenkel [2009], The cyclic Butler University game, in: Mathematical Wiz-

ardry for a Gardner, Volume honoring Martin Gardner (E. Pegg Jr., A. H. Schoen,

and T. Rodgers, eds.), A K Peters, Natick, MA, to appear.

537. A. S. Fraenkel and I. Borosh [1973], A generalization of Wythoff’s game, J.

Combin. Theory (Ser. A) 15, 175–191.

538. A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schaefer and Y. Yesha [1978],

The complexity of checkers on an n � n board — preliminary report, Proc. 19th

Ann. Symp. Foundations of Computer Science (Ann Arbor, MI, Oct. 1978), IEEE

Computer Soc., Long Beach, CA, pp. 55–64.

539. A. S. Fraenkel and E. Goldschmidt [1987], Pspace-hardness of some combinato-

rial games, J. Combin. Theory (Ser. A) 46, 21–38.

540. A. S. Fraenkel and F. Harary [1989], Geodetic contraction games on graphs,

Internat. J. Game Theory 18, 327–338.

541. A. S. Fraenkel and H. Herda [1980], Never rush to be first in playing Nimbi,

Math. Mag. 53, 21–26.

542. A. S. Fraenkel, A. Jaffray, A. Kotzig and G. Sabidussi [1995], Modular Nim,

Theoret. Comput. Sci. (Math Games) 143, 319–333.

543. A. S. Fraenkel and C. Kimberling [1994], Generalized Wythoff arrays, shuffles

and interspersions, Discrete Math. 126, 137–149, MR1264482 (95c:11028).

544. A. S. Fraenkel and A. Kontorovich [2007], The Sierpiński sieve of Nim-varieties
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