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Preface

Commutative algebra is a vibrant field with activity on many fronts and lively
interactions with other fields such as algebraic geometry, algebraic combinatorics,
computational algebra, invariant theory, mathematical physics, noncommutative
algebra, representation theory, singularity theory, and subspace arrangements. There
have been truly exciting recent developments both in core commutative algebra and
at the interface with the above listed fields.

The main goal of this book is to showcase the field of commutative algebra in
expository papers, especially for the benefit of young mathematicians. This book
will aid the readers to broaden their background and gain deeper understanding of
the current research in the area.

All papers are dedicated to David Eisenbud in celebration of his many and inspiring
contributions to a broad range of topics.

Currently, David Eisenbud is a professor of mathematics at the University of
California, Berkeley. He received his Ph.D. in mathematics in 1970 at the University
of Chicago under Saunders MacLane and Chris Robson. He was director of the
Mathematical Sciences Research Institute (MSRI) from 1997 to 2007 and vice
president for mathematics and the physical sciences at the Simons Foundation from
2009 to 2012. From 2003 to 2005 David Eisenbud was president of the American
Mathematical Society. In 2006 he was elected a fellow of the American Academy
of Arts and Sciences.

Ithaca, NY, USA Irena Peeva

Peeva was partially supported by NSF grant DMS-1100046.
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Lazarsfeld–Mukai Bundles and Applications

Marian Aprodu

Introduction

Lazarsfeld–Mukai bundles appeared naturally in connection with two completely
different important problems in algebraic geometry from the 1980s. The first
problem, solved by Lazarsfeld, was to find explicit examples of smooth curves
which are generic in the sense of Brill–Noether–Petri [18]. The second problem
was the classification of prime Fano manifolds of coindex 3 [23]. More recently,
Lazarsfeld–Mukai bundles have found applications to syzygies and higher-rank
Brill–Noether theory.

The common feature of all these research topics is the central role played by
K3 surfaces and their hyperplane sections. For the Brill–Noether–Petri genericity,
Lazarsfeld proves that a general curve in a linear system that generates the Picard
group of a K3 surface satisfies this condition. For the classification of prime Fano
manifolds of coindex 3, after having proved the existence of smooth fundamental
divisors, one uses the geometry of a two-dimensional linear section which is a very
general K3 surface.

The idea behind this definition is that the Brill–Noether theory of smooth
curves on a K3 surface, also called K3 sections, is governed by higher-rank vector
bundles on the surface. To be more precise, consider S a K3 surface (considered
always to be smooth, complex, projective), C a smooth curve on S of genus � 2,
and jAj a base-point-free pencil on C . If we attempt to lift the linear system jAj
to the surface S , in most cases, we will fail. For instance, jAj cannot lift to a
pencil on S if C generates Pic.S/ or if S does not contain any elliptic curve at
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2 M. Aprodu

all. However, interpreting a general divisor in jAj as a zero-dimensional subscheme
of S , it is natural to try and find a rank-two bundle E on S and a global section
of E whose scheme of zeros coincides with the divisor in question. Varying the
divisor, one should exhibit in fact a two-dimensional space of global sections of E .
The effective construction of E is realized through elementary modifications, see
Sect. 1, and this is precisely a Lazarsfeld–Mukai bundle of rank two. The passage to
higher ranks is natural, if we start with a complete, higher-dimensional, base-point-
free linear system on C . At the end, we obtain vector bundles with unusually high
number of global sections, which provide us with a rich geometric environment.

The structure of this chapter is as follows. In the first section, we recall the
definition of Lazarsfeld–Mukai bundles and its first properties. We note equivalent
conditions for a bundle to be Lazarsfeld–Mukai in Sect. 1.1, and we discuss
simplicity in the rank-two case in Sect. 1.2. The relation with the Petri conjecture
and the classification of Mukai manifolds, the original motivating problems for
the definition, are considered in Sects. 1.3 and 1.4, respectively. In Sect. 2 we treat
the problem of constancy of invariants in a given linear system. For small gonalities,
Saint-Donat and Reid proved that minimal pencils on K3 sections are induced from
elliptic pencils on the K3 surface; we present a short proof using Lazarsfeld–Mukai
bundles in Sect. 2.1. Harris and Mumford conjectured that the gonality should
always be constant. We discuss the evolution of this conjecture, from Donagi–
Morrison’s counterexample, Sect. 2.1, to Green–Lazarsfeld’s reformulation in terms
of Clifford index, Sect. 2.2 and to Ciliberto–Pareschi’s results on the subject,
Sect. 2.3. The works around this problem emphasized the importance of parameter
spaces of Lazarsfeld–Mukai bundles. We conclude the section with a discussion of
dimension calculations of these spaces, Sect. 2.4, which are applied afterwards to
Green’s conjecture. Sect. 3 is devoted to Koszul cohomology and notably to Green’s
conjecture for K3 sections. After recalling the definition and the motivations that
led to the definition, we discuss the statement of Green’s conjecture, and we sketch
the proof for K3 sections. Voisin’s approach using punctual Hilbert schemes, which
is an essential ingredient, is examined in Sect. 3.3. Lazarsfeld–Mukai bundles are
fundamental objects in this topic, and their role is outlined in Sect. 3.4. The final
step in the solution of Green’s conjecture for K3 sections is tackled in Sect. 3.5. We
conclude this chapter with a short discussion on Farkas–Ortega’s new applications
of Lazarsfeld–Mukai bundles to Mercat’s conjecture (which belongs to the rapidly
developing higher-dimensional Brill–Noether theory), Sect. 4.

Notation. The additive and the multiplicative notation for divisors and line bundles
will be mixed sometimes. If E is a vector bundle on X and L 2 Pic.X/, we set
E.�L/ WD E ˝ L�; this notation will be used especially when E is replaced by the
canonical bundle KC of a curve C .
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1 Definition, Properties, the First Applications

1.1 Definition and First Properties

We fix S a smooth, complex, projective K3 surface and L a globally generated line
bundle on S with L2 D 2g � 2. Let C 2 jLj be a smooth curve and A be a base-
point-free line bundle in W r

d .C / n W rC1
d .C /. As mentioned in the Introduction, the

definition of Lazarsfeld–Mukai bundles emerged from the attempt to lift the linear
system A to the surface S . Since it is virtually impossible to lift it to another linear
system, a higher-rank vector bundle is constructed such that H 0.C; A/ corresponds
to an .r C 1/-dimensional space of global sections. Hence jAj lifts to a higher-rank
analogue of a linear system.

The kernel of the evaluation of sections of A

0 ! FC;A ! H 0.C; A/ ˝ OS

ev! A ! 0 (1)

is a vector bundle of rank .r C 1/.

Definition 1.1 (Lazarsfeld [18], Mukai [23]). The Lazarsfeld–Mukai bundle EC;A

associated to the pair .C; A/ is the dual of FC;A.

By dualizing the sequence (1) we obtain the short exact sequence

0 ! H 0.C; A/� ˝ OS ! EC;A ! KC .�A/ ! 0; (2)

and hence EC;A is obtained from the trivial bundle by modifying it along the curve
C and comes equipped with a natural .r C 1/-dimensional space of global sections
as planned.

We note here the first properties of EC;A:

Proposition 1.2 (Lazarsfeld). The invariants of E are the following:

(1) det.EC;A/ D L.
(2) c2.EC;A/ D d .
(3) h0.S; EC;A/ D h0.C; A/ C h1.C; A/ D 2r � d C 1 C g.
(4) h1.S; EC;A/ D h2.S; EC;A/ D 0.
(5) �.S; EC;A˝FC;A/ D 2.1��.g; r; d //. where �.g; r; d / D g�.rC1/.g�dCr/.
(6) EC;A is globally generated off the base locus of KC .�A/; in particular, EC;A is

globally generated if KC .�A/ is globally generated.

It is natural to ask conversely if given E a vector bundle on S with rk.E/ D rC1,
h1.S; E/ D h2.S; E/ D 0, and det.E/ D L, E is the Lazarsfeld–Mukai bundle
associated to a pair .C; A/. To this end, note that there is a rational map

hE W G.r C 1; H 0.S; E// Ü jLj
defined in the following way. A general subspace ƒ 2 G.r C 1; H 0.S; E// is
mapped to the degeneracy locus of the evaluation map: evƒ W ƒ ˝ OS ! E:
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If the image hE.ƒ/ is a smooth curve C 2 jLj, we set Coker.evƒ/ WD KC .�A/,
where A 2 Pic.C / and deg.A/ D c2.E/, and observe that E D EC;A. Indeed,
since h1.S; E/ D 0, A is globally generated, and from h2.S; E/ D 0 it follows that
ƒ Š H 0.C; A/�. The conclusion is that:

Proposition 1.3. A rank-.r C 1/ vector bundle E on S is a Lazarsfeld–Mukai
bundle if and only if H 1.S; E/ D H 2.S; E/ D 0 and there exists an .r C 1/-
dimensional subspace of sections ƒ � H 0.S; E/, such that the degeneracy locus of
the morphism evƒ is a smooth curve. In particular, being a Lazarsfeld–Mukai vector
bundle is an open condition.

Note that there might be different pairs with the same Lazarsfeld–Mukai bundles,
the difference being given by the corresponding spaces of global sections.

1.2 Simple and Non-simple Lazarsfeld–Mukai Bundles

We keep the notation from the previous subsection. In the original situation, the
bundles used by Lazarsfeld [18] and Mukai [23] are simple. The non-simple
Lazarsfeld–Mukai bundles are, however, equally useful [3,5]. For instance, Lazars-
feld’s argument is partly based on an analysis of the non-simple bundles.

Proposition 1.2 already shows that for �.g; r; d / < 0 the associated Lazarsfeld–
Mukai bundle cannot be simple. The necessity of making a distinction between
simple and non-simple bundles for nonnegative � will become more evident in the
next sections.

In the rank-two case, one can give a precise description [6] of non-simple
Lazarsfeld–Mukai bundles, see also [5] Lemma 2.1:

Lemma 1.4 (Donagi–Morrison). Let EC;A be a non-simple Lazarsfeld–Mukai
bundle. Then there exist line bundles M; N 2 Pic.S/ such that h0.S; M /,
h0.S; N / � 2, N is globally generated, and there exists a locally complete
intersection subscheme � of S , either of dimension zero or the empty set, such that
EC;A is expressed as an extension

0 ! M ! EC;A ! N ˝ I� ! 0: (3)

Moreover, if h0.S; M ˝ N �/ D 0, then � D ; and the extension splits.

One can prove furthermore that h1.S; N / D 0, [3] Remark 3.6.
We say that (3) is the Donagi–Morrison extension associated to EC;A. This notion

makes perfect sense as this extension is uniquely determined by the vector bundle,
if it is indecomposable [3]. Actually, a decomposable Lazarsfeld–Mukai bundle E

cannot be expressed as an extension (3) with � ¤ ;, and hence a Donagi–Morrison
extension is always unique, up to a permutation of factors in the decomposable
case. Moreover, a Lazarsfeld–Mukai bundle is decomposable if and only if the
corresponding Donagi–Morrison extension is trivial.
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In the higher-rank case, we do not have such a precise description.1 However, a
similar sufficiently strong statement is still valid [18, 19, 26].

Proposition 1.5 (Lazarsfeld). Notation as above. If EC;A is not simple, then the
linear system jLj contains a reducible or a multiple curve.

In the rank-two case, this statement comes from the decomposition L Š M ˝N .

1.3 The Petri Conjecture Without Degenerations

A smooth curve of genus g is said to satisfy Petri’s condition, or to be Brill–
Noether–Petri generic, if the multiplication map (the Petri map)

�0;A W H 0.C; A/ ˝ H 0.C; KC .�A// ! H 0.C; KC /;

is injective for any line bundle A on C . One consequence of this condition is that
all the Brill–Noether loci W r

d .C / have the expected dimension and are smooth
away from W rC1

d .C /; recall that the tangent space at the point ŒA� to W r
d .C /

is naturally isomorphic to the dual of Coker.�0;A/ [4]. The Petri conjecture,
proved by degenerations by Gieseker, states that a general curve satisfies Petri’s
condition. Lazarsfeld [18] found a simpler and elegant proof without degenerations
by analyzing curves on very general K3 surfaces.

Lazarsfeld’s idea is to relate the Petri maps to the Lazarsfeld–Mukai bundles;
this relation is valid in general and has many other applications. Suppose, as in
the previous subsections, that S is a K3 surface and L is a globally generated line
bundle on S . For the moment, we do not need to assume that L generates the Picard
group. E. Arbarello and M. Cornalba constructed a scheme W r

d .jLj/ parameterizing
pairs .C; A/ with C 2 jLj smooth and A 2 W r

d .C / and a morphism

�S W Wr
d .jLj/ ! jLj:

Assume that A 2 W r
d .C /nW rC1

d .C / is globally generated, and consider MA the
vector bundle of rank r on C defined as the kernel of the evaluation map

0 ! MA ! H 0.C; A/ ˝ OC

ev! A ! 0: (4)

Twisting (4) with KC ˝ A�, we obtain the following description of the kernel of the
Petri map:2

Ker.�0;A/ D H 0.C; MA ˝ KC ˝ A�/:

1In fact, we do have a Harder–Narasimhan filtration, but we cannot control all the factors.
2This ingenious procedure is an efficient replacement of the base-point-free pencil trick; “it has
killed the base-point-free pencil trick,” to quote Enrico Arbarello.
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There is another exact sequence on C

0 ! OC ! FC;AjC ˝ KC ˝ A� ! MA ˝ KC ˝ A� ! 0;

and from the defining sequence of EC;A one obtains the exact sequence on S

0 ! H 0.C; A/� ˝ FC;A ! EC;A ˝ FC;A ! FC;AjC ˝ KC ˝ A� ! 0:

From the vanishing of h0.C; FC;A/ and of h1.C; FC;A/, we obtain

H 0.C; EC;A ˝ FC;A/ D H 0.C; FC;AjC ˝ KC ˝ A�/:

Suppose that W � W r
d .jLj/ is a dominating component and .C; A/ 2 W is an

element such that A is globally generated and h0.C; A/ D r C 1. A deformation-
theoretic argument shows that if the Lazarsfeld–Mukai bundle EC;A is simple, then
the coboundary map H 0.C; MA ˝ KC ˝ A�/ ! H 1.C; OC / is zero [26], which
eventually implies the injectivity of �0;A.

By reduction to complete base-point-free bundles on the curve [18, 26] this
analysis yields:

Theorem 1.6 (Lazarsfeld). Let C be a smooth curve of genus g � 2 on a K3

surface S , and assume that any divisor in the linear system jC j is reduced and
irreducible. Then a generic element in the linear system jC j is Brill–Noether–Petri
generic.

A particularly interesting case is when the Picard group of S is generated by
L and �.g; r; d / D 0. Obviously, the condition � D 0 can be realized only for
composite genera, as g D .r C1/.g�d Cr/, for example, r D 1 and g even. Under
these assumptions, there is a unique Lazarsfeld–Mukai bundle E with c1.E/ D L

and c2.E/ D d , and different pairs .C; A/ correspond to different ƒ 2 G.r C 1;

H 0.S; E//; in other words the natural rational map G.r C 1; H 0.S; E// Ü
W r

d .jLj/ is dominating. Note that E must be stable and globally generated.

1.4 Mukai Manifolds of Picard Number One

A Fano manifold X of dimension n � 3 and index n�2 (i.e., of coindex 3) is called
a Mukai manifold.3 In the classification, special attention is given to prime Fano
manifolds: note that if n � 7, X is automatically prime as shown by Wisniewski;
see, for example, [16].

Assume that the Picard group of X is generated by an ample line bundle L, and
let the sectional genus g be the integer .Ln/=2 C 1. Mukai and Gushel used vector
bundle techniques to obtain a complete classification of these manifolds. A first
major obstacle is to prove that the fundamental linear system contains indeed a

3Some authors consider that Mukai manifolds have dimension four or more.
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smooth element, aspect which is settled by Shokurov and Mella; see, for example,
[16]. Then the .g C n � 2/-dimensional linear system jLj is base-point-free, and
a general linear section with respect to the generator of the Picard group is a K3

surface. More precisely, if Pic.X/ D Z � L, then for H1; � � � ; Hn�2 general elements
in the fundamental linear system jLj, S WD H1 \ � � �\ Hn�2 is scheme-theoretically
a K3 surface. Note that if n � 4 and i � 3, the intersection H1 \� � �\Hn�i is again
a Fano manifold of coindex 3.

Mukai noticed that the fundamental linear system either is very ample, and the
image of X is projectively normal or is associated to a double covering of Pn (g D 2)
or of the hyper-quadric Qn � P

nC1 (g D 3). The difficulty of the problem is thus
to classify all the possible cases where jLj is normally generated, called of the first
species. Taking linear sections one reduces (not quite immediately) to the case n D 3

[16] p.110.
For simplicity, let us assume that X is a prime Fano 3-fold of index 1. If g D 4

and g D 5, X is a complete intersection; hence the hard cases begin with genus 6.
A hyperplane section S is a K3 surface, and, by a result of Moishezon, Pic.S/ is
generated by LjS .

Let us denote by Fg the moduli space of polarized K3 surfaces of degree 2g � 2

and Mg the moduli space of genus-g curves. There are two nice facts in Mukai’s
proof involving these two moduli spaces. His first observation is that if there exists
a prime Fano 3-fold X of the first species of genus g � 6 and index 1, the rational
map �g W Fg Ü Mg is not generically finite [24]. The second nice fact is that �g

is generically finite if and only if g D 11 or g � 13 [24].4 Hence, one is reduced
to study the genera 6 � g � 12 with g ¤ 11. At this point, Lazarsfeld–Mukai
bundles are employed. By the discussion from Sect. 1.3, for any decomposition g D
.r C 1/.g � d C r/, with r � 1, d � g � 1, there exists a unique Lazarsfeld–Mukai
bundle E of rank .r C1/. It has already been noticed that the bundle E is stable and
globally generated. Moreover, the determinant map

det W ^rC1H 0.S; E/ ! H 0.S; L/

is surjective [23], and hence it induces a linear embedding

PH 0.S; L/� ,! P.^rC1H 0.S; E/�/:

Following [23], we have a commutative diagram

S
�E

��
� �

�jLj

��

G� �

Pluecker
��

PH 0.L/� � � �� P.^rC1H 0.E/�/

4In genus 11, it is actually birational [25].
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where G WD G.r C 1; H 0.S; E/�/ and �E is given by E . This diagram shows that
S is embedded in a suitable linear section of the Grassmannian G. Moreover, this
diagram extends over X : by a result of Fujita, E extends to a stable vector bundle
on X , and the diagram over X is obtained for similar reasons. Hence X is a linear
section of a Grassmannian. By induction on the dimension, X is contained in a
maximal Mukai manifold, which is also a linear section of the Grassmannian. A
complete list of maximal Mukai manifolds is given in [23]. Notice that in genus 12,
the maximal Mukai manifolds are threefold already.

2 Constancy of Invariants of K3–Sections

2.1 Constancy of the Gonality. I

In his analysis of linear systems on K3 surfaces Saint–Donat [28] shows that any
smooth curve which is linearly equivalent to a hyperelliptic or trigonal curve is also
hyperelliptic, respectively trigonal. The idea was to prove that the minimal pencils
are induced by elliptic pencils defined on the surface. This result was sensibly
extended by Reid [27] who proved the following existence result:

Theorem 2.1 (Reid). Let C be a smooth curve of genus g on a K3 surface S and
A be a complete, base-point-free g1

d on C . If

d 2

4
C d C 2 < g;

then A is the restriction of an elliptic pencil on S .

It is a good occasion to present here, as a direct application of techniques
involving Lazarsfeld–Mukai bundles, an alternate shorter proof of Reid’s theorem.

Proof. We use the notation of previous sections. By the hypothesis, the Lazarsfeld–
Mukai bundle E is not simple, and hence we have a unique Donagi–Morrison
extension

0 ! M ! E ! N ˝ I� ! 0;

with � of length `. Note that M � N D d � ` � d . By the Hodge index theorem,
we have .M 2/ � .N 2/ � .M � N /2 � d 2, whereas from M C N D C we obtain
.M 2/ D 2.g � 1 � d/ � .N 2/, hence

.N 2/ � d 2

2.g � 1 � d/ � .N 2/
:

Therefore, the even integer x WD .N 2/ satisfies the following inequality x2 �
2x.g � 1 � d/ C d 2 � 0: The hypothesis shows that the above inequality fails for
x � 2, and hence N must be an elliptic pencil. ut
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In conclusion, for small values, the gonality5 is constant in the linear system.
Motivated by these facts, Harris and Mumford conjectured that the gonality of
K3-sections should always be constant [14].

This conjecture is unfortunately wrong as stated: Donagi and Morrison [6] gave
the following counterexample:

Example 2.2. Let S ! P
2 be a double cover branched along a smooth sextic and L

be the pull-back of OP2 .3/. The curves in jLj have all genus 10. The general curve
C 2 jLj is isomorphic to a smooth plane sextic, and hence it is pentagonal. On the
other hand, the pull-back of a general smooth plane cubic 	 is a double cover of 	 ,
and thus it is tetragonal.

2.2 Constancy of the Clifford Index

Building on his work on Koszul cohomology and its relations with geometry, M.
Green proposed a reformulation of the Harris-Mumford conjecture replacing the
gonality by the Clifford index.

Recall that the Clifford index of a nonempty linear system jAj on a smooth curve
C is the codimension of the image of the natural addition map jAj � jKC .�A/j !
jKC j. This definition is nontrivial only for relevant linear systems jAj, i.e., such that
both jAj and jKC .�A/j are at least one-dimensional; such an A is said to contribute
to the Clifford index. The Clifford index of C is the minimum of all the Clifford
indices taken over the linear systems that contribute to the Clifford index and is
denoted by Cliff.C /. The Clifford index is related to the gonality by the following
inequalities

gon.C / � 3 � Cliff.C / � gon.C / � 2;

and curves with gon.C / � 3 D Cliff.C / are very rare: typical examples are plane
curves and Eisenbud–Lange–Martens–Schreyer curves [8, 17].6

From the Brill–Noether theory, we obtain the bound Cliff.C / � Œ.g � 1/=2�

(and, likewise, gon.C / � Œ.g C 3/=2�), and it is known that the equality is achieved
for general curves. The Clifford index is in fact a measure of how special a curve is
in the moduli space.

The precise statement obtained by Green and Lazarsfeld is the following [12]:

Theorem 2.3 (Green–Lazarsfeld). Let S be a K3 surface and C � S be a smooth
irreducible curve of genus g � 2. Then Cliff.C 0/ D Cliff.C / for every smooth
curve C 0 2 jC j. Furthermore, if Cliff.C / is strictly less than the generic value

5The gonality gon.C / of a curve C is the minimal degree of a morphism from C to the
projective line.
6It is conjectured that the only other examples should be some half-canonical curves of even genus
and maximal gonality [8]; however, this conjecture seems to be very difficult.
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Œ.g � 1/=2�, then there exists a line bundle M on S whose restriction to any smooth
curve C 0 2 jC j computes the Clifford index of C 0.

The proof strategy is based on a reduction method of the associated Lazarsfeld–
Mukai bundles. The bundle M is obtained from the properties of the reductions; we
refer to [12] for details.

From the Clifford index viewpoint, Donagi–Morrison’s example is not different
from the other cases. Indeed, all smooth curves in jLj have Clifford index 2. We
shall see in the next subsection that Donagi–Morrison’s example is truly an isolated
exception for the constancy of the gonality.

2.3 Constancy of the Gonality. II

As discussed above, the Green–Lazarsfeld proof of the constancy of the Clifford
index was mainly based on the analysis of Lazarsfeld–Mukai bundles. It is natural
to try and explain the peculiarity of Donagi–Morrison’s example from this point of
view. This was done in [5]. The surprising answer found by Ciliberto and Pareschi
[5] (see also [6]) is the following:

Theorem 2.4 (Ciliberto–Pareschi). Let S be a K3 surface and L be an ample line
bundle on S . If the gonality of the smooth curves in jLj is not constant, then S and
L are as in Donagi–Morrison’s example.

Theorem 2.4 was refined by Knutsen [17] who replaced ampleness by the more
general condition that L be globally generated. The extended setup covers also
the case of exceptional curves, as introduced by Eisenbud, Lange, Martens, and
Schreyer [8].

The proof of Theorem 2.4 consists of a thorough analysis of the loci W1
d .jLj/,

where d is the minimal gonality of smooth curves in jLj, through the associated
Lazarsfeld–Mukai bundles. The authors identify Donagi–Morrison’s example in the
following way:

Theorem 2.5 (Ciliberto–Pareschi). Let S be a K3 surface and L be an ample line
bundle on S . If the gonality of smooth curves in jLj is not constant and if there is a
pair .C; A/ 2 W1

d .jLj/ such that h1.S; EC;A ˝ FC;A/ D 0, then S and L are as in
Donagi–Morrison’s example.

To conclude the proof of Theorem 2.4, Ciliberto and Pareschi prove that non-
constancy of the gonality implies the existence of a pair .C; A/ with h1.S; EC;A ˝
FC;A/ D 0; see [5] Proposition 2.4.

It is worth to notice that, in Example 2.2, if C is the inverse image of a plane
cubic and A is a g1

4 (the pull-back of an involution), then EC;A is the pull-back of
OP2 .1/ ˚ OP2 .2/ [5], and hence the vanishing of h1.S; EC;A ˝ FC;A/ is guaranteed
in this case.
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2.4 Parameter Spaces of Lazarsfeld–Mukai Bundles
and Dimension of Brill–Noether Loci

We have already seen that the Brill–Noether loci are smooth of expected dimension
at pairs corresponding to simple Lazarsfeld–Mukai bundles. It is interesting to know
what is the dimension of these loci at other points as well. Precisely, we look for a
uniform bound on the dimension of Brill–Noether loci of general curves in a linear
system.

A first step was made by Ciliberto and Pareschi [5] who proved, as a necessary
step in Theorem 2.4, that an ample curve of gonality strictly less than the generic
value, general in its linear system, carries finitely many minimal pencils. This result
was extended to other Brill–Noether loci [3], proving a phenomenon of linear
growth with the degree; see below. Let us mention that, for the moment, the only
results in this direction are known to hold for pencils [3] and nets [20].

As before, we consider S a K3 surface and L a globally generated line bundle
on S . In order to parameterize all pairs .C; A/ with non-simple Lazarsfeld–Mukai
bundles, we need a global construction. We fix a nontrivial globally generated line
bundle N on S with H 0.L.�2N // ¤ 0 and an integer ` � 0. We set M WD L.�N /

and g WD 1 C L2=2. Define ePN;` to be the family of vector bundles of rank 2 on S

given by nontrivial extensions

0 ! M ! E ! N ˝ I� ! 0; (5)

where � is a zero-dimensional locally complete intersection subscheme (or the
empty set) of S of length `, and set

PN;` WD fŒE� 2 ePN;` W h1.S; E/ D h2.S; E/ D 0g:

Equivalently (by Riemann–Roch), ŒE� 2 PN;` if and only if h0.S; E/ D
g � c2.E/ C 3 and h1.S; E/ D 0. Note that any non-simple Lazarsfeld–Mukai
bundle on S with determinant L belongs to some family PN;`, from Lemma 1.4.
The family PN;`, which, a priori, might be the empty set, is an open Zariski subset
of a projective bundle of the Hilbert scheme SŒ`�.

Assuming that PN;` ¤ ;, we consider the Grassmann bundle GN;` over PN;`

classifying pairs .E; ƒ/ with ŒE� 2 PN;` and ƒ 2 G.2; H 0.S; E//. If d WD c2.E/

we define the rational map hN;` W GN;` Ü W1
d .jLj/, by setting hN;`.E; ƒ/ WD

.Cƒ; Aƒ/, where Aƒ 2 Picd .Cƒ/ is such that the following exact sequence on S

holds:

0 ! ƒ ˝ OS

evƒ! E ! KCƒ ˝ A�
ƒ ! 0:

One computes dim GN;` D g C ` C h0.S; M ˝ N �/. If we assume furthermore
that PN;` contains a Lazarsfeld–Mukai vector bundle E on S with c2.E/ D d and
consider W � W1

d .jLj/ the closure of the image of the rational map hN;` W GN;` Ü
W1

d .jLj/, then we find dim W D g C d � M � N D g C `.
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On the other hand, if C 2 jLj has Clifford dimension one and A is a globally
generated line bundle on C with h0.C; A/ D 2 and ŒEC;A� 2 PN;`, then M � N �
gon.C /.

These considerations on the indecomposable case, together with a simpler
analysis of decomposable bundles, yield finally [3]:

Theorem 2.6. Let S be a K3 surface and L a globally generated line bundle on
S , such that general curves in jLj are of Clifford dimension one. Suppose that
�.g; 1; k/ � 0, where L2 D 2g � 2 and k is the (constant) gonality of all smooth
curves in jLj. Then for a general curve C 2 jLj, we have

dim W 1
kCd .C / D d for all 0 � d � g � 2k C 2: (6)

The condition (6) is called the linear growth condition. It is equivalent to

dim W 1
g�kC2.C / D �.g; 1; g � k C 2/ D g � 2k C 2:

Note that the condition that C carry finitely many minimal pencils, which is a
part of (6), appears explicitly in [5]. It is directly related to the constancy of the
gonality discussed before.

3 Green’s Conjecture for Curves on K3 Surfaces

3.1 Koszul Cohomology

Let X be a (not necessarily smooth) complex, irreducible, projective variety and
L 2 Pic.X/ globally generated. The Euler sequence on the projective space
P.H 0.X; L/�/ pulls back to a short exact sequence of vector bundles on X

0 ! ML ! H 0.X; L/ ˝ OX ! L ! 0: (7)

After taking exterior powers in the sequence (7), twisting with multiples of L and
going to global sections, we obtain an exact sequence for any nonnegative p and q:

0!H 0.^pC1ML˝Lq�1/! ^pC1 H 0.L/˝H 0.Lq�1/
ı! H 0.^pML˝Lq/: (8)

The finite-dimensional vector space Kp;q.X; L/ WD Coker.ı/ is called the Koszul
cohomology space7 of X with values in L [11, 13, 19]. Observe that Kp;q can be
defined alternatively as:

7The indices p and q are usually forgotten when defining Koszul cohomology.
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Kp;q.X; L/ D Ker
�

H 1.^pC1ML ˝ Lq�1/ ! ^pC1H 0.L/ ˝ H 1.Lq�1/
�

;

description which is particularly useful when X is a curve.
Several versions are used in practice, for example, replace H 0.L/ in (7) by a

subspace that generates L or twist (8) by F ˝Lq�1 where F is a coherent sheaf. For
our presentation, however, we do not need to discuss these natural generalizations.

Composing the maps

^pC1H 0.L/ ˝ H 0.Lq�1/
ı! H 0.^pML ˝ Lq/ ,! ^pH 0.L/ ˝ H 0.Lq/

we obtain, by iteration, a complex

^pC1H 0.L/ ˝ H 0.Lq�1/ ! ^pH 0.L/ ˝ H 0.Lq/ ! ^p�1H 0.L/ ˝ H 0.LqC1/

whose cohomology at the middle is Kp;q.X; L/, and this is the definition given by
Green [11].

An important property of Koszul cohomology is upper-semicontinuity in flat
families with constant cohomology; in particular, vanishing of Koszul cohomology
is an open property in such families. For curves, constancy of h1 is a consequence
of flatness and of constancy of h0, as shown by the Riemann–Roch theorem.

The original motivation for studying Koszul cohomology spaces was given by
the relation with minimal resolutions over the polynomial ring. More precisely, if L

is very ample, then the Koszul cohomology computes the minimal resolution of the
graded module

R.X; L/ WD
M

q

H 0.X; Lq/

over the polynomial ring [11, 13]; see also [2, 7], in the sense that any graded piece
that appears in the minimal resolution is (non-canonically) isomorphic to a Kp;q . If
the image of X is projectively normal, this module coincides with the homogeneous
coordinate ring of X . The projective normality of X can also be read off Koszul
cohomology, being characterized by the vanishing condition K0;q.X; L/ D 0 for
all q � 2. Furthermore, for a projectively normal X , the homogeneous ideal is
generated by quadrics if and only if K1;q.X; L/ D 0 for all q � 2.8 The phenomenon
continues as follows: if X is projectively normal and the homogeneous ideal is
generated by quadrics, then the relations between the generators are linear if and
only if K2;q.X; L/ D 0 for all q � 2 etc, whence the relation with syzygies [11].

Other notable application of Koszul cohomology is the description of
Castelnuovo-Mumford regularity, which coincides with, [2, 11]

min
q

fKp;q.X; L/ D 0; for all pg:

8The dimension of K1;q indicates the number of generators of degree .q C 1/ in the homoge-
neous ideal.
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Perhaps the most striking property of Koszul cohomology, discovered by Green
and Lazarsfeld [11, Appendix], is a consequence of a nonvanishing result:

Theorem 3.1 (Green–Lazarsfeld). Suppose X is smooth and L D L1 ˝ L2 with
ri WD h0.X; Li/ � 1 � 1. Then Kr1Cr2�1;1.X; L/ ¤ 0.

Note that the spaces Kp;1 have the following particular attribute: if Kp;1 ¤ 0 for
some p � 1 then Kp0;1 ¤ 0 for all 1 � p0 � p. This is obviously false for Kp;q

with q � 2.
Theorem 3.1 shows that the existence of nontrivial decompositions of L reflects

onto the existence of nontrivial Koszul classes in some space Kp;1. Its most
important applications are for curves, in particular for canonical curves, case which
is discussed in the next subsection. In the higher-dimensional cases, for surfaces, for
instance, the meaning of Theorem 3.1 becomes more transparent if it is accompanied
by a restriction theorem which compares the Koszul cohomology of X with the
Koszul cohomology of the linear sections [11]:

Theorem 3.2 (Green). Suppose X is smooth and h1.X; Lq/ D 0 for all q � 1.
Then for any connected reduced divisor Y 2 jLj, the restriction map induces an
isomorphism

Kp;q.X; L/
�! Kp;q.Y; LjY /;

for all p and q.

The vanishing of h1.X; OX/ suffices to prove that the restriction is an isomor-
phism between the spaces Kp;1 [2].

In the next subsections, we shall apply Theorem 3.2 for K3 sections.

Corollary 3.3. Let C be a smooth connected curve on a K3 surface S . Then

Kp;q.S; OS.C // Š Kp;q.C; KC /

for all p and q.

One direct consequence is a duality theorem for Koszul cohomology of K3

surfaces.9 It shows the symmetry of the table containing the dimensions of the
spaces Kp;q , called the Betti table.

3.2 Statement of Green’s Conjecture

Let us particularize Theorem 3.1 for a canonical curve. Consider C a smooth curve
and choose a decomposition KC D A ˝ KC .�A/. Theorem 3.1 applies only if
h0.C; A/ � 2 and h1.C; A/ � 2, i.e., if A contributes to the Clifford index.

9Duality for Koszul cohomology of curves follows from Serre’s duality. For higher-dimensional
manifolds, some supplementary vanishing conditions are required [11, 13].
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The quantity r1 C r2 � 1 which appears in the statement equals g � Cliff.A/ � 2,
and hence, if A computes the Clifford index, we obtain the following:

Theorem 3.4 (Green–Lazarsfeld). For any smooth curve C of genus g Clifford
index c we have Kg�c�2;1.C; KC / ¤ 0.

It is natural to determine whether or not this result is sharp, question which is
addressed in the statement Green’s conjecture:

Conjecture 3.5 (Green). Let C be a smooth curve. For all p � g � c � 1, we have
Kp;1.C; KC / D 0.

For the moment, Green’s conjecture remains a hard open problem. At the same
time, strong evidence has been discovered. For instance, it is known to hold for
general curves [31,32], for curves of odd genus and maximal Clifford index [15,32],
for general curves of given gonality [30, 31],10 [29], for curves with small Brill–
Noether loci [1], for plane curves [21], for curves on K3 surfaces [3, 31, 32], etc.;
see also [2] for a discussion.

We shall consider in the sequel the case of curves on K3 surfaces with emphasis
on Voisin’s approach to the problem and the role played by Lazarsfeld–Mukai
bundles. It is interesting to notice that Green’s conjecture for K3 sections can be
formulated directly in the K3 setup, as a vanishing result on the moduli space Fg

of polarized K3 surfaces. However, in the proof of this statement, as it usually
happens in mathematics, we have to exit the K3 world, prove a more general result
in the extended setup, and return to K3 surfaces. The steps we have to take, ordered
logically and not chronologically, are the following. In the first, most elaborated
step, one finds an example for odd genus [31,32]. At this stage, we are placed in the
moduli space F2kC1. Secondly, we exit the K3 world, land in M2kC1, and prove
the equality of two divisors [15, 31]. The first step is used, and the identification
of the divisors extends to their closure over the component 
0 of the boundary [1].
In the third step, we jump from a gonality stratum M1

g;d in a moduli space Mg to

the boundary of another moduli space of stable curves M2kC1, where k D g�d C1

[1]. The second step reflects into a vanishing result on an explicit open subset of
M1

g;d . Finally one goes back to K3 surfaces and applies the latter vanishing result
[3] on Fg . In the steps concerned with K3 surfaces (first and last), the Lazarsfeld–
Mukai bundles are central objects.

3.3 Voisin’s Approach

The proof of the generic Green conjecture was achieved by Voisin in two papers
[31, 32], using a completely different approach to Koszul cohomology via Hilbert
scheme of points.

10Voisin’s and Teixidor’s cases complete each other quite remarkably.
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Let X be a complex connected projective manifold and L a line bundle on X . It is
obvious that any global section � is uniquely determined by the collection f�.x/gx ,
where �.x/ 2 Ljx Š C and x belongs to a nonempty open subset of X . One tries
to find a similar fact for multisections in ^nH 0.X; L/.

Let �1 ^ � � � ^ �n be a decomposable element in ^nH 0.X; L/ with n � 1. By
analogy with the case n D 1, we have to look at the restriction �1j� ^ � � � ^ �nj� 2
^nLj� where � is now a zero-dimensional subscheme, and it is clear that we need
n points for otherwise this restriction would be zero. Note that a zero-dimensional
subscheme of length n defines a point in the punctual Hilbert scheme XŒn�. For
technical reasons, we shall restrict to curvilinear subschemes11 which form a large
open subset X

Œn�
c in a connected component of the Hilbert scheme.12 Varying

� 2 X
Œn�
c , the collection f�1j� ^ � � � ^ �nj�g� represents a section in a line bundle

described as follows. Put „n � X
Œn�
c � X the incidence variety and denote by q and

p the projections on the two factors; note that q is finite of degree n. Then LŒn� WD
q�p�.L/ is a vector bundle of rank n on X

Œn�
c , and the fibre at a point � 2 X

Œn�
c is

LŒn�j� Š Lj� . In conclusion, the collection f� j� ^ � � � ^ � j�g� defines a section in
the line bundle det.LŒn�/. The map we are looking at ^nH 0.L/ ! H 0.det.LŒn�// is
deduced from the evaluation map evn W H 0.L/ ˝ O

X
Œn�
c

! LŒn�, taking ^nevn and

applying H 0. It is remarkable that [9, 31, 32]:

Theorem 3.6 (Voisin, Ellingsrud–Göttsche–Lehn). The map

H 0.^nevn/ W ^nH 0.X; L/ ! H 0
�

XŒn�
c ; det.LŒn�/

�

is an isomorphism.

Since the exterior powers of H 0.L/ are building blocks for Koszul cohomology,
it is natural to believe that the isomorphism above yields a relation between the
Koszul cohomology and the Hilbert scheme. To this end, the Koszul differentials
must be reinterpreted in the new context.

There is a natural birational morphism13

� W „nC1 ! XŒn�
c � X; .�; x/ 7! .� � x; x/

presenting „nC1 as the blowup of X
Œn�
c � X along „n. If we denote by D� the

exceptional locus, we obtain an inclusion [31]

q�det.LŒnC1�/ Š ��.det.LŒn�/ � L/.�D� / ,! ��.det.LŒn�/ � L/

11A curvilinear subscheme is defined locally, in the classical topology, by x1 D � � � D xs�1 D
xk

s D 0; equivalently, it is locally embedded in a smooth curve.
12The connectedness of X

Œn�
c follows from the observation that a curvilinear subscheme is a

deformation of a reduced subscheme.
13We see one advantage of working on X

Œn�
c : subtraction makes sense only for curvilinear

subschemes.
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whence

H 0
�

XŒnC1�
c ; det.LŒnC1�/

�

,! H 0.XŒn�
c � X; det.LŒn�/ � L/;

identifying the left-hand member with the kernel of a Koszul differential [31].
A version of this identification leads us to [31, 32]:

Theorem 3.7 (Voisin). For any integers m and n, Kn;m.X; L/ is isomorphic to the
cokernel of the restriction map:

H 0
�

XŒnC1�
c � X; det.LŒnC1�/ � Lm�1

� ! H 0
�

„nC1; det.LŒnC1�/ � Lm�1j„nC1

�

:

The vanishing of Koszul cohomology is thus reduced to proving surjectivity of
the restriction map above. In general, it is very hard to prove surjectivity directly,
and one has to make a suitable base-change [31].

3.4 The Role of Lazarsfeld–Mukai Bundles in the Generic
Green Conjecture and Consequences

In order to prove Green’s conjecture for general curves, it suffices to exhibit one
example of a curve of maximal Clifford index, which verifies the predicted vanish-
ing. Afterwards, the vanishing of Koszul cohomology propagates by semicontinuity.
Even so, finding one single example is a task of major difficulty. The curves used by
Voisin in [31, 32] are K3 sections, and the setups change slightly, according to the
parity of the genus. For even genus, we have [31]:

Theorem 3.8 (Voisin). Suppose that g D 2k. Consider S a K3 surface with
Pic.S/ Š Z �L, L2 D 2g �2, and C 2 jLj a smooth curve. Then Kk;1.C; KC / D 0.

For odd genus, the result is [32]:

Theorem 3.9 (Voisin). Suppose that g D 2k C 1. Consider S a K3 surface with
Pic.S/ Š Z � L ˚ Z � 	 , L2 D 2g � 2, 	 a smooth rational curve. L � 	 D 2 and
C 2 jLj a smooth curve. Then Kk;1.C; KC / D 0.

Note that the generic value for the Clifford index in genus g is Œ.g � 1/=2�, and
hence, in both cases, the prediction made by Green’s conjecture for general curve C

is precisely Kk;1.C; KC / D 0.
There are several reasons for making these choices: the curves have maximal

Clifford index, by Theorem 2.3 (and the Clifford dimension is one), the Lazarsfeld–
Mukai bundles associated to minimal pencils are L-stable, the hyperplane section
theorem applies, etc.

We outline here the role played by Lazarsfeld–Mukai bundles in Voisin’s proof
and, for simplicity, we restrict to the even-genus case. By the hyperplane section
Theorem 3.2, the required vanishing on the curve is equivalent to Kk;1.S; L/ D 0.
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From the description of Koszul cohomology in terms of Hilbert schemes, Theorem
3.7, adapting the notation from the previous subsection, one has to prove the
surjectivity of the map

q� W H 0
�

SŒnC1�
c ; det.LŒnC1�/

� ! H 0
�

„nC1; q�det.LŒnC1�/j„nC1

�

:

The surjectivity is proved after performing a suitable base-change.
We are in the case �.g; 1; k C 1/ D 0; hence there is a unique Lazarsfeld–Mukai

bundle E on S associated to all g1
kC1 on curves in jLj. The uniqueness yields an

alternate description of E as extension

0 ! OS ! E ! L ˝ I� ! 0;

where � varies in S
ŒkC1�
c .

There exists a morphism PH 0.S; E/ ! SŒkC1� that sends a global section s 2
H 0.S; E/ to its zero set Z.s/. By restriction to an open subset P � PH 0.S; E/, we
obtain a morphism P ! S

ŒkC1�
c , inducing a commutative diagram

P
0 D P �

S
ŒkC1�
c

„kC1
��

q0

��

„kC1

q

��

P �� S
ŒkC1�
c :

Set-theoretically

P
0 D f.Z.s/; x/js 2 H 0.S; E/; x 2 Z.s/g:

Unfortunately, this very natural base-change does not satisfy the necessary condi-
tions that imply the surjectivity of q�, [31]. Voisin modifies slightly this construction
and replaces P with another variety related to P which parameterizes zero-cycles
of the form Z.s/ � x C y with Œs� 2 P, x 2 Supp.Z.s// and y 2 S . It turns
out, after numerous elaborated calculations using the rich geometric framework
provided by the Lazarsfeld–Mukai bundle, that the new base-change is suitable and
the surjectivity of q� follows from vanishing results on the Grassmannian [31].

In the odd-genus case, Voisin proves first Green’s conjecture for smooth curves
in jL C 	j, which are easily seen to be of maximal Clifford index. The situation on
jL C 	j is somewhat close to the setup of Theorem 3.8, and the proof is similar.
The next hard part is to descend from the vanishing of KkC1;1.S; L ˝ OS .	// to
the vanishing of Kk;1.S; L/. This step uses again intensively the unique Lazarsfeld–
Mukai bundle associated to any g1

kC2 on curves in jL C 	j.
The odd-genus case is of maximal interest: mixed with Hirschowitz-Ramanan

result [15], Theorem 3.9 gives a solution to Green’s conjecture for any curve of odd
genus and maximal Clifford index:
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Theorem 3.10 (Hirschowitz–Ramanan, Voisin). Let C be a smooth curve of odd
genus 2k C 1 � 5 and Clifford index k. Then Kk;1.C; KC / D 0.

Note that Theorem 3.10 implies the following statement:

Corollary 3.11. A smooth curve of odd genus and maximal Clifford index has
Clifford dimension one.

The proof of Theorem 3.10 relies on the comparison of two effective divisors on
the moduli space of curves M2kC1, one given by the condition gon.C / � k C 1,
which is known to be a divisor from [14], and the second given by Kk;1.C; KC / ¤ 0.
By duality Kk;1.C; KC / Š Kk�2;2.C; KC /. Note that Kk�2;2.C; KC / is isomor-
phic to

Coker
�^kH 0.KC / ˝ H 0.KC /= ^kC1 H 0.KC / ! H 0.^k�1MKC ˝ K2

C /
�

and the two members have the same dimension. The locus of curves with Kk;1 ¤ 0

can be described as the degeneracy locus of a morphism between vector bundles
of the same dimension, and hence it is a virtual divisor. Theorem 3.9 implies
that this locus is not the whole space, and in conclusion it must be an effective
divisor. Theorem 3.1 already gives an inclusion between the supports of two
divisors in question, and the set-theoretic equality is obtained from a divisor class
calculation [15].

3.5 Green’s Conjecture for Curves on K3 Surfaces

We have already seen that general K3 sections have a mild behavior from the Brill–
Noether theory viewpoint. In some sense, they behave like general curves in any
gonality stratum of the moduli space of curves.

As in the previous subsections, fix a K3 surface S and a globally generated line
bundle L with L2 D 2g � 2 on S , and denote by k the gonality of a general smooth
curve in the linear system jLj. Suppose that �.g; 1; k/ � 0 to exclude the case
g D 2k � 3 (when �.g; 1; k/ D 1). If in addition the curves in jLj have Clifford
dimension one, Theorem 2.6 shows that

dim W 1
g�kC2.C / D �.g; 1; g � k C 2/ D g � 2k C 2;

property which was called the linear growth condition.
This property appears in connection with Green’s conjecture [1] for a much larger

class of curves:

Theorem 3.12. If C is any smooth curve of genus g � 6 and gonality 3 � k <

Œg=2� C 2 with dim W 1
g�kC2.C / D �.g; 1; g � k C 2/, then Kg�kC1;1.C; KC / D 0.

One effect of Theorems 3.12 and 3.1 is that an arbitrary curve that satisfies
the linear growth condition is automatically of Clifford dimension one and verifies
Green’s conjecture.
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Theorem 3.12 is a consequence of Theorem 3.10 extended over the boundary of
the moduli space. Starting from a k-gonal smooth curve ŒC � 2 Mg , by identifying
pairs of general points fxi ; yi g � C for i D 0; : : : ; g � 2k C 2 we produce a stable
irreducible curve

�

X WD C=.x0 � y0; : : : ; xg�2kC2 � yg�2kC2/
� 2 M2.g�kC1/C1;

and the Koszul cohomology of C and of X are related by the inclusion Kp;1.C; KC /

� Kp;1.X; !X/ for all p � 1, [31]. If C satisfies the linear growth condition then
X has maximal gonality14 gon.X/ D g � k C 3, i.e., X lies outside the closure
of the divisor M1

2.g�kC1/C1;g�kC2 consisting of curves with a pencil g1
g�kC2. The

class of the failure locus of Green’s conjecture on M2.g�kC1/C1 is a multiple of

the divisor M1

2.g�kC1/C1;g�kC2; hence Theorem 3.10 extends to irreducible stable
curves of genus 2.g � k C 1/ C 1 of maximal gonality .g � k C 3/. In particular,
Kg�kC1;1.X; !X / D 0, implying Kg�kC1;1.C; KC / D 0.

Coming back to the original situation, we conclude from Theorems 3.12 and 2.6
and Corollary 3.3 that Green’s conjecture holds for a K3 section C having Clifford
dimension one. If Cliff.C / D gon.C / � 3, either C is a smooth plane curve or else
there exist smooth curves D; 	 � S , with 	2 D �2; 	 � D D 1 and D2 � 2,
such that C 	 2D C 	 and Cliff.C / D Cliff.OC .D// [5, 17]. The linear growth
condition is no longer satisfied, and this case is treated differently, by degeneration
to a reduced curve with two irreducible components [3].

The outcome of this analysis of the Brill–Noether loci is the following [3,31,32]:

Theorem 3.13. Green’s conjecture is valid for any smooth curve on a K3 surface.

Applying Theorem 3.13, Theorem 3.2, and the duality, we obtain a full descrip-
tion of the situations when Koszul cohomology of a K3 surface is zero [3]:

Theorem 3.14. Let S be a K3 surface and L a globally generated line bundle with
L2 D 2g � 2 � 2. The Koszul cohomology group Kp;q.S; L/ is nonzero if and only
if one of the following cases occurs:

(1) q D 0 and p D 0, or
(2) q D 1, 1 � p � g � c � 2, or
(3) q D 2 and c � p � g � 1, or
(4) q D 3 and p D g � 2.

The moral is that the shape of the Betti table, i.e., the distribution of zeros in
the table, of a polarized K3 surface is completely determined by the geometry of
hyperplane sections; this is one of the many situations where algebra and geometry
are intricately related.

14The gonality for a singular stable curve is defined in terms of admissible covers [14].
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4 Counterexamples to Mercat’s Conjecture in Rank Two

Starting from Mukai’s works, experts tried to generalize the classical Brill–Noether
theory to higher-rank vector bundles on curves. Within these extended theories,15

we note the attempt to find a proper generalization of the Clifford index. H. Lange
and P. Newstead proposed the following definition. Let E be a semistable vector
bundle of rank n of degree d on a smooth curve C . Put

.E/ WD �.E/ � 2
h0.E/

n
C 2:

Definition 4.15 (Lange–Newstead). The Clifford index of rank n of C is

Cliffn.C / WD minf.E/ W �.E/ � g � 1; h0.E/ � 2ng:

From the definition, it is clear that Cliff1.C / D Cliff.C / and Cliffn.C / �
Cliff.C / for all n.16

Mercat conjectured [22] that Cliffn.C / D Cliff.C /. In rank two, the conjecture
is known to hold in a number of cases: for general curves of small gonality,
i.e., corresponding to a general point in a gonality stratum M1

g;k for small k

(Lange-Newstead), for plane curves (Lange–Newstead), for general curves of genus
� 16 (Farkas–Ortega), etc. However, even in rank two, the conjecture is false.
It is remarkable that counterexamples are found for curves of maximal Clifford
index [10]:

Theorem 4.16 (Farkas–Ortega). Fix p � 1, a � 2p C 3. Then there exists a
smooth curve of genus 2a C 1 of maximal Clifford index lying on a smooth K3

surface S with Pic.S/ D Z �C ˚Z �H , H 2 D 2p C2, C 2 D 2g �2, C �H D 2a C
2p C 1, and there exists a stable rank-two vector bundle E with det.E/ D OS .H/

with h0.E/ D pC3, .E/ D a� 1
2

< a D Cliff.A/, and hence Mercat’s conjecture
in rank two fails for C .

The proof uses restriction of Lazarsfeld–Mukai bundles. However, it is inter-
esting that the bundles are not restricted to the same curves to which they are
associated. More precisely, the genus of H is 2p C 2 and H has maximal gonality
p C 2. Consider A a minimal pencil on H , and take E D EH;A the associated
Lazarsfeld–Mukai bundle. The restriction of E to C is stable and verifies all the
required properties.

A particularly interesting case is g D 11. In this case, as shown by Mukai [25],
a general curve C lies on a unique K3 surface S such that C generates Pic.S/.

15Higher-rank Brill–Noether theory is a major, rapidly growing research field, and it deserves a
separate dedicated survey.
16For any line bundle A, we have .A˚n/ D Cliff.A/.
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It is remarkable that the failure locus of Mercat’s conjecture in rank two coincides
with the Noether-Lefschetz divisor

NL4
11;13 WD

�

ŒC � 2 M11 W C lies on a K3 surface S; Pic.S/ 
 Z � C ˚ Z � H;

H 2 Pic.S/ is nef; H 2 D 6; C � H D 13; C 2 D 20

�

inside the moduli space M11. We refer to [10] for details.
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Some Applications of Commutative Algebra
to String Theory

Paul S. Aspinwall

1 Introduction

String theory was first introduced as a model for strong nuclear interactions, then
reinterpreted as a model for quantum gravity, and then all fundamental physics.
However, one might argue that its most successful applications to date have
been in the realm of pure mathematics and geometry. The superstring is most
easily understood in ten dimensions. In order to make contact with the observed
physical world of four spacetime dimensions, one compactifies on a six-dimensional
manifold. This is most easily analyzed in the case where this manifold is a Calabi–
Yau threefold. Fortuitously, such varieties happen to be of great mathematical
interest.

Historically, geometry, as used by physicists, has generally been differential
geometry because of its role in general relativity. More recently, especially because
of the use of supersymmetry, string theory has come to rely more heavily on
algebraic geometry. Thus tools in commutative algebra have become more useful
in recent years. A simplified model of great interest in string theory, known as
topological field theory, is where the connections to commutative algebra become
most manifest.

The purpose of this chapter is to review some particular applications of commu-
tative algebra to string theory. Developments in recent years in computer packages
for commutative algebra, such as Macaulay 2 [1], mean that it is of great practical
value if a problem can be translated into a question in commutative algebra. We will
discuss three examples where this happens.

The first two applications are closely related and involve the structure of
topological field theory itself. Certain products in the theory can be interpreted as
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Ext computations for sheaves on the Calabi–Yau or in terms of matrix factorizations
that are very amenable to computer algebra. This may also be viewed intrinsically as
an efficient way to compute certain Ext groups. As a by-product, we are also able to
see some elements of Hochschild cohomology that are relevant for open-to-closed
string transitions.

The final application is related to monodromy. This can be viewed as monodromy
of integral 3-cycles in a Calabi–Yau threefold under loops in the moduli space
of complex structures or, via mirror symmetry, as automorphisms of the derived
category induced by varying the complexified Kähler form. This monodromy is
also related to solutions of the well-studied GKZ system of differential equations.
We show how this monodromy can be stated in terms of a ring which we compute
in a fairly nontrivial example.

2 Categorical Topological Field Theory

2.1 Closed String Theories

Before we look at the applications, we will review a contemporary mathematical
picture of string theory. As a string moves through space and time, it sweeps
out a surface known as the worldsheet. A central idea in string theory is that
one “pulls back” physics from spacetime to the worldsheet, thus reducing physics
problems to problems in two-dimensional field theory. Of particular interest are field
theories on the worldsheet which are invariant under two-dimensional conformal
transformations, i.e., “conformal field theories.” Some of the structure of conformal
field theories can be determined by much simpler “topological field theories.”
Fortunately, all the mess and non-rigor of quantum field theory can be avoided in
topological field theories, as they have a nice direct categorical description thanks to
Atiyah [2] based on some then-unpublished ideas by Segal. We will briefly review
this picture here, but we refer to [3], Chap. 2 in [4] and references therein for a more
complete treatment.

Let Cobc be a category whose objects are closed oriented 1-dimensional
manifolds, i.e., disjoint unions of circles. Given a pair of objects, M and N , a
morphism is a cobordism from M to N . Diffeomorphic cobordisms are considered
equivalent. Note that we preserve orientations in the sense that the boundary of a
cobordism is M

`
N , whereM is the orientation-reversedM .

Composing cobordisms gives an obvious category structure on Cobc , where the
identity morphism may be taken to be the cylinder M � Œ0; 1�. Cobc is a monoidal
category, i.e., it has a tensor product on objects and a unit object. In this case the
tensor product is disjoint union, and the unit object is empty.

Let Vect be the monoidal category of vector spaces over a field k. Here tensor
product is the usual tensor product of vector spaces and the unit object is the one-
dimensional space k.
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Definition 1. A “closed-string topological field theory” is a functor, respecting the
monoidal structure, from Cobc to Vect.

Such theories are specified by very little data. First we specify the vector space
associated to a single circle. This is called the “Hilbert space” of the theory. Then we
need to give the morphisms of vector spaces associated to a few basic morphisms.
Then the full structure of the theory can be derived by sewing these basic morphisms
together.

Let X be a Calabi–Yau threefold. That is, X is a quasi-projective complex
algebraic variety of dimension three with trivial canonical class. We assume the
covering space of X does not have an elliptic curve factor. Usually X will be
smooth, and thus we often refer to it as a manifold. One of the richest applications
of topological field theories is to such varieties. Given such a manifold,X , there are
two associated theories—the A-model and the B-model.

The central object of study in this chapter is the B-model, which is a good deal
easier than the A-model and which we define first. The B-model is completely
algebraic in nature, although we will assume for purposes of presentation that we
always work over C. The data is:

• The Hilbert space associated to a circle is

Hı D
3M

p;qD0
Hq.X;^pT /; (1)

where T is the tangent sheaf ofX . Obviously we have a bigraded structure .p; q/
here. The single grading given by p C q is instrinsic to the topological field
theory, as we discuss below. In the case that b1.X/ D 0, the topological field
theory structure factorizes into even and odd p C q. We can then consistently
restrict attention to the subspace where p D q.

• The left cap is mapped by the functor to a map k ! Hı. The image of 1 is
1 2 H0.X;ØX/.

• The right cap yields a map Hı ! k which is only nonzero on the degree .3; 3/
part of Hı. If ŒAijk � 2 H3.X;^3T /, then the resulting value is

R
X
�^ N�ijkAijk ,

where� is a choice of nonzero holomorphic 3-form and indices are lowered and
raised using the Kähler metric.

• gives a product Hı ˝ Hı ! Hı, which is the wedge product (extended
to exterior powers of the tangent sheaf) on Hı. Note that this wedge product
is commutative only up to a sign. This is a spin theory, the sense of Sect. 2.1.6
of [4].

This information is enough to completely determine the topological field theory. For
example, it follows that:

• gives a nondegenerate pairing Hı ˝ Hı ! k.
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• yields a map 1 7! P
i  i ˝  �

i , where f 1; 2; : : :g is a basis for Hı, and
the  �

i ’s are dual with respect to the above pairing.

• The torus, which is the composition , is the map k ! k given by
multiplying by the Euler characteristic �.X/.

• Because of the grading, a Riemann surface of genus ¤ 1 gives 0.

The A-model depends on the symplectic geometry of X . A complexified Kähler
form B C iJ 2 H2.X;C=Z/ is part of the basic data on which the model depends.
Here J is the usual Kähler form, while B 2 H2.X;R=Z/ represents the “B-field”
which is ubiquitous in string theory. The Hilbert space of closed strings is given by
the De Rham cohomology of X . The complexity of the A-model comes from the
fact that the product Hı ˝ Hı ! Hı depends on “instanton corrections” coming
from rational curves (see, e.g., [5]).

2.2 Open–Closed Strings

One obtains a much richer structure if one allows for open strings as well as closed
strings. That is, the worldsheet may have a boundary. Thus, we need a new category
Coboc whose objects are disjoint unions of oriented circles and line segments. The
morphisms are cobordisms consisting of manifolds possibly with boundaries.

The boundaries allow us to decorate the category further. Each segment of the
boundary of a cobordism and each end of a line segment object should be labeled
by a “boundary condition.” Such boundary conditions are called “D-branes.” We
consider the set of D-branes as part of the information in Coboc . A morphism in
Coboc may look something like

b

b
b

b

a a

a

c

where the letters represent D-branes.

Definition 2. An “open–closed-string topological field theory” specifies a partic-
ular set of D-branes and gives a functor, respecting the monoidal structure, from
Coboc to Vect.
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While this definition allows for an arbitrary set of D-branes, the A-model and
B-model endow this set with a particular structure. It is key to note that such a field
theory immediately gives the set of D-branes themselves a categorical structure,
with D-branes as objects. The set of morphisms Hom.a;b/ is given by the Hilbert
space associated with the line interval going from D-brane a to D-brane b. A
composition of morphisms is given by

c

b

b

c
b

c

a a

a

(2)

and the identity in Hom.a;a/ is the image of 1 in the map k ! Hom.a;a/ induced
by the cobordism from nothing to the line interval:

a

a
a

(3)

Furthermore, D-branes can “bind together” to form other D-branes which gives
this category a triangulated structure, but we will not use this structure in this
chapter. In the case of the B-model on a Calabi–Yau threefold X , it is widely
believed that the D-brane category is the bounded derived category of coherent
sheaves on X .1

Similarly, the D-brane category for the A-model is generally taken to be the
(derived) Fukaya category [9]. Objects in this category are (certain) Lagrangian 3-
cycles in X . Fortunately, for the purposes of this chapter, we need to know little
further about this category.

Definition 3. Two Calabi–Yau threefolds, X and Y , are said to be a “mirror pair”
if there is a natural isomorphism between the open–closed topological field theory
functors associated with the A-model on Y and the B-model on X . This implies
“homological mirror symmetry” which is an equivalence between the D-brane
categories.

1The basic idea of a proof was proposed in [6] and further studied in [4, 7, 8]. The current physics
proofs only say that D-brane category has the derived category as a full subcategory.
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2.3 Topological Conformal Field Theory

One may obtain a further richer theory which is “almost topological” by retaining
a little more information than just the diffeomorphism class of a cobordism. Fixing
two objects M and N , let M .M;N / be the moduli space of Riemann surfaces
giving a cobordism fromM toN . The category dgCoboc is defined to have the same
objects as Coboc , but now the morphisms will be geometric cochain complexes on
M .M;N /. This gives dgCoboc the structure of a dg-category. Let dgVect be the
dg-category of cochain complexes of vector spaces. A “topological conformal field
theory” (TCFT)2 is then a dg-functor from dgCoboc , together with a set of D-brane
labels, to dgVect. We refer to [11] for a full description.

Note that a Hilbert space is now a complex of vector spaces rather than a
single vector space. The original topological field theory Hilbert space can be
recovered from this simply by taking the cohomology groups of these complexes.
The homological grading naturally gives a grading to the Hilbert spaces involved.
These gradings were seen above in the A and B-models.

The dg-category structure now extends to the D-brane category too. The TCFT
associated a line interval from a to b with a chain complex of vector spaces. The ho-
mological grading on this complex can be formally extended to the
D-branes themselves by defining Hom.aŒi �;bŒj �/ in the category to be the complex
Hom.a;b/ shifted left j � i places. This agrees with the usual translation functor
on the derived category.

In the case of the B-model on a smooth Calabi–Yau threefold, this dg structure
arises naturally from Dolbeault cohomology on vector bundles. That is, if two
D-branes are locally free sheaves E and F , the complex of morphisms between
them is given by

0 ���.A 0;0 ˝ E _ ˝ F /
N@

���.A 0;1 ˝ E _ ˝ F /
N@

�� : : : ; (4)

where A 0;q is the sheaf of C1 .0; q/-forms and � is the global section functor. This
can then be extended in the usual way when the D-branes are complexes of locally
free sheaves.

2.4 Hochschild Cohomology

We saw above that a collection of D-brane labels and a topological field theory give
the data to construct a D-brane category. In the TCFT case the converse is also true.

2In physics language this is phrased as coupling a topological field theory to topological gravity.
The term TCFT actually means something quite different in the physics literature [10].
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That is, given a D-brane dg-category, one can completely reconstruct the TCFT.
This was proven by Costello [11], but we can give a quick idea of how this works
here. First define �� mapping a D-brane object a to a morphism ��.a/ 2 Hom.a;a/
as the image of � in the Hilbert space of closed strings via the diagram:

a

a
φ ∈ � ηφ(a)

(5)

Now note the equivalence of the morphisms:

b
b

b

b

a a
a

=
a

a
a

a

b b
b

(6)

Let id be the identity functor from the D-brane category to itself. Rewriting (6) in
algebraic form gives a commutative diagram that states precisely that �� is a natural
transformation from id to id. Given that the D-brane category is a dg-category,
the work of [12] shows that this can be viewed as Hochschild cohomology. To be
precise, for a D-brane category B, the Hochschild cohomology is written

HHi.B/ D Nat.idB; idBŒi �/: (7)

In this way one identifies the Hochschild cohomology of the D-brane category with
the Hilbert space of closed string states (complete with its homological grading)
[11].

Furthermore we can recover the “pants diagram” combining two closed strings.
This comes from the natural product rule on Hochschild cohomology coming from
combining natural transformations and can be put in diagrammatic form:

b
b

b

b

a a
a

=
b

b
b

b

a a
a

(8)
We close this section by noting that all the constructions above for the B-model

can be stated in purely algebraic terms. This is what allows us to attack the B-model
by using the tools of commutative algebra and what makes the B-model much more
amenable to study than the A-model.
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3 Toric Geometry and Phases

A versatile context in which to apply the tools of commutative algebra is to consider
compact Calabi–Yau threefolds which are complete intersections in toric varieties.
We also need to consider noncompact Calabi–Yau varieties (of dimension possibly
greater than 3) which are toric varieties themselves. We begin with the latter.

Let N be a lattice of rank d . Let P be a convex polytope in N ˝ R such that
the vertices of the convex hull lie in N . Furthermore, we demand that P lies in a
hyperplane of N ˝ R. Let A denote the set of points P \ N and let n denote the
number of elements of A .

The coordinates of the points of A form a d � n matrix defining a map A W
Z˚n ! N which we assume is surjective. Form an exact sequence

0 �� L �� Z˚n A
�� N �� 0; (9)

where L is the “lattice of relations” of rank r D n � d . Dual to this we have

0 �� M �� Z˚n ˆ
�� D �� 0; (10)

whereˆ is the r � n matrix of “charges” of the points in A .
Let

S D CŒx1; : : : ; xn�: (11)

The matrix ˆ gives an r-fold multigrading to this ring. In other words, we have a
.C�/r torus action:

xi 7! �
ˆ1i
1 �

ˆ2i
2 : : : �ˆrir xi ; (12)

where �j 2 C�. Let S0 be the .C�/r -invariant subalgebra of S . The algebra S then
decomposes into a sum of S0-modules labeled by their r-fold grading:

S D
M

˛2D
S˛; (13)

where D Š Z˚r from (10). As usual we denote a shift in grading by parentheses,
i.e., S.˛/ˇ D S˛Cˇ.

Consider a simplicial decomposition of the point set A which is regular in the
sense of [13]. This simplicial decomposition may or may not include points in the
interior of the convex hull of A . We refer to a choice of simplicial decomposition
as a “phase.”

To each phase we associate the “Cox ideal” defined in [14] as follows.

Definition 1. Let † D f	1; 	2; : : :g denote the set of simplices of maximum
dimension. If 	 is a simplex, we say i 2 	 if the i th element of A is a vertex
of 	 . Then
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B† D
0

@
Y

i 62	1
xi ;

Y

i 62	2
xi ; : : :

1

A : (14)

Clearly B† is a square-free monomial ideal in S .

Definition 2. Let V.B†/ denote the subvariety of Cn given by B†. Then

Z† D Cn � V.B†/
.C�/r

: (15)

For examples of this construction we refer to Sect. 5.1 of [15]. Cox [14] shows
that there is a correspondence between finitely generated graded S -modules and
coherent sheaves on a smooth Z† which follows the usual correspondence between
sheaves and projective varieties as in Chap. II.5 of [16]. If U is an S -module, we
denote eU as the corresponding sheaf. eU is zero as a sheaf if and only if U is killed
by some power of B†. This yields

Proposition 1. Assume Z† is a smooth toric variety. Then

Db.Z†/ D Db.gr�S/
T†

; (16)

where Db.gr�S/ is the bounded derived category of finitely generated multigraded
S -modules and T† is the full triangulated subcategory generated by modules killed
by a power of B†. This quotient of triangulated categories is the “Verdier quotient”
(see, e.g., [17]).

Actually we can extend this proposition to the case where Z† is not smooth. A
graded S -module corresponds to a sheaf on the quotient stack C

n=.C�/r . That is,
Db.gr�S/ is the derived category of coherent sheaves on this stack. Quotienting
by T† in (16) is equivalent to removing the pointset V.B†/. Thus we see a direct
correspondence between (15) and (16) and the above proposition remains true in
the singular case so long as we view sheaves in this quotient stack sense. Actually,
this is very natural from the physics perspective. One may construct the topological
B-model as a symplectic quotient in terms of the “gauged linear 	-model” [18].
D-branes can be described directly in this context [19]. It has also been argued
elsewhere [20] that stacks are the correct language for D-branes.

We now have the following statement from physics [5] which we assume, for
purposes of this chapter, to be true:

Physics Proposition 1. The B-model on X does not depend on the Kähler form
of X .

This has an immediate consequence. The Kähler form is associated to the
moment map of the symplectic quotient of the gauged linear 	-model, which, when
varied, can change the triangulation †. Thus, assuming the above proposition, we
have
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Proposition 2. Db.Z†/ does not depend on the chosen triangulation †, i.e., it is
independent of the phase.

This is quite easy to verify directly when r (the rank of torus action) is one, as
done in [19, 21]. The combinatorics become more intricate for r > 1.

Let I† be the Alexander dual of the monomial ideal B†. I† is then the Stanley–
Reisner ideal of the triangulation† [22]. Suppose

I† D hm1;m2; : : :i; (17)

for monomialsm1;m2; : : :. Then we have a primary decomposition

B† D m_
1 \m_

2 \ : : : ; (18)

where, if mj D x˛xˇx
 : : :, then m_
j D hx˛; xˇ; x
 ; : : :i.

It follows that .S=m_
j /.˛/ is annihilated by B†, where .˛/ is any shift in

multidegree. In fact these modules form the building blocks of T† as proven in [23]:

Proposition 3. T† is the smallest triangulated full subcategory of Db.gr�S/
containing the objects .S=m_

j /.˛/. That is, T† is generated by iteratively applying
mapping cones between objects of the form .S=m_

j /.˛/Œn� for any ˛ and n.

3.1 Tilting Collections

The derived category of an arbitrary algebraic variety can be difficult to describe in
concrete terms. However, in some cases, the description can be simplified due to the
existence of tilting objects.

A tilting sheaf T on Z† satisfies:

1. ExtiZ†.T ;T / D 0 for all i < 0.
2. A D HomZ†.T ;T / has finite global dimension.3

3. The direct summands of T generate Db.Z†/.

In this case the functors

R HomZ†.T ;�/ W Db.Z†/ ! Db.mod-A/

� L˝A T W Db.mod-A/ ! Db.Z†/

(19)

are mutual inverses, where mod-A is the category of finitely generated right
A-modules.

3In the context of this chapter, this condition is automatically satisfied.
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In practice one can frequently, if not always, construct such a tilting sheaf as a
sum of sheaves of the form QS.˛/ as follows. For each m_

j in (18), we can consider
the free resolution of the S -module S=m_

j :

: : : ��L
i S.qi2/ ��L

i S.qi1/ ��S �� S
m_

j

��0: (20)

Sheafifying, this gives an exact sequence

: : : ��L
i

QS.qi2/ ��L
i

QS.qi1/ �� QS ��0; (21)

relating QS to other objects in Db.Z†/ composed of QS.˛/’s for various multidegrees
˛. By considering such relations for all m_

j ’s, one can try to find a minimal

generating set f QS.˛1/; QS.˛2/, : : : ; QS.˛k/g from which all others may be built. This
set thus generates Db.Z†/. Then, if all higher Ext’s between these sheaves vanish,

T D QS.˛1/˚ QS.˛2/˚ : : :˚ QS.˛k/ (22)

is a tilting object. Obviously one may shift all the ˛i ’s by some common multide-
gree, and T will remain a tilting sheaf.

We will refer to f QS.˛1/; QS.˛2/; : : : ; QS.˛k/g as a tilting collection. It is useful to
impose one further condition:

Definition 6. A †-tilting collection of sheaves f QS.˛1/; QS.˛2/; : : : ; QS.˛k/g is a
collection of sheaves forming a tilting object (22) and such that (using (16))

Hom Db .gr�S/
T†

. QS.˛i /; QS.˛j // Š HomDb.gr�S/.S.˛i /; S.˛j //; (23)

for all i; j .

If T given by (22) corresponds to a †-tilting object then let Db.gr�S/T be the
full triangulated subcategory of Db.gr�S/ generated by fS.˛1/; S.˛2/; : : : ; S.˛k/g.
It immediately follows that

Proposition 4. There is an equivalence of categories

Db.gr�S/
T†

Š Db.gr�S/T : (24)

This is easy to see given that there is an equivalence between morphisms on both
sides for objects in the tilting collection, and furthermore all objects may be built
from the tilting objects.

The conditions on a †-tilting collection can be expressed conveniently in terms
of local cohomology. Let Hi

B.S/ be the local cohomology groups of the monomial
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ideal B . These groups carry the same multigrading structure as S , and we denote
the graded partsHi

B.S/˛ accordingly. We then have the following copied from [24]:

Proposition 5. For i > 0 there are isomorphisms

Hi.Z†; QS.˛// Š HiC1
B .S/˛ (25)

and an exact sequence

0 ��S˛
��H0.Z†; QS.˛// ��H1

B.S/˛
��0: (26)

This gives

Proposition 6. If f QS.˛1/; QS.˛2/; : : : ; QS.˛k/g forms a †-tilting collection then

Hi
B.S/˛i�˛j D 0 (27)

for all i � 0 and all i; j .

In the case that r D 1 and we have a single grading, the process of finding a
tilting sheaf is very straightforward [19, 21, 25]. Here, one obtains simply a range

T D QS.a/˚ QS.a C 1/˚ : : :˚ QS.aC k � 1/ (28)

for any choice of a.
†-tilting collections become very useful if they are simultaneously†1-tilting and

†2-tilting for two phases †1 and †2. Then one can use it to explicitly map objects
in the D-brane category between different phases. That is, we have an explicit
equivalence between two phases given by Proposition 4:

Db.Z†1/
��Db.gr�S/T ��Db.Z†2/: (29)

In the case of r D 1, this idea has been explored in [19, 21, 25]. The combinatorics
of finding simultaneous tilting objects for many phases when r D 2 was discussed
in [26].

3.2 Complete Intersections

Because of Serre duality it is impossible to find a tilting collection on a compact
Calabi–Yau variety. That said, we may still make use of the above technology by
considering embedding the variety into a toric variety. Divide the homogeneous
coordinates of S into two sets by relabeling x1; : : : ; xn as p1; : : : ; ps , z1; : : : ; zn�s .
Let S 0 D CŒz1; : : : ; zn�s�. Assume there is a .C�/r -invariant polynomial, called a
superpotential, W 2 S that can be written

W D p1f1.z1; z2; : : :/C p2f2.z1; z2; : : :/C : : :C psfs.z1; z2; : : :/; (30)

where f1; f2; : : : forms a regular sequence in S 0.
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Let X† � Z† be the critical point set of W . If the functions fj are sufficiently
generic, the matrix of derivatives of these functions will have maximum rank. This
maximal rank condition will imply that, for suitable †, X† is a smooth complete
intersection inZ†. We are interested in the case whereX† is a compact Calabi–Yau
threefold.

Now assume that the triangulation † is such that all the points corresponding to
the pj ’s are vertices of every simplex. That is, B† \ hpj i D 0 for j D 1; : : : ; s,
which implies B† may be viewed as an ideal of S 0.

Define the ring

A D S 0

hf1; f2; : : : ; fsi : (31)

The category of coherent sheaves on X† is then the Serre categorical quotient

gr�A
M†

; (32)

whereM† is the abelian subcategory of all gradedA-modules killed by some power
of B†. Thus, in analogy to (16), we have

Db.X†/ D Db.gr�A/
T†

: (33)

Now let us introduce the notion of the category of matrix factorizations. S has
an r-fold grading from the toric data. In addition, we add one further grading which
we call the R-grading. This grading lives in 2Z, i.e., it is always an even number.
For the superpotential (30) we may choose the variables pj to have R-degree 2 and
the zk’s to have degree 0.

Define the category DGrS.W/ of matrix factorizations of W as follows. An
object is a pair

NP D
�
P1

u1
��P0

u0

��
�
; (34)

where P0 and P1 are two finite rank graded free S -modules. The two maps satisfy
the matrix factorization condition

u0u1 D u1u0 D W :id; (35)

where both u0 and u1 have degree 0 with respect to the toric gradings (i.e., they
preserve the toric grading). u0 is a map of degree 2 with respect to the R-grading
while u1 has degree 0. Morphisms are defined in the obvious way up to homotopy.
We refer to [23, 27] for more details. The category DGrS.W/ is a triangulated
category with a shift functor

NP Œ1� D
�
P0

u0
��P1f2g

u1

��
�
; (36)
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where fg denotes a shift in the R-grading. Thus

NP Œ2� D NP f2g; (37)

and the R-symmetry grading is identified with the homological grading (and
extended from 2Z-valued to Z-valued). That is, there is no difference between Œm�
and fmg in this category, although we will sometimes use both notations for clarity.

We now have

Proposition 7. There is an equivalence of triangulated categories:

DGrS.W/ Š Db.gr�A/: (38)

This result follows very explicitly from the way that Macaulay 2 performs the
computation of Ext groups in the category of graded A-modules as explained in
detail in [28]. This algorithm was based on observations in [29, 30] as follows. An
A-module typically has an infinite free resolution. In the case that s D 1 (i.e., a
hypersurface), the resolution is 2-periodic. This resolution can then be reinterpreted
as a system of maps between S 0-modules, where the product of two maps forms
a matrix factorization as above. To extend this to the case s > 1, and in order to
correctly keep track of Ext data, one introduces new variables p1; : : : ; ps extending
the ring S 0 to S . We refer to [23] for more details.

It might help to view DGrS.W/ as the D-brane category on the stack X , where
X is the critical point set of W on the quotient Cn=.C�/r . Anyway, we have an
equivalence of categories

Db.X†/ Š DGrS.W/

T†
: (39)

This gives us an analogy between D-branes on X† and D-branes on Z†. In the
case of Z† we began with D-branes on the quotient stack Cn=.C�/r in the form
Db.gr�S/ and then removed the pointset V.B†/ by quotienting the category by T†.
Now in the case of X† the original stack D-brane category is DGrS.W/, and we
again remove the pointset V.B†/ by quotienting the category by T†.

The fact that the D-brane category is of this form has a direct physics derivation
using the gauged linear 	-model in [19]. That is,

Physics Proposition 2. The D-brane category for the B-model on the critical point
set of the superpotential W is

DGrS.W/

T†
: (40)

Most importantly, combining this with Physics Proposition 1 gives us the following
notion:
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Physics Proposition 3. The category

DGrS.W/

T†
(41)

does not depend on the choice of triangulation†.

We refer to [21] and the recent work [31] for more rigorous statements using GIT
language.

Note that the quotient in the above statement needs some interpretation. Let M
be an S -module that is annihilated by W . Then M is an S=hWi-module. A free
resolution of M as an S=hWi-module results in a matrix factorization and thus
maps M into DGrS.W/. One should therefore consider T† in (40) and (41) to be
generated by S -modules annihilated both by a power of B† and by W . Note that in
very simple examples, W 2 B† anyway, but this need not be the case generally.

As an example let us consider the following. Let the toric geometry be given by
a homogeneous coordinate ring S D CŒp; t; x0; x1; x2; x3; x4� with degrees

p t x0 x1 x2 x3 x4

Q1 �4 1 1 1 1 0 0

Q2 0 �2 0 0 0 1 1

R 2 0 0 0 0 0 0

(42)

and superpotential

W D p.x40 C x41 C x42 C t4x83 C t4x84/: (43)

There is a triangulation of the pointset that has p as a vertex of every simplex and t
is ignored completely. This gives a monomial ideal I† D hx0x1x2x3x4; ti and

B† D hx0; x1; x2; x3; x4ihti: (44)

Z† then corresponds to the total space of the canonical line bundle over the
weighted projective space P4f22211g. One calls this the “orbifold” phase.

Now S=hti is annihilated by B†, but it is not annihilated by W . Thus S=hti is
not naturally associated with any object in DGrS.W/. However, consider S=hp; ti,
which is annihilated by B† and W . We may construct the corresponding matrix
factorization as follows. First note that S=hpi is annihilated by W and so gives a
matrix factorization mp . But now it is easy to show that S=hp; ti is given by the
mapping cone of

mp.�1; 2/
t

��mp ; (45)
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which can be shown to be

S.4; 0/Œ�2�
˚

S.�1; 2/

�p t
0 f

�

��
S

˚
S.3; 2/

;
�
f �t
0 p

�
�� (46)

for f D x40 C x41 C x42 C t4x83 C t4x84 . Indeed, any mapping cone corresponding to
multiplication by t will give something in T†.

It would be nice to assert that we can perform this quotient by using a tilting
collection as in Sect. 3.1. Let T be a tilting object for a triangulation †. Then
the quotient is performed by considering matrix factorizations involving only
summands of our tilting object. Indeed, if DGrS.W/T is the category of matrix
factorizations involving only summands of T then we expect an equivalence

Db.X†/ ��DGrS.W/T ; (47)

in analogy with (29). This is expected from linear 	-model arguments in [19] and
proven explicitly for r D 1 in [21]. In this chapter we will only use this assertion in
the r D 1 case.

3.3 Landau–Ginzburg Theories

A particularly simple phase in which to work is the so-called Landau–Ginzburg
theory. This is where the effective target space is a fat point. The simplest way to
obtain such a theory is when the convex hull of the pointset A is a simplex. In this
case there is a trivial triangulation—a single simplex consisting of the convex hull
itself. In some sense this is the “opposite” phase of a smooth Calabi–Yau manifold,
which corresponds to a maximal triangulation. In terms of the Kähler form, the
smooth Calabi–Yau is a “large radius limit” while the Landau–Ginzburg theory is a
“small radius limit.”

Suppose a point corresponding to the homogeneous coordinate xj is not included
in the triangulation†. It follows that xj is an element of the Stanley–Reisner ideal
I† and B† � hxj i. This means that the mapping cone of a map between any two
objects in DGrS.W/, given by multiplication by xj , lies in T†. Performing the
triangulated quotient by T† means that xj becomes a unit. We will thus simply
impose xj D 1. This will reduce the effective multigrading to that under which xj
is neutral.

Thus, for the Landau–Ginzburg theory, we set all the homogeneous coordinates
equal to one, except for the ones corresponding to vertices of the simplex. The
.C�/r -action of the original toric action is reduced to a finite group G as a result of
setting all these coordinates equal to one. This means that we are really considering a
Landau–Ginzburg orbifold. The D-brane category on this Landau–Ginzburg theory
is therefore of G-equivariant matrix factorizations of W [32, 33].
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To illustrate this, we choose the canonical example of the quintic threefold
X 2 P4, where S D CŒp; z0; z1; z2; z3; z4� with a single grading of degrees
.�5; 1; 1; 1; 1; 1/, and

W D p.z50 C z51 C z52 C z53 C z54/ D pf .zi /: (48)

This has two phases, the Calabi–Yau phase†1 with B†1 D hz0; z1; z2; z3; z4i and the
Landau–Ginzburg phase †0 with B†0 D hpi.

There are two matrix factorizations of particular note. First consider the S -
module

w D S

hz0; z1; z2; z3; z4i : (49)

Since w is annihilated by W , it may also be viewed as an R-module, where R D
S=hWi. We now compute a minimal free R-module resolution of w:

��

R.�5/
˚

R.�3/f�2g˚10

˚
R.�1/f�4g˚5

��

R.�4/˚5

˚
R.�2/f�2g˚10

˚
Rf�4g

��
R.�3/˚10

˚
R.�1/f�2g˚5

��

R.�2/˚10

˚
Rf�2g

0

B
B
B
B
B
B
@

�x1 0 px40

x0 �x2 px41

0 x1 ��� px42

0 0 px43

0 0 px44

1

C
C
C
C
C
C
A

�� R.�1/˚5
. x0 x1 ::: x4 /

�� R �� w:

(50)

To write this infinite resolution as a matrix factorization, we replace R with S and
“roll it up” following [23,28]. w then corresponds to a 16� 16matrix factorization:

S.�1/˚5 S

˚ ˚
S.�3/Œ2�˚10 ��

S.�2/Œ2�˚10��

˚ ˚
S.�5/Œ4� S.�4/Œ4�˚5:

(51)

Hoping context makes usage clear, we will use w to denote this matrix factorization.
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The other object of note is given by s D S=hf i. This corresponds to the obvious
matrix factorization (also denoted by s):

S.�5/
f

��
S:

p

�� (52)

Note that S=hpi then corresponds to a similar matrix factorization given by
s.5/Œ�1�.

In the Calabi–Yau phase T†1 is generated by w and in the Landau–Ginzburg
phase T†0 is generated by s. A tilting object can be chosen as

S.�4/˚ S.�3/˚ S.�2/˚ S.�1/˚ S: (53)

We refer to this range, �4 � m � 0, as the tilting “window” following [19]. We
may take any matrix factorization and convert it to a matrix factorization involving
only summands S.�4/; : : : ; S of this tilting object. In the Landau–Ginzburg phase
we iteratively take mapping cones with shifts of s to eliminate S.m/ for m � �5
or m > 0. As stated above, this is equivalent to setting p D 1. This gives an
identification

S.m/Œ2� Š S.mC 5/ (54)

for anym 2 Z. Our double grading thus collapses to a single grading. To this effect,
we denote S.Q/ŒR� by Sh5R C 2Qi. Thus, the D-brane category is simply the
category of matrix factorizations of f with this new grading. This is a feature of all
Landau–Ginzburg phases—we have a category of matrix factorizations with some
single grading.

In the Calabi–Yau phase we iteratively take mapping cones with shifts of w to
eliminate S.m/ for m � �5 or m > 0. In terms of matrix factorizations, this phase
is not as simple as the Landau–Ginzburg phase.

As an example consider the structure sheaf ØX as an object in Db.X/. This
corresponds to the A-module A itself. The equivalence in Proposition 7 tells us that
we can find an associated matrix factorization by viewing it as the S=hWi-module
given by coker.f /. This is none other than s given in (52). We may get this into the
tilting window by considering the following triangle defining u

wŒ�4�
f

�� s

����
��
��
��

u

Œ1�����

�����
(55)
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where f contains the identity map S.�5/ ! S.�5/ to cancel these summands
in u. Thus u involves only summands from the tilting collection. Obviously u also
represents ØX since it differs from s by wŒ�4�, which is trivial in the Calabi–Yau
phase.

So u represents the image of the D-brane ØX in the Landau–Ginzburg phase. But
in the Landau–Ginzburg phase the matrix factorization s is trivial, so we may use
the triangle (55) once again to identify u with wŒ�3�. That is, the structure sheaf ØX

corresponds in the Landau–Ginzburg phase to the matrix factorization

Sh�2i˚5 S

˚ ˚
Sh4i˚10 ��

Sh6i˚10
��

˚ ˚
Sh10i Sh12i˚5;

(56)

with maps coming from (50) with p D 1.
As another example, let us consider a particular line on the quintic (48). Let this

rational curve be defined by the ideal

I D hx0 C x1; x2 C x3; x4i: (57)

Matrix factorizations associated to this line were first studied in [34]. The sheaf
supported on this curve is associated to the A-module M D A=I . This gives a
matrix factorization

S.�1/˚3 S

˚ �� ˚��

S.�3/Œ2� S.�2/Œ2�˚3

(58)

with Macaulay 2 yielding maps

2

4

x0Cx1 x2Cx3 x4 0

p.x32x3�px42�x22x23Cx2x33�x43 / p.x40�x30x1Cx20x21�x0x31Cx41/ 0 x4

�px44 0 p.x40�x30x1Cx20x21�x0x31Cx41 / �x2�x3
0 �px44 p.x42�x32x3Cx22x23�x2x33Cx43 / x0Cx1

3

5

(59)
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and

2

4

p.x40�x30x1Cx20x21�x0x31Cx41/ �x2�x3 �x4 0

p.x42�x32x3Cx22x23�x2x33Cx43/ x0Cx1 0 �x4
px44 0 x0Cx1 x2Cx3
0 px44 p.x32x3�px42�x22x23Cx2x33�x43 / p.x40�x30x1Cx20x21�x0x31Cx41 /

3

5

(60)

Note that (58) contains only summands in the tilting collection, and so no further
action is required to get it in the right form appropriate for the Landau–Ginzburg
phase. It was shown in [35] that this is always the case (for a suitable choice of
tilting collection) for projectively normal rational curves.

Now let us compute some dimensions of Ext groups between this twisted
cubic and its degree shifts by computing in the Landau–Ginzburg phase. This is
conveniently done using Macaulay 2.

i1 : kk = ZZ/31469
i2 : B = kk[x_0..x_4]
i3 : W = x_0ˆ5+x_1ˆ5+x_2ˆ5+x_3ˆ5+x_4ˆ5
i4 : A = B/(W)
i5 : M = coker matrix {{x_0+x_1,x_2+x_3,x_4}}

Now we use the internal Macaulay routine described in [28] to compute the
S -module Ext�A.M;M/:4

i6 : ext = Ext(M,M)

o7 = cokernel {0, 0} | x_4 x_2+x_3 x_0+x_1 0 0 0 X_1x_3ˆ4
{-1, -1} | 0 0 0 x_4 x_2+x_3 x_0+x_1 0 ...
{-1, 3} | 0 0 0 0 0 0 0
{-2, 2} | 0 0 0 0 0 0 0

o7 : kk[X , x , x , x , x , x ]-module, quotient of (kk[X , x , x , x , x ,
4

x ])
1 0 1 2 3 4 1 0 1 2 3 4

We have suppressed part of the output. The first column of the output represents
the bi-degrees of the generators of this module. The first degree is the homological
degree discussed in the previous section, and the second degree is the original degree
associated to our graded ring B .

Next we need to pass to the quotient category Dgr
Sg.A/ by setting X1 D �1. This

collapses to a single grading as described above. The following code sets pr equal
to the map whose cokernel defines Ext�A.M;M/ above, and we define our rings S
and a singly graded B2.

i7 : pr = presentation ext
i8 : S = ring target pr
i9 : B2 = kk[x_0..x_4,Degrees=>{5:2}]

4The Macaulay 2 variable X1 is our �p. Note that Macaulay 2 views complexes in terms of
homology rather than cohomology and so X1 has R charge �2.
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i10: toB = map(B2, S, {-1,x_0,x_1,x_2,x_3,x_4},
DegreeMap => ( i -> {-5*i#0+2*i#1}))

The last line above is the heart of our algorithm. It defines a ring map which sets
X1 D �1 and defines how we map degrees. It is now simple to compute the Ext’s
in the quotient category Dgr

Sg.A/ by constructing the tensor product:

i11 : extq = prune coker(toB ** pr)

o11 = cokernel {0} | x_4 x_2+x_3 x_0+x_1 0 0 0
x_3ˆ4 x_1ˆ4 0 0 |

{3} | 0 0 0 x_4 x_2+x_3 x_0+x_1 0
0 x_3ˆ4 x_1ˆ4 |

2
o11 : B2-module, quotient of B2

Finally we may compute the dimensions of spaces of morphisms in the D-brane
category by computing the dimensions of the above module at specific degrees.
This, of course, is the Hilbert function:

i12 : apply(20, i -> hilbertFunction(i, extq))

o12 = {1, 0, 2, 1, 3, 2, 4, 3, 3, 4, 2, 3, 1, 2, 0, 1, 0, 0, 0,
0}

o12 : List

The above list represents the dimensions of HomDgr
Sg.A/

.M;M hii// for

Extk.M;M.r// D HomDgr
Sg.A/

.M;M h5k C 2ri/: (61)

Note that Serre duality implies HomDgr
Sg.A/

.M;M hii// Š HomDgr
Sg.A/

.M;M

h15 � ii// which is consistent with the above output. For open strings beginning
and ending on the same untwisted 2-braneM , we immediately see

Ext0.M;M/ D C; Ext1.M;M/ D C
2

Ext2.M;M/ D C
2; Ext3.M;M/ D C: (62)

This shows that our twisted cubic curve has normal bundle Ø.�3/˚ Ø.1/.
We could also compute open string Hilbert spaces between M and twists of M .

For example, Ext1.M;M.1// D C3.

3.4 Hochschild Cohomology

The above computation in Macaulay also reveals the closed to open string map
��.a/ from (5) in the case that a is the D-brane given by the line on the quintic
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in question. The closed string Hilbert space of Landau–Ginzburg theories has long
been understood [36]. For the quintic it is given by the quotient ring

Hc D CŒz0; z1; z2; z3; z4�
D
@f

@z0
; : : : ;

@f

@z4

E : (63)

This was rederived in terms of Hochschild cohomology in [37, 38]. In our case
of the quintic, we are looking at a Z5-orbifold of the Landau–Ginzburg theory. This
means that we should restrict attention to the subring of Hc invariant under Z5. In
addition, when orbifolding, one needs to worry about additional contributions to the
Hilbert space coming from “twisted sectors.” This does not occur in the B-model
for the quintic.

The Hilbert space of closed strings in the quintic is therefore generated by
monomials in CŒz0; z1; z2; z3; z4� of degree 5d , for some integer d , where each
variable appears with degree � 3. As above, with the collapsing to a single degree,
this monomial corresponds to an element of Hochschild cohomology of degree 2d .

The closed to open string map ��.a/ therefore maps a Z5-invariant polynomial
into a pair of matrices representing an endomorphism of the matrix factorization
corresponding to a. These endomorphisms must commute with all other matrices
representing elements of the open string Hilbert space according to (6).

But output o11 above tells us exactly the structure of Hom.a;aŒi �/ for any i .
The two rows tell us we have two generators. The first one is obviously the identity
element in Hom.a;a/, and thus we denote it by 1.

If � is a degree 5d monomial then ��.a/ is an element of HomDgr
Sg.A/

.M;M

h10d i//. If d D 0, we have the trivial case corresponding to the identity. If d D 1,
we have two elements x21x

3
31 and x31x

2
31. Clearly then

�1.a/ D 1

�x21x
3
3
.a/ D x21x

3
31

�x31x
2
3
.a/ D x31x

2
31: (64)

For d > 1 the map is zero by degree considerations. The content of o11 thus fully
determines ��.a/. Methods of commutative algebra can thus be utilized to compute
the closed to open string map for the full untwisted sector for any model with a
Landau–Ginzburg orbifold phase.

4 Monodromy

The B-model data is dependent on the complex structure of X . Mirror to this
statement is the fact that the A-model data depends on a complexified Kähler
form B C iJ 2 H2.Y;C/. This statement suggests an interesting question about
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monodromy. Suppose we consider a Lagrangian 3-cycle on Y . This defines a class
inH3.Y;Z/. Now go around a loop in the moduli space of complex structures of Y .
This can have a nontrivial monodromy action on H3.Y;Z/, and thus it must act on
the set of A-brane objects. We can think of H3.Y;Z/ as the Grothendieck group for
the A-brane category. The corresponding Grothendieck group K.X/ for B-branes
on a Calabi–Yau threefold5 is

K.X/ D H0.X;Z/˚H2.X;Z/˚H4.X;Z/˚H6.X;Z/: (65)

For mirror symmetry to work, there must be some action of monodromy in the
moduli space of complexified Kähler forms on the derived category and thusK.X/.

Part of this monodromy can be explained nicely in terms of the B-field. We
state this very briefly here and refer to [8] for a more complete description. The
B-field describes a 2-form flat gerbe connection on X for worldsheets with no
boundary. When boundaries are added, the gerbe connection restricts to a line
bundle connection on the boundary in some sense. This is exactly part of the bundle
data on D-branes. This intimate relationship between the B-field and the D-brane
bundle implies that a transformation B ! B C e, for some e 2 H2.X;Z/, must be
equivalent to a change in the bundle curvature F ! F C e.

Thus, monodromy associated to B C iJ ! .B C e/C iJ maps any sheaf F to
the twisted sheaf F .De/ whereDe is the divisor class dual to e. Such a twist byDe

is an obvious automorphism of the derived category of X .
This monodromy preserves the decomposition (65). What about the other

monodromies? One may add further data, called a “stability condition,” to the
topological field theory. This is easier to explain in terms of the A-model. An
object in the Fukaya category is a Lagrangian 3-manifold in Y (with a line bundle
with a flat connection over it). This object is “stable” if it can be represented by a
special Lagrangian (see, e.g., [39]). As one moves in the moduli space of complex
structures, some objects in the Fukaya category will become unstable, and some
previously unstable objects may become stable. The monodromy action on the
Fukaya category will map the original stable set of objects to the new stable set
upon going around a loop in the moduli space. Accordingly, there must be some
similar story for the derived category where stability depends on the complexified
Kähler form [6, 40–42].

The monodromy B ! B C e can be viewed as monodromy around the
large radius limit. Consider the toric Calabi–Yau Z† with its r-fold multigraded
homogeneous coordinate ring S . Let .ei / denote a shift by one in the i th grading.
Now consider:

Definition 7. m†.ei / is the automorphism of the derived category Db.Z†/ induced
by the action S.q/ ! S.q C ei /.

5Let us assume the Calabi–Yau threefold is simply connected and the cohomology is torsion-free.
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That it is an automorphism follows from proposition 1, since it is obviously an
automorphism of Db.gr�S/, and it is an automorphism of T† by the definition
of T†. In the Calabi–Yau phase it is easy to show that this monodromy indeed
corresponds to B ! B C e. It is argued from a physics point of view in [19]
that this is the correct automorphism to associate to any phase.

4.1 K-Theory

We will restrict analysis of monodromy to the K-theory associated to D-branes. Let
the K-theory class of S.q/ be represented by

K.S.q// D s
q1
1 s

q2
2 : : : s

qr

r : (66)

Then the K-theory of Db.gr�S/ is obviously the additive group of Laurent polyno-
mials ZŒs1; s

�1
1 ; : : : ; sr ; s

�1
r �. The action of the automorphism S.q/ ! S.q C ei /

clearly corresponds to multiplication by si in this Laurent polynomial ring.
The K-theory of T† is invariant under such automorphisms and so must

correspond to an ideal. We can compute it as follows:

Proposition 8. Let B† D m_
1 \ m_

2 \ : : : and m_
j D hx˛; xˇ; x
 ; : : :i as in (18).

Define

fj D .1 � tq˛ /.1 � tqˇ /.1 � tq
 / : : : ; (67)

where q˛ is the multidegree of x˛ , etc. Then

K.T†/ D hf1; f2; : : :i: (68)

This result follows from Proposition 3. The fj ’s are the K-theory classes of m_
j

given by Koszul resolutions of m_
j .

It follows that the K-theory for D-branes in a phase given by † is

K.Z†/ D ZŒs1; s
�1
1 ; : : : ; sr ; s

�1
r �

K.T†/
: (69)

We will call this the “monodromy ring” for phase†. In a smooth Calabi–Yau phase
it corresponds to the toric Chow ring.

Let us consider the K-theory and associated monodromy ring in the compact
case. Let M be an S=hWi-module. It typically has an infinite resolution in terms
of free S=hWi-modules. Thus we associate to any object a power series which
expresses the associated element of K-theory. It is convenient to include an extra
variable to express the R-grading.

Let P denote the ring of formal power series

ZŒŒs1; s
�1
1 ; s2; s

�1
2 ; : : : ; sr ; s

�1
r ; 	; 	�1�� (70)
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and define a map on free S=hWi-modules

k.S=hWi.v/fmg/D s
v1
1 s

v3
2 : : : s

vr
r 	

�m: (71)

By writing free S=hWi-module resolutions this extends to a map

k W Db.gr-S=hWi/ ! P: (72)

Ultimately the resolution of any object is periodic with period 2, and the product
of two consecutive maps, lifted to an S -module map, is of homological degree (and
hence R-degree since the two are identified) 2. It follows that for any object a, we
have

k.a/ D f .s1; s2; : : : ; sr ; 	/.1C 	2 C 	4 C : : :/C g.s1; s2; : : : ; sr ; 	/

D f .s1; s2; : : : ; sr ; 	/

1 � 	2
C g.s1; s2; : : : ; sr ; 	/;

(73)

where f and g are finite polynomials. Clearly, it is the polynomial f that expresses
the K-theory information for DGrS.W/. Unfortunately this approach to K-theory is
not easy since the quotient by the K-theory of T† in (40) is awkward. Instead, we
will translate the monodromy statements aboutX† back to the noncompact caseZ†
as we describe in an example in Sect. 4.3.

4.2 The GKZ System

The monodromy of integral 3-cycle D-branes of the A-model around loops in the
moduli space of complex structures is encoded in the Picard–Fuchs differential
equations. These in turn can be described torically in terms of the GKZ system [43–
45]. Let us simplify the discussion a little by assuming that X† is a hypersurface
in the toric variety. Also we will shift our indexing so that i D 0; : : : ; n � 1;
j D 0; : : : ; d�1. The index i D 0will correspond to the unique point in A properly
in the interior of the convex hull of A , and j D 0 corresponds to a row of 1’s in
the matrix A imposing the hyperplane condition. We write the partial differential
equations in terms of variables a0; : : : ; an�1. Define the operators

Zj D
n�1X

iD0
˛j iai

@

@ai
� ˇj

�u D
Y

uj >0

�
@

@aj

�uj

�
Y

uj <0

�
@

@aj

��uj

;

(74)

where ˛j i are the entries in the matrix A and u is any vector with coordinates
.u0; u1; : : : ; un�1/ in the row space of the matrix ˆ. We also have
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ˇi D
(
.�1; 0; 0; : : :/ if i D 0

0 otherwise.
(75)

A period,$ , is then a solution of

Zj$ D �u$ D 0 (76)

for all j and u. The equations Zj$ D 0 can be used to replace the n variables
ai with r variables �i . This is nothing other than going from the homogeneous
coordinate ring CŒa1; : : : ; an� to a set of affine coordinates .�1; : : : ; �r / on the toric
variety associated to the secondary fan. A choice of cone † in the secondary fan
corresponds to a phase and a choice of coordinates .�1; : : : ; �r / [46].

The remaining differential equations �u$ D 0 written in these affine coordi-
nates exhibit monodromy around the origin. This, according to mirror symmetry, is
exactly the same as the monodromym† of Definition 7.

That this story works in the large radius Calabi–Yau phase has been understood
for some time. See, for example, [47]. An important point, which complicates the
analysis, is that the GKZ system does not give the full information on monodromy.
We will see that we need a systematic way of discarding “extra” solutions. The K-
theory picture of the monodromy ring above gives an interesting way of doing this,
which we now explore.

4.3 A Calabi–Yau and Landau–Ginzburg Example

Rather than exploring the full generalities of monodromy, it is easier to demon-
strate the general idea with an example. The quintic threefold and its associated
Landau–Ginzburg phase have been studied extensively, and the monodromy is well
understood (see, e.g., [8]). Here we discuss a slightly more complicated example
where the concept of the monodromy ring is more powerful.

Let the matrices A and ˆ be given by (written as AT jˆ):

Q1 Q2 Q3

p D x0 0 0 0 0 1 �5 0 0 0

x1 1 0 0 0 1 1 1 0 0

x2 0 1 0 0 1 1 0 0 1

x3 0 0 1 0 1 1 0 0 1

x4 0 0 0 1 1 1 0 0 1

x5 �5 �3 �3 �3 1 0 0 1 2

x6 �3 �2 �2 �2 1 0 1 �2 0

x7 �1 �1 �1 �1 1 1 �2 1 0

x8 �2 �1 �1 �1 1 0 0 0 �5

(77)
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We have labeled each row by the associated homogeneous coordinate. A particular
simplicial decomposition of the corresponding pointset yields the canonical line
bundle of the weighted projective space P4f5;3;3;3;1g.

The point in A corresponding to x8 is in the interior of a codimension one face of
the convex hull. This means that it should be completely irrelevant for our purposes,
and we will ignore it [46, 48]. As such we also ignore the last column of ˆ. The
first three columns are associated to charges giving the multigrading .Q1;Q2;Q3/.
In this example we have r D 3, and thus the dimension of the moduli space of
complexified Kähler forms is 3.

To obtain a smooth hypersurface we may set

W D p.x31x6x
2
7 C x52 C x53 C x54 C x155 x

10
6 x

5
7/: (78)

There are 12 possible triangulations of A (always ignoring x8), but we will
concentrate on only two of them. One of the triangulations corresponds to the
Calabi–Yau phase. The corresponding Stanley–Reisner ideal is

ICY D hx1x5; x1x6; x5x7; x2x3x4x6; x2x3x4x7i: (79)

The corresponding ideal we quotient by in (69) is

K.TCY/ D h.1� s1s2/.1 � s3/; .1 � s1s2/.1 � s2s
�2
3 /; .1 � s3/.1 � s1s�2

2 s3/;

.1 � s1/
3.1 � s2s

�2
3 /; .1 � s1/3.1 � s1s

�2
2 s3/i: (80)

The other is the Landau–Ginzburg phase with

ILG D hp; x6; x7i
K.TLG/ D h1 � s�5

1 ; 1 � s2s�2
3 ; 1 � s1s�2

2 s3i:
(81)

In both of these phases we may choose a tilting collection consisting of 15
objects given by the union of fS.�n; 0; 0/; S.�n; 0;�1/; S.�n;�1; 0/g for n D
0; : : : ; 4. This implies that the collection of monomials given by the union of
fs�n
1 ; s�n

1 s�1
3 ; s

�n
1 s�1

2 g for n D 0; : : : ; 4 spans K.Z†/ as a vector space. Let us
denote this collection of monomials T .

First consider the noncompact geometries Z†. Given any object in Db.Z†/ we
can therefore find its class in K-theory by:

1. Find a free resolution of the object and thus express its K-theory class as a
Laurent polynomial in ZŒs1; s

�1
1 ; s2; s

�1
2 ; s3; s

�1
3 �.

2. Reduce this polynomial modK.T†/ so that all its terms lie in T .
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This would be most easily done if there were some monomial ordering so that this
second step was reduction to the normal form. Sadly, there is no monomial ordering
that can do this.6

Moving to the compact examplesX† we have a subtlety in that we do not know
precisely how to construct K.T†/. To evade this issue we work in the monodromy
ring of Z†. Let

i W XCY ! ZCY (82)

be the inclusion map for a Calabi–Yau phase. The key observation is that the
monodromy action given in Definition 7 is the same on X† as on Z†. Thus, if
we begin in the image of i�, then we should expect to remain in the image of i�.

4.4 Monodromy of the Structure Sheaf

We begin in the Calabi–Yau phase, where K.TCY/ is given by (80). Consider the
structure sheaf ØX (i.e., i�ØX ). This has a free resolution

0 �� QS.�5; 0; 0/
f

�� QS ��ØX
��0: (83)

This implies that ØX has a K-theory class 1 � s�5
1 as an object of the K-theory

of ZCY.
The quotient ring QŒs1; s

�1
1 ; : : :�=K.TCY/ is a vector space of dimension 15,

corresponding to the fact that the rank of the K-theory for Z† is 15. But
h1;1.XCY/ D 3, and so the rank of the K-theory is only 8. Consider the ideal in
QŒs1; s

�1
1 ; : : :�=K.TCY/ generated by 1�s�5

1 . This is exactly the orbit of the structure
sheaf ØX under the action of the monodromy. Since monodromy is tensoring by
ØX.D/ for various divisorsD, this will span the Chow ring ofXCY. In this example,
over the rationals, the Chow ring gives the full even-dimensional cohomology and
thus the full K-theory.

We need the ideal generated by the image of the structure sheaf in the mon-
odromy ring of Z†. There is an exact sequence [49]

0 �� R

.I W a/
a

�� R

I
�� R

I C .a/
�� 0; (84)

describing the image of a in R=I . This motivates the definition:

6This is proven by showing that it is incompatible with any weight order.
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Definition 8. The reduced monodromy ring is the quotient

QŒs1; s
�1
1 ; : : : ; sr ; s

�1
r �

.K.T†/ W OX/
(85)

where we have an ideal quotient in the denominator and OX is the K-theory class of
the structure sheaf.

This reduced monodromy ring is expected to describe the monodromy of X†.
In our case, using (80), the ideal quotient .K.T†/ W OX/ is easily computed using
Macaulay 2, but the result is rather messy. The important fact is that the degree of
this quotient is 8, exactly as expected.

It is more interesting to find the reduced monodromy ring in the Landau–
Ginzburg phase. It is easy to see that

QŒs1; s
�1
1 ; s2; s

�1
2 ; s3; s

�1
3 �

K.TLG/
Š QŒs�

hs15 � 1i : (86)

This reflects the fact that it is a Z15-orbifold of a Landau–Ginzburg theory. The
monodromy corresponds to the Z15 “quantum symmetry” acting on the moduli
space. Again, we clearly get a 15-dimensional vector space for the K-theory ofZLG.

Now in order to find the reduced monodromy ring for the Landau–Ginzburg
phase, we need to find the K-theory charge of the structure sheaf. We know how
to do that using the tilting collection above. This again becomes an exercise in
computer commutative algebra. We have an equivalence

1 � s�5
1 Š �s�4

1 s
�1
2 C 3s�3

1 s
�1
2 � s�3

1 s�1
3 � 3s�2

1 s�1
2 C 3s�2

1 s
�1
3 C s�1

1 s
�1
2

� 3s�1
1 s

�1
3 � 3s�4

1 C s�1
3 C 4s�3

1 � 4s�2
1 C 3s�1

1 .mod K.TCY//: (87)

The polynomial on the right is purely in terms of monomials with degree in the
tilting collection. This polynomial, which we denote �, may therefore be used as the
K-theory class of ØX in the Landau–Ginzburg phase.

Finally, one can show with a little more computer algebra

QŒs1; s
�1
1 ; s2; s

�1
2 ; s3; s

�1
3 �

.K.TLG/ W �/ Š QŒs�

hs8 � s7 C s5 � s4 C s3 � s C 1i : (88)

This eight-dimensional space is the K-theory of the Landau–Ginzburg theory.
The companion matrix of s8 � s7 C s5 � s4 C s3 � s C 1 has eigenvalues

˛; ˛2; ˛4; ˛7; ˛8; ˛11; ˛13; ˛14; (89)

where ˛ D exp.2�i=15/.
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The GKZ system has 15 linearly independent solutions. The above monodromy
around the Landau–Ginzburg point in the moduli space tells us which of the 8
solutions are pertinent for XLG. The older method for determining this would have
been to use intersection theory to establish the correct 8 solutions at large radius
limit and then analytically continue these solutions to the Landau–Ginzburg phase.
This method using the monodromy ring is much less arduous.
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Measuring Singularities with Frobenius:
The Basics

Angélica Benito, Eleonore Faber, and Karen E. Smith

1 Introduction

Consider a polynomial f over some field k, vanishing at some point x in kn. By
definition, f is smooth at x (or the hypersurface defined by f is smooth at x) if and
only if some partial derivative @f

@xi
is nonzero there. Otherwise, f is singular at x.

But how singular? Can we quantify the singularity of f at x?
The multiplicity is perhaps the most naive measurement of singularities. Because

f is singular at x if all the first-order partial derivatives of f vanish there, it is
natural to say that f is even more singular if also all the second-order partials vanish,
and so forth. The order, or multiplicity, of the singularity at x is the largest d such
that for all differential operators @ of order less than d , @f vanishes at x. Choosing
coordinates so that x is the origin, it is easy to see that the multiplicity is simply the
degree of the lowest degree term of f .

The multiplicity is an important first step in measuring singularities, but it is too
crude to give a good measurement of singularities. For example, the polynomials
xy and y2 � x3 both define singularities of multiplicity two, though the former is
clearly less singular than the latter. Indeed, xy defines a simple normal crossing
divisor, whereas the singularity of the cuspidal curve defined by y2 � x3 is quite
complicated, and that of, for example, y2 � x17 is even more so (See Fig. 1).

This chapter describes the first steps toward understanding a much more subtle
measure of singularities which arises naturally in three different contexts—analytic,
algebro-geometric, and finally, algebraic. Miraculously, all three approaches lead
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yx = 0 y2 = x3 y2 = x17

Fig. 1 Curves with multiplicity 2 at the origin

to essentially the same measurement of singularities: the log canonical threshold
(in characteristic zero) and the closely related F -pure threshold (in characteristic
p). The log canonical threshold, or complex singularity exponent, can be defined
analytically (via integration) or algebro-geometrically (via resolution of singular-
ities). As such, it is defined only for polynomials over C or other characteristic
zero fields. The F -pure threshold, whose name we shorten to F -threshold here,
by contrast, is defined only in prime characteristic. Its definition makes use of the
Frobenius, or pth power map. Remarkably, these two completely different ways of
quantifying singularities turn out to be intimately related. As we will describe, if we
fix a polynomial with integer coefficients, the F -threshold of its “reduction mod p”
approaches its log canonical threshold as p goes to infinity.

Both the log canonical threshold and the F -threshold can be interpreted as
critical numbers for the behavior of certain associated ideals, called the multiplier
ideals in the characteristic zero setting and the test ideals in the characteristic p
world. Both naturally give rise to higher order analogs, called “jumping numbers.”
We will also introduce these refinements.

We present only the first steps in understanding these invariants, with an
emphasis on the prime characteristic setting. Attempting only to demystify the
concepts in the simplest cases, we make no effort to discuss the most general
case or to describe the many interesting connections with deep ideas in analysis,
topology, algebraic geometry, number theory, and commutative algebra. The reader
who is inspired to dig deeper will find plenty of more sophisticated survey articles
and a plethora of connections to many ideas throughout mathematics, including the
Bernstein–Sato polynomial [34], Varchenko’s work on mixed Hodge structures on
the vanishing cycle [62], the Hodge spectrum [58], the Igusa zeta function [33],
motivic integration and jet schemes [40], Lelong numbers [12], Tian’s invariant for
studying Kähler–Einstein metrics [45], various vanishing theorems for cohomology
[37, Chap. 9], birational rigidity [10], Shokurov’s approach to termination of flips
[52], Hasse invariants [2], the monodromy action on the Milnor fiber, and Frobenius
splitting and tight closure.

There are several surveys which are both more sophisticated and pay more
attention to history. In particular, the classic survey by Kollár in [34, Sects. 8–10]
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contains a deeper discussion of the characteristic zero theory, as do the more recent
lectures of Budur [9], mainly from the algebro-geometrical perspective. For a more
analytic discussion, papers of Demailly are worth looking at, such as the article
[11]. Likewise, for the full characteristic p story, Schwede and Tucker’s survey of
test ideals [48] is very nice. The survey [41] contains a modern account of both the
characteristic p and characteristic zero theory.

2 Characteristic Zero: Log Canonical Threshold
and Multiplier Ideals

In this section we work with polynomials over the complex numbers C. Let CN
f�!

C be a polynomial (or analytic) function, vanishing at a point x.

2.1 Analytic Approach

Approaching singularities from an analytic point of view, we consider how fast the
(almost everywhere defined) function

CN D R2N �� R

z � �� 1
jf .z/j

“blows up” at a point x in the zero set of f . We attempt to measure this singularity
via integration. For example, is this function square integrable in a neighborhood of
x? The integral Z

1

jf j2
never converges in any small ball around x, but we can dampen the rate at which
1

jf j blows up by raising to a small positive power �. Indeed, for sufficiently small
positive real numbers �, depending on f , the integral

Z
B".x/

1

jf j2�

is finite, where B".x/ denotes a ball of sufficiently small radius around x. As we
vary the parameter � from very small positive values to larger ones, there is a critical
value at which the function 1

jf j� suddenly fails to be L2 locally at x. This is the log
canonical threshold or complex singularity exponent of f at x. That is:
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Definition 1. The complex singularity exponent of f (at x) is defined as

lctx.f / WD sup

�
� 2 RC

ˇ̌
there exists a neighborhoodB of x such that

Z
B

1

jf j2� < 1
�
:

When the point x is understood, we denote the complex singularity exponent simply
by lct.f /.

The following figure depicts the �-axis: for small values of � the function z 7!
1

jf .z/j belongs to L2 locally in a neighborhood of a point x; for larger � it does not.
It is not clear whether or not the function is integrable at the complex singularity
exponent; we will see shortly that it is.

�Œ /Œ

1
jf j2�

integrable 1
jf j2�

not integrable
�-axis

lct.f /

This numerical invariant is more commonly known as the log canonical thresh-
old, but it is natural to use the original analytic name when approaching it from the
analytic point of view. See Remark 11.

Example 2. If f is smooth at x, then its complex singularity exponent at x is 1.
Indeed, in this case the polynomial f can be taken to be part of a system of local
coordinates for Cn at x. It is then easy to compute that the integral

Z
B.x/

1

jf j2�

always converges on any bounded ball B.x/ for any positive � < 1. Indeed, this
computation is a special case of Example 3.

Example 3. Let f D za11 � � � zaNN be a monomial in CŒz1; : : : ; zN �, which defines a
singularity at the origin in CN . Let us compute its complex singularity exponent.
By definition, we need to integrate

1

jza11 � � � zaNN j2�
over a ball around the origin. To do so, we use polar coordinates. We have each
jzi j D ri and each d zi ^ d Nzi D ridri ^ d#i . Hence we see that

Z
1

jz1j2a1� � � � jzN j2aN �
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converges in a neighborhoodB of the origin if and only if
Z
B

r1 � � � rN
r
2a1�
1 � � � r2aN �N

D
Z
B

1

r
2a1��1
1 � � � r2aN ��1

N

converges. By Fubini’s theorem, this integral converges if and only if 1�2ai� > �1
for all i , that is, � < 1

ai
for all i . Thus

lct.za11 � � � zaNN / D min
i

n 1
ai

o
:

If f has “worse” singularities, the function 1
jf j will blow up faster, and the

complex singularity exponent will typically be smaller. In particular, the complex
singularity exponent is always less than or equal to the complex singularity exponent
of a smooth point or one.1 Although it is not obvious, the complex singularity
exponent is always a positive rational number. We prove this in the next subsection
using Hironaka’s theorem on resolution of singularities.

2.2 Computing Complex Singularity Exponent
by Monomializing

Hironaka’s beautiful theorem on resolution of singularities allows us to reduce the
computation of the integral in the definition of the complex singularity exponent for
any polynomial (or analytic) function to the monomial case. Let us recall Hironaka’s
theorem (cf. [27]).

Theorem 4. Every polynomial (or analytic) function on CN has a monomializa-

tion. That is, there exists a proper birational morphism X
��! CN from a smooth

variety X such that both

f ı � and JacC.�/

are monomials (up to unit) in local coordinates locally at each point of X .

Since X is a smooth complex variety, it has a natural structure of a complex
manifold. Saying that � is a morphism of algebraic varieties means simply that it is
defined locally in coordinates by polynomial (hence analytic) functions; therefore,
� is also a holomorphic mapping of complex manifolds. The word “proper” in this
context can be understood in the usual analytic sense: the preimage of a compact set

1One caveat: the singularity exponent behaves somewhat differently over R due to the possibility
that a polynomial’s zeros are hidden over R, so that 1

jf j
may fail to blow up as expected or even at

all!
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is compact2. The fact that � is birational (meaning it has an inverse on some dense
open set) is not relevant at the moment, beyond the fact that the dimension of X is
necessarily N .

The condition that both f ı � and JacC.�/ are monomials (up to unit) locally at
a point y 2 X means that we can find local coordinates z1; : : : ; zN at y, such that
both

f ı � D uza11 � � � zaNN (1)

and the holomorphic Jacobian3

JacC.�/ D vzk11 � � � zkNN (2)

where u and v are some regular (or analytic) functions defined in a neighborhood of
y but not vanishing at y.

The properness of the map � guarantees that the integral

Z
1

jf j2�

converges in a neighborhood of the point x if and only if the integral

Z
JacR.�/

jf ı �j2�

converges in a neighborhood of ��1.x/, where JacR.�/ is the (real) Jacobian of the
map � considered as a smooth map of real 2N -dimensional manifolds. Recalling
that

JacR.�/ D jJacC.�/j2;
(see [17, pp. 17–18]) and using that ��1.x/ is compact, Hironaka’s theorem reduces
the convergence of this integral to a computation with monomials in each of finitely
many charts U coveringX :

Z
��1.B.x//\U

jzk11 � � � zkNN j2
jza11 � � � zaNN j2� :

Doing an analogous computation to that in Example 3, we can conclude that the
integral is finite if and only if in each chart we have

ki � �ai > �1 (3)

2Alternatively, it can be taken in the usual algebraic sense as defined in Hartshorne, [22, Ch. 2,
Sect. 4].
3If we write � in local holomorphic coordinates as .z1; : : : ; zN / 7! .f1; : : : ; fN /, then JacC.�/ is

the holomorphic function obtained as the determinant of the N � N matrix
�
@fi
@zj

�
:
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for all i , or equivalently,

� <
ki C 1

ai
(4)

for all i . Hence

lctx.f / Dmin
i

all charts

�
ki C 1

ai

�
: (5)

In particular, remembering that the map was proper so that only finitely many charts
are at issue here, we have:

Corollary 5. The complex singularity exponent of a complex polynomial at any
point is a rational number.

2.3 Algebro-Geometric Approach

In the world of algebraic geometry, we might attempt to measure the singularities of
f by trying to measure the complexity of a resolution of its singularities. Hironaka’s
theorem can be stated as follows:

Theorem 6. Fix a polynomial (or analytic) function f on CN . There exists a proper

birational morphism X
��! C

N from a smooth variety X such that the pullback of
f defines a divisor F� whose support has simple normal crossings and which is
also in normal crossings with the exceptional divisor (the locus of points on X at
which � fails to be an isomorphism). Furthermore, the morphism � can be assumed
to be an isomorphism outside the singular set of f .

The proper birational morphism � is usually called a log resolution of f in this
context. The support of the divisor defined by the pullback of f is simply the zero
set of f ı � . The condition that it has normal crossings means that it is a union of
smooth hypersurfaces meeting transversely. In more algebraic language, a divisor
with normal crossing support is one whose equation can be written as a monomial
in local coordinates at each point of X . Thus Theorem 6 is really just a restatement
of Theorem 4.4

Hironaka actually proved more: such a log resolution can be constructed by a
sequence of blowings up at smooth centers. We might consider the polynomial f
to be “more singular” if the number of blowings up required to resolve f , and their
relative complicatedness, is great. However, because there is no canonical way to
resolve singularities, we need a way to compare across different resolutions. This is
done with the canonical divisor.

4As stated here, Theorem 6 is actually a tiny bit stronger, since the condition that we have simple
normal crossings rules out self-crossings. The difference is immaterial to our discussion.



64 A. Benito et al.

2.4 The Canonical Divisor of a Map

Fix a proper birational morphism X
��! Y between smooth varieties. The

holomorphic Jacobian (determinant) JacC.�/ can be viewed as a regular function
locally on charts ofX . Its zero set (counting multiplicity) is the canonical divisor of
� (or relative canonical divisor ofX over Y ), denoted byK� . Because the Jacobian
matrix is invertible at x 2 X if and only if � is an isomorphism there, the canonical
divisor of � is supported precisely on the exceptional set E , which by definition
consists of the points in X at which � is not an isomorphism. In particular, since it
is locally the zero set of this Jacobian determinant, the exceptional set E is always a
codimension one subvariety of X . Moreover, this exceptional set is more naturally
considered as a divisor: we label each of the components of E by the order of
vanishing of the Jacobian along it. This is the canonical divisor K� . That is,

K� D div.JacC.�// D
X

kiEi ;

where the sum ranges through all of the components Ei of the exceptional set E
and where ki is the order of vanishing5 of JacC.�/ along Ei . Thus we can view
the canonical divisor K� as a precise “difference” between birationally equivalent
varieties X and Y .

To measure the singularities of a polynomial f , consider a log resolutionX
��!

CN . The polynomial f defines a simple crossing divisor F� on X , namely the zero
set (with multiplicities) of the regular function f ı � ,

F� D div.f ı �/ D
X

aiDi

where theDi range through all irreducible divisors onX and the ai are the orders of
vanishing6 of f ı � along each. If we denote the divisor of f in C

N by F , then F�
is simply ��F . There are two types of divisors in the support of F� : the birational
transforms eF i of the components of F , and exceptional divisorsEi . All are smooth.
Note that locally in charts, both types of divisors—the Ei and the eF i—are defined
by some local coordinates zi on X .

Using this language, we examine our computation for the convergence of the
integral Z

B.x/

1

jf j2� :

5These are the same ki appearing in expressions (2) as we range over all charts of X . Note that
there are typically many more than N components Ei despite the fact that in the expression (2) we
were only seeing at most N of them at a time in each chart.
6Of course, the order of vanishing is zero along any irreducible divisor not in the support of F , so
the sum is finite. Again, these are the same ai as in formula (1); there are typically many divisors
in the support of ��F although in formula (1) we see at most N in each chart.
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The condition (4) that ki � �ai > �1 is equivalent to the condition that all
coefficients of the R-divisor

K� � �F�

are greater than �1. Put differently, the integral
R

1

jf j2� converges in a neighborhood

of x if and only if the “round-up” divisor7

dK� � �F�e
is effective. [Strictly speaking, since we are computing the complex singularity
exponent at a particular point x, we should throw away any components ofK���F�
whose image on CN does not contain x; that is, we should consider a log resolution
of singularities only in a sufficiently small neighborhood of x].

Again we arrive at the following formula for the complex singularity exponent
of f at x:

Corollary 7. Let � W X �! C
N be a log resolution of the polynomial f . If we

write

K� D
X

kiDi and div.f ı �/ D
X

aiDi ; (6)

where the Di range through all irreducible divisors on X , then the complex
singularity exponent or the log canonical threshold of f at point x is the minimum,
taken over all indices i such that x 2 �.Di/, of the rational numbers

ki C 1

ai
:

The complex singularity exponent is better known in algebraic geometry as the
log canonical threshold.

Remark 8. The condition that dK� � �F�e is effective is independent of the choice
of log resolution. This follows from our characterization of the convergence of the
integral but can also be shown directly using the tools of algebraic geometry (see
[35]). Although we did not motivate the study of K� � �F� in purely algebro-
geometric terms, the R- divisors K� � �F turn out to be quite natural in birational
algebraic geometry, without reference to the integrals. See, for example, [34]. In
any case, our discussion shows that the definition of log canonical threshold can be
restated as follows:

Definition 9. The log canonical threshold of a polynomial f is defined as

lctx.f / WD sup
˚
� 2 RC

ˇ̌ dK� � �F�e is effective
�
;

7Given a divisor D with real coefficients, we define the roundup dDe as the integral divisor
obtained by rounding up all coefficients of prime divisors to the nearest integer. In the same way,
bDc is obtained by rounding down.
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where X
��! CN is any log resolution of f (in a neighborhood of x), K� is its

relative canonical divisor, and F� is the divisor on X defined by f ı� . We can also
define the global log canonical threshold by taking � to be a resolution at all points,
not just in a neighborhood of x.

Remark 10. Note that loosely speaking, the more complicated the resolution, the
more likely � will have to be small in order to make K� � �F� close to effective.
This essentially measures the complexity of the pullback of f to the log resolution.
The presence of the K� term accounts for the added multiplicity that would have
been present in any resolution because of the nature of blowup CN to get X , thus
“standardizing” across different resolutions.

It is also clear from this point of view that dK� � �F�e is always effective for
very small (positive) � and that as we enlarge � it stays effective until we suddenly
hit the log canonical threshold of f , at which point at least one coefficient is exactly
negative one.

Remark 11. The name log canonical comes from birational geometry. A pair
.Y;D/ consisting of a Q-divisor on a smooth variety Y is said to be log canonical if,
for any proper birational morphism � W X �! Y with X smooth (or equivalently,
any fixed log resolution), the divisor K� � ��D has all coefficients � �1: This
condition is independent of the choice of � (see [35]). Thus the log canonical
threshold of f at x is the supremum, over positive � 2 R such that .Cn; �div.f //
is log canonical in a neighborhood of x.

Example 12. The log canonical threshold of any complex polynomial f is bounded
above by one. Indeed, suppose for simplicity that f is irreducible, defining a
hypersurfaceD with isolated singularity at x. Let � W X �! CN be a log resolution
of f . We have

K� D
X

kiEi ;

where all the Ei are exceptional, and

div.f ı �/ D
X

aiEi C eD;
where theEi are exceptional and eD is the birational transform ofD onX . Then the
log canonical threshold is the minimum value of

min
i

�
ki C 1

ai
; 1

�
(7)

as we range through the exceptional divisors of � . More generally, the argu-
ment adapts immediately to show that if f factors into irreducibles as f D
f
b1
1 f

b2
2 � � �f bt

t , then the log canonical threshold is bounded above by the minimal
value of 1

bi
.
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2.5 Computations of Log Canonical Thresholds

The canonical divisor of a morphism plays a starring role in birational geometry,
and in particular, as we have seen, in the computation of the log canonical threshold.
Before computing some more examples, we isolate two helpful properties of K� .

Fact 13. Let X
��! Y be the blowup along a smooth subvariety of codimension c

in the smooth variety Y . Then the relative canonical divisor is

K� D .c � 1/E;

where E denotes the exceptional divisor of the blowup.

Fact 14. Consider a sequence of proper birational morphisms X3
��! X2

��! X1,
where all the Xi are smooth. Then,

K�ı� D ��K� CK�:

The proof of both these facts is easy exercises in local coordinates and left to the
reader.

Example 15 (A cuspidal singularity). We compute the log canonical threshold of
the cuspidal curveD given by f D x2 � y3 in C2 (at the origin, its unique singular
point). The curve is easily resolved (i.e., the polynomial f is easily monomialized)

by a sequence of three point blowups at points: X3
 �! X2

��! X1
��! C2, whose

composition we denote by � and which create exceptional divisors E1;E2, and E3,
respectively.8 [Here � is the blowup at the origin, � is the blowup of the unique
intersection point with the birational transform of D with E1, and  is the blowup
of the unique intersection point of the birational transform of D on X2 with E2].
There are four relevant divisors on X3 to consider: the three exceptional divisors
E1;E2, andE3, and the birational transform ofD onX3. Using the two facts above,
it is easy to compute that

K� D E1 C 2E2 C 4E3

and

F D div.f ı �/ D D C 2E1 C 3E2 C 6E3

Hence lct.f / D 5
6
.

8In a slight, but very helpful, abuse of terminology, we use the same symbol to denote an irreducible
divisor and its birational transform on any model.
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Example 16. As an exercise, the reader can compute that for f D xm � yn

with gcd.m; n/ D 1, then lct.f / D 1
m

C 1
n

. The resolution is constructed as in
Example 15 but may require a few more blowups to resolve.

Example 17. Let f be a homogenous polynomial of degree d in N variables, with
an isolated singularity at the origin. Then lct.f / D N

d
; if d � N and 1 otherwise.

Indeed, one readily checks that blowup the origin, we obtain a log resolution,X
��!

CN , with one exceptional componentE . Using Fact 13, we compute that

K� D .N � 1/E:

Also, the divisor D defined by f pulls back tovspace*6pt

F D dE CD;

where again,D denotes also the birational transform of D on X . Thus

lct.f / D min

�
.N � 1/C 1

d
;
0C 1

1

�
D min

�
N

d
; 1

�
:

Remark 18. The log canonical threshold describes the singularity but it does not
characterize it. For example, the previous example gives examples of numerous non-
isomorphic non-smooth points whose log canonical threshold is one, the same as a
smooth point.

Remark 19. In general it is hard to compute the log canonical threshold, but there
are algorithms to compute it in special cases such as the monomial case [32],
the toric case [3], or the case of two variables [61]. In all these cases, the reason
the log canonical threshold can be computed is that a resolution of singularities can
be explicitly understood.

2.6 Multiplier Ideals and Jumping Numbers

Our definition of log canonical threshold leads naturally to a family of richer
invariants called the multiplier ideals of f , which are ideals in the polynomial ring
indexed by the positive real numbers.

Again, multiplier ideals can be defined analytically or algebro-geometrically.

Definition 20 (Analytic Definition, cf. [11]). Fix f 2 CŒx1; : : : ; xn�. For each � 2
RC, define the multiplier ideal of f as
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J .f �/ D
�
h 2 CŒx1; : : : ; xn�

ˇ̌
there exists a neighborhoodB of x such that

Z
B

jhj2
jf j2� < 1

�
:

Thus the multiplier ideals consist of functions that can be used as “multipliers” to
make the integral converge. It is easy to check that this set J .f �/ is in fact an ideal
of the ring CŒx1; : : : ; xn�:

Equivalently, we define the multiplier ideal in an algebro-geometric context using
a log resolution.

Definition 21 (Algebro-Geometric Definition). Fix f 2 CŒx1; : : : ; xn�. For each
� 2 RC, define the multiplier ideal of f as

J .f �/ D ��OX.dK� � �F�e/;

where X
��! Cn is a log resolution of f , K� is its relative canonical divisor, and

F� is the divisor on X determined by f ı � . These are the polynomials whose
pull-backs to X have vanishing no worse than that of the divisorK� � �F� .

Recall that if D is a divisor on a smooth variety X , the notation OX.D/ denotes
the sheaf of rational functions g on X such that div.g/ C D is effective. Thus, in
concrete terms, the multiplier ideal is

��OX.dK� � �F e/ D fh 2 CŒx1; : : : ; xn� j div.h ı �/C dK� � �F e � 0g:

It is straightforward to check that the argument we gave for translating the analytic
definition of the log canonical threshold into algebraic geometry can be used to see
that these two definitions of multiplier ideals are equivalent. Moreover, this also
shows that Definition 21 is independent of the choice of resolution. For a direct
algebro-geometric proof, see [37, Chap. 9].

Remark 22. BecauseK� is an integral divisor, we have dK���F�e D K��b�F�c.
We caution the reader delving deeper into the subject, however, that when the notion
of multiplier ideals and log canonical thresholds are generalized to divisors on
singular ambient spaces, there are situations in whichK� is a nonintegral Q-divisor.
In this case, we cannot assume that dK� � �F�e D K� � b�F�c.

Proposition 23. Fix a polynomial f and view its multiplier ideals J .f �/ as a
family of ideals varying with �. Then the following properties hold:

1. For � 2 RC sufficiently small, J .f �/ is the unit ideal.
2. If � > �0, then J .f �0

/ � J .f �/:

3. The log canonical threshold of f is

lct.f / D supf� j J .f �/ D .1/g:
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4. For each fixed value of �, we have J .f �/ D J .f �C"/ for small enough
positive ". (How small is small enough depends on �).

5. There exist certain � 2 RC such that J .f ��"/ © J .f �/ for all positive values
of ".

All of these properties are easy to verify, thinking of what happens with the
rounding up of the divisor K� � �F as � changes. As we imagine starting with
a very small � and increasing it, the properties above can be summarized by the
following diagram:

Œ : : : � �-axis/Œ
c1

J D .1/
/Œ
c2

J 6D .1/
/Œ
cn

.1/ © J .f c1/ © J .f c2 / © � � � © J .f cn/ © : : :

There are certain critical exponents ci for which the multiplier ideal “jumps.”

The critical numbers � described in (5) and denoted by ci in the diagram give a
sequence of numerical invariants refining the log canonical threshold, which is the
smallest of these. Formally:

Definition 24. The jumping numbers of f 2 CŒx1; : : : ; xn� are the positive real
numbers c such that J .f c/ ¨ J .f c�"/ for all positive �.

Proposition 25. The jumping numbers of f 2 CŒx1; : : : ; xn� are discrete and
rational.

Proof. Let � W X ! CN be a log resolution of f , with K� D P
kiDi and F� DP

aiDi , as before. It is easy to see that the critical values of dK� � �F�e occur
only when ki � �ai 2 N. That is, the jumping numbers are a subset of the numbers
f kiCm

ai
gm2N: In particular, they are discrete and rational. ut

Although an infinite sequence, the jumping numbers are actually determined by
finitely many.

Theorem 26 (See, e.g., [37, Theorem 9.6.21]). Fix a polynomial f as above.
Then,

J .f 1C�/ D .f /J .f �/;

for � � 0. In particular, a positive real number c is a jumping number if and only if
c C 1 is a jumping number.

Thus the jumping numbers are periodic and completely determined by the finite
set of jumping numbers less than or equal to 1.

Remark 27. It is quite subtle to determine which “candidate jumping numbers” of
the form kiC1

ai
are actual jumping numbers. When f is a polynomial in 2 variables,

there is some very pretty geometry behind understanding this question. See [56,61].
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Exercise 28. Show that 1 is a jumping number of every polynomial. [Hint: if f
is irreducible, the jumping number 1 is contributed by the birational transform of
div.f / on the log resolution].

Exercise 29. Show that the jumping numbers of a smooth f are the natural
numbers 1; 2; 3; : : :

Exercise 30. Using the resolution described in Example 15, show that the multi-
plier ideals of f D x2 � y3 are as follows:

1. J .f �/ is trivial for values of � less than 5
6
.

2. J .f �/ D m D .x; y/ for 5
6

� � < 1.
3. J .f �/ D .f / for 1 � � < 11

6
:

Using Theorem 26, describe the multiplier ideal of x2 � y3 for any value of �.

Exercise 31 (Harder). Show that the multiplier ideals of f D x2 � y5 are as
follows:

(1) J .f �/ D R is for values of � less than 7
10

.
(2) J .f �/ D m D .x; y/ for 7

10
� � < 9

10
.

(3) J .f �/ D .x; y2/ for 9
10

� � < 1.
(4) J .f �/ D .f / for 1 � � < 17

10
:

Remark 32. The jumping numbers turn out to be related to many other well-studied
invariants. For example, it is shown in [14] that the jumping numbers of f in
the interval .0; 1� are always (negatives of) roots of the so-called Bernstein–Sato
polynomial bf of f . The jumping numbers can also be viewed in terms of the Hodge
spectrum arising from the monodromy action on the cohomology of the Milnor fiber
of f [8].

Multiplier ideals have many additional properties, in addition to many deep
applications which we don’t even begin to describe. Lazarsfeld’s book [37] gives
an idea of some of these.

3 Positive Characteristic: The Frobenius Map
and F -Thresholds

A natural question arises: What about positive characteristic?
Fix a polynomial f over a perfect field k. We wish to measure the singularity

of f at some point where it vanishes. For concreteness and with no essential loss
of generality, say, the field is Fp and the point is the origin, so that f 2 m D
.x1; : : : ; xn/ � FpŒx1; : : : ; xn�. How can we try to define an analog of log canonical
threshold? In characteristic zero, we used real analysis to control the growth of the
function 1

jf j� as we approached the singular points of f . But in characteristic p, can
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we even talk about taking fractional powers of f ? Remarkably, the Frobenius map
gives us a tool for raising polynomials to non-integer powers, and for considering
their behavior near m.

3.1 The Frobenius Map

Let R be any ring of characteristic p, with no non-zero nilpotent elements.

Definition 1. The Frobenius map F is the ring homomorphism

R
F

�� R

r
� �� rp:

The image is the subring Rp of pth powers of R, which is of course isomorphic to
R via F (providedR has no nontrivial nilpotents, so that F is injective).

Nothing like this is true in characteristic zero. The point is that in characteristic
p, the Frobenius map respects addition [.rCs/p D rpCsp for all r; s 2 R], because
the binomial coefficients

�
p
j

�
are congruent to 0 modulo p for every 1 � j � p � 1.

By iterating the Frobenius map we get an infinite chain of subrings of R:

R � Rp � Rp
2 � Rp

3 � � � � ; (8)

each isomorphic to R. Alternatively, we can imagine adjoining pth roots: inside a
fixed algebraic closure of the fraction field of R, for example, each element of R
has a unique pth root. Now the ring inclusion Rp � R is equivalent to the ring

inclusion R � R
1
p ; the Frobenius map gives an isomorphism between these two

chains of rings. Iterating we have an increasing, but essentially equivalent chain of
rings:

R � R
1
p � R

1

p2 � : : : :

Viewing these R
1
pe as R-modules, it turns out that a remarkable wealth of

information about singularities is revealed by their R-module structure as e ! 1:

Let us consider an example.

Example 2. Let R D FpŒx�. The subring of pth powers is the ring FpŒx
p� of

polynomials in xp , and similarly the overring of pth roots is FpŒx
1
p �: Given any

polynomial g.x/ 2 FpŒx�, there is a unique way to write

g.x/ D g0.x
p/ � 1C g1.x

p/ � x C � � � C gp�1.xp/ � xp�1;

where each gj .xp/ 2 Rp . In fancier language, FpŒx� is a free FpŒxp�module on the
basis f1; x; x2; : : : ; xp�1g. That is, there is an FpŒx

p�-module homomorphism
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FpŒx� Š Rp ˚Rp � x ˚ � � � ˚Rp � xp�1:

Iterating, we see that FpŒx� is free over FpŒxp
e
� on the basis f1; x; x2; : : : ; xpe�1g.

Equivalently, each FpŒx
1
pe � is a freeR-module on the basis

˚
1; x

1
pe ; x

2
pe ; : : :; x

pe�1
pe
�
.

Example 3. Similarly, if R is the polynomial ring FpŒx1; : : : ; xn�, then R is a free

module overRp
e D FpŒx

pe

1 ; : : : ; x
pe

n � with basis

˚
x
a1
1 � � �xann

�
0�aj�pe�1; 1�j�n :

The freeness of the polynomial ring over its subring of pth powers is no accident,
but rather reflects the fact that the corresponding affine variety is smooth. The
Frobenius map can be used to detect singularities quite generally.

Theorem 4 (Kunz [36, Theorem 2.1]). Let R be a ring of prime characteristic p
without nilpotent elements. Then R is regular if and if only the Frobenius map is
flat.

Let us put Kunz’s theorem more concretely in the case we care about—the case

where the Frobenius map R
F�! R is finite, that is, when R is finitely generated as

an Rp-module.9 In this case, Kunz’s theorem says that R is regular if and only if R
is a locally freeRp-module, or, equivalently, if and only if R1=p is locally free as an
R-module.

This leads to the natural question: if R is not regular, can we use Frobenius to
measure its singularities? The answer is a resounding YES. This is the topic of a
large and active body of research in “F -singularities” which classifies singularities
according to the structure of the chain of R-modules:

R � R
1
p � R

1

p2 � : : : :

The F -threshold, which we now discuss, is only the beginning of a long and
beautiful story.

3.2 F -Threshold

Now we fix a polynomial f in the ring R D FpŒx1; : : : ; xn�. For a rational number

of the form c D a
pe

, we can consider the fractional power f c D f
a
pe as an element

of the overring R1=p
e D FpŒx

1=pe

1 ; : : : ; x
1=pe

n �. This allows us to “take fractional

9All rings in which we are interested in this survey satisfy this condition. It is easy to check, for
example, that if R is finitely generated over a perfect field, or a localization of such, then the
Frobenius map is finite. Similarly, so do rings of power series over perfect fields.
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powers” of polynomials, analogously to what the analysis allowed us to do in Sect. 1,
at least if we restrict ourselves to fractional powers whose denominators are powers
of p.

In the analytic setting, we tried to measure how badly the function 1

jf j� “blows
up” at the singular point using integrability—this led to the complex singularity
exponent or log canonical threshold. In this characteristic p world, we can not
integrate, nor does even absolute value make sense. Amazingly, however, the most
naive possible way to talk about the function 1

f c
“blowup” does lead to a sensible

invariant, which turns out to be very closely related to the complex singularity index.
Indeed, we can agree that 1

f c
certainly does not blow up at any point where the

denominator does not vanish.
Recall that eachR-moduleM can be interpreted as a coherent sheaf on the affine

scheme SpecR, in which case each element s 2 M is interpreted as a section of
this coherent sheaf. Grothendieck defined the “value” of a section s at the point
P 2 SpecR to be the image of s under the natural map from M to M ˝ L, where
L is the residue field at P [22, Chap 2.5]. In particular, the “function” f c (when c
is a rational number of the form a

pe
) is an element of the R-moduleR1=p

e
(for some

e), and as such its “value” at the point m is zero if and only if f c 2 mR1=p
e
.

So, given that integration does not make sense, we can at least look at values of c
for which 1

f c
“does not blow up at all,” and take the supremum over all such c. This

extremely naive attempt to mimic the analytic definition then leads to the following
definition.

Definition 5. The F -threshold of f 2 FpŒx1; : : : ; xn� at the maximal ideal m D
.x1; : : : ; xn/ is defined as

F Tm.f / D sup
n
c D a

pe
2 Z

h 1
p

i ˇ̌
f c 62 mR1=p

e
o
:

Amazingly, this appear to be the “right” thing to do! Although we have stated
the definition for polynomials over Fp , any perfect field k, or indeed, any field k of
characteristic p such that Œk W kp� is finite works just as well.

Let us check that this definition is independent of how we write c. First note that
viewing f c as an element of the free R-module R1=p

e
, we can write it uniquely as

an R-linear combination of the basis elements

fx
a1
pe

1 � � �x
an
pe

n g0�aj�pe�1;

which we abbreviate fxA=p
eg.

f c D f a=pe D
X

rAxA=p
e

; (9)

for some uniquely determined rA 2 R. So, an equivalent formulation of the F -
threshold of f 2 FpŒx1; : : : ; xn� at the maximal ideal m D .x1; : : : ; xn/ is
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F Tm.f / D sup
n
c D a

pe
2 Z

h 1
p

i ˇ̌
f c has some coefficient rA 62 m

o
;

where the coefficients rA are as in (9).
It is now easy to see that this supremum is independent of the way we write c.

That is, if we instead had written c D ap

peC1 and viewed f c as an element in the

larger ring R
1

peC1 , then when expressed f c uniquely as an R-linear combination of

the basis elements xA
0=peC1

for R
1

peC1 , the coefficients rA0 that appear are the same
elements of R as appearing in expression (9).

By Nakayama’s Lemma, f c 62 mR1=p
e

if and only if f c is part of a minimal
generating set for the R-moduleR1=p

e
(after localizing at m). So equivalently:

Definition 6. The F -threshold of f 2 FpŒx1; : : : ; xn� at m is

F Tm.f / D sup
n
c D a

pe
2 Z

h 1
p

i ˇ̌
f c is part of a free basis for R

1
pe

m over Rm

o
:

Example 7. The F -threshold of any polynomial is always bounded above by one.

Indeed, let f be any polynomial in m. Since f 1 D f � 1 2 mR
1
pe for all e, we see

that f 1 is never part of a basis for R1=p
e

over R. We must raise f to numbers less
than one to get a basis element. Thus F Tm.f / � 1 always.

Example 8. Assume that f is non-singular at m. Then f is part of a local system
of regular parameters at m, that is, one of the minimal generators for the ideal m.
Changing coordinates, we can assume f D x1. For any pe , note that

f
pe�1
pe D x

pe�1
pe

1

is part of a free basis for R
1
pe

m over Rm. This shows that the F -threshold is greater
or equal than pe�1

pe
for all e � 1. In other words, taking the limit we see that the F -

threshold at a smooth point is bounded below by one. Combining with the previous
example, we conclude that the F -threshold of a smooth point is exactly one.

Example 9. Take f D xy 2 FpŒx; y�, then .xy/
pe�1
pe is also part of a basis of the

free R-moduleR1=p
e
. The same argument applies here to show that F Tm.xy/ D 1.

In general, F Tm.x1 � � �x`/ D 1, which is to say, the F -threshold of a simple normal
crossings divisor is always one. In particular, this shows that F Tm.f / D 1 does not
imply that f is non-singular.

Example 10. Consider f D xm 2 FpŒx�. Then, .xm/
a
pe is part of a free basis if and

only if ma
pe

� pe�1
pe

. So f
a
pe is part of a free basis if and only if a

pe
� 1

m
� 1

mpe
.

Taking the limit, this leads to F Tm.xm/ D 1
m

. In general,

F Tm.x
a1
1 � � �xa`` / D min

n 1
ai

o
:
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Examples 7 through 10 indicate that the F -threshold has many of the same
features as the log canonical threshold. Is the F -threshold capturing exactly “the
same” measurement of singularities as the log canonical threshold? If a polynomial
has integer coefficients, do we get the same value of the F -threshold modulo
p for all p? Of course, the “same” polynomial can be more singular in some
characteristics, so we expect not. But does the F -threshold for “large p” perhaps
agree with the log canonical threshold? The following example is typical:

Example 11. Consider the polynomial f D x2 C y3, which we can view as
a polynomial over any of the fields Fp (or C/. Its F -threshold depends on the
characteristic:

F Tm.f / D

8̂
ˆ̂<
ˆ̂̂:

1=2 if p D 2;

2=3 if p D 3;

5=6 if p � 1 mod 6;
5=6� 1

6p
if p � 5 mod 6:

Viewing f as a polynomial over C, we computed in Example 15 that its log
canonical threshold is 5

6
. Interestingly, we see that as p �! 1, the F -thresholds

approach the log canonical threshold. Also, there are some (in fact, infinitely many)
characteristics where the F -threshold agrees with the log canonical threshold.
On the other hand, there are other characteristics where the polynomial is “more
singular” than expected, as reflected by a smaller F -threshold. For example, in
characteristics 2 and 3, of course, we expect “worse” singularities, and indeed, we
see the F -threshold is smaller in these cases. But also the F -threshold detects a
worse singularity for this curve in characteristics congruent to 5 mod 6, reflecting
subtle number theoretic issues in that case (see [43, Question 3.9]).

Example 12. Daniel Hernández has computed many examples of F -thresholds in
his Ph.D. thesis (cf. [23]), including any “diagonal” hypersurfaces xa11 C � � � C xann
(see [25]). There is also an algorithm to compute the F -threshold of any binomial
as well; see [26, 51]. See also [43].

Example 13. Let f 2 ZŒx; y; z� be homogeneous of degree 3 with an isolated
singularity. In particular, f defines an elliptic curve in P2 over Z. The F -threshold
has been computed in this case by Bhatt [1]:

F T .f / D
8<
:
1 if E 2 P2

Fp
is ordinary;

1 � 1

p
if E 2 P2

Fp
is supersingular:

Again we see that “more singular” polynomials have smaller F -thresholds. As in
Example 11, there are infinitely many p for which the log canonical threshold and
the F -threshold agree, and infinitely many p for which they do not, by a result of
Elkies [13].
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3.3 Comparison of F -Threshold and Multiplicity

To compare the F -threshold with the multiplicity, we rephrase the definition still
one more time. Let us first recall a well-known notation: for an ideal I in a ring R
of characteristic p, let I Œp

e � denote the ideal of R generated by the pe-th powers
of the elements of I . That is, I Œp

e� is the expansion of I under Frobenius R ! R

sending r 7! rp
e
.

Definition 14. The F -threshold of f 2 kŒx1; : : : ; xn�m D R is

F Tm.f / D sup
n
c D a

pe
2 Z

h 1
p

i ˇ̌
f a 62 mŒpe �

o
;

D inf
n
c D a

pe
2 Z

h 1
p

i ˇ̌
f a 2 mŒpe �

o
:

This is patently the same as Definition 5, simply by raising to the peth power.
On the other hand, the multiplicity of f at m is defined as the largest n such that

f 2 mn. It is trivial to check that this is equivalent to

multm.f / D sup
n t
a

2 Q
ˇ̌
f a 2 mt

o
:

That is, the formula that computes the F -threshold is similar to formula that
computes the reciprocal of the multiplicity, but with “Frobenius powers” replacing
ordinary powers:

1

multm.f /
D inf

na
t

2 Q
ˇ̌
f a 2 mt

o
:

It is also not hard to check in all these cases that the infimum (supremum) is in fact
a limit.

This similarity allows us to easily prove the following comparison between
multiplicity and F -threshold:

Proposition 15. For f 2 m � kŒx; : : : ; xN �,

N

multm.f /
� F Tm.f / � 1

multm.f /
:

Proof. Since m is generated by N elements, we have the inclusions

mNpe � mŒpe � � mpe

for all e. So we also obviously have inclusions of sets
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n a
pe

2 Z

h 1
p

i ˇ̌
f a 2 mNpe

o
�
n a
pe

2 Z

h 1
p

i ˇ̌
f a 2 mŒpe �

o

�
n a
pe

2 Z

h 1
p

i ˇ̌
f a 2 mpe

o
:

Taking the infimum, we have

inf
n a
pe

2 Z

h 1
p

i ˇ̌
f a 2 mNpe

o
� inf

n a
pe

2 Z

h 1
p

i ˇ̌
f a 2 mŒpe �

o

� inf
n a
pe

2 Z

h 1
p

i ˇ̌
f a 2 mpe

o
:

Since the infimum on the left can be interpreted asN times inf
n

a
Npe

2 Z

h
1
p

i ˇ̌
f a 2

mNpe
o
, the result is proved. ut

Remark 16. A deeper inequality is proven in [60, Prop 4.5]: mult.f / � NN

.F T .f //N
.

This in turn, is a “characteristic p analog” of a corresponding statement in
characteristic zero about log canonical threshold [10, Theorem 1].

3.4 Computing F -Thresholds

To get a feeling how to compute F -thresholds, we begin the computation of
Example 11, relegating the details to [23]. First recall that FpŒx; y� is a free module
over FpŒxp

e
; yp

e
� with basis fxa1ya2g0�a1;a2�pe�1. By definition,

F T .f / D sup
n a
pe

ˇ̌
f a D

X
r
pe

A x
a1ya2has some coefficient rp

e

A 62 .xpe ; ype /
o
:

For each a, we expand using the binomial theorem to get

.x2 C y3/a D
aX
iD0

 
a

i

!
x2i y3.a�i /:

Note that none of the terms in this expression can cancel, since each has a unique bi-
degree in x and y, unless its corresponding binomial coefficient is zero. So, thinking
over FŒxp

e
; yp

e
�, we see that F T .f / � a

pe
if and only if there is an index i such

that

2i < pe; 3.a � i/ < pe; and

 
a

i

!
6� 0 .mod p/: .	/
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Note that if 2a < pe , then the index i D a fulfills the three conditions in .	/.
This, in particular, implies that F T .f / � 1

2
, independent of p. If the characteristic

is 2, it is easy to see immediately that F T .f / D 1
2
.

On the other hand, if a
pe

� 5
6
, then condition .	/ is never satisfied so that

F T .f / � 5
6
, independent of p. Indeed, in this case, either 2i � pe or 3.a�i/ � pe .

For otherwise, we have both

i � pe � 1
2

and .a � i/ � pe � 1

3
;

in which case, adding them, we have that a � pe�1
2

C pe�1
3
: This implies that

a
pe

� 5
6

� 5
6pe

, a contradiction.
For the exact computation of the F -threshold, it remains to analyze the binomial

coefficients in the critical terms in which both 2i < pe and 3.a � i/ < pe . These
are the terms indexed by i satisfying a � pe

3
< i <

pe

2
. For this, it is crucial to

understand the behavior of binomial coefficients modulo p. One of the main tools
is the following theorem:

Theorem 17 (Lucas [38]). Fix nonnegative integers m � n 2 N and a prime
number p. Write m and n in their base p expansions: m D Pr

jD0 mjp
j and

n D Pr
jD0 nj pj . Then, modulo p,

 
m

n

!
�
 
m0

n0

! 
m1

n1

!
� � �
 
mr

nr

!
;

where we interpret
�
a
b

�
as zero if a < b. In particular,

�
m
n

�
is nonzero mod p if and

only if mj � nj for all j D 1; : : : ; r .

Thus, to compute the F -threshold of x2 C y3, it is helpful to write a in its base
p expansion, and then try to understand, using Lucas’s theorem, whether there exist
values of i in the critical range for which

�
a
i

�
is not zero. For example, if p � 1

mod 6, then 5pe D 5 mod 6, so the number a D 5pe�5
6

is an integer. With this
choice of a, it is not hard to check that the conditions .	/ are satisfied for the index
i D pe�1

2
. This shows that when p � 1 mod 6; then the F -threshold of x2 C y3 is

at least a
pe

D 5
6

� 5
pe

for all e. It follows that for p � 1 mod 6; the F -threshold of

x2 C y3 is exactly 5
6
. The details, as well as the computation for other p, are carried

out in [43, Example 4.3] or [23, Example 8.2].
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3.5 Comparison of F -Thresholds and Log Canonical
Thresholds

Once F -thresholds and log canonical thresholds are defined, it is natural to compare
them when it is possible. This is the case when f 2 ZŒx1; : : : ; xn�. We can view f

as a polynomial over C and compute its log canonical threshold. After reduction
modulo p, we can calculate the F -threshold of f mod p in FpŒx1; : : : ; xn�.

Question. For which values of p is lct.f / D F T .f mod p/? What happens
when p 
 0?

The following theorem provides a partial answer:

Theorem 18. Fix f 2 ZŒx1; : : : ; xn�. Then,

• F T .f mod p/ � lct.f / for all p 
 0 prime.
• limp!1 F T .f mod p/ D lct.f /.

The proof of this theorem is the culmination mainly of the work of the Japanese
school of tight closure, who generalized the theory of tight closure to the case of
pairs. The first important step was the work of Hara and Watanabe in [20] Theorem
3.3, with Theorem 18 essentially following from Theorem 6.8 in the paper [21] of
Hara and Yoshida; the proof there in turn generalizes the proofs given in [19] and
[55] in the nonrelative case to pairs.

Open Problem. Are there infinitely many primes p for which F T .f mod p/ D
lct.f /?

A positive answer to this question would settle a long-standing conjecture in F -
singularities: every log canonical pair .X;D/ where X is smooth (over C) is of
“F -pure type.” Daniel Hernández shows that this is the case for a “very general”
polynomial f in CŒx1; : : : ; xn� [24]. Versions of this question have been around
since the early eighties, for example, as early as Rich Fedder’s thesis in 1983 [16],
when similarities between Hochster and Robert’s notion of “F-purity” and rational
singularities began to emerge. Watanabe pointed out that the log canonicity ought
to correspond to F-purity, circulating a preprint in the late eighties proving that “F-
pure implies log canonical” for rings. He did not publish this result for several years,
when together with Hara, they introduced a notion of F-purity for pairs and proved
the corresponding result for a pair .X;D/. The field of “F-singularities of pairs,”
including the F-pure threshold, developed rapidly in Japan, with numerous papers
of Watanabe, Hara, Takagi, Yoshida, and others filling in the theory. The question in
the form stated here may have first appeared in print in [43].
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3.6 Test Ideals and F -Thresholds

We wish to construct a family of ideals of a polynomial f 2 FpŒx1; : : : ; xn� D R,
say, �.f c/, called test ideals, which are analogous to the multiplier ideals.

We first restate the definition of F -threshold yet one more time, in a way that
will make the definition of the test ideals very natural.

Definition 19. The F -threshold of f 2 FpŒx1; : : : ; xn� at m is

F Tm.f / D sup
n
c D a

pe
2 Z

h 1
p

i ˇ̌ 9' 2 HomR.R
1=pe ; R/; '.f c/ … m

o
:

To see that this is equivalent to the previous definitions, we apply the following
simple lemma in the case where J D m:

Lemma 20. Consider f 2 R D FpŒx1; : : : ; xn� and c D a
pe

. Fix any ideal J � R.

Then f c … JR 1
pe if and only if there is an R-linear map R

1
pe

��! R sending f c to
an element not in J .

Proof. Suppose that f c … JR
1
pe . Then in writing f c uniquely in some basis for

R
1
pe as in expression (9), there is some coefficient rA … J . If we let � be the

projection onto this direct summand, we have a map � satisfying the required

conditions. Conversely, if f c 2 JR 1
pe , then the R-linearity of � forces �.f c/ 2 J

for any � 2 HomR.R
1=pe ; R/. So every such � must send f c to an element in J . ut

With this definition of F -threshold in mind, it is quite natural to define test ideals,
at least for certain c. First note that for each f 2 FpŒx1; : : : ; xn� and each c 2 ZŒ 1

p
�,

we have a natural R-module map:

Hom.R1=p
e
; R/ �� R

�
� �� �.f c/;

where e is chosen so that c D a
pe

for some natural number a. The test ideal is the
image of this map.

Definition 21. Let f 2 FpŒx1; : : : ; xn� and c D a
pe

2 ZŒ 1
p
�. The test ideal �.f c/ is

the ideal

�.f c/ D imŒHom.R1=p
e

; R/ �! R; defined by evaluation at f c�:

In practical terms, if we write f c D f a=pe uniquely as in Expression (9), then
�.f c/ is generated by the coefficients rA which appear in this expression. Note that
this is independent of the way we write c. Indeed, if we instead think of c as ap

peC1 ,
then the expression for f c becomes

f c D
X
A

rAx
A=pe D

X
rAx

pA=peC1
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which is a valid expression for f c as an element of the freeR-moduleR1=p
eC1

since
the monomials xpA=p

eC1
are still part of free basis for R1=p

eC1
.

Remark 22. The test ideal �.f a=pe / is the smallest ideal J such that f a=pe 2
JR1=p

e
. Indeed, Lemma 20 can be reinterpreted as saying that if there is some ideal

J of R such that f a=pe 2 JR1=pe , then �.f a=pe / � J:

Although we have not yet defined test ideals with arbitrary real exponents c, let
us pause and see whether, at least for c 2 ZŒ1=p�, we have a collection of ideals
f�.f c/g satisfying the desired basic properties analogous to Proposition 23. That is,
we want:

1. �.f c/ is the unit ideal for sufficiently small positive c.
2. If c > c0, then �.f c0

/ � �.f c/I
3. The F -threshold of f is

F Tm.f / D supfc j �.f c/ D .1/g:

4. If " > 0 small enough, then �.f c/ D �.f cC"/.
5. There exist certain c such that �.f c�"/ © �.f c/ for all positive ".

The first property is easy. Indeed, for fixed a, consider f a=pe 2 R1=p
e

as e gets
very large. If f a=pe 2 mR1=p

e
; then f a 2 mŒpe� � mpe in R. But this cannot be

the case for all e. The third property follows immediately from the second, which is
also quite straightforward. Note that since the test ideal �.f c/ is independent of the
way we represent c as a quotient of two integers whose denominator is a power of
p, we may assume that c D a

pe
and c0 D b

pe
have a common denominator. Then:

Lemma 23. For a
pe

� b
pe

, we have

�.f a=pe / � �.f b=pe /:

Proof. Suppose that s 2 �.f a=pe /. This means there is an R-linear map  W
R1=p

e �! R so that  .f a=pe / D s. Precomposing this with the R-linear map

R1=p
e 	�! R1=p

e
given by multiplication by f .a�b/=pe , we have an R-linear map

R1=p
e

	
�� R1=p

e
 

�� R

f b=pe � �� f .a�b/=pef b=pe � �� '.f a=pe / D s;

showing that s 2 �.f b=pe / as well. ut
The fourth property is also quite simple to prove.

Lemma 24. Fix c D a
pe

. Then, for all n sufficiently large (how large could depend
on c),
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�.f c/ D �.f
cC 1

pn /:

Proof. Fix c D a
pe

and let s 2 �.f c/: This means that there exists an R-linear map

R1=p
e �! R s:t: f a=pe 7! s:

Take n sufficiently large so that f 1=pn�e
is part of a free basis forR1=p

n�e
. Projection

onto the submodule spanned by f 1=pn�e
is an R-linear map R1=p

n�e ! R sending
f 1=pn�e

to 1: Taking the peth roots, we have an R1=p
e
-linear map

R1=p
n  ! R1=p

e

s:t: f 1=pn 7! 1:

In particular  .f
a
pe C 1

pn / D f
a
pe : Composing, we get an R-linear map

R1=p
n

 
�� R1=p

e
�

�� R

f a=peC1=pn � �� f a=pe � �� '.f a=pe / D s:

This shows that s 2 �.f cC 1
pn /; as desired. ut

The fifth property, however, is not true if we restrict attention to c that are rational
numbers whose denominator is a power of p. To get property (5), we need to define
test ideals also for arbitrary positive real numbers cI if we can do so in such a way
that the first four properties are satisfied for all real numbers, then the completeness
property of the real numbers will automatically grant (5).

Lemma 23 encourages us to define �.f c/ for any positive real c by approxi-
mating c by a sequence of numbers fcngn2N 2 ZŒ 1

p
� converging to c from above

and taking advantage of the Noetherian property of the ring. That is, we take any
monotone decreasing sequence of numbers in ZŒ 1

p
�

c1 > c2 > c3 : : :

converging to c. There is a corresponding increasing sequence of test ideals:

�.f c1/ � �.f c2/ � �.f c3/ � � � :

Because R is Noetherian, this chain of ideals must stabilize. Since any other strictly
decreasing sequence converging to c is cofinal with this one (meaning that if fc0

ig is
some other sequence, then for all i , there exists j such that ci > c0

j and vice versa),
it is easy to check that the stable ideal is independent of the choice of approximating
sequence. So we have the following definition:
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Definition 25. For any c 2 RC the test ideal is defined as

�.f c/ WD
[
n�0

�.f cn/;

where fcngn2N is any decreasing sequence of rational numbers in ZŒ1=p� approach-
ing c. In particular,

�.f c/ WD
[
n�0

�.f dcpne=pn/;

or equivalently as �.f dcpne=pn / for n 
 0.

There is one slight ambiguity to address: If the real number c happens to be a
rational number whose denominator is a power of p, then we have already defined
�.f c/ in Definition 21. Do the two definitions produce the same ideal in this case?
That is, we need to check that, if we had instead approximated c by a sequence
fcngn2N 2 ZŒ1=p� converging to a=pe from above, then the ideals �.f cn/ stabilize
to �.f a=pe /. But this is essentially the content of Lemma 24. So test ideals are well-
defined for any positive real number.

As before with multiplier ideals, the following follows easily from the definition:

Proposition 26. Fix a polynomial f and view its test ideals �.f c/ as a family
of ideals varying with a positive real parameter c. Then the following properties
hold:

1. For c 2 RC sufficiently small, �.f c/ is the unit ideal.
2. If c > c0, then �.f c/ � �.f c0

/:

3. The F -threshold of f is

F T .f / D supfc j �.f c/ D .1/g:

4. For each fixed c, we have �.f c/ D �.f cC"/ for sufficiently small positive " (how
small is small enough depends on c).

5. There exist certain c 2 RC such that �.f c�"/ © �.f c/ for all positive ".

The proposition is summarized by the following diagram of the c-axis, which
shows intervals where the test ideal remains constant:

Œ : : : � c-axis/Œ
c1

�.f c/ D .1/
/Œ
c2

� ¨ .1/
/Œ
cn

�

F -threshold

This leads naturally to the F -jumping numbers.

Definition 27. The F -jumping numbers of f are the real numbers ci 2 RC for
which �.f ci / ¤ �.f ci�"/, for every " > 0.
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It is not hard to see that test ideals and F-jumping numbers enjoy many of
the same properties as do the multiplier ideals and jumping numbers defined in
characteristic zero. First we have an analog of the Briançon–Skoda theorem.10

Proposition 28 ([4, Proposition 2.25]). Let f be a polynomial in FpŒx1; : : : ; xn�.
Then for every c 2 RC, we have

�.f cC1/ D .f / � �.f c/:

In particular, a positive real number c is an F -jumping number if and only if c C 1

is an F -jumping number.

Proof. Without loss of generality, we may replace both c and c C 1 by rational
numbers in ZŒ 1

p
� approximating each from above. Thus we may assume c D a=pe

for some a; e 2 N.

For any R-linear map R1=p
e '�! R, it is clear that

'.f .a=pe/C1/ D f '.f .a=pe //;

since f 2 R. It immediately follows that �.f cC1/ D .f / � �.f c/: ut
Like the jumping numbers in characteristic zero, the F -jumping numbers are

discrete and rational. Interestingly, the proof of the characteristic zero statement
follows trivially from the (algebro-geometric) definition of multiplier ideals, while
the characteristic p proof took some time to find.

Theorem 29 ([4, Theorem 3.1]). The F -jumping numbers of a polynomial are
discrete and rational.

The proof takes advantage of an additional symmetry the F-jumping numbers
enjoy for which there is no analog in characteristic zero.

Lemma 30 ([4, Proposition 3.4]). Let f be a polynomial in FpŒx1; : : : ; xn�. If c is
a jumping number for f , then also pc is a jumping number for f .

Proof. Let c be a jumping number, that is, suppose �.f c/ ¨ �.f c�"/ for all � > 0.
For any a=pe < c � b=pe where a; b are positive integers, we thus have

�.f
b
pe / � �.f c/ ¨ �.f

a
pe /;

and the first inclusion is an equality when b
pe

is sufficiently close to c. For such close
b
pe

, write

f b=pe D
X
B

rBxB=p
e

10Starting in [37], the name of this theorem, which belongs to a collection of inter-related theorems
comparing powers of an ideal to its integral closure, has been sometimes shortened to “Skoda’s
theorem.” We follow here the tradition in commutative algebra to include Briançon’s name.
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so that �.f b=pe / is generated by the coefficients rB . Raising to the power p gives
that

f b=pe�1 D
X
B

r
p
BxB=p

e�1

;

which means, by Lemma 20, that every R-linear map R1=p
e�1 �! R sends f b=pe�1

to something in hrpBi. In other words,

�.f b=pe�1 / � hrpBi: (10)

In contrast, since �.f b=pe / ¨ �.f a=pe /; we know that f a=pe 62 hrBiR1=pe :
Raising to pth powers again, we have that f a=pe�1 62 hrpBiR1=pe�1 . But then (10)

forces f a=pe�1 62 �.f
b

pe�1 /R1=p
e�1

. By Lemma 20, it follows that there is an R-

module homomorphism R1=p
e �! R such that �.f a=pe�1 / is not in �.f

b

pe�1 /. But

this exactly means that there is an element of �.f a=pe�1 / that is not in �.f
b

pe�1 /.
Letting a=pe; b=pe go to c, we get that pc is a jumping number as well as c: ut
Proof of Theorem 29. To prove discreteness, we fix an f of degree d , and c D a

pe
.

We claim that �.f c/ is generated by elements of degree smaller or equal to bcdc.
Indeed, �.f c/ is generated by the coefficients rA appearing in f c D P

rAxa=p
e 2

R1=p
e
: Since f c has degree dc, then rA 2 R has degree � bcdc. This proves the

claim.
Now assume that the F -jumping numbers of f , say, ˛1 < ˛2 < � � � , were

clustering to some ˛. Without loss of generality, each of the ˛i can be assumed
in ZŒ 1

p
�. By definition of F -jumping number,

�.f ˛1 / © �.f ˛2/ © � � � : (11)

The previous claim ensures that each �.f ˛i / is generated in degree � bd˛ic �
bd˛c D D. Now intersect each of these test ideals with the finite-dimensional vector
space V � FpŒx1; : : : ; xn� consisting of polynomials of degree � D. The sequence

�.f ˛1/\ V © �.f ˛2/ \ V © � � �
stabilizes, since V is finite dimensional. Hence (11) also stabilizes, which is a
contradiction to clustering of the F -jumping numbers.

To prove the rationality of F -jumping numbers, let c 2 R be an F -jumping
number. Then for all e 2 N, the real numbers pec are also F -jumping numbers.
One can write pec D bpecc C fpecg, where the fractional part fpecg is also an
F -jumping number by Lemma 30. By the discreteness of the F -jumping numbers it
follows that fpecg D fpe0

cg for some e and e0 in N, and hence pec�pe0
c D m 2 Z.

Thus c D m

pe�pe0 is rational. ut
Remark 31. Test ideals and multiplier ideals can be defined not just for one
polynomial but for any ideal a in any polynomial ring, and even for sheaves of
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ideals on (certain) singular ambient schemes. While not much more complicated
that what we have introduced here, we refer the interested reader to the literature
for this generalization. Many properties of multiplier ideals (see [37, Chap. 9])
can be directly proven, or adapted, to test ideals. For example, the fact that the
F -jumping numbers are discrete and rational holds more generally—essentially
for all ideals in normal Q-Gorenstein ambient schemes [6]. In addition to the
few properties discussed here, other properties of multiplier ideals that have
analogs for test ideals include the “restriction theorem,” the “subadditivity theorem,”
the “summation theorem” [21, 59], and the behavior of test ideals under finite
morphisms [49]. Interestingly, some of the more difficult properties to prove in
characteristic zero turn out to be extraordinarily simple in characteristic p. For
example, in characteristic zero, the proof of the Briançon–Skoda theorem (for
ideals that are not necessarily principal) uses the “local vanishing theorem” (see
[37]). Although this vanishing theorem fails in characteristic p, the characteristic p
analog of the Briançon–Skoda theorem (i.e., Theorem 28 for non-principal ideals) is
nonetheless true and in fact quite simple to prove immediately from the definition.
On the other hand, some properties of multiplier ideals that follow immediately
from the definition in terms of resolution of singularities turn out to be false for test
ideals. For example, while multiplier ideals are easily seen to be integrally closed,
test ideals are not. In fact, every ideal in a polynomial ring is the test ideal �.a�/ for
some ideal a and some positive � 2 R, as shown in [42].

3.7 An Interpretation of F -Thresholds and Test Ideals
Using Differential Operators

Our definition of F -threshold can be viewed as a measure of singularities using
differential operators. The point is that a differential operator on a ring R of
characteristic p is precisely the same as a Rp

e
-linear map.

Differential operators can be defined quite generally. Let A be any base ring and
R a commutative A-algebra. Grothendieck defined the ring of A-linear differential
operators ofR using a purely algebraic approach (see [18]), which in the case where
A D k is a field and R is a polynomial ring over k results in the “usual” differential
operators.

Definition 32. Let R be a commutative A-algebra. The ring DA.R/ of A-linear
differential operators is the subring of the (noncommutative) ring EndA.R/ obtained
as the union of the A-submodules of differential operatorsDn

A.R/ of order less than
or equal to n, where Dn

A.R/ is defined inductively as follows: First the zeroth order
operatorsD0

A.R/ are the elements r 2 R interpreted as theA-linear endomorphisms
“multiplication by r”; that is, r W R �! R sends x 7! rx. Then, for n > 0,

Dn
A.R/ WD f@ 2 EndA.R/ j Œr; @� 2 Dn�1

A .R/ for all r 2 Rg;
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where Œr; @� is the usual Lie bracket of operators, that is, Œr; @� D r ı @� @ ı r .

Example 33. The elements of D1
A.R/ consist of the endomorphisms of the form

r C d , where d is an A-linear derivation of R and r 2 R.

Example 34. If k has characteristic zero andR is the polynomial ring kŒx1; : : : ; xn�,
then Dk.R/ is the Weil algebra kŒx1; : : : ; xn; @1; : : : ; @n� where each @i denotes the
derivation @

@xi
. This is the noncommutative subalgebra of Endk.R/ generated by the

@
@xi

and the multiplication by xj .

Example 35. In characteristic p, the differential operators on kŒx1; : : : ; xn� are
essentially “the same” as in Example 34 as k-vector spaces, but not as rings. For
example, if k has characteristic p, the operator

	
@

@xi


p
D
	
@

@xi
ı � � � ı @

@xi




„ ƒ‚ …
p times

obtained by composing the first-order operator @
@xi

with itself p-times is the zero
operator. Nonetheless, there is a differential operator

1

pŠ

@p

@x
p
i

sending xpi to 1, which is not the composition of lower order operators but which
essentially has the same effect as the corresponding composition in characteristic
zero. In particular, a k-basis forDk.kŒx1; : : : ; xn�/, where k has characteristic p, is

(
x
j1
1 � � �xjnn ;

1

i1Š

@i1

@x
i1
1

ı 1

i2Š

@i2

@x
i2
2

ı � � � ı 1

inŠ

@in

@x
in
n

)

as j` and i` range over all nonnegative integers. In characteristic p, Dk.kŒx1;

: : : ; xn�/ is not finitely generated.

The following alternate interpretation of differential operators in characteristic p
ties into the definition of F -threshold:

Proposition 36. Let R be any ring of prime characteristic p such that the
Frobenius map is finite (main case for us: R D FpŒx1; : : : ; xn�). Then an Fp-linear

map R
d�! R is a differential operator if and only if it is linear over some subring

of peth powers. That is,

DFp .R/ D
[
e2N

EndRpe .R/:
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Proof. This is not a difficult fact to prove. It is first due to [63], or see [57] for a
detailed proof in this generality. ut

This gives us an alternate filtration of DFp .R/ by “Frobenius order:” DFp .R/ is
the union of the chain

EndR.R/ D R � EndRp .R/ � End
Rp

2 .R/ � End
Rp

3 .R/ � : : :

Alternatively, by taking peth roots, we can interpret the ring of differential operators
as the union

EndR.R/ D R � EndR.R
1
p / � EndR.R

1

p2 / � EndR.R
1

p3 / � : : :

Using this filtration, we can give an alternative definition of test ideals and F -
threshold in terms of differential operators.

Definition 37. The F -threshold of f 2 FpŒx1; : : : ; xn� at the maximal ideal m is
defined as

F Tm.f / D sup
n
c D a

pe
2 Z

h 1
p

i ˇ̌ 9 @ 2 EndR.R1=p
e

/

such that @.f a=pe / 62 mR1=p
e
o
:

Note that this interprets the F -threshold as very much like the multiplicity: it is
defined as the maximal (Frobenius) order of a differential operator which, when
applied to (a power of) f , we get a nonvanishing function. However, here, the
operators are filtered using Frobenius.

Similarly, the test ideal is the image of f a=pe over all differential operators of
R1=p

e
which have image in R.

Remark 38 (Historical Remarks and Further Work). The F -threshold was first
defined by Shunsuke Takagi and Kei-ichi Watanabe in [60], who called it the F -
pure threshold. The definition looked quite different, since they defined it using
ideas from Hochster and Huneke’s tight closure theory [28]. Expanding on this
idea, Hara and Yoshida [21] introduced the test ideals (under the name “generalized
test ideals” in reference to the original test ideal of Hochster and Huneke, which
was not defined for pairs), and soon later using this train of thought, F -jumping
numbers were introduced in [43], where they are calledF -thresholds. The definition
of F -pure threshold, test ideals, and the higher F -jumping numbers we presented
here is essentially from [4], where it is also proven that this point of view is
equivalent (in regular rings) to the previously defined concepts. This point of view
removes explicit mention of tight closure, focusing instead on Rp

e
-linear maps (or

differential operators).
We have presented the definition and only the simplest properties of F -threshold

and test ideals, and only in the simplest possible case: of one polynomial in a
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polynomial ring or what amounts to a hypersurface in a smooth ambient scheme.
Nor have we included any substantial applications. We urge the reader to investigate
the survey [48] or others previously mentioned. In particular, test ideals are
defined not only for individual polynomials but for any ideal, and the ambient
ring need not be regular (e.g., the F -jumping numbers are discrete and rational
in greater generality [6]). There are a great number of beautiful applications to
developing tools from birational geometry in characteristic p using test ideals, such
as Schwede’s “centers of F -purity” and F -adjunction [46, 47]; see the papers of
Schwede, Tucker, Takagi, Hara, Watanabe, Yoshida, Zhang, Blickle, and others
listed in the bibliographies of [48].

4 Unifying the Prime Characteristic and Zero
Characteristic Approaches

We defined the log canonical threshold for complex polynomials using integration
and the F -threshold for characteristic p polynomials using differential operators.
However, as we have seen, in characteristic zero, our approach was equivalent to a
natural approach to measuring singularities in birational geometry. Since birational
geometry makes sense over any field, might we also be able to define the F -
threshold directly in this world as well?

This approach does not work as well as we would hope in characteristic p. Two
immediate problems come to mind. First, resolution of singularities is not known
in characteristic p. It turns out that this is not a very serious problem. Second, and
more fatally, some of the vanishing theorems for cohomology that make multiplier
ideals such a useful tool in characteristic zero actually fail in prime characteristic.

The lack of Hironaka’s theorem in characteristic p can be circumvented as

follows. We look at all proper birational maps X
��! CN with X normal. If X

is a normal variety, the needed machinery of divisors goes through as in the smooth
case, because the singular locus of a normal variety is of codimension two or higher.
To define the order of vanishing of a function along an irreducible divisor D, we
restrict to any (sufficiently small) smooth open set meeting the divisor. Thus, the

relative canonical divisor K� can be defined for a map X
��! CN , for any normal

X , as can the divisor F D div.f ı�/. That is, ifX
��! CN withX normal, we can

define K� and F as the divisor of the Jacobian determinant of �jU and the divisor
of f ı �jU , respectively, where U � X is the smooth locus of X (or any smooth
subset of X whose complement is codimension two or more).

So we can attempt to define the log canonical threshold in arbitrary characteristic
as follows:

Definition 1. The log canonical threshold of a polynomial f 2 kŒx1; : : : ; xn� is
defined as
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lct.f / WD sup
˚
� 2 RC

ˇ̌ dK� � �F e is effective
�
;

as we range over all proper birational morphismsX
��! Ank with X normal.

Remark 2. It is not hard to show that, in characteristic zero, this definition produces
the same value as Definition 9. See [37, Thm 9.2.18].

Similarly, for any divisor on a normal variety X , the sheaves OX.D/ are
defined.11 So we can also attempt to define the multiplier ideal in characteristic
p similarly by considering all proper birational models.

Definition 3. Let f be a polynomial in n variables and � a positive real number.
The multiplier ideal is

J .f �/ D
\

X
��!A

n
k

��OX.dK� ��F e/ D fh 2 CŒx1; : : : xn� j div.h/CdK� ��F e � 0g

as we range over normal varieties X , mapping properly and birationally to A
n
k via

� , whereK� is the relative canonical divisor and F is the divisor div.f ı �/ on X .
Equivalently, this amounts to

J .f �/ D fh 2 kŒx1; : : : ; xn� j ordE.h/ � �ordE.f ı �/ � ordE.JacC.�//g;

where we range over all irreducible divisors E lying on a normal X mapping

properly and birationally to A
n
k , say, X

��! A
n
k.

Again, in characteristic 0, this produces the same definition as before. Does the
multiplier ideal in characteristic p (produced by Definition 3) have the same good
properties as in characteristic zero? The answer is NO. The problem occurs with
the behavior of multiplier ideals in prime characteristic under wildly ramified maps:
they simply do not have the properties we expect of multiplier ideals based on their
behavior in characteristic zero (see [48, Example 6.33] or [48, Example 7.12]).
The test ideals have better properties in char p than the multiplier ideals. They
accomplish much of what multiplier ideals do in characteristic zero. The survey
[48] gives an excellent introduction to this topic.

One reason the multiplier ideals fail to be useful in prime characteristic is that
certain vanishing theorems fail that contribute to the magical properties of multiplier
ideals over C. For example, a very useful statement is “local vanishing”: If � W X !
ANk is a log resolution of a complex polynomial f , then

Ri��OX.K� � bcF c/ D 0

for all i > 0 (cf. [37, Theorem 9.4.1]). For example, local vanishing is needed to
prove the Briançon–Skoda theorem for non-principal ideals in characteristic zero.

11Although unlike the smooth case, they need not be invertible sheaves in general.
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Unfortunately, this vanishing theorem is false in characteristic p. Fortunately, the
Briançon–Skoda theorem for test ideals can be proven quite simply in characteristic
p, using Frobenius instead of vanishing theorems.

On the other hand, for “large p,” it is true that the multiplier ideals “reduce mod
p” to the test ideals.

4.1 Idea of Reduction Modulo p

Fix a polynomial f 2 QŒx1; : : : ; xn� or (by clearing denominators) in ZŒx1; : : : ; xn�.

Fix a log resolution of f over Q, say, given by XQ

��! An
Q

. We can “thicken” XQ

to a scheme XZ over Z and so get a family of maps over SpecZ described by the
following diagram:

XQ

�

��

XZ

��

XFp
� ���

��
An

Q

� � ��

��

An
Z

��

An
Fp

� ���

��
SpecQ � � �� SpecZ Spec.Fp/� ���

where the right-hand side gives a fiber over a closed point p in SpecZ and the left-
hand side shows the generic fiber. Because the generic fiber is a log resolution of f ,
it follows that for an open set of closed fibers, we also have a log resolution of f .
That is, we can assume XFp �! An

Fp
is a log resolution of f for p 
 0.

The multiplier ideal J .An
Q
; f c/ � QŒx1; : : : ; xn� can be viewed as an ideal in

ZŒx1; : : : ; xn� by clearing denominators if necessary; abusing notation, we denote
the ideal in ZŒx; : : : ; xn� and QŒx1; : : : ; xn� the same way. So we can reduce modulo
p and obtain an analog of multiplier ideals in positive characteristic given by

J .An
Fp
; f c/ D J .An

Q
; f c/˝ Fp:

These turn out to be the test ideals for p 
 0!

Theorem 4 ([55, Theorem 3.1], [19], [21, Theorem 6.8]).

• For all p 
 0 and for all c,

�.FpŒx1; : : : ; xn�; f
c/ � J .QŒx1; : : : ; xn�; f c/˝ Fp:
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• Fix c, for all p 
 0,

�.FpŒx1; : : : ; xn�; f
c/ D J .QŒx1; : : : ; xn�; f c/˝ Fp:

(How large is large enough for p depends on c.)

As we have explained, however, the test ideals are probably the “right” objects
to use in each particular characteristic p.

Recently, Blickle, Schwede, and Tucker have found an interesting way to unify
test ideals and multiplier ideals [7]. The idea is to look at a broader class of proper

maps, not just birational ones. Recall that a surjective morphism of varietiesX
�! Y

is an alteration if it is proper and generically finite. We say an alteration is separable
if the corresponding extension of function fields k.Y / � k.X/ is separable. Note

that such � always factors as X
�! QY �! Y where � is proper birational and � is

finite.
Consider a separable alteration X

�! An, with X normal. Denote by F� the
divisor onX defined by f ı� and byK� the divisor onX defined by the Jacobian.12

As before in our computation of the multiplier ideal, the idea is to push down the
sheaf of ideals OX.dK� ��F�e/ to OX . However, this will only produce a subsheaf
of ��OX , which is not OAn but rather some normal finite extension. Let us denote
its global sections by S , which is a normal finite extension of the polynomial ring
R. To produce an ideal in R, we can use the trace map.

4.2 Trace

Let R � S be a finite extension of normal domains, with corresponding fraction
field extensionK � L. The field trace is a K-linear map

L ! K

sending each ` 2 L to the trace of theK-linear mapL ! L given by multiplication
by `: Because S is integral over the normal ring R, it is easy to check that this
restricts to an R-linear map

S
tr! R:

In particular, every ideal of S is sent, under the trace map, to an ideal in R. Using
this, we can give a uniform definition of the multiplier ideal and test ideal. For any

separable alteration X
�! An with X normal, denote by t r� the trace of the ring

extension map R ,! S D OX.X/. Then we have:

12By which we mean the unique divisor onX which agrees with these divisors on the smooth locus
of X . This is possible since X is normal; see the beginning paragraphs of Sect. 4.
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Theorem 5 ([7]). Fix a polynomialf 2 kŒx1; : : : ; xn� where k is an arbitrary field,
and let c be any positive real number. Define

J WD
\
�

t r�.��OX.dK� � cF�e//:

where � varies over all possible normal varieties X mapping properly and
generically separably to An. Then,

J D
(

J .f c/ if the characteristic is 0;
�.f c

p / if the characteristic is p > 0:

Note that each ��OX.dK��c��De/ is an ideal in ��OX , whose global sections
form some finite extension S of the polynomial ring R D kŒx1; : : : ; xn�: So its
image under the trace map is an ideal in R. The theorem says that if we intersect all
such ideals of R, we get the test/multiplier ideal of f �.

In fact, Blickle, Schwede, and Tucker prove even more: The intersection

stabilizes. So there is one alterationX
�! An for which �.f c/ D t r�.��OX.dK� �

c��De//: In fact, it has been shown that, fixing f , there is one alteration which
computes all test ideals �.f �/, for any � [50]. Of course, this is already known
for multiplier ideals: it suffices to take one log resolution of X to compute the
multiplier ideal. Indeed, in characteristic zero, one need not take any finite covers at
all. Interestingly, in characteristic p, it is precisely the finite covers that matter most.

It is worth remarking that many of the features of multiplier ideals—including
the important local vanishing theorem—can be shown in characteristic p “up to
finite cover” [7, Theorem 5.5]. This can be viewed as a generalization of Hochster
and Huneke’s original theorem on the Cohen-Macaulayness of the absolute integral
closure of a domain of characteristic p [29]. See also [54].
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J. Amer. Math. Soc. 3, 31–116 (1990)

29. Hochster, M., Huneke, C.: Infinite integral extensions and big Cohen–Macaulay algebras. Ann.
Math. 135(1), 53–89 (1992)

30. Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent.
Math. 147, 349–369 (2002)

31. Hochster, M., Roberts, J.L.: Rings of invariants of reductive groups acting on regular rings are
Cohen–Macaulay. Adv. Math. 13, 115–175 (1974)

32. Howald, J.A.: Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc. 353, 2665–2671
(2001)

33. Igusa, J.-I.: An introduction to the theory of local zeta functions. AMS/IP Studies in
Advanced Mathematics, vol. 14. American Mathematical Society, Providence, International
Press, Cambridge (2000)

34. Kollár, J.: Singularities of pairs. Algebraic geometry–Santa Cruz 1995. In: Proceedings of
Symposium Pure Mathematics, vol. 62, Part 1, pp. 221–287. American Mathematical Society,
Providence, RI (1997)

35. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathemat-
ics, vol. 134. Cambridge University Press, Cambridge (1998). viii+254 pp.

36. Kunz, E.: Characterizations of regular local rings for characteristic p. Amer. J. Math. 91
772–784 (1969)

37. Lazarsfeld, R.: Positivity in algebraic geometry II. Ergeb. Math. Grenzgeb. (3), vol. 48.
Springer, Berlin (2004)

38. Lucas, E.: Theorie des fonctions numeriques simplement periodiques. Amer. J. Math. 1(3),
197–240 (1878)

39. Mehta, V.B., Ramanathan, A.: Frobenius splitting and cohomology vanishing for Schubert
varieties. Ann. Math. (2) 122(1), 27–40 (1985)

40. Mustata, M.: Singularities of pairs via jet schemes. J. Amer. Math. Soc. 15, 599–615 (2002)
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Three Flavors of Extremal Betti Tables

Christine Berkesch, Daniel Erman, and Manoj Kummini

1 Introduction

Classification problems can be often discretized by replacing a collection of
complicated objects by numerical invariants. For instance, if we are interested in
modules over a local or graded ring, then we can study their Hilbert polynomials,
Betti numbers, Bass numbers, and more. Describing the behavior of these invariants
becomes a proxy for understanding the modules; identifying the extremal behavior
of an invariant provides structural limitations.

The conjectures of Boij and Söderberg [6], proven by Eisenbud and Schreyer
[11], link the extremal properties of invariants of free resolutions over the graded
polynomial ring S D kŒx1; : : : ; xn� with the Herzog–Huneke–Srinivasan Mul-
tiplicity Conjectures. Here k is any field, S has the standard Z-grading, and
we study the graded Betti tables of S -modules. The Boij–Söderberg conjectures
state that the extremal rays of the cone of Betti tables are given by Betti tables
of Cohen–Macaulay modules with pure resolutions. There exist two excellent
introductions to Boij–Söderberg theory [12, 15].
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In this chapter, we explore the notion of an extremal Betti table in three different
contexts: in the original setting of a standard graded polynomial ring, over a regular
local ring, and over a finely graded polynomial ring.

Previous work has considered the extremal behavior of free resolutions, in a
manner unconnected to Boij–Söderberg theory. Each graded Betti number of the
Eliahou–Kervaire resolution of a lex-segment ideal is known to be maximal among
cyclic modules with the same Hilbert function [5, 19, 22]. Also, [1] studies the
Betti numbers of modules with extremal homological dimensions, complexity, or
curvature. Though we will not discuss these types of results further, the interested
reader might consider [2, 20, 23].

Throughout this chapter, S will denote a standard graded polynomial ring, R
will denote a regular local ring, and T will denote a finely graded polynomial
ring. For a graded S -moduleM , we define the graded Betti numbers ˇi;j .M/ WD
dimk TorSi .M;k/j . Betti numbers also have a more concrete interpretation: if F D
ŒF0  F1  � � �  Fn  0� is a minimal graded free resolution of M , then
ˇi;j .M/ is the number of minimal generators of Fi of degree j . The graded Betti
table ofM , denoted ˇ.M/, is the vector with coordinates ˇi;jM in the vector space
V DLn

iD0
L

j2ZQ.
For local and multigraded rings, there are analogous definitions. For a regular

local ring R with residue field k, we define the (local) Betti numbers of an R-
module as ˇRi .M/ D dimk TorRi .M;k/. Over a Z

m-graded polynomial ring T ,
we define the multigraded Betti numbers of a T -module M as ˇTi;˛.M/ D
dimk TorTi .M;k/˛ , where ˛ 2 Z

m. We denote the respective Betti tables by ˇR.M/

and ˇT .M/.
To streamline the exposition, we focus on modules of finite length. With minor

adjustments, most results we discuss can be extended to the case of finitely
generated modules. See [7, 12, 15] for the standard graded case and [4] for the local
case.

Let M be a graded S -module (or an R-module or a multigraded T -module) of
finite length. We say that ˇ.M/ is extremal if, for any decomposition of the form

ˇ.M/ D ˇ.M 0/C ˇ.M 00/

withM 0;M 00 graded S -modules (orR-modules or multigraded T -modules, respec-
tively), we have that ˇ.M 0/ is a scalar multiple of ˇ.M/. Extremal Betti tables
correspond to extremal rays of the cone of Betti tables of finite length. In the case
of S , this is the cone

Bfin
Q
.S/ WD Q�0 � fˇ.M/ jM is a graded S -module of finite lengthg � V:

Boij and Söderberg observed that for graded S -modules, there is a natural sufficient
condition for extremality.

Claim 1.1. For a graded S -module M of finite length, if M has a pure resolution,
then ˇ.M/ is extremal.
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Here we say that M has a pure resolution if, for each i , ˇi;j .M/ ¤ 0 for at most
one j . After proving the claim, Boij and Söderberg conjectured that this condition
is not only sufficient but also necessary. In fact, after imposing some obvious degree
restrictions on the Betti table, they conjecture the existence of pure resolutions of
Cohen–Macaulay modules of essentially any combinatorial type. This was later
proven by [13] in characteristic 0 and by [11] in a characteristic-free manner; see
Theorem 3.

In Sect. 3, we first quickly review why Claim 1.1 provides a sufficient condition
for extremality. The remainder of the section is an expository overview of Eisenbud
and Schreyer’s construction of modules with pure resolutions.

We then turn our attention to the case of a regular local ring, as considered in [4].
In contrast with the graded case, there is no obvious analogue of Claim 1.1. In
retrospect this is inevitable, as there are no modules of finite length whose Betti
tables are extremal.

In the final section, we move in the opposite direction, refining the grading to a
finely graded polynomial ring T . One possibility for understanding extremal Betti
tables in the multigraded setting is to seek out multigraded lifts of pure resolutions
from the standard Z-graded setting. This approach is taken in [14], which considers
the linear space of such multigraded Betti tables. Moreover, in the case of kŒx; y�
with Z

2-grading, [8] constructs the entire cone of bigraded Betti tables spanned by
such lifted pure resolutions.

Not all extremal Betti tables arise in this way in the multigraded setting, and
we provide a sufficient condition for a bigraded Betti table to be extremal, which
demonstrates this fact. The extra rigidity induced by the bigrading seems to greatly
complicate the picture. We use this condition to show the existence of a zoo of
extremal Betti tables.

2 Preliminaries

Given a ring R (or a scheme X ) and a complex F of R-modules (or OX -
modules) with differential @i W Fi �! Fi�1, we denote the homology modules
of F by Hi .F/ D .ker @i /=.im@iC1/. The derived category of R-modules (or
of OX -modules) is the category consisting complexes of R-modules (or OX -
modules) modulo the equivalence relation generated by quasi-isomorphisms. We
may represent any object in the derived category by a genuine complex of modules.

For a projection of the form�1WX�Pm �! X of schemes, there are well-defined
higher direct image functors Ri�1� that take a sheaf on X � P

m (or a complex of
sheaves on X � P

m) to a sheaf on X (or a complex of sheaves on X ). Further, if we
are willing to work with the derived category, then there is a single functorR�1� that
combines all of these higher direct image functors: the functorR�1� takes a sheaf F
onX �Pm (or a complex F of sheaves) and returns an object in the derived category
of OX -modules. The functorR�1� combines the higher direct image functors in the
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sense that if G is any complex that represents R�1�F, then Hi .G/ Š R�i�1�F for
all i . In the special case where X D Spec.A/, we will view each Ri�1�F as an
A-module (instead of writing �.X;Ri�1�F/) and similarly for R�1�. If F is an
OX�Pm-module, then Ri�1�F D 0 for all i < 0. Since computing R�1�F depends
only on the quasi-isomorphism class of F , the same fact holds for any (locally free)
resolution F of an OX�Pm -module.

Let �2 be the second projection X � P
m �! P

m. Given a sheaf G on X and a
sheaf L on P

m, we set

G � L WD ��
1 G � ��

2 L:

If L D OPm.�e/ is a line bundle on P
m, then by way of the projection formula [17,

III, Ex. 8.3], computing R�1�.G � L/ is straightforward, and we will use this
computation repeatedly. There are three cases, depending on the value of e:

1. If �e � 0, then the only nonzero cohomology of OPm.�e/ isH0.Pm;OPm.�e//,
and we have that R�1�.G � OPm.�e// is the complex consisting of the sheaf
G ˝H0.Pm;OPm.�e// in homological degree 0.

2. If �1 � �e � �m, then OPm.�e/ has no cohomology, so R�1�.G �
OPm.�e// D 0.

3. If �m � 1 � �e, then the only nonzero cohomology of OPm.�e/ is Hm

.Pm;OPm.�e//, and we have thatR�1�.G�OPm.�e// is the complex consisting
of sheaf G ˝Hm.Pm;OPm.�e// in homological degree �m.

3 Extremal Betti Tables in the Graded Case

In this section, we first prove Claim 1.1, providing a sufficient condition for ex-
tremality in the graded case. We then focus on the Eisenbud–Schreyer construction
of pure resolutions.

We assume throughout this section that k is an infinite field. By [10, Lemma 9.6],
this assumption will not affect questions related to cones of Betti tables. A strictly
increasing sequence of integers d D .d0 < d1 < � � � < dn/ 2 Z

nC1 is called a
degree sequence of S . We say a free resolution F is pure of type d if it has the
form

F W S.�d0/ˇ0  � S.�d1/ˇ1  � � � �  � S.�dn/ˇn  � 0:
Proof of Claim 1.1. Our argument follows [6, Sect. 2.1], which extends a computa-
tion of Herzog and Kühl [18]; see also [12, Proposition 2.1].

Let M be a finite length module with a pure resolution

0 M  S.�d0/ˇ0;d0  S.�d1/ˇ1;d1  � � �  S.�dn/ˇn;dn  0:

Suppose that ˇ.M/ D ˇ.M 0/C ˇ.M 00/. Since M has finite length, it follows that
M 0 would also have to be a finite length module (the Hilbert series is determined
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by the Betti table and is additive). Thus, by the Auslander–Buchsbaum theorem, the
projective dimension of M 0 is n. It then follows from the decomposition of ˇ.M/

that M 0 admits a pure resolution of type .d0 < d1 < � � � < dn/. Thus, if the Betti
table of a pure resolution is unique up to scalar multiple, then ˇ.M 0/ will be a scalar
multiple of ˇ.M/.

To prove that the ˇi;di are determined (up to scalar multiple), we consider the
Herzog–Kühl equations for M from [18]. Since M has finite length, the following
n equations must vanish:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Pn
iD0.�1/iˇi;di D 0I

Pn
iD0.�1/idiˇi;di D 0I

:::
:::

Pn
iD0.�1/idn�1

i ˇi;di D 0:

(1)

Thinking of this as a system of n linear equations in the .nC1/-unknowns ˇi;di , the
solutions are given by the kernel of the matrix

0

B
B
B
@

1 �1 : : : .�1/n
d0 �d1 : : : .�1/ndn
:::

: : :
:::

d n�1
0 �dn�1

1 : : : .�1/ndn�1
n

1

C
C
C
A
:

This is a rank n matrix; in fact, the n � n minor given by the first n columns
is nonzero. To see this, rescale every other column by �1 to obtain an n � n
Vandermonde matrix for .d0; : : : ; dn�1/. Since the di are strictly increasing, this
Vandermonde determinant is nonzero. It thus follows that the kernel of this matrix
has rank 1, so the ˇi;di are uniquely determined, up to scalar multiple. ut
Remark 2. Using Cramer’s rule and the formula for Vandermonde determinants,
any solution .ˇ0;d0 ; ˇ1;d1 ; : : : ; ˇn;dn/ to the system (1) is a scalar multiple of

 
1

Q
j¤0 jd0 � dj j

;
1

Q
j¤1 jd1 � dj j

; : : : ;
1

Q
j¤n jdn � dj j

!

:

We now show that any degree sequence of S is realized by a pure resolution.
The first two constructions of pure resolutions are due to Eisenbud, Fløystad,
and Weyman [13]. Their constructions are based on representation theory and
Schur functors, and they thus require that k has characteristic 0. See [15, Sect. 3]
for an expository treatment of those constructions. The first characteristic-free
construction is due to Eisenbud and Schreyer [11]. Their construction, which relies
on a spectral sequence or, equivalently, on the Kempf–Lascoux–Weyman Geometric
Technique, was later generalized in [3].
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The complex K
Spec(S) ×P

3

K0 S1 � OP
3

K1 S(−1)6 � OP
3(−1)

K2 S(−2)15 � OP
3(−2)

K3 S(−3)20 � OP
3(−3)

K4 S(−4)15 � OP
3(−4)

K5 S(−5)6 � OP
3(−5)

K6 S(−6)1 � OP
3(−6)

Rπ1∗−−−−−−−→

The complex F
Spec(S)

F0 S1 ⊗ H0 (P3,OP
3 )

- -
- -
- -

F1 ⊗ H3 (P3,OP3(−4))
F2 ⊗ H3 (P3,OP3(−5))
F3 S(−6)1

S(−5)6
S(−4)15

⊗ H3 (P3,OP3(−6))

Fig. 1 To construct a pure resolution F of type .0; 4; 5; 6/ on Spec.S 0/, we begin with a Koszul
complex K on Spec.S 0/ � P

3 and then use a pushforward construction to collapse three of the
terms. A term Ki gets collapsed if the second factor is a line bundle on P

3 with no cohomology

Theorem 3 ([11, Theorem 5.1]). For any degree sequence d D .d0 < d1 < � � � <
dn/, there exists a finite length graded S -module whose minimal free resolution is
pure of type d .

Of course, it suffices to prove the theorem in the case where d0 D 0, as we can
obtain a pure resolution of type .d0 < � � � < dn/ by tensoring a pure resolution
of type .0 < d1 � d0 < � � � < dn � d0/ with S.�d0/. When Boij and Söderberg
conjectured the existence of pure resolutions, there were very few known examples.
One family of examples that was known came from the Eagon–Northcott complex,
the Buchsbaum–Rim complex, and other related complexes [9]. Lascoux had shown
that these complexes could be constructed by applying a pushforward construction
to a Koszul complex [21]. This pushforward construction has the effect of collapsing
strands of the Koszul complex, and Eisenbud and Schreyer realized that (with the
appropriate setup) this collapsing effect could be iterated. This became the key to
their construction of pure resolutions.1

Before presenting Eisenbud and Schreyer’s general construction for a pure
resolution, we review the original collapsing technique in the following lemma.
This produces a pure resolution of type .0; q C 1; : : : ; q C n/, which is the Eagon–
Northcott complex for an n � .q C 1/ matrix of linear forms over kŒx1; : : : ; xnCq�.
The proof of this lemma contains all of the technical features required for the general
case. An example is provided in Fig. 1.

Lemma 4. Let q be a positive integer and let S 0 WD kŒx1; : : : ; xnCq�. Let
f1; : : : ; fnCq be generic bilinear forms on Spec.S 0/ � P

q and let K be the Koszul
complex of locally free sheaves on Spec.S 0/� P

q given by the fi . Then R�1�.K/ is
represented by a pure resolution F of type .0; qC 1; qC 2; : : : ; qC n/ that resolves
a Cohen–Macaulay S 0-module of codimension n.

1The idea that Eisenbud and Schreyer’s construction of pure resolutions is a higher-dimensional
analogue of the Eagon–Northcott and Buchsbaum–Rim complexes is developed explicitly in
[3, Sect. 10].
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Proof. Since k is infinite, we may assume that the fi form a regular sequence, and
hence they define a q-dimensional subschemeZ � A

nCq�Pq . The Koszul complex
K is thus a resolution of OZ . The support of �1�OZ has dimension at most q and
therefore has codimension at least n. In fact, we will later see that the S 0-module
�1�OZ is a Cohen–Macaulay of codimension n.

For 0 � i � n C q, the P
q-degree of the generators of Ki is i . By taking the

direct images under the map �1 W Spec.S 0/�Pq �! Spec.S 0/, we will collapse the
terms K1;K2; : : : ;Kq , resulting in the desired pure resolution.

Our first goal is to show thatR`�1�K ¤ 0 if and only if ` D 0. We do this in two
steps. As noted in Sect. 2, since K is a resolution of OZ , it follows thatR`�1�K ¤ 0
only if ` � 0.

By computing R�1�.K/ in a second way, we will now show that R`�1�K ¤ 0

only if ` � 0. Note that Ki D S 0.nCq�1
i /.�i/ � OPq .�i/. For each i , let C�i;�

be the Čech resolution of Ki with respect to the standard Čech cover fSpec.S 0/ �
U0; : : : Spec.S 0/�Uqg of Spec.S 0/�Pq . Since the construction of Čech resolutions
is functorial, we obtain a double complex C �;� consisting of �1�-acyclic sheaves on
Spec.S 0/ � P

q , which has the form:

C �;� W
:
:
:

:
:
:

0 S 0 �
�Lq

k;k0
D0

OjUk\Uk0

�
��

��

S 0.�1/nCq �
�Lq

k;k0
D0

O.�1/jUk\Uk0

�
��

��

: : :��

0 S 0 �
�Lq

kD0OjUk
���

��

S 0.�1/nCq �
�Lq

kD0O.�1/jUk
���

��

: : :��

0

��

0

��

We may now compute R�1�K by applying �1� to this double complex C �;� and
running the vertical spectral sequence for the resulting double complex of S 0-
modules. After taking vertical homology of C �;�, we obtain the vE

�;�
1 -page with

differential @�;�
1 :

vE
�;�
1 W :::

:::

0 S 0 ˝H1.Pq;O/�� S 0.�1/nCq ˝H1.Pq;O.�1//
@

�1;1
1

�� : : :��

0 S 0 ˝H0.Pq;O/�� S 0.�1/nCq ˝H0.Pq;O.�1//
@

�1;0
1

�� : : :��

0 0
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The general entry on the vE1-page is given by

vE
�i;j
1 D S 0.�i/.nCq

i / ˝Hj .Pq;O.�i//:

Since Hj .Pq;O.�i// D 0 unless j D 0 or q, most of these entries of vE1 are
equal to 0. In fact, vE1 has a single nonzero entry on row 0, with the only remaining
nonzero entries appearing on row q, as shown below:

vE
�;�
1 W 0 0�� 0�� : : :�� S 0.�q � 1/

.nCq
qC1/ ˝Hq.O.�q � 1//�� : : :

@
�q�2;q
1

��

0 0�� 0�� : : :�� 0�� : : :��

:
:
:

:
:
:

:
:
:

0 0�� 0�� : : :�� 0�� : : :��

0 S 0 ˝H0.O/�� 0�� : : :�� 0�� : : :��

Since all of the terms of the vE1 page lie in total degree �i C j � 0, we see that
R`�1�K ¤ 0 only if ` � 0, as claimed.

Note that after passing the vE1-page, the only other differential exiting or
entering a nonzero term will occur on vEqC1, from position .�i; j / D .�q�1; q/ to
.�i; j / D .0; 0/. Since this spectral sequence satisfies vE

�i;j
1 ) R�iCj �1�K and

our previous computation shows that R`�1�K ¤ 0 if only if ` D 0, only positions
.0; 0/ and .�q � 1; q/ may contain nonzero entries on the vE2-page. In addition,
sinceR�1�1�K D 0, we see that vE

�q�1;q1 D 0. Hence the differential @�q�1;q
qC1 must

be injective:

vE
�;�
qC1 W 0 0 0 : : : coker@�q�2;q

1
��

@
�q�1;q

qC1�����
���

���
���

���
���

���
0

:::
:::

:::

0 S 0 ˝H0.O/ 0 : : : 0 : : :



Three Flavors of Extremal Betti Tables 107

The differential @�q�1;q
qC1 lifts to a map � of the free modules on the vE1 page:

S 0 ˝H0.O/ S 0.�q � 1/.nCq
qC1/ ˝Hq.O.�q � 1//

�
��� � � � � � � � � �

��
��

S 0 ˝H0.O/

D
��

coker@�q�2;q
1 :

@
�q�1;q

qC1

��

We thus conclude that R0�1�K D �1�OZ is represented by a minimal complex of
the form

S 0 S 0.�q � 1/
.nCq
qC1/ ˝Hq.O.�q � 1//

�

�� S 0.�q � 2/
.nCq
qC2/ ˝Hq.O.�q � 2//�� � � ��� :

Notice this is a pure complex of type .0; q C 1; : : : ; q C n/. Since it is acyclic, it
is actually a resolution of the S 0-module �1�OZ . Hence this module has projective
dimension n, and since we noted initially that it has codimension at least n, it follows
that �1�OZ is a Cohen–Macaulay module of codimension n. ut

The following proposition, due to Eisenbud and Schreyer, provides a more
general framework than Lemma 4 for collapsing terms from a resolution. The proof
is nearly identical. See Fig. 2 for an illustration of this result.

Proposition 5 ([11, Proposition 5.3]). Let F be a sheaf on X � P
m that has a

resolution G arising from OX -modules Gi , such that

Gi D Gi � O.�ei / for 0 � i � N

and e0 < � � � < eN . If this sequence contains the subsequence .ekC1; : : : ; ekCm/ D
.1; 2; : : : ; m/ for some k � �1, then

R`�1�F Š R`�1�G D 0 for ` ¤ 0;

and �1�F has a resolution G0, where

G0
i D

(
Gi ˝H0.Pm;O.�ei // for 0 � i � k;
GiCm ˝Hm.Pm;O.�eiCm// for k C 1 � i � N �m:

Proof. We proceed in a manner similar to the proof of Lemma 4. Our first goal is
to show in two steps that R`p��1�G ¤ 0 if and only if ` D 0. First, since G is a
resolution of F , it follows that R`p��1�K ¤ 0 only if ` � 0.

We now compute R�1�.G/ in a second way to show that R`�1�G ¤ 0 only
if ` � 0. For each i , let C�i;� be the Čech resolution of Gi with respect to the
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The complex G
X ×P

2

G0 G0 �OP2(−e0)
G1 G1 �OP2(−e1)
G2 G2 �OP2(−e2)
G3 G3 �OP2(−1)
G4 G4 �OP2(−2)
G5 G5 �OP2(−e5)
G6 G6 �OP2(−e6)
G7 G7 �OP2(−e7)
G8 G8 �OP2(−e8)

Rp∗Rπ1∗−−−−−−→

The complex G′

X
G′

0 G0 ⊗ H0(OP2(−e0))
G′

1 G1 ⊗ H0(OP2(−e1))
G′

2 G2 ⊗ H0(OP2(−e2))
- -
- -

G′
3 G3 ⊗ H2(OP2(−e5))

G′
4 G4 ⊗ H2(OP2(−e6))

G′
5 G5 ⊗ H2(OP2(−e7))

G′
6 G6 ⊗ H2(OP2(−e8))

Fig. 2 Proposition 5 uses a
pushforward and the
vanishing cohomology of line
bundles on P

m to collapse
terms from a free resolution.
The above illustrates the
proposition when m D k D 2

and N D 8

standard Čech cover fX � U0; : : : ; X � Umg of X � P
m. Since the construction of

Čech resolutions is functorial, we obtain a double complex C �;� consisting of �1�-
acyclic sheaves onX�Pm. To computeR�1�G, we apply �1� to the double complex
C �;� and run the vertical spectral sequence for the resulting double complex of OX -
modules. This yields an vE1-page with general entry

vE
�i;j
1 D Gi ˝Hj .Pm;O.�ei //:

Since Hj .Pm;O.�ei // D 0 unless j D 0 or m, most of these entries are equal
to 0. In fact, the resulting vE1-page consists of a strand of nonzero entries in row 0,
followed by all zeroes in columns kC1; : : : ; kCm, followed by a strand of nonzero
entries in row m:

vE
�;�
1 W �i D k k C 1 k Cm k CmC 1

: : : 0�� 0�� � � ��� 0�� GkCmC1 ˝Hm.O.�ekCmC1//�� : : :

@
�k�m�2;m
1

��

: : : 0�� 0�� : : :�� 0�� 0�� : : :��

:
:
:

:
:
:

:
:
:

:
:
:

: : : 0�� 0�� : : :�� 0�� 0�� : : :��

: : : Gk ˝H0.O.�ek//�� 0�� : : :�� 0�� 0�� : : :��

Since all of the nonzero terms of this vE1-page lie in total cohomological degree
�i C j � 0, we see that R`�1�G ¤ 0 only if ` � 0, as desired.

We have now nearly constructed our complex G0. The nonzero entries on the
vE1-page are precisely the terms we use in G0, and as its differential, we will use @1
everywhere except for the map G0

k  � G0
kC1:

G0

0 G0

1

@
�1;0
1

�� : : :�� G0

k

@
�k;0
1

�� G0

kC1

‹‹‹

�� G0

kC2

@
�k�m�2;m
1

�� : : :�� G0

N�m

@
�N;m
1

�� 0:��
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To complete the construction of G0 and to check its exactness, we note that after
the vE2-page, the only other differential exiting or entering a nonzero term will occur
on the vEmC1-page, from position .�i; j / D .�k�m�1;m/ to .�i; j / D .�k; 0/.
Since we have vE

�i;j
1 ) R�iCj �1�G and our previous computation shows that

R`�1�G ¤ 0 if and only if ` D 0, only positions .�k; 0/ and .�k � m � 1;m/
may contain nonzero entries on the vE2-page. In particular, although we have not
yet fully constructed the differential for G0, we already see that our complex is exact
in every position except possibly at G0

k or G0
kC1.

We now examine the differential @�k�m�1;m
mC1 on vEmC1. This differential must

be an isomorphism when k > 0, as otherwise RkC1�1�G and Rk�1�G would be
nonzero. When k D 0, it must be injective for the same reason:

vE
�;�
mC1 W 0 0 0 : : : coker@�k�m�2;m

1
��

@
�k�m�1;m
mC1

�����
���

���
���

���
���

���
�

0

:::
:::

:::

0 ker @�k;1
1 0 : : : 0 : : :

This differential @�k�m�1;m
mC1 lifts to a map �WG0

kC1 �! G0
k ,

G0
k D Gk ˝H0.O.�ek// G0

kC1 D Gk ˝Hm.O.�em//
�

��� � � � � � � � � �

��
��

ker @�k;1
1

� �

��

coker@�k�m�2;m
1

@
�k�m�1;m
mC1

��

completing our construction of G0:

G0

0 G0

1

@
�1;0
1

�� : : :�� G0

k

@
�k;0
1

�� G0

kC1

�

�� G0

kC2

@
�k�m�2;m
1

��

: : :�� G0

N�m

@
�N;m
1

�� 0:��

It follows that G0 is exact at G0
k and at G0

kC1. Since G0 is acyclic, it follows that it is
a resolution �1�F , as desired. ut

Proposition 5 provides a tool to construct a pure free resolution with a prescribed
degree sequence. We illustrate this by explaining how to construct a pure resolution
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of type d D .0; 3; 5; 6/ over S D kŒx1; x2; x3� (see Fig. 3). Since the highest degree
term has degree 6, we define the ring S 0 WD kŒy1; : : : ; y6� and consider a Koszul
complex involving 6 multilinear forms. The gaps in the degree sequence d tell
us how to choose the projective spaces we use to collapse the various terms. For
instance, this degree sequence has two gaps: the gap between 0 and 3 consisting
of the integers f1; 2g and the gaps between 3 and 5 consisting of f4g. To collapse
degrees 1 and 2, we will use a copy of P2; to collapse degree 4, we will use a copy
of P1.

We thus define a Koszul complex K involving 6 multidegree .1; 1; 1/-forms on
Spec.S 0/� P2 � P1, and we set G WD K˝OSpec.S0/�P2�P1

.OSpecS 0 � OP2 � OP1.3//.
This twist of the Koszul complex is engineered so that we are able collapse the
proper terms, as shown in Fig. 3. Put another way, we have attached a line bundle
with vanishing cohomology to each of the terms in G that we want to collapse. By
applying Proposition 5 twice to G, we obtain a pure resolution of type .0; 3; 5; 6/
on SpecS 0 that resolves a Cohen–Macaulay module of codimension 3. Finally, we
mod out by 3 generic linear forms to obtain a pure resolution F of type .0; 3; 5; 6/
on Spec.S/ that resolves a module of finite length:

F D
�

S4  S.�3/20  S.�5/36  S.�6/20  0

�

:

Proof of Theorem 3. Without loss of generality, we may assume that d0 D 0. We
define S 0 D kŒy1; : : : ; ydn �. It suffices to construct a Cohen–Macaulay S 0-module
of codimension n with a pure resolution of type d , as we may then mod out by
generic linear forms to obtain a pure resolution of a finite length S -module.

We define an auxiliary space P which is a product of projective spaces corre-
sponding to the gaps in the degree sequence d D .d0 < d1 < � � � < dn/. To record
these gaps, set

mi WD di � di�1 � 1 for 1 � i � n:
Set P WD P

m1�� � ��Pmn , which has dimension dn�n. Choose dn generic multilinear
forms of multidegree .1; 1; : : : ; 1/. Since k is an infinite field, these forms have no
common zeroes in P.2 Let K denote the Koszul complex on these multilinear forms,
and define

G WD K˝ .OSpec.S 0/ � OPm1 � OPm2 .�d1/� � � �� OPmn .�dn�1//:

Note that G is an exact complex with

Gi D S 0.�i/.dni / � OPm1 .�i/� OPm2 .�d1 � i/� � � �� OPmn .�dn�1 � i/:

By repeatedly applying Proposition 5 (the order in which we pushforward does
not matter), all terms from G will eventually be collapsed away with exception of

2In fact, this is also true over a finite field by [11, Proposition 5.2].
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The original complex G
Spec(S′) × P2 ×P

1

G0 (S′)1 �OP2 �OP1(3)
G1 S′(−1)6 �OP2(−1) �OP1(2)
G2 S′(−2)15 �OP3(−2) �OP1(1)
G3 S′(−3)20 �OP3(−3) �OP1

G4 S′(−4)15 �OP3(−4) �OP1(−1)
G5 S′(−5)6 �OP3(−5) �OP1(−2)
G6 S′(−6)1 �OP3(−6) �OP1(−3)

R(π1×π2)*

The complex G′after one projection
Spec(S′) × P1

G′
0 (S′)1 �OP2 ⊗ H0(OP1(3))

G′
1 S′(−1)6 �OP2(−1) ⊗ H0(OP1(2))

G′
2 S′(−2)15 �OP3(−2) ⊗ H0(OP1(1))

G′
3 S′(−3)20 �OP3(−3) ⊗ H0(OP1)

- - -
G′

4 S′(−5)6 �OP3(−5) ⊗ H1(OP1(−2))
G′

5 S′(−6)1 �OP3(−6) ⊗ H1(OP1(−3))

Rπ2∗Rπ1∗

The pure resolution F
Spec(S′)

F0 (S′)1 ⊗ H0(OP2) ⊗ H0(OP1(3))
- -
- -

F1 S′(−3)20 ⊗ H2(OP3(−3)) ⊗ H0(OP1)
- -

F2 S′(−5)6 ⊗ H2(OP3(−5)) ⊗ H1(OP1(−2))
F3 S′(−6)1 ⊗ H2(OP3(−6)) ⊗ H1(OP1(−3))

Fig. 3 We iterate
Proposition 5 to build a pure
resolution F of type
.0; 3; 5; 6/ over S 0. Modding
out by linear forms yields a
resolution over S

Gdi for 0 � i � n. More precisely, when we push away from P
mi , Proposition 5

implies that we will collapse away the terms that originally corresponded to
GdiC1; : : :GdiC1�1.

This process produces a pure resolution F of graded S 0-modules, where

Fk D S 0.�dk/.dnk /˝
k�1O

iD1
H0.Pmi ;O.�di�1�k//˝

nO

iDk
Hmi .Pmi ;O.�di�1�k//:

Since G resolves a module of codimension dn and the fibers of the projection p W
X �P �! X have dimension dn�n, it follows that the cokernel of F has support of
codimension at least n. However, since F is a resolution of projective dimension n,
we conclude that the cokernel of F is a Cohen–MacaulayS 0-module of codimension
n, as desired. ut

If one works with the base scheme Proj.S/ instead of Spec.S/, then there is a
slightly different argument which eliminates the need to pass to the intermediate
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ring S 0, but this requires different steps to check exactness. This was Eisenbud and
Schreyer’s original approach in [11, Sect. 5].

Remark 6. There is a useful shorthand for reverse-engineering the Eisenbud–
Schreyer construction of a pure resolution. For instance, to construct a pure reso-
lution of type .0; 3; 5; 6/, begin by considering the table on the left, where we have
marked with an asterisk the degrees that we need to collapse. We may then use
a copy of P

2 to collapse the first two asterisks and a copy of P
1 to collapse

the last asterisk. To do so, line up integers as in the middle table so that the vanishing
cohomology degrees of P2 and P

1 align with the asterisks. Now fill in the remaining
entries of the table linearly.

Spec.S 0/

0

-1 �
-2 �
-3

-4 �
-5

-6

���������!

Spec.S 0/ P
2

P
1

0

-1 -1

-2 -2

-3

-4 -1

-5

-6

���������!

Spec.S 0/ P
2

P
1

0 0 3

-1 -1 2

-2 -2 1

-3 -3 0

-4 -4 -1

-5 -5 -2

-6 -6 -3

The last table tells us that we should build a Koszul complex of six .1; 1; 1/-forms
on Spec.S 0/�P2�P1 and then twist by the degrees we see in the top row: O.0; 0; 3/.
Note that this is precisely the construction from Fig. 3.

Although the proof of Theorem 3 is constructive, it does not provide an efficient
technique for understanding the differentials of the resulting pure resolution F. To
obtain explicit formulas for the differentials from the proof, we would have to carry
a description of the differential through the spectral sequence.

A more efficient approach to understanding the differentials of these Eisenbud–
Schreyer pure resolutions is given in [3, Sect. 4]. That article constructs a generic
version of the Eisenbud–Schreyer pure resolution, referred to as a balanced tensor
complex, which is defined over a polynomial ring in many more variables. The
differentials for the tensor complex can be expressed in terms of explicit multilinear
constructions (e.g., (co)multiplication maps on symmetric and exterior products).
Since the Eisenbud–Schreyer pure resolutions are obtained as specializations of
balanced tensor complexes [3, Theorem 10.2], this construction provides closed
formulas for the various differentials in the Eisenbud–Schreyer pure resolutions.

Example 7. There is a Macaulay2 package TensorComplexes that can be used
to compute the Eisenbud–Schreyer pure resolutions explicitly [16]. With k D
F101, the following code computes the first differential for a pure resolution of
type .0; 1; 3; 5/:

i1 : loadPackage "TensorComplexes";
i2 : FF = pureResES({0,1,3,5},ZZ/101);
i3 : betti FF
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0 1 2 3
o3 = total: 8 15 10 3

0: 8 15 . .

1: . . 10 .
2: . . . 3

i4 : FF.dd_1
o4 = | x_0 0 0 0 x_1 0 0 0 x_2 0 0 0 0 0 0 |

| 0 x_0 0 0 0 x_1 0 0 0 x_2 0 0 0 0 0 |

| 0 0 x_0 0 0 0 x_1 0 0 0 x_2 0 0 0 0 |
| 0 0 0 x_0 0 0 0 x_1 0 0 0 x_2 0 0 0 |
| 0 0 0 x_2 x_0 0 -x_2 0 x_1 x_2 0 0 0 0 0 |
| 0 0 0 0 0 x_0 0 0 0 x_1 0 0 x_2 0 0 |
| 0 0 0 0 0 0 x_0 0 0 0 x_1 0 0 x_2 0 |
| 0 0 0 0 0 0 0 x_0 0 0 0 x_1 0 0 x_2 |

4 Extremal Betti Tables in the Local Case

Let M be a finitely generated module over a regular local ring R of dimension n.
From the minimal free resolution of M ,

0 M  Rˇ
R
0 .M/  Rˇ

R
1 .M/  � � �  Rˇ

R
n .M/  0;

we obtain the (local) Betti table ˇR.M/ D .ˇR0 .M/; : : : ; ˇRn .M//. Here we again
restrict our attention to the case when M is of finite length.

As in the graded case, we would like to find modules M of finite length where
ˇR.M/ is extremal. However, unlike the graded case, there are no natural candidates
for such vectors. It turns out that this is because no local Betti table is extremal.

Claim 4.1. If dim.R/ > 1, then there does not exist any R-module M of finite
length whose Betti table is extremal.

Example 2. Let R D kŒŒx; y��. Then the local Betti table of the residue field k is
ˇR.k/ D .1; 2; 1/. If M D R=hx2; xy; y2i and N D Hom.M;k/, then we have the
decomposition

.1; 2; 1/ D ˇR.k/ D 1
3
ˇR.M/C 1

3
ˇR.N / D 1

2
.1; 3; 2/C 1

2
.2; 3; 1/:

To understand how this comes to pass, we now assume that n > 1 and view each
ˇR.M/ 2 Q

nC1. An extremal local Betti table corresponds to a ray of the cone

Bfin
Q
.R/ WD Q�0 �

˚
ˇR.M/ jM is an R-module of finite length

� � Q
nC1:

Theorem 3 ([4, Theorem 1.1]). If R is an n-dimensional regular local ring with
n > 1, then Bfin

Q
.R/ is an open cone that has no extremal rays. More precisely,
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B
fin
Q
.R/ D Q>0 � f�0; �1; : : : ; �n�1g;

where �i D ei C eiC1 is the sum of the i th and .i C 1/st standard basis vectors of
Q
nC1.

The story for finitely generated modules is similar; see [4, Sect. 4]. Of course, if
dim.R/ D 1, then �0 is an extremal ray, as it spans the entire cone.

Proof of Theorem 3. For brevity, setC WD Q>0 �f�0; �1; : : : ; �n�1g. Clearly the cone
C lies in the linear subspace of QnC1 defined by

Pn
kD0.�1/kˇRk D 0. Inside this

subspace, an elementary computation confirms that C equals the open cone defined
by the inequalities:

0 <

nX

kDi
.�1/i�kˇRk for 1 � i � n:

When applied to the Betti numbers of a moduleM , the above sum is a partial Euler
characteristic (computed from the back of the resolution) that computes the rank of
the kth syzygy module of M . In particular, each such linear functional is strictly
nonnegative when evaluated on the Betti table of a finite length module, and hence
we have Bfin

Q
.R/ � C .

The reverse containment C � Bfin
Q
.R/ requires a limiting argument. We show

that for each i , there is a sequence of pairs of positive scalars and modules
f.�i;j ;Mi;j /g1jD1 such that

�i D lim
j�!1�i;j ˇ

R.Mi;j /:

The key fact used in the construction of these R-modules is that there exist local
ring analogues to the S -modules with pure resolutions constructed in Theorem 3.
Thus, given a degree sequence d 2 Z

nC1, we may construct an R-module M.d/
whose total Betti numbers are computed (up to scalar multiple) by the Herzog–
Kühl equations. The precise existence statement for theR-moduleM.d/ is given in
Lemma 4 below.

As noted in Remark 2, the Betti table of M.d/ is, up to scalar multiple, given by

b.d/ D
Y

`¤i
jd` � di j

 
1

Q
`¤0 jd` � d0j

;
1

Q
`¤1 jd` � d1j

; : : : ;
1

Q
`¤n jd` � dnj

!

D
 Q

`¤i jd` � di j
Q
`¤0 jd` � d0j

;

Q
`¤i jd` � di j

Q
`¤1 jd` � d1j

; : : : ;

Q
`¤i jd` � di j

Q
`¤n jd` � dnj

!

2 Q
nC1:

Note that b.d/i D 1. By carefully choosing degree sequences d i;j , we will realize
�i as the desired limit using Mi;j D M.d i;j /. To make this choice, set d i;j WD
.0; j; 2j; : : : ; ij; ij C 1; .i C 1/j C 1; : : : ; .n � 1/j C 1/, so that
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d
i;j

k D
(
kj if k � i;
.k � 1/j C 1 if k > i:

For these degree sequences, the Herzog–Kühl equations imply that, as i �! 1,
the i th and .i C 1/st Betti numbers go to infinity more quickly than the other Betti
numbers do. Of course, this limit does not make sense for graded Betti numbers. In
the local case, where the Betti numbers are ungraded, we may consider such limits.

We thus set Mi;j WD M.d i;j / and �i;j WD 1

ˇRi .M.d
i;j //

. This yields

�i;j ˇ
R.Mi;j / D b.d i;j /;

since they are equal up to scalar multiple and the i th entry in both vectors is equal
to 1.

We now claim that limj�!1 b.d i;j / D �i . By construction, the limit equals
1 in the i th position. Also, each element b.d i;j / lies in the linear subspace given
by
Pn

kD0.�1/kˇk D 0. Thus it suffices to show that limj�!1 b.d i;j /k D 0 for
k ¤ i; i C 1, which we directly compute:

lim
j�!1 b.d i;j /k D lim

j�!1

Q
`¤j jd i;j` � d i;ji j

Q
`¤k jd i;j` � d i;jk j

D lim
j�!1

O.j n�1/
O.j n/

D 0:

ThusBfin
Q
.R/ contains points that are arbitrarily close to each �i . Since C equals the

interior of the closed cone spanned by the �i , we have shown that Bfin
Q
.R/ contains

C , as desired. ut
The following lemma is proven in [4, Proposition 2.1].

Lemma 4. Let R be an n-dimensional regular local ring, and let d D .d0; : : : ; dn/
be a degree sequence. If N is the cokernel of the pure resolution of type d
constructed in Theorem 3, then there exists a finite length R-module M.d/ where
ˇRi .M.d// D ˇi;di .N /.

5 Extremal Betti Tables in the Multigraded Case

Whereas in the previous section, we considered regular local rings, we now move
in the opposite direction by refining the grading on the polynomial ring. As we will
see, this greatly increases the complexity of the situation. The results discussed in
this section stem from our original work plus extended discussions with Eisenbud
and Schreyer.

We restrict attention to the simplest example of a finely graded polynomial ring,
namely T WD kŒx; y� with the bigrading deg.x/ D .1; 0/ and deg.y/ D .0; 1/. We
seek T -modulesM of finite length such that ˇT .M/ is extremal.
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Over S , extremal was synonymous with having a pure resolution, but over T
this is not the case. In fact, there cannot exist a finite length module M with a
resolution of F where each Fi is generated in a single bidegree. This is because T is
finely graded, so the cokernel of any map T a.��1;��2/  � T b.��1;��2/ has
codimension at most 1.

There are, however, other natural candidates for extremal Betti tables. For
instance, in the standard Z-graded case, every pure resolution over kŒx; y� can be a
realized by taking the resolution of a quotient of monomial ideals [6, Remark 3.2].
Since each of these modules is naturally bigraded, we might expect that these
provide extremal Betti tables in the bigraded sense as well as in the graded sense.
While this is quite often the case (see Example 4), there are many other extremal
bigraded Betti tables as well.

To describe a sufficient condition for extremality, we introduce the notion of
the matching graph �.M/ of a bigraded T -module of finite length. By imposing
rather weak conditions on matching graphs, we produce a wide array of bigraded
T -modules with extremal Betti tables. This illustrates the additional complexity that
arises from refined gradings.

Claim 5.1. Let M be a bigraded T -module of finite length. If its matching graph
�.M/ is .1; 1/-valent and connected, then ˇT .M/ is extremal.

For a bigraded T -module M of finite length, let F be the bigraded minimal
free resolution of M . The matching graph of M is a graph whose vertices have
weights in Z and whose edges are of two types: x-edges and y-edges. The vertices
correspond to the degrees of the generators of the Fi ; to a vertex ˛ 2 Z

2, we assign
the weight ˇT0;˛.M/C ˇT1;˛.M/C ˇT2;˛.M/. We then include an x-edge (or y-edge,
respectively) between any two vertices with the same x-degree (or y-degree).

If a vertex of �.M/ meets precisely a of the x-edges and precisely b of the
y-edges, then we say that this vertex has valency .a; b/. If all of the vertices of
�.M/ have valency .a; b/, then we say that �.M/ is an .a; b/-valent graph. In
addition, we say that �.M/ is connected if the underlying graph (i.e., the graph on
the same vertices whose edges are the union of the x-edges and y-edges of �.M/)
is connected.

Example 2. Let M D T=hx2; xy; y2i. The minimal free resolution of M has
the form

T 1  �

T 1.�2; 0/
˚

T 1.�1;�1/
˚

T 1.0;�2/

 �
T 1.�2;�1/
˚

T 1.�1;�2/
 � 0:

Using the natural embedding of the matching graph�.M/ in the first orthant,�.M/

has x-edges as shown in the figure on the left.
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We omit the weights on the vertices, since all weights are 1. The graph �.M/

appears on the right, and is .1; 1/-valent and connected. Hence ˇT .M/ is extremal
by Claim 5.1.

Example 3. Let M D hx; yi=hx2; xy2; y3i. Then �.M/ fails to be .1; 1/-valent. In
fact, at each vertex of the form .1;	/, there are 3 x-edges. In this case, ˇT .M/

equals ˇT .hxi=hx2; xy2i/ C ˇT .hyi=hxy; y3i/: These last two Betti tables are
extremal by Claim 5.1.

Proof of Claim 5.1. For any �1 2 Z, we can consider the subgraph of �.M/

obtained by restricting to the vertices of �.M/whose degrees have the form .�1;	/.
By definition of the x-edges, there will be an x-edge between any two vertices of this
subgraph. Hence, by the .1; 1/-valency, we see that �.M/ has at most two vertices
of the form .�1;	/.

In fact, for each �1 2 Z, we claim that �.M/ has either zero or two vertices of
the form .�1;	/. The bigraded Hilbert series of M is given by the rational function

HM.s1; s2/ D KM.s1; s2/

.1 � s1/.1 � s2/ WD
P2

iD0
P

�2Z2 .�1/iˇTi;�.M/s�

.1 � s1/.1 � s2/ :

SinceM has finite length,HM.s1; s2/ is actually a polynomial. This implies that the
K-polynomial of M ,KM , is in h1 � s1i \ h1 � s2i � ZŒs1; s2�. We thus have

KM.s1; 1/ D
X

�12Z

0

@
X

�22Z
ˇT0;.�1;�2/ � ˇT1;.�1;�2/ C ˇT2;.�1;�2/

1

A s�11 D 0:

Thus, if �.M/ has a vertex of the form .�1;	/, then it has at least two such vertices
of this form. Further, one of these vertices must correspond to a generator of F1 and
the other must correspond to a generator of either F0 or F2, and the corresponding
Betti numbers be equal. By alternately considering Betti numbers with the same x-
degrees and Betti numbers with the same y-degrees, we may show that any two Betti
numbers in the same connected component of �.M/must have the same value. The
connectedness of �.M/ implies that each nonzero Betti number ofM has the same
positive value.

Suppose now that ˇT .M/ D a0ˇT .M 0/Ca00ˇT .M 00/ for some bigraded modules
M 0;M 00 of finite length and some a0; a00 2 Q>0. We start by considering a bidegree
.�1; �2/ where ˇT0;.�1;�2/.M

0/ D r . SinceKM 0.s1; 1/ D 0 and �.M/ is .1; 1/-valent,

the argument above implies that there is a unique �2 such that ˇT1;.�1;�2/.M
0/ ¤ 0,

and hence this Betti number must also equal r . We then consider y-degrees, and
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a similar argument shows that there is a unique �1 such that either (but not both)
ˇT0;.�1;�2/.M

0/ ¤ 0 or ˇT2;.�1;�2/.M
0/ ¤ 0. In either case, this Betti number must

also equal r .
Continuing to alternate between x-degrees and y-degrees, we eventually form a

subcycle of �.M/. However, since �.M/ is .1; 1/-valent and connected, this cycle
must equal �.M/, so we have shown that ˇT .M 0/ is simply r times ˇT .M/. ut
Example 4. Quotients of monomial ideals provide many examples of extremal
bigraded Betti tables. For instance, let M D I=J , where I D hx4; xy2; x2y; y4i
and J D hx6; x3y3; y6i. Then �.M/ is the graph on the left (each vertex has weight
1), which is extremal by Claim 5.1.

The graphs on the right above correspond to the matching graphs of other quotients
of monomial ideals: the upper right graph is the matching graph of hx7; y7i=
hx15; x14y6; x8y8; y15i. These types of examples may be very far from the pure
resolutions we saw in Sect. 3. For instance, we can produce an extremal bigraded
Betti table given by a resolution F, where Fi has minimal generators in arbitrarily
many different bidegrees.

Note that these examples are not pure with respect to the Z-grading.

Claim 5.1 begs the question of which .1; 1/-valent, connected graphs can be
realized as �.M/ for some M . If �.M/ is a .1; 1/-valent, connected graph that
comes from a quotient of monomial ideals, then it decomposes as the union of
two nonintersecting monotonic paths (from the upper left corner to the lower right
corner). But the following example illustrates that not all extremal Betti tables arise
in this way.



Three Flavors of Extremal Betti Tables 119

Example 5. The cokernel of the matrix below induces the following matching
graph:

 
�
3

0

� �
2

1

� �
1

2

� �
0

3

�

�
1
0

�
x2 xy y2 0

�
0

1

�
0 x2 xy y2

!

However, not every .1; 1/-valent connected graph arises as the matching graph
of a module.

Example 6. Suppose that the graph on the left below is the matching graph of a
module M of finite length. Then the free resolution of M has the form shown on
the right.

T

˚
T .�1;�1/

�

 ������

T .�3; 0/
˚

T .�2;�1/
˚

T .�1;�3/
˚

T .0;�2/

 

 ������
T .�2; 2/
˚

T .�3;�3/
 � 0

In this case, the matrix � would have the form:

� D
 
�
3
0

� �
2
1

� �
1
3

� �
0
2

�

�
0
0

�
x3 a1x

2y a2xy
3 y2

�
1
1

�
0 �x y2 0

!

for some scalars a1; a2. After performing an appropriate row operation and column
operation, we can assume that a1 D a2 D 0. However, the kernel of the resulting
matrix is generated by T .�3;�2/˚ T .�2;�3/, providing the contradiction.

Though we know of no condition for determining which .1; 1/-valent, connected
graphs arise as �.M/ for someM , Claim 5.1 provides a zoo of extremal rays. If we
restrict to Betti tables whose support is contained in the square with corners .0; 0/
and .3; 3/, Claim 5.1 produces 74 extremal rays. They are generated by the tables
of quotients of monomial ideals, along with the table in Example 5 and its dual. We
conclude with a conjecture.

Conjecture 5.7. All extremal Betti tables of the cone of bigraded T -modules with
finite length are generated by Betti tables of modules M that satisfy Claim 5.1.
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p�1-Linear Maps in Algebra and Geometry

Manuel Blickle and Karl Schwede

1 Introduction

In this survey we study the basic properties of p�1-linear morphisms between
coherent sheaves on a scheme X over a perfect field of positive characteristic p.
If F WX �! X is the Frobenius morphism (i.e., the pth power map on the structure
sheaf) we denote by F� the restriction functor along F (cf. Sect. 2.2). A p�1-linear
map is then an OX -linear map ' W F�F �! G for two OX -modules F and G .
The name stems from the fact that if we view ' as a map on the underlying sheaves
of Abelian groups, ' satisfies the condition '.rpf / D r'.f / for local sections
r 2 OX and f 2 F . In particular, if r has a pth root, then we may write this
relation as '.rf / D rp�1

'.f /.
As an example for a p�1-linear map, we start with a splitting of the Frobenius

map, i.e., an OX -linear map 'WF�OX �! OX such that the composition

OX

F��! F�OX

'�! OX

is equal to the identity. The mere existence of such a ' has strong implications for
the local geometry of X (it is reduced, for example). Furthermore, it immediately
implies a highly effective version of Serre vanishing: the higher cohomology of
any ample line bundle vanishes. In the light of such strong implications, it is
somewhat surprising that there are varieties of interest that are Frobenius split.

M. Blickle
Institut für Mathematik, Johannes Gutenberg-Universität Mainz,
55099 Mainz, Germany
e-mail: blicklem@uni-mainz.de

K. Schwede (�)
Department of Mathematics,
The Pennsylvania State University, University Park, PA, 16802, USA
e-mail: schwede@math.psu.edu

I. Peeva (ed.), Commutative Algebra: Expository Papers Dedicated to David Eisenbud
on the Occasion of His 65th Birthday, DOI 10.1007/978-1-4614-5292-8 5,
© Springer Science+Business Media New York 2013

123



124 M. Blickle and K. Schwede

For example, regular affine varieties, projective spaces, normal toric varieties,
and most prominently flag and Schubert varieties are Frobenius split. And it was
precisely for the latter varieties where the above vanishing yields a simple proof of
Kempf’s vanishing theorem [66]; see also [24]. Frobenius split varieties have been
extensively studied [11], and in Sect. 5 we give a detailed account of their theory,
explaining some of the more delicate vanishing and extension results, and discussing
criteria to decide if a given variety is Frobenius split.

In Sect. 6 we show how some of the results and techniques for Frobenius
splittings can be extended to more general contexts (where the variety is notF -split)
to derive similar conclusions (vanishing and extension results). For example, a sys-
tematic use of certain p�1-linear maps can replace Kodaira and Kawamata–Viehweg
vanishing theorems [47, 94] in some applications (see Sect. 6.1). These techniques
rely on an explicit connection between p�e-linear maps ' 2 HomOX .F

e�L ;OX/

and Q-divisors � such that OX..p
e � 1/.KX C �// Š L �1 which is explained

in detail in Sect. 4. Indeed, this correspondence between p�e-maps and Q-divisors
pervades much of this chapter. This correspondence also provides us with valuable
geometric intuition in working with p�e-linear maps.

In Sect. 7 we state a number of general results on the behavior of p�e-linear
maps under certain functorial operations, such as pullback along closed immersions,
localization, pushforward along a birational map, and finally pullback along a finite
map. In all these cases, viewing p�e-linear maps as Q-divisors and performing
operations on divisors is the guiding principle.

A second key example of a p�1-linear map is the classical Cartier operator
C WF�!X �! !X introduced in [13]. There are various guises in which this operator
on the dualizing sheaf appears, but most generally one may view it as the trace
of Frobenius under the duality for finite morphisms (see Sect. 3.1). The Cartier
operator has been extensively studied in connection to residues of differentials in
positive characteristic and plays a crucial role in Deligne and Illusie’s [16] algebraic
proof of Kodaira vanishing.

In the final two Sects. 8 and 9 we describe the category of Cartier modules
introduced in [6]. This category consists of coherent OX -modules F equipped
with a p�e-linear endomorphism, i.e., a OX -linear map F e�F �! F . We show
that the Abelian category of Cartier modules satisfies some remarkable properties.
Most importantly, Cartier modules have finite length up to nilpotence.1 Furthermore,
Cartier modules are related to a number of other categories which have been
extensively used in the study of local cohomology in positive characteristic. Hence
the finiteness results about Cartier modules imply and generalize previous finiteness
results about local cohomology, see Sect. 9.1, where we indicate how results of
Hartshorne–Speiser [37], Lyubeznik [59], and Enescu and Hochster [18] can be
derived easily.

In the final section we explain a certain degree-reducing property of pe-linear
maps and show how this property yields a completely elementary approach to the

1A coherent Cartier module F if nilpotent is some power of the structural map is zero.
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above mentioned finiteness result. In the last section we finally close the gap to
the theory of tight closure [38, 41, 42], which im- and explicitly heavily relied
on p�e-linear maps since its beginnings, in showing how the test ideals of Hara
and Yoshida [29] are obtained from certain generalizations of Cartier modules. We
include as another demonstration of the utility of this viewpoint a quick proof of the
discreteness of the jumping numbers of the test ideal.

The target audience for this chapter is a researcher or student who is familiar
with commutative algebra and algebraic geometry and who wishes to learn how to
use p�1-linear maps in a wide variety of contexts. We do not assume the reader
has one particular background (i.e., representation theory/Frobenius splitting, tight
closure theory, D-modules, or higher dimensional complex algebraic geometry).
Because we view this chapter as a place where material can be learned, at the end
of each section, there are many exercises. The more difficult exercises are decorated
with a *. The exercises are a fundamental part of this document.

2 Preliminaries on Frobenius

In this section we introduce our conventions on notation—in particular with regards
to the Frobenius morphism.

2.1 Prerequisites and Notation

We assume that the reader is familiar with the basics of commutative algebra and
algebraic geometry, all of which is covered in the standard reference works [34]
and [64]. Beyond this, a familiarity with Grothendieck duality, [14, 32], will be
particularly helpful. Explicitly, Serre vanishing, canonical modules, dualizing and
Serre duality, and the connection between divisors and line bundles will appear
frequently (see also [12]). The notion of Q-divisors will be used extensively (see
[50] or [55, 56]). The process of reflexification of sheaves on normal varieties and
its relation to Weil divisors will be recalled in Appendix A for the convenience of
the reader; also see [36] where the same theory is worked out in substantially greater
generality.

Throughout this chapter all rings and schemes are assumed to be of finite type
over a perfect field k of characteristic p > 0, or they are a localization or completion
of such at a prime. This implies that our schemes are excellent and possess canonical
modules and dualizing complexes [32, 64]. We further assume that all schemes are
separated.
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2.2 Frobenius and Pushforward

We begin by reviewing the most basic notation (since it varies wildly in the
literature).

The key structure in algebra and geometry over a field of positive characteristic
p > 0 is the (absolute) Frobenius endomorphism. For a ring R this is just the pth
power ring endomorphism

F D FRWR �! R

given by sending r 2 R to rp .
Since the Frobenius is canonical it induces a morphism for any scheme X over

a field k of characteristic p > 0, also called the Frobenius endomorphism and also
denoted by

F D FX WX �! X:

Supposing that k is perfect and X is a k-variety (or a scheme according to our
convention) then FX is a finite map2 by Exercise 2. Note that FX is in general
not a morphism of k-schemes—however this point can be rectified by changing
the k-structure on the first copy of X , if desired. We denote by F e the e-fold self
composition of Frobenius.

Even in the affine situation X D SpecR we use geometric notation and denote
the Frobenius on R by F WR �! F�R to remind us that it is not R-linear. This has
the added benefit that we now can distinguish the source and target of F D FR.

Given an ideal I D hf1; : : : ; fmi � R, we define its peth Frobenius power to
be I Œp

e � D hf pe

1 ; : : : ; f
pe

m i. This is independent of the choice of generators fj (see
Exercise 3). The formation of I Œp

e � commutes with localization, and so for any ideal
sheaf I � OX , we can define I Œpe � in the obvious way.

Note F e�OX is isomorphic to OX as a sheaf of rings—but as OX -modules they
are distinct: namely, OX acts on F e�OX via peth powers. More generally, for any
OX -module M , one observes that F e�M is isomorphic to M as a sheaf of Abelian
groups, but the OX -module structure is given by r:m D rp

e
m for a local section

r 2 OX and m 2 F e�M . Of course, F e�M also has an F e�OX -module structure,
which coincides with M ’s original OX -module structure. We also use the notation
F e�M in the affine case X D SpecR to denote an R-module with the twisted
(restriction of scalars) Frobenius structure.

One immediately verifies that F�fM coincides with AF�M as OX -modules, where
fM denotes the OX -module associated to the R-module M . However, we caution
the reader that the same identification does not hold in the graded case with respect
to Proj; see, for example, [78, Lemma 5.6] and Exercise 7.

Notation 2.2.1. Given an element m 2 M , we will sometimes use F e�m to denote
the corresponding element of F e�M . Likewise, for sheaves of OX -modules M onX .

2An abstract scheme with a finite Frobenius is called F -finite.
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2.3 Frobenius Pullback and the Projection Formula

Let X be a scheme over a perfect field k of characteristic p > 0, and let F be a
coherent sheaf and L a line bundle on X . Since the Frobenius is an isomorphism
on the underlying topological space, the pullback F e�F (as an OX -module) can
be identified with F ˝OX F

e�OX as an F e� OX -module, again using that F e�OX is
isomorphic with OX as sheaves of rings. If the line bundle L is given by the datum
of a local trivialization and transition functions, then the line bundle F e�L is given
by the peth powers of the transition functions in that datum for L . This shows that

.F e/�L Š L pe ; (1)

i.e., the pullback along the Frobenius of a line bundle just raises that line bundle to
the peth tensor power. Combining this observation with the projection formula [34,
Chap. II, Exercise 5.1(d)] we obtain

.F e�F /˝OX L Š F e� .F ˝OX F
e�L / Š F e� .F ˝OX L pe / : (2)

This basic equality is used frequently throughout the theory and will be referred to
as the projection formula.

2.4 Exercises

Exercise 1. Set X D SpeckŒx1; : : : ; xn� for some perfect field k. Show that F e�OX

is a free OX -module with basis F e�x
�1
1 � � �x�nn where 0 � �i � pe � 1. Show that

the same result also holds for power series Spec k�x1; : : : ; xn�.

Exercise 2. Suppose that k is a perfect field and that X is scheme of (essentially)
finite type over k. Prove that the Frobenius map on X is a finite map.

Exercise 3. Suppose that I � R is an ideal in a ring R of characteristic p > 0.
Show that I Œp

e � can be identified with Image.F e�I �! F e�R/ � F e�R Š R where
the last isomorphism is the canonical one identifying R with F e�R sending r to
F e�r . Conclude that I Œp

e �, the Frobenius power of I , is independent of the choice of
generators of I .

Exercise 4. Suppose that X is a smooth d -dimensional variety and L is a vector
bundle of rankm on X . Prove that F�L is also a vector bundle and find its rank.

Hint: Complete, use Cohen structure theorem [65, Theorem 28.3], and use
Exercise 1.

Exercise 5. Suppose that E is a locally free sheaf of finite rank on X . Is E ˝pe

isomorphic to .F e/�E ?



128 M. Blickle and K. Schwede

Exercise 6. Suppose that R is (essentially) of finite type over a perfect field.

(a) If W � R is any multiplicatively closed set, then show that W �1.F e�R/ Š
F e� .W �1R/. Here the first F e�R means as an R-module, and the second is as an
W �1R-module.

(b) If m � R is a maximal ideal, prove that F e�bR Š bF e�R where O denotes
completion along m. Again, the first F e� is the Frobenius for OR, and the second
is that of R-modules.

Exercise 7. Suppose that X is a projective variety with ample line bundle L , and
suppose that F is a coherent sheaf on X . Set S D L

i2ZH0.X;L i / to be the
section ring with respect to L , and set M D L

i2ZH0.X;F ˝ L i / to be the
saturated graded S -module corresponding to F . Verify that F e�S is a . 1

pe
�Z/-graded

ring,3 the natural map S ! F e�S is graded, and F e�M is a graded F e�S -module. Of
course, F e�M is also a graded S -module.

Show that F e�M is not in general isomorphic to
L

i2ZH0.X; .F e�F / ˝ L i /.
Instead, prove that

L

i2ZH0.X; .F e�F / ˝L i / is isomorphic to a (graded) direct
summand of F e�M , the summand whose terms have integral gradings.

Exercise 8. A ring R (or scheme X ) such that the Frobenius map F W R �! F�R
is a finite map is called F -finite. Essentially all rings considered in this chapter are
F -finite, but not all rings are. Find an example of a field which is not F -finite.

If X is a smooth variety, then we have already seen that F�OX is a locally free
(in other words flat) OX -module. In this exercise, you will prove the converse. First
we introduce a definition.

Definition 2.4.1. Suppose that .R;m/ is a local ring. A sequence of elements
f1; : : : ; fn 2 m � R is called Lech-independent if for any a1; : : : ; an 2 R such
that a1f1 C � � � C anfn D 0, then each ai 2 hf1; : : : ; fni.

Now we come to the exercise.

Exercise* 2.9 (Kunz’s regularity criterion [53]). Suppose that .R;m/ is a local
ring. We will show that if F�R is flat, then R is regular. We need some lemmas due
to Lech [57].

(i) [57, Lemma 3]. If f1; : : : ; fn are Lech-independent elements and f1 2 gR

for some g 2 R, then g; f2; : : : ; fn is also Lech-independent. Furthermore,
hf2; : : : ; fni W g � hf1; : : : ; fni.

(ii) [57, Lemma 4]. If f1; : : : ; fn are Lech-independent,
phf1; : : : ; fni D m, and

f1 D gh. Then

lR .R=hf1; : : : ; fni/ D lR .R=hg; f2; : : : ; fni/C lR .R=hh; f2; : : : ; fni/ :

3Here 1
pe

� Z is the subgroup of Q generated by 1
pe

.
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(iii) Now we return to the proof of the theorem of Kunz. Show that mŒpe �=.mŒpe �/2

is a free R=mŒpe �-module. Conclude that if m D hx1; : : : ; xni is generated by a
minimal set of generators, then xp

e

1 ; : : : ; x
pe

n is Lech-independent.
(iv) Use the previous parts of the exercise to conclude that lR.R=mŒpe �/ D pne .
(v) Reduce to the case thatR is complete and write R D S=a D kŒŒx1; : : : ; xn��=a

using the Cohen structure theorem [65, Theorem 28.3] where k D R=m. Then
notice that lS .S=m

Œpe�
S / D pne for all e � 0. Complete the proof of Kunz’

regularity criterion. The proof given in the exercise was Kunz’ original proof.

Remark 2.4.2. A simpler proof of Kunz’ result using the Buchsbaum–Eisenbud
acyclicity criterion can be found on page 12 of [42]. Alberto Fernandez Boix pointed
out to us that another short proof can be found in [63, Theorem 4.4.2].

3 p�e-Linear Maps: Definition and Examples

In this section we introduce p�e-linear maps and give a number of examples which
will be discussed in more detail throughout the rest of this chapter.

Definition 3.0.3 (p�e-linear map). Suppose that X is a scheme and M and N
are OX -modules. A p�e-linear map is an additive map ' WM �! N such that

'.rp
e

m/ D r'.m/ (3)

for all local sections r 2 OX andm 2M .
Equivalently, we may specify a p�e-linear map by the data of an OX -linear map

'WF e�M �! N :

We will frequently and freely switch between these two points of view, depending
on the context.

If R is a ring, then a p�e-linear map between R-modulesM and N is simply an
additive map between them satisfying the rule from (3). If k is a perfect field, then
p�e-linearity for an additive map ' W k �! k just means '.�x/ D �1=pe '.x/ for all
x; � 2 k. In particular, such a map is completely determined by where it sends any
nonzero element.

Example 3.0.4. Consider R D kŒx�. Then F�R is a free module with basis

fF�1; F�x; F�x2; : : : ; F�xp�1g;

(see Exercise 1). Therefore any p�1-linear map from kŒx� to any other R-module
N is simply a choice of where to send these basis elements.
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Example 3.0.5. Consider R D kŒx1; : : : ; xn� then as we saw in Exercise 1, F�R is
a free R-module with basis F�x�11 � � �x�nn for 0 � �i � p � 1. A map F�R �! R is
uniquely determined by where it sends the elements of this basis.

Consider theR-linear mapˆ W F�R �! R which sends F�xp�1
1 � � �xp�1

n to 1 and
all other basis elements to zero. In other words

ˆ
�

F�.x�11 � � �x�nn /
�

D

8

ˆ

<

ˆ

:

x
�1�.p�1/

p

1 � � �x
�n�.p�1/

p
n ; if all �i�.p�1/

p
2 Z

0; otherwise

For each tuple � D .�1; : : : ; �n/ 2 f0; 1; : : : ; p�1gn, consider the map '� W F�R �!
R defined by the rule '�.F� / D ˆ.F�.xp�1��1

1 � � �xp�1��n
n � //. It is easy to see

that '� sends x� to 1 and all other basis monomials to zero.
Because we can thus obtain all of the projections this way, it follows that the map

F�R �! HomR.F�R;R/ which sends F�z to the map 'z.F� / D ˆ.F�.z � // is
surjective as a map ofF�R-modules. On the other hand, it is clearly injective as well,
and so it is an isomorphism. In other words, we just showed that HomR.F�R;R/ is
a free F�R–module generated by ˆ. In other words, ˆ generates HomR.F�R;R/
as an F�R-module.

The most pervasive type of p�1-linear maps are maps ' W R �! R. Of course,
for fixed e, the set of p�e-linear maps f' W R �! R j ' is p�e-linearg form a group
under addition. However, as we vary e, we have a multiplication of these maps as
well. Indeed, suppose that ' W R �! R is p�e-linear and  W R �! R is p�d -linear.
Then both ' ı  and  ı ' are p�e�d -linear. However, they need not be equal as
the following example shows. It follows that

M

e�0

˚

' W R �! R j ' is p�e-linear
�

forms a noncommutative graded ring. This graded ring will be studied more in
Sect. 9.3.

Example 3.0.6. Suppose that R D FpŒx�. We will describe two p�1-linear maps,
'; presented as in Exercise 3.0.4.

• ' W R �! R satisfies '.xp�1/ D 1 and '.xi / D 0 for 0 � i < p � 1.
•  W R �! R satisfies  .1/ D 1 and  .xi / D 0 for 0 < i � p � 1.

Then  ı ' and ' ı  are p�2-linear maps. However, notice that

'. .xp�1// D '.0/ D 0
but that

 .'.xp�1// D  .1/ D 1:
In particular,  ı ' ¤ ' ı  .
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An important class of examples of p�1-linear maps are the splittings of
Frobenius.

Example 3.0.7 ([66, 71]). Let X be a scheme. A Frobenius splitting is any p�1-
linear map ' W OX �! OX that sends 1 to 1. Equivalently, it is an OX -linear map ' W
F�OX �! OX that sends F�1 to 1. This, in particular, implies that the composition

OX

F�! F�OX

'�! OX (4)

is an isomorphism; hence ' “splits” the Frobenius.
If X has a Frobenius splitting, then it satisfies many remarkable properties as we

shall discuss in detail in Sect. 5. Let us just mention two of them to taste.
If X is a scheme that has some Frobenius splitting 'WF�OX �! OX (we call

such X Frobenius split), then X is reduced: Indeed, if x 2 �.U;OX/ is such that
0 D xp

e D F e.x/ for some e � 0, then 0 D 'e.F e.x// D x, simply by that fact
that ' ı F D id. This is a simple but important local property of Frobenius split
varieties.

A similarly fundamental global result is the following vanishing theorem:
Suppose that L is a line bundle and that Hi.X;L p/ D 0 for some i > 0

(e.g., Hi.X;L pe / D 0 holds for e � 0 for ample L by Serre vanishing), then
Hi.X;L / D 0 as well since we have the following isomorphism obtained by
tensoring (4) by L , using the projection formula and taking cohomology

Hi.X;L /
F�! Hi.X; F�L p/ D 0 '�! Hi.X;L /:

If e > 1, rinse and repeat. We will study vanishing theorems for Frobenius split
varieties in much greater detail in Theorem 5.2.4.

3.1 The Cartier Isomorphism

We now come to the most important example of a p�1-linear map, coming from
the Cartier operator. Suppose that X is a smooth variety over a perfect field k of
characteristic p > 0. Consider the de Rham complex,�

�

X . This is not a complex of
OX -modules (the differentials are not OX -linear). However, the complex

F��
�

X

is a complex of OX -modules (notice that d.xp/ D 0). We now state the Cartier
isomorphism. We take this presentation from [11, 13, 19, 44].

Definition-Proposition 3.1.1. There is a natural isomorphism (of OX -modules):

C�1 W �i
X ! hi .F��

�

X/:
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Remark 3.1.2. It might strike the reader as odd that we put an inverse on C . This
is because the isomorphism in the other direction is called the Cartier operator
and represented by C . It is just more convenient for us to define C�1 than it is to
define C .

We will not use the details of this isomorphism later in this chapter. However, the
map T we obtain from it in Sect. 3.2 will be indispensable.

Let us explain how to construct this isomorphism C�1. We follow [19, 9.13] and
[44]. We begin with C�1 in the case that i D 1. We work locally on X (which we
assume is affine), and we define C�1 by its action on dx 2 �i

X , x 2 OX :

C�1.dx/ WD F�xp�1dx;

or rather, the image of F�xp�1dx in cohomology. In order for this to make sense,
we observe that d.xp�1dx/ D 0, in other words, that C�1.dx/ is in the kernel of
d . We now must show that C�1 is additive.

Now C�1.d.x/ C d.y// D C�1.d.x C y// D F�.x C y/p�1d.x C y/, we
need to compare this to F�xp�1dx C F�yp�1dy D C�1.dx/ C C�1.dy/. Write
f D 1

p
..x C y/p � xp � yp/. Here the 1

p� is a formal operation that simply cancels
ps from the binomial coefficients. Then

df D d
 

p�1
X

iD1
�ix

iyp�i
!

D
 

p�1
X

iD1
�i ix

i�1yp�i
!

dx C
 

p�1
X

iD1
�i .p � i/xi yp�i�1

!

dy

D
 

p�1
X

iD1
�i ix

.p�1/�.p�i /yp�i
!

dx C
 

p�1
X

iD1
�i .p � i/xiy.p�1/�i

!

dy

where �i D 1
p

�

p
i

� D .p�1/.p�2/���1
iŠ.p�i /Š D 1

i

�

p�1
p�i
� D 1

p�i
�

p�1
i

�

. Thus,

df D .x C y/p�1.dx C dy/� xp�1dx � yp�1dy:

Therefore, xp�1dxCyp�1dy and .xCy/p�1d.xCy/ are the same in�1
X

ı

d
�

�0
X

�

.
This proves that C�1 is additive. Finally, we extend by p-linearity to obtain that

C�1.fdx/ D F�f pxp�1dx:

We should also show that C�1 is an isomorphism. We only show that this initial
C�1 is injective—in a special case. Set X D SpecFpŒx; y� (see, e.g., [19, Theorem
9.14] for how to reduce to the polynomial ring case in general).

Suppose that C�1.fdx C gdy/ D 0. Let h 2 OX be such that we have
f pxp�1dx C gpyp�1dy D dh D @h

@x
dx C @h

@y
dy. Therefore, if f D P

�i;j y
ixj ,

we see that
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X

�i;j y
ipxjpCp�1 D f pxp�1 D @h

@x
:

However, this is ridiculous unless fdxC gdy D 0. If you take a derivative of some
non-zero polynomial in x with respect to x, no output can ever have xjpCp�1 in it.
This completes the proof of injectivity of C�1 W �1

X ! h1.F��
�

X/ in the case that
X D SpecFpŒx; y�. The general case is similar.

The surjectivity of C�1 is more involved. See, for example, [19, Theorem
9.14(d)] or [11, Theorem 1.3.4] or do Exercise *3.1.

At this point, we have only defined

�1
X ! h1.F��

�

X/:

We define C�1 W �i
X ! hi .F��

�

X/ for i > 1 using wedge powers of C�1 for
i D 1. We make this definition for any X .

Example 3.1.3 (Cartier isomorphism A2). Returning again to X D A2 D FpŒx; y�,
we explicitly compute C�1 W �2

X ! h2.F��
�

X/ at the top cohomology.
By definition

C�1.fdxdy/ D C�1.fdx ^ dy/ WD F�
�

f p.xp�1dx/ ^ .yp�1dy/
�

D F�f pxp�1yp�1dxdy

or rather its image in cohomology. Again, this map is an isomorphism (Exercise 2).

3.2 Grothendieck Trace of Frobenius

Suppose that X is a smooth n-dimensional variety over a perfect field k of
characteristic p > 0. Then coming from the Cartier isomorphism, Theorem 3.1.1,
we have an exact sequence

F��n�1
X=k

d�! F��n
X=k

T�! �n
X=k �! 0:

The surjective map T W F��n
X=k DW F�!X ! !X WD �n

X=k is often called the trace
map or Cartier map/operator.

This map can be constructed in other ways. With X as above, again set !X D
�n
X=k . Then !X is a dualizing/canonical module in the sense of [34, Chap. III,

Sect. 7] or more generally, [32, Chap. V].
For any finite dominant map � W Y �! X with Y andX smooth, it is a fact (black

boxed for now [32, Chap. V, Proposition 2.4], [50, Proposition 5.68]) that ��!Y Š
H omOY .��OY ; !X/ as a ��OY -module. This is described in greater generality
on the next pages (see the diagram (7)). Note that this completely determines !Y as
well, since � is finite, and so the data of a coherent��OY -module onX is equivalent
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to the data of a coherent OY -module on Y . Now, we also have the following map:

��!Y ŠH omOX .��OY ; !X/
eval @ 1�����! !X: (5)

This is the map which sends a section ' 2 !Y Š �.U;H omOY .��OY ; !X// to
the element '.1/ 2 �.U; !X/.

Now we specialize to the case that Y D X and � D F the Frobenius map.

Theorem 3.2.1. The map described in (5) is the map T described above (up to
choice of isomorphism).

Sketch of Proof. We only show this for X D SpecFpŒx; y� D A2. By considering
Example 3.1.3, we see that the map T sends

F�f pxp�1yp�1dxdy 7! fdxdy

and everything not of that form to zero.
So we then consider

H omOX .F�OX ; !X/ ��
'

�� F�!X ��
'

�� F�OX:

F�dxdy �� �� F�1

Now, we identify theˆ2HomOX .F�OX ; !X/which generates H omOX .F�OX ; !X/

as an F�OX -module just as in Example 3.0.5. Since !X D OX � .dxdy/ Š OX , we
notice thatˆ sends F�f pxp�1yp�1 7! fdxdy and ˆ sends things not of this form
to zero.

Choosing then '.F� / D ˆ.F�c � / 2H omOX .F�OX ; !X/, we see that the
evaluation-at-1map (5) sends ' to ˆ.F e�c/. Making the identification

.F�OX/ � .F�dxdy/ D F�!X ŠH omOX .F�OX ; !X/ D .F�OX/ �ˆ;
we immediately observe that T and the evaluation-at-1map (5) coincide.

The general case for X ¤ A2 is similar but slightly more technical to write
down. Both the map T and the evaluation-at-1 map can be shown to be a local
generator of the same H om-sheaf. Thus they coincide up to multiplication by a
unit of �.X;OX/. ut

3.3 The Trace Map for Singular Varieties

Suppose thatX is a normal variety with U � X the regular locus. Consider the map
T W F e�!U �! !U as described above. This is an element of HomU .F

e�!U ; !U /.
However, there is an isomorphism HomOU .F

e�!U ; !U / Š HomOX .F
e�!X; !X/

since X n U is a codimension 2 subset of X and X is normal (see Appendix A).
Therefore we obtain the following proposition.
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Proposition 3.3.1. Given any normal variety X , there is a trace map T W F e�!X �!
!X which agrees with and is completely determined by the map T described in
terms of the Cartier isomorphism on the regular locus U � X .

Even for non-normal schemes, we can do something similar if we are willing
to work in the derived category. Suppose that X and Y are schemes of finite
type over a field k with a map f W X �! Y . Then there is the extraordinary
inverse image functor f Š from DC

coh.Y / to DC
coh.X/ (bounded below complexes

of OY -modules the extraordinary inverse image, respectively OX -modules, with
coherent cohomology). For a precise definition of f Š, please see [32]. Its abstract
existence can nowadays be shown quite formally from general principles, cf. [58].
Its key property is that it is right adjoint to Rf� in the case that f is proper (see
Exercise *3.5). We will define f Š in two cases which will suffice for our purposes.

Finite: If f is finite (e.g., Frobenius or a closed immersion), then F 2 Db
coh.X/

we have an isomorphism of f�OX -complexes

f�f ŠF D RH om
�

OY
.f�OX ;F / (6)

where RH om
�

OY
.f�OX ;F / is the complex obtained by taking an injective

resolution of F and applying H om
�

OY
.f�OX ; /. Note that this completely

describes f Š since f is finite so that f� is harmless.
Smooth: If f is smooth of relative dimension n, for any F 2 Db

coh.X/, we have
an isomorphism

f ŠF D .Lf �F /˝ .^n�1
Y=X/Œn�:

If f W X �! Spec k is itself the structural map, then we define the dualizing
complex of X , denoted !

�

X as follows. View k 2 Db
coh.Speck/ as the complex

which is trivial except in degree zero where it is k. Then we define !
�

X WD f Šk to
be the dualizing complex on X .

Consider the following diagram:

X

f

��

F e

�� X

f

��
Speck

F e

�� Speck (7)

where the top row is the absolute e-iterated Frobenius on X and the bottom row
is the e-iterated Frobenius on k. Notice that the bottom row is an isomorphism
(although not the identity), and so .F e/Šk Š k. The fact that .f ıg/Š D f Š ıgŠ then
implies that !

�

X is independent of the choice of Frobenius-variant of the k-structure
on X . In particular, we see that

!
�

X Š f Šk Š .f ı F e/Šk Š .F e ı f /Šk Š .F e/Š!
�

X : (8)
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Now we will apply the duality functor RH om
�

OX
. ; !

�

X/ to the Frobenius map
OX �! F e�OX . This operation yields

!
�

X Š RH om
�

OX
.OX ; !

�

X/ RH om
�

OX
.F e�OX ; !

�

X/ Š F e� .F e/Š!
�

X Š F e�!
�

X

where the isomorphisms are in the derived category and the final two isomorphisms
are due to Eqs. (6) and (8), respectively. Taking cohomology of this map of
complexes gives us maps

hi!
�

X  F e� hi!
�

X Š hiF e�!
�

X (9)

for each integer i 2 Z.
For any equidimensional scheme X of finite type over k with dualizing complex

!
�

X WD f Šk, we define !X D h� dimX.!
�

X/ and call it the canonical module of X . It
follows that (9) induces a map F e�!X �! !X . As expected, we then have

Proposition 3.3.2. The map F e�!X �! !X coincides with the map T defined
previously on the regular locus of X .

3.4 Exercises

Exercise* 3.1. Suppose that k is a perfect field and that X D SpeckŒx; y� D A2,
prove that C�1 W �1

X ! h1.F��
�

X/ is surjective.

Hint: First prove the result for A1 D SpecFpŒx�. Now consider
P

j y
j .˛j C

ˇjx
bj dy/ D ˛ 2 �1

X such that d˛ D 0 where ˛j 2 �1
A1

and ˇj 2 FpŒx�. Deduce
that yjC1˛jC1C yj ˇj dy 2 d�0

X if j C 1 is not divisible by p. Use this to rewrite
˛ and then use the result for A1.

This method can be used to do the general proof by induction (see [11, Theorem
1.3.4]).

Exercise 2. Suppose that k is a perfect field and that X D SpeckŒx; y� D A2,
prove that C�1 W �2

X ! h2.F��
�

X/ is an isomorphism.

Exercise 3. Suppose that R is a regular local ring. We have seen that F�R is a flat
R-module by Exercise* 2.9. Consider the evaluation-at-1 map

HomR.F�R;R/
e

�� R

'
� �� '.F�1/:

Fix an isomorphism � W F�R �! HomR.F�R;R/ and consider the composition

e ı � W F�R �! R:

Prove that .e ı �/ generates HomR.F�R;R/ as an F�R-module.
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Exercise 4. A variety X is called Cohen–Macaulay if !
�

X Š !XŒdimX� is a
complex with cohomology only in degree equal to � dimX . Suppose that H
is a Cartier divisor on a Cohen–Macaulay scheme X . Prove that H is also
Cohen–Macaulay. Conversely, suppose that H is Cohen–Macaulay, prove that X
is Cohen–Macaulay in a neighborhood of H .

Hint: Apply the duality functor to the short exact sequence 0 �! OX.�H/ �!
OX �! OH �! 0 and observe that RH om

�

OX
.OH ; !

�

X/ Š !
�

H by (6). For the
converse statement, use Nakayama’s lemma.

Exercise* 3.5 (Grothendieck duality). (For those who wish to learn some homo-
logical algebra) Grothendieck duality says the following:

Theorem. If f W X �! Y is a proper map of schemes of finite type over a field k,
then we have an isomorphism in Db

coh.Y /

RH om
�

OY
.Rf�F ;G / Š Rf�RH om

�

OX
.F ; f ŠG /

for F 2 Db
coh.X/ and G 2 Db

coh.Y /.

Set Y D Speck and learn enough about the symbols above to deduce the variant
of Serre duality found in Hartshorne [34, Chap. III, Sect. 7].

4 Connections with Divisors

In this section we explain why maps ' 2 HomOX .F
e�OX ;OX/ contain roughly

the same information as a Q-divisor � such that KX C � is Q-Cartier (i.e., such
that there exists an integer n such that n� is integral and nKX C n� is Cartier).
These ideas go back at least to the original papers on Frobenius splittings [66, 71].
The difference between this section and those original papers is that we normalize
our divisors with respect to iterates of Frobenius and thus obtain Q-divisors.4 The
statements in this section are somewhat technical. Therefore, the reader may wish
to skim this section for the main idea and refer back to the numbered bijections as
needed throughout the remainder of this chapter.

Fix X to be a smooth variety of finite type over a perfect field. Consider an
element ' 2 HomOX .F

e�OX ;OX/. We claim that

HomOX .F
e�OX ;OX/ Š F e�OX..1 � pe/KX/: (10)

Let us prove this claim. By applying the projection formula as in Eq. (2), taking
global sections and using the fact that H omOX .F

e�OX;OX.KX// Š F e�OX.KX/,
we have

4Formal sums of codimension 1 subvarieties with rational coefficients.
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HomOX .F
e�OX ;OX/ Š HomOX ..F

e�OX/˝OX.KX/;OX.KX//

Š HomOX .F
e� .OX.p

eKX//;OX.KX//

Š HomF e
�

OX
.F e� .OX.p

eKX//;H omOX .F
e�OX ;OX.KX///

Š F e� HomOX ..OX.p
eKX//;OX.KX//

Š F e� OX..1 � pe/KX/:
(11)

See (8), [50, Proposition 5.68] or [32]. Alternately, it follows from Grothendieck
duality for the finite map F W X �! X (see Exercise 1).

Therefore, any nonzero map ' W F e�OX �! OX induces a nonzero global
section of F e�OX..1 � pe/KX/. By using the fact that F e� does not change the
underlying structure of sheaves of Abelian groups, we see that there is a bijective
correspondence:

�

nonzero elements
' 2 HomOX .F

e�OX ;OX/

�

 !
�

nonzero elements
z 2 ��X;OX..1 � pe/KX/

�

�

:

Note every nonzero global section of OX..1 � pe/KX/ induces an effective Weil
divisor 0 � D � .1 � pe/KX ; see Theorem A.2.6.

We notice also that two nonzero elements z1; z2 2 �
�

X;OX..1�pe/KX/
�

induce
the same divisor if and only if there exists a unit u 2 ��U;OX

�

such that uz1 D z2.
Therefore, we have the following bijection:

�

nonzero ' 2
HomOX .F

e�OX ;OX/

�

,

0

@

multiplication
by units in
�.X;F e�OX/

1

A !
8

<

:

effective divisors
linearly equivalent

to .1 � pe/KX

9

=

;

:

(12)
Now suppose that X is normal but not necessarily smooth. Of course, the

previous argument works fine on U D Xreg � X . However, Weil divisors are
determined off a set of codimension 2. Likewise �

�

X;OX..1 � pe/KX/
� D

�
�

U;OX..1 � pe/KX/
�

since X n U has codimension � 2 cf. [36, Proposition
2.9]. In particular, we see that

(12) holds on normal varieties.

We continue now to work with normal X . Given an effective Weil divisor D D
D' � .1�pe/KX corresponding to ', set� D �' D 1

pe�1D' . This is an effective
Q-divisor. Notice that

KX C� D KX C 1

pe � 1D � KX C 1

pe � 1.1 � p
e/KX D KX �KX D 0:
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In particular, we obtain a bijective correspondence:

�

nonzero ' 2
HomOX .F

e� OX;OX/

�

,

0

@

multiplication
by units in
�.X;F e�OX/

1

A !

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Q-divisors
� � 0 such that

.pe � 1/.KX C�/ is
an integral Weil
divisor linearly
equivalent to 0

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

:

(13)

At this point, it is natural to ask why should one divide by pe � 1. This division is a
normalizing factor as described below.

Suppose that ' W F e�OX �! OX is an OX -linear map. We apply the functor

F e� and obtain F e�' W F 2e� OX

Fe
�

OX����! F e�OX . Composing this with ' we obtain
' ı .F e�'/ W F 2e� OX �! OX . We use '2 to denote this map (note if we view '

as an honest p�e linear map, then this is really just ' composed with itself). More
generally, for each n � 1, we obtain maps

'n W F ne� OX �! OX (14)

in the same way.

Lemma 4.0.1 ([73, Theorem 3.11(e)]). Suppose that X is a normal variety. Then
the map ' 2 HomOX .F

e�OX ;OX/ induces the same Q-divisor � via (13) as does
the map

'n 2 HomOX .F
ne� OX;OX/

for any n � 1.

Proof. The divisor section correspondence is determined in codimension 1, and so
we may assume that X D SpecR where .R;m/ is a DVR with m D hri. We will
simply verify the claim in the Lemma for n D 2 and leave the general case to the
reader Exercise 3. Now, since R is regular (and so Gorenstein) and local, KX � 0.
Thus as

HomOX .F
e�OX ;OX/ Š �.X;F e�OX..1 � pe/KX// Š F e�RI

we fix ˆ 2 HomOX .F
e� OX;OX/ corresponding to F e�1. In other words we pick ˆ

such that Dˆ D 0 (note that the Sect. 1 doesn’t vanish anywhere).
It is an exercise left to the reader thatˆ2 D ˆı.F e�ˆ/ generates HomR.F

2e� R;R/

as an F 2e� -module (Exercise 2). This is the key point though!
Now consider '.F e� / D ˆ.F e� ura � / for some unit u 2 R and integer a � 0.

It follows immediately that D' D adiv.r/ and so �' D a
pe�1div.r/.

Now we consider '2. We observe that

'2.F 2e� / D ˆ.F e� uraˆ.F e� ura � // D ˆ.F e�ˆ.F e� up
eC1ra.peC1/ � //

D ˆ2.F 2e� up
eC1ra.peC1/ � /:
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ThusD'2 D a.peC1/div.r/ and so that�'2 D a.peC1/
p2e�1 div.r/ D a

pe�1div.r/ D �'

as desired. ut
Therefore, we obtain a bijection:

8

<

:

nonzero ' 2
HomOX .F

e�OX ;OX/

as e � 0 varies

9

=

;

,

0

B

B

B

B

B

@

relation generated
by multiplication

by units in
�.X;F e�OX/ and by
composition in (14)

1

C

C

C

C

C

A

 !

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Q-divisors
� � 0 such that
n.KX C�/ � 0
for some n > 0

with p not
dividing n.

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(15)

Here we notice that .pe�1/.KXC�/ � 0 for some e > 0 is equivalent to requiring
that n.KX C�/ � 0 for some n > 0 which is not divisible by p (Exercise 5).

Example 4.0.2. Consider X D An D Spec kŒx1; : : : ; xn� D SpecR over a perfect
field k. Consider ˆ W F e�R �! R defined by the following action on monomials:

ˆ
�

F e� .x
�1
1 � � �x�nn /

�

D

8

ˆ

ˆ

<

ˆ

ˆ

:

x
�1�.pe�1/

pe

1 � � �x
�n�.pe�1/

pe

n ; if all �i�.p
e�1/

pe
2 Z

0; otherwise

In other words, ˆ sends F e� .x
pe�1
1 � � �xpe�1n / to 1 and all other elements of the

obvious basis of F e�R over R to zero. We already saw in Exercise 3.0.5 that
ˆ W F e�R �! R generates HomR.F

e�R;R/ as an F e�R-module (at least when e D 1,
but the general case is no different).

But then it immediately follows that the divisor Dˆ is the zero divisor. In
particular, Dˆ corresponds to the element in HomR.F

e�R;R/ Š F e�R that doesn’t
vanish anywhere.

4.1 A Generalization with Line Bundles

Previously we considered nonzero maps ' 2 HomOX .F
e� OX;OX/. In this section,

we generalize this to maps ' 2 HomOX .F
e�L ;OX/ where L is a line bundle onX .

This generality actually simplifies some of the statements considered in the previous
section. Indeed, just as in (11), it is easy to see that for a smooth variety X

HomOX .F
e�L ;OX/ Š F e�L �1..1 � pe/KX/:

Just as before, this extends to normal varieties as well. Therefore, for any line bundle
on a normal variety X , we have a bijection of sets.
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�

nonzero ' 2
HomOX .F

e� L ;OX/

�

,

0

@

multiplication
by units in
�.X;F e�OX/

1

A !

8

ˆ

ˆ

<

ˆ

ˆ

:

effective Weil
divisorsD such
that OX.D/ Š

L �1..1 � pe/KX/

9

>

>

=

>

>

;

:

(16)

Thus, just as before, ' 2 HomOX .F
e� L ;OX/ induces Q-divisors �' D 1

pe�1D
such that OX..p

e � 1/.KX C�// Š L �1.

Definition 4.1.1. Given ' W F e�L �! OX , we use �' to denote the Q-divisor
associated to ' as above.

Finally, consider the data of a line bundle L and an OX -linear map ' W F e�L �!
OX . We will compose ' with itself in the following way. We tensor ' with L and
use the projection formula to obtain

F e� .L peC1/ �! L :

Pushing forward by F e� we obtain

F 2e� .L peC1/ �! F e�L :

Composing with ' again we obtain a map

F 2e� .L peC1/ �! OX

which we denote by '2. Continuing in this way, we obtain maps

'n W F ne� .L p.n�1/eC���CpeC1/ �! OX (17)

for all n � 1.
It is then straightforward to verify that

Lemma 4.1.2. The Q-divisor �' induced by ' W F e�L �! OX is equal to the

Q-divisor�'n induced by 'n W F ne� .L p.n�1/eC���CpeC1/ �! OX .

Proof. Left as an exercise to the reader Exercise 7. ut
In other words, forming the Q-divisor � D 1

pe�1D normalizes the divisor with
respect to self composition just as in the case that L D OX .

Given two line bundles L ;M , we declare maps ' W F e�L �! OX and  W
F e�M �! OX equivalent if there exists a commutative diagram:

F e� L

'

��

˛
�� F e�M

 

��
OX

id

�� OX
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where ˛ is an isomorphism. We also declare ' and 'n to be equivalent. These
relations generate an equivalence relation� on pairs .L ; ' W F e�L �! OX/.

Theorem 4.1.3. For a normal variety X over a field of characteristic p > 0, there
is a bijection of sets

8

<

:

Line bundles L and
maps ' W F e�L �! OX

modulo equivalence

9

=

;

 !
8

<

:

Effective Q-divisors�
such that

OX..p
e � 1/.KX C�// Š L �1

9

=

;

:

Proof. Left to the reader Exercise* 4.8. ut
We compute a final example.

Example 4.1.4. Set X D Pnk and consider the line bundle L D OX..1�p/KX/ D
OX..nC 1/.p � 1//. Then

H omOX .F�L ;OX/

D H omOX .F�OX..1 � p/KX/;OX/

D H omOX .F�OX.KX/;OX.KX//

D F�H omOX .OX.KX/;OX.KX//

D F�OX:

In particular, there is only one nonzero element ' 2 HomOX .F�L ;OX/ up to
scaling by elements of k. In particular, it follows thatD' D �' D 0 since a nonzero
global section of F�OX doesn’t vanish anywhere. On the affine charts, this element
is easily seen to coincide with the map described in Example 4.0.2 (at least for
e D 1).

On the other hand, there is an obvious map

 W F�OX �! OX

defined by the rule  .F�y/ D y1=p , for y 2 �.U;OX/, if y1=p 2 �.U;OX/ and
 .F�y/ D 0 otherwise.

It is an exercise left to the reader that D D .p � 1/F where F is the union of
the various coordinate axes in Pn. For example, if n D 2 and X D ProjkŒx; y; z�,
then F D V.xyz/.

4.2 Exercises

Exercise 1 (Grothendieck duality for a finite map). Suppose that R � S

is a finite inclusion of Cohen–Macaulay local rings and M is an S -module.
Grothendieck duality for this inclusion says that there is an isomorphism of S -
modules:

HomR.M;!R/ Š HomS .M;!S/:
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Here !R and !S are canonical modules for R and S , respectively. Verify that this
is an easy consequence of the formula HomR.S; !R/ D !S , a formula which was
given to you (8).

Exercise 2. Suppose thatR is a ring and S is anR-algebra such that HomR.S;R/ Š
S as S -modules. Suppose that M is any S -module and prove that the natural map:

HomS.M; S/ 	HomR.S;R/ �! HomR.M;R/

defined by . ; '/ 7! ' ı  is surjective.
In particular, every map in HomR.M;R/ can be factored through a map in

HomR.S;R/. A solution can be found in [54, Appendix F].

Exercise 3. Prove the general case of Lemma 4.0.1.

Exercise 4. Suppose that R � S is a finite extension of Gorenstein local rings.
Prove that HomR.S;R/ is a rank-1 free S -module. Conclude that ifR is Gorenstein
and local, HomR.F

e�R;R/ is isomorphic to F e�R as an F e�R-module.

Hint: Since R is Gorenstein and local (semi-local is good enough), !R Š R.

Exercise 5. Suppose we are given an integer n > 0 such that p does not divide n,
prove that nj.pe � 1/ for some integer e > 0. Conclude that .pe � 1/.KX C�/ � 0
for some e > 0 if and only if n.KX C�/ � 0 for some n > 0 which is not divisible
by p.

Exercise 6. ComputeD and � where  is as in Example 4.1.4.

Exercise 7. Prove Lemma 4.1.2. See [73, Theorem 3.11(e)].

Exercise* 4.8. Prove Theorem 4.1.3.

Exercise 9. Suppose that X is a smooth (or Gorenstein) variety and T W F�!X �!
!X is the trace map as described in Sect. 3.3. By twisting by �KX and reflexifying,
we obtain a map ˆ W F�OX..1 � p/KX/ �! OX . Prove that ˆ corresponds to the
zero divisor by (16).

Exercise 10. A normal variety X is called Q-Gorenstein if OX.nKX/ is a line
bundle for some n > 0 (in other words, nKX is Cartier). Note that we do not require
Q-Gorenstein varieties to be Cohen–Macaulay. In this case, the index of KX is the
smallest n > 0 such that nKX is a Cartier divisor.

Suppose that X is Q-Gorenstein with index not divisible by p. Suppose that
R D OX;x is the stalk ofR at some point x 2 X . Prove that we have an isomorphism
of R-modules, F e�R Š HomR.F

e�R;R/, for all sufficiently divisible e.

Exercise 11. Suppose that R is a normal domain and that ' W F e�R �! R is an
R-linear map corresponding to a divisor �' as in Definition 4.1.1. Fix a nonzero
g 2 R. Form a new map

 .F e� / D '.F e� .g � //:

Prove that � D �' C 1
pe�1div.g/.
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Exercise* 4.12. Suppose that ' W F e�L �! OX and  W F f� M �! OX are two
OX -linear maps. Form the twisted composition ' ı .F e� 0/ as follows. Twist  by
L to get  0 W F f� .M ˝L pf / �! L . Now pushforward by F e� and compose with
' and obtain:

' ı .F e� 0/ W F fCe� .M ˝L pf /
F e

�

 0

���! F e�L
'�! OX :

Find a relation between�' , � , and�'ı.F e
�

 0/ where the � are Q-divisors defined
as in Definition 4.1.1. For a solution, see the proof of [78, Lemma 4.9(i)].

Exercise* 4.13 (Noneffective divisors). Fix a line bundle L on a variety X .
There is a bijection between nonzero elements of HomOX .F

e� L ;K .X// and (not
necessarily effective) Weil divisorsD such that OX.D/ Š L �1..1 � pe/KX/.

Indeed, suppose that ' 2 HomOX .F
e�L ;K .X//. Then, working locally if

needed, for some sufficiently large Cartier divisorE � 0, we have that '.F e�L ..1�
pe/E// � OX . Set  W F e�L ..1 � pe/E/ �! OX to be the restriction map. Then
 induces a divisor D > 0. Set D' D D C .1 � pe/E , and prove that D' is
independent of the choice of E .

5 Frobenius Splittings

In this section we give a brief introduction to Frobenius splittings. A more complete
treatment can be found in [11, Chap. 1].

Suppose that X is a scheme over a perfect field of characteristic p > 0.

Definition 5.0.1. We say that X is Frobenius split (or F -split) if the map

OX �! F�OX

splits as a map of OX -modules. In this case the splitting map ' W F�OX �! OX is
called a Frobenius splitting. Of course, there may be multiple different Frobenius
splittings ' 2 HomOX .F�OX ;OX/.

Likewise, we say that a ring R is Frobenius split (or F -pure) if the map

R �! F�R

splits as a map of R-modules.
A scheme X is said to be F -pure (or locally F -split) if every point x 2 X has a

neighborhood which is F -split.

Remark 5.0.2. Frobenius split varieties were formally introduced in [66] (also see
[71]), although very closely related concepts were studied in [24,37,40,70]. Indeed,
Frobenius split affine varieties (i.e., rings) had been heavily studied by Hochster and
his students in the 1970s and 1980s cf. [20].
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We shall see below that every regular variety is F -pure Proposition 5.1.2, but not
every regular variety is F -split Lemma 5.2.2.

Lemma 5.0.3. A variety X is Frobenius split if and only if either of the following
equivalent conditions hold.

(a) The e-iterated Frobenius OX �! F e� OX splits for some e.
(b) The e-iterated Frobenius OX �! F e� OX splits for all e.

Proof. This is left as an exercise to the reader (see Exercise 1). ut
Suppose that X is a variety, we will look for Frobenius splittings inside

HomOX .F
e�OX ;OX/. Indeed, notice that for any c 2 �.X;OX/, we have a map

HomOX .F
e�OX ;OX/ �! �.X;OX/ defined by evaluation at c, in other words,

' 7! '.F e�c/. Now we observe that

Lemma 5.0.4. A variety X is Frobenius split if and only if the evaluation-at-1 map

HomOX .F
e�OX ;OX/ �! �.X;OX/

is surjective.

Proof. Left as an exercise to the reader in Exercise 2. ut
Finally, we observe that a normal X is Frobenius split if and only if the regular

locus of X is Frobenius split.

Lemma 5.0.5. Suppose that X is normal and U � X is the regular locus. Then X
is Frobenius split if and only if U is Frobenius split.

Proof. The natural restriction map HomOX .F
e�OX ;OX/ �! HomOU .F

e�OU ;OU /

is an isomorphism since X n U has codimension � 2 and the H om sheaves are
reflexive. See Appendix A and [11, Lemma 1.1.7] for additional discussion. ut

5.1 Local Properties of Frobenius Split Varieties

The easiest property to prove about Frobenius split varieties is that they are reduced.

Lemma 5.1.1. Suppose that a scheme X is F -pure, then X is reduced.

Proof. Without loss of generality we may assume that X D SpecR is affine and
Frobenius split. Suppose that x 2 R satisfies xn D 0. Then xp

e D 0 for some
e > 0 (where p is the characteristic ofR). Therefore x D x'.F e�1/ D '.F e�xp

e
/ D

'.F e�0/ D 0. ut
First we identify some Frobenius split varieties.

Proposition 5.1.2 (Regular affine varieties are Frobenius split). Suppose that
X D SpecR is a regular affine variety. Then X is Frobenius split.
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Proof. We prove the result for Rm D OX;x , the stalk of X at a closed point x 2 X .
The global affine case is Exercise 6. Let OR denote the completion of Rm at the max-
imal ideal m. Now consider the evaluation-at-1 map ˆ W HomRm.F

e�Rm; Rm/ �!
Rm. Tensoring with OR gives us a map

Ô W Hom OR.F
e� OR; OR/ Š HomRm.F

e�Rm; Rm/˝Rm
OR �! Rm ˝Rm

OR Š OR:

Here we have used Exercise 6. Note that by the Cohen-structure theorem, [65,
Theorem 28.3], we have that OR D k�x1; : : : ; xn�. It follows then from the argument
of Exercise 1 that F e� OR is free as an OR-module and in particular, that there is a
splitting of OR �! F e� OR. In particular, Ô is surjective. But therefore ˆ is surjective
as well since tensoring with OR is faithfully flat. Thus, by Lemma 5.0.4, we are
done. ut

Of course, not all Frobenius split varieties are regular.

Lemma 5.1.3 (Simple normal crossings are F -split). The ring

R D kŒx1; : : : ; xn�=hx1 � x2 � � �xni D S=J

is Frobenius split.

Proof. Observe we have an “obvious” Frobenius splitting ' W F e�kŒx1; : : : ; xn� �!
kŒx1; : : : ; xn� coming from Exercise 1, which sends the basis element corresponding
to F e�1 to 1 and sends all the other basis elements x�11 : : : x�nn to 0. We want to
consider what this map does to the ideal hx1 �x2 � � �xni D J . Consider any monomial
in x˛ D x

˛1
1 � � �x˛nn 2 hx1 � x2 � � �xni D J . Then '.F e� x˛/ ¤ 0 if and only if pej˛i

for each i . In particular, this means that '.F e� x˛/ D x
ˇ1
1 � � �xˇnn with each ˇi � 1.

Therefore, '.F e� x˛/ 2 J . Since every element of J is a sum of such monomials, we
have that '.F e�J / � J .

But now consider the commutative diagram:

F e�J
'jJ

��
� �

��

J � �

��
F e�R

��
��

'
�� R

��
��

F e� .R=J /
'=J

�� R=J

: (18)

Since ' sends 1 to 1, so does '=J . ut



p�1-Linear Maps in Algebra and Geometry 147

In the next section, we will introduce a highly effective tool, based upon similar
analysis, which can be used to test whether an affine variety is Frobenius split—
Fedder’s criterion.

Definition 5.1.4. Suppose that ' W F e� OX �! OX is a Frobenius splitting, then an
ideal sheaf J � OX is called compatibly ('-)split if '.F e�J / � J . If the subscheme
Y D V.J / � X , then we also say that Y is compatibly ('-)split.

Note that in Lemma 5.1.3, we showed that the coordinate hyperplanes were
compatibly split with the obvious Frobenius splitting on X D Spec kŒx1; : : : ; xn�.
Indeed, consider the following proposition:

Proposition 5.1.5 (Properties of compatibly split varieties). Suppose that ' W
F e�OX �! OX is a Frobenius splitting. Then:

(a) If J � OX is compatibly '-split, then V.J / is Frobenius split as well. In
particular, J is a radical ideal.

(b) If J � OX is compatibly '-split, then '.F e�J / D J (instead of just contained
in J ).

(c) If I; J � OX is compatibly '-split, then so are I C J and I \ J .
(d) If Q is a minimal prime over J , thenQ is also compatibly '-split.
(e) If I � OX is compatibly '-split, then so is I W K for any ideal sheafK � OX .
(f) A prime ideal sheafQ is compatibly '-split if and only ifQ �OX;Q is compatibly

'Q split where 'Q is the map induced on the stalk 'Q W F e�OX;Q �! OX;Q.

Proof. This is left as an exercise to the reader in Exercise 9. ut
Remark 5.1.6. Suppose that ' W F e�OX �! OX is a Frobenius splitting. It is easy to
see that a sort of converse to Proposition 5.1.5(a) holds. In particular, suppose there
is a commutative diagram

F e� OX

��
��

'
�� OX

��
��

F e� .OX=J /
'=J

�� OX=J

then J is '-compatibly split (simply take the kernel of the vertical arrows).

One important point about Frobenius splittings is that compatibly split subvari-
eties intersect normally. In particular

Corollary 5.1.7. If ' W F e� OX �! OX is a Frobenius splitting, if I and J are
compatibly '-split, then I C J is a radical ideal.

Proof. Combine properties (a) and (c) from Proposition 5.1.5. ut
Also see Exercise 3.
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5.2 Global Properties of Frobenius Split Varieties

Now we turn to projective (or more generally complete) Frobenius split varieties.
First we introduce another definition.

Definition 5.2.1. Suppose that D is an effective Weil divisor on a normal variety
X . Then we say that X is e-Frobenius split relative to D if the composition

OX �! F e�OX ,! F e� .OX.D//

is split.

Notice that if X is e-Frobenius split relative to D, then X is Frobenius split. We
mentioned earlier that regular affine varieties are Frobenius split Proposition 5.1.2,
but not every smooth projective variety is Frobenius split. We prove that now.

Lemma 5.2.2. IfX is proper, Frobenius split and normal, thenH0.X;OX.�nKX//

¤ 0 for some n > 0. In particular X is not of general type. Even more, if X is e-
Frobenius split relative to an ample divisor A, then �KX is big.

Proof. The fact that X is Frobenius split implies that there is a nonzero element
' 2 HomX.F

e� OX;OX/ Š H0.X; F e�OX..1 � pe/KX// by Sect. 4. In particular,
H0.X; F e�OX..1�pe/KX// ¤ 0. ButF e�OX..1�pe/KX/ is isomorphic to OX..1�
pe/KX/ as an Abelian group, and so the result follows for n D .pe � 1/.

For the second statement, we notice that we have a section ' 2 HomX

.F e�OX.D/;OX/ Š H0.X; F e�OX..1 � pe/KX � A//, and so there is an effective
divisorH � .1�pe/KX�A, and thus .1�pe/KX � ACH D “ample + effective,”
and so KX is big.5 ut

Our next goal is to prove vanishing theorems for Frobenius split varieties. First,
however, we need the following lemma.

Lemma 5.2.3. If X is e-Frobenius split relative to D, then for any integer n > 0,
X is ne-Frobenius split relative to .p.n�1/e C � � � C pe C 1/D.

Proof. Suppose that OX �! F e�OX �! F e�OX.D/
'�! OX is the Frobenius splitting.

By tensoring this with D, taking the reflexification of the sheaves, and applying the
functor F e� , we obtain a splitting

F e� .OX.D// �! F e� .OX.p
eD// �! F 2e� .OX.D C peD//

F e
�

'.D/�����! F e� .OX.D//:

But now composing with Frobenius and ' on the left and right sides respectively,
we obtain our desired splitting

5On a projective variety X , you can take the definition of big to be a divisor which has a multiple
which is linearly equivalent to an ample divisor plus an effective divisor [55, Corollary 2.2.7].
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OX �! F e� .OX.D// �! F e� .OX.p
eD// �! F 2e� .OX.D C peD//

F e
�

'.D/�����! F e� .OX.D//
'�! OX :

Continuing in this way yields the desired result. ut
Theorem 5.2.4 (Vanishing theorems for Frobenius split varieties). Suppose that
X is a projective Frobenius split variety. Then:

(a) Hi.X;L / D 0 for any ample line bundle L and any i > 0.
(b) Hi.X;L ˝ !X/ D 0 for any ample line bundle L and any i > 0.
(c) If X is normal and e-Frobenius split relative to an ample Cartier divisor D,

then Hi.X;L / D 0 for any nef line bundle L and any i > 0.
(d) If X is normal and e-Frobenius split relative to an ample Cartier divisor D

such that X nD is regular, then Hi.X;L ˝ !X/ D 0 for any big and nef line
bundle L and any i > 0.

Proof. For (a), notice that we have a splitting of L Š OX ˝ L �! .F e�OX/ ˝
L Š F e�L pe . Thus Hi.X;L / ,! Hi.X; F e�L pe / injects. On the other hand,
Hi.X; F e�L pe / Š Hi.X;L pe / as Abelian groups, and the latter vanishes for i > 0
and e � 0 by Serre vanishing.

For (b), notice that an application of H omOX . ; !X/ to the splitting OX �!
F e�OX �! OX induces a splitting:

!X
T � F e�!X  - !X :

Twisting by L and applying the projection formula gives us

!X ˝L
T � F e� .!X ˝L pe / - !X ˝L :

Taking cohomology for i > 0 we obtain maps

Hi.X; !X ˝L /
T � Hi.X; F e�.!X ˝L pe // - H i .X; !X ˝L /

whose composition is an isomorphism. But the middle term vanishes by Serre
vanishing since we may take e � 0.

For (c), we first notice that by using Lemma 5.2.3, we may assume that D is as
ample as we wish (at the expense of increasing e). Thus, using the same strategy as
in (a), it is sufficient to prove that Hi.X;OX.D/ ˝L pe / D 0 for all i > 0. But
this follows from Fujita’s vanishing theorem [21].

Part (d) is left as a somewhat involved exercise to the reader Exercise* 5.10. ut
Finally, we notice that sections on Frobenius split subvarieties often extend to

sections on the ambient spaces.

Theorem 5.2.5. Suppose that Y � X is compatibly Frobenius split. Then the
natural maps



150 M. Blickle and K. Schwede

H0.X;L / �! H0.Y;L jY /
are surjective for any ample line bundle L .

Proof. By composition of the Frobenius splitting with itself, we have the following
diagram for any e > 0.

H0.X; F e�.L pe //

��
��

ˇ
�� �� H0.X; F e�.L pe jY // ��

��
��

H1.X; F e�.IY ˝L pe // D 0

H0.X;L /
˛

�� H0.X;L jY /:

Note, we have the top-right vanishing by Serre vanishing which implies that ˇ is
surjective. The vertical maps are surjective because they are obtained from twisting
the Frobenius splitting F e� OX �! OX by L . The diagram then implies that ˛ is
surjective, this completes the proof. ut

5.3 Tools for Proving Proper Varieties Are Frobenius Split

There are two common tools for proving that proper varieties are Frobenius split.
The first involves a study of the singularities of sections ofH0.X;OX..1�pe/KX//.
The second is a general fact that images of Frobenius split varieties often remain
Frobenius split. In many applications, these tools are combined.

Theorem 5.3.1 ([66], [11, Sect. 1.3]). SupposeX is a proper normal d -dimensional
variety of finite type over an algebraically closed field of characteristic p > 0.
Further suppose that there is an effective divisor D, linearly equivalent to .1 �
pe/KX for some e, that satisfies the following condition:

• There exists a smooth point x 2 X and divisors D1;D2; : : : ;Dd intersecting in
a simple normal crossings divisor at x 2 X such that D D .pe � 1/D1 C � � � C
.pe � 1/Dd CG for some effective divisor G not passing through x 2 X .

Then X is Frobenius split by a map ' W F e�OX �! OX which corresponds to D as
in (12).

Proof. There are two main ideas in this proof.

(a) D corresponds to some map, ' W F e�OX �! OX by (12). Thus '.F e�1/ D � 2
H0.X;OX/ D k is a constant. If we can show that � ¤ 0, then by rescaling ',
we are done.

(b) The value of '.F e�1/ can be detected at any point. In particular, we can try to
compute it at the stalk of x 2 X .
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For simplicity, we denote the stalk at x by R WD OX;x and we use m to denote
the maximal ideal.

Fix ' corresponding to D as in (12) and consider 'x W F e�R �! R. Suppose that

DjSpecR D V.f pe�1
1 � � �f pe�1

d / D V.f /
where the fi are the local equations forDi near x.

Set bR to be the completion of R D OX;x . We know that ' corresponds to D, so
it can be factored as

F e�OX..1 � pe/KX �D/ ,! F e� OX..1 � pe/KX/ �! OX :

Taking the completion of this factorization, we obtain

F e�bR

b'

�� ��
� �

�.F e
�

f /
�� F e�bR

 
�� bR :

By construction,  , viewed as an element of M D Hom.F e�bR;bR/, generatesM as
an F e�bR-module (use Exercise 9).

On the other hand, bR D k�f1; : : : ; fd �, and so the map ‰ W F e�bR �! bR which
sends f D f

pe�1
1 � � �f pe�1

d to 1 and the other basis monomials ff a11 � � �f ad
d ¤

f j 0 � ai � pe�1g to zero also generatesM as an F e�bR-module by Example 4.0.2.
It follows that  .F e� / D ‰.F e� .c � // for some invertible element c 2 bR.

But notice that c is invertible, so it has a non-zero constant term c0 2 k where
c D c0 C c0, c0 2 hf1; : : : ; fd i

bR
. Thus

� D 'x.F
e�1/

D b'.F e�1/
D  .F e�f /
D ‰.F e� .c � f //
D ‰.F e� .c0 � f //C‰.F e�.c0 � f //
D c

1=pe

0 C‰.F e� .c0 � f //:

But ‰.F e�.c0 � f // 2 hf1; : : : ; fd i
bR

by our choice of ‰ (note that c0 � f 2
hf pe1 ; : : : ; f

pe

d i). Since c1=p
e

0 C ‰.F e� .c0 � f // D � 2 k is a constant, we see that

‰.F e� .c0 � f // D 0. Thus, � D c1=pe0 ¤ 0 as desired. ut
Remark 5.3.2. A more general, simpler, and more conceptual version of the above
result is described in Exercise 12 in the next section. We lack the language to
describe it here however.
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Now we study the behavior of Frobenius splittings under maps between varieties.
We will study some complementary constructions later in Sect. 7.

Theorem 5.3.3 ([40,66]). Suppose that � W Y �! X is a map of varieties such that
OX �! ��OY splits as a map of OX -modules (e.g., if ��OY D OX ). Then if Y is
Frobenius split, so is X .

Before proving the theorem, we point out just how common the condition that
OX �! ��OY splits is. Indeed, if � W Y �! X is a proper surjective map between
normal varieties with connected fibers, then ��OY D OX . Alternately, if � W Y �!
X is proper, dominant, generically finite, Y andX are normal, and p does not divide
ŒK .Y / W K .X/� D n, then the normalized field trace 1

n
Tr W K .Y / �! K .X/

restricts to a map ��OY �! OX which sends 1 to 1.

Proof of Theorem 5.3.3. Set ' W F e�OY �! OY to be the Frobenius splitting of Y ,
and fix ˛ W ��OY �! OX to be the splitting of i W OX �! ��OY . Pushing down '
we obtain

.��'/ W ��F e�OY �! ��OY :

Now, we simply form the composition:

F e�OX

F e
�

i
,��! F e���OY D ��F e�OY

�
�

'��! ��OY

˛�! OX :

By chasing through the composition, we see that F e�1 is sent to 1 and that X is
F -split. ut

5.4 Exercises

Exercise 1. Prove Lemma 5.0.3.
Hint: Compose Frobenius and Frobenius splittings by using the functor F e� .

Exercise 2. Prove Lemma 5.0.4.

Exercise 3. A domain R containing a field of characteristic p > 0 is said to be
weakly normal if any r 2 K.R/ satisfying rp 2 R also satisfies r 2 R as well (see
[96, Lemma 3] and [95, Sect. 3]). Show that any F -pure/split R is weakly normal.
You can find a solution in [11, Proposition 1.2.5], cf. [40, Proposition 5.31].

Exercise 4. Suppose that X is Frobenius split relative to a Cartier divisor D such
that X nD is Cohen–Macaulay. Prove that X is Cohen–Macaulay.

Hint: Working locally we may assume that X D SpecR and D D V.f /.
Fix a maximal ideal m 2 SpecR and consider the composition Hi

m.R/ �!
Hi

m.F
e�R/

�.F e
�

f /����! Hi
m.F

e�R/ recalling that a variety can be proven to be Cohen–
Macaulay by examining its local cohomology modules as in [34, Chap. III, Exer-
cises 3.3 and 3.4].
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Exercise 5. Suppose that F e�R Š R˚M asR-modules whereM is some arbitrary
R-module. Prove that R is Frobenius split. More generally, prove the same result if
there is any surjective map F e�R �! R.

Exercise 6. Suppose that X D SpecR is an affine variety and suppose that for
every maximal ideal m 2 SpecR, we have that Rm is F -split. Prove that X is
F -split.

Hint: The given splittings definitely do not glue. However, consider the
evaluation-at-1 map HomR.F�R;R/ �! R.

Exercise 7 (Toric varieties). Suppose that X is a normal toric variety. Consider
the map ‰ W F�OX �! OX defined as follows. We define

‰.F�x�/ D
�

x�=p if �=p has integer entries
0 otherwise

acting on each affine toric chart (where x� is a monomial). Show that this induces
a Frobenius splitting on X which compatibly splits all the torus invariant divisors.
What is the �‰ (as defined as in (13))?

Exercise 8 (Affine section rings). Suppose that X is a projective algebraic variety
with ample line bundle A . Consider

S WD
M

i2Z
H0.X;A i /;

the section right with respect to A . Prove that X is Frobenius split if and only if S
is Frobenius split. For additional discussion of related topics, see [89].

Exercise 9. Prove Proposition 5.1.5.

Hint: For part (a), use a diagram similar to the one in Lemma 5.1.3. For solutions,
see [11, Chap. 1].

Exercise* 5.10. Prove Theorem 5.2.4(d).

Hint: This is somewhat involved. There exists a Cartier divisor B such that
L n.�B/ is ample for all n� 0 since L is big and nef. For some m� 0, we also
know that mD C B is still ample. First show that X is r-Frobenius split relative to
mDCB for some integer r � 0 (this is hard). Then notice we have a composition

!X˝L
T � F r� .!X˝L / - F r� .!X .�B/˝L / - F r� .!X.�mD�B/˝L / !X

which is an isomorphism (we type this with the arrows going backwards to suggest
that this arises by duality). Now, by composing the map !X  F r� .!X.�B/˝L /

with itself as in (17), we can obtain the desired vanishing. For a solution, see [78,
Theorem 6.8].
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6 Frobenius Non-splittings

Our goal in this section is to develop a theory for p�1-linear maps generalizing the
theory of Frobenius split varieties demonstrated in the previous section. First we
start with a definition.

Definition 6.0.1. Suppose that we are given a line bundle L on a variety X .
Consider an OX -linear map ' W F e� L �! OX . We say that an ideal J is '-
compatible if we have that '.F e� .J � L // � J . If Y D V.J / � X , then we
say that Y is '-compatible if J is.

For example, if L D OX and ' is a Frobenius splitting, then any '-compatibly
split ideal is '-compatible. We also have a slight variation on this definition.

Definition 6.0.2. Given � corresponding to ' W F e�L �! OX as in (16). A
subvariety Y � X is called an F -pure center of .X;�/ if Y is '-compatible and '	
is surjective where 	 is the generic point of Y .

Lemma 6.0.3. If J � OX is an ideal sheaf, then J is ' W F e�L �! OX compatible
if and only if ' induces a map 'Y W F e� .L jY / �! OY .

Proof. Left as an exercise to the reader Exercise 1. ut
We explore compatibility after composing maps as in (17).

Lemma 6.0.4. Suppose that J � OX is ' W F e�L �! OX -compatible. Then J is

'n W F ne� L pe.n�1/C���C1 �! OX

compatible for all n > 0. Conversely, suppose that ' is surjective. If J is 'n-
compatible, then J is also '-compatible.

Proof. The statement is local, so we may as well only check this at the stalks OX;x

and in particular assume that L Š OX;x . The first statement is obvious and will be
left to the reader. For the second statement, we sketch the idea of the proof.

The first step is to show that any J � OX;x which is ' W F e� OX;x � OX;x-
compatible is also radical (see Exercise *6.3). One can then show it is sufficient to
verify the statement at the minimal primes of J . In particular, we can assume that J
is the maximal ideal of OX;x by localizing.

Now then, suppose that J is 'n compatible but not '-compatible. Then '.F e�J / D
OX;x (since otherwise, it would be in the maximal ideal, which coincides with
J ). But then it is easy to see that '2.F 2e� J / D '.F e�'.F e�J // D OX;x as well.
Continuing in this way, we obtain a contradiction. ut

We also generalize the notion of F -pure to non-Frobenius splittings and to pairs.

Definition 6.0.5. Suppose that X is a normal variety and that � is a Q-divisor
such that
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KX C� is a Q-Cartier divisor with index not divisible by p. (
)

We say that .X;�/ is sharply F -pure if the map ' W F e�L �! OX , corresponding
to � as in (15), is surjective as a map of OX -modules.

If we do not satisfy (
), then we say that .X;�/ is sharply F -pure if for every
point x 2 X , there exists a neighborhood U of x 2 X and a divisor �U on U such
that �U � �jU and such that .U;�U / is sharply F -pure in the above sense.

It is an exercise below, Exercise 5, that the definition of sharply F -pure above
and the definition given in Definition 5.0.1 coincide.

6.1 Global Considerations

In this section, we briefly demonstrate that some of the global methods from the
Frobenius splitting section can still bear fruit, even if the actual vanishing theorems
do not hold.

Our first goal is to consider a generalization of a proof due to Keeler [49] (also
independently obtained by N. Hara [unpublished]). Related results were first proven
by [88] and also [26]. Before doing that, we recall a Definition and a Lemma.

Definition 6.1.1 (Castelnuovo–Mumford regularity [55, Sect. 1.8]). Suppose that
F is a coherent sheaf on a projective variety X and that A is a globally generated
ample divisor on X . Then F is called 0-regular (with respect to A ) if Hi.X;F ˝
A �i / D 0 for all i > 0.

Lemma 6.1.2 (Mumford’s theorem [55, Theorem 1.8.5]). If F is 0-regular with
respect to a globally generated ample line bundle A , then F is globally generated.

Now we are in a position to prove that certain sheaves are globally generated.

Theorem 6.1.3 ([49,75]). Suppose that ' W F e�L �! OX is a surjective OX -linear
map and L is a line bundle. Additionally suppose that A is a globally generated
ample line bundle and that M is any other line bundle such that L ˝M pe�1 is
ample (e.g., if L is itself ample, then we may take M D OX ). In this case, the line
bundle

M ˝A dimX

is globally generated.

Proof. Choose n� 0. Then we have a surjective map:

'n W F ne� L p.n�1/eC���CpeC1 �! OX

from (17). Twisting by M ˝A dimX , we obtain a surjective map:

F ne� .L p.n�1/eC���CpeC1 ˝M pne ˝A pne dimX/!M ˝A dimX :
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It is sufficient to show that the left side is globally generated as an OX -module since
then the right side is a quotient of a globally generated module and thus globally
generated itself. Note that it is definitely not sufficient to show that the left side is
globally generated as an F ne� OX -module. We will proceed by proving that the left
side is 0-regular as an OX -module. Note

L p.n�1/eC���CpeC1 ˝M pne D .L ˝M pe�1/p.n�1/eC���CpeC1 ˝M :

But now we have

Hi
�

X;F ne�
�

.L ˝M pe�1/p.n�1/eC���CpeC1 ˝M ˝A pne dimX
�˝A �i

�

D Hi
�

X;F ne�
�

.L ˝M pe�1/p.n�1/eC���CpeC1 ˝M ˝A pne.dimX�i /�
�

D Hi
�

X;F ne�
�

.L ˝M pe�1 ˝A .dimX�i /.pe�1//p.n�1/eC���CpeC1

˝.M ˝A dimX�i /
�

�

:

We already have the vanishing for i > dimX . Now the F ne� does not effect
the vanishing or nonvanishing of the cohomology since it does not change the
underlying sheaf of Abelian groups. Therefore, the above cohomology groups
vanish by Serre vanishing, since L ˝M pe�1˝A .dimX�i /.pe�1/ is ample and each
of the finitely many M ˝A dimX�i are coherent sheaves. ut
Example 6.1.4. If X is smooth (or even F -pure), then there is always a surjective
map F e�OX..1�pe/KX/ �! OX . It follows that ifM is a divisor such thatM �KX

is ample, and A is any globally generated ample line bundle, then OX.M/˝A dimX

is globally generated.

Remark 6.1.5. It is worth pointing out that not only is M ˝ A dimX globally
generated, one even has that it is globally generated by the image of the map

H0
�

X;F ne�
�

L p.n�1/eC���CpeC1 ˝M pne ˝A pne dimX
�

�

! H0
�

X;M ˝A dimX
�

:

This special sub-vector space of global sections also behaves well with respect to
restriction to compatible subvarieties as we shall see shortly.

Similar arguments to those in the proof Theorem 6.1.3 also yield the following
result.

Proposition 6.1.6 ([26, 49, 88]). If X is any F -pure variety, A is a globally
generated ample line bundle, and M is any other ample line bundle, then

!X ˝A dimX ˝M

is globally generated.

Proof. The proof is left to the reader in Exercise 7. ut
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Finally, we also remark that compatible ideals also play a special role with regard
to lifting of sections.

Theorem 6.1.7. Suppose that ' W F e�L �! OX is an OX -linear map and that
J � OX is '-compatible. Set Y D V.J / and set 'Y W F e� .L jY / �! OY to be the
map ' restricted to Y as in Lemma 6.0.3. Suppose that H is a line bundle on X
such that H pe�1 ˝L is ample and also such that the map induced by 'Y

H0
�

Y; F ne� ..L p.n�1/eC���CpeC1 ˝H pne /jY /
� ��! H0.Y;H jY / (19)

is nonzero for some n� 0. Then H0.X;H / ¤ 0 as well. Even more, the sections
in the image of � all extend to sections on H0.X;H /.

Before starting the proof, let us note some conditions under which the map � is
nonzero. For example, if L jY D OY and 'Y is a Frobenius splitting, then � is in
fact surjective (e.g., if Y is a point and 'Y is nonzero). Alternately, if 'Y is surjective
and also H jY D A dimY ˝M where A is a globally generated ample line bundle
on Y and M pe�1 ˝L jY is ample on Y , then we can apply Theorem 6.1.3. In the
case that Y is a curve, see Exercise 2.

Proof. We fix n� 0; for simplicity of notation set 	 D p.n�1/e C � � � C pe C 1 and
consider the following diagram:

H0
�

X;F ne
�

.L 	 ˝ H pne
�

'

��

�� H0
�

Y;F ne
�

..L 	 ˝ H pne /jY /�

'Y

��

�� H1
�

X;F ne
�

.J ˝ L 	 ˝ H pne /
�

��
H0

�

X;H / �� H0.Y;H jY / �� H1.X; J ˝ H /:

However, note that

H1
�

X;F ne� .J ˝L 	 ˝H pne /
� D H1

�

X;F ne� .J ˝H ˝ .L ˝H pe�1/	
� D 0

by Serre vanishing since the F ne� does not effect the underlying sheaf of Abelian
groups. ut

6.2 Fedder’s Lemma

We now delve into the local theory of p�e-linear maps and in particular state
Fedder’s lemma. This is a particularly effective tool for explicitly writing down
these maps and also for identifying which of them are surjective.

Suppose that S D kŒx1; : : : ; xn� and R D S=I for some ideal I � R. The point
is that if R D S=I , then maps N' W F e�R �! R come from maps ' W F e�S �! S ,
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which Fedder’s lemma precisely identifies. SetˆS W F e�S �! S to be the map which
generates HomS.F

e�S; S/ as an F e�S -module as identified in Example 4.0.2. Recall
thatˆS sends the monomialF e� .x

pe�1
1 : : : x

pe�1
n / to 1 and all other basis monomials

to zero.

Lemma 6.2.1 (Fedder’s Lemma [20, Lemma 1.6]). With S 
 I , R and ˆS as
above, then

�

Maps ' 2 HomS .F
e�S; S/

compatible with I

�

D
�

' j '.F e� / D ˆS.F e� .z � //;

for some z 2 I Œpe � W I
�

:

More generally, there is an isomorphism of S -modules

HomR.F
e�R;R/ !

�

F e� .I Œp
e � W I /� �ˆS

�

F e�I Œp
e �
� �ˆS

induced by restricting  2 .F e� .I Œp
e � W I // � ˆS � HomS.F

e�S; S/ to R D S=I as
in Lemma 6.0.3.

Finally, for any point q 2 V.I / � SpecS , there exists a map ' 2HomR.F
e�R;R/

which is surjective at q=I 2 SpecR if and only if I Œp
e � W I ª qŒp

e �. In other words,
R is F -pure in a neighborhood of q if and only if I Œp� W I ª qŒp�.

Proof. There are a lot of statements here. First we notice that any map of the form
'.F e� / D ˆS.F e� .z � // for some z 2 I Œpe � W I is clearly compatible with I since

ˆS.F
e� .z � I // � ˆS.F e� .I Œp

e � W I / � I / � ˆS.F e�I Œp
e �/ D I �ˆS.F e�S/ D I:

This gives us the containment
 in the first equality. For the other containment, we
first prove the following claim.

Claim 6.2.2. For ideals I; J � S we have

ˆS.F
e�J / � I

if and only if J � I Œpe �.
Proof of Claim. Certainly the if direction is obvious, so suppose then thatˆS.F e�J /
� I . This implies that '.F e�J / � I for every ' 2 HomS .F

e�S; S/ since ˆS
generates that set as an F e�S -module. But F e�S is a free S -module of rank pen,
so we see that

F e�J � I ˚ � � � ˚ I
„ ƒ‚ …

pne�times

since we could take the ' as the various projections. Now, I˚� � �˚I D I �.F e�S/ D
F e�I Œp

e �. This proves the claim. ut
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Now we return to the proof of Fedder’s lemma. We observe that if '.F e� / D
ˆS.F

e� .z � // is I -compatible, then z � I � I Œpe � by the claim, which proves that
z 2 I Œpe � W I , and so the equality is proven.

Now we come to the bijection. We certainly have a natural map

ƒ W .F e� .I Œp
e� W I // �ˆS �! HomR.F

e�R;R/

induced by sending F e� z first to .F e� z/ �ˆS. / D ˆS..F e� z/ � // and then second,
inducing a map in HomR.F

e�R;R/ as in Lemma 6.0.3. The kernel ofƒ is .F e�I Œp
e �/ �

ˆS by the claim, and so we only need to show that this map is surjective.
Given ' 2 HomR.F

e�R;R/ D HomS .F
e�R;R/, consider the following diagram

of S -linear maps where the horizontal maps are the canonical surjections:

F e�S

9 
��

�� �� F e� .R=I /

'

��
S �� �� .R=I /:

Because F e�S is a free (and so projective) S -module, the dotted map  exists.
By construction,  is compatible with I . By the earlier parts of the theorem,  
corresponds to a z 2 I Œpe � W I which restricts to ', completing the proof of the
bijection.

The last part of the theorem is left as an exercise to the reader. ut
Remark 6.2.3 (Regular local rings are fine). The proof given above goes through
without change if one assumes that S is a regular local6 ring instead of assuming
that S is a polynomial ring.

One of the most important corollaries of this is the following.

Corollary 6.2.4. Given f 2 kŒx1; : : : ; xn� D S , then S=hf i is F -split in a
neighborhood of the origin if and only if f p�1 … hxp1 ; : : : ; xpn i.
Proof. Note that S=hf i D R is F -split if and only if there exists a surjective map
' 2 HomR.F

e�R;R/ by Exercise 5. The result then follows from Fedder’s lemma
since hf pi W hf i D hf p�1i. ut

We now apply Fedder’s lemma in a number of examples of hypersurface
singularities:

Example 6.2.5. We consider S to be a polynomial ring in the following examples.

Node: Consider the ring S D kŒx; y� and R D kŒx; y�=hxyi. Then R is F -split
near the origin since

.xy/p�1 D xp�1yp�1 … hxp; ypi:

6Or even semilocal.
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Cusp: Consider the ring S D kŒx; y� andR D kŒx; y�=hx3�y2i. Then we claim
that R is not F -split near the origin since (for odd primes). To see this observe
that for some constant c

.x3 � y2/p�1 D x3.p�1/ C � � � C cx3.p�1/=2yp�1 C � � � C x2.p�1/ 2 hxp; ypi:
The computation for p D 2 is similar (or follows from the work below).

Pinch point: Consider the ring S D kŒx; y; z� and R D kŒx; y; z�=hxy2 � z2i. If
p ¤ 2, this is F -split near the origin since

.xy2 � z2/p�1
D xp�1y2.p�1/ C � � � C � p�1

.p�1/=2
�

.�1/.p�1/=2x.p�1/=2yp�1zp�1 C � � � C z.p�1/=2

… hxp; yp; zpi;
noting that p does not divide

�

p�1
.p�1/=2

�

.

Characteristic 2: If R D kŒx1; : : : ; xn�=hf i and char k D 2, then R is F -split
near the origin if and only if f … hx21; : : : ; x2ni. In particular, it is immediate that
the cusp and the pinch point are also notF -split near the origin in characteristic 2.

Characteristic 3: Just like characteristic 2, if R D kŒx1; : : : ; xn�=hf i and
char k D 3, then R is F -split near the origin if and only if f 2 … hx31; : : : ; x3ni.
Finally, we point out that complete intersection singularities are nearly as easy to

compute as hypersurfaces.

Proposition 6.2.6. Suppose that f1; : : : ; fm � hx1; : : : ; xni � kŒx1; : : : ; xn� D S

is a regular sequence.7 Set I D hf1; : : : ; fmi. Then

.I Œp
e� W I / D hf pe�1

1 � � �f pe�1
n i C I Œpe �

In particular, S=I is F -split near the origin m D hx1; : : : ; xni if and only if the
product

f
pe�1
1 � � �f pe�1

n … mŒpe �

for some e > 0.

Proof. The containment 
 is trivial. The converse direction is left as Exercise 15.
ut

6.3 Exercises

Exercise 1. Prove Lemma 6.0.3.

7This means that fi is not a zero divisor in S=hf1; : : : ; fi�1i for all i > 0.
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Exercise 2. Suppose thatC is a smooth curve and that L is a line bundle of degree
� 2. Prove that the image of the map

H0
�

X;F e�.!X ˝L pe /
� �! H0.X;!X ˝L /

globally generates !X ˝L for any e � 0.

Hint: Mimic the proof in [34, Chap. IV, Proposition 3.1]. For a solution, see [75,
Theorem 3.3].

Exercise* 6.3. Consider a map ' W F e�L �! OX for some line bundle L and e >
0. Formulate analogs of the properties from Proposition 5.1.5 and Corollary 5.1.7 for
such a map (and '-compatible ideals / subvarieties). Which of these properties hold
for all '? Which hold for surjective '? Prove those that do and give counterexamples
to those that do not. Some of the answers can be found in [73, 74].

Exercise* 6.4. Suppose that X is a Frobenius split normal variety. Suppose that
X embeds into Pn as a closed subvariety. Prove that X is compatibly F -split by
a Frobenius splitting of Pn if and only if the embedding X � Pn is projectively
normal, cf. [34, Chap. II, Exercise 5.14].

Hint: Projective normality can be detected by the difference between the affine
cone and the section ring as in Exercise 8. Develop then a “graded variant” of
Fedder’s lemma that will allow you to prove the result.

Exercise 5. We can define X to be F -pure if .X; 0/ is sharply F -pure in the sense
of Definition 6.0.5. Show that this coincides with the definition of F -pure given in
Definition 5.0.1.

Exercise 6. Suppose that L is an ample line bundle on a smooth variety X . Prove
that H0.X; F e� .!X ˝L mpe // �! H0.X;!X ˝L m/ is surjective for all m � 0.
For one solution, see [75, Lemma 3.1].

Exercise 7. Use the method of Theorem 6.1.3 to prove Proposition 6.1.6.

Hint: Dualize a local splitting OU �! F�OU �! OU to obtain a surjective map
T W F�!U �! !U . Use T instead of ' in the proof of Theorem 6.1.3.

Exercise 8. Consider F5Œx; y; z� D S and f D x4 C y4 C z4. Consider the map
ˆS W F�S �! S which sends F�x4y4z4 to 1 and sends all the other monomials
xiyj zk to 0 for 0 � i; j; k � 4 as in Example 4.0.2. Consider the map ' W F�S �! S

defined by

'.F� / D ˆS.F�.f 4 � //:

(a) Prove that hf i is '-compatible and let ' W F�R �! R be the induced map on
R D S=hf i as in Lemma 6.0.3.

(b)* Set m D hx; y; zi 2 S . Fix a; b; c 2 F52 n F5. Show that J D m2 C hax C
by C czi is '2-compatible. However, show that J is not '-compatible.
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Exercise 9. With ˆS as in Sect. 6.2, fix f 2 S and consider the map ' defined
by the rule '.F e� / D ˆS.F

e� .f � //. Show that ' is compatible with an ideal
J � S if and only if f 2 J Œpe � W J .

Exercise 10. Complete the proof of Fedder’s lemma by proving the following. For
any point q 2 V.I / � SpecS , there exists a map ' 2 HomR.F

e�R;R/ which is
surjective at q=I 2 SpecR if and only if I Œp

e � W I ª qŒp
e �. In other words, R is

F -pure in a neighborhood of q if and only if I Œp
e � W I ª qŒp

e �.

Hint: Note that a map 'q W F e� .Rq/ �! Rq is surjective if and only if
Image.'q/ ª qRq.

Exercise 11. Suppose that X D SpecR is a regular ring and � D 1
pe�1divX.f / is

a Q-divisor onX . Show that .X;�/ is sharplyF -pure near a pointm 2 SpecR D X
if and only if f pe�1 … mŒpe �.

Hint: Use Fedder’s lemma in the form of Remark 6.2.3.

Exercise 12. Suppose that X is a proper variety and that ' W F e�OX �! OX is a
map that is compatible with m, the ideal of a closed point x 2 X . Further suppose
that .X;�'/ is sharply F -pure in a neighborhood of m. Prove that 0 ¤ '.F e�1/ 2 k,
and so in particular X is F -split. This generalizes Theorem 5.3.1 by the following
argument.

Given a D D .pe � 1/D1 C � � � C .pe � 1/Dd CG and ' as in Theorem 5.3.1,
set � D 1

pe�1D. Observe that mx , the maximal ideal of x, is '-compatible since
each Di is '-compatible, cf. Lemma 5.1.3. Use Exercise 11 to conclude that ' is
surjective in a neighborhood of x 2 X .

Obtain a new proof of Theorem 5.3.1 by combining the above.

Exercise 13. Suppose that X D Speck�x; y� where k has characteristic 7 and that
� D 1

2
divX.y2� x3/C 1

3
divX.x/C 1

2
divX.y/. Prove that .X;�/ is sharply F -pure

at the origin m and also that if ' corresponds to �, then m is '-compatible.
Now suppose that Y is a smooth projective variety with a Q-divisor ‚ � 0

such that

• .p � 1/.KY C‚/ � 0.
• .Y;‚/ has a point y 2 Y analytically isomorphic to .X;�/ above.

Show that Y is Frobenius split using Exercise 12.

Exercise 14. Suppose thatR is an integral domain with normalizationRN inK.R/,
the field of fractions ofR. In this exercise, we will prove that every map ' W F e�R �!
R induces an RN-linear map 'N W F e�RN �! RN which is compatible with the
conductor ideal c WD AnnR.RN/, an ideal in both R and RN. We do this in two
steps.

(a) Prove that ' is compatible with c (when viewed as an ideal in R).
(b) Notice that ' induces a map '0 W F e�K.R/ �! K.R/ by localization. Prove that

'0.R
N/ � RN which proves that we can take 'N D '0jRN .
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Hint: Recall that x 2 K.R/ is integral overR if there exists a nonzero c 2 R
such that cxn 2 R for all n� 0 (see [43, Exercise 2.26]).

Exercise 15. Prove Proposition 6.2.6.

Hint: A very easy proof (pointed out to us by Alberto Fernandez Boix), follows
from [31, Corollary 1]. Alternately, the 
 containment is easy. For the reverse
proceed by induction on the number of fi . Notice that HomS=I .F

e�S=I; S=I / is
a free F e�S=I -module of rank 1. Thus, a generator of that module corresponds to an
element h 2 I Œpe � W I .

For a generalization to Gorenstein rings (instead of just complete intersections),
see [73, Corollary 7.5].

Exercise 16 (Macaulay2 Fedder’s criterion). The following Macaulay2 code,
written by Mordechai Katzman and available at

http://katzman.staff.shef.ac.uk/FSplitting/

can be quite useful.

frobeniusPower=method();

frobeniusPower(Ideal,ZZ) := (I,e) ->(
R:=ring I;
p:=char R;
local u;
local answer;
G:=first entries gens I;
if (#G==0) then answer=ideal(0 R) else answer=ideal(apply (G,
u->uˆ(pˆe)));
answer
);

This takes an ideal I and raises it to the peth Frobenius power, I 7! I Œp
e�. Using

this as a starting place, implement within Macaulay2 a method which determines
whether a given ring is F -pure near the origin. Check your method against the
following examples:

(a) R D kŒx; y; z�=hxy; xz; yzi in whatever characteristics you feel like.
(b) R D kŒw; x; y; z�=hxy; z2 C wx2; yzi in characteristic 2 and 3.
(c) R D kŒx; y; z�=hx3 C y3 C z3i in characteristics 7; 11, and 13.
(d) R D kŒx; y; z�=hx2 C y3 C z5i in characteristics 2; 3; 5; 7, and 11.

Exercise* 6.17. Use Fedder’s criterion to determine for which p > 0, the ring
kŒx; y; z�=hx3 C y3C z3i is F -pure near the origin. For some related computations,
see [87, Chap. V, Sect. 4].

Exercise* 6.18. If .R;m/ is a regular local ring and 0 ¤ f 2 m, then the F -pure
threshold cm.f / of f 2 kŒx1; : : : ; xn�, at the origin m D hx1; : : : ; xni, is defined as
follows:
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lim
e�!1

maxfl j f l … mŒpe �g
pe

:

Prove that this limit exists in general and then show that cm.x3 � y2/ D 5
6

if p D 7.
See [69] for solutions, cf. [91].

7 Change of Variety

In this section, we describe how p�e-linear maps change under common change of
variety operations.

7.1 Closed Subschemes

We have already studied the behavior of p�e-linear maps for subschemes exten-
sively. Indeed, suppose that ' W F e�R �! R is an R-linear map which is compatible
with an ideal I � R. Then we have an induced map 'R=I W F e� .R=I / �! .R=I /. It
is natural to ask what the divisor associated to R=I is.

Lemma 7.1.1. Suppose that R is a normal Gorenstein local ring and that D D
V.f / is a normal Cartier divisor on X D SpecR. Fix ˆ W F e�R �! R to be map
generating HomR.F

e�R;R/ as an F e�R-module as in Exercise 4. Set '.F e� / D
ˆ.F e� .f pe�1 � //. Then ' is compatible with D, and furthermore, 'D generates
HomR=hf i.F e� .R=hf i/; R=hf i/ as an F e�R=hf i-module. It follows that the Q-
divisor� onD associated to 'D , as in (13) is the zero divisor.

Proof. See Exercise* 7.2. ut
However, things are not always nearly so nice. In particular the divisor associated

to 'D need not always be zero.

Example 7.1.2. Consider S D kŒx; y; z� with p D chark ¤ 2, set R WD
kŒx; y; z�=hxy � z2i, and fix D D V.hx; zi/. Set ˆS 2 HomS .F

e�S; S/ to be the
F e�S -module generator as in Exercise 4.0.2. We notice that by Fedder’s lemma,
Lemma 6.2.1, that ‰.F e� / D ˆ.F e� ..xy � z2/p

e�1 � // induces the generator
of HomR.F

e�R;R/ by restriction. Notice that OX.�2nD/ D hxni and consider the
map

'.F e� / D ‰.F e� .x
pe�1
2 � // D ˆ.F e� .x

pe�1
2 .xy � z2/p

e�1 � //:

If we set X D SpecR, then the induced map 'X 2 HomR.F
e�R;R/ corresponds to

the divisor .pe � 1/D.
However, it is easy to see that 'X also is compatible withD. Thus we obtain 'D .

To compute the divisor associated to D, we need only read off the term containing
xp

e�1zpe�1 in
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.x
pe�1
2 /.xy � z2/p

e�1 D x 3.pe�1/
2 yp

e�1 C � � � C
 

pe � 1
pe�1
2

!

xp
e�1y

pe�1
2 zp

e�1

C � � � C z2.p
e�1/:

Again, the reason this works is because the map ˆS.F e� .xp
e�1zpe�1 � // induces

the generator on HomOD.F
e�OD;OD/. But

�pe�1
pe�1
2

� ¤ 0 mod p, and so if ˆD W
F e�kŒy� �! kŒy� is the map generating HomOD.F

e�OD;OD/, then 'D (which is
just 'X restricted to D) is defined by the rule

'D.F
e� / D ˆD.F e�y

pe�1
2 � /

at least up to multiplication by an element of k. Thus, in the terminology of (13),

�'D D
1

pe � 1div.y
pe�1
2 / D 1

2
div.y/:

In particular, in contrast with Lemma 7.1.1,�'D ¤ 0.

Theorem 7.1.3 (F -adjunction). If X is a normal variety,� � 0 is a Q-divisor on
X such that KX C� is Q-Cartier with index not divisible by p. Suppose that Y is
an F -pure center (see Definition 6.0.2) of .X;�/ and that ' corresponds to � as
in (15). Then there exists a canonically determined Q-divisor�Y � 0 such that:

(a) .KY C�/jY �Q KY C�Y .
(b) .X;�/ is sharply F -pure near Y if and only if .Y;�Y / is sharply F -pure.

Proof. Set 'Y to be the restriction of ' to Y as in Lemma 6.0.3. Set �Y to be the
Q-divisor associated to 'Y as in (15). The first result then follows easily. The second
follows since ' is surjective near Y if and only if 'Y is surjective. ut
Remark 7.1.4. The previous result should be compared with subadjunction and
inversion of adjunction in birational geometry. See for example [25, 46, 48] and
[50, Chap. 5, Sect. 4].

7.2 Birational Maps

Suppose thatX is a normal variety, L is a line bundle onX , and ' W F e�L �! OX is
an OX -linear map corresponding to the Q-divisor� as in (15). Suppose� W eX �! X

is a birational map with eX normal. Fix K
eX and KX which agree wherever � is an

isomorphism. We can write

K
eX C�eX D ��.KX C�/
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where now �
eX is uniquely determined. Notice that �

eX need not be effective. The
main result of this section is the following:

Lemma 7.2.1. The map ' W F e�L �! OX induces a mape' W F e� .��L / �! K .eX/

where K .eX/ is the fraction field sheaf of eX (which we can also identify with the
fraction field onX since � is birational). Furthermore,e' agrees with ' wherever �
is an isomorphism.

Even more, using the fact that maps to the fraction field correspond to possibly
non-effective divisors via Exercise* 4.13, we have that �

e' D �eX .

Proof. We constructe' as follows. We note that L D OX..1 � pe/.KX C �// by
(15), and so after fixingKX , we obtain an embedding of L � K .X/. In particular,
for each affine open set U , we have an embedding �.U;L / � K.X/. But then we
also obtain for each affine open set V � eX , an embedding �.V; ��L / � K.eX/ D
K.X/.

Now, by taking the map F e� L �! OX at the generic point 	 of X , we obtain '	 W
F e�K.X/ �! K.X/ (note that our embedding of L � K .X/ fixes the isomorphism
L	 Š K.X/). But we identify 	 with the generic point e	 of eX (since they have
isomorphic neighborhoods), and so we have a map '

e	 W F e�K.eX/ �! K.eX/. By
restricting '

e	 to �.V; ��L / for each open set V , we obtain a mape' W F e���L �!
K .eX/.

By construction, e' agrees with ' wherever � is an isomorphism. For the
statement �

e' D �
eX we proceed as follows. We notice that �

e' and �
eX already

agree wherever� is an isomorphism so that�
e'��eX is �-exceptional. Furthermore,

by the construction done in Exercise* 4.13, O
eX..1 � pe/.KeX C �e'// Š ��L Š

��OX..1 � pe/.KX C�//. Thus,�
e' �Q �

eX , and so

�
e' ��eX �Q 0

is �-exceptional. Therefore�
e' D �eX as desired, cf. [50]. ut

We now come to the definition of log canonical singularities (in arbitrary
characteristic).

Definition 7.2.2. Suppose that X is a normal variety and that� is a Q-divisor such
thatKX C� is Q-Cartier. Then we say that .X;�/ is log canonical if the following
condition holds. For every proper birational map � W eX �! X with eX normal, when
we write

X

aiEi D K
eX � ��.KX C�/;

each ai is � �1.

Theorem 7.2.3 ([28, Main Theorem]). If .X;�/ is sharply F -pure, then .X;�/
is log canonical.

Proof. The statement is local on X , and so we may assume that L D OX and that
X D SpecR is affine. We only prove the case where the index of KX C � is not
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divisible by p. To reduce to this case, use Exercise 6. Set ' W F e�R �! R to be a
map corresponding to �. Thus there exists an element c 2 R D �.X;L / such that
'.F e�c/ D 1 since .X;�/ is sharply F -pure.

Set � W eX �! X a proper birational map with eX normal and write
P

aiEi D
K
eX � ��.KX C �/. Suppose that some ai < �1 (with corresponding fixed Ei ).

Then in particular ai � 0. Set 	i to be the generic point of Ei . It follows that �ai ,
the Ei -coefficient of �

e' , is positive, and so we have a factorization

F e� O
eX;	i
� F e�O

eX;	i
..1 � pe/aiEi/ e'�! O

eX;	i
;

where e' is as in Lemma 7.2.1. But now it is easy to see that if ai < �1, then
.1 � pe/ai � pe so that we have the factorization

F e�O
eX;	i
� F e�O

eX;	i
.peEi /

e'jF e
�

O
eX;	i

.peEi /

����������! O
eX;	i

which sends F e�c 2 F e�R � F e�O
eX;	i

to 1. But that is impossible since if d 2 O
eX;	i

is the local parameter for Ei , thene' sends F e� .c=dp
e
/ 2 F e�O

eX;	i
.peEi / to 1=d …

O
eX;	i

. ut

7.3 Finite Maps

Finally, suppose that � W Y �! X is a finite surjective map of normal varieties.
Then there is an inclusion OX � ��OY . Given a line bundle L on X and
a map ' W F e�L �! OX , it is natural to ask when ' can be extended to a map
F e���.��L / �! ��OY . Since � is finite, the �� is harmless, and so we can ask
when ' can be extended to a map 'Y W F e���L �! OY .

The local version of this statement is as follows. Suppose that R � S is a finite
extension of semi-local normal rings and suppose that ' W F e�R �! R is a finite
map. Then when does there exist a commutative diagram as follows?

F e�S
'S

�� S

F e�R
��

��

'

�� R
��

��

It is easy to see that the answer is not always.

Example 7.3.1. Consider kŒx2� � kŒx� with p D chark ¤ 2. Consider the map
' W F�kŒx2� �! kŒx2� which sends F�x2.p�1/ to 1 and other monomials F�x2i , for
0 � i < p � 1 to zero. Note �' D 0.
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Suppose this map extended to a map  W F�kŒx� �! kŒx�. Then '.F�x2.p�1// D
1, and so since ' and  are the same on kŒx2�, we have

1 D  .F�x2.p�1// D  .F�xpxp�2/ D x .F�xp�2/

which implies that x is a unit. But that is a contradiction.
On the other hand, consider the map ˛ W F�kŒx2� �! kŒx2� which sends

F�x2.p�1/=2 D F�xp�1 to 1 and the other monomials F�x2i to 0 for 0 � i � p � 1
to zero. Note �˛ D 1

2
div.x2/.

We will show that ˛ extends to a map ˇ W F�kŒx� �! kŒx�. It is in fact easy
to show that ˛ extends to a map on the fraction field ˇ W F�k.x/ �! k.x/ (see
Exercise 7). Therefore, it is enough to show that ˇ.F�xj / 2 kŒx� for each 0 � j �
p � 1. Fix such a j . If j is even, then there is nothing to do since ˇ.F�xj / D
˛.F�xj / 2 kŒx2� � kŒx�. Therefore, we may suppose that j is odd. But then j Cp
is even and p � j C p � 2.p � 1/. Thus

ˇ.F�xj / D 1

x
ˇ.F�xjCp/ D 1

x
˛.F�xjCp/ D 1

x
� 0 D 0 2 kŒx�:

This proves that ˇ exists and is well defined.

Theorem 7.3.2 ([80]). Fix � W Y �! X as above. Fix a nonzero map ' W F e�L �!
OX as above. If � is inseparable then ' never extends to 'Y . If � is separable, then
there exists a map 'Y W F e���L �! OY extending ' if and only if �' is bigger than
or equal to the ramification divisor of � W Y �! X .

Proof. We won’t prove this, but we will sketch the main steps and leave the details
as an exercise. We first work in the separable case.

Step 1: The statement is local on X , and so we may suppose that X D SpecR,
Y D SpecS , and L D OX . In fact, we may even assume that R is a DVR and
that S is a Dedekind domain.

Step 2: There is a map 'S and a commutative diagram

F e�S
'S

�� S

F e�R
��

��

'

�� R
��

��

if and only if there exists a map 'S and a commutative diagram
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F e�S

F e
�

Tr

��

'S
�� S

Tr

��
F e�R

'

�� R

where Tr W S �! R is simply the restriction of the field trace Tr W K.S/ �! K.R/

to S .
Step 3: HomR.S;R/ is isomorphic to S as an S -module. The map Tr W S �! R

is a section of this and so corresponds to a divisor D on SpecR. This divisor is
the ramification divisor Ram� of � W SpecS �! SpecR.

Step 4: Supposing 'S exists, compute the divisor corresponding to Tr ı 'S D
' ı .F e� Tr/. This gives one direction of the if and only if. Working with the
fraction fields, as in Exercise* 4.13, yields the other direction.

For the inseparable case, it turns out that the only map that can extend is the zero
map (see Exercise 9). ut

7.4 Exercises

Exercise 1. In the setting of Lemma 7.1.1, prove that the divisorD is F -pure (as a
variety) if and only if ' is surjective.

Exercise* 7.2. Prove Lemma 7.1.1.

Hint: Consider the map h'iF e
�

R �! HomR=hf i.F e�R=hf i; R=hf i/, and prove
it is surjective at the codimension 1 points of R=hf i. For a solution, see [73,
Proposition 7.2].

Exercise** 7.3 (The F -different). Suppose that X is a normal variety and D is
an effective normal Weil divisor such that KX C D is Q-Cartier with index not
divisible by p. Thus there exists a map 'D W F e�L �! OX as in (15) corresponding
toD for any e such that .pe � 1/.KX CD/ is Cartier. It is easy to see that this map
is compatible with D, and so it induces a map

'D W F e�L jD �! OD:

This map corresponds to a Q-divisor �D on D, again by (15), which is called the
F -different. Verify all the statements made above.

It is an open question whether or not the F -different always coincides with the
different, as described in [51, Chap. 17] or [86, 10.6]. Prove that it either does or
does not and write a paper about it, and then tell the authors of this survey paper
what you found (this is why the problem gets ��). For more discussion see [73,
Remark 7.6].
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Exercise* 7.4. Consider the family of cones over elliptic curves:

X D Spec kŒx; y; z; t �=hy2 � x.x � 1/.x � t/i �! A1 D SpeckŒt�:

Set ˆ 2 HomX.F�OX ;OX/ to be the map generating HomX.F�OX ;OX/ as an
F�OX -module. Show that ˆ is compatible with the ideal J D hx; y; zi. Consider
ˆJ D ˆ=J , the map obtained by restricting ˆ to V.J / Š A1. Show that �ˆJ is
supported exactly at those points whose fibers correspond to supersingular elliptic
curves.

Exercise 5. Using the notation of Lemma 7.2.1, suppose that �' is the effective
divisor associated to '. Show that there is a map

' 0 W F e�
�

.��L /.dK
eX � ��.KX C�'/e/

� �! O
eX.dKeX � ��.KX C�'/e/

that agrees with ' wherever � is an isomorphism.

Hint: It is sufficient to show that there is a map ' 00 W F e�
�

.��L /.dK
eX���.KXC

�'/e�pedK
eX���.KXC�'/e/

� �! O
eX . Now, use the roundings to your advantage

and the fact that ��L D O
eX.�

�.1 � pe/.KX C�'//.

Exercise 6. Suppose that .X;�/ is sharply F -pure. Prove that for every point x 2
X there exists a divisor �U on a neighborhood U of x such that �U � �jU , such
that .U;�U / is sharply F -pure, and such that KU C �U has index not divisible
by p. Conclude that Theorem 7.2.3 holds in full generality. For a solution, see [78,
Theorem 4.3(ii)].

Exercise 7. Suppose that R � S is an extension of integral domains with induced
separable extension of fraction fields K.R/ � K.S/. Fix ' W F e�R �! R to be an
R-linear map. Prove that there is always a map  W F e�K.S/ �! K.S/ such that
 jR D '.

Hint: First form '	 W F e�K.R/ �! K.R/ by localization. Then tensor this
map with K.S/ and use the fact that K.R/ � K.S/ is separable (unlike K.R/ �
F e�K.R/ Š .K.R//1=pe ).
Exercise* 7.8. Prove the separable case of Theorem 7.3.2 by filling in the details
of the Steps 1–4. Step 3 is somewhat involved; see for example [15, 68, 72]. On the
other hand, see [80] for a complete proof.

Exercise 9. Prove the inseparable case of Theorem 7.3.2 as follows. First suppose
that K � L is a purely inseparable extension of fields. Suppose that ' W F�K �! K

is aK-linear map that extends to anL-linear map 'L W F�L �! L. Prove that ' D 0.
Use the above to prove that now if L 
 K is any inseparable map, the only map

' W F�K �! K that extends to 'L W F�L �! L is the zero map. For a complete
solution, see [80, Proposition 5.2].
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8 Cartier Modules

Perhaps the most natural example of a p�e-linear map is the trace of the Frobenius
F�!X �! !X on the canonical sheaf of a normal variety as discussed in detail in
Sect. 3.2. In generalizing one is led to consider the category consisting of (coherent)
OX -modules F equipped with a p�e-linear map �WF e� F �! F . We will outline
here the resulting theory in a slightly more general setting than considered in [6].

Definition 8.0.1. If L is a line bundle on X , then a .L ; pe/–Cartier module is a
coherent OX -module F equipped with an OX -linear map

�WF e� .F ˝L / �! F :

(or equivalently, equipped with a p�e linear map F ˝L �! F ). If L Š OX , we
call these objects mostly just Cartier modules.

Remark 8.0.2. Cartier modules as originally defined in the work of [6] were always
defined with L Š OX . The addition of the L adds little to the complication of the
basic theory (which generally reduces to the local case where L is trivialized).
Although admittedly, it does add some notational complications. However, this
generalization does show up naturally. Regardless, little will be lost if the reader
always assumes that L D OX .

A morphism of .L ; pe/–Cartier modules .F ; �F / and .G ; �G / is an OX -linear
map 'WF �! G such that the diagram

F e� .F ˝L /
�F

��

F e
�

.'˝id/

��

F

'

��
F e� .G ˝L /

�G

�� G

commutes. If .F ; �/ is a .L ; pe/–Cartier module, then we can apply F e� to � ˝L
to obtain—using the projection formula—a map

�2WF 2e� .F˝L ˝L pe / Š F e� .F e� .F˝L /˝L /
F e

�

.�˝L /�������! F e� .F˝L /
��! F

which equips F with the structure of a .L 1Cpe ; p2e/–Cartier module. Iterating this
construction in the obvious way (similar to (17)) we obtain morphisms

�eWF ne�
�

F ˝L 1CpeCp2eC���Cp.n�1/e
�

�! F

for all n � 1, making F into a .L
pne�1
pe�1 ; pne/-Cartier module.



172 M. Blickle and K. Schwede

Proposition 8.0.3. The category of (coherent) .L ; pe/-Cartier modules is an
Abelian category. The kernel and cokernel of the underlying quasi-coherent sheaves
carry an obvious Cartier module structure and are the kernel and cokernel in the
category of Cartier modules.

Proof. This is easy to verify since ˝ L as well as F e� are exact functors.
Alternatively, we may view .L ; pe/-Cartier modules as the right module category
over a certain (noncommutative) sheaf of rings, see Exercise 4, which immediately
implies that the category is Abelian. ut

Compared to a Frobenius splitting, which is nothing but a Cartier module
structure on the coherent sheaf OX , the advantages of working in this larger category
of Cartier modules are manifold. For one, there are a number of natural examples of
Cartier modules, most prominently the canonical sheaf !X together with the trace of
Frobenius as Cartier module structure. Furthermore one has in this category methods
to construct new Cartier modules by functorial operations. Most notably there is the
notion of a pushforward for proper maps (in the case that L Š OX ), localization
and étale pullback, and even an extraordinary pullback f Š can be defined [5, 6]. We
conclude this section by illustrating some of these concepts in special cases. First
however, we state some examples.

Example 8.0.4 (Examples of Cartier modules).

(a) The canonical sheaf !X is a Cartier module with structural map �WF�!X �! !X
given by the trace map. More generally, if !

�

X is the dualizing complex of X ,
then the trace of Frobenius is a map (in the derived category) F�!

�

X �! !
�

X .
This induces for each i the structure of a Cartier module on the cohomology
hi! �

X .
(b) Suppose that D is a Cartier divisor on X , then the map

F e� .!X.peD//
Tr�! !X.D/

equips !X.D/ with the structure of an OX..p
e � 1/D/-Cartier module.

(c) Suppose that D is an effective integral divisor on X , then the composition

F�!X.D/ ,! F�!X.pD/
Tr�! !X.D/

equips !X.D/ with the structure of a Cartier module as well.
(d) Suppose that � W Y �! X is a proper map of varieties. ThenRi��!Y is a Cartier

module for any i � 0. This is because F�Ri��!Y D Ri��F�!Y .
(e) Set X D A2 and let � W Y �! X be the blowup at the origin with exceptional

divisor E . Thus we have TrY W F�!Y �! !Y as the trace on Y . Now, !Y Š
OY .E/. Thus, by twisting by �E ,we have a OY ..1 � p/E/-Cartier module
structure on OY . Namely, a map Tr W F�.OY ..1 � p/E// �! OY .
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Since localization at any multiplicative set commutes with pushforward along the
Frobenius (see Exercise 6 and Exercise 3) we observe that localization preserves the
Cartier module structure.

Lemma 8.0.5. Let S � R be a multiplicative system and F a .L ; pe/–Cartier
module on X D SpecR. Then the map

F e
S�1R�.S

�1F ˝S�1R S
�1L / Š S�1F e� .F ˝R L /

S�1�F�����! S�1F

is a .S�1L ; pe/–Cartier module structure on S�1F .

In particular, if j WU � X D SpecR is the inclusion of a basic open subset
U D SpecRf for some f 2 R, then the pullback j � induces a functor from
L –Cartier modules on X to j �L –Cartier modules on U . Using a LCech-complex
construction, this globalizes to an arbitrary open immersion U � X . Even more
generally this holds for any essentially étale8 morphism j WU �! X [5].

Proposition 8.0.6. Let j WU �! X be essentially étale, and let F be a L -Cartier
module on X . Then the pullback j �F carries a natural functorial structure of a
j �L -Cartier module on U . The structural map is given by

FU�.j �F ˝ j �L / Š FU�j �.F ˝L / Š j �FX�.F ˝L /
j�����! j �F :

Proof. The key point is the fact that for an essentially étale morphism j WU �! X

the diagram

U
j

��

FY

��

X

FX

��
U

j
�� X

is Cartesian and that the base change morphism j �FX� Š FU
�

j � is an isomorphism
since j is flat (see [41]). This justifies the definition of the Cartier structure on
j �F . ut

For a closed immersion i WY �! X , the pullback i� does not give a functor on
Cartier modules. The reason is precisely that the above diagram is not Cartesian
in this case. However, there is an exotic restriction functor one can define. For
concreteness, let X D SpecR be affine and let Y D SpecR=I for some ideal I �
R. Then, for an R-module M , the R=I submodule i [.M/ WD HomR.R=I;M/ D
fm 2 M jIm D 0g is just the I -torsion submodule MŒI � � M . Note that
F�.M ŒI �/ � F�.M ŒI Œp��/ D .F�M/ŒI � which shows that F�.M ŒI �/, is contained

8Essentially étale means essentially of finite type and formally étale, i.e., a morphism that can be
factored as a localization followed by a finite type étale morphism.
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in the I -torsion submodule .F�M/ŒI � of F�M . Hence, if �WF�M �!M is a Cartier
module structure on M , then we have that this restricts to a map

�WF�.M ŒI �/ �!MŒI �

giving MŒI � a natural Cartier module structure. The same construction works
globally and more generally for .L ; pe/-Cartier modules:

Proposition 8.0.7. Let i WY ,�! X be a closed immersion given by a sheaf of ideals
I of OX , and let F be a .L ; pe/-Cartier module on X . Then the OY -module
(via action on the first argument) i [.F / D HomOX .i�OY ;F / D F ŒI � carries
a natural functorial structure of a .L jY ; pe/-Cartier module on Y . The structural
map is given by

F e� .F ŒI �˝OY L jY / � F e� ..F ˝OX L /ŒI Œp
e ��/

D .F e� .F ˝OX L //ŒI �
�F���! F ŒI � D i [F :

Finally, let us consider a proper morphism of varieties �WY �! X . Since the
Frobenius commutes with any morphism one has a natural isomorphism of functors
F e
X� ı �� Š �� ı F e

Y � which implies that the pushforward induces a functor on
Cartier modules as well.

Proposition 8.0.8. Let �WY �! X be a proper morphism and �WF e�F �! F a
Cartier module on Y . Then the map

F e� .��.F // Š ��.F e�F /
�

�

.�/����! ��F

is a Cartier module structure on ��F . The same construction also holds for the
higher derived images Ri��F .

Note, however, that if F is a .L ; pe/–Cartier module, there is no obvious way to
equip ��F with such a structure unless L is of the form ��L 0 for some invertible
sheaf on X . In this case, using the projection formula, one obtains

F e� .��F ˝L 0/ Š F e� .��.F ˝ ��L 0/ Š ��.F e� .F ˝L /
�

�

.�/����! ��F

as a Cartier structure on ��F .

Example 8.0.9. Let �WF e�F �! F be a Cartier module, then the pushforward
along the Frobenius (which is an affine map) equips F�F with the Cartier module
structure

F e��WF e� .F e� .F // �! F e�F

making �WF e�F �! F into a map of Cartier modules.
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8.1 Finiteness Results for Cartier Modules

In this section we state, and outline the proofs of two key structural results which
make the category of Cartier modules interesting. But first we introduce the basic
concept of nilpotence of a Cartier module and recall some elementary constructions,
starting with the following simple lemma whose verification we leave to the reader
in Exercise 1.

Lemma 8.1.1. Let �WF e� .F ˝ L / �! F be a Cartier module. Then the images

Fn�
n.F ne� .F ˝L 1CpeC���Cp.n�1/e

/ � F are Cartier submodules of F and satisfy
the properties:

(a) Fn 
 FnC1.
(b) �.F e� .Fn ˝L // D FnC1.
(c) If S � OX is a multiplicative set, then S�1Fn D .S�1F /n.
(d) The sequence of closed subsets Yn WD Supp Fn=FnC1 is descending.

An important notion in the theory of Cartier modules, and in particular, for its
applications to finiteness results for local cohomology for local rings, is the notion
of nilpotence.

Definition 8.1.2. Let F be a coherent Cartier module on X . We say that F is
nilpotent if for some n � 0 the nth power �n of the structural map � is zero.

Some basic properties of this notion are collected in the following lemma.

Lemma 8.1.3. Let �WF e� .F˝L / �! F be a Cartier module. Denote by F n � F
the Cartier submodule of F consisting of all local sections s such that �n.F ne� .OC �
s ˝L 1CpeC���Cp.n�1/e

/ D 0. Then:

(a) F n � F nC1 for all n � 0.
(b) �.F e� .F nC1 ˝L // � F n.
(c) If S � OX is a multiplicative set, then S�1F n D .S�1F /n.
(d) If F is coherent, then the ascending sequence stabilizes and the stable member

Fnil D Sn F n is the maximal nilpotent Cartier submodule of F .

Nilpotent Cartier modules form a Serre subcategory of all coherent Cartier mod-
ules, i.e., they form an Abelian subcategory which is closed under extension. The
only non-trivial part here is the non-closedness under extensions (see Exercise 5).

The first structural result for Cartier modules we will show is that the descending
sequence of iterated images stabilizes. This result was first proved in [22, Lemma
13.1]. In fact, this result is essentially Matlis dual to a famous result of Hartshorne
and Speiser [37, Proposition 1.11] and generalized by Lyubeznik [59], also cf. [3,
82, 84].

Proposition 8.1.4. Let .F ; �/ be a coherent .L ; pe/–Cartier module. Then the
descending sequence of images
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Fn WD �n.F ne� .F ˝L 1CpeC���Cp.n�1/e

/ � F

stabilizes. In particular, the stable image �.F / � F is the largest .L ; pe/-Cartier
submodule with the property that the structural map � is surjective.

Proof. To show the stabilization of a sequence of subsheaves on a Noetherian
scheme X can be done on an affine open cover. Choosing the open sets of the cover
sufficiently small we may assume that L is trivial. Hence we may assume that
X D SpecR and M is a finitely generated R module equipped with a p�e-linear
map �WM �! M . And we have to show that the descending sequence of Cartier
submodules of M

M 
 �.M/ 
 �2.M/ 
 � � �
stabilizes. The sets

Yn WD Supp.�n.M/=�.�n.M///

form a descending sequence of closed subsets of X , by Lemma 8.1.1. Since X
is Noetherian, the descending sequence must stabilize. After truncating we may
assume that Y D Yn D YnC1 for all n. We have to show that Y is empty.
Assuming otherwise, let p be the generic point of a component of Y . Localizing
at p we may assume that R is local with maximal ideal p and that Y D fpg D
Supp.�n.M/=�.�n.M/// for all n. In particular, for e D 0, we obtain that there is
an integer k such that pkM � �.M/. Hence, for any x 2 pk

x2M � xpkM � x�.M/ D �.xpeM/ � �.x2M/

and iterating we get x2M � �n.M/ for all n. Hence pk.b � 1/ � �n.M/ for all e
where b is the number of generators of pk . Hence the original chain stabilizes if and
only if the chain �n.M/=pk.b�1/M does. But the latter is a chain in the finite length
moduleM=pk.b�1/M . ut

A characterization of this stable image is as follows. �.F / � F is the smallest
Cartier submodule of F such that on the quotient F=�.F / some power of the
structural map is zero. If this property is satisfied for some Cartier submodule N �
F , then it is also satisfied for its image. The minimality now implies that for �.F /

the structural map
F e� .�.F /˝L / �! �.F /

is surjective. The Cartier modules with surjective structural map play an important
role in the theory. For example, one can see immediately (Exercise 2) that for such
Cartier module �WF e� .F ˝ L /�!!F its annihilator Ann F is a sheaf of radical
ideals, i.e., F has reduced support. This may be viewed as a generalization of the
reducedness of Frobenius split varieties alluded to earlier. It is also a key ingredient
in the following Kashiwara-type equivalence which will be used repeatedly below
(the easy but rewarding proof is left to the reader as Exercise 10, see also [6,
Proposition 2.6 and Sect. 3.3]):
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Proposition 8.1.5. Let F be a coherent Cartier module on X with surjective
structural map �F (i.e., �.F / D F ). Then I D AnnOXF is a sheaf of radical
ideals, and hence F D F ŒI � D i [.F / is a Cartier module on Y D Supp F , the
closed reduced subset of X given by I .

More precisely, if i WY �! X denotes a closed immersion, then the functors i [

and i� induce a (inclusion preserving) bijection between

8

ˆ

<

ˆ

:

coherent L –Cartier modules on X
with surjective structural map

and Supp F � Y

9

>

=

>

;

 !
(

coherent L jY -Cartier modules on Y
with surjective structural map

)

:

The most important structural result for Cartier modules is the following
theorem which asserts that for a coherent Cartier module F , the lattice of Cartier
submodules with surjective structural map satisfies the ascending and descending
chain conditions.

Theorem 8.1.6. Let X be a scheme and �WF e� .F ˝L / �! F a coherent Cartier
module. Then any chain of Cartier submodules

� � �Fi 
 FiC1 
 FiC2 
 � � � ;

each of whose structural map �Fi is surjective, is eventually constant (in both
directions).

Proof. The ascending chain stabilizes simply because the underlying OX -module
is coherent and our schemes are Noetherian. So it remains to show the descending
chain condition. One way to prove this result is to show that there is a unique
smallest Cartier submodule .F / � F which agrees with �.F / on each generic
point of X , i.e., .F /	 D �.F /	 for each 	 the generic point of an irreducible
component of X . This is a generalization of the notion of a test ideal which will be
discussed in some detail in Sect. 9.3.

Assuming the existence of .F / for now, the proof can be outlined as follows:
We show that the chain

F0 
F1 
 F2 
 � � �

stabilizes by induction on dimX , the case dimX D 0 being clear. Since a chain
stabilizes if it stabilizes after restriction to each of the finitely many irreducible
components of X , we may assume that X is irreducible. Since X is Noetherian,
the descending sequence of supports Supp Fi stabilizes. After truncating we may
assume that Y D Supp Fi for all i . Since the structural map of each Fi is surjective,
we have by Proposition 8.1.5 that Fi is annihilated by the ideal sheaf defining the
reduced structure of Y . Hence we may view the Fi as .L jY ; pe/ Cartier modules
on Y . If dimY < dimX then we are done by induction. So let us assume otherwise
that dimX D dimY . Further truncating the sequence Fi we may assume that all
Fi ’s have the same generic rank. Now, by definition, .F0/ is contained in Fi for
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all i (in fact .F0/ D .Fi /) such that it is enough to show the stabilization of the
sequence

F0=.F0/ 
 F1=.F0/ 
F2=.F0/ 
 � � � :
But since .F0/ generically agrees with each Fi this is a sequence of Cartier
modules Fi =.F0/ whose entries have strictly smaller support than X . As above,
we are done by induction. ut

A corollary of the proof is the following result.

Proposition 8.1.7. Let F be a coherent Cartier module on X with surjective
structural map. Then the set

fsupp F=G jG � F a Cartier submoduleg

is a finite set of reduced subschemes that is closed under finite unions and taking
irreducible components.

Proof. We only prove the finiteness and leave the rest as an exercise Exercise* 8.6.
We proceed by induction on dimX . By Proposition 8.1.5 we may view F as a
Cartier module on supp F ; hence we may assume that supp F D X . Since X is
Noetherian it has only finitely many irreducible components, so we may assume that
X itself is irreducible. If supp F=G ¤ X , then F and G agree on the generic point
of X . Hence, the test module .F / � G . Therefore

supp F=G � supp F=.F / DW Y;

and Y is a proper closed subset of X . Again using Proposition 8.1.5 we can apply
the induction hypothesis to the Cartier module F=.F / on Y whose dimension is
strictly less than dimX . ut

This yields the following corollary which was obtained in [52] and also indepen-
dently obtained by the second author in [73]. In the case that X D SpecR and R is
local, proofs of this fact were first obtained in [83] and [18].

Corollary 8.1.8. Let X be Frobenius split, then OX has only finitely many ideals
which are compatible with the splitting.

Proof. If 'WF e�OX �! OX is the splitting of Frobenius, note that ' is surjective.
The Cartier submodules of OX are just the ideals which are '-compatible. Since
Ann.OX=I / D I , there is a one-to-one correspondence between the set of '-
compatible ideals, and the set supp OX=I for I a Cartier submodule of OX . The
latter set is finite by the preceding proposition. ut
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8.2 Cartier Crystals

The finiteness results for Cartier modules of the preceding section receive a more
natural formulation if one deals with the notion of nilpotence in a more systematic
manner. This is done by localizing the category of coherent Cartier modules at
its Serre subcategory9 of nilpotent Cartier modules. That is, we invert morphisms
which are nil-isomorphisms, i.e., maps of Cartier modules 'WF �! G whose kernel
and cokernel are nilpotent. For the formal definition, see [23, 67], but roughly
speaking the localization is defined as follows:

Definition 8.2.1. Let X be a scheme. The category of L –Cartier crystals has as
objects the coherent Cartier modules on X . A morphism 'WF �! G of Cartier
crystals is an equivalence class (left fraction) of diagrams of morphisms of the
underlying Cartier modules

'WF  F 0 '0

��! G

where F 0 is some Cartier module and F  F 0 is a nil-isomorphism. More
precisely

HomCrys.F ;G / D colimF 0�!F HomCart .F
0;F /

where F 0 �! G ranges over all nil-isomorphisms.

It follows from general principles that the category of Cartier crystals on X is
again Abelian. Using this point of view the preceding result can be phrased (and
extended) as follows (see [6, Theorem 4.17 and Corollary 4.7]):

Theorem 8.2.2. Let X be a scheme:

(a) Each Cartier crystal F has finite length in the category of Cartier crystals.
(b) Hom-sets in the category of Cartier crystals are finite sets (finite dimensional

Fpe vector spaces).
(c) Each Cartier crystal F has only finitely many Cartier sub-crystals.

Proof. The first statement follows from Theorem 8.1.6 by noting that F and
�.F / are isomorphic as Cartier crystals (i.e., nil-isomorphic as Cartier modules).
The second statement is shown in [6, Theorem 4.17] (but see Exercise 11 for an idea
why such a statement may hold), and the last one follows formally from the other
two. ut

In [5] the category of Cartier crystals (for L Š OX ) is thoroughly studied on
an arbitrary Noetherian scheme such that F W X �! X is finite. In particular it is
shown that half of Grothendieck’s six operations, namely, f Š; Rf� and an exotic
tensor product, can be defined on a suitable derived category of Cartier crystals. In
particular the construction of the functorsf Š andRf� is rather subtle and bears some

9That is, a full Abelian subcategory which is closed under extensions; see [5].
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interesting insights. This greatly extends the examples of the pullback for open and
closed immersions and the proper pushforward that was discussed in the preceding
section.

If f WY �! X is a proper morphism, then Rif� induces a functor on (coherent)
Cartier modules, which can be shown to preserve nilpotence. Hence it descends to
a functor on Cartier crystals. However, if f is not proper, then already f�F of a
coherent sheaf is no longer coherent. It is a crucial observation in [5] that if F is a
coherent Cartier crystal on Y , then Rif�F is a locally nil-coherent Cartier crystal
on X . Nil-coherent for a Cartier module F means that F has a coherent Cartier
submodule E � F such that the quotient F=E is locally nilpotent, i.e., is the
union of nilpotent Cartier submodules. This implies the following result:

Theorem 8.2.3. For an arbitrary finite type morphism f WY �! X , the usual
pushforward functor Rf� on quasi-coherent sheaves induces an exact functor

Rf�WDb
crys.QCrys.Y // �! Db

crys.QCrys.X// ;

where Db
crys.QCrys. // denotes the bounded derived category of quasi-coherent

Cartier crystals whose cohomology is locally nil-coherent.

The proof of this result, though not difficult, is somewhat subtle, so we won’t
attempt it here but instead refer to [5]. However the basic idea is already present in
Exercise* 8.7.

The situation with the functor f Š is similar but more subtle. As we have already
seen in Sect. 3.3, on quasi-coherent sheaves, the construction of the functor f Š

is generally quite involved. Already in the finite case, in particular for a closed
immersion Y � X with X not smooth, one sees that f Š does not have bounded
cohomological dimension, hence does not preserve the bounded derived category.
However, in [5], it is shown quite generally that f Š preserves local nilpotence, and
hence induces a functor on quasi-coherent Cartier crystals. The induced functor on
Cartier crystals preserves boundedness up to local nilpotence.

Theorem 8.2.4. If f WY �! X is essentially of finite type, then the twisted inverse
image functor f Š on quasi-coherent sheaves induces an exact functor

f ŠWDb
crys.QCrys.X// �! Db

crys.QCrys.Y //

of bounded cohomological dimension.

Besides a number of obvious compatibilities between these functors which are
induced from the corresponding ones of the underlying quasi-coherent sheaves,
there are two adjointness statements which are important in the theory.

Proposition 8.2.5. (a) Let f WY �! X be a proper morphism. Then as functors on
categoriesDb

crys.QCrys. //, the functor Rf� is naturally left adjoint to f Š.
(b) If j WY �! X is an open immersion, then j� is naturally right adjoint to

j Š D j �.
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For an open immersion j WU ,�! X and a closed complement i WZ ,�! X the
above adjunction yields natural isomorphisms i�i Š �! id and id �! j�j �. This
yields the following technically important result regarding their combination:

Theorem 8.2.6. In Db
crys.QCrys.X//, there is a natural exact triangle

i�i Š �! id �! Rj�j � C1���! :

This in turn yields a very general form of the Kashiwara equivalence that was
alluded to in Proposition 8.1.5.

Theorem 8.2.7. Let i WY �! X be a closed immersion. Then i Š and i� define natural
isomorphisms

Db
crys.QCrys.Y //

i
�

��
Db

crys;Y .QCrys.X//
i Š

��

where the right hand category consists of bounded complexes of quasi-coherent
Cartier crystals on X whose cohomology is coherent and supported in Y .

8.3 Arithmetic Aspects of p�e-Linear Maps

We conclude with a brief discussion of connections between Cartier crystals and
more arithmetic constructions. What follows is much less explicit than previous
sections of this chapter, so if the terms used are not familiar to you, we suggest the
reader use this as a place to jump off for further reading.

The finite length result for Cartier crystals in Theorem 8.2.2 suggests—in
analogy with the Riemann–Hilbert correspondence for D-modules (i.e., modules
of the ring of differential operators) on smooth complex manifolds—a connection
of Cartier crystals with a category of constructible sheaves. Indeed, in [22], Gabber
introduces a family of t-structures on the derived category of bounded complexes of
constructible Fp-vector spaces on the étale site of X . He shows that for the middle
perversity the heart of this t-structure (i.e., the perverse sheaves with respect to
this t-structure) forms an Abelian category which also is Noetherian and Artinian.
The connection between Cartier crystals and constructible Fp-vector spaces is a
combination of [5, 10] and yields an equivalence of derived categories:

Db
crys.QCrys.X//

Š��! Db
c .Xet ;Fp/

where the right hand side is the category of constructible sheaves of Fp-vector
spaces onXet . This correspondence is a two-step procedure: First is a Grothendieck–
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Serre duality between Cartier crystals (coherent OX -modules with a right action
of Frobenius) with the category of -crystals (coherent OX -modules with a left
Frobenius action) of [10] and was largely motivated by our desire to understand the
precise connection of the theory in [10] with the work of Emerton and Kisin [17]
and Lyubeznik [59]. This Grothendieck–Serre duality is the main result of [5]. The
step from -crystals to constructible sheaves is just by taking Frobenius fix-points,
i.e., the Artin–Schreier sequence [10].

The first author’s PhD student Tobias Schedlmeier has shown in his upcom-
ing thesis that the equivalence is given directly by the functor Sol. / WD
RH omcrys. ; !

�

X/ and proved that the image of the Abelian subcategory of Cartier
crystals under Sol is precisely Gabbers category of perverse sheaves Perv.Xet ;Fp/
for the middle perversity.

8.4 Exercises

Exercise 1. Prove Lemma 8.1.1.

Exercise 2. Show that the annihilator of any coherent Cartier module F onX with
surjective structural map is a sheaf of radical ideals, i.e., its support is reduced.

Exercise 3. Let R be a ring and S � R a multiplicative set. Then for any module
M , show that S�1.FR/�M Š .FS�1R/�S�1M .
Hint: Localize with respect to the multiplicative set Sp is the as with respect to S .
This generalizes Exercise 6.

Exercise 4. Let X be a scheme and L a line bundle. We define a sheaf of rings
OL
X ŒF

e� as

OX ˚ .L � F e/˚ .L 1Cpe � F 2e/˚ .L 1CpeCp2e � F 3e/˚ � � �

where F ne are formal symbols, and the multiplication of homogeneous elements

lF ne and l 0F ne0

is defined as lF nel 0F n0e D l.l 0/pn0e
F .nCn0/e .

(a) Show that this defines the structure of a sheaf of rings on OL
X ŒF

e�.
(b) Show that the category of .L ; pe/–Cartier modules is equivalent to the category

of (sheaves of) right OL
X ŒF

e�-modules.

Hint: Do the case of L Š OX first, and then attempt the general case.

Exercise 5. If 0 �! F 0 �! F �! F 00 �! 0 is an exact sequence of coherent Cartier
modules, show that F 0 and F 00 are nilpotent (of order � e; e0) if and only if F is
nilpotent (of order � e C e0).

Exercise* 8.6. Let F be a quasi-coherent Cartier module with surjective structural
map. Show that the collection
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fsupp.F=G / jG � F a Cartier submoduleg
is a collection of reduced subschemes that is closed under finite unions and taking
irreducible components.

Exercise* 8.7. Let X D SpecR be an affine scheme and U D SpecRf a basic
open subset with f 2 R, and denote the open inclusion U � X by j . Let F be
a coherent Cartier module on U . Show that j�F has a coherent Cartier submodule
F such that the quotient j�F=F is locally nilpotent, i.e., the union of its nilpotent
Cartier submodules.

Exercise 8. Let F be a coherent Cartier module onX . The test submodule .F / is
defined as the smallest Cartier submodule G � F which agrees with �.F / for each
generic point of X . Show that Theorem 8.1.6 implies the existence and uniqueness
of .F /.

Exercise 9. Suppose thatR is a ring and .M; '/ is a Cartier module onM . Suppose
further thatR �! S is a finite ring homomorphism. Prove that HomR.S;M/ has the
structure of a Cartier module induced by ' and by the Frobenius map S �! F�S .

Exercise 10. Prove Proposition 8.1.5.

Exercise 11. Let R be a regular F -finite ring with dualizing sheaf !R with its
standard Cartier structure T W F�!R �! !R (see Sect. 3.2). Show that the
homomorphisms of Cartier modules HomCart.!R; !R/ D RF D Fp are just the
Frobenius fixed points of the action of F on R. In particular, this Hom-set is finite.

Exercise* 8.12. Suppose that R D kŒx1; : : : ; x4�hx1;:::;x4i and that ' W F e�R �! R is
a Frobenius splitting. In Corollary 8.1.8, it was shown that there are at most finitely
many '-compatible ideals.

Prove that there at most
�

4

d

�

prime idealsQ which are compatibly split by ' such
that dim.R=Q/ D d .

Hint: Prove it for d D 0 first (very easy), then d D 1 (use the fact that
compatibly split subvarieties must intersect normally, Corollary 5.1.7, but we only
have 4 “directions” in SpecR, which is just the origin in A4). For d D 2; 3, simply
consider all possibilities exhaustively (keeping in mind the normal intersections).
For a complete proof for any An (not just n D 4), see [79].

Exercise 13. Suppose that .F ; �/ is an .L ; pe/-Cartier module on a projective
variety X such that the structural map � W F e� .L ˝F / �! F is surjective. Further
suppose that A is a globally generated ample line bundle and that N is another line
bundle such that N pe�1 ˝L is ample. Prove that

F ˝A dimX ˝N

is a globally generated sheaf.

Hint: Use the same strategy as in Theorem 6.1.3.
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9 Applications to Local Cohomology and Test Ideals

In this section we discuss in detail the relation of the theory of Cartier modules to
other theories of modules with a Frobenius action, with an emphasis on applications
to local cohomology. Then we discuss a simple but interesting degree-reducing
property of Cartier linear maps, which allows an elementary treatment of the theory
of Cartier modules in the case that X is of finite type over a perfect field. We use
this approach to study the test ideals and show the discreteness of their jumping
numbers.

9.1 Cartier Modules and Local Cohomology

The category of Cartier modules, besides enjoying some extraordinary finiteness
conditions, is useful due to its connection to other categories which are studied,
in particular in connection with local cohomology. Besides the connection to
constructible p-torsion sheaves that we hinted at above, we show the relation
to two further categories which are particularly important in the study of the
local cohomology of rings in positive characteristic. Our goal is to explain the
following diagram of categories and to derive a number of finiteness results for
local cohomology from the above finiteness result for Cartier modules.

(

cofinite R-modules
with left Frobenius action
(R complete local ring)

)

$
n

coherent Cartier modules on X
(X Noetherian and F -finite)

o

�!
n

Lyubeznik’s F -modules over R
(R regular, Noetherian ring)

o

:

The parenthetical parts indicate in what generality the categories are defined, and
the arrows are defined when both assumption holds, for example, the first double
arrow holds for complete local and F -finite rings. The left double arrow is an
equivalence of categories given by Matlis duality HomR. ;ER=m/ where ER=m
is an injective hull of the perfect residue field of R. The right arrow is a functor
which gives an equivalence after inverting Cartier modules at nil-isomorphisms, i.e.,
it induces an equivalence of categories from Cartier crystals to F -finite modules.
Lyubeznik’sF -finite modules and this equivalence will be explained in detail below.

Let us begin with Matlis duality. Let .R;m/ be complete and local and denote
by E D ER an injective hull of the prefect residue field of R. Since R is F -finite
one has that F e�F ŠER WD HomR.F�R;ER/ Š EF

�

R which we identify with ER
since R and F�R are isomorphic as rings. We fix hence an isomorphism F ŠE Š E .
If we denote by . /_ D HomR. ;ER/ the Matlis duality functor, we have the
following lemma whose proof we leave as Exercise 2.

Lemma 9.1.1. For .R;m/ local and F -finite there is a (functorial) isomorphism
F�. /_ Š .F� /_.

This immediately implies the first of the equivalences above, also cf. [85].
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Proposition 9.1.2. Let .R;m/ be complete, local, and F -finite. Then Matlis duality
induces an equivalence between the categories of

�

co-finite R-modules
with left Frobenius action

�

$
�

finitely generatedR-modules
with right Frobenius action

�

:

Of course the R-modules with right Frobenius action are just the coherent Cartier
modules on X D SpecR. The equivalence preserves nilpotence.

Proof. A left action of Frobenius on M is an R-linear map 'WM �! F�M .
Applying Matlis duality and the preceding lemma, this yields a map

F�.M_/ Š .F�M/_
'_

���!M_

which is the desired Cartier structure (=right Frobenius action) on the dualM_. The
same construction works in the opposite direction, and one immediately checks that
this induces an equivalence of categories. ut

With this result we can translate the finiteness theorems for Cartier modules
obtained above to the setting of cofinite R-modules with a left Frobenius action.
In particular the results hold for local cohomology modulesHi

m.R/ with support in
the maximal ideal m of R.

Theorem 9.1.3. Let N be a cofinite R module equipped with a p-linear map
F WN �! N (i.e., F is additive and F.rm/ D rpF.m/).
(a) The ascending chain of submodules kerF � kerF 2 � kerF 3 � � � � stabilizes

([37, Proposition 1.1]).
(b) Any chain � � � � Ni � NiC1 � NiC2 � � � � of submodules Ni � N which are

stable under F (i.e., F.Ni/ � Ni ) has eventually F -nilpotent quotients ([59,
Theorem 4.7]).

(c) N has up to nilpotent action of F , only finitely many F -stable submodules.
Concretely, there are only finitely many F stable submodules N 0 for which the
action of F on the quotientN=N 0 is injective.

Proof. These are just the Matlis dual statements of Proposition 8.1.4, Theorem
8.1.6, and Theorem 8.2.2 part (c). ut

An immediate consequence of these observations is the following result origi-
nally obtained by Enescu and Hochster [18]; see [62] for a recent extension showing
that F -split alone is sufficient in the assumptions below.

Proposition 9.1.4. If R is quasi-Gorenstein (i.e., Hd
m.R/ Š ER) and F -split, then

the top local cohomology module Hd
m.R/ with its left action of the Frobenius has

only finitely many F -stable submodules.
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Proof. The existence of a splitting 'WR �! S implies that the Cartier module .R; '/
has only finitely many Cartier submodules. Hence, by the above duality result, its
dual .r_ D Hd

m.R/; '
_/ has only finitely many submodules stable under the action

of '_. ButHd
m.R/ also has a natural Frobenius action FH induced by the Frobenius

on R by functoriality of Hd
m. /. One can show (Exercise 7) that there is a r 2 R

such that '_ D rFH . Hence, all submodules which are stable under FH are also
stable under '_, but of the latter, there are only finitely many as just argued. ut

The connection of Cartier modules with Lyubeznik’sF -finite modules also relies
on a certain commutation of functors which we recall first. Lyubeznik’s theory [59]
is phrased for a regular ring R, and even though there is an extension to schemes by
Emerton and Kisin [17], we will stick to this setting and assume from now on that
X D SpecR, with R regular (and such that the Frobenius morphism F W R �! R is
finite).

Lemma 9.1.5. Let f WY �! X be a finite flat morphism andM a OX module, then
there is a functorial isomorphism

f ŠOX ˝OY f
�M Š f ŠM ;

where f Š. / D HomOX .f�OX ; /.

Proof. See Exercise 4. ut
Applying this to the case of the Frobenius on the regular schemeX andM D !X

the dualizing sheaf (which is invertible!), we obtain an isomorphism

F ŠOX Š F Š!X ˝ F �!�1
X :

Further using that the adjoint of the map F�!X �! !X coming from the Cartier
isomorphism in Theorem 3.1.1, is an isomorphism !X �! F Š!X , we obtain

F ŠM ˝ !�1
X Š F �M ˝ F Š!X ˝ !�1

X ˝ F �! Š F �.M ˝ !�1
X /

which allows us to describe the functor from Cartier modules to Lyubeznik’s F -
finite modules. Starting with a Cartier moduleM with structural map �WF�M �!M

we first consider its adjoint �0WM �! F ŠM and tensor it with !�1
X to obtain

� WM ˝ !�1
X

�0˝id����! F Š.M/˝ !�1
X Š F �.M ˝ !�1

X /

where the final isomorphism is the one derived above. Let us pause for a moment
to recall the definition of Lyubeznik’s F -finite modules, which we phrase in a way
convenient for our purpose:

Definition 9.1.6. LetR be regular. Given a finitely generatedR-moduleN together
with a map � WN �! F �N , then an F -finite module is the limit N of the directed
system

N
��! F �N

F������! F 2�N
F2������! F 3�N �! � � �
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together with the induced map # WN Š��! F �N which is immediately verified to
be an isomorphism.

Phrased differently, an F -finite module is a (not necessarily finitely generated)

R-module N together with an isomorphism # WN Š��! F �N which arises in the
above described manner from a finitely generated R-module N .

It is shown in [59] that F -finite modules are an Abelian category which is closed
under extensions, that local cohomology modulesHi

I .R/ are F -finite modules, and
that F -finite modules enjoy a number of important finiteness results. For example,
they have only finitely many associated primes, and all Bass numbers are finite.

From this definition it is immediate how to connect the Cartier modules with F -
finite modules. The F -finite module attached to a Cartier moduleM is just the limit
of

M ˝ !�1
X �! F �.M ˝ !�1

X / �! F 2�.M ˝ !�1
X / �! � � � :

One obtains the following Proposition [6].

Proposition 9.1.7. For a regular ring R, the just described construction assigning
to a coherent Cartier moduleM onR an F -finite module is an essentially surjective
functor

fcoherent Cartier modulesg �! fF -finite modulesg
which sends nilpotent Cartier modules to zero. The induced functor

fcoherent Cartier crystalsg Š��! fF -finite modulesg

is an equivalence of categories.

Proof. All statements are shown in [6], but with the above preparations none of
them is particularly difficult. ut

Hence we obtain as an immediate consequence of Theorem 8.2.2 the following
finiteness result forF -finite modules, which partially extends one of the main results
of [59]:

Theorem 9.1.8. Let R be regular and F -finite, then

(a) F -finite modules over R-have finite length.
(b) The Hom-sets in the category of F -finite modules are finite.
(c) An F -finite module has only finitely many F -finite submodules.

Part (a) of the theorem has been proven for R regular and of finite type over a
regular local ring in [59] and for arbitrary F -finite schemes X in [5]. The latter
results also are shown for regular rings (part (b) even without the F -finiteness
assumption) in [39]. Finally, let us state the aforementioned finiteness result for
local cohomology modules.
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Theorem 9.1.9. Let M be an F -finite module, I � R an ideal in a regular ring,
then Hj

I .M/ is an F -finite R-module and hence has only finitely many associated
primes.

Proof. We only have to show that Hj
I .M/ is an F -finite module. The crucial step

is to show that for f 2 R we have that the localization Mf is also F -finite (cf.
Exercise* 8.7). Once this is established, the LCech-complex finishes the proof. ut

9.2 Contracting Property of p�e-Linear Maps

In this section we point out a simple fact about p�e-linear map which has a number
of interesting consequences. In particular we give an elementary proof of the finite
length result for Cartier modules. The idea goes back at least to a paper of Anderson
[2] and says that a p�e-linear endomorphism reduces the degree in a graded context.
For this we consider X D SpecS with S D kŒx1; : : : ; xn� a polynomial ring over
a perfect field. Then we consider the filtration of S given by the finite-dimensional
vector spaces

Sd WD khxi11 � � �xinn j 0 � ij � d for j D 1; : : : ; ni :

Hence Sd is the k–subspace of S freely generated by the monomials with degree
� d in each variable. One immediately verifies that

S�1 WD 0; S0 D k; SdSd 0 � SdCd 0; and Sd C S 0
d � SmaxdCd 0 :

For each choice of a set of generatorsm1; : : : ; mk of an S moduleM we define the
induced filtration on M given by

M�1 WD 0 and Md D Sd hm1; : : : ; mki:

For m 2 M we write ı.m/ D d if and only if m 2 Md nMd�1 and call ı D ıM
a gauge for M . One should think of the gauge ı as a substitute for a degree on M ,
and the contracting property of p�e-linear maps on M is measured in terms of the
gauge ı. Spelling out the definition we see that ı.m/ � d if m can be written as
a S -linear combination of the mi such that all coefficients are in Sd . S itself has
a gauge, induced by the generator 1. We summarize the immediate properties of a
gauge (the proof is left to the reader in Exercise 3):

Lemma 9.2.1. Let M be finitely generated over S D kŒx1; : : : ; xn�, and ı a gauge
corresponding to some generatorsm1; : : : ; mk of M . Then

(a) ı.m/ D �1 if and only if m D 0.
(b) EachMd is finite dimensional over k (since Sd is).
(c)

S

d Md D M (since the mi generateM ).
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(d) ı.mCm0/ � maxfı.m/; ı.m0/g.
(e) ıM .f m/ � ıS.f /C ıM .m/.
Proposition 9.2.2 ([2], Proposition 3). Let M be a finitely generated S -module,
and ı D ıM a gauge corresponding to some generators m1; : : : ; mk of M , and let
' W M �! M be a p�e-linear map. Then there is a constant K such that for all
m 2 M :

ı.'.m// � ı.m/

pe
C K

pe

Furthermore, for all n � 0, we have

ı.'n.m// � ı.m/

pne
C K

pe � 1 :

Proof. By definition, we may write m DPk
lD1 flml with ıS.fl / � ı.m/. For each

l write uniquely fl D P

xi2Sı.m/ r
pe

l;i xi with xi D x
i1
1 � � �xinn . Then Exercise 1 shows

that ıS.rl;i / � bı.m/=pec. Writing this out

'.m/ D
k
X

lD1

X

xi2Sı.m/
rl;i '.ximl/;

we consequently obtain

ı.'.m// � max
l;i
fıS.rl;i /C ı.'.ximl//g � bı.m/

pe
c C K

pe
:

Taking for K D pe �maxl;i fı.ximl/g we obtain the claimed inequality.
The final inequality follows by applying the first inequality iteratively and then

to use the geometric series (exercise!). ut
This proposition has an important consequence about the generators of the

images of a submodule under a p�e-linear map.

Lemma 9.2.3. Let 'WM �! M be a p�e-linear map on the finitely generated S -
module M with gauge ı and bound K as in Proposition 9.2.2. Suppose that the
S -submoduleN �M is generated by elements with gauge� d . Then 'n.N / �M
is generated by elements of gauge at most d=pne CK=.pe � 1/C 1.

Proof. If N is generated by n1; : : : ; nt , then 'n.N / is generated by '.xinj / where
0 � i1; : : : ; in � pne � 1 and j D 1; : : : ; t . Now, if each ı.nj / � d , then

ı.'.xinj // � ı.xinj /

pne
C K

pe � 1 �
.pne � 1/C d

pne
C K

pe � 1 � 1C
d

pne
C K

pe � 1:

ut



190 M. Blickle and K. Schwede

Corollary 9.2.4. Let 'WM �! M be a Cartier module with gauge ı and bound K
(as in Proposition 9.2.2). Then every Cartier submodule N � M with surjective
structural map 'WN�!!N is generated by elements in the finite dimensional k-
vector space M K

pe�1C1 (independently of N ).

Proof. If N has surjective structural maps, then for each n, we have 'n.N / D N .
Since N is finitely generated, it is generated by elements of some gauge � d . By
the above lemma, we have hence for all n that N is generated by elements of gauge
� d=pne CK=.pe � 1/C 1. But for n big enough the first term is irrelevant (less
than 1), and the result follows. ut
Corollary 9.2.5. In a coherent Cartier module M there are no infinite proper
chains of Cartier submodulesNi , each with surjective structural map.

Proof. Each Ni has generators in the finite dimensional k-vector space M K
pe�1C1;

hence there cannot be any infinite proper chains. ut
As we have alluded to (in Exercise 8) before, the fact that there are no infinite

chains of Cartier submodules with surjective structural maps implies the existence of
the test module .M/. By definition of being the smallest Cartier submodule of M
which generically agrees with �.M/ it is clear that .M/ has surjective structural
map (since the image under the structural map would again be of that type). The
intersection of two Cartier submodules agreeing generically with �.M/ clearly also
has this property. Now, the existence of .M/ follows from the stabilization of any
chain of submodules generically agreeing with �.M/ and with surjective structural
maps, which we just showed.

In the next section, Sect. 9.3, we will show this approach to Cartier modules via
gauges also gives an elementary proof of the discreteness of jumping numbers for
test ideals.

We conclude this section with pointing out that our restriction to the polynomial
ring S D kŒx1; : : : ; xn� is not very restrictive after all. In the case of an arbitrary
scheme X we may reduce to the affine case by considering an affine cover. Then
any finite type k-algebra R D S=I is the quotient of a polynomial ring. Then we
can use the Kashiwara-equivalence Proposition 8.1.5 to reduce to the case of the
polynomial ring itself.

Remark 9.2.6 (Historical discussion). The major source of inspiration to explore
the contracting property of p�e-linear maps in [4] came from a paper of Anderson
[2] where he uses this property to study L-functions mod p on varieties over Fp .
The key observation there is that if 'WM �! M is a p�e-linear map of R-modules
(say R of finite type over Fp) then there is a finite dimensional Fp-subspace into
which every element of M is eventually contracted by iterated application of '.
This allows him, inspired by Tate’s work [93], to develop a trace calculus for these
operators. This is then used to show the rationality of L-functions mod p attached
to a finitely generatedR-moduleM with a left action of Frobenius F onM . In fact,
he shows that if R is the polynomial ring and M is projective, this L-function is
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equal to the characteristic polynomial (or its inverse) of the action of the dual of F
on M_. This dual is a Cartier linear endomorphism of M_, and the characteristic
polynomial is defined via the important contracting property of Cartier linear maps.

9.3 Algebras of Maps and the Test Ideal

Suppose that X D SpecR is an affine variety (for simplicity). Previously we
considered finitely generated R-modules M and p�e-linear maps ' W M �! M .
Unless M D !R (or is obtained functorially from T W !Y �! !Y from some other
variety Y ), there probably is no natural choice of '.

The obvious solution is to choose all possible '; see [4,76] and cf. [61] for a dual
formulation. For any finitely generated moduleM , we set Ende.M/ to be the set of
p�e-linear maps fromM to M . In other words, Ende.M/ is just HomR.F

e�M;M/.
Of course Ende.M/ has an R-module structure via both the source and target R-
module structures. Notice that if ' 2 Ende.M/ and  2 Endd .M/, then we can
form the composition  ı ' 2 EndeCd .M/. Thus End�.M/ D ˚e�0Ende.M/

forms a noncommutative graded ring. Unfortunately, the ring End0.M/ is often too
big, and so we set CM

0 to denote the image of R inside End0.M/ via the natural
map that sends r 2 R to the multiplication by r map onM .

Definition 9.3.1 (Cartier algebras). An (abstract) Cartier algebra over R10 is an
N-graded ring C DLe�0 Ce satisfying the rule r �'e D 'e � rpe for all 'e 2 Ce and
r 2 R and furthermore such that C0 Š R=I for some ideal I .

Example 9.3.2. Suppose thatM is a finitely generatedR-module. The total Cartier
algebra on M , denoted CM , is the following graded subring of End�.M/:

CM WD CM
0 ˚

 

M

e>0

Ende.M/

!

D
M

e�0
CM
e :

It is obviously a Cartier algebra.
A Cartier subalgebra (on M) is any graded subring C � CM such that ŒC �0 D

CM
0 .

With the above definitions, if C is an (abstract) Cartier algebra, and M is any
left-C -module, then there is a natural map C �! CM , the image of which is a
Cartier subalgebra on M . Conversely, note that any Cartier subalgebra C � CM

acts onM by the application of functions. In particular,M is also a C -module.

10It is important to note that while we call it an algebra, it is not generally an R-algebra because R
is not central.
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Remark 9.3.3. Most commonly, we will consider C R, in which case C R
0 D HomR

.R;R/ D End0.R/ automatically.

Now suppose that C is a Cartier algebra and that M is a left C -module (or that
C is a Cartier-submodule onM ), we use CC to denote˚e>0Ce . It is easy to see that
CC is a 2-sided ideal. For any C -submoduleN �M , we define

CCN WD h'.x/ j x 2 N; ' 2 Ce for some e > 0iR � N
to be the submodule generated by all '.x/ for homogeneous ' 2 CC and n 2 N .
We set

.CC/nN WD CC.CC.� � �CC
„ ƒ‚ …

n-times

.N /// � N:

A crucial step from dealing with an algebra of Cartier linear operators as opposed to
a single one is to establish the right notion of nilpotence. With following definition
the theory develops in surprising analogy to the single operator case dealt with
above.

Definition 9.3.4. We say that N is C -nilpotent if .CC/nN D 0 for some n > 0.

It is obvious we have a chain of inequalities:

N 
 CCN 
 .CC/2N 
 � � � 
 .CC/iN 
 .CC/iC1N 
 � � � : (20)

The following remarkable theorem about this chain generalizes Proposition 8.1.4.

Theorem 9.3.5 ([4, Proposition 2.14]). Suppose that M is a finitely generated R-
module that is also a left C -module for some Cartier algebra C . Then .CC/nM D
.CC/nC1M for all n� 0. In other words, the chain of submodules in (20) eventually
stabilizes.

Proof. The proof is similar to that of Proposition 8.1.4 and left to the reader in
Exercise* 9.6. ut

As an immediate corollary we obtain

Corollary 9.3.6 ([4, Corollary 2.14]). Let M be a finitely generated R-module
that is also an C -module for some Cartier algebra C . Then there is a unique C -
submodule �.M/ �M such that

(a) The quotientM=�.M/ is nilpotent.
(b) CC�.M/ D �.M/, and so �.M/ does not have nilpotent quotients.

Proof. Set �.M/ D .CC/nM for n � 0, then verify the statements in Exercise 8.
ut

Suppose that M is a finitely generated R-module and a left C -module. We can
now define a notion of the test ideal on M .
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Definition 9.3.7. Suppose that M and C are as above. Then we define the test
submodule .M;C / to be the unique smallest submoduleN of M which:

(a) Is a C -module
(b) Satisfies .�.M//	 D N	 for every minimal prime of R11

if it exists.

The existence of .M;C / is known in many important cases, but not in all
generality. It is known to exist if R is of finite type over a field (or a localization
of such), or if C is generated by a single operator; see [4, Theorem 4.13,
Corollary 3.18]. It is also known to exist if M D R by the same argument as
Proposition 9.3.10.

For the rest of the section, we consider C R, the total Cartier algebra on R, and
subalgebras of it. Indeed, a common way to construct a Cartier algebra is as follows.

Definition 9.3.8. Suppose that R is a normal domain with X D SpecR. Suppose
further that � � 0 is an effective Q-divisor, a � R is a nonzero ideal, and t � 0
is a real number. Then we define the following Cartier subalgebra of C R. For each
e � 0 first identify HomR.F

e�R;R/ with C R
e and fix C �

e to be the subset

HomR.F
e�R.d.pe � 1/�e/; R/ � HomR.F

e�R;R/ D C R
e :

Here R.d.pe � 1/�e/ D �.X;OX.d.pe � 1/�e//.
It follows that

C� WD
M

e�0
C �
e

is a Cartier subalgebra of C R (the details will be left as Exercise 9).
Furthermore, we can form C�;at

e WD C�
e � adt .pe�1/e (where multiplication on the

right is pre-composition; in other words, C�;at

e is identified with HomR.F
e�R.d.pe�

1/�e/; R/ � .F e�adt .pe�1/e/ ). Again the direct sum

C �;at WD
M

e�0
C �;at

e

is a Cartier subalgebra of C R; see Exercise 9.

With these definitions, we can now define the test ideal .RI�; at / WD .R;C �;at /

[4, 76].

Remark 9.3.9. Test ideals (with � D 0 and a D R) were originally introduced by
Hochster and Huneke in their theory of tight closure [41]. In fact, what we call the
test ideal is often called the big test ideal [38] and is denoted bye or b . This object

11This definition differs slightly from the original one given in [4] where one requires equality for
every minimal prime of �.M/ instead of R. Though this yields different results in general, in light
of the Kashiwara equivalence Proposition 8.1.5, the respective theories imply each other.
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though is better behaved with respect to geometric operations (such as localization
Exercise 11). It is conjectured thate and  coincide in general [60, 61].

Even with � ¤ 0 and a ¤ R, this definition we gave is not the original one. For
a ¤ R, .RI at / was originally defined in [29] (ande.RI at / was studied in [30]).
For � ¤ 0, .RI�/ was introduced in [90].

Proposition 9.3.10. Suppose R is a normal domain. The test ideal .R;C �;at / D
.RI�; at / exists.

Proof. The main point is the following lemma, which is a generalization of a result
of Hochster and Huneke.

Lemma 9.3.11 ([41, Sect. 6], [76, Lemma 3.21]). There exists an element 0 ¤ c 2
R such that for every 0 ¤ d 2 R, there exists e > 0 such that c 2 C �;at

e .dR/.

Now choose c as in the lemma, and it follows that c 2 I for any nonzero C �;at -
submodule I � R. However,

X

e�0
C�;at

e .Rc/

is evidently the smallest C�;at submodule containing c. ut
One of the aspects of the test ideal which has attracted the most interest over the

past few years is how the test ideal .RI�; at / changes as t varies. First we mention
the following lemma which serves as a baseline for how the test ideal behaves.

Lemma 9.3.12 ([69, Remark 2.12], [7, Proposition 2.14], [9, Lemma 3.23]).
With notation as above, for every real number t � 0, there exists an " > 0 such
that

.RI�; at / D .RI�; as/
for every s 2 Œt; t C "�.
Proof. The containment
 is obvious. A substantial hint is given in Exercise* 9.12.

ut
Because of this, we make the following definition:

Definition 9.3.13 (F -jumping numbers). Suppose that .R;�; at / are as above.
Then a number t > 0 is called an F -jumping number if

.RI�; at / ¤ .RI�; at�"/

for all 1� " > 0.

Based on the above lemma and a connection between test ideals and multiplier
ideals [29, 90] it is natural to expect that the set of jumping numbers for the test
ideal is discrete. In the case that X is smooth this was shown to be the case in [7,8].
The singular case was obtained in [9]; see also [1,27,45,77,81,92]. We will outline
here an elementary proof based on the contracting property of p�e linear maps that
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was investigated in the preceding section. In order to be able to handle not only a
single p�e-linear map but a whole Cartier algebra, we need to generalize the results
on gauge bounds obtained above slightly. To keep things simple we will consider a
Cartier algebra of the type

C D
M

R � 'nadt .pne�1/e

where a is an ideal inR, t � 0 is a real number, and ' is a single p�e-linear operator
on R. This is essentially the case C D C�;at for .pe � 1/.KR C �/ is a Cartier
divisor (i.e., the pair .R;�/ is Q-Cartier with index not divisible by p). We first
state a generalization of Lemma 9.2.3 to this context.

Lemma 9.3.14. Let C be the Cartier subalgebra of C R generated by ', a p�e-
linear map on R D kŒx1; : : : ; xn�=I . Let M be a coherent C module and suppose
that for all m 2 M and n > 0 one has

ı.'n.m// � ı.m/

pne
C K

pe � 1
for some boundK � 0 as in Proposition 9.2.2. Then, if a � R is an ideal generated
by element of gauge � d , and N � M is a R-submodule generated by elements
of gauge � D, then .C atC /n.N / � N is generated by elements of gauge � D

pne
C

K
pe�1 C td C 1.

Proof. Note thatR has a set of generators overRp
ne�1 each of gauge� pne�1 (the

images of the relevant monomials of kŒx1; : : : ; xn� inR will do fine). Next, it is easy
to check that adt .pne�1/e is generated by element with gauge� tdpneC 1. Hence, as
in the proof of Lemma 9.2.3, the ideal .C atC /n is generated as a left R-modules by
elements  of the form  D 'l � b � a where l � n and b (resp. a) is one of the just
described generators of R over Rp

ln
(resp. of adt .pne�1/e). Ranging over all such  

and a set of R-generators m of N we see that .C atC /n.N / is generated by elements
of the form  .m/. Now we just compute

ı. .m// D ı.'l � b � a �m/ � ı.bam/

ple
C K

pe � 1 �
ı.m/

ple

C .ple � 1/C .tdple C 1/
ple

C K

pe � 1

� ı.m/

pne � 1 C
K

pe � 1 C td C 1:

This shows the claim. ut
Corollary 9.3.15. With notation as in the lemma, let N be an R-submodule of M
such that C atC .N / D N . ThenN is generated by elements of gauge� K

pe�1CtdC1.
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For T � 0 there no infinite chains of R-submodules N of M for which
C atC .N / D N for some t < T .

Proof. Clearly, C atC .N / D N implies that .C atC /n.N / D N for all n and hence the
first claim follows from the preceding lemma. The second claim follows from the
first one since each suchN is generated by elements in the finite dimensional vector
space M� K

pe�1
CTdC1; hence there cannot be infinite chains. ut

Now, the discreteness of the jumping numbers for the test ideal is an immediate
consequence.

Theorem 9.3.16. For .R;�; at / as above, the F -jumping numbers form a discrete
subset of Q.

Proof. In the case that .pe � 1/.KX C �/ is Cartier, the Cartier algebra C � is
of the form considered above. Since each test ideal .R;�; at / has the properties
.R;�; at / 
 .R;�; at

0

/ for t 0 � t and C �;at

C .R;�; at / D .R;�; at /, the
preceding corollary shows that there is only finitely for t below a fixed bound T .
Hence the jumping numbers must be discrete. The general case is similar or can be
reduced to this case by using the methods of Sect. 7.3; see [80, 81]. ut

9.4 Exercises

Exercise 1. Let f 2 S D kŒx1; : : : ; xn� with k perfect and with gauge ı

corresponding to the generator 1. Show that if ı.f / � d and writing uniquely

f D
X

xi2Spe�1

s
pe

i x
i ;

one has ı.si / � bd=pec. (Here we used multi-exponent notation xi as shorthand for
x
i1
1 � � �xinn .)

Exercise 2. Use the duality for finite morphisms to prove Lemma 9.1.1.

Exercise 3. Prove Lemma 9.2.1.

Exercise 4. Let R ,�! S be a module-finite and flat ring extension. Show that the
natural map

HomR.S;R/˝R M '˝n7!.r 7!'.r/n/������������! HomR.S;M/

is an isomorphism. Derive from this the statement of Lemma 9.1.5.
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Exercise 5. Consider the example of a Cartier structure � on the polynomial ring
kŒx� given by sending 1 7! xt and x; x2; : : : ; xp�1 7! 0. Show that ı.�.f // �
ı.f /=p C t where ı is the gauge on kŒx� induced by the generator 1 2 kŒx�.
Exercise* 9.6. Prove Theorem 9.3.5 by using the same strategy as in Proposi-
tion 8.1.4.

Exercise 7. Let .R;m/ be complete local of dimension d , and denote byF WHd
m.R/

�! Hd
m.R/ the natural Frobenius action. Show that any left action ' on Hd

m.R/ of
the Frobenius is of the form ' D r � F for some r 2 R.

Exercise 8. Prove Corollary 9.3.6.

Exercise 9. With notation as in Definition 9.3.8, show that C� and C�;at are
Cartier subalgebras of C R. For a proof, see [76, Remark 3.10].

Exercise 10. Suppose that R is a normal local domain and that � � 0 is a Q-
divisor on X D SpecR such that KX C� is Q-Cartier with index not divisible by
p > 0. Prove that C� is a finitely generated ring over C�

0 D R.

Hint: Show that HomR.F
e�R.d.pe � 1/�e/; R/ Š F e�R for some e > 0, and

then use Exercise 2. For additional discussion see [76, Sect. 4].

Exercise 11. Suppose that R is a normal domain, W � R is a multiplicative
system, � � 0 is a Q-divisor on X D SpecR, a � R is a nonzero ideal, and
t � 0 is a real number. Set U D Spec.W �1R/ � SpecR D X . Prove that

W �1.RI�; at / D .W �1RI�jU ; .W �1a/t /:

Exercise* 9.12. Prove Lemma 9.3.12.

Hint: Use the description of .RI�; at / from the proof of Proposition 9.3.10.
Also use the fact that R is Noetherian to see that the sum from Proposition 9.3.10 is
a finite sum (e D 0 to m). Now notice that if c works in that sum, then so does bc
where 0 ¤ b 2 a. Set " D 1

pm
.

Exercise* 9.13. Suppose that R is a normal ring and that X D SpecR. Consider
the anticanonical ring

K WD
M

n�0
OX.�nKX/:

Set KF WD L

e�0 OX..1 � pe/KX/ to be the summand of K made up of terms
of degree pe � 1 for some e � 0. This is not a subring of K . However, define a
noncommutative multiplication on KF as follows. If ˛ 2 OX..1 � pe/KX/ and
ˇ 2 OX..1�pd/KX/, then define ˛ ?ˇ D ˛pd ˇ 2 OX...1�pe/pd Cpe/KX/ D
OX..1 � peCd /KX/.

With this ring operation, prove that KF is isomorphic to C R.
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Appendix A: Reflexification of Sheaves and Weil Divisors

In this section, we briefly recall basic properties of reflexive sheaves and Weil
divisors on normal varieties. This material is all “well known,” but there isn’t a
good source for it in the literature (we note that it is certainly assumed in [50]).
We note that substantial generalizations of all this material (and complete proofs)
can be found in [36]. As before, all schemes are of finite type over a field (or
localizations or completions of such schemes). We assume the reader is familiar
with the basic notion of depth and Sn (Serre’s nth condition) and the connections
with local cohomology / cohomology with support. See, for example, [34, Chap. III,
Exercises in Sect. 3], [12] or [33].

A.1. Reflexive Sheaves

Given a coherent sheaf F on any scheme X , there is the following (dualizing)
operation: F_ D H omOX .F ;OX/. Furthermore, there is a natural map from F
to the double-dual, F ! .F_/_.

Definition A.1.1. If this map is an isomorphism, we say that F is reflexive (or more
specifically that it is OX -reflexive).

Note that if a sheaf is reflexive, it is also coherent (by definition). If X D SpecR
andM is a coherentR-module, we say thatM is reflexive if the corresponding sheaf
is reflexive (equivalently, if M �! HomR.HomR.M;R/;R/ is an isomorphism).

Notice first that any locally free sheaf is reflexive. But there are other reflexive
sheaves as well. If one is careful, one can check that hx; zi � kŒx; y; z�=.xy � z2/
corresponds to a reflexive ideal sheaf after taking Spec (Exercise A.1). There are
a few basic facts about reflexive sheaves that should be mentioned. We now limit
ourselves to varieties (i.e., integral schemes) which makes dealing with torsion much
easier. One can do analogues of the following in more general situations (say for
reduced schemes), but the statements become much more involved.

Lemma A.1.2. Suppose thatX is a variety and suppose that F is a coherent sheaf
on X . Then F_ is torsion-free. (That is, if U � X is open and 0 ¤ r 2 OX.U /

and 0 ¤ z 2 F_.U /, then rz ¤ 0). In particular, a reflexive sheaf is torsion-free.

Note that a torsion-free sheaf is necessarily S1 (any nonzero element makes up a
rather short regular sequence).

Lemma A.1.3. Suppose that X is a variety and that F is a torsion-free coherent
sheaf. Then the natural map ˛ W F ! F__ is injective.

Lemma A.1.4 ([35, Proposition 1.1]). A coherent sheaf F on a quasi-projective
variety X is reflexive if and only if it can be included in an exact sequence

0! F ! E ! G ! 0
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where E is locally free and G is torsion-free.

We note that the OX -dual of any coherent sheaf is always reflexive.

Theorem A.1.5. If F is a coherent sheaf on a variety X , then F_ is reflexive.
More generally, if F is coherent and G is reflexive, then H omOX .F ;G / is
reflexive.

We now come to a very useful criterion for checking whether a sheaf is reflexive.

Theorem A.1.6 ([36, Theorem 1.9]). Suppose that X is a normal (not necessarily
quasi-projective) variety and that F is a coherent sheaf onX such that Supp.F / D
X . Then F is S2 if and only if F is reflexive.

The key reason why the previous criterion is so useful is the Hartog’s phe-
nomenon associated with S2 sheaves.

Corollary A.1.7. Let X be an integral, normal (not necessarily quasi-projective)
variety and suppose that F is a reflexive sheaf onX (defined as above). Let Y � X
be a closed subset of codimension � 2 and set U D XnY . Then if i W U ! X is
the natural inclusion, then the natural map F ! i�F jU is an isomorphism.

Corollary A.1.8. Suppose that F is a reflexive sheaf on U � X (where X is as
above) such that X � U is codimension two. Let us denote by i W U ! X the
inclusion. Then i�F is a reflexive sheaf on X .

A.2. Divisors

Let X be a normal variety of finite type over a field. By a Weil divisor on X , we
mean a formal sum of integral codimension 1 subschemes (prime divisors). Recall
that a divisor D is called effective if the coefficients of D are nonnegative. Just like
in the regular case, each prime divisorD corresponds to some discrete valuation vD
of the fraction field of X (although the reverse direction is not true).

Definition A.2.1. Choose f 2 K .X/, f ¤ 0. We define the principal divisor
div.f / as in the regular case: div.f / D †ivDi .f /Di . Likewise, we say that two
Weil divisorsD1 and D2 are linearly equivalent, if D1 �D2 is principal.

Definition A.2.2. Given a divisor D, we define OX.D/ be the sheaf associated to
the following rule:

�.V;OX.D// D ff 2 K .X/ j div.f /jV CDjV � 0g:

A divisor D is called Cartier if OX.D/ is an invertible sheaf. It is called Q-Cartier
if nD is Cartier for some n > 0.

Note that D is effective if and only if OX.D/ 
 OX .
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Proposition A.2.3. Suppose that D is a prime divisor, then OX.�D/ D ID , the
ideal sheaf definingD. Furthermore, if D is any divisor, then OX.D/ is reflexive.

Proof. We first show the equality. The object defined above is clearly a sheaf.
We will prove the equality of the sheaves in the setting where U is affine. Then
�.U;OX.D// is just the functions in OX which vanish to order at least 1 along D,
in other words the ideal of D.

We now want to show that this sheaf is reflexive (or equivalently, that it is S2).
First notice that clearly if U is the regular locus of X , then �.V \ U;OX.D// Š
�.V;OX.D// for any open set V . This is because V \U D U nfnon-regular locusg,
the non-regular locus, is codimension 2, and the sections of OX.D/ obviously do
not change when removing a codimension 2 subset. This implies that the natural
map OX.D/ ! i�OX.D/jU is an isomorphism, but then we notice that OX.D/jU
is reflexive (since it is invertible), and thus, by Corollary A.1.8, OX.D/ is also
reflexive. ut

We now list some basic properties of rank-1 reflexive sheaves which completely
link their behavior to divisors.

Proposition A.2.4. Suppose that X is a normal variety. Then

(a) If X is regular, then every reflexive rank-1 sheaf F on X is invertible [35,
Proposition 1.9].

(b) Every rank one reflexive sheaf F on a normal scheme X embeds as a subsheaf
of K .X/.

(c) Any reflexive rank 1 subsheaf of K .X/ is OX.D/ for some (uniquely deter-
mined) divisorD.

Proof. Left to the reader in Exercise A.4. ut
The addition operations for divisors translates into the tensor of the associated

sheaves, up to reflexification.

Proposition A.2.5. Suppose that X is a normal variety and D and E are divisors
on X . Then

(a) If E is Cartier, then OX.D/˝OX.E/ Š OX.D C E/.
(b) In general, OX.D C E/ Š .OX.D/˝OX.E//

__.
(c) OX.�D/ DH omOX .OX.D/;OX/ D OX.�D/_.

Proof. Left to the reader; see Exercise A.5 ut
Finally, we mention a result relating sections and linearly equivalent divisors,

which will be a key part of this chapter.

Theorem A.2.6. Suppose that X is a normal variety andD is a Weil divisor on X .
Then there is a bijection between the following two sets:

�

Effective divisors E
linearly equivalent to D

�

 !
�

Nonzero sections � 2 H0.X;OX.D//

modulo equivalence

�
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where we define � and � 0 in H0.X;OX.D// to be equivalent if there exists a unit
u 2 H0.X;OX/ such that u� D � 0.

Proof. Set M D OX.D/. The choice � induces an embedding i� WM ,! K .X/

which sends � to 1. Thus � induces a divisor via Proposition A.2.4. It follows from
the same argument that � and � 0 induce the same divisor if and only if i� and i� 0

have the same image in K .X/. But this happens if and only if � and � 0 are unit
multiplies of one another. ut

A.3. Exercises

Exercise A.1. Show that hx; zi 2 kŒx; y; z�=hxy � z2i corresponds to a reflexive
ideal sheaf after taking Spec.

Exercise A.2. Which of the following kŒx; y� D R-modules are reflexive? If a
module is not reflexive, compute its double dualM__.

(a) The ideal hxi
(b) The ideal hx; yi
(c) The module R=hx; yi
(d) The module R=hxi
(e) The ideal hx2; xyi D hx; yi2 \ hyi
Exercise A.3. Suppose that � W Y �! X is a finite dominant map of normal
varieties and F is a coherent sheaf on Y . Then F is reflexive on Y if and only
if ��F is reflexive on X .

Hint: Use the fact that you can check whether a sheaf is reflexive by checking
whether it is S2. Then use the criterion for checking depth via local cohomology.

Exercise A.4. Prove Proposition A.2.4.

Exercise A.5. Prove Proposition A.2.5.
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5. Blickle, M., Böckle, G.: Cartier crystals. manuscript in preparation, started 2006
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(2005). MR2185754 (2007b:13010)

70. Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Applications à la
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Castelnuovo–Mumford Regularity
of Annihilators, Ext and Tor Modules

Markus Brodmann, Cao Huy Linh, and Maria-Helena Seiler

1 Introduction

In his opening address to the Workshop on Castelnuovo–Mumford Regularity
and Applications at the Max Planck Institute for Mathematics in the Sciences
at Leipzig in June 2007, we learned from Professor Eberhard Zeidler, former
Director of that Institute, that physicists have a high esteem for algebraic geometry,
because it provides so many invariants. Among these invariants Castelnuovo–
Mumford regularity is particularly interesting. For example, mathematical physics
are interested in degrees of defining equations of characteristic varieties of D-
modules, a subject which is closely related to Castelnuovo–Mumford regularity. So,
in the PhD thesis [2] of Michael Bächtold, we find the result that the Hilbert function
(with respect to an appropriate filtration) of a D-module W over a standard Weyl
algebra A bounds from above the degrees of polynomials which are needed to cut
out set theoretically the characteristic variety of W . This is true, because the Hilbert
function hM of a graded module M which is generated over the polynomial ring
R D KŒx1; : : : ; xr � by finitely many elements of degree 0 bounds from above the
Castelnuovo–Mumford regularity reg.AnnR.M // of the annihilator AnnR.M / of
M . This was worked out in the MSc thesis [21] of the third author. Let us also
mention here the recently finished PhD thesis [5] of Roberto Boldini, which is
devoted to a different aspect of characteristic varieties of D-modules.
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Later it turned out that the ideas used in [21] may be combined with some earlier
bounding results of [8] to get a number of a priori bounds for the Castelnuovo–
Mumford regularity of Ext- and Tor-modules, for example, bounds which hold
over arbitrary Noetherian homogeneous rings with local Artinian base ring and for
arbitrary finitely generated graded modules over them. We do not insist that one has
to use exclusively the results of [8]. Indeed, instead one also could use, for example,
results of Chardin–Fall–Nagel [13] to end up with similar bounds.

Our original question asks whether a certain finite collection of invariants of
a finitely generated graded module M over a homogeneous Noetherian ring R

bounds the Castelnuovo–Mumford regularity of M . This leads to ask for a priori
bounds, hence for bounds which apply in a most general setting. Here, being
bounded in terms of certain invariants usually is more interesting than the size of
the bound. On the other hand, one also can ask for specific bounds, for example,
bounds which apply only for a specified class of graded R-modules, but which in
turn are smaller (and possibly sharp). Already at its beginning, the investigation
of Castelnuovo–Mumford regularity shows an interplay of these two aspects (see,
e.g., [3, 4, 6, 10, 12, 16, 20]). In the this chapter, clearly the first aspect plays a
dominant role. Nevertheless, in the last section, we shall give a bound on the
Castelnuovo–Mumford regularity of certain specified Tor-modules which extends
earlier bounding results of Eisenbud–Huneke–Ulrich [15] and Caviglia [11].

In Sect. 2 of this chapter, we present some preliminaries, and we give an
extension to graded modules of Mumford’s basic bounding result for graded ideals
in a polynomial ring [20] in terms of Hilbert polynomials—an extension which to
some extend may be viewed as folklore. It says that over a Noetherian homogeneous
(e.g., standard graded) ring R with local Artinian base ring R0, the Castelnuovo–
Mumford regularity of a finitely generated graded R-module M is bounded in
terms of the length of R0, the degree vector of a homogeneous system of generators
of M , the Hilbert polynomial pM , and the postulation number p.M /, of M (see
Proposition 5). In view of our first goal, which is to bound the Castelnuovo–
Mumford regularity of the annihilator AnnR.M / of a finitely generated graded
R-module M in terms of the Hilbert function hM of M , we clearly have to use
this result.

In Sect. 3, we give a few preliminaries on filtered modules over filtered rings,
especially on D-modules, and introduce in more detail the original question
asked by Bächtold on the degrees of equations cutting out set theoretically the
characteristic variety of such modules. As this chapter has an expository touch,
we allow ourselves to include here a short introduction to characteristic varieties
of modules over appropriately filtered K-algebras, especially over Weyl algebras.
Readers familiar with the subject therefore might jump what is said in Reminder 1
to Remark 5. For readers who aim to learn more about the subject, we recommend
to consult [18, 19], or [14]. After this expository introduction, we tie the link to the
Castelnuovo–Mumford regularity of annihilators of graded modules and prove the
requested bounding results on their Castelnuovo–Mumford regularity in terms of
Hilbert functions (see Theorem 14 and Corollaries 15 and 16). We shall do this by
first proving that the Castelnuovo–Mumford regularity of the annihilator AnnR.M /
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of a finitely generated graded R-module M is bounded in terms of invariants of R,
the initial degree and the Castelnuovo–Mumford regularity of M (see Theorem 10
and Corollaries 11–13). Then we apply Proposition 5 to get the requested bound for
reg.AnnR.M // in terms of the Hilbert function hM of M .

In Sect. 4 we give an a priori bound for the Castelnuovo–Mumford regularity
of the modules ExtiR.M; N / in terms of i , of invariants of R, the initial degrees,
the Castelnuovo–Mumford regularities, and the number of generators of M and
N , where M and N are finitely generated graded modules over a Noetherian
homogeneous ring R with local Artinian base ring R0 (see Theorem 4 and
Corollary 5). As an application we get a simply shaped bound for the Castelnuovo–
Mumford regularity of the deficiency modules Ki.M / in terms of i , invariants
of R, the initial degree, the Castelnuovo–Mumford regularity and the number of
generators of M (see Corollaries 7 and 8).

In Sect. 5—under the same hypothesis as in Sect. 4—we first give a bound for
the Castelnuovo–Mumford regularity of the tensor product M ˝R N in terms of the
invariants mentioned above (see Proposition 3). We then deduce a corresponding a
priori bound for the Castelnuovo–Mumford regularity of the modules TorR

i .M; N /

(see Theorem 4, Corollary 5, and Remark 6). Then, we leave the field of a priori
bounds and establish—over arbitrary rings R as above—an upper bound on the
Castelnuovo–Mumford regularity of the modules TorR

k .M; N /, provided that at
least one of the two modules M or N has finite projective dimension and that
TorR

i .M; N / is if dimension � 1 for all i > 0 (see Proposition 8). As an application
we prove a bounding result for the Castelnuovo–Mumford regularity of the modules
TorR

k .M; N / which holds under the hypotheses that TorR
1 .M; N / is of dimension

� 1 and the singular locus of the scheme Proj.R/ is finite. This will extend
the previously mentioned results of Eisenbud–Huneke–Ulrich and Caviglia (see
Theorem 10 and Corollary 11).

2 Some Preliminaries

In this section, we fix a few notations and recall some basic facts which we shall
use throughout this chapter. For the reader’s convenience we also present and prove
a result of folklore type which extends Mumford’s basic regularity bound [20]. As
a basic reference for this section we use [7].

Notation 1. Let N0 denote the set of nonnegative integers and let N denote the set
of positive integers.

Throughout let R D L
n2N0

Rn be a Noetherian homogeneous ring with
Artinian local base ring .R0;m0/ and irrelevant ideal RC WD L

n2N Rn: Observe
in particular that there are finitely many elements l1; l2; : : : ; lr 2 R1 such that
R D R0Œl1; l2; : : : ; lr �, RC D hl1; l2; : : : ; l2i and m WD m0 ˚ RC is the unique
homogeneous maximal ideal of R.
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Next we recall a few basic facts on local cohomology of graded R-modules and
Castelnuovo–Mumford regularity.

Reminder 2. If T D L
n2Z Tn is a graded R-module we define the beginning (or

the initial degree) and the end of T , respectively, by

beg.T / WD inffn 2 Z j Tn ¤ 0g; end.T / WD supfn 2 Z j Tn ¤ 0g:

Moreover, the generating degree of the graded R-module T is defined by

gendeg.T / WD inffn 2 Z j T D
X

m�n

RTmg:

We always use the convention that inf.�/ and sup.�/ are formed in Z[ f�1; C1g
with inf.¿/ WD 1 and sup.¿/ WD �1. Obviously, we have

T ¤ 0 ) beg.T / � gendeg.T / � end.T /:

If the R-module T is finitely generated, we have gendeg.T / � 1.
For each nonnegative integer i 2 N0 and each graded R-module M D L

n2Z Mn

let H i
RC

.M / denote the i th local cohomology module of M with respect to the

irrelevant ideal RC of R. The R-modules H i
RC

.M / D L
n2Z H i

RC
.M /n carry a

natural grading, the graded R-modules H i
RC

.M / are Artinian, and so their graded

parts H i
RC

.M /n are R0-modules of finite length in all degrees n 2 Z and vanish for
all n � 0. Moreover, if r WD dimR0=m0 .R1=m0R1/ denotes the minimal number of
generators of the R0 module R1, we have H i

RC
.M / D 0 for all i > r .

Let M be a finitely generated graded R-module and let k 2 N0. The (Castelnuovo–
Mumford) regularity of M at and above level k is defined by

regk.M / WD supfend.H i
RC

.M // C i j i � kg:
Observe that regk.M / < 1. The (Castelnuovo–Mumford) regularity of M at

all is defined as the Castelnuovo–Mumford regularity of M at and above level 0,
thus by

reg.M / WD reg0.M / D supfend.H i
RC

.M // C i j i 2 N0g:
We always have the inequality

gendeg.M / � reg.M /:

We constantly use without further mention the behavior of regularities in short exact
sequences of finitely generated graded R-modules and the fact that regularities are
not affected if one considers M as a graded S -module by means of a surjective
homomorphism of homogeneous Noetherian rings � W S � R.
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For simplicity, we also introduce the width of the finitely generated graded
R-module M . e.g. the span between the regularity and the initial degree of M :

w.M / WD maxf0; reg.M / � beg.M / C 1g:
Observe that w.M / > 0 if and only if M ¤ 0, whereas w.M / D 0 means that
M D 0. When R D KŒx1; x2; : : : ; xr � is a polynomial ring over a field K , the width
of M is precisely the number of rows in the Betti-diagram of M , so

w.M / D supfend.Tori
R.R=RC; M // � beg.M / � i j i 2 N0g:

We recall a few basic facts on Hilbert polynomials of graded R-modules.

Reminder 3. Let M D L
n2Z Mn be a finitely generated graded R-module. We

denote the Hilbert polynomial of M by pM so that

lengthR0
.Mn/ D pM .n/ for all n � 0:

We also introduce the postulation number of M that is the invariant

p.M / WD supfn 2 Z j lengthR0
.Mn/ ¤ pM .n/g 2 Z [ f�1g:

Hilbert polynomials behave additively in short exact sequences of finitely generated
graded R-modules. Moreover, the Hilbert polynomial and the postulation number
of a finitely generated graded R-module are not affected if one considers M as a
graded S -module by means of a surjective homomorphism S � R of Noetherian
homogeneous R0-algebras.

For each i 2 N0 and all n 2 Z we may consider the nonnegative integer

hi
M .n/ WD lengthR0

.H i
RC

.M /n/;

which vanishes for all n � 0 and for all i > dimR0=m0.R1=m0R1/. Serre’s formula
yields (see [7, 17.1.6])

pM .n/ D lengthR0
.Mn/ �

X

i2N0

.�1/ihi
M .n/ for all n 2 Z:

One obvious consequence of this formula is the estimate

reg.M / � maxfreg1.M /; p.M / C 1g:

Next, we quote the following auxiliary result, which will play a crucial role in
our later arguments

Lemma 4. Assume that R is a Cohen–Macaulay ring of dimension r > 0 and
multiplicity e. Let f W W �! V be a homomorphism of finitely generated graded
R-modules. If V ¤ 0 is generated by � homogeneous elements and
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˛ WD minfbeg.V /; reg.V / � reg.R/g;

then we have

reg.Im.f // � �
maxfgendeg.W /; reg.V / C 1g C e.� C 1/ � ˛

�2r�1 C ˛:

Proof. This is nothing else than Corollary 6.2 of [8]. ut
Finally, we give the announced extension of Mumford’s regularity bound. It says

that the regularity of a finitely generated graded R-module M is bounded in terms
of the length of the base ring R0, the Hilbert polynomial pM , the postulation number
p.M / and the degrees a1; a2; : : : ; a� of generators of M .

Proposition 5. Let p 2 QŒx� be a polynomial, let � 2 N, and let a WD
.a1; a2; : : : ; a�/ 2 Z

� with a1 � a2; � � � � � a�. Then, there is a function

Fp;a W N2 � Z �! Z

such that whenever � WD length.R0/, r WD dimR0=m0 .R1=m0R1/ and M , is a finitely
generated graded R-module such that pM D p, p.M / � � , and M D P�

iD1 Rmi

with mi 2 Mai for i D 1; 2; : : : ; �, we have

reg.M / � Fp;a.�; r; �/:

Proof. Let r; � 2 N, let a WD .a1; a2; : : : ; a�/ 2 Z
� with a1 � a2 � � � � � a�, and

let p 2 QŒx�. According to Theorem 17.2.7 of [7], there is a function

Gr;p;a W N �! Z

such that whenever S D R0Œx1; x2; : : : ; xr � is a polynomial with Artinian local base
ring R0 ring with length.R0/ D � and N 	 L�

iD1 S.�ai / DW U is a graded
submodule such that the graded S -module M WD U=N satisfies pM D p, we have

reg2.N / � Gr;p;a.�/:

In view of the short exact sequence of graded S -modules

0 �! N �! U �! M �! 0;

as reg.U / D a� and by Reminder 3 we get

reg.M / � maxfa�; Gr;p;a.�/; p.M / C 1g:
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Define

Fp;a.�; r; �/ WD maxfa�; Gr;p;a.�/:� C 1g:
If R and M satisfy the requirements of our proposition, then there is a surjective
homomorphism of homogeneous Noetherian R0-algebras � W S � R and we may
consider M as an S -module by means of �. In particular, we may write M D U=N

for some graded submodule N 	 U . As reg.M /, pM and p.M /, are not affected if
we consider M as an S -module we get the requested inequality. ut

3 Characteristic Varieties of D-Modules
and the Regularity of Annihilators

As mentioned in the introduction, this chapter grew out of a problem concerning
characteristic varieties of D-modules. In this section, we aim to introduce this
problem in more detail and present its solution, which bases on a bound for the
regularity of the annihilator of a finitely generated graded module over a polynomial
ring over a field. We first recall a few elementary facts on Weyl algebras and D-
modules. Our suggested reference for this is [14], although we partly use our own
terminology. We start in a slightly more general setting, for which we recommend
the references [18] and [19].

Reminder 1. Let K be a field and let A be a unital associative K-algebra which
carries a filtration A� D .Ai /i2N0 so that each Ai is a K-subspace of A such that

Ai 
 AiC1 for all i 2 N0; 1 2 A0; A D
[

i2N0

Ai and

Ai Aj 
 AiCj for all i; j 2 N0;

where by definition Ai Aj WD P
.f;g/2Ai �Aj

Kfg. To simplify notation, we set Ai D
0 for all i < 0. The associated graded ring of A with respect to the filtration A� is
defined as the graded K-algebra

Gr.A/ D GrA�
.A/ D

M

i2N0

Ai =Ai�1;

with multiplication induced by .f C Ai�1/.g C Aj �1/ WD fg C AiCj �1 for all
i; j 2 N0, all f 2 Ai and all g 2 Aj . The filtration A� is said to be commutative if

fg � gf 2 AiCj �1 for all i; j 2 N0 and for all f 2 Ai and all g 2 Aj :

In this situation, the associated graded ring Gr.A/ is commutative. The filtration A�
is said to be very good if is commutative and

A0 D K; dimK.A1/ < 1; and Ai D A1Ai�1 for all i 2 N:
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Clearly in this situation, the associated graded ring is a commutative homogeneous
Noetherian K-algebra. If A� is a very good filtration of A, we say that .A; A�/—or
briefly A—is a very well-filtered K-algebra.

Let W be left A-module which carries an A�-filtration W� D .Wi /i2Z so that
each Wi is a K-subspace of W and moreover

Wi 
 WiC1 for all i 2 Z; W D
[

i2Z
Wi and

Ai Wj 
 WiCj for all .i; j / 2 N0 � Z;

where by definition AiWj WD P
.f;w/2Ai �Wj

Kf w. The associated graded module
of W with respect to the filtration W� is the graded Gr.A/-module

Gr.W / D GrW�
.W / WD

M

j 2Z
Wj =Wj �1;

with scalar multiplication induced by .f C Ai�1/.w C Wj �1/ WD f w C WiCj �1 for
all .i; j / 2 N0 � Z, all f 2 Ai and all w 2 Wj .

We say that two A�-filtrations W
.1/

� , W
.2/

� are equivalent if there is some r 2 N0

such that
W

.1/
i�r 
 W

.2/
i 
 W

.1/
iCr for all i 2 Z:

Note that in this situation for all i 2 N and all f 2 Ai we have the implication

f W
.1/

j 
 W
.1/

j Ci�1 for all j 2 Z ) f 2rC1W
.2/

j 
 W
.2/

j C.2rC1/i�1 for all j 2 Z:

So, if the filtration A� is commutative, we can say:

If W
.1/

� is equivalent to W
.2/

� ; then
q

AnnGr.A/.Gr
W

.1/
�

.W // D
q

AnnGr.A/.Gr
W

.2/
�

.W //:

Remark and Definition 2. Let V 
 W be a K-subspace such that AV D W .
Then A�V WD .Aj V /j 2Z defines an A�-filtration on W , which we call the
A�-filtration induced by V . If V .1/; V .2/ 
 W are two K-subspaces of finite
dimension such that W D AV .k/ for k D 1; 2, the induced filtrations A�V .1/ and
A�V .2/ are equivalent so that by Reminder 1 we have

p
AnnGr.A/.GrA�V .1/ .W // D

p
AnnGr.A/.GrA�V .2/ .W //.
Assume now, that the filtration A� of A is commutative and that the left A-module

W is finitely generated. Then, there is a finite-dimensional K-subspace V 
 W

such that W D AV . According to our previous observation, the closed subset

V.W / D VA�
.W / WD Spec

�
Gr.A/=

�
AnnGr.A/.GrA�V .W //

�� 
 Spec.Gr.A//

does not depend on our choice of V and hence is determined by the filtration A�
and the module W . It is called the characteristic variety of the finitely generated
left A-module W with respect to the commutative filtration A� of A.
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Remark and Definition 3. Let W be a left A-module equipped with an A�-
filtration W�. We say that the A�-filtration W� is very good, if

Wj D 0 for all j < 0; dimK.W0/ < 1 and Wj D Aj W0 for all j 2 N:

Thus, the very good A�-filtrations of W are precisely the filtrations A�V induced
by a K-subspace V 
 W of finite dimension. So, W admits a very good filtration if
and only if it is finitely generated, and then all good filtrations are equivalent. If W�
is a good filtration of W , we say that .W; W�/—or briefly W —is very well-filtered
(with respect to the filtration A�).

Assume that W = .W; W�/ is very well-filtered with respect to A�. Then, the
associated graded module Gr.W / D GrW�

.W / of W with respect to W� is generated
by finitely many homogeneous elements of degree 0. In particular one may define
the Hilbert function hW D h.W;W�/ of W with respect to W� as the Hilbert function
of the graded Gr.A/-module Gr.W / D GrW�

.W /, hence

hW .j / D h.W;W�/.j / D hGr.W /.j / D dimK.Wj =Wj �1/ for all j 2 Z:

Example 4. Let K be a field of characteristic 0, let n 2 N, and let En.K/ WD
EndK.KŒX1; : : : ; Xn�/ denote the endomorphism ring of the polynomial ring
KŒX1; : : : ; Xn�. For all i 2 f1; : : : ; ng we identify Xi with the K-endomorphism
on KŒX1; : : : ; Xn� given by multiplication with Xi , and we write Di for the partial
derivative with respect to Xi on KŒX1; : : : ; Xn�. Then, the nth Weyl algebra over K

is defined as the subring

An.K/ WD KhX1; : : : ; Xn; D1; : : : ; Dni 
 En.K/

of En.K/ generated by the multiplication endomorphisms Xi and the partial
derivatives Di . The ring An.K/ is a unital associative central K-algebra and its
elements are called partial differential operators on KŒX1; : : : ; Xn�. The elements

X�D� WD X
�1

1 : : : X�n
n D

�1

1 : : : D�n
n 2 An.K/; with � WD .�1; : : : ; �n/;

� D .�1; : : : ; �n/ 2 N
n
0

are called elementary partial differential operators. One has the Heisenberg
relations

ŒXi ; Xj � D 0; ŒDi ; Dj � D 0; ŒDi ; Xj � D ıij for all i; j 2 f1; : : : ; ng;

where Œ�; �� denotes the commutator operation and ıij denotes the Kronecker
symbol.

It follows from the Heisenberg relations that the elementary differential operators
form a K-vector space basis of An.K/. Therefore, each element f 2 An.K/ may be
written as f D P

�;�2Nn
0

a��X�D� with uniquely determined coefficients a�� 2 K
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which vanish for all but finitely many pairs .�; �/. So, if f ¤ 0, we may define the
degree of f by deg.f / WD maxfj�j C j�j j .�; �/ 2 N

n
0 W a�� ¤ 0g. In addition,

we set deg.0/ WD �1. Now, one gets a filtration A� on A D An.K/ given by
Ai WD ff 2 A j deg.f / � ig, the so-called degree filtration—a commutative very
good filtration on A. More precisely, if x1; : : : ; x2n are indeterminates, one has an
isomorphism of graded K algebras:

KŒx1; : : : ; x2n�
Š! GrA�

.A/; xi 7! Xi C A0; xiCn 7! Di C A0

for all i 2 f1; : : : ; ng:

We assume from now on, that the Weyl algebra A D An.K/ is always endowed
with its degree filtration.

Remark 5. The finitely generated left A-modules are called D-modules over A. For
each D-module W over A, the characteristic variety of W is a closed subset of an
affine 2n-space over K:

V.W / 	 Spec.Gr.A// D Spec.KŒx1; : : : ; x2n�/ D A
2n
K :

We endow W with a very good filtration W� so that its associated graded module
Gr.W / D Gr�.W / is generated by finitely many homogeneous elements of
degree 0. The very well-filtered D-module W D .W; W�/ has a Hilbert function
hW D h.W;W�/.

We now formulate in its original form the problem concerning the degrees of
homogeneous polynomials which set theoretically cut out the characteristic variety
of a D-module, posed to us by Bächtold.

Problem 6. Let W D .W; W�/ be a very well-filtered D-module. Do n and the
Hilbert function hW D h.W;W�/ bound from above the degree of homogeneous
polynomials in KŒx1; : : : ; x2n� which are needed to cut out the set V.W / from A

2n
K ?

Remark 7. By the definition of characteristic variety, the bound we are asking for
in Problem 6 is on its turn bounded from above by gendeg

�
AnnGr.A/.Gr.W //

�
.

So, it suffices to bound from above this latter invariant in terms of the Hilbert
function h.W;W�/ D hGr.W /. This is what we are heading for, and this is also
what finally was stated in Lemma 7.41 of [2]. This Lemma was used there, to
prove a certain uniformity result, which says that, over a C 1-manifold M , the
“global characteristic generically agrees with the point-wise characteristic” (see
Theorem 7.39 of [2]).

Remark 8. According to Remark 7, the problem posed in Problem 6 is solved if,
for a polynomial ring R D KŒx1; : : : ; xr � over a field K and a graded R-module
M which is generated by finitely many homogeneous elements of degree 0, the
generating degree gendeg.AnnR.M // of the annihilator of M is bounded in terms
of r and the Hilbert function hM of M . As gendeg.AnnR.M // � reg.AnnR.M //,
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it suffices indeed to show that the regularity of the annihilator of M is bounded in
terms of r and the Hilbert function of M .

Remark 9. Let the notation and hypotheses as in Remark 8 and assume that M is
generated by � homogeneous elements of degree 0. We aim to find an upper bound
on reg.AnnR.M // which depends only on r and hM . In fact, the Hilbert function is
a somehow enigmatic object, as it is not clear (e.g., from the computational point of
view) what it means “to know” a function h W Z ! N0. Such arithmetic functions
may encode an uncountable variety of information, and thus are not accessible for
finitistic considerations. We therefore prefer to replace the function hM by finitistic
invariants (which are known in a ”philosophical sense” if hM is). We thus aim to
bound reg.AnnR.M // in terms of r , � D hM .0/, the Hilbert polynomial pM of M ,
and the postulation number p.M / of M .

We shall do this in a more general context. Hence, from now on, let R DL
n2N0

Rn be as in Notation 1, that is, a Noetherian homogeneous ring with Artinian
local base ring .R0;m0/ and let M D L

n2Z Mn be a finitely generated graded R-
module.

We begin with the following bounding result for the regularity reg.AnnR.M // of
the annihilator AnnR.M / of the graded R-module M .

Theorem 10. Let r WD dimR0=m0 .R1=m0R1/ > 0, set � WD length.R0/, � WD
reg.R/. If M ¤ 0 is generated by � homogeneous elements,

ˇ WD reg.M / C gendeg.M / � 2beg.M / and ˛ WD beg.M / � gendeg.M /;

then we have

reg.AnnR.M // � maxf�;
�
ˇ C �.�2 C 1/ C 1

�2r�1 C ˛ C 1g:

Proof. By our definition of the number r there is a surjective homomorphism of
homogeneous R0-algebras � W S D R0Œx1; x2; : : : ; xr � � R; where S is a standard
graded polynomial ring over R0. Clearly, the invariants gendeg.M /, beg.M /, and
� are not affected, if we consider M as a graded S -module by means of �. In
addition, the invariants reg.M / and reg.AnnR.M // are not affected if we consider
M and a WD .AnnR.M // as graded S -modules by means of �.

We now set b WD AnnS .M / D ��1.a/ so that we have an isomorphism of graded
S -modules R=a Š S=b and hence a short exact sequence of graded S -modules

0 �! a �! R �! S=b �! 0:

Consequently we have reg.a/ � maxfreg.R/; reg.S=b/ C 1g. So, it suffices to
show that

reg.S=b/ � �
ˇ C �.�2 C 1/ C 1

�2r�1 C ˛:
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Observe that we have an exact sequence of R-modules

0 �! b �! S
	�! HomS .M; M /; .x 7! 	.x/ WD xIdM /

and an epimorphism of graded S -modules

� W
�M

iD1

S.�ai / � M; beg.M / D a1 � a2 � � � � � a� D gendeg.M /:

In particular we obtain an induced monomorphism of graded S -modules

0 �! HomS .M; M /
gWDHomS .�;M/����������! HomS

 
�M

iD1

S.�ai /; M

!

D
�M

iD1

M.ai/ DW V:

So we get a composition map

S
f WDgı	�����! V; with Im.f / D Im.	/ Š S=b:

Now, observe that S is a Cohen–Macaulay ring of dimension r with gendeg.S/ D
reg.S/ D 0 and with multiplicity �. Moreover the S -module V is generated by �2

homogeneous elements. Furthermore, we have

beg.V / D beg.M / � a� D beg.M / � gendeg.M / D ˛

and
reg.V / D reg.M / � a1 D reg.M / � beg.M / � 0 D gendeg.S/:

In particular we have minfbeg.V /; reg.V /�reg.S/g D beg.V / D ˛ and reg.V / � 0.
So, if we apply Lemma 4 to the above homomorphism f W S �! V and observe
that Im.f / Š S=b, we obtain indeed

reg.S=b/ � �
reg.M / � beg.M /C1C�.�2C1/ � beg.M /Cgendeg.M /

�2r�1 C˛

D �
ˇ C �.�2 C 1/ C 1

�2r�1 C ˛: ut
As an immediate consequence we now get the an upper bound for the regularity

of the annihilator of M in terms of the two invariants � WD reg.R/; � WD
dimR0=m0 .R1=m0R1/ of the ring R and the three invariants reg.M /; beg.M /; � WD
dimR0=m0 .M=.m0R C R1R/M / of the module M of Theorem 10.

Corollary 11. Let R, M , r , �, �, and � be as in Theorem 10. Then it holds

reg.AnnR.M // � maxf�;
�
2
�
reg.M / � beg.M /

�C �.�2 C 1/ C 1
�2r�1 C 1g:
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Proof. This is clear by Theorem 10 as gendeg.M / � reg.M / and ˛ D beg.M / �
gendeg.M / � 0. ut

This bound becomes particularly simple if R is a polynomial ring.

Corollary 12. Let r 2 N and assume that R D R0Œx1; x2; : : : ; xr � is a standard
graded polynomial ring. If M ¤ 0 is generated by � homogeneous elements, then
we have

reg.AnnR.M // � �
2
�
reg.M / � beg.M /

�C length.R0/.�
2 C 1/ C 1

�2r�1 C 1:

Proof. This follows immediately from Corollary 11 as reg.R/ D 0. ut
The following special case covers the situation of primary interest.

Corollary 13. Let R D KŒx1; x2; : : : ; xr � be a polynomial ring over the field K . If
M ¤ 0 is a graded R-module which is generated by � homogeneous elements of
degree 0, then we have

reg.AnnR.M // � �
2reg.M / C �2 C 2

�2r�1 C 1:

To answer affirmatively our original question on characteristic varieties of D-
modules, we can use the following result, in which the function Fp;a is as in
Proposition 5.

Theorem 14. Let r , �, and � be as in Theorem 10, let � 2 N, and let a WD
.a1; a2; : : : ; a�/ 2 Z

� with a1 � a2 � � � � � a�. If M D P�
iD1 Rmi is a finitely

generated graded R-module with mi 2 Mai for i D 1; 2; : : : :�, then we have

reg.AnnR.M // � maxf�;
�
FpM ;a.�; r; p.M // C a� � 2a1 C �.�2 C 1/ C 1

�2r�1

C a1 � a� C 1g:
In particular, we have

reg.AnnR.M // � maxf�;
�
2
�
FpM ;a.�; r; p.M // � a1

�C �.�2 C 1/ C 1
�2r�1 C 1g:

Proof. This is immediate by Theorem 10, respectively, Corollary 11 and Proposi-
tion 5 as beg.M / D a1 and gendeg.M / D a�. ut

Now, we have reached the goal set out in Remark 9 by the special case of the
previous bound in which 0 2 Z

�.

Corollary 15. Let K be a field and R be a Noetherian homogeneous K-algebra
set r WD dimK.R1/ and � WD reg.R/. If M ¤ 0 is a graded R-module which is
generated by � homogeneous elements of degree 0, then we have

reg.AnnR.M // � maxf�;
�
2FpM ;0.1; r; p.M // C �2 C 2

�2r�1 C 1g:

Finally, we also recover the bound we suggested to look for in Remark 9.
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Corollary 16. Let R D KŒx1; x2; : : : ; xr � be a polynomial ring over the field K and
let M ¤ 0 be a graded R-module which is generated by � homogeneous elements
of degree 0. Then the regularity of the annihilator of M is bounded in terms of
the number r of indeterminates, the Hilbert polynomial pM of M , the postulation
number p.M / of M , and the number � of generators of M . More precisely, we
have

reg.AnnR.M // � �
2FpM ;0.1; r; p.M // C �2 C 2/

�2r�1 C 1:

4 A Regularity Bound for Ext-Modules

The aim of this section is to give an upper bound on the Castelnuovo–Mumford
regularity of the modules ExtiR.M; N / in terms of the number r of linear forms,
which are needed to generate R as an R0-algebra, and the regularities and initial
degrees of the modules M and N . We begin with the case i D 0 and give a bound
on the regularity of the graded R-module HomR.M; N /.

Lemma 1. Let r WD dimR0=m0 .R1=m0R1/ > 0, � WD length.R0/ and let

0 �! U
f�! V

g�! W

be an exact sequence of finitely generated graded R-modules. If W ¤ 0 is generated
by � homogeneous elements, then we have

reg.U / � maxfreg.V /;
�

maxfgendeg.V /; reg.W / C 1g C �.� C 1/ � beg.W /
�2r�1

C beg.W / C 1g

Proof. The short exact sequence of graded R-modules

0 �! U
f�! V �! Im.g/ �! 0

gives reg.U / � maxfreg.V /; reg.Im.g// C 1g. Hence, it suffices to show that

reg.Im.g// � �
maxfgendeg.V /; reg.W /C1gC�.�C1/�beg.W /

�2r�1 Cbeg.W /:

According to our definition of the number r there is a surjective homomorphism
of homogeneous R0-algebras � W S D R0Œx1; x2; : : : ; xr � � R; in which S

is a standard graded polynomial ring over R0. None of the numerical invariants
occurring in the requested inequality are affected if we consider U , V and W

as graded S -modules by means of �. Thus, we may replace R by S and hence
assume that R D R0Œx1; x2; : : : ; xr � is a polynomial ring. In particular R then is
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Cohen–Macaulay of dimension r of multiplicity � and satisfies reg.R/ D 0.
Now, we get the requested inequality if we apply Lemma 4 to the homomorphism

V
g�! W . ut

Lemma 2. Let r WD dimR0=m0 .R1=m0R1/ > 0, � WD length.R0/; let M and N

be two non-zero finitely generated graded R-modules and suppose that there is an
exact sequence of graded R-modules


M

j D1

R.�bj / �!
�M

iD1

R.�ai / �! M �! 0

with integers b1 � b2 � � � � � b
 and a1 � a2 � � � � � a�. If N ¤ 0 is generated
by � homogeneous elements,

ˇ WD maxfgendeg.N / � a1; reg.N / � b1 C 1g; and � WD beg.N / � b
 ;

then we have

reg.HomR.M; N // � maxfreg.N / � a1;
�
ˇ C �.
� C 1/ � �

�2r�1 C � C 1g:

Proof. Apply Lemma 1 to the induced exact sequence

0 �! HomR.M; N / �!
�M

iD1

N.ai/ �!

M

j D1

N.bj /

and observe that

gendeg

 
�M

iD1

N.ai /

!

D gendeg.N / � a1; reg

 
�M

iC1

N.ai /

!

D reg.N / � a1;

beg

0

@

M

j D1

N.bj /

1

A D beg.N / � b
 ; reg

0

@

M

j D1

N.bj /

1

A D reg.N / � b1

and that
L


j D1 N.bj / is generated by 
� homogeneous elements. ut
Proposition 3. Let r WD dimR0=m0 .R1=m0R1/ > 0, � D length.R0/. If M and N

are two nonzero graded R-modules which are generated, respectively, by � and �

homogeneous elements, then we have

reg.HomR.M; N // � �
w.M / C w.N / � 1 C ��w.M/Cr

r�1

�
��� C 1

�
�
�2r�1

C beg.N / � beg.M /:
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Proof. Again, there is a surjective homomorphism � W S D R0Œx1; x2; : : : ; xr � �
R of homogeneous R0-algebras. Observe in particular that the graded S -modules
HomS .M; N / and HomR.M; N / are isomorphic. So, the numerical invariants
occurring in our statement are not affected if we consider M and N as graded S -
modules by means of �. Hence, we may once more assume that R D R0Œx1; x2; : : : ;

xr � is a polynomial ring. Now, let


M

j D1

R.�bj / �!
�M

iD1

R.�ai / �! M �! 0

with b1 � b2 � � � � � b
 and a1 � a2 � � � � � a� be a minimal free presentation of
M . Then, as

gendeg.N / � reg.N /; and reg.M / C 1 � b
 � b1 � a1 C 1 D beg.M / C 1;

we get the following inequalities:

ˇ WD maxfgendeg.N / � a1; reg.N / � b1 C 1g � reg.N / � beg.M /;

� WD beg.N / � b
 � beg.N / � beg.M / � 1;

�� � reg.M / � beg.N / C 1:

Moreover, by the minimality of our presentation, we have


 � lengthR0

 
�

�M

iD1

R.�ai /
�

�reg.M/C1

!

� ��
�w.M/Cr

r�1

�
:

Thus, we may conclude by Lemma 2. ut
Now, we are ready to prove the main result of this section.

Theorem 4. Let r WD dimR0=m0 .R1=m0R1/ > 0, let � WD length.R0/, � D
reg.R/, and let M and N be two nonzero graded R-modules which are generated,
respectively, by � and � homogeneous elements. Then, for each i 2 N0, we have

reg.ExtiR.M; N // �
�
w.M / C w.N / C i� � 1 C �

�iC1��
�w.M/CrCi�

r�1

� iY

j D1

�w.M/Cj�Cr
r�1

�C 1
�
�
�2r�1

C beg.N / � beg.M / � i:

Proof. The case i D 0 is clear by Proposition 3. To treat the cases with i > 0 we
choose a short exact sequence of graded R-modules
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0 �! M 0 �!
�M

kD1

R.�ak/
��! M �! 0; beg.M / D a1 � a2 � � � � � a�

D gendeg.M /;

in which the epimorphism � is minimal. If M 0 D 0, the module M is free, and hence
our claim is obvious. So, let M 0 ¤ 0 and consider the induced exact sequence of
graded R-modules

0 �! HomR.M; N / �!
�M

kD1

N.ak/
f�! HomR.M 0; N / �! Ext1R.M; N / �! 0

and the induced isomorphisms of graded R-modules

ExtiR.M; N / Š Exti�1
R .M 0; N / for all i > 1:

We first aim to prove our statement in the case i D 1. From the above four term
exact sequence, we get the estimates

reg.Ext1R.M; N // � maxfreg.Im.f // � 1; reg.HomR.M 0; N //g

and

reg.Im.f // � maxfreg.HomR.M; N // � 1; reg.

�M

kD1

N.ak//g:

Our next aim is to make explicit the second estimate. According to Proposition 3,
we have

reg.HomR.M; N // � 1

� �
w.M / C w.N / � 1 C ��w.M/Cr

r�1

�
��� C 1

��2r�1 C Cbeg.N / � beg.M / � 1:

Moreover, the term reg
�L�

kD1 N.ak/
� D reg.N / � a1 D reg.N / � beg.M / D

w.N / C beg.N / � beg.M / � w.N / C w.M / C beg.N / � beg.M / � 1 cannot
exceed the right-hand side of the above inequality, so that we get the following
explicit estimate:

reg.Im.f // � �
w.M /Cw.N /�1C��w.M/Cr

r�1

�
���C1

�
�
�2r�1 Cbeg.N /�beg.M /�1:

Our next aim is to bound the invariant reg.HomR.M 0; N //. By our initial minimal
short exact sequence, we have reg.M 0/ � reg.M /C�C1 and beg.M 0/ � beg.M /C
1, so that we obtain

w.M 0/ � w.M / C �; �beg.M 0/ � �beg.M / � 1:
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Let �0 denote the minimal number of homogeneous generators of M 0. As gendeg.M 0/
� reg.M 0/ � reg.M / C � C 1, we have

�0 � length
�
.

�M

kD1

R.�ak//�reg.M/C�C1

� � �w.M/C�Cr

r�1

�
��:

Using these estimates and applying Proposition 3, we obtain

reg.HomR.M 0; N //

� �
w.M / C � C w.N / C � � 1 C ��w.M/C�Cr

r�1

�2
�2�� C 1

�
�
�2r�1

C beg.N / � beg.M / � 1:

Observe, that this term exceeds our previous upper bound for reg.Im.f //. So on use
of our very first inequality, we end up with

reg.Ext1R.M; N //

� �
w.M / C w.N / C � � 1 C ��w.M/C�Cr

r�1

�2
�2�� C 1

�
�
�2r�1

C beg.N / � beg.M / � 1:

This proves our claim if i D 1.
For i > 1 we now may proceed by induction on use of the previously observed

isomorphisms of Ext-modules and keeping in mind the above inequalities w.M 0/ �
w.M / C �, �beg.M 0/ � �beg.M / � 1, and �0 � �w.M/C�Cr

r�1

�
��. ut

In case R is a polynomial ring, this bound becomes simpler in appearance.

Corollary 5. Assume that M and N are two non-zero graded modules generated
by � respectively, � homogeneous elements over the polynomial ring R D
R0Œx1; x2; : : : ; xr � with � WD length.R0/. Then, for each i 2 N0, we have

reg.ExtiR.M; N // �
�
w.M / C w.N / � 1 C ��w.M/Cr

r�1

�iC1
�iC1�� C 1

�
�
�2r�1 C beg.N / � beg.M / � i:

Proof. This is clear by Theorem 4 as reg.R/ D 0. ut
In [17], Hoa and Hyry did give upper bounds for the Castelnuovo–Mumford

regularity of deficiency modules of graded ideals in polynomial rings over a field.
In [9], Brodmann, Jahangiri, and Linh took up this idea and gave upper bounds for
the Castelnuovo–Mumford regularity of deficiency modules of finitely generated
graded modules over a standard graded Noetherian ring R with local Artinian base
ring .R0;m0/. We aim to take up this theme again.
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Remark and Notation 6. We set r WD dimR0=m0 .R1=m0R1/. Then there is a
surjective homomorphism of graded R0-algebras R0 WD R0

0Œx1; x2; : : : ; xr � � R

where .R0
0;m

0
0/ is an Artinian Gorenstein ring. Let M be a finitely generated

graded R-module, which we also consider as R0-module by means of the above
homomorphism. Then, for each i 2 N0, the i th deficiency module of M is given by

Ki.M / D Extr�i
R0 .M; R0.�r//:

We write � WD length.R0/ and �0 for the minimum length of all local Artinian
Gorenstein rings R0

0 such that R0 is a homomorphic image of R0
0. We may write

R0 as a homomorphic image of a complete regular local ring S0 of dimension e WD
edim.R0/ D lengthR0

.m=m2/. Let a1; a2; : : : ; ae be a regular system of parameters
of S0. Then .aj /� is mapped to 0 under the canonical map S0 � R0 for all j 2
f1; 2; : : : ; eg. Therefore R0 is a homomorphic image of the Artinian Gorenstein ring

R0
0 WD S0=h.a1/

�; .a2/�; : : : ; .ae/
�i

But this means that we have

� � �0 � 1 C �edim.R0/:

Now, as an application of Theorem 4 and with the above notations, we get
the following bounding result on the regularity of deficiency modules. Observe
in particular that the estimates given in statements (a) and (c) allow to bound the
regularity of the i th deficiency module of a finitely generated graded R-module M

only in terms of i , the initial degree of M , the regularity of M and invariants of R.

Corollary 7. Let r and � be as in Theorem 4 and let M be a nonzero graded R-
module which is generated by � homogeneous elements. Let t WD reg2.M /, let
pM .n/ denote the Hilbert polynomial of M , and let �0 be defined as in Remark and
Notation 6. Then the following statements hold:

(a) reg.K0.M // � �beg.M /:

(b) reg.K1.M // � maxf0; 1 C t � beg.M /g C .d � 1/pM .t/ � t .
(c) For all i 2 N we have

reg.Ki.M // � i � beg.M /C

Œw.M /C.r � i � 1/� � 1C.�0/iC1�
�w.M/CrC.r�i /�

r�1

� r�iY

j D1

.
�w.M/Cj�Cr

r�1

�C1/�2
r�1

:

Proof. (a) and (b) were proved in [9, Theorem 4.2]. (c) is implied directly by
Theorem 4 as in the notations of Remark and Notation 6 we may replace R by
R0 WD R0

0Œx1; x2; : : : ; xr �, where R0
0 is an Artinian Gorenstein ring of length �0. ut
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In case R is a polynomial ring over a field, statement (c) of the above result takes
a particularly simple form.

Corollary 8. Let K be a field and let M be a finitely generated graded module over
the polynomial ring KŒx1; x2 : : : ; xr �. Let i 2 N. Then it holds

reg.Ki.M // � i � beg.M / C Œw.M / � 1 C �
�w.M/Cr

r�1

�r�iC1 C 1/�2
r�1

:

Proof. Observe that in our situation we have � D 0 and �0 D 1. ut

5 Regularity Bounds for Tor-Modules

For two finitely generated graded R-modules M and N , the modules TorR
i .M; N /

are finitely generated and carry a natural grading for all i 2 N0. The aim of this
section is to give an upper bound for the Castelnuovo–Mumford regularity of the
modules TorR

i .M; N / in terms of the same bounding invariants as in Sect. 4. As in
Sect. 4 we begin with the case i D 0 and give a regularity bound for the graded
R-module M ˝R N .

Lemma 1. Let r WD dimR0=m0 .R1=m0R1/ > 0, � D length.R0/ and let

U
f�! V

g�! W �! 0

be an exact sequence of finitely generated graded R-modules. If V ¤ 0 is generated
by � homogeneous elements, then we have

reg.W / � maxfreg.V /;
�

maxfgendeg.U /; reg.V / C 1g C �.� C 1/ � beg.V /
�2r�1

C beg.V / � 1g:

Proof. In view of the short exact sequence of graded R-modules

0 �! Im.f / �! V
g�! W �! 0;

we have reg.W / � maxfreg1.Im.f // � 1; reg.V /g. So it suffices to show that

reg.Im.f // � �
maxfgendeg.U /; reg.V /C1gC�.�C1/�beg.V /

�2r�1 Cbeg.V /:

As in the proof of Lemma 1, we may assume that R D R0Œx1; x2; : : : ; xr � is a
polynomial ring, so that R is CM of dimension r of multiplicity � and satisfies
reg.R/ D 0. Now, we get the requested inequality if we apply once more Lemma 4

to the homomorphism U
f�! V . ut
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Lemma 2. Let r WD dimR0=m0 .R1=m0R1/ > 0, � WD length.R0/, let M and N

be two non-zero finitely generated graded R-modules, and suppose that there is an
exact sequence of graded R-modules


M

j D1

R.�bj / �!
�M

iD1

R.�ai / �! M �! 0

with integers b1 � b2 � � � � � b
 and a1 � a2 � � � � � a�. Suppose in addition that
N is generated by � homogeneous elements and set

ı WD maxfgendeg.N / C b
 ; reg.N / C a� C 1g; " WD beg.N / C a1:

Then we have

reg.M ˝R N / � maxfreg.N / C a�;
�
ı C �.�� C 1/ � "

�2r�1 C " � 1g:

Proof. Apply Lemma 1 to the induced exact sequence


M

j D1

N.�bj / �!
�M

iD1

N.�ai/ �! M ˝R N �! 0

and observe that

gendeg
� 
M

j D1

N.�bj /
� D gendeg.N / C b
 ; reg

�
�M

iD1

N.�ai /
� D reg.N / C a�;

beg
�

�M

iD1

N.�ai/
� D beg.N / C a1

and that
L�

iD1 N.�ai / is generated by �� homogeneous elements. This gives the
requested bound. ut
Proposition 3. Let r WD dimR0=m0 .R1=m0R1/ > 0, let � D length.R0/. If M and
N are two non-zero graded R-modules which are generated respectively by � and
� homogeneous elements, then we have

reg.M ˝R N / � �
w.M / C w.N / C �.�� C 1/ � 1

�2r�1 C beg.M / C beg.N / � 1:

Proof. Again, there is a surjective homomorphism � W S D R0Œx1; x2; : : : ; xr � �
R of homogeneous R0-algebras and the graded S -modules M ˝S N and M ˝R N

are isomorphic. So none of the numerical invariants which occur in our statement is
affected if we consider M and N as graded S -modules by means of �. Therefore
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we may again assume that R D R0Œx1; x2; : : : ; xr � is a polynomial ring and chose a
minimal graded free presentation


M

j D1

R.�bj / �!
�M

iD1

R.�ai / �! M �! 0

of M with b1 � b2 � � � � � b
 and a1 � a2 � � � � a�. Then, as

a1 D beg.M /; a� � reg.M /; gendeg.N / � reg.N /; b
 � reg.M / C 1

we get the relations

reg.N / C a� � reg.M / C reg.N /;

ı WD maxfgendeg.N / C b
 ; reg.N / C a� C 1g � reg.M / C reg.N / C 1;

" WD beg.N / C a1 D beg.M / C beg.N /:

Now, it follows by Lemma 2 that

reg.M ˝R N / �

� maxfreg.M /Creg.N /;
�
w.M /Cw.N /C�.��C1/�1

�2r�1Cbeg.M /Cbeg.N /�1g:
As

reg.M / C reg.N / D Œw.M / C w.N / � 1� C beg.M / C beg.N / � 1 �

� �
w.M / C w.N / C �.�� C 1/ � 1

�2r�1 C beg.M / C beg.N / � 1;

we finally get our claim. ut
As an application we get the following estimate for the regularity of Tor-modules,

which is not symmetric in the two occurring modules. So, to get out the best of it,
one should apply the result after eventually exchanging M and N such that w.M / �
w.N /. Observe also that the case r D 1 is omitted in this result.

Theorem 4. Let r WD dimR0=m0 .R1=m0R1/ > 1, let � WD length.R0/, let � D
reg.R/ and let M and N be two non-zero finitely generated graded R modules
which are generated respectively by � and � homogeneous elements. Then, for all
i 2 N0 we have

reg.TorR
i .M; N // �

�
w.M / C w.N / C i� � 1 C �

�i ��

iY

j D1

�w.M/CrCj�
r�1

�C 1
�
�
�2r�1

C beg.N / C reg.M / C i�:
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Proof. We proceed by induction on i . The case i = 0 is clear by Proposition 3. We
first treat the case i D 1. Consider a graded short exact sequence

0 �! M 0 �!
�M

iD1

R.�ai /
��! M �! 0:

As in the proof of Theorem 4 we see that

reg.M 0/ � reg.M / C � C 1; w.M 0/ � w.M / C �

and that the minimal number �0 of homogeneous generators of M 0 satisfies

�0 � �w.M/C�Cr
r�1

�
��:

By Proposition 3 and as beg.M 0/ � reg.M 0/, we thus have

reg.M 0 ˝R N / �
�
w.M / C w.N / C � C �.

�w.M/C�Cr
r�1

�
��� C 1/ � 1

�2r�1 C reg.M / C beg.N / C �:

Next, look at the induced exact sequence

0 �! TorR
1 .M; N / �! M 0 ˝R N

f�!
�M

iD1

N.�ai/ �! M ˝R N �! 0

and the two resulting short exact sequences

0 �! Im.f / �!
�M

iD1

N.�ai / �! M ˝R N �! 0;

0 �! TorR
1 .M; N / �! M 0 ˝R N �! Im.f / �! 0:

If follows (see [7] Exercise 15.2.15) that

reg.Im.f // � maxfreg.

�M

iD1

N.�ai //; reg.M ˝R N / C 1g;

reg.TorR
1 .M; N // � maxfreg.M 0 ˝R N /; reg.Im.f // C 1g:

But reg.
L�

iD1 N.�ai// C 1 D gendeg.M / C reg.N / C 1 � reg.M / C beg.N / C
w.N / as well as reg.M ˝R N /C2 cannot exceed the previously given upper bound
for reg.M 0 ˝R N / (see also Proposition 3 and observe that r > 1). Therefore we
end up with the estimate

reg.TorR
1 .M; N // �

�
w.M / C w.N / C � C �.

�w.M/C�Cr
r�1

�
��� C 1/ � 1

�2r�1 C reg.M / C beg.N / C �:
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This proves the case i D 1. Now, assume that i > 1. Then the isomorphism of
graded R-modules

TorR
i .M; N / Š TorR

i�1.M
0; N /

allow to proceed by induction as in the proof of Theorem 4. ut
In case R is a polynomial ring, the upper bound of the previous theorem takes a

simpler form. It follows because in this case � D 0.

Corollary 5. Let r > 1, let R0 be a local Artinian ring of length �, and let
M and N be two non-zero graded modules generated, respectively, by � and �
homogeneous elements over the polynomial ring R D R0Œx1; : : : ; xr �. Then we have

reg.TorRi .M; N //��w.M/ C w.N / � 1
�
�i ��

�w.M/Cr
r�1

�i C 1
�
�
�2r�1Cbeg.N /Creg.M/:

Remark 6. As already observed above, the case r D 1 is not included in the
previous two bounding results. But a look at the proof of Theorem 4 shows that
for r D 1 we have the estimate

reg.TorR
i .M; N // � w.M / C reg.M / C reg.N / C 2i� C .�i �� C 1/� C 1:

Up to now, the bounding results of this section where of a priori type, for
example, valid without any further conditions on the Noetherian homogeneous ring
R and the finitely generated graded R-modules M and N . We now follow the
direction pointed out by earlier work of Caviglia and Eisenbud–Huneke–Ulrich and
give a bound for the regularity of the modules TorR

k .M; N / under the additional
condition that one of the modules M or N has finite projective dimension and
that the modules TorR

i .M; N / are of dimension � 1 for all i 2 N. We end up
by generalizing the corresponding results of the mentioned authors (proved by them
in case R is a polynomial ring over a field) to the case of homogeneous Noetherian
rings R with Artinian base ring R0 such that the singular locus of Proj.R/ is a finite
set (see Theorem 10).

Lemma 7. Let � D reg.R/. If M and N are finitely generated graded R-modules
such that p WD pdimR.M / < 1 and dimR.TorR

i .M; N // � 1 for all i > 0, then it
holds

reg.M ˝R N / � reg.M / C reg.N / C p�:

Proof. We proceed by induction on p. If p D 0, the graded R-module M is free,
and our claim is obvious. So, let p > 0 and consider a graded short exact sequence

0 �! M 0 �!
�M

iD1

R.�ai /
��! M �! 0
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in which the homomorphism � is minimal. Look at the induced exact sequence

0 �! TorR
1 .M; N / �! M 0 ˝R N

f�!
�M

iD1

N.�ai/ �! M ˝R N �! 0

and the two resulting short exact sequences

0 �! Im.f / �!
�M

iD1

N.�ai / �! M ˝R N �! 0

0 �! TorR
1 .M; N / �! M 0 ˝R N �! Im.f / �! 0:

The first of these two sequences implies

reg.M ˝R N / � maxfreg1.Im.f // � 1; reg.

�M

iD1

N.�ai //g;

whereas the second of these sequences implies

reg1.Im.f // � maxfreg2.TorR
1 .M; N // � 1; reg.M 0 ˝R N /g:

As dimR.TorR
1 .M; N // � 1; we have reg2.TorR

1 .M; N // D �1. Hence, we
obtain

reg1.Im.f // � reg.M 0 ˝R N //

Therefore, we deduce that

reg.M ˝R N / � maxfreg.M 0 ˝R N / � 1; reg.

�M

iD1

N.�ai //g:

As pdimR.M 0/ D p � 1 and TorR
j .M 0; N / Š TorR

j C1.M; N / for all j 2 N, the
inductive hypothesis implies that reg.M 0 ˝R N / � reg.M 0/ C reg.N / C .p � 1/�.
Our initial graded short exact sequence yields that reg.M 0/ � reg.M /Creg.R/C1.
Moreover, reg.

L�
iD1 N.�ai // D a� C reg.N / � reg.M / C reg.N /. Therefore

reg.M ˝R N / � maxfreg.M 0 ˝R N / � 1; reg.

�M

iD1

N.�ai//g

� maxfreg.M 0/ C reg.N / C .p � 1/� � 1; reg.

�M

iD1

N.�ai //g

� reg.M / C � C 1 C reg.N / C .p � 1/� � 1

D reg.M / C reg.N / C p�:

ut
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Proposition 8. Let � D reg.R/. If M and N are finitely generated graded
R-modules such that p WD pdimR.M / < 1 and dimR.TorR

i .M; N // � 1 for
all i > 0. Then it holds

reg.TorR
k .M; N // � reg.M / C reg.N / C .k C 1/p� C k for all k 2 N0:

Proof. The case k D 0 is clear by Lemma 7. To treat the cases with k > 0, we
choose a short exact sequence of graded R-modules

0 �! M 0 �! ˚�
iD1R.�ai /

��! M �! 0

in which � is minimal, such that beg.M / D a1 � a2 � � � � � a� D gendeg.M /:

We proceed by induction on p. If p D 0 the module M is free and hence our
claim is obvious. So, let p > 0 and consider the induced exact sequence of graded
R-modules

0 �! TorR
1 .M; N / �! M 0 ˝R N

f�! ˚�
iD1N.�ai/ �! M ˝R N �! 0

and the induced isomorphisms of graded R-modules

TorR
k .M; N / Š TorR

k�1.M
0; N / for k > 1:

As pdimR.M 0/ D p � 1, these isomorphisms and the inductive hypotheses imply
that

reg.TorR
k .M; N; // � reg.M 0/ C reg.N / C k.p � 1/� C k � 1 for all k > 1:

Our initial short exact sequence yields that reg.M 0/ � reg.M / C � C 1. From this
our claim follows for all k > 1. It thus remains to treat the case k D 1. The above
exact sequence, induces two short exact sequences:

(1) 0 �! Im.f / �! L�
iD1 N.�ai/ �! M ˝R N �! 0

(2) 0 �! TorR
1 .M; N / �! M 0 ˝R N �! Im.f / �! 0

As reg.
L�

iD1 N.�ai // D reg.N / C � � reg.M / C reg.N /, sequence (1) implies
that

end.H 0
RC

.Im.f // � reg.M / C reg.N /:

As pdimR.M 0/ D p � 1 and reg.M 0/ � reg.M / C � C 1, it follows by Lemma 7
that

reg.M 0 ˝R N / � reg.M / C reg.N / C p� C 1:

As dim.TorR
1 .M; N // � 1, sequence (2) yields an epimorphism of graded R-

modules H 1
RC

.M 0 ˝R N / � H 1
RC

.Im.f //. Therefore

end.H 1
RC

.Im.f // � reg.M 0 ˝R N / � 1 � reg.M / C reg.N / C p�:
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But now by sequence (2), we get

end.H 1
RC

.TorR
1 .M; N // � maxfend.H 0

RC
.Im.f ///; end.H 1

RC
.M 0 ˝R N //g �

� maxfreg.M / C reg.N /; reg.H 1.M 0 ˝R N // � 1g � reg.M / C reg.N / C p�:

Another use of sequence (2) yields that

end.H 0
RC

.TorR
1 .M; N /// � reg.M 0 ˝R N / � reg.M / C reg.N / C p� C 1:

As dimR.TorR
1 .M; N // � 1, it follows that

reg.TorR
1 .M; N // � reg.M / C reg.N / C p� C 1

and this proves our claim. ut
Lemma 9. Let i 2 N, d 2 N0 and assume that the local ring Rp is regular for
all graded primes p 	 R with dim.R=p/ > d . Let M and N be finitely generated
graded R-modules such that dimR.TorR

i .M; N // � d . Then it holds

dimR.TorR
j .M; N // � d for all j � i:

Proof. Let p 	 R be a graded prime with dim.R=p/ > d . As dimR.TorR
i .M; N // �

d , it follows

Tor
Rp

i .Mp; Np/ Š TorR
i .M; N /p D 0:

The regular local ring Rp contains the field R0=m0 and hence is unramified. So, by
Auslander’s Rigidity Theorem (see [1] Corollary 2.2), we have

TorR
j .M; N /p Š Tor

Rp

j .Mp; Np/ D 0 for all j � i:

Therefore p … SuppR.TorR
j .M; N // for all j � i and all graded primes p 	 R with

dim.R=p/ > d . As the R-modules TorR
j .M; N / are graded, our claim follows. ut

Theorem 10. Let � WD reg.R/ and assume that the local ring Rp is regular for
all graded primes p 	 R with dim.R=p/ � 2. Let M and N be finitely generated
graded R-modules such that p D pdimR.M / < 1 and dimR.TorR

1 .M; N // � 1.
Then it holds

reg.TorR
k .M; N // � reg.M / C reg.N / C .k C 1/p� C k for all k 2 N0:

Proof. If we apply Lemma 9 with dD1 and iD1, we obtain that dimR.TorR
i

.M; N // � 1 for all i > 0. Now, our claim follows by Proposition 8. ut
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Corollary 11. Let r > 0 and let R D KŒx1; x2; : : : ; xr � be a polynomial ring
over the field K . Let M and N be finitely generated graded R-modules such that
dimR.TorR

1 .M; N // � 1. Then it holds

reg.TorR
k .M; N // � reg.M / C reg.N / C k for all k 2 f0; 1; : : : ; rg:

Proof. This is clear from Theorem 10 as reg.R/ D 0 and R is a regular ring. ut
Remark 12. Corollary 11 has been proved by Eisenbud–Huneke–Ulrich (see[15]
Corollary 3.1). The special case with k D 0 has been proved by Caviglia [11].
The conclusion of Theorem 10 need not hold if dimR.TorR

1 .M; N // > 1, even in
the special case where R D KŒx1; x2; : : : ; xr � is a polynomial ring over the field K

and for k D 0. Indeed Caviglia has constructed in this situation an example with
dimR.TorR

1 .M; N // D 2 and reg.M ˝R N / > reg.M / C reg.N /.

Finally, we aim to conclude this section with slightly more geometric formula-
tions of Theorem 10 and Corollary 11. To do so, we write

Sing.X/ WD fx 2 X j OX;x is not regularg

for the singular locus of the Noetherian scheme X . If H is a coherent sheaf of OX -
modules, we write

Sing.H/ WD fx 2 X j Hx is not free over OX;xg

for the set of all points x 2 X at which the stalk Hx of H in x is not free.

Corollary 13. Let � WD reg.R/, and set X WD Proj.R/. Let M and N be finitely
generated graded R-modules such that p D pdimR.M / < 1. Let F WD fM and
G WD eN be the coherent sheaves of OX -modules induced, respectively, by M and
N . Assume that the sets Sing.X/ and Sing.F/ \ Sing.G/ are finite. Then it holds

reg.TorR
k .M; N // � reg.M / C reg.N / C .k C 1/p� C k for all k 2 N0:

Proof. The finiteness of the singular locus of X implies that Rp is a regular
local ring for all graded primes p 	 R with dim.R=p/ � 2. Our hypothesis on
the stalks of F and G imply that at least one of the two finitely generated Rp-
modules Mp or Np is free for each graded prime p 	 R with dim.R=p/ � 2.

Therefore TorR
1 .M; N /p Š Tor

Rp

1 .Mp; Np/ D 0 for all such p—and hence
dimR.TorR

1 .M; N // � 1. Now, we get our claim by Theorem 10. ut
To formulate Corollary 11 in geometric terms, we recall a few notions from sheaf

cohomology.

Reminder 14. (See Chap. 20 of [7] for example.) Let X WD Proj.R/ and let H be a
coherent sheaf of OX -modules. Then, the (Castelnuovo–Mumford) regularity of H
is defined as
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reg.H/ WD inffr 2 Z j H i .X; H.r � i// D 0 for all i > 0g;

where H i .X; H.n// denotes the i th sheaf cohomology group of (X with coefficients
in) the nth twist H.n/ WD H ˝OX O.n/ of H.
The total group of sections of H is defined by

��.H/ WD
M

n2Z
H 0.X; H.n//

and carries a natural structure of graded R-module. Moreover, the sheaf A��.H/ of
OX -modules induced by the graded R-module ��.H/ coincides with H. Finally,
the R-module ��.H/ is finitely generated and only if the set AssX .H/ contains no
closed points of X—and if this is the case, we have

reg.H/ D reg.��.H//:

Corollary 15. Let r 2 N, let K be a field, and let F and G be two coherent sheaves
of OP

r
K

-modules such that the set AssPr
K

.F/ [ AssPr
K

.G/ contains no closed points
and the set Sing.F/ \ Sing.G/ is finite. Then it holds

reg
�
Tor

��.O
P

r
K

/

k .��.F/; ��.G/
� � reg.F/Creg.G/Ck for all k 2 f0; 1; : : : ; r C1g:

Proof. Consider the polynomial ring R WD KŒx0; x1; : : : ; xr � and write P
r
K D

Proj.R/. As r > 0 we have ��.OP
r
K

/ D R. According to Reminder 14, the
graded R-modules ��.F/ and ��.G/ are finitely generated and induce, respectively,
the coherent sheaves F and G. Now, we get our claim by Corollary 13 and
Reminder 14. ut
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Selections from the Letter-Place Panoply

David A. Buchsbaum

This paper is dedicated to David Eisenbud, mentee, mentor and,
above all, dear friend.

1 Introduction

There is a fairly extensive literature on letter-place algebras, but mostly for
the edification of those working in algebraic combinatorics (see, for instance,
[15, 16, 18, 20]). I don’t think that letter-place algebras have had much play yet
in commutative and homological algebra, so I thought I’d talk about them here and
perhaps arouse a bit of interest in that subject.

I was introduced to the letter-place notion by Gian–Carlo Rota, with whom
I had the pleasure of collaborating for almost a decade. He attributed it to a
physicist, I believe to Feynman. The fact that letter-place techniques, including place
polarizations, could simplify a good deal of the work Akin and I had been doing
earlier on resolving Weyl modules [1, 2], appealed to both of us, and we decided to
use them to push ahead to find the projective resolutions of those representations.
Much of this is spelled out in great detail in [7], and in a fairly long article written
with Rota (posthumously) [13], we focused on the resolutions themselves.

In Sect. 2, we will see some examples to show how representation theory first
reared its head for Eisenbud and me in our joint work on generalized Koszul
complexes [8, 10]. From there we discuss Lascoux’s use of classical representation
theory to describe the terms of the resolutions of determinantal ideals and of Schur
modules [21]. This led to the development of characteristic-free representation
theory of the general linear group, to the general definition of Schur and Weyl
modules (which are in a precise sense dual to each other; this will be explained
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in Sect. 5.8), and an attempt by Akin, Weyman, and myself to replicate the Lascoux
results for determinantal ideals in characteristic-free form [4,5]. An interesting early
development along those lines was the discovery of the role Z-forms play in these
results, and this led Akin and me to study the resolutions of Weyl modules in a
serious systematic way [2].

In Sect. 3, we will give a precise definition of Schur and Weyl modules, so that
the terms used above will make sense; these are, in fact, the major objects of study
in the rest of this article.

In Sect. 4 we will consider resolutions of two-rowed Weyl modules associated
to skew-shapes, and see the letter-place techniques in play. In particular, we’ll
see how use of letter-place enables us to define a splitting homotopy for these
resolutions [11].

In Sect. 5, we’ll take the bull by the horns and give the general definition of
letter-place algebras, indicate the proof of the basis theorem for them, and discuss
the “straight basis” theorem for Weyl modules (based on Taylor’s work [23]). Limits
of space and typography will make it impossible to describe here in detail the terms
of the resolutions of Weyl modules in general. However, the book [7], has all of that
spelled out. Space constraints also constrain us to omit all detailed proofs of basis
theorems although an indication of the proof will be given where possible. However,
in Sect. 6 we give outlines of proofs of some of the more complex results.

2 Some Background

Many years ago, a family of complexes was introduced (see [8]) which were
generalizations of the usual Koszul complex. They were introduced and studied
for a number of reasons: we wanted to generalize the usual Koszul complex for
purposes of grade sensitivity and generalized multiplicity [8]; we wanted to apply
them to the Grothendieck Lifting Problem [9]; we wanted to apply them to the
problem of resolving the ideals generated by the minors of a generic matrix, that is,
determinantal ideals [4].

Further work with these complexes led to a “trimming down” of the terms, and
this introduced certain representations, called “hooks”, into the picture.

From this hint of representation theory arising in resolutions, we move to
Lascoux’s use of classical representation theory to describe the terms of resolutions
of determinantal ideals. From there, we’re led to the development of the classical
theory in a characteristic-free context, and to the emulation of the Lascoux
resolutions in that context. Problems then arose with certain integral representations,
called Z-forms, whose general study led to the problem of resolving fairly arbitrary
Weyl and Schur modules.
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2.1 Generalized Koszul Complexes

The following family of complexes was introduced in [8].
Let F D Rm and G D Rn (m � n), and take a map f W F ! G. For each integer

k; with 1 � k � n; we associate a complex related to the map ƒkf W ƒkF ! ƒkG

(we’ll denote it by C.kI f /) as follows:

0 ! C k
m�nC1 ! � � � ! C k

q ! � � � !
X

si �1

ƒn�kCs0G� ˝ ƒs1G� ˝ ƒnCjsjF !
X

s�1

ƒn�kCsG� ˝ ƒnCsF ! ƒkF ! ƒkG;

where

C k
q D

X

si �1

ƒn�kCs0G� ˝ ƒs1 G� ˝ � � � ˝ ƒsq�2 G� ˝ ƒnCjsjF; q � 2;

jsj D P
si ; and the maps (except for ƒkf W ƒkF ! ƒkG/ are the bar complex

maps associated to the action of the algebra ƒG� on ƒF .
At about the same time these complexes were defined, another—and much

more efficient—complex was developed by Eagon and Northcott [17] which was
associated to the map ƒnf: This raised the following question: how is this complex
related to C.nI f /?

A quick look at the map

X

s�1

ƒn�kCsG� ˝ ƒnCsF ! ƒkF

tells us that its image is the same as that of the map restricted to just the one
summand:

ƒn�kC1G� ˝ ƒnC1F ! ƒkF:

The reason for throwing in all the extra summands is that the bar construction
involves multiplication in the algebra ƒG�, and the extra terms are there to “catch”
terms as they come flying in from

X

si �1

ƒn�kCs0G� ˝ ƒs1G� ˝ ƒnCjsjF:

In short, if we could replace all the summands here by

Ker.ƒn�kC1G� ˝ ƒ1G� ˝ ƒnC2F ! ƒn�kC2G� ˝ ƒnC2F /;
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(call it, for the moment, K.1n�kC1;2/G
�) we could start slimming down our complex

so that it starts out looking like

K.1n�kC1;2/G
� ˝ ƒnC2F ! ƒn�kC1G� ˝ ƒnC1F ! ƒkF ! ƒkG:

2.2 Hooks

Here is where the first hint of representation theory appears, for the modules
K.1n�kC1;2/G

� are representations known as “hooks”. To make sense of all this, we’ll
take a short detour.

We’re all familiar with the classical family of Koszul-type complexes (one for
each q):

0 ! ƒqF ! S1˝ƒq�1F ! � � � ! Sq�l ˝ƒl F ! � � � ! Sq�1˝ƒ1F ! Sq ! 0

where F is a given free R-module, and Sj stands for the symmetric power, Sj F .
We’ll call this complex ƒq.F /.

If we take the “dual” of this complex, replacing the symmetric powers by divided
powers (and omitting the asterisk), we obtain the complex:

0 ! Dq ! Dq�1.F / ˝ ƒ1F ! � � � ! Dq�l ˝ ƒlF

! � � � ! D1 ˝ ƒq�1F ! ƒqF ! 0:

We’ll call this complex Dq.F /.
It’s important to notice that while the boundary map in ƒq.F / entails diagonal-

ization in the exterior algebra and multiplication in the symmetric algebra of F , the
boundary in Dq.F / is given by diagonalization in the divided power algebra and
multiplication in the exterior algebra of F . Also, except for q D 0, both complexes
are exact.

Now all the modules involved here are representations of GL.F /, the general
linear group of F (or, to be very concrete, the group of invertible n � n matrices
over R, where n is the rank of F ), and all the maps are equivariant. So the cycles
(which are the same as the boundaries) of these complexes are also representations
of GL.F /.

Definition 1. We define the Weyl and Schur hooks as follows:

(a) The kernel of the map DpF ˝ ƒl F ! Dp�1F ˝ ƒlC1F

is denoted by K.1l;pC1/F; this is the Weyl hook.
(b) The kernel of the map SpF ˝ ƒl F ! SpC1F ˝ ƒl�1F

is denoted by L.l;1p�1//F; this is the Schur hook.

When p D 1, we have our hook, K.1l ;2/ above, and we see that when p D 0, we
have K.1l ;1/ D ƒl .
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These observations led Eisenbud and me [10] to construct another family of
complexes which were associated to the maps L.k;1q/.f / W L.k;1q/R

m ! L.k;1q/R
n

induced on these hooks from the map f: In particular, for q D 0; we had complexes
associated to ƒkf for all 1 � k � n (which we will denote by T.kI f /), and for
k D n; this was just the Eagon–Northcott complex mentioned above. As was the
case of the Eagon–Northcott complex, the ones in [10] were much slimmer than
the corresponding complexes constructed earlier in [8].1 In [6], the two families of
complexes were shown to be homotopically equivalent.

2.3 Determinantal Ideals

One of the main motivations for constructing these families of complexes was to
try to find resolutions of the ideal generated by the minors of a (generic) matrix
corresponding to a map f W F ! G. We’ve already noted that the families we
constructed gave resolutions of a class of modules all of which have the ideal
of maximal minors of the given map as support, and for certain values of the
parameters, actually provided the resolution of the ideal of maximal minors itself.
But it was still an open problem to find a resolution of the ideal generated by minors
of any given order.

While it was already apparent way back in the 1960s that the modules that
would comprise such a resolution were representations of the product of general
linear groups, GL.F / � GL.G/, it wasn’t until Lascoux [21] tackled the problem
in characteristic zero that it became clear just which representation modules they
were, namely, the direct sum of tensor products of certain GL.F /-Schur modules
with GL.G/-Schur modules (see Sect. 3 for definitions of these modules). And he
not only defined those resolutions, he defined the resolutions of certain classes of
Schur and Weyl modules as well, but always in characteristic zero.2 This naturally
led to the question whether it was possible to do in the characteristic-free case what
he had accomplished in the classical case.

The upshot is that it was possible to define the various representation modules
over an arbitrary commutative ring that arose in the Lascoux results (see [1,2,4,5]),
as well as an even larger class that was necessary for homological purposes.3 But
when we tried to replicate Lascoux’s resolutions, we ran into a few snags, most
of which revolved around the issue of Z-forms (see below). Akin, Weyman, and I

1This explains the notation C.kI f / and T.kI f /: the C stands for “corpulent”, while the T stands
for “thin”.
2It should be added that while Lascoux indicated what the boundary maps in these resolutions
might be, it took a bit of time before they were explicitly described (for the determinantal ideals),
and it’s still an open problem to describe the boundary maps of the Lascoux resolutions of the
Schur and Weyl modules.
3Previous work on characteristic-free representation theory had been done in [14, 24], but the
categories of modules were too small for our purposes.
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did succeed in describing the terms and maps of a characteristic-free resolution of
the ideal of submaximal minors [4], but we could go no further. Not too surprising
when one considers the fact that several years later, Hashimoto [19] proved the non-
existence of a universal characteristic-free resolution of the ideal of minors of lower
degree.

2.4 Z-Forms

Strange Z-forms arose even in the case of submaximal minors, but it was possible to
handle these. But before going any further, we’ll define what we mean by Z-forms.

Let F be a free abelian group of rank m, and let F be its extension to the rationals,
that is, F D Q˝ZF . We know that D2F and S2F are both GL.F /-representations,
where GL.F / means the general linear group over the integers, Z. Furthermore,
D2F D Q ˝Z D2F; S2F D Q ˝Z S2F , and these are GL.F /-representations.
We know that there is a GL.F /-equivariant map from D2F to S2F , namely, the
composition

D2F
��! F ˝Z F

m�! S2F;

where � is the diagonal map and m is the usual multiplication map. However,
this is not an isomorphism of the two integral representations. Nevertheless, the
corresponding map over the rationals is an isomorphism. We therefore say that D2F

and S2F are Z-forms of the same rational representation (in this case, S2F ). So, we
are led to make the following definition.

Definition 2. Let F be a free abelian group. Two GL.F /-representations are
Z-forms of the same representation if, when tensored with the rationals, Q, they
are isomorphic GL.F /-representations.

We’ve indicated that in the construction of the resolution of the ideal of
submaximal minors, certain of the terms in the Lascoux resolution had to be
replaced by their Z-forms in order to get an integral complex which was acyclic.
These representations that arose wereZ-forms of certain hooks, and they came about
in the following way.

We know that for all l > 0 the complexes

0!ƒlF ! ƒl�1F˝ZF !� � �! ƒl�t F˝ZStF !� � �! F˝ZSl�1F ! SlF !0

are exact, where the boundary map is given by diagonalizing the exterior powers and
multiplying the symmetric powers. But what happens if we replace the symmetric
powers by divided powers, that is, if we consider the complex

0!ƒlF ! ƒl�1F˝ZF !� � �! ƒl�t F˝ZDt F !� � �!F˝ZDl�1F !Dl F !0
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where we still diagonalize the exterior powers and multiply, this time, into the
divided powers (something that we generally avoid doing)? As the reader may
strongly suspect, this complex is no longer exact; the surprising thing, however, is
that, counting from the left, it is exact up to the middle of the complex, that is, from
t D 0 to t D Œ l�1

2
� where Œx� indicates the integral part of x ([4], Proposition 2.22).

As a result, the cycles of this complex are Z-forms of the corresponding cycles of
the complex above, involving the symmetric powers, and these, as we know, are just
the hooks.

Another, simpler, way to construct non-isomorphic Z-forms is the following:
Consider the short exact sequence

.�/ 0 ! DkC2 ! DkC1 ˝Z D1 ! K.kC1;1/ ! 0

where K.kC1;1/ is the Weyl hook, as defined earlier. (We are leaving out the module
F , as that is understood throughout.)

If we take an integer, t , and multiply DkC2 by t , we get an induced exact
sequence and a commutative diagram

0 ! DkC2 ! DkC1 ˝Z D1 ! K.kC1;1/ ! 0

# t # #
0 ! DkC2 ! E.t I k C 1; 1/ ! K.kC1;1/ ! 0;

where E.t I k C 1; 1/ stands for the cofiber product of DkC2 and DkC1 ˝Z D1.
Each of these modules is a Z-form of DkC1 ˝Z D1, but for t1 and t2, two
such are isomorphic if and only if t1 � t2 mod k C 2 (see[3]). This says that
Ext1A.K.kC1;1/; DkC2/ Š Z=.k C 2/, where A is the Schur algebra of appropriate
degree. We should explain that the Schur algebra is the universal enveloping algebra
of GL.F /, that is, the GL.F /-(polynomial) representations of degree n are modules
over the Schur algebra of degree n (see [1] or [7] for a complete definition of this
algebra).

The above observations should give an idea of why Akin and I turned to the study
of resolutions of Weyl and Schur modules.

3 Weyl and Schur Modules

We’ve already had a very small dose of representation theory of the general linear
group in our discussion of the hook shapes. In this section, we will deal more
comprehensively with representations of that group, over an arbitrary commutative
ring, R: To start, we have to talk about shape matrices and tableaux.
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3.1 Shape Matrices and Tableaux

In the classical theory, the fundamental shapes that are the basis of definition of
Schur and Weyl modules, are the Ferrers diagrams corresponding to “partitions”,
and the closely related “skew-partitions”. For our purposes, we will have to consider
a slightly larger class of shapes, corresponding to the so-called “almost skew-
partitions”.4

Definition 1. A shape matrix is an infinite integral matrix A D �
aij

�
of finite

support, with all the aij equal to 0 or 1: (To say it has finite support is to say that
aij ¤ 0 for only a finite number of indices i and j:/ The last row (column) of the
shape matrix A is the last row (column) in which a non-zero term appears. Such a
matrix is said to be row-convex (column-convex) if, in each row (column), there
are no zeroes lying between ones. (All the shapes that we consider will be row-
and column-convex.) The shape matrix B D �

bij

�
is a subshape of A (written

B � A/ if bij � aij for every i and j: The shape matrix, A; is said to correspond
to a partition if for all i; j; aij D 0 implies aiC1j D 0 and aij C1 ¤ 0 implies
aij ¤ 0. It is said to correspond to a skew-partition or skew-shape if A D B � C;

where B and C correspond to partitions, and C � B: It is said to be a bar shape
if its only non-zero entries are in its last row, and it is row-convex. Finally, it is said
to correspond to an almost skew-partition or almost skew-shape if A D B � C;

where B corresponds to a skew-shape, and C is a bar subshape matrix of B the
index of whose last row coincides with that of B , and whose first nonzero entry in
that row occurs in the same place as the first nonzero entry of B:

• Notice that, unless a given partition shape matrix is the zero matrix, a11 D 1:

We now illustrate each of these types of shape matrices. The typical partition
shape looks like this:

.P /

0
BBBBBBBB@

1 1 1 1 0 0 � � �
1 1 1 0 0 0 � � �
1 1 1 0 0 0 � � �
1 1 0 0 0 0 � � �
0 0 0 0 0 0 � � �
:::

:::
:::

:::
:::

::: � � �

1
CCCCCCCCA

;

4We should add that the class of shapes that is currently being studied is far broader than this.
However, to study all of these would require quite a bit more of combinatorics than we propose to
talk about here.
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and is often represented by the Ferrers diagram:

.

The typical skew-shape looks like this

.S/

0

BBBBBBBB@

0 0 1 1 1 0 � � �
0 0 1 1 0 0 � � �
0 1 1 0 0 0 � � �
1 1 0 0 0 0 � � �
0 0 0 0 0 0 � � �
:::

:::
:::

:::
:::

::: � � �

1

CCCCCCCCA

;

and is often represented by the Ferrers diagram:

.

A bar shape looks like:

.B/

0

BBBBBBBB@

0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
0 1 1 1 0 0 � � �
0 0 0 0 0 0 � � �
:::

:::
:::

:::
:::

::: � � �

1

CCCCCCCCA

;

and an almost skew-shape looks like

.AS/

0
BBBBBBBB@

0 0 0 1 1 1 1 0 � � �
0 0 1 1 1 1 1 0 � � �
0 1 1 1 1 1 0 0 � � �
0 0 1 1 1 0 0 0 � � �
0 0 0 0 0 0 0 0 � � �
:::

:::
:::

:::
:::

:::
:::

::: � � �

1
CCCCCCCCA

;
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and would be represented by the Ferrers diagram:

.

Note that the diagram ignores the fact that the left-most column of the shape ma-
trix consists completely of zeroes. Also notice that the empty diagram corresponds
to the zero matrix.

The shapes illustrated above are those that we will have most to do with, but
clearly we can associate to any shape matrix, A D .aij /; a Ferrers diagram, or
simply diagram: we just set up a grid equal to the effective size of the matrix (say,
s � t), and throw away the boxes whose entries are equal to zero. That is, the .i; j /th
box lies in the diagram if and only if aij D 1. If A is the shape matrix, we will
sometimes denote by .A/ its corresponding diagram.

The partition shape has a uniquely associated partition, namely, the sequence
� D .�1; : : : ; �s; : : :/ where �i is the non-negative integer equal to the number of
ones in row i . Clearly, the sequence is decreasing: �1 � �2 � � � � � �s � � � � . We
say the length of � is s if s is the smallest nonnegative integer such that �sCt D 0

for every positive integer t .
The skew-shape has two partitions uniquely associated to it, namely,

� D .�1; : : : ; �s; : : :/ and � D .�1; : : : ; �t ; : : :/; with �i � �i for all i , and such
that the length of � is strictly less than that of �. One then thinks of the shape as
the result of removing from the shape of � the subshape corresponding to �: In fact,
the notation most often used for a skew-shape is �=�. We say the length of �=�

is the length of �. If one removes the condition that the length of � be strictly less
than that of �, then we have other pairs of partitions .�0; �0/ that will yield the same
diagram. In that case, we still use the same notation, �0=�0 (but the length of �0=�0
stays equal to the length of the previous �).

Finally, we see that the almost skew-shape would be a skew-shape but for its
last row, which, rather than projecting beyond (or flush with) the penultimate row,
doesn’t make it out that far to the left. In short, it would be a skew-partition but for
that inadequacy in the last row.

In our examples above, the partition � associated to .P / is .4; 3; 3; 2/I the pair of
partitions associated to .S/ are � D .5; 4; 3; 2/ and � D .2; 2; 1/: (For convenience
we have eliminated the zeroes to the right in our notation.) For .AS/; we might take
the skew-partition to be .7; 7; 6; 5/=.3; 2; 1/ with a bar having the entries .1; 1/ in
the fourth row, or we might take .7; 7; 6; 5/=.3; 2; 1; 1/; with a bar having entries
.0; 1/ in the fourth row.

Another way to denote an almost skew-shape, which closely parallels the
notation for a skew-shape, is to first define an almost partition to be a sequence
.�1; : : : ; �n/ such that �1 � � � � � �n�1 and 0 � �n � �1. We then can denote
(not necessarily uniquely) an almost skew-shape by �=�, where � is a partition of
length n, and � is an almost partition having exactly n terms and satisfying �i � �i

for all i . We can go one step further and say that an almost partition, �, is of type
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n � .i C 1/ if i is the largest integer less than n such that �n � �i , and we say that
the type of the almost skew-shape �=� is equal to the type of �. Clearly, the type
is independent of the choice of � and � used to describe the almost skew-shape.
The choice of the pair .�; �/ can be made canonical if, in the case of type zero, we
choose �n D 0, while for type greater than zero, we choose �n�1 D 0. We define
the length of the almost skew-shape to be the length of the canonical partition, �.

With this terminology, we see that an almost skew-shape of type 0 is a skew-
shape and that for almost skew-shapes of length n, we can have types 0; 1; : : : ; n�2.
In particular, almost skew-shapes of length 2 are necessarily skew-shapes; for length
3, there are only skew-shapes and almost skew-shapes of type 1 and so on.

We spoke of shape matrices as infinite matrices in order not to have to specify
last row or column when we talked about subshapes. However, we see that a shape
matrix whose last row is row s and whose last column is column t; can be thought
of as an s � t-matrix; when we draw diagrams or shapes, we will generally avoid
the dots that we were forced to put into the illustrations above. If we have two shape
matrices A and B; with B � A; we will assume that they’re both s � t-matrices,
simply by augmenting where necessary by zeroes.

Remark 2. Three immediate observations should be made here:

(1) If A is a partition (or skew-partition) matrix, then its transpose, eA is also a
partition (or skew-partition) matrix.

(2) If A is a partition matrix with associated partition �; then we denote the partition
associated to eA bye�:

(3) We see that if A is a skew-partition matrix with associated partitions � and �;

then the matrix eA has associated partitionse� and e�:

Definition 3. We introduce some standard terminology for shapes, and partitions
in particular:

(1) The weight of a shape matrix A D .aij / is
P

aij , and is denoted by jAj.
(2) If � D .�1; : : : ; �n/ and �0 D .�

0

1; : : : ; �
0

m/ are two partitions, we say � � �0 if
either � D �0 or if for some i; �j D �0

j for all j < i , and �i > �0
i :

And now we turn our attention to tableaux.

Definition 4. Let A be a shape matrix and S a set. A tableau, T , of shape A with
values in S is a filling-in of the diagram .A/ by elements of S . We denote the
tableau by the ordered pair T D ..A/I �/, where � is the filling-in of .A/ by S .

We could have said that � is a function from .A/ to S , but for the fact that we
haven’t given a formal enough definition of “diagram” to do this. But if one regards
the diagram as a collection of cells, then � would be a function with domain .A/. In
most cases, we will simply refer to the tableau as T , with the set S an understood
ordered basis of a finitely generated free module.

Occasionally we will use the term row tableau; this is simply a tableau the
diagram of whose shape consists of one row.



248 D.A. Buchsbaum

Assume now that our set S is totally ordered. We have the following definitions
of “standardness”. (Later we’ll give a more general definition, but these will suffice
for the next section.)

Definition 5. We say that a tableau (of any shape) is Weyl-row-standard if in each
row it is weakly increasing; we say it is Weyl-column-standard if in each column
it is strictly increasing. We say it is Weyl-standard if it is both Weyl-row- and
Weyl-column-standard.

Definition 6. We say that a tableau (of any shape) is Schur-row-standard if in
each row it is strictly increasing; we say it is Schur-column-standard if in each
column it is weakly increasing. We say it is Schur-standard if it is both Schur-row-
and Schur-column-standard.

Later it will be convenient to have a quasi-order on tableaux with values in
a totally ordered set. Suppose, again, that S is a totally ordered set, say S D
fs1; : : : ; sng with s1 < � � � < sn, and suppose T is a tableau with values in S . Define
Tij to be the number of elements in fs1 : : : ; si g that appear in at least one of the first
j rows of the diagram of T . Now suppose that T 0 is another tableau.

Definition 7. We say that T 0 � T if T 0
ij � Tij for every i and j . We say that

T 0 < T if T 0 � T and for some i; j we have T 0
ij > Tij :

To see that this is a quasi-order and not an order, consider our set S with
three elements: S D fs1; s2; s3g, with s1 < s2 < s3, and consider the diagram
corresponding to the partition � D .4; 2; 1/: Then the two tableaux

T D
s1 s2 s2 s3

s2 s3

s3

and

T 0 D
s2 s3 s2 s1

s3 s2

s3

are such that T � T 0 and T 0 � T , but T and T 0 are clearly not equal. However, the
“�” relation is both reflexive and transitive, as can easily be checked.

3.2 Associating Weyl and Schur Modules to Shape Matrices

To each finite free module, F; over a commutative ring, R; and each shape matrix
we will associate two maps, a Weyl map and a Schur map, whose images will be
called the Weyl and Schur modules of that shape. To do that, we first look at some
auxiliary ideas.
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If a D .a1; : : : ; al / is a sequence of non-negative integers, let ˛ D a1 C � � � C al :

We define the maps ı0
a W D˛F ! Da1 F ˝� � �˝Dal

F and ı
00

a W ƒ˛F ! ƒa1F ˝� � �˝
ƒal F to be the diagonalization maps of the indicated divided and exterior powers of
F into the indicated tensor products. We define the maps �0

a W ƒa1F ˝� � �˝ƒal F !
ƒ˛F and �

00

a W Sa1F ˝ � � � ˝ Sal
F ! S˛F to be the multiplication maps from the

indicated tensor products of exterior and symmetric powers to the indicated exterior
and symmetric powers.

Definition 8 (Weyl and Schur maps). Let F be a free module over the commu-
tative ring, R: For the s � t shape matrix A D �

aij

�
, set ri D .ai1; : : : ; ait /,

cj D �
a1j ; : : : ; asj

�
, �i D Pt

j D1 aij ; 	j D Ps
iD1 aij : The Weyl map associated to

A; !A, is the map

!A W D�1 F ˝ � � � ˝ D�s F ! ƒ	1 F ˝ � � � ˝ ƒ	t F

defined as the composition

!A D �
�0

c1
˝ � � � ˝ �0

ct

�

W

�
ı0

r1
˝ � � � ˝ ı0

rs

�

where, since all the aij are equal to zero or one, we have identified Daij F

with ƒaij F for all i; j I the map 
W is the isomorphism comprising all of these
identifications together with rearrangement of the factors. “Pictorially” what we
have is the following:

D�1F ˝ � � � ˝ D�s F !

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Da11F ˝ � � � ˝ Da1t F

˝
:::

˝
Das1 F ˝ � � � ˝ Dast F

9
>>>>>=

>>>>>;


W�!

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

ƒa11 F ˝ � � � ˝ ƒa1t F

˝
:::

˝
ƒas1 F ˝ � � � ˝ ƒast F

9
>>>>>=

>>>>>;

! ƒ	1F ˝ � � � ˝ ƒ	t F:

The Schur map associated to A; �A; is the map

�A W ƒ�1F ˝ � � � ˝ ƒ�s F ! S	1F ˝ � � � ˝ S	t F
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defined as the composition

�A D
�
�

00

c1
˝ � � � ˝ �

00

ct

�

S

�
ı

00

r1
˝ � � � ˝ ı

00

rs

�

where, since all the aij are zero or one, we have identified ƒaij F with Saij F for all
i; j I the map 
S is the isomorphism comprising all of these identifications together
with rearrangement of the factors. We can view the definition of the Schur map
“pictorially” in the same way we did the Weyl map.

Definition 9 (Weyl and Schur modules). Let F be a free R-module, and A a shape
matrix. We define the Weyl module of F associated to A, denoted KAF , to be the
image of !A: We define the Schur module of F associated to A, denoted LAF; to
be the image of �A:

Remark 10. The following observations are easy to check and very useful:

(1) If A is a nonzero shape matrix with its initial column consisting only of zeroes
and B is the shape matrix with that initial column removed, it is clear that the
Weyl and Schur maps associated to A and B are the same. Hence, we will
generally assume that our shape matrices have at least one entry in the first
column equal to one.

(2) If A is a shape matrix and B is the shape matrix obtained from A by a
permutation of its rows (columns), then the associated Weyl and Schur modules
of these matrices are isomorphic.

With the definition of Weyl and Schur modules to hand, a natural question to
consider is whether these modules are free over the ground ring and, if so, how can
we describe a basis. For example, if we take a one-rowed partition �, what are the
Weyl and Schur modules associated to it? The Weyl module is the image of the map

D�F
!�! ƒ1F ˝ � � � ˝ ƒ1F„ ƒ‚ …

�

, where !� is the diagonalization map. Clearly, then,

the image is isomorphic to D�F itself, that is, K�F D D�F . In a similar way we
can show that L�F D ƒ�F . In both of these cases, the modules are clearly free
R-modules, and we have a very concrete description of bases for them. Not only do
we have explicit descriptions of their bases, we even have a description in terms of
tableaux. In the case of D�F , a basis is parametrizable by the set of all one-rowed
tableaux: xi1 xi2 � � � xi� where fx1; : : : ; xmg is an ordered basis of the free module,
F , and i1 � � � � � i�. In the case of ƒ�F , we have that a basis is parametrizable by
all one-rowed tableaux: xi1 xi2 � � � xi� where i1 < � � � < i�.

Later, we will give an outline of a proof that if �=� is an almost skew-partition,
then K�=� and L�=� are free, and bases for them can be parametrized by certain sets
of tableaux of shape �=� satisfying combinatorial conditions.
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4 Two-Rowed Modules

Before getting into that, we will look at the very particular case of two-rowed shapes
and there introduce heuristically the idea of letter-place for a small number of places.
This will enable us to then describe the terms of the resolutions of two-rowed Weyl
(and Schur) modules and prove they are truly resolutions by means of an explicit
homotopy.

4.1 Illustration of Letter-Place for Two Places

If we take an element w˝w0 2 Dp ˝Dq , we know that w is in the first factor, and w0
is in the second. If p D q, we might still want to indicate that these elements are in
the first and second factors, but just how would we explicitly denote this fact? The
idea of letter-place is to introduce the notion of “place” to indicate that an element
(denoted by “letters”) in the tensor product is in either place 1 or place 2. So in the
“letter-place algebra”, w ˝ w0 2 Dp ˝ Dq would be written as .wj1.p//.w0j2.q// to
indicate that it is the tensor product of an element of degree p in the first factor, and
one of degree q in the second. This is then collected in double tableau form as

�
w
w0

ˇ̌
ˇ̌1

.p/

2.q/

�
:

If we further agree that the symbol .vj1.p/2.q// means
P

v.p/ ˝ v.q/ 2 Dp ˝ Dq ,
where v is an element of degree p C q and the sum represents the diagonalization
of v in Dp ˝ Dq , then we can also talk about the double tableau

�
w
w0

ˇ̌
ˇ̌1

.p/2.k/

2.q�k/

�
;

which means
P

w.p/ ˝ w.k/w0: Ordering the basis elements of the underlying free
module, we can now talk about “standard” and “double standard” double tableaux,
where we’re here using “standard” to mean Weyl-standard, since we’re talking about
tensor products of divided powers.5 A major result on letter-place algebra is that the
set of double standard double tableaux form a basis for Dp ˝ Dq [7].

All of the above discussion tacitly assumed that the places were “positive”. When
we discuss this in Sect. 5, we will see that we can have positive and negative places,
as well as positive and negative letters. But in this section, all letters and places will

5In Sect. 5, our more general approach will make it unnecessary to keep talking about different
kinds of standardness.
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be considered positive. This is reflected in the notation, a.p/ for letters, and 1.p/ for
places; we’re essentially working in the context of divided powers.

To illustrate the basis theorem, suppose p < q; and we have the element a.p/ ˝
b.q/ 2 Dp ˝ Dq . Then, although

�
a.p/

b.q/

ˇ̌
ˇ̌ 1

.p/

2.q/

�
is a basis element of Dp ˝ Dq; it

isn’t a double standard tableau (even assuming a < b and 1 < 2/ since p < q:

SLIGHT DIGRESSION: Although we will give a general definition of “standard
tableau” in the next section, let me give a rough idea of how it applies here. We may

think of the tableau we’ve written

�
a.p/

b.q/

ˇ̌
ˇ̌ 1

.p/

2.q/

�
as a shortcut for writing a strung

out p times in the first row, b strung out q times in the second row, and the same for
the 1.p/ and 2.q/. Now “standard” would mean that the first rows are no shorter than
the second (which is already false if we assume that p < q), and that each column
of the array is strictly increasing (which is the case if we make the assumption that
a < b and 1 < 2, and don’t worry about the fact that the top rows are too short to
make sense of the inequality beyond the pth term). If, however, we were to assume
in addition that p � q, we would have a double standard tableau.

To write

�
a.p/

b.q/

ˇ̌
ˇ̌ 1

.p/

2.q/

�
as a linear combination of standard tableaux, we clearly

must have6

�
a.p/

b.q/

ˇ̌
ˇ̌1

.p/

2.q/

�
D

pX

lD0

cl

�
a.p/b.q�pCl/

b.p�l/

ˇ̌
ˇ̌1

.p/2.q�pCl/

2.p�l/

�
;

and we want to determine the coefficients cl : Rewriting the above, we get

a.p/ ˝ b.q/ D
pX

lD0

cl

pX

kD0

 
q � k

p � l

!
a.p�k/b.k/ ˝ a.k/b.q�k/I

we want the cl to be such that

pX

lD0

cl

 
q � k

p � l

!
D
�

1 for k D 0

0 otherwise
:

Clearly, if we set cl D �
p�q

l

�
; then for k D 0; the sum above is

pX

lD0

 
p � q

l

! 
q

p � l

!
D
 

p

p

!
D 1;

6In the following, we are using the shortcut of not stringing out the letters or numbers that occur
with exponents. If you go through the “stringing out” procedure, you will see that the tableaux on
the right of the equation below are standard.
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while for k > 0; we get

pX

lD0

 
p � q

l

! 
q � k

p � l

!
D
 

p � k

p

!
D 0

as we wanted.7

4.2 Examples of Place Polarization Maps

To illustrate how certain maps can be thought of as “place polarization” maps, take
skew-shape:

.A/
t p

q
:

To be more precise, we take the skew-shape represented by �=�, where � D
.�1; �2/; � D .�1; �2/; �1 � �1 D p; �2 � �2 D q, and �1 � �2 D t .

It has been defined (see above) as the image of Dp ˝ Dq under the Weyl map. In
Sect. 4, we will see that it is also the cokernel of the “box map” (usually designated,
unimaginatively, as ��=�) which is the map

��=� W
X

k>t

DpCk ˝ Dq�k ! Dp ˝ Dq

which sends an element

x ˝ y 2 DpCk ˝ Dq�k to
X

xp ˝ x
0

ky;

where
P

xp ˝ x
0

k is the component of the diagonal of x in Dp ˝ Dk:

LETTER-PLACE PERSPECTIVE: Again, we will wait until Sect. 4 to make
all of the following precise, but in the context of letter-place algebra, there is the
notion of “place polarization” which “replaces” one positive place by another, say
it replaces the occurrence of the positive place 1 by the place 2. This replacement is
written (in this case) as @21. In general, if we replace a positive place r by a positive
place s, we would write this operation as @sr . If, moreover, we want to replace a
number, say k, of occurrences in the place r by the place s, we would write this
operation as @

.k/
sr . In this notation, we see that the box map is the direct sum of the

place polarization maps, @
.k/
21 , where k > t . To illustrate, we take a double standard

7To clear up any misunderstanding about our binomial coefficients, let’s define, for l � 0,
�

X

l

�
to

be X.X�1/���.X�lC1/

lŠ
. This allows us to substitute negative integers for X .
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tableau in DpCk ˝ Dq�k , let’s say

�
w
w0

ˇ̌
ˇ̌ 1

.pCk/2.l/

2.q�k�l/

�
2 DpCk ˝ Dq�k;

and @
.k/
21 would send this to

�
w
w0

ˇ̌
ˇ̌1

.p/2.k/2.l/

2.q�k�l/

�
D
 

k C l

k

!�
w
w0

ˇ̌
ˇ̌1

.p/2.kCl/

2.q�k�l/

�
2 Dp ˝ Dq:

To explain the mysterious binomial coefficient that comes into play here, take,
for example, the case when w D a.pCkCl/ and w0 D b.q�l�k/. That would give us
as a starting element,

�
a.pCkCl/

b.q�k�l/

ˇ̌
ˇ̌1

.pCk/2.l/

2.q�k�l/

�
D a.pCk/ ˝ a.l/b.q�k�l/ 2 DpCk ˝ Dq�k;

and as the image:

 
k C l

k

!�
a.pCkCl/

b.q�k�l/

ˇ̌
ˇ̌1

.p/2.kCl/

2.q�k�l/

�
D
 

k C l

k

!
a.p/ ˝ a.kCl/b.q�k�l/ 2 Dp ˝ Dq:

4.3 The Two-Rowed Resolution

With these notations (and assertions) now introduced, we can describe the resolution
of our skew-shape, .A/, described in Sect. 4.2. We will also describe a contracting
homotopy for the nonnegative part of the resolution and a basis for the syzygies.

Recall that the Weyl module associated to the skew-shape

.A/
t p

q

is the image of Dp ˝R Dq under the Weyl map. The “box map” referred to at the
very beginning of Sect. 4.2, and denoted by ��=�, was seen to be the sum of place
polarizations, X

k>t

@
.k/
2;1 W

X

k>t

DpCk ˝R Dq�k ! Dp ˝R Dq:

If we let Z2;1 stand for the generator of a divided power algebra in one free
generator, we can let Z

.k/
2;1 act on DpCk ˝R Dq�k and carry it to Dp ˝R Dq: (in short,

we are letting this formal generator act as the place polarization). Thus, we may take
the .tC/-graded strand of degree q of the normalized bar complex of this algebra
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acting on
P

DpCk ˝R Dq�k (where the degree of the second factor determines the
grading) to get a complex over the Weyl module:

� � � !
X

ki >0

Z
.tCk1/
2;1 xZ

.k2/
2;1 x � � � xZ

.klC1/

2;1 x ˝R .DtCpCjkj ˝R Dq�t�jkj/ !
X

ki >0

Z
.tCk1/
2;1 xZ

.k2/
2;1 x � � � xZ

.kl /
2;1 x ˝R .DtCpCjkj ˝R Dq�t�jkj/ ! � � �

!
X

k>0

Z
.tCk/
2;1 x ˝R .DtCpCk ˝R Dq�t�k/ ! Dp ˝R Dq ! 0;

where the symbol “x” is a “separator variable” to replace the usual bar symbol used
in the bar construction (see [11, 12] for a full explanation of this notation) and jkj
stands for the sum of the indices ki : Here, the boundary operator is called @x (or,
what is the same thing, it is obtained by polarizing the variable x to the element 1).
This, then, describes a left complex over the Weyl module in terms of bar complexes
and letter-place algebra. We also know from the fact that the Weyl module is the
cokernel of the box map and that the zero-dimensional homology of this complex is
the Weyl module itself.

Now the question is: how do we show that this complex is an exact left complex
over the Weyl module? In other words, that it is in fact a resolution. One way, is to
produce a splitting contracting homotopy, which is what we will do here. Another
way is to use our fundamental exact sequences and a mapping cone argument; we
refer the reader to [3] for this approach.

Definition 1. With our complex given as above, define the homotopy as follows:

s0 W Dp ˝R Dq !
X

k>0

Z
.tCk/
2;1 x ˝R DtCpCk ˝R Dq�t�k

sends the double standard tableau

�
w
w0

ˇ̌
ˇ̌1

.p/2.k/

2.q�k/

�
to zero if k � t; and to Z

.k/
2;1 x ˝

�
w
w0

ˇ̌
ˇ̌ 1

.pCk/

2.q�k/

�
if k > t: For higher dimensions (l > 0),

sl W Pki >0 Z
.tCk1/
2;1 xZ

.k2/
2;1 x � � � xZ

.kl /
2;1 x ˝R DtCpCjkj ˝R Dq�t�jkj !P

ki >0 Z
.tCk1/
2;1 xZ

.k2/
2;1 x � � � xZ

.klC1/

2;1 x ˝R DtCpCjkj ˝R Dq�t�jkj

is defined by sending Z
.tCk1/
2;1 xZ

.k2/
2;1 x � � � xZ

.kl /
2;1 x˝

�
w
w0

ˇ̌
ˇ̌ 1

.tCpCjkj/2.m/

2.q�t�jkj�m/

�
to zero if

m D 0; and to Z
.tCk1/
2;1 xZ

.k2/
2;1 x � � � xZ

.kl /
2;1 xZ

.m/
2;1 x ˝

�
w
w0

ˇ̌
ˇ̌1

.tCpCjkjCm/

2.q�t�jkj�m/

�

if m > 0:
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The proofs of the following statements are in [11].

Proposition 2. The collection of maps fslgl�0 provides a splitting contracting
homotopy for the complex above.

Theorem 3. The complex above is a projective resolution of the Weyl module
associated to the shape A, over the Schur algebra of appropriate weight.8

5 The Letter-Place Panoply

We have talked about tensor products of divided powers, exterior powers, and
symmetric powers. As we’ve strongly asserted, the letter-place algebra is an
effective tool for dealing with these kinds of tensor products. In this section we will
define this algebra in (almost) complete generality, and develop some important
combinatorial properties of it. Our treatment will be a little less general than that
given in [22]; the interested reader may go to that reference to see how multi-signed
alphabets are treated in a uniform and general way. We’ll deal with the divided
powers, case in some detail, and then quickly treat the cases of exterior powers and
symmetric powers. Most of the proofs will be found in Sect. 6.

5.1 Positive Places and the Divided Power Algebra

Usually we are given a fixed number, say n, of terms in the tensor product: Dk1.F /˝
� � � ˝ Dkn.F /, where F is a free module. As we said in the previous section, we
intuitively look at such a product and know which is the first factor, the second, and
so on. The idea behind the letter-place approach is to clearly designate the places that
the terms in the product are actually in. As an example of what we mean, suppose
that x 2 Dki .F /; and we want to write the element 1 ˝ � � � ˝ x„ ƒ‚ …

i

˝ � � � ˝ 1 in the

tensor product above. The letter-place algebra will allow us to write this element as
.xji .ki //. How this will help besides just shortening the amount we have to type and
the space it takes to type it will become evident as we develop and use this approach.

Just as with the symmetric and exterior algebras, we have that D.F ˚ G/ D
D.F / ˝ D.G/; it is, after all, the graded dual of the symmetric algebra. So, if
we take D.F ˝ Rn/ Š D.F ˚ � � � ˚ F /„ ƒ‚ …

n

, we see that D.F ˝ Rn/ is equal to

8Personal note: While the definition of this homotopy may look complicated, I actually “discov-
ered” it while swimming laps in a local lake, after promising Rota we could come up with one
using these letter-place techniques. Attempts to define a homotopy using the methods Akin and I
had employed earlier were woefully unsuccessful.
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D.F / ˝ � � � ˝ D.F /„ ƒ‚ …
n times

. This is natural with respect to the action of GL.F /, but

clearly not with respect to the action of GL.Rn/. In fact, we moved to the notation
Rn rather than G to indicate that we have made a choice of basis in our free
module, G. We can, though, use G in our preliminary discussion and, assuming
that the rank of this free module is n, still see that “in some way,” D.F ˝ G/ Š
D.F / ˝ � � � ˝ D.F /„ ƒ‚ …

n

. Now we want to introduce convenient notation to exhibit this

isomorphism, as well as to get to the letter-place conventions.
To this end, let us suppose that G has the (ordered) basis, fy1; : : : ; yng with y1 <

� � � < yn, and for any x 2 D1.F /, let us denote by .xjyi / the element x ˝ yi , and
by .x.k/jy.k/

i / the element corresponding in D.F / ˝ � � � ˝ D.F /„ ƒ‚ …
n

to .xjyi /
.k/, that

is, to the element in that n-fold tensor product of D.F / having x.k/ in the i th factor.

• The picture to keep in mind is .xjyi / is the element 1 ˝ � � � ˝ x„ ƒ‚ …
i

˝ � � � ˝ 1. Now

kŠ.x ˝ yi /
.k/ D .x ˝ yi /

k D .1 ˝ � � � ˝ x„ ƒ‚ …
i

˝ � � � ˝ 1/k D

1 ˝ � � � ˝ xk

„ ƒ‚ …
i

˝ � � � ˝ 1 D kŠ .1 ˝ � � � ˝ x.k/

„ ƒ‚ …
i

˝ � � � ˝ 1/;

so we see that the above definition of .x.k/jy.k/
i / makes sense.

Finally, if l D l1 C � � � C ln, and x 2 Dl .F /, we set

.xjy.l1/
1 � � � y.ln/

n / D
X

.x.l1/jy.l1/
1 / � � � .x.ln/jy.ln/

n /;

where
P

x.l1/˝� � �˝x.ln/ indicates the image of the diagonal map into Dl1.F /˝
� � � ˝ Dln.F / applied to our element x.

Remark 1. The identities and conventions that we adopt for our discussion are those
that are clearly valid if one works over the ring of integers (as is the case illustrated
above, where we have cancelled kŠ because there is no torsion over the integers).
We will continue to do this in our treatment of the letter-place algebra and all other
structures that are transportable from Z to arbitrary commutative base rings.

A simple illustration, just to fix our ideas, is this:
Suppose x1; x2, and x3 are in D1.F /, and consider the element

.x1x
.2/
2 x3jy.2/

1 y2y3/ 2 D2.F / ˝ D1.F / ˝ D1.F /:
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Then this element is equal to

.x1x2jy.2/
1 /.x2jy2/.x3jy3/ C .x1x2jy.2/

1 /.x3jy2/.x2jy3/C

.x1x3jy.2/
1 /.x2jy2/.x2jy3/ C .x

.2/
2 jy.2/

1 /.x1jy2/.x3jy3/C
.x

.2/
2 jy.2/

1 /.x3jy2/.x1jy3/ C .x2x3jy.2/
1 /.x1jy2/.x2jy3/C

.x2x3jy.2/
1 /.x2jy2/.x1jy3/:

(	) We agree to set the symbol .wjy.a1/
1 � � � y.an/

n / equal to zero if the degree of w
is not equal to

Pn
iD1 ai . The element w is supposed to be a homogeneous element

of D.F /.
As we saw in the previous section, the letter-place notation we’ve been us-

ing above lends itself very naturally to writing tableaux. That is, suppose we
wanted to write the product of the above element, .x1x

.2/
2 x3jy.2/

1 y2y3/ with, say,

.x
.2/
3 x1jy1y2y3/. As we saw above, each of these terms is a sum of a number

of addends, so that the notation we have for each of these terms is already of
considerable convenience. But now, instead of using juxtaposition to denote the
product of these two terms, let us use “double tableau” notation, that is, let us write

 
x1x

.2/
2 x3 y

.2/
1 y2 y3

x
.2/
3 x1 y1 y2 y3

!

for this product.
Suppose that we choose an ordered basis for F , say fx1; : : : ; xmg with x1 < � � � <

xm, and let us say that the elements xi above are among these basis elements. Then
the double tableau above does not change value if we write it as:

.DT /

 
x1x

.2/
2 x3 y

.2/
1 y2 y3

x1x
.2/
3 y1 y2 y3

!
:

We point this out to indicate that we may always assume that our tableaux
are given in such a way that in each row, the elements are increasing. The
terminology for this is that the tableaux are row-standard (a notion that we’ve
already encountered previously). We could agree to write out the rows of the
tableau repeating letters instead of using divided powers. This helps to talk about
the columns of a tableau; for instance, the tableau above has two rows and four
columns (the number refers to the arrays in the letters as well as the places).

Usually, we call the basis of F the letters, while the basis of G is called the
places. A basic word of degree k is simply a basis element of Dk.F /, while a
word of degree k is a linear combination of basic words of degree k. Usually we
will write a word as w, and we will write a general double tableau as
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.G/

0

BB@

w1 1.a11/ 2.a21/ 3.a31/ � � �
w2 1.a12/ 2.a22/ 3.a32/ � � �
� � � � � � � � � � � � � � �
wn 1.a1n/ 2.a2n/ 3.a3n/ � � �

1

CCA

where ˛i D .a1i C a2i C a3i C � � � / � ˛j for 1 � i < j � n; and we have written i

for yi . We will continue to write i for yi as long as there is no danger of confusion.
Also, in most cases, the words wi will be basic words, in which case (since they
are basis elements of Dk.F /), they are increasing. Because of our convention (	)
above, we see that we may assume that the degree of the element wi is equal to
˛i . Note that our tableau is an element of Dk1.F / ˝ � � � ˝ Dkn .F / when, for each
j D 1; : : : ; n;

P
l ajl D kj .

We will call a double tableau standard if the words wi are basic, the lengths of
the rows are decreasing (from the top), it is row-standard, and also column-standard
in the sense that when we have used repeat notation instead of divided powers, the
columns are strictly increasing from top to bottom. Our double tableau .DT / above
is not a standard double tableau; if we replace the element x1 in the second row by
x2, however, it will be standard.

Clearly there is a set of double tableaux that form a basis for Dk1.F / ˝ � � � ˝
Dkn.F /, namely:

.W /

0
BB@

w1 1.k1/

w2 2.k2/

� � � � � �
wn n.kn/

1
CCA

where the wi run through the basis elements of Dki .F /. But these tableaux are not
in general standard. Even if it were the case that k1 � � � � � kn, so that the “place”
side of the tableau were standard, the “word” side of the tableau would in general
not be so. And if we had to reorder the rows so that they were decreasing in length,
we would upset standardness in the column of places.

What we do have is the following theorem:

Theorem 2. The set of standard double tableaux having the i th place
counted ki times is a basis for Dk1.F / ˝ � � � ˝ Dkn.F /.

The proof breaks up into two parts: the double tableaux of type .G/, withP
l ajl D kj , generate, and the number of such tableaux is equal to the number of

tableaux of type .W / above, for fixed k1; : : : ; kn: The first part is given in Sect. 6.1,
and the second part in Sect. 6.2.
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5.2 Negative Places and the Exterior Algebra

Now we sketch the letter-place approach to the tensor product of a fixed number
of copies of ƒF for a fixed free module, F . As in the previous discussion, we
use the fact that ƒ.F ˝ Rn/ Š ƒ.F ˚ � � � ˚ F„ ƒ‚ …

n

/, which is, in turn, isomorphic to

ƒF ˝ � � � ˝ ƒF„ ƒ‚ …
n

: There are two natural ways to proceed with this discussion from

a letter-place point of view: we could make the letters of F be positive and the
places of Rn negative, or vice versa. We will deal with the first case, and indicate
the necessary changes if we reverse sign.

Take the basis of Rn to be f1; : : : ; ng, but this time we will treat them as
“negative” places (in fact, we have written them in bold face to distinguish them
from the “positive” places of the previous subsection). To make the meaning of this
clearer (if not altogether clear), we can think of the bases of our free modules as
“alphabets” from which we make “words” by stringing them together (as we have
been doing). But we can also think of the letters of our alphabet as being “signed”,
that is, either positive or negative. In the preceding discussion of tensor products of
divided powers, all of our letters and places were positive, so that we can assign the
number 0 to all of them (to indicate that they’re positive). However, in this case, we
want to consider the basis elements of F as positive, while those of Rn as negative.
So, we assign the value 0 to the basis elements of F , and we assign the value 1 to
the basis elements 1; : : : ; n to indicate that they are negative. In general, if you have
signed alphabets A and B which are the bases of A and B , respectively, then the
element a ˝b 2 A ˝B is assigned the value ja ˝bj D jaj C jbj mod 2, where jxj
stands for the sign of x. Of course, we will write the element a ˝ b as .ajb/ when
we adopt the “letter-place” language as we did in the foregoing subsection.

As before, then, we write the element .xji/ to stand for the element x˝i 2 ƒ.F ˝
Rn/, where x is a basis element of F . We think of this, under the identifications
made above, as the element 1 ˝ � � � ˝ x„ ƒ‚ …

i

˝1 ˝ � � � ˝ 1 2 ƒF ˝ � � � ˝ ƒF„ ƒ‚ …
n

: Since x

has sign 0 and i has sign 1, the sign of .xji/ is 0 C 1 D 1. From the identifications
we have made, we see that .xji/.yji/ D �.yji/.xji/. This, and the commutativity of
multiplication in the case of divided powers, is consistent with the sign convention:

.a1jb/.a2jb/ D .�1/j.a1jb/jj.a2jb/j.a2jb/.a1jb/:

Our object is to work toward the same sort of double tableau notation for this
tensor product that we had earlier. But before it was possible to take a positive
place, i , say, and consider the element i .2/ as in .xyji .2//. In this case, since a place
i is negative, we see that i.2/ D 0, so we have to define what we mean by the element
.wjp1 ^ � � � ^ pk/ where w is an element (word) of a basis of DkF , and p1; : : : ; pk

are distinct basis elements of Rn (so that p1 ^ � � � ^ pk is plus or minus a basis
element of ƒkRn).
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Suppose that w D a
.k1/
1 � � � a.kl /

l , let k D k1 C � � � C kl and let b1; : : : ; bk be
the sequence a1; : : : ; a1„ ƒ‚ …

k1

; : : : ; al ; : : : ; al„ ƒ‚ …
kl

. Let Sk1;:::;kl
denote the Young subgroup of

the symmetric group Sk consisting of those permutations that permute the first k1

elements of 1; : : : ; k among themselves, the next k2 elements among themselves,
and so on. (This is a subgroup isomorphic to Sk1 � � � ��Skl

consisting of k1Š � � � kl Š

elements.) Then we define

.FI / .wjp1 ^ � � � ^ pk/ D
X

�

.b�.1/jp1/ � � � .b�.k/jpk/;

where � runs through representatives of distinct cosets of Sk=Sk1;:::;kl
.

In the summation above we have written the product in our exterior algebras
as simple juxtaposition instead of using wedges. We do this to conserve a uniform
notation for multiplication in the letter-place algebra, in which (as we will see later)
letters and places may sometimes be positive and sometimes negative.

Three simple examples will make this clear:

• Consider .a.2/jp1 ^ p2/. We have

.a.2/jp1 ^ p2/ D .ajp1/.ajp2/:

• Consider .a.2/b.3/jp1 ^ � � � ^ p5/. We have

.a.2/b.3/jp1 ^ � � � ^ p5/ D .ajp1/.ajp2/.bjp3/.bjp4/.bjp5/

C.ajp1/.bjp2/.ajp3/.bjp4/.bjp5/

C.ajp1/.bjp2/.bjp3/.ajp4/.bjp5/

C.ajp1/.bjp2/.bjp3/.bjp4/.ajp5/

C.bjp1/.ajp2/.ajp3/.bjp4/.bjp5/

C.bjp1/.ajp2/.bjp3/.ajp4/.bjp5/

C.bjp1/.ajp2/.bjp3/.bjp4/.ajp5/

C.bjp1/.bjp2/.ajp3/.ajp4/.bjp5/

C.bjp1/.bjp2/.ajp3/.bjp4/.ajp5/

C.bjp1/.bjp2/.bjp3/.ajp4/.ajp5/;

in other words, the 10 D 5Š
2Š3Š

terms that correspond to the ten distinct cosets of
S5=S2;3.

We can consider double tableaux as we did earlier, but now the left side
consists of words in the positive alphabet which is the basis of F , and the left
side consists of words in the negative alphabet of places, the basis f1; : : : ; ng
of Rn.
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To see that our usual basis elements of ƒk1F ˝ � � � ˝ ƒknF can be expressed
as double tableaux, consider the following example:

• The element x2 ^ x3 ^ x5 ˝ x1 ^ x3 ˝ x2 ^ x4 ˝ x3 ^ x5 ^ x6 2 ƒ3F ˝ ƒ2F ˝
ƒ2F ˝ ƒ3F can be expressed as the double tableau:

0
BBBBBBB@

x
.2/
2 1 3

x
.3/
3 1 2 4

x
.2/
5 1 4
x1 2
x4 3
x6 4

1
CCCCCCCA

:

On the right-hand side of the tableau we have omitted the wedge, and simply
spread the basis elements out along the row. We used the divided power notation on
the left hand of the column to simplify writing. Really, the top row of the tableau
above should look like

.x2 x2j1 3/:

In our situation, we see that if we interchange rows of the tableau, we must take
sign into account. For example,

0
BBBBBBB@

x
.2/
2 1 3

x
.3/
3 1 2 4

x
.2/
5 1 4
x1 2
x4 3
x6 4

1
CCCCCCCA

D �

0
BBBBBBB@

x
.2/
2 1 3

x
.3/
3 1 2 4

x
.2/
5 1 4
x1 2
x6 4
x4 3

1
CCCCCCCA

:

As in the previous case, we now have to define what we mean by a double
standard tableau. We will call a double tableau standard if it is standard in the
old sense on the left-hand side of the vertical column, but on the right-hand side,
has the property that it is strictly increasing in the rows and weakly increasing in the
columns. Notice that this definition implies that the shape of the tableau is that of a
partition.

In the same way the double standard tableaux generate the tensor product of
divided powers, these double standard tableaux generate the tensor product of
exterior powers. We have the following theorem:

Theorem 3. The set of standard double tableaux having the ith place
counted ki times is a basis for ƒk1F ˝ � � � ˝ ƒknF .

The sketch of the proof Theorem 2 given in Sect. 6, suitably (and easily)
modified, gives a proof of this result.

It should be fairly clear that the discussion above could just as well have been
carried out if we had assumed that the alphabet for F were signed negatively, and
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that for the places signed positively. In that case, we would have simply written
the basis elements of F in boldface, and those for Rn in ordinary typeface. There
are one or two differences that we would have to remark in this case. One is that
we would set .x1ji/.x2ji/ D .x1 ^ x2ji .2//. Another is that we would modify the
fundamental identity .FI / earlier in this subsection as follows. If w were the word
w D x1 ^� � �^xk and we had p D p

.k1/
1 � � � p.kl /

l with k D k1 C� � �Ckl , then setting
fq1; : : : ; qkg equal to the sequence fp1; : : : ; p1„ ƒ‚ …

k1

; : : : ; pl ; : : : ; pl„ ƒ‚ …
kl

g, we define

.FI /0 .wjp/ D
X

�

.x1jq�.1// � � � .xkjq�.k//;

where � ranges over representatives of the cosets of the appropriate Young
subgroup.

For “standardness” of double tableaux, we would have strictly increasing rows
in the letters, weakly increasing rows in the places; weakly increasing columns in
the letters, strictly increasing columns in the places. The proof that these double
standard tableaux form a basis is indicated in Sect. 6.

There is one last canonical algebra to consider, namely the tensor product of a
fixed number of copies of the symmetric algebra of F W S.F / ˝ � � � ˝ S.F /„ ƒ‚ …

n

. In

this case, we consider the basis elements of both F and Rn negative. We’ll skip the
discussion here and move on to the next subsection, whose generality will include
all of the cases above.

5.3 Almost Full Generality

We now put these various pieces together and consider what happens when we have
“letter alphabets” and “place alphabets” that contain both positive and negative
elements. To use more descriptive notation, we’ll let L and P stand for the letter
and place alphabets, respectively. Further, we’ll suppose that L D LC ] L� and
P D PC ] P�, where the plus and minus superscripts indicate the signs of the
elements of these alphabets. If we now let LC; L�; P C; P � stand for the free
modules generated by these alphabets (or bases), we may consider what is called
the letter-place superalgebra:

S.LjP/ D ƒ.LC ˝ P �/ ˝ ƒ.L� ˝ P C/ ˝ D.LC ˝ P C/ ˝ S.L� ˝ P �/:

The individual factors of the tensor product above have been described in
detail; the product of two terms from different components of the product is
simply the tensor product of these terms, while the product .l1jp/.l2jp/ D
.�1/j.l1jp/jj.l2 jp/j.l2jp/.l1jp/.
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5.4 Place Polarization Maps and Capelli Identities

In Sect. 3 we defined the Weyl and Schur maps, which entailed a good deal of
diagonalization, identification, and multiplication from a tensor product of divided
(exterior) powers to a tensor product of exterior (symmetric) powers. We now know
that these tensor products of various powers can be expressed in letter-place terms,
and we may ask if these complicated maps may be viewed in a different way
(hopefully, a simpler way) using the letter-place approach. The answer, as was no
doubt anticipated, is yes, and the method will be that of place polarizations.

We will consider two types of maps, both of which are called place polarizations:
those from “positive places to positive places” and those from “positive places to
negative places.”

Definition 4. Let q 2 PC; s 2 P ; s ¤ q, and let .l jp/ be a basis element of
S.LjP/. Define the place polarization, @s;q , to be the unique derivation on S.LjP/

defined by
@s;q.l jp/ D ıq;p � .l js/;

where ıq;p is the Kronecker delta.

When we say that this map is a derivation on S.LjP/, we mean that it has the
property

@s;qf.l1jp1/.l2jp2/g D f@s;q.l1jp1/g.l2jp2/ C .�1/jsjjp1j.l1jp1/@s;q.l2jp2/:

A straightforward calculation shows that if s is a negative place, then @2
s;q D 0.

On the other hand, we can see easily that if s is positive, @2
s;qf.l1jq/.l2jq/g D

2f.l1js/.l2js/g, so that for q and s positive places, it makes sense to talk about the
higher divided powers of the place polarizations, @s;q , namely, @

.k/
s;q . In the case of

the divided square just discussed, for instance, we see that the equation may be
interpreted as @

.2/
s;q.l1l2jq.2// D .l1l2js.2//. In general, then, we have

@.k/
s;q .wjq.m// D .wjq.m�k/s.k//;

where q and s are positive places.
One fundamental identity, which it is easy to prove, is the following:

Fact 5. Let p; q; r be places with q and p positive, and consider the place
polarizations @r;q ; @q;p , and @r;p . Then

@r;p D @r;q@q;p � @q;p@r;q:

In short, @r;p is the commutator of @q;p and @r;q .

We’ll first look at positive-to-positive place polarizations.
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Assume that our places p; q, and r are all positive. Then as we know, we can
form the divided powers of all of the place polarizations involving these places, and
ask if there are identities associated to these that generalize the basic identity proved
above.

Proposition 6 (Capelli Identities). Let p; q; r be places with p; q, and r all
positive, and consider the place polarizations @r;q; @q;p and @r;p . Then

.Cap/ @.a/
r;q @.b/

q;p D
X

k�0

@.b�k/
q;p @.a�k/

r;q @.k/
r;pI

.Cap0/ @.b/
q;p@.a/

r;q D
X

k�0

.�1/k@.a�k/
r;q @.b�k/

q;p @.k/
r;p:

For full details, see [7].
We next turn to positive-to-negative place polarizations.
In this case, we consider what happens if r is a negative place, with both p

and q still positive. If we look at the above proof and keep in mind that higher
divided powers of positive-to-negative polarizations are zero, the identities .Cap/

and .Cap0/ make sense only when a D 1, and our proof in the case a D 1 above, is
still valid. Hence we have the following proposition:

Proposition 7 (Capelli Identities). Let p; q; r be places with p; q positive, and r

negative. Consider the place polarizations @r;q; @q;p and @r;p . Then

.Cap/C@r;q@.b/
q;p D @

.b/
q;p@r;q C @

.b�1/
q;p @r;p;

.Cap0/�@.b/
q;p@r;q D @r;q@

.b/
q;p � @

.b�1/
q;p @r;p:

5.5 Return to Weyl and Schur Maps

Recall the set-up for the definitions of the Weyl and Schur maps. We let F be a finite
free module over the commutative ring, R: For the n � m shape matrix A D .aij /,
set pi D Pm

j D1 aij ; 	j D Pn
iD1 aij . The Weyl map associated to A; !A, is a map

!A W Dp1 F ˝ � � � ˝ DpnF ! ƒ	1F ˝ � � � ˝ ƒ	mF

that we defined using many diagonalizations, identifications, and multiplications.
Similarly, we defined the Schur map

�A W ƒp1 F ˝ � � � ˝ ƒpnF ! S	1F ˝ � � � ˝ S	mF:

We now maintain that these maps can be described using place polarizations; in
particular, positive-to-negative place polarizations.
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For the Weyl map, we are going to consider the basis, LC, of F as a positive
letter alphabet (in the letter-place language), and our place alphabet P D PC ]P�,
where PC D f1; : : : ; ng and P� D f1; : : : ; mg. For the Schur map, we are going
to regard the basis of F as a negatively signed letter alphabet, L�, and our place
alphabet the same as the above.

We next observe that S.LCjP/ D D.F ˝ Rn/ ˝ ƒ.F ˝ Rm/, which contains
the subalgebras S.LCjPC/ D D.F ˝ Rn/ and S.LCjP�/ D ƒ.F ˝ Rm/. Our
discussion of the letter-place algebra tells us that D.F ˝ Rn/ D DF / ˝ � � � ˝ DF„ ƒ‚ …

n

while ƒ.F ˝ Rm/ D ƒF ˝ � � � ˝ ƒF„ ƒ‚ …
m

. A similar discussion applies to the algebra

S.L�jP/ D ƒ.F ˝ Rn/ ˝ S.F ˝ Rm/.
What we will show is that our Weyl (or Schur) maps are compositions of place

polarizations that take us from our desired domain to our desired target through
S.LCjP/ (or S.L�jP/).

Although we can carry out this project for arbitrary shapes, we’ll restrict our-
selves to almost skew-shapes. Recall that an almost skew-shape can be represented
as �=� where � is a partition and � is an almost partition. In order to conform to the
notation used to describe the shape matrix, A, above, we’ll assume that our partition
� has length n, and that �1 � �n D m if � is a partition, and that �1 � �n�1 D m if
� is not a partition. A quicker way to say this is that �1 � min.�n; �n�1/ D m. As
we’ve noted before, we may as well set min.�n; �n�1/ D 0.

Using this notation for our shapes, we see that the numbers pi and 	j above
become:

pi D �i � �i I 	j D Q�j � Q�j ;

for i D 1; : : : ; n and j D 1; : : : ; m, where the tilde denotes the transpose shape
matrices of � and �.

For each i D 1; : : : ; n, let

�i D @�i ; i � � � @�i C 1; i:

(Recall that we are assuming that min.�n; �n�1/ D 0, so that m D �1.) Now we set

��=� D �n � � � �1:

We see that each �i is a composition of positive-to-negative place polarizations
from the positive place, i , to the negative places �i C 1 to �i. Hence the map
��=� is a composition of such place polarizations from 1; : : : ; n to 1; : : : ; m. We
see, therefore, that the image of ��=� is contained in that part of S.LCjP/ which
contains no positive places, namely, in ƒ.F ˝ Rm/ or, what is the same thing, it is
a map

��=� W DF ˝ � � � ˝ DF„ ƒ‚ …
n

! ƒF ˝ � � � ˝ ƒF„ ƒ‚ …
m

:
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If we restrict it to Dp1 F ˝� � �˝Dpn F , it is immediate to see that we end in ƒ	1F ˝
� � �˝ƒ	m F . It’s laborious but straightforward to prove that this last map is the same
as the Weyl map !A for A D �=�; we will sketch a procedure for carrying out such
an argument.

We know that a basis for Dp1 F ˝ � � � ˝ Dpn F consists of double tableaux

.W /

0

BB@

w1 1.p1/

w2 2.p2/

� � � � � �
wn n.pn/

1

CCA :

The result of applying ��=� to such a tableau yields the tableau

0
BB@

w1 �1 C 1 � � � �1

w2 �2 C 1 � � � �2

� � � � � � � � � � � �
wn �n C 1 � � � �n

1
CCA :

If one now reads this tableau as the element one obtains by diagonalizing wi over
the negative places �i C i; : : : ; �i and multiplying, one sees that this is precisely the
definition of the map !�=�.

The discussion of the Schur map is identical to this one, with the proviso that we
now consider the letters to be negative. However, we are still going from positive
places to negative ones, in exactly the same way, so that while the domain and range
of the Weyl and Schur maps are different, the expression of them as composites of
place polarizations is identical.

5.6 Some Kernel Elements of Weyl and Schur Maps

In this section, we will define some maps from the sum of tensor products of divided
powers (exterior powers) to the domain of the Weyl (Schur) map and show that the
images are in the kernel of the Weyl (Schur) map. These maps are what were called
in [5] the “box map”; here we will see that they are expressible in terms of positive-
to-positive place polarizations.

Consider our almost skew-shape �=� W � D .�1; : : : ; �n/; � D .�1; : : : ; �n/.
Remember that the shape is of type � D n�.i C1/ if i is the largest integer different
from n such that �n � �i . Thus, � D 0 means that �=� is a skew-shape; � > 0

means that the bottom row of the diagram of �=� is indented on the left from the
penultimate row.

We will introduce some more notation that we will use uniformly when we
discuss these almost skew-shapes.



268 D.A. Buchsbaum

Notation (Almost Skew-Shapes)

We will set ti D �i � �iC1 for i D 1; : : : ; n � 1. If � D 0, this means that
�n � �n�1 and tn�1 D �n�1 � �n D �n�1. If � > 0, this means that �n�1 � �n D
��n < 0; moreover there is an i D n � 1 � � such that �iC1 < �n � �i ,
and we set s D �n � �iC1. Finally, we denote our shape �=� by the notation
.p1; : : : ; pnI t1; : : : ; tn�1/.

With this notation, we see that the diagram of an almost skew-shape of type
� D n � .i C 1/ > 0 looks like this:

t1 p1

p2

:::
:::

:::
:::

ti pi

piC1

:::
:::

:::
:::

tn�2 pn�2

pn�1

tn�2 C � � � C tiC1 C s pn

with 0 < s � ti : Of course, tn�2 C � � � C tiC1 C s D �n � �n�1 D �tn�1 > 0.
We will now restrict ourselves to the Weyl case until the end of this subsection,

where we indicate how the results apply to the Schur case as well.
Assume that our shape .p1; : : : ; pnI t1; : : : ; tn�1/ is a skew-shape, that is, assume

that tn�1 � 0.
For each i D 1; : : : ; n � 1 and for each ki > 0, we consider the module

Dp1 ˝ � � � ˝ Dpi Cti Cki ˝ DpiC1�ti �ki ˝ � � � ˝ Dpn and the (positive-to-positive)
place polarization

@
.ti Cki /
iC1;i W Dp1 ˝ � � � ˝ Dpi Cti Cki ˝ DpiC1�ti �ki ˝ � � � ˝ Dpn ! Dp1 ˝ � � � ˝ Dpn:

Here, and from now on in most cases, we omit the underlying free module, F , from
our notation.

Define ��=�;i to be the map

��=�;i W
X

ki >0

Dp1 ˝� � �˝Dpi Cti Cki ˝DpiC1�ti �ki ˝� � �˝Dpn ! Dp1 ˝� � �˝Dpn ;

which, on each summand, is equal to @
.ti Cki /
iC1;i . Now define

Rel.�=�/ D
X

i

X

ki

Dp1 ˝ � � � ˝ Dpi Cti Cki ˝ DpiC1�ti �ki ˝ � � � ˝ Dpn;
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where the sum is taken over i D 1; : : : ; n � 1 and all positive ki . And now define

��=� W Rel.�=�/ ! Dp1 ˝ � � � ˝ Dpn

to be the map which, for each i , is the map ��=�;i .
In short, ��=� is the sum of many, many place polarizations.
We will often write Rel.p1; : : : ; pnI t1; : : : ; tn�1/ for Rel.�=�/ when we want to

make the data for the shape more explicit. The reason for this elaborate notation is
that we will eventually show that the image of the map ��=� is the kernel of the
Weyl map ��=� D !�=�.

For an almost skew-shape of type � > 0, the kernel of the Weyl map will be
given by relations of the kind above, plus � additional kinds of terms. It’s evident
from the definition of the map ��=� above that the relations on the Weyl map for a
skew-shape involve shuffling between consecutive pairs of rows of the shape. The
additional terms that we must consider for the almost skew-shape of type � > 0

involve shuffling between the last row and those rows beyond which it doesn’t
protrude (to the left), as well as the lowest row beyond which it does protrude. In our
diagram of the almost skew-shape of type � > 0, this means that we have to shuffle
the last row with the rows from n�1 up through the i th. This makes n�.i C1/ D �

rows, and hence � kinds of terms to describe these shuffles.
We now formally describe these additional terms. For j D i C 1; : : : ; n � 2,

define

4�=�;j W
tjX

kj D1

Dp1 ˝� � �˝Dpj Ckj ˝Dpj C1
˝� � �˝Dpn�1 ˝Dpn�kj ! Dp1 ˝� � �˝Dpn

to be the map which on each component is the place polarization @
.kj /

n;j , and for
i D n � .� C 1/, define

4�=�;i W
sX

kD1

Dp1 ˝� � �˝DpiCti�sCk˝DpiC1
˝� � �˝Dpn�1 ˝Dpn�.ti�s/�k ! Dp1 ˝� � �˝Dpn

to be, again, the map which on each component is the place polarization @
.ti �sCk/
n;i .

We next define, for an almost skew-shape, �=� of type � > 0, the overall
relations Rel.�=�/ D Rel.p1; : : : ; pnI t1; : : : ; tn�1/ by

Rel.p1; : : : ; pnI t1; : : : ; tn�2; 0/
M
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n�2X

j DiC1

tjX

kj D1

Dp1 ˝ � � � ˝ Dpj Ckj ˝ Dpj C1
˝ � � � ˝ Dpn�1 ˝ Dpn�kj

M

sX

kD1

Dp1 ˝ � � � ˝ Dpi Cti �sCk ˝ DpiC1
˝ � � � ˝ Dpn�1 ˝ Dpn�.ti �s/�k;

and the map

��=� W Rel.p1; : : : ; pnI t1; : : : ; tn�1/ ! Dp1 ˝ � � � ˝ Dpn

in the by now obvious way.
The thrust of this subsection is the statement of the following essential result.

Theorem 8. Let �=� be any almost skew-shape. Then the composition

Rel.�=�/
��=��! Dp1 ˝ � � � ˝ Dpn

��=��! ƒ	1 ˝ � � � ˝ ƒ	m

is zero. That is, the image of ��=� is contained in the kernel of the Weyl map.

Again we defer to the limits of space and simply refer the reader to [7]. I’ll just
say that the proof depends heavily on the Capelli identity .Cap/ involving positive-
to-negative polarizations.

Corollary 9. Let us define NK�=� to be the cokernel of ��=�. Then the identity map
on Dp1 ˝ � � � ˝ Dpn induces a map 
�=� W NK�=� ! K�=�:

Proof. This follows immediately from the result above. ut
All of the above discussion carries over to the Schur map and Schur modules,

simply by replacing divided powers by exterior powers and exterior powers by
symmetric powers. Or, if one wishes, one can simply replace the positive letter
alphabet by its negative counterpart. All the maps that we define are in terms of
the place alphabets, and these haven’t changed.

5.7 Tableaux, Straightening, and the Straight Basis Theorem

The last theorem is a step toward giving us a presentation of our Weyl (Schur)
modules: since the image of ��=� is the Weyl module, K�=�, it suggests that perhaps
the sequence

Rel.�=�/ ! Dp1 ˝ � � � ˝ Dpn ! K�=� ! 0

is exact. At least we know it’s a complex. In this subsection, we will state a basis
theorem for our Weyl (Schur) modules, from which the exactness of the above
sequence will follow. At this point, a certain amount of combinatorics will enter
the picture.
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5.7.1 Tableaux for Weyl and Schur Modules

The Weyl module corresponding to the shape,

,

is the image of D4 ˝ D3 under the map �2�1, where

�1 D @5;1@4;1@3;1@2;1I

�2 D @3;2@2;2@1;2:

Suppose fxig is a basis for our free module, F (unspecified rank at this point), and
suppose we take the basis element of D4 ˝ D3 W x

.2/
2 x3x4 ˝ x1x2x4. In our double

tableau notation for D4 ˝ D3, this would be written

�
x2x2x3x4 1.4/

x1x2x4 2.3/

�
;

and its image under ��=� would be

�
x2x2x3x4 2 3 4 5

x1x2x4 1 2 3

�
:

What we will do is write this element as

x2 x2 x3 x4

x1 x2 x4

,

namely, as a tableau. This may cause some initial confusion as the element we are
representing by this tableau is in reality a sum of basis elements in ƒ1 ˝ ƒ2 ˝
ƒ2 ˝ ƒ1 ˝ ƒ1 rather than simply a filling of a diagram. To be more meticulous,
we should really introduce some term such as Weyl tableau to indicate that it is
more than just a filled diagram. However, it will be clear from the context of our
discussions, when we are using the term “tableau” in this extended sense, and when
we are using it in the strictly combinatorial or typographic sense. This notation is
not only the standard one used for these modules, but it is also extremely efficient.

All of the above carries over mutatis mutandis for Schur modules: the divided
powers are replaced by exterior powers, and the exterior powers are replaced by
symmetric powers. In addition, the positive letters are replaced by negative letters.

The next definitions of various kinds of standardness and straightness of tableaux
apply to tableaux of positive or negative letters; we will therefore introduce a
notation that will apply to both cases simultaneously.
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Notation (Signed Inequalities)

If A is a multi-signed alphabet, we say that a <C b if a < b or a and b are positive,
and a D b. We say that a <� b if a < b or a and b are negative, and a D b.

In less formal language, a <C b means, for example, that if a and b are both
positive, then a � b. Otherwise, a < b.

With this notation we proceed with some definitions.

Definition 10. We say that a tableau (of any shape) is row-standard if in each row
it is <C -increasing; we say it is column-standard if in each column it is <�
-increasing. We say it is standard if it is both row- and column-standard.

Definition 11. In a row-standard tableau, two elements aik; ajk (with i < j ) in
the same column are said to form (or be) an inversion if they violate column-
standardness. That is, if aik is not <� ajk . The inversion is said to be unflippable
if there is an element in the tableau, bik�1, immediately to the left of aik , such that
ajk <� bik�1. Otherwise the inversion is called flippable. The row-standard tableau
is said to be straight if every inversion is unflippable.

Clearly, since a standard tableau has no inversions, a standard tableau is
necessarily straight. We do have a partial converse.

Proposition 12. If �=� is a skew-shape and T is a row-standard tableau of that
shape, then T is straight if and only if it is standard.

Proof. This is pretty straightforward. ut
From now on, we will focus our attention on Weyl modules; the appropriate

changes for Schur modules will mostly be left to the reader. In the Weyl case, <C -
increasing means weakly increasing, while <� -increasing means strictly increasing.

5.7.2 Straightening Tableaux

What we want to do now is show that our Weyl modules are generated by the straight
tableaux. There is a procedure that is called “straightening”, that is used to do this.
Before we get into the general details, we give two examples of straightening.

Example 13. Let’s take as our first example the tableau we’ve just looked at,

namely,
x2 x2 x3 x4

x1 x2 x4

: It fails to be standard because of an inversion in the

second column. This element is the image of x
.2/
2 x3x4 ˝ x1x2x4 2 D4 ˝ D3.

However, let us look at x1x
.3/
2 x3x4 ˝ x4 2 D6 ˝ D1 
 Rel..5; 3/=.1; 0//, and

at its image under �.5;3/=.1;0/ which, in this instance, means applying the map @
.2/
2;1.

We get
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x
.2/
2 x3x4 ˝ x1x2x4 C x

.3/
2 x4 ˝ x1x3x4 C 2x

.3/
2 x3 ˝ x1x

.2/
4 C

x1x2x3x4 ˝ x
.2/
2 x4 C x1x

.2/
2 x4 ˝ x2x3x4 C

2x1x
.2/
2 x3 ˝ x2x

.2/
4 C 2x1x

.3/
2 ˝ x3x

.2/
4 :

Notice that the first summand is the term we started with. If we apply the Weyl
map to this sum, we get zero by the theorem of the last section. This means that
our original tableau is equal to the negative of the sum of the tableaux we obtain by
writing the images of all the remaining summands as tableaux. One sees easily that
all of these tableaux are standard, so that our original tableau is a linear combination
of standard tableaux.

Example 14. Another example to consider is the following tableau corresponding

to an almost skew-shape of type 1:
x3 x3 x3

x2 x4 x4

x4

: Here we have an inversion that

is flippable (in the second column, second and third rows). In this case, we swoop
up the third with the second row, and consider the element x

.3/
3 ˝ x2x

.3/
4 ˝ 1 2

D3 ˝ D4 ˝ D0 
 Rel..4; 3; 2/=1; 0; 1//. This maps (under @3;2) to the sum: x
.3/
3 ˝

x2x
.2/
4 Cx

.3/
3 ˝x

.3/
4 ˝x2, one of whose summands is our original term. If we arrange

these in tableaux, we have our original tableau plus another, namely,
x3 x3 x3

x4 x4 x4

x2

;

which isn’t straight because of a flippable inversion in the second column, first and
third row. We will see soon that this tableau is “better” than the one we started with,
but we can go one step further to actually express our original tableau as a sum of
straight ones. For now we can swoop up the third and first rows together, getting
�x2x

.3/
3 ˝ x

.3/
4 ˝ 1 2 D4 ˝ D3 ˝ D0 
 Rel..4; 3; 2/=.1; 0; 1//, and the image of

this element under @3;1 is �x
.3/
3 ˝ x

.3/
4 ˝ x2 � x2x

.2/
3 ˝ x

.3/
4 ˝ x3. This shows that

our original tableau is equal to the straight tableau:
x2 x3 x3

x4 x4 x4

x3

:

The main task is to formalize the argument underlying the procedure illustrated
above in order to prove that the straight tableaux generate. We will have to omit
the details, and refer the reader to the book, [7], where these can be found. But we
should at least say what we mean by one tableau being “better” than another.

Definition 15. Let T be a tableau. We define the column word of T , denoted uT ,
to be the word we obtain by writing down the elements of the columns of T starting
from the bottom of the left-most column of T , working up that column, returning
to the bottom of the next column, etc. We define the modified column word of
T , denoted wT , to be the word obtained from T reading the columns in decreasing
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order. Finally, we define the reversed column word of T , denoted w0
T , to be the

word obtained from T reading the columns in increasing order.

Just to be sure that there is no confusion about this definition, let us look at the

tableau,
x3 x3 x3

x4 x4 x4

x2

. The column word is uT D x4x2x4x3x4x3x3; the modified

column word is wT D x4x4x3x2x4x3x3, and the reversed column word is w0
T D

x4x2x3x4x3x4x4.
Notice that the tableau above appeared in Example VI.7.5, but there it was being

treated as an element of K�=�. Here, however, we are regarding the tableau purely
combinatorially.

Definition 16. Given two tableaux, T and T 0, corresponding to the same diagram,
we say that T 0 < T if uT < uT 0 in the lexicographic ordering of words.

In Examples 13 and 14 above, the tableaux that were produced via straightening
were all less than the original tableaux we started with.

These definitions provide the tools to show that the straight tableaux generate our
Weyl module for an almost skew-shape.

5.7.3 Taylor-Made Tableaux, or a Straight-Filling Algorithm

To prove that the set of straight tableaux is linearly independent, there is a very
clever algorithm, which we will call the Taylor algorithm, that produces straight
tableaux of a given shape from certain reverse column words. The algorithm was
developed by B. Taylor, and, as with most of these constructions involving straight
tableaux, applies to the larger class of row-convex shapes. We, however, will
describe this algorithm just for our almost skew-shapes.

Algorithm (Taylor Algorithm)

Let D be the diagram of an almost skew-shape with columns c1; : : : ; cm, and let
w D x11 ^ � � �^ x1	1 ˝� � �˝xm1 ^ � � �^ xm	m be a basis element of ƒ	1 ˝� � �˝ƒ	m .
Arrange x11; : : : ; x1	1 in increasing order in column c1. Next, place x21 in the first
box of c2 which either has no neighbor to its immediate left or has such a neighbor
whose entry is less than or equal to x21. If there is no such box in c2, the output of
the algorithm is “no straight filling.” If there is such a box, fill it with x21. Assuming
that we have placed x21; : : : ; x2 j , we place x2 j C1 in the first empty box of c2 which
either has no neighbor to its immediate left, or has such a neighbor whose entry is
less than or equal to x2 j C1. Again, if there is no such box, our output is “no straight
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filling”; if there is, we fill it with x2 j C1.9 We continue in this way with the remaining
columns, obtaining an output of “no straight filling,” or a filling which we shall call
T .w/.

Let’s look at an example or two. As our shape, we will take one we have used
earlier, namely, .4; 3; 2/=.1; 0; 1/. This has three rows and four columns, with 	1 D
1; 	2 D 3; 	3 D 2; 	4 D 1. The word w1 D x4 ˝x1 ^x2 ^x4 ˝x4 ^x5 ˝x6 produces

the filling
x1 x4 x6

x4 x4 x5

x2

; while the word w2 D x4 ˝ x1 ^ x2 ^ x5 ˝ x4 ^ x6 ˝ x4

produces the filling
x1 x4 x4

x4 x5 x6

x2

: On the other hand, words such as x4 ˝ x1 ^ x2 ^

x4 ˝ x5 ^ x6 ˝ x4 or x5 ˝ x1 ^ x2 ^ x4 ˝ x4 ^ x6 ˝ x4 produce “no straight filling.”
We point out a few things about this algorithm. First of all, if we start with a

straight tableau, T , with reverse column word w0 (written as a basis element of our
tensor product of exterior powers), then T .w0/ will clearly have the reverse column
word w0, if T .w0/ exists. But from our second fact above, T .w0/ clearly does exist
and equals T . We therefore see that if two straight tableaux have the same reverse
column word (and hence the same modified column word), then they are equal.
Hence the straight tableaux are precisely those whose reverse column words produce
a successful outcome of the straight-filling algorithm.

This algorithm makes it possible to prove the linear independence of the straight
tableaux in a manner almost identical to the classical proof for skew-shapes (for
which straight tableaux are standard). It was with the idea of “straight tableaux”
that Taylor was able to extend that proof to the almost skew-shapes.

We now have the straight basis theorem for almost skew-shapes.

Theorem 17. Let F be a free R-module, and �=� an almost skew-shape. The
following statements are true:

(1) The Weyl module, K�=�.F /, is a free R-module with basis consisting of the
straight tableaux in a basis of F .

(2) The map 
�=� W NK�=�.F / ! K�=�.F / is an isomorphism.
(3) The functor K�=�.F /, considered as a functor of F , is universally free.

We should add that from the proof of this theorem, we also obtain a proof of
the fact that the ��=� map provides a presentation of the Weyl (Schur) module
corresponding to an almost skew-shape.

Since the proofs (and examples) have dealt almost exclusively with Weyl
modules, I should add that with slight (and evident) modifications for the case of
Schur modules, the same theorems can be proven.

9We have put a larger space between the indices 2 and j and 2 and j C1 to avoid possible confusion
of juxtaposition with multiplication.
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5.8 Duality

As anticipated in our discussion of the special case of hooks, there is a duality
between some Weyl and Schur modules. It is well-known, [5], that if A is the shape
matrix of a skew-shape, �=�, and eA is its transpose (again the shape matrix of a
skew-shape), then KA.F �/ Š .LeA.F //�. The proof depends in part on the fact that
for such shapes, the modules in question are universally free. Now, if A is the shape
matrix of an almost skew-shape of positive type, its transpose is no longer of the
same kind. Therefore, if we want an isomorphism like the one stated, we would at
least have to saturate the class of almost skew-shapes with respect to transposition,
and develop all of the preceding material for that larger class of shapes. Since all
of the shapes in that class would be row-convex, and the straightening techniques
and algorithms used in this chapter apply to row-convex shapes, one could probably
arrive at such a duality statement.

6 Further Discussion of the Proofs

In this section, we’ll try to furnish an idea of the proof of the theorems stated
in Sect. 5.1 on letter-place methods. More precisely, Sects. 6.1 and 6.2 indicate
the proof of Theorem 2 which involves straightening considerations (Sect. 6.1)
as well as a combinatorial procedure known as the Robinson–Schensted–Knuth
correspondence (Sect. 6.2).

6.1 Theorem 2, Part 1: The Double Standard Tableaux
Generate

To show the generation by double standard tableaux, we can assume that they’re
row-standard all the time, since we can always row-standardize them without
changing their values. We can also assume that the lengths of the rows are
decreasing, since we can always arrange that without changing their values. So we’re
talking about double tableaux of the form

.S/

0

BB@

w1 1.a11/ 2.a21/ 3.a31/ � � �
w2 1.a12/ 2.a22/ 3.a32/ � � �
� � � � � � � � � � � � � � �
wn 1.a1n/ 2.a2n/ 3.a3n/ � � �

1

CCA
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where ˛i D .a1i C a2i C a3i C � � � / � ˛j for 1 � i < j � n; and the words, when
written out, are increasing. Our tableaux of the form .W /:

.W /

0
BB@

w1 1.k1/

w2 2.k2/

� � � � � �
wn n.kn/

1
CCA

are, by rearranging the order of the rows if necessary, of type .S/ above. Since they
form a basis for Dk1.F /˝� � �˝Dkn .F /, it certainly suffices to prove that any double
tableau of type .S/ is a linear combination of standard double tableaux.

The procedure used is to put a quasi-order on these double tableaux and show
that we can express a double tableau that is not standard in the places (or letters) as
a linear combination of others which are “lower” in the quasi-order. Since the set of
tableaux is finite, this will show that we can express any double tableau as a linear
combination of such that are standard in the places. We then do the same for the
letters. As this process cannot go on forever, each double tableau must eventually be
a linear combination of standard double tableaux; that is, the standard ones generate.

At the cost of being ultra pedantic, we shall denote a double tableau, T , by a
triple: T D .�I L; P /, to denote the diagram, the “letter”, and the “place” parts of
the tableau. We stress that the diagram is always to be that of a partition in this
case. In Definition 3, we described a well-known partial order on partitions: we said
that �0 > � if the first row of �0 (from the top) which differs in length from the
corresponding row of �, is longer than that of �. We also defined in Definition 7,
a quasi-order on single tableaux. Using these orderings, we now define a quasi-
ordering of our double tableaux.

Definition 1. Given tableaux, T D .�I L; P / and T 0 D .�0I L0; P 0/, we define
.�0I L0; P 0/ � .�I L; P / if �0 � �, L0

ij � Lij for all i; j , and P 0
ij � Pij for all i; j .

We then say that .�0I L0; P 0/ < .�I L; P / if .�0I L0; P 0/ � .�I L; P /, and either
�0 > � or �0 D � and either L0

ij > Lij for some i; j , or P 0
ij > Pij for some i; j .

To give an example, and also to see how the general “straightening” proceeds,
consider an elementary, yet prototypical situation:

T D
�

w1 1.a1/ 2.b1/

w2 1.2/ 2.b2/

�
;

where w1 and w2 are words of degrees a1 C b1 and 2 C b2, respectively. (We’re now
dropping the cumbersome designation of a tableau as a triple.)

Our problem in the “place” section of the tableau is that we have 1 in the bottom
row, so that no matter what the value of a1, that section isn’t standard.

Recall that

T D
X

w1.a1/w2.2/ ˝ w1.b1/w2.b2/
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where the letters in parentheses indicate the degrees of the wi under appropriate
diagonalization. (We will continue to use this notation to indicate that we have
diagonalized our terms in the indicated degrees.)

Consider now:

T 0 D
�P

w1w2.2/ 1.a1C2/ 2.b1/

P
w2.b2/ 2.b2/

�
;

T 00 D
�

w1 1.a1C1/ 2.b1�1/

w2 1 2.b2C1/

�
;

T 000 D
�

w1 1.a1C2/ 2.b1�2/

w2 2.b2C2/

�
:

Then it is straightforward to check that

T D T 0 � .b2 C 1/T 00 �
 

b2 C 2

2

!
T 000:

• It is extremely important to observe at this point that the diagram for T 0 has
changed shape, but it is bigger than that of our original T . The shapes of T 00
and T 000 are the same as our original, the letter part of the tableau hasn’t changed
(i.e., L00 D L000 D L), but we have both P 00 and P 000 which are different from
P . In both cases, though, we have decreased these tableaux (in the quasi-order).
Notice that if we were to “straighten” our letter tableau similarly, the changes
would either lead to a bigger diagram, in which case we go down in the order,
or the places would remain unchanged, and the letter tableaux that intervened
would be lower in the quasi-order.

• When checking this type of calculation, it’s most often convenient to assume that
the words, wi , are simply divided powers. That is, we might assume that w1 D
x.a1Cb1/ and that w2 D y.2Cb2/. This makes keeping track of the diagonalizations
much easier.

The point of this exercise is to show that when we get rid of an instance of
non-standardness, the tableaux that emerge in the process are all less, in the quasi-
order we introduced, than the tableau we started with. In the case of T 0, this is
due to the fact that the diagram of T 0 is properly larger than that of T ; in the other
two cases, the “letter” side of the tableau hasn’t changed, but the “place” side has
properly decreased. Of course, the tableau, T 00; is manifestly nonstandard (the
others may or may not be, depending on the relative values of a1; b1, and b2).
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To see how a greater number of places affect the straightening procedure, we’ll
look at one more example. To this end, consider

T D
�

w1 1.a1/ 2.b1/ 3.c1/

w2 1 2.b2/ 3.c2/

�
:

Then if we set

T 0 D
�P

w1w2.1/ 1.a1C1/ 2.b1/ 3.c1/

P
w2.b2 C c2/ 2.b2/ 3.c2/

�
;

T 00 D
�

w1 1.a1C1/ 2.b1�1/ 3.c1/

w2 2.b2C1/ 3.c2/

�
;

and

T 000 D
�

w1 1.a1C1/ 2.b1/ 3.c1�1/

w2 2.b2/ 3.c2C1/

�
;

we have

T D T 0 � .b2 C 1/T 00 � .c2 C 1/T 000:

Again we see that we’ve eliminated the offending 1 in the bottom row, and we
have “replaced” T by the tableaux T 0; T 00 and T 000 which are strictly lower in our
quasi-order than T .

As these two examples show, it is enough to work either on the letter or place
side of the tableau to push us further toward standardness. These examples are
prototypical in the sense that it’s enough to work on straightening two adjacent rows,
for if we have a tableau that is not standard, this is because it is not strictly increasing
in the columns (since we start with row-standardness). But then a violation of strict
increase must also occur in two adjacent rows. This is the reason that we can focus
on two-rowed double tableaux such as

T D
�

w1 z11 z12 z13 � � � z1k

w2 z21 z22 z23 � � � z2l

�

where we write zij to represent the integers from 1 to n, with possible repeats.
Suppose that the first violation of strict increase occurs in the i th column, that is,
z11 < z21; : : : ; z1i�1 < z2i�1; but z1i � z2i : (The i th column could be the first, as it
was in the above examples.) Next, suppose that z2i D � � � D z2t < z2tC1 (possibly
t D i ), and consider the sum of tableaux:

T 0 D
X�

w1w2.t/ z11 � � � z1i�1 z21 � � � z2t z1i � � � z1k

w2.l � t/ z2tC1 � � � z2l

�
:
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Now, for each subset J of U D fz21; : : : ; z2t ; z1i ; : : : ; z1kg, of order 0 < s < t , let
J 0 be the complement of J in U , let ZJ 0 be the row tableau of that set, and let ZJ

be the corresponding row tableau of J . We let I stand for an arbitrary subset of U

of order precisely t , other than the subset fz21; : : : ; z2t g itself, I 0 its complementary
subset, and ZI 0 ; ZI as for J . Set

T 0
J D

X�
w1w2.t � s/ z11 � � � z1i�1 ZJ 0

w2.l � t C s/ ZJ z2 tC1 � � � z2l

�
;

and let cJ equal plus or minus the product of binomial coefficients that would be
appropriate due to the multiplication in the divided power algebra, of ZJ with
z2 tC1 � � � z2l (see the foregoing examples to get a more concrete picture of this
description). Finally, let

T 00
I D

X�
w1 z11 � � � z1i�1 ZI 0

w2 ZI z2 tC1 � � � z2l

�
;

and let cI equal plus or minus the corresponding product of binomial coefficients.
Then it is tedious, but straightforward, to prove that

T D ˙T 0 C
X

J

cJ T 0
J C

X

I

cI T 00
I :

The important thing to observe in this equation is that the diagrams of T 0 and
T 0

J are all bigger than that of T , and so all these terms are strictly lower in the
quasi-order. The terms T 00

I all have the letter half of the tableau unchanged from
that of T . However, since our sets I must have t elements, and none can be the
set fz21; : : : ; z2t g itself, at least one of these elements must remain in the top row,
and one of the elements z1u > z2i must come down into the bottom row. Thus, the
resulting tableaux in this case are all less in the quasi-order than the original.

One may ask, when dealing with the tableaux other than the T 00
I what we do about

keeping these tableaux within the class we’re considering, namely, the lengths of the
rows decreasing. In order to keep to this recipe, we simply push the top row of the
two up as far as it has to go, and the bottom one down to where it has to go to make
it into a legitimate shape. But this still makes the shape lower in our quasi order than
the original.

6.2 Theorem 2 Part 2: Linear Independence of Double
Standard Tableaux

Here we introduce the Robinson–Schensted–Knuth correspondence (which will
be written R-S-K in the future) to set up a one-to-one count between the double
standard tableaux and the usual basis elements of Dk1 .F / ˝ � � � ˝ Dkn.F /.
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Let us agree to write x.k/ as x � � � x„ƒ‚…
k

, when there is no danger of confusion. That is,

we write x � � � x„ƒ‚…
k

to mean the row tableau consisting of k copies of x in a row. Then

a basis element of Dk.F / is the same as a non-decreasing sequence of elements:
xi1 � xi2 � � � � � xik , and a basis element of Dk1.F / ˝ � � � ˝ Dkn.F / is a long
string of such sequences. For instance, the basis element x

.2/
1 x3 ˝ x

.3/
2 x3 2 D3 ˝

D4 corresponds to the long sequence ˇ D x1x1x3x2x2x2x3. Now R-S-K sets up a
correspondence between such sequences and pairs of tableaux. Before we describe
(loosely) this correspondence in general, let us look at the example at hand.

To ˇ we want to associate two tableaux, L.ˇ/ and P.ˇ/; first we will describe
how we get L.ˇ/. Since x1x1x3 is increasing, we put these elements in a row
tableau: x1 x1 x3 . But now we hit up against x2 (the next term in our sequence),
and if we were to put that in as the next element of the row, we would spoil row-
standardness. So, we “bump” the x3 from the first row and replace it by x2 while

moving x3 to the second row of a now two-rowed tableau:
x1 x1 x2

x3

. And now

we see that the remaining three terms of the sequence, ˇ, can all be placed in
the first row without necessitating any bumping, so the tableau we end up with

is L.ˇ/ D x1 x1 x2 x2 x2 x3

x3

. (Notice that this tableau is standard, an end result

guaranteed by the nature of the bumping process.)
To assign the next tableau, P.ˇ/, we will make a slight modification of the usual

R-S-K, and make use of the fact that we are looking very distinctly at D3 ˝ D4,
namely, a twofold tensor product of divided powers of designated degrees. This
means that we have only two places to deal with, namely, 1 and 2, and we want
P.ˇ/ to be of the same shape as L.ˇ/, standard, and filled with the places 1 and
2. Now the first part of the construction of our tableau involved using the first three
terms of the sequence, ˇ, so that the first three boxes of the first row should be filled
in with the place, 1. The second row was next produced by bumping, so we put the
place 2 in that box of the second row. The next three entries in the first row were
produced by inserting entries from the second factor, so we fill them in with 2, and

the resulting tableau we get is P.ˇ/ D 1 1 1 2 2 2

2
.

On the other hand, given the pair of tableaux, L.ˇ/ and P.ˇ/, we can reconstruct
the sequence ˇ. We look at the tableau, P.ˇ/, and peel off the highest place from
the highest row first, with its corresponding letters in L.ˇ/. This tells us that in
our second factor, we had x2x2x3, and we still are left with the pair of tableaux:
x1 x1 x2

x3

and
1 1 1

2
. This means that we still have a term from the second factor,

and it was obtained by bumping from a single-rowed tableau with three entries. The
only way that bumping could have happened was for x3 to have been in the upper
row previously, and to have been bumped by x2 (for if an element of the first row
had been bumped by x1, that element would have been x2, and we would have had
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x2 in the second row). Therefore, the full second factor must be x2x2x2x3, and our
first factor is what’s left, namely, x1x1x3.

To explain the bumping procedure that leads to the construction of the first
tableau, let’s consider the general situation of an ordered set, S D fs1; s2; : : : ; st g,
and a sequence ˇ D si1si2 : : : sik formed from these elements. To the element si1

we attach the tableau consisting of one box, and the one entry, si1 . If si2 � si1 , then
we attach the one-rowed tableau consisting of si1 and si2 ; if si2 < si1 , we attach the
two-rowed tableau having si2 in the top row, and si1 in the second row. Suppose we
have attached by this procedure a standard tableau, �, to the first l elements of the
sequence. We then take the element silC1

and try to add it to �. If it exceeds (in the
weak sense) every element in the top row of �, then we stick it onto the end of that
row. If it doesn’t, then we look for the first element of the first row that is strictly
greater than it, and replace it by silC1

. This leaves us with the exiled element of the
first row, and we take it and look at the second row. If it fits, we add it on to the
second row, otherwise bump as before and continue in this way. By this procedure,
we arrive at the tableau, L.ˇ/, associated to the sequence, ˇ.

What if, one may ask, the first two rows of � were of the same length and the
bumped element exceeded all the elements of the second row? Wouldn’t sticking it
onto the second row produce an inadmissible shape? But we have assumed that the
tableau, �, is standard, and so we see that this situation cannot arise.

To associate a “place” tableau to the sequence ˇ, we have to be given a bit more
information along with the sequence (as when we saw in our example that we were
dealing with two factors—hence two places—and subsequences of fixed length). So
let us assume that our integer k D k1 C � � � C kn and that our sequence ˇ has the
property that the first k1 elements are increasing, the next k2 are increasing, and so
on. We want to assign to our ˇ a standard place tableau having n places. Notice that
since the first k1 elements are increasing, they all fit into a single-row tableau with
k1 boxes. We record this by attaching a single-rowed tableau with k1 boxes all filled
in with the place 1. We then run through the next k2 elements, keeping track of all
the new boxes created in the L.ˇ/ construction by labeling them with the place 2.
Notice that if elements from the second strand bump elements from the first row, the
elements they bump grow in size, so that these elements all go into the second row
(they bump no more). Also, once an element from this second strand gets placed in
the first row, all the others do. This means that the place tableau so far associated
has 1’s in the first row, and 2’s in the first and second rows. Obviously the number
of 2’s in the second row cannot exceed the number of 1’s in the first row (namely,
k1). We then proceed with the third strand placing 3’s, and so on.

Rather than spend more words on this description, a not too trivial example may
be in order. For simplicity, we will use numbers for letters as well as places; we
believe that this should cause no confusion.

Example 2. Consider the element 223446 ˝ 12335 ˝ 3446 in D6 ˝ D5 ˝ D4.
Following the recipes above, one ends with the following pair of tableaux (the first
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one the “letter” tableau, the second the “place” tableau filled with only three places):

1 2 2 3 3 3 4 4 6
2 3 4 4 5
6

and

1 1 1 1 1 1 3 3 3
2 2 2 2 2
3

.

The original “sequence” (we write it in quotes, since we’ve taken the liberty to use
the tensor product symbol to mark off where the substrands are to be seen) can be
reconstructed from this pair of tableaux as we indicated in the first example. By
removing all the entries labeled 3 in the first row, we see that the third factor has to
end with 446. But then we see that the 6 must have been bumped into the third row
by the first term of the third factor. If 6 had been bumped from the second row, it
would have had to be the 5 that did it, but if the 5 had been the bumper, it would
have already fit nicely onto the first row. So it must have been the 3 that bumped,
which means that the third factor was 3446, and that 3 bumped into the two-rowed
tableau having 122335 in the top row and 23446 in the second. The corresponding
place tableau now has only the places 1 and 2 with all the entries labeled 1 in the top
row and all those labeled 2 in the second. Now the previous tableau had six entries
in the top row and only four in the second. The only way we could have arrived
at the current stage is if we had bumped a 5 into the tableau having 122346 in the
top row, 2344 in the second, and so forth. In this way we reconstruct our original
sequence of departure.

This procedure establishes a one-to-one correspondence between the usual basis
elements of Dk1.F / ˝ � � � ˝ Dkn.F / and the double standard tableaux having
ki places i for i D 1; : : : ; n. This, then finishes our discussion of the linear
independence of the double standard tableaux, and hence of Theorem 2.
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Koszul Algebras and Regularity

Aldo Conca, Emanuela De Negri, and Maria Evelina Rossi

1 Introduction

This is a chapter on commutative Koszul algebras and Castelnuovo–Mumford
regularities. Koszul algebras, originally introduced by Priddy [48], are graded
K-algebras R whose residue field K has a linear free resolution as an R-module.
Here linear means that the nonzero entries of the matrices describing the maps in the
resolution have degree 1. For example, over the symmetric algebra S D SymK.V /

of a finite dimensional K-vector space V , the residue field K , is resolved by the
Koszul complex which is linear. Similarly, for the exterior algebra

V
K V the residue

field K is resolved by the Cartan complex which is also linear. In this chapter we
deal mainly with standard graded commutative K-algebras, that is, quotient rings
of the polynomial ring S by homogeneous ideals. The (absolute) Castelnuovo–
Mumford regularity regS .M / is, after Krull dimension and multiplicity, perhaps
the most important invariant of a finitely generated graded S -module M , as it
controls the vanishing of both syzygies and the local cohomology modules of M .
By definition, regS .M / is the least integer r such that the i th syzygy module of
M is generated in degrees � r C i for every i . By local duality, regS .M / can be
characterized also as the least number r such that the local cohomology module
H i

mS
.M / vanishes in degrees > r � i for every i . Analogously when R D S=I is a

standard graded K-algebra and M is a finitely generated graded R-module one can
define the relative Castelnuovo–Mumford regularity as the least integer r such that
the i th syzygy module over R of M is generated in degrees � r C i for every i .
The main difference between the relative and the absolute regularity is that over R

most of the resolutions are infinite, that is, there are infinitely many syzygy modules,
and hence it is not at all clear whether regR.M / is finite. Avramov, Eisenbud and
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Peeva gave in [5, 6] a beautiful characterization of the Koszul property in terms of
the relative regularity: R is Koszul iff regR.M / is finite for every M iff regR.K/ is
finite.

From certain point of views, Koszul algebras behave homologically as polyno-
mial rings. For instance regR.M / can be characterized in terms of regularity of
truncated submodules (see Proposition 8). On the other hand, “bad” homological
behaviors may occur over Koszul algebras. For instance, modules might have
irrational Poincaŕe series over Koszul algebras. Furthermore, Koszul algebras
appear quite frequently among the rings that are classically studied in commu-
tative algebra, algebraic geometry and combinatorial commutative algebra. This
mixture of similarities and differences with the polynomial ring and their frequent
appearance in classical constructions are some of the reasons that make Koszul
algebras fascinating, studied and beloved by commutative algebraists and algebraic
geometers. In few words, a homological life is worth living in a Koszul algebra.
Of course there are other reasons for the popularity of Koszul algebras in the
commutative and noncommutative setting, as, for instance, Koszul duality, a
phenomenon that generalizes the duality between the symmetric and the exterior
algebra (see [13, 14, 50]).

The structure of this chapter is the following. Section 2 contains the charac-
terization, due to Avramov, Eisenbud and Peeva, of Koszul algebras in terms
of the finiteness of the regularity of modules (see Theorem 7). It contains also
the definition of G-quadratic and LG-quadratic algebras and some fundamental
questions concerning the relationships between these notions and the syzygies of
Koszul algebras (see Questions 12 and 14).

In Sect. 3 we present three elementary but powerful methods for proving that
an algebra is Koszul: the existence of a Gröbner basis of quadrics, the transfer of
Koszulness to quotient rings and Koszul filtrations. To illustrate these methods we
apply them to Veronese algebras and Veronese modules. We prove that Veronese
subalgebras of Koszul algebras are Koszul and that high-enough Veronese subalge-
bras of any algebra are Koszul. These and related results were proved originally in
[3, 11, 12, 25, 32].

Section 4 is devoted to two very strong versions of Koszulness: universally
Koszul [21] and absolutely Koszul [43]. An algebra R is universally Koszul if
for every ideal I � R generated by elements of degree 1 one has regR.I / D 1.
Given a graded R-module M and i 2 Z one defines Mhii as the submodule
of M generated by the homogeneous component Mi of degree i of M . The R-
module M is componentwise linear if regR.Mhii/ D i for every i with Mi ¤ 0.
The K-algebra R is absolutely Koszul if any finitely generated graded R-module
M has a componentwise linear i th syzygy module for some i � 0. Two major
achievements are the complete characterization of the Cohen–Macaulay domains
that are universally Koszul (see [21] or Theorem 4) and the description of two
classes of absolutely Koszul algebras (see [43] or Theorem 10). We also present
some questions related to these notions, in particular Questions 13 and 14.

In Sect. 5 we discuss some problems regarding the regularity of modules over
Koszul algebras. Some are of computational nature, for instance Question 12,
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and others are suggested by the analogy with the polynomial ring, for example,
Question 9. This section contains also some original results, in particular Proposi-
tion 5 and Theorem 11, motivating the questions presented.

Finally Sect. 6 contains a discussion on local variants of the notion of Koszul
algebra and the definition of Koszul modules. A local ring .R; m; K/ is called a
Koszul ring if the associated graded ring grm.R/ is Koszul as a graded K-algebra.
The ring R is called Fröberg if its Poincaré series equals to HR.�z/�1, where
HR.z/ denotes the Hilbert series of R. Any Koszul ring is Fröberg. The converse
holds in the graded setting and is unknown in the local case (see Question 5).
Large classes of local rings of almost minimal multiplicity are Koszul. In [41] and
[43] a characterization of Koszulness of graded algebras is obtained in terms of
the finiteness of the linear defect of the residue field (see Proposition 12). It is an
open problem whether the same characterization holds in the local case too (see
Question 13).

2 Generalities

Let K be a field and R be a (commutative) standard graded K-algebra, that is, a K-
algebra with a decomposition R D ˚i2NRi (as an Abelian group) such that R0 D
K , R1 is a finite dimensional K-vector space and Ri Rj D RiCj for every i; j 2 N.
Let S be the symmetric algebra over K of R1. One has an induced surjection

S D SymK.R1/ ! R (1)

of standard graded K-algebras. We call Eq. (1) the canonical presentation of R.
Hence R is isomorphic (as a standard graded K-algebra) to S=I where I is the
kernel of Eq. (1). In particular, I is homogeneous and does not contain elements of
degree 1. We say that I defines R. Choosing a K-basis of R1 the symmetric algebra
S gets identified with the polynomial ring KŒx1; : : : ; xn�, with n D dimK R1,
equipped with its standard graded structure (i.e., deg xi D 1 for every i ). Denote
by mR the maximal homogeneous ideal of R. We may consider K as a graded R-
module via the identification K D R=mR.

Assumption. With the exception of the last section, K-algebras are always as-
sumed to be standard graded, modules and ideals are graded and finitely generated,
and module homomorphisms have degree 0.

For an R-module M D ˚i2ZMi we denote by HF.M; i/ the Hilbert function of
M at i , that is, HF.M; i/ D dimK Mi and by HM .z/ D P

dimK Mizi 2 QŒjzj�Œz�1�

the associated Hilbert series.
Recall that a minimal graded free resolution of M as an R-module, is a complex

of free R-modules

F W � � � ! FiC1

�iC1�! Fi

�i�! Fi�1 ! � � � ! F1

�1�! F0 ! 0
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such that Hi .F/ D 0 for i > 0 and H0.F/ D M , Image �iC1 � mRFi for every i .
Such a resolution exists and it is unique up to an isomorphism of complexes, that is
why we usually talk of “the” minimal free (graded) resolution of M . By definition,
the i th Betti number ˇR

i .M / of M as an R-module is the rank of Fi . Each Fi is
a direct sum of shifted copies of R. The .i; j /th graded Betti number ˇR

ij .M / of
M is the number of copies of R.�j / that appear in Fi . By construction one has
ˇR

i .M / D dimK TorR
i .M; K/ and ˇR

ij .M / D dimK TorR
i .M; K/j . The Poincaré

series of M is defined as

P R
M .z/ D

X

i

ˇR
i .M /zi 2 QŒjzj�;

and its bigraded version is

P R
M .s; z/ D

X

i;j

ˇR
i;j .M /zi sj 2 QŒs�Œjzj�:

We set

tR
i .M / D supfj W ˇR

ij .M / ¤ 0g
where, by convention, tR

i .M / D �1 if Fi D 0. By definition, tR
0 .M / is the largest

degree of a minimal generator of M . Two important invariants that measure the
“growth” of the resolution of M as an R-module are the projective dimension

pdR.M / D supfi W Fi ¤ 0g D sup fi W ˇR
ij .M / ¤ 0 for some j g

and the Castelnuovo–Mumford regularity

regR.M / D supfj � i W ˇR
ij .M / ¤ 0g D supftR

i .M / � i W i 2 Ng:
We may as well consider M as a module over the polynomial ring S via Eq.

(1). The regularity regS .M / of M as an S -module has also a cohomological
interpretation via local duality (see , e.g. [15, 31]). Denoting by H i

mS
.M / the i th

local cohomology module with support on the maximal ideal of S one has

regS .M / D maxfj C i W H i
mS

.M /j ¤ 0g:
Since H i

mR
.M / D H i

mS
.M / for every i , nothing changes if on right-hand side of

the formula above we replace S with R. So regS .M / is in some sense the “absolute”
Castelnuovo–Mumford regularity. Both pdR.M / and regR.M / can be infinite.

Example 1. Let R D KŒx�=.x3/ and M D K . Then F2i D R.�3i/ and F2iC1 D
R.�3i � 1/ so that pdR.M / D 1 and regR.M / D 1.

Note that, in general, regR.M / is finite if pdRM is finite, but, as we will see, not
the other way round.

In the study of minimal free resolutions over R, the resolution KR of the residue
field K as an R-module plays a prominent role. This is because TorR� .M; K/ D
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H�.M ˝ KR/ and hence ˇR
ij .M / D dimK Hi .M ˝ KR/j . A very important role

is played also by the Koszul complex K.mR/ on a minimal system of generators of
the maximal ideal mR of R.

When is pdR.M / finite for every M ? The answer is given by one of the
most classical results in commutative algebra: the Auslander–Buchsbaum–Serre
Theorem. We present here the graded variant of it that can be seen as a strong version
of the Hilbert syzygy theorem.

Theorem 2. The following conditions are equivalent:

(1) pdRM is finite for every R-module M .
(2) pdRK is finite.
(3) R is regular, that is, R is a polynomial ring.

When the conditions hold, then for every M , one has pdRM � pdRK D dim R,
and the Koszul complex K.mR/ resolves K as an R-module, that is, KR Š K.mR/.

Remark 3. The Koszul complex K.mR/ has three important features:

(1) It is finite.
(2) It has an algebra structure. Indeed it is a DG-algebra and this has important

consequences such as the algebra structure on the Koszul cycles and Koszul
homology. See [4] for the definition (and much more) on DG-algebras.

(3) The matrices describing its differentials have nonzero entries only of degree 1.

When R is not a polynomial ring KR does not satisfy condition (1) in Remark 3.
Can KR nevertheless satisfy (2) or (3) of Remark 3?

For (2) the answer is yes: KR has always a DG-algebra structure. Indeed a
theorem, proved independently by Gulliksen and Schoeller (see [4, 6.3.5]), asserts
that KR is obtained by the so-called Tate construction. This procedure starts from
K.mR/ and builds KR by “adjoining variables to kill homology” while preserving
the DG-algebra structure (see [4, 6.3.5]).

Algebras R such that KR satisfies condition (3) in Remark 3 in above are called
Koszul:

Definition 4. The K-algebra R is Koszul if the matrices describing the differentials
of KR have nonzero entries only of degree 1, that is, regR.K/ D 0 or, equivalently,
ˇR

ij .K/ D 0 whenever i ¤ j .

Koszul algebras were originally introduced by Priddy [48] in his study of
homological properties of graded (noncommutative) algebras arising from algebraic
topology, leaving the commutative case “for the interested reader”. In the recent
volume [50] Polishchuk and Positselski present various surprising aspects of
Koszulness. We collect below a list of important facts about Koszul commutative
algebras. We always refer to the canonical presentation Eq. (1) of R. First we
introduce a definition.
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Definition 5. We say that R is G-quadratic if its defining ideal I has a Gröbner
basis of quadrics with respect to some coordinate system of S1 and some term order
� on S .

Remark 6. (1) If R is Koszul, then I is generated by quadrics (i.e., homogeneous
polynomials of degree 2). Indeed, the condition ˇR

2j .K/ D 0 for every j ¤ 2

is equivalent to the fact that I is defined by quadrics. But there are algebras
defined by quadrics that are not Koszul. For example, R D KŒx; y; z; t �=I with
I D .x2; y2; z2; t2; xy C zt/ has ˇR

34.K/ D 5.
(2) If I is generated by monomials of degree 2 with respect to some coordinate

system of S1, then a simple filtration argument that we reproduce in Sect. 3,
(see Theorem 15) shows that R is Koszul in a very strong sense.

(3) If I is generated by a regular sequence of quadrics, then R is Koszul. This
follows from a result of Tate [59] asserting that if R is a complete intersection,
then KR is obtained by K.mR/ by adding polynomial variables in homological
degree 2 to kill H1.K.mR//.

(4) If R is G-quadratic, then R is Koszul. This follows from (2) and from the
standard deformation argument showing that ˇR

ij .K/ � ˇA
ij .K/ with A D

S=in� .I /.
(5) On the other hand there are Koszul algebras that are not G-quadratic. One notes

that an ideal defining a G-quadratic algebra must contain quadrics of “low”
rank. For instance, if R is Artinian and G-quadratic then its defining ideal must
contain the square of a linear form. But most Artinian complete intersection of
quadrics do not contain the square of a linear form. For example, I D .x2 C
yz; y2 C xz; z2 C xy/ � CŒx; y; z� is an Artinian complete intersection not
containing the square of a linear form. Hence I defines a Koszul and not G-
quadratic algebra. See [32] for a general result in this direction.

(6) The Poincaré series P R
K .z/ of K as an R-module can be irrational, see [2].

However, for a Koszul algebra R, one has

P R
K .z/HR.�z/ D 1; (2)

and hence P R
K .z/ is rational. Indeed the equality Eq. (2) turns out to be

equivalent to the Koszul property of R, [37, 1]. A necessary (but not suf-
ficient) numerical condition for R to be Koszul is that the formal power
series 1=HR.�z/ has non-negative coefficients (indeed positive unless R is
a polynomial ring). Another numerical condition is the following: expand
1=HR.�z/ as

…h22NC1.1 C zh/eh

…h22NC2.1 � zh/eh

with eh 2 Z (see [4, 7.1.1]). The numbers eh are the “expected” deviations. If
R is Koszul then eh � 0 for every h, (indeed eh > 0 for every h unless R is a
complete intersection). For example, if H.z/ D 1C4zC5z2, then the coefficient
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of z6 in 1=H.�z/ is negative and the third expected deviation is 0. So for two
reasons an algebra with Hilbert series H.z/, as the one in (1), cannot be Koszul.

The following characterization of the Koszul property in terms of regularity is
formally similar to the Auslander–Buchsbaum–Serre Theorem 2.

Theorem 7 (Avramov–Eisenbud–Peeva). The following conditions are equiva-
lent:

.1/ regR.M / is finite for every R-module M .

.2/ regR.K/ is finite.

.3/ R is Koszul.

Avramov and Eisenbud proved in [5] that every module has finite regularity over
a Koszul algebra. Avramov and Peeva showed in [6] that if regR.K/ is finite then it
must be 0. Indeed they proved a more general result for graded algebras that are not
necessarily standard.

If M is an R-module generated by elements of a given degree, say d , we say that
it has a linear resolution over R if regR.M / D d . For q 2 Z we set Mhqi to be the
submodule of M generated by Mq and set M�q D ˚i�qMi . The module M is said
to be componentwise linear over R if Mhqi has a linear resolution for every q. The
(absolute) regularity of a module can be characterized as follows:

regS.M / D minfq 2 Z W M�q has a linear resolutiong
D minfq � tS

0 .M / W Mhqi has a linear resolutiong
One of the motivations of Avramov and Eisenbud in [5] was to establish a similar

characterization for the relative regularity over a Koszul algebra. They proved:

Proposition 8. Let R be a Koszul algebra and M be an R-module. Then:

regR.M / � regS .M /

and

regR.M / D minfq 2 Z W M�q has a linear R�resolutiong
D minfq � tR

0 .M / W Mhqi has a linear R � resolutiong:

Another invariant that measures the growth of the degrees of the syzygies of a
module is the slope:

slopeR.M / D sup

�
tR
i .M / � tR

0 .M /

i
W i > 0

�

:

A useful feature of the slope is that it is finite (no matter if R is Koszul or not).
Indeed with respect to the canonical presentation Eq. (1), one has

slopeR.M / � maxfslopeS.R/; slopeS .M /g



292 A. Conca et al.

(see [8, 1.2]), and the right-hand side is finite since S is a polynomial ring. Backelin
defined in [10] the (Backelin) rate of R to be

Rate.R/ D slopeR.mR/

as a measure of the failure of the Koszul property. By the very definition, one has
Rate.R/ � 1 and R is Koszul if and only if Rate.R/ D 1.

We close the section with a technical lemma:

Lemma 9. (1) Let 0 ! M1 ! M2 ! M3 ! 0 be a short exact sequence of
R-modules. Then one has

regR.M1/ � maxfregR.M2/; regR.M3/ C 1g;
regR.M2/ � maxfregR.M1/; regR.M3/g;
regR.M3/ � maxfregR.M1/ � 1; regR.M2/g:

(2) Let
M W � � � ! Mi ! � � � ! M2 ! M1 ! M0 ! 0

be a complex of R-modules. Set Hi D Hi .M/. Then for every i � 0 one has

tR
i .H0/ � maxfai ; bi g

where ai D maxftR
j .Mi�j / W j D 0; : : : ; ig and bi D maxftR

j .Hi�j �1/ W j D
0; : : : ; i � 2g.

Moreover one has
regR.H0/ � maxfa; bg

where a D supfregR.Mj / � j W j � 0g and b D supfregR.Hj / � .j C1/ W j � 1g.

Proof. (1) follows immediately by considering the long exact sequence obtained by
applying Tor.K; �/. For (2) one breaks the complex into short exact sequences and
proves by induction on i the inequality for tR

i .H0/. Then one deduces the second
inequality by translating the first into a statement about regularities. ut

We collect below some problems about the Koszul property and the existence of
Gröbner bases of quadrics. Let us recall the following.

Definition 10. A K-algebra R is LG-quadratic if there exists a G-quadratic algebra
A and a regular sequence of linear forms y1; : : : ; yc such that R ' A=.y1; : : : ; yc/.

We have the following implications:

G-quadratic ) LG-quadratic ) Koszul ) quadratic (3)

As discussed in Remark 6 the third implication in Eq. (3) is strict. The following
remark, due to Caviglia, in connection with Remark 6(5) shows that also the first
implication in Eq. (3) is strict.
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Remark 11. Any complete intersection R of quadrics is LG-quadratic.
Say R D KŒx1; : : : ; xn�=.q1; : : : ; qm/ then set

A D RŒy1; : : : ; ym�=.y2
1 C q1; : : : ; y2

m C qm/

and note that A is G-quadratic for obvious reasons and y1; : : : ; ym is a regular
sequence in A by codimension considerations.

But we do not know an example of a Koszul algebra that is not LG-quadratic. So
we ask:

Question 12. Is any Koszul algebra LG-quadratic?

Our feeling is that the answer should be negative. But how can we exclude
that a Koszul algebra is LG-quadratic? One can look at the h-vector (i.e., the
numerator of the Hilbert series) since it is invariant under Gröbner deformation and
modifications as the one involved in the definition of LG-quadratic. Alternatively
one can look at syzygies over the polynomial ring because they can only grow under
such operations. These observations lead to a new question:

Question 13. Is the h-vector of any Koszul algebra R the h-vector of an algebra
defined by quadratic monomials? And, if yes, does there exist an algebra A with
quadratic monomial relations, h-vector equal to that of R and satisfying ˇS

ij .R/ �
ˇT

ij .A/ for every i and j ? Here S and T denote the polynomial rings canonically
projecting onto R and A.

A negative answer to Question 13 would imply a negative answer to Question
12. Note that any h-vector of an algebra defined by quadratic monomials is also the
h-vector of an algebra defined by square-free quadratic monomials (by using the
polarization process). The simplicial complexes associated to square-free quadratic
monomial ideals are called flag. There has been a lot of activity concerning
combinatorial properties and characterizations of h-vectors and f -vectors of flag
simplicial complexes, see [28] for recent results and for a survey of what is
known and conjectured. Here we just mention that Frohmader has proved in [39]
a conjecture of Kalai asserting that the f -vectors of flag simplicial complexes are
f -vectors of balanced simplicial complexes.

Regarding the inequality for Betti numbers in Question 13, LG-quadratic
algebras R satisfy the following restrictions:

1. tS
i .R/ � 2i

2. tS
i .R/ < 2i if tS

i�1.R/ < 2.i � 1/

3. tS
i .R/ < 2i if i > dim S � dim R

4. ˇS
i .R/ � �

ˇS
1 .R/

i

�

deduced from the deformation to the (non-minimal) Taylor resolution of quadratic
monomial ideals (see for instance [47, 4.3.2]). As shown in [8] the same restrictions
are satisfied by any Koszul algebra, with the exception of possibly (4). So we ask:
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Question 14. Let R be a Koszul algebra quotient of the polynomial ring S . Is it true

that ˇS
i .R/ � �

ˇS
1 .R/

i

�
?

It can be very difficult to decide whether a given Koszul algebra is G-quadratic.
In the 1990s, Peeva and Sturmfels asked whether the coordinate ring

P V D KŒx3; x2y; x2z; xy2; xz2; y3; y2z; yz2; z3�

of the pinched Veronese is Koszul. For about a decade this was a benchmark
example for testing new techniques for proving Koszulness. In 2009 Caviglia
[18] gave the first proof of the Koszulness of P V . Recently a new one has been
presented in [19] that applies also to a larger family of rings including all the general
projections to P8 of the Veronese surface in P9. The problem remains to decide
whether:

Question 15. Is P V G-quadratic?

The answer is negative if one considers the toric coordinates only (as it can be
checked by computing the associated Gröbner fan using CaTS [1]), but unknown in
general. There are plenty of quadratic monomial ideals defining algebras with the
Hilbert function of P V and larger Betti numbers.

The algebra P V is generated by all monomials in n D 3 variables of degree
d D 3 that are supported on at most s D 2 variables. By varying the indices n; d; s

one gets a family of pinched Veronese algebras P V.n; d; s/, and it is natural to ask:

Question 16. For which values of n; d; s is P V.n; d; s/ quadratic or Koszul?

Not all of them are quadratic, for instance, P V.4; 5; 2/ is not. Questions as
Question 16 are very common in the literature: in a family of algebras one asks
which ones are quadratic or Koszul or if quadratic and Koszul are equivalent
properties for the algebras in the family. For example, in [26, 6.10] the authors ask:

Question 17. Let R be a quadratic Gorenstein algebra with Hilbert series 1 C nz C
nz2 C z3. Is R Koszul?

For n D 3 the answer is obvious as R must be a complete intersection of quadrics
and for n D 4 the answer is positive by [26, 6.15]. See Theorem 12 for results
concerning this family of algebras.

3 How to Prove that an Algebra is Koszul?

To prove that an algebra is Koszul is usually a difficult task. There are examples, due
to Roos, showing that a sort of Murphy’s law (anything that can possibly go wrong,
does) holds in this context. Indeed there exists a family of quadratic algebras R.a/

depending on an integer a > 1 such that the Hilbert series of R.a/ is 1 C 6z C 8z2

for every a. Moreover K has a linear resolution for a steps and a nonlinear syzygy
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in homological position a C 1 (see [51]). So there is no statement of the kind: if R

is an algebra with Hilbert series H then there is a number N depending on H , such
that if the resolution of K over R is linear for N steps, it will be linear forever.

The goal of this section is to present some techniques to prove that an algebra
is Koszul (without pretending they are the most powerful or interesting). For the
sake of illustration we will apply these techniques to discuss the Koszul properties
of Veronese algebras and modules. The material we present is taken from various
sources (see [3, 8, 10–12, 16, 24–27, 32, 42, 58]).

3.1 Gröbner Basis of Quadrics

The simplest way to prove that an algebra is Koszul is to show that it is G-quadratic.
A weak point of this prospective is that Gröbner bases refer to a system of
coordinates and a term order. As said earlier, not all the Koszul algebras are
G-quadratic. On the other hand many of the classical constructions in commutative
algebra and algebraic geometry lead to algebras that have a privileged, say, natural,
system of coordinates. For instance, the coordinate ring of the Grassmannian
comes equipped with the Plücker coordinates. Toric varieties come with their
toric coordinates. So one looks for a Gröbner basis of quadrics with respect to
the natural system of coordinates. It turns out that many of the classical algebras
(Grassmannian, Veronese, Segre, etc..) do have Gröbner bases of quadrics in the
natural system of coordinates. Here we treat in details the Veronese case:

Theorem 1. Let S D KŒx1; : : : ; xn� and c 2 N. Then the Veronese subring S.c/ D
˚j 2NSjc is defined by a Gröbner basis of quadrics.

Proof. For j 2 N denote by Mj the set of monomials of degree j of S . Consider
Tc D SymK.Sc/ D KŒtm W m 2 Mc� and the surjective map ˆ W Tc ! S.c/

of K-algebras with ˆ.tm/ D m for every m 2 Mc . For every monomial m we
set max.m/ D maxfi W xi jmg and min.m/ D minfi W xi jmg. Furthermore for
monomials m1; m2 2 Mc we set m1 � m2 if max.m1/ � min.m2/. Clearly � is a
transitive (but not reflexive) relation. We say that m1; m2 2 Mc are incomparable
if m1 6� m2 and m2 6� m1 and that are comparable otherwise. For a pair of
incomparable elements m1; m2 2 Mc , let m3; m4 2 Mc be the uniquely determined
elements in Mc such that m1m2 D m3m4 and m3 � m4. Set

F.m1; m2/ D tm1 tm2 � tm3 tm4 :

By construction F.m1; m2/ 2 Kerˆ and we claim that the set of the F.m1; m2/’s
is a Gröbner basis of Kerˆ with respect to any term order � of Tc such that
in� .F.m1; m2// D tm1 tm2 . Such a term order exists: order the t 0

ms totally as follows:

tu � tv iff u � v lexicographically
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and then consider the degree reverse lexicographic term order associated to that total
order. Such a term order has the required property as it is easy to see. It remains to
prove that the F.m1; m2/’s form a Gröbner basis of Kerˆ. Set

U D .tm1 tm2 W m1; m2 2 Mc are incomparable/

By construction we have U � in� .Kerˆ/ and we have to prove equality. We do it
by checking that the two associated quotients have the same Hilbert function. The
inequality HF.Tc=Kerˆ; i/ � HF.Tc=U; i/ follows from the inclusion of the ideals.
For the other note that

HF.Tc=in� .Kerˆ/; i/ D HF.Tc=Kerˆ; i/ D HF.S.c/; i / D #Mic

The key observations are:

1. A monomial in the t’s, say tm1 � � � tmi , is not in U if (after a permutation) m1 �
m2 � � � � � mi .

2. Every monomial m 2 Mic has a uniquely determined decomposition m D
m1 � � � mi with m1 � m2 � � � � � mi .

This implies that

HF.Tc=U; i/ � #Mic;

proving the desired assertion. ut

3.2 Transfer of Koszulness

Let A be a K-algebra A and B D A=I a quotient of it. Assume one of the two
algebras is Koszul. What do we need to know about the relationship between A and
B to conclude that the other algebra is Koszul too? Here is an answer:

Theorem 2. Let A be a K-algebra and B be a quotient of A.

(1) If regA.B/ � 1 and A is Koszul, then B is Koszul.
(2) If regA.B/ is finite and B is Koszul, then A is Koszul.

The theorem is a corollary of the following:

Proposition 3. Let A be a K-algebra and B a quotient algebra of A. Let M be a
B-module. Then:

.1/ regA.M / � regB.M / C regA.B/.

.2/ If regA.B/ � 1 then regB.M / � regA.M /.

Proof. One applies Lemma 9(2) to the minimal free resolution F of M as a B-
module and one has:

regA.M / � supfregA.Fj / � j W j � 0g:
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Since regA.Fj / D regA.B/ C tB
j .M /, we can conclude that (1) holds.

For (2) it is enough to prove that the inequality

tB
i .M / � i � maxftA

j .M / � j W j D 0; : : : ; ig

holds for every i . We argue by induction on i ; the case i D 0 is obvious because
tA
0 .M / D tB

0 .M /. Assume i > 0 and take a minimal presentation of M as a
B-module

0 ! N ! F ! M ! 0

where F is B-free. Since tB
i .M / D tB

i�1.N /, by induction we have:

tB
i .M / � i D tB

i�1.N / � i � maxftA
j .N / � j � 1 W j D 0; : : : ; i � 1g

Since tA
j .N / � maxftA

j .F /; tA
j C1.M /g and tA

j .F / D tA
j .B/ C tA

0 .M / � j C 1 C
tA
0 .M / we may conclude that the desired inequality holds. ut

Proof of Theorem 2. (1) Applying Proposition 3(1) with M equal to K one has that
regA.K/ � regA.B/ which is finite by assumption. It follows then from Theorem 7
that A is Koszul. For (2) one applies Proposition 3(2) with M D K , and one gets
regB.K/ � regA.K/ which is 0 by assumption; hence regB.K/ D 0 as required. ut
Lemma 4. Let R be Koszul algebra and M be an R-module. Then

regR.mRM / � regR.M / C 1:

In particular, regR.mu
R/ D u, (unless mu

R D 0) that is, mu
R has a linear resolution

for every u 2 N.

Proof. Apply Lemma 9 to the short exact sequence

0 ! mRM ! M ! M=mRM ! 0

and use the fact that M=mRM is a direct sum of copies of K shifted at most by
�tR

0 .M /. ut
We apply now Theorem 2 to prove that the Veronese subrings of a Koszul algebra

are Koszul.
Let c 2 N and R.c/ D ˚j 2ZRjc be the cth Veronese subalgebra of R. Similarly

one defines M .c/ for every R-module M . The formation of the cth Veronese
submodule is an exact functor from the category of R-modules to the category of
graded R.c/-modules (recall that, by convention, modules are graded and maps are
homogeneous of degree 0). For u D 0; : : : ; c � 1 consider the Veronese submodules
Vu D ˚j 2ZRjcCu. Note that Vu is an R.c/-module generated in degree 0 and that for
a 2 Z one has

R.�a/.c/ D Vu.�da=ce/

where u D 0 if a 	 0 mod.c/ and u D c � r if a 	 r mod.c/ and 0 < r < c.
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Theorem 5. Let R be Koszul. Then R.c/ is Koszul and regR.c/ .Vu/ D 0 for every
u D 0; : : : ; c � 1.

Proof. Set A D R.c/. First we prove that regA.Vu/ D 0 for every u D 0; : : : ; c � 1.
To this end, we prove by induction on i that tA

i .Vu/ � i for every i . The case i D 0

is obvious. So assume i > 0. Let M D mu
R.u/. By Lemma 4 and by construction we

have regR.M / D 0 and M .c/ D Vu. Consider the minimal free resolution F of M

over R and apply the functor �.c/. We get a complex G D F.c/ of A-modules such
that H0.G/ D Vu, Hj .G/ D 0 for j > 0 and Gj D F

.c/
j is a direct sum of copies

of R.�j /.c/. Applying Lemma 9 we get tA
i .Vu/ � maxftA

i�j .Gj / W j D 0; : : : ; ig.

Since G0 is A-free we have tA
i .G0/ D �1. For j > 0 we have R.�j /.c/ D

Vw.�dj=ce/ for some number w with 0 � w < c. Hence, by induction, tA
i�j .Gj / �

i � j C dj=ce � i . Summing up,

tA
i .Vu/ � maxfi � j C dj=ce W j D 1; : : : ; ig D i:

In order to prove that A is Koszul we consider the minimal free resolution F of
K over R and apply �.c/. We get a complex G D F.c/ of A-modules such that
H0.G/ D K , Hj .G/ D 0 for j > 0 and Gj D F

.c/
j is a direct sum of copies of

Vu.�dj=ce/. Hence regA.Gj / D dj=ce and applying Lemma 9 we obtain

regA.K/ � supfdj=ce � j W j � 0g D 0:

ut
We also have:

Theorem 6. Let R be a K-algebra, then the Veronese subalgebra R.c/ is Koszul for
c 
 0. More precisely, if R D A=I with A Koszul, then R.c/ is Koszul for every
c � supftA

i .R/=.1 C i/ W i � 0g.

Proof. Let F be the minimal free resolution of R as an A-module. Set B D A.c/

and note that B is Koszul because of Theorem 5. Then G D F.c/ is a complex of B-
modules such that H0.G/ D R.c/, Hj .G/ D 0 for j > 0. Furthermore Gi D F

.c/
i

is a direct sum of shifted copies of the Veronese submodules Vu. Using Theorem 5
we get the bound regB.Gi / � dtA

i .R/=ce. Applying Lemma 9 we get

regB.R.c// � supfdtA
i .R/=ce � i W i � 0g:

Hence, for c � supftA
i .R/=.1Ci/ W i � 0g one has regB.R.c// � 1 and we conclude

from Theorem 2 that R.c/ is Koszul. ut
Remark 7. (1) Note that the number supftA

i .R/=.1 C i/ W i � 0g in Theorem 6 is
finite. For instance it is less than or equal to .regA.R/ C 1/=2 which is finite
because regA.R/ is finite. Note however that supftA

i .R/=.1C i/ W i � 0g can be
much smaller than .regA.R/ C 1/=2; for instance if R D A=I with I generated
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by a regular sequence of r elements of degree d , then tA
i .R/ D id so that

regA.R/ D r.d � 1/ while supftA
i .R/=.1 C i/ W i � 0g D dr=.r C 1/.

(2) In particular, if we take the canonical presentation R D S=I Eq. (1), then we
have that R.c/ is Koszul if c � supftS

i .R/=.1 C i/ W i � 0g. In [32, 2] it is
proved that if c � .regS .R/ C 1/=2, then R.c/ is even G-quadratic. See [57] for
other interesting results in this direction.

(3) Backelin proved in [10] that R.c/ is Koszul if c � Rate.R/.
(4) The proof of Theorem 6 shows also that regA.c/ .R.c// D 0 if c � slopeA.R/.

3.3 Filtrations

Another tool for proving that an algebra is Koszul is a “divide and conquer” strategy
that can be formulated in various technical forms, depending on the goal one has in
mind. We choose the following:

Definition 8. A Koszul filtration of a K-algebra R is a set F of ideals of R such
that:

(1) Every ideal I 2 F is generated by elements of degree 1.
(2) The zero ideal 0 and the maximal ideal mR are in F .
(3) For every I 2 F , I ¤ 0, there exists J 2 F such that J � I , I=J is cyclic

and Ann.I=J / D J W I 2 F .

By the very definition a Koszul filtration must contain a complete flag of R1, that
is, an increasing sequence I0 D 0 � I1 � � � � � In�1 � In D mR such that Ii is
minimally generated by i elements of degree 1. The case where F consists of just
a single flag deserves a name:

Definition 9. A Gröbner flag for R is a Koszul filtration that consists of a single
complete flag of R1. In other words, F D fI0 D 0 � I1 � � � � � In�1 � In D mRg
with Ii�1 W Ii 2 F for every i .

One has:

Lemma 10. Let F be a Koszul filtration for R. Then one has:

.1/ regR.R=I / D 0 and R=I is Koszul for every I 2 F .

.2/ R is Koszul.

.3/ If F is a Gröbner flag, then R is G-quadratic.

Proof. (1) and (2): One easily proves by induction on i and on the number of
generators of I that tR

i .R=I / � i for every i and I 2 F . This implies that
R is Koszul (take I D mR) and that regR.R=I / D 0, hence R=I is Koszul by
Theorem 2.

(3) We just sketch the argument: let x1; : : : ; xn be a basis for the flag, that is,
F D fI0 D 0 � I1 � � � � � In�1 � In D mRg and Ii D .x1; : : : ; xi / for every i .



300 A. Conca et al.

For every i there exists ji � i such that .x1; : : : ; xi / W xiC1 D .x1; : : : ; xji /. For
every i < h � ji the assertion xhxiC1 2 .x1; : : : ; xi / is turned into a quadratic
equation in the defining ideal of R. The claim is that these quadratic equations
form a Gröbner basis with respect to a term order that selects xhxiC1 as leading
monomial. To prove the claim one shows that the identified monomials define an
algebra, call it A, whose Hilbert function equals that of R. This is done by showing
that the numbers j1; : : : ; jn associated to the flag of R determine the Hilbert function
of R and then by showing that also A has a Gröbner flag with associated numbers
j1; : : : ; jn. ut

There are Koszul algebras without Koszul filtrations and G-quadratic algebras
without Gröbner flags see the examples given in [26, pp. 100 and 101]. Families
of algebras having Koszul filtrations or Gröbner flags are described in [26]. For
instance, it is proved that the coordinate ring of a set of at most 2n points in Pn in
general linear position has a Gröbner flag, and that the general Gorenstein Artinian
algebra with socle in degree 3 has a Koszul filtration. The results for points in [26]
generalize results of [27,44] and are generalized in [49]. Filtrations of more general
type are used in [24] to control the Backelin rate of coordinate rings of sets of points
in the projective space.

The following notion is very natural for algebras with privileged coordinate
systems (e.g. in the toric case).

Definition 11. An algebra R is said to be strongly Koszul if there exists a basis X

of R1 such that for every Y � X and for every x 2 X n Y there exists Z � X such
that .Y / W x D .Z/.

Our definition of strongly Koszul is slightly different than the one given in [42].
In [42] it is assumed that the basis X of R1 is totally ordered, and in the definition
one adds the requirement that x is larger than every element in Y .

Remark 12. If R is strongly Koszul with respect to a basis X of R1, then the set
f.Y / W Y � Xg is obviously a Koszul filtration.

We have:

Theorem 13. Let R D S=I with S D KŒx1; : : : ; xn� and I � S an ideal generated
by monomials of degrees � d . Then R.c/ is strongly Koszul for every c � d � 1.

Proof. In the proof we use the following basic facts:

Fact (1): If m1; : : : ; mt ; m are monomials of S , then .m1; : : : ; mt / WS m is generated
by the monomials mi= gcd.mi ; m/ for i D 1; : : : ; t:

Fact (2): If T is an algebra and A D T .c/, then for every ideal I � A and f 2 A

one has IT \ A D I and .IT WT f / \ A D I WA f .

The first is an elementary and well-know, property of monomials; the second
holds true because A is a direct summand of T .

Let A D R.c/. Let X be the set of the residue classes in R of the monomials of
degree c that are not in I . Clearly X is a basis of A1. Let Y � X and z 2 X n Y ,
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say Y D f Nm1; : : : ; Nmvg and z D Nm. We have to compute .Y / WA z. To this end let
us consider J D .I C .m1; : : : ; mv// WS m and note that J D I C H with H

a monomial ideal generated in degrees � c. Then .Y / WA z D . Nm W m 2 H n
I is a monomial of degree c/. ut

Let us single out two interesting special cases:

Theorem 14. Let SDKŒx1; : : : ; xn�. Then S.c/ is strongly Koszul for every c 2 N.

Theorem 15. Let S D KŒx1; : : : ; xn� and let I � S be an ideal generated by
monomials of degree 2. Then S=I is strongly Koszul.

Given a Koszul filtration F for an algebra R we may also look at modules having
a filtration compatible with F . This leads us to the following:

Definition 16. Let R be an algebra with a Koszul filtration F . Let M be an R-
module. We say that M has linear quotients with respect to F if M is minimally
generated by elements m1; : : : ; mv such that hm1; : : : ; mi�1i WR mi 2 F for i D
1; : : : ; v.

One easily deduces:

Lemma 17. Let R be an algebra with a Koszul filtration F and M an R-module
with linear quotients with respect to F . Then regR.M / D tR

0 .M /.

As an example we have:

Proposition 18. Let S D KŒx1; : : : ; xn� and I be a monomial ideal generated in
degree � d . Consider R D S=I and the Veronese ring R.c/ equipped with the
Koszul filtration described in the proof of Theorem 13. For every u D 0; : : : ; c � 1

the Veronese module Vu D ˚j RuCjc has linear quotients with respect to F .

The proof is easy, again, based on Fact (1) in the proof of Theorem 13. In
particular, this gives another proof of the fact that the Veronese modules Vu have
a linear R.c/-resolution.

The results and the proofs presented for Veronese rings and Veronese modules
have their analogous in the multigraded setting (see [25]). For later applications we
mention explicitly one case.

Let S D KŒx1; : : : ; xn; y1; : : : ; ym� with Z2-grading induced by the assignment
deg.xi / D .1; 0/ and deg.yi / D .0; 1/. For every c D .c1; c2/ we look at the
diagonal subalgebra S� D ˚a2�Sa where � D fic W i 2 Zg. The algebra S� is
nothing but the Segre product of the c1th Veronese ring of KŒx1; : : : ; xn� and the
c2th Veronese ring of KŒy1; : : : ; ym�. We have:

Proposition 19. For every .a; b/ 2 Z2 the S�-submodule of S generated by S.a;b/

has a linear resolution.
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4 Absolutely and Universally

We have discussed in the previous sections some notions, such as being G-quadratic,
strongly Koszul, having a Koszul filtration or a Gröbner flag that imply Koszulness.
In this section we discuss two variants of the Koszul property: universally Koszul
and absolutely Koszul.

4.1 Universally Koszul

When looking for a Koszul filtration, among the many families of ideals of linear
forms one can take the set of all ideals of linear forms. This leads to the following
definition:

Definition 1. Let R be a K-algebra and set

L .R/ D fI � R W I ideal generated by elements of degree 1g:

We say that R is universally Koszul if the following equivalent conditions hold:

(1) L .R/ is a Koszul filtration of R.
(2) regR.R=I / D 0 for every I 2 L .R/.
(3) For every I 2 L .R/ and x 2 R1 n I , one has I W x 2 L .R/.

That the three conditions are indeed equivalent is easy to see (see [21, 1.4]). In
[21, 2.4] it is proved that:

Theorem 2. Let S D KŒx1; : : : ; xn� and m 2 N. If m � n=2, then a generic space
of quadrics of codimension m in the vector space of quadrics defines a universally
Koszul algebra.

One should compare the result above with the following:

Theorem 3. Let S D KŒx1; : : : ; xn� and m 2 N.

.1/ A generic space of quadrics of codimension m defines a Koszul algebra if m �
n2=4.

.2/ A generic space of quadrics of codimension m defines an algebra with a
Gröbner flag if m � n � 1.

For (1) see [27, 3.4], for (2) [20, 10]. Fröberg and Löfwall proved in [38] that,
apart from spaces of quadrics of codimension � n2=4, the only generic spaces
of quadrics defining Koszul algebras are the complete intersections. Returning to
universally Koszul algebras, in [21] it is also proved that:

Theorem 4. Let R be a Cohen–Macaulay domain K-algebra with K algebraically
closed of characteristic 0. Then R is universally Koszul if and only if R is a
polynomial extension of one of the following algebras:
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.1/ The coordinate ring of a quadric hypersurface.

.2/ The coordinate ring of a rational normal curve, that is, KŒx; y�.c/ for some c.

.3/ The coordinate ring of a rational normal scroll of type .c; c/, that is, the Segre
product of KŒx; y�.c/ with KŒs; t �.

.4/ The coordinate ring of the Veronese surface in P5, that is, KŒx; y; z�.2/ .

4.2 Absolutely Koszul

Let FR
M be the minimal free resolution of a graded module M over R. One defines

a mR-filtration on FR
M whose associated graded complex lin.FR

M / has, in the graded
case, a very elementary description. The complex lin.FR

M / is obtained from FM

by replacing with 0 all entries of degree > 1 in the matrices representing the
homomorphisms. In the local case the definition of lin.FR

M / is more complicated
(see Sect. 6 for details). One defines

ldR.M / D supfi W Hi .lin.FR
M // ¤ 0g: (4)

Denote by �R
i .M / the i th syzygy module of a module M over R. It is proved in

Römer PhD thesis and also in [43] that:

Proposition 5. Assume R is Koszul. Then:

.1/ M is componentwise linear iff ldR.M / D 0.

.2/ ldR.M / D inffi W �i .M / is componentwise linearg.

.3/ If �R
i .M / is componentwise linear then �R

iC1.M / is componentwise linear.

Iyengar and Römer introduced in [43] the following notion:

Definition 6. A K-algebra R is said to be absolutely Koszul if ldR.M / is finite for
every module M .

It is shown in [41] that:

Proposition 7. If ldR.M / is finite, then regR.M / is finite as well. Furthermore the
Poincaré series PM .z/ of M is rational and its “denominator” only depends on R.

One obtains the following characterization of the Koszul property:

Corollary 8. Let R be a K-algebra. Then R is Koszul if and only if ldR.K/ is finite.
In particular, if R is absolutely Koszul then R is Koszul.

On the other hand there are Koszul algebras that are not absolutely Koszul.

Example 9. The algebra

R D KŒx1; x2; x3; y1; y2; y3�=.x1; x2; x3/2 C .y1; y2; y3/2
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is Koszul but not absolutely Koszul because there are R-modules with non-rational
Poincaré series. This and other examples of “bad” Koszul algebras are discussed by
Roos in [52].

One also has [41, 5.10].

Theorem 10. Let R D S=I with S D KŒx1; : : : ; xn�. Then R is absolutely Koszul
if either R is a complete intersection of quadrics or regS .R/ D 1.

There is however an important difference between the two cases [41, 6.2, 6.7]:

Remark 11. When regS .R/ D 1 one has ldR.M / � 2 dim R for every M and
even ldR.M / � dim R is furthermore R is Cohen–Macaulay. But when R if a
complete intersection of quadrics of codimension > 1 (or more generally when R

is Gorenstein of with socle in degree > 1) one has supM ldR.M / D 1.

Another important contribution is the following:

Theorem 12. Let R be a Gorenstein Artinian algebra with Hilbert function 1 C
nz C nz2 C z3 and n > 2. Then:

.1/ If there exist x; y 2 R1 such that 0 W x D .y/ and 0 W y D .x/ (an exact pair
of zero-divisors in the terminology of [40]), then R has a Koszul filtration and
it is absolutely Koszul.

.2/ If R is generic then it has an exact pair of zero-divisors.

See [26, 2.13,6.3] for the statement on Koszul filtration in (1) and for (2) and see
[40, 3.3] for the absolutely Koszulness.

What are the relationships between the properties discussed in this and the earlier
sections? Here are some questions:

Question 13. (1) Strongly Koszul ) G-quadratic?
(2) Universally Koszul ) G-quadratic?
(3) Universally Koszul ) absolutely Koszul?

Question 13 (1) is mentioned in [42, p. 166] in the toric setting. Another
interesting question is:

Question 14. What is the behavior of absolutely Koszul algebras under standard
algebra operations (e.g. forming Veronese subalgebras or Segre and fiber products)?

The same question for universally Koszul algebras is discussed in [21] and for
strongly Koszul in [42]. Note however that in [42] the authors deal mainly with toric
algebras and their toric coordinates. Universally Koszul algebras with monomial
relations have been classified in [22]. We may ask:

Question 15. Is it possible to classify absolutely Koszul algebras defined by
monomials?
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5 Regularity and Koszulness

We list in this section some facts and some questions that we like concerning Koszul
algebras and regularity. We observe the following.

Remark 1. Regularity over the polynomial ring S behaves quite well with respect
to products of ideals and modules:

(1) regS .I uM / is a linear function in u for large u (see [29, 45, 60]).
(2) regS .IM / � regS .M / C regS.I / (does not hold in general but it) holds

provided dim S=I � 1, [23].
(3) More generally,

regS .TorS
i .N; M // � regS .M / C regS .N / C i

provided the Krull dimension of TorS
1 .N; M / is � 1, [17, 33].

(4) regS .I1 � � � Id / D d for ideals Ii generated in degree 1, [23]

where M; N are S -modules and I; Ii are ideals of S .

What happens if we replace in Remark 1 the polynomial ring S with a Koszul
algebra R and consider regularity over R? Trung and Wang proved in [60] that
regS.I uM / is asymptotically a linear function in u when I is an ideal of R and M

is a R-module. If R is Koszul, regR.I uM / � regS .I uM /, and hence regR.I uM / is
bounded above by a linear function in u.

Question 2. Let R be a Koszul algebra I � R an ideal and M an R-module. Is
regR.I uM / a linear function in u for large u?

The following examples show that statements (2) and (3) in Remark 1 do not
hold over Koszul algebras.

Example 3. Let R D QŒx; y; z; t �=.x2Cy2; z2Ct2/. With I D .x; z/ and J D .y; t/

one has regR.I / D 1, regR.J / D 1 because x; z and y; t are regular sequences on
R, dim R=I D 0 and regR.IJ / D 3.

Example 4. Let R D KŒx; y�=.x2 C y2/. Let M D R=.x/ and N D R=.y/ and
note that regR.M / D 0, regR.N / D 0 because x and y are non-zero divisors in R

while TorR
1 .M; N / D H1.x; y; R/ D K.�2/.

Nevertheless statements (2), (3) of Remark 1 might hold for special type of
ideals/modules over special type of Koszul algebras. For example, one has:

Proposition 5. Let R be a Cohen–Macaulay K-algebra with regS .R/ D 1, let I be
an ideal generated in degree 1 such that dim R=I � 1 and M an R-module. Then
regR.IM / � regR.M / C 1. In particular, regR.I / D 1.

Proof. We may assume K is infinite. The short exact sequence

0 ! IM ! M ! M=IM ! 0
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implies that regR.IM / � maxfregR.M /; regR.M=IM /C1g. It is therefore enough
to prove that regR.M=IM / � regR.M /. Then let J � I be an ideal generated by
a maximal regular sequence of elements of degree 1 and set A D R=J . Since
regR.A/ D 0 and since M=IM is an A-module, by virtue of Proposition 3, we
have regR.M=IM / � regA.M=IM /. By construction, A is Cohen–Macaulay of
dimension � 1 and has regularity 1 over the polynomial ring projecting onto it.
So, by Lemma 14 we have regA.M=IM / D maxftA

0 .M=IM /; tA
1 .M=IM / � 1g.

Summing up, since tA
0 .M=IM / D tR

0 .M /, it is enough to prove tA
1 .M=IM / �

regR.M / C 1. Now we look at

0 ! IM=JM ! M=JM ! M=IM ! 0

that gives tA
1 .M=IM / � maxftA

1 .M=JM /; tA
0 .IM=JM /g. Being tA

0 .IM=JM / �
tR
0 .M / C 1 � regR.M / C 1, it remains to prove that tA

1 .M=JM / � regR.M / C 1,
and this follows from the right exactness of the tensor product. ut

The following example shows that the assumption dim R=I � 1 in Proposition
5 is essential.

Example 6. The algebra R D KŒx; y; z; t �=.xy; yz; zt/ is Cohen–Macaulay of
dimension 2 and regS .R/ D 1. The ideal I D .y � z/ has regR.I / D 2 and
dim R=I D 2.

Example 3 shows also that statement (4) of Remark 1 does not hold over a
Koszul algebra even if we assume that each Ii is an ideal of regularity 1 and of
finite projective dimension. Statement (4) of Remark 1 might be true if one assumes
that the ideals Ii belongs to a Koszul filtration. We give a couple of examples in this
direction:

Proposition 7. Let S D KŒx1; : : : ; xn�, R D S=I with I generated by monomials
of degree 2. Let X D f Nx1; : : : ; Nxng and F D f.Y / W Y � Xg. Let I1; : : : ; Id 2 F .
Then regR.I1 � � � Id / D d unless I1 � � � Id D 0.

Proof. First we observe the following. Let m1; : : : ; mt be monomials of degree
d and J D .m1; : : : ; mt/. Assume that they have linear quotients (in S ), that is,
.m1; : : : ; mi�1/ WS mi is generated by variables for every i . Fact (1) in the proof of
Theorem 13 implies that JR has linear quotients with respect to the Koszul filtration
F of R. By Lemma 17 we have that regR.JR/ D d (unless JR D 0). Now the
desired result follows because products of ideals of variables have linear quotients
in S by [23, 5.4]. ut

Example 4.3 in [23] shows that the inequality regR.IM / � regR.M / C regR.I /

does not even hold over a K-algebra R with a Koszul filtration F , I 2 F and
M an R-module with linear quotient with respect to F . The following are natural
questions:

Question 8. Let R be an algebra with a Koszul filtration F . Is it true that
regR.I1 � � � Id / D d for every I1; : : : ; Id 2 F whenever the product is non-zero?
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In view of the analogy with statement (4) of Remark 1 the following special case
deserves attention:

Question 9. Let R be a universally Koszul algebra. Is it true that regR.I1 � � � Id / D
d for every I1; : : : ; Id ideals of R generated in degree 1 (whenever the product is
non-zero)?

Remark 10. In a universally Koszul algebra a product of elements of degree 1 has a
linear annihilator. This can be easily shown by induction on the number of factors.
Hence, the answer to Question 9 is positive if each Ii is principal.

We are able to answer Question 8 in the following cases:

Theorem 11. Products of ideals of linear forms have linear resolutions over the
following rings:

.1/ R is Cohen–Macaulay with dim R � 1 and regS .R/ D 1.

.2/ R D KŒx; y; z�=.q/ with deg q D 2.

.3/ R D KŒx; y�.c/ with c 2 N>0.

.4/ R D KŒx; y; z�.2/ .

.5/ R D KŒx; y� � KŒs; t � (� denotes the Segre product).

Proof. The rings in the list are Cohen–Macaulay with regS.R/ D 1. Let I1; : : : ; Id

be ideals generated by linear forms. We prove by induction on d that regR.I1 � � �
Id / D d . The case d D 1 follows because the rings in the list are universally
Koszul. If for one of the Ii we have dim R=Ii � 1 then we may use Proposition 5
and conclude by induction. Hence we may assume dim R=Ii � 2 for every i . For
the ring (1) and (3) (which is a 2-dimensional domain) we are done. In the case (2),
the only case left is when the Ii are principal. But then we may conclude by virtue
of Remark 10. In cases (3) and (4) we have that dim R=Ii D 2 for each i , that is,
heightIi D 1. If one of the Ii is principal, then we are done by induction (because
the R is a domain). Denote by A either KŒx; y; z� in case (3) or KŒx; y; s; t � in case
(4). Since R is a direct summand of A we have IA \ R D I for every ideal I

of R. It follows that height.Ii A/ D 1 for every i and hence there exist non-units
fi 2 A such that Ii A � .fi /. In case (3) we have that each fi must have degree
1 in A and Ii A D .f1/J1 with J1 an ideal generated by linear forms of A. Hence
I1I2 D .f1f2/H where H D J1J2 is an ideal generated by linear forms of R. Hence
we are done because one of the factor is principal. In case (4) we have that each fi is
either a linear form in x; y or a linear form in s; t . If one of the fi ’s is a linear form in
x; y and another one is a linear form in s; t we can proceed as in the case (3). So we
are left with the case that every fi is a linear form in, say, x and y and Ii D .fi /Ji

with Ji generated by linear forms in z; t . Since none of the Ii is principal we have
that Ji D .z; t/ for every i . Hence I1 � � � Id is generated by .

Qd
iD1 fi /.z; t/d and it

isomorphic to the R-submodule of A generated by its component of degree .0; d/.
That such a module has a linear resolution over R follows from Proposition 19. ut
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We state now a very basic question of computational nature.

Question 12. Let R be a Koszul algebra and M an R-module. How does one
compute regR.M /? Can one do it algorithmically?

Few comments concerning Question 12. We assume to be able to compute
syzygies over R and so to be able to compute the first steps of the resolution of
a R-module M . Let S ! R the canonical presentation Eq. (1) of R. We know
that regR.M / � regS .M / and regS.M / can be computed algorithmically because
pdS.M / is finite. A special but already interesting case of Question 12 is:

Question 13. Let R be a Koszul algebra and M an R-module generated in degree
0, with M1 ¤ 0 and Mi D 0 for i > 1. Can one decide algorithmically whether
regR.M / D 0 or regR.M / D 1?

Set
rR.M / D minfi 2 N W tR

i .M / � i D regR.M /g:
So rR.M / is the first homological position where the regularity of M is attained.
If one knows rR.M / or a upper bound r � rR.M / for it, then one can compute
regR.M / by computing the first r steps of the resolution of M . Note that

rR.M / � ldR.M /

because regR.N / D tR
0 .N / if N is componentwise linear. One has:

Lemma 14. Let R be a K-algebra with regS .R/ D 1. Then rR.M / � 2 dim R

for every M , that is, the regularity of any R-module is attained within the first
2 dim R steps of the resolution. If furthermore R is Cohen–Macaulay, rR.M / �
dim R � depthM .

The first assertion follows from Remark 11; the second is proved by a simple
induction on depthM .

Note that the i th syzygy module of M cannot have a free summand if i > dim R

by [30, 0.1] and so
tR
j C1.M / > tR

j .M / if j > dim R:

Unfortunately there is no hope to get a bound for rR.M / just in terms of
invariants of R for general Koszul algebras. The argument of [41, 6.7] that shows
that if R is a Gorenstein algebra with socle degree > 1 then sup ldR.M / D 1
shows also that supM rR.M / D 1. For instance, over R D KŒx; y�=.x2; y2/ let
Mn be the dual of the nth syzygy module �R

n .K/ shifted by n. One has that Mn is
generated be in degree 0, regR.Mn/ D 1 and rR.Mn/ D n. On the other hand, the
number of generators of Mn is n. So we ask:

Question 15. Let R be a Koszul algebra. Can one bound rR.M / in terms of
invariants of R and “computable” invariants of M such as its Hilbert series or its
Betti numbers over S?

The questions above make sense also over special families of Koszul rings. For
instance, there has been a lot of activity to understand resolutions of modules over
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short rings, that is, rings with m3
R D 0 or m4

R D 0, both in the graded and local
case (see [7,9,40]). It would be very interesting to answer Questions 12, 13, and 15
for short rings.

6 Local Variants

This section is concerned with “Koszul-like” behaviors of local rings and their
modules.

Assumption: From now on, when not explicitly said, R is assumed to be a local
or graded ring with maximal ideal m and residue field K D R=m. Moreover all
modules and ideals are finitely generated, and homogeneous in the graded case.

We define the associated graded ring to R with respect to the m-adic filtration

G D grm.R/ D ˚i�0mi =miC1:

The Hilbert series and the Poincaré series of R are

HR.z/ D HG.z/ D
X

i�0

dim.mi =miC1/zi and PR.z/ D
X

i�0

dim TorR
i .K; K/zi :

6.1 Koszul Rings

Following Fröberg [35] we extend the definition of Koszul ring to the local case as
follows:

Definition 1. The ring R is Koszul if its associated graded ring G is a Koszul
algebra (in the graded sense), that is, R is Koszul if K has a linear resolution as
a G-module.

As it is said in Remark 6 (6) in the graded setting the Koszul property holds
equivalent to the following relation between the Poincaré series of K and the Hilbert
series of R:

P R
K .z/HR.�z/ D 1: (5)

The following definition is due to Fitzgerald [34]:

Definition 2. The ring R is Fröberg if the relation Eq. (5) is verified.

We want to explain why every Koszul ring is Fröberg. To this end we need to
introduce few definitions.

Let A be a regular local ring with maximal ideal mA and let I be an ideal of A

such that I � m2
A. Set R D A=I . Then G ' S=I � where S is the polynomial ring
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and I � is the homogeneous ideal generated by the initial forms f � of the elements
f 2 I .

Definition 3. (1) A subset ff1; : : : ; ft g of I is a standard basis of I if I � D
.f �

1 ; : : : ; f �
t /I

(2) The ideal I is d -isomultiple if I � is generated in degree d:

If ff1; : : : ; ft g is a standard basis of I , then I D .f1; : : : ; ft /: See [53] for more
details on d -isomultiple ideals. Notice that by Remark 6 (1) we have

R Koszul H) I is 2-isomultiple:

Obviously the converse does not hold true because a quadratic K-algebra is not
necessarily Koszul.

We now explore the connection between Koszul and Fröberg rings. By definition
HR.z/ D HG.z/; and

P R
K .z/ � P G

K .z/

(see, e.g. [36, 4]). Conditions are known under which ˇR
i .K/ D ˇG

i .K/; for
instance, this happens if

tG
i .K/ D maxfj W ˇG

ij .K/ ¤ 0g � minfj W ˇG
iC1j .K/ ¤ 0g for every i I (6)

see [36, 4]. This is the case if K has a linear resolution as a G-module. Hence,

Proposition 4. If R is Koszul, then R is Fröberg.

Proof. By definition, HR.z/ D HG.z/. If R is a Koszul ring, then G is Koszul, in
particular P G

K .z/HG.�z/ D 1: The result follows because the graded resolution of
K as a G-module is linear and hence Eq. (6) and therefore P R

K .z/ D P G
K .z/. ut

Since in the graded case R is Fröberg iff it is Koszul, it is natural to ask the
following question.

Question 5. Is a Fröberg (local) ring Koszul?

We give a positive answer to this question for a special class of rings. If f is a
non-zero element of R, denote by v.f / D v the valuation of f; that is the largest
integer such that f 2 mv:

Proposition 6. Let I be an ideal generated by a regular sequence in a regular local
ring A. The following facts are equivalent:

.1/ A=I is Koszul.

.2/ A=I is Fröberg.

.3/ I is 2-isomultiple.

Proof. By Proposition 4 we know (1) implies (2). We prove that (2) implies (3).
Let I D .f1; : : : ; fr / with v.fi / D vi � 2: By [59] we have P

A=I
K .z/ D .1 C

z/n=.1 � z2/r . Since A=I is Fröberg, one has that HA=I .z/ D .1 � z2/r=.1 � z/n;
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in particular the multiplicity of A=I is 2r . From [53, 1.8], it follows that vi D 2

for every i D 1; : : : ; r and f �
1 ; : : : ; f �

r is a regular sequence in G. Hence I � D
.f �

1 ; : : : ; f �
r /; so I is 2-isomultiple. If we assume (3), then G is a graded quadratic

complete intersection, hence P G
K .z/HG.�z/ D 1 and since G is graded this implies

that G is Koszul. ut
Next example is interesting to better understand what happens in case the regular

sequence is not 2-isomultiple.

Example 7. Consider Is D .x2 � ys; xy/ � A D KŒŒx; y�� where s is an integer
� 2: Then, as we have seen before, P

A=I
K .z/ D .1 C z/2=.1 � z2/2 and it does not

depend on s: On the contrary the Hilbert series depends on s; precisely HA=I .z/ D
1C2zCPs

iD2 zi : It follows that A=I is Koszul (hence Fröberg) if and only if s D 2

if and only if I is 2-isomultiple. In fact if s > 2; then I �
s D .x2; xy; ysC1/ is not

quadratic.

In the following we denote by e.M / the multiplicity (or degree) of an R-module
M and by �.M / its minimal number of generators. Let R be a Cohen–Macaulay
ring. Abhyankar proved that e.R/ � h C 1 and h D �.m/ � dim R is the so-called
embedding codimension. If equality holds R is said to be of minimal multiplicity.

Proposition 8. Let R be a Cohen–Macaulay ring of multiplicity e and Cohen–
Macaulay type � . If one of the following conditions holds:

.1/ e D h C 1

.2/ e D h C 2 and � < h

then R is a Koszul ring.

Proof. In both cases the associated graded ring is Cohen–Macaulay and quadratic
(see [53, 3.3, 3.10]). We may assume that the residue field is infinite; hence
there exist x�

1 ; : : : ; x�
d filter regular sequence in G and it is enough to prove that

G=.x�
1 ; : : : ; x�

d / ' grm=.x1;:::;xd /.R=.x1; : : : ; xd // is Koszul (see, e.g. [43, 2.13]).
Hence the problem is reduced to an Artinian quadratic K-algebra with �.m/ D
h > 1 and dimK m2 � 1, and the result follows (see [34] or [20]). ut
Remark 9. (1) There are Cohen–Macaulay rings R with e D h C 2 and � D h

whose associated graded ring G is not quadratic, hence not Koszul. For example
this is the case if R D kŒŒt5; t6; t13; t14��; where e D h C 2 D 3 C 2 D 5 and
� D 3:

(2) Let R be Artinian of multiplicity e D h C 3. Then R is stretched if its Hilbert
function is 1 C hz C z2 C z3; and short if its Hilbert function is 1 C hz C 2z2

(for details see [54]). For example, if R is Gorenstein, then R is stretched.
Sally classified, up to analytic isomorphism, the Artinian local rings which
are stretched in terms of the multiplicity and the Cohen–Macaulay type. As
a consequence one verifies that if R is stretched of multiplicity � h C 3; then
I � is never quadratic, hence R is never Koszul. If R is short, then R is Koszul if
and only if G is quadratic. In fact, by a result in Backelin’s PhD thesis (see also
[20]), if dimK G2 D 2 and G is quadratic, then G is Koszul, so R is Koszul.
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6.2 Koszul Modules and Linear Defect

Koszul modules have been introduced in [41]. Let us recall the definition.
Consider .FR

M ; ı/ a minimal free resolution of M as an R-module. The property
ı.FR

M / � mFR
M (the minimality) allows us to form for every j � 0 a complex

linj .FR
M / W 0 ! Fj

mFj

! � � � ! mj �i Fi

mj �iC1Fi

! � � � ! mj F0

mj C1F0

! 0

of K-vector spaces. Denoting lin.FR
M / D ˚j �0linj .FR

M /, one has that lin.FR
M / is a

complex of free graded modules over G D grm.R/ whose i th free module is

˚j mj �i Fi =mj �iC1Fi D grm.Fi /.�i/ D G.�i/ ˝K Fi =mFi :

By construction the differentials can be described by matrices of linear forms.

Accordingly with the definition given by Herzog and Iyengar in [41]:

Definition 10. M is a Koszul module if Hi .linj .FR
M // D 0 for every i > 0 and

j � 0, that is, Hi .lin.FR
M // D 0 for every i > 0.

Remark 11. Notice that, if R is graded, the K-algebras G and R are naturally
isomorphic. In particular lin.FR

M / coincides with the complex already defined in
Sect. 4.2. This is why lin.FR

M / is called the linear part of FR
M .

As in the graded case (see Eq. (4)), one defines the linear defect of M over R:

ldR.M / D supfi W Hi .lin.FR
M // ¤ 0g: (7)

The linear defect gives a measure of how far is lin.FR
M / from being a resolution

of grm.M / D ˚j �0mj M=mj C1M: By the uniqueness of minimal free resolution,
up to isomorphism of complexes, one has that ldR.M / does not depend on FR

M ;

but only on the module M: When ldR.M / < 1, we say that in the minimal free
resolution the linear part predominates.

Koszul modules have appeared previously in the literature under the name
“modules with linear resolution” in [56] and “weakly Koszul” in [46].

By definition R is Koszul as an R-module because it is R-free. But, accordingly
with Definition 1, R is a Koszul ring if and only if K is a Koszul R-module. We
have:

R is a Koszul ring ” K is a Koszul R-module ” K is a Koszul G-module.

If R is a graded K-algebra, Corollary 8 in particular says that R is a Koszul ring
if K has finite linear defect or equivalently K is a Koszul module. By [41, 1.13] and
[43, 3.4] one gets the following result, that is, the analogous of Theorem 7, with the
regularity replaced by the linear defect.
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Proposition 12. Let R be a graded K-algebra. The following facts are
equivalent:

.1/ R is Koszul.

.2/ ldR.K/ D 0.

.3/ ldR.K/ < 1.

.4/ There exists a Koszul Cohen–Macaulay R-module M with �.M / D e.M /.

.5/ Every Cohen–Macaulay R-module M with �.M / D e.M / is Koszul.

In [43] the modules verifying �.M / D e.M / are named modules of minimal
degree. When R itself is Cohen–Macaulay, the maximal Cohen–Macaulay modules
of minimal degree are precisely the so-called Ulrich modules. Cohen–Macaulay
modules of minimal degree exist over any local ring, for example, the residue field
is one.

The following question appears in [41, 1.14].

Question 13. Let R be a local ring. If ldR.K/ < 1, then is ldR.K/ D 0?

To answer Question 13 one has to compare lin.FR
K/ and lin.FG

K/. From a minimal
free resolution of K as a G-module we can build up a free resolution (not necessarily
minimal) of K as an R-module. In some cases the process for getting the minimal
free resolution is under control via special cancellations (see [55, 3.1]), but in
general it is a difficult task.

We may define absolutely Koszul local rings exactly as in the graded case.
A positive answer to Question 13 would give a positive answer to the following:

Question 14. Let R be an absolutely Koszul local ring. Is R Koszul?
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56. Şega, L.: Homological properties of powers of the maximal ideal of a local ring. J. Algebra

241, 827–848 (2001)
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Powers of Ideals: Betti Numbers, Cohomology
and Regularity

Marc Chardin

1 Introduction

The aim of this chapter is to provide a coherent approach to a collection of advances
over the last decade concerning homological invariants of powers of a graded ideal.
At this level of generality, the common denominator of all results is the use of
the Rees algebra of the ideal. Most, if not all, of the results are derived from
the existence, when the ring is Noetherian, of a graded free resolution with finite
summands for the Rees ring, seen as a (properly graded) module over a polynomial
extension of the ring.

Besides few improvements or generalizations, most of the results in this text are
not new. Three results that make a progress are Propositions 1 and 7, Theorem 2.
Many authors contributed to advances on the understanding of homological proper-
ties of powers of ideals, and we are conscious that we certainly omit part of them (an
example: the work [31] of Trung on the stabilization of the regularity index of the
Hilbert function, see also [20] for earlier advances). This is both because we only
cover part of this field and due to the fact that we very likely overlooked some of the
contributions on these questions. It may very well reflect a personal way of looking
at these questions, and I apologize in advance for these non-intentional omissions.

In the first section after this introduction, we recall some early advances that
are connected to the more recent results we will focus on. We then present results
on Betti numbers of powers and their eventual behaviour. The main idea, exploited
in different ways in [12, 33] or [1], is that the Rees algebra provides structured free
resolutions of all the powers in a single object. These are not minimal, but the defect
of minimality corresponds to a finitely generated module, hence also stabilizes.
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Precise results on powers out of this remark are given in the quoted articles, and
we just reproduce two of them to give a flavour of what can be done.

We then recall, in Sect. 3, the definition of Castelnuovo–Mumford regularity of a
graded module over a (finitely generated) standard graded algebra. One key feature
of this notion is that it can be defined in two ways: via Tor modules or via local
cohomology with respect to the positive part. It was noticed, very likely first by
Jouanolou, that the two definitions agree without assuming neither the base ring
to be Noetherian nor the module to be finitely generated. This makes the proof
of a linear bound for the powers completely straightforward in the case of an ideal
generated in a single degree (for that application, it in fact suffices to notice that local
cohomology is invariant under arbitrary base change, for a determined module), and
a general linear bound on the regularity of powers follows.

Section 4 considers the case of m-primary ideals for standard graded algebras
over a field. In that case, pretty precise results on the behaviour were given by
Eisenbud and Ulrich and by D. Berlekamp. We prove a result that completes the
one of Eisenbud and Ulrich and covers partly the work of Berlekamp for ideals that
need not be generated in a single degree. The more precise results for the single-
degree case are explained in Sect. 6.

The next section explains the geometric description of the constant that appears in
the linear function that equals the regularity of a high enough power. This very nice
description, for ideals generated in a single degree, is due to Eisenbud and Harris.
They were able to prove it for m-primary ideals, and it was then extended by Tai Hà
to arbitrary ideals, for a slight variation of the notion of regularity (the a�-invariant).
We here present the general result we obtain that provides information on the
eventual behaviour of local cohomology of powers, which implies the result of Hà
as well as the natural conjecture he had on the regularity of powers. It also provides
further applications, and we mention one about the regularity of powers of ideal
sheaves. In the last section, we give some further results on the regularity of powers
of ideal sheaves (saturated powers, in the commutative algebra terminology) and
symbolic powers that were obtained by several authors, including Cutkosky, Ein,
Lazarsfeld, Niu and myself. These only cover a small part of the recent advances on
symbolic powers; in particular we do not report about the behaviour of ideals of fat
points.

In Sect. 6 we first provide a slight improvement of a result of Eisenbud and
Ulrich on the behaviour of the regularity of powers of m-primary ideals that are
generated in a single degree. The description in terms of regularities of graded
strands of the Rees ring is a little more precise and general, and gives a coherent and
pretty complete view of what happens. An extension to ideals that are not generated
in a single degree can be obtained via similar techniques. However, this is more
technical to state and prove and uses regularity of modules that need not be finitely
generated as invariants. We preferred to include the proof of a generalization to
ideals generated in a single degree that need not be m-primary. For this purpose,
we introduce approximation complexes, in order to characterize Rees algebras of
regularity 0. We could have only quoted the ingredient that we needed to prove
Lemma 5 from the work of Herzog, Simis and Vasconcelos, or proved it under a
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more restrictive hypothesis, but it seemed to us that Proposition 4 can be of general
use and was not stated in this simple form, even though none of its claims is new.

2 Some Early Advances on the Regularity of Powers of Ideals

Homological invariants of powers of ideals have been studied for quite some time.
The stabilization of the associated primes attached to powers and the stabilization
of the depth of powers, by Markus Brodmann, are among the first examples of this
kind of result (see [3,4,25,28] for these results and connected ones; [24] for a book
collecting several of these; [5] for some geometric consequences; and [8] for a few
more recent results).

Some years later, Vijay Kodiyalam proved in [22] the asymptotic stability of
several homological invariants: Betti numbers, Bass numbers, length and minimal
number of generators of some Tor and Ext modules attached to powers of an ideal.
All these invariants for I n (or more generally for I nM , with M finitely generated)
are eventually a polynomial in n. These results essentially follow from a version
of the Hilbert-Serre theorem when properly applied to graded modules over the
Rees algebra ˚nI

n such as ˚n TorAi .MI
n; k/ when I � A is an ideal of the local

Noetherian ring A with residue field k, andM is a finitely generated A-module.
The first result on the regularity of powers of a graded ideal is due to Irena

Swanson in [30]: for any homogeneous ideal I , there exists k such that reg.I n/ �
kn for all n. This result easily follows from the existence of an integer ` and primary
decompositions I n D qn;1 \ � � � \ qn;sn with

p
qn;i

`n � qn;i , for all i . Indeed, this in
particular shows that .I n/� D ..I n/ W m1/� for � � `n and the result then follows
by induction on the number of variables, or on the dimension of A=I .

In small dimension, Chandler and Geramita, Gimigliano and Pitteloud [9, 17]
discovered independently that reg.I n/ � n reg.I / whenever dim.A=I / � 1. In fact
the statements are slightly more precise and were complemented by a collection of
results on the regularity of modules of the form TorAi .M;N / obtained by several
authors. These are detailed in Sects. 5–7, of my survey [6] and I will not return to
these here.

3 The Eventual Linearity

We first recall some definitions and notations. A standard graded algebra is a Z-
graded algebra generated by its elements of degree 1 over its component of degree 0,
A0. The initial degree of a Z-graded module M is indeg.M/ WD inff� j M� 6D 0g,
and its end is end.M/ WD supf� j M� 6D 0g. We recall that inf ; D C1 and
sup ; D �1. For a graded ideal I , I�� is the set of elements in I of degree at most
� and .I��/ the A-ideal they generate.
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The most significant simple result on the regularity of powers of graded ideals
is the following one, due independently to Vijay Kodiyalam [23] and to Cutkosky,
Herzog and Trung [12]. Let us state it in a slightly generalized form due to Trung
and Wang in [32]:

Theorem 1. Let A be a standard graded Noetherian algebra. If I 6D 0 is a graded
ideal and M 6D 0 a finitely generated graded A-module, there exists n1 and b
such that

reg.I nM/ D nd C b; 8n � n1;

with
d WD min

˚
� j 9m � 1; .I��/Im�1M D ImM

�
:

Notice that the number d is bounded above by the maximal degree of a generator
of I .

The first statements were for the case where A is a polynomial ring over a field.
The value of d was given by Kodiyalam in that case. On the other hand, Cutkosky,
Herzog and Trung deduced this result from the asymptotic linearity of the highest
degree of an element in the i th syzygy module, for any i .

The result on the linearity of the highest degree of a i th syzygy admits several
refinements and generalizations. The simplest to state is as follows. It was obtained
by Gwyneth Whieldon in [33] for a standard graded polynomial ring over a field
and independently by Amir Bagheri, Tai Hà and myself in more generality; in the
statement, G denotes an abelian group:

Theorem 2. Let A be a G-graded Noetherian algebra over S WD A0. Let I 6D 0

be a graded ideal generated in a single degree d 2 G and M 6D 0 be a finitely
generated graded A-module. Then, for every i , there exists a finite set �i � G such
that:

.1/ For all n 2 N, TorSi .MI
n; A/� D 0 if � 62 �i C nd .

.2/ There exists a subset �0
i � �i such that TorSi .MI

n; A/� 6D 0 for n � 0 and
� 2 �0

i C nd , and TorSi .MI
n; A/� D 0 for n � 0 and � 62 �0

i C nd .
.3/ Let A ! k be a ring homomorphism to a field k. Then for any ı and any j , the

function

dimk TorSi .MI
n; k/ıCnd

is polynomial in n for n � 0.

More general and precise statements are given in [1], that considers theG-graded
Betti numbers of I n11 � � � I nss M for a collection of ideals which need not be generated
in a single degree.

To provide a simple corollary of these general statements, let us mention that
they imply the following:

Theorem 3. Let A be a positively graded Noetherian algebra over S WD A0. Let
I 6D 0 be a graded ideal generated in degrees d1; : : : ; ds , and M 6D 0 a finitely
generated graded A-module. Then, for any i , there exists ei ; fi 2 fd1; : : : ; dsg and
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ai ; bi 2 Z, or .ai ; bi / D .C1;�1/, such that for n � 0

indeg.TorAi .MI
n; S// D nfi C ai

and
end.TorAi .MI

n; S// D nei C bi :

The statement for the initial degree is possibly new, and the second one is a slight
refinement of the initial result of Cutkosky, Herzog and Trung: it ensures that the
number ei is one of the degrees of generators of I .

The proof of these results in [1] relies on the following remark. If I is generated
by forms f1; : : : ; fr of degrees d1; : : : ; dr , the Rees algebra ˚nI

n is a G	Z-graded
quotient of AŒT1; : : : ; Tr �, obtained by mapping Ti to fi , setting deg.Ti / WD .di ; 1/

and deg.a/ WD .deg.a/; 0/ for a 2 A.
Taking a freeG	Z-graded resolution F� of the Rees algebra, one notices that, as

deg.a/ 2 G 	 0 for a 2 A, ˚n TorAi .I
n; S/ D Hi.F� ˝A S/ is a finitely generated

G 	 Z-graded S 0 WD SŒT1; : : : ; Tr �-module. One then studies the structure of the
subset SuppG�Z.N / WD f� 2 G 	 Z j N� 6D 0g for a finitely generated G 	 Z-
graded S 0-moduleN to provide a description of SuppG�Z.Hi .F� ˝A S//\G	 fng
for n � 0.

Let us now recall the two equivalent definitions of Castelnuovo–Mumford
regularity. It is worth noticing that the equivalence of definitions is valid not only
for algebras over a field. Sometimes it is also useful to not have to assume finite
generation. This general version is probably due to Jouanolou, and is proved in
[8, 2.4].

Theorem 4. Let A be a finitely generated standard graded algebra over a commu-
tative ring S WD A0 andM be a graded A-module. Set

ai .M/ WD supf� jHi
AC
.M/� 6D 0g and bi .M/ WD supf� j TorAi .M; S/� 6D 0g:

Then reg.M/ WD maxi fai.M/C ig D maxj fbj .M/ � j g 2 Z [ f˙1g is called
the Castelnuovo–Mumford regularity ofM .

An important fact about local cohomology, which comes from its computation
using a Čech complex, is that, for a fixed module, it commutes with arbitrary base
change. If this base change does not affect the grading, this will transfer to regularity.
Let us give a very useful specific example. Let A be a finitely generated standard
graded algebra over S WD A0 and I D .f1; : : : ; fr / be a graded A-ideal generated
in a single degree d WD degfi , and set S 0 WD SŒT1; : : : ; Tr �. The graded map A0 WD
AŒT1; : : : ; Tr �!RI WD ˚n�0I n.nd/ with deg.Ti / D 0 makes the Rees algebra
a quotient of the standard graded algebra A0 over S 0 D A0

0, and a (not finitely
generated) graded A-module. Notice that we do use here that I is generated in a
single degree, a case that is much better understood than the general case. (This
hypothesis could be weakened without much changes to the case where I has a
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reduction generated in a single degree). Considering RI as a A-module or as a A0-
module does not affect its regularity, and the following result follows.

Theorem 5. With the above notations,

sup
n

freg.I n/� nd g D reg.RI /:

Furthermore, reg.RI / 2 Z�0 if S is Noetherian.

Notice that the finiteness of reg.RI / comes from the Noetherianity of A0, using
the definition in terms of Tor. The inequality reg.I n/ � nd C reg.RI / was proved
by Tim Römer in [29, 5.3] using a notion of bigeneric initial ideal. This work of
Römer also contains several corollaries and connected results, as well as estimates
of the power were linearity occurs in terms of the bigeneric initial ideal.

A linear bound for the regularity of powers can easily be deduced. Let

d1 WD minf� j .I�/ and I coincide off V.AC/g;

and notice that it is bounded above by the highest degree of an element in any set
of generators of I . It follows from the definition of d1 that I n and Kn coincide off
V.AC/, and using the definition of regularity in terms of local cohomology and the
inclusionKn � I n one has

reg.I n/ � reg.Kn/ � nd1 C reg.RK/:

We will see below that, when I is supported in V.AC/, the number d1 coincides
with d as defined in Theorem 1.

4 The m-Primary Case

Let A WD kŒx1; : : : ; xm� be a standard graded algebra over a field k, m WD
.x1; : : : ; xm/, M be a finitely generated graded A-module and I be a graded ideal
such that M=IM is m-primary. Let d WD minf� j 9p; .I��/I pM D IpC1M g and
J WD .I�d /. By [23] in the case that A is regular and [32] in general, there exists
b � indeg.M/ such that

reg.M=InM/ D nd C b � 1; 8t � 0:

Set n0 WD minfn j md I nM � JM g.

Proposition 1. With notations as above:

(i) d D minf� j M=.I��/M is m-primaryg.
(ii) The function f .n/ WD reg.M=InM/ � nd D end.M=InM/ � nd is weakly

decreasing for n � minf1; n0g.
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(iii) One has

n0 �
�

reg.M=JM/� indeg.M/� d C 1

d C 1

�

and reg.M=JM/ � reg.M/C .d � 1/ dimM .

Proof. Let d0 WD minf� j M=.I��/M is m-primaryg, K WD .I�d0/ and t0 WD
minft > 0 j md0I tM � KM g.

Notice first that d0 � d as M=JM is m-primary.
As .I tM \ KM/=I tKM D TorA1 .M=I

tM;A=K/, and the latter module is a
subquotient of F˝AM=I

tM if F ! A presents A=K , it follows that reg..I tM \
KM/=I tKM/ � reg.M=I tM/C d0 and reg.M=md0I tM / � reg.M=I tM/C d0
for t � 1. Hence, if t � t0,

reg.M=I tC1M/ � reg.M=I tKM/

� maxfreg.M=I tM/C d0; reg.M=KM/g
� maxfreg.M=I tM/C d0; reg.M=md0I tM /g
� reg.M=I tM/C d0;

which implies that d � d0; hence d0 D d , J D K and t0 D n0. This shows (i)
and (ii).

For (iii) notice that I � J C mdC1; hence mdI t � J C mt .dC1/Cd . Now
mt .dC1/CdM � M�indeg.M/Ct .dC1/Cd and M�� � .JM/�� if (and only if) � >
reg.M=JM/. Finally notice that reg.M=JM/ � reg.M/C .d � 1/ dimM (e.g. by
[6, 1.5.2 (i)]). ut

For ideals generated in a single degree, point (ii) is Proposition 1.1 in [14], and
the argument above shows that it also follows from [16, 7.5].

In the case where A is a polynomial ring and M D A, it shows the following
result that is of interest in the unequal degree case:

Corollary 2. Let I be a homogeneous ideal of a standard graded polynomial ring
A WD kŒX1; : : : ; Xm� over a field k. Let

d WD minf� j.I��/ is m-primaryg

and n0 WD
l
.m�1/.d�1/

dC1
m

� m � 1.

Then reg.I n/ � dn is a nonnegative weakly decreasing function of n, for n �
minf1; n0g.

In Example 2.3 of [15], m D 4 and d D 5 and the bound for n0 is sharp.
Several interesting results on the behaviour of the regularity of powers of m-

primary ideals were obtained by David Berlekamp. In particular, results closely
related to the above proposition figures in his article [2]. For instance, he proves
the following [2, 2.8]:
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reg.I n/ � dn is a nonnegative weakly decreasing function of n for n > reg.J /
d 0 ,

where d 0 is the highest degree of a minimal generator of I . The bound above n �
reg.J /�d
dC1 could not be directly compared to this bound.

5 The Constant

The first important result towards a description of the number b such that reg.I n/ D
nd C b for n � 0 is due to Eisenbud and Harris (who also quote early advances
together with Huneke). They provide a geometric description in the equal degree m-
primary case that we will recall below. Then Tai Hà proved in [18] an extension for
the equal degree case, without the m-primary assumption, for a very closely related
invariant, a�.I n/ WD maxi fai.I n/g. More recently, I provided a general description
of the number limn!1.ai .I n/ � nd/ 2 Z [ f�1g that in particular implies the
natural conjecture given by Hà in view of his results. Although the result in [7] treats
the unequal degree case, the geometric description is much less satisfying, except
perhaps when .Id / is a reduction of I .

We will only discuss here the equal degree case and for simplicity assume that
the base ring is a field and further not involve a moduleM as in the previous section.

Let A be a positively graded Noetherian algebra over a field k and I be a graded
A-ideal generated by r forms f1; : : : ; fr of degree d . These forms define a rational
map :

� W S WD Proj.A/ � � � ! Pr�1:

This rational map is a morphism when I is m-primary.
The closure 	 of the graph of � is the irreducible subscheme of S 	 Pr�1 defined

by the Rees algebra. More precisely, let A0 WD AŒT1; : : : ; Tr �, B WD kŒT1; : : : ; Tr �,
set bideg.Ti / WD .0; 1/ and bideg.a/ WD .deg.a/; 0/ for a 2 A. The natural bigraded
morphism of bigraded k-algebras

A0  
�� RI WD ˚t�0I.d/t D ˚t�0I t .dt/;

sending Ti to fi , is onto and correspond to the embedding 	 � S 	 Pr�1.
Notice that taking the projectivization of RI with respect to the simple grading

coming from A (deg.Ti / D 0) gives an irreducible scheme e	 � S 	 Ar whose
projectivization is 	 . When A is standard graded, there is a natural embedding S �
Ps with s C 1 WD dimk.A1/; hence

	 � Ps 	 Pr�1 D PsPr�1 and e	 � Ps 	 Ar D PsAr :

We have already seen that maxnfreg.I n/ � nd g D reg.RI / D reg.e	/.
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The regularity of a subscheme X � PnY , Y D Spec.C0/ is defined as the
regularity of the unique graded quotient Q of C WD C0ŒX0; : : : ; Xn� with X D
Proj.Q/ and H0

CC
.Q/ D 0. Q is the quotient of C by the graded C -ideal IX WD

˚�H
0.PnY ; IX.�//, where IX is the sheaf of ideals defining X as a subscheme of

PnY . Equivalently, reg.X/ D maxi�1fai.Q/C ig for anyQ, quotient of C such that
X D Proj.Q/.

We define the geometric regularity as greg.X/ WD maxi�2fai .Q/C ig, with Q
as above. Alternatively, one has greg.X/ WD reg.˚�H

0.PnY ;OX.�///. Notice also
that reg.X/ D greg.X/with X � PnC1

Y defined by IXC ŒXnC1�. The name geometric
regularity has the (weak) following justification : if X 0 is an isomorphic projection
ofX to a linear subspace of PnY , then greg.X 0/ D greg.X/while reg.X 0/ � reg.X/,
and this inequality can be strict. However, this notion depends very much on
the embedding of X . Regularity is based on the vanishing of graded pieces of
cohomology (i.e. of specific twists in sheaf cohomology), thus will typically change
after a Veronese embedding.

Local cohomology commutes with localization, in particular with localization on
the base (degree zero elements). It follows that (geometric) regularity is a notion
that is local on the base. Indeed, if M is a graded module over C0Œx1; : : : ; xn�,
then ai .M/ D supp2Y fai .M ˝C0 .C0/p/g, and this supremum is a maximum
if ai .M/<1. Also one may take the supremum among maximal ideals of Y .
Alternatively, one can similarly remark that the formation of Tor modules commutes
with localization on the base and uses the second definition of regularity.

From this fact, one easily derives a notion of regularity for a subscheme of PsY
for any scheme Y (see [7] for a detailed treatment). With this definition, considering
	 � PsPr�1 and e	 � PsAr , one has :

Theorem 1. In the above situation;

(1) maxnfreg.I n/� nd g D reg.e	/.
(2) reg.I n/� nd D reg.	/, for n � 0.
(3) limn!C1.reg.I n/sat � nd/ D greg.	/.

The regularity of 	 is defined as the maximal regularity of the stalks over points
in Pr�1, while in the work of Eisenbud and Harris the maximal is taken over the
fibers. In fact, according to [7, Sect. 6], both coincide as long as all non-empty
fibers have a common Hilbert polynomial up to constant term (a weakening of the
flatness condition that requires this polynomial to be constant). This condition holds
when all fibers are finite, as in the case considered by Eisenbud and Harris.

Let us point out that by [27, 2.9], the fibers are all finite if and only if Proj.A=In/
is defined scheme-theoretically by equations of degree < nd for some n.

The theorem follows from the more precise result below that shows such an
equality for each of the invariants ai .I n/ individually.

Theorem 2. In the above situation, let B 0 WD B= annB.ker. //. Then,

lim
t!C1.a

i .I t / � td / D max
q2Proj.B0/

fai.RI ˝B0 B 0
q/g:
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This result has another interesting consequence : if the projection of 	 to its
image Proj.B 0/ � Pr�1 has a fiber of positive dimension, then limt!C1.ai .I t / �
td / � �i for some i � 2, showing that the regularity of the powers of the ideal
sheaf associated to I is eventually a linear function with leading coefficient d .

6 The Stabilization Index

From the result of Kodiyalam and Cutkosky, Herzog and Trung, a natural question
arises : from which point on the regularity of I n is a linear function of n ?

In this section we address this question. Alternative arguments are given to derive
a result of Eisenbud and Ulrich, that actually leads to some improvements. We then
present results of Berlekamp and provide an extension from the m-primary case to
a more general situation. We first introduce some notation.

Let I D .f1; : : : ; fr / with degfi D d for 1 � i � r , B WD kŒT1; : : : ; Tr �,
n WD .T1; : : : ; Tr/ and A0 WD AŒT1; : : : ; Tm�.

We set bideg.Ti / WD .0; 1/ and bideg.a/ WD .deg.a/; 0/ for a 2 A. The natural
onto map A0!RI makesMRI a bigraded A0-module.

Let N WD ˚n.M=I
nM/.nd/ with the A0-module structure obtained from the

one of A-module by setting T ˛m WD f ˛m. In other words, N is the cokernel of
the map ˚nI

nM.nd/! ˚nM.nd/. IfM has positive depth,N � H1
m.MRI / and

equality holds if M has depth at least 2. In particular, N�;� is a finitely generated
graded B-module for any �. Notice that if A is standard graded, N�;n D 0 implies
N�C1;n D 0 for any � � end.M=mM/� nd .

The following lemma will be very useful to compute the stabilization index.
Its proof is a little bit involved at this level of generality. However, if for instance
depthM � 2, its proof simplifies quite a lot.

Lemma 1. One has an exact sequence

0! ˚n<0 M.nd/!H1
n.MRI /!H0

n.N /!0;

and for any i 6D 0,

Hi
n.N / D HiC1

n .MRI / D HiC1
mCn.MRI /:

Furthermore,Hi
n.N / D Hi

n.H
1
m.MRI // if H0

m.M/ D 0.

Proof. We may replace A by A= annA.M/ to assume that I is m-primary. Let
Re
I WD ˚n2ZI

n.nd/. Consider the two spectral sequences arising from the double
complex C�

nC�
mMRe

I abutting to H �
nCm.MRe

I /. As I is m-primary, after inverting
any Xi , the ideal I is the unit ideal, and .MRe

I /Xi is isomorphic to MXi Œt
�1; t �

where t is the class of Tj for j such that fj is a unit in AXi , and n coincides with
.t/ after this localization. It follows thatHi

n.CjmMRe
I / D 0 for j > 0; hence

Hi
n.MRe

I / D Hi
nCm.MRe

I /:
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On the other hand, Hj
m.MRe

I / D ˚n2ZH
j
m.M/.nd/ for j � 2, and there is a

natural graded exact sequence :

0!H0
m.MRe

I /!˚n2ZH
0
m.M/.nd/!N!H1

m.MRe
I /!˚n2ZH

1
m.M/.nd/!0:

It follows that Hi
n.H

j
m.MRe

I // D 0 for j � 2, and there is a long exact sequence:

0!H1
n.H

0
m.MRe

I //!H0
n.N /!H0

n.H
1
m.MRe

I //!H2
n.H

0
m.MRe

I //!H1
n.N /

!H1
n.H

1
m.MRe

I //!H3
n.H

0
m.MRe

I //!H2
n.N /! � � �

The second spectral sequence has second terms Hi
nH

j
m.MRe

I / and abutment Ei;j1
equal to the cokernel of Hi�2

n .H1
m.MRe

I //!Hi
n.H

0
m.MRe

I // if j D 0 and equal
to the kernel of Hi

n.H
1
m.MRe

I //!HiC2
n .H0

m.MRe
I // if j D 1.

It in particular provides the identificationHi
n.N / D HiC1

mCn.MRe
I / for i � 0.

Now, the exact sequence

0!MRI!MRe
I! ˚n<0 M.nd/!0

shows thatHi
n.RI / D Hi

n.Re
I / for i 6D 1 (recall thatH0

n.MRe
I / D 0) and provides

the graded exact sequence

0! ˚n<0 M.nd/!H1
n.MRI /!H1

n.MRe
I /!0: ut

The following result is a slight improvement of the result of Eisenbud and Ulrich
in [15] on the stabilization of the regularity of powers of an ideal generated in a
single degree.

Theorem 2. Let A be a standard graded algebra over a field, m WD AC, M be a
finitely generated graded A-module and I be a graded ideal generated in degree d
such thatM=IM is m-primary. Then there exists b � indeg.M/ such that

reg.M=InM/ D nd C b � 1; 8n � reg..MRI /b;�/ D end.H1
n.MRI /b;�/C 1:

More precisely,

(i) Hi
n.MRI /�;� D Hi

n..MRI /�;�/ D 0 for � � b and i 6D 1.
(ii) r.�/ WD reg..MRI /�;�/ < 1 is a weakly decreasing function of �, for � �

maxfb; end.M=mM/� d g.
(iii) The values �1 > �2 > � � � > �l D b of reg.M=InM/ � nd C 1 for n > 0

satisfy

reg.M=InM/ D nd C �i � 1 , r.�i / � n < r.�iC1/

if one sets r.�lC1/ WD C1.
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Proof. Let b be defined by reg.M=InM/ D nd C b � 1 for n � 0.
For (i), notice that if � � b, N�;n D 0 for n � 0; hence N�;� D H0

n.N�;�/ and
Hi

n.N�;�/ D 0 for i > 0; the result then follows from Lemma 1. This implies that
reg..MRI /�;�/ D end.H1

n.MRI /�;�/C 1 for � � b.
Furthermore it shows that H1

n.MRI /�;n D 0 ) H1
n.MRI /�;nC1 D 0 if

� � b.
By Proposition 1 (ii), reg.M=InM/ � nd is a weakly decreasing function of n

whose eventual value is b�1. By Lemma 1H1
n.MRI /�;n D H0

n.N /�;n, for n � 0;
henceH1

n.MRI /�;n D N�;n if � � b and n � 0, which proves that

maxfn j reg.M=InM/� nd D �i � 1g D end.N�i ;�/;8i < l:

Now N�;n D 0 implies N�C1;n D 0 if M has no minimal generator in degree
�C nd C 1, which implies (ii). ut

Notice that if b � end.M=mM/�d , as is for instance the case whenM is cyclic
or generated in a single degree, then (iii) takes the nicer following form, using (ii) :

(iii) For n � 1 and � � b,

reg.M=InM/ D nd C � � 1 ,
�
r.�/ � n < r.� � 1/ if � > b;
n � r.b/ if � D b:

In the case of unequal degree, Berlekamp obtained an explicit bound for
monomial ideals. An m-primary monomial ideal I in kŒX1; : : : ; Xm� is minimally
generated (after permuting the variables, if needed) by monomials as follows:

I D .Xd
1 ; : : : ; X

d
l ; X

d1
lC1; : : : ; X

dm�l
m ; h1; : : : ; hr /;

where the hi ’s are not powers of variables and d > d1 � d2 � � � � � dm�l . Notice
that d is the minimal degree � such that .I��/ is m-primary; hence reg.I n/ D
nd C b for some b � 0 and n � 0. Then,

Theorem 3. [2, 3.1]. The value of reg.I n/ � nd is a non negative constant for
n > .m � 1/maxf1; l.d � 1/� 1g.

For proving stabilization results for non-m-primary ideals, it is important to
be able to control the regularity of the Rees algebra. To this end we will use
approximation complexes. Let us briefly recall their construction.

If I D .f1; : : : ; fr / is a R-ideal for some commutative ring R, the Koszul
complexes Kf

� WD K�.f1; : : : ; fr IRŒT1; : : : ; Tr �/ (with fi 2 R � RŒT1; : : : ; Tr �)
and KT� WD K�.T1; : : : ; Tr IRŒT1; : : : ; Tr �/ have same modules as components, and
their differentials satisfy ıT ı ıf Cıf ı ıT D 0, proving that the i -cyclesZf

i ofKf
�

are mapped to Zf
i�1 by ıT (this map has degree one). The map ıT induces a map in

homology from H
f
i to Hf

i�1. The complexes Z WD .Zf
� ; ıT / and M WD .Hf

� ; ıT /,
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with Zi WD Zi .�i/ and Hi WD Hi.�i/, are two of the three approximation
complexes constructed by Herzog, Simis and Vasconcelos. They depend on the
choice of generators, but their homology does not. One has H0.Z/ D SymR.I /

andH0.M/ D SymR.I=I
2/. The following result, that follows from [19] and [21],

demonstrates their importance.

Proposition 4. Let R be a Noetherian local ring and I an R-ideal. The following
are equivalent :

(i) The Z-complex resolves RI .
(ii) The M-complex resolves RI =IRI .

(iii) The M-complex has only 0th homology.
(iv) reg.RI / D 0.
(v) reg.RI =IRI / D 0.

If further R has infinite residue field, these are also equivalent to :
(vi) I is generated by a d -sequence.

Recall that IRI D .RI /C.�1/ � RI and RI =IRI D R=I ˚R I=I
2 ˚R � � � .

Proof. Replacing R by R.U /, properties (i) to (v) are unchanged. Hence we may
assume that the residue field is infinite.

By [21, 4.1], (iv) and (v) are equivalent. By [19, 12.9], (i), (iii) and (vi) are
equivalent. The implication (ii))(iii) is trivial, and the reverse one holds since (i)
is implied by (iii) and shows that SymR.I=I

2/ D RI =IRI by [19, 3.1]. Finally (v)
and (vi) are equivalent by [19, 12.7, 12.8 and 12.10]. ut

Let A WD kŒX1; : : : ; Xn�, m WD .X1; : : : ; Xn/ and I D .f1; : : : ; fm/ be an ideal
with degfi D d for all i . Set B WD kŒT1; : : : ; Tr �, n and A0 WD AŒT1; : : : ; Tr �.

We will denote by Z 0�.f IA/ the augmented Z-complex, with augmentation map
the epimorphism Z 0

0.f IA/ D A0!RI .

Lemma 5. Assume that Ip � Ap satisfies one of the equivalent conditions of
Proposition 4 for all graded prime ideals p 6
 AC. Then

Hi
n.Cjm.RI //�;t D 0

for j > 0 and t > �i .
Proof. It suffices to show that, for any j , Hi

n..RI /˝AAXj /�;t D 0 for t > �i . Our
assumptions imply that the augmented Z-complex Z 0�.f IAXj / is exact. Denote by
.–/ shifts in the degrees in the Ti ’s, then Zi D Zi.f IA/˝AA

0.�i/, whereZi.f IA/
is the A-module of i th cycles in the Koszul complexK.f IA/. The double complex
C�
n.Z 0�/ gives rise to a spectral sequence abutting to zero with first terms:

1E
p
q D

8
<̂

:̂

H
p
n ..RI /˝A AXj / if q D �1;

Zq.f IAXj /˝AXj
Hr

n.A
0/.�q/ if p D r and q � 0;

0 else:
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It follows that Hr
n.A

0/�;��i D 0 implies that Hr�i
n .RI /�;� D 0. As Hr

n.A
0/>�r D

0, the conclusion follows. ut
Corollary 6. Assume that Ip � Ap satisfies one of the equivalent conditions of
Proposition 4 for all graded prime ideals p 6
 AC. Then for t > 0,

Hi
mCn.RI /�;t D Hi

n.RI /�;t :

Proof. The double complex C�
nC�

mRI gives rise to two spectral sequences abutting
to H �

mCn.RI /. One of them has first terms:

1E
p;q D Hp

n .Cqm.RI //:

For t > 0, .1Ep;q/�;t D 0 for q > 0 by Lemma 5, and the conclusion follows since
C0m.RI / D RI . ut

The double complex C�
nC�

mRI gives rise to another spectral sequence, whose
first terms are 1E

p;q D Cpn .Hq
m.RI //; and 2E

p;q D H
p
n .H

q
m.RI //. Taking graded

components, one has

.2E
p;q/�;t D Hp

n .H
q
m.RI /�;�/�;t :

Hence,

apn.H
q
m.RI /�;�/ D end..2Ep;q/�;�/:

Let � be such thatHq
m.RI /�;� is supported in V.n/ for all q. Then .2Ep;q/�;� D

0 for p > 0. Therefore .2Ep;q/�;� D .1Ep;q/�;� and

reg.Hq
m.RI /�;�/ D a0n.H

q
m.RI /�;�/ D end.Hq

m.RI /�;�/ D end.Hq
mCn.RI /�;�/:

The following result offers a generalization (in terms of the a�-invariant) of the
stabilization result for m-primary ideals; the hypothesis on I is for instance fulfilled
when the projective scheme Proj.A=I / is locally a complete intersection.

Proposition 7. Let I be a graded A-ideal generated in a single degree d , with
a�.I t / D dt C b for t � 0. Assume that Ip � Ap satisfies one of the equivalent
conditions of Proposition 4 for all graded prime ideals p 6
 AC. Then,

a�
m.I

t / � dt C b; 8t > max
�>b

a�
n..RI /�;�/:

Proof. Let � > b. Then H
q
m.RI /�;� is supported in V.n/ for all q. Hence

H
p
n .H

q
m.RI /�;�/ D 0 for all p > 0, and for t > 0,

Hq
m.I

t /�Cdt D H0
n.H

q
m.RI /�;t / D Hq

n .RI /�;t

by Lemma 5. Now H
q
n .RI /�;t D .H

q
n .RI /�;�/�;t vanishes for t > a�

n..RI /�;�/.
The result follows. ut
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Let us finally recall that Conca provided in [10] examples of ideals such that
reg.I n/ is a linear function of n for n D 1; :::;�p; p arbitrary, without being a
linear function of n for all n � 1.

7 Powers of Ideal Sheaves and Symbolic Powers

Let A be a standard graded algebra over a field, m WD AC, and I be a graded ideal
generated in degree at most d .

We denote by I sat WD [sI W ms the saturation of an ideal I with respect to m.
This ideal is equal to the sections over the projective scheme defined by A of the
sheaf of ideals defined by I .

Recall that reg.A=I sat / � reg.A=I / as both quotients share the same local
cohomology modules of positive index and H0

m.A=I
sat / D 0.

Cutkosky, Ein and Lazarsfeld proved in [13] that the limit

s.I / WD lim
t!1 reg..I t /sat /=t

exists and is equal to the inverse of a Seshadri constant. It need not be inQ, see [11].
Using the existence of c such that reg.MI t/ � dt C c for all t when I is

generated in degree at most d and M is finitely generated, one can easily derive
the existence of this limit.

For proving this we introduce some notation : rp WD reg..I p/sat / and

dp WD minf� j .I p/sat D ..I p/sat��/sat g;

the so-called degree of generation by global section for the sheaf associated to Ip .
First, one has dpCq � dp C dq , proving that s WD limp!1.dp=p/ exists.
For any p there exists cp such that reg...I p/sat�dp /

tI q/ � tdp C cp for all t � 1

and 0 � q < p.
One has ...I p/sat�dp /

t I q/sat D .I ptCq/sat , and the inequalities

dptCq � rptCq � tdp C cp

show that limp!1.rp=p/ D s and that dp � ps for all p.
The same argument applies to any graded ideal J such that dim.A=J / � 1.

Setting rJp WD reg.I p WA J1/ � reg.I p/ and defining dJp similarly as above,

dJp WD minf� j ..I p W J1/��/ W J1 D Ip W J1g;

the limits of rJp =p and dJp =p exist and are equal. For example, if Proj.A=I / is
a scheme with isolated non-locally complete intersection points, then limp!1 reg
.I .p/=p/ exists, where I .p/ denotes the pth symbolic power of I .



332 M. Chardin

Similar arguments apply in a much more general setting : A, a Noetherian posi-
tively graded algebra; I , a gradedA-ideal; and J a gradedA-ideal of cohomological
dimension (relative to AC) at most 1 (see [7, 6.12]).

On the other hand, when A=J has dimension 2, it may be that reg.I W J1/ >
reg.I / for J , an embedded prime of I . This shows that the above argument is not
directly applicable for symbolic powers in general.

In [27], Niu, using the definition of s.I / as (the inverse of) a Seshadri constant,
gave a geometric characterization of the condition s.I / < d . Recall that I is
generated in degree at most d , and denote by 	 the closure of the graph of the
rational map defined by generators of the vector space Id . One has 	 � Proj.A/	Pt

for some t , and we denote by 
 the projection of 	 to its image in Pt .
With this definition, s.I / < d if and only if the morphism 
 is finite. More

precisely, 
 is finite if and only if Proj.A=I t / is defined by equations of degree
< dt for some t , and if not, reg..I t /sat / � td is a non-negative constant for t � 0.

This follows from Theorem 2 and our arguments above. The article of Niu
contains several other interesting results on the regularity of powers of ideal sheaves,
in particular concerning the regularity of powers in terms of the regularity of the
ideal sheaf in the case where it defines a locally complete intersection scheme.

In another work of Niu [26], it is proved that, if k is of characteristic 0, then there
exists e such that

0 � reg..I t /sat /� ts.I / � e; 8t:
This is a strong refinement of the existence of the limit defining s.I / proved by
Cutkosky, Ein and Lazarsfeld. It relies on vanishing theorems (Fujita’s result). A
more self-contained proof would be interesting.
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Some Homological Properties of Modules over
a Complete Intersection, with Applications

Hailong Dao

1 Introduction

The purpose of this note is to survey some classical theory and recent developments
in homological algebra over complete intersection rings. A tremendous amount of
work has been done on this topic during the last fifty years or so, and it would not be
possible for us to summarize even a sizable part of it. We shall focus on properties of
modules (rather than following the modern and powerful trend of using complexes
and derived categories) and emphasize the somewhat unexpected applications of
such properties. While such narrow focus obviously reflects the author’s own bias
and ignorance, it will hopefully make the paper friendlier to researchers with
less experience in this area. In addition, the connections to problems that are not
homological in appearance reveal numerous interesting yet simple-looking open
questions about modules over complete intersections that we shall try to highlight.

Throughout this note let .R;m; k/ be a commutative local Noetherian ring. We
say that R is a complete intersection if there exists a regular local ring T and a
regular sequence f1; � � � ; fc in T such that R Š T=.f1; � � � ; fc/T . We say that
R is an abstract complete intersection if the m-adic completion OR is a complete
intersection. These two definitions are very recently proved to be different in a
stunning preprint by Heitmann–Jorgensen [45]. However, for virtually all the local
rings that arise in nature (i.e., those encountered by people outside of commutative
algebra), these two notions coincide. Furthermore, in many situations of interest, one
can reduce a statement about an abstract complete intersection to the same statement
over a complete intersection via completion.

It is very well known that regular local rings have finite global dimension; thus
every finitely generated module has a finite resolution by projective (even better,

H. Dao (�)
Department of Mathematics, University of Kansas, Lawrence, KS 66045-7523, USA
e-mail: hdao@math.ku.edu

I. Peeva (ed.), Commutative Algebra: Expository Papers Dedicated to David Eisenbud
on the Occasion of His 65th Birthday, DOI 10.1007/978-1-4614-5292-8 10,
© Springer Science+Business Media New York 2013

335



336 H. Dao

free) modules. Non-regular rings no longer posses this property. However, the free
resolutions of modules over a complete intersection still enjoy remarkable finiteness
properties, to be made precise later in this note; see Sect. 6. Such properties allow us
to better control the behavior of the Ext and Tor functors. In particular, the vanishing
of certain Ext or Tor modules often has much stronger consequences over complete
intersections than other classes of singularities.

Why should we care about the vanishing of Ext or Tor then? Apart from intrinsic
interests from homological algebra, one important reason is that such vanishing
often comes up when one is trying to understand when the tensor product or Hom
of two modules is nice (e.g., free). As an example let us discuss a famous result by
Auslander–Buchsbaum, that is, every regular local ring R is a unique factorization
domain (UFD). This classical result is quite fundamental in commutative algebra
and algebraic geometry. An equivalent statement is that every reflexive R-module
M of rank one is free. However, any such module satisfies the condition that
HomR.M;M/ Š R since R is normal. When R is of dimension at least 3, this
would imply that Ext1R.M;M/ D 0 (see Lemma 2.3.2). Thus, the fact that regular
local rings are UFDs is a consequence of the following homological statement,
which appeared in [46]:

Theorem 1.0.1 (Jothilingham). Let R be a regular local ring and M be a finitely
generated R-module. Then Ext1R.M;M/ D 0 if and only if M is free.

Note that the above theorem works without any assumption on the rank or
reflexivity of M ; so it is quite a bit more general than the statement about unique
factorization.

In this survey we shall discuss how such a statement and similar ones may still
hold, with proper modifications, for non-regular rings. A natural class of rings for
such results turns out to be complete intersections, due to the good homological
properties they enjoy. Obviously, some new technical tools are needed, and we try
to indicate the most essential ones.

Although most of the results in this note are known, a few appear for the first
time, to the best of our knowledge. In addition, a number of old results have been
given more simple or streamlined proofs, and some are strengthened considerably.
We also discuss a rather large number of open questions.

Throughout the note we shall follow a rather informal approach, with intuition
given priority over detailed proofs. When full proofs are given, it is usually because
they are concerned with enhanced or modified versions of the original results (see
for instance Lemma 2.3.2, Proposition 3.1.2, and Theorem 5.3.8). The payoff of
such minor modifications can be quite satisfactory as they allow us to present sleek
proofs or improved versions of several well-known results, such as the Danilov–
Lipman theorem on discrete divisor class groups (7.1.1) or certain generalizations
of the Grothendieck–Lefschetz theorem (7.2.5).

We now briefly describe the content of the paper. In Sect. 1 we recall the basic
notations and some important preliminary results. Section 2 introduces the notion of
Tor rigidity. This notion is crucial for many of the applications that follow, and we
record some consequences for later use, the most important being Proposition 3.1.2
which is enhanced slightly from the original version.
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Section 3 treats modules over regular local rings. Since in this situation, any
finitely generated module is Tor rigid, the proofs can be simplified considerably.
Thus this section serves as both a motivation and a guideline to what we try to do
later with complete intersections.

Section 4 concerns with the hypersurface case. We give a quick proof of the fact
that all resolutions are eventually periodic of period at most two and use that fact
to define Hochster’s pairing on finitely generated modules. This numerical function
captures the Tor-rigidity property for modules over hypersurfaces, a fact we explain
in Proposition 5.2.2. We discuss many results about vanishing of �R.�;�/ as well
as one of the most intriguing open questions, Conjecture 5.3.5.

Section 6 focuses on complete intersections. The main theme here is that the
total modules of Ext (respectively Tor) have the Noetherian (respectively artinian)
property over certain rings of operators. We discuss two useful exploitations of
such properties: the theory of support varieties by Avramov–Buchweitz and a
generalization of Hochster’s pairing to higher codimensions.

The next two sections deal with applications. In Sect. 7 we explain how some
classical results on class groups and Picard groups can be viewed as consequences
of certain homological properties of modules. In particular we discuss a statement
which can be viewed as a far-reaching generalization of the Grothendieck–Lefschetz
theorem in certain cases (Theorem 7.2.5).

In Sect. 8, we turn our attention to several other applications: intersection
of closed subschemes, splitting of vector bundles, and noncommutative crepant
resolutions.

In Sect. 9 we collect and discuss the many open questions that arise from the
recent developments. Most of them are motivated by results and problems outside
of commutative algebra.

2 Notations and Preliminary Results

2.1 Generalities on Rings and Modules

Throughout this note .R;m; k/ will always be a commutative Noetherian local ring.
Recall that a maximal Cohen–MacaulayR-moduleM is a finitely generated module
satisfying depth M D dimR where depth M can be characterized as the infimum
of the set of integers i such that ExtiR.k;M/ ¤ 0. Let mod R and MCM.R/ be the
categories of finitely generated and finitely generated maximal Cohen–Macaulay
R-modules, respectively. For an R-module M we let pdRM and idRM denote the
projective and injective dimensions of M , respectively. Recall that R is said to be
regular if pdRk � 1.

The ring R is called Cohen–Macaulay if R 2 MCM.R/. It is called Gorenstein
if idRR < 1. We say that R is a complete intersection if there exists a regular local
ring T and a regular sequence f1; � � � ; fc in T such that R Š T=.f1; � � � ; fc/T .
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We say that R is an abstract complete intersection if the m-adic completion OR is
a complete intersection. The presentation of a ring as a complete intersection is
typically not unique. However, if we assume that the elements f1; � � � ; fc are in
the square of the maximal ideal of T , then c is uniquely determined by R and
it is called the codimension of R. A hypersurface is a complete intersection of
codimension one.

The following of hierarchy of singularity type of R is very well known:

regular ) complete intersection ) Gorenstein ) Cohen–Macaulay:

For M 2 mod R, let M � denote the R-dual HomR.M;R/. M is said to be
torsion-free (respectively, reflexive) if the natural map M ! M �� is injective
(respectively, bijective). Let�M denote the first module of syzygy ofM and�nM

the nth syzygy for each n > 0.
Given an element x 2 M , the order ideal of x is by definition the ideal of R

generated by ff .x/jf 2 M �g and is denoted by OM.x/. Clearly p 2 Spec R does
not containOM.x/ if and only if the Rp submodule ofMp generated by x splits off
as a free summand. For other unexplained terminologies we refer to [50].

2.2 The Auslander–Bridger Transpose

We now recall an important construction known as the Auslander–Bridger trans-
pose. Let F1 ! F0 ! M ! 0 be a minimal free resolution of M . The transpose
of M , denoted by TrM , is defined as the cokernel of the dual map F �

0 ! F �
1 . It is

not hard to show that the isomorphism class of TrM does not depend on our choice
of the minimal resolution. The crucial property here is the following exact sequence
for each integer n � 0 (see [34, 44, 46]):

TorR2 .Tr�nM;N/! ExtnR.M;R/˝R N ! ExtnR.M;N /! TorR1 .Tr�nM;N/! 0:

2.3 Serre’s Condition .Sn/

The Serre’s conditions on a module are concerned with somewhat subtle conditions
on depths over all localizations of the modules. While looking a bit cumbersome
when one first encounters them, these conditions turn out to be rather natural for
many results. One reason is that depth does not behave very well when one localizes,
so in many cases these conditions can be considered as necessary nondegenerate
conditions. Let us now recall the definition.

For a nonnegative integer n, M is said to satisfy .Sn/ if

depthRp
Mp � minfn; dim.Rp/g 8p 2 Spec.R/:
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When R is Gorenstein, M is .S1/ if and only if it is torsion-free and .S2/ if and
only if it is reflexive.

Remark 2.3.1. There are several definitions of Serre’s condition for modules in the
literature. For a detailed discussion, see [21]. These inconsistencies may lead to
subtle problems; see, for example, [42].

The following technical but useful result gives an intimate connection between
Serre’s condition on the module of homomorphisms and vanishing of extension
modules. We state it in a slightly more general version than the reference.

Lemma 2.3.2 (Dao [25, Lemma 2.3]). Let R be a local ring, M;N be finitely
generated R-modules, and n > 1 be an integer such that R satisfies Serre’s
condition .SnC1/. Consider the two conditions:

(1) Hom.M;N / satisfies Serre’s condition .SnC1/.
(2) ExtiR.M;N / D 0 for 1 � i � n � 1.

IfM is locally free in codimension n andN satisfies .Sn/, then (1) implies (2). If N
satisfies .SnC1/, then (2) implies (1).

Proof. The first claim is obvious if dimR � n, as then M is free by assumptions.
By localizing at the primes on the punctured spectrum of R and using induction
on dimension, we can assume that all the modules ExtiR.M;N /, 1 � i � n � 1

have finite length. Take a free resolution P� of M , and look at the first n terms of
Hom.P�; N /. As all the cohomology of this complex are Ext modules, the claim
now follows from the Acyclicity Lemma (see [13], Exercise 1.4.23).

For the second claim, one again takes a free resolution of P of M and looks at
Hom.P�; N /. The vanishing of the Ext modules gives the long exact sequence:

0 ! HomR.M;N / ! Nb0 ! � � � ! Nbn�1 ! B ! 0:

Counting depth shows that depth HomR.M;N /p � minfn C 1; depth.Np/g for
any p 2 Spec.R/, which is what we want. ut

We record here a slightly more general version of Lemma 2.3.2 for the cases
whenN is allowed to be a torsion module. This will be used later in the proof of the
Danilov–Lipman Theorem 7.1.2. The proof requires very little modification, and we
shall omit it.

Lemma 2.3.3. Let R be a local ring, M;N be finitely generated R-modules, and
n > 1 be an integer. Consider the two conditions:

(1) depth Hom.M;N / � nC 1

(2) ExtiR.M;N / D 0 for 1 � i � n � 1
Assume thatMp is a freeRp-module for any p 2 SpecR such that depthNp � n�1.
Then (1) implies (2). If depth N � nC 1, then (2) implies (1).
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2.4 Partial Euler Characteristics and Intersection Multiplicities

Let T be a regular local ring.

�i .M;N / D
X

j�i
.�1/j�i `.TorRj .M;N //:

When i D 0 we simply write �R.M;N / or �.M;N/. The �Ri for i > 0 are called
the partial Euler characteristic, and �R is known as the Serre’s intersection multi-
plicity. Serre [58] introduced �R.M;N / as a homological definition of intersection
multiplicity for modules over a regular local ring and showed that it satisfied many
of the properties in the sense of intersection theory:

Theorem 2.4.1 (Serre). Let T be a regular local ring that is equicharacteristic or
unramified. Then for any pair of T -modulesM;N such that `.M ˝T N / < 1, we
have:

(1) dim.M/C dim.N / � dim.T /.
(2) (Vanishing) If dim.M/C dim.N / < dim.T /, then �T .M;N / D 0.
(3) (Nonnegativity) It is always true that �T .M;N / � 0.
(4) (Positivity) If dim.M/C dim.N / D dim.T /, then �T .M;N / > 0.

In fact, (1), (2), and (3) are known for all regular local rings due to the work
of Serre, Roberts, Gillet–Soule, and Gabber. See [57] for a thorough discussion of
these results and related open questions.

Concerning the partial Euler characteristics, we have the following important
result which tells us exactly when they vanish [37, 48].

Theorem 2.4.2 (Lichtenbaum, Hochster). Consider finitely generated modules
M;N over a regular local ring T that is equicharacteristic or unramified and an
integer i such that `.TorTj .M;N // < 1 for j � i . Then �Ti .M;N / � 0 and it is 0

if and only if TorTj .M;N / D 0, for all j � i .

Conjecturally this is true for all regular local rings or if the modules are of finite
projective dimension. See [28] for some recent developments.

2.5 Change of Rings Sequences

In studying modules over complete intersection, it is crucial to track their behavior
as the codimension increases. In other words, we need to know how the behavior
of modules over T=.f / and T differs for a regular element f in T . The following
change-of-rings exact sequence is important for many applications.

Let T be a regular local ring. Let R D T=f where f is a nonzero divisor on T ,
and let M;N be R-modules. Then we have the long exact sequence of Tors (see,
e.g., [39]):
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: : : ! TorRn .M;N / ! TorTnC1.M;N / ! TorRnC1.M;N /
! TorRn�1.M;N / ! TorTn .M;N / ! TorRn .M;N /
! : : :

! TorR0 .M;N / ! TorT1 .M;N / ! TorR1 .M;N / ! 0:

There is a similar sequence for Ext modules:

0 ! Ext1R.M;N / ! Ext1T .M;N / ! Ext0R.M;N / !
� � � ! ExtnR.M;N / ! ExtnT .M;N / ! Extn�1

R .M;N /

! ExtnC1
R .M;N / ! ExtnC1

T .M;N / ! ExtnR.M;N / ! : : :

2.6 Chow and Grothendieck Groups

Suppose X is a Noetherian scheme. Let Coh.X/ denote the category of coher-
ent sheaves on X , and Vect.X/ the subcategory of vector bundles on X . By
G.X/;Pic.X/;CHi .X/;Cl.X/ we shall denote the Grothendieck group of coherent
sheaves on X , the Picard group of invertible sheaves on X , the Chow group of
codimension i irreducible, the closed subschemes of X , and the class group of X ,
respectively. When X D Spec R we shall write G.R/;Pic.R/;CHi .R/;Cl.R/.
Let G.R/ WD G.R/=ZŒR� be the reduced Grothendieck group and G.R/Q WD
G.R/ ˝Z Q be the reduced Grothendieck group of R with rational coefficients.
Let Speco R denote the punctured spectrum of R.

In the rest of this section we assume that R is a local ring such that depth R � 2.
For i D 0; 1, there are maps ci W G.R/ ! CHi .R/. These maps admit a very
elementary definition which we now recall. SupposeM is anR-module, and choose
any prime filtration F of M . Then one can take ci .ŒM �/ D P

ŒR=p�, where p runs
over all prime ideals such that R=p appears in F and height.p/ D i ; note that a
prime can occur multiple times in the sum (for a proof that this is welldefined, see
the main Theorem of [19]). When R is a normal algebra essentially of finite type
over a field and N is locally free (i.e., a vector bundle) on Speco R, c1 agrees with
the first Chern class ofN , as defined in [31, Chap. 3], but we shall not need that fact.

One has the following diagram of maps of abelian groups:

Pic.Speco R/

p

��

G.R/
c1

�� CH1.R/:
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Here p is induced by the well-known map between Cartier and Weil divisors (see
Chap. 2 of [31]).

Note that we do not indicate any map between Pic.Speco R/ andG.R/. However,
the diagram “commutes” in a weak sense: if E represents an element in Pic.X/ and
I D �X.E/ then p.ŒE �/ D c1.ŒI �/ in CH1.R/.

Obviously, c1.ŒR�/ D 0, so c1 induces a map q W G.R/ ! CH1.R/. In particular,
if M is a module such that ŒM � D 0 in G.R/Q then c1.ŒM �/ is torsion in CH1.R/.

3 Tor Rigidity and Some Consequences

3.1 Tor Rigidity

In this section we discuss the notion of Tor rigidity, a condition which plays an
essential role in many of the following results. First, the definition.

Definition 3.1.1. A pair of finitely generatedR-modules .M;N / is called Tor rigid
if for any integer i � 0, TorRi .M;N / D 0 implies TorRj .M;N / D 0 for all j � i .
Moreover,M is called Tor rigid if for all N 2 mod R, the pair .M;N / is Tor rigid.

It was Auslander who first recognized the powerful consequences of these
properties. In fact, he made Tor rigidity a central point of his 1962 ICM address on
modules over (unramified) regular local rings [2]. In Auslander’s and consequent
work, Tor rigidity has been typically considered for a module and not a pair.
However, for many recent applications the rigidity of pairs has proved to be not
only more flexible, but necessary; see, for example, the proof of Theorem 7.2.5.

In the commutative algebra literature, Tor rigidity is often just called rigidity.
However, rigidity has a different meaning related to deformation theory. Namely, a
module is called rigid if Ext1R.M;M/ D 0. The name comes from the fact that such
modules have no first-order deformations. To avoid confusion we shall try not to use
that terminology and just write Ext1R.M;M/ D 0 when needed. In fact, it is rather
amusing that the two notions of rigidity have the following connection.

Proposition 3.1.2 (Jothilingham). Let R be a local ring and M;N be finitely
generated R-modules such that the pair .Tr�M;N/ is Tor rigid (the first module
is the transpose of the first syzygy of M ; see Sect. 2.2). If Ext1R.M;N / D 0 then
M � ˝R N Š HomR.M;N / via the canonical map, and TorRi .M

�; N / D 0 for all
i > 0. In particular, if the pair .Tr�M;M/ is Tor rigid then Ext1R.M;M/ D 0 if
and only if M is free.

The above result was first proved in [46], when it was assumed that R is regular,
so Torrigidity is guaranteed; see the main theorem and the discussion of the last
proposition. For a more modern presentation, see [44].
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Proof. The key point of the proof is the short exact sequence in Sect. 2.2:

TorR2 .Tr�nM;N/! ExtnR.M;R/˝R N ! ExtnR.M;N /! TorR1 .Tr�nM;N/! 0:

Suppose Ext1R.M;N / D 0. Then the above exact sequence shows that
TorR1 .Tr�M;N/ D 0. Because of Tor rigidity, we have TorRi .Tr�M;N/ D 0 for
all i > 0. In particular, the exact sequence forces Ext1R.M;R/ D 0. Thus the R-
dual of a minimal resolution of M is exact at the F �

1 spot, so TrM Š �Tr�M .
Thus, TorRi .TrM;N/ D 0 for all i > 0, and applying the above exact sequence
with n D 0 yields an isomorphismM � ˝R N Š HomR.M;N /. Of course, we also
know that M � Š �2TrM and the vanishing of TorRi .M

�; N / follows. For the last
statement, it is well known that the canonical map M � ˝R M ! HomR.M;M/ is
an isomorphism if and only if M is free. ut

The Tor-rigidity property is sometimes used in tandem with the so-called “depth
formula” which we recall next.

Theorem 3.1.3. Let R be a local complete intersection and M;N 2 mod R. If
TorRi .M;N / D 0, for all i > 0 then

depthM C depth N D depth RC depth M ˝R N

The above result was first proved by Auslander for regular local rings in [1, 1.2].
It was given in this form by Huneke and Wiegand in [39, 2.5]. There have been
generalizations of this formula to much broader contexts, see for example [20].

Proof. We first prove it for the case when R is regular. Since TorRi .M;N / vanishes
for all i , the tensor product of the minimal resolutions of M and N becomes a
minimal resolution of M ˝R N . Thus we have

pdRM ˝R N D pdRM C pdRN:

The depth formula follows from Auslander–Buchsbaum formula. The general case
is handled by induction on the codimension of R. It suffices to assume that R D
T=.f / and that the depth formula holds for modules over T . One can use the
change-of-rings exact sequence of Tor in Sect. 2.5 to deduce that TorTi .M;N / D 0

for all i > 1. Let E D �T .M/; then by induction hypotheses we have

depth E C depth N D depth T C depth E ˝T N:

However, since depth E D depthM C 1,

depth M C depth N D depth RC depth E ˝T N:

It just remains to prove that depth E ˝T N D depth M ˝R N . We leave this as an
exercise. For details, see [39, Theorem 2.5]. ut
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It would not be a complete discussion of Tor rigidity without mentioning the
following famous conjecture, usually attributed to Auslander:

Conjecture 3.1.4. Let R be a Noetherian local ring and M 2 mod R such that
pdRM < 1. Then M is Tor rigid.

This conjecture was disproved by an ingenious construction by Heitmann [35].
The module he constructed has projective dimension two. However, the following
modified version is still open:

Question 3.1.5. Let R be a Noetherian local ring and M;N 2 mod R such that
pdRM; pdRN < 1. Is the pair .M;N / Tor rigid?

4 Warm-Up: Modules over Regular Local Rings

In this section we quickly review Tor rigidity over regular local rings and its various
consequences. We hope they will provide some insights and motivations for the
following sections.

4.1 Tor Rigidity and the UFD Property

We begin with a famous result.

Theorem 4.1.1 (Auslander–Lichtenbaum). Let R be a regular local ring. Any
finitely generated module is Tor rigid.

This is a deep theorem and we shall only sketch a proof in the equicharacteristic
case (i.e., whenR contains a field). There is no harm in assumingR is complete, and
now the Cohen structure theorem tells us that R is isomorphic to the power series
ring kŒŒx1; � � � ; xd ��. We now use an ingenious trick devised by Serre [58]. First we
form the so-called completed tensor product R Ő kR, which will just be the power
series rings in 2d variables S D kŒŒx1; � � � ; xd ; y1; � � � ; yd ��. Letting L D M Ő kN ,
one has isomorphisms:

TorRi .M;N / Š TorSi .L; S=.x1 � y1; � � � ; xd � yd /S/:

Since the elements xi � yi , 1 � i � d form a regular sequence on S , the
rigidity property of TorRi .M;N / follows from the well-known rigidity of Koszul
homologies.

When R is of mixed characteristic, the proof is much harder and uses in an
essential way the non-negativity of the partial Euler characteristic functions. We
refer to [1, 48] for details.
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Corollary 4.1.2. Let R be a regular local ring and M be a finitely generated
R-module. Then Ext1R.M;M/ D 0 if and only if M is free.

Proof. This is a direct consequence of Proposition 3.1.2 and Theorem 4.1.1. ut
Corollary 4.1.3. A regular local ring R is a UFD.

Proof. Recalled that elements of the class group of R can be identified with
isomorphism classes of reflexive ideals of rank one satisfying the following rule:

ŒHomR.I; J /� D ŒJ � � ŒI �

where I; J are reflexive ideals and ŒI � denotes the class of I in Cl.R/. In particular,
it implies that HomR.I; I / Š R. We proceed by induction on d D dimR. If d � 2

then reflexive modules are automatically maximal Cohen–Macaulay, thus are free
since they also have finite projective dimension. Suppose d > 2. By localizing
at prime ideals in Speco.R/ we can assume by induction that I is locally free on
Speco.R/. We now invoke Lemma 2.3.2 to show that Ext1R.I; I / D 0; thus I is free
which is what we want to prove. ut

We note that the proof of the last corollary gives a much more general result
in [40]:

Corollary 4.1.4 (Huneke–Wiegand). Let R be a regular local ring and M be
a finitely generated reflexive R-module. Then HomR.M;M/ is satisfying Serre’s
condition .S3/ if and only if M is free.

The assumption on HomR.M;M/ appears to be quite weak, since the module
of homomorphisms is always reflexive, which is equivalent to .S2/ over Gorenstein
rings.

4.2 Torsion-Freeness of Tensor Products and a Flatness
Criterion

Next we discuss another direction, namely, that tensor products can rarely have high-
depth over a regular local ring. The key point is that such high depth forces certain
Tor modules to vanish, and then one can apply Tor rigidity and the depth formula
(Theorem 3.1.3) to derive strong properties of the modules involved.

Proposition 4.2.1 (Auslander). Let R be a regular local ring andM;N 2 modR.
If M ˝R N is torsion-free then TorRi .M;N / D 0 for i > 0, and

depthM C depth N D depth R C depth M ˝R N:

Proof. Let t.M/ denote the torsion submodule of M . By tensoring the exact
sequence 0 ! t.M/ ! M ! M=t.M/ D M 0 ! 0 with N , we get thatM 0 ˝R N

is torsion-free. Suppose we have already proven the assertions for M 0; N . Then it
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follows that TorR1 .M
0; N / D 0 and thus t.M/˝R N D 0 which forces t.M/ D 0.

Thus we can assume thatM is torsion-free to begin with. As such we can embedM
into a free module F to get

0 ! M ! F ! M1 ! 0:

Tensoring withN shows that TorR1 .M1;N / embeds intoM ˝R N . Since the former
is torsion and the latter is torsion-free, we get that the former is 0. Tor rigidity and
the depth formula (Theorem 3.1.3) now complete the proof. ut

The above seemingly technical result implies an interesting criterion for flatness
over R.

Corollary 4.2.2 (Auslander). Let R be a regular local ring and M 2 mod R. If
M˝n is torsion-free for some n � dimR, then M is free.

Proof. Let Mi D M˝i . Proposition 4.2.1 shows that depth M C depth Mn�1 D
depth R C depth Mn. Furthermore, the formula holds true when we localize at any
prime in Spec.R/ since vanishing of Tor still holds. Since torsion-free is equivalent
to .S1/, it follows that Mn�1 is .S1/. One can use induction to show that Mn�i is
.S1/ and depth M C depth Mn�i D depth R C depth Mn�iC1 for 1 � i � dimR.
Set i D d D dimR we get that

depthMn D depthMn�d � d.depth R � depth M/:

If depthR�depthM > 0 then the left-hand side will be nonpositive, a contradiction.
Thus, depth M D depth R and M is free. ut

Recently, Avramov and Iyengar have generalized this flatness criterion to
modules essentially of finite type over smooth k-algebras for any field k; see [9].

4.3 An Equivalent Condition for Vanishing of Tor
and Intersection Multiplicities

We end this section with an interesting result noticed by Auslander. It says that,
roughly speaking, the vanishing of all TorRi .M;N /, i > 0 over a regular local ring
only depends on the local depths of the arguments M;N . We state it in a slightly
different form from Auslander’s original formulation ([2, Theorem 2]) to emphasize
this point.

Theorem 4.3.1 (Auslander). Let R be a regular local ring and M;N 2 mod R.
The following are equivalent:

1. TorRi .M;N / D 0 for i > 0.
2. depth Mp C depth Np � depth Rp for all p 2 Spec R (the depth of the zero

module is 1 by convention).
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Proof. Assume (1). Then the depth formula (Theorem 3.1.3) gives us (2). Now
assume (2) and also assume that (1) does not hold. Let s be the largest integer such
that TorRi .M;N / ¤ 0; it is finite since R is regular. Since we assume (1) does not
hold, s is positive. Let p be a minimal prime of TorRs .M;N /. ReplacingR byRp we
may assume TorRs .M;N / has finite length. We can also assume that depth R � 1,
as otherwise there is nothing to prove.

Let F�; G� be minimal free resolutions of M and N , respectively. Consider the
complexH� D F� ˝R G�. Let B;C be the modules of boundaries and cycles at the
sth spot ofH�, respectively. We have a short exact sequence:

0 ! B ! C ! TorRs .M;N / ! 0

which shows that depth B D 1. The complexHi>s is acyclic by our choice of s and
is a minimal resolution of B . Thus the Auslander–Buchsbaum formula tells us that
s C depth R equals to the length of H� which is pdRM C pdRN . It follows that

depthM C depth N D depth R � s < depth R;

a contradiction. ut
The above result is quite relevant to intersection theory as follows. For M;N 2

modR such that `.M ˝RN/ < 1, recall the definition of intersection multiplicity:

�R.M;N / D
X

i�0
.�1/i `.TorRj .M;N //:

When M D R=I;N D R=J defining closed subschemes of Spec R, it is of
considerable interest to know when �R.R=I;R=J / is just equal to `.R=I˝RR=J /

(the “naive” definition of intersection multiplicity). The following result, a nice
consequence of Theorem 4.3.1, tells us exactly when it happens. It can be viewed as
a vast generalization of the Bezout theorem for curves.

Corollary 4.3.2 (Serre [58]). Let R be a regular local ring and M;N 2 mod R
such that M ˝R N has finite length and dimM C dimN D dimR. Consider the
following:

1. M;N are Cohen–Macaulay modules.
2. TorRi .M;N / D 0 for i > 0.
3. �R.M;N / D `.M ˝R N/.

We have .1/ , .2/ ) .3/. If R is unramified or equicharacteristic then they are
all equivalent.

Proof. Assume (1). As the intersection of SuppM and SuppN consists of the
maximal ideal, we only need to check the depth condition there to prove (2). But
since M;N are Cohen–Macaulay, we have

depthM C depth N D dimM C dimN D dimR D depth R;
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so (2) follows by Theorem 4.3.1. Now assume (2). Then by Theorem 4.3.1 again we
have depth M C depth N � depth R D dimR D dimM C dimN . Since depth is
bounded above by dimension, one must have depth M D dimM and depth N D
dimN , so M;N are Cohen–Macaulay.

That (3) follows from (2) is obvious. For the last assertion, assuming (3) forces

�R1 .M;N / D
X

i�1
.�1/i�1`.TorRi .M;N / D 0:

Since we know (2.4.2) that �R1 D 0 if and only if all the Tor modules vanish when
R is unramified or equicharacteristic, the conclusion follows. ut

5 The Hypersurface Case and Hochster’s Theta Pairing

In this section we focus on the hypersurface case; in other words, R is a complete
intersection of codimension one. Through this section we will assume R D T=f T

where T is a regular local ring. Set d D dimR.

5.1 Periodic Resolutions

The most important fact about homological algebra over R from our point of view
is the following result, which was noticed by quite a few people but perhaps first
appeared explicitly in [29]:

Lemma 5.1.1. Let R be a local hypersurface and M 2 MCM.R/. Then the
minimal resolution of M is periodic of period (at most) two. In other words,
M Š �2M .

Proof. Suppose R D T=f T where T is regular. The Auslander–Buchsbaum
formula tells us that pdTM D depth T � depth M D 1. Thus over T , M has
the following minimal resolution:

0 ! T n ! T n ! M ! 0

(the free modules have same rank since M is torsion as a T -module). Tensoring
with R D T=f T gives an exact sequence:

0 ! TorT1 .M;R/ ! Rn ! Rn ! M ! 0:

But one can easily compute TorT1 .M;R/ using the resolution of R as T module:

0 ! T ! T ! R ! 0
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and see that it is isomorphic to M . The map between the free R-modules is still
minimal, so we are done. ut
Remark 5.1.2. Observe that the map between the free T -modules in the resolution
ofM is represented by a n�n matrixA with entries in T . If B is the corresponding
matrix for �RM , then it is not hard to see from basic homological algebra and the
periodicity that AB D BA D f In. This is the origin of Eisenbud’s theory of matrix
factorization [29], a topic which has become very active recently due to connections
to a number of areas in algebraic geometry and even mathematical physics.

The above result says that although hypersurfaces do not have finite global
dimension, the resolutions of their modules are still finite in a rather specific way,
as all the information about the resolution is captured after finitely many steps.
Next we discuss a very effective way to exploit this eventual periodicity of minimal
resolutions over hypersurfaces.

5.2 Hochster’s Theta Pairing and Tor Rigidity

Let M;N 2 mod R such that `.TorRi .M;N // < 1 for i � d ; here `.�/ denotes
length. The pairing �R.M;N /, introduced by Hochster [36], is defined as follows:

�R.M;N / WD `.TorR2eC2.M;N // � `.TorR2eC1.M;N //

where e is any integer such that 2e � dimR. By Lemma 5.1.1 this function is well
defined. The theta pairing satisfies the following properties:

Proposition 5.2.1 (Hochster [36]).

(1) If M ˝R N has finite length, then

�R.M;N / D �T .M;N / WD
X

i�0
.�1/i `.TorTi .M;N //:

Here �T is the Serre’s intersection multiplicity. In particular, if dimM C
dimN � dimR D dimT � 1, then �R.M;N / D 0 (note that vanishing for �T

is proved for all regular local rings; see [57, 13.1])
(2) �R.M;N / is bi-additive on short exact sequences, assuming it is defined on all

pairs. In particular, if M is locally of finite projective dimension on Speco.R/,
then the rule ŒN � 7! �R.M;N / induces maps G.R/ ! Z and G.R/Q ! Q.

A crucial property for this section is that vanishing of Hochster’s pairing implies
Tor rigidity for a big class of hypersurfaces including all the ones that contain a
field.



350 H. Dao

Proposition 5.2.2 (Dao [22]). Let R D T=f T be a local hypersurface such that T
is an unramified regular local ring. LetM;N 2 modR such that `.TorRi .M;N // <
1 for i � d . If �R.M;N / D 0, then the pair .M;N / is Tor rigid.

Proof. First, we prove the statement assuming that `.TorRj .M;N // < 1 for all
j > i . We truncate the change-of-rings long exact sequence for Tor (Sect. 2.5) as
follows (note that all TorT .M;N / vanish after d C 1 spots):

0 ! TorR2eC2.M;N /
! TorR2e.M;N / ! TorT2eC1.M;N / ! TorR2eC1.M;N /
! : : :

! TorRi .M;N / ! TorTiC1.M;N / ! TorRiC1.M;N / ! C ! 0:

It is easy to see that all the modules in this sequence have finite lengths. Therefore
we can take the alternating sum of the lengths and get

l.C /C �TiC1.M;N / D .�1/2eC2�i �R.M;N /C l.TorRi .M;N // D 0:

This equation and Theorem 2.4.2 forces C D 0 and TorTj .M;N / D 0 for all j �
i C 1.

Now we prove the general case by induction on d D dimR. If d=0 then
all modules involved have finite lengths, so we are done. Assume d > 0. By
localizing at primes in Speco R and applying the induction hypothesis, it is clear
that `.TorRj .M;N // < 1 for all j > i ; thus the proof is complete. ut

Note that almost by definition, the vanishing of �R.M;N / D 0 implies rigidity
of Tor asymptotically. Namely, for i > d , we would have `.TorRi .M;N // D
`.TorRiC1.M;N //, so they vanish together. The content of the proposition which
is crucial for many applications is that rigidity holds even if we only know that
TorRi .M;N / D 0 for small i (in fact, i D 1 for most applications).

5.3 Vanishing of �R.�; �/

A particular situation when �R.�;�/ becomes very useful is when R has isolated
singularity, namely, that Rp is regular for any p 2 Speco.R/. In this case the higher
Tor modules always have finite length, so the Hochster’s formula gives a pairing:

�R.M;N / W G.R/ �G.R/ ! Z:

We now briefly discuss Conjecture 5.3.5, starting with small dimensions. We
start with a lemma which exploits the vanishing condition of Serre’s intersection
multiplicity.
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Lemma 5.3.1 (Huneke–Wiegand [39]). Let R be a hypersurface with isolated
singularity. Let M;N 2 mod R such that M ˝R N has finite length and
dimM C dimN � dimR. Then �R.M;N / D 0.

Proof. Let R D T=f T with T a regular local ring. ThenM ˝T N has finite length,
and dimM C dimN < dimT . By the vanishing property of the Serre’s intersection
multiplicity, we know that �T .M;N / D 0, so what we want to show follows from
Proposition 5.2.1, part (1). ut

The next result illustrates a often used technique to prove vanishing of �R.�;�/:
one can try to move the support of the modules involved (inside the Chow group of
R) so that one gets to the situation of Lemma 5.3.1.

Theorem 5.3.2. Assume d > 1, and M;N are finitely generated R-modules. Then
�R.M;N / D 0 if dimM � 1.

Proof. Since any module has a filtration by prime cyclic modules, we may assume
that M D R=P and N D R=Q for some P;Q 2 Spec R. If dimR=P D 0, so
P D m, then ŒR=P � D 0 in G.R/Q, and � vanishes. Also, we may assume Q ¤ 0.
We now consider two cases:

Case 1: Q is not contained in P . Then l.R=.P CQ// < 1 because dimR=P D 1,
and since dimR=P C dimR=Q � dimR, we have �.R=P;R=Q/ D 0 by
Proposition 5.2.1.

Case 2: So now we only need to consider the case 0 ¤ Q � P . We claim that
there is cycle ˛ D P

li ŒR=Qi� 2 CH�.R/Q such that ˛ D ŒR=Q� and Qi ª P .
Consider the element ŒRP =Q� 2 CH�.RP /Q. Since RP is regular, ŒRP =Q� D 0.
Therefore, formally, we have a collection of primes qi and elements fi and
integers n; ni such that nŒRP =Q� D P

div.RP =qi ; fi /. Now in CH�.R/Q we
will have

P
div.R=qi ; fi / D nŒR=Q� C P

ni ŒR=Qi �, with Qi ª P , which
proves our claim. The fact that ŒR=Q� D P

i li ŒR=Qi� in CH�.R/Q means
that in G.R/Q, ŒR=Q� D P

i li ŒR=Qi � C terms of lower dimension. By Case
1, �R.R=P;R=Qi/ D 0, and we may conclude our proof by induction on
dimR=Q. ut
Using the real “moving lemma” from intersection theory one can prove the

following vast generalization of Lemma 5.3.1.

Theorem 5.3.3. Suppose that R is an excellent local hypersurface containing a
field, and has only isolated singularity. Then �R.R=P;R=Q/ D 0 if dimR=P C
dimR=Q � dimR.

Proof. The strategy is clear, as indicated above. We need to move P and Q inside
the Chow group of SpecR so that their support intersects only at the maximal ideal,
and then apply Lemma 5.3.1. For details, see [22, Theorem 3.5]. ut
Theorem 5.3.4. Suppose thatR is a local hypersurface with isolated singularity of
even dimension. If dimR � 2 or dimR D 4 andR is excellent and contains a field,
then �R.M;N / D 0 for all pairs .M;N /.
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Proof. When d D 0, G.R/ is torsion; thus the statement is true by Proposition
5.2.1. It suffices to assume that M;N are cyclic prime modules; let’s say M D
R=P;N D R=Q. Then by the previous theorems, we only need to worry if both of
them have dimensions at least 2. If dimR D 2, they must both be R (note that since
R is normal and local, it is a domain); thus �R certainly vanishes. If dimR D 4 and
R contains a field we can apply Theorem 5.3.3 and assume dimR=P CdimR=Q �
5. Then one of the primes, say P , is height 1 (if the minimal height is 0, the assertion
is trivial). Thus we will be done if CH1.R/ D 0. But by the Grothendieck–Lefschetz
theorem, the Picard group ofX D Spec.R/�fmg is 0. SinceX is regular, the Picard
group of X is the same as CH1.X/ D CH1.R/. ut

We now state an intriguing open question, first proposed in [22].

Conjecture 5.3.5. Let R D T=f T be a hypersurface of even dimension with
isolated singularity. Then �R.M;N / D 0 for any pair of modulesM;N 2 mod R.

There are several sources of supporting evidence for this conjecture, the small
dimensional cases, a conjecture by Hartshorne that the Chow groups of a smooth
hypersurface X vanish for codimension below half the dimension of X (see [22,
Sect. 3] for a discussion). But perhaps the strongest supporting evidence is that it
has already been proven in important cases, using several different approaches.

Theorem 5.3.6. Conjecture 5.3.5 is true in the following cases:

(1) (Moore–Piepmeyer–Spiroff–Walker [52]) R D kŒx0; � � � ; xd �m=.f /, where f
is a homogenous polynomial defining a smooth hypersurface in Pdk over a
perfect field k and m D .x0; � � � ; xd /.

(2) (Polishchuk–Vaintrob [54], Buchweitz–Van Straten [15]) R D kŒŒx0; � � � ; xd ��=
.f /, a hypersurface isolated singularity with k a field of characteristic 0.

We will comment briefly about the proofs, which are quite sophisticated and
beyond the scope of this survey. The key point in all of them is to compare �R.�;�/
with some maps from G.R/ to certain cohomology theories (étale cohomology,
topological K-theory, Hochschild cohomology) and use what we already know
about such theories. There is perhaps a lot more to be understood about these
connections.

Before moving on we give a lemma which is frequently used to prove vanishing
of �R.�;�/.
Lemma 5.3.7. Suppose R is a local Noetherian ring. A module of finite length is
zero in G.R/Q.

Proof. Since any module of finite length is a multiple of Œk�, it is enough to prove
the claim for one such module. If dimR D 0 then there is nothing to prove as
G.R/Q D 0. If dimR > 0 then pick a prime p such that dimR=p D 1 and a non-
unit x … p. The exact sequence 0 ! R=p ! R=p ! R=.p; x/ ! 0 shows that
ŒR=.p; x/� D 0, which is all we need. ut
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Next we give a strong supporting evidence for Conjecture 5.3.5. This will also
be used to prove certain generalizations of the Grothendieck–Lefschetz theorem in
Sect. 7. Note that we do not assume isolated singularity in the following, which
improves on [24, Theorem 4.1].

Theorem 5.3.8. Let R be a hypersurface of even dimension. Let M 2 mod R such
that M is locally free on the punctured spectrum Speco R. Then �R.M;M �/ D 0.

Proof. AssumeM is locally free on Speco R. LetK D �M . We want to prove that
�R.M;M �/ D �R.K;K�/. Dualizing the short exact sequence 0 ! K ! F !
M ! 0 we get an exact sequence:

0 ! M � ! F � ! K� ! Ext1R.M;R/ ! 0:

So ŒM �� C ŒK�� D ŒExt1R.M;R/� in G.R/. Note that Ext1R.M;R/ has finite
length because M is locally free on the punctured spectrum of R. By Lemma
5.3.7 any module of finite length is equal to 0 in G.R/Q. So ŒM �� D �ŒK��
and �R.M �;�/ D ��R.K�;�/. Since �R.M;�/ D ��R.K;�/, we have
�R.M;M �/ D �R.K;K�/.

Repeating the equality above we get �R.M;M �/ D �R.L;L�/whenL D �nM

for any n > 0. But for n � 0 L is an MCM R-module, so �R.L;L�/ D 0 by
Proposition 5.3.9 . ut

The following result is essentially due to Buchweitz, although it was originally
stated in the language of stable cohomology. For a detailed explanation, see [24]
(note that the proof of Proposition 4.3 there works verbatim in our situation).

Proposition 5.3.9 (Buchweitz [14], 10.3.3). Let R be a local hypersurface with
d D dimR. Then for any two MCM R-modules M;N such that M is locally free
on Speco R, we have

�R.M;N / D .�1/d�1�R.M �; N �/:

6 Asymptotic Behavior of Ext and Tor Over Complete
Intersections

In this section we move on to complete intersections. Here resolutions of modules
are still finite in a rather strong sense, which we shall now discuss. Let us assume
throughout this section that R Š T=.f1; � � � ; fc/T with the fi s a T -regular
sequence in m2

T . In this situation, the codimension of R, codim.R/, is equal to c.
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6.1 Cohomology Operators and Support Varieties

The key point now is that the presentation R D T=.f1; � � � ; fc/T D T=.f /

gives rise to cohomology operators under which the total module of extensions
Ext�R.M;N / WD ˚i�0ExtiR.M;N / becomes a finitely generated module over the
ring of said operators [33].

We sketch the construction of these operators. Start with a minimal resolution of
M over R:

� � � ıiC1��! Fi
ıi�! Fi�1

ıi�1��! � � � ı1�! F0 ! M ! 0:

One can lift this resolution to T to get

� � �
QıiC1��! QFi

Qıi�! QFi�1
Qıi�1��! � � � Qı1�! QF0:

Of course, this liftings will not form a complex anymore. However, we know that
Qıi�1 Qıi . QFi / 	 .f / QFi�2. Now since f is a regular sequence in T , .f /=.f /2 is a free
R D T=.f /-module of rank c. Thus, we write:

Qıi�1 Qıi D
cX

jD1
fj Q�j

where the Q�j W QFi ! QFi�2 are T -linear maps. Set �j D Q�j ˝T R, which will be a
map from Fi to Fi�2. These induce R-linear maps:

�j W ExtiR.M;N / ! ExtiC2R .M;N /

for 1 � j � c and i � 0. These operators can be shown to be well behaved
(commuting up to homotopies, functorial, cf. [29, 33]). There are subtle issues
with the commutativity with Yoneda products which are fully resolved in [7]. The
upshot is that they turn Ext�R.M;N / into a module over the (commutative) ring of
cohomology operators S WD RŒ�1; : : : ; �c�.

Note that the �i have cohomological degree 2. Furthermore, for every M 2
mod R, there is a graded ring homomorphism:

S
'M��! Ext�R.M;M/:

We now recall the definition of support varieties for modules over local complete
intersections .R;m; k/ of codimension c: for details, see [8] and [5].

Let M;N be finitely generated R-modules. The support variety of the pair
.M;N / is defined as

VR.M;N / WD SuppS˝Rk
.Ext�R.M;N /˝R k/ � Pc�1k :

The support variety of M is defined as VR.M/ WD VR.M;M/.
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Recall that M has complexity s, written as cxR.M/ D s, provided that s is the
least nonnegative integer for which there exists a real number � such that bRn .M/ �
� � ns�1 for all n � 0 [5, 3.1]. One can define the complexity of a pair of modules
cxR.M;N / similarly by using the minimal number of generators of ExtnR.M;N /
instead of bRn .M/. Note that cxR.M;N / D 0 if and only if ExtiR.M;N / D 0 for
i � 0.

Theorem 6.1.1 (Avramov–Buchweitz [8, Theorem I]).

1. VR.M;N / D VR.M/ \ VR.N / D VR.N;M/

2. VR.M/ D VR.M; k/

3. cxR.M;N / D dimVR.M;N / C 1 (the dimension of the empty set is �1 by
convention)

Corollary 6.1.2 (Avramov–Buchweitz [8, Theorem 4.2]). Let R be a local com-
plete intersection and M 2 mod R. If Ext2iR .M;M/ D 0 for some i then
pdRM < 1.

Proof. The key point here is the graded ring homomorphism

S
'M��! Ext�R.M;M/:

As each �i has degree 2 and Ext2iR .M;M/ D 0, it follows that Ext�R.M;M/ is
.�1; : : : ; �c/-torsion. This remains true after tensoring with k, so the support variety
VR.M;M/ is empty. By Theorem 6.1.1 it follows that cxRM D 0; that is M , has
finite projective dimension. ut

When i D 1 one has a much more specific result, whose proof we omit.

Theorem 6.1.3 (Auslander–Ding–Solberg [4]). Let T be a complete local ring
and R D T=.f1; � � � ; fc/T be a quotient of T by a regular sequence. Let M 2
mod R. If Ext2R.M;M/ D 0 for some i then M lifts to T ; namely there is a module
N 2 mod.T / such thatM Š N=.f1; � � � ; fc/N and the fi s form a regular sequence
on N .

6.2 Length of Tor and a Generalized Version of Hochster’s
Pairing

In this section we study a more general version of Hochster’s theta pairing. This
needs a bit of preparatory work. The key point is that over a complete intersection,
if all the higher Tor of two modules have finite length, such lengths display a quasi-
polynomial behavior. This allows us to define a numerical value using those lengths.
We now describe the process in more detail.

First, the construction in Sect. 6.1 yields operators on the total Tor module:

TR.M;N / WD ˚i�0TorRi .M;N /;
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as well (these are known as Eisenbud operators as they were constructed explicitly
in [29]). Of course, these operators, which we shall also call �1; : : : ; �c , now have
degree .�2/, and we have the following dual version of the key point in Sect. 6.1:

Theorem 6.2.1 (Gulliksen [33]). Suppose thatM˝RN is artinian. Then T .M;N /
is an artinian module over the ring of operators RŒ�1; : : : ; �c�.

This result has a serious restriction, namely, that M ˝R N has finite length. As
we have seen in the previous section, the most interesting results live naturally in
the setting where we only know that TorRi .M;N / have finite length for i � 0 (this
is always the case if R has an isolated singularity). Thus we need to first establish
the following, which should be compared to similar results in [6, 11]

Lemma 6.2.2. Suppose there exists an integer j such that TorRi .M;N / has finite
length for every i � j . Then TR.M;N /i�j is an artinian module over the ring of
Eisenbud operators RŒ�1; : : : ; �c�.

Proof. See [23, Lemma 3.2] or [53, Appendix 1]. ut
The significance of this result is that we now know that the lengths of TorRi .M;N /

must have quasi-polynomial behavior. This fact allows us to make the following
definition which generalizes Hochster’s pairing to complete intersections.

Definition 6.2.3. SupposeR is a local complete intersection of codimension c. Let
M;N 2 mod R such that TorRi .M;N / has finite length for every i � j . We define

�R.M;N / WD lim
n!1

Pn
j .�1/i`.TorRi .M;N //

nc
:

Remark 6.2.4. The definition does not depend on the value of j we start with since
c � 1. There is another way to define �R.M;N / as follows. By virtue of Lemma
6.2.2 there exist polynomials Podd .x/ and Peven.x/ of degrees at most c � 1 such
that for i � 0 there are equalities:

Podd .i/ D `.TorRi .M;N //

for i odd and

Peven.i/ D `.TorRi .M;N //

for i even. Let a; b be the coefficients of xc�1 in Peven and Podd , respectively. Then

a � b D 2c�R.M;N /:

Thus, one can use a � b as an alternative definition for �R.M;N /. However, the
original definition seems to make the proof of additivity on short exact sequences
(see below) easier, and this is a crucial property that allows us to make �R into a
pairing on the Grothendieck group.

We obtain the following properties of �R.M;N /.
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Theorem 6.2.5 (Dao [23]). Suppose R Š T=.f1; � � � ; fc/T with the fi s a T -
regular sequence in m2

T (T regular local). Let M;N 2 mod R such that
TorRi .M;N / has finite length for all i � 0. Then the following statements hold:

(1) �R.M;N / is finite and rational.
(2) (Biadditivity) Let 0 ! M1 ! M2 ! M3 ! 0 and 0 ! N1 ! N2 ! N3 ! 0

be exact sequences such that �R.M;Ni/ and �R.Mi;N / can be defined for all
i . Then,

�R.M2;N / D �R.M1;N /C �R.M3;N /

and
�R.M;N2/ D �R.M;N1/C �R.M;N3/:

(3) (Change of rings) Suppose that c > 1. Let R0 D T=.f1; : : : ; fc�1/. Note that
we have `.TorR

0

i .M;N // < 1 for i � 0. Then,

�R.M;N / D 1

2c
�R

0

.M;N /:

The above properties afford us some mild generalizations of the connections
between �R.M;N / and vanishing of Tor as well as intersection multiplicity.

Corollary 6.2.6. Let R;M;N be as in Theorem 6.2.5. Then we have:

(1) Suppose that �R.M;N / D 0 and T is equicharacteristic or unramified. Then if
TorRi .M;N / D 0 for j � i � jCc�1 with some j > 0 then TorRi .M;N / D 0

for all i � j .
(2) IfM˝RN has finite length and dimMCdimN < dimRCc then �R.M;N / D

0. The converse is true if T is equicharacteristic or unramified.

Proof. These are direct consequences of Theorem 6.2.5 and Propositions 5.2.1 and
5.2.2 (Theorem 6.2.5 allows us to reduce everything to the hypersurface case). ut

One can push these results a bit further with additional assumptions, see [16, 17,
23]. One can also define a similar version of �R.M;N / using Ext modules, see [18].

7 Applications: Class Groups and Picard Groups

In this section we discuss the connection between Tor-rigidity property and some
well-known results and open problems regarding class groups and Picard groups
of varieties. Even though such connections have sometimes been used explicitly in
certain proofs, they seem to have escaped wide attention. We hope what follows will
stimulate further research in this direction.
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7.1 The Lipman–Danilov theorem

First, we recast a well-known proof by Lipman on class groups in terms of Tor
rigidity. The following theorem is the key result in Lipman’s paper [49, Theorem 1]
(it was stated there slightly more generally in the non-local setting).

Theorem 7.1.1 (Lipman). Let R be a local ring and t be a regular element in the
maximal ideal of R. Let M 2 mod R such that t is alsoM -regular. Let S D R=tR.
Assume that HomR.M; S/ is a free S -module. Also assume that .M=tM/p is a free
Sp-module for any p 2 Spec S such that depth Sp � 2. Then HomR.M;R/ is a free
R-module.

Proof. Consider any prime p 2 Spec S such that depth Sp � 2. Let q be
the preimage of p in Spec R. Then Mq is a free Rq-module. We may assume
that depth S � 3; otherwise M is a free R-module automatically. Applying
Lemma 2.3.3 with S D N and n D 2, we obtain Ext1R.N; S/ D 0. But
pdRS D 1; thus S is obviously Tor-rigid as an R-module. Proposition 3.1.2 implies
that HomR.M;R/˝RS Š HomR.M; S/. So HomR.M;R/˝RS is a free S -module,
and Nakayama’s Lemma forces HomR.M;R/ to be free over R. ut

As explained in [49], the above theorem allows us to prove a famous result by
Danilov on discrete divisor class groups. Recall that a normal domain S is said
to have discrete divisor class group (abbreviated DCG) if the map between class
groups Cl.S/ ! Cl.SŒŒt ��/ is bijective.

Corollary 7.1.2. Let S be a noetherian normal domain. If Sp has DCG for all
p 2 Spec S such that depth Sp � 2 then S has DCG.

LetR D SŒŒt ��. The point is that the natural map 	 W Cl.S/ ! Cl.R/ is obviously
injective. There is another map  W Cl.R/ ! Cl.S/ induced by the map from
mod R to mod S given by M 7! M=tM . It is not hard to check that  	 D id. But
the injectivity of  is guaranteed by Theorem 7.1.1 (or rather the nonlocal version
of it as in [49, Theorem 1]).

Remark 7.1.3. We note that the proof above allows one to generalize Lipman’s
Theorem 7.1.1 to the situation when S is only assumed to have projective dimension
one over R. This was pursued in [55].

7.2 The Grothendieck–Lefschetz theorem

Next we discuss some relationships between Tor rigidity and a strong version of the
famous Grothendieck–Lefschetz theorem, which we now recall.

Theorem 7.2.1 (Grothendieck–Lefschetz). Let R be an abstract complete inter-
section of dimension at least 4 and Speco R be the punctured spectrum of R. Then
Pic.Speco R/ D 0.
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To see the connection to what we have discussed, let us rephrase the above result
purely in the language of commutative algebra. Let X D Speco R and L denote
an element in Pic.X/. Let M D �X.L/ generated by the global sections of the
pushforward i�L to Spec R. Then M is a reflexive module over R which is locally
free of rank 1 on X . Furthermore

HomR.M;M/ Š �X.HomOX .L;L// Š �X.OX/ D R:

Thus, the Grothendieck–Lefschetz theorem can be viewed as a special case of the
following:

Conjecture 7.2.2. Let R be an abstract complete intersection of dimension at least
4. Suppose M is a reflexive module in mod R which is locally free on Speco R. If
depth HomR.M;M/ � 4 then M is free.

The above assertion follows rather easily if we make an additional assumption
that depthM � 3.

Proposition 7.2.3. Let R be an abstract complete intersection of dimension at
least 4. Suppose M 2 mod R is locally free on Speco R and depth M � 3. If
depth HomR.M;M/ � 4 then M is free.

Proof. The issues are not affected by completion, so we may assume that R is a
quotient of a complete regular local ring T by a regular sequence. By Lemma 2.3.2
we know that Ext1R.M;M/ D Ext2R.M;M/ D 0. It follows from Theorem 6.1.3
that M lifts to a T -module M 0. Since for any N 2 mod R there is an isomorphism
TorTi .M

0; N / Š TorRi .M;N / and M 0 is Tor rigid (as a T -module) it follows that
M is Tor rigid. Now we can use Proposition 3.1.2 to conclude that M is free. ut

If we only assumeM to be reflexive then one can only deduce that Ext1R.M;M/D
0 by Lemma 2.3.2. Of course, by the virtue of Proposition 3.1.2, we can conclude
that M is free if it is known to be Tor rigid to begin with.

Corollary 7.2.4. Let R be a local ring of depth at least 3 satisfying Serre’s
condition .S2/. Let M be a reflexive R-module which is locally free on Speco R.
Suppose that the pair .Tr�M;M/ is Tor rigid. Then depth HomR.M;M/ � 3 if
and only if M is free.

By the above discussion, the following can be viewed as a vast generalization of
the Grothendieck–Lefschetz theorem in the hypersurface case.

Theorem 7.2.5. Let R be a formal hypersurface such that OR Š T=.f / where T
is an equicharacteristic or unramified regular local ring and f 2 T is a regular
element. Assume that d D dimR is even and greater than 3. Let M be a reflexive
R-module which is locally free on Speco R. If depth HomR.M;M/ � 3 then M is
free.

Proof. Using Lemma 2.3.3 we get Ext1R.M;M/ D 0. By Proposition 3.1.2 it is
enough to show that the pair of modules .Tr�M;M/ is Tor rigid, so it suffices
to show that �R.Tr�M;M/ D 0 due to Proposition 5.2.2. By definition of the
transpose one has the following complex:
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0 ! TrM ! F �
1 ! Tr�M ! 0

whose only nonzero homology in the middle is isomorphic to Ext1R.M;R/, which
has finite length. By Lemma 5.3.7 it follows that ŒTrM� D �ŒTr�M� in G.R/Q.
Thus �R.Tr�M;M/ D ��R.TrM;M/ D ��.M �;M / D 0 (the last two equalities
are consequences of Proposition 5.2.2 and Theorem 5.3.8). ut

7.3 Gabber’s Conjecture

The Grothendieck–Lefschetz theorem says that a complete intersection in dimen-
sion 4 is parafactorial. In dimension three, the statement is no longer true, but one
can instead consider a very interesting conjecture, made by Gabber in [32]:

Conjecture 7.3.1 (Gabber). Let R be a local complete intersection of dimension
3. Then Pic.Speco R/ is torsion-free.

The above conjecture is equivalent to the statement that the local flat cohomology
group H2

fmg.Spec.R/; 
n/ D 0 when R is a local complete intersection of
dimension 3, and they are both implied by the following (see [32]):

Conjecture 7.3.2. Let R be a strictly Henselian local complete intersection of
dimension at least 4. Then the cohomological Brauer group of Speco R vanishes.

In fact, the characteristic 0 case of Conjecture 7.3.1 follows from Grothendieck’s
techniques on local Leftschetz theorems (cf. [12,56]), and the positive characteristic
case can be found in [27] (it is probably known to experts, though we can not find
an exact reference. It was claimed in [32] that Conjecture 7.3.2 is known in positive
characteristic). The proof in [27] actually uses the Tor rigidity of the Frobenius in
an essential way. We now describe briefly how one can prove such a statement.

Suppose that R is a local ring of characteristic p > 0. Then the map F W R ! R

that takes r to rp is a ring homomorphism, famously known as the Frobenius map.
Under this map, the target R now has a new structure of an R-module, which we
denote by f R.

Now, let us assume that R is a complete intersection of characteristic p > 0.
The difficult part is to show that Pic.Speco R/ has no p-torsion elements (as the
ones whose order is relatively prime to p can be ruled out by identical proof to the
characteristic 0 case). But we can easily see that the map

	F W Pic.Speco R/ ! Pic.Speco f R/ Š Pic.Speco R/

induced by tensoring with f R is actually a self-map on the abelian group
Pic.Speco R/ given by multiplying with pdimR. Thus, it is enough to show that 	F
is injective. This can be achieved (at least when F is a finite morphism) by adapting
the argument in Theorem 7.1.1 together with the following (cf. [10]):



Some Homological Properties of Modules over a Complete Intersection: : : 361

Theorem 7.3.3 (Dutta, Avramov–Miller). Let R be a local complete intersection.
Then f R is a Tor-rigid R-module.

Thus, Gabber’s conjecture only remains in the mixed characteristic case. We
shall see next that the hypersurface situation can also be proved, even in the mixed
characteristic case. In fact, one can prove the following more general result (see
Sects. 2.6 and 7.2 for notations and discussions of how such a statement implies
what we want):

Theorem 7.3.4. Let R be local hypersurface of dimension 3. Let N be a finitely
generated reflexive R-module which is locally free on Speco R. Furthermore, as-
sume that the first local Chern class of N is torsion in CH1.R/. Then HomR.N;N /

is a maximal Cohen–MacaulayR-module if and only if N is free.

Proof. We sketch the main ideas. As in the proof of Theorem 7.2.5, one first proves
that �R.Tr�N;N/ D 0. By taking direct sum of copies of N , we can assume that
c1.N / D 0. Then a special version of the Bourbaki sequence as in [43, Theorem
1.4] produces a short exact sequence:

0 ! F ! N ! I ! 0

where I is an ideal of height two, that is, dimR=I D 1. A similar argument as in
Theorem 5.3.2 shows that indeed �R.Tr�N;N/ D 0.

In the next part of the proof, we utilize the theory of maximal Cohen–Macaulay
approximation developed in [3]. Given N , we can fit it in a short exact sequence:

0 ! G ! M ! N ! 0

where M 2 MCM.R/ and G has finite projective dimension. Since N is reflexive
and dimR D 3, we see that G is actually free. As in the proof of Theorem
7.2.5 and Proposition 3.1.2, we know that Ext1R.N;N / D TorR1 .Tr�N;N/ D 0.
Using the exact sequence above, we get TorR1 .Tr�N;M/ D 0. We also know
that �R.Tr�N;M/ D �R.Tr�N;N/ D 0. However, since M is maximal Cohen–
Macaulay,

�R.Tr�N;M/ D `.TorR2 .Tr�N;M//� `.TorR1 .Tr�N;M//:

Thus, TorRi .Tr�N;M/ D 0 for all i � 0. It follows from Theorem 6.1.1 that either
pdRM < 1 or pdRTr�N < 1. In the former case, we deduce that pdN < 1 and
in the latter, pdR.�N/

� < 1. But if pdN < 1 and it is not free then pdRN D 1.
Then Ext1R.N;N / cannot be 0 by Nakayama’s Lemma, a contradiction. On the other
hand, if pdR.�N/

� < 1 then .�N/� must be free since it is maximal Cohen–
Macaulay. Therefore �N is free; in other words pdRN < 1, and we already saw
that this implies N must be free. ut

The above theorem gives the following characterization of the UFD property for
dimension three hypersurfaces.
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Corollary 7.3.5. Let R be a local hypersurface with isolated singularity and dim
RD3. The following are equivalent:

(1) �R.M;N / D 0 for all M;N 2 mod.R/.
(2) The class group Cl.R/ is torsion.
(3) R is a UFD (equivalently, Cl.R/ D 0).

8 Applications: Intersection of Subvarieties, Splitting of
Vector Bundles and Non-commutative Crepant Resolutions

In this section we discuss further applications which are somewhat more geometric
in nature. Thus we begin with a brief discussion of how some questions on projective
varieties can be reduced to local algebra.

8.1 Local Rings of Cones of Projective Varieties

LetA be a finitely generated standard graded ring over a field k andR D Am where
m is the irrelevant ideal. Let X D Proj A. Then dimX C 1 D dimA D dimR.
When k is perfect, X is smooth if and only if R has isolated singularity.

Let F be a quasi-coherent sheaf on X and

��.F/ D ˚i2Z�.X;F.i//:

LetM be a gradedA-module andfM be the corresponding sheaf onX . Given any
coherent sheaf F on X one can find a finitely generated moduleM such that fM Š
F . In general such a module is not unique, but we have the short exact sequence:

0 ! H0
m.M/ ! M ! ��.F/ ! H1

m.M/ ! 0:

and for i > 0, isomorphisms

HiC1
m .M/ Š ˚i2ZHi.X;F.i//

where Hi
m.M/ denotes the i th local cohomology supported at m of M . When

A is normal of dimension at least 2 and F is a vector bundle on X , M can be
chosen to be a reflexive module over A (which is locally free on Spec A � fmg). In
this situation, F Š ˚i2SOX.i/ for some set of indexes S (such F are sometimes
called dissocié) if and only if M is a free A-module. One can localize at m, and all
the information such as reflexivity, local freeness on the punctured spectrum, and
the local cohomology modules are preserved between M and Mm. Thus, certain
statements about vector bundles over the projective variety X can be deduced from
their analogues on the punctured spectrum Speco R.



Some Homological Properties of Modules over a Complete Intersection: : : 363

8.2 Intersections of Subvarieties

A well-known fact of projective geometry is that in projective space any two lines
must intersect. A much more general fact is the following

Theorem 8.2.1. Let U; V be subschemes of the projective space Pnk for some field
k. If dimU C dimV � n, then U \ V is nonempty.

For convenience we isolate this property, which we do not know a standard
reference for.

Definition 8.2.2. A Noetherian scheme X is called decent if for any subschemes
U; V such that dimU C dimV � dimX , U \ V is non-empty.

Proposition 8.2.3. Let R D T=.f / be a local hypersurface with isolated singu-
larity such that T is an equicharacteristic or unramified regular local ring. Assume
that �R.M;N / D 0 for all M;N 2 mod R. Then X D Speco R is decent in the
sense of Definition 8.2.2.

Proof. Let I; J ¨ R be the ideals defining U; V , respectively. Suppose that U \
V D ;. Then it follows thatR=I˝RR=J has finite length. But as �R.R=I;R=J / D
0, we have that �T .R=I;R=J / D 0; hence dimR=I C dimR=J < dimT (cf.
Theorem 2.4.1 and Proposition 5.2.1) or dimU C 1C dimV C 1 < dimX C 2, a
contradiction. ut

Thus, we have the following consequences of Theorems 5.3.4 and 5.3.6.

Theorem 8.2.4. For the following situations Speco R is decent in the sense of
Definition 8.2.2.

(1) R is an excellent (formal) hypersurface with isolated singularity, containing a
field and dimR D 4.

(2) R D kŒx0; � � � ; xd �m=.f /, where f is a homogenous polynomial defining a
smooth hypersurface in Pdk over a perfect field k and m D .x0; � � � ; xd /.

(3) R D kŒŒx0; � � � ; xd ��=.f /, a hypersurface-isolated singularity with k a field of
characteristic 0.

One can say quite a bit about the decency property of projective varieties since a
lot is known about intersection theory on such varieties. For example, we note below
that smooth projective complete intersections are decent. The proof is essentially in
[24, Theorem 4.10].

Theorem 8.2.5. Let X be a smooth complete intersection in Pnk for some alge-
braically closed field k. Then X is decent in the sense of Definition 8.2.2.

Proof. We are going to use l-adic cohomology (for basic properties and notations,
we refer to [51] or [59]). Let l be a prime number such that l ¤ char.k/. There is
a class map:

cl W CHr .X/ ! H2r.X;Ql .r//
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This map gives a graded rings homomorphism CH�.X/ ! ˚H2r.X;Ql .r// (with
the intersection product on the left-hand side and the cup product on the right-hand
side, see [51], VI, 10.7 and 10.8). Let a D dimU and b D dimV , and we may
assume a � b. Suppose a C b D dimX D n (if a C b > n, we can always choose
some subvariety of smaller dimension inside U or V such that equality occurs).
Then 2a � n, but n is odd, so 2a > n. Let h 2 CH1.X/ represent the hyperplane
section. By the weak Lefschetz theorem (see, for example, [59], 7.7, page 112) and
the fact that 2.n� a/ < n, we have:

H2.n�a/.X;Ql .n � a// Š H2.n�a/.Pnk;Ql .n � a//:
The latter is generated by a power of the class of the hyperplane section. Thus
cl.U / D cl.h/n�a in H2.n�a/.X;Ql .n� a//. We then have

cl.U:V / D cl.U / [ cl.V / D cl.h/n�a [ cl.V / D cl.hn�a:V /:

The last term is equal to the degree of hn�a:V 2 CHn.X/, so it is nonzero. But
the first term has to be 0 by assumption. This contradiction proves the theorem. ut

8.3 Splitting of Vector Bundles

In this section we discuss the problem of splitting of vector bundles on schemes.
In general this is a non-trivial question. For example, it is not known whether there
are indecomposable vector bundles of rank two on projective spaces in dimension
at least 6. As discussed in Sect. 8.1, there is an intimate connection between such
questions on a projective variety and the punctured spectrum of a local ring. Thus
we shall focus on the latter. We begin with an algebraic generalization of a result by
Faltings, who proved that any vector bundle on Pn that is globally generated by at
most n sections must be a direct sum of line bundles [30]. See also [38].

Theorem 8.3.1 (After Faltings). Suppose R is a local ring satisfying .S2/ and
Speco R is decent in the sense of Definition 8.2.2. Suppose M 2 mod R is locally
free of constant rank on Speco R and depth M � 1. If M has less than dimR
generators then M is free.

Proof. If dimR � 1 there is no content, so we assume that dimR � 2. As R is
.S2/, depth R is at least 2 also. We use induction on r , the number of generators of
M . If r D 1 the conclusion follows immediately, so we assume r > 1.

We may also assume that M has no free summand. Consider a short exact
sequence:

0 ! N
˛�! F

ˇ�! M ! 0

with N Š �M . Pick a standard basis for F and e a basis element. Let x D ˇ.e/

and y D ˛�.e�/ where e� is the basis element of F � corresponding to e. We can
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assume that the order ideals I D OM.x/ and J D ON�.y/ (see Sect. 2.1) are
proper; otherwise M would have a free summand. Let a D rk M and b D rk N .
Clearly a C b D rk F D r . Locally on Speco R, I and J can be generated by at
most a and b generators, respectively.

As M is locally free on Speco R, we must have Supp R=I \ Supp R=J D fmg.
In other words, letU; V be the subschemes of Speco R defined by I; J , respectively,
then U \V D ;. If both I; J are not m-primary, then by localizing at some minimal
primes, we see that their heights are at most a and b, respectively. Thus

dimR=I C dimR=J � 2 dimR � a � b D 2 dimR � r > dimR

or
dimU C dimV � dim Speco R

which contradicts the assumption that Speco R is decent. However, if I is m-
primary, then it follows that the quotient M=Rx is locally free on Speco R and
has r � 1 generators. Furthermore the exact sequence

0 ! Rx ! M ! M=Rx ! 0

shows that depth M=Rx � 1, thus by induction it is free, and so is M . If J is m-
primary then similarly N � has a free summand generated by y. Dualizing again we
see that x D 0, a contradiction.

ut
Corollary 8.3.2. Let R be an regular local ring or a local hypersurface as in
Theorem 8.2.4 with dimR � 2. Let X D Speco R. Then a vector bundle over
X that is globally generated by at most dimX sections must be trivial.

The next result shows how one can detect triviality of vector bundles from
vanishing of certain local cohomology modules.

Corollary 8.3.3. Let R be a abstract hypersurface such that OR Š T=.f / where T
is an equicharacteristic or unramified regular local ring and f 2 T is a regular
element. Assume that d D dimR is even and greater than 3. Let M be a reflexive
R-module which is locally free on Speco R. If H2

m.M
� ˝R M/ D 0 thenM is free.

Proof. One has the canonical map:

M � ˝R M ! HomR.M;M/:

By assumption the kernel and cokernel have finite lengths. From that one can easily
see thatH2

m.M
�˝RM/ D H2

m.HomR.M;M//. It follows that depth HomR.M;M/

� 3, so one can apply Theorem 7.2.5. ut
One can now deduce the following from the discussion at the beginning of this

section.
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Corollary 8.3.4. Let X be a projective hypersurface over a field such that dimX
is odd and at least 3. Let F be a vector bundle on X such that

˚i2ZH1.X;F ˝ F�.i// D 0:

Then F is a direct sum of line bundles.

8.4 Non-commutative Crepant Resolutions

Recently, the study of HomR.M;N / over Gorenstein rings has taken on a renewed
significance, due to the following concept.

Definition 8.4.1 (Van den Bergh [61]). Let R be a Gorenstein domain. Suppose
that there exists a reflexive moduleN satisfying:

(1) A D HomR.N;N / is a maximal Cohen–MacaulayR-module.
(2) A has finite global dimension equal to d D dimR.

Then A is called a noncommutative crepant resolution (henceforth NCCR) of R.

This concept was suggested by Van den Bergh to give a conceptual proof of the
three-dimensional case of a famous conjecture by Bondal–Orlov that two birational
Calabi–Yau varieties have equivalent derived categories. In dimension three one
can reduce to the case of two such varieties X;X 0 related by a “flop.” In such
situations one can prove that each derived category is equivalent to a third category,
the derived category of a non-commutative algebra which has exactly the property of
the endomorphism ring A described in the definition above. See [61, 62] for details
and [47] for a very nice survey on this rapidly developing topic.

The existence of such NCCR is a subtle question. For example, it was shown by
Stafford and Van den Bergh [60] that the existence of NCCRs over a Gorenstein
affine k-algebra R where k is an algebraically closed field of characteristic 0 forces
Spec R to have only rational singularities. This was recently extended to non-
Gorenstein setting in certain cases [26]. However, one can immediately derive, from
what we know so far, many necessary conditions. The following is a sample of such
results, more can be said if one makes additional assumptions on the moduleM (see
Sect. 7).

Corollary 8.4.2. Let R be a local hypersurface with an isolated singularity. In the
following situations there are no NCCRs over Spec R:

(1) dimR D 3 and R is a UFD.
(2) dimR is even and at least 4, and R Š T=.f / where T is an equicharacteristic

or unramified regular local ring.
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Proof. By Theorems 7.3.4 and 7.2.5 such a module giving an NCCR would have
to be free. However, if M is free, then its endomorphism ring would be Morita
equivalent to R, which does not have finite global dimension. ut

9 Open Questions

9.1 Some Open Questions

In this section we describe many open questions that are actually quite natural in
view of what has been discussed so far. As is evident from the previous sections,
they are mostly motivated by results or questions from outside commutative algebra.
We will be slightly provocative and call the questions we are more confident about
“conjectures”; the rest will be stated as mere “questions.” We already mentioned
three of them, Question 3.1.5 and Conjectures 5.3.5 and 7.2.2. Note that Conjecture
7.2.2 can be viewed as a rather ambitious generalization of the Grothendieck–
Lefschetz theorem.

Next we discuss open questions related to Gabber’s Conjecture 7.3.1. Obviously,
we would like to know if the stronger version for hypersurfaces, Theorem 7.3.4, can
be proved for complete intersections.

Conjecture 9.1.1. Let R be local complete intersection of dimension 3. LetN be a
reflexive R-module which is locally free of constant rank on Speco R. Furthermore,
assume that ŒN � D 0 in G.R/Q, the reduced Grothendieck group of R with rational
coefficients. Then HomR.N;N / is a maximal Cohen–Macaulay R-module if and
only if N is free.

In view of the proof of the Theorem 7.3.4 and the known Tor-rigidity results for
regular and hypersurface rings, we feel it is reasonable to make the following.

Conjecture 9.1.2. Let R be local complete intersection (of arbitrary dimension).
Let M;N be R-modules such that M is locally free of constant rank on Speco R
and ŒN � D 0 in G.R/Q. Then .M;N / is Tor rigid, namely, that for any i > 0,
TorRi .M;N / D 0 forces TorRj .M;N / D 0 for j � i .

By virtue of Proposition 5.2.2, the above statement is true for hypersurfaces
defined over an equicharacteristic or unramified regular local ring. An interesting
consequence that is worth pointing out is when R is artinian.

Conjecture 9.1.3. Let R be an artinian local complete intersection. Let M;N 2
mod R. The following are equivalent:

(1) TorRi .M;N / D 0 for some i > 0
(2) ExtiR.M

�; N / D 0 for some i > 0
(3) ExtiR.M;N / D 0 for some i > 0.
(4) TorRi .M

�; N / D 0 for some i > 0
(5) TorRi .M;N / D 0 for all i > 0.
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(6) ExtiR.M
�; N / D 0 for all i > 0

(7) ExtiR.M;N / D 0 for all i > 0.
(8) TorRi .M

�; N / D 0 for all i > 0
(9) VR.M/\ VR.N / D ;

Assuming Conjecture 9.1.2 we have that .1/ , .5/ and .4/ , .8/. The
equivalence of .5/; .6/; .7/; .8/; and.9/ holds unconditionally by Theorem 6.1.1.
It would be enough now to show .3/ ) .8/ and .2/ ) .5/.

Recall the exact sequence we used in the proof of Proposition 3.1.2:

TorR2 .Tr�nM;N/ ! ExtnR.M;R/˝RN ! ExtnR.M;N / ! TorR1 .Tr�nM;N/ ! 0

In our situation ExtnR.M;R/ D 0 as R is artinian and Gorenstein, so the sequence
degenerates to an isomorphism: ExtnR.M;N / Š TorR1 .Tr�nM;N/ for all n > 0.

Since Tor rigidity holds by Conjecture 9.1.2 and M � Š �nC2Tr�nM , we have
that .3/ ) .8/. The implication .2/ ) .5/ holds by symmetry.

In fact, even for artinian Gorenstein rings we do not know of any module with no
non-trivial self-extensions. Thus we ask the following question

Question 9.1.4. Let R be an artinian, Gorenstein local ring and M 2 mod R. If
Ext1R.M;M/ D 0, is M free?

We expect the answer to the above question to be negative. However, it looks a
rather difficult problem to construct a counterexample. An affirmative answer to this
question is easily seen to be equivalent to an affirmative answer to the following:

Question 9.1.5. Let R be a Gorenstein local ring of dimension d and M 2
MCM.R/. If ExtiR.M;M/ D 0 for 1 � i � d C 1, is M free?

Obviously this is a strengthened version of the famous Auslander–Reiten conjec-
ture for the commutative Gorenstein case. For some results in this direction, see [41].

In view of Theorem 8.2.5 one can make the following:

Conjecture 9.1.6. Let R be a local complete intersection with isolated singularity.
Then Speco R is decent in the sense of Definition 8.2.2.

Unfortunately the generalized version of Hochster’s theta pairing introduced in
Sect. 6.2 cannot be used to approach this conjecture. It does suggest that �R should
vanish when R has isolated singularity by Corollary 6.2.6.

Conjecture 9.1.7 ([53, Conjecture 2.4]). Let R be a local complete intersection
of codimension at least two and isolated singularity. Then �R.M;N / D 0 for any
M;N 2 mod R.

It is easy to see that the above statement holds when dimR D 0 or dimR D
1 and R is a domain, as G.R/Q D 0 in such situations. A very recent result by
Moore–Piepmeyer–Spiroff–Walker in [53, Theorem 4.5] shows that this is true in
the standard graded case.
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Powers of Square-Free Monomial Ideals
and Combinatorics

Christopher A. Francisco, Huy Tài Hà, and Jeffrey Mermin

1 Introduction

Powers of ideals are instrumental objects in commutative algebra. In addition,
square-free monomial ideals are intimately connected to combinatorics. In this
chapter, we survey work on secant, symbolic, and ordinary powers of square-free
monomial ideals and their combinatorial consequences in (hyper)graph theory and
linear integer programming.

There are two well-studied basic correspondences between square-free monomial
ideals and combinatorics. Each arises from the identification of square-free
monomials with sets of vertices of either a simplicial complex or a hypergraph.
The Stanley–Reisner correspondence associates to the nonfaces of a simplicial
complex � the generators of a square-free monomial ideal, and vice-versa. This
framework leads to many important results relating (mostly homological) ideal-
theoretic properties of the ideal to properties of the simplicial complex; see
[4, Chap. 5] and [25, Sects. 61–64].

The edge and cover ideal constructions identify the minimal generators of
a square-free monomial ideal with the edges (covers) of a simple hypergraph.
The edge ideal correspondence is more naı̈vely obvious but less natural than
the Stanley–Reisner correspondence, because the existence of a monomial in this
ideal does not translate easily to its presence as an edge of the (hyper)graph.
Nevertheless, this correspondence has proven effective at understanding properties
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of (hyper)graphs via algebra. We focus on powers of square-free monomial ideals
when they are viewed as edge (or cover) ideals of hypergraphs. To the best of our
knowledge, there has been little systematic study of the powers of square-free ideals
from the Stanley–Reisner perspective.

The general theme of this chapter is the relationship between symbolic and
ordinary powers of ideals. This topic has been investigated extensively in the
literature (cf. [2, 8, 17, 20]). Research along these lines has revealed rich and deep
interactions between the two types of powers of ideals, and often their equality leads
to interesting algebraic and geometric consequences (cf. [15, 22, 29–31]). We shall
see that examining symbolic and ordinary powers of square-free monomial ideals
also leads to exciting and important combinatorial applications.

The chapter is organized as follows. In the next section, we collect notation
and terminology. In Sect. 3, we survey algebraic techniques for detecting important
invariants and properties of (hyper)graphs. We consider three problems:

1. Computing the chromatic number of a hypergraph
2. Detecting the existence of odd cycles and odd holes in a graph
3. Finding algebraic characterizations of bipartite and perfect graphs

We begin by describing two methods for determining the chromatic number of a
hypergraph via an ideal-membership problem, one using secant ideals, and the other
involving powers of the cover ideal. Additionally, we illustrate how the associated
primes of the square of the cover ideal of a graph detect its odd induced cycles.

The results in Sect. 3 lead naturally to the investigation of associated primes of
higher powers of the cover ideal. This is the subject of Sect. 4. We explain how to
interpret the associated primes of the sth power of the cover ideal of a hypergraph
in terms of coloring properties of its sth expansion hypergraph. Specializing to
the case of graphs yields two algebraic characterizations of perfect graphs that are
independent of the Strong Perfect Graph Theorem.

Section 5 is devoted to the study of when a square-free monomial ideal has
the property that its symbolic and ordinary powers are equal. Our focus is the
connection between this property and the Conforti–Cornuéjols conjecture in linear
integer programming. We state the conjecture in its original form and discuss
an algebraic reformulation. This provides an algebraic approach for tackling this
long-standing conjecture.

2 Preliminaries

We begin by defining the central combinatorial object of the chapter.

Definition 2.1. A hypergraph is a pair G D .V; E/ where V is a set, called the
vertices of G, and E is a subset of 2V , called the edges of G. A hypergraph is
simple if no edge contains another; we allow the edges of a simple hypergraph to
contain only one vertex (i.e., isolated loops). Simple hypergraphs have also been
studied under other names, including clutters and Sperner systems. All hypergraphs
in this chapter will be simple.
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A graph is a hypergraph in which every edge has cardinality exactly two.
We specialize to graphs to examine special classes, such as cycles and perfect
graphs.

If W is a subset of V , the induced subhypergraph of G on W is the pair .W; EW /

where EW D E \ 2W is the set of edges of G containing only vertices in W .

Notation 2.2. Throughout the chapter, let V D fx1; : : : ; xng be a set of vertices.
Set S D KŒV � D KŒx1; : : : ; xn�, where K is a field. We will abuse notation
by identifying the square-free monomial xi1 : : : xis with the set fxi1 ; : : : ; xis g of
vertices. If the monomial m corresponds to an edge of G in this way, we will denote
the edge by m as well.

Definition 2.3. The edge ideal of a hypergraph G D .V; E/ is

I.G/ D .m W m 2 E/ � S:

On the other hand, given a square-free monomial ideal I � S , we let G.I/ D
.V; gens.I // be the hypergraph associated to I , where gens.I / is the unique set of
minimal monomial generators of I .

Definition 2.4. A vertex cover for a hypergraph G is a set of vertices w such that
every edge hits some vertex of w, i.e., w \ e ¤ ¿ for all edges e of G.

Observe that, if w is a vertex cover, then appending a variable to w results in
another vertex cover. In particular, abusing language slightly, the vertex covers form
an ideal of S .

Definition 2.5. The cover ideal of a hypergraph G is

J.G/ D .w W w is a vertex cover of G/:

In practice, we compute cover ideals by taking advantage of duality.

Definition 2.6. Given a square-free monomial ideal I � S , the Alexander dual of
I is

I _ D
\

m2gens.I /

pm;

where pm D .xi W xi 2 m/ is the prime ideal generated by the variables of m.

Observe that if I D I.G/ is a square-free monomial ideal, its Alexander dual I _
is also square-free. We shall denote by G� the hypergraph corresponding to I _, and
call G� the dual hypergraph of G. That is, I _ D I.G�/. The edge ideal and cover
ideal of a hypergraph are related by the following result.

Proposition 2.7. The edge ideal and cover ideal of a hypergraph are dual to each
other: J.G/ D I.G/_ D I.G�/ (and I.G/ D J.G/_). Moreover, minimal
generators of J.G/ correspond to minimal vertex covers of G, covers such that
no proper subset is also a cover.
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Proof. Suppose w is a cover. Then for every edge e, w \ e ¤ ¿, so w 2 pe .
Conversely, suppose w 2 I.G/_. Then, given any edge e, we have w 2 pe , i.e.,
w \ e ¤ ¿. In particular, w is a cover. ut

We shall also need generalized Alexander duality for arbitrary monomial ideals.
We follow Miller and Sturmfels’s book [21], which is a good reference for this topic.
Let a and b be vectors in N

n such that bi � ai for each i . As in [21, Definition 5.20],
we define the vector a n b to be the vector whose i th entry is given by

ai n bi D
�

ai C 1 � bi if bi � 1

0 if bi D 0:

Definition 2.8. Let a 2 N
n, and let I be a monomial ideal such that all the minimal

generators of I divide xa. The Alexander dual of I with respect to a is the ideal

I Œa� D
\

xb2gens.I /

.x
a1nb1

1 ; : : : ; xannbn
n /:

For square-free monomial ideals, one obtains the usual Alexander dual by taking
a equal to 1, the vector with all entries 1, in Definition 2.8.

By Definition 2.6, Alexander duality identifies the minimal generators of a
square-free ideal with the primes associated to its dual. The analogy for generalized
Alexander duality identifies the minimal generators of a monomial ideal with the
irreducible components of its dual.

Definition 2.9. A monomial ideal I is irreducible if it has the form I D .x
e1

1 ; : : : ; xen
n /

for ei 2 Z>0 [ f1g. (We use the convention that x1
i D 0.) Observe that the

irreducible ideal I is p-primary, where p D .xi W ei ¤ 1/.

Definition 2.10. Let I be a monomial ideal. An irreducible decomposition of I is
an irredundant decomposition

I D
\

Qj

with the Qj irreducible ideals. We call these Qj irreducible components of I .
By Corollary 2.12 below, there is no choice of decomposition, so the irreducible
components are an invariant of the ideal.

Proposition 2.11. Let I be a monomial ideal, and a be a vector with entries large
enough that all the minimal generators of I divide xa. Then .I Œa�/Œa� D I .

Corollary 2.12. Every monomial ideal has a unique irreducible decomposition.

A recurring idea in our paper is the difference between the powers and symbolic
powers of square-free ideals. We recall the definition of the symbolic power.

For a square-free monomial ideal I , the sth symbolic power of I is

I .s/ D
\

p2Ass.S=I /

ps:
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(This definition works because square-free monomial ideals are the intersection of
prime ideals. For general ideals (even general monomial ideals) the definition is
more complicated.) In general we have I s � I .s/, but the precise nature of the
relationship between the symbolic and ordinary powers of an ideal is a very active
area of research.

In commutative algebra, symbolic and ordinary powers of an ideal are encoded
in the symbolic Rees algebra and the ordinary Rees algebra. More specifically, for
any ideal I � S D KŒx1; : : : ; xn�, the Rees algebra and the symbolic Rees algebra
of I are

R.I / D
M

q�0

I qtq � SŒt� and Rs.I / D
M

q�0

I .q/tq � SŒt�:

The symbolic Rees algebra is closely related to the Rees algebra, but often is
richer and more subtle to understand. For instance, while the Rees algebra of
a homogeneous ideal is always Noetherian and finitely generated, the symbolic
Rees algebra is not necessarily Noetherian. In fact, non-Noetherian symbolic Rees
algebras were used to provide counterexamples to Hilbert’s Fourteenth Problem
(cf. [24, 26]).

3 Chromatic Number and Odd Cycles in Graphs

In this section, we examine how to detect simple graph-theoretic properties of a
hypergraph G from (powers of) its edge and cover ideals. Since the results in this
section involving chromatic number are the same for graphs as for hypergraphs,
modulo some essentially content-free extra notation, we encourage novice readers
to ignore the hypergraph case and think of G as a graph.

Definition 3.1. Let k be a positive integer. A k-coloring of G is an assignment of
colors c1; : : : ; ck to the vertices of G in such a way that every edge of cardinality
at least 2 contains vertices with different colors. We say that G is k-colorable if a
k-coloring of G exists, and that the chromatic number �.G/ of G is the least k such
that G is k-colorable.

Remark 3.2. Since loops do not contain two vertices, they cannot contain two
vertices of different colors. Thus the definition above considers only edges with
cardinality at least two. Furthermore, since the presence or absence of loops has no
effect on the chromatic number of the graph, we will assume throughout this section
that all edges have cardinality at least two.

Remark 3.3. For hypergraphs, some texts instead define a coloring of G to be an
assignment of colors to the vertices such that no edge contains two vertices of the
same color. However, this is equivalent to a coloring of the one-skeleton of G, so
the definition above allows us to address a broader class of problems.
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a

b

c
d

e

g

f

Fig. 1 The graph G in the
running example

Running Example 3.4. Let G be the graph obtained by gluing a pentagon to
a square along one edge, shown in Fig. 1. The edge ideal of G is I.G/ D
.ab; bc; cd; de; ae; ef; fg; dg/. The chromatic number of G is 3: for example, we
may color vertices a, c, and g red, vertices b, d , and f yellow, and vertex e blue.

The chromatic number of G can be determined from the solutions to either of
two different ideal-membership problems.

Observe that a graph fails to be k-colorable if and only if every assignment of
colors to its vertices yields at least one single-colored edge. Thus, it suffices to test
every color-assignment simultaneously. To that end, let Y1; : : : ; Yk be distinct copies
of the vertices: Yi D fyi;1; : : : ; yi;ng. We think of Yi as the i th color and the vertices
of Yi as being colored with this color. Now let I.Yi / be the edge ideal I D I.G/,
but in the variables Yi instead of V . Now an assignment of colors to G corresponds
to a choice, for each vertex xj , of a colored vertex yi;j ; or, equivalently, a monomial
of the form yi1;1yi2;2 : : : yin;n. This monomial is a coloring if and only if it is not
contained in the monomial ideal eI D I.Y1/ C � � � C I.Yk/. In particular, G is k-
colorable if and only if the sum of all such monomials is not contained in eI .

We need some more notation to make the preceding discussion into a clean
statement. Let m D x1 : : : xn, let Tk D KŒY1; : : : ; Yk�, and let �k W S ! Tk be
the homomorphism sending xi to y1;i C � � � C yk;i . Then �k.m/ is the sum of all
color-assignments, and we have shown the following:

Lemma 3.5. With notation as above, G is k-colorable if and only if �k.m/ 62 eI .

We recall the definition of the kth secant ideal. Secant varieties are common in
algebraic geometry, including in many recent papers of Catalisano, Geramita, and
Gimigliano (e.g., [5]), and, as Sturmfels and Sullivant note in [28], are playing an
important role in algebraic statistics.

Definition 3.6. Let I � S be any ideal, and continue to use all the notation above.
Put T D KŒV; Y1; : : : ; Yk� and regard S and Tk as subrings of T . Then the kth
secant power of I is

I fkg D S \ �eI C .fxi � �k.xi /g/
�

:

Lemma 3.5 becomes the following theorem of Sturmfels and Sullivant [28]:
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Theorem 3.7. G is k-colorable if and only if m 62 I.G/fkg. In particular,

�.G/ D minfk j m 62 I.G/fkgg:

Running Example 3.8. Let G and I be as in Example 3.4. Then I f1g D I and
I f2g D .abcde/ both contain the monomial abcdefg. However, I f3g D 0. Thus G

is 3-colorable but not 2-colorable.

Alternatively, we can characterize chromatic number by looking directly at the
powers of the cover ideal.

Observe that, given a k-coloring of G, the set of vertices which are not colored
with any one fixed color forms a vertex cover of G. In particular, a k-coloring yields
k different vertex covers, with each vertex missing from exactly one. That is, if we
denote these vertex covers w1; : : : ; wk , we have w1 : : : wk D mk�1. In particular, we
have the following result of Francisco, Hà, and Van Tuyl. [11].

Theorem 3.9. G is k-colorable if and only if mk�1 2 J.G/k . In particular,

�.G/ D minfk j mk�1 2 J.G/kg:

Proof. Let J D J.G/. Given a k-coloring, let wi be the set of vertices assigned a
color other than i . Then mk�1 D w1 : : : wk 2 J k . Conversely, if mk�1 2 J k , we
may write mk�1 D w1 : : : wk with each wi a square-free monomial in J . Assigning
the color i to the complement of wi yields a k-coloring: indeed, we have

Q m
wi

D
mk

mk�1 D m, so the m
wi

partition V . ut
Running Example 3.10. In Example 3.4, let m D abcdefg. The cover ideal J.G/

is .abdf ; acdf ; bdef ; aceg; bceg; bdeg/. Because J does not contain m0 D 1, G is
not 1-colorable. All 21 generators of J 2 are divisible by the square of a variable, so
G is not 2-colorable. Thus m 62 J 2, so J is not 2-colorable. However, J 3 contains
m2, so G is 3-colorable.

Remark 3.11. One can adapt the proof of Theorem 3.9 to determine the b-fold
chromatic number of a graph, the minimum number of colors required when each
vertex is assigned b colors, and adjacent vertices must have disjoint color sets.
See [11, Theorem 3.6].

Remark 3.12. The ideal membership problems in Theorems 3.7 and 3.9 are for
monomial ideals, and so they are computationally simple. On the other hand,
computing the chromatic number is an NP-complete problem. The bottleneck in
the algebraic algorithms derived from Theorems 3.7 and 3.9 is the computation of
the secant ideal I.G/fkg or the cover ideal J.G/ given G; these problems are both
NP-complete.

It is naturally interesting to investigate the following problem.

Problem 3.13. Find algebraic algorithms to compute the chromatic number �.G/

based on algebraic invariants and properties of the edge ideal I.G/.



380 C.A. Francisco et al.

For the rest of this section, we shall restrict our attention to the case when G is
a graph (i.e., not a hypergraph), and consider the problem of identifying odd cycles
and odd holes in G. As before, let I D I.G/ and J D J.G/.

Recall that a bipartite graph is a two-colorable graph, or, equivalently, a graph
with no odd circuits. This yields two corollaries to Theorem 3.9:

Corollary 3.14. G is a bipartite graph if and only if m 2 J 2.

Corollary 3.15. If G is a graph, then G contains an odd circuit if and only if
m 62 J 2.

It is natural to ask if we can locate the offending odd circuits. In fact, we can
identify the odd induced cycles from the associated primes of J 2.

Definition 3.16. Let C D .xi1 ; : : : ; xis ; xi1 / be a circuit in G. We say that C is an
induced cycle if the induced subgraph of G on W D fxi1 ; : : : ; xis g has no edges
except those connecting consecutive vertices of C . Equivalently, C is an induced
cycle if it has no chords.

Running Example 3.17. G has induced cycles abcde and defg. The circuit
abcdgfe isn’t an induced cycle, since it has the chord de.

Simis and Ulrich prove that the odd induced cycles are the generators of the
second secant ideal of I [27].

Theorem 3.18. Let G be a graph with edge ideal I . Then a square-free monomial
m is a generator of I f2g if and only if Gm is an odd induced cycle.

Sketch of proof. If Gm is an odd induced cycle, then Gm and hence G are not 2-
colorable. On the other hand, if m 2 I f2g, then Gm is not 2-colorable and so has an
odd induced cycle. ut

Now suppose that G is a cycle on .2` � 1/ vertices, so without loss of generality
I D .x1x2; x2x3; : : : ; x2`�1x1/. Then the generators of J include the .2`�1/ vertex
covers wi D xi xiC2xiC4 : : : xiC2`�2 obtained by starting anywhere in the cycle and
taking every second vertex until we wrap around to an adjacent vertex. (Here we
have taken the subscripts mod (2` � 1) for notational sanity.) All other generators
have higher degree. In particular, the generators of J all have degree at least `, so
the generators of J 2 have degree at least 2`. Thus m 62 J 2, since deg.m/ D 2` � 1.
However, we have mxi D wi wiC1 2 J 2 for all xi . Thus m is in the socle of S=J 2,
and in particular this socle is nonempty, so pm D .x1; : : : ; x2`�1/ is associated to
J 2. In fact, it is a moderately difficult computation to find an irredundant primary
decomposition:

Proposition 3.19. Let G be the odd cycle on x1; : : : ; x2`�1. Then

J 2 D
"

2`�1\

iD1

.xi ; xiC1/
2

#
\ .x2

1 ; : : : ; x2
2`�1/:
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Remark 3.20. Proposition 3.19 picks out the difference between J 2 and the sym-
bolic square J .2/ when G is an odd cycle. The product of the variables m appears in
p2 for all p 2 Ass.S=J /, but is missing from J 2. (Combinatorially, this corresponds
to m being a double cover of G that cannot be partitioned into two single covers.)
Thus m 2 J .2/ X J 2.

Remark 3.21. We can attempt a similar analysis on an even cycle, but we find only
two smallest vertex covers, wodd D x1 : : : x2`�1 and weven D x2 : : : x2`. Then m D
woddweven 2 J 2 is not a socle element. In this case Theorem 3.22 will tell us that J 2

has primary decomposition
T

.xi ; xiC1/
2, i.e., J .2/ D J 2.

In fact, Francisco, Hà, and Van Tuyl show that, for an arbitrary graph G, the odd
cycles can be read off from the associated primes of J 2 [9]. Given a set W � V ,
put ph2i

W D .x2
i W xi 2 W /. Then we have:

Theorem 3.22. Let G be a graph. Then J 2 has irredundant primary decomposition

J 2 D
2

4
\

e2E.G/

p2
e

3

5 \
2

4
\

GW is an induced odd cycle

p
h2i
W

3

5 :

Corollary 3.23. Let G be a graph. Then we have

Ass.S=J 2/ D fpe W e 2 E.G/g [ fpW W GW is an induced odd cycleg :

Corollary 3.23 and Theorem 3.18 are also connected via work of Sturmfels and
Sullivant [28], who show that generalized Alexander duality connects the secant
powers of an ideal with the powers of its dual.

Running Example 3.24. We have Ass.S=J 2/ D E.G/ [ f.a; b; c; d; e/g. The
prime .a; b; c; d; e/ appears here because abcde is an odd induced cycle of G.
The even induced cycle defg does not appear in Ass.S=J 2/, nor does the odd
circuit abcdgfe, which is not induced. Furthermore, per Theorem 3.18, I f2g is
generated by the odd cycle abcde.

Theorem 3.22 and Corollary 3.23 tell us that the odd cycles of a graph G exactly
describe the difference between the symbolic square and ordinary square of its
cover ideal J.G/. It is natural to ask about hypergraph-theoretic interpretations of
the differences between higher symbolic and ordinary powers of J.G/, and of the
differences between these powers for the edge ideal I.G/. The answer to the former
question involves critical hypergraphs, discussed in Sect. 4. The latter question is
closely related to a problem in combinatorial optimization theory. We describe this
relationship in Sect. 5.

The importance of detecting odd induced cycles in a graph is apparent in the
Strong Perfect Graph Theorem, proven by Chudnovsky, Robertson, Seymour, and
Thomas in [6] after the conjecture had been open for over 40 years. A graph G is
perfect if for each induced subgraph H of G, the chromatic number �.H/ equals
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the clique number !.H/, where !.H/ is the number of vertices in the largest clique
(i.e., complete subgraph) appearing in H . Perfect graphs are an especially important
class of graphs, and they have a relatively simple characterization. Call any odd
cycle of at least five vertices an odd hole, and define an odd antihole to be the
complement of an odd hole.

Theorem 3.25 (Strong Perfect Graph Theorem). A graph is perfect if and only
if it contains no odd holes or odd antiholes.

Let G be a graph with complementary graph Gc (i.e., Gc has the same vertex set
as G but the complementary set of edges). Let J.G/ be the cover ideal of G and
J.Gc/ be the cover ideal of Gc . Using the Strong Perfect Graph Theorem along with
Corollary 3.23, we conclude that a graph G is perfect if and only if neither S=J.G/2

nor S=J.Gc/2 has an associated prime of height larger than three. It is clear from
the induced pentagon that the graph from Running Example 3.4 is imperfect; this is
apparent algebraically from the fact that .a; b; c; d; e/ is associated to R=J.G/2.

4 Associated Primes and Perfect Graphs

Theorem 3.22 and Corollary 3.23 exhibit a strong interplay between coloring
properties of a graph and associated primes of the square of its cover ideal. In
this section, we explore the connection between coloring properties of hypergraphs
in general and associated primes of higher powers of their cover ideals. We also
specialize back to graphs and give algebraic characterizations of perfect graphs.

Definition 4.1. A critically d -chromatic hypergraph is a hypergraph G with
�.G/ D d whose proper induced subgraphs all have smaller chromatic number;
G is also called a critical hypergraph.

The connection between critical hypergraphs and associated primes begins
with a theorem of Sturmfels and Sullivant on graphs that generalizes naturally to
hypergraphs.

Theorem 4.2. Let G be a hypergraph with edge ideal I . Then the square-free
minimal generators of I fsg are the monomials W such that GW is critically .s C 1/-
chromatic.

Higher powers of the cover ideal J D J.G/ of a hypergraph have more
complicated structure than the square. It is known that the primes associated to
S=J 2 persist as associated primes of all S=J s for s � 2 [11, Corollary 4.7]. As one
might expect from the case of J 2, if H is a critically .d C 1/-chromatic induced
subhypergraph of G, then pH 2 Ass.S=J d / but pH … Ass.S=J e/ for any e < d .
However, the following example from [11] illustrates that other associated primes
may arise as well.
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Fig. 2 The second expansion
graph of a 5-cycle

Example 4.3. Let G be the graph with vertices fx1; : : : ; x6g and edges

x1x2; x2x3; x3x4; x4x5; x5x1; x3x6; x4x6; x5x6;

where we have abused notation by writing edges as monomials. Thus G is a
five-cycle on fx1; : : : ; x5g with an extra vertex x6 joined to x3, x4, and x5. Let J

be the cover ideal of G. The maximal ideal m D .x1; : : : ; x6/ is associated to S=J 3

but to neither S=J nor S=J 2. However, G is not a critically 4-chromatic graph;
instead, �.G/ D 3.

Consequently, the critical induced subhypergraphs of a hypergraph G may not
detect all associated primes of S=J s. Fortunately, there is a related hypergraph
whose critical induced subhypergraphs do yield a complete list of associated primes.
We define the expansion of a hypergraph, the crucial tool.

Definition 4.4. Let G be a hypergraph with vertices V D fx1; : : : ; xng and edges
E , and let s be a positive integer. We create a new hypergraph Gs , called the
sth expansion of G, as follows. We create vertex sets V1 D fx1;1; : : : ; xn;1g, . . . ,
Vs D fx1;s ; : : : ; xn;sg. (We think of these vertex sets as having distinct flavors. In the
literature, the different flavors xi;j of a vertex xi are sometimes referred to as its
shadows.) The edges of Gs consist of all edges xi;j xi;k connecting all differently
flavored versions of the same vertex, and all edges arising from possible assignments
of flavors to the vertices in an edge of G.

We refer to the map sending all flavors xi;j of a vertex xi back to xi as
depolarization, by analogy with the algebraic process of polarization.

Example 4.5. Consider a five-cycle G with vertices x1; : : : ; x5. Then G2 has vertex
set fx1;1; x1;2; : : : ; x5;1; x5;2g. Its edge set consists of edges x1;1x1;2; : : : ; x5;1x5;2 as
well as all edges xi;j xiC1;j 0 , where 1 � j � j 0 � 2, and the first index is taken
modulo 5. Thus, for example, the edge x1x2 of G yields the four edges x1;1x2;1,
x1;1x2;2, x1;2x2;1, and x1;2x2;2 in G2 (Fig. 2).

Our goal is to understand the minimal monomial generators of the generalized
Alexander dual .J.G/s/Œs�, where s is the vector .s; : : : ; s/, one entry for each vertex
of G. Under generalized Alexander duality, these correspond to the ideals in an
irredundant irreducible decomposition of J.G/s , yielding the associated primes of
S=J.G/s.
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By generalized Alexander duality, Theorem 4.2 identifies the square-free min-
imal monomial generators of .J.G/s/Œs�. Understanding the remaining monomial
generators requires the following theorem [11, Theorem 4.4]. For a set of vertices
T , write mT to denote the product of the corresponding variables.

Theorem 4.6. Let G be a hypergraph with cover ideal J D J.G/, and let s be a
positive integer. Then

.J s/Œs� D .mT

ˇ̌
�.Gs

T / > s/

where mT is the depolarization of mT .

The proof relies on a (hyper)graph-theoretic characterization of the generators
of I.Gs/fsg from Theorem 4.2. One then needs to prove that .J s/Œs� is the
depolarization of I.Gs/fsg, which requires some effort; see [11].

Using Theorem 4.6, we can identify all associated primes of S=J.G/s in terms
of the expansion graph of G.

Corollary 4.7. Let G be a hypergraph with cover ideal J D J.G/. Then P D
.xi1 ; : : : ; xir / 2 Ass.S=J s/ if and only if there is a subset T of the vertices of Gs

such that Gs
T is critically .s C 1/-chromatic, and T contains at least one flavor of

each variable in P but no flavors of other variables.

We outline the rough idea of the proof. If P 2 Ass.S=J s/, then .x
ei1
i1

; : : : ; x
eir
ir

/

is an irreducible component of J s , for some eij > 0. This yields a corresponding
minimal generator of .J s/Œs�, which gives a subset W of the vertices of Gs such that
Gs

W is critically .s C 1/-chromatic, and W depolarizes to x
ei1
i1

: : : x
eir
ir

. Conversely,
given a critically .s C 1/-chromatic expansion hypergraph Gs

T , we get a minimal
generator of .J s/Œs� of the form x

ei1
i1

� � � xeir
ir

, where 1 � eij � s for all ij . Duality
produces an irreducible component of J s with radical P .

Corollary 4.7 explains why m 2 Ass.S=J 3/ in Example 4.3. Let T be the set of
vertices

T D fx1;1; x2;1; x2;2; x3;1; x4;1; x5;1; x6;1g;
a subset of the vertices of G3. Then G3

T is critically 4-chromatic.
As a consequence of this work, after specializing to graphs, we get two algebraic

characterizations of perfect graphs that are independent of the Strong Perfect Graph
Theorem. First, we define a property that few ideals satisfy (see, e.g., [18]).

Definition 4.8. An ideal I � S has the saturated chain property for associated
primes if given any associated prime P of S=I that is not minimal, there exists an
associated prime Q ¨ P with height.Q/ D height.P / � 1.

We can now characterize perfect graphs algebraically in two different ways
[11, Theorem 5.9]. The key point is that for perfect graphs, the associated primes
of powers of the cover ideal correspond exactly to the cliques in the graph.

Theorem 4.9. Let G be a simple graph with cover ideal J . Then the following are
equivalent:
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(1) G is perfect.
(2) For all s with 1 � s < �.G/, P D .xi1 ; : : : ; xir / 2 Ass.R=J s/ if and only if

the induced graph on fxi1 ; : : : ; xir g is a clique of size 1 < r � s C 1 in G.
(3) For all s � 1, J s has the saturated chain property for associated primes.

Proof. We sketch (1) implies (2) to give an idea of how expansion is used. Suppose
G is a perfect graph. A standard result in graph theory shows that Gs is also perfect.
Let P 2 Ass.S=J s/, so P corresponds to some subset T of the vertices of Gs such
that Gs

T is critically .s C 1/-chromatic. Because Gs is perfect, the clique number of
Gs

T is also s C1, meaning there exists a subset T 0 of T such that Gs
T 0

is a clique with
s C1 vertices. Thus Gs

T 0

is also a critically .s C1/-chromatic graph contained inside
Gs

T , forcing T D T 0. Hence Gs
T is a clique, and the support of the depolarization of

NmT is a clique with at most s C 1 vertices. Therefore GP is a clique. ut
Remark 4.10. If J is the cover ideal of a perfect graph, its powers satisfy a condition
stronger than that of Definition 4.8. If P 2 Ass.S=J s/, and Q is any monomial
prime of height at least two contained in P , then Q 2 Ass.S=J s/. This follows
from the fact that P corresponds to a clique in the graph.

Theorem 4.9 provides information about two classical issues surrounding
associated primes of powers of ideals. Brodmann proved that for any ideal J , the
set of associated primes of S=J s stabilizes [3]. However, there are few good bounds
in the literature for the power at which this stabilization occurs. When J is the
cover ideal of a perfect graph, Theorem 4.9 demonstrates that stabilization occurs
at �.G/ � 1. Moreover, though in general associated primes may disappear and
reappear as the power on J increases (see, e.g., [1,14] and also [23, Example 4.18]),
when J is the cover ideal of a perfect graph, we have Ass.S=J s/ � Ass.S=J sC1/

for all s � 1. In this case, we say that J has the persistence property for
associated primes, or simply the persistence property. Morey and Villarreal give
an alternate proof of the persistence property for cover ideals of perfect graphs in
[23, Example 4.21].

While there are examples of arbitrary monomial ideals for which persistence
fails, we know of no such examples of square-free monomial ideals. Francisco, Hà,
and Van Tuyl (see [9, 10]) have asked:

Question 4.11. Suppose J is a square-free monomial ideal. Is Ass.S=J s/ �
Ass.S=J sC1/ for all s � 1?

While Question 4.11 has a positive answer when J is the cover ideal of a perfect
graph, little is known for cover ideals of imperfect graphs. Francisco, Hà, and Van
Tuyl answer Question 4.11 affirmatively for odd holes and odd antiholes in [10], but
we are not aware of any other imperfect graphs whose cover ideals are known to
have this persistence property. One possible approach is to exploit the machinery of
expansion again. Let G be a graph, and let xi be a vertex of G. Form the expansion of
G at fxig by replacing xi with two vertices xi;1 and xi;2, joining them with an edge.
For each edge fv; xi g of G, create edges fv; xi;1g and fv; xi;2g. If W is any subset of
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the vertices of G, form GŒW � by expanding all the vertices of W . Francisco, Hà,
and Van Tuyl conjecture:

Conjecture 4.12. Let G be a graph that is critically s-chromatic. Then there exists
a subset W of the vertices of G such that GŒW � is critically .s C 1/-chromatic.

In [10], Francisco, Hà, and Van Tuyl prove that if Conjecture 4.12 is true for all
s � 1, then all cover ideals of graphs have the persistence property. One can also
state a hypergraph version of Conjecture 4.12; if true, it would imply persistence of
associated primes for all square-free monomial ideals.

Finally, in [23], Morey and Villarreal prove persistence for edge ideals I of
any graphs containing a leaf (a vertex of degree 1). Their proof passes to the
associated graded ring, and the vital step is identifying a regular element of
the associated graded ring in I=I 2. Morey and Villarreal remark that attempts
to prove persistence results for more general square-free monomial ideals lead
naturally to questions related to the Conforti–Cornuéjols conjecture, discussed in
the following section.

5 Equality of Symbolic and Ordinary Powers
and Linear Programming

We have seen in the last section that comparing symbolic and ordinary powers of
the cover ideal of a hypergraph allows us to study structures and coloring properties
of the hypergraph. In this section, we address the question of when symbolic and
ordinary powers of a square-free monomial ideal are the same and explore an
algebraic approach to a long-standing conjecture in linear integer programming, the
Conforti–Cornuéjols conjecture. In what follows, we state the Conforti–Cornuéjols
conjecture in its original form, describe how to translate the conjecture into algebraic
language, and discuss its algebraic reformulation and related problems.

The Conforti–Cornuéjols conjecture states the equivalence between the packing
and the max-flow-min-cut (MFMC) properties for clutters which, as noted before,
are essentially simple hypergraphs.

As before, G D .V; E/ denotes a hypergraph with n vertices V D fx1; : : : ; xng
and m edges E D fe1; : : : ; emg. Let A be the incidence matrix of G, i.e., the
.i; j /-entry of A is 1 if the vertex xi belongs to the edge ej and 0 otherwise.
For a nonnegative integral vector c 2 Z

n�0, consider the following dual linear
programming system:

max
˚h1; yi j y 2 R

m�0; Ay � c
� D min

˚hc; zi j z 2 R
n�0; ATz � 1

�
: (1)

Definition 5.1. Let G be a simple hypergraph.

(1) The hypergraph G is said to pack if the dual system (1) has integral optimal
solutions y and z when c D 1.
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(2) The hypergraph G is said to have the packing property if the dual system (1)
has integral optimal solutions y and z for all vectors c with components equal
to 0, 1, and C1.

(3) The hypergraph G is said to have the MFMC property or to be Mengerian if
the dual system (1) has integral optimal solutions y and z for all nonnegative
integral vectors c 2 Z

n�0.

Remark 5.2. In Definition 5.1, setting an entry of c to C1 means that this entry
is sufficiently large, so the corresponding inequality in the system Ay � c can be
omitted. It is clear that if G satisfies the MFMC property, then it has the packing
property.

The following conjecture was stated in [7, Conjecture 1.6] with a reward prize of
$5,000 for the solution.

Conjecture 5.3 (Conforti–Cornuéjols). A hypergraph has the packing property if
and only if it has the MFMC property.

As we have remarked, the main point of Conjecture 5.3 is to show that if a
hypergraph has the packing property then it also has the MFMC property.

The packing property can be understood via more familiar concepts in (hyper)
graph theory, namely, vertex covers (also referred to as transversals), which we
recall from Sect. 1, and matchings.

Definition 5.4. A matching (or independent set) of a hypergraph G is a set of
pairwise disjoint edges.

Let ˛0.G/ and ˇ1.G/ denote the minimum cardinality of a vertex cover and the
maximum cardinality of a matching in G, respectively. We have ˛0.G/ � ˇ1.G/

since every edge in any matching must hit at least one vertex from every cover.
The hypergraph G is said to be König if ˛0.G/ D ˇ1.G/. Observe that giving

a vertex cover and a matching of equal size for G can be viewed as giving integral
solutions to the dual system (1) when c D 1. Thus, G is König if and only if G packs.

There are two operations commonly used on a hypergraph G to produce new,
related hypergraphs on smaller vertex sets. Let x 2 V be a vertex in G. The deletion
G n x is formed by removing x from the vertex set and deleting any edge in G that
contains x. The contraction G=x is obtained by removing x from the vertex set and
removing x from any edge of G that contains x. Any hypergraph obtained from G

by a sequence of deletions and contractions is called a minor of G. Observe that
the deletion and contraction of a vertex x in G has the same effect as setting the
corresponding component in c to C1 and 0, respectively, in the dual system (1).
Hence,

G satisfies the packing property if and only if G and all of its minors are König.

Example 5.5. Let G be a 5-cycle. Then G itself is not König (˛0.G/ D 3 and
ˇ1.G/ D 2). Thus, G is does not satisfy the packing property.
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Example 5.6. Any bipartite graph is König. Therefore, if G is a bipartite graph,
then (since all its minors are also bipartite) G satisfies the packing property.

We shall now explore how Conjecture 5.3 can be understood via commutative
algebra, and, more specifically, via algebraic properties of edge ideals.

As noted in Sect. 2, symbolic Rees algebras are more complicated than the
ordinary Rees algebras, and could be non-Noetherian. Fortunately, in our situation,
the symbolic Rees algebra of a square-free monomial ideal is always Noetherian
and finitely generated (cf. [15, Theorem 3.2]). Moreover, the symbolic Rees algebra
of the edge ideal of a hypergraph G can also be viewed as the vertex cover algebra
of the dual hypergraph G�.

Definition 5.7. Let G D .V; E/ be a simple hypergraph over the vertex set V D
fx1; : : : ; xng.

(1) We call a nonnegative integral vector c D .c1; : : : ; cn/ a k-cover of G ifP
xi 2e ci � k for any edge e in G.

(2) The vertex cover algebra of G, denoted by A.G/, is defined to be

A.G/ D
M

k�0

Ak.G/;

where Ak.G/ is the k-vector space generated by all monomials x
c1

1 : : : xcn
n tk

such that .c1; : : : ; cn/ 2 Z
n�0 is a k-cover of G.

Lemma 5.8. Let G be a simple hypergraph with edge ideal I D I.G/, and let G�
be its dual hypergraph. Then

Rs.I / D A.G�/:

We are now ready to give an algebraic interpretation of the MFMC property.

Lemma 5.9. Let G D .V; E/ be a simple hypergraph with n vertices and m edges.
Let A be its incidence matrix. For a nonnegative integral vector c 2 Z

n�0, define

�.c/ D maxfh1; yi j y 2 Z
m�0; Ay � cg and

�.c/ D minfhc; zi j z 2 Z
n�0; ATz � 1g:

Then

(1) c is a k-cover of G� if and only if k � �.c/.
(2) c can be written as a sum of k vertex covers of G� if and only if k � �.c/.

Proof. By definition, a nonnegative integral vector c D .c1; : : : ; cn/ 2 Z
n�0 is a

k-cover of G� if and only if

k � min

(
X

xi 2e

ci j e is any edge of G�
)

: (2)
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Let z be the .0; 1/-vector representing e. Observe that e is an edge of G� if and only
if e is a minimal vertex cover of G, and this is the case if and only if ATz � 1.
Therefore, the condition in (2) can be translated to

k � minfhc; zi j z 2 f0; 1gn; ATz � 1g
D minfhc; zi j z 2 Z

n�0; ATz � 1g D �.c/:

To prove (2), let a1; : : : ; am be representing vectors of the edges in G (i.e.,
the columns of the incidence matrix A of G). By Proposition 2.7, a1; : : : ; am

represent the minimal vertex cover of the dual hypergraph G�. One can show that a
nonnegative integral vector c 2 Z

n can be written as the sum of k vertex covers (not
necessarily minimal) of G� if and only if there exist integers y1; : : : ; ym � 0 such
that k D y1 C � � � C ym and y1a1 C � � � C ymam � c. Let y D .y1; : : : ; ym/. Then

h1; yi D y1 C � � � C ym and Ay D y1a1 C � � � C ymam:

Thus,

�.c/ D maxfk j c can be written as a sum of k vertex covers of G�g: ut

Theorem 5.10. Let G be a simple hypergraph with dual hypergraph G�. Then the
dual linear programming system (1) has integral optimal solutions y and z for all
nonnegative integral vectors c if and only if Rs.I.G// D A.G�/ is a standard
graded algebra or, equivalently, if and only if I.G/.q/ D I.G/q for all q � 0.

Proof. Given integral optimal solutions y and z of the dual system (1) for a
nonnegative integral vector c, we get

�.c/ D �.c/:

The conclusion then follows from Lemmas 5.8 and 5.9. ut
The following result (see [16, Corollary 1.6] and [12, Corollary 3.14]) gives an

algebraic approach to Conjecture 5.3.

Theorem 5.11. Let G be a simple hypergraph with edge ideal I D I.G/.
The following conditions are equivalent:

(1) G satisfies the MFMC property.
(2) I .q/ D I q for all q � 0.
(3) The associated graded ring grI WD L

q�0 I q=I qC1 is reduced.
(4) I is normally torsion-free, i.e., all powers of I have the same associated primes.

Proof. The equivalence between (1) and (2) is the content of Theorem 5.10. The
equivalences of (2), (3), and (4) are well-known results in commutative algebra
(cf. [19]). ut

The Conforti–Cornuéjols conjecture now can be restated as follows.
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Conjecture 5.12. Let G be a simple hypergraph with edge ideal I D I.G/. If G

has packing property then the associated graded ring grI is reduced. Equivalently,
if G and all its minors are König, then the associated graded ring grI is reduced.

It remains to give an algebraic characterization for the packing property.
To achieve this, we shall need to interpret minors and the König property. Observe
that the deletion G n x at a vertex x 2 X has the effect of setting x D 0 in
I.G/ (or equivalently, of passing to the ideal .I.G/; x/=.x/ in the quotient ring
S=.x/), and the contraction G=x has the effect of setting x D 1 in I.G/ (or
equivalently, of passing to the ideal I.G/x in the localization Sx). Thus, we call
an ideal I 0 a minor of a square-free monomial ideal I if I 0 can be obtained from I

by a sequence of taking quotients and localizations at the variables. Observe further
that ˛0.G/ D htI.G/, and if we let m-grade I denote the maximum length of a
regular sequence of monomials in I then ˇ1.G/ D m-grade I.G/. Hence, a simple
hypergraph with edge ideal I is König if htI D m-grade I . This leads us to a
complete algebraic reformulation of the Conforti–Cornuéjols conjecture:

Conjecture 5.13. Let I be a square-free monomial ideal such that I and all of its
minors satisfy the property that their heights are the same as their m-grades. Then
grI is reduced; or equivalently, I is normally torsion-free.

The algebraic consequence of the conclusion of Conjecture 5.13 (and equiva-
lently, Conjecture 5.3) is the equality I .q/ D I q for all q � 0 or, equivalently, the
normally torsion-freeness of I . If one is to consider the equality I .q/ D I q , then it is
natural to look for an integer l such that I .q/ D I q for 0 � q � l implies I .q/ D I q

for all q � 0, or to examine square-free monomial ideals with the property that
I .q/ D I q for all q � q0. On the other hand, if one is to investigate the normally
torsion-freeness then it is natural to study properties of minimally not normally
torsion-free ideals. The following problem is naturally connected to Conjectures 5.3
and 5.13, and part of it has been the subject of work in commutative algebra (cf.
[13]).

Problem 5.14. Let I be a square-free monomial ideal in S D KŒx1; : : : ; xn�.

(1) Find the least integer l (may depend on I ) such that if I .q/ D I q for 0 � q � l

then I .q/ D I q for all q � 0.
(2) Suppose that there exists a positive integer q0 such that I .q/ D I q for all q � q0.

Study algebraic and combinatorial properties of I .
(3) Suppose I is minimally not normally torsion-free (i.e., I is not normally

torsion-free, but all its minors are). Find the least power q such that Ass.S=I q/ 6D
Ass.S=I /.
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10. Francisco, C.A., Hà, H.T., Van Tuyl, A.: A conjecture on critical graphs and connections to the
persistence of associated primes. Discrete Math. 310(15–16), 2176–2182 (2010)
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A Brief History of Order Ideals

E. Graham Evans and Phillip Griffith

The notion of order ideal is no doubt implicit in Serre’s 1958 paper [41] on free
summands of projective modules. A formal definition is given in Bass’ fundamental
article [4] on K-theory and stable algebra. However, any algebraist contemplating
the question, “On what locus of prime ideals in Spec R does an element e in a
module E generate a free summand?”, has in fact encountered the concept of an
order ideal. In the account on order ideals and their applications that follows, it is
our intent to elaborate on four basic theorems—as we see them—that give insight
into the height properties of these ideals. We do this both from a historical view and
a view of their utility.

Definition 1. Let R be a Noetherian ring, let E be an R-module, and let e 2 E .
Then the order ideal of e in E is defined by the equation

OE.e/ D ff .e/ 2 Rjf W E ! R is a homomorphismg:

Defining E� D Hom.E; R/, the “R-dual of E ,” we may express OE.e/ as the
image of the R-homomorphism e W E� ! R in which e.f / D f .e/. In fact
the latter version is the point of view taken in algebraic geometry in describing
the concept where Spec.R=OE.e// is referred to as the “zeros of the section e”
(see Hartshorne [29, p. 431]). An investigation into the properties and behavior of
order ideals in commutative algebra began in earnest in the 1970s and early 1980s.
Most of the attention during this period was devoted to questions concerning upper
and lower bounds for the height (or grade) of order ideals relative to rank or depth of
the module in question. The usual starting point for such a discussion is to consider
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how the notion plays out in the case of free modules. To this end, we let E D Rn

and let e D hr1; : : : ; rni 2 E . The order ideal in this case is easily computed to be

OE.e/ D .r1; : : : ; rn/;

that is, OE.e/ is simply the ideal generated by the coordinates of e relative to
a (any) free basis for E . When the ideal .r1; : : : ; rn/ is a proper ideal, the Krull
altitude theorem gives that its height is bounded above by n, that is, ht OE.e/ � n.
The first important order ideal theorem is a generalization of this observation and
is the central focus of the 1976 article by Eisenbud and Evans [16]. One should
consult Bruns [6] for a “characteristic-free” argument. In Sect. 1 we discuss the
Eisenbud–Evans–Bruns result along with a recent improvement in the paper of
Eisenbud–Huneke–Ulrich [17]. Going back to our free R-module example E D Rn

we also see that e D hr1; : : : ; rni generates a free R-summand of E exactly when
OE.e/ D .r1; : : : rn/ D R. In particular, our opening question, “On what locus of
prime ideals in Spec R is e a free generator of E?”, can now be framed from this
viewpoint. The question simply put is: “For what prime ideals p in Spec R is it true
that p 6� OE.e/?.” Thus, one is left to compute the “size” of the Zariski open set
Spec R � V.OE.e//.

The above line of thought led the authors to establish a second key result on
behavior of order ideals in the setting of local algebra and kth syzygy modules
having finite projective dimension—at least when the local ring .R;m/ contains a
field. Specifically, it is shown in [22, Theorem 3.14]: if e is a minimal generator in
E , i.e., e 2 E�mE , and if pd E <1, then ht OE.e/ � k. Two other principles that
govern the height behavior of order ideals are also described in Sect. 1. One of these
results is implicit in the work of Bruns [5] which guarantees that a kth syzygy of
finite projective dimension and having rank > k necessarily has a minimal generator
e with ht OE.e/ > k.

Also useful is the authors’ result [20] for torsion-free modules over a local
domain R which states: some minimal generator e of a torsion-free R-module E

must have ht OE.e/ � rank E , when E is not free. The residue field is required
to be algebraically closed. In [18, Theorem 2.1] Eisenbud–Huneke–Ulrich remove
the assumption of “algebraically closed” residue field by making a base change via
a local homomorphism to a localized polynomial extension. In Sect. 2 we get an
example of a module with a large set of minimal generators having order ideal the
maximal ideal.

In Sect. 2 we take up several important applications of the main theorems outlined
in Sect. 1. We devote much of our attention here to various aspects of our syzygy
theorem which was first proved in [19]. This result provides lower bounds for
the ranks of non-free syzygies having finite projective dimension. We sketch the
relationship of this theorem with the improved new intersection theorem. In the more
restrictive setting of regular local rings in Sect. 3 we explore a point of view that
has its inception in the article of Eisenbud–Huneke–Ulrich [17] where the notion
of perpendicular element is successfully utilized. Our main result here makes use
of the Serre intersection theorem and shows that consecutive syzygies influence
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one another with respect to heights of order ideals and rank—in the setting of
locally free modules on the punctured spectrum. In Sect. 4 we outline more recent
advances in the special context of mixed characteristic. Several of these results
fit under the general heading of comparison theorems where one encounters a
homomorphism from the syzygy module being studied to one where good properties
are known. Often, these homomorphisms arise when one restricts ones attention to
a hypersurface. The manuscript is organized as follows:

1. Bounding heights of order ideals: the main theorems.
2. The syzygy theorem for modules of finite projective dimension and applications.
3. The Serre intersection theorem and order ideals of consecutive syzygy modules.
4. The state of mixed characteristic.
5. Acknowledgement.

For unexplained references and notation we refer the reader to our monograph
[22] or Bruns–Herzog’s excellent book [8]. One may consult the Hochster–Huneke
article [34, Sect. 10] to see how some of this material may be approached from the
point of view of tight closure.

1 Bounding Heights of Order Ideals: The Main Theorems

Our discussion in the introduction provides evidence that the rank of a module
should play a role in determining an upper bound for the height of an ideal.
Moreover, such an inequality might be viewed as a natural generalization of
the Krull Altitude Theorem. The “first” order ideal theorem stated next makes this
connection precise and was first established by Eisenbud–Evans [16] in case the
ring contains a field. Their argument relied on exterior algebra and a comparison
theorem now known as the “canonical element theorem” (see [7, pp. 358–361]).
In 1981 Bruns [6] gave a more elementary and characteristic-free proof. Bruns’
proof makes use of adjoining formal polynomial variables to the ring—enough to
accommodate a generating set—and then reduces the problem in a clever way to the
case of a free module over a polynomial ring.

Theorem 1 ([16, 1976], [6, 1981]). Let R be a Noetherian ring, let E be an R-
module, and let I be a proper ideal of R. If e 2 IE , then ht OE.e/ � rank E .

The notion of “rank” in the statement of Theorem 1 is referred to as “big rank”
(see [7, p. 360]). Nonetheless, the most important case is that of an integral domain
especially since the general case reduces to this situation. In their 2004 article [17]
Eisenbud–Huneke–Ulrich establish yet a more general statement which takes into
account the behavior of order ideals after base change. In particular, they extend the
above inequality to include elements in the integral closure of IE (see [17, Theorem
3.1 and Corollary 3.4]). In addition they determine invariants that give other upper
bounds besides just rank.
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In our work (discussed here in Sect. 2) related to lower bounds for syzygy
modules having finite projective dimension, we encounter heights of order ideals
in the following context.

Let .R;m/ be a Noetherian local ring and let � W Rn ! Rm be an R-
homomorphism of free modules such that the associated matrix .rij / has all of
its entries in the maximal ideal of R. The column vectors of � represent the
images of the respective standard basis vectors of Rn. Taken together these image
vectors generate in a minimal way the image E of �. The ideal generated by
the coordinates of the j th column vector ej of � is contained in the order ideal
OE.ej /, 1 � j � n. The second order ideal theorem (Theorem 4 ) will provide a
sharp lower bound for heights of order ideals of minimal generators of modules E

having finite projective dimension. However, Theorem 1 can be used to establish a
lower bound for the rank of � in terms of heights of order ideals as follows.

Corollary 2. Let � W Rn ! Rm be an R-homomorphism and let E D im � � Rm.
Let v 2 mE and let I be the ideal generated by the coordinates of �.v/ 2 Rm. One
has the inequalities

ht I � ht OE.�.v// � rank E D rank �:

The above observation can be used to illustrate the difference in behavior of
heights of order ideals when one compares order ideals of minimal generators with
elements in mE . Let R be the 3-dimensional power series ring R D kŒŒx; y; z�� in
which k is a field. The 3 � 2 matrix

� D

2
64

x z

y x

z y

3
75

defines an R-homomorphism R2 ! R3 of rank 2. The image of the basis vector

�
1

0

�
is

2
4

x

y

z

3
5 2 E D im �

has coordinate ideal .x; y; z/ of height 3 > 2 while any image of the vectors

u

2
4

x

y

z

3
5C v

2
4

z
x

y

3
5

with u; v 2 m will have order ideal of height � 2 as predicted by Theorem 1.
Further, one can plainly see that adding more rows of indeterminates to the matrix,
e.g., making an “n � 2” example, only makes the disparity of heights even greater.



A Brief History of Order Ideals 397

Thus minimal generators in the local case generally do not obey the inequality of
Theorem 1.

In order to facilitate our discussion surrounding heights of order ideals of
minimal generators in local algebra we need to bring standard facts about (minimal)
free resolutions into the picture.

Definition 3. We say that an R-module E is a kth syzygy provided E fits into an
exact sequence

0! E ! Rnk�1 ! � � � ! Rn1 ! Rn0 !M ! 0 (	)

If E does fit into an exact sequence as in (	) then we may extend the coordinate
maps f1; : : : ; fnk�1

(if necessary) to a generating set f1; : : : ; fnk�1
; : : : ; fq of E� D

Hom.E; R/. In this way we obtain an embedding

0! E ! Rq ! W ! 0

in which the dual sequence with respect to R

0! W � ! .Rq/� ! E� ! 0

is exact, i.e., Ext1R.W; R/ D 0. In this situation the order ideal of an element in E is
exactly equal to the ideal generated by its coordinate representation in Rq . We may
now repeat this process for the cokernel W of E ! Rq , provided W is “torsion
free.” In fact, if we begin with a kth syzygy E of finite projective dimension we
are guaranteed that this process will continue until E is realized as a kth syzygy in
a free resolution which has an exact dual (see [22, p. 49] for more details). Thus,
under the assumption that E is a kth syzygy satisfying pd E <1 we may assume
that our original exact sequence (	) has the property that its dual sequence

0 E�  .Rnk�1 /�  � � �  .Rn1/�  .Rn0/�  M �  0

is exact, and in particular represents the first k terms in a free resolution of E�.
One may properly view the preceding construction as a “universal” representation
of the module E as a kth syzygy.

For ease of presentation we make the following underlying assumption on the
ambient local ring, denoted by R. While this assumption is not necessary in order
to state and discuss our second theorem on order ideals (e.g., see [7, section 9.5] or
[34, section 10]), the condition makes our discussion flow more easily.

One can characterize kth syzygy modules of finite projective dimension as
follows. We assume pd E <1:

Throughout the remainder of this section when discussing kth syzygy modules E of finite
projective dimension we assume that the ring R satisfies the Serre condition .Sk/. (For definition
see [22, p. 3].)



398 E.G. Evans and P. Griffith

1. E is a first syzygy ” E satisfies the Serre condition .S1/ ” E can be
embedded as a submodule of a free R-module (i.e., E is “torsion free”).

2. E is a second syzygy ” E satisfies .S2/ ” E is a reflexive R-module.
3. E is a kth syzygy for k � 3 ” E satisfies .Sk/ and Extj .E�; R/ D 0 for

1 � j � k � 2.

We can rephrase the above conditions to be a kth syzygy in terms of the open
subscheme X D Spec R � fmg. Thinking of E as defining a coherent sheaf on
X D Spec R � fmg and making the assumption dim R D d C 1 one has that
the Extj .E�; R/ are dual to the sheaf cohomology H d�j .X; E�/. Thus one can
rephrase the fact E is a kth syzygy module in terms of the cohomology of E�.
In the situation where E is a locally free sheaf on X , one can use the duality between
H j .X; E/ and H d�j .X; E�/ to phrase the condition in terms of E alone. Next we
describe the fundamental connection between kth syzygies and order ideals.

Theorem 4 (Evans–Griffith [22, Theorem 3.14]). Let .R;m/ be a local ring that
contains a field, and let E be a kth syzygy module without free summands. If e 2
E �mE then ht OE.e/ � k.

Proof. (Sketch) Our starting point is to let

0! E ! Rnk�1 ! � � � ! Rn1 ! Rn0 !M ! 0

be a universal presentation of E as a kth syzygy module and extend this sequence to

0! Rnd ! Rnd�1 ! � � � ! Rnk ! Rnk�1 ! � � � ! Rn0 !M ! 0

a free resolution of M . We may assume that the maps �d ; : : : ; �k in the resolution
have their entries in the maximal ideal m. Note if E were to have a nonzero free
summand then the map Rnk ! Rnk�1 would have some entries consisting of units.
Further we may assume that a basis is chosen for Rnk so that the “first” basis vector
v1 is carried to e under the map Rnk ! Rnk�1 . By way of contradiction we suppose
that ht I < k where I D OE.e/.

By [22, Theorem 1.11] there is a maximal Cohen–Macaulay R-module C over
R=I so that pd C D ht I < k and such that TorR

k .C; M / D 0. However, after
tensoring the above free resolution with C , we obtain a complex

0! C nd ! � � � ! C nk ! C nk�1 ! � � � ! C n0

which must be exact at C nk . But elements of the form v1 ˝ c are sent to IC D 0;
thus the v1˝c must necessarily be in the image of C nkC1 . However this implies that
C D mC since the entries of �k are in m. This statement contradicts the fact that C

is a maximal Cohen–Macaulay module. ut
A simpler version of the above argument where the “intersecting” module C is

replaced by a cyclic module gives the following result (see [23, pp. 486, 487] for
details):
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Theorem 4� (Evans–Griffith [23, Theorem A]). Let R be a local ring and let E

be a kth syzygy module of finite projective dimension. Let I ¤ 0 be an ideal such
that pd R=I < k and let e 2 E . Then

(i) The order ideal OE.e/ cannot equal I .
(ii) If e 2 E �mE then OE.e/ is not contained in I .

The conclusions reached in Theorem 4� have their clearest implication in the
situation where R=I is Cohen–Macaulay of projective dimension l < k. In this
context we may restate them to say, if Y � X is a Cohen–Macaulay subvariety
of codimension l , then no section of a kth syzygy has zeros which are ideal-
theoretically Y , and further no section which is a minimal generator has zeros
completely inside Y .

We should also mention other proofs of Theorem 4 (or slight variations).
We recorded a characteristic p proof of Huneke in our 1987 article [25, p. 220], and
this argument was repeated in Hochster–Huneke [34, section 10]. Their treatment
applies their extensive theory of “tight closure.” Bruns–Herzog also present a slight
variation in Sect. 9.5 of their book [8] (see also Bruns [7]).

Our original argument for Theorem 4 (see [19, Proposition 1.6]) only proved a
special case of the result—the case in which the kth syzygy module E is locally
free on the subscheme X D Spec R � fmg, i.e., the case where E represents a
vector bundle on X . For our proof of the syzygy theorem (see Sect. 2) this was
the only case needed since we had reduced the problem on rank to this setting.
The outgrowth of this particular point of view spawned an “intersection theorem”
that is a natural generalization of the “new intersection theorem” due to Peskine–
Szpiro [39] and Roberts [40]. Hochster [33] referred to the new result as the
“improved new intersection theorem” (we denote the name by “INIT”). The theorem
can be stated:

INIT (Hochster [33] and [22, Theorem 1.13]). Let .A;m/ denote a local ring that
contains a field and let F� be a nontrivial free complex that satisfies:

(i) The positive homology of F� is supported only at fmg.
(ii) The homology module H0.F�/ contains a minimal generator w supported

at fmg.
Then length.F�/ � dim A.

One applies INIT to the special case of Theorem 4 described above in the
following way. Let e 2 E � mE , let I D OE.e/ and let F� ! E be a minimal
free resolution of E . We set A D R=I and apply INIT to the free A-complex
F 
 =IF 
 D A ˝ F�. Since E is locally free on Spec R � fmg the hypothesis of
INIT is easily verified where w D e C IE . Thus one concludes

pd E D length A˝ F� � dim A;

and from here (using the Auslander–Buchsbaum formula [1]

depth E C pd E D depth R
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and the harmless assumption that R is complete) one gets the inequality ht I �
depth E . However, depth E � k since E is locally free on Spec R � fmg. Articles
of Hochster [33], Dutta [13], and Ogoma [37] show that INIT is equivalent to
the canonical element conjecture for general characteristic. For a thorough devel-
opment and understanding of the relationship between the various “homological
theorems/conjectures,” one should consult Hochster’s excellent articles [32, 33].

The third order ideal theorem from our perspective arises in a natural way out of
a theorem of Bruns [5] (see also [22, Theorem 3.11]). We begin with a kth syzygy
of finite projective dimension and consider a short exact sequence

0! R! E ! E 0 ! 0 (	 	 	)

in which 1 2 R is sent to e 2 E�mE . So pd E 0 <1 as well. A basic question here
is: “When is the module E 0 also a kth syzygy?” The answer is in fact quite easy.
The module E 0 is a kth syzygy precisely when (	 	 	) becomes split exact locally
in codimension� k. Moreover, this property is clearly equivalent to ht OE.e/ > k.
Using “basic element” theory developed by Eisenbud–Evans [15], Bruns [5] proved:
if E is a kth syzygy module of finite projective dimension and if rank E D kCs then
E contains a free submodule F of rank s such that E=F is also a kth syzygy. It was
this circle of ideas that led Bruns to contemplate the “syzygy theorem” (first noted
by Hackman [28] in his Ph.D. thesis at University of Stockholm, 1969) discussed
in Sect. 2. The third order ideal theorem is simply a recasting of Bruns’ result along
the lines of [22, Theorem 3.11].

Theorem 4 (Bruns [5]). Let R be a local ring and let E be a kth syzygy module of
finite projective dimension. If rank E > k then E must have a minimal generator e

such that ht OE.e/ > k.

That one cannot improve on this result is the essence of our syzygy theorem in
Sect. 2.

Now that we have established a condition under which we can locate minimal
generators with larger than expected order ideals, one might ask if there are any
restrictions that would indicate an upper bound should exist. As examples show
one cannot expect too much in the way of a positive answer. For example in
our monograph [22, Appendix], we describe a construction due to Horrocks and
Mumford that shows the existence of a rank two-second syzygy E for R regular
local of dimension 5 such that E is locally free on Spec R � fmg. In addition
Ext1R.E; R/ ¤ 0. Thus, a nontrivial extension

0! R!M ! E ! 0

gives rise to an element m 2 M �mM (the image of 1 2 R) such that OM .m/ is m
primary, i.e.,

ht OM .m/ D dim R D 5 > 3 D rank M:
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In Sect. 2 we give a different method for producing minimal generators with order
ideal the maximal ideal. However, our fourth order ideal theorem guarantees there
are (many) minimal generators that have a more stable upper bound on the height
of their order ideals. The organization of our proof of the next result requires the
residue field be algebraically closed, although one eventually can see that a finite
residue field extension of the local ring in question is all that is needed.

Theorem 5 (Evans–Griffith [20]). Let .R;m; k/ be a local domain which is
universally catenary and such that the residue field k is algebraically closed. Let E

be a nonfree torsion free R-module. Then some minimal generator e 2 E must have
the property ht OE.e/ � rank E .

The theorem was stated in our 1985 monograph [22, Theorem 2.12] in
contrapositive form, that is, if each e 2 E�mE has ht OE.e/ > rank E , then E must
be free. The key to our argument was a lemma [22, Lemma 2.13] which showed
there is a homogenous ideal J in kŒX1; : : : ; Xt � such that to each maximal ideal
.X1 � a1; : : : ; Xt � at / in V.J / � f.X1; : : : ; Xt/g corresponds a minimal generator
e D a1e1C� � �Cat et in E with ht OE.e/ � rank E . (Here e1; : : : ; et is a prescribed
minimal generating set for E .)

Perhaps the first question that comes to mind after going over our argument
is: “Does one really need to make the residue field algebraically closed?” To see
that the answer is “no” let’s begin with a local domain R and nonfree, torsion-free
R-module E . To obtain the desired minimal generator e with order ideal height
bounded above by rank E we simply base change E to R0 ˝ E where R ! R0
represents the faithfully flat local homomorphism (integral as well) which allows
one to algebraically close the residue field. From the above lemma we capture a
minimal generator e of R0 ˝ E where e D Pt

ai ˝ ei and E D Pt
Rei . Thus

we really only need to get our hands on the elements a1; : : : ; at in R0 in order to
secure the desired minimal generator—and this step can be accomplished via a finite
faithfully flat residue field extension R00 of our original local ring R. The extension
R! R00 is even finite etale if separability is not an issue (see [21]).

We wish to point out here that since the writing of our monograph (now 26 years
ago), Eisenbud–Huneke–Ulrich addressed the issue of Theorem 5 in their 2004
article [18, see Theorem 2.1]. Their result also employs a faithfully flat base change.
The trade-off in their construction is that while not adjoining algebraic elements to
the residue field, they adjoin polynomial variables to the local ring and then localize.
Their theorem works quite well in getting bounds on heights for determinantal
ideals.

A curious fact about kth syzygies results from applying the fourth order ideal
theorem to the following situation. Let R be a local ring and E a kth syzygy of
finite projective dimension and let e1; : : : ; ek�1 be any collection of k � 1 minimal
generators that are linearly independent modulo mE , i.e., they are k-linearly
independent where k denotes the residue field. Let F DPk�1

iD1 Rei . It is easy to see
that the submodule F is “m-pure” in E , i.e., F \mE D mF . We assume Theorem 4
holds, e.g., say R contains a field. Therefore, we have ht OF .e/ � ht OE.e/ � k
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for each e 2 F � mF . Of course, if rank F D k � 1 then F is free and all is
well. So what about the case rank F < k � 1? With a little fuss we may pass to the
situation where R is a local domain having algebraically closed residue field (we
lose finite projective dimension, but this is not required to invoke Theorem 5). This
step produces a contradiction to the fact F is not free. Thus we observe that for
equicharacteristic local rings and kth syzygy modules E that k-linear independence
implies R-linear independence as long as the collection of elements has less than
k-members. Hochster–Huneke [34, Corollary 10.10] first noticed this fact about kth
syzygies and present an elegantargument based on induction.

The observation above concerning the two notions of linear independence in kth
syzygies deserves a note of caution. To get our point across we let .R;m/ be a
regular local ring of dimension � 4 and let I D .a1; a2; a3; a4/ be a 4-generated
ideal of height D 2, e.g., I D .x; y/ \ .w; z/ where x; y; w; z are part of a regular
system of parameters. Let E be the module defined by the short exact sequence:

0! R! R4 ! E ! 0

where 1 is sent to ha1; a2; a3; a4i. The sequence does not split for all prime ideals of
height � 2. Therefore one sees that E is a torsion-free module that is not a second
syzygy. Let e1; e2; e3 denote 3 minimal generators that are linearly independent
modulo mE and consider the equation

�1e1 C �2e2 C �3e3 D 0:

After performing an automorphism of R4 we may assume that e1; e2; e3 are images
of the first 3 standard basis vectors in R4. Note v D ha1; a2; a3; a4i will be sent to
v0 D hb1; b2; b3; b4i where .b1; b2; b3; b4/ has height 2 and is 4-generated, i.e., the
order ideals will be the same! The upshot here is we may reduce our consideration
for the above equation in E to the following one:

�1h1; 0; 0; 0i C �2h0; 1; 0; 0i C �3h0; 0; 1; 0i D �4hb1; b2; b3; b4i

in R4. The only possible solution is �1 D �2 D �3 D �4 D 0. Thus E has the linear
independence property exhibited by a fourth syzygy but in fact is not even a second
syzygy.

We summarize our discussion on order ideals. For this purpose let .R;m/ be
a local ring and let E be a finitely generated kth syzygy module over R. (When
Theorem 4 is invoked the ring R should contain a field.) We assume that pd E <1
but that E is not free. Let us examine properties of the order ideal OE.e/, e 2 E . If
e 2 mE then the first order ideal theorem gives ht OE.e/ � rank E . Moreover, even
if e 2 E �mE one can expect some such e with ht OE.e/ � rank E—perhaps after
a local faithfully flat (finite) ring extension. Theorem 4 guarantees a lower-bound
ht OE.e/ � k for all minimal generators e 2 E � mE—and Theorem 4 provides
the existence of a minimal generator e for which the strict inequality ht OE.e/ >

k holds should rank E > k. In each of the inequalities noted above, the syzygy
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index k and the rank of E are the key invariants for bounding heights of order
ideals from below and above, respectively. Moreover, these inequalities suggest that
the inequality k � rank E should hold as well. In the next section (Sect. 2) we
argue that this inequality is indeed true provided the local ring R contains a field.
The inequality k � rank E is known as the “syzygy theorem”—for modules of
finite projective dimension—and of course should not be confused with the famous
“Hilbert syzygy theorem” on existence of finite free resolutions.

2 The Syzygy Theorem and Applications

Having digested the four basic order ideal theorems in Sect. 1, the reader will no
doubt have guessed that the so-called syzygy theorem is but a mere corollary of
Theorem 4 together with Theorem 5, at least in the case of a local domain with al-
gebraically closed residue field. In fact the small technical difficulty concerning the
assumptions of “domain” and “algebraically closed” residue field can themselves
be easily circumvented by appealing to the version of Theorem 5 developed by
Eisenbud–Huneke–Ulrich [18, Theorem 2.1]. We describe yet another elementary
approach below—but first we state the theorem.

Syzygy Theorem. Let .R;m/ be a local ring that contains a field and let E be kth
syzygy module having finite projective dimension. If E is not a free module, then
rank E � k.

Proof (Sketch). We give a simple argument based on Theorems 4 and 5 of Sect. 1.
By way of contradiction let’s suppose that k is the smallest integer for which the
claim is not true. Since the case of k D 2 and rank E D 1 can be treated in way
similar to Kaplansky’s argument (see [36, Theorem 20.3, p. 163]) we must have
k > 2 and rank E < k. Let e 2 E �mE . By Theorem 4 one has ht OE.e/ � k and
E=Re D E 0 is necessarily a .k � 1/st syzygy of finite projective dimension having
rank < k � 1. We have achieved a contradiction at this point. Thus, it must be that
rank E � k. ut

Our original proof [19] relied on induction in much the same way as the one
above. However, we also assumed that dim R was as small as possible for a counter-
example to occur. This assumption allowed us to have the property that E was
locally free on Spec R � fmg and that the coset e C IE was supported only at fmg,
where I D OE.e/. In this way we could invoke a version of INIT (see Sect. 1) in
order to apply a more limited form of Theorem 4. In 2002 Heitmann [30] established
the direct summand theorem for all regular local rings of dimension � 3. Putting
this fact together with Hochster’s result [33, section 2] allows one to conclude
that INIT holds for all free complexes of length two that satisfy the hypothesis
of INIT. In [14, Corollary 3.5] it was shown that the above observations could be
used to prove that all .n � 2/nd syzygies of finite projective dimension satisfied
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the syzygy theorem for dim R D n. The next theorem is a slight improvement of
[14, Corollary 3.5].

Theorem 1. Let .R;m/ be a local ring and let E be a kth syzygy module of
projective dimension � 2. If E is not free then rank E � k.

Proof. One immediately reduces the argument to the situation E is locally free on
Spec R�fmg. Then one may conclude the proof by making application of INIT that
follows from Heitmann’s theorem [30]. ut

To see that the syzygy theorem is sharp we return to Theorem 4 and state an
equivalent form.

Theorem 2 (Bruns [5]). Let .R;m/ be a local ring and let E be a kth syzygy
module of finite projective dimension. If rank E D k C s then there is a free
submodule F of E such that rank F D s and E=F is a kth syzygy of rank k.

In our monograph [22, p. 54, 55] we illustrated how to apply the above theorem
to construct free resolutions over a Cohen–Macaulay local ring of dimension n in
which the kth syzygy had rank exactly k for 0 < k < n. Moreover, we applied the
same technique [22, Corollary 3.13] to further illustrate how one may start with any
finite free resolution

0! Fn ! Fn�1 ! � � � ! F2 ! F1 ! F0 !M ! 0

and perturb the first few terms in order to obtain a free resolution F 0� in which all
terms and differentials are identical until F 0

2 (summand of F2) and F 0
1 D R3, F0 D

R. Thus any pathology exhibited by F� in the “back” n � 2 terms is also exhibited
by F 0�. In addition the first syzygy of F 0� is a 3-generated ideal. This phenomena
was discovered by Bruns [5]. One may properly conclude that the pathology that
takes place in all finite free resolutions can be observed when one restricts the focus
to free resolutions of three-generated ideals. The following three observations are
examples of this philosophy. We let R denote the local ring under consideration:

(a) R is a local domain ” each principal ideal has finite projective dimension.
(b) R is a local UFD ” each two-generated ideal has finite projective dimension

(see [22, Theorem 4.3]).
(c) R is a regular local ring ” each 3-generated ideal has finite projective

dimension.

In contemplating the implication “(” in part c) one notes that the hypothesis
localizes, so one may use part b) to see that R is a local UFD—and from there it is
not difficult to see that R is regular in codimension � 2. Thus all second syzygies
are free locally in codimension � 2. A slightly more general version of Theorem 4
(see [22, Corollary 2.6]) allows one to reduce the whole question to whether second
syzygy modules of rank two have finite projective dimension. The final step is
accomplished by noting that second syzygy modules of rank two are always first
syzygies for 3-generated ideals (see [22, Corollary 3.13 (proof)]).
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There is one case of 3-generated ideals in which a “nice” conclusion is reached
and is the subject of our next theorem.

Theorem 3. Let .R;m/ be a local ring that satisfies .S3/ and contains a field. If I

is a 3-generated ideal of R that is unmixed and of finite projective dimension then
R=I is Cohen–Macaulay and pd I D ht I � 1.

Proof. (case ht I D 2) One has the short exact sequence

0! E ! R3 ! I ! 0

in which pd E < 1 and rank E D 2. The “unmixed” hypothesis allows one to see
that E satisfies the Serre condition .S3/ and is therefore a third syzygy of rank two
and has finite projective dimension. Thus the syzygy theorem applies and E must
be free. ut

The above theorem is most interesting in case I is a height two unmixed ideal
(e.g., a 3-generated prime ideal of height two) in a regular local ring. Here we see
that all such ideals behave as in the generic case of the ideal generated by the 2 � 2

minors of a 2 � 3 matrix of variables (see [22, Corollary 4.6]).

Remark 4. One can use the Bruns’ modification of finite free resolutions described
above to get more exotic examples of modules with lots of elements with order
ideals having height larger than the rank. Let .R;m; k/ be a regular local ring of
dimension at least 4. Let M be any module with dim Soc.M / D d and let F� be
its free resolution. Apply Bruns’ theorem to F� to get a resolution of R modulo a
three generated ideal, I D .a; b; c/, with the same last dim R� 2 terms as F�. Then
R=I has the same socle as M . In fact they have the same zeroth local cohomology
module. Let m1; : : : ; md be representatives of a k-basis of Soc.R=I /. We define
E to be RdC3 modulo the element v D hm1; : : : ; md ; a; b; ci. Then if x is in the
maximal ideal we have that xmi D ra C sb C tc. This relation gives an element
of E� sending the i th generator of E to x and the other of the first d generators of
E to zero and sending the last three generators to r , s, and t , respectively. Let F be
the submodule of E generated by the first d generators. Then

(i) pd E D 1.
(ii) E is a first syzygy but not a second syzygy.

(iii) �.E/ D d C 3.
(iv) the rank of E is d C 2.
(v) F is a free submodule of E of rank d .

(vi) If f is in F �mF then the order ideal of f is m.

Since the dimension of R can be arbitrarily large, the difference between the rank
of E and the height of the order ideals can be as large as you want. We suspect that
there is no example of a module of rank d C 1 having a free submodule F of rank
d with the order ideals equal to the maximal ideal for all f in F �mF .
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The syzygy theorem also proved useful in generalizing results of Serre [42] in
which he sought conditions for a prime ideal of codimension two to be generated
by two elements. The connection to Serre’s work was noted by Simon [45] in which
she observed the following result (also see [22, Theorem 4.7, Corollary 4.8]).

Theorem 5. Let R be a regular local ring containing a field and let p be a prime
ideal such that R=p has cyclic canonical module. Then p is generated by a 2-
sequence (e.g., this occurs if R=p is a UFD).

Proof. The canonical module in this case is !R=p D Ext2.R=p; R/ Š Ext1.p; R/.
Thus, there is a class

Œ0! R! E ! p! 0�

which generates Ext1.p; R/. It follows easily that E is a rank two-third syzygy
(i.e., Ext1.E�; R/ D 0). By the syzygy theorem E must be free from which the
conclusion follows. ut

A kth syzygy module in certain instances can possess special properties that
force its rank to be even larger than predicted by the syzygy theorem. An example
of such behavior is the subject of our next result.

Theorem 6 (Griffith–Seceleanu [27]). Let .R;m/ be a regular local ring and let
E be a kth syzygy module such that pdR E � 2. Suppose E contains a free
submodule F for which x.E=F / D 0, where x is a nonzero element in m. If
T D E=F has finite projective dimension over S D R=xR then rank E � 2k � 1.

Proof. One argues that 0 ! F ! E ! T ! 0 gives rise to the 4-term exact
sequence modulo .x/ where T is a kth syzygy over S of finite projective dimension.

0 T F E T 0

K

@

Moreover, K must be a .k � 1/st syzygy of finite projective dimension over S .
Neither K nor T can be free S -modules since pdR E � 2. By the syzygy theorem
one has rank E D rank E and rank E � .k � 1/C k � 2k � 1. ut

The above situation always occurs if x.E=F / D 0 and x 2 m � m2 when R is
regular local. In this special circumstance the result follows in a trivial way from
Shamash’s article [44] (see also Avramov [3, 3.3.5]). Moreover, in some cases, the
map @ provides splitting over the ring R=xR which is equivalent to the property
T D E=F “weakly” lifts to R, i.e., T ˚ SyzR

1 .T / lifts to R. Indeed this is precisely
the situation for the residue field k of a local ring of positive depth. Namely,
m=xm2 Š k ˚ m=.x/ for each regular hyperplane “x.” One can conclude from
the decomposition that the kth syzygy module of the residue field k is—modulo the
hyperplane x D 0—isomorphic to the direct sum of the kth and .k � 1/st syzygy
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modules for k over R D R=xR. From here a simple induction argument gives the
standard formula

rank Syzk.k/ D
 

n � 2

k � 1

!
C
 

n � 2

k � 2

!
D
 

n � 1

k � 1

!

where dim R D n and R is regular local.
More generally, examples of syzygies of modules of finite length and finite

projective dimension appear to exhibit Betti numbers and syzygy ranks having
similar characteristics to those of the residue field. For this reason Buchsbaum–
Eisenbud [9] and Horrocks (see [24]) independently formulated the following
conjecture: If M represents an R-module of finite length and finite projective
dimension then the i th Betti number of M � �

n
i

�
where n D dim R. Various

special cases of the Buchsbaum–Eisenbud–Horrocks conjecture have been proven,
e.g., Herzog–Kuhl [31] for the case of “pure graded resolutions” and Evans–Griffith
[24] in the context of monomial ideals (see Charambolus [11] and Charambolus–
Evans [12] for additional insight into behavior of the resolutions).

Aside from obvious interpretations of the syzygy theorem into the language of
coherent sheaves in algebraic geometry as we observed in Sect. 1, there have been
more recent subtle applications in the articles of Pareschi–Popa [38] and Lazarsfeld–
Popa [35] in developing a suitable theory of generic vanishing indices involving kth
syzygy sheaves (see [38, section 3] for a definition).

3 Serre Intersection Theorem and Order Ideals
of Consecutive Syzygy Modules

In the current section we explore a circle of ideas that is at the heart of the Eisenbud–
Huneke–Ulrich article [17, section 2]. In that article the authors are most interested
in extending Theorem 1 to order ideals of minimal generators—at least to determine
when it is possible to do so. Their main result [17, Theorem 3.1] accomplishes
this task in a quite satisfactory manner. The key point in their development is to
follow what transpires after base changing to local domains. Here we consider how
the upper bounds of heights of order ideals of minimal generators of a kth syzygy
module E influence order ideals of the dual of its first syzygy.

We set some notation to be used throughout this section. Let .R;m/ be a regular
local ring and let E be a kth syzygy module for which k � 2, so E is necessarily a
reflexive R-module. We consider a short exact sequence

0! Z ! F ! E ! 0 (�)

where F is a free R-module and Z � mF . Since most of the homological problems
we encounter that involve syzygy modules come down to analyzing the case where
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E is assumed to be locally free on Spec R � fmg, we make this assumption here,
that is, the short exact sequence (�) is locally split on Spec R � fmg. Before getting
to the main result we state an elementary lemma.

Lemma 1. If F is a free R-module and if � W F ! R represents a free generator
of F � then � is necessarily surjective.

Proof. Expand the set f�g to a free basis for F � and consider a dual basis. ut
The notion of “perpendicular element” (language used in [17, section 2]) is at the

heart of the arguments presented below. Our assumption of “algebraically closed
residue field” is purely technical and is a result of an application of Theorem 5
(Sect. 1).

Theorem 2. Let .R;m/ be a regular local ring having algebraically closed residue
field. Let E be a kth syzygy module over R with k � 2. Let 0! Z ! F ! E ! 0

be a minimal free presentation of E and assume the presentation is locally split on
Spec R � fmg. Then

(a) For e 2 E �mE there is a z� 2 Z� such that

ht OE.e/C ht OZ.z�/ � dim R:

(b) If ht OE.e/ � h for each minimal generator e of E then

rank Z � dim R � h:

(c) If equality ht OE.e/ D h holds for all e 2 E �mE then

rank E C rank Z � dim R;

i.e., this statement is equivalent to the “kth Betti number is � dim R.”

Proof. Consider the 4-term induced exact sequence

0 E� F � Z� Ext1.E; R/ 0.

W

Then Supp Ext1.E; R/ � fmg implies that W and Z� are locally equal on Spec R�
fmg. Moreover, there are natural isomorphisms W � D Z�� Š Z. Therefore, if
w 2 W , then OW .w/ D OZ�.w/.

For e 2 E �mE one also has the commutative triangle

E� F �

R

e
�
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where � is a free generator of F �. We note the map � corresponds to v 2 F �mF ,
where v 7! e, under the natural identification F D F ��. Therefore � is a surjection.
The image of the map e above is simply I D OE.e/. Thus � induces a surjection

W ! R=I:

Let w 2 W � mW such that w 7! 1 C I under the above induced map and let
J D OW .w/ D OZ� .w/. Note w C J W is supported at fmg which implies its
image after base change:

R=J ˝W ! R=J ˝R=I D R=.I C J /

is also supported at fmg. Therefore length.R=.ICJ // <1. By Serre’s intersection
theorem [43] we have

ht I C ht J � dim R:

Thus, part a) is proved. For part b) we observe that w 2 W �mW such that w 7! 1C
I 2 R=I must satisfy ht OW .w/ � dim R�h. We argue that all minimal generators
of W must satisfy this inequality. For w 2 W �mW choose � 2 F ��mF � such that
� 7! w under F � ! W . Since � is necessarily surjective one has a commutative
triangle

E� F �

R

e D �jE�

� .

(Each map E� ! R is given by an associated e 2 E .)
Hence, ht OW .w/ � dim R � h. By Theorem 5 (Sect. 1) we have

rank W D rank Z� D rank Z � dim R � h:

This inequality proves part c) in view of Theorem 5 since h � rank E is necessary.
ut

Corollary 3. If rank E � k then rank Z � dim R � k.

The above corollary may be interpreted to say: if E has minimal rank for a
kth syzygy module—under hypothesis of the theorem—then its first syzygy must
compensate with sufficiently larger rank so that part c) holds, i.e., rank Z �
dim R � rank E .

In mixed characteristic the “syzygy theorem” remains a conjecture—although it
is known that the conclusion can be off by at most “1”, i.e., rank E � k � 1 (see
our discussion in Sect. 4). The above corollary does show for k < 1

2
.dim R C 1/ it

is not possible that successive syzygy modules can be counter examples.

Corollary 4. Suppose R has mixed characteristic and k < 1
2
.dim R C 1/ where

rank E D k � 1 and E not free. Then rank Z � k C 1.
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In summary, one should take away the following general rule (under our
hypothesis on R and E): Every “small” order ideal OE.e/ with e 2 E � mE

produces a “large” order ideal in Z�. The converse holds when Ext1.E; R/ D 0,
i.e., when E is universal with respect to Z (see Sect. 1).

4 The State of Mixed Characteristic

For our discussion of what is known in mixed characteristic “p” we restrict our
attention to the setting in which R is a standard graded ring

R D R0 ˚R1 ˚R2 ˚ � � � ;

where R0 is a discrete valuation ring, or R is local and catenary (e.g., R is complete).
In all cases we assume that the base ring R contains p as a regular element and
satisfies .Sk/. Let E be a kth syzygy of finite projective dimension in either of the
two situations just mentioned and let e 2 E be a minimal generator for E (e is
required to be homogenous in the graded case). The difficulty with establishing
Theorem 4 for the order ideal OE.e/ in this context is that INIT may not hold for
the factor ring R=OE.e/. However, there is one obvious situation when Theorem 4
is valid.

Theorem 1. Let R, E , and e 2 E be as above with E nonfree.

(a) If p is in some prime p that contains OE.e/ such that ht p D ht OE.e/ then
ht OE.e/ � k.

(b) The element p is in the radical ideal
p

OE.e/ if and only if e is a free generator
for EŒp�1� over RŒp�1�.

In case there is at least one minimal generator e such that ht OE.e/ � k we say
that the kth syzygy E satisfies the weak order ideal property, that is, E satisfies
a weaker version of Theorem 4. In their article [27, Proposition 3.1] Griffith–
Seceleanu argue the weak order ideal property is sufficient for proving the syzygy
theorem.

Theorem 2 (Griffith–Seceleanu [27, 3.1]). If a nonfree kth syzygy E (as above)
satisfies the weak order ideal property then rank E � k.

Thus for questions concerning rank E it suffices to know the weak order ideal
property holds. Note, by Theorem 4 on order ideals, if rank E � k, then the weak
order ideal property must hold for E . One sees this claim by viewing E as a .k�1/st
syzygy having rank > k�1. Thus by Theorem 4 there is a minimal generator e 2 E

such that E=Re is a .k � 1/st syzygy, i.e., ht OE.e/ � k. For graded modules
the following result provides a satisfactory criterion for when the weak order ideal
property must hold. The argument outlined here is essentially identical to the one
given in our article [26, Theorem 6].



A Brief History of Order Ideals 411

Proposition 3. Let R be a standard graded ring

R D R0 ˚R1 ˚R2 ˚ � � �
where R0 is a DVR having uniformizing parameter p such that p is regular on R. If

E D E0 ˚ E1 ˚ � � �
is a graded p-regular R-module such that EŒp�1� is RŒp�1�-projective, then any
homogenous element e 2 E0 � pE0 satisfies p 2pOE.e/.

Proof. Let K denote the fraction field of R0, i.e., K D R0Œp
�1�. We may assume E0

is the first nonzero graded piece (otherwise we “twist” the grading on E until this
is so). The key point here is that EŒp�1� remains a graded RŒp�1�-module where

RŒp�1� D K ˚R1Œp
�1�˚R2Œp�1�˚ � � �

is graded over a field K . Since graded projective modules in such a case are known
to be free one can see that any nonzero element in E0Œp

�1� must be part of a free
basis. Thus p 2 pOE.e/ for any such minimal generator. ut
Corollary 4. The syzygy theorem holds for graded kth syzygies of finite projective
dimension over standard graded rings (as above).

Proof. Should there be a counterexample to the syzygy theorem in this setting, i.e.,
a graded kth syzygy module

E D E0 ˚ E1 ˚ � � �
of finite projective dimension such that E is nonfree and rank E < k, then EŒp�1�

must be locally free over RŒp�1� since we are back in the equicharacteristic situation
when p�1 exists. From Proposition 3 we see that E must have the weak order ideal
property which contradicts the conclusion of Theorem 2. ut

Unfortunately the above line of reasoning does not hold in the local setting—even
when R is regular local. Two examples are given in [27, section 7]. We provide a
repeat discussion of them here.

Example 5. Let R D V ŒŒx; y�� where V is a DVR and p generates the maximal
ideal of V . Let

I D .x2 C y2 C p2; px; py/:

It is easy to check p3 2 mI ; note

p3 D p.x2 C y2 C p2/ � px.x C y/� py.y � x/:

However, one can argue p2 … I . Observe I Œp�1� D RŒp�1�. Since grade I D 2

the R-homomorphisms I ! R are just given by multiplication by elements of R.
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Thus, if a 2 I then OI .a/ D .a/. Consequently no minimal generator e of I has
p 2 pOI .e/. A similar analysis works for a ramified regular local ring in which
p 2 m2 and E D m.

In the remainder we emphasize the regular local case since such rings seem to
present most of the challenges one meets when studying behavior of order ideals.
Thus we let .R;m/ be a complete regular local ring of mixed characteristic p.
The R-module E will always denote a kth syzygy R-module. Similar to our analysis
of the order ideal situation that occurs in Proposition 3 above, one easily comes to
the realization that it is sufficient to study kth syzygy modules E for which EŒp�1�

is RŒp�1�-projective. In fact it suffices to study syzygies of free resolutions of
modules M where psM D 0—and bringing into play a result of Auslander–Bridger
[2], [22, Corollary 5.3], we may even assume that pdS M <1 where S D R=psR

(see [27, sections 2 and 3]). We summarize these facts in the following statement.

Observation 6. Let R and E be as above and assume E is not free. We may assume
that E has the properties:

(i) E D Syzk.M / where M is an R=psR module for s > 0 and . pdS M <1.
(ii) E is locally free on Spec R � fmg.

(iii) ht OE.e/ � k � 1 for e 2 E �mE .
(iv) Rank E � k � 1.

Property (iii) holds because INIT holds modulo p and (iv) is a consequence of
(iii).

We may add a positive observation to the above list. Namely, Theorem 4 and
consequently the syzygy theorem holds for pdR E � 2. (See Theorem 4�.)

In particular, these results hold when E is a kth syzygy for k � dim R � 2.
We can gain a certain level of information by considering a finite ring morphism

R ! S , especially in case there is a “natural” map S ˝R E ! E 0 where E 0 is
a kth syzygy of finite projective dimension. Such a map will prove fruitful in the
circumstance 1˝ e 7! e0 2 E 0 �mE 0 and htS OE.e0/ � k.

We follow the presentation in [27] and address two such situations. The setup for
the first one goes as follows: Consider a minimal free R-presentation

Œ�� W 0! Z ! F ! E ! 0

and assume pŒ�� D 0 in Ext1.E; Z/. Note the hypotheses E D Syzk.M / where
pM D 0 would be sufficient to force pŒ�� D 0. We obtain the following
commutative triangle:

0 Z F E 0

Z

p
�
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which induces a map E=pE ! Z=pZ. Moreover, some minimal generator of
E=pE, say e C pE, will map to a minimal generator z C pZ of Z=pZ provided
�.F / 6� mZ. In [27, section 4] this situation is analyzed and the following theorem
is proven.

Theorem 7. Let R be an unramified regular local ring of mixed characteristic p,
and let M be an R-module such that pExtkC1.M;�/ D 0 for some k > 0. Then
the weak order ideal property holds for each j th syzygy of M where j � k; and
consequently the syzygy theorem holds in the same range as well.

The point of the argument in getting e C pE 7! z C pZ for z 2 Z � mZ

is that OZ.z/ � OE.e/, where means modulo p. So ht OE.e/ � ht OZ.z/ �
k. Moreover, it is an easy argument to also check ht OE.e/ � ht OE.e/ (see [26,
Corollary 3]).

A rather immediate corollary follows:

Theorem 8. The syzygy theorem holds for syzygies of R=q when q 2 Spec R and
R is unramified.

Proof. If p 2 q then the conclusion is a consequence of Theorem 7. When p … q
then the entire free resolution restricts intact to the hypersurface ring R=pR where
our questions on ht OE.e/ and rank E have affirmative answers. ut

The second comparison begins with E being the kth syzygy in a free R-
resolution F� ! M where psM D 0 and pdS M < 1 and where S D R=psR

(see Observation 6 (i)). Restricting the complex F� ! M to R=psR one gets an
exact complex up to the degree 1-term. Here we have the 4-term exact sequence

0!M ! Z1 ! F0 !M ! 0:

Thus, the truncated complex .F �/i�1 becomes a free S -resolution for Z1 where

0!M ! Z1 ! K1 ! 0

is exact; K1 D SyzS
1 .M /. Denoting the S -syzygies of M by K� and computing

simultaneous free resolutions of M , Z1, and K1 (use mapping cone) we achieve a
short exact sequence of syzygy modules over S :

0! Kk�1 ! Lk�1 ˚ E ! Kk ! 0;

where Lk�1 is S -free and where E D Zk D kth syzygy for M and E D E=psE .
If the induced map E ! Kk has an image in Kk �mKk then E and E will have the
weak order ideal property. If this is not the case then the induced map Lk�1 ! Kk

is necessarily surjective, and we obtain the induced commutative diagram
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0 KkC1 Lk�1 Kk 0

0 Kk�1 Lk�1 ˚ E Kk 0.

E E

The induced diagram yields a short exact sequence

0! KkC1 ! Kk�1 ! E ! 0

which gives the rank inequality

rank Kk�1 � rank KkC1 C rank E � .k C 1/C .k � 1/ D 2k

since the syzygy theorem holds for M over S (INIT holds in this case). As a
corollary we obtain the following statement

Corollary 9 (Notation as above). If rankR Kk�1 < 2k then E must satisfy the
weak order ideal property (because E necessarily has an order ideal of height � k

over R).

We remark that Theorem 4 shows there are S -modules M of finite projective
dimension such that the .k � 1/st syzygy Kk�1 for M can satisfy rank Kk�1 D
k � 1 < 2k for 1 < k < dim S .

If Kk�1 in the above commutative diagram has no free S -summands then an
analysis of the diagram yields that the induced S -map Lk�1 ! Kk is necessarily
minimal, i.e., has kernel contained in mLk�1. (If the map were not minimal then
the syzygy module KkC1 would share a free S -summand with Lk�1 which would
then show Kk�1 also shares a free S -summand with Lk�1 as well.) Thus the top two
rows of the diagram yield the equalities

ˇk D rank KkC1 C rank Kk D rank Lk�1

ˇk�1 D rank Kk�1 C rank Kk D rank Lk�1 C rank E

where ˇi represents the i th Betti number for M as an S -module. Thus, one has the
equality ˇk�1 � ˇk D rank E .

Corollary 10 (Notation as above). If the .k � 1/st S -syzygy module for M has no
nonzero free S -summands and if ˇk�1�ˇk ¤ k� 1 then E necessarily satisfies the
weak order ideal property as an R-module. In this case rank E � k.

The above corollaries show that, if we know sufficient information about the
free S -resolution for an S -module M having pdS M < 1, then we can often
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determine specialized information about the ranks of the R-syzygy modules for
M . In particular when R is merely a local ring and ps is replaced by any regular
element in R, while other properties of M and E remain the same, one observes the
general facts:

(a) One always has rank E � ˇk�1, and equality holds if M weakly lifts to R (see
discussion following Theorem 6).

(b) If E ! Kk does not provide a proper comparison map, then rank E � ˇk�1 �
ˇk , and equality holds if Kk�1 has no nonzero free S -summands.

To further illustrate how the above corollary might play out in a specific situation
let K be an .Sk/ module of finite projective dimension over the hypersurface S .
We assume that K has no nontrivial free S -summands. Let G� ! M represent
the minimal free S -resolution that is universal for representing K as a kth syzygy
over S , that is, G� is formed by splicing together a minimal free resolution of K

together with a minimal universal pushforward of K (see Sect. 1). We note that
the .k � 1/st syzygy module K 0 in G� has no nonzero free summands since the
universal pushforward is dual exact. We let E be the kth R-syzygy module for M

and consider the possibility that rank E D k � 1. For this equality to hold we see
from Corollary 10 that ˇk�1 � ˇk D k � 1, and this statement translates into

�.K/ D �.K�/C .k � 1/ (	)

where �.�/ denotes the size of a minimal generating set. One would expect that a
constraint such as (*) is rarely satisfied, and thus “most” kth syzygies E that arise
in this fashion will satisfy at least the weak order ideal property and so rank E � k.
We invite the reader to consider examples of torsion-free modules K of projective
dimension one to see the variance of �.K/ versus �.K�/.
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Moduli of Abelian Varieties, Vinberg �-Groups,
and Free Resolutions

Laurent Gruson, Steven V. Sam, and Jerzy Weyman

Introduction

The contents of these notes sit at the crossroads of representation theory, algebraic
geometry, and commutative algebra, so we will explain each of these perspectives
on our work before getting into the details.

From representation theory, we are considering the problem of classifying orbits
in Vinberg �-representations .G;U / [56]. From the point of view of (geometric)
invariant theory these are the representations that are the simplest. One naturally
gets a representation from a Z-grading of a Kac–Moody algebra g, and so one
naturally gets a trichotomy of these representations according to the structure of
g: finite type, affine type, and wild type. The �-representations come from finite
and affine type. The �-representations of finite type have finitely many orbits and
include many cases of classical interest, such as determinantal varieties. The study
of the geometry and algebra of these orbits is undertaken in work in progress by
Kraśkiewicz–Weyman (starting with [38]). In the affine case, there are typically
infinitely many orbits, but the �-representation .G;U / has the property that the
ring of semi-invariants Sym.U �/.G;G/ is a polynomial ring and its unstable locus
(nullcone) has finitely many orbits. This class of representations includes the adjoint
representations of semisimple Lie algebras and share many features in common with
them.
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From the point of view of algebraic geometry, we are giving geometric
constructions of (torsors of) Abelian varieties from the data of a G-orbit in U .
The GIT quotient U==G is isomorphic to a quotient space h=W whereW � GL.h/
is a complex reflection group. In most of the cases that we consider, the quotients
h=W were considered previously and contain an open subset isomorphic to a moduli
space of curves with a special kind of marked data. However, the constructions for
Abelian varieties that we give seem to be new. One of the nice features of our work
is that it is possible to make a lot of it explicit and turn it into input for the computer
algebra system Macaulay2. For example, in the case of

V3
V (V is a vector space

of dimension 9), we give in Sect. 5.3 a detailed explanation of how to calculate the
ideals of the degeneracy loci under study (which include .3; 3/-polarized Abelian
surface torsors) starting with a GL.V /-orbit.

From commutative algebra, this circle of ideas illustrates the power of a
systematic use of perfect resolutions. As we will soon explain, the main tool that
we employ is the Eagon–Northcott generic perfection theorem: using the minimal
free resolutions of Kraśkiewicz–Weyman (many of which are perfect resolutions),
we can construct certain global sheafy complexes which specialize to locally
free resolutions of some varieties of interest, such as the Abelian variety torsors
mentioned above.

In particular, for �-representations of affine type, the GIT quotient U==G is a
weighted projective space, and hence rational, and it is of interest to know if the
orbit spaceU=G has a modular interpretation. The problem of studying the nilpotent
orbits requires a different kind of approach and will not be discussed in these notes.
For some of the examples of �-representations, it is easy to find such interpretations
using constructions from standard linear algebra, such as determinants. However,
many of them do not seem to have any obvious constructions associated with them.
We take up a systematic approach to dealing with these representations which we
now outline (see Construction 3 for details). The main idea is to use information
of the orbits in representations of finite type to bootstrap to the affine type
case.

1. Using the Borel–Weil construction, one may realize U as the space of sections
of a homogeneous bundle U on a homogeneous space G=P . This can usually be
done in many different ways. For any point x 2 G=P , the stabilizer of x is a
subgroup in G which is conjugate to P , and for our choices of P , the action of
P on the fiber U.x/ will have finitely many orbits (and one can restrict the action
to a certain reductive group G0 � P without affecting the orbit structure).

2. These orbits can be glued together to get “global orbit closures” in the total space
of U . Any vector v 2 U is then a section of U and each of these global orbit
closures gives “degeneracy loci” inG=P by considering when v.G=P / intersects
a given global orbit closure. Hence the first step to understanding the geometry
of these degeneracy loci should be to understand the “local” geometry of orbit
closures in representations with finitely many orbits.

3. Vinberg’s theory allows one to completely classify the orbits in these fi-
nite type representations. In many cases, one can calculate the minimal free
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resolutions of the coordinate rings of these orbit closures and various equivariant
modules which are of interest. This program is taken up in the work of
Kraśkiewicz–Weyman.

4. For generic sections, the free resolutions can be turned into locally free res-
olutions for the degeneracy loci in question via the Eagon–Northcott generic
perfection theorem. The power in this approach is that it allows one to obtain
cohomological information about the varieties. This can sometimes be enough to
determine the structure of the variety, such as showing it is an Abelian variety
(which happens in many cases that we consider).

In the case of a representation with finitely many orbits, there is no interesting
moduli over an algebraically closed field, but it is often interesting to consider
Z-forms of the group and its representation and to study the arithmetic orbits. This
has been done in a series of papers by Bhargava [6]. Under that perspective, a
later goal would be to understand the arithmetic orbits for the representations that
we consider. Some examples of representations which have positive-dimensional
quotients have been worked out by Ho in her thesis [30].

For the contents of this chapter: Sects. 1–2 are introductory in nature and provide
background on free resolutions and the requisite representation theory that will
be used in the notes. Section 3 contains some geometric preliminaries on Abelian
varieties and moduli spaces of vector bundles on curves, as well as a more precise
description of the steps outlined above. The rest of the notes are devoted to studying
examples of �-representations of affine type.

Notation and Conventions

If R is a graded ring, then R.d/ is the R-module R with a grading shift: R.d/i D
RdCi . We define a graded local ring to be a positively graded ringR whose degree
0 part is a field. In this case, we denote m D L

i>0 Ri . Given a free K-module E ,
we think of Sym.E/ as a graded ring by Sym.E/i D SiE . Furthermore, when we
talk about modules over graded rings, we will implicitly assume that they are also
graded.

If X is a scheme over a field K and E is a vector space, we let E denote the
trivial vector bundleE ˝ OX . Also, given a vector bundle E , we let det E denote its
top exterior power.

For the sections involving examples, we will work over an algebraically closed
field of characteristic 0, which we will just denote by the complex numbers C.
Ultimately, the goal is to relax this assumption to other characteristics, or non-
algebraically closed fields, so the introductory sections are written in this more
general context. We will also make some comments throughout about this point.
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1 Free Resolutions

1.1 Basic Definitions

A lot of the foundational results in this section can be found in [10, Appendix].

Definition 1. LetR be a commutative ring andM be a finitely generatedR-module.
A complex of R-modules

F� W � � � ! Fi
di�! Fi�1 ! � � � ! F0

is a projective resolution of M if:

• Each Fi is a finitely generated projectiveR-module.
• Hi .F�/ D 0 for i > 0 and H0.F�/ D M .

The projective dimension of M (denoted pdimM ) is the minimum length of any
projective resolution of M . Free resolutions are projective resolutions where the
Fi are free modules. If R is a (graded) local ring with maximal ideal m, then F� is
minimal if:

• di .Fi / � mFi�1 for all i > 0.

In the graded case, we will shift the gradings of the Fi to assume that the differentials
are homogeneous of degree 0.

Definition 2. Let R be a Noetherian ring and let M be a finitely generated R-
module. A sequence .r1; : : : ; rn/ of elements inR is a regular sequence onM if:

• r1 is not a zero divisor or unit on M .
• ri is not a zero divisor or unit on M=.r1; : : : ; ri�1/M for all i > 1.

For an ideal I � R, the depth of M (with respect to I ) is the length of the longest
regular sequence for M which is contained in I . It is denoted by depthIM . If R
is local with maximal ideal m, we denote depthM D depthmM . For an ideal I �
R, the grade of I is the length of the longest regular sequence in I for R. M is
perfect of grade g if g D pdimM D grade AnnM . (In general, one has pdimM �
grade AnnM .)

Over a local Noetherian ring R, a finitely generated module M is Cohen–
Macaulay if it is 0 or depthM D dimM WD dim.R=Ann.M//. For a general
Noetherian ring R, M is Cohen–Macaulay if the localization Mp is Cohen–
Macaulay over .Rp; p/ for all prime ideals p of R. A Noetherian ring is Cohen–
Macaulay if it is a Cohen–Macaulay module over itself.

Theorem 3. Let R be a Noetherian Cohen–Macaulay ring.

1. For every ideal I � R, we have grade I D codim I D dimR � dim.R=I /.
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2. The polynomial ring RŒx� is Cohen–Macaulay.
3. If an R-moduleM is perfect, then it is Cohen–Macaulay.

(The distinction between perfect and Cohen–Macaulay for a module over a
Cohen–Macaulay ring is the property of having finite projective dimension.)

Theorem 4 (Auslander–Buchsbaum Formula). Suppose R is a Noetherian
(graded) local ring and thatM is a finitely generatedR-module with pdimM < 1.
Then

depthM C pdimM D depthR:

Theorem 5. Let R be a Noetherian (graded) local ring and M be a perfect R-
module of grade g with minimal free resolution F�. Then Hom.F�; R/ is a minimal
free resolution of the perfect moduleM_ D ExtgR.M;R/, and .M_/_ Š M .

Definition 6. If M D R=I , for an ideal I , is perfect, then we write !R=I D M_
and call it the canonical module of R=I . If R=I is perfect and !R=I Š R=I

(ignoring grading if it is present), then we say that I is a Gorenstein ideal. This is
equivalent to the last term in the minimal free resolution of R=I having rank 1.

Theorem 7 (Eagon–Northcott Generic Perfection). Let R be a Noetherian ring
and M a perfect R-module of grade g, and let F� be an R-linear free resolution of
M of length g. Let S be a NoetherianR-algebra. IfM ˝R S ¤ 0 and grade.M ˝R

S/ � g, then M ˝R S is perfect of grade g and F� ˝R S is an S -linear free
resolution of M ˝R S . If M ˝R S D 0, then F� ˝R S is exact.

See [10, Theorem 3.5]. It is natural to ask what happens if the grade ofM ˝R S

is some value less than g, and this can be answered by the Buchsbaum–Eisenbud
acyclicity criterion [20, Theorem 20.9].

Remark 8. In particular, if R is Cohen–Macaulay (e.g., R D KŒx1; : : : ; xn�), then
we can replace grade in the above theorem with codimension. It is often much
easier to calculate codimension. We will use it as follows. We first construct graded
minimal free resolutions of perfect modules M over A D KŒx1; : : : ; xn�. Then we
specialize the variables xi to elements of a Cohen–MacaulayK-algebra S in such a
way that the codimension ofM is preserved. Then the resulting specialized complex
is still a resolution.

1.2 Examples

For this section, let K be a commutative ring and let E be a free module of rank
N . In the following examples, we will construct some complexes that are functorial
in E and compatible with change of rings. Two consequences of these properties is
that the complex carries an action of the general linear group GL.E/ and that the
constructions make sense for vector bundles over an arbitrary scheme.
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Example 9. Write A D Sym.E/. We define a complex F� by setting Fi D Vi
E ˝

A.�i/. The differential is defined by

î

E ˝ A.�i/ !
i�1̂
E ˝ A.�i C 1/

e1 ^ � � � ^ ei ˝ f 7!
iX

jD1
.�1/j e1 ^ � � � bej � � � ^ ei ˝ ej f:

This is the Koszul complex. It is a resolution of K D A=m and is functorial with
respect to E . See [20, Chap. 17] for basic properties.

Example 10 (Buchsbaum–Eisenbud). We assume N D 2n C 1 is odd. Set A D
Sym.

V2
E/, which we can interpret as the coordinate ring of the space of all skew-

symmetric matrices of size 2nC 1 with entries in K if we fix a basis e1; : : : ; e2nC1
ofE . Letˆ be the generic skew-symmetric matrix of size 2nC1 whose .i; j / entry
is xij D ei ^ ej 2 A1. We construct a complex

F� W 0 ! .detE/˝2 ˝ A.�2n� 1/ ! .detE/˝ E ˝ A.�n � 1/

!
2n̂

E ˝ A.�n/ ! A:

For j D 1; : : : ; 2nC 1, let e0
j D e1 ^ � � � Oej � � � ^ e2nC1. We also define Pf. O|/ to be

the Pfaffian of the submatrix of ˆ obtained by deleting row and column j . Then we
have

2n̂

E ˝ A.�n/ d1�! A

e0
j ˝ f 7! Pf. O|/f;

.detE/˝E ˝A.�n � 1/
d2�!

2n̂

E ˝A.�n/

.e1 ^ � � � ^ e2nC1/˝ ej ˝ f 7!
2nC1X

iD1
.�1/i e0

i ˝ xij f;

.detE/˝2 ˝ A.�2n � 1/ d3�! .detE/˝ E ˝ A.�n � 1/

.e1 ^ � � � ^ e2nC1/2 ˝ f 7! .e1 ^ � � � ^ e2nC1/˝
2nC1X

jD1
.�1/jPf. O|/ej f:

This is the Buchsbaum–Eisenbud complex. It is a resolution ofA=I where I is the
ideal generated by the 2n� 2n Pfaffians of ˆ, and it is functorial with respect to E .
Furthermore,A=I is a freeK-module, and I is a Gorenstein ideal of codimension 3.
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We can identify d2 with the map ˆ. Buchsbaum and Eisenbud showed that given
a codimension 3 Gorenstein ideal I , there is an n such that its free resolution is a
specialization of the above complex. See [11, Theorem 2.1] for more details.

Example 11 (Józefiak–Pragacz). We assume N D 2n is even. Again we set
A D Sym.

V2
E/ and let ˆ be the generic skew-symmetric matrix. We will give

the resolution for the ideal generated by the Pfaffians of size 2n � 2. We just give
the functorial terms in the complex when K contains the field of rational numbers
(the definitions of the Schur functors S are given in Sect. 2.1):

F0 D A

F1 D
2n�2̂

E ˝ A.�nC 1/

F2 D S2;12n�2E ˝ A.�n/
F3 D .detE/˝ S2E ˝ A.�n � 1/˚ .detE/2 ˝ .S2E/� ˝ A.�2nC 1/

F4 D .detE/˝ S2;12n�2E ˝ A.�2n/

F5 D .detE/2 ˝
2̂

E ˝ A.�2n � 1/
F6 D .detE/3 ˝ A.�3n/:

When K is an arbitrary commutative ring, the functors must be defined differently,
but the ranks of the modules remain the same. We refer the reader to [51] for the
details.

Example 12 (Goto–Józefiak–Tachibana). We set A D Sym.S2E/, which we can
interpret as the coordinate ring of the space of symmetric matrices of sizeN . We let
ˆ be the generic symmetric matrix. We give the terms of the resolution of the ideal
generated by the minors of size N � 1:

F0 D A

F1 D .detE/2 ˝ .S2E/� ˝ A.�N C 1/

F2 D .detE/2 ˝ ker.E ˝ E� eval��! K/˝ A.�N/

F3 D .detE/2 ˝
2̂

E ˝ A.�N � 1/:

See [32, Sect. 3] for details. Over a field of characteristic 0, the term detE˝ker.E˝
E� eval��! K/ can be replaced by the Schur functor S2;1n�2E (see Sect. 2.1 for the
definition).
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1.3 The Geometric Technique

The material in this section is not logically necessary for the rest of this chapter,
but it is the main tool behind the work of Kraśkiewicz–Weyman, so we include it
for completeness. For a reference, see [58, Chap. 5]. Note that we have changed
notation.

Let K be a field, let X be a projective K-variety, and let V be a vector space.
Suppose we are given a short exact sequence of locally free sheaves

0 ! S ! V ! T ! 0:

We let p1WV ! V and p2WV ! X be the projection maps. Set Y D p1.S/ � V

and A D OV D Sym.V �/. Note that Y is the affine cone over some projective
variety in P.V /. Also, let E be any vector bundle on X .

Theorem 13. There is a minimal A-linear complex F� whose terms are

Fi D
M

j�0
Hj .X I

iCj^
.T �/˝ E/˝ A.�i � j /:

Furthermore, Hi .F�/ D 0 for i > 0 and for i � 0, we have

Hi .F�/ D R�i .OS ˝OV p
�
2 E/ D H�i .X I Sym.S�/˝OX E/:

In particular, if the higher direct images of OS ˝ p�
2 E vanish, then F� is a free

resolution of the pushforward. In the case that E D OX , this pushforward is an
A-algebra. The vanishing of the higher direct images is an intrinsic property of the
variety Y .

The idea behind this theorem is to start with an affine cone variety Y and to find
X and S that fit into the above framework. Then the theorem above gives a tool for
calculating the minimal free resolution of Y .

Example 14 (Eagon–Northcott Complex). Let E and F be vector spaces of dimen-
sions m and n and assume that m � n. We set V D Hom.E; F / and let Y � V be
the subvariety of linear maps of rank at most n � 1.

This fits into the previous setup by takingX D Gr.n�1; F / Š P.F �/. This has
a tautological exact sequence of vector bundles

0 ! R ! F ! O.1/ ! 0

where R D f .x;W / 2 F � X j x 2 W g. Then we can take S D Hom.E;R/ D
E� ˝ R. We will see in Sect. 2.3 that the higher direct images of Sym.S�/ vanish
and so F� gives a minimal free resolution for OY .
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Since T � D E ˝ O.�1/, we have
Vd T � D Vd

E ˝ O.�d/. So we can
calculate the terms of F� explicitly. For i > 0, we have

Fi D
nCi�1^

E ˝ detF � ˝ .Si�1F /� ˝ A.�n � i C 1/:

The differentials can be calculated by noting that they will preserve the natural
GL.E/ � GL.F / action on V and Y and that equivariant maps of this form are
unique up to a choice of scalar. In fact, this construction works with K D Z,
in which case we get uniqueness of scalars up to a choice of sign. A multilinear
generalization of this complex, constructed using similar ideas, can be found in [5].

2 Representation Theory

2.1 Schur Functors

For the material in this section, see [58, Chap. 2]. What we call S� is denoted by L�0

there.

Definition 1. A partition � is a decreasing sequence of positive integers �1 � �2 �
� � � � �n. We represent this as a Young diagram by drawing �i boxes left-justified in
the i th row, starting from top to bottom. The dual partition �0 is obtained by letting
�0
i be the number of boxes in the i th column of �. Given a box b D .i; j / 2 �, its

content is c.b/ D j � i , and its hook length is h.b/ D �i � i C �0
j � j C 1. If we

have a sequence .i; i; : : : ; i / repeated j times, we abbreviate by the notation .i j /.

Example 2. Let � D .4; 3; 1/. Then �0 D .3; 2; 2; 1/. The contents and hook
lengths are given as follows:

c W
0 1 2 3

�1 0 1

�2
h W

6 4 3 1

4 2 1

1

Definition 3. Let R be a commutative ring and E a free R-module. Let � be a
partition with n parts and write m D �1. We use SnE to denote the nth symmetric
power of E . The Schur functor S�.E/ is the image of the map

�0

1̂

E ˝ � � � ˝
�0

m̂

E
��! E˝�0

1 ˝ � � � ˝ E˝�0

m D E˝�1 ˝ � � � ˝ E˝�n

��! S�1E ˝ � � � ˝ S�nE;
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where the maps are defined as follows. First,� is the product of the comultiplication
maps

Vi
E ! E˝i given by e1 ^ � � � ^ ei 7! P

w2†i sgn.w/ew.1/ ˝ � � � ˝ ew.i/. The

equals sign is interpreted as follows: pure tensors in E˝�0

1 ˝ � � � ˝ E˝�0

m can be
interpreted as filling the Young diagram of � with vectors along the columns, which
can be thought of as pure tensors in E˝�1 ˝� � �˝E˝�n by reading via rows. Finally,
� is the multiplication map E˝i ! SiE given by e1 ˝ � � � ˝ ei 7! e1 � � � ei .

In particular, note that S�E D 0 if the number of parts of � exceeds rankE .

Example 4. Take � D .3; 2/. Then the map is given by

.e1 ^ e2/˝ .e3 ^ e4/˝ e5 7! e1 e3 e5
e2 e4

� e2 e3 e5
e1 e4

� e1 e4 e5
e2 e3

C e2 e4 e5
e1 e3

7! .e1e3e5 ˝ e2e4/� .e2e3e5 ˝ e1e4/ � .e1e4e5 ˝ e2e3/

C.e2e4e5 ˝ e1e3/:

Theorem 5. The Schur functor S�E is a free R-module. If rankE D n, then

rank S�E D
Y

b2�

nC c.b/

h.b/
:

The construction of S�E is functorial with respect to E . This has two conse-
quences: S�E is naturally a representation of GL.E/, and we can also construct
S�E when E is a vector bundle.

If rankE D n, then we have S�E ˝ detE D S.�1C1;:::;�nC1/E . Using this, it
makes sense to define S�E when � is any weakly decreasing sequence of integers.
Furthermore, we have S�.E�/ D S��n;:::;��1E [58, Exercise 2.18] and over a field
of characteristic 0, the isomorphism S�.E�/ D .S�E/� [58, Proposition 2.1.18].

2.2 Descriptions of Some Homogeneous Spaces

Let E be a vector space of rank N . We let Fl.E/ be the flag variety of E . Its K-
valued points are complete flags of subspaces E� W E1 � E2 � � � �EN D E such
that rankEi D i . The trivial bundle E contains a tautological flag of subbundles
R1 � R2 � � � � � RN D E where

Ri D f .x;E�/ 2 E � Fl.E/ j x 2 Ei g:
Given a subset S � f 1; : : : ; N � 1 g, we can also consider the partial flag varieties
Fl.S IE/ whoseK-valued points only are partial flags whose ranks are the elements
in S . Then E has a tautological partial flag of subbundles Ri (i 2 S ).

Now assume that E is equipped with a symplectic form ! and set n D N=2.
We say that a subspace U � E is isotropic if !.u; u0/ D 0 for all u; u0 2 U . Also,
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for any subspace U , we set U? D fx 2 E j !.x; u/ D 0 for all u 2 U g. Then
rankU C rankU? D rankE and U is isotropic if and only if U � U?.

We define the symplectic flag variety to be the subvariety Fl!.E/ of the partial
flag variety Fl.1; : : : ; nIE/ consisting of flags E1 � E2 � � � � � En such that
each Ei is isotropic. We also let R1 � R2 � � � � � Rn denote the restriction
of the tautological bundles to Fl!.E/. We can also define the subbundles R?

i D
f .x;E�/ 2 E � Fl!.E/ j x 2 E?

i g. Note that we have

0 � R1 � R2 � � � � � Rn D R?
n � R?

n�1 � � � � � R?
1 � E:

Given a subset S � f 1; : : : ; n g, we can also define partial !-isotropic flag varieties
Fl!.S IE/. When S D f i g is a singleton, we also write Gr!.i; E/ D Fl!.f i gIE/
and call it the !-isotropic Grassmannian.

2.3 Borel–Weil–Bott Theorem

For the material in this section, see [58, Chap. 4].
Let S D f i1 < i2 < � � � < ik g be a subset of f 1; : : : ; N g and consider the partial

flag variety Fl.S IE/. For each j D 1; : : : ; k C 1, let �.j / be a weakly decreasing
sequence of integers of length ij � ij�1 (set i0 D 0 and ikC1 D N ). Let � be the
sequence obtained by concatenating �.1/; �.2/; : : : ; �.kC1/. Set

R.�/ D
kC1O

jD1
S�.j / ..Rij =Rij�1/

�/:

Theorem 6 (Borel–Weil). If � is a weakly decreasing sequence of integers, then
we have a GL.E/-equivariant isomorphism

H0.Fl.S IE/I R.�// D S�.E�/;

and all higher cohomology of R.�/ vanishes.

Now we consider the analogue for the symplectic group. Let � be a partition
with at most n parts. We restrict the line bundle R.�/ on the flag variety Fl.E/ to
the symplectic flag variety Fl!.E/ and denote its space of sections by

SŒ��.E/ D H0.Fl!.E/I R.�//: (2.7)

By considering a relative situation, this definition makes sense for any vector bundle
E over a scheme X which is equipped with a nondegenerate skew-symmetric OX -
bilinear form

V2
E� ! OX . (More generally, the form could take values in a line

bundle, but we will not use this generalization.) For all tautological subbundles R
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on any symplectic flag variety, the restriction of the symplectic form to the quotient
bundle R?=R is nondegenerate.

Now let S D f i1 < � � � < ik g be a subset of f 1; : : : ; n g and let �.j / be as before,
except now we assume that �.kC1/ only has nonnegative integers. We set

RŒ�� D SŒ�.kC1/ �.R?
ik
=Rik /˝

kO

jD1
S�.j / ..Rij =Rij�1 /

�/:

Theorem 7 (Borel–Weil). If � is a weakly decreasing sequence of nonnegative
integers, then we have a Sp.E/-equivariant isomorphism

H0.Fl!.S IE/I RŒ��/ D SŒ��E

and all higher cohomology of RŒ�� vanishes.

Now we discuss what happens when � is not a weakly decreasing sequence of
integers. For this, we now need to assume that the characteristic of the ground field
is 0. We first handle the partial flag varieties.

Define the vector � D .N � 1;N � 2; : : : ; 1; 0/. Given a permutation w 2 †N ,
we define the dotted action of w on a sequence of integers ˛ of length N by

w�.˛/ D w.˛ C �/� �:

We define the length of a permutation w to be `.w/ D #f .i; j / j i < j; w.i/ >
w.j / g. Alternatively, let si be the simple transposition that swaps i and i C 1. Then
s1; : : : ; sN�1 generate†N , and we could also define `.w/ to be the minimal number
k so that we can write w D si1 � � � sik .

Theorem 8 (Bott). Assume that the field K has characteristic 0 and let � be as
before. Then exactly one of the following two cases occurs:

• There exists a non-identity w 2 †N such that w�.�/ D �. In this case, all
cohomology of R.�/ vanishes.

• There is a unique w 2 †N such that w�.�/ D � is a decreasing sequence. In this
case, we have a GL.E/-equivariant isomorphism

H`.w/.Fl.S IE/I R.�// D S�.E�/

and all other cohomology of R.�/ vanishes.

An example that uses the previous theorem is given in the proof of Theorem 3.
Now we consider Bott’s theorem for the symplectic flag varieties Fl!.S IE/.

Now we set � D .N;N � 1; : : : ; 2; 1/. We replace the symmetric group †N with
the group of signed permutationsW D †N Ë .Z=2/N , which we think of as N �N
signed permutation matrices.
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We consider the generators s1; : : : ; sN for W . The meaning of s1; : : : ; sN�1
is the same as for the symmetric group †N , and sN is the diagonal matrix
diag.1; : : : ; 1;�1/. Now given w 2 W , we define `.w/ to be the minimal number k
so that we can write w D si1 � � � sik .

Then the definition of the dotted action ofW remains the same, and the analogue
of Bott’s theorem holds for the bundles RŒ�� on Fl!.S IE/.
Theorem 9 (Bott). Assume that the field K has characteristic 0 and let � be as
before. Then exactly one of the following two cases occurs:

• There exists a non-identity w 2 W such that w�.�/ D �. In this case, all
cohomology of RŒ�� vanishes.

• There is a unique w 2 †N such that w�.�/ D � is a weakly decreasing sequence
of nonnegative integers. In this case, we have an Sp.E/-equivariant isomorphism

H`.w/.Fl!.S IE/I RŒ��/ D SŒ��.E�/

and all other cohomology of RŒ�� vanishes.

The symplectic form gives Sp.E/-equivariant isomorphisms SŒ��.E�/ D SŒ��E
for all �.

2.4 Vinberg �-Representations

For this section, we refer to [33, 34, 56, 57] for reference.
Let Xn be a Dynkin diagram and let g be the corresponding simple Lie algebra.

Let us distinguish a node x 2 Xn. Let ˛k be a corresponding simple root in the root
system ˆ corresponding to Xn. The choice of ˛k determines a Z-grading on ˆ by
letting the degree of a root ˇ be equal to the coefficient of ˛k when we write ˇ as a
linear combination of simple roots. On the level of Lie algebras, this corresponds to
a Z-grading

g D
M

i2Z

gi :

We define the group G0 WD .G;G/ � C� where .G;G/ is a connected
semisimple group with the Dynkin diagram Xn n x. A representation of type I
is the representation of G0 on g1, and a representation of type II is what we
get when we replace Xn with an affine Dynkin diagram. This notation follows
[34, Proposition 3.1].

Remark 10. In the case of a type II representation (i.e., whenXn is an affine Dynkin
diagram), each �-representation .G0; g1/ has a Chevalley isomorphism: there is a
subspace h � g1 and a complex reflection group W � GL.h/ (defined as the
normalizer of h modulo the centralizer of h), which we call the graded Weyl group,
such that the restriction map is an isomorphism

Sym.g�
1 /
.G;G/ Š�! Sym.h�/W :
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In particular, Sym.g�
1 /
.G;G/ is always a polynomial ring. The complex reflection

groups were classified by Shephard–Todd in [54], and we will refer to their
numbering system when using names for these groups.

In [56], Vinberg gave a description of the G0-orbits in the representations of
type I in terms of conjugacy classes of nilpotent elements in g. Let e 2 g1 be a
nilpotent element in g. Consider the irreducible components of the intersection of
the conjugacy class of e in g

C.e/\ g1 D C1.e/ [ � � � [ Cn.e/.e/:
The sets Ci.e/ are clearly G0-stable. Vinberg’s result shows that these are precisely
the G0-orbits in g1.

Theorem 11 (Vinberg). The G0-orbits of the action of G0 on g1 are the compo-
nents Ci.e/, for all choices of the conjugacy classes C.e/ and all i , 1 � i � n.e/.

Theorem 11 makes a connection between the orbits in g1 and the nilpotent orbits
in g. The classification of nilpotent orbits in simple Lie algebras was obtained by
Bala and Carter in the papers [1]. A good account of this theory is the book [16].
Here we recall that the nilpotent orbit of an element e in a simple Lie algebra g is
characterized by the smallest Levi subalgebra l containing e. One must be careful
because sometimes l is equal to g. If the element e is a principal element in l, then
this orbit is denoted by the Dynkin diagram of l (but there might be different ways
in which the root system R.l/ sits as a subroot system of R.g/).

There are, however, the non-principal nilpotent orbits that are not contained
in a smaller reductive Lie algebra l. These are called the distinguished nilpotent
orbits and are described in [16, Sect. Sect. 8.2–8.4]. They are characterized by their
associated parabolic subgroups (as their Dynkin characteristics are even, [16, Sect.
8]). Let us remark that for Lie algebras of classical types, for type An the only
distinguished nilpotent orbits are the principal ones, and for types Bn, Cn, Dn these
are orbits corresponding to the partitions with different parts. For exceptional Lie
algebras the distinguished orbits can be read off the tables in [16, Sect. 8.4].

Theorem 11 is not easy to use because it is not very explicit. In the next section
we describe a more precise method from another of Vinberg’s papers [57].

2.5 The Vinberg Method for Classifying Orbits

In this section we describe the second paper of Vinberg [57] in which he describes
orbits of nilpotent elements in g1. Similar to the Bala–Carter classification, the
nilpotent elements in g1 are described by means of some graded subalgebras of
g. We need some preliminary notions.

All Lie algebras g we will consider will be Lie algebras of some algebraic
groupG.
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Let .Xn; ˛k/ be one of the representations from the previous section. As before,
it defines the grading

g D
M

i2Z

gi

where gi is the span of the roots which, written as a combination of simple roots,
have ˛k with coefficient i . The component g0 contains a Cartan subalgebra. G0
denotes the connected closed subgroup of G corresponding to g0.

In the sequel, Z.x/ denotes the centralizer of an element x 2 G and Z0.x/ D
Z.x/\G0, and z, z0 denote the corresponding Lie algebras. Similarly,N.x/ denotes
the normalizer of an element x 2 G and N0.x/ D N.x/ \G0.

We let R.g/ denote the set of roots of g, and ….g/ denotes a set of simple roots.

Definition 12. A graded Lie subalgebra s � g is regular if it is normalized by a
maximal torus in g0. A reductive graded Lie algebra s � g is complete if it is not a
proper graded Lie subalgebra of any regular reductive Z-graded Lie algebra of the
same rank.

Definition 13. A Z-graded Lie algebra g is locally flat if any of the following
equivalent conditions is satisfied, for e a point in general position in g1:

1. The subgroupZ0.e/ is finite.
2. z0.e/ D 0.
3. dim g0 D dim g1.

Fix a nonzero nilpotent element e 2 ga, and choose some maximal torus H in
N0.e/. Its Lie algebra h is the accompanying torus of the element e. We denote by
' the character of the torusH defined by the condition

Œu; e� D '.u/e

for u 2 h. Consider the graded Lie subalgebra g.h; '/ of g defined by

g.h; '/ D
M

i2Z

g.h; '/i

where

g.h; '/i D fx 2 gia j Œu; x� D i'.u/x for all u 2 H g:
Definition 14. The support s of the nilpotent element e 2 ga is the commutator
subalgebra of g.h; '/ considered as a Z-graded Lie algebra.

Clearly e 2 s1. We are ready to state the main theorem of [57].

Theorem 15 (Vinberg). The supports of nilpotent elements of the space gi are
exactly the complete regular locally flat semisimple Z-graded subalgebras of the
algebra g. The nilpotent element e can be recovered from the support subalgebra s
as the generic element in s1.
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It follows from the theorem that the nilpotent element e is defined uniquely (up to
conjugation by an element of G0) by its support. This means it is enough to classify
the regular semisimple Z-graded subalgebras s of g.

Let us choose a maximal torus t � g0. The Z-graded subalgebra s is standard if
it is normalized by t, i.e., if for all i 2 Z we have

Œt; si � � si :

Vinberg also proves that every Z-graded subalgebra s is conjugated to a standard
subalgebra by an element of G0. Moreover, he shows that if two standard Z-
graded subalgebras are conjugated by an element of G0, then they are conjugated
by an element of N0.t/. This gives combinatorial method for classifying regular
semisimple Z-graded subalgebras of g.

Let s be a standard semisimple Z-graded subalgebra of g. The grading on the
subalgebra s defines a degree map degWR.s/ ! Z. For a standard Z-graded
subalgebra s we also get the map

f WR.s/ ! R.g/:

The map f has to be additive, i.e., it satisfies

f .˛ C ˇ/ D f .˛/C f .ˇ/ 8˛; ˇ 2 R.s/;
f .�˛/ D �f .˛/ 8˛ 2 R.s/:

Moreover we have

Proposition 16. The map f satisfies the following properties:

(a)
.f .˛/; f .ˇ//

.f .˛/; f .˛//
D .˛; ˇ/

.˛; ˛/
8˛; ˇ 2 R.s/:

(b) f .˛/ � f .ˇ/ … R.g/ 8˛; ˇ 2 ….s/.
(c) degf .˛/ D deg˛; 8˛ 2 ….s/.
Conversely, every map satisfying these conditions defines a standard regular
Z-graded subalgebra s of g.

Remark 17. The subalgebra s corresponding to the map f is complete if and only
if there exists an element w in the Weyl groupW of g such that wf .….s// � ….g/
(see [57, p. 25]).

Theorem 15 means that in order to classify the nilpotent elements e 2 g1 we need
to classify the possible maps f corresponding to its support, i.e., the corresponding
complete regular Z-graded subalgebra s. Since we are interested in the nilpotent
elements e 2 g1, we need to classify the maps f for which deg.f .˛// 2 f0; 1g for
every ˛ 2 ….s/.
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2.6 Example:
V3 C7

Let Xn D E7, and ˛k D ˛2 in Bourbaki numbering.
The graded Lie algebra corresponding to the resulting grading is

g.E7/ D g�2 ˚ g�1 ˚ g0 ˚ g1 ˚ g2

with G0 D GL7.C/, g0 D gl7.C/, g1 D V3 C7, g2 D V6 C7.
We choose a basis fe1; : : : ; e7g of C7. The weight vectors in g1 D V3 C7 are the

vectors ei ^ ej ^ ek of weight "i C "j C "k for 1 � i < j < k � 7.
There is a natural bijection† of these weight vectors with the positive roots with

label 1 on the node ˛2. In order to describe it we identify the subroot system of g0
with the root system of type A6 with the simple roots ˇ1; : : : ; ˇ6 (corresponding to
permutations .1; 2/; .2; 3/; : : : ; .6; 7/, respectively) by identifying ˇ1 with ˛1 and
ˇs with ˛sC1 for 2 � s � 6. We denote this identification map by ƒ. We set
†.e5^ e6^ e7/ D ˛2 and extend it to a unique bijection satisfying†.ei ^ ej ^ ek C
ˇs/ D †.ei ^ ej ^ ek/Cƒ.ˇs/ for every simple root ˇs , for 1 � s � 6.

The invariant scalar product on h restricted to the roots from g1 and transferred
by † is

.ei ^ ej ^ ek; ep ^ eq ^ er/ D #.fi; j; kg \ fp; q; rg/� 1:
This can be checked by observing that both the invariant scalar product and the

one defined by the formula above are invariant with respect to the Weyl group of
g0, i.e., the permutation group S7, and checking the equality of one scalar product
directly.

Next using the table from [55, p.248] we see that the general element of
V3 C7

has the Bala–Carter label A2 C 3A1. Notice that the labeling of this orbit given on
[16, p. 130] has weighted Dynkin diagram with labels 0 on all nodes except for ˛k
and label 2 on the node ˛k (this also happens in the other cases except the case
.E6; ˛3/ where the weighted Dynkin diagram of the nilpotent orbit intersecting g1
in the open orbit has labelings 1 at ˛3 and ˛5 and zero elsewhere). The support
subalgebras of the smaller orbits in g1 have Vinberg labels exactly matching the
Bala–Carter labels that can be read off the Spaltenstein tables. In our analysis we
checked also that the other types of support algebras given in [57] do not exist.

The combinatorial analysis is not difficult. We just give a few examples. Let us
identify the support subalgebra of type A2 C 3A1. According to Proposition 16 we
need to find all choices (up to the action of S7) of five weight vectors in

V3 C7 whose
pairwise scalar products match those of the five simple roots of the root system A2C
3A1. It is clear that for simple roots of the system A2 we can choose e1^e2^e3 and
e4^e5^e6. Then we need a choice of three subsets Œi; j; k� which have one element
intersections with both Œ1; 2; 3�; Œ4; 5; 6� and with each other. Up to the permutation
group S7 it is clear that there is only one choice Œ1; 4; 7�; Œ2; 5; 7�; Œ3; 6; 7�. One can
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check that the resulting orbit is open by calculating its dimension. This is an easy
linear algebra exercise since the tangent space is obtained by hitting this element
with all vectors in gl7.C/.

Similarly, looking at the subsystems of type 3A1 we need choices of three
subsets Œi; j; k� such that every pair of subsets intersects in one element. This
element can be common to all three subsets or not, which gives two possibilities
f Œ1; 2; 3�; Œ1; 4; 5�; Œ1; 6; 7� g and f Œ1; 2; 3�; Œ1; 4; 5�; Œ2; 4; 6� g up to the S7-action.

Finally, looking at the possibilities for 4A1 we notice that the triple Œ1; 2; 3�;
Œ1; 4; 5�; Œ1; 6; 7� can be only complemented in eight ways equivalent to Œ2; 4; 6�.
The triple Œ1; 2; 3�; Œ1; 4; 5�; Œ2; 4; 6� can be complemented in three ways equivalent
to Œ1; 6; 7�. But these two choices of roots of 4A1 are the same. We conclude that
there is only one orbit of type 4A1 in

V3 C7.
A subtle point is checking that the obtained support algebra is complete. In the

case of
V3 C7 it also follows from the fact that all the representatives give different

orbits. We omit this.
The result of the analysis is presented in the following table (writing Œi; j; k� for

ei ^ ej ^ ek).

Label s dim Representative

0 0 0 0

1 A1 13 Œ123�

2 2A1 20 Œ123�C Œ145�

3 3A1 21 Œ123�C Œ145�C Œ167�

4 3A1 25 Œ123�C Œ145�C Œ246�

5 A2 26 Œ123�C Œ456�

6 4A1 28 Œ123�C Œ145�C Œ167�C Œ357�

7 A2 C A1 31 Œ123�C Œ456�C Œ147�

8 A2 C 2A1 34 Œ123�C Œ456�C Œ147�C Œ257�

9 A2 C 3A1 35 Œ123�C Œ456�C Œ147�C Œ257�C Œ367�

The containment diagram is
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0

13

20

21

25

26

28

31

34

35

and it happens to be the same as the corresponding containment of the nilpotent
orbits in g1.

We can interpret the orbits in terms of skew-symmetric tensors as follows. Let
A D Sym.

V3 C7�
/ be the coordinate ring of our representation. The orbit O1 is

the orbit of the highest-weight vector, and its closure is the set of decomposable
tensors, i.e., the tensors t D v1 ^ v2 ^ v3 (v1; v2; v3 2 C7). There is an SL7.C/-
invariant� of degree 7, the hyperdiscriminant. This is the projective dual variety of
the decomposable tensors in C7�

. In fact, we can canonically identify the orbits in
C7 with those in its dual, so it makes sense to consider the projective dual O_

of
an orbit closure O as a subset of C7 itself. By the rank of a tensor t 2 V3 C7 we
mean the subspace rank, i.e., the minimal number s such that there exists a subspace
V of dimension s in C7 such that t 2 V3

V � V3 C7. An orbit is degenerate if it
consists of tensors of rank � 6. Such orbits correspond to GL6.C/-orbits in

V3 C6.
By a 1-decomposable tensor we mean a tensor t D v ^ q with v 2 C7, q 2 V2 C7.
Finally in the projective picture we interpret orbit closures as secant and tangential
varieties of the orbit O1. We denote by �k.O1/ the kth secant variety of O1 and by
	.O1/ the tangential variety of O1.

With this terminology, we have the following table describing the orbits.
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Number Projective picture Tensor picture
0 0 0

1 Cone.Gr.3; 7// Decomposable tensors
2 Tensors of rank � 5
3 �2.O1/

_ 1-Decomposable tensors
4 	.O1/ Degenerate and zero hyperdiscriminant for

V3 C6

5 �2.O1/ Tensors of rank � 6
6 J.O1; 	.O1// Polarizations of hyperdiscriminant for

V3 C6

7 �3.O1/ Singular locus of O1

8 O_
1 Hyperdiscriminant is zero

9 Generic

Remark 18. The geometric description of these orbits is also considered in [31,
Sect. 5] (he also considers

V3 C6 and
V3 C8). The classification of orbits of

V3
K7

is studied for many kinds of fields K (including algebraically closed fields of
positive characteristic and finite fields) in [15]. In particular, the classification of
orbits is independent of characteristic if the field is algebraically closed.

We will describe in detail the non-degenerate orbit closures in
V3 C7. These are

the orbits O9, O8, O7, O6, and O3. The first of these is generic so there is not much
to say. We also describe the generic degenerate orbit of tensors of rank � 6.

We use the usual notation. LetA D Sym.
V3 C7�

/ and � is notation for S�.C7�
/.

Also, let x1; : : : ; x7 be a basis of C7�
dual to the basis e1; : : : ; e7 of C7. We will

also describe vector bundle desingularizations for these orbit closures. The bundles

 and � correspond to S� and T � in the notation of Sect. 1.3.

• The hyperdiscriminant orbit O8.
This is the hypersurface given by the tensors with vanishing hyperdiscriminant
�. The orbit closure O8 is characterized (set-theoretically) by the condition that
the determinant of the multiplication map

5̂

C7� ˝ A.�1/ !
2̂

C7� ˝ A

given by multiplication is zero. The determinant of this matrix is equal to �3.
• The codimension 4 orbit O7.

This orbit closure is the singular locus of the hyperdiscriminant orbit O8.
We can find a desingularization by a vector bundle over G=P D Fl.2; 6I C7/.
The bundle � � V3 C7�

is induced from the largest P -submodule of
V3 C7�

which does not contain x1 ^ x2 ^ x7 and x2 ^ x5 ^ x7. The bundle 
 has rank 17,
so the dimension of the desingularization is 17C 14 D 31 as needed. One gets a
very nice complex describing the resolution of CŒO7�. The terms of the complex
F.7/� are as follows
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0 ! .6; 56/ ! .52; 45/ ! .4; 35; 2/

! .34; 23/ ! .07/:

The orbit closure is normal and has rational singularities, and the complex F.7/�
is pure.

• The codimension 7 orbit O6.
We can find a desingularization by a vector bundle over G=P D Fl.1; 4I C7/.
The bundle � � V3 C7�

is induced from the P -submodule of
V3 C7�

which
does not contain x1 ^ x4 ^ x7 and x2 ^ x3 ^ x4. The bundle 
 has rank 13, so the
dimension of the desingularization is 13C 15 D 28 as needed. The terms in the
resulting complex F.6/� are

0 ! .76; 6/ ! .7; 65; 5/ ! .62; 54; 4/ ! .53; 43; 3/ ! .44; 32; 2/ ! .35; 2; 1/

! .26; 0/ ! .07/:

The orbit closure is normal, with rational singularities, and the complex F.6/� is
pure.

• The generic degenerate orbit closure O5 of tensors of rank � 6 (codimension 9).
This orbit closure has a desingularization Z.5/ that lives on the Grassmannian
Gr.1;C7�

/. Denoting the tautological bundles R, Q (rank R D 1, rank Q D 6),
we have � D R ˝ V2 Q. It is normal and has rational singularities. Calculating
the resolution is straightforward, as � is irreducible.

• The orbit O3 of 1-decomposable tensors (codimension 14).
This orbit closure is the set of tensors t 2 V3 C7 that can be expressed as
t D ` ^ t where ` 2 C7, t 2 V2 C7. The desingularization Z.3/ lives
on the Grassmannian Gr.6;C7�

/. Denoting the tautological bundles as R, Q
(rank R D 6, rank Q D 1), we have � D V3 R. It is normal and has rational
singularities. Calculating the resolution is straightforward, as � is irreducible.
The defining ideal is generated by the representation .23; 13; 0/ in degree 3.

Remark 19. Since we will need it later on, we ask, for a fixed v 2 V3 C7, how many
lines ` � C7 there are such that the image of v in

V3
.C7=`/ is a pure tensor. This

only depends on the orbit, so we can study specific representatives.
No such line exists for vectors in the generic orbit or codimension 1 orbit. A

representative for the codimension 4 orbit is

e1 ^ e2 ^ e3 C e4 ^ e5 ^ e6 C e1 ^ e4 ^ e7:

This is a pure tensor in
V3
.C7=`/ exactly for ` D he1i and ` D he4i. A

representative for the codimension 7 orbit is

e1 ^ e2 ^ e3 C e1 ^ e4 ^ e5 C e1 ^ e6 ^ e7 C e3 ^ e5 ^ e7:

This is a pure tensor in
V3
.C7=`/ exactly for ` D he1i.
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3 Some Geometry

3.1 Abelian Varieties

The following result is most likely well known, but we could not find it in the
literature. The main points of the proof were communicated to us by Damiano Testa.

Theorem 1. Let X be a g-dimensional geometrically connected projective non-
singular variety over a field K of characteristic 0. If !X Š OX and dim H1.X I
OX/ D g, thenX is a torsor over an Abelian variety (namely, its Albanese variety).

There are two reasons that we emphasize the fact that X is only a torsor: in our
applications of this theorem in the later sections, there may be no natural choice of
base point (which is relevant when working over non-algebraically closed fields),
and in later work we will be interested in working over families (in which case the
existence of a section may be more subtle).

Proof. First, extend scalars to the algebraic closure K of K . By [35, Corollary 2],
XK is birationally equivalent to its Albanese variety X0;K , let f WXK ! X0;K be
a birational morphism. In fact, f can be (uniquely) extended to a morphism on
all of XK [7, Theorem 4.9.4]. One has an induced map df on cotangent bundles.
The determinant of df is a map between the canonical bundles, which are trivial
by assumption. The endomorphisms of the trivial bundle must be scalars since we
assumed that XK is projective, so det df is a scalar. This scalar is nonzero since f
is generically an étale morphism. So in fact f is étale (and hence open). Also f is
proper (and hence closed), so f is an étale covering, which implies that XK is an
Abelian variety. Furthermore, f must be an isomorphism since it is birational.

Hence, choosing any point P 2 X.K/, we have a K-isomorphism X0;K ! XK
via x 7! P C x. This map descends to a K-rational map Y ! X where Y is a
K-rationalX0-torsor given by the cocycle � 7! �P �P , which gives the claim. ut
Remark 2. If we drop the assumption that K be of characteristic 0, then this theo-
rem already fails for g D 2. In particular, it is valid if the characteristic is different
from 2 or 3, but in these small characteristics, there are new exotic examples,
known as quasi-hyperelliptic surfaces which come from the Bombieri–Mumford
classification of surfaces (the quasi-hyperelliptic surfaces have the property that
their Picard varieties are non-reduced); see [8, p. 25, Table].

Given a smooth curve C of genus g, we let Jac.C / denote its Jacobian, which is
an Abelian variety of dimension g (see [7, Chap. 11] for an analytic construction of
Jac.C /).
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3.2 Moduli Space of Vector Bundles

The material in this section is provided for convenience and informative purposes,
since later we will see some examples of the moduli spaces discussed in this section
(see Example 6, Remark 6, and Sect. 8). We refer the reader to [4] for a more in-
depth survey of the following.

Let C be a smooth curve of genus g � 2. There is a moduli space SUC .n; d/
which parametrizes rank n semistable vector bundles of degree d on C . It has
dimension n2.g � 1/ C 1. Let SUC .n;L/ denote the moduli space of rank n
semistable vector bundles on C with determinant equal to L. We write SUC .n/ for
SUC .n;OC /. Then SUC .n/ has dimension .g � 1/.n2 � 1/ and is Gorenstein and
has rational singularities. The Picard group of SUC.n/ is infinite cyclic. Let L be
its ample generator, which we call the theta divisor. The canonical bundle is L�2n.

Now focus on n D 2. If g D 2, then SUC .2/ Š P3, and for g > 2, the
singular locus of SUC.2/ is bundles of the form L˚L�1 and is naturally identified
with the Kummer quotient of the Jacobian of degree g � 1 line bundles on C .
Also, h0.SUC .n/I L/ D 2g and the map given by L is an embedding if C is not
hyperelliptic. Furthermore, the restriction of L is a .2; : : : ; 2/-polarization. See [9]
and [25] for more details.

Finally, we state the Verlinde formula, which gives the dimension of the space of
sections of powers of L. For n D 2, we have

h0.SUC .2/I Lk/ D
�
k C 2

2

�g�1 kC1X

jD1
.sin

j

k C 2
/�2gC2I

see [2, Sect. 5] for the case of general n.

3.3 Degeneracy Loci

The main idea of this chapter is in the following construction.

Construction 3. Start with a Vinberg representation .G;U / of affine type (see
Sect. 2.4). Choose a parabolic subgroup P of G. We can realize U as the sections
of a homogeneous bundle U over the homogeneous space G=P using Sect. 2.3. In
each case that we consider, the fibers of U can naturally be interpreted as another
Vinberg representation .G0; U 0/ of finite type (more specifically,G0 will be the Levi
subgroup of the stabilizer of the point where the fiber lives). We use information
about the orbit closures in .G0; U 0/ and patch them together to get subvarieties Y of
the total space of U .

Given a section v 2 H0.X I U/, we consider the subvarieties v.G=P / \ Y , and
in particular, when the grade of the ideal sheaf does not change. In all of the orbit
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closures in U 0 of relevance, we give free resolutions for their coordinate rings and
some related modules. Then this gives a locally free resolution of v.X/ \ Y �
v.G=P / Š G=P via Theorem 7, and this will allow us to read off properties of
this variety. In particular, we can try to use this resolution to calculate the canonical
sheaf of v.G=P / \ Y and the cohomology of its structure sheaf.

In all cases, we will find a choice of P so that one of the degeneracy loci (or a
variety closely related to it) is a torsor over an Abelian variety. We will also explore
what happens when we vary the choice of P . In some cases, we are able to establish
a direct link between these other degeneracy loci and the torsor via some classical
geometric constructions (such as projective duality).

Lemma 4. Let Y ı be a G0-orbit in U 0 and let Yı be the union of these G0-
orbits over all fibers. There is an open subset U gen

Y � U such that for each
v 2 U

gen
Y , we have codim.v.G=P / \ Yı; v.G=P // D codim.Yı;U/. In particular,

this intersection either has expected codimension or is empty. Furthermore, if the
base field has characteristic 0, there is an open subset U sm

Y such that v.G=P / \ Yı
is smooth.

Proof. Define Z D f .v; x/ 2 U � G=P j v.x/ 2 Y ı g. Let 1WZ ! U and
2WZ ! G=P be the projection maps. We claim that 2 is a fiber bundle with
smooth fibers. Fix x 2 G=P and let U.x/ be the fiber of U at x. Then the restriction
map �x W U ! U.x/ isG0-linear and it is surjective since U.x/ is irreducible as aG0-
module. Hence the map �x W ��1

x .Y
ı/ ! Y ı is an affine bundle. But Y ı is smooth,

and ��1
x .Y

ı/ D �1
2 .x/, so the claim follows. In particular,Z is smooth and

dimZ D dimG=P C dimU � codim.Y ı; U 0/:

Now consider the map 1. If it is dominant, then the fibers over a nonempty open
subset U gen

Y have dimension dimG=P � codim.Y ı; U 0/ and hence have expected
codimension. Otherwise, the fibers are empty over a nonempty open subset U gen

Y .
Given v 2 U , we have an identification �1

1 .v/ D v.G=P / \ U, so this proves the
first claim.

The last statement follows from generic smoothness applied to 1. ut
We will define U gen � U to be the intersection of U gen

Y over all orbits Y in U 0,
and similarly we define U sm.

Remark 5. The idea of studying degeneracy loci using perfect complexes rather
than cohomology class formulas has been considered by the second author in [53]
for the class of Schubert determinantal loci.

Example 6. Let V be a vector space of dimension 2n and let q 2 S2V be a
nondegenerate quadratic form. Denote the quotient S2V=hqi by S20V .

Consider the action of SO.V / � C� on S20V . Given a nondegenerate quadric
q0 2 S20C2n, we can form the pencil xq C yq0. The determinant of the associated
symmetric matrix gives us 2n points in P1 and hence a hyperelliptic curve C of
genus n � 1, and this process is reversible. This situation was considered by Weil.
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Now consider the intersection of the quadrics defined by q and q0 in P.V �/.
Then the variety of Pn�2’s in q \ q0 is isomorphic to the Jacobian of C (after
fixing a base point), and the variety of Pn�3’s in q \ q0 is isomorphic to the moduli
space SUC .2;L/ (see Sect. 3.2) where L is any line bundle of odd degree. See [17,
Theorems 1, 2] for details.

These constructions can be interpreted as degeneracy loci as follows. Consider
the orthogonal Grassmannian OGr.n � 1; V �/, which is the subvariety of Gr.n �
1; V �/ whose points are totally isotropic subspaces for q. The trivial bundle Gr.n�
1; V �/ � V � has a tautological rank n � 1 subbundle R D f .x;W / j x 2 W g.
Then we have S20V D H0. OGr.n � 1; V �/IS2R�/, and q0 gives a generic section
whose zero locus is the variety of Pn�2’s in q \ q0. Similar comments apply to the
variety of Pn�3’s using OGr.n�2; V �/. Modular interpretations for the degeneracy
loci for the other Grassmannians OGr.k; V �/ are given by Ramanan [52, Sect. 6,
Theorem 3].

4 C5 ˝ V2 C5

In the rest of this chapter, we will work over the complex numbers C. In fact, many
results will hold over more general fields, but as we have not done a systematic
investigation of the correct hypotheses, we will not make any attempt to be more
general.

The analysis of the representation C5 ˝ V2 C5 is in fact easy to handle by more
direct means, but we want to illustrate our approach. We also mention that Fisher
has examined this case as well; see [22, 23].

Let A and B be vector spaces of dimension 5. The relevant data:

• U D A˝ V2
B .

• G D .GL.A/ � GL.B//=f .x; x�1/ j x 2 C� g.
• G=P D P.A�/ D Gr.1; A�/.
• U D R� ˝ V2

B Š O.�1/˝ V2
B .

• U 0 D V2 C5.
• G0 D GL5.C/.

The ring of invariants Sym.U �/.G;G/ is a polynomial ring with generators of
degrees 20, 30, and the graded Weyl group is Shephard–Todd group 16 [56, Sect. 9].

4.1 Modules Over OU 0

We are only interested in the ideal of 4 � 4 Pfaffians of U 0. This situation was
explained in Example 10.
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4.2 Geometric Data from a Section

The constructions in this section work over an arbitrary field.
We get the following locally free resolution over OU D Sym.

V2
B� ˝ OU .1//:

0 ! .detB�/˝2 ˝ OU .�5/ ! .detB�/˝B� ˝ OU .�3/ !
4̂

B� ˝ OU .�2/
! OU ! OC ! 0

where C has codimension 3 in the total space of U . Its singular locus is the zero
section of U , and has codimension 10 in U .

For v 2 U gen,Cv D C\v.P.A�//will have codimension 3 in v.P.A�// Š P.A�/.
By generic perfection, we get a locally free resolution for OC :

0 ! .detB�/˝2 ˝ OP.A�/.�5/ ! .detB�/˝ B� ˝ OP.A�/.�3/

!
4̂

B� ˝ OP.A�/.�2/ ! OP.A�/ ! OC ! 0:

This gives enough information to see that !C D OC , dim H0.C I OC / D 1, and
dim H1.C I OC / D 1. In particular, C is a curve of genus 1. We can also deduce that
C is projectively normal and embedded by a complete linear series.

Conversely, given a smooth curve C of genus 1 embedded in P.A�/ by a
complete linear series, its homogeneous ideal I is generated by 5 quadrics and is
a codimension 3 Gorenstein ideal. The Buchsbaum–Eisenbud classification of such
ideals says that we can recover a section v 2 U which gives rise to C .

Theorem 1. We have a bijection between G-orbits in U sm and the set of pairs
.C;L/ where C is a genus 1 curve and L is a degree 5 line bundle on C .

4.3 Examples of Singular Quintic Curves

In this section, we give a few examples of degenerations of the smooth elliptic
quintic C . Describing degenerations of the Abelian varieties in the later examples
will require more effort and will appear in future work.

We pick homogeneous coordinates z1; : : : ; z5 on P4.

Example 2. Here is one example of a section that gives a rational nodal curve:
0

B
B
B
B
B
@

0 z5 z1 z2 z3
�z5 0 z2 z3 z4
�z1 �z2 0 z4 z5
�z2 �z3 �z4 0 0

�z3 �z4 �z5 0 0

1

C
C
C
C
C
A
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It is given by the parametrization Œa W b� 7! Œa5 C b5 W ab4 W a2b3 W a3b2 W a4b�, and
its node is the point Œ1 W 0 W 0 W 0 W 0�. The stabilizer subgroup in G of this curve is
the dihedral group of size 10 generated by the transformations Œa W b� 7! Œb W a� and
Œa W b� 7! Œa W �b� where � is a primitive 5th root of unity [23, proof of Lemma 2.3].
This is not an unstable orbit.

Furthermore, its secant variety is an irreducible quintic hypersurface.

Example 3. We can get a triangle consisting of two smooth rational quadrics and a
line. Here is one example:

0

B
B
B
B
B
@

0 0 z4 z3 z2
0 0 0 z2 z1

�z4 0 0 0 �z5
�z3 �z2 0 0 �z4
�z2 �z1 z5 z4 0

1

C
C
C
C
C
A

The quadrics are Œa W b� 7! Œa2 W ab W b2 W 0 W 0� and Œa W b� 7! Œ0 W 0 W a2 W ab W b2�,
and the line is Œa W b� 7! Œa W 0 W 0 W 0 W b�. The secant variety is the union of z4 D 0,
z2 D 0, and the cubic z1z24 C z22z5 � z1z3z5 D 0.

Example 4. We can also get a union of 5 P1’s which are labeled with i 2 Z=5 such
that P1i intersects P1j if and only if j D i˙1, and the intersection points are distinct.
This is a Néron pentagon. All Néron pentagons form a single orbit since they are
determined by their points of intersection. Here is one example of a section that
gives a Néron pentagon:

0

B
B
B
B
B
@

0 z1 z2 0 0

�z1 0 0 z3 0

�z2 0 0 0 z4
0 �z3 0 0 z5
0 0 �z4 �z5 0

1

C
C
C
C
C
A

:

This is the set of points in P.A�/ with at least 3 coordinates equal to 0. Its stabilizer
subgroup contains the normalizer of the diagonal subgroup in SL.A/. So the orbit
of Néron pentagons has codimension of at least 5.

Its secant variety is the hypersurface z1z2z3z4z5 D 0.

Example 5. Here is a non-reduced example of a union of a rational normal cubic
and a non-reduced line which intersect with multiplicity 2:

0

B
B
B
B
B
@

0 0 z5 z3 z2
0 0 0 z2 z1

�z5 0 0 z4 z3
�z3 �z2 �z4 0 0

�z2 �z1 �z3 0 0

1

C
C
C
C
C
A

:



446 L. Gruson et al.

The cubic is Œa W b� 7! Œa3 W a2b W ab2 W b3 W 0� and the line is given by the ideal
.z1; z2; z23/.

Its secant variety is the union of the hyperplane z5 D 0 and the non-reduced
quartic .z22 � z1z3/2 D 0.

Example 6. Here is a rational cuspidal cubic:

0

B
B
B
B
B
@

0 z1 z4 0 z5
�z1 0 0 z5 z2
�z4 0 0 z2 z3
0 �z5 �z2 0 z4

�z5 �z2 �z3 �z4 0

1

C
C
C
C
C
A

:

Its cusp point is Œ0 W 0 W 1 W 0 W 0� and it has the parametrization

Œs W t � 7! Œ
p�1t5 W s3t2 W s5 W p�1s2t3 W st4�:

This vector lies in the unstable locus of the representation. The group of automor-
phisms of this curve that extend to automorphisms of P4 is generated by scaling t ,
so the orbit of this curve in C5 ˝ V2 C5 has codimension 2. In particular, it gives a
generic point of the unstable locus.

Its secant variety is an irreducible quintic hypersurface.

4.4 Secant and Tangential Varieties

Here is a different approach:

• G=P D Gr.2; A�/.
• U D R� ˝ V2

B .
• U 0 D C2 ˝ V2 C5.
• G0 D .GL2.C/ � GL5.C//=f .x; x�1/ j x 2 C� g.

The relevantG0-orbit closures in U 0 are of codimensions 2, 4, and 5. The singular
locus and the non-normal locus of the codimension 2 orbit closure are both the
codimension 4 orbit closure S 0. Also, S 0 is smooth along the codimension 5 orbit
closure T 0. Furthermore, S 0 and T 0 can be identified as the secant and tangential
varieties of the affine cone over the Segre variety P1 � Gr.2; 5/. Let S and T be
the global versions of these varieties, and given a section v 2 U , let S and T be the
corresponding degeneracy loci.

Proposition 7. S is the locus of planesW such that deg.P.W /\C/ � 2, and T is
the locus of planesW such that P.W / is tangent to some point of C .
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Proof. Pick W 2 Gr.2; A�/. Then W 2 S n T if and only if v.S/ 2 .R� ˝V2
B/.W / is a sum of the form a1 ˝ .b1 ^ c1/Ca2 ˝ .b2^ c2/ where a1 and a2 are

linearly independent. But we can also identify this fiber with H0.P.W /I OP.A�/.1/˝V2
B/ when we identify P.W / with a line in P.A�/. This means that P.W / \ C

consists of two points corresponding to the vanishing of a1 and a2. Since T is in the
closure of S n T , we finish via a limiting argument. ut

In particular, T is a smooth curve. To calculate its genus, we can use a free
resolution for T 0 (here we use .�I�/.�i/ as shorthand for S�.C2/ ˝ S�.C5/ ˝
Sym.U 0 �/.�i/):

F1 D .2; 1I 2; 1; 1; 1; 1/.�3/C .2; 2I 2; 2; 2; 2; 0/.�4/
F2 D .2; 2I 2; 2; 2; 1; 1/.�4/C .4; 1I 2; 2; 2; 2; 2/.�5/C .3; 2I 3; 2; 2; 2; 1/.�5/
F3 D .4; 2I 3; 3; 2; 2; 2/.�6/C .3; 3I 4; 2; 2; 2; 2/.�6/C .4; 3I 3; 3; 3; 3; 2/.�7/
F4 D .4; 2I 4; 3; 3; 3; 3/.�8/C .4; 4I 4; 3; 3; 3; 3/.�8/
F5 D .6; 4I 4; 4; 4; 4; 4/.�10/:

So a locally free resolution for T is

F1 D R.�1/5 C O.�2/15
F2 D O.�2/5 C S3.R/.�1/C R.�2/24
F3 D S2.R/.�2/10 C O.�3/15 C R.�3/5
F4 D S2.R/.�2/5 C O.�4/5
F5 D S2.R/.�4/;

and we see that T has genus 1.

Proposition 8. C Š T .

Proof. Since C is smooth, we have a well-defined morphism  WC ! T obtained
by sending x 2 C to the tangent line at x. This is a finite morphism, and by
Riemann–Hurwitz, the ramification divisor is 0. Hence,  is an isomorphism. ut

4.5 Chow Forms

Yet another approach is as follows:

• G=P D Gr.3; A�/.
• U D R� ˝ V2

B .
• U 0 D C3 ˝ V2 C5.
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• G0 D .GL3.C/ � GL5.C//=f .x; x�1/ j x 2 C� g.

The spaceU 0 contains aG0-invariant degree 15 hypersurface. The corresponding
degeneracy locus X 0 is a section of O.5/.

Proposition 9. X 0 is the Chow form of C .

Proof. To obtain the Chow form of C , let Fl.1; 3; A�/ be a partial flag variety with
projections1; 2 to P.A�/ and Gr.3; A�/. Then R2�L�

1 OC is quasi-isomorphic
to a complex whose determinant is the Chow form. A locally free resolution of OC

in P.A�/ is

0 ! .detB�/2.�5/ ! S2;14B
�.�3/ !

4̂

B�.�2/ ! OP.A�/:

Applying R2��
1 to this complex gives a 2-term complex over OGr.3;A�/:

0 ! .detB�/2 ˝ S2R.�1/ ! OGr.3;A�/ ˚ S2;14B
�.�1/: (4.10)

In this case, the determinant is just the actual determinant of a 6 � 6 matrix. This
gives a section of O.5/ which is the Chow form of C .

We claim that this map is a sheafy version of the following map. For U 0 D C3 ˝V2 C5, we have .det C5/�2 ˝ S3;1;1.C3/� � S5.U 0 �/ with multiplicity 1, and also
.det C5/�2 ˝ S3;1;1.C3/� � S2.U 0 �/˝ .det C3/� ˝ S2;14 .C5/� with multiplicity 1,
so this gives a 6 � 6 matrix

.det C5/�2 ˝S3;1;1.C3/� ˝ Sym.U 0 �/ ! Sym.U 0 �/.5/˚ Œ.det C3/� ˝ S2;14 .C5/�

˝Sym.U 0 �/.2/�

whose determinant is the degree 15 invariant.
Taking sections of (4.10), we see that the process of constructing the Chow form

of C is a map that takes a section v to an element in Œ.detB/2 ˝ S3;1;1A�˚ Œ^4B ˝
S2A�. This can be interpreted as GL.A/� GL.B/-equivariant linear maps S5.A˝V2

B/ ! .detB/2 ˝ S3;1;1A and S2.A˝ V2
B/ ! ^4B ˝ S2A. But such maps

are unique up to scalar (checked with LiE [39]), so the claim follows. ut

4.6 Projective Duality

Here is another approach:

• G=P D Gr.4; A�/ D P.A/.
• U D R� ˝ V2

B .
• U 0 D C4 ˝ V2 C5.
• G0 D .GL4.C/ � GL5.C//=f .x; x�1/ j x 2 C� g.
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The space U 0 contains a G0-invariant degree 40 hypersurface. The polynomial f
is described as follows: let a1; : : : ; a40 be a basis for the Lie algebra C ˚ sl4 ˚ sl5.
Then for x 2 C4 ˝ V2 C5, we have f .x/ D det.A1x � � �A40x/.

The corresponding degeneracy locus is a degree 10 hypersurface C 0 in P.A/.
By the Katz–Kleiman formula [26, Sect. 2.3.C], the projective dual of an Abelian
variety X � PN is a hypersurface of degree .dimX C 1/.degX/. In our case, for
X D C from the last section, we get a hypersurface of degree 10.

Proposition 10. For generic v 2 V , the projective dual of C is C 0.

Proof. Let f be the equation for the hyperdiscriminant of C4 ˝ V2 C5. An element
x 2 C4˝V2 C5 can be thought of as a 5�5 skew-symmetric matrix of linear forms
on P3. Generically, the 4 � 4 Pfaffians give a 0-scheme of degree 5, and f .x/ D 0

if and only if this 0-scheme is non-reduced.
So for generic v 2 V , we first write V D H0.P.A/I Q ˝ V2

B/. Then as a
4� 10matrix (along the fibers), v has full rank 4 over each point in P.A/. Now pick
H 2 P.A/. ThenH is a hyperplane in P.A�/ and we have a canonical identification
H0.H I V2

B.1// D .Q˝V2
B/.H/ (where the notation .H/means “fiber atH”).

So H \ C is identified with the 5 points mentioned above, and hence H 2 C_ if
and only if f .v.H// D 0, which proves our claim. ut

5
V3 C9

Let V be a vector space of dimension 9. The relevant data:

• U D V3
V .

• G D GL.V /.
• G=P D P.V �/ D Gr.1; V �/.
• U D V2 Q� ˝ R� Š V2 Q� ˝ O.1/ Š �2.3/.
• U 0 D V2 C8.
• G0 D GL8.C/.

The ring of invariants Sym.U �/.G;G/ is a polynomial ring with generators of
degrees 12, 18, 24, 30, and the graded Weyl group W is Shephard–Todd group 32
[56, Sect. 9].

Remark 1. The invariants for W acting on its reflection representation h were
explicitly calculated by Maschke [41]. It is known that the GIT quotient U==G Š
h=W contains an open set which is isomorphic to the moduli space of genus 2 curves
C with a marked Weierstrass point (i.e., ramification point for the hyperelliptic
map). This was shown by Burkhardt [12]. See also [19, Sect. 4.3] for a modern
treatment and further discussion.

Remark 2. The orbits in
V3 C9 were classified in [21], but the connection to

geometric objects as treated here is not made.
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5.1 Modules Over OU 0

The orbits in U 0 are given by the vanishing of Pfaffians of various sizes. We are
only interested in the vanishing locus of the 8 � 8 Pfaffian and the vanishing locus
of the 6� 6 Pfaffians. The latter is described in Example 11. We denote their global
versions in U by Y and X , respectively.

5.2 Geometric Data from a Section

The subvariety Y has the following resolutions over OU D Sym.
V2 Q ˝ O.�1//:

0 ! .det Q/˝ OU .�4/ ! OU ! OY ! 0: (5.3)

We can simplify this by noting that det Q D O.1/.
From Example 11, the subvariety X has this resolution:

0 ! OU .�9/ !
2̂

Q ˝ OU .�7/ ! S2;16Q ˝ OU .�7/
! .S2Q ˝ OU .�4//˚ ..S2Q/� ˝ OU .�5//

! S2;16Q ˝ OU .�4/ !
6̂

Q ˝ OU .�3/ ! OU ! OX ! 0:

(5.4)

So for v 2 U gen, we have that Y D Y \ v.P.V �// and X D X \ v.P.V �// will
have codimensions 1 and 6 in P.V �/, respectively.

The self-duality of the resolution for OX shows that !X D Ext6.OX ;O.�9// D
OX .

Theorem 3. For v 2 U gen, we have hi .X I OX/ D �
2
i

�
. In particular, for v 2 U sm,

X is a torsor over an Abelian surface.

(We will only do this calculation once. For the remaining examples, we leave it
to the reader.)

Proof. First, we replace the sheaf of algebras OU with the structure sheaf of P.V �/
in (5.4). In the notation of Sect. 2.3, we have P.V �/ D Fl.1IV �/ and S�Q ˝
OP.V �/.d / D R.�/ where � D .d;��8;��7; : : : ;��1/ and � D .8; 7; : : : ; 1; 0/.
In particular, when we add � to the sequence � for any term in homological
degrees f 2; 3; 4; 5 g of (5.4), all cohomology vanishes by Theorem 8 because there
will always be a repeating term. For example, S2;16Q ˝ O.�4/ has vanishing
cohomology because �C � D .4; 7; 5; 4; 3; 2; 1; 0;�2/.

Now consider the remaining terms. For
V6 Q ˝ O.�3/, we have � D .16/,

so � C � D .5; 7; 6; 4; 3; 2; 1; 0;�1/. We can sort this using 2 consecutive swaps,



Moduli of Abelian Varieties, Vinberg � -Groups, and Free Resolutions 451

and subtracting � again leaves us with a sequence of all �1. Hence, Theorem 8
says H2.P.V �/I V6 Q ˝ O.�3// D detV . By similar considerations (or Serre
duality), one can show that h6.

V2 Q ˝ O.�7// D 1. Finally, we already know
that h0.OP.V �// D h8.O.�9// D 1.

Now the result follows from a spectral sequence argument (or equivalently
by splicing (5.4) into short exact sequences). The last statement follows from
Theorem 1. ut

From (5.3), we see that Y is a cubic hypersurface. In fact, it is the Coble cubic of
X ; see [3, 13] for more information on the Coble cubic.

Proposition 4. The polarization onX induced by OX.1/ is indecomposable and of
type .3; 3/.

Proof. We have h0.OX.1// D 9, so X is embedded via a complete linear series. So
K.O.1// D Z=D ˚ Z=D where D D .3; 3/ orD D .1; 9/. Since X is the singular
locus of a cubic hypersurface, we conclude that it is the intersection of the quadrics
(partial derivatives) that contain it. However, an Abelian surface in P8 with a .1; 9/-
polarization cannot be the intersection of the quadrics containing it [28, Remark
3.2], so we conclude that the polarization is .3; 3/.

Furthermore, X is not the product of 2 elliptic curves as a polarized Abelian
variety. To see this, first consider elliptic curves E1;E2 � P2 embedded as cubics.
Then the product polarization is given by the Segre embeddingE1�E2 � P2�P2 �
P8. The quadratic equations vanishing on P2 � P2 give

V2 C3 ˝ V2 C3, and the
quotient of S2.C3 ˝ C3/ by this space is S2C3 ˝ S2C3, none of which vanish on
E1 � E2. Hence, E1 � E2 is not the intersection of quadrics in P8. ut
Remark 5. It could be the case thatX is abstractly isomorphic to the product of two
elliptic curves if we ignore the polarizations. See, for example, [50, Sect. 12].

Remark 6. Given a curve C of genus 2, the moduli space SUC.3/ admits a degree
2 map to P8 which is branched along a degree 6 hypersurface. This hypersurface is
projectively dual to the Coble cubic (see [43] and [46] for two different proofs of
this, together with some more discussion of the hypersurfaces).

5.3 Macaulay2 Code

Here we give some Macaulay2 code for generating examples of sections. To do this,
first consider the short exact sequence of vector bundles over P.V �/:

0 !
2̂

Q� ˝ O.1/ !
2̂

V ˝ O.1/ ! Q� ˝ O.2/ ! 0:

Taking sections, we get the inclusion
V3

V � V2
V ˝V . Since this map is GL.V /-

equivariant, it must be the comultiplication map. Thus, given v 2 V3
V , we can
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comultiply to get an element of
V2

V ˝ V , which we may think of as a skew-
symmetric 9 � 9 matrix 'v of linear forms on P.V �/.

To restrict back to skew-symmetric matrix on Q�, we restrict our attention to an
affine open set. Pick homogeneous coordinates z1; : : : ; z9 on P.V �/ and consider
the open set given by z9 D 1. Then z1; : : : ; z8 give a trivialization for Q over this
open set, so the relevant data is the upper-left 8 � 8 submatrix ' 0

v of 'v. Now our
degeneracy loci correspond to the usual Pfaffian loci of this submatrix. Assuming
that there are no components contained in the hyperplane z9 D 0, we get the
homogeneous ideals of these degeneracy loci by saturating with respect to z9.

The function basicMat below takes as input s = (i,j,k) and computes
the matrix ' 0

v for v D zi ^ zj ^ zk . Then we take random coefficients and calculate
the Pfaffian ideals.

P=101;
R = ZZ/P[z_1..z_9];
basicMat = s -> (

ans := mutableMatrix(0*id_(Rˆ8));
ans_(s_0-1,s_1-1) = -z_(s_2);
ans_(s_1-1,s_0-1) = z_(s_2);
if not(member(9,s)) then (

ans_(s_0-1,s_2-1) = z_(s_1);
ans_(s_2-1,s_0-1) = -z_(s_1);
ans_(s_1-1,s_2-1) = -z_(s_0);
ans_(s_2-1,s_1-1) = z_(s_0);
);

matrix ans
)

M=0;
for i in subsets(1..9,3) do M = M + random(ZZ/P)

* basicMat(i);
I = saturate(pfaffians(8,M),ideal(z_9));
J = saturate(pfaffians(6,M),ideal(z_9));
K = saturate(pfaffians(4,M),ideal(z_9));

Then generically, I is the ideal of the cubic hypersurface, J is the homogeneous
ideal of the Abelian surface, and K is the unit ideal.

Example 7. Here is an example calculation we can do with this. Define M by

M=0;
for i from 1 to 3 do
for j from 4 to 6 do
for k from 7 to 9 do M = M + random(ZZ/P)

* basicMat({i,j,k}).
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This gives us a generic vector in C3 ˝ C3 ˝ C3 � V3
V , where the subspace

corresponds to the choice of a decomposition V D C3 ˚ C3 ˚ C3. Using the
command primaryDecomposition J we see that J now defines a reducible
variety of degree 12 with 2 components each contained in z1 D z2 D z3 D 0 and
z4 D z5 D z6 D 0. In fact, we know that J is supposed to have degree 18. There
will be a third component of degree 6 inside z7 D z8 D z9 D 0 which we do not see
because of our choice of open affine (one can check this by modifying the definition
of basicMat to use a different affine trivialization). In fact, if we intersect any
two of the three ideals in the primary decomposition of J , we will get an ideal
generated by 6 linear equations and a cubic, which is exactly a plane cubic curve.

6
V4 C8

Let V be a vector space of dimension 8. The relevant data:

• U D V4
V .

• G D GL.V /.
• G=P D P.V �/ D Gr.1; V �/.
• U D V3 Q� ˝ R� Š V3 Q� ˝ O.1/ Š �3.4/.
• U 0 D V3 C7.
• G0 D GL7.C/.

The ring of invariants Sym.U �/.G;G/ is a polynomial ring with generators of
degrees 2, 6, 8, 10, 12, 14, 18, and the graded Weyl group W is the Weyl group of
type E7 [56, Sect. 9].

Remark 1. Letting h be the 7-dimensional reflection representation of W , it is
known that the GIT quotient U==G Š h=W has an open subset isomorphic to the
moduli space of smooth plane quartics (i.e., non-hyperelliptic genus 3 curves) with
a marked flex point (i.e., a point with tangency of order � 3; there are 24 of them
for a generic curve). See, for example, [18, Sect. IX.7, Remark 7] (but note that the
21 mentioned there should be 24) or [40, Proposition 1.11].

6.1 Modules Over OU 0

We are interested in 3 orbits in U 0. The first is a degree 7 hypersurface Y 0. The
singular locus of Y 0 is an orbit closure X 0 of codimension 4 in U 0, and the singular
locus ofX 0 is an orbit closureZ0 of codimension 7 inU 0. LetW be a 7-dimensional
vector space with U 0 D V3

W . Set A D Sym.
V3

W �/ D OU 0 . The minimal free
resolutions of these orbit closures are given as follows.
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The minimal free resolution of OX 0 is given by

0 ! .detW �/5 ˝W �.�12/ ! .detW �/4 ˝
2̂

W �.�10/ !

.detW �/2 ˝ S2;15 .W
�/.�7/ ! .detW �/2 ˝

4̂

W �.�6/ ! A ! OX 0 ! 0:

(6.2)

The minimal free resolution for OZ0 is given by

0 ! S76;6W
�.�16/ ! S7;65;5W

�.�14/ ! S62;54;4W
�.�12/ ! S53;43;3W

�.�10/
! S44;32;2W

�.�8/ ! S35;2;1W
�.�6/ ! S26W

�.�4/ ! A ! OZ0 ! 0: (6.3)

We will also use the fact that the local ring of OX 0 at the generic point of OZ0 is a
Cohen–Macaulay ring of type 3, i.e., its canonical module is minimally generated
by 3 elements. This calculation was done by Federico Galetto [24].

We set M to be a certain twist of the cokernel of the dual of the last differential
in (6.2). In particular, it has a presentation of the form

.detW �/2 ˝
2̂

W.�4/ ! detW � ˝W.�2/ ! M ! 0: (6.4)

So up to a grading shift, M is the canonical module of OX 0 .

Lemma 2. There is a G0-equivariant OX 0-linear isomorphism S2M Š IZ0;X 0 .

Proof. From (6.4), we get the presentation

.detW �/3˝W˝
2̂

W ˝OX 0.�6/ ! .detW �/2˝S2W˝OX 0.�4/ ! S2M ! 0:

Also, the presentation of IZ0 in OU 0 is given by

.detW �/3 ˝ S2;1W ˝ OU 0.�6/ ! .detW �/2 ˝ S2W ˝ OU 0.�4/ ! IZ0 ! 0:

To get a presentation over OX 0 we have to add in the relations .detW �/3 ˝ V3
W

which come from the ideal generators of IX 0 . Hence we see that the S2M and
IZ0 ;X 0 have the same presentations. By equivariance, we get an isomorphism of these
presentations up to a choice of a scalar, and this implies the desired isomorphism
S2M Š IZ0;X 0 . ut

We define Y , X , Z , and M to be the global versions of Y 0, X 0, Z0, andM .

6.2 Geometric Data from a Section

Now choose a section v 2 U gen, and set Y D v.P.V �// \ Y , X D v.P.V �// \ X ,
and Z D v.P.V �// \ Z .
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To get the locally free resolution of X over OP7 , we replace W with Q� and
replace .�i/ with O.�i/. After using det Q D O.1/ to simplify, we get

0 ! Q ˝ O.�7/ !
2̂

Q ˝ O.�6/ ! S2;15 .Q/˝ O.�5/ !
4̂

Q ˝ O.�4/
! OP7 ! OX ! 0: (6.6)

Furthermore, note that !X D M ˝ Ov.P.V �//. From Lemma 2, we get an OX -
linear map �WS2!X ! OX and hence an OX -algebra structure on OX ˚ !X . We
define eX D SpecOX

.OX ˚ !X/. As in Theorem 3, we can check that !eX D OeX
and that hi .eX I OeX/ D hi .X I OX ˚ !X/ D �

3

i

�
.

Define U smC to be the subset of U sm where the Cohen–Macaulay type of X
along Z remains 3.

Proposition 3. If v 2 U smC, then eX is smooth. In particular, eX is a torsor over an
Abelian threefold, and X is the Kummer variety of eX .

Proof. Let IZ denote the ideal sheaf ofZ in OX . We check smoothness locally. Let
P be a nonsingular point of X 0. Then IZ;P D OX;P and !X;P D OX;P , and �P is
just the multiplication map. Then OeX;P Š OX;P Œt �=.t

2 � 1/ as a ring, so the points
over P are nonsingular. Now let P 2 Z be a singular point. Set R D OX;P . Then
m D IZ;P is the maximal ideal of R. Write !R D !X;P and S D OeX;P . Then
S D R ˚ !R as an R-module, and n D m ˚ !R is the unique maximal ideal of S :
S=n Š R=m, and any element not in n is .r; 0/ for r 2 R nm, so is a unit. Since the
multiplication map S2!R ! m is surjective, we have that n2 D m ˚ m � !R . Hence
n=n2 Š !R=m �!R. The dimension of this space overR=m is the Cohen–Macaulay
type of R, which is 3, and implies that S is a regular local ring. So we have shown
that eX is smooth.

Using Theorem 1, the above facts imply that eX is a torsor over an Abelian
threefold. Temporarily choose a point P 2 �1.Z/ to be the origin of eX so that
it acquires a group structure. The map � which swaps points in the same fiber of 
gives an involution on eX . Then � fixes P , and there is an induced linear map on the
tangent space at P . Since � has order 2, the induced linear map is the negation map.
But this is the derivative of the inversion map on eX , so we conclude that � is the
inversion map on eX . So X is the Kummer variety eX=h�i. ut
Proposition 4. L D �OX.1/ defines an indecomposable .2; 2; 2/-polarization
on eX .

Proof. Note that

h0.eX I L/ D h0.X I�L/ D h0.X I .OX ˚ !X/˝ OX.1// D 8;

so the map eX ! P.V �/ is given by a complete linear series. Hence L D L.a; b; c/
where abc D 8. By [42, Sect. 2, Corollary 4], each of a; b; c must be even, so
we have a D b D c D 2. Furthermore, .eX;L/ is indecomposable since by [7,



456 L. Gruson et al.

Theorem 4.8.2], if .eX;L/ is a product of s Abelian varieties, then the degree of the
map eX ! X � P.V �/ is 2s . ut

In particular, this Abelian threefold is the Jacobian of some genus 3 curve C .

Proposition 5. C is not hyperelliptic.

Proof. Using the locally free resolution (6.6), the map H0.OP.V �/.n//!H0.OX.n//

is surjective for all n � 0. Hence,X is projectively normal, so C is not hyperelliptic
by [36, Sect. 2.9.3]. ut
Remark 6. The quartic hypersurface has an interpretation as the embedding of
SUC .2/ (see Sect. 3.2) via its theta divisor [45]. This is also known as the Coble
quartic; see [3, 14] for more details.

6.3 Flag Variety

Here is another approach which was pointed out to us by Jack Thorne:

• G=P D Fl.1; 7; V �/
• U D R�

1 ˝ V3
.R7=R1/

�
• U 0 D V3 C6

• G0 D GL6.C/

We are interested in the smallest orbit closure in U 0, which is the affine cone over
Gr.3; 6/. This has codimension 10. In characteristic 0, its minimal free resolution is
as follows (the coordinate ring is Sym.

V3 C6/ and we only list the partitions):

F1 D .2; 14/;

F2 D .24; 1/C .3; 2; 14/;

F3 D .32; 22; 12/C .35/C .5; 25/;

F4 D .43; 23/C .42; 33; 1/C .5; 33; 22/;

F5 D .5; 42; 32; 2/˚2;

F6 D .52; 43; 2/C .53; 33/C .6; 43; 32/;

F7 D .7; 45/C .55; 2/C .62; 52; 42/;

F8 D .64; 5; 4/C .7; 6; 54/;

F9 D .7; 64; 5/;

F10 D .76/:
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To see the ranks, we include the graded Betti table (this follows Macaulay2
notation, so a term d in row i and column j represents the free moduleA.�i�j /˚d
in homological degree j ).

0 1 2 3 4 5 6 7 8 9 10
total: 1 35 140 301 735 1080 735 301 140 35 1

0: 1 . . . . . . . . . .
1: . 35 140 189 . . . . . . .
2: . . . 112 735 1080 735 112 . . .
3: . . . . . . . 189 140 35 .
4: . . . . . . . . . . 1

Remark 7. The resolution changes in characteristic 2:

0 1 2 3 4 5 6 7 8 9 10
total: 1 35 141 302 735 1080 735 302 141 35 1

0: 1 . . . . . . . . . .
1: . 35 140 190 . . . . . . .
2: . . 1 112 735 1080 735 112 1 . .
3: . . . . . . . 190 140 35 .
4: . . . . . . . . . . 1

and in characteristic 3:

0 1 2 3 4 5 6 7 8 9 10
total: 1 35 140 321 756 1082 756 321 140 35 1

0: 1 . . . . . . . . . .
1: . 35 140 189 20 1 . . . . .
2: . . . 132 736 1080 736 132 . . .
3: . . . . . 1 20 189 140 35 .
4: . . . . . . . . . . 1

In all other characteristics, the Betti numbers agree with characteristic 0.

The corresponding degeneracy locusX2 is a torsor over an Abelian threefold: For
each partition � in the resolution for Gr.3; 6/, we get the sheaf Rj�j=3

1 ˝S�.R7=R1/.
Also, the canonical sheaf of Fl.1; 7; V �/ is .det R7/

7 ˝ R7
1, which is the last term

of the resolution. This shows that !X2 D OX2 . As in Theorem 3, we can use Borel–
Weil–Bott to get that hi .X2I OX2/ D �

3
i

�
.

Proposition 8. X2 Š eX .

Proof. Let W Fl.1; 7; V �/ ! P.V �/ be the projection map. We claim that .X2/ D
X and that jX2 is a finite morphism of degree 2. Note that �Q D V �=R1 and
�R D R1. For x 2 P.V �/, pick .x � H/ 2 �1.x/. We have a surjection

.

3̂

Q� ˝ R�/.x/ ! .

3̂

.R7=R1/
� ˝ R�

1 /.x � H/;
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and so .x � H/ 2 X2 if and only if v.x/ 2 .V �=x/� is a pure tensor when
mapped to .H=x/�. By Remark 19, there exists such an H if and only if x 2 X ,
so .X2/ D X . Furthermore, there exists exactly 2 such H if x 2 X nZ and there
exists exactly 1 such H if x 2 Z. So jX2 is a finite morphism of degree 2. We
conclude that X2 Š eX . ut

6.4 Projective Duality

We can instead work with the following data:

• G=P D Gr.7; V �/ D P.V /.
• U D V4 R�.
• U 0 D V4 C7.
• G0 D GL7.C/.

The orbit classifications in
V4 C7 and

V3 C7 are the same, so we can proceed as
in Sect. 6.2.

Under the identification Gr.7; V �/ D P.V /, the bundle
V4 R� becomesV3 Q� ˝O.1/. Hence, given a section v 2 U smC, we get a quartic hypersurface Y d

and a Kummer threefoldXd in P.V /.

Proposition 9. We have isomorphisms X Š Xd and Y d Š Y . Furthermore, Y
and Y d are projectively dual varieties.

Proof. We first show that X Š Xd . Consider the variety X2 � Fl.1; 7; V �/
constructed in the previous section from v. Let 2W Fl.1; 7; V �/ ! Gr.7; V �/ be
the projection map. We claim that 2.X2/ D Xd and that 2 is finite of degree 2.
This will prove the claim.

Note that �
2 R D R7. For H 2 Gr.7; V �/, pick .x � H/ 2 �1

2 .H/. We have
a surjection

.

4̂

R�/.H/ ! .

3̂

.R7=R1/
� ˝ R�

1 /.x � H/

given by comultiplication. So .x � H/ 2 X2 if and only if v.x/ 2 H� is a pure
tensor when mapped to .H=x/�. After picking a volume form in

V7 C7, we can
identify

V4 C7�
and

V3 C7, in which case the rest of the argument is similar to the
proof of Proposition 8.

So X and Xd are embedded by dual linear series. By [49, Theorem 3.1], the
Coble quartics of X and Xd are isomorphic and projective dual to one another. ut

6.5 Doing Calculations

We have written some Macaulay2 code for calculating the degeneracy loci in
Sect. 6.2. However, it is messy so we do not include it here. We will just comment
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on how one can practically go about these calculations and explain the analogue of
Example 7.

First, we need to find a way to calculate the ideals of the appropriate low-
codimension orbits in

V3 C7. An explicit construction of the equation f for the
degree 7 hypersurface was given in [37, Remark 4.4]. Namely, he constructs
two symmetric 7 � 7 matrices '.x/ and '�.x/ whose entries are homogeneous
polynomials of degrees 3 and 4, respectively, such that '.x/'�.x/ D f .x/I7, i.e.,
the pair .'.x/; '�.x// is a matrix factorization for f . Explicit summation formulas
are given for the entries of these matrices.

From (6.2), the Jacobian ideal of f is reduced and gives the equations for the
codimension 4 orbit. The ideal for the codimension 7 orbit is given by the entries
of the matrix '�.x/. One possibility to check this is to use that the representation
generating this ideal is S2C7 (up to a power of determinant) (6.3) and that this
representation has multiplicity 1 in S4.

V3 C7�
/.

In practical computations, the product of the matrices '.x/ and '�.x/ can be
calculated in a few seconds. A possible way to proceed is to evaluate these against a
chosen section v (after choosing an open affine in P7 to work over) and then to take
the product in order to calculate the equation of the codimension 1 degeneracy locus.
If the section is generic, then the Jacobian ideal of this equation will be the same
as evaluating the Jacobian ideal of f at v (note that calculating f and its Jacobian
ideal before evaluating may take a long time).

Example 10. Suppose we choose a decompositionV D C2˚C2˚C2˚C2, and we
pick a generic vector in C2 ˝ C2 ˝ C2 ˝ C2 � V4

V . In this case, the codimension
4 degeneracy locus will have 4 irreducible components, all of degree 6. Taking any
two of these components, the affine cone over their intersection is a bidegree .2; 2/
hypersurface in CŒx; y� ˝ CŒs; t � whose multigraded Proj is a nonsingular curve of
genus 1 (this agrees with the data obtained in [30, Sect. 3.1.2])

7
V4

0 C8

Let V be a vector space of dimension 8 equipped with a symplectic form ! 2V2
V �. The symplectic form gives an injective multiplication map

V2
V � !V4

V � and we define
V4
0 V D V4

0 V
� to be the cokernel. The relevant data:

• U D V4
0 V .

• G D Sp.V /.
• G=P D P.V �/ D Gr.1; V �/.
• U D V3

0.R?=R/˝ R� Š V3
0.R?=R/˝ O.1/.

• U 0 D V3
0 C6.

• G0 D Sp6.C/.
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The ring of invariants Sym.U �/.G;G/ is a polynomial ring with generators of
degrees 2, 5, 6, 8, 9, 12, and the graded Weyl groupW is the Weyl group of type E6
[56, Sect. 9].

Remark 1. Letting h be the 6-dimensional reflection representation of W , it is
known that the GIT quotient U==G Š h=W has an open subset isomorphic to the
moduli space of smooth plane quartics (i.e., non-hyperelliptic genus 3 curves) with
a marked hyperflex point (i.e., a point with tangency of order 4; the existence of
such a point is a codimension 1 condition on the space of plane quartics). See [40,
Proposition 1.15].

7.1 Modules Over OU 0

LetW be a 6-dimensional vector space equipped with a symplectic form, so we can
write U 0 D V3

0 W and G0 D Sp.W /. Set A D Sym.
V3
0 W

�/ D OU 0 .
There is a degree 4G0-invariant hypersurface in U 0, which we denote by Y 0. The

other orbits X 0 and Z0 have codimensions 4 and 7, respectively. The minimal free
resolution of OX 0 is

0 ! W � ˝ A.�7/ !
2̂

0

W � ˝ A.�6/ ! S2W � ˝ A.�4/ !
3̂

0

W � ˝ A.�3/

! A ! OX 0 ! 0; (7.2)

which we can calculate by Macaulay2. Furthermore, the last matrix has corank 3
when specialized to a nonzero point in the highest weight orbit, so the localization
of OX 0 at such a point is a Cohen–Macaulay ring of type 3.

We set M to be a certain twist of the cokernel of the dual of the last differential
of (7.2). In particular, it has a presentation of the form

2̂

0

W.�2/ ! W.�1/ ! M ! 0: (7.3)

The orbit closure Z0 is the affine cone over the Lagrangian Grassmannian. The
minimal free resolution for OZ0 is

0 ! A.�10/ ! S2W �.�8/ ! SŒ2;1�W �.�7/ ! SŒ2;1;1�W �.�6/
! SŒ2;1;1�W �.�4/ ! SŒ2;1�W �.�3/ ! S2W �.�2/ ! A ! OZ0 ! 0 (7.4)

(recall that SŒ�� was defined in (2.7)).
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Lemma 2. There is a G0-equivariant OX 0-linear isomorphism S2M Š IZ0;X 0 .

Proof. The proof is the same as for Lemma 2. ut
We define Y , X , Z , and M to be the global versions of Y 0, X 0, Z0, andM .

7.2 Geometric Data from a Section

Now choose a section v 2 U gen and set Y D v.P.V �// \ Y , X D v.P.V �// \ X ,
and Z D v.P.V �// \ Z .

To get the locally free resolution of X over OP7 , we replace W with R?=R and
replace .�i/ with O.�i/. So the locally free resolution for OX is

0 ! R?=R.�7/ !
2̂

0

.R?=R/.�6/ ! S2.R?=R/.�4/ !
3̂

0

.R?=R/.�3/

! OP7 ! OX ! 0;

and the locally free resolution for !X is

0 ! OP7.�8/ !
3̂

0

.R?=R/.�5/ ! S2.R?=R/.�4/ !
2̂

0

.R?=R/.�2/

! .R?=R/.�1/ ! !X ! 0;

Using Borel–Weil–Bott as in Theorem 3, we get h0.OX/ D 1 and h2.OX/ D 3, and
all other cohomology vanishes. So by Serre duality, hi .OX ˚ !X/ D �

3
i

�
.

From Lemma 2, we get a OX -linear multiplication map �WS2!X ! OX and
hence an OX -algebra structure on OX ˚ !X . We define eX D SpecOX

.OX ˚ !X/

and let W eX ! X be the projection map.
We define U smC to be the subset of U sm where the Cohen–Macaulay type of X

along Z remains 3.

Theorem 3. If v 2 U smC, then eX is smooth. Furthermore, eX is a torsor over an
Abelian threefold, L D �OX.1/ is an indecomposable .2; 2; 2/-polarization on
eX , and eX is not the Jacobian of a hyperelliptic curve.

Proof. The proofs are analogous to the ones in Sect. 6.2. ut

8 spin.16/

Let B be a vector space of dimension 16 equipped with a quadratic form q 2
S2.B�/. Let Z.q/ be the zero locus of this quadratic form. We let Spin.B/ be
the simply connected double cover of SO.B/. One construction is to realize it as
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a multiplicative subgroup of a Clifford algebra, and we set GSpin.B/ to be the
Clifford group generated by Spin.B/ and the scalar matrices. There are two spin
representations spin˙.B/. The choice of spin representation will not affect our
results, so we pick one and call it spin.B/. Furthermore,Z.q/ possesses two “spinor
bundles” which we call SC and S�. These can be constructed as pushforwards of
line bundles from the flag variety of Spin.B/, or more direct geometric means (see
[47] for details). There is a perfect pairing

SC ˝ S� ! O.�1/

[47, Theorem 2.8], and the sections of SC.1/ and S�.1/ give the two half-spin
representations (which follows from their descriptions as pushforwards of line
bundles).

The relevant data:

• U D spin.B/.
• G D GSpin.B/.
• G=P D Z.q/ (quadric hypersurface).
• U D SC.1/.
• U 0 D spinC.14/.
• G0 D GSpin14.C/.

The ring of invariants Sym.U �/.G;G/ is a polynomial ring with generators of
degrees 2, 8, 12, 14, 18, 20, 24, 30, and the graded Weyl group is the Weyl group of
type E8 [56, Sect. 9].

Remark 1. A non-hyperelliptic genus 4 curve lies on a unique quadric in its
canonical embedding, and the locus of curves C where this quadric is singular (i.e.,
C has a vanishing �-characteristic) has codimension 1. This condition also implies
that C has a unique degree 3 map to P1. If we further impose that this map has a
point with non-simple ramification, the locus loses another dimension. Letting h be
the 8-dimensional reflection representation of W , the GIT quotient U==G Š h=W
has an open subset which should be isomorphic to this moduli space. We could not
find any mention of this in the existing literature.

To get the interpretation for C7=W.E7/ (Remark 1), one first realizes C as the
smooth locus of a cuspidal cubic. Then .P1; : : : ; P7/ becomes 7 points in the plane,
and blowing them up gives a del Pezzo surface. Its anticanonical divisor gives a map
to P2 branched along the plane quartic mentioned in Remark 1.

When we do the same thing for 8 points, the corresponding del Pezzo surface is
mapped to a quadric cone in P3 via twice its anticanonical divisor, and it is branched
along a genus 4 curve. However, 8 points in the plane generically do not lie on a
cuspidal cubic; this condition on the points corresponds to the ramification condition
on the genus 4 curve mentioned above. This was brought to our attention by Igor
Dolgachev.
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The representation spin.14/ has four orbits Z.f /0; Y 0; X 0; Z0, of interest, which
are of codimensions 1, 5, 10, and 14, respectively. All of them are Gorenstein
and have rational singularities, but we have not yet calculated the minimal free
resolutions forX 0 andZ0 due to certain extension problems. The hypersurfaceZ.f /
has degree 8.

The results for this example are incomplete, so we will just state what we expect
to be true. For a generic section v 2 U , the above four orbits give degeneracy loci
Z.f /; Y;X;Z. What should happen is that there is a curve C of genus 4 such that
X is the Kummer variety of Jac.C / and Z is its singular locus consisting of 256
points. Furthermore, we should have Y D SUC.2/ (see Sect. 3.2 for the definition
of SUC.2/).

One can check that Z.f / is a quartic hypersurface in Z.q/, and it should be
an analogue of a Coble hypersurface. The curve C should be a non-hyperelliptic
curve with vanishing theta characteristic: every non-hyperelliptic curve C can be
written as a complete intersection of a quadric and cubic in its canonical embedding,
and having a vanishing theta characteristic means that this quadric is singular. For
comparison, the analogues of Coble hypersurfaces for genus 4 curves without a
vanishing theta characteristic were studied in [48].

We remark that having the minimal free resolution of X 0 (and of an additional
auxiliary module M 0) will allow one to prove that X is the Kummer variety of an
Abelian fourfold, but there do not seem to be any cohomological characterizations
of Jacobians amongst Abelian fourfolds.

9 C4 ˝ spin.10/

We can write C4 ˝ spin.10/ D spin.6/˝ spin.10/, so this can be considered as a
subcase of spin.16/ in the previous section.

Let A be a vector space of dimension 4 and B be a vector space of dimension 10
equipped with an orthogonal form ! 2 S2.B�/. The relevant data:

• U D A˝ spin.B/.
• G D .GL.A/ � GSpin.B//=f .x; x�1/ j x 2 C� g.
• G=P D P.A/ D Gr.1; A/.
• U D Q ˝ spin.B/.
• U 0 D C3 ˝ spin.10/.
• G0 D .GL3.C/ � Spin10.C//=f .x; x�1/ j x 2 C� g.

The ring of invariants Sym.U �/.G;G/ is a polynomial ring with generators of
degrees 8, 12, 20, 24, and the graded Weyl group is Shephard–Todd group 31 [56,
Sect. 9].
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9.1 Modules Over OU 0

Let A0 D C3 and let G0 D .GL.A0/ � Spin.B//=f .x; x�1/ j x 2 C� g. Let R D
Sym..A0 ˝ spin.B//�/.

There is a degree 12 G0-invariant hypersurface X 0 � U 0, whose equation is
described in [29, Sect. 3]. One can interpret the construction there as taking the
determinant of a certain 3 � 3 symmetric matrix whose entries are quartic forms.
More precisely, the representation S2;2.spin.B// contains a Spin.B/-invariant, so
we get polynomials P which span the representation S2;2.A0 �/ � S4..A0 ˝
spin.B//�/. Then S2;2.A0 �/ Š S2.A0/˝ .detA0 �/2, so we can interpret the space
of P as the space of linear functions on symmetric 3 � 3 matrices of the form

'WA0 ! A0 � ˝ .detA0/2; (9.1)

and the equation for X 0 is the determinant of this matrix.

Proposition 1. The 2 � 2 minors of ' define a radical ideal of codimension 3, and
the corresponding variety is the singular locus Z0 of X 0.

Proof. The maximal codimension of the submaximal minors of a symmetric matrix
is 3. Since this ideal isG0-equivariant, it must cut out a union of orbit closures. Since
they do not vanish onX 0 and there are no orbit closures of codimension 2, this ideal
has codimension 3 and in particular defines a Cohen–Macaulay variety.

There are 2 orbits of codimension 3. We can check on representatives that the
2 � 2 minors vanish on only one of these orbits, and that the defined scheme is
generically reduced on the other orbit. This gives that the ideal of minors is radical
of codimension 3. To check the statement about the singular locus, it is enough to
check the Jacobian matrix of the ideal of minors on orbit representatives. ut

As a corollary, the resolution of OZ0 is given as follows (see Example 12):

0 ! A0 � ˝ .detA0 �/5 ˝R.�16/ ! S2;1.A0 �/˝ .detA0 �/3 ˝R.�12/ !
S2.A0 �/˝ .detA0 �/2 ˝R.�8/ ! R ! OZ0 ! 0:

We set M to be a certain twist of the cokernel of ', namely, we have the
presentation

A0 ˝ .detA0 �/3 ˝R.�8/ ! A0 � ˝ .detA0 �/˝R.�4/ ! M ! 0:

For P 2 X 0 nZ0, 'P has corank 1, so MP Š OX 0;P . For P in the open orbit of
Z0, then 'P has corank 2, so MP is minimally generated by 2 elements.

Lemma 2. There is a G0-equivariant OX 0-linear isomorphism S2M Š IZ0;X 0 .

Proof. The proof is similar to the proof of Lemma 2. ut
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The other codimension 3 orbit closureZ0
2 can be described as maps spin.B/� !

A0 whose kernel contains a nonzero pure spinor. This variety fails to be normal, and
the minimal free resolution of its normalization is

0 ! detA0 ˝ S5A0 ˝R.�8/ ! detA0 ˝ S3A0 ˝ B ˝R.�6/
! detA0 ˝ S2A0 ˝ spin.B/� ˝R.�5/ ! R˚ detA0 ˝ spin.B/

˝R.�3/ ! eOZ0

2
! 0:

We define X , Z , Z2, and M to be the global versions of X 0, Z0, Z0
2 and M .

9.2 Geometric Data from a Section

Now choose a section v 2 U gen and set X D v.P.A//\ X and Z D v.P.A//\ Z .

Lemma 3. v.P.A//\ Z2 D ¿.

Proof. Since eOZ0

2
is a perfect module, we can specialize its resolution by replacing

A0 by Q, so that we get a complex

0!S5Q�.�1/!S3Q� ˝B.�1/!S2Q� ˝spin.B/�.�1/ ! OP3 ˚spin.B/.�1/:

If v.P.A// \ Z2 is nonempty, then it consists of finitely many points. But taking
sections above, we get an exact complex. Hence the intersection is empty. ut

From Lemma 2, we get a OX -linear map �WS2M ! OX , which gives an OX -
algebra structure on OX ˚M. We set OeX D SpecOX

.OX ˚M/ and let W eX ! X

be the structure map.
Define U smC to be the subset of U sm where M is minimally generated by 2

elements along Z.

Theorem 4. If v 2 U smC, then eX is an Abelian surface and L D �OX.1/ is an
indecomposable .2; 2/-polarization.

Proof. The proof is similar to the proofs in Sect. 6.2. ut
From (9.1), we also get a symmetric matrix

'vW Q ! Q� ˝ .det Q/2: (9.6)

9.3 Quadratic Complexes

Here is another approach:

• G=P D Gr.2; A/.
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• U D Q2 ˝ spin.B/.
• U 0 D C2 ˝ spin.10/.
• G0 D .GL2.C/ � Spin10.C//=f .x; x�1/ j x 2 C� g.

There is a G0-invariant quartic hypersurface in U 0. Given v 2 U sm, the
corresponding degeneracy locus is a smooth section Q of O.2/.

Proposition 5. Q is the quadratic complex associated to the symmetric matrix (9.6)
constructed in the previous section.

Proof. There is a GL.A/-equivariant isomorphism

kW H0.Gr.2; A/I .det Q2/
2/ ! H0.P.A/IS2.Q�/˝ .det Q/2/

constructed in [44, Sect. 8] which associates to a quadratic complex (i.e., section in
the domain above) to a symmetric matrix Q ! Q� ˝ .det Q/2 whose determinant
is the equation of a Kummer surface. Since both sides are isomorphic to the
irreducible GL.A/-representation S2;2A, this map is uniquely determined up to
scalar. In the previous section and in the construction above, we have constructed
two GL.A/-equivariant maps S4.A ˝ spin.B// ! S2;2A. Since S2;2A appears in
S4.A ˝ spin.B// with multiplicity 1, this map is also unique up to scalar. Hence,
the diagram

S4.A˝ spin.B//

�� �����
����

����
����

�

H0.Gr.2; A/I .det Q2/
2/

k
�� H0.P.A/IS2.Q�/˝ .det Q/2/

commutes (up to possibly nonzero scalar ambiguity), which proves our claim. ut

9.4 Doing Calculations

Again, we have written code in Macaulay2 for calculating the quadratic complex
in affine trivializations in P3, but it is too messy to include. We instead explain the
concepts behind the calculation.

We will explicitly calculate the symmetric matrix Q ! Q� ˝ .det Q/2 starting
with v 2 A˝ spin.B/. First, note that this symmetric matrix is a section of S2Q� ˝
.det Q/2 � S2A� ˝ .det Q/2, and the space of sections of the latter is S2A� ˝
S2;2;2A D S2A� ˝ S2A� ˝ .detA/2.

First, we have S2;2A� � S4.A� ˝ spin.B/�/. This is a 20-dimensional space
of quartics which is described explicitly in [29, Sect. 3] by the polynomials
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P.x; y; z;w/. More specifically, a basis is given by those x; y; z;w such that x � y,

x < z, y < w, z � w, and 1 � x; y; z;w � 4, i.e., such that T D x y

z w
is a

semistandard Young tableau. Abbreviate this polynomial by PT . Let QT 2 S2;2A
be the dual basis vectors.

Then given v, we can produce the element pv D P
T PT .v/QT 2 S2;2A D

S2;2A� ˝ .detA/2. The inclusion �W S2;2A� ! S2A� ˝ S2A� is defined by

x y

z w
7! 2.xy ˝ zw C zw ˝ xy/� .xz ˝ yw C xw ˝ yz C yw ˝ xz C yz ˝ xw/:

So �.pv/ 2 S2A� ˝ S2A� ˝ .detA/2. Identifying the latter S2A� ˝ .detA/2 as
sections of .det Q/2, this can be interpreted as a 4�4 symmetric matrix whose entries
are quadrics on P3. Let z1; z2; z3; z4 be homogeneous coordinates. Delete the last row
and column of this matrix. This gives the symmetric matrix Q ! Q� ˝ .det Q/2
over the affine open set z4 D 1. Take the ideals defined by the i � i minors of this
matrix for i D 3; 2 and saturate with respect to z4 to get homogeneous ideals for the
degeneracy loci.

Acknowledgements We thank Manjul Bhargava, Igor Dolgachev, Wei Ho, Steven Kleiman, Bjorn
Poonen, and Jack Thorne for helpful discussions and Damiano Testa for explaining the proof of
Theorem 1. We also thank Igor Dolgachev for pointing out numerous references related to this
work. Finally, we thank an anonymous referee for making some suggestions.

We also thank Federico Galetto and Witold Kraśkiewicz for assistance with some computer
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38. Kraśkiewicz, W., Weyman, J.: Geometry of orbit closures for the representations associated to

gradings of Lie algebras of types E6, F4 and G2. preprint. http://arxiv.org/abs/1201.1102v2
39. van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE, a package for Lie group computations,

version 2.2.2. http://www-math.univ-poitiers.fr/maavl/LiE/
40. Looijenga, E.: Cohomology of M3 and M1

3. Mapping class groups and moduli spaces
of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), pp. 205–228. Contemporary
Mathematics, vol. 150. American Mathematical Society, Providence, RI (1993)

41. Maschke, H.: Aufstellung des vollen Formensytems einer quaternären Gruppe von 51840
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F-Purity, Frobenius Splitting, and Tight Closure

Melvin Hochster

1 Introduction

I became interested in the study of F-purity and F-splitting in the interval 1967–1973
while I was at the University of Minnesota. My colleague Jack Eagon and I did
work on the properties of determinantal rings (discussed briefly in Sect. 2, Example
(13)): see [13]. This led to work, joint with Joel Roberts [14], on proving that
rings of invariants of linearly reductive groups acting on regular rings are Cohen–
Macaulay, and ultimately to a further study of F-purity [15]. At the same time I
became interested in the local homological conjectures. Irving Kaplansky sent me
an early preprint of the joint thesis of Peskine and Szpiro, [28], which was a great
source of inspiration for me. I became interested in a number of splitting questions
[8, 11], in the technique of reduction to characteristic p and in the existence of big
Cohen–Macaulay modules and algebras [9, 10, 12, 18, 21]. This led in turn to the
development of tight closure theory [16, 17, 19, 20, 22] in joint work with Craig
Huneke that began in the fall of 1986. I will return to these themes below.

2 Pure and Split Extensions

Throughout, R is a commutative, associative ring with 1. A homomorphism of R-
modules ˛ W N ! M is called pure if W ˝R N ! W ˝R M is an injective
map for every R-module W . Since we may take W D R, we have, in particular,
that N ! M must be injective. If N is a direct summand of M , i.e., if there is a
splitting ˇ W M ! N such that ˇ ı ˛ D idN , then N ! M is pure. If M=N is
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finitely presented, then N ! M is pure if and only if N is a direct summand of
M . Thus, if R is Noetherian, N ! M is pure if and only if it is a direct limit of
split extensions N ! M0, since M is the directed union of its submodules finitely
generated over N (this is true even when R is not Noetherian, although the maps
M0 ! M need not be injective in that case). For more details on purity, see [21],
pp. 48–50.

A ring extension R ! S is called split (respectively, pure) if R ! S is split
(respectively, pure) as a map of R-modules. When this holds, if G� is any complex
of R-modules, the maps G� ! S ˝R G� are split (respectively, pure), and so are
the induced maps of homology or cohomology between the two complexes.

If R has prime characteristic p > 0, R is F -split (respectively, F-pure) if the
Frobenius endomorphism FR D F W R ! R is split (respectively, pure). If either
condition holds, R is reduced. When R is reduced, the maps F W R ! R, F.R/ ,!
R, and R ,! R1=p are isomorphic maps.

Examples

1. If R ! S is faithfully flat, it is pure.
2. Splitting and purity for ring homomorphisms are both preserved by composi-

tion.
3. Any map of fields K ! L is split over K since 1 is part of a free basis for L.
4. If R ! S is split, say by a map ˛ W S ! R, then RŒx1; : : : ; xn� !

SŒx1; : : : ; xn� is split, and this is also true for the R-algebra map that sends
xi 7! x

mi
i , 1 � i � n. One may send the term cx

a1

1 � � � xan
n for c 2 S to 0 unless

for all i , ai is divisible by mi and to ˛.c/x
a1=m1

1 � � � xan=mn
n when mi jai for all i .

5. In particular, a polynomial ring over a field K is F-split. If ˛ splits FK W K !
K , one may construct a splitting ˇ as follows: for each monomial � in the xj ,
ˇ.c�/ D 0 unless � D �p is a p th power, and then ˇ.c�p/ D FK.c/�.

6. The quotient of the polynomial ring KŒx1; : : : ; xn� by an ideal I generated
by square-free monomials is F-split. The map ˇ described above induces a
splitting.

7. Similarly, let G be a finite group of permutations of the variables x1; : : : ; xn.
The ring of invariants RG is spanned over K by sums of orbits of monomials.
Again, the map ˇ described above induces a splitting. The ring RG is normal
but not necessarily Cohen–Macaulay.

8. If R is a normal domain of equal characteristic 0, every module-finite extension
S of R is split. One can kill a minimal prime of S disjoint from R � f0g, so
that both are domains. Let K ,! L be the induced map of fraction fields and
trL=K W L ! K be field trace. Let d D ŒL W K�. Then the restriction of 1

d
trL=K

to S is an R-module retraction S ! R, i.e., yields a splitting.
9. If R is regular of equal characteristic, then every module-finite extension of R

is split. See [Ho2]. This is conjectured to be true in mixed characteristic, where
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it is easy in dimension � 2, known in dimension 3 [5], and an open question in
dimension � 4.

10. In particular, in characteristic p > 0, every regular ring is F-pure. Let S be a
ring of characteristic p. If I � S , and q D pe is a power of p, then I Œq� denotes
the ideal .sq W s 2 I /S generated by all q th powers of elements of I (it suffices
to use q th powers of generators of I ). The following result of Richard Fedder
is called Fedder’s criterion for F-purity: in characteristic p > 0, if .S; m/

is regular local, or else a polynomial ring over a field and its homogeneous
maximal ideal, and I is a proper ideal of S (I is assumed to be homogeneous
in the polynomial ring case), then S=I is F-pure if and only if I Œp� W I 6� mŒp�.
Cf. Theorem 1.12 in [2].

11. We can apply Fedder’s criterion to understand what happens for the cubical
cone R D KŒX; Y; Z�=.X3 CY 3 CZ3/ over a field K of characteristic p > 0,
where p 6D 3. Let S D KŒX; Y; Z�, the polynomial ring. Fedder’s criterion
asserts that R is F-pure if and only if .X3 C Y 3 C Z3/p WS .X3 C Y 3 C
Z3/ 6� .Xp; Y p; Zp/, i.e., if and only if .X3 CY 3 CZ3/p�1 62 .Xp; Y p; Zp/.
When we expand the left-hand side, a typical term is

�
p�1
i j k

�
X3i Y 3j Z3k where

i C j C k D p � 1. The multinomial coefficient
�

p�1

i j k

� D .p � 1/Š=i Šj ŠkŠ

does not vanish. If p has the form 3h C 2 then at least one of i; j; k is � h C 1,
and when we multiply by 3 we get an exponent that is � p. Hence, Fedder’s
criterion shows that R is not F-pure when p � 2 mod 3. When p D 3h C 1

there is a nonzero term that is a multiple of x3hy3hz3h, where i D j D k D h,
and so Fedder’s criterion shows that R is F-pure if and only if p � 1 mod 3.

The following three examples all use the fact that the rings considered are weakly
F-regular (and, for that matter, strongly F-regular): see Sect. 7 and the results of [7]
(for (12)) and [20] (for (13) and (14)). Moreover, all of the rings in these three
examples split from every module-finite extension. See Sect. 7 and [20].

12. A normal K-subalgebra R of a polynomial ring KŒX1; : : : ; Xn� such that R is
generated over the field K by monomials in the variables X1; : : : ; Xn is F-split
in characteristic p.

13. If K has prime characteristic p > 0, X is an r � s matrix of indeterminates
over K , 1 � t � min fr; sg, and It .X/ denotes the ideal generated by the t � t

minors of X , which is prime (cf. [13]) then KŒxij �=It .X/ is F-split.
14. With the same notation as in (13), if S denotes the subring of KŒxij � generated

by the r � r minors of X , which is the homogeneous coordinate ring of a
Grassmann variety, then S is F-split.

When R � S is pure, it is always true that for every ideal I � R, IS \ R D I :
this follows because R � S remains injective after one applies R=I ˝R . When
R is Noetherian, the converse is true under mild conditions on R: see [11].
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3 Review of Local Cohomology

Several of the applications of F-splitting techniques that we discuss in the sequel
make use of basic results about local cohomology. In this section we give a brief
review of what we need. The reader may consult [4] for a detailed treatment. Let R

be a Noetherian ring, I an ideal, and M be an R-module, which need not be finitely
generated. Then we may take as a definition that

H i
I .M / D lim�! t ExtiR.R=I t ; M /:

The ideals I t may be replaced by any decreasing sequence of ideals cofinal with
the powers of I , and these modules depend only on Rad.I /. If f1; : : : ; fh generate
an ideal with the same radical as I , these modules are also the cohomology of the
complex

0 ! M !
M

i

Mfi !
M

i1<i2

Mfi1 fi2
! � � � !

M

i1<���<it

Mfi1 ���fit
! � � �

! Mf1���fh
! 0; (�)

which is the same as the tensor product of M with the total tensor product of all of
the complexes 0 ! R ! Rfi ! 0. If we omit M and start the numbering with
˚Mi we have the Čech complex on U D Spec.R/ � V.I / of the sheaf M �jU with
respect to the affine open cover given by the sets D.fi /. If I � R, S is a Noetherian
R-algebra, and M is an S -module, we may view M D RM as a module over R by
restriction of scalars. In this case H i

I .RM / Š H i
IS .SM /.

If R and M are Z-graded and I is homogeneous we may choose the f1; : : : ; fn to
be homogeneous. Every term in the complex .�/ is Z-graded, and the maps preserve
the grading. Thus, we get a Z-grading on the local cohomology modules that turns
out to be independent of which homogeneous generators f1; : : : ; fn we choose.

Also note that if M is an R-module and we denote by eM the R-module obtained
by restricting scalars via the map F e W R ! R (so that for u 2 eM , the value of
r � u is rpe

u), then H i
I .eM / Š eH i

I .M /. To see why, denote by S the target copy of
R when one applies F e . Think of M as an S -module. Then eM is obtained from M

by restriction of scalars, and H i
I .RM / Š RH i

IS.M / Š RH i
. I Œpe �.M / D RH i

I .M /,

since I Œpe � and I have the same radical.
When R has prime characteristic p > 0, there is a natural action of the Frobenius

endomorphism F of R on H i
I .R/. One way to think of this is to think of the map

F W R ! R as a map R ! S , where S D R. Then F W R ! S induces a
map H i

I .R/ ! H i
I .S/ Š H i

IS.S/ Š H i
I Œp� .R/ Š H i

I .R/ since I Œp� has the same
radical as I , and this map F W H i

I .R/ ! H i
I .R/ is the action of F that we want.

It has the property that F.ru/ D rpF.u/ for all r 2 R and u 2 H i
I .R/. When R

is Z-graded and I is homogeneous, the action of F on H i
I .R/ is such that if u is

homogeneous of degree d 2 Z, then F.u/ has degree pd . Hence, F e.u/ has degree
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ped . If F W R ! R splits or is pure, the action of F is injective. This is critically
important in the sequel.

Note that every element of every H i
I .M / is killed by some power of I .

When M is Noetherian and IM 6D M , the first nonvanishing H i
I .M / occurs

when i D d , the depth of M on I .
Now suppose that M is finitely generated and m is a maximal ideal of R. Then

the modules H i
m.M / are Artinian modules, and since every element is killed by a

power of m, they may be viewed as modules over Rm or even over its completion.
If .R; m/ is local and M 6D 0 is finitely generated, then H i

m.R/ is nonzero when i

is the depth of M on m and when i D dim.M /. It vanishes if i is smaller than the
depth of M or larger than dim.M /. Hence, M 6D 0 is Cohen–Macaulay over .R; m/

if and only if it has a unique nonvanishing local cohomology module H i
m.M /, which

occurs when i is the depth of M on m or, equivalently, the dimension of M .
If .R; m/ is regular local (or Gorenstein) of Krull dimension n, then E D H n

m.R/

is an injective hull for the residue class field K D R=m. In this case, we have local
duality: if M is finitely generated, for all i , H i

m.M / Š Extn�i
R .M; R/_, where _

denotes HomR. ; E/.

An important consequence of local duality is the following:

Lemma 1. Let .R; m/ be a Gorenstein local ring of Krull dimension n and let
M 6D 0 be a finitely generated R-module of pure dimension d . Suppose that MP

is Cohen–Macaulay for every prime P of R in its support different from m. Then
H i

m.M / has finite length for every i < d D dim.M /. In particular, this holds when
M 6D 0 is finitely generated and torsion-free over R=Q for some prime Q of R if
M is Cohen–Macaulay when localized at any proper prime in its support.

This follows from the fact that this local cohomology module H i
m.M / is the

Matlis dual of N D Extn�i
R .M; R/, and so it suffices to show that N has finite

length for i < d . Since N is finitely generated, we need only show that N is not
supported at any prime P 6D m in the support of M . But NP Š Extn�i

RP
.MP ; RP /

which, by Matlis duality over RP , will vanish if and only if H
h�.n�i /
PRP

.MP / D 0,
where h D dim.RP / the height of P . Since MP is a Cohen–Macaulay module over
RP of pure dimension h � .n � d/ (the height of its annihilator does not change
when we localize at P , and that height is n � d ), it has only one nonvanishing local
cohomology module, namely H

h�.n�d//
PRP

.MP /. Since i < d , H
h�.n�i /
PRP

.MP / D 0,
as required. ut

We also note the following fact, which connects local cohomology with coho-
mology of sheaves on projective spaces.

Proposition 2. Let K be a field and let R be a finitely generated N-graded K-
algebra of Krull dimension n such that ŒR�0 D K and R is generated by the
vector space ŒR�1 of forms of degree one. Let M be a finitely generated Z-graded
R-module, and let M denote the corresponding sheaf on X D Proj.R/, so that
if f 2 m, the homogeneous maximal ideal of R, then �.Xf ; M/ D ŒMf �0.
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Then for i � 1, H i .X; M/ Š ŒH iC1
m .M /�0. More generally, for every t 2 Z,

H i .X; M.t// Š ŒH iC1
m .M /�t .

If, moreover, R is a domain of positive dimension and M is a nonzero torsion-free
R-module then the following conditions are equivalent:

(1) M is Cohen–Macaulay.
(2) H i

m.M / D 0, 0 � i < dim.R/.
(3) If n � 2, M has depth at least two on m and for all t 2 Z, H i .X; M.t// D 0,

1 � i < dim.X/.

Proof. Let f1; : : : ; fn be a homogeneous system of parameters for the N-graded
ring R, so that I D .f1; : : : ; fn/R is primary to the homogeneous maximal ideal
m. Then H �

m.M / D H �
I .M / is the cohomology of the complex .�/ displayed

in the first paragraph of this section. If we drop the first term of this complex,
shift the numbering by one, and take the degree 0 part, we get the Čech complex
for computing the cohomology of the sheaf M. This yields that H i .X; M/ Š
ŒH iC1

I .M /�0 for i � 1. The final statement follows if one applies this fact to
M.t/ (M with the grading shifted so that ŒM.t/�s D ŒM �sCt : the sheaf on X

corresponding to M.t/ is M.t/).
In the graded case, to check that M is Cohen–Macaulay of maximum dimension,

it suffices to check that depthmM D dim.R/ and the depth is the same as the
smallest integer d such that H d

m.M / 6D 0. Since d � n in any case, we have
that (2) is the equivalent to the Cohen–Macaulay property, while (3) is equivalent to
(2) by the first part of the proposition. ut

4 Proving that Rings Are Cohen–Macaulay

One of the motivations for studying F-pure and F-split rings is the following fact:

Theorem 1. Let R be a domain that is finitely generated over a field K of
characteristic p > 0 and that is generated by its forms of degree 1. Suppose
that R has depth at least two on m (which holds, e.g., if R is normal), is Cohen–
Macaulay when localized at a prime other than maximal ideal, and is F-pure. Let
Proj.R/ D .X; OX /. Then R is Cohen–Macaulay if and only if H i .X; OX / D 0,
1 � i < dim.X/.

Proof. We may assume that R 6D K , since K is Cohen–Macaulay, and so dim.R/ �
1. We know that the depth is at least two, and so it suffices to show that H iC1

m .R/ D
0 for 1 � i < dim.R/�2. Since R is Cohen–Macaulay when localized at any prime
P except m, we know that H iC1

m .R/ has finite length for all i in the specified range.
Hence ŒH iC1

m .R/�t D 0 whenever jt j 	 0. But the Frobenius endomorphism F and,
hence, all of its iterates F e act injectively on the local cohomology modules since
R is F-pure. These modules are Z-graded and F e W ŒH iC1.R/�t ! ŒH iC1.R/�pet .
The latter vanishes for e 	 0 if t 6D 0, and this shows that ŒH iC1.R/�t D 0 for 1 �
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i � dim.R/ � 2 if t 6D 0. But ŒH iC1.R/�0 D H i .X; OX / D 0 for i in the specified
range by hypothesis, and so ŒH iC1.R/�t D 0 for all t for 1 � i � dim.R/ � 2, as
required. ut

The original proof of the following result, first established in [14], utilized a
variant of this result. First note that when we say that an algebraic group G acts
rationally on a K-vector space, we mean that the vector space is a directed union of
finite-dimensional G-stable subspaces V such that the group action on V is given by
a regular map G � V ! V . For example, if G acts rationally on the vector space of
one-forms in a polynomial ring S over K , the action extends uniquely to a rational
action of G on S .

Theorem 2 (Hochster–Roberts). Let G be a linearly reductive linear algebraic
group over a field K acting rationally, by K-algebra automorphisms, on a Noethe-
rian K-algebra S . Then R D SG , the ring of invariants, is Cohen–Macaulay.

This is very largely a theorem about equal characteristic 0, because there are
very few linearly reductive groups in positive characteristic: there are finite groups
of order invertible modulo p, products of GL.1; K/ (called algebraic tori), and
groups obtained from these by extension. In equal characteristic 0, one has the
classical groups (cf. [33]) which have many interesting representations with rings
of invariants that are of considerable importance in algebraic geometry. In addition
to finite groups and algebraic tori, the semisimple groups (which include the special
linear, special orthogonal, and symplectic groups) are linearly reductive.

The proof of the theorem uses the fact that if G is linearly reductive and acts
on S as in the theorem, there is a canonical R-module retraction S ! SG D
R, called the Reynolds operator. But there are some rather subtle points in the
argument. Although R ! S is a split extension, this is not true when one passes to
characteristic p—it is often false for every p.

For example, let X be a 2 � 3 matrix of indeterminates and let A 2 SL.2;Q/

act on the polynomial ring QŒX� in these indeterminates by mapping the entries of
X to the entries of A�1X . Let �1; �2; �3 denote the 2 � 2 minors of X . Then
SG D QŒ�1; �2; �3� is the ring of invariants, and there is an R-module retraction
S ! R. However, in characteristic p > 0, .Z=pZ/Œ�1; �2; �3� ! .Z=pZ/ŒX�

does not split over .Z=pZ/Œ�1; �2; �3� for any prime p > 0. This means that if
one restricts the canonical splitting QŒX� ! QŒ�1; �2; �3� to ZŒX�, it takes on
values in such a way that every prime p 2 Z is needed in the denominator in at least
one of its values!

In fact, if
.Z=pZ/Œ�1; �2; �3� ! .Z=pZ/ŒX�

were split then, if we let I D .�1; �2; �3/, the map of local cohomology

H 3
I

�
.Z=pZ/Œ�1; �2; �3�

� ! H 3
I

�
.Z=pZ/ŒX�

�
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would be injective. Since the former is not 0, this would imply that H 3
I

�
Z=pZ/�X�

�

6D0. But this local cohomology module is 0 by a result of Peskine and Szpiro [28]
that we discuss in the next section.

In the original proof of the Hochster–Roberts theorem one uses induction on
the dimension to reduce to the case of a supposed counterexample of minimum
dimension. One can then pass to associated graded rings to get a counterexample in
which G acts linearly on a polynomial ring S over a field. From the minimality, one
can assume that R is Cohen–Macaulay except when localized at its homogeneous
maximal ideal. One then makes use of reduction to characteristic p. Although one
cannot preserve the splitting of R ! S as one passes to characteristic p > 0,
one can preserve finitely many consequences of the fact that one has a splitting.
This is enough to imitate the argument in the characteristic p result stated at the
beginning of this section, and thus one is able to show that for t 6D 0, the graded
components of ŒH i

m.R/�t for i < dim.R/ vanish. One is left with the problem of
studying the component in degree 0. Since it is easy to see that R is normal, what
one needs to show is that with Proj.R/ D .X; OX /, one has that H i .X; OX / D
0, 1 � i < dim.X/. Again, one uses reduction to characteristic p, but for this
argument, one needs the fact that the Frobenius endomorphism is flat in a regular
ring of characteristic p > 0. In retrospect, the argument given can be seen to be a
precursor of tight closure theory, which is discussed in Sect. 7.

Kempf [23] gives a different treatment of the theorem. Boutot [1] showed
that if R; S are affine algebras over a field of characteristic such that S rational
singularities and R ! S is split, then R has rational singularities. There is a
brief treatment of rational singularities in [24], pp. 49–52. Boutot’s argument uses
a characterization of rational singularities in [24] that depends on the Grauert–
Riemenschneider vanishing theorem [3].

Tight closure theory has been used to give substantial generalizations of the
Hochster–Roberts theorem: see Sect. 7.

Here is another early application of Frobenius splitting ideas to proving that
certain rings are Cohen–Macaulay. Let † be a finite simplicial complex with vertices
x1; : : : ; xn. This simply means that † is a set of subsets of x1; : : : ; xn closed under
passing to subsets and containing each of the sets fxi g. The elements � of † are
called simplices. The dimension of the simplex � is one less than the number of
vertices in � , and the dimension of † is the largest dimension of any of its simplices.
Let e1; : : : ; en be the standard basis for Rn. We can establish a bijection of the xi

with the ei by letting xi correspond to ei , 1 � i � n, and, hence, between the
simplices of † and a set of subsets of fe1; : : : ; eng. The geometric realization j†j
of † is the topological subspace of Rn which is the union of the convex hulls of
the subsets of e1; : : : ; en corresponding to simplices in †. Note that † is a compact
topological space. The link of � 2 † is the simplicial complex consisting of all
	 2 † disjoint from � such that 	 [ � 2 †. If � D fxig, the union of all the
simplices of † that contain xi is a cone with vertex xi over the link of fxig.

To a simplicial complex † one can associate the Stanley–Reisner ring or face
ring over the field K , KŒx1; : : : ; xn�=I†, where I† is generated by all square-free
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monomials in the indeterminates x1; : : : ; xn such that the set of variables that occurs
is not a simplex in †. The following characterization of when KŒx1; : : : ; xn�=I† is
Cohen–Macaulay is given in [29]. Note that the reduced simplicial cohomology of
† with coefficients in K agrees with the simplicial cohomology over K in positive
degree (the simplicial cohomology is the same as, say, the singular cohomology of
j†j with coefficients in K). In degree 0, if H 0.†I K/ has dimension r > 0, the
reduced simplicial cohomology eH 0.†I K/ has dimension r � 1, so that it vanishes
when j†j is connected.

Theorem 3 (G. Reisner). Let K be a field, and let † be a finite simplicial complex.
Then the Stanley–Reisner ring KŒx1; : : : ; xn�=I†, where, as above, KŒx1; : : : ; xn�

is a polynomial ring in variables corresponding to the vertices of †, is Cohen–
Macaulay if and only if the following two conditions hold:

(1) The reduced simplicial cohomology eH i .†I K/ of † with coefficients in K

vanishes for i < dim.†/.
(2) The reduced simplicial cohomology eH i.ƒI K/ of every link ƒ of every simplex

of † vanishes for i < dim.ƒ/.

This characterization, combined with results of Macaulay on the Hilbert func-
tions of graded Cohen–Macaulay rings, was used by Richard Stanley [32] to prove
the upper bound conjecture for simplicial polytopes. Munkres [27] showed that
Reisner’s conditions actually constitute a purely topological condition on †.

Sketch of the Proof. The case where the field has characteristic 0 can be proved
by reduction to characteristic p. The original proof in characteristic p > 0

used the fact that Stanley–Reisner rings are F-split. The condition on the links
implies, by induction, that the Cohen–Macaulay property holds except possibly
at the homogeneous maximal ideal. One can conclude that the local cohomology
is of finite length except in the top dimension. There is a Z

n-grading (or grading
by monomials) on R=I†, on m, and hence on the local cohomology modules
H i

m.R=I†/. The action of Frobenius multiplies multi-degrees by p and is injective
because of the F-split condition. It follows that any multi-graded component in
which any of the n coordinates of the degree is nonzero must vanish. Therefore
one can reduce the problem to the vanishing of the local cohomology modules
in degree .0; 0; : : : ; 0/, and so one can use the degree .0; 0; : : : ; 0/ part of the
complex displayed in .�/ in the first paragraph of Sect. 3, with M D R=I† and the
fj are taken to be the images of the xj , to calculate it. This turns out to be the same
complex used to calculate the reduced simplicial cohomology of †. ut

5 Some Results of Peskine and Szpiro

The joint work of Peskine and Szpiro in [28] had an enormous influence: they
used techniques involving the application of the Frobenius endomorphism to
prove several local homological conjectures due to M. Auslander and H. Bass in
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characteristic p, introducing conjectures of their own in the process. They also
obtained many equal characteristic cases by reduction to characteristic p > 0.
See also [10], where the existence of big Cohen–Macaulay modules is proved by
reduction to characteristic p > 0 and then applied to settle the same conjectures in
equal characteristic. Many of their results depend on the fact that Frobenius is flat
relative to modules of finite projective dimension. (See also [6].) This means that if
we write S for R viewed as an R-algebra via a power F e (under composition) of
the Frobenius endomorphism and M is an R-module of finite projective dimension,
then TorR

i .M; S/ D 0 for all i � 1. This may be viewed as a generalization of
the fact that S is R-flat when R is regular. In fact, the flatness of F W R ! R is
equivalent to the regularity of R: cf. [25].

Because of its remarkably simple proof via Frobenius techniques we want to
discuss one further result of [28], which was applied in Sect. 4 to show that certain
rings of invariants are not direct summands of (nor pure in) polynomial rings in
characteristic p.

Theorem 4 (C. Peskine and L. Szpiro). Let R be a regular domain of prime
characteristic p > 0 and I an ideal of R such that R=I is Cohen–Macaulay. Let h

denote the height of I . Then H
j
I .R/ D 0 for j > h.

Proof. The fact that F e W R ! R D S is flat implies that S ˝R R=I D
R=I Œpe� is Cohen–Macaulay for all e. But then there is a unique nonvanishing
ExtjR.R=I Œpe�; R/ for all e, occurring when j D h. Since the local cohomology
may be obtained as the direct limit of these, it follows that H

j
I .R/ D 0 except when

j D h. ut

6 Small Cohen–Macaulay Modules

It is known (cf. [10, 18, 21]) that over every equal characteristic local ring .R; m/,
there is a module (even an algebra) B such that mB 6D B and every system
of parameters for R is a regular sequence on B . B is called a big Cohen–
Macaulay module (respectively, algebra) for R. This was first proved by reduction
to characteristic p in [10], and all known proofs require reduction to characteristic
p. This is an open question in mixed characteristic in dimension 4 and higher. (The
dimension 3 case is settled using the results of [5] in [12].)

It has long been an open question whether, under mild conditions on a local
ring .R; m/ (e.g., if R is excellent), there exists a Cohen–Macaulay module that is
finitely generated (hence, the use of the word “small”) whose dimension is the same
as dim.R/. In this section we give an application of Frobenius splitting techniques
to proving the existence of small Cohen–Macaulay modules in characteristic p >

0 in certain instances. The argument was first given by R. Hartshorne and later
rediscovered independently first by C. Peskine and L. Szpiro and later by the author.
(The argument is given, e.g., in [9].) For simplicity, we have not attempted to state
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the most general form of the result here. But the question remains open even for
N-graded affine algebras over a field of characteristic 0 in dimension 3, and it is an
open question for local rings of affine algebras over a field of characteristic p > 0

in dimension 3.

Theorem 5 (Hartshorne). Let R be a finitely generated N-graded domain over a
perfect field K of characteristic p > 0 with ŒR�0 D K . Let M be a finitely generated
N-graded R-module that is torsion-free over R, and suppose that MP is Cohen–
Macaulay over RP for every prime ideal P of R except possibly the homogeneous
maximal ideal m. Then R has a graded finitely generated module N that has depth
equal to the dimension of R.

Sketch of the Proof. We may assume that R has positive dimension and is graded
so that ŒR�i 6D 0 for all i 	 0, and then the same will be true for M . The fact that
MP is Cohen–Macaulay for P 6D m implies, that the local cohomology modules
H i

m.M / have finite length for i < d D dim.R/ by the Lemma in Sect. 3 (R is
a homomorphic image of a Gorenstein ring). Let F e W R ! R, and consider M

as module over the right-hand copy of R. Restriction of scalars produces a module
eM over the left-hand copy of R as in the fourth paragraph of Sect. 3. The grading
on M enables us to split eM into the direct sum of pe nonzero R-modules Nj ,
0 � j < pe , where

Nj D
M

i�j mod pe

ŒM �i :

Let B denote the sum of the lengths of the H i
m.M / for i < dim.R/. We claim that

for all e so large that pe > B , at least one of the modules Nj is Cohen–Macaulay.
For consider the sum of the lengths Lj of the local cohomology modules H i

m.Nj /

for i < dim.R/. All we need to show is that at least one Lj is 0. But the total of the
Lj is the same as the sum of the lengths of the H i

m.eM / for i < dim.R/, and, as
noted in Sect. 3, H i

m.eM / D eH i
m.M /, and, because K is perfect, this has the same

length as H i
m.M /. But then

Ppe�1
j D0 Lj D B . Since pe > B , at least one of the Lj

must be zero. ut

7 Tight Closure and Splinters

We give here the very brief introduction to tight closure theory, which has many
interconnections with questions about F-splitting and F-purity.

Throughout this section, R is an excellent ring. In characteristic p > 0, u is
defined to be in the tight closure of an ideal I of R if there is an element c 2 R not
in any minimal prime such that cupe 2 I Œpe � for all e 	 0. This holds if and only if
it holds modulo every minimal prime of R. We focus primarily on the case where R

is a domain. In that case, c is simply required to be nonzero. For the characteristic
p > 0 theory see [16, 17, 19, 20, 22, 31].
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Tight closure may also be defined in finitely generated Q-algebras as follows: if
R is such an algebra, u 2 R, and I � R, we say that u is in the tight closure of J

in R if there is a domain R0 � R finitely generated over Z such that u 2 R0, and
an ideal I � J \ R0 such that the image of u is in the tight closure of IR0=pR0 in
R0=pR0 for all but finitely many prime integers p. One can then extend the theory
to all excellent Noetherian rings containing Q as follows: u is in the tight closure of
J in R if there exists a finitely generated Q-algebra A and ideal I � A, an element
t 2 A in the tight closure of I , and a homomorphism A ! R such that t 7! u and
I maps into J . This notion is called equational tight closure in [22].

There is also a tight closure theory for submodules of modules.
A ring such that every ideal is tightly closed is called weakly F-regular. If all

localizations of R are weakly F-regular, R is called F-regular. It is not known
whether weakly F-regular implies F-regular for excellent rings.

In the equicharacteristic case, one has the following for excellent rings:

1. Every ideal of a regular ring is tightly closed.
2. If x1; : : : ; xk is part of a system of parameters in a reduced equidimensional local

ring and rxk 2 .x1; : : : ; xk�1/, then r is in the tight closure of .x1; : : : ; xk�1/.
3. If R is weakly F-regular, then R is Cohen–Macaulay.
4. If R ! S is pure and S is weakly F-regular, then so is R.
5. If R � S is an integral extension, IS \ R is contained in the tight closure of I .
6. If R is weakly F-regular, then R is normal.

These results imply that in the equicharacteristic case, every ring R pure in a
regular ring is Cohen–Macaulay. This is a generalization of the Hochster–Roberts
theorem discussed in Sect. 4. This is an open question in the mixed characteristic
case.

We refer to a Noetherian ring that is a direct summand of every module-finite
extension ring as a splinter. The results of [20] (see Corollary 5.23 and Theorem
5.25 on p. 630) coupled with the results of [11] imply that every weakly F-regular
ring is a splinter and, hence, F-pure. In the Gorenstein case, in characteristic p >

0, the converse is true: splinters are weakly F-regular. This is also true in the Q-
Gorenstein case (cf. [30]). In general, it is known that in positive characteristic a
splinter must be Cohen–Macaulay, but it is an open question whether splinters are
weakly F-regular in general in the Cohen–Macaulay case.

A different point of view connecting splitting questions with tight closure in the
characteristic p > 0 case is the following. Let S be a module-finite extension of a
reduced ring R of characteristic p > 0. From the point of view of Yoneda Ext, the
exact sequence

0 ! R ! S ! S=R ! 0

of finitely generated R-modules represents an element 
 of E D Ext1R.S=R; R/.
If we compute E using a finite projective resolution P� of S=R, then E may be
viewed as a submodule of Q D HomR.P1; R/=Im

�
HomR.P0; R/

�
. Theorem 5.17

of [HH5] yields:
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Theorem 6. With notation and hypotheses as in the paragraph just above, the
element 
 2 Ext1R.S=R; R/ represented by 0 ! R ! S ! S=R ! 0 is in
the tight closure of 0 when regarded as an element of Q. Hence, if R is weakly
F-regular, 
 is 0, and R ,! S splits.

This yields a proof from a different perspective of the fact that weakly F-regular
rings are splinters.

Tight closure is connected with Frobenius splitting in another way. Let R be
Noetherian of characteristic p > 0. R is called F-finite if F W R ! R is module-
finite. F-finite rings are excellent (cf. [26]). An F-finite domain of characteristic p

is called strongly F-regular if for every c 6D 0, the map R ! R1=pe
such that

1 7! c1=pe
splits for all sufficiently large e. See [16, 29]. It is easy to show that

strongly F-regular rings are F-regular. In the F-finite Gorenstein case, weakly F-
regular is equivalent to strongly F-regular. The converse is an open question in the
general case.

The rings discussed in Examples (12), (13), and (14) of Sect. 2 are known to
be strongly F-regular (see [7] for Example (12) and [20], Theorem 7.14, p. 651,
for Examples (13) and (14): note that strong F-regularity follows from weak F-
regularity in these cases because the rings are either Gorenstein or algebra retracts
of F-regular Gorenstein rings) and so split from every module-finite extension. One
can then deduce immediately that all of these rings are F-split.
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Hilbert–Kunz Multiplicity and the F-Signature

Craig Huneke

1 Introduction

Throughout this chapter, .R;m; k/ will denote a Noetherian local ring of prime
characteristic p with maximal ideal m and residue field k. We let e be a varying
non-negative integer, and let q D pe . By I Œq� we denote the ideal generated by
xq , x 2 I . If M is a finite R-module, M=I Œq�M has finite length. We will use
�.�/ to denote the length of an R-module. We assume knowledge of basic ideas
in commutative algebra, including the usual Hilbert–Samuel multiplicity, Cohen–
Macaulay, regular, and Gorenstein rings.

The basic question this chapter studies is how �.M=I Œq�M / behaves as a function
on q, and how understanding this behavior leads to better understanding of the
singularities of the ring R. In a seminal paper which appeared in 1969, [40], Ernst
Kunz introduced the study of this function as a way to measure how close the ring
R is to being regular.

The Frobenius homomorphism is the map F W R �! R given by F.r/ D rp . We
say that R is F-finite if R is a finitely generated module over itself via the Frobenius
homomorphism. It is not difficult to prove that if .R;m; k/ is a complete local
Noetherian ring of characteristic p, or an affine ring over a field k of characteristic
p, then R is F-finite if and only if Œk1=p W k� is finite. When R is reduced we can
identify the Frobenius map with the inclusion of R into R1=p , the ring of pth roots
of elements of R. If M is an R-module, we will usually write M 1=q to denote what
is more commonly denoted F e� .M /, where q D pe , the module which is the same
as M as abelian groups, but whose R-module structure is coming from restriction of
scalars via e-iterates of the Frobenius map. This is an exact functor on the category
of R-modules. Notice that F e� .R/ can be naturally identified with R1=q .
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If the residue field k of R is perfect then the lengths of the R-modules
R1=q=IR1=q and R=I Œq� are the same. If k is not perfect, but R is F-finite, then
we can adjust by Œk1=q W k�. We define ˛.R/ WD logp.Œk1=p W k�/, so that we can
write Œk1=q W k� D q˛.R/. With this notation, �R.R1=q=IR1=q/ D �R.R=I Œq�/q˛.R/.

More broadly, the two numbers we will study, namely the Hilbert–Kunz multi-
plicity and the F-signature, are characteristic p invariants which give information
about the singularities of R and lead to many interesting issues concerning how
to use characteristic p methods to study singularities. There are four basic facts
about characteristic p which make things work. Those facts are first, that .r C
s/p D rp C sp for elements in a ring of characteristic p (i.e., the Frobenius is
an endomorphism); second, that the map from R �! R1=p is essentially the same
map as that of R1=q �! R1=qp when R is reduced and q D pe; third, that

P
i

1
pi

converges (!); and lastly that the flatness of Frobenius characterizes regular rings.
Virtually everything we prove comes down to these interrelated facts.

Throughout this chapter, whenever possible we have tried to give new (or at least
not published) approaches to basic material. This is not done for the sake of whimsy,
but to provide extra methods which may be helpful. Thus, the approach we take to
proving the existence of the Hilbert–Kunz multiplicity and the F-signature, while
following the general lines of the proofs of Paul Monsky [47] and Kevin Tucker
[68], respectively, uses a lemma of Sankar Dutta [20] as a central point, which is
not present in the usual proofs. When we present the proof of the existence of a
second coefficient, we veer from the paper [38] to present another proof, based
on the growth of the length of certain Tor modules, due to Moira McDermott
and this author. In proving the theorem relating tight closure to the Hilbert–Kunz
multiplicity, we use a lemma of Ian Aberbach [1] as a crucial point in the proof
instead of presenting the original proof in [31]. We provide examples of Hilbert–
Kunz multiplicities throughout this chapter, but often do not give details of the
calculation.

We describe the contents of this chapter. In the second section we give some
early results of Kunz on the relationship between regular local rings and the Hilbert–
Kunz function. Kunz was ahead of his time in this regard, though characteristic p

methods in commutative algebra were being using to study various homological
conjectures at around the same time. In section three, we develop basic results
and definitions needed to give our main existence theorems. The main technical
tool we use is a lemma of Dutta [20] which gives information about the nature
of prime filtrations of R1=q . We prove that the Hilbert–Kunz multiplicity exists.
Section four proves that for formally unmixed rings, the Hilbert–Kunz multiplicity
is one if and only if R is regular. Here formally unmixed means that for all
associated primes Q of the completion of a local ring R, dimbR=Q D dim R.
Section five provides the relationship between tight closure and Hilbert–Kunz
multiplicity. In section six we prove that the F-signature exists and do some
examples. Section seven proves the existence of a second coefficient in the Hilbert–
Kunz function for normal rings. The final section takes up lower bounds on the
Hilbert–Kunz multiplicity, introducing the volume estimates due to Watanabe and
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Yoshida [74, 77], as well as the method of root adjunction of Aberbach and Enescu
[6, 7] and recent improvements by Celikbas et al. [18]. We close with some results
of Doug Hanes [29].

This survey does not present the considerable research dealing with the many
remarkable and difficult calculations of Hilbert–Kunz multiplicity. For example,
for work on plane cubics, see Pardue’s thesis, [17, 48]. For plane curves in general
see [66] and for general two-dimensional graded rings either [11] or [65]. For
binomial hypersurfaces, see [19] or [69]. For flag varieties see [25]. The Hilbert–
Kunz multiplicity of Rees algebras was the theme of [24]. Many other important
examples or work are in [11–13, 19, 23, 24, 26, 46–53, 55, 56, 61, 65–68, 73–76]. We
borrow freely from these papers for some of the examples presented in this chapter.
We do not cover many new developments and calculations of the F-signature, for
example, see [9, 10] and for toric rings see [61] and more recently [70]. See [22]
for further extensions of Hilbert–Kunz multiplicity, and [71] for additional work.
We also do not discuss the very interesting work being done on limiting value of
Hilbert–Kunz multiplicities as p goes to infinity, for example, see [14, 26, 67].
For an excellent survey of other numerical invariants of singularities defined via
Frobenius and their relationship to birational algebraic geometry and the theory of
test ideals, see [4, 33, 45, 49, 50, 52, 58, 64, 75].

2 Early History

Ernst Kunz was a pioneer in this study, realizing that studying the colengths of
Frobenius powers of m-primary ideals would be an interesting idea.

Theorem 1 (Kunz [40, Theorem 2.1, Proposition 3.2, Theorem 3.3]). Let .R;

m; k/ be a Noetherian local ring of dimension d and prime characteristic p > 0.
For every e � 0 and q D pe , �.R=mŒq�/ � qd . Moreover, equality holds for some
q if and only if R is regular, in which case equality holds for all q. If R is F-finite,
then R1=q is a free module for some q > 1 if and only if R is regular.

Proof. We may complete R and assume the residue field is algebraically closed
to prove the first statement. We may also go modulo a minimal prime of R to
assume that R is a complete local domain; this change will only potentially decrease
�.R=mŒq�/. We claim that R1=q has rank qd as an R-module in this case. Choose a
coefficient field k and a minimal reduction x1; : : : ; xd of the maximal ideal. Let A

be the complete subring kŒŒx1; : : : ; xd �� which is isomorphic with a formal power
series. Note that A1=q Š kŒŒx

1=q
1 ; : : : ; x

1=q

d ��, which is a free A-module of rank qd ,

whose basis is given by by arbitrary monomials of the form x
a1=q
1 � � � xad =q

d where
0 � ai � q � 1. Since the rank of R over A and the rank of R1=q over A1=q are
the same, it follows that the rank of R1=q over R is exactly qd . (We note that if R

is an F-finite complete domain but the residue field is not perfect, then essentially
the same proof shows that the rank of R1=q is exactly q.dC˛.R//.) Since R1=q is a
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finite R-module, �R.R1=q/ � qd , with equality if and only if R1=q is a free R-
module. However, �R.R1=q/ D �R.R1=q=mR1=q/ D �R.R=mŒq�/, which implies
that �R.R=mŒq�/ � qd . Notice that equality occurs in this case if and only if R1=q is
a free R-module.

If R is regular, then since m is generated by a regular sequence, it easily follows
that �.R=mŒq�/ D qd . The second statement also easily is seen when R is regular
and R is F-finite; one can complete and use the Cohen structure theorem to do
the complete case and then descend using standard facts. It is the converse of both
statements that is the most interesting part of the theorem.

Suppose that equality holds for some q, i.e., �.R=mŒq�/ D qd . We can complete
the ring and extend the residue field to be algebraically closed without changing
this equality, so without loss of generality, R is F-finite and ˛.R/ D 0. Note that
�.R=mŒqn�/ D qnd for all n � 1, by a simple induction.

We claim that R is a domain; for if Q is a minimal prime of R of maximal
dimension, then we have that qnd D �.R=mŒqn�/ � �.R=mŒqn� C Q/ � qnd .
Hence we have equality throughout. But then �.R=mŒqn�/ D �.R=mŒqn� CQ/ forces
�..mŒqn� C Q/=mŒqn�/ D 0, so that Q � \nm

Œqn� D 0. From the first part of this
theorem, we then obtain that for all n � 1, R1=qn

is a free R-module.
We next claim that R is Cohen–Macaulay. Let x1; : : : ; xd be a system of

parameters generating an ideal J . Then �.R=J Œqn�/ D �.R1=qn
=JR1=qn

/ D
�.R=J /qdn, since R1=qn

is a free R-module of rank qdn. By a formula of Lech
[63, Theorem 11.2.10]: lim�! �.R=J Œqn�/=qdn D e.J /, the usual multiplicity of J .
Hence the multiplicity of J is the colength of J . Since J is generated by a system
of parameters, it follows that R is Cohen–Macaulay. (See [16, Theorem 4.6.10]).

Now choose a system of parameters as above, and fix n such that mŒqn� � J ,
where J is the ideal generated by the parameters. Suppose that the projective
dimension of k is infinite. We compute TordC1.R=J; R=mŒqn�/ in two ways. From
the fact that J is generated by a regular sequence of length d , this Tor module is 0.
On the other hand, we can take the free resolution of k and tensor with R1=qn

and
obtain an R1=qn

minimal free resolution of R1=qn
=mR1=qn

. Identifying R1=qn
with

R, we see that a free resolution of R=mŒqn� is obtained by applying the Frobenius
to the maps in the free resolution of k, which has the effect of raising all entries in
matrices in the resolution (after fixing bases of the free modules) to the qnth powers.
Now tensoring with R=J , we see the homology at the .d C 1/st stage is 0 if and
only if the projective dimension of k is at most d , since the maps become 0 after
tensoring with R=J . It follows that R is regular. ut
Exercise 2. If .R;m; k/ is F-finite, and Q is a prime ideal, prove that ˛.RQ/ D
˛.R/pdim.R=Q/. (See [41, Proposition 2.3].)

Exercise 3. Let .R;m; k/ be a regular local ring of dimension d and prime charac-
teristic p, and let I be an m-primary ideal. Prove that �.R=I Œq�/ D qd �.R=I / so
that in particular, eHK.I / D �.R=I /.
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3 Basics

We begin with some estimates on the growth of the Hilbert–Kunz function, and
some examples.

Lemma 1. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p > 0. We let e.I / denote the multiplicity of the ideal I . Let I be an
m-primary ideal. Then (q D pe),

e.I /=d Š � lim inf �.R=I Œq�/=qd � lim sup �.R=I Œq�/=qd � e.I /:

Proof. We can make an extension of R to assume that the residue field is infinite
without changing any of the relevant lengths. Let J be a minimal reduction of I ,
so that J is generated by a system of parameters. There are containments, J Œq� �
I Œq� � I q , which give inequalities on the lengths,

�.R=J Œq�/ � �.R=I Œq�/ � �.R=I q/:

For large q, the right hand length is given by a polynomial in q of degree d with
leading coefficient e.I /=d Š. Dividing by qd gives one inequality. For the other, we
use a formula of Lech [63, Theorem 11.2.10]: lim�! �.R=J Œq�/=qd D e.J /. Since J

is a reduction of I , e.J / D e.I /. ut
Corollary 2. Let .R;m; k/ be a Noetherian local ring of dimension 1 and prime
characteristic p > 0 Let I be an m-primary ideal. Then e.I / D lim�! �.R=I Œq�/=qd :

Proof. Set d D 1 in the above formula. ut
Example 3. Although the one-dimensional case may seem very transparent, as the
usual multiplicity equals the Hilbert–Kunz multiplicity, the actual Hilbert function
is by no means obvious. Here is one example from [47]. Let k be a field of
characteristic p congruent to 2 or 3 modulo 5. Set R D kŒŒX; Y ��=.X5 � Y 5/. R is
a one-dimensional local ring with maximal ideal m D .x; y/, and the multiplicity
of R is 5. The difference j�.R=mŒq�/ � 5qj is bounded by a constant. But it is not
a constant in general. If we write the constant as de where q D pe , then when e is
even de D �4 while when e is odd, de D �6. For one-dimensional complete local
rings, Monsky shows that the “constant” term is a periodic function. See [47] for
details. See also [39] for work in the graded case.

Our goal of this section is to prove that lim�! �.R=I Œq�/=qd always exists. We
call it the Hilbert–Kunz multiplicity. The history of how Monsky came to prove its
existence is interesting. One might think that he was inspired by the paper of Kunz,
but in fact, he did not know about it when he proved the existence. The situation
was additionally complicated by the fact that Kunz had erroneously thought that the
limit did not actually exist, and proposed a counterexample in his paper. This author
asked Monsky how he came to think about it, and here is what he replied:
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“Craig asked me how I was led into looking into Kunz’s papers on the
characterization of regular local rings in characteristic p (and defining and studying
the Hilbert–Kunz multiplicity as a result). But that’s not the order in which things
occurred.

At Brandeis I was on the thesis committee of Al Cuoco, who was working in
Iwasawa theory. He studied the growth of the p-part of the ideal class group as
one moves up the levels in a tower of number fields, where the Galois group is a
product of 2 copies of the p-adic integers. I extended his results to a product of s

copies; this involved the study of modules over power series rings, with the base
ring being the p-adics or Z=pZ. In particular I considered the following: let M be
a finitely generated module over the power series ring in s variables over Z=pZ

and J be the ideal generated by the pnth powers of the variables. How does the
length of M=JM grow with n? I got an asymptotic formula for this growth, put it
into a more general setting and wrote things up. In analogy with the Hilbert–Samuel
terminology I intended to speak of the Hilbert–Frobenius function and the Hilbert–
Frobenius multiplicity.

But when I showed my result to David Eisenbud he told me that it was wrong,
and that Kunz had given examples in which there wasn’t an asymptotic formula.
So I looked into Kunz’s papers, discovering that he had considered such questions
before me. So it was only proper to call the function the Hilbert–Kunz function. And
call the associated limiting value the Hilbert–Kunz multiplicity, even though Kunz
had thought that it needn’t exist!”

To prove the existence of the Hilbert–Kunz multiplicity, we will consider
modules as well as rings. We use a somewhat different treatment than the paper
of Monsky [47], organizing our approach through a lemma proved by Dutta [20],
which is not only interesting in its own right, but has the additional benefit that we
can directly apply it to show the existence of the F-signature as well. However, in
the end, all the approaches use that the map from R to R1=p is essentially the same
as R1=q to R1=qp , and that the sum of the reciprocals of the powers of p converges.

Lemma 4 (Dutta [20, see proof of Proposition, p. 428]). Let .R;m; k/ be a local
Noetherian domain of dimension d and prime characteristic p. Assume that R is
F-finite. Then there exists a constant C and a fixed finite set of nonzero primes,
fQ1; : : : ; Qng such that for every q D pe , the R-module R1=q has a prime filtration
having at most C qdC˛.R/ copies of R=Qi for i � 1 and qdC˛.R/ copies of R.

Proof. The proof we give, similar to Dutta’s proof, was shown to me by Karen
Smith, and is essentially found in Appendix 2 of [35], proof of Exercise 10.4.

Use induction on d ; the d D 0 case is trivial.
Fix a maximal rank free submodule G of R1=p. We know that the rank of G

is pdC˛.R/. Let T be the cokernel of the inclusion G � R1=p . Fix a prime cyclic
filtration of T , and extend it by G to a filtration of R1=p:

0 � G D M0 � M1 � M2 � � � � � Mt D R1=p:
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Because G is maximal rank, the prime cyclic factors MiC1=Mi D R=Ai all have
dimension strictly less than the dimension of R. Let Ci be the constant which (by
induction) works for R=Ai , let C be twice the sum of all the Ci , and let � be
the collection of the (finite) sets of primes appearing in the filtrations of all the
.R=Ai /

1=q , as well as the prime .0/. We claim that � and C satisfy the conclusion
of the problem.

By induction on q, we prove that R1=q has a prime filtration using primes from
�, with at most C

2
.1 C 1=p C : : : C 1=q/qdC˛.R/ copies of each one. Assume this

is true for q. Take pe D q roots of all the modules above. We have a prime cyclic
filtration (except at zeroth spot, where it is obvious how to extend to one) of R1=q

modules

0 � G1=q D M
1=q
0 � M

1=q
1 � M

1=q
2 � � � � � M

1=q
t D R1=qp;

where each factor has the form .R=Ai /
1=q D R1=q=A

1=q
i .

To make this into a prime cyclic filtration of R modules, we simply refine each
inclusion M

1=q
i � M

1=q
iC1 of R modules by a prime cyclic filtration. This amounts

to filtering M
1=q
iC1=M

1=q
i D .R=Ai /

1=q by R=Ai prime cyclic modules. By induction
on d , this can be done with only primes from �, and appearing with multiplicities
at most � Ci q

d�1C˛.R=Ai / D Ci q
d�1C˛.R/. Thus the primes appearing in this prime

cycle filtration of R1=qp=G1=q all come from �, and each one appears at most
.
P

i Ci /q
d�1C˛.R/ times.

To refine the R submodule G1=q into a prime filtration we deal with each of
the free summands R1=q separately. By induction there are only primes from �

appearing, and the multiplicity of R=Qi in G1=q is no more than .rankG/. C
2

/.1 C
1=p C : : : C 1=q/.qdC˛.R//. The total number is then at most . C

2
/.1 C 1=p C

: : : C 1=q/..qp/dC˛.R// C C
2

qd�1C˛.R/ � C
2

.1 C : : : C 1=.qp//.qp/dC˛.R/ �
C.qp/dC˛.R/: ut
Lemma 5. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p > 0. Let M be a finitely generated R-module. There exists a
constant C > 0 such that for all e � 0 and any m-primary ideal I of R with
mŒq� � I , where q D pe , we have that

�.R=I ˝R M / � C qdim M :

Proof. Set t D �.m/. Since mtq � mŒq�, we see that R=mtq ˝R M surjects
onto R=I ˝R M . Therefore �.R=I ˝R M / � �.R=.mtq/ ˝R M /. The Hilbert
polynomial of M with respect to mt has degree dim.M /. If the leading coefficient
of this polynomial is c, it is clear that any C >> c satisfies the desired bound. ut
Lemma 6. Let .R;m; k/ be a local ring of dimension d and prime characteristic
p. If T is a finitely generated torsion R-module then there exists a constant D such
that for all q D pe , and for all I containing mŒq�, �.TorR

1 .R=I; T // � Dqd�1.
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Proof. Choose a nonzero divisor c 2 R which annihilates T , and consider an
R=.c/ D A presentation of T :

: : : �! As �! Ar �! T �! 0:

Let N be the kernel of the surjection of Ar onto T . Tensoring with R=I , we obtain
an exact sequence,

TorR
1 .Ar ; R=I / �! TorR

1 .T; R=I / �! N=IN �! .A=I /r �! T=IT �! 0:

Since N is torsion, Lemma 5 implies that the length of N=IN is bounded above by
Eqd�1, for some fixed constant E depending only on N . Thus it suffices to bound
the length of TorR

1 .Ar; R=I /. Notice that r does not depend upon q or I . Hence
it suffices to bound the length of TorR

1 .A; R=I /. From the exact sequence 0 �!
R

c�! R �! A �! 0, we obtain after tensoring with R=I that TorR
1 .A; R=I / Š

.I W c/=I . However, the length of .I W c/=I is the same as the length of R=.I; c/,
and by Lemma 5, this length is bounded by Gqd�1 for some constant G depending
only on A. ut
Exercise 7. Prove Lemma 6 with the modification that �.TorR

1 .R=I; T // �
Dqdim.T / (this is not so easy).

These lemmas have the following crucial consequence, which is a key point in
the paper of Tucker [68, Corollary 3.5]:

Corollary 8. Let .R;m; k/ be a Noetherian local domain of dimension d and prime
characteristic p. Assume that R is F-finite. There exists a constant C such that for
all q D pe and all q0 D pe0

and for all ideals I containing mŒq�,

j�.R=I Œq0�/ � .q0/dC˛.R/�.R=I /j � C.q0/dC˛.R/qd�1:

Proof. Fix the constant C and the primes fQ1; : : : ; Qng as in the statement of
Lemma 4. Then for all q0 there is an exact sequence,

0 �! R.q0/dC˛.R/ �! R1=q0 �! T �! 0;

where T has a prime filtration by at most C.q0/dC˛.R/ copies of each R=Qi . Tensor-
ing with R=I , we see that the difference of lengths, j�.R=I Œq0�/�.q0/dC˛.R/�.R=I /j,
is bounded by the sum of �.T=IT / + �.TorR

1 .T; R=I //. This sum in turn is bounded
by

nX

iD1

C.q0/dC˛.R/.�.R=.Qi ; I // C �.TorR
1 .R=Qi; R=I //:

To prove the corollary it suffices to prove that there is a constant D, not de-
pending on q, q0, or I such that �.R=.Qi ; I // � Dqd�1 for each i , and
�.TorR

1 .R=Qi; R=I // � Dqd�1. The existence of such a constant D follows from
Lemmas 5 and 6, respectively. ut
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Remark 9. We can now easily prove that the Hilbert–Kunz multiplicity exists for
the ring itself and arbitrary m-primary ideals I in the case R is an F-finite domain.
To do the general case, however, requires a little more work which one needs in any
case to deal with additivity properties of the Hilbert–Kunz multiplicity. However, it
is worth seeing this easy case deduced from the corollary. We may assume that k is
algebraically closed. Set cq D �.R=I Œq�/=qd . Apply Corollary 8 with I replaced by
I Œq�. Divide by .q0q/d . We obtain that for all q; q0,

jcqq0 � cq j � C

q
:

This inequality forces the set of cq to be a Cauchy sequence, and hence they
converge.

Lemma 10. Let .R;m; k/ be a Noetherian local reduced ring of dimension d and
prime characteristic p > 0. Let P1; : : : ; Pm be those minimal primes of R with
dim.R=Pi / D d . If M and N are finitely generated R-modules such that MPi Š
NPi for each i , then there exists a positive constant C such that for all e � 0 and
for every ideal I of R with mŒq� � I , where q D pe , we have j�.R=I ˝R M / �
�.R=I ˝R N /j � C qd�1.

Proof. Let W D R n .[i Pi /, so that RW Š RP1 � � � � � RPm , and we have
that MW Š NW . Since .HomR.M; N //W Š HomRW .MW ; NW /, there is some
� 2 HomR.M; N / such that �W is an isomorphism. Since coker.�/ satisfies
coker.�/W D 0 and thus has dimension strictly smaller than d , we can find a
positive constant C such that for all e � 0 and for any ideal I of R which contains
mŒq�, we have that j�.R=I ˝R R=coker.�//j � C qd�1. ut

We use some well-known notation in the next few results. Let f; g W N ! R

be functions from the nonnegative integers to the real numbers. Recall that f .n/ D
O.g.n// if there exists a positive constant C such that jf .n/j � Cg.n/ for all
n 	 0, and we write f .n/ D o.g.n// if limn!1 f .n/=g.n/ D 0.

Proposition 11. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p > 0. Let 0 ! N ! M ! K ! 0 be a short exact sequence of
finitely generated R-modules. Then,

�.M=I Œq�M / D �.N=I Œq�N / C �.K=I Œq�K/ C O.qd�1/:

Proof. First suppose that R is reduced. Then M and N ˚ K have isomorphic
localizations at each minimal prime of R, and the claim follows from Lemma 10.

If R is not reduced, choose q0 such that (nilrad.R//Œq0� D 0, and consider the same
exact sequence as a sequence of Rq0

-modules. This ring is reduced and applying the
reduced case with the ideal I Œq0 � \ Rq0

yields that

�.M=I Œqq0 �M / D �.N=I Œqq0 �N / C �.K=I Œqq0�K/ C O.qd�1/:

Since O.qd�1/ D O..qq0/d�1/, the proposition is proved. ut
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We are now able to prove the existence of the Hilbert–Kunz multiplicity:

Theorem 12. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p > 0. Let M be a finitely generated R-module, and let I be
an m-primary ideal. There is a real constant ˛ D eHK.I; M / � 1 such that
�.M=I Œq�M / D ˛qd C O.qd�1/. If

0 ! N ! M ! K ! 0

is a short exact sequence of finitely generated R-modules, then

eHK.I; M / D eHK.I; K/ C eHK.I; N /:

Proof. By making a faithfully flat extension there is no loss of generality in
assuming that R is a complete local ring with algebraically closed residue field.
By taking a prime filtration of M and using Proposition 11 it suffices to do the case
in which M D R=P for some prime P of R. Thus there is no loss of generality in
assuming that R is an F-finite domain and M D R in proving the first assertion. The
second assertion follows immediately from the first assertion and Proposition 11.

To prove the existence, we are now in the case of Remark 9, which finishes the
proof. ut

We often suppress the R in eHK.I; R/ and just write eHK.I /. When I D m, we
set eHK.M / D eHK.m; M /, and refer to this value as the Hilbert–Kunz multiplicity
of M .

Example 13. Unlike the usual multiplicity, the Hilbert–Kunz multiplicity is typi-
cally not an integer. The Hilbert–Kunz function can appear quite bizarre, at least
to begin with. For example, let R D Z=5ZŒx1; x2; x3; x4�=.x4

1 C � � � C x4
4/, then

with I D .x1; : : : ; x4/, �.R=I Œ5e �/ D 168
61

.53e/ � 107
61

.3e/ by [28]. Note that R is a
3-dimensional Gorenstein ring with isolated singularity.

Just as in the theory of usual multiplicity, it is now easy to prove some
basic remarks on the behavior of the Hilbert–Kunz multiplicity. In particular, the
following additivity theorem is highly useful.

Theorem 14. Let .R;m; k/ be a local Noetherian ring of dimension d and prime
characteristic p. let I be an m-primary ideal, and let M be a finitely generated
R-module. Let ƒ be the set of minimal prime ideals P of R such that dim.R=P / D
dim.R/. Then

eHK.I; M / D
X

P 2ƒ

eHK.I; R=P /�.MP /:

Proof. By Theorem 11, Hilbert–Kunz multiplicity is additive on short exact
sequences. Fix a prime filtration of M , say

0 D M0 � M1 � M2 � � � � � Mn D M



Hilbert–Kunz Multiplicity and the F-Signature 495

where MiC1=Mi Š R=Pi (Pi a prime) for all 0 � i � n�1. As eHK.I; R=Q/ D 0

if dim.R=Q/ < dim.R/, the additivity of multiplicity applied to this filtration shows
that eHK.I; M / is a sum of the eHK.I; R=P / for P 2 ƒ, counted as many times
as R=P appears as some MiC1=Mi . We can count this by localizing at P . In this
case, we have a filtration of MP , where all terms collapse except for those in which
.MiC1=Mi/P Š .R=P /P , and the number of such copies is exactly the length
of MP . ut
Corollary 15. Let .R;m; k/ be a local Noetherian domain of dimension d and
prime characteristic p. Let I be an m-primary ideal of R and M a finitely generated
R-module. Then eHK.I; M / D eHK.I; R/ rankR M .

Proof. Recall that the rank of M is by definition the dimension of M ˝R K over K ,
where K is the field of fractions of R. We apply Lemma 10 with W D R n 0: if we
set r D rankR M , then W �1M Š Kr Š W �1Rr , and the corollary follows. ut
Theorem 16. Let .R;m; k/ be a d -dimensional local Noetherian domain of prime
characteristic p, with field of fractions K , and let I be an m-primary ideal. Let S

be a module-finite extension domain of R with field of fractions L. Then

eHK.I; R/ D
X

Q2Max.S/;dim SQDd

eHK.ISQ; SQ/ŒS=Q W k�

ŒL W K�
:

Proof. Since W �1S Š W �1RŒLWK�, we can apply Lemma 10 to conclude that
eHK.I; S/ D eHK.I; R/ŒL W K�. On the other hand,

eHK.I; S/ D lim
q!1 �R.S=I Œq�S/=qd :

As every maximal ideal Q of S contains mS , the Chinese Remainder Theorem
implies that S=I Œq�S Š Q

Q2Max.S/ SQ=I Œq�SQ. In particular, �R.S=I Œq�S/ D
P

Q2Max.S/ �R.SQ=I Œq�SQ/ D P
Q2Max.S/ �SQ .SQ=I Œq�SQ/ŒS=Q W k�. Therefore,

eHK.I; S/ equals

lim
q!1

X

Q2Max.S/

�SQ.SQ=I Œq�SQ/ŒS=Q W k�=qd

D lim
q!1

X

dim SQDd

�SQ.SQ=I Œq�SQ/ŒS=Q W k�=qd :

Hence

eHK.I; R/ D
X

Q2Max.S/;dim SQDd

eHK.ISQ; SQ/ŒS=Q W k�

ŒL W K�
: ut

Example 17. Consider the Veronese subring R defined by

R D kŒŒX
i1
1 � � � Xid

d j i1; : : : ; id � 0;
X

ij D r��:
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Applying Theorem 16 to R ,! S D kŒŒX1; : : : ; Xd ��, we get

eHK.R/ D 1

r

 
d C r � 1

r

!

: (1)

In particular, if d D 2, r D e.A/, then eHK.R/ D e.R/C1

2
.

For other examples, consider the quotient singularities.

Example 18. See [73, Theorem 5.4]. Let S be a regular local ring and suppose that
G is a finite group of automorphisms of S with invariant ring R with maximal ideal
m. By Theorem 16 and Exercise 3, one sees that eHK.R/ D 1

jGj �.S=mS/.
This formula is used, together with a lot more work, by Watanabe and Yoshida

to give the following formulas for the Hilbert–Kunz multiplicities of the famous
double points below: Let .R;m/ D kŒŒx; y; z��=.f / where f is one of the following:

type equation char R eHK.R/

(An) f D xy C znC1 p � 2 2 � 1=.n C 1/ (n � 1)
(Dn) f D x2 C yz2 C yn�1 p � 3 2 � 1=4.n � 2/ (n � 4)
(E6) f D x2 C y3 C z4 p � 5 2 � 1=24

(E7) f D x2 C y3 C yz3 p � 5 2 � 1=48

(E8) f D x2 C y3 C z5 p � 7 2 � 1=120

Each of these hypersurfaces is the invariant subring by a finite subgroup G �
SL.2; k/ which acts on the polynomial ring kŒx; y�. We have that eHK.R/ D 2 �
1=jGj; see [73, Theorem 5.1].

Example 19. Let S D kŒx; y; z� where k is a field of characteristic at least five. Let
h 2 S be homogeneous of degree 3. Set R D S=.h/, and let m D .x; y; z/R. If h

is smooth, then eHK.m/ D 9
4
, while if h is a nodal or cuspidal cubic, eHK.m/ D 7

3
.

This has been done in various ways. Pardue in his thesis did the nodal cubic; see
also Buchweitz and Chen [17], Brenner [13], Monsky [51], and Trivedi [65] and in
characteristic 2, [48].

Here are a few more examples, which we leave as an exercise:

Exercise 20. We consider quadric hypersurfaces in P
3. Let k be a field of charac-

teristic p > 2, and let Let R be one of the following ringsW
8
ˆ̂
<

ˆ̂
:

kŒŒX; Y; Z; W ��=.X2/; if rank.q/ D 1;

kŒŒX; Y; Z; W ��=.X2 � YZ/; if rank.q/ D 2;

kŒŒX; Y; Z; W ��=.XY � ZW /; if rank.q/ D 3:

(2)

Prove that eHK.R/ D 2, 3
2

, or 4
3

, respectively.
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For a long time it was thought that the Hilbert–Kunz multiplicity would always
be a rational number. All the known examples were rational, e.g., for rings of
finite Cohen–Macaulay type (see [59]) or more generally F-finite type [62, 79],
for many computed hypersurfaces, for binomial hypersurfaces [19], and for graded
normal rings of dimension two [12, 65]. However, in recent years, Monsky has
given convincing evidence that this will not be true, though as of the writing of
this chapter, there is only overwhelming evidence, but not a proof. One example
given by Monsky is the following:

Example 21. Let k be a finite field of characteristic 2 and h D x3 C y3 C xyz 2
kŒŒx; y; z��. Then Monsky conjectures, with a huge amount of evidence, that the
Hilbert–Kunz multiplicity of the hypersurface uv C h D 0 is 4

3
C 5

14
p

7
. Even more,

it appears that transcendental Hilbert–Kunz multiplicities exist. We refer to [53,54]
for details.

4 Hilbert–Kunz Multiplicity Equal to One

We begin this section with an easy, but crucial, estimate on the size of Hilbert–Kunz
functions which was observed independently in [73, Lemma 4.2] and [29].

Lemma 1. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p0. Let I � J be two ideals with I m-primary (we allow J D R).
Then �.R=I Œq�/ � �.J=I / � �.R=mŒq�/ C �.R=J Œq�/.

Proof. Set s D �.J=I /. Take a filtration of I � J � R:

I D J0 ¨ J1 ¨ J2 ¨ � � � ¨ Js D J � R

so that �.Ji =Ji�1/ D 1, i.e., Ji =Ji�1 Š R=m; 8i D 1; 2; : : : ; s: That is to say
Ji D .Ji�1; xi / for some xi 2 Ji such that Ji�1 W xi D m:

For every q D pe; there is a corresponding filtration of I Œq� � J Œq� � R:

I Œq� D J
Œq�
0 � J

Œq�
1 � J

Œq�
2 � � � � � J Œq�

s D J Œq� � R;

where J
Œq�
i =J

Œq�
i�1 Š R=.J

Œq�
i�1 W x

q
i /, which is a homomorphic image of R=mŒq�;

for every i D 1; 2; : : : ; s: So �.J
Œq�
i =J

Œq�
i�1/ � �.R=mŒq�/: Therefore �.R=I Œq�/ �

�.J=I / � �.R=mŒq�/ C �.R=J Œq�/: ut
Corollary 2. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p. Let I be a m-primary ideal of R. Then �.R=I Œq�/ � �.R=I / �
�.R=mŒq�/: If I � J then eHK.I; R/ � �.J=I /eHK.R/ C eHK.J; R/.



498 C. Huneke

Proof. To prove the first statement, we take J D R and apply Lemma 1. For the
second statement, the corollary follows from Lemma 1 by dividing by qd and then
taking the limits. ut

Our goal is to prove that regularity is characterized by the Hilbert–Kunz
multiplicity being one, if the ring is formally unmixed . This condition is necessary
by the easy exercise below. Our treatment is taken directly from [37].

Exercise 3. Let R D kŒŒx; y; z��=.xz; xy/, where k is a field of characteristic p.
Prove that eHK.R/ D 1.

Theorem 4. Let .R;m/ be a Noetherian local ring of dimension d and prime
characteristic p. Let J be an ideal such that dim R=J D 1 and height J D d � 1.
Assume that x 2 R is a nonzero divisor in R=J and set I D .J; x/. Assume that RP

is regular for every minimal prime P containing J . Then eHK .I; R/ � �.R=I /:

Proof. Use the properties of the usual multiplicity of parameter ideals and the
associativity formula for the usual multiplicity, and we have

eHK.I; R/ D lim
q!1

1

qd
� �.R=I Œq�/ D lim

q!1
1

qd
� �.R=.J Œq�; xq//

� lim
q!1

1

qd
� e.xq I R=J Œq�/ D lim

q!1
q

qd
� e.xI R=J Œq�/

D lim
q!1

1

qd�1
� e.xI R=J Œq�/

D lim
q!1

1

qd�1
�

X

P 2min.R=J /

e.xI R=P / � �RP .RP =J
Œq�
P /

D lim
q!1

1

qd�1
�

X

P 2min.R=J /

e.xI R=P / � qd�1 � �RP .RP =JP /

D lim
q!1

X

P 2min.R=J /

e.xI R=P / � �RP .RP =JP /

D
X

P 2min.R=J /

e.xI R=P / � �RP .RP =JP /

D e.xI R=J / D �.R=.J; x// D �.R=I /: ut

Observe that after we prove that eHK.R/ D 1 implies the regularity of R, then
regularity forces eHK.I / D �.R=I / for all m-primary ideals I , by using the work
above.

A critical step in proving the main result of this section is in constructing an m-
primary ideal I � mŒp� such that eHK.I / � �.R=I /. This was proved by Watanabe
and Yoshida [73, Theorem 1.5] but in a different way than is done here.
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Theorem 5. Let .R;m; k/ be a formally unmixed Noetherian local ring of dimen-
sion d and prime characteristic p. Then eHK.R/ D 1 if and only if R is regular.

Proof. We have already observed that if R is regular, then the Hilbert–Kunz
multiplicity is one. We prove the converse. Since the Hilbert–Kunz multiplicity
of R is the same as that of its completion, we may assume R is complete. The
additivity formula for Hilbert–Kunz multiplicity Theorem 14 shows that eHK.R/ DP

P eHK.R=P / � �.RP / where the sum is over all minimal primes of maximal
dimension. Since eHK.R/ D 1, we deduce that R can have only one minimal prime
P and RP has to be field, i.e., PP D 0: Hence P D 0 since R n P consists of
non-zero divisors. Thus R is a domain.

It suffices to prove that �.R=mŒp�/ � pd (where d D dim.R/) as then Theorem 1
gives that R must be regular.

The singular locus of R is closed and not equal to Spec.R/. It follows that we can
choose a prime P such that dim.R=P / D 1 and RP is regular, which we leave as
an exercise for the reader. Since the intersection of the symbolic powers of P is zero
and R is complete, Chevalley’s lemma gives that some sufficiently large symbolic
power of P lies inside mŒp�. Call this symbolic power J . Choose x 2 mŒp� such that
x … P . The ideal I D .J; x/ lies in mŒp� and satisfies the hypothesis of Theorem 4.
Hence

eHK.I / � �.R=I /:

On the other hand we have eHK.I; R/ � �.mŒp�=I / � eHK.R/ C eHK.mŒp�; R/ D
�.mŒp�=I / C eHK.mŒp�; R/ � �.mŒp�=I / C �.R=mŒp�/; by Lemma 1 and
Corollary 2.

That is to say

�.mŒp�=I / C �.R=mŒp�/ D�.R=I / � eHK.I; R/ (3)

��.mŒp�=I / C eHK.mŒp�; R/ (4)

��.mŒp�=I / C �.R=mŒp�/; (5)

which forces �.R=mŒp�/ D eHK.mŒp�; R/. However,

eHK.mŒp�; R/ D lim�!
�.R=mŒpq�/

qd
D lim�!

pd � �.R=mŒpq�/

.pq/d
D pd � eHK.R/ D pd :

Together the equalities imply that �.R=mŒp�/ D pd , which implies that R is regular
by Theorem 1. ut

The basic filtration lemmas, together with Kunz’s theorem, already give a better
result, provided the ring is Cohen–Macaulay. In fact, this is one of the more subtle
and difficult points, to prove that Hilbert–Kunz multiplicity near one should imply
that the ring is Cohen–Macaulay. A crucial step is provided by results of Goto and
Nakamura; see [27]. They prove the following beautiful generalization of the result
of Serre which proves that the multiplicity of a parameter ideal is its colength if and
only if the ring is Cohen–Macaulay.
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Theorem 6 (Goto–Nakamura [27]). Let .R;m; k/ be an unmixed Noetherian
local ring of prime characteristic p which is the homomorphic image of a Cohen–
Macaulay local ring. Let J be an ideal generated by a system of parameters. Then
e.J / � �.R=J �/ with equality if and only if R is F-rational (and therefore is
Cohen–Macaulay).

The general philosophy is that the closer the Hilbert–Kunz multiplicity is to
one, the better the singularities of the ring. The following proposition was proved by
Blickle and Enescu, using results of Goto and Nakamura and Watanabe and Yoshida
to first obtain that the ring is Cohen–Macaulay. We state the full result here, but only
give the proof assuming Cohen–Macaulay.

Proposition 7 (Blickle–Enescu [8]). Let .R;m/ be a Noetherian local ring of
dimension d and prime characteristic p. If R is not regular, then eHK.R/ >

1 C 1

pd dŠ
.

Proof. We give the proof assuming that R is Cohen–Macaulay. Let e.R/ be the
multiplicity of R. We may assume the residue field is infinite. Fix a minimal
reduction K of the maximal ideal. We apply Corollary 2 with I D KŒp� and J D
mŒp�. This gives that e.R/pd D eHK.KŒp�/ � �.mŒp�=KŒp�/eHK.R/ C eHK.mŒp�/ D
�.mŒp�=KŒp�/eHK.R/ C pd eHK.R/: Note that the first equality follows from the
formula of Lech [63, Theorem 11.2.10]. By Theorem 1, �.mŒp�=KŒp�/ D e.R/pd �
�.R=mŒp�/ � e.R/pd �.pd C1/ because R is not regular. Putting these inequalities
together and cancelling terms yields that e.R/pd � .e.R/pd � 1/eHK.R/ or
1 C 1

e.R/pd �1
� eHK.R/: Since e.R/=d Š � eHK.R/, if e.R/ > dŠ, then 1 C 1

dŠ
<

eHK.R/, a stronger statement than what we claim. Otherwise, e.R/pd � 1 < pd dŠ,
and the proposition follows. ut

The reader should ask themselves where the assumption that R is Cohen–
Macaulay is used in the above proof.

The methods in this section also give a proof of a result of Kunz concerning
the behavior of Hilbert–Kunz multiplicity under specialization. It is still an open
problem whether or not Hilbert–Kunz multiplicity is upper semicontinuous. See,
however, the interesting papers of Shepherd-Barron [60] (but be careful—Corollary
2 is not quite correct) and Enescu and Shimomoto [21].

Proposition 8 (Kunz [41, Corollary 3.8]). Let .R;m; k/ be a Noetherian local
ring of dimension d and prime characteristic p, and let P be a prime ideal of R

such that height.P / C dim.R=P / D dim.R/. Then eHK.RP / � eHK.R/: In fact, if
t D dim.R=P /, then qt � �RP ..R=P Œq�/P / � �.R=mŒq�/ for every q D pe:

Proof. By induction, it is enough to prove the case where height.P / D dim.R/�1.
Notice it suffices to prove the second inequality.

Choose f 2 m � P . Then, using the properties of the usual multiplicity of
parameter ideals, the associativity formula for the usual multiplicity, we have, for
all q D pe ,
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�.R=.P; f /Œq�/ D �.R=.P Œq�; f q// (6)

� e.f qI R=P Œq�/ (7)

D �RP ..R=P Œq�/P / � e.f q I R=P / (8)

D �RP ..R=P Œq�/P / � q � �.R=.f; P //: (9)

By Corollary 2, we know that �.R=.f; P // � �.R=mŒq�/ � �.R=.P; f /Œq�/: Hence
�.R=mŒq�/ � q � �RP ..R=P Œq�/P / for every q D pe: ut

5 Hilbert–Kunz Multiplicity and Tight Closure

There is almost an exact parallel between the relationship of integral closure to
the usual Hilbert–Samuel multiplicity and the relationship between tight closure to
Hilbert–Kunz multiplicity. Just as in the case of the Hilbert–Samuel multiplicity,
this relationship is important both theoretically and necessary to fully understand
multiplicity. We use a key result of Aberbach [1] to make the proofs easier than the
original proof in [31].

Let Ro denote the complement of the union of all minimal primes of a ring R.
The definition of tight closure for ideals is:

Definition 1. Let R be a Noetherian ring of prime characteristic p. Let I be an
ideal of R. An element x 2 R is said to be in the tight closure of I if there exists an
element c 2 Ro such that for all large q D pe , cxq 2 I Œq�.

There is also a definition of the tight closure of submodules of finitely generated
R-modules, which we do not use in these notes. Of particular interest are rings in
which every ideal is tightly closed.

Definition 2. A Noetherian ring in which every ideal is tightly closed is called
weakly F-regular. A Noetherian ring R such that RW is weakly F-regular for every
multiplicative system W is called F-regular.

We list a few of the main properties satisfied by tight closure.

Proposition 3. Let R be a Noetherian ring of prime characteristic p, and let I be
an ideal:

(1) .I �/� D I �. If I1 � I2 � R, then I �
1 � I �

2 .
(2) If R is reduced or if I has positive height, then x 2 R is in I � if and only if

there exists c 2 Ro such that cxq 2 I Œq� for all q D pe .
(3) An element x 2 R is in I � iff the image of x in R=P is in the tight closure of

.I C P /=P for every minimal prime P of R.

Proof. Part (1) and (2) follow immediately from the definition.
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We prove (3). One direction is clear: if x 2 I �, then this remains true modulo
every minimal prime of R since c 2 Ro. Let P1; : : : ; Pn be the minimal primes
of R. If c0

i 2 R=Pi is nonzero, we can always lift c0
i to an element ci 2 Ro by

using the prime avoidance theorem. Suppose that c0
i 2 R=Pi is nonzero and such

that c0
i x

q
i 2 I

Œq�
i for all large q, where xi (respectively Ii ) represent the images of x

(respectively I ) in R=Pi . Choose a lifting ci 2 Ro of c0
i . Then ci x

q 2 I Œq� C Pi for
every i . Choose elements ti in all the minimal primes except Pi . Set c D P

i ci ti .
It is easy to check that c 2 Ro. Choose q0 	 0 so that N Œq0 � D 0, where N is the
nilradical of R. Then cxq 2 I Œq� C N , and so cq0

xqq0 2 I Œqq0 �, which proves that
x 2 I �. ut

One direction of our main result of this section is quite easy from the definition:

Proposition 4. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p. Let I be an m-primary ideal, and suppose that I � J � I �. Then
eHK.I / D eHK.J /.

Proof. By assumption there is an element c 2 Ro such that c annihilates the
modules J Œq�=I Œq� for all large q D pe . These modules have a bounded number
of generators, say t , given by the number of generators of J . In particular,
.R=.c; I Œq�//t maps onto J Œq�=I Œq�, so that the length is at most t � �.R=.c; I Œq�//.
However, the length of R=.c; I Œq�/ is at most O.qd�1/ since the dimension of
R=.c/ is d � 1. It follows that j�.R=J Œq�/ � �.R=I Œq�/j D O.qd�1/, and so
eHK.I / D eHK.J /. ut

The main result of this section is the following:

Theorem 5. Let .R;m; k/ be a Noetherian local ring of dimension d and prime
characteristic p which is formally unmixed. Let I � J be m-primary ideals. Then
eHK.I / D eHK.J / if and only if J � I �.

Proof. One direction has already been done. To prove the other, we first observe that
for m-primary ideals K , eHK.K/ D eHK.bK/ and .bK/� D cK�. We leave this latter
equality as an exercise (see also [31, Proposition 4.14]). Hence we may assume that
R is complete. Suppose that eHK.I / D eHK.J /. We need to prove that J � I �. If
not, there exists a minimal prime P of R such that the image of J in R=P is not
in the tight closure of the image of I in R=P , by Proposition 3. By the additivity
formula for Hilbert–Kunz multiplicity, Proposition 14, as well as our assumption
that R is formally unmixed, we must have that eHK..I C P /=P / D eHK..J C
P /=P /. Hence we may assume that R is a complete local domain.

Suppose by way of contradiction that J is not in I �. We may assume that J D
.x; I / for some x … I �. We now use a result of Aberbach [1]: since x … I �, there
exists a fixed integer k such that for all q D pe , I Œq� W xq � mbq=kc. But now for all
large enough q, �.R=I Œq�/��.R=.I Œq�; xq// D �.R=.I Œq� W xq// � �.R=mcq=kb/ �
ıqd , where ı is any positive real strictly less than e.R/

dŠk
, where e.R/ is the multiplicity

of R. This proves that eHK.I / ¤ eHK.J /, a contradiction. ut
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With this tight closure characterization of the Hilbert–Kunz multiplicity, we can
give an important estimate on it in the case the ring is not F-rational, meaning that
systems of parameters are not tightly closed. The is due to Blickle and Enescu [8],
and later strengthened in [6, Corollary 3.5].

Proposition 6. Let .R;m; k/ be a Noetherian local unmixed ring of dimension
d and prime characteristic p which is not F-rational. Assume that R is the
homomorphic image of a Cohen–Macaulay ring. Set e.R/ equal to the multiplicity
of R. Then eHK.R/ � 1 C 1

e.R/�1
.

Proof. We may assume that the residue field is infinite. Choose a minimal reduction
of the maximal ideal and let J be the ideal generated by that reduction. Since R is
not F-rational, J � ¤ J . We use Lemma 1 to see that

e.R/ D eHK.J / D eHK.J �/ � �.R=J �/eHK.R/ � .e.R/ � 1/eHK.R/

giving the result. Here the first equality is from the formula of Lech, [63, Theorem
11.2.10], the second is from the tight closure characterization of the Hilbert–Kunz
multiplicity, and the third inequality is from Theorem 6. ut

If e.R/ > dŠ, then since eHK.R/ � e.R/=d Š, we see that eHK.R/ � 1 C 1
dŠ

. On
the other hand, if e.R/ � dŠ, then e.R/ � 1 < dŠ, and Proposition 6 shows that in
the case R is not F-rational, we have the same estimate that eHK.R/ � 1 C 1

dŠ
.

Remark 7. It is worth noting that the relationship between the Hilbert–Kunz
multiplicity of ideals and the tight closure was an important idea in the construction
by Brenner and Monsky [15] of a counterexample to the localization problem in
tight closure theory.

6 F-Signature

The work of Hochster and Roberts on the Cohen–Macaulayness of rings of
invariants [30] focused attention on the splitting properties of the map from R to
R1=p. If R is F-finite, then this map splits as a homomorphism of R-modules if
and only if R is F-pure, i.e., the Frobenius homomorphism is a pure map. Thus
the idea of splitting copies of R out of R1=p clearly had something to say about
the singularities of R. This idea was further explored during the development of
tight closure, with the concept of strong F-regularity. In [62], Smith and Van den
Bergh studied the asymptotic behavior of summands of R1=q for rings of finite
F-representation type which are strongly F-regular. Yao [78] later removed the
assumption of strong F-regularity from their work. For free summands, in [36],
the idea of the F-signature was introduced as a way to asymptotically key track
of the number such summands of R1=q as q varies. As it turns out, almost the exact
same ideas were introduced at the same time by Watanabe and Yoshida [76] in
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their study of minimal relative Hilbert–Kunz multiplicity. The F-signature provides
delicate information about the singularities of R, as we shall see. One immediate
problem was to show that a limit exists in this asymptotic construction. When R

is Gorenstein, this was done in [36], and we reproduce that argument here since
it is not difficult and has the additional benefit of expressing the F-signature as a
difference of the Hilbert–Kunz multiplicities of two ideals. The case when R is not
Gorenstein proved to be considerably harder. After many partial results (see, e.g.,
[2, 79]) Kevin Tucker recently proved the limit always exists. We give a modified
version of his proof here.

We first set up the basic ideas. Let .R;m; k/ be a d -dimensional reduced
Noetherian local ring with prime characteristic p and residue field k. We assume
that R is F-finite. By aq we denote the largest rank of a free R-module appearing
in a direct sum decomposition of R1=q , where as usual q D pe . We write R1=q Š
Raq ˚Mq as an R-module, where Mq has no free direct summands. The number aq

is called the eth Frobenius splitting number of R.

Definition 1. The F-signature of R, denoted s.R/, is s.R/ D lim�!
aq

qdC˛.R/ , the limit
taken as q goes to infinity, provided the limit exists.

We first prove that the limit exists in the Gorenstein case, partly due to the ease
of the proof, and partly due to the fact that it gives a precise value for the F-signature
in terms of Hilbert–Kunz multiplicities. This theorem is found in [36].

Theorem 2. Let .R;m; k/ be a Noetherian local reduced Gorenstein ring of
dimension d and prime characteristic p. Then lim�!

aq

qdC˛.R/ exists and is equal to
the difference between the Hilbert–Kunz multiplicity of the ideal I generated by a
system of parameters, and the Hilbert–Kunz multiplicity of the ideal I W m.

Proof. Let I D .x1; : : : ; xd / be generated by a system of parameters. We claim
that the difference �.M=IM / � �.M=.I W m/M / is zero for all maximal Cohen–
Macaulay modules M without a free summand. We state this as a separate lemma.

Lemma 3. Let .R;m/ be a Gorenstein local ring and let M be a maximal Cohen–
Macaulay R-module without a free summand. Let I be an ideal generated by a
system of parameters for R, and let � 2 R be a representative for the socle of R=I .
Then �M � IM .

Proof. Choose generators fm1; : : : ; mng for M and define a homomorphism R !
M n by 1 7! .m1; : : : ; mn/. Let N be the cokernel, so that we have an exact sequence

0 ! R ! M n ! N ! 0:

Since M has no free summands, this exact sequence is nonsplit. This implies, since
R is Gorenstein, that N is not Cohen–Macaulay. When we kill I , therefore, there is
a nonzero Tor:

0 ! TorR
1 .N; R=I / ! R ! M

n ! N ! 0:
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Since the map R ! M
n

has a nonzero kernel, we must have � 7! 0. Since the
elements m1; : : : ; mn generate M , this says precisely that �M � IM . ut

Returning to the proof of Theorem 2, we write R1=q D Raq ˚ Mq , where Mq is
a maximal Cohen–Macaulay module without free summands. Applying Lemma 3,
we then see that q˛.R/.�.R=I Œq�/ � �.R=.I; �/Œq�// D aq and therefore

eHK.I; R/ � eHK..I; �/; R/ D s.R/: ut
Remark 4. The proof above shows that the F-signature of a Gorenstein local ring
is 0 if and only if for some (or equivalently for all) ideals I generated by a system
of parameters, eHK.I / D eHK.I W m/. As we have seen, this equality holds if and
only if I and I W m have the same tight closure, which is true if and only if I is not
tightly closed, since every ideal properly containing I must contain I W m. Thus the
F-signature is positive in this case if and only if R is F-rational (and then is strongly
F-regular, as R is Gorenstein.) Aberbach and Leuschke [3] proved in general that
the F-signature is positive if and only if R is strongly F-regular. In fact the ideas
of the proof above extend to prove something a little less than strong F-regularity,
namely, that [36, Theorem 11] if the lim sup of aq=qd is positive, then R must be
weakly F-regular, and in particular is Cohen–Macaulay and integrally closed. Thus,
if R is not weakly F-regular, s.R/ exists and is 0. We prove this important fact next.
For graded rings, it is known that strong and weak F-regularity are equivalent [44].

Remark 5. Watanabe and Yoshida [76] systematically studied minimal possible
difference between the Hilbert–Kunz multiplicity of two m-primary ideals. They
go further, and introduced the notion of minimal relative Hilbert–Kunz multiplicity
mHK.R/. By their definition, mHK.R/ D lim inf �R.R=annRRzq/, where z is a
generator of the socle of the injective hull ER.k/: They prove that mHK.R/ �
eHK.I / � eHK.I 0/ for m-primary ideals I � I 0 with �R.I 0=I / D 1. If R is
Gorenstein, they prove the minimal relative Hilbert–Kunz multiplicity is in fact
eHK.J / � eHK.J W m/ for any parameter ideal J of R. As an example, we
quote one of their theorems: Let k be a field of characteristic p > 0, and let
R D kŒx1; : : : ; xd �G be the invariant subring by a finite subgroup G of GL.d; k/

with .p; jGj/ D 1. Also, assume that G contains no pseudo-reflections. Then the
minimal relative Hilbert–Kunz multiplicity is 1=jGj.
Lemma 6. Assume that .R;m/ is a reduced F-finite local ring containing a field
of prime characteristic p, and let d D dim R. We adopt the notation from the
beginning of this section. If s.R/ > 0, then R is weakly F -regular.

Proof. Assume that s.R/ > 0, but R is not weakly F -regular, that is, not all
ideals of R are tightly closed. By [32, Theorem 6.1] R has a test element, and then
[31, Proposition 6.1] shows that the tight closure of an arbitrary ideal in R is the
intersection of m-primary tightly closed ideals. Since R is not weakly F -regular,
there exists an m-primary ideal I with I ¤ I �. Choose an element � of I W m
which is not in I �:
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q˛.R/.�.R=I Œq�/ � �.R=.I; �/Œq�// D �.R1=q=IR1=q/ � �.R1=q=.I; �/R1=q/ � aq:

Dividing by qdC˛.R/ and taking the limit gives on the left-hand side a difference
of Hilbert–Kunz multiplicities:

eHK.I / � eHK..I; �// � s.R/:

But by Theorem 5, this difference is zero, showing that s.R/ D 0. ut
The beautiful idea of Tucker’s proof that the F-signature exists in general is to

represent it as a limit of certain normalized Hilbert–Kunz multiplicities, which are
decreasing. To capture this, we first discuss some general facts about free summands
of modules.

Discussion 6.7. Let .R;m/ be a Noetherian local reduced ring, and let M be a
torsion-free R-module. We can always write M D N ˚ F , where F is free and
N has no free summands. We define a submodule Mnf of M to be N C mF . On
the face of it, this submodule depends on the choice of N . However, we can also
describe this submodule by the following:

fx 2 M j �.x/ 2 m8 � 2 HomR.M; R/g:

To see that these are the same, simply note that clearly Mnf is inside the above
submodule (note it is a submodule!), and conversely, if x is in the submodule, then
x 2 Mnf ; otherwise we can write x D n C y, where y is a minimal generator of F

and where n 2 N . The submodule Ry of M clearly splits off as a free summand,
so there is a � W M �! R such that �.y/ D 1. Then �.x/ D 1 C �.n/ … m, a
contradiction. Note that M=Mnf is a vector space of dimension equal to the rank
of F .

Definition 8. Let .R;m; k/ be a reduced local Noetherian ring of prime character-
istic p. For q D pe , we let Iq WD .R1=q/

Œq�

nf , an ideal in R.

This ideal was considered in work of Yongwei Yao [78] as well as Florian Enescu
and Ian Aberbach [5]. Observe that Tucker defines it as follows, which from the
discussion above is equivalent to our definition:

Iq D fr 2 Rj �.r1=q/ 2 m8 � 2 HomR.R1=q; R/g:
We group some basic remarks about these ideals in the following proposition:

Proposition 9. Let .R;m; k/ be a reduced local Noetherian ring of prime charac-

teristic p. Then mŒq� � Iq for all q D pe . Furthermore, I
Œq0 �
q � Iqq0 for all q D pe

and q0 D pe0

. If the residue field is perfect, �.R=Iq/ D aq .

Proof. Since mR1=q � .R1=q/nf , it is immediate from the definition that mŒq� � Iq .
To prove the second statement, let r 2 Iq , so that r1=q 2 .R1=q/nf . Then .rq0

/1=qq0 D
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r1=q 2 R1=qq0

is clearly Iqq0 by the second description of these ideals, since if
� W R1=qq0 �! R was such that �.r1=q/ … m, restricting � to R1=q would give
the contradiction that r … Iq . The last statement of the proposition follows since

�.R=Iq/ D �.R1=q=I
1=q
q R1=q/ D �.R1=q=.R1=q/nf / D aq . ut

We are ready to prove Tucker’s theorem:

Theorem 10 (Tucker [68, Theorem 4.9]). Let .R;m; k/ be a Noetherian local
ring of dimension d and prime characteristic p. Assume that R is F-finite. Then
s.R/ D lim�!

aq

qdC˛.R/ exists.

Proof. We can complete R and extend the residue field to assume that R is complete
with perfect residue field. By Lemma 6 if R is not weakly F-regular, then s.R/ D 0.
Hence we may assume that R is weakly F-regular, and is in particular a Cohen–
Macaulay domain. We use Corollary 8. We have that there is a constant C such that
for all q; q0,

j�.R=I Œq0�
q / � .q0/d �.R=Iq/j � C.q0/d qd�1:

Dividing by .q0/d we obtain that

j�.R=I Œq0 �
q /=.q0/d � �.R=Iq/j � C qd�1:

Taking the limit as q0 goes to infinity, we see that

jeHK.Iq/ � aq j � C qd�1:

Dividing by qd shows that the F-signature exists if and only if the limit of
eHK.Iq/=qd exists. This follows by noting that I

Œp�
q � Iqp for all q, so that

eHK.Iqp/ � eHK.I
Œp�
q / D pd eHK.Iq/, so that dividing through by qp shows that

the sequence feHK.Iq/=qd g is decreasing, and thus has a limit, necessarily equal to
s.R/. ut

Example 11. We return to Example 18, where the Hilbert–Kunz multiplicity of
simple quotient singularities were given. Let .R;m/ be a two-dimensional complete
Cohen–Macaulay ring. Assume that R is F-finite and is Gorenstein and F-rational.
Then R is a double point and is isomorphic to kŒŒx; y; z��=.f /, where f is one of
the following:

type equation char R s.R/

(An) f D xy C znC1 p � 2 1=.n C 1/ (n � 1)
(Dn) f D x2 C yz2 C yn�1 p � 3 1=4.n � 2/ (n � 4)
(E6) f D x2 C y3 C z4 p � 5 1=24

(E7) f D x2 C y3 C yz3 p � 5 1=48

(E8) f D x2 C y3 C z5 p � 7 1=120
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As in Example 18, in each of these examples a minimal reduction J of the
maximal ideal m has the property that m=J is a vector space of dimension 1.
Hence eHK.J / � eHK.R/ D s.R/ by Theorem 2. Since J is generated by a regular
sequence and is a reduction of m, eHK.J / D e.J / D e.m/ D 2. On the other hand,
Example 18 gives the Hilbert–Kunz multiplicity for each of these examples, and
in each case it is 2 � 1=jGj, where each ring is the invariant ring of a finite group
G acting on a power series ring, giving our statement. Notice that the F-signature
is exactly 1=jGj. The same reasoning applies to Example 21 to show that if the
Hilbert–Kunz multiplicity is irrational in this example, as expected, then so is the
F-signature in the same example.

7 A Second Coefficient

In this section we take up a more careful study of the Hilbert–Kunz function,
showing that a second coefficient exists in great generality. This was proved in [38],
and further improved in [34]. The approach we give in this chapter is a bit different
than those appearing elsewhere, following an alternate proof developed by Moira
McDermott and myself, but not previously published. The proof in [38] relies on
the theory of divisors associated to modules. The approach here rests on growth of
Tor modules. In some ways this method is less transparent than that in [38], but this
author believes it has considerable value nonetheless. We are aiming to prove:

Theorem 1. Let .R;m; k/ be an excellent, local, normal ring of characteristic p

with a perfect residue field and dim R D d . Let I be an m-primary ideal. Then
�.M=I Œq�M / D ˛qd C ˇqd�1 C O.qd�2/ for some ˛ and ˇ in R.

In [34] the condition that R be normal is weakened to just assuming that R

satisfies Serre’s condition R1.
One could hope that this theorem could be generalized to prove that there exists

a constant � such that �.M=I Œq�M / D ˛qd Cˇqd�1 C�qd�2 CO.qd�3/ whenever
R is non-singular in codimension two. However, this will not be true. For instance,
see Example 13.

We first discuss the growth of Tor modules, expanding on what we did in earlier
sections.

Lemma 2. Let .R;m; k/ be a local ring of characteristic p. If T is a finitely
generated torsion R-module with dim T D `, then �.Tor1.T; R=I Œq�// � O.q`/.

Proof. Set d D dim R. Choose a system of parameters .x1; : : : ; xd / � I . We induct
on �.I=.x1; : : : ; xd //. If �.I=.x1; : : : ; xd // > 0, then there exists J � I with
�.I=J / D 1 so that we may write I D .J; u/ with J W u D m. For every q D pn

there is an exact sequence:

0 ! R=J Œq�Wuq ! R=J Œq� ! R=I Œq� ! 0:
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Tensor with T and look at the following portion of the long exact sequence:

� � � ! Tor1.R=J Œq�; T / ! Tor1.R=I Œq�; T / ! Tor0.R=J Œq�Wuq; T / ! � � � :

We have �.Tor1.R=J Œq�; T // � O.q`/ by induction. Also, since J Wu D m,
we have mŒq� � J Œq�Wuq and �.Tor0.R=J Œq�Wuq; T // � �.Tor0.R=mŒq�; T //. But
�.Tor0.R=mŒq�; T // is the Hilbert–Kunz function for T , so �.Tor0.R=mŒq�; T // �
O.q`/.

We have reduced to the case where �.I=.x1; : : : ; xd // D 0. We need a theorem
which is implicitly in Roberts [57] and explicitly given as Theorem 6.2 in [32]:

Theorem 3. Let .R; m/ be a local ring of characteristic p and let G� be a finite
complex

0 ! Gn ! : : : ! G0 ! 0

of length n such that each Gi is a finitely generated free module, and suppose that
each Hi .G�/ has finite length. Suppose that M is a finitely generated R-module. Let
d D dim M: Then there is a constant C > 0 such that `.Hn�t .M ˝R F e.G�// �
C qmin.d;t/ for all t � 0 and all e � 0, where q D pe .

Consider K�..x/I R/, the Koszul complex on .x1; : : : ; xd /. Let H�..x/I R/

denote the homology of the Koszul complex. We apply the above theorem to
conclude that there exists a constant C > 0 such that �.Hd�t .T ˝ F e.K�/// �
C qminf`;tg for all t and for all e. Hence �.Hi .T ˝ F e.K�/// � O.q`/ for all i .
In general, H1.T ˝ F e.K�/// maps onto Tor1.T; R=I Œq�//, which gives the stated
result. ut

Next we study the growth of Tor2.

Lemma 4. Let .R;m; k/ be a Noetherian local ring of dimension d satisfying
Serre’s condition S2 and having prime characteristic p. Let T be an R-module
with dim T � d � 2. Then �.Tor2.T; R=I Œq�// D O.qd�2/.

Proof. Pick a regular sequence x; y contained in the annihilator of T . There is an
exact sequence:

0 ! T 0 ! .R=.x; y//n ! T ! 0

Note dim T 0 D d � 2. Next tensor with R=I Œq� and consider the following portion
of the long exact sequence:

� � � ! Tor2.R=.x; y/; R=I Œq�/˚n ! Tor2.T; R=I Œq�/ ! Tor1.T
0; R=I Œq�/ ! � � � :

Since x; y is regular sequence, we know
P2

iD0 �.Tori .R=.x; y/; R=I Œq�// D 0.
Also, �.Tor1.R=.x; y/; R=I Œq�// D O.qd�2/ by Lemma 2. Then �.Tor2.R=.x; y/;

R=I Œq�// D O.qd�2/ as well. We also know that �.Tor1.T
0; R=I Œq�//

D O.qd�2/ by Lemma 2. From the long exact sequence above, we conclude that
�.Tor2.T; R=I Œq�// D O.qd�2/. ut
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The main surprise is the next lemma, which shows that for the first Tor, modules
which are torsion-free have slower growth than those which are torsion!

Lemma 5. Let .R;m; k/ be a normal local ring of dimension d and prime
characteristic p. Let M be a torsion-free R-module. Then �.Tor1.M; R=I Œq�// D
O.qd�2/.

Proof. Consider the following exact sequence where M � D HomR.M; R/:

0 ! M
	�! M �� ! T ! 0:

Note that 	 is an isomorphism in codimension one and consequently T is a torsion
module with dim T � d � 2. We obtain the following long exact sequence:

� � � ! Tor2.T; R=I Œq�/ ! Tor1.M; R=I Œq�/ ! Tor1.M ��; R=I Œq�/

! Tor1.T; R=I Œq�/ ! � � � :

From this we conclude that

j�.Tor1.M; R=I Œq�// � �.Tor1.M
��; R=I Œq�//j

� �.Tor2.T; R=I Œq�// C �.Tor1.T; R=I Œq�//

D O.qd�2/:

The last inequality follows from Lemmas 2 and 4. So we may replace M by M ��
and assume that M has depth 2. Therefore, M is S2 and MP is free for all height
one primes P .

We can choose a regular sequence x; y such that they kill all TorR
i .M; / for i � 1.

This can be done in many ways. For example, we leave as an exercise that there
exists a sequence, x; y, which is a regular sequence on R and on M such that
multiplication by x on M factors through a free module F D Rr and multiplication
by y on M also factors through F . These multiplications then induce homotopies
which can be used to prove our claim.

We let : : : �! F2 �! F1 �! F0 �! M �! 0 be the start of a minimal free
resolution of M . We tensor with R=I Œq�, and write 0 for images after tensoring. Let
Zq be the kernel of the induced map from F 0

1 to F 0
0 , and Bq be the image of the

induced map from F 0
2 to F 0

1. Thus, Tor1.M; R=I Œq�/ D Zq=Bq . Consider the short
exact sequence:

0 �! Tor1.M; R=I Œq�/ �! F 0
1=Bq �! N=I Œq�N �! 0;

where N is the kernel of the map from F0 onto M . We tensor with R=.x; y/

and use that both x and y annihilate Tor1.M; R=I Œq�/ to see that the length of
this Tor is at most �.Tor1.R=.x; y/; N=I Œq�N // C �.F 0

1=.Bq C .x; y/F 0
1// �
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�.Tor1.R=.x; y/; N=I Œq�N // C �.R=..x; y/ C I Œq�// � rank.F1/: If we had the term
R=I Œq� in the first Tor module instead of N=I Œq�N , we could apply Lemma 2 directly
to see the sum is O.qd�2/. We leave it to the reader to show that this change does
not affect the order of growth. ut

We record the following two corollaries to Lemma 5.

Corollary 6. Let .R;m; k/ be a local, normal ring of characteristic p with
dim R D d . Let M be a finitely generated R-module. Then for all i � 2,
�.Tori .M; R=I Œq�// D O.qd�2/.

Proof. Consider the exact sequence 0 ! �1.M / ! F ! M ! 0 where F is free.
Hence �.Tori .M; R=I Œq�// Š �.Tori�1.�1.M /; R=I Œq�//. It follows that to prove
the lemma, we need only consider the case i D 2, and in this case since �1.M /

is torsion-free, the lemma above implies that �.Tor1.�1.M /; R=I Œq�// D O.qd�2/,
giving that �.Tor2.M; R=I Œq�// D O.qd�2/. ut

The next corollary shows that �.Tor1.�; R=I Œq�// is additive on short exact
sequences of torsion modules, up to O.qd�2/.

Corollary 7. If T1, T2, and T3 are torsion R-modules and 0 ! T1 ! T2 ! T3 !
0 is exact, then jP3

iD1.�1/iC1�.Tor1.Ti ; R=I Œq�//j D O.qd�2/.

Proof. After tensoring the exact sequence with R=I Œq� we obtain the following long
exact sequence:

� � � ! Tor2.T3; R=I Œq�/!Tor1.T1; R=I Œq�/!Tor1.T2; R=I Œq�/!Tor1.T3; R=I Œq�/

! Tor0.T1; R=I Œq�/ ! Tor0.T2; R=I Œq�/ ! Tor0.T3; R=I Œq�/ ! 0:

We examine the cokernel at one spot in the previous sequence. Consider

! Tor2.T3; R=I Œq�/ ! Tor1.T1; R=I Œq�/ ! Tor1.T2; R=I Œq�/

! Tor1.T3; R=I Œq�/ ! C ! 0:

We know that �.Tor2.T3; R=I Œq�// D O.qd�2/ by Corollary 6. It is therefore
enough to show that �.C / D O.qd�2/. We also have the exact sequence

0 ! C ! Tor0.T1; R=I Œq�/ ! Tor0.T2; R=I Œq�/ ! Tor0.T3; R=I Œq�/ ! 0:

Since the Ti are torsion modules, dim Ti � d � 1, and there are constants ci � 0

such that �.Tor0.Ti ; R=I Œq�// D ci q
d�1 C O.qd�2/ so that

�.C / D c1q
d�1 � c2q

d�1 C c3q
d�1 C O.qd�2/:

But since the Hilbert–Kunz multiplicity is additive on short exact sequences, c2 D
c1 C c3, and hence �.C / D O.qd�2/. ut
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The next result refines Lemma 2 by proving the existence of a coefficient giving
the growth pattern.

Theorem 8. Let .R;m; k/ be an excellent, local, normal ring of characteristic p

with perfect residue field and with dim R D d . Let N be a torsion R-module. Then
there exists �.N / 2 R such that �.Tor1.N; R=I Œq�// D �.N /qd�1 C O.qd�2/.

Proof. We may complete R and henceforth assume R is complete. Hence R is F-
finite.

By Corollary 7, it is enough to prove the result for N D R=Q where Q is a
prime of R. If dim N � d � 2, we know that �.Tor1.N; R=I Œq�// D O.qd�2/ by
Lemma 2 and �.Tor2.N; R=I Œq�// � O.qd�2/ by Lemma 4. Hence, it suffices to
prove the case in which N D R=Q where Q is a height one prime of R. Consider
the following exact sequence:

0 ! .R=Q/pd�1 ! .R=Q/1=p ! T ! 0:

Tensor with R=I Œq� and look at the following portion of the corresponding long
exact sequence:

! Tor2.T; R=I Œq�/ ! Tor1.R=Q; R=I Œq�/pd�1 ! Tor1..R=Q/1=p; R=I Œq�/

! Tor1.T; R=I Œq�/ ! :

From this we see that

jpd�1�.Tor1.R=Q; R=I Œq�// � �.Tor1..R=Q/1=p; R=I Œq�//j D O.qd�2/: (10)

Next consider the exact sequence 0 ! Q1=p ! R1=p ! .R=Q/1=p ! 0. First
note that �.Tor1.R

1=p; R=I Œq�// D O.qd�2/ by Lemma 5. From the usual long
exact sequence on Tor we observe that

�.Tor1..R=Q/1=p; R=I Œq�// � �.Tor0.Q
1=p; R=I Œq�// � �.Tor0.R

1=p; R=I Œq�//

C �.Tor0..R=Q/1=p; R=I Œq�// C O.qd�2/

� �.Tor0.Q; R=I Œpq�// � �.Tor0.R; R=I Œpq�//

C �.Tor0.R=Q; R=I Œpq�// C O.qd�2/:

Now consider the sequence 0 ! Q ! R ! R=Q ! 0. After tensoring with
R=I Œpq�, it is clear from the usual long exact sequence that

�.Tor1.R=Q; R=I Œpq�// D �.Tor0.Q; R=I Œpq�// � �.Tor0.R; R=I Œpq�//

C �.Tor0.R=Q; R=I Œpq�//:
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Combining this with the previous inequality shows that

�.Tor1..R=Q/1=p; R=I Œq�// � �.Tor1.R=Q; R=I Œpq�// C O.qd�2/:

Combining (10) and the previous inequality yields

pd�1�.Tor1.R=Q; R=I Œq�// � �.Tor1.R=Q; R=I Œpq�// � O.qd�2/:

Recall that q D pe . Define ıq D �.Tor1.R=Q; R=I Œq�//=qd�1. We claim that
fıqg is a Cauchy sequence. We use the previous inequality to observe that

ıpq � ıq D �.Tor1.R=Q; R=I Œpq�//=.pq/d�1 � pd�1�.Tor1.R=Q; R=I Œq�//=pd�1qd�1

D O.1=q/:

The sequence fıqg converges to some �.R=Q/ 2 R. A simple argument
shows further that jıq � �.R=Q/j D O.q�1/. Hence �.Tor1.R=Q; R=I Œq�// D
�.R=Q/qd�1 C O.qd�2/. ut
Proposition 9. Let .R;m; k/ be an excellent, local, normal ring of characteristic
p with dim R D d . Let M be a torsion-free R-module of rank r . Then there exists
�.M / 2 R such that �.Tor0.M; R=I Œq�// � r�.Tor0.R; R=I Œq�// D �.M /qd�1 C
O.qd�2/.

Proof. We may complete R and henceforth assume R is complete. Since M is
torsion-free of rank r as an R-module, we can choose an embedding Rr ! M

such that the cokernel T is a torsion module over R, and so dim T � d � 1. We
have the following exact sequence: 0 ! Rr ! M ! T ! 0: Tensor with R=I Œq�

and consider the usual long exact sequence:

0 ! Tor1.M; R=I Œq�/ ! Tor1.T; R=I Œq�/ ! Tor0.R; R=I Œq�/˚r

! Tor0.M; R=I Œq�/ ! Tor0.T; R=I Œq�/ ! 0:

We know that �.Tor1.M; R=I Œq�// D O.qd�2/ by Lemma 5 and

�.Tor1.T; R=I Œq�// D �.T /qd�1 C O.qd�2/

by Theorem 8. Also, �.Tor0.T; R=I Œq�// is the Hilbert–Kunz function for T , and
therefore there is a constant C � 0 such that �.Tor0.T; R=I Œq�// D C qd�1 C
O.qd�2/. Thus,

�.Tor0.M; R=I Œq�// � r�.Tor0.R; R=I Œq�// D �.M /qd�1 C O.qd�2/

for some �.M / 2 R. ut
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Corollary 10. Let R be an excellent, local, normal ring of characteristic p with
perfect residue field and dim R D d . Then there exists � D �.R1=p/ 2 R such that

�.Tor0.R; R=I Œpq�// � pd �.Tor0.R; R=I Œq�// D �qd�1 C O.qd�2/:

Proof. We complete R and assume it is complete. Then R1=p is a finitely generated
R-module of rank pd . Thus,

�.Tor0.R
1=p; R=I Œq�// � pd �.Tor0.R; R=I Œq�// D �qd�1 C O.qd�2/

for some � 2 R by Proposition 9. As �.Tor0.R
1=p; R=I Œq�// D �.Tor0.R; R=I Œpq�//,

we have

�.Tor0.R; R=I Œpq�// � pd �.Tor0.R; R=I Œq�// D �.R1=p/qd�1 C O.qd�2/: ut

The next two theorems are the main content in [38]. As mentioned earlier, the
approach in this chapter is through divisors attached to modules, rather than the
growth of the length of Tor modules. See [43] for further analysis of the second
coefficient.

Theorem 11. Let .R;m; k/ be an excellent, local, normal ring of dimension d and
prime characteristic p with a perfect residue field. Then there exists ˇ.R/ 2 R such
that �.R=I Œq�/ D eHK.R/qd C ˇ.R/qd�1 C O.qd�2/.

Proof. We may complete R and henceforth assume R is complete. Define 
q WD
�.R=I Œq�/ � .�.R1=p/=.pd�1 � pd //qd�1. Recall that q D pe . We claim that
f
q=qd g is a Cauchy sequence. Corollary 10 shows that 
pq � pd 
q D O.qd�2/.
Hence j
pq=.pq/d � 
q=qd j D O.q�2/. The sequence f
q=qd g converges to
some ˛.R/ 2 R. Another simple geometric series argument shows that j
q=qd �
˛.R/j D O.q�2/ and so 
q D ˛.R/qd C O.qd�2/. In other words, �.R=I Œq�/ D
˛.R/qd C ˇ.R/qd�1 C O.qd�2/ where ˇ.R/ D �.R1=p/=.pd�1 � pd /. Clearly
˛.R/ D eHK.R/ is forced. ut
Theorem 12. Let .R;m; k/ be an excellent, local, normal ring of dimension d and
prime characteristic p with a perfect residue field. Let M be finitely generated R-
module. Then there exists ˇ.M / 2 R such that �.M=I Œq�M / D eHK.M /qd C
ˇ.M /qd�1 C O.qd�2/.

Proof. We may complete R and henceforth assume R is complete. Suppose
M is a torsion-free R-module of rank r . We know that �.Tor0.M; R=I Œq�// �
r�.Tor0.R; R=I Œq�// D �.M /qd�1 C O.qd�2/ for some �.M / 2 R by Proposi-
tion 9. By Theorem 11 we know that �.R=I Œq�/ D ˛.R/qd Cˇ.R/qd�1 CO.qd�2/.
Combining these two results gives:

�.Tor0.M; R=I Œq�// � r.˛.R/qd C ˇ.R/qd�1 C O.qd�2// D �.M /qd�1 C O.qd�2/

�.Tor0.M; R=I Œq�// D r˛.R/qd C .rˇ.R/ C �.M //qd�1 C O.qd�2/:
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If M is not torsion-free, then we have the following exact sequence where M is
torsion-free:

0 ! T ! M ! M ! 0:

Tensor with R=I Œq� and consider the usual long exact sequence

� � � ! Tor1.M; R=I Œq�/ ! T=I Œq�T ! M=I Œq�M ! M=I Œq�M ! 0:

We know �.Tor1.M; R=I Œq�// D O.qd�2/ by Lemma 5. Also, �.T=I Œq�T / D
eHK.T /qdim T C O.qdim T �1/ and dim T � d � 1. Hence the result for M follows
from the result for M . ut

8 Estimates on Hilbert–Kunz Multiplicity

In this section we discuss estimates of the Hilbert–Kunz multiplicity. A key
motivating idea in this process was introduced in the paper of Blickle and Enescu
[8] which proved that for rings which are not regular, the Hilbert–Kunz multiplicity
is bounded away from 1 uniformly. This is the content of Proposition 7, which gives
the lower bound of 1 C 1

pd dŠ
for formally unmixed non-regular rings. However,

it was felt that the presence of the characteristic p in the formula bounding the
Hilbert–Kunz multiplicity away from 1 should not be necessary. Watanabe and
Yoshida [77] made this explicit with the following conjecture:

Conjecture 1. Let d � 1 be an integer and p > 2 a prime number. Put Rp;d WD
FpŒŒx0; x1; : : : ; xd ��=.x2

0 C � � � C x2
d /: Let .R;m; k/ be a d -dimensional unmixed

local ring with k D Fp , an algebraic closure of the field with p-elements. Then the
following statements hold:

(1) If R is not regular, then eHK.R/ � eHK.Rp;d / � 1 C ad , where ad is the d th
coefficient of the power series expansion of sec.x/ C tan.x/ around 0.

(2) If eHK.R/ D eHK.Rp;d /, then the m-adic completion bR of R is isomorphic to
Rp;d as local rings.

There are several methods which have been used to estimate the Hilbert–Kunz
multiplicity. Perhaps the most effective method is due to Watanabe and Yoshida,
the method of estimation by computing volumes. Closely related ideas were also
introduced by Hanes [29]. We illustrate this method in the simplest case where R is a
Cohen–Macaulay local ring of dimension 2. Higher dimensional cases are of course
more difficult, but the basic volume estimates are similar. The point is to estimate
lA.mŒq�=J Œq�/ (where J is a minimal reduction of m) using volumes in R

d . In a later
paper, Watanabe and Yoshida use the methods, somewhat refined, to study higher
dimension. In [77], they prove their conjecture up to dimension four. Aberbach and
Enescu [7] have extended this by verifying the first part of the conjecture up to
dimension six. Dimension seven is open as of the time this chapter was written.
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We need the following lemma to prove Theorem 3. Just as in [73], it is convenient
to adopt the following notation: if t is a real number, then I t WD I btc.

Lemma 2. Let .R;m; k/ be an unmixed local ring of dim R D 2, of prime
characteristic p, with infinite residue field. Let J be a parameter ideal of R. Let
1 � s < 2. Then we have the following limits:

lim
q!1

�.R=J sq/

q2
D e.J /s2

2
; lim

q!1 �

�
J sq C .J �/Œq�

J Œq�

�

D e.J / � .2 � s/2

2

Proof. We leave these for the reader as an exercise. The first follows from the usual
Hilbert–Samuel multiplicity, while the second can be immediately reduced to the
case in which R is a power series ring and the parameters are regular parameters. In
this case the second limit can be thought of as computing a certain volume. We will
describe the d -dimensional case after proving the theorem. ut
Theorem 3 (Watanabe–Yoshida [73, Corollary]). Let .R;m; k/ be a two-
dimensional Cohen–Macaulay local ring of prime characteristic p. Put e D e.R/,
the multiplicity of R. Then the following statements holdW
(1) eHK.R/ � eC1

2
.

(2) Suppose that k D k. Then eHK.R/ D eC1
2

holds if and only if the associated
graded ring grm.R/ is isomorphic to the Veronese subring kŒX; Y �.e/.

Proof. We will only prove the first statement. We claim that

eHK.R/ � r C 2

2r C 2
e;

where e is the multiplicity of R, and r is the minimal number of generators ofm=J �.
The theorem follows easily from this inequality, since the fact that e � r �1 implies
that eC1

2
� rC2

2rC2
e:

To prove the above claim, we let s be a real number, 1 � s < 2. We may assume
that the residue field is infinite, and we then choose a minimal reduction J of the
maximal ideal. Note that �.mŒq�=.J �/Œq�/ D eq2 � eHK.R/q2 C O.q/, by the tight
closure characterization of the Hilbert–Kunz multiplicity, Theorems 5 and 12.

We have the following:

�.mŒq�=.J �/Œq�/

� �..mŒq� C msq/=..J �/Œq� C msq// C �...J �/Œq� C msq/=..J �/Œq� C J sq/

C �...J �/Œq� C J sq/=J Œq�/:

The middle term in this sum is negligible, since J is a reduction of m, so that there
is a fixed power of m annihilating these modules, and the number of generators of a
power of m grows as O.q/. Hence the entire term is O.q/.
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We prove that

�..mŒq� C msq/=..J �/Œq� C msq// � r � �.R=J .s�1/q/ C O.q/:

By our assumption, we can write as m D J � CRu1 C� � �CRur . Since J .s�1/quq
i �

msq � msq C .J �/Œq�, we have

�

�
mŒq� C msq

.J �/Œq� C msq

�

�
rX

iD1

�
�
R=..J �/Œq� C msq/ W uq

i

� � r � �.R=J .s�1/q/:

Also, we have �..J �/Œq�=J Œq�/ D O.qd�1/ by Theorem 5. Hence,

�.mŒq�=.J �/Œq�/ � r � �.R=J .s�1/q/ C �

�
.J �/Œq� C J sq

J Œq�

�

C O.q/:

Dividing by q2 and letting q go to infinity, it follows from Lemma 2 that

eHK.J / � eHK.m/ � r � e � .s � 1/2

2
C e � .2 � s/2

2
:

Setting s D rC2
rC1

proves the claim and finishes the proof of the theorem. ut
The more general situation is as follows. We take the next discussion directly

from [77]. For any positive real number s, we put

vs WD Vol

(

.x1; : : : ; xd / 2 Œ0; 1�d
ˇ
ˇ
ˇ
ˇ

dX

iD1

xi � s

)

; v0
s WD 1 � vs;

where Vol.W / denotes the volume of W � R
d . With this notation, a key theorem

in the work of Watanabe and Yoshida is the following:

Theorem 4. Let .R;m; k/ be an unmixed local ring of characteristic p > 0. Put
d D dim R � 1. Let J be a minimal reduction of m, and let r be an integer with
r � �R.m=J �/, where J � denotes the tight closure of J . Also, let s � 1 be a
rational number. Then we have

eHK.R/ � e.R/

�

vs � r � .s � 1/d

d Š

�

: (11)

This has been extended in [7].

Example 5 (cf. [17,73]). Let .R;m; k/ be a hypersurface local ring of characteristic
p > 0 with d D dim R � 1. Then

eHK.R/ � ˇdC1 � e.R/;
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where ˇdC1 is given by the formulaW

Vol

�

x 2 Œ0; 1�d
ˇ
ˇ
ˇ
ˇ

d � 1

2
�
X

xi � d C 1

2

�

D 1 � v d�1
2

� v0
dC1

2

:

The first few values of ˇdC1, beginning at d D 0, are the following: 1; 1; 3
4

;
2
3

; 115
192

, and for d D 5, 11
20

.

Exercise 6 (Watanabe–Yoshida [73, Theorem (2.15)]). Let .R;m; k/ be a local
ring of characteristic p > 0. Let G D grm.R/ the associated graded ring of R with
respect m as above. Then eHK.R/ � eHK.GM/ � e.R/. Give an example to show
that equality does not necessarily hold. (In fact, it seldom holds.)

Our final bounds rest on another technique, due to Aberbach and Enescu, as
refined by Celikbas, Dao, Huneke, and Zhang, which allows one to give a uniform
lower bound on the Hilbert–Kunz functions of non-regular rings. The basic idea
of Aberbach and Enescu is to adjoin roots of elements in some fixed minimal
reduction of the maximal ideal. In a bounded number of steps of such adjunctions,
one reaches a ring which is not F-rational. In this case as we have seen, there are
good lower bounds for the Hilbert–Kunz multiplicity. This reduces the problem to
understanding the relationship between Hilbert–Kunz multiplicity of a ring and the
ring adjoined some root. At this point the estimates in [18] are helpful. The first
uniform bound was given in [6]:

Theorem 7 (Aberbach–Enescu). Let .R;m; k/ be an unmixed ring of dimension
d � 2 and prime characteristic p. If R is not regular, then

eHK.R/ � 1 C 1

d.d Š.d � 1/ C 1/d
:

This bound was improved in the paper [18] as we describe below. The essential
new idea is in the following proposition:

Proposition 8. Let R be a local Noetherian domain, and let I D .J; u/ where J

is an integrally closed m-primary ideal of R and u 2 Soc.J /. If M is a finitely
generated torsion-free R-module, then

`.IM=JM / � rank M:

Proof. Set N D .JM WM u/. Since
M

N
Š .J; u/M

JM
and mM � N , we can write

M D N CN 0 with �.N 0/ D `

�
IM

JM

�

. Thus it suffices to prove �.N 0/ � rank.M /.

Since u.M=N 0/ � J.M=N 0/, it follows from the determinantal trick [63, 2.1.8] that
there is an element r D un C j1 � un�1 C � � � C jn with ji 2 J i for all i such that
rM � N 0. Observe that r ¤ 0 since J is integrally closed and u … J . Since
Mr D N 0

r , this implies that �.N 0/ � rank.N 0/ D rank.M /. ut
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Given two ideals I and J with J � I , `.I=J / will denote the longest chain of
integrally closed ideals between J and I .

Corollary 9. Let R be a Noetherian local domain. Let J be an integrally closed m-
primary ideal of R and let I be an ideal containing J . If M is a finitely generated
torsion-free R-module, then

`.IM=JM / � `.I=J / � rank.M /:

Proof. Set n D `.I=J /. Then there is a chain of ideals

J D K0 � K1 � : : : � Kn�1 � Kn D I

with Ki D Ki for all i . Then

` .IM=JM / �
nX

j D0

`.Kj C1M=Kj M / �
nX

j D0

`..Kj ; uj /M=Kj M /

for some uj 2 Kj C1 \ Soc.Kj /. Thus the result follows from Proposition 8. ut
One of the important ideas in proving that Hilbert–Kunz multiplicity equal to

one implies regularity was showing an inequality eHK.I / � �.R=I / for a suitable
m-primary ideal I . Recall that we have equality if R is regular. This idea was
developed in [73, 2.17], where the following questions were raised:

Let R be a Cohen–Macaulay local ring of characteristic p > 0. Then for any
m-primary ideal I , do we have (1) eHK.I / � `.R=I /‹ (2) If pdR.R=I / < 1, is
eHK.I / D `.R=I /?

The answer to both questions turns out to be negative; for example, see the paper
of Kurano [42]. The next exercise shows that (1) is true for many m-primary ideals
[18]:

Exercise 10. Assume R is an excellent normal ring with an algebraically closed
residue field. If I is an integrally closed m-primary ideal of R, then

eHK.I / � `.R=I / C eHK.R/ � 1:

If I is an m-primary ideal such that there is an integrally closed ideal K � I with
`.I=K/ D 1, then

eHK.I / � `.R=I /:

(Hint: Use [72, 2.1] and Corollary 9.)

We turn to better uniform lower bounds for the Hilbert–Kunz multiplicity. An
important point is the following, which we leave as an exercise (see [18]):

Exercise 11. Assume R is Cohen–Macaulay and normal, and let x 2 m � m2 be
part of a minimal reduction of m. Let S D RŒy� with yn D x. Then mS C .yi / is
integrally closed for any nonnegative integer i .
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Corollary 12. Assume that .R;m; k/ is a Cohen–Macaulay normal local ring of
prime characteristic p with infinite residue field. Let x 2 m � m2 be part of a
minimal reduction of m and let S D RŒy� with yn D x: Then

eHK.R/ � 1 � eHK.S/ � 1

n
:

Proof. It follows from Proposition 11 and Corollary 9 that

eHK.mS/ � `.S=mS/ C eHK.S/ � 1

Note that S=mS Š kŒy�=.yn/. So `.S=mS/ D n. Moreover, eHK.mS/ D n �
eHK.R/ by Theorem 16. Therefore,

n � eHK.R/ � n C eHK.S/ � 1

and hence the result follows. ut
We can now give a rough lower bound on the Hilbert–Kunz multiplicity of a

non-regular local ring, which depends only upon the dimension of the ring. This is
an improvement of the bound of Aberbach and Enescu, Theorem 7.

Theorem 13. Let .R;m; k/ be a formally unmixed Noetherian local ring of prime
characteristic p, multiplicity e > 1, and dimension d . Then eHK.R/ � 1 C 1

dŠdd .

Proof. If eHK.R/ � 1 C 1=dŠ; there is nothing to prove. Hence we may assume
that eHK.R/ < 1 C 1=dŠ; and then R is F -regular and Gorenstein by [6, 3.6] (see
Proposition 6 as well). Thus we may assume that R is F -rational and Gorenstein.

Let .x/ D .x1; � � � ; xd / be a minimal reduction of m. Consider the set of
overrings S D RŒx

1=n
1 ; : : : ; x

1=n
i � D Ri;n which are not F -rational. Choose n

and i such that we attain min fni W Ri;n is not F-rationalg. Set S D Ri;n. Then
by Proposition 6 applied to x

1=n
1 ; : : : ; x

1=n
i ; xiC1; : : : ; xd ,

eHK.S/ � e.S/

e.S/ � 1
:

However, since S=.x
1=n
1 ; : : : ; x

1=n
i ; xiC1; ::; xd / Š R=.x/; we have e.S/ D e.

Therefore, eHK.S/ � 1 C 1
e�1

:

Let R0 D R; and for each i � j � 1; let Rj D Rj �1Œx
1=n
j �; then by

Corollary 12,

eHK.Rj / � 1 � eHK.Rj �1/ � 1

n
:

Since e � 1 < dŠ, it remains to prove that

min fni W Ri;n is not F-regularg � d d :
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To do this we note that it suffices to prove that RŒx
1=d
1 ; : : : ; x

1=d

d � is not F-regular.

Set yi D x
1=d
i . Then a socle representative of S=.x/ is u � yd�1

1 : : : yd�1
d ; where u

generates the socle of .xR/. Let v be any discrete valuation centered on the maximal
ideal of S . Then we claim that

v.u � yd�1
1 : : : yd�1

d / � dv.m/:

Since v.u/ � v.m/, this is clear.
It follows that u � yd�1

1 : : : yd�1
d 2 .mS/d . By the tight closure Briançon–Skoda

theorem [31, Section 5] this implies that .x1; : : : ; xd /S is not tightly closed, which
gives the desired conclusion. ut

Another approach, closely related to the volume methods of Watanabe and
Yoshida, was given by Douglas Hanes in [29]. We close this survey with some of
his results. See in particular [29, Theorem 2.4] and [29, Corollary 2.8].

Theorem 14. Let .R;m; k/ be a Noetherian local ring of prime characteristic p,
and dimension d � 2. Let I be an m-primary ideal, and set t D �.I /. Then,

eHK.I / � e.I /

d Š
� t

.t1=.d�1/ � 1/d�1
:

Proof. We note that I Œq� � I q for all q D pe and �.I Œq�/ � t for all q. Hence, for
all q D pe and any s 2 N, �..I Œq� C I qCs/=I qCs/ � t � �.R=I s/. Therefore, for all
q D pe and any s 2 N, we see that

�.R=I Œq�/ � �.R=.I Œq� C I qCs// � �.R=I qCs/ � t � �.R=I s/:

Just as in the work of Watanabe and Yoshida, the key point is to choose s

carefully. Set s D q˛. We obtain that

�
e.I /

d Š

�

Œ.q C q˛/d � t.q˛/d � � �.R=I Œq�/ C O.qd�1/:

Ignoring the O.qd�1/ term and computing the maximal value of the function on
the left-hand side of this equation, we obtain that a maximum is achieved when
˛ D 1

.t1=.d�1/�1/d�1 . The best lower bound for eHK.I / is obtained by setting s D
b q

.t1=.d�1/�1/d�1 c. Note that s > 0, since t � d � 2. We may write s D q.˛ � 
/

where 
 < 1=q. Applying the equations above with this value of s gives us that

�.R=I Œq�/ �
�

e.I /

d Š

�

qd Œ.1 C ˛ � 
/d � t.˛ � 
/d � C O.qd�1/:
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Dividing through by qd , and letting q go to infinity (and 
 toward 0), we obtain the
estimate

eHK.I / �
�

e.I /

d Š

�

Œ.1 C ˛/d � t.˛/d �;

from which the theorem follows. ut
Corollary 15. Let .R;m; k/ be a d -dimensional hypersurface ring of prime char-
acteristic p, where d � 3. Then eHK.R/ � e.R/2d�1=d Š.

Proof. Apply the previous theorem. Notice that the function F.t/ D t

.t1=.d�1/�1/d�1

is decreasing, and F.2d�1/ D 2d�1. As long as �.m/ � 2d�1 we can then apply the
theorem. Since �.m/ � d C 1 and d � 3, the inequality holds. ut
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Pure O-Sequences: Known Results,
Applications, and Open Problems

Juan Migliore, Uwe Nagel, and Fabrizio Zanello

1 Introduction

Pure O-sequences are fascinating objects that arise in several mathematical areas.
They have been the subject of extensive research, yet our knowledge about pure
O-sequences is limited. The goal of this note is to survey some of the known
results and to motivate further investigations by pointing out connections to various
interesting problems. Much of the material for this chapter has been drawn from
the recent monograph [3] by the authors with Mats Boij and Rosa Miró–Roig, cited
in this article as BMMNZ. We often quote results giving the name of the author(s)
and the year the result was published so as to also hint at the history of ideas in the
development of the theory of pure O-sequences.

The multifaceted interest in pure O-sequences is already indicated in their
definition. On the one hand, a pure O-sequence can be defined as the vector
whose entries record the number of monomials of a fixed degree in an order ideal
generated by monomials of the same degree. On the other, a pure O-sequence
is the Hilbert function of a finite-dimensional graded algebra that is level, i.e.,
its socle is concentrated in one degree, and has monomial relations. There is an
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extensive literature on monomial ideals and an extensive literature on level algebras.
Pure O-sequences form a bridge between the two theories, and we will outline
the work on pure O-sequences from this point of view. But more than that, these
sequences have a broad array of applications and occur in many settings, largely
combinatorial ones.

In Sect. 2, we review some of the basic results in the theory of pure O-sequences
and focus on qualitative aspects of their shape. For instance, in some cases, pure
O-sequences are known to be unimodal; that is, they are first weakly increasing,
and once the peak is reached, they are weakly decreasing. However, pure O-
sequences may fail to be unimodal, even with arbitrarily many “valleys”. We include
a discussion of recent results on conditions that force unimodality.

Connections to various combinatorial problems are the subject of Sect. 3.
Face vectors of pure simplicial complexes are examples of pure O-sequences. In
particular, the existence of certain block designs, such as Steiner systems, is related
to that of some pure O-sequences. As a special case, the existence of finite projective
planes is equivalent to the existence of particular pure O-sequences.

Another challenging problem is Stanley’s conjecture that the h-vector of any
matroid complex is a pure O-sequence. We discuss some recent progress. However,
the conjecture remains open in general.

In Sect. 4, we describe results on the enumeration of pure O-sequences, with a
focus on asymptotic properties. In particular, it follows that, when the number of
variables is large, “almost all” pure O-sequences are unimodal.

We conclude this chapter with a collection of open problems, most of which are
mentioned in the earlier sections.

2 Monomial Level Algebras

A finite, nonempty set X of (monic) monomials in the indeterminates y1; : : : ; yr is
called a monomial order ideal if whenever M 2 X and N is a monomial dividing
M , then N 2 X . The h-vector of X is defined to be the vector h D .h0 D
1; h1; : : : ; he/ counting the number of monomials of X in each degree. A monomial
order ideal, X , is called pure if all maximal monomials of X (in the partial ordering
given by divisibility) have the same degree. A pure O-sequence is the h-vector of a
pure monomial order ideal. For reasons that will be clear shortly, we call e the socle
degree of h. The type of a pure O-sequence is the number of maximal monomials.

Notice that if we think of y1; : : : ; yr as the indeterminates of a polynomial ring
R D KŒy1; : : : ; yr � over a field, the question of whether a given sequence is or
is not a pure O-sequence does not depend on the choice of K . Thus, for many of
our results, it does not matter what we choose for K . However, in some situations,
choosing a “nice” field K allows us to use special algebraic tools to say something
about pure O-sequences, so in this case we make whatever additional assumptions
we need for K .
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We now let R D KŒx1; : : : ; xr �, where K is an infinite field. We will consider
standard graded artinian K-algebras A D R=I , where I will usually be a monomial
ideal. Without loss of generality we will assume that I does not contain nonzero
linear forms, so we will define r to be the codimension of A.

Let R D KŒy1; : : : ; yr � and consider the action of R on monomials of R by
contraction. By this we mean the action generated by

xi ı y
a1

1 y
a2

2 � � � yar
r D

�
y

a1

1 y
a2

2 � � � ya1�1
i � � � yar

r ; if ai > 0;

0; if ai D 0:

For a monomial ideal I � R, we define the inverse system to be the R-module
I ? D annR.I / � R. One can check that I ? consists of the monomials not in I

(identifying xi with yi ), and as such it can be viewed as a monomial order ideal.
Recalling that for a standard graded algebra R=I , the Hilbert function is defined to
be hR=I .t/ D dimŒR=I �t , we observe that the h-vector (as defined above) of the
order ideal I ? coincides with the Hilbert function of R=I .

Furthermore, I ? is a pure monomial order ideal if and only if R=I is a level
algebra; that is, the socle of R=I (i.e., the annihilator of the homogeneous maximal
ideal of R=I ) is concentrated in one degree, called the socle degree of R=I ; it
is necessarily the degree of the maximal monomials of I ?. The dimension of the
socle as a K-vector space is equal to the type of the pure O-sequence. See [25, 39]
for more details on inverse systems.

Thus the study of pure O-sequences boils down to a study of the possible
Hilbert functions of artinian monomial level algebras. In some cases we can rule out
candidates for pure O-sequences by showing that there is not even a level algebra
with that Hilbert function, but more often we need to use the structure of monomial
algebras themselves.

The most basic tool is Macaulay’s theorem to determine if the sequence is even
an O-sequence, that is, to determine if it is the Hilbert function of some artinian
algebra. We refer to [8, 47] for details of Macaulay’s theorem, but we recall the
statement. Let n and d be positive integers. There exist uniquely determined integers
kd > kd�1 > � � � > kı � ı � 1 such that

n D n.d/ D
 

kd

d

!
C
 

kd�1

d � 1

!
C � � � C

 
kı

ı

!
:

This is called the d -binomial expansion of n. We set

.n.d//
1
1 D

 
kd C 1

d C 1

!
C
 

kd�1 C 1

d

!
C � � � C

 
kı C 1

ı C 1

!

and .0.d//
1
1 D 0, for each d . Then Macaulay’s theorem is the following.
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Theorem 1 (Macaulay [47]). Let A be a standard graded algebra with Hilbert
function hA.t/ WD ht . Then for all t � 1, htC1 � ..ht /.t//

1
1.

An O-sequence is a (possibly infinite) sequence of integers .1; h1; h2; : : : / that
satisfies the growth condition of Theorem 1 for every value of t . Thus the O-
sequences are the sequences that occur as the Hilbert function of some standard
graded algebra.

Example 2. The sequence .1; 3; 6; 8; 8; 10/ is not a pure O-sequence because it
is not even an O-sequence (the growth from degree 4 to degree 5 is too big).
Similarly, .1; 3; 5; 5; 4; 4/ is an O-sequence but it is not a pure O-sequence
because it is not the Hilbert function of a level algebra (see [26]). Finally, h D
.1; 3; 6; 10; 15; 21; 28; 27; 27; 28/ is the Hilbert function of a level algebra, but it is
not a pure O-sequence [4] because there is no monomial level algebra with this
Hilbert function. In fact, h has been the first nonunimodal level Hilbert function
discovered in codimension 3 (see the third author [83]), and Boyle [4] has shown
that this is in fact the smallest possible such Hilbert function.

So the challenge is to determine what additional conditions on an O-sequence are
imposed by requiring that it be the Hilbert function of an artinian level monomial
algebra. The first result, due originally to Stanley [67] with subsequent proofs
given by Watanabe [78], Ikeda [65], Reid, Roberts, and Roitman [63], Herzog and
Popescu [33], and Lindsey [45], concerns monomial complete intersections. (Note
though that an equivalent property was proven earlier by de Bruijn, van Ebbenhorst
Tengbergen, and Kruyswijk [21].) This result requires us to introduce here the
notion of the Weak and Strong Lefschetz properties. The consequence of this result
for pure O-sequences of type 1 is perhaps not so critical, as alternative proofs could
be given. But its influence in the study of the Strong Lefschetz property (SLP) and
the Weak Lefschetz property (WLP) in general and on related topics in commutative
algebra, can hardly be overstated. In the result below and throughout the chapter,
we will call a sequence unimodal if it is nondecreasing up to some degree and
then nonincreasing past that degree. We will call it strictly unimodal if it is strictly
increasing up to some degree, then possibly constant for some range, then strictly
decreasing until it reaches zero, and then zero past that point. Unimodality is a
central concept not only in combinatorics and combinatorial commutative algebra
but also in other branches of mathematics. See for instance the classical surveys of
Stanley ([68], 1989) and Brenti ([6], 1994).

Theorem 3 (see above for sources). Let R D KŒx1; : : : ; xr �, where K has
characteristic zero, and let I be an artinian monomial complete intersection, i.e.,

I D hxa1

1 ; : : : ; xar
r i:

Let L be a general linear form. Then for any positive integers d and i , the
homomorphism induced by multiplication by Ld ,

�Ld W ŒR=I �i ! ŒR=I �iCd ;



Pure O-Sequences: Known Results, Applications, and Open Problems 531

has maximal rank. (In particular, this is true when d D 1.) As a consequence, a
pure O-sequence of type 1 is strictly unimodal.

When I is an arbitrary artinian homogeneous ideal, the above maximal rank
property for all d and i is called the SLP, and the case d D 1 is called the WLP.
A consequence of the WLP is that in the range where .�L/ is injective, we have a
short exact sequence:

0 ! ŒR=I �i ! ŒR=I �iC1 ! ŒR=.I; L/�iC1 ! 0:

Thus, the first difference �hR=I .t/ D hR=I .t/ � hR=I .t � 1/ is the Hilbert function
of a standard graded algebra in this range; that is, it is again an O-sequence. We
then say that hR=I is a differentiable O-sequence in this range. It also follows from
this sequence that if the WLP holds, then once the peak of the Hilbert function is
reached, the Hilbert function will be nonincreasing, and therefore the whole Hilbert
function is unimodal.

Remark 4. Simple examples show that Theorem 3 may fail in positive character-
istic. It turns out that the question in which positive characteristics a monomial
complete intersection has the WLP or SLP leads to unexpected connections to the
problem of determining the number of certain plane partitions, lozenge tilings, or
families of lattice paths (see [11, 16, 18, 19, 43]).

One of the early important results on pure O-sequences is due to Hibi [34].

Theorem 5 (Hibi [34]). Let h be a pure O-sequence of socle degree e. Then

hi � hj

whenever 0 � i � j � e�i . This has the following two important consequences:

(a) h is flawless, i.e., hi � he�i for all 0 � i � b e
2
c.

(b) The “first half” of h is nondecreasing:

1 D h0 � h1 � h2 � � � � � hb e
2 c:

This latter result was later improved by the following algebraic g-theorem of
Hausel [32]:

Theorem 6 (Hausel [32]). Let A be a monomial Artinian level algebra of socle
degree e. If the field K has characteristic zero, then for a general linear form L, the
induced multiplication

�L W Aj ! Aj C1

is an injection for all j D 0; 1; : : : ; b e�1
2

c. In particular, over any field, the sequence

1; h1 � 1; h2 � h1; : : : ; hb e�1
2 cC1 � hb e�1

2 c
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is an O-sequence, i.e., the “first half” of h is a differentiable O-sequence.

We have the following additional results on differentiability from [3]:

Theorem 7 (Boij et al. [3]).

(a) Every finite differentiable O-sequence h is the “first half” of some pure
O-sequence. (This is the converse of Hausel’s theorem.)

(b) In particular, any finite differentiable O-sequence is pure (by truncation).
(c) Any nondecreasing pure O-sequence of socle degree � 3 is differentiable.

It turns out that (c) is the best possible result in this direction:

Proposition 8 (Boij et al. [3]). There exist nondecreasing pure O-sequences of any
socle degree e � 4 that are not differentiable.

Example 9. We illustrate the preceding result with an example from [3]. Observe
first that the h-vector h0 D .1; 4; 10; 20; 35/ is a pure O-sequence since it is the
h-vector of the truncation of a polynomial ring in four variables, w; x; y; z; the pure
order ideal arises using all 35 monomials of degree 4 in w; x; y; z. The h-vector
h00 D .1; 4; 6; 4; 1/ is also a pure O-sequence, since it is the order ideal generated
by a monomial abcd in four new variables. Now we work in a polynomial ring in the
eight variables w; x; y; z; a; b; c; d , and we consider the pure order ideal generated
by the above 36 monomials of degree 4. The resulting h-vector h is

1 4 10 20 35

C 4 6 4 1

1 8 16 24 36

:

Since the first difference of h D .1; 8; 16; 24; 36/ is .1; 7; 8; 8; 12/, which is not an
O-sequence (because 12 > .8.3//

1
1 D 10), we have constructed the desired example.

Putting aside the class of nondecreasing pure O-sequences, we now turn to the
question of unimodality. There are three factors that go into whether a nonunimodal
example will exist: the codimension (i.e., the number of variables), the socle degree,
and the type. An easy application of Macaulay’s theorem gives that any standard
graded algebra of codimension two has unimodal Hilbert function, and in fact it
is not hard to show that if KŒx; y�=I is level (monomial or not) then the Hilbert
function is strictly unimodal (see, e.g., Iarrobino [38], 1984). Hence the interesting
questions arise for codimension r � 3.

We will begin with some results involving the socle degree (some of which will
also bring in the codimension). It follows from Hibi’s result on flawlessness that any
pure O-sequence of socle degree � 3 is unimodal. The next case, socle degree 4,
already is not necessarily unimodal, again thanks to an example from [3]:

Example 10. Observe that h0 D .1; 5; 15; 35; 70/ is a pure O-sequence, since it is
the h-vector of the truncation of a polynomial ring in five variables, and as before
h00 D .1; 4; 6; 4; 1/ is also pure, since it corresponds to the maximal monomial
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abcd 2 KŒa; b; c; d �. Hence, reasoning as above, we now consider one copy of h0
and eleven copies of h00 as h-vectors of pure O-sequences in twelve different rings,
and we work in the tensor product of those rings. It follows that

h D .1; 5; 15; 35; 70/ C 11 � .0; 4; 6; 4; 1/ D .1; 49; 81; 79; 81/

is a nonunimodal pure O-sequence of socle degree 4.

A natural question, then, is what is the smallest codimension for which nonuni-
modal pure O-sequences exist with socle degree 4. This remains open. We do have
the following results from [4], however:

Theorem 11 (Boyle [4]).

(a) All pure O-sequences of socle degree � 9 in three variables are unimodal.
(b) All pure O-sequences of socle degree � 4 in four variables are unimodal.
(c) In four or more variables, there exist nonunimodal pure O-sequences in all

socle degrees � 7.

In [2], Boij and the third author gave a nonunimodal pure O-sequence of codimen-
sion 3 and socle degree 12. This is the smallest known example in codimension 3. It
follows from this and Boyle’s result that in codimension 3, the only open cases are
socle degrees 10 and 11. Notice that, in codimension 4, the previous theorem leaves
only open the socle degrees 5 and 6.

Now we turn to questions involving the type. Of course it follows immediately
from Theorem 3 that pure O-sequences of type 1 are unimodal. What else can
be deduced about pure O-sequences using the WLP? A collection of results was
obtained in [3] which showed, in some sense, the limits of the WLP in the study of
pure O-sequences.

Theorem 12 (Boij et al. [3]). Over a field of characteristic zero the following
hold:

(a) Any monomial artinian level algebra of type 2 in three variables has the WLP.
Thus a pure O-sequence of type 2 and codimension 3 is differentiable until it
reaches its peak, is possibly constant, and then is nonincreasing until it reaches
zero.

(b) Fix two positive integers r and d . Then all monomial artinian level algebras
of codimension r and type d possess the WLP if and only if at least one the
following is true:

(i) r D 1 or 2
(ii) d D 1

(iii) r D 3 and d D 2

The proof of (a) was surprisingly long and intricate. The main point of (b) is that
in all other cases, we were able to show that artinian monomial level algebras exist
that do not have the WLP.
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Notice that Theorems 3, 6, and 12(a) require that K have characteristic zero.
The statements about injectivity and surjectivity require this property of the
characteristic, and indeed a great deal of research has been carried out to see what
happens when K has positive characteristic; we refer to [52] for an overview of
these results. The consequences on the shape of the pure O-sequences are indeed
characteristic free, as has been noted above, since the Hilbert function of a monomial
ideal does not depend on the characteristic.

If one is studying all artinian level monomial algebras of fixed type, Theorem 12
is a serious limitation on the usefulness of the WLP. However, in the study of
pure O-sequences (e.g., to determine combinations of codimension, type, and socle
degree that force unimodality) it is still conceivable that the WLP will play a useful
role. As a trivial example, we know that monomial complete intersections in any
codimension possess the WLP, thanks to Theorem 3. It is not known (except in
codimension � 3, as noted below) whether all complete intersections have this
property, but the knowledge in the special case of monomial ideals is enough to
say that all complete intersection Hilbert functions are unimodal. Perhaps a similar
phenomenon will allow the WLP to continue to play a role in the study of pure
O-sequences. A first approach using this philosophy was obtained by Cook and the
second author [17], where they lifted a monomial ideal to an ideal of a reduced set
of points in one more variable, showed that the general artinian reduction has the
WLP, and concluded that the Hilbert function of the original monomial algebra is
unimodal, regardless of whether it has the WLP or not.

For this reason we mention a useful tool in studying the WLP that was introduced
by the first and second authors with Harima and Watanabe in [30] and whose study
was continued by Brenner and Kaid in [5]. This is the study of the syzygy bundle and
the use of the Grauert–Mülich theorem (see [58]). It was used in [30] to show that
any complete intersection I in KŒx; y; z� over a field of characteristic zero has the
WLP. The idea is to restrict to a general line, say one defined by a general linear form
L. The key is that the restricted ideal .I; L/=.L/ (which now has codimension 2,
hence has a Hilbert–Burch matrix) should have minimal syzygies in two consecutive
degrees, at most. The idea of [30] was that for height 3 complete intersections, this
information can be obtained by considering the module of syzygies of I , sheafifying
it to obtain the syzygy bundle, and applying the Grauert–Mülich theorem to the
general line defined by L. Of course this introduces questions about the semistability
of the syzygy bundle, which we mostly omit here. In a more general setting, the
following result from [5] summarizes the idea nicely, at least for codimension three.

Theorem 13 (Brenner–Kaid [5]). Let I D hf1; : : : ; fki � KŒx; y; z� D R be an
artinian homogeneous ideal whose syzygy bundle S is semistable on P

2. Then

(a) If the restriction of S splits on a general line L as

SL Š
sM

iD1

OL.a C 1/ ˚
k�1M

iDsC1

OL.a/;

then A D R=I has the WLP.
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(b) If the restriction of S splits on a general line L as

SL Š OL.a1/ ˚ � � � ˚ OL.an�1/

with a1 � a2 � � � � � an�1 and a1 � an�1 � 2, then A D R=I does not have
the WLP.

Other applications of this approach, for higher codimension, can be found for
instance in [55].

Returning to unimodality questions, tools other than the WLP will also be
needed. We have the following theorems of Boyle [4], which relied on decompo-
sition results and an analysis of complete intersection Hilbert functions but did not
use the WLP.

Theorem 14 (Boyle [4]).

(a) In codimension 3, all pure O-sequences of type 3 are strictly unimodal.
(b) In codimension 4, all pure O-sequences of type 2 are strictly unimodal.

A natural question is whether all pure O-sequences of type 2 and arbitrary
codimension are unimodal. Also, for any fixed codimension, it is an interesting
problem to determine which types force unimodality. The “record” for the smallest
known nonunimodal example in codimension 3 is type 14, given in [3].

Finally, one can ask “how nonunimodal” a pure O-sequence can be. The answer
is “as nonunimodal as you want.” We have

Theorem 15 (Boij et al. [3]). For any integers M � 2 and r � 3, there exists a
pure O-sequence in r variables which is nonunimodal and has exactly M maxima.

Of course the “price” in Theorem 15 is paid in having a large socle degree and
type.

In fact, even Cohen–Macaulay f -vectors (i.e., the face vectors of Cohen–
Macaulay simplicial complexes, which are a much smaller subset of pure O-
sequences) can be nonunimodal with arbitrarily many peaks (see [61]). This result
considerably extends Theorem 15, even though, unlike for arbitrary pure O-
sequences, here the number of variables becomes necessarily very large as the
number of peaks increases.

A good topic to build a bridge between the algebraic and the combinatorial sides
of the theory of pure O-sequences is the Interval Conjecture (ICP).

The Interval Property (IP) was introduced in 2009 by the third author [84], where
he conjectured its existence for the set of Hilbert functions of level—and, in a
suitably symmetric way, Gorenstein—algebras. Namely, the IP says that if two (not
necessarily finite) sequences, h and h0, of a class S of integer sequences coincide in
all entries but one, say

h D .h0; : : : ; hi�1; hi ; hiC1; : : : / and h0 D .h0; : : : ; hi�1; hi C ˛; hiC1; : : : /;
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for some index i and some positive integer ˛, then the sequences

.h0; : : : ; hi�1; hi C ˇ; hiC1; : : : /

are also in S , for all ˇ D 1; 2; : : : ; ˛ � 1:

Given that level and Gorenstein Hilbert functions are nearly impossible to
characterize, the IP appears to be both a very natural property and one of the
strongest structural results that we might hope to achieve for the set of such
sequences.

For example, it is proved in [84] that the IP holds for all Gorenstein Hilbert
functions of socle degree 4. Since Gorenstein Hilbert functions are symmetric, this
means that, for any fixed r , .1; r; a; r; 1/ is Gorenstein if and only if a ranges
between some minimum possible value, say f .r/, and

�
rC1

2

�
. This latter is the

maximum allowed by a polynomial ring in r variables and is achieved by the
so-called compressed Gorenstein algebras (see, e.g., the 1984 papers of Fröberg–
Laksov and Iarrobino [24, 38] or the third author’s works [81, 82]).

Notice that the existence of the IP for these Hilbert functions is especially helpful
in view of the fact that, for most codimensions r , the value of f .r/ is not known. In
fact, such Gorenstein Hilbert functions are “highly” nonunimodal. Asymptotically,
we have

lim
r!1

f .r/

r2=3
D 62=3;

as proved by these three authors in [53] (2008), solving a long-standing conjecture
of Stanley [69] (see also [54], 2009, for some broad generalizations).

The Interval Property is still wide open today for both level and Gorenstein
algebras.

In a more combinatorial direction, in BMMNZ 2012 the IP has then also been
conjectured for 1) pure O-sequences (under the name “ICP”) and 2) the f -vectors
of pure simplicial complexes, a topic of discussion of the next section.

As for pure O-sequences, the ICP has been proved in a number of special cases.
Most importantly, it is known when the socle degree is at most 3 in any number of
variables.

Theorem 16 (Boij et al. [3]). The ICP holds for the set of all pure O-sequences of
socle degree e � 3.

Thanks to this result, Hà, Stokes, and the third author [27] have recently devel-
oped a new approach leading to a proof of Stanley’s matroid h-vector conjecture in
Krull-dimension 3, as we will see in the next section.

While the ICP remains open in most instances—e.g., in three variables—it must
be pointed out that, just recently, it has been disproved in the four-variable case
by Constantinescu and Varbaro (see [15, Remark 1.10]), who found the following
counterexample.
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Example 17 (Constantinescu–Varbaro [15]). Consider the pure order ideals
generated by fx3y2z; x3yt2; x3z2tg and fx4y2; x3yzt; x2z2t2g. Their h-vectors are
the pure O-sequences .1; 4; 10; 13; 12; 9; 3/ and .1; 4; 10; 13; 14; 9; 3/. However, an
exhaustive computer search over all sets of three monomials of degree 6 in four
variables reveals that the sequence .1; 4; 10; 13; 13; 9; 3/ is not pure, contrary to the
ICP.

It is worth remarking that h D .1; 4; 10; 13; 13; 9; 3/ is, however, a level h-vector,
and so this does not provide a counterexample to the IP for arbitrary level algebras.
Indeed, h is the h-vector of a level algebra in four variables whose inverse system
is generated by two sums of sixth powers of six general linear forms each and the
sixth power of one general linear form.

As for pure f -vectors, the IP is still wide open, and little progress has been made
so far.

In general, at this time, it is still unclear what the exact scope of the Interval
Property is and if it can also be of use in other areas of combinatorial algebra or
even enumerative combinatorics. It is well known to hold, e.g., for the set of Hilbert
functions of graded algebras of any Krull-dimension (see Macaulay’s theorem), the
f -vectors of arbitrary simplicial complexes (the Kruskal–Katona theorem), and the
f -vectors of Cohen–Macaulay complexes (BMMNZ 2012). Instead, the IP fails
quite dramatically, for example, for matroid h-vectors, which are conjecturally
another subset of pure O-sequences, as we will see in the next section (we refer
to BMMNZ 2012 and [69] for details). Stanley and the third author [72] recently
looked at the IP in the context of r-differential posets, a class of ranked posets
generalizing the Young lattice of integer partitions and the Young–Fibonacci lattice.
Here even though the IP fails in general, it might be a reasonable property to
conjecture, for instance, for r D 1, which is the most natural class of differential
posets.

3 Pure O-Sequences and Combinatorics

Much of the motivation for the study of pure O-sequences comes from combina-
torics, and in this section we give an overview of this side of the theory. In order
to put in context the definition of a pure O-sequence given in the introduction,
we quickly recall the notion of posets and order ideals. For an introduction to this
theory, we refer to Chapter 3 of Stanley’s new edition of “EC1” ([71], 2012). A
poset (short for partially ordered set) is a set S equipped with a binary relation,
“�;” that is (1) reflexive (i.e., a � a for all a 2 S ), (2) antisymmetric (a � b � a

implies a D b), and(3) transitive (a � b � c implies a � c).
An order ideal in a poset S is a subset I of S that is closed with respect to

“� :” That is, if t 2 I and s � t , then s 2 I . Thus, our monomial order ideals
are the (finite) order ideals of the poset P of all monomials in the polynomial ring
R D KŒy1; : : : ; yr �, where the binary relation of P is divisibility. Notice that P
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is a ranked poset, where the rank of a monomial is its degree in R. Therefore,
Macaulay’s O-sequences are exactly the possible rank functions of the order ideals
of P , since every Hilbert function satisfying Macaulay’s theorem can be achieved
by a monomial algebra. Similarly, as we have seen, a pure O-sequence is the rank
function of some monomial order ideal whose generators (i.e., the antichain of
maximal monomials) are all of the same degree.

Another fundamental class of order ideals are those contained in the Boolean
algebra Br , the poset of all subsets of f1; 2; : : : ; rg, ordered by inclusion. By
identifying the integer i with a vertex vi , the order ideals of Br are usually called
simplicial complexes (on r vertices).

The elements of a simplicial complex � are dubbed faces, and the maximal faces
are the facets of �. The dimension of a face is its cardinality minus 1, and the
dimension of � is the largest of the dimensions of its faces.

Notice that if we identify vi with a variable yi 2 R D KŒy1; : : : ; yr �,
then simplicial complexes also coincide with the order ideals of P generated by
squarefree monomials. In particular, if we define as pure those simplicial complexes
whose facets have all the same dimension, then clearly their rank vectors, called
pure f -vectors, are the special subset of pure O-sequences that can be generated by
squarefree monomials.

Example 1. The simplicial complex

� D ff1; 2; 3g; f2; 3; 4g; f1; 2g; f1; 3g; f2; 3g; f2; 4g; f3; 4g; f1g; f2g; f3g; f4g; ;g

is the order ideal of B4 generated by f1; 2; 3g and f2; 3; 4g.
Thus, � is a pure complex of dimension 2, whose pure f -vector is f� D

.1; 4; 5; 2/.
Equivalently, f� is the pure O-sequence generated by the two squarefree

monomials y1y2y3 and y2y3y4.

Similarly to Macaulay’s theorem for arbitrary O-sequences, we know a char-
acterization of the class of pure f -vectors thanks to the classical Kruskal–Katona
theorem (see, e.g., [69]). However, analogously, things become dramatically more
complicated (hopeless, we should say) when it comes to attempting a characteriza-
tion of pure f -vectors.

In the last section of BMMNZ 2012, we have begun a study of pure f -vectors,
but still very little is known today beyond what is known for arbitrary pure O-
sequences.

Besides their obvious intrinsic importance—simplicial complexes are a central
object in algebraic combinatorics, combinatorial algebra, and topology, just to name
a few subjects—pure f -vectors also carry fascinating applications. It is on their
connections to finite geometries and design theory that we want to focus in the next
portion of this section.

It will follow from our discussion, as probably first observed by Björner ([1],
1994), that a characterization of pure simplicial complexes and their f -vectors
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would imply, for instance, a characterization of all Steiner systems and, as a further
special case, a classification of all finite projective planes, which is one of the major
open problems in geometry.

A Steiner system S.l; m; r/ is an r-element set V , together with a collection of
m-subsets of V , called blocks, such that every l-subset of V is contained in exactly
one block. Steiner systems are a special family of the so-called block designs. We
refer our reader to the two texts [14, 44], where she can find a truly vast amount of
information on combinatorial designs. For instance, a Steiner triple system (STS) is
a Steiner system S.2; 3; r/, while S.3; 4; r/ is dubbed a Steiner quadruple system,
where r is the order of the system.

Since we are dealing with maximal sets of the same cardinality (m, in this case),
it is clear that if we identify each element of V with a variable yi , then the existence
of Steiner systems (and similarly for other block designs) will be equivalent to the
existence of certain pure f -vectors.

Example 2. Let us consider STS’s of order 7, i.e., S.2; 3; 7/. Constructing such a
design is tantamount to determining a family of squarefree degree 3 monomials of
R D KŒy1; y2; : : : ; y7�, say M1; M2; : : : ; Mt , such that each squarefree degree 2
monomial of R divides exactly one of the Mi .

Clearly, since there are
�

7
2

� D 21 squarefree degree 2 monomials in R, if the Mi

exist, then t D 21=
�
3
2

� D 7. In other words, S.2; 3; 7/ exists if and only if

f D .1; 7; 21; 7/

is a pure f -vector.
Notice also that f exists as a pure f -vector if and only if it exists as a pure O-

sequence, since for seven degree 3 monomials to have a total of 21 degree 2 divisors,
each needs to have exactly three linear divisors, i.e., it must be squarefree.

It is easy to see that an STS of order 7 and so the pure f -vector f D .1; 7; 21; 7/

do indeed exist using the monomial order ideal generated by

y1y2y3; y3y4y5; y3y6y7; y1y4y7; y2y4y6; y2y5y7; y1y5y6:

Some simple numerical observations show that a necessary condition for an STS
of order r to exist is that r be congruent to 1 or 3 modulo 6, and it is a classical
result of Kirkman ([40], 1847) that this is also sufficient. In other words,

f D
 

1; r;

 
r

2

!
;

 
r

2

!
=3

!

is a pure f -vector, if and only if it is a pure O-sequence, if and only if r is congruent
to 1 or 3 modulo 6.

A different and more challenging problem is the classification of all Steiner
systems, up to isomorphism. Even the existence of particular systems sometimes
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brings into the story a nontrivial amount of interesting algebra. As an illustration,
we mention here the case of the Steiner systems S.4; 5; 11/, S.5; 6; 12/, S.3; 6; 22/,
S.4; 7; 23/, and S.5; 8; 24/, which are intimately connected to the first sporadic
finite simple groups ever discovered, called the Mathieu groups (see Mathieu
[48, 49], 1861 and 1873). These five groups—denoted respectively by M11, M12,
M22, M23, and M24—in fact arise as the automorphism groups of the above Steiner
systems (i.e., the transformations of the systems that preserve the blocks).

There exists only one STS of order 7, which is called the Fano plane (see the
figure below) for reasons that will be clear in a minute. In other words, the seven
monomials of the previous example are, up to isomorphism, the only possible set
of generators for a pure order ideal in KŒy1; y2; : : : ; y7� with .1; 7; 21; 7/ as its pure
O-sequence.

y1

y2 y5

y4

y3
y7

y6

Also for r D 9, there exists a unique STS. However, it is reasonable to believe
that the number of nonisomorphic STS increases extremely quickly for r large. For
instance, there are 80 nonisomorphic STS of order 15, and there are 11;084;874;829

of order 19.
Similarly, the possible orders of Steiner quadruple systems are known and nicely

characterized, since the obvious necessary conditions again turn out to be also
sufficient: S.3; 4; r/ exists if and only if its order r is congruent to 2 or 4 modulo 6,
as proved by Hanani ([28], 1960). In other words, reasoning as above, since there
are four possible 3-subsets of any given 4-set, we have that

f D
 

1; r;

 
r

2

!
;

 
r

3

!
;

 
r

3

!
=4

!

is a pure f -vector if and only if it is a pure O-sequence, if and only if r is congruent
to 2 or 4 modulo 6.

However, as we increase the cardinality m of the blocks, things become more
and more obscure. This is due to the high complexity of computing combinatorial
designs over a large vertex set, as well as to the lack of a general theory.

Already for Steiner quintuple systems, the trivial necessary conditions (r con-
gruent to 3 or 5, but not to 4, modulo 6) are no longer sufficient. For example, no
Steiner quintuple system S.4; 5; 17/ exists (see [59], 2008). The smallest value of
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r for which the existence of S.4; 5; r/ is currently open is 21. In other words, it is
unknown whether 

1; 21;

 
21

2

!
;

 
21

3

!
;

 
21

4

!
;

 
21

4

!
=5

!
D .1; 21; 210; 1330; 5985; 1197/

is a pure O-sequence.
Perhaps the best-known family of examples of Steiner systems is that of finite

projective planes, so they deserve a special mention here. Recall that a projective
plane is a collection of points and lines such that any two lines “intersect at” exactly
one point and any two points “lie on” exactly one line (one also assumes that there
exist four points no three of which are collinear, in order to avoid uninteresting
pathological situations).

If the projective plane is finite, it can easily be seen that the number of points is
equal to the number of lines and that this number must be of the form q2 C q C 1,
where the integer q is the order of the plane. Further, in a projective plane of order q,
any line contains exactly q C1 points, and by duality, any point is at the intersection
of exactly q C1 lines. In other words, finite projective planes are the Steiner systems
S.2; qC1; q2CqC1/. The reader may want to consult, e.g., [23] for an introduction
to this area.

Thus, the above example of a Steiner system S.2; 3; 7/, the Fano plane, is the
unique smallest possible projective plane.

Similarly to how we argued earlier in terms of pure f -vectors, one can show that
a projective plane of order q exists if and only if

h D
 

1; q2 C q C 1; .q2 C q C 1/

 
q C 1

2

!
; .q2 C q C 1/

 
q C 1

3

!
; : : : ;

.q2 C q C 1/

 
q C 1

q C 1

!!

is a pure f -vector, if and only if it is a pure O-sequence.
A major open problem in geometry asks for a classification of all finite projective

planes, or even just of the possible values that q may assume. Conjecturally, q is
always the power of a prime, and it is a standard algebraic exercise, using finite field
theory, to construct a projective plane of any order q D pn.

The best general necessary condition known today on q is still the following
theorem from [7, 13]:

Theorem 3 (Bruck–Ryser–Chowla, 1949 and 1950). If q is the order of a
projective plane and q is congruent to 1 or 2 modulo 4, then q is the sum of two
squares.

Thus, for instance, as a consequence of the Bruck–Ryser–Chowla theorem, no
projective plane of order 6 exists. In other words,

.1; 43; 903; 1505; 1505; 903; 301; 43/
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is not a pure O-sequence. However, already ruling out the existence of projective
planes of order 10 has required a major computational effort (see Lam [41], 1991).
The case q D 12 is still open.

Notice that, at least for certain values of q, the number of nonisomorphic
projective planes of order q can be very large, and a general classification seems
entirely out of reach. The smallest q for which there exists more than one
nonisomorphic projective plane is 9, where the four possible cases were already
known to Veblen ([77], 1907).

The second important application of pure O-sequences that we want to discuss
brings our attention to a very special class of simplicial complexes called matroid
complexes. Matroids are ubiquitous in mathematics, where they often show up in
surprising ways (see [56, 60, 79, 80]).

The algebraic theory of matroids began in the same 1977 seminal paper of
Stanley [66] that introduced pure O-sequences. A finite matroid can be naturally
identified with a pure simplicial complex over V D f1; 2; : : : ; rg, such that its
restriction to any subset of V is also a pure complex.

One associates, to any given simplicial complex � over V D f1; 2; : : : ; rg, the
following squarefree monomial ideal in S D KŒx1; : : : ; xr �, where K is a field:

I� D
*
xF D

Y
i2F

xi j F 62 �

+
:

I� is called the Stanley–Reisner ideal of the complex �, and the quotient algebra
S=I� is its Stanley–Reisner ring.

It is a standard fact of combinatorial commutative algebra (see, e.g., [69]) that
the Stanley–Reisner ring S=I� of a matroid complex is Cohen–Macaulay and level,
although of course of positive Krull-dimension (except in degenerate cases). Thus,
the h-vector of S=I� is level, since it is the h-vector of an artinian reduction of
S=I�. However, even though S=I� is presented by monomials, notice that its
artinian reductions will in general be far from monomial for they require taking
quotients by “general enough” linear forms.

The following spectacularly simple conjecture of Stanley ([66], 1977) predicts
that, for any matroid complex �, we can nonetheless find some artinian monomial
level algebra having the h-vector of S=I� as its h-vector:

Conjecture 3.4. Any matroid h-vector is a pure O-sequence.

The problem of characterizing matroid h-vectors appears to be once again
hopeless, and Conjecture 3.4 has motivated much of the algebraic work done on
matroids over the past 35 years (see, as a highly nonexhaustive list, [9,10,15,22,31,
50, 57, 62, 64, 73–75]).

The main approach to Conjecture 3.4 has been, given the h-vectors of a certain
class of matroids, to explicitly produce some pure monomial order ideals having
those matroid h-vectors as their pure O-sequences. Recently, Hà, Stokes, and the
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third author [27] introduced a “more abstract” approach to Conjecture 3.4. Their
main idea, inspired by the latest progress on pure O-sequences made in BMMNZ
2012 and in particular the proof of the ICP in socle degree 3, has been to try to
reduce Stanley’s conjecture, as much as possible, to one on the properties of pure O-
sequences, thus avoiding explicit construction of a monomial ideal for each matroid
h-vector.

The approach of [27] has already led to a proof of Conjecture 3.4 for all matroid
complexes of Krull-dimension at most 2 (the dimension 1 case that had been the
focus of a large portion of the thesis [73] simply followed in a few lines).

Theorem 5 (Hà–Stokes–Zanello, 2010). All matroid h-vectors .1; h1; h2; h3/ are
pure O-sequences.

More generally, the following is a first concrete, if still tentative, general
approach to Conjecture 3.4 (see [27]).

Assuming Conjecture 3.4 holds for all matroid complexes whose deletions with
respect to any vertex are cones (which may not be too difficult to show with the
techniques of paper [27]), Conjecture 3.4 is true in general under the following two
natural (but still too bold?) assumptions:

(a) Any matroid h-vector is differentiable for as long as it is nondecreasing. (In
fact, incidentally, would a g-element that Hausel [32] and Swartz [74] proved
to exist in the “first half” of a matroid carry on all the way?)

(b) Suppose that the shifted sum, h00 D .1; h1 C 1; h2 C h0
1; : : : ; he C h0

e�1/, of two
pure O-sequences h and h0 is differentiable for as long as it is nondecreasing.
Then h00 is also a pure O-sequence.

4 Enumerations of Pure O-Sequences

As we have seen above, pure O-sequences arise in several areas, yet their properties
are not well understood, and there are other important questions that should be
addressed even if a classification is not available. For example, one would like to
estimate the number of pure O-sequences of given codimension and socle degree.
What happens asymptotically? Moreover, we have seen that pure O-sequences can
be as far from being unimodal as we want. Nevertheless, one may ask: What are the
odds for a pure O-sequence to be unimodal?

In order to discuss such questions, let us denote by O.r; e/, P.r; e/, and
D.r; e/ the sets of O-sequences, pure O-sequences, and differentiable O-sequences,
respectively, that have codimension r and socle degree e. Recall that given two
functions f; g W R ! R, one says that f is asymptotic to g and writes f .r/ �r g.r/

if limr f .r/=g.r/ D 1. All limits are taken for r approaching infinity.
Consider now an O-sequence .1; r � 1; h2; : : : ; he/ in O.r � 1; e/. Integrating

it, that is, passing to .1; r; r � 1 C h2; : : : ; he�1 C he/, provides a differentiable
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O-sequence in D.r; e/. Thus, since finite differentiable O-sequences are pure by
Theorem 7(b), we have the following inclusions:

O.r � 1; e/ ,! D.r; e/ � P.r; e/ � O.r; e/:

Results by Linusson (see [46]) imply that, for r large, the cardinalities of O.r �1; e/

and O.r; e/ are asymptotically equal. It follows that in large codimensions almost
all O-sequences are pure. More precisely, one has

Theorem 1 (Boij et al. [3]). Fix a positive integer e. Then, for r large, almost all
O-sequences of socle degree e are differentiable. Namely,

#O.r; e/ �r #P.r; e/ �r #D.r; e/ �r ce � r.eC1
2 /�1;

where

ce D

e�2Y
iD0

 �
eC1

2

� � �
iC1

2

� � 1

i

!

  
e C 1

2

!
� 1

!
Š

:

Since pure O-sequences are Hilbert functions of level algebras, we immediately
get the following consequence.

Corollary 2 (Boij et al. [3]). Fix a positive integer e. Let L.r; e/ be the set of level
Hilbert functions of codimension r and socle degree e. Then, for r large, almost all
level sequences are pure and unimodal, and

#L.r; e/ �r cer
.eC1

2 /�1:

The outcome changes drastically if we fix as additional parameter the socle type
t . Since each monomial of degree t is divisible by at most t distinct variables, we
observe

Proposition 3 (Boij et al. [3]). Let P.r; e; t/ be the set of pure O-sequences of
codimension r , socle degree e, and type t . Then #P.r; e; t/ D 0 for r > te, this
bound being sharp.

Note that, in contrast to this result, there is no analogous restriction on level
Hilbert functions. For example, Gorenstein algebras have type 1 and admit any
positive socle degree and codimension. In fact, asymptotically, the number of their
Hilbert functions is known.

Recall that an SI-sequence of socle degree e is an O-sequence that is symmetric
about e

2
and differentiable up to degree b e

2
c. Initially, Stanley and Iarrobino (see

[69]) had hoped that all Hilbert functions of Gorenstein algebras were SI-sequences.
Although this is not true (see [67] for the first counterexample), it is almost true! In
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fact, any differentiable O-sequence in D.r; b e
2
c/ can be extended to a symmetric

sequence, so that the result is an SI-sequence. Moreover, every SI-sequence is
the Hilbert function of some Gorenstein algebra (see [12, 29, 51]). Obviously, the
first half of the Hilbert function of a Gorenstein algebra is an O-sequence. Taken
together, it follows that the number of Gorenstein Hilbert functions that are not SI-
sequences is negligible:

Theorem 4 (Boij et al. [3]). Fix a positive integer e. Let G.r; e/ be the set of
Gorenstein Hilbert functions of codimension r and socle degree e, and let SI.r; e/

be the set of SI-sequences of codimension r and socle degree e. Then, for r large,
almost all Gorenstein Hilbert functions are SI-sequences. More precisely,

#G.r; e/ �r #SI.r; e/ �r cbe=2cr.be=2cC1
2 /�1:

Returning to pure O-sequences, it would be very interesting to determine, or at
least to find a good estimate of the number of pure O-sequences of codimension r ,
socle degree e, and type t . This seems a difficult problem. However, in the simplest
case, where t D 1, there is an easy combinatorial answer. In fact, any pure O-
sequence of type 1 is the Hilbert function of a (complete intersection) algebra whose
inverse system is a monomial of the form y

a1

1 � � � yar
r , where a1 C � � � C ar D e and

ai � 1 for all i . We may assume that a1 � a2 � � � � � ar so that .a1; : : : ; ar / is a
partition of e. Since it is easy to see that distinct partitions lead to different Hilbert
functions, we arrive at the following result.

Proposition 5 (Boij et al. [3]). #P.r; e; 1/ D pr.e/, the number of partitions of
the integer e having exactly r parts.

We now consider a slightly different asymptotic enumeration question. Fix
positive integers e and t . Since the number of monomials dividing t monomials
of degree e is finite, there are only finitely many pure O-sequences of socle degree
e and type t . Denote their set by P.	; e; t/. Determining #P.	; e; t/ exactly seems
out of reach. However, one may hope to at least find its order for t large. The first
interesting case, namely, e D 3, has been settled.

Theorem 6 (Boij et al. [3]). Let #P.	; 3; t/ denote the number of pure O-
sequences of socle degree 3 and type t . Then

lim
t!1

#P.	; 3; t/

t2
D 9

2
:

Its proof gives some further information. Consider a pure O-sequence .1; r; a; t/.
Then

r � a � 3t

by Hibi’s theorem and the fact that t monomials of degree 3 are divisible by at most
3t distinct quadratic monomials. It follows that #P.	; 3; t/ � 9

2
t2. To see that the

two functions are in fact asymptotically equal, notice that, for fixed t , the possible
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values of r and a fall into one of the following three regions, illustrated in the figure
below:

Region I: t � r � a � 3t

Region II: 0 < r < t � a � 3t

Region III: 0 < r � a < t

�

r

a

t 3t

3t

t

II I

III

Using superscripts to denote the sets of pure O-sequences in each region, it is
shown in BMMNZ that

lim
t!1

#P .I/.	; 3; t/

t2
D 2; lim

t!1
#P .II/.	; 3; t/

t2
D 2; and

lim
t!1

#P .III /.	; 3; t/

t2
D 1

2
:

The arguments use in a crucial way the Interval Property for pure O-sequences
of socle degree 3. Unfortunately, this property fails in general. Nevertheless it would
be very interesting to extend the above results to socle degree e � 4.

5 Open Problems

In this section we collect a few interesting problems that remain open in the area of
pure O-sequences. Most of them have been discussed in the previous sections, but
some are related problems that were not addressed above.

1. What is the largest type t for which all pure O-sequences are unimodal
(independently of the codimension or socle degree)? Even proving that t � 2,
i.e., that pure O-sequences of type 2 are unimodal in any codimension, would be
very interesting.

2. For a fixed codimension r , what is the largest type t for which all pure
O-sequences are unimodal?
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3. For a fixed codimension r , what is the largest socle degree e for which all pure
O-sequences are unimodal?

4. What is the smallest codimension r for which there exists a nonunimodal pure
O-sequence of socle degree 4?

5. Determine asymptotically the number #P.	; e; t/ of pure O-sequences of socle
degree e and type t for t large. What is the order of magnitude of #P.	; e; t/?

6. The first example of a nonunimodal pure O-sequence (due to Stanley [66], 1977)
was .1; n D 505; 2065; 3395; 3325; 3493/, which is in fact the f -vector of a
Cohen–Macaulay simplicial complex, hence in particular a pure f -vector. What
is the smallest number of variables n (i.e., the number of vertices of the complex)
allowing the existence of a nonunimodal pure f -vector?

Tahat [76] has recently determined the sharp lower bound n D 328 for
nonunimodal Cohen–Macaulay f -vectors of socle degree 5 (the socle degree
of Stanley’s original example) and has produced examples in larger socle degree
with n as low as 39.

7. Stanley’s Twenty-Fifth Problem for the year 2000 IMU Volume “Mathematics:
Frontiers and Perspectives” [70] asks, among a few other things: are all matroid
f -vectors unimodal or even log-concave? What about matroid h-vectors?

Notice that matroid f -vectors are a much smaller subset of Cohen–Macaulay
f -vectors. For a major recent breakthrough on this problem, see Huh [35]
and Huh and Katz [37]; as a consequence of their work, log-concavity (hence
unimodality) is now known for all f -vectors (see Lenz [42], 2012) and h-
vectors (Huh [36]) of representable matroids. Notice also that, in general, the
log-concavity of matroid h-vectors would imply the log-concavity of matroid
f -vectors, as proved by Dawson [20] (1984) and Lenz [42].
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24. Fröberg, R., Laksov, D.: Compressed Algebras. Conference on Complete Intersections in
Acireale. In: Lecture Notes in Mathematics, vol. 1092, pp. 121–151. Springer, Berlin (1984)

25. Geramita, A.V.: Inverse systems of fat points: Waring’s problem, secant varieties and Veronese
varieties and parametric spaces of Gorenstein ideals. Queen’s Papers in Pure and Applied
Mathematics, vol. 102. The Curves Seminar at Queen’s, vol. X, pp. 3–114 (1996)

26. Geramita, A.V., Harima, T., Migliore, J., Shin, Y.: The Hilbert function of a level algebra. Mem.
Amer. Math. Soc. 186(872), vi + 139 pp (2007)
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Bounding Projective Dimension

Jason McCullough and Alexandra Seceleanu

1 Introduction

The use of algorithms in algebra as well as the study of their complexity was
initiated before the advent of modern computers. Hermann [25] studied the ideal
membership problem, i.e determining whether a given polynomial is in a fixed
homogeneous ideal, and found a doubly exponential bound on its computational
complexity. Later Mayr and Meyer [31] found examples which show that her bound
was nearly optimal. Their examples were further studied by Bayer and Stillman [2]
and Koh [28] who showed that these ideals also had syzygies whose degrees are
doubly exponential in the number of variables of the ambient ring.

This survey addresses a different measure of the complexity of an ideal,
approaching the problem from the perspective of computing the minimal free reso-
lution of the ideal. Among invariants of free resolutions, we focus on the projective
dimension, which counts the number of steps one needs to undertake in finding a
minimal resolution; the precise definition of projective dimension is given in Sect. 2.
In this chapter we discuss estimates on the projective dimension of cyclic graded
modules over a polynomial ring in terms of the degrees of the minimal generators
of the defining ideal. We also establish connections to another well-known invariant,
namely, regularity.
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The investigation of this problem was initiated by Stillman who posed the
following question:

Stillman’s Question 1.1 (Peeva–Stillman [36, Problem 3.14]). Let R be any
standard graded polynomial ring, suppose I D .f1; : : : ; fn/ � R is a homogeneous
ideal, and f1; : : : ; fn is a minimal set of generators of I . Is there a bound on the
projective dimension of R=I depending only on d1; : : : ; dn, where di D deg.fi / for
i D 1; : : : ; n?

Note that the degrees di of the generators as well as the number n of generators
of I are part of the data with which we may bound the projective dimension
pd.R=I /; however Stillman’s question asks for a bound independent of the number
of variables.

To completely answer Stillman’s question one would ideally like to describe:

1. A bound for pd.R=I / in terms of d1; : : : ; dn which is always valid
2. Examples of ideals I where the bound in (1) is the best possible
3. Much better bounds for pd.R=I / valid if I satisfies special conditions

In this survey we gather recent results which partially answer (2) and (3).
We remark that question (1) is still wide open. We hope this chapter serves as a
convenient survey of these results and spurs future work in this area.

In the next section, we fix notation for the remainder of this chapter and explain
the equivalence of Stillman’s problem to the analogous problem on bounding
Castelnuovo–Mumford regularity. In Sect. 3, we summarize the main results that
explore special cases of Stillman’s question, including a sketch of the bound for
ideals generated by three quadratics, three cubics, and arbitrarily many quadratics.
In Sect. 4, we present several examples of ideals with large projective dimension
giving large lower bounds on possible answers to Stillman’s question. In Sect. 5,
we summarize some related bounds on projective dimension that are distinct
from Stillman’s question. We close in Sect. 6 with some questions and possible
approaches to Stillman’s question.

2 Background and an Equivalent Problem

For the rest of this chapter, we stick to the following conventions: We use R D
KŒx1; : : : ; xN � to denote a polynomial ring over an arbitrary field K in N variables
and we let m D .x1; x2; : : : ; xN / denote the graded maximal ideal. We consider
R as a standard graded ring with deg.xi / D 1 for all i D 1; : : : ; N . We call a
homogeneous polynomial a form. We denote by Ri the K-vector space of degree-i
forms in R. Hence R D ˚i�0Ri as a K-vector space. We also denote by R.�d/ the
rank-one free module with generator in degree d so that R.�d/i D Ri�d . Given
any finitely generated R-module M , a free resolution F� of M is an exact sequence
of the form

F� W F0

@1 � F1

@2 � � � � @s�1 � Fs�1

@s � Fs

@sC1 � � � �



Bounding Projective Dimension 553

where Fi is a free module and M D F0= Im.@1/. The length of a resolution F� is the
greatest integer n such that Fn ¤ 0, if such an integer exists; otherwise the length
is infinite. We then define the projective dimension of M , denoted pd.M /, to be the
minimum of the lengths of all free resolutions of M . When M is graded, we require
that the free resolution of M be graded, @i is a graded map for all i . Moreover, F�
is called minimal if Im.@i / � mFi�1 for i � 1. The minimal graded free resolution
of M is unique up to isomorphism, and it follows that pd.M / is the length of any
minimal graded free resolution of M .

The projective dimension can be thought of as a measure of how far M is from
being a free module, since finitely generated modules with projective dimension
0 are free. We note that over R every finitely generated graded projective module
is free. This explains why the length of a free resolution is called the projective
dimension.

It was Hilbert [26] who first studied free resolutions associated to graded modules
over a polynomial ring. His syzygy theorem shows that every graded module over a
polynomial ring has a finite, graded free resolution. (See [14] for a proof.)

Theorem 1 (Hilbert [26]). Every finitely generated graded module M over the
ring KŒx1; : : : ; xN � has a graded free resolution of length� N . Hence pd.M / � N .

In this survey, we shall consider the projective dimension of homogeneous ideals
I � R, with the exception of Sect. 3.2, where the homogeneity assumption is not
required. By convention, we study the projective dimension of cyclic modules
pd.R=I / rather than that of ideals, noting that pd.R=I / D pd.I / C 1 for all
ideals I . Hilbert’s syzygy theorem shows that pd.R=I / � N for all ideals I . Even
for ideals, this bound is tight. The graded maximal ideal m D .x1; : : : ; xN / defines
a cyclic module K Š R=m with pd.R=m/ D N . In fact, the Koszul complex on the
variables x1; : : : ; xN gives a minimal free resolution of R=m of length N .

For a graded free resolution F� of M , we write Fi D ˚j 2ZR.�j /ˇi;j .M/.
The integers ˇi;j .M / are invariants of M and are called the Betti numbers of M .
We often record these in a matrix, called the Betti table of M . By convention, we
write ˇi;j in column i and row j � i .

0 1 2 � � � i � � �
0: ˇ0;0.M / ˇ1;1.M / ˇ2;2.M / � � � ˇi;i .M / � � �
1: ˇ0;1.M / ˇ1;2.M / ˇ2;3.M / � � � ˇi;iC1.M / � � �
2: ˇ0;2.M / ˇ1;3.M / ˇ2;4.M / � � � ˇi;iC2.M / � � �
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

j: ˇ0;j .M / ˇ1;jC1.M / ˇ2;jC2.M / � � � ˇi;iCj .M / � � �
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Another way to measure the complexity of M is to look at the degrees of the
generators of the free modules Fi . We define the Castelnuovo–Mumford regularity
of M (or just the regularity of M ) to be

reg.M / D maxfj jˇi;iCj .M / ¤ 0 for some ig:
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Hence pd.M / is the index of the last nonzero column and reg.M / is the index
of the last nonzero row in the Betti table of M . Regularity has many connections
with algebraic geometry and Hilbert functions, for which we refer the interested
reader to [15] and [34]. In general, both reg.R=I / and pd.R=I / may depend on the
characteristic of the base field K , even in the case where I is a monomial ideal.
(See, e.g., [34, Example 12.4].) A complete answer to Stillman’s question should
be independent of the base field, although an answer in any characteristic would be
very interesting.

Example 2. Let R D KŒw; x; y; z� and let I D .w2; x2; wy C xz/. Then R=I has
minimal graded free resolution:

R R.�2/3
. w2 x2 wyCxz /

�� R.�4/5

� �x2 0 �wy�xz �xy �y2

w2 �wy�xz 0 �wz z2

0 x2 w2 wx wy�xz

�

��

R.�5/4

��

 y z 0 0
w 0 0 z
0 �x �y 0�x w z �y
0 0 w x

!��

��

�	

��

R.�6/

� �z
y�x
w

�
�� 0��

The Betti table of M is then

0 1 2 3 4

0: 1 - - - -
1: - 3 - - -
2: - - 5 4 1

Therefore, we have pd.R=I / D 4 and reg.R=I / D 2.

One could pose a similar question to Question 1.1 by replacing the words
“projective dimension” with “regularity” and asking for a bound on reg.R=I / purely
in terms of the degrees of the generators.

Question 2.3 (Peeva–Stillman [36, Problem 3.15]). Let R be any polynomial ring
and suppose I D .f1; : : : ; fn/ � R is an ideal. Is there a bound on reg.R=I /

depending only on d1; : : : ; dn, where di D deg.fi / for i D 1; : : : ; n?

One of the primary motivations for studying Question 1.1 is that it is equivalent
to Question 2.3.

Theorem 4 (Caviglia [34, Theorem 29.5], [17, Section 1.3]). Let K be a field.
Fix a sequence of natural numbers d1 � : : : � dn. The following are equivalent:
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(1) There exists a function B.n; d1; : : : ; dn/ such that pdR.R=I / � B.n; d1; : : : ; dn/

if R is any polynomial ring over K and I � R is any graded ideal with a minimal
system of homogeneous generators of degrees d1 � : : : � dn.

(2) There exists a function C.n; d1 : : : dn/ such that regR.R=I / � C.n; d1; : : : ;

dn/ if R is any polynomial ring over K and I � R is any graded ideal with a
minimal system of homogeneous generators of degrees d1 � : : : � dn.

We outline a proof of this result below. First we recall a related bound on
regularity. Similar to the existence of a bound on projective dimension given by
the Hilbert basis theorem, there is a doubly exponential bound for the regularity of
an ideal I expressed in terms of the number of variables of the ambient ring and the
maximal degree of a minimal generator of I . This bound can be deduced from work
of Galligo [22] and Giusti [23] in characteristic zero, as was observed by Bayer and
Mumford [3, Theorem 3.7]. It was later proved in all characteristics by Caviglia and
Sbarra [9].

Theorem 5. Let R D KŒx1; : : : ; xN � be a polynomial ring over a field K . Let I

be a graded ideal in R and let r be the maximal degree of an element in a minimal
system of homogeneous generators of I . Then reg.I / � .2r/2N �2

.

We use this bound to prove Theorem 4.

Proof of Theorem 4. Let R D KŒx1; : : : ; xN � throughout. Assume (1) holds and fix
an ideal I with minimal generators of degrees d1 � : : : � dn. Let p D pd.R=I / �
B.n; d1; : : : ; dn/. By the Auslander–Buchsbaum theorem, depth.R=I / D N � p,
which means that one can find a regular sequence of linear forms l1; : : : ; lN �p on
R=I . If ` is a linear nonzero divisor on R=I , one obtains a short exact sequence of
the form

0 �! R

I
.�1/

�`�! R

I
�! R

I C .`/
�! 0:

The mapping cone construction now yields reg R
I
D reg R

IC.`/
and by induction

reg
R

I
D reg

R

I C .l1; : : : ; lN �p/
:

Set NR D R=.l1; : : : ; lN �p/. Then R=.I C .l1; : : : ; lN �p// D NR=I NR can be viewed
as a quotient algebra of the polynomial ring NR. The ring NR is isomorphic to a
polynomial ring in p variables; hence by applying Theorem 5 an upper bound on
reg R=I is .2dn/2p�2

. One may now set

C.n; d1; : : : ; dn/ D .2dn/2B.n;d1;:::;dn/�2

:

Conversely assume (2) holds and fix an ideal I � R. Denote by gin.I / the
generic initial ideal of I with respect to the degree reverse lexicographic ordering
on the monomials of R. This term order has good properties with respect to both
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projective dimension and regularity. In particular, Bayer and Stillman [2, Corollaries
19.11 and 20.21] proved that pd.R= gin.I // D pd.R=I / and reg.R= gin.I // D
reg.R=I /. Moreover, the projective dimension of R= gin.I / can be read off directly
from a minimal set of generators as the largest index among the indices of variables
appearing in the minimal generators. (Equivalently, the projective dimension of
R= gin.I / can be interpreted as the number of distinct variables appearing in the
unique minimal generating set of the ideal.)

Assume that I has minimal generators of degrees d1; : : : ; dn. The relation
between the projective dimensions of R=I and R= gin.I / allows us to bound
pd.R=I / in terms of C.n; d1 : : : dn/ and the number of generators of gin.I / as
follows:

pd.R=I / D pd.R= gin.I //

D number of variables appearing in generators of gin.I /

� sum of the degrees of generators of gin.I /

� number of generators of gin.I / �max generator degree of gin.I /

� number of generators of gin.I / � reg.R= gin.I //

D number of generators of gin.I / � reg.R=I /

� number of generators of gin.I / � C.n; d1; : : : ; dn/

Hence it is sufficient to bound the number of generators of gin.I / in terms of
d1; : : : ; dn. Since we may assume a bound on reg.I / D reg.gin.I // is given by
C.n; d1; : : : ; dn/, this means that the degrees of minimal generators of gin.I / are
at most C.n; d1; : : : ; dn/. Note that we may assume I is already written in generic
coordinates since a linear change of coordinates does not change the values of the
input parameters d1; : : : ; dn.

To estimate the number of generators of the initial ideal of I , we need to
understand the algorithmic procedure that produces a Gröbner basis of I , i.e., a set
of elements of I whose leading terms generate the initial ideal in.I /. This algorithm
was given by Buchberger and it involves enlarging a generating set of I by adding
to the set at each step reductions of S -polynomials obtained using pairs f; g of
polynomials from the preceding step’s output set. The S -polynomial of a pair f; g

is defined as

S.f; g/ D lcm.LT .f /; LT .g//

LT .f /
f � lcm.LT .f /; LT .g//

LT .g/
g:

Here LT .f /; LT .g/ are the leading terms of the polynomials f; g, respectively, and
lcm.m1; m2/ denotes the least common multiple of the monomials m1 and m2. Note
that the degree of S.f; g/ is always greater or equal to the maximum of the degrees
of the polynomials f; g and that equality is attained if and only if in.f / j in.g/ or
in.g/ j in.f /, in which case this S -polynomial need not be included in a reduced
Gröbner basis. Recall that a Gröbner basis is called reduced if no monomial in
any element of the basis is in the ideal generated by the leading terms of the other
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elements of the basis. Hence at each stage in Buchberger’s algorithm the maximum
degree of the polynomials obtained strictly increases. Thus the number of steps
in Buchberger’s algorithm is bounded by the regularity of in.I /, hence also by
C.n; d1; : : : ; dn/.

Now starting with n minimal generators of I , in the first step in Buchberger’s
algorithm, one computes at most

�
n
2

�
S -polynomials. Similarly if one denotes the

number of S -polynomials computed at the i th step of Buchberger’s algorithm by
ni , then niC1 �

�
ni

2

�
and n1 �

�
n
2

�
. Hence there is a polynomial P.d1; : : : ; dN / such

that
PC.d1;:::;dn/

iD1 ni � P.d1; : : : ; dn/: Finally one may set in this case

B.n; d1; : : : ; dn/ D P.d1; : : : ; dn/ � C.n; d1; : : : ; dn/: ut
It is worth noting that the bounds achieved for Questions 1.1 and 2.3 are likely

quite different.

3 Upper Bounds and Special Cases

In this section we summarize the cases where the answer to Stillman’s question
is known to be affirmative. In some simple cases one easily sees that a bound
on projective dimension is possible. However, even with three-generated ideals in
degree two, producing such a bound is nontrivial.

In the simplest case, that of I D .f / being a principal ideal, pd.R=I / D 1. If
I D .f; g/ is minimally generated by two forms, either ht.I / D 1 or 2. If ht.I / D 2,
then f; g is a regular sequence and R=.f; g/ is resolved by the Koszul complex on f

and g. So pd.R=I / D 2. If ht.I / D 1, then there exist c, f 0, and g0 with f D cf 0,
g D cg0, and ht.f 0; g0/ D 2, so again pd.R=I / D 2. We consider the complications
for the three-generated case in the following section.

We also note here that when I D .m1; m2; : : : ; mn/ is generated by n monomials,
pd.R=I / � n. This is clear when n D 1 and follows by induction by considering
the short exact sequence

0�! R=..m1; m2; : : : ; mn�1/ W mn/
mn�!R=.m1; m2; : : : ; mn�1/�! R=I �! 0:

Since ..m1; m2; : : : ; mn�1/ W mn/ is a monomial ideal generated by the n � 1

monomials lcm.mi ;mn/

mn
for i D 1 to n � 1, the projective dimension of the first two

terms is at most n � 1 by induction. Hence we have pd.R=I / � n, say by [18,
Lemma 1]. Alternatively, one could use the fact that the Taylor resolution (see, e.g.,
[34, Construction 26.5]) of I is a possibly non-minimal free resolution of R=I of
length n. Hence the projective dimension of R=I is no larger than n.
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In general, if I is generated by n polynomials each with at most m terms of
degree d , then it takes at most mnd linear forms to express those n generators.
Thus the projective dimension of such an ideal is at most mnd , independent of the
number of variables in the ring. So all interesting cases for Stillman’s question occur
when we do not assume a bound on the number of terms in each minimal generator
of I .

For the rest of the section we consider the next simplest cases: three-generated
ideals in low degree and ideals generated by quadratic polynomials.

3.1 Three-Generated Ideals

In this section we consider the projective dimension of R=I where I is minimally
generated by three quadratic or three cubic forms in KŒx1; x2; : : : ; xN �. In the case
of three quadratic forms, Eisenbud and Huneke proved the following in unpublished
work:

Theorem 1 (Eisenbud–Huneke). Let I D .f; g; h/ where f; g, and h are homoge-
neous minimal generators of degree 2 in a polynomial ring R. Then pd.R=I / � 4.

We will need several results to prove this theorem. Since pd.R=I / does not
change after tensoring with an extension of the field of coefficients, we may assume
that K is infinite. First we show that the multiplicity of I is at most 3. Then
we handle the multiplicity 1, 2, and 3 cases separately. We begin by defining the
multiplicity of an ideal and recalling related results.

For a graded module M , the Hilbert series HM .t/ D P
i�0 dimKMi t

i can be

written as a rational function of the form HM .t/ D h.t/

.1�t /d , where d is the dimension
of M and h is a polynomial of degree at most N . We define the multiplicity of a
graded R-module M to be the value e.M / D h.1/. For an artinian module M , the
multiplicity is equal to the length of the module defined as �.M / DPi�0 dimKMi .
By convention, for a homogeneous ideal I , we refer to e.R=I / as the multiplicity
of I .

Next, we recall the associativity formula for multiplicity. (See, e.g., [30, Theorem
14.7].) For an ideal J of R,

e.R=J / D
X

p2Spec.R/
dim.R=p/Ddim.R=J /

e.R=p/�.Rp=Jp/:

Let I un denote the unmixed part of I , defined as the intersection of minimal
primary components of I with height equal to ht.I /. For every p 2 Spec.R/ with
dim.R=p/ D dim.R=I /, we have that I un

p D Ip. Hence

e.R=I un/ D
X

p2Spec.R/
dim.R=p/Ddim.R=I un/

e.R=p/�.Rp=I un
p / D

X
p2Spec.R/

dim.R=p/Ddim.R=I /

e.R=p/�.Rp=Ip/ D e.R=I /:
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We will often pass to the unmixed part of I and use the fact that the multiplicity
does not change, as in the following result.

Proposition 2. Using the notation in Theorem 1, if ht.I / D 2, then e.R=I / � 3.

Proof. By passing to the unmixed part of I and using structure theorems on ideals
with small multiplicity, we can finish off the proof. We may assume that f; g form
a regular sequence of quadratic forms. Thus e.R=.f; g// D 4. We have the series
of containments .f; g/ � I � I un. Note that .f; g/ and I un are unmixed ideals of
height two. If e.R=.f; g// D e.R=I un/, then .f; g/ D I un by [18, Lemma 8]. But
this would force .f; g/ D .f; g; h/, contradicting that h is a minimal generator of I .
Thus 4 D e.R=.f; g// > e.R=I un/ D e.R=I /. ut

Following Engheta [17], we introduce the following notation to keep track of the
possibilities for the associated primes of minimal height of an ideal J .

Definition 3. We say J is of type he D e1; e2; : : : ; emj� D �1; �2; : : : ; �mi if J

has m associated primes p1; : : : ; pm of minimal height with e.R=pi / D ei and with
�.Rpi =Jpi / D �i , for i D 1; : : : ; m. (In which case, we have e.R=J / DPm

iD1 ei �i

by the associativity formula.)

We also need the following structure theorem for ideals of height two and
multiplicity two.

Proposition 4 (Engheta [18, Proposition 11]). Let J be a height two unmixed
ideal of multiplicity two. Then pd.R=J / � 3 and J is one of the following:

(1) .x; y/ \ .w; z/ D .xw; xz; yw; yz/ with independent linear forms w; x; y; z.
(2) .x; yz/ with independent linear forms x; y; z.
(3) A prime ideal generated by a linear form and an irreducible quadratic.
(4) .x; y2/ with independent linear forms x; y.
(5) .x; y/2C .axC by/ with independent linear forms x; y and a; b 2 m such that

x; y; a; b form a regular sequence.

The proof of this proposition uses the associativity formula to divide the
possibilities into one of three cases, namely, ideals of type he D 2j� D 1i (Case
(3)), type he D 1j� D 2i (Cases (4) and (5)), and type he D 1; 1j� D 1; 1i (Cases
(1) and (2)). Finally, one checks by hand that pd.R=J / � 3 in each of the resulting
cases.

We also need the following result, obtained originally using residual intersection
techniques by Huneke and Ulrich [27] and later using more elementary homological
algebra techniques by Fan [21].

Theorem 5 (Huneke–Ulrich [27, p. 20], Fan [21, Corollary 1.2]). Let R be a
regular local ring and let I be a three-generated ideal of height 2. If R=I un is
Cohen–Macaulay (i.e., pd.R=I un/ D 2), then pd.R=I / � 3.

For a proof, we refer the reader to [21]. This result allows us to focus only on
unmixed ideals with fixed multiplicity. Using the results above, we are now ready to
prove Theorem 1.
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Proof of Theorem 1. By Krull’s (generalized) principal ideal theorem [30, Theorem
13.5], ht.I / � 3. If ht.I / D 1, then there are linear forms c; f 0; g0; h0 with f D
cf 0, g D cg0, and h D ch0. Hence I Š .f 0; g0; h0/, and so pd.R=I / D 3.

If ht.I / D 3, then f; g; h form a regular sequence and the Koszul complex on
f; g; h forms a minimal free resolution of R=I . Again pd.R=I / D 3. Hence we
may assume that ht.I / D 2. Moreover, we may assume that f; g form a regular
sequence.

Now by Proposition 2, e.R=I / D 1, 2, or 3. If e.R=I / D 1, then by the
associativity formula, I un is primary to a height two prime ideal p of multiplicity
one. Such a prime ideal is generated by two linear forms, say p D .x; y/. Since
�.Rp=Ip/ D 1 and I is p-primary, I un D p. Clearly pd.R=p/ D 2. It then follows
from Theorem 5 that pd.R=I / � 3.

If e.R=I / D 3, consider the short exact sequence

0! R=..f; g/ W I /
h�!R=.f; g/! R=I ! 0:

Since f; g form a regular sequence of quadratic forms, we have e.R=.f; g// D 4.
Since multiplicity is additive in short exact sequences, e.R=..f; g/ W I // D 1. As
.f; g/ W I is unmixed, we have .f; g/ W I D .x; y/ for independent linear forms x

and y. Therefore, pd.R=..f; g/ W I // D 2. Since pd.R=.f; g// D 2, it follows that
pd.R=I / � 3.

Finally, in the case where e.R=I / D 2, we use the same exact sequence above.
In this case .f; g/ W I is an unmixed, height two ideal of multiplicity two. By
Proposition 4, pd.R=..f; g/ W I /// � 3. It follows that pd.R=I / � 4. This
completes the proof. ut

We see from Example 2 that this bound is indeed tight. The next case to
consider, that of an ideal minimally generated by three cubics, is significantly more
complicated. In his thesis [17], and subsequently in a sequence of papers [18, 20],
Engheta proved the following:

Theorem 6 (Engheta [20, Theorem 5]). If f; g; h are three cubic forms in a
polynomial ring R over a field, then pd.R=.f; g; h// � 36.

The outline of the proof is similar to that given above for the case of three
quadratic forms. Engheta first shows that the multiplicity of such an ideal is at
most 8. (In characteristic zero, Engheta shows that the multiplicity can be at most
7. See [19].) He then analyzes each case separately, often using techniques from
linkage theory and the structure theorems for unmixed ideals of small multiplicity.
Unfortunately there is currently no complete structure theorem of unmixed ideals
of multiplicity three. In those remaining cases, he shows that such ideals can
be expressed in terms of a fixed number of linear or quadratic forms. A similar
technique was later used by Ananyan and Hochster to study all ideals generated by
linear and quadratic polynomials. For more details see Sect. 3.2.

We also note that the bound of 36 is likely not tight. The largest known projective
dimension for an ideal minimally generated by three cubic forms is just 5. The first
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such example was given by Engheta. (See [20, Section 3].) The following simple
example was discovered by the first author in [32].

Example 7. Let R D KŒa; b; c; x; y�, where K is any field. Let m denote the graded
maximal ideal. Consider the ideal I D .x3; y3; x2a C xyb C y2c/. Then x2y2 2
.I W m/ � I . It follows that depth.R=I / D 0 and, by the Auslander–Buchsbaum
theorem, that pd.R=I / D 5.

3.2 Ideals Generated by Quadratic Polynomials

In a certain sense, ideals generated by quadratic polynomials are ubiquitous. In
[33, Thorem 1], Mumford shows that any projective variety of degree d can be
re-embedded (via the d -uple embedding) as a variety cut out by an ideal generated
by quadratic forms.

In [1], Ananyan and Hochster propose a method of analyzing the projective
dimension of ideals generated by polynomials of degree at most two, which need
not be homogeneous. We review their idea of using a specific standard form as
well as the derived recursive bound on projective dimension. Since the techniques
of Ananyan and Hochster can be applied when the minimal generators are non-
homogeneous, we reserve the use of the term quadratic form for a homogeneous
polynomial of degree two, and we call a possibly not homogeneous polynomial of
degree two a quadratic polynomial. We then illustrate the techniques of [1] for the
case of ideals generated by three homogeneous quadratics.

We begin with describing the focus of interest of this section: the standard form
associated to an ideal generated by linear and quadratic polynomials. We note in
Remark 10 that standard forms are by no means unique; however we shall often pick
a convenient standard form and refer to it by abuse of terminology as the standard
form associated to a certain ideal.

Definition 8. Let I be an ideal generated by m linear polynomials and n quadratic
polynomials in a standard graded polynomial ring R D KŒx1; : : : ; xN �. A standard
form associated to the ideal I is given by a partition of a K-basis fx1; : : : ; xN g
of R1 into subsets which satisfy the properties listed below together with a set
fF1; : : : ; FmCng of generators of I written in a manner compatible with this
partition. In the following we shall refer to the elements fx1; : : : ; xN g as variables.
We describe the properties required by the standard form first for the variables:

(1) The first m variables x1; : : : xm, called leading variables, are the linear minimal
generators of I .

(2) The next h D ht.I=.x1; : : : xm// variables xmC1; : : : xmCh, called front
variables, are chosen such that the images f1; : : : ; fh of a maximal regular
sequence F1; : : : ; Fh of quadratic forms in I=.x1; : : : ; xm/ under the projection
� W R �! KŒxmC1; : : : ; xmCh� continue to form a regular sequence.
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(3) The next r variables xmChC1; : : : xmChCr , called primary coefficient variables,
are the coefficients of the leading and front variables when F1; : : : ; Fn are
viewed as polynomials in KŒxmChC1; : : : ; xN �Œx1; : : : ; xmCh�.

(4) The next s variables xmChCrC1; : : : xmChCrCs, called secondary coefficient
variables, are the coefficients of the primary coefficient variables in the images
of F1; : : : ; Fn under the projection � 0 W R �! KŒx1; : : : ; xmCh�, viewed as
polynomials in KŒxmChCrC1; : : : ; xN �ŒxmChC1; : : : ; xmChCr �.

(5) The variables xmChCrC1; : : : ; xN are called the tail variables.

In practice, a maximal regular sequence x1; : : : xm; F1; : : : Fh of elements of I

is chosen first, and the variables xmChC1; : : : xN are obtained by extending this
sequence to a system of parameters on R. From this point on we view the generators
Fi as being written in terms of the variables described above. The term monomial
henceforth will be used for monomials in the variables x1; : : : ; xN . Next we list the
properties required by the standard form for the polynomials Fi :

1. FnCi D xi for 1 � i � m are the linear generators of I .
2. F1; : : : ; Fh form a maximal regular sequence in I .
3. F1; : : : ; Fn contain no terms written using leading variables only.
4. Some of the Fi may be 0 and we require that these appear last.

Partitioning the set of variables of the ring R into the various categories appearing
above yields natural partitions of the monomials appearing in the generators Fi .
Recall that the projection map onto the smaller polynomial ring generated by the
front variables takes Fi to fi . We call the fi front polynomials. Similarly, define
gi to be the image of Fi via projecting onto the polynomial ring generated by the
tail variables. We call gi tail polynomials. Therefore Fi D fi C ei C gi , where ei

is the sum of mixed terms in the leading and front coefficient variables, front and
primary coefficient variables, leading and primary coefficient variables, or primary
and secondary coefficient variables and quadratic terms in the primary coefficients.

The following estimates are a clear consequence of Definition 8 and will prove
crucial toward establishing the bound in Theorem 16.

Proposition 9 (Size estimates for the types of variables). Given I an ideal
generated by m linear polynomials and n quadratic polynomials, the number of
variables needed to write I in a standard form is bounded by the sum of the
following estimates:

(1) Exactly m leading variables, x1; : : : xm

(2) Exactly h D ht.I=.x1; : : : xm// front variables
(3) At most n.mC h/ primary coefficients
(4) The total number of variables needed to write the ideal of tail polynomials

g1; : : : ; gn in standard form

To understand some of the subtleties of the standard form algorithm, we exhibit
two examples which fit in the framework of three-generated ideals. In particular, we
wish to illustrate the following:
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Remark 10. The invariants h; m; n in Definition 8 are uniquely determined by I

(for n to be uniquely determined one needs to assume that the set of generators of I

was minimal to begin with). However, the parameter h0 D ht.g1; : : : ; gn/ may vary
among different standard forms associated to the same ideal I . We note that since
.g1; : : : ; gn/ D I=.x1; : : : ; xmChCr /, one always has h0 � h.

Example 11 (The twisted cubic). Let IC � KŒx1; x2; x3; x4� be the ideal of

maximal minors of the matrix

�
x1 x2 x3

x2 x3 x4

�
: A computation shows IC D .x2

2 �
x1x3; x2

3 � x2x4; x2x3 � x1x4/ is a prime ideal of height 2 and multiplicity 3. When
thought of as an ideal in KŒx1; x2; x3; x4�, I cuts out a curve C � P

3 known as the
twisted cubic.

To find a standard form one may pick x2; x3 as front variables. We underline the
front variables in all examples for ease of parsing the respective standard forms. An
inspection of the defining equations of I reveals that with respect to this choice of
front variables, x1; x4 become primary coefficients and there are no tail variables.
Following the notation introduced in 8, we write

F1 D x2
2„ƒ‚…

f1

� x3x1„ƒ‚…
e1

F2 D x2
3„ƒ‚…

f2

� x2x4„ƒ‚…
e2

F3 D x2x3„ƒ‚…
f3

� x1x4„ƒ‚…
e3

:

Note that .g1; g2; g3/ D .0/ and consequently h0 D 0.

In the following we show that, regardless of the choice of the different types
of variables, h0 D 0 for any standard form of the ideal of the twisted cubic.
Assume F1; F2 is a maximal regular sequence inside IC . (Necessarily, F1; F2

will be quadratic polynomials.) Since .F1; F2/ generate a complete intersection of
multiplicity 4, .F1; F1/ � IC and IC is a prime ideal of multiplicity 3, the primary
decomposition of .F1; F2/ must be .F1; F2/ D IC \IL, where IL is a prime ideal of
multiplicity 1 and height 2, i.e., the defining ideal of a line in P

3. Let IL D .`1; `2/

(for the choice of F1; F2 listed in the example above, IL D .x2; x3/).
To extend F1; F2 to a maximal regular sequence on R one must pick variables

y3; y4 62 IL. The set l1; l2; y3; y4 is a basis for R1 and we shall for the moment
think of the equations of IC written in terms of this basis. Since .F1; F2/ � IL,
F1; F2 are linear combinations of terms divisible either by l1 or by l2 and since
.F1; F2/ is not contained in I 2

L, some of these terms must be of the form li yj

(1 � i � 2; 3 � j � 4). In fact, since .F1; F2/ is not a cone (it is in fact the union of
the twisted cubic curve C and the line L), it cannot be written in terms of 3 variables
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only; hence both x3 and x4 must appear in the cross terms. We now consider any
choice of front variables which will be of the form

y1 D a1l1 C a2l2 C a3y3 C a4y4; y2 D b1l1 C b2l2 C b3y3 C b4y4;

with ai ; bi 2 K and

�
a1 a2

b1 b2

�
of rank 2. The cross terms described above yield terms

of the form yi yj (1 � i � 2; 3 � j � 4) which witness the fact that y3; y4 are
primary coefficients. Therefore there are no tail variables and no tail polynomials in
the standard form.

The reader may wonder what ideals exhibit standard forms with other values of
h0. We prove a statement regarding the case h0 D 2.

Lemma 12. The only homogeneous height 2 ideal of R D KŒx1; x2; x3; x4� which
admits a standard form with h0 D 2 is I D .x2

1 C x2
3; x2

2 C x2
4; x1x2 C x3x4/.

Proof. If I has linear generators, then the height of I modulo the leading variables
is h < ht.I / D 2. Since h0 � h < 2, this contradicts the assumption h0 D 2.
Therefore there are no leading variables. Assume, up to relabeling the variables,
that x1; x2 are the front variables. Note that the front polynomials are contained
in the K-span of the monomials fx2

1; x1x2; x2
2g. Let Q be the kernel of the ring

homomorphism

KŒT1; T2; T3�
.f1;f2;f3/�! KŒx1; x2�:

If the vector space dimension of the K-span of f1; f2; f3 is 3, then by taking suitable
linear combinations of the fi (and corresponding linear combinations of the original
generators Fi ) we may assume f1 D x2

1 ; f2 D x2
2 ; and f3 D x1x2. In this case

Q D .T1T2 � T 2
3 /. By [1, Key Lemma (c)] the tail polynomials satisfy the front

relations, i.e., g1g2 � g2
3 D 0. Since h0 D ht.g1; g2; g3/ D 2, the tail polynomials

cannot satisfy additional relations. Thus the tail polynomials must be of the form
g1 D l1; g2 D l2; g3 D l1l2 with l1; l2 2 KŒx3; x4�1. But now one makes l1; l2 the
tail variables and recovers the desired form of the ideal I .

If the vector space dimension of the K-span of f1; f2; f3 is 2, then we may
assume that f1; f2 form a regular sequence and f3 D 0; hence T3 2 Q. Another
application of [1, Key Lemma (c)] guarantees that g3 D 0. It is important to note
that h0 D 2 means at least 2 tail variables are present. The assumption that the
ambient ring has exactly four variables ensures there are no primary coefficients, so
that e1 D e2 D e3 D 0. But now F3 D f3 C e3 C g3 D 0, a contradiction. ut

We are thus led to a closer examination of the ideal in the previous lemma. This
example exhibits a contrasting behavior to the ideal of the twisted cubic: it allows
standard forms with h0 D 0; 1, and 2, respectively.

Example 13. Let I D .x2
1 Cx2

3 ; x2
2 Cx2

4 ; x1x2Cx3x4/ � CŒx1; x2; x3; x4�. For this
example we shall study what possible values can occur for h0:
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(1) Our first choice will be to take x1; x2 as front variables. This makes x3; x4 tail
variables and there are no primary (or secondary) coefficients. With the notation
of Definition 8, we have

F1 D x2
1„ƒ‚…

f1

� x2
3„ƒ‚…

g1

F2 D x2
2„ƒ‚…

f2

� x2
4„ƒ‚…

g2

F3 D x1x2„ƒ‚…
f3

� x3x4„ƒ‚…
g3

:

In this case .g1; g2; g3/ D .x2
3 ; x2

4 ; x3x4/ is an ideal of height h0 D 2.
(2) Our second choice will be to take x0

1 D x1 C ix3 and x2 as front variables.
Rewriting the ideal I by substituting x1 D x0

1 � ix3 yields

I D ..x0
1 � ix3/2 C x2

3 ; x2
2 C x2

4 ; .x0
1 � ix3/x2 C x3x4/

D .x0
1

2 � 2i � x1x3; x2
2 C x2

4 ; x0
1x2 � i � x2x3 C x3x4/:

With the notation of Definition 8 we have

F1 D x0
1

2

„ƒ‚…
f1

� 2i � x0
1x3„ ƒ‚ …

e1

F2 D x2
2

„ƒ‚…
f2

C x2
4„ƒ‚…

g2

F3 D x0
1x2„ƒ‚…
f3

� i � x2x3 C x3x4„ ƒ‚ …
e3

:

In this case .g1; g2; g3/ D .x2
4/ which is an ideal of height h0 D 1.

(3) Our last choice will be to take y1 D x1C ix3; y2 D x2C ix4 as front variables,
and we shall rename y3 D x3; y4 D x4. Rewriting the ideal I with respect to
the linear change of coordinates from the x variables to the y variables yields

I D ..y1 � iy3/
2 C y2

3 ; .y2 � y4/
2 C y2

4 ; .y1 � iy3/.y2 � iy4/C y3y4/

D .y1
2 � 2i � y1y3; y2

2 � 2i � y2y4; y1y2 � i � y1y4 � i � y2y3/:

With the notation of Definition 8 we have

F1 D y1
2

„ƒ‚…
f1

� 2i � y1y3„ ƒ‚ …
e1

F2 D y2
2

„ƒ‚…
f2

� 2i � y2y4„ ƒ‚ …
e2

F3 D y1y2„ƒ‚…
f3

� i � y1y4 C i � y2y3„ ƒ‚ …
e3

:
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In this case .g1; g2; g3/ D 0 and consequently h0 D 0. This behavior of the
standard form can be expected since the primary decomposition

I D .x1 C ix3; x2 � ix4/\ .x1 � ix3; x2 C ix4/\ .x1; x2; x3; x4/

shows I � .y1; y2/, which means there cannot be any tail polynomials with
respect to choosing y1; y2 as front variables.

We now sketch how the construction of standard form associated to an ideal I is
applied to finding bounds for the projective dimension of R=I in [1]. The main idea
is that the use of standard forms allows one to find a suitable polynomial algebra
A generated by linear and quadratic forms that contains the ideal I while having a
number of generators that can be bounded in terms of m; n; h. The leading, front,
and primary coefficient variables are all included as generators of A. Proposition 9
provides estimates for the respective sizes of these sets of variables. Note that it
remains only to find a suitable ambient algebra for the ideal .g1; : : : gn/. The rest of
the generators of A are iteratively determined, reducing the height of the ideal being
analyzed.

The case when h0 < h allows one to use induction to complete the process. The
case when h0 D h requires another application of the standard form for the ideal
.x1; : : : ; xmChCrCs; g1; : : : gn/, which yields new front polynomials ˛1; : : : ; ˛n and
new tail polynomials ˇ1; : : : ; ˇn. Let h00 be the height of the ideal .ˇ1; : : : ; ˇn/. If
h00 < h then A will be generated by the leading, front, and primary coefficient
variables of I together with the generators of the algebra containing .ˇ1; : : : ; ˇn/. If
h00 D h then the ideals .f1; : : : ; fn/, .g1; : : : ; gn/, .˛1; : : : ; ˛n/, and .ˇ1; : : : ; ˇn/ are
proven to be linearly presented. Toward this end one uses Lemma 14, the proof of
which can be found in [1]. From here one deduces that there were exactly h nonzero
gi which, together with the leading, front, primary, and secondary coefficient
variables in the standard form of I , are the generators of A.

The following table summarizes the notations introduced. The last column refers
to estimates discussed in Proposition 9.

Ideal Height Ambient ring Number of variables

.F1; : : : ; Fn/ h S D KŒxmC1; : : : ; xN � N � m

.f1; : : : ; fn/ h KŒxmC1; : : : ; xmCh� h

.g1; : : : ; gn/ h0 KŒxmChCrCsC1; : : : ; xN � N � m � h � r � s

.˛1; : : : ; ˛n/ h0 KŒxmChCrCsC1; : : : ; xmChCrCsCh0 � h0

.ˇ1; : : : ; ˇn/ h00 KŒxmChCrCsCh0

C1; : : : ; xN � � N � m � h � r � s � h0

Lemma 14 (Ananyan–Hochster [1, Lemma 4]). Let f˛1; : : : ; ˛ng and fˇ1; : : : ; ˇng
be homogeneous polynomials in two disjoint sets of indeterminates. Assume that
the two sets of polynomials satisfy the same relations and denote the ideal of
relations by P . Furthermore assume that the ideal of relations on the polynomials
f˛1 C ˇ1; : : : ; ˛N C ˇng contains P . Then P is generated by linear forms.
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We wish to give a flavor of the recursive argument by Ananyan–Hochster [1] that
allows one to estimate the number of generators of A by applying their arguments
to the case of ideals generated by three quadratic forms.

Proposition 15. Let I be a height 2 ideal minimally generated by three quadratic
forms:

(1) If h0 D 0, then I is an ideal in a polynomial ring generated by at most 26 linear
forms.

(2) If h0 D 1, then I is an ideal in a polynomial ring generated by at most 30 linear
forms or 26 linear forms and a quadratic form.

(3) If h0 D 2, then I is an ideal in a polynomial ring generated by at most 296
forms.

Proof. (1) If h0 D 0, then the polynomials ei are expressible as linear combi-
nations of x1; x2 with indeterminate (primary) coefficients, quadratic terms
in the primary coefficients, and mixed terms in the primary and secondary
coefficients. The K-vector space V of primary coefficients has dimension
at most 6 (at most 2 primary coefficients appear in each of the 3 defining
equations), and consequently the vector space W spanned by secondary
coefficients has dimension at most 3 � 6 D 18. Since all the tail polynomials
vanish, I is an ideal of the polynomial ring on variables x1; x2 and the union
of bases of V and W .

(2) If h0 D 1, then the previous considerations on the polynomials ei hold and
furthermore .g1; g2; g3/ is an ideal of height one. Therefore .g1; g2; g3/ D
.yy1; yy2; yy3/ for some linear forms y; y1; y2; y3 (some of the yi could be
0) or .g1; g2; g3/ D .q/ where q is an irreducible quadratic form. In the first
situation I can be written in terms of x1; x2, at most 6 primary coefficients, at
most 18 secondary coefficients, and at most 4 linear forms y; y1; y2; y3; in the
second case, I can be written in terms of x1; x2, at most 6 primary coefficients,
at most 18 secondary coefficients, and one quadratic form q.

(3) If h0 D 2, then one proceeds by putting g1; g2; g3 in standard form with respect
to a set of at most 18 leading variables consisting of the secondary coefficients
in the standard form of the ideal I . This produces two new front variables,
at most 3 � 20 D 60 new primary coefficients, and 60 � 3 D 180 secondary
coefficients, a new set of front polynomials ˛1; ˛2; ˛3 and a new set of tail
polynomials ˇ1; ˇ2; ˇ3. Let h00 D ht.ˇ1; ˇ2; ˇ3/.

(3a) In case h00 � 1, by cases (1) and (2), the polynomials ˇ1; ˇ2; ˇ3 can be
written in terms of at most 30 algebraically independent forms. Together with
x1; x2, the first 6 primary coefficients, the 18 new leading variables, the 60 new
primary coefficients, and the 180 new secondary coefficients, one counts 296
algebraically independent forms.

(3b) In case h00 D 2, Lemma 14 yields that there are exactly 2 nonzero gi . We count
the quantities needed to write the generators of I as follows: x1; x2, the first
6 primary coefficients, the 18 secondary coefficients, and the two nonzero gi .
That amounts to at most 28 algebraically independent forms. ut
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Applying induction on the height of the ideal in a similar manner to the proof of
the proposition above, Ananyan and Hochster obtain:

Theorem 16. Let I be an ideal generated by m linear and n quadratic polynomials
with ht I D h. Then there exists a function B.m; n; h/ recursively defined by

B.m; n; h/ D .mC h/.n3 C n2 C nC 1/C h.nC 1/C B..mC h/n2; n; h � 1/

such that I can be viewed as an ideal in a polynomial ring of at most B.m; n; h/

variables.

Based on this theorem and an asymptotic analysis carried out in [1] on the growth
of the function B.m; n; h/, we conclude:

Corollary 17. Stillman’s question 1.1 has a positive answer in the case of ideals
generated by linear and quadratic polynomials. In this case, there exists a bound on
projective dimension with asymptotic order of magnitude 2.mC n/2.mCn/, where m

and n are the number of linear and quadratic generators of the ideal, respectively.

We review the specific values of B.0; 3; 2/ found in Proposition 15.

Case h h0 h00 Linear forms Quadratic forms Total forms

(1) 2 0 0 �26 0 �26

(2) 2 1 0 �30 �1 �30

(3a) 2 2 1 �296 �1 �296

(3b) 2 2 2 �26 �2 �28

The bounds that are found using Theorem 16 are not tight. For example, compare
the estimates in the previous table with the exact bound of 4 for the projective
dimension of ideals generated by three quadratic forms found in Proposition 2.

To illustrate how the idea of counting algebraically independent variables can
be improved by deeper knowledge of certain parameters associated to the ideal I ,
we give better bounds on the projective dimension of ideals generated by three
quadratic forms using knowledge of the structure of associated primes of ideals
of low multiplicity. The reader is encouraged to contrast the previous bounds to
the following table in which columns 2 to 4 refer to the number of algebraically
independent parameters needed to write I . The first row of the table comes from
the easy observation that if I � .x; y/ with x; y linear forms, then I D .xl1;1 C
yl1;2; xl2;1Cyl2;2; xl3;1Cyl3;2/ with li;j linear forms (possibly 0). The second row
stems from the observation that if I � .x; q/ with x a linear form and q a quadratic
form, then I D .xl1 C aq; xl2 C bq; xl3 C cq/ with li linear forms (possibly 0)
and a; b; c 2 K . Finally if I � IC , the defining ideal of the twisted cubic, and I is
minimally generated by three quadric forms, then I D IC . The three rows exhaust
the possible types of minimal associated primes of height two ideals of multiplicity
at most 3 (see Proposition 4 for multiplicity 2 and [16] for multiplicity 3).
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Ass.I / Linear forms Quadratic forms Total forms pd.R=I /

.x; y/ 2 Ass.I / �8 0 �8 �8

.x; q/ 2 Ass.I / �4 1 �5 �5

I D IC 4 0 4 2

This provides heuristic evidence that the bound in Theorem 16 is far from being
tight. We ask in Sect. 6 if there is a polynomial bound on the projective dimension
of ideals generated by quadratic polynomials.

4 Lower Bounds and Examples

In most cases, excepting the special cases from the previous section, there is little
indication of whether the answer to Stillman’s question is affirmative or what the
resulting bound would look like. One way to gain intuition into the question is to
look for families of ideals with large projective dimension relative to the degrees
of the generators. We present several such families in this section. Note that they
neither prove nor disprove Stillman’s question, but they do provide large lower
bounds on any possible answer.

An early motivation for studying Question 1.1 comes from the study of three-
generated ideals. Burch [7] proved the following theorem in the local case, which
was extended by Kohn [29] to the global case. We state the polynomial ring case
here.

Theorem 1 (Burch [7], Kohn [29, Theorem A]). Let N 2 N. There exists a
polynomial ring R D KŒx1; : : : ; x2N � and an ideal I D .f; g; h/ with three
generators with pd.R=I / D N C 2.

Hence we cannot hope to find a bound on pd.R=I / purely in terms of the
number of generators. However, if one applies this construction to a polynomial
ring, the degrees of the generators grow linearly with respect to the projective
dimension. Engheta computed the degrees of the three generators in the Burch–
Kohn construction must be at least N; N , and 2N �2, respectively. (See [17, Section
1.2.2].) Here is one such choice of generators.

Example 2. Let R D KŒx1; : : : ; xN ; y1; : : : ; yN � and let

f D
NY

iD1

xi ; g D
NY

iD1

yi ; h D
NX

iD1

NY
j D1
j ¤i

xj yj :

Then I D .f; g; h/ satisfies pd.R=I / D N C 2. For example, when N D 3, we get
the ideal

I D .x1x2x3; y1y2y3; x2y2x3y3 C x1y1x3y3 C x1y1x2y2/;



570 J. McCullough and A. Seceleanu

in which case pd.R=I / D 5 and R=I has resolution

R R3  R9  R12  R6  R 0:

A stronger result was later proved by Bruns. He shows [6, Satz 3] that any
projective resolution is the projective resolution of some three-generated ideal after
modifying the first three modules in the resolution. In practice, if one constructs
a three-generated ideal with the same projective dimension as one with more
generators, the degrees of the generators grow. If one could bound the growth of
the generators when finding the “Brunsification” of an ideal, one could reduce the
study of Stillman’s question to that of three-generated ideals.

4.1 Ideals with Large Projective Dimension

The following example was given by the first author in [32]. A similar construction
was given by Whieldon in [37].

Fix integers m � 1; n � 0; d � 2. Let p D .mCd�2/Š

.m�1/Š.d�1/Š
. Let Z1; : : : ; Zp denote

all the degree d � 1 monomials in the variables x1; : : : ; xm, ordered arbitrarily. Set
R D KŒx1; : : : ; xm; y1;1; : : : ; yp;n�, a polynomial ring with m C pn variables over
any field K . Finally, define the ideal Im;n;d as

Im;n;d D
 

xd
1 ; xd

2 ; : : : ; xd
m;

pX
iD1

Zi yi;1;

pX
iD1

Zi yi;2; : : : ;

pX
iD1

Zi yi;n

!
:

Note that Im;n;d has mC n homogeneous generators all of degree d . The following
result gives a formula for the projective dimension in terms of m; n, and d .

Theorem 3 (McCullough [32, Theorem 3.3]). With the notation above,

pd.R=Im;n;d / D mC np D mC n
.mC d � 2/Š

.m � 1/Š.d � 1/Š
:

The proof uses the graded Auslander–Buchsbaum theorem. (See, e.g., [14,
Theorem 19.9].) One shows that depth.R=Im;n;d / D 0, and hence pd.R=Im;n;d /

is as large as possible.
For certain choices of m; n; d , this construction yields ideals with very large

projective dimension. However, the three-generated case, where m D 2 and n D 1,
yields only linear growth of projective dimension.

Example 4. Let d 2 N, let R D KŒx1; x2; y1; y2; : : : ; yd �, and consider the ideals

I2;1;d D
�
xd

1 ; xd
2 ; xd�1

1 y1 C xd�2
1 x2y2 C � � � C xd�1

2 yd

�
:

By the above theorem, pd.R=I2;1;d / D d C 2. Note that the cases d D 2 and d D 3

are given in Examples 2 and 7, respectively.
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Example 5. Fix d D 2, m D n � 2 and let R D KŒx1; x2; : : : ; xn; y1;1; : : : ; yn;n�.
Now consider the ideals

In;n;2 D
 

x2
1 ; x2

2 ; : : : ; x2
n;

nX
iD1

xi yi;1;

nX
iD1

xi yi;2; : : : ;

nX
iD1

xi yi;n

!
:

Then In;n;2 is generated by 2n quadratic polynomials and satisfies pd.R=In;n;2/ D
n2 C n. To the best of our knowledge, these are the largest projective dimension
examples known for ideals generated by quadratics. So we get a lower bound of
N 2C2N

4
on an answer to Stillman’s question for ideals generated by N quadratic

forms—much smaller than the exponential bound achieved by Ananyan and
Hochster. It would be interesting to know how close either of these bounds are to
being tight.

4.2 Ideals with Larger Projective Dimension

In this section, we construct a family of ideals with exponentially growing projective
dimension relative to the degrees of the generators, even in the three-generated case.
This construction can be considered as an inductive version of the family in the
previous section. The family was constructed in joint work by the two authors along
with Beder, Núñez–Betancourt, Snapp, and Stone in [4].

Fix integers g � 2 and a tuple of integers m1; : : : ; mn with mn � 0, mn�1 � 1,
and mi � 2 for i D 1; : : : ; n � 2. We set d D 1 CPn

iD1 mi . Now we define a
family of sets of matrices as follows. For each k D 0; : : : ; n, define Ak to be the set
of g � n matrices satisfying the following properties:

1. All entries are nonnegative integers.
2. For i � k, column i sums to mi .
3. For i > k, column i contains all zeros.
4. For i � minfk; n � 1g, column i contains at least two nonzero entries.

These matrices are used in the definition of an ideal in the standard graded ring

R D KŒxi;j ; yA j 1 � i � g; 1 � j � n; A 2 An�:

Let X D .xi;j / denote a g � n matrix of variables, and for every matrix A 2 An, set
XA D Qg

iD1

Qn
j D1 x

ai;j

i;j . We define the ideal Ig;.m1;:::;mn/ to be

Ig;.m1;:::;mn/ D
�
xd

1;1; : : : ; xd
m;1; f

�
;

where f D
n�1X
kD1

X
A2Ak�1

gX
j D1

XAx
mk

j;kx
dkC1

j;kC1 C
X

B2An

XByB:

With this notation, we have the following formula for the projective dimension.
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Theorem 6 (Beder et al. [4, Corollary 3.3]). Using the notation above, we have

pd.R=Ig;.m1;:::;mn// D
n�1Y
iD1

�
.mi C g � 1/Š

.g � 1/Š.mi/Š
� g

��
.mn C g � 1/Š

.g � 1/Š.mn/Š

�
C gn:

As a result, one can define ideals with three generators in degree d and with

projective dimension larger than
p

d

p
d�1

.

Corollary 7 (Beder et al. [4, Corollary 3.5]). Over any field K and for any
positive integer p, there exists an ideal I in a polynomial ring R over K with three
homogeneous generators in degree p2 such that pd.R=I / � pp�1.

Proof. This follows directly from Theorem 6 by taking the ideal

I D I2;.pC1;:::;pC1„ ƒ‚ …
p�1 times

;0/:

ut
Here we give an example of a three-generated ideal I with d D 5 and with

pd.R=I / D 8.

Example 8. Consider the ideal I2;.3;1/. Since g D 2 and .m1; m2/ D .3; 1/, this is
an ideal with three degree 5 generators. We compute the sets Ak first:

A0 D
��

0 0

0 0

�	
;

A1 D
��

2 0

1 0

�
;

�
1 0

2 0

�	
;

A2 D
��

2 1

1 0

�
;

�
1 1

2 0

�
;

�
2 0

1 1

�
;

�
1 0

2 1

�	
:

Then our ring is

R D K

�
x1;1; x1;2; x2;1; x2;2; y


2 1
1 0

� ; y

1 1
2 0

� ; y

2 0
1 1

� ; y

1 0
2 1

�
�
;

and the ideal is

I2;.3;1/ D .x5
1;1; x5

2;1; f /;

where

f D x3
1;1x2

1;2 C x3
1;1x2

1;2 C X



2 1
1 0

�
y


2 1
1 0

�C X



1 1
2 0

�
y


1 1
2 0

�C X



2 0
1 1

�
y


2 0
1 1

�C X



1 0
2 1

�
y


1 0
2 1

�

D x3
1;1x2

1;2 C x3
1;1x2

1;2 C x2
1;1x1;2x2;1y


2 1
1 0

� C x1;1x1;2x
2
1;2y


1 1
2 0

�

C x2
1;1x2;1x2;2y


2 0
1 1

� C x1;1x2
2;1x2;2y


1 0
2 1

� :
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Then pd.R=I2;.3;1// D 8 and the Betti table for R=I2;.3;1/ is shown below.

0 1 2 3 4 5 6 7 8

Total: 1 3 53 184 287 248 124 34 4

0: 1 - - - - - - - -
1: - - - - - - - - -
2: - - - - - - - - -
3: - - - - - - - - -
4: - 3 - - - - - - -
5: - - - - - - - - -
6: - - - - - - - - -
7: - - - - - - - - -
8: - - 3 - - - - - -
9: - - 3 4 - - - - -
10: - - 13 46 68 56 28 8 1
11: - - 33 132 218 192 96 26 3
12: - - 1 2 1 - - - -

Another interesting characteristic of this family of ideals is that it subsumes two
other constructions. The construction in the previous section of ideals of the form
Im;1;d for positive integers m; d corresponds to the ideal Im;.d�1/ from this section,
up to a relabeling of the variables. In fact, the ideals Ig;.m1;:::;mn/ may be thought of as
an inductive version of the ideals in the previous section. This new family of ideals
also subsumes a family of ideals studied by Caviglia [8]. Let R D KŒw; x; y; z� and
let Cd D

�
wd ; xd ; wyd�1 C xzd�1

�
. Caviglia showed that reg.R=Cd / D d 2�2. We

first note that the ideals Cd correspond to the ideals I2;.1;d�2/, again with a relabeling
of the variables. It is also noted in [4] that some of the ideals Ig;.m1;m2;:::;mn/ have
regularity larger than d 2 � 2. It would be interesting to compute the regularity of
this new family of ideals as this would give insight into the regularity version of
Stillman’s question.

5 Related Bounds

While this survey is primarily concerned with Stillman’s question, we want to
mention some similar results that bound projective dimension in terms of data other
than the degrees of the generators. This section is independent of the preceding
sections.

Let I be an ideal of R D KŒx1; : : : ; xN �. A monomial support of I is the
collection of monomials that appear as terms in a set of minimal generators of I .
Note that a monomial support of an ideal is not unique. Related to Stillman’s
question, Huneke asked if pd.R=I / was bounded by the number of monomials in
a monomial support of I . If I is a monomial ideal generated by m monomials,
then the monomial support of I has size m and the Taylor resolution of R=I has
length m. Hence pd.R=I / � m. So Huneke’s question has a positive answer for
monomial ideals.
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In [10], Caviglia and Kummini answer Huneke’s question in the negative
by constructing a family of binomial ideals whose projective dimension grows
exponentially relative to the size of a monomial support. In particular, for each pair
of integers n � 2 and d � 2, they construct an ideal supported by 2.n�1/.d�1/Cn

monomials with projective dimension nd . Hence they show that any upper bound
for the projective dimension of an ideal supported on m monomials counted with
multiplicity is at least 2m=2. These ideals also provide lower bounds on possible
answers to Stillman’s question, but we present stronger examples in Sect. 4.

Several bounds on projective dimension for edge ideals are proven by Dao
et al. [13]. Most notably, they prove that the projective dimension of the edge
ideal of a graph with n vertices and maximal vertex degree d is bounded above
by n

�
1 � 1

2d

�
[13, Corollary 5.6]. They also prove a logarithmic bound on the

projective dimension of squarefree monomial ideals of height 2 satisfying Serre’s
condition Sk for some k � 2. (See [13, Corollary 4.10].) Several other bounds in
terms of other graph parameters are given in [12].

Finally, we mention the following result of Peeva and Sturmfels. Below R D
KŒx1; : : : ; xN �, L is a sublattice of Zn, and IL is the associated lattice ideal in R,
that is,

IL D
˝
xa � xb j a; b 2 N

n and a � b 2 L˛ :
In this setting, the projective dimension of R=IL is bounded by an expression
depending only the height of IL.

Theorem 1 (Peeva–Sturmfels [35, Theorem 2.3]). The projective dimension of
R=IL as an R-module is at most 2ht.IL/ � 1.

Note that this instantly gives an answer to Stillman’s question for lattice ideals
since ht.I / is always at most the number of minimal generators of I by Krull’s
generalized principal ideal theorem [30, Theorem 13.5]. However, we cannot expect
such a bound in terms of ht.I / in general. The construction by Burch–Kohn or any of
the examples in Sect. 4 provide examples of ideals with fixed height and unbounded
projective dimension.

6 Questions

We close by posing some specific open problems related to Stillman’s question.

Question 6.1. We note that the case of an ideal I generated by three quadratics
has a tight upper bound of 4 on the projective dimension of R=I . Engheta’s upper
bound of 36 in the case of an ideal generated by three cubics is likely far from tight.
In fact, one expects that 5 is the upper bound. Can one prove this? Such a reduction
will likely involve strong structure theorems on unmixed ideals of height two and
low multiplicity.
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Question 6.2. Similarly, Ananyan’s and Hochster’s exponential bound on pd.R=I /

for ideals I generated by quadratic polynomials is likely not tight. Can one find a
smaller, perhaps even polynomial bound on pd.R=I / where I is generated by n

quadratics?

Question 6.3. There are several reductions that might make Stillman’s question
more tractable. Given an ideal, can one bound the degrees of the generators of the
corresponding three-generated ideal produced by Bruns’ theorem? If so, one could
focus exclusively on three-generated ideals.

Question 6.4. Can one bound the projective dimension of all unmixed ideals of a
given height and multiplicity? The structure theorems for ideals of height two and
small multiplicity indicate that this might be possible and would provide information
about Stillman’s question.

Question 6.5. Finally, we note that there are several results showing that under
certain hypotheses on an ideal, one can achieve very good bounds on the regularity
of the ideal in terms of the degrees of the generators. (See, e.g., [3, 5, 11].) Are any
corresponding bounds possible for projective dimension?
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Brauer–Thrall Theory for Maximal
Cohen–Macaulay Modules

Graham J. Leuschke and Roger Wiegand

1 Introduction

The Brauer–Thrall Conjectures first appeared in a 1957 paper by Thrall’s student
Jans [25]. They say, roughly speaking, that if a finite-dimensional algebra A over
a field k has infinite representation type, then A has lots of big indecomposable
finitely generated modules. Recall that A has finite representation type provided
there are only finitely many indecomposable finitely generated A-modules up to
isomorphism, bounded representation type provided there is a bound on the k-
dimensions of the indecomposable finitely generated A-modules, and strongly
unbounded representation type provided there is an infinite strictly increasing
sequence .ni / of positive integers such that A has, for each i , infinitely many non-
isomorphic indecomposable modules of k-dimension ni . Here are the conjectures:

Conjecture 1 (First Brauer–Thrall Conjecture (BT1)). If A has bounded represen-
tation type, then A has finite representation type.

Conjecture 2 (Second Brauer–Thrall Conjecture (BT2)). If A has unbounded rep-
resentation type and k is infinite, then A has strongly unbounded representation
type.

Under mild hypotheses, both conjectures are now theorems. Roı̆ter [39] verified
(BT1), and Nazarova and Roı̆ter [35] proved (BT2) for perfect fields k. See [38] or
[20] for some history on these results.
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When we move from Artinian rings to local rings .R;m; k/ of positive dimension,
the first thing we need to do is to decide on the right class of modules. If R is not a
principal ideal ring, constructions going back to Kronecker [29] and Weierstraß [41]
show that R has indecomposable modules requiring arbitrarily many generators.
Moreover, if k is infinite, then for every n there are jkj non-isomorphic indecom-
posable modules each of which requires exactly n generators. (See [33, Theorem
3.3 and Exercise 3.25].) Thus imposing finiteness or boundedness conditions on the
class of all modules does not lead to anything interesting.

Restricting to torsion-free modules yields a more robust theory, at least in
dimension one. In the 1960s Jacobinski [24] and, independently, Drozd and Roı̆ter
[16] studied orders in algebraic number fields and, more generally, rings essentially
module-finite over the ring of integers, and classified the rings having only finitely
many indecomposable finitely generated torsion-free modules up to isomorphism.

In dimensions greater than one, there are just too many torsion-free modules.
Indeed, Bass [5] proved in 1962 that every local domain of dimension two or more
has indecomposable finitely generated torsion-free modules of arbitrarily large rank.

The maximal Cohen–Macaulay (MCM) property, a higher-dimensional form
of torsion-freeness, turns out to give a fruitful class of modules to study. The
equality of a geometric invariant (dimension) with an arithmetic one (depth) makes
MCM modules easy to work with, simultaneously ensuring that in some sense they
faithfully reflect the structure of the ring. For example, a Cohen–Macaulay local
ring has no non-free MCM modules if and only if it is a regular local ring, so the
rings that are the simplest homologically are also simple in this sense. Imposing
finiteness or boundedness conditions on MCM modules over a Cohen–Macaulay
local ring leads to classes of rings that are large enough to include interesting
examples, but small enough to study effectively. The seminal work of Herzog [22],
Artin and Verdier [1], Auslander [3], and Buchweitz, Greuel, Knörrer, and Schreyer
[8, 28] supports this assertion. For example, the main result of [8, 28] is that a
complete equicharacteristic hypersurface singularity over an algebraically closed
field of characteristics zero has only finitely many indecomposable MCM modules
up to isomorphism if and only if it is a simple singularity in the sense of V. I. Arnol0d,
that is, one of the (An), (Dn), (E6), (E7), or (E8) hypersurface singularities.

Next, we have to decide what invariant should be used to measure the size of
a finitely generated module M . Two obvious choices are �R.M /, the minimal
number of generators required for M , and eR.M /, the multiplicity of M . We choose
multiplicity.

Definition 3. Let .R;m; k/ be a local ring:

(i) R has finite CM type provided R has, up to isomorphism, only finitely many
indecomposable MCM modules.

(ii) R has bounded CM type provided there is a bound on the multiplicities of the
indecomposable MCM R-modules.

(iii) R has strongly unbounded CM type provided there is an increasing sequence
n1 < n2 < � � � of positive integers such that, for every i , there are infinitely
many indecomposable MCM modules of multiplicity ni .
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Here, then, are the Brauer–Thrall Conjectures for MCM modules:

Conjecture 4 (First Brauer–Thrall Conjecture for MCM modules (BTM1)). If a
local ring .R;m; k/ has bounded CM type, then R has finite CM type.

Conjecture 5 (Second Brauer–Thrall Conjecture for MCM modules (BTM2)). If a
local ring .R;m; k/ has unbounded CM type and k is infinite, then R has strongly
unbounded CM type.

For MCM modules, multiplicity and number of generators enjoy a linear
relationship:

�R.M / � eR.M / � e.R/ � �R.M / ; (1)

for every MCM R-module. (See [33, Corollary A.24] for a proof of the first
inequality.) It follows that we could replace multiplicity by number of generators
in Definition 3 without changing the class of rings satisfying bounded (respectively,
strongly unbounded) CM type.

In fact, Conjecture 4 is false, the designation “conjecture” being merely a
convenient nod to history. The first counterexample was given by Dieterich in 1980
[14]. Let k be a field of characteristic two, let A D kŒŒx��, and let G be the two-
element group. Then AG has bounded but infinite CM type. Of course AG is
isomorphic to kŒŒx; y��=.y2/, which, as we will see in the next section, has bounded
but infinite CM type for any field k.

Conventions and Notation 1.6. Throughout, R will be a local ring (always as-
sumed to be commutative and Noetherian). The notation .R;m; k/ indicates that
m is the maximal ideal of R and that k is the residue field R=m. All modules
are assumed to be finitely generated. The m-adic completion of R is bR, and the
integral closure of R in its total quotient ring K WD fnon-zerodivisorsg�1R is
R. A module M is maximal Cohen–Macaulay (abbreviated “MCM”) provided
depth.M / D dim.R/. We will denote the multiplicity e.m; M / of the maximal
ideal on M simply by eR.M /, and we write e.R/ instead of eR.R/. (See [34,
Chap. 14].) The modifier “Cohen–Macaulay,” when applied to the ring R, will often
be abbreviated “CM.” Our standard reference for matters commutative algebraic
will be [34], and for representation theory we refer to [33] or [47].

2 Dimension One

Before getting started, let us observe that both conjectures are true for local Artinian
rings. In this case all finitely generated modules are MCM modules. If .R;m/ is an
Artinian principal ideal ring with mt D 0, the indecomposable modules are R=mi ,
1 � i � t . We have already observed that if R is not a principal ideal ring, then
there exist, for each n � 1, indecomposable modules requiring exactly n generators
and, if k is infinite, jkj of them.
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Now, on to dimension one! We recall the characterization of one-dimensional
rings of finite CM type:

Theorem 1. Let .R;m; k/ be a Cohen–Macaulay local ring of dimension one. Then
R has finite CM type if and only if:

(i) R is reduced.
(ii) �R.R/ � 3.

(iii) mRCR
R

is cyclic as an R-module.

Items (i) and (ii) are equivalent to the condition that bR is reduced and e.R/ � 3.
Conditions (ii) and (iii) are often called the “Drozd–Roı̆ter conditions” [11] to
recognize the 1966 paper [16] where they first appeared and were shown to
characterize the rings of finite CM type among local rings essentially module-
finite over Z. The work of Drozd and Roı̆ter was clarified considerably in 1978 by
Green and Reiner [19], who used explicit matrix reductions to verify finiteness of
CM type in the presence of the Drozd–Roı̆ter conditions. In 1989 Wiegand [42]
adapted constructions in [16] to prove the “only if” direction in general. A
separable base-change argument in [42] and the matrix decompositions of Green
and Reiner verified the “if” direction, except in the case of an imperfect residue
field of characteristic two or three. In [44] Wiegand took care of the case of
characteristic three. Finally, Çimen, in his Ph.D. dissertation [9], completed the
proof of Theorem 1 via difficult matrix reductions. (Cf. [10].)

Although we will not say much about non-CM rings, we record the following
result from [44], which, together with Theorem 1, characterizes the one-dimensional
local rings with finite CM type:

Theorem 2. Let .R;m; k/ be a one-dimensional local ring, not necessarily Cohen–
Macaulay, and let N be the nilradical of R. Then R has finite CM type if and only if
(i) R=N (which is CM) has finite CM type, and (ii) N \ mn D 0 for some positive
integer n.

The proof of the “only if” direction in Theorem 1 (necessity of the Drozd–Roı̆ter
conditions) in [42] actually shows more and confirms BTM1 in the analytically
unramified case. We will say that a finitely generated module M over a CM local
ring R has constant rank n provided K ˝R M Š K.n/, where K is the total quotient
ring. Equivalently, Mp is a free Rp-module of rank n for every minimal prime ideal
p of R. In this case e.M / D ne.R/.

Theorem 3 (BTM1 when bR is reduced, [42]). Let .R;m; k/ be a one-dimensional
local ring with reduced completion. If R has infinite CM type then for every n there
is an indecomposable MCM R-module of constant rank n. In particular, R has
unbounded CM type.

We have already seen that BTM1 can fail if there are nilpotents. We showed
in 2005 [32, Theorem 2.4] that there are essentially only three counterexamples
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to BTM1 in dimension one. Recall that the complete (A1) and (D1) curve
singularities are, respectively, the rings kŒŒx; y��=.y2/ and kŒŒx; y��=.xy2/. They arise
as the respective limits of the (An) singularities kŒŒx; y��=.y2 C xnC1/ and the (Dn)
singularities kŒŒx; y��=.xy2 C xn�1/ as n �! 1.

Theorem 4 (Failure of BTM1, [32]). Let .R;m; k/ be an equicharacteristic, one-
dimensional, Cohen–Macaulay local ring, with k infinite. Then R has bounded
but infinite CM type if and only if the completion bR is isomorphic to one of the
following:

(i) kŒŒx; y��=.y2/, the (A1) singularity
(ii) T WD kŒŒx; y��=.xy2/, the (D1) singularity

(iii) E WD EndT .mT /, the endomorphism ring of the maximal ideal of T

The ring E has a presentation E Š kŒŒX; Y; Z��=.XY; YZ; Z2/.

The assumption that k be infinite is annoying. It is tempting to try to eliminate
this assumption via the flat local homomorphism R �! S WD RŒz�mRŒz�, where z is
an indeterminate. The problem would be to show that if R has unbounded CM type
then so has S . While it is rather easy to show that finite CM type descends along flat
local homomorphisms (as long as the closed fiber is CM) [45, Theorem 1.6], it is
not known (at least to us) whether an analogous result holds for descent of bounded
CM type. In fact, it is not even known, in higher dimensions, whether bounded CM
type descends from the completion. Such descent was a crucial part of the proof
of Theorem 4, but the proof of descent was based not on abstract considerations
but on the precise presentations, in [8], of the indecomposable bR-modules in each
of the three cases. Using these presentations, we were able to say exactly which
MCM bR-modules are extended from R-modules, and thereby deduce that R itself
has bounded CM type. Part of the difficulty in proving a general statement of this
form is that there may be no uniform bound on the number of indecomposable
MCM bR-modules required to decompose the completion of an indecomposable
MCM R-module (see [33, Example 17.11]).

At this point we have shown, for CM local rings of dimension one, that BTM1
holds in the analytically unramified case but fails (just a little bit) in general. We turn
now to BTM2 for CM local rings of dimension one.

Theorem 5. Let .R;m; k/ be a one-dimensional local Cohen–Macaulay ring with
unbounded CM type and with k infinite. Assume either (i) bR is reduced Or (ii) R

contains a field.
Then, for each positive integer n, R has jkj pairwise non-isomorphic inde-
composable MCM modules of constant rank n. In particular, BTM2 holds for
one-dimensional CM local rings that satisfy either (i) or (ii).

Karr and Wiegand [26, Theorem 1.4] proved this in the analytically unramified
case (i). Later Leuschke and Wiegand modified that proof, using ideas from [31,32],
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to prove the result in the equicharacteristic case (ii). See [33, Theorem 17.10]. The
rest of this section is devoted to a sketch of the main ideas of the proof of Theorem 5.

Assume, for the rest of this section, that .R;m; k/ is a one-dimensional CM local
ring satisfying the hypotheses of Theorem 5. In particular, k is infinite and R has
unbounded CM type. The first step, proved by Bass [6] in the analytically unramified
case, appears as Theorem 2.1 of [31]:

Lemma 6. Suppose e.R/ � 2. Then every indecomposable MCM R-module is
isomorphic to an ideal of R and hence has multiplicity at most two.

Thus we may assume that e.R/ � 3. Then R has a finite birational extension S

(an intermediate ring between R and its total quotient ring K such that S is finitely
generated as an R-module) with �R.S/ D e.R/. Although we will need to choose
S with some care, we note here that S WD S

n�1 EndR.mn/ has the right number of
generators. (See [31, Lemma 2.6].) In the analytically unramified case, one typically
takes S D R. (Notice that none of this works if R is not CM, since R D K in that
case!) Let f be the conductor, that is, the largest ideal of S that is contained in R.
Putting A D R=f, B D S=f, and D D B=mB , we obtain a commutative diagram

R ��

��

S

��
A ��

��

B

��
k �� D

(2)

in which the top square is a pullback and D is a k-algebra of dimension e.R/.
Now let n be a fixed positive integer, and let t 2 k. We wish to build a family,

parametrized by t , of indecomposable MCM R-modules of constant rank n. The
following construction [42, Construction 2.5], [33, Construction 3.13] is based on
work of Drozd and Roı̆ter [16]. Let I be the n � n identity matrix and H be the
nilpotent n � n Jordan block with 1’s on the superdiagonal and 0’s elsewhere.
Let ˛ and ˇ be elements of D such that f1; ˛; ˇg is linearly independent over k.
(Eventually we will have to impose additional restrictions on ˛ and ˇ.) Let Vt be
the k-subspace of D.n/ spanned by the columns of the n � 2n matrix:

‰t WD ŒI ˛I C ˇ.tI C H/� : (3)

Let �W S.n/ � D.n/ be the canonical surjection, and define Mt by the following
pullback diagram:
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Mt
��

��

S.n/

�

��

Vt
� � �� D.n/

(4)

Then Mt is an MCM R-module of constant rank n, and it is indecomposable if
the pair Vt � D.n/ is indecomposable in the following sense: There is no idempotent
endomorphism " of D.n/, other than 0 and the identity, such that ".Vt / � Vt .
Moreover if tu 2 k, and Mt Š Mu, then the pairs .Vt � D.n// and .Vu � D.n//

are isomorphic, in the sense that there is an automorphism ' of D.n/ such that
'.Vt / � Vu. Our goal, then, is to choose ˛ and ˇ so that we get jkj non-isomorphic
indecomposable pairs .Vt � D.n//.

Suppose first that e.R/ D 3. We need to choose a finite birational extension
R � S such that

�R.S/ D 3 and �R

�

mS C R

R

�

� 2 : (5)

If R is analytically unramified, the assumption that R has unbounded (hence
infinite) CM type implies failure of the second Drozd–Roı̆ter condition (iii) in
Theorem 1, and we can take S D R. If R is analytically ramified but contains a field,
the fact that bR is not one of the three exceptional rings of Theorem 4 leads, after
substantial computation, to the right choice for S . (See the proof of [32, Theorem
1.5] or the proofs of Theorems 17.6 and 17.9 in [33].)

Now, with our carefully chosen birational extension R �! S , we have

dimk.B=mB/ D 3 and dimk

�

mB C A

m2B C A

�

� 2 ; (6)

for the Artinian rings A and B in the diagram (2). Put C D mB C A, and choose
elements x; y 2 mB so that their images in mBCA

m2BCA
are linearly independent.

Since C=mC maps onto mBCA
m2BCA

, the images ˛ and ˇ of x and y in C=mC are
linearly independent. By [33, Lemmas 3.10 and 3.11] it suffices to build the requisite
pairs .Vt � .C=mC /.n//, since these will yield, via extension, non-isomorphic
indecomposable pairs .Vt � D.n//. Moreover, with this choice of ˛ and ˇ, we
have the relations

˛2 D ˛ˇ D ˇ2 D 0 : (7)

Returning to the general case e.R/ � 3, we may assume that either dimk.D/ � 4

or else D contains elements ˛ and ˇ satisfying (7). In order to show that there are
enough values of t that produce non-isomorphic indecomposable pairs .Vt � D.n//,
we let t and u be elements of k, not necessarily distinct, and suppose that ' is a
k-endomorphism of D.n/ that carries Vt into Vu. We regard ' as an n � n matrix
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with entries in D. Recalling that Vt is the column space of the matrix ‰t in (3), we
see that the condition 'Vt � Vu yields a 2n � 2n matrix � over k satisfying the
equation

'‰t D ‰u� : (8)

Write � D �

E F
P Q

�

, where E , F , P , and Q are n � n blocks. Then (8) gives the
following two equations:

' D E C ˛P C ˇ.uI C H/P

˛' C ˇ'.tI C H/ D F C ˛Q C ˇ.uI C H/Q : (9)

Substituting the first equation into the second and combining terms, we get the
following equation:

�F C ˛.E � Q/ C ˇ.tE � uQ C EH � HQ/ C .˛ C tˇ/.˛ C uˇ/P

C ˛ˇ.HP C PH/ C ˇ2.HPH C tHP C uPH/ D 0 : (10)

Suppose there exist elements ˛ and ˇ satisfying Equation (7). With this choice
of ˛ and ˇ, (10) collapses:

� F C ˛.E � Q/ C ˇ.tE � uQ C EH � HQ/ D 0 : (11)

Since all capital letters in (11) represent matrices over k and since f1; ˛; ˇg is
linearly independent over k, we get the equations

F D 0 ; E D Q ; and .t � u/E C EH � HE D 0 :

After a bit of fiddling (see [33, Case 3.14] for the details) we reach two conclusions:

(i) If ' is invertible, then t D u. Thus the modules are pairwise non-isomorphic.
(ii) If t D u and ' is idempotent, then ' is either 0 or I . Thus all of the modules

are indecomposable.

The key issue in these computations is that the matrix H is non-derogatory, so that
its commutator in the full matrix ring is just the local ring kŒH � Š kŒX�=.Xn/.

We may therefore assume that dimk.D/ � 4. With a little luck, the algebra
D might contain an element ˛ that does not satisfy a nontrivial quadratic relation
over k. In this case, we choose any element ˇ 2 D so that f1; ˛; ˛2; ˇg is linearly
independent, and we set

G D ft 2 k j f1; ˛; ˇ; .˛ C tˇ/2g is linearly independentg :

This set is nonempty and Zariski-open and hence cofinite in k. For t 2 G, put

Gt D fu 2 G j f1; ˛; ˇ; .˛ C tˇ/.˛ C uˇ/g is linearly independentg :
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Then Gt is cofinite in G for each t 2 G. Moreover, one can check the following,
using the mess (10):

(i) If t and u are distinct elements of G with u 2 Gt , then ' is not an isomorphism.
(ii) If t D u 2 G and ' is idempotent, then ' is either 0 or I .

The desired conclusions follow easily. (See [33, Case 3.16] for the details.)
The remainder of the proof [33, (3.17)–(3.21)] is a careful analysis of the k-

algebras D in which every element is quadratic over k. (The fact that k is infinite
obviates consideration of the last case [33, Case 3.22], where our construction does
not work and Dade’s construction [13] is used to produce one indecomposable of
rank n.)

In studying direct-sum decompositions over one-dimensional local rings, it is
important to know about indecomposable MCM modules of nonconstant rank. (See
[43], where the first author determined exactly how badly Krull–Remak–Schmidt
uniqueness can fail.) If .R;m; k/ is a one-dimensional, analytically unramified local
ring with minimal prime ideals p1; : : : ; ps , we define the rank of a module to be the
s-tuple .r1; : : : ; rs/, where ri is the dimension of .Mpi / as a vector space over the
field Rpi . Crabbe and Saccon [12] have recently proved the following:

Theorem 7. Let .R;m; k/ be an analytically unramified local ring of dimension
one, with minimal prime ideals p1; : : : ; ps . Assume that R=p1 has infinite CM type.
Let r WD .r1; : : : ; rs/ be an arbitrary s-tuple of nonnegative integers with r1 � ri

for each i and with r1 > 0. Then there is an indecomposable MCM R-module with
rank.M / D r , and jkj non-isomorphic ones if k is infinite.

3 Brauer–Thrall I for Hypersurfaces

In Theorem 4 we saw that there are just two plane curve singularities that contradict
BTM1. Here we promote this result to higher-dimensional hypersurfaces, with the
following theorem from [31] (cf. [33, Theorem 17.5]):

Theorem 1. Let k be an algebraically closed field of characteristic different from
two, and let R D kŒŒx0; : : : ; xd ��=.f /, where f is a nonzero element of .x0; : : : ; xd /

and d � 2. Then R has bounded but infinite CM type if and only if R Š
kŒŒx0; : : : ; xd ��=.g C x2

2 C � � � C x2
d /, where g is a polynomial in kŒx0; x1� defining

either an (A1) or (D1) curve singularity.

This theorem and its proof are modeled on the beautiful result of Buchweitz,
Greuel, Knörrer, and Schreyer, where “bounded but infinite” is replaced by “finite,”
and the singularities in the conclusion are the simple or ADE singularities, [33, �4.3].

The “if” direction of Theorem 1 hinges on the following result (see [33, Theorem
17.2]):

Lemma 2 (Knörrer [28]). Let k be a field, and put S D kŒŒx0; : : : ; xd ��. Let f be a
non zero non-unit of S , R D S=.f / and R# D SŒŒz��=.f C z2/.



586 G.J. Leuschke and R. Wiegand

(i) If R# has finite (respectively, bounded) CM type, so has R.
(ii) Assume R has finite (respectively, bounded) CM type and char.k/ ¤ 2. Then

R# has finite (respectively, bounded) CM type. More precisely, if �R.M / � B

for every indecomposable MCM R-module M , then �R# .N / � 2B for every
indecomposable MCM R#-module N .

For the “only if” direction, we need Lemma 2 and the following result due to
Kawasaki [27, Theorem 4.1]:

Lemma 3. Let .R;m/ be a d -dimensional abstract hypersurface (a local ring
whose completion bR has the form S=.f /, where .S; n/ is a regular local ring and
f 2 n). Let n be any positive integer, and let M be the .d C 1/st syzygy of R=mn. If
e.R/ > 2, then M is an indecomposable MCM R-module, and �R.M / � �

dCn�1
d�1

�

.
In particular, if d � 2 then R has unbounded CM type.

If, now, d � 2 and R (as in Theorem 1) has bounded but infinite CM type,
then e.R/ � 2. Using the Weierstraß Preparation Theorem and a change of
variables, we can put f into the form g C x2

d , with g 2 kŒŒx0; : : : ; xd�1��. Then
kŒŒx0; : : : ; xd�1��=.g/ has bounded but infinite CM type, by Lemma 2. We repeat
this process till we get down to dimension one, and then we invoke Theorem 4.

4 Brauer–Thrall I for Excellent Isolated Singularities

The starting point here is the Harada–Sai Lemma [21, Lemmas 11 and 12],
sharpened by Eisenbud and de la Peña in 1998 [17]. By a Harada–Sai sequence,
we mean a sequence

M1

f1�! M2

f2�! � � � fs�1�! Ms

of R-homomorphisms satisfying:

(i) Each Mi is indecomposable of finite length.
(ii) No fi is an isomorphism.

(iii) The composition fs�1fs�2 � � � f1 is nonzero.

Lemma 1 (Harada–Sai Lemma). With the notation above, suppose `R.Mi/ � b

for each i . Then s � 2b � 1.

In fact, Eisenbud and de la Peña [17] characterized the integer sequences that
can occur in the form .`R.M1/; : : : ; `R.Ms// for some Harada–Sai sequence over
some R. In order to apply Harada–Sai to MCM modules, we need to reduce modulo
a suitable system of parameters to get down to the Artinian case. Of course, an
arbitrary system of parameters will not work, since indecomposability and non-
isomorphism will not be preserved. What we need is a faithful system of parameters,
that is, a system of parameters x D x1; : : : ; xd such that xExt1R.M; N / D 0 for
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every MCM R-module M and every finitely generated R-module N . Here are some
useful properties of faithful systems of parameters (where we write x2 for the system
of parameters (x2

1; : : : ; x2
d )):

Lemma 2. Let x be a faithful system of parameters for a CM local ring R.

(i) Let M and N be MCM R-modules, and suppose 'W M=x2M �! N=x2N is an
isomorphism. There is an isomorphism Q'W M �! N such that Q'˝R.R=.x// D
' ˝R .R=.x//.

(ii) Let s W 0 �! N �! E �! M �! 0 be a short exact of MCM R-modules.
Then s splits if and only if s ˝R .R=.x2// splits.

(iii) Assume R is Henselian, and let M be an indecomposable MCM R-module.
Then M=x2M is indecomposable.

Using these properties, one obtains the Harada–Sai Lemma for MCM modules
[33, Theorem 15.19].

Lemma 3. Let .R;m; k/ be a CM, Henselian local ring and x a faithful system of
parameters. Let

M1

f1�! M2

f2�! � � � fs�1�! Ms

be a sequence of R-homomorphisms, with each Mi indecomposable and MCM.
Assume that

.fs�1fs�2 � � � f1/ ˝R .R=.x2// ¤ 0 :

If `R.Mi=xMi / � b for all i , then s � 2b � 1.

Suppose, instead, that we have a bound, say, B , on the multiplicities e.Mi/.
Choosing t such that mt � .x2/, we get a bound b WD Btd on the lengths of
the modules Mi=x2Mi . A walk around the AR quiver of R then proves BTM1. (See
[47, Chap. 6] or [33, �15.3].) Of course, none of this does any good unless the ring
R has a faithful system of parameters. The big theorem here is due to Yoshino [46]
(cf. [33, Theorem 15.8]):

Theorem 4. Let .R;m; k/ be a complete CM local ring containing a field. Assume
k is perfect and that R has an isolated singularity. Then R has a faithful system of
parameters.

Putting all of this stuff together, we obtain the following theorem, proved
independently by Dieterich [15] and Yoshino [46]:

Theorem 5. Let .R;m; k/ be a complete, equicharacteristic local ring with perfect
residue field k. Then R has finite CM type if and only if:

(i) R has bounded CM type.
(ii) R has an isolated singularity.

The main thrust is the “if” direction, the converse being a consequence of
Auslander’s famous theorem [2] that complete CM rings with finite CM type must
be isolated singularities.
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In 2005, Leuschke and Wiegand used ascent and descent techniques to prove the
following generalization [32, Theorem 3.4]:

Theorem 6. Let .R;m; k/ be an excellent, equicharacteristic local ring with
perfect residue field k. Then R has finite CM type if and only if:

(i) R has bounded CM type.
(ii) R has an isolated singularity.

This time, for the “only if” direction, one needs the Huneke–Leuschke version
[23] of Auslander’s theorem, stating that every CM ring of finite CM type has an
isolated singularity.

Without the word “excellent,” Theorem 6 would be false. For example, the ring
CŒŒx; y��=.y2/ is the completion of an integral domain .R;m/, by Lech’s Theorem
[30]. Theorem 4 implies that R has bounded but infinite CM type, and of course R

has an isolated singularity.

5 Brauer–Thrall II

In Sect. 2 we proved a strong form of BTM2 for one-dimensional CM local rings,
assuming only that the ring is either analytically unramified or equicharacteristic.
In higher dimensions, no such general results are known. One problem, already
mentioned, is that there is no general result showing descent of bounded CM type
along flat local homomorphisms. Typically, one restricts to complete (or at least
excellent Henselian) isolated singularities with algebraically closed residue field, in
order to make use of the Auslander–Reiten quiver.

The following result was proved by Dieterich [15, Theorem 20] in 1987, for
characteristics different from two. The case char.k/ D 2 was proved by Popescu
and Roczen [37] in 1991.

Theorem 1. Let R D kŒŒx0; : : : ; xd ��=.f / be a hypersurface isolated singularity,
with k algebraically closed. If R has infinite CM type, then R has strictly unbounded
CM type.

Using Elkik’s theorem [18] on modules extended from the Henselization, one
can generalize this result to excellent Henselian rings (cf. [36]):

Corollary 2. Let .R;m; k/ be an excellent, equicharacteristic, Henselian local ring
whose completion is a hypersurface. Assume that R has an isolated singularity
and that k is algebraically closed. If R has infinite CM type, then R has strictly
unbounded CM type. (In particular, both BTM1 and BTM2 hold for these rings.)

Excellence guarantees that the completion bR is an isolated singularity too.
(In fact, all one needs is that the inclusion R �! bR be a regular homomorphism
(see [33, Proposition 10.9]).) If N is an MCM bR-module, then N is free on the
punctured spectrum of bR and hence, by [18], is extended from an R-module.
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This means that the map M 7! cM , from MCM R-modules to MCM bR-modules,
is bijective on isomorphism classes. Since eR.M / D e

bR
.cM/, the corollary follows

from the theorem.
The main thing we want to talk about in this section is Smalø’s remarkable result

[40] that produces, from an infinite family of indecomposable MCM modules of
one fixed multiplicity n, an integer n0 > n and an infinite family of indecomposable
MCM modules of multiplicity n0. In principle, this ought to make proofs of BTM2
lots easier. We will give two such applications and also point out some limitations
to this approach. Here is Smalø’s theorem, proved in 1980 for Artin algebras:

Theorem 3. Let .R;m; k/ be a complete CM-isolated singularity with k alge-
braically closed. Suppose fMigi2I is an infinite family of pairwise non-isomorphic
indecomposable MCM R-modules, all of the same multiplicity n. There exist an
integer n0 > n, a subset J of I with jJ j D jI j, and a family fNj gj 2J of pairwise
non-isomorphic indecomposable MCM R-modules, each of multiplicity n0.

The basic ideas of Smalø’s proof survive transplantation to the MCM context
remarkably well. The proof uses the Harada–Sai Lemma 3 as well as a couple
of lemmas that control multiplicity as one wanders around the AR quiver. One of
these [4, Lemma 4.2.7] bounds the growth of the Betti numbers ˇi .M / of a MCM
module M over a CM local ring of multiplicity e: ˇiC1 � .e � 1/ˇi for all i .
Another gives a linear bound between the multiplicities of the source and target of
an irreducible homomorphism: With R as in the theorem, there is a positive constant
c such that eR.M / � ceR.N / � c2eR.M / whenever M �! N is an irreducible
homomorphism of indecomposable MCM R-modules. We refer the reader to [33,
Sect. 15.4] for the details.

Here is an obvious corollary of Smalø’s theorem:

Corollary 4. Let .R;m; k/ be a complete CM-isolated singularity, with k alge-
braically closed. If R has uncountable CM type, then there is an sequence n1 <

n2 < n3 < : : : of positive integers such that R has, for each i , uncountably many
non-isomorphic indecomposable MCM modules of multiplicity ni .

As another application, one can give a proof of BTM2 in dimension one that is
much less computational than the one given in Sect. 2, at least in an important special
case. Suppose that .R;m; k/ is a complete, reduced local ring of dimension one, and
assume R has infinite CM type. Then the Drozd–Roı̆ter conditions ((ii) and (iii) of
Theorem 1) fail. It is now a comparatively simple matter (see [42, �4]) to show that
R has an infinite family of pairwise non-isomorphic ideals. We decompose each of
these ideals into indecomposable summands, noting that e.R/ bounds the number
of summands of each ideal. This yields infinitely many pairwise non-isomorphic
indecomposable MCM modules, each with multiplicity bounded by e.R/, and hence
an infinite subfamily consisting of modules of fixed multiplicity. Now Smalø’s
theorem shows that BTM2 holds for these rings.

Do not be misled by this example. In higher dimensions there is no hope of
starting the inductive hypothesis with modules of rank one, in view of the following
theorem due to Bruns [7, Corollary 2]:
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Theorem 5. Let A be any commutative Noetherian ring and M a finitely generated
R-module of constant rank r . Let N be a second syzygy of M , and let s be the
(constant) rank of N . If M is not free, then the codimension of its non-free locus is
at most r C s C 1.

Corollary 6. Let .R;m/ be a d -dimensional isolated singularity whose completion
is a hypersurface. Let M be a non-free MCM R-module of constant rank r . Then
r � 1

2
.d � 1/.

This bound is probably much too low. In fact, Buchweitz, Greuel, and Schreyer
[8] conjecture that r � 2d�1. Nonetheless, the bound given in the corollary rules
out MCM ideals once the dimension exceeds three.

6 Open Questions

Here we list a few open questions, some of which have already been mentioned at
least implicitly.

Question 6.1. Are there any counterexamples to BTM2? Of course this is the same
as asking whether BTM2 is true, but let us not even assume that .R;m; k/ is CM.
What if dim.R/ D 1? What if dim.R/ D 1 and R is not CM? The list goes on. . . .

Question 6.2. Can one delete the assumption, in Theorem 4, that k be infinite?

Question 6.3. If .R;m/ is a local CM ring whose completion bR has bounded CM
type, must R have bounded CM type? More generally, let R �! S be a flat local
homomorphism with CM closed fiber. If S has bounded CM type, must R have
bounded CM type?

Question 6.4. Can one delete the assumption, in Theorem 6, that k be perfect?

Question 6.5. Can we improve Corollary 6, getting better lower bounds for the
rank, or multiplicity, of a non-free MCM module?
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Tight Closure’s Failure to Localize -
a Self-Contained Exposition

Paul Monsky

1 Introduction: Brenner’s Insight

Holger Brenner and I have given a negative solution to the localization problem for
tight closure [1]. The argument involves the Hilbert-Kunz theory of plane curves
(and in particular [2]) together with results of Brenner, Hochster, and Huneke on
test elements and local cohomology.

But most of this machinery, useful as it is for understanding our counterexample,
may be dispensed with; in this chapter I give a treatment of the example, using only
linear algebra, material from an introductory abstract algebra course, and a little
local cohomology developed ab initio. The reader doesn’t need to know anything
about Hilbert-Kunz theory, homological algebra, vector bundles, or tight closure.
Though the arguments are largely drawn from [1,2], everything is proved here from
scratch.

Definition 1. If A is a Noetherian domain of characteristic p > 0, q is a power of
p, and I is an ideal of A, I Œq� is the ideal generated by all vq , v in I .

Definition 2. u is in the tight closure, I �, of I if for some d ¤ 0, duq 2 I Œq� for
all q.

Suppose now that S � A is multiplicatively closed, 0 62 S . Then S�1I is an ideal of
S�1A, and we can form the ideal .S�1I /�. The localization problem asks whether
.S�1I /� is always equal to S�1.I /�. In other words, suppose that f 2 .S�1I /�.
Must there exist an s in S such that sf 2 I �? After giving positive solutions to
the localization problem in some special cases, Brenner realized that the study of
a 1-parameter family would give a negative answer provided the family satisfied
a certain counter-intuitive condition. I’ll explain this insight of Brenner’s in the
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context of a 1-parameter family of projective plane curves. Let L be algebraically
closed of characteristic p, and let P and P1 in LŒx; y; z� be homogeneous of the
same degree. For ˛ in L set g˛ D P C ˛P1 and R˛ D LŒx; y; z�=g˛ . Let Rgen be
the ring L.t/Œx; y; z�=.P C tP1/. Fix f in LŒx; y; z� and an ideal I in LŒx; y; z�.
Now I generates ideals in each R˛ and in Rgen. Abusing language we call all these
ideals I .

Theorem 3 (Brenner). Suppose that:

(a) f 2 I � in Rgen.
(b) There exist infinitely many ˛ in L for which R˛ is a domain and f 62 I � in R˛ .

Then the localization problem has a negative answer.

Proof. Take A D LŒx; y; z; t �=.P C tP1/, and let S � A be LŒt� � f0g. Note
that S�1A and A=.t � ˛/ identify with Rgen and R˛, respectively. I � LŒx; y; z�
generates an ideal in A that we again call I . Since Rgen identifies with S�1A, we
see from (a) that f 2 .S�1I /� in S�1A. Suppose however that sf 2 I � for some
s D s.t/. Then for some d ¤ 0 in A, we have dsqf q 2 I Œq� for all q. Now by (b)
there are infinitely many ˛ in L with A=.t � ˛/ a domain and f 62 I � in A=.t � ˛/.
The corresponding ideals, .t � ˛/, are distinct height 1 primes in A, and so cannot
all contain ds. Fix one such t � ˛ with ds 62 .t � ˛/. If Nd is the image of d in
A=.t � ˛/ D R˛ , then Nds.˛/qf q 2 I Œq� in R˛ for all q. But Nd ¤ 0 and s.˛/ is a
nonzero element of L. We conclude that Ndf q 2 I Œq� in R˛ for all q, contradicting
the choice of ˛. ut

How is a 1-parameter family satisfying (a) and (b) to be found? In [2], I had
studied a 1-parameter linear family of plane quartics in characteristic 2, obtaining
counter-intuitive results suggestive of (a) and (b). (This was done in ignorance of
tight closure; my goal was to calculate the “Hilbert-Kunz multiplicities” of the
curves in this family.) It turned out that the matrix calculations in [2], slightly
extended and combined with a suitable “test element theorem,” were exactly what
was needed to produce the example. In the following three sections I describe these
calculations. The final two sections use some simple algebra to complete the proof.

Throughout, L will be a field of characteristic 2 and P the element z4 C xyz2 C
.x3 Cy3/z of LŒx; y; z�. If ˛ 2 L, ˛ ¤ 0, g˛ D P C˛x2y2. It’s easy to see that g˛ is
irreducible, so that R˛ D LŒx; y; z�=g˛ is a domain. Fix a power, Q, of 2. Let O be
the graded L-algebra LŒx; y; z�=.x4Q; y4Q; z4Q/. Multiplication by g˛ gives a map
Oj ! Oj C4 for each j . The key to establishing (a) and (b) of Theorem 3 is the close
study of the kernel N6Q�5 of g˛ W O6Q�5 ! O6Q�1, both when ˛ is transcendental
over Z=2 and Q � 2 and when ˛ is algebraic over Z=2 and Q is a certain power of
2 attached to ˛. When Q � 2, O6Q�5 and O6Q�1 have dimensions 12Q2 � 12 and
12Q2, and one might expect N6Q�5 D .0/ for every choice of Q. This is true for
transcendental ˛ (see Theorem 13) but false for algebraic ˛ (Corollary 6, with Q as
in Definition 4).
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2 Some Identities Involving P

We begin by defining some elements of Z=2Œx; y�.

Definition 1. If r is a power of 2, then:

(1) Ar (resp. Br ) is
P

xi yj , the sum extending over all pairs .i; j / with i �
j .3/ and i C j D 4r � 2 (resp. 4r � 1).

(2) C1 D 1 and C2r D A2
r .

Each monomial xi yj appearing in A2r has i � j .2/. Those monomials with i

(and j ) even sum to B2
r , while those with i (and j ) odd sum to xyA2

r . So A2r D
B2

r C xyA2
r . A similar argument shows that B2r D .x3 C y3/A2

r .

Lemma 2. The following identities hold in Z=2Œx; y; z�: When Q is a power of 2,
then z4Q D AQz2 C BQz CP

rsDQ.CrP /s .

Proof. Since A1 D xy, B1 D x3 C y3, and C1 D 1, the case Q D 1 follows
from the definition of P . In general we argue by induction, squaring the identity
for Q, replacing z4 by xyz2 C .x3 C y3/z C P , and using the identities following
Definition 1. ut

Now let L, Q, and O D LŒx; y; z�=.x4Q; y4Q; z4Q/ be as in the last section.

Definition 3. RQ is the element AQz2 C BQz of O4Q, while � in O6Q�1 isP
xi yj zk, the sum extending over all triples .i; j; k/ with i C j C k D 6Q � 1,

i 6� j .3/, and k D 1 or 2.

Lemma 4. Suppose i C j D 2Q � 1. Then, in O , .xi yj C xj yi /RQ is 0 if i �
j .3/ and is � otherwise.

Proof. Definition 1 shows that .x3Cy3/AQ and .x3Cy3/BQ both lie in .x4Q; y4Q/.
So x3RQ D y3RQ in O . It follows immediately that when i C j D 2Q � 1 then
xi yj RQ only depends on i mod 3. This gives the first part of Lemma 4 and shows
that when i 6� j .3/, .xi yj C xj yi /RQ D .xQ�1yQ C xQyQ�1/RQ. But this
last element is easily seen to be �. ut
Theorem 5.

(1) In O , RQ D P
rsDQ.CrP /s .

(2) Suppose that i C j D 2Q � 1. Then in O , .xi yj C xj yi /P Q D "� C .xi yj C
xj yi /

P
rsDQ
s¤Q

.CrP /s , where " is 0 if i � j .3/ and is 1 otherwise.

Proof. Combining Lemma 2 with the definition of RQ, noting that z4Q D 0 in O ,
we get (1). Since C1 D 1, P Q D RQ CPrsDQ

s¤Q

.CrP /s . Multiplying by xi yj Cxj yi

and applying Lemma 4 gives (2). ut
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Lemma 6. Suppose i C j D 2Q � 1. The coefficient of x4Q�2yQ�2 in .xi yj C
xj yi /.x3 C y3/Q�1 is 0 if i 6� j .3/ and is 1 otherwise.

Proof. The first assertion is clear. For the second note that the coefficient in question
is the sum of the coefficients of x4Q�2�i yQ�2�j and x4Q�2�j yQ�2�i in .x3 C
y3/Q�1 D x3Q�3 Cx3Q�6y3 C� � �Cy3Q�3. The first of these coefficients is 1 when
i is both � Q C 1 and � j .3/, while the second is 1 when j is both � Q C 1

and � i .3/. Since precisely one of i and j is � Q C 1 (they cannot be Q and
Q � 1) we get the lemma. ut

3 The Spaces X and Y : The Case of Transcendental ˛

L, P , and g˛ are as in the final paragraph of the introduction. Q � 2 is a power
of 2, while O is the graded L-algebra LŒx; y; z�=.x4Q; y4Q; z4Q/, and N6Q�5 is the
kernel of g˛ W O6Q�5 ! O6Q�1.

Definition 1.

(1) Œi; j � D xi yj C xj yi .
(2) X � O6Q�5 is spanned by the Œi; j �P k with i C j C 4k D 6Q � 5 and

k D 0; 1; : : : ; Q � 1.
(3) Y � O6Q�1 is spanned by the Œi; j �P k with i C j C 4k D 6Q � 1 and

k D 0; 1; : : : ; Q � 1.

Theorem 2. Let .Y; �/ be the subspace of O6Q�1 spanned by Y and the element �

of Definition 3. Then g˛ � X � .Y; �/.

Proof. Evidently .x2y2/ � X � Y . It remains to show that P � X � .Y; �/. This will
follow if we can prove that P � Œi; j � � P Q�1 2 .Y; �/ whenever i C j D 2Q � 1.
By Theorem 5 it suffices to show that each Œi; j �C s

r P s is in Y when rs D Q and
s < Q. This is easy: Œi; j � � C s

r is a symmetric form in x and y of (odd) degree
.2Q � 1/ C s.4r � 4/ D 6Q � 1 � 4s. ut
The Œi; j �P k with i C j C 4k D 6Q � 5, i; j < 4Q, k < Q, and i odd evidently
span X . Noting that each such element has the form .xi yj C xj yi /z4kC terms of
lower degree in z, with i odd and j even, we see that these elements are a basis
of X . One constructs a basis of Y similarly and finds that dim X D dim Y ; both

dimensions are in fact 3Q2

2
. A basis of .Y; �/ is given by the Œi; j �P k with i C j C

4k D 6Q � 1, i; j < 4Q, k < Q, and i odd, together with �.
Note that the kernel of the map g˛ W X ! .Y; �/ of Theorem 2 is just N6Q�5\X .

We’ll get a better understanding of this space by replacing X and .Y; �/ by certain
quotients.

Definition 3. D is the graded L-algebra LŒx; y�=.x4Q; y4Q/. For 1 � i � Q, let
Ei be the element Œ2i � 1; 2Q � 2i� of D2Q�1, and Fi be the element x2Qy2QEi

of D6Q�1. Let D
sym
2Q�1 and D

sym
6Q�1 be the Q-dimensional subspaces of D2Q�1 and

D6Q�1 spanned by the Ei and Fi , respectively.
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Definition 4. X ! D
sym
2Q�1 is the map taking Œi; j �P k to 0 when k < Q � 1 and to

Œi; j � when k D Q � 1 (in which case i C j D 2Q � 1).

Definition 5. Y ! D
sym
6Q�1 ˚ L takes

Œi; j �P k to
�
Œi; j �.˛x2y2/k; 0

�

� to .0; 1/:

Using the bases of X and .Y; �/ we’ve constructed, we see that these L-linear maps
are well defined. They are evidently onto.

Lemma 6. Let X0 and Y0 be the kernels of the maps of Definitions 4 and 5. Then
g˛ maps X0 bijectively to Y0.

Proof. Our description of a basis of X shows that X0 is spanned by the Œi; j �P k

with i C j C 4k D 6Q � 5 and k D 0; 1; : : : ; Q � 2. So a nonzero element, u, of
X0 has the form A.x; y/zkC terms of lower degree in z, where A.x; y/ ¤ 0 in D

and k < 4Q � 4. Then g˛u D A.x; y/zkC4 C � � � ¤ 0; we conclude that g˛ maps
X0 injectively. If k � Q � 2, then g˛Œi; j � � P k D Œi; j �P kC1 C ˛Œi C 2; j C 2�P k .
Both terms on the right map to

�
Œi; j �.˛x2y2/kC1; 0

�
under the map of Definition 5,

and we conclude that g˛.X0/ � Y0. Note also that the maps of Definitions 4 and 5
are onto, that dim X D dim Y , and that dim D

sym
2Q�1 D dim D

sym
6Q�1 D Q. This tells

us that dim X0 D dim Y0, so that g˛ � X0 D Y0. ut
In view of Lemma 6, .N6Q�5/\X identifies with the kernel of the map D

sym
2Q�1 !

D
sym
6Q�1 ˚ L induced by g˛ W X ! .Y; �/. With respect to the bases E1; : : : ; EQ

of D
sym
2Q�1 and F1; : : : ; FQ; 1 of D

sym
6Q�1 ˚ L, the matrix of this induced map has the

form
�

M
b

�
where M is a Q by Q matrix and b D .b1; : : : ; bQ/ is a row vector. We

shall use Theorem 5 to write down M and b.

Lemma 7. The map D
sym
2Q�1 ! D

sym
6Q�1 ˚ L induced by g˛ W X ! .Y; �/ takes Ej

to
�
Ej �

�P
rsDQ ˛sC s

r x2sy2s
�

; bj

�
, where bj D 0 if 2j �1 � 2Q�2j .3/, and

is 1 otherwise.

Proof. Ej pulls back to Ej � P Q�1 in X . Multiplication by g˛ takes this to Ej �
.˛x2y2P Q�1 C P Q/. By Theorem 5 this is

bj � C Ej

�

˛x2y2P Q�1 CP
rsDQ
s¤Q

.CrP /s

�

:

Under the map of Definition 5, the first term above goes to .0; bj /, while the second
goes to Ej �PrsDQ.Cr˛x2y2/s , giving the lemma. ut
Theorem 8. Situation as in Lemma 7. The image of Ej is

�P
˛sFi ; bj

�
where the

sum extends over all pairs .s; i/ with s=Q and i � j .3s/.
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Proof. Using the definitions of Ar and Cr we find that Crx
2y2 DP

x2rC2ky2r�2k ,
the sum extending over all k in .�r; r/ with k � 0 .3/. So C s

r x2sy2s DP
x2QC2l y2Q�2l , the sum extending over all l in .�Q; Q/ with l � 0 .3s/. Then

Ej .C s
r x2sy2s/ is

P
Fi , the sum extending over all i � j .3s/, and Lemma 7

gives the result. ut
Corollary 9. Let bi D 0 if 2i � 1 � 2Q � 2i .3/ and bi D 1 otherwise. Then
the matrix of the induced map D

sym
2Q�1 ! D

sym
6Q�1 ˚ L with respect to the bases

introduced earlier is
�

M
b.Q/

�
where mi;j D P

˛s , the sum extending over all s=Q

with i � j .3s/, and b.Q/ D .b1; : : : ; bQ/.

Corollary 10. Suppose that ˛ 2 L is transcendental over Z=2. Then
.N6Q�5/ \ X D .0/.

Proof. The matrix M of Corollary 9 has entries in Z=2Œ˛�. Each mi;i is a degree Q

polynomial in ˛ while the other entries have degree < Q. Since ˛ is transcendental

over Z=2, det M ¤ 0,
�

M
b.Q/

�
has rank Q and D

sym
2Q�1 ! D

sym
6Q�1 ˚L is 1–1. But the

kernel of this map identifies with .N6Q�5/ \ X . ut
For the rest of this section we assume ˛ transcendental over Z=2. We’ll use

Corollary 10 to show that N6Q�5 is .0/. Any u ¤ 0 in O may be written as A.x; y/ �
zrC lower degree terms in z, where A.x; y/ ¤ 0 in D, and r < 4Q. We say that u
has z-degree r .

Lemma 11. Suppose that u 2 O6Q�5 is fixed by .x; y/ ! .y; x/ and has z-degree
� 4Q � 4. Then if g˛u 2 g˛X , u 2 X .

Proof. We argue by induction on the z-degree of u. If the z-degree is 0, then u, being
fixed by .x; y/ ! .y; x/, is a linear combination of xi yj C xj yi with i C j D
6Q � 5 and so is in X . If u D A � z4k C � � � , with k > 0, let v D u C AP k . Then
the z-degree of v is < 4k, and g˛v 2 g˛X . By induction, v 2 X , and so u 2 X .
Suppose finally that u D A � zr C � � � with r 6� 0 .4/ and r < 4Q � 4. Then
g˛u D A � zrC4 C � � � has z-degree that is neither divisible by 4 nor equal to 2.
As g˛u 2 g˛X � .Y; �/, our description given earlier of a basis of .Y; �/ shows
this to be impossible. ut
Lemma 12. If u 2 N6Q�5 has z-degree � 4Q � 4 then u D 0.

Proof. The linear automorphism .x; y; z/ ! .y; x; z/ of LŒx; y; z� fixes g˛ . So the
automorphism of O that it induces stabilizes N6Q�5. Let Nu be the image of u under
this automorphism. Lemma 11 applied to u C Nu shows that u C Nu 2 X . Since
u C Nu 2 N6Q�5, Corollary 10 shows that u D Nu. Applying Lemma 11 to u we find
that u 2 X . Another application of Corollary 10 completes the proof. ut
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Theorem 13. N6Q�5 D .0/.

Proof. Replacing L by a larger field, if necessary, we may assume that L contains
some ! with !2 C! C1 D 0. We make use of 3 linear automorphisms of LŒx; y; z�:

� W .x; y; z/ ! .x; y; z C x C y/:

� W .x; y; z/ ! .x; y; z C !x C !2y/:

� W .x; y; z/ ! .x; y; z C !2x C !y/:

Since P D z.z C x C y/.z C !x C !2y/.z C !2x C !y/, these automorphisms fix
P as well as x and y. So they fix g˛ , and the automorphisms of O that they induce
stabilize N6Q�5.

Suppose now that u D Azr C � � � is an element of N6Q�5 of z-degree r .
By Lemma 12, r D 4Q � 3, 4Q � 2, or 4Q � 1. Suppose first that r D 4Q � 3.
Then u� C u D A.x C y/ � z4Q�4 C � � � . Since A is a nonzero element of D2Q�2,
A � .x C y/ ¤ 0 in D. This contradicts Lemma 12 applied to the element u� C u of
N6Q�5. Suppose next that u D Az4Q�2 C Bz4Q�3 C � � � has z-degree 4Q � 2. Then,

u� C u D �
A.!x C !2y/2 C B.!x C !2y/

� � z4Q�4 C � � �
u� C u D �

A.!2x C !y/2 C B.!2x C !y/
� � z4Q�4 C � � �

Lemma 12 applied to u� C u and u� C u shows that both are 0. This immediately
tells us that .x3 C y3/ � A is 0 in D. Since A is a nonzero element of D2Q�3 this
is impossible. Finally if u D Az4Q�1 C � � � has z-degree 4Q � 1, then u� C u D
A.x C y/z4Q�2 C � � � , and we get an element of N6Q�5 of z-degree 4Q � 2; we’ve
shown this can’t happen. ut
Corollary 14. Let R˛ D LŒx; y; z�=g˛ where ˛ 2 L is transcendental over Z=2.
Let f be any degree 6 element of R˛ and I be the ideal .x4; y4; z4/ of R˛. Then
xyf Q 2 I ŒQ� for all Q. Consequently, f 2 I � in R˛.

Proof. We may assume Q > 1. O12Q�3 is 1-dimensional, spanned by .xyz/4Q�1.
If i C j D 12Q � 3, multiplication gives a bilinear pairing Oi � Oj ! L, and one
sees immediately that the pairing is nondegenerate. Multiplication by g˛ gives maps
O6Q�5 ! O6Q�1 and O6Q�2 ! O6QC2 that are dual under the above pairings.
By Theorem 13 the first of these maps is 1–1. So the second is onto, and in particular
xyf Q lies in its image. In other words, xyf Q 2 .x4Q; y4Q; z4Q; g˛/ in LŒx; y; z�.
Passing to R˛ we get the result. ut
Theorem 15. Let L be an algebraically closed field of characteristic 2, while P D
z4 C xyz2 C .x3 C y3/z and P1 D x2y2. Let Rgen be as in Sect. 1. Let f be any
degree 6 element of LŒx; y; z� and I be the ideal .x4; y4; z4/ of LŒx; y; z�. Then, in
the language of Theorem 3, f 2 I � in Rgen.

Proof. Rgen D L.t/Œx; y; z�=gt , and we use Corollary 14 with L replaced by L.t/.
ut
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4 Matrix Calculations: The Case of Algebraic ˛

Definition 1. Suppose Q � 2 is a power of 2. Let M D jmi;j j be a matrix with
entries in L, where 1 � i; j � Q. We say that M is a “special Q-matrix” if the
following hold:

(1) mi;j D 0 if i 6� j .3/ or i D j .
(2) If i � j .3/ and i ¤ j , then mi;j ¤ 0 and depends only on ord2.i � j /.

Theorem 2. A special Q-matrix has rank Q � 2.

Proof. We argue by induction on Q. When Q D 2, M D
�

0 0
0 0

�

. When Q � 4,

write M as
 

M1 M2 M3
M4 N M5
M6 M7 M8

!

;

where M1 and M8 are Q

4
by Q

4
matrices. Using the fact that M is a special Q-matrix

we find that M1 D M8, M2 D M7, M3 D M6, and M4 D M5, that M1 C M3 is a
nonzero scalar matrix, and that N is a special Q

2
-matrix. So we may write M as

 
M1 D M3
E N E
M3 D M1

!

:

Making elementary row and column operations we get
 

M1 D M1 C M3
E N 0

M1 C M3 0 0

!

:

Since M1 C M3 is a nonzero scalar, further elementary operations yield
 

0 0 M1 C M3
0 N 0

M1 C M3 0 0

!

:

Then rank M D rank N C 2
�

Q

4

�
which is Q � 2 by the induction assumption. ut

Now let b.Q/ D .b1; : : : ; bQ/ be the row vector of Corollary 9; bi D 0 if 2i�1 �
2Q � 2i .3/ and is 1 otherwise. Let b�.Q/ D .b�

1 ; : : : ; b�
Q/ be defined as follows:

b�
i D 1 if 2i � 1 � 2Q � 2i .3/ and is 0 otherwise. In other words, b�

i D 1 C bi .
We need a modification of Theorem 2.

Theorem 3. Let M be a special Q-matrix. Then the Q C 1 by Q and Q C 2 by Q

matrices
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M

b.Q/

!

and

0

B
B
@

M

b.Q/

b�.Q/

1

C
C
A

have rank Q � 1 and Q, respectively.

Proof. Again we argue by induction on Q. When Q D 2, b.Q/ D .1; 0/ and
b�.Q/ D .0; 1/. Suppose Q � 4. Write b.Q/ as a concatenation .F0jF1jF2/ where
F0 and F2 have length Q=4. Since biC3 D bi , F0 D F2, and one verifies that

F1 D b
�

Q

2

�
. As in the proof of Theorem 2 we may write

 
M

b.Q/

!

as

0

B
@

M1 D M3
E N E
M3 D M1

F b
�

Q

2

�
F

1

C
A :

The same elementary row and column operations that were performed in the proof
of Theorem 2 take this matrix to

0

B
@

0 0 M1 C M3
0 N 0

M1 C M3 0 0
0 b

�
Q

2

�
0

1

C
A :

The rank of this matrix is

rank

0

@
N

b
�

Q

2

�

1

AC 2 .Q=4/ ;

which is Q � 1 by the induction assumption. The calculation of the rank of

0

B
B
@

M

b.Q/

b�.Q/

1

C
C
A

is entirely similar. ut
Suppose now that ˛ 2 L� is algebraic over Z=2. We attach to ˛ a Q as follows:

Definition 4. Write ˛ D �2 C � and let m D m.˛/ be the degree of � over Z=2.
Then Q D 2m�1. (Since ˛ ¤ 0, � 62 Z=2, and consequently Q � 2.)

Theorem 5. Let Q be as in Definition 4. Then the matrix M of Corollary 9 is a
special Q-matrix.
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Proof. mi;i D P
s=Q ˛s D P

s=Q.�s C �2s/ D � C �2m
. As the degree of � over

Z=2 is m, each mi;i is 0. When i 6� j .3/ there are no s such that i � j .3s/,
and so mi;j D 0. When i � j .3/, i ¤ j , let l D 1 C ord2.i � j /. Then

mi;j D P
s=2l�1 ˛s D � C �2l

. Now ord2.i � j / < ord2.Q/, and so l < m. Thus
mi;j ¤ 0 and only depends on l . ut
Corollary 6. In the situation of Theorem 5, .N6Q�5/\X is a 1-dimensional space.

Proof. Theorems 3 and 5 show that the matrix
�

M

b.Q/

�

of Corollary 9 has rank Q � 1. So the induced map D
sym
2Q�1 ! D

sym
6Q�1 ˚ L of

the last section has 1-dimensional kernel. As we’ve seen, this kernel identifies with
.N6Q�5/ \ X . ut

Now let u be a generator of .N6Q�5/ \ X . Our next goal is to show that the
coefficient of x4Q�2yQ�2zQ�1 in u is nonzero.

Lemma 7. If u is in X0, no monomial appearing in u can have the exponent of z
equal to Q � 1.

Proof. It’s enough to show that no monomial appearing in P k when 0 � k �
Q � 2 can have the exponent of z equal to Q � 1. Write k as

Pl
1 bi where the bi

are distinct powers of 2. Since k < Q � 1, l is at most m � 2. Now P k is the

product of
�
z4 C xyz2 C .x3 C y3/z

�bi . This is a sum of terms, each of the form

(an element of Z=2Œx; y�) � z
P

ai bi with each ai D 1, 2, or 4. So if the result fails,
Q � 1 is a sum of m � 2 or fewer powers of 2. Then Q � 1 is a sum of m � 2 or
fewer distinct powers of 2, which is impossible. ut
Definition 8. If v 2 D

sym
2Q�1, then �.v/ is the coefficient of x4Q�2yQ�2zQ�1 in a

pullback of v to X under the map of Definition 4; by Lemma 7 this is independent
of the choice of the pullback.

Now a pullback of Ei to X is Ei P
Q�1 D Ei

�
.x3 C y3/z C xyz2 C z4

�Q�1
.

So �.Ei/ is the coefficient of x4Q�2yQ�2 in Ei .x
3 C y3/Q�1. By Lemma 6 this is

just the b�
i defined after Theorem 2.

Theorem 9. If u is a generator of .N6Q�5/ \ X , the coefficient of
x4Q�2yQ�2zQ�1 in u is ¤ 0.

Proof. Combining the map D
sym
2Q�1 ! D

sym
6Q�1 ˚ L induced by X ! .Y; �/ with �,

we get a map D
sym
2Q�1 ! .D

sym
6Q�1 ˚ L/ ˚ L. The discussion above, combined with

Theorem 5, shows that with respect to the obvious bases the matrix of this map is
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0

B
B
@

M

b.Q/

b�.Q/

1

C
C
A ;

where M is a special Q-matrix. By Theorem 3 this matrix has rank Q; consequently
D

sym
2Q�1 ! .D

sym
6Q�1 ˚ L/ ˚ L is 1–1. The image, Nu, of u in D

sym
2Q�1 is ¤ 0. Since the

image of Nu in D
sym
6Q�1 ˚ L is 0, �.Nu/ ¤ 0, giving the theorem. ut

Theorem 10. Suppose ˛ ¤ 0 is algebraic over Z=2, that R˛ D LŒx; y; z�=g˛ , that
f D y3z3, and that I D .x4; y4; z4/. Then there is a Q such that xyf Q 62 I ŒQ�

in R˛ .

Proof. Take Q as in Definition 4. Let u be as in Theorem 9. Then the coefficient
of .xyz/4Q�1 in uxyf Q is the coefficient of x4Q�2yQ�2zQ�1 in u, which is ¤ 0 by
Theorem 9. So uxyf Q ¤ 0 in O . Since g˛u D 0, xyf Q 62 g˛O . In other words,
xyf Q 62 .x4Q; y4Q; z4Q; g˛/ in LŒx; y; z�. Now pass to R˛. ut

5 Test Elements

Definition 1. c ¤ 0 in R˛ is a “test element” if whenever J is an ideal of R˛ and
h 2 J �, then chq 2 J Œq� for all q.

Remark 1. Suppose that for each ˛ ¤ 0, xy is a test element in R˛. Then the
localization problem has a negative solution. To see this, take L algebraically closed
of characteristic 2. Let P D z4 C xyz2 C .x3 C y3/z, P1 D x2y2, I D .x4; y4; z4/,
and f D y3z3. We saw in Sect. 3 that f 2 I � in Rgen. If ˛ ¤ 0 in L is algebraic
over Z=2 then R˛ is a domain, and Theorem 10 shows that xyf Q 62 I ŒQ� for some
Q. Since xy is a test element in R˛ , f 62 I � in R˛ . As there are infinitely many
such ˛, Brenner’s Theorem 3 gives the result.

Remark 2. In fact, xy is a test element in each R˛ . Since each g˛ , ˛ ¤ 0, defines a
smooth plane quartic, this is a special case of the following deep result of Brenner.
Let A D LŒx; y; z�=g where char L D p and g is a form of degree r defining a
smooth projective plane curve. Let J be an ideal of A and h 2 J �. Then if c 2 A is
homogeneous of degree > r � 3 C r�3

p
, chq 2 J Œq� for all q.

But the proof of this result is deep, using homological algebra, vector bundle theory,
and an ampleness criterion of Hartshorne and Mumford. It can’t be a part of any
short self-contained treatment of our counterexample, and in this exposition, I’ll
take another route. For clarity write � for the image of z in A D R˛ D LŒx; y; z�=g˛ ,
so that A D LŒx; y; ��.
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Lemma 2. For each power q of 2 and each j , .x3 C y3/q�1�j 2 LŒx; y; �q �.

Proof. q D 1 is clear. If q D 2, we may assume j D 1. But .x3 C y3/� D
˛x2y2 C xy�2 C �4, giving the result. Taking qth powers we find that .x3 C y3/q �
.�q/j 2 LŒx; y; �2q �. We can now prove the lemma by induction on q. Evidently
.x3 C y3/2q�1 � �j D .x3 C y3/q � �.x3 C y3/q�1�j

� 2 .x3 C y3/q � LŒx; y; �q �.
But each .x3 C y3/q � .�q/j is in LŒx; y; �2q �. ut
Now assume that L is algebraically closed. The arguments that follow are made
working in an algebraic closure of the field L.x; y; �/.

Lemma 3. Suppose d ¤ 0 is in LŒx; y�. Then for each large power, r , of 2 there is

an A-linear map 	 W LŒx
1
r ; y

1
r ; �

1
r � ! A taking d

1
r to x3 C y3.

Proof. .x3 C y3/r � �j 2 LŒx; y; �r �. So .x3 C y3/�
j
r 2 LŒx

1
r ; y

1
r ; ��, and

.x3 C y3/LŒx
1
r ; y

1
r ; �

1
r � � LŒx

1
r ; y

1
r ; ��. Now the x

i
r y

j
r , i and j < r , form a

basis of LŒx
1
r ; y

1
r � over LŒx; y�. Since � is separable over LŒx; y� they are also a

basis of LŒx
1
r ; y

1
r ; �� over LŒx; y; �� (and of L.x

1
r ; y

1
r ; �

1
r / D L.x

1
r ; y

1
r ; �/ over

L.x; y; �/). We may assume that some monomial appearing in d has coefficient

1. Since r is large, d
1
r is an L-linear combination of our basis elements x

i
r y

j
r ;

also one of the projection maps p W L.x
1
r ; y

1
r ; �/ ! L.x; y; �/ takes d

1
r to

1. Let 	 be the map u ! p
�
.x3 C y3/u

�
. Then 	.d

1
r / D x3 C y3. Since

.x3 C y3/ � LŒx
1
r ; y

1
r ; �

1
r � � LŒx

1
r ; y

1
r ; ��, and each of the projection maps takes

this last ring into LŒx; y; �� D A, we’re done. ut
Lemma 4. If L is algebraically closed, x3 C y3 is a test element in A D R˛ .

Proof. Suppose J is an ideal of R˛ and h 2 J �. Then dhq 2 J Œq� for some d ¤ 0

and all q. We may replace d by any A-multiple and may assume d ¤ 0 is in

LŒx; y�. Choose r and 	 as in Lemma 3. Then dhqr 2 J Œqr�, and so d
1
r hq 2 J Œq� �

LŒx
1
r ; y

1
r ; �

1
r �. Applying 	 we find that .x3 C y3/hq 2 J Œq� for all q. ut

In the next section we’ll use the elementary Lemma 4 in place of Brenner’s test
element theorem to complete the exposition of the counterexample.

6 The Module H 2: Completion of the Proof

Our goal is as follows:

Lemma 1. Suppose L is algebraically closed. Let I be the ideal .x4; y4; z4/ of
A D R˛ D LŒx; y; z�=g˛ , where ˛ ¤ 0. Suppose that c and f are homogeneous
elements of R˛ of degrees 2 and 6. Then if cf Q 62 I ŒQ� for some Q, f 62 I �.
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Note that Lemma 1 and our earlier results provide the negative solution to the
localization problem. For we may argue as in Remark 1 following Definition 1,
using Theorem 10 and Lemma 1 to see that .y3/ 	 .z3/ 62 I � in R˛ when ˛ is
algebraic over Z=2.

Let T be the graded L-algebra A=.x4Q; y4Q/ D LŒx; y; z�=.x4Q; y4Q; g˛/.
We develop a few properties of T . Evidently 1, z, z2, and z3 form a basis of T

over LŒx; y�=.x4Q; y4Q/. So an L-basis of T consists of the xi yj zk with i; j < 4Q

and k < 4. In particular, T8QC1 is 1-dimensional, spanned by .xy/4Q�1z3. Also, the
subspace of T annihilated by x and y is 4-dimensional, spanned by the .xy/4Q�1zk ,
with k D 0; 1; 2; 3. It follows that an element of T is annihilated by x, y, and z if
and only if it lies in T8QC1.

Lemma 2. If i C j D 8Q C 1 the pairing Ti � Tj ! L induced by multiplication
is nondegenerate.

Proof. We show the left kernel is .0/, arguing by induction on j . The case i D
8Q C 1; j D 0 is trivial. Suppose i < 8Q C 1 and u 2 Ti annihilates Tj . Then xu,
yu, and zu annihilate Tj �1. By induction xu, yu, and zu are 0, and since i < 8QC1,
u D 0. ut
For the rest of the section we fix Q with cf Q 62 I ŒQ�. We shall assume that f 2 I �
and get a contradiction.

Lemma 3. There exists a w in A2Q�1 with:

(1) z4Qw 2 .x4Q; y4Q/.
(2) f Qw 62 .x4Q; y4Q/.

Proof. Multiplication by z4Q induces maps T2QC2 ! T6QC2 and T2Q�1 ! T6Q�1.
These maps are dual under the pairings of Lemma 2. Now cf Q 62 I ŒQ� in A;
consequently cf Q is not in the image of the first map. So there is a w in the kernel
of the second map with wcf Q ¤ 0 in T . Thinking of w as an element of A2Q�1 we
find that f Qw 62 .x4Q; y4Q/. Now w ! 0 in T6Q�1, and so z4Qw 2 .x4Q; y4Q/. ut

Now let K be the field of fractions of A. Then A
h

1
xy

i
, A

�
1
x

	
, and A

h
1
y

i
are A-

submodules of K . Let H 2 be the quotient module A
h

1
xy

i
=
�
A
�

1
x

	C A
h

1
y

i �
. (H 2

is a local cohomology module but we won’t use any machinery from that theory.)
Note that H 2 is Z-graded; when u is in Al , u

xi yj has degree l � i � j . Using the fact

that 1, z, z2, and z3 are a basis of A over LŒx; y� we find

1. 1
xi yj , z

xi yj , z2

xi yj , and z3

xi yj , i; j > 0 are an L-basis of H 2.

2. u
xi yj is 0 in H 2 if and only if u 2 .xi ; yj / in A.

The map u ! u2, K ! K stabilizes A
h

1
xy

i
, A

�
1
x

	
, and A

h
1
y

i
and so induces an

additive function ˆ W H 2 ! H 2. Evidently ˆ.H 2
l / � H 2

2l ; furthermore ˆ.aU / D
a2ˆ.U /. If q D 2n we abbreviate ˆn.U / to U Œq�.
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Lemma 4. There is a U in H 2�1, U ¤ 0, such that .x3 C y3/ � U Œq� D 0 for all q.

Proof. Take w as in Lemma 3 and let W be the element w
x4Qy4Q of H 2; set U D

f QW . The degree of U is .2Q�1/�8QC6Q D �1. Now f Qw 62 .x4Q; y4Q/, and
so U ¤ 0. Also x4Qw, y4Qw, and z4Qw are all in .x4Q; y4Q/, and so I ŒQ� �W D .0/.
Applying ˆ repeatedly we find that I ŒqQ�W Œq� D .0/.

We are assuming that f 2 I �. Since x3 C y3 is a test element in A, .x3 C
y3/f qQ 2 I ŒqQ�. So .x3 C y3/f qQW Œq� D 0. But f qQW Œq� D U Œq�. ut
Lemma 5. Suppose ˛ ¤ 1 and U is a nonzero element of H 2�1. Then .x3 C
y3/U Œ8� ¤ 0.

Proof (sketch). Since U has degree �1 it is an L-linear combination of z
xy

, z2

x2y
, z2

xy2 ,
z3

x3y
, z3

x2y2 , and z3

xy3 . I’ll assume first that U is an L-linear combination of z
xy

, z2

x2y
, and

z2

xy2 . We know from Lemma 2 that .x3 C y3/z4Q � .x3 C y3/
P

rsDQ.CrP /s mod

.x4Q; y4Q/ in the polynomial ring LŒx; y; z�. So, mod .x4Q; y4Q; g˛/, we have

.x3 C y3/z4Q � .x3 C y3/
P

rsDQ.Cr˛x2y2/s . Taking Q D 2 we get

.x3 C y3/

�
z

xy

�Œ8�

D x3 C y3

x8y8
.˛2x4y4 C ˛x4y4/ D .˛2 C ˛/

�
1

x4y
C 1

xy4

�

:

Taking Q D 4 we get

.x3 C y3/

�
z2

x2y

�Œ8�

D x3 C y3

x16y8
.˛4x8y8 C ˛2x8y8 C ˛.x14y2 C x8y8 C x2y14//:

So

.x3 C y3/

�
z2

x2y

�Œ8�

D x3 C y3

x16y8
� ˛x14y2 D ˛

x2y3
:

Similarly,

.x3 C y3/

�
z2

xy2

�Œ8�

D ˛

x3y2
:

Since ˛2 C ˛ ¤ 0, and no L-linear combination of 1
x4y

C 1
xy4 , 1

x2y3 , and 1
x3y2 can be

0, we’re done. When U is an L-linear combination of all 6 basis elements of H 2�1,
one may proceed by making a similar but more elaborate calculation. Alternatively
one may use the automorphisms � , � , and � of Theorem 13, which act on H 2, to
construct a nonzero V in H 2�1, with V Œ8� D 0, which is an L-linear combination of

z
xy

, z2

x2y
, and z2

xy2 . We leave details to the reader. ut
We can now complete the proof of Lemma 1; we cannot simultaneously have

f 2 I � and cf Q 62 I ŒQ� for some Q. If ˛ ¤ 1 this follows from Lemmas 4 and 5.
If ˛ D 1 we modify the proof of Lemma 5 to show that .x3 C y3/U Œ16� ¤ 0, once
again contradicting Lemma 4.
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Introduction to the Hyperdeterminant
and to the Rank of Multidimensional Matrices

Giorgio Ottaviani

1 Introduction

The classical theory of determinants was placed on a solid basis by Cayley
in 1843. A few years later, Cayley himself elaborated a generalization to the
multidimensional setting [6] in two different ways. There are indeed several ways to
generalize the notion of determinant to multidimensional matrices. Cayley’s second
attempt has a geometric flavour and was very fruitful. This invariant constructed by
Cayley is named today hyperdeterminant (after [15]) and reduces to the determinant
in the case of square matrices, which will be referred to as the classical case.
The explicit computation of the hyperdeterminant presented from the very beginning
exceptional difficulties. Even today explicit formulas are known only in some
cases, like the so-called boundary format case and in a few others. In general one
has to invoke elimination theory. Maybe for this reason the theory was forgotten
for almost 150 years. Only in 1992, thanks to a fundamental paper by Gelfand,
Kapranov and Zelevinsky, the theory was placed in the modern language, and many
new results have been found. The book [15], of the same three authors, is the
basic source on the topic. Also Chap. 9 of [33] is a recommended reading, a bit
more advanced, see also [3]. Two sources about classical determinants are [22, 27]
(the second one has also a German translation). The extension of the determinant to
the multidimensional setting contained in these two sources is based on the formal
extension of the formula computing the classical determinant summing over all the
permutations (like in Cayley first attempt), and they have different properties from
the hyperdeterminant studied in [15] (the paper [16] glimpses a link between the
two approaches in the 2 � 2 � 2 case).
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610 G. Ottaviani

In this survey we introduce the hyperdeterminants and some of its properties
from scratch. Our aim is to provide elementary arguments when they are available.
The main tools we use are the biduality theorem and the language of vector bundles.
We will use Geometric Invariant Theory only in Sect. 7. Essentially no results are
original, but the presentation is more geometric than the standard one. In particular
the basic computation of the dimension of the dual to the Segre variety is performed
by describing the contact locus in the Segre varieties.

I wish to thank an anonymous referee for careful reading and several useful
suggestions.

2 Multidimensional Matrices and the Local Geometry
of Segre Varieties

Let Vi be complex vector spaces of dimension ki C 1 for i D 0; : : : ; p.
We are interested in the tensor product V0 ˝ : : :˝Vp , where the group GL.V0/�

: : : � GL.Vp/ acts in a natural way.
Once a basis is fixed in each Vi , the tensors can be represented as multidimen-

sional matrices of format .k0 C 1/ � : : : � .kp C 1/.
There are p C 1 ways to cut a matrix of format .k0 C 1/ � : : : � .kp C 1/ into

parallel slices (Fig. 1), generalizing the classical description of rows and columns
for p D 1.

The classical case p D 1 is much easier than the case p � 2 mainly because
there are only finitely many orbits for the action of GL.V0/ � GL.V1/.

Let

Dr D ff 2 V0 ˝ V1jrk f � rg: (1)

We have that Dr n Dr�1 are exactly the orbits of this action, and in particular the
maximal rank matrices form the dense orbit.

Note that D1 is isomorphic to the Segre variety P.V0/ � P.V1/ (they were
introduced in [29]) and that it coincides with the set of decomposable tensors, which
have the form v0 ˝ v1 for vi 2 Vi .

The first remark is

Lemma 1. The rank of f coincides with the minimum number r of summands in a
decomposition f D Pr

iD1 ti with ti 2 D1.

Fig. 1 Two ways to cut a
3 � 2 � 2 matrix into parallel
slices
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Proof. Acting with the group GL.V0/ � GL.V1/ f takes the form f D Pr
iD1 vi

0 ˝
vi

1, where fvi
0g is a basis of V0 and fvi

1g is a basis of V1, corresponding to the matrix

"
Ir 0

0 0

#

:

In this form the statement is obvious. ut
The kth secant variety �k.X/ of a projective irreducible variety X is the Zariski

closure of the union of the projective span < x1; : : : xk > where xi 2 X . We have a
chain of inclusions

X D �1.X/ � �2.X/ � : : :

With this definition, Lemma 1 reads

Corollary 2.
�k.D1/ D Dk:

Let us state also, for future reference, the celebrated “Terracini lemma” (see e.g.
[35]), whose proof is straightforward by a local computation.

Theorem 3 (Terracini Lemma). Let X be a projective irreducible variety and let
z 2< x1; : : : ; xk > be a general point in �k.X/. Then

Tz�k.X/ D< Tx1X; : : : ; Txk
X>:

The tangent spaces Txi X appearing in the Terracini lemma are the projective
tangent spaces. Sometimes, we will denote by the same symbol the affine tangent
spaces, this abuse of notation should not create any serious confusion.

We illustrate a few properties of the Segre variety P.V0/ � : : : � P.Vp/.
It is, in a natural way, a projective variety according to the Segre embedding

P.V0/ � : : : � P.Vp/ �! P.V0 ˝ : : : ˝ Vp/

.v0; : : : vp/ 7! v0 ˝ : : : ˝ vp:

In this embedding, the Segre variety coincides with the projectivization of the set
of decomposable tensors. The proof of the following proposition is straightforward
(by induction on p) and we omit it.

Proposition 4. Every � 2 V0 ˝ : : : ˝ Vp induces for any i D 0; : : : ; p the
contraction map

Ci.�/W V _
1 ˝ : : : cV _

i : : : ˝ V _
p �!Vi ;

where the i th factor is dropped from the source space. The tensor � is decomposable
if and only if rk.Ci.�// � 1 for every i D 0; : : : ; p.
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Fig. 2 The three flattenings of the matrix in Fig. 1. If the 2-minors of two of them vanish, then the
matrix corresponds to a decomposable tensor (a point in the Segre variety)

The previous proposition gives equations of the Segre variety as 2 � 2 minors
of the contraction maps Ci .�/. These maps are called flattenings, because they are
represented by bidimensional matrices obtained like in Fig. 2.

Remark 5. In Proposition 4 it is enough that the rank conditions are satisfied for all
i D 0; : : : ; p except one.

A feature of the Segre variety is that it contains a lot of linear subspaces.
For any point x D v0 ˝ : : : ˝ vp , the linear space v0 ˝ : : : Vi : : : ˝ vp passes

through x for i D 0; : : : ; p; it can be identified with the fiber of the projection

�i WPk0 � : : : � P
kp �!P

k0 � : : : c
P

ki : : : � P
kp :

We will denote the projectivization of the linear subspace v0 ˝: : : Vi : : :˝vp . as Pki
x .

These linear spaces have important properties described by the following propo-
sition.

Proposition 6. Let x 2 X D P
k0 � : : : � P

kp .

(i) The tangent space at x is the span of the p C 1 linear spaces Pki
x that is, TpX

is the projectivization of ˚i v0 ˝ : : : Vi : : : ˝ vp.
(ii) The tangent space at x meets X in the union of the p C 1 linear spaces Pki

x .
(iii) Any linear space in X passing through x is contained in one of the pC1 linear

spaces Pki
x .

Proof. The tangent vector to a path v0.t/ ˝ : : : ˝ vp.t/ for t D 0 is
Pp

iD0 v0.0/ ˝
: : : v0

i .0/ : : :˝vp.0/. Since v0
i .0/ may be chosen as an arbitrary vector, the statement

(i) is clear.

(ii) Fix a basis fe0
j ; : : : ; e

kj

j g of Vj for j D 0; : : : ; p and let fej;0; : : : ; ej;kj g be the
dual basis. We may assume that x corresponds to e0

0 ˝ : : : ˝ e0
p. Consider a

decomposable tensor � in the tangent space at x, so � D v0 ˝ : : : ˝ e0
pC

: : : C e0
0 ˝ : : : ˝ vp for some vi . We want to prove that vi and e0

i are
linearly independent for at most one index i . Otherwise we may assume
dim.v0; e0

0/ D 2, dim.v1; e0
1/ D 2. Consider the contraction

C0.�/.e1;0 ˝ e2;0 ˝ : : : ˝ ep;0/ D v0 C .: : :/e0
0

C0.�/.e1;1 ˝ e2;0 ˝ : : : ˝ ep;0/ D
�
e1;1.v1/ C

Xp

j D2
ej;0.vj /

�
e0

0:
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Since we may assume also e1;1.v1/ ¤ 0, by replacing e1;1 with a scalar

multiple we have also
�
e1;1.v1/ C Pp

j D2 ej;0.vj /
�

¤ 0. This implies that

rank C0.�/ � 2 which is a contradiction. For an alternative approach gener-
alizable to any homogeneous space see [19].

(iii) A linear space in X passing through x is contained in the tangent space at x,
hence the statement follows from (ii). ut

3 The Biduality Theorem and the Contact Loci
in the Segre Varieties

The projective space P.V / consists of linear subspaces of dimension one of V .
The dual space P.V _/ consists of linear subspaces of codimension one (hyper-
planes) of V . Hence the points in P.V _/ are exactly the hyperplanes of P.V /.

Let us recall the definition of dual variety. Let X � P.V / be a projective
irreducible variety. A hyperplane H is called tangent to X if H contains the tangent
space to X at some nonsingular point x 2 X .

The dual variety X_ � P.V _/ is defined as the Zariski closure of the set of all
the tangent hyperplanes. Part of the biduality theorem below says that X__ D X ,
but more is true. Consider the incidence variety V given by the closure of the set

f.x; H/ 2 X � P.V _/jx is a smooth point and TxX � H g:
V is identified in a natural way with the projective bundle P.N.�1/_/, where N is
the normal bundle to X (see Remark 5).

Theorem 1 (Biduality Theorem). Let X � P.V / be an irreducible projective
variety. We have

X__ D X: (2)

Moreover if x is a smooth point of X and H is a smooth point of X_, then H is
tangent to X at x if and only if x, regarded as a hyperplane in P.V _/, is tangent to
X_ at H . In other words the diagram

V

. p1 & p2

X X_
(3)

is symmetric.

For a proof, in the setting of symplectic geometry, we refer to [15], Theorem 1.1.
Note, as a consequence of the biduality theorem, that the fibers of both the

projections of V over smooth points are linear spaces. This is trivial for the left
projection, but it is not trivial for the right one. Let us record this fact.
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Fig. 3 The tangent space at a
point x 2 X D P

1 � P
2 cuts

X into two linear spaces
meeting at x; the general
hyperplane tangent at x is
tangent along a line (dotted in
the figure)

Corollary 2. Let X be smooth and let H be a general tangent hyperplane
(corresponding to a smooth point of X_). Then fx 2 X jTxX � H g is a linear
subspace (this is called the contact locus of H in X ).

As a first application we compute the dimension of the dual to a Segre variety.

Theorem 3 (Contact loci in Segre varieties). Let X D P
k0 � : : : � P

kp .

(i) If k0 � Pp
iD1 ki then a general hyperplane tangent at x is tangent along a

linear space of dimension k0 � Pp
iD1 ki contained in the fiber Pk0

x . In this case
the codimension of X_ is 1 C k0 � Pp

iD1 ki .
(ii) If k0 � Pp

iD1 ki then a general hyperplane tangent at x is tangent only at x.
In this case X_ is a hypersurface.

(iii) The dual variety X_ is a hypersurface if and only if the following holds:

max ki D k0 �
pX

iD1

ki :

Proof. We remind that, by Proposition 6 (i), a hyperplane H is tangent at x if and
only if it contains the p C1 fibers through x. By Corollary 2 a general hyperplane is
tangent along a linear variety. By Proposition 6 (iii) a linear variety in X is contained
in one of the fibers. Let H be a general hyperplane tangent at x (Fig. 3). We inspect
the fibers through y when y 2 P

k0
x . The locus where H contains the fiber Pki

y is a
linear space in P

k0
x of codimension ki indeed the fibers can be globally parametrized

by y plus other ki independent points. This description proves (i), because the
variety V in (3) has the same dimension of a hypersurface in P.V _), and we just
computed the general fibers of p2. Also (ii) follows by the same argument because
the conditions are more than the dimension of the space. (iii) is a consequence of (i)
and (ii). ut
Definition 4. A format .k0 C 1/ � : : : � .kp C 1/ with k0 D maxj kj is called a
boundary format if k0 D Pp

iD1 ki . In other words, the boundary format corresponds
to the equality in (iii) of Theorem 3.
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Remark 5. According to [21], Theorem 3 says that for a Segre variety with normal
bundle N , the twist N.�1/ is ample if and only if the inequality max ki D k0 �Pp

iD1 ki holds.

Note that for p D 1 the dual variety to D1 D P
k0 � P

k1 is a hypersurface if and
only if k0 D k1 (square case). This is better understood by the following result.

Theorem 6. Let k0 � k1. In the projective spaces of .k0 C 1/ � .k1 C 1/ matrices
the dual variety to the variety Dr (defined in formula (1)) is Dk1C1�r .

When k0 D k1 (square case) the determinant hypersurface is the dual of D1.

In order to prove the Theorem 6 we need the following proposition.

Proposition 7. Let X be a irreducible projective variety. For any k

.�kC1.X//_ � .�k.X//_ :

Proof. The proposition is almost a tautology after the Terracini lemma. The
dual to the .k C 1/th secant variety .�kC1.X//_ is defined as the closure of
the set of hyperplanes H containing Tz�kC1.X/ for z being a smooth point in
�kC1.X/, so z 2< x1; : : : ; xkC1 > for general xi 2 X . By the Terracini lemma
(Proposition 3) H contains Tx1; : : : TxkC1

hence H contains Tz0�k.X/ for the general
z0 2< x1; : : : ; xk > (removing the last point). ut
Proof of Theorem 6. Due to Proposition 7 and Corollary 2 we have the chain of
inclusions

D_
1 � D_

2 � : : : � D_
k1

:

By the biduality theorem any inclusion must be strict. Since the D_
i are GL.V0/ �

GL.V1/-invariant and the finitely many orbit closures are given by Di , the only
possible solution is that the above chain coincides with

Dk1 � : : : � D1: ut
Example 8. When X � P

n is the rational normal curve, �k.X/ consists of
polynomials which are sums of k powers, while �k.X/_ consists of polynomials
having k double roots. We get that �k.X/_ D C how2k ;1n�2k .P1/ according to the
notations of Sect. 8.

Remark 9. A common misunderstanding after Theorem 6 is that X � Y implies the
converse inclusion X_ � Y _. This is in general false. The simplest counterexample
is to take X to be a point of a smooth (plane) conic Y . Here X_ is a line and Y _ is
again a smooth conic.

Remark 10. The proof of Theorem 6 is short, avoiding local computations, but
rather indirect.



616 G. Ottaviani

We point out the elegant proof of Theorem 6 given by Eisenbud in Prop. 1.7 of
[12], which gives more information. Eisenbud considers V0 ˝ V1 as the space of
linear maps Hom.V _

0 ; V1/ and its dual Hom.V1; V _
0 /. These spaces are dual under

the pairing < f; g >WD t r.fg/ for f 2 Hom.V _
0 ; V1/ and g 2 Hom.V1; V _

0 /.
Eisenbud proves that if f 2 Dr n Dr�1 then the tangent hyperplanes at f to Dr are
exactly the g such that fg D 0, gf D 0. These conditions force the rank of g to be
� k1 C 1 � r . Conversely any g of rank � k1 C r � 1 satisfies these two conditions
for some f of rank r , proving Theorem 6.

The above proposition is important because it gives a geometric interpretation
of the determinant, as the dual of the Segre variety. This is the notion that better
generalizes to multidimensional matrices.

Definition 11. Let

max ki D k0 �
pX

iD1

ki :

The equation of the dual variety to P
k0 � : : : � P

kp is the hyperdeterminant.

A point deserves a clarification. Since the dual variety lives in the dual space, we
have defined the hyperdeterminant in the dual space to the space of matrices, and
not in the original space of matrices. Although there is no canonical isomorphism
between the space of matrices and its dual space this apparent ambiguity can be
solved by the invariance.

Indeed we may construct infinitely many isomorphisms between the space
V0 ˝ : : : ˝ Vp and its dual V _

0 ˝ : : : ˝ V _
p by fixing a basis constructed from

the bases of the single spaces Vi . Any function on the space of matrices which is
invariant with respect to the action of SL.V0/ � : : : � SL.Vp/ induces, by using any
isomorphisms Vi ' V _

i , a function on the dual space, and, due to the invariance, it
does not depend on the chosen isomorphism.

4 Degenerate Matrices and the Hyperdeterminant

From now on we will refer to a multidimensional matrix A as simply a matrix, and
write Det.A/ for its hyperdeterminant (when it exists).

Definition 1. A matrix A is called degenerate if there exists a nonzero
.x0 ˝ x1 ˝ : : : ˝ xp/ 2 V0 ˝ : : : ˝ Vp such that

A.x0; x1; : : : ; Vi ; : : : ; xp/ D 0 8i D 0; : : : ; p: (4)

The “kernel” K.A/ is by definition the variety of nonzero .x0 ˝x1 ˝ : : :˝xp/ 2
V0 ˝ : : : ˝ Vp such that (4) is satisfied.
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So, by Proposition 6 (i), a matrix A is degenerate if and only if A corresponds to a
hyperplane tangent in K.A/. This gives an algebraic reformulation of the definition
of hyperdeterminant.

We get

Proposition 2. (i) The (projectivization of the) variety of degenerate matrices of
format .k0 C 1/ � : : : � .kp C 1/ is the dual variety of the Segre variety P

k0 �
: : : � P

kp .
(ii) Let max ki D k0 � Pp

iD1 ki . A matrix A is degenerate if and only if
Det.A/ D 0.

Proof. Part (i) is a reformulation of Proposition 6 (i). Part (ii) is a reformulation of
Theorem 3 (iii) and Definition 11. ut

Degenerate matrices A such that K.A/ consists of a single point are exactly the
smooth points of the hypersurface.

The degree of the hyperdeterminant can be computed by means of a generating
function. Let N.k0; : : : ; kp/ be the degree of the hyperdeterminant of format .k0C1/

� : : : � .kp C 1/, and let k0 D maxj kj . Set N.k0; : : : ; kp/ D 0 if k0 >
Pp

iD1 ki (in
this case we may set Det D 1).

Theorem 3 (Gelfand et al. [15] Theorem XIV 2.4).

X

k0;:::;kp�0

N.k0; : : : ; kp/zk0

0 	 	 	 z
kp
p D 1

�
1 � PpC1

iD2 .i � 1/xi .z0; : : : ; zp/
�2

;

where xi is the i th elementary symmetric function.

For example, for p D 2,

X

k0;k1;k2�0

N.k0; k1; k2/z
k0

0 zk1

1 zk2

2 D 1

.1 � .z0z1 C z0z2 C z1z2/ � 2z0z1z2/2
:

We list a few useful degree of hyperdeterminants, corresponding to formats
.a; b; c/ with a C b C c � 12.

Note that the degree of format .2; b; b C 1/ is smaller than the degree of its
subformat .2; b; b/ (for b � 4). Therefore a Laplace expansion cannot exist, at least
not in a naive way.

In the boundary format case the degree simplifies to .k0C1/Š

k1Š:::kp j , as we will see in
Sect. 6.

Let us see what happens to the hyperdeterminant after swapping two parallel
slices (Fig. 4).

Theorem 4. Let N be the degree of hyperdeterminant of format .k0 C 1/ � : : : �
.kp C 1/.
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Fig. 4 Swapping two
vertical slices in the format
3 � 2 � 2 leaves the
hyperdeterminant invariant

Format Degree Boundary format

(2,2,2) 4
(2,2,3) 6 *
(2,3,3) 12
(2,3,4) 12 *
(2,4,4) 24
(2,4,5) 20
(3,3,3) 36
(3,3,4) 48
(3,3,5) 30 *
(3,4,4) 108
(3,4,5) 120
(4,4,4) 272
(2,b,b) 2b(b-1)
(2,b,b+1) b(b+1) *
(a,b,a+b-1) .aCb�1/Š

.a�1/Š.b�1/Š
*

(i) N
ki C1

is an integer.

(ii) After swapping two parallel slices of format .k0C1/�: : : 2.ki C 1/ : : :�.kpC1/

the hyperdeterminant changes its sign if N
ki C1

is odd and remains invariant if
N

ki C1
is even.

(iii) A matrix with two proportional parallel slices has hyperdeterminant equal to
zero.

Proof. It is clear from its definition that the hyperdeterminant is a relative invariant
for the group G D GL.k0 C1/� : : :�GL.kp C1/. Moreover the hyperdeterminant
is homogeneous on each slice, and by the action, the degree has to be the same
on parallel slices. Since there are .ki C 1/ parallel slices, the hyperdeterminant is
homogeneous of degree N

.ki C1/
with respect to each slice, which proves (i). Hence for

g 2 GL.ki C1/ we get Det.A
g/ D Det.A/	.det.g//N=.ki C1/. If g is a permutation
matrix, it acts on the parallel slices by permuting them (Fig. 5). In particular if g

swaps two slices it satisfies det g D �1; hence (ii) follows. (iii) follows because a
convenient g acting on slices makes a whole slice equal to zero. ut
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Fig. 5 Swapping two
horizontal slices in the format
3 � 2 � 2, the
hyperdeterminant changes
sign

5 Schläfli Technique of Computation

For simplicity we develop Schläfli technique in this section only for
three-dimensional matrices, although a similar argument works in any dimension
(see [15]).

Let A be a matrix of format a�b �b. It can be seen as a b �b matrix with entries
which are linear forms over V0 and we denote it by QA.x/ with x 2 V0 ' C

a (Fig. 6).
Then we can compute det QA.x/ and we get a homogeneous form over V0 that we

can identify with a hypersurface in PV0.
Schläfli main remark is the following.

Theorem 1 (Schläfli). Let A be degenerate and let v0 ˝ v1 ˝ v2 2 K.A/. Then the
hypersurface det QA.x/ is singular at v0.

Proof. After a linear change of coordinates we may assume that v0 ˝ v1 ˝ v2

corresponds to the corner of the matrix A, meaning that we choose a basis of Vi

where vi is the first element. Let QA D Pk1

iD0 xi Ai where Ai are the b � b slices.
After a look at Fig. 7, we get that the assumption that v0 ˝ v1 ˝ v2 2 K.A/ means
that the first slice has the form

A0 D

2

6
6
6
4

0 0 : : : ; 0

0 
 : : : 

0

:::
:::

0 
 : : : 


3

7
7
7
5

;

and the successive slices have the form

Ai D

2

6
6
6
4

0 
 : : : ; 


 
 : : : 


 :::

:::


 
 : : : 


3

7
7
7
5

:

Note that det A0 D 0 and v0 has coordinates .1; 0; : : : 0/. In an affine coordinate
system centred at this point we may assume x0 D 1.
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Fig. 6 A tridimensional matrix gives a bidimensional matrix with linear forms as coefficients

Fig. 7 A matrix A is
degenerate if and only if it
becomes zero on the coloured
part after a linear change of
coordinates. The kernel K.A/

corresponds to the coloured
vertex

In conclusion we get

QA D

2

6
6
6
4

0
P

i l1;i xi : : : ;
P

i lk1;i xiP
i m1;ixi 
 : : : 


:::
:::

:::
P

i mk1;i xi 
 : : : 


3

7
7
7
5

:

where lj;i and mj;i are scalars.
Now, by expanding the determinant on the first row and then on the first column,

we get that det QA has no linear terms in xi , and then the origin is a singular point, as
we wanted. ut

The conclusion of Theorem 1 is that for a degenerate matrix A, the discriminant
of the polynomial det QA.x/ has to vanish. In other words the hyperdeterminant of
A divides the discriminant of det QA.x/. The following proposition characterizes
exactly the cases where the converse holds, and it was used by Schläfli to compute
the hyperdeterminant in these cases.

Proposition 2. (i) For matrices A of format 2�b�b and 3�b�b the discriminant
of det QA.x/ coincides with the hyperdeterminant of A.
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(ii) For matrices A of format 4 � b � b the discriminant of det QA.x/ is equal to the
product of the hyperdeterminant and an extra factor which is a square.

(iii) For matrices A of format a � b � b with a � 5, the discriminant of det QA.x/

vanishes identically.

Partial proof (see [15] for a complete proof) (iii) follows because the locus of
matrices of rank � b � 2 has codimension 4 in the space of b � b matrices, then
every determinant hypersurface in a space of projective dimension at least four
contains points where the rank drops at least by 2, and these are singular points
of the hypersurface. In particular for a � 5, det QA.x/ is singular.

Let us prove (i) in the format case 2 � b � b. From Theorem 1 we get that
the hyperdeterminant of A divides the discriminant of det QA.x/. The degree of
the discriminant of a polynomial of degree b is 2.b � 1/; hence the degree of the
discriminant of det QA.x/ is 2b.b � 1/ with respect to the coefficients of A. Once we
know that the degree of the hyperdeterminant of format 2 � b � b is 2b.b � 1/ the
proof is completed. This was stated in the table in the previous section but it was
not proved. We provide an alternative argument for det QA.x/ singular implies A is
degenerate. As a consequence this provides also a proof of the degree formula. After
a linear change of coordinates we may assume as in the proof of Theorem 1 that

A0 D
"

0 0

0 B0

#

and

A1 D
"

c1 


 


#

:

Note that det A0 D 0 and v0 has coordinates .1; 0; : : : 0/. In an affine coordinate
system centred at this point we may assume x0 D 1.

Then det QA D det

�
c1x1 x1 	 .
/

x1 	 .
/ B0 C x1 	 .
/

�

D c1x1 det.B0/C.higher terms in xi /.

If det.B0/ ¤ 0 we get c1 D 0, hence A is degenerate. If det.B0/ D 0 we can
rearrange A0 in such a way that the first two rows and two columns vanish. In this
case it is easy to arrange a zero in the upper left 2 � 2 block of A1 so that again A is
degenerate. This pattern can be extended to the 3 � b � b case. ut
Example 3. Regarding (ii) of Proposition 2, we describe the format 4 � 3 � 3. From
the table in the previous section, the hyperdeterminant of format 4�3�3 has degree
48. The discriminant of cubic surfaces has degree 32, and 32 	 3 D 96. So there is an
extra factor of degree 48. It is the square of the invariant coming from the invariant
I8, which is the invariant of minimal degree for cubic surfaces [10].

This gives an interpretation of the invariant I8. Namely, a smooth cubic surface
has I8 vanishing if and only if it has a determinantal representation as a 4 � 3 � 3

matrix which is degenerate.
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Example 4. Let us see the 3 � 2 � 2 example, which can be computed explicitly
in at least three different ways. The first way is an application of Schläfli technique
and it is described here. The second way is by looking at multilinear systems and it
is described in Theorem 3. The third way is described in Example 7.

A matrix A of format 3 � 2 � 2 defines the following 2 � 2 matrix:

"
a000x0 C a100x1 C a200x2 a001x0 C a101x1 C a201x2

a010x0 C a110x1 C a210x2 a011x0 C a111x1 C a211x2

#

:

The determinant of this matrix defines the following projective conic in the variables
x0; x1; x2,

x2
0 det

�
a000 a001

a010 a011

�

C x0x1

�

det

�
a000 a101

a010 a111

�

C det

�
a100 a001

a110 a011

��

C : : : D (5)

D .x0; x1; x2/ 	 C 	 .x0; x1; x2/t ; (6)

where C is a 3 � 3 symmetric matrix.
By Proposition 2 the hyperdeterminant of A is equal to the determinant of C

hence the hyperdeterminant vanishes if and only if the previous conic is singular.

Example 5. An interesting example is given by matrices of format 3 � 3 � 3.
The hyperdeterminant of format 3 � 3 � 3 has degree 36. The discriminant of cubic
curves has degree 12, and 12 	 3 D 36.

The three determinants obtained by the three possible directions give three
elliptic cubic curves. When one of the three is smooth, then all three are smooth (this
happens if and only if Det ¤ 0), and all three are isomorphic (see [32] and also [23]
Proposition 1). So we get three different determinantal representations of the same
cubic curve. The Theorem 1 of [23] says that the moduli space of 3 � 3 � 3 matrices
under the action of GL.3/ � GL.3/ � GL.3/ is isomorphic to the moduli space of
triples .C; L1; L2/ where C is an elliptic curve and L1, L2 are two (non isomorphic)
line bundles of degree three induced by the pullback of O.1/ under the other two
determinantal representations.

Example 6. The 2 � 2 � 2 case gives with an analogous computation the celebrated
Cayley formula for A of format 2 � 2 � 2 from the discriminant of the polynomial

det

"
a000x0 C a010x1 a001x0 C a011x1

a100x0 C a110x1 a101x0 C a111x1

#

D 0

which is

Det.A/ D
�ˇ

ˇ
ˇ
ˇ
a000 a011

a100 a111

ˇ
ˇ
ˇ
ˇ C

ˇ
ˇ
ˇ
ˇ
a010 a001

a110 a101

ˇ
ˇ
ˇ
ˇ

�2

� 4

ˇ
ˇ
ˇ
ˇ
a000 a001

a100 a101

ˇ
ˇ
ˇ
ˇ 	

ˇ
ˇ
ˇ
ˇ
a010 a011

a110 a111

ˇ
ˇ
ˇ
ˇ :
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The previous formula expands with exactly 12 summands which have a nice
symmetry and are the following: [6]

Det.A/ D �
a2

000a2
111 C a2

001a2
110 C a2

010a2
101 C a2

011a2
100

	 C
�2 .a000a001a110a111 C a000a010a101a111 C a000a011a100a111C
Ca001a010a101a110 C a001a011a110a100 C a010a011a101a100/ C

C4 .a000a011a101a110 C a001a010a100a111/ :

The first four summands correspond to the four line diagonals of the cube the
following six summands correspond to the six plane diagonals while the last two
summands correspond to the vertices of the even and odd tetrahedra inscribed in
the cube.

The 2 � 2 � 2 hyperdeterminant is homogeneous of degree two in each slice
and remains invariant under swapping two slices. The 2 � 2 � 2 hyperdeterminant
appeared several times recently in the physics literature see for example [11].

Remark 7. According to [17], the hyperdeterminant of format 2 � 2 � 2 � 2 is a
polynomial of degree 24 containing 2; 894; 276 terms. A more concise expression
has been found in [31], in the setting of algebraic statistics, by expressing the
hyperderminant in terms of cumulants. The resulting expression has 13; 819 terms.

6 Multilinear Systems, Matrices of Boundary Format

A square matrix A is degenerate if and only if the linear system A 	 x D 0

has a nonzero solution. This section explores how this notion generalizes to the
multidimensional setting by replacing the linear system with a multilinear system
(we borrowed some extracts from [26], and I thank Vallès for his permission).
The answer is that the hyperdeterminant captures the condition of existence of
nontrivial solutions only in the boundary format case.

Let k0 D maxj fkj g. A matrix A of format .k0 C 1/ � : : : � .kp C 1/ defines
the linear map C0.A/ 2 Hom.V _

1 ˝ : : : V _
p ; V0/ (see Proposition 4) which in turn

defines a multilinear system. A nontrivial solution of this system is given by nonzero
xi 2 V _

i such that

C0.A/.x1 ˝ : : : ˝ xp/ D 0:

This is equivalent to the case i D 0 of the definition of degenerate (see (4) in
Definition 1), namely, to

9 nonzero x1 ˝ : : : ˝ xp 2 V1 ˝ : : : ˝ Vp such that A.V0; x1; : : : ; xp/ D 0: (7)

We say that A satisfying (7) is 0-degenerate (Fig. 8).
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Fig. 8 A is 0-degenerate if it
becomes zero on the coloured
part after a linear change of
coordinates

In the language of [12], the 0-degenerate matrices correspond exactly to the
matrices which are not 1-generic. The condition to be not 0-degenerate can be
expressed indeed as a Chow condition imposing that the linear subspace ker A meets
the Segre variety. For computations of Chow conditions, see [13].

Theorem 1 (Gelfand et al. [15], Theorem XIV 3.1). Let k0 � Pp
iD1 ki (in par-

ticular in the boundary format). A is 0-degenerate if and only if it is degenerate.

Proof. If A is degenerate it is obviously 0-degenerate. Let us assume conversely that
A is 0-degenerate. By assumption there is a nonzero .x1 ˝ : : :˝xp/ 2 V1 ˝ : : :˝Vp

such that (7) holds.
Consider in the unknown x0 the linear system (which is (4) for i D 1)

A.x0; V1; x2; : : : ; xp/ D 0:

It consists of k1 independent equations with respect to (7), because one of the
equations is already contained in (7). For the same reason the linear system given by
(4) for general i consists of ki independent equations with respect to (7). Altogether
we have

Pp
iD1 ki linear equations in the k0 C1 unknowns which are the coordinates

of x0, since the unknowns are more than the number of equations, we get a nonzero
solution as we wanted. ut
Theorem 2 (Gelfand et al. [15] Theorem XIV 1.3). (triangular inequality).

(i) If k0 � Pp
iD1 ki the variety of 0-degenerate matrices has codimension 1 C

k0 � Pp
iD1 ki in M.k0 C 1; : : : ; kp C 1/.

(ii) If k0 <
Pp

iD1 ki all matrices are 0-degenerate.
(iii) The variety of 0-degenerate matrices has codimension 1 in M.k0C1; : : : ; kp C

1/ exactly when the equality k0 D Pp
iD1 ki holds, that is, in the boundary

format case.
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Proof. If k0 � Pp
iD1 ki the codimension is the same as that of the variety

of degenerate matrices by Theorem 1. This codimension has been computed in
Theorem 3 and Proposition 2, and it is 1 only when the equality holds.

If k0 <
Pp

iD1 ki , all matrices are 0-degenerate. Indeed the kernel of A 2
Hom.V _

1 ˝ : : : V _
p ; V0/ meets the Segre variety by dimensional reasons. ut

We get the second promised expression for the 3 � 2 � 2 case.

Theorem 3 (Cayley). Let A be a matrix of format 3 � 2 � 2 and let A00, A01, A10,
A11 be the 3 � 3 submatrices obtained from

2

6
4

a000 a001 a010 a011

a100 a101 a110 a111

a200 a201 a210 a211

3

7
5

by removing respectively the first column .00/, the second .01/, the third .10/ and
the fourth .11/. The multilinear system A.x ˝ y/ D 0 given by

P
aikj xj yk D 0

has nontrivial solutions if and only if det A01 det A10 � det A00 det A11 D 0 which
coincides with Det.A/.

Proof. We may assume that the 3 � 4 matrix has rank 3; otherwise we get a system
with only two independent equations which has always a nontrivial solution. A so-
lution .x0y0; x0y1; x1y0; x1y1/ has to be proportional to .det A00; � det A01; det A10,
� det A11/ by the Cramer rule. Now the condition is just the equation of the Segre
quadric P1 � P

1 � P
3. ut

Let A 2 V0 ˝ : : : ˝ Vp be of boundary format and let mj D Pj �1
iD1 ki with the

convention m1 D 0.
We remark that the definition of mi depends on the order we have chosen among

the kj ’s (see Remark 6).
With the above notations the vector spaces V _

0 ˝ Sm1V1 ˝ : : : ˝ Smp Vp and
Sm1C1V1 ˝ : : : ˝ SmpC1Vp have the same dimension N D .k0C1/Š

k1Š:::kr Š
:

Theorem 4 (and definition of @A). Let k0 D Pp
iD1 ki . Then the hypersurface of

0-degenerate matrices has degree N D .k0C1/Š

k1Š:::kr Š
, and its equation is given by the

determinant of the natural morphism

@A W V _
0 ˝ Sm1V1 ˝ : : : ˝ Smp Vp�!Sm1C1V1 ˝ : : : ˝ SmpC1Vp:

Proof. If A is 0-degenerate then we get A.v1 ˝ : : : ˝ vp/ D 0 for some vi 2 V _
i ,

vi ¤ 0 for i D 1; : : : ; p. Then .@A/_
�

v˝m1C1
1 ˝ : : : ˝ v

˝mpC1
p

�
D 0.
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Conversely if A is non-0-degenerate we get a surjective natural map of vector
bundles over X D P.V2/ � : : : � P.Vp/

V _
0 ˝ OX

�A�!V1 ˝ OX .1; : : : ; 1/:

Indeed, by our definition, �A is surjective if and only if A is non-0-degenerate.
We construct a vector bundle S over P.V2/ � : : : � P.Vp/ whose dual S_ is the

kernel of �A so that we have the exact sequence

0�!S_�!V _
0 ˝ O�!V1 ˝ O.1; : : : ; 1/�!0: (8)

After tensoring by O.m2; : : : ; mp/ and taking cohomology we get

H 0.S_.m2; m3; : : : ; mp//�!V _
0 ˝Sm1V1 ˝ : : :˝Smp Vp

@A�!Sm1C1V1 ˝ : : :˝SmpC1Vp;

and we need to prove

H 0.S_.m2; m3; : : : ; mp// D 0: (9)

Let d D dim
�
P.V2/ � : : : � P.Vp/

	 D Pp
iD2 ki D mpC1 � k1.

Since det.S_/ D O.�k1 � 1; : : : ; �k1 � 1/ and rank S_ D d , it follows, by
using the natural identification S_ ' ^d�1S ˝ det.S_/, that

S_.m2; m3; : : : ; mp/ ' ^d�1S ˝ det.S_/.m2; m3; : : : ; mp/;

hence

S_.m2; m3; : : : ; mp/ ' ^d�1S.�1; �k1 � 1 C m3; : : : ; �k1 � 1 C mp/: (10)

Hence, by taking the .d � 1/st wedge power of the dual of the sequence (8), and
using Künneth’s formula to calculate the cohomology as in [14], the result follows.

ut
Corollary 5. Let k0 D Pp

iD1 ki . The hyperdeterminant of A 2 V0 ˝ : : : ˝ Vp is the
usual determinant of @A, that is,

Det.A/ WD det@A; (11)

where @A D H 0.�A/ and �A W V _
0 ˝ OX

�A�!V1 ˝ OX .1; : : : ; 1/ is the sheaf
morphism associated to A. In particular

degDet D .k0 C 1/Š

k1Š : : : kr Š
:

This is theorem 3.3 of chapter 14 of [15].



Introduction to the Hyperdeterminant: : : 627

Remark 6. Any permutation of the p numbers k1; : : : ; kp gives different mi ’s and
hence a different map @A. As noticed by Gelfand, Kapranov and Zelevinsky, in all
cases the determinant of @A is the same by Theorem 4.

Example 7. The 3 � 2 � 2 case (third computation). In this case the morphism
V _

0 ˝ V1 ! S2V1 ˝ V2 is represented by a 6 � 6 matrix, which, with the obvious
notations, is the following:

2

6
6
6
6
6
6
6
6
6
4

a000 a100 a200 0 0 0

a001 a101 a201 0 0 0

a010 a110 a210 a000 a100 a200

a011 a111 a211 a001 a101 a201

0 0 0 a010 a110 a210

0 0 0 a011 a111 a211

3

7
7
7
7
7
7
7
7
7
5

: (12)

The hyperdeterminant is the determinant of this matrix. Note that this determi-
nant is symmetric with respect to the second and the third index, but this is not
apparent from the above matrix.

Example 8. In the case 4 � 3 � 2 the hyperdeterminant can be obtained as the usual
determinant of one of the following two maps:

V _
0 ˝ V1 ! S2V1 ˝ V2;

V _
0 ˝ S2V2 ! V1 ˝ S3V2:

Remark 9. The fact that the degree of the hypersurface of 0-degenerate matrices
is N D .k0C1/Š

k1Š:::kpŠ
could be obtained in an alternative way. We know that A is 0-

degenerate iff the corresponding ker A meets the Segre variety.
Hence the condition is given by a polynomial P.x1; : : : ; xm/ in the variables

xi 2 P
�^k0C1.V1 ˝ : : : ˝ Vp/

	
of degree equal to the degree of the Segre variety

which is k0Š
k1Š:::kpŠ

. Since xi have degree k0 C 1 in terms of the coefficients of A, the
result follows.

Let A D .ai0;:::;ip / a matrix of boundary format .k0 C 1/ � : : : � .kp C 1/ and
B D .bj0;:::;jq / of boundary format .l0C1/�: : :�.lq C1/; if kp D l0 the convolution
(or product) A
B (see [15]) of A and B is defined as the .pCq/-dimensional matrix
C of format .k0 C 1/ � : : : � .kp�1 C 1/ � .l1 C 1/ � : : : � .lq C 1/ with entries

ci0;:::;ip�1;j1;:::;jq D
kpX

hD0

ai0;:::;ip�1;hbh;j1;:::;jq :

Note that C has again boundary format. The following analogue of the Cauchy–
Binet formula holds.
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Theorem 10. If A 2 V0 ˝ : : : ˝ Vp and B 2 W0 ˝ : : : ˝ Wq are boundary format
matrices with dimVi D ki C1, dimWj D lj C1 and W _

0 ' Vp then A
B satisfies

Det.A 
 B/ D .DetA/
. l0

l1;:::;lq
/
.DetB/

. k0C1
k1;:::;kp�1;kpC1/: (13)

Proof. [9]. ut

Corollary 11. A and B are nondegenerate if and only if A 
 B is nondegenerate.

Example 12. From Corolllary 5 the degree of the hyperdeterminant of a boundary
format .k0 C 1/ � : : : � .kp C 1/ matrix A is given by

NA D .k0 C 1/Š

k1Š : : : kpŠ
:

Thus, (13) can be rewritten as

Det.A 
 B/ D Œ.DetA/NB .DetB/NA�
1

l0C1 :

7 Link with Geometric Invariant Theory in the boundary
Format Case

In the boundary format case it is well defined as a unique “diagonal” given by
elements ai0:::ip satisfying i0 D Pp

j D1 ij (see Fig. 9). We will see in this section
how these matrices behave under the action of SL.V0/ � : : : � SL.Vp/ in the setting
of the geometric invariant theory.

Fig. 9 The diagonal of a
boundary format matrix. A
triangular matrix fits one of
the two half-spaces cut by the
diagonal
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Definition 1. A p C1-dimensional matrix of boundary format A 2 V0 ˝ : : :˝Vp is
called triangulable if there exist bases in Vj such that ai0;:::;ip D 0 for i0 >

Pp
tD1 it .

Definition 2. A p C 1-dimensional matrix of boundary format A 2 V0 ˝ : : : ˝ Vp

is called diagonalizable if there exist bases in Vj such that ai0;:::;ip D 0 for i0 ¤
Pp

tD1 it .

Definition 3. A p C 1-dimensional matrix of boundary format A 2 V0 ˝ : : : ˝ Vp

is an identity if one of the following equivalent conditions holds:

(i) There exist bases in Vj such that

ai0;:::;ip D



0 for i0 ¤ Pp
tD1 it ;

1 for i0 D Pp
tD1 it :

(ii) There exist a vector space U of dimension 2 and isomorphisms Vj ' Skj U

such that A belongs to the unique one-dimensional SL.U /-invariant subspace
of Sk0U ˝ Sk1U ˝ : : : ˝ Skp U .

The equivalence between (i) and (ii) follows easily from the following remark:
the matrix A satisfies the condition ii) if and only if it corresponds to the natural
multiplication map Sk1U ˝ : : : ˝ Skp U ! Sk0U (after a suitable isomorphism
U ' U _ has been fixed).

The definitions of triangulable, diagonalizable and identity apply to elements of
P.V0 ˝ : : : ˝ Vp/ as well. In particular all identity matrices fill a distinguished orbit
in P.V0 ˝ : : : ˝ Vp/.

The function Det is SL.V0/ � : : : � SL.Vp/-invariant in particular if Det A ¤
0 then A is semistable for the action of SL.V0/ � : : : � SL.Vp/. We denote by
Stab .A/ � SL.V0/� : : : �SL.Vp/ the stabilizer subgroup of A and by Stab .A/0

its connected component containing the identity. The main results are the following.

Theorem 4 (Ancona–Ottaviani [2]). Let A 2 P.V0˝: : :˝Vp/ of boundary format
such that Det A ¤ 0. Then

A is triangulable ” A is not stable for the action of SL.V0/ � : : : � SL.Vp/

Theorem 5 (Ancona–Ottaviani [2]). Let A 2 P.V0 ˝ : : : ˝ Vp/, be of boundary
format such that Det A ¤ 0. Then

A is diagonalizable ” Stab.A/ contains a subgroup isomorphic to C
�:

The proof of the above two theorems relies on the Hilbert–Mumford criterion.
The proof of the following theorem needs more geometry.

Theorem 6 (Ancona–Ottaviani [2] for p D 2, Dionisi [8] for p � 3). Let A 2
P.V0 ˝ V1 ˝ : : : ˝ Vp/ of boundary format such that Det A ¤ 0. Then there
exists a 2-dimensional vector space U such that SL.U / acts over Vi ' Ski U , and
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according to this action on V0 ˝ : : : ˝ Vp we have Stab .A/0 � SL.U /. Moreover
the following cases are possible:

Stab .A/0 '

8
ˆ̂
<

ˆ̂
:

0 (trivial subgroup);
C;

C
�;

SL.2/ (this case occurs if and only if A is an identity):

Remark 7. When A is an identity then Stab .A/ ' SL.2/.

Example 8. From the expression we have seen in the 3�2�2 case one can compute
that the hyperderminant of a diagonal matrix is

Det.A/ D a2
000a110a101a2

211:

In general the hyperdeterminant of a diagonal matrix is given by a monomial
involving all the coefficients on the diagonal with certain exponents; see [34].

8 The Symmetric Case

We analyse the classical pencil of quadrics from the point of view of hyperdetermi-
nants.

Let A be a 2 � n � n matrix with two symmetric n � n slices A0, A1.

Proposition 1. If A is degenerate, then its kernel contains an element of the form
z ˝ x ˝ x 2 C

2 ˝ C
n ˝ C

n.

Proof. By assumption there are nonzero z D .z0; z1/
t 2 C

2 and x; y 2 C
n such

that xt Ai y D 0 for i D 0; 1, xt .z0A0 C z1A1/ D 0, .z0A0 C z1A1/y D 0. We may
assume z1 ¤ 0 and yt A0y D 0. Pick � such that xt A0x C �2yt A0y D 0. By the
assumptions we get z0.xt A0x C �2yt A0y/ C z1.xt A1x C �2yt A1y/ D 0 which
implies xt A1x C �2yt A1y D 0. We get .x C �y/t Ai .x C �y/ D 0 for i D 0; 1, as
we wanted. ut
Theorem 2. Let A be a 2 � n � n matrix with two symmetric n � n slices A0, A1.
The following are equivalent:

(i) Det.A/ ¤ 0.
(ii) The characteristic polynomial det.A0 C tA1/ has n distinct roots.

(iii) The codimension two subvariety intersection of the quadrics A0, A1 is smooth.

Proof. (i) H) (ii) Assume that t D 0 is a double root of det.A0 C tA1/ D 0. We
may assume that A0, A1 have the same shape than in the proof of Proposition 2,
and the same argument shows that A is degenerate.
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(ii) H) (iii) Assume that the point .1; 0; : : : ; 0/ belongs to both quadrics, and their
tangent spaces in this point do not meet transversely, so we may assume they
are both equal to x1 D 0. Hence both matrices have the form

Ai D
2

4
0 ai 0

ai 
 

0 
 0

3

5

and det.A0 C tA1/ contains the factor .a0 C ta1/2, against the assumption.
(iii) H) (i) If A is degenerate, by the Proposition 1, we may assume that the two

slices have the same shape as in the proof of Theorem 1. Hence A0 is singular
at the point .1; 0; : : : ; 0/ which is common to A1, which gives a contradiction.

ut
Proposition 3. Let A be a 2 � n � n matrix with two symmetric n � n slices A0,
A1. If Det.A/ ¤ 0 then the two quadrics Ai are simultaneously diagonalizable (as
quadratic forms), that is, there is an invertible matrix C such that C tAi C D Di

with Di diagonal. The columns of C correspond to the n distinct singular points
found for each root of det.A0 C tA1/.

Proof. We may assume that A0, A1 are both nonsingular and from Theorem 2 we
get distinct �i for i D 1; : : : ; n such that det.A0 C �iA1/ D 0. For any i D 1; : : : n

we obtain nonzero vi 2 C
n such that .A0 C �i A1/vi D 0. From these equations we

get �i .vt
j A1vi / D vt

j A0vi D �j .vt
j A1vi /. Hence for i ¤ j we get vt

j A1vi D 0 and
also vt

j A0vi D 0. Let C be the matrix having vi as columns. The identities found
are equivalent to C t Ai C D Di where Di has vt

1Ai v1; : : : ; vt
nAi vn on the diagonal.

It remains to show that vi are independent. This follows because vt
i A0vi ¤ 0 for any

i ; otherwise, A0vi D 0 and A0 should be singular. ut
Remark 4. One may assume that D0 D diag.�1; : : : ; �n/ and D1 D diag

.�1; : : : ; �n/, and in this case Det.A/ is proportional to
Y

i<j

.�i �j � �j �i /
2:

So there are simultaneously diagonalizable pairs of quadrics with vanishing hy-
perdeterminant in other words, the converse to Proposition 3 does not hold.
The condition for a pair of quadrics to be simultaneously diagonalizable is more
subtle. For two smooth conics in the plane (n D 3) one has to avoid just the case
that the two conics touch in a single point (they can touch in two distinct points and
still being simultaneously diagonalizable).

Oeding considers in [24] the case of homogeneous polynomials of degree d in
n C 1 variables; they give a symmetric tensor of format .n C 1/ � : : : � .n C 1/

(d times), corresponding to the embedding Sd
C

nC1 � ˝d
C

nC1. The coefficients
ai1;:::;id of the multidimensional matrix satisfy

ai1;:::;id D a�.i1/;:::;�.id /
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for every permutation � . Do not confuse this notion with the determinantal
representation like in Example 5. For example, the Fermat cubic x3

0 Cx3
1 Cx3

2 defines
a 3 � 3 � 3 tensors with only three entries equal to 1, and its three determinantal
representations are all equal to x0x1x2, corresponding to three lines.

The first easy result is the following.

Theorem 5. The discriminant of f 2 Sd
C

nC1 divides the hyperdeterminant of the
multidimensional matrix in ˝d

C
nC1 corresponding to f .

Proof. Let f be singular at v0; we get that f correspond to a multilinear
map Af WCnC1 � : : : � C

nC1 ! C such that Af .v0; : : : ; v0/ D 0 and Af .CnC1; v0;

: : : ; v0/ D Af .v0;C
nC1; v0; : : : ; v0/ D : : : D 0. Hence the kernel of Af contains

v0 ˝ : : : ˝ v0, Af is degenerate and it has zero hyperdeterminant. ut
Oeding proves that the converse is true only in two cases: the square case n � n

and the 2 � 2 � 2 case.
In all the other cases the hyperdeterminant of a symmetric tensor has the

discriminant as a factor but contains interesting extra terms.
For example, in the 3 � 3 � 3 case, the hyperdeterminant has degree 36, and it is

the product D 	 S6, where D is the discriminant of degree 12 and S is the Aronhold
invariant, which vanishes on plane cubics which are sum of three cubes of linear
forms. In other words S is the equation of (the closure of) the SL.3/-orbit of the
Fermat cubic x3

0 C x3
1 C x3

2 .
In order to describe the extra terms, let us consider any partition � D .�1; : : : ; �s/

of d , that is, d D �1 C : : : C �s; we may assume �1 � : : : � �s . For any partition
� of d define C how�.Pn/ as the closure in P.Sd

C
nC1/ of the set of polynomials of

degree d which are expressible as l
�1

1 	 	 	 l�s
s where li are linear forms.

Theorem 6 (Oeding [24]). The dual variety C how�.Pn/_ is a hypersurface except
for the two cases:

(i) n D 1 and �s D 1.
(ii) n � 2 and � D .d � 1; 1/

Let ��;n be the equation of C how�.Pn/_ when it is a hypersurface (see
Theorem 6).

Theorem 7 (Oeding [24]). The hyperdeterminant of a symmetric matrix of format
n � : : : � n (d times) splits as the product

Y

�

�
m�

�;n;

where m� is the multinomial coefficient
�

d
�1;:::�s

	
and the product is extended over all

the partitions such that C how�.Pn/_ is a hypersurface, classified by Theorem 6.

There is always the factor corresponding to the trivial partition d . The Chow
variety C howd .Pn/ is the Veronese variety, and its dual variety is the discriminant
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(according to Theorem 5), appearing in the product with exponent one. Indeed one
sees immediately from Theorem 6 that this is the only factor just in the square case
n � n (d D 2) and in the 2 � 2 � 2 case.

9 Weierstrass Canonical Form and Kac’s Theorem

Note that the only format 2 � b � c where the hyperdeterminant exists (so that the
triangular inequality is satisfied) are 2 � k � k and 2 � k � .k C 1/.

The 2 � k � k case has the same behaviour as the symmetric case considered in
Sect. 8. We record the main classification result in the nondegenerate case.

Theorem 1 (Weierstrass). Let A be a 2 � k � k matrix and let A0; A1 be the
two slices. Assume that Det.A/ ¤ 0. Under the action of GL.K/ � GL.K/, A

is equivalent to a matrix where A0 is the identity and A1 D diag.�1; : : : ; �k/. In
this form the hyperdeterminant of A is equal to

Q
i<j .�i � �j /2.

The other case 2 � k � .k C 1/ has boundary format, and it was also solved by
Weierstrass.

Theorem 2 (Weierstrass). All nondegenerate matrices of type 2 � k � .k C 1/ are
GL.K/ � GL.K C 1/ equivalent to the identity matrix having the two slices

2

6
4

1
: : :

1

3

7
5

2

6
4

1
: : :

1

3

7
5 :

Proof. Let A, A0 be two such matrices. Since they are nondegenerate they define
two exact sequences on P

1:

0 ! O.�k/�!OkC1 A�!O.1/k ! 0:

0 ! O.�k/�!OkC1 A0

�!O.1/k ! 0:

We want to show that there is a commutative diagram

0 ! O.�k/ �! OkC1 A�! O.1/k ! 0?
?
y1 &

?
?
yf

0 ! O.�k/ �! OkC1 A0

�! O.1/k ! 0:

In order to show the existence of f we apply the functor Hom.�; OkC1/ to the first
row. We get

Hom.OkC1; OkC1/
g�!Hom.O.�k/; OkC1/ ! Ext1.O.1/k ; OkC1/ ' H 1.O.�1/k.kC1//D0:
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Hence, g is surjective and f exists. Now it is straightforward to complete the
diagram with a morphism �W O.1/k ! O.1/k , which is a isomorphism by the snake
lemma. ut

Let .x0; x1/ be homogeneous coordinates on P
1. The identity matrix appearing

in Theorem 2 corresponds to the morphism of vector bundles given by

Ik.x0; x1/ WD

0

B
@

x0 x1

: : :
: : :

x0 x1

1

C
A :

It is interesting, and quite unexpected, that the format 2�k �.k C1/ is a building
block for all the other formats 2 � b � c. The canonical form illustrated by the
following theorem is called the Weierstrass canonical form (there is an extension in
the degenerate case that we do not pursue here).

Theorem 3 (Kronecker). Let 2 � b < c. There exist unique n; m; q 2 N satisfying



b D nq C m.q C 1/

c D n.q C 1/ C m.q C 2/

such that the general tensor t 2 C
2 ˝ C

b ˝ C
c decomposes under the action of

GL.b/ � GL.c/ as n blocks 2 � q � .q C 1/ and m blocks 2 � .q C 1/ � .q C 2/ in
Weierstrass form.

Kac has generalized this statement to the format 2 � w � s � t satisfying the
inequality t2 �wst Cs2 � 1. Note that in these cases the hyperdeterminant does not
exist (for w � 3). The result is interesting because it gives again a canonical form.

Given w, define by the recurrence relation a0 D 0, a1 D 1, aj D waj �1 � aj �2.
For w D 2 get 0; 1; 2; : : : and Kronecker’s result. For w D 3 get 0; 1; 3; 8; 21; 55; : : :

(odd Fibonacci numbers).

Theorem 4 (Kac [18]). Let 2 � w � s � t satisfying the inequality t2 � wstC
s2 � 1. Then there exist unique n; m; j 2 N satisfying



s D naj C maj C1

t D naj C1 C maj C2

such that the general tensor t 2 C
w ˝ C

s ˝ C
t decomposes under the action of

GL.s/ � GL.t/ as n blocks w � aj � aj C1 and m blocks w � aj C1 � aj C2 which
are denoted “Fibonacci blocks” (Fig. 10). They can be described by representation
theory (see [4]).

The original proof of Kac [18] uses representations of quivers. In [4] there is an
independent proof in the language of vector bundles.
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Fig. 10 A decomposition in
two Fibonacci blocks

10 The Rank and the k-Secant Varieties

The classical determinant is the equation of the dual variety of the variety of decom-
posable tensors. This property of the determinant has been chosen as definition of
hyperdeterminant in the multidimensional setting.

The determinant gives the condition for a homogeneous linear system to have
nontrivial solutions. We have discussed this second property in the multidimensional
setting in Sect. 6.

A third property of the determinant is that it vanishes precisely on matrices not
of maximal rank.

This property generalizes in the multidimensional setting in a completely
different manner, and it is no more governed by the hyperdeterminant.

The rank r of a multidimensional matrix A of format .k0 C 1/ � : : : � .kp C 1/

is the minimum number of decomposable summands ti D xi
0 ˝ : : : ˝ xi

n needed to
express it, that is, A D Pr

iD1 ti is minimal.
So the r th secant variety �r.P

k0 � : : : � P
kp / parametrizes multidimensional

matrices of rank r and their limits.
The problem of describing these secant varieties is widely open (for the first

properties see [5]). Even their dimension is not known in general, although it is
conjectured that it coincides with the expected value r.1 C Pr

iD1 ki / � 1 (when this
number is smaller than the dimension of the ambient space) unless a list of well-
understood cases [1]. The analogous result for symmetric multidimensional matrices
has been proved by Alexander and Hirschowitz.

The first attempt to find equations of �r.P
k0 � : : : � P

kp / is through the minors
of the flattening maps defined in Proposition 4.

Indeed Raicu proved in [28] that the ideal of �2.Pk0 � : : : � P
kp / is generated

by the 3 � 3-minors of Ci .�/, so proving a conjecture by Garcia, Stillmann and
Sturmfels.

These varieties �2 are never hypersurfaces, unless the trivial case of �2.P2 �P
2/,

which is given by the classical 3 � 3 determinant.
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The first nontrivial case is given by �i .P
2 � P

2 � P
2/, which can be described in

a uniform way for i D 1; : : : 4 by the 2i C 1-minors of the more general flattening
(Young flattening)

C0.�/W V _
0 ˝ V1 ! ^2V1 ˝ V2

for � 2 V0 ˝ V1 ˝ V2 and by the 2i C 1-minors of the analogous flattening C1.�/

and C2.�/ obtained by permutations.
For i D 4 the secant variety �4.P

2 � P
2 � P

2/ is a hypersurface in this case
det Ci .�/ are independent from i and they all give the same hypersurface of degree
9 (see [25] Sect. 3). This hypersurface was found first by Strassen in [30], with
a slightly different construction. We emphasize that this hypersurface is different
from the hyperdeterminant, which has degree 36, constructed in Example 5.

If Ai are the three slices of A, the matrix of C0.�/ can be depicted as

2

4
0 A2 �A1

�A2 0 A0

A1 �A0 0

3

5 :

When A is symmetric, Ci .�/ are independent from i and appear to be
skew-symmetric. In this case the pfaffians of order 2i C 2 of C0.�/ define the i th
secant variety of the Veronese variety given by the 3-embedding of P2 in P.S3

C
3/.

For i D 3 we get the Aronhold invariant of degree 4 which is the equation of the
orbit of the Fermat cubic (see [20]) that we encountered in Sect. 8.

11 Open Problems

There are a lot of interesting (and difficult) open problems on the subject, starting
from looking for equations of secant varieties to the Segre varieties.

Here we propose three problems on the hyperdeterminant that seem tractable
(at least the first two) and interesting to me.

Problem 1. Find the equations for the dual varieties to Segre varieties when they
are not hypersurfaces, so when k0 D maxj kj >

P
ki (when they are hypersurfaces

the single equation is the hyperdeterminant).
Let us see the example of format 4�2�2. In this case the dual variety to P

3�P
1�

P
1 has codimension 2, by Theorem 3 (i). By Theorem 1 the dual variety consists of

matrices which are not 0-degenerate. One sees that if A has format 4 � 2 � 2, the
multilinear system QAWC2 ˝ C

2 ! C
4 has a nontrivial solution if and only if the

following two conditions hold:

(i) The hyperdeterminant of every 3 � 2 � 2 submatrix of A vanishes.
(ii) det. QA/ D 0 where QA is seen as a 4 � 4 matrix.

So the equations in (i) and (ii) give the answer to this problem for the format 4�2�2.
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Note that the equations of the dual of P
k0 � : : : � P

kp when k0 >
P

ki

must contain all the hyperdeterminants of submatrices of boundary format (with
k0

0 D P
ki ).

Problem 2. Compute the irreducible factors of the hyperdeterminant of a skew-
symmetric tensor in ^d

C
n � ˝d

C
n.

This means to extend Oeding Theorem 7 to the skew-symmetric case. In this case
even in the square case the classical determinant is not irreducible; indeed it is the
square of the pfaffian. The dual varieties to Grassmann varieties will play into the
game.

Problem 3. This question is a bit more vague. The definition of hyperdeterminant
of boundary format with the linear map @A (compare with Theorem 4 and Corol-
lary 5) can be generalized to other cases where the codimension of the degenerate
matrices is bigger than one. Specifically, if k0; : : : ; kp are nonnegative integers

satisfying k0 D Pp
iD1 ki then we denote again mj D Pj �1

iD1 ki with the convention
m1 D 0, like in Sect. 6.

Assume we have vector spaces V0; : : : ; Vp and a positive integer q such that
dim V0 D q.k0 C 1/; dim V1 D q.k1 C 1/ and dim Vi D .ki C 1/ for i D 2; : : : ; p.
Then the vector spaces V0 ˝ Sm1V1 ˝ : : : ˝ Smp Vp and Sm1C1V1 ˝ : : : ˝ SmpC1Vp

still have the same dimension, and there is an analogous invariant given by det.@A/.
The question is to study the properties of this invariant.

Although this construction can seem artificious, it found an application in the
first case q D p D 2, leading to the proof [7] that the moduli space of instanton
bundles on P

3 is affine.
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Commutative Algebra of Subspace
and Hyperplane Arrangements

Hal Schenck and Jessica Sidman

1 Introduction

Let V be a vector space of dimension n over a field K and let X1; : : : ; Xd be linear
subspaces of V defined by ideals I1; : : : ; Id : Then X D X1[� � �[Xd is a (reducible)
variety with ideal I D I1 \ � � � \ Id � S D KŒx1; : : : ; xn� in the affine space V

or its projectivization P D P.V /: We call the variety X an arrangement of linear
subspaces, or subspace arrangement.

Arrangements of linear subspaces have connections with a wealth of
mathematical objects in areas as diverse as topology, invariant theory, combina-
torics, algebraic geometry, and statistics. Arrangements have also recently played
a prominent role in applied mathematics, appearing as key players in data mining
and generalized principal component analysis [59], in the study of the topological
complexity of robot motion planning [21, 44], and in the study of configuration
spaces and the Gaudin model of mathematical physics [98]. We give an overview
of a number of problems having close connections to commutative algebra and
algebraic geometry; the field is very broad, so this survey is selective.

This chapter has two main sections. The first focuses on questions about the ideal
of an arrangement of linear subspaces. Although it is just the intersection of a finite
collection of ideals generated by linear forms, little was known about even the most
basic numerical invariants of a general such ideal until about 10 years ago. Indeed,
as recently as 1999, not even a bound on the degrees of the minimal generators of
the ideal of an arrangement of d linear spaces was known [29].
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The second section focuses on hyperplane arrangements. The ideal of a
hyperplane arrangement is principal, so interesting results relating commuta-
tive algebra and hyperplane arrangements concern ancillary algebraic structures
associated to them.

We give an overview of what can be said about the ideals of arbitrary subspace
arrangements in Sect. 2.1. We take the point of view that interesting open problems
about subspace arrangements are in one of two directions. In the first, the numerical
invariants of sufficiently generic subspace arrangements are studied as in Sect. 2.2.
By contrast, Sect. 2.3 concerns special subspace arrangements whose ideals are
amenable to combinatorial constructions. We set the stage for this discussion in
Sect. 2.3.1 by briefly highlighting some methods for studying coordinate subspace
arrangements which are defined by square-free monomial ideals. We then describe
how subspace arrangements whose ideals are generated by products of binomial
linear forms have come up in many interesting contexts and pose several questions
regarding them in Sect. 2.3.2. Finally, we discuss arrangements of lines called graph
curves (Sect. 2.3.3) and their higher-dimensional analogs (Sect. 2.3.4).

The study of hyperplane arrangements is more well developed than that of
arbitrary subspace arrangements, and there are several open questions with long
histories. We begin with a quick overview of the area and then focus on three
major open questions. In Sect. 3.1 we study the module of derivations tangent to
the arrangement and Terao’s famous conjecture that freeness of this module depends
only on combinatorics. In Sect. 3.2, we introduce the Orlik–Solomon algebra, which
is the cohomology ring of the arrangement complement, and we close in Sect. 3.3
with the Orlik–Terao algebra and connections to classical problems on fatpoints and
blowups of P2.

2 Subspace Arrangements

2.1 The Ideal of a Subspace Arrangement

If we wish to understand the ideals of subspace arrangements it is natural to begin
by discussing numerical invariants such as the degrees of minimal generators,
(Castelnuovo–Mumford) regularity, and the Hilbert function. In this section we
will survey what is known generally and then turn to the consideration of subspace
arrangements satisfying genericity conditions that simplify the analysis of the ideal
in Sect. 2.2.

For a survey of results on free resolutions of the ideal of a subspace arrangement
see [89]. There is another interesting line of inquiry relating the Cohen–Macaulay
property and subspace arrangements. See, for example, [46, 78, 103].

A natural first approximation to understanding the complexity of an ideal is to
bound the degrees of its minimal generators.
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Conjecture 1 (Derksen [29]). If I is the ideal of an arrangement of d linear
subspaces, then I is generated by homogeneous forms of degree less than or equal
to d .

The motivation for Conjecture 1 came from invariant theory. In [29], Derksen
showed that if G is a reductive linear group acting on a finite-dimensional vector
space V then the generators of the ideal of a certain subspace arrangement give rise
to generators of the invariant ring KŒV �G: This construction would close the so-
called “Noether gap,” providing a bound on the degrees of the generators of KŒV �G

regardless of the characteristic of K if the degrees of the generators of the ideal of
the subspace arrangement were all less than or equal to d .

Sturmfels extended the conjecture in a natural way, asking if the regularity of I is
bounded by d: Derksen and the second author proved the following theorem using
an idea of Conca and Herzog who were studying the regularity of products of ideals
generated by linear forms in [22].

Theorem 2 (Derksen–Sidman [31, 87]). The ideal of an arrangement of d linear
spaces has regularity bounded by d:

The Conjecture 1 follows as a corollary. Moreover, the regularity bound is sharp.

Example 3. Suppose that I is the ideal of d points that all lie on a line L in P
2:

There must be a minimal generator f of I that does not contain L, as the line is not
in the arrangement. But any such polynomial f vanishes at d points on the line L

so must have at least degree d .

However, it is easy to find examples of arrangements with regularity much
lower than the bound in Theorem 2. In fact, arrangements whose ideals have
regularity 2 are characterized combinatorially in [38] by associating to each
subspace arrangement X a weighted graph GX D .V; E/. There is a vertex vi in
V for each subspace Xi with weight w.vi / D 1 C dim Xi , and an edge e 2 E with
weight w.e/ D 1 C dim.Xi \ Xj / between vi and vj if Xi \ Xj is nonempty.
If �w.G/ D P

v2V w.v/ �P
e2E w.e/; then we have:

Theorem 4 (Theorem 5.1 in [38]). Let K be an algebraically closed field. A sub-
space arrangement X is 2-regular if and only if GX has a spanning forest F with
�w.F / D 1 C dim.spanX/:

2.2 Numerical Invariants of Generic Subspace Arrangements

To go beyond Theorem 2 we need to put additional restrictions on the subspace
arrangements that we consider. In this section we discuss what can be said for
generic arrangements. Definition 5 describes one way of characterizing genericity.
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Definition 5 (Derksen [30]). If A � Œd �; let cA WD codim \i2AXi (where ci WD
cfig D codim Xi ). We say that the subspaces in X have transverse intersections
if cA D minfn; j Pi2A ci jg for all A � Œd �. In [22] arrangements satisfying this
condition are said to be linearly general.

If Definition 5 is satisfied, then the ideal I and the products of ideal I1 � � � Id

define the same projective variety scheme theoretically.

Theorem 6 (Proposition 3.4 in [22]). Define J D I1 � � � Id . If the subspaces in the
arrangement defined by I D I1 \ : : : \ Id intersect transversally then the ideals I

and J agree in degrees � d:

Conca and Herzog prove Theorem 6 by first describing the primary
decomposition of an arbitrary product of ideals generated by linear forms, and
then specializing to the case in which the ideals define subspaces that intersect
transversally. The point is that the only embedded prime associated to J is the
irrelevant maximal ideal. Thus, the saturation of J is equal to I: The result also
follows from the proof of Corollary 4.7 in [30], which shows the equality of the
Hilbert functions of I and J in degrees d and higher.

This simplifies the analysis of I in high degrees because the numerical invariants
of J are completely combinatorial and may be derived from the codimensions of
the nontrivial intersections of subsets of the subspaces.

Theorem 7 (Corollary 4.8 in [30]). The Hilbert function of J D I1 � � � Id is given
by

hJ .m/ D
X

A�Œd �;cA<n

.�1/jAj
 

m C n � 1 � cA

n � 1 � cA

!

:

Of course, if the subspaces in I meet transversally, hI .m/ D hJ .m/ for all
m � d; and this gives a formula for the Hilbert function of I in degree at least
d: Derksen also gives a formula for the Hilbert series of J and notes that as J has
regularity d and is generated by forms of degree d , it must have a linear minimal
free resolution. Therefore, the graded Betti numbers of J are always combinatorial
invariants of any subspace arrangement.

Arrangements whose subspaces meet transversally are the natural generalization
of sets of generic points or lines. For both generic sets of points and generic sets
of lines in P

n, it is known that the Hilbert function and Hilbert polynomial agree
in all degrees m for which the value of the Hilbert polynomial is less than

�
nCm

m

�
.

(For lines this is due to [51].) Work in [17] is motivated by the following question:

Question 8. Let X be a subspace arrangement with ideal I and let HI denote the
Hilbert polynomial of I: If the subspaces in X meet transversally, is hI .m/ D
minf�nCm

m

�
; HI .m/g for all m‹

First steps in understanding the Hilbert function of these generic subspace
arrangements in low degrees are given in [17]. The Hilbert function and polynomial
of configurations of lines in “grids” is given in [49].
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2.3 Arrangements Defined by Products of Linear Forms

If I is the ideal of a subspace arrangement it may be difficult to tell from looking
at generators alone that V.I / is an arrangement of linear subspaces. However, if
the generators of I factor completely into products of linear forms, then it is easy
to see that all of the irreducible components of V.I / must be linear. When this
phenomenon occurs it often indicates that the combinatorics of the arrangement is
particularly rich, and in some cases it may be used to understand the ideal and the
invariants discussed in Sect. 2.1.

In Sect. 2.3.1, we begin by recalling some basic facts about Stanley–Reisner
theory which gives a dictionary between ideals of coordinate subspace arrange-
ments, which are generated by square-free monomials, and simplicial complexes.
We discuss some alternatives to Stanley–Reisner theory in the study of square-free
monomial ideals and discuss ideals generated by products of linear forms that are
binomials in Sect. 2.3.2.

2.3.1 Coordinate Subspace Arrangements

Let S D KŒx1; : : : ; xn�: If the ideals I1; : : : ; Id are generated by subsets of the
variables in the ring S , we say that the corresponding arrangement X is a coordinate
or Boolean subspace arrangement. The intersection I D I1 \� � �\Id is generated by
square-free monomials. Thus, we see that both the ideals of the individual subspaces
and the generators of the ideal of the arrangement may be specified by giving subsets
of variables. Hence, there are many possible combinatorial constructions that we
might use to describe the generators and minimal primes of I: We will discuss
Stanley–Reisner rings, edge ideals, and facet ideals.

Note that the matrices in a minimal free graded resolution of I have only
square-free monomials as nonzero entries, so the nonzero Betti numbers live in
square-free multidegrees. If we let deg xi D ei ; the i th standard basis element in
R

n, then the minimal free graded resolution of I is N
n graded, with multigraded

Betti numbers ˇi;a for a 2 N
n satisfying

P
jajDj ˇi;a D ˇi;j : Thus, we might suspect

that the graded Betti numbers are also purely combinatorial objects. However, they
may depend on the characteristic of the ground field. As we shall see in Hochster’s
theorem below, the graded Betti numbers may be computed using combinatorics
once the ground field is fixed.

Stanley–Reisner Rings The most general, well-developed, and widely known
program for studying square-free monomial ideals is the theory of Stanley–Reisner
ideals. From this point of view, monomial generators correspond to the nonfaces of
a simplicial complex �, and the topology of � can be used to describe numerical
invariants of I .

To describe the correspondence more precisely, we set some notation. Let Œn� D
f1; : : : ; ng: If � D fi1; : : : ; ikg � Œn�; then � D Œn�n� . We use the shorthand x� WD
xi1 � � � xik for monomials and for ideals we let I� WD hxi1 ; : : : ; xik i:
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Given a simplicial complex � with vertex set Œn�, the corresponding Stanley–
Reisner ideal I� D hx�1; : : : ; x�j i; where �1; : : : ; �j are the minimal nonfaces of �:

Alternatively, if we are given an ideal I D hx�1; : : : ; x�j i, and I D I�1 \ � � � \ I�k
,

where I�i 6� I�j for all i and j we may define � to be the simplicial complex with
vertex set Œn� whose maximal faces are �1; : : : ; �k: The subspaces in the arrangement
defined by I� are given by the ideals I�i :

Hochster [53] showed that the multigraded Betti numbers may be computed
combinatorially, once the characteristic of the field is fixed. We give a reinterpre-
tation of the theorem due to Bayer and Charalambous [9]. To state the theorem we
introduce two additional concepts. The Alexander dual of a simplicial complex � is
a simplicial complex �� D f� j � … �g. If � is a face in � we define the link of �

to be

link�.�/ D f� 2 � j � [ � 2 �; � \ � D ;g:

Theorem 9 (Hochster [53], Theorem 2.4 [9]). If I D I� then

ˇi;� .S=I / D dimK
QHi�1.link��.�/IK/:

We can also use the graded Betti numbers of a Stanley–Reisner ideal to
compute topological invariants of the complement of a real or complex subspace
arrangement, which is a classical problem. See [11] for an introduction. Let V� �
R

n denote the real coordinate subspace arrangement associated to the Stanley–
Reisner ideal I�: Peeva et al. [72] use the lcm-lattice of least common multiples of
monomials ordered by divisibility to show that the cohomology of the complement
M�, of V�, is given by the graded Betti numbers of S=I�� .

Theorem 10 (Theorem 3.1 in [72]). Let � be a simplicial complex on Œn�. If S D
KŒx1; : : : ; xn� then

dim QH i .M�IK/ D
X

j �0

ˇj;iCj .S=I��/:

Stanley–Reisner rings are also closely connected to toric varieties—in [10],
Bifet, De Concini, and Procesi prove the equivariant cohomology ring of a smooth,
complete toric variety is isomorphic (as an algebra) to a Stanley–Reisner ring, and
there are analogous results [15,24,54] in the non-equivariant setting. See Sect. 12.4
of [23] for an expository account.

Remark 11. Under suitable hypotheses, Goresky and Macpherson [47] have shown
that the equivariant cohomology ring of a complex projective algebraic variety with
a torus action is isomorphic to the coordinate ring of a subspace arrangement. In [60]
examples of the subspace arrangements that arise in the study of Springer fibers are
computed. It would be interesting to try to understand additional examples explicitly
and to study the combinatorics and commutative algebra of the arrangements that
arise from this circle of ideas.
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Edge Ideals and Facet Ideals If the generators of I are all square-free quadratic
monomial ideals, then I may be interpreted as the edge ideal I.G/ of a graph G

with vertex set Œn�. There is an edge between vertices i and j in G if and only if the
monomial xi xj is in I: See [100] by Villareal for foundational material. Thinking of
a graph as a 1-dimensional simplicial complex, Faridi [41] generalized this notion
by defining the facet ideal F.�/ associated to an arbitrary simplicial complex � to
be the ideal generated by x� for all facets � in �:

To see the subspaces in V.F.�//, we need the primary decomposition of F.�/,
which is given in terms of minimal vertex covers in �: We say that a set � � V is
a vertex cover in � if every facet in � is incident to a vertex in �: A vertex cover is
minimal if no proper subset is a vertex cover.

Theorem 12 (Proposition 1 in [41] and Proposition 6.1.16 in [100] for edge
ideals). If � is a simplicial complex and C.�/ is the set of all minimal vertex
covers in �, then

I.�/ D \�2C.�/I� :

As graded Betti numbers of monomial ideals may depend on the ground field,
in general they cannot be computed solely in terms of combinatorics. However,
there are situations in which the minimal resolution has a nice description. If G is
a graph, define the complement Gc to be the graph on the same vertex set, with an
edge between vertices i and j if and only if there is no edge between them in G:

Theorem 13 (Fröberg [45]). The edge ideal of a graph G has a linear resolution
if and only if every minimal cycle in Gc has length 3.

There is a large dictionary of results that translates results about edge ideals into
results about graphs and vice versa. Thus the stage is set for proving (or reproving)
big results from one category in terms of the other.

2.3.2 Arrangements Defined by Binomial Linear Forms

We saw that there are various ways of associating graphs and simplicial complexes
to the ideals of coordinate subspace arrangements and that these associations
allow communication between the combinatorial and algebraic perspectives. In this
section we see that the combinatorics of subspace arrangements defined by binomial
linear forms is also very rich and that there are many open questions regarding these
arrangements.

We state our results in terms of partitions of the set Œn� D f1; : : : ; ng following
[13]. We say that a partition � of Œn� has shape � D .�1; : : : ; �k/ where the �i are
weakly decreasing if its blocks are arranged in weakly decreasing order by size and
the i th block has size �i . If i and j are in Œn�, then i �� j if they are in the same
block of � . To each partition � we associate the ideal of a linear subspace I� D
hxi � xj j i �� j i and a product of linear forms f� D …i�� j;i<j .xi � xj /: If we
fix a shape � then X� is the variety defined by I� D \� I�; where the intersection
is over all � with shape �: The varieties X� also appear in the survey on subspace
arrangements by Björner [11].
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A priori, the ideal I� need not be generated by products of binomials, but this is
indeed the case in Theorems 14 and 15. These results inspired the work in [13] in
which the duality between them was formalized and extended.

Theorem 14 (Li–Li [56]). Let � D .p; 1; : : : ; 1/ so that X� � K
n is the set of all

subspaces of Kn in which at most p-coordinates are equal. Then I� is generated by
polynomials of the form f� where � has p � 1 blocks.

Theorem 15 (Lovász [58]). Let X D [X� where � has p � 1 blocks. Then I.X/

is generated by polynomials of the form f� and � has shape .p; 1; : : : ; 1/:

The original motivation for both of these results came from graph theory. Given
a graph G on vertex set Œn� define fG D …i<j;fi;j g2G.xi � xj /: A subset of the
vertices of a graph G is an independence set if no two are joined by an edge.
The independence number of a graph G is the maximum size of an independence
set. Then a subset U of Œn� is an independence set if and only if the polynomial fG

is nonzero when all of the variables xi with i 2 U are set equal to each other.

Corollary 16 (Li–Li [56]). G has independence number at most p C 1 if and only
if fG is in the ideal in Theorem 14.

We say that a graph on Œn� is p-colorable if its vertices can be partitioned into
p blocks having the property that no block contains a pair of vertices joined by
an edge.

Corollary 17 (Lovász [58]). A graph G fails to be .p � 1/ colorable if and only if
fG is in the ideal given in Theorem 15.

The varieties in Theorems 14 and 15 have connections to representation theory.
The symmetric group Sn acts on the intersection lattice L of the braid arrangement
V.…i<j .xi � xj // by permuting the coordinates of Kn, and the orbits of Sn on L

correspond to X� where � is a partition of Œn�. The arrangement in Theorem 14 is
an orbit and the arrangement in Theorem 15 is a union of orbits. Up to sign the
polynomials f� are the Garnir polynomials of [70] which generate Specht modules
that are indecomposable representations of the symmetric group if charK ¤ 2:

Arrangements X� where � D .m; : : : ; m; 1; : : : ; 1/ appear in Theorem 5.10 [40]
connected with a filtration of a certain module over the rational Cherednik algebra.

Theorems 14 and 15 were generalized to arrangements in the intersection lattices
of other reflection groups.

Theorem 18 (Sidman [88]). Let X � C
n be the set of all points for which

the mth power of at most p-coordinates are equal. Then I.X/ is generated by
…i��j;i<j .xm

i � xm
j / and � has p � 1 blocks.

Theorem 19 (Sidman [88]). Let X � C
n be the set of all subspaces of Cn in

which the mth powers of at least p-coordinates are equal. Then I.X/ is generated
by polynomials of the form …i��j;i<j .xm

i � xm
j / and � has shape .p C 1; 1; : : : ; 1/:
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There are many interesting questions in commutative algebra related to arrange-
ments such as these. As the ideals are not monomial ideals, determining a Gröbner
basis is an interesting problem. In [25] De Loera showed that the generators given
in Theorem 15 form a Gröbner basis with respect to any term ordering.

Problem 20. Let X be an arrangement that is a union of orbits in the intersection
lattice of the braid arrangement:

(1) Find generators for I.X/:

(2) Determine a universal Gröbner basis for I.X/:

(3) Compute the Gröbner fan of I.X/:

(4) Study the (nonreduced) coordinate subspace arrangements associated to
Gröbner degenerations of I.X/. Are there Gröbner degenerations that are
square-free monomial ideals?

(5) Compute the Hilbert function and Hilbert polynomial of S=I.X/:

(6) Compute the graded Betti numbers of S=I.X/:

(7) Construct a (minimal) free resolution of the I.X/: Will an analog of the
lcm-lattice construction of [72] be possible?

Work of Haiman and Woo [50] contains partial progress towards answering
questions (1), (2), and (5).

2.3.3 Graph Curves

In this section we discuss subspace arrangements that are unions of lines whose
pairwise intersections are determined by the data of a graph. We begin by intro-
ducing abstract graph curves which are unions of projective lines that give rise to
subspace arrangements when they are embedded in P

n so that each projective line
is a linear subspace.

Definition 21. Let G D .V; E/ be a graph on Œd � in which each vertex has degree
less than or equal to three. The abstract graph curve associated to G, C.G/, is
defined to be a union of projective lines Lv, for v 2 V in which all singularities are
nodes. The line Lv intersects Lu in a node if and only if there is an edge between u
and v: We may assume that the lines intersect at 0; 1; and 1, as the automorphism
group of P1 can take any three points to these three.

The foundational work on graph curves appeared in [8, 69]. We highlight their
results which connect to the theme of our paper—combinatorial descriptions and
numerical invariants of ideals.

A given abstract curve may be embedded into projective space in many different
ways and thus may give rise to many different subspace arrangements. Since the
degree and genus of the image of the embedding are constant after we fix G, the
Hilbert polynomial is also constant. However, the more refined numerical invariants,
the graded Betti numbers may vary with the embedding.
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It is possible to impose a numerical condition on the graph G that gives us a
“canonical” ring to study. If each vertex of G has degree exactly three, then the
genus of C.G/ is given by g D d

2
C1 and C.G/ is the union 2g�2 lines. Theorem 22

describes when the canonical divisor class gives an embedding of trivalent graph
curves in terms of its topology. We say that G is k-connected if the removal of
any set of edges of size less than k does not increase the number of its connected
components.

Theorem 22 (Proposition 2.5 [8]). The canonical series on a trivalent graph
C.G/ is very ample if and only if G is 3-connected.

Bayer and Eisenbud were interested in Green’s conjecture for canonical curves
which relates the shape of the graded Betti diagram of the canonical ring of a
curve to properties of line bundles on C . Since each component has three nodes,
the automorphism group of C.G/ is finite, and C.G/ � P

g�1 is a stable curve.
The idea was that if Green’s conjecture could be proven for the “special” class of
graph curves, then this would shed light on the result for general curves. Green’s
conjecture is stated in terms of the Clifford index of a smooth curve C .

Definition 23. If C is a smooth curve of genus g and L is a line bundle on C with
h0.L/; h1.L/ � 2; then c.L/ D deg L�2.h0.L/�1/ and the Clifford index, cliff C;

is the minimum value of c.L/ over all such L:

Conjecture 24 ([34, 48]). Assume that K is algebraically closed and charK ¤ 2:

Let C be a smooth nonhyperelliptic curve of genus g canonically embedded in Pg�1:

Then the length of the 2-linear strand in the minimal free resolution of S=I.C / D
g � 2 � cliff C:

For trivalent graph curves Bayer and Eisenbud were able to give explicit
monomial ideal generators in Proposition 3.1 and showed that if G is also 3-
connected then C.G/ is arithmetically Cohen–Macaulay. To approach Green’s
conjecture they needed to extend the definition of the Clifford index to graph curves.

Definition 25. Let G be a connected graph in which each vertex has degree � 3:

Let fG be the minimum of all j!j such that ! � E and Gn! has two connected
components that each have nontrivial homology. The combinatorial Clifford index
of G is cliff G D fG � 2:

Bayer and Eisenbud proved Green’s conjecture for planar graphs.

Theorem 26 (Proposition 7.3 in [8]). If G is a trivalent planar graph then the
length of the 2-linear strand in the minimal free resolution of the homogeneous
coordinate ring of C.G/ in its canonical embedding is g � 2 � cliff G:

Bayer and Eisenbud stated many problems about graph curves at the end of
their paper, most of which are still open. In particular, they asked what a higher-
dimensional analog of a graph curve would look like. In Sect. 2.3.4 we suggest one
possibility (which likely does not agree with what they had in mind).
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Graph curves have appeared in connection to other ideas in algebraic geometry.
Some questions focus more on describing the line bundles on C.G/ and Brill–
Noether theory than on explicitly algebraic matters [6, 7]. The surjectivity of the
Gauss map for general curves of genus 10 or � 12 was proved via degenerations to
graph curves in [19]. (See also [62, 63].) Ciliberto and Miranda related planar map
colorings to the existence of certain 1-forms on C.G/ in [18].

2.3.4 Secant Varieties of Graph Curves

If X is a variety in P
n, its kth secant variety †k is defined to be the closure of the

set of all k-planes that meet X in at least k C 1 points. Thus, the secant variety of a
graph curve is a higher-dimensional subspace arrangement in which the subspaces
in the arrangement are obtained by taking the linear span of subsets of lines in the
graph curve. In this section we discuss results about high-degree graph curves and
pose several open questions about graph curves and their secant varieties.

Work of Vermeire [99] and Sidman–Vermeire [90] suggests that the graded Betti
diagrams of the (higher) secant varieties of smooth high-degree curves follow a
regular pattern and that the theorems that we know for curves are special cases of this
general picture. Noting that the secant varieties of graph curves are equidimensional
subspace arrangements, Eisenbud and Stillman asked if a similar picture would hold
for “high-degree” graph curves.

With this motivation, high-degree graph curves were investigated by Burnham
et al. [16]. If C.G/ is a graph curve and G has � 2g C 2 vertices, then there is
no canonical embedding of C.G/ as an arrangement of lines. However, in [16] the
authors construct an embedding of C.G/ into P

d�g whose ideal has an explicit
description in terms of products of monomials and binomial linear forms (Theorem
1.7 in [16]).

Cycles in G impose constraints on the embeddings of C.G/ that prevent the
graded Betti diagrams of high-degree graph curves from behaving like the graded
Betti diagrams of their smooth counterparts. For example, if C is a smooth curve
of degree d � 2g C 1 C p, then property Np is satisfied. However, Np fails for
C.G/ if G has girth � p C 2 (Corollary 3.3 in [16]), and it is not always possible
to construct a graph on d vertices with genus g so that d � 2g C 1 C p and girth
at least p C 2: The girth of G also constrains syzygies in the 3-linear strand of the
resolution of the first secant variety of C.G/:

Here are several open problems about graph curves and their secant varieties.

Question 27. Is there a nice combinatorial description of the secant varieties of a
graph curve? Is there a description that not only encodes the pairwise intersections
of spaces but also the entire intersection lattice?

One possibility for encoding the combinatorics of equidimensional arrangements
was given in [3] in which Abo, Kley, and Peterson use liaison to relate 2-plane
arrangements to certain smooth surfaces of general type in P

4. Two m-dimensional
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subspaces of Pn generically have intersection of dimension n � 2m; so one might
propose to record only the intersections whose dimension exceeds the expected
dimension.

Definition 28 (Definition 3.8 in [3]). If X is an arrangement of d subspaces of
dimension m in P

r , the incidence graph of X has vertex set Œd � and vertices i and j

are joined by an edge if dim Xi \ Xj > n � 2m:

As noted in Remark 3.9 of [3], the incidence graph only captures pairwise
intersections, so the triangle is the incidence graph of three 2-planes in P

4 meeting in
a line as well as three 2-planes that meet pairwise in three distinct lines. Moreover,
the incidence graph does not capture any information about the dimension of the
intersections of subspaces. The incidence graph associated to two 2-planes in P

5

that meet in a line is the same as the incidence graph associated to two 2-planes in
P

5 meeting in a point.

Question 29 (Question 4.2 in [16]). Give conditions ensuring that the secant
varieties of a graph curve have ideals generated by products of linear forms.

Problem 30 (Compare to Conjecture 4.3 in [16]). Determine the conditions
under which the kth secant variety of CG is Cohen–Macaulay and has regularity
equal to 2k C 1.

Conjecture 31 (Conjecture 4.4 in [16]). Let G be a graph with d vertices embedded
in P

n via Theorem 1.3 in [16]. If n is the girth of G, d D 2g Cp C1, and n�2 � p

then property Np fails and ˇn�2;n counts the number of cycles of length n in G:

3 Hyperplane Arrangements

The simplest class of subspace arrangements are hyperplane arrangements: every
subspace Xi D V.li / is a hyperplane. Since the ideal IX D Qd

iD1 li � S D
Sym.V �/ D KŒx1; : : : xn� is principal, rather than investigating I , the study
of hyperplane arrangements focuses on a host of subtle and intricate questions
on the geometry and topology of the complement M D V n X , where V is
a K-vector space, with K D C or R. The original motivating question was to
determine the fundamental group and cohomology ring of M . Since projectivizing
and adding the hyperplane at infinity leaves M is unchanged, henceforth we assume
the arrangement is central and essential. Central simply means that Xi D V.li /,
with li homogeneous, while essential means that after a change of coordinates, X

contains the coordinate hyperplanes V.x1/; : : : ; V.xn/; hence M 6' M 0 	 K
m.

The relationship between the projective and affine complements is easy to see:
M ' k� 	 P.M /, with the K

� factor corresponding to lines through the origin.
In keeping with the literature, in this section we write
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Fig. 1 The braid arrangement A3 � P
2 and L.A3/ � C

3

X D A D
d[

iD1

Hi � V

and assume unless noted otherwise that K D C. Orlik and Solomon [65] discovered
a beautiful combinatorial description of the cohomology ring H �.M;Z/, which
is determined entirely in terms of the intersection lattice L.A/. This lattice (in
the graded poset sense) consists of the intersections of elements of A, ordered by
reverse inclusion. The ambient vector space V D O0, rank-one elements of LA are
hyperplanes, and the origin is O1.

Example 1. The six equations xi � xj D 0, where 1 � i < j � 4, define
a hyperplane arrangement in K

4. This is difficult to visualize, but note that the
arrangement is not essential: the common intersection is W D Span.1; 1; 1; 1/.
Projecting to W ? results in an essential, central arrangement in K

3. A real version
is depicted on the left below, as a collection of lines A in P

2. The right-hand figure
depicts the intersection lattice L.A/ � K

3 (Fig. 1).

This arrangement is known as the braid arrangement; it is relevant to mathemat-
ical physics as a configuration space for non-colliding points.

The last two ingredients we need from combinatorics are the Möbius function
and Poincaré polynomial.

Definition 2. The Möbius function 	 : L.A/ �! Z is given by

	.O0/ D 1

	.t/ D �P
s<t

	.s/, if O0 < t:
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The Poincaré polynomial �.A; t/ is defined as

�.A; t/ D
X

x2L.A/

	.x/ � .�t/rank.x/:

The triple points of A3 have 	 D 2, and the double points have 	 D 1, so
�.A3; t/ D 1 C 6t C 11t2 C 6t3. With the combinatorial preliminaries in hand,
we now describe three central problems on the commutative algebra of hyperplane
arrangements.

3.1 Freeness of the Module of Derivations D.A/

The most famous open conjecture in the theory of arrangements is Terao’s conjec-
ture that the freeness of the module of derivations depends only on L.A/.

Definition 3. The module D.A/ is defined via

D.A/ D f
 2 DerK.S/j
.li / 2 hlii 8 V.li / 2 Ag:
A is said to be free if D.A/ is a free module.

Let F D
dQ

iD1

li be the defining equation for A. Since F is homogeneous, the

Euler derivation E D
nP

iD1

xi @=@xi is in D.A/. Our assumption that A is central

means that D.A/ is graded, with grading given by the coefficients of 
 , so the Euler
derivation is of degree one. In fact, as long as char.K/ D 0, the map 
 7! 
.F /

gives a surjection from D.A/ ! hF i, with kernel consisting of
nP

iD1

fi @F=@xi D 0.

Hence, we have a short exact sequence

0 �! D0.A/ �! D.A/ �! hF i �! 0;

where D0.A/ consists of syzygies on the Jacobian ideal JF of F . In particular,
D.A/ splits as D0.A/ ˚ E and is free iff D0.A/ is free. By the Hilbert–Burch
theorem, this follows iff JF is Cohen–Macaulay. In the study of singularities, Saito
[79] first formulated a local version of this: D.A/ is free if there exist derivations

1; : : : ; 
n such that the determinant of the matrix of coefficients is a nonzero
multiple of F .

Example 4. In Example 1, if instead of projecting to C
3 we keep the original

defining equations, then for k 2 f1; 2; 3; 4g,


k D
4X

iD1

xk�1
i @=@xi
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satisfies


k.xi � xj / D xk�1
i � xk�1

j 2 hxi � xj i;
and by Saito’s criterion the arrangement is free. Notice that there is a derivation of
degree zero, reflecting the fact that the arrangement is not essential. Taking the three-
dimensional projection in W ? yields an essential arrangement which is still free,
with generators in degrees 1; 2; and 3. These degrees also appear in the Poincaré
polynomial

�.A3; t/ D 1 C 6t C 11t2 C 6t3 D .1 C t/.1 C 2t/.1 C 3t/;

which is explained by Theorem 5.

Theorem 5 (Terao [95]). If D.A/ '
nL

iD1

S.�ai /, then

�.A; t/ D
Y

.1 C ai t/:

Factorization of �.A; t/ does not imply freeness: if A consists of five lines in P
2

through a point p and two lines through a point q ¤ p, such that all intersections
save at p are normal crossing, then �.A; t/ D .1 C t/.1 C 3t/2, but A is not
free. In fact, most arrangements are not free; for example, adding any line to
Example 1 results in an arrangement which is not free, unless the line connects
two points with 	 D 1. For another example, a generic arrangement with more than
n hyperplanes will have a Poincaré polynomial which does not factor, so cannot
be free. On the other hand, the arrangement consisting of the d D n coordinate
hyperplanes has L.A/ isomorphic to the Boolean lattice and is easily checked to be
free, with all generators of D.A/ of degree one. The two most interesting classes
which are known to be free are the class of reflection arrangements (the hyperplanes
are fixed by a finite reflection group) [94] and arrangements with supersolvable
intersection lattice (L.A/ has a maximal chain of modular elements) [96]. The
following question of Terao has been open for over twenty years:

Conjecture 6 (Orlik–Terao [66]). Freeness of D.A/ depends only on L.A/.

As shown by Ziegler in [111], the hypothesis that char.K/ D 0 is necessary for
this: Ziegler gives a pair of examples A1, A2 with L.A1/ ' L.A2/, where A1 is
free and A2 is not. However, the arrangements are defined over fields of different
positive characteristics. We close by discussing what is known about the conjecture
as well as giving some indications of related results.

1. L.A/ does not determine the graded Betti numbers of D.A/. An example of
Ziegler [109] shows that the graded Betti numbers of D.A/ depend on nonlinear
geometry. Consider two arrangements, each consisting of nine lines in P

2, with
six lines bounding an symmetric hexagon and three lines connecting opposite
vertices. This means there are six triple points and eighteen double points.
The behavior of D.A/ depends on if the triple points lie on a smooth conic or not.
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2. Freeness is an open condition. A result of Yuzvinsky [104] shows that freeness
is an open condition in an appropriate parameter space. For a fixed Poincaré
polynomial �.A; t/ D .1 C t/.1 C at/.1 C .d � 1 � a/t/, only a finite number
of intersection lattices can arise, and the largest number of combinatorial types
for L.A/ occurs when �.A; t/ D .1 C t/.1 C b d�1

2
ct/.1 C d d�1

2
et//. For d

odd, D0.A/ is semistable, and [80] shows that if A is not free, then D0.A/ has
generators in degree > d�1

2
and degree < d�1

2
.

3. �.A; t/ can be expressed in terms of Hilbert series. In [91], Solomon–Terao
show that there is a version of Theorem 5 which applies to all arrangements,
in the sense that �.A; t/ may be written in terms of the Hilbert series of modules
Dp.A/, which are higher-order analogs of D.A/. When A is free, these modules
are simply ƒp.D.A//, but this is not the case in general. In [64], Mustaţǎ–
Schenck give a generalization of Theorem 5 when A is locally free; further
generalizations appear in Denham–Schulze [27]. Very little is known about the
modules Dp.A/.

4. An inductive method for freeness. A key method of proving that an arrangement
is free involves an inductive operation known as deletion–restriction: fix H 2 A,
and define A0 D A n H; A00 D AjH . Then there is a left exact sequence

0 �! D.A0/.�1/
�H�! D.A/ �! D.AjH /

which is typically not right exact. However, Terao [93] shows that any two of the
following imply the third:

(1) D.A/ ' ˚n
iD1S.�bi/.

(2) D.A0/ ' S.�bn C 1/ ˚n�1
iD1 S.�bi/:

(3) D.A00/ ' ˚n�1
iD1S=H.�bi/:

5. The generalization to arrangements of curves is false. The deletion–restriction
method can be generalized to smooth plane curve arrangements [84], if the
singularities are quasihomogeneous. Terao’s conjecture turns out to be special to
the case of hyperplane arrangements: [83] exhibits a pair of arrangements of lines
and conics, with isomorphic intersection posets and only ordinary singularities,
but where one arrangement is free and the other is not. Can [84] be generalized
to hypersurface arrangements?

6. Multiarrangements. One promising new technique for attacking Conjecture 6
involves multiarrangements:

Definition 7. A multiarrangement .A; m/ consists of an arrangement A, along
with a multiplicity mi 2 N for each H 2 A:

D.A; m/ D f
 j 
.li / 2 hlmi
i i 8 V.li / 2 Ag:

In [102], Yoshinaga shows that a line arrangement A � P
2 is free if �.A; t/ D

.1C t/.1Cat/.1Cbt/ and D.AjH ; m/ ' S=H.�a/˚S=H.�b/. In [110] Ziegler
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showed these conditions are also necessary. Generalizations to higher dimension
appear in [85,101], and multiarrangement versions of Theorem 5 appear in [1,2]. In
general, even less is known about D.A; m/ than about D.A/.

3.2 Resonance Varieties and Orlik–Solomon Algebra

In [65], Orlik–Solomon show that the cohomology ring of the complement M D
C

n nSd
iD1 Hi has presentation H �.M;Z/ D V

.Zd /=I , with generators e1; : : : ; ed

in degree 1 and

I D h
X

q

.�1/q�1ei1 � � � beiq � � � eir j codim Hi1 \ � � � \ Hir < ri:

Let A denote the Orlik–Solomon algebra H �.M;Z/. While L.A/ determines A,
the fundamental group �1.M / is not determined by L.A/. A pair of conjectures
of Suciu [92] connect the LCS and Chen ranks of �1.M / to commutative algebra
and subtle combinatorics of L.A/. First, we need some definitions. Since A is a
quotient of an exterior algebra, multiplication by an element a 2 A1 gives a degree
one differential on A, yielding a cochain complex .A; a/:

.A; a/W 0 �� A0
^a

�� A1
^a

�� A2
^a

�� � � � ^a
�� A` �� 0 :

(1)

The complex .A; a/ was first studied by Aomoto in [4] and appears subsequently in
work of Esnault–Schechtman–Viehweg [39]. In [105], Yuzvinsky shows that .A; a/

is exact as long as
Pd

iD1 ai ¤ 0.

Definition 8. The resonance variety Rk.A/ consists of points a D Pn
iD1 ai ei $

.a1 W � � � W an/ in P.A1/ Š P
d�1 for which H k.A; a/ ¤ 0.

In [42], Falk introduced the concept of a neighborly partition: a partition … of A
is neighborly if, for any rank-two flat Y 2 L2.A/ and any block � of …, 	.Y / �
jY \ �j H) Y � � . Falk proved that all components of R1.A/ arise from such
partitions of subarrangements of A and conjectured that R1.A/ was a subspace
arrangement. This was proved by Cohen–Suciu [20] and Libgober–Yuzvinsky [57].

Example 9. For Example 1, since A3 is an arrangement in C
3, all four tuples are

dependent and A D ƒ.Z6/=I , where

I D h@.e1e2e3/; @.e1e5e6/; @.e2e4e6/; @.e3e4e5/; @.ei ej ekel /i
D he1 ^ e2 � e1 ^ e3 C e2 ^ e3; � � � i:
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In this example, I is actually generated by quadrics. Each triple point determines
a subarrangement and neighborly partition consisting of a single block. The partition
j14j25j36j is also neighborly, and a computation [92] shows that R1.A3/ is the
disjoint union of five lines, corresponding to the five neighborly partitions.

Recall that the LCS ranks �i .G/ of a group G are given by

�i.G/ D dim Gi =GiC1 ˝ Q; where G D G1 and GiC1 D ŒG; Gi �;

and the Chen ranks 
k.G/ are the LCS ranks of G=ŒŒG; G�; ŒG; G��. For the
fundamental group �1.M /, using results of Brieskorn [14], Kohno [55], Shelton–
Yuzvinsky [86], and Priddy [75], Peeva shows in [71] that

1Y

kD1

1

.1 � tk/�k.�1.M//
D

1X

iD0

dimQ TorA
i .Q;Q/i t

i :

In [82], Schenck–Suciu use the Bernstein–Gelfand–Gelfand correspondence to
show the 
k.�1.M // are also expressed in terms of a Tor :

X

i�2


i .�1.M //t i D
X

i�2

dimQ TorE
i .A;Q/iC1t

i : (2)

The second major commutative algebra conjecture in arrangements is

Conjecture 10 (Suciu [92]). Let hr be the number of components of R1.A/ of
dimension r . Then for k 
 0,


k.�1.M // D .k � 1/
X

r�1

hr

 
r C k � 1

k

!

:

Furthermore, if �4.�1.M // D 
4.�1.M //, then

Y

k�1

.1 � tk/�k.�1.M// D
Y

r�1

.1 � .r C 1/t/hr :

The connection to commutative algebra comes by considering the ai in (1) as
variables in a symmetric algebra R and .A; a/ as a complex of R-modules. Using
Fox calculus and a linearization technique, Cohen–Suciu [20] show that if B is the
R-module corresponding to the cokernel of the transpose of the map

A1 ^a�! A2;

then R1.A/ D V.ann.B//, and in [68], Papadima–Suciu prove that the Hilbert series
of B is

P

i�2


i t
i .
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The next step comes from a result of Eisenbud–Popescu–Yuzvinsky [37],
showing that the resolution of HomE.A; E/ is linear, and as a consequence the
complex .A; a/ of R-modules is exact, save at the last position. Let F.A/ denote
the cokernel of the last map in .A; a/. Since .A; a/ gives a free resolution of F.A/,
there is an exact sequence

0 �! Extn�1
R .F.A/; R/ �! B �! m �! 0;

and the Bernstein–Gelfand–Gelfand correspondence connects B to the TorA
i

.A;Q/iC1 in (2); [82] proves that for k 
 0,


k � .k � 1/
X

r�1

hr

 
r C k � 1

k

!

:

Proving the remaining direction of Conjecture 10 consists of determining the Hilbert
polynomial of Extn�1

R .F.A/; R/. Perhaps the most striking of the results above are
those of [37], which are proved using upper semicontinuity of Betti numbers and
Alexander duality. These methods have broad applicability, and we close with a
sketch of the proof.

Theorem 11 (Eisenbud et al. [37]). The free resolution of A� over E is linear:

� � � �! Er2.n � 2 � d/ �! Er1.n � 1 � d/ �! Er0.n � d/ �! A� ! 0;

where .1 � t/n
1P

iD0

ri t
i D .�t/d �.A; �1

t
/.

First, since the E� module structure on A� comes from the identification A� D
HomK.A;K/ and by [35], Theorem 21.1,

HomK.A;K/ Š HomE.A; E/

HomE.E= in.I /; E/ is a flat deformation of A�. Since graded Betti numbers are
upper semicontinuous under flat deformation (Theorem 3.6 of [52]), it suffices to
prove the result for HomE.E= in.I /; E/. Giving a homomorphism of E-modules
E= in.I / ! E is equivalent to giving an element a 2 E such that a � in.I / D 0;
hence

HomE.E= in.I /; E/ ' annE.in.I //:

Let J D annE.in.I //. Since we are working in E , in.I / will be square-free and
hence define an exterior Stanley–Reisner ideal.

In [32], Eagon–Reiner show that a square-free monomial ideal I� has a linear
resolution iff the Stanley–Reisner ring of the Alexander dual �� is Cohen–
Macaulay, and in [5], Aramova–Avramov–Herzog prove an exterior version of this
result. Recall that the Alexander dual �� of a simplicial complex � consists of the
complements of the nonfaces of �. To prove Theorem 11, [37] shows that in.I / and
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J are Alexander dual and applies [5]. Fix an ordering � on the hyperplanes of A.
Björner–Ziegler [12] show that in lexicographic order with ei < ej if Hi � Hj ,
in.I / consists of broken circuits, which are dependent sets with smallest element
removed.

Example 12. In Example 1, the circuits are

ff1; 2; 3g; f1; 5; 6g; f2; 4; 6g; f3; 4; 5g; fi; j; k; lgg:

Hence,

in.I / D he2 ^ e3; e5 ^ e6; e4 ^ e6; e4 ^ e5i:
Considering in.I / as the Stanley–Reisner ideal of �, the maximal faces of �� are
f1; 4; 5; 6g; f1; 2; 3; 4g; f1; 2; 3; 5g; and f1; 2; 3; 6gg; hence

I�� D he2 ^ e5 ^ e6; e2 ^ e4 ^ e6; e2 ^ e4 ^ e5; e3 ^ e5 ^ e6; e3 ^ e4 ^ e6; e3 ^ e4 ^ e5i

Lemma 13. For a simplicial complex �, I� D ann.I��/ � E .

Proof. It is easy to see [61] that the Stanley–Reisner ideal of the Alexander dual
I�� is obtained by monomializing the primary decomposition of I�. Since each
monomial xi1 � � � xik 2 I� corresponds to a prime component hxi1 ; : : : ; xik i in the
primary decomposition of I�� , every monomial in I� has at least one variable from
every monomial in I�� . In the exterior algebra, this implies that I� annihilates I�� ,
and a check shows that any monomial in I� has this form. ut
Proof. (Theorem 11) By the lemma,

in.I / D I� D annE I�� :

In [77], Provan and Billera prove that the simplicial complex associated to the
broken circuit complex of a matroid is shellable, hence Cohen–Macaulay. The result
of [5] now implies that I�� D J has linear free resolution. ut

While Theorem 11 provides the ranks in the free resolution, it would be
interesting to have a complete description of the differentials. The first two are
determined in [28].

Corollary 14 (Eisenbud et al. [37]). .A; a/ is exact except at the last step.

Proof. Apply the functor HomE.�; E/ to the free resolution of A�. Since E is
Gorenstein, injective resolutions over E are duals of free resolutions, so Theorem
11 yields an injective resolution of A. Let F.A/ be the S -module which maps to
this injective resolution. Then the Bernstein–Gelfand–Gelfand correspondence and
Theorem 3.7 of [36] imply that .A; a/ is a free resolution of F.A/. ut
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In [26], Denham–Schenck show that the higher resonance varieties have a similar
description

Rk.A/ D
[

k0	k

V.ann Extn�k0

.F.A/; S//:

Does there exist a combinatorial description of components of Rk.A/, similar to the
description of R1.A/ via neighborly partitions?

3.3 The Orlik–Terao Algebra, Nets and Multinets

The final problem on arrangements comes from a symmetric analog of the Orlik–
Solomon algebra and ties to the classical theory of nets [74].

Definition 15. Let A D [d
iD1V.li / � P

n and R D KŒy1; : : : ; yd �. For each linear
dependency ƒ D Pk

j D1 cij lij D 0, define

fƒ D
kX

j D1

cij .yi1 � � � Oyij � � � yik /;

and let I be the ideal generated by the fƒ. The Orlik–Terao algebra C.A/ D R=I ,
and the Artinian Orlik–Terao algebra AOT .A/ D C.A/=hy2

1 ; : : : ; y2
d i.

Orlik and Terao introduced the Artinian version in [67] to answer a question
posed by Aomoto and showed the Hilbert series satisfies

HS.AOT .A/; t/ D �.A; t/;

while in [97], Terao showed that the non-Artinian version satisfies

HS.C.A/; t/ D �
�
A;

t

1 � t

�
:

Let F D l1 � l2 � � � ld , and consider the rational map

P
n�1

�
F
l1

W F
l2

W � � � W F
ld

�

��������������! P
d�1 (3)

Then [83] shows that C.A/ is the coordinate ring of the closure of the image of this
map. For n D 3, let Y be the blowup of P2 at sing.A/, Ei the exceptional curves,
and consider the divisor

D D .d � 1/E0 �
X

pi 2sing.A/

	.pi /Ei

on Y . In this case, the map (3) is an isomorphism on P
2nA, blows up the intersection

points, and blows down the lines of A [81].
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Example 16. For Example 1, the resulting surface in P
5 is the intersection of the

Segre threefold †2;1 with a quadric hypersurface, and the graded Betti numbers are

Total 1 4 5 2

0 1 – – –
1 – 4 2 –
2 – – 3 2

The surface has degree

D2 D .d � 1/2 �
X

pi 2sing.A/

	.pi/
2 D 6

and has six singular points, corresponding to the contracted lines of A.

Little is known about C.A/: Proudfoot–Speyer [76] show that it is Cohen–
Macaulay and it follows that C.A/ is at most n-regular. The algebra C.A/ detects
subtle geometry invisible to the Orlik–Solomon algebra; for example, [83] shows
that C.A/ can distinguish between the two Ziegler arrangements [109] discussed
earlier.

A first question is to determine the minimal free resolution of C.A/, and [81]
makes some progress by connecting the quadratic strand to R1.A/ via factorizations
D D F C G with h0.F / D 2, so F defines a pencil. This ties in to the work
of Libgober–Yuzvinsky [57], Pereira–Yuzvinsky [73], and Yuzvinsky [106–108]
relating the classical geometry of pencils and nets to R1.A/.

Definition 17. Let 3 � k 2 Z. A k-net in P
2 is a pair .A; Z/ where A is a finite

set of distinct lines partitioned into k subsets A D Sk
iD1 Ai and Z is a finite set of

points, such that:

(1) For every i ¤ j and every L 2 Ai ; L0 2 Aj , L \ L0 2 Z

(2) For every p 2 Z and every i 2 f1; : : : ; kg, 9 a unique L 2 Ai containing Z

For a k-net, jAi j D jL \ Zj for any block Ai and line L 2 A; m D jAi j is the
order of the net. A k-net of order m is called a .k; m/-net.

Example 18. In Example 1, the partition j14j25j36j defines a .3; 2/ net. The divisor
D decomposes as

F D 2E0 �
X

	.p/D2

Ep; and G D 3E0 �
X

p2sing.A/

Ep:

Since the four triple points are not collinear, the dimension of the space of conics
through the four reduced points is two. It is easy to check that h0.G/ D 3, and it
follows from results of Eisenbud [33] that the image of Y lies on the scroll †2;1.

In [106] Yuzvinsky shows that a net must have k 2 f3; 4; 5g and that any finite
subgroup of a two-dimensional torus can be realized (the blocks can be identified as
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the multiplication table of the group) as a 3-net. In [107], Yuzvinsky shows there are
no 5-nets. The only known example of a 4-net is the Hessian arrangement (Example
6.30 of [66]) whose twelve lines are the four degenerate cubics

x3 C y3 C x3 � 3axyz D 0; with a3 D 1 or a D 1:

Conjecture 19 (Yuzvinsky [108]). The only 4-net is the Hessian.

It is known that there are no .4; m/-nets with m 2 f4; 5; 6g. In [43], Falk
and Yuzvinsky introduce the concept of a multinet, where lines may occur with
multiplicity. Multinets are much more complicated than nets, and we refer to [43]
or [108] for many open questions.
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Introduction

It helps to keep in mind that when a ring R is viewed as some set of generic functions
on a space X , its R-modules should be looked at as a kind of representations of R.
To add a measure of control in the wildness the full gadgetry of homological algebra
has to be brought in to generate various schemes of classification, say by attaching
numerical invariants to a ring or module: Krull dimension, projective dimension,
Castelnuovo–Mumford regularity, and Hilbert functions [in graded structures].
Several of these invariants arise from cohomological calculations providing metrics
that capture the complexity—sometimes the deviation from smoothness of the
ring/space. The class of objects called Cohen–Macaulay forms a paradigm for
what might be called the “good guys.” The corresponding geometric objects are
not always smooth, but their cohomology is slimmed-down when compared to the
wilder singular spaces. It is often the case that computation on them run faster.
Interestingly enough major examples of rings of invariants, long after the solution
by Nagata of Hilbert’s 14th problem, were shown by Hochster to be Cohen–
Macaulay. They are more efficiently packaged, and many geometric constructions
that hold in smooth spaces can be carried out also on them. Of obvious interest
is how such objects come about—that is, identifying processes, e.g., extensions or
modifications—leading to them. An associated problem is that of devising criteria to
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detect the presence of the property and more economically determine their invariants
without having to go through cumbersome cohomological calculations.

Probably the single major metric for these objects is their multiplicity. There
are various methods to study it, some specific to special classes of objects.
One can argue for the need for an extension of the multiplicity applied in
broader contexts. In general, the multiplicity function of algebraic geometry and
commutative algebra has wide usage in sizing up a module or an algebra. Its
drawbacks are that it ignores the lower dimensional components of the structure
and does not behave too well with respect to hyperplane sections. To account for the
components, Bayer and Mumford [1] introduced the arithmetic degree. To account
for a fuller behavior of hyperplane sections, extended degrees were introduced.
They all coincide on Cohen–Macaulay rings and algebras. Unlike multiplicities,
that have a combinatorial foundation, extended degrees are both combinatorial and
very homological. The need to express local behavior in global terms presents many
technical challenges for their computation.

Let .R;m/ be a Noetherian local ring (or a Noetherian graded algebra) and let
M.R/ be the category of finitely generated R-modules (or the appropriate category
of graded modules). A degree function is simply a numerical function

d W M.R/ 7! N:

The more interesting of them initialize on modules of finite length, are additive on
certain short exact sequences, and have mechanisms that control how the functions
behave under generic hyperplane sections. Some of these functions are classical
degree (multiplicity) and Castelnuovo–Mumford regularity. Most degree functions d
are derived from the leading coefficients of Hilbert polynomials of certain filtrations.
Refinements involve assembling d by adding several of these coefficients, so that a
value such as d.A/ may capture several elements of the structure of A.

The most demanding requirement on these functions are those regarding their
behavior with respect to generic hyperplane sections. When A has positive depth
and h 2 R is a generic hyperplane section, the comparison

d.A/ $ d.A=hA/

is the principal divider among the degrees. For those directly derived from the
classical multiplicity, one always has

d.A/ � d.A=hA/:

For the other family of degrees, the cohomological multiplicities, the relationship is
reversed,

d.A/ � d.A=hA/:

It is this feature that makes them appealing as complexity benchmarks, motivating
our interest on cohomological (or extended) degrees [6], particularly on the
homological degree and bdeg (the so-called big Degs).
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1 Cohomological Degrees

Introduction

Let .R;m/ be a Noetherian local ring (or a standard graded algebra over an Artinian
local ring) of infinite residue field. We denote by M.R/ the category of finitely
generated R-module (or the corresponding category of graded R-modules).

Cohomological degrees are extensions of the multiplicity that agree with it for
Cohen–Macaulay modules. On Artinian modules they are just the ordinary length
function. In dimension one there is just one such function, but in higher dimension
there is an infinite set of them. A general class of these functions was introduced
in [6], while a prototype was defined earlier in [18]. In his thesis [9], Gunston
carried out a more formal examination of such functions in order to introduce his
own construction of a new cohomological degree.

A convenient approach to build and study the properties of these degrees is
via recursion. Therefore one of the points that must be taken care of is that of an
appropriate generic hyperplane section.

1.1 The Ordinary Multiplicity

The premier example of a degree (vector space dimension excluded) is that of the
multiplicity of a module. Let .S;m/ be a local ring and let M be a finitely generated
S-module. The Hilbert–Samuel function of M is

HM W n 7! �.M=mnC1M /; (1)

which for n � 0 is given by a polynomial:

HM .n/ D deg.M /

dŠ
nd C lower order terms:

The integer d D dim M is the dimension of M , and the integer deg.M / is its
multiplicity. Under certain conditions, deg.M / can be interpreted as the volume of
a manifold, or of a polytope.

This degree arises in the setting of finitely generated graded modules over graded
R-algebra A, for an Artinian ring R: From A D RŒz1; : : : ; zd � and M D L

n2Z Mn

(more general grading will be considered later), under fairly broad conditions the
function, referred as its Hilbert function,

HM W n 7! �.Mn/
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provides a wealth of information, with a degree coding a great deal of it. In reality
the Hilbert functions mentioned above are distinct, but are closely related, that is,
we will call either HM .n/ or X

k�n

Hk.M /

as the Hilbert function of M , or refer to the second kind as the Hilbert–Samuel
function.

One of the paths we employ to obtain new degrees from old ones is the following.
Let R be a Noetherian ring and A a finitely generated graded R-algebra. Usually we
will require that A be a standard graded algebra, but later we shall discuss more
general gradings. Suppose we are equipped with a numerical function � on the
category of finitely generated R-modules. Let M be a finitely generated graded
A-modules, to which we associate the formal power series

PM .t/ D
X

n2Z
�.Mn/tn:

Under some conditions, this function is a rational function,

PM .t/ D hM .t/
.1 � t/d

;

hM .t/ 2 ZŒt; t�1�. From this representation is extracted the Hilbert polynomial

PM .n/ D
d�1X

iD0

.�1/iei .M /

 
n C d � i � 1

d � i � 1

!

;

with the property that �.Mn/ D PM .n/ for n � 0.
There is an obvious degradation in the information about M when we move from

PM .t/ to one of the individual coefficients of PM .t/:

PM .t/ ! PM .t/ ! fe0.M /; e1.M /; : : : ; ed�1.M /g ! ei .M /:

Nevertheless it will be the ei .M /, particularly on e0.M / and e1.M /, that we look for
carriers of information on M . The reasons are both for the practicality it involves but
also justified by the surprising amount of information these coefficients may pack.

In the study of Hilbert functions associated to a filtration M D fMn; n 2 Zg of
a module M , it is common to consider the function

HM.n/ D �.M=MnC1/:

There will be (under appropriate finiteness conditions) a rational function

PM.t/ D hM.t/
.1 � t/dC1

;
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hM.t/ 2 ZŒt; t�1�. From this representation is extracted the Hilbert polynomial

PM.n/ D
dX

iD0

.�1/iei .M /

 
n C d � i

d � i

!

;

with the property that �.M=MnC1/ D PM.n/ for n � 0.

Hyperplane Sections and Hilbert Polynomials

We need rules to compute these coefficients. Typically they involve the so-called
superficial elements or filter regular elements. We keep the terminology of generic
hyperplane section, even when dealing with Samuel’s multiplicity with respect to
an m-primary ideal I and its Hilbert coefficients ei .M / D ei .I; M /. Hopefully this
usage will not lead to undue confusion. We say that h 2 I is a parameter for M , if
dimR M=hM < dimR M .

Let us begin with the following.

Lemma 1. Let .R;m/ be a Noetherian local ring, I an m-primary ideal of R, and
M a finitely generated R-module. Let h 2 I and suppose that �.0 WM h/ < 1.
Then we have the following:

(a) �.0 WM h/ � �.H0
m.M=hM //.

(b) h is a parameter for M , if dimR M > 0.
(c) If dimR M > 1 and M=hM is Cohen–Macaulay, then M is Cohen–Macaulay.

Proof. Suppose that dimR M > 0 and let p 2 SuppRM with dim R=p D dimR M .
Then

.0/ WMp h D .0/;

since p ¤ m. As dimRp Mp D 0, we get h 62 p. Hence h is a parameter for M , if
dimR M > 0.

We look at the exact sequence

0 ! .0/ WM h ! H0
m.M /

h! H0
m.M /

'! H0
m.M=hM / ! H1

m.M /
h! H1

m.M /

! H1
m.M=hM / ! � � �

of local cohomology modules derived from the exact sequence

0 ! .0/ WM h ! M
h! M ! M=hM ! 0

of R-modules. We then have

�..0/ WM h/ D �.Im '/ D �.H0
m.M=hM // � �..0/ WH1

m.M/ h/ � �.H0
m.M=hM //:
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Therefore, if dimR M > 1 and M=hM is Cohen–Macaulay, then h is M -regular,
and hence M is Cohen–Macaulay as well. ut

We will make repeated use of [7, (12.1)], [14, (22.6)], and [13, Sect. 3].

Proposition 2. Let .R;m/ be a Noetherian local ring, I an m-primary ideal of R,
and M a finitely generated R-module with r D dimR M > 0.

(a) Let h 2 I and assume that h is superficial for M with respect to I .in particular
h 2 I n mI /. Then the Hilbert coefficients of M and M=hM satisfy

ei .M / D ei .M=hM / for 0 � i < r � 1 and

er�1.M / D er�1.M=hM / C .�1/r�.0 WM h/:

(b1) Let 0 ! A ! B ! C ! 0 be an exact sequence of finitely generated R-
modules. If t D dim A < s D dim B , then ei .B/ D ei .C / for 0 � i < s � t .
In particular, if t D 0 and s � 2, then e1.B/ D e1.C /.

(b2) If 0 ! A ! B ! C ! 0 is an exact sequence of modules of the same
dimension, then

e0.B/ D e0.A/ C e0.C / and

e1.B/ � e1.A/ C e1.C /:

(c) If M is a module of dimension 1 and I D .h/ is a parameter ideal for M , then

e1.M / D ��.H0
m.M //:

(d) If M is a module of dimension 2 and I D .h; b/ is a parameter ideal for M ,
then

e1.M / D e1.M=hM / C �.0 WM h/ D ��.H0
m.M=hM // C �.0 WM h/

D ��..0/ WH1
m.M/ h/:

Proof. See Proof of Lemma 1 for assertion (d). ut

1.2 Extended Degree Functions

Throughout we suppose that the residue field k of R is infinite. Moreover, in some
of the discussions, we will assume that R is a quotient of a Gorenstein ring. Both
conditions are realized by considering two changes of rings: R ! S D RŒX�mŒX� !
bS, the latter being the completion relative to the maximal ideal.



Cohomological Degrees and Applications 673

Definition 3. If .R;m/ is a local ring, a notion of genericity on M.R/ is a function

U W fisomorphism classes of M.R/g �! fnonempty subsets of m=m2g
subject to the following conditions for each A 2 M.R/:

(i) If f � g 2 m2 then f 2 U.A/ if and only if g 2 U.A/.
(ii) The set U.A/ � m=m2 contains a nonempty Zariski-open subset.

(iii) If depth A > 0 and f 2 U.A/, then f is regular on A.

There is a similar definition for graded modules. We shall usually switch notation,
denoting the algebra by S.

Another extension is that associated to an m-primary ideal I [12]: a notion of
genericity on R with respect to I is a function

U W fisomorphism classes of M.R/g �! fnonempty subsets of I=mI g

subject to the following conditions for each A 2 M.R/:

(i) If f � g 2 mI then f 2 U.A/ if and only if g 2 U.A/.
(ii) The set U.A/ � I=mI contains a nonempty Zariski-open subset.

(iii) If depth A > 0 and f 2 U.A/, then f is regular on A.

Fixing a notion of genericity U.�/ one has the following extension of the classical
multiplicity.

Definition 4. A cohomological degree, or extended multiplicity function, is a
function

Deg.�/ W M.R/ 7! N

that satisfies the following conditions.

(i) If L D H0
m.M / is the submodule of elements of M that are annihilated by a

power of the maximal ideal and M D M=L, then

Deg.M / D Deg.M/ C �.L/; (2)

where �.�/ is the ordinary length function.
(ii) (Bertini’s rule) If M has positive depth, there is h 2 m n m2, such that

Deg.M / � Deg.M=hM /: (3)

(iii) (The calibration rule) If M is a Cohen–Macaulay module, then

Deg.M / D deg.M /; (4)

where deg.M / is the ordinary multiplicity of M .
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These functions will be referred to as big Degs. If dim R D 0, �.�/ is the unique
Deg function. For dim R D 1, the function Deg.M / D �.L/ C deg.M=L/ is the
unique extended degree. When d � 2, there are several big Degs. An explicit Deg,
for all dimensions, was introduced in [18]. We refer to h as a superficial element
relative to M and Deg. We will abuse the terminology when h is chosen to be
superficial for M=L.

To define such functions on general local rings one makes use of standard
changes of rings. For example, if .R;m/ is a Noetherian local ring and X is a set
of indeterminates, S D RŒX�mŒX� is a Noetherian local ring of dimension d , and the
flat change of rings R ! S preserves multiplicity. Its large residue field permits the
development of notions of genericity and the definition of extended degrees.

In one special case this notion becomes familiar.

Proposition 5. Let R be a local Noetherian ring and M a finitely generated R-
module of Krull dimension one. For any extended multiplicity function Deg.�/,

Deg.M / D deg.M / C �.H0
m.M // D adeg.M /:

If I is an m-primary ideal, in the proposition above, replacing deg.M / by
Samuel’s multiplicity e.I I M / would result in the extended multiplicity DegI .M /.
This usually means that M is a finitely generated graded module over a ring such as
grI .R/.

Functions with the Bertini Rule

Both the notion of genericity and the Bertini property above occur in limited ways.
We will encounter functions

T W M.R/ ! Z;

such that for certain classes of modules M satisfies

T.M=hM / � T.M /;

for generic elements h. For modules of positive Krull dimension if T is a multiplicity
function the inequality goes the other way.

1.3 General Properties of Extended Degrees

Let .R;m/ be a Noetherian local ring and let A be a standard graded algebra over R.
We are going to derive basic properties of extended degree functions defined over
R or A. Throughout Deg is an unspecified extended degree function. We examine
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some relationships between the Deg.M / of a module and some data expressed in
its projective resolution, typically the degrees and the ranks of the higher modules
of syzygies.

Remark 6. The axiom (ii) above admits variations. Let M be a finitely generated
R-module and set H D H0

m.M / and N D M=H . Suppose h is superficial with
regard N and Deg. Then we have a short exact sequence

0 ! H=hH �! M=hM �! N=hN ! 0;

and therefore

Deg.M=hM / D Deg.H=hH/ C Deg.N=hN / � Deg.H/ C Deg.N / D Deg.M /:

Cohen–Macaulay Deficiency

The following assertion is a justification for the terminology.

Proposition 7. For any extended degree Deg, the Cohen–Macaulay deficiency

I.M / D Deg.M / � deg.M /

vanishes if and only if M is Cohen–Macaulay.

Proof. We begin by observing that the axioms guarantee that Deg.M / � deg.M /.
Let us use induction on the dimension of M . If dim M � 1, the assertion holds
since Deg.M / D deg.M / C �.H0

m.M //.
If dim M � 2, L D Hm.M / and h is a superficial element for Deg.M 0/, M 0 D

M=L, then

Deg.M / D �.L/ C Deg.M 0/ � �.L/ C Deg.M 0=hM 0/:

The assumption implies that L D 0 and Deg.M 0=hM 0/ D deg.M 0/ D deg.M /.
By induction M 0 is Cohen–Macaulay and therefore M is Cohen–Macaulay as well.

ut

Betti Numbers

We first want to emphasize the control that extended degrees have over the Betti
numbers of the modules.

Theorem 8. Let M be a module of dimension d and let x D fx1; : : : ; xd g be a
superficial sequence relative to M and the extended degree Deg. Then

�.M=.x/M / � Deg.M /:
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Proof. This is a straightforward calculation. If M0 D H0
m.M / and M 0 D M=H ,

the exact sequence

0 ! H=x1H �! M=x1M �! M 0=x1M
0 ! 0

gives
Deg.M 0/ D Deg.M / � �.H/ � Deg.M / � �.H=x1H/;

and allows an easy induction on the dimension of the module. ut
We assume that .R;m; k D R=m/ is a Cohen–Macaulay local ring. For any

finitely generated R-module A, we denote by ˇR
i .A/ its i th Betti number and by

�i .A/ its i th Bass number:

ˇR
i .A/ D dimk TorR

i .k; A/

�i .A/ D dimk ExtiR.k; A/:

We recall a classical result on the Betti numbers of the residue field of R under
the change of rings R ! R=.x/, where x is a regular element of R. This is best
expressed in term of the Poincaré series of R:

P.R/ D
X

i�0

ˇR
i .k/ti :

Theorem 9 (Gulliksen–Levin [8, Corollary 3.4.2]). Let x be a regular element of
R. Put R0 D R=.x/. Then

(1) ([Tate]) If x 2 m2 then

P.R0/ D P.R/

1 � t2
:

(2) If x 2 m n m2 then

P.R0/ D P.R/

1 C t
:

Theorem 10. Let A be a finitely generated R-module. For any Degm.�/ function
and any integer i � 0,

ˇR
i .A/ � ˇR

i .k/ � Degm.A/;

�i .A/ � �i .k/ � Degm.A/;

in particular, �.A/ � Degm.A/.

Proof. If L is the submodule of A of finite support, the exact sequence

0 ! L �! A �! A0 ! 0
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gives ˇi .A/ � ˇi .L/ C ˇi .A
0/ (for simplicity we set ˇi .A/ D ˇR

i .A/). For the
summand ˇi .L/, by induction on the length of L, one has that ˇi .L/ � �.L/ˇi .k/.
For the other summand, one chooses a sufficiently generic hyperplane section (good
for both A0 and R if need be, in particular an element x 2 m n m2), and setting
R0 D R=.x/ gives

ˇi .A
0/ D ˇR0

i .A0=xA0//:

Now by an induction on the dimension of A0, one has

ˇR0

i .A0=xA0/ � ˇR0

i .k/Deg.A0=xA0/:

Finally, since Deg.A0=xA0/ � Degm.A0/, we appeal to Theorem 9(2) (saying that
ˇR0

i .k/ � ˇR
i .k/) to prove the assertion.

One can use a similar argument for �i .A/. ut
Remark 11. The bound is different when we use general Samuel multiplicities.
Consider a case of a system of parameters z D fx1; : : : ; xr ; y1; : : : ; ysg, r C s D
dim A, where xi 2 m2 and the yj form a subset of a minimal set of generators of m.
We leave as an exercise the proof that

P.A/ D
X

i�0

ˇR
i .A/ti � Degz.A/

P.R/

.1 � t2/r
:

2 Degs and Castelnuovo–Mumford Regularity

Introduction

This is one of most useful of the degree functions and has excellent treatments in
[7]. It has several equivalent formulations, one of which is the following: Let R D
kŒx1; : : : ; xd � be a ring of polynomials over the field k with the standard grading,
and let A be a finitely generated graded R-module with a minimal graded resolution

0 ! Fn �! Fn�1 �! � � � �! F1 �! F0 ! 0;

Fj D
M

j

RŒ�aij �:

Then reg.�/ is defined by (see below for a more precise formulation)

reg.A/ D supfai;j � ig:
Before we point out a more abstract formulation of the Castelnuovo–Mumford

regularity, or simply regularity, one of its important properties shows up: the
Hilbert–Poincaré series of A,
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PA.t/ D
P

ij .�1/j taij

.1 � t/d
;

encodes the Hilbert function HA.t/ and Hilbert polynomial PA.t/, and from the
expression for PA.t/, one has

HA.n/ D PA.n/; n � reg.A/:

Another use of regularity is for the estimation of various indices attached to
algebraic structures. Consider for instance a standard graded algebra A over the
infinite field k. If dim A D d , by Noether Normalization, there are subalgebras,
B D kŒz1; : : : ; zd �, zi 2 A1, d D dim A, such that A is finite over B. This implies
that

AnC1 D .z1; : : : ; zd /An:

The smallest such degree n is called the reduction number of A relative to B,
redB.A/. Its value may vary with the choice of B, but the inequality

redB.A/ � reg.A/

will always hold.

Cohomological Formulation

Let R D L
n�0 Rn D R0ŒR1� be a finitely generated graded algebra over the

Noetherian ring R0. For any graded R-module F , define

˛.F / D
�

supfn j Fn ¤ 0g if F ¤ 0;

�1 if F D 0:

Let R D L
n�0 Rn be a standard graded ring of Krull dimension d with irrelevant

maximal ideal M D .m; RC/ (note that .R0;m/ is a local ring), and let E be a
finitely generated graded R-module. Some local cohomology modules Hi

J .E/ of E

often give rise to graded modules with ˛.Hi
J .E// < 1. This occurs, for instance,

when J D RC or J D M . This fact gives rise to several numerical measures of the
cohomology of E .

Definition 1. For any finitely generated graded R-module F , and for each integer
i � 0, the integer

ai .F / D ˛.Hi
M .F //

is the i th a-invariant of F .

We shall also make use of the following complementary notion.
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Definition 2. For any finitely generated graded R-module F , and for each integer
i � 0, the integer

ai .F / D ˛.Hi
RC

.F //

is the i th a-invariant of F .

By abuse of terminology, if F has Krull dimension d , we shall refer to ad .F / as
simply the a-invariant of F . In the case F D R, if !R is the canonical module of R,
by local duality it follows that

a.R/ D � inf f i j .!R/i ¤ 0 g: (5)

The ai -invariants are usually assembled into the Castelnuovo–Mumford regular-
ity of F

reg.F / D supfai .F / C i j i � 0g:

2.1 Basic Comparisons

The role of the regularity in the connection between the Hilbert series and the Hilbert
polynomial of modules over polynomial rings was already observed. The following
is more precise and general [2, Theorem 4.4.3].

Theorem 3. Let R be a local Artinian ring, A a standard graded algebra over R,
and M a finitely generated graded A-module. Then

HM .n/ � PM .n/ D
X

j �0

.�1/j �.Hj

AC

.M /n/;

in particular HM .n/ D PM .n/ for n > reg.M /.

2.2 Hyperplane Sections

We briefly describe the behavior of reg.�/ with regard to some exact sequences.

Proposition 4. Let R be a standard graded algebra, and let

0 ! A �! B �! C ! 0

be an exact sequence of finitely generated R-modules .and homogeneous homomor-
phisms/, then

reg.B/ � reg.A/ C reg.C /:
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Similarly,

reg.A/ � reg.B/ C reg.C /; and reg.C / � reg.A/ C reg.B/:

Proof. The functions ai .�/ D ˛.Hi
RC

.�// clearly satisfy ai .B/ � ai .A/ C ai .C /.
Thus ai .B/ C i � reg.A/ C reg.C / for each i .

The other assertions have similar proofs. ut
The function reg.�/ can also be characterized by its initialization on modules of

finite length (see [7, Proposition 20.20]):

Proposition 5. If h is a linear form of R whose annihilator 0 WA h has finite
length, then

reg.A/ D maxfreg.0 WA h/; reg.A=hA/g:
The proof goes through an analysis of the exact sequence

0 ! .0 WA h/Œ�1� �! AŒ�1� �! A �! A=hA ! 0:

As a long exercise, the reader can verify that reg.�/ is the unique degree function
satisfying these rules.

Let R be a standard graded algebra and M a finitely generated graded R-module.
Suppose ˛.M / is the maximum of the degrees of a minimal generating set of M . If
M is a module of finite length, it is clear that

reg.M / � ˛.M / C �.M / � 1:

We will prove an extension of this inequality where �.M / is replaced by Deg.M /

[15, Theorem 2.5].

Theorem 6. Let R D kŒx1; : : : ; xn� be a ring of polynomials over the infinite
field k, and let M be a finitely generated graded R-module of positive dimension.
Then we have for every sufficiently general linear form h and for any extended
degree Deg,

Deg.M=hM / � reg.M=hM / � Deg.M / � reg.M /:

Proof. By Proposition 5, we have

reg.M / D maxfreg.0 WM h/; reg.M=hM /g;

so that if reg.M / D reg.M=hM / we can make use of Remark 6 asserting that
Deg.M=hM / � Deg.M / for all sufficiently generic h0s.

We may thus assume reg.M=hM / < reg.M /. For any module A, denote A� D
A=H0

m.A/. Consider the exact sequence
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0 ! H �! M �! N ! 0;

where H D H0
m.M /. Note that dim N > 0. Since h is regular on N , we have the

exact sequence

0 ! H=hH �! M=hM �! N=hN ! 0:

Taking the local cohomology of this sequence we obtain the exact sequences

0 ! H=hH �! H0
m.M=hM / �! H0

m.N=hN / ! 0

and the isomorphism

Hi
m.M=hM / ' Hi

m.N=hN /; i � 1;

.M=hM /� ' .N=hN /�. In particular we have that reg.N=hN / � reg.M=hM /.
We now process Deg.M=hM /:

Deg.M=hM / D �.H0
m.M=hM / C Deg..M=hM /�/

D �.H0
m.M=hM / C Deg..N=hN /�/

�
X

j �reg.M=hM/

�.H0
m.M /j / C �.H0

m.N=hN /j / C Deg..N=hN /�/

D
X

j �reg.M=hM/

�.H0
m.M /j / C Deg.N=hN /

�
X

j �reg.M=hM/

�.H0
m.M /j / C Deg.N /:

To complete the proof it suffices to add to this expression the observation

reg.M / � reg.M=hM / �
reg.M/X

j Dreg.M=hM/C1

�.H0
m.M /j /:

Summing up we obtain the desired inequality. ut

Theorem 7. Let A be a finitely generated graded R-module, generated by elements
of degree at most ˛.A/. Then for any extended degree function Deg,

reg.A/ � Deg.A/ C ˛.A/:
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2.3 Regularity of Some Derived Functors

Let R D kŒx1; : : : ; xn� be a polynomial ring in n indeterminates over the field k. We
briefly describe some results of Chardin, Ha, and Hoa [3] on regularity bounds for
derived functors of Hom.X; Y/ and X ˝ Y. The first of their results [3, Lemma 2.1]
is a beautiful cohomological calculation:

Theorem 8. Let F� be a graded complex of free R-modules with

Fi D
M

fi �j �bi

RŒ�j �ˇij :

Set Ti D P
j ˇij . Then

reg.Hi .F�// � maxfbi ; biC1; ŒTiC1.bi �fiC1/�2
n�2 CfiC1C2; ŒTi .bi�1�fi /�

2n�2 Cfig:

For two finitely generated graded M and N , it leads directly to estimates for
reg.TorR

i .M; N //. Let us state their result on reg.ExtiR.M; N // [3, Theorem 2.3(2)].
For a finitely generated graded R-module P , set the following notation for the Betti
number, initial degree (indeg), and regularity of TorR

i .P; k/:

ˇi .P / D dimk.TorR
i .P; k//

fi .P / D indeg.TorR
i .P; k//

regi .P / D reg.TorR
i .P; k//:

Theorem 9. Let M and N be finitely generated graded modules over the poly-
nomial ring R. With the notation above, set Ti D P

p�qDi ˇp.M /ˇq.N /, rM D
reg.M / � indeg.M /, rN D reg.N / � indeg.N /, and ı D indeg.N / � indeg.M /.
Then

reg.ExtiR.M; N // C i � .rM C rN C 1/2n�2

maxfTi ; TiC1g2n�2 C 1 � ı:

This establishes the existence of polynomials of reg.M / and reg.N / and of the
various Betti numbers that bound the regularity of the Exts and Tors.

3 Homological Degree

Introduction

To establish the existence of cohomological degrees in arbitrary dimensions, we
describe in some detail one such function introduced in [18].
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3.1 Construction

If a and b are integers, we set
�

a
b

� D 0 if a < b, and
�

a
b

� D 1 if a D b and possibly
negative.

Definition 1. Let M be a finitely generated graded module over the graded algebra
A and S a Gorenstein graded algebra mapping onto A, with maximal graded ideal
m. Set dim S D r , dim M D d . The homological degree of M is the integer

hdeg.M / D deg.M / C
rX

iDr�dC1

 
d � 1

i � r C d � 1

!

� hdeg.ExtiS.M; S//: (6)

This expression becomes more condensed when dim M D dim S D d > 0:

hdeg.M / D deg.M / C
dX

iD1

 
d � 1

i � 1

!

� hdeg.ExtiS.M; S//: (7)

The definition of hdeg can be extended to any Noetherian local ring S by setting
hdeg.M / D hdeg.bS ˝S M /. On other occasions, we may also assume that the
residue field of S is infinite, an assumption that can be realized by replacing .S;m/

by the local ring SŒX�mSŒX�. In fact, if X is any set of indeterminates, the localization
is still a Noetherian ring, so the residue field can be assumed to have any needed
cardinality, as we shall assume in the proof.

Remark 2. Consider the case when dim M D 2; we assume that dim S D 2 also.
The expression for hdeg.M / is now

hdeg.M / D deg.M / C hdeg.Ext1S.M; S// C hdeg.Ext2S.M; S//:

The last summand, by duality, is the length of the submodule H0
m.M /. The middle

term is a module of dimension at most one, so can be described according to
Proposition 5 by the equality

hdeg.Ext1S.M; S// D deg.Ext1S.Ext1S.M; S/; S// C deg.Ext2S.Ext1S.M; S/; S//:

There are alternative ways to define the hdeg of an R-module M in a manner
that does not require the direct presence of the Gorenstein ring S. For simplicity
we assume dim S D dim M . If we take for S the completion of R and denote by
E D ES.S=m/ the injective envelope of its residue field, for each integer i define

Mi D HomS.Hi
m.M /; E/:
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Note that Mi is a finitely generated S-module.
We leave to the reader to show that:

Proposition 3. For R and M as above,

hdeg.M / D
8
<

:

�.M /; if dim M D 0

deg.M / C
d�1P

iD0

�
d�1

i

� � hdeg.Mi/; if dim M > 0:
(8)

Theorem 4. The function hdeg.�/ is a cohomological degree.

The proof requires a special notion of generic hyperplane sections that fits the
concept of genericity defined earlier. Let S be a Gorenstein standard graded ring
with infinite residue field and M a finitely generated graded module over S. We
recall that a superficial element of order r for M is an element z 2 Sr such that
0WM z is a submodule of M of finite length.

Definition 5. A special hyperplane section of M is an element h 2 S1 that is
superficial for all the iterated Exts

Mi1;i2;:::;ip D Exti1S .Exti2S .� � � .Ext
ip�1

S .Ext
ip
S .M; S/; S/; � � � ; S///;

and all sequences of integers i1 � i2 � � � � � ip � 0.

By local duality it follows that, up to shifts in grading, there are only finitely
many such modules. Actually, it is enough to consider those sequences in which
i1 � dim S and p � 2 � dim S , which ensures the existence of such 1-forms as h. It
is clear that this property holds for generic hyperplane sections.

The following result establishes hdeg.�/ as a bona fide cohomological degree.

Theorem 6. Let S be a standard Gorenstein graded algebra and M a finitely
generated graded module of depth at least 1. If h 2 S1 is a generic hyperplane
section on M , then

hdeg.M / � hdeg.M=hM /:

Proof. This will require several technical reductions. We assume that h is a regular,
generic hyperplane section for M that is regular on S. We also assume that dim M D
dim S D d , and derive several exact sequences from

0 ! M
h�! M �! N ! 0: (9)

For simplicity, we write Mi D ExtiS.M; S/, and Ni D ExtiC1
S .N; S/ in the

case of N . (The latter because N is a module of dimension dim S � 1 and Ni D
ExtiS=.h/.N; S=.h//.) ut

Using this notation, in view of the binomial coefficients in the definition of
hdeg.�/, it will be enough to prove:
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Lemma 7. For M and h as above,

hdeg.Ni / � hdeg.Mi / C hdeg.MiC1/; for i � 1:

Proof. The sequence (9) gives rise to the cohomology long exact sequence

0 ! M0 �! M0 �! N0 �! M1 �! M1 �! N1 �! M2 �! � � �
� � � �! Md�2 �! Md�2 �! Nd�2 �! Md�1 �! Md�1 �! Nd�1 ! 0;

which are broken up into shorter exact sequences as follows:

0 ! Li �! Mi �! fM i ! 0 (10)

0 ! fM i �! Mi �! Gi ! 0 (11)

0 ! Gi �! Ni �! LiC1 ! 0: (12)

ut
We note that all Li have finite length, because of the condition on h. For i D 0,

we have the usual relation deg.M / D deg.N /. When fM i has finite length, then
Mi; Gi , and Ni have finite length, and

hdeg.Ni/ D �.Ni/ D �.Gi / C �.LiC1/

� hdeg.Mi / C hdeg.MiC1/:

It is a similar relation that we want to establish for all other cases.

Proposition 8. Let S be a Gorenstein graded algebra and let

0 ! A �! B �! C ! 0

be an exact sequence of graded modules. Then

(a) If A is a module of finite length, then

hdeg.B/ D hdeg.A/ C hdeg.C /:

(b) If C is a module of finite length, then

hdeg.B/ � hdeg.A/ C hdeg.C /:

(c) Moreover, in the previous case, if dim B D d , then

hdeg.A/ � hdeg.B/ C .d � 1/hdeg.C /:
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(d) If C is a module of finite length and depth B � 2, then

hdeg.A/ D hdeg.B/ C hdeg.C /:

Proof. They are all clear if B is a module of finite length so we assume that dim B D
d � 1.

(a) This is immediate since deg.B/ D deg.C / and the cohomology sequence gives

ExtiS.B; S/ D ExtiS.C; S/; 1 � i � d � 1; and

�.ExtdS .B; S// D �.ExtdS .A; S// C �.ExtdS .C; S//:

(b) Similarly we have

ExtiS.B; S/ D ExtiS.A; S/; 1 � i < d � 1;

and the exact sequence

0 ! Extd�1
S .B; S/ ! Extd�1

S .A; S/ ! ExtdS .C; S/ ! ExtdS .B; S/ ! ExtdS .A; S/ ! 0:

(13)

If Extd�1
S .A; S/ has finite length, then

hdeg.Extd�1
S .B; S// � hdeg.Extd�1

S .A; S//

hdeg.ExtdS .B; S// � hdeg.ExtdS .A; S// C hdeg.ExtdS .C; S//:

Otherwise, dim Extd�1
S .A; S/ D 1, and

hdeg.Extd�1
S .A; S// D deg.Extd�1

S .A; S// C �.H0
m.Extd�1

S .A; S///:

Since we also have

deg.Extd�1
S .B; S// D deg.Extd�1

S .A; S//;

�.H0
m.Extd�1

S .B; S/// � �.H0
m.Extd�1

S .A; S///;

we again obtain the stated bound.
(c) In the sequence (13), if dim Extd�1

S .B; S/ D 0, then

�.Extd�1
S .A; S// � �.Extd�1

S .B; S// C �.C /; (14)

and also
�.ExtdS .A; S// � �.ExtdS .B; S//:

When taken into the formula for hdeg.A/, the binomial coefficient
�

d�1
d�2

�
gives

the desired factor for �.C /.
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On the other hand, if dim Extd�1
S .B; S/ D 1, we also have

hdeg.Extd�1
S .A; S// � hdeg.Extd�1

S .B; S// C �.C /;

the dimension one case of (14).
(d) This follows by applying the definition of hdeg to the exact sequence.

ut
Suppose that dim fMi � 1. From Proposition 8(b) we have

hdeg.Ni / � hdeg.Gi / C �.LiC1/: (15)

We must now relate hdeg.Gi / to deg.Mi/. Apply the functor H0
m.�/ to the sequence

(11) and consider the commutative diagram

0 ! fM i �! Mi �! Gi ! 0

" " "
0 ! H0

m.fM i / �! H0
m.Mi / �! H0

m.Gi /

;

in which we denote by Hi the image of the natural map

H0
m.Mi / �! H0

m.Gi /:

Through the snake lemma, we obtain the exact sequence

0 ! fMi=H0
m.fM i /

˛�! Mi =H0
m.Mi/ �! Gi =Hi ! 0: (16)

Furthermore, from (10) there is a natural isomorphism

ˇ W Mi=H0
m.Mi / Š fMi =H0

m.fM i /;

while from (11) there is a natural injection

fMi=H0
m.fM i / ,! Mi=H0

m.Mi /;

whose composite with ˇ is induced by multiplication by h on Mi=H0
m.Mi /. We may

thus replace fMi =H0
m.fM i / by Mi=H0

m.Mi/ in (16) and take ˛ as multiplication by h:

0 ! Mi=H0
m.Mi /

h�! Mi=H0
m.Mi / �! Gi =Hi ! 0:

Observe that since

ExtjS.Mi=H0
m.Mi/; S/ D ExtjS.Mi ; S/; j < dim S;

h is still a regular, generic hyperplane section for Mi=H0
m.Mi /. By induction on the

dimension of the module, we have
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hdeg.Mi =H0
m.Mi// � hdeg.Gi =Hi /:

Now from Proposition 8(a), we have

hdeg.Gi / D hdeg.Gi =Hi / C �.Hi /:

Since these summands are bounded, by hdeg.Mi=H0
m.Mi// and �.H0

m.Mi//,
respectively (in fact, �.Hi / D �.Li /) we have

hdeg.Gi / � hdeg.Mi=H0
m.Mi// C �.H0

m.Mi // D hdeg.Mi /;

the last equality by Proposition 8(a) again. Finally, taking this estimate into (15),
we get

hdeg.Ni / � hdeg.Gi / C �.LiC1/

� hdeg.Mi / C hdeg.MiC1/ (17)

to establish the claim. �
Remark 9. That equality does not always hold is shown by the following example.
Suppose that R D kŒx; y� and M D .x; y/2. Then hdeg.M / D 4, but
hdeg.M=hM / D 3 for any hyperplane section h. To get an example of a ring one
takes the idealization of M .

Remark 10. It should be emphasized that the weight binomial coefficients in the
definition of hdeg were chosen to enable the Bertini property at the expense of its
behavior on other short exact sequences. Suppose R D kŒx; y; z�, and M D R ˚
R=.x; y/. Then

hdeg.M / D deg.R/ C
 

3 � 1

2 � 1

!

deg.R=.x; y// D 1 C 2 D 3:

Example 11. This example shows how the function hdeg captures important aspects
of the structure of the module. We recall the notion of a sequentially Cohen–
Macaulay module. This is a module M having a filtration

0 D M0 � M1 � � � � � Mr D M;

with the property that each factor Mi =Mi�1 is Cohen–Macaulay and

dim Mi =Mi�1 < dim MiC1=Mi ; i D 1; : : : ; r � 1:

If L is the leftmost nonzero submodule in such a chain, it follows easily that N D
M=L is also sequentially Cohen–Macaulay (L is Cohen–Macaulay by hypothesis)
and we have
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ExtpS .M; S/ D ExtpS .L; S/; p D dim L

ExtiS.M; S/ D ExtiS.N; S/; i < p

with the other Ext’s vanishing. These properties and induction lead to a formula for
hdeg.M / in terms of the deg.MiC1=Mi/:

• If d D dim M note that r � d . Padding the filtration with repeated terms (giving
rise to trivial factors) we may assume r D d .

• For each i we have a short exact sequence

0 ! Mi =Mi�1 �! M=Mi�1 �! M=Mi ! 0;

where Mi =Mi�1 is Cohen–Macaulay of dimension i , or it is .0/, while M=Mi , by
induction, is a module of depth at least i C1. In particular Extd�i

S .M=Mi�1; S/ D
Extd�i

S .Mi=Mi�1; S/ and ExtjS.M=Mi�1; S/ D 0 for j � d � i C 1.
• Descending induction will lead to Extd�i

S .M; S/ D Extd�i
S .Mi =Mi�1; S/.

hdeg.M / D deg.M / C
dX

iD1

 
d � 1

i � 1

!

� hdeg.ExtiS.M; S//

D deg.M / C
dX

iD1

 
d � 1

i � 1

!

� hdeg.ExtiS.Md�i =Md�i�1; S//

D deg.M / C
dX

iD1

 
d � 1

i � 1

!

� deg.Md�i =Md�i�1/:

3.2 Buchsbaum Modules

The expression for the function hdeg.�/ arrives in known territory if M is a
generalized Cohen–Macaulay module.

Definition 12. Let .R;m/ be a Noetherian local ring and M a finitely generated
R-module. M is a generalized Cohen–Macaulay module if Mp is Cohen–Macaulay
for all prime ideals p ¤ m.

A typical characterization is:

Theorem 13. Let .R;m/ be a Noetherian local ring and M a finitely generated
R-module. M is a generalized Cohen–Macaulay module if and only if the modules
Hi

m.M / are finitely generated for all i < dim M .
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For these modules the expression hdeg.M /, by local duality, converts into:

Proposition 14. If M is a generalized Cohen–Macaulay module of dimension d ,
then

hdeg.M / D deg.M / C
d�1X

iD0

 
d � 1

i

!

� �.Hi
m.M //:

Buchsbaum rings and modules were introduced by Stückrad and Vogel. They are
studied in great detail in [17].

Definition 15. Let .R;m/ be a Noetherian local ring and M a finitely generated
R-module. M is a Buchsbaum module if the partial Euler characteristic, �1.xI M /,
is independent of the system of parameters x for M . In other words, �.M=.x/M / �
degx.M / is independent of x. This integer is called the Buchsbaum invariant of M .

Two of its properties are:

Theorem 16. Let .R;m/ be a Noetherian local ring and M a finitely generated
R-module. Then

1. M is a Buchsbaum module if and only if every system of parameters for M is a
d -sequence relative to M .

2. If M is a Buchsbaum module then Hi
m.M / are R=m-vector spaces for i <

dim M . .In particular they are generalized Cohen–Macaulay modules./ The
converse does not hold true.

Corollary 17. If M is a Buchsbaum module, then

hdeg.M / D deg.M / C I.M /;

where I.M / is the Buchsbaum invariant of M .

An effective test for the property was found by Yamagishi [20].

Remark 18. A related theme is how to decide whether an R-module M is Cohen–
Macaulay on the punctured spectrum. If R is a regular local ring and the annihilator
of M is equidimensional a criterion can be cast as follows. Suppose codimM D r

and
� � � �! FrC1

'�! Fr �! � � �
is a projective resolution of M . For p ¤ m, Mp is Cohen–Macaulay if and only if
proj dim Rp

Mp D r , a condition equivalent to saying that the image of 'p splits off
.Fr/p. In other words the ideal I.'/ of maximal minors of ' is m-primary.

It would be less cumbersome to find a more amenable module and make use of
the rigidity of Tor since R is a regular local ring. Let us sketch this with a non-
amenable module! The following is an equivalence:

M is free on the punctured spectrum , TorR
rC1.M; M / has finite support.



Cohomological Degrees and Applications 691

3.3 Cohomological Degrees and Samuel Multiplicities

There are variations of cohomological degree functions obtained by using Samuel’s
notion of multiplicity.

Definition 19. Let .R;m/ be a Noetherian local ring and I an m-primary ideal. We
denote by hdegI .�/ the function obtained by replacing, in the definition of hdeg.�/,
deg.M / by Samuel’s e.I I M /.

Let us make a rough comparison between hdeg.M / and hdegI .M /.

Proposition 20. Let .R;m/ be a Noetherian local ring and let I be an m-primary
ideal. Suppose mr � I . If M is an R-module of dimension d , then

hdegI .M / � rd � deg.M / C rd�1 � .hdeg.M / � deg.M //:

Proof. If r is the index of nilpotency of R=I , for any R-module L of dimension s,

�.L=.mr /nL/ � �.L=I nL/:

The Hilbert polynomial of L gives

�.L=.mr /nL/ D deg.M /
rs

sŠ
ns C lower terms:

We now apply this estimate to the definition of hdeg.M /, taking into account that
its terms are evaluated at modules of decreasing dimension. ut

For later reference we rephrase Proposition 32 for use with Samuel’s multiplicities.

Theorem 21. Let .R;m/ be a Noetherian local ring, let I be an m-primary ideal,
and let M be a finitely generated R-module of dimension d � 1. Let x D
fx1; : : : ; xrg be a superficial sequence in I relative to M and hdegI . Then

hdegI .M=.x/M / � hdegI .M /:

Moreover, if r < d then

�.H0
m.M=.x/M // � hdegI .M / � e.I I M /:

Corollary 22. Let .R;m/ be a Noetherian local ring of dimension d > 0 and
infinite residue field. For an m-primary I there is a minimal reduction J such that

�.R=J / � hdegI .R/:

In particular, the set of all �.R=J / for all parameter ideals with the same integral
closure is bounded.
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3.4 Homological Torsion

There are other combinatorial expressions of the terms defining hdeg.M /, hdeg
.ExtiS.M; S//, that behave well under hyperplane section. It will turn out to be
useful in certain characterizations of generalized Cohen–Macaulay modules and in
the study of Hilbert coefficients.

Definition 23. Let S be a ring of dimension r and M an S-module of dimension
d � 2. Its homological torsion is the integer

T.M / D
r�1X

iDr�dC1

 
r � 2

i � d C r � 1

!

� hdeg.ExtiS.M; S//:

If I is an m-primary, the integer obtained using hdegI will be denoted TI .M /.
If r D d , this formula becomes

T.M / D
d�1X

iD1

 
d � 2

i � 1

!

� hdeg.ExtiS.M; S//:

If d D 2, T.M / D hdeg.Ext1S.M; S// D deg.Ext1S.M; S// C deg.Ext2S.Ext1S
.M; S/; S//.

The restriction to d � 2 explanation: �.M / if d D 0, or �.H0
m.M // if d D 1

are quantities we liken to the ordinary torsion.

Example 24. If M is a generalized Cohen–Macaulay module of dimension d�2,

TI .M / �
d�1X

iD1

 
d � 2

i � 1

!

�.Hi
m.M //;

with equality if M is Buchsbaum.

Theorem 25. Let M be a module of dimension d � 3 and let h be a generic
hyperplane section. Then T.M=hM / � T.M /.

Proof. We use induction on d . If d � 3, using the notation of Lemma 7, in
particular setting N D M=hM , we have

T.N / D
d�1X

iD1

 
d � 2

i � 1

!

� hdeg.ExtiS.N; S//:

By Lemma 7,

hdeg.ExtiS.N; S// � hdeg.ExtiS.M; S// C hdeg.ExtiC1
S .N; S//;

which by rearranging gives T.N / � T.M /, as desired. ut
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Higher order homological torsion functions can be similarly defined. For this
reason it is appropriate to write T.1/.M / WD T.M /:

Definition 26. Let M be an S-module of dimension d � 3. Its second-order
homological torsion is the integer

T.2/.M / D
d�2X

iD1

 
d � 3

i � 1

!

� hdeg.ExtiS.M; S//:

If I is an m-primary, the integer obtained using hdegI will be denoted T.2/
I .M /.

More generally, let M be a module of dimension d . For each j � d , set

T.j /.M / D
d�jX

iD0

 
d � j � 1

i � 1

!

� hdeg.ExtiS.M; S//:

Theorem 27. Let M be a module of dimension d � 4 and let h be a generic
hyperplane section. Then T.2/.M=hM / � T.2/.M /. A similar assertion holds for
all T.j /:

Corollary 28. Let M be a module of dimension r D d C 1 � 3. Then

hdeg.M / > T.1/.M / � T.2/.M / � � � � � T.d/.M /:

Remark 29. There are a number of rigidity questions about the values of the Hilbert
coefficients ei .I /. Typically they have the form

je1.I /j � je2.I /j � � � � � jed .I /j:

Two of these cases are (i) parameter ideals and (ii) normal ideals, or more generally
the case of the normalized filtration. Because values of T.i/

I .R/ have been used, in
a few cases, to bound the ei .I /, the descending chain in Corollary 28 argues for an
underlying rigidity. This runs counter to the known formulas for the values of the
ei .I / for general ideals (e.g., [16, Theorem 4.1]).

Generalized Cohen–Macaulay Modules

These modules can be characterized in terms of their homological torsions.

Proposition 30. Let .R;m/ be a Gorenstein local ring of dimension d � 2 and M

a finitely generated R-module. Then M is a generalized Cohen–Macaulay module
if and only if TI .M / is bounded for every m-primary ideal I . More precisely, if
I D .x1; : : : ; xd / is a parameter ideal, and In D .xn

1 ; : : : ; xn
d /, it suffices that all

TIn.M / be bounded.
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Proof. If d D 2, T .M / D hdeg.Ext1R.M; R//. This is a module of dimension at
most one. If the dimension is 1, degIn

.Ext1R.M; R/ is a polynomial of degree 1 for
large n.

If d � 3, let h be a generic hyperplane section. It will suffice to show that
M=hM is a generalized Cohen–Macaulay module. For that we can use Theorem 25
and induction.

ut

3.5 Castelnuovo–Mumford Regularity and Homological
Degree

The following result of Chardin, Ha, and Hoa [3] provides a polynomial bound
for the homological degree in terms of the Castelnuovo–Mumford regularity. (For
d D 2, a similar bound had been found by Gunston in his thesis [9].)

Theorem 31. Let M be a nonzero finitely generated graded R-module of dimension
d > 0. Denote by n the minimal number of generators of M and by ˛.M / the
maximal degree of the a minimal set of homogeneous generators. Then

hdeg.M / �
"

n

 
reg.M / � ˛.M / C n

n

!#2.d�1/2

: (18)

3.6 Specialization and Torsion

One of the uses of extended degrees is the following. Let M be a module and x D
fx1; : : : ; xrg be a superficial sequence for the module M relative to an extended
degree Deg. How to estimate the length of H0

m.M / in terms of the initial data of M ?
Let us consider the case of r D 1. Let H D H0

m.M / and write

0 ! H �! M �! M 0 ! 0: (19)

Reduction modulo x1 gives the exact sequence

0 ! H=x1H �! M=x1M �! M 0=x1M 0 ! 0: (20)

From the first sequence we have Deg.M / D Deg.H/ C Deg.M 0/, and from the
second

Deg.M=x1M / � Deg.H=x1H/ D Deg.M 0=x1M 0/ � Deg.M 0/:
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Taking local cohomology of the second exact sequence yields the short exact
sequence

0 ! H=x1H �! H0
m.M=x1M / �! H0

m.M 0=x1M
0/ ! 0;

from which we have the estimation

Deg.H0
m.M=x1M // D Deg.H=x1H/ C Deg.H0

m.M 0=x1M
0//

� Deg.H=x1H/ C Deg.M 0=x1M
0/

� Deg.H/ C Deg.M 0/ D Deg.M /:

We resume these observations as:

Proposition 32. Let M be a module and let fx1; : : : ; xr g be a superficial sequence
relative to M and Deg. Then

�.H0
m.M=.x1; : : : ; xr /M // � Deg.M /:

Now we derive a more precise formula using hdeg. It will be of use later.

Theorem 33. Let M be a module of dimension d � 2 and let x D fx1; : : : ; xd�1g
be a superficial sequence for M and hdeg. Then

�.H0
m.M=.x/M // � �.H0

m.M // C T.M /:

Proof. Consider the exact sequence

0 ! H D H0
m.M / �! M �! M 0 ! 0:

We have ExtiS.M; S/ D ExtiS.M 0; S/ for d > i � 0, and therefore T .M / D T .M 0/.
On the other hand, reduction mod x gives

�.H0
m.M=.x/M // � �.H0

m.M 0=.x/M 0// C �.H=.x/H/

� �.H0
m.M 0=.x/M 0// C �.H/;

which shows that it is enough to prove the assertion for M 0.
If d > 2, we apply Theorem 25, to pass to M 0=x1M

0. This reduces all the way
to the case d D 2. Let M be a module of positive depth. Write h D x. The assertion
requires that �.H0

m.M=hM // � hdeg.Ext1S.M; S//: We have the cohomology exact
sequence

Ext1S.M; S/
h�! Ext1S.M; S/ �! Ext2S.M=hM; S/ �! Ext2S.M; S/ D 0;
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where
�.H0

m.M=hM // D hdeg.Ext2S.M=hM; S//:

If Ext1S.M; S/ has finite length the assertion is clear. Otherwise L D Ext1S.M; S/

is a module of dimension 1 over a discrete valuation domain V with h for its
parameter. By the fundamental theorem for such modules,

V D V r ˚ .

sM

j D1

V=hej V /;

so that multiplication by h gives

�.L=hL/ D r C s � r C
sX

j D1

ej D hdeg.L/:

An alternative argument at this point is to consider the exact sequence (we may
assume dim S D 1)

0 ! L0 �! L
h�! L �! L=hL ! 0;

where both L0 and L=hL have finite length. If F denotes the image of the
multiplication by h on L, we have the exact sequences 0 ! L0 �! L �! F ! 0

and 0 ! F �! L �! L=hL ! 0. Dualizing we have HomS.L; S/ D
HomS.F; S/ and the exact sequence

0 ! HomS.L; S/
h�! HomS.L; S/ �! Ext1S.L=hL; S/ �! Ext1S.F; S/;

which shows that

�.L=hL/ � deg.L/ C �.H0
m.F // � deg.L/ C �.H0

m.L// D hdeg.L/;

as desired. ut

4 Bdeg: The Extreme Cohomological Degree

Introduction

The content of this section is mostly the work of Tor Gunston and Kia Dalili. In his
thesis [9], Gunston introduced the following cohomological degree:
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Definition 1. Let R be a Noetherian local ring with infinite residue field or a
standard graded algebra over an infinite field. For a finitely generated R-module
(graded if required) M , bdeg.M / is the integer

bdeg.M / D minfDeg.M / j Deg is a cohomological degree functiong:

This function is well-defined since cohomological degrees exist (e.g., hdeg). It is
obviously a cohomological degree itself. Gunston proved that [9, Theorem 3.1.3]):

Theorem 2 (Gunston). Suppose that M is a finitely generated R-module of
positive depth. Then for a generic hyperplane section h,

bdeg.M / D bdeg.M=hM /:

Corollary 3. If M is a finitely generated R-module of dimension d there is a
generic superficial sequence x D fx1; : : : ; xd g for M such that

bdeg.M/ � �.H0
m.M// C

dX

iD1

�.H0
m.M=.x1; : : : ; xi /M// � .d C 1/hdeg.M/ � d deg.M/:

Proof. The first inequality is a direct consequence of Theorem 2, the second from
Theorem 21. ut

4.1 Rules of Computation of bdeg

One of the difficulties of computing cohomological degrees lies on their behavior
on short exact sequences. The degree bdeg has more amenable properties, according
to the following rules.

Proposition 4. Let R be a standard graded algebra and A a finitely generated
graded R-module with Hilbert function HA.t/. Then

bdeg.A/ �
reg.A/X

j D˛.A/

HA.j /:

Proof. Set L D H0
m.A/ and consider the exact sequence

0 ! L �! A �! A0 D A=L ! 0:

We may assume dim A � 1. Let h be a generic hyperplane section. The proof
follows by induction from the following inequalities:
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reg.A0/ D reg.A0=hA0/;

˛.A/ � ˛.A0=hA0/;

HA.j / D HL.j / C HA0.j / � HL.j / C HA0=hA0.j /;

bdeg.A/ D �.L/ C bdeg.A0/ D �.L/ C bdeg.A0=hA0/;

reg.A/ D maxfreg.L/; reg.A0/g D maxfreg.L/; reg.A0=hA0/g:

ut
Proposition 5 (Gunston [9, Proposition 3.2.2]). Suppose A; B; and C are finitely
generated R-modules and

0 ! A �! B �! C ! 0

is an exact sequence. If �.C / < 1, then

bdeg.B/ � bdeg.A/ C �.H0
m.B// � �.H0

m.A//:

In particular, we have

bdeg.B/ � bdeg.A/ C �.C /; and if depthB > 0; then bdeg.B/ � bdeg.A/:

A similar calculation in [4, Proposition 3.2] then leads to:

Proposition 6. Suppose A; B; and C are finitely generated R-modules and

0 ! A �! B �! C ! 0

is an exact sequence. Then

1. bdeg.B/ � bdeg.A/ C bdeg.C /I
2. bdeg.A/ � bdeg.B/ C .dim A � 1/bdeg.C /.

Proof. We prove only (1). The case where A has finite length is a consequence of
bdeg being an extended degree. For the other cases, one makes use of indiction on
the dimension, repeated use of snake lemma, and the following special case.

Lemma 7. Suppose A; B; and C are finitely generated R-modules and

0 ! A �! B �! C ! 0

is an exact sequence. If C has finite length then

bdeg.B/ � bdeg.A/ C bdeg.C /:
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Proof. For a finitely generated R-module, denote by A0 its submodule of finite
support; set A0 D A=A0. If A D A0, the assertion follows from the additivity of the
length function. Clearly we may replace A by A=A0 and B by B=A0; thus changing
notation we may assume that A has positive depth. It follows that B0 embeds in C .
We may now replace B by B=B0 and C by C=B0.

Changing notation again, we may assume that both A and B have positive depth.
Let h be an appropriate hyperplane section for A and B , that is, bdeg.A/ D
bdeg.A=hA/ and bdeg.B/ D bdeg.B=hB/. Reduction mod h gives the exact
sequence

0 ! E �! A=hA �! B=hB �! C=hC ! 0;

and thus by induction (E has finite length and bdeg.E/ D bdeg.C=hC /),

bdeg.B/ D bdeg.B=hB/ � bdeg..A=hA/=E/ C bdeg.C=hC /

� bdeg.A/ C bdeg.C /;

as desired. ut
We continue with the proof of Proposition 6. If C has positive depth, A0 D B0

and as in the Lemma we replace A and B by A=A0 and B=B0, respectively. Picking
an appropriate hyperplane section h, reduction gives an exact sequence with the
same bdegs but in lower dimension. Consider the diagram

0

��
0

��

C0

��
0 �� A ��

��

B ��

��

C ��

��

0

0 �� A1
��

��

B �� C=C0

��

�� 0

C0

��

0

0

:
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Since C=C0 has positive depth (or vanishes),

bdeg.B/ � hdeg.A1/ C bdeg.C=C0/ D hdeg.A1/ C bdeg.C / � bdeg.C0/;

while the Lemma gives

bdeg.A1/ � bdeg.A/ C bdeg.C0/;

which proves the assertion. ut
Remark 8. Unlike syzygies, the delicate task of bounding bdeg.C / in terms of
bdeg.A/ and bdeg.B/ is not possible: just consider a module with a free resolution

0 ! F
'�! F �! C ! 0:

Then hdeg.C / D deg.R=.det.'///, which is independent of bdeg.F /.

4.2 Monomial Ideals

Let R D kŒx1; : : : ; xn� and I a monomial ideal. The rules in Proposition 6 can be
used for estimating bdeg.R=I / and bdeg.I /. Let us consider some cases.

Example 9. Let G be a graph on a vertex V set indexed by the set of variables and
edge set E and set I D I.G/ its edge ideal.

• Let I be monomial ideal defined by the complete graph Kn: I D .xi xj ; i <

j /. Consider the exact sequence (a so-called deconstruction sequence in the
terminology of R. Villarreal)

0 ! R=I W xn �! R=I �! R=.I; xn/ ! 0:

I W xn D .x1; : : : ; xn�1/ and R=.xn; I / D R0=I 0, where R0 D kŒx1; : : : ; xn�1�

and I 0 is the ideal corresponding to the graph Kn�1. Using (6) and induction we
get

bdeg.R=I / D deg.R=I / D n; bdeg.I / � 1 C n.n � 1/:

• For a graph with a minimal vertex cover fx1; : : : ; xcg—in other words .x1; : : : ; xc/

is a minimal prime of I of maximal dimension—one has to repeat the deconstruc-
tion step above c � 1 times: from

I D x1I1 C x2I2 C � � � C xcIc;

0 ! R=J1 �! R=I �! R=.I; x1/ ! 0

that is
0 ! R=J1 �! R=I �! R=.I; x1/ ! 0
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J1 D .I1 C x2I2 C � � � C xcIc/:

bdeg.R=I / � c C 1; bdeg.I / � 1 C .n � 1/.c C 1/:

Proposition 10. Let I be a monomial ideal of R generated by the set of monomials
fm1; : : : ; mrg of degree � d . Then

bdeg.R=I / �
 

n C d � 1

d

!

:

Proof. Denote f .p; q/ a bound for bdeg.R=I / valid for ideals generated by
monomials of degree p < d or in p < n variables. The reconstruction sequence
and Proposition 6 assert that we can take

f .d; n/ D
 

n C d � 1

d

!

:

As the case of graph ideals indicates this often overstates the value of bdeg.R=I /.
We use induction on the number r of monomials. If xn is a variable present in
one of the monomials mi , say mi D xnm0

i , i � s and mi … .xn/ for i > s,
I W xn D .m0

1; : : : ; m0
s/, we have the exact sequence

0 ! R=I W xn D R=.m0
1; : : : ; m0

s/ �! R=I �! R=.I; xn/

D R0=.msC1; : : : ; mr/ ! 0: ut

This gives, using Theorem 10, the following uniform bound for the Betti numbers
of monomial ideals.

Corollary 11. Let I D .m1; : : : ; mr/ be a monomial ideal of R D kŒx1; : : : ; xn�,
deg m�d . Then the Betti numbers of R=I are bounded by

ˇi .R=I / � bdeg.R=I / �
 

n

i

!

�
 

n C d � 1

d

!

�
 

n

i

!

:

A more interesting calculation is:

Theorem 12. Let R be a Buchsbaum local ring with infinite residue field and x D
fx1; : : : ; xd g � m n m2 be a system of parameters. Then

bdeg.x/.R/ D �.R=.x//:

Proposition 13. Suppose that x D fx1; x2; : : : ; xng is a d-sequence in R. Then we
have the following:

(a) The images of x2; x3; : : : ; xn in R=.x1/ form a d-sequence.
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(b) Œ.0/W x1� \ .x1; x2; : : : ; xn/ D .0/:

(c) The images of x1; x2; : : : ; xn in R=Œ.0/W x1� form a d-sequence.
(d) x is a regular sequence if and only if .x1; : : : ; xn�1/ W xn D .x1; : : : ; xn�1/.
(e) If x forms a d-sequence then the sequence x0 D fx�

1 ; : : : ; x�
n g of grx.R/ is a

d-sequence.

Proof. In (d), the argument is a straightforward calculation. We may assume n > 1.
If .x1; : : : ; xn�1/ W xn D .x1; : : : ; xn�1/, we claim that .x1; : : : ; xn�2/ W xn�1 D
.x1; : : : ; xn�2/. From axn�1 2 .a1; : : : ; xn�2/, we have xnxn�1a 2 .x1; : : : ; xn�2/,
so

a 2 .x1; : : : ; xn�2/ W xn�1xn D .x1; : : : ; xn�2/ W xn � .x1; : : : ; xn�1/

W xn D .x1; : : : ; xn�1/:

Thus a D a1x1 C � � � C an�1xn�1 and from xn�1a 2 .x1; : : : ; xn�2/ we get
an�1x

2
n�1 2 .x1; : : : ; xn�2/ and therefore an�1xn�1 2 .x1; : : : ; xn�2/, as desired.

(e) is proved in [10, Theorem 1.2], converse in [11]. ut
An interesting consequence is:

Corollary 14. Let R be a Noetherian local ring and M a finitely generated R-
module. If x is a system of parameters that is a d-sequence on the module M then x
is a superficial sequence with respect to M .

Definition 15. Let x D fx1; x2; : : : ; xng be a sequence of elements in R. x is a
proper sequence if

xiC1Hj .x1; x2; : : : ; xi / D 0; for i D 0; 1; : : : ; n � 1; j > 0;

where Hj .x1; x2; : : : ; xi / is the Koszul homology associated to the subsequence
fx1; x2; : : : ; xi g.

Proposition 16. Suppose that R is a Noetherian ring. Let x D fx1; x2; : : : ; xng be
a sequence in R.

(a) If x is a d-sequence, then x is a proper sequence.
(b) If x is a proper sequence, then

xkHj .x1; x2; : : : ; xi / D 0; for i D 0; 1; : : : ; n � 1; j > 0; k > i:

(c) Suppose that R is a local ring of dimension n > 0. If x is a proper sequence
that is also a system of parameters in R, then Hj .x1; x2; : : : ; xi / is a module of
finite length for i D 0; 1; : : : ; n and j > 0.

The following provides for a ready source of these sequences.

Proposition 17. Let R be Noetherian local and x D fx1; : : : ; xd g a parameter
ideal. If .x1; : : : ; xd�1/ has grade d � 1, then
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1. x is a proper sequence.
2. x is a d-sequence if and only if .x1; : : : ; xd�1/ W x2

d D .x1; : : : ; xd�1/ W xd :

Proof. We use induction with basic properties of d -sequences (Proposition 13):

• Set I D .x/. Since H0
m.R/ D 0 W x1, consider the exact sequence

0 ! .0 W x1/ �! R �! R0 ! 0:

From (13) and basic properties of Buchsbaum rings (see [17]), we have that .0 W
x1/ \ I D 0 and R0 is a Buchsbaum ring of positive depth.

• In the equality bdeg.R/ D �.H0
m.R// C bdeg.R0/, we make use of another

property bdeg.�/: there exists a generic element x 2 I 0 D I R0 such that

bdeg.R0/ D bdeg.R0=.x//:

• If d > 1, R0 is a Buchsbaum ring of dimension d � 1. Thus by induction
bdeg.R0=.x// D �.R0=I 0/.

• Let us return to the exact sequence above (and the case d D 1). Tensoring it
modulo I , we get the complex

.0 W x1/=I.0 W x1/ �! R=I �! R0=I 0 ! 0:

Since .0 W x1/ \ I , we obtain the exact sequence

0 ! .0 W x1/ �! R=I �! R0=I 0 ! 0;

which gives the formula bdegI .R/ D �.R=I /. ut
Corollary 18. Let R be a Buchsbaum local ring. For any system of parameters
x D fx1; : : : ; xd g � m n m2, �.R=.x// depends only on the integral closure of .x/.

The following comes from a general property of Deg:

Corollary 19. Let S be a regular local ring of dimension n and R D S=L a
Buchsbaum ring of dimension d . If x D fx1; : : : ; xd g � m n m2 is a system of
parameters for R, then the Betti numbers of R are bounded by

ˇi .R/ � �.S=.L; x// �
 

n

i

!

:

4.3 Multiplicity-Based Complexity of Derived Functors

Let .R;m/ be a Noetherian local ring and let A and B be finitely generated R-
modules. Motivated by the occurrence of the derived functors of HomR.A; �/ and
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A ˝R � in several constructions based on A we seek to develop gauges for the sizes
for these modules. In the case of graded modules, a rich degree-based theory has
been developed centered on the notion of Castelnuovo regularity. It is particularly
well suited to handle complexity properties of tensor products and modules of
homomorphisms.

Let us recall two general questions regarding the modules C D HomR.A; B/ and
D D A ˝R B .

• Can the minimal number of generators �.C/ be estimated in terms of �.A/ and
�.B/ and other properties of A and B? If R D Z, or one of its localizations, the
answer requires information derived from the structure theory for those modules.
Since this is not available for higher dimensional rings, one can argue that an
answer requires knowledge of the cohomology of the modules.

• In contrast the [minimal] number of generators of D is simply �.D/ D �.A/ �
�.B/. What is hard about D is to gather information about its torsion, more
precisely about its associated primes. Consider its submodule of finite support

H0
m.D/ D H0

m.A ˝R B/;

and denote its length by h0.D/. Can one estimate h0.D/ in terms of A and B?
• (The HomAB problem) One formulation of these questions is the following.

Let R be a Noetherian local ring. A question is whether there is a polynomial
f.x; y/ 2 QŒx; y� such that for any finitely generated R-modules A and B ,

�.Hom.A; B// � f.hdeg.A/; hdeg.B//:

A test case asks for uniform bounds for �.Hom.A; A//, where A is a Cohen–
Macaulay module.

• Muddling the issues is how to account for the interaction between A and B . One
attempt, that of replacing A and B by their direct sum A˚B , is only a temporary
fix as it poses the question of what are the “self-interactions” of a module?

• This brings us full circle: which properties of A, B and of their interaction can we
bring to the table? We shall refer to these questions as the HomAB and TorsionAB
conjectures. They make sense even as pure questions of homological algebra, but
we have in view applied versions.

Before we discuss specific motivations linking these questions to the other topics
of these notes, we want to highlight the importance of deriving ring-theoretic
properties of the ring C D HomR.A; A/. Instances of C as a non-commutative
desingularization of Spec.R/ are found in the recent literature, and �.C/ may play
a role as an embedding dimension. In these cases, A is a Cohen–Macaulay module,
but we still lack estimates. This is obviously a stimulating question.

The sought-after estimations are polynomial functions on hdeg.A/ and hdeg.B/,
whose coefficients are given in terms of invariants of R. The first of these questions
was treated in [4, 5], who refer to it as the HomAB question. It asks for uniform
estimates for the number of generators of HomR.A; B/ in terms of invariants of R,
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A, and B . The extended question asks for the estimates of the number of generators
of ExtiR.A; B/ (or of other functors).

In addition to the appeal of the question in basic homological algebra, such
modules of endomorphisms appear frequently in several constructions, particularly
in the algorithms that seek the integral closure of algebras (see [19, Chap. 6]). The
algorithms employed tend to use rounds of operations of the form:

• HomR.E; E/: ring extension
• A ! QA: S2-ification of A

• I W J .

Remark 20. Before we outline a solution of the HomAB problem for graded
modules, let us recall some explicit calculations from [4, 5].

1. ([4, Theorem 5.3]) If R is a Gorenstein local ring of dimension d then

�.Hom.A; R// � .deg.R/ C d.d � 1/=2/hdeg.A/:

2. ([4, Theorem 6.9]) If R is a Gorenstein local ring of dimension d and A is a
vector bundle of finite projective dimension then for any R-module B

�.Hom.A; B// � .deg.R/ C d.d � 1/=2 C
dX

iD1

ˇR
i .k//hdeg.A/hdeg.B/:

Kia Dalili has made use of the work of Chardin, Ha, and Hoa [3] to give
an affirmative answer to the HomAB question and the related question on tensor
products.

Theorem 21 (Dalili). Let R D kŒx1; : : : ; xn� be a standard graded algebra over
the field k. There exist polynomials fi and gi such that for any two finitely generated
graded modules A and B:

• bdeg.ExtiR.A; B// � fi .bdeg.A/; bdeg.B/; ˛.A/; ˛.B//

• bdeg.TorR
i .A; B// � gi .bdeg.A/; bdeg.B/; ˛.A/; ˛.B//

Proof. We will just sketch his argument for bdeg.HomR.A; B//.

• According to Theorem 9, there is a polynomial f0 so that

reg.HomR.A; B// � f0.reg.A/; reg.B/; Betti numbers of A and B/:

On the other hand, by Theorem 6,

reg.P / � Deg.P / C ˛.P /

for any extended degree Deg. Since each Betti number of a graded module P

satisfies
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ˇi .P / � Deg.P /

 
n

i

!

;

the inequality leads to another polynomial inequality

reg.HomR.A; B/ � f.Deg.A/; Deg.B/; ˛.A/; ˛.B//:

• We now apply to properties of bdeg. If F0 ! A is a minimal free presentation of
A, HomR.A; B/ � HomR.F0; B/, by Proposition 4,

bdeg.HomR.A; B// �
reg.HomR.A;B//X

j D0

HHomR.F0;B/.j /:

ut

5 Some Open Questions

If R is a Noetherian local ring a semiadditive degree function is a mapping

d W M.R/ ! Q

such that if 0 ! A ! B ! C ! 0 is a short exact sequence of modules in M.R/

then
d.B/ � d.A/ C d.C /:

Such functions are amenable, as the example above indicates, to the derivation of
binomial bounds. We have seen several degrees with this property, starting with �.�/
(and more generally Bass and Betti numbers) and including e1.xI �/ (the first Hilbert
coefficient), �1.xI �/ (the first partial Euler characteristic), reg.�/, and bdeg.�/.
Question 1. Is hdeg.�/ semiadditive?

Question 2. Let R be a Cohen–Macaulay local ring of dimension d . Consider the
set of rational numbers

hdeg.M / � hdeg.M=hM /

deg.M /

over all M 2 M.R/ and all generic hyperplane sections. Is this set finite, or, more
generally, bounded? Can it be expressed as an invariant of R?

Question 3. Let x be a system of parameters of the Noetherian local ring R. If x is
a d-sequence, find an estimation for hdeg.x/.R/.
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Question 4. Let R D kŒ�� be the Stanley–Reisner ring of the simplicial complex �.
Find estimations for hdeg.R/ and bdeg.R/.
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