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Preface

This book addresses the broad community of researchers in various application
fields who use relations in their scientific work. Relations occur or are used in such
diverging areas as psychology, pedagogy, social choice theory, linguistics, preference
modelling, ranking, multicriteria decision studies, machine learning, voting theories,
spatial reasoning, data base optimization, and many more. In all these fields, and
of course in mathematics and computer science, relations are used to express, to
model, to reason, and to compute with. Today, application problems are increasingly
handled using relational means.

In some of the areas mentioned specialized developments have taken place, not least
reinventing the wheel over again. Some areas are highly mathematical ones, others
restrict to only a moderate use of mathematics. Not all are aware of developments
that relational methods enjoyed over recent years.

A coherent text on this topic has so far not been in existence, and it is intended
to provide one with this book. Being an overview of the field it offers an easy
start, that is nevertheless theoretically sound and up to date. It shall be a help for
scientists even if they are not overly versed in mathematics but have to apply it. The
exposition will not stress the mathematical side too early. Instead, visualizations
of ideas — mainly via matrices but also via graphs — will be presented first, while
proofs during the early introductory chapters are postponed to the Appendix.

It has often been observed that researchers and even mathematicians frequently
encountered problems when working with relations; in particular did they often
hesitate to use relations in an algebraic form. Instead, they wrote everything down
in predicate logic, thus accepting notation that is — by gross estimation — six times
as voluminous as that for an algebraic treatment of relations. Therefore, concepts
have often not been written down with the necessary care, nor could one easily see
at which points algebraic rules might have been applied.

In former years, the hesitation mentioned has often been attributed simply to not
being sufficiently acquainted with relations; later one began to look for additional
reasons. It seemed that people often could not properly interpret relational tasks
and their results. Even when explained to them in detail, they stayed hesitant.
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The for now hundred years traditional concept of a set is a main obstacle. Math-
ematicians had developed the concept of a set and computer science people used
it indiscriminately although it is not immediately recognizable as a data structure.
Since a set is unordered, a relation may not directly be understood as a matrix.

Engineers on the other hand side willingly apply matrices. So it has been decided to
give the reader some help: As far as representation is concerned, a set is conceived
as linearly ordered; then a relation between two sets has a more or less uniquely
determined matrix representation, i.e., with rows and columns ordered.

In the same way as for real or complex matrices, linearity is a great help in the case of
Boolean matrices, i.e., binary predicates or relations. In this book, relational theory
is conceived much in the same way as Linear Algebra in the classic form — but now
for Logics. The book provides a diversity of hooks showing where in mathematics or
its applications one should intensify the use of relational mathematics. It is, thus,
at many places “open-ended”.

Regrettably, a common way of denoting, formulating, proving, and programming
around relations has not yet been agreed upon. To address this point, the multi-
purpose relational reference language TituRel has been developed in parallel to
the writing of this book and often made use of.

Such a language must firstly be capable of expressing whatever has shown up in
relational methods and structures so far — otherwise it will not get acceptance.
A second point is to convince people that the language developed is indeed useful
and brings added value. This can best be done designing it to be immediately
operational1. To formulate in the evolving language means to write a program (in
the new language, and thus in Haskell) which can directly be executed at least
for moderately sized problems. One should, however, remember that this so far uses
interpretation, not translation. To make this efficient deserves yet a huge amount
of work which may well be compared with all the work people have invested in
numerical algorithms over decades. Here, however, the algebraic formulation will
greatly enhance any conceivable attempt of program transformation. TituRel is
an appeal to the Haskell community to check whether it is worth the effort to
engage in the many new concepts, not least in the domain construction aspect.

Munich, September 2009 Gunther Schmidt

1 We thus address what Chapt. 4 of [Bd96] ends with: A topic that we shall not address in this book
is that of executing relational expressions. Clearly, it would be desirable to do so, but it is as yet
unclear what the model of computation should be.
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Remark. This book has been written by an author whose native language is Ger-
man, not English — of course with considerable additional work by native speakers.
The majority of potential readers is certainly non-German and the author is not
willing to miss any of them. He expresses the hope that the reader will excuse any
shortcoming in this text due to his insufficient command of the English language.

The reader will also recognize that one feature of the German way of expressing
concepts did prevail: Germans frequently use compound words and at several places
this book adheres to this style. A good example is the strict order in English, which
is definitely not an order that is strict. Germans would use strictorder with the
traditional idea that the added particle in such a compound, strict- e.g., serves the
purpose of restricting the whole but also that of shifting the meaning. So the reader
is asked to accept that (s)he will find here a weakorder, a semiorder, etc.

Acknowledgments. Much of the cooperation and communication around the writ-
ing of this book took place during the European COST2 Action 274: TARSKI3, the
author had the honour to chair from 2001 to 2005; in particular with Harrie de
Swart, Ewa Or lowska, and Marc Roubens in co-editing the volumes [dSOSR03,
dSOSR06]. He owes much to the many friends and colleagues with whom he has
had discussions, cooperation and joint papers over the years. Not all can, but some
must be mentioned explicitly: Roger Maddux checked the genesis of unsharpness
ideas. Franz Schmalhofer asked several times for concepts to be clarified. Britta
Kehden made reasonable suggestions for shortening. Peter Höfner read a nearly
final version and gave a plethora of detailed suggestions of any conceivable kind.
Josef Stoer read an early version concentrating on analogies to Numerical Mathe-
matics and sent numerous hints and comments. Michael Winter commented on an
early total version of the book and afterwards also went again through it a second
time giving very valuable advice.

The Historical Annotations in particular got support from various sides: Ulf Hasha-
gen gave hints and Brigitte Hoppe suggested substantial contributions. Kurt Mey-
berg as well as Lothar Schmitz commented in a detailed way on an early version.

It should also be mentioned that the author enjoyed perfect support by interlibrary
loan via the library of Universität der Bundeswehr München concerning the many
historically interesting sources he had to access.
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1

Introduction

A comparison may help to describe the intention of this book: Natural sciences and
engineering sciences have their differential and integral calculi. Whenever practical
work is to be done, one will easily find a numerical algebra package at the com-
puting center and will be able to use it. This applies to solving linear equations or
determining eigenvalues in connection, e.g., with Finite Element Methods.

The situation is different for various forms of information sciences as in the study of
vagueness, fuzziness, spatial or temporal reasoning, handling of uncertain/rough/
qualitative knowledge in mathematical psychology, sociology, and computational
linguistics, to mention a few. Also these model theoretically with certain calculi,
not least using the calculi of logic, of sets, the calculus of relations, etc. When
practical work is to be done, however, people will mostly apply Prolog-like calculi.
Hardly anybody confronted with practical problems knows how to apply relational
calculi; there does exist hardly any broadly available computer support. There is
usually no package to handle problems beyond toy size. One will have to approach
theoreticians since there are not many practitioners in such fields. So it might seem
that George Boole in 1854, [Boo54, Boo51], had been right in saying:

It would, perhaps, be premature to speculate here upon the question whether the
methods of abstract science are likely at any future day to render service in the
investigation of social problems at all commensurate with those which they have
rendered in various departments of physical inquiry.

We feel, however, that the situation is about to change dramatically as relational
mathematics develops and computer power exceeds whatever has been hoped for.
Already in [Cop48] an increasingly optimistic attitude shows up in as far as to an
approach with matrices it is attributed that it “. . . permits an algorithmic rather
than a postulational-deductive development of the calculus of relations”. There
exists, however, Rudolf Berghammers’s RelView system for calculating with rela-
tions fairly beyond toy size. It is a tool with which many diverse applications have
been handled successfully.

With this text we are going to present a smoothly starting introduction into the
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field that is theoretically sound and leads to reasonably efficient computer pro-
grams. It takes into account problems people have encountered earlier. Although
mainly dealing with Discrete Mathematics, the text will at many places differ from
what is presented in standard texts on that topic. Most importantly, complexity
considerations will not be in the center of our focus — notwithstanding the signif-
icance of these. The presentation of basic principles that are broadly applicable is
favoured.

In general, we pay attention to the process of delivering a problem to be handled by
a computer. This means that we anticipate the diversity of representations of the
basic constituents. It shall no longer occur that somebody comes with a relation
in set function representation and is confronted with a computer program where
matrices are used. From the very beginning, we anticipate conversions to make this
work together.

We aim at providing three forms of work with relations simultaneously, namely mod-
elling with relations, reasoning about relations, transforming relational terms con-
sidered as program transformation, and, finally, computing the results of relational
tasks. We are deeply convinced that such support is necessary for an extremely
broad area of applications.



PART ONE

REPRESENTATIONS OF RELATIONS

The present Part I starts recalling more or less trivial facts on sets, their elements
or subsets, and relations between them. It is rather sketchy and will probably be
uninteresting for literate scientists such as mathematicians and/or logicians.

Sets, elements, subsets, and relations may be represented in different ways. We
will give at least hints to the programmer how to work with concrete relations
and put particular emphasis on methods to switch from one form to another. Such
transitions may be achieved on the representation level; they may, however, also
touch a higher relation-algebraic level which we hide at this early stage.

We are going to recall how a partition is presented, or a permutation. Permutations
may lead to a different presentation of a set or of a relation on or between sets.
There may be functions between sets given in various forms, as a table, as a list, or
in some other form. A partition may reduce problem size when factorizing according
to it. We show, how relations emerge. This may be simply by writing down a matrix,
but also by abstracting with a cut from a real-valued matrix. For testing purposes,
it may be that the relation is generated randomly.

There is a clash in attitudes and expectations between mathematicians and infor-
mation engineers: While the first group is interested in reasoning about properties,
the second aims at computing and evaluating around these and thus tries to have
the relations in question in their hands. Not least logicians will be satisfied with
assertions and sketches in theory fragments, while the latter try to have Boolean
matrices and operate on these with machine help.

A point deserving special mentioning is the occurrence of the language TituRel,
frequently referred to in this book. It has been developed in parallel to its writing
and is a thoroughgoing relational reference language, defined in some syntactical
way. It may be used in proofs and transformations or for interpretation in some
model and environment.

One can, however, not start a book on a not yet commonly known topic using
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a sophisticated supporting language. As long as one is not sufficiently acquainted
with relations, one will simply not be able to assess the merits the language has.
This enforces an unconventional approach. We cannot start with the language from
the scratch and have to say first what a relation, a subset, or a point is like in a
rather näıve way. Also, one cannot start a book on relations and relational methods
without saying what symmetry and transitivity means, although this could be for-
mulated in a theoretically more satisfactory way only later. We cannot maintain an
overly puristic attitude: The potential reader has to accept to learn about concrete
relations first and to switch to the intended pure and abstract form only later.

At several positions, however, we will give hints when approaching the intended
higher level. On such a level it will be possible to write down terms in the language
mentioned and — when given a model and an environment — to immediately
evaluate and observe the results (of course only for small or medium-sized finite
examples). All of the figures and examples of this book emerged in this way.

To sum up: This Part I does not resemble the ultimate aims of the present book;
rather, it has been inserted as some sort of a “warm up” — with further going
remarks inserted — for those who are not well-acquainted with relations.
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Sets, Subsets, and Elements

Usually, we are confronted with sets in a very early period of our education. De-
pending on the respective nationality, it is approximately an age of 10 or 11 years.
Thus we carry with us quite a burden of concepts combined with sets. At least in
Germany, Mengenlehre as being taught in elementary schools will raise bad feelings
when talking on it to parents of school children. All too often, one will be reminded
of Georg Cantor, its creator, ending with psychic disease. On a more advanced level,
people will tell that there exist so many antinomies making all this questionable.

The situation will not improve when addressing logicians. Most of them think in
just one universe of discourse containing numbers, letters, pairs of numbers, etc.,
altogether rendering themselves to a lot of semantic problems. While these, in
principle, can be overcome, they should nevertheless be avoided from the beginning.

In our work with relations, we will mostly be restricted to finite situations, in which
work is much easier and to which most practical work is necessarily confined to.
A basic decision for this text is that a (finite) set is always introduced together
with a linear ordering of its elements. Only then we will have a well-defined way
to present a relation as a Boolean matrix. When we want to stress this aspect, the
set will be called a baseset. Other basesets will be generated in a clear way from
already given ones. Furthermore, we distinguish such basesets from their subsets:
They are handled completely differently when being brought on a computer. Subsets
of basesets necessarily refer to their baseset. We will be able to denote elements
of basesets explicitly and to represent basesets for presentation purposes in an
accordingly permuted form. Changing the order of its elements means, however, to
switch to another baseset. Altogether, we will give a rather constructive approach
to basic mathematics — as well as to theoretical computer science.
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2.1 Set Representation

For sets we start with (hopefully sufficiently small) finite ground sets as we call
them. To denote a ground set, we need a name for the set and a list of the different
names for all the names of its elements as, e.g., in

Politicians = {Clinton,Bush,Mitterand,Chirac,Schmidt,Kohl,Schröder,Thatcher,
Major,Blair,Zapatero}

Nationalities = {US,French,German,British,Spanish}
Continents = {North-America,South-America,Asia,Africa,Australia,Antartica,Europe}

Months = {Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec}
GermSocc = {Bayern München,Borussia Dortmund,Werder Bremen,Schalke 04,VfB Stuttgart}

IntSocc = {Arsenal London,FC Chelsea,Manchester United,Bayern München,
Borussia Dortmund,Real Madrid,Juventus Turin,Olympique Lyon,
Ajax Amsterdam,FC Liverpool,Austria Wien,Sparta Prag,FC Porto}

There cannot arise much discussion about the nature of ground sets as we assume
them to be given “explicitly”. Since such a set is intimately combined with the
order of its representation, we will call it a baseset. An easy form of representation
in a computer language like Haskell is possible. One will need a name for the set
— the first string below — and a list of names for the elements — here delimited
by brackets —, obtaining a scheme to denote a “named baseset” as

BSN String [String]

Here BSN starts with an upper case letter — without double quotes — and, thus,
denotes a “constructor”. A constructor has been chosen so as to be able to match
against it. We would have to write, e.g.,

BSN "Nationalities" ["US","French","German","British","Spanish"]

In this way, antinomies as the “set of all sets that do not contain themselves as an
element” cannot occur; these are possible only when defining sets “descriptively”
as in the preceding sentence.

A variant form of the ground set is, e.g., the “10-element set Y ” for which we tacitly
assume the standard element notation and ordering to be given, namely

Y = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.1

Ordering of a ground set

Normally, a set in mathematics is not equipped with an ordering of its elements.
Working practically with sets however, this level of abstraction cannot be main-
tained. Even when presenting a set on a sheet of paper or on a blackboard, we
can hardly avoid to be bound to some ordering. So we demand that ground sets
correspond to lists and not just to sets. As this is the case, we take advantage of it
in so far as we allow to choose a favourable ordering of elements of a set. This may
1 When implementing this in some programming language, one will most certainly run into the

problem that the elements of the set are integers — not strings.
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depend on the context in which the set is presented. The necessary permutation
will then somehow be deduced from that context.

As an example, consider the baseset MonthsS of short month names under the
additional requirement that month names be presented alphabetically as in

{Apr,Aug,Dec,Feb,Jan,Jul,Jun,Mar,May,Nov,Oct,Sep}
The necessary permutation shown as numbers to which position the respective
original month name should be sent is

[5,4,8,1,9,7,6,2,12,11,10,3]

“Jan”, e.g., must for this purpose be sent to position 5. Occasionally, it will be
necessary to convert such a permutation back, for which case we use the inverse
permutation

[4,8,12,2,1,7,6,3,5,11,10,9]

sending, e.g., “Apr” back to its original position 4.

Another example of a ground set is that of Bridge card denotations and suit deno-
tations. The latter need a permutation so as to obtain the sequence suitable for the
game of Skat2.

CardValues = {A,K,Q,J,10,9,8,7,6,5,4,3,2}
BridgeColors = {♠,♥,♦,♣}

SkatColors = {♣,♠,♥,♦}
A ground set is an object consisting of a name for the ground set — uniquely
chosen in the respective situation — and a list of element names. Handling it in a
computer requires, of course, the ability to ask for the name of the set, to ask for
its cardinality, and to ask for the list of element names. At this point we do not
elaborate this any further.

What should be mentioned is that our exposition here does not completely follow
the sequence in which the concepts have to be introduced theoretically. When we
show that sets may be permuted to facilitate some visualization, we already use the
concept of relations which is introduced later. We cannot avoid to use it here in a
näıve way.

Constructing new basesets

Starting from ground sets, further basesets will be obtained by construction, as pair
sets, as variant sets, as power sets, or as the quotient of a baseset modulo some
equivalence. Other constructions that are not so easily identified as such are subset
2 Skat is a popular card game in Central Europe with the same suits as Bridge, but ordered

differently as mentioned here; card values range from 7 to Ace only.
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extrusion and also baseset permutation. The former serves the purpose to promote
a subset of a baseset to a baseset of its own right3, while the latter enables us, e.g.,
to present sets in a nice way. For all these constructions we will give explanations
and examples only later.

2.2 Element Representation

So far we have been concerned with the (base)set as a whole. Now we concentrate
on its elements. There are several methods to identify an element, and we will learn
how to switch from one form to another. In every case, we assume that the baseset
is known when we try to denote an element in one of these forms

— as an element number out of the baseset, NUMBElem BaseSet Int

— marked True/False or 1/0 along the baseset, MARKElem BaseSet [Bool]

— as a name out of the elements of the baseset, NAMEElem BaseSet String

— as a one-element mark in the diagonal matrix DIAGElem BaseSet [[Bool]]

First we might choose to indicate the element of a ground baseset giving the posi-
tion in the enumeration of elements of the baseset, as in Politicians5, Colors7,
Nationalities2. Because our basesets are, in addition to what is normal for math-
ematical sets, endowed with the sequence of their elements, this is a perfect way of
identifying elements. Of course, we should not try an index above the cardinality
which will result in an error.

There is, however, also another form which is useful when using a computer. It is
very similar to a bit sequence and may, thus, be helpful. We choose to represent
such an element identification as in Fig. 2.2.1.

Politicians3 Mitterand

Clinton
Bush

Mitterand
Chirac

Schmidt
Kohl

Schröder
Thatcher

Major
Blair

Zapatero



0
0
1
0
0
0
0
0
0
0
0



Clinton
Bush

Mitterand
Chirac

Schmidt
Kohl

Schröder
Thatcher

Major
Blair

Zapatero



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


Fig. 2.2.1 Element as a marking vector or as a marking diagonal matrix

Again we see that combination with the baseset is needed to make the column
vector of 0 ’s and 1 ’s meaningful. We may go even further and consider, in a fully

3 The literate reader may identify basesets with objects in a category of sets. Category objects
generically constructed as direct sums, direct products, and direct powers will afterwards be
interpreted using natural projections, natural injections, and membership relations.
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näıve way, a partial identity relation with just one entry 1 , or a partial diagonal
matrix with just one entry 1 on the baseset.4

With these four attempts, we have demonstrated heavy notation for simply saying
the name of the element, namely Mitterand ∈ Politicians. Using such a compli-
cated notation is justified only when it brings added value. Mathematicians have a
tendency of abstracting over all these representations, and they often have reason
for doing so. On the other hand, people in applications cannot that easily switch
between representations. Sometimes, this prevents them from seeing possibilities of
economic work or reasoning.

An element of a baseset in the mathematical sense is here assumed to be transferable
to the other forms of representation via functions that might be called

elemAsNUMB, elemAsMARK, elemAsNAME, elemAsDIAG,

as required. Each of these shall take an element in whatever variant it is presented
and deliver it in the variant indicated by the name of the function. All this works fine
for ground sets. Later we will ask how to denote elements in generically constructed
basesets such as direct products (pair sets), power sets, etc.

2.3 Subset Representation

We now extend element notation slightly to a notation of subsets. Given a baseset,
subsets may at least be defined in six different forms which may be used inter-
changeably and which are here indicated also in a computer usable form:

— as a list of element numbers of baseset, LISTSet BaseSet [Int]

— as a list of element names of baseset, LINASet BaseSet [String]

— as a predicate over baseset, PREDSet BaseSet (Int -> Bool)

— as an element in the powerset of baseset POWESet BaseSet [Bool]

— marked 1/0 along baseset MARKSet BaseSet [Bool]

— as partial diagonal matrix on baseset DIAGSet BaseSet [[Bool]]

Again, the capitalized name is a constructor in the sense of a modern functional
language; what follows is the type to indicate the set, we draw the subset from. To
denote in this way works fine as long as the baseset is ground. In this case we have
the possibility to either give a set of numbers or a set of names of elements in the
baseset. One has to invest some more care for constructed basesets or for infinite
ones. For the latter, negation of a finite subset may well be infinite, and thus more
difficult to represent.
4 We quote from [Kim82]: . . . Moreover, the 0 and 1 reflects the philosophical thought embodied in

symbols of dualism of the cosmos in I Ching (The Classic of Changes or The Book of Divination) of
ancient China. That is, 0 represents
Yin (negative force, earth, bad, passive, destruction, night, autumn, short, water, cold, etc.)

and 1 represents
Yang (positive force, heaven, good, active, construction, day, spring, tall, fire, hot, etc.).
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Given the name of the baseset, we may list numbers of the elements of the subset
as in the first variant or we may give their names explicitly as in the second version
of Fig. 2.3.1. We may also use marking along the baseset as in variant three, and
we may, as already explained for elements, use a partial diagonal matrix over the
baseset.

Politicians{1,2,6,10}

{Clinton,Bush,Kohl,Blair}

Clinton
Bush

Mitterand
Chirac

Schmidt
Kohl

Schröder
Thatcher

Major
Blair

Zapatero



1
1
0
0
0
1
0
0
0
1
0



Clinton
Bush

Mitterand
Chirac

Schmidt
Kohl

Schröder
Thatcher

Major
Blair

Zapatero



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0


Fig. 2.3.1 Different subset representations

In any case, given that

Politicians = {Clinton,Bush,Mitterand,Chirac,Schmidt,Kohl,
Schröder,Thatcher,Major,Blair,Zapatero},

what we intended to denote was simply something as

{Clinton,Bush,Kohl,Blair} ⊆ Politicians

Subsets may be given in either of these variants; we assume, however, functions

setAsLIST, setAsLINA, setAsPRED, setAsPOWE, setAsMARK, setAsDIAG

to be available that convert to a prescribed representation of subsets. Of course,
the integer lists must provide numbers in the range of 1 to the cardinality of the
baseset.

Another technique should only be used for sets of minor cardinality, although a
computer will handle even medium sized ones. We may identify the subset of X
as an element in the powerset P(X) or 2X . For reasons of space, it will only be
presented for the subset {♥,♦} of the 4-element Bridge suit set {♠,♥,♦,♣}5.

5 Another well-known notation for the empty subset is ∅ instead of {}.
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{}
{♠}
{♥}

{♠,♥}
{♦}

{♠,♦}
{♥,♦}

{♠,♥,♦}
{♣}

{♠,♣}
{♥,♣}

{♠,♥,♣}
{♦,♣}

{♠,♦,♣}
{♥,♦,♣}

{♠,♥,♦,♣}



0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0


Fig. 2.3.2 Subset as powerset element

The main condition for the power set definition requires that precisely one entry
is 1 or True and all the others are 0 or False while enumerating all the subsets.
Even more difficult to handle are predicate definitions. We explain them along
with the set N20 of numbers from 1 to 20. In many a programming language,
one may characterize the numbers that may be divided by 7 without remainder as
p ‘rem‘ 7 == 0. The predicate form is now specific in as far as it is hardly possible
to guarantee that the predicate representation will be found again when iterating
cyclically as in

setAsPRED (setAsLIST ss)

where ss is given selecting arguments p by a predicate as p ‘rem‘ 7 == 0. How
should a computer regenerate such nice formulations when given only a long list of
multiples of 7?

One will certainly ask in which way subsets of complex constructed basesets can be
expressed. This is postponed until some more algebraic background is available.

So far we have been able to denote only a few definable subsets. Over these basic
subsets we build further subsets with operators. While in most mathematics texts
union and intersection may be formed more or less arbitrarily, we restrict these
operators to subsets of some common baseset. For complement formation this is
required from the beginning.

Subset union and intersection

We will be very sketchy here, since we touch the lowest level of our exposition.
Assume the baseset of numerals from 1 to 20. Then we may unite and intersect
subsets in different representations as follows:

• {3, 6, 9, 12, 15, 18} ∪ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
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= {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20}
{3, 6, 9, 12, 15, 18} ∩ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} = {6, 12, 18}

• analogously in list form
• in predicate form we obtain
{n ∈ N20 | 3|n} ∪ {n ∈ N20 | 2|n} = {n ∈ N20 | 2|n or 3|n}
{n ∈ N20 | 3|n} ∩ {n ∈ N20 | 2|n} = {n ∈ N20 | 2|n and 3|n} = {n ∈ N20 | 6|n}
In general,
{x | E1(x)} ∪ {x | E2(x)} = {x | (E1 ∨ E2)(x)}
{x | E1(x)} ∩ {x | E2(x)} = {x | (E1 ∧ E2)(x)}
• in vector form as shown in Fig. 2.3.3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20



0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0



∪



0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1



=



0
1
1
1
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
1



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20



0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0



∩



0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1



=



0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20



0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0



⊆



0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1


Fig. 2.3.3 Subset union, intersection, and containment

In the last version with vectors, union means that the result is marked 1 if at least
one of the arguments is. Intersection of the result is marked 1 if both arguments
are.

Subset complement

Also in the various representations, complement forming over finite sets is more or
less obvious:

• {3, 6, 9, 12, 15, 18} = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20}
• analogously in list form
• predicate form {n ∈ N20 | 6|n} = {n ∈ N20 | 6 |/n}. In general,

{n | p(n)} = {n | ¬p(n)}.
• in vector form: exchange 0 and 1
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So far, we have had a glimpse on operations on subsets. There is also an important
binary predicate for subsets namely subset containment.

Subset containment

There is also an important binary predicate for subsets namely subset containment.

• {6, 12, 18} ⊆ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
holds, since the first subset contains only elements which are also contained in
the second.

• analogously in list form
• predicate form {n ∈ N20 | 6|n} ⊆ {n ∈ N20 | 2|n}. In general, {x | E1(x)} ⊆ {x |
E2(x)} holds if for all x ∈ V we have E1(x)→ E2(x), which may also be written
as ∀ x ∈ V : E1(x)→ E2(x)

• in vector form: If a 1 is on the left, then also on the right, as shown in Fig. 2.3.3

We have presented the definition of such basic subsets in some detail, although
many persons know what intersection of two sets, or union of these, actually means.
The purpose of our detailed explanation is as follows. Mathematicians in every-
day work are normally not concerned with basesets; they unite sets as they come,
{red,green,blue}∪ {1, 2, 3, 4}. This is also possible on a computer which works with
a text representation of these sets, but it takes some time. When, however, maxi-
mum efficiency of such algorithms is needed with regard to space or time, one has
to go back to sets represented as bits in a machine word. Then the position of the
respective bit becomes important. This in turn is best dealt with in the concept
of a set as an ordered list with every position meaning some element, i.e., with a
baseset.

Permuting subset representations

One will know permutations from early school experience. They may be given as a
function, decomposed into cycles, or as a permutation matrix as in Fig. 2.3.4. There
is one 3-cycle as 1 will be sent to 4, 4 to 7, after which 7 is sent to the starting point
1. But there are also 2-cycles; as 3 and 5 for example will toggle when applying the
permutation several times.

1 7→ 4
2 7→ 6
3 7→ 5
4 7→ 7
5 7→ 3
6 7→ 2
7 7→ 1 or

[4,6,5,7,3,2,1]

[[1,4,7],[3,5],[6,2]]


0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


Fig. 2.3.4 Representing a permutation as a function, using cycles, or as a matrix
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Either form has its specific merits6. Sometimes the inverted permutation is useful.
It is important that also subsets may be permuted. Permuting a subset means that
the corresponding baseset is permuted followed by a permutation of the subset —
conceived as a marked set — in reverse direction. Then the listed baseset will show
a different sequence, but the marking vector will again identify the same set of
elements.

When we apply a permutation to a subset representation, we insert it in between
the row entry column and the marking vector. While the former is subjected to
the permutation, the latter will undergo the reverse permutation. In effect we have
applied p followed by inverse(p), i.e., the identity. The subset has not changed, but
its appearence has.

To make this claim clear, we consider the month names baseset and what is shown
in the middle as the subset of “J-months”, namely January, June, July. This is
then reconsidered with month names ordered alphabetically; cf. the permutation
from Page 7.

April
August

December
February
January

July
June

March
May

November
October

September

names sent to positions
[4,8,12,2,1,7,6,3,5,11,10,9]
i.e., permutation p

January
February

March
April
May
June
July

August
September

October
November
December



1
0
0
0
0
1
1
0
0
0
0
0


Boolean values sent to positions
[5,4,8,1,9,7,6,2,12,11,10,3]
i.e., permutation inverse{p}



0
0
0
0
1
1
1
0
0
0
0
0


Fig. 2.3.5 Permutation of a subset: The outermost describe the permuted subset

6 In particular, we observe that permutations partly subsume to relations.
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Relations

Already in the previous chapters, relations have shown up in a more or less näıve
form, e.g., as permutation matrices or as (partial) identity relations. Here, we pro-
vide ideas for more stringent data types for relations. Not least will these serve to
model graph situations, like graphs on a set, bipartitioned graphs, or hypergraphs.

What is even more important at this point is the question of denotation. We have
developed some scrutiny when denoting basesets, elements, and subsets; all the more
will we now be careful in denoting relations. Since we restrict ourselves mostly to
binary relations, this will mean to denote the source of the relation as well as its
target and then denote the relation proper. It is this seemingly trivial point which
will here be stressed, namely from which set to which set the relation actually leads.

3.1 Relation Representation

We aim mainly at relations over finite sets. Then a relation R between sets V,W is
announced as R : V −→ W ; it may at least be presented in one of the following
forms:

— as a set of pairs {(x, y), . . .} with x ∈ V, y ∈W
— as a list of pairs [(x,y),...] with x :: V, y :: W

— in predicate form {(x, y) ∈ V ×W | p(x, y)} with a binary predicate p
— in matrix form, discriminating pairs over V × W , the latter in rectangular

presentation
— in vector form, discriminating pairs over V × W , the latter presented as a

linear list
— in vector form, indicating an element in the powerset 2V×W

— as a “set-valued function”, assigning to every element of V a set of numbers
of elements from W

— as a “set-valued function”, assigning to every element of V a set of names of
elements from W
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— visualized as a bipartitioned1 graph with vertices V on the left side and W on
the right and an arrow x 7→ y in case (x, y) ∈ R

Yet another important representation for relations is possible using the very efficient
reduced ordered binary decision diagrams (ROBDDs) as used for the RelView

system, [Leo01, BHLM03].

In many cases, V and W will be different sets. When we want to stress this pos-
sibility, we speak of a heterogeneous relation. A homogeneous relation in contrast
will be a relation on one and the same set, i.e., V = W .

After these preparatory remarks we mention the diversity of variants possible in
TituRel. The intentions are easy to decode from denotation — at least for pro-
grammers. Only matrices with row or column lengths, or lists lengths, resp., that
correspond to the basesets mentioned before, will be accepted as correct.

PALIRel BaseSet BaseSet [(Int,Int)]

PREDRel BaseSet BaseSet (Int -> Int -> Bool)

MATRRel BaseSet BaseSet [[Bool]]

VECTRel BaseSet BaseSet [Bool]

POWERel BaseSet BaseSet [Bool]

SETFRel BaseSet BaseSet (Int -> [Int])

SNAFRel BaseSet BaseSet (Int -> [String])

These variants are explained with the following examples that make the same rela-
tion look completely differently. In Fig. 3.1.1, we present the matrix form together
with the set function that assigns sets given via element numbers and then via
element names lists.

1 Be aware that a graph is bipartite if its point set may be subdivided in one or the other way, but
bipartitioned if the subdivision has already taken place, and is, thus, fixed.
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USA
UK

Brasil
France

Germany
Hungary

Spain


0 1 0 1
1 0 1 1
0 1 0 0
0 0 1 1
0 0 1 1
0 0 1 0
1 0 1 0


has properties2,4
has properties1,3,4
has properties2
has properties3,4
has properties3,4
has properties3
has properties1,3

USA 7→
UK 7→

Brasil 7→
France 7→

Germany 7→
Hungary 7→

Spain 7→

{Very large,Strong industry}
{Kingdom,European,Strong industry}
{Very large}
{European,Strong industry}
{European,Strong industry}
{European}
{Kingdom,European}

(USA,Kingdom)
(UK,Kingdom)

(USA,Very large)
(Brasil,Kingdom)
(UK,Very large)
(USA,European)

(France,Kingdom)
(Brasil,Very large)

(UK,European)
(USA,Strong industry)

(Germany,Kingdom)
(France,Very large)

(Brasil,European)
(UK,Strong industry)

(Hungary,Kingdom)
(Germany,Very large)

(France,European)
(Brasil,Strong industry)

(Spain,Kingdom)
(Hungary,Very large)
(Germany,European)

(France,Strong industry)
(Spain,Very large)

(Hungary,European)
(Germany,Strong industry)

(Spain,European)
(Hungary,Strong industry)

(Spain,Strong industry)



0
1
1
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
1
0
1
1
0
1
1
1
0
0


Fig. 3.1.1 Different representations of the same relation

We will sometimes say (UK,European) ∈ R, but in other cases also use the matrix
indexing Ri k, as in e.g., RUK,European. We will quite frequently use matrix style to
visualize relations2.

Then we show the relation with pairs of row and column numbers, which requires
that one knows the source and target not just as sets but as element sequences, i.e.,
basesets:

{(1,2),(1,4),(2,1),(2,3),(2,4),(3,2),(4,3),(4,4),(5,3),(5,4),(6,3),(7,1),(7,3)}
It is also possible to mark the relation along the list of all pairs as on the right of
Fig. 3.1.1.

Let us have a closer look at the method in which way relations are denoted. If we
have two finite basesets V,W , we are able — at least in principle — to denote every
element in V and in W , and thus, every relation between V and W . In practice,
however, we will never try to denote an arbitrary 300 × 5000 relation while we can
easily work on a computer with a 300 × 5000 matrix as an operand. It is highly
likely that our relations are composed in a simple way based on subsets of the two
basesets. A simple calculation makes clear what a tiny percentage this is: There are
2 Already in [Cop48] L. M. Copilowish “enjoyed the full benefits of the matrix approach” and

regretted that this “elegant machinery is apparently too little known”. We think, these feelings can
be shared today. Bednarek and Ulam in [BU78] motivated such investigations by their “suitability
to machine computations”.
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2300×5000 relations — only finitely many, but a tremendous number. Relations that
are composed of subsets of the first or second component set are far less, namely
only 2300 × 25000, or 0.000 . . . % of the latter. If the set with 5000 elements is itself
built as a product of a 50 and a 100 element set, it is highly likely that also the
interesting ones of the 25000 subsets are only built from smaller sets of components.

Representing relations is possible in various ways as we are going to show in yet
another example, starting with the version

MATRRel bsGenders bsColorsRedBlue [[False,True],[True,True]]

It is possible to convert this matrix to a set function, e.g. Possible is the list of pairs
of indices — where the sets are understood to be known. One may, however, also
indicate the subset of pairs along the list of all pairs. Finally, one may for not too
big sets indicate the subset as an element of the powerset as in Fig. 3.1.2. Again,
we assume that a relation may be given in either of these forms. Should we, for
some reason, wish to have it presented in one specific variant, we assume functions

relAsMATRRel, relAsPREDRel, relAsSETFRel, relAsSNAFRel,

relAsVECTRel, relAsPALIRel, relAsPOWERel

to switch to this representation — as far as this is possible.

re
d

b
lu

e

male
female

(0 1
1 1

)
Genders

male
female

Colors

{2}
{1, 2}

male
female

{blue}
{red,blue}

{}
{(male,red)}
{(female,red)}

{(male,red),(female,red)}
{(male,blue)}

{(male,red),(male,blue)}
{(female,red),(male,blue)}

{(male,red),(female,red),(male,blue)}
{(female,blue)}

{(male,red),(female,blue)}
{(female,red),(female,blue)}

{(male,red),(female,red),(female,blue)}
{(male,blue),(female,blue)}

{(male,red),(male,blue),(female,blue)}
{(female,red),(male,blue),(female,blue)}

{(male,red),(female,red),(male,blue),(female,blue)}



0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0


list of pairs of indices

{(1,2),(2,1),(2,2)}

(male,red)
(female,red)
(male,blue)

(female,blue)

(
0
1
1
1

)
Fig. 3.1.2 The same relation represented in a variety of ways

Permuting relation representations

We now study how a relation representation may be varied using permutations.
Two main techniques are possible, permuting simultaneously and permuting rows
and columns independently.
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A =

1 2 3 4 5 6 7 8 91011121314
1
2
3
4
5
6
7
8
9

10
11
12



1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1


Arearranged =

1 3 5 8 9111214 2 4 710 613
1

v4
6

10
12
2
5
7
3
9

11
8



1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 3.1.3 A relation with many coinciding rows and columns, original and rearranged

In many cases, results of some investigation automatically bring information that
might be used for a partition of the set of rows and the set of columns, respectively.
In this case, a partition into groups of identical rows and columns is easily obtained.
It is a good idea to permute rows and columns so as to have the identical rows of
the groups side aside. This means to permute independently rows and columns as
in Fig. 3.1.3.

There may, however, also occur a homogeneous relation, for which rows and columns
should not be permuted independently, but simultaneously. Fig. 3.1.4 shows, how
also in this case a block form may be reached.

Ξ =

1 2 3 4 5

1
2
3
4
5

1 0 1 0 0
0 1 0 0 1
1 0 1 0 0
0 0 0 1 0
0 1 0 0 1

 P =

1 3 2 5 4

1
2
3
4
5

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0



1 3 2 5 4

1
3
2
5
4

1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

 = P T; Ξ;P

Fig. 3.1.4 Equivalence Ξ with simultaneous permutation P to a block-diagonal form

When permuting only the rows of a homogeneous relation, it will become a hetero-
geneous one, albeit with square matrix.

3.2 Relations Describing Graphs

Relational considerations may very often be visualized with graphs. On the other
hand, several questions of graph theory are heavily related with matrix properties,
i.e., relations. Usually, graph theory stresses other aspects of graphs than our re-
lational approach. So we will present what we consider as relational graph theory.
This will not least mean to make visible the differences between the various forms
in which graphs are used with relations.

The following type of graphs will most directly resemble a relation between two
sets.
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3.2.1 Definition. Given a heterogeneous relation M : P −→ V , we speak of a
hypergraph, interpreting

i) P as a set of hyperedges,

ii) V as a set of vertices or points,

iii) M as an incidence relation.

The term incidence reminds us of a geometric origin, that may be found in the
example of a so-called “complete quadrangle” in Fig. 3.2.1. It consists of the four
points P,Q,R, S with all six diagonals and the three additional diagonal cutting
points D1, D2, D3 added.

P Q R S D
1

D
2

D
3

gPQ
gPR
gPS
gQR
gQS
gRS


1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 1 0 0 0 1
0 1 0 1 0 1 0
0 0 1 1 1 0 0


P

Q R

S

D

D

D

1

2

3

Fig. 3.2.1 Complete quadrangle as an example of a very special hypergraph

Also the next type is intimately related with a relation, in particular in case the
second relation S is equal to .

3.2.2 Definition. Given any pair of heterogeneous relations R : V −→ W and
S : W −→ V , we may speak of a bipartitioned graph, interpreting

i) V as a set of vertices on the left,

ii) W as a set of vertices on the right,

iii) R as a relation from the left to the right side,

iv) S as a relation from the right to the left side.

The relation S will sometimes be the empty relation , so that all arrows will lead
from the left to the right side.
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visualized as a
bipartitioned
graph

a

b

c

d

1

2

3

4

5

1 2 3 4 5

a
b
c
d

(
1 0 0 1 0
0 0 0 0 0
1 0 0 0 1
0 1 0 0 0

) a b c d

1
2
3
4
5

1 0 0 0
0 0 0 0
1 0 0 1
0 0 0 0
0 1 0 0

 stored as
rectangular
matrices

fR(a) = {1, 4}, fR(b) = {}, fR(c) = {1, 5}, fR(d) = {2}
fS(1) = {a}, fS(2) = {}, fS(3) = {a, d}, fS(4) = {}, fS(5) = {b}
V = {a, b, c, d } R = {(a, 1), (a, 4), (c, 1), (c, 5), (d, 2)} ⊆ V ×W
W = {1, 2, 3, 4, 5 } S = {(1, a), (3, a), (3, d), (5, b)} ⊆W × V

Fig. 3.2.2 Relation as bipartitioned graph and as set-valued functions

A special variant is the relation on a set, i.e., with V = W , and thus a homogeneous
relation, which more often will appear in graph context.

3.2.3 Definition. Given any homogeneous relation B : V −→ V , we may speak
of a 1-graph, interpreting

i) V as a set of vertices,
ii) B as a relation providing arrows between vertices of V , the associated rela-

tion.

As an example we present

V = {a, b, c, d } B = {(a, a), (d, a), (d, c), (c, d)} ⊆ V × V
which is also shown as a graph and as a matrix in Fig. 3.2.3.

visualized
as a 1-graph

a

b

c

d

a b c d

a
b
c
d

(
1 0 0 0
0 0 0 0
0 0 0 1
1 0 1 0

)
stored
as a matrix

Fig. 3.2.3 Homogeneous relation as a 1-graph

A little bit of caution is necessary when presenting a relation on some set with-
out further context. The discussion may indeed be concerned with homogeneous
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relations; it may, however, be principally about heterogeneous relations holding be-
tween two sets that are identical just by incident. This leads to two different forms
of graph representation in Fig. 3.2.4.

visualized
as a 1-graph

a

b

c

d

a b c d

a
b
c
d

(
1 0 0 0
0 0 0 0
0 0 0 1
1 0 1 0

) a

b

c

d

a

b

c

d

visualized as a
bipartitioned
graph

Fig. 3.2.4 Two different graph types representing the same relation

Just looking at the relation and without knowing whether the homogeneous or the
heterogeneous form was intended, one cannot decide readily for one or the other
graph presentation.

3.2.4 Definition. Given any pair of heterogeneous relations A : P −→ V and E :
P −→ V that are both mappings, we may speak of a directed graph, interpreting

i) V as a set of vertices,
ii) P as a set of arrows,
iii) A as a relation assigning precisely one initial vertex to each arrow,
iv) E as a relation assigning precisely one target vertex to each arrow.

An example is provided with Fig. 3.2.5 in which one should have in particular a
look on the parallel arrows s, t. They could not be distinguished by the concept of
a 1-graph as presented in Def. 3.2.3.

a b c d e

p
q
r
s
t
u
v


1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0



a b c d e

p
q
r
s
t
u
v


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


p q

r s t

u

v

a b c

d e

a b c d e

a
b
c
d
e

0 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1
0 0 1 1 0



Fig. 3.2.5 Directed graph representation with associated relation

When given just a drawing on the blackboard, it may not immediately be clear
what sort of relation(s) it means. The drawing on the left of Fig. 3.2.4, e.g., may
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also be interpreted as showing a directed graph, i.e., providing us with two rela-
tions A,E. This would require to attach an identification to the four arrows (say,
Arrowaa, Arrowda, Arrowdc, Arrowcd), and to extract the corresponding relations
from the drawing. We would immediately observe that arrows are uniquely given
by their starting vertex determined via A and their target vertex determined via
E. The latter condition says that from any vertex to another, there will be at most
one arrow. This is the condition making a directed graph appear as a 1-graph.

Often one is not interested whether an arrow leads from a vertex x to the vertex
y or the other way round and concentrates only on the question whether x and y

are related somehow. To express this bidirectional situation, one will use a matrix
that is symmetric when mirroring along its main diagonal. This is always combined
with being uninterested in arrows from x to x, so that there should be only 0 ’s in
this main diagonal.

3.2.5 Definition. Given any symmetric and irreflexive homogeneous relation Γ :
V −→ V , we may speak of a simple graph, interpreting

i) V as a set of vertices,

ii) Γ as a symmetric and irreflexive relation of adjacency on vertices of V .

A tiny example of a simple graph is given with Fig. 3.2.6.

a b c d e

a
b
c
d
e

0 1 0 0 0
1 0 1 1 0
0 1 0 0 1
0 1 0 0 1
0 0 1 1 0


a b c

d e

Fig. 3.2.6 Simple graph representation with its adjacency

3.3 Relations Generated by Cuts

Often relations originate from real-valued sources. An example of a real-valued
matrix representing percentages is shown in Fig. 3.3.1. A closer look at this case
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38.28 9.91 28.42 36.11 25.17 11.67 87.10 84.73 81.53 35.64 34.36 11.92 99.73
93.35 93.78 18.92 44.89 13.60 6.33 25.26 36.70 34.22 98.15 8.32 4.99 21.58
5.69 94.43 47.17 95.23 86.50 80.26 41.56 86.84 47.93 40.38 3.75 19.76 12.00
93.40 20.35 25.94 38.96 36.10 25.30 89.17 19.17 87.34 85.25 5.58 18.67 1.13
6.37 83.89 23.16 41.64 35.56 36.77 21.71 37.20 43.61 18.30 97.67 27.67 42.59
30.26 43.71 90.78 37.21 16.76 8.83 88.93 15.18 3.58 83.60 96.60 18.44 24.30
29.85 14.76 82.21 35.70 43.34 99.82 99.30 88.85 46.29 24.73 47.90 92.62 46.65
19.37 88.67 5.94 38.30 48.56 87.40 46.46 34.46 17.92 24.30 33.46 34.30 43.95
97.89 96.70 4.13 44.50 23.23 81.56 95.75 34.30 41.59 47.39 39.29 86.14 22.98
18.82 93.00 17.50 16.10 9.74 14.71 21.30 45.32 19.57 24.78 82.43 41.00 43.29
5.38 36.85 4.38 28.10 17.30 45.30 33.14 81.20 13.24 33.39 23.42 18.33 83.87
14.82 18.37 1.87 19.30 4.82 93.26 28.10 26.94 19.10 43.25 85.85 15.48 49.57
7.63 28.80 10.40 89.81 17.14 7.33 96.57 16.19 35.96 8.96 47.42 39.82 8.16
89.70 14.16 7.59 41.67 34.39 88.68 18.80 99.37 7.67 8.11 86.54 86.65 44.34
31.55 13.16 86.23 45.45 92.92 33.75 43.64 46.74 27.75 89.96 37.71 84.79 86.32
25.48 7.40 43.67 1.69 85.18 27.50 89.59 100.00 89.67 11.30 2.41 83.90 96.31
48.32 93.23 14.16 17.75 14.60 90.90 3.81 41.30 4.12 3.87 2.83 95.35 81.12


Fig. 3.3.1 A real-valued 17× 13-matrix

shows that the coefficients are clustered around 0–50 and around 80–100. So it will
not be the deviation between 15 and 20, or 83 and 86, which is important but the
huge gap between the two clusters. Constructing a histogram is, thus, a good idea;
it looks as follows.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Fig. 3.3.2 Histogram for value frequency in Fig. 3.3.1

So one may be tempted to apply what is known as a cut, at 60, e.g., considering
entries below as False and above as True in order to arrive at the Boolean matrix
of Fig. 3.3.3. 

0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 1 1 0
0 0 1 0 1 0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 1 1 0 0 1 1
0 1 0 0 0 1 0 0 0 0 0 1 1


Fig. 3.3.3 Boolean matrix corresponding to Fig. 3.3.1 according to a cut at 60
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In principle, one may use any real number between 0 an 100 as a cut, but this will
not in all cases make sense. In order to obtain qualitatively meaningful subdivisions,
one should obey certain rules. Often one will also introduce several cuts and test
to which extent this results in orderings, e.g.

There exist techniques to analyze real-valued matrices by investigating a selected
cut at one or more levels. Typically, a cut is an acceptable one when the cut number
can be moved up and down to a certain extent without affecting the relational
structure. In the case of Fig. 3.3.1, one may shift the cut up and down between
50 % and 80 % without changing the relation in Fig. 3.3.3.

It may, however, be the case that there is one specific entry of the matrix according
to whose being 1 or 0 structure changes dramatically. When this is just one entry,
one has several options how to react. The first is to check whether it is just a
typographic error, or an error of the underlying test. Should this not be the case,
it is an effect to be mentioned, and may be an important one. It is not easy to
execute a sensitivity test in order to find out whether the respective entry of the
matrix has such key property. But there exist graph-theoretic methods.

3.4 Relations Generated Randomly

To investigate programs working on relations, one will sometimes need test re-
lations. The programming language Haskell, e.g., provides for a mechanism to
generate random numbers in a reproducible way. This allows also to generate ran-
dom relations. To this end one can convert any integer into a “standard generator”,
which serves as a reproducible offset.

Because we are often interested in random matrices with some given degree of
filling density, we further provide 0 and 100 as lower and upper bound and assume
a percentage parameter to be given as well as the desired row and column number.

randomMatrix startStdG perc r c

For the realization of this function, first randoms between 0 and 100 produced from
the offset are generated infinitely, but afterwards only r×c are actually taken. Then
they are filtered according to whether they are less than or equal to the prescribed
percentage cut. Finally, they are grouped into r rows of c elements each.

It is much more elaborate to generate random relations with one or the other
prescribed properties such as being a univalent and injective relation. One may
also wish to construct a random permutation matrix for n items or a random
difunctional relation. Here, we cannot elaborate on this any further.

Fig. 3.4.1 shows relations far from being random: a privately printable railway ticket
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and a stamp as they are used in recent times. Conceiving a black square as 1 and
a white one as 0 , these are obviously relations in our sense, — probably with a
high degree of redundancy to make sure they may even then be read automatically
when partly damaged.

Fig. 3.4.1 Relations in practice: Privately printable railway ticket and stamp in Germany

3.5 Function Representation

A most important class of relations are, of course, mappings or totally defined
functions. While they may easily be handled as relations with some additional
properties, they are so central that it is often more appropriate to give them a
special treatment.

In TituRel, we distinguish unary and binary functions, see the examples in Fig. 3.5.1
and Fig. 3.5.2. For both, unary and binary mappings, a matrix representation as
well as a list representation is provided. This looks for unary mappings like

MATRFunc BaseSet BaseSet [[Bool]]

LISTFunc BaseSet BaseSet [Int]

It is easy to detect how this presentation is meant. The unary mapping matrix
will only be accepted when row and column length meet the sizes of the basesets
specified before and when every row contains besides 0 ’s precisely one 1 . In the
list representation, the list must contain as many entries as the sizes of the first
baseset specifies, with integers ranging over the interval from 1 to the number of
entries in the second. In addition we provide for binary mappings

TABUFct2 BaseSet BaseSet BaseSet [[Int]]

MATRFct2 BaseSet BaseSet BaseSet [[Bool]]

In a similar way, the matrix for the table will have as many rows as the size of the
first baseset indicates and columns as the second, while the integer entries range
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between 1 and the size of the third. The matrix form of a binary mapping has
as many rows as the product of the first two baseset sizes indicates and columns
according to the third, and it is again required that every row has among 0 ’s
precisely one 1 . When such mappings are input to start some computation, it is
practically important that they be checked for consistency. Functions to switch
between the respective two versions are assumed to exist as

funcAsMATR, funcAsLIST

fct2AsTABU, fct2AsMATR

Let the nationalities of politicians be indicated by a function in list form

LISTFunc bsPoliticians bsNationalities [1,1,2,2,3,3,3,4,4,4,5]

It is rather immediate how this may be converted to the relation of Fig. 3.5.1. To
actually program such a transition will probably be considered boring and may,
thus, turn out to be error-prone.

funcAsMATR politiciansNationalities =

U
S

F
re
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ch
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e
rm
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B
ri

ti
sh

S
p
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h

Clinton
Bush

Mitterand
Chirac

Schmidt
Kohl

Schröder
Thatcher

Major
Blair

Zapatero



1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


Fig. 3.5.1 Function in matrix representation

As a further example we choose the operations in the famous Klein four-group3. As-
sume a rectangular playing card such as for Bridge or Skat and consider transform-
ing it with barycenter fixed in 3-dimensional space. The possible transformations
are limited to identity flipping vertically or horizontally , and finally
rotations by 180 degrees . Composing such transformations, one will most easily
observe the group table of Fig. 3.5.2. The middle version relies on the ordering
{ , , , } of the baseset and mentions just the position number.

3 in German: Kleinsche Vierergruppe
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( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )
( , )



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0
1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 0
1 0 0 0





1
2
2
3
1
3
4
4
4
4
3
1
3
2
2
1






Fig. 3.5.2 Three representations of composition in the Klein-4-group

3.6 Permutation Representation

Permutations will often be used for presentation purposes, but are also interesting
in their own right. They may be given as a matrix, a sequence, via cycles, or as
a function. We provide mechanisms to convert between these forms and to apply
permutations to some set.

1 2 3 4 5 6 7
1
2
3
4
5
6
7


0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


1 4 7 2 3 5 6

1
4
7
2
3
5
6


0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0


Fig. 3.6.1 A permutation rearranged to cycle form

One will easily confirm that both matrices represent the same permutation. The
second form, however, gives an easier access to how this permutation works in cycles.
Specific interest arose around permutations with just one cycle of length 2 and all
the others of length 1, i.e., invariant, namely transpositions. Every permutation
may (in many ways) be generated by a series of transpositions.

Univalent and injective heterogeneous relation

Looking at such a permutation matrix, we easily observe that in every row and
column among the 0 ’s precisely one 1 may be found; considered forward and
backwards, a permutation is thus a mapping. Often, however, it is just a (partially
defined) function, i.e., assigning at most one 1 per row (then called univalent) and
column (then called injective).
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With Fig. 3.6.2, we study an example showing in which way permutation helps
visualizing. First we assume a heterogeneous relation that is univalent and injective.
This obviously gives a one-to-one correspondence where it is defined, that should
somehow be made visible.

1 2 3 4 5 6 7 8 910

a
b
c
d
e
f
g
h
i
j
k



0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0



8 2 5 4 3 6 9 7 110

a
b
d
e
g
h
i
k
c
f
j



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


Fig. 3.6.2 A univalent and injective relation, rearranged to diagonal-shaped form;

rows and columns permuted independently

Univalent and injective homogeneous relations

It is more involved to visualize the corresponding property when satisfied by a
homogeneous relation. One is then no longer allowed to permute independently.
Nonetheless, an appealing form can always be reached.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19



0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



1
3

1
5

3 1
0

1 1
1

2 4 1
4

6 1
7

5 1
6

1
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9 1
8

13
15
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10
1
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2
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 3.6.3 Arranging a univalent and injective relation by simultaneous permutation

The principle is as follows. The univalent and injective relation clearly subdivides
the set into cycles and/or linear strands as well as possibly a set of completely
unrelated elements. These are obtained as classes of the symmetric reachability
according to the corresponding matrix. (The unrelated elements should be collected
in one class.) Now every class is arranged side aside. To follow a general principle, let
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cycles come first, then linear strands, and finally the group of completely unrelated
elements.

Inside every group, one will easily arrange the elements so that the relation forms
an upper neighbour of the diagonal, if a strand is given. When a cycle is presented,
the lower left corner of the block will also carry a 1 .

It is easy to convince oneself that Fig. 3.6.3 shows two different representations of
the same relation; the right form, however, facilitates the overview on the action of
this relation: When applying repeatedly, 13 and 15 will toggle infinitely. A 4-cycle is
made up by 3, 10, 1, 11. From 2, we will reach the end in just one step. The question
arises how such a decomposition can systematically be found. In Appendix C, we
will give hints how this may be achieved.

Arranging an ordering

The basic scheme to arrange an ordering (is less or equal to, divides for numbers,
or is contained in for subsets) is obviously to present it contained in the upper right
triangle of the matrix. When given the relation on the left of Fig. 3.6.4, it is not
at all clear whether it is an ordering, i.e., a reflexive, transitive, and antisymmetric
relation; when arranged nicely, it immediately turns out to be. It is, thus, a specific
task to identify the techniques according to which one may get a nice arrangement.
For a given example, this will easily be achieved. But what about an arbitrary
input? Can one design a general procedure?

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
2
3
4
5
6
7
8
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10
11
12
13
14
15
16
17
18
19



1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 3.6.4 Division order on permuted numbers 1 . . . 19; arranged to upper right triangle

One will indeed find out that Fig. 3.6.4 shows an ordering, i.e., transitive, reflex-
ive, and antisymmetric. But assume an attempt to draw a graph for it which is
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sufficiently easy to overview. This will certainly be supported when one is able to
arrange the matrix so as to have the 1 -entries in the upper right triangle of the ma-
trix as in Fig. 3.6.4. Even better to use when drawing this ordering is the so-called
Hasse-diagram based thereon as on the left in Fig. 3.6.5.

The relation on the right in Fig. 3.6.5 is an identity relation. It is, however, rep-
resented as a matrix with row marking different from column marking, which is
possible because we have decided to work with basesets that are ordered — may be
in different ways. It represents the permutation for this transition: the permuted se-
quence appears when scanning it from top to bottom and identifying the 1 -entries.
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0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Fig. 3.6.5 Hasse relation and permutation for Fig. 3.6.4

More detailed hints how matrices are rearranged in this book may be found in
Appendix C. It should be mentioned that the technique is based on algebraic con-
siderations and is not just oriented along prettiness or pulchritude.

3.7 Partition Representation

Partitions are frequently used in mathematical modelling. We introduce them rather
näıvely. They shall subdivide a baseset, i.e., shall consist of a set of mutually disjoint
nonempty subsets of that baseset.

Fig. 3.7.1 shows an equivalence relation Ξ on the left. Its elements are, however,
not sorted in a way that lets elements of an equivalence class stay together. It is a
rather simple programming task to arrive at the rearranged matrix Θ := P ; Ξ;P T

on the right, where P is the permutation used to simultaneously rearrange rows
and columns. It is not so simple a task to define P in terms of the given Ξ and the
ordering E of the baseset over which Ξ is defined.
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1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7
8
9

10
11
12
13



1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0 0 1 0
1 1 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0 0 1 0
1 1 0 0 0 0 0 1 0 0 0 0 1


1 2 8 1
3

3 5 7 9 1
2

4 6 1
0

1
1

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0



1 2 8 1
3

3 5 7 9 1
2

4 6 1
0

1
1

1
2
8

13
3
5
7
9

12
4
6

10
11



1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1


Fig. 3.7.1 Rearranging an equivalence relation to block-diagonal form: Ξ, P,Θ

Observe the first four columns of P . They regulate that 1,2,8,13 are sent to positions
1,2,3,4. A nested recursive definition for this procedure is possible. Some more
information on how P has been designed is contained in Appendix C.



PART TWO

OPERATIONS AND CONSTRUCTIONS

At this point of the book, a major break of style may be observed. So far we have
used free-hand formulations, not least in Haskell, and have presented basics of set
theory stressing how to represent sets, subsets, elements, relations, and mappings.
We have, however, so far not used relations in an algebraic form.

From now on, we shall mainly concentrate on topics that inherently need some
algebraic treatment. We cannot immediately start with formal algebraic proofs and
with the relational language TituRel in which all this has been tested. Rather will
we first insert the chapters of the present Part II, full of examples that demonstrate
the basics of algebraic rules. Whenever one of these early rules needs a proof, this
proof will be very simple, but nevertheless omitted at this point. One will find the
postponed proofs in Appendix B.

We will, however, often present how point-free versions, i.e., those hiding quantifiers
and individual variables, are derived from a predicate-logic form. These deductions
are definitely not an aim of this book; they seem, however, necessary for many re-
searchers who are not well-trained in expressing themselves in a point-free algebraic
manner. These deductions are by no means executed strictly formal. Rather, they
are included so as to convince the reader that there is reason to use the respective
point-free construct.

There is another point to mention concerning the domain constructions, or data
structures, that we are going to present. Considered from one point of view, they
are rather trivial. Historically, however, they did not seem to be so. The first theo-
retically reasonably sound programming language ALGOL 60 did not provide data
structures beyond arrays. When improved with PASCAL, variant handling was not
treated as a basic construct and offered only in combination with tuple forming. De-
pendent types were long considered theory-laden and are not yet broadly offered in
programming languages. When we here offer generic domain construction methods
at an early stage, we face the problem that there is not yet a sufficiently developed
apparatus available to prove that the respective construct is unique up to isomor-
phism — of course, our constructs are. We present them here mentioning always
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that there is essentially one form, as one is in a position to provide a bijection based
on the syntactic material already given. This is then shown via examples. For the
literate reader these examples will be sufficiently detailed to replace a proof.

Several concepts may be expressed in either style, in a programming language
(Haskell) as well as in an algebraic form. So one or the other topic we have
already dealt with, will now be rewritten in the new style. This will make the
differences visible.

To sum up: We have here placed an introduction to relations that may fit to the
needs of many researchers but is not yet presented in a fully formal style.



4

Algebraic Operations on Relations

Not a full account of relation algebra can be given here; just the amount that enables
us to work with it. This will be accompanied by examples showing the effects.
When relations are studied in practice, they are conceived as subsets R ⊆ X × Y
of the Cartesian product of the two sets X,Y between which they are defined to
hold. Already in Chapt. 3, we have given enough examples of relations between
sets together with a diversity of ways to represent them. We will now present the
operations on relations in a way that is both, algebraically sound and sufficiently
underpinned with examples.

With this algebraic approach we start in full contrast to such texts as, e.g., [Sch74b],
where relations are also presented in extensu. There, however, everything is based
on point-wise reasoning.

4.1 Typing Relations

In many cases, we are interested in solving just one problem. More often, however,
we want to find out how a whole class of problems may be solved. While in the
first case, we may use the given objects directly, we must work with constants and
variables for relations in the latter case. These variables will be instantiated at the
time when the concrete problem is presented.

Let us consider timetabling as an example. It may be the case that a timetable has
to be constructed at some given school. It would, however, not be wise to write
a timetabling program just for this school with the present set of teachers and
classrooms. When it is intended to sell the program several times so that it may be
applied also to other schools, one must care for the possibility of different sets of
teachers, different sets of classrooms, etc.

The standard technique in such cases is to introduce types. One will have to be
able to handle the type teacher, the type classroom, etc. At one school, there may
exist 15 teachers and 10 classrooms, while instantiation at another school will give
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20 teachers and 15 classrooms. Although the concept of time is in a sense universal,
one will also introduce the type hour; it may well be the case that at one school
they use a scheme of hours or timeslots 8.00–9.00, 9.00–10.00 while at the other
8.15–9.00, 9.00–9.45. It is therefore wise, to offer even an instantiable concept of
“hour”1.

In any case, a type variable is a denotation of a set of items that may afterwards
be interpreted with a baseset. In this strict sense, the following relations are of
different type — in spite of the fact that their constituent matrices are equal.

R1=

M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

red
green
blue

orange

(
0 1 1 0 1 0
1 0 1 0 0 1
0 0 0 1 1 0
1 0 0 1 0 1

)
R2=

1 2 3 4 5 6

♠
♥
♦
♣

(
0 1 1 0 1 0
1 0 1 0 0 1
0 0 0 1 1 0
1 0 0 1 0 1

)
Fig. 4.1.1 Differently typed relations

While R : X −→ Y is the type, the concrete instantiation of the first relation is

R1 ⊆ {red, green, blue, orange} × {Mon, Tue,Wed, Thu, Fri, Sat}.

In the other case, R : X −→ Y is the type but

R2 ⊆ {♠,♥,♦,♣} × {1, 2, 3, 4, 5, 6}

the instantiation. We see, that X is instantiated in two ways, namely as

{red, green, blue, orange} or as {♠,♥,♦,♣}.

When we do not ask for both, X,Y , we will frequently determine source and
target by src R = X and tgt R = Y .

A word is in order concerning the concept of a monotype that is frequently met
in the literature. This indicates a homogeneous setting, i.e., all items of discourse
are assumed to reside in one huge domain. As far as typing in the sense developed
here is necessary, people think of a partial diagonal relation selecting this set. The
distinction between a vector and a partial diagonal us usually not being made, or
it is abstracted over.

1 To which extent this by now generally practicized attitude was difficult to achieve may be estimated
from George Boole’s investigations on the laws of thought of 1854; [Boo54, Boo51]: In every
discourse, whether of the mind conversing with its own thoughts, or of the individual in his
intercourse with others, there is an assumed or expressed limit within which the subjects of its
operation are confined. The most unfettered discourse is that in which the words we use are
understood in the widest possible application, and for them the limits of discourse are
co-extensive with those of the universe itself. But more usually we confine ourselves to a less
spacious field. . . . Furthermore, this universe of discourse is in the strictest sense the ultimate
subject of the discourse. The office of any name or descriptive term employed under the
limitations supposed is not to raise in the mind the conception of all the beings or objects to
which that name or description is applicable, but only of those which exist within the supposed
universe of discourse.
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4.2 Boolean Operations

We recall in a more formal way what has already been presented in the examples
of Part I. Relations with type X −→ Y , when interpreted, may be understood
as subsets of a Cartesian product: R ⊆ V × W . Being interpreted as a subset
immediately implies that certain concepts are available for relations that we know
from subsets.

4.2.1 Definition. Given two relations R : X −→ Y and S : X −→ Y , i.e., relations
of the same type, we define

union R ∪ S {(x, y) ∈ X × Y | (x, y) ∈ R ∨ (x, y) ∈ S}
intersection R ∩ S {(x, y) ∈ X × Y | (x, y) ∈ R ∧ (x, y) ∈ S}
complementation R {(x, y) ∈ X × Y | (x, y)∈/ R}
null relation {} or ∅
universal relation X × Y
identity relation {(x, x) ∈ X ×X | x ∈ X}

On the right we have indicated what we intend this to mean when the relations are
interpreted as subsets of X × Y , or — in case of the identity — X ×X.

There is also a tradition of denoting this differently2, which we do not follow. It
makes no sense to unite, e.g., relations of different types, and therefore this is not
allowed. Concerning the top and bottom relations, we have been a bit sloppy here.
The symbols for the empty or null and for the universal relation should have been
X,Y and X,Y , respectively. While we know the typing in cases of union, inter-

section, and negation from the operands R,S, we should provide this information
explicitly for the null and the universal relation. It is absolutely evident that the
relations of Fig. 4.2.1

colors,weekdays =

M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

red
green
blue

orange

(
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

)
brigdesuits,numerals =

1 2 3 4 5 6

♠
♥
♦
♣

(
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

)
Fig. 4.2.1 Universal relations of different type

should not be mixed up although the matrices proper seem equal. It is important
to keep them separate when even row and column numbers differ. Often, however,
the typing is so evident from the context, that we will omit the type indices and
write just , .
2 In many classical — but also in modern — texts, usually in a homogeneous setting, 0 is used for ,

1 for and 1
,

for .
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Since we have introduced union, intersection, negation, and the counterpart of the
full and the empty set in a relational setting, it is clear, that we are in a position to
reason and calculate in the same way as we have learned it from set theory, from
predicate logic, or from Boolean algebra. This means that “∪,∩”, when restricted
to some given type, behave

R ∪ S = S ∪ R commutative R ∩ S = S ∩ R
R ∪ (S ∪ T ) = (R ∪ S) ∪ T associative R ∩ (S ∩ T ) = (R ∩ S) ∩ T

R ∪ (R ∩ S) = R absorptive R ∩ (R ∪ S) = R

R∪ (S∩T ) = (R∪S)∩ (R∪T ) distributive R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T )

Concerning negation or complementation, we have that they

R = R are involutory

R ∪ S = R ∩ S obey the De Morgan rule3

R ∪ R = srcR,tgtR are complementary

So far, we have handled union and intersection as binary operations. We may,
however, form unions and intersections in a descriptive way over a set of relations
of the same type. They are then called the supremum or the infimum of a set S of
relations, respectively.

sup S = {(x, y) | ∃R ∈ S : (x, y) ∈ R}
inf S = {(x, y) | ∀R ∈ S : (x, y) ∈ R}

The two definitions differ in just replacing “∃” by “∀”. This turns out to be indeed
a generalization of “∪, ∩” because for S := {R,S} we find out that sup S = R ∪ S
and inf S = R ∩ S. One should recall the effect that

sup ∅ = {(x, y) | False } = inf ∅ = {(x, y) | True } = .

After having defined the operations, we now introduce predicates for relations.

R ⊆ S :⇐⇒ ∀x ∈ X : ∀y ∈ Y :
[
(x, y)∈R→ (x, y)∈S

]
inclusion, containment

The latter definition could also have been expressed point-free as

R ⊆ S :⇐⇒ = R ∪ S ⇐⇒ = R ∩ S ⇐⇒ R = R ∩ S ⇐⇒ S = R ∪ S
resembling the traditional logical equivalence of a→ b and True = ¬a ∨ b.

4.3 Relational Operations Proper

The first operation on relations beyond the Boolean ones is conversion or transpo-
sition; it is characteristic for relations.
3 According to [WK84], p. 295, these were known to medieval logicians and “occur explictly” in

William of Ockham’s (1287–1347) Summa Totius Logicae.
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4.3.1 Definition. Given a relation R : X −→ Y , its converse (or transposed)
RT : Y −→ X is that relation in opposite direction in which for all x, y containment
(y, x) ∈ RT holds precisely when (x, y) ∈ R.

Colloquially, transposition is often expressed in separate wordings.

Bob is taller than Chris ←→ Chris is smaller than Bob

Dick is boss of Erol ←→ Erol is employee of Dick

Fred sells to Gordon ←→ Gordon buys from Fred

Here, as well as in the set function representation of Fig. 4.3.1, conversion is not
easily recognized; even worse, it heavily depends of the language used, English,
German, Japanese4.

R1 =
♠
♥
♦
♣

{Tue,Wed,Fri}
{Mon,Wed,Sat}
{Thu,Fri}
{Mon,Thu,Sat}

RT
1 =

Mon
Tue

Wed
Thu
Fri
Sat

{♥,♣}
{♠}
{♠,♥}
{♦,♣}
{♠,♦}
{♥,♣}

Fig. 4.3.1 Transposition in set function representation

For matrix representations it is more schematical; it means exchanging row and
column type and mirroring the matrix along the diagonal upper left to lower right.

R1 =

M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

♠
♥
♦
♣

(
0 1 1 0 1 0
1 0 1 0 0 1
0 0 0 1 1 0
1 0 0 1 0 1

)
RT

1 =

♠ ♥ ♦ ♣

Mon
Tue

Wed
Thu
Fri
Sat


0 1 0 1
1 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


Fig. 4.3.2 Transposition in matrix representation

Obviously, conversion is involutory, i.e., applied twice results in the original argu-
ment again:

(RT)T = R

It is mathematical standard to check how a newly introduced operation behaves
when applied together with those already available. Such algebraic rules are rather
intuitive. It is immaterial whether one first negates a relation and then transposes
or the other way round:

R
T

= RT

4 The early authors who wrote texts on relations complain repeatedly how difficult it is to sail free
from standard use of the natural languages; see Appendix D.4.
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M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

♠
♥
♦
♣

(
0 1 1 0 1 0
1 0 1 0 0 1
0 0 0 1 1 0
1 0 0 1 0 1

) M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t(

1 0 0 1 0 1
0 1 0 1 1 0
1 1 1 0 0 1
0 1 1 0 1 0

) ♠ ♥ ♦ ♣

Mon
Tue

Wed
Thu
Fri
Sat


0 1 0 1
1 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



♠ ♥ ♦ ♣
1 0 1 0
0 1 1 1
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0


R R RT R

T

= RT

Fig. 4.3.3 Transposition commutes with negation

In a similar way, transposition commutes with union and intersection of relations
and with the relation constants.

(R ∪ S)T = RT ∪ ST (R ∩ S)T = RT ∩ ST

T

X,Y = Y,X
T

X,Y = Y,X
T

X = X

When a relation is contained in another relation, then the same will be true for
their converses.

R ⊆ S ⇐⇒ RT ⊆ ST

The next vital operation to be mentioned is relational composition. Whenever x
and y are in relation R and y and z are in relation S, one says that x and z are in
relation R;S. It is unimportant whether there is just one intermediate y or many.
The point to stress is that there exists5 an intermediate element.

4.3.2 Definition. Let R : X −→ Y and S : Y −→ Z be relations. Their (rela-
tional) composition, or their multiplication, or their product R;S : X −→ Z

is defined as the relation

R;S := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R ∧ (y, z) ∈ S}
Concerning composition, there exist left unit elements and right unit elements, the
so-called identity relations.

The identity relations vary over the sets: X , Y , Z . For composition, a stronger
binding power is assumed, R;S ∩Q = (R;S) ∩Q, than for union or intersection. We
illustrate composition and identity relation with a completely fictitious example in
which indeed three different types are involved6. Assume owners of several cars who
travel and have to rent a car, but not all car rental companies offer every car type.

5 Appendix D.3 shows how difficult it was to arrive at a sufficiently clear concept of quantification
suitable for defining composition of relations.

6 The author apologizes for blaming RentACar to offer no car type at all.
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The following composition of the relation ownsCar with the relation isOfferedBy

results in a relation

mayRentOwnedCarTypeFrom = ownsCar ; isOfferedBy.

B
u
d
g
e
t

S
ix

t
H

e
rt

z
A

la
m

o
E

u
ro

C
a
r

A
v
is

R
e
n
tA

C
a
r

D
o
ll
a
r

Arbuthnot
Perez

Dupont
Botticelli
Schmidt

Larsen


1 0 1 1 1 1 0 1
0 0 1 0 0 0 0 1
0 1 1 0 0 1 0 1
1 0 0 1 1 1 0 0
1 0 0 0 1 0 0 0
0 1 1 1 0 1 0 1

 =

D
o
d
g
e

A
u
d
i

R
e
n
a
u
lt

B
e
n
tl

e
y

B
M

W
S
e
a
t

F
o
rd

Arbuthnot
Perez

Dupont
Botticelli
Schmidt

Larsen


0 1 0 1 0 0 1
0 1 0 0 0 0 0
0 1 1 0 0 1 0
1 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 1 0 1 0 0

;

B
u
d
g
e
t

S
ix

t
H

e
rt

z
A

la
m

o
E

u
ro

C
a
r

A
v
is

R
e
n
tA

C
a
r

D
o
ll
a
r

Dodge
Audi

Renault
Bentley

BMW
Seat
Ford


1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0


Fig. 4.3.4 Car owners chance to rent a car of one of the types he already owns

For the unit relations, we have again the choice to denote in full precision or not

R; Y = R, X ;R = R as opposed to R; = R, ;R = R

see, e.g., Fig. 4.3.5. We will also use notation with an exponent when composing a
(homogeneous) relation with itself, so that R2 = R;R and R0 = .

BridgeSuits =

♠ ♥ ♦ ♣
♠
♥
♦
♣

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
R =

M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

♠
♥
♦
♣

(
0 1 1 0 1 0
1 0 1 0 0 1
0 0 0 1 1 0
1 0 0 1 0 1

) M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

Mon
Tue

Wed
Thu
Fri
Sat


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

= WeekDays

Fig. 4.3.5 Left and right identity relations

Composition is very similar to multiplication of real matrices. Observe that “∃”
stands as the possibly infinite version of “∨” in much the same way as “

∑
” does

for “+”.

(R;S)xz = ∃i ∈ Y : Rxi ∧ Siz (R · S)xz =
∑
i∈Y Rxi · Siz

For the presentation of the whole text of this book it is important to have some
formulae available which in the strict line of development would be presented only
later. We exhibit them here simply as observations.

4.3.3 Proposition. Let triples of relations Q,R, S or A,B,C be given, and assume
that the constructs are well-formed. Then they will always satisfy the

Schröder rule: A;B ⊆ C ⇐⇒ AT;C ⊆ B ⇐⇒ C;BT ⊆ A

and the
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Dedekind rule: R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q)

Some other rules one might have expected follow from these, not least the well-
known (R;S)T = ST;RT for transposing products.

We convince ourselves that the first of the Schröder equivalences is correct consid-
ering pairs of points of the relation — what will later be strictly avoided.

A;B ⊆ C
interpreting pointwise

⇐⇒ ∀x, y : (A;B)xy → Cxy
definition of relation composition

⇐⇒ ∀x, y :
[
∃z : Axz ∧Bzy

]
→ Cxy

a→ b = ¬a ∨ b
⇐⇒ ∀x, y : ∃z : Axz ∧Bzy ∨ Cxy

¬
(
∃x : p(x)

)
= ∀x : ¬p(x)

⇐⇒ ∀x, y :
[
∀z : Axz ∨Bzy

]
∨ Cxy {

∀x : q(x)
}
∨ a = ∀x :

(
q(x) ∨ a

)
⇐⇒ ∀x, y : ∀z : Axz ∨Bzy ∨ Cxy

transposing and rearranging
⇐⇒ ∀y, z : ∀x : A

T

zx ∨ Cxy ∨Bzy
∀x :

(
q(x) ∨ a

)
=
{
∀x : q(x)

}
∨ a

⇐⇒ ∀y, z :
[
∀x : A

T

zx ∨ Cxy
]
∨Bzy

∀x : ¬p(x) = ¬
(
∃x : p(x)

)
⇐⇒ ∀y, z : ∃x : AT

zx ∧ Cxy ∨Bzy
definition of composition

⇐⇒ ∀y, z : (AT;C)zy ∨Bzy
¬a ∨ b = a→ b

⇐⇒ ∀y, z : (AT;C)zy → Bzy
proceeding to point-free form

⇐⇒ AT;C ⊆ B

In a similar way — but presented differently — the Dedekind rule may be traced
back to predicate-logic form:

(R;S ∩ Q)xy
= (R;S)xy ∧Qxy definition of intersection
=
[
∃z : Rxz ∧ Szy

]
∧Qxy definition of composition

= ∃z : Rxz ∧ Szy ∧Qxy associative, distributive
= ∃z : Rxz ∧Qxy ∧ ST

yz ∧ Szy ∧RT
zx ∧Qxy doubling, transposing

→ ∃z : Rxz ∧ (∃u : Qxu ∧ ST
uz) ∧ Szy ∧ (∃v : RT

zv ∧Qvy)
new existential quantifiers
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= ∃z : Rxz ∧ (Q;ST)xz ∧ Szy ∧ (RT;Q)zy definition of composition
= ∃z : (R ∩ Q;ST)xz ∧ (S ∩ RT;Q)zy definition of intersection
=
[
(R ∩ Q;ST); (S ∩ RT;Q)

]
xy

definition of composition

Exercises

4.3.1 Convince yourself that A ⊆ A;AT;A for an arbitrary relation A.

4.3.2 Prove that AT;C ⊆ D implies A;B ∩ C ⊆ A; (B ∩ D)

4.4 Composite Operations

Several other operations are defined building on those mentioned so far. It is often
more comfortable to use such composite operations7 instead of aggregates built
from the original ones. The first is often used just as an abbreviation:

4.4.1 Definition. For R an arbitrary relation, Rd := R
T

is called its dual.

This definition draws its entitlement mainly from the fact that many people dislike
negation; in particular when working in an unrestricted universe of discourse as it
often occurs in a not carefully typed environment. They have consequently looked
for methods to circumvene negation to which the dual serves.

Given a multiplication operation, one will ask, whether there exists the quotient of
one relation with respect to another in the same way as, e.g., 12 · n = 84 results in
n = 7. To cope with this question, the concept of residuals will now be introduced;
we need a left and a right one because composition is not commutative.

Quotients do not always exist as we know from division by 0, or from trying to
invert singular matrices. Nevertheless will we find for relations some constructs
that behave sufficiently similar to quotients.

4.4.2 Definition. Given two possibly heterogeneous relations R,S with coinciding
source, we define their

left residual R\S := RT;S

7 With respect to their broad applicability, we have chosen to present residuals. However,

R
+
, S := R;S, another operation, has often been decided for in classical texts. It offers long lists of

formulae in symmetry to others already obtained for “; ”.
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Given two possibly heterogeneous relations P,Q with coinciding target, we define
their

right residual Q/P := Q;P T

The left residual R\S is the greatest of all relations X with R;X ⊆ S — frequently
satisfying R;(R\S) = S in addition. This may be proved applying the Schröder rule

R;X ⊆ S ⇐⇒ RT;S ⊆ X ⇐⇒ X ⊆ RT;S = R\S
The symbol “\” has been chosen to symbolize that R is divided from S on the left
side. As one will easily see in Fig. 4.4.1, the residual R\S always sets into relation
a column of R precisely to those columns of S containing it. The column of the
Queen in R is, e.g., contained in the columns of Jan, Feb, Dec. The columns 6,9,10,
and A of R are empty, and thus contained in every column of S.
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Fig. 4.4.1 Left residuals show how columns of the relation R below the

fraction backslash are contained in columns of the relation S above

We derive the relational form indicated in Fig. 4.4.1 from the predicate logic version,
starting from column i of R being contained in column k of S:

∀n :
[
(n, i) ∈ R → (n, k) ∈ S

]
a→ b = ¬a ∨ b, transposition

⇐⇒ ∀n :
[
(i, n)∈/ RT ∨ (n, k) ∈ S

]
negation over a quantifier

⇐⇒ ¬
{
∃n : [(i, n) ∈ RT ∧ (n, k)∈/ S]

}
definition of composition

⇐⇒ RT;Si,k
definition of left residual

⇐⇒ (R\S)i,k

Correspondingly, we divide P fromQ on the right in the right residual which denotes
the greatest of all solutions Y satisfying

Y ;P ⊆ Q ⇐⇒ Q;P T ⊆ Y ⇐⇒ Y ⊆ Q;P T = Q/P
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As one may see in Fig. 4.4.2, the residual Q/P sets into relation a row of Q to
those rows of P it contains. The row of the King in Q, e.g., contains in the rows
belonging to Mar, Sep, Nov. The row of Mar is empty, and thus contained in every
row of Q, leading to a column with all 1 ’s in Q/P .
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= Q/P

Fig. 4.4.2 The right residual describes how rows of the relation Q above the
fraction slash contain rows of the second relation P below

We will use the following identities that may be seen as a first test as to the quotient
properties.

4.4.3 Proposition. The following identities hold for arbitrary relations R,X

R;

(
R\(R;X)

)
= R;X

(
(X;R)/R

)
;R = X;R

These results are really intuitive: Given a productR;X — observe that the numerator
has a rather specific structure — we may divide R from the left and re-multiply it
obtaining the numerator again we have been starting from. Instead of a proof, we
recall that this means in fact

R;RT;R;X = R;X X;R;RT;R = X;R

and subsumes to a very general principle that can be explained no earlier than in
Sect. 8.5.

Once one has the possibility to compare, in the way just described, whether a col-
umn is contained in another column, one will also try to look for equality of columns,
or rows, respectively. The following concept of a symmetric quotient applies a left
residual to A as well as to A and intersects the results. This leads to the following
point-free formulation:
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4.4.4 Definition. Given two possibly heterogeneous relations A,B with coinciding
source, we define their symmetric quotient8 as

syq (A,B) := AT;B ∩ AT
;B

The construct syq 9 thus obtained has very successfully been used in various appli-
cation fields.

The symmetric quotient can be illustrated as follows: For the two relations R :
X −→ Y and S : X −→ Z, it relates an element y ∈ Y to an element z ∈ Z

precisely when y and z have the same set of “inverse images” with respect to R or
S respectively. Thus

(y, z) ∈ syq (R,S) ⇐⇒ ∀x : [(x, y) ∈ R ↔ (x, z) ∈ S].

In terms of matrices, the above condition for y and z means that the corresponding
columns of A and B are equal; therefore, the symmetric quotient often serves the
purpose of set comprehension and set comparison. Finding equal columns i, k of
relations R,S is here defined in predicate logic and then transferred to relational
form. We consider columns i of R and k of S over all rows n and formulate that
column i equals column k:

∀n :
[
(n, i) ∈ R↔ (n, k) ∈ S

]
a↔ b =

[
(a→ b) ∧ (b→ a)

]
⇐⇒ ∀n :

[
(n, i) ∈ R→ (n, k) ∈ S

]
∧
[
(n, k) ∈ S → (n, i) ∈ R

]
∀n :

(
a(n) ∧ b(n)

)
=
{
∀n : a(n)

}
∧
{
∀n : b(n)

}
⇐⇒

{
∀n : (n, i) ∈ R→ (n, k) ∈ S

}
∧
{
∀n : (n, k) ∈ S → (n, i) ∈ R

}
a→ b = ¬a ∨ b

⇐⇒
{
∀n : (n, i)∈/ R ∨ (n, k) ∈ S

}
∧
{
∀n : (n, i) ∈ R ∨ (n, k)∈/ S

}
∀x : ¬p(x) = ∃x : p(x)

⇐⇒ ∃n : (n, i) ∈ R ∧ (n, k) /∈ S ∧ ∃n : (n, i) /∈ R ∧ (n, k) ∈ S
transposing

⇐⇒ ∃n : (i, n) ∈ RT ∧ (n, k) /∈ S ∧ ∃n : (i, n) /∈ RT ∧ (n, k) ∈ S
definition of composition

⇐⇒ (i, k) ∈ RT;S ∧ (i, k) ∈ RT
;S

8 Observe that the symmetric quotient is not a symmetric relation, nor need it even be homogeneous.
The name resembles that it is defined in some symmetric way.

9 The heterogeneous construct syq seems to have first been published in [BSZ86]. It dates back,
however, at least until to the report [SS85] of March 1985. Earliest handwritten concepts have been
found from November 13, 1982. They emerged along the cooperation of the present author with
Hans Zierer aiming at his diploma thesis on relational semantics, finalized May 1983. Many pages of
proofs dated July to November 1982 work with the corresponding term, but do not yet employ the
algebraic properties of a symmetric quotient, that had first been named syD in a paper of November
3, 1982. Algebraically handled forerunners of syq had been the constructs of a univalent part and a
multivalent part of a relation in July 1981, [SS81]. They are described in detail in Sect. 4.2 of
[SS89, SS93]. Even earlier was the noyau of Jacques Riguet [Rig48], a special homogeneous and
unary case of the symmetric quotient that already anticipated many of its properties.
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intersecting relations
⇐⇒ (i, k) ∈ RT;S ∩ RT

;S

definition of symmetric quotient
⇐⇒ (i, k) ∈ syq (R,S)

Obviously, syq (A,B) = A\B ∩ A\B. The symmetric quotient leads to many for-
mulae resembling cancellation. These will be presented in Sect. 8.5.
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0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 4.4.3 The symmetric quotient shows which columns of the left

are equal to columns of the right relation of syq

A closer examination of syq (A,B) shows that its matrix can be divided into con-
stant boxes after suitably rearranging its rows and columns. One has just to arrange
equal columns side by side. Fig. 4.4.4 shows with a different example how this is
meant. We shall later formulate this property algebraically and discuss some con-
sequences of it.
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= syq (R,S)

Fig. 4.4.4 Symmetric quotients may always be rearranged to block-diagonal shape

Fig. 4.4.5 shows the details of the intersecting parts of a symmetric quotient.



48 Algebraic Operations on Relations

D
o
d
g
e

A
u
d
i

R
e
n
a
u
lt

B
e
n
tl

e
y

B
M

W
S
e
a
t

F
o
rd

Arbuthnot
Perez

Dupont
Botticelli
Schmidt

Larsen


0 1 0 1 0 0 1
0 1 0 0 0 0 0
0 1 1 0 0 1 0
1 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 1 0 1 0 0



U
S

F
re

n
ch

G
e
rm

a
n

B
ri

ti
sh

S
p
a
n
is

h

Arbuthnot
Perez

Dupont
Botticelli
Schmidt

Larsen


1 0 1 1 0
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
0 0 1 1 0
0 1 1 0 0



U
S

F
re

n
ch

G
e
rm

a
n

B
ri

ti
sh

S
p
a
n
is

h

Dodge
Audi

Renault
Bentley

BMW
Seat
Ford


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


A B syq (A,B)

A
T

;B =

U
S

F
re

n
ch

G
e
rm

a
n

B
ri

ti
sh

S
p
a
n
is

h

Dodge
Audi

Renault
Bentley

BMW
Seat
Ford


1 0 0 0 1
0 0 1 0 0
0 1 1 0 0
0 0 1 1 0
0 1 1 0 0
0 1 1 0 1
1 0 0 0 0

 AT;B =

U
S

F
re

n
ch

G
e
rm

a
n

B
ri

ti
sh

S
p
a
n
is

h

Dodge
Audi

Renault
Bentley

BMW
Seat
Ford


0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


Fig. 4.4.5 The intersecting parts of a symmetric quotient

More about the algebra underlying this possibility to rearrange will be shown in
Sect. 10.4.

Exercises

4.4.1 Prove the rules relating residuals with their transposed versions:

(Q/P )T = P T\QT (R/S)T = ST\RT



5

Order and Function: The Standard View

Many relations enjoy specific properties. The most prominent ones are related with
orderings and with functions. That at most one or precisely one value is assigned
to an argument is characteristic for functions or mappings, respectively. Mankind
has also developed a multitude of concepts to reason about something that is better
than or is more attractive than something else or similar to something else. Con-
cepts related with functions or with orderings lead to a huge pile of formulae and
interdependencies. In this chapter, we recall the classics; first in the heterogeneous
setting of functions and mappings and afterwards in a homogeneous setting of or-
derings and equivalences. At the end of this chapter, we will develop first methods
of structural comparison. Although needed in various situations, their names of
homomorphism, simulation, and congruence often seem to frighten people inducing
to them the idea that all this may be too theoretical — which it is not.

5.1 Functions

A notational distinction between a (partially defined) function and a mapping (i.e.,
a totally defined function) is regrettably not commonly being made. Many people
use both words as synonyms and usually mean a totally defined function. Tradi-
tionally, we speak of functions

f(x) = 1
x−1 or g(y) =

√
y − 3

and then separately discuss their somehow peculiar behaviour for x = 1 or that there
exist no, one, or two results for y < 3, y = 3, and y > 3 — if not by convention
conceiving it to be the positive branch. Relations typically assign arbitrary sets of
results. We introduce a definition to concentrate on the more general case.

5.1.1 Definition. Let a relation R : V −→W be given. We say that the relation

R is univalent :⇐⇒ ∀x ∈ V : ∀y, z ∈W : [ (x, y) ∈ R ∧ (x, z) ∈ R ] → y = z

⇐⇒ RT;R ⊆
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Univalent relations are often called (partially defined) functions1. A relation R is
injective if its converse is univalent.

A univalent relation R associates to every x ∈ V at most one y ∈ W . In slightly
more formal terms: Assuming that y as well as z should be attached as values
to some x, it follows that y = z. This is a rather long formulation, which may
be shortened to the point-free version below, i.e., with quantifiers and individual
variables hidden behind the algebraic formulation. We give a sketch of how the
first version of the definition above can successively be made point-free — and thus
be transformed into a TituRel-predicate. These transition steps shall only give
intuition to the reader how the second shorthand version2 is invented; it should be
stressed that they do not constitute some sort of a “calculus” we aim at.

∀y, z ∈W : ∀x ∈ V : [(x, y) ∈ R ∧ (x, z) ∈ R]→ y = z

a→ b = ¬a ∨ b
⇐⇒ ∀y, z ∈W : ∀x ∈ V : (x, y) ∈ R ∧ (x, z) ∈ R ∨ y = z

∀x :
(
p(x) ∨ c

)
=
{
∀x : p(x)

}
∨ c

⇐⇒ ∀y, z ∈W :
{
∀x ∈ V : (x, y) ∈ R ∧ (x, z) ∈ R

}
∨ y = z

∀x : ¬p(x) = ¬
[
∃x : p(x)

]
⇐⇒ ∀y, z ∈W : ¬

{
∃x ∈ V : (x, y) ∈ R ∧ (x, z) ∈ R

}
∨ y = z

definition of transposition
⇐⇒ ∀y, z ∈W : ¬

{
∃x ∈ V : (y, x) ∈ RT ∧ (x, z) ∈ R

}
∨ y = z

definition of composition
⇐⇒ ∀y, z ∈W : ¬

{
(y, z) ∈ RT;R

}
∨ y = z

¬a ∨ b = a→ b and definition of identity
⇐⇒ ∀y, z ∈W : (y, z) ∈ RT;R → (y, z) ∈

transition to point-free version
⇐⇒ RT;R ⊆

transferred to TituRel

⇐⇒ (Convs r) :***: r :<==: Ident (tgt r)

One may consider the univalency condition from the point of view of triangles in
Fig. 5.1.1: When going back from an image point to one of its arguments and
proceeding forward to the image side again, one will always arrive at the point one
had been starting from — if the relation is assumed to be univalent. The thin bent
1 The property of being univalent or a (partially defined) function is met very frequently and most

often radically simplifies the setting. Postulating a (totally defined) mapping brings additional
power in reasoning, but not too much; therefore functions deserve to be studied separately.

2 From [DH81], we cite a remark of Alfred North Whitehead: . . . by relieving the brain of all
unnecessary work, a good notation sets it free to concentrate on more advanced problems, and,
in effect, increases the mental power . . . . The book then continues: Any statement in formal logic
such as . . . can, in principle, be expanded back into primitive atomic form. In practise, this
cannot be carried out, because the symbol strings quickly become so long that errors in reading
and processing become unavoidable.
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arrow with a double-arrow pointer will help to indicate which direction of reasoning
is intended.

R

R
I I 

Fig. 5.1.1 Triangle to define the essence of being univalent

When considering a univalent relation R as a function fR, it is typically denoted
in prefix notation:

fR(x) = y resp. fR(x) = undefined

instead of expressing it as

(x, y) ∈ R resp. ∀y ∈W : (x, y) /∈ R.

0 1 2 3 4

0
1 ×
2 ×
3 ×
4 ×

0
1
2
3
4

0 1 2 3 40 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 0 undefined
1 0
2 1
3 2
4 3

Fig. 5.1.2 Table, matrix and table of values for a (partially defined) function

Already from school it is known that composing two mappings results in a map-
ping again. Now we learn, that two functions need not be defined everywhere;
composition of (partially defined) functions will always result in (partially defined)
functions.

5.1.2 Proposition (Univalency).

i) Q;R is univalent, whenever Q and R are.
ii) R univalent ⇐⇒ R; ⊆ R
iii) R ⊆ Q, Q univalent, R; ⊇ Q; =⇒ R = Q

Proof : See B.1.1

To interpret (ii), we simply read the formula with the help of Fig. 5.1.3: Whenever
we follow some transition offered by a univalent relation R, and then proceed to
a different element on the image side, we can be sure that this element cannot be
reached directly via R from our starting point. For an intuitive visualization the
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so-called dashed arrow convention has been used: A dashed arrow is conceived
to be a forbidden arrow; it belongs, thus, to the negated relation.

R

R

Fig. 5.1.3 Triangle to characterize the essence of being univalent with Prop. 5.1.2.ii

Also (iii) admits such an explanation. If a relation R is contained in a (partially
defined) function Q, but is defined for at least as many arguments, then the two
will coincide. We recall that relations R : X −→ Y are here studied with types,
i.e., with source X = srcR and target Y = tgtR. The domain R; Y ⊆ X of a
relation must be distinguished from its source, which is not self-evident for many
people studying relations in a homogeneous environment.

A

B

Q

Fig. 5.1.4 Inverse image of an intersection for a univalent relation

We now study images and inverse images of intersections with respect to univalent
relations. For a (partially defined) function, i.e., for a univalent relation, the inverse
image of an intersection of images equals the intersection of the inverse images
as in Fig. 5.1.4. This is what the following proposition expresses. Precisely this
distributivity3 simplifies many sequences of reasoning.

5.1.3 Proposition. Q univalent =⇒ Q; (A ∩ B) = Q;A ∩ Q;B

Proof : See B.1.2
3 To which extent such point-free formulae are unknown even to specialists may be estimated from

the fact that they were simply wrong as stated in the broadly known formula collection
Bronstein-Semendjajew [BS79] — at least in the author’s 24th edition of 1979.
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Prop. 5.1.3 is a rather clear statement while Fig. 5.1.4, when considered point-wise,
is confusing.

A set of persons among which women may have given birth to other persons will
give further intuition. If every woman in the group considered has had at most one
child, the following is clear:

“women with blonde son” = “women with a son” ∩ “women with blonde child”

In case there exist women with more than one child, it is possible that “⊆” but
“ =/ ” holds instead. Indeed, as there may exist a woman with a dark-haired son and
in addition a blonde daughter.

We now give this example a slightly different flavour and consider a set of persons
among which may be pregnant women. The set

“Gives birth to a person that is at the same time a son and a daughter”

will be empty — hermaphrodites assumed to be excluded. In contrast, the set of
women obtained by intersection

“Gives birth to a son” ∩ “Gives birth to a daughter”

need not be empty in case of certain twin pregnancies; i.e., if Q is not univalent.

Prop. 5.1.3 was about inverse images of an intersection. Images of an intersection
are a bit more difficult to handle. Only when one of the intersecting constituents
is “cylindric over its image”, we find a nice formula to relate both sides. Then the
image of the intersection equals the image of the other constituent intersected with
the basis of the cylinder.

5.1.4 Proposition. Q univalent =⇒ A ∩ B;Q = (A;QT ∩ B);Q

Proof : See B.1.3

With Fig. 5.1.5, a first small example is provided before we present the more ex-
tended Example 5.1.5.

5.1.5 Example. To illustrate the idea behind Prop. 5.1.4, we provide an easier
to grasp example in Fig. 5.1.6. Let A,B resemble sets, however, in different rep-
resentations. Let Q denote the relation assigning to persons their nationalities —
assuming that everybody has at most one. Then assume A as a column-constant
relation derived from the subset of European nations and B as a diagonal-shaped
relation derived from the subset of women among the persons considered. So A;QT

describes persons with European nationality and B;Q are the nations assigned to the
women in the set of persons considered. The result will now give the same relation
for the following two operations:
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Fig. 5.1.5 Image of a “cylindric” intersection

— “Determine European persons that are female and relate them to their na-
tionalities”

— “Determine the nationalities for women and extract those that are European”
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Fig. 5.1.6 Prop. 5.1.4 illustrated with nationalities of European women

Assuming in a purely theoretical way Cathérine Deneuve to have French and also
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US citizenship, thus, making Q a non-univalent relation, the first set would be
bigger than the second.

It is obviously difficult to make the intention of Prop. 5.1.4 clear in spoken language.
In a sense, the algebraic form is the only way to make such things precise — with
the additional advantage that they then may be formally manipulated.

Now it is studied in which special way a univalent relation behaves when composed
in combination with negation. In Prop. 5.1.6, we compose a univalent relation Q

from the left-hand side with the complement of A. By the univalent relation Q

elements get assigned at most one image; we consider the case of an existing and
a non-existing image separately. If an element of the source has no image, the row
of the composed matrix is empty, and when complementing, this results in a row
full of 1 ’s. If there should exist an image, the row in the product is precisely the
row of the second factor determined by this image; the result stays the same if it
is complemented either before or after composition. Already now, we expect this
rule to simplify later when restricting to totally defined functions, i.e., mappings;
see Prop. 5.2.6.
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Fig. 5.1.7 Non-univalent relation vs. univalent relation Q together with negation
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5.1.6 Proposition.

i) Q univalent =⇒ Q;A = Q; ∩ Q;A

ii) Q univalent =⇒ Q;A = Q;A ∪ Q;

Proof : See B.1.4

Assume a set of persons owning at most one car each — described by a univalent
relation Q. Now consider those who own a car that is not an Audi resembling Q;A.
They certainly own a car, Q; , and it is not the case that they own an Audi as
expressed by Q;A. Should there, as in Fig. 5.1.7, exist persons owning more than
one car, the equation may not hold: A person may own an Audi as well as a BMW;
in this case, Q;A may be true although Q;A is not.

When we consider the univalent relation Q, we easily see that one may toggle
between Q;A and Q;A by simply adding Q; or intersecting with Q; .

There is one further concept that will often show up, namely matchings.

5.1.7 Definition. A relation λ will be called a matching if it is at the same time
univalent and injective.

Later, matchings are mainly presented as Q-matchings when a (possibly) hetero-
geneous relation Q of, e.g., sympathy is given and one looks for a matching λ ⊆ Q

contained in the given relation; this would then be a possible marriage. A local
match-maker would obviously be interested in arranging as many marriages as pos-
sible in the respective village. The number of matched pairs is, however, in no way
part of the definition of a matching. So the empty relation contained in Q is always
a matching — a rather uninteresting one. Fig. 5.1.8 shows an example of a relation
Q, a matching λ ⊆ Q, and this relation Q arranged so as to visualize the one-to-one
situation in an obvious form as a (often only partial) diagonal beginning at the
upper left.
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Fig. 5.1.8 Sympathy Q that lead to marriages λ; in original and in rearranged form



5.2 Mappings and Points 57

5.2 Mappings and Points

From now on, we do not accept any longer that the functions be just partially de-
fined; we demand instead that they be totally defined. Then some more specialized
formulae hold.

5.2.1 Definition. Let R be a possibly heterogeneous relation4.

i) R total :⇐⇒ ∀x ∈ X, ∃y ∈ Y : (x, y) ∈ R ⇐⇒ ⊆ R;

ii) R surjective :⇐⇒ RT total
iii) A mapping is a total and univalent relation.
iv) A relation is bijective if it is a surjective and injective relation.

Total relations and mappings may also be characterized by some other properties;
the proofs are left to the reader, who may also consult Sect. 4.2 of [SS89, SS93].

5.2.2 Proposition. Let a possibly heterogeneous relation R be given.

i) R total ⇐⇒ = R; ⇐⇒ ⊆ R;RT ⇐⇒ R ⊆ R;

⇐⇒ For all relations S, from S;R = follows S =
ii) R surjective ⇐⇒ = ;R ⇐⇒ ⊆ RT;R ⇐⇒ R ⊆ ;R

⇐⇒ For all relations S, from R;S = follows S =
iii) R mapping ⇐⇒ R; = R

Another result is immediate: Composition of two mappings, thus, results in a map-
ping again as is now stated formally.

5.2.3 Proposition. Q;R is a mapping, provided Q and R are mappings.

The concepts of surjectivity and injectivity now being available, we may proceed to
define with algebraical methods what intuitively corresponds to an element. This
is why we have chosen to denote it with a lower-case letter.

5.2.4 Definition. Let a relation x : V −→W be given. We call
4 There is a point that should be mentioned here, although it is of merely theoretical interest. While

in the predicate-logic form of (i) the target Y is explicitly mentioned, the question arises as to
whether this should or must also be the case in the relation-algebraic version. In more detail:
Should this read X,Y = R; Y,Y , or ∀Z : X,Z = R; Y,Z? While this seems to mean the same, it
does not. There exist relation algebras in which not necessarily A,B ; B,C = A,C !
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i) v a vector :⇐⇒ v is row-constant, i.e., v = v;

ii) x a point :⇐⇒ x is row-constant, injective, and surjective

One will find out that a point is something like a transposed mapping of the one-
element set 1l into V . Once one has decided to reason point-free, working with
elements or points becomes more intricate than one would expect. Observe that
the definition given here is slightly more restricted compared to the one chosen
in our general reference texts [SS89, SS93]5. The traditional definition of a point
given there reads as follows: x is a point if it is row-constant (x = x; ), injective
(x;xT ⊆ ), and non-zero ( =/ x).6
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Fig. 5.2.1 A vector and two row-constant relations that may be

considered the same point

On the face if it, the following is a trivial result. Its proof contains, however, more
mathematical delicacy than one would expect at first sight. One is required to
employ the equivalence of the two characterizations of totality of f , namely ⊆ f;fT

and ⊆ f ; .

5.2.5 Proposition (Shunting). Let R,S be relations for which the following con-
structs in connection with x, y and f exist.

i) If f is a mapping, R ⊆ S;fT ⇐⇒ R;f ⊆ S

ii) If x is a point, R ⊆ S;x ⇐⇒ R;xT ⊆ S

iii) If x, y are points, y ⊆ S;x ⇐⇒ x ⊆ ST;y

Proof : See B.1.5
5 The new form does not make any difference for practical applications we aim at. It makes a

difference for certain models of relation algebra. There exist relation algebras that follow all the
rules explained here, but which are non-standard. This means not least that one can prove that
they contain elements that cannot be conceived as a relation as we know it — much in the same
way as there exist non-Euclidian geometries.

6 The form chosen here, avoids what is known as the Tarski rule.
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The interpretation of this result (which is often referred to as “shunting” the map-
ping f) using Fig. 5.2.2 runs as follows. The relations given are R, f, S indicating the
cars owned, the country where the respective car is produced, and the preference of
the owner as to the country his car should come from. We see that everybody has
bought cars following his preference, R;f ⊆ S. Should an owner intend to buy yet
another car, he might wish to consult S;fT which indicates the car types restricted
by his preferences.
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Fig. 5.2.2 Rolling a mapping to the other side of a containment

Anticipating the following proposition, we mention in passing that S ; fT = S;fT

for a mapping f . The slightly more complicated construct would allow to handle
also the case of cars not stemming from just one country, i.e., f not necessarily a
mapping.

We add one more fact on mappings specializing Prop. 5.1.6: For a mapping, the
inverse image of the complement is equal to the complement of the inverse image.
In more primitive words: A mapping may slip below a negation bar when multiplied
from the left — and a transposed mapping when multiplied from the right.

5.2.6 Proposition. Let A,R be possibly heterogeneous relations.

i) f mapping =⇒ f ;A = f ;A

ii) x is a point =⇒ R;x = R;x

In view of Prop. 5.1.6, this result is so evident, that it does not need a written
proof. We visualize this result with the two situations of Fig. 5.2.3. On the left, a
mapping f is shown while on the right the fat arrows show that Q is not a mapping
since it is not univalent.
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f A; f A;=

A

A

Q

QA;

QA;
QA;

Fig. 5.2.3 Inverse of the complement equals complement of the inverse for a mapping

With these concepts we will now handle a classic riddle (see [Cop48]). One man
looks at a second man and says:

“Brothers and sisters I have none, but that man’s father is my father’s son”

We need, of course, relations such as child-of, son-of, or here, f meaning has-as-
father , that follow the intended scheme, meaning that they are irreflexive, e.g.
They are assumed to hold on a set of individuals, from which a, b are two different
elements. Brothers or sisters of a person we get with f ; fT. Since a has neither
brothers nor sisters we have f ;fT ∩ a; ⊆ , meaning that there is just one when
looking for those with the same father as a. The question is as to the relationship
between a and b specified as f ; fT ; fT ∩ a; . Starting from b, we have to proceed
with f to his father and then again with f to a father (because he is qualified as a
son) and finally with fT to a because it is supposed to be a’s father. This product
is, however, transposed in order to go from a to b.

f ;fT;fT ∩ a; ⊆ (f ;fT ∩ a; ;f); (fT ∩ f ;fT;a; ) ⊆ ;fT = fT

Applying the Dedekind rule, we get that the other person is the son of a.

Exercises

5.2.1 Prove that a relation R is a mapping precisely when there exists a relation
S satisfying S;R ⊆ and ⊆ R;S.

5.2.2 Prove that a finite homogeneous relation R satisfying R;S = for some S
is necessarily a permutation with RT = S. Provide an example that finiteness is
necessary.
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5.3 Order and Strictorder

Until the 1930s, orderings have mostly been studied along the linearly ordered
real axis IR, but soon diverse other concepts such as weakorder, semiorder, inter-
valorder, etc. have also been handled. Here the basic properties of orderings and
equivalences are recalled in predicate form as well as in a point-free manner. The
transition between the two levels is more or less immediate. We have also included
several variants of the algebraic forms of the definitions, which are so obviously
equivalent that they do not justify mentioning them in a separate proposition.
Later, in Chapt. 12, also unifying but more advanced concepts will be presented.

Reflexivity

Identity on a set is a homogeneous relation; source and target are of the same
type. For homogeneous relations some properties in connection with the identity
are standard.

5.3.1 Definition (Reflexivity properties). Given an arbitrary homogeneous rela-
tion R : V −→ V , we call

R reflexive :⇐⇒ ∀x ∈ V : (x, x) ∈ R :⇐⇒ ⊆ R
R irreflexive7 :⇐⇒ ∀x ∈ V : (x, x) ∈/ R :⇐⇒ R ⊆

It should be immediately clear in which way the identity or diagonal relation models
that all the pairs (x, x) are in relation R — or are not. A relation on the 1-set is
either reflexive or irreflexive, and there is no third possibility as in the example of
Fig. 5.3.1. (

1 1 1 1
0 1 0 0
1 1 1 1
0 1 0 1

) (
1 0 0 1
0 0 0 0
1 0 0 1
0 0 0 1

) (
0 0 0 1
1 0 1 1
1 1 0 1
0 0 0 0

)
Fig. 5.3.1 Relations that are reflexive, neither/nor, and irreflexive

Let R be an arbitrary relation. Then the residual R/R; is trivially reflexive. Because
R/R; = R;RT, this means after negation that R;RT ⊆ ; this, however, follows directly
from Schröder’s equivalences since ;R ⊆ R. We have (r1, r2) ∈ R/R precisely when
row r1 is equal to or contains row r2. Similarly, (c1, c2) ∈ R\R if and only if column
c1 is equal to or is contained in column c2. The residuals thus clearly contain the
full diagonal.

7 In French sometimes antiréflexif; see [Mon78]
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1 2 3 4 5

1
2
3
4
5

1 1 1 1 1
0 1 0 0 0
0 1 1 0 0
0 1 0 1 1
0 1 0 1 1



1 2 3 4 5

1
2
3
4
5

1 0 0 1 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 1 0



1 2 3 4 5

1
2
3
4
5

1 0 0 0 0
1 1 1 1 1
1 1 1 1 1
0 0 0 1 0
1 1 1 1 1


Fig. 5.3.2 Example relations R/R, R, R\R

One will also find out that (R/R);R ⊆ R and R; (R\R) ⊆ R. The relation R/R is
the greatest among the relations X with X;R ⊆ R. Also R\R is the greatest among
the relations Y with R;Y ⊆ R. So indeed, some sort of calculations with fractions
is possible when interpreting / and \ as division symbols and compare with 2

3 .
Relations do not multiply commutatively, so that we have to indicate on which side
division has taken place. One will find similarity of notation with 2

3 × 3 = 2 and
3× 2

3 = 2.

It is worth noting that by simultaneous permutation of rows and columns a block-
staircase form may be obtained for the left and the right residual. The original R
underwent different permutations for rows and columns. We will later find out that
this is not just incidental.

1 3 4 5 2

1
3
4
5
2

1 1 1 1 1
0 1 0 0 1
0 0 1 1 1
0 0 1 1 1
0 0 0 0 1



2 3 5 1 4

1
3
4
5
2

0 0 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0


2 3 5 1 4

2
3
5
1
4

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 1 0
0 0 0 0 1


Fig. 5.3.3 Permuted forms of R/R, R, R\R

The following property asserts whether a relation together with its converse fills the
whole matrix. Also this property requires homogeneous relations since we demand
that R and RT be of the same type, or “may be united”.

5.3.2 Definition (Connexity properties). Let a homogeneous relation R be given.

R semi-connex :⇐⇒ ∀x, y : x=/ y →
[
(x, y) ∈ R ∨ (y, x) ∈ R

]
⇐⇒ ⊆ R ∪ RT

R connex :⇐⇒ ∀x, y : (x, y)∈/ R→ (y, x) ∈ R
⇐⇒ ⊆ R ∪ RT

In the literature, often semi-connex will be found denoted as complete and connex8

as strongly complete. A relation R is connex precisely when R ⊆ RT.

8 In French, one may also find relation totale or in view of tournaments: a match; see [Mon78].
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The formal definition does not say anything about the diagonal of a semi-connex
relation; nor does it require just one or both of (x, y) and (y, x) to be contained in
the relation R. (

0 0 0 1
1 1 1 1
1 0 0 1
0 1 0 0

) (
1 1 1 1
0 1 0 0
1 1 1 1
0 1 0 1

)
Fig. 5.3.4 Semi-connex and connex relation

Symmetry

Relations are also traditionally classified according to their symmetry properties.
Again, we have from the definition that the relation and its converse be of the same
type, which makes them homogeneous relations.

5.3.3 Definition (Symmetry properties). Given again a homogeneous relation R :
V −→ V , we call

R symmetric :⇐⇒ ∀x, y : (x, y) ∈ R → (y, x) ∈ R
⇐⇒ RT ⊆ R ⇐⇒ RT = R

R asymmetric :⇐⇒ ∀x, y : (x, y) ∈ R → (y, x) /∈ R
⇐⇒ R ∩ RT ⊆ ⇐⇒ RT ⊆ R

R antisymmetric :⇐⇒ ∀x, y : x=/ y → { (x, y) /∈ R ∨ (y, x) /∈ R }
⇐⇒ R ∩ RT ⊆ ⇐⇒ RT ⊆ R ∪

A first minor consideration relates reflexivity with symmetry as follows: An asym-
metric relation R is necessarily irreflexive. This results easily from the predicate
logic version of the definition of asymmetry when specializing the two variables to
x = y. Then ∀x : (x, x) ∈ R → (x, x)∈/ R which implies that (x, x) ∈ R cannot be
satisfied for any x. (

0 1 1 0
0 0 0 0
0 1 0 1
0 1 0 0

) (
0 0 0 1
1 1 1 0
0 0 0 0
0 1 0 1

)
Fig. 5.3.5 An asymmetric and an antisymmetric relation

The following observation will often be used, not least when working with orderings
and in preference modeling.

5.3.4 Proposition. Every homogeneous relation R may be decomposed into an
asymmetric part A := R ∩ RT

and a symmetric part S := R ∩ RT, such that
R = A ∪ S and = A ∩ S.



64 Order and Function: The Standard View

Proof : Obviously, R = R∩ = R∩ (R
T∪RT) = (R∩RT

)∪ (R∩RT) =: A∪S

Symmetry concepts enable us to define

R tournament :⇐⇒ R is asymmetric and semi-connex ⇐⇒ R∪RT =

It is indeed typical for sports tournaments that a team cannot play against itself.
Just one round is assumed to take place and no draw result is assumed to be
possible. Then a tournament describes a possible outcome of win or loss.

Transitivity

Transitivity is used in many application areas; it is central for defining an ordering
and an equivalence. We recall the definition more formally and give its algebraic
form.

5.3.5 Definition. Let R be a homogeneous relation. We call

R transitive :⇐⇒ ∀x, y, z ∈ V :
{

(x, y) ∈ R ∧ (y, z) ∈ R
}
→ (x, z) ∈ R

⇐⇒ R ;R ⊆ R

Intuitively, a relation R is transitive, if whenever x is related to y and y is related
to z, then also x will be related to z.

R

R
R

Fig. 5.3.6 Triangular situation for transitivity

We observe the triangle structure with Fig. 5.3.6 and show how the two rather dif-
ferent looking variants of the definition are formally related. On the right we roughly
indicate the quite well-known rules we have applied for the respective transition.

∀x, y, z ∈ V :
[
(x, y) ∈ R ∧ (y, z) ∈ R

]
→ (x, z) ∈ R
a→ b = ¬a ∨ b, arranging quantification

⇐⇒ ∀x, z ∈ V : ∀y ∈ V :
{

(x, y) ∈ R ∧ (y, z) ∈ R ∨ (x, z) ∈ R
}

∀v :
[
p(v) ∨ c

]
=
[
∀v : p(v)

]
∨ c

⇐⇒ ∀x, z ∈ V :
{
∀y ∈ V : (x, y) ∈ R ∧ (y, z) ∈ R

}
∨ (x, z) ∈ R
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∀v : ¬p(v) = ¬
[
∃v : p(v)

]
⇐⇒ ∀x, z ∈ V : ¬

{
∃y ∈ V : (x, y) ∈ R ∧ (y, z) ∈ R

}
∨ (x, z) ∈ R
definition of composition

⇐⇒ ∀x, z ∈ V : (x, z) ∈ R;R ∨ (x, z) ∈ R
¬a ∨ b = a→ b

⇐⇒ ∀x, z ∈ V : (x, z) ∈ R;R → (x, z) ∈ R
point-free formulation

⇐⇒ R;R ⊆ R

We remember that an asymmetric relation turned out to be irreflexive. Now we
obtain as a first easy exercise a result in opposite direction:

5.3.6 Proposition. A transitive relation is irreflexive precisely when it is asym-
metric.

This proposition will be recalled with proof in a more general context as Prop. 12.2.2.
It is also interesting to study transitivity in combination with reflexivity, for which
purpose we provide the following often used definition:

5.3.7 Definition. Let a homogeneous relation R be given. We call

R a preorder :⇐⇒ R reflexive and transitive

⇐⇒ ⊆ R, R2 ⊆ R ⇐⇒ ⊆ R, R2 = R

A preorder is often also called a partial preorder or a quasiorder.

Another property of an arbitrary relation R is that its residuals R/R as well as
R\R are trivially transitive. This may in the first case be shown remembering

(R/R);R ⊆ R
which immediately implies

(R/R); (R/R);R ⊆ (R/R);R ⊆ R
so that (R/R);(R/R) is one of the relations that composed with R are contained in
R. Therefore, it is contained in the greatest such relation, namely (R/R).

Since (r1, r2) ∈ R/R indicates that row r1 is equal to or contains row r2, transitivity
is not surprising at all. What needs to be stressed is that such properties may be
dealt with in algebraic precision.
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Orderings

Using these elementary constituents, we now build well-known composite defini-
tions. We have chosen to list several equivalent versions leaving the equivalence
proofs to the reader.

5.3.8 Definition. Let homogeneous relations E,C : V −→ V be given. We call9

E order :⇐⇒ E transitive, antisymmetric, reflexive

⇐⇒ E;E ⊆ E, E ∩ ET ⊆ , ⊆ E

C strictorder :⇐⇒ C transitive and asymmetric

⇐⇒ C;C ⊆ C, C ∩ CT ⊆
⇐⇒ C;C ⊆ C, CT ⊆ C
⇐⇒ C transitive and irreflexive

⇐⇒ C;C ⊆ C, C ⊆

As an example we show the divisibility ordering on the set {1, . . . , 12}. From the fig-
ure, we may in an obvious way deduce the reflexive order as well as the strictorder10.

2

1

3

4

5

6

7

8

910

11

12

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
2
3
4
5
6
7
8
9

10
11
12



1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

0 1 1 0 1 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


Fig. 5.3.7 Division ordering on numbers 1..12: Hasse diagram, ordering, Hasse relation

Orders and strictorders always come closely side aside as “≤” and “<” do; however,
their algebraic properties must not be mixed up. Orders and strictorders do occur
so often in various contexts that it is helpful to have at least a hint in notation. We
have chosen, to use E for orders and C for strictorders as E is closer to “≤ ” and
C is closer to “< ”.
9 An order is often also called partial order.

10 There is one point to mention when we talk about orderings. People often speak of a “strict
ordering”. This is not what they intend it to mean, as it is not an ordering with the added property
to be strict or asymmetric. By definition, this cannot be. So we have chosen to use a German style
compound word strictorder. A strictorder is not an order! Later, in the same way, a preorder need
not be an order.
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5.3.9 Definition. Order and strictorder are related as follows

i) Given an ordering E, we call CE := ∩ E its associated strictorder.
ii) Given a strictorder C, we call EC := ∪ C its associated ordering.
iii) Given an ordering E or a strictorder C, we call H := CE∩C2

E resp. H := C∩C2

the corresponding Hasse relation, usually called Hasse diagram when
presented graphically.

Indeed, it is easily shown that EC is an ordering and CE is a strictorder. Obviously,
we have
ECE = E and CEC = C.

When representing an ordering as a graph, one will obtain something as the left
figure of Fig. 5.3.8. It is, however, not a good idea to draw all these many arrows
on a blackboard when giving a lesson. So one will usually omit arrow heads replac-
ing them with the convention that arrows always lead upwards. What one cannot
reinvent in a unique manner are loops. For an ordering every vertex carries a loop,
for a strictorder none. But as these two always occur in pairs, this makes not a
big problem, and the loops are usually omitted as in the middle and in the right
diagram of Fig. 5.3.8.

Fig. 5.3.8 Order with associated strictorder and Hasse diagram

There is one further traditional way of reducing effort when representing orderings.
It is economical to represent the ordering by its Hasse diagram, i.e., omitting all
those arrows that may be represented by following a sequence of arrows. In general,
however, the relationship of an ordering with its Hasse diagram H is less obvi-
ous than expected. For the finite case, we will give a definitive answer once the
transitive closure is introduced and prove that C = H+ and E = H∗. In a finite
strictorder, one may ask whether there are immediate successors or predecessors.
Figure 5.3.8 shows an ordering, its associated strictordering and its corresponding
Hasse diagram.11

11 In case immediate successors and predecessors exist, i.e., for discrete orderings in the sense of
[BS83], the ordering can be generated by its Hasse diagram.
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Linear orderings

In earlier times it was not at all clear that orderings need not be linear orderings.
But since the development of lattice theory in the 1930s it became more and more
evident that most of our reasoning with orderings was also possible when they failed
to be linear ones. So it is simply a matter of economy to present orders first and
then specialize to linear ones12.

5.3.10 Definition. Given again homogeneous relations E,C : V −→ V , we call

E linear order :⇐⇒ E is an ordering which is also connex
⇐⇒ E;E ⊆ E, E ∩ ET ⊆ , = E ∪ ET

C linear strictorder :⇐⇒ C is a strictorder which is also semi-connex
⇐⇒ C;C ⊆ C, C ∩ CT ⊆ , = C ∪ CT

Sometimes a linear order is called a total order or a chain and a linear strictorder
is called a strict total order, complete order, or strict complete order.

When nicely arranged, the matrix of a linear order has the upper right triangle and
the diagonal filled with 1 ’s, leaving the lower left triangle full of 0 ’s. It is rather
obvious, see Prop. 5.3.11, that the negative of a linear order is a linear strictorder
in reverse direction.

♠ ♥ ♦ ♣

♦
♥
♠
♣

(
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

) ♠ ♥ ♦ ♣

♦
♥
♠
♣

(
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

) ♠ ♥ ♦ ♣

♦
♥
♠
♣

(
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
Fig. 5.3.9 Linear order, linear strictorder, and Hasse relationfor Skat suit ranking

We now exhibit characteristic properties of a linear order. As prominent terms we
often find E

T

for the linear order E as well as C
T

for its associated strictorder C.
These are first indications for usefulness of a dual Rd := R

T

of some relation R.

5.3.11 Proposition. The following hold around linear order and strictorder:

i) A linear order E and its associated strictorder C satisfy E
T

= C.
ii) A linear order E satisfies E;E

T
;E = C ⊆ E.

iii) A linear strictorder C satisfies C;C;C
T

= C;C
T

;C = C2 ⊆ C.
iv) E is a linear order precisely when Ed = E

T

is a linear strictorder.
v) C is a linear strictorder precisely when Cd = C

T

is a linear order.

12 Today a tendency may be observed that makes the even less restricted preorder the basic structure.
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Proof : See B.1.6

Of course, C
T

= E is an equivalent form of (i). With (ii,iii), we gave the result
(i) a more complicated form, thus anticipating a property of Ferrers relations, see
Sect. 10.5. The equation E;E

T
;E = E;E

T

= E
T

holds for arbitrary orderings E.

We now anticipate a result that seems rather obvious, at least for the finite case.
Nevertheless, it needs a proof which we will give later; see Prop. 12.4.1. In Com-
puter Science, one routinely speakes of topological sorting of an ordering. It may
colloquially be expressed demanding that there shall exist a permutation such that
the resulting matrix resides in the upper right triangle, in which case the Szpilrajn
extension is completely obvious.

5.3.12 Proposition (Topological sorting). For every order E there exists a linear
order E1 extension, with E ⊆ E1, a so-called Szpilrajn13.

The idea of a proof (that will be presented in full detail along with Prop. 12.4.1) is
easy to communicate: Assume E were not yet linear, i.e., E ∪ ET =/ . Then there
will exist two elements x, y with x;yT ⊆ E ∪ ET that might be called incomparable
ones. With these, we define an additional ordering relation as E1 := E ∪ E;x;yT;E.
In the finite case, this argument may be iterated, and En will eventually become
linear.
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Christian
George
Alfred

Barbara
Donald
Eugene

Frederick


1 0 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1


E E1 E rearranged

Fig. 5.3.10 An order rearranged inside the upper triangle of its Szpilrajn extension

We study the technique of a Szpilrajn extension considering Fig. 5.3.10. Choosing
Barbara, Donald, e.g., one will add in the first step connections Barbara 7→ Donald
and Alfred 7→ Donald.
13 Edward Marczewski (1907–1976), a Polish mathematician who used the surname Szpilrajn until

1940. He was a member of the Warsaw School of Mathematics. His life and work after the Second
World War were connected with Wroc law, where he was among the creators of the Polish scientific
centre.(Wikipedia)
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Exercises

5.3.1 Prove equivalence of the variants occurring in Def. 5.3.10

5.3.2 Show that every relation R contained in is symmetric.

5.3.3 Prove that ET;E;X = E;X for an ordering E and an arbitrary relation X.

5.3.4 A relation is called idempotent provided R = R2. Prove R ∩ =/ for any
finite idempotent relation R=/ . Provide an example that the finiteness condition
is necessary.

5.4 Equivalence and Quotient

As a first application of both, the symmetry, reflexivity, and transitivity together
with the function concept, we study equivalences and their corresponding natural
projections. Much of this will be used in Sect. 7.4 when constructing quotient
domains. Concerning natural projections, we recall here only that x 7→ [x]Ξ means
to proceed form an element x to the class according to the equivalence Ξ. Here
we prepare the algebraic formalism, but do not yet mention the algebraic rules a
natural projection obeys.

5.4.1 Definition. Let Ξ : V −→ V be a homogeneous relation. We call

Ξ equivalence :⇐⇒ Ξ is reflexive, transitive, and symmetric
⇐⇒ ⊆ Ξ, Ξ; Ξ ⊆ Ξ, ΞT ⊆ Ξ

We now prove some rules which are useful for calculations involving equivalence
relations; they deal with the effect of multiplication by an equivalence relation with
regard to intersection and negation.

5.4.2 Proposition. Let Ξ be an equivalence and let A,B,R be arbitrary relations.

i) Ξ; (Ξ;A ∩ B) = Ξ;A ∩ Ξ;B = Ξ; (A ∩ Ξ;B)
ii) Ξ; Ξ;R = Ξ;R

Proof : See B.1.7

Trying to interpret these results, let us say that Ξ;A is the relation A saturated with
the equivalence Ξ on the source side. Should one element of a class be related to
some element, then all are related to that element. In such a case, the saturation
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of the intersection of a saturated relation with another one is the same as the
intersection of the two saturated relations. This is close to a distributivity law for
composition with an equivalence. The complement of a source-saturated relation is
again source-saturated as shown in Fig. 5.4.1.
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Franz Beckenbauer

Alfred Tarski
Zinedine Zidane
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Cary Grant
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Marlon Brando
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 1 0 1 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Ξ R Ξ; Ξ;R = Ξ;R

Fig. 5.4.1 Celebrities partitioned as to their gender, qualified, and class-negated

Very often, we will be concerned with relations in which several rows, resp. columns,
look identical. We provide an algebraic mechanism to handle this case. As presented
in Def. 5.4.3, this allows an intuitively clear interpretation.

5.4.3 Definition. For a (possibly heterogeneous) relation R, we define its corre-
sponding14

“row contains” preorder R(R) := R;RT = R/R

“column is contained” preorder C(R) := RT;R = R\R
together with

row equivalence Ξ(R) := syq (RT, RT) = R(R) ∩ R(R)

column equivalence Ψ(R) := syq (R,R) = C(R) ∩ C(R)

and in case of a homogeneous relation also the

“section” preorder S(R) := R(R) ∩ C(R)

One may wonder why we have chosen different containment directions for rows
14 In French: préordre finissant, préordre commençant, resp. préordre des sections.
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and columns, respectively: As defined here, some other concepts to be defined only
later get a simple form. That the letters Ξ,Ψ are chosen so as to represent rows
and columns, resp., is evident.

We visualize row and column equivalence first and concentrate on containment
afterwards. Let somebody who plays bridge everyday remember his main winning
cards over the week; see the relation R of Fig. 5.4.2.
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Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday


1 0 1 0 0 0 0
0 1 0 1 1 0 0
1 0 1 0 0 0 0
0 1 0 1 1 0 0
0 1 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1



A K Q J 1
0

9 8 7 6 5 4 3 2
0 1 0 0 1 1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0 0 0 0 1 1
0 1 0 0 1 1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0 0 0 0 1 1
1 0 1 0 1 1 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0



A K Q J 1
0

9 8 7 6 5 4 3 2

A
K
Q
J

10
9
8
7
6
5
4
3
2



1 0 1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0 1 1


Ξ(R) R Ψ(R)

Fig. 5.4.2 A relation R with its row and column equivalences Ξ(R),Ψ(R)

The situation will become more clear when we arrange the matrix of the relation R
so as to have equal rows, and columns respectively, side by side as in Fig. 5.4.3. Also
an obvious idea is indicated how to condense the representation of such information.
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Thursday

Friday
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Sunday


1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1



A Q 3 2 K 6 5 4 J 8 7 1
0

9
0 0 0 0 1 1 1 1 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0



[A
]

[K
]

[J
]

[1
0
]

[Monday]
[Tuesday]

[Saturday]

(
0 1 0 1
1 0 0 1
0 1 0 0

)

A Q 3 2 K 6 5 4 J 8 7 1
0

9

A
Q
3
2
K
6
5
4
J
8
7

10
9



1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1



Fig. 5.4.3 Relation of Fig. 5.4.2 rearranged to block form

In view of the rearranged representation, almost immediate results follow.

5.4.4 Proposition. For an arbitrary relation R and its row and column preorder
and equivalence, always
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i) Ξ(R);R = R = R; Ψ(R)

ii) R(R) =
(
R(R)

)T Ξ(R) = Ξ(R) R(RT) = C(R)

iii) Ξ(R) = Ξ(R(R)) or, equivalently, syq (RT, RT) = syq (R;RT
T

, R;RT
T

)

Proof : See B.1.8

Part (ii) of this proposition is quite an intuitive result: Negation reverses row con-
tainment, but does not change row equivalence.

Fig. 5.4.4 gives an example of a relation on the left together with its section preorder.

R =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 1 1 1 0 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0
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1

1
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3
4
5
6
7
8
9

10
11
12
13



1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 1 0 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1


= S(R)

Fig. 5.4.4 Section preorder of a relation (which is a block-transitive strictorder)

Difunctional relations

The concept of a difunctional relation is concerned with “block decomposition”. It
generalizes such concepts as being univalent and at the same time being injective to
heterogeneous block-versions thereof. Also, the concept of an equivalence relation
is generalized in as far as source and target need no longer be identical and the
relation proper need not necessarily be total or surjective. The astonishing fact is
that several well-known formulae stay the same or are only slightly modified to
catch up with the new situation as indicated on the right of Fig. 5.4.5.
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j m
1 2 3 4 5 6 7 8 9 1011121314

k

i

1
2
3
4
5
6
7
8
9
10
11
12



1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1



1 3
j

5 8 9 1
1

1
2
m

1
4

2 4 7 1
0

6 1
3

1

k 4
6

i 10
12
2
5
7
3
9

11
8



1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 5.4.5 Predicate logic interpretation for a relation to be difunctional

ThatR will assume block diagonal form when suitably rearranging rows and columns
independently cannot immediately be seen from Def. 5.4.5. We expand the relational
formula R;RT;R ⊆ R of the definition to

∀ i,m :
[
∃j, k : (i, j) ∈ R ∧ (j, k) ∈ RT ∧ (k,m) ∈ R

]
→ (i,m) ∈ R

in order to get a more detailed view on what the difunctionality property actually
means. In Fig. 5.4.5 one may indeed see some aspects of it.

5.4.5 Definition. Let Q be a possibly heterogeneous relation.

Q difunctional :⇐⇒ Q;QT;Q ⊆ Q ⇐⇒ Q;QT;Q = Q

⇐⇒ Q;Q
T

;Q ⊆ Q
⇐⇒ Q has block diagonal form when suitably

rearranging rows and columns independently

With Q, also QT is obviously difunctional. The equivalence of the definition variants
is straightforward. The concept of being difunctional is in [DF84] called a matching
relation or simply a match.

5.4.6 Proposition. If Q is a difunctional relation, the following holds for arbitrary
relations A,B:

Q; (A ∩ QT;B) = Q;A ∩ Q;QT;B

Proof : See B.1.9.

This result obviously unifies what has already been proved in Prop. 5.1.3, 5.1.4,
and Prop. 5.4.2.i, following the lines of tradition. Fig. 5.4.6 visualizes the effect of
Prop. 5.4.6.
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a b c d e f g h i j k

A
B
C
D
E
F
G
H
I


1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

a
b
c
d
e
f
g
h
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j
k



0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

A
B
C
D
E
F
G
H
I


0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0


Q A B

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

A
B
C
D
E
F
G
H
I


0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

0 1 0 1 0 0 0 0 0 1 1 1 0
0 1 0 1 0 0 0 0 0 1 1 1 0
0 1 0 1 0 0 0 0 0 1 1 1 0
0 0 1 0 1 0 0 1 1 1 1 1 0
0 0 1 0 1 0 0 1 1 1 1 1 0
1 0 0 0 1 1 0 0 1 0 1 1 0
1 0 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1 0
1 1 0 1 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


Q; (A ∩ QT;B) Q;A Q;QT;B

Fig. 5.4.6 Visualizing Prop. 5.4.6

For the difunctional case handled here, we have more symmetry than in Propositions
5.1.3 and 5.1.4: They may be converted from one to another so that (A;QT ∩B);Q =
A;QT;Q ∩ B;Q. Difunctional means — accepting the block aspect — univalent as
well as injective.

Also the formulae of Prop. 5.1.6 and Prop. 5.4.2.ii concerning negation find here
their analogous form:

5.4.7 Proposition. If Q is a difunctional relation, the following holds for every
relation A:

i) Q;QT;A = Q; ∩ Q;QT;A and Q;QT;A = Q;QT;A ∪ Q;

ii) Q;QT;A = Q;QT;A in case Q is in addition total

Proof : See B.1.10.

Exercises

5.4.1 Prove the following as a generalization of Prop. 5.2.5: Given arbitrary re-
lations R,S and an equivalence Ω satisfying S ; Ω = S. Then a total f such that
fT;f ⊆ Ω satisfies
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R ⊆ S;fT ⇐⇒ R;f ⊆ S

5.4.2 Prove that for an arbitrary order E always R(E) = E = C(E).

5.4.3 Prove that total relations F contained in an equivalence Θ satisfy F;Θ = Θ.

5.4.4 If F is univalent and Θ is an equivalence, then F ; Θ is difunctional.

5.4.5 Prove that R is an equivalence if and only if it is reflexive and satisfies
R;RT ⊆ R.

5.4.6 Prove the following statement: For every relation Q contained in an equiv-
alence relation Ξ and for any other relation R the equation Q; (R ∩ Ξ) = Q;R ∩ Ξ
holds. (Compare this result to the modular law of lattice theory.)

5.4.7 Prove the following statement: For every reflexive and transitive relation A

there exists a relation R such that A = RT;R.

5.4.8 Show that for R total the row-equivalence is contained in R;RT.

5.4.9 Show that R is an equivalence precisely when R = syq (R,R).

5.4.10 Show that for connex R always C(R ∩ RT

) = R(R).

5.5 Transitive Closure

It is folklore that every homogeneous relation R has a transitive closure R+ which
is the least transitive relation it is contained in. Alternatively, one might say that
it is the result of “making R increasingly more transitive”.

5.5.1 Definition. Given any homogeneous relation R, we define its transitive
closure

R+ := inf{X | R ⊆ X, X;X ⊆ X} = sup i≥1R
i

in two forms and give also the two definitions of its reflexive-transitive closure

R∗ := inf{X | ∪ R ⊆ X, X;X ⊆ X} = sup i≥0R
i

We do not recall the proof justifying that one may indeed use two versions, i.e., that
the relations thus defined will always coincide; see, e.g., [SS89, SS93]. We mention,
however, in which way the reflexive-transitive and the transitive closure are related:

R+ = R;R∗ R∗ = ∪ R+

These interrelationships are by now well known. Typically, the infimum definition
(the “descriptive version”) will be made use of in proofs while the supremum version
is computed (the “operational version”). To use the descriptive part to compute the
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closure would be highly complex because the intersection of all transitive relations
above R is formed, which can only be done for toy examples. The better idea for
computing R+ is approximating it from below as R ⊆ R ∪ R2 ⊆ R ∪ R2 ∪ R3 . . .

in the operational version. Yet far better are the traditional algorithms such as the
Warshall algorithm.

5.5.2 Proposition. The following holds for an arbitrary finite homogeneous rela-
tion R on a set of n elements:

i) Rn ⊆ ( ∪ R)n−1

ii) R∗ = sup 0≤i<nR
i

iii) R+ = sup 0<i≤nR
i

iv) ( ∪ R); ( ∪ R2); ( ∪ R4); ( ∪ R8); . . . ; ( ∪ R2blognc
) = R∗

Proof : See B.1.11.

The construct R∗ is obviously a preorder. Two equivalences are traditionally given
with any relation.

5.5.3 Definition. For a (possibly heterogeneous) relation R we define

Ω := (R;RT)∗, the left equivalence and

Ω′ := (RT;R)∗, the right equivalence.

One may also call Ω an equivalence generated by common results and Ω′ an equiv-
alence generated by common arguments. Some results follow immediately.

5.5.4 Proposition. Let some (possibly heterogeneous) relation R be given and
consider Ω,Ω′, its left and right equivalence.

i) Ω and Ω′ are equivalences
ii) Ω;R = R; Ω′

iii) ∪ RT; Ω;R = Ω′

iv) ∪ R; Ω′;RT = Ω

Proof : See B.1.12.

From the point of view of Sect. 5.6, Ω,Ω′ constitute an R-congruence; see the
forthcoming Example 5.6.3, where this is also visualized in more detail.
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Strongly connected components

Closely related to the transitive closure is the determination of strongly connected
components. Let R be a homogeneous relation and consider the preorder R∗ gen-
erated by R. Then R∗ ∩ R∗T is the equivalence generated by R which provides a
partition of rows as well as columns.

R =

1 2 3 4 5 6 7 8 910111213

1
2
3
4
5
6
7
8
9

10
11
12
13



1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0



8 2 1 3 61213 4 710 5 911
8
2
1
3
6

12
13
4
7

10
5
9

11



1 1 1 1 1 1 1 0 0 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1


= R∗

Fig. 5.5.1 A relation with transitive closure arranged by simultaneous permutation

The arrangement of the transitive closure as an upper right block-triangle allows
to transfer the arrangement to the original relation itself. So one will obtain a
rearrangement as in Fig. 5.5.2. The subdivisions are justified by the transitive clo-
sure. Without these, one would not easily capture the underlying structure. This
is, therefore, considered a basic technique of knowledge acquisition.

8 2 1 3 61213 4 710 5 911
8
2
1
3
6

12
13
4
7

10
5
9

11



0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0



1
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4
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6

8

7

10

11
12

13

Fig. 5.5.2 The original relation of Fig. 5.5.1 grouped according to R∗ ∩ R∗T

The following observation mainly expresses that looking for the quotient after hav-
ing determined the strongly connected components, one will obtain an ordering
that may be topologically sorted by Szpilrajn extension, which in turn results in
the block-diagonal form mentioned.
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1

2

3

4

5

6
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12

13

14

15

16

17

1 2 3 4 5 6 7 8 9 1
0

1
1

1
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1
3

1
4

1
5

1
6

1
7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17



0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
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1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
2
3
4
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6
7
8
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10
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12
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16
17



1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1
0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1
0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1
1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1
0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1
0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1
0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1



5 6 1
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1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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4

12
9

10
16
17
3



0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 5.5.3 Another example of a decomposition according to

strongly connected components
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5.5.5 Observation. Any given homogeneous relation R can by simultaneously
permuting rows and columns be transformed into a matrix of matrices in the fol-
lowing form: It has upper triangular pattern with square diagonal blocks

∗ ∗ ∗
∗ ∗
∗


where ∗ = unless the generated permuted preorder R∗ allows entries =/ . The
reflexive-transitive closure of every diagonal block is the universal relation for
that block.

When considering R∗, one should bear in mind, that R∗ = R(R∗), which is trivial
to prove when expanded.

Fig. 5.5.3 shows yet another example, giving the graph first, and then R,R∗ as well
as R∗ and finally R rearranged.

Exercises

5.5.1 Show that the following hold for every homogeneous relation R

i) inf{H | R ∪ R;H ⊆ H } = inf{H | R ∪ R;H = H } = R+

ii) inf{H | S ∪ R;H ⊆ H } = R∗;S

5.6 Congruences

In a natural way, any equivalence leads to a partitioning into classes. To work with
sets of classes is usually more efficient as they are less in number. We have learned
to compute “modulo” a prime number; i.e., we only care to which class determined
by the remainder a number belongs. However, this is only possible in cases where
the operations aimed at behave nicely with respect to the subdivision into classes.
The operations addition and multiplication do in this sense co-operate adequately
with regard to the equivalence “have same remainder modulo 5”. Would one try
an arbitrary subdivision into classes, e.g., {1, 5, 99, 213}, {2, 3, 4, 6} . . ., addition and
multiplication would not work “properly” on classes.

We ask what it means that the equivalence and the operations intended “behave
nicely” and develop very general algebraic characterizations. In such cases, we are
accustomed to call them congruences. While it is a classical topic to study mappings
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that respect a certain equivalence, only recently also relations respecting equiva-
lences have been studied in simulations and bisimulations. This is well known for
algebraic structures, i.e., those defined by mappings on or between sets. In the non-
algebraic case, relations are possibly neither univalent nor total. While the basic
idea is known from many application fields, the following general concepts may
provide a new abstraction.

5.6.1 Definition. Let B be a relation and Ξ,Θ equivalences. The pair (Ξ,Θ) is
called a

B-congruence :⇐⇒ Ξ;B ⊆ B; Θ.

We are going to show in which way this containment formula describes what we
mean when saying that a “structure” B between sets X und Y is respected somehow
by equivalences Ξ on X and Θ on Y . To this end, consider an element x having
an equivalent element x′ which is in relation B with y. In all these cases, there
shall exist for x an element y′ to which it is in relation B, and which is in addition
equivalent to y. This may also be written down in predicate logic form as

∀x ∈ X : ∀y ∈ Y :[
∃x′ ∈ X : (x, x′) ∈ Ξ ∧ (x′, y) ∈ B

]
→

[
∃y′ ∈ Y : (x, y′) ∈ B ∧ (y′, y) ∈ Θ

]
We will here not show again how the relational formula and the predicate logic
expression correspond to one another, but they do. Some examples shall illustrate
what a congruence is meant to capture.

5.6.2 Example. Consider a pairset together with the corresponding projection to
the second component, ρ : X × Y −→ Y and define the equivalence Ξ as “Have
common second component”. Take for the other equivalence the identity on Y .
Then (Ξ, ) constitute a ρ-congruence as shown in Fig. 5.6.1.

Ξ =

(a, 1)
(a, 2)
(a, 3)
(a, 4)
(b, 1)
(b, 2)
(b, 3)
(b, 4)
(c, 1)
(c, 2)
(c, 3)
(c, 4)



1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1


ρ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


=

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

Fig. 5.6.1 Ξ, is a congruence wrt. ρ

If B were a binary operation on a given set and we had Ξ = Θ, we would say that B
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“has the substitution property with regard to Ξ”. Fig. 5.6.2 visualizes schematically,
that when varying the two arguments of a binary mapping inside their equivalence
classes then the image may vary also, but is confined to its congruence class.

Fig. 5.6.2 Binary mapping satisfying the substitution property

5.6.3 Example. The example of Fig. 5.6.3 is taken from the field of knowledge
acquisition. Assume an arbitrary relation R resulting out of some investigation
or polling procedure. If it is a rather sparse matrix, the following idea becomes
interesting. If not sparse, the method stays correct but will deliver less interesting
results. One asks which row entries are related with other row entries simply by
the fact that they have a column entry associated by R in common; we consider,
thus, R;RT. In a symmetric way, we are interested in RT;R, i.e., in column entries
combined by the property that they have a row entry in common assigned by R.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14



1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1



a b c d e f g h i j k

1
2
3
4
5
6
7
8
9

10
11
12
13
14



0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0



a b c d e f g h i j k

a
b
c
d
e
f
g
h
i
j
k



1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0


Fig. 5.6.3 The construct R;RT, for arbitrary R, and RT

;R

Rearranging rows and columns simultaneously, a procedure that does not change
the relation, the equivalences are better visualized. Then one easily checks that the
left and the right equivalence
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Ω := (R;RT)∗, Ω′ := (RT;R)∗,
as defined in Def. 5.5.3, satisfy

Ω;R = R; Ω′,

i.e., that Ω,Ω′ constitute an R-congruence; see Prop. 5.5.4.ii. The accumulated
knowledge is now that one is in a position to say, that the first group of elements
on the left is in relation only to the first group of elements on the right, etc

1 613 2101114 4 5 812 3 7 9
1
6

13
2

10
11
14
4
5
8

12
3
7
9



1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1



b d g i c f j a e h k
1
6

13
2

10
11
14
4
5
8

12
3
7
9



1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



b d g i c f j a e h k
b
d
g
i
c
f
j
a
e
h
k



1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1


Left equivalence Ω := (R;RT)∗, the given R, and right equivalence Ω′ := (RT

;R)∗

ηΩ =

1
6

13
2

10
11
14
4
5
8

12
3
7
9



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


S =

[b
,d

,g
,i
]

[c
,f

,j
]

[a
,e

,h
]

[k
]

[1, 6, 13]
[2,10,11,14]

[4,5,8,12]
[3]
[7]
[9]


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ηΩ′ =

b
d
g
i
c
f
j
a
e
h
k



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1


Fig. 5.6.4 Factorizing a relation by the congruences of its difunctional closure

5.6.4 Remark. At this point, we insert this remark referring forward to Fig. 10.4.1.
There, also the row equivalence Ξ(hdifu(R)) and the column equivalence Ψ(hdifu(R))
of the difunctional closure hdifu(R) of R is considered; not just the left equivalence
Ω := (R;RT)∗ and right equivalence Ω′ := (RT;R)∗. Also these form a congruence.
While Ψ(hdifu(R)) and Ω′ coincide in the present special case, Ξ(hdifu(R)) differs
from Ω. The lower right 3 × 3-matrix of Ξ(hdifu(R)) would be a 3 × 3-block of
1 ’s. The relation S of Fig. 5.6.4 formed correspondingly, would then have only one
empty last line.
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For an account of applications of congruences in software engineering, we refer to
[FvO99].

5.7 Homomorphisms

To present the following material so soon may seem irritating. It is, however, neces-
sary for many phenomenological considerations to which we have confined ourselves
in this chapter. The term homomorphism should not be considered as meaning a
deeper mathematical concept. We will here have a look at it from a basic relational
point of view.

Let any two “structures” be given; here for simplicity assumed as a relation R1

between sets X1, Y1 and a relation R2 between sets X2, Y2. Such structures may be
conceived as addition or multiplication in a group, or as an ordering, an equivalence,
or simply a graph on a set, or may describe multiplication of a vector with a scalar
in a vector space. As a preparation, we recall isotonicity of orderings.

5.7.1 Definition. Let two ordered setsX1,≤1 andX2,≤2, respectively Ei : Xi −→
Xi, i = 1, 2, be given as well as a mapping ϕ : X1 −→ X2. Then we have the
following equivalent possibilities to qualify the mapping as being isotonic (also:
monotonic):

i) For all x, y ∈ X1 satisfying x ≤1 y we have ϕ(x) ≤2 ϕ(y), or, writing it slightly
more formally as
∀x ∈ X1 : ∀y ∈ Y1 : (x, y) ∈ E1 → (ϕ(x), ϕ(y)) ∈ E2

ii) E1;ϕ ⊆ ϕ;E2.

It seems obvious that version (ii) is much shorter, less error-prone, and may more
easily be supported by a computer algebra system.

5.7.2 Example. In an example, the structures E1, E2 shall be different orderings
on 4-element sets as shown in Fig. 5.7.1. We consider ϕ which describes a homo-
morphism corresponding to horizontal transition from one graph to the other.

⊥ a b >

⊥
a
b
>

(
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

)
a

b

1 2 3 4

⊥
a
b
>

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
1

2

3

4

1 2 3 4

1
2
3
4

(
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

)

E1 ϕ E2

Fig. 5.7.1 Isotone mapping from a diamond ordering to a linear ordering
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Careful observation shows, that homomorphy holds only for the ordering, but not
for least upper or greatest lower bounds lub, glb formed therein. As an example
take the two medium elements in Fig. 5.7.1.

Whenever two elements x, y on the left are in the order relation (x, y) ∈ E1, their
images on the right are also in order relation; (ϕ(x), ϕ(y)) ∈ E2. The elements a, b
are unrelated on the left-hand side, their images 2, 3 on the right, however, are
related as (2, 3) ∈ E2. This is definitely allowed in an order homomorphism. But it
indicates already, that this will not be an isomorphism. For the reverse direction,
(2, 3) are related, but their inverse images are not.

When we strive to compare any two given such structures conceived as a plexus of
relations, we must be in a position to relate them somehow. This means typically,
that two mappings ϕ : X1 −→ X2 and ψ : Y1 −→ Y2 are provided “mapping the
first structure into the second”.

X

Y

X

Y

1

1

2

2

R
R

ψ

ϕ

1
2

Fig. 5.7.2 Basic concept of a homomorphism

Once such mappings ϕ,ψ are given, they are said to form a homomorphism of the
first into the second structure if the following holds: Whenever any two elements
x, y are related by the first relation R1, their images ϕ(x), ψ(y) are related by the
second relation R2. This is captured by the lengthy predicate logic formulation

∀x ∈ X1 : ∀y ∈ Y1 : (x, y) ∈ R1 → (ϕ(x), ψ(y)) ∈ R2

which will now be converted to a shorter relational form. A point to mention is,
that we assume the structure relations R1, R2 and the mappings ϕ,ψ to reside in
one relation algebra.

5.7.3 Definition. Let be given two “structures”, a relation R1 between the sets
X1, Y1 and a relation R2 between the sets X2, Y2. Mappings ϕ : X1 −→ X2 and
ψ : Y1 −→ Y2 from the structure on the left side to the structure on the right
are called a homomorphism (ϕ,ψ) of the first into the second structure, if the
following holds:

R1;ψ ⊆ ϕ;R2.
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With ϕT;ϕ ⊆ , ⊆ ϕ;ϕT, ψT;ψ ⊆ , ⊆ ψ;ψT, one might also describe the
fact that ϕ,ψ are mappings in a relational form.

Often one has structures “on a set”, for which the mappings ϕ,ψ coincide. Since
it would not be appealing to talk of the homomorphism (ϕ,ϕ), one simply denotes
the homomorphism as ϕ.

This concept of homomorphism — solely based on inclusion R1;ψ ⊆ ϕ;R2 — is a
very general one; it is extremely broadly applicable. As already at several occasions,
we show how the lengthy predicate logic form translates to the shorter relational
form:

∀x1 ∈ X1 : ∀y1 ∈ Y1 : ∀x2 ∈ X2 : ∀y2 ∈ Y2 :
(x1, y1) ∈ R1 ∧ (x1, x2) ∈ ϕ ∧ (y1, y2) ∈ ψ → (x2, y2) ∈ R2

u ∨ v = v ∨ u, a→ b = ¬a ∨ b
⇐⇒ ∀x1 ∈ X1 : ∀y1 ∈ Y1 : ∀y2 ∈ Y2 : ∀x2 ∈ X2 :

(x1, y1)∈/ R1 ∨ (y1, y2)∈/ ψ ∨ (x1, x2)∈/ ϕ ∨ (x2, y2) ∈ R2

a ∨ [∀x : p(x)] = ∀x : [a ∨ p(x)]

⇐⇒ ∀x1 ∈ X1 : ∀y1 ∈ Y1 : ∀y2 ∈ Y2 : (x1, y1)∈/ R1 ∨ (y1, y2)∈/ ψ ∨(
∀x2 ∈ X2 : (x1, x2)∈/ ϕ ∨ (x2, y2) ∈ R2

)
by rearrangement, ∀a : p(a) = ¬[∃a : ¬p(a)]

⇐⇒ ∀x1 ∈ X1 : ∀y2 ∈ Y2 : ∀y1 ∈ Y1 : (x1, y1)∈/ R1 ∨ (y1, y2)∈/ ψ ∨
¬
(
∃x2 ∈ X2 : (x1, x2) ∈ ϕ ∧ (x2, y2)∈/ R2

)
definition of composition

⇐⇒ ∀x1 ∈ X1 : ∀y2 ∈ Y2 :
¬
(
∃y1 ∈ Y1 : (x1, y1) ∈ R1 ∧ (y1, y2) ∈ ψ

)
∨ ¬
(
(x1, y2) ∈ ϕ;R2

)
f ;R = f ;R for a mapping f

⇐⇒ ∀x1 ∈ X1 : ∀y2 ∈ Y2 : ¬
(
(x1, y2) ∈ R1;ψ

)
∨
(
(x1, y2) ∈ ϕ;R2

)
a→ b = ¬a ∨ b

⇐⇒ ∀x1 ∈ X1 : ∀y2 ∈ Y2 :
(
(x1, y2) ∈ R1;ψ

)
→
(
(x1, y2) ∈ ϕ;R2

)
transition to point-free form

⇐⇒ R1;ψ ⊆ ϕ;R2

The result looks quite similar to a commutativity rule; it is, however, not an equality
but containment: When one follows the structural relation R1 and then proceeds
with ψ to the set Y2, it is always possible to go to the set X2 first and then follow
the structural relation R2 to reach the same element.

A nice comparison is possible with a congruence: Should the equivalences Ξ,Ω
constitute a congruence for the mapping f , i.e., Ξ; f ⊆ f ; Ω, this is precisely the
condition for f to be a homomorphism from Ξ to Ω.
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The homomorphism condition has four variants which may be used interchangeably:

5.7.4 Proposition. If ϕ,ψ are mappings, then

R1;ψ ⊆ ϕ;R2 ⇐⇒ R1 ⊆ ϕ;R2;ψT ⇐⇒ ϕT;R1 ⊆ R2;ψT ⇐⇒ ϕT;R1;ψ ⊆ R2

The proof is immediate in view of the mapping properties ϕT;ϕ ⊆ etc.

One may wonder why the condition for homomorphy is just a containment and not
an equation. In group theory, e.g., ϕ(x+1 y) = ϕ(x) +2 ϕ(y) would be demanded.
The reason is that we aim at algebraic as well as relational structures. The con-
dition for homomorphy, R1;ψ ⊆ ϕ;R2, is suited for both. Whenever R1 as well as
R2 are mappings, making the structures algebraic ones, the homomorphism will
automatically satisfy an equation. We fix this as a separate proposition.

5.7.5 Proposition. If (ϕ,ψ) is a homomorphism from the structure R1 into the
structure R2, and if R1, R2 are mappings, then

R1;ψ = ϕ;R2.

Proof : R1;ψ ⊆ ϕ;R2 holds by assumption; “⊇” follows from Prop. 5.1.2.iii.

As usual, also isomorphisms are introduced.

5.7.6 Definition. We call (ϕ,ψ) an isomorphism between the two relations
R1, R2, if it is a homomorphism from R1 to R2 and if in addition (ϕT, ψT) is a
homomorphism in the reverse direction from R2 to R1.

An isomorphism of structures is thus defined to be a “homomorphism in both
directions”. In this case, ϕ,ψ will be bijective mappings.

The following simple lemma will sometimes help in identifying an isomorphism.

5.7.7 Lemma. Let relations R1, R2 be given together with a homomorphism (ϕ,ψ)
from R1 to R2 such that

ϕ,ψ are bijective mappings and R1;ψ = ϕ;R2.

Then ϕ,ψ is an isomorphism.

Proof : R2;ψT = ϕT;ϕ;R2;ψT = ϕT;R1;ψ;ψT = ϕT;R1.
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We provide several illustrations for the concept of a homomorphism.

5.7.8 Example. We study a structure-preserving mapping of a graph into another
graph.

a

b

c

d

e

w

x

y

z

R1 =

a b c d e

a
b
c
d
e

1 0 0 0 1
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 1 1 0

 ϕ =
w x y z

a
b
c
d
e

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0

 R2 =

w x y z

w
x
y
z

(
0 0 1 0
0 1 1 1
0 0 0 1
0 0 0 1

)

Fig. 5.7.3 A graph homomorphism

Indeed: Going from a to e and then to y, it is also possible to map first from a to
x and then proceed to y. Of course, not just this case has to be considered; it has
to be checked for all such configurations. We see, e.g., that not every point on the
right is an image point. We see also, that the arrow c → d is mapped to a loop in
z. Starting in a, there was no arrow to c; it exists, however, between the images x
und z. Of course, ϕ is not an isomorphism.

5.7.9 Proposition. Let any relation R between sets V and W be given and as-
sume that Ξ,Ω is an R-congruence. Denoting the natural projections as ηΞ , ηΩ ,
respectively, we form the quotient sets and consider the relation S := ηT

Ξ
;R; ηΩ

between VΞ and WΩ . Then ηΞ , ηΩ is a homomorphism of the structure R into the
structure S that satisfies R;ηΩ = ηΞ ;S.

V

W

R S

W

VΞ

Ω

η

η

Ξ

Ω

Ξ

Ω

Fig. 5.7.4 Natural projections as homomorphisms

Proof : See B.1.13.
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Of course, ηΞ , ηΩ need not constitute an isomorphism; they are normally not bi-
jective.

5.7.10 Example. The company of Fig. 5.7.5 provides an example with two struc-
tural relations, namely the material flow between its 12 locations and the internal
reporting structure. Two consultant firms of this company have been asked to pro-
pose models of further subdivision. Their results are show as the two smaller graphs.

1

2

3

4

5

6

7

8

9

10

11

12

1
2

3

4

5

6
7

8

9

10

11

12

4,6,9 
1,3,5,8 

2,7,10,11,12 1,5,9

2,6,10
3,7,11

4,8,12

Fig. 5.7.5 Homomorphisms when structuring a company

It is indicated how both these 12-vertex-graphs are mapped onto the left as well as
onto the right smaller graph. Images from the left side are thin lines while those
from the right are fat. Should it be intended to switch to a more efficient structure
of the company, one would probably decide for the subdivision on the left.

We have so far been studying homomorphisms. Not in every case there will exist
mappings ϕ,ψ when one is about to compare structures; sometimes one has just
relations. For this less favourable situation there exist concepts allowing to compare
structures, albeit only with minor precision. One basic aspect we will lose is that of
being able to “roll” the conditions so as to have four different but equivalent forms
according to Prop. 5.7.4.
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Relations and Vectors

When working with real-valued matrices, it is typical to ask for their eigenvalues
and eigenvectors. In the relational case one cannot hope for interesting properties
of eigenvalues, as these would be restricted to being 0 , 1 . Nevertheless, there is
an important field of studying an equivalent of eigenvectors satisfying, A;x ⊆ x,

A;x ⊆ x, or A;x ⊆ x. This may be embedded in an advanced study of general
Galois mechanisms, which is rather involved and, thus, postponed to Chapt. 16.

There are, however, some very simple concepts related to a diversity of applications
that may be introduced already here on a phenomenological basis in order to get
ways to denote several effects coherently. In every case, we will have one or two
vectors considered together with the relation in question. Quite frequently one
may find out that definitions are chosen adequately as some visualizations show
immediately intuitive effects.

6.1 Domain and Codomain

Relations are used mainly because they allow to express more than is possible with
functions or mappings: They may assign one or more values to an argument or
none. It is of cause interesting which arguments get assigned values and which
do not. In the same way, one will ask which elements on the target side occur as
images and which do not. The next rather simplistic definition provides an algebraic
formulation for the zones just indicated.

6.1.1 Definition. Given a (possibly heterogeneous) relation R, we always have
the vectors

dom(R) := R; cod(R) := RT;

called the domain and the codomain of R, respectively.
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This was a bit sloppy. A fully typed definition would start from a relationR : X −→ Y

with source and target explicitly mentioned and qualify the universal subsets as in

dom(R) := R; Y cod(R) := RT; X

Then we obviously have

dom(RT) = cod(R)

Next, it is important to be able to denote where the relations behave as functions,
i.e., assign no more than one value.

6.1.2 Definition. Given a (possibly heterogeneous) relation R, we always have its

univalent part upa(R) := R ∩ R;

multivalent part mup(R) := R ∩ R; .

Using these two, we define the vectors

univalentZone(R) := dom(upa(R)) :=
(
R ∩ R;

)
;

multivalentZone(R) := dom(mup(R)) :=
(
R ∩ R;

)
; .

The univalent part of R collects those assignments via R in which at most one
image point is assigned, which means that it is not the case that there is assigned
an image point non-identical with the assigned one. On the right of Fig. 6.1.1, we
see that upa(R) may be formed by cutting out all the 1 ’s belonging to the third
horizontal zone. Therefore, the univalent zone is made up of rows {b, f, g, h} and
the multivalent zone of {a, c, d, e, k}. United, the latter two result in the domain
domR.

1 2 3 4 5 6 7 8 9 1
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1
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1
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1
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h
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j
k



0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0



1 2 5 1
1

1
3

1
9

3 4 8 9 1
2

1
5

1
7

6 7 1
0

1
4

1
6

1
8

i
j
b
f
g
h
a
c
d
e
k



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1


Fig. 6.1.1 An arbitrary relation subdivided according to definedness, univalence, etc.

Considering just where the relation assigns values, where it behaves univalently,
and where not, gives already a certain overview on its structure, and may lead
to reductions and simplifications or additional preconditions in theorems. See for
instance Fig. 6.1.1. The first zone of rows, resp. columns, contains the empty ones,
the second the univalent respectively injective ones. The third zone has always
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more than one entry per row resp. per column. Be aware, however, that row d while
containing 2 entries, does not have both of these in the lower right sub-rectangle.
Also, column 6 considered only in the lower right rectangle is empty.

Circuits and Cycles

Circuits and cycles are so omnipresent in graph theory that fully formal definitions
are often assumed commonly known — and not always repeated with the necessary
care. In particular when treating all this relation-algebraically, we will have to
introduce everything from the scratch. We will assume cycles to be unoriented and
circuits to have an orientation.

6.1.3 Definition. Given a homogeneous relation R : V −→ V , we consider a
relation C ⊆ R and call it a simple circuit, provided

i) CT;C ⊆ , C;CT ⊆ ,

ii) C+ = C; ;CT

iii) C2 ⊆ .

More specifically, the relation R may be the adjacency Γ : V −→ V of a simple
graph and, thus, symmetric. Given the simple circuit C, we then call the relation
C ∪ CT the corresponding simple cycle.

Due to (i), C is univalent and injective. Condition (ii) guarantees that every vertex
of the circuit may be reached from any other one. Anticipating the domain construc-
tion of extrusion of Sect. 7.5, one may also say that C with its vertices extruded will
turn out to be strongly connected. Condition (iii) serves to exclude trivialities from
the discussion, namely circuits of length 2, i.e., consisting of following an arc and
then going back the transposed arc. Fig. 6.1.2 shows how this definition is meant.
The graph for adjacency Γ will be found in Fig. 12.6.13, where the circuit is Feb,
Mar, Jul, Oct, Jun.

This definition of a circuit was slightly different compared with the one traditionally
used in graph theory, which is given mentioning a sequence a0, a1, . . . , an = a0

of vertices and postulating that there is no back or forward branching, etc. Our
definition lends itself more easily to relational treatment but models the same idea.
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0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0
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0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 6.1.2 An adjacency Γ with a simple circuit C and its simple cycle C ∪ CT

With an example, we will demonstrate where circuits (then sometimes called “picy-
cles”) occur in modelling preference and indifference. In Fig. 6.1.3, we have a relation
R and a circuit in it shown first. On the right side is presented what will later be
recognized as a Ferrers relation that is obtained as R∩RT

=: P and presented with
rows and columns permuted independently. One will see that the circuit takes tran-
sitions (5, 4), (7, 3) from P and transitions (4, 7), (3, 1), (1, 5) from R ∩ P . Should
one have intended to model preference P = is better than and indifference R ∩ P =
indifferent about, one will probably dislike such circuits.

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 1 1 1 1 1
1 1 1 1 1 1 1
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 1 1 1 1 1
0 0 0 0 0 1 0
1 0 1 1 1 1 1



1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 0 0 0 1 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0



2 5 1 7 4 3 6

2
5
4
7
1
3
6


0 0 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0


Fig. 6.1.3 A circuit through preference and indifference

6.2 Rectangular Zones

For an order, we easily observe, that every element of the set u of elements smaller
than some element e is related to every element of the set v of elements greater than
e; see in Fig. 6.2.1, e.g., numbers dividing 6 (i.e., 1, 2, 3, 6) and divided by 6 (i.e.,
6, 12). Also for equivalences and preorders, square zones in the block-diagonal have
shown to be important, accompanied by possibly rectangular zones off diagonal.
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1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1





1
1
1
0
0
1
0
0
0
0
0
0



(0 0 0 0 0 1 0 0 0 0 0 1)

1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 6.2.1 Rectangle {1, 2, 3, 6} × {6, 12} in the divisibility order on numbers 1..12

In Fig. 6.2.1, the column vector indicates divisors of 6 while the row vector shows
multiples of 6.

6.2.1 Definition. Given two vectors u ⊆ X and v ⊆ Y , together with (possibly
heterogeneous) universal relations , we call the relation

R := u;vT = u; ∩ (v; )T

a rectangular relation or, simply, a rectangle1. Given this setting, we call u the
source vector of the rectangle and v its target vector.

For a homogeneous relation, we will call the rectangle R := u;uT a square.

This may be introduced in a slightly more general form with u : X −→ Z and
v : Y −→ Z assumed as row-constant relations, i.e., u = u; Z,Z and v = v; Z,Z to
obtain

u;vT or u; Z,Y ∩ (v; Z,X)T.

u

v T

u =



0
1
1
0
0
1
1
0
0



(
0 0 1 1 1 0 0 1 1 0 0

)
= vT

0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


Fig. 6.2.2 Rectangle from intersection of a row-constant and a column-constant relation

In Def. 6.2.1, we had two definitional variants, and we should convince ourselves
1 This notation seems to stem from Jacques Riguet who spoke of a rélation rectangle (in French

origin). If R is also symmetric, he called it a square-shaped relation or rélation carré in French.
There are variant notations.
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that they mean the same. While “⊆” is clear, the other direction is involved and
postponed to Appendix B.2.1. The next proposition provides even more character-
izations, partly stemming from [OS95].

6.2.2 Proposition. For a relation R the following are equivalent:

i) R is a rectangle.
ii) R; ;R ⊆ R
iii) R; ;R = R

iv) R;R
T

;R =
v) For any fitting pair A,B, the Dedekind rule becomes an equality

A;B ∩ R = (A ∩ R;BT); (B ∩ AT;R)

Proof : See Appendix B.2.2.

An immediate consequence of Prop. 6.2.2 is that — finite or infinite — intersections
of rectangles inside a relation again constitute a rectangle in that relation.

As we will see, rectangles are often studied in combination with some given relation.
They may be inside that relation, outside, or contain or frame that relation.

v

u

R

T

u =



0
1
1
0
0
1
1
0
0



(
0 0 1 1 1 0 0 1 1 0 0

)
= vT

1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 1 1 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 0 1
0 0 1 1 1 0 0 1 1 0 0
0 0 1 1 1 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0



Fig. 6.2.3 Rectangles inside a relation

6.2.3 Definition. Given a relation R, we say that the vectors u, v, define a

i) rectangle inside R :⇐⇒ u;vT ⊆ R ⇐⇒ R;v ⊆ u ⇐⇒ R
T

;u ⊆ v
ii) rectangle around R :⇐⇒ R ⊆ u;vT.
iii) rectangle outside R :⇐⇒ u, v is a rectangle inside R.
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In the context of bipartitioned graphs, a rectangle inside a relation is often called
a block; see, e.g. [Har74]. [Kim82] speaks of cross vectors.

One will observe that there are three variants given for relations inside, but only
one for relations containing R. This is not just written down without care — so
many essentially different variants do not exist. Among the rectangles containing a
relation, the smallest is particularly important.

6.2.4 Definition. The rectangular closure of a relation R is defined by

hrect(R) := inf{H | R ⊆ H,H is rectangular }.

Besides this “descriptive” definition, we provide an “operational” form to obtain
the rectangular closure.

6.2.5 Proposition. Given a relation R, the subsets u := dom(R), v := cod(R)
together constitute the smallest rectangle containing R, i.e.,

hrect(R) = u;vT = R; ;R = R; ∩ ;R.

Proof : See Appendix B.2.3.

As a frequently used variant we mention what happens in case of symmetry. A
clique in graph theory2 i.e., a square inside the adjacency relation Γ := ∩ B of
the graph, is a set of vertices all pairs of which are linked.

6.2.6 Definition. Given a reflexive and symmetric relation B, we call the subset

u clique of B :⇐⇒ u;uT ⊆ B ⇐⇒ B;u ⊆ u ⇐⇒ B
T

;u ⊆ u.

Cliques are particularly interesting when they cannot be enlarged without losing
the clique property. This will be studied extensively in Sect. 10, where also an
impressive algebraic characterization will be derived.

1 2 3 4 5 6

1
2
3
4
5
6


1 0 1 1 1 1
0 1 0 0 0 1
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 0 1 1
1 1 1 0 1 1




0
0
1
0
0
1




1
0
1
1
0
0




1
0
1
0
1
1


Fig. 6.2.4 Three cliques; the last two do not admit bigger ones

2 One will observe that we do not postulate an irreflexive relation as traditionally in graph theory.
This is in order to avoid writing u;uT ⊆ R ∪ all the time, i.e., with the diagonal added.



6.3 Independent Pair of Sets and Covering Pair of Sets 97

Exercises

6.2.1 Determine all cliques of the following relations:

M
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u
e
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e
d
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h
u

F
ri

S
a
t

Mon
Tue

Wed
Thu
Fri
Sat


1 0 0 0 0 0
0 1 0 1 1 0
0 0 1 1 1 1
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 0 0 1
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a
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C
z
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ch

US
French

German
British

Spanish
Japanese

Italian
Czech


1 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1
0 1 1 1 1 1 0 0
1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1
0 1 0 0 0 1 1 1
1 1 0 0 0 1 1 1



6.3 Independent Pair of Sets and Covering Pair of Sets

Traditionally, the basic concept is studied in many variations. We will investigate
two forms it takes in graph theory, namely independent pairs of sets and covering
pairs of sets. Regarding Fig. 6.3.1, we first forbid that elements of u be in relation
with elements from v. In the other variant, we forbid those of s to be in relation
with elements from t, which is the same, however formulated for the complements.

6.3.1 Definition. Let a relation A be given and consider pairs (u, v) or (s, t) of
subsets with s, u taken from the source and t, v from the target side.

i) (u, v) independent pair of sets :⇐⇒ A;v ⊆ u
⇐⇒ u, v is a rectangle outside A.

ii) (s, t) covering pair of sets :⇐⇒ A; t ⊆ s
⇐⇒ s, t is a rectangle outside A.

A definition variant calls (u, v) an independent pair of sets if A ⊆ u; ∪ v;
T

.
Correspondingly, (s, t) is called a covering pair of sets if A ⊆ s; ∪ ; tT.

In Fig. 6.3.1, rows and columns are permuted so that the property is directly visible.
Rows and columns have obviously been permuted independently.

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

u

v

1
1
1
1

111111111111111111111111111111111

A

arbitrary

T

(u, v) independent

000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000
000000000000000000000000000000000

s

t
1111111111111

A

arbitrary
1
1
1
1
1
1
1
1

T

(s, t) covering

Fig. 6.3.1 Complement of an independent pair of sets is a covering pair of sets
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The idea for the following statement is immediate.

6.3.2 Proposition. For a given relation A together with a pair (s, t) we have

(s, t) covering pair of sets ⇐⇒ (s, t) independent pair of sets.

On the right side of Fig. 6.3.1, (s, t) is indeed a covering pair of sets, since the
columns of t together with the rows of s cover all the 1 ’s of the relation A. The
covering property A ; t ⊆ s follows directly from the algebraic condition: When
one follows relation A and finds oneself ending outside t, then the starting point
is covered by s. The algebraic form A ⊆ s; ∪ ; tT expresses directly that rows
according to s and columns according to t cover all of A.

In the same way, one will find no relation between elements of rows of u with
elements of columns of v on the left side. We can indeed read this directly from the
condition A;v ⊆ u: When following the relation A and ending in v, it turns out that
one has been starting from outside u. With Schröder’s rule we immediately arrive
at u;vT ⊆ A; this also expresses that from u to v, there is no relationship according
to A.

It is a trivial fact that with (u, v) an independent pair of sets and u′ ⊆ u, v′ ⊆ v, also
the smaller (u′, v′) will be an independent pair of sets. In the same way, if (s, t) is a
covering pair of sets and s′ ⊇ s, t′ ⊇ t, also (s′, t′) will be a covering pair of sets. For
independent pairs of sets, one is therefore interested in (cardinality-)maximum ones
and for covering pairs for (cardinality-)minimum ones. For algebraic conditions see
Chapt. 10. There exists, however, no simple minimality (respectively maximality)
criterion as one may see in Fig. 10.2.2.

6.4 Reducing Vectors

While we have treated possibly heterogeneous relations so far, we now switch to
the homogeneous case. Who is about to solve a system of n linear equations with
n variables is usually happy when this system turns out to have a special structure
allowing the person to solve a system of m linear equations with m variables, m < n,
first and then after resubstitution solve an n−m system. It is precisely this, what
the concept of reducibility captures. When an arrow according to A ends in the set
r, then it must already have started in r. Forbidden are, thus, arrows from r to r as
symbolized with the dashed arrow convention in Fig. 6.4.1. The index set r = {4, 5}
reduces the matrix as non-zero connections from {1, 2, 3} to {4, 5} do not exist.
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2 −1 3 0 0
4 6 −2 0 0
−3 0 −1 0 0
−3 1 0 2 −5
0 4 −2 3 −2



x

y

z

u

v

 =


17
26
−14
−13

5

 rr

Fig. 6.4.1 Schema of a reducing vector, also shown with dashed arrow convention

What we have defined here is a slight variation of the more general topic of covering
pairs of sets or independent pairs of sets. In Fig. 6.3.1, we had permuted rows and
columns independently so as to obtain a contiguous rectangle of 0 ’s. The additional
restriction we are going to obey now so as to obtain a simpler — inherently homo-
geneous — case is that rows and columns be permuted simultaneously. The aim is
then the same, namely arriving at a contiguous rectangle of 0 ’s.

We discover in this property an algebraic flavour starting from the predicate-logic
version

∀x, y : (x, y) ∈ A ∧ y ∈ r → x ∈ r
a→ b = ¬a ∨ b, arranging quantifiers

⇐⇒ ∀x : ∀y : (x, y)∈/ A ∨ y ∈/ r ∨ x ∈ r
∀y :

(
p(y) ∨ c

)
=
{
∀y : p(y)

}
∨ c

⇐⇒ ∀x :
{
∀y : (x, y)∈/ A ∨ y ∈/ r

}
∨ x ∈ r

∀y : p(y) = ∃y : ¬p(y),¬a ∨ b = a→ b

⇐⇒ ∀x :
(
∃y : (x, y) ∈ A ∧ y ∈ r

)
→ x ∈ r

definition of composition
⇐⇒ ∀x : x ∈ A;r → x ∈ r

transition to point-free form
⇐⇒ A;r ⊆ r

and derive from this the following two point-free definitions.

6.4.1 Definition. Let a homogeneous relation A and vectors r, q be given. We say
that

i) r reduces A :⇐⇒ A;r ⊆ r ⇐⇒ AT;r ⊆ r ⇐⇒ A ⊆ r;rT

ii) q is contracted by A :⇐⇒ AT;q ⊆ q ⇐⇒ A;q ⊆ q ⇐⇒ A ⊆ q;qT

Because A; r ⊆ r ⇐⇒ AT; r ⊆ r, a relation A is reduced by a set r precisely when
its tranpose AT contracts its complement r. A vector q is, thus, contracted by A

precisely when its complement reduces A. The condition A; r ⊆ r is trivially sat-
isfied for vectors , , so that interest concentrates mainly on non-trivial reducing
vectors, i.e., satisfying =/ r=/ .
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Fig. 6.4.1 indicates that arrows of the graph according to A ending in the subset
r will always start in r. It is easy to see that the reducing vectors r (this time,
of course, including the extremal ones, , ) form a lattice. The essence of the
reducibility condition is much better visible after determining a permutation P

that sends the 1 -entries of r to the end. Applying this simultaneously3 on rows and

columns, we obtain the shape P ;A;P T =
(
A11

A21 A22

)
as well as P ;r =

( )
. The

reduction condition in the form A ⊆ r;rT indicates directly that it is not the case
that from outside r to r there exists a connection according to A.

When visualizing contraction, we decide to show the 0 -field in the lower left part.
This means that it resides in the upper right of BT. The result may be obtained by
algebraic visualization as mentioned in Appendix C.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9


1 0 1 0 0 0 0 1 0
0 0 1 1 1 0 0 1 1
0 0 1 1 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 1 1
0 1 0 0 1 0 0 0 1
1 0 0 1 0 0 1 0 0


1
2
3
4
5
6
7
8
9



0
0
1
1
0
1
0
0
0


1 2 5 7 8 9 3 4 6

1
2
5
7
8
9
3
4
6


1 0 0 0 1 0 1 0 0
0 0 1 0 1 1 1 1 0
0 1 0 0 1 0 0 1 0
0 0 1 0 1 1 1 1 0
0 1 1 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0


1
2
5
7
8
9
3
4
6



0
0
0
0
0
0
1
1
1


B q simultaneous rearrangement

Fig. 6.4.2 Contraction BT
;q ⊆ q visualized as a self-filling funnel and via rearrangement

In a similar form, the essence of the contraction condition is now made visible. We
determine a permutation P that sends the 1 -entries of q to the end as shown on
the right side of Fig. 6.4.2. Applying this simultaneously on rows and columns we
obtain a shape for the matrix representing B with a lower left area of 0 ’s. This
indicates immediately that BT;q can never have an entry outside the zone of 1 ’s of
the vector q.

6.5 Progressively Infinite Subsets

The condition for a subset to reduce a relation is a nice and highly desirable prop-
erty, and has, thus, important applications. Now, we modify the condition A;x ⊆ x
only slightly, demanding y ⊆ A;y to hold. One will immediately observe that there
do not exist so many variants of this definition as, e.g., for reducibility according to
A;x ⊆ x ⇐⇒ AT;x ⊆ x. In general: A product on the greater side of some contain-
ment is much more difficult to handle. Nevertheless is there an easy to comprehend
interpretation of this condition in terms of graph theory.
3 Thus making it a cogredient permutation in the sense of [Fro12].
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One often looks for loops in a graph or for infinite paths. The task arises to charac-
terize the point set of starting points of an infinite path of a graph in an algebraic
fashion. We assume a homogeneous relation A : V −→ V , and a subset y ⊆ V to
be given.

— A;y ⊆ y expresses that all predecessors of y also belong to y. This is easily seen
in the corresponding predicate logic form ∀p : [∃q : (p, q) ∈ A∧ q ∈ y]→ p ∈ y.

— y ⊆ A;y expresses that every point of y precedes a point of y. This may again
be seen in the predicate logic form ∀p : p ∈ y → [∃q : (p, q) ∈ A ∧ q ∈ y].

If y is a set of starting vertices of infinite paths, y ⊆ A; y is obviously satisfied;
for q, one may choose the next vertex of one of the infinite paths starting from
p that are guaranteed to exist. This gives rise to an eigenvector consideration of
A ; y = y, characterizing y in analogy to an eigenvector x satisfying Ax = λx

in matrix analysis. We concentrate also on the complements. Looking for non-
infinite sequences in the execution of programs, e.g., means to be interested in the
terminating ones. This will later be studied in more detail in Sect. 16.2. We give
the following definition.

6.5.1 Definition. Let a homogeneous relation A be given and the subsets v, y. We
say that

i) y is progressively infinite with respect to A

:⇐⇒ ∀p : p ∈ y →
{
∃q : (p, q) ∈ A ∧ q ∈ y

}
⇐⇒ y ⊆ A;y

ii) v is complement-expanded by A

:⇐⇒ ∀p : p∈/ v →
{
∃q : (p, q) ∈ A ∧ q ∈/ v

}
⇐⇒ v ⊆ A;v

A related question is whether one will starting out of a set x with strict progress in
the graph unavoidably be lead to enter the set y. This is in two respects a question of
theoretical importance. Firstly, one may be interested in avoiding some error states
in system dynamics. On the other hand, one may wish to be sure to eventually
reach some set. This is also related with correctness investigations of programs.
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1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9


0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



{1
,6

,8
}

{1
,8
}

{}

1
2
3
4
5
6
7
8
9


1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
1 1 0
0 0 0



Fig. 6.5.1 All progressively infinite subsets y of A, i.e., those satisfying y ⊆ A;y

One will in the tiny example of Fig. 6.5.1 easily observe that all three progressively
infinite subsets — which are here combined to form a 3-column matrix — constitute
a set of sets closed under forming the union. Therefore, the greatest, — or the
supremum when non-finite — is of particular interest. Looking at the set {1, 6, 8}
of Fig. 6.5.1, we see that it characterizes precisely those vertices of the underlying
graph from which one may run into an infinite path.

5 4 2 3 7 9 1 6 8

5
4
2
3
7
9
1
6
8


0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0


Fig. 6.5.2 The same rearranged with the progressively infinite part at the end

In Fig. 6.5.2, one will easily observe that the upper right part is an empty relation
and that the lower left is arbitrary. The diagonal blocks are characterized as follows:
The upper left square does allow only finite progress because it is located in its strict
upper right triangle. The lower right diagonal block is a total relation, and will thus
allow infinite progress.

6.6 Stable and Absorbant Sets

Yet another form of distinguished sets are stable and absorbant sets. They are
defined in the homogeneous context, and when visualized, will be presented via
simultaneous permutation.
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6.6.1 Definition. Given any homogeneous relation B, or equivalently any 1-graph
with associated relation B, together with a set x, we call

x stable :⇐⇒ ∀p :
{
∃q : (p, q) ∈ B ∧ q ∈ x

}
→ p∈/ x ⇐⇒ B;x ⊆ x

Instead of a stable set, one often calls it an internally stable set; it is characterized
by the fact that the pair x, x is a rectangle (in fact a square) outside B. One may
also say that no arrow is allowed to exist from a vertex of x to a vertex of x.

The following condition looks quite similar, but is in fact structurally rather differ-
ent.

6.6.2 Definition. Given any homogeneous relation B, or equivalently any 1-graph
with associated relation B, together with a set x, we call

x absorbant :⇐⇒ ∀p : p∈/ x→
{
∃q : (p, q) ∈ B ∧ q ∈ x

}
⇐⇒ x ⊆ B;x

Instead of an absorbant set, one speaks also of an externally stable set; it has no
easy characterization in terms of rectangles. The characteristic property in graph-
theoretical terms is: From every vertex outside x there exists an arrow leading
into x.

1

2

6

5

4

3

x =

1
2
3
4
5
6


0
0
1
1
1
1

 B =

1 2 3 4 5 6

1
2
3
4
5
6


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 1
0 1 0 0 0 0
1 0 0 1 0 1
1 0 0 0 0 0

 x =

1
2
3
4
5
6


1
1
0
0
0
0



Fig. 6.6.1 An absorbant set

The following concept of a kernel has extensively been studied in our general refer-
ence texts [SS89, SS93], where also a lot of game examples, not least in chess has
been presented. So, we can here briefly summarize the basic definitions.

6.6.3 Definition. Given any homogeneous relation B, or equivalently any 1-graph
with associated relation B, together with a set x, we call the vector

x a kernel :⇐⇒ ∀p : p∈/ x↔
{
∃q : (p, q) ∈ B ∧ q ∈ x

}
⇐⇒ x = B;x
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A kernel is at the same time a stable and an absorbant set. Some further information
is contained in Sect. 16.4. The determination of kernels, even the question if a kernel
exists, is very difficult in general.

Some of this may also be presented under the heading of a covering point set or
edge set.

6.6.4 Definition. Given a homogeneous relation B : X −→ X, we call a vector

v a point-covering :⇐⇒ ∀p :
{
∃q : (p, q) ∈ B ∧ q ∈/ v

}
→ p ∈ v

⇐⇒ B;v ⊆ v

The vector v is, thus, a point-covering of B precisely when v, v is a covering pair of
sets according to Def. 6.3.1.ii. One is in particular interested in minimal ones; see
Fig. 6.6.2.

a b c d e f g h i j k

a
b
c
d
e
f
g
h
i
j
k



0 0 1 1 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0
0 0 1 1 1 0 0 1 0 0 0
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0 0 0 1 0 1 1 0 1
1 1 0 1 1 1 1 1 0
1 1 1 0 1 0 0 1 0
1 1 1 1 1 0 0 1 0
1 1 1 0 0 0 0 0 1
1 0 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 1
1 1 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1


Fig. 6.6.2 A relation and all its minimal covering point sets
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Domain Construction

It has been shown in Chapters 2 and 3 in which way moderately sized sets (termed
basesets when we want to stress that they are linearly ordered, non-empty, and
finite), elements, vectors, and relations may be represented. There is a tendency
of trying to extend these techniques indiscriminately to all finite situations. We do
not follow this idea. Instead, sets, elements, vectors, or relations — beyond what
is related to ground sets — will carefully be constructed; in particular if they are
“bigger” ones. Only a few generic techniques are necessary for that which shall here
be presented as detailed as appropriate.

These techniques are far from being new. We routinely apply them in an informal
way since our former school environment. What is new in the approach chosen here
is that we begin to take those techniques seriously: pair forming, if . . . then . . .
else-handling of variants, quotient forming, etc. For pairs, we routinely look for the
first and second component; when a set is considered modulo an equivalence, we
work with the corresponding equivalence classes and obey carefully that our results
do not depend on the specific representative chosen, etc.

What has been indicated here requires, however, a more detailed language to be
expressed. This in turn means that a distinction between language and interpreta-
tion suddenly is important which one would like to abstract from when handling
relations “directly”. It turns out that only one or two generically defined relations
are necessary for each construction step with quite simple and intuitive algebraic
properties. Important is that the same generically defined relations will serve to
define new elements, new vectors, and new relations — assuming that we know
how this definition works on the constituents.

The point to stress is that once a new category object has been constructed, all
elements, vectors, and relations touching this domain will be defined using the
generic tools while others can simply not be formulated.
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7.1 Domains of Ground Type

All our constructions are supposed to start with ground types, which we assume
to be given explicitly as shown earlier in Sect. 2.1. Demanding them to be non-
empty is not really a restriction: Case distinctions as to being empty or not have
to be made anyway; we postulate that these distinctions be made before entering
into further constructions. Relations on ground types are typically given explicitly,
i.e., with whatever method mentioned in Chapt. 3. This is where we usually start
from. Also elements and vectors are given explicitly and not constructed somehow;
this follows the lines of Chapt. 2.

Already on ground types, however, specific relations may be constructed. Such a
relation will start from vectors v ⊆ X and w ⊆ Y and result in the rectangular
relation v;wT : X −→ Y . In Fig. 7.1.1, we thus define the relation between all the
red Bridge suits and all the picture-carrying ones among the Skat card levels Ace,
King, Queen, Jack, 10, 9, 8, 7. It is a constructed relation although between ground
sets — in contrast to R, a relation given marking arbitrarily.

e =
♠
♥
♦
♣

(
0
0
1
0

)
v =

(
0
1
1
0

)
w =

A
K
D
B

10
9
8
7


0
1
1
1
0
0
0
0

v;wT =

A K D B 1
0

9 8 7

♠
♥
♦
♣

(
0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0

)
R =

A K D B 1
0

9 8 7(
0 0 0 0 0 1 0 0
0 0 1 1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0

)

Fig. 7.1.1 Element, vectors, constructed rectangle; explicit relation R of ground type

7.2 Direct Product

Pairs, triples, and n-tuples are omnipresent in everyday situations. All pairs with
elements of sets X,Y as components make up a Cartesian product X × Y of these
sets. The notation (x, y) ∈ X×Y for pairs with parentheses and separating comma
in between is very common and need not be explained any further.

We have, however, introduced the concept of types t1, t2 which may — possibly
only later — be interpreted by sets. So we have to show in a generic fashion how
such pair-forming can be achieved. Assuming a type t1 and a type t2 to be given,
we constructively generate their direct product. As an example we provide different
interpretations for these types, namely for t1

BrigeHonourValues = {A,K,Q,J,10} or SkatCardLevels = {A,K,D,B,10,9,8,7}
and in addition for t2

BridgeSuits = {♠,♥,♦,♣} or SkatSuits = {♣,♠,♥,♦}
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Constructively generating the direct product of t1, t2 means to obtain, depending
on the interpretation, either one of the following Bridge honour cards

{(Ace,♠),(King, ♠),(Queen,♠),(Jack,♠),(10,♠),
(Ace,♥),(King, ♥),(Queen,♥),(Jack,♥),(10,♥),
(Ace,♦),(King, ♦),(Queen,♦),(Jack,♦),(10,♦),
(Ace,♣),(King, ♣),(Queen,♣),(Jack,♣),(10, ♣)}

or Skat cards
{(A,♣),(K,♣),(D,♣),(B,♣),(10,♣),(9,♣),(8,♣),(7,♣),
(A,♠),(K,♠),(D,♠),(B,♠),(10,♠),(9,♠),(8,♠),(7,♠),
(A,♥),(K,♥),(D,♥),(B,♥),(10,♥),(9,♥),(8,♥),(7,♥),
(A,♦),(K,♦),(D,♦),(B,♦),(10,♦),(9,♦),(8,♦),(7,♦)}

Projections

What we actually need are the projections from a pair to its components. In both
cases, we can easily observe the projection on the first, respectively second, compo-
nent of the direct product which we denote as π, ρ. This is, however, a bit sloppy
in the same sense as notation for the identity was: We have not indicated the
product we are working with as in the full form

π : X × Y −→ X and ρ : X × Y −→ Y ,

which seems overly precise when X,Y and X × Y are already known from the
context.

It is obviously necessary to regulate this in a fully schematic way. In the language
TituRel we are offered the possibility to denote in full length, namely

DirPro t1 t2, the product domain, corresponding to X × Y
Pi t1 t2 and Rho t1 t2, the left and the right projection.

Baseorder of a direct product

One may have wondered concerning the order of elements in the direct product of
Fig. 7.2.1 and the left- resp. right-hanging “mandrels”. In both cases π has 1 ’s in
lines of +45 degrees beginning with length 1, length 2, increased to length of X and
going down to length 1 again. Correspondingly, both ρ’s follow this scheme along
−45 degrees. We will now discuss this effect in a detailed example.

Assume workers to play some game during the noon break and start from two sets

workDays = {Mon, Tue, Wed, Thu, Fri}
and

bsGameQuali = {Win,Draw,Loss}.
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(Ace,♠)
(King,♠)
(Ace,♥)

(Queen,♠)
(King,♥)
(Ace,♦)

(Jack,♠)
(Queen,♥)

(King,♦)
(Ace,♣)
(Ten,♠)

(Jack,♥)
(Queen,♦)

(King,♣)
(Ten,♥)

(Jack,♦)
(Queen,♣)

(Ten,♦)
(Jack,♣)
(Ten,♣)



1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1



♠ ♥ ♦ ♣

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 1


A K D B 1
0

9 8 7

(A,♣)
(K,♣)
(A,♠)
(D,♣)
(K,♠)
(A,♥)
(B,♣)
(D,♠)
(K,♥)
(A,♦)
(10,♣)
(B,♠)
(D,♥)
(K,♦)
(9,♣)

(10,♠)
(B,♥)
(D,♦)
(8,♣)
(9,♠)

(10,♥)
(B,♦)
(7,♣)
(8,♠)
(9,♥)

(10,♦)
(7,♠)
(8,♥)
(9,♦)
(7,♥)
(8,♦)
(7,♦)



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



♣ ♠ ♥ ♦

1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 1


π ρ π ρ

Fig. 7.2.1 Generic projection relations π and ρ interpreted differently

For the present book, we have chosen to present pairsets with a baseorder as follows:

workDays × bsGameQuali =

{(Mon,Win),(Tue,Win),(Mon,Draw),(Wed,Win),(Tue,Draw),(Mon,Loss),

(Thu,Win),(Wed,Draw),(Tue,Loss),(Fri,Win),

(Thu,Draw),(Wed,Loss),(Fri,Draw),(Thu,Loss),(Fri,Loss)}

The projections shown on the right of Fig. 7.2.2 are compared with another possible
arrangement that might seem even more evident, but is less symmetric.
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0 0 0 1 0
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0 1 0
0 0 1


Fig. 7.2.2 Projections π, ρ of direct product shown in two arrangements

Of course, having the same first, resp. second, component is an equivalence relation
as one may see from Fig. 7.2.3 for the left variant.
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π;πT ρ;ρT

Fig. 7.2.3 Relations of having same first resp. second component on the left of Fig. 7.2.2

The equivalence aspect of π;πT could be seen far more easily in case the diagonal
squares are arranged diagonally as in Fig. 7.2.4, as a consequence of choosing the
second variant for the projections in Fig. 7.2.2 — at the cost of ρ;ρT looking not so
nice.
Since we have chosen to conceive basesets as ordered entities, we had also to decide
for an ordering of the direct product of two basesets. The most näıve way to present
projections would have been the right version of Fig. 7.2.2. But because this is not
sufficiently symmetric with regard to the components, we have decided for the left
side as a result of Cantor’s diagonal enumeration. This diagonal-oriented sequence
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π;πT ρ;ρT

Fig. 7.2.4 Relations for the same first resp. second component of Fig. 7.2.2 rearranged

seems rather difficult to handle; but it allows to a certain extent to visualize the
pairset even when non-finite sets are involved.

The sequence of presenting its elements in π is depicted in the following diagonal
schema:

W
in

D
ra

w

L
o
ss

Mon
Tue

Wed
Thu
Fri

 1 3 6
2 5 9
4 8 12
7 11 14
10 13 15


Fig. 7.2.5 Enumeration scheme for a direct product

The projection relations look differently now. One will not so easily recognize how
they are built and that they are built in a very regular fashion. Their algebraic
properties, however, prevail.

Whatever we do with a direct product shall henceforth be expressed via the pro-
jections mentioned. This concerns in particular that we allow to define elements
just by projections in combination with elements in the constituent sets. The same
holds true for definition of vectors.
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1             2                 3                4                 5                6                7   .  .  . 

a

b

c

d

e

(a,1) (a,2)

(b,1)

(c,1)

(b,2)

(a,3) (a,4) (a,5) (a,6)

(b,3) (b,4) (b,5)

(c,2) (c,3) (c,4)

(d,1) (d,2) (d,3)

(e,1) (e,2) .  .  .

Fig. 7.2.6 Exhaustion of an infinite pair set

Since we work with relations, we have the opportunity of an interesting exercise
to relate and to algebraically visualize the two versions. The transition from the
presentation we have chosen for this book to the presentation as in Fig. 7.2.2 is easily
achieved. Assume B1, B2 to be the baseorders in the first, resp. second factor. Then
the lexicographic order of the product is

L := π;C1;πT ∪ (π;πT ∩ ρ;B2;ρT).

where C1 := B1 ∩ is the strictorder corresponding to B1. In this term, it is
regulated that a pair is less or equal to another one either if its first component
is strictly inferior to the other or if the first components coincide and its second
component is less or equal. The relation L is easily shown to be a linear ordering
to which the permutation to upper triangle (see Appendix C) must be determined,
which finally gives the transition between the two versions of presentation. (Be
aware that the two relation have different column type.)

Normally, we abstract from these details of representation. But whenever we have
to present such stuff, we have to decide for some form. Also, when programs to
handle relations are conceived, one has to decide, as these require representation
inside the memory of the computer. Only now, personal computers are fast enough
to handle relations and thus to provide support in algebraic considerations, and,
thus, only now, these decisions have to be made. Once they are, one has additional
options as, e.g., also to compute the permutations necessary and to try to be more
independent from representation again.

Elements in a direct product

The question is now how to introduce elements of a direct product type. We assume
to know how elements are defined for the component types. We need both, eX and
eY standing for elements denoted in X and in Y , respectively. Then (eX , eY ) is no-
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linear order permutation to it

Fig. 7.2.7 The linear ordering L and the permutation to it

tational standard for an element in the direct product X×Y obtained algebraically
as π;eX ∩ ρ;eY .

♠ ♥ ♦ ♣

(♠,Ace)
(♥,Ace)

(♠,King)
(♦,Ace)

(♥,King)
(♠,Queen)

(♣,Ace)
(♦,King)

(♥,Queen)
(♠,Jack)
(♣,King)

(♦,Queen)
(♥,Jack)

(♠,10)
(♣,Queen)

(♦,Jack)
(♥,10)

(♣,Jack)
(♦,10)
(♣,10)



1 0 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1


π

♠
♥
♦
♣

(
0
0
1
0

)

eX



0
0
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1
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1
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0
1
0
0
0
1
0
0
1
0
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1
0

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1


ρ

Ace
King

Queen
Jack

10

0
0
0
1
0



eY



0
0
0
0
0
0
0
0
0
1
0
0
1
0
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1
0
1
0
0


ρ;eY



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0


π;eX ∩ ρ;eY

Fig. 7.2.8 Two elements, projection relations and pair as element in direct product

With these techniques, every element in the product may be denoted.
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Vectors in a direct product

In a similar way, we now strive to denote a vector in the direct product. From Part
I we know that a vector is easy to express for ground sets: We use the explicit
enumeration or the marking techniques of Sect. 2.3. The question becomes more
involved when the type is a direct product. Basic forms of vectors may then be
defined in the following ways. Of course others may in addition be obtained with
intersections, unions, complements, etc.

If vX and vY stand for expressible vectors to define subsets in X or Y , respectively,
then in the first place only π;vX and ρ;vY are expressible subsets in the direct product
X ×Y . From these, further vectors may be obtained by Boolean operations. In the
following Skat example, we first project to red cardsuits, then to value cards and
finally obtain red value cards via intersection.

♣ ♠ ♥ ♦
(♣,A)
(♠,A)
(♣,K)
(♥,A)
(♠,K)
(♣,D)
(♦,A)
(♥,K)
(♠,D)
(♣,B)
(♦,K)
(♥,D)
(♠,B)

(♣,10)
(♦,D)
(♥,B)

(♠,10)
(♣,9)
(♦,B)

(♥,10)
(♠,9)
(♣,8)

(♦,10)
(♥,9)
(♠,8)
(♣,7)
(♦,9)
(♥,8)
(♠,7)
(♦,8)
(♥,7)
(♦,7)
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0 1 0 0
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0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1
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0
0
1
1

)
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1
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A K D B 10 9 8 7
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(♦,A)
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(♠,D)
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π;vX ∩ ρ;vY

Fig. 7.2.9 Projections to vectors in components and vector in direct product

There is some further important consequence in restricting to notations derived
with projections. When we construct vector denotations from those in the finite
enumerated basesets, we cannot assume to formulate arbitrarily complex sets in
the product, e.g. Rather, we are restricted to the constructions that are offered.
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Relations starting or ending in a direct product

Let two relations R : A −→ B and S : A −→ Y as on the left of Fig. 7.2.11
be given, i.e., with the same source. Then a typical task requires to construct the
relations R;πT : A −→ B × Y and S;ρT : A −→ B × Y ending in the direct product
of the targets. From these, others such as R; πT ∪ S;ρT, e.g., may be built using
Boolean operators. One of the particularly interesting constructions is the strict
fork operator1 with type

(R©< S) : A −→ B × Y defined as (R©< S) := R;πT ∩ S;ρT.
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Fig. 7.2.10 Strict fork operator (R©< S) applied to relations with common source

In a symmetric way, we construct relations with the same target starting in a direct
product. Let two relations R : B −→ A and S : Y −→ A be given. Then it is typical
to construct the relations π;R : B × Y −→ A and ρ;S : B × Y −→ A ending in the
common target. From these further relations may be built using Boolean operators,
among which the converses of the strict fork are important, namely the strict join
operator with type

(R©> S) : B × Y −→ A defined as (R©> S) := π;R ∩ ρ;S.

1 This should not be mixed up with the non-strict fork operator. The difference is best seen at the
requirement that (R < S);π = R regardless of S being total or not.
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A

B

R

Y

S

B × Y

π

ρ

R < S

A × X

A B
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Fig. 7.2.11 Typing of product-related operations (R©< S) , (R©× S) , and (R©> S)

In addition, there exists what we have decided to denote as Kronecker product2.
Given R : A −→ B and S : X −→ Y , the Kronecker product is typed

(R©× S) : A×X −→ B × Y and defined as (R©× S) := π;R;π′
T ∩ ρ;S;ρ′

T

In the example of Fig. 7.2.12, one will observe that all rows with c as first component
are rows of 0 ’s, thus destroying any information on the second component in a
Kronecker product.
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Fig. 7.2.12 Kronecker product (R©× S) of two relations without any typing interrelation

When one is about to define binary mappings, one may also sometimes employ
the direct product. We anticipate here as an example the well-known non-modular
lattice of Fig. 7.2.13, given via its ordering relation E : X −→ X. The task is to
obtain the least upper resp. greatest lower bound (i.e., join and meet) as binary
mappings J : X ×X −→ X and M : X ×X −→ X. One will introduce the direct
product DirPro x x corresponding to X × X, together with the two projections
π, ρ and simply form

J := lubRE(π ∪ ρ) and M := glbRE(π ∪ ρ)

2 Also here, we must be careful with regard to denotation, for which have also been used tensor
product, parallel composition (as in [Keh08]), and tupeling. It should be recognized that we here
mean the strict operation as opposed to the non-strict one for which parallel composition is
acceptable.
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E J M

Fig. 7.2.13 Determining join and meet operator out of the ordering E of the lattice

Algebraic properties of the generic projection relations

Product definitions have long been investigated by relation algebraists and com-
puter scientists. A considerable part of [TG87] is devoted to various aspects of
that. The following definition of a direct product produces a Cartesian product of
sets that is characterized in an essentially unique way3.

Mathematicians observed that whatever variant of projection they decided for,
certain algebraic rules had been satisfied. This was then turned around and asked
whether this was characteristic for projections — which it is.

7.2.1 Definition. If any two heterogeneous relations π, ρ with common source are
given, they are said to form a direct product4 if

πT;π = , ρT;ρ = , π;πT ∩ ρ;ρT = , πT;ρ = .

In particular, π, ρ are mappings, usually called projections.

3 We avoid here to speak of “up to isomorphism”, which would be the mathematically correct form.
In this chapter, we try to convince the reader and we give visual help, not yet fully formal proofs.

4 Such pairs of relations have been studied and axiomatized in a not yet satisfactory form already by
Alfred Tarski in his note [Tar53].
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Fig. 7.2.14 Another Kronecker product of two relations — unrelated as to their types

The first two conditions require π, ρ to be univalent and surjective5. Interpreting
the condition π;πT∩ρ;ρT ⊆ in the case of two sets A,B and their Cartesian product
A × B, it ensures that there is at most one pair with given images in A and B.
In addition, “= ” means that π, ρ are total, i.e., that there are no “unprojected
pairs”. Finally, the condition πT;ρ = implies that for every element in A and every
element in B there exists a pair in A×B.

Assume π, ρ as well as some others, e.g., π′, ρ′ of Fig. 7.2.15 presented by a student,
to satisfy these formulae. The targets of π, π′ coincide indeed, as well as those of

5 One or the other category theorist will complain concerning surjectivity being demanded. In
Mathematics indeed, the direct product of A× B with A the empty set and B non-empty will not
have a surjective projection ρ on B. When we here demand surjectivity, this means that the
question of being empty or not — that must be handled anyway — has to be handled before
entering into the direct product construction.
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ρ, ρ′. Then we can explicitly construct a bijection that realizes π′ as a permuted
version of π and ρ′ of ρ, namely

P := π;π′T ∩ ρ;ρ′T

For the example of Fig. 7.2.2, this is shown in Fig. 7.2.15.
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Fig. 7.2.15 Other projections π′, ρ′ for Fig. 7.2.2,

bijection π;π′
T ∩ ρ;ρ′

T
to relate to these

What we have achieved when constructively generating the direct product DirPro
t1 t2 is essentially unique, which suffices for practical work. In the TituRel-
system, e.g., one version is implemented. Should somebody else independently start
implementing another version, this will probably be different. Given both, however,
we are in a position to construct the bijection that relates them.

An advanced view on the direct product

We recommend that this subsection be totally skipped at first reading; so there is no
longer reason to hide its proofs and postpone them to the appendix. The following
touches a difficult issue concerning direct products and is explained together with
vectorization.

First, we provide several formulae in connection with direct product, Kronecker
product, and projections. They are here explained and visualized. Even their partly
delicate proofs are given — in contrast to the policy followed elsewhere in this
chapter.

7.2.2 Proposition. Let relations R : A −→ B and S : X −→ Y be given and
consider the direct products on the source and on the target side of these relations,
so that

π : A×X −→ A ρ : A×X −→ X and π′ : B×Y −→ B ρ′ : B×Y −→ Y
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are the respective projections. Then the following hold:

i) (R©× S) ;π′ = π;R ∩ ρ;S; Y,B ⊆ π;R

(R©× S) ;ρ′ = ρ;S ∩ π;R; B,Y ⊆ ρ;S

ii) (R©× S) ; (P ©× Q) ⊆ (R;P ©× S;Q)

Proof : i) may be proved using mainly Prop. 5.1.4:

(R©× S) ;π′ = (π;R;π′
T ∩ ρ;S;ρ′

T);π′ by definition
= π;R ∩ ρ;S;ρ′

T
;π′ Prop. 5.1.4

= π;R ∩ ρ;S; following Def. 7.2.1

ii) (R©× S) ; (P ©× Q) = (π;R;π′
T ∩ ρ;S;ρ′

T); (π′;P ;π′′
T ∩ ρ′;Q;ρ′′

T) expanded
⊆ π;R;π′

T
;π′;P ;π′′

T ∩ ρ;S;ρ′
T

;ρ′;Q;ρ′′
T monotony

= π;R;P ;π′′
T ∩ ρ;S;Q;ρ′′

T using Def. 7.2.1 for the projections π′, ρ′

= (R;P ©× S;Q) by definition

It is even easier to prove in a similar way the following.

7.2.3 Corollary.

i) Consider the strict fork relation (R©< S) : A −→ B × Y built from the two
relations R : A −→ B and S : A −→ Y . Then

(R©< S) ;π = R ∩ S; and (R©< S) ;ρ = S ∩ R;

ii) Consider the strict join relation (R©> S) : B × Y −→ A built from the two
relations R : B −→ A and S : Y −→ A. Then

πT; (R©> S) = R ∩ ;S and ρT; (R©> S) = S ∩ ;R

To Prop. 7.2.2 and Cor. 7.2.3 belongs a rather evident corollary.

7.2.4 Corollary. Assuming the typing of Prop. 7.2.2 and Cor. 7.2.3, the following
hold:

i) (R©× S) ;π′ = π;R provided S is total
(R©× S) ;ρ′ = ρ;S provided R is total

ii) (R©< S) ;π = R provided S is total
(R©< S) ;ρ = S provided R is total

iii) πT; (R©> S) = R provided S is surjective
ρT; (R©> S) = S provided R is surjective
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This is a situation where we should pause a little and have a look around. In view
of the c-related rows of Fig. 7.2.12, one will probably accept that in Prop. 7.2.2.i
equality does not hold in general. Later we will find additional conditions that
guarantee equality. But what about Prop. 7.2.2.ii? With Fig. 7.2.16, we get a hint
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Fig. 7.2.16 An example of equality in Prop. 7.2.2.ii even in case of most general typing

that there may hold equality. Any other such example will underpin this conjecture.
So one may be tempted to try a proof. A proof with methods of predicate logic is
easily established: Assume any point(

(x, y), (u, v)
)
∈ (R;P ©× S;Q) ,

which means by definition(
(x, y), (u, v)

)
∈ π;R;P ;π′′ ∩ ρ;S;Q;ρ′′

T
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Then obviously(
(x, y), (u, v)

)
∈ π;R;P ;π′′

T and
(
(x, y), (u, v)

)
∈ ρ;S;Q;ρ′′

T,

meaning

(x, u) ∈ R;P and (y, v) ∈ S;Q,

so that

∃a : (x, a) ∈ R ∧ (a, u) ∈ P and ∃b : (y, b) ∈ S ∧ (b, v) ∈ Q
From a, b thus obtained, one may recombine an existing pair (a, b) in between so
as to arrive at(

(x, y), (a, b)
)
∈ π;R;π′

T ∩ ρ;S;ρ′
T and

(
(a, b), (u, v)

)
∈ π′;P;π′′

T ∩ ρ′;Q;ρ′′
T

which results in(
(x, y), (u, v)

)
∈ (π;R;π′

T ∩ ρ;S;ρ′
T); (π′;P ;π′′

T ∩ ρ′;Q;ρ′′
T)

and, thus, finally in(
(x, y), (u, v)

)
∈ (R©× S) ; (P ©× Q)

Today, we know that a proof of Prop. 7.2.2.ii with equality in the point-free relation-
algebraic style maintained so far does not exist6. What does this mean? One
attitude is to abandon all the algebraic axiomatization developed in the present
book for being inadequate and to return to predicate-logic reasoning. We will —
of course — not react in this way. Rather, we remember that in geometry people
have over two thousand years been incapable of proving that there is precisely one
parallel to a given line through a given point outside of that line. This seemed very
obviously satisfied but could not be proved in the Euclidian axiomatization. Only in
the first half of the 19th century, after earlier work of Gauß, János Bolyai and Niko-
lai Ivanovich Lobachevsky independently found out that there exist non-Euclidian
geometries where this may indeed not hold. There existed, thus, an intricate bor-
derline between facts that could be proved and other facts that did obviously hold,
but could not be proved. The study of such variant geometries later turned out to
enhance the mathematical modelling power in the course of introducing relativity
theory.

We may here be in a similar position. Do there exist non-standard models where

6 The non-provability of Prop. 7.2.2.ii has in [BHSV94] been called the unsharpness problem. It had
been Rodrigo Cardoso on November 26, 1982, who during his diploma thesis with the present
author declared himself definitely unable to prove, in a point-free manner, what had at that time
been considered merely a class exercise. This was the start of a deeper study. As late as October
20–27, 1991, during the “Semester on Algebraic Logic” at the Stefan Banach Mathematical Center
in Warsaw, Roger Maddux when consulted concerning this problem, immediately proposed a
point-free proof of the equation. This was correct but considered insufficient in a letter of the
present author to him of March 8, 1992 for not having adhered to most general typing. Roger
Maddux felt triggered to construct a small finite example in a non-representable relation algebra
that indeed violates equality. Already in 1992, he communicated on this and later explained it in
detail to the present author during a common stay in Rio de Janeiro in August 1994. It may be
found, e.g., in [Mad95] and in computer-checkable form in Sect. 3.2 of [KS00].
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Prop. 7.2.2.ii holds in the “weak” form, precisely as proved here, that provide us
with additional modelling power? Part of this question has been positively answered,
but cannot be elaborated here.

In case one of the relations involved in Prop. 7.2.2.ii is an identity , the situation
changes considerably, which we explain in the next proposition. The typingfor the
respective first variants of the formulae is then heavily specialized as anticipated in
Fig. 7.2.17.

A × X

A B
Q

π

ρ

X Y
R

B × X

π´ρ́

[]

[]

X

B

B × Y

π´́

ρ´́

[](Q ⊗��    )
[](   ⊗�� R)

S

T

C

X
B

Fig. 7.2.17 Indicating the specialization of typing for Prop. 7.2.5

7.2.5 Proposition. Assume the typing specialized as indicated in Fig. 7.2.17 for
the left formulae.

i) (Q©× X) ;π′ = π;Q ( ©×M) ;ρ′ = ρ;M

ii) (Q©× X) ; (S©> T ) = ((Q;S)©> T ) ( ©×M) ; (K©> L) = (K©> (M ;L))
iii) (Q©× X) ; ( B©× R) = (Q©× R) ( ©×M) ; (K©× ) = (M©× K)

Proof : i) follows from Cor. 7.2.4, since is total

ii) Direction “⊆” uses mainly monotony
(Q©× ) ; (S©> T ) =

(
π;Q;π′

T ∩ ρ; ;ρ′
T
)

;

(
π′;S ∩ ρ′;T

)
expanding

⊆ π;Q;π′
T
π′;S ∩ ρ;ρ′

T
;ρ′;T monotony

= π;Q;S ∩ ρ;T since π′, ρ′ form a direct product
= ((Q;S)©> T ) by definition

To prove direction “⊇” is a bit more involved:

((Q;S)©> T ) = π;Q;S ∩ ρ;T expanding
=
[
π;Q;π′

T ∩ ρ; ;ρ′
T
]

;π′;S ∩ ρ;T Prop. 7.2.4.i since is total
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⊆
([
π;Q;π′

T ∩ ρ; ;ρ′
T
]
∩ ρ;T ;ST;π′

T
)

;

(
π′;S ∩

[
π;Q;π′

T ∩ ρ; ;ρ′
T
]T

;ρ;T
)

Dedekind
⊆
(
π;Q;π′

T ∩ ρ; ;ρ′
T
)

;

(
π′;S ∩ ρ′;ρT;ρ;T

)
monotony

=
(
π;Q;π′

T ∩ ρ; ;ρ′
T
)

;

(
π′;S ∩ ρ′;T

)
since ρ is univalent and surjective

= (Q©× ) ; (S©> T ) by definition

iii) Aiming at a use of (ii), we specialize C := B × Y , as well as S := ;π′′
T and

T := R;ρ′′
T in order to get

(Q©× ) ; ( ©× R) = (Q©× ) ;

(
π′; ;π′′

T ∩ ρ′;R;ρ′′
T
)

expanding
= (Q©× ) ;

(
π′;S ∩ ρ′;T

)
abbreviated

= (Q©× ) ; (S©> T ) by definition
= ((Q;S)©> T ) due to (ii)
= π;Q;S ∩ ρ;T expanded again
= π;Q;π′′

T ∩ ρ;R;ρ′′
T abbreviations cancelled

= (Q©× R) by definition

It will easily be seen from Prop. 7.2.5.iii, that this construct should not be called
parallel composition although it resembles part of the idea. Let us consider (iii)
expanded by the right variant:

(Q©× X) ; ( B©× R) = (Q©× R) = ( A©× R) ; (Q©× Y )

This does express correctly that Q and R may with one execution thread be exe-
cuted in either order. However, no two execution threads are provided to execute
in parallel. Modelling truly parallel computation, needs ideas that are explained
only later in Sect. 19.1. It touches deep concepts of informatics that even today
are not commonly understood. Recall the predicate-logic proof of the unsharpness
result and assume the two “parallel” processes R;P and S;Q to have taken place
in different houses or even in different continents. Then “observability”, i.e., the
technical problem of fixing a, b, would have been really difficult. Even the problem
of relative speed of the two processes and the speed compared with the speed of
communicating their results becomes important.

A × B

A B
R

π ρ

Fig. 7.2.18 Typing for vectorization in general

The concept of vectorization has already shown up in Fig. 3.1.1 where a relation
had also been represented as a vector. In several areas of algebra, one speaks of
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vectorization when a matrix is by a linear transformation converted into a column
vector. It may also be applied fruitfully in the present context of a direct product,
not least because it cooperates nicely with the Kronecker product.

7.2.6 Definition. Let any relation R : A −→ B be given and form the direct
product A × B with projections denoted as π, ρ. Then the vector resulting out of
the operation

vec(R) := (π;R ∩ ρ); B = (R©> ) ; B

is called the vectorization of R.

The notational variant is obvious in view of the definition of the strict join. One
will identify the operation rel(v) := πT; (v; ∩ ρ) as the inverse operation. This is
elaborated in detail in [SS89, SS93].

A × X

A B
Q

π

ρ

X Y
S

B × Y

π´

ρ´

S

R

(Q ⊗����   )

Fig. 7.2.19 Typing for the vectorization formula of Prop. 7.2.7

We are now in a position to prove a technical result (see [Keh08]) on vectorization
of relations in combination with the Kronecker product.

7.2.7 Proposition. Let relations Q : A −→ B, S : Y −→ X and R : B −→ Y be
given and consider the direct products A×X and B × Y with

π : A×X −→ A ρ : A×X −→ X and π′ : B×Y −→ B ρ′ : B×Y −→ Y

the respective projections. Then the following holds:

vec(Q;R;S) = (Q©× ST) ;vec(R)

Proof : Below, containments are in cyclical order so that equality holds everywhere
in between:

(Q©× ST) ;vec(R) = (Q©× ) ; ( ©× ST) ; (R©> ) ; Prop. 7.2.5.iii; definition
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= (Q©× ) ; (R©> ST) ; Prop. 7.2.5.iii
= ((Q;R)©> ST) ; Prop. 7.2.5.ii
= (ρ;ST ∩ π;Q;R); definition with intersection terms exchanged (∗)
⊆ (ρ ∩ π;Q;R;S); (ST ∩ ρT;π;Q;R); Dedekind rule
⊆ (π;Q;R;S ∩ ρ); = vec(Q;R;S) monotony gives what had to be proved
⊆ (π;Q;R ∩ ρ;ST); (S ∩ RT;QT;πT;ρ); Dedekind rule
⊆ (π;Q;R ∩ ρ;ST); monotony closing the cycle to (∗)
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Fig. 7.2.20 Vectorization of relations R1, R2, R3 in order to handle them simultaneously

We try to visualize the idea of vectorization with Fig. 7.2.20. Following denotation
of Prop. 7.2.7, the two upper most relations are Q,S. They shall be applied to the
relations R1, R2, R3 on the second line. In order to handle these simultaneously,
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a Kronecker product is formed and the relations are vectorized as shown in line
three. The last 3-column-relation =: M has been obtained simply putting the three
vectors side by side for later being handled simultaneously, i.e., like just one matrix.
The results of the treatment (Q©× ST) ;vec(M) are shown — already singled out
again — and transformed back to the relations Q;Ri;S of the lowest line.

Exercises

7.2.1 Prove that the Kronecker product is “∪”-distributive in both of its compo-
nents. Show that if R,S have the generalized inverses G,H, then (G©× H) is the
generalized inverse of (R©× S) .

7.2.2 Prove for the highly specialized Kronecker product of Q : A −→ B and
R : B −→ A that

(Q;R©× ) ; A×A,A = (Q©× RT) ; B×B,A = π;Q;R; A,A

7.3 Direct Sum

While product — or pairset — forming is quite well-known also to non-specialists,
variant handling is known far less7. We encounter it as if—then—else—fi or in case
distinctions8. Often it is met as a disjoint union.

Again, we will handle this constructively and in a generic form. With the term
direct sum we mean the type DirSum t1 t2 which may be interpreted as, e.g.,

nationalities + colors

or else as
germanSoccer + internationalSoccer

While notation is rather obvious in the first case,

nationalities + colors =
{US,French,German,British,Spanish,red,green,blue,orange},

we have to take care for overlapping element notations in the second:

germanSoccer + internationalSoccer =
[Bayern München<, >Arsenal London,
Borussia Dortmund<, >FC Chelsea,

>Juventus Turin,
Werder Bremen<, >Manchester United,
Schalke 04<, >Bayern München,

7 Even in the design of programming languages (such as Algol, Pascal, Modula, Ada, e.g.) variants
were largely neglected or not handled in the necessary pure form as nowadays in Haskell.

8 It should be made clear, however, that we aim at “structural” distinctions and not at such willful
ones as, e.g., income > £ 123.45 in tax tables.



7.3 Direct Sum 127

>Borussia Dortmund,
>FC Liverpool,

>Ajax Amsterdam,
VfB Stuttgart<, >Real Madrid,

>Olympique Lyon]

Borussia Dortmund was formerly considered as a German soccer team as well as
an international soccer team. It is wise to keep these two concepts separate. One
will therefore introduce some piece of notation to make clear from which side the
elements come. Here, we have chosen angle marks. Whenever the two sets are
disjoint, we will not use these marks.

There is one further point to observe. In some examples sets will be infinite. In such
cases it would be boring to see elements of just the first set infinitely often before
any element of the second shows up. The procedure of showing elements running
over the computer screen has to be interrupted anyway. In order to see elements
from both variants and so to get an increasing impression of the variant set, we
have chosen to show elements of the two variants alternately.

Injections

The constructive generation of the direct sum out of types t1, t2 is achieved in
TituRel with the two generic constructs

DirSum t1 t2, the variant domain, corresponding to X + Y

Iota t1 t2, Kappa t1 t2, the left resp. right injection.

In a mathematical text, we will use the sloppier form ι, κ, or sometimes with typing
ι : X −→ X + Y and κ : Y −→ X + Y . Fig. 7.3.1 shows an example interpretation
of injections.
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0 0 0 0 0 0 0 0 0 0 1


Fig. 7.3.1 Injection relations ι ≈ Iota t1 t2 and κ ≈ Kappa t1 t2

Elements in a direct sum

We need either eX denoting an element in X or eY denoting an element in Y . Then
ι(eX) or κ(eY ), respectively, denote an element in the direct sum X + Y when
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denoting traditionally with injection mappings. As an example we consider the
direct sum of Bridge suits and Bridge honour cards, thereby switching to relational
notation

ιT;eX and κT;eY

eX =
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0
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(0 0 0 0 1 0 0 0 0) = eT

X
; ι eT

Y
;κ = (0 0 0 0 0 0 0 1 0)

Fig. 7.3.2 An element, the injection relations and the injected elements as row vectors

The elements ιT;eX and κT;eY in the direct sum have been transposed to horizontal
presentation. This is mainly for reasons of space, but also since one may then better
recognize the idea of marking.

Vectors in a direct sum

If vX and vY stand for an expressible vector in X or Y , respectively, then in the
first place only ι(vX) or κ(vY ) are expressible vectors in the direct sum X + Y .
This is based on injections conceived as mappings and their usual notation. We
may, however, also denote this as ιT;vX and κT;vY in a relational environment. In
the example of Fig. 7.3.3, we have first the set of red suits among all four suits in
the game of Skat and then the set of value-carrying cards among all cards. The
rightmost column shows a union of such vectors.
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vX ι ιT;vX vY κ κT;vY union

Fig. 7.3.3 Injections of left and right variant, vector in direct sum, and union of such



7.3 Direct Sum 129

Relations starting or ending in a direct sum

In connection with a direct sum, one will construct relations as follows. Given two
relations R : U −→ W and S : V −→ W , i.e., with the same target, it is typical
to construct the relations ιT;R : U + V −→ W and κT;S : U + V −→ W starting
from the direct sum. From these, others such as ιT;R∪ κT;S may then be built using
Boolean operators.

In a rather similar way we also build relations with the same source ending in a
direct sum. Let two relations R : U −→ V and S : U −→W be given, i.e., with the
same source. Then it is typical to construct the relations R; ι : U −→ V + W and
S;κ : U −→ V +W ending in the direct sum. From these, further relations such as
R; ι ∪ S;κ may be built using Boolean operators.

There is a comfortable way of representing relations from a direct sum to a direct
sum, namely as matrices of relations. We will make use of it at several occasions,
e.g., on pages 140, 207 and 231. Assume natural injections ι : A −→ A + B and
κ : B −→ A+ B as well as ι′ : X −→ X + Y and κ′ : Y −→ X + Y together with
several relations P : A −→ X, Q : A −→ Y , R : B −→ X, and S : B −→ Y . Then
the relations C,C ′ : A+B −→ X + Y defined as

C := ιT;P ; ι′ ∪ ιT;Q;κ′ ∪ κT;R; ι′ ∪ κT;S;κ′

C ′ := ι′
T

;K; ι′′ ∪ ι′
T

;L;κ′′ ∪ κ′
T

;M ; ι′′ ∪ κ′
T

;N ;κ′′

may be described as

C =
(
P Q

R S

)
, C ′ =

(
K L

M N

)
and multiplied to

C;C ′ =
(
P ;K ∪ Q;M P ;L ∪ Q;N

R;K ∪ S;M R;L ∪ S;N

)
which is much better suited for human perception. A considerable advantage is
that nearly everybody is trained in multiplication of matrices. Another advantage
is that composition of the matrices of relations directly resembles the direct sum
construct: Elaborating the product and using all the rules for direct sum injections
(to be introduced below in Def. 7.3.1) would show precisely this result. Matrix
computations are always built from a sum-like operation extended over the result
of many product-like operations.

— “+” over “∗” in case of real- or complex-valued matrices
— “∨” over “∧” in case of Boolean matrices
— “∪” over “;” in case of matrices of relations

Not least will one observe that composition of matrices of relations strictly preserves
our typing rules.
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Algebraic properties of the generic injection relations

As already mentioned, work with the direct sum resembles the if—then—else—fi
and case distinctions. The direct sum is often called a coproduct. Regardless of the
respective example, the injections satisfy what is demanded in the formal definition:

7.3.1 Definition. Any two heterogeneous relations ι, κ with common target are
said to form the left resp. right injection of a direct sum if

ι; ιT = , κ;κT = , ιT; ι ∪ κT;κ = , ι;κT = .

Thus, ι, κ have to be injective mappings with disjoint value sets in the sum as visu-
alized in Fig. 7.3.2, e.g. Given their sources, ι and κ are essentially uniquely defined.
This is an important point. For the TituRel-interpretation we have decided for a
specific form. Without fully formal proof we give here a hint, that for any other pair
ι′, κ′ satisfying the laws, we are in a position to construct a bijection that relates
the injections, namely

P := ιT; ι′ ∪ κT;κ′

In Fig. 7.3.4, we show the idea. With the postulates of Def. 7.3.1, we have obviously
ι;P = ι′ and κ;P = κ′.

A B C D E F G H I

♠
♥
♦
♣

(
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0

) A B C D E F G H I

Ace
King

Queen
Jack
Ten

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0



A B C D E F G H I

♠
Ace
♥

King
♦

Queen
♣

Jack
Ten


0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0


Fig. 7.3.4 Other injections ι′, κ′ than in Fig, 7.3.1;

bijection P := ιTι′ ∪ κT
;κ′ to relate to these

7.4 Quotient Domain

Equivalence relations are omnipresent in all our thinking and reasoning. We are
accustomed to consider quotient sets modulo an equivalence since we have learned
in school how to add or multiply natural numbers modulo 5, e.g. This quotient set
will exist not so independently as other sets. On the other hand are we interested to
use the quotient set for further constructions in the same way as the sets introduced
earlier. The introduction of the quotient set will employ the natural projection
relation, in fact a mapping.
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When forming the quotient set of politicians modulo nationality, e.g., one will
as usual put a representative in square brackets and thus get its corresponding class.

{[Bush],[Chirac],[Schmidt],[Thatcher],[Zapatero]}
Notation should be a bit more precise here as in [Thatcher]SameNationality, mention-
ing the equivalence relation used. But usually the relation is known from the context
so that we do not mention it explicitly every time. The mapping η : x 7→ [x] is called
the natural projection. This natural projection, however, raises minor problems as
one obtains more notations than classes, since, e.g.,

[Bush] = [Clinton]

So η : Bush 7→ [Bush] as well as η : Bush 7→ [Clinton] is correct. When defining
functions or mappings with an element of a quotient set as an argument, mathe-
maticians are accustomed to show that their results are “independent of the choice
of the representative”.

When trying to constructively generate quotients and natural projections, one will
need a type t, later interpreted by some set X, e.g., and a relation xi on t, later
interpreted by a relation Ξ on X that must be an equivalence. As all our relations
carry their typing directly with them, the language TituRel allows to express this
simply as

QuotMod xi, the quotient domain, corresponding to X/Ξ, and

Project xi, the natural projection, corresponding to η : X −→ X/Ξ.

By this generic construction, the source of Project xi will be t and the target will
be QuotMod xi. Fig. 7.4.1 visualizes the intended meaning. Elements, vectors, and
relations will then be formulated only via this natural projection.
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0 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
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Fig. 7.4.1 Quotient set and natural projection η ≈ Project xi

When working practically with a quotient domain, one will have the obligation to
prove that it was indeed an equivalence one has divided out. As long as only a
relational term is presented, this may not yet be possible, so that it is merely given
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as an assertion. Immediately before interpretation, however, the proof obligation
has to be invoked.

Elements in a quotient domain modulo Ξ

If eX stands for expressible elements in X, then in the first place classes [eX ]Ξ
are expressible elements in the quotient domain XΞ. As an example consider the
element eX = Chirac out of politicians and the corresponding element among the
classes [eX ]Ξ = [Chirac] modulo the nationalities equivalence.

The transition from an element in a set to the corresponding element in the quotient
set is not too often made. So we need not provide for an elegant method to denote
that. We explicitly apply the natural projection to the column vector representing
the element

ηT;e

obtaining a vector and convert back to an element:
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Schröder
Thatcher

Major
Blair

Zapatero



1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1



[C
li
n
to

n
]

[M
it

te
ra

n
d
]

[S
ch

m
id

t]
[T

h
a
tc

h
e
r]

[Z
a
p
a
te

ro
]

Clinton
Bush

Mitterand
Chirac

Schmidt
Kohl

Schröder
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0



Ξ η e ηT;e

Fig. 7.4.2 Equivalence, natural projection, element, class with different representative

That ηT ; e for Chirac results in [Mitterand] is irritating only at first sight. But
decision for one of the representatives when denoting the class may have been
executed much earlier and thus, completely independently. We have to develop the
appropriate technology to handle this situation, not least in never trying to write
something down with methods outside the language agreed upon.

Vectors in a quotient domain modulo Ξ

If vX stands for an expressible subset in X, then only classes ηT;vX corresponding
to {[eX ] | eX ∈ vX} are expressible subsets in the quotient XΞ.
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Ξ η vX ηT;vX

Fig. 7.4.3 Equivalence, natural projection, subset and subset of classes

Relations starting from or ending in a quotient domain

All relation terms starting from a quotient set shall begin with ηT. All relational
terms ending in a quotient set shall correspondingly terminate with η = Project xi.
Of course, this will often be be hidden inside nested more complex constructions.
Examples may be found in Fig. 10.4.2 and Fig. 11.1.1, e.g.

Algebraic properties of the generic natural projection relation

It was a novel situation that we had to define a set from an already available one
together with an equivalence relation. In earlier cases, constructions started from
one or more sets. We have to introduce the requirements we demand to hold for
the quotient set and the natural projection.

7.4.1 Definition. Given an arbitrary equivalence Ξ, a relation η will be called the
natural projection onto the quotient domain modulo Ξ, provided

Ξ = η;ηT, ηT;η = .

One need not give the set on which the equivalence is defined to hold since every
relation carries its source and target information with it. In a very natural way,
the question arises to which extent η is uniquely defined. (For a proof that this is
an essentially unique definition, see Prop. B.3.1 in the Appendix.) Should the two
natural projections η, ξ be presented as in Fig. 7.4.4, one will immediately have the
bijection ξT;η between their targets.
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Fig. 7.4.4 The quotient is defined in an essentially unique way: Ξ, η, ξ and ξT
;η

We report here yet another important rule regulating the work with natural projec-
tions. It looks at first sight similar to Prop. 5.1.3, but differs considerably, because
η is now transposed.

7.4.2 Proposition. Let an equivalence Ξ be given and consider its natural pro-
jection η. If any two relations A,B are presented, one of which satisfies Ξ;A = A,
the following holds

ηT; (A ∩ B) = ηT;A ∩ ηT;B

Proof : See Appendix B.3.2

We refer forward to Prop. 8.5.9, where further useful formulae concerning the quo-
tient domain and its natural projection will be proved that are here still out of
reach.

7.5 Subset Extrusion

We have stressed the distinction between a set and a subset of a set; a sub-
set shall only exist relatively to a set. With a bit of formalism, however, it can
be managed to convert a subset so as to have it also as a set of its own right
which we have decided to call an “extruded subset”. To this end, we observe how
the subset {Bush, Chirac, Kohl, Blair} may be injected into its correspond-
ing baseset {Clinton, Bush, Mitterand, Chirac, Schmidt, Kohl, Schröder,

Thatcher, Major, Blair, Zapatero}; see Fig. 7.5.1. We assume subsets that
shall be extruded to be non-empty. Should they be the result of some computa-
tion, the decision empty/non-empty shall always be handled prior to extruding.
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Because one cannot know the outcome of such a computation in advance, a proof
obligation must be propagated as long as interpretation is not yet possible.

When trying to constructively generate extruded subsets and natural injections,
one will need a type t, later interpreted by some set X, e.g., and a vector u of type
t, later interpreted by some non-empty subset U ⊆ X. Since all our relations carry
their typing directly with them, the language TituRel allows to formulate

Extrude u, the extruded subset, corresponding to a new baseset DU , and

Inject u, the natural injection, corresponding to ιU : DU −→ X.

By this generic construction, the source of Inject u will be Extrude u and the
target will be t. Fig. 7.5.1 visualizes the intended meaning. Elements, vectors,
and relations will then be formulated only via this natural injection. In order to
demonstrate that the subset is now a set of equal right, we apply the powerset
construction to a smaller example.
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Fig. 7.5.1 Subset as dependent set with natural injection, and in further construction

One should observe the difference between, e.g., Kohl ∈ t and Kohl→ ∈ DU . In
looking for a possibility to make the difference visible, we have decided for this
appended arrow.

Elements in an extruded subset

If e stands for expressible elements in X, then only injected elements e→ are ex-
pressible in the injected subset U ⊆ X, provided e ∈ U . In mathematical standard
notation, we have e→:= ι−1

U (e); if denoting algebraically, it becomes e→:= ιU;e. As
an example consider the politician Major, first as one among our set of politicians
and then as one of the extruded subset of British politicians.
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Thatcher→

Major→
Blair→

(
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0 0 0 0 0 0 0 0 0 1 0

)
e→ =

(
0
1
0

)

Fig. 7.5.2 Element e, vector U ⊆ X, injection ιU , and injected element e→

Vectors in an extruded subset

If v stands for expressible subsets of elements in X, then only injected subsets v→
with v ⊆ U are expressible in the injected subset U ⊆ X in the first place. Of course,
further iterated Boolean constructions based on this as a start may be formulated.
As long as we stay in the area of finite basesets, there will arise no problem. These
constructions become more difficult when infinite sets are considered.

Relations starting or ending in an extruded subset

All relations starting from an extruded subset shall begin with the natural injection
ιU . All relations ending in an extruded set shall correspondingly terminate with ιTU .
Of course, this will often be not directly visible inside more complex constructions.

Algebraic properties of the generic natural injection relation

Subset extrusion has hardly ever been considered a domain construction and stayed
in the area of free-hand mathematics. Nevertheless will we collect the algebraic prop-
erties and show that the concept of an extruded subset is defined in an essentially
unique form.

7.5.1 Definition. Let any subset =/ U ⊆ V of some baseset V be given. Whenever
a relation ιU : DU −→ V , satisfies the properties

ιU ; ιTU = DU , ιTU ; ιU = V ∩ U ; V,V ,

it will be called a natural injection of the newly introduced domain DU .

The new domain DU , is defined in an essentially unique form. This is best under-
stood assuming two students given the task to extrude some given U ⊆ V . The
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first works in the style proposed here, the other in his own style. They return after
a while with their solutions ιU , χ as in Fig. 7.5.3.

A K D B 1
0

9 8 7

A→
10→
9→
8→
7→

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



A K D B 1
0

9 8 7
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Y
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0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0



A 1
0

9 8 7

V
W
X
Y
Z

0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0


ιU χ P

Fig. 7.5.3 Two different extrusions ιU , χ of a subset U ⊆ V and the bijection P := ιU;χT

Both students demonstrate that the algebraic conditions are met by ιU resp. χ,
and thus claim that their respective solution be the correct one. The professor then
takes these solutions and constructs the bijection P based solely on the material
they did offer to him as P := ιU;χT. Using the postulates of Def. 7.5.1, then obviously
P ;χ = ιU . (See Appendix B.3.3)

A point to mention is that subset extrusion allows to switch from set-theoretic con-
sideration to an algebraic one. When using a computer and a formula manipulation
system or a theorem prover, this means a considerable restriction in expressivity
which is honored with much better precision, and even efficiency.

We mention here a result which captures the essence of extrusion in an intuitive
way.

7.5.2 Proposition (Framing by extrusion). Let any relation R : X −→ Y be
given and consider its extrusion S := ι;R;ι′

T according to its domain dom(R) = R;

and codomain cod(R) = RT; , i.e., the relations

ι := Inject (R; ) and ι′ := Inject (RT; ).

Then the following hold:

i) ιT; = R; ι′
T

; = RT;

ii) S is total and surjective
iii) ιT; ι;R = R = R; ι′

T
; ι′

iv) ιT;S; ι′ = R

v) ιT; ι = ∩ R;

Proof : See Appendix B.3.4.

These tiny results will be applied surprisingly often. Fig. 7.5.4 tries to visualize the
effects. In the second line, the relations R is shown, from which everything starts.



138 Domain Construction

The injections ι, ι′ extrude domain and range, respectively, and allow to construct
S. For reasons of space, S and ι are shown in transposed form. With a permutation
of rows an columns, one will achieve an even nicer representation that makes S
appear as the lower right subrectangle of R.
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Fig. 7.5.4 Framing with domain and range

Exercises

7.5.1 An important application of extrusion is the concept of tabulation; see
[FS90, Kah02], e.g. An arbitrary relation R : X −→ Y with R=/ is said to be
tabulated by relations (due to the following characterization, they turn out to be
mappings) P,Q if

P T;Q = R, P T;P = X ∩R; Y,X , QT;Q = Y ∩RT; X,Y , P;P T ∩Q;QT = X×Y

Show that tabulations are unique up to isomorphism, and provide a construction
extruding the subset of related pairs.

7.5.2 Given a symmetric idempotent relation Q=/ , one calls a relation R a split-
ting of Q, provided Q = RT ;R and R;RT = . Prove that splittings are defined
uniquely up to isomorphism and provide a construction.
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7.6 Direct Power

The direct power construction is what we employ when forming the powerset of
some set. As this means going from n elements to 2n, people are usually frightened,
so that this is often avoided to the extent that handling this in an algebraic form
is not so common an ability. The powerset 2X or P(X) for the 5-element set X :=
{US,French,German,British,Spanish}, e.g., looks like{
{},{US},{French},{US,French},{German},{US,German}, {French,German},
{US,French,German},{British},{US,British},{French,British},{US,French,British},
{German,British},{US,German,British},{French,German,British},
{US,French,German,British},{Spanish},{US,Spanish},{French,Spanish},
{US,French,Spanish},{German,Spanish},{US,German,Spanish},
{French,German,Spanish},{US,French,German,Spanish},{British,Spanish},
{US,British,Spanish},{French,British,Spanish},{US,French,British,Spanish},
{German,British,Spanish},{US,German,British,Spanish},
{French,German,British,Spanish},{US,French,German,British,Spanish}

}
Generic membership relations

Membership e ∈ U of elements in subsets is part of everyday mathematics. To make
the relation “∈” point-free is achieved with the membership relation

εX : X −→ 2X

It can easily be generated generically as we will visualize below. To this end we
generate membership relations ε : X −→ 2X together with Ω : 2X −→ 2X , the
corresponding powerset ordering, in a fractal style. The following relations resemble
the “is element of”-relation and the powerset ordering using the three-element set
of game qualifications.
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Win

Draw
Loss

(
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
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Ω =

{}
{Win}
{Draw}

{Win,Draw}
{Loss}

{Win,Loss}
{Draw,Loss}

{Win,Draw,Loss}


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


Fig. 7.6.1 Membership relation and powerset ordering

We immediately observe their method of construction in a fractal fashion that may
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be characterized by ε0 = (), i.e., the “rowless matrix with one column” or, easier
to start with,

ε1 = ( 0 1 ) ε2 =
(

0 1 0 1
0 0 1 1

)
εn+1 =

(
εn εn

0 . . . 0 1 . . . 1

)
We can also show how the corresponding powerset order is generated recursively
— and thereby determine an easily realizable baseorder for the powerset.

Ω0 = (1), Ω1 =
(

1 1
0 1

)
Ω2 =

(
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

)
Ωn+1 =

(
Ωn Ωn

Ωn

)

On the set {♠,♥,♦,♣} of Bridge suits, we form the membership relation and the
powerset ordering as
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0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Ω =
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{♠}
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 7.6.2 Another membership relation with powerset ordering

Although quite different sets have been used in this example and the one before,
one may immediately follow the indication for the construction principle explained
above. We proceed even further to a 5-element set as follows.
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US
French

German
British

Spanish

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 ⊆ X × 2X

Fig. 7.6.3 Membership relation

Recognize again the fractal style of this presentation. This gives a basis for the in-
tended generic construction. When trying to constructively generate a direct power
and the corresponding membership relation, one will need a type t, later interpreted
by some set X, e.g. The language TituRel allows then to formulate

DirPow t, the direct power, corresponding to the powerset 2X , and

Member t, the membership relation, corresponding to ε : X −→ 2X .

By this generic construction, the source of Member t will be t and the target will
be DirPow t. Fig. 7.6.3 visualizes the intended meaning. Elements, vectors, and
relations will then be formulated only via this membership relation and domain
construction.

Elements in a direct power

To get an element in the direct power 2X , we need the denotation v of a subset
of elements in X. Then a transition is possible to an element in the direct power
DirPow x, in traditional mathematics simply in the powerset P(X) or 2X .
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ε =
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(
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

)

eT
= (0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0)

Fig. 7.6.4 A vector, membership relation, powerset element (transposed to a row vector)
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In the visualization of Fig. 7.6.4, it is immediately clear how to proceed: Take the
vector v, move it horizontally over the relation ε, and mark the column that equals
v. It is more intricate to establish this as an algebraic method. We remember,
however, that “column comparison” has already been introduced as an algebraic
operation in Sect. 4.4. Using this, it simply reads as follows

e = syq (ε, v)

Frequently we will, however, also have to go from an element e in the powerset
DirPow t to its corresponding subset. This is simply composition v := ε;e. We stress
that a subset or vector has two forms of existence, e and v. While mathematicians
traditionally abstract over the two — and in many case have reason to do so —,
relational mathematics cannot and has to make the transitions explicit.

Vectors in a direct power

Expressible subsets of the direct power of X stem from finite sets (vi)i∈I of (differ-
ent!) vectors in X, we have already defined somehow. The example shows the red,
black, and the extreme-valued suits in the game of Skat, these then comprehended
in one matrix, as well as in the corresponding vector in the direct power, which is
obtained as

v := sup
{
syq (ε, vi) | i ∈ I

}

ε =
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0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

)
vT = (0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0)
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R =

{♣
,♠
}→

{♣
,♦
}→

{♥
,♦
}→

(
1 1 0
1 0 0
0 0 1
0 1 1

)
Inject v =

{♣,♠}→
{♣,♦}→
{♥,♦}→

(
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

)
Fig. 7.6.5 Set of vectors determining a single vector along the direct power

Of course, one will loose information on the sequence in which the vectors had
originally been given. The way back is easier to a relation that is made up of the
vectors vi, putting them side by side R := ε; (Inject v)T. From this matrix, the
original vectors may only be obtained selecting a column element e as R;e.

It may have become clear, that we are not trained for such operations and that
a routine denotation has not yet been agreed upon. Many would try to write a
free-style program while there exist algebraically sound methods. The problem is
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not least that we are accustomed to abstract over the two natures (vi∈I)I , v of a
subset.

ε
X

1l

U

x
u

X

Fig. 7.6.6 Element contained in subset

The transition from some predicate logic formula to an appropriate relational ver-
sion is not really difficult — but sometimes hard to communicate: There is no
traditional notation at hand to make the difference visible between a subset U ⊆ X
and the corresponding element u ∈ 2X in the powerset. So, we have in the present
environment to face the problem of too many overly detailed notations for situations
the mathematician traditionally abstracts over. We remember

u = syq (ε, U) and U = ε;u.

and recall:

x ∈ U, traditional form: element x contained in a (sub)set U

εxu, points x and u for U in membership relation, the latter conceived
as a matrix; here only used when deducing a relational form
from a predicate logic version

x;uT ⊆ ε, the relational version thereof

x ⊆ ε;u, variant of the relational version obtained shunting via Prop. 5.2.5.ii

Relations starting or ending in a direct power

We demand that relations ending in a direct power be always formed using the
membership relation ε := εX , in programs denoted as Member x. This often takes
the more composite form

syq (ε,R) = εT
;R ∩ εT;R

for some relation R and the membership ε for its source.
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{}
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{gre}
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{blu}

{red,blu}
{gre,blu}
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{red,ora}
{gre,ora}

{red,gre,ora}
{blu,ora}
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0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


R ε syq (ε,R)

Fig. 7.6.7 Symmetric quotient showing R = ε;syq (ε,R)

Typically, we also use four composite relations, namely the containment ordering
on the powerset

Ω := εT;ε = ε\ε,

the complement transition in the powerset

N := syq (ε, ε),

the singleton injection into the powerset

σ := syq ( , ε),

and the characterization of atoms of the powerset along the diagonal

a := σT;σ.

For these relations we mention some of their properties:

σ; Ω = ε; Ω = ε ε;N = ε.

The latter formula in particular provides an important transition: Negation as a
relation N vs. negation toggling matrix coefficients between 0 and 1 . It is intu-
itively clear, that the injected singleton may be enlarged to any set containing the
element, etc.

More advanced relations ending and/or starting in a direct power are the power-
transpose, the power relator, and the existential image taken of a given relation,
which we discuss only later in Sect. 19.1.
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

)
Fig. 7.6.8 Negation N , atoms a, and singleton injection σ

One will observe the position numbers 2, 3, 5, 9 in a, corresponding to 2i + 1 for
i ≥ 0.

Algebraic properties of the generic membership relation

The domain construction of the direct power is designed to give a relational analog
to the situation between a set A and its power set 2A. In particular, the “is element
of” membership relation, ε or Member A, between A and 2A is specified in the
following definition, which has already been given in [BSZ86, BSZ90, BGS94] as
follows.

7.6.1 Definition. A relation ε is called a membership relation and its target
is called the direct power if it satisfies the following properties:

i) syq (ε, ε) ⊆ , (in fact syq (ε, ε) = , due to (ii))
ii) syq (ε,X) is surjective for every relation X.
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Instead of (ii), one may also say that syq (X, ε) shall be a mapping, i.e., univalent
and total. With Cor. 8.5.8, we will only later be able to convince ourselves that also
syq (R;ε,R;X) is surjective for arbitrary relations R.

Also the direct power is defined in an essentially unique fashion. We demonstrate
this with Fig. 7.6.9. Assume that somebody presents a second relation ε′, shown
in the upper right, claiming that his relation be the correct direct power. Then we
first check the properties mentioned in Def. 7.6.1. Since they are satisfied, we may
easily construct from the two, ε, ε′, the bijection P := syq (ε, ε′) relating the two
proposed versions of the direct power. Using Def. 7.6.1, then obviously ε;P = ε′.
The proof is postponed as always in this early phase of our presentation. It requires
formulae derived only later. Thus, ε is sufficient for a standard representation.
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)

a b c d e f g h i j k l m n o p
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Fig. 7.6.9 Direct power uniquely defined up to isomorphism: ε, ε′,

related by P := syq (ε, ε′)

For better reference, we collect here several useful algebraic properties of the mem-
bership relation ε.

7.6.2 Proposition. Let a membership relation ε : A −→ 2A be given. Then
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i) X = ε;syq (ε,X) = ε;εT;X

ii) X = ε;syq (ε,X) = ε;εT
;X

Proof : See Appendix Prop. B.3.5.

In addition to the powerset ordering Ω, we have the preorder O|| by cardinality. It
is easily shown that it is closely related to the powerset ordering as follows: Define
the powerset strictorder CΩ := ∩ Ω and form the Hasse relation H := CΩ ∩ C2

Ω

for it. Then
O|| = (HT;H)∗; Ω.

With HT;H, an arbitrary element of the subset in question may be exchanged by
a — possibly — different one. Fig. 7.6.10 shows the Hasse relation of the powerset
order and cardinality preorder on the set of colors {red, green, blue, orange}. (In
the non-finite case, the Hasse relation may be and this construction will not
work.)
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1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


Fig. 7.6.10 Hasse relation of powerset order, cardinality preorder, mapping to quotient

Fig. 7.6.10 shows the powerset strictordering as well as the preorder by cardinality,
together with the mapping onto the classes of 0-, 1-, 2-, 3-, 4-element sets. The
projection is obtained as η := Project (O|| ∩ OT

||), where the latter turns out to
be the equivalence of having the same cardinality.

Exercises

7.6.1 Prove that, given a direct power ε : V −→ 2V , there exists a one-to-one
correspondence between the set of relations R : V −→ W and the set of mappings
f : W −→ 2V .
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7.6.2 A multirelation R : X −→ 2Y has in [Rew03, RB06] been defined as a re-
lation satisfying R;Ω = R with powerset ordering Ω : 2Y −→ 2Y . For multirelations,
a special form of composition is declared:

R ◦ S := R;εT;S

Prove that this composition is an associative operation.

7.7 Domain Permutation

A set in mathematics is not equipped with an ordering of its elements. For nearly
all conceivable circumstances, this is the adequate abstraction, from which we will
here deviate a little bit: When presenting a finite set on a sheet of paper or on
a blackboard, one will always do it in some sequence. Since this is more or less
unavoidable, we are going to make it explicit. Once this decision is taken, one will
try to represent a set or a relation so as to make perception more easy — the idea
underlying the technique of algebraic visualization frequently used in the present
book. This means that the sequence chosen may depend on the context in which
the set is to be presented. The necessary permutation will in such a case be deduced
from that context and applied immediately before presentation.

We are now going to introduce the necessary tools. Because all our relations carry
their type with them, we only need a bijective mapping p ending in some target
in order to define a rearranged target. It is a strict proof obligation that p must
turn out to be a bijective mapping. We derive the rearranged presentation of the
target in the most convincing way from p. To this end, we demand that the rela-
tion p shall after rearrangement appear as a matrix of diagonal shape. Elements,
vectors, and relations over a permuted target shall, of course, stay the same as far
as their algebraic status is concerned, but will appear differently when presented
via a marking vector or as a matrix, resp. The language TituRel allows for this
purpose to formulate

PermTgt p, the permuted target, and

ReArrTo p, the permutation relation achieving the permutation intended.

By this generic construction, the source of the relation ReArrTo p will be the orig-
inal target of the relation p, while its target is the newly introduced PermTgt p.
Fig. 7.7.1 visualizes the intended meaning. Elements, vectors, and relations will
then be formulated only via these generic constructs. These two simple additions
will be the basic building blocks of the algebraic visualization applied throughout
this book; see Appendix C.
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e v P QT;e QT;v

Fig. 7.7.1 Element, vector, and bijective mapping P into a baseset as well as
permuted versions thereof with Q := ReArrTo P of Fig. 7.7.2 below

In the example of Figs. 7.7.1 and 7.7.2, the original target of p (or P ) is the baseset

{US,French,German,British,Spanish}

which is then also the source of Q := ReArrTo p, while the target of the latter is

{French,US,British,Spanish,German}.

One will observe that the source of p may be quite arbitrary in this process. What
matters is that somehow a bijective mapping has occurred according to which we
intend to rearrange the target. The new sequence is obtained scanning P rowwise
from top to bottom, thereby looking for the occurrence of 1 ’s; here indicating
French first, and then US etc.
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0 0 0 0 1


Fig. 7.7.2 ReArrTo p starting in unpermuted , ending in the permuted target and P ;Q

The relation Q := ReArrTo p, considered as a matrix only, coincides with pT, but
has as target no longer the target of p but PermTgt p. Its source is its original
target. It serves as the generic means to generate elements in the permuted source,
vectors ranging over the permuted source and relations starting or ending there. An
element eX ∈ X gives rise to the element QT;eX . The vector vX leads to the vector
QT;vX . A relation R : X −→ Y will become a relation QT;R with source PermTgt

p. A relation S : Z −→ X will become a relation S;Q with target PermTgt p.

With Fig. 7.7.3, we show how a relation is permuted on its target side using Q.
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Fig. 7.7.3 Nationality of politicians unpermuted and permuted

Algebraic properties of domain permutation

The algebraic characterization we routinely present is rather simple. The relation
P : X −→ Y , we have been starting from, must satisfy

P ;P T = X P T;P = Y

in order to indicate that it is a bijective mapping9.

During the other domain constructions we have always been careful to show that
their result is determined in an essentially unique way, (i.e., up to isomorphism).
This holds trivially true in this case, due to the above algebraic characterization.
As long as this is uninterpreted, one will have to keep in mind the obligation to
prove that P is a bijective mapping 10.

7.8 Remarks on Further Constructions

Just for completeness with respect to some theoretical issues, we introduce the one-
element unit set UnitOb. Also this may be characterized among the non-empty ones
in an essentially unique form. The characterization is simply UnitOb,UnitOb =

UnitOb, i.e., the universal relation equals the identity relation on such domains.
The single element in such a set is usually called Unit-1; it may be found at several
occasions in the present book.

More involved is the recursive construction of sets with which we may get infinite

9 Observe, that ReArrTo p is then no longer homogeneous in the strong typing sense of TituRel —
although the matrix is square.

10 There is a point to mention, though. It may be the case that the relations P, P ′ are finally
interpreted in the same way, but are given in two syntactically different forms. Prior to
interpretation, one may not yet be able to decide that they are equal, and has thus to handle two,
potentially different, permuted targets.
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sets for the first time. Then stacks may be specified, or lists, e.g., which is outside
the scope of the present book.

Universal vs. Equational Characterizations

At several occasions, we have presented a “universal characterization”, saying that
the direct sum, the direct product or the direct power structure is uniquely char-
acterized up to isomorphism. Normally in mathematical folklore, such a universal
characterization ranges over all sets C carrying the structure in question and all
mappings R,S. Some sort of a preordering of (C,R, S) via the possibility of factor-
izing is introduced and the definition asserts that some sort of a supremum will be
obtained; see Fig. 7.8.1.

R

A

B

CA+B

S

Φ

ι

κ

Fig. 7.8.1 Universal characterization of the direct sum

This method is, thus, purely descriptional. Even if a sum candidate is presented, it
cannot be tested along this definition: Quantification runs over all sets carrying the
structure and over all mappings leading to these; the characterization is not even
first-order.

So it is important that, when working with heterogeneous relations, one may give an
equational definition and is able to provide candidates constructively. Comparison
with other candidates presented can simply be executed computationally. Over a
long period of time, relation algebraists were accustomed to work homogeneously;
see not least [TG87]. This made concepts difficult, as the well-established typing
mechanisms a computer scientist applies routinely had to be replaced developing
ad hoc mathematics.

It seems that homomorphisms of heterogeneous structures (e.g., graphs, programs)
have first been formalized in relational form during the Winter term 1974/75 in
the lectures on Graphentheorie by the present author, the notes [SS75] of which
have been printed as an internal report of the Institut für Informatik at Technische
Universität München. This was then used in [Sch76, Sch77, Sch81a, Sch81b].

Once homomorphisms had been formalized, the characterizing formulae for direct
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sums, direct products, and direct powers were rather straightforward and could
be handled in diploma theses at Technische Universität München. Initiated by the
present author together with Rudolf Berghammer, these were carried out by Ro-
drigo Cardoso (Untersuchung von parallelen Programmen mit relationenalgebrais-
chen Methoden), finished December 1982, and Hans Zierer (Relationale Semantik),
finished Mai 1983.

The first publication of the equational characterizations seems to have been pre-
sented with the series of publications [BSZ86, TS87, SBZ87, SS89, BSZ90, SS93],
not least [BZ86, Zie88], which followed the diploma theses mentioned.

7.9 Equivalent Representations

It should be mentioned that we have introduced constructions in a granularity
finer than usual. We have abandoned some abstractions and denote, thus, with
some more detail. In particular will we have several possibilities to represent the
same item classically abstracted over. So this approach will probably suffer from
obstruction of people who traditionally use abstractions thrown away here.

We give an example using domain constructions just explained to show that con-
cepts may be represented in quite different ways. While it is from a certain point of
view nice to abstract from details of representation, one often loses intuition when
abstraction is too far off. In particular will one not immediately see in which cases
a situation is a “linear” one; i.e., one offering itself to be handled relationally.

In Fig. 7.9.1, we present representations of a relation as a matrix, as a vector along
the product space and finally as an element in the powerset of the product space.
The latter concept, however, will hardly ever be used. It is also indicated in which
way the transition between the versions may be managed with the generic projection
relations π, ρ and the membership relation ε.
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Fig. 7.9.1 Relating representations of a relation as a matrix R, a vector t,
and as an element e





PART THREE

ALGEBRA

In this part of the present text, we reach a third level of abstraction. Recall that
in Part I relations have been observed as they occur in real life situations. We
have then made a step forward using point-free algebraic formulation in Part II; we
have, however, not immediately started introducing the respective algebraic proofs.
Instead we have visualized the effects and tried to construct with relations. In a
sense, this corresponds to what one will always find in a book treating eigenvectors
and eigenvalues of real-valued matrices, or their invariant subspaces: Usually this
is heavily supported visualizing matrix situations. We did this in full mathemati-
cal rigor but did so far not immediately convince the reader concerning this fact.
Proofs, although rather trivial in that beginning phase, have been postponed so as
to establish an easy line of understanding first.

As gradually more advanced topics are handled, we will now switch to a fully formal
style with proofs immediately appended. The reader will, however, be in a position
to refer to the first two parts and to see there how the effects had been.

Formulating only in algebraic terms — or what comes close to that, formulating
in the relational language TituRel —, means that we are far more restricted in
expressivity. On the other hand will this improve precision considerably. Restricting
to the language will allow later that computer-aided transformations and proofs
become possible.

A point should be stressed for theoreticians: From now on, we develop relational
mathematics as an axiomatic theory with, resp. without, Point Axiom.



8

Relation Algebra

Concerning syntax and notation, everything is now available to work with. We take
this opportunity to have a closer look at the algebraic laws of relation algebra. In
particular, we will be interested in how they may be traced back to a small subset
of rules which may serve as axioms. We present them right now and discuss them
immediately afterwards.

We should stress that we work with heterogeneous relations. This contrasts greatly
with the traditional work of the relation algebra community that is nearly com-
pletely restricted to a homogeneous environment — possibly enhanced by cylindric
algebra considerations. Some of the constructs to follow simply do not exist in a
homogeneous context, e.g., the direct power and the membership relation. At a
first glance, it seems simpler to study homogeneous as opposed to heterogeneous
relations. But trying domain constructions in the homogeneous setting immediately
leads to necessarily non-finite models. Also deeper problems such as the fact that
not necessarily A,B ; B,C = A,C did only lately pop up to the attention; this
applies also to unsharpness.

8.1 Laws of Relation Algebra

The set of axioms for an abstract (possibly heterogeneous) relation algebra is nowa-
days generally agreed upon, and it is rather short. When we use for its definition
the concept of a category, this does not mean that we introduce a higher con-
cept. Rather, it is here used as a mathematically acceptable way to prevent from
multiplying a 7× 5-matrix with a 4× 6-matrix.

A category may, in the näıve sense to which we restrict us here, be conceived as
based on a complete 1-graph. Every vertex of its (mostly finite) set of vertices means
a type, and this type may be interpreted with a baseset. Every arrow (p, q) means,
thus, a (directed) pair of types, and may be interpreted with the set of relations
from the baseset interpreting p to the baseset interpreting q, called the morphism set
Mpq. Only relations belonging to consecutive arrows (p, q), (q, r) may be composed



8.1 Laws of Relation Algebra 157

with “ ; ” so as to obtain a relation belonging to the shortcutting arrow (p, r) in
the complete 1-graph. The loops in the 1-graph, i.e., the arrows (p, p) contain in
particular the identity relation p on the baseset interpreting the type p. The only
two assumptions for a category are as follows: Composition with “; ”, restricted as
just explained, is associative and the identities act as such.

8.1.1 Definition. A heterogeneous relation algebra1 is defined as a structure
that

— is a category wrt. composition “; ” and identities ,
— has complete atomic Boolean lattices with ∪, ∩, , , ,⊆ as morphism sets,
— obeys rules for transposition in connection with the latter two that may be

stated in either one of the following two ways:

Dedekind2: R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q) or

Schröder: A;B ⊆ C ⇐⇒ AT;C ⊆ B ⇐⇒ C;BT ⊆ A.

Composition, union, etc., are thus only partial operations and one has to be careful
not to violate the composition rules. In order to avoid clumsy presentation, we shall
adhere to the following policy in a heterogeneous algebra with its only partially
defined operations: Whenever we say “For every R . . . ”, we mean “For every R for
which the construct in question is defined . . . ”. We are often a bit sloppy, writing

when X,Y , e.g., would be more precise.

The Dedekind rule as well as the Schröder rule are widely unknown. They are as
important as the rule of associativity, the rule demanding distributivity, or the De
Morgan rule, and therefore deserve to be known much better. One may ask why
they are so little known. Is it since they are so complicated? Consider, e.g.,

a ∗ (b+ c) = a ∗ b+ a ∗ c distributivity
a+ (b+ c) = (a+ b) + c associativity
a ∪ b = a ∩ b De Morgan law

When comparing the Dedekind and the Schröder rule with these most commonly
known mathematical rules, they are indeed a little bit longer as text. But already the
effort to check associativity3 is tremendous compared with the pictorial examples
below, making them seem simpler.

One should also mention that the Schröder rule — still without the name which
1 See, e.g., [SHW97] and the short presentation of theoretical background material in [JBS97]
2 Also the shortened version R;S ∩ Q ⊆ (R ∩ Q;ST); S, known as the modular law, would suffice.
3 Who has ever checked associativity for a group table? We simply take it for granted, or given by

construction.



158 Relation Algebra

has been attributed to it only later — has its origin in the same paper as the
famous De Morgan4 law, namely in [Mor64]. People probably have not read far
enough in De Morgan’s paper. Rather, they seem to have confined themselves to
using slightly simplified and restricted forms of these rules. Such versions describe
functions, orderings, and equivalences. School education favours functions. Even
today, when teaching orderings at university level it is not clear from the beginning
that orderings need not be linear ones. Thinking in relations is mainly avoided as
people like the assignment of just one as traditionally in personal relations.

Exercises

8.1.1 Prove with relation-algebraic techniques that

Q;R;S ⊆ Q;R;S and Q;R;S ⊆ Q;R;S

8.2 Visualizing the Algebraic Laws

For an intuitive description we recall that due to the dashed arrow convention a
dotted or dashed arrows indicates the negated relation. The thin bent arrow with a
double-arrow-pointer shows the direction of reasoning intended.

C

B
A

C

B
A

C

B
A

A;B ⊆ C AT;C ⊆ B C;BT ⊆ A

Fig. 8.2.1 The dashed arrow convention in case of Schröder equivalences

Visualizing the Schröder Equivalences

To memorize and understand the Schröder rule is now easy:

• The containment A;B ⊆ C means that for consecutive arrows of A and B, there
will always exist a “shortcutting” arrow in C.

• But assuming this to hold, we have the following situation: When following A in
reverse direction and then a non-existing arrow of C, there can be no shortcutting
arrow in B. Of course not; it would be an arrow consecutive to one of A with the
consequence of an arrow in C which is impossible.

4 He was Scottish (of Huguenot origin), not French; born in Madura (India) (according to others:
Madras).



8.2 Visualizing the Algebraic Laws 159

• Let us consider a not existing arrow from C (i.e., an arrow from C), followed by
an arrow from B in reverse direction. Then it cannot happen that this can be
shortcut by an arrow of A because then there were consecutive arrows of A and
B without shortcut in C.

When thinking on this for a while, one will indeed understand Schröder’s rule. What
one cannot assess at this point is that Schröder’s rule (in combination with the
others mentioned in Def. 8.1.1) is strong enough to span all our standard methods
of thinking and reasoning. The next three examples will at least illustrate this claim.

If we are about to work with a function, we mean that it must never assign two
different images to an argument; a function F satisfies, therefore, F T ;F ⊆ . So,
when going back from an image to its argument and then going again forward to an
image, it will turn out that one will arrive at the same element. But one may also
follow the function to an image and then proceed to another element on the image
side, which then can not be image of the starting point: F ; ⊆ F . This transition
which is difficult to formulate in spoken language is again simple using Schröder’s
rule.

Consider the equivalence Ξ := “plays in the same team as” defined over the set
of players in some national sports league. When a and b play in the same team,
and also b and c play in the same team, we standardwise reason that a will play in
the same team with c. Altogether we have transitivity of an equivalence relation,
meaning not least Ξ; Ξ ⊆ Ξ. Using Schröder’s rule, we have also ΞT; Ξ ⊆ Ξ meaning
that when b plays in the same team with a, but a does not play in the same team
with c, then b and c cannot play in the same team.

Yet another example assumes C as a comparison of persons as to their height. If a
is taller than b and b in turn is taller than c, it is clear for us that a is taller than
c, i.e. C;C ⊆ C. We routinely use “is smaller than” as denotation for the converse.
Probably we will also be able to reason that i.e. CT;C ⊆ C; namely when a is smaller
than b and b is not taller than c, then a is not taller than c.

Nearly all of human thinking is based on such triangle situations; mankind does not
seem capable of achieving more. If everyday situations are concerned, we handle
this routinely, most often using dedicated denotation such as “is taller than”, “is
godfather of”, “has as grandson”, etc. Often the mathematical aspect is obscured
when operations are to a certain extent integrated in our language as

• concerning negation in
— “is married” vs. “is bachelor” as a unary relation, i.e., a vector
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— “is linked to” vs. “are unlinked”
• concerning converses in
— “is taller than” vs. “is smaller than”
— “sells to” vs. “buys from”
• concerning composition in
— “is father of” ; “is parent of” = “is grandfather of”
— “is brother of” ; “is parent of” = “is uncle of”

This brings additional problems5 because natural languages often handle such sit-
uations in quite different ways. Think of the word “brother” as used in Arabic or
the “godfather” in Mafia context. When new relations come into play for which no
standard notation has been agreed for, we often fail to handle this properly. Big
problems usually show up when not just one relation is envisaged such as “plays in
the same team as”, “is taller than”, or “is mapped to” and different relations are
involved as in the following examples.

8.2.1 Example. Let some gentlemen G, ladies L, and flowers F be given, as well
as the three relations that are typically neither univalent nor total or surjective:

• Sympathy S : G −→ L,
• Likes flowers L : L −→ F ,
• Has bought B : G −→ F .

Then the following will hold

S;L ⊆ B ⇐⇒ ST;B ⊆ L ⇐⇒ B;LT ⊆ S

None of these containments need be satisfied. In any case, however, either all three
or none of them will be true. The following three propositions are, thus, logically
equivalent:

• All gentlemen g buy at least those flowers f that are liked by some of the ladies
sympathetic to them.

• Whenever a gentleman feels sympathy for a lady l, and doesn’t buy flower f ,
lady l is not fond of flower f .

• Whenever a gentleman g does not buy a flower that lady l likes, then g has no
sympathy for l.

Since we will only in rare cases have that S;L ⊆ B, this may seem rather artificial
— but it is not. Assume, e.g., a situation where a gentleman does not buy a flower
liked by one of the ladies sympathetic to him. Then also the other two statements
will not be satisfied. For instance: Hubert feels sympathy for Elizabeth, but does
5 Complaints of this kind have a long history; see Appendix D.4.
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Fig. 8.2.2 Visualization of the Schröder rule

not buy violets; i.e., S;L ⊆ B does not hold. But then, obviously, neither ST;B ⊆ L
holds, nor B;LT ⊆ S.

To memorize the Schröder rule, we concentrate on triangles. As indicated above,
a triangle may be formed by a cycle buys—is sympathetic—likes. Once we found
out that every arrow belongs to some triangle, it is straightforward to state that
over every line there exists an element in the third set such that a triangle may be
formed — regardless of which line has been chosen to start with.

8.2.2 Example. Look at the situation with three relations on one set of human
beings, namely

• B “is brother of”



162 Relation Algebra

• P “is parent of”
• G “is godfather of”

Otto A. Erika A. Emil B. Isa B. Uwe C.

is parent of is brother of is godfather of

Fig. 8.2.3 Another visualization of the Schröder equivalences

Now we have according to the Schröder rule

B;P ⊆ G ⇐⇒ BT;G ⊆ P ⇐⇒ G;P T ⊆ B

This is applicable to every group of human beings, stating that the following three
propositions are logically equivalent. So either all three of them are true or none.

• Uncleship implies godfathership.

• A person with a brother who is not godfather of a child, will never be parent of
that child.

• If someone is not the godfather of a child of somebody, he will not be that persons
brother.

Now assume the leftmost godfathership arrow starting at Emil B. were not indi-
cated. Then obviously B ;P ⊆ G is not satisfied. But then also G;P T ⊆ B is not
satisfied; namely: Take the missing arrow and follow parenthood back to Erika A.

To this person a brother arrow exists, so that G;P T ⊆ B can not be true.

Visualizing the Dedekind-Formula

Observe that the setting is a little bit different now. The Dedekind formula is
satisfied for any (well-defined) three-relation-configuration whatsoever. We recall
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Fig. 8.2.2 as an example. From the beginning, we admit in this case a situation
where S;L ⊆ B may not be satisfied.

In an arbitrary such configuration the following

S;L ∩ B ⊆ (S ∩ B;LT); (L ∩ ST;B)

is satisfied:

— When a gentleman g buys a flower f , which some lady sympathetic
to him likes,

— there will exist a lady l sympathetic to him, liking some flower f ′

he bought, and
— this lady l will like flower f , that some gentleman g′ with sympathy

for her has bought.

Observe how fuzzily this is formulated concerning existence of l, l′, f ′, g′. One need
not learn this by heart. Just consider the triangles of three arrows. Then at least
the transpositions follow immediately. Written in predicate-logic form, this looks
intimidatingly complex:

∀g : ∀f :
[{
∃l′ : (g, l′) ∈ S ∧ (l′, f) ∈ L

}
∧ (g, f) ∈ B

]
−→{

∃l :
[
(g, l) ∈ S ∧

(
∃f ′ : (g, f ′) ∈ B ∧ (l, f ′) ∈ L

)]
∧[

(l, f) ∈ L ∧
(
∃g′ : (g′, l) ∈ S ∧ (g′, f) ∈ B

)]}
At this point, one will begin to estimate the algebraic shorthand; one is less exposed
to the likelihood of committing errors. Particularly difficult is it to express such
relations in spoken language, not least as it depends heavily on the language chosen
— or available.

The Dedekind rule is interpreted for godfather, brother and uncle as

B;P ∩ G ⊆ (B ∩ G;P T); (P ∩ BT;G)

says that the following holds for every configuration of human beings:

— An uncle u of a child c, who is at the same time a godfather of c,
— is a brother of some person p, who is parent of one of his godchil-

dren, and
— and at the same time is parent of child c has a brother, who is

godfather of c.

One should again emphasize that at two positions there is an ambivalence: The
person p is parent of one of his godchildren. There exists a brother of p who is
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godfather of c. These two are not identified more than these descriptions allow.
The very general quantifications, however, make this sufficiently precise. Another
illustration is added as Fig. 8.2.4.
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Fig. 8.2.4 Matrix visualization of the Dedekind formula

In the matrix visualization of Fig. 8.2.4, we observe how several entries are cut out
of the original relations A,B,C.

8.3 Elementary Properties of Relations

The following are elementary properties of operations on relations. We mention
them here without proofs which may already be found in our standard reference
[SS89, SS93].

8.3.1 Proposition (Standard rules).

i) ;R = R; =
ii) R ⊆ S =⇒ Q;R ⊆ Q;S, R;Q ⊆ S;Q (monotonicity)
iii) Q; (R ∩ S) ⊆ Q;R ∩ Q;S, (R ∩ S);Q ⊆ R;Q ∩ S;Q (∩-subdistributivity)

Q; (R ∪ S) = Q;R ∪ Q;S, (R ∪ S);Q = R;Q ∪ S;Q (∪-distributivity)
iv) (R;S)T = ST;RT

While (i) is trivial, (iv) is already known for matrices in linear algebra. In (iii) it is
stated that composition distributes over union, but only “subdistributivity” holds
for composition over intersection.[(1 0

0 1

)
∩
(0 1
1 0

)]
;

(1 1
1 1

)
=
(0 0
0 0

)
⊆

(1 1
1 1

)
=
(1 0
0 1

)
;

(1 1
1 1

)
∩
(0 1
1 0

)
;

(1 1
1 1

)
Fig. 8.3.1 Example of subdistributivity

In Prop. 8.3.2, special care is necessary with regard to typing as one may see from
the indices of the universal relations occurring.
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8.3.2 Proposition (Row and column masks). The following formulae hold for
arbitrary relations P : V −→W,Q : U −→ V,R : U −→ X,S : V −→W .

i) (Q ∩ R; X,V );S = Q;S ∩ R; X,W

ii) (Q ∩ (P ; X,U )T);S = Q; (S ∩ P ; X,W )

An interpretation with P ; meaning “is red-haired”, Q meaning “is brother of”, S
meaning “is parent of”, and R; meaning “is bald” reads as follows:

i) The result is the same when looking for bald brothers b of parents of some child
c or when first looking for nephewships (b, c) and afterwards selecting those
with b bald.

ii) This is hard to reproduce in colloquial form: (A brother of a red-haired parent)
of child c is a brother of (a red-haired parent of child c).

Another example is shown with Fig. 8.3.2.
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Fig. 8.3.2 Composition and row mask, case Prop. 8.3.2.i; also with rows permuted

Now we visualize (ii) starting from the relations Q,P , and S in Fig. 8.3.3. The
interesting factor relations are then shown with columns, resp. rows, permuted.
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Fig. 8.3.3 Composition and row mask, case Prop. 8.3.2.ii, visualized with permutation

Exercises

8.3.1 In [Luc52], R. Duncan Luce claimed the existence of some X with the prop-
erties

X ⊆ S, Q ⊆ ;X and Q;XT ⊆ R
to be sufficient for Q ⊆ R;S. Prove this claim using the Dedekind formula.

8.3.2 Prove that X ⊆ P ;Y ;QT ⇐⇒ Y ⊆ P T;X;Q,
i.e., that the functionals X 7→ P T;X;Q and Y 7→ P ;Y ;QT constitute a Galois corre-
spondence.

8.3.3 Show the following identities for an arbitrary vector s : X −→ Y :

s;sT ∩ X,X = s; Y,X ∩ X,X = s; Y,X ∩ X,X

s;sT ∩ X,X = s; Y,X ∩ X,X = s; Y,X ∩ X,X

8.4 Cancellation Properties of Residuals and Cones

After having introduced relations in a formal way in Chapt. 5, we have imme-
diately presented the main rules and formulae concerning orders and functions to
cover what is more or less commonly known. In principle, they should have been in-
cluded at the present location. Our aim was to work with that and to give sufficient
intuition, while we have postponed proofs to the appendix.
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In the present chapter we have taken yet another step towards relation algebra
building on axioms and giving fully formal proofs. Only here seems it adequate to
present some less commonly known rules and formulae, most of which novel ones.

The formulae we have in mind are really general, but have been studied only in
more specialized contexts so far. Our aim is, therefore, to prove them and also to
get rid of any additional assumptions that are unnecessary and just tradition.

8.4.1 Definition. Given any (possibly heterogeneous) relation R : X −→ Y , we
define for it two functionals, namely

i) ubdR(U) := R
T

;U , the upper bound cone functional and
ii) lbdR(V ) := R;V , the lower bound cone functional.

The reader will later easily find them built identical with the upper resp. lower
bound construct of Def. 9.2.1, however, without assuming the relation R to be an
ordering. Some very important properties may already be shown without the order-
ing requirement. For an intuitive interpretation, we also refer forward to Sect. 9.2.

For the explanations that follow, let us assume R to be an arbitrary relation between
objects and their properties. All our spoken discourse seems to follow a typical
quantifying scheme. Whenever somebody talks on a subset U of objects, one will
automatically ask the question

“Which of the properties do all of objects U have in common?”

Analogously in the other direction: Given some subset W of properties, one will
routinely ask

“Which objects do enjoy all the properties of W?”

The following statements are then immediate:

• If the set of objects is increased to U ′ ⊇ U , there may be equally many or fewer,
but definitely not more, properties that they commonly enjoy.

• If one takes more properties W ′ ⊇ W , there may by equally many or fewer
objects, but definitely not more, that share all these properties.

This will now be studied more formally. We start with a set of objects U and
determine the set of all the properties WU common to them:

WU := {w | ∀u ∈ U : (u,w) ∈ R}
=
{
w | ∀u ∈ X : u ∈ U → (u,w) ∈ R

}
restricting U ⊆ X on the source side

=
{
w | ∀u ∈ X : u∈/ U ∨ (u,w) ∈ R

}
a→ b⇐⇒ ¬a ∨ b
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=
{
w | ¬¬

[
∀u ∈ X : (w, u) ∈ RT ∨ u∈/ U

]}
transposition, rearranging

=
{
w | ¬[∃u ∈ X : (w, u)∈/ RT ∧ u ∈ U ]

}
¬∀ . . . = ∃¬ . . .

=
{
w | ¬(w ∈ RT

;U)
}

definition of composition

=
{
w | w ∈ RT

;U
}

lifting negation to point-free form
= ubdR(U) by definition

Fig. 8.4.1 shows first a relation R of objects — this time celebrities — and some
of the properties they have. The second relation P presents four sets of persons,
grouped into the four columns of a matrix. The fifth relation presents ubdR(P ),
thus indicating the set of properties common to all members of the respective set
of celebrities. Person sets 2 and 4 are obviously too diverse ones as to allow the
members to share common properties. In much the same way, we may start from
the fourth matrix Q, consider it as representing three sets of properties arranged
into one matrix. Then the third relation is lbdR(Q), the sets of person enjoying all
the respective properties of the set. Of course, there does not exist a person that
is at the same time related with Soccer, Movie, and Music, as the property set 2
demands.
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R P lbdR(Q) Q ubdR(P )

Fig. 8.4.1 Upper and lower bound cone functional

Very often upper bounds and lower bounds are formed one after the other. Then
important formulae hold that we now exhibit.

8.4.2 Definition. Given any relations R,U , we may form∧
R(U) := lbdR(ubdR(U))

the R-contact closure of U .



8.4 Cancellation Properties of Residuals and Cones 169

One will immediately see that U ⊆
∧
R(U); this follows from applying the Schröder

equivalences. Should R happen to be an ordering, we could more easily see the
closure property. Then first the set of all upper bounds is considered and for these
the minorants are taken which make up a lower cone including U . The graphic part
of Fig. 8.4.2 may help to understand in which way a contact should be understood
although R is not an order.
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Fig. 8.4.2 The R-contact closure for P of Fig. 8.4.1

Fig. 8.4.2 shows that contact holds for all in person sets 2 and 4 due to the fact
that the respective set of persons did not enjoy any common property. In person
set 1, all scientists are collected while set 3 contains all Nobel laureates.

8.4.3 Proposition. Given any relations R,U, V , the following hold

i) ubdR(lbdR(ubdR(U))) = ubdR(U)

ii) R
T

;R;R
T

;U = R
T

;U

iii) lbdR(ubdR(lbdR(V ))) = lbdR(V )

iv) R;R
T

;R;V = R;V

v) lbd ε(ubd ε(U)) = U

vi) ε;εT
;U = U

Proof : Obviously, (ii,iv) are nothing else than expansions of (i,iii). We decide, e.g.,
to prove (ii) and remove the outer negations

R
T

;R;R
T

;U = R
T

;U

Now, “⊆” needs just one application of the Schröder rule. “⊇” follows with monotony
from
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R;R
T

;U ⊇ U = U

which is true; this may again be seen with the Schröder equivalence after removing
the outermost negations.

(v,vi) are obtained as special cases applying Prop. 7.6.2.

We give also another interpretation of essentially the same result writing it down
with residuals and, thus, in a form more reminding us of semigroup theory.

8.4.4 Proposition. Given any relations R,X, Y , the following hold

i) ubdR(U) = RT/U T

ii)
(
R/(U\R)

)
\R = U\R

iii) lbdR(V ) = R/V T

iv) R/
(

(R/V )\R
)

= R/V

Proof : (i,iii) are simply expansions of Def. 4.4.2, while (ii,iv) reformulate Prop. 8.4.3
correspondingly.

The results (ii,iv) may best be interpreted conceiving the cone functionals as quo-
tients. They remind us of what holds for natural numbers:

r : r
r
x

= r ·
r
x
r = r

x

The results in the present generalized form are relatively new and now increasingly
known. They seem useful to abbreviate proofs at several occasions. We will learn
more on orderings in Chapt. 9, but will soon see that we then study in traditional
form a specialized case. Whatever is formulated concerning least upper bounds and
cones, does not require the relation studied to be an ordering. Therefore, we have
decided to place this result already here as it is a very basic one.

8.5 Cancellation Properties of the Symmetric Quotient

Algebraic properties of the symmetric quotient are very important, but far from
being broadly known. Therefore, they are here recalled — some newly invented —,
proved, and also visualized.
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Fig. 8.5.1 The symmetric quotient: A,B and syq (A,B)

In Fig. 8.5.1, we assume a group of individuals and two relations in which these are
involved and that are typically neither functions nor mappings: the non-governmen-
tal organizations they give donations to and the stocks they own. It is immediately
clear — and does not need a written proof — that (i,ii) of Prop. 8.5.1 hold. Since the
symmetric quotient of Def. 4.4.4 compares columns as to equality, it is immaterial
whether it compares the columns or their complements. Also, when comparing the
columns of A to those of B, one will obtain the converse when comparing the
columns of B to those of A.

8.5.1 Proposition. Let A,B be arbitrary relations with the same source.

i) syq (A,B) = syq (A,B)

ii) syq (B,A) =
[
syq (A,B)

]T

For truly heterogeneous relations with different targets, e.g., syq (AT, BT) cannot
be built for typing reasons. In case A = B, however, even more can be proved,
as then also syq (AT, AT) is defined; see Fig. 8.5.2. We demonstrate this with the
not necessarily symmetric relation “has sent a letter to” on a set of individuals
considered.
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A syq (AT, AT) syq (A,A)

Fig. 8.5.2 Symmetric quotients of a homogeneous relation give their
row resp. column equivalence

Rearranging the relations will make clear, that syq (AT, AT) as well as syq (A,A)
are equivalences; we identify the row resp. the column congruence of A according to
Def. 5.4.3. The name A of the relation has not been changed, because the relation
has not changed6 — its matrix presentation obviously has.
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= syq (AT, AT) = syq (A,A)

Fig. 8.5.3 Symmetric quotients of a homogeneous relation rearranged

Observe that the sequence of the names has changed in the right relation. One will
from the form given with Fig. 8.5.3 easily convince oneself that (i,ii) of Prop. 8.5.2
are indeed satisfied.

8.5.2 Proposition. Let A be an arbitrary (possibly heterogeneous) relation.

i) A;syq (A,A) = A

ii) tgtA ⊆ syq (A,A)

Proof : The first part “⊆” of (i) follows from A;syq (A,A) ⊆ A;AT;A and . . . ⊆ A

using the Schröder equivalence. The second part “⊇”, together with (ii), holds since

⊆ AT
;A for all relations A using again the Schröder equivalences.

6 This is not true for the language TituRel where the permuted version is considered to have a
different source.
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The next propositions will show that a symmetric quotient indeed behaves to a
certain extent as a quotient usually does. The first results show how dividing and
then multiplying again leads back to the origin.

8.5.3 Proposition. Assuming arbitrary relations A,B,C, always

i) A;syq (A,B) = B ∩ ;syq (A,B),
ii) A;syq (A,B) ⊆ B,
iii) syq (A,B) surjective =⇒ A;syq (A,B) = B.

Proof : i) We have

B ∩ ;syq (A,B) =
(
B ∩ A;syq (A,B)

)
∪
(
B ∩ A;syq (A,B)

)
= A;syq (A,B)

since very obviously

A;syq (A,B) ⊆ A;AT;B ⊆ B and

A;syq (A,B) = A;syq (A,B) ⊆ A;A
T

;B ⊆ B.

ii) is then trivial. (iii) follows directly from (i) using the definition of surjectivity.

We have, thus, analyzed that A;syq (A,B) can differ from B only in a one way: a
column of A;syq (A,B) is either equal to the column of B or is zero.

So far, we have shown cancelling of the type p× q
p = q known for integers; now we

try to find something like q
p ×

p
r = q

r for symmetric quotients.

8.5.4 Proposition. For arbitrary relations A,B,C we have

i) syq (A,B);syq (B,C) = syq (A,C) ∩ syq (A,B);

= syq (A,C) ∩ ;syq (B,C) ⊆ syq (A,C)
ii) syq (A,B);syq (B,C) = syq (A,C) if syq (A,B) is total, or

if syq (B,C) is surjective

Proof : i) Without loss of generality we concentrate on the first equality sign. “⊆”
follows from the Schröder equivalence via

(AT;C ∪ AT
;C); [syq (B,C)]T = AT;C;syq (C,B) ∪ AT

;C;syq (C,B) ⊆ AT;B ∪ AT
;B

using Prop. 8.5.3. Direction “⊇” may be obtained using Prop. 8.5.2, the Dedekind
rule and the result just proved:

syq (A,B); ∩ syq (A,C)

⊆
(
syq (A,B) ∩ syq (A,C);

T
)

;

(
∩ [syq (A,B)]T;syq (A,C)

)
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⊆ syq (A,B);syq (B,A);syq (A,C) ⊆ syq (A,B);syq (B,C)

ii) follows immediately from (i).

Thus, we have again found some sort of a quotient behaviour; if it is not directly
satisfied, it is at least replaced by sub-cancellability.

We list some special cases:

8.5.5 Proposition.

i) syq (A,A);syq (A,B) = syq (A,B)
ii) syq (A,A) is always an equivalence relation
iii) syq (A,B) is always a difunctional relation

Proof : i) follows from Prop. 8.5.4 with Prop. 8.5.2.ii.

ii) syq (A,A) is reflexive due to Prop. 8.5.2.ii, symmetric by construction, and
transitive according to (i).

iii) syq (A,B);[syq (A,B)]T;syq (A,B) = syq (A,B);syq (B,A);syq (A,B) from where
we may proceed using the cancellation rule Prop. 8.5.4.i two times.

According to (iii), a symmetric quotient may always be rearranged similar to
Fig. 5.4.5, i.e., as a (possibly only partial) block-diagonal relation. We apply these
results to the complex of row and column equivalences and containments.

8.5.6 Proposition.

i) syq (R;RT, R;RT) = Ξ(R) syq (RT;R,RT;R) = Ψ(R)
ii) R(R); Ξ(R) = R(R) Ξ(R);R(R) = R(R)

C(R); Ψ(R) = C(R) Ψ(R);C(R) = C(R)

Proof : i) According to Def. 5.4.3, we have Ξ(R) = syq (RT, RT) = R;RT ∩ R;R
T

.
Now we replace R two times by the equal — but more complicated — version
according to Prop. 8.4.3.ii in transposed form with U :=

R = R;R
T

;R

so as to obtain the result (up to trivial manipulations).

ii) We prove only the very first equality and use Ξ(R) according to (i). With
Prop. 8.5.2, it is now trivial because
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R;RT;syq (R;RT, R;RT) = R;RT

When one should be asked the question whether the row equivalence of the row-is-
contained preorder of R is equal to the row equivalence of R, one will need some
time for an answer. This answer is completely formally given with (i).

In proofs or computations it is often useful to know how composition with a relation
leads to an effect on the symmetric quotient, or composition with a mapping. This
is captured in the following proposition.

8.5.7 Proposition.

i) syq (A,B) ⊆ syq (C;A,C;B) for every C

syq (A,B) = syq (F ;A,F ;B) for a surjective mapping F

ii) F ;syq (A,B) = syq (A;F T, B) for every mapping F

iii) syq (A,B);F T = syq (A,B;F T) for every mapping F

Proof : i) We show, e.g., C;B ⊆ C;B ⇐⇒ CT;C;B ⊆ B =⇒ (C;A)T;C;B ⊆ AT;B.

In case of a surjective mapping F , we have (F ;A)T;F ;B = AT;F T;F ;B = AT;B, since
the mapping F may slip out of the negation and F T;F = holds for a surjective
mapping.

ii) Following Prop. 5.2.6, we have F ;S = F ;S for a mapping F and arbitrary S, so
that with Prop. 5.1.3

F ;syq (A,B)= F ;AT;B ∩ F ;A
T

;B = F ;AT;B ∩ F ;A
T

;B

= (A;F T)T;B ∩ A;F T
T

;B = syq (A;F T, B).

iii) is the transposed version of (ii).

The following corollary is concerned with the membership relation and refers back
to the definition of the latter in Def. 7.6.1:

8.5.8 Corollary. For arbitrary relations R,X and the membership relation ε of
R on its target side, the construct syq (R;ε,R;X) is surjective.

Proof : Using Prop. 8.5.7.i, we have syq (R;ε,R;X) ⊇ syq (ε,X), which is surjective
by definition of ε.

We mention further identities of a symmetric quotient in combination with a nat-
ural projection that are sometimes very helpful. They inherently belong to the
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introduction of the quotient domain in Def. 7.4.1, but could not yet be proved at
that early time.

8.5.9 Proposition. Consider an arbitrary equivalence together with its natural
projection, Ξ = η;ηT, and some relation A satisfying A = A; Ξ. Then the following
identities hold:

i) ηT;syq (A,B) = syq (A;η,B)
ii) A;η = A;η

Proof : i) ηT;syq (A,B) = ηT;

[
A

T
;B ∩ AT;B

]
= ηT;

[
Ξ;AT;B ∩ Ξ;AT;B

]
= ηT;

[
η;ηT;AT;B ∩ η;ηT;AT;B

]
= ηT;

[
η;ηT;AT;B ∩ η;ηT;AT;B

]
= ηT;η;

[
ηT;AT;B ∩ ηT;AT;B

]
= ;syq (A;η,B)

ii) A;η = A; Ξ;η = A;η;ηT;η = A;η;ηT;η = A;η; = A;η

One will find out that these formulae amend what is already known for mappings,
extending it to their transpose in case of a natural projection: Prop. 8.5.7.ii and
Prop. 5.2.6.i.

The other formulae resemble what might be called shift-inverting a cone. When
trying to find an intuition, one should have a look at Fig. 8.4.2, which visualizes
the two-fold application R 7→ lbdR(ubdR(Y )). In (ii), one may shift this functional
as visualized in Fig. 8.5.4 and replace it thereby with ubdR(lbdR(X)).

8.5.10 Proposition. We assume three arbitrary relations R,X, Y , requiring only
that R;X and RT;Y may be formed.

i) syq (lbdR(X), lbdR(ubdR(Y ))) = syq (ubdR(lbdR(X)), ubdR(Y ))

ii) syq (R;X,R;R
T

;Y ) = syq (R
T

;R;X,R
T

;Y )

iii) syq (R/XT, R/(Y \R)) = syq (((R/XT)\R)T, (Y \R)T)

Proof : i) We expand both sides

syq (lbdR(X), lbdR(ubdR(Y ))) = XT;R
T

;R;R
T

;Y ∩ XT;R
T

;R;R
T

;Y

syq (ubdR(lbdR(X)), ubdR(Y )) = XT;R
T

;R;R
T

;Y ∩ XT;R
T

;R;R
T

;Y
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Now, the first term in the first equals the second term in the second case. The
other terms may be transformed into one another, applying two times the trivially
satisfied equation of the following type

R
T

;R;R
T

;Y = R
T

;Y

ii) and (iii) are the same as (i), but written differently.

When considering Fig. 8.5.5, one will observe that the pairs of relations

lbdR(X) vs. lbdR(ubdR(Y ))
ubdR(lbdR(X)) vs. ubdR(Y )

that are compared via the symmetric quotient differ even in their source types.
Nonetheless the relation marked syq in Fig. 8.5.5 relates either one of these pairs.

X

Y

X

Y

Fig. 8.5.4 Shift-inverting the cone

There are several other formulae concerning the symmetric quotient. They may also
be understood as some sort of cancelling. Again, we provide an analogy: So far, we
had the first two ways of cancelling, and now we aim at the third of

p× q
p = q q

p ×
p
r = q

r
r
p : r

q = q
p

In total, symmetric quotients offer more or less the same division formulae, provided
one has certain totality and/or surjectivity properties. If not, estimates are possible
so as to establish “sub-cancellability”.

8.5.11 Proposition. Let relations X,Y, Z be given for which the constructs may
be formed.

i) syq (X,Y ) ⊆ syq (Z,X) \ syq (Z, Y )
ii) syq (syq (X,Y ), syq (X,Z)) ⊇ syq (Y, Z)
iii) syq (syq (X,Y ), syq (X,Z)) = syq (Y, Z) if syq (X,Y ) and syq (X,Z)

are surjective
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syq =



1 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 1 0 0 1
0 0 0 0 0 0 0
0 1 1 0 1 0 0
0 1 1 0 1 0 0
1 0 0 1 0 0 1
0 0 0 0 0 0 0
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0 0 1 0 1 0 1 1 1 0 0
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1 1 1 1 1 0 1
0 1 1 0 1 0 0
0 1 1 0 1 0 0
1 0 0 1 0 0 1
0 1 1 0 1 0 0
0 1 1 0 1 0 0



ubdR(lbdR(X)) =

US
French

German
British

Spanish

1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 0

 ubdR(Y ) =

1 0 0 1 0 1 1
0 0 0 0 0 1 0
0 1 1 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0



Fig. 8.5.5 Relations when shift-inverting the cone
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Proof : i) syq (Z,X) \ syq (Z, Y ) =
=
[
syq (Z,X)

]T
;syq (Z, Y ) expanded

= syq (X,Z);

[
Z

T
;Y ∪ ZT;Y

]
transposed, expanded

= syq (X,Z);Z
T

;Y ∩ syq (X,Z);ZT;Y distributive, De Morgan

= syq (X,Z);Z
T

;Y ∩ syq (X,Z);ZT;Y since always syq (A,B) = syq (A,B)

⊇ X
T

;Y ∩ XT;Y two times Prop. 8.5.3.ii
= syq (X,Y ) by definition

ii) syq (syq (X,Y ), syq (X,Z)) =

= syq (X,Y )
T

;syq (X,Z) ∩ syq (X,Y )T;syq (X,Z) partly expanded
= syq (Y,X);syq (X,Z) ∩ syq (Y,X);syq (X,Z) transposed

= [Y
T

;X ∪ Y T;X];syq (X,Z) ∩ syq (Y,X); [X
T

;Z ∪ XT;Z] further expanded

= Y
T

;X;syq (X,Z) ∩ Y T;X;syq (X,Z) ∩
syq (Y,X);X

T
;Z ∩ syq (Y,X);XT;Z distributivity, De Morgan

⊇ Y
T

;Z ∩ Y T;X;syq (X,Z) ∩ syq (Y ,X);X
T

;Z ∩ Y T;Z cancelled

⊇ Y
T

;Z ∩ Y T;Z cancelled again

iii) In case of surjectivity equality will hold according to Prop. 8.5.3.iii.

This was quite a lot of mostly new formulae so that one should ask whether it was
worth proving all these. The author is absolutely confident that the answer is “yes!”.
In view of the many publications of computer scientists around programming se-
mantics, power transposes, and existential images that are often just postulational,
we here favour Leibniz’ style of saying “Calculemus!”.

Exercises

8.5.1 Prove that syq (R,R) ⊆ RT;R whenever R is surjective.

8.5.2 Prove that for injective A,B additional properties hold:

AT;B ⊆ syq (A,B) A;syq (A,B) = A; ∩ B B ⊆ syq (AT, syq (A,B))

8.5.3 Prove that for arbitrary relations R,X the constructs U :=
∧
R(X) and

V := ubdR(X) satisfy the requirements R ; V = U and R
T

; U = V for a non-
enlargeable rectangle.

8.6 Tarski Rule and Point Axiom

With the preceding sections, a stock of rules for working with relations has been put
together and many examples have shown how these rules cooperate. Unexpectedly,
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however, we are now about to arrive at an important theoretical borderline, so
that this section should be skipped at first reading. The presentation may best be
started with the following at first sight trivial result:

8.6.1 Proposition (Tarski rule). R=/ =⇒ ;R; = .

For any relation given as a matrix, it will obviously hold; see Fig. 8.6.1.

R =
(

0 0 0 0
0 0 1 0
0 0 0 0

)
R; =

(
0 0 0 0
1 1 1 1
0 0 0 0

)
;R =

(
0 0 1 0
0 0 1 0
0 0 1 0

)
Fig. 8.6.1 Illustrating the Tarski rule

Also another (theoretically equivalent) version may be given:

8.6.2 Proposition (Variant of the Tarski rule). Always

R; = or ;R =

This says what sounds completely trivial when given as a Boolean matrix, namely
that a relation R is total or its negation R is surjective, i.e., has an entry 1 in
every column. Of course, in our standard interpretation, every row that assigns no
value is a row full of 0 ’s and will provide for a row of 1 ’s in the complement.

Any attempt, however, to prove Prop. 8.6.1 or Prop. 8.6.2 — out of the axioms
adopted with Def. 8.1.1 — will fail. Here, we cannot convince the reader in this
regard. We can, however, report that small finite examples of relation algebras
exist (to be found in, e.g., [KS00]) in which these propositions do not hold. In these
relation algebras the elements can not be conceived as sets of pairs.

Another issue of this kind is concerned with representable vs. non-representable
relation algebras and may be explained as follows. In the proofs that occur later in
this book, we have hardly ever to resort to the relation as a set of pairs, and thus,
to the following so-called Point Axiom.

8.6.3 Proposition (Point Axiom). For every relation R the following holds:

R=/ ⇐⇒ x;yT ⊆ R for certain points x, y.

Around all these facts, a remarkable amount of literature has appeared. One may
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work with a set-up of relation algebras which does, or which does not, in addition
to Def. 8.1.1 contain Prop. 8.6.1, Prop. 8.6.2, and/or Prop. 8.6.3 as an axiom.
The interdependency forms a highly interrelated complex, and we do not further
elaborate on it. Only a close examination shows the deep consequences7 it has to
postulate or not postulate the Tarski rule.

A first consequence shall also be given with the following:

8.6.4 Proposition (Intermediate Point Theorem). Let any relations R : X −→ Y

and S : Y −→ Z be given together with a point x ⊆ X and a point z ⊆ Z. Assuming
the Point Axiom to hold, the following are equivalent:

• x ⊆ R;S;z

• x ⊆ R;w and w ⊆ S;z for some point w

Proof : Since the step back from the second to the first statement is trivial, we
concentrate on the other direction. The vector S ; z ∩ RT

;x will turn out to be
nonempty and, thus, contain a point w according to the Point Axiom: To prove
this claim, assume S; z ∩ RT

;x = , which via shunting a point is equivalent with
R;S;z ⊆ x contradicting the first statement with a point x. To establish the second
statement is now easy:

w ⊆ S;z ∩ RT
;x ⊆ S;z

follows with monotony. Furthermore, w ⊆ S;z ∩RT
;x ⊆ RT

;x so that x ⊆ R;w using
the Schröder rule and shunting a point.

On a further advanced level, we may find with Prop. 19.1.11 an even more sophis-
ticated result, that seems also interesting.

7 Alfred Tarski observed that the rule has to do with the simplicity of the algebra
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Orders and Lattices

Lattices penetrate all our life. Already early in school we learn about divisibility
and look for the greatest common divisor as well as for the least common multiple.
Later we learn about Boolean lattices and use union and intersection “∪,∩” for sets
as well as disjunction and conjunction “∨,∧” for predicates. Concept lattices give
us orientation in all our techniques of discourse in everyday life — what usually
does not come to everybodies attention. Nevertheless they completely dominate our
imagination. Mincut lattices originate from flow optimization, assignment problems,
and further optimization tasks. It is well-known that an ordering may always be
embedded into a complete lattice. Several embedding constructions are conceivable:
cut completion and ideal completion, e.g.

We introduce all this step by step concentrating first on order-theoretic functionals.
Then we give several examples determining the maximal, minimal, greatest, and
least elements of subsets. So we learn to work with orderings and compute with
them.

9.1 Maxima and Minima

Whenever an ordering is presented, one will be interested to find maximal and
minimal elements of subsets. Of course, we do not think of linear orderings only.
It is a pity that many people — even educated ones — colloquially identify the
maximal element with the greatest. What makes it even worse is, that the two
often indeed coincide. Their definition and meaning is, however, different in nature
as soon as orderings are not just finite and linear ones. We suffer here from historical
development: In former times, people did hardly ever consider other orderings than
linear ones or powerset orderings.

• An element is a maximal element of a set when there does not exist any strictly
greater one in this set.

• An element is the greatest element of a set if it is greater than (or equal to) any
other element of this set.
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Having announced this basic difference, we concentrate on maximal (and minimal)
elements first.

9.1.1 Definition. Let a set V be given with a strictorder “<”, as well as an
arbitrary subset U ⊆ V .

i) The element m ∈ U is called a maximal element of U , if no element of U is
strictly greater than m; in predicate logic form: m ∈ U ∧ ∀u ∈ U : m</ u.

ii) Correspondingly, the element m ∈ U is called a minimal element of U , if no
element of U is strictly less than m; in predicate logic form: m ∈ U ∧ ∀u ∈
U : m>/ u.

iii) Should the strictorder have been given as a relation C, the set of maximal
resp. minimal elements of the set U is

maxC(U) := U ∩ C;U , resp. minC(U) := U ∩ CT;U .

When looking for maximal elements, one should be prepared to find as a result a
set of elements which may thus be empty, a one-element set, or a multi-element
set. The algebraic definition uses the strictorder C instead of “<”. Then we move
gradually to the point-free form:

m ∈ U ∧ ∀u ∈ U : m</ u
proceeding to quantification over the whole domain

⇐⇒ m ∈ U ∧ ∀u : u ∈ U → m</ u
a→ b = ¬a ∨ b

⇐⇒ m ∈ U ∧ ∀u : u /∈ U ∨m</ u
∀x : p(x) = ¬

(
∃x : ¬p(x)

)
⇐⇒ m ∈ U ∧ ¬

(
∃u : u ∈ U ∧m < u

)
a ∧ b = b ∧ a

⇐⇒ m ∈ U ∧ ¬
(
∃u : m < u ∧ u ∈ U

)
corresponding matrix and vector form

⇐⇒ Um ∩ ¬
(
∃u : Cmu ∧ Uu

)
composition of relation and vector

⇐⇒ Um ∩ C;Um

So we have justified the point-free definition

maxC(U) := U ∩ C;U

in (iii) and analagously,

minC(U) := U ∩ CT;U

People are usually heavily oriented towards predicate logic formulations. One can,
however, also read the present relation-algebraic form directly: Maximal elements
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are elements from U for which it is not the case that one can go a step up according
to C and reach an element from U .

1 2 3 4 5
1
2
3
4
5

1 1 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1


1 

2 3 

4 5 

1
2
3
4
5

1
1
0
0
0

 7→
0

1
0
0
0

 1
2
3
4
5

0
1
0
1
1

 7→
0

0
0
1
1

 1
2
3
4
5

1
1
1
0
0

 7→
0

1
1
0
0


Fig. 9.1.1 An ordering with three sets and their sets of maxima

9.2 Bounds and Cones

An upper bound of a subset U ⊆ V is some element s that is greater than or equal
to all elements of U , regardless of whether the element s itself belongs to U . A
lower bound is defined accordingly. We first recall this definition in a slightly more
formal predicate-logic way.

9.2.1 Definition. Let an ordering “≤” be given on a set V .

i) The element s ∈ V is an upper bound (also: majorant) of the set U ⊆ V if
∀u ∈ U : u ≤ s.

ii) The element s ∈ V is a lower bound (also: minorant) of the set U ⊆ V if
∀u ∈ U : s ≤ u.

Often, we are not only interested in just one upper bound, but have in view the set of
all upper bounds. It is more than evident that an element above an upper bound will
also be an upper bound. This motivates to define in a point-free relational manner
the concept of an upper cone as a set where with an element all its superiors belong
to the set.

9.2.2 Definition. For an ordering E on a set V , the set of upper, resp. lower,
bounds of the set U is

ubdE(U) = E
T

;U , resp. lbdE(U) = E;U ;

for which we will use ubd (U), lbd (U), when E is already agreed upon.
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1 2 3 4 5

1
2
3
4
5

1 1 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1


1 

2 3 

4 5 

1
2
3
4
5

1
1
0
0
0

 7→
0

1
0
1
1

 1
2
3
4
5

0
0
0
1
1

 7→
0

0
0
0
0

 1
2
3
4
5

0
1
1
0
1

 7→
0

0
0
0
1


Fig. 9.2.1 An ordering with three sets and their upper bound sets

It is then, however, no longer convenient to work with the infix notation “≤” for
the ordering in question. Algebraic considerations make us switch to the letter E≤,
or simply E, to denote the ordering relation. Let ubdE(U) be the set of all upper
bounds of U ⊆ V , i.e.,

ubdE(U) := {s ∈ V | ∀x ∈ U : x ≤ s}

When transforming the righthand side of this upper bound definition, we arrive at
an algebraic condition:

∀s ∈ V : s ∈ ubdE(U)↔ (∀x ∈ U : x ≤ s)
∀a ∈ A : p(a) = ∀a : a ∈ A→ p(a)

⇐⇒ ∀s ∈ V : s ∈ ubdE(U)↔ (∀x : x ∈ U → x ≤ s)
a→ b = ¬a ∨ b

⇐⇒ ∀s ∈ V : s ∈ ubdE(U)↔ (∀x : x∈/ U ∨ x ≤ s)
∀x : p(x) = ¬(∃x : ¬p(x))

⇐⇒ ∀s ∈ V : s ∈ ubdE(U)↔ [¬(∃x : x ∈ U ∧ x≤/ s)]
a ∧ b = b ∧ a

⇐⇒ ∀s ∈ V : s ∈ ubdE(U)↔ [¬(∃x : s≥/ x ∧ x ∈ U)]
definition of composition

⇐⇒ ∀s ∈ V : s ∈ ubdE(U)↔ [¬(s ∈ ET
;U)]

shifting negation
⇐⇒ ∀s ∈ V : s ∈ ubdE(U)↔ (s ∈ ET

;U)
transfer to point-free notation

⇐⇒ ubdE(U) = E
T

;U

This justifies the preceding Def. 9.2.2.iii. With this form, we are in a position to
easily compute sets of upper bounds in a form of an operation on matrix and vector
known from matrix analysis.

9.2.3 Definition. Let an ordering E be given on a set V . A subset U ⊆ V is said
to satisfy the upper cone property if U = ET;U . In analogy, U has the lower
cone property if U = E;U .

One can interpret U = ET;U by saying that when one has stepped down according
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to E ending in a point of the set U , then one has necessarily already been starting
in U . That this holds true when U := ubdE(X) is an upper bound set can be proved

algebraically, recalling that always E;E
T

= E
T

and E;E
T

;X = E
T

;X for an order E:

ET;U = ET;ubdE(X) = ET;E
T

;X = E
T

;X = ubdE(X) = U

Exercises

9.2.1 Prove that for points x, y, the condition lbdE(x) = lbdE(y) implies x = y.

9.3 Least and Greatest Elements

As we have already noticed, it is necessary to distinguish the maximal elements
from the greatest element of a set. If the latter exists, it will turn out to be the only
maximal element. The predicate logic form of a definition of a greatest element is
as follows.

9.3.1 Definition. Let a set V be given that is ordered with the relation “≤”, and
an arbitrary subset U ⊆ V . The element g ∈ U is called the greatest element of
U , if for all elements e ∈ U we have e ≤ g. The element l ∈ U is called the least
element of U , if for all elements e ∈ U we have e ≥ l.

1 2 3 4 5

1
2
3
4
5

1 1 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1


1 

2 3 

4 5 

1
2
3
4
5

1
1
0
0
0

 7→ 1
2
3
4
5

0
1
1
0
0

 7→
0

0
0
0
0

 1
2
3
4
5

0
1
1
0
1

 7→
0

0
0
0
1


Fig. 9.3.1 An ordering with three sets and their greatest element sets

It is important to note that g, l must be elements of the set U in question; otherwise,
they can neither be the greatest nor the least element of U . Such elements may exist
or may not; so it is wise to talk of the set of greatest elements, e.g. This set can
always be computed and may turn out to be empty or not. In any case, we will get
a result when we define it in a point-free relational form:

9.3.2 Definition. Given an ordering E, we define for a subset U

greE(U) := U ∩ ubdE(U) and leaE(U) := U ∩ lbdE(U)
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w x y z

w
x
y
z

(
1 1 1 0
0 1 0 0
0 0 1 0
0 1 1 1

)
w

x y

z

w
x
y
z

(
1
0
0
1

)
7→

(
0
0
0
0

)
,

w
x
y
z

(
0
0
1
1

)
7→

(
0
0
1
0

)

Fig. 9.3.2 Order, Hasse diagram, subsets, and non-existing or existing greatest elements

Greatest elements may also be formulated with the symmetric quotient.

9.3.3 Proposition. Given an order E, greatest elements of a set v may be also
determined using the symmetric quotient as

greE(v) = syq (E,E;v) leaE(v) = syq (ET, ET;v).

Proof : Recall that E
T

;E = E
T

and ET;E;X = E;X for an ordering E and any X.

syq (E,E;v) = E
T

;E;v ∩ ET;E;v

= E
T

;v ∩ E;v

= E
T

;v ∩ E;v

= E
T

;v ∩
(
E ∩ (ET ∪ ET

)
)

;v

= E
T

;v ∩
(
(E ∩ ET) ∪ (E ∩ ET

)
)

;v

= E
T

;v ∩
(
(E ∩ ET);v ∪ (E ∩ ET

);v
)

= E
T

;v ∩
(

;v ∪ (E ∩ ET

);v
)

antisymmetry

= E
T

;v ∩ v last term vanishes by intersection
= ubdE(v) ∩ v = greE(v)

9.4 Greatest Lower and Least Upper Bounds

Among the set of upper bounds of some set, there may exist a least element in
the same way as there is a least element among all multiples of a finite set of
natural numbers — known as least common multiple. Starting herefrom, traditional
functionals may be obtained, namely the least upper bound u, (also: supremum),
i.e., the at most 1-element set of least elements among the set of all upper bounds
of u. In contrast to our expectation that a least upper bound may exist or not, it
will here always exist as a vector; it may, however be the null vector resembling
that there is none, or else a 1-element vector.

9.4.1 Definition. i) Let an ordered set V,≤ be given and a subset U ⊆ V . An
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element l is called the least upper bound of U if it is the least element in the set
of all upper bounds of U . An element g is called the greatest lower bound of U
if it is the greatest element in the set of all lower bounds of U .

ii) The least upper and greatest lower bounds may be defined in a point-free
relational form as

lubE(U) := ubdE(U) ∩ lbdE(ubdE(U)) := E
T

;U ∩ E ; E
T

;U

glbE(U) := lbdE(U) ∩ ubdE(lbdE(U)) := E;U ∩ ET
; E;U

As mentioned previously, these functionals are always defined; the results may,
however, be null vectors. It is an easy task to prove that lub , glb are always
injective, resembling that such bounds are uniquely defined if they exist, see Ch. 3
of [SS89, SS93]. As an example we compute the least upper bound of the relation
E itself, employing the well-known facts E

T
;E = E

T

and E ; ET = E as well as
antisymmetry of E:

lubE(E) = E
T

;E ∩ E ; E
T

;E = ET ∩ E ; ET = ET ∩ E = .

Considering E as a set of column vectors, every column represents the lower cone
hanging below the respective element, which is then — of course — the least upper
bound thereof.
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Fig. 9.4.1 An ordering with three sets and their least upper bound sets

As a tradition, a vector is often a column vector. In many cases, however, a row
vector would be more convenient. We decided to introduce a variant notation for
order-theoretic functionals working on row vectors:

lubRE(X) := [lubE(XT)]T, etc.

For convenience we introduce notation for least and greatest elements as

0E = glbE( ) = leaE( ), 1E = lubE( ) = greE( )

When using 0E , 1E it is understood that the underlying vectors are not null vectors.

9.4.2 Proposition (Connecting syq and lub ). Given an order E, the least upper
bound, resp. the greatest lower bound, of a set v may be also determined using the
symmetric quotient as
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lubE(v) = syq (ET, E
T

;v) glbE(v) = syq (E,E;v).

Proof : The proof is based on Prop. 9.3.3. By definition,

lubE(v) = leaE(ubdE(v)) = syq (ET, ET;ubdE(v)) = syq (ET, ubdE(v)),

where the last step uses that ET;E
T

;v = E
T

;v; similarly for glb .

This result is quite intuitive when we recall that the symmetric quotient acts as
column comparison. Then we have — in the first case — formed the upper bound
set and compared it with the cones above an element; this element is then, of course,
the least in this cone.

Far more intimately related are symmetric quotient and least upper bound in case
the ordering is a powerset ordering:

9.4.3 Proposition (Connecting syq and lub in a powerset). In a powerset lattice
we have for all relations X with the product ε;X defined that

lubΩ(X) = syq (ε, ε;X) glbΩ(X) = syq (ε, ε;X)
ε;lubΩ(X) = ε;syq (ε, ε;X) = ε;X ε;glbΩ(X) = ε;syq (ε, ε;X) = ε;X

Proof :
syq (ε, ε;X) = εT

;ε;X ∩ εT;ε;X expanding syq

= εT
;ε;X ∩ εT;ε;εT

;ε;X Prop. 7.6.2

= Ω
T

;X ∩ Ω; Ω
T

;X definition of powerset ordering
= lubΩ(X) Def. 9.4.1

9.5 Lattices

We have seen that least upper or greatest lower bounds are important. The case
that they exist for every two-element subset — or, more general, for every subset
— deserves a separate consideration. The standard definition is as follows.

9.5.1 Definition. An order E is called a lattice1 if for every two-element subset
there exists a greatest lower as well as a least upper bound. The ordering E is called
a complete lattice when every subset has a least upper bound.

1 In German Verband and in French treillis.
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For the lattice, we refer back to Fig. 7.2.13, where we have defined the join and
meet based on a given ordering E, and employing the direct product, as

J := lubRE(π ∪ ρ) and M := glbRE(π ∪ ρ)

The requirement for the ordering E to be a lattice is that these be mappings. Using
the membership ε, we may also define E to be a complete lattice in a point-free
relational form, namely as:

9.5.2 Definition. E is called a complete lattice if lubE(ε) is surjective.

We may also say that E is a complete lattice if

f :=
[
lubE(ε)

]T = syq (E
T

;ε, ET)

is always a mapping. Fig. 9.5.1 does not show a lattice since the two elements w, z
have two upper bounds but among these not a least one. This may easily be seen
in the figure: The broad relation shows all occurring upper bound sets; the right
relation shows the transposed ordering, thus visualizing all upper cones above an
element. The relation f , which compares columns between the two, can obviously
not be a mapping.
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1 1 0 1
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{} {x
}
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}
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}
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}
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}
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}
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,z

,w
}

{y
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,w
}

{x
,y

,z
,w
}

x
y
z
w

(
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

) x y z w

x
y
z
w

(
1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1

)

Fig. 9.5.1 An ordering which is not a lattice: E, Hasse diagram, E
T

;ε, and ET

9.5.3 Proposition. Every powerset ordering Ω = εT;ε gives rise to a complete
lattice.

Proof : For the membership relation ε′ along the powerset we have
lubΩ(ε′) = syq (ΩT,Ω

T
;ε′) Prop. 9.4.2

= syq (εT
;ε, εT

;ε;ε′) expanded
= syq (εT

;ε, εT
;ε;ε′) negated

⊇ syq (ε, ε;ε′) cancelling a common left factor

so as to arrive at a relation which is surjective by definition

Concerning complete lattices, there exists some slightly tricky folklore: Every subset



9.5 Lattices 191

— this quantification includes the empty subset! — is required to have a least upper
bound. Every element is an upper bound of the empty set, which can easily be seen
from the definition of the upper bound set ubdE( ) = E

T
; = . This upper bound

set is in turn required to have a least element, namely the least upper bound of
the empty set, meaning that there exists the least element of the whole set. This,
however, guarantees that every lower bound set is non-empty, which allows forming
greatest lower bounds as the least upper bound of the — thus — non-empty set of
lower bounds. Taking all this together, it was not a mistake to demand only least
upper bounds to exist for a complete lattice; the greatest lower bounds will then
automatically exist.

Staying completely in the relational setting, this might more easily be communi-
cated as

glbE(ε) = E;ε ∩ ET
;E;ε Prop. 9.4.2

= E;E
T

;E;ε ∩ ET
;E;ε Prop. 8.4.3: lbdE(X) = lbdE(ubdE(lbdE(X)))

= lubE(E;ε) Prop. 9.4.2 again

Thus glbE(ε) will be surjective because lubE(E;ε) is surjective for every complete
lattice according to Def. 9.5.1.

In the finite case, the two concepts of a lattice and of a complete lattice will turn
out to coincide. When considering the natural numbers IN ordered by “≤”, one will
see that this is not the case for non-finite ordered sets: Every two numbers have
a least upper bound, namely their maximum, but there is no upper bound of all
natural numbers.

The following examples and remarks will convince the reader that lattices indeed
occur unexpectedly at many places.

The concept of a (complete) lattice has already been formulated in a point-free
fashion. We will now generalize this slightly.

9.5.4 Proposition. Let a relation E : X −→ X on a set X be given together with
the membership relation ε : X −→ 2X between X and its powerset. Then E is a
complete lattice precisely when

[
lubE(R)

]T is a mapping for all relations for which
E;R may be formed.

Proof : We recall how we have expressed that all subsets have a least upper bound
using ε, because ε “has all subsets as its columns”. Now we assume any relation R
for which E;R may be formed. Obviously

lubE(R) = syq (ET, E
T

;R) Prop. 9.4.2
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= syq (ET, E
T

;ε;syq (ε,R)) Prop. 7.6.2

= syq (ET, E
T

;ε;fT) abbreviating f :=
[
syq (ε,R)

]T
= syq (ET, E

T
;ε);fT mapping f slips out of negation; Prop. 8.5.7.iii

= lubE(ε);fT Prop. 9.4.1

Composed of two transposed mappings, this is itself a transposed mapping.

We add here a concept of structural comparison for lattices that is helpful and
important in many cases.

9.5.5 Definition. Given orderings E,E′ and a mapping f , we call

f (lattice-)continuous :⇐⇒ fT;lubE(X) = lubE′(fT;X) for every X.

In order to prove that continuity of f implies isotony, we estimate

fT = fT; = fT;lubE(E) = lubE′(fT;E) ⊆ ubdE′(fT;E) = E′
T

;fT;E

and apply the Schröder equivalence and Prop. 5.2.6 to obtain E;f ⊆ f ;E′.

9.5.6 Corollary. Every surjective image of a continuous mapping applied to a
powerset ordering results in a complete lattice.

Proof : Let the continuous and surjective mapping be f : 2X −→ Y and the
orderings Ω : 2X −→ 2X and E : Y −→ Y .

lubE(Y ) = lubE(fT;f ;Y ) since f is a surjective mapping
= fT;lubΩ(f ;Y ) employing continuity

The result follows because lubΩ(f ;Y ) is always surjective by definition.

Several illustrating examples will be found around relational integration in Sect. 14.3.
The main idea is that applying f and forming the least upper bound commute.

Mincut lattice

A lattice often met in applications is the so-called mincut lattice. Consider any
directed graph whose arrows are IR-labelled with positive capacities; think of pipe
widths, e.g. Then a typical task in operations research asks, given any two different
vertices s, t considered as source and sink, for the maximal amount of flows that
may be assigned to the arrows indicating the maximum amount of oil or any other
commodity that may be pumped from the source to the sink.
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Of course, one does not allow commodities to emerge other than in s and to vanish
other than in t. The capacities assigned to the arrows delimit the amount that may
be pumped from s to t. In a complicated way, this total limit has its origin in added
limits of arcs traversed. Consider Fig. 9.5.2 for an example. The source is f and the
target is g.
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a c
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f

h

i
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k

1

3

2

4
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4

7
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1

6
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7

4

12

1
1

1
5

1

2

1
abcef

abcefh abcefi

abcefhj abcefhi abcefik

abcefhij abcefhik

abcefhijk

Fig. 9.5.2 A flow maximization task and some mincuts encountered forming a lattice

It is impossible to pump more than 17 units of commodity per time unit from f

to g. One will identify 9 pairs of complementary subsets, the first containing f , the
second containing g, so that indeed the amount of 17 units may be pumped from
the first set to the second:

{a, b, c, e, f} {d, g, h, i, j, k}
{a, b, c, e, f, i} {d, g, h, j, k}
{a, b, c, e, f, i, k} {d, g, h, j}
{a, b, c, e, f, h} {d, g, i, j, k}
{a, b, c, e, f, h, j} {d, g, i, k}
{a, b, c, e, f, h, i} {d, g, j, k}
{a, b, c, e, f, h, i, k} {d, g, j}
{a, b, c, e, f, h, i, j} {d, g, k}
{a, b, c, e, f, h, i, j, k} {d, g}

All these pairs are called mincuts around the target g. The smallest contains just
d, g. The lattice structure of all these mincuts may be recognized in Fig. 9.5.3: Nine
fat grey borderlines indicate precisely the nine mincuts listed above. Whenever one
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follows such a grey line from left to right and sums up the capacities of arrows that
lead upwards, one will always end up with 17 in total.
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1

1 1
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1 1

4

4

1

6
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7
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5
1

2

5

5

7

2

Fig. 9.5.3 A flow maximization rearranged according to mincut lattice

Antichain lattice

Given an order, we have so far concentrated on subsets and their greatest elements,
maximal elements etc. We are now interested in subsets of elements that form a
linear order or, contrarily, on subsets of elements that are completely unrelated
against one another. In the first case, one speaks of a chain; in the second of an
antichain. We provide a formal definition:

9.5.7 Definition. We assume an order E. Let a nonempty subset v be given with
its corresponding natural injection ι := Inject v, so that v = ιT; , and consider the
correspondingly restricted order Ev := ι;E; ιT.
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i) v is a chain :⇐⇒ Ev is a linear order
ii) v is an antichain :⇐⇒ Ev is a trivial order, i.e., Ev =

A justification of this definition in first-order form can easily be given for the first
case, e.g. To qualify a nonempty subset v to be a chain, consider an element x ∈ v
in comparison to all elements y; if also y is in v, it has to be greater or equal or less
or equal to x. We transform this stepwise into a relational form:

∀x : x ∈ v →
{
∀y : y ∈ v →

[
(x, y) ∈ E ∨ (y, x) ∈ E

]}
transposition

⇐⇒ ∀x : x ∈ v →
{
∀y : y ∈ v →

[
(x, y) ∈ (E ∪ ET)

]}
a→ b = ¬a ∨ b

⇐⇒ ∀x : x ∈ v →
{
∀y : y ∈/ v ∨

[
(x, y) ∈ (E ∪ ET)

]}
∀y : p(y) = ¬

{
∃y : ¬p(y)

}
⇐⇒ ∀x : x ∈ v → ¬

{
∃y : y ∈ v ∧

[
(x, y) ∈ E ∪ ET

]}
a ∧ b = b ∧ a, definition of composition

⇐⇒ ∀x : x ∈ v → ¬
[
x ∈ E ∪ ET;v

]
a→ ¬b = b→ ¬a

⇐⇒ ∀x :
[
x ∈ E ∪ ET;v

]
→ x∈/ v

transfer to point-free notation
⇐⇒ E ∪ ET;v ⊆ v

Schröder rule
⇐⇒ v;vT ⊆ E ∪ ET

extruding v
⇐⇒ ιT; ; (ιT; )T ⊆ E ∪ ET

transposing
⇐⇒ ιT; ; ι ⊆ E ∪ ET

ι is a mapping
⇐⇒ ⊆ ι; (E ∪ ET); ιT = Ev ∪ ET

v

To derive a simple relational formula describing all chains of an ordering, we start
from E ∪ ET; v ⊆ v, so that applying this condition to all subsets simultaneously,
we obtain the vector

chains(E) :=
[
E ∪ ET;ε ∩ ε

]T
;

among which one will in Sect. 15.3 wish to concentrate on the inclusion-maximal
ones. Those obtained as cardinality-maximal ones disregard too much of the order-
ing as one may see in Fig. 9.5.7; also shorter ones are needed to cover all vertices
according to the Dilworth chain decomposition theorem Prop. 9.5.9.
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In a similar way, we proceed for antichains. The set of all antichains of an ordering
E (with corresponding strictorder C) can also be described in a simple formula
using the membership relation ε. The condition that a subset v is an antichain
reads C;v ⊆ v. This expresses that when one proceeds to another point along C and
arrives in v one cannot have been starting in v. Using the membership relation ε,
we apply this condition to all subsets simultaneously with C;ε ⊆ ε and characterize
the set of antichains with the vector

antichains(E) :=
[
C;ε ∩ ε

]T
;

from which afterwards cardinality-maximum ones may be extracted using the cardi-
nality preorder O|| on the powerset. This time, those obtained as inclusion-maximal
ones are uninteresting as one may see in Fig. 9.5.7.
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Fig. 9.5.4 An ordering with its antichain lattice and all inclusion-maximal chains

Fig. 9.5.4 shows an example where we find out that the cardinality-maximum an-
tichains obtained form a lattice.
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0 0 0 0 1 0
0 0 0 0 0 1












{1
,2

,3
}→

{1
,2

,4
}→

{2
,3

,5
}→

{2
,4

,5
}→

{1,2,3}→
{1,2,4}→
{2,3,5}→
{2,4,5}→

(
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

) {1
,5
}→

{2
,6
}→

{3
,4

,6
}→

1
2
3
4
5
6


1 0 0
0 1 0
0 0 1
0 0 1
1 0 0
0 1 1



Fig. 9.5.5 An ordering with its antichain lattice and all inclusion-maximal chains

Also in Fig. 9.5.5, we observe a lattice structure on the set of cardinality-maximum
antichains, which we now trace back to the element level. The set of all cardinality-
maximum antichains is an interesting example of a lattice.
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Let A := (vi)i∈J be the (finite) set of cardinality-maximum antichains for E. The
cardinalities of these sets are, of course, equal. The injections ιi corresponding to
the non-empty antichain subsets v1, v2 may thus be conceived as injective mappings
with all the same source D. For all i ∈ J we have, thus, ιi;ιTi = D and ιTi;ιi ⊆ ⊆ E.

9.5.8 Proposition. Given any finite order E, the set of cardinality-maximum
antichains forms a lattice with order and corresponding infima and suprema as

v1 � v2 :⇐⇒ ιTv1
; ιv2 ⊆ E

v1 ^ v2 := max(E;v1 ∪ E;v2)

v1 _ v2 := max(E;v1 ∩ E;v2)

Proof : The relation “�” is reflexive since the injective mappings are univalent.
Since ιv2

;ιTv2
⊆ for the injection corresponding to v2, the relation “�” is obviously

transitive. Antisymmetry follows from ιTv1
;ιv2 ∩ ιTv2

;ιv1 ⊆ E ∩ET = and totality of
ιv2 , from which we get v1 = ιTv1

; = ιTv1
; ιv2

; ιTv2
; ⊆ ιTv2

; = v2 and vice versa.

One will more or less easily verify that

ιv1^v2 = (ιv1 ∩ ιv2
;E) ∪ (ιv2 ∩ ιv1

;E)

ιv1_v2 = (ιv1 ∩ ιv2
;ET) ∪ (ιv2 ∩ ιv1

;ET)

We demonstrate that these are indeed antichains for, e.g., the second definition. In
the emerging four product terms, one has to always choose the appropriate one of
the ∩-subterms.

ιv1_v2
;E;ιTv1_v2

=
[
(ιv1 ∩ ιv2

;ET) ∪ (ιv2 ∩ ιv1
;ET)

]
;E;

[
(ιTv1
∩ E;ιTv2

) ∪ (ιTv2
∩ E;ιTv1

)
]

⊆ ιv1
;E; ιTv1

∪ ιv1
;E;E; ιTv1

∪ ιv2
;E; ιTv2

∪ ιv2
;E;E; ιTv2

⊆

The tiny example of Fig. 9.5.6 visualizes this result.
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)
Fig. 9.5.6 An ordering with the lattice of its cardinality-maximum antichains

The closely related Kuratowski Theorem states that every chain in an ordered set
is included in a maximal chain. This is not really interesting in the finite case. The
general proof requires the Axiom of Choice, or some similarly powerful argument,
but will not be elaborated on here.
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9.5.9 Proposition (Dilworth’s Chain Decomposition Theorem). If v is a cardi-
nality-maximum antichain in an order E, it is possible to find a chain through each
of its points such that their union is sufficient to cover all vertices.

We do not prove this here; rather we consider Fig. 9.5.4 and observe that one may
indeed start from such antichains and find unions of chains that cover all vertices:

{a, d, f} → 7→ {i, g, a, b, } →, {h, j, c, d} →, {h, j, e, g, f} →
{b, d, f} → 7→ {i, g, a, b} →, {h, j, c, d} →, {h, j, e, g, f} →
{c, e, i} → 7→ {h, j, c, a, b} →, {h, j, e, g, f} →, {i, g, d} →

There exist many more examples of lattices occurring in practice, and we had orig-
inally intended to show more of them. In the meantime, however, the brilliant new
book [Ber08] by Rudolf Berghammer has appeared that treats lattices thoroughly
and also with relational means. So we could restrict to what has here been pre-
sented.

Fig. 9.5.7 Cardinality-maximum antichains vs. inclusion-maximal chains

Exercises

9.5.1 Determine the antichain lattice as well as all inclusion-maximal chains for
the following two orderings:

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 1 1 1 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 1 0 0 1



a b c d e f g h i

a
b
c
d
e
f
g
h
i


1 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 1 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1
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Rectangles, Fringes, Inverses

Although not many scientists seem to be aware of this fact, a significant amount
of our reasoning is concerned with “rectangles” in/of a relation. Rectangles are
handled at various places from the theoretical point of view as well as from the
practical side. Among the application areas are equivalences, preorders, concept
lattices, clustering methods, and measuring, to mention just a few seemingly in-
coherent ones. In most cases, rectangles are treated in the respective application
environment, i.e., together with certain additional properties. So it is not clear
which results stem from their status as rectangles as such and which employ these
additional properties. Here we try to formulate rectangle properties before going
into the various applications and hope, thus, to present several concepts only once,
and to reduce the overall amount of work.

10.1 Non-Enlargeable Rectangles

In Def. 6.2.3, we have already introduced rectangles inside a relation (sometimes
called blocks) on a rather phenomenological basis. We are going to investigate them
here in more detail and start recalling that u, v form a rectangle inside R if either
one, and thus all, of the following equivalent containments are satisfied:

u;vT ⊆ R ⇐⇒ R;v ⊆ u ⇐⇒ R
T

;u ⊆ v.

The main idea is to look for the in some sense maximal rectangles inside a relation.

10.1.1 Definition. Let a relation R be given together with subsets u, v that form
a rectangle inside R. The rectangle u, v is said to be non-enlargeable inside R if
there does not exist a different rectangle u′, v′ inside R such that u ⊆ u′ and v ⊆ v′.
For brevity, non-enlargeable rectangles will also be called dicliques1.

Non-enlargeable rectangles are maximal, but they need not be greatest ones. The
1 In [Har74], this denotation had originally been used in case R was a homogeneous relation —

preferably with u=/ as well as v=/ to exclude trivialities.
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property to constitute a non-enlargeable rectangle has an elegant algebraic charac-
terization.

10.1.2 Proposition. i) Let u, v define a rectangle inside the relation R. Precisely
when both,

R;v ⊇ u and R
T

;u ⊇ v,

are satisfied in addition, there will exist no strictly greater rectangle u′, v′ inside R.

ii) Vectors u, v constitute a non-enlargeable rectangle inside R if and only if

R;v = u and R
T

;u = v

Proof : i) Let us assume a rectangle u, v inside R, i.e., satisfying R; v ⊆ u and,
equivalently, R

T
; u ⊆ v, that does not satisfy, e.g., the first inclusion mentioned

in the proposition so that u ⊃=/ R; v. Then u′ := R;v ⊃=/ u and v′ := v obviously
constitute a strictly greater rectangle:

R;v′ = R;v = u′ and R
T

;u′ = R
T

;R;v ⊆ v = v′

Consider for the opposite direction a rectangle u, v inside R satisfying the two
inclusions together with another rectangle u′, v′ inside R such that u ⊆ u′ and
v ⊆ v′. Then we may conclude with monotony and an application of the Schröder
rule that v′ ⊇ RT

;u′ ⊇ RT
;u ⊇ v. This results in v′ = v. In a similar way it is shown

that u = u′. To sum up, u′, v′ can not be strictly greater than u, v.

ii) is obtained amalgamating (i) with the condition for a rectangle inside R.

Note that both of the two equations R;v = u and R
T

;u = v are used in this proof;
they are not via Schröder’s rule equivalent with one another as their “⊆”-versions
are. We may express (ii) using residuals and obtain

u = R/vT and vT = u\R.

Translation to predicate logic may help in intuitively understanding this result. The
condition u ⊆ R;v, e.g., reads then

∀x :
(
x /∈ u → ∃y : (x, y) /∈ R ∧ y ∈ v

)
,

so that any attempt to enlarge u adding x, which is not yet contained in u, will fail
as such a y is guaranteed to exist.

Consider a pair (x, y) of elements related by some relation R. This may be expressed
a little more algebraically as x;yT ⊆ R or, equivalently, as x ⊆ R;y due to Prop. 5.2.5.
It is immediately clear that y may or may not be the only point related with x.
With RT;x we have the set of all elements of the target side related with x. Because
we have been starting with (x, y) ∈ R, it is nonempty, i.e., =/ y ⊆ RT;x.
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For reasons we shall accept shortly, it is advisable to use the identity RT;x = R
T

;x

which holds due to Prop. 5.2.6 if x is a point. We then see, that a whole rectangle
— may be one-element only — is contained in R, namely the one given by rows

ux := R;R
T

;x = R;RT;x on the source side together with columns
vx := R

T
;x = RT;x on the target side.

The right variants are obtained since x, y had been assumed to be points. One ap-
plication of the Schröder equivalence shows that indeed ux;vT

x ⊆ R. Some preference
has here been given to x, so that we expect something similar to hold when starting
from y. This is indeed the case; for the rectangle defined by

uy := R;y = R;y on the source side

vy := R
T

;R;y = R
T

;R;y on the target side

we have analogously uy;vT
y ⊆ R. Fig. 10.1.1 indicates how these rectangles turn out

to be non-enlargeable ones.

For better reference, we collect these ideas in a proposition.

10.1.3 Proposition. A point x;yT ⊆ R in a (possibly heterogeneous) relation R

gives rise to

i) a non-enlargeable rectangle inside R started horizontally

ux := R;R
T

;x = R;RT;x ⊇ x, vx := R
T

;x = RT;x ⊇ y
ii) a non-enlargeable rectangle inside R started vertically

uy := R;y = R;y ⊇ x, vy := R
T

;R;y = R
T

;R;y ⊇ y

Proof : In both cases, we have non-enlargeable rectangles inside R according to
Prop. 10.1.2.ii, since indeed

R;vx = ux and R
T

;ux = vx

as well as

R;vy = uy and R
T

;ux = vy.

This may easily be seen directly, respectively via the very general identities such as

R;R
T

;R;X = R;X.

The rectangles started horizontally and started vertically may coincide; a case to
be handled soon. Regarding Def. 9.2.1.iii and also Exercise 8.2.2, one will find out
that — although R has not been defined as an ordering — the construct is similar
to those defining upper bound sets and lower bound sets of upper bound sets.
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y

x ux

vx
y

uy

v

Fig. 10.1.1 Non-enlargeable rectangles

In Fig. 10.1.1, let the relation R in question be the “non-white” area, inside which
we consider an arbitrary pair (x, y) of elements related by R. To illustrate the pair
(ux, vx), let the point (x, y) first slide inside R horizontally over the maximum
distance vx, limited as indicated by → ←. Then move the full subset vx as far
as possible inside R vertically, obtaining ux, and thus, the light-shaded rectangle.
Symbols like indicate where the light yellow rectangle cannot be enlarged in
vertical direction.

In much the same way, let then slide the point on column y as far as possible inside
R, obtaining uy, limited by ↓ and ↑. This vertical interval is then moved horizontally
inside R as far as possible resulting in vy and in the black rectangle, confined by
the symbol .

Observe, that the non-enlargeable rectangles need not be coherent in the general
case; nor need there be just two. Fig. 10.1.2, where the relation considered is as-
sumed to be precisely the union of all rectangles, shows a point contained in five
non-enlargeable rectangles. What will also become clear is that with those obtained
by looking for the maximum horizontal or vertical extensions first, one gets extreme
cases.
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Fig. 10.1.2 A point contained in five non-enlargeable rectangles

Many important concepts concerning relations depend heavily on such rectangles.
Not least offers a decomposition into a set of non-enlargeable rectangles, or dicliques,
an efficient way of storing information on a system; see, e.g., [Har74]. The following
Fig. 10.1.3 will several times illustrate our exposition. It shows all non-enlargeable
rectangles of the relation on the left. The vertical vectors as well as the horizontal
ones of the non-enlargeable rectangles are extruded as one may see from the row
and column annotations. The bijection shows how they belong to one another.
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Fig. 10.1.3 A relation and all of its non-enlargeable rectangles

We note in passing that the relation on the right is not a homogeneous one, but
has a square matrix.

The symmetric case: maxcliques

We now investigate what happens in case R is symmetric. In the first place, dicliques
u, v may be discussed as before. It is more interesting to concentrate on cliques as
defined in Def. 6.2.6 by one — and thus all — of the conditions
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u;uT ⊆ R ⇐⇒ R;u ⊆ u ⇐⇒ R
T

;u ⊆ u,

i.e., imposing the requirement u = v.

10.1.4 Definition. Given a symmetric relation R and a clique u in R, we call it
a maxclique2 provided that for every clique v ⊇ u necessarily u = v.
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{}→ all nations→
{Arbuthnot}→ {US,German,British}→
{Dupont}→ {French,German,Spanish}→

{Perez,Dupont}→ {German,Spanish}→
{Botticelli}→ {US,Spanish}→

{Arbuthnot,Botticelli}→ {US}→
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Fig. 10.1.4 Rearranged concept lattice for the relation of Fig. 10.1.3

Examples of non-enlargeable cliques of symmetric and reflexive relations, i.e., max-
cliques, may be found in Fig. 6.2.4. Also at this point, we will find a nice algebraic
characterization. Cliques have traditionally been investigated in graph theory and
not so often in relation algebra. Graph theorists mostly assume an irreflexive adja-
cency Γ. For us, it would be inconvenient to always cut out the diagonal, so that
we work with the reflexive R := ∪ Γ.

2 Observe that a diclique is a maximal block by definition. Because a clique in graph theory need not
be maximal, we have coined the word “maxclique”.
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10.1.5 Proposition. Let any symmetric and reflexive relation R be given and
consider a clique u inside R. If we assume the Point Axiom to hold, then

u maxclique ⇐⇒ R;u = u.

Proof : “=⇒”: If u is a maxclique, then it is a clique, i.e., R;u ⊆ u. Assume the
equation were not satisfied, i.e., R;u ⊂=/ u. Using the Point Axiom, there exists a

point x ⊆ R;u ∩ u. With x, we find the strictly greater v := u ∪ x, which turns out
to be a clique because

R;v = R; (u ∪ x) = R;u ∪ R;x ⊆ u ∩ x = v.

The necessary four containments may be proved using symmetry, reflexivity, and
the Schröder rule. Altogether this contradicts maximality of u.

“⇐=”: A u satisfying R;u = u is a clique. In addition, assume a clique v with u ⊆ v.
Then

u = R;u ⊇ R;v ⊇ v,

because of the assumption, applying u ⊆ v, and using that v is a clique. Thus, v
cannot be strictly greater.

We will, beginning with Def. 11.2.6, investigate maxcliques in considerable depth.

10.2 Independent Pairs and Covering Pairs of Sets

We resume the study of non-enlargeable rectangles from a slightly different point
of view. Recall from Def. 6.3.1, that a relation A is given and pairs of subsets are
considered with the first taken from the source side and the second from the target
side. This may be met in two complementary forms as an

independent pair u, v of sets ⇐⇒ A;v ⊆ u ⇐⇒ AT;u ⊆ v or as a

covering pair s, t of sets ⇐⇒ A; t ⊆ s ⇐⇒ AT;s ⊆ t
Both will here get a more detailed treatment asking for the extremal cases. An inde-
pendent pair of sets is a rectangle outside A. When concentrating on complements
of the sets, we get a covering pair of sets u := s and v := t.

On the right side of Fig. 6.3.1 or of Fig. 10.2.1, (s, t) is indeed a covering pair
of sets, because the columns of t together with the rows of s cover all the 1 ’s of
the relation A. The covering property A; t ⊆ s follows directly from the algebraic
condition: When one follows relation A and finds oneself ending outside t, then the
starting point is covered by s. Algebraic transformation shows that A ⊆ s; ∪ ;tT

is an equivalent form, expressing that rows according to s and columns according
to t cover all of A.
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u v

u v

(u, v) independent sets

s t

s t

(s, t) covering

Fig. 10.2.1 Visualizing independent sets and covering sets

Both concepts allow for enlarging the pair, or reducing it, so as to arrive at an
equation.

10.2.1 Proposition. i) Consider a pair s, t of sets together with the relation A.
Precisely when both,

A; t = s and AT;s = t,

are satisfied, s, t will constitute a minimal covering pair of sets of A; i.e., there will
exist no covering pair x, y of sets of A satisfying x ⊆ s, y ⊆ t and (x, y) =/ (s, t).

ii) Consider a pair s, t of sets together with the relation A. Precisely when both,

A; t = s and AT;s = t,

are satisfied, s, t will be a maximal independent pair of sets of the relation A;
i.e., there will exist no independent pair x, y of sets satisfying x ⊇ s, y ⊇ t and
(x, y) =/ (s, t).

Proof : This is nothing more than a re-formulation of Prop. 10.1.2 in the present
context.

A relation may be decomposed along the independent or covering pairs of sets as
already indicated in Fig. 6.3.1.

The diversity of independent pairs of sets shown in Fig. 10.2.2 suggests to look
for the following line-covering possibility. For the moment, call rows and columns,
respectively, lines. Then together with the |x| × |y| zone of 0 ’s, we are able to
cover all entries 1 by |x| horizontal plus |y| vertical lines. It is standard, to try to
minimize the number of lines to cover all 1 ’s of the relation.
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10.2.2 Definition. Given a relation A, the term rank is defined as the minimum
number of lines necessary to cover all entries 1 in A, i.e.,

min{|s|+ |t| | A; t ⊆ s}.

Consider this schematically as
(
A11

A21 A22

)
;

( )
=
( )

. Hoping to arrive at

fewer lines than the columns of A11 and the rows of A22 to cover all of A, one
might start a first naive attempt and try to cover with s and t but row i, e.g.,
omitted. If (s, t) has already been minimal, there will be an entry in row i of A22

containing a 1 . Therefore, A22 is a total relation. In the same way, A11 turns out
to be surjective.

But we may also try to get rid of a (not just singleton-)set x ⊆ s of rows and accept
that a set of columns be added instead. It follows from minimality that regardless
of how we choose x ⊆ s, there will be at least as many columns necessary to cover
what has been left out. This leads to the following famous definition.

10.2.3 Definition. Let a relation Q : X −→ Y with a point set x ⊆ X on the
source side be given.

x satisfies the Hall condition
:⇐⇒ |z| ≤ |QT;z| for every subset z ⊆ x
⇐⇒ For every subset z ⊆ x exists a matching ρ with ρ; = z, ρT; ⊆ QT;z

x can be saturated
:⇐⇒ There exists a matching λ ⊆ Q with λ; = x

Since we have nearly completely refrained from using natural numbers in all this
text, it looks funny to see an argument “strictly more” which is seemingly based on
natural numbers. However, it is not really, since it may be formulated via existence,
or non-existence, of a matching relation.

Summarized, if we have a line-covering with |s| + |t| minimal, then AT
11 as well

as A22 will satisfy the Hall-condition. We will later learn how to find minimum
line-coverings and maximum independent sets without just checking them all ex-
haustively. Then also a better visualization will become possible; see Fig. 16.5.2.
Additional structure will be extracted employing assignment mechanisms.

In Fig. 10.2.2, we observe apart from the upper-right rectangle of 0 ’s, that in every
case the lower left of these rectangles touches a diagonal. This diagonal in turn
indicates how a matching will always exist. For now, it is just an observation that
we may arrange rows and columns so as to present these diagonals; we will need
additional theoretical concepts in order to obtain results around Fig. 16.5.2.
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1 2 3 4 5 6 7

a
b
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h
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j
k



0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 1 1 0 1 1 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
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0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 1 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
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0 0 0 1 0 0 0
1 0 0 1 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
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0 1 1 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 1 1 1 0
0 0 0 0 0 0 1
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0 0 1 0 0 0 0
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0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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0 0 0 0 0 0 1
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0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 1 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 1 1 1 0
0 0 0 0 0 0 1
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b
d
e
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a
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0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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b
d
e
f
a
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0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 1 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


4 1 2 5 3 7 6

b
d
e
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c
i
j
a
g
h
k



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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b
d
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0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 1 1
0 0 0 0 0 0 1



4 1 2 6 5 3 7

b
d
e
f
c
i
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k
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h



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 1 1 1 0
0 0 0 0 0 0 1



4 7 1 2 6 5 3

b
d
e
f
c
h
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k
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g



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 1 1 1



5 2 4 1 3 7 6

b
c
d
j
a
e
f
i
g
h
k



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 1 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1



5 4 7 1 2 3 6

b
d
e
f
a
c
h
i
j
g
k



0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 0 1 1 1
0 0 0 0 0 0 1



5 4 1 2 6 3 7

b
d
e
f
a
c
i
j
k
g
h



0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 0 1 1 1 0
0 0 0 0 0 0 1



5 4 7 1 2 6 3

b
d
e
f
a
c
h
i
j
k
g



0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 1 1 1



5 4 3 1 2 6 7

b
d
e
f
a
c
g
i
j
k
h



0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 1 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Fig. 10.2.2 One relation of term rank 7 together with all its cardinality minimum coverings
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10.3 Fringes

We now specialize our study of rectangles and define the fringe of an arbitrary rela-
tion to be the set of those entries that belong to just one non-enlargeable rectangle.
This means that the rectangles started horizontally and those started vertically will
coincide. As a result several properties will hold. This will then open the view on
some semi-group related considerations such as generalized inverses, Moore-Penrose
inverses, e.g., in Sect. 10.7.

As already announced, we now study the circumstances under which a point (x, y)
is contained in precisely one non-enlargeable rectangle.

10.3.1 Proposition. For a pair (x, y) related by a relation R the following are
equivalent:

i) (x, y) is contained in precisely one non-enlargeable rectangle inside R.

ii) x;yT ⊆ R ∩ R;R
T

;R.

Proof : We recall Prop. 10.1.3 and start with an easy to prove equivalence

R;R
T

;x ⊇ R;y

negated
⇐⇒ R;R

T
;x ⊆ R;y

Schröder rule
⇐⇒ R

T
;R;y ⊆ RT

;x

since x, y are points; see Prop. 5.2.6.ii
⇐⇒ R

T
;R;y ⊆ RT;x

Schröder rule
⇐⇒ RT;R;RT;x ⊆ y

Schröder rule
⇐⇒ y;xT ⊆ RT;R;RT

transposed
⇐⇒ x;yT ⊆ R;R

T
;R

(i) =⇒ (ii): If there is just one non-enlargeable rectangle for x;yT ⊆ R, the extremal
rectangles according to Prop. 10.1.3 will coincide, but we use only that

ux = R;R
T

;x ⊇ R;y = uy,

so that we may apply the equivalence mentioned above.

(ii) =⇒ (i): The assumption splits into x;yT ⊆ R and x;yT ⊆ R;R
T

;R, from which
the first shows that x, y is inside R and
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x;yT ⊆ R ⇐⇒ y ⊆ RT;x =⇒ ux = R;R
T

;x = R;RT;x ⊆ R;y = uy.

With this equivalence, the second condition means ux ⊇ uy, giving equality.

started:

<- vertically
<- horizontally

v

Fig. 10.3.1 Point (x1, y1) inside two and point (x, y) inside just one
non-enlargeable rectangle

Fig. 10.3.1 shows the point (x1, y1) with two and the point (x, y) with just one
non-enlargeable rectangle around it. The points admitting just one non-enlargeable
rectangle inside a relation R play an important rôle, so that we introduce a notation
for them.

10.3.2 Definition. For a (possibly heterogeneous) relation R we define its

fringe(R) := R ∩ R;R
T

;R

A quick inspection shows that fringe(RT) = [fringe(R)]T. We will quite frequently
abbreviate fringe(R) to ∇R or even ∇ in case there is no doubt concerning R.
This symbol nicely reflects the situation of Fig. 10.3.1. There, and in other figures
to come, the relation is rearranged by algebraic visualization and shows the fringe
as block-diagonal with other parts arranged to the upper right triangle delimited by
the fringe. Fig. 10.3.2 shows a fringe consisting of just two entries in the matrix. One
will indeed find out that {Dupont,Larsen} × {French,German} is indeed the only
non-enlargeable rectangle containing the entry (Larsen,French); correspondingly for
{Arbuthnot,Schmidt} × {German, British} around (Schmidt,British).
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1 0 0 0 1
0 0 1 1 0
0 1 1 0 0
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0 0 0 1 0
0 1 0 0 0


Fig. 10.3.2 Relation of Fig. 10.1.3 together with its fringe

The concept of a fringe has unexpectedly many applications. As a first example we
mention that the fringe of an ordering is the identity, since

fringe(E) = E ∩ E;E
T

;E = E ∩ ET
;E = E ∩ E

T

= E ∩ ET = .

This applies not least to the ordering “≤” on IR. But fringes are usually not that
simple which may be seen already at the linear strictorder “<” on IR. This strict-
order is, of course, transitive C ;C ⊆ C, but satisfies also C ⊆ C ;C, meaning that
whatever element relationship one chooses, e.g., 3.7 < 3.8, one will find an element
in between, 3.7 < 3.75 < 3.8. Let us for a moment call C a dense relation if it
satisfies C ⊆ C;C. The following proposition resembles a result of Michael Winter
[Win04]. To be a dense relation means not least that the Hasse diagram vanishes.

This result together with the block-diagonal part of Fig. 10.3.1, where obviously
the points with just one non-enlargeable rectangle reside, shows that a fringe has
indeed something in common with a border zone. Given a relation R and its fringe
∇, we have the following visualization. If (x, y) ∈ ∇, and for some point (x1, v)
also (x, v) ∈ R and (x1, y) ∈ R, then always (x1, v) ∈ R. On the contrary, consider
(x1, y1) ∈ R, however ∈/ ∇, and (u, y). Obviously, (x1, y) ∈ R and (u, y1) ∈ R, but
(u, y)∈/ R.

10.3.3 Proposition. A dense linear strictordering has an empty fringe.

Proof : Using the standard property Prop. 5.3.11 of a linear strictordering C
T

=
E = ∪ C, we have

C;C
T

;C = C; ( ∪ C);C = C;C ∪ C;C;C = C,

so that fringe(C) = C ∩ C;C
T

;C = C ∩ C = .

The existence of a non-empty fringe thus heavily depends on finiteness or at least
discreteness, giving this some sort of a topological flavour. Fringe considerations
are central for difunctional, Ferrers, and block-transitive relations.

We now have a look at the nicely arranged
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• identity relation which is simply reproduced

=

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 fringe( ) =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Fig. 10.3.3 Fringe of an identity

• partial identity relation which is reproduced again

R =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 fringe(R) =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Fig. 10.3.4 Fringe of a partial identity

• full block diagonal which is also reproduced

R =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1

 fringe(R) =

1 2 3 4 5 6 7
1
2
3
4
5
6
7


1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1


Fig. 10.3.5 Fringe of a block diagonal relation

• full heterogeneous block diagonal: difunctional which is reproduced

R =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7


1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1

 fringe(R) =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7


1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1


Fig. 10.3.6 Fringe of a heterogeneous difunctional relation

• partial heterogeneous block diagonal which is reproduced
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R =
1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7


1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1

 fringe(R) =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7


1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1


Fig. 10.3.7 Fringe of a “partially” difunctional relation

• upper right triangle: linear order from which the diagonal survives

R =

1 2 3 4 5 6 7
1
2
3
4
5
6
7


1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

 fringe(R) =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Fig. 10.3.8 Fringe of a linear order

• strict upper right triangle: linear strictorder where only the side diagonal survives

R =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 fringe(R) =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


Fig. 10.3.9 Fringe of a linear strictorder

• upper right block triangle from which the “block-fringe” remains

R =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1

 fringe(R) =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1


Fig. 10.3.10 Fringe of an upper block triangle

• irreflexive upper right block triangle from which again the “block-fringe” remains

R =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 fringe(R) =

1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Fig. 10.3.11 Fringe of an irreflexive upper block triangle
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• heterogeneous upper right block triangle: Ferrers

R =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7


0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0

 fringe(R) =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7


0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 10.3.12 Fringe of a non-total Ferrers relation

• an “arbitrary” heterogeneous relation
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R fringe(R)

Fig. 10.3.13 An arbitrary relation and its fringe

With the technique of algebraic visualization, we find for the relation of Fig. 10.3.13
an arrangement as in Fig. 10.3.14.
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Rrearr fringe(Rrearr) Ξ∇(Rrearr) Ξ(Rrearr)

Fig. 10.3.14 Same relation as in Fig. 10.3.13 nicely rearranged,
with fringe and row equivalence

The observation after all these examples is evident. Diagonals, even partial ones, are
reproduced. This holds also true when the diagonals are just square or even rectan-
gular partial block diagonals. The second class is made up of “triangles” — be they
partial or block-oriented ones. In these cases when finite, the bounding/delimiting
part is extracted while the rest of the triangle vanishes. An upper right triangle
including the diagonal is converted to the diagonal. A strict upper right triangle
is converted to the upper side-diagonal, provided the relation in question is finite.
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This holds true also when the relation is subdivided consistently into rectangular
blocks.

R =

1 2 3 4 5

1
2
3
4
5

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 fringe(R) =

1 2 3 4 5

1
2
3
4
5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 but R′ =

1 2

1
2

(0 1
1 0

)
= fringe(R′)

Fig. 10.3.15 An example of a non-empty relation R with an empty fringe

The fringe may also be obtained with the symmetric quotient from the row-contains-
preorder and the relation in question:

10.3.4 Proposition. For an arbitrary (possibly heterogeneous) relation R, the
fringe and the row-contains-preorder satisfy

fringe(R) = syq (R;RT, R) = syq (R(R), R)

Proof : We expand fringe, syq, R(R), and apply trivial operations to obtain

R ∩ R;R
T

;R = R;R
T

;R ∩ R;R
T

;R

It suffices, thus, to convince ourselves that with Prop. 4.4.3, here R = R;R
T

;R, the
first term on the left side turns out to be equal to the second on the right.

The fringe, thus, shows which columns of R are made up of columns of the row-
contains-preorder. In addition, we are now allowed to make use of cancellation
formulae such as Prop. 8.5.4 that regulate the behaviour of a symmetric quotient.

10.3.5 Proposition. When a relation S is with f, g surjectively mapped onto
another relation R, so is its fringe; i.e.,

S = f ;R;gT =⇒ ∇S = f ;∇R;gT

Proof : by simple evaluation:

∇S = S ∩ S;S
T

;S by definition
= f ;R;gT ∩ f ;R;gT;f ;R;gT

T
;f ;R;gT since S = f ;R;gT

= f ;R;gT ∩ f ;R;gT;g;R
T

;fT;f ;R;gT mappings slipping out of negation
= f ;R;gT ∩ f ;R;R

T

R;gT mappings f, g are surjective
= f ; (R ∩ R;R

T

R);gT since f, g are univalent
= f ;∇R;gT by definition
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Fringe restricted constructs

Next, we present a plexus of formulae that appear difficult. A person not yet familiar
with the field would probably not dare trying to prove them directly. Nevertheless,
they are heavily interrelated and may even be visualized and then understood. The
first rather artificial looking functionals are based on the fringe. We show that to a
certain extent the row equivalence Ξ(R) we have studied so far may be substituted
by Ξ∇(R); both coincide as long as the fringe is total. They may be different, but
only in the restricted way that a square diagonal block of the fringe-partial row
equivalence is either equal to the other or empty.

The fringe then gives rise to two “partial equivalences” that closely resemble the
row and column equivalences.

10.3.6 Definition. In addition to the fringe ∇ := fringe(R) = R ∩ R;R
T

;R, we
define for an arbitrary (possibly heterogeneous) relation R

i) Ξ∇(R) := ∇;∇T, the fringe-partial row equivalence

ii) Ψ∇(R) := ∇T;∇, the fringe-partial column equivalence

We recall the characterization of a fringe that already appeared in Prop. 10.3.1,
namely that the fringe collects those entries of a relation R that are contained in
precisely one non-enlargeable rectangle. Notations Ξ∇(R) and Ψ∇(R) are again
chosen so as to visually resemble rows and columns, respectively.

10.3.7 Proposition. For an arbitrary (possibly heterogeneous) relation R, the
fringe ∇ := fringe(R) and the fringe-partial row resp. column equivalences satisfy
the following:

i) Ξ∇(R) = Ξ(R) ∩ ∇;

ii) Ξ(R);∇ = Ξ∇(R);∇ = ∇ = ∇; Ψ∇(R) = ∇; Ψ(R)
iii) ∇T; Ξ(R);∇ ⊆ Ψ(R)
iv) Ξ∇(R);R ⊆ R;∇T;R ⊆ R

R; Ψ∇(R) ⊆ R;∇T;R ⊆ R.
v) ∇;RT ∩ R;∇T = ∇; ∇T = Ξ∇(R) ⊆ Ξ(R)

∇T;R ∩ RT;∇ = ∇T; ∇ = Ψ∇(R) ⊆ Ψ(R)
vi) ∇ ⊆ ∇;RT;∇

Proof : i) Ξ∇(R) = ∇;∇T = syq (R;RT, R);syq (R,R;RT) Prop. 10.3.4
= syq (R;RT, R;RT) ∩ syq (R;RT, R); following Prop. 8.5.4.i.
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= Ξ(R) ∩ ∇; Prop. 8.5.6

ii) We expand Ξ(R) with Prop. 8.5.6 and ∇ with Prop. 10.3.4

Ξ(R);∇ = syq (R;RT, R;RT);syq (R;RT, R) ⊆ syq (R;RT, R) = ∇,
and apply the cancellation rule Prop. 8.5.4.i. From the result obtained, we may
proceed with

∇;∇T;∇ = Ξ∇(R);∇ ⊆ Ξ(R);∇ according to (i)
⊆ ∇ see above
⊆ ∇;∇T;∇ = ∇; Ψ∇(R) since A ⊆ A;AT;A holds for every relation A

obtaining equality everywhere in between.

iii) ∇T; Ξ(R);∇ ⊆ ∇T;∇ see above
= Ψ∇(R) by Def. 10.3.2
⊆ Ψ(R) applying (i) to RT.

iv) R;∇T;R = R;

[
syq (R;RT, R)

]T
;R Prop. 10.3.4

= R;syq (R,R;RT);R transposing a symmetric quotient
⊆ R;RT;R cancelling with Prop. 8.5.3
⊆ R which holds for every relation

The rest is then simple because Ξ∇(R) = ∇;∇T ⊆ R;∇T.

v) We cancel symmetric quotients several times according to Prop. 8.5.3:
∇;RT = syq (R;RT, R);RT expanded
=
[
R;syq (R,R;RT)

]T transposed

=
[
R;RT ∩ ;syq (R,R;RT)

]T cancelling according to Prop. 8.5.3.i

= R;R
T ∩ syq (R;RT, R); transposed

= R;R
T ∩ ∇; according to Prop. 10.3.4

The second term is handled in mainly the same way:
R;∇T = R;

[
syq (R;RT, R)

]T according to Prop. 10.3.4

= R;syq (R,R;RT) transposed
= R;RT ∩ ;syq (R,R;RT) cancelling according to Prop. 8.5.3.i
= R;RT ∩ ;∇T according to Prop. 10.3.4

Now, these are put together:
R;∇T ∩ ∇;RT = R;RT ∩ ;∇T ∩ R;R

T ∩ ∇; see above
= syq (RT, RT) ∩ ;∇T ∩ ∇; definition of symmetric quotient
= Ξ(R) ∩ ;∇T ∩ ∇; definition Def. 5.4.3 of row equivalence
= Ξ∇(R) ∩ ;∇T due to (i)
= ∇;∇T ∩ ;∇T definition Def. 10.3.6 of fringe-partial row equivalence
= ∇;∇T
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vi) is trivial in view of (ii).

Anticipating Def. 10.7.1, we may say that ∇T is always a sub-inverse of R. The
formulae presented here go far beyond those just semi-group related ones known
around inverses, e.g.

R =
re

d
g
re

b
lu

o
ra

Win
Draw
Loss

(
0 1 0 1
0 1 1 0
1 0 1 0

)

fringe(R) =
Win

Draw
Loss

(
0 0 0 1
0 0 0 0
1 0 0 0

)
W

in
D

ra
w

L
o
ss

Win
Draw
Loss

(
1 0 0
0 0 0
0 0 1

)
= Ξ∇(R) ⊆ Ξ(R) =

W
in

D
ra

w
L

o
ss(

1 0 0
0 1 0
0 0 1

)

re
d

g
re

b
lu

o
ra

red
gre
blu
ora

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)
= Ψ∇(R) ⊆ Ψ(R) =

re
d

g
re

b
lu

o
ra(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
Fig. 10.3.16 Row equivalence and fringe-partial row equivalence

The following proposition relates the fringe of the row-contains-preorder with the
row equivalence.

10.3.8 Proposition. We have for every (possibly heterogeneous) relation R, that

i) fringe(R(R)) = fringe(R;RT) = syq (RT, RT) = Ξ(R),

ii) fringe(C(R)) = fringe(R
T

;R) = syq (R,R) = Ψ(R).

Proof : In both cases, only the equality in the middle is important because the
rest is just expansion of definitions. Thus reduced, the first identity, e.g., requires
to prove that

R;RT ∩ R;RT;R;R
T

;R;RT = R;RT ∩ R;R
T

.

The first term on the left equals the first on the right. In addition, the second terms
are equal, which is also trivial according to Prop. 4.4.3.

The next corollary shows that the fringe may indeed be important since it relates
the fringe with difunctionality.

10.3.9 Corollary. We assume the present context.

i) For arbitrary R, the construct fringe(R) is difunctional.
ii) A relation R is difunctional precisely when R = fringe(R).
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iii) Forming the fringe is an idempotent operation, i.e., fringe(fringe(R)) =
fringe(R).

Proof : i) This is simply a reformulation of Prop. 10.3.7.ii.

ii) If R equals its fringe ∇ := fringe(R), also R must be difunctional according to
(i). In the reverse direction, we use the third variant of the definition Def. 5.4.5 of
being difunctional:

∇ = R ∩ R;R
T

;R ⊇ R ∩ R = R.

iii) is shown in a way similar to the proof of (ii), thereby using (i):

fringe(∇) = ∇ ∩ ∇;∇T
;∇ ⊇ ∇ ∩ ∇ = ∇.

Exercises

10.3.1 Prove

Ξ∇(R); Ξ(R) = Ξ∇(R) = Ξ(R); Ξ∇(R)

Ψ∇(R); Ψ(R) = Ψ∇(R) = Ψ(R); Ψ∇(R)

10.3.2 Prove that for an arbitrary (possibly heterogeneous) relation R, always

Ξ(R) ⊆ Ξ(fringe(R)).

10.4 Difunctional Relations

Relations that are identical with their fringe have turned out to be important.
They are called difunctional relations. The concept of a difunctional relation has
already been formulated for heterogeneous relations in a phenomenological form
in Def. 5.4.5. It generalizes the concept of a (possibly partial) equivalence relation
in as far as source and target need no longer be identical. It also generalizes the
concept of a matching to a block form. We recall that a (possibly heterogeneous)
relation R is called difunctional if R;RT;R ⊆ R (which is the essential requirement;
meaning in fact R;RT ;R = R since R;RT ;R ⊇ R is true for every relation), or
equivalently, if R;R

T
;R ⊆ R.

The property of being difunctional is not often met when arbitrary relations are
considered. Nevertheless, this concept is really important as we will see later that
every relation possesses a difunctional closure with respect to which the relation
may be decomposed. These decompositions in turn give rise to all the applications.
They are widely used in data analysis as well to optimize data bases, for knowledge
discovery in data bases, unsupervised learning, data warehousing, etc. We give a



220 Rectangles, Fringes, Inverses

first idea with the rearrangement of Fig. 10.4.3. There is also indicated how one
may factorize the relation — so far without proof.

There exist many equivalent ways to express the property of being difunctional:

10.4.1 Proposition. For any relation R : X −→ Y the following are equivalent:

i) R is difunctional
ii) R = fringe(R)
iii) Every pair (x, y) ∈ R is contained in precisely one non-enlargeable rectangle

of R
iv) R is the union of rectangles with row and column intervals pairwise non-

overlapping

Proof : (i) ⇐⇒ (ii) is already known from Cor. 10.3.9.ii

(ii) =⇒ (iii) is trivial according to Prop. 10.3.1. Therefore, every point in R is
contained in just one non-enlargeable rectangle.

(iii) =⇒ (iv): Every relation is in a trivial way the union of non-enlargeable rect-
angles, at least by one-point rectangles. Assume that two different non-enlargeable
rectangles intersect in a non-trivial way. Then a point in the intersection is obviously
contained in more than one non-enlargeable rectangle — contradicting assumption
(iii). Even if the rectangles should not intersect and only their, e.g., source vectors,
this would give rise to a point on the source side with horizontal extension touching
both rectangles.

(iv) =⇒ (i): It is trivial to convince oneself by matrix computation that R;RT;R = R

whenever R is the union of axis-parallel rectangles with non-overlapping source and
target sides.

The block-diagonal structure is investigated in the following proposition remem-
bering row and column equivalence of Def. 5.4.3 as well as the left and the right
equivalence of Def. 5.5.3. Most of the important properties of a difunctional rela-
tions rest on the close similarity of the row equivalence and the left equivalence
(and similarly of the column equivalence and the right equivalence) that we are
now going to investigate.

10.4.2 Proposition. Given any difunctional relation R, we have

i) (R;RT)+ = R;RT = Ξ(R) ∩ R; = Ξ(R) ∩ ;RT ⊆ Ξ(R)
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ii) R;RT ∪ R; ;R;
T

= Ξ(R)
iii) (R;RT)∗ ⊆ Ξ(R)

(R;RT)∗ = Ξ(R) if R is total

Proof : i) The first equality is trivial in case R is difunctional. We concentrate on,
e.g., proving

R;RT ⊆ Ξ(R) = syq (RT, RT) = R;RT ∩ R;R
T

,

with Ξ(R) already expanded by definition. But this is trivial, because, e.g.

R;RT ⊆ R;RT ⇐⇒ R;RT;R ⊆ R ⇐⇒ R;RT;R ⊆ R ⇐⇒ R difunctional

Containment R;RT ⊇ Ξ(R) ∩ ;RT, e.g., follows from

= ;RT ∪ ;RT = (R ∪ R);RT ∪ ;RT = R;RT ∪ R;RT ∪ ;RT

⇐⇒ R;RT ∩ ;RT ⊆ R;RT

ii) “⊆” follows partly from (i) and partly from

R; ; R;
T ⊆ Ξ(R) = R;RT ∩ R;R

T

⇐⇒ (R;RT ∪ R;R
T

);R; ⊆ R;

Now, inclusion for the first term holds because RT;R; ⊆ . The second is trivially
contained in R; .

“⊇” holds for arbitrary relations:

R;RT ∪ R; ;R;
T ⊇ R;RT ∩ R;R

T

⇐⇒ = R;RT ∪ R; ;R;
T ∪ R;RT ∪ R;R

T

⇐⇒ = ;RT ∪ R; ∪ R; ;R;
T

⇐⇒ = (R; )T ∪ R; ∪ R; ;R;
T

⇐⇒ R;
T ∩ R; ⊆ R; ;R;

T

Using R; ; = R; 3, this may be proved as in the proof B.2.1 in the appendix.

iii) Reflexivity together with (i) suffices. In case of totality, R; = .

Of course, all this holds correspondingly for the column side. We leave the respective
reformulation as an exercise.

To handle the differences resulting from totality or non-totality of R is sometimes
tricky.

Both, the row and column equivalence Ξ(R),Ψ(R) as well as the left and the right
3 This is again a point where we need that ; = , which is not satisfied in an arbitrary relation

algebra.
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equivalence (R;RT)∗, (R;RT)∗, constitute congruences. For arbitrary relations, they
are rather different, while they are close to identical for difunctional ones. The
classes belonging to non-empty rows coincide. While the former collects all empty
rows, if any, into one class, the latter keeps them separated in one-element classes.

a b c d e f g h

a
b
c
d
e
f
g
h


1 0 0 0 0 1 0 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
0 0 0 1 0 0 1 0
0 1 1 0 1 0 0 1
1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 1 1 0 1 0 0 1



1 2 3 4 5 6 7 8 9 1
0

a
b
c
d
e
f
g
h


1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1


R;RT = (R;RT)+ = (R;RT)∗ = Ξ(R) R

1 2 3 4 5 6 7 8 9 1
0

1
2
3
4
5
6
7
8
9

10



1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1



1 2 3 4 5 6 7 8 9 1
0

1
2
3
4
5
6
7
8
9

10



1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1


1 2 3 4 5 6 7 8 9 1
0

1
2
3
4
5
6
7
8
9

10



1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1


RT;R = (RT;R)+ ⊆ (RT;R)∗ ⊆ Ψ(R)

1 6 8 3 1
0

4 5 2 7 9

1
6
8
3

10
4
5
2
7
9



1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



1 6 8 3 1
0

4 5 2 7 9

1
6
8
3

10
4
5
2
7
9



1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



1 6 8 3 1
0

4 5 2 7 9

1
6
8
3

10
4
5
2
7
9



1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1


Fig. 10.4.1 Coinciding and non-coinciding equivalences around a difunctional relation R

In Fig. 10.4.1, the possible situations are shown. The left or source side is trivial
in as far as everything coincides; quite differently on the target or right side: There
are three relations

RT;R = (RT;R)+ ⊆ (RT;R)∗ ⊆ Ψ(R)

that are indeed different. The rearranged relations give the better intuition con-
cerning the lower right area described by RT; ;RT;

T

.

These situations shall now be considered in more detail forming quotients according
to Fig. 10.4.2.
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R

η η

Ξ Ψ

β

Ξ Ψ

Fig. 10.4.2 Quotient forming with a difunctional relation

We follow the idea indicated in Fig. 10.4.2, and construct the quotient relation of a
difunctional relation. This will give evidence that the denotation has been chosen
nicely because two functions are involved.

a b c d e f g h i j k l m

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 1 0 0 0 0 0



c d e h g i k l a f m b j

2
11
17
5
9

10
12
13
15
6
8

14
16
1
3
4
7



1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


[2

]
[5

]
[6

]
[1

]

2
11
17
5
9

10
12
13
15
6
8

14
16
1
3
4
7



1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1



= f

gT =

c d e h g i k l a f m b j

[c]
[g]
[a]
[b]

(
1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1

) [c
]

[g
]

[a
]

[b
]

[2]
[5]
[6]
[1]

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

)
= β

Fig. 10.4.3 Visualizing a difunctional factorization after rearrangement

10.4.3 Proposition. Let some difunctional relation R be given together with its
row equivalence and its column equivalence (see Def. 5.4.3),

Ξ := Ξ(R) := syq (RT, RT) Ψ := Ψ(R) := syq (R,R),

as well as with the corresponding natural projection mappings ηΞ, ηΨ. Then the
quotient

β := ηT

Ξ
;R;ηΨ

of R modulo row and column equivalence is a matching, i.e., a univalent and injec-
tive relation.

Proof : The results of Prop. 10.4.2 extend to
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RT; Ξ;R = RT;R ⊆ Ψ

This in turn allows us to calculate, e.g.,

βT;β = ηT

Ψ
;RT;ηΞ;ηT

Ξ
;R;ηΨ = ηT

Ψ
;RT;Ξ;R;ηΨ ⊆ ηT

Ψ
;Ψ;ηΨ = ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ = ; =

We can add several easy consequences: In case R is total, β will be a mapping; in
case R is surjective, β will be a surjective matching; in case R is total and surjective,
β will be a bijective mapping.

10.4.4 Corollary.

R difunctional ⇐⇒ There exist functions f, g such that R = f ;gT.

Proof : Following Prop. 10.4.3, take f := ηΞ;β and g := ηΨ to establish “=⇒”. The
opposite direction “⇐=” is trivial.

The functions f, g need not be mappings as in the next corollary which is a variant
included in order to match with future analogous decompositions.

10.4.5 Corollary.

R difunctional ⇐⇒ There exist surjective mappings f0, g

and a matching β such that R = f0;β;gT.

Proof : We simply choose f0 := ηΞ in the proof of Prop. 10.4.3.

Difunctional closures

The importance of difunctionality rests mainly on the fact that every relation admits
a difunctional closure, i.e., a smallest difunctional relation containing it. Blowing up
R with the left equivalence Ω := (R;RT)∗ and with the right equivalence Ω′ = (RT;R)∗
so as to obtain Ω;R; Ω′, will bring what is known as the difunctional closure. The
definition proper, however, is descriptive in nature.
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1 2 3 4 5 6 7 8 9

a
b
c
d
e
f
g
h
i
j
k



1 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0


a b c d e f g h i j k

1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 1 1 0 0
0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0
0 1 0 0 0 1 1 1 1 0 0
0 1 0 0 0 1 1 1 1 0 0
0 1 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1



1 2 3 4 5 6 7 8 9

1 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0



1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9


1 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1


R Ξ(hdifu(R)) hdifu(R) Ψ(hdifu(R))

Fig. 10.4.4 R with its difunctional closure between row and column equivalence

We are here again confronted with the close similarity between (R;RT)∗ and Ξ(R)
of Prop. 10.4.2 and Fig. 10.4.1. In the rightmost relation Ψ(hdifu(R)) of Fig. 10.4.5,
we have just one equivalence class [6, 8]. Using Ω′ = (RT;R)∗ for the arrangement
into groups, there would have been two classes [6] and [8].

1 3 5 4 9 2 7 6 8

a
d
b
f
g
h
i
c
e
k
j



1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0



1 3 5 4 9 2 7 6 8

a
d
b
f
g
h
i
c
e
k
j



1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0


Fig. 10.4.5 Difunctional closure of Fig. 10.4.4, rearranged; original arranged accordingly

Another example of a difunctional block decomposition shows Fig. 10.4.6. In case
one gives every block an own identity, one may store the information concerning the
relation much easier than in the normal matrix form with m×n Boolean coefficients.

A =

1 2 3 4 5 6 7 8 91011121314
1
2
3
4
5
6
7
8
9

10
11
12



1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 1 0 1 1 0 1


Arearranged =

1 3 5 8 9111214 2 4 710 613
1
4
6

10
12
2
5
7
3
9

11
8



1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 10.4.6 A difunctional relation with block-rearrangement

Based on this idea for storing difunctional relations, one may first proceed to a
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difunctional closure and then apply the decomposition according to the latter; see
yet another example in Fig. 10.4.7.
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1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1


Fig. 10.4.7 A relation with block-rearrangement according to its difunctional closure

Thus prepared, we proceed to characterize the difunctional closure.

10.4.6 Proposition. Let any (possibly heterogeneous) relation R be given and
consider its so-called difunctional closure

hdifu(R) := inf{H | R ⊆ H,H is difunctional },
i.e., the smallest difunctional relation containing R.

i) hdifu(R) is well-defined
ii) hdifu(R) = R; (RT;R)+ = (R;RT)+;R = (R;RT)+;R; (RT;R)+

iii) hdifu(R) = R; (RT;R)∗ = (R;RT)∗;R = (R;RT)∗;R; (RT;R)∗

Proof : i) The selection condition “R ⊆ H,H is difunctional” always delivers a non-
empty set since is certainly difunctional. It is infimum-hereditary since whenever
R ⊆ Hi for i = 1, 2, we have obviously R ⊆ H1 ∩ H2, and, similarly, for infinite
intersections. It is also easily shown that the intersection of difunctional relations
will be difunctional again.

ii) is shown with standard methods of regular algebra. We concentrate on the first
variant. Difunctionality of R; (RT;R)+ is trivial, so that certainly D := hdifu(R) ⊆
R;(RT;R)+. To show containment in the other direction, we start with R ⊆ D. But
then also R;RT;R ⊆ D;DT;D ⊆ D holds, since D is difunctional. Iteratively applied,
we get R; (RT;R)+ ⊆ D.

iii) follows from (ii) since only R; is added, e.g.
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Meanwhile, we have some feeling how a difunctional matrix looks like. We also know
the algebraic characterization from the definition. Now we ask for the practical
aspects of this definition, which has long been discussed and is known in numerical
analysis as chainability.

10.4.7 Definition. A relation R is called chainable if hdifu(R) = .

In the preceding definition, we have for simplicity concentrated ourselves on a di-
functional relation that consists of just one block and has no empty rows or columns.
For purposes of visualization, conceive the relation R as a chessboard with dark
squares or white according to whether Rik is 1 or 0 . A rook shall operate on
this chessboard in horizontal or vertical direction; however, it is only allowed to
change direction on 1 -squares. Using this interpretation, the definition declares a
relation to be chainable if the non-vanishing entries (i.e., the dark squares) can all
be reached from one another by a sequence of “rook moves”.

a b c d e f g h i j k l m n

1
2
3
4
5
6
7
8
9

10
11
12



0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0



a c e h i k l n b d g j f m

1
4
6

10
12
2
5
7
3
9

11
8





0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0





Fig. 10.4.8 A decomposition according to the difunctional closure
visualized via permutation and partitioning

Fig. 10.4.8 shows such rook moves in every diagonal block. One can, obviously,
not reach another block in this way. We illustrate this definition a bit further
mentioning a related concept. The relation R shall for the moment be conceived as
a hypergraph-incidence between hyperedges (rows) and vertices (columns). Then
K := ∩R;RT is the so-called edge-adjacency, see e.g., [SS89, SS93]. Since adjacencies
are traditionally conceived as being irreflexive, we face minor technical difficulties
to manage the transition from R;RT to K.

10.4.8 Proposition. A total and surjective relation R is chainable precisely when
its edge-adjacency K is strongly connected.

Proof : Total means ⊆ R;RT, and thus ∪R;RT = R;RT. First we relate R with the
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edge-adjacency and show K∗ = (R;RT)∗, using the formula (A∪B)∗ = (A∗;B)∗;A∗,
well-known from regular algebra. Then

(R;RT)∗ =
[
∪ ( ∩ R;RT)

]∗ =
[ ∗

; ( ∩ R;RT)
]∗

;
∗ = ( ;K)∗; = K∗

In the first direction, we get from chainability, hdifu(R) = (R;RT)∗;R = , imme-
diately that K∗ = (R;RT)∗ ⊇ (R;RT)+ = (R;RT)∗;R;RT = ;RT = , since R is
total.

The other direction is hdifu(R) = (R;RT)∗;R = K∗;R = ;R = , and we see that
R must be surjective, as otherwise there might exist an isolated vertex unrelated
to all the edges.

Application in knowledge acquisition

There are several fields of data mining in which difunctionality is heavily used. One
is predictive modelling which means classification and regression. The next is clus-
tering, i.e., grouping similar objects. Finally summarization should be mentioned
which means to discover association rules from given data. The input to a corre-
sponding algorithm is a single flat table — mostly of real numbers, but in our case
of truth values. So we start from an arbitrary relation that may be heterogeneous.
Should data from several relations be studied, one may subsume this under the
aforementioned case introducing products, e.g.

The task is to output a pattern valid in the given data. Such a pattern is simply a
proposition describing relationships among the facts of the given data. It is useful
only, when it is simpler than the enumeration of all the given facts.

Many algorithms of this type have been developed for machine learning and for
interpretation of statistics. Machine learning does not mean to intelligently create
propositions; rather the algorithms are fed with a set of hypotheses — the patterns
— that may be valid in the data, and they perform an exhaustive or heuristic search
for valid ones. A pattern is like a proposition or a predicate and so splits the dataset
as it may be satisfied or not.

The idea may best be captured when looking at the following example. First, the
difunctional closure of some given relation R is determined. The relation we start
with is the one on the top line. The difunctional closure thus obtained gives rise to
a row as well as a column equivalence, here positioned accordingly in the second
line. Once these congruences have been found, they can be turned into rules and
predicates that are here only presented with our standard technique of algebraic
visualization.
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original
relation

a b c d e f g h i j k
1
2
3
4
5
6
7
8
9

10
11
12
13
14



0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0


1 2 3 4 5 6 7 8 91011121314

1
2
3
4
5
6
7
8
9

10
11
12
13
14



1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0 0 1



row column
equivalence of

difunctional closure

a b c d e f g h i j k
a
b
c
d
e
f
g
h
i
j
k



1 0 0 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


1 613 2101114 4 5 812 3 7 9

1
6

13
2

10
11
14
4
5
8

12
3
7
9



1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1



row column
equivalence of difunctional

closure rearranged

b d g i c f j a e h k
b
d
g
i
c
f
j
a
e
h
k



1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1


b d g i c f j a e h k

1
6

13
2

10
11
14
4
5
8

12
3
7
9



1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



original
rearranged
accordingly

Fig. 10.4.9 Using difunctional decomposition for knowledge acquisition

In the subdivided form one will recognize subsets and predicates: Classes according
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to the row and the column equivalence first. But also propositions may easily be
deduced. E.g., the elements of the first subset on the source side are only related to
elements of the first subset on the range side, etc. The subsets have been determined
during the algorithm and afterwards made visible with the technique of algebraic
visualization we have already applied several times. One should bear in mind that
all this has been deduced with relational standard means out of the initial relation.

Difunctionality and independence

Also the concept of independent sets has a close connection to difunctionality. The
proof will, however, employ the Point Axiom.

10.4.9 Proposition. Let a finite (possibly heterogeneous) relation A be given.
Then A is either chainable or it admits a pair (s, t) which is nontrivial, i.e., s=/ and
t=/ , such that both, s, t as well as s, t, constitute at the same time an independent
pair of sets and a covering pair of sets, i.e.

A; t ⊆ s and A; t ⊆ s

Proof : Consider the difunctional closure G := hdifu(A). The dichotomy is as to
whether G=/ or G = , in which case A is chainable according to Def. 10.4.7.
Assume the former; then there exist points x, y satisfying x;yT ⊆ G, for which we
construct the non-enlargeable rectangle outside G started horizontally according to
Prop. 10.1.3.i. Then

x ⊆ ux = G;GT;x and y ⊆ vx = GT;x.

Setting s := ux and t := vx, we find that the two formulae are satisfied, for which
we use that G is difunctional so that for arbitrary Y always GT;G;GT;Y ⊆ GT;Y .

By construction =/ x ⊆ s and =/ y ⊆ t.

Difunctionality and covering pairs of sets are related basically in the following way.

10.4.10 Proposition. If and only if a relation A admits a pair (x, y) such that
(x, y) and (x, y) is a covering pair of sets, its difunctional closure will admit this
covering pair of sets.

Proof : Let H := hdifu(A). It is trivial to conclude from H to A since A ⊆ H.

From A;y ⊆ x and A;y ⊆ x, or equivalently, AT;x ⊆ y, we derive that A ⊆ syq (xT, yT).
Since this symmetric quotient is some difunctional relation above A, it is above H,
resulting in H;y ⊆ x and H;y ⊆ x.



10.5 Ferrers Relations 231

Exercises

10.4.1 Let R be any difunctional relation. We consider the direct sum of its source
and target, and thereon the composite relation

Rc :=
(
∪ R;RT R

RT ∪ RT;R

)
.

Prove that it is an equivalence.

10.4.2 Prove that RT;R;S ⊆ S implies R;S = R; ∩R;S (Compare to Prop. 5.1.6)

10.4.3 If f, g are univalent and Ξ is an equivalence relation, then f;Ξ;gT is difunc-
tional.

10.4.4 Prove or disprove: If A and B are chainable, then A;B is chainable.

10.5 Ferrers Relations

We have seen that a difunctional relation corresponds to a (possibly partial) block-
diagonal relation. So the question arose as to whether there was a counterpart of a
linear order with rectangular block-shaped matrices. In this context, the Ferrers45

property of a relation is studied.

10.5.1 Definition. We say that a (possibly heterogeneous) relation

A is Ferrers if A;A
T

;A ⊆ A.

Equivalent forms of the condition proper — easy to prove — are R;RT;R ⊆ R or
RT;R;RT ⊆ RT; i.e., R is Ferrers, if and only if R or RT are Ferrers.

The meaning of the algebraic condition just presented will now be visualized and
interpreted.

4 Introduced by Jacques Riguet in [Rig50].
5 From Wikipedia, the free encyclopedia:

Norman Macleod Ferrers (1829–1903) was a British mathematician at Cambridge’s Gonville and
Caius College (vice chancellor of Cambridge University 1884) who now seems to be remembered
mainly for pointing out a conjugacy in integer partition diagrams, which are accordingly called
Ferrers graphs and are closely related to Young diagrams.
— N. M. Ferrers, An Elementary Treatise on Trilinear Coordinates (London, 1861)
— N. M. Ferrers (ed.), Mathematical papers of the late George Green, 1871
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1
k→2

3
4
5

i→6
7
8
9

10
11
12

1 2

j
↓
3 4 5 6

m
↓
7 8 9 1011121314

1 1 1 0 1 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 1 0 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 1 0 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 1 1 1 1 1 1
1 1 1 0 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 1 0 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 1 0 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0



1
i→6

11
3
4
7
8

10
k→2

9
5

12

4 6 8 13 1 2

j
↓
3 5 9 101112

m
↓
7 14

0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


original rearranged

Fig. 10.5.1 A Ferrers relation

It is at first sight not at all clear that the matrix representing A may — due to
Ferrers property — be written in staircase (or echelon) block form after suitably
rearranging rows and columns independently. The graph interpretation is as follows:
Given any two arrows, there exists an arrow from one of the starting points leading
to the ending point of the other arrow.

∀i, k ∈ X,∀j,m ∈ Y :
{

(i, j) ∈ A ∧ (k,m) ∈ A → (i,m) ∈ A ∨ (k, j) ∈ A
}

⇐⇒ ∀i, j, k,m :
{

(i, j) ∈ A ∧ (j, k) /∈ AT ∧ (k,m) ∈ A → (i,m) ∈ A
}

⇐⇒ ∀i,m :
{[
∃k :

(
∃j : (i, j) ∈ A∧ (j, k) /∈ AT)∧ (k,m) ∈ A

]
→ (i,m) ∈ A

}
definition of composition

⇐⇒ ∀i,m :
{[
∃k : (i, k) ∈ A;A

T ∧ (k,m) ∈ A
]
→ (i,m) ∈ A

}
definition of composition

⇐⇒ ∀i,m :
{

(i,m) ∈ A;A
T

;A → (i,m) ∈ A
}

transition to point-free form
⇐⇒ A;A

T
;A ⊆ A.

In Fig. 10.5.2 again, we give intuition with the dashed arrow convention: The sen-
tence mentioned earlier said: “Given any two arrows, there exists an arrow from
one of the starting points leading to the ending point of the other arrow”. This is
only slightly modified. If from one starting point of the two arrows an arrow to the
endpoint of the other arrow does not exist — indicated by the dashed arrow —,
then it will exist from the other.
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k

m

i

j

Fig. 10.5.2 Ferrers property represented with the dashed arrow convention

Being Ferrers has something in common with a linear (strict-)order, however, of
the row-contains-preorder or the column-is-contained-preorder.

10.5.2 Proposition. Let R be an arbitrary (possibly heterogeneous) relation.

i) R Ferrers =⇒ R;R
T

as well as R
T

;R are transitive and Ferrers
ii) R Ferrers ⇐⇒ R(R) connex ⇐⇒ C(R) connex6

iii) R Ferrers =⇒ R;R
T

;R is Ferrers again

Proof : i) Transitivity of the residuals is a trivial consequence of the Ferrers prop-
erty of R.

R;R
T

;R;R
T

T

;R;R
T ⊆ R;R

T
;R;R

T ⊆ R;R
T

ii) We employ Schröder equivalences to obtain

R;R
T

;R ⊆ R ⇐⇒ R;RT;R ⊆ R ⇐⇒ R;R
T ⊆ R;RT ⇐⇒ R/R

T

⊆ R/R

which means that R(R) is connex. The second equivalence follows analogously.

iii) We use the assumption R;R
T

;R ⊆ R that R is Ferrers at the beginning and
continue with easy Schröder rule applications to estimate

R;R
T

;R;R;R
T

;R
T

;R;R
T

;R ⊆ R;R
T

;R;R;R
T

;R
T

;R ⊆ R;R
T

;R;RT;R ⊆ R;R
T

;R

Thus, the row-contains-preorder and the column-is-contained-preorder of the given
possibly heterogeneous Ferrers relation turn out to be connex. It is clear that all
rows, or columns resp., are in a linear order with regard to containment — up to
the fact that there may exist multiplicities.

6 R;R
T

and R
T

;R are in fact weakorders as defined in Def. 12.2.1
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Exhausting Ferrers relations

We now prove several properties of a Ferrers relation that make it attractive for
purposes of modelling preferences etc. An important contribution to this comes
from a detailed study of the behaviour of the fringe. Look at Fig. 10.5.3. It contains
a sequence of relations constituted by a Ferrers relation R, followed by the results
stemming from repeatedly applying the operator X 7→ X;X

T
;X. It is hard to grasp

what really happens proceeding from one relation to the next. The drawing in the
lower right shows in rearranged form how a finite Ferrers relation may gradually be
exhausted.

a b c d e f g h i j k

1
2
3
4
5
6
7
8
9


0 1 1 0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0
1 1 1 0 1 1 1 1 0 1 1
0 1 1 0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0 1 1
0 1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 1 1 0 1 1



a b c d e f g h i j k

1
2
3
4
5
6
7
8
9


0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0 1 1
0 1 0 0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 1 1 1 0 0 1 1



a b c d e f g h i j k

1
2
3
4
5
6
7
8
9


0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 1



a b c d e f g h i j k

1
2
3
4
5
6
7
8
9


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1



a b c d e f g h i j k

1
2
3
4
5
6
7
8
9


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0


Fig. 10.5.3 Stepwise fringe exhaustion X 7→ X;X

T
;X of a Ferrers relation — as a schema

The algebraic apparatus for this exhaustion — which is challenging — shall now
be presented. The main point is that the fringe may be too small as in the case of
(IR, <), where the fringe vanishes completely. Much of the effort has to be spent
on guaranteeing that the fringe is sufficiently big, and thus, that in every round of
shelling a non-empty part is removed. The easiest way is to restrict to the finite case,
but we will try to be slightly more general with the following definition introduced
by Michael Winter (see [Win03, Win04]):

10.5.3 Definition. Given a Ferrers relation R with fringe ∇, we call

R strongly Ferrers :⇐⇒ R = ∇;∇T;R;∇T;∇ ⇐⇒ R = Ξ∇(R);R;Ψ∇(R)

We will therewith in some sense be independent from always caring for whether
the exhaustion actually peels in a non-trivial way or not. But even this may not be
the case as in the strongly Ferrers example of (IR,≤). It does, however, work for
(IN, >), although this is non-finite.
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10.5.4 Proposition. For a finite Ferrers relation R, the following statements hold,
in which we abbreviate ∇ := fringe(R):

i) There exists a natural number k ≥ 0 that gives rise to a strictly increasing
exhaustion as

= (R;R
T

)k ⊂=/ (R;R
T

)k−1 ⊂
=/ . . . ⊂=/ R;R

T
;R;R

T ⊂
=/ R;R

T

ii) The construct R;R
T

is a progressively finite weakorder according to the forth-
coming Def. 12.2.1.

iii) R;R
T

= ∇;R
T

R
T

;R = R
T

;∇
iv) R allows a disjoint decomposition as

R = fringe(R) ∪ fringe(R;R
T

;R) ∪ . . . ∪ fringe((R;R
T

)k;R) for some k ≥ 0
v) R allows a disjoint decomposition as R = ∇ ∪ ∇;R

T
;∇

Proof : i) We start the following chain of inclusions from the right applying recur-
sively that R is Ferrers:

⊆ (R;R
T

)k ⊆ (R;R
T

)k−1 . . . ⊆ R;R
T

;R;R
T ⊆ R;R

T

Finiteness guarantees that it will eventually be stationary, i.e., (R;R
T

)k+1 = (R;R
T

)k.
This means in particular that the condition Y ⊆ (R;R

T

);Y holds for Y := (R;R
T

)k.
The construct R;R

T

is obviously transitive and irreflexive, so that it is in combination
with finiteness also progressively bounded7. According to Sect. 6.3 of [SS89, SS93],
this means that Y = (R;R

T

)k = .

ii) Negative transitivity according to the forthcoming Def. 12.3.1:

R;RT ⊆ R;RT ⇐⇒ R
T

R;RT ⊆ RT

=⇒ R;R
T

R;RT ⊆ R;R
T ⇐⇒ R;R

T
;R;R

T ⊆ R;R
T

iii)R;R
T

=
[
(R ∩ R;R

T
;R) ∪ (R ∩ R;R

T
;R)
]

;R
T

= (∇ ∪ R;R
T

;R);R
T

since R is Ferrers
= ∇;R

T ∪ R;R
T

;R;R
T

= ∇;R
T ∪ (∇;R

T ∪ R;R
T

;R;R
T

);R;R
T

applied recursively
= ∇;R

T ∪ ∇;R
T

;R;R
T ∪ R;R

T
;R;R

T
;R;R

T

= ∇;R
T ∪ R;R

T
;R;R

T
;R;R

T

since also R
T

is Ferrers
= . . . = ∇;R

T ∪ see (ii)

iv) The disjoint decomposition starts with R = (R ∩ R;R
T

;R) ∪ (R ∩ R;R
T

;R) =
∇ ∪ R;R

T
;R and can then only be continued finitely many times for the Ferrers

relation R;R
T

;R.
7 Here, we are in a conflict: Yes, being progressively finite is discussed in detail only later in

Sect. 16.2, but used already here. We accept this because we aim mainly at the finite situation for
the following results. They would, however, been formulated in too narrow a fashion when excluding
progressive finiteness. On the other hand, it would not have been wise to present all the Galois stuff
and only then show this result on Ferrers relations.
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v) We start as in the proof of (iv) and apply (iii).

It is mainly this effect which enables us to arrive at the results that follow. First,
we observe how successively discarding the fringe leaves a decreasing sequence of
relations; strictly decreasing when finite or at least not dense. Ferrers relations
may, although possibly heterogeneous, in many respects be considered as similar to
a linear (strict)ordering.

The following proposition is a classic; it may not least be found in [DF69] and also
with a completely different point-free proof in [SS89, SS93]. The proof here is yet
another, but a constructive one, which means that one may write the constructs
down in the language TituRel and immediately run this as a program. The rea-
son is that the constructs are generic ones that are uniquely characterized up to
isomorphism, so that a standard realization for interpretation is possible.

10.5.5 Proposition. If R : X −→ Y is a (possibly heterogeneous) finite relation:

R Ferrers ⇐⇒ There exist mappings f, g and a linear
strictorder C such that R = f ;C;gT.

The constructive proof of “=⇒” will always produce surjective mappings f, g.

Proof : “⇐=” follows using several times that mappings may slip below a negation
from the left without affecting the result; see Prop. 5.2.6.

R;R
T

;R = f ;C;gT;f ;C;gT
T

;f ;C;gT by definition
= f ;C;gT;g;C

T
;fT;f ;C;gT transposing; f, g are mappings

⊆ f ;C;C
T

;C;gT f, g are univalent
⊆ f ;C;gT since the linear strictorder C is Ferrers
= R again by definition

“=⇒” Let R : X −→ Y be Ferrers. There may exist empty rows or columns in R or
not. To care for this in a general form, we enlarge the source to the direct sum X+1l
and the target to the direct sum 1l + Y and consider the relation R′ := ιTX ;R;κY .
In R′, there will definitely exist at least one empty row and at least one empty
column. It is intuitively clear — and easy to demonstrate — that also R′ is Ferrers:

R′;R′
T

;R′ = ιTX ;R;κY ;κT

Y
;RT; ιX ; ιTX ;R;κY by definition; transposing

= ιTX ;R;κY ;κT

Y
;RT; ιX ; ιTX ;R;κY Prop. 5.2.6, ιX , κY are mappings

= ιTX ;R;R
T

;R;κY ιX , κY are total and injective
⊆ ιTX ;R;κY R is Ferrers
= R′ again by definition

The relation R′ has been constructed so that R′
T

be total and surjective. Observe,
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that R formed inside the upper right sub-rectangle of Fig. 10.5.4 would not have
been surjective. Following Prop. 10.5.4.v, then also ∇ := fringe(R′) is total and
surjective. Because fringes are always difunctional, ∇ is a block diagonal when
nicely arranged, which will — after quotient forming — provide us with the bijective
mapping λ8.

1

R

0

0 0

0

R

Y

X   Y+ +



X R

R

C

f

gιX
ιY

κY
κX

ΨΞ

λ

ηη
Ξ Ψ

∆

Fig. 10.5.4 Constructing a Ferrers decomposition: R : X −→ Y and R′ : X+1l −→ 1l+Y

We introduce row equivalence Ξ(R′) := syq (R′T, R′T) = Ξ(R′) as well as column
equivalence Ψ(R′) := syq (R′, R′) of R′ together with the corresponding natural
projections which we call ηΞ, ηΨ. Abbreviating ∇ := fringe(R′), we define

λ := ηT

Ξ
;∇;ηΨ

f := ιX ;ηΞ;λ

g := κY ;ηΨ

C := λT;ηT

Ξ
;R′;ηΨ

The crucial point has already been proved after Prop. 10.4.3: As the quotient of a
total and surjective difunctional relation, λ is a bijective mapping.

Using all this, we prove that C is a linear strictorder, i.e., that it is transitive,
irreflexive, and semi-connex. We start expressing C more directly by R′:

C = λT;ηT

Ξ
;R′;ηΨ by definition of C

= ηT

Ψ
;∇T;ηΞ;ηT

Ξ
;R′;ηΨ by definition of λ

= ηT

Ψ
;∇T; Ξ(R′);R′;ηΨ natural projection

= ηT

Ψ
;∇T;R′;ηΨ since the row equivalence satisfies Ξ(R′);R′ = R′

= ηT

Ψ
;R′

T
;R′;ηΨ, according to Prop. 10.5.4.iii,

8 By the way: [Pir91] and a whole chapter of [PV97] are devoted to the algebraic description of the
“holes” or “hollows” and “noses” that show up here. We feel that our general generic construction
via the extension R′ eliminates several case distinctions. Not least allows it to formulate the
respective terms and then immediately interpret them using TituRel.
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Up to quotient forming, C is, thus, the column-is-contained weakorder of R′, leading
to transitivity:

C;C = ηT

Ψ
;R′

T
;R′;ηΨ;ηT

Ψ
;R′

T
;R′;ηΨ see above

= ηT

Ψ
;R′

T
;R′; Ψ(R′);R′

T
;R′;ηΨ natural projection

= ηT

Ψ
;R′

T
;R′;R′

T
;R′;ηΨ column congruence

⊆ ηT

Ψ
;R′

T
;R′;ηΨ Ferrers

= C see above

With C ∪ CT = ηT

Ψ
; Ψ(R′);ηΨ = ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ = ηT

Ψ
;ηΨ; ;ηT

Ψ
;ηΨ = , it is irreflexive

and semi-connex.

For a pictorial example assume the reports on soccer teams observed in a newspaper
during a week as given in middle of the upper row of Fig. 10.5.5. The permutations
that let the Ferrers relation — as well as the linear strictorder obtained via quotient
forming — reside in the upper right triangle are shown at its left and right side.
Both have been determined by algebraic means oriented along the techniques of
algebraic visualization sketched in Appendix C.

10.5.6 Corollary. Assume the same setting as in Prop. 10.5.5 and its proof, i.e.,
with f, g surjective. Then

i) ∇R := fringe(R) = f ;HC ;gT with HC the Hasse relation of C
∇R := fringe(R) = f ;gT

ii) Ξ(R) = f ;fT, Ψ(R) = g;gT

Proof : i) We start from ∇R.
∇R = f ;C;gT ∩ f ;C;gT;g;CT;fT;f ;C;gT definition, transposed
= f ;

[
C ∩ C;gT;g;CT;fT;f ;C

]
;gT mappings distributive

= f ;

[
C ∩ C;gT;g;CT;fT;f ;C

]
;gT mappings slipping out of negation

= f ;

[
C ∩ C;CT;C

]
;gT mappings f, g are surjective

= f ;∇C ;gT by definition of ∇C
= f;HC;gT for any finite linear strictorder C the fringe ∇C equals the Hasse

relation HC = C ∩ C;C

∇R = f ;C;gT ∩ f ;C;gT;g;CT;fT;f ;C;gT definition, transposed
= f ;C;gT ∩ f ;C;gT;g;CT;fT;f ;C;gT mappings slipping out of negation
= f ;

[
C ∩ C;gT;g;CT;fT;f ;C

]
;gT mappings slipping out of negation

= f ;

[
C ∩ C;CT;C

]
;gT mappings f, g surjective mappings

= f ;∇C ;gT by definition of ∇C
= f;gT for any finite linear strictorder C the fringe ∇C equals the identity
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Fig. 10.5.5 Factorization of a Ferrers relation, presented in the lower line with f and g

ii) Ψ(R) = syq (R,R) by definition

= syq (f ;C;gT, f ;C;gT) as assumed

= syq (C;gT, C;gT) cancelling a surjective mapping according to Prop. 8.5.7.i

= g;syq (C,C);gT Prop. 8.5.7.ii,iii

= g;gT since C is a finite linear strictorder
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The decomposition of Theorem 10.5.5 is unique when f, g are surjective. Of course,
one may choose a much bigger target of f, g than necessary9.

10.5.7 Proposition. Up to isomorphism, there exists just one factorization ac-
cording to Prop. 10.5.5 in case f, g are demanded to be surjective.

Proof : Let any triple f1, g1, C1 be presented with R = f1;C1;gT
1 and f1, g1 surjective.

We define

ϕ := fT;f1, ψ := gT;g1

and convince ourselves that ϕ = ψ and that this provides an isomorphism. From
Prop. 10.5.6.i, we know that f;gT = ∇R = f1;gT

1. For surjective functions as assumed,
this immediately gives

f ;ψ = f ;gT;g1 = ∇R;g1 = f1;gT
1

;g1 = f1

f ;ϕ = f ;fT;f1 = Ξ(R);f1 = f1;fT
1

;f1 = f1

This results in f ;ψ = f1 = f ;ϕ for a surjective mapping f , so that ϕ = ψ.

ϕ;ϕT = fT;f1; (fT;f1)T = fT;f1;fT
1

;f = fT; Ξ(R);f = fT;f ;fT;f = ; =

C;ϕ = C;ψ = ϕ;ϕT;C;ψ = ϕ;fT
1

;f;C;gT;g1 = ϕ;fT
1

;R;g1 = ϕ;fT
1

;f1;C1;gT
1

;g1 = ϕ;C1

Exercises

10.5.1 Let R be some Ferrers relation, i.e., R;R
T

;R ⊆ R. Show that

R
T

;R;R
T ⊆ RT

R;R
T ∩ R;RT = R

T
;R ∩ RT;R =

are equivalent characterizations.

10.5.2 i) Prove that every relation R is union as well as intersection of Ferrers
relations.

ii) Let an arbitrary relation R be given and consider all reflexive and transitive
relations Q on the direct sum of src(X) and tgt(Y ) satisfying ι;Q;κT = R. Among
these,

QM :=

(
R/R R

RT;R;RT R\R

)
is the greatest.

iii) Given the setting just studied, R is Ferrers precisely when QM is connex.

9 Observe, that we did not require in general f, g to be surjective as in [SS89, SS93].
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10.6 Block-Transitive Relations

We are interested in the concepts that we already know for an order or a strictorder,
but study now generalized to a heterogeneous environment in which also multiple
rows or columns may occur. The starting point is a Ferrers relation. We have seen
how it can in many respects be compared with a linear (strict)order. Is it possible
to obtain in such a generalized setting similar results for a not necessarily linear
(strict)order? This has indeed been found; see [Win03, Win04].

10.6.1 Definition. A (possibly heterogeneous) relation R is called block-transi-
tive if either one of the following equivalent conditions holds, expressed via its
fringe ∇ := fringe(R)

i) R ⊆ ∇; and R ⊆ ;∇
ii) R ⊆ ∇; ;∇
iii) R = ∇;∇T;R;∇T;∇

Proof : (i) =⇒ (ii):

R ⊆ ∇; ∩ ;∇ ⊆ (∇ ∩ ;∇;∇T); ( ∩ ∇T; ;∇) ⊆ ∇;∇T; ;∇ ⊆ ∇; ;∇

(ii) =⇒ (iii): According to Prop. 10.3.7.iv, “⊇” holds for arbitrary relations R. In
addition:

R = ∇; ;∇ ∩ R ⊆ (∇ ∩ R;∇T; ); ( ;∇ ∩ ∇T;R) ⊆ ∇;∇T;R

In a similar fashion, we deduce R ⊆ R;∇T;∇, so that “⊆” follows.

(iii) =⇒ (i) is trivial.

We have met this condition already for Ferrers relations, when defining a strongly
Ferrers relation in Def. 10.5.3. Being block-transitive is mainly a question of how
big the fringe is. The fringe must be big enough so as to “span with its rectangular
closure” the given relation R. The coarsest rectangle containing ∇ must contain R
also.

For this concept, Michael Winter had originally, see [Win04] and earlier, coined
the property to be of order-shape. We do not use this word here since it may
cause misunderstanding: We had always been careful to distinguish an order from
a strictorder; they have different definitions, that both overlap in being transitive.
In what follows, we will see that — in a less consistent way — relations may share
the property of being block-transitive.
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10.6.2 Proposition. For an arbitrary block-transitive relation R, we again abbre-
viate ∇ := fringe(R) and obtain

R;∇T;R = R

Proof : We start from R ⊆ ∇; .

R = R ∩ ∇;

= Ξ(R);R ∩ ∇; Prop. 5.4.4
= (Ξ(R) ∩ ∇; );R masking rule
= Ξ∇(R);R Prop. 10.3.7.i
= ∇;∇T;R definition Def. 10.3.6
⊆ R;∇T;R because ∇ ⊆ R

The reverse containment is satisfied for every relation; Prop. 10.3.7.iv.

This shows that ∇T is the generalized inverse (Def. 10.7.1.ii) for a block-transitive
relation.

We now give the most specialized examples of a block-transitive relation:

10.6.3 Proposition. i) Any difunctional relation R is block-transitive.

ii) Any finite Ferrers relation R is block-transitive and, thus, strongly Ferrers.

Proof : i) Trivial since R = fringe(R).

ii) We abbreviate ∇ := fringe(R). According to Prop. 10.5.4.v, we then have that
R = ∇ ∪ ∇;R

T
;∇, so that R ⊆ ∇; as well as R ⊆ ;∇.

This is in contrast to (IR, <) which is Ferrers but not block-transitive, simply as its
fringe has already been shown to be empty.

Also block-transitive relations admit a factorization. In this case, we proceed dif-
ferently compared with our proof of the Ferrers factorization: Instead of caring for
existing or non-existing empty rows/columns, we restrict completely to total and
surjective relations.

10.6.4 Proposition. Let R : X −→ Y be a total and surjective (possibly hetero-
geneous) relation.

R block-transitive ⇐⇒ There exist surjective mappings f, g and
an order E such that R = f ;E;gT.
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Proof : “⇐=” We recall that the fringe ∇E of an order E is always the identity.
With the given condition, fringes of E and R are closely related:

f ;gT = f ;∇E;gT because ∇E =
= f ; (E ∩ E;E

T
;E);gT expanding ∇E

= f ;E;gT ∩ f ;E;E
T

;E;gT since f, g are univalent
= f ;E;gT ∩ f ;E;E

T
;E;gT mappings slipping below negation

= f ;E;gT ∩ f ;E;gT;g;E
T

fT;f ;E;gT since f, g are univalent and surjective
= f ;E;gT ∩ f ;E;gT;f ;E;gT

T
;f ;E;gT mappings slipping below negation

= fringe(f ;E;gT) = ∇R

Using this, we may proceed as follows

R = f ;E;gT by assumption
= f ;∇E;∇T

E
;E;∇T

E
;∇E;gT since ∇E =

= f;∇E;gT;g;∇T

E
;fT;f;E;gT;g;∇T

E
;fT;f;∇E;gT since f, g are univalent and surjective

= ∇R;∇T

R
;R;∇T

R
;∇R

“=⇒” Given a total, surjective, and block-transitive R, we have ∇; = . It is a
great help that we may several times use according to Prop. 10.3.7

(*) ∇;∇T = Ξ∇(R) = Ξ(R) = ηΞ;ηT

Ξ and ∇T;∇ = Ψ∇(R) = Ψ(R) = ηΨ;ηT

Ψ.

with the corresponding natural projections called ηΞ, ηΨ. We define

λ := ηT

Ξ
;∇;ηΨ

E := λT;ηT

Ξ
;R;ηΨ

f := ηΞ;λ

g := ηΨ

Now, the conditions have to be proved. As a natural projection, by definition, g is
a surjective mapping, and so will be f , once it has been proved that λ is. We show
one of the properties; the others follow in a similar form.

λT;λ = ηT

Ψ
;∇T;ηΞ;ηT

Ξ
;∇;ηΨ expanded

= ηT

Ψ
;∇T;∇;∇T;∇;ηΨ using (*)

= ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ using (*)

= ; ; = a natural projection is surjective and univalent

Transitivity

E;E = λT;ηT

Ξ
;R;ηΨ;λT;ηT

Ξ
;R;ηΨ expanding E

= λT;ηT

Ξ
;R;ηΨ;ηT

Ψ
;∇T;ηΞ;ηT

Ξ
;R;ηΨ expanding λ

= λT;ηT

Ξ
;R;∇T;∇;∇T;∇;∇T;R;ηΨ using (*)

= λT;ηT

Ξ
;R;∇T;R;ηΨ Prop. 10.3.7

= λT;ηT

Ξ
;R;ηΨ = E Prop. 10.6.2

Reflexivity
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E = λT;ηT

Ξ
;R;ηΨ expanding E

⊇ ηT

Ψ
;∇T;ηΞ;ηT

Ξ
;∇;ηΨ expanding λ, R ⊇ ∇

= ηT

Ψ
;∇T;∇;∇T;∇;ηΨ using (*)

= ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ natural projection

= three times natural projection

Antisymmetry

E ∩ ET = λT;ηT

Ξ
;R;ηΨ ∩ ηT

Ψ
;RT;ηΞ;λ expanding E

= ηT

Ψ
;∇T;ηΞ;ηT

Ξ
;R;ηΨ ∩ ηT

Ψ
;RT;ηΞ;ηT

Ξ
;∇;ηΨ expanding λ

= ηT

Ψ
;∇T;∇;∇T;R;ηΨ ∩ ηT

Ψ
;RT;∇;∇T;∇;ηΨ using (*)

= ηT

Ψ
;∇T;R;ηΨ ∩ ηT

Ψ
;RT;∇;ηΨ Prop. 10.3.7.ii

= (ηT

Ψ
;∇T;R ∩ ηT

Ψ
;RT;∇;ηΨ;ηT

Ψ);ηΨ Prop. 5.1.4
= ηT

Ψ
; (ηΨ;ηT

Ψ
;∇T;R ∩ RT;∇;ηΨ;ηT

Ψ);ηΨ Prop. 5.1.4
= ηT

Ψ
; (∇T;∇;∇T;R ∩ RT;∇;∇T;∇);ηΨ using (*)

= ηT

Ψ
;

(
∇T;R ∩ RT;∇);ηΨ Prop. 10.3.7.ii again

= ηT

Ψ
;∇T;∇;ηΨ Prop. 10.3.7.v

= ηT

Ψ
;ηΨ;ηT

Ψ
;ηΨ using (*)

= natural projection

We will now extend the well-known Szpilrajn extension so as to work also for block-
transitive relations.

10.6.5 Proposition (Szpilrajn-type extension). Every finite total, surjective, and
block-transitive relation R has a Ferrers extension, i.e., a Ferrers relation F ⊇ R
satisfying fringe(F ) = fringe(R).

Proof : We use Prop. 10.6.4, and assume from the beginning that R = f;E;gT with
f, g surjective mappings and E an ordering. Then we apply a Szpilrajn-extension to
E, obtaining E1, from which we define F := f;E1;gT. Then we may simply compute
as follows:

fringe(F ) = F ∩ F ;F
T

;F by definition

= f;E1;gT ∩ f ;E1;gT;f ;E1;gT
T

;f ;E1;gT factorizing F according to its definition
= f ;E1;gT ∩ f ;E1;gT;g;E1

T
;fT;f ;E1;gT mappings slipping out of negation

= f ;E1;gT ∩ f ;E1;E1
T

;E1;gT mappings f, g are surjective
= f ; (E1 ∩ E1;E1

T
;E1);gT univalency of f, g

= f ;fringe(E1);gT definition of a fringe
= f ;gT fringe of an order is the identity
= fringe(R) see the proof of Prop. 10.6.4

Now we prove that F is Ferrers, using that the E1 obtained is a linear order:
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F ;F
T

;F = f ;E1;gT;f ;E1;gT
T

;f ;E1;gT = f ;E1;gT;g;E1
T

;fT;f ;E1;gT

= f ;E1;E1
T

;E1;gT ⊆ f ;E1;gT = F

While this was an extension of a block-transitive relation, we now take an arbitrary
relation and try to find a block-transitive relation therein — which then may be
the argument of the Szpilrajn extension.

10.6.6 Definition. For a (possibly heterogeneous) relation R with fringe ∇ =
fringe(R), we define its block-transitive kernel as

btk(R) := R ∩ ∇; ∩ ;∇ = ∇;∇T;R;∇T;∇.

We are now going to show that forming the block-transitive kernel of a relation is
an idempotent operation.

10.6.7 Proposition. For every (possibly heterogeneous) relation R, the fringe
∇ := fringe(R) does not change when reducing R to its block-transitive kernel:

∇ = fringe(R ∩ ∇; ∩ ;∇)

Proof : We start with

(R ∩ ∇; ∩ ;∇);R ∩ ∇; ∩ ;∇T
; (R ∩ ∇; ∩ ;∇)

= (R ∩ ;∇);

[
R

T ∪ ;∇T ∩ ∇T;

]
; (R ∩ ∇; ) ∩ ∇; ∩ ;∇

two times masking with Prop. 8.3.2 and a trivial Boolean step
= R;

([
R

T ∪ ;∇T ∩ ∇T;

]
∩∇T; ∩ ;∇T

)
;R ∩∇; ∩ ;∇ two times masking

= R;

(
R

T ∩ ∇T; ∩ ;∇T

)
;R ∩ ∇; ∩ ;∇ with purely Boolean argument

= (R ∩ ;∇);R
T

; (R ∩ ∇; ) ∩ ∇; ∩ ;∇,

so that

fringe(R ∩ ∇; ∩ ;∇)

= R ∩ ∇; ∩ ;∇ ∩ (R ∩ ;∇);R
T

; (R ∩ ∇; ) ∩ ∇; ∩ ;∇
= R ∩ ∇; ∩ ;∇ ∩

[
(R ∩ ;∇);R

T
; (R ∩ ∇; ) ∪ ∇; ∩ ;∇

]
= R ∩ ∇; ∩ ;∇ ∩ (R ∩ ;∇);R

T
; (R ∩ ∇; )

= R ∩ R;R
T

;R = fringe(R)

In the last step, “⊇” is clear. In the other direction, also “⊆ R” is evident. It
remains to convince us of “⊆ R;R

T
;R”. It then suffices to show that

∇; ∩ ;∇ ∩ (R ∩ ;∇);R
T

; (R ∩ ∇; ) ⊆ R;R
T

;R
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⇐⇒ ∇; ∩ ;∇ ∩ R;R
T

;R ⊆ (R ∩ ;∇);R
T

; (R ∩ ∇; )

The latter can indeed be proved via masking.

This was a really ugly proof which we have nonetheless presented. It employs hardly
more than Boolean algebra with the masking formula, but with terms running in
opposite directions, so that it would not have been easy for a reader to do it for
himself.

10.7 Inverses

The following touches a widely known special topic. Difunctionality is related to
the concepts of inverses in the context of linear algebra for numerical problems.
This will also provide deeper insight into the structure of a difunctional relation.

10.7.1 Definition. Let some relation A be given. The relation G is called

i) a sub-inverse of A if
A;G;A ⊆ A.

ii) a generalized inverse of A if
A;G;A = A.

iii) a Thierrin-Vagner inverse of A if the following two conditions hold
A;G;A = A, G;A;G = G.

iv) a Moore-Penrose inverse of A if the following four conditions hold
A;G;A = A, G;A;G = G, (A;G)T = A;G, (G;A)T = G;A.

The relation R is called regular, if it has a generalized inverse. Due to the sym-
metric situation in case of a Thierrin-Vagner inverse G of A, the two relations A,G
are also simply called inverses of each other.

In a number of situations, semigroup theory10 is applicable to relations. Some of
the following definitions stem from [Kim82]. A sub-inverse will always exist because

satisfies the requirement. With sub-inverses G,G′ also their union G ∪ G′ or
supremum is obviously a sub-inverse so that one will ask which is the biggest.

10.7.2 Proposition. RT;R;RT is the unique biggest sub-inverse of R.
10 In [PW70], lots of semigroup concepts are studied in the special case of the semigroup of relations,

not least all the Green’s relations along which results of semigroup theory may nicely be presented.
For relations, however, much reduces to trivialities, while other effects cannot be handled in this
way.
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Proof : Assuming an arbitrary sub-inverse X of R, it will satisfy R;X ;R ⊆ R by
definition, which is equivalent with

⇐⇒ XT;RT;R ⊆ R ⇐⇒ R;R
T

;R ⊆ XT ⇐⇒ X ⊆ R;R
T

;R
T

This leads to yet another characterization of a fringe, namely as an intersection of
R with the transpose of its biggest sub-inverse:

10.7.3 Corollary. fringe(R) = sup{Y | Y ⊆ R, R;Y T;R ⊆ R}

Proof : The set of relations over which the supremum is taken is nonempty because
it contains . The selection criterion is obviously “∪”-hereditary, so that the — by
now existing — supremum will also satisfy the selection property.

The remaining question is whether the equation holds.

“⊇”: Every Y satisfying the selection criterion satisfies Y ⊆ R. From R;Y T;R ⊆ R, we
deduce as in Prop. 10.7.2 that Y ⊆ R;R

T
;R, which then extends to the supremum.

“⊆”: Prop. 10.3.7.iv

A generalized inverse is not uniquely determined: As an example assume a homoge-
neous . It has obviously the generalized inverses and . With generalized inverses
G1, G2 also G1 ∪ G2 is a generalized inverse. Also suprema of inverses are inverses
again. There will, thus exist a greatest one — if any. Regular relations, i.e., those
with existing generalized inverse, may precisely be characterized by the following
containment which is in fact an equation:

10.7.4 Proposition. R regular ⇐⇒ R ⊆ R;R;R
T

;R
T

;R.

Proof : If R is regular, there exists an X with R;X ;R = R. It is, therefore, a

sub-inverse and so X ⊆ R;R
T

;R
T

according to Prop. 10.7.2. Then

R = R;X;R ⊆ R;R;R
T

;R
T

;R.

Now, we prove the opposite direction. From Prop. 10.7.2, we know that R;R;R
T

;R
T

;

R ⊆ R for arbitrary R. The condition is, therefore, in fact an equality, and X :=

R;R
T

;R
T

a generalized inverse.
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Every block-transitive relation according to Def. 10.6.1 is regular in this sense; see
Prop. 10.6.2.

10.7.5 Proposition. IfR is a regular relation, its uniquely defined greatest Thierrin-
Vagner inverse is

R;R
T

;R
T

;R;R;R
T

;R
T

=: TV .

Proof : Evaluation of TV ; R ; TV = TV and R ; TV ; R = R using Prop. 10.7.4
with equality shows that TV is indeed a Thierrin-Vagner inverse. Any Thierrin-

Vagner inverse G is in particular a sub-inverse, so that G ⊆ R;R
T

;R
T

which implies
G = G;R;G ⊆ TV .

We transfer a result on Moore-Penrose inverses, well-known for real-valued ones,
e.g., to the relational setting.

10.7.6 Theorem. Moore-Penrose inverses are unique provided they exist.

Proof : Assume two Moore-Penrose inverses G,H of A to be given. Then we may
proceed as follows

G = G;A;G = G;GT;AT = G;GT;AT;HT;AT = G;GT;AT;A;H = G;A;G;A;H = G;A;H

= G;A;H;A;H = G;A;AT;HT;H = AT;GT;AT;HT;H = AT;HT;H = H;A;H = H.

We now relate these concepts with permutations and difunctionality.

10.7.7 Theorem. For a (possibly heterogeneous) relation A, the following are
equivalent:

i) A has a Moore-Penrose inverse.
ii) A has AT as its Moore-Penrose inverse.
iii) A is difunctional.
iv) Any two rows (or columns) of A are either disjoint or identical.
v) There exist permutations P,Q such that P ;A;Q has block-diagonal form, i.e.,

P ;A;Q =



B1

B2

B3

B4

B5
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with (not necessarily square) diagonal entries Bi = .

Proof : of the key step (i)=⇒(ii): G = G;A;G ⊆ G;A;AT;A;G = AT;GT;AT;A;G =
(A;G;A)T;A;G = AT;A;G = AT;GT;AT = (A;G;A)T = AT and, deduced symmetrically,
A ⊆ GT.

Exercises

10.7.1 Determine the biggest sub-inverse, the greatest Thierrin-Vagner inverse,
and the Moore-Penrose inverse — if any — for the following relations:

1 2 3 4 5 6 7 8 9 1
0

1
1

a
b
c
d
e
f
g


0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 1


1 2 3 4 5 6 7

a
b
c
d
e

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9

a
b
c
d
e
f
g


0 0 1 1 0 1 0 1 0
0 1 0 1 0 0 1 0 1
0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 1
0 1 0 1 1 1 0 1 0
1 1 1 0 0 1 0 0 1


10.7.2 Prove or disprove: Every biggest sub-inverse, e.g., every relation R;R

T
;R

T

,
is regular.
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Concept Analysis

We are going to denote as power operations those obtained employing the member-
ship relation ε between a domain X and its power domain 2X . They are not too
well-known since there is a tendency to hide them behind traditional abstractions.
If there are subsets considered as vectors satisfying u ⊆ v, their corresponding ele-
ments in the power domain will be in relation eu ; eT

v ⊆ Ω, with Ω the powerset
ordering. We concentrate on such transitions from the algebraical side. This makes
them more easily accessible by a formal treatment.

Power operations as used, e.g., in programming will be studied in Chapt. 19. Al-
ready here, it will become possible to formulate and prove important factorizations:
factorization according to maxcliques, or the diclique factorization, giving rise to
the field of concept lattices with all its applications. Also cut completion of an or-
dering and ideal completion subsume to this setting. To provide an easy access, we
start with considerations that remind us of vector spaces and their rank. At the end
of the chapter, a plexus of interrelationships of relations around any given relation
is outlined which we have decided to call the topography around that relation.

11.1 Row and Column Spaces

First, we take a look at something that corresponds to vector spaces over IR. Rows of
a relation may be joined so as to obtain unions of rows. All finite joins — including
the join over the empty set of rows — give the row union space; correspondingly
for the column union space. One should not stick too closely to the classical idea
of a vector space and its dimension or basis. It may be proved that in the 0 -1 -case
studied here, there exists just one basis. When given an independent set of vectors,
one will not necessarily be able to extend it to a basis, etc. We are thus confronted
with an entirely different situation.

It is evident, that several combinations of rows may produce the same union. In
order to eliminate all multiple rows, we consider the row equivalence Ξ(εT;R) and
determine the natural projection η for it, i.e., we factorize it to Ξ(εT;R) = η;ηT. All
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possible types of row unions are then shown by ηT;εT;R. In an analogous form, R;ε′;η′

shows all possible types of unions of columns. Fig. 11.1.1 gives an example. Some
ideas for the following stem from investigations concerning real-valued matrices as
presented, e.g., in [Kim82].

R =

U
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S
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h
Arbuthnot

Perez
Dupont

Botticelli
Schmidt

Larsen


1 0 1 1 0
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
0 0 1 1 0
0 1 1 0 0
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R;ε′;η′ =


0 1 0 1 1 1 1 1 1 1 0 1 0 1 1
0 0 0 0 1 1 0 0 0 0 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 0 0 0 0 1
0 0 1 1 1 1 0 0 1 1 0 0 1 1 0



ηT;εT;R =

[{}]
[{Arbuthnot}]

[{Perez}]
[{Arbuthnot,Perez}]

[{Dupont}]
[{Arbuthnot,Dupont}]

[{Botticelli}]
[{Perez,Botticelli}]

[{Dupont,Botticelli}]
[{Schmidt}]

[{Perez,Schmidt}]
[{Dupont,Schmidt}]

[{Larsen}]
[{Arbuthnot,Larsen}]

[{Schmidt,Larsen}]



0 0 0 0 0
1 0 1 1 0
0 0 1 0 1
1 0 1 1 1
0 1 1 0 1
1 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 1 1 1
0 1 1 0 0
1 1 1 1 0
0 1 1 1 0


β(R) =



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Fig. 11.1.1 Illustrating row union and column union space of a relation R

Duplicates in Fig. 11.1.1 are eliminated; i.e., every row and column name is in
brackets and stands for the class of all combinations with the same result. A fact
that one might not have expected in the first place is that the two spaces obviously
have equal cardinality; even more: Fig. 11.1.2 shows that row union space and
column union space are ordered in mainly the same way, however in counter-running
directions. This reminds us somehow of the fact that row rank equals column rank
for real-valued matrices. We go even further and establish a bijective mapping
between the two, that makes this precise.

The lower right relation of Fig. 11.1.1 indicates how row types and column types
are related: Negate the row and move it over the original relation (i.e., upper left);
then the indicated columns shows the hits. We can formulate this also the other
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way round: Negate any column from the upper right matrix, slide it horizontally
over R and mark the hits; this is then the row β indicates in reverse direction.
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ll
]

[{}]
[{Botticelli}]

[{Perez}]
[{Perez,Botti.}]

[{Schmidt}]
[{Arbuthnot}]

[{Perez,Schmidt}]
[{Arb.,Perez}]

[{Larsen}]
[{Dupont}]

[{Dupont,Botti.}]
[{Schmidt,Larsen}]

[{Dup.,Schmidt}]
[{Arb.,Larsen}]

[all]



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1 0 1 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



US-F r-Br
P

Ge
B

US-F r-Sp
S

Br-Sp
L

Fr-Br
B P

US-F r
P S

US-Br
D

Fr-Sp
A

US-Sp
L S

Br
B D

Fr
A P

US
D S

Sp
A L

no nation
all persons

all nations
no person

Fig. 11.1.2 Antitone ordering of row union space and column union space

In the relation of Fig. 11.1.2, the rows are rearranged to containment order. In the
Hasse-diagram it is shown that the columns are thereby arranged in reverse direc-
tion. The row space is obviously a lattice. In the same way, the column space forms
a lattice. The two together have in an example been shown to be anti-isomorphic.
A nice result stems from [Kon92]: There are exactly n numbers greater than 2n−1

that can serve as the cardinalities of row spaces of Boolean n×n-matrices, namely
2n−1 + 2i for i = 0, . . . , n− 1.

Fig. 11.1.3 shows nearly the same as Fig. 11.1.1, but now for row resp. column
intersections. Also in this case, we find a bijection as indicated in the figure. We
have applied the same procedure to R instead of R and then negated the result, a
procedure that more or less closely resembles the De Morgan rule a ∧ b = a ∨ b.

The method of comparison is different in this case. Whenever we look at an entry
u, v of β(R) in Fig. 11.1.3, i.e., u;vT ⊆ β(R), we will encounter the same situation
that we exemplify with the entry [{Schmidt}], [{British}]: The corresponding row
union in R is {German,British} and the column union is {Arbuthnot,Schmidt}.
These two make up a non-enlargeable rectangle of R.

We now define constructs that will soon be met quite frequently. The first is a
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R =
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1 1 0 0 1 1 1 0 0 0 0
1 0 0 0 1 0 0 1 0 0 1
1 0 1 0 1 0 0 1 0 1 1
1 1 0 0 0 0 0 1 1 0 0
1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0



ηT;εT;R =

[{}]
[{Arbuthnot}]

[{Perez}]
[{Arbuthnot,Perez}]

[{Dupont}]
[{Botticelli}]

[{Arbuthnot,Botticelli}]
[{Perez,Botticelli}]

[{Arbuthnot,Perez,Botticelli}]
[{Schmidt}]

[{Larsen}]



1 1 1 1 1
1 0 1 1 0
0 0 1 0 1
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 1 0
0 1 1 0 0


β(R) =



0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0


Fig. 11.1.3 Row intersection space and column intersection space of R related by β(R)

relation established between all sets of rows of a relation R and its columns; a given
set of rows is related to the columns as indicated by its meet or intersection. In a
similar way, the second relation is defined between the rows of a given relation and
all its sets of columns so that the intersection of the respective columns of a set
indicates where the relationship holds.

Considering Figs. 11.1.1 and 11.1.4, together with the relation that has been treated
in both cases, another remarkable facts show up. In Fig. 11.1.4, dicliques are related
as may be seen at {Larsen,Dupont}×{French,German}, e.g., which is in Fig. 11.1.4
abbreviated via representatives to L×French. In contrast, maximal independent
pairs of set in Fig. 11.1.1 are put into relation, e.g., {Perez,Schmidt}×{US,French}.

11.1.1 Definition. Let a (possibly heterogeneous) relationR be given and consider
the membership relations ε on its source side and ε′ on its target side. Then

i) Ξ∨(R) := ηT;εT;R is the row set union relation for R
ii) Ψ∨(R) := R;ε′;η′ is the column set union relation for R

iii) Ξ∧(R) := ηT;εT;R = ηT;εT;R is the row set intersection relation for R

iv) Ψ∧(R) := R;ε′;η′ = R;ε′;η′ is the column set intersection relation for R
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[{}]
[{German}]
[{British}]

[{US}]
[{US,German}]

[{Spanish}]
[{US,Spanish}]

[{French}]
[{German,Spanish}]
[{French,Spanish}]

[{US,French}]



1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0 0 0 1
0 0 0 1 1 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1



A,B,P
none

A,B
US

A,P
German

P,B
Spanish

S
British

L
French

P
German,Spanish

A
US,German

D
French,Spanish

B
US,Spanish

none
US,French

Fig. 11.1.4 Row and column intersection lattice for Fig. 11.1.3, nicely arranged

In all these cases, η is the respective projection according to row equivalence of
Ξ(εT;R) = Ξ(εT;R); in the same way, η′ means quotient forming with respect to the
column equivalence.

The equivalent versions in (iii) and (iv) are legitimate according to Prop. 8.5.9.ii.

We will henceforth give preference to the version with more negation bars! It will
turn out to be a good idea to consider the minorants of majorants construct, i.e.,
the R-contact closure

∧
R(X) of Def. 8.4.2, to be basic and to make use of the

fact that always ubdR(lbdR(ubdR(X))) = ubdR(X). One has already a certain
imagination for X 7→ ubdR(lbdR(X)) as a closure operation. This gives a safer
guidance in many ways; not least will one be prevented from thinking in terms of
composition. It is here vital to think in terms of residuation.
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Fig. 11.1.5 A relation R with all its row intersections and its column intersections
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In Fig. 11.1.5, we provide a simple example without quotient forming by η, η′. The
row marked {Win,Draw} is obviously the intersection of the rows marked Win and
Draw of R. In a similar way, the column {red,blu} is the intersection of columns
red and blu of R. For rows as well as for columns, all possible intersections are
shown, starting with the borderline cases of intersections applied to the empty sets
{}. It is, however, much nicer to identify all the zero columns on the right and the
two zero rows on the left. In addition column {red} and column {red,blu} should be
put in one equivalence class, and also {ora} with column {gre,ora}. One will then
arrive at 7 different rows and also 7 different columns, between which a one-to-one
interrelationship may then indeed be established; see Fig. 11.2.1.

There are several consequences of these definitions, e.g.:[
Ψ∧(R)

]T = Ξ∨(R
T

) Ψ∧(R) =
[
Ξ∧(RT)

]T
Yet another result is that R/Ξ∧(R) is an Aumann contact relation according to
Def. 11.4.4.

11.2 Factorizations

Several theorems well-known for real- or complex-valued matrices have their largely
unknown counterparts for relations. These are developed in this section.

Diclique factorization

While visualizations in Figs. 11.1.1 and 11.1.4 have been quite convincing, we need
a deeper concept how to relate row and column spaces, be it for unions or for
intersections, and a proof that there is indeed a bijection between the two. In the
explanations, it will have become clear that always dicliques (i.e., non-enlargeable
rectangles), or else non-enlargeable independent pairs of sets had been important,
so that we remind us of the corresponding situations in Chapt. 10. A diclique u, v,
i.e., a non-enlargeable rectangle inside R, is characterized by two formulae:

R;v = u and R
T

;u = v

Every diclique u, v is composed of a set u on the source side and a set v on the
target side. Relating sets belonging to a diclique means that they satisfy at the
same time

u = R;v and v = R
T

;u;

see Prop. 10.1.2. In the following definition, these operations are computed with the
symmetric quotient applied to ε, ε′, i.e., to every subset simultaneously. Intersecting
the two results gives precisely the non-enlargeable ones related.

11.2.1 Definition. Given any (possibly heterogeneous) relation R together with
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ε, the membership relation starting on the source side and ε′, the corresponding
one starting from the target side, we introduce

i) Υ := Υ(R) := syq (ε,R;ε′) ∩ syq (R
T

;ε, ε′), the diclique matching
ii) λ := λ(R) := ι; Υ; ι′

T, the concept bijection

For (ii), we have extruded those relationships that belong to the non-enlargeable
rectangles as

ι := Inject (Υ; ) for the vector Υ; and
ι′ := Inject (ΥT; ) for the vector ΥT; .
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λ(R) Υ(R) rearranged

Fig. 11.2.1 A relation R with diclique matching and concept bijection rearranged

The product ι;Υ turns out to be total by construction; see Prop. 7.5.2. We recall that
the construct Υ determines the set of all non-enlargeable rectangles — including
the trivial ones with one side empty and the other side full. It relates the row sets
to the column sets of the non-enlargeable rectangles, i.e., the dicliques. A variant
form of the definition would have been

Υ := syq (ε, lbdR(ε′)) ∩ syq (ubdR(ε), ε′)
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The denotation “Υ” has again been chosen so as to be easily memorizable: It is
intended to point to an element of the powerset on the left and to an element of
the powerset on the right side.

It is relatively easy to convince ourselves that Υ is indeed a matching and λ is a
bijection, thus justifying the denotations chosen:

11.2.2 Proposition. Assume the setting of Def. 11.2.1 in a context with Point
Axiom. Then

i) Υ is a matching
ii) λ is a bijective mapping
iii) the original relation may be obtained as R = ε; Υ;ε′

T

iv) Υ = ιT;λ; ι′

v) R;ε′ ∩ ; Υ = ε; Υ R
T

;ε ∩ ; ΥT = ε′; ΥT
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Fig. 11.2.2 Arbitrary relation R factorized as R = ε;Υ;ε′
T

according to Prop. 11.2.2.iii

Proof : i) We have to convince ourselves that Υ satisfies ΥT; Υ ⊆ and Υ; ΥT ⊆ .
We show one of the cases; the other is proved in a similar way.

ΥT; Υ⊆ syq (ε′, R
T

;ε);syq (R
T

;ε, ε′) definition, transposition, and monotony
⊆ syq (ε′, ε′) cancelling symmetric quotients
= property of the membership relation
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ii) is more or less immediate: Given the matching property of Υ, what has been
done in addition was to extrude the area where Υ and ΥT are defined. Totality and
surjectivity follow from Prop. 7.5.2.

iii) Using Prop. 7.6.2, it is immediate that

ε; Υ;ε′
T ⊆ ε;syq (ε,R;ε′);ε′

T = R;ε′;ε′
T = R

It remains to prove the reverse containment, which seems to require the Point
Axiom. Assume that there were points x, y with x;yT ⊆ R but x;yT⊆/ ε;Υ;ε′

T. With
these, we construct the non-enlargeable rectangle around x, y started horizontally
as in Prop. 10.1.3, i.e.,

u := R;v, where v := R
T

;x.

To these vectors correspond points eu, ev in the respective powersets, satisfying

eu := syq (ε, u) u = ε;eu, ev := syq (ε′, v) v = ε′;ev.

The crucial idea is to prove that eu; eT
v ⊆ Υ. Once this has been shown, it imme-

diately leads to x;yT ⊆ u;vT = ε;eu;eT
v

;ε′
T ⊆ ε;Υ;ε′

T contradicting that we had assumed
x;yT⊆/ ε; Υ;ε′

T.

ι′ =

{} {r
e
d
}

{g
re
}

{r
e
d
,g

re
}

{b
lu
}

{r
e
d
,b

lu
}

{g
re

,b
lu
}

{r
e
d
,g

re
,b

lu
}

{o
ra
}

{r
e
d
,o

ra
}

{g
re

,o
ra
}

{r
e
d
,g

re
,o

ra
}

{b
lu

,o
ra
}

{r
e
d
,b

lu
,o

ra
}

{g
re

,b
lu

,o
ra
}

{r
e
d
,g

re
,b

lu
,o

ra
}

{}→
{gre}→
{blu}→

{red,blu}→
{gre,blu}→
{gre,ora}→

{red,gre,blu,ora}→


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



re
d

g
re

b
lu

o
ra

Win
Draw
Loss

(
0 1 0 1
0 1 1 0
1 0 1 0

)
=

{}
→

{g
re
}→

{b
lu
}→

{r
e
d
,b

lu
}→

{g
re

,b
lu
}→

{g
re

,o
ra
}→

{r
e
d
,g

re
,b

lu
,o

ra
}→

(
1 1 0 0 0 1 0
1 1 1 0 1 0 0
1 0 1 1 0 0 0

)
;

re
d

g
re

b
lu

o
ra

{}→
{gre}→
{blu}→

{red,blu}→
{gre,blu}→
{gre,ora}→

{red,gre,blu,ora}→


0 0 0 0
0 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
0 1 0 1
1 1 1 1


Fig. 11.2.3 Diclique factorizing an arbitrary relation R as R = U ;V T

according to Prop. 11.2.3.i

We restrict to showing containment in one of the two terms of Υ:

eu = syq (ε, u)
= syq (ε,R;v) see above
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= syq (ε,R;ε′;ev) because v = ε′;ev

= syq (ε,R;ε′;ev) Prop. 5.2.6, point ev slipping out of negation
= syq (ε,R;ε′);ev Prop. 8.5.7.iii

⇐⇒ eu;eT
v ⊆ syq (ε,R;ε′) shunting with Prop. 5.2.5.ii

iv) This follows from Prop. 7.5.2.iv.

v) “⊇” is relatively simple and consists of just one essential estimation:

ε; Υ ⊆ ε;syq (ε,R;ε′) = ε;syq (ε,R;ε′) ⊆ R;ε′.

For “⊆”, we start with

ε; Υ ⊆ ε;syq (ε,R;ε′) = R;ε′

so that recalling Prop. 5.1.6

R;ε′ ⊆ ε; Υ = ε; Υ ∪ ; Υ

Fig. 11.2.2 shows such a factorization of an arbitrary relation R. One immediately
feels that one should get rid of the many empty columns and rows in Υ — a topic
we have already taken care of with the extrusion to λ in Def. 11.2.1.

The bijective mapping λ, resp. the matching Υ, thus obtained, may not immediately
have a nice appearence. Applying our domain construction for target permutation
to the bijective mapping λ, we would be able to arrange in a nicer form. The
natural injection ι′ is shown as the upper relation in Fig. 11.2.3. The rest of that
figure shows a factorization into just two factors which is in a somehow similar form
also known for real-valued matrices. This will now be treated formally.

R

λ

ι

ε ε 

ι



U V

Ω ΩΥ

Fig. 11.2.4 The typing around diclique matching Υ and concept bijection λ
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The conditions using symmetric quotients in the following proposition mean in an
algebraically usable form nothing else than “columns of U , resp. V , are pairwise
different”.

11.2.3 Proposition (Diclique factorization). Every (possibly heterogeneous) re-
lation R : X −→ Y may be factorized R = U ;V T into two factors satisfying

R;V = U , R
T

;U = V , syq (U,U) = , syq (V, V ) = .

This factorization is uniquely determined up to isomorphism.

Proof : In view of Fig. 11.2.4, this factorization may explicitly be defined as

U := ε; ιT;λ and V := ε′; ι′
T.

One will with Prop. 11.2.2.iv see that

U ;V T = ε; ιT;λ; ι′;ε′
T = ε; Υ;ε′

T = R

and has in addition to prove the requirements on U, V :

R;V = R;ε′; ι′
T expanding

= (R;ε′ ∩ ; Υ); ι′
T ∪ (R;ε′ ∩ ; Υ); ι′

T subdividing
= (R;ε′ ∩ ; Υ); ι′

T ∪ ι′ extrudes ΥT;

= ε; Υ; ι′
T Prop. 11.2.2.v

= ε; ιT;λ; ι′; ι′
T Def. 11.2.1.ii

= ε; ιT;λ since ι′ is injective and total
= ε; ιT;λ ιT;λ is a transposed mapping
= U by definition

syq (U,U) = syq (ε; ιT;λ, ε; ιT;λ) definition
= λT; ι;syq (ε, ε); ιT;λ Prop. 8.5.7.ii
= λT; ι; ; ιT;λ Prop. 7.6.1
= λT;λ ι is total and injective
= Prop. 5.2.6: λ is a bijection

Concerning uniqueness, assume a second factorization to be given, R = U1;V T
1 with

the required properties. The proof must now be executed very carefully, because we
do not pretend from the beginning to be able to directly construct an isomorphism
between any two arbitrarily given factoriztions, but only from the constructively
generated one to another arbitrary one. In particular, we must not use symmetry
arguments.

We define ϕ := syq (U,U1). With the cancellation rules for the symmetric quotient
it is immediate that ϕ is univalent and injective. It is also total because

ϕ;ϕT = syq (U,U1);syq (U1, U) definition and transposition
= syq (ε; ιT;λ,U1);syq (U1, U) definition of U
= λT; ι;syq (ε, U1);syq (U1, U) Prop. 8.5.7, since λT; ι is a mapping
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= λT; ι;syq (ε, U) Prop. 8.5.3, Def. 7.6.1
= syq (ε; ιT;λ,U) again because λT; ι is a mapping
= syq (U,U) definition of U
= the postulated property of U

Finally, we have to prove that ϕ is surjective, which seems to require the Point
Axiom. Assume a point

a;bT ⊆ ;ϕ = ;syq (U,U1).
⇐⇒ a ⊆ ;syq (U,U1);b shunting
⇐⇒ a ⊆ ;syq (U,U1);b slipping below negation
⇐⇒ a ⊆ ;syq (U,U1;b) since a point is a transposed mapping

Now we concentrate on the vector u := U1 ; b and define also v := R
T

;u. It is
easy to find out that u, v constitute a non-enlargeable rectangle inside R because
of the properties required for U1, V1. It has, thus, also to be present in U, V by
construction.

The ϕ, thus defined, satisfies U ;ϕ = U1 because U ;ϕ = U ;syq (U,U1) ⊆ U1 with
equality because ϕ is surjective. It also satisfies

syq (V, V1) = V
T

;V1 ∪ V T;V1 expanding
= U T;R;V1 ∪ V T;R

T
;U1 using the postulated requirements

= U T;U1 ∪ U
T

;U1 using the postulated requirements again
= ϕ as defined

For this factorization, there exists a vast amount of applications, mostly centered
around the buzzword of concept lattice analysis.

One may phrase this also a little bit differently: For every relation R there exists a
relation U , uniquely determined up to isomorphism, such that

R = U ; (U\R), or, equivalently, R = U ;U T;R.

In particular, one need not employ the order of subsets to determine the largest as it
has been reported in [BGS93, BGS94]; the algebraic qualification as in Prop. 10.1.2
is sufficient. Fig. 10.1.3 visualizes this result showing a relation as well as the
counter-running connection between rows and columns of non-enlargeable rectan-
gles, a so-called polarity.

11.2.4 Example. We insert here an example of a non-finite relation, namely

R := {(x, y) | y < x} ⊆ IR2

representing the normal strictorder on IR. In a first attempt one might be satisfied
with Fig. 11.2.5 which indicates rectangles {x | x > c} × {y | y < c} that are
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actually sufficient to cover the space strictly below the line y = x. Taking only
rational c’s, e.g., would also suffice in exhausting. Both do, however, not yet satisfy
the algebraic conditions.

c c c  
x

y

c

c

c

Fig. 11.2.5 Exhausting the relation “>” on IR with rectangles {x | x > c}× {y | y < c}

Taking

R = {(x, y) | y < x} and R = {(x, y) | y ≥ x}
U = {(x, y) | y < x} and V = {(x, y) | x < y},

we arrive indeed at

U ;V T = {(x, y) | ∃c : x > c ∧ y < c} = R,

but only at

R;V = {(x, y) | ∃c : x ≤ c ∧ c < y} ⊂=/ {(x, y) | y ≥ x} = U

One has to take {x | x ≥ c} × {y | y < c} and {x | x > c} × {y | y ≤ c}, i.e.,
inclusive of one closed border.

For real-valued matrices, a similar result runs under the name of a singular-value
decomposition1, by which any — not necessarily square — real-valued matrix
R may be decomposed as R = U DV T with D a diagonal matrix of non-negative
quasi-diagonal eigenvalues and U, V unitary matrices. An example is as follows:(

1 0 0 0 2
0 0 5 0 0
0 0 0 0 0
0 7 0 0 0

)
=

(
0 0 1 0
0 1 0 0
0 0 0 −1
1 0 0 0

)
·

(
7 0 0 0 0
0 5 0 0 0
0 0

√
5 0 0

0 0 0 0 0

)
·

 0 1 0 0 0
0 0 1 0 0√
0.2 0 0 0

√
0.8

0 0 0 1 0
−
√

0.8 0 0 0
√

0.2


One may find our relational version thereof even nicer. The singular value decompo-
sition insists on U, V to be square matrices at the cost ofD to be possibly non-square
1 The singular-values of R are defined to be the eigen values of RRT, resp. RTR.



11.2 Factorizations 263

and to admit only a quasi-diagonal. The relational result is more symmetric. The
diagonal need not be mentioned at all as it is the identity relation. The outer factors
enjoy very similar properties.

We mention the following obvious fact without proof.

11.2.5 Proposition. Every relationRmay be written as a union of non-enlargeable
rectangles.

The minimum number of rectangles necessary has been named, according to [Kim82],
after Boris M. Schein as Schein-rank. It is more or less immediate that the min-
imum number of non-enlargeable rectangles necessary leads to a so-called matroid
structure on the set of these. The Schein-rank for the example of Fig. 10.3.2 is 5
since in addition to those 2 covering the fringe three others are necessary, namely

({Perez,Dupont}, {German,Spanish}),
({Botticelli}, {US,Spanish}),
({Arbuthnot,Botticelli}, {US}).

Also the following 3 would do:

({Perez,Dupont}, {German,Spanish}),
({Botticelli}, {US,Spanish}),
({Arbuthnot}, {US,German,British}).

Only recently, numerous publications have appeared on computing the Schein-rank,
in semigroup context, for non-negative or fuzzy relations, and in image understand-
ing. Relating this to the factorization and to fringes, one may obviously say

number of blocks in the fringe ≤ Schein rank ≤ number of columns in U

with equality instead of the first “≤” in case of a Ferrers relation.

Factorization in the symmetric case

The diclique factorization of Prop. 11.2.3 specializes considerably in case the re-
lation is symmetric and reflexive — and, thus, also homogeneous. We refer to
Def. 6.2.6, the definition of cliques, and also to the definition of maxcliques in
Def. 10.1.4.

11.2.6 Definition. Given any symmetric and reflexive relation B : X −→ X

together with the membership relation ε : X −→ 2X , we introduce

i) Υmc := syq (ε,B;ε) ∩ syq (B;ε, ε) ∩ , the maxclique matching
ii) λmc := ι; ιT = , the maxclique bijection, now the identity
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For (ii), we have extruded those relationships that belong to the maxcliques as

ι := Inject (Υmc; ) for the vector Υmc;

The λ of Def. 11.2.1 has a certain meaning: It is a bijection, but between different
sets, so that a correspondence is communicated. This is no longer the case — and
also unnecessary — for the symmetric λmc that fully reduces to an identity.

B =

a b c d e f g

a
b
c
d
e
f
g


1 0 0 1 1 1 1
0 1 0 1 1 0 1
0 0 1 0 0 1 0
1 1 0 1 1 0 1
1 1 0 1 1 1 1
1 0 1 0 1 1 0
1 1 0 1 1 0 1


a b

c e

f

g
d

a b c d e f g

{c,f}→
{a,e,f}→

{a,d,e,g}→
{b,d,e,g}→

(
0 0 1 0 0 1 0
1 0 0 0 1 1 0
1 0 0 1 1 0 1
0 1 0 1 1 0 1

)
= M

Fig. 11.2.6 Maxclique factorization B = MT
;M of a symmetric and reflexive relation

One will observe in Fig. 11.2.6, that there are also dicliques with u=/ v, e.g., u =
{a, e}, v = {a, d, e, f, g}. These are explicitly excluded by the definition of Υmc.
Degeneration is here completely unimportant: The worst case is B : 1l −→ 1l,
reflexive, which is factorized to M : 1l −→ 1l, the identity.

11.2.7 Proposition (Maxclique factorization). Let any reflexive and symmetric
relation B be given. Then

i) ΥT ⊆ Υ, i.e., the Υ defined in Def. 11.2.2, is symmetric and Υmc is its
diagonal part.

ii) B = ε; Υmc;εT

iii) B;ε ∩ ; Υmc = ε; Υmc

iv) B may be factorized as B = M T ;M by a maxcliques relation, i.e., with M

restricted by
M ;B = M and M ;M T = ,

and this factorization is uniquely determined up to isomorphism.

Proof : i) The symmetric B is certainly homogeneous, so that ε = ε′. Furthermore,
BT = B implies B

T

= B. Then, Υ is symmetric because

ΥT =
{
syq (ε,B;ε′) ∩ syq (B

T
;ε, ε′)

}T by definition

=
{
syq (ε,B;ε) ∩ syq (B;ε, ε)

}T because of symmetry as mentioned before

= syq (B;ε, ε) ∩ syq (ε,B;ε) transposing symmetric quotients
= Υ since the latter is obviously symmetric

ii) ε; Υmc;εT ⊆ ε; Υ;εT = B due to Prop. 11.2.2.iii
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For the other direction, we distinguish dicliques that are symmetric from the others
according to Def. 11.2.6. Every point x;yT ⊆ B is part of the clique x ∪ y:

(x ∪ y); (x ∪ y)T = x;xT ∪ x;yT ∪ y;xT ∪ y;yT ⊆ ∪ B ∪ BT ∪ ⊆ B,

since B is reflexive and symmetric. Therefore every point of B is also part of a
maxclique. These special dicliques necessarily suffice to exhaust B.

iii) We start with Prop. 5.1.6 for the univalent Υmc

ε; Υmc = ε; Υmc ∩ ; Υmc

and continue with two statements

ε; Υmc ⊆ ε;syq (ε,B;ε) = ε;syq (ε,B;ε) ⊆ B;ε

ε; Υmc ⊆ ε;syq (ε,B;ε) ⊆ B;ε

iv) According to Def. 11.2.6, we distinguish dicliques that are symmetric from the
others. Then we define M := ι;εT. Therefore

B = ε; Υ;εT Prop. 11.2.2.iii
⊇ ε; Υmc;εT because Υmc ⊆ Υ
= ε; ιT; ι;εT because ι extrudes Υmc ⊆
= ε; ιT; (ε; ιT)T transposition
= M T;M by definition

Equality follows because maxcliques suffice to exhaust B which has already been
shown in (ii). The conditions of Prop. 11.2.3 reduce to the ones given here:

M ;B = ι;εT;B expanded
= ι;

[
(εT;B ∩ Υmc; ) ∪ (εT;B ∩ Υmc; )

]
subdivided

= ι; (εT;B ∩ Υmc; ) ∪ ι; (εT;B ∩ Υmc; ) distributivity
= ι; (εT;B ∩ Υmc; ) ∪ since ι is defined to extrude Υmc;

= ι; Υmc;εT according to (iii)
= ι;εT since ι extrudes Υmc; for the symmetric and univalent Υmc

= ι;εT because ι is a mapping
= M definition of M

The two conditions in Prop. 11.2.3 with regard to the symmetric quotient reduce
to just one, namely

syq (M T,MT) = .

But in the present case, this may be simplified even further observing that due to
the maxclique property Prop. 10.1.5

M ;M T = M ;B;M T = M ;M
T

Therefore,

syq (M T,MT) = M ;M T ∩M ;M
T

= M ;M T =
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The task remains to show that this factorization is essentially unique. Assume
another one,

B = N T;N with N ;B = N and N ;N T = .

The isomorphism may be defined directly as ϕ := syq (M T, NT). That ϕ is a bijective
mapping satisfying M = ϕ;N is shown in the same way as in Prop. 11.2.3.

This result has important applications. Conceiving B as the reflexive version of
the adjacency of some simple graph (X, ∩ B), the codomain of M is the set of
maxcliques (i.e., non-enlargeable cliques). Fig. 11.2.7 shows such a factorization.

B =

a b c d e f g h i j

a
b
c
d
e
f
g
h
i
j



1 1 1 0 1 0 1 1 1 1
1 1 1 0 1 0 1 1 1 1
1 1 1 1 0 0 0 1 0 1
0 0 1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 1 0 1
0 0 0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1
1 1 0 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1 0 1



{a
,b

,g
,i
}→

{d
,g

,i
}→

{f
,g

,i
}→

{a
,b

,c
,h

,j
}→

{c
,d

,h
,j
}→

{a
,b

,e
,g

,h
,j
}→

{d
,e

,g
,h

,j
}→

{e
,f

,g
,h

,j
}→

a
b
c
d
e
f
g
h
i
j



1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1

 = M T

Fig. 11.2.7 Maxcliques factorization of a reflexive and symmetric relation

11.2.8 Remark. The factorization B = M T;M reminds us of a result from Linear
Algebra, namely that any positive semi-definite matrix is the so-called Gram matrix
or Gramian matrix2 of a set of vectors. To recall this, let every row, resp. column,
correspond to a vector. With the so identified vectors vi, the symmetric matrix
of inner products is formed, whose entries are given by Gij = vT

i vj . In case of an
orthonormal set of vectors, e.g., the Gram matrix is the identity.

Exercises

11.2.1 Determine the maxcliques factorization for the following three relations:

2 According to Wikipedia, Jørgen Pedersen Gram (1850–1916) was a Danish actuary and
mathematician.
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U
S
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B
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S
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h
J
a
p
a
n
e
se

It
a
li
a
n

C
z
e
ch

US
French

German
British

Spanish
Japanese

Italian
Czech


1 1 1 1 0 1 0 1
1 1 1 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 1
1 1 1 0 1 1 1 1
0 0 0 1 1 1 1 0
1 1 1 1 1 1 0 1



M
o
n

T
u
e

W
e
d

T
h
u

F
ri

S
a
t

Mon
Tue

Wed
Thu
Fri
Sat


1 0 0 0 0 0
0 1 0 1 1 0
0 0 1 1 1 1
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 0 0 1
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Greenland
Rügen
Cuba

Jamaica
Tasmania
Sumatra

Bali
Guam

Hokkaido
Formosa

Madagaskar
Zanzibar



1 0 1 0 0 0 0 0 1 0 1 1
0 1 0 0 0 1 1 0 1 0 0 1
1 0 1 0 1 1 0 0 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 0
0 0 1 0 1 1 1 0 1 1 0 1
0 1 1 0 1 1 0 0 0 1 1 1
0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 1 0 0 1 1 1 0 0 1
1 1 1 0 1 0 1 1 1 1 0 1
0 0 1 1 1 1 1 0 1 1 0 0
1 0 1 0 0 1 0 0 0 0 1 1
1 1 0 0 1 1 0 1 1 0 1 1



11.3 Concept Lattices

The dicliques or non-enlargeable rectangles, have often been called concepts inside
a relation. Their investigation is then often called concept analysis. As we will see,
it is heavily related with complete lattices. The complete lattice of non-enlargeable
rectangles gives an important application for the finite case. These ideas are best
introduced via examples.

11.3.1 Example. The table of Fig. 11.3.1 contains — following an article of Rudolf
Wille and Bernhard Ganter — the German federal presidents prior to Johannes Rau
together with some of their properties. (Such tables are typically rectangular; it so
happened that this one is not. It is nonetheless a heterogeneous relation.)

S
ta

rt
<

6
0

S
ta

rt
≥

6
0

O
n
e

P
.

T
w

o
P

.
C

D
U

S
P

D
F

D
P

Heuß
Lübke

Heinemann
Scheel

Carstens
Weizsäcker

Herzog


0 1 0 1 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
1 0 1 0 0 0 1
0 1 1 0 1 0 0
0 1 0 1 1 0 0
0 1 1 0 1 0 0


Fig. 11.3.1 German federal presidents

The easiest way to work with such a table is simply asking whether Heinemann —
when president — was member of SPD, e.g. When talking on some topic related to
this, one will most certainly after a while also formulate more general propositions
that generalize and quantify:

• “All federal presidents that were members of CDU have entered office with 60 or
more years of age.”
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• “There existed a federal president who was member of FDP and stayed in office
for just one period.”

• “All federal presidents with two periods in office have been members of CDU.”

• “All federal presidents who started with less than 60 years of age stayed in office
for just one period.”

Such a statement may be satisfied or not. In every case, these quantified observations
concerned sets of federal presidents and sets of their properties — albeit 1-element
sets. It was important whether these sets of properties were all satisfied or none of
the property set, or whether there existed someone for which the properties were
satisfied.

The interdependency of such propositions follows a certain scheme. This general
scheme is completely independent from the fact that federal presidents are con-
cerned or their membership in some political party. The mechanism is quite similar
to that with which we have learned to determine majorant and minorant sets of
subsets in an ordered set. It is related with the concept of non-enlargeable rectangle
inside the given relation that has already been studied extensively.
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X X X

X X X

X X X

X X X

X

X

X X

X

X

X

X

X
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11 10
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9
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8
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7
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6

6

5
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4

3

3

2

2

1

1

13

12
11

10 9

8

7

6

5

4

3

2

1

No. Sets of German federal presidents Their properties

1 all federal presidents none
2 all but Scheel {≥ 60}
3 {Lübke, Carstens, Weizsäcker, Herzog} {≥ 60, CDU}
4 {Heinemann, Scheel, Carstens, Herzog} {one period}
5 {Heinemann, Carstens, Herzog} {≥ 60, one period}
6 {Carstens, Herzog} {≥ 60, one period, CDU}
7 {Heuß, Scheel} {FDP}
8 {Heuß, Lübke, Weizsäcker} {≥ 60, two periods}
9 {Heinemann} {≥ 60, one period, SPD}
10 {Heuß} {≥ 60; two periods; FDP}
11 {Lübke, Weizsäcker} {≥ 60, two periods, CDU}
12 {Scheel} {< 60, one period, FDP}
13 no federal president all properties

Fig. 11.3.2 Concept lattice example of Fig. 11.3.1 in extended presentation

One will observe that all non-enlargeable rectangles are presented in the Hasse
diagram of Fig. 11.3.2. Proceeding upwards in the Hasse diagram of Fig. 11.3.2,
the sets of objects are ordered increasingly while sets of properties are ordered
decreasingly. As it occurs often in Mathematics, the top and the bottom pairs seem
slightly artificial.



270 Concept Analysis

We present yet another rather similar example of a concept lattice analysis.

11.3.2 Example. In the relation on the left of Fig. 11.3.3, several properties are
attributed to a couple of nations. Then the non-enlargeable rectangles are deter-
mined that again show anti-isomorphic lattices.
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g
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S
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in

Kingdom
Very large
European

Strong industry

(
0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 1 1 1 1
1 1 0 1 1 0 0

)

all nations
no properties

no nation
all properties

US ∨ Br
very large

US
very large ∧ strong ind.

US ∨ UK ∨ F ∨ G
strong industry

UK ∨ F ∨ G ∨ H∨ ES
European

UK ∨ ES
European ∧ Kingdom

UK ∨ G ∨ F
European ∧ strong ind.

UK
European ∧ strong ind. ∧ Kingdom

Fig. 11.3.3 Concept lattice of several nations with some of their important properties

Another example of a lattice of dicliques is given with Fig. 11.3.4. There is not
much interpretation, but it is easy to grasp what the non-enlargeable rectangles
look like.

a b c d e f g h i
a

b

c

e

f

g

d

h

i
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h

b

i

∅

∅

Fig. 11.3.4 Lattice of dicliques
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11.3.3 Example. Next we consider a politician of some political party. We are
fully accustomed to the all-too-many speeches they routinely deliver at various
occasions. It is simply impossible for them to prepare a genuine and new talk every
time. What they are able to achieve is to maintain a substrate of well-formulated
speech elements covering this or that topic. From such modules, they arrange their
talks. It is tacitly understood that such talks are slightly adapted in order to fit best
for the respective auditorium. We offer here the basics of a technique to prepare
such talks.
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Nursing home
Soccer club

Union for nature preservation
Katholic kindergarten

Swimming club
Parents’ association
Chamber of Crafts

War Graves Commission
Protestant kindergarten


1 1 1 0 1 0 1 0 1 0 0 1
0 0 0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 1 1
1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1 1 0
0 0 1 0 0 0 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0


Fig. 11.3.5 Potential voters vs. topics table to be used by a politician

First the expected recipients of all these speeches are subdivided into several groups
or subsets. Then one asks which group of persons might be particularly interested
in this or that topic, so that a relation as in Fig. 11.3.5 is obtained. Secondly,
the concept lattice is determined as shown in Figs. 11.3.6 and 11.3.7. The lattice
allows to form least upper bounds and greatest lower bounds, which will probably
be utilized by the politician: He may well address every relevant topic, but choose
supremum in case he expects it to raise positive reaction and infima when expected
to sound negatively.

To be translated in figure only after denotation

of groups and topics is approved by native speaker!
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Dorf + Öko + ABM Autobahn + Lohn Steuer

keines der Themen

Sicherheit + Gebet + Ökologie

ÖkologieSicherheit + Schulgebet

Dorf + Rente + ABM

Dorfverschönerung + ABM

alle Themen

Sich + Steuer + Dorf + Gebet + Rente + Öko + ABM Dorf + ... + ABM Sich + ... + Stadion Steuer + ... + Lohn

Wehrpflicht + Lehrlinge

Wehrpflicht + Lehrlinge + Stadion

Fig. 11.3.6 Ordering for concept lattice A

Alt + Natur Natur + Handwerk Alte + Handwerk

alle Gruppen

Alte + Eltern + evKg

Alte + Natur + Eltern + evKgAlte + beideKg + Eltern

Alte + Gräber

Alte + Natur + Gräber

keine der Gruppen

Altenheim Naturschutz Elternbeirat Handwerk

Fußball + Eltern + Handwerk

Fußball + Schwimmen + Eltern + Handwerk

Fig. 11.3.7 Ordering for concept lattice B
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The rowset-to-columnset difunctional

We have, thus, several times put into relation a subset of the source side with a
subset on the target side selected so that they make up a non-enlargeable rectangle
inside R. Here, we resume this task again, and recall Prop. 10.1.3. Our starting
point is a relation R : X −→ Y together with subsets u ⊆ X and v ⊆ Y . This time,
an arbitrary subset s on the source side is taken and moved horizontally inside R
as far as this is possible so as to determine

us := R;R
T

;s ⊇ s, vs := R
T

;s

Then us, vs form a non-enlargeable rectangle inside R. We might also have taken
any set t on the target side and move it vertically over the maximum distance and
obtain

ut := R; t, vt := R
T

;R; t ⊇ t,
again a non-enlargeable rectangle ut, vt inside R.

The idea is now, to apply these formulae columnwise to the membership relations
ε, ε′ and to compare where the results agree. We establish this together with a
bijective mapping between the row union space and the column union space. The
symbol “./” — as opposed to “Υ” — has been chosen so as to symbolize that two
vectors, not just points, are matched in both directions.

β

Ξ Ψ

η η

R

ε ε

Fig. 11.3.8 Typing for rowset-to-columnset difunctional and
rowspace-to-columnspace bijection

11.3.4 Definition. For an arbitrary (possibly heterogeneous) relation R, we define

i) ./ := ./(R) := syq (R;R
T

;ε,R;ε′), the rowset-to-columnset difunctional
ii) β := β(R) := ηT; ./ ;η′, the rowspace-to-columnspace bijection

The natural projections according to its row and column equivalence Ξ( ./ ) and
Ψ(./) have here been called η, resp. η′.
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The definition Def. 11.3.4 has given preference to the idea expressed by us, vs above.
“Shift-inverting the cone” according to Prop. 8.5.10.ii, one may, however, also go
the other way round and use the idea expressed via ut, vt:

./ = syq (R;R
T

;ε,R;ε′) = syq (R
T

;ε,R
T

;R;ε′)

Fig. 11.3.9 illustrates these constructs. The difunctional is rearranged while the bi-
jection is not. The bijection holds between classes according to the row resp. column
equivalence and has, thus, bracketed entry names.

1 2 3 4
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1 0 1 0
0 1 1 1
0 1 1 1
1 1 0 0
1 1 0 1
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1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
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[{
}]

[{
1
}]

[{
2
}]

[{
1
,2
}]

[{
3
}]

[{
1
,3
}]

[{
2
,3
}]

[{
1
,2

,3
}]

[{
4
}]

[{
1
,4
}]

[{}]
[{a}]
[{b}]

[{a,b}]
[{d}]

[{a,d}]
[{b,d}]

[{a,b,d}]
[{e}]

[{b,e}]



0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0



R ./ β

Fig. 11.3.9 Relation R with difunctional ./ rearranged; bijection β in original form

From ./, there is a close correspondence to Υ := syq (ε,R;ε′) ∩ syq (R
T

;ε, ε′), the
diclique matching that we now exhibit. In comparison with Fig. 11.3.10, one will
find out, that Υ marks precisely the prescinded lower right corner points of the
rearranged ./ of the above Fig. 11.3.9.

11.3.5 Proposition. We consider an arbitrary (possibly heterogeneous) relationR.
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i) ./ is a total, surjective, and difunctional relation.

ii) Υ ⊆ ./

iii) The construct ./ satisfies the following identities wrt. the contact closure

C := R;R
T

;ε : C; ./ = R;ε′ and C = R;ε′; ./
T

iv) ε; ./ = R;ε′

v) ε; ./ ;ε′
T = R

Proof : i) The relation ./ is difunctional as a symmetric quotient. It is also total
and surjective because

./ = syq (R
T

;ε,R
T

;R;ε′) by definition

= syq (R
T

;ε,R
T

;R;ε′) syq (A,B) = syq (A,B); Prop. 8.5.1.i

where the latter is surjective following Cor. 8.5.8.

ii) Υ ⊆ syq (R
T

;ε, ε′) by definition and monotony

⊆ syq (R;R
T

;ε,R;ε′) adding a common factor; Prop. 8.5.7.i

= syq (R;R
T

;ε,R;ε′) always syq (A,B) = syq (A,B); Prop. 8.5.1.i
= ./ by definition

iii) This is in both cases simply cancelling for symmetric quotients according to
Prop. 8.5.3.iii.

iv) ε; ./ = ε;syq (R
T

;ε,R
T

;R;ε′) by definition

= ε;syq (R
T

;ε,R
T

;R;ε′) since always syq (A,B) = syq (A,B)
⊇ ε;syq (ε,R;ε′) cancelling a common left factor; Prop. 8.5.7
= R;ε′ Prop. 7.6.2

For the direction “⊆”, we recall that ε ⊆ C and use (iii).

v) We use (iv) in ε; ./ ;ε′
T = R;ε′;ε′

T = R = R, following Prop. 7.6.2 again.

In general, the relation ./ is not a bijective mapping. In view of (iii), but one may

say that it provides a “block-isomorphism” between C = R;R
T

;ε and R;ε′.

There is a close interrelationship between Υ, λ on one side and ./ , β on the other.
This interrelationship is now visualized with Fig. 11.3.10. Since the matching Υ
gives rise to natural injections on either side, while the difunctional relation ./

leads to natural projections. The two are different concepts. A detailed discussion
is postponed until Prop. 11.4.11, although the transition between extruded sets and
quotient sets is already indicated with the relations δ, δ′.
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./ Υ

Fig. 11.3.10 Rowset-to-columnset difunctional ./ for a relation R, together with δ, δ′,Υ

11.4 Closure and Contact

Closure forming is a very basic technique of everyday life. Looking at some geometric
figure, one can immediately imagine what its convex closure looks like. Nobody
would ever think of its concave closure. Even when switching to an a bit more
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mathematical structure, we have a rather firm feeling what a closure means. Given
a set of vectors, we know that they span a vector space. A closure is, thus, obviously
something that is not smaller than the original, that will stay the same when again
the closure should be formed, and of course, it will not deliver a smaller result when
applied to a larger argument. All this is traditionally captured by the following
definition.

11.4.1 Definition. Let some ordered set (V,≤) be given. A mapping ρ : V −→ V

is called a closure operation, if it is

i) expanding x ≤ ρ(x),
ii) isotonic x ≤ y −→ ρ(x) ≤ ρ(y),
iii) idempotent ρ(ρ(x)) ≤ ρ(x).

Typically, closures are combined with some predicate that is “∩-hereditary”, or,
more precisely “infimum-hereditary”. By this we mean that applying the predicate
to an intersection of two arguments equals the intersected results of the predicate
applied to the two arguments; this applies also to infima. (In doing this, a greatest
one to apply to is tacitly assumed to exist.) Transitive closures are widely known.
But there exist other related closures; some of them central for all our reasoning,
and, thus omnipresent. We give several examples:

• X,Y ⊆ IR× IR convex =⇒ X ∩ Y convex convex closure
• X,Y vector spaces =⇒ X ∩ Y vector space linear closure
• X,Y axis-parallel rectangles =⇒ X ∩ Y axis-parallel rectangular closure
• X,Y transitive relations =⇒ X ∩ Y transitive transitive closure
• X,Y difunctional relations =⇒ X ∩ Y difunctional difunctional closure
• X,Y upper cones =⇒ X ∩ Y upper cone upper cone

Fig. 11.4.1 Intersection of convex sets,
sets of non-overlapping axis-parallel rectangles, and cones
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Starting from such “∩-hereditary” properties, one forms the construct

ρ(X) := inf{Y | X ⊆ Y, Y satisfies “∩-hereditary” property}
and will obtain, thus, the convex closure, the spanned vector space, the least en-
compassing set of axis-parallel rectangles, or the transitive closure, etc.

11.4.2 Proposition. Let be given an arbitrary relation R : U −→ V .

i) Forming R-contact closures

X 7→
∧
R(X)

for relations X : U −→W is a closure operation.
ii) The set of R-contact closures

CCR,W :=
{
Y | Y =

∧
R(Z) for some Z : U −→W

}
forms a complete lattice; in particular:

— Join over an arbitrary subset Y ⊆ CCR,X may be given in either form as∧
R(sup

{
Y | Y ∈ Y

}
) = lbdR

(
inf

{
ubdR(Y ) | Y ∈ Y

})
—
∧
R( ) is the least element

— is the greatest element

Proof : i) It is trivial to show that Z 7→
∧
R(Z) is a closure operation according to

Def. 11.4.1, i.e., expanding, isotonic, and idempotent

Z ⊆
∧
R(Z) Z ⊆ Z ′ =⇒

∧
R(Z) ⊆

∧
R(Z ′)

∧
R(
∧
R(Z)) =

∧
R(Z)

ii) We show that both definitions are equivalent; the rest is left as an exercise.

lbdR
(
inf

{
ubdR(Y ) | Y ∈ Y

})
= R;

(
inf

{
ubdR(Y ) |Y ∈ Y

})
expanding

= R;sup
{
R

T
;Y | Y ∈ Y

}
because inf{A | . . .} = sup{A | . . .}

= R;R
T

;sup
{
Y | Y ∈ Y

}
composition is distributive

=
∧
R(sup

{
Y | Y ∈ Y

}
) by definition

In an obvious way, we now start lifting the closure properties to the relational level.

11.4.3 Proposition. We assume the ordering E : X −→ X and consider a map-
ping ρ : X −→ X. Then ρ is a closure operator if and only if

i) ρ ⊆ E
ii) E;ρ ⊆ ρ;E

iii) ρ;ρ ⊆ ρ
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Proof : Here again, we can not give a relation-algebraic proof; (i,ii,iii) have simply
to be postulated. What we can do, however, is to convince ourselves, that the
intentions of Def. 11.4.1 are met when lifting in this way. To this end, we check
(iii), e.g., versus Def. 11.4.1.iii. We do not immediately use that ρ is a mapping
assuming that it is just a relation when starting from

ρ(ρ(x)) ≤ ρ(x).

Adding quantifiers, this reads in the present context

∀x, y, z : ρxy ∧ ρyz → [∃w : ρxw ∧ Ezw]
transposition, definition of composition

⇐⇒ ∀x, y, z : ρxy ∧ ρyz → (ρ;ET)xz
a→ b = ¬a ∨ b

⇐⇒ ∀x, y, z : ¬ρxy ∨ ¬ρyz ∨ (ρ;ET)xz
∀x : p(x) = ¬

[
∃x : ¬p(x)

]
, arranging quantifiers

⇐⇒ ∀x, z : ¬
[
∃y :

(
ρxy ∧ ρyz ∧ [ρ;ET]xz

)]
∃y :

[
p(y) ∧ c

]
=
[
∃y : p(y)

]
∧ c

⇐⇒ ∀x, z : ¬
[(
∃y : ρxy ∧ ρyz

)
∧ [ρ;ET]xz

]
definition of composition

⇐⇒ ∀x, z : ¬
[
(ρ;ρ)xz ∧ [ρ;ET]xz

]
¬a ∨ b = a→ b

⇐⇒ ∀x, z : (ρ;ρ)xz → [ρ;ET]xz
transition to point-free form

⇐⇒ ρ;ρ ⊆ ρ;ET

This is not yet what we intended to prove. But

ρ;ET ∩ ρ;E = ρ; (ET ∩ E) = ρ; = ρ

since ρ is univalent. Now, ρ;ρ ⊆ ρ is easily obtained using (i) which gives ρ;ρ ⊆ ρ;E

and antisymmetry of E. With Prop. 5.1.2.iii, we even get ρ;ρ = ρ.

The identity relation : X −→ X is certainly a closure operation.

Contact relations

According to Georg Aumann, [Aum70, Aum74], closures always come with a simpler
construct, namely a contact relation, and there is an important correlation between
closure forming and contact relations. The idea is rather immediate: Forming the
convex closure is a mapping of a subset to another subset; what, however, makes
this other subset the closure? It can not be shrinked any further as there are contact
points preventing from doing so. We will develop this step by step, starting from
Fig. 11.4.2 which shows the basic situation of this idea.
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Ωε

ρ

X
X

C

Y
R

2

Fig. 11.4.2 Basic situation between contact and closure

First, we define contact relations as such, i.e., not yet establishing interrelationship
with closure forming. This has later been generalized in [SB09].

11.4.4 Definition. We consider a set related to its powerset, with a membership
relation ε : X −→ 2X . Then a relation C : X −→ 2X is called an Aumann
contact relation, provided

i) it contains the membership relation, i.e., ε ⊆ C,
ii) an element x in contact with a set Y all of whose elements are in contact with

a set Z, will itself be in contact with Z, the so-called infectivity of contact, i.e.,

C;εT;C ⊆ C, or equivalently, CT;C ⊆ εT;C.

The closure relation ρ is of size 2n × 2n. Slightly more efficient to store than the
closure is its contact relation with size n× 2n.

Denoting the powerset ordering as Ω : 2X −→ 2X , one will easily show that C,
considered columnwise, forms an upper cone: From

CT;C ⊆ εT;C ⊆ εT;ε = Ω

one may deduce C = C ; Ω ⊇ ε; Ω = σ ; Ω = ε (with σ the singleton injection).
Condition (ii) is in fact an equation CT;C = εT;C.3

The following result brings Aumann contacts close to previous considerations con-
cerning the R-contact closure lbdR(ubdR(ε)) of Def. 8.4.2. It opens, thus, access
to a lot of formulae for majorants and minorants.

11.4.5 Proposition. Let an arbitrary relation R : X −→ Y be given. Then the
R-contact closure
3 A slightly more restrictive definition demands C ⊆ ;ε, i.e., no element is in contact with the empty

set and distributivity of contact Cx,(Y∪Z) −→ Cx,Y ∪ Cx,Z , in which case we obtain a topological
contact that already leads to every property of a topology.
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C :=
∧
R(ε) = R;R

T
;ε

is always an Aumann contact relation; it satisfies in addition

R
T

;C = R
T

;ε and C =
∧
R(C) = R;R

T
;C.

Proof : To show this, we prove ε ⊆ R;R
T

;ε = C, which is trivial from the closure
property, and

CT;C = R;R
T

;ε
T

;R;R
T

;ε ⊆ εT;R;R
T

;ε = εT;C

⇐= R;R
T

;ε
T

;R ⊆ εT;R ⇐⇒ εT;R;R
T ⊆

[
R;R

T
;ε
]T

R
T

;C = R
T

;R;R
T

;ε = R
T

;ε

The construct C := R;R
T

;ε may be read as follows: It declares those combinations
x ∈ X and S ⊆ X to be in contact C, for which every relationship (x, y)∈/ R implies
that there exists also an x′ ∈ S in relation (x′, y)∈/ R.

We illustrate contact defined via R assuming a relation between persons and topics
as it occurs in the protesters scene of non-governmental organizations. The relation
R means persons p willing to protest against several topics t. Then typically activist
groups g are spontaneously formed, a process that will now be made relationally
precise. A person p will be in contact to a group g of persons if, whatever topic t
one considers, when all in the group are against t then so is p. This is so delicate
to handle in natural language that we again include a predicate-logic justification:

(p, g) ∈ C ⇐⇒ (p, g) ∈ R;R
T

;ε

expanding
⇐⇒ ¬

[
∃t : Rp,t ∧ ∃p′ : R

T

t,p′ ∧ εp′,g
]

¬
[
∃x : q(x)

]
= ∀x : ¬q(x) and switching terms

⇐⇒ ∀t :
[
∃p′ : R

T

t,p′ ∧ εp′,g
]
∨Rp,t
¬a ∨ b = a→ b, transposition, switching terms

⇐⇒ ∀t : ¬
[
∃p′ : εp′,g ∧Rp′,t

]
→ Rp,t

¬
[
∃x : q(x)

]
= ∀x : ¬q(x)

⇐⇒ ∀t :
[
∀p′ : p′ ∈/ g ∨Rp′,t

]
→ Rp,t

¬a ∨ b = a→ b

⇐⇒ ∀t :
[
∀p′ : p′ ∈ g → Rp′,t

]
→ Rp,t

After this illustration, we show how every closure operator gives rise to an Aumann
contact relation.

11.4.6 Proposition. Given any closure operator ρ : 2X −→ 2X on some powerset
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ρ c

Fig. 11.4.3 A relation R introducing a contact relation C,
its closure ρ, and its closed sets c

defined via a membership relation ε : X −→ 2X , the construct C := ε;ρT turns out
to be an Aumann contact relation.



11.4 Closure and Contact 283

Proof : ε ⊆ C = ε;ρT follows from ε;ρ ⊆ ε; Ω = ε with shunting; see Prop. 5.2.5.i.

C;εT;C = ε;ρT;εT;ε;ρT definition
= ε;ρT;εT;ε;ρT with mapping ρ slipping out of negation
= ε;ρT; Ω;ρT definition of Ω
⊆ ε; Ω;ρT;ρT closure ρ considered as an Ω-homomorphism; Prop. 5.7.4
⊆ ε; Ω;ρT with the third closure property
= ε;ρT since ε; Ω = ε

= C definition of C

We may, however, also go in reverse direction and define a closure operation starting
from a contact relation. Particularly interesting is the collection of closed subsets
as we may reconfigure the closure operation already from these. In Fig. 11.4.4, we
show the powerset ordering restricted to this set.

11.4.7 Proposition. Given any Aumann contact relation C : X −→ 2X , forming
the construct ρ := syq (C, ε) results in a closure operator.

Proof : During the proof, we follow the numbering of Prop. 11.4.3.

i) ρ = syq (C, ε) ⊆ CT;ε ⊆ εT;ε = Ω Def. 11.4.4.i

ii) We prove the second equivalent homomorphism condition according to Prop. 5.7.4:

Ω = εT;ε by definition
⊆ εT;C Def. 11.4.4.i
= CT;C Def. 11.4.4.ii
= syq (C, ε);εT;ε;syq (ε, C) since always ε;syq (ε,X) = X, ε;syq (ε, Y ) = Y

= ρ;εT;ε;ρT by definition
= ρ;εT;ε;ρT mapping slipping out of negation
= ρ; Ω;ρT by definition

iii) Two terms are treated separately. With

C
T

;C ⊆ CT
;ε following the second property of a contact relation

CT;C ⊆ CT;ε since ε ⊆ C
we prove ρ ⊆ syq (C,C), so that ρ;ρ ⊆ syq (C,C);syq (C, ε) ⊆ syq (C, ε) = ρ.

In Fig. 11.4.3, we have marked which subsets stay unchanged when applying ρ, i.e.,
which are fixed points with respect to ρ. They are identified forming c := (ρ ∩ );

and shown as a vector on the righthand side.
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11.4.8 Proposition. Assuming the setting developed so far, finite intersections of
closed sets are closed again.

Proof : We show this for any two closed subsets x, y. They obviously correspond
to points ex := syq (ε, x) and ey := syq (ε, y) in the powerset. Their intersection
x ∩ y corresponds to ex∩y := syq (ε, x ∩ y) = syq (ε, ε; ex ∩ ε; ey). We start from
ρT;ex = ex and ρT;ey = ey resembling the fact that x, y are closed and try to prove
correspondingly ρT;ex∩y = ex∩y.

Since the right side is a point and the left side is certainly surjective, it is sufficient
to prove

ρT;ex∩y ⊆ ex∩y
⇐⇒ ρ;ex∩y ⊆ ex∩y Schröder rule
⇐⇒ ρ;

[
εT

; (ε;ex ∩ ε;ey) ∪ εT; (ε;ex ∪ ε;ey)
]
⊆ εT

; (ε;ex ∩ ε;ey) ∪ εT; (ε;ex ∪ ε;ey)

The last line has been obtained expanding and applying the De Morgan rule. The
first term is now easy to handle remembering that C = ε;ρT:

ρ;εT = ρ;εT = C
T ⊆ εT

As an example for the others we treat ex:

ρ;εT;ε;ex = ρ;εT;ε;ρT;ex closedness of ex
= CT;C;ex because C = ε;ρT

= CT;C;ex point slips out of negation
= εT;C;ex condition CT;C = εT;C for the contact relation C

= εT;ε;ρT;ex because C = ε;ρT

= εT;ε;ρT;ex mapping ρ slips out of negation
= εT;ε;ex closedness of ex
= εT;ε;ex point slips below negation

When a powerset ordering is given together with a set c of closed subsets of some
closure operation, it is also possible to re-obtain the closure operation ρ from this
set c. We do not elaborate this in detail.
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0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Fig. 11.4.4 Hasse relation of the lattice of closed subsets wrt. ρ from Fig. 11.4.3

Looking at the powerset ordering restricted to the sets marked by c, we get a
lattice. Astonishingly enough, the lattice obtained is the same as the lattice of
the row union space, already shown in the diagram on the right of Fig. 11.1.2.
This may be checked in Fig. 11.4.4, with the Hasse relation for Fig. 11.4.3 and
the diagram on the right of Fig. 11.1.2 repeated. The two are defined in completely
different ways. The former one has been obtained forming the quotient according to
a row equivalence, indicated by bracketing in the row and column denotations. The
present one by extruding the fixed point of some closure forming, indicated with
injection arrows in row and column denotations. A question arises immediately: Is
it possible to establish an isomorphism between the two? This is the basic question
in the next subsection.

The topography around an arbitrary relation

So far, we have developed quite a menagerie of relations around any given relation
R. We will now arrange the diversity of these into a coherent system. To this
end, we recall in Fig. 11.4.5 the typing information we have gradually developed.
The relation initially given is R, for which we consider the by now well-known
membership relations on the source and on the target side, in TituRel denoted as

ε := Member(src(R)) and ε′ := Member(tgt(R)).
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R

β

ε ε

Ξ η η

ι
δ

C

δ
ι

λ

C

Ψ

ρ ρ

Υ

Fig. 11.4.5 A relation R with its topography around

From now on, we will omit any obviously symmetric counterparts. There had been
two main observations that arose when looking at non-enlargeable rectangles inside
R. On the one hand, there exists the diclique matching

Υ := Υ(R) := syq (ε,R;ε′) ∩ syq (R
T

;ε, ε′) = syq (ε,R;C ′) ∩ syq (R
T

;C, ε′)

and on the other hand the surjective and total rowset-to-columnset difunctional in
which the latter is contained

./ := ./(R) := syq (R;R
T

;ε,R;ε′).

Using the contact closure,

C :=
∧
R(ε) = R;R

T
;ε,

which according to Prop. 11.4.5 is interrelated with the others as R
T

;C = R
T

;ε, we
may also write the rowset-to-columnset difunctional (with Prop. 11.4.5) as

./ = syq (C,R;ε′) = syq (C,R;C ′).

While this might look as being constructed in a non-symmetric way, it is not,
because we may shift-invert the cone so as to obtain

./ = syq (R
T

;ε,R
T

;R;ε′) = syq (R
T

;ε, C ′) = syq (R
T

;C,C ′)

The following proposition will show how extremely interrelated these constructs
are. We will be careful to restrict the number of proofs to a minimum. The key
steps must be shown before extruding with ι := Inject(Υ; ) or projecting with
η := Project(Ξ( ./ )). Participation of these latter two relations is fully regulated
by their postulated generical properties of Def. 7.5.1 and Def. 7.4.1.

One will recognize in (i) that C
T

;ε ∩ εT;C looks similar to but is not a symmetric
quotient. (iii) will show that applying ρ does not change the class according to
Ξ(./).
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11.4.9 Proposition. We assume the general setting explained so far. Then

i) Ξ(./) = ./ ; ./
T

= syq (C,C) = C
T

;ε ∩ εT;C = Ξ(εT;R) = ρ;ρT

ii) Ξ(./);ρ = ρ and ρ; ./ = ./

iii) ρ ⊆ Ξ(./)

iv) Ξ(./); Ω; Ξ(./) = ρ;ρT; Ω;ρ;ρT = ρ; Ω;ρT = CT;C = εT;C

Proof : i) We will arrive from several starting points at syq (C,C):

Ξ(./) = syq (./
T

, ./
T

) by definition of a row equivalence

= syq (syq (R;ε′, C), syq (R;ε′, C)) expansion of ./ transposed
= syq (C,C) according to Prop. 8.5.11.iii, since ./ is total and surjective

= C
T

;C ∩ CT;C by definition
= C

T
;ε ∩ εT;C since C is a contact relation

./ ; ./
T

= syq (C,R;ε′);syq (R;ε′, C) by definition
= syq (C,C) cancelling with ./ total

= syq (R;R
T

;ε,R;R
T

;ε) expanding C

= syq (R
T

;R;R
T

;ε,R
T

;ε) shift-inverting the cone

= syq (R
T

;ε,R
T

;ε) since lbdR(ubdR(lbdR(R))) = lbdR(R)
= Ξ(εT;R) by definition of a row equivalence

ρ;ρT = syq (C, ε);syq (ε, C) by definition and transposition
= syq (C,C) cancelling according to Prop. 8.5.4.ii with ρ total

ii) Ξ(./);ρ = syq (C,C);syq (C, ε) = syq (C, ε) = ρ cancelling with Ξ(./) total

ρ; ./ = ρ;syq (R
T

;ε, C ′) = syq (R
T

;ε;ρT, C ′) = syq (R
T

;C,C ′) = ./

iii) We decide to prove ρ ⊆ syq (C,C), i.e.,

C
T

;ε ∩ CT;ε ⊆ CT
;C ∩ CT;C

using the properties of an Aumann contact. The infectivity property

CT;C ⊆ εT;C

implies containment for the first terms. Containment of the second terms is trivial
because ε ⊆ C.

iv) The first equality follows from (i). Now, ρ;ρT;Ω;ρ;ρT = ρ;Ω;ρT following (i,iii) and
because ρ is isotonic.

ρ; Ω;ρT = ρ;εT;ε;ρT = ρ;εT;ε;ρT = CT;C = εT;C



288 Concept Analysis

There are further relationships around this complex, in particular those concerning
Υ; they touch both sides, i.e., employ also ρ′, ε′. A side result of (i) is that ρ ; Υ is
a mapping, because it is obviously univalent and ./ ;ρ′ is total.

11.4.10 Proposition. We proceed with the notation introduced before.

i) ρT; Υ = Υ

ii) ρ; Υ = syq (R
T

;C, ε′) = ./ ;ρ′ and Υ;ρ′
T = syq (ε,R;C ′) = ρT; ./

iii) ρ; Υ;ρ′
T = ./ and Υ = ρT; ./ ;ρ′ and Υ = ρT; ./ ∩ ./ ;ρ′

iv) ./ ; ΥT = ρ and ρT;ρ = Υ; ΥT

v) Υ ⊆ ρ; Υ ⊆ ./

vi) Ξ(./); Υ; Ψ(./) = ./

Proof : i) We handle ρT; Υ ⊆ Υ first, apply the Schröder rule to obtain ρ; Υ ⊆ Υ,
and expand Υ with distributivity:

ρ;εT
;R;ε′ ∪ ρ;εT;R;ε′ ∪ ρ;εT;R;ε′ ∪ ρ;εT;R;ε′ ⊆ εT

;R;ε′ ∪ εT;R;ε′ ∪ εT;R;ε′ ∪ εT;R;ε′

Letting ρ slip below negation and using C = ε;ρT, R
T

;C = R
T

;ε, and ε ⊆ C, one will
find that this holds indeed.

We have to convince us also that equality holds, for which purpose we need the
Point Axiom. Assuming any point eu ; eT

v ⊆ Υ, we will show ρT ; eu = eu. This is
more or less obvious because Υ relates only vertical and horizontal sides u, v with
u = ε;eu, v = ε;ev of non-enlargeable rectangles, i.e., satisfying

u = R;R
T

;u v = R
T

;u

This serves to find out that

ρT;eu = syq (ε, C);eu = syq (ε,R;R
T

;ε);eu = syq (ε,R;R
T

;ε;eu)

= syq (ε,R;R
T

;u) = syq (ε, u) = eu

ii) We concentrate on the first formula; the other follows symmetrically:

ρ; Υ = ρ;

[
syq (ε,R;ε′) ∩ syq (R

T
;ε, ε′)

]
by definition

= ρ;;syq (ε,R;ε′) ∩ ρ;syq (R
T

;ε, ε′) since ρ is univalent

= syq (ε;ρT, R;ε′) ∩ syq (R
T

;ε;ρT, ε′) Prop. 8.5.7.ii since ρ is a mapping

= syq (ε;ρT, R;ε′) ∩ syq (R
T

;ε;ρT, ε′) mapping ρ slipping below negation

= syq (C,R;ε′) ∩ syq (R
T

;C, ε′) because C = ε;ρT according to Prop. 11.4.6

⊆ syq (R
T

;C, ε′) monotony

= syq (R
T

;C,C ′);syq (C ′, ε′) cancelling with first factor ./ total
= ./ ;ρ′ by definition
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The task remains to show reverse containment at one transition above, for which
we provide alternative representations of ./ :

syq (R
T

;C, ε′) ⊆ syq (C,R;ε′) = ./ = syq (R
T

;C,C ′)

Taking the more appropriate version on the right, we expand to

CT;R;ε′ ∩ CT;R;ε′ ⊆ CT;R;C ′ ∩ CT;R;C ′

and may use that ε′ ⊆ C ′ under the double negations as well as R;ε′ = R;C ′.

iii) With (ii), ρ;Υ;ρ′
T = syq (R

T
;C, ε′);ρ′

T = syq (R
T

;C, ε′;ρ′
T) = syq (R

T
;C,C ′) = ./

ρT; ./ ;ρ′ = ρT;ρ; Υ ⊆ Υ using (ii)

But also

ρT; ./ ;ρ′ = ρT;ρ; Υ = ρT;ρ;ρT; Υ ⊇ ρTΥ = Υ using (i,ii) and totality

Using (ii),

ρT; ./ ∩ ./ ;ρ = syq (ε,R;C ′) ∩ syq (R
T

;C, ε′) = Υ

iv) ./ ; ΥT = syq (C,R;ε′);

(
syq (R;ε′, ε)) ∩ syq (ε′, R

T
;ε)
)

⊆ syq (C,R;ε′);syq (R;ε′, ε) ∩ . . . = syq (C, ε) ∩ . . . ⊆ ρ
Again, we need a separate investigation concerning equality.

ρT;ρ = Υ; ./
T

; ./ ; ΥT = Υ; Ψ(./); ΥT = Υ;ρ′;ρ′
T

; ΥT = Υ; ΥT

v) The first containment follows from (i) with shunting. For the second, we recall
that

ρ = syq (C, ε) Υ = syq (ε,R;ε′) ∩ syq (R
T

;ε, ε′) ./ = syq (C,R;ε′)

and find out that this is just one step of cancelling when concentrating on the first
term of Υ.

vi) The essential part is obtained with the help of (ii,iv) and Prop. 11.4.9.i

Ξ(./); Υ; Ψ(./) = ρ;ρT;;Υ;ρ′;ρ′
T = ρ;;Υ;ρ′;ρ′

T = ρ;;Υ;ρ′
T = ./

Proceeding further, we now introduce ι, η. We have thus formed the quotient ac-
cording to the difunctional relation ./ and also extruded according to the matching
relation Υ. As a result, we have with two inherently different constructions arrived
at “the same” relation: We may either consider the interrelationship of quotients

β := β(R) := ηT; ./ ;η′

or we may relate the extruded sets with
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λ := λ(R) := ι; Υ; ι′
T.

Both have turned out to be bijective mappings. Even more; using the natural in-
jection resp. projection

η := Project Ξ(./) and ι := Inject (Υ; )

we find an isomorphism between λ and β:

11.4.11 Proposition. Consider λ := λ(R) together with the injections ι, ι′ ac-
cording to Prop. 11.2.2 and β := β(R) together with η, η′ as defined in Def. 11.3.4.
Then

δ := ι;η, δ′ := ι′;η′

are bijective mappings that provide an isomorphism between λ and β; i.e.,

λ;δ′ = δ;β and β;δ′
T = δT;λ.

Proof : First, we prove the bijective mapping status using ι;ρ = ι and ρ;η = η:

δT;δ = ηT; ιT; ι;η = ηT; Υ; ΥT;η = ηT;ρT;ρ;η = ηT;η =

δ;δT = ι;η;ηT; ιT = ι; Ξ; ιT = ι;ρ;ρT; ιT = ι; ιT =

Then we estimate as follows:

λ;δ′= ι; Υ; ι′
T

; ι′;η′ expanded
⊆ ι; Υ;η′ since ι′ is univalent
⊆ ι; ./ ;η′ see Prop. 11.3.5.ii
⊆ ι;η;ηT; ./ ;η′ since Ξ(./) = η;ηT is the row equivalence of ./
= δ;β definition of δ and β

Because both, δ and δ′, are mappings, we have in addition equality.

We recall the typing with Fig. 11.4.5. With εT;R, all intersections of rows of R are
considered, but in contrast to Def. 11.1.1.iii, multiplicities are not yet eliminated,
so that Ξ(εT;R) in (iii) may expected to be a non-trivial row equivalence of these
intersections.

11.4.12 Corollary. The construct β is a bijective mapping enjoying the identities

R;

[
Ξ∧(R)

]T
;β = Ψ∧(R) and R;

[
Ξ∧(R)

]T = Ψ∧(R);βT

Proof : We recall that the quotient β := ηT; ./ ;η′ of ./ modulo its row equivalence
Ξ( ./ ) as well its column equivalence turns out to be a bijective mapping due to
Prop. 10.4.3.

R;

[
Ξ∧(R)

]T
;β =
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= R;

[
Ξ∧(R)

]T
;β because β is a bijective mapping

= R;ηT;εT;R
T

;ηT; ./ ;η′ expanded

= R;R
T

;ε;η;ηT; ./ ;η′ transposed and mapping slipped below negation

= R;R
T

;ε;η;ηT; ./ ;η′ using Prop. 8.5.9.ii

= R;R
T

;ε; Ξ(./); ./ ;η′ by definition of η

= R;R
T

;ε; ./ ;η′ property of the row equivalence
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Fig. 11.4.6 A relation R with some relations of its relational topography

Now we are going to formally prove what seemed evident from the illustrations,
namely that complete lattices show up.

11.4.13 Proposition.

i) Ωη := ηT; Ω;η is an ordering
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ii) η is isotonic
iii) η is (lattice-)continuous, i.e., ηT;lubΩ(Y ) = lubΩη (ηT;Y ) for arbitrary Y
iv) Ωη is a complete lattice

Proof : i) Ωη ⊇ ηT;η = , so that Ωη is obviously reflexive. To prove transitivity is
more involved:

Ωη; Ωη = ηT; Ω;η;ηT; Ω;η by definition
= ηT; Ω; Ξ(./); Ω;η since η is the natural projection for Ξ(./)
= ηT; Ω;ρ;ρT; Ω;η Prop. 11.4.10.ii
⊆ ηT;ρ; Ω; Ω;ρT;η because ρ as a closure is isotonic
⊆ ηT;ρ; Ω;ρT;η because Ω is transitive
⊆ ηT; Ω;η because ηT;ρ ⊆ ηT; Ξ(./) = ηT;η;ηT; = ηT

= Ωη by definition

Antisymmetry

Ωη ∩ ΩT
η = ηT; Ω;η ∩ ηT; ΩT;η by definition

= ηT;η;ηT; Ω;η;ηT;η ∩ ηT;η;ηT; ΩT;η;ηT;η because ηT;η =
= ηT; (η;ηT; Ω;η;ηT ∩ η;ηT; ΩT;η;ηT);η Prop. 7.4.2
= ηT; (Ξ(./); Ω; Ξ(./) ∩ Ξ(./); ΩT; Ξ(./));η η is natural projection for Ξ(./)

= ηT; (CT;C ∩ CT;C
T

);η Prop. 11.4.9.iv
= ηT;syq (C,C);η by definition
= ηT; Ξ(./);η Prop. 11.4.9.i
= ηT;η;ηT;η = natural projection

ii) Ω;η ⊆ Ξ(./); Ω;η = η;ηT; Ω;η = η; Ωη

iii) lubΩη (ηT;Y ) = syq (ΩT
η,Ωη

T
;ηT;Y ) due to Prop. 9.4.2

= syq (ηT; ΩT;η, ηT; ΩT;η;ηT;Y ) by definition of Ωη
= syq (ηT; ΩT;η;ηT;η, ηT; ΩT;η;ηT;Y ) since ηT;η =
= syq (η;ηT; ΩT;η;ηT;η, η;ηT; ΩT;η;ηT;Y ) Prop. 8.5.7.i
= syq (η;ηT; ΩT;η;ηT;η, η;ηT; ΩT;η;ηT;Y ) slipping below negation

= syq (Ξ(./); ΩT; Ξ(./);η,Ξ(./); ΩT; Ξ(./);Y ) definition of projection η

= ηT;syq (Ξ(./); ΩT; Ξ(./),Ξ(./); ΩT; Ξ(./);Y ) following Prop. 8.5.9.i

= ηT;syq (C
T

;ε, C
T

;ε;Y ) Prop. 11.4.9.iv
= ηT;syq (ρ;εT;ε, ρ;εT;ε;Y ) expanding C = ε;ρT

= ηT;syq (ρ;εT;ε, ρ;εT;ε;Y ) mapping ρ slipping out of negation
⊇ ηT;syq (εT;ε, εT;ε;Y ) eliminating common left factor according to Prop. 8.5.7.i

= ηT;syq (ΩT,Ω
T

;Y ) by definition of Ω
= ηT;lubΩ(Y ) due to Prop. 9.4.2
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In addition equality holds: Every lub is injective by construction, and the least
upper bound according to the powerset ordering Ω is surjective.

iv) This shows that the ordering Ωη is a complete lattice; see Cor. 9.5.6.

Another example of injected subsets related to projected equivalences, both ordered
as concept lattices, is given with Fig. 11.4.7.
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λ δ

Fig. 11.4.7 Further items of relational topography for Fig. 11.4.6
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11.5 Completion of an Ordering

We have seen that a lattice, and in particular a complete lattice, enjoys pleasant
properties. So the question has arisen whether one may embed an ordering into
a lattice so as to be able to make use of some of these nice properties. This runs
under the names of a cut completion or of an ideal completion. This is a well-
established field to which we will only give some hints, restricting to the finite case
which simplifies the situation considerably.

With an example we try to make clear what a cut completion is like.

11.5.1 Example. The ordered set shall be the 4-element set of Fig. 9.5.1, shown
again in Fig. 11.5.1. The matrix gives the ordering while the graph restricts to
presenting only the Hasse diagram. Consider the 4-element set V = {w, x, y, z}, re-
lated with ε to its powerset 2V , and assume it to be ordered by E. Using ubdE(ε),

which means forming E
T

;ε, all upper bounds of these sets are determined simulta-
neously. Following this, for all these upper bound sets in addition the lower bounds
lbdE(ubdE(ε)) are formed simultaneously.

A few sets, called cuts, are not changed by this 2-step procedure; they are “in-
variant” under forming minorants of majorants. All sets with this characteristic
property are marked, then extruded and depicted with their inclusion ordering in
the lower left of Fig. 11.5.1. One will immediately recognize that all the sets un-
changed are closed to the downside as, e.g., {x,w, z}. They are, thus, lower cones.

With underlinings in Fig. 11.5.1, it is indicated in which way every element of the
original ordered set V = {w, x, y, z} may be found as the top of some cone directed
downwards. However, elements on the middle vertical of the second graph do not
carry such markings.

The two diagrams do not look too similar because they are only presented as Hasse
diagrams. But indeed, Ewx is reflected by the set inclusion {w} ⊆ {x,w, z}, showing
that the ordering E is mapped isotonic/homomorphic into the inclusion ordering
of the lower cones obtained.

What might easily be considered juggling around, follows a general concept. With
the technique presented here in the example, one may in principle “embed” every
ordered set into a complete lattice. Applying such a technique, one will not least
be able to define real numbers in a precise manner. Already ancient Greeks knew,
that the rational numbers are not sufficiently dense and one had to insert

√
2 or π,

e.g., in between.
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{w,x,y,z}→

{w,x,z}→ {w,y,z}→

{w,z}→

{w}→ {z}→

{}→

Fig. 11.5.1 A cut completion

We recall that forming lower bounds of upper bounds,
∧
E(ε) = E;E

T
;ε, has already

been studied intensively. So we have a means to define the cuts just determined and
to compare them with down-sets.

11.5.2 Definition. Whenever some order E is given, we call a subset
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i) c a cut :⇐⇒
∧
E(c) = c

ii) v a down-set4 :⇐⇒ E;v = v

It is obvious that every cut is a down-set, but not vice versa. We will speak of a cut
completion when cuts are used and of an ideal completion when down-sets (also
called order ideals) are used.

First, however, we provide another example, where cut completion is principally
unnecessary since a complete lattice is already given. Applying the same procedure,
nonetheless reproduces the ordering showing thereby an additional flavour.

11.5.3 Example. We study the order of the 3-dimensional cube in this regard in
Fig. 11.5.2. One will see that the original ordering and the cut-completed one are
defined on different sets. The 1 : 1 correspondence of these sets is made visibile via
bold letters
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Fig. 11.5.2 A second cut completion example

In the resulting, obviously isomorphic, ordering, no longer elements are ordered but
sets of elements, that turn out to be lower cones, or down-sets.

The set of all cuts as well as that of all down-sets may be determined writing down
a term that then may also be used to compute them.

11.5.4 Proposition. Given an ordering E, one may determine the cuts and the
down-sets by vector characterization as
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∆cc :=
[∧

E(ε) ∩ ε
]T

; ∆ds :=
[
E;ε ∩ ε

]T

;

Once these vectors are determined, we define the natural injections

ιcc := Inject ∆cc ιds := Inject ∆ds

and obtain the complete lattices

Ecc := ιcc;εT;ε; ιTcc Eds := ιds;εT;ε; ιTds.

Proof : All this is sufficiently close to investigations in the preceding sections; we
will not repeat the proofs that indeed complete lattices show up.

The determination of the characterizing vectors has already given a look ahead to
Sect. 15.3, where subsets are computed that are characterized in some way. Here,
obviously

∧
E(ε) ⊇ ε and also E;ε ⊇ ε, so that only

∧
E(ε) ∩ ε resp. E;ε ∩ ε must

be considered. The columns that vanish are made visible multiplying the converse
with . Negating brings precisely those where equality holds.

It shall not be concealed that things become more complicated in the non-finite
case. There, a huge folklore has developed which is reported in a detailed and
knowledgeable form in [DP90, Ber08], e.g. Here, we only show several examples of
cut completion embedded into an ideal completion via down-sets.

11.5.5 Example. Let the following ordering of Fig. 11.5.3 be given: The sets {1, 2}
and {1, 2, 4} in Fig. 11.5.3 are down-sets that do not occur as cuts. In general, cut
completion is coarser compared with ideal completion. On the other hand side, the
latter is more likely to preserve interesting properties of the order. So both attracted
considerable interest. The embedding of the cut completion of Fig. 11.5.3 into its
ideal completion is shown in the lower right.
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{}
→

{1
}→

{2
}→

{1
,2
}→

{1
,2

,3
}→

{2
,4
}→

{1
,2

,4
}→

{1
,2

,3
,4
}→

{}→
{1}→
{2}→
{1,2}→
{1,2,3}→
{2,4}→
{1,2,4}→
{1,2,3,4}→


1 1 1 1 1 1 1 1
0 1 0 1 1 0 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



{}
→

{1
}→

{2
}→

{1
,2
}→

{1
,2

,3
}→

{2
,4
}→

{1
,2

,4
}→

{1
,2

,3
,4
}→

{}→
{1}→
{2}→

{1,2,3}→
{2,4}→

{1,2,3,4}→


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Fig. 11.5.3 Order with Hasse-diagram, cut and ideal completion

as well as the embedding of cut into ideal completion

Example 11.5.6 is another attempt, to compute the cut as well as the ideal com-
pletion of an arbitrarily given (finite) ordering.

11.5.6 Example. Consider, e.g., the set {1, 2, 3}. It is not a cut, but a down-set.
For the ideal completion, a new element for it is inserted directly above 1 ≈ {1, 3}
and 2 ≈ {2, 3}. The appearence of {} ⊆ {3} is due to the definition of an order
ideal, which is allowed to be an empty set.

1 2 3 4 5

1
2
3
4
5

1 0 0 1 0
0 1 0 0 1
1 1 1 1 1
0 0 0 1 0
0 0 0 0 1

 1 2

3

4 5

{3
}→

{1
,3
}→

{2
,3
}→

{1
,3

,4
}→

{2
,3

,5
}→

{1
,2

,3
,4

,5
}→

{3}→
{1,3}→
{2,3}→
{1,3,4}→
{2,3,5}→

{1,2,3,4,5}→


1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1



{}
→

{3
}→

{1
,3
}→

{2
,3
}→

{1
,2

,3
}→

{1
,3

,4
}→

{1
,2

,3
,4
}→

{2
,3

,5
}→

{1
,2

,3
,5
}→

{1
,2

,3
,4

,5
}→

{}→
{3}→
{1,3}→
{2,3}→
{1,2,3}→
{1,3,4}→
{1,2,3,4}→
{2,3,5}→
{1,2,3,5}→
{1,2,3,4,5}→



1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 0 1 1
0 0 0 1 1 0 1 1 1 1
0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1


{}

3

13 23

123134 235

1234 1235

12345

Fig. 11.5.4 An order with Hasse diagram and its cut and ideal completion
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11.5.7 Example. In the case of Fig. 11.5.5, the cut completion is a simple one: A
top element {a, b, c, d , e, f } and a bottom element {} are added; see upper part of
Fig. 11.5.6. One should again observe that annotations are now sets of the original
vertices. For those cases where this set is a set closed to the down-side, its top
element is underlined to make clear in which way the embedding takes place.

a b c d e f
a
b
c
d
e
f


1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 0 0 0 1


a

b

c

d

e

f

Fig. 11.5.5 Strictorder on a 6-element set given as a relation and as a Hasse diagram

In this case, the ideal completion needs many more elements. It is shown as a graph
in the lower half of Fig. 11.5.6, and as matrix in Fig. 11.5.7.

{}
→

{a
}→

{c
}→
{a

,b
,c
}→

{e
}→
{d

,e
}→

{e
,f
}→

{a
,b

,c
,d

,e
,f
}→

{}→
{a}→
{c}→

{a,b,c}→
{e}→
{d,e}→
{e,f}→

{a,b,c,d,e,f}→


1 1 1 1 1 1 1 1
0 1 0 1 0 0 0 1
0 0 1 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



{a,b,c,d,e,f}→

{a,b,c}→ {d,e}→ {e,f}→

{a}→ {c}→ {e}→

{}→

a c e

ac ae ce de ef

bdf

all

none

acef acdeabce cdef adef

abc ace ade aefcdecef def

Fig. 11.5.6 Lattice completion of the order of Fig. 11.5.5, obtained by cut completion
compared to the more detailed one obtained by ideal completion
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{}
→

{a
}→

{c
}→
{a

,c
}→

{a
,b

,c
}→

{e
}→
{a

,e
}→

{c
,e
}→

{a
,c

,e
}→

{a
,b

,c
,e
}→

{d
,e
}→

{a
,d

,e
}→

{c
,d

,e
}→

{a
,c

,d
,e
}→

{a
,b

,c
,d

,e
}→

{e
,f
}→

{a
,e

,f
}→

{c
,e

,f
}→

{a
,c

,e
,f
}→

{a
,b

,c
,e

,f
}→

{d
,e

,f
}→

{a
,d

,e
,f
}→

{c
,d

,e
,f
}→

{a
,c

,d
,e

,f
}→

{a
,b

,c
,d

,e
,f
}→

{}→
{a}→
{c}→
{a,c}→
{a,b,c}→
{e}→
{a,e}→
{c,e}→
{a,c,e}→
{a,b,c,e}→
{d,e}→
{a,d,e}→
{c,d,e}→
{a,c,d,e}→
{a,b,c,d,e}→

{e,f}→
{a,e,f}→
{c,e,f}→
{a,c,e,f}→
{a,b,c,e,f}→
{d,e,f}→
{a,d,e,f}→
{c,d,e,f}→
{a,c,d,e,f}→
{a,b,c,d,e,f}→



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1
0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 11.5.7 Ideal completion of the strictorder of Fig. 11.5.5;

embedding indicated via underlining



PART FOUR

APPLICATIONS

So far we have concentrated on foundations of relational mathematics. Now we
switch to applications. A first area of applications concerns all the different variants
of orderings as they originated in operations research: weakorders, semiorders, inter-
valorders, and block-transitive orderings. With the Scott-Suppes-Theorem brought
to relational form as well with a study of the consecutive 1 ’s property, we here
approach research level.

The second area of applications concerns modelling preferences with relations. The
hierarchy of orderings is considered investigating indifference and incomparability,
often starting from so-called preference structures, i.e., relational outcomes of as-
sessment procedures. A bibliography on early preference considerations is contained
in [ACF71].

The area of aggregating preferences with relations, studied as a third field of appli-
cations, is relatively new. It presents relational measures and integration so as to
be able to treat trust and belief of the Dempster-Shafer theory in relational form.
Well-known, in contrast, is the fuzzy approach with matrices the coefficients of
which stem from the real interval [0, 1], which came closer and closer to relational
algebra proper. In the present book, a direct attempt is made. Also t-norms and
De Morgan triples may be generalized to a relational form.

Then, we study graph theory, where several effects need relational algebra beyond
just regular algebra for an adequate description. It directly leads to algorithms for
solving many tasks in practice. Finally, the broad area of Galois mechanisms is
given an account of. This is long known but not often described in relational form.
Many seemingly different topics are collected under one common roof: termination,
games, matching and assignment, etc.



12

Orderings: An Advanced View

After first work with orderings, one will certainly come across a situation in which
the concept of an ordering cannot be applied in its initial form, a high jump compe-
tition, e.g. Here certain heights are given and athletes achieve them or not. Often,
more than one athlete will reach the same maximum height making a whole class
of athletes jump 2.35 m high. Such a situation is no longer studied using an order
— one will switch to a preorder. We develop the traditional hierarchy of orderings
(linear strictorder, weakorder, semiorder, intervalorder) in a coherent and proof-
economic way. Intervalorders are treated in more detail since they attracted much
attention in their relationship to interval graphs, transitive orientability, and the
consecutive 1 ’s property. Block-transitive strictorders are investigated as a new
and algebraically promising concept. Then we study how one type of ordering may
be embedded into (or extended to) another type, e.g., the weakorder closure of a
semiorder.

In a very general way, equivalences are related with preorders, and these in turn with
measurement theory as used in physics, psychology, economical sciences, and others.
Scientists have contributed to measurement theory in order to give a firm basis to
social sciences or behavioural sciences. The degree to which a science is considered
an already developed one depends to a great extent on the abilities in measuring.
To relate utility considerations with qualitative comparisons, factorizations of or-
derings are presented. Measuring as necessary in social sciences or psychology, e.g.,
is definitely more difficult than in engineering. While the latter may well use real
numbers, the former suffer from the necessity to work with qualitative scales.

Then the — by now nearly historic — differences between the Continental European
and the Anglo-Saxon school shall be explained. This is mainly the counterplay of
direct comparison on one hand and the utility approach conceived as always coding
in IR on the other. With factorization theorems for every field of discourse, we
make the transitions explicit and hope, thus, to clarify the difference, but also to
bridgeover it.
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12.1 Additional Properties of Orderings

Sometimes the Ferrers property is also satisfied for a homogeneous relation. It is
then nicely embedded in a plexus of formulae that characterize the standard prop-
erties around orders and equivalences. When converting the homogeneous Ferrers
relation to upper triangular form, this may be achieved in several cases by simul-
taneous1 permutation, in others only permuting independently.

A remark is necessary to convince the reader that we should study mainly irreflexive
ones among the homogeneous Ferrers relations. So far, it was more or less a matter
of taste whether one worked with orders E or with their corresponding strictorders
C. Everthing could easily have been reformulated in the respective other form, using
that E = ∪ C and C = ∩ E, i.e., with adding or removing the identity.

12.1.1 Proposition. If an order E is Ferrers, then so is its corresponding stric-
torder C := ∩ E. The reverse implication does not hold.

Proof : An order that is Ferrers is necessarily linear, since we can prove connexity:

E ∪ ET ⊇ E;E
T

;E ∪ ET ⊇ ;E
T

; ∪ ET = E
T ∪ ET = ,

applying the Ferrers property and reflexivity. Then we compute

C;C
T

;C = C; ∩ E
T

;C definition of C
= C; ( ∪ ET

);C negation and transposition
= C;C ∪ C;E

T
;C distributive composition

⊆ C;C ∪ C;E;C E is connex as a linear order; see above
= C;C ∪ C; ( ∪ C);C definition of C
⊆ C transitivity of C

The ordering relation on IB2 in Fig. 12.1.1 shows that this does not hold in reverse
direction: C is Ferrers but E is not.

Thus, strictorders with Ferrers property are the more general version compared
with orders.

E =

(
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

)
= ∪ C C =

(
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

)
= ∩ E

Fig. 12.1.1 Order that is not Ferrers with corresponding strictorder that is

1 Frobenius in [Fro12] calls it a cogredient permutation.
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We have already given the definition of an order and a strictorder together with
a sample of related propositions. For more advanced investigations, we need these
folklore concepts combined with the Ferrers property, semi-transitivity, and negative
transitivity.

Semi-transitivity

In the graph representing a semi-transitive2 relation, we have the following property:
Given any two consecutive arrows together with an arbitrary vertex w, there will
lead an arrow from the starting point of the two consecutives to the point w or
there will lead an arrow from the point w to the end of the two consecutive arrows.

x

y

z

w

Fig. 12.1.2 Semi-transitivity expressed with dashed arrow convention

This idea is captured in the following definition.

12.1.2 Definition. We call a (necessarily homogeneous) relation

R semi-transitive :⇐⇒ R;R;R
T ⊆ R ⇐⇒ R;R ⊆ R;R

⇐⇒ ∀x, y, z, w ∈ X :{[
(x, y) ∈ R ∧ (y, z) ∈ R

]
→
[
(x,w) ∈ R ∨ (w, z) ∈ R

]}
The relation-algebraic variants are equivalent via the Schröder equivalence. It is
not so easy a task to convince oneself that the algebraic and the predicate-logic
versions express the same — although one will highly estimate the shorthand form
when using it in a proof, e.g.

∀x, y, z, w :
{[

(x, y) ∈ R ∧ (y, z) ∈ R
]
→
[
(x,w) ∈ R ∨ (w, z) ∈ R

]}
a→ b = ¬a ∨ b

⇐⇒ ∀x, y, z, w :
{

(x, y) /∈ R ∨ (y, z) /∈ R ∨ (x,w) ∈ R ∨ (w, z) ∈ R
}

∀w : x ∨ b(w) = x ∨
[
∀w : b(w)

]
⇐⇒ ∀x, y, z :

{
(x, y) /∈ R ∨ (y, z) /∈ R ∨

[
∀w : (x,w) ∈ R ∨ (w, z) ∈ R

]}
2 This notion has been introduced by John S. Chipman in [Chi71].
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∀w : p(w) = ¬
[
∃w : ¬p(w)

]
⇐⇒ ∀x, y, z :

{
(x, y) /∈ R ∨ (y, z) /∈ R ∨ ¬

[
∃w : (x,w) /∈ R ∧ (w, z) /∈ R

]}
definition of composition

⇐⇒ ∀x, y, z :
{

(x, y) /∈ R ∨ (y, z) /∈ R ∨ ¬
[
(x, z) ∈ R;R

]}
∀y :

[
b(y) ∨ a

]
=
[
∀y : b(y)

]
∨ a

⇐⇒ ∀x, z :
{[
∀y : (x, y) /∈ R ∨ (y, z) /∈ R

]
∨ (x, z) /∈ R;R

}
∀y : p(y) = ¬

[
∃y : ¬p(y)

]
⇐⇒ ∀x, z :

{
¬
[
∃y : (x, y) ∈ R ∧ (y, z) ∈ R

]
∨ (x, z) /∈ R;R

}
definition of composition

⇐⇒ ∀x, z :
{
¬
[
(x, z) ∈ R;R

]
∨ (x, z) /∈ R;R

}
“∨” is commutative, a→ b = ¬a ∨ b

⇐⇒ ∀x, z :
{

(x, z) ∈ R;R→ (x, z) /∈ R;R
}
point-free definition of containment

⇐⇒ R;R ⊆ R;R

Negative transitivity

One has often tried to model preferences with relations that do not fully meet
the definition of a linear ordering. Linear orderings always heavily draw from their
characteristic property E = CT of Prop. 5.3.11. Because this does no longer hold in
such cases, one became interested in the complement, and people investigated also
the property of being negatively transitive. A linear order E has a linear strictorder
as its complement which is transitive.

12.1.3 Definition. A (necessarily homogeneous) relation R : V −→ V , is called3

R negatively transitive :⇐⇒ R;R ⊆ R
⇐⇒ ∀a, b, c : (a, c) ∈ R→

[
(a, b) ∈ R ∨ (b, c) ∈ R

]
.

Fig. 12.1.3 shows the essence of negative transitivity with a dashed arrow diagram.

R R

R

Fig. 12.1.3 Negative transitivity shown with dashed arrow convention

3 In the non-point-free version, this has also become known as Chipman’s condition, see
[Chi71, AM02].
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The predicate-logic version assumes any two vertices a, c in relation R and considers
an arbitrary other point b. Then b will necessarily be “R-above” a or “R-below c”.
One may deduce the point-free version as follows:

∀a, b, c :
{

(a, c) ∈ R→
[
(a, b) ∈ R ∨ (b, c) ∈ R

]}
a→ b = ¬a ∨ b and commutations

⇐⇒ ∀a, c :
{
∀b : (a, b) ∈ R ∨ (b, c) ∈ R ∨ (a, c)∈/ R

}
[
∀b : p(b) ∨ a

]
=
[
∀b : p(b)

]
∨ a

⇐⇒ ∀a, c :
{[
∀b : (a, b) ∈ R ∨ (b, c) ∈ R

]
∨ (a, c)∈/ R

}
∀b : p(b) = ¬

[
∃b : ¬p(b)

]
⇐⇒ ∀a, c :

{
¬
[
∃b : (a, b)∈/ R ∧ (b, c)∈/ R

]
∨ (a, c)∈/ R

}
definition of composition

⇐⇒ ∀a, c :
{
¬
[
(a, c) ∈ R;R

]
∨ (a, c)∈/ R

}
a→ b = ¬a ∨ b

⇐⇒ ∀a, c :
{

(a, c) ∈ R;R→ (a, c) ∈ R
}

transition to point-free notation
⇐⇒ R;R ⊆ R

This concept is, however, mainly interesting for linear orderings. Already the or-
dering of a Boolean lattice IBk with k > 1 is no longer negatively transitive.

As an illustration of a semi-transitive relation that is not negatively transitive
consider Fig. 12.1.4. The relation is obviously transitive; it is however not Ferrers, so
that it does not satisfy the properties of an intervalorder of Def. 12.2.1. We convince
ourselves that it is indeed not Ferrers looking at (1, 4) ∈ R, (3, 4) /∈ R, (3, 7) ∈ R,
but (1, 7) /∈ R. Lack of negative transitivity is also obvious: (1, 7)∈/ R, (7, 6)∈/ R,
but (1, 6) ∈ R.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9


0 0 0 1 1 1 0 1 1
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


1 2 3

4 5 6 7

8 9

Fig. 12.1.4 Semi-transitive, but neither Ferrers nor negatively transitive, relation
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12.2 The Hierarchy of Orderings

The following table gives the types of orders we are going to deal with in a schematic
form. The traditional definitions do not demand so many properties, because some
of them result from combinations of others. This applies not least for the first three
properties in the table, e.g.: transitive and asymmetric holds if and only if transitive
and irreflexive is satisfied. So, regardless of the version chosen for the definition, all
three will hold. It is, however, a good idea to see the chain of specificity resembling
in which way researchers began deviating from linear strictorder to strictorder.

Whenever we use one of these strictorders in our reasoning, we are allowed to use all
of the properties marked “•”. In case we have to convince ourselves that a relation
belongs to one of these strictorder classes, we first decide for a convenient set of
“spanning properties”, e.g., those marked “|” or “◦”, and prove just these.

We have, thus, announced a series of propositions that are intended to prove that
the subsets suffice to span all the properties of the respective type of strictorder.

12.2.1 Definition. Bullets “•” in Table 12.2.1 shall define the concepts of linear
strictorder, weakorder4, semiorder5, intervalorder, and strictorder in a yet
redundant way.

linear interval-
strictorder weakorder semiorder order strictorder

transitive • | ◦ • • • • | ◦
asymmetric • | • | • ◦ • ◦ • |
irreflexive • ◦ • • | • | • ◦

Ferrers • • • | ◦ • | ◦ —
semi-transitive • • • | ◦ — —

negatively transitive • • | — — —
semi-connex • | ◦ — — — —

Proof with Prop. 12.2.7 12.2.6 12.2.4 12.2.3 12.2.2

Fig. 12.2.1 Types of strictorders with “spanning” subsets of their properties

Via “|”, “◦”, this diagram indicates also some minimal sets of properties that already
suffice for the respective type of strictorder.

The generalizations have successively occurred from the left to the right. In order
4 In French sometimes ordre fort.
5 In French sometimes also quasi-ordre (in order not to confuse with Claude Berge’s earlier and

different use of the word “semiorder” in his famous book [Ber73]) or ordre quasi-fort in [Mon78].
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to achieve proof economy, we proceed from the right to the left. Firstly, we recall
as folklore Prop. 5.3.6 mentioned already earlier.

12.2.2 Proposition. A transitive relation is irreflexive precisely when it is asym-
metric; i.e., in either case it satisfies all items mentioned in Fig. 12.2.1 for a stric-
torder.

Proof : Writing down transitivity and irreflexivity, we obtain R;R ⊆ R ⊆ . Now
the Schröder equivalence is helpful because it allows to get directly RT; ⊆ R, the
condition of asymmetry.

For the other direction, we do not even need transitivity.
= ( ∩ R) ∪ ( ∩ R) ⊆ ( ∩ R) ∪ R ⊆ R

since for the partial diagonal ∩ R = ∩ RT ⊆ RT ⊆ R using asymmetry.

Slightly more restrictive than strictorders are intervalorders.

12.2.3 Proposition. i) An irreflexive Ferrers relation is transitive and asymmetric,
i.e., satisfies all items mentioned in Fig. 12.2.1 for an intervalorder.
ii) An asymmetric Ferrers relation is transitive and irreflexive, i.e., satisfies all items
mentioned in Fig. 12.2.1 for an intervalorder.

Proof : i) We have R ⊆ , or equivalently, ⊆ R. Therefore, Ferrers property
specializes to transitivity:
R;R = R; ;R ⊆ R;R

T
;R ⊆ R.

From Prop. 12.2.2, we have also that R is asymmetric.

ii) follows with (i) since asymmetric implies irreflexive, as shown in the proof of
Prop. 12.2.2.

The Ferrers property R;Rd;R ⊆ R is in this case studied for homogeneous relations;
homogeneous Ferrers relations have often been called biorders. Therefore, inter-
valorders are irreflexive biorders. Intervalorders have thoroughly been studied by
Peter C. Fishburn (1970); see, e.g. [Fis85].

The next step in restricting leads us to semiorders. Semiorders have first been
introduced in [Luc56] by R. Duncan Luce in 1956. Even if an irreflexive semi-
transitive relation is non-Ferrers as in Fig. 12.1.4, it is necessarily transitive since
this may be deduced according to Prop. 12.2.4.

12.2.4 Proposition. We consider a homogeneous relation R.



12.2 The Hierarchy of Orderings 309

i) If R is irreflexive and semi-transitive then it is transitive.
ii) An irreflexive semi-transitive Ferrers relation is transitive and asymmetric, i.e.,

satisfies all items mentioned in Fig. 12.2.1 for a semiorder.
iii) An asymmetric semi-transitive Ferrers relation is transitive and irreflexive, i.e.,

satisfies all items mentioned in Fig. 12.2.1 for a semiorder.

Proof : i) R;R = R;R; ⊆ R;R;R
T ⊆ R

The proof of (ii) follows immediately from Prop. 12.2.3. (iii) is a trivial consequence
of (ii) since asymmetric implies irreflexive.

The semiorder property of R propagates to its powers Rk as we are going to show
now as an aside.

12.2.5 Proposition. Let a semiorder R be given together with a natural number
k > 0. Then Rk is a semiorder as well.

Proof : The case k = 1 is trivial since R is given as a semiorder. The key observation
for the general case is that for k > 1

R;Rk
T

⊆ Rk−1
T

according to the Schröder equivalence. This can now be applied iteratively

Rk;Rk
T

= Rk−1;(R;Rk
T

) ⊆ Rk−1;Rk−1
T

= Rk−2;(R;Rk−1
T

) ⊆ Rk−2;Rk−2
T

⊆ . . .⊆ R;R
T

The Ferrers condition for Rk may be deduced from the corresponding one for R

Rk;Rk
T

;Rk ⊆ R;R
T

;Rk = R;R
T

;R;Rk−1 ⊆ R;Rk−1 = Rk

The semi-transitivity condition is propagated analogously to powers of R:

Rk;Rk;Rk
T

⊆ Rk;R;R
T

= Rk−1;R;R;R
T ⊆ Rk−1;R = Rk

A full account of the theory of semiorders has been given with [PV97].

The following result is proved here to demonstrate in which way a subset of prop-
erties suffices to define a weakorder — obtained by another step of restriction.

12.2.6 Proposition. An asymmetric and negatively transitive relation W is tran-
sitive, irreflexive, Ferrers, and semi-transitive, i.e., satisfies all items mentioned in
Fig. 12.2.1 for a weakorder.

Proof : W is necessarily transitive, because we get W ;W ⊆ W using the Schröder
equivalence and due to asymmetry and negative transitivity from
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W ;W T ⊆W ;W ⊆W

Being negatively transitive may also be written in transposed form as W;W
T ⊆W .

To prove that W is semi-transitive and Ferrers, is now easy:

W ;W ;W
T ⊆W ;W ⊆W

W ;W
T

;W ⊆W ;W ⊆W
With Prop. 12.2.2, we have finally that W is also irreflexive.

We note in passing, that “negatively transitive and irreflexive” does not suffice to
establish a weakorder, as the example W := shows for n > 1 rows. The kth power
of a finite weakorder need not be a weakorder again. With Fig. 12.2.2, we further
illustrate the concept of a weakorder.
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1 0 0 0 0 1 0
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0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0


Fig. 12.2.2 Personal assessment as a weakorder, Hasse diagram and in rearranged form

It remains to convince ourselves concerning the spanning properties of a linear
strictorder.

12.2.7 Proposition. A semi-connex strictorder is Ferrers, semi-transitive, and
negatively transitive, i.e., satisfies all items mentioned in Fig. 12.2.1 for a linear
strictorder.

Proof : Semi-connex means by definition ⊆ C∪CT or else = ∪C∪CT , so that
in combination with irreflexivity and asymmetry C = ∪ CT. Negative transitivity
follows then from

C;C = ( ∪ CT); ( ∪ CT) = ∪ CT ∪ CT2 = ∪ CT = C,

and Prop. 12.2.6 produces the remaining parts of the proof.
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Exercises

12.2.1 Consider a weakorder W together with its dual P := W d = W
T

and
determine the section preorder T . Prove that P = T .

12.2.2 Let J := R ∩ RT

be the so-called incomparability of an intervalorder R.
Then there do not exist any four elements a, b, c, d such that they form a 4-cycle
without chord in J .

12.2.3 Prove the following formulae for an intervalorder:

i) R; (R ∩ Rd);R ⊆ R, attributed to Norbert Wiener,
ii) (R ∩ Rd); (R ∩ RT); (R ∩ Rd) ⊆ (R ∩ Rd), attributed to R. Duncan Luce,
iii) (R ∩ RT); (R ∩ Rd) ⊆

(
(R ∩ RT); (R ∩ Rd)

)d.
12.2.4 Prove that S is a semiorder precisely when it is irreflexive and has a connex
section preorder.

12.3 Block-Transitive Strictorders

The following is an attempt to find an even more general version of a strictorder,
that is not necessarily an intervalorder, but has nonetheless appealing algebraic
properties.

12.3.1 Proposition. We consider an order E together with its strictorder C.

i) The order E is block-transitive.
ii) The strictorder C may — but need not — be block-transitive.
iii) The fringe of the strictorder C is contained in its Hasse relation H := C ∩ C2.
iv) The fringe of a linear strictorder C is equal to its Hasse relation H := C ∩ C2

— and may thus also be empty.

Proof : i) The fringe of an order is the identity due to antisymmetry and trivial
rules for an ordering, as proved immediately after Def. 10.3.2. The property of being
block-transitive is, thus, trivially satisfied.

ii) The linear strictorder on three elements, e.g., is easily shown to be block-
transitive. According to Prop. 10.3.8, the strictorder C describing “<” on IR has
an empty fringe and can, thus, not be block-transitive.

iii) We have obviously fringe(C) = C ∩ C;C
T

;C ⊆ C ∩ C2 since by irreflexivity
⊆ CT

.

iv) In addition to (iii), we have C;C
T

;C = C; ( ∪ C);C = C2.
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C :
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CFE :

C =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 1 1 0 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0


Crearr =

1
1

3 1 5 8 1
2

9 2 4 1
0

7 1
3

6

3
11
8

12
5
2
4
7

13
10
1
9
6



0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 O 1 1 1 1
0 0 0 0 0 0 0 1 O 1 OO 1
0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 OO 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


⊆ CFE

Fig. 12.3.1 Block-transitive strictorder blown up to a Ferrers relation

On the left side of Fig. 12.3.1, we see the Hasse-diagramm of a block-transitive
strictorder. The dark lines show its fringe which is strictly contained in the Hasse
relation. Underneath one will find the relation underlying the relation in two differ-
ent presentations: the original matrix as well as a rearrangement by an independent
permutation of rows and columns guided by some Ferrers extension CFE of C. The
relation is not an intervalorder because it is not Ferrers — best recognized at its
permuted matrix on the right. Additions indicated by dark lines in the right figure
convert the relation to a Ferrers extension. In the permuted matrix, one will easily
recognize which additions make it a Ferrers relation, i.e., an intervalorder: The dark
lines (8, 4), (12, 4), (2, 7) in the Hasse diagram have to be added — and some others
resulting simply from transitivity, but hidden in the Hasse diagram.

12.3.2 Remark. Here is another example of a maxclique factorization, however
for the complement, according to Prop. 11.2.7. It anticipates already the deeper
investigation of intervalgraphs and transitive orientation in Prop. 12.6.8. We first
consider the obviously reflexive and symmetric relation B := C ∩ Cd of the block-
transitive strictorder on the left of Fig. 12.3.1, which leads to a set of maxcliques
which cannot be linearly ordered because of the diamond
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{9,7,10,1}→

{9,7,2,1}→
/

\

\

/
{9,4,10,1}→

{9,4,2,1}→

based on (4, 7) ∈ C and (2, 10) ∈ C. Nevertheless, B may be factorized as B =
M T;M . Consider, in contrast, the interval relation on the upper right of Fig. 12.3.1,
obtained via Szpilrajn extension of the left. Fig. 12.3.2 shows its factorization
BFE = M T

FE
; MFE into its maxcliques relation MFE and it is shown that the

domain of MFE is linearly strictordered with C∆ := M T

FE
;CFE;MFE .

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

{1,2,4,9}→
{1,2,5,9}→
{1,6,9}→

{1,4,9,10}→
{1,7,9,10}→
{1,3,11}→
{1,5,8,12}→
{1,5,9,12}→
{1,9,10,13}→


1 1 0 1 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 1 1 0 0 1


{1

,2
,4

,9
}→

{1
,2

,5
,9
}→

{1
,6

,9
}→

{1
,4

,9
,1

0
}→

{1
,7

,9
,1

0
}→

{1
,3

,1
1
}→

{1
,5

,8
,1

2
}→

{1
,5

,9
,1

2
}→

{1
,9

,1
0
,1

3
}→

{1,2,4,9}→
{1,2,5,9}→
{1,6,9}→

{1,4,9,10}→
{1,7,9,10}→
{1,3,11}→
{1,5,8,12}→
{1,5,9,12}→
{1,9,10,13}→


0 0 1 1 1 0 0 0 1
1 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0 1
1 1 1 1 1 0 1 1 1
1 1 1 1 1 0 0 1 1
1 1 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0


Fig. 12.3.2 Maxcliques factorization MFE and strictorder C∆ on maxcliques

introduced by given intervalorder

One will observe that the greatest element in the strictorder on the right is {1,6,9}→
which is the set of maximal elements. In the same sense, {1,3,11}→ and {1,5,8,12}→
are the lowest and its successor.

It will also become clear that the cardinality-maximum maxcliques, i.e., the 4-
element maxcliques, precisely determine the cardinality-maximum antichains. With
Dilworth’s theorem we may reason that the intervalorder CFE may completely be
covered by 4 inclusion-maximal chains. In this case, these may be chosen as

3 < 8 < 9 11 < 5 < 4 < 7 < 13 < 6 11 < 12 < 2 < 10 < 6 1

Fig. 12.3.3 provides another example, namely a strictorder that is not block-transitive.
Note that ∇;∇T ;C ;∇T ;∇ has not a very close connection to C since it does not
contain, e.g., (3, 5).
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1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 0 0 1 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0



1 2 3 4 5 6 7
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


1

4

2 3

5 6

7

1 2 3 4 5 6 7
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


C ∇ Hasse diagram ∇;∇T;C;∇T;∇

Fig. 12.3.3 Hasse diagram of a non-block-transitive strictorder
with fringe indicated by dark lines

We know that the fringe of a strictorder is contained in the Hasse relation. This
helps us in giving a characterization of block-transitivity.

12.3.3 Proposition. A strictorder is block-transitive precisely when every arrow
of H (or, restricted even further, of H ∩ ∇) has an arrow of its fringe ∇ ending at
its end and an arrow of ∇ beginning at its start.

Proof : C is block-transitive if and only if C ⊆ ∇; ;∇. Then indeed, every arrow of
C has an arrow of ∇ ending at its end and one arrow of ∇ beginning at its start.
This will then automatically be satisfied also for H.

In the reverse direction, we use that every arrow of C may be replaced by a sequence
a1, . . . , ap of arrows of H. Then those for a1, ap provide the arrows demanded to
exist.

This is violated in Fig. 12.3.3: (2, 5) is in H ∩ ∇, but has no fringe arrow ending
in 5 and no fringe arrow starting in 2. Block-transitivity of a finite strictorder may,
thus, be decided along its Hasse relation which is usually less effort to spend than
along C itself.

Exercises

12.3.1 Prove that for any preorder the fringe is precisely its row equivalence.

12.4 Order Extensions

The many types of orderings are not unrelated. In this section, we collect how
to obtain the weakorder closure of a semiorder, some semiorder containing a given
intervalorder, and how to find a Szpilrajn extension of a strictorder to a linear order
(topological sorting). With techniques developed earlier, we are also in a position
to embed a block-transitive strictorder into an intervalorder.
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Topological sorting

We recall a result with proof that has already been visualized along with Prop. 5.3.12
and Fig. 5.3.10. Its proof requires the Point Axiom, which we use only in rare cases6.

12.4.1 Proposition (Szpilrajn’s Theorem). For every finite order E there exists
a linear order ESp in which it is contained, i.e., E ⊆ ESp.

Proof : Assume E were not yet linear, i.e., E ∪ET =/ . Then there exist according
to the Point Axiom of Def. 8.6.3 two points x, y with x;yT ⊆ E ∪ ET.

If we define E1 := E ∪ E;x;yT;E, it is easy to show that E1 is an order again: It is
reflexive as already E is. For proving transitivity and antisymmetry, we need the
following intermediate result:

yT;E2;x = yT;E;x ⊆
It is equivalent with y; ⊆ E;x = E;x since x is a point, and shunting according to
Lemma 5.2.5.ii with y;xT = y; ;xT ⊆ E which holds due to the way x, y have been
chosen.

Now transitivity is shown as

E1;E1 = E2 ∪ E2;x;yT;E ∪ E;x;yT;E2 ∪ E;x;yT;E2;x;yT;E = E ∪ E;x;yT;E = E1

Antisymmetry may be shown evaluating the additive parts of E1 ∩ ET
1 separately.

Because E is an order, E ∩ ET ⊆ . Furthermore,

E ∩ ET;y;xT;ET ⊆ E ∩ ET;E ∪ ET;ET ⊆ E ∩ ET;E;ET = E ∩ ET;E = E ∩ E =
ET;y;xT;ET ∩ E;x;yT;E ⊆ (ET;y ∩ E;x;yT;E;E;x); (. . .) ⊆ (. . . ∩ ); (. . .) ⊆ ,

applying the Dedekind rule in the last line.

In the finite case, this argument may be iterated, and En will eventually become
linear.

So, for every finite order E there exists a bijective homomorphism onto a linear
order ESp. Expressed differently, there exists a permutation such that the resulting
order resides in the upper right triangle — in which case the Szpilrajn extension is
completely obvious.

1 2 3 4 5

3
1
2
4
5

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 ;

1 2 3 4 5

1
2
3
4
5

1 0 0 1 0
0 1 0 0 1
1 1 1 1 1
0 0 0 1 0
0 0 0 0 1

 ;

3 1 2 4 5

1
2
3
4
5

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 =

3 1 2 4 5

3
1
2
4
5

1 1 1 1 1
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

⊆ ESp =

3 1 2 4 5

3
1
2
4
5

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1


Fig. 12.4.1 E presented with permutation as πT

;E;π is
contained in a Szpilrajn extension of E

6 Even more — with Zorn’s Lemma, also non-finite cases may be handled.
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Already in Prop. 10.6.5, this result has been generalized considerably: The relation
need not be homogeneous and the linear order in which to embed may be taken
blockwise.

Intervalorder extension of a block-transitive strictorder

The main part of this task has already been achieved in Prop. 10.6.5 for the het-
erogeneous context, when forming a Ferrers extension of a block-transitive relation.

Embedding an intervalorder into a semiorder

The following process of embedding an intervalorder into a semiorder is not uniquely
determined; besides the one chosen, also S′ := R ∪ RT

;R;R would do, e.g.

12.4.2 Proposition. Starting from some intervalorder R, one will always obtain
a semiorder when forming S := R ∪ R;R;R

T

.

Proof : In view of to Prop. 12.2.1, we decide for showing that S is irreflexive,
Ferrers, and semi-transitive. Irreflexivity follows since R is already irreflexive and
R;R;R

T ⊆ is via the Schröder rule equivalent with transitivity of R. Now, we prove
a transition in advance that is applied more than once. Using monotony and two
times the Schröder equivalence, we get

R;R
T

;R;RT;RT ⊆ R;RT;RT ⊆ RT

To prove that S is Ferrers, means to show

(R ∪ R;R;R
T

); (R
T ∩ R;RT;RT); (R ∪ R;R;R

T

) ⊆ R ∪ R;R;R
T

,

from which four products are considered separately:

R; (R
T ∩ . . .);R ⊆ R;R

T
;R ⊆ R because R is Ferrers

R;(R
T ∩ . . .);R;R;R

T ⊆ R;R
T

;R;R;R
T ⊆ R;R;R

T

, same with additional factors

R;R;R
T

; (R
T ∩ R;RT;RT);R ⊆ R;R;R

T
;R;RT;RT;R ⊆ R;R

T
;R ⊆ R Ferrers

R;R;R
T
;(R

T ∩R;RT;RT);R;R;R
T ⊆ R;R;R

T

as before, but with additional factors

Proving semi-transitivity repeats these steps in a slightly modified fashion to show

(R ∪ R;R;R
T

); (R ∪ R;R;R
T

); (R
T ∩ R;RT;RT) ⊆ R ∪ R;R;R

T

,

where we again consider four products:

R;R; (R
T ∩ . . .) ⊆ R;R;R

T

R;R;R;R
T

; (R
T ∩ R;RT;RT) ⊆ R;R;R;R

T
;R;RT;RT ⊆ R;R;RT see above

R;R;R
T

;R; (R
T ∩ . . .) ⊆ R;R;R

T

since R is Ferrers
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R;R;R
T
;R;R;R

T
;(R

T ∩R;RT;RT) ⊆ R;R;R;R
T
;R;RT;RT ⊆ R;R;RT see above

The following intervalorder shows the idea behind Prop. 12.4.2. It will in Fig. 12.6.2
be studied in detail. Not least will Fig. 12.6.2 provide a rearranged form with rows
and columns permuted independently.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 1 1 0 0 1 1 0 0 1 0 1
1 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 1 1 1
1 0 1 1 0 0 1 1 0 0 1 0 1
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0


9

102 6

7 4 11

512 1

1383

Fig. 12.4.2 An intervalorder that is not a semiorder

Fig. 12.4.2 shows matrix and Hasse diagram of an intervalorder. It cannot be a
semiorder as is documented by 2 < 7 < 1, where we for 12 have neither 2 < 12 nor
12 < 1.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


9

102 6

7 4 11

512 1

1383

Fig. 12.4.3 Semiorder additions to the intervalorder of Fig. 12.4.2; see also Fig. 12.6.3

Weakorder closure of a semiorder

Semiorders possess a uniquely defined extension to a weakorder, which is often
introduced using the concept of a dual; see Def. 4.4.1. Duals will later, starting
with Sect. 13.1, be studied in more detail.

12.4.3 Definition. Given a weakorder W , we call a relation T a W -threshold,
provided
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W d;T ∪ T ;W d = T ⊆W .

In other words, T considered rowwise shall be an upper cone with respect to the
corresponding connex preorder W d ⊇ W , while considered columnwise be a lower
cone. Since W d ⊇ , this means in particular, that also W d ; T = T ; W d = T .
Concerning such thresholds, we prove that they are necessarily Ferrers, transitive,
and semi-transitive, and thus, a semiorder:

a b c d e f g h i j k l m

a
b
c
d
e
f
g
h
i
j
k
l

m



0 1 1 1 0 0 1 1 0 1 1 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 1 0 0 1 1 0 0
0 1 1 1 0 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 1 0
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0 1 1 1 1 0 1 1 0 1 1 1 0
0 0 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 1 1 0 0 1 1 0 1 1 1 0
0 1 1 1 1 0 1 1 0 1 1 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 1 0
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0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 O 1 1 1 1 1 1 1 1
0 0 0 0 O 1 1 1 1 1 1 1 1
0 0 0 0 0 OOO 1 1 1 1 1
0 0 0 0 0 0 0 OO 1 1 1 1
0 0 0 0 0 0 0 OO 1 1 1 1
0 0 0 0 0 0 0 0 OOO 1 1
0 0 0 0 0 0 0 0 0 OO 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 12.4.4 A threshold T in a weakorder W ; rearranged:

T does not, W does touch block-diagonal

12.4.4 Proposition. A threshold T in a weakorder W is, considered for its own,
a semiorder.

Proof : In view of Prop. 12.2.1, we decide to prove that T is irreflexive, Ferrers,
and semi-transitive. T is irreflexive since T ⊆W ⊆ . The intermediate result

T ;T
T ⊆W

(obtained using that it is equivalent with T T;W ⊆ T T as well as with W d;T ⊆ T ,
where the latter is satisfied by assumption), will serve in two cases. Firstly, in
proving the Ferrers property with

T ;T
T

;T ⊆W ;T ⊆W d;T ⊆ T
and secondly in proving semi-transitivity in a rather similar way

T ;T ;T
T ⊆ T ;W ⊆ T ;W d ⊆ T

In fact, every semiorder turns out to be a W -threshold of some weakorder which
it uniquely determines. The question is where to enlarge S so as to obtain the
weakorder W ⊇ S. Should S itself already be negatively transitive, it would satisfy
S;S ⊆ S, and we might take W := S. If this is not yet satisfied, we have

=/ S;S ∩ S ⊆ (S ∩ S;S
T

); (S ∩ ST
;S),

where on the right side none of the factors will vanish. We add the factors to S in
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W := S ∪ (S ∩ ST
;S) ∪ (S ∩ S;S

T

) = S ∪ ST
;S ∪ S;S

T

= S
T

;S ∪ S;S
T

= Sd;S ∪ S;Sd,

using that ⊆ S for an irreflexive S. One obtains what we define as the weakorder
closure of the semiorder:

12.4.5 Proposition. i) Every semiorder S may be enlarged so as to obtain the
weakorder

W := Sd;S ∪ S;Sd ⊆ Sd

in which it is a W -threshold.

ii) The weakorder may with the same effect as in (i) also be determined as

W ′ := I;S ∪ S;I

where I := Sd ∩ S what will later be called the indifference wrt. S.

Proof : i) In view of Prop. 12.2.1, we decide to prove that W is asymmetric and
negatively transitive. W is asymmetric since with the Ferrers and semi-transitivity
property

W T = ST; (Sd)T ∪ (Sd)T;ST = ST;S ∪ S;ST ⊆ ST
;S ∩ S;S

T

= Sd;S ∪ S;Sd = W

W negatively transitive means

W ;W = (S
T

;S ∩ S;S
T

) ; (S
T

;S ∩ S;S
T

) ⊆ ST
;S ∩ S;S

T

= W ,

which holds since S
T

;S as well as S;S
T

are transitive as row-contains-preorders; see
Def. 5.4.3. It remains to prove that S is indeed a W -threshold:

W d;S ∪ S;W d = S ⊆W
This is easy because, e.g.,

W d;S = (Sd;S
T

∩ S;Sd
T

);S = (. . . ∩ S;ST);S ⊆ S;ST;S ⊆ S = ;S ⊆W d;S.

S is transitive implying ST ;S ⊆ S. Therefore, Sd ;S = S
T

;S ⊆ S
T

= Sd, so that
W ⊆ Sd.

ii) By definition, ⊆ I ⊆ Sd, so that W ′ ⊆ W . For the other direction, we
decompose, e.g.,

Sd;S = (Sd ∩ S);S ∪ (Sd ∩ S);S ⊆ I;S ∪ S = I;S ∪ S; ⊆ I;S ∪ S;I = W ′.

Concerning the weakorder closure, [Pir91] speaks of the underlying weakorder. Then
it is mentioned that every upper-diagonal step matrix is a semiorder. Among these
semiorders, the weakorders are those for which “the edge of each step touches the
diagonal”; see Fig. 12.4.4.

12.4.6 Example. The relation of Fig. 12.4.5 is a semiorder. It is not a weakorder
as the triangle A,F,D, e.g., shows that it is not negatively transitive.
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Fig. 12.4.5 A semiorder, its Hasse diagram, and a permuted threshold representation

We follow the idea of the constructive proof of Prop. 12.4.5 and first embed this
semiorder into its weakorder closure obtaining the left diagram and matrix of
Fig. 12.4.6. The link (A,F ), e.g., is added since (A,D) belongs to the relation S

and (D,F ) to its indifference, so that in total (A,F ) is in S;I, i.e., in the weakorder
closure.
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Fig. 12.4.6 Weakorder closure and threshold representation for semiorder of Fig. 12.4.5

With “yard sticks” and along a linear thin-line scale, it is indicated which of the
linear order relations are considered “too short for exceeding the threshold”; it is
the semiorder of Fig. 12.4.5 what is left over.

We show different weakorder closure of a semiorder in Fig. 13.3.1 along the discus-
sion of indifference.
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Embedding a weakorder into a linear strictorder

The most immediate way is to use the Szpilrajn extension because a weakorder is
necessarily a strictorder. There exists, however, a less costly alternative since we
work with relations on basesets. The baseset has its baseset ordering, and this may
be employed to define a linear extension of the weakorder.

12.4.7 Proposition. We assume a weakorder W : X −→ X together with an
arbitrary linear strictorder C : X −→ X on X — may be the base order on the
baseset. Then C1 := W ∪ (C ∩W T

) is a linear strictorder containing W .

Proof : The construct C1 is irreflexive since W and C are. It is semi-connex since

C1 ∪ CT
1 = W ∪ (C ∩W T

) ∪
(
W ∪ (C ∩W T

)
)T by definition

= W ∪ (C ∩W T

) ∪W T ∪ (CT ∩W ) transposed
= W ∪ (CT ∩W ) ∪ (C ∩W T

) ∪W T reordered
=
[
(W ∪ CT) ∩ (W ∪W )

]
∪
[
(C ∪W T) ∩ (W

T ∪W T)
]

distributivity
=
[
(W ∪ CT) ∩

]
∪
[
(C ∪W T) ∩

]
= W ∪ CT ∪ C ∪W T ⊇ CT ∪ C

= since C as a linear strictorder is semi-connex

Transitivity:(
W ∪ (C ∩W T

)
)

;

(
W ∪ (C ∩W T

)
)

is investigated term-wise:

W ;W ⊆W since W is transitive

W ; (C ∩W T

) ⊆W ;W
T ⊆W since W is negatively transitive

(C ∩W T

);(C ∩W T

) ⊆ C ∩W T

transitive C, negative transitivity of W

Fig. 12.4.7 shows first a weakorder, then this weakorder embedded into a linear
strictorder according to Prop. 12.4.7, using for C the reverse of the strictorder on
the interval 1, 2, . . . , 11. The third matrix rearranges the original relation along the
strictorder C1 thus obtained. In the latter form, the given weakorder is more easily
identified as such.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2
3
4
5
6
7
8
9

10
11



0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 1 0 0 0 1
1 1 0 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2
3
4
5
6
7
8
9

10
11



0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0
1 1 0 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 0 0 1
1 1 0 0 1 1 1 0 0 0 0



9 3 1
0

8 4 1
1

7 5 1 6 2

9
3

10
8
4

11
7
5
1
6
2



0 O 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 OO 1 1 1 1 1 1
0 0 0 0 O 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 OO 1 1 1
0 0 0 0 0 0 0 O 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0


Fig. 12.4.7 Embedding a weakorder in the upper right triangle: W,C1 and W rearranged



322 Orderings: An Advanced View

One will identify the pairs (9, 3), (10, 8), (10, 4), (8, 4), (11, 7), (11, 5), (7, 5), (6, 2) in
two ways: Firstly, precisely these are added in the step from the first to the second
relation. Secondly, they are those preventing the permuted third relation to be
precisely the upper right triangle.

Exercises

12.4.1 Let an intervalorder R be given and define Ξ := R ∩ RT

. Prove that Ξ;R

as well as R; Ξ are weakorders.

12.5 Relating Preference and Utility

Authors have often reported a basic difference between the European school of de-
cision analysis and the American school. While the former stresses the qualitative
notion of a preference relation as a basis for decision-support, the latter work via
real-valued utility functions. The bridge between the two is the concept of realiz-
ability based on mappings into the real numbers. It is, however, just tradition to
use real numbers. Some drawbacks are, that monotonic transformations are allowed
and that thresholds are not fixed to numbers and may be fixed almost arbitrarily.
What is in fact needed is the linear order of real numbers. This indicates that also
an algebraic treatment should be possible.

We start this investigation presenting two versions of more or less the same concept
of embedding into strictorders “<” on IR or C. It is, of course, also possible to
define realizability wrt. “≤” on IR and the order E := ∪ C.

12.5.1 Definition. A (possibly heterogeneous) relation R : X −→ Y is said to be

i) IR-realizable if there exist two mappings f : X −→ IR, g : Y −→ IR such that
(x, y) ∈ R ⇐⇒ f(x) < g(y);

ii) realizable, if there exists a linear strictorder C with mappings f, g such that
R = f ;C;gT.

When following this idea over the hierarchy of orderings, the start is simple and
considers linear strictorders which to embed into the real axis IR is rather straight-
forward, at least when the relation is finite.

12.5.2 Theorem (Birkhoff-Milgram). Let C : X −→ X be a linear strictorder.
There exists a mapping f from the source of C into the real numbers such that
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(x, y) ∈ C ⇐⇒ f(x) < f(y)

if and only if C has a countable order-dense subset.

A subset U is order-dense with respect to C, if C ⊆ C; ( ∩ U ; );C; this expresses
that between any pair (x, y) ∈ C there exists a point of u ∈ U with (x, u) ∈ C and
(u, y) ∈ C. We do not prove7 this well-known theorem here, nor do we comment
order-density at this point. It is only relevant in non-finite cases. Important is that,
once we have a mapping into a linear strictorder, we can use this theorem to finally
encode the respective property in IR. According to our general approach, we will
therefore only study realizations in some linear strictorder.

Realization of a weakorder

In Prop. 10.5.5, we have factorized Ferrers relations, and thus put them into relation
with a strictorder. Consequently, there will exist characterizations with regard to
their embeddability into IR — or into a linear strictorder — also for weakorders.

12.5.3 Proposition. Let W be a finite relation.

W weakorder ⇐⇒
There exists a mapping f and a linear
strictorder C such that W = f ;C;fT.

The constructive proof of “=⇒” results in f surjective.

Proof : “=⇒”: A weakorder is a Ferrers relation, so that a linear strictorder C
exists together with two mappings — surjective when constructed — such that W =
f ;C;gT; see Prop. 10.5.5. We will convince ourselves that row equivalence Ξ(W ) =
syq (W T,W T) and column equivalence Ψ(W ) = syq (W,W ) coincide because

W ;W T = W T

This holds as a consequence of negative transitivity and irreflexivity of W . So the
corresponding natural projections are equal: f = g. (In addition, they are surjective
by quotient construction, which is not required in reverse direction, and satisfy
fT;W ;f = C.)

“⇐=”: Assume a mapping f , a linear strictorder C, and consider W := f ;C;fT:

Asymmetry propagates from C to W :

W T = f ;CT;fT definition of W
⊆ f ;C;fT C is asymmetric
= f ;C;fT Prop. 5.2.6, mapping f slipping under negation

7 A proof may be found, e.g., for Theorem 3.1.1 in [KR80].
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= W definition of W

Negatively transitive:

W ;W = f ;C;fT;f ;C;fT definition of W
= f ;C;fT;f ;C;fT Prop. 5.2.6
⊆ f ;C;C;fT since f is univalent
= f ;C;fT since the linear strictorder C is negatively transitive
= f ;C;fT Prop. 5.2.6
= W

It is then a weakorder according to Prop. 12.2.6.

12.5.4 Corollary. The factorization of W into f, C is uniquely defined up to
isomorphism — provided that only those with f surjective are considered.

Proof : First, we mention that in such a case

f ;fT = f ; ;fT = f ; (C ∩ CT

);fT = f ;C;fT ∩ f ;CT;fT = W ∩W T

= Ξ(W )

Should a second factorization W = f1 ;C1 ; fT
1 be presented, there could easily be

defined an isomorphism of the structure W, f,C into the structure W, f1, C1 with
ϕ := fT;f1 (and in addition the identity on the source of W ). Then, e.g., ϕ is total
and injective and the homomorphism condition is satisfied as

ϕ;ϕT = fT;f1;fT
1

;f = fT; Ξ(W );f = fT;f ;fT;f = ; =

C;ϕ = ϕ;ϕT;C;ϕ = ϕ;fT
1

;f ;C;fT;f1 = ϕ;fT
1

;W ;f1 = ϕ;C1

Assume such a weakorder realization has been found, then one has — with the
Birkhoff-Milgram-Theorem — finally a mapping into IR satisfying

f(a) > f(b) if and only if (a, b) ∈W

Realization of a semiorder

We follow the line of weakening linear strictorders one step further and proceed
from weakorders to semiorders. Also for these, there exist characterizations with
regard to their embeddability into IR via embedding first into a linear strictorder.
Fig. 12.5.1 shows a semiorder. Semi-transitivity has to be checked testing all con-
secutive arrows, i.e., (f, d, e), (b, d, e), (c, b, d), (c, a, e), (c, g, e). The diagram does not
show a weakorder because it fails to be negatively transitive; see the triangle b, a, d
with (b, a)∈/ R, (a, d)∈/ R, but (b, d) ∈ R.
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a b c d e f g
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0 0 0 0 1 0 0
0 0 0 1 1 0 0
1 1 0 1 1 0 1
0 0 0 0 1 0 0
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0 0 0 1 1 0 0
0 0 0 0 1 0 0
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0 O 1 1 1 1 1
0 0 OOO 1 1
0 0 0 OO 1 1
0 0 0 0 OO 1
0 0 0 0 0 O 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0


Fig. 12.5.1 Semiorder with Hasse diagram, squeezed, and linearized with threshold

The proposition we now aim at resembles what is referred to in the literature as
the Scott-Suppes-Theorem; see [Sco64]. Traditionally it is formulated as a theorem
on mapping a semiorder into the real numbers with a threshold:

“Under what conditions on R : V −→ V will there exist a mapping f : V −→ IR
such that

(x, y) ∈ R ⇐⇒ f(x) ≥ f(y) + 1”.

12.5.5 Example. To find out in which way such thresholds emerge, consider a
set X which has somehow been given a numeric valuation v : X −→ IR. The task
is to arrange elements of X linearly according to this valuation, but to consider
valuations as equal when not differing by more than some threshold number t; one
does not wish to make a distinction between x and y provided |v(x)−v(y)| < t. We
will then get a preference relation T : X −→ X as well as an indifference relation
I : X −→ X as follows.

(x, y) ∈ T ⇐⇒ v(x) > v(y) + t

(x, y) ∈ I ⇐⇒ |v(x)− v(y)| ≤ t
It turns out that then T is always a threshold in the above sense. For better refer-
ence, we take an already published example from [Vin01]: X = {a, b, c, d, e, f} with
valuations 13, 12, 8, 5, 4, 2, where any difference of not more than 2 shall be consid-
ered unimportant (and in which all values attached are different). Two relations
will emerge as indicated in Fig. 12.5.2.

T =

a b c d e f

a
b
c
d
e
f


0 O 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 O 1
0 0 0 0 0 O
0 0 0 0 0 0



a b c d e f

a
b
c
d
e
f


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 = I

Fig. 12.5.2 Preference and indifference relation stemming from a
numerical valuation with threshold

One will also verify the threshold property for T . It is easily seen that the outcome
T, I is invariant whenX is transformed monotonically and correspondingly t and the
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values of v. Therefore, assertions based on T, I alone may be considered meaningful
ones.

Once this is presented, authors routinely add that every positive real number other
than 1 would also do, and that the number 1 “has no meaning”. Also they stress that
addition and subtraction in these formulae do not induce any particular algebraic
structure. One will not spot obvious connections with our setting here. While proofs
with real numbers are lengthy and usually free-hand mathematics8, we concentrate
here on what is important, namely the strictorder aspect, and prove it point-free. So
the proof may be checked — or even found — with computer help. To go from the
strictorder to the reals is in the finite case trivial — in the general case regulated
by the Birkhoff-Milgram Theorem 12.5.2.

12.5.6 Proposition (A Scott-Suppes-type theorem). Let R be a finite relation.

R semiorder ⇐⇒
There exists a mapping f , a linear strictorder C, and
a threshold T in C, such that R = f ;T ;fT.

The constructive proof of “=⇒” results in f surjective.

Proof : “⇐=” In view of Prop. 12.2.1, we choose to show that R is irreflexive,
Ferrers, and semi-transitive. R is irreflexive since T as subrelation of C is irreflexive,
T ⊆ , leading to

R = f ;T ;fT ⊆ f ; ;fT = f ;fT ⊆
since mapping f may slip below the negation bar and since f is total.

R is Ferrers:

R;R
T

;R = f ;T ;fT;f ;T T;fT;f ;T ;fT by definition and transposition
= f ;T ;fT;f ;T

T
;fT;f ;T ;fT mapping slips out of negation; Prop. 5.2.6

⊆ f ;T ;T
T

;T ;fT univalence of f
= f ;T ;fT since T is Ferrers
= R by definition

The proof that R is semi-transitive is nearly identical.

“=⇒” Negative transitivity is the key property a weakorder enjoys which a semiorder
need not satisfy. So the basic idea is as follows: We enlarge the semiorder to its
weakorder closure W ⊇ R according to Prop. 12.4.5, in which R is a threshold. For
this weakorder, we determine the surjective mapping f as in Prop. 12.5.3, so that
W = f ;C ; fT with some linear strictorder C. Since f is surjective, we have also
C = fT;W ;f . We define T := fT;R;f and show the threshold properties:
8 Dana Scott in [Sco64]: “The author does not claim that the proof given here is particularly

attractive.”
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T = fT;R;f definition of f
⊆ fT;W ;f weakorder closure W of R
= fT;f ;C;fT;f factorization of W
⊆ C univalency

T ;Cd = T ; ( ∪ C) since C is a linear strictorder
= T ∪ T ;C distributivity of composition
= T ∪ fT;R;f ;fT;W ;f by definition
= T ∪ fT;R; Ξ(W );W ;f f ;fT = Ξ(W ) is the row equivalence of W
⊆ T ∪ fT;R;W ;f because Ξ(W );W = W

⊆ T ∪ fT;R;f R is threshold in its weakorder closure W
= T

f ;T ;fT = f ;fT;R;f ;fT definition of T
= Ξ(W );R; Ξ(W ) natural projection f

= (W
T ∩W );R; (W

T ∩W ) because W ;W T = W T for the weakorder W
⊆W T

;R; (W
T ∩W ) monotony

⊆ R; (W
T ∩W ) threshold property W

T
;R ∪ R;W

T

= R ⊆W
⊆ R;W

T

monotony
⊆ R threshold property again

In addition Ξ(W ) ⊇ holds trivially, so that . . . ⊇ R and, thus, . . . = R.

Also in this case, we will find essentially just one.

12.5.7 Corollary. The factorization of R into f, T, C is uniquely defined up to
isomorphism — provided that only those with f surjective are considered.

Proof : Let W be the weakorder closure of R. First, we prove

f ;fT = f ; ;fT = f ; (C ∩ CT

);fT = f ;C;fT ∩ f ;C;fT
T

= W ∩W T

= Ξ(W )

and remember that by construction

f ;C;fT = W

Now assume a second factorization R = f1 ;T1 ; fT
1 with T1 threshold in the linear

strictorder C1 to be presented. With ϕ := fT; f1 (and in addition the identity on
R), we define an isomorphism of the structure determined by R, f, T, C into the
structure R, f1, T1, C1; see Fig. 12.5.3.
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R

C

T

C1

T1

f1f

ϕ

Fig. 12.5.3 Standard situation when studying uniqueness

ϕ;ϕT = fT;f1;fT
1

;f = fT; Ξ(W );f = fT;f ;fT;f = ; =

C;ϕ = ϕ;ϕT;C;ϕ = ϕ;fT
1

;f ;C;fT;f1 = ϕ;fT
1

;W ;f1 = ϕ;fT
1

;f1;C1;fT
1

;f1 = ϕ;C1

T ;ϕ = ϕ;ϕT;T ;ϕ = ϕ;fT
1

;f ;T ;fT;f1 = ϕ;fT
1

;R;f1 = ϕ;fT
1

;f1;T1;fT
1

;f1 = ϕ;T1

With Fig. 12.5.4, and Fig. 12.5.5, we present yet two other semiorders in original
as well as brought to threshold-ordered form via simultaneous permutations.

a b c d e f g

a
b
c
d
e
f
g


0 0 1 0 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 1 0 0 0 1
1 0 1 0 0 0 1
1 0 1 1 0 0 1
0 0 0 0 0 0 0

 a

b

c

d

e f

g f e b d a g c

f
e
b
d
a
g
c


0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Fig. 12.5.4 Another semiorder

a b c d e f g h i j

a
b
c
d
e
f
g
h
i
j



0 0 1 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0
1 0 1 1 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0


a

b

c

d

e

f

g

h

i

j

f b h e d j a g i c

f
b
h
e
d
j
a
g
i
c



0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Fig. 12.5.5 Yet another semiorder with simultaneous rearrangement

Realization of an intervalorder

We now generalize from semiorders to intervalorders. Also intervalorders allow fac-
torization. They have, however, their own highly elaborated theory that should also
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be presented so as to better understand the practical background of several exam-
ples. The purely technical part of intervalorder factorization will now be shown and
it will be accepted that further theory is postponed to Sect. 12.6.

Although intervalorders are homogeneous relations, one will find out that when
factorizing them, one will have to proceed as for heterogeneous relations. This
means that rows and columns require different mappings.

12.5.8 Proposition. Let R be a finite relation.

R intervalorder ⇐⇒
There exist mappings f, g and a linear strictorder
C such that R = f ;C;gT and gT;f ⊆ E = ∪ C.

The constructive proof of “=⇒” results in f, g surjective.

Proof : An intervalorder is by definition in particular a Ferrers relation, so that
Prop. 10.5.5 may be applied: R is Ferrers precisely when a linear strictorder C
exists together with two mappings such that R = f ;C;gT.

This being established, the additional fact that R is irreflexive is now shown to be
equivalent to gT;f ⊆ E:

R = f ;C;gT ⊆
⇐⇒ ⊆ f ;C;gT = f ;C;gT = f ;ET;gT see Prop. 5.2.6 and Prop. 5.3.10
⇐⇒ ;g ⊆ f ;ET shunting according to Prop. 5.2.5
⇐⇒ fT;g ⊆ ET shunting according to Prop. 5.2.5
⇐⇒ gT;f ⊆ E transposed

Already here, i.e., before entering in more theoretical considerations, we present
two realizations of intervalorders.

12.5.9 Example. In Fig. 12.5.6, we see an example graph borrowed from the book
[PV97]. In the first line, this intervalorder is presented with Hasse diagram and
two matrices, one of which already brought to the upper triangle by simultaneous
permutation.

In the second line, another representation is given. The intervals in a linearly ordered
five-element-set are shown and then a rearrangement with independent permuta-
tions of rows and columns to staircase form, i.e., Ferrers form. The mappings f
(right border) and g (left border) are also shown with their different source order-
ings.
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a b c d e f g h

a
b
c
d
e
f
g
h


0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0

 a

b

c

d

e

f

g

h

a c g e b d h f

a
c
g
e
b
d
h
f


0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 1
0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



[a
]

[d
]

[e
]

[b
]

[f
]

g
c
a
e
b
d
h
f


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1



[a
]

[d
]

[e
]

[b
]

[f
]

[a]
[d]
[e]
[b]
[f]

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0


[a

]
[d

]
[e

]
[b

]
[f

]

a
c
g
h
d
e
b
f


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


a c g h d e b f

g
c
a
e
b
d
h
f


0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



[a
]

[d
]

[e
]

[b
]

[f
]

g
c
a
e
b
d
h
f


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 1 1 0
1 1 1 1 0
0 0 0 0 1


f C g rearranged form intervals

Fig. 12.5.6 Hasse diagram of an intervalorder together with different representations

a b c d e f g h i j

a
b
c
d
e
f
g
h
i
j



0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0 0 1
1 0 1 1 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 1 1
1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0



a

b

c

d

e

hf

i

f

jg

b h f d i e j a c g

h
f
b
d
e
i
c
a
g
j



0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



[b
]

[f
]

[d
]

[e
]

[j
]

[a
]

[g
]

b
h
f
d
i
e
j
a
c
g



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



[b
]

[f
]

[d
]

[e
]

[j
]

[a
]

[g
]

h
f
b
d
e
i
c
a
g
j



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1



[b
]

[f
]

[d
]

[e
]

[j
]

[a
]

[g
]

b
h
f
d
i
e
j
a
c
g



1 1 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1


g = lower interval borders f = upper; intervals

Fig. 12.5.7 Another intervalorder; observe different row and column arrangement
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12.6 Intervalorders and Interval Graphs

Assume an assessment activity requiring a manager to position his employees as
to their abilities on a linearly ordered scale. One is, however not interested in a
linear ranking of the personal; so in the assessment the manager need not enter
just one position; he is allowed to indicate a range to which he feels the person
belongs to. Assume Fig. 12.6.1 as the result of this procedure with a linear order
of qualifications 1 . . . 6.

J1J2 J3

J4

J5

J6

J7

J8

J9

J10 J11

J12

J13

1 2 3 4 5 6
on scale

13 assessments:

1 2 3 4 5 6

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0



1 2 3 4 5 6

0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

0 0 0 1 1 0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 0 1 0 0 0 1 1 1
1 1 0 1 0 1 1 0 1 1 1 1 0
0 1 0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 1 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0 1 0 0 1 0
1 0 0 1 1 0 1 0 0 0 0 1 1
1 1 0 1 1 1 1 0 0 1 1 0 0
1 0 1 1 0 0 0 1 0 0 1 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 1 1 0 0 1 1 0 0 1 0 1
1 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 1 1 1
1 0 1 1 0 0 1 1 0 0 1 0 1
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0


f g Γ P

Fig. 12.6.1 Interval assessment and the intervalorder “strictly before”

How does one come from the set of intervals attributed to persons to an intuitively
understandable overall ranking of the employees? The intervals may contain one
another, may just intersect, touch, or may be disjoint. When working on the real
axis, we assume for simplicity always left-open and right-closed intervals. Such an
assessment is, however, not detailed enough to require the use of a continuous scale.
A better idea is to work with a discrete order where no topological problems will
arise.

To extract a preference structure out of this setting is rather immediate. One may
start from the set of intervals

(
Ji
)
i∈I on the linearly ordered set and define a

preference relation and an indifference relation as follows:
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• Person i is preferred to person j if interval Ji is situated completely on the right
of interval Jj .

• Assessment of person i compared with person j is indifferent if intervals Ji and
Jj intersect.

These ideas are now taken up in an appropriate relation-algebraic form for which
we assume the following definition.

12.6.1 Definition. i) A simple graph (X,Γ) is called a represented interval
graph if it is given via a triple (f, g, E) consisting of a linear order E : Y −→ Y

on some set Y , with corresponding linear strictorder C, and mappings f : X −→ Y

and g : X −→ Y satisfying fT;g ⊆ E. Then we call

B := g;ET;fT ∩ f ;E;gT intersection relation for the intervals

Γ := g;ET;fT ∩ f ;E;gT ∩ = B ∩ adjacency of the interval graph

P := g;C;fT “before”-strictorder of the intervals

ii) An interval graph is a simple graph (X,Γ), for which there exist relations
(f, g, E), such that it becomes a represented interval graph.

In Fig. 12.6.4 and Fig. 12.6.2, one will see how Def. 12.6.1 is supposed to be read:
Demanding the mappings to satisfy fT ; g ⊆ E, guarantees that to every vertex a
non-empty interval according to E is assigned in the form that f, g indicate the
left resp. right end of the interval considered. The intersection relation B expresses
that, given two vertices of X, the two intervals assigned intersect, because two
relationships hold together for the two vertices: One may look from the first to its
right interval end and consider whatever interval starts to the left of it, but one
may also go to the left end of the interval attached and consider whatever interval
ends to the right of it. The adjacency Γ is nothing else than the irreflexive version
thereof.

A slight variant of Def. 12.6.1 starts from a set of sets, represented row-wise as a
relation R : X −→ Y with Y ordered linearly by E : Y −→ Y . Then the construct
R;RT (the (row)intersection relation) or, usually the irreflexive version ∩R;RT,
is often called the (row)intersection graph of R. It corresponds to the edge-
adjacency K = ∩ R;RT studied in some detail in [SS89, SS93].

Interval graphs are frequently studied. What makes the concept interesting is
the connection with intervalorders often used in operations research. Among the
favourable properties of interval graphs is that important algorithms work on them
in linear time; see [Gol04].
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12.6.2 Proposition. The “before”-strictorder P of a represented interval graph
is an intervalorder.

Proof : P is irreflexive according to the equivalence shown in the proof of Prop. 12.5.8.
It is also transitive since fT;g ⊆ E and C is a linear strictorder:

P ;P = g;C;fT;g;C;fT ⊆ g;C;E;C;fT ⊆ g;C;fT = P

P is Ferrers, because the linear strictorder C is Ferrers in

P ;P
T

;P = g;C;fT;g;C;fT
T

;g;C;fT = g;C;fT;f ;CT;gT;g;C;fT

= g;C;fT;f ;C
T

;gT;g;C;fT ⊆ g;C;C
T

;C;fT ⊆ g;C;fT = P

Therefore, P as a Ferrers strictorder is by definition an intervalorder.

We have proved with Prop. 12.5.8, that there will always exist a linear strictorder
C : Y ′ −→ Y ′ together with the two mappings ffact, gfact : X −→ Y ′ such that
for this intervalorder P = ffact;C;gT

fact. Regrettably, these ffact, gfact in Prop. 12.5.8
are other — notationally too similar and in addition exchanged — mappings than
f, g in Def. 12.6.1. This is obviously incidental. The ffact, gfact of the factorization
do not point to Y but to a set Y ′ of equivalence clases of X as may be seen in
Fig. 12.6.2.

Now we consider for every element a ∈ X the pair (gfact(a), ffact(a)), which due to
gT

fact
;ffact ⊆ E describes a (possibly one-point) interval in the linearly ordered set

Y ′. Whenever elements a, b are in relation P , their intervals (gfact(a), ffact(a)) and
(gfact(b), ffact(b)) will following (a, b) ∈ P = ffact;C;gT

fact satisfy
(
ffact(a), gfact(b)

)
∈

C, letting the interval for a reside strictly below, resp. on the left of, the interval
for b. The example of Fig. 12.6.2 — already earlier studied as Fig. 12.4.2 — will
make this clear.

[5
]

[2
]

[4
]

[1
]

[1
3
]

[3
]

9
2
6

10
7
5

12
1
4

11
3
8

13



1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1



[5
]

[2
]

[4
]

[1
]

[1
3
]

[3
]

5
9

10
2
6

12
4
7

11
1

13
3
8



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1



5 9 1
0

2 6 1
2

4 7 1
1

1 1
3

3 8

9
2
6

10
7
5

12
1
4

11
3
8

13



0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


ffact, gfact, P with rows and columns arranged differently to show the Ferrers aspect

Fig. 12.6.2 Intervalorder as earlier in Fig. 12.4.2 factorized with ffact, gfact

While one might say that the row sequence 3,8,13 and the column sequence 13,3,8
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should be unified to 13,3,8, it will immediately become clear that a similar pro-
cedure cannot be executed for the column sequence 5,9,10 and the row sequence
9,2,6,.... What must be stressed is, that being Ferrers is an essentially heterogeneous
property, i.e., normally induces different permutations for rows and columns.

This is much more complicated than for semiorders: For a comparison, we consider
Fig. 12.4.2 (= Fig 12.6.2). It has a semiorder extension shown in Fig. 12.4.3. We
give this the threshold form of Fig. 12.6.3 by simultaneous permutation. The seven
extension entries, dashed in Fig. 12.4.3, are marked by fat 1 ’s.

9 1
0

2 6 7 5 1
2

4 1
1

1 1
3

3 8

9
10
2
6
7
5

12
4

11
1

13
3
8



0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 12.6.3 A semiorder extension of Fig. 12.4.2 (= Fig 12.6.2) permuted simultaneously

Interval graphs and semiorder

It will at some occasions be important to know whether in the given set of intervals
there exists one strictly contained in another — or not.

12.6.3 Proposition. For a represented interval graph with the added property
that no interval is strictly contained in another one, P will turn out to be a
semiorder; in formulae:

g;C;gT = f ;C;fT =⇒ P := g;C;fT is a semiorder

Proof : We prove semi-transitivity:

P ;P ;P
T

= g;C;fT;g;C;fT;f ;CT;gT expanded and transposed
= g;C;fT;g;C;fT;f ;C

T
;gT mapping slipping out of negation

⊆ g;C;fT;g;C;C
T

;gT f is univalent
= g;C;fT;g;C;gT C is a linear strictorder
= g;C;fT;f ;C;fT using the assumption
⊆ g;C;C;fT f is univalent
⊆ g;C;fT C is transitive
= P definition of P
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This completes the proof, since we know already that P is an intervalorder.

We are going to interpret one half g ;C ; gT ⊆ f ;C ; fT of the assumption we have
used: With g;C ;gT, we go from an interval to all those ending strictly behind and
require with f ;C;fT = f ;E

T
;fT — E is a linear order! —, that these must not start

strictly before or at the same position. We have, thus given preference to the strict
overlapping on the right. In the same way, we must prevent from strict overlapping
on the left with f ;CT;fT ⊆ g;CT;gT. Both together result in the equality used as an
assumption of the proposition.

In the literature, the relational condition for a semiorder has had other versions,
not least that all intervals considered on the real axis have unit length. Of course,
unit length intervals cannot be strictly included in one another. But this is not a
healthy condition. The scientific texts then usually mention that the number 1 as
length “has no meaning”. This cryptic remark is nothing else than saying that this
is a purely relational condition, but due to lack of other means expressed in real
number context.

Comparability and transitive orientation

We start this investigation with the example of Fig. 12.6.4.

linear order E

simple
intersection
graph

complement
transitively
oriented
(only Hasse diagram) f

g

with

a

b

c

d

e

f





Fig. 12.6.4 Interval graph with transitively oriented complement

In Fig. 12.6.5, precisely the same as in Fig. 12.6.4 is expressed in terms of mappings
and relations. The endpoints of the intervals may well be real numbers. Here, for
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simplicity, they are numbered 1 to 12 from bottom to top – with 2 to 11 hidden in
order not to overcrowd the figure. The mapping f points to the lower bound, and
g to the upper.

f =
1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

a
b
c
d
e
f


0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

 g =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

a
b
c
d
e
f


0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

a
b
c
d
e
f


0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0


a b c d e f

a
b
c
d
e
f


1 0 1 1 1 0
0 1 0 1 0 0
1 0 1 0 1 0
1 1 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1



a b c d e f

a
b
c
d
e
f


0 1 0 0 0 1
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1
0 1 0 0 0 0



a b c d e f

{a,d}→
{b,d}→
{a,c,e}→
{d,f}→

(
1 0 0 1 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 1 0 1

)
interval representation B = ∪ Γ P maxcliques relation M

Fig. 12.6.5 Interval representation in the linearly ordered set of Fig. 12.6.4 by relations

The maxcliques relation of the intersection relation B in Fig. 12.6.5 will be used only
later. The complement B of B enjoys the special property9 of being “transitively
orientable”, i.e., being partitioned into a strictorder P and its converse: B = P ∪P T.

The definition of transitive orientability does not require the interval graph to be
a represented one:

12.6.4 Definition. Consider any symmetric and reflexive (and thus homogeneous)
relation B together with the simple graph (X,Γ), where Γ := ∩B. We say that B,
resp. the simple graph (X,Γ), has the transitive orientation property if there
exists a strictorder P such that B = P ∪ P T. The graph (X,B) is then called a
comparability graph.

The investigations on transitive orientability we now aim at originate from a famous
theorem of 1962 by Alain Ghouilà-Houri:

12.6.5 Proposition (Ghouilà-Houri 1962, [GH62]). The complement of an inter-
val graph is transitively orientable.

This result is first studied in the following more detailed and restrictive setting of a
9 In the literature, this usually reads “The complement of the interval graph (X,Γ)”. This, however,

requires the complement forming for a simple graph Γ to mean ∩ Γ, where making this irreflexive
again after complementation is tacitly understood.
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represented interval graph and may be considered to be a corollary of the following
proposition:

12.6.6 Proposition. Assume the setting of Def. 12.6.1. Then P is a transitive
orientation of the complement B; i.e.,

P ∩ P T = , P ∪ P T = B

Proof : From Prop. 12.6.2, we know that P an intervalorder. It is a transitive
orientation because B = P ∪ P T:

P ∪ P T = g;C;fT ∪ f ;CT;gT = g;E
T

;fT ∪ f ;E;gT since E is a linear order
= g;ET;fT ∪ f ;E;gT = B since mappings f, g may slip below a negation

Disjointness P ∩ P T = follows directly from transitivity and irreflexivity.

It was not too hard to find a transitive orientation in case the interval graph is
explicitly represented as (f, g, E). The definition of an interval graph, however, only
assures that such a representation exists. It may, thus, be possible that an interval
graph Γ is given, but a representation (f, g, E) has not yet been communicated.
Then one will easily find B := ∪ Γ, but may have no idea how to obtain P .

This raises the question as to whether a transitive orientation P may also be found
when a representation is not given, i.e.: Is it possible to express P simply in terms
of B or Γ. We will give hints how to try to get one; of course not in a uniquely
determined way. Already in Def. 12.6.1, we might have taken P1 := g;CT;fT as well,
providing us with a different transitive orientation, namely the reverse one.

At this point, the maxcliques relation of the intersection relation, shown already in
Fig. 12.6.5, comes into play. We recall that every symmetric and reflexive relation
B may be factorized into its maxcliques relation as B = M T;M ; see Prop. 11.2.7.
The fascinating idea is to relate somehow the selection of a transitive orientation
P with imposing a linear strictorder C∆ on the set of maxcliques. In case either
one of P and C∆ enjoys an additional property, the two are very closely related
with one another. We will exhibit this first in a rather technical form and later
give the classical interpretations as they emerged historically during the process of
developing the theory.

12.6.7 Definition. We consider a maxcliques relation M of an adjacency Γ (or its
reflexive version B := ∪ Γ). Assuming a linear strictorder C∆ to exist on these
cliques, we attribute to

M the consecutive 1’s property, provided C∆;M ∩ CT

∆
;M ⊆M .
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The intention of this definition may easily be understood as follows: Start from
a maxclique and proceed in two ways, considering either the vertices involved in
a maxclique C∆-strictly above or below. Then one will at most find those vertices
involved in the maxclique we had been starting from. Starting from the clique {a, d}
in Fig. 12.6.6, one will find vertices b, d, f in cliques strictly above and a, c, e in those
strictly below, getting an empty intersection. However, beginning in {d, f}, one will
find b, d strictly above and a, c, d, e strictly below with intersection just d which is
part of the original maxclique.

linear order E

f

g

a

b

c

d

e

f





bd

df

ad

ace

Fig. 12.6.6 Interval graph of Fig. 12.6.4 with maxcliques shown along the linear order E

Now a close correspondence between transitive orientations B = P ∪ P T and the
strictorder C∆ will be exhibited.

12.6.8 Proposition. Let an intersection relation B, or an adjacency Γ := ∩ B,
be given and consider its factorization B = M T;M with a maxcliques relation M .

i) For every transitive orientation B = P ∪P T satisfying P;B;P ⊆ P , the construct
C∆ := M ;P ;M T lets M have the consecutive 1 ’s property.

ii) For every M with the consecutive 1 ’s property via the strictorder C∆ on the
set of maxcliques, the construct P := M T;C∆;M ∩B is a transitive orientation
satisfying P ;B;P ⊆ P .

iii) In either case, P is necessarily Ferrers.
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Proof : i) C∆ is transitive:
C∆;C∆ = M ;P ;M T;M ;P ;M T by definition
= M ;P ;B;P ;M T because M factorizes B
⊆M ;P ;M T = C∆ using the assumption

C∆ is irreflexive and semi-connex:

C∆ ∪ CT

∆ = M ;P ;M T ∪M ;P T;M T

= M ; (P ∪ P T);M T = M ;B;M T = M ;M
T

=

The very last equality — in transposed form — follows from the maxcliques fac-
torization wirh Prop. 11.2.7.

We have also to show the consecutive 1 ’s property. First, we have

C∆;M ∩ CT

∆
;M = M ;P ;M T;M ∩M ;P T;M T;M = M ;P ;B ∩M ;P T;B

⊆M ;P T ∩M ;P = M ; (P ∪ P T) = M ;B = M = M

It remains to prove the intermediate steps using the assumption as, e.g.,

P ;M T;M ;P = P ;B;P ⊆ P ⊆ B =⇒ M ;P T;B ⊆M ;P

ii) Whenever such a C∆ has been given, we will obtain disjoint partitions as

=
(
C∆;M ∩M

)
∪M ∪

(
CT

∆
;M ∩M

)
= M ;P ∪M ∪M ;P T,

which to prove requires several steps. The idea for the first partition is intuitive:
If one starts with any maxclique and proceeds to the set of all vertices, one will
have those that are part of the maxclique in the middle and others that do not
participate in it on the left and on the right with regard to the linear strictorder
C∆. Disjointness of the middle term to the other two is trivial looking at M,M .
But also the intersection of the outer two vanishes in view of the consecutive 1 ’s
property:(

C∆;M ∩M
)
∩
(
CT

∆
;M ∩M

)
=
(
C∆;M ∩ CT

∆
;M
)
∩M ⊆M ∩M =

Finally, we prove that all three terms together decompose the universal relation,
using that every vertex is contained in a maxclique, i.e., = ;M , and that C∆ is
a linear strictorder:

= ;M = ( ∪ );M = ;M ∪ ;M = (C∆ ∪ CT

∆);M ∪M

Now we prove the second partition mentioned initially where the outer terms are
more easily expressed with M and P . The following is a cyclic estimation resulting
in equality everywhere in between:

C∆;M ∩M = M ;B ∩ C∆;M arranging differently and using M ;B = M

⊆ (M ∩ C∆;M ;B
T

); (B ∩M T;C∆;M) Dedekind rule
⊆M ;P definition of P
= M ; (M T;C∆;M ∩ B)
= M;

([
M T;C∆ ∩ (M T;CT

∆ ∪M T;CT

∆)
]

;M ∩ B
)

intersecting universal relation
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⊆M ;

([
M T ∪M T;CT

∆)
]

;M ∩ B) consecutive 1 ’s property, monotony
= M ;

([
M T;M ∪M T;CT

∆
;M
]
∩ B

)
distributivity

= M ;

(
M T;CT

∆
;M ∩ B

)
since B = M T;M

⊆M ;M T;CT

∆
;M ∩M ;B subdistributive composition

⊆ C∆
T

;M ∩M using M ;B = M

= ( ∪ C∆);M ∩M linear strictorder
= (M ∪ C∆;M) ∩M
= C∆;M ∩M

In mainly the same way, we obtain

M T;C∆ ∩M
T

= P ;M T

P provides a transitive orientation:

P ∪ P T = (B ∩M T;C∆;M) ∪ (B ∩M T;CT

∆
;M) by definition

= B ∩ (M T;C∆;M ∪M T;CT

∆
;M) distributive

= B ∩M T; (C∆ ∪ CT

∆);M distributive composition
= B ∩M T; ;M because C∆ is assumed to be a linear strictorder
= B because B ⊆M T; ;M , see below

Obviously, M is surjective, i.e., ;M = . Therefore,

= M T; ;M = M T; ( ∪ );M = M T;M ∪M T; ;M = B ∪M T; ;M

Transitivity, P ;P ⊆ P , is a consequence of P ;B;P ⊆ P which we prove next:

P ;B;P = P ;M T;M ;P = (M T;C∆ ∩M
T

); (C∆;M ∩M) ⊆M T;C∆;M ∩ B = P

has to be shown in order to prove transitivity of P and its postulated property.
Containment in the first term follows because C∆ is transitive. Containment in the
second is a bit more tricky and requires to make use of the fact that the strictorder
C∆ is a linear strictorder. The essential inner part of the claim

P ;B;P = (M T;C∆ ∩M
T

); (C∆;M ∩M) ⊆M T;M = B

is equivalent with

(CT

∆
;M ∩M);M T;M ⊆ C∆;M ∩M

which will be estimated in several steps

(CT

∆
;M ∩M);M T;M ⊆

(
CT

∆
;M ∩ C∆;M ∩ CT

∆
;M
)

;M T;M consecutive 1 ’s
=
(
CT

∆
;M ∩

[
C∆;M ∪ CT

∆
;M
])

;M T;M De Morgan rule
= (CT

∆
;M ∩ C∆;M);M T;M for Boolean reasons

⊆ C∆;M ;M T;M

⊆ C∆;M Schröder rule
= ( ∪ CT

∆);M linear strictorder C∆

= M ∪ CT

∆
;M distributive

= M ∪ (CT

∆
;M ∩M) for Boolean reasons

= C∆;M ∩M disjoint partition
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iii) We have the disjoint union = B ∪ P ∪ P T and, therefore, P
T

= B ∪ P . Now,

P ;P
T

;P = P ; (B ∪ P );P = P ;B;P ∪ P ;P ;P ⊆ P
due to the assumption and transitivity.

The condition on P in (i) may be replaced by another equivalent one.

12.6.9 Lemma. We consider a reflexive and symmetric relation B and assume a
transitive orientation B = P ∪ P T of its complement. Then

B;P ∩ P T;B = ⇐⇒ P ;B;P ⊆ P

Proof : B;P ∩ P T;B = ⇐⇒ P T;B ⊆ B;P ⇐⇒ P ;B;P ⊆ B = P ∪ P T,

but we have from transitive orientation that

P T;P T ⊆ P T ⊆ B =⇒ B;P ⊆ P T

=⇒ P ;B;P ⊆ P ;P
T ⊆ P T

We aim at an interpretation of the conditions thus shown to be equivalent.

12.6.10 Proposition. Let any two relations M,N be given that satisfy M T;M =
N T;N . Then either both of them have the consecutive 1 ’s property, or none.

Proof : Let M,N be given. Assuming both of them not to have the consecutive 1 ’s
property, we are done. In case, e.g., M has it, there exists some linear strictorder C∆

satisfying the condition. From this strictorder, we determine a transitive orientation
B = P∪P T withB := M T;M . This is then a transitive orientation also forB := N T;N ,
from which we may determine the linear strictorder C ′∆ = N ;P ;N T.

If M and N should happen to have the same number of rows, one may even be able
to determine a permutation that transforms M into N . The linear strictorders C∆

and C ′∆ would then be relations on the same set, so that a permutation exists that
transforms one into the other.

Fig. 12.6.7 shows on the left what must not occur in order to have B;P ∩P T;B = .
We start in the upper right (or left) corner and proceed in the two ways indicated
by the formula to the respective other corner. We may, however, also interpret
P ;B;P ⊆ P , in which case we start from one of the lower two vertices: Any of the
diagonals marked B forbids the other. Because P is irreflexive, degenerations with
coinciding vertices may only occur for B; but assuming any of the B’s contracted
to one vertex, two consecutive P ’s will show up making the other B impossible. We
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have, however, a partition of the set of pairs of vertices. It is unavoidable that the
upper two vertices be linked by B, and similarly the lower two. Assuming them to
belong to P leads to a contradiction with transitive orientation: one of the diagonals
then must belong to P instead of B as indicated.

What has thus been shown is that the assumption in Lemma 12.6.9 is violated in
case of a 4-cycle in B having no chord in B.

P P
B B

P

P

B
P

P

B
P

P

B

Fig. 12.6.7 Remaining 4-cycle

On the right side of Fig. 12.6.7, all three possibilities for the diagonal are dis-
cussed. The first is impossible in case P is a transitive orientation, because then
the horizontal line must not belong to B. The second would be fine: some sort of
transitivity P ;B;P ⊆ P . It is precisely the last that must not occur as to the con-
ditions B;P ∩ P T;B = or P ;B;P ⊆ P . Thinking a little bit ahead, the remaining
diagonals have to be in B, because otherwise a contradiction with transitive orien-
tation would happen. This gives a 4-cycle without chord in B that we try to forbid
in the next subsection.

It is this observation that leads us to investigate cycles and triangulations. We shall
study the maxcliques of B in combination with simple cycles in B. The remarkable
property of the set of maxcliques of an interval graph is that deciding for any two
of them and relating them by an arrow , may be extended to a linear ordering of
the set of maxcliques. This then serves in a non-trivial way to find a transitive
orientation directly from B. The result thus announced needs some preparation.

Triangulation

When formulating the triangulation property, we take care that it fits to our rela-
tional approach. The standard form is: A simple graph is triangulated, provided
that every simple cycle of length greater than 3 possesses a chord. Considering
Fig. 12.6.8, the cycle on the left may turn out to have a chord as indicated in the
middle, i.e., a chord linking two arbitrary vertices. We may be more specific in this
regard and postulate that for some i a chord leads from ai precisely to ai+2, a
“2-step chord”.

12.6.11 Definition. Given a simple graph with adjacency Γ, we call it a chordal
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graph or we say that it has the triangulation property, provided that C2∩Γ =/
for every simple circuit C ⊆ Γ.

Fig. 12.6.8 Cycle with arbitrary chord and with “2-step chord”

It might seem that the variant definition just given is more restrictive, but it is not.
If we have C2 ∩ Γ =/ , this is certainly a special chord as indicated on the right of
Fig. 12.6.8. On the other side, given any simple cycle with a chord, this simple cycle
is thus reduced to two smaller ones. There may either one of the two be a simple
cycle of length 3, i.e., linking some ai with ai+2, or this situation may happen only
after iterating this decomposition. In any case, a simple cycle of length 3 gives rise
to a situation of C2 ∩Γ =/ . If the graph is chordal, i.e., triangulated, most trivially
every simple 4-cycle has a chord; but not vice versa.

12.6.12 Proposition. If the reflexive and symmetric relationB admits a transitive
orientation B = P ∪ P T of its complement satisfying P ;B;P ⊆ P , the simple graph
with adjacency Γ := ∩ B is triangulated, i.e., a chordal graph.

Proof : Assume an arbitrary simple circuit C ⊆ B of length greater than 3, take
the second point a2 of it and consider a4. Then (a1, a2) ∈ B, (a2, a3) ∈ B and
(a3, a4) ∈ B. Should exist a 2-step chord (a1, a3) ∈ B or (a2, a4) ∈ B, we are done;
so we concentrate on the situation that none of these does exist. Without loss of
generality, we assume (a4, a2) ∈ P — otherwise consider the reverse orientation.
Now, we check the conceivable orientations of {a1, a3}. From (a1, a3) ∈ P , we
deduce with P ;B;P ⊆ P

(a1, a3) ∈ P , (a3, a4) ∈ B, (a4, a2) ∈ P =⇒ (a1, a2) ∈ P
which is a contradiction, because a1, a2 are consecutive on the circuit. The attempt
(a3, a1) ∈ P leads in an analogous way to

(a4, a2) ∈ P , (a2, a3) ∈ B, (a3, a1) ∈ P =⇒ (a4, a1) ∈ P .

In case of the circuit C considered has had length 4, this is already a contradic-
tion. Should there exist a next point a5 =/ a1 in the circuit, an arrow (a1, a5) ∈ P
is impossible because it would imply an arrow (a1, a2) ∈ P as a consequence of
(a1, a5) ∈ P , (a5, a4) ∈ B, (a4, a1) ∈ P . Therefore, (a5, a1) ∈ P , which would be a
contradiction if the length were just 5; and so on iteratively.
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This result may be traced back to the earliest in the literature concerning the
triangulation property. It is here presented only as a corollary.

12.6.13 Corollary (Hajós 1958, [Haj57]). An interval graph is always a chordal
graph, i.e., a triangulated one.

Fig. 12.6.9 shows that Cor. 12.6.13 may not be reversed: The left is a triangulated
graph that is not an interval graph, since there does not even exist a transitive
orientation for the dashed complement. The outer 3-cycle alone may well be given
a transitive orientation; extending this to all of the inner spikes, will result in two
consecutive P ’s demanding another one by transitivity that contradicts the graph
on the left.

Fig. 12.6.9 Triangulated graph, but not an intervalgraph

An immediate observation shows that a pure (i.e., chord-less) cycle of odd length
> 3 cannot be transitively oriented, while even-length cycles can be oriented in
quite a systematical way; see Fig. 12.6.10.

Fig. 12.6.10 Even-length cycle transitively oriented

Shortly after the results Cor. 12.6.13 and Prop. 12.6.5, a strenghtened version ap-
peared:

12.6.14 Corollary (Gilmore and Hoffman 1964, [GH64]). If an undirected graph
has the triangulation property, and if in addition its complement is transitively
orientable, it is necessarily an interval graph.

The following diagram tries to collect all this information on cross-relationships.
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factorize to maxcliques

Fulkerson-Gross

repres. interval graph

(f,g,E)

B = M ;M

triangulated

transitive orientation

Ghouilà-Houri

Hajós

Gilmore-
Hoffman

forget
representation

interval graph

B = P   P∪

P B P   P�; ; ⊆

C

find existing

∆

interval order P

12.6.14
12.6.12

12.6.5 exists

12.6.15

find existing linear order

Ferrers factorization

P = f ; C ; g

minimal interval
representation

Fig. 12.6.9

10.5.5
consecutive 1‘s

C
∆

C
∆

MM M ⊆; ;∪

12.6.8

12.6.2
12.6.6

11.2.7

for additional property

Fig. 12.6.11 Interdependency of results concerning interval graphs and -orders

An important property of relations shows up here, that is not easily handled al-
gebraically. It may be visualized along the matrix representation, saying that in
every column the 1 ’s reside in consecutive positions. Then on will also see, how the
following integrates; originally it had been discovered as an independent result.

12.6.15 Corollary (Fulkerson-Gross 1965, [FG64, FG65]). A simple graph with
adjacency Γ : X −→ X is an interval graph precisely when the maxcliques relation
of Γ has the consecutive 1 ’s property.

12.6.16 Example. We reconsider this rather difficult stuff in an extended ex-
ample. Assume the same adjacency Γ to stem from two quite different interval
arrangements; see the first and second line of Fig. 12.6.12. While the linear orders
E on 14, resp. 16, elements are trivial and need not be visualized, the respective
relations f, g may easily be deduced as those pointing to the left, resp. right, end of
the interval. One will observe — scanning the left interval representation from left
to right — that the maxcliques are {b, g}, {b, d, f}, {b, e}, {a, c}, {c, h}. Repeating
this scan for the right matrix, the same set of maxcliques will be found, however,
they appear in a different sequence.

Also the transitive orientations P obtained as P := g;C ; fT (see Def. 12.6.1) look
quite different as do the maxcliques factorizations B = M T ;M . Both have in a
first step been obtained by the same algorithm and would therefore look equal; but
the linear strictorders C∆ := M ;P ;M T are completely different, so that we have
chosen to apply the permutation of the maxclique set to the upper right triangle. In
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both cases, the M is then in consecutive 1 ’s form. Finally, the minimized interval
representations based thereon are shown. Here again, the f, g are obtained as the
left, resp. right, interval end points.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

a
b
c
d
e
f
g
h


0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1



two different
interval

representations
of Γ

providing f, g

A B C D E F G H I J K L M N O P

a
b
c
d
e
f
g
h


0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0



Γ =

a b c d e f g h

a
b
c
d
e
f
g
h


0 0 1 0 0 0 0 0
0 0 0 1 1 1 1 0
1 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 = ∩ B

a b c d e f g h

a
b
c
d
e
f
g
h


0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1
1 0 1 0 0 0 0 1
1 0 1 0 1 0 0 1
1 0 1 1 1 1 0 1
0 0 0 0 0 0 0 0



two different
transitive orientations

obtained for B
as P := g;C;fT

a b c d e f g h

a
b
c
d
e
f
g
h


0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0
0 1 0 1 1 1 1 0



a b c d e f g h

{b,g}→
{b,d,f}→
{b,e}→
{a,c}→
{c,h}→

0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0
0 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1

 factorized B = M T;M

a b c d e f g h

{a,c}→
{c,h}→
{b,g}→
{b,d,f}→
{b,e}→

1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0
0 1 0 0 1 0 0 0



yet another maxclique ordering for factorization:

a b c d e f g h

{b,e}→
{b,g}→
{b,d,f}→
{c,h}→
{a,c}→

0 1 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 1
1 0 1 0 0 0 0 0


Fig. 12.6.12 Interval graph with different representations

The triangulation property does not lend itself to be formulated with relations
easily. Even the property that every simple 4-cycle has a chord is difficult to work
with relationally.

The quantification over all cycle lengths in the triangulation property has as an im-
mediate consequence that every simple cycle may be decomposed down to 3-cycles,
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i.e., triangulated. It seems important to be able to describe when a graph has sim-
ple 4-cycles without chord. There are 4 elements to consider, so that we touch the
borderline of representable relations, and thus, cannot hope to find a point-free for-
mulation except when using direct products. The basic concept is that of a square
with diagonal vertex pairs x, y and u, v. Given the graph Γ : X −→ X, we consider
the pairset X × X with projections π, ρ as usual. The possible pairs of pairs of
diagonals may then be collected in a relation on X ×X as

W := π; Γ;πT ∩ π; Γ;ρT ∩ ρ; Γ;πT ∩ ρ; Γ;ρT.

The pairs of diagonal vertices shall, however, be connected via two steps along Γ
leading to a different vertex. We characterize all such vertex pairs because Γ2 ∩ Γ,
however lifted via vectorization to the pairset as

t :=
[
π; (Γ2 ∩ Γ) ∩ ρ

]
; .

12.6.17 Proposition. Every 4-cycle of a graph has a chord precisely when no pair
of thus related vertices is in relation W to another such; expressed in a different
way, when t is internally stable with respect to W , i.e., W ; t ⊆ t.

Proof : We omit this proof here.
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Fig. 12.6.13 Graph with a chordless 4-cycle, its adjacency

and its transposed maxclique relation



13

Preference and Indifference

Mankind has developed many concepts to reason about something that is better
than, is more attractive than, is at least as good as something else or similar to
something else. Such concepts lead to an enormous bulk of formulae and interde-
pendencies. Modelling preferences means to associate algebraic properties of or-
ders/strictorders/equivalences to such colloquial qualifications of being better than,
etc. This is a major step of abstraction that not least requires to get rid of routine-
handling this in spoken language (brother of parent = uncle, taller/smaller than)
— which may be gradually different in English, German, Japanese, or Arabic, e.g.

We have been starting from the concept of an order and a strictorder, defined
as transitive, antisymmetric, reflexive relation or as transitive and asymmetric,
respectively. In Chapt. 12, we have explained the interdependency of these order
concepts. Now, we will start to use them in modelling preferences.

This means on the one hand to relate them with colloquial concepts of comparison,
indifference, and incomparability, for which there exists a lot of literature. On the
other, it means to explain certain nearly coinciding fields of discourse that have
been established, but use different notation.

We recall duality before entering into the other fields.

13.1 Duality

In order theory, one has always two variants, a reflexive and an irreflexive form,
i.e., the order “≤” and the strictorder “<”. Considered algebraically, the transition
is E 7→ ∩ E =: C and in reverse direction C 7→ ∪ C =: E. It would have been
tedious to always explain everything in a twofold form; so our exposition has been
based on just one of the two variants; as a consequence of Prop. 12.1.1, we had
chosen the (slightly more general) irreflexive one, i.e., the strictorder.

When studying preferences, a different transition between a reflexive and an ir-
reflexive variant is tradition, namely toggling back and forth to the dual. In trivial
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cases, this reduces to the aforementioned more simple form. We recall the definition
of the dual: Given an arbitrary relation R, we have in Def. 4.4.1 called Rd := R

T

its
dual. Forming the dual of a relation is an involutory operation. It simply exchanges
several properties.

13.1.1 Proposition. Properties of a relation R and its dual Rd toggle as follows:

Rd reflexive ⇐⇒ R irreflexive
Rd asymmetric ⇐⇒ R connex
Rd antisymmetric ⇐⇒ R semi-connex
Rd transitive ⇐⇒ R negatively transitive

while other properties prevail:

Rd symmetric ⇐⇒ R symmetric
Rd semi-transitive ⇐⇒ R semi-transitive
Rd Ferrers ⇐⇒ R Ferrers

Proof : Most of these statements are trivial. From the remark after Def. 10.5.1, we
know that with a relation also its dual is Ferrers. In a similar way, semi-transitivity
propagates to the dual:

C
T

;C
T

;C ⊆ CT ⇐⇒ CT;CT;C ⊆ CT ⇐⇒ C;C;C
T ⊆ C

The concept of the dual is particularly interesting when applied to orders and
strictorders. With Fig. 13.1.1, we follow this idea over all the types of orders/strict-
orders of Def. 12.2.1. The dual of an order or strictorder need not be transitive
again. To relate a (strict)order with its dual, we fix two statements in advance:

C strictorder =⇒ C ⊆ Cd, since a strictorder is always asymmetric
E order =⇒ Ed ⊆ E, only when E should happen to be connex

So our interest will later be concentrated on the so-called indifference I := Cd ∩C.

Some might have expected the order to appear somewhere in Fig. 13.1.1. One will
see, however, that the order does not really fit in there. The order is in a sense a
composite construct built from a preorder introduced in Def. 5.3.7 with quotient
forming according to an equivalence immediately executed. Also the concept of a
preorder proper does not show up. The dual of a semiorder need not be transitive.
Should it be transitive, one has been starting from a weakorder.
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— — — • | • neg. trans. | transitive • • — — —
— — — — • | ◦ semi-connex | antisymm. • — — — —

12.2.2 12.2.3 12.2.4 12.2.6 12.2.7 Proof with Proposition

Fig. 13.1.1 Strictorders dualized according to Prop. 13.1.1

An equivalence relation could always be arranged in a block-diagonal form, putting
members of classes side by side. This is possible permuting rows as well as columns
simultaneously. While an ordering may always be arranged with empty subdiagonal
triangle, a non-trivial preorder cannot. On the other hand side, a weakorder can.
Arranging an ordering so as to fit in the upper triangle is known as topological
sorting or finding a Szpilrajn extension. With the idea of a block-diagonal, we get
a close analog for preorders. Observe that for preorders R ∩ RT = Ξ(R) = Ψ(R).


1 1 1 1 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1




1 1 0 0 0 1 1
1 1 0 0 0 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1




1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1


Fig. 13.1.2 Arranging order, preorder, and equivalence with empty

lower left (block-)triangle

For the rightmost columns of Fig. 13.1.1, similar spanning subsets may be found as
on the left. It is, however, more economic to use duality, so that we restrict to just
one example and look at reflexive Ferrers relations.

13.1.2 Proposition. Let R be a Ferrers relation.
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R reflexive =⇒ R connex and negatively transitive

Proof : Any Ferrers relation satisfies R;R
T

;R ⊆ R by definition, which implies
R

T ⊆ R in case R is reflexive, i.e., ⊆ R. Therefore, = RT ∪ R. Negative
transitivity is equivalent to R

T
;R ⊆ R with Schröders equivalence; this, however,

follows immediately from the Ferrers property when R is reflexive.

A reflexive Ferrers relation is, thus, the dual of an intervalorder.

Exercises

13.1.1 In [DF69], finite relations are considered. A quasi-series R is then defined
postulating that it be asymmetric and transitive and that R∩RT

be an equivalence.
Prove that R is a quasi-series precisely when it is a weakorder.

13.1.2 Let R be any Ferrers relation. Then the following composite relation is a
weakorder:

Rb :=
(
R;R

T

R

R
T

R
T

;R

)
13.1.3 For any intervalorder C, the construct C

T
;C is a strictorder.

13.2 Modelling Indifference

There exists a considerable amount of literature concerning the algebraic properties
of relations occurring around preferences, i.e., orders and/or strictorders, etc. The
very first observation is that a preference should be transitive — although this will
not be included in the definition of a preference structure. Because it is used in
an environment of financial services where optimization is omnipresent, one could
easily bring a person to change its preference to a transitive one. One would namely
ask the person to give an amount of Euros to which car a is preferred by him to car
b, car b is preferred by him to car c, car c is preferred by him to car a. Once he has
paid p(a, b) changing his car from a to b, p(b, c) changing his car from b to c, p(c, a)
changing his car from c to a, he will find himself in the uncomfortable situation to
have paid an amount of money just in order to own the same car as before.

The next point to discuss is indifference. For decades, papers have appeared con-
cerning indifference with respect to some preference defined. Intuitively, people
demand that a < b followed by indifference between b and c, results — in a sense —
in a < c. For a high-jump competition, this is certainly true. If Abe does not jump
as high as Bob, namely 2.20 m vs. 2.25 m, which Bob as well as Carl have mastered
and both failed to achieve 2.30 m, then Abe does not jump as high as Carl. If “≺”
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is used to denote this preference pointwise and if “≈” is the indifference defined by
it, then this means

a ≺ b, b ≈ c =⇒ a ≺ c
In a similar way, one will demand for attempts of preference modelling that

a ≈ b, b ≺ c =⇒ a ≺ c
Later in point-free form, this will show up as P ;I ⊆ P and I;P ⊆ P

In this setting one is, however, traditionally unsatisfied with the concept of indif-
ference: It should not be transitive, which it often turns out to be. Transitivity of
indifference has strongly been contradicted by Luce and Tversky in the 1950s. But
already Armstrong in [Arm39] mentioned that indifference must not be transitive:
. . . For this implies that indifference between alternatives can only occur if the util-
ities are identical, and therefore the relation of indifference must be symmetrical
and transitive. But it is a well-known fact that . . . the relation of indifference is not
transitive. People are, without any doubt, “indifferent” with respect to taking one
tiny crystal of sugar more or less in their coffee; however, they would certainly try
to avoid to iterate throwing in tiny pieces of sugar and finally to have filled in a huge
bag of sugar. Similar with temperatures: Heating up by 0.05 degrees will hardly be
recognized or measured; but unlimited iterating such heating up will certainly be
catastrophic. It is, thus, a non-trivial task to characterize indifference, which we
start with the following definition.

13.2.1 Definition and Proposition. i) For any strictorder C with corresponding
order E := ∪ C, we consider its so-called

indifference I := IC := Cd ∩ C = (Ed ∩ E) ∪
and prove the following facts:

– I ⊇ ,
– Cd is connex and negatively transitive; in addition it satisfies

Cd = I ∪C ⊇ ∪C = E, and the dual Ed = ∩Cd ⊇ I ∩Cd = C.

ii) If R is any connex and negatively transitive relation, C := Rd is a strictorder.
Its indifference IC satisfies IC = R ∩ RT, IC ∩ R = C.

Proof : i) It is trivial to convince oneself by Boolean evaluation that the two versions
of the definition of indifference mean the same. This shows in particular that I ⊇ .

Cd ∪ CdT = C
T ∪ C ⊇ CT ∪ CT = ,

using asymmetry, proves connexity. Negative transitivity of Cd follows directly from
transitivity of C. We then use that asymmetry CT ⊆ C of C implies C ⊆ CT

= Cd

and prove the additional properties:



13.2 Modelling Indifference 353

Cd = Cd ∩ = Cd ∩ (C ∪ C) = (Cd ∩ C) ∪ (Cd ∩ C) = I ∪ C ⊇ ∪ C = E

and dually

Ed = ( ∪C)d = ∪ CT

= ∩CT ⊇ I ∩Cd = Cd ∩ C ∩Cd = (Cd ∪C)∩Cd = C

ii) Transitivity of C follows from negative transitivity of R and asymmetry of C
from connexity of R. The statement IC = Cd ∩ C = R ∩ RT is trivial by definition
of IC and C.

IC ∩ R = IC ∩ Cd = Cd ∩ C ∩ Cd = (CT ∪ C) ∩ CT

= C ∩ CT

= C

(
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

) (
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

) (
1 1 1 1
0 1 1 1
0 1 1 1
0 0 0 1

) (
1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

) (
0 1 1 1
0 0 1 1
0 1 0 1
0 0 0 0

)

E C Cd I Ed

Fig. 13.2.1 Example around indifference of a strictorder

If a is neither strictly inferior to b, nor the other way round, the relation shows
indifference as to their ranking, which means not least that a and b may be identical.
Prop. 13.2.1 has shown what holds for indifference of a strictorder in general.

Indifference in more special cases

Now we specialize to the more specific types of orders to get additional results.
As long as one works with linear strictorders/orders only, there is not much to say
because indifference turns out to be just the identity, as we are going to prove next.

13.2.2 Proposition. i) For a linear strictorder C,

– the indifference is the identity, i.e., satisfies I = .
– the dual is the corresponding linear order; it satisfies Cd = E.

ii) If E is any linear order, then its dual C := Ed = IC ∩ E = ∩ E is the
corresponding linear strictorder.

Proof : i) I = Cd ∩ C = C
T ∩ C = CT ∪ C = since the linear strictorder C is

semi-connex. Thus, we have equality in Prop. 13.2.1.i.

ii) That C := Ed is a linear strictorder, follows by simply dualizing the constituent
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properties. For the rest, we start from the general situation of Prop. 13.2.1.ii, namely
that C = IC ∩ E. From (i), we already know IC = , so that also C = ∩ E.

C = Ed =
1 2 3 4

1
2
3
4

(
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

)
Cd = E =

1 2 3 4

1
2
3
4

(
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

)
I =

1 2 3 4

1
2
3
4

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
=

Fig. 13.2.2 Linear order, resp. linear strictorder, with duals and indifference

Indifference will become more interesting when considered in case of a weakorder.
Abandoning semi-connexity and, thus, to move to weakorders, brings an indifference
I, which is obviously transitive1. There exists a close relationship between weak-
orders and connex preorders which we will now exhibit. In the rearranged form as
well as in the Hasse diagram of Fig. 12.2.2, it could easily be seen how weakorder
and connex preorder are related by adding an equivalence, or removing it. Using
duality, we now give a proof of this effect.

13.2.3 Proposition. i) For a weakorder W ,

– indifference coincides with row and with column equivalence, i.e.,

I = Ξ(W ) = Ψ(W ),

– its dual W d = I ∪W is the corresponding connex preorder.

ii) For any connex preorder P , the dual W := P d is a weakorder, the so-called
corresponding weakorder.

Proof : i) I = W d ∩ W = W
T ∩ W , so that I is symmetric. From irreflexivity

W ⊆ follows that I is reflexive. Since W is negatively transitive, I is transitive.
Then we have W

T
;W = W . Direction “⊆” follows via the Schröder equivalence

from negative transitivity. In the other direction, we have W
T

;W ⊇ W since W is
irreflexive. Using this, we evaluate, e.g.,

Ψ(W ) = syq (W,W ) = W T;W ∩W T
;W = W

T ∩W = W d ∩W = I.

Using Prop. 13.1.1, we obtain from W weakorder, that W d is a connex preorder.

ii) Again with Prop. 13.1.1, W := P d turns out to be a weakorder.

1 As already mentioned, transitivity of indifference has raised objections, so that one loosened
conditions even further so as to arrive at semiorders. Fig. 12.4.5 shows that indifference holds for
elements Alfred, Frederick, as well as for Frederick, Donald, but not for Alfred, Donald, illustrating
that indifference is no longer a transitive relation.
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0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
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0 0 0 0 0 0 0 0 0 1 1
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1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1


W = P d W d = P I

Fig. 13.2.3 Weakorder, resp. connex preorder, with duals and indifference

Indifference considerations for semiorders or intervalorders are more difficult to
handle, but allow non-transitive indifference. They require to study also thresholds.

13.3 Modelling Thresholds

Many preferences have their origin in measuring something so that real numbers
are attached. Real numbers are of arbitrary precision while measuring is not. One
will probably hesitate to to say that a is better than b because v(a) = 1.23456789
and v(b) = 1.23456788; in particular when measuring is only done in a rather rough
form and the digits result mostly from some sort of computing or reading from a
scale. A good idea is to fix some threshold describing imprecision; say δ := 0.0001.
Then we consider instead of a value v(a) for a an interval v(a)−δ . . . v(a)+δ. In such
a case, a is better than b only, when the intervals attached do not intersect, e.g., if
v(a)− δ > v(b) + δ. Altogether, we have preference with threshold and indifference
so as to respect sensitivity of measuring:

v(a) ≥ v(b) + 2δ means a is at least as good as b
v(a) > v(b) + 2δ means a is better than b

|v(a)− v(b)| ≤ 2δ means a is as good as b

But what about measuring temperatures in Kelvin, e.g. This would use a logarith-
mic scale, so that fixing a constant δ seems inadequate. The natural idea is to use
a function δ(a) that is also logarithmic. Then immediately questions of monotony
come up, etc.

The idea of being “greater by more than a threshold t” in IR shall now be transferred
to a relation T . We aim at

(x, y) ∈ T as corresponding to v(x) > v(y) + t

and see immediately that

(u, y) ∈ T for every u with (u, x) ∈ T since then by definition v(u) > v(x) + t
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(x, z) ∈ T for every z with (y, z) ∈ T since then by definition v(y) > v(z) + t

So the full cone above x as well as the full cone below y satisfy the condition. For
this, we have already developed an algebraic machinery. A semiorder was what we
finally identified as appropriate.
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Fig. 13.3.1 Semiorder, resp. “reflexive semiorder”, with duals, indifferences,
and S-incomparability

So, when given a semiorder S that is not yet a weakorder, we have already deter-
mined the smallest strict enlargement W ⊇ S, the weakorder closure. According to
Prop. 12.4.5.ii, this is found by looking for additional pairs (a, b) with (a, b′) ∈ S
where b′ is S-indifferent to b, or else a S-indifferent with some a′ and (a′, b) ∈ S.
This is quite intuitive. It is then interesting to consider the two indifferences en-
countered, namely

IS := Sd ∩ S and IW := W d ∩W ,

formed from the semiorder or from its weakorder closure, respectively. From S ⊆W ,
we conclude IW ⊆ IS . Instead of considering these two indifferences, IW , IS , we
decide to investigate in which way the indifference IS exceeds IW and to introduce
a name for it.

In the example of Fig. 13.3.1, we consider Christian and Donald. It is immediately
clear that a direct comparison in one of the directions, neither with S, nor with ST

will make a distinction between them; both are, thus S-indifferent. Things change
when switching to the weakorder closure W = IS;S ∪ S;IS ⊇ S; then Christian and
Donald are no longer W -indifferent, but still S-indifferent.
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13.3.1 Definition. Let a semiorder S be given together with its weakorder clo-
sure W := Sd ; S ∪ S ; Sd = IS ; S ∪ S ; IS according to Prop. 12.4.5. We define
S-incomparability J with regard to S,W as

J := IS ∩ IW = X ∪ XT where X = W ∩ S.

Remembering W ⊆ Sd = S
T

, we convince the reader that J = X ∪ XT:

J = Sd ∩ S ∩W d ∩W = S
T ∩ S ∩ (W T ∪W ) = (W T ∩ ST

) ∪ (W ∩ S).

13.3.2 Proposition. i) Let a semiorder S be given and consider its weakorder
closure W := Sd;S ∪ S;Sd = IS;S ∪ S;IS together with the indifferences IS and IW
as well as the S-incomparability J .

– The indifference IS need not be an equivalence, but is reflexive and symmetric.

– S-incomparability J is symmetric and irreflexive.

– The dual Sd = IW ∪ J ∪ S is a connex, semi-transitive, Ferrers relation.

ii) For every connex, semi-transitive, Ferrers relation P , the dual S := P d is a
semiorder, the so-called corresponding semiorder. It satisfies S = IW ∪ J ∩ P .

Proof : i) IS is reflexive and symmetric by construction. Fig. 13.3.1 shows an
example with IS not an equivalence. Obviously, J is irreflexive and symmetric also
by construction.

To prove the decomposition of Sd requires simple but detailed Boolean argumen-
tation: From J = IS ∩ IW with IW ⊆ IS , we find J ∪ IW = IS where by definition
IS = Sd ∩ S with S ⊆ Sd.

ii) This follows from Prop. 13.2.1.iii with J ∪ IW = IS .

So a semiorder always comes together with its weakorder closure, but also with its
dual that is a connex, semi-transitive, Ferrers relation. As this is not at all a simple
matter, we provide yet another example with Fig. 13.3.2; first unordered and then
with some algebraic visualization that makes perception easier.
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S = P d Sd = P IS IW J
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0 0 0 0 0 0


S = P d Sd = P IS IW J

Fig. 13.3.2 Semiorder, resp. “reflexive semiorder”, with duals, indifference,
and S-incomparability

Exercises

13.3.1 Decompose the semiorder S given below into IW , IS and J :

1 2 3 4 5 6 7 8 9 1
0

1
2
3
4
5
6
7
8
9

10



0 0 1 1 0 0 1 1 0 1
0 0 1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 1
0 0 1 1 0 0 1 1 0 1
0 0 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0



13.4 Preference Structures

So far, we have studied orderings in various forms. With preference structures, one
tries to tackle situations where one expects orderings to be around, from another
side. One favourite approach is to partition a square universal relation into sev-
eral others and to try on the basis of these parts to find some justification for
arranging the items into some order. This is obviously not possible for an arbitrary
partitioning; so one has asked for the conditions under which it becomes possible.

Two variant forms are conceivable. It may, firstly, be assumed that somebody (an
individual, a decision-maker, etc.) has been asked to provide mutually exclusive
qualifications of all pairs as

• a is clearly preferred to b,
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• feeling indifferent about a and b,
• having no idea how to compare a and b.

The results are then collected in three relations on the set of items, namely P, I, J .
What one readily postulates is that these qualifications satisfy the rules of Def. 13.4.1,
in order to meet the standard semantics of our language.

13.4.1 Definition. Any disjoint partition = P ∪ P T ∪ I ∪ J of a homogeneous
universal relation into the relations denoted as P, P T (strict) preference and its op-
posite, I indifference, and J incomparability shall be called a (P, I, J)-preference-
3-structure2, provided

• P is asymmetric,
• I is reflexive and symmetric, and
• J is irreflexive and symmetric.

From these three, one immediately arrives at the so-called underlying characteristic
relation of this preference structure from which they all may be reproduced: Let
a relation R be given that is considered as the outcome of asking for any two
alternatives a, b whether

• a is not worse than b.

When meeting our colloquial use of language, this makes R immediately a reflexive
relation. It is sometimes called a weak preference relation.

13.4.2 Proposition. i) There is a one-to-one correspondence between reflexive
homogeneous relations R and preference-3-structures (P, I, J), which may be given
explicitly with transitions α : R 7→ (P, I, J) and β : (P, I, J) 7→ R as

α(R) := (R ∩ RT

, R ∩ RT, R ∩ RT

) and β(P, I, J) := P ∪ I.

ii) There is a one-to-one correspondence between irreflexive homogeneous relations
S and preference-3-structures (P, I, J), which may be given explicitly with transi-
tions γ : S 7→ (P, I, J) and δ : (P, I, J) 7→ S as

γ(S) := (S ∩ ST

, S
T ∩ S, S ∩ ST) and δ(P, I, J) := P ∪ IT

.

Proof : i) It is trivial but tedious to show that this is a bijection. We use that
P ∪ I = P T ∪ J due to the partition. Let (P ′, I ′, J ′) = α(β(P, I, J)), so that

P ′ = (P ∪ I) ∩ P ∪ IT

= (P ∪ I) ∩ (P T ∪ J)T = P ∪ (I ∩ J) = P ∪ = P

2 Preference structures with 4 constituent relations may also be met in the literature.
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I ′ = (P ∪ I) ∩ (P ∪ I)T = (P ∪ I) ∩ (P T ∪ I) = (P ∩ P T) ∪ I = ∪ I = I

J ′ = P ∪ I ∩ P ∪ IT

= (P T ∪ J) ∩ (P T ∪ J)T = (P T ∩ P ) ∪ J = ∪ J = J

In the other direction, we show

β(α(R)) = (R ∩ RT

) ∪ (R ∩ RT) = R ∩ (R
T ∪ RT) = R ∩ = R

So we have a bijection.

It is then trivial to see that β(P, I, J) is reflexive. In a similar way, we convince
ourselves that the second and the third component of α(R) are symmetric by con-
struction. Since R is assumed to be reflexive, so is the second component of α(R),
and the third is necessarily irreflexive. The first is asymmetric because

(R ∩ RT

)T = RT ∩ R ⊆ R ∪ RT = R ∩ RT

ii) is left as Exercise 13.4.2.

For any reflexive relation R expressing such weak preference, one may thus define

• P := R ∩ RT

, strict preference
• I := R ∩ RT, indifference
• J := R ∩ RT

, incomparability

No assumptions as to transitivity are being made. It is, thus, a different approach
compared with Sect. 13.3. Particularly irritating is the tradition to use the same
name indifference for the concept just defined and that of Def. 13.2.1. One will
find the example of Fig. 13.4.1 even more irritating; there is a semiorder at the first
position, but the internal mechanics of the preference-3-structure evaluate β(P, I, J)
and δ(P, I, J) in quite an unexpected way; compare with Fig. 13.3.2.

1 2 3 4 5 6

1
2
3
4
5
6


0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0



1 2 3 4 5 6

1
2
3
4
5
6


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1



1 2 3 4 5 6

1
2
3
4
5
6


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0



1 2 3 4 5 6

1
2
3
4
5
6


1 0 1 1 1 1
0 1 0 1 1 1
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 0 1



1 2 3 4 5 6

1
2
3
4
5
6


0 1 1 1 1 1
1 0 1 1 1 1
0 1 0 1 1 1
0 0 1 0 0 1
0 0 1 0 0 1
0 0 0 0 0 0


Fig. 13.4.1 Preference-3-structure (P, I, J) with corresponding β(P, I, J) and δ(P, I, J)

We are going to relate this concept step by step with our hierarchy linear stric-
torder/weakorder/semiorder/intervalorder. Another major point of concern has al-
ways been whether there may occur (P ∪ I)-circuits3, since this is considered
3 In [Fis85], this has been given the appealing denotation “picycle”.



13.4 Preference Structures 361

counter-intuitive for concepts of preference and indifference. Also this will be stud-
ied along the special versions.

Partition axiomatics for intervalorders

Intervalorders admit a preference structure characterization.

13.4.3 Lemma. i) Let a (P, I, J)-preference-3-structure be given. If the additional
properties

J = and P ;I;P ⊆ P

are satisfied, then P is an intervalorder.

ii) If P is an intervalorder, then every preference-3-structure (P, I, J) will satisfy

P ;I;P ⊆ P ;

among these are, e.g., (P, P ∪ P T, ) and (P, , ∩ P ∪ P T).

Proof : i) With J = , we have the partition = P ∪ P T ∪ I. Since ⊆ I holds
by definition, P is transitive and irreflexive. Because

P ;P
T

;P = P ; (P T ∪ I)T;P = P ; (P ∪ I);P = P ;P ;P ∪ P ;I;P ⊆ P ,

the Ferrers property is satisfied and, thus, an intervalorder established.

ii) Let P be an intervalorder. Then due to the partition = P ∪P T∪ I ∪J certainly

P ;I;P ⊆ P ;P
T

;P ⊆ P .

Because P is asymmetric, the properties according to Def. 13.4.1 hold with I :=
P ∪ P T and J := as well as with I ′ := and J ′ := ∩ P ∪ P T.

Concerning (P ∪ I)-circuits, i.e., picycles, the statement for intervalorders is as
follows: Every circuit of length at least 2 must contain two consecutive I’s. Assume
a circuit of length at least 2 without: Then, consecutive P ’s may via transitivity be
contracted to just one; sequences P ;I;P may also be contracted to just a P . What
remains is a circuit P ;P or a circuit P ;I, both of which cannot exist since P, P T, I

is a partition. A first example has alread been given with Fig. 6.1.3.

Investigating circuits with respect to P ∪ I for an intervalorder P , it may, however,
happen that a proper (P ∪I)-circuit contains two consecutive I-arcs; see Fig. 13.4.2.
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d a b c

a
b
c
d

(
0 0 1 1
0 0 0 1
0 0 0 0
0 0 0 0

)
d

c

a

b d

c

a

b

Fig. 13.4.2 An intervalorder with a circuit a, b, c, d, a containing two consecutive I’s

We may phrase the idea of interrelationship between intervalorders and special
preference structures also slightly differently.

13.4.4 Proposition. Let P be an arbitrary strictorder, and consider it together
with indifference I := P ∪ P T according to Def. 13.2.1 and J := as a preference-
3-structure (P, I, J). Then
P intervalorder ⇐⇒ P Ferrers ⇐⇒ P ;I asymmetric ⇐⇒ I;P asymmetric

Proof : The first equivalence holds by definition. Now, we concentrate on the middle
equivalence; the right one follows then from symmetry. The condition that P ; I is
asymmetric means

(P ;I)T ⊆ P ;I or, equivalently, I;P ;I ⊆ P T

,

which decomposes to

(P ∩ P T

);P ; (P ∩ P T

) ⊆ P T

For “=⇒”, we are allowed to use the Ferrers condition for P
T

, since the latter is
Ferrers precisely when P is:

P
T

;P ;P
T ⊆ P T

For the reverse direction “⇐=”, one will decompose P
T

= (P ∩ P T

) ∪ (P ∩ P T

) on
the left side and handle the additive terms separately. One case follows from the
aforementioned asymmetry condition. In the three others, one will always find a
product of two non-negated P ’s, which will be contracted with transitivity before
applying the Schröder rule as in

(P ∩ P T

);P ; (P ∩ P T

) ⊆ P ;P ;P
T ⊆ P ;P

T ⊆ P T

Partition axiomatics for semiorders

We now relate the preference-3-structure concept with semiorders. To this end, we
recall that a semiorder is irreflexive, semi-transitive, and Ferrers.
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13.4.5 Lemma. i) Let a (P, I, J)-preference-3-structure be given. If the additional
properties

J = P ;I;P ⊆ P P ;P ∩ I;I =

are satisfied, then P is a semiorder.

ii) If P is a semiorder, then every preference-3-structure (P, I, J) will satisfy

P ;I;P ⊆ P P ;P ∩ I;I = ;

among these are, e.g., (P, P ∪ P T, ) and (P, , ∩ P ∪ P T).

Proof : i) We maintain from Lemma 13.4.3 that the first two conditions are satisfied
precisely when an intervalorder has been presented. This leaves us with the task to
prove that the third condition — in this context — implies semi-transitivity:

P ;P ;P
T

= P ;P ; (P ∪ I) = P ;P ;P ∪ P ;P ;I ⊆ P .

Due to transitivity, only P;P;I needs further discussion. Its intersection with I is
since with the Dedekind rule

P ;P ;I ∩ I ⊆ (P ;P ∩ I;I); (. . .) =

But also the intersection with P T is :

P ;P ;I ∩ P T ⊆ (. . .); (I ∩ P T;P T;P T) ⊆ (. . .); (I ∩ P T) = .

ii) Let P be a semiorder. We start from the partition = P ∪P T ∪ I ∪ J and prove
the second property:

P ;P ;P
T ⊆ P , i.e., starting from semi-transitivity

⇐⇒ P ;P T;P T ⊆ P T transposed
⇐⇒ P

T
;P ;P ⊆ P Schröder

=⇒ I;P ;P ⊆ P ⊆ I since I ⊆ P T

and P ⊆ I due to the partition
⇐⇒ I;I ⊆ P ;P Schröder

and the latter is — up to a Boolean argument — what had to be proved. The first
property follows as for intervalorders.

Investigating circuits with respect to P ∪ I for a semiorder P , we observe that every
(P ∪ I)-circuit will necessarily contain more I-arcs than P -arcs. All conceivable
circuits with up to three arrows are easily checked to find out that they contain
strictly more I’s than P ’s. A circuit a P b I c P d I a cannot exist because
P ; I ;P ⊆ P does for reasons of partitioning not allow the fourth arrow to be in I.
A circuit a P b P c I d I a cannot exist because P ;P ∩ I;I = .

Now, we conclude by induction on the number of arrows, assuming that up to n-
arc circuits it has already been established that there are more I-arcs than P -arcs.
Assuming there were for n + 1 more P -arcs than I-arcs, there would be two of
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them consecutive and could with transitivity be replaced by just one, arriving at a
situation for n with at least as many P -arcs as I-arcs, contradicting the induction
hypothesis. Assuming equally many P -arcs and I-arcs in a strictly alternating se-
quence, every sequence P;I;P might iteratively be cut down to P , finally arriving at
a loop in the asymmetric P ; a contradiction. Assuming equally many P -arcs and
I-arcs non-alternating, one will identify a situation of P ;P ; I ⊆ P ;P ;P

T ⊆ P ; the
latter by semi-transitivity, thus decreasing the number of P ’s as well as the number
of I’s by one and arriving at a violation of the induction hypothesis.

a b c d e

a
b
c
d
e

0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 d
c

a

e

b d
c

a

e

b

Fig. 13.4.3 A semiorder with a circuit a, d, b, e, c, a of 3 I’s and just 2 P ’s

Partition axiomatics for weakorders

There is also a very close connection between preference-3-structures and weak-
orders.

13.4.6 Lemma. i) Let a (P, I, J)-preference-3-structure be given. If the additional
properties

J = P ;P ⊆ P I;I ⊆ I,

are satisfied, then P is a weakorder.

ii) If P is a weakorder, then every preference-3-structure (P, I, ) will satisfy

P ;P ⊆ P I;I ⊆ I.

Proof : i) Here again, the partition is = P ∪ P T ∪ I. Thus, P is irreflexive since
I is postulated to be reflexive. Negative transitivity follows from

P ;P = (P T ∪ I); (P T ∪ I) ⊆ (P 2)T ∪ P T;I ∪ I;P T ∪ I2 ⊆ P T ∪ P ∪ P ∪ I = P

We have used that P and I are transitive and that, e.g., P T;I ⊆ P ⇐⇒ P ;P ⊆ I,
where the latter follows from transitivity and the partitioning. Irreflexivity and
negative transitivity is sufficient for a weakorder according to Prop. 12.2.1.

ii) The first part P;P ⊆ P is trivially satisfied for a weakorder. We start again from
the partition = P ∪ P T ∪ I and prove

I;I = P ∪ P T;P ∪ P T ⊆ P ∪ P T = I
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which follows from negative transitivity.

a b c d e

a
b
c
d
e

0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



a b c d e1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

= I1 J1 =

a b c d e0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


a b c d e

a
b
c
d
e

1 1 0 0 0
1 1 0 0 0
0 0 1 0 1
0 0 0 1 1
0 0 1 1 1

= I2 J2 =
a b c d e0 0 0 0 0

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0



a b c d e1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

= I3 J3 =

a b c d e0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0


Fig. 13.4.4 A weakorder P in three ways amended to a preference-3-structure (P, Ii, Ji)

Investigating circuits with respect to P ∪ I for a weakorder P when J = , we
observe that consecutive I’s may be reduced to I in the same way as consecutive
P ’s may be reduced to just P . So alternating circuits of P and I remain. But also

P;I = P;I ∩ = P;I ∩ (P ∪P T ∪ I) = (P;I ∩P )∪ (P;I ∩P T)∪ (P;I ∩ I) = P;I ∩P
using

P ;I ∩ P T ⊆ (P ∩ P T;I); (I ∩ P T;P T) ⊆ (. . .); (I ∩ P T) =
P ;I ∩ I ⊆ (P ∩ I;I); (. . .) ⊆ (P ∩ I); (. . .) =

so that P;I ⊆ P . This finally means that powers of P ∪I are contained in P ∪I = P
T

and can, thus, not be closed to a circuit. All this is quite intuitive: Indifference
iterated does never lead to a case where preference holds. Preference, indifference,
and preference again, will always result in preference.

Partition axiomatics for linear strictorders

We study first, which additional conditions make a preference-3-structure a linear
strictorder.

13.4.7 Lemma. Let a (P, I, J)-preference-3-structure be given. It satisfies the ad-
ditional properties

J = P ;P ⊆ P I = ,

if and only if P is a linear strictorder.

Proof : Under these specific circumstances, the partition is = P ∪P T ∪ , so that
P is semi-connex and irreflexive. As directly postulated, P is also transitive, i.e., a
linear strictorder. The reverse direction is trivial.

For a linear strictorder P , a proper circuit can never occur: Any composition of
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(P ∪ I)i with i ≥ 1 may be reduced to a power of P i ∪ i since I = , and the first
part is contained in the irreflexive P .

Exercises

13.4.1 Let any connex relation P be given and define

W := P ∩ P T

, its asymmetric part, and I := P ∩ P T, its symmetric part.

i) Then P = W ∪ I as well as = W ∪W T ∪ I are partitions.

ii) If W ;I;W ⊆W and I2 ⊆W , it will turn out that W is a weakorder.

13.4.2 Prove Prop. 13.4.2.ii.
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Aggregating Preferences

Since the development of lattice theory, it became more and more evident that
concepts of upper and lower bounds, suprema and infima did not require orderings
to be linear. Nevertheless, people studied fuzziness mainly along the linear order
of IR und began only later to generalize to the ordinal level: Numbers indicate the
relative position of items, but no longer the magnitude of difference. Then they
moved to the interval level: Numbers indicate the magnitude of difference between
items, but there is no absolute zero point. Examples are attitude scales and opinion
scales. We proceed even further and introduce relational measures with values in
a lattice. Measures traditionally provide a basis for integration. Astonishingly, this
holds true for these relational measures so that it becomes possible to introduce a
concept of relational integration.

With De Morgan triples, we then touch yet another closely related concept of
relational methods of preference aggregation.

14.1 Modelling Preferences

Who is about to make severe decisions will usually base these on carefully selected
basic information and clean lines of reasoning. It is in general not too difficult to
apply just one criterion and to operate according to this criterion. If several criteria
must be taken into consideration, one has also to consider the all too often occurring
situation that these provide contradictory information: “This car looks nicer, but it
is much more expensive”. Social and economical sciences have developed techniques
to model what takes place when decisions are to be made in an environment with
a multitude of diverging criteria. Preference is assumed to represent the degree to
which one alternative is preferred to another. Often it takes the form of expressing
that alternative A is considered being “not worse than” alternative B. Sometimes
a linear ranking of the set of alternatives is assumed, which we avoid.

So finding decisions became abstracted to a scientific task. We may observe two
lines of development. The Anglo-Saxon countries, in particular, formulated utility



368 Aggregating Preferences

theory, in which numerical values shall indicate the intensity of some preference.
Mainly in continental Europe, on the other hand side, binary relations were used to
model pairwise preference; see [FR94], e.g. While the former idea allows to easily
relate to statistics, the latter is based on evidence via direct comparison. In earlier
years indeed, basic information was quite often statistical in nature and expressed
in real numbers. Today we have more often fuzzy, vague, rough, etc., forms of
qualification.

14.2 Introductory Example

We first give the example of deciding for a car to be bought out of several offers. It
is intended to follow a set C of three criteria, namely color, price, and speed. They
are, of course, not of equal importance for us; price will most certainly outweigh the
color of the car, e.g. Nevertheless let the valuation with these criteria be given on an
ordinal scale L with 5 linearly ordered values as indicated on the left side. (Here for
simplicity, the ordering is linear, but it need not.) We name these values 1,2,3,4,5,
but do not combine this with any arithmetic; i.e., value 4 is not intended to mean two
times as good as value 2. Rather they might be described with linguistic variables
as bad, not totally bad, medium, outstanding, absolutely outstanding, purposefully
these example qualifications have not been chosen “equidistant”.

color
price
speed

(
0 0 0 1 0
0 0 0 1 0
0 1 0 0 0

) 4 = lub
[
glb (4v(color), 4µ{c,p}),
glb (4v(price), 4µ{c,p}),
glb (2v(speed), 5µ{c,p,s})

]
Fig. 14.2.1 A first valuation

First we concentrate on the left side of Fig. 14.2.1. The task is to arrive at one
overall valuation of the car out of these three. In a simple-minded approach, we
might indeed conceive numbers 1, 2, 3, 4, 5 ∈ IR and then evaluate in a classical way
the average value since 1

3 (4 + 4 + 2) = 3.3333 . . ., which is a value not expressible
in the given scale. When considering the second example Fig. 14.2.2, we would
arrive at the same average value although the switch from Fig. 14.2.1 to Fig. 14.2.2
between price and speed would trigger most people to decide differently.

color
price
speed

(
0 0 0 1 0
0 1 0 0 0
0 0 0 1 0

) 3 = lub
[
glb (4v(color), 3µ{c,s}),
glb (2v(price), 5µ{c,p,s}),
glb (4v(speed), 3µ{c,s})

]
Fig. 14.2.2 A second valuation

With relational integration, we learn to make explicit which set of criteria to apply
with which weight. It is conceivable that criteria c1, c2 are given a low weight but
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the criteria set {c1, c2} in conjunction a high one. This means that we introduce a
relational measure assigning values in L to subsets of C.

µ =

{}
{color}
{price}
{color,price}
{speed}
{color,speed}
{price,speed}
{color,price,speed}


1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1


Fig. 14.2.3 A relational measure

For gauging purposes, we demand that the empty criteria set gets assigned the
least value in L and the full criteria set the greatest. A point to stress is that we
assume the criteria themselves as well as the measuring of subsets of criteria as
commensurable.

The relational measure µ should obviously be monotonic with respect to the or-
dering Ω on the powerset of C and the ordering E on L. We do not demand con-
tinuity (additivity), however. The price alone is ranked of medium importance 3,
higher than speed alone, while color alone is considered completely unimportant
and ranks 1. However, color and price together are ranked 4, i.e., higher than the
supremum of ranks for color alone and for price alone, etc.

Since now the valuations according to the criteria as well as the valuation according
to the relative measuring of the criteria are given, we may proceed as visualized
on the right sides of Fig. 14.2.1 and Fig. 14.2.2. We run through the criteria and
always look for two items: their corresponding value and in addition for the value
of that subset of criteria assigning equal or higher values. Then we determine the
greatest lower bound for the two values. From the list thus obtained, the least upper
bound is taken. The two examples above show how by simple evaluation along this
concept, one will arrive at the overall values 4 or 3, respectively. This results from
the fact that in the second case only such rather unimportant criteria as color and
speed assign the higher values.

The effect is counterrunning: Low values of criteria as for s in Fig. 14.2.1 are inter-
sected with rather high µ’s as many criteria give higher scores and µ is monotonic.
Highest values of criteria as for color or speed in Fig. 14.2.2 are intersected with the
µ of a small or even one-element criteria set; i.e., with a rather small one. In total
we find that here are two operations applied in a way we already know from matrix
multiplication: a “sum” operator, lub or “∨”, following application a “product”
operator, glb or “∧”.

This example gave a first idea of how relational integration works and how it may
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be useful. Introducing a relational measure and using it for integration serves an
important purpose: Concerns are now separated. One may design the criteria and
the measure in a design phase prior to polling. Only then shall the questionnaire
be filled, or the voters be polled. The procedure of coming to an overall valuation
is now just computation and should no longer lead to quarrels.

14.3 Relational Measures

Assume the following basic setting with a set C of so-called criteria and a measuring
lattice L. Depending on the application envisaged, the set C may also be interpreted
as one of players in a cooperative game, of attributes, of experts, or of voters in an
opinion polling problem. This includes the setting with L the interval [0, 1] ⊆ IR
or a linear ordering for measuring. We consider a (relational) measure generalizing
the concept of a fuzzy measure (or capacité in French origin) assigning measures in
L for subsets of C.

M E

m, XC

Ω

L

µ
ε

C

Fig. 14.3.1 Basic situation for relational integration

The relation ε is the membership relation between C and its powerset 2C . The
measures envisaged will be called µ, other relations as M . Valuations according to
the criteria will be X or m depending on the context.

For a running example assume the task to assess persons of the staff according
to their intellectual abilities as well as according to the workload they achieve to
master.
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(low,lazy)
(medium,lazy)

(low,fair)
(high,lazy)

(medium,fair)
(low,good)
(high,fair)

(medium,good)
(low,bulldozer)

(high,good)
(medium,bulldozer)

(high,bulldozer)



1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1


high

medium

low lazy

fair

good

bulldozer

Fig. 14.3.2 2-dimensional assessment

14.3.1 Definition. Suppose a set of criteria C to be given together with some
lattice L, ordered by E, in which subsets of these criteria shall be given a measure
µ : 2C −→ L. Let Ω be the powerset ordering on 2C . We call a mapping µ : 2C −→ L
a (relational) measure provided

— Ω;µ ⊆ µ;E, meaning that µ is isotonic wrt. to the orderings Ω and E.

— µT; 0Ω = 0E , the empty subset of 2C is mapped to the least element of L.

— µT; 1Ω = 1E , C ∈ 2C is mapped to the greatest element of L.

A (relational) measure for s ∈ 2C , i.e., µ(s) when written as a mapping or µT ; s

when written in relation form, may be interpreted as the weight of importance
we attribute to the combination s of criteria. It should not be mixed up with a
probability. The latter would require the setting L = [0, 1] ⊆ IR and in addition
that µ be continuous.

Many ideas of this type have been collected by Glenn Shafer under the heading the-
ory of evidence, calling µ a belief function. Using it, he explained a basis of rational
behaviour. We attribute certain weights to evidence, but do not explain in which
way. These weights shall in our case be lattice-ordered. This alone gives us reason to
rationally decide this or that way. Real-valued belief functions have numerous appli-
cations in artificial intelligence, expert systems, approximate reasoning, knowledge
extraction from data, and Bayesian Networks.

14.3.2 Definition. Given this setting, we call the measure µ
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i) a Bayesian measure if it is lattice-continuous according to Def. 9.5.5, i.e.,

lubE(µT;s) = µT;lubΩ(s)

for a subset s ⊆ 2C , or expressed differently, a set of subsets of C.

ii) a simple support mapping focussed on U valued with v, if U is a non-empty
subset U ⊆ C and v ∈ L an element such that

µ(s) =


0E if s⊇/ U
v if C=/ s ⊇ U
1E if C = s

In a real-valued environment, the condition for a Bayesian measure is: additive when
non-overlapping. Lattice-continuity incorporates two concepts, namely sending 0Ω

to 0E and additivity

µT; (s1 ∪ s2) = µT;s1 ∪L µT;s2

Concerning additivity, the example of Glenn Shafer [Sha76] is when one is wondering
whether a Ming vase is a genuine one or a fake. We have to put the full amount of our
belief on the disjunction “genuine or fake” as one of the alternatives will certainly
be the case. But the amount of trust we are willing to put on the alternatives may
in both cases be very small as we have only tiny hints for being genuine, but also
very tiny hints for being a fake. We do not put any trust on 0Ω = “at the same
time genuine and fake”.

In the extreme case, we have complete ignorance expressed by the so-called vacuous
belief mapping

µ0(s) =
{

0E if C=/ s
1E if C = s
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{}
{Abe}
{Bob}

{Abe,Bob}
{Carl}

{Abe,Carl}
{Bob,Carl}

{Abe,Bob,Carl}
{Don}

{Abe,Don}
{Bob,Don}

{Abe,Bob,Don}
{Carl,Don}

{Abe,Carl,Don}
{Bob,Carl,Don}

{Abe,Bob,Carl,Don}



1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 14.3.3 Vacuous belief mapping and light-minded belief mapping

With the idea of probability, we could not so easily cope with ignorance. Probability
does not allow one to withhold belief from a proposition without according the
withheld amount of belief to the negation. When thinking on the Ming vase in terms
of probability we would have to attribute p to genuine and 1− p to fake.

On the other extreme, we may completely overspoil our trust expressed by the
so-called light-minded belief mapping

µ1(s) =
{

0E if 0Ω = s

1E otherwise
Whenever the result for an arbitrary criterion arrives, the light-minded belief map-
ping attributes it all the components of trust or belief. In particular, µ1 is Bayesian
while µ0 is not.

Combining measures

Dempster [Dem67] found for the real-valued case a method of combining measures
in a form closely related to conditional probability. It shows a way of adjusting
opinion in the light of new evidence. We have re-modeled this for the relational
case. One should be aware of how a measure behaves on upper and lower cones:

14.3.3 Proposition. µ = lubRE(ΩT;µ) µ = glbRE(Ω;µ)

Proof : For the measure µ we prove in advance that E;µT; ΩT = E;ET;µT = E;µT,
which is trivial considering
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Ω;µ;E ⊆ µ;E;E = µ;E

where equality holds also in between. We have applied that µ is a homomorphism
Ω;µ ⊆ µ;E, that E is transitive, and Ω reflexive.

Therefore we have glbRE(µ) = glbRE(Ω;µ) = glbRE(µ;E) because glbRE(µ) =[
E;µT ∩ ET

;E;µT
]T. Finally

glbRE(µ) =
[
E;µT ∩ ET

;E;µT
]T = µ;E

T ∩ µ;E
T

;E

= µ;E
T ∩ µ;E

T
;E = µ;ET ∩ µ;E = µ; (ET ∩ E) = µ; = µ

When one has in addition to µ got further evidence from a second measure µ′, one
will intersect the upper cones resulting in a possibly smaller cone positioned higher
up and take its greatest lower bound:

µ⊕ µ′ := glbRE(µ;E ∩ µ′;E)

One might, however, also look where µ and µ′ agree, and thus intersect the lower
cones resulting in a possibly smaller cone positioned deeper down and take its least
upper bound:

µ⊗ µ′ := lubRE(µ;ET ∩ µ′;ET)

A first observation is as follows

µ;E ∩ µ′;E = µ;E ∩ µ′;E since µ, µ′ are mappings
= µ;E ∪ µ′;E De Morgan
= (µ ∪ µ′);E distributive
= ubdRE(µ ∪ µ′) by definition of upper bounds taken rowwise

Indeed, we have complete lattices Ω, E, so that all least upper and greatest lower
bounds will exist. In this case, intersection of the cones above µ, µ′ means taking
their least upper bound and the cone above this. So the simpler definitions are

µ⊕ µ′ := glbRE(µ;E ∩ µ′;E) = glbRE(ubdRE(µ ∪ µ′)) = lubRE(µ ∪ µ′)
µ⊗ µ′ := lubRE(µ;ET ∩ µ′;ET) = lubRE(lbdRE(µ ∪ µ′)) = glbRE(µ ∪ µ′)

14.3.4 Proposition. If the measures µ, µ′ are given, µ ⊕ µ′ as well as µ ⊗ µ′ are
measures again. Both operations are commutative and associative. The vacuous
belief mapping µ0 is the null element while the light-minded belief mapping is the
unit element:

µ⊕ µ0 = µ, µ⊗ µ1 = µ, and µ⊗ µ0 = µ0

Proof : The gauging condition requires that the least element be sent to the least
element, from which we show one part:
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(µ⊕ µ′)T; 0Ω = lubE([µ ∩ µ′]T); 0Ω

= syq (ET, E
T

(µT ∪ µ′T)); 0Ω Prop. 9.4.2

= syq (ET, E
T

(µT ∪ µ′T); 0Ω) point slipping into symmetric quotient

= syq (ET, E
T

(µT ∪ µ′T); 0Ω) point slipping below negation

= syq (ET, E
T

(µT; 0Ω ∪ µ′T; 0Ω)) distributive

= syq (ET, E
T

; 0E) gauging requirement

= syq (ET, E
T

; 0E) point slipping out of negation
= syq (ET, ET); 0E point slipping out of symmetric quotient
= ; 0E = 0E property of an ordering

Because µ, µ′ are measures, we have that µT;1Ω = 1E and also µ′T;1Ω = 1E . In both
cases, the cone above the image is simply 1E , and so also their intersection as well
as the greatest lower bound thereof is 1E .

The proof of monotony of the composed measures is left for the reader.

In view of µ;E ∩ µ0;E = µ;E and µ;E ∩ µ1;E = µ1;E, the “algebraic” identities are
trivial.

There exists a bulk of literature around the topic of Dempster-Shafer belief. It
concentrates mostly on work with real numbers and their linear order and applies
traditional free-hand mathematics. This makes it sometimes difficult to follow the
basic ideas, not least as authors are all too often falling back to probability consid-
erations.

We feel that the point-free relational reformulation of this field and the important
generalization accompanying it is a clarification — at least for the strictly growing
community of those who do not fear to use relations. Proofs may now be supported
via proof systems. For examples where this might be applied, see [Sug85].

14.4 Relational Integration

Assume now that for all the criteria C a valuation has taken place resulting in a
mapping X : C −→ L. The question is how to arrive at an overall valuation by
rational means, for which µ shall be the guideline. See [SB08] for other details.

14.4.1 Definition. Given a relational measure µ and a mapping X indicating the
values given by the criteria, we define the relational integral
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(R)

 
X ◦ µ := lubRE( ; glbRE [X ∪ syq (X ; ET; XT, ε) ;µ])

The idea behind this integral is as follows: From the valuation of any criterion
proceed to all higher valuations and from these back to those criteria that assigned
such higher values. With X ; E; XT, the transition from all the criteria to the set of
criteria are given. Now a symmetric quotient is needed in order to comprehend all
these sets to elements of the powerset. (To this end, the converse is needed.) Once
the sets are elements of the powerset, the measure µ may be applied. As already
shown in the initial example, we have now the value of the respective criterion and in
addition the valuation of the criteria set. From the two, we form the greatest lower
bound. So in total, we have lower bounds for all the criteria. These are combined
in one set multiplying the universal relation from the left side. Finally, the least
upper bound is taken.

We are now in a position to understand why gauging µT;1Ω = 1E is necessary for µ,
or “greatest element is sent to greatest element”. Consider, e.g., the special case of
an X with all criteria assigning the same value. We certainly expect the relational
integral to precisely deliver this value regardless of the measure chosen. But this
might not be the case if a measure should assign too small a value to the full set.

As a running example, we provide the following highly non-continuous measure of
Fig. 14.4.1. Here, e.g.,

µ(Abe) = (high, lazy), µ(Bob) = (medium, fair), with supremum (high, fair)

but in excess to this, µ assigns it µ(Abe,Bob) = (high, good).
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{}
{Abe}
{Bob}

{Abe,Bob}
{Carl}

{Abe,Carl}
{Bob,Carl}

{Abe,Bob,Carl}
{Don}

{Abe,Don}
{Bob,Don}

{Abe,Bob,Don}
{Carl,Don}

{Abe,Carl,Don}
{Bob,Carl,Don}

{Abe,Bob,Carl,Don}



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 14.4.1 Non-additive example measure

Assume in addition valuations X1, X2 to be given as shown in Fig. 14.4.2.
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Abe
Bob
Carl
Don
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0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
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0 0 0 0 0 1 0 0 0 0 0 0
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Fig. 14.4.2 Two relational integrations

As already mentioned, we apply a sum operator lub after applying the product
operator glb . When values are assigned with X, we look with E for those greater
or equal, then with XT for the criteria so valuated. Now comes a technically difficult
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step, namely proceeding to the union of the resulting sets with the symmetric
quotient syq and the membership relation ε. The µ-score of this set is then taken.
Obviously:

glbRE(X) ≤ (R)

 
X ◦ µ ≤ lubR E(X)

These considerations originate from free re-interpretation of the following concepts
for work in [0, 1] ⊆ IR. The Sugeno integral operator is defined as

MS,µ(x1. . . . , xm) = (S)

 
x ◦ µ =

m∨
i=1

[xi ∧ µ(Ai)]

and the Choquet integral1 operator as

MC,µ(x1, . . . , xm) = (C)

 
x ◦ µ =

m∑
i=1

[(xi − xi−1) · µ(Ai)]

In both cases the elements of vector (x1, . . . , xm) have each time to be reordered
such that

0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ xm+1 = 1 and µ(Ai) = µ(Ci, . . . , Cm).

The concept of Choquet integral was first introduced for a real-valued context in
[Cho54] and later used by Michio Sugeno. These two integrals are reported to have
nice properties for aggregation: They are continuous, non-decreasing, and stable un-
der certain interval preserving transformations. Not least, it reduces to the weighted
arithmetic mean as soon as it becomes additive.

14.5 Defining Relational Measures

Such measures µ may be given directly, which is, however, a costly task since a
powerset is involved all of whose elements need values. Therefore, measures mainly
originate in some other way.

Measures originating from direct valuation of criteria

Let a direct valuation of the criteria be given as any relation m between C and
L. Although it is allowed to be contradictory and non-univalent, we provide for a
1 Named after Gustave Choquet (1915–2006), a French mathematician (Wikipedia)
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way of defining a relational measure based on it. This will happen via the following
constructs

σ(m) := εT;m;E π(µ) := ε;µ;E
T

,

which very obviously satisfy the Galois correspondence requirement

m ⊆ π(µ) ⇐⇒ µ ⊆ σ(m).

They satisfy σ(m;ET) = σ(m) and π(µ;E) = π(µ), so that in principle only lower,
respectively upper, cones occur as arguments. Applying W ;E = W ;E;ET, we get

σ(m);E = εT;m;E;E = εT;m;E;ET;E = εT;m;E = σ(m),

so that images of σ are always upper cones — and thus best described by their
greatest lower bound glbRE(σ(m)).

14.5.1 Proposition. Given any relation m : C → L, the construct

µm := µ0 ⊕ glbRE(σ(m)) = µ0 ⊕ lubRE(εT;m)

forms a relational measure, the so-called possibility measure based on m.

Proof : The gauging properties are more or less trivial to prove. For the proof of
isotony we neglect gauging for simplicity:

Ω;µm ⊆ µm;E to be shown
⇐⇒ Ω;syq (E

T
;mT;ε, ET) ⊆ syq (E

T
;mT;ε, ET);E expanding, Prop. 9.4.2

⇐⇒ εT;ε;syq (E
T

;mT;ε, ET) ⊆ εT;m;E expanding, cancelling

⇐⇒ εT
;ε;εT;m;E ⊆ syq (E

T
;mT;ε, ET) Schröder rule

Remembering that εT
;ε;εT = εT, E = E;ET, and expanding the symmetric quotient,

the latter is certainly satisfied.

Equivalence of the two variants:

glbRE(σ(m)) = glbRE(εT;m;E) =
[
glbE(εT;m;E

T

)
]T

=
[
glbE(E

T
;mT;ε)

]T
=
[
glbE(ubd (mT;ε))

]T
=
[
lubE(mT;ε)

]T = lubRE(εT;m)

Possibility measures need not be Bayesian. Addition of the vacuous belief mapping
µ0 is again necessary for gauging purposes. In case m is a mapping, the situation
becomes even nicer. From

π(σ(m;ET)) = π(σ(m)) = ε;εT;m;E;E
T

= m;E;E
T

since Prop. 7.6.2.i shows that in general ε;εT;X = X for all X

= m;E;E
T

since the mapping m may slip out of negation
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= m;E;E
T

= m;ET

we see that this is an adjunction on cones. The lower cones m;ET in turn are 1 : 1
represented by their least upper bounds lubRE(m;E).
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Fig. 14.5.1 Possibility measure µm derived from a direct valuation relation m

The following proposition exhibits that a Bayesian measure is a rather special case,
namely more or less directly determined as a possibility measure for a direct valu-
ation m that is in fact a mapping. We provide an example: One may proceed from
m in Fig. 14.5.1 to the measure µm according to Prop. 14.5.1. One may, however,
also start from mµB in Fig. 14.5.2, work according to Prop. 14.5.2, and obtain the
same result.

14.5.2 Proposition. Let µ be a Bayesian measure. Then mµ := lubRE(π(µ)) is
a mapping and in addition that direct valuation for which µ = µmµ .

Proof : Since lub ’s are always injective and — given a complete lattice E — also
surjective, the rowwise lub ’s certainly constitute a mapping. What remains to be
shown is µ = µmµ . For simplicity, we ignore the gauging which is only relevant for
the least and greatest element.

µmµ = µ0 ⊕ lubRE(εT;mµ) as defined in Prop. 14.5.1

= syq (E
T

;mT
µ

;ε, ET) according to Prop. 9.4.2, now with µ0 ignored

= syq (E
T

;lubE(π(µ)T);ε, ET) as defined above
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= syq (E
T

;syq (ET, E
T

;E;µT;εT);ε, ET) expanding π(µ), Prop. 9.4.2

= syq (E
T

;syq (E
T

, E
T

;E;µT;εT);ε, ET) using that syq (A,B) = syq (A,B)

= syq (E
T

;E;µT;εT;ε, ET) cancelling a symmetric quotient

=
[
lubE(π(µ)T)

]T = µ according to Prop. 9.4.2
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Fig. 14.5.2 Bayesian measure µB with corresponding direct valuation mµB

One will find out that mµB of Fig. 14.5.2 may also be obtained from the m of
Fig. 14.5.1, taking rowwise least upper bounds according to the ordering E of
Fig. 14.3.2. With this method just a few of the many relational measures will be
found.

Using direct valuations, one may give another characterization of being Bayesian,
namely that the whole measure is fully determined by the values on singleton sub-
sets. To this end, consider σ := syq ( , ε), the mapping injecting singletons2 into
the powerset. The remarkable property of σis that σT;σ ⊆ characterizes the atoms
of the powerset ordering Ω. Now define m := σ;µ; then

µT = µT; = µT;lubΩ(σT;σ; Ω) element in powerset as union of singleton sets
= lubE(µT;σT;σ; Ω) due to continuity of the Bayesian measure µ
=
[
lubRE(ΩT;σT;σ;µ)

]T =
[
lubRE(εT;m)

]T since ε = σ; Ω
=
[
glbRE(σ(m))

]T see Prop. 14.5.1.

2 This σ must not be mixed up with the Galois-σ.
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We need not care for adding the vacuous belief, as we have been starting from a
Bayesian measure which means that the value 1E of the full set will be the least
upper bound of all the values of the singletons.

Measures originating from a body of evidence

We may also derive relational measures out of any relation between 2C and L.
Although it is allowed to be non-univalent, we provide for a way of defining two
measures based on it — which may coincide.

14.5.3 Definition. Let our general setting be given.

i) A body of evidence is an arbitrary relation M : 2C −→ L, restricted only by
the gauging requirement that M T; 0Ω ⊆ 0E .

ii) If the body of evidence M is in addition a mapping, we speak — following
[Sha76] — of a basic probability assignment.

We should be aware that the basic probability assignment is meant to assign some-
thing to a set regardless of what is assigned to its proper subsets. The condition
M T;0Ω ⊆ 0E expresses that M either does not assign any belief to the empty set or
assigns it just 0E .

Now a construction similar to that which led to Prop. 14.5.1 becomes possible, based
on the following observation. If I dare saying that occurrence of A ⊆ C deserves
my trust to the amount M(A), then A′ ⊆ A ⊆ C deserves at least this amount of
trusting as it occurs whenever A occurs. I might, however, not be willing to consider
that A′′ ⊆ C with A ⊆ A′′ deserves to be trusted with the same amount as there is
a chance that it occurs not so often. We put

σ′(M) := ΩT;M ;E π′(µ) := Ω;µ;E
T

,

which again satisfies the Galois correspondence requirement

M ⊆ π′(µ) ⇐⇒ µ ⊆ σ′(M).

Obviously σ′(M;ET) = σ′(M) and π′(µ;E) = π′(µ), so that in principle only upper
(E) and lower (ET), respectively, cones are set into relation. But again applying
W ;E = W ;E;ET, we get

σ′(M);E = ΩT;M ;E;E = ΩT;M ;E;ET;E = ΩT;M ;E = σ′(M),

so that images of σ′ are always upper cones — and thus best described by their
greatest lower bound glbRE(σ′(M)).

glbRE(σ′(M)) = glbRE(ΩT;M ;E)
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Fig. 14.5.3 A body of evidence — incidentally a univalent relation

=
[
glbE(ΩT;M ;E

T

)
]T

=
[
glbE(E

T
;M T; Ω)

]T
=
[
glbE(ubd (M T; Ω))

]T
=
[
lubE(M T; Ω)

]T
= lubRE(ΩT;M)

which — up to gauging by adding µ0 — leads us to the following definition with
proposition.

14.5.4 Proposition. Should some body of evidence M be given, there exist two
relational measures closely resembling M ,

i) the belief measure µbelief(M) := µ0 ⊕ lubRE(ΩT;M)
ii) the plausibility measure µplausibility(M) := µ0 ⊕ lubRE(ΩT; (Ω ∩ Ω; );M).
iii) the belief measure assigns values not exceeding those of the plausibility mea-

sure, i.e.,
µbelief(M) ⊆ µplausibility(M);ET.

Proof : We leave this proof for the rerader.



384 Aggregating Preferences

(l
o
w

,l
a
z
y
)

(m
e
d
iu

m
,l
a
z
y
)

(l
o
w

,f
a
ir

)
(h

ig
h
,l
a
z
y
)

(m
e
d
iu

m
,f

a
ir

)
(l

o
w

,g
o
o
d
)

(h
ig

h
,f

a
ir

)
(m

e
d
iu

m
,g

o
o
d
)

(l
o
w

,b
u
ll
d
o
z
e
r)

(h
ig

h
,g

o
o
d
)

(m
e
d
iu

m
,b

u
ll
d
o
z
e
r)

(h
ig

h
,b

u
ll
d
o
z
e
r)

{}
{Abe}
{Bob}

{Abe,Bob}
{Carl}

{Abe,Carl}
{Bob,Carl}

{Abe,Bob,Carl}
{Don}

{Abe,Don}
{Bob,Don}

{Abe,Bob,Don}
{Carl,Don}

{Abe,Carl,Don}
{Bob,Carl,Don}

{Abe,Bob,Carl,Don}



1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


(l

o
w

,l
a
z
y
)

(m
e
d
iu

m
,l
a
z
y
)

(l
o
w

,f
a
ir

)
(h

ig
h
,l
a
z
y
)

(m
e
d
iu

m
,f

a
ir

)
(l

o
w

,g
o
o
d
)

(h
ig

h
,f

a
ir

)
(m

e
d
iu

m
,g

o
o
d
)

(l
o
w

,b
u
ll
d
o
z
e
r)

(h
ig

h
,g

o
o
d
)

(m
e
d
iu

m
,b

u
ll
d
o
z
e
r)

(h
ig

h
,b

u
ll
d
o
z
e
r)



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


µbelief(M) µplausibility(M)

Fig. 14.5.4 Belief measure and plausibility measure for M of Fig. 14.5.3

The belief measure adds information to the extent that all evidence of subsets with
an evidence attached is incorporated.

Another idea is followed by the plausibility measure. One asks which sets have
a non-empty intersection with the set one is about to determine the measure for.
Assuming these evidences capable of floating freely around their set — and possibly
flowing fully into the non-empty intersection mentioned —, one determines the least
upper bound of all these. The plausibility measure collects those pieces of evidence
that do not indicate trust against occurrence of the event or non-void parts of it as
they might all together convene in the set considered.

A belief measure need not be Bayesian as can be seen from row {Abe,Bob,Don}
in Fig. 14.5.4. The belief as well as the plausibility measure more or less precisely
determine their original body of evidence.

14.5.5 Proposition. Should the body of evidence be concentrated on singleton
sets only, the belief and the plausibility measure will coincide.

Proof : That M is concentrated on arguments which are singleton sets means that
M = a;M with a the partial diagonal relation describing the atoms of the ordering
Ω; see Page 144. For Ω and a one can prove (Ω ∩ Ω; ); a = a as the only other
element less or equal to an atom, namely the least one, is cut out via Ω. Then
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0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 14.5.5 Measure of Fig. 14.4.1, decomposed into purely additive part and jump part

ΩT; (Ω ∩ Ω; );M = ΩT; (Ω ∩ Ω; );a;M M = a;M

= ΩT;a;M see above
= ΩT;M again since M = a;M

One should compare this result with the former one assuming m to be a mapping
putting m := ε;M . One may also try to go in reverse direction, namely from a
measure back to a body of evidence.
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14.5.6 Definition. Let some measure µ be given and define the corresponding
strict subset containment C := ∩ Ω in the powerset. We introduce two basic
probability assignments combined with µ, namely

i) Aµ := lubRE(CT;µ), its purely additive part,
ii) Jµ := µ1 ⊗ (µ ∩ lubRE(CT;µ)), its jump part.

The purely additive part is 0E for atoms and for 0Ω. It is not a measure. The pure
jump part first shows what is assigned to atoms; in addition, it identifies where
more than the least upper bound of assignments to proper subsets is assigned. It is
not a measure.

Now some arithmetic on these parts is possible, not least providing the insight that
a measure decomposes into an additive part and a jump part.

14.5.7 Proposition. Given the present setting, we have

i) Aµ ⊕ Jµ = µ.
ii) µbelief(Jµ) = µ.

Proof : i) We may disregard multiplication with µ1. It is introduced only for some
technical reason: It converts empty rows to rows with 0E assigned. This is necessary
when adding, i.e., intersecting two upper cones and determining their greatest lower
bound. Now, they will not be empty. In total, we have obviously

µ;E = Aµ;E ∩ Jµ;E

so that the greatest lower bounds will coincide.

ii) is again omitted and, thus, left for the reader.

In the real-valued case, this result is not surprising at all as one may always de-
compose into a part continuous from the left and a jump part.

In view of these results it seems promising to investigate in which way also concepts
such as commonality, consonance, necessity measures, focal sets, and cores may be
found in the relational approach. This seems particularly interesting as also the
concepts of De Morgan triples have been transferred to the point-free relational
side.
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14.6 De Morgan Triples

The introduction of triangular norms in fuzzy sets has strongly influenced the fuzzy
set community and made it an accepted part of mathematics.

As long as the set C of criteria is comparatively small, it seems possible to work
with the powerset 2C and, thus, to take into consideration specific combinations of
criteria. If the size of C increases so as to handle a voting-type or polling-type prob-
lem, one will soon handle voters on an equal basis — at least in democracies. This
means that the measure applied must not attribute different values to differently
chosen n-element sets, e.g. That the values for an n-element set is different from
the value attached to an (n+ 1)-element set, will probably be accepted.

As a result, the technique to define the measure will be based on operations in L
alone. In total: instead of a measure on 2C we work with a unary or binary operation
on L.

Norms and conorms

Researchers have frequently studied fuzzy valuations in the interval [0, 1] and then
asked for methods of negation, conjunction, disjunction, and subjunction (implica-
tion). What they found out in the fuzzy environment was finally the concept of a
De Morgan triple, a combination of three, or even four, real-valued functions that
resemble more or less the concepts just mentioned. We here newly introduce corre-
sponding functions on the relational side. To this end, we start recalling the basic
situation for a De Morgan triple:

π ρ
T S 

E N

J 

L

LL×

Fig. 14.6.1 Basic situation for a De Morgan triple

The set of fuzzy values is L with ordering E; it corresponds, thus, to the interval
[0, 1] traditionally used. With T , two values are combined to one in the sense of
a conjunction, with S as a disjunction. While N is intended to model negation, J
shall be derived so as to resemble subjunction (implication).
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By now it is tradition to axiomatize what is intended as follows. We will later give
the corresponding relational versions.

14.6.1 Definition (t-norm). Given a set L of values, ordered by E with top ele-
ment 1 and bottom element 0, one will ask for a t-norm to work as a conjunction
operator T and demand it to be

normalized T (1, x) = x

commutative T (x, y) = T (y, x)
monotonic T (x, y) ≤ T (u, v) whenever 0 ≤ x ≤ u ≤ 1, 0 ≤ y ≤ v ≤ 1
associative T (x, T (y, z)) = T (T (x, y), z)

While this may be considered a substitute for conjunction, the following represents
disjunction.

14.6.2 Definition (t-conorm). Given a set L of values, ordered by E with top ele-
ment 1 and bottom element 0, one will ask for a t-conorm to work as a disjunction
operator S and demand it to be

normalized S(0, x) = x

commutative S(x, y) = S(y, x)
monotonic S(x, y) ≤ S(u, v) whenever 0 ≤ x ≤ u ≤ 1, 0 ≤ y ≤ v ≤ 1
associative S(x, S(y, z)) = S(S(x, y), z)

Once this is available, researchers traditionally look for negation and subjunction.
There are several versions of negation in the fuzzy community. Negation will not
be available in every lattice L; weaker versions, however, show up sufficiently often.
They are postulated as follows.

14.6.3 Definition (Strict and strong negation). One will postulate for negation
to work as a complement operator N : L −→ L that it be a bijective mapping
that is

normalized N(0) = 1 N(1) = 0
anti-monotonic x ≤ y =⇒ N(x) ≥ N(y)

Two stronger versions are traditionally studied, namely being

strictly antitonic x < y =⇒ N(x) > N(y)
strongly antitonic N(N(x)) = x
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It is then tried to model subjunction over the interval [0, 1] along a→ b = ¬a ∨ b.

14.6.4 Definition (Subjunction). One postulates for a subjunction operator
J that it be a binary mapping J : L × L −→ L that is

normalized J(0, x) = 1 J(x, 1) = 1 J(1, 0) = 0
left-antitonic x ≤ z =⇒ J(x, y) ≥ J(z, y)
right-isotonic y ≤ t =⇒ J(x, y) ≤ J(x, t)

Two possibly different subjunctions may turn out to exist. The first is defined for
given negation N and t-conorm S:

JS,N (x, y) := S(N(x), y).

Instead of starting with a t-conorm S, we could also have been starting with a
t-norm T . The result may well be another subjunction when obtained as

JT (x, y) := sup{z | T (x, z) ≤ y}

Interlude on binary mappings

We have reported on t-norms and subjunctions although it was not yet in the point-
free form preferred in the present book. So we will start translating, which, however,
requires some further technicalities concerning binary mappings. The easiest tran-
sition is for commutativity.

X 

X 
2 

Y 

π ρ

R flip

Fig. 14.6.2 Typing around commutativity

Commutative means that the result of R must not change when arguments are
flipped via the construct flip := ρ;πT ∩ π;ρT = (ρ©< π) .
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R

X × X

(X × X)× X X ×(X ×X)

X

assoc

π

ρ ππ

ρ

ρ

2

2

1

1

Fig. 14.6.3 Associativity formulated point-free

It is rather difficult to formulate associativity in a point-free fashion. While we have
mentioned at many occasions that the point-free version will be shorter (often just
one sixth in length), we find here a situation where this may not be the case.

14.6.5 Proposition and Definition (Relational conditions for associativity and
commutativity).

i) For a direct product X ×X, the construct

flip := (ρ©< π)

is a bijective mapping; it will also satisfy
— flip = flipT

— flip ;π = ρ flip ;ρ = π

— flip ;flip =
ii) A relation R : X ×X −→ Y will be called commutative if R = flip ;R.
iii) The construct

assoc := (π1;π©< (π1;ρ©< ρ1) )

is a bijective mapping for any direct product configuration as in Fig. 14.6.3; it
will also satisfy

— assoc ;flip ;assoc = flip ;assocT;flip

iv) A relation R : X ×X −→ X will be called associative if

(π1;R©< ρ1) ;R = assoc; (π2©< ρ2;R) ;R.

Proof : i) The property of being self-converse is trivial.

flip ;π = (ρ;πT ∩ π;ρT);π = ρ ∩ π;ρT;π = ρ ∩ π; = ρ ∩ = ρ

Obviously, flip is a mapping, and so is flip ;flip. When the latter is contained
in the identity, it will, thus, be identical to it:

flip ;flip ⊆ ρ;πT;π;ρT ⊆ ρ;ρT since π is univalent
flip ;flip ⊆ π;ρT;ρ;πT = π;πT since ρ is univalent
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flip ;flip ⊆ π;πT ∩ ρ;ρT = intersecting the latter two
flip ; = flip ;π; = ρ; = see above

iii) This proof is left for the reader.

X × Y ZR

3
E

Y

π
ρ

E1

X

2
E

Fig. 14.6.4 Right-monotonicity formulated point-free

We call a relation R

right-monotonic if (π;πT ∩ ρ;E2;ρT);R ⊆ R;E3

Demanding right-monotonicity is, however, just a way of writing this down eco-
nomically; using that t-norms as well as t-conorms are assumed to be commutative,
we need not propagate this restriction to the point-free level; so we may simply say
that R is

monotonic if (E1©< E2) ;R = (π;E1;πT ∩ ρ;E2;ρT);R ⊆ R;E3

De Morgan triples point-free

We use these properties of binary mappings in the relational and, thus, point-free
definition. The general setting shall always be that a set L of values is given, lattice-
ordered by E. Let 1 := lubE( ) be the top element and 0 := glbE( ) the bottom
element.

14.6.6 Definition (Relational norm and conorm). Considering the two relations
T : L × L −→ L and S : L × L −→ L, we say that

i) T is a relational norm if the following holds
— (E©× E) ;T ⊆ T ;E monotony for both sides
— ( ; 1T©< ) ;T = ( ; 0T©< ) ;T = ; 0T for gauging
— commutativity and associativity

ii) S is a relational conorm if the following holds
— (E©× E) ;S ⊆ S;E monotony for both sides
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— ( ; 0T©< ) ;S = ( ; 1T©< ) ;S = ; 1T for gauging
— commutativity and associativity

N

E

N

E

Fig. 14.6.5 De Morgan negation formulated point-free; start at filled vertex

Also in the relational case, there exist several concepts to model negation.

14.6.7 Definition (Relational negation of t-norms). One postulates for a relation
N : L −→ L to be a relational negation that it be a bijective mapping satisfying

— N T; 0 = 1 N T; 1 = 0 for normalization
— ET;N ⊆ N ;E for being antitonic

Two stronger versions are

— C;N ⊆ N ;CT for being “strictly” antitonic
— N ;N = for being a “strong” negation

When talking on conjunction, disjunction, negation, and subjunction, one has cer-
tain expectations as to how these behave relatively to one another. We do not stay,
however, in Boolean algebra any longer, so things may have changed. Not least
will we find ourselves in a situation where not just one subjunction operator is
conceivable. What we will do, nonetheless, is to specify properties the subjunction
operators should satisfy. We will avoid the word implication that seems to insist
too strongly on one thing implying another; we will rather talk about subjunction.

14.6.8 Definition (Relational subjunction). For a relation J : L×L −→ L to be
a relational subjunction one postulates that it be a mapping satisfying
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— ( ; 0T©< ) ;J = ;1T ( ©< ; 1T) ;J = ;1T ( ; 1T©< ; 0T) ;J = ;0T

— (ET©× E) ;J ⊆ J ;E anti-/isotonic

This was so far just postulational, resembling somehow that a→ b⇐⇒ ¬a∨ b. For
two cases, we show that the specification may be satisfied. They are oriented along
JS,N and JT above.

14.6.9 Proposition. Let E,S,N be given with the properties postulated; i.e., a
relational conorm S and a relational negation N , the relation

JS,N := (N©× ) ;S

may be defined, which turns out to be a subjunction, the so-called S-N -subjunction.

Proof : We start with the main property and prove gauging additions afterwards.

(ET©× E) ;J = (ET©× E) ; (N©× ) ;S by definition
= ((ET;N)©× E) ;S due to Prop. 7.2.2.ii with Point Axiom
⊆ ((N ;E)©× E) ;S follows from Def. 14.6.7 for a relational negation
= (N©× ) ; (E©× E) ;S again due to Prop. 7.2.2.ii with Point Axiom
⊆ (N©× ) ;S;E monotony of Def. 14.6.6.ii
= J ;E by definition

Only one of the gauging properties is shown; the others are left as an exercise.

(( ; 0T)©< ) ;J = (( ; 0T)©< ) ; (N©× ) ;S expanding
= (( ; 0T;N)©< ) ;S according to Prop. 7.2.5.ii
= (( ; 1T)©< ) ;S according to Prop. 14.6.7
= ; 1T according to Prop. 14.6.6.ii

But also the following more difficult construct satisfies the requirements of a sub-
junction. In this case, we try to explain the construction in more detail. With the
first ρ, we proceed to y, E-below which we consider an arbitrary result T (u, z) of
T . The latter is then traced back to its argument pair (u, z). Intersecting, the first
component will stay x. Projecting with ρ, we pick out the result z.

(x,y)(π;πT

(x,?) ∩ ρy;ET

T (u,z)
;T T

(u,z))(x,z);ρz

Therefore we consider

(π;πT ∩ ρ;ET;T T);ρ

to which we apply the lub operator rowwise.

14.6.10 Proposition. Let E, T be given with the properties postulated above.
Then the relation
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JT = lubRE
[
(π;πT ∩ ρ;ET;T T);ρ

]
may be defined, which turns out to be a subjunction, the so-called T -subjunction.

Proof : The nontrivial proof is left to the reader.

In the next two examples, we try to give intuition for these propositions.

14.6.11 Example. Consider the attempt to define something as Boolean opera-
tions on the three element qualifications {low, medium, high}. Based on E, one will
try to define conjunction and disjunction as well as negation.

E =

lo
w

m
e
d
iu

m
h
ig

h

low
medium

high

(
1 1 1
0 1 1
0 0 1

)
T =

lo
w

m
e
d
iu

m
h
ig

h

(low,low)
(medium,low)
(low,medium)

(high,low)
(medium,medium)

(low,high)
(high,medium)
(medium,high)

(high,high)


1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 1 0
0 0 1

 S =

lo
w

m
e
d
iu

m
h
ig

h
1 0 0
0 1 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1



N =

lo
w
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h

low
medium

high

(
0 0 1
0 1 0
1 0 0

)
JS,N =

lo
w
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h

(low,low)
(medium,low)
(low,medium)

(high,low)
(medium,medium)

(low,high)
(high,medium)
(medium,high)

(high,high)


0 0 1
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1

 JT =

lo
w

m
e
d
iu

m
h
ig

h
0 0 1
1 0 0
0 0 1
1 0 0
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1


Fig. 14.6.6 Subjunctions JS,N and JT derived from E, T, S,N

According to Prop. 14.6.9 and Prop. 14.6.10, we have evaluated the relations so as
to obtain the two forms of subjunction shown.

14.6.12 Example. In the following example we use a very specific ordering, namely
the powerset ordering of a 3-element set. It will turn out that in this case both sub-
junctions coincide. The powerset ordering is, of course, highly regular so that a
special result could be expected.
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E=

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

 T =

[[1,1,1,1,1,1,1,1],
[1,2,1,2,1,2,1,2],
[1,1,3,3,1,1,3,3],
[1,2,3,4,1,2,3,4],
[1,1,1,1,5,5,5,5],
[1,2,1,2,5,6,5,6],
[1,1,3,3,5,5,7,7],
[1,2,3,4,5,6,7,8]]

S =

[[1,2,3,4,5,6,7,8],
[2,2,4,4,6,6,8,8],
[3,4,3,4,7,8,7,8],
[4,4,4,4,8,8,8,8],
[5,6,7,8,5,6,7,8],
[6,6,8,8,6,6,8,8],
[7,8,7,8,7,8,7,8],
[8,8,8,8,8,8,8,8]]

N =

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8


0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

 JS,N =

[[8,8,8,8,8,8,8,8],
[7,8,7,8,7,8,7,8],
[6,6,8,8,6,6,8,8],
[5,6,7,8,5,6,7,8],
[4,4,4,4,8,8,8,8],
[3,4,3,4,7,8,7,8],
[2,2,4,4,6,6,8,8],
[1,2,3,4,5,6,7,8]]

= JT

Fig. 14.6.7 Subjunctions JS,N = JT derived from E, T, S,N

One will have noticed that here the result is given in a different style: not as a very
sparse but voluminous Boolean matrix, but as a table for the function.

It is now sufficiently sketched in which way one may work with relational qualifica-
tions so as to replace the traditionally used fuzzy ones. The main point of criticism
concerning fuzzy methods is that every valuation is coded in the interval [0, 1], and
that therefore diverging, antagonistic, and counter-running criteria cannot be kept
sufficiently separate. Using the concept of relational norms and conorms, one is now
in a position to try more realistic tasks.

Exercises

14.6.1 Prove or disprove providing a counter example: R is commutative precisely
when πT;R = ρT;R.
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Relational Graph Theory

Many of the problems handled in applications are traditionally formulated in terms
of graphs. This means that often graphs will be drawn and pictorial reasoning
takes place. On one hand, this is nice and intuitive when executed with chalk on
a blackboard. On the other hand there is a considerable gap from this point to
treating the problem on a computer. Often ad hoc programs are written in which
more time is spent for I/O handling than for precision of the algorithm. Graphs are
well-suited to visualize a result, even with possibilities to generate the graph via a
graph drawing program. What is nearly impossible is the input of a problem given
by means of a graph — when not using RelView’s interactive graph input (see
[BSW03], e.g.). In such cases usually some sort of a relational interpretation of the
respective graph is generated and input in some way.

We will treat reducibility and irreducibility first, mentioning also partial decompos-
ability. Then difunctional relations are studied in the homogeneous context which
provides additional results. The main topic of this chapter is to provide algorithms
to determine relationally specified subsets of a graph or relation in a declarative
way.

15.1 Reducibility and Irreducibility

We are going to study reducibility and irreducibility, introduced in a phenomeno-
logical form already as Def. 6.4.1, now in some more detail. Many of these results for
relations stem from Georg Frobenius [Fro12] and his study of eigenvalues of non-
negative real-valued matrices; a comprehensive presentation is given in [Min88].

15.1.1 Definition. We call a homogeneous relation

A reducible :⇐⇒ There exists a vector =/ r=/ with A;r ⊆ r;
otherwise A is called irreducible.
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A relation A on a set X is, thus, called reducible if there exists an =/ r=/ , which
reduces A, i.e., A;r ⊆ r in the sense of Def. 6.4.1. Arrows of the graph according to
A ending in the subset r will always start in r. Fig. 15.1.1 indicates this with the
dashed line convention. It is easy to see that the reducing vectors r, in this case
including the trivial ones r = and r = , form a lattice.

rr

Fig. 15.1.1 Schema of a reducible relation with dashed arrow convention

Using Schröder’s rule, a relation A is reduced by a set r precisely when its tranpose
AT is reduced by r: A;r ⊆ r ⇐⇒ AT;r ⊆ r. Therefore, a relation is reducible precisely
when its tranpose is.

If such a (nontrivial, i.e., =/ r=/ ) vector r does not exist, A is called irreducible.
Irreducible means that A is reduced by precisely two vectors, namely by r =
and r = . In particular, we have for an irreducible A that A;A∗ ⊆ A∗, meaning
columnwise irreducible, so that A∗ = , since obviously A∗=/ . Therefore, one can
translate this into the language of graph theory:

A irreducible ⇐⇒ 1-graph with associated relation A is strongly connected.

An irreducible relation A will necessarily be total: A certainly contracts A; since
A;A; ⊆ A; . From irreducibility we obtain that A; = or A; = . The former
would mean A = , so that A would contract every relation x, and, thus, violate
irreducibility. Therefore, only the latter is possible, i.e., A is total.

For a reducible relation A and arbitrary k, also the powers Ak are reducible because
Ak;x ⊆ Ak−1;x ⊆ . . . ⊆ A;x ⊆ x. However, Fig. 15.1.2 provides an example of an
irreducible relation A with A2 reducible. Therefore, the property of being irreducible
is not multiplicative.

A =

(
0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

) (
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

)
= A2

Fig. 15.1.2 Irreducible relation with reducible square

The following applies to all finite n × n-relations; later, we will use it mainly for
irreducible ones.

15.1.2 Proposition. If A is any finite n× n-relation, then
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An ⊆ ( ∪ A)n−1 and ( ∪ A)n−1 = A∗.

Proof : It is trivial that Ai ⊆ A∗ for all i ≥ 0. By the pigeon hole principle, i.e.,
using finiteness, always An ⊆ ( ∪ A)n−1 as otherwise n + 1 vertices would be
needed to delimit a non-selfcrossing path of length n while only n distinct vertices
are available.

Irreducible relations satisfy further important formulae; see, e.g., Thm. 1.1.2 of
[BR96].

15.1.3 Theorem. For any finite n× n-relation A the following hold:

i) A irreducible ⇐⇒ ( ∪ A)n−1 = ⇐⇒ A; ( ∪ A)n−1 =

ii) A irreducible =⇒ There exists an exponent k such that ⊆ Ak.

Proof : i) We start with the first equivalence. By definition, A is irreducible, if
we have for all vectors x=/ that A;x ⊆ x implies x = . Now, by the preceding
proposition

A; ( ∪ A)n−1 ⊆ ( ∪ A)n−1

so that indeed ( ∪ A)n−1 = .

For the other direction assume A reducible, so that =/ x=/ exists with A;x ⊆ x.
Then also Ak ;x ⊆ x for arbitrary k. This is a contradiction, since it would follow
that also ( ∪A)n−1;x ⊆ x resulting in ;x ⊆ x and, in the case of Boolean matrices,
i.e., with Tarski’s rule satisfied, in x = , a contradiction.

Now we prove the second equivalence of which “⇐=” is trivial when remembering
Prop. 15.1.2. For “=⇒”, we also use Prop. 15.1.2, ( ∪ A)n−1 ⊇ A; ( ∪ A)n−1, so
that also A; ( ∪ A)n−1 ⊇ A;A; ( ∪ A)n−1. Since A is irreducible, this leads to
A; ( ∪ A)n−1 being equal to or , from which only the latter is possible.

ii) Consider the irreducible n×n-relation A and its powers. According to (i), there
exists for every row number j a least power 1 ≤ pj ≤ n with position (j, j) ∈ Apj .
For the least common multiple p of all these pj we have ⊆ Ap, and p is the smallest
positive number with this property.

For irreducible relations yet a further distinction can be made; see, e.g., Thm. 2.5
of [Var62].

15.1.4 Definition. An irreducible relation A is called primitive if there exists
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some integer k ≥ 1 such that Ak = . If this is not the case, the irreducible relation
may be called cyclic of order k, indicating that the (infinitely many) powers
A,A2, A3 . . . reproduce cyclically and k is the greatest common divisor of all the
periods occurring.

We first observe powers of primitive relations in Fig. 15.1.3.

0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0





0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 1 1 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0
1 1 0 1 0 1 1 0 1 0 1 1 1
1 0 0 1 0 1 1 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 1 0 1 1 1





1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 0
0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 1 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1
1 0 0 1 0 1 1 0 1 0 1 1 1
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 0 1 0 1 1 0 1 1 1 1 1




1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1





1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1





1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1


Fig. 15.1.3 Powers of a primitive irreducible relation

15.1.5 Proposition. A relation R is primitive precisely when its powers Rk are
irreducible for all k ≥ 1.

Proof : “=⇒”: Assume Rk ;x ⊆ x with x=/ and x=/ for some k ≥ 1. Then we
have also Rnk;x ⊆ R(n−1)k;x . . . ⊆ Rk;x ⊆ x for all n ≥ 1. This contradicts primitivity
of R because from some index on all powers of a primitive R should have been .

“⇐=”: Assume R were not primitive, i.e., Rk =/ for all k. It is impossible for any
Rk to have a column since this would directly show reducibility of Rk. It follows
from finiteness that there will exist identical powers Rl = Rk =/ with l > k, e.g.
This results in Rl−k ;Rk = Rk. Power Rl−k, therefore, is reduced by all columns
of Rk — and at least one column which is unequal . (See, e.g., Thm. 1.8.2 of
[BR96])
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Now we observe how powers of a cyclic relation behave.

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9


0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0


original relation with
rearranged and
subdivided version

5 6 8 9 1 7 2 3 4
5
6
8
9
1
7
2
3
4


0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


Fig. 15.1.4 A cyclic irreducible relation

One will not directly be able to observe the essence of a cyclic relation in Fig. 15.1.5.
Using our technique of algebraic visualization however, one may grasp what it
means: Block side-diagonals run cyclically from left to the right and get gradually
filled. In a sense this applies also to the irreducible cyclic relation of Fig. 15.1.4,
with the additional property that there is just a 1-cycle.

0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0




0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0




1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0




0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0




0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0




1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 1 1




0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0




0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0




1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1




0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0




0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0




1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1


Fig. 15.1.5 Powers of a cyclic relation

Reducible permutations

It is interesting to look for irreducibility of permutations P . We observe P ;x = x

for x := (P k ∩ ); and arbitrary k because obviously

P ;x = P ; (P k ∩ ); = P ; (P k ∩ ); = (P ;P k ∩ P ); = (P k ∩ );P ;
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= (P k ∩ ); = x.

due to the doublesided mapping properties of P . For k = 0, e.g., this means x =
and is rather trivial. Also cases with P k ∩ = resulting in x = are trivial.

0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0




0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0




1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1




0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0




0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0




1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1




0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0




0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0




1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1




0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0




0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0




1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1


Fig. 15.1.6 Powers of the cyclic relation of Fig. 15.1.4 in nicely arranged form

The permutation P is reducible, namely reduced by x, when neither P k ∩ =
nor P k ∩ = . In recalling permutations, every cycle of P of length c will lead to
P c ∩ =/ . If k is the least common multiple of all cycle lengths occurring in P ,
obviously P k = . If there is just one cycle — as for the cyclic successor relation
for n > 1 — the permutation P is irreducible. Other permutations with more than
one cycle are reducible. 0 1 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0


Fig. 15.1.7 Irreducible and reducible permutation

Partly decomposable relations

We now investigate a property that is not so commonly known, but is also related to
finding smaller parts of a relation. In a sense, we switch to permuting independently.



402 Relational Graph Theory

15.1.6 Definition. Let a homogeneous relation A be given. We call

A partly decomposable :⇐⇒ There exists a vector =/ x=/ and a
permutation P with A;x ⊆ P ;x

If not partly decomposable, it is called fully or totally indecomposable.

The most prominent property of partly decomposable relations is that, given x and
P , it becomes possible to rearrange the relation into the following schema

P ′;x =
( )

P ′′;P ;x =
( )

Rows and columns are permuted independently so as to bring 0 ’s of x to the initial
part of the vector with some permutation P ′ and afterwards in addition bring 0 ’s
of P ;x to the front with some permutation P ′′. This being achieved, the structure
of A;x ⊆ P ;x is now

P ′′;A;P ′
T

;

( )
⊆
( )

=⇒ P ′′;A;P ′
T =

(
∗
∗ ∗

)
In other words: There exists a vector =/ x=/ such that x reduces P ′′ ;A; P ′

T;
formally: P ′′;A;P ′

T
;x ⊆ x. This in turn can only be the case with the matrix above,

i.e., with an empty zone in the upper right. The permutation P in the definition
is not really related to A. All permutations P are tested, and it suffices that one
exists. This makes it a counting argument. For a fully indecomposable relation,
thus, the number of entries 1 in x doesn’t suffice to cover the number of 1 ’s in A;x.(

0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

) (
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

)
Fig. 15.1.8 A fully indecomposable relation with rearrangement to side diagonal

With rows and columns permuted independently, the left relation can be transferred
into the right one. The latter shows a permutation which, when removed, leaves
another permutation.

In numerical mathematics, a fully indecomposable shape of a matrix has quite
unpleasant properties. If it should be used for iteration purposes, full indecom-
posability would mean that any tiny alteration is strongly distributed during this
iteration and not confined in its implied changes to a small region.

15.1.7 Proposition.

i) A fully indecomposable ⇐⇒ Except for x = , x = , the product A;x has
strictly more 1’s than x.

ii) A fully indecomposable =⇒ A satisfies the Hall-condition
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iii) A fully indecomposable =⇒ A contains a permutation
iv) A fully indecomposable =⇒ A is chainable
v) A,B fully indecomposable =⇒ A;B fully indecomposable

Proof : i) We write the definition of being partly decomposable more formally:

∃x : x=/ ∧ x=/ ∧
[
∃P : A;x ⊆ P ;x

]
This is now negated to obtain the case of being fully indecomposable

∀x : x = ∨ x = ∨
[
∀P : A;x⊆/ P ;x

]
We observe that the permutation P has not really an interconnection with the
problem, so that it is nothing more than a counting argument saying |A;x| > |x|.

ii) The Hall-condition Def. 10.2.3 demands precisely what has just been shown.

iii) The famous assignment theorem asserts existence of a matching when the Hall
condition is satisfied according to (ii).

iv) We show in addition to (iii) that a fully indecomposable relation is necessarily
chainable. Assume it were not; then there exists, according to Prop. 10.4.9, a pair
s, t that is non-trivial, i.e., neither s = nor t = satisfying

A; t ⊆ s and A; t ⊆ s.
In such a case, A; t ⊆ s ⊆ A; t ⊆ s ⊆ A; t follows from the two containments. This
means that = A; t, or else A; t = ⊆ t, a contradiction to full indecomposability.

v) With (iii), A as well as B contain a permutation, i.e., A ⊇ PA and B ⊇ PB .
Then A;B ⊇ PA;PB , which again is a permutation.

There exists an interesting link to real-valued matrices that leads to many impor-
tant applications. Let us call a non-negative matrix B ∈ IRn×n, equivalent with
a mapping B : X × X → IR, with row- as well as column-sums always equal to
1 a doubly stochastic matrix. We say that a relation R : X −→ X has dou-
bly stochastic pattern provided that there exists a doubly stochastic matrix B

such that Rik = 1 if and only if Bik > 0. It is a remarkble fact that every fully
indecomposable relation has doubly stochastic pattern.

15.2 Homogeneous Difunctional Relations

Difunctional relations have already been mentioned at several occasions; in partic-
ular defining them in a phenomenological way with Def. 5.4.5, and investigating
their rectangle-based properties in Sect. 10.4. Here, the difunctional relation will
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have to be homogeneous in addition, and permutations will always be executed
simultaneously. For this case, we also relate difunctionality with irreducibility.

15.2.1 Proposition. Let an arbitrary finite homogeneous relation R be given.
Then in addition to the left and right equivalences Ω,Ω′ of Prop. 5.5.4 also Θ :=
(Ω ∪ Ω′)∗, G := Θ;R, and G′ := R; Θ may be formed.

i) Θ is an equivalence.
ii) G;GT ⊆ Θ and G′

T
;G′ ⊆ Θ

iii) G as well as G′ are difunctional.

Proof : i) is trivial since Ω,Ω′ are symmetric by construction.

ii) G;GT = Θ;R; (Θ;R)T = Θ;R;RT; Θ ⊆ Θ; Ω; Θ ⊆ Θ; Θ; Θ = Θ

iii) G;GT;G ⊆ Θ;G = Θ; Θ;R = Θ;R = G, using (ii).

It need not be that GT;G ⊆ Θ; see the example R =
(

0 0 0
0 1 1
1 0 0

)
with G =

(
0 0 0
1 1 1
1 1 1

)
. Nor

need the pair (Θ,Θ) be an R-congruence as Fig. 15.2.1 shows, where also G=/ G′.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0



1 1
1

1
3

2 3 6 9 1
2

4 5 7 8 1
0

1
11
13
2
3
6
9

12
4
5
7
8

10



1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



1 1
1

1
3

2 3 6 9 1
2

4 5 7 8 1
0

0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


R Θ Rrearr

1 1
1

1
3

2 3 6 9 1
2

4 5 7 8 1
0

1
11
13
2
3
6
9

12
4
5
7
8

10



0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



1 1
1

1
3

2 3 6 9 1
2

4 5 7 8 1
0

1
11
13
2
3
6
9

12
4
5
7
8

10



0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


G G′

Fig. 15.2.1 A relation R with Θ, rearranged according to it, and G,G′
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One easily observes, that the relation is not yet block-wise injective, nor need it be
block-wise univalent. Also, G,G′ are difunctional, but with differing block-schemes.
The blocks of G,G′ are not yet completely filled, but only filled row- or column-
wise, respectively. So by applying the permutations simultaneously, we have lost
some of the properties the relations enjoyed when permuting independently in the
heterogeneous case. In the next theorem, we define a bigger congruence where we
get back what has just been lost.

15.2.2 Proposition. Let a finite and homogeneous relation R be given, and con-
sider the constructs Ω,Ω′ of Prop. 5.5.4 and Θ := (Ω ∪ Ω′)∗ as in Prop. 15.2.1.
Define O as the stationary value of the iteration

X 7→ τ(X) := (X ∪ R;X;RT ∪ RT;X;R)∗

started with X0 := .

i) O is an equivalence containing Ω,Ω′, and Θ.
ii) “Considered modulo O”, the relation R is

univalent RT;O;R ⊆ O, and
injective R;O;RT ⊆ O.

iii) H := O;R;O is difunctional and commutes with O, i.e., O;H = H ;O, so that
the pair (O,O) constitutes an H-congruence.

Proof : i) The isotone iteration X 7→ τ(X) will be stationary after a finite number
of steps with a relation O satisfying ⊆ O = τ(O) = (O∪R;O;RT ∪RT;O;R)∗. Thus,
O is reflexive, symmetric, and transitive by construction, i.e., it is an equivalence.
This equivalence certainly contains R;RT, and therefore, Ω. Also Ω′ ⊆ O in an
analogous way, so that it also contains Θ.

ii) is trivial.

iii) H;HT;H = O;R;O; (O;R;O)T;O;R;O = O;R;O;RT;O;R;O ⊆ O;R;O = H

O;H = O;O;R;O = O;R;O = O;R;O;O = H;O

Another characterization is

O = inf
{
Q | Q equivalence, Q;R ⊆ R;Q, RT;R ⊆ Q, R;RT ⊆ Q

}
.

So (O,O) is the smallest R-congruence above (Ω,Ω′).
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1 2 3 4 5 6 7 8 91011
1
2
3
4
5
6
7
8
9

10
11



0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


3 4 810 2 5 9 1 7 611

3
4
8

10
2
5
9
1
7
6

11



0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



3 4 810 2 5 9 1 7 611
3
4
8

10
2
5
9
1
7
6

11



1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



3 4 810 2 5 9 1 7 611
3
4
8

10
2
5
9
1
7
6

11



0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


Fig. 15.2.2 A relation R with H, O, and itself rearranged according to O

One will in the third relation H of Fig. 15.2.2 observe a block-successor form with
a 2-cycle first and then a terminating strand of 4.

Very often O will be much too big an equivalence, close to , to be interesting.
There are special cases, however, where we encounter the well-known Moore-Penrose
configuration again.

1 2 3 4 5 6 7 8 9101112131415161718192021
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21



0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0



1 8 91120 2 3131418 4 6 71216101519 51721
1
8
9

11
20
2
3

13
14
18
4
6
7

12
16
10
15
19
5

17
21



0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 15.2.3 An irreducible and cyclic relation in original and in rearranged form
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Irreducibility of the difunctional closure

In the present homogeneous scenario where we permute rows and columns simul-
taneously, we may also study difunctionality together with irreducibility.

15.2.3 Proposition. Assume the settings of Prop. 15.2.2, and assume that R in
addition be irreducible. Then the following hold:

i) H is irreducible.
ii) H is total and surjective making it a 1 : 1-correspondence of O-classes.
iii) HT acts as an “inverse” of H in as far as

HT;H = O HT;H2 = H HT;H3 = H2 . . .

iv) There exists a power k such that Rk = O and Rk+1 = H.

Proof : i) Assumed H;x ⊆ x to hold, then all the more R;x ⊆ x. If it were the case
that =/ x=/ , we would obtain that R were reducible, i.e., a contradiction.

ii) As proved shortly after Def. 15.1.1, an irreducible relation R is total. This holds
for O;R;O as well. Surjectivity is shown analogously. Dividing out equivalences in
Prop. 15.2.2.ii, we obtain the 1 : 1-correspondence.

iii) We now deduce that HT;H = O, since with surjectivity and definition of O
HT;H = O;RT;O;O;R;O = O;RT;O;R;O = O;O;O = O.

Then also by induction

HT;Hk+1 = HT;H;Hk = O;Hk = Hk.

iv) We prove a property we had already on Page 401 for permutations proper, i.e.,
with all block-widths 1: The construct x := (Hk ∩ O); satisfies H ;x ⊆ x for all
powers k since

H;x = H; (Hk ∩ O); by definition
= H; (Hk ∩ O); see (∗) below
= (Hk+1 ∩ H); see (†) below
= (Hk ∩ O);H; see (†) again
= (Hk ∩ O); = x

First, we concentrate on proving (∗): From totality of H we have = H ; =
H;X ∪ H;X so that always H;X ⊆ H;X. The opposite inclusion is satisfied for X
satisfying O;X = X, since HT;H;X ⊆ O;X = X.

Secondly, we convince ourselves concerning (†): With the Dedekind rule

H; (Hk ∩ O) ⊆ H;Hk ∩ H ⊆ (H ∩ H;HkT); (Hk ∩ HT;H)
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⊆ H; (Hk ∩ HT;H) = H; (Hk ∩ O)

giving equality everywhere in between.

We have, after all, that R; x ⊆ H ; x = x, regardless of how k has been chosen.
However, R is irreducible, which means that no x unequal to , is allowed to
occur. This restricts Hk to be either O or to be disjoint therefrom.

An example is provided with Fig. 15.2.3. The relation H is obtained on the right
with the respective boxes of the 5-cycle filled. It is certainly difunctional and has the
Moore-Penrose property. The relation H is, however, not the difunctional closure
of R. One may observe this at the rightmost non-empty 3 × 3-block which is not
chainable. What has been obtained in Fig. 15.2.3 by simultaneous permutation is
a block structure that is very close to the difunctional one with a block diagonal.
When for hdifu(R) permuting rows and columns independently, there would in this
case one more block show up, namely the rightmost splitted into two: {10} × {21}
and {15, 19} × {5, 17}.

Exercises

15.2.1 Assume a finite irreducible relation A : X −→ X and a vector y ⊆ X

satisfying ⊂
=/ y ⊂=/ . Prove that ( ∪ A);y has strictly more 1 ’s than y.

15.2.2 Assume a finite relation

A =


A1 B1 . . .

A2 B2 . . .
...

...
. . .

Ar−1 Br−1

Br . . . Ar


with Ai square and fully indecomposable and Bi =/ . Prove that in this case A will
be fully indecomposable.

15.3 Subsets Characterized by Relational Properties

Often in this book, we have encountered applications where subsets have been
characterized by some property: chains, antichains, kernels, cliques, to mention just
a few. It may, however, also be a stable set in a simple graph or an independent
set of vertices in a hypergraph. Sometimes one is also interested to find all the sets
with the respective property. It is this point we address here in a synchronizing
way. Sometimes this is a rather trivial task while in other cases even the existence
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of some set may not be evident in the first place, and one would be happy getting
at least one.

There is an additional case to be mentioned. Sometimes one has to consider sets of
subsets, but is mainly interested in their supremum, e.g., as for the initial part of
a relation. Also such cases are included.

A big portion of what is presented here rests on independent practical work by
Rudolf Berghammer and his RelView-group. This research was heavily application-
driven. Methods sometimes scale up to spectacular size. As an example, the deter-
mination of kernels may be considered — an NP-complete and thus inherently
difficult problem. For a broad class of graphs, kernels could exactly be computed
for up to 300 vertices, making this a selection out of a set of size 2300.

What we present here is some sort of “declarative programming” as experienced
at other occasions with functional programming. It serves not least the purpose
of separating the concerns of proof and correctness as opposed to “algorithmics”
dealing with efficiency in the first place.

The homogeneous case

We are going to determine subsets of vertices of a graph satisfying certain properties,
and strive for a standard treatment of such tasks so that the respective requirement
occurs as a parameter.

To explain the method, let us take the stable sets, the first case of the following list,
as an example. Stable sets s with respect to a homogeneous relation B, i.e., a simple
graph, are characterized by B;s ⊆ s. How can one determine all stable sets? First,
the condition is applied to all sets simultaneously, using the membership relation
ε. Whenever a set, that is a column of ε, satisfies the condition, the corresponding
column of B;ε ∪ ε will be full of 1 ’s — simply recalling that a→ b ⇐⇒ ¬a ∨ b .
When a universal relation is multiplied from the left to the negative of this relation,
the columns corresponding to the condition will be zero. To mark them positively,
this result is negated. It is also transposed because we work mainly with column
vectors to represent subsets. Therefore we obtain

v := (B;ε ∩ ε)T;

which characterizes the stable sets along the powerset.

There is another interpretation for this result that goes back to the definition of
residuals in Def. 4.4.2, where we have pointed out that the left residual R\S pre-
cisely marks which column of R is contained in which column of S. Having this in
mind, one may identify v also as a left residual, namely as v = (B;ε ∩ ε)\ .
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Most of the following list explains itself in this way. Sometimes, however, two con-
ditions have to be satisfied. Then of course an intersection has to be taken, which
is easy to observe in most cases.

For all the different set characterizations in the table, the first line describes the
task; the second line shows the definition for just one set first, then the vector of
all, and finally refers to the location where this has been treated.

stable subset s of a 1-graph B : X −→ X

B;s ⊆ s v := (B;ε ∩ ε)T; Def. 6.6.1

absorbant subset x of a 1-graph B : X −→ X

x ⊆ B;x v := (ε ∩ B;ε)T; Def. 6.6.2

kernel s in a 1-graph B : X −→ X

B;s = s v :=
[
(ε ∩ B;ε) ∪

(
ε ∩ B;ε)

]T
; Def. 6.6.3

covering point-set v in a 1-graph B : X −→ X

B;v ⊆ v v := (B;ε ∩ ε)T; Def. 6.6.4

clique u in a reflexive and symmetric 1-graph R : X −→ X

R;u ⊆ u v := (R;ε ∩ ε)T; Def. 6.2.6

maxclique u in a reflexive and symmetric 1-graph

R;u = u v :=
[
(ε ∩ R;ε) ∪ (ε ∩ R;ε)

]T
; Prop. 10.1.5

reducing vector r for a homogeneous relation A : X −→ X

A;r ⊆ r v := (A;ε ∩ ε)T; Def. 6.4.1.i

contracting vector q for a homogeneous relation A : X −→ X

AT;q ⊆ q v := (AT;ε ∩ ε)T; Def. 6.4.1.ii

all chains v in an order E : X −→ X

E ∪ ET;v ⊆ v call :=
(
E ∪ ET;ε ∩ ε

)T
; Def. 9.5.7.i
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all longest chains v in an order E : X −→ X

maxΩ(call) with Ω the powerset ordering on 2X Def. 9.5.7.i

all antichains v in a strictorder C : X −→ X

C;v ⊆ v aall := (C;ε ∩ ε)T; Def. 9.5.7.ii

all cardinality-maximum antichains v in a strictorder C : X −→ X

maxO||(aall) with O|| the cardinality-preorder on 2X Def. 9.5.7.ii

all progressively infinite subsets y for a homogeneous relation A : X −→ X

y ⊆ A;y v := (ε ∩ A;ε)T; Def. 6.5.1.i

all complement-expanded subsets v for a homogeneous relation A : X −→ X

v ⊆ A;v c := (ε ∩ A;ε)T; Def. 6.5.1.ii

the initial part of a homogeneous relation A : X −→ X

maxΩ(c) with Ω the powerset ordering on 2X Def. 16.2.1

A closer look at these terms shows many similarities. An antichain is a clique in
the negation of the respective ordering, e.g.

The heterogeneous case

Also pairs of sets have frequently been used as, e.g., independent pairs or cover-
ing pairs of sets. It is not that simple to characterize pairs in a similar way. But
sometimes the elements of these pairs are heavily interrelated as, e.g., the non-
enlargeable rectangles in a relation. In such cases mainly a condition for one of the
two has to be observed, and these cases are included in the following table. Then,
instead of a definition, a proposition is mentioned where the latter is stated.

An overview shows that the following entries mean — up to minor modifications
— mainly the same. All the more difficult is it sometimes to distinguish between
the variants.

all vertical parts s of a minimal covering pair of sets of a relation A : X −→ Y

A;AT;s = s v :=
[
(A;AT;ε ∩ ε) ∪ (A;AT;ε ∩ ε)

]T
; Prop. 10.2.1.i
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all horizontal parts t of a minimal covering pair of sets of a relation R : X −→ Y

AT;A; t = t v :=
[
(AT;A;ε ∩ ε) ∪ (AT;A;ε ∩ ε)

]T
; Prop. 10.2.1.i

all vertical parts u of a diclique in a relation R : X −→ Y

R;RT;u = u v :=
[
(R;RT;ε ∩ ε) ∪ (R;RT;ε ∩ ε)

]T
; Prop. 10.1.2.ii

all horizontal parts v of a diclique in a relation R : X −→ Y

RT;R;v = v v :=
[
(RT;R;ε ∩ ε) ∪ (RT;R;ε ∩ ε)

]T
; Prop. 10.1.2.ii

all vertical parts s of a maximal independent pair of sets of a relation A : X −→ Y

A;AT;s = s v :=
[
(A;AT;ε ∩ ε) ∪ (A;AT;ε ∩ ε)

]T
; Prop. 10.2.1.ii

all horizontal parts t of a maximal independent pair of sets of a relation A : X −→ Y

AT;A; t = t v :=
[
(AT;A;ε ∩ ε) ∪ (AT;A;ε ∩ ε)

]T
; Prop. 10.2.1.ii

The heterogeneous case with two argument relations

Among the many sets one is interested in, are deadlocks and traps in Petri nets.
From a sufficently abstract level, a Petri net is nothing else then a bipartitioned
graph, i.e., a pair R : X −→ Y S : Y −→ X of counter-running relations with
X usually called the set of places and Y correspondingly the set of transitions.
During the process of modelling processes, it is important that the processes will
not terminate unexpectedly, e.g. So liveness of the processes should provably be
guaranteed. From this requirement comes the interest in finding possible traps or
deadlocks in Petri nets to which we will now contribute.

To this end, one says that a set v ⊆ X is a deadlock when its S-predecessor set
s contained in the R-successor set. Further, a set w ⊆ Y is called a trap when its
R-successor set is contained in the S-predecessor set. In relational form, this reeads

v deadlock ⇐⇒ S;v ⊆ RT;v

v trap ⇐⇒ RT;v ⊆ S;v

15.3.1 Example. We provide deadlock examples where only the smallest non-
empty deadlocks are computed. It is easy to convince onself that unions of deadlocks
are deadlocks again.
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R =
a b c d e f g

1
2
3
4
5
6
7
8
9


0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 1
1 0 0 0 0 1 0

 S =

1 2 3 4 5 6 7 8 9

a
b
c
d
e
f
g


0 0 1 0 0 0 0 1 0
0 1 1 1 0 1 0 0 0
0 0 1 0 1 0 0 1 0
1 0 1 0 0 0 1 1 0
1 0 1 1 0 1 0 1 1
0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0



{b
}→

{d
}→

{e
,f
}→

{e
,g
}→

a
b
c
d
e
f
g


0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1


Fig. 15.3.1 All minimal non-empty deadlocks of a random Petri net

Also in this case, a single term allows to determine all deadlocks or traps, respec-
tively:

deadlock of the Petri net R : X −→ Y S : Y −→ X

S;v ⊆ RT;v vs := (εT

X
;ST ∪ εT

X
;R)/

traps in the Petri net R : X −→ Y S : Y −→ X

RT;v ⊆ S;v vs := (εT

X
;R ∪ εT

X
;ST)/

Hammocks

While one usually knows what a hammock is like in everyday life, one may have
problems to identify them in graph theory or even in programming. Pictorially,
however, it is the same, namely something that hangs fastened at two points.

Fig. 15.3.2 A hammock in a graph

When one wishes to decompose a given big graph in order to have pieces of manage-
able size, one will sometimes look for such hammocks. Not least since legacy code
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of early go to-style programming has to be reworked so as to arrive at modern
clearly specified code, one checks for labels and go to statements and builds a usu-
ally very big graph. When one manages to find a hammock, there is a chance that
this hammock may by abstracted to a function. This function will then be handled
separately and only the calls will remain in the graph, which are, thus, reduced to
just an arrow.

Even when modelling with a graph, it is often helpful to identify a hammock. One is
then in a position to draw the hammock separately and to insert an arrow instead,
may be marked with reference to the separately drawn picture. This is, thus, a
means of decomposing and reducing complexity.

According to, e.g., [BGS93], a hammock is determined by two vertices, namely the
ingoing and the outgoing one. So we begin to ask which formula describes the proper
successors of subset u — first simply conceived as a column vector — according to
a relation R; obviously

sR(u) = u ∩ RT;u.

We apply this mapping simultaneously to all subsets. The subsets conceived as
elements shall be the row entries, so we form

[sR(ε)]T.

Interesting for our current purpose are those cases which constitute the source
and the sink of a hammock, i.e., where successors or predecessors, respectively are
uniquely determined. For this we employ the construct of a univalent part of a
relation

upa(R) := R ∩ R; = syq (RT, )

as defined in [SS89, SS93]. Intersecting this for successors (R) and predecessors (RT)
and demanding source and sink to be different, we obtain the vector characterizing
the hammocks as

hammocks(R) := [upa(sR(ε)T) ∩ upa(sRT(ε)T); ];

Feedback vertex sets

There exist many more tasks of this type, from which we mention yet another
one: Let a directed graph be given and consider all its cycles. A feedback vertex
set is defined to be a subset of the vertex set containing at least one vertex from
every cycle. Such feedback vertex sets have a diversity of important applications
such as for switching circuits, signal flow graphs, electrical networks, and constraint
satisfaction problems. Also feedback vertex sets have been determined successfully
with RelView. One is mainly interested in minimal such sets; they are, however,
difficult to compute.
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Standard Galois Mechanisms

The work in this chapter — although stemming from various application fields —
is characterized by two antitone mappings leading in opposite direction that co-
operate in a certain way. In most cases they are related with one or more relations
which are often heterogeneous. An iteration leads to a fixed point of a Galois cor-
respondence. Important classes of applications lead to these investigations: Trying
to find out where a program terminates, and thus correctness considerations, also
invoke such iterations. Looking for the solution of games is accompanied by these
iterations. Applying the Hungarian alternating chain method to find maximum
matchings or to solve assignment problems subsumes to these iterations. All this is
done in structurally the same way that deserves to be studied separately.

16.1 Galois Iteration

When Evariste Galois in preparation of the duell around 1830, in which he expected
to fall, wrote down his last notes, he could probably not imagine to which extent
these would later influence mathematics and also applications. What he had ob-
served may basically be presented with the correspondence of permutations of a
set and their fixed points. Consider the 5-element sequence {1, 2, 3, 4, 5} for which
there exist in total 5! = 120 permutations. The idea is now to observe which set
of permutations leaves which set of elements fixed. Demanding more elements to
be untouched by a permutation results, of course, in fewer permutations. Elements
2, 4 fixed allows only 6 permutations, namely

1, 2, 3, 4, 5 1, 2, 5, 4, 3 3, 2, 1, 4, 5 3, 2, 5, 4, 1 5, 2, 1, 4, 3 5, 2, 3, 4, 1

If, e.g., 2, 3, 4 shall be fixed, only permutations 1, 2, 3, 4, 5 and 5, 2, 3, 4, 1 remain.
On the other side, when we increase the set of permutations adding a last one to
obtain

1, 2, 3, 4, 5 1, 2, 5, 4, 3 3, 2, 1, 4, 5 3, 2, 5, 4, 1 5, 2, 1, 4, 3 5, 2, 3, 4, 1 5, 3, 2, 4, 1

the set of fixed points reduces to 4, i.e., to just one. It is this counterplay of antitone
functions that is put to work in what follows. In our finite case, it is more or less
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immaterial which antitone functions we work with. The schema stays the same.
This shall now be demonstrated with two examples.

16.1.1 Example. Assume a set V and consider all of its subsets, i.e., the powerset
2V . Then assume the following obviously antitone mappings which depend on some
given relation R : V −→ V .

σ : 2V −→ 2V , here: v 7→ σ(v) = R;v

π : 2V −→ 2V , here: w 7→ π(w) = w

In such a setting it is a standard technique to proceed as follows, starting with the
empty set in the upper row of Fig. 16.1.1 and the full set in the lower. Then the
mappings are applied from the upper to the next lower as well as from the lower to
the next upper subset as shown in Fig. 16.1.1.

R =

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9


0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




0
0
0
0
0
0
0
0
0




0
0
0
0
0
0
0
0
0




0
0
0
0
0
0
0
0
1




0
0
0
0
0
0
0
0
1




0
1
0
0
0
0
1
0
1




0
1
0
0
0
0
1
0
1




0
1
1
1
0
0
1
0
1




0
1
1
1
0
0
1
0
1

 . . .


0
1
1
1
1
0
1
0
1

=: a

σ 

π 

σ 

π 

σ 

π 

σ 

π 

σ 

π 

σ 

π 

σ 

π 
. . . σ π 

1
1
1
1
1
1
1
1
1




1
1
1
1
1
1
1
1
0




1
1
1
1
1
1
1
1
0




1
0
1
1
1
1
0
1
0




1
0
1
1
1
1
0
1
0




1
0
0
0
1
1
0
1
0




1
0
0
0
1
1
0
1
0




1
0
0
0
0
1
0
1
0

 . . .
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0
1
0

=: b

Fig. 16.1.1 Example of an eventually stationary Galois iteration

The first important observation is that the elements of both sequences are ordered
monotonically; the upper increasing and the lower decreasing. They will thus be-
come stationary in the finite case. When looking at the sequences in detail, it seems
that there are two different sequences, but somehow alternating and respecting each
others order. Even more important is the second observation, namely that the upper
and the lower stationary values a, b will satisfy

b = σ(a) = R;a and a = π(b) = b

One has, thus, a strong algebraic property for the final result of the iteration and
one should try to interpret and to make use of it.
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16.1.2 Example. Consider now a completely different situation with two hetero-
geneous relations Q,λ and the obviously antitone mappings

σ : 2V −→ 2W , here: v 7→ σ(v) = QT;v

π : 2W −→ 2V , here: w 7→ π(w) = λ;w

Given this setting, we again iterate with the two start vectors and obtain what is
shown in Fig. 16.1.2.

Q =

a b c d e
1
2
3
4
5
6
7


1 0 0 1 0
0 0 0 0 0
1 0 0 1 0
0 0 0 1 0
0 1 1 1 1
1 0 0 1 0
0 0 1 0 1

 λ =

a b c d e
1
2
3
4
5
6
7


1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
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0
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1
0
1
0
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 . . .


1
1
1
1
0
1
0

 =: a

σ 

π 

σ 

π 

σ 

π 
. . . σ π 1

1
1
1
1

1
1
1
1
1

0
1
1
0
1

0
1
1
0
1

 . . .

0
1
1
0
1

 =: b

Fig. 16.1.2 Stationary heterogeneous Galois iteration

Also here, both sequences are monotonic, increasing resp. decreasing, and eventually
become stationary. In addition, the upper and the lower stationary values a, b satisfy

b = σ(a) = QT;b and a = π(b) = λ;a,

i.e., schematically the same formulae as above.

In the sections to follow, different applications will be traced back to this type of
iteration. It will turn out that several well-known problems get a (relation-)algebraic
flavour. In several cases, we will in addition be able to deduce subdivisions of the
sets in question from a and b. When by permutation of the rows and columns
of the matrices representing the relation the sets come together, additional visual
properties will show up.

16.2 Termination

The first group of considerations is usually located in graph theory, where one often
looks for loops in the graph. The task arises to characterize the point set y of an
infinite path of a graph in an algebraic fashion. This is then complementary to
looking for sets of points from which only non-infinite sequences in the execution
of programs start, i.e., terminating ones. It is thus directly related to program
semantics. We recall the basics from Sect. 6.5. There are two rather obvious facts:

• B;y ⊆ y expresses that all predecessors of y also belong to y
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• y ⊆ B;y expresses that every point of y precedes a point of y

The first statement is certainly trivial, but also the second: Because there is an
infinite path assumed to exist from every point of y, at least one successor of each
of the points of y will be starting point of an infinite path. Based on this, we had
called a subset y progressively infinite if y ⊆ B ; y which we now extend by the
following

16.2.1 Definition. Given a relation B, the construct

PI(B) := sup{y | y ⊆ B;y} = sup{y | y = B;y}
is called the progressively infinite part of B. More often, one speaks of its
complement

J(B) := inf{x | x ⊆ B;x} = inf{x | x = B;x},
calling it the initial part of B.

The initial part characterizes the set of all those points from which only finite paths
emerge1. There is already a minor statement included in this definition, namely that
one may use the “=”-version as well as the “⊆”-version. The set selected for the
“=”-version is contained in the other, so that its supremum will not exceed the
other supremum. On the other hand side, with every y satisfying y ⊆ B ; y, the
larger construct y′ := B∗;y will rather obviously satisfy y′ = B;y′, thus giving the
reverse inclusion:

y′ = B∗;y = y ∪B+;y ⊆ B;y ∪B+;y = B+;y = B;B∗;y = B;y′ = B+;y ⊆ B∗;y = y′

The initial part is easily computed using the Galois mechanism with the antitone
functions from left to right and from right to left given as

σ : 2V −→ 2W , here: v 7→ B;v

π : 2W −→ 2V , here: w 7→ w,

which has been shown already in Fig. 16.1.1. It necessarily ends with two vectors
a, b satisfying

a = B;b and b = a.

When started from (meaning ∅ ) and (meaning 2V ), we have in general

⊆ π( ) ⊆ π(σ( )) ⊆ π(σ(π( ))) ⊆ . . .
. . .⊆ σ(π(σ( ))) ⊆ σ(π( )) ⊆ σ( ) ⊆ .

The outermost inclusions are obvious, those more to the inner follow by induction
because σ, π are antitonic. The situation is a bit more specific in the present case.
1 Be aware, however, that this includes the case of a not finitely branching relation in which all paths

are finite but there exist paths that exceed any prescribed length.
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Since π(w) = w, we can go one step further and write this down with σ, π expanded,
i.e., w 7→ σ(π(w)) = B;w and v 7→ π(σ(v)) = B;v, thereby eliminating duplicates:

⊆ B; ⊆ B;B; ⊆ B;B;B; ⊆ . . . ⊆ a

b ⊆ . . . ⊆ B;B;B; ⊆ B;B; ⊆ B; ⊆

Both sequences will end in the progressively infinite part a; they are actually the
same except for the negation of the right one. The situation is captured more easily
when Fig. 16.1.1 is presented in the following permuted form.

B =

2 3 4 5 7 9 1 6 8
2
3
4
5
7
9
1
6
8


0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0

 a =


0
0
0
0
0
0
1
1
1

 b =


1
1
1
1
1
1
0
0
0


Fig. 16.2.1 The relation with its initial part in permuted and partitioned form

Between 1 and 8 the relation will oscillate infinitely often as could already be seen
in Fig. 6.5.1. From 6, one may follow the arc leading to 1 — and will then oscillate
forever. One has, however, also the choice to go from 6 to 7, and then to be finally
stopped in 9.

A careful reader may ask to which extent the choice to start the iteration with ,

was arbitrary. When starting the other way round, i.e., with , , the result will be
the initial part for the transposed graph.

Fig. 16.2.2 shows yet another computation of the initial part of a relation. Duplicates
in the iteration have been eliminated for reasons of space. It is possible to bring the
subset a of months, namely Aug, Jul, Jun,Mar,Nov, to the front by simultaneous
permutation. Then the upper right rectangle will again turn out to be empty.
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Fig. 16.2.2 Iterative computation of the initial part and rearrangement according to it

The initial part may be studied in more detail by exhaustion from the terminal
vertices which leads us to progressive boundedness. Further investigations of the
progressively infinite part are possible recognizing basins, attractors etc. as in the
field of system dynamics; see Sect. 19.3.

16.2.2 Definition. Let B be a homogeneous relation. We call

B progressively bounded :⇐⇒ = suph≥0B
h;

:⇐⇒ B may be exhausted by z0 := B; , zn+1 := B;zn

Here again, we have two versions in the definition that should shown to be equal.
Firstly, we convince ourselves by induction starting with the obvious “z−1”= ⊆
z0 ⊆ z1 that the sequence z0 ⊆ z1 ⊆ z2 ⊆ . . . is monotonic. But we see also by
induction that zn = Bn+1; . For n = 0, it is given by definition; n 7→ n+ 1 follows
from

zn = Bn+1; ⇐⇒ zn = Bn+1;

=⇒ B;zn = Bn+2; ⇐⇒ zn+1 = B;zn = Bn+2;

The situation between progressive boundedness and progressive finiteness is shown
in Prop. 16.2.3, but without proof which has been fully elaborated already in [SS89,
SS93].
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16.2.3 Theorem (Termination Formulae).
i) suph≥0B

h; ⊆ J(B) ⊆ B∗;B;

ii) B univalent =⇒ suph≥0B
h; = J(B) = B∗;B;

iii) B progressively bounded =⇒ = suph≥0B
h; = J(B) = B∗;B;

iv) B progressively finite =⇒ suph≥0B
h; ⊆ J(B) = B∗;B; =

v) B finite =⇒ suph≥0B
h; = J(B) ⊆ B∗;B;

If a relation is progressively bounded, all paths are finite and in addition have a
finite common upper bound. This means that starting from the terminal vertices
it is possible to exhaust all the vertices by iteratively going one step backwards.
Expressed differently, the transitive closure B+ of the given relation B will turn out
to be a strictorder which then in turn may be arranged to the upper right triangle
of the matrix. This together with the exhaustion is visualized in Fig. 16.2.3.

a b c d e f g h i j k l m n o p q

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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q



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 16.2.3 Exhaustion of a progressively bounded relation

starting with the terminal vertices

We may go even one step further and join the latter two aspects. Then the pro-
gressively infinite vertices go to the end of the row as well as column arrangement.
Then the progressively bounded rest of the finite relation is handled as in Fig. 16.2.3.
What we have explained so far may be collected without further proof in the fol-
lowing proposition.

16.2.4 Proposition. Any finite homogeneous relation may by simultaneously per-
muting rows and columns be transformed into a matrix satisfying the following basic
structure with square diagonal entries:
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progressively bounded

∗ total

)
Many more aspects of terminality and foundedness may be found in our general
reference [SS89, SS93]. In particular is there explained how principles of induction
and transfinite induction are treated relationally. Also confluence in connection with
progressive boundedness is presented in this book and concepts of discretness are
discussed. It did not seem appropriate to recall all this here.

Exercises

16.2.1 Determine initial parts of the following relations an execute the exhaustion:

a b c d e f g h i j k

a
b
c
d
e
f
g
h
i
j
k



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
2
3
4
5
6
7
8
9

10



0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0



16.3 Games

For another application, we look at solutions of relational games. Let an arbitrary
homogeneous relation B : V −→ V be given. Two players are supposed to make
moves alternatingly according to B in choosing a consecutive arrow to follow. The
player who has no further move, i.e., who is about to move and finds an empty row
in the relation B, or a terminal vertex in the graph, has lost.

Such a game is easily visualized taking a relation B represented by a graph, on
which players have to determine a path in an alternating way. We study it for the
NIM-type game starting with 6 matches from which we are allowed to take 1 or 2.

036

1245
0 1 2 3 4 5 6

0
1
2
3
4
5
6


0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0


Fig. 16.3.1 A NIM-type game in graph- and in matrix-form

The two levels of Fig. 16.3.1 already anticipate the subdivision of the positions into
win (upper level) and loss positions (lower level); since the graph is progressively
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finite, there are no draw positions. The antitone functionals based on this relation
are formed in a manner quite similar to termination.

There exists a well-known technique to solve such games. Solving means to decom-
pose the set of positions into three (in general non-empty) subsets of loss-positions,
draw-positions, and win-positions, always qualified from the point of view of the
player who is about to move. The basic aspect is to formulate the rather obvious
game conditions in point-free form.

• From a draw position there cannot exist a move to a losing position.
∀ x : Dx −→ (∀ y : Bxy −→ Ly)

In point-free relational notation: D ⊆ B;L
• From every position of win there exists at least one move to a losing position.

∀ x : Wx −→ (∃ y : Bxy ∧ Ly)
In point-free relational notation: W ⊆ B;L or B;L ⊆ W

In L 7→ B;L we recognize the same antitone mapping two times and conceive, thus,
just one function ζ based on the game relation B, namely

ζ : 2V → 2V , v 7→ ζ(v) = B;v

We use it twice in our standard iteration, σ := ζ and π := ζ and obtain the
stationary iteration of Fig. 16.3.2, resulting in a, b, which in turn give rise to the
rearrangement of the original relation.

0
1
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0
0
0
0
0
0
0
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0
0
0
0
0
0

⊆
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⊆
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⊆


1
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0
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⊆


1
0
0
1
0
0
1
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1
1
1
1
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1
1

⊇


1
1
1
1
1
1
1

⊇


1
0
0
1
1
1
1

⊇


1
0
0
1
1
1
1

⊇


1
0
0
1
0
0
1

⊇


1
0
0
1
0
0
1

 = b

0 3 6 1 2 4 5
0
3
6
1
2
4
5


0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

1 0 0 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0



Fig. 16.3.2 The game of Fig. 16.3.1 with iteration and rearranged

with zones loss = a and win = b

Loss, draw, and win may turn out to be empty after iteration. If loss is, then draw
cannot be — provided the point set of the graph is not. There is one further point
to mention concerning the result. This time, we have a homogeneous relation, and
we easily observe, that the two sequences from Page 417 reduce using monotony to
just one

⊆ π( ) ⊆ π(σ( )) ⊆ π(σ(π( ))) ⊆ . . .
. . . ⊆ σ(π(σ( ))) ⊆ σ(π( )) ⊆ σ( ) ⊆ .
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It is explicitly given here, and we observe equalities in an alternating pattern:

⊆ B; = B;B; ⊆ B;B;B; = . . . ⊆ . . . ⊆ B;B;B; = B;B; ⊆ B; = .

Again, the final situation is characterized by the formulae a = π(b) and σ(a) = b,
which this time turn out to be a = B;b and B;a = b. In addition, we will always
have a ⊆ b. The smaller set a gives loss positions, while the larger one then indicates
win positions as b and draw positions as b ∩ a. This is visualized by the following
diagram for sets of win, loss, and draw, the arrows of which indicate moves that
must exist, may exist, or are not allowed to exist.

no further move
            possible

<- result  a  of iteration

result  b  of iteration ->

LossWin

Draw

Fig. 16.3.3 Schema of a game solution: The iteration results a, b
in relation to win, draw, loss

A result will be found for all homogeneous relations. Often, however, all vertices
will be qualified as draw. The set of draw positions may also be empty as in the
solution of our initial game example.

Fig. 16.3.4 visualizes another game solution; again concentrating on the subdivision
of the matrix B and the vectors a as a first zone resembling Loss, b as first plus
second zone — the latter resembling Draw —, and then the rest resembling Win.
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1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21



0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Fig. 16.3.4 A random relation and its game solution rearranged to zones loss-draw-win

16.3.1 Proposition (Rearranging relations with respect to a game). An arbitrary
finite homogeneous relation may by simultaneously permuting rows and columns be
transformed into a matrix satisfying the following structure with square diagonal
entries:  ∗

total ∗
total ∗ ∗


Proof : The subdivision with the iteration results a, b into groups loss/draw/win
is uniquely determined, and the termination conditions of the iteration are written
down: a = B;b and B;a = b.

a =

( )
=

(
B11 B12 B13

B21 B22 B23

B31 B32 B33

)
;

( )
= B;b b =

( )
=

(
B11 B12 B13

B21 B22 B23

B31 B32 B33

)
;

( )
= B;a

Herefrom, we calculate in this sequence
— position b1 : = B11; , i.e., B11 = ; similarly B21 =
— position a1 : = B12; , i.e., B12 =
— position b3 : = B31; , i.e., = B31; , so that B31 is total



426 Standard Galois Mechanisms

1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 0 0 1 0 0 0
0 0 0 1 0 1 0
0 1 0 0 0 0 0
0 0 0 0 1 0 1
0 1 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 1 0 0


3 6 1 4 7 2 5

3
6
1
4
7
2
5


0 0 0 0 0 1 0
0 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 1 0 0 0 1

0 1 0 1 0 0 0
1 0 0 0 0 1 0



L
loss

W
win

D
draw

1
2
3
4
5
6
7


0
0
0
0
0
0
0




0
0
0
0
0
1
0




0
0
0
0
0
1
0




0
0
1
0
0
1
0




0
0
1
0
0
1
0

 = a

1
2
3
4
5
6
7


1
1
1
1
1
1
1




1
1
1
1
1
1
1




1
0
1
1
1
1
1




1
0
1
1
1
1
1




1
0
1
1
0
1
1

 = b

Fig. 16.3.5 A game in original form and rerranged according to win, draw, and loss

It seems extremely interesting, to find out how these standard iterations behave if
matrices are taken the coefficients of which are drawn from other relation algebras.
Do, e.g., matrices over an interval algebra lead to steering algorithms? Will game
algorithms over matrices with pairs (interval, compass) give hints to escape games?
Will there be targeting games?

The full power of this approach, however, will only be seen when we assign the two
players different and heterogeneous relations B : V −→ W and B′ : W −→ V to
follow.

Exercises

16.3.1 Let the matrix M represent the game relation. Determine the sets of win,
loss, and draw.

M =

a b c d e f g h i j k

a
b
c
d
e
f
g
h
i
j
k



0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0



16.4 Specialization to Kernels

The study of kernels in a graph has a long tradition. Even today interest in find-
ing kernels and computing them is alive. The interest comes from playing games
and trying to win, or to at least characterize winning positions, losing positions,
and draw positions. But also in modern multi-criteria decision analysis kernels are
investigated with much intensity.
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The game aspect has already been studied in the section before. Here we simply
give the definition of a kernel and try to visualize the effect. The main point is that
we look for a subset of points of the graph with a specific property which may be
described as follows: There is no arrow leading from one vertex of the subset to any
other in the subset. On the other hand side, one will from every vertex outside find
an arrow leading into the subset. This is then captured by the following

16.4.1 Definition. Let a graph be given with associated relation B. In the graph
described by B, we call

s a kernel :⇐⇒ B;s = s

⇐⇒ No arrow will begin and end in s; from every
vertex outside s an arrow leads into s

There is another way of expressing this saying that s shall at the same time be
stable B;s ⊆ s and absorbant B;s ⊇ s.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9


0 1 1 0 0 0 0 0 1
1 1 1 0 1 1 0 1 0
1 1 0 1 0 1 1 1 0
0 0 0 0 1 1 1 0 1
0 1 0 1 0 1 0 0 0
0 0 1 1 1 1 0 1 1
0 1 1 1 0 0 0 0 1
0 1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 1 0


1

2

3

4

5

6

7 8

9

4 1 8 5 3 2 7 9 6

4
1
8
5
3
2
7
9
6


0 0 0 1 0 0 1 1 1
0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1 1
1 0 0 0 0 1 0 0 1
1 1 1 0 0 1 1 0 1
0 1 1 1 1 1 0 0 1
1 0 0 0 1 1 0 1 0
1 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 1



1 8 7 5 9 2 4 3 6

1
8
7
5
9
2
4
3
6


0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 1 0
0 0 0 0 0 1 1 0 1
1 1 1 0 0 1 1 0 0
1 1 0 1 0 1 0 1 1
0 0 1 1 1 0 0 0 1
1 1 1 0 0 1 1 0 1
0 1 0 1 1 0 1 1 1



5 3 9 4 8 2 7 1 6

5
3
9
4
8
2
7
1
6


0 0 0 1 0 1 0 0 1
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 0
1 0 1 0 0 0 1 0 1
0 1 1 0 0 1 0 0 1
1 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
0 1 1 0 0 1 0 0 0
1 1 1 1 1 0 0 0 1


Fig. 16.4.1 All three kernels of a graph in a rather independent position

Looking at the graph of Fig. 16.4.1, one will see that finding kernels may not be an
easy task; it is in fact NP-complete. The one shown has exactly the three kernels
{2, 6, 8}, {4, 5, 9}, {1, 5, 6, 8}, for which also the decomposition and permutation has
been executed.

16.4.2 Proposition (Rearranging relations with respect to a kernel). An arbitrary
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finite homogeneous relation may have a kernel s, in which case it can by simulta-
neously permuting rows and columns be transformed into a matrix satisfying the
following basic structure with square diagonal entries:(

∗
total ∗

)
Proof : The subdivision with the kernel s into groups s in front and then s is
written down:

B;s =
(
B11 B12

B21 B22

)
;

( )
=
( )

= s

Now we investigate components s1 and s2 of s. Obviously, B11; = implies that
B11 = and B21; = means that B21 has to be total.

16.5 Matching and Assignment

Matching and assignment problems are well-known topics of operations research.
Highly efficient algorithms have been developed; often presented in the language
of graph theory. Here, we try to add a relational aspect and derive some results
that may support understanding the effects. We will in particular switch from an
operational point of view to a declarative form with algebraic visualization.

The tasks may easily be formulated in an environment of sympathy and marriage.
Let, therefore, a sympathy relation Q be given between the set of boys V and
the set of W girls of a village. This relation is typically neither univalent, nor
total, surjective, or injective. The relation Q of Fig. 16.5.1 shall visualize such a
distribution of sympathy.

Q =

a b c d e
1
2
3
4
5
6
7


1 0 0 1 0
0 0 0 0 0
1 0 0 1 0
0 0 0 1 0
0 1 1 1 1
1 0 0 1 0
0 0 1 0 1

 ⊇

a b c d e
1
2
3
4
5
6
7


1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 = λ

Fig. 16.5.1 Sympathy and matching

Assume now that a mass wedding (or simply a round of pairwise dancing) is going
to be organized; i.e., that a univalent and injective relation λ ⊆ Q inside the
given sympathy is sought. This is the basis of the following definition that extends
Def. 5.1.7.
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16.5.1 Definition. Given a (possibly heterogeneous) relation Q : V −→ W , we
call λ a Q-matching provided it is a matching that is contained in Q; i.e., if it
satisfies altogether

λ ⊆ Q λ;λT ⊆ λT;λ ⊆ .

Of course, λ := is a Q-matching, but certainly the most uninteresting one. An
assignment that brings the maximum number of weddings (or the biggest number
of pairs of dancers sympathetic to one another) is not easily reached. When trying
to find such a match, one will first make some assignments that later turn to be
a hindrance for achieving the maximum. It is then required that some tentative
assignments be losened again and replaced by others in order to provide further
boys with girls. A set x of boys is saturated according to Def. 10.2.3, when it may
be assigned totally for marriage or dancing.

Algorithms to solve such problems have frequently been published and studied
in some detail. They are known to be of quite acceptable polynomial complexity
O(n2.5); theoretically even faster. These algorithms do not lend themselves readily
to be formulated relationally. The static situation of a sympathy relation Q together
with an arbitrary matching λ, analyzed iteratively as in Sect. 16.1, leads to very
helpful relational identities. We consider sets of young lads v ⊆ V or ladies w ⊆W ,
respectively, and design two antitone mappings as in Sect. 16.1:

• v 7→ σ(v) := QT;v

• w 7→ π(w) := λ;w

The first relates a set of boys to those girls not sympathetic to anyone of them.
The second presents the set of boys not assigned to some set of girls. Using these
antitone mappings, we execute the standard Galois iteration. It may be started in
two ways namely from , as well as from , . In the iteration of Fig. 16.1.2, the
decision had been in favour of the first case of these. We will discuss the second
later.

We recall that we have in general

⊆ π( ) ⊆ π(σ( )) ⊆ π(σ(π( ))) ⊆ . . .
. . . ⊆ σ(π(σ( ))) ⊆ σ(π( )) ⊆ σ( ) ⊆

The outermost inclusions are obvious, those more to the inner follow by induction
because σ, π are antitonic. The iteration will terminate after a finite number of steps
with two vectors (a, b) satisfying a = π(b) and σ(a) = b as before. Here, this means
(in negated form)

b = QT;a a = Q;b

a = λ;b
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We have in addition a = Q;b. This follows from the chain a = λ;b ⊆ Q;b ⊆ a, which
implies equality at every intermediate state. Only the resulting equalities for a, b
have been used, together with monotony and the Schröder rule.

Remembering Prop. 10.2.1, we learn that the pair a, b is an inclusion-maximal
independent pair of sets for Q, or else: a, b is an inclusion-minimal line covering for
the relation Q.

Maximum matchings

Remembering Prop. 10.2.1 again, we learn that the pair a, bmay not be an inclusion-
maximal independent pair of sets for λ, or else: a, b may not be an inclusion-minimal
line covering for λ. This will only be the case, when in addition b = λT;a, which is
indeed a very important case that we are going to study in advance:

b = QT;a a = Q;b

b = λT;a a = λ;b

A first look at it detects further symmetry: One may certainly ask whether we had
been right in deciding for the variant of the iteration procedure starting with ,

as opposed to , . Assume now we had decided the other way round. This would
obviously mean the same as starting as before for QT and λT. One will observe easily
that again four conditions would be valid at the end of the iteration with QT for Q
and λT for λ as well as, say a′, b′. Then a′ corresponds to b and b′ corresponds to
a. This means that the resulting decomposition of the matrices does not depend on
the choice — as long as all four equations are satisfied.

Fig. 16.5.2 is intended to symbolize the interrelationship between λ and Q as ex-
pressed by the iteration result (a, b). The light grey zones are all filled with zeros.
We deduce this from the matrix equations rewriting a = Q; b and b = QT ; a as
matrices:

 =


Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44

;





 =


QT

11 Q
T
21 Q

T
31 Q

T
41

QT
12 Q

T
22 Q

T
32 Q

T
42

QT
13 Q

T
23 Q

T
33 Q

T
43

QT
14 Q

T
24 Q

T
34 Q

T
44

;




Then immediately Q12 = , Q13 = , Q14 = , Q22 = , Q23 = , Q24 = , Q32 =
, Q33 = , Q34 = . One may wish to exclude the first horizontal zone and the

last vertical zone from the beginning, i.e., demand that Q be total and surjective.
If one leaves them, Q11 = simply by sorting empty rows to the front, which
also makes Q21 total. In mainly the same way, these results follow also from the
second equation. Sorting empty columns to the end makes Q44 = and leaves Q43
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surjective. The same may then correspondingly be executed for λ. Because λ is a
matching, it may be sorted so as to have it as a diagonal in the respective zones.

a

b

Qλ    

surjective

total

Fig. 16.5.2 The schema of a decomposition according to a maximum matching

In the dark zone, relation entries of Q may occur almost arbitrarily with the excep-
tion that the first formula a = Q;b means that from outside a one will always find
an image in b, not least guaranteed by part of the diagonal λ. The second formula
correspondingly say that outside b one will always find an inverse image in a, which
is certainly achieved with part of the diagonal λ. The other two formulae underline
that this depends heavily on λ. Fig. 16.5.3 shows this in a concrete example.

a b c d e f g h i j k l m n o p q

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0



c d m o q a b e g h i l n p k f j

7
16
6

12
14
1
2
4
5

10
3
8
9

11
13
15
17
18
19



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0


Fig. 16.5.3 Arbitrary relation with a rearrangement according to a

cardinality-maximum matching — the diagonals

We may give the present result two different flavours. The first remembers the Hall
condition of Def. 10.2.3 guaranteeing for every subset that there are at least as
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many counterparts available via the relation in question. When we use “HallT”, we
mean the same in reverse direction. In (ii), the first three rows are put together and
also the last three columns.

16.5.2 Proposition (Decomposing according to matching and assignment). Let
any (possibly heterogeneous) relation Q be given and consider it together with
some maximum matching λ.

i) It will allow by independently permuting rows and columns the following sub-
division into a 4 by 4 schema: total

HallT + square

* Hall + square surjective


 permutation

permutation


ii) It can by independently permuting rows and columns be transformed into the

following 2 by 2 pattern with not necessarily square diagonal blocks:(
HallT

∗ Hall

) (
univalent+surjective+injective

univalent+total+injective

)

Proof : We let the discussion above stand for a proof.

Not yet maximum matchings

It has, thus, not been uninteresting to introduce the condition b = λT;a. Now, we
drop it and accept that λ may not yet be a maximal matching. Therefore, a, b
need not be an inclusion-maximal independent pair of sets for λ (as opposed to Q),
nor need a, b be an inclusion-minimal line covering for λ. This would only be the
case, when in addition b = λT ; a. We visualize the outcome of the iteration with
Fig. 16.5.4. The light grey zones are still filled with 0 -entries. In the dark grey
zone, relation entries may occur arbitrarily with the exception that Q restricted to
the dark zone be total and surjective. The matching λ is by permuting rows and
columns arranged so as to resemble a partial diagonal of 1 ’s.

The first resulting equation, a = λ; b, indicates for Fig. 16.5.4, that in the broader
dark horizontal zone below a the matching λ will definitely assign an element of b.
The second equation, b = QT;a, expresses that for any column y outside b always a
Q-sympathetic element exists inside a.
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a

b

Qλ    

surjective

total

0x

y

1

1

0

0

Fig. 16.5.4 Schema of a decomposition according to a not yet maximum matching

This element may immediately be used to increment λ provided that no other
assignment has been given to it so far. It may, however, already have been assigned
otherwise. This would occur if there were only 0 -entries above λ. It is this case
where the famous Hungarian method of alternating chains starts, for which the
equations give justification: From any element of b ∩ λT;a such an alternating chain
may be started. Due to b = QT ; a, there must be a 1 in the y-column inside the
a-area. This is then assigned and the old λ-assignment in the same row removed. In
the trivial case the y′ thereby encountered has a Q-sympathetic x above the λ-area,
which is then taken, thus having increased the matching by 1.

This will also become clear from Fig. 16.5.5. Dashed arrows2 symbolize sympathy Q
being possible/impossible, and also that every element of b definitely has Q-inverse
images in a. On the other hand side, there may be marriages from a to b, but must
exists from a to b.

ba

a b

boys girls

sympathy

marriage

Fig. 16.5.5 Schema of an assignment iteration

We assume, thus, to have determined a matching and executed the iteration obtain-
ing a, b. We further assume b = λT;a not to hold, which means that b = QT;a ⊃=/ λT;a.
2 This time, it has nothing to do with the convention.
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We make use of the formula λ;S = λ; ∩ λ;S, which holds since λ is univalent; see
Prop. 5.1.2.iv. The iteration ends with b = QT;a and a = λ;b. This easily expands to

b = QT;a = QT;λ;b = QT;λ;QT;a = QT;λ;QT;λ;QT;a . . .

from which the last but one becomes

b = QT;a = QT;λ;b = QT;λ; ∩ λ;QT;a = QT; (λ; ∪ λ;QT; (λ; ∪ λ;QT;a))

indicating how to prove that

b = (QT ∪ QT;λ;QT ∪ QT;λ;QT;λ;QT ∪ . . . );λ;

If λT;a ⊂=/ b, we may thus find a point in

λT;a ∩ (QT ∪ QT;λ;QT ∪ QT;λ;QT;λ;QT ∪ . . . );λ;

which leads to the following alternating chain algorithm. We start choosing

y ⊆ λT;a ∩ (QT ∪ QT;λ;QT ∪ QT;λ;QT;λ;QT ∪ . . . );λ;

which is guaranteed to exist. Because the point y is an atom, we have

y ⊆ (QT;λ)i;QT;λ; ∩ λT;a or else y ⊆ (QT;λ)i;QT;λ; and y ⊆ λT;a

for some minimal i ∈ IN. Should i be 0, we obtain with the Dedekind rule that

y = QT;λ; ∩ y ⊆ (QT ∩ y;λ;
T

); (λ; ∩ Q;y)

that there exists an intermediate point x ⊆ λ; ∩ Q;y. This means that x;yT ⊆ λ

as well as ⊆ Q, so that it may simply be added to the current matching obtaining
λ′ := x;yT ∪ λ, as an enlarged matching.

Affairs are more difficult when i > 0. Purposefully we then call the point chosen yi.
Proceeding in a similar way with the Dedekind rule, we obtain that

yi = (QT;λ)i;QT;λ; ∩ yi ⊆
(
(QT;λ)i;QT ∩ yi;λ;

T)
;

(
λ; ∩ Q; (λT;Q)i;yi

)
so that there exists an intermediate point xi ⊆ λ; ∩ Q; (λT;Q)i;yi. The first part
means xi ⊆ λ; and, therefore, that λ; ⊆ xi or λ;yi ⊆ λ; ⊆ xi or xi;yT

i ⊆ λ.

When eventually a maximum matching with respect to cardinality is reached, the
following situation will hold:

a = sup{ , λ;QT; , λ;QT;λ;QT; , . . .}

b = inf{ , QT;λ; , QT;λ;QT;λ; , . . .}

We visualize the results of this matching iteration by concentrating on the sub-
division of the matrices Q,λ initially considered by the resulting vectors a =
{2, 4, 6, 1, 3} and b = {e, c, b}.
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a d e c b
2
6
4
1
3
5
7


0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 1 1 1 1
0 0 1 1 0


a d e c b

2
6
4
1
3
5
7


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Fig. 16.5.6 Sympathy and matching rearranged

Further remarks

These investigations have also been presented in a completely different setting and
terminology. Assume a set V together with a family W of subsets taken there-
from, which means nothing else than that a relation Q : V −→ W is considered.
In [Mir71], e.g., so-called partial transversals are defined as nothing else than a
univalent and injective relation λ ⊆ Q. So the partial transversal is a matching.
Of course, interest concentrates on maximum matchings. Then one immediately is
confronted with systems of distinct representatives and the like.

Exercises

16.5.1 Consider the relation

Q =

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

a
b
c
d
e
f
g
h
i
j
k



0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0


and determine some maximal matching λ for it as well as the vectors a, b. Rearrange
following the pattern of Fig. 16.5.2.

16.6 König’s Theorems

We will now put concepts together and relate them with famous combinatorial con-
cepts. The first are on line-coverings and assignments. Some sort of counting comes
into play, however, here in its algebraic form. Permutations allow 1:1-comparison
of subsets. Often this means to transfer heterogeneous concepts to the n× n-case.

We first consider a matching (or an assignment) which is maximal with respect to
cardinality; i.e., satisfying all four equations
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b = QT;a a = Q;b

b = λT;a a = λ;b

An easy observation leads to the following

16.6.1 Proposition. Let some relationQ be given together with a matching λ ⊆ Q
and the results a, b of the iteration. Then the following hold:

i) (a, b) forms a line-covering and Q ⊆ a; ∪ ;b
T

.

ii) term rank(Q) ≤ |a|+ |b|

iii) |λ| ≤ term rank(Q)

iv) If b = λT;a, then term rank(Q) = |a|+ |b| = |λ|

Proof : i) We recall Def. 6.3.1 and consider two parts of Q separately, starting with
a; ∩ Q ⊆ a; . Then, we have b = QT;a as a result of the iteration, so that

a; ∩ Q ⊆ (a ∩ Q;
T); ( ∩ aT;Q) ⊆ ;aT;Q = ;b

T

ii) According to (i), the rows of a together with the columns of b cover all of Q, so
that the term rank cannot be strictly above the sum of the cardinalities.

iii) A line-covering of a matching λ can obviously not be achieved with less than
|λ| lines. The matching properties λT;λ ⊆ , λ;λT ⊆ of univalency and injectivity
require that every entry of λ be covered by a separate line.

iv) Condition b = λT;a together with a = λ;b shows that |b| entries of λ are needed
to end in b and |a| to start in a. According to injectivity no entry of λ will start in
a and end in b since λ;b = λ;λT;a ⊆ a. Therefore, |a|+ |b| ≤ |λ|, which in combination
with (ii,iii) leads to equality.

The following is an easy consequence which sometimes is formulated directly as a
result.

16.6.2 Corollary (König-Egerváry-Theorem). For an arbitrary heterogeneous re-
lation we have that the maximum cardinality of a matching equals the minimum
cardinality of a line-covering.

We now specialize to the homogeneous case and investigate what happens when
the term rank of a homogeneous relation is less than n.
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16.6.3 Proposition (Frobenius-König4; see [BR96] 2.1.4). For a finite homoge-
neous relation Q on an n-element set X the following are equivalent:

i) None of all permutations P on the elements of X satisfies P ⊆ Q.
ii) There exists a pair of sets a, b such that

— a, b is a line-covering with |a|+ |b| < n, or equivalently,
— a, b is an independent pair of sets with n < |a|+ |b|, or equivalently
— term rank < n.

iii) There exists a vector z together with a permutation P such that QT;z ⊂=/ P ;z.
In other words: There exists a subset z which is mapped by Q onto a set with
strictly fewer elements than z.

Proof: (i) =⇒ (ii): Find a maximum cardinality matching λ ⊆ Q and execute the
assignment iteration on Page 429. It will end in a, b with |a|+ |b| = |λ| < n since λ
can by assumption not be a permutation.

(ii) =⇒ (iii): Take z := a, which satisfies QT;a = b according to the iteration. Then
|b| = n− |b| < |a|.

(iii) =⇒ (i): When (iii) holds, Q violates the Hall condition for the subset z. If
there were a permutation P contained in Q, we would have QT;z ⊇ P T;z, and thus
|QT;z| ≥ |P T;z| = |z|, a contradiction.

Exercises

16.6.1 The permanent of anm×n-matrixA is defined as per(A) :=
∑
σ

∏m
i=1 aiσ(i),

where σ ranges over all mappings of {1..m} to {1..n}. Without loss of generality,
we assume m ≤ n. (Recall, that this resembles the definition of a determinant, but
without multiplying with powers of −1 in case of m = n.) Prove that the permanent
vanishes when there exists an s× t-submatrix of 0 ’s such that s+ t = n+ 1.

4 While the scientific community has agreed to putting the two names peacefully one aside the other,
they mutually included harsh deprecatory remarks concerning priority in their publications, not
least in [Kön36, Könon].





PART FIVE

ADVANCED TOPICS

Beyond what has been shown so far, there exist further fascinating areas. One of
these is concerned with relational specification. While standard relation algebra for-
mulates what has to be related, here only an area is circumscribed within which the
relation envisaged shall be confined. Although this area has received considerable
interest of researchers, we omit the demonic operators used for it.

We continue mentioning what we cannot present here: With relational grammar
applied to natural languages, it has been shown that the translation of relations
of time, possession, or modality, e.g., may be handled when translating to another
natural language. Spatial reasoning has long activated relation algebra in order to
reason about relative situatedness of items. This is directed at real-time scanning
of TV-scenes.

One of the application areas that we present may not be seen as application in
the first place. We use relations also to review parts of standard mathematics,
the homomorphism and isomorphism theorems. Even additional results may be
reported and deeper insights when using relations. This area seems particularly
promising because many other such reconsiderations may be hoped for. We show
possible directions to encourage further research with the Farkas Lemma, with
topology, projective geometry, etc.

Implication structures study long-range implications, preferably with only a few
alternatives; they are helpful investigating dependency situations. This makes ex-
amples of Sudokus and timetbles interesting.

A remarkable amount of work has been spent by functional programmers to investi-
gate power operations such as the existential image and the power transpose. These
is also helpful when dealing reactive systems via simulation and bisimulation.
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Mathematical Applications

Homomorphism and isomorphism theorems shall now serve as an application area
for relational methods. We review, thus, parts of standard mathematics. When
using relations, minor generalizations become possible. The traditional theorems
aim at algebraic structures only; i.e., with mappings satisfying certain algebraic
laws. When allowing relational structures, there may not always exist images, nor
need these be uniquely defined. In spite of such shortcomings, many aspects of the
theorems remain valid.

17.1 Multi-Coverings

The concept of congruences discussed earlier is very closely related to the concept
of a multi-covering we are going to introduce now. We recall from Def. 5.6.1, that,
given B, the pair Ξ,Θ is called a B-congruence provided Ξ;B ⊆ B;Θ. This means that
when varying the argument of B restricted to classes according to Ξ, the related
elements may vary also, but restricted to classes according to Θ. Often several
structural relations Bi are necessary to model some situation. Then, of course, the
following considerations have to be applied to all of these.

X

Y

X

Y

1

1

2

2

B B´

Ψ

Φ

Ξ

Θ

Fig. 17.1.1 Basic concept of a multi-covering

A multi-covering is something half-way in between relational and algebraic struc-
tures; in fact, it is the adequate generalization of a surjective homomorphism of an
algebraic structure as we will see in Prop. 17.1.3. In a general setting, a homomor-
phism from a structure B into a structure B′ is a pair of mappings Φ,Ψ, mapping
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the source side as well as the target side so that B;Ψ ⊆ Φ;B′. One may, thus, expect
some specific formulae when dividing out the equivalences Ξ,Θ. This is the basic
idea of the results we are going to present.

17.1.1 Definition. A homomorphism (Φ,Ψ) from B to B′ is called a multi-
covering, if the mappings are in addition surjective and satisfy Φ;B′ ⊆ B;Ψ.

So in fact, Φ;B′ = B;Ψ. The relationship between congruences and multi-coverings
is very close.

17.1.2 Theorem.

i) If (Φ,Ψ) is a multi-covering from B to B′, then (Ξ,Θ) := (Φ; ΦT,Ψ; ΨT) is a
B-congruence.

ii) If the pair (Ξ,Θ) is a B-congruence, then there can exist — up to isomorphism
— at most one multi-covering (Φ,Ψ) satisfying Ξ = Φ; ΦT and Θ = Ψ; ΨT.

Proof : i) Ξ is certainly reflexive and transitive, since Φ is total and univalent. In
the same way, Θ is reflexive and transitive. The relation Ξ = Φ;ΦT is symmetric by
construction and so is Θ. Now we prove

Ξ;B = Φ; ΦT;B ⊆ Φ;B′; ΨT ⊆ B; Ψ; ΨT = B; Θ

applying one after the other the definition of Ξ, one of the homomorphism defini-
tions of Prop. 5.7.4, the multi-covering condition, and the definition of Θ.

ii) Let (Φi,Ψi) be multi-coverings from B to Bi, i = 1, 2. Then

Bi ⊆ ΦT
i

; Φi;Bi ⊆ ΦT
i

;B; Ψi ⊆ Bi,
and therefore “=” everywhere in between, applying surjectivity, the multi-covering
property and one of the homomorphism conditions of Prop. 5.7.4.

Now we show that (ξ, ϑ) := (ΦT
1

; Φ2,ΨT
1

; Ψ2) is a homomorphism from B1 onto B2

— which is then of course also an isomorphism.

ξT;ξ = ΦT
2

; Φ1; ΦT
1

; Φ2 = ΦT
2

; Ξ; Φ2 = ΦT
2

; Φ2; ΦT
2

; Φ2 = ; =
B1;ϑ = ΦT

1
;B;Ψ1;ΨT

1
;Ψ2 = ΦT

1
;B;Θ;Ψ2 = ΦT

1
;B;Ψ2;ΨT

2
;Ψ2 ⊆ ΦT

1
;Φ2;B2; = ξ;B2

The multi-covering (Φ,Ψ) for some given congruences Ξ,Θ according to (ii) need
not exist in the given relation algebra. It may, however, be constructed by setting
Φ,Ψ to be the quotient mappings according to the equivalences Ξ,Θ together with
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R′ := ΦT;R;Ψ. In particular, one may simply formulate this construction when using
the language TituRel:

Φ := Project Ξ, Ψ := Project Θ, B′ := ΦT;B; Ψ

The interpretation provides some standard realization and the fact that it is unique
up to isomorphism then guarantees that one cannot make a mistake in using it.
Compare also quotient forming in Prop. 10.4.3, 10.5.5, anf 10.6.4.

The following provides a first example of a multi-covering.

17.1.3 Proposition. Surjective homomorphisms of an algebraic structure onto
another one are always multi-coverings.

Proof : Assume the homomorphism (Φ,Ψ) from the mapping B to the mapping B′,
so that B; Ψ ⊆ Φ;B′. The relation Φ;B′ is univalent, since Φ and B′ are mappings.
The sources B ; Ψ; = = Φ;B′ ; of B ; Ψ and Φ;B′ coincide, because all the
relations are mappings and, therefore, total. So we may use Prop. 5.1.2 and obtain
B; Ψ = Φ;B′.

We have another trivial standard example of a multi-covering: In an arbitrary re-
lation it may happen that several rows and/or columns coincide. We are then ac-
customed to consider classes of rows, e.g. This is for economy of thinking, but also
often for reasons of efficient memory management. In the following proposition, we
write down what holds in algebraic formulae.

17.1.4 Proposition. Consider a (possibly heterogeneous) relation R and its

row equivalence Ξ := syq (RT, RT) and its

column equivalence Ψ := syq (R,R)

according to Def. 5.4.3 as well as the corresponding natural projections ηΞ, ηΨ (i.e.,
satisfying ηT

Ξ
;ηΞ = , ηΞ;ηT

Ξ = Ξ, ηT

Ψ
;ηΨ = , ηΨ;ηT

Ψ = Ψ), and define

Q := ηT

Ξ
;R;ηΨ.

Then the following assertions hold

i) Ξ;R = R = R; Ψ.
ii) syq (QT, QT) = , syq (Q,Q) = , R = ηΞ;Q;ηT

Ψ

iii) ηΞ, ηΨ form a multi-covering from R onto Q as do ηΨ, ηΞ from RT onto QT.

Proof : For (i), we apply several rules concerning symmetric quotients

Ξ;R; = syq (RT, RT);R =
{
RT; [syq (RT, RT)]T

}T = R = R;syq (R,R) = R; Ψ
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From (ii), the symmetric quotient formulae simply state that there are no more
duplicate rows and/or columns. To formally prove them is lengthy, so that we
propose to execute them as Exercise 17.1.1.

ηΞ;Q;ηT

Ψ = ηΞ;ηT

Ξ
;R;ηΨ;ηT

Ψ = Ξ;R; Ψ = R; Ψ = R

iii) ηΞ;Q = ηΞ;ηT

Ξ
;R;ηΨ = Ξ;R;ηΨ = RηΨ.

A clarifing remark is in order: There exist also covering sets — as opposed to inde-
pendent sets — which are not easily mixed up with the multi-coverings discussed
presently. There exists, however, also another concept of a graph covering that is
closely related. It will be found in the next section.

Exercises

17.1.1 Execute the proof of syq (QT, QT) = in Prop. 17.1.4.ii.

17.2 Covering of Graphs and Path Equivalence

Graph coverings are here only sketched; they may be found in more detail in [SS89,
SS93]. We start with a more or less immediate lifting property of a multi-covering
that we present without proof.

17.2.1 Proposition (Lifting property). Let a homogeneous relation B be given
together with a multi-covering (Φ,Φ) on the relation B′. Let furthermore some
rooted graph B0 with root a0, i.e., satisfying B0;BT

0 ⊆ and BT
0
∗

;a0 = , be given
together with a homomorphism Φ0 that sends the root a0 to a′ := ΦT

0
;a0. If a ⊆ Φ;a′

is any point mapped by Φ to a′, there exists always a relation Ψ — not necessarily
a mapping — satisfying the properties

ΨT;a0 = a and B0; Ψ ⊆ Ψ;B.

Idea of proof: Define Ψ := inf{X | a0;aT ∪ (BT
0

;X;B ∩ Φ0; ΦT) ⊆ X}.

The relation Ψ enjoys the homomorphism property but fails to be a mapping in
general. In order to make it a mapping, one will choose one of the following two
possibilities:

• Firstly, one might follow the recursive definition starting from a0 and at every
stage make an arbitrary choice among the relational images offered, thus choosing
a fiber.



444 Mathematical Applications

• Secondly, one may further restrict the multi-covering condition to “locally uni-
valent” fans in Φ, requiring BT

0
; Ψ;B ∩ Φ0; ΦT ⊆ to hold for it, which leads to a

well-developed theory, see [Sch77, Sch81a, Sch81b].

We will end, thus, with a homomorphism from B0 to B in both cases, but discuss
only the second, namely graph coverings, defined as multi-coverings with the addi-
tional property that the “outgoing fan” is always isomorphic to the corresponding
one in the underlying image graph. The formal definition reads as follows:

17.2.2 Definition. A surjective homomorphism Φ:G −→ G′ is called a graph
covering, provided that it is a multi-covering satisfying

BT;B ∩ Φ; ΦT ⊆ .

The multi-covering Φ compares, thus, the two relations between the points of G
and of G′ and ensures that for any inverse image point x of some point x′ and
successor y′ of x′ there is at least one successor y of x which is mapped onto y′. The
new condition guarantees that there is at most one such y since it requires that the
relation “have a common predecessor according to B, and have a common image
under Φ” is contained in the identity.

This is an important concept that allows to define semantics of recursive programs;
it may be applied in uniformization theory of Riemann surfaces as well as in other
topological contexts. The added condition, namely, allows lifting paths in G′ in a
unique way to paths in G, provided any inverse image in G′ of the starting point
of the path in G is given.

We have again reworked mathematical topics from a relational perspective. First
the step from an algebraic to a relational structure has been made. This is so serious
a generalization, that one would not expect much of the idea of homomorphism and
isomorphism theorems to survive. With the concept of a multi-covering, however,
a new and adequate concept seems to have been found. Prop. 17.1.3 shows that
it reduces completely to homomorphisms when going back to the algebraic case.
For relational structures, a multi-covering behaves nicely with respect to quotient
forming. This relates to earlier papers (see [Sch77, Sch81a, Sch81b]) where semantics
of programs (partial correctness, total correctness, and flow equivalence, even for
systems of recursive procedures) has first been given a componentfree relational
form.
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17.3 Homomorphism and Isomorphism Theorems

Now we study the homomorphism and isomorphism theorems1 traditionally offered
in a course on group theory or on universal algebra, however generalized from the
relational point of view. In the courses mentioned, R,S are often n-ary mappings
such as addition and multiplication. We do here, more generally, allow them to be
relations, i.e., not necessarily mappings. The algebraic laws they satisfy in the alge-
bra are completely irrelevant. These theorems have for a long time been considered
general concepts of universal algebra — not of group theory, e.g., or others. We go
here even further and identify them as relational properties which to study does not
require the concept of an algebra in the classical sense as consisting of mappings.

R
S

Ξ

Ξ



ϕ

ϕ





Θ

Θ





Fig. 17.3.1 Basic situation of the homomorphism theorem

17.3.1 Proposition (Homomorphism Theorem). Let a relation R be given with
an R-congruence (Θ2,Θ1) as well as a relation S together with an S-congruence
(Ξ2,Ξ1) as in Fig. 17.3.1. Assume a multi-covering (ϕ2, ϕ1) from R to S such that
Θi = ϕi; Ξi;ϕT

i for i = 1, 2. Introducing the natural projections ηi for Θi and δi for
Ξi, see Fig. 17.3.2, one has that ψi := ηT

i
;ϕi; δi, i = 1, 2, establish an isomorphism

from R′ := ηT
2

;R;η1 to S′ := δT
2

;S;δ1.

Proof : Equivalences (Θ2,Θ1) satisfy Θ2;R ⊆ R;Θ1 while (Ξ2,Ξ1) satisfy Ξ2;S ⊆ S;Ξ1

because they had been assumed to be congruences. Furthermore, we have that
(ϕ2, ϕ1) are surjective mappings satisfying R;ϕ1 ⊆ ϕ2 ;S for homomorphism and
R;ϕ1 ⊇ ϕ2;S for multi-covering.
The ψi are bijective mappings, which we prove omitting indices:

ψT;ψ = δT;ϕT;η;ηT;ϕ;δ by definition and executing transposition
= δT;ϕT; Θ;ϕ;δ natural projection η

= δT;ϕT;ϕ; Ξ;ϕT;ϕ;δ condition relating Θ, ϕ,Ξ
= δT; Ξ;δ since ϕ is surjective and univalent
= δT;δ;δT;δ = ; = natural projection δ

1 In George Grätzer’s Universal Algebra, e.g., reported as:
Homomorphism Theorem: Let A and B be algebras, and ϕ : A→ B a homomorphism of A onto
B. Let Θ denote the congruence relation induced by ϕ. Then we have that A/Θ is isomorphic to B.
First Isomorphism Theorem: Let A be an algebra, B a subalgebra of A, and Θ a congruence
relation of A. Then 〈[B]Θ/Θ[B]Θ;F 〉 ≈ 〈B/ΘB ;F 〉.
Second Isomorphism Theorem: Let A be an algebra, let Θ,Φ be congruence relations of A, and
assume that Θ ⊆ Φ. Then A/Φ ≈ (A/Θ)/(Φ/Θ).
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R
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Fig. 17.3.2 Natural projections added to Fig. 17.3.1

The other property, ψ ;ψT = , is proved analogously. Proof of the isomorphism
property:

R′;ψ1 = ηT
2

;R;η1;ηT
1

;ϕ1;δ1 by definition
= ηT

2
;R; Θ1;ϕ1;δ1 natural projection η1

= ηT
2

;R;ϕ1; Ξ1;ϕT
1

;ϕ1;δ1 property of ϕ1 wrt. Θ1,Ξ1

= ηT
2

;R;ϕ1; Ξ1;δ1 since ϕ1 is surjective and univalent
= ηT

2
;ϕ2;S; Ξ1;δ1 multi-covering

= ηT
2

;ϕ2; Ξ2;S; Ξ1;δ1 S; Ξ1 ⊆ Ξ2;S; Ξ1 ⊆ S; Ξ1; Ξ1 = S; Ξ1

= ηT
2

;ϕ2;δ2;δT
2

;S;δ1;δT
1

;δ1 natural projections
= ηT

2
;ϕ2;δ2;S′;δT

1
;δ1 definition of S′

= ηT
2

;ϕ2;δ2;S′ since δ1 is surjective and univalent
= ψ2;S′ definition of ψ2

According to Lemma 5.7.7, this suffices to establish an isomorphism.

One should bear in mind that this proposition was in several respects slightly more
general than the classical homomorphism theorem: R,S need not be mappings,
nor need they be homogeneous relations, Ξ was not confined to be the identity
congruence, and not least does relation algebra admit non-standard models.

17.3.2 Proposition (First Isomorphism Theorem). Let a homogeneous relation
R on X be given and consider it in connection with an equivalence Ξ and a subset
U . Assume that U is contracted by R and that Ξ is an R-congruence:

RT;U ⊆ U and Ξ;R ⊆ R; Ξ.
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Now extrude both, U and its Ξ-saturation Ξ;U , so as to obtain natural injections

ι : Y −→ X and λ : Z −→ X,

universally characterized by

ιT; ι = X ∩ U ; , ι; ιT = Y ,
λT;λ = X ∩ Ξ;U ; , λ;λT = Z .

On Y and Z, we consider the derived equivalences ΞY := ι;Ξ;ιT and ΞZ := λ;Ξ;λT and
in addition their natural projections η : Y −→ YΞ and δ : Z −→ ZΞ. In a standard
way, restrictions of R may be defined on both sides, namely

S := ηT; ι;R; ιT;η and T := δT;λ;R;λT;δ.

In this setting, ϕ := δT;λ; ιT;η gives an isomorphism between S and T .

R

S

Ξ

ι λ

η

X

ZY

δ

T

ΞY ΞZ

ϕ

Fig. 17.3.3 Situation of the First Isomorphism Theorem

Proof : We omit this proof and refer to the next that gives an even more general
form.

This theorem allows a generalization to a heterogeneous version.

17.3.3 Proposition (First Isomorphism Theorem; generalized version). Let a pos-
sibly heterogeneous relation R : X1 −→ X2 be given. Consider it in connection with
subsets U1 on the source side as well as U2 on the target side and assume that U1

is by R completely sent into U2. Furthermore assume an R-congruence (Ξ1,Ξ2) to
be given:

RT;U1 ⊆ U2 and Ξ1;R ⊆ R; Ξ2.

Now extrude the Ui as well as their saturations Ξi ; Ui, so as to obtain natural
injections
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ι1 : Y1 −→ X1, λ1 : Z1 −→ X1, ι2 : Y2 −→ X2, λ2 : Z2 −→ X2,

universally characterized by

ιTi;ιi = Xi ∩Ui; , ιi;ι
T
i = Yi , λT

i
;λi = Xi ∩Ξi;Ui; , λi;λ

T
i = Zi .

On Yi and Zi, we consider the derived equivalences ΞiY := ιi;Ξi;ιTi and ΞiZ := λi;Ξi;λT
i

and in addition their natural projections ηi : Yi −→ YΞi and δi : Zi −→ ZΞi . In a
standard way, restrictions of R may be defined on both sides, namely

S := ηT
1

; ι1;R; ιT2;η2 and T := δT
1

;λ1;R;λT
2

;δ2.

In this setting, ϕ1 := δT
1

;λ1;ιT1;η1 and ϕ2 := δT
2

;λ2;ιT2;η2 give an isomorphism (ϕ1, ϕ2)
between T and S.
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Fig. 17.3.4 Situation of the generalized version of the First Isomorphism Theorem

Proof : We prove several results in advance, namely

Ξi; ιTi ; ιi; Ξi = Ξi;λT

i
;λi; Ξi, (17.1)

proved using rules for composition of equivalences:

Ξi; ιTi ; ιi; Ξi = Ξi; ( ∩ Ui; ); Ξi extrusion of Ui
= Ξi; Ξi; ( ∩ Ui; ; Ξi); Ξi; Ξi since Ξi is an equivalence
= Ξi; Ξi; (Ξi ∩ Ui; ; Ξi); Ξi Prop. 5.4.2
= Ξi; (Ξi ∩ Ξi;Ui; ; Ξi); Ξi Prop. 5.4.2 again
= Ξi; ( ∩ Ξi;Ui; ); Ξi; Ξi Prop. 5.4.2 applied a third time
= Ξi;λT

i
;λi; Ξi extrusion of Ξi;U

In a similar way follow

ιi;λ
T

i
;λi = ιi ι1;R; ιT2; ι2 = ι1;R (17.2)

The left identity is proved with
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ιi;λ
T
i

;λi = ιi; ι
T
i

; ιi;λ
T
i

;λi ιi is injective and total
= ιi; ( ∩ Ui; ); ( ∩ Ξi;Ui; ) definition of natural injections
= ιi; ( ∩ Ui; ∩ Ξi;Ui; ) intersecting partial identities
= ιi; ( ∩ Ui; ) = ιi; ι

T
i

; ιi = ιi since Ξi ⊇

The conditions RT;U1 ⊆ U2 and Ξ1;R ⊆ R; Ξ2 allow us to prove the right one for
which “⊆” is obvious. For “⊇”, we apply ιi; ιTi = after having shown

ιT1; ι1;R = ( ∩ U1; );R = U1; ; ∩ R masking; Prop. 8.3.2
⊆ (U1; ∩ R;

T); ( ∩ (U1; )T;R) Dedekind
⊆ (R ∩ U1; ); ( ∩ ;U T

2 ) since RT;U1 ⊆ U2

= (R ∩ U1; ); ( ∩ U2; ) since Q ⊆ implies Q = QT

= ( ∩ U1; );R; ( ∩ U2; ) according to Prop. 8.3.2 again
= ιT1; ι1;R; ιT2; ι2 definition of natural injection

With RT; Ξ1;U1 ⊆ Ξ2;RT;U1 ⊆ Ξ2;U2, we get in a completely similar way

λ1;R;λT

2
;λ2 = λ1;R (17.3)

We show that ϕi is univalent and surjective:

ϕT
i

;ϕi = ηT
i

; ιi;λ
T
i

;δi;δ
T
i

;λi; ι
T
i

;ηi by definition
= ηT

i
; ιi;λ

T
i

; ΞiZ ;λi; ι
T
i

;ηi natural projection
= ηT

i
; ιi;λ

T
i

;λi; Ξi;λT
i

;λi; ι
T
i

;ηi definition of ΞiZ
= ηT

i
; ιi; Ξi; ιTi ;ηi as proved initially

= ηT
i

; ΞiY ;ηi definition of ΞiY
= ηT

i
;ηi;η

T
i

;ηi = ; = natural projection

To show that ϕi is injective and total, we start

δi;ϕi;ϕ
T
i

;δT
i = δi;δ

T
i

;λi; ι
T
i

;ηi;η
T
i

; ιi;λ
T
i

;δi;δ
T
i by definition

= ΞiZ ;λi; ι
T
i

; ΞiY ; ιi;λ
T
i

; ΞiZ natural projections
= λi; Ξi;λT

i
;λi; ι

T
i

; ιi; Ξi; ιTi ; ιi;λ
T
i

;λi; Ξi;λT
i by definition of ΞiY ,ΞiZ

= λi; Ξi; ιTi ; ιi; Ξi; ιTi ; ιi; Ξi;λT
i since ιi;λT

i
;λi = ιi

= λi; Ξi;λT
i

;λi; Ξi;λT
i

;λi; Ξi;λT
i following Eqn. 17.1

= ΞiZ ; ΞiZ ; ΞiZ = ΞiZ by definition of ΞiZ

so that we may go on with

ϕi;ϕ
T
i = δT

i
;δi;ϕi;ϕ

T
i

;δT
i

;δi by definition
= δT

i
; ΞiZ ;δi as shown before

= δT
i

;δi;δ
T
i

;δi = ; = natural projection

The interplay of subset forming and equivalence classes is shown schematically in
Fig. 17.3.5.



450 Mathematical Applications

ι λ

η δ

Fig. 17.3.5 Idea of the interconnection between subsets and classes
in the First Isomorphism Theorem

It turns out that Ξ1Y ,Ξ2Y is an RY -congruence for the intermediate construct
RY := ι1;R; ιT2:

Ξ1Y
;RY = ι1; Ξ1; ιT1; ι1;R; ιT2 by definition

⊆ ι1; Ξ1;R; ιT2 ι1 is univalent
⊆ ι1;R; Ξ2; ιT2 congruence
⊆ ι1;R; ιT2; ι2; Ξ2; ιT2 due to Eqn. 17.2
⊆ RY ; Ξ2Y definitions of RY ,Ξ2Y

The constructs αi := ιi; Ξi;λT
i

;δi are surjective mappings:

αT
i

;αi = δT
i

;λi; Ξi; ιTi ; ιi; Ξi;λT
i

;δi by the definition just given
= δT

i
;λi; Ξi;λT

i
;λi; Ξi;λT

i
;δi due to Eqn. 17.1

= δT
i

; ΞiZ ; ΞiZ ;δi definition of ΞiZ
= δT

i
; ΞiZ ;δi ΞiZ is an equivalence

= δT
i

;δi;δ
T
i

;δi = ; = δi is natural projection for ΞiZ
αi;α

T
i = ιi; Ξi;λT

i
;δi;δ

T
i

;λi; Ξi; ιTi by definition
= ιi; Ξi;λT

i
; ΞiZ ;λi; Ξi; ιTi δi is natural projection for ΞiZ

= ιi; Ξi;λT
i

;λi; Ξi;λT
i

;λi; Ξi; ιTi definition of ΞiZ
= ιi; Ξi; ιTi ; ιi; Ξi; ιTi ; ιi; Ξi; ιTi due to Eqn. 17.1
= ΞiY ; ΞiY ; ΞiY = ΞiY ⊇ definition of equivalence ΞiY

With the αi, we may express S, T in a shorter way:
αT

1
;RY ;α2 = δT

1
;λ1; Ξ1; ιT1;RY ; ι2; Ξ2;λT

2
;δ2 definition of α1, α2

= δT
1

;λ1; Ξ1; ιT1; ι1;R; ιT2; ι2; Ξ2;λT
2
;δ2 definition of RY

= δT
1

;λ1; Ξ1; ιT1; ι1;R; Ξ2;λT
2

;δ2 due to Eqn. 17.2
= δT

1
;λ1; Ξ1; ιT1; ι1; Ξ1;R; Ξ2;λT

2
;δ2 Ξ1;R; Ξ2⊆R; Ξ2; Ξ2 = R; Ξ2⊆Ξ1;R; Ξ2

= δT
1

;λ1; Ξ1;λT
1
;λ1; Ξ1;R; Ξ2;λT

2
;δ2 due to Eqn. 17.1

= δT
1

; Ξ1Z
;λ1;R; Ξ2;λT

2
;δ2 as before, definition of Ξ1Z ,Ξ2Z

= δT
1

; Ξ1Z
;λ1;R;λT

2
;λ2; Ξ2;λT

2
;δ2 due to Eqn. 17.3

= δT
1

; Ξ1Z
;λ1;R;λT

2
; Ξ2Z

;δ2 definition of Ξ2Z

= δT
1

;δ1;δT
1

;λ1;R;λT
2

;δ2;δT
2

;δ2 δ1, δ2 natural projections for Ξ1Z ,Ξ2Z

= δT
1

;λ1;R;λT
2

;δ2 = T δ1, δ2 surjective mappings



17.4 Further Mathematical Snippets 451

ηT
1

;RY ;η2 = ηT
1

; ι1;R; ιT2;η2 definition of RY
= S definition of S

Relations α and ϕ are closely related:
αi;ϕi = ιi; Ξi;λT

i
;δi;δ

T
i

;λi; ι
T
i

;ηi definition of αi, ϕi
= ιi; Ξi;λT

i
; ΞiZ ;λi; ι

T
i

;ηi δi is natural projection for ΞiZ
= ιi; Ξi;λT

i
;λi; Ξi;λT

i
;λi; ι

T
i

;ηi definition of ΞiZ
= ιi; Ξi;λT

i
;λi; Ξi; ιTi ;ηi due to Eqn. 17.2

= ιi; Ξi; ιTi ; ιi; Ξi; ιTi ;ηi due to Eqn. 17.1
= ΞiY ; ΞiY ;ηi definition of ΞiY
= ηi;η

T
i

;ηi;η
T
i

;ηi = ηi ηi is natural projection for ΞiY
αT
i

;ηi = αT
i

;αi;ϕi see before
= ϕi αi are univalent and surjective

This enables us already to prove the homomorphism condition:
T ;ϕ2 = αT

1
;RY ;α2;αT

2
;η2 above results on T, ϕ2

= αT
1

;RY ; Ξ2Y
;η2 α2;αT

2 = Ξ2Y , see above
= αT

1
; Ξ1Y

;RY ; Ξ2Y
;η2 Ξ1Y ,Ξ2Y is an RY -congruence

= αT
1

;η1;ηT
1

;RY ;η2;ηT
2

;η1 η1 natural projection for Ξ1Y

= ϕ1;ηT
1

;RY ;η2 η2 univalent and surjective
= ϕ1;S see above

This was an equality, so that it suffices according to Lemma 5.7.7.

An attempt to generalize the second isomorphism theorem in a similar way imme-
diately suggests itself. The reader should, however, convince himself that this leads
to no other result as for the homomorphism theorem.

17.4 Further Mathematical Snippets

The following is intended to show that relations may help also to formulate other
concepts in mathematics. We open a glimpse at projective geometry, topology, and
the Farkas Lemma.

Discrete geometry

Some nice relational applications are possible in finite geometry. The basic setting is
that of a set P of points and set L of lines related by incidence I : P −→ L. Lines
may also be related by orthogonality, which in turn may be defined starting from
the incidences. One then easily arrives at Desargues, Pappus, or other properties.

17.4.1 Definition. A relation I : P −→ L between points and lines is called an
affine incidence plane, provided
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i) for every two different points there exists precisely one line incident with both
of them,

ii) for every line g and every point P not incident to it, there exists precisely one
line h through P without common point with g (i.e., that is “parallel” to g),

iii) for every line g there exists a point not incident to it.

Fig. 17.4.1 shows an example of an affine incidence plane. It is an easy relational
exercise to determine all classes of mutually parallel lines and to add them as
points of a new kind together with a new line containing all these so as to obtain
the projective geometry of Fig. 17.4.2. Lines 1, 2, 3 are mutually parallel and form
the class [1].

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

a
b
c
d
e
f
g
h
i


1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0















  





a
b c

d
e

f

g hi

Fig. 17.4.1 Incidence relation I of an affine incidence plane

Closely related to these — and more symmetric — are the projective planes.

17.4.2 Definition. A relation I : P −→ L is called a projective incidence
plane, provided

i) for every two different points there exists precisely one line to which both are
incident,

ii) for every two different lines there exists precisely one point incident with both
of them,

iii) there exist four points and no group consists of three of them all on a line.
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We have already mentioned the well-known transition from an affine to a projective
plane. From a projective incidence plane in turn, we may delete an arbitrary line
together with the points incident to it in order to obtain an affine incidence plane.

1 U
n
it

-1
2 3 4 5 6 7 8 9 1
0

1
1

1
2

a
[1]
b

[4]
c

[7]
d

[10]
e
f
g
h
i



1 0 0 0 1 0 0 1 0 0 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 1 1 1
0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0 0 0 1 0















  






a b

c

d
e

f

g hi

[]

[]

[]

[]

Unit-1

Fig. 17.4.2 A projective incidence plane obtained from Fig. 17.4.1

We transfer the definition of a projective plane into relation-algebraic form (disre-
garding the condition on degeneration). From the baseorder of points, resp. lines,
we take the duals BaseOdP and BaseOdL, thus restricting to two-element sets —
as represented by pairs strictly below the diagonal — when vectorizing as vP :=
vec(BaseOdP), vL := vec(BaseOdL). Both are then extruded resulting in the natural
injections ιP , ιL, from which the conditions for a projective geometry are immedi-
ately written down demanding that

LineForPointPair := ιP ; (I ©> I) and PointForLinePair := ιL; (IT©> IT)

be mappings. In Fig. 17.4.4, e.g., in this way the incidence on the left has been used
to compute the binary mapping given in two different representations.

The relation in Fig. 17.4.3 shows a second projective plane. It has a close connection
with the complete quadrangle presented as an example in Fig. 3.2.1: One will find
just one line added, namely line 7 connecting the diagonal points D1, D2, D3 —
shown in the graph only via node marking.
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1 2 3 4 5 6 7

P
R
S

D1
Q
D2
D3


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


P

Q R

S

D

D

D

1

2

3

Fig. 17.4.3 Another projective incidence plane

Mathematical folklore tells us that every projective plane has m2 +m+ 1 lines as
well as points. Those for given m are all isomorphic. Not for every m, however a
projective plane exists; a rather recent result, obtained only with massive computer
help, says that it does not exist for m = 10, e.g.

Given an I as in Fig. 17.4.4, the terms above evaluate to the binary mapping in
one of the two representations shown there in the middle and on the right.

A hint shall be given as to a possibility to use projective geometry techniques in
cryptography. To this end assume the projective plane I : P −→ L from Fig. 17.4.4
and determine the mapping that assigns to any set of two different points their
linking line as

decode := PointForLinePair

The cryptographic effect is now as follows: Assume words over the alphabet P are to
be communicated. Coding means to produce via encode := decodeT some 2-element
set over L, the lines corresponding to which cross in the respective point. Then
two words are sent over the communication line; may be even over two different
communication channels. The recipient will then put these to words side by side and
zip the binary mapping over the sequence of pairs so as to obtain back the original
word. One will observe that the choice of the pair is to a certain extent arbitrary,
so that additional care may be taken to approach equal distribution of characters
sent. (One may, however, also decide to encode an alphabet of 49 characters; i.e.,
every matrix entry with a different interpretation.)
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V
1
V

2
V

3
V

4
V

5
V

6
V

7

L1
L2
L3
L4
L5
L6
L7


0 1 0 1 1 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
0 0 0 0 1 1 1
1 0 0 1 0 0 1
0 1 1 0 0 0 1
0 0 1 1 0 1 0



V
1
V

2
V

3
V

4
V

5
V

6
V

7

(L2,L1)→
(L3,L1)→
(L4,L1)→
(L3,L2)→
(L5,L1)→
(L4,L2)→
(L6,L1)→
(L5,L2)→
(L4,L3)→
(L7,L1)→
(L6,L2)→
(L5,L3)→
(L7,L2)→
(L6,L3)→
(L5,L4)→
(L7,L3)→
(L6,L4)→
(L7,L4)→
(L6,L5)→
(L7,L5)→
(L7,L6)→



0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0



L
1

L
2

L
3

L
4

L
5

L
6

L
7

L1

L2

L3

L4

L5

L6

L7



– 5 2 5 4 2 4

5 – 1 5 1 3 3

2 1 – 6 1 2 6

5 5 6 – 7 7 6

4 1 1 7 – 7 4

2 3 2 7 7 – 3

4 3 6 6 4 3 –



to be communicated: V7V3V3V1V2V6
sent independently
along two channels:

L5L6L6L5L6L7
L4L2L7L2L3L4

received: V7V3V3V1V2V6

Fig. 17.4.4 Projective cryptography

Fig. 17.4.4 shows the original incidence I and derived therefrom the relation decode
as a relation that is a mapping. On the right also another representation of decode
is given as a symmetric table for a binary function — defined only when arguments
are different.

a b c d e f g h i j k l m

1
2
3
4
5
6
7
8
9

10
11
12
13



0 0 0 1 0 0 0 0 1 0 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1 1
1 0 0 0 0 1 0 0 0 1 0 1 0
1 1 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 1 1 0 0 0
0 1 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 1 0 0 1 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1

2

3

4

5

6

7

8

9

10

11

12

13



– i l l l d i k k i k d d

i – e m a a i e m i a m e

l e – l l h c e h h c c e

l m l – l b b b m g g m g

l a l l – a j f j f a f j

d a h b a – b b h h a d d

i i c b j b – b j i c c j

k e e b f b b – k f k f e

k m h m j h j k – h k m j

i i h g f h i f h – g f g

k a c g a a c k k g – c g

d m c m f d c f m f c – d

d e e g j d j e j g g d –


to transmit
“dedeki”

actually sent channel 1: 1, 3, 6, 13, 9, 1
actually sent channel 2: 13, 2, 1, 8, 8, 2

received
“dedeki”

Fig. 17.4.5 Second example of projective cryptography:
incidence and decoding as binary table
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Would one in the example of Fig. 17.4.5 decide for less redundancy, at least 78 =
(169 − 13)/2 characters could be encoded — more than sufficient to transmit the
full “Dedekind”.

Topology

Topology may be defined via open or closed sets, neighborhoods, etc. We show that
at least the latter — in the form given to it by Felix Hausdorff2 — is an inherently
“linear” configuration.

17.4.3 Proposition. A set X endowed with a system U(p) of subsets for every
p ∈ X is called a topological structure, provided

i) p ∈ U for every neighborhood U ∈ U(p)
ii) If U ∈ U(p) and V ⊇ U , then V ∈ U(p)
iii) If U1, U2 ∈ U(p), then U1 ∩ U2 ∈ U(p)
iv) For every U ∈ U(p) there exists V ∈ U(p) so that U ∈ U(y) for all y ∈ V

We can here give only a sketch of the idea. To this end, we express the same as (iv)
with ε and U conceived as relations

ε : X −→ 2X and U : X −→ 2X

and derive therefrom a relation-algebraic formula as in many former cases:

“For every U ∈ U(p) there exists a V ∈ U(p) such that U ∈ U(y) for all y ∈ V ”
transition to slightly more formal notation

⇐⇒ ∀p, U : U ∈ U(p) →
[
∃V : V ∈ U(p) ∧

{
∀y : y ∈ V → U ∈ U(y)

}]
interpreting “∈” as “ε”

⇐⇒ ∀p, U : UpU →
[
∃V : UpV ∧

{
∀y : εyV → UyU

}]
∀x : p(x) = ∃x : p(x)

⇐⇒ ∀p, U : UpU →
[
∃V : UpV ∧ ∃y : εyV ∧ UyU

]
composition and transposition

⇐⇒ ∀p, U : UpU →
[
∃V : UpV ∧ εT;UV U

]
definition of composition

⇐⇒ ∀p, U : UpU →
(
U ;εT;U

)
pU

transition to point-free form
⇐⇒ U ⊆ U ;εT;U

2 Felix Hausdorff, ∗1868, as a famous mathematician, in spite of being Jewish, enduring in Germany
until he commited suicide in 1942, after having been imprisoned
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We may, thus, lift the definition of a topological structure to a point-free version:

17.4.4 Definition. Consider any relation U : X −→ 2X between some set and
its powerset. One will then automatically also have the membership relation, the
powerset ordering ε,Ω : 2X −→ 2X , and the powerset meet M : 2X × 2X −→ 2X .
The relation U will be called a topological structure if the following properties
are satisfied:

i) U is total and contained in the respective membership relation:

U ; = and U ⊆ ε
ii) U is an upper cone, i.e., U ; Ω ⊆ U
iii) Finite meets of neighbourhoods are neighbourhoods again, i.e.,

(U ©< U) ;M⊆ U
iv) U ⊆ U ;εT;U

A lot of the basics of topology follows easily from this definition; not least the
interconnection with the definition of a topological space via open sets.

17.4.5 Definition. A system O of subsets of a set is an open set topology if

i) , ∈ O
ii) arbitrary unions of elements of O belong to O
iii) finite intersections of elements of O belong to O

It is relatively easy to lift this definition to the relation-algebraic level so as to
obtain the following:

17.4.6 Definition. Given a set X with membership relation ε and powerset order-
ing Ω : 2X −→ 2X , we call a vector O along 2X an open set topology provided

i) , ∈ O
ii) ΩT;O ⊆ O
iii) MT; (O©> O) ⊆ O

The interrelationship between the two definitions is as follows.
U := ε ∩ O;

O :=
[
∩ εT;U ; Ω

]
;
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Recalling the discussion of contact and closure in Sect. 11.4, we can provide another
interesting example of topologies. Whenever a relation R with source-side member-
ship ε, a contact C, a closure ρ, and a powerset ordering Ω are given coherently, the
construct U := (ε ∩ C;ρ); Ω turns out to be a topology. Even more, every topology
originates in this way.

Farkas’s Lemma

The following is a highly difficult result which is related to the primal/dual tran-
sition for linear programming tasks. Its relational formulation here is new. The
closest correspondence to a version dealing with real-valued matrices and (possi-
bly) non-negative vectors may be found as Theorem 1 in Chapt. 7 of [Fis85]. The
theorem is more or less devoid of any assumption, and may, thus, be considered an
extremely basic/general one. Its origins date back as far as to [Far02].

17.4.7 Proposition (A result resembling Farkas’s Lemma for relations). Let any
relation A : X −→ Y be given. In addition assume an arbitrary vector =/ v ⊆ Y

along the target side. Defining the union s := AT; of all rows, exactly one of the
following two statements will hold:

i) v ⊆ s
ii) There exists a vector r ⊆ Y satisfying A;r = and v ∩ r=/ .

Proof : First, we deduce a contradiction from the assumption that both, (i) and
(ii), hold true:

sT;r = T
;A;r =

implies v ⊆ s = s; ⊆ r, or else v ∩ r = , thus violating the assumption (ii).

Secondly, a contradiction is deduced from the assumption that both, (i) and (ii),
are not satisfied. Negation of (ii) — slightly modified — means

∀r ⊆ Y : A;r = → v ∩ r = .

From v⊆/ s, we define the non-empty r := v ∩ s. Then r = v ∩ s = v ∩AT; ⊆ AT; ,
or equivalently AT; ⊆ r. This means A; r ⊆ . The r so defined contradicts the
requirement v ∩ r = .

This was certainly a result in quite a different style compared with the others
reported on before. When considering relations as matrices it is close to trivial, as
may be seen in Fig. 17.4.6.
Putting v := , there is a certain relationship with a variant of the Tarski rule, for
which he in [Tar41] gave the equivalent formulation that for all relations R
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R; = or ;R = .

The left means that R is total; the right may stem from a row of 0 ’s.

M
o
n

T
u
e

W
e
d

T
h
u

F
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S
a
t

Alfred
Edwin

Hubert
Peter

(
0 0 0 0 1 0
0 1 0 1 0 0
0 0 0 1 0 1
0 0 1 0 0 0
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Tue
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Thu
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Sat


0
0
0
1
1
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Thu
Fri
Sat


0
0
0
1
1
1




0
0
0
0
1
0


A vA v r

Fig. 17.4.6 The alternative with regard to the relational Farkas Lemma

17.4.8 Proposition (A result resembling Farkas’s Lemma for relations — gener-
alized). Let any relation A : X −→ Y be given. In addition assume an arbitrary
vector u ⊆ X along the source side and an arbitrary vector v ⊆ Y along the target
side. Then exactly one of the following two statements will hold:

i) v ⊆ AT;u

ii) There exists a vector w⊇/ v that satisfies AT;u ⊆ w.

Proof : First, we deduce a contradiction from the assumption that both, (i) and
(ii), hold true. Assuming such a w with w⊇/ v in (ii), we have the contradiction
v ⊆ AT;u ⊆ w.

Secondly, a contradiction is deduced from the assumption that both, (i) and (ii),
are not satisfied. We start, thus, from

v⊆/ AT;u

∀w : AT;u ⊆ w → v ⊆ w.

and define w := v ∪ AT ; u. Then the statement left of the subjunction arrow is
satisfied and v ⊆ w has to hold true. This cannot be, since there exists an element
x in v that does not reside in AT;u and, thus, not in w.

When writing this down as

v ⊆ AT;u and A;w ⊆ u,

it looks so astonishingly similar to the traditional Schröder equivalence, that one
may suspect a deeper relationship. This would certainly be important for the area of
linear programming, where the Farkas Lemma is presented in ever new formulations,
adapted to the application side. Some texts include five or more versions of the
Farkas Lemma.
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Implication Structures

What is here called an implication structure is an abstraction of situations that
occur frequently: One is given a set of conflicting alternatives and the task to
choose among them as many non-conflicting ones as p2379

ossible. This runs then also under names such as attribute dependency.

The criteria to observe include choices that forbid others to be chosen. If someone
is planned to participate in an appointment, s/he cannot participate in a different
one at the same time. Sometimes a choice, or a non-choice, implies that another
choice be decided for. Situations thus described occur not least when constructing a
timetable or solving a Sudoku. They describe, however, also how one tries to learn
from a chunk of raw data in machine learning.

18.1 Attribute Dependency

We assume an implication situation where we have a set of items that may imply
(enforce), forbid, or counter-imply (counter-enforce) one another. The task is simply
to select a subset such that all the given postulates are satisfied.

In order to model this, let a set N be given. We are looking for subsets s ⊆ N

satisfying whatever has been demanded as implication concerning two elements
i, k ∈ N :

si → sk, si → ¬sk, ¬si → sk

Subsets s are here conceived as Boolean vectors s ∈ 2N . Therefore, si is shorthand
for i ∈ s. Enforcing, forbidding, and counter-enforcing are conceived to be given as
relations E,F,C : N −→ N .

An arbitrary subset s ⊆ N may either satisfy the implicational requirements im-
posed by E,F,C, or may not. We are usually not interested in all solutions, in
much the same way as one timetable satisfying formulated requirements will suf-
fice for a school. For a theoretical investigation, nevertheless, we consider the set
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S ⊆ 2N of all subsets fulfilling the given postulates, i.e., the possible solutions for
the postulated set of implications. They satisfy, thus,

∀s ∈ S : si → sk if (i, k) ∈ E (∗)
∀s ∈ S : si → ¬sk if (i, k) ∈ F (†)
∀s ∈ S : ¬si → sk if (i, k) ∈ C (‡)

We aim at a relational formulation of these predicate-logic versions of the require-
ments. As already at several other occasions, we indicate loosely how the respective
transition is justified.

∀i ∈ N : ∀k ∈ N : Ei,k →
(
∀s ∈ S : si → sk

)
a→ b = ¬a ∨ b

⇐⇒ ∀i ∈ N : ∀k ∈ N : Ei,k ∨
(
∀s ∈ S : sk ∨ si

)
∀k : p(k) = ¬∃k : ¬p(k)

⇐⇒ ∀i ∈ N : ¬
{
∃k ∈ N : Ei,k ∧

[
∃s ∈ S : sk ∧ si

]}
a ∧

[
∃s ∈ S : q(s)

]
= ∃s ∈ S : [a ∧ q(s)]

⇐⇒ ∀i ∈ N : ¬
{
∃k ∈ N :

[
∃s ∈ S : Ei,k ∧ sk ∧ si

]}
exchanging quantifiers

⇐⇒ ∀i ∈ N : ¬
{
∃s ∈ S :

[
∃k ∈ N : Ei,k ∧ sk ∧ si

]}
∃k ∈ N :

[
q(k) ∧ a

]
=
[
∃k ∈ N : q(k)

]
∧ a

⇐⇒ ∀i ∈ N : ¬
{
∃s ∈ S :

[
∃k ∈ N : Ei,k ∧ sk

]
∧ si

}
definition of composition

⇐⇒ ∀i ∈ N : ¬
{
∃s ∈ S : (E;s)i ∧ si

}
¬∃s : p(s) = ∀s : ¬p(s)

⇐⇒ ∀i ∈ N : ∀s ∈ S : E;si ∨ si
¬a ∨ b = a→ b

⇐⇒ ∀i ∈ N : ∀s ∈ S : (E;s)i → si
exchanging quantifiers

⇐⇒ ∀s ∈ S : ∀i ∈ N : (E;s)i → si
transition to point-free version

⇐⇒ ∀s ∈ S : E;s ⊆ s

A Galois connection

Assume for the moment three relations E,F,C to be arbitrarily given. Our aim is to
conceive the relations as some implication structure and to look for the underlying
set of solutions. To this end, we define

(E,F,C) 7→ σ(E,F,C) :=
{
v | E;v ⊆ v, F ;v ⊆ v, C;v ⊆ v

}
as the transition to the set of solutions of the triple E,F,C. The versions for F,C
are deduced in quite a similar way. In Fig. 18.1.1, such a situation is shown: Three



462 Implication Structures

arbitrary relations E,F,C for which all solutions s ∈ 2N have been determined and
for simplicity been collected as columns into one relation.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2
3
4
5
6
7
8
9

10
11



0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


1 2 3 4 5 6 7 8 9 1
0

1
1

0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0



{4
,6

,1
1
}→

{2
,4

,6
,1

1
}→

{4
,6

,8
,1

1
}→

{2
,4

,6
,8

,1
1
}→



0 0 0 0
0 1 0 1
0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0
1 1 1 1


Fig. 18.1.1 Prescribed enforcing E, forbidding F , counter-enforcing C with all solutions

This was a step from a relation triple E,F,C to a set of solutions. We may, however,
also start with any set S ⊆ 2N of subsets of N and ask whether it is a solution of
some triple of implication relations. Then we define the transition to the triple of
implication relations of S

S 7→ π(S) :=
(
inf s∈S{s;sT}, inf s∈S{s;sT}, inf s∈S{s;sT}

)
This will in particular result in π(∅) = ( , , ). Altogether, this gives a situation
we are already acquainted with, namely — as to the following proposition — a
Galois correspondence.

18.1.1 Proposition. The functionals σ, π just defined form a Galois correspon-
dence from subsets S ⊆ 2N to relation triples E,F,C on N .

Proof : We have to exhibit that for the three components of the triple
E ⊆ π(S)1 and
F ⊆ π(S)2 and
C ⊆ π(S)3

 ⇐⇒ S ⊆ σ(E,F,C)

We start from E ⊆ π(S)1 = inf s∈S s;sT, which implies that we have E ⊆ s;sT for
all s ∈ S. Negating results in s;sT ⊆ E. Using Schröder’s rule, we get E;s ⊆ s for
all s and, thus, the first condition in forming σ(E,F,C). The other two cases are
handled in a largely analogous way.

Now, we work in the reverse direction, assuming

S ⊆ σ(E,F,C) =
{
s | E;s ⊆ s, F ;s ⊆ s, C;s ⊆ s

}
.

This means that we have E;s ⊆ s, F ;s ⊆ s, C;s ⊆ s for every s ∈ S. The negations
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and the Schröder steps taken before, had been equivalences, and may, thus, be
reversed. This means that for all s ∈ S we have E ⊆ s;sT, F ⊆ s;sT, C ⊆ s;sT. In
this way, we see that E,F,C stay below the infima.

Given the Galois correspondence, it is straightforward to prove all the results that
follow simply by Galois folklore. In particular we study

ϕ(S) := σ(π(S)) and ρ(E,F,C) := π(σ(E,F,C))

with properties as follows:

— σ, π are antitone mappings.
— ρ and ϕ are expanding, i.e.,

E ⊆ π1(σ(E,F,C)) F ⊆ π2(σ(E,F,C)) C ⊆ π3(σ(E,F,C)) for all E,F,C
S ⊆ σ(π(S)) for all S

— ρ and ϕ are idempotent, i.e.,
ρ(E,F,C) = ρ(ρ(E,F,C)) for all E,F,C
ϕ(S) = ϕ(ϕ(S)) for all S.

— ρ, ϕ are monotonic and, thus, closure operations.
— There exist fixed points for ρ, ϕ.
— The fixed point sets wrt. ρ, ϕ are mapped antitonely onto one another.

Proofs of these results may not least be found in [SS74, SS76, Str78, Sch05].

In Fig. 18.1.2, we are going to start from a set of vectors (it is in fact the solution
S ⊆ 2N as obtained in Fig. 18.1.1).

A B C D

1
2
3
4
5
6
7
8
9

10
11



0 0 0 0
0 1 0 1
0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0
1 1 1 1



1 2 3 4 5 6 7 8 9 1
0

1
1

1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 0 0 0 1



1 2 3 4 5 6 7 8 9 1
0

1
1

1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 1 0



1 2 3 4 5 6 7 8 9 1
0

1
1

0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1


Fig. 18.1.2 A set S of vectors with implication triple π(S) obtained therefrom

Fixed points closures for an implication structure

In order to have a clear distinction, we decide to denote the fixed points of closure
forming with calligraphic letters. We need not stress the status of closure forming
as an operation, because we will always start with the same E,F,C so that we have

E ⊆ E F ⊆ F C ⊆ C S ⊆ S
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S := σ(E,F,C) (E ,F , C ) := π(S)
(E ,F , C ) = ρ(E ,F , C ) = ρ(ρ(E ,F , C )) S = ϕ(S ) = ϕ(ϕ(S ))

It should be noted that E ⊆ E means containment for relations while S ⊆ S
denotes a set of vectors contained in anoter vector set. In no way does this mean that
we are able to execute these computations efficiently — although the tasks are finite.
The calligraphic versions are, thus, just theoretically existing ones together with
their properties. In tiny eamples, however, we are in a position to show everything
explicitly. In Fig. 18.1.2, e.g., we find the triple E ,F , C for the three relations
E,F,C of Fig. 18.1.1, since we have there been starting from the solution set of the
latter.

In what follows, we investigate the much more stringent properties that such fixed
points (E ,F , C ) of an implication structure obviously have. We restrict to the
finite case and exclude, thus, difficult continuity considerations.

18.1.2 Proposition. All the fixed points of the Galois correspondence satisfy

i) F = F T, C = C T

ii) ⊆ E = E 2

iii) E ;F = F , C ; E = C
iv) F ; C ⊆ E

Proof : We see immediately that the second as well as the third component of π(S)
are symmetric by definition. ⊆ E since obviously ⊆ s;sT for all s.

Transitivity of E follows since s;sT ; s;sT ⊆ s;sT and transitivity is “∩”-hereditary.
Similarly, for F and C in (iii) and for (iv).

The enforcing relation E of a fixed point is, thus, a preorder. While these proper-
ties concerned non-negated implications relations, there are others including also
negated ones.

18.1.3 Corollary. The fixed points satisfy in addition

i) E ; C = C , F ; E = F
ii) C ; C ⊆ E , E ; C ⊆ F
iii) F ;F ⊆ E , F ; E ⊆ C
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Proof : In (i), “⊇” is obvious since E is reflexive. “⊆” follows with the Schröder
rule from C ; E = C ; the others in a similar way.

Considered from a computational point of view, the formulae of Cor. 18.1.3 don’t
bring any additional information, because they all follow from the earlier ones.
Another example shall further illustrate these results showing the closure forming
on the S -side.

18.1.4 Example. In Fig. 18.1.3, we start with an arbitrary set S of vectors, de-
termine (E ,F , C ) := π(S), — which are already fixed points. Finally, the set
S := ϕ(S) of all vectors satisfying E ,F , C is determined, which — as its closure
— contains S.

S =

{a
,
d
,
g
,
i,
k
}
→

{a
,b

,d
,i
,j

,k
}→

{a
,c

,d
,g

,i
,k
}→

{a
,c

,e
,g

,i
,k
}→

{a
,c

,d
,g

,h
,i
,j
}→

{a
,c

,d
,e

,g
,i
,j

,k
}→

a
b
c
d
e
f
g
h
i
j
k



1 1 1 1 1 1
0 1 0 0 0 0
0 0 1 1 1 1
1 1 1 0 1 1
0 0 0 1 0 1
0 0 0 0 0 0
1 0 1 1 1 1
0 0 0 0 1 0
1 1 1 1 1 1
0 1 0 0 1 1
1 1 1 1 0 1


S = ϕ(S) =

{a
,c

,d
,g

,h
,i
,j
}→

{a
,d

,g
,i
,k
}→

{a
,c

,d
,g

,i
,k
}→

{a
,c

,e
,g

,i
,k
}→

{a
,c

,d
,e

,g
,i
,k
}→

{a
,b

,d
,i
,j

,k
}→

{a
,d

,g
,i
,j

,k
}→

{a
,c

,d
,g

,i
,j

,k
}→

{a
,c

,d
,e

,g
,i
,j

,k
}→

a
b
c
d
e
f
g
h
i
j
k



1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0
1 0 1 1 1 0 0 1 1
1 1 1 0 1 1 1 1 1
0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1
0 1 1 1 1 1 1 1 1



a b c d e f g h i j k

a
b
c
d
e
f
g
h
i
j
k



1 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 1 0 0
1 0 1 1 0 0 1 1 1 1 0
1 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 0 1



a b c d e f g h i j k

a
b
c
d
e
f
g
h
i
j
k



0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0



a b c d e f g h i j k
a
b
c
d
e
f
g
h
i
j
k



1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 1 0 1
1 0 1 1 0 0 1 1 1 1 0


E F C

Fig. 18.1.3 Closure S = ϕ(S) obtained from S via E , F , C

Computing implication closures

With the theory presented so far, the logical mechanism of implication structures
has been described. Implication structures often arise in practice and may be defined
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in several ways. The practical tasks typically start with requirements E,F,C that
are formulated in an application specific way, or given more or less explicitly in
predicate logic form. In any case, the task is to look for — at least one — solution
vector s of the closure S = σ(E,F,C) in order to reflect the application dependent
requirements.

As this is now settled, we consider implication structures from a computational
point of view. While it seems possible to handle three n× n-matrices E,F,C with
regard to composition or transitive closure forming for really big numbers n in
a relation-algebraic way with RelView (see [BSW03], e.g.), it will soon become
extremely difficult to determine vectors of length n satisfying certain given impli-
cations. While we do not see enough mathematical structure on the S-side, the
formulae proved earlier for the (E,F,C)-side may be helpful. To find a solution s is
normally NP-complete as for the timetable problem or for satisfiability problems.

One will, therefore, try to compute bigger and bigger approximations

E ⊆ Eapprox ⊆ E F ⊆ Fapprox ⊆ F C ⊆ Capprox ⊆ C

for the closure with the hope that these bigger relations make it easier to find
one of the solutions s. One should bear in mind, that this means to work largely
heuristically. In case there exist very long chains of implications, it may well be the
case that the approximation of the closure makes it easier to determine a solution
s by applying the following concepts.

Considering Prop. 18.1.2, one will easily suggest to start with E,F,C and apply
round-robinwise the following steps until a stable situation is reached:

• determine the reflexive-transive closure of E

• determine the symmetric closure of F and C

• expand F to E;F and C to C;E

• add F ;C to E

We provide a fully elaborated tiny example with Fig. 18.1.4.
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E =

1 2 3 4 5

1
2
3
4
5

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
1 0 0 0 0

 F =

1 2 3 4 5

1
2
3
4
5

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 C =

1 2 3 4 5

1
2
3
4
5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1



Eapprox =
1 2 3 4 5

1
2
3
4
5

1 0 0 0 0
1 1 1 1 1
0 0 1 1 0
0 0 0 1 0
1 0 0 0 1

 Fapprox =

1 2 3 4 5

1
2
3
4
5

0 1 0 0 0
1 1 1 1 1
0 1 1 1 0
0 1 1 0 0
0 1 0 0 0

 Capprox =

1 2 3 4 5

1
2
3
4
5

1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1



E =

1 2 3 4 5
1
2
3
4
5

1 0 0 0 1
1 1 1 1 1
1 1 1 1 1
1 0 0 1 1
1 0 0 0 1

 F =

1 2 3 4 5

1
2
3
4
5

0 1 1 0 0
1 1 1 1 1
1 1 1 1 1
0 1 1 0 0
0 1 1 0 0

 C =

1 2 3 4 5

1
2
3
4
5

1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1



E perm =

2 3 4 1 5

2
3
4
1
5

1 1 1 1 1
1 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 1 1

 F perm =

2 3 4 1 5

2
3
4
1
5

1 1 1 1 1
1 1 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 C perm =

2 3 4 1 5

2
3
4
1
5

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 1 1
1 1 1 1 1



S =

{1
,5
}→

{1
,4

,5
}→

1
2
3
4
5

1 1
0 0
0 0
0 1
1 1

 S perm =

{1
,5
}→

{1
,4

,5
}→

2
3
4
1
5

0 0
0 0
0 1
1 1
1 1


Fig. 18.1.4 Approximating solutions of implication relations

One will observe, that the approximations satisfy all the requirements of Prop. 18.1.2,
but are not yet closures.

We provide yet another example and show the approximations for the E,F,C of
Fig. 18.1.1. The relations are filled considerably but far from reaching the closure
already shown in Fig. 18.1.2.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2
3
4
5
6
7
8
9

10
11



1 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 1
0 0 0 1 0 1 0 0 0 0 0
1 0 1 1 1 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 1 0 1 0 1
1 0 1 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1



1 2 3 4 5 6 7 8 9 1
0

1
1

1 1 1 1 1 0 1 0 1 1 0
1 0 0 0 1 0 0 0 0 1 0
1 0 1 0 1 0 1 0 1 1 0
1 0 0 0 1 0 0 0 0 1 0
1 1 1 1 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 1 0
1 0 1 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1 0
1 1 1 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0



1 2 3 4 5 6 7 8 9 1
0

1
1

0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 1


Fig. 18.1.5 Approximations Eapprox, Fapprox, and Capprox for Fig. 18.1.3.



468 Implication Structures

Tight and pseudo elements

Beyond the computational attempts started so far another interesting observation
can be made.

18.1.5 Proposition. Let any three relations E,F,C : N −→ N be given and
consider an arbitrary element i ∈ N .

i) F (i, i) = 1 =⇒ i∈/ s for any solution s

ii) C(i, i) = 1 =⇒ i ∈ s for any solution s

iii) If there exists an i with F (i, i) = 1 = C(i, i), then the solution set is empty.

Proof : i,ii) We instantiate (†, ‡) for k := i:

∀s ∈ S : si → ¬si if (i, i) ∈ F , meaning ∀s ∈ S : ¬si
∀s ∈ S : ¬si → si if (i, i) ∈ C, meaning ∀s ∈ S : si

iii) is simply a consequence out of two non-satisfiable conditions.

Given this setting, the definition of implication relations leads us to call i ∈ N with
respect to E,F,C

• an (E,F,C)-pseudo element if F (i, i) = 1 ,
• an (E,F,C)-tight element if C(i, i) = 1 ,
• an (E,F,C)-flexible element otherwise.

So, for every 1 in the diagonal of C, the corresponding element must and for every
1 in the diagonal of F , it cannot belong to any solution s ∈ S . These facts together
with all their implications according to E,F,C may also be helpful in looking for
solutions S.

This raises the question as to the interrelationship of being (E,F,C)-tight, (E,F,C)-
pseudo, or (E,F,C)-flexible and of being (E ,F , C )-tight, (E ,F , C )-pseudo, or
(E ,F , C )-flexible. For the latter, we will always omit the qualification (E ,F , C )
and simply speak of being tight, pseudo, and flexible.

A first rather trivial statement says that

(E,F,C)-tight =⇒ tight
(E,F,C)-pseudo =⇒ pseudo, but
(E,F,C)-flexible ⇐= flexible

18.1.6 Proposition. For the closure E ,F , C of an implication structure E,F,C
together with the set S ⊆ 2N of solution subset, the following holds:
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i) The vector v := (F ∩ ); satisfies
v = inf s∈S s v; ⊆ E vi = 1 =⇒ i ∈ N is pseudo

ii) The vector w := (C ∩ ); satisfies
w = inf s∈S s ;wT ⊆ E wi = 1 =⇒ i ∈ N is tight

Proof : We restrict to (ii) and start the proof, which is unexpectedly difficult on
the technical side, with two principally trivial steps that are completely obvious
when looking at the column representation of a vector s ⊆ N . Then

s;sT ∩ N,N = s;
T

N ∩ N,N = s;
T

N ∩ N,N

s;sT ∩ N,N = s;
T

N ∩ N,N = s;
T

N ∩ N,N

For the first equations above, direction “⊇” is trivial; furthermore

s;sT ∩ N,N ⊆ s;
T

N ⇐⇒ s;
T

N ⊆ s;sT ∪
where the latter follows from s;

T

N = s;(s ∪ s)T = s;sT ∪ s;sT ⊆ s;sT ∪ . The second
line means the same, but formulated for s instead of s.

Using this:

w := (C ∩ ); =
(
π3

(
S
)
∩
)

;

=
(
inf

{
s;sT | s ∈ S

}
∩
)

;

=
(
inf

{
s;sT ∩ | s ∈ S

})
;

=
(
inf

{
s;

T

N ∩ | s ∈ S
})

;

= inf{s | s ∈ S }

In addition to the former approximation operations, one should, therefore, also
increment as a consequence of tightness and pseudo availbaility adding the corre-
sponding rows and columns as follows

E 7→ E ∪ (F ∩ ); ∪ ; (C ∩ )
F 7→ F ∪ (F ∩ ); ∪ ; (F ∩ )
C 7→ C ∪ (C ∩ ); ∪ ; (C ∩ )

The justification follows directly from ∗, †, ‡ mentioned initially.

Rearranging implication structures

Closed implication matrices are only interesting modulo the equivalence E ∩ E T

derived from the preorder E . It is an easy consequence that by simultaneous permu-
tation of rows and columns every triple of implication matrices may be arranged in
the following standard form of row and column groups. An example may be found
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in the illustrating closure matrices of Fig. 18.1.2, which are here given schematically
in reordered form.

E =

 E0

 , F =

 F0

 , C =

 C0


All rows corresponding to pseudo elements are positioned as the first group of rows,
followed by the group of rows corresponding to flexible elements, and those for tight
elements. E0, F0, C0 satisfy some additional rules. This will now be demonstrated
with an example.


1
0
1
0
0
0
1




1
0
0
0
1
0
1




1
0
1
0
1
0
1




1
0
0
1
1
0
1



1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 0 0 0 0 0 1
1 1 1 1 1 1 1
1 0 1 0 0 0 1
1 0 0 1 1 0 1
1 0 0 0 1 0 1
1 1 1 1 1 1 1
1 0 0 0 0 0 1


1 2 3 4 5 6 7

1
2
3
4
5
6
7


0 1 0 0 0 1 0
1 1 1 1 1 1 1
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 0 0 0 1 0
1 1 1 1 1 1 1
0 1 0 0 0 1 0



1 2 3 4 5 6 7

1
2
3
4
5
6
7


1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 1 0 1
1 0 0 0 0 0 1
1 0 1 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1


Fig. 18.1.6 Solution set S and implication relations E , F , C

These solutions together with the resulting relations E,F,C are now arranged so
as to get an easier overview.


0
0
1
0
0
1
1




0
0
0
0
1
1
1




0
0
1
0
1
1
1




0
0
0
1
1
1
1


pseudo

flexible

tight

2 6 3 4 5 1 7

2
6
3
4
5
1
7


1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1



2 6 3 4 5 1 7

2
6
3
4
5
1
7


1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0


2 6 3 4 5 1 7

2
6
3
4
5
1
7


0 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 1 0 0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


Fig. 18.1.7 Matrices of Fig. 18.1.6 with E , F , C rearranged

We can execute this rearrangement correspondingly for Fig. 18.1.3, obtaining the
Fig. 18.1.8.

6 2 3 4 5 7 8 1
0

1
1

1 9

6
2
3
4
5
7
8

10
11
1
9



1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 0 0 1 1 1 1
0 0 1 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1 1
0 0 1 0 1 1 0 0 1 1 1
0 0 0 0 0 1 0 0 0 1 1
0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1



6 2 3 4 5 7 8 1
0

1
1

1 9

6
2
3
4
5
7
8

10
11
1
9



1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0



6 2 3 4 5 7 8 1
0

1
1

1 9

6
2
3
4
5
7
8

10
11
1
9



0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0 1 1 1
0 0 1 0 1 1 0 0 1 1 1
0 0 0 1 0 0 0 0 0 1 1
0 1 0 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0 1 1 1
0 0 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1


Fig. 18.1.8 Matrices of Fig. 18.1.3 with E , F , C rearranged
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18.2 Examples of Implication Closures

We will now provide two extended examples: Timetabling and Sudoku-solving. In
either case, we are going to write down terms that denote the implication structure.
These have then been used for interpretation in TituRel so as to obtain the
example relations.

Timetables

Implication structures have not least been studied in the context of timetables. For
a timetable problem, there exists a set of hours or time slots. To these time slots
lessons or meetings shall be assigned to which a set of participants has to convene.
The problem is that the participants may not be available at all the given hours.

T1 T2

T3

T4

T5

T6

C1

C2

C3C4

C5

C6

M1 M2

M3 M4

M5 M6

M7 M8M9

M10

M11 M12

M13

M14 M15

M16

8h 9h 10h

8
h

9
h

1
0
h

M1
M2
M3
M4
M5
M6
M7
M8
M9

M10
M11
M12
M13
M14
M15
M16



1 1 0
1 0 1
1 1 0
1 0 1
1 1 1
1 1 1
1 0 1
1 1 1
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 1 1
1 1 1
0 1 1


Fig. 18.2.1 Timetable problem with 3 hours. The availability of the

meetings to be scheduled is indicated via graph and relation

A simple version of such an investigation shall here provide an extended example.
There are given a set T of teachers and a set C of school classes. Using the direct
sum construct P := T+C, we bind these together in one set P of participants. Then
there is a set H of school hours. The lessons or meetings to be scheduled are each
composed of a class and a teacher and a set of available hours. The availability may
be restricted because a teacher or class is not available for some reason or another.
It may, however, also be the case that a lesson must not be set on some specific
hour or time slot; since, e.g., a day must not start with a gymnastics lesson.

Fig. 18.2.1 shows all the lessons of our example1 together with their availability in
two different ways; the graph, resp. the relation, have already been determined in an
earlier phase of analysis. We have only 6 teachers T1, . . . , T6, 6 classes C1, . . . , C6
and the possible hours H = {8h, 9h, 10h}. The necessary meetings (meets for short)

1 One may find this example already in [Sch74a].



472 Implication Structures

have been numbered M1. . . M16, participation is shown in the graph. The relation
on the right expresses information that may immediately be read off the graph: In
lesson M13, teacher T3 is involved as well as class C3.

We now present a relational formulation referring to Fig. 18.2.2. It must be pre-
scribed who has to convene for a lesson or meeting. Here, we list which set of teachers
has to meet with relations µT : M −→ T and the classes with µC : M −→ C. We
get the participants (teachers or classes) via the direct sum construct with natural
injections ι, κ by

µP := µT ; ι ∪ µC ;κ

Every teacher has its own availability αT : T −→ H in a similar way as every class
has αC : C −→ H. Via the direct sum, then immediately the availability

αP := ιT;αT ∪ κT;αC

of every participant is obtained. The a priori availability of lessons shall be given
as αM . So far, it may be that a teacher is available for many hours but due to
restrictions by other participants in his meetings this is completely misleading, as
all the others are very tight. The reduction to availability of meetings eliminates
in a straightforward manner availabilities of participants which can never be used.
From this and the joint availability of the participants an availability of the lesson
is determined as

γ := αM ∩ µP ;αP .

In γ, the availability αM of the lesson itself has been taken care of; in addition, it
is not the case that there exists a participant of the lesson in question that is not
available. The relation γ is shown on the right of Fig. 18.2.1.

M H P 

T

C

M×H

T C+ = 

π ρ ι

κ

µ
T

µ
C

µ
P

αT

α
C

α
P

α
M

ξA

E,F,C

γ

Fig. 18.2.2 The relations involved in a timetable problem

To solve this timetable problem means to assign lessons or meetings to hours, i.e.,
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find a mapping ϑ ⊆ γ, satisfying the availability restrictions — assuming in this
example precisely one hour necessary per lesson.

However, the timetable problem is known to be NP-complete, i.e., inherently diffi-
cult. It needs a little bit of construction to configure it as an implication structure.
To this end, we introduce the possible associations of meetings and hours as a di-
rect product M × H together with the two projections π : M × H −→ M and
ρ : M ×H −→ H. Then we convert γ with vectorization according to Sect. 7.9 into
a vector

v := (π;γ ∩ ρ); ,

defined along M×H; this is then extruded with ξ := Extrude v in order to cut out
from the beginning what corresponds to non-availabilities. Due to this extrusion,
the row and column labelings in the following figures always end with→. A solution
is now a vector along M ×H constrained with certain relations E,F,C that we are
now going to construct from the timetable requirements.

The criteria are a conjunction of three properties.

• A meet is assigned only if all of its participants are available;

• every meet is assigned precisely once, and

• no participant is assigned with two different meetings in the same time slot.

The elementary forbidding relation may thus be formulated as

FH := π;πT ∩ ρ; ;ρT

saying that a lesson being assigned to a time slot is forbidden for any other time
slot. Also, having assigned a lesson to some hour, there can not be assigned another
lesson to this hour in case they overlap in participants as shown algebraically in

FP := π;

(
∩ µP ;µT

P

)
;πT ∩ ρ;ρT

Both these forbidding requirements are then joined and extruded with the afore-
mentioned ξ so as to obtain

F := ξ; (FH ∪ FP );ξT.

Writing this term down in TituRel instead of TEX, one may interpret it and get
the result of Fig. 18.2.3.
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0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0


Fig. 18.2.3 Elementary forbidding relation F of timetable problem of Fig. 18.2.1

For example, M1 assigned to 8h forbids to assign it at 9h, but also due to class
C1 to assign M2 at 8h. In addition to F , we need the elementary counterenforcing
relation C. We will observe here that C and F overlap. The basic idea is that when
there are just two lessons for a participant p at some time slot, the not-assigning
of one of these enforces the assignment of the other to be made. So, we design the
functional

c(p) := ξ;upa(π;µP ; ( ∩ p; );µT

P
;πT ∩ ρ;ρT ∩ );ξT

and join the result of the application to all participants

C := supp∈P c(p) ∪ ξ;upa(π;πT ∩ ρ; ;ρT);ξT

In both cases, the univalent part functional

upa(R) := R ∩ R; = syq (RT, )
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has been used. The result of an evaluation of this term is shown in Fig. 18.2.4.
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Fig. 18.2.4 Elementary counterenforcing relation C of timetable problem of Fig. 18.2.1

As an example consider lesson M3; if it is not scheduled for 8h, it must be assigned
to 9h since there is no other possibility. In addition, considering participant C2, the
lesson M6 not assigned to 10h implies lesson M4 to be assigned at 10h. Now we
investigate how the elementary enforcing E should look like. For the first time, we
now use a forbidding relation F as a parameter — it need not be the elementary
forbidding.

eF (p) := F/
(
ι; (π;µP ; ( ∩ p; );µT

P
;πT) ∩ ρ;ρT ∩ ); ιT)

)
E :=

(
supp∈P eF (p)

)∗
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Fig. 18.2.5 Elementary enforcing relation E of timetable problem of Fig. 18.2.1

The teacher appointed to produce the timetable will most certainly not establish
such matrices. He will probably start the process of solving simply by trying to as-
sign meetings to hours. In order to solve this NP-complete problem, he will mostly
apply heuristics. These heuristics will mainly consist in some sort of accounting.
That is, he will try to immediately update availabilities which are reduced when
an assignment has been made. He may also immediately apply the highly efficient
mincut analysis. This means that for every participant all the meetings he is in-
volved in will be assigned testwise regardless of other participants. It will efficiently
detect, e.g., that the fat assignment of c in Fig. 18.2.6 must not be used, as then
not all of {a, b, c, d} can be accomodated.
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a 1

b 2

c 3

d 4

Fig. 18.2.6 Mincut tightness in a timetabling problem

The result may also be that a full assignment is no longer possible. Then back-
tracking is necessary. The result may finally be that from mincut analysis alone, it
follows that some meeting is already tight with regard to the possibilities to assign
it. This meeting will then be chosen to be formally assigned.

In this way, one decision to assign a meeting may result in some sequence of imme-
diate consequences. These are fixed before the next choice is made.

In spite of this flexibility, there exist pseudo-availabilities, i.e., availabilities that
cannot be used in a solution. We give an example with meeting M7 scheduled at
8h: This immediately forbids assignment of (3,8),(5,8),(14,8),(10,8),(7,10). These in
turn counterenforce assignment of (1,8) (because otherwise teacher T1 cannot be
accomodated at 8h),(11,8). These then forbid (2,8),(12,8),(11,9),(1,9), thus coun-
terenforcing (4,8),(13,8),(16,9), etc. In total, we find out that this is just pseudo,
so that we have to decide for the only alternative as shown in Fig. 18.2.7.

Fig. 18.2.7 Timetable problem after assigning tight assignments
and deleting forbidden ones

In the timetable problem of Fig. 18.2.7, it will turn out that mincut analysis for
any participant (i.e., vertex) will not provide tight assignments in the sense just
indicated. There exist, however, long-range implications to be derived by iteration
of enforce, forbid, and counter-enforce.
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Fig. 18.2.8 Two solutions of the timetable problem: fat lines indicate assignment

There is something else to be carefully considered: According to Prop. 18.1.2, E is a
preorder. One may ask which influence it has for the necessarily heuristic algorithm
when one chooses minimal/maximal elements to be handled first. Selecting minimal
elements with regard to E first, makes fundamental decisions early in a backtracking
algorithm. It may, however, also be wise, to assign maximal elements first. Then
some freedom is still left to assign the others — and to fit to criteria one has not
yet formalized.

Sudoku

Another nice example of an implication structure is given by one of the now popular
Sudoku puzzles. A table of 9×9 squares is given, partially filled with natural numbers
1, 2, 3, 4, 5, 6, 7, 8, 9, that shall be filled completely. The problem is that one is neither
allowed to enter the same number twice in a row or column nor that one is allowed
to enter duplicates in the nine 3×3 subzones. There exist variant forms with 12×12
or 15× 15, or others.

Sudokus published in a newspaper typically allow for just one solution. In general,
there may be none or many. Often the first steps are rather trivial; looking from
the empty position i, k to row i and also column k as well as to subzone s, one may
find out that already 8 of the nine numbers have been used. It is then obvious that
the nineth has to be entered in the so far empty field i, k.

From the first to the second, one will at position (2, 3) easily observe that the
corresponding row already contains 2,9,5,6, the corresponding column 2,3,1,8, and
the upper left sub-square 2,7. So all digits except 4 are present and 4 must, therefore,
be assigned to position (2, 3).
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2 4
2 9 5 6

7 9

1 9
2 3 1 4
3 8

3 4 2
2 1 9 7

7 8 2 1 3

2 4
2 4 9 5 6

7 9

1 7 9
2 3 1 4
3 8

3 1 4 2
2 1 9 7

7 8 2 1 3

8 9 6 2 7 4 5 3 1
2 1 4 9 3 5 7 8 6
3 7 5 6 1 8 2 9 4

1 5 7 4 8 2 3 6 9
6 8 2 3 9 1 4 5 7
9 4 3 7 5 6 8 1 2

5 3 9 1 4 7 6 2 8
4 2 1 8 6 3 9 7 5
7 6 8 5 2 9 1 4 3

Fig. 18.2.9 A Sudoku puzzle with immediate insertions

Another trivial step is to look for some field whether all other non-filled places in a
sub-square (or row, or column) are already forbidden for some number. Of course,
then this number has to be entered in the field in question. This is what leads us
to insert a 7 at position (4,3) since the first two columns are already blocked with
a 7. Also, we have to put a 1 at (7,4): The last two rows already contain a 1 as well
as column 6.

These two steps follow different ideas but are in principle trivial ones. With a
grandson on ones knees, one will easily commit mistakes; nevertheless, it is a trivial
accounting job and, thus, not really interesting. The Sudoku of Fig. 18.2.9 may be
considered a trivial one as already the trivial operations iterated lead to the full
solution on the right.

What interests more is the task beyond this. Other Sudokus will not yet be filled
after such operations. This is the point in time, when persons trying to solve the
Sudoku come in trouble and may be tempted to start case analyses or branch and
bound techniques. So we assume a new example, as on the left of Fig. 18.2.10, and
immediately execute all these trivial — but error-prone — steps to arrive on the
right.

8 9
2 3 9 8

5 7 4

3 2 1
2 6 8

4 2 1 6

7 9 6
4 7 5 3

3 8

8 3 9 5 2
4 2 3 5 7 9 8

5 7 9 3 4

3 6 7 5 2 1 4 8 9
9 2 1 4 6 8 3 7 5
8 5 4 3 2 1 6

7 3 9 6 1
4 7 5 2 3
2 3 8 4 7

Fig. 18.2.10 A less trivial Sudoku puzzle that is maximally filled by trivial insertions
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With a computer, one is in a position to avoid such procedures of search style
applying implication structures to the not yet completed Sudoku on the right. We
recall, that after the steps executed so far the following two statements hold true:

• It is not the case that any entry must be made as all other numbers in row,
column, or subzone are already used and, thus, no longer available.

• It is not the case, that all other entries in the respective row, column, or subzone
are already forbidden for some digit.

One may check and find out that his indeed holds true for the right Sudoku of
Fig. 18.2.10. But there is a lot of sources of local implications and similarly for
counterenforcing.

rowzones

fields numbers

rows

columns

subzones

β

π

ρ

σ

π

ρ

ξ

ζ

colzones

Fig. 18.2.11 Relations around a Sudoku

We now study this with implication structures, i.e., from a relational point of view.
It would be extremely tedious and error-prone to write down such a relation by
hand. Other techniques are, however, available. We start from the very basics in-
troducing the sets in question, namely

rowSet,colSet,digSet,rowZonSet,colZonSet

from which the first three stand for rows, columns, and digits 1, 2, 3, 4, 5, 6, 7, 8, 9 —
or others in variant forms. The last denotes the three zones low, medium, high so
that the upper right subzone is represented, e.g., by the pair (low,high). The entries
of the Sudoku are then given as elements of the direct sum

fields = DirPro rowSet colSet

with projections

π = Pi rowSet colSet

ρ = Rho rowSet colSet

The squares are heavily based on the classifications of rows and columns as ξ(1) =
ξ(2) = ξ(3) = low , ξ(4) = ξ(5) = ξ(6) = medium, ξ(7) = ξ(8) = ξ(9) = high and
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analogously with ζ for columns. Obviously, the “projection” σ to the subzones may
be derived from this setting as

σ := π;ξ;π′
T ∩ ρ;ζ;ρ′T

Several relations between these are immediate, the row equivalence π;πT, the column
equivalence ρ;ρT, the subzone equivalence σ;σT, the identity on fields (1, 1), (1, 2), . . . ,
(9, 8), (9, 9), etc. Most importantly, the univalent relation β indicates the current
accomodation of numbers in fields, be it from the start or after insertions already
executed.

The union of the equivalences by projections π, ρ, σ is obviously important although
not an equivalence itself; we give them a name

Ξrow := π;πT Ξcol := ρ;ρT Ξsub := σ;σT Ξ := Ξrow ∪ Ξcol ∪ Ξsub

Using this, Ξ;β sums up which valuations are attached to all the fields related to a
given one by having the same row, column, or subzone.

If in some intermediate state β of the insertions there should be just one digit
missing among these, this must be inserted. All these cases are computed in one
step and added to the actual β:

β 7→ β ∪
{
upa
(
Ξ;β
)
∩ β;

}
This term immediately computes at least a bit of the solution. It goes from some
field to all that are with it in the same row, column, or subzone, looks with β for
the numbers entered and cuts out with β; all fields that are already filled. The
main point is the application of the univalent-part function upa(R) = R ∩ R; ; see
Def. 6.1.2.

We have, thus, indicated how a Sudoku solving program might be based on impli-
cation structures. Several versions have been written down in TituRel.
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Power Operations

There exist many other areas of a possibly fruitful application of relational math-
ematics from which we select three topics — and omit thus many others. In the
first section, we will again study the lifting into the powerset. The credit is mainly
to theoretical computer scientists (e.g., [de 92, Bd96]) to have used and propa-
gated such constructs as an existential image or a power transpose. When relations
(and not just mappings as for homomorphisms) will be employed to compare state
transitions, we will correspondingly need relators as a substitute of functors. We
will introduce the power relator. While rules concerning power operations have of-
ten been just postulated, we go here further and deduce such rules in our general
axiomatic setting.

In the Sect. 19.2, we treat questions of simulation using relational means. When
trying to compare the actions of two black box state transition systems, one will
use the concept of a bisimulation to model the idea of behavioural equivalence. In
Sect. 19.3, a glimpse on state transition systems and system dynamics is offered.
The key concept is that of an orbit, the sequence of sets of states that result when
continuously executing transitions of the system starting from some given set of
states. There exist many orbits in a delicately related relative position. Here the
application of relations seems particularly promising.

19.1 Existential Image and Power-Transpose

The first two power operations are at least known to a small community. The idea
is as follows: Relations in contrast to functions are mainly introduced in order to
assign not precisely one result but a — possibly empty — set of results, so that they
are often conceived as set-valued functions. Since we have formally constructed our
domains, we know that there are different possibilities to handle a subset, namely
as a vector, or as an element in the powerset. It is mainly the latter transition that
leads us to introduce the following two power operations.
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19.1.1 Definition. Given any relation R : X −→ Y together with membership
relations ε : X −→ 2X and ε′ : Y −→ 2Y on the source, resp., target side, we call

i) Λ := Λ
R

:= syq (RT, ε′) its power-transpose

ii) ϑ := ϑ
R

:= syq (RT;ε, ε′) its existential image

We have included in this definition our decision how to standardwise abbreviate the
lengthy denotations — as long as there does not arise any confusion as to which R
is meant. With Fig. 19.1.1, we show the typing of these two operations, and of the
result ζ of applying the power relator yet to be introduced. We will, however, from
now on be a bit sloppy talking simply of the power relator ζ.

R

´ε εΛ

ζ

ϑ

X Y

2
X

2
Y

Fig. 19.1.1 Typing of existential image, power transpose, and power relator ζ

It may directly be observed in Fig. 19.1.2, where a first example of such operators is
shown, that Λ and ϑ are mappings. This will now also be proved formally. Usually
the power relator is not a mapping.

19.1.2 Proposition. Power transposes as well as existential images of relations
are mappings.

Proof : The proof is analogous for power transpose and existential image. Using
Prop. 8.5.4, ϑ is univalent since

ϑ
T

;ϑ = syq (ε′, RT;ε);syq (RT;ε, ε′) by definition and transposition
⊆ syq (ε′, ε′) cancelling according to Prop. 8.5.4.i
= Def. 7.6.1.i for a membership relation

It is in addition total because of Def. 7.6.1.ii for a membership relation.
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R Λ ϑ ζ

Fig. 19.1.2 R together with its power-transpose, existential image, and power relator

One may have observed that Λ means nothing else than set comprehension con-
cerning the set assigned to an argument: The element orange in R of Fig. 19.1.2
gets assigned the two elements Draw and Loss which is reflected in Λ by assigning
it the element corresponding to the set {Draw,Loss}.

The existential image ϑ is a little bit more detailed compared with Λ as it takes
into account sets of arguments and assigns them the union of the sets assigned
to its elements. Some people, therefore, say that ϑ is additive. For example, the
set {red,orange} gets assigned {Win,Draw,Loss} because this is the union of the
images of the sets assigned to elements of the argument set. This is expressed by
the name: For every constituent of the result, there exists an argument for which it
is the image. Rows for singleton sets correspond directly to the specific rows of Λ.

19.1.3 Proposition. Let any relation R : X −→ Y be given together with the
two membership relations ε : X −→ 2X and ε′ : Y −→ 2Y and consider the two
operations

σ(R) := εT;R;ε′ and π(W ) := ε;W ;ε′
T
.

i) These two operations form a so-called Galois correspondence, i.e.,

R ⊆ π(W ) ⇐⇒ W ⊆ σ(R)

ii) The operation σ(R) is injective; i.e., σ(R) = σ(S) implies R = S.
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Proof : i) We use the Schröder rule several times in combination with negation.

R ⊆ ε;W ;ε′
T ⇐⇒ ε;W ;ε′

T ⊆ R ⇐⇒ R;ε′;W T ⊆ ε
⇐⇒ ε′

T
;RT;ε ⊆W T ⇐⇒ W ⊆ εT;R;ε′

ii) Injectivity follows from

π(σ(R)) = ε;εT;R;ε′;ε′
T

by definition

= R;ε′;ε′
T

Prop. 7.6.2 of membership relation ε

= R = R Prop. 7.6.2 of membership relation again

It is evident that we did not use the specific properties of the membership relations
in proving (i), so that other relations (A,B, e.g., instead of ε, ε′) would also lead to
such a Galois correspondence. Here, however, it is important that according to (ii)
we have an embedding via σ(R).
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Fig. 19.1.3 Relation R with the cone σ(R) and its existential image ϑ

R

as row-wise glb thereof

With Fig. 19.1.3, we visualize that the image of σ(R) is always an upper cone, taken
row-wise. For this cone, there exists always a greatest lower bound, which — in the
next proposition — turns out to be the existential image.

19.1.4 Proposition. Assume the same setting as in Prop. 19.1.3 together with
the powerset orderings Ω := εT;ε, Ω′ on the source and on the target side. Then
the relation R and its existential image ϑ := ExImag(R) := syq (RT;ε, ε′) are 1 : 1
related by

π(ϑ) = R and ϑ = glbRΩ′(σ(R))
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Proof : The first identity is proved as follows:
π(ϑ) = ε; ϑ ;ε′

T
by definition

= ε;syq (RT;ε, ε′);ε′
T

expanding ϑ

= ε;syq (RT;ε, ε′);ε′
T

Prop. 8.5.1.i

= ε;RT;ε
T

Prop. 7.6.2
= ε;εT;R transposing
= R = R standard property Prop. 7.6.2 of membership again

We evaluate the lower bounds lbdΩ′
(
σ(R)T

)
first

lbdΩ′
(
σ(R)T

)
= Ω′;σ(R)T by definition of lower bound lbd

= ε′T;ε′;ε′T;RT;ε expanding Ω′, definition of σ(R)

= ε′T;RT;ε Prop. 7.6.2

and then work on the greatest lower bound:

glbΩ′

(
σ(R)T

)
= ε′T;RT;ε ∩ ε′

T
;ε′;ε′T;RT;ε definition of glb , expanding Ω′

= ε′T;RT;ε ∩ ε′
T

;RT;ε Prop. 7.6.2

= syq (ε′, RT;ε) definition of syq

= ϑ
T

definition of ϑ

Now the existential image is considered in more detail. We have already seen that
the existential image is in a sense additive. When applied in a non-finite environment
one would better express this as lattice-theoretic continuity:

19.1.5 Proposition. ϑ := syq (RT;ε, ε′) is a (lattice-)continuous mapping.

Proof : We prove the continuity condition starting from lubΩ(X) = syq (ε, ε;X)
according to Prop. 9.4.3 and temporarily abbreviating g :=

[
lubΩ(X)

]T:

ϑ
T

;lubΩ(X) =
[
syq (RT;ε, ε′)

]T
;lubΩ(X) by definition

= syq (ε′, RT;ε);gT transposing syq , definition of g
= syq (ε′, RT;ε;gT) Prop. 8.5.7.iii
= syq (ε′, RT;ε;syq (ε, ε;X)) expanding and transposing g
= syq (ε′, RT;ε;X) property of the membership
= syq (ε′, ε′;syq (ε′, RT;ε);X) Prop. 7.6.2 for membership ε

= lubΩ′(syq (ε′, RT;ε);X) Prop. 9.4.3
= lubΩ′(ϑ

T
;X) definition of ϑ

The existential image behaves nicely with respect to relational composition; it is
multiplicative and respects identities as is shown in the next proposition.
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19.1.6 Proposition. We consider the existential image ϑ
Q

:= syq (QT;ε, ε′).

i) ϑ
Q;R

= ϑ
Q

;ϑ
R

ii) ϑ
X

= 2X

Proof : i) ϑ
Q

is a mapping, so that we may reason as follows

ϑ
Q

;ϑ
R

= ϑ
Q

;syq (RT;ε′, ε′′)

= syq (RT;ε′;ϑ
T

Q
, ε′′) because of Prop. 8.5.7.ii

= syq (RT;ε′;syq (ε′, QT;ε), ε′′) definition and transposition of ϑ
Q

= syq (RT;QT;ε, ε′′) cancelling the symmetric quotient
= syq ((Q;R)T;ε, ε′′)
= ϑ

Q;R

ii) ϑ
X

= syq ( T

X
;ε, ε) = syq (ε, ε) = 2X

Interpreting this, we may say: Forming the existential image is a multiplicative op-
eration that in addition preserves identities. Rather obviously, however, conversion
is not preserved.

Simulation via power transpose and existential image

Looking at Fig. 19.1.2, one will easily realize that existential image and power
transpose together with singleton injection σ (not to be mixed up with σ(R)) always
satisfy

σ;ϑ = Λ,

which may be proved with

σ;ϑ = σ;syq (RT;ε, ε′)
= syq (RT;ε;σT, ε′) Prop. 8.5.7.ii since σ is a mapping
= syq (RT;ε;syq (ε, ), ε′) by definition of σ and transposition
= syq (RT; , ε′) standard rule for the membership relation
= syq (RT, ε′) = Λ

We will first see that a relation R and its power-transpose may replace one another
to a certain extent. In most cases it is, however, a better idea to let the relation R

be simulated by its existential image.

19.1.7 Proposition. Let be given any relation R : X −→ Y together with the
membership relation ε′ : Y −→ 2Y on its target side. Then
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f = Λ
R

⇐⇒ R = f ;ε′
T

Proof : “⇐=” Λ
R

= syq (RT, ε′) by definition
= syq ((f ;ε′

T)T, ε′) by assumption
= syq (ε′;fT, ε′) transposing
= f ;syq (ε′, ε′) Prop. 8.5.7.ii
= f ; = f Def. 7.6.1 of membership relation

“=⇒” f ;ε′
T = Λ

R
;ε′

T by assumption
= syq (RT, ε′);ε′

T definition of power transpose
=
[
ε′;syq (ε′, RT)

]T transposing
=
(
RT
)T = R since ε;syq (ε,X) = X for any membership relation

The power transpose can, for typing reasons, not be multiplicative as the existential
image is. Nevertheless, it has a similar property.

19.1.8 Proposition. For any two relations R : X −→ Y and S : Y −→ Z

Λ
R

;ϑ
S

= Λ
R;S

Proof : We denote the membership relations as ε′ : Y −→ 2Y and ε′′ : Z −→ 2Z .
Then the power transpose is a mapping f := Λ

R
by construction, so that

Λ
R

;ϑ
S

= f ;syq (ST;ε′, ε′′) by definition
= syq (ST;ε′;fT, ε′′) Prop. 8.5.7.ii
= syq (ST;RT, ε′′) Prop. 19.1.7
= syq ((R;S)T, ε′′) transposing
= Λ

R;S
by definition

We have already seen that every relation R is 1 : 1 related with its existential image;
but even more: the existential image ϑ := ϑ

R
may in many respects represent R.

For this investigation, we refer to the concept of an L- or U -simulation of Sect. 19.2.

ε

ε

X X

YY

Q
Q

´




ϑ

Fig. 19.1.4 A relation and its existential image simulating each other
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19.1.9 Proposition. We consider the existential image ϑ
Q

:= syq (QT ; ε, ε′) of
some relation Q together with the membership relations on its source and target
side as shown in Fig. 19.1.4.

i) Via ε, ε′, the relation Q is an L-simulation of its existential image ϑ
Q

εT;Q ⊆ ϑ
Q

;ε′
T

ii) Via εT, ε′
T, the existential image ϑ

Q
is an LT-simulation of Q

ϑ
Q

;ε′
T ⊆ εT;Q

iii) In total, we always have
εT;Q = ϑ

Q
;ε′

T

Proof : ϑ
Q

;ε′
T =

(
ε′;ϑ

T

Q

)T =
(
ε′;
[
syq (QT;ε, ε′)

]T)T

=
[
ε′;syq (ε′, QT;ε)

]T =
(
QT;ε

)T = εT;Q

There holds a special situation in case a relation Q is simulated by its existential
image ϑ

Q
. Always Q itself is an L-simulation via the membership relations on the

source- as well as on the target-side. But in the reverse direction, ϑ
Q

is an LT-
simulation of Q; of course via the reversed membership relations. It is normally
neither a U - nor a U T-simulation. We provide an example with Fig. 19.1.5.
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Fig. 19.1.5 Crosswise simulation of a relation and its existential image
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Power relators

Since conversion is not preserved by the existential image, researchers kept looking
for a construct for which also this holds, and invented the power relator we are now
going to define. It is different in nature; in particular it is not a mapping as are the
power transpose and the existential image.

19.1.10 Definition. Given any relation R : X −→ Y together with membership
relations ε : X −→ 2X and ε′ : Y −→ 2Y on the source, resp., target side, we call

PowRlt(R) :=
(
ε\(R;ε′)

)
∩
(
(εT;R)/ε′T

)
= εT;R;ε′ ∩ εT;R;ε′

its power relator.

We will abbreviate this notation when appropriate as

ζ := ζR := PowRlt(R).

It is some sort of a symmetrized existential image since it satisfies

ζR ⊇ ϑR and ζR ⊇
[
ϑ
RT

]T.

In many cases, we have deduced the point-free version from a predicate-logic one
in order to justify the shorter form. This time, we proceed in a similar way starting
from two points ex, ey in the powerset. Then we expand the relational form so as
to obtain the corresponding non-lifted expression for x, y.

ex;eT
y ⊆ ζR = εT;R;ε′ ∩ εT;R;ε′

⇐⇒ ex;eT
y ⊆ εT;R;ε′ and ex;eT

y ⊆ εT;R;ε′ splitting conjunction

⇐⇒ ex ⊆ εT;R;ε′;ey and eT
y ⊆ eT

x
;εT;R;ε′ Prop. 5.2.5.ii

⇐⇒ ex ⊆ εT;R;ε′;ey and eT
y ⊆ eT

x
;εT;R;ε′ mappings slipping

⇐⇒ ex ⊆ εT;R;y and eT
y ⊆ xT;R;ε′ x = ε;ex and y = ε′;ey

⇐⇒ εT;R;y ⊆ ex and ε′
T

;RT;x ⊆ ey negated, transposed
⇐⇒ ε;ex ⊆ R;y and ε′;ey ⊆ RT;x Schröder equivalence
⇐⇒ x ⊆ R;y and y ⊆ RT;x because x = ε;ex, y = ε′;ey

We have, thus, identified what the power relator expresses for pairs x, y consisting
of a vector x on the source side and a vector y on the target side: When considering
R restricted to the rectangle made up by x and y, it is at the same time total and
surjective. This may also be expressed by saying that every point of x is an inverse
image of some point of y and in addition that every point in y is an image of some
point in x.

This result allows a nice byproduct that one would not have thought of in the first
place.
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19.1.11 Proposition (Intermediate Vector Theorem). Let any relations R,S be
given and a vector u along the source side of R together with a vector v along the
target side of S. Assuming the Intermediate Point Theorem Prop. 8.6.4 to hold,
and thus the Point Axiom, the following are equivalent:

• x ⊆ R;S;y and y ⊆ (R;S)T;x

• x ⊆ R;z and z ⊆ RT;x and z ⊆ S;y and y ⊆ ST;z for some vector z

Proof : The proof reduces the problem in a tricky way so as to be able to apply
the Intermediate Point Theorem. With the remarks immediately after Def. 19.1.10,
we may reason as follows

x ⊆ R;S;y and y ⊆ (R;S)T;x

⇐⇒ ex;eT
y ⊆ ζR;S = ζR;ζS by the remark just mentioned; Prop. 19.1.12

⇐⇒ ex;eT
z ⊆ ζR and ez;eT

y ⊆ ζS Intermediate Point Thm. Prop. 8.6.4.
⇐⇒ x ⊆ R;z z ⊆ RT;x z ⊆ S;y y ⊆ ST;z re-interpreting

This result may be rephrased in lifted form as

ex;eT
y ⊆ ζR;S ⇐⇒ ex;eT

z ⊆ ζR and ez;eT
y ⊆ ζS for some point ez

and then be used in the following proof.

19.1.12 Proposition. A power relator is multiplicative, and preserves identity
and conversion:

ζR;ζS = ζR;S and ζ( X) = 2X and ζRT =
[
ζR
]T

Proof : ζR;ζS ⊆ ζR;S

⇐⇒
(
εT;R;ε′∩εT;R;ε′

)
;

(
ε′T;S;ε′′∩ε′T;S;ε′′

)
⊆ εT;R;S;ε′′∩εT;R;S;ε′′ expand

⇐⇒
(
εT;R;S;ε′′∪εT;R;S;ε′′

)
;

(
ε′T;S;ε′′∩ε′T;S;ε′′

)T ⊆ εT;R;ε′∪εT;R;ε′ Schröder

⇐= εT;R;S;ε′′;ε′T;S;ε′′
T

⊆ εT;R;ε′ and εT;R;S;ε′′;ε′T;S;ε′′
T

⊆ εT;R;ε′

⇐= R;S;ε′′;ε′T;S;ε′′
T

⊆ R;ε′ and εT;R;S;ε′′;ε′′T;ε′T;S
T

⊆ εT;R;ε′

⇐⇒ R;ε′;ε′T;S;ε′′ ⊆ R;S;ε′′ and εT;R;S;

(
ε′

T
;S
)T ⊆ εT;R;ε′

where the latter are more or less immediately satisfied according to Prop. 7.6.2. The
reverse direction seems to require the Point Axiom. Therefore, we assume points
ex, ey in relation ζR;S :

ex;eT
y ⊆ ζR;S

⇐⇒ ex;eT
z ⊆ ζR and ez;eT

y ⊆ ζS for some point ez Prop. 19.1.11

=⇒ ex;eT
z

;ez;eT
y = ex;eT

y ⊆ ζR;ζS multiplying the latter two

ζ( X) =
(
ε\( ;ε)

)
∩
(
(εT; )/εT

)
= ε\ε ∩ εT/εT = syq (ε, ε) = 2X



492 Power Operations

ζRT = ε′T;RT;ε ∩ ε′T;RT;ε expanded
=
[
εT;R;ε′ ∩ εT;R;ε′

]T transposed
=
[
ζR
]T by definition

Also the power relator is to a certain extent connected via simulation with the
original relation.

19.1.13 Proposition. Let be given a relation R together with its power relator
ζR and the two membership relations ε, ε′. Then ζR is an εT, ε′

T-L-simulation of R.

Proof : ε;ζR ⊆ ε;εT;R;ε′ = R;ε′, from the definition and using Prop 7.6.2

Besides the powerset ordering, there exists a preorder on the direct power that
stems from an ordering on the underlying set. It is usually called an Egli-Milner1

preorder.

19.1.14 Definition. For any given ordering relation E : X −→ X and membership
relation ε : X −→ 2X , one may define the Egli-Milner preorder2 on the powerset
2X as

EME :=
(
ε\(E;ε)

)
∩
(
(εT;E)/εT

)
= εT;E;ε ∩ εT;E;ε = PowRlt(E)

A first example of an Egli-Milner preorder is provided by the identity relation on
X that produces the identity on 2X since EM := εT;ε ∩ εT;ε = Ω ∩ ΩT = 2X .
A less trivial Egli-Milner example is provided by the linear four-element-order of
Fig. 19.1.6.

When working in semantics of non-deterministic programs and domain construc-
tion, one often used the Egli-Milner preorder but has been longing for an order

1 Robin Milner (more precisely according to Wikipedia: Arthur John Robin Gorell Milner, ∗ 1934) is
a British computer scientist; in 1994 at TU München, he was awarded the F.-L.-Bauer Price.

2 Many people traditionally cut out the element ∅ because it is not related to any other element in
the Egli-Milner preorder. We have chosen not to do so because it does not disturb too much.
Cutting out would lead to a more complicated term.
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instead. In such cases, one typically started from a so-called flat ordering as in

1 2 3 4
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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Fig. 19.1.6 Egli-Milner preorder of an ordering, rearranged to upper right

Fig. 19.1.7. The order on four elements is flat, i.e., there are three elements un-
ordered and the fourth positioned beneath. Such a situation will always produce
an Egli-Milner ordering, which may here easily be seen considering the rearranged
version of it.

Exercises

19.1.1 Let a relation R : X −→ Y be given together with the membership relation
ε′ : Y −→ 2Y . Prove that Λ

ε′T
= .

19.1.2 Provide a point-free proof that the Egli-Milner preorder of a flat ordering
is in fact an ordering itself.

19.1.3 Prove that the Egli-Milner preorder as defined in Def. 19.1.14 is indeed a
preorder.

19.2 Simulation and Bisimulation

As announced, we will no longer have mappings when we are about to compare
and have just relations. The main problem is that we will lose the possibility to
“roll” the conditions so as to have four different but equivalent forms according to
Prop. 5.7.4.
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Fig. 19.1.7 Egli-Milner-preorder of a flat ordering, also rearranged to upper right triangle

An important concept of process algebra is the state transition model; a state tran-
sition system is an abstract machine consisting of a set of states and (labelled)
transitions between these. In a state transition system the set of states is not neces-
sarily finite or countable, as for finite state automata; nor need the set of transitions
be finite or countable. If finite, however, the state transition system can be repre-
sented by (labelled) directed graphs.

We first give the standard definition and proceed to a relational one afterwards.

19.2.1 Definition. A so-called state transition system consists out of a set X
of states and a set Λ of labels. These labels serve as indexes or names for relations
(λ : X −→ X)λ∈Λ on X.

In case |Λ| = 1, the system is often called an unlabelled system since then there
is no longer a need to mention the label explicitly; one will agree upon this label
prior to starting investigations. If there is more than one label, one may consider
the conditions that follow as combined by conjunction. As this is the case, we will
mostly consider just one relation as a state transition.
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We will more concretely begin with a heterogeneous situation.

α

β

X X

YY

R R

Fig. 19.2.1 Basic situation of a simulation

Assume two “state transition systems” to be given, here the relation R1 between
X1, Y1 and the relation R2 between X2, Y2. If relations α : X1 −→ X2 and β :
Y1 −→ Y2 are presented, one may still ask whether they transfer the “first structure
sufficiently precise into the second”.

19.2.2 Definition. Relations α, β are called an L-simulation, sometimes also
called forward simulation, of the second structure R2 by the first structure R1,
provided the following holds: If an element x1 simulates via α an element x2 which
is in relation R2 with y2, then x1 is in relation R1 to some element y1 simulating y2.

∀x2 ∈ X2 : ∀y1 ∈ Y1 :[
∃x1 ∈ X1 : (x1, x2) ∈ α ∧ (x1, y1) ∈ R1

]
→[

∃y2 ∈ Y2 : (x2, y2) ∈ R2 ∧ (y1, y2) ∈ β
]

The first observation is, that the “rolling” of Prop. 5.7.4 is no longer possible, since
it heavily depends on univalence and totality. When bringing it to a point-free
form in the same way as for homomorphisms, we will, therefore, arrive at several
possibly non-equivalent forms. Anyway, a considerable amount of literature has
emerged dealing with these questions.

19.2.3 Definition. Assume two state transition systems R1, R2. Given two rela-
tions α, β, we call

i) R1 an α, β-L-simulation of R2 provided that αT;R1 ⊆ R2;βT

ii) R1 an α, β-LT-simulation of R2 provided that R1;β ⊆ α;R2

iii) R1 an α, β-U -simulation of R2 provided that αT;R1;β ⊆ R2

iv) R1 an α, β-U T-simulation of R2 provided that R1 ⊆ α;R2;βT
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Immediately, some technical questions arise. E.g., do these simulations compose in
some similar way as homomorphisms do? Does any (or do any two) of these simula-
tions imply another one? There exist a lot of interdependencies between these con-
cepts which are explained in length in [dRE98]. Two main directions may be found:
First, one is interested in simulating of something that is already a simulation, thus
building bigger simulations from tiny steps. This follows the line of Prop. 19.2.4.
One may, however, also build simulations of big R’s that are composed of smaller
parts via relational composition. For this, other results are adequate. Putting it
geometrically, the first aligns rectangles of Fig. 19.2.1 horizontally while the second
idea leads to align them vertically.

α

β

X X

YY

R R

γ

δ

X

Y

R

Fig. 19.2.2 Simulation of an already simulated relation

19.2.4 Theorem. Let relations α, β, γ, δ be given. Then one has — sometimes
under conditions on functionality or totality — that the simulations considered
compose horizontally:

i) R1 is a α, β-L-simulation of R2

R2 is a γ, δ-L-simulation of R3
=⇒ R1 is a α;γ, β;δ-L-simulation of R3

ii) R1 is a α, β-U -simulation of R2

R2 is a γ, δ-U -simulation of R3
=⇒ R1 is a α;γ, β;δ-U -simulation of R3

iii) R1 is a α, β-U T-simulation of R2

R2 is a γ, δ-L-simulation of R3

α is univalent
=⇒ R1 is a α;γ, β;δ-L-simulation of R3

Proof : i) γT;αT;R1 ⊆ γT;R2;βT ⊆ R3;δT;βT

ii) γT;αT;R1;β;δ ⊆ γT;R2;δ ⊆ R3

iii) γT;αT;R1 ⊆ γT;αT;α;R2;βT ⊆ γT;R2;βT ⊆ R3;δT;βT, using that α is univalent

Already in Prop. 19.1.9, we have found simulations that are very interesting from
the theoretical point of view.

19.2.5 Theorem. Let relations α, β, γ be given. Then one has, under conditions
on functionality or totality, that the simulations considered compose vertically:
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i) R1 is a α, β-L-simulation of R2

S1 is a β, γ-U -simulation of S2
=⇒ R1;S1 is a α, γ-L-simulation of R2;S2

ii) R1 is a α, β-U -simulation of R2

S1 is a β, γ-U -simulation of S2

β is total
=⇒ R1;S1 is a α, γ-U -simulation of R2;S2

Proof : i) αT;R1;S1 ⊆ R2;βT;S1 ⊆ R2;S2;γT

ii) αT;R1;S1;γ = αT;R1;β;βT;S1;γ ⊆ R2;S2

αX X

β
YY

R R

γ
ZZ

S S

Fig. 19.2.3 Simulating composed steps

Bisimulation

Simulation has had an obvious direction: R simulates S with some mappings α, β
in between. We will now try to get rid of a constituent of this concept: We look
for a far more symmetric situation bringing simulation in forward and backward
direction at the same time. In one respect it will become simpler; we will study
only homogeneous relations.

19.2.6 Definition. Let two homogeneous relations R : X −→ X and S : Y −→ Y

be given and consider them as processes working on the state sets X, resp. Y . We
call a relation, not necessarily a mapping,

ϕ a bisimulation of S by R :⇐⇒ ϕT;R ⊆ S;ϕT and ϕ;S ⊆ R;ϕ

It is an easy exercise to express bisimulation by just one condition as

ϕ ⊆ R;ϕ;ST ∩ R;ϕ;ST = RT\(ϕ;ST) ∩ (R;ϕ)/S

which looks quite similar to — but is not — a symmetric quotient. A first example
of a bisimulation is provided with Fig. 19.2.4.
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Bisimulation expresses equivalence of the flow of execution as represented by se-
quences of labels. When either one of the processes “makes a move” according to
its relation, then the other is able to measure up to it. When each of the processes
should have been assembled in a black box that communicates the transitions exe-
cuted only to the extent of giving the graphical label of the respective state, the
systems cannot be distinguished from one another by an outside observer.

R =

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8


0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

 ϕ =
a b c d e f g h i j

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

 S =

a b c d e f g h i j

a
b
c
d
e
f
g
h
i
j



0 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0


1
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4

5
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7 8
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e

f

g

h
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j

Fig. 19.2.4 A bisimulation ϕ of S by R

Often one studies the simulation preorder, saying nothing more than that there
exists a simulating relation ϕ : X −→ Y so that it simulates S by R. Note that
it need not be the case that if R simulates S and S simulates R then they are
bisimilar. Of course not; there may exist α : X −→ Y and β : Y −→ X, but one
is not guaranteed that β = αT. The simulation preorder is the largest simulation
relation over a given transition system.

Not least in model-checking, one is heavily interested in an overview of the class
of all (bi)simulations. We give an overview on all possible bisimulations with the
following proposition the proof of which is so trivial that it may be omitted.

19.2.7 Proposition. Let the processes R : X −→ X and S : Y −→ Y be given.

i) The empty relation : X −→ Y is always a bisimulation.
ii) The identity relation : X −→ X is a bisimulation provided R = S.
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iii) The converse of a bisimulation is a bisimulation in opposite direction.
iv) The composition of bisimulations is a bisimulation again.
v) Unions of bisimulations are bisimulations again.

The class of all bisimulations has a nice structure, but contains very uninteresting
elements such as . One may ask whether there exists a good method of comparison.
We recall for this purpose the concept of a multi-covering.

19.2.8 Proposition. Assume two multi-coverings α : X −→ Z and β : Y −→ Z

of R onto T and of S onto T to be given. Then ϕ := α;βT is a bisimulation of S
by R.

Proof : First we recall the requirements of the definition of a multi-covering on the
mappings α and β, namely that they be homomorphisms and satisfy

R;α = α;T S;β = β;T

With homomorphisms α, β rolled according to Prop. 5.7.4, the proof is now simple:

ϕT;R = β;αT;R ⊆ β;T ;αT = S;β;αT = S;ϕT

ϕ;S = α;βT;S ⊆ α;T ;βT = R;α;βT = R;ϕ

To a certain extent, also the opposite direction may be proved. To this end, we first
investigate how close a simulation comes to a congruence on either side. As the
bisimulation shows, this may not always be the case. In Fig. 19.2.5, e.g., ϕ;ϕT is
not transitive. It relates, e.g., 6 to 9 and 9 to 1, but not 6 to 1.

19.2.9 Proposition. For every bisimulation ϕ between the processes R and S,
its reflexive-transitive closures give rise to the R-congruence Ξ := (ϕ;ϕT)∗ and the
S-congruence Ψ := (ϕT;ϕ)∗.

Proof : Ξ and Ψ are symmetric; transitivity and reflexivity have been added by
construction.

ϕ;ϕT;R ⊆ ϕ;S;ϕT ⊆ R;ϕ;ϕT

so that this extends to the powers, and finally to the closure; similarly for S.

It is an appealing idea to relate the concepts of simulation and bisimulation in the
following way:
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19.2.10 Proposition. Let the processes R : X −→ X and S : Y −→ Y be given
and consider the injections ι : X −→ X + Y and κ : Y −→ X + Y into the direct
sum of the state spaces. The relation ϕ is a bisimulation of S by R precisely when
α := ϕ;κ ∪ ϕT;ι is an L-simulation of the sum process Σ := ιT;R;ι ∪ κT;S;κ of itself.

Proof : We explain what happens with a matrix of relations. This makes the proof
of αT; Σ ⊆ Σ;αT evident:

Σ :=
(
R

S

)
α = αT :=

(
ϕ

ϕT

)

In many a respect, these relational investigations go back to [KW98, KW01, Win06,
Win08].

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2
3
4
5
6
7
8
9

10
11



0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 1 0 0 0



a b c d e f g h i j k l m n

0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0


a b c d e f g h i j k l m n
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d
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n



0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0



Project (ϕ;ϕT)∗ =
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]
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]
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]
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]

1
2
3
4
5
6
7
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 0 0 1 0



[a
]

[b
]

[c
]

[e
]

[h
]

a
b
c
d
e
f
g
h
i
j
k
l

m
n



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1


= Project (ϕT;ϕ)∗

Rred =

[1
]

[2
]

[3
]

[4
]

[8
]

[1]
[2]
[3]
[4]
[8]

0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 1
1 0 0 0 0

 ϕred =

[a
]

[b
]

[c
]

[e
]

[h
]

[1]
[2]
[3]
[4]
[8]

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 Sred =

[a
]

[b
]

[c
]

[e
]

[h
]

[a]
[b]
[c]
[e]
[h]

0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 1
1 0 0 0 0


Fig. 19.2.5 A bisimulation with multi-coverings on a common quotient
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19.3 State Transition Dynamics

Dynamical systems are traditionally studied with some dynamics given over space
and time. Usually, one uses differential equations that regulate the local situations
in an infinitesimal manner and one expects to get answers concerning the global
behaviour. Our attempt here is a bit different since it starts in a discrete situation
and tries to stay there. Nonetheless will we get important results. Our initial ref-
erence here is [SFM06], according to which we introduce some application-oriented
mode of speaking.

19.3.1 Definition. In the present context, we call the total relation Q : S −→ S,
a state transition dynamics, while the set S is called a state space.

We assume Q to be total in order to exclude handling topics that are already treated
in termination discussions of Sect. 16.2.

19.3.2 Definition. We call the point set or point x a fixed point with respect to
Q, provided QT;x = x.

We give an example in Fig. 19.3.1. A relationQ is given for state transition dynamics
together with two vectors, each describing a set that is reproduced under application
v 7→ QT;v.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9


0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

 1

2

6

5

4

3

7

8

9

1
2
3
4
5
6
7
8
9



1
0
0
0
1
0
1
0
1



1
2
3
4
5
6
7
8
9



0
1
1
1
0
1
0
1
0



1
2
3
4
5
6
7
8
9



0
0
0
0
1
0
1
0
0



Fig. 19.3.1 State transition dynamics with two fixed point sets and a 3-periodic one

Fixed points are not really interesting as it will more often happen that a given
starting set v changes when mapped to QT ; v. In many practical respects it is
necessary to keep track of how v changes.

19.3.3 Definition. We call the infinite sequence v = (vi)i∈IN0 of vectors an orbit
with respect to Q starting with the origin v0, if vi+1 = QT;vi for all i ≥ 0.
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0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
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Fig. 19.3.2 Eventually periodic orbit of the state transition dynamics of Fig. 19.3.1

System dynamics is mainly concerned with such orbits and handles questions of the
type: Is this an orbit that will have some guaranteed behaviour, at least eventually?
Such behaviour is characterized by facts such as “is periodic”, “will later definitely
be caught by some narrower orbit”. An example is the behaviour of some system
in case of an error, e.g.: Will it after successful or unsuccessful reaction definitely
fall back into some safe situation.

19.3.4 Definition. We call the orbit (vi)i∈IN0 periodic if there exists an i > 0
with vi = v0. The orbit is eventually periodic if there exists some 0 ≤ k ∈ IN0

such that the orbit starting with v′0 := vk = Qk
T

;v0 is periodic.

Of course, this will then hold in the same way for every k′ exceeding k. In Fig. 19.3.2,
we see that the subset {2, 3} is eventually periodic. The set {2, 3, 4, 6, 8} has in
Fig. 19.3.1 already been exhibited as a fixed point, i.e., 1-periodic.

Instead of becoming periodic as in this example, an orbit may stay over all time
completely inside another orbit, a situation for which we now provide notation.

19.3.5 Definition. We say that the orbit v is contained in the orbit w if for all
i ∈ IN0 vi ⊆ wi. The orbit starting at origin v will fully discharge into the orbit
starting at origin w if a natural number j exists such that vi ⊆ w.

One should observe that being contained has been defined as a relation between
orbits. To fully discharge in contrast is a relation between states, i.e., point sets.
How difficult it is to get an overview on the relative situation of orbits may be
estimated from the following two orbits

{2}, {6}, {3}, {2, 8}, {2, 4, 6}, {3, 6}, {2, 3, 8}, {2, 4, 6, 8},
{2, 3, 4, 6}, {2, 3, 6, 8}, {2, 3, 4, 6, 8}, {2, 3, 4, 6, 8}, {2, 3, 4, 6, 8}, . . .

{4}, {6}, {3}, {2, 8}, {2, 4, 6}, {3, 6}, {2, 3, 8}, {2, 4, 6, 8},
{2, 3, 4, 6}, {2, 3, 6, 8}, {2, 3, 4, 6, 8}, {2, 3, 4, 6, 8}, {2, 3, 4, 6, 8}, . . .
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of our standard example. The orbit starting as {2} is contained in the orbit starting
{2, 3}, while the one starting at {2, 8} will fully discharge into the orbit starting
with {3, 6}. So comparing orbits as to whether one is contained in the other is not
too easy by just looking at the matrix. An algebraic criterion should be developed.
To facilitate an algebraic characterization the view is restricted on relations between
point sets in the concept of fully discharging.

For the first time we will now unavoidably have to use the element representation of
a subset in the powerset, namely ev := syq (ε, v) instead of just v. Parallel to this,
we will lift also Q so as to obtain the existential image ϑ := ϑ

Q
:= syq (QT;ε, ε). It is

a mapping of the powerset of the state set into itself; see Fig. 19.1.4, where already
examples have been given how the relation Q and its existential image mutually
simulate each other. The setting is slightly simplified here because Q is assumed to
be homogeneous; an example is given with Fig. 19.3.3.
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= ϑ
Q

Fig. 19.3.3 State transitions and lifted state transitions

We recall from Prop. 19.1.9 that an — in the present context homogeneous —
relation Q and its existential image ϑ simulate one another as follows

εT;Q = ϑ ;εT.

Furthermore, we distinguish always a subset or vector v and its corresponding point
ev in the powerset with interrelationship

ev := syq (ε, v) v = ε;ev.

The next formulae compare the operation of Q on v and the operation of ϑ on ev:

ϑ
T

;ev = syq (ε,QT;ε); ev expanded with Def. 19.1.1.ii and transposed
= syq (ε,QT;ε; ev) a point is a transposed mapping; Prop. 8.5.7.iii
= syq (ε,QT;v) see above

Thus, applying Q to v and “lifting” the result gives the same as lifting to ev first
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and applying ϑ. In an analogous way QT;v = ε;ϑ
T

;ev, i.e., applying Q to the vector
v is the same as lifting v, looking for its image via ϑ and “flattening” back to the
vector.

Given a graph or relation Q, one will almost immediately also think of its reflexive-
transitive closure Q∗ representing reachability. Once we have the lifted relation ϑ for
Q, we may also look for reachability ϑ ∗. Already a short look at Fig. 19.3.4 shows
that the lifted version offers a far more detailed view. While with Q∗, the iteration
starting from v must be executed operationally, ϑ

∗
directly shows all vectors that

may occur when starting from ev. It does, however, give no indication as to the
sequence in which these occur; e.g., {1, 3}, {2, 4}, {3}, {4}, {3}, {4} . . .
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= ϑ
∗
Q

Fig. 19.3.4 Lifted and unlifted reachability of state transitions of Fig. 19.3.3

A vertex y is reachable via Q from some vertex x, provided

x;yT ⊆ Q∗ or after shunting if x ⊆ Q∗;y.

A vector w is reachable via ϑ from some vector v, provided the points ev, ew satisfy

ev;eT
w ⊆ ϑ

∗
or after shunting if ev ⊆ ϑ

∗
;ew.

It is, however, more difficult to reason with Q about vectors v, w — as opposed
to points. To find out in which way, we look for “reachability in n or more steps”.
While the lifted version keeps the sets passed sufficiently separate, the non-lifted
version does not. In the following construction, one must not mix up these two
aspects: Work in the lifted source and work in the original one.

In view of Fig. 19.3.4, one may in particular wonder why vectors {3}, {4}, {3, 4}
are not in one equivalence class modulo ϑ

∗ ∩ ϑ∗
T

. But when starting from 1, e.g.,
one will pass {1}, {2, 4} and finally toggle {3}, {4}, {3} . . . infinitely. In contrast,
starting from {1, 2} proceeds with {2, 3, 4}, {3, 4}, {3, 4} . . . Only the starting point
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makes the difference between the orbits starting at {3} and {4}. All three, i.e.,
those starting from {3}, {4}, and {1, 2} are eventually periodic, but only {3, 4} and
{4} are periodic.

19.3.6 Proposition. The orbit starting at origin v will fully discharge into the
orbit starting at origin w precisely when contained in the fully discharge preorder
ϑ
∗

;Ω, i.e., when

ev;eT
w ⊆ ϑ

∗
;Ω.

Proof : The condition is that there exists a natural number k such that QkT
;v ⊆ w:

ε;ϑ
kT

;ev = Qk
T

;ε;ev = Qk
T

;v ⊆ w = ε;ew

is obtained using the simulation property and the condition initially given. Shunting
results in

ε;ϑ
kT

;ev;eT
w ⊆ ε

Ω = εT;ε ⊆ ϑk
T

;ev;eT
w Schröder equivalence; definition of powerset order Ω

ϑ
kT

;ev;eT
w ⊆ Ω negated

ϑ
k

; Ω ⊆ ev;eT
w Schröder equivalence

ev;eT
w ⊆ ϑ

k
; Ω = ϑ

k
; Ω = ϑ

k
;Ω negated and since ϑ is a mapping

Now, we may sum up over all k so as to obtain ϑ
∗

;Ω.

It is obvious that Q∗ does not allow such a detailed analysis as ϑ
∗
Q

does. For the
example of Fig. 19.3.3, the full discharge preorder is shown in Fig. 19.3.5. The first
observation concerns the bars of 0 ’s. They result from the fact that, e.g.,

{1, 2}, {2, 3, 4}, {3, 4}, {3, 4} . . . but {1, 3}, {2, 4}, {3}, {4}, {3}, {4} . . .

Effects of this type make it difficult to formally reason about orbits being eventually
caught by others.

We have seen so far that quite difficult situations may occur when looking for orbits
and when one will eventually be fully discharged into another. It often depends on
another concept we are going to develop next.
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Fig. 19.3.5 Fully-discharges-into preorder for state transitions of Fig. 19.3.3

and all its basins

19.3.7 Definition. We call a nonempty set b of states a basin, if it contracts Q;
i.e., if QT;b ⊆ b.

Non-emptiness has been postulated only in order to avoid degeneration. The so-
called basins or orbits that are easier to describe as there will not be ever new states
they reach, but contraction of a given one. A basin is closed under Q-transitions.
The state transition relation Q has basins {3, 4}, {2, 3, 4} and {1, 2, 3, 4}. Fig. 19.3.5
shows it on the right side.

Once we have provided the algebraic definition of the relation between sets that one
eventually fully discharges into the other, one may start further investigations that
are beyond the scope of this text. It was intended with this chapter to show the use
of the existential image in this context that seems a new idea. Systems analysts and
logician who help them will then approach concepts of recurrence, e.g. They will
also be confronted with situtions that have here already been studied concerning
irreducibility, cyclicity, etc. We simply continue with two concepts then typically
introduced without going into too much detail.

19.3.8 Definition. We consider a basin given by a vector b together with one of
its subsets a ⊆ b, for which we also consider the point ea := syq (ε, a).

i) a is an unavoidably attracting set of b provided that b ⊆ ε;ϑ
∗
Q

;ea

ii) a is a potentially attracting set of b if b ⊆ Q∗;ε;ϑ
∗
Q

;ea
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The set a inside basin b will unavoidably attract if every orbit starting somewhere
inside b will eventually stay completely inside a. One cannot formulate this properly
without going to the powerset because orbits may enter a after a different number
of steps. This must be kept separate.

Both these qualifications lead to a relation in the powerspace.

19.3.9 Example. We provide yet another example with the following relations.
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0 1 1 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

= Q

Fig. 19.3.6 Another example of state transition dynamics
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Fig. 19.3.7 Reflexive-transitive closure of the existential image ϑ

∗
and all basins b
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In addition, we present the fully-discharges preorder for this example which may
easily be computed.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1


Fig. 19.3.8 Fully-discharges-into preorder for Fig. 19.3.6



Appendix A

Notation

Our topic has different roots and, thus, diverging notation. But there is a second
source of differences: In mathematical expositions, usually written in TEX, one has
often abbreviations when items are concerned that are clear from the context. Much
of the background of this book, however, rests on programming work. For use on a
computer via the relational language TituRel, such contexts must be given in a
more detailed form. The following tables show notational correspondences.

One should recall that names starting with a capital letter and also infix operators
starting with a colon “:” indicate so-called constructors in Haskell, that may be
matched against one another. Furthermore, variables must start with lower case
letters, so that we have to tolerate the frequently occurring transition from R,X, Y

to r,x,y.

A.1 Handling Heterogeneous Relations

Handling heterogeneous relations in computer programs means not least to keep
track of sources and targets of relations. This may be achieved implementing the
category of types and, above that, a Boolean and a monoid part.

Description TEX form TituRel-version
Category part
relation from to R : X −→ Y r with x = src r, y = tgt r
Boolean lattice part
union, intersection R ∪ S, R ∩ S r :|||: s, r :&&&: s

negation R NegaR r
null relation X,Y (abbreviated: ) NullR x y
universal relation X,Y (abbreviated: ) UnivR x y
Monoid part

converse RT Convs r
composition R;S r :***: s
identity X (abbreviated: ) Ident x

Fig. A.1.1 Correspondence of notation in TEX and in TituRel
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A.2 Constructing New Domains

TituRel offers also the possibility of generic domain construction. In all cases, a
new domain is generated and from that point on treated solely with the generic
means created in the course of this construction. For reasons of space, we have

Description TEX form TituRel-version
Direct Product
product domain X × Y d = DirPro x y
project to the left πX,Y : X × Y −→ X Pi x y d -> x
project to the right ρX,Y : X × Y −→ Y Rho x y d -> y
definable vectors πX,Y ;vX , vX a vector on X Pi x y :***: vX,

ρX,Y ;vY , vY a vector on Y Rho x y :***: vY
definable elements πX,Y ;eX ∩ ρX,Y ;eY (Pi x y :***: eX) :&&&:

eX , eY elements of X and Y (Rho x y :***: eY)
Direct Sum
sum domain X + Y d = DirSum x y
inject left variant ιX,Y : X −→ X + Y Iota x y x -> d
inject right variant κX,Y : Y −→ X + Y Kappa x y y -> d

definable vectors ιTX,Y ;vX , vX a vector on X Convs (Iota x y) :***: vX,

κT
X,Y

;vY , vY a vector on Y Convs (Kappa x y) :***: vY

definable elements ιTX,Y ;eX or κT
X,Y

;eY Convs (Iota x y) :***: eX,

eX , eY elements of X or Y Convs (Kappa x y) :***: eY
Direct Power

power domain 2X d = DirPow x

membership ε : X −→ 2X Member x x -> d
definable vectors sup i∈I [syq (ε, vi)] SupVect (Syq (Member x) vI)

vi vectors on X
definable elements syq (ε, v), v vector of X Syq (Member x) v
Quotient
quotient domain XΞ, Ξ an equivalence on X d = QuotMod xi
natural projection ηΞ : X −→ XΞ Project xi src xi -> d

definable vectors ηT
Ξ

;vX , vX vector of X Convs (Project xi) :***: vX

definable elements ηT
Ξ

;eX , eX element of X Convs (Project xi) :***: eX
Extrusion
extruded domain E(V ), V vector of X d = Extrude v
natural injection ιV : E(V ) −→ X Inject v d -> src v
definable vectors ιV ;vX , vX vector of V ⊆ X Inject v :***: vX
definable elements ιV ;eX , eX element of V ⊆ X Inject v :***: eX
Permutation

permuted domain Y ξ, ξ : X −→ Y bijective map d = PermTgt xi

rearrangement ρξ : Y −→ Y ξ ReArrTo xi tgt xi -> d

definable vectors ρT
ξ

;vY , vY vector of Y Convs (ReArrTo xi) :***: vY

definable elements ρT
ξ

;eY , eY element of Y Convs (ReArrTo xi) :***: eY

Fig. A.2.1 Generically available relations in domain construction

always abbreviated the newly constructed source in the right column of the following
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table as d. In every case, the first line gives the newly constructed source in its full
denotation, e.g., as d = DirPro x y.

At the right of the generic relations such as Pi, Iota, Member, e.g., their typing
is mentioned. Since TituRel is fully typed1, one can always get the source of a
relation as here with src xi. In the same way, v carries inside itself information on
source x which need not be mentioned.

These domain construction operations make up a big part of the language. On top
of this, terms may be formed, starting with constants and variables of category
object terms, element terms, vector terms, and relational terms. This is roughly
indicated with the definitions of Fig. A.2.1.

A.3 Substrate

In Fig. A.3.1, we show the layer structure of the language. All this makes up the
left syntactical side. Aims in designing TituRel had been that it shall allow to for-
mulate all of the problems so far tackled using relational methods, thereby offering
syntax- and type-controls to reduce the likelihood of running into errors.

• It shall allow to transform relational terms and formulae in order to optimize these
for handling them later efficiently with the help of some system. In particular,
a distinction is made between the matchable denotation of an operation and its
execution.

• There shall exist the possibility to interpret the relational language. For this
mainly three ways are conceivable. In the most simple way, one shall be able
to attach Boolean matrices to the relational constants, e.g., and evaluate terms
built from these. In a second more sophisticated form, one shall be enabled to
interpret using the RelView system. In a third variant, interpretation shall be
possible using the Rath-system. Rath is a Haskell-based system with which
also nonrepresentable relation algebras may be studied; see [KS00].

• It is also intended to be able to prove relational formulae. Again, several forms
shall be possible. In a first variant, a system will allow proofs in the style of
Ralf, a former interactive proof assistent for executing relational proofs [HBS94].
Already now, however, a variant has been initiated that allows proofs in Rasiowa-
Sikorski style [OS04].

• In order to support people in their work with relations, it shall be possible to
translate relational formulae into TEX-representation or into some pure ASCII-
form. It shall also be possible to translate relational terms and formulae auto-
matically from the point-free form into a form of first-order predicate logic.

1 On top of the always underlying Haskell typing
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ground
finite baseset with
named/numbered elements

ground

catO

elem

baseset and predicate/marking/
listing/powerset element etc.

ground

vect

2 basesets  + matrix/set function/
predicate/pairlist etc.

ground

rela

sets of relations, vectors, elements

formulae

DirSum/Prod
DirPow

QuotMod

baseset with
named/numbered element

Extrude

Language Substrate

theory model

bool

sets of matrices, vectors, elements

Fig. A.3.1 Layer structure of the language

In addition, there is a semantical side as indicated on the right of Fig. A.3.1. Inter-
pretation of the language constructs is intended to take place in sets, elements and
subsets of those, relations, and unary or binary functions between sets. We restrict
ourselves to mentioning some basic facts.

• Sets are cared for using a data structure BaseSet mentioned in Sect. 2.1 that
shows a name for the finite set and a namestring for all the elements — even in
case they are just numbered.

• Elements may appear using the data structure ElemInBaseSet presented in
Sect. 2.2 mentioning the baseset the element is assumed to belong to and in
addition the number of the element position, or a Boolean vector marking the
element along the baseset, or the aforementioned name of the element.

• Subsets may appear using the data structure SubSet presented in Sect. 2.3 men-
tioning the baseset they are assumed to belong to and in addition the list of
numbers of the elements in the baseset, or the list of names of the elements in
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the baseset, or a Boolean vector marking the subset along the baseset, or a unary
predicate, or an element in the corresponding powerset.

• Relations may appear using the data structure Rel mentioned in Sect. 3.1 with
two basesets to indicate row and column type, amended by one of the following:
a set of pairs of elements, a binary predicate, a Boolean matrix, a Boolean vector
along the product space, or a set-valued function.

• Unary and binary functions are represented using the data structures indicated
in Sect. 3.5: FuncOnBaseSets, Fct2OnBaseSets, i.e., mentioning the basesets
between which they are defined first and then allowing to give the Boolean matrix
or a list of lists of element numbers.



Appendix B

Postponed Proofs of Part II

Here follow the proofs we have decided not to present already in Part II, i.e., in
Chapters 4 to 7. At that early stage of the book, these proofs would have interrupted
visual understanding. They shall of course not be omitted completely. So they are
enclosed here. For better reference also the respective proposition is repeated. The
original numbering is directly attached.

B.1 Proofs for Section 5

B.1.1 Proposition (5.1.2). i) Q;R is univalent, whenever Q and R are.

ii) R univalent ⇐⇒ R; ⊆ R
iii) R ⊆ Q, Q univalent, R; ⊇ Q; =⇒ R = Q

Proof : i) (Q;R)T;Q;R = RT;QT;Q;R ⊆ RT; ;R = RT;R ⊆
ii) RT;R ⊆ ⇐⇒ R; ⊆ R using the Schröder equivalence

iii) Q = Q; ∩ Q ⊆ R; ∩ Q ⊆ (R ∩ Q;
T); ( ∩ RT;Q) ⊆ R;RT;Q ⊆ R;QT;Q ⊆ R

using Dedekind’s rule

B.1.2 Proposition (5.1.3). Q univalent =⇒ Q; (A ∩ B) = Q;A ∩ Q;B

Proof : Direction “⊆” is trivial; the other follows from

Q;A∩ (Q;B) ⊆ (Q∩ (Q;B);AT);(A∩QT;(Q;B)) ⊆ Q;(A∩QT;Q;B) ⊆ Q;(A∩B)

B.1.3 Proposition (5.1.4). Q univalent =⇒ A ∩ B;Q = (A;QT ∩ B);Q

Proof : B;Q ∩ A ⊆ (B ∩ A;QT); (Q ∩ BT;A) ⊆ (A;QT ∩ B);Q

⊆ (A ∩ B;Q); (QT ∩ AT;B);Q ⊆ (A ∩ B;Q);QT;Q = A ∩ B;Q

B.1.4 Proposition (5.1.6).
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i) Q univalent =⇒ Q;A = Q; ∩ Q;A

ii) Q univalent =⇒ Q;A = Q;A ∪ Q;

Proof : i) “⊆” consists of two parts, the trivial Q;A ⊆ Q; and Q;A ⊆ Q;A,
which follows with the Schröder rule from univalence. Direction “⊇” is obtained
via Boolean reasoning from ⊆ Q; ∪ Q;A ∪ Q;A.

ii) Q;A ⊇ Q; is trivial and Q;A ⊇ Q;A follows from univalency with the Schröder
equivalence. The other direction is obtained as for (i).

B.1.5 Proposition (5.2.5). Let R,S be arbitrary relations for which the follow-
ing constructs in connection with x, y and f exist.

i) If f is a mapping, R ⊆ S;fT ⇐⇒ R;f ⊆ S

ii) If x is a point, R ⊆ S;x ⇐⇒ R;xT ⊆ S

iii) If x, y are points, y ⊆ S;x ⇐⇒ x ⊆ ST;y

Proof : i) “=⇒” is immediate multiplying f from the right and using fT;f ⊆ .

“⇐=” is also immediate multiplying fT from the right and using ⊆ f ;fT.

We mention here also how the non-trivial direction of the equivalence of the defini-
tions of totality, = R; as opposed to ⊆ R;RT, is proved applying the Dedekind
rule:

= ∩ = R; ∩ ⊆ (R ∩ ;
T); ( ∩ RT; ) ⊆ R;RT

ii) Same as (i), remembering that the converse of a point is always a mapping.

iii) From (ii) we have y ⊆ S;x ⇐⇒ y;xT ⊆ S, which, transposed, gives x;yT ⊆ ST.
The proof is completed by employing (ii) again.

B.1.6 Proposition (5.3.11). i) A linear order E and its associated strictorder C
satisfy E

T

= C.

ii) A linear order E satisfies E;E
T

;E = C ⊆ E.

iii) A linear strictorder C satisfies C;C;C
T

= C;C
T

;C = C2 ⊆ C.

iv) E is a linear order precisely when Ed is a linear strictorder.

v) C is a linear strictorder precisely when Cd is a linear order.

Proof : i) By definition, a linear order is connex, i.e., satisfies = E ∪ ET, so
that E

T ⊆ E. We have in addition E
T ⊆ from reflexivity. Both together result in

E
T ⊆ C. The reverse containment C = ∩ E ⊆ ET

follows from antisymmetry.
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ii) E;E
T

= E;C = C

iii)–v) These proofs are immediate.

B.1.7 Proposition (5.4.2). Let Ξ be an equivalence and let A,B be arbitrary
relations.

i) Ξ; (Ξ;A ∩ B) = Ξ;A ∩ Ξ;B = Ξ; (A ∩ Ξ;B)
ii) Ξ; Ξ;R = Ξ;R

Proof : i) Ξ; (Ξ;A ∩ B) ⊆ Ξ2;A ∩ Ξ;B = Ξ;A ∩ Ξ;B

⊆ (Ξ ∩ Ξ;B;AT); (A ∩ ΞT; Ξ;B) ⊆ Ξ; (A ∩ Ξ;B) ⊆ Ξ;A ∩ Ξ2;B

= Ξ;B ∩ Ξ;A ⊆ (Ξ ∩ Ξ;A;BT); (B ∩ ΞT; Ξ;A) ⊆ Ξ; (B ∩ Ξ;A) = Ξ; (Ξ;A ∩ B)

ii) Ξ; Ξ;R ⊇ Ξ;R is trivial since Ξ is reflexive

Ξ; Ξ;R ⊆ Ξ;R ⇐⇒ ΞT; Ξ;R ⊆ Ξ;R via the Schröder equivalence

B.1.8 Proposition (5.4.4). For an arbitrary relation R and its row and column
equivalence, always

i) Ξ(R);R = R = R; Ψ(R)

ii) R(R) =
(
R(R)

)T Ξ(R) = Ξ(R) R(RT) = C(R)

iii) Ξ(R) = Ξ(R(R)) or, equivalently, syq (RT, RT) = syq (R;RT
T

, R;RT
T

)

Proof : i) Ξ(R);R = syq (RT, RT);R = R with an application of Prop. 8.5.2.

ii) These proofs are trivial.

iii) The following starts expanding the definition, reducing double negations, and
executing transpositions.

Ξ(R(R)) = syq (R;RT
T

, R;RT
T

) = R;RT;R;R
T ∩ R;RT;R;R

T

= R;RT ∩ R;R
T

using Prop. 4.4.3
= syq (RT, RT) = Ξ(R)

B.1.9 Proposition (5.4.6). If Q is a difunctional relation, the following holds:

Q; (A ∩ QT;B) = Q;A ∩ Q;QT;B

Proof : “⊆” is trivially satisfied. “⊇” is proved using the Dedekind formula

Q;A ∩ (Q;QT;B) ⊆ (Q ∩ (Q;QT;B);AT); (A ∩ QT; (Q;QT;B))



B.1 Proofs for Section 5 517

⊆ Q; (A ∩ QT;Q;QT;B) ⊆ Q; (A ∩ QT;B)

B.1.10 Proposition (5.4.7). If Q is a difunctional relation, the following holds:

i) Q;QT;A = Q; ∩ Q;QT;A and Q;QT;A = Q;QT;A ∪ Q;

ii) Q;QT;A = Q;QT;A in case Q is in addition total

Proof : i) “⊇” is trivial by a Boolean argument. The first part of “⊆” is again
trivial, while the second is deduced applying the Schröder equivalence and using
the difunctionality condition. (ii) is a special case of (i).

B.1.11 Proposition (5.5.2). The following holds for an arbitrary finite homoge-
neous relation R on a set of n elements:

i) Rn ⊆ ( ∪ R)n−1

ii) R∗ = sup 0≤i<nR
i

iii) R+ = sup 0<i≤nR
i

iv) ( ∪ R); ( ∪ R2); ( ∪ R4); ( ∪ R8); . . . ; ( ∪ R2blognc
) = R∗

Proof : i) We use the pigeon-hole principle to interpret ( ∪R)n−1 = sup 0≤i<nR
i:

Rnxz = ∃y1 : ∃y2 : . . . ∃yn−1 : Rxy1 ∩ Ry1y2 ∩ . . . ∩ Ryn−1z.

This means n + 1 indices y0 := x, y1, . . . , yn−1, yn := z of which at least two will
coincide; e.g., yr = ys, 0 ≤ r < s ≤ n. From Rnxz = 1 follows then R

n−(s−r)
xz = 1 .

ii), iii), and iv) are, thus, obvious.

B.1.12 Proposition (5.5.4). Let some (possibly heterogeneous) relation R be
given and consider Ω,Ω′, its left and right equivalence.

i) Ω and Ω′ are equivalences
ii) Ω;R = R; Ω′

iii) ∪ RT; Ω;R = Ω′

iv) ∪ R; Ω′;RT = Ω

Proof : (i) The two are reflexive, symmetric, and transitive by construction. (ii, iii,
iv) are all proved with the same mechanism of regular algebra:

Ω;R =
[
sup 0≤i(R;RT)i

]
;R = R;

[
sup 0≤i(R

T;R)i
]

= R; Ω′
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B.1.13 Proposition (5.7.9). Let any relation R between sets V and W be given
and assume that Ξ,Ω is an R-congruence. Denoting the natural projections as
ηΞ, ηΩ, respectively, we form the quotient sets and consider relation S := ηT

Ξ
;R;ηΩ

between VΞ and WΩ. Then ηΞ, ηΩ is a homomorphism of the structure R into the
structure S that satisfies R;ηΩ = ηΞ;S.

Proof : ηΞ and ηΩ are mappings by construction.
R;ηΩ ⊆ ηΞ;ηT

Ξ
;R;ηΩ = ηΞ;S since ηΞ is total and by definition of S

= Ξ;R;ηΩ since Ξ = ηΞ;ηT

Ξ

⊆ R; Ω;ηΩ since Ξ;R ⊆ R; Ω
= R;ηΩ;ηT

Ω
;ηΩ since Ω = ηΩ;ηT

Ω

= R;ηΩ; WΩ since WΩ = ηT

Ω
;ηΩ

= R;ηΩ

B.2 Proofs for Section 6

B.2.1 Definition (6.2.1). Given two vectors u ⊆ X and v ⊆ Y , together with
(possibly heterogeneous) universal relations ,

u;vT = u; ∩ (v; )T.

Proof : “⊆” is trivial. With the Dedekind rule, we prove “⊇”

u; ∩ (v; )T ⊆ (u ∩ (v; )T; ); ( ∩ uT; (v; )T) ⊆ u;uT; vT ⊆ u; ;vT = u;vT

B.2.2 Proposition (6.2.2). For a relation R the following are equivalent:

i) R is a rectangle.
ii) R; ;R ⊆ R
iii) R; ;R = R

iv) R;R
T

;R =
v) For any fitting pair A,B, the Dedekind rule becomes an equality

A;B ∩ R = (A ∩ R;BT); (B ∩ AT;R)

Proof : (i) =⇒ (ii): Since R is a rectangle, there exist vectors u, v with u;vT = R.
Therefore,

R; ;R = u;vT; ;u;vT ⊆ u; ;vT = u;vT = R

(ii) ⇐⇒ (iii): The inclusion “⊆” is given; “⊇” holds for arbitrary relations since

R = R; ∩ R ⊆ (R ∩ R;
T); ( ∩ RT;R) ⊆ R;RT;R ⊆ R; ;R

(ii) ⇐⇒ (iv): We use the Schröder rule two times:
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R; ;R ⊆ R ⇐⇒ ;RT;R ⊆ R ⇐⇒ R;R
T

;R ⊆ .

(ii) =⇒ (v): Direction “⊆” is given by the Dedekind rule. From “⊇”, containment
in A;B is trivial, while containment in R follows from:

(A ∩ R;BT); (B ∩ AT;R) ⊆ R;BT;AT;R ⊆ R; ;R ⊆ R
(v) =⇒ (i): Take A := src(R),tgt(R), B := tgt(R),tgt(R) as a fitting pair to get

R = A;B ∩ R = (A ∩ R;BT); (B ∩ AT;R) = R;BT;AT;R = R; ; (RT; )T

We have, thus, R = u;vT with vectors u := R; and v := RT; .

B.2.3 Proposition (6.2.5). Given a relation R, the subsets u := dom(R), v :=
cod(R) together constitute the smallest rectangle containing R, i.e.,

hrect(R) = u;vT = R; ;R = R; ∩ ;R.

Proof : Let u′, v′ be an arbitrary rectangle containing R. Then the containment
R ⊆ u′ ; v′T implies R; ⊆ u′ ; v′T ; ⊆ u′ ; = u′ and similarly for v′. Therefore,
u = dom(R) ⊆ u′ and v = cod(R) ⊆ v′. The rest follows with Prop. 6.2.2.

B.3 Proofs for Section 7

B.3.1 Proposition (7.4.1). The natural projection η onto the quotient domain
modulo an equivalence Ξ is defined in an essentially unique way.

Proof : The natural projection η is uniquely determined up to isomorphism: Should
a second natural projection χ be presented, i.e., we assume two such projections
VΞ

η←− V χ−→WΞ, for which therefore

Ξ = η;ηT, ηT;η = VΞ , but also

Ξ = χ;χT, χT;χ = WΞ .

Looking at this setting, the only way to relate VΞ with WΞ is to define Φ := ηT;χ

and proceed showing

ΦT; Φ = (χT;η); (ηT;χ) by definition of Φ
=χT; (η;ηT);χ associative
=χT; Ξ;χ since Ξ = η;ηT

=χT; (χ;χT);χ since Ξ = χ;χT

= (χT;χ); (χT;χ) associative
= WΞ

; WΞ since χT;χ = WΞ

= WΞ since WΞ
; WΞ = WΞ
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Φ; ΦT = VΞ is shown analogously. Furthermore, ( ,Φ) satisfies the property of an
isomorphism between η and χ following Lemma 5.7.7:

η; Φ = η;ηT;χ = Ξ;χ = χ;χT;χ = χ; WΞ = χ

B.3.2 Proposition (7.4.2). Let an equivalence Ξ be given and consider its nat-
ural projection η. If any two relations A,B are presented, one of which satisfies
Ξ;A = A, the following holds

ηT; (A ∩ B) = ηT;A ∩ ηT;B

Proof : ηT; (A ∩ B) = ηT;η;ηT; (A ∩ B) because ηT;η =
= ηT; Ξ; (Ξ;A ∩ B) using Ξ = η;ηT and Ξ;A = A

= ηT; (Ξ;A ∩ Ξ;B) Prop. 5.4.2.i
= ηT; (η;ηT;A ∩ η;ηT;B) expanding Ξ = η;ηT

= ηT;η; (ηT;A ∩ ηT;B) because η is univalent
= ηT;A ∩ ηT;B since ηT;η =

B.3.3 Proposition (7.5.1). Let any subset =/ U ⊆ V of some baseset be given.
Then the natural injection ιU : DU −→ V , with the properties

ιU ; ιTU = DU , ιTU ; ιU = V ∩ U ; V,V ,

which thereby introduces the new domain DU , is defined in an essentially unique
form.

Proof : Assume DU
ιU−→ V

χ←−D, i.e., another injection χ : D −→ V with the
corresponding properties

χ;χT = D, χT;χ = ∩ U ; V,V

to exist. We define Φ := ιU ;χT and show
ΦT; Φ = χ; ιTU ; ιU ;χT = χ; ( V ∩ U ; );χT = χ;χT;χ;χT = D; D = D

and also Φ; ΦT = DU

Φ;χ = ιU ;χT;χ = ιU ; ( V ∩ U ; ) = ιU ; ιTU ; ιU = DU
; ιU = ιU

B.3.4 Proposition (7.5.2). Let any relation R : X −→ Y be given and consider
its extrusion S := ι;R; ι′

T according to its domain dom(R) = R; and codomain
cod(R) = RT; , i.e., the relations

ι := Inject (R; ) and ι′ := Inject (RT; ).

Then the following hold:
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i) ιT; = R; ι′
T

; = RT;

ii) S is total and surjective
iii) ιT; ι;R = R = R; ι′

T
; ι′

iv) ιT;S; ι′ = R

v) ιT; ι = ∩ R;

Proof : i) ιT; = ιT; ι; because ι is total
= ( ∩ R; ) by definition of an extrusion
= ∩ R; masking
= R;

ii) needs that for every relation A;AT; = A; together with totality of ι:

S; = ι;R; ι′
T

; = ι;R;RT; = ι;R; = ι; ιT; ⊇ ; =

iii) is shown via a cyclic estimation using the Dedekind rule to obtain the first half:

R = R; ∩ R = ιT; ∩ R ⊆ (ιT ∩ R; ); ( ∩ ι;R) = ιT; ι;R ⊆ R.

iv) is then trivial.

v) R; ∩ = ιT; ∩ ⊆ (ιT ∩ ;
T); ( ∩ ι; ) ⊆ ιT; ι

B.3.5 Proposition (7.6.2). Let a membership relation ε : A −→ 2A be given.
Then

i) X = ε;syq (ε,X) = ε;εT;X

ii) X = ε;syq (ε,X) = ε;εT
;X

Proof : i) We use the properties of the symmetric quotient as explained in Sect. 8.5.

X = ε;syq (ε,X) because ε is a membership relation

But also

X = ε;syq (ε,X) because ε is a membership relation
= ε; (εT

;X ∩ εT;X) expanded
⊆ ε;εT;X monotony
⊆ X Schröder rule

so that equality holds everywhere in between. Similar reasoning is possible for (ii),
recalling the two natures of negation N = syq (ε, ε) and ε;N = ε.



Appendix C

Algebraic Visualization

Quite frequently in this book, we have tried to get additional intuition using rear-
ranged relations. This follows the tradition of Numerical Mathematics where eigen-
value considerations for matrices, e.g., are supported by figures with diagonal blocks.
The intuition obtained will often help one to understand better and even to find a
proof. A proof based on just such a rearrangement is usually not acceptable unless
additional justification is given. It is this point we concentrate on here.

Our rearrangement algorithms are all based on pure relation algebra, supported by
the fact, that we assume basesets always to be equipped with an ordering. In this
appendix, we provide those relational terms that have been written down in the
relational language TituRel to achieve appropriate rearrangements for the basic
cases. More detailed information may be found in [BS07].

C.1 Rearranging a Bijective Mapping

We assume a bijective mapping ξ : V −→W to start with, i.e., a possibly heteroge-
neous relation. The attempt is to arrange this bijective mapping ξ via a permutation
ρξ : W −→W ξ of its target, so that ξ;ρξ : V −→W ξ “looks like a diagonal matrix”;
see Fig. C.1.1.

It is not least this point where our decision to use basesets instead of sets brings
an important effect: To denote row entries of a matrix or column entries, resp.,
we use basesets. The basic idea is therefore rather trivial: The matrix underly-
ing the relation looks more or less like a permutation, but it will often not be
one as it is possibly heterogeneous; in Fig. C.1.1, source and target are V =
{1, 2, 3, 4, 5} and W = {US, French,German,British, Spanish}. What we need
in order to obtain the diagonal shape for the matrix is a new target, namely
W ξ = {French, US, Spanish,German,British}.
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ξ : V −→W ρξ : W −→W ξ ξ;ρξ : V −→W ξ

original relation rearrangement transition rearranged relation

Fig. C.1.1 Rearranging a bijective mapping

We remember the domain construction for a new baseset to denote a permuted
codomain from Sect. 7.7 as PermTgt ξ (or shorter W ξ). Then the relation ReArrTo ξ

(or shorter ρξ) generically gives the transition from W to W ξ. Considered as a
matrix, it is — up to the source and target — the converse of ξ. The two constructs
PermTgt and ReArrTo have been incorporated into the relational language TituRel

and proved to be sufficient to denote in a consistent way.

C.2 Rearranging a Linear Order

Let E : V −→ V be a linear order on a set V and assume Ω to be its baseorder in
case V is considered a baseset. How can one permute the baseset V obtaining πE
so as to see the permuted E as the upper right triangle. This is a completely trivial
task — but tedious when one has to actually execute it. Our considerations here
aim at the finite case only. With 0E := lea(E) and 0Ω := lea(Ω), we determine
the respective least elements. Then the Hasse relations

HE := C ∩ C;C with C := ∩ E the respective linear strictorder,

HΩ := CΩ ∩ CΩ;CΩ with CΩ := ∩Ω the respective linear strictorder,

are computed. The permutation is defined recursively, starting with

P0 := 0E; 0T

Ω

to send the least element to the least element, followed by successive application of
the functional

τ(X) := X ∪ HT

E
;X;HΩ

becoming stationary when X is a total relation. Then

πE := sup
[
P0, τ(P0), τ(τ(P0)), . . .

]
With the permutation thus obtained, the otherwise unfamiliar domain construction
PermTgt πE — meaning nothing else than rearranging — is executed, in Fig. C.2.1
from baseset V = {1, 2, 3, 4} to baseset V πE = {3, 2, 4, 1}.
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)
E : V −→ V Ω : V −→ V πE : V −→ V πE πT

E
;E;πE : V πE −→ V πE

original relation its base order rearrangement transition rearranged relation

Fig. C.2.1 Rearranging a linear order to upper triangular form

Note that we have here a simultaneous permutation of source and target side —
in contrast to the last section where only the target had been permuted. It is then
easy, to generalize this to strictorders.

C.3 Composite Rearrangements

The preceding two are basic steps on which we build to handle more complicated
cases.

Rearranging a weakorder

Any weakorder W : X −→ X can be transformed into an upper right block trian-
gle form. To obtain a permutation relation on X that rearranges W this way, we
perform three steps. First, W is joined with the identity . The resulting reflexive
closure E = W ∪ of W is an order on X. Next, a linear extension E′ of E might
be determined as a Szpilrajn extension according to Prop. 12.4.1; we do, however,
apply Prop. 12.4.7 to achieve this in a simpler way. And finally, a permutation
P : X −→ X is computed that rearranges the linear order E′ into the full upper
right triangle P T ;E′ ;P . A little reflection shows that the same permutation also
transforms the original weakorder relation W into the desired upper right block
triangle form P T;W ;P .

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2
3
4
5
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7
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9

10
11



0 1 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 0
0 1 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 1 0 1 0
0 1 0 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 1 0 1 0
0 1 0 0 1 1 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 0
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0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0
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0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


Fig. C.3.1 Rearranging a weakorder to upper block-triangular form

When a connex preorder should be presented, we are now also able to rearrange
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it. To this end, first the corresponding weakorder is determined and from this the
permutation.

Rearranging a not yet linear (strict-)order

First we consider a not necessarily linear order E. In this case, it is advisable to
first complete it with a Szpilrajn extension according to Prop. 12.4.1 to a linear
order. It may then be handled as such using the method of Appendix C.2, for which
procedure we give an example with Fig. C.3.2.
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C : V −→ V ESp : V −→ V

original strictorder Szpilrajn-extended
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πC : V −→ V πC πT

C
;C;πC : V πC −→ V πC

transition rearranged strictorder

Fig. C.3.2 Rearranging a not yet linear order to upper triangular form

The rearrangement obtained did not take into consideration that this linear stric-
torder C was in fact a semiorder. Recognizing this additional property, we had a
much nicer upper triangular form respecting this the style of Fig. 12.5.1.

Rearranging symmetric idempotents

Symmetric idempotents are sometimes also sloppily called “partial” equivalence
relations and abbreviated as PER’s. They satisfy R;R ⊆ R — implying R;R = R —
and RT ⊆ R, but may have empty rows and columns, i.e., may not be reflexive in
contrast to an equivalence. A nice presentation would be correspondingly similar to
an equivalence with its diagonal blocks. Our decision is to present empty rows and
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columns collected at the end. That is, we construct the row equivalence Ξ := Ξ(R)
of R. Then the base strictorder C of the quotient source QuotMod Ξ would already
give an indication how to arrange blocks coherently with the weakorder

Ω := π;C;πT

where we let π := Project Ξ denote the natural projection. With a little bit of
manipulation on Ω we achieve that the block of empty rows is positioned last.
To this end we decompose the underlying set of rows, resp. columns, into =
empty ∪ nonempty and form the weakorder

Ω′ := Ω ∪ nonempty ; emptyT

The weakorder Ω′ may then be handled as already described earlier.

With Fig. C.3.3, we provide an example. The original relation is symmetric and
idempotent, and thus, a “partial” equivalence. As the weakorder just developed, we
obtain the right relation.
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1 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 1 0 1 1 1 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 1 0 1 1 1 1 0 0 1
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0 0 1 1 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 1 1 0
0 0 1 1 0 1 0 0 0 0 1 1 0
0 0 1 1 0 1 0 0 0 0 1 1 0
0 0 1 1 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 0 1 1 0


original relation weakorder

Fig. C.3.3 A symmetric and idempotent relation with
the constructed corresponding weakorder

The permutation obtained is presented in Fig. C.3.4 together with the result of the
rearrangement.
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permutation and rearranged original

Fig. C.3.4 Permutation that transforms the relation of Fig. C.3.3 to block-diagonal form
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While the arrangement of the other diagonal blocks may give a more or less arbitrary
sequence, we have been careful to assemble the empty rows and columns at the end.

Rearranging difunctional relations

When given a difunctional relation R, one might attempt to consider the symmetric
idempotents R;RT and RT;R for the rows and columns, respectively, determine the
corresponding permutations PR, PC for the rows as well as for the columns, and
then form Rrearr := P T

R
;R ; PC . This is, however, not sufficient as it rearranges

independently and does not take into account that a (partial) block-diagonal should
finally appear.

So we execute the arrangement as to the symmetric idempotent in a first step only
for the rows and obtain Rrearr,R := P T

R
;R. Here equal rows are adjacent and the

empty rows — if any — reside at the end. Remembering row-to-column difunctional,
it is then possible to relate this with a corresponding investigation on the target
side. Figure C.3.5 shows an example.

1 2 3 4 5 6 7 8 9
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0 0 0 0 1 0 0 1 1
1 1 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 1 0 0
1 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 0
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0 0 0 0 1 0 0 1 1
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1 1 1 1 0 0 1 0 0
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1 1 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
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1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


R Rrearr,R Rrearr

Fig. C.3.5 Rearranging a difunctional relation

Rearranging independence and covering

In Sect. 10.2, we have learned about independent and covering sets. Not least have
conditions been presented that are satisfied when such a pair is maximal/minimal
with respect to set inclusion. With the techniques mentioned so far, it is relatively
easy to configure the respective permutations.

Let a relation R be given together with an independent pair of sets u, v; so that it
will satisfy R;v ⊆ u. Then form the weakorder WR := u;uT on the source side as well
as the weakorder WC := v;vT on the target side. We have already learned how to
obtain the necessary permutation PR, PC to arrange such weakorders in the upper
right. Using these, Rrearranged := P T

R
;R;PC shows a rearrangement Ru,v independent

of the relation R so as to have the 0 -rectangle in the upper right.

One may also start an analogous procedure with a covering pair s, t of sets of R
and obtain Rs,t covering := Rs,t independent.
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Rearranging around matching and assignment

We recall the discussion in Sect. 16.5 concerning (maximum) matchings and the
assignment problem. Our aim is to arrive for an arbitrary relation with a given
cardinality-maximum matching at a decomposition according to Fig. 16.5.2. First,
the Galois iteration is performed that produces for relation Q : V −→ W and
matching λ ⊆ Q the sets a ⊆ V and b ⊆ W . Then a, b serve to build rearranged
relations as shown earlier.

Once this is understood, one may treat any given relation in this way, i.e., first
determine a cardinality-maximum matching and then iterate so as to obtain the
corresponding non-enlargeable rectangle outside the relation. This known, one may
indeed get an upper right rectangle of zeroes and a diagonal in the lower left.

Rearranging others

These sketches will have provided enough evidence that also a lot of other concepts
may be visualized in this way. Among those where this is conceivable — and has
already been worked out and used in this book — are the following

• block versions of orderings
• implication structure rearrangement
• exhaustion of progressively bounded points/blocks
• game rearrangement



Appendix D

Historical Annotations

A very brief account shall be given of those persons and developments that brought
forward relational mathematics. This will, of course, turn out to be a rather personal
choice and secondary reporting from several historical sources. In particular will we
suppress most of what has been reported over the centuries on “Logics in general”.
In view of the Schröder rule

A;B ⊆ C ⇐⇒ AT;C ⊆ B ≈ ∀i, k :
(
∃j : AT

ij ∧ Cjk
)
→ Bi,k

we look for what makes up relations proper; that is liberating conversion and com-
position from being expressed only in natural language and “quantifying over the
predicate”.

D.1 From Aristotle to Scholastics

Aristotle (384–322 b.C.) — although the very first to treat relations — did not come
very far: At several occasions, it has been reported that his method of syllogisms
was in fact not suited to reason that the head of a horse is the head of an animal,
given the statement that the horse is an animal. His works on what we today call
Logic have been reorganized by pupils after his death to form the Organon. One of
its ten categories1 is called relatio (in Latin; Greek: π%óζ τι), a topic discussed and
passed on over the centuries.
According to [Boc70], Aristotle already dealt with an early form of quantification:
Some things are universal, others individual. By the term ‘universal’ I mean that
which is of such a nature as to be predicated of many objects, by ‘individual’ that
which is not thus predicated. Thus ‘man’ is a universal, ‘Callias’ an individual. . . If,
then, a man states a positive and a negative proposition of universal character with
regard to a universal, these two propositions are ‘contrary’.

The scholastic tradition concerning relations appears to have been started with
the Organon being adopted (beyond Plato’s work) by Peter Abelard2 (1079–1142),
1 The 10 categories: substance, quantity, quality, relation, place, time, situation, state, action, and

passion.
2 Also: Abaelard(us). He is more famous for having taught Héloise in the home of her uncle. They fell



530 Historical Annotations

Fig. D.1.1 Aristotle (384–322 b.C.) in the Louvre

one of the greatest teachers and philosophers3 of his time; known for having had
thousands of students. Much of his unpublished work stayed unknown and was
rediscovered only late in 1836 by Cousin. In [Ger03], it is reported that Aristoteles’
natural science was forbidden in Paris starting in 1210 because divine revelation
had to be preferred to formal reasoning; this lasted until about 1255.

Another person to be mentioned is John Duns, the Scot (1266–1308), more fre-
quently referred to as Duns Scotus. To him reasonable achievements have been
attributed; in particular that p→ (p→ q) will always hold. But already 200 years
after his death his personal authorship concerning Logic (besides his important
work in Theology) began to be mistrusted.
Scholastic understanding of the quantifications “every” and “some” was already
close to the modern interpretation, but expressed in a verbose — not yet formal —
style: . . . if one says: ‘every man runs’ it follows formally: ‘therefore this man runs,
and that man runs, etc.’ But of the particular sign I have said that it signifies that
a universal term to which it is adjoined stands disjunctively for all its supposita.
That is evident since if one says: ‘some man runs’ it follows that Socrates or Plato

in love and produced a child. Peter even married Héloise, but in a secret form so as to be able to
maintain his clerical status. This did, however, not prevent him from being castrated one night in
the dormitory of his abbey as a revenge at Héloise’s uncle’s disposition.

3 In [Boc70] an epitaph is recalled qualifying Abelard as “the Aristotle of our time, the equal or
superior of all logicians there have been”.
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Fig. D.1.2 Duns Scotus (1266–1308)

runs, or Cicero runs, and so of each (de singulis). . . . since it is sufficient for the
truth of a disjunctive that one of its parts be true.

The great tradition of the schoolmen (= scholastics) concerning Logics was carried
forward by William of Ockham (1287–1347). According to [WK84], p. 295, the De
Morgan rule was already known to William of Ockham and “occurs explictly” in
his Summa Totius Logicae.

D.2 Anticipations by Leibniz

Gottfried Wilhelm Leibniz (1646–1716) was one of the first to calculate with bit
values as can be seen in Fig. D.2.1 taken from one of his manuscripts; [HGG79].
In [Sty69], he is called the founder of symbolic logic. [WK84] ranks him among the
greatest of all logicians. . . . most of what he had written remained unpublished in
the library at Hanover, where he had served the Elector as a historian, scientific
adviser, and expert on international law.
In his work, Leibniz often used already the word “binary”. In addition, he came
close to something like a relational calculus in handling congruences of geometrical
objects; in the many historical remarks of the voluminous thesis [Sol80] Leibniz is
cited with: Characteres sunt res quaedam, quibus aliarum rerum inter se relationes
exprimuntur, et quarum facilior est quam illarum tractatio.

In 1970, the logic historian Bocheński, [Boc70], harshly criticized . . . modern philoso-
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Fig. D.2.1 Gottfried Wilhelm Leibniz (1646–1716) and one of his manuscripts with 0 , 1

phers such as Spinoza, . . . , Kant, Hegel etc. could have no interest for the historian
of formal logic. When compared with the logicians of the 4th century b.c., the 13th
and 20th centuries a.d. they were simply ignorant of what pertains logic . . . But
there is one exception, Leibniz (1646–1716). So far from being an ignorabimus4, he
was one of the greatest logicians of all time, which is the more remarkable in that
his historical knowledge (The present author adds: concerning earlier work in Log-
ics!) was rather limited. His place in the history of logic is unique. On the one hand
his achievement constitutes a peak in the treatment of a part of the Aristotelian
syllogistic, where he introduced many new, or newly developed features, such as the
completion of the combinatorial method, the exact working out of various methods
of reduction, the method of substitution, the so-called ‘Eulerian’ diagrams, etc. On
the other hand he is the founder of mathematical logic. . . . his real achievements in
the realm of mathematical logic are little relevant to the history of problems, since
they remained for long unpublished and were first discovered at the end of the 19th
century when the problems he had dealt with had already been raised independently.

4 ignoramus et ignorabimus: “We do not know” and “We will not know”. A famous
controversy-raising statement by Emil du Bois-Reymond out of his two talks to the Versammlung
Deutscher Naturforscher und Ärzte in Leipzig, 1880.
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It was mainly Louis Couturat who made public the enormous achievements hidden
in the unpublished papers by Leibniz. According to [Cou14]: It was in 1676 that he
(i.e., Leibniz) first dreamed of a kind of algebra of thought . . . .

D.3 Quantifying the Predicate

One main point to cope with in order to arrive at relations as we conceive them
today was quantification which is needed to introduce relation composition. “Quan-
tifying the predicate” became a major issue in the first half of the nineteenth cen-
tury. How difficult it was to introduce quantification is hard to imagine today; it
may be estimated from attempts of Giuseppe Peano as late as in 1888: a ⊃x,y... b
meant “whatever x, y. . . may be, b is deduced from a”. He is the man to whom we
owe the foundations of natural and real numbers!

Fig. D.3.1 The botanist George Bentham (1800–1884)

The first to achieve certain progress was George Bentham (1800–1884), see [Ben27,
Ben90]. He has been called “the premier systematic botanist of the nineteenth
century”. As a byproduct of his classificatory work he published in 1827 the Outline
of a New System of Logic, with a Critical Examination of Dr. Whately’s “Elements
of Logic.”. He “quantified over predicates”, which looked like

X in toto, Y ex parte,

or abbreviated by him as
tX, p Y .

We write this down in a fictitious form closer to our notation: Assuming predicates
X,Y : U −→ IB, what he formulated was
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∀X or ∃Y .

Nowadays, we would much more like to have a quantification over an individual
variable that may satisfy the predicate

∀x : X(x), ∃y : Y (y)

It seems that Bentham did not yet achieve that. He reasoned, however, routinely
in natural language that “every man is” is merely the substitution of “no man is
not”, again not denoting with a bound variable the individuals over which he was
about to quantify.

Fig. D.3.2 Sir William Hamilton (1788–1856)

The persons to be mentioned next are Augustus De Morgan (1806–1871) and Sir
William Hamilton5 (1788–1856). They fought for decades on quantification over
predicates and their respective priorities, developing a considerable degree of per-
sonal animosity6. Hamilton had since 1839 taught as an Edinburgh professor of
Logic and Metaphysics on the principle of a quantified predicate; a topic into which
De Morgan entered only in 1846 — more in depth and with greater and longer-
lasting success. It may well be that these really harsh quarrels lead De Morgan to
think about relations and relational composition in more depth than he might have
done without.

[Pri63] reports on Page 148 concerning quantification over predicates: In the nine-
teenth century, the ‘quantification of the predicate’ was advocated again, but with
a quite fantastic incompetence, by the Edinburgh logician Sir William Hamilton.
Hamilton favoured
5 Not to be confused with Sir William Rowan Hamilton (1805–1865), see Fig. D.5.1, the great Irish

mathematician and proven postal correspondence friend of De Morgan.
6 De Morgan called Hamilton disrespectfully the “Edinburgh Aristotle”.
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Fig. D.3.3 Augustus De Morgan (1806–1871)

All X is all Y

with all the other conceivable versions Some, Any, is-not, in contrast to the more
familiar

All X is Y

As Peter Heath put it in his introduction to [Mor66], . . . whatever may have been
done by European logicians, Bentham was the first writer in English to quantify the
predicate, Hamilton the first to make any extensive use of it, and De Morgan the
first to grasp what it was all about.

Around 1873, Benthams claims to priority were finally settled by William Stanley
Jevons in [Jev87] and termed the most fruitful discovery made in abstract logical
science since the time of Aristotle. He made clear that priority in quantifying the
predicate had to be attributed to George Bentham — not to Sir William Hamilton.
Jevons also reported that Boolean algebra had already been fully anticipated by
Leibniz. He mentioned that Leibniz was not “afraid” of xx = x for disjunction. This
was judged as almost sensational by readers of Boole’s ideas and probably made
Boole concentrate mainly on the ‘exclusive or’.

According to [Mor66], De Morgan was among the first to discern the genius of
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George Boole, then an unknown schoolmaster, and that he not only encouraged and
obtained a hearing for his work, but was instrumental in securing for Boole his first
and only academic post, as professor at Queen’s College, Cork.

The Boole–De Morgan letters, ranging over the period 1842–1864, have been edited
in [Smi82]. In his letter to George Boole of 1860 (no. 64 according to the numbering
in [Smi82]), De Morgan7 addressed Hamilton (at that time already deceased) thus:
‘He is a monster of capability because so unequally balanced that some parts are of
gigantic development and others only rudimentary’.

In a sense, George Boole’s 1847 pamphlet The mathematical analysis of logic, being
an essay towards a calculus of deductive reasoning initiated the study of relations;
[Boo47, Boo48]. Boole still used unary predicates in his work as opposed to binary
ones that are closer to relations. Later, his work was summarized in the book
[Boo54, Boo51].

Fig. D.3.4 George Boole (1815–1864)

An example of his many syllogisms:
All Xs are Y s,
Some Zs are not Y s

=⇒ Some Zs are not Xs (memorial word: Baroko)

In 1859, De Morgan published On the Syllogism: IV; and on the Logic of Relations
([Mor64, Mor66]), which contains both,
7 The right picture of Fig. D.3.4 is the frontispiece of [Boo51]
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a ∨ b = a ∧ b, as well as “Theorem K”

the famous De Morgan rule and Theorem K (roughly corresponding to what we
have called the Schröder rule), known far less than the De Morgan rule but at least
equally important. In the running text of [Mor64], it reads as follows:

162. If two relations combine into what is contained in a third relation, then the
converse of either of the two combined with the contrary of the third, in the same
order, is contained in the contrary of the other of the two. Thus the following
three assertions are identically the same, . . . .

To this a footnote is attached saying:

This theorem ought to be called theorem K, being in fact the theorem on which
depends the process . . . indicated by the letter K in the old memorial verses.

In his symbolic notation, it is

“If LM))N , then L−1n))m and nM−1))l”,

which is obviously “isomorphic” to our present version

If A;B ⊆ C, then AT;C ⊆ B and C;BT ⊆ A

[Mor66] also reports that Charles Sanders Peirce in a moment of enthusiasm called
De Morgan the greatest formal logician that ever lived. In spite of this — recall the
verbose textual description of Theorem K above — Alfred Tarski wrote in [Tar41]:
Nevertheless, De Morgan cannot be regarded as the creator of the modern theory of
relations, since he did not possess an adequate apparatus for treating the subject in
which he was interested, and was apparently unable to create such an apparatus. His
investigations on relations show a lack of clarity and rigor which perhaps accounts
for the neglect into which they fell in the following years.

It is highly unsatisfactory that as late as in 1914, and after De Morgan’s, Peirce’s,
and Schröder’s work, Couturat’s booklet on The Algebra of Logic [Cou14] does
neither mention relational composition, nor conversion, or quantification. It gives,
however, a lot of credit to the achievements of Leibniz.

D.4 Getting Rid of Bindings to Natural Languages

Already in 1827, George Bentham complained on shortcomings of natural lan-
guages: Because a figure is used in one langauge, it does not follow that it must be
translated into another by the same figure. Should we have to translate the French
expression, “Ces hommes sont utiles dans le rapport de leur puissance,” should we
say,“These man are useful in the report of their power?” or . . .

In [WK84], William of Ockham’s reasonings read as follows:
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Socrates is running, so something is running.
A white man is running, therefore a man is running.
I have an imitation pearl, therefore I have a pearl.

The last statement is marked as obviously questionable. It shows the problem of
relying too much on natural languages and their irregular structure. It is a much
too simplistic point of view to assume that white man restricts the concept of
man in the same way as imitation pearl restricts pearl. Over a very long period of
time, Scholastics and Logic were confined to such disputes. This was what George
Bentham harshly criticized8.

Other deficiencies stemming from natural language are shown by Boole in [Boo47,
Boo48]:

No virtuous man is a tyrant, is converted into
No tyrant is a virtuous man.

All birds are animals, is converted into
Some animals are birds.

Every poet is a man of genius, is converted into
He who is not a man of genius is not a poet.

As one easily sees, Boole quantifies over predicates, but not yet in the form of today,
i.e., not yet with a bound variable. This bound variable now makes it much simpler
to talk on the predicates to be satisfied and/or to satisfy further predicates. In
Boole’s times, one had to look for appropriate quantifying particles, some, all, e.g.,
and had to struggle with their insufficiencies and language dependencies.

De Morgan added the following footnote:

Though I take the following only from a newspaper, yet I feel confident it really
happened: there is the truth of nature about it, and the enormity of the cases is not
incredible to those who have taught beginners in reasoning. The scene is a ragged
school. Teacher. Now, boys, Shem, Ham, and Japheth were Noah’s sons; who
was the father of Shem, Ham, and Japheth? No answer. Teacher. Boys, you
know Mr Smith, the carpenter, opposite; has he any sons? Boys. Oh! yes, Sir!
there’s Bill and Ben. Teacher. And who is the father of Bill and Ben Smith?
Boys. Why, Mr Smith, to be sure. Teacher. Well, then, once more, Shem, Ham,
and Japheth were Noah’s sons; who was the father of Shem, Ham, and Japheth?
A long pause; at last a boy, indignant at what he thought the attempted trick,
cried out It couldn’t have been Mr Smith! These boys had never converted the
relation of father and son, except under the material aid of a common surname:

8 . . . that the author had done much towards divesting the science of that useless jargon, of those
unmeaning puerilities, with which it had been loaded by the schoolmen; and which, being the only
apparent result of their efforts, have cast so much opprobrium and ridicule on the very name of
Logic.
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if Shem Arkwright, &c., had been described as the sons of Noah Arkwright, part
of the difficulty, not all, would have been removed.

Schröder discusses

Dass man im Deutschen nichts geschlechtslos, ohne ein bestimmtes genus sagen
kann ist für unsre Disziplin sehr hinderlich und begründet einen grossen Vor-
sprung des Englischen, wo einfach ”lover“ eintritt für ”der, die oder das Liebende“.
Auch können wir im Deutschen für BT [using our notation of the present book!]
(benefitted by-) nicht ”bewohlthatet von-“ sagen sondern müssen zu der Um-
schreibung ”Empfänger oder Empfängerin von Wohlthaten seitens-“ unsre Zu-
flucht nehmen, u.s.w. . . . Wir werden in unserer Disziplin fein unterschei-
den müssen zwischen den Partikeln ”ausser“ (englisch: but, save?, besides?) und

”ausgenommen“ (englisch: excepting).

In [Hah88], Hans Hahn9, spiritus rector of the famous Vienna Circle, is recalled
with

. . . Die Sätze unserer Sprache sind im wesentlichen so gebaut: sie sagen von
einem Subjekt, eventuell mehreren Subjekten, ein Prädikat aus. “Dieses Krei-
destück ist weiß.” “Dieses Kreidestück und dieses Kreidestück sind weiß.” So
weit wäre alles in Ordnung. Die Sprache sagt aber auch: “Dieses Kreidestück
und dieses Kreidestück sind gleichfarbig.” Die Sprache tut also so, als ob — wie
früher jedem der beiden Kreidestücke die Eigenschaft “weiß” — so jetzt jedem
von beiden die Eigenschaft “gleichfarbig” zugeschrieben würde. Das ist aber of-
fenbar Unsinn: “Gleichfarbig” ist nicht eine Eigenschaft eines Individuums, wie
etwa “weiß”, sondern ist eine Beziehung, eine Relation zwischen zwei Individuen.

D.5 Relations as Boolean Matrices

We know for a fact, that the concept of a matrix was not yet available when relations
have first been studied. The term “matrix” is reported to have been coined in 1850
by James Joseph Sylvester as a name of an array of numbers. Matrices then were
used by Arthur Cayley (1821–1895) in 1858, [Cay58], for a rectangular array of
elements of a field. Rules for multiplication were given, but the transposition for
a product, (AB)T = BTAT, was not yet mentioned among the rules, [GGL94].
Sir William Rowan Hamilton (1805–1865) was one of the first to use them. They
have later also been intensively studied by Otto Toeplitz (1881–1940), as circulant
matrices and as theory of operators conceived as infinite matrices; [HL99].

9 Hans Hahn (1879–1934), to whom Kurt Gödel has in 1929 submitted his spectacular dissertation;
also famous for the Hahn-Banach Theorem, e.g.
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Fig. D.5.1 Sir William Rowan Hamilton (1805–1865)

Origins of matrices and determinants (intimately related to the former), however,
date back some time. It is again Leibniz to whom [Kno94] ascribes the first treat-
ment of determinants: Gottfried Wilhelm Leibniz was the first mathematician to
elaborate a determinant theory. His contributions included coining the term ‘resul-
tant’ (resultans sc. aequatio) to denote certain combinatorial sums of the terms
in the determinant; inventing a symbol for this resultant; formulating (though not
proving) some general theorems about resultants; and deducing important results in
the theory of systems of linear equations and in elimination theory, formulated by
means of determinants. His numerous relevant manuscripts, dating from 1678 to
1713, remained completely unpublished until recently . . . (meaning 1980!).

Only very recently in [Wil08], the following appeared in the Mathematical Intelli-
gencer: “Takakazu Seki, also known as ‘Seki Kowa’, was the first mathematician to
investigate determinants, a few years before Leibniz (who is usually given priority)
contributes to the subject. In 1683 Seki explained how to calculate determinants up
to size 5× 5, and a Japanese stamp shows his diagram for calculating the products
that arise in the evaluation of 4× 4 determinants.”

In [GGL94], it is reported that Matrix theory is today one of the staples of higher-
level mathematics education; so it is surprising to find that its history is fragmen-
tary, and that only fairly recently did it acquire its present status. According to this
text, one of the origins of matrix theory are bilinear forms and quadratic forms,
now written down as xTAy and xTAx. Quadratic forms were studied by Gottfried
Wilhelm Leibniz from the late seventeenth century onwards. . . .
Carl Friedrich Gauss’s Disquisitiones arithmeticae (1801), his masterpiece in num-
ber theory, contains a superb passage on the treatment of quadratic forms in which
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Fig. D.5.2 Takakazu Seki (1637/1642–1708) on Japanese stamp

the coefficients are laid out as a rectangular array, and matrix inversion and mul-
tiplication and reduction to special forms are described; but nothing came out of
it.

Fig. D.5.3 James Joseph Sylvester (1814–1897) and Arthur Cayley (1821–1895)

Sylvester as well as Cayley had been students of Augustus De Morgan; Lord Byrons
daughter Ada10 — after which the programming language is named — was, by the
way, his private pupil.

10 More formally: The Right Honourable Augusta Ada, Countess of Lovelace (1815–1852)
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Fig. D.5.4 James Joseph Sylvester (1814–1897) and Arthur Cayley (1821–1895)

In 1876 J. J. Sylvester was called to help starting Mathematics at the newly
founded Johns Hopkins University in Baltimore. According to [Blu07], Christine
Ladd-Franklin resumed her studies with him after several years of working as
a teacher. Her dissertation On the Algebra of Logic was, however, submitted to
Charles Sanders Peirce who included it in a volume [LF82] he edited. Since she was
— as a woman — not fully formally enrolled at the university, she could not get
the doctorate. But 44 years later in 1926, and after she had already obtained an
honorary doctorate elsewhere, she was awarded the formal degree.

At about 1870, Charles S. Peirce was . . . looking for a good general algebra of logic.
He was initially unaware of Cayley’s matrix concept, but when getting informed on
it, he immediately realized it to be useful for relations as well; see [Cop48], where
he is cited with I have this day had the delight of reading for the first time Professor
Cayley’s Memoir on matrices in the Philosophical transactions for 1858 . . . .

In [Tar41], Tarski wrote: The title of creator of the theory of relations was reserved
for C. S. Peirce. In several papers published between 1870 and 1882, he introduced
and made precise all the fundamental concepts of the theory of relations and for-
mulated and established its fundamental laws.

D.6 From Equality to Containment

After 1895, Ernst Schröder (see, e.g., [Lür03]) wrote his voluminous three parts
Algebra der Logik; most pertinent to the present topic is Part III, [Sch95a, Sch66],
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Fig. D.5.5 Charles Sanders Peirce (1839–1914)

following earlier publications such as [Sch95b]. He himself seemed overwhelmed
by his topic, praising it as grandiose, overabundant, full of beauty and harmony11.
Schröder was the first to distinguish between the algebra and the logic of relatives,
thus beginning to open a view on the diversity of models.

In the preface of [Cou14], it is mentioned that “. . . Schröder departed from the
custom of Boole, Jevons, and himself (1877), which consisted in the making
fundamental of the notion of equality, and adopted the notion of subordination or
inclusion as a primitive notion”. The symbol he used looks like a forerunner of our
present € -symbol.

It is obvious for logicians, that it is more or less immaterial — except for highly
sophisticated investigations — whether one uses

A ⊆ B or A ∩ B = or = A ∪ B,

i.e., an implicational as opposed to an equational style. The former is more adapted
to engineers who are accustomed to estimations with regard to real numbers.

11 Es ist eine grossartige Disziplin, reich an Ausdrucksmitteln und mächtigen Schlussmethoden,
fast überreich an Sätzen, wenn auch von unvergleichlichem Ebenmaasse, in welche ich versuchen
will den Leser hiermit einzuführen.
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Fig. D.6.1 Ernst Schröder (1841–1902)

D.7 Final Establishment of Relations

It was the appearence of the by now well-known antinomies in combination with
the brilliance of the Principia Mathematica [WR10] of Bertrand Russell and Alfred
North Whitehead that made relational methods stay dormant for a long time. It is
an irony that Russell had originally intended to lay a foundation of mathematics
with the help of relations. It is reported that Russell expressed his assessment in
an essay on metamathematics and metaphysics as: The nineteenth century, which
prided itself upon the invention of steam and evolution might have derived a more
legitimate title to fame from the discovery of pure mathematics12.

In his 1915 paper, Leopold Löwenheim initiated finite model theory, heavily using
relations. He demanded with emphasis to “Schröderize” all of mathematics [Löw15,
Löw40].

12 This came to the author’s attention via the novella Alan Turing by Rolf Hochhuth: “Bertrand
Russell hat 1901 in einem Essay über Mathematik und Metaphysik geschrieben: Das
19. Jahrhundert, dessen ganzer Stolz die Entdeckung von Dampfkraft und Evolution war, hätte
seinen Anspruch auf Nachruhm noch eher auf die Entdeckung der reinen Mathematik gründen
können, also auf Booles Laws of Thought, 1854.”
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Fig. D.7.1 Bertrand Russell (1872–1970) with a page of the Principia Mathematica

Fig. D.7.2 Leopold Löwenheim (1878–1957)

Only after decades, in 1941, Alfred Tarski (1902–1983, who until just before his
doctorate had published as Teitelbaum and as Tajtelbaum) revitalized relational
methods with his prominent paper On the calculus of relations, [Tar41]. In August
1939 Tarski traveled — planned for three weeks — to attend a conference on Unity
of Science held in the United States. He was equipped with a rather small suitcase
— which was to serve him for the next six years of war.

With his paper Relations binaires, fermetures, correspondances de Galois of 1948,
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Fig. D.7.3 Alfred Tarski (1902–1983)

[Rig48], Jacques Riguet used relations in a variety of fields thus founding relational
methods in applications as a research topic.

Fig. D.7.4 Jacques Riguet

The present author and the group of his co-workers, friends, and colleagues have also
contributed to relational mathematics; mainly with respect to the use of heteroge-
neous relations, introducing the symmetric quotient, typing and domain construc-
tion, stressing the matrix interpretation13, and in looking for many applications.

13 When using typed matrices, there is no longer reason to be hesitant to apply negation; this had for
a long time been avoided intimidated by the unrestricted universe in which the complement had to
be formed; see already the remark by George Boole reported on Page 36.
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[Far02] Julius (Gyula) Farkas. Über die Theorie der einfachen Ungleichungen.
J. Reine und Angewandte Mathematik, 124:1–27, 1902.

[FG64] Delbert Ray Fulkerson and O. A. Gross. Incidence matrices with the
consecutive 1’s property. Bull. Amer. Math. Soc., 70:681–684, 1964.

[FG65] Delbert Ray Fulkerson and O. A. Gross. Incidence matrices and interval
graphs. Pacific J. Math., 15(3):835–855, 1965.

[Fis85] Peter C. Fishburn. Interval Orders and Interval Graphs — A Study
of Partially Ordered Sets. Wiley-Interscience series in Discrete Mathe-
matics. John Wiley and sons, 1985.

[FR94] János Fodor and Marc Roubens. Fuzzy Preference Modelling and Mul-
ticriteria Decision Support, volume 14 of Theory and Decision Library,
Series D: System Theory, Knowledge Engineering and Problem Solving.
Kluwer Academic Publishers, 1994.
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Table of Symbols

Sets
Widely known is {x | E(x) } for descriptively defining sets as well as x ∈ M for
being an element and M ⊆ X for being a subset of a set. We use 2X or P(X) for
the power set and ∅ or {} for the empty set. Union and intersection are denoted
as M ∪ N and M ∩ N . The complement is M , provided the ground set is tacitly
given. The Cartesian product is M ×N .

Logic

For metalanguage consequence, equivalence, and definition, “=⇒”, “⇐⇒”, and
“:⇐⇒” are used. Definitional equality is denoted as “:=”. The set of Boolean truth-
values is IB = {0 , 1}. In propositional logic context, “∧”, “∨” are used for “and”
resp. “or”, together with “→” for “if . . . then” and “↔” for “precisely when”. In
predicate logic context, “∃” and “∀” denote the existential quantifier and the uni-
versal quantifier.

Relations
R : X −→ Y relation with source and target 15
src(R) source of a relation 36
tgt(R) target of a relation 36
dom(R) domain of a relation 90
cod(R) codomain of a relation 90
R ∪ S union 37
sup A, sup{R | R ∈ A} supremum 38
R ∩ S intersection 37
inf A, inf{R | R ∈ A} infimum 38

empty relation where the 20
universal relation ground set 20
identity is tacitly given 20

RT transposed relation 39
Rd dual of a relation 43
R;S product, composition 40
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S\R left residual 44
S/R, right residual 44
syq (R,S) symmetric quotient 46
(R©< S) strict fork operator 114
(R©> S) strict join operator 114
(R©× S) Kronecker product 115
maxE(t), minE(t) maxima, minima 183, 183
greE(t), leaE(t) greatest and least points 186, 186
ubdR(S) upper bound cone functional 184
lbdR(S) lower bound cone functional 184
lubE(t), glbE(t) least upper, greatest lower bounds 188, 188
Ξ(R) row equivalence 71
Ψ(R) column equivalence 71
Ξ∨(R) row set unions 253
Ξ∧(R) column set unions 253
Ψ∨(R) row set meets 254
Ψ∧(R) column set meets 254∧
R(U) contact closure 169

Ξ∇(R) fringe-restricted row equivalence 216
Ψ∇(R) fringe-restricted column equivalence 216
R(R) row contains preorder 71
C(R) column-is-contained preorder 71
S(R) section preorder 71
Υ(R) diclique match 256
λ(R) concept bijection 256
./(R) row-to-column difunctional 275
β(R) row space to column space bijection 274
PowTra(R),Λ

R
power transpose 483

ExImag(R), ϑ
R

existential image 483
PowRlt(R), ζR power relator 490
EME Egli-Milner preorder of E 492
I indifference 352
J incomparability 357
upa(R) univalent part 91
mup(R) multivalent part 91
HB nontransitive part, Hasse relatiion 67
R+ transitive closure 76
R∗ reflexive-transitive closure 76
hrect(R) rectangular closure 96
hdifu(R) difunctional closure 226
J(R) initial part 418
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Domains
DirPro t1 t2 direct product of t1 and t2 107
Pi t1 t2 first projection from direct product 107
Rho t1 t2 second projection from direct product 107
DirSum t1 t2 direct sum of t1 and t2 127
Iota t1 t2 first injection into direct sum 127
Kappa t1 t2 second injection into direct sum 127
QuotMod xi quotient domain modulo equivalence ξ 131
Project xi natural projection for ξ onto quotient domain 131
Extrude u extruded subset u conceived as domain 135
Inject u natural injection onto subset u 135
DirPow t power domain for domain t 141
Member t membership relation 141
PermTgt p permuted target for bijective mapping P 148
ReArrTo p permutation relation for bijective mapping P 148

For further details about notation in domain construction see Appendix A



Index

Point Axiom, 258
1-graph, 21

absorbant set, 102, 103, 427
Ada Byron, 541
adjacency, 23

edge-, 227, 332
affine incidence plane, 451
antichain, 195
antisymmetric, 63
Aristotle, 529
assignment, 428, 436
associated

ordering, 67, 68
relation, 21
strictorder, 67, 68

association rule, 228
asymmetric, 63, 70, 351
attractor, 420
attribute dependency system, 460
Aumann contact relation, 280, 281
Aumann, Georg, 280

baseset, 2, 5
ground, 8

basin, 420
Bayesian measure, 372
BDD, 16
belief

light-minded, 373
mapping, 371
vacuous, 372

below, eventually, 502
Bentham, George, 533, 537, 538
Berghammer, Rudolf, 1, 152, 198, 409
bijection by concepts, 256
bijection by maxcliques, 264
bijective, 57
binary decision diagram, 16
biorder, 231, 308
bipartitioned graph, 20
Birkhoff-Milgram Theorem, 323
bisimulation, 81, 493, 497

block, 94, 199
block diagonal form, 47, 74, 212, 215, 237
block-transitive, 242, 351

factorization, 242
Boole, George, 36, 536, 539
bound

greatest lower, 188
least upper, 188
lower, 184
upper, 184

Byron, Ada, 541

Cantor’s diagonal enumeration, 110
cardinality preorder, 147
Cardoso, Rodrigo, 121, 152
carré (French), 95
category, 157
Cayley, Arthur, 541
chain, 195
chainable, 227, 230, 403
Chipman’s condition, 305
Choquet integral, 378
Choquet, Gustave, 378
chord, 311, 343, 344, 346, 347
chordal graph, 343
chordless, 347
circuit, 92, 343
clique, 96, 264, 336, 337
clique, maximal, 204, 336, 337
closure, 276

contact, 169, 281
difunctional, 226, 227, 407
rectangular, 96
transitive, 76
weakorder, 319, 320, 356, 357

codomain, 90
cogredient permutation, 100, 303
column

-is-contained preorder, 71
equivalence, 71, 220, 237, 323, 354
mask, 165
space, 252

column set intersection, 254
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column union space, 250
commonality, 386
comparability graph, 336
complement, 144, 388, 392
complement expansion, 101
complete, 62

order, 68
strictorder, 68
strongly, 62

complete quadrangle, 20, 451
completion

by cuts, 294, 297
by ideals, 294

component, strongly connected, 78
composition, 40
concept bijection, 256
concept lattice, 267, 269, 271
cone, 184

lower, 185
upper, 185

cone functional, 167
congruence, 80, 228, 499, 518
connex, 62, 233, 351
connex preorder, 525
conorm, t-, 388
conorm, relational, 392
consecutive 1 ’s property, 345
contact, 281

infectivity, 280
contact closure, 169, 278
contact relation, 280, 281
continuous, 192, 372, 486
contraction, 99, 100, 397, 506
converse, 39
coproduct, 130
counter-enforce, 460
covering of graphs, 444
covering pair of sets, 97
covering set, 97, 205
cryptography via projective planes, 455
cut, 23, 296
cut completion, 294, 297
cycle, 92
cyclic, 397, 399

dashed arrow convention, 52, 158, 233, 304,
305, 397

De Morgan
complement, 388, 392
triples, 387

De Morgan, Augustus, 534, 535, 539
decision diagram, 16
decomposable, partly, 402
Dedekind rule, 42, 60, 157, 158, 516, 518
dense, 211, 323
dependency system, 460
diagonal enumeration, 110

diclique, 199
factorization, 259

diclique matching, 256
difunctional, 74, 223, 231, 404

closure, 226, 227, 407
factorization, 224
relation, 74, 219, 220, 225, 227, 229–231, 351

Dilworth Theorem, 198, 313
direct

power, 145
product, 106, 116
sum, 126, 130

directed graph, 22
DirPow, 141, 510
DirPro, 107, 510
DirSum, 127, 510
discharge, fully, 502
disjoint union, 126
domain, 90
dotted arrow convention, 52, 158, 233, 304,

305, 397
doubly stochastic, 403
down sets, 296
draw, 424
dual, 43, 68, 349
Duns, John (Scotus), 530
dynamics, 501

echelon form, 232
edge-adjacency, 227, 332
Egli-Milner

order, 493
preorder, 492

element
greatest, 186
in powerset, 11
least, 186

enforce, 460
equivalence, 8, 65, 66, 70, 76, 130, 132, 174

left, 77
of columns, 71, 220, 237, 323
of rows, 71, 220, 237, 323
partial, 526
right, 77

eventually below, 502
existential image, 144, 483, 503
expanding, 277
extension

Ferrers, 244
linear, 316
Szpilrajn, 80, 244, 315, 316, 350, 524, 525

externally stable set, 103
Extrude, 135, 510
extrusion, 8, 134, 136, 511, 520

factorization
into dicliques, 259
into maxcliques, 264, 266
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of a block-transitive relation, 242
of a difunctional relation, 224
of a Ferrers relation, 236

Farkas’s Lemma, 458, 459
feedback vertex set, 414
Ferrers

closure, 244
extension, 244
relation, 69, 214–216, 229, 231–233, 236,

238, 240, 303, 308, 309, 327, 351, 362
strongly, 234

Ferrers relation factorization, 236
Ferrers, Norman Macleod, 231
Fishburn, Peter C., 308, 322
flexible availability, 468
forbid, 460
fork operator, 114
forward simulation, 495
fringe, 210, 212, 213, 215, 216
fringe-partial

column equivalence, 216
row equivalence, 216

Frobenius-König Theorem, 437
fully discharge, 502
fully indecomposable, 402
function, 26, 49, 50

set-valued, 15
fuzzy measure, 371

Galois correspondence, 462, 484
Galois iteration, 415
games, 422
generalized inverse, 126, 209, 246
geometry

affine, 451
projective, 454

Ghouilà-Houri, Alain, 344
glb, 187, 188
glbR, 188
Gödel, Kurt, 539
Gram matrix, 266
Gram, Jørgen Pedersen, 266
graph

1-, 21
bipartitioned, 20
chordal, 343
comparability-, 336
directed, 22
intersection-, 332
interval-, 332, 336
simple, 23
triangulated, 343

graph covering, 444
gre, 186
greatest

element, 186
lower bound, 188

ground, 9
baseset, 8

ground set, 6
ordering of, 6

Hahn, Hans, 539
Hajós, G., 344
Hall-condition, 207, 403, 432
Hamilton, Sir William, 534
Hamilton, Sir William Rowan, 540, 541
hammock, 413
Haskell, iv, 6, 25, 33, 34, 126, 509, 511
Hasse

diagram, 67
relation, 67

Hausdorff, Felix, 456
heterogeneous, 16
homogeneous, 16
homomorphism, 84
homomorphism theorem, 445
hypergraph, 20

ideal completion, 294
idempotent, 70, 277, 526

symmetric, 216
identity, 40
immediate

predecessor, 67
successor, 67

implication structure, 460
incidence, 20, 451
incomparability, 357, 359, 360
indecomposable

fully, 402
totally, 402

independent pair of sets, 97, 205
independent set, 205, 230
indifference, 351–354, 357, 358, 360, 362

strict, 360
infectivity of contact, 280
infimum, 188
initial part, 418
Inject, 135, 510
injection, 130, 134

natural, 136, 520
injective, 50, 57
integral

Choquet, 378
relational, 376
Sugeno, 370, 375, 378

intermediate point theorem, 181, 491
intermediate vector theorem, 491
internally stable, 347
internally stable set, 103
intersection graph, 332
interval

(strict)order, 308
graph, 332, 336
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order, 61, 307, 308, 322, 329, 331, 351
inverse, 247

generalized, 126, 209
Moore-Penrose, 209
Thierrin-Vagner, 246, 248

Iota, 127, 510
irreducible, 397, 407
irreflexive, 70, 351
isomorphism theorem, 445
isotone, 84, 277

Jevons, William Stanley, 535
join operator, 114
jump part, 386

Kappa, 127, 510
kernel, 426
Klein-4-Group, 27
knowledge acquisition, 228, 229
knowledge discovery, 220
König-Egerváry Theorem, 436
Kowa, Seki (Kowa) Takakazu, 540
Kronecker product, 115, 126
Kuratowski Theorem, 197

L-simulation, 495, 500
Ladd-Franklin, Christine, 542
lattice, 182, 189
lattice-continuous, 192, 372
lbd, 185
lea, 186
least

element, 186
upper bound, 188

left
equivalence, 77
identity, 40
residual, 44

Leibniz, Gottfried Wilhelm, 531–533, 535, 537,
540

lexicographic order, 111
lifting property, 443
light-minded belief, 373
line covering, 97, 436
linear

extension, 316
order, 68
strictorder, 68

Löwenheim, Leopold, 545
loss, 424
Lovelace, Ada, 541
lower bound, 184

cone functional, 167
greatest, 188

lower cone, 185, 296
lub, 187, 188
lubR, 188
Luce, R. Duncan, 166, 311, 352

machine learning, 220, 228

Maddux, Roger Duncan, 121, 138
majorant, 184
mapping, 57
Marczewski, Edward (see Szpilrajn), 69
mask, 165
matching, 56, 74, 428, 429, 436

by dicliques, 256
by maxcliques, 264

matrix, Gramian, 266
max, 183
maxclique, 204, 264, 266, 336, 337

bijection, 264
factorization, 264, 266
matching, 264

measure
Bayesian, 372
fuzzy, 371
relational, 370, 371, 375

Member, 141, 510
membership relation, 139
Milgram

Theorem of Birkhoff-, 323
min, 183
mincut, 193, 476
minorant, 184
modular law, 157
monotone, 84
monotype, 36
Moore-Penrose, 246, 248, 249, 406
Moore-Penrose inverse, 209
Morgan triples, 387
Morgan, Augustus De, 534, 535, 539
morphism set, 157
multi-covering, 440–442, 499
multiplication, 40
multirelation, 148
multivalent

part, 91
zone, 91

natural injection, 136, 520
natural projection, 130, 132
negation, 389

strict, 389
strong, 389

negation, relational, 392
negatively transitive, 305, 351
non-enlargeable rectangle, 199, 216
nonvalue zone, 91
norm, t-, 388
norm, relational, 392
NP-complete, 466, 473, 476

Ockham, William of, 38, 537
order, 61, 65, 66

-dense, 323
-shape, 241
Egli-Milner, 493
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interval, 61, 308, 322, 329, 331, 351
lexicographic, 111
linear, 68
semi-, 61, 320, 327
strict-, 66
total, 68
weak-, 61, 305

order ideal, 296
ordering

associated, 67, 68
ordre fort, 307
ordre quasi-fort, 307
Organon, 529, 530
orientable, transitively, 344

pair of covering sets, 97, 205
pair of independent sets, 97, 205, 230
parallel composition, 115
partial

equivalence, 526
preorder, 65, 66
transversal, 435

partition, 31
partly decomposable, 402
path equivalence, 444
pattern

doubly stochastic, 403
Peano, Giuseppe, 533
Peirce, Charles Sanders, 542
Penrose

Moore-, 246, 248, 249
PER, 526
percentage, 25
periodic, 502
permanent, 437
PermTgt, 148, 510
permutation, 13, 28, 148

cogredient, 100, 303
cyclic, 399
primitive, 399
relation, 18
subset, 13

Pi, 107, 510
picycle, 93, 361
point, 58

-free, 33, 50
Point Axiom, 180, 205, 491
power

direct, 145
ordering, 144
relator, 490
transpose, 144, 483

powerset atom, 144
powerset element, 11
predecessor, immediate, 67
predictive modelling, 228
preference, 351, 358, 359

weak, 359
preference structure, 358
preorder, 65, 66, 71

column-is-contained, 71
connex, 525
Egli-Milner, 492
row-contains, 71
section-, 71, 311
simulation, 498

preordre
préordre commençant, 71
préordre des sections, 71
préordre finissant, 71

primitive
permutation, 399
relation, 397

product
direct, 106, 116
Kronecker, 126
tensor, 126

progressively
bounded, 420
finite, 101
infinite, 101, 418

Project, 131, 510
projection, 116
projective geometry, 454
pseudo availability, 468
purely additive part, 386

quadrangle, complete, 20, 451
quasi-series, 351
quasiorder, 65, 66
quotient

set, 130, 132
symmetric, 46, 173

QuotMod, 131, 510

randomly generated relation, 25
rank, 207

Schein-, 263
realizable, 322
ReArrTo, 148, 510
rectangle, 93, 94, 97, 199

around a relation, 96
inside a relation, 96, 199
non-enlargeable, 199, 216
outside a relation, 96

rectangular, 95
closure, 96
relation, 94, 106

reducible, 98, 396, 397
reducing vector, 99
reflexive, 76, 351
relation

associated, 21
block-transitive, 242, 351
Boolean operation on a, 37
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carré (French), 95
composition of, 40
converse of, 39
cyclic, 397
difunctional, 74, 219, 220, 225, 227,

229–231, 351, 404
dual, 43, 349
Ferrers, 69, 214–216, 229, 231–233, 236, 238,

240, 303, 308, 327, 351
heterogeneous, 16
homogeneous, 16
irreducible, 397
membership-, 139
multi-, 148
multiplication of, 40
primitive, 397
randomly generated, 25
rectangular, 94, 106
reducible, 98, 396
square-shaped, 95
strongly Ferrers, 234
transposition of, 39
type of, 35

relational
integral, 376
measure, 370, 371, 375

relational conorm, 392
relational negation, 392
relational norm, 392
relational subjunction, 393
RelView, 1, 16, 396, 409, 466, 511
representation

basesets, 6
element, 8
relation, 15, 18
subset, 9

residual, 65
left, 44
right, 44

Rho, 107, 510
right

equivalence, 77
identity, 40
residual, 44

Riguet, Jacques, 46, 94, 95, 546
ROBDD, 16
rook move, 227
row

equivalence, 71, 220, 237, 323, 354
mask, 165
space, 252

row set intersection, 254
row union space, 250
row-contains preorder, 71
rowset-to-columnset difunctional, 274
rowspace-to-columnspace bijection, 274
rule

Dedekind, 42, 60, 157, 158, 516, 518
Schröder, 41, 65, 157–162, 166, 169, 170,

181, 209, 529, 537
Tarski, 58, 180, 398

Russell, Bertrand, 544

Schein, Boris M., 263
Schein-rank, 263
scholastics, 530, 538
Schröder equivalences, 41, 157
Schröder, Ernst, 543
Scott-Suppes Theorem, 327
Scotus, (John) Duns, 530
section preorder, 71, 311
Seki (Kowa) Takakazu, 540
semi-connex, 62
semi-transitive, 304, 327
semiorder, 61, 307, 320, 327
set

absorbant, 102, 103
covering, 97, 205
externally stable, 103
independent, 97, 205, 230
internally stable, 103
stable, 102, 103

set-valued function, 15
sharpness, 126
shift-inverting, 176
shunting, 58, 59, 143
simple circuit, 343
simple graph, 23
simple support mapping, 372
simulation, 81, 89, 493, 495, 500
simulation preorder, 498
singleton, 144
singular value decomposition, 259, 263
Skat, 7, 27, 68
slipping below negation, 59
sorting

topological, 80
source, 36
splitting, 138
square, 94
square-shaped, 95
stable set, 102, 103, 427
stable, internally, 347
staircase, 231
state transition system, 494
strict

fork operator, 114
join operator, 114
negation, 389
preference, 360

strictorder, 61, 65, 307
associated, 67, 68
complete, 68
linear, 68
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strong negation, 389
strongly

complete, 62
connected, 78, 397
Ferrers, 234

sub-inverse, 247
subjunction, 389, 394

relational, 393
subset, 2, 5, 134

Boolean operations on, 11, 13
extrusion, 8, 134, 136, 511, 520
permutation, 13

substitution property, 82
successor, immediate, 67
Sudoku, 478
Sugeno integral, 370, 375, 378
sum, direct, 126
summarization, 228
support mapping, 372
supremum, 188
surjective, 57
SVD decomposition, 262
symmetric, 63, 70

idempotent, 216, 526
quotient, 46, 173

syq, 46
syq properties, 171
system dynamics, 420, 501
Szpilrajn

extension, 69, 80, 244, 315, 316, 350, 524,
525

Theorem, 69, 315
Szpilrajn (Marczewski), Edward, 69

t-conorm, 388
t-norm, 388
tabulation, 138
Takakazu, Seki (Kowa), 540
target, 36
Tarski rule, 58, 180, 398
Tarski, Alfred, 116, 180, 545
tensor product, 115
term rank, 207, 436
termination, 417
Theorem

Dilworth, 313
Birkhoff-Milgram, 323
Dilworth, 198
Farkas, 458, 459
Frobenius-König, 437
Intermediate Point, 181, 491
Intermediate Vector, 491
König-Egerváry, 436
Kuratowski, 197
Scott-Suppes, 327
Szpilrajn, 69, 315

Thierrin-Vagner inverse, 246, 248

threshold, 318–320, 325, 326
tight availability, 468
TituRel, iv, 3, 16, 33, 50, 107, 118, 127, 130,

131, 135, 138, 141, 148, 150, 155, 172,
442, 473, 509–511, 522, 523

Toeplitz, Otto, 541
topological sorting, 69, 80, 316, 350
topology, 456
total, 57
total order, 68
totally indecomposable, 402
tournament, 64
transitive, 64

negatively, 305
semi-, 304, 327

transitive closure, 76
transitively orientable, 344
transposition, 39
transversal, partial, 435
treillis, 189
triangulated graph, 343
triangulation property, 343
triples, De Morgan, 387
tupeling, 115, 116
type of a relation, 35

U -simulation, 495
ubd, 185
union, disjoint, 126
Unit-1, 150
UnitOb, 150
univalent, 49–51, 514
univalent part, 91, 414, 475
univalent zone, 91
unsharpness, 126, 156
unsupervised learning, 220, 228
upper bound, 184

cone functional, 167
least, 188

upper cone, 185
utility, 322, 348, 368

vacuous belief, 372
Vagner, 246, 248
value zone, 91
vector, 58, 94

reducing, 99
vectorization, 124, 347, 453
Verband, 189

Warshall algorithm, 77
weak preference, 358, 359
weakorder, 61, 305, 307–309, 524

closure, 319, 320, 356, 357
underlying, 319

Whitehead, Alfred North, 50, 544
Wiener, Norbert, 311
win, 424

Zierer, Hans, 46, 152
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