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Preface

The International Conference on Algebra and its Applications held in Athens,
Ohio, June 18–21, 2008 and sponsored by the Ohio University Center for Ring
Theory and its Applications (CRA) had as its central purpose to honor Surender K.
Jain, the Center’s retiring first director, on the dual occasion of his 70th birthday
and of his retirement from Ohio University. With this volume we celebrate the
contributions to Algebra of our distinguished colleague. One of Surender’s main
attributes has been the way in which he radiates enthusiasm about mathematical
research; his eagerness to pursue mathematical problems is contagious; we hope
that reading this excellent collection of scholarly writings will have a similar effect
on our readers and that you will be inspired to continue the pursuit of Ring Theory
as well as Algebra and its Applications.

As with previous installments of CRA conferences, the underlying principle
behind the meeting was to bring together specialists on the various areas of Al-
gebra in order to promote communication and cross pollination between them. In
particular, a common philosophy of our conferences through the years has been to
bring algebraists who focus on the theoretical aspects of our field with those others
who embrace applications of Algebra in diverse areas. Clearly, as a reflection of the
interests of the organizers, the applications we emphasized were largely within the
realm of Coding Theory. The philosophy behind the organization of the conference
has undoubtedly impacted this Proceedings volume.

For the most part, the contributors delivered related talks at the conference
itself. However, there are also a couple of contributions in this volume from authors
who could not be present at the conference but wanted to participate and honor
Dr. Jain on this occasion. All papers were subject to a strict process of refereeing
and, in fact, not all submissions were accepted for publication.

We would like to take this opportunity to thank all the anonymous refer-
ees who delivered their verdicts about the submitted papers within a very tight
schedule; they also provided valuable feedback on many of the papers that appear
here in final form. Likewise, we wish to express our deep appreciation to Sylvia
Lotrovsky and Thomas Hempfling of Birkhäuser for their diligent efforts to bring
this volume to completion.
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Abstract. The aim of this expository paper is to present those basic concepts
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1. Introduction

A standard, very concrete, and not so hard exercise in any undergraduate abstract
algebra course anyone of us has encountered is the following one:

Consider the field extension Q ⊆ Q(
√
2, 3
√
5).

(a) Calculate the degree [Q(
√
2, 3
√
5) : Q ] of this extension.

(b) Find a primitive element of this extension.

Surely, it is natural to ask what about the same questions when we replace
the very particular radicals

√
2 and 3

√
5 by arbitrary finitely many radicals of

positive integers. More precisely, we have the following

Problem. Consider the field extension

Q ⊆ Q (n1
√
a1 , . . . ,

nr
√
ar ),

The author gratefully acknowledges partial financial support from the grant ID-PCE 1190/2008

awarded by the Consiliul Naţional al Cercetării Ştiinţifice ı̂n Învăţământul Superior (CNCSIS),

România.
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where r, n1, . . . , nr, a1, . . . , ar are positive integers, and where ni
√
ai is the positive

real nith root of ai for each i, 1 � i � r.

(a) Calculate the degree [Q (n1
√
a1 , . . . , nr

√
ar ) : Q ] of this extension.

(b) Find a primitive element of this extension.

More than twenty years ago we first thought about this challenging problem.
A first attempt to solve it, even in a more general case, was the introduction and
investigation of the so-called Kummer extensions with few roots of unity , see Albu
[1]. After that, we discovered, little by little, the fundamental papers of Kneser
[25] and Greither and Harrison [20] and got more and more involved in their topic,
which lead to what is nowadays called Cogalois theory. There are at least two
reasons for presenting this material to ring and module theorists :

• firstly, to make a propaganda of this pretty nice and equally new theory in
field theory by providing a gentle and as short as possible introduction to a
general audience and readership of its basic notions and results, and

• secondly, we want to show how this theory has nice applications in solv-
ing some interesting and nontrivial problems of elementary field arithmetic,
including that mentioned above concerning the computation of the degree
and finding a (canonical) primitive element of field extensions like Q ⊆
Q (n1

√
a1 , . . . ,

nr
√
ar ).

2. Notation and terminology

By N we denote the set {0, 1, 2, . . .} of all natural numbers, by N∗ the set N\{0}
of all strictly positive natural numbers, and by Q (resp. R, C) the field of all
rational (resp. real, complex) numbers. For any ∅ �= A ⊆ C (resp. ∅ �= X ⊆ R )
we denote A∗ = A \ {0} (resp. X+ = { x ∈ X |x � 0 }). If a ∈ R∗

+ and n ∈ N∗,
then the unique positive real root of the equation xn − a = 0 will be denoted by
n
√
a. For any set M , |M | will denote the cardinal number of M .

A field extension is a pair (F,E) of fields, where F is a subfield of E (or E
is an overfield of F ), and in this case we shall write E/F . Very often, instead of
“field extension” we shall use the shorter term “extension”. If E is an overfield of
a field F , we will also say that E is an extension of F . By an intermediate field of
an extension E/F we mean any subfield K of E with F ⊆ K, and the set of all
intermediate fields of E/F is a complete lattice that will be denoted by I(E/F ).

Throughout this paper F always denotes a field, Char(F ) its characteristic,
e(F ) its characteristic exponent (that is, e(F ) = 1 if F has characteristic 0, and
e(F ) = p if F has characteristic p > 0), and Ω a fixed algebraically closed field
containing F as a subfield. Any considered overfield of F is supposed to be a
subfield of Ω.
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For an arbitrary nonempty subset S of Ω and a number n ∈ N∗ we denote
throughout this paper:

S∗ = S \ {0},
Sn = { xn | x ∈ S },

μn(S) = { x ∈ S | xn = 1 }.

By a primitive nth root of unity we mean any generator of the cyclic group μn(Ω);
ζn will always denote such an element.

For an arbitrary group G, the notation H � G means that H is a subgroup
of G. The lattice of all subgroups of G will be denoted by L(G). For any subset
M of G, 〈M〉 will denote the subgroup of G generated by M .

For a field extension E/F we shall denote by [E : F ] the degree, and by
Gal (E/F ) the Galois group of E/F . For any subgroup Δ of Gal (E/F ), Fix (Δ)
will denote the fixed field of Δ. If E/F is an extension and A ⊆ E, then F [A]
will denote the smallest subring of E containing both A and F as subsets. We
also denote by F (A) the smallest subfield of E containing both A and F as
subsets, called the subfield of E obtained by adjoining to F the set A. For all
other undefined terms and notation concerning basic field theory the reader is
referred to Bourbaki [17], Karpilovsky [24], and/or Lang [26].

3. What is Cogalois theory?

Cogalois theory, a fairly new area in field theory, investigates field extensions, finite
or not, that possess a so-called Cogalois correspondence. The subject is somewhat
dual to the very classical Galois theory dealing with field extensions possessing a
Galois correspondence.

In what follows we are intending to briefly explain the meaning of such ex-
tensions. An interesting but difficult problem in field theory is to describe in a
satisfactory manner the set I(E/F ) of all intermediate fields of a given field ex-
tension E/F , which, in general is a complicated-to-conceive, potentially infinite set
of hard-to-describe-and-identify objects. This is a very particular case of a more
general problem in mathematics: Describe in a satisfactory manner the collection
Sub(X) of all subobjects of a given object X of a category C. For instance, if G is
a group, then an important problem in group theory is to describe the set L(G)
of all subgroups of G. Observe that for any field F we may consider the category
EF of all field extensions of F . If E is any object of EF , i.e., a field extension E/F ,
then the set I(E/F ) of all subfields of E containing F , i.e., of all intermediate
fields of E/F , is precisely the set Sub(E) of all subobjects of E in EF .

Another important problem in field theory is to calculate the degree of a
given field extension E/F .

Answers to these two problems are given for particular field extensions by
Galois theory invented by E. Galois (1811–1832) and by Kummer theory invented
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by E. Kummer (1810–1873). Let us briefly recall the solutions offered by these two
theories in answering the two problems presented above.

The fundamental theorem of finite Galois theory (FTFGT). If E/F is a finite
Galois extension with Galois group Γ, then the canonical map

α : I(E/F ) −→ L(Γ), α(K) = Gal(E/K),

is a lattice anti-isomorphism, i.e., a bijective order-reversing map. Moreover,
[E : F ] = |Γ|.
We say that such an E/F is an extension with Γ-Galois correspondence.

In this way, the lattice I(E/F ) of all subobjects of an object E ∈ EF , which
has the additional property that is a finite Galois extension of F , can be described
by the lattice of all subobjects of the object Gal (E/F ) in the category Gf of all
finite groups. In principle, this category is more suitable than the category EF of
all field extensions of F , since the set of all subgroups of a finite group is a far
more benign object. Thus, many questions concerning a field are best studied by
transforming them into group theoretical questions in the group of automorphisms
of the field.

Note that for an infinite Galois extension E/F the FTFGT fails. In this
case the Galois group Gal (E/F ) is in fact a profinite group, that is, a projective
limit of finite groups, or equivalently, a Hausdorff, compact, totally disconnected
topological group; its topology is the so called Krull topology. The description of
I(E/F ) is given by

The fundamental theorem of infinite Galois theory (FTIGT). If E/F is an
arbitrary Galois extension with Galois group Γ, then the canonical map

α : I(E/F ) −→ L(Γ), α(K) = Gal(E/K),

is a lattice anti-isomorphism, where L(Γ) denotes the lattice of all closed subgroups
of the group Γ endowed with the Krull topology.

Observe that the lattice L(Γ) is nothing else than the lattice of all subobjects of
Γ in the category of all profinite groups.

However, the Galois group of a given Galois field extension E/F , finite or not,
is in general difficult to be concretely described; so, it will be desirable to impose
additional conditions on E/F such that the lattice I(E/F ) be isomorphic (or anti-
isomorphic) to the lattice L(Δ) of all subgroups of some other group Δ, easily
computable and appearing explicitly in the data of the given Galois extension
E/F . A class of such Galois extensions is that of classical Kummer extensions .
We recall their definition below.

Definition. A field extension E/F is said to be a classical n-Kummer extension,
with n a given positive integer, if the following three conditions are satisfied:
(1) gcd(n, e(F )) = 1,
(2) ζn ∈ F ,
(3) E = F ({n

√
ai | i ∈ I }),
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where I is an arbitrary set, finite or not, ai ∈ F ∗, and n
√
ai is a certain root in

Ω of the polynomial Xn − ai, i ∈ I.
Note that the extension E/F is finite if and only if the set I in the definition

above can be chosen to be finite.
For a classical n-Kummer extension E/F we denote by

Kum(E/F ) := F ∗〈{n
√
ai | i ∈ I 〉/F ∗

the so-called Kummer group of E/F . The next result is a part of the so-called
Kummer theory.

The fundamental theorem of Kummer theory (FTKT). Let E/F be a classical
n-Kummer extension with Kummer group Δ. Then there exists a canonical lattice
isomorphism

I(E/F ) ∼−→ L(Δ).

Observe that the Kummer group Δ of a classical n-Kummer extension E/F
is intrinsically given with the extension E/F and easily manageable as well. This
group is isomorphic, but not canonically, with the character group Γ̂ of the Galois
group Γ of E/F ; in particular, it follows that for E/F finite, the group Δ is
isomorphic with Γ, and in particular it has exactly [E : F ] elements. Consequently,
if E/F is a finite classical n-Kummer extension, say E = F (n

√
a1 , . . . ,

n
√
ar ), then

[F (n
√
a1 , . . . ,

n
√
ar ) : F ] = |F ∗〈 n

√
a1 , . . . ,

n
√
ar 〉/F ∗|.

Note also that any classical n-Kummer extension E/F is a Galois extension
with an Abelian Galois group of exponent a divisor of n (this means that σn =
1E for all σ ∈ Gal(E/F )), and conversely, any Galois extension E/F such that
gcd(n, e(F )) = 1, ζn ∈ F for some n ∈ N∗, and such that the Galois group of E/F
is an Abelian group of exponent a divisor of n, is a classical n-Kummer extension.

On the other hand, there exists a fairly large class of field extensions which
are not necessarily Galois, but enjoy a property similar to that in FTKT or is
dual to that in FTFGT. Namely, these are the extensions E/F for which there
exists a canonical lattice isomorphism (and not a lattice anti-isomorphism as in the
Galois case) between I(E/F ) and L(Δ), where Δ is a certain group canonically
associated with the extension E/F . We call the members of this class extensions
with Δ-Cogalois correspondence. Their prototype is the field extension

Q (n1
√
a1 , . . . ,

nr
√
ar )/Q ,

where r, n1, . . . , nr, a1, . . . , ar are positive integers, and where ni
√
ai is the posi-

tive real nith root of ai for each i, 1 � i � r. For such an extension, the associated
group Δ is the factor group Q∗〈n1

√
a1 , . . . ,

nr
√
ar 〉/Q∗. Note that the finite clas-

sical n-Kummer extensions have a privileged position: they are at the same time
extensions with Galois and with Cogalois correspondences, and the two groups
appearing in this setting are isomorphic.
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After 1930 there were attempts to weaken the condition ζn ∈ F in the defini-
tion of a Kummer extension in order to effectively compute the degree of particular
finite radical extensions, i.e., of extensions of type F (n1

√
a1 , . . . ,

nr
√
ar )/F , where

F was mainly an algebraic number field. All these attempts finally lead to what
nowadays is called Cogalois theory, also spelled co-Galois theory.

The main precursors of Cogalois theory, in chronological order, are H. Hasse
(1930), A. Besicovitch (1940) [16] , L.J. Mordell (1953) [27], C.L. Siegel (1972)
[29], M. Kneser (1975) [25] whose paper brilliantly superseded all the previous
work done in computing the degree of finite radical extensions, A. Schinzel (1975)
[28], D. Gay, W.Y. Vélez (1978) [19], etc.

In our opinion, Cogalois theory was born in 1986, with birthplace Journal
of Pure and Applied Algebra [20], and having C. Greither and D.K. Harrison as
parents. In that paper [20], the Cogalois extensions have been introduced and
investigated for the first time in the literature, and other classes of finite field
extensions possessing a Cogalois correspondence, including the so-called neat pre-
sentations have been considered.

Besides the Cogalois extensions introduced by Greither and Harrison [20]
in 1986, new basic classes of finite radical field extensions the Cogalois theory
deals with, namely the G-Kneser extensions, strongly G-Kneser extensions , and
G-Cogalois extensions were introduced and investigated in 1995 by T. Albu and
F. Nicolae [9]. Note that the frame of G-Cogalois extensions permits a simple and
unified manner to study the classical Kummer extensions, the Kummer extensions
with few roots of unity, the Cogalois extensions, and the neat presentations. In
2001 an infinite Cogalois theory investigating infinite radical extensions has been
developed by T. Albu and M. Ţena, in 2003 appeared the author’s monograph
“Cogalois theory” [7], and in 2005 the infinite Cogalois theory has been generalized
to arbitrary profinite groups by T. Albu and Ş.A. Basarab [8], leading to a so-called
abstract Cogalois theory for arbitrary profinite groups.

Roughly speaking, Cogalois theory investigates radical extensions , finite or
not, i.e., extensions of type E/F with E = F ({ni

√
ai | i ∈ I }), ni ∈ N∗, ai ∈ F ∗, i ∈

I, I an arbitrary set, finite or not, such that there exists a lattice isomorphism

I(E/F ) ∼−→ L(Δ),

where Δ is a group canonically associated with the given extension E/F . Mostly,
Δ = F ∗〈{ni

√
ai | i ∈ I 〉/F ∗.

4. Basic concepts and results of Cogalois theory

In this section we will briefly present some of the basic notions and facts of Co-
galois theory, namely those of G-radical extension, G-Kneser extension, Cogalois
extension, strongly G-Kneser extension, and G-Cogalois extension.
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G-Radical extensions

The notion of radical extension is rather basic and well known in Galois theory.
However, our terminology used in the previous section is somewhat different from
that commonly used in Galois theory (see, e.g., Kaplansky [23], Karpilovsky [24],
Lang [26]), but they agree for simple extensions. Note that radical extensions have
been called coseparable by Greither and Harrison [20]. As explained above, by
a radical extension we mean a field extension E/F such that E is obtained by
adjoining to the base field F an arbitrary set of “radicals” over F , i.e., of elements
x ∈ E such that xn = a ∈ F for some n ∈ N∗. Such an x is denoted by n

√
a and

is called an nth radical of a.
We reformulate below this notion using the following notation applicable to

any extension E/F :

T (E/F ) := { x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗ }.
Observe that for every element in x ∈ T (E/F ) there exists an n ∈ N∗ such that
xn = a ∈ F , so x is an nth radical of a. Thus, T (E/F ) is precisely the set of
all “radicals” belonging to E of elements of F ∗. This observation suggests the
following

Definition 4.1. An extension E/F is said to be radical (resp. G-radical ) if there
exists a set A with A ⊆ T (E/F ) (resp. a group G with F ∗ � G � T (E/F )) such
that E = F (A) (resp. E = F (G)).

Observe that any radical extension E/F is G-radical for some G; indeed, if
E = F (A) for some A ⊆ T (E/F ), then just take as G the subgroup G = F ∗〈A 〉
of the multiplicative group E∗ of E generated by F ∗ and A.

G-Kneser extensions

The basic concept of G-Kneser extension has been introduced by Albu and Nicolae
[9] for finite extensions and by Albu and Ţena [13] for infinite extensions.

Definition 4.2. A finite extension E/F is said to be G-Kneser if it is a G-radical
extension such that |G/F ∗| = [E : F ] (only the inequality |G/F ∗| � [E : F ] is
sufficient). The extension E/F is called Kneser if it is G-Kneser for some group G.

Note that a finite G-radical extension E/F is G-Kneser if and only if there
exists a set of representatives of the quotient group G/F ∗ which is linearly inde-
pendent over F if and only if every set of representatives of G/F ∗ is a vector space
basis of E over F . This implies an easy procedure to exhibit vector space bases
for such extensions: first, list all the elements, with no repetition, of the quotient
group G/F ∗ and then take representatives of the cosets from this list.

The Kneser criterion

We present now a crucial result which characterizes separable G-Kneser extensions
E/F according to whether or not certain roots of unity belonging to G are in F .
Originally, it has been established by Kneser [25] only for finite extensions. The
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general case has been proved by Albu and Ţena [13] using the fact that the property
of an arbitrary G-radical extension being G-Kneser is of finite character.

Theorem 4.3. (The Kneser criterion). An arbitrary separable G-radical extension
E/F is G-Kneser if and only if ζp ∈ G =⇒ ζp ∈ F for every odd prime p and
1± ζ4 ∈ G =⇒ ζ4 ∈ F .

Note that the separability condition cannot be dropped from the Kneser
criterion.

The Kneser criterion is a very powerful tool in Cogalois theory. We only
mention a few of applications:

• in proving the Greither-Harrison criterion (see Theorem 4.5);
• in investigating G-Cogalois extensions (see Section 4);
• in elementary field arithmetic (see Section 6);
• in Gröbner bases (see Subsection 7.1);
• in classical algebraic number theory (see Subsection 7.2).

Cogalois extensions

Remember that for any extension E/F we use the following notation throughout
this paper:

T (E/F ) := { x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗ }.
Since F ∗ � T (E/F ), it makes sense to consider the quotient group T (E/F )/F ∗,
which is nothing else than the torsion group t(E∗/F ∗) of the quotient group
E∗/F ∗. This group, playing a major role in Cogalois theory, is somewhat dual to
the Galois group of E/F , which explains the terminology below.

Definition 4.4. The Cogalois group of an arbitrary field extension E/F , denoted
by Cog (E/F ), is the quotient group T (E/F )/F ∗. The extension E/F is said to
be Cogalois if it is T (E/F )-Kneser.

Clearly, a finite extension E/F is Cogalois if and only if it is radical, i.e.,
E = F (T (E/F )), and |Cog (E/F )| = [E : F ] (only the inequality |Cog (E/F )| �
[E : F ] is sufficient).

Observe that, in contrast to the fact that the Galois group Gal(E/F ) of an
arbitrary extension E/F is in general not Abelian, the Cogalois group Cog(E/F )
of any extension E/F is always a torsion Abelian group.

The computation of the Cogalois group of an extension is not an easy task.
For quadratic extensions of Q we have a complete description of such groups
(see Albu, Nicolae, and Ţena [12]). Note also that a nice result due to Greither
and Harrison [20] says that the Cogalois group of any extension E/F of algebraic
number fields is finite.

The term of “Cogalois extension” appeared for the first time in the literature
in 1986 in the fundamental paper of Greither and Harrison [20], where the Cogalois
extensions were introduced as follows: a finite extension E/F is called conormal
(resp. coseparable) if |Cog(E/F )| � [E : F ] (resp. if E/F is radical), and is called
Cogalois if it is both conormal and coseparable. So, the Greither and Harrison’s
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terminology for finite Cogalois extensions has been chosen to agree with the dual
of the following well-known characterization: an extension, finite or not, is Galois
if and only if it is both normal and separable.

A basic concept in the theory of radical extensions is that of purity: we say
that an extension E/F is pure if μp(E) ⊆ F for every p, p odd prime or 4. This
concept is somewhat related to that used in group theory: a subgroup H of an
Abelian multiplicative group G is called pure if Gn ∩H = Hn for every n ∈ N∗.

The next result, characterizing Cogalois extensions in terms of purity is due
to Greither and Harrison [20] for finite extensions, and to Albu and Ţena [13]
for arbitrary extensions. The original proof in [20] involves the machinery of the
cohomology of groups. A very short and simple proof, based only on the Kneser
criterion is due to Albu and Ţena [13].

Theorem 4.5. (The Greither–Harrison criterion). An arbitrary extension E/F is
Cogalois if and only if it is radical, separable, and pure.

Corollary 4.6. Any G-radical extension E/F with E a subfield of R is Cogalois,
and Cog (E/F ) = G/F ∗.

Proof. Clearly E/F is pure, so by the Greither–Harrison criterion, it is Cogalois.
Now, by the Kneser criterion, it is also G-Kneser. This implies that G = T (E/F )
(see Albu [7] for more details), so Cog (E/F ) = G/F ∗. �

Galois and Cogalois connections

Let E/F be an arbitrary field extension, and denote by Γ the Galois group
Gal(E/F ) of E/F . Then, it is easily seen that the maps

α : I(E/F ) −→ L(Γ), α(K) = Gal(E/K),

and
β : L(Γ) −→ I(E/F ), β(Δ) = Fix(Δ),

yield a Galois connection between the lattice I(E/F ) of all intermediate fields
of the extension E/F and the lattice L(Γ) of all subgroups of Γ. We call it the
standard Galois connection associated with the extension E/F .

Recall that a Galois connection between the posets (X,�) and (Y,�) is
a pair of order-reversing maps α : X −→ Y and β : Y −→ X such that
x � (β ◦ α)(x), ∀ x ∈ X, and y � (α ◦ β)(y), ∀ y ∈ Y .

If the maps α and β are both order-preserving instead of order-reversing,
we obtain a Cogalois connection between X and Y . More precisely, a Cogalois
connection between the posets (X,�) and (Y,�) is a pair of order-preserving
maps α : X −→ Y and β : Y −→ X such that (β ◦ α)(x) � x, ∀x ∈ X, and
y � (α ◦ β)(y), ∀ y ∈ Y.

The prototype of a Cogalois connection is that canonically associated with
any radical extension. Let E/F be an arbitrary G-radical extension. Then, the
maps

ϕ : I(E/F ) −→ L(G/F ∗), ϕ(K) = (K ∩G)/F ∗,



10 T. Albu

and

ψ : L(G/F ∗) −→ I(E/F ), ψ(H/F ∗) = F (H),

establish a Cogalois connection between the lattices I(E/F ) and L(G/F ∗), called
the standard Cogalois connection associated with the extension E/F . Notice that,
in contrast with the standard Galois connection which is associated with any exten-
sion, the standard Cogalois connection is associated only with radical extensions.

The considerations above naturally lead us to define the following dual con-
cepts. An extension E/F with Galois group Γ is said to be an extension with
Γ-Galois correspondence if the standard Galois connection associated with E/F
yields a lattice anti-isomorphism between the lattices I(E/F ) and L(Γ). Dually,
a G-radical extension E/F is said to be an extension with G/F ∗-Cogalois corre-
spondence if the standard Cogalois connection associated with E/F yields a lattice
isomorphism between the lattices I(E/F ) and L(G/F ∗).

The next result (see Albu [7]) shows that the finite extensions with Γ-Galois
correspondence are precisely the Galois extensions.

Proposition 4.7. A finite extension E/F with Galois group Γ is Galois if and
only if it is an extension with Γ-Galois correspondence, in other words, the maps
α and β from the standard Galois connection associated with E/F are lattice
anti-isomorphisms, inverse to one another, between the lattices I(E/F ) and L(Γ).

Strongly G-Kneser extensions

Similarly to the fact that a subextension of a normal extension is not necessarily
normal, a subextension of a Kneser extension is not necessarily Kneser, So, it
makes sense to consider the extensions that inherit the property of being Kneser,
which will be called strongly Kneser .

Definition 4.8. An extension E/F is said to be strongly G-Kneser if it is a G-
radical extension such that, for every intermediate field K of E/F , the extension
E/K is K∗G-Kneser, or equivalently, the extension K/F is K∗ ∩ G-Kneser. The
extension E/F is called strongly Kneser if it is strongly G-Kneser for some G.

The next result gives a characterization of G-Kneser extensions E/F which
are extensions with G/F ∗-Cogalois correspondence, and is somewhat dual to the
corresponding result in Proposition 4.7 for Galois extensions.

Theorem 4.9. The following assertions are equivalent for an arbitrary G-radical
extension E/F.

(1) E/F is strongly G-Kneser.
(2) E/F is G-Kneser with G/F ∗-Cogalois correspondence, i.e., the maps

ϕ : I(E/F ) −→ L(G/F ∗) and ψ : L(G/F ∗) −→ I(E/F )

defined above are isomorphisms of lattices, inverse to one another.
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G-Cogalois extensions

An intrinsic characterization of strongly G-Kneser extension is available for sepa-
rable extensions. Such extensions deserve a special name.

Definition 4.10. An extension E/F is called G-Cogalois if it is a separable strongly
G-Kneser extension.

G-Cogalois extensions play in Cogalois theory the same role as that of Galois
extensions in Galois theory. These extensions can be nicely characterized within
the class of G-radical extensions by means of a certain sort of local “purity”, called
n-purity.

We say that an extension E/F is n-pure for some n ∈ N∗ if μp(E) ⊆ F
for all p, p odd prime or 4, with p |n. Recall that the exponent exp(T ) of a
finite multiplicative group T is the least number n ∈ N∗ with the property that
T n = {e}.

Theorem 4.11. (The n-purity criterion [9]). A finite separable G-radical extension
E/F with exp(G/F ∗) = n is G-Cogalois if and only if it is n-pure.

The n-purity criterion is a powerful tool in Cogalois theory. Note that for
infinite extensions a similar criterion for G-Cogalois extensions, namely the PG-
purity criterion, has been established by Albu [3].

The next result is due to Albu and Nicolae [9] for finite extensions and to
Albu and Ţena [13] for infinite extensions.

Theorem 4.12. Let E/F be an extension which is simultaneously G-Cogalois and
H-Cogalois. Then G = H.

In view of Theorem 4.12, the group G of any G-Cogalois extension, finite or
not, is uniquely determined. So, it makes sense to introduce the following concept.

Definition 4.13. If E/F is a G-Cogalois extension, then the group G/F ∗ is called
the Kneser group of the extension E/F and is denoted by Kne(E/F ).

Observe that for any G-Cogalois extension E/F one has Kne(E/F ) � Cog(E/F ).

5. Examples of G-Cogalois extensions

The n-purity criterion for finite extensions or the PG-purity criterion for infinite
extensions immediately provide the following large classes of G-Cogalois exten-
sions:

• Q (n1
√
a1 , . . . ,

nr
√
ar )/Q , with

Kne (Q (n1
√
a1 , . . . ,

nr
√
ar )/Q) = Q∗〈n1

√
a1 , . . . ,

nr
√
ar 〉/Q .

• Cogalois extensions E/F , with Kne(E/F ) = Cog (E/F ).
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• Classical n-Kummer extensions E/F , E = F ({n
√
ai | i ∈ I }), with

Kne(E/F ) = F ∗〈{n
√
ai | i ∈ I 〉/F ∗.

The Kneser and the Galois groups of such extensions E/F are related by a
(non-canonical) isomorphism

Kne(E/F )  Homc(Gal(E/F ), μn(F )),

where the subscript “ c ” means “continuous”. In particular, if E/F is a finite
classical n-Kummer extension, then Kne(E/F )  Gal(E/F ). Note that the
whole classical Kummer theory can be immediately deduced from Cogalois
theory using an infinite variant of the n-purity criterion.

• Various generalizations of classical n-Kummer extensions, including gener-
alized n-Kummer extensions , n-Kummer extensions with few roots of unity,
and quasi-n-Kummer extensions , have been introduced and investigated by
Albu [1] and Albu and Nicolae [9] for finite extensions, and by Albu and
Ţena [13] for infinite extensions. All of these are extensions E/F with E =
F ({n

√
ai | i ∈ I }), gcd(n, e(F )) = 1, and where the condition ζn ∈ F in the

definition of a classical n-Kummer extension (see Section 3, before FTKT) is
replaced by the condition μn(E) ⊆ F for generalized n-Kummer extensions,
by the condition μn(E) ⊆ {−1, 1} for n-Kummer extensions with few roots
of unity, and by the condition ζp ∈ F for every p, p odd prime or 4, with
p |n for quasi-n-Kummer extensions.

A theory of these generalizations of classical n-Kummer extensions can
be developed using the properties of G-Cogalois extensions, and it turns out
that this theory is very similar to the classical Kummer theory. Since, in
general, they are not Galois extensions, no other approach (e.g., via Galois
theory, as in the case of classical n-Kummer extensions) is applicable.

6. Applications to elementary field arithmetic

In this section we present interesting applications of Cogalois theory to completely
solve some very concrete and natural questions in elementary field arithmetic.
Many of them, to the best of our knowledge, cannot be solved without involving
the machinery of Cogalois theory, e.g., 6.3, 6.4, 6.8, etc. Note also that most of
these applications hold in more general cases, and not only for finite real radical
extensions of Q as they appear in 6.1–6.5 (see Albu [7]).

If not indicated otherwise, r, n1, . . . , nr will denote in this section elements
of N∗, a1, . . . , ar elements of Q∗

+, and ni
√
ai the positive real nith root of ai,

1 � i � r.

6.1. Effective degree computation:

[Q (n1
√
a1 , . . . , nr

√
ar ) : Q ] = |Q∗〈n1

√
a1 , . . . , nr

√
ar 〉/Q∗|.

Proof. This follows at once from the Kneser criterion since Q (n1
√
a1 , . . . ,

nr
√
ar )/Q

is a Q∗〈n1
√
a1 , . . . ,

nr
√
ar 〉-Kneser extension. �
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6.2. Exhibiting extension basis:

A vector space basis for the extension Q (n1
√
a1 , . . . , nr

√
ar )/Q is easily obtained

as soon as we have listed, with no repetition, all the elements of its Kneser group
Q∗〈n1

√
a1 , . . . ,

nr
√
ar 〉/Q∗. Then any set of representatives of the cosets from this

list is a basis of the extension, as this has been justified in Section 4 just after
Definition 4.2.

We illustrate this with the following concrete extension Q ( 4
√
20 , 6

√
500 )/Q.

Denote for simplicity

E = Q ( 4
√
20 , 6

√
500 ), G = Q∗〈 4

√
20 , 6

√
500 〉, a = 6

√
500, b = 4

√
20,

and for every x ∈ G let x̂ denote its coset xQ∗ in the quotient group G/Q∗.
We are going now to explicitly describe the Kneser group G/Q∗ of E/Q.

Since ord ( â ) = 6, ord ( b̂ ) = 4, and b̂2 = â3 =
√̂
5, we have

G/Q∗ = Q∗〈 a , b 〉/Q∗ = 〈 â, b̂ 〉 = { âi · b̂j | 0 � i � 5, 0 � j � 1 }

= { 1̂, â, â2, â3, â4, â5, b̂, â · b̂, â2 · b̂, â3 · b̂, â4 · b̂, â5 · b̂ }.
Since b̂ �∈ 〈 â 〉, we have |〈 â, b̂ 〉 | = 12. Thus [E : Q ] = 12, and, as explained
above, a basis of the extension E/Q is the set

{ 6
√
500 i · 4

√
20 j | 0 � i � 5, 0 � j � 1 }.

Observe that G/Q∗ = 〈 â, b̂ 〉 = 〈 âb 〉 = 〈 ̂12
√
2000000000〉, so it is a cyclic

group of order 12. It follows that another basis of the extension E/Q∗ is the set
{ 12
√
2000000000 i | 0 � i � 11}.

6.3. Finding all intermediate fields:

All the intermediate fields of the G-Cogalois extension Q (n1
√
a1 , . . . , nr

√
ar )/Q,

that is to say, all the subfields of the field Q (n1
√
a1 , . . . ,

nr
√
ar ), are, by Theo-

rem 4.9, exactly Q(H), where Q∗ � H � Q∗〈n1
√
a1 , . . . ,

nr
√
ar 〉. So, knowing all

the subgroups of its Kneser group Q∗〈n1
√
a1 , . . . , nr

√
ar 〉/Q∗ we can completely

describe all the subfields of Q (n1
√
a1 , . . . ,

nr
√
ar ).

Consider the concrete example E = Q ( 4
√
20 , 6

√
500 ) in 6.2. We know that

Kne(E/Q∗) is a cyclic group of order 12 generated by ĉ, where c = 12
√
2000000000,

so its subgroups are precisely the following: 〈 ĉ 〉, 〈 ĉ2 〉, 〈 ĉ3 〉, 〈 ĉ4 〉, 〈 ĉ6 〉, 〈 ĉ12 〉 .
Consequently, all the subfields of E are:

Q, Q(c), Q(c2), Q(c3), Q(c4), Q(c6),

where c = 12
√
2000000000.

Note that for every positive divisor d of [E : Q] = 12, there exists a unique
subfield K of E with [K : Q] = d, in other words, the extension E/Q has the so-
called unique subfield property (USP), and this property holds because its Kneser
group is cyclic (see Subsection 6.10).
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6.4. Primitive element:

Q (n1
√
a1 , . . . ,

nr
√
ar ) = Q (n1

√
a1 + · · ·+ nr

√
ar ).

Proof. By Section 5, Q (n1
√
a1 , . . . , nr

√
ar )/Q is a Q∗〈n1

√
a1 , . . . , nr

√
ar 〉-Cogalois

extension; apply now the n-purity criterion to deduce that n1
√
a1 + · · ·+ nr

√
ar is a

primitive element of the extension Q (n1
√
a1 , . . . ,

nr
√
ar )/Q (see Albu and Nicolae

[10] for more details). �

6.5. When is a sum of radicals of positive rational numbers a rational number?

Answer: n1
√
a1 + · · ·+ nr

√
ar ∈ Q ⇐⇒ ni

√
ai ∈ Q for all i, 1 � i � r.

Proof. If n1
√
a1 + · · ·+ nr

√
ar ∈ Q, then

Q (n1
√
a1 , . . . ,

nr
√
ar ) = Q (n1

√
a1 + · · ·+ nr

√
ar ) = Q

by 6.4, and consequently n1
√
a1 , . . . , nr

√
ar ∈ Q . �

6.6. When can a positive algebraic number α be written as a finite sum of real
numbers of type ± ni

√
ai , 1 � i � r?

Answer: An algebraic number α ∈ R∗
+ has the property above if and only if the

extension Q(α)/Q is radical, or Kneser, or Cogalois.

Proof. Assume that α can be written as a finite sum of real numbers of type
± ni

√
ai , 1 � i � r, r, ni ∈ N∗, ai ∈ Q∗

+. Then Q(α) is a subfield of the field
Q (n1

√
a1 , . . . ,

nr
√
ar ) ⊆ R, so it is a pure extension. Being clearly separable and

radical, it is Cogalois by the Greither–Harrison criterion (Theorem 4.5), and so is
also its subextension Q(α)/Q.

Now assume that the finite extension Q(α)/Q is radical. Again by the
Greither–Harrison criterion, it is also Cogalois. According to a result of Grei-
ther and Harrison [20] mentioned in Section 4 after Definition 4.4, the Coga-
lois group Cog (Q(α)/Q ) = T (Q(α)/Q )/Q∗ of the extension Q(α)/Q is finite.
Let {x1, . . . , xr} be a set of representatives of this finite group. Observe that
xi ≡ −xi (mod Q∗), so we may assume that xi > 0 for all i, 1 � i � r. Then
Q(α) = Q (x1, . . . , xr), and for every i, 1 � i � r, there exists ni ∈ N∗ such that
xni

i = ai ∈ Q∗
+, and so Q(α) = Q (n1

√
a1 , . . . ,

nr
√
ar ) as desired. �

6.7. When can a positive superposed radical not be decomposed into a finite sum
of real numbers of type ± ni

√
ai , 1 � i � r?

Answer: By 6.6, a superposed radical α = n1

√
a1 + n2

√
a2 + . . .+ nr

√
ar has the

above property if and only if the extension Q(α)/Q is not Cogalois. Examples

of such numbers are
√
1 +

√
2 and

√
2 +

√
2 +

√
2 + . . .+

√
2. Also, for any

square-free integer d ∈ N, d � 2, and any n ∈ Z∗ such that
√
n2 − d �∈ Q(

√
d ),

the extension Q
(√

n+
√
d

)
/Q is not Cogalois (see Albu [2]), so

√
n+

√
d is a

number we are looking for.
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6.8. When is a rational combination of powers from a given set of radicals of
positive rational numbers itself a radical of a positive rational number?

Answer: Let r, n1, . . . , nr ∈ N∗ and a1, . . . , ar ∈ Q∗
+ be given numbers, and let

α ∈ R∗
+ be a finite sum of monomials of form c · n1

√
a1

j1 · . . . · nr
√
ar

jr , with
j1, . . . , jr ∈ N and c ∈ Q∗. Then αm ∈ Q for some m ∈ N∗ if and only if α is
itself such a monomial.

Proof. Set E := Q (n1
√
a1 , . . . ,

nr
√
ar ) and G := Q∗〈n1

√
a1 , . . . ,

nr
√
ar 〉. Then the

statement above on α can be reformulated as follows:

When is an element α ∈ E such that α ∈ T (E/Q)?
By Corollary 4.6, we have Cog (E/Q) = G/Q∗, i.e., T (E/Q) = G; so αm ∈ Q if
and only α is a monomial as described above. �

6.9. Radical extensions of prime exponent:

The finite G-radical extensions E/F with exp(G/F ∗) a prime number p > 0
are extensions of the following type: E = F ( p

√
a1 , . . . ,

p
√
ar ) where r ∈ N∗,

a1, . . . , ar ∈ F ∗, and p
√
a1 , . . . ,

p
√
ar ∈ Ω denote certain pth roots.

Such extensions are nicely controlled when some additional conditions are
imposed, namely the characteristic of F is not p, and

[F ( p
√
a1 , . . . ,

p
√
ar ) : F ] = pr.

With these assumptions, the extension E/F is F ∗〈 p
√
a1 , . . . ,

p
√
ar 〉-Cogalois, and

so p
√
a1 + · · ·+ p

√
ar is a primitive element of it (see Albu [5], [6]).

The results of Kaplansky [23], Baker and Stark [14], and Albu [1] concerning
very particular such radical extensions of exponent p, that were established by
them in a more complicated way using the standard methods and tools of field
theory, are now easy consequences of our Cogalois approach.

6.10. Simple radical separable extensions having the USP:

Following Vélez [30], a finite extension E/F is said to have the unique subfield
property, abbreviated USP, if for every divisor m of [E : F ] there exists a unique
intermediate field K of E/F such that [K : F ] = m. The finite G-Cogalois exten-
sions which have the USP are precisely those having cyclic Kneser groups (see Albu
[4]). For simple radical separable extensions we have the following characterization
of the USP.

Proposition (Albu [4]). Let F be any field, and let u ∈ Ω be a root of an irreducible
binomial Xn − a ∈ F [X ], with gcd(n, e(F )) = 1. Then, the extension F (u)/F
has the USP if and only if it is F ∗〈u〉-Cogalois.

Corollary (Albu [4]). Let F be an arbitrary field, and let n ∈ N∗ be such that
ζn ∈ F and gcd(n, e(F )) = 1. Let Xn − a, Xn − b be irreducible polynomials in
F [X ] with roots u, v ∈ Ω, respectively. Then F (u) = F (v) if and only if there
exists c ∈ F and j ∈ N with gcd(j, n) = 1 and a = bjcn.
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7. Other applications

7.1. Binomial ideals and Gröbner bases

Let F be any field, n ∈ N∗, and F [X] := F [X1, . . . , Xn] be the polynomial ring
in n indeterminates with coefficients in F . By a monomial in F [X ] we mean any
c
∏

1�i�n X
ri

i with c ∈ F and ri ∈ N, 1 � i � n, and a sum of two monomials,
both of which may be zero is called binomial . An ideal a of F [X] is said to be
a binomial ideal if it can be generated by a set of binomials. An algorithm to
detect whether a given ideal a of F [X ] is binomial involves the Gröbner bases
(see Eisenbud and Sturmfels [18]). The most interesting binomial ideals are those
associated with Kneser extensions of F (see Becker, Grobe, and Niermann [15]).

7.2. Hecke’s systems of ideal numbers

The Kneser criterion is not only a powerful as well as indispensable tool in in-
vestigating radical field extensions, but, it has nice applications in proving some
classical results of algebraic number theory. We present here one of them.

A classical construction from 1920 in algebraic number theory, originating
with Hecke [21], is the following one: to every algebraic number field K one can
associate a so-called system of ideal numbers S, which is a certain subgroup of the
multiplicative group C∗ of complex numbers such that K∗ � S and the quotient
group S/K∗ is canonically isomorphic to the ideal class group C�K of K. The
equality [K(S) : K ] = | C�K | was claimed by Hecke on page 122 of his monograph
[22] published in 1948, but never proved by him. To the best of our knowledge, no
proof of this assertion, excepting the very short one due to Albu and Nicolae [11],
based on the Kneser criterion, is available in the literature.
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On Big Lattices of Classes of R-modules
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Abstract. In this paper we introduce the big lattices R-sext and R-qext con-
sisting the former of classes of left R-modules closed under isomorphisms,
submodules and extensions and the later of classes closed under homomor-
phic images and extensions, respectively. We work with these two big lattices
and study the consequences of assuming that they are the same proper class.
We also consider big lattices of R-modules defined by other closure properties.
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1. Introduction

Following Stenström [18, p. 89] we call big lattice a proper class C with a partial
order ≤, such that C with this order is a lattice except the fact that it is not a
set. In recent works, big lattices have been considered. For example in [9], the big
lattice of open classes is studied, where it is remarked that this in fact is not a set,
but in all other respect it is a distributive complete lattice.

In [16] the big lattice of Serre classes is considered.
In [6] the big lattice of non-hereditary torsion theories is studied.
In [10]–[13] a detailed study is made about the big lattice of preradicals

defined in R-mod.
In [15] the authors considered the big lattice of preradicals defined in the

category σ [M ] .
The main purpose of this work is to introduce and study some new big lattices

of module classes, namely R-sext and R-qext. We also obtain information about
other well-known lattices.

R will denote an associative ring with unitary element, andR-mod will denote
the category of unitary left R-modules. R-simp will denote a family of represen-
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tatives of isomorphism classes of left simple modules and L(M) will denote the
lattice of left R-submodules of a left R-module RM .

We consider some closure properties of a class of modules, like being closed
under submodules, quotients, extensions, direct sums, injective hulls, products or
projective covers, we will use the symbols ≤,�, ext,⊕, E () ,

∏
,P () respectively,

to abbreviate. If A denotes a set of these closure properties, we denote LA the
proper class of classes of modules closed under each closure property in A. So
L{≤} denotes the proper class of hereditary classes in R-mod, L{≤,�,ext} denotes
the proper class of Serre classes, and so on.

We should notice that LA becomes a complete big lattice with inclusion of
classes as the order and with infima given by intersections.

If C is a class of modules, we will denote by LA (C) the least element in LA

which contains C as a subclass (notice that R-mod is the largest element in LA.)
We say that D is a pseudocomplement for C in LA if D is maximal such

that C ∩D = {0}. We say that D is a strong pseudocomplement of C if D is the
largest element of LA such that C ∩D = {0}. We abbreviate saying that D is an
S-pseudocomplement of C.

If S ∈ LA, we denote by S⊥A a pseudocomplement of S in LA, when it exists.
With Skel (LA) we denote the class of pseudocomplements in LA.

Remark 1.1. We recall that N is a subquotient of M if there exists a diagram

M
↓α

N
β
� C

,

where α is an epimorphism and β is a monomorphism. As is clear taking pullbacks
(resp. taking pushouts) this is equivalent to ask for a diagram

K
μ
� M

↓λ

N

,

where λ is epic and μ is monic.

In some of these big lattices it is easy to describe pseudocomplements. Recall
the following examples.

Example. In L{≤}, the big lattice of hereditary classes of left R-modules, we have
that

C⊥{≤} = {M | N ≤M,N ∈ C =⇒ N = 0}
In this case we notice that pseudocomplements are unique because they are

in fact S-pseudocomplements.

In previous works [1], [2], we have denoted the big lattice L{≤} with R-her,
and the hereditary class generated by C, L{≤} (C) with her (C) .
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Example. If C ∈ L{≤,�}, then

C⊥{≤,�} = {M |M has no non zero subquotients in C} .
Proof. Let us denote the described class by D. As submodules and quotients of
M are subquotients of M it is clear that D is closed under taking submodules
and quotients. Now it follows directly that D is an S-pseudocomplement for C in
L{≤,�}. �
Definition 1.2. We say that a big lattice L is strongly-pseudocomplemented
(S-pseudocomplemented, for short) if each C ∈ L has an S-pseudocomplement
C⊥ ∈ L.

Recall that some lattices are S-pseudocomplemented: R-tors, the frame of
hereditary torsion theories, R-pr the big lattice of preradicals, R-nat the lattice of
natural classes. On the opposite side, the lattice L(M) of R-submodules of M is
pseudocomplemented but in general it is not S-pseudocomplemented. See [7], [10],
[14], [19], [18].

Remark 1.3. When L is S-pseudocomplemented, then C ⊆
(
C⊥)⊥for each C ∈ L.

Theorem 1.4. Suppose that both LP and LQ are S-pseudocomplemented, P,Q being
sets of closure properties. If Skel (LP ) ⊆ LQ ⊆ LP then Skel (LQ) = Skel (LP ) .

Proof. Take C⊥Q , C ∈ LQ. As C⊥Q ∈ LQ ⊆ LP , and C⊥Q ∧ C = {0} , we have
that C⊥Q ≤ C⊥P ∈ Skel (LP ) ⊆ LQ. As C ∧ C⊥P = {0} and C⊥P ∈ LQ, we have
that C⊥P ≤ C⊥Q . Then C⊥Q = C⊥P ∈ Skel (LP ) , thus Skel (LQ) ⊆ Skel (LP ) .

Now let us take C⊥P ; we claim that this is an element of Skel (LQ) . By
Remark 1.3 we have that C⊥P ≤

(
C⊥P

)⊥P⊥P
, also we have that C ≤ C⊥P ⊥P

implies that
(
C⊥P ⊥P

)⊥P ≤ C⊥P thus we have that C⊥P = C⊥P ⊥P ⊥P . Thus

it suffices to show that
(
C⊥P ⊥P

)⊥P =
(
C⊥P ⊥P

)⊥Q . Let us take D ∈ LQ such

that D ∧
(
C⊥P ⊥P

)
= {0}; as LQ ⊆ LP then D ≤

(
C⊥P ⊥P

)⊥P = C⊥P . So(
C⊥P ⊥P

)⊥Q ≤ C⊥P .

On the other hand, C⊥P ∈ LQ, by the hypothesis. As C⊥P ∧ C⊥P ⊥P = {0},
then C⊥P ≤

(
C⊥P ⊥P

)⊥Q
. �

Corollary 1.5. With the hypothesis of Theorem 1.4, for C ∈ LQ we have that
C⊥Q = C⊥P .

Proof. It is immediate. �
Theorem 1.6. If Skel (LP ) = LQ, with LP and LQ S-pseudocomplemented and P ,
Q being sets of closure properties, then for each C ∈ LP we have that

(
C⊥P

)⊥P =
LQ (C).

Proof. By hypothesis C⊥P ∈ LQ, thus by Corollary 1.5,
(
C⊥P

)⊥P =
(
C⊥P

)⊥Q ∈
LQ. As C ≤

(
C⊥P

)⊥P , we have that LQ (C) ≤
(
C⊥P

)⊥P
.
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Now, if C≤D∈LQ, then D=E⊥P , for some E∈LP , by hypothesis. Then C≤
C⊥P ⊥P ≤D⊥P ⊥P =E⊥P ⊥P ⊥P =E⊥P =D, this shows that C⊥P ⊥P =LQ(C). �
1.1. The skeletons of R-tors, R-Serre and R-op

As an application of Theorem 1.4 we notice that the skeletons of R-tors, (which
is L{≤,�,ext,⊕}), of R-Serre (which is L{≤,�,ext} ) and of R-op (which is L{≤,�})
are all the same.

In order to apply Theorem 1.4, we will show that a class C ∈ Skel(R-op) is
also closed under extensions and direct sums.

The following lemma is proved in [9, Theorem 3]; we include a proof for
reader’s convenience.

Lemma 1.7. Each D ∈ Skel(R-op) is closed under extensions and direct sums.

Proof. Suppose D = C⊥{≤,�} .

Extensions. Let 0 → L
f→ M → N

g→ 0 be an exact sequence with L,N
∈ C⊥{≤,�} . To show a contradiction, suppose that 0 �= K ∈ C is a subquotient of
M, as in the diagram

M
↓α

K
β
� C

,

where α is epic and β is monic. As β (K) ∩ αf (L) is a subquotient of both L and
K, then β (K) ∩ αf (L) = 0. So we get a commutative diagram

0 −→ L
f→ M −→ N −→ 0

↓α

K
β
� C ↙γ

↓π

C/αf (L)

with γ being an epimorphism, and π the natural epimorphism. Now consider the
non-zero quotient C/αf (L) , thus C/αf (L) ∈ C⊥{≤,�} . Notice now that πβ is a
monomorphism, so πβ (K) ∈ C⊥{≤,�} , thus 0 �= K ∈ C∩C⊥{≤,�} , a contradiction.

Direct sums. Let {Mi}I be a family in C⊥{≤,�} ; we want to see that ⊕{Mi}I

cannot have a non-zero subquotient in C. To show a contradiction, if 0 �= N were
a subquotient of ⊕{Mi}I , with N ∈ C, there would be a diagram

⊕{Mi}I

↓β

N
α� C

with β epic and α monic. We can choose N as a cyclic module, changing N for
a submodule if necessary. In fact, we can choose N as a simple module by using
Remark 1.1. Let us take a simple module N , N ∈ C, then it is a subquotient of a
finite direct sum ⊕{Mi}J , J ⊆ I. But C⊥{≤,�} is closed under finite direct sums
because it is closed under extensions. Thus 0 �=N ∈C∩C⊥{≤,�} , a contradiction. �
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Now we apply Theorem 1.4 to

Skel
(
L{≤,�}

)
⊆ L{≤,�,⊕,ext} ⊆ L{≤,�,ext} ⊆ L{≤,�}

to conclude Skel
(
L{≤,�}

)
= Skel

(
L{≤,�,⊕,ext}

)
= Skel

(
L{≤,�,ext}

)
.

Thus pseudocomplements of Serre classes and of open classes are always
hereditary torsion classes belonging to the skeleton of R-tors.

As a consequence we also obtain a new description for the pseudocomplement
of an hereditary torsion theory.

Corollary 1.8. τ⊥ is the torsion theory whose torsion class is given by

Tτ⊥ = {M |M has no nonzero τ-torsion subquotients } .

2. The big lattice R-sext

We shall say that a class of left R-modules C is a class with zero if C is closed
under isomorphisms and contains the zero module.

R-her and L{≤} both denote the same big lattice, in particular we denote by
her(C) the hereditary module class generated by the class C (see [1]).

Notation. Let C, D be two classes with zero. We denote

E(C,D) =

⎧⎨⎩M ∈ R-mod |
there exists an exact sequence

0→ C →M → D → 0
with C ∈ C and D ∈ D

⎫⎬⎭ .

Definition 2.1. We shall denote by R-sext the proper class of all classes of left
R-modules closed under isomorphisms, submodules and extensions.

Thus R-sext means the same as L{≤,ext}.

In the following propositions we prove some facts that we will need later.

Proposition 2.2. Let C,D and E be three classes with zero, then

E(E(C,D),E) = E(C, E(D,E)).

Proof. Take M ∈ E(E(C,D),E), then we can assume that there exists an exact
sequence

0→ N ↪→M � M

N
→ 0

with N ∈ E(C,D) and M

N
∈ E.
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We have the following diagram for some C ∈ C and
N

C
∈ D:

0 0
↓ ↓
C = C

inc ↓ inc ↓
0 → N ↪→ M � M

N
→ 0

↓ ↓
0 → N

C
↪→ M

C
� M

N
↓ ↓
0 0

Since N
C ∈ D and M

N ∈ E, then M
C ∈ D : E. It follows thatM ∈ E(C, E(D,E)).

Conversely, take M ∈ E(C, E(D,E)), then there exists an exact sequence

0→ L ↪→M � M

L
→ 0

with L ∈ C and
M

L
∈ E(D,E). So we have the following diagram with

K

L
∈ D

and
M

K
∈ E:

0 0 0
↓ ↓ ↓

0 → L ↪→ K � K

L
→ 0

inc ↓ inc ↓
0 → L ↪→ M � M

L
→ 0

↓ ↓
M

K

M

K
↓ ↓
0 0

Since L ∈ C and
K

L
∈ D, then K ∈ E(C,D). Hence M ∈ E(E(C,D),E). �

Notice that for two classes with zero C,D, we have that C ∪D ⊆ E(C,D).

Definition 2.3. For a class with zero C, define E(C,C)0 = {0} and E(C,C)n+1 =
E(C, E(C,C)n), n ∈ N.

Theorem 2.4. If C is a hereditary class, then
⋃

n∈N
E(C,C)n ∈ R-sext.

Proof. First we prove that E(C,C)n is a hereditary class for each n ∈ N.
The assertion is clear for n = 0. Let us take n > 0.
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Suppose that M ∈ E(C,C)k for some 0 < k ∈ N, and let N be a submodule
of M . Thus there exists an exact sequence

0→ L ↪→M � M

L
→ 0

with L ∈ C, and
M

L
∈ E(C,C)k−1. So we have the following commutative diagram:

0 → L ↪→ M � M

L
→ 0

inc ↑ inc ↑ inc ↑
0 → L ∩ N ↪→ N � N + L

L
→ 0.

Since C and E(C,C)k−1 are hereditary classes, then N ∈ E(C,C)k.
Thus for each n ∈ N, E(C,C)n is a hereditary class and it is immediate that⋃

n∈N
E(C,C)n is also hereditary.
Now we claim that

⋃
n∈N

E(C,C)n is closed under extensions.
Consider the exact sequence

0→ K →M → L→ 0

with K ∈ E(C,C)l and L ∈ E(C,C)m. We will prove that M ∈ E(C,C)l+m, by
induction on l. If l = 0, there is nothing to prove. Let us suppose l > 0. We can
take a diagram with exact rows and columns:

0 0
↓ ↓
K1 = K1

↓ ↓
0 → K → M → L → 0

↓ ↓
0 → K

K1
→ M

K1
→ L → 0

↓ ↓
0 0

where
K

K1
∈ E(C,C)l−1 and K1 ∈ C.

Since L ∈ E(C,C)m and
K

K1
∈ E(C,C)l−1, we have that

M

K1
∈ E(C,C)(l−1)+m.

So we have that M ∈ E(C,C)l+m as desired. �
For each hereditary class H ⊆ C, with C ∈ R-sext we have that E(H,H) ⊆ C.

Thus, by induction, we get
⋃

n∈N
E(H,H)n ⊆ C. So we obtain the following result.

Corollary 2.5. If A is a class of modules, then
⋃

n∈N
E(her (A) , her (A))n is the

class in R-sext generated by A.
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For each class of modules A we will denote
⋃

n∈N
E(her (A) , her (A))n by

sext(A).
From the above we have that R-sext is a complete big lattice where for each

set X and any family {Cα}α∈X of elements in R-sext we have that∧
{Cα}α∈X =

⋂
{Cα}α∈X∨

{Cα}α∈X = sext
(⋃

{Cα}α∈X

)
.

Another important property that R-sext has is given in the following:

Theorem 2.6. R-sext is S-pseudocomplemented.

Proof. Let C ∈ R-sext. We will prove that

C⊥sext = {M ∈ R- mod | her (M) ∩ C = {0}}
is the S-pseudocomplement of C in R-sext.

Let us define H = {M ∈ R- mod | her (M) ∩ C = {0}}.
It is clear that C ∩ H = {0}. Now take M ∈ H and N ≤M . Then her (N) ⊆

her (M), so we have that her (N) ∩ C ⊆ her (M) ∩ C = {0} , thus N ∈ H, hence H
is a hereditary class.

Now, consider the exact sequence 0 → K → M
p→ L → 0 with K and L

in H and suppose M /∈ H. Then there exists 0 �= N ≤ M such that N ∈ C, thus
N ∩K ∈ H∩C = {0} which implies that p|N : N → L is a monomorphism. As L ∈
H we obtain N ∈ H∩C = {0} , a contradiction. Thus H is closed under extensions.

Finally we claim that H contains each D such that C∩D = {0} . If not, take
D ∈ R-sext such that D ∩ C = {0} and D � H, then there exists 0 �= M ∈ D \ H,
thus also there exists 0 �= N ≤M with N ∈ D ∩ C, a contradiction.

We conclude that H is the S-pseudocomplement for C. �

Theorem 2.7. sext (R) = sext(R-simp) if and only if R is left artinian and R
contains a copy of each simple module.

Proof. Let us assume that sext (R) = sext(R-simp).
sext(R-simp) consists of finitely generated semiartinian modules in view of

Corollary 2.5. As sext (R) is the class closed under extensions generated by the
left ideals the hypothesis implies that each left ideal is semiartinian and finitely
generated. Thus R is left noetherian and left semiartinian. Hence R is left artinian.
If S is a simple module, then S ∈ sext (R) , thus S ∈ E(L(R),L(R))n for some
minimal n ∈ N. So there exists an exact sequence 0→ I −→ S −→ K −→ 0 where
I ∈ L(R) and K ∈ E(L(R),L(R))n−1. As S is simple this implies that S ∼= I.

Conversely, assume that R is left artinian thus it is noetherian and semi-
artinian. As usual, let us define soc1 (R) = soc (R) and socn+1 (R) / socn (R) =
soc (R/ socn (R)) . It follows that socn (R) ∈ sext(R-simp), for each n. Also there
exists an m such that socm+1 (R) = socm (R) because R is left noetherian. Thus
soc (R/ socm (R)) = 0 which implies that R/ socm (R) = 0 because R is semiar-
tinian. Hence we see that R ∈ sext(R-simp). The same argument can be used to
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prove that each left ideal belongs to sext(R-simp). Thus we get that sext (R) ⊆
sext(R-simp). The converse inclusion follows directly from the hypothesis. �
2.1. R-sext and R-nat

We recall that a natural class of R-modules is a class of modules closed under
submodules, direct sums and injective hulls. The class R-nat of natural classes is
in fact a boolean lattice (in particular, R-nat is a set). See [19].

In [1] we proved that R-nat = Skel(R-her).

Theorem 2.8. The skeleton of R-sext is R-nat.

Proof. As R-nat = Skel(R-her) ⊆ R-sext ⊆ R-her, applying Theorem 1.4, we have
that Skel(R-her) = Skel(R-sext). �
Corollary 2.9. If N ∈ R-nat, then N⊥sext⊥sext = N.

Proof. Follows directly from Theorem 1.6. �
From Theorem 1.6 we can make the following remark.

Remark 2.10. If C ∈ R-sext, then C⊥sext⊥sext = nat (C), the natural class generated
by C.

Theorem 2.11. If C and D are in R-sext, then:

(C ∨D)⊥sext = C⊥sext ∧D⊥sext

and
(C ∧D)⊥sext = C⊥sext ∨D⊥sext

Proof. For the first statement, we always have C ≤ C∨D and then (C ∨D)⊥sext ≤
C⊥sext . Analogously (C ∨D)⊥sext ≤ D⊥sext , and then (C ∨D)⊥sext ≤ C⊥sext ∧D⊥sext

always happens.
On the other side, suppose there exists

0 �=M ∈
(
C⊥sext ∧D⊥sext

)
\ (C ∨D)⊥sext .

Then her (M) ∩ C = {0}, her (M) ∩D = {0} and her (M) ∩ (C ∨D) �= {0}. Then,
there exists 0 �= N ≤ M such that N ∈ (C ∨D), and hence there exists an exact
sequence

0→ C � N � L→ 0
with 0 �= C ∈ C ∪ D. Since C ∈ her (M) too, we have her (M) ∩ C �= {0} or
her (M) ∩D �= {0}, a contradiction, so (C ∨D)⊥sext = C⊥sext ∧D⊥sext .

For the second statement, it always happens C ∧ D ≤ C, then C⊥sext ≤
(C ∧D)⊥sext .

Analogously D⊥sext ≤ (C ∧D)⊥sext , hence C⊥sext ∨D⊥sext ≤ (C ∧D)⊥sext .
Now, take M ∈ (C ∧D)⊥sext , then her (M) ∩ (C ∧D) = {0}. Since

(C ∧D)⊥sext ∈ R-nat we can suppose that M is injective. Let C be a maximal
submodule of M such that C ∈ C⊥sext , then C is an essentially closed submod-
ule of M (see [20, Section 1.]), thus M = C ⊕ D for some 0 �= D ≤ M . If
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D /∈ D⊥sext , then there exists 0 �= E ≤ D such that E ∈ D and E /∈ C⊥sext ,
then there exists 0 �= F ≤ E with F ∈ C. Then F ∈ her (M) ∩ (C ∧D) = {0},
a contradiction. So M = C ⊕ D with C ∈ C⊥sext and D ∈ D⊥sext which implies
M ∈ C⊥sext ∨D⊥sext . �

3. The big lattice R-qext

We shall denote by R-qext the proper class of all classes of left R-modules closed
under isomorphisms, quotients and extensions.

Analogously to Theorem 2.4, Corollary 2.5 and to Theorem 2.6, we have the
following results: (Notice that R- quot = L{�}).

Theorem 3.1. If Q is a cohereditary class, then
⋃

n∈N
E(Q,Q)n ∈ R-quot.

Corollary 3.2. If U is a class of modules, then
⋃

n∈N
E(quot (U) , quot (U))n is the

class in R-qext generated by U.

Denoting qext (U) =
⋃

n∈N
E(quot (U) , quot (U))n we have that R-qext is a

complete big lattice where for each family {Cα}α∈X in R-qext:∧
{Cα}α∈X =

⋂
{Cα}α∈X∨

{Cα}α∈X = qext
(⋃

{Cα}α∈X

)
.

Theorem 3.3. If Q ∈ R-qext, then Q has a unique pseudocomplement in R-qext
given by

Q⊥qext = {M ∈ R- mod | quot (M) ∩Q = {0}} .

Example. qext (R) = {RM |M is finitely generated} .

Proof. qext (R) is the class closed under extensions generated by the cyclic mod-
ules, thus it is clear that qext (R) contains just finitely generated modules. On the
other hand, each finitely generated free module Rn belongs to qext (R) , thus each
finitely generated module also belongs to qext (R) . �

Lemma 3.4. qext (R) = qext(R-simp) implies that R is left semiartinian.

Proof. It is clear that qext(R-simp) consists of semiartinian finitely generated
modules. Thus the hypothesis implies that each finitely generated module is semi-
artinian, thus R is semiartinian. �

Recall that for two preradicals ρ, σ in R-mod, [ρ : σ] is the preradical defined

by
[ρ : σ] (M)
ρ (M)

= σ

(
M

ρ (M)

)
. See [18].

Theorem 3.5. R is left artinian if and only if R is left noetherian and qext (R)
= qext(R-simp).
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Proof. Let us suppose R is left artinian, then R is noetherian and semiartinian.
If we consider the sequence of preradicals soc, soc2 = [soc : soc] , . . . , socn+1 =
[soc : socn] , then the corresponding sequence of ideals soc (R) ≤ · · · ≤ socn (R)
stabilizes, say at socn (R) .

This means that soc (R/ socn (R)) = 0 and thus R/ socn (R) = 0, since R
is semiartinian. Then R = socn (R) ∈ qext(R-simp). So we have that qext (R) ⊆
qext(R-simp). The converse inclusion holds because each simple module is a quo-
tient of R.

Assuming that qext (R) = qext(R-simp) and R noetherian, using Lemma 3.4,
we have that R is left semiartinian. Thus R is left artinian. �

3.1. R-qext and R-conat

In [1] we proved that the skeleton of R-her is R-nat and we defined R-conat as
the skeleton of R-quot. An element of R-conat is called a conatural class. In [2] we
proved that R-conat is also a boolean lattice. Also we showed that a class Q ∈ R-
quot is a conatural class if and only if it satisfies the following CN -condition:
Q = Q⊥{�}⊥{�} , where ⊥{�} denotes pseudocomplements in the big lattice L{�}
consisting of the module classes closed under quotients. (This big lattice is denoted
R-quot in [1].)

In [1], we described the pseudocomplement in R-quot of a classQ, asQ⊥{�} =
{M |M has no non zero quotients in Q} . It is easy to see from this description
that pseudocomplements in R-quot are in fact S-pseudocomplements. Also, we
have already seen in Lemma 3.3 that R-qext is S-pseudocomplemented and it is
easy to see that pseudocomplements in R-qext are the same as the pseudocomple-
ments in R-quot. To see this, just recall that Skel(R-quot) ⊆ R-qext.

Now we obtain the following consequence from Theorem 1.4.

Theorem 3.6. R-conat = Skel(R-qext).

Also we obtain the following result related with Corollary 2.9.

Corollary 3.7. For a module class Q ∈ R-qext, Q⊥{�,ext}⊥{�,ext} = conat (Q),
where conat (Q) denotes the conatural class generated by Q.

Remark 3.8. Notice that conat (Q) = Q⊥{�}⊥{�}if Q ∈ R-quot. Thus we can
describe the conatural class generated by an arbitrary family of modules A as

conat (A) =
{
M | ∀ epic M

f �=0
� N,∃ N

g �=0
�C epic,

with C a quotient of an element of A

}
.

4. R-nat and R-conat

In this section we study the consequences of assuming that R-nat = R-conat. We
begin with the following.
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Theorem 4.1. For a ring R are equivalent:
(1) R-nat = R-conat .
(2) nat (M) = conat (M) for each M ∈ R- mod .

Proof. (1) =⇒ (2) Let M be an R-module, as nat (M) ∈ R-nat ⊆ R-conat, then
nat(M) is a conatural class containing M, thus conat (M) ⊆ nat (M) . Symmetri-
cally, nat (M) ⊆ conat (M) .

(2) =⇒ (1) Suppose (2) and let us take a natural class C. If M ∈ C, as
conat (M) = nat (M) ⊆ C, it follows that C is closed under quotients. To show
that C is a conatural class, it suffices to prove that a module M such that all of
its nonzero quotients have a non zero quotient in C, must belong to C (for this
is equivalent to the CN condition mentioned at the beginning of the preceding
section). Let us take a module M such that for each nonzero epimorphism f :
M � N, there exists a nonzero epimorphism g : N � C, C ∈ C.We want to prove
that M ∈ C.

There exists maximal submodules of M belonging to C, see [4]. Let U be one
of them. If U was a proper submodule ofM , it could not be an essential submodule,
because a natural class is closed under essential extensions. Hence we can assume
that U is essentially closed. If V is a pseudocomplement of U in M , then U is also

a pseudocomplement of V. Thus R0 �= V embeds in
M

U
as an essential submodule.

The choice of U and V implies that V ∈ C⊥nat , where C⊥nat denotes the comple-

ment of C in R-nat. Thus 0 �= M

U
∈ C⊥nat , and by hypothesis,

M

U
has a nonzero

quotient in C, which also belongs to C⊥nat , because we have noted that a natural
class is closed under quotients. We have obtained a contradiction. Hence M ∈ C.

Thus R-nat ⊆ R-conat.
For the converse inclusion, let us take a conatural class C. For M ∈ C, we

have that nat (M) = conat (M) ⊆ C, then C is closed under submodules.
Thus each conatural class is a class closed under submodules and quotients

(i.e., it is an open class). The pseudocomplement of C in R-quot, which is de-
scribed as

{N | N has no nonzero quotients in C}
is also a conatural class. Therefore

{N | N has no nonzero quotients in C}
is closed under submodules and for this reason it coincides with

{N | N has no nonzero subquotients in C} ,
the pseudocomplement of the open class C in the big lattice of open classes. But
this is a hereditary torsion class by Lemma 1.7. In particular it is closed under
taking direct sums.

In order to see that a conatural class C is natural, it suffices to prove that a
moduleM such that each one of its nonzero submodules has a nonzero submodule
in C, must belong to C.
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Let us assume that M has the mentioned property. Then it must contain a
maximal independent family of submodules in C, whose direct sum U, say, must
be an essential submodule of M. Thus U ∈ C, as we remarked above. As U is
essential in M, then M ∈ nat (U) = conat (U) ⊆ C. �

Theorem 4.2. The following conditions are equivalent for a ring R:
(1) R-nat = R-conat .
(2) R is isomorphic to a finite direct product of right perfect, left local rings.

Proof. (1) =⇒ (2) Each hereditary torsion free class is a natural class and then
each class is closed under quotients. So by [17], R is a finite direct product of right
perfect left local rings.

(2) =⇒ (1) By [3, Theorem I.9.I] we can assume that R is a right perfect left
local ring. Now, since R is left semiartinian, each module is an essential extension
of its socle. So each natural class is generated by a family of left simple modules.
As by hypothesis |R-simp | = 1, then R-nat = {{0}, R- mod }.

On the other hand, each conatural class is also generated by a family of left
simple modules (see [1]), thus R-conat = {{0}, R- mod }. �

In [2] we proved that the conditions: (1) R-her = R-quot and (2) R is a finite
product of artinian principal ideal rings are equivalent. In the following example
we give a ring R where R-nat = R-conat but R-her �= R-quot.

Example. By [5, Chapter 24, Exercise 4] we have that the ring R =
A

(x2, y2)
,

where A = k [x, y] is the polynomial ring in two indeterminates x and y over a

field k, is a QF local (commutative) algebra over k such that
R

soc (R)
is not QF .

By [5, Chapter 24, Exercise 3] R is not an artinian principal ideal ring. By [2,
Theorem 38] R-her �= R-quot (Indeed, Rx̄+Rȳ is an ideal which is not principal,
thus it can not be a quotient of R, thus her (R) �= quot (R)). But we do have that
R-nat = R-conat by the previous theorem.

5. R-sext and R-qext

In this section we study what can we say about the ring when we suppose that
R-sext = R-qext, that is, when every class in R-sext is a class in R-qext and
viceversa.

We begin with the following lemma:

Lemma 5.1. If every class in R-sext (R-qext) belongs to R-qext (R-sext), then
qext(M) ⊆ sext(M) (sext(M) ⊆ qext(M)) for each M ∈ R- mod . Thus for a
ring R the following conditions are equivalent:
(1) R-sext = R-qext
(2) ∀M ∈ R- mod , sext(M) = qext(M).
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Proof. It is straightforward from the properties of generating classes in R-sext and
R-qext. �
Lemma 5.2. If every class in R-sext belongs to R-qext, then R is isomorphic to a
finite direct product of right perfect left local rings.

Proof. If R-sext ⊆ R-qext, as every hereditary torsion free class Fτ belongs to
R-sext, we have that all of these are also closed under quotients, we conclude
by [17]. �
Lemma 5.3. If every class in R-sext belongs to R-qext, then every simple left
R-module embeds in R.

Proof. If R-sext ⊆ R-qext, then for the R-module RR we have that qext(R) ⊆
sext(R) and then each simple left R-module S is in sext(R), so there exist a
minimal n ∈ N and modules A ∈ L(R) and B ∈ E(L(R),L(R))n−1 such that the
sequence

0→ A→ S → B → 0
is exact. Hence S ∼= A, and A is contained in R. �
Lemma 5.4. If every class in R-qext belongs to R-sext, then R is a left noetherian
ring.

Proof. Suppose that R-qext ⊆ R-sext, then

sext(R) ⊆ qext(R) = {M ∈ R- mod |M is finitely generated} .
So that every left ideal of R is finitely generated. �
Proposition 5.5. If R-sext = R-qext, then R is isomorphic to a finite direct product
of left artinian, left local rings.

Proof. By Lemma 5.2, R is a product of finitely many right perfect left local rings.
By Lemma 5.4 R is also a left noetherian ring. Now, a right perfect ring is left
semiartinian. Thus the right perfect factors of R are left semiartinian and left
noetherian, thus they are left artinian. �

It should be noticed that in the following lemmas about local left artinian
rings we could put “left local” instead of “local” in view of [3, Theorem V.2.3] and
by straightforward uses of Morita equivalence theory.

Lemma 5.6. If R is a left artinian, local ring such that E (R/Rad (R)) is finitely
generated, then sext (R) = qext (R) .

Proof. We have that sext (R) is the class of all modules closed under extensions
generated by the left ideals of R. Since R is left noetherian, then each left ideal
is finitely generated, thus every left ideal of R belongs to qext (R). As qext (R) is
the class of all finitely generated left R-modules, then sext (R) ⊆ qext (R). The
other inclusion follows from the fact that, for each finitely generated module RM ,
qext (M) = qext (S), where S is the unique simple module in R-simp. Indeed
M = socn (M) ∈ sext (S) for some n ∈ N. (See the proof of Theorem 2.7.) �
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Lemma 5.7. If N ∈ sext (M) and X is a set, then N (X) ∈ sext
(
M (X)

)
.

Proof. Suppose that 0 �= N to be sext (M), then N ∈ E(L(M),L(M))n for some
n ∈ N, which we can assume minimal. We shall proceed by induction on n.

If n = 1, then N ≤ M and it is clear that N (X) ≤ M (X). Now let us
suppose that n > 1, thus there exists a short exact sequence 0 −→ K −→ N −→
T −→ 0, with K ≤ M and T ∈ E(L(M),L(M))n−1, so we obtain a short exact
sequence 0 −→ K(X) −→ N (X) −→ T (X) −→ 0. By induction hypothesis, T (X) ∈
sext

(
M (X)

)
, thus we have N (X) ∈ sext

(
M (X)

)
. �

With an analogous argument we obtain the following lemma.

Lemma 5.8. If N ∈ qext (M) and X is a set, then N (X) ∈ qext
(
M (X)

)
.

Corollary 5.9. If X is a set, then:
(1) sext (N) = sext (M) =⇒ sext

(
N (X)

)
= sext

(
M (X)

)
.

(2) qext (N) = sext (M) =⇒ qext
(
N (X)

)
= qext

(
M (X)

)
.

Lemma 5.10. If R is a local left artinian ring such that E (R/Rad(R)) is finitely
generated, then sext (M) = qext (M) for every non finitely generated left R-
module M .

Proof. Notice that, under the current hypothesis, every left R-module has a pro-
jective cover and every projective left R-module is free. Now, let us suppose that
0 −→ K −→ R(X) � M −→ 0 is a projective cover of a non zero left R-module
M , then M/Rad (M) is a semisimple module of the form S(Z) for some set Z.
Since 0 −→ Rad (R) −→ R −→ S −→ 0 is a projective cover, then it induces a
projective cover 0 −→ K ′ −→ R(Z) � S(Z) of M/Rad (M). From the fact that
the rows of the diagram

0 −→ K −→ R(X) � M −→ 0
↓

0 −→ K ′ −→ R(Z) � M/Rad (M) −→ 0

are projective covers, we obtain that R(X) ∼= R(Z), and consequently we have that
|X | = |Z|. Thus M ∈ qext

(
R(X)

)
. Now, since qext (R) = qext (S), we have that

qext
(
R(X)

)
= qext

(
S(X)

)
from Corollary 5.9.

Now, it is clear that

qext (M) ≤ qext
(
R(X)

)
= qext

(
S(X)

)
= qext (M/Rad (M)) ≤ qext (M) ,

so that qext (M) = qext (M/Rad (M)) = qext
(
S(X)

)
.

From the above, we conclude that the projective cover of a left module M
determines qext (M) since its projective cover has as many direct summands as
M/Rad (M). �

Lemma 5.11. If R is a local left artinian ring such that E (R/Rad(R)) is finitely
generated, then sext (M) = sext (soc (M)), for each left module M .
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Proof. Assume that soc (M) ∼= S(Z) for some set Z. Since R is semiartinian, then
soc (M) ≤es M , and consequently M and soc (M) have isomorphic injective hulls;
thus we have that E (M) ∼= E

(
S(Z)

) ∼= (E (S))(Z). As E (S) is finitely generated,
we conclude that E (S) ∈ qext (R) = qext (S). But sext (S) = qext (S), so that
E (S) ∈ sext (S) . Notice that, from Lemma 5.7, E (S) ∈ sext (S) implies that
(E (S))(Z) ∈ sext

(
S(Z)

)
, thus we have

sext (soc (M)) = sext
(
S(Z)

)
= sext

(
(E (S))(Z)

)
= sext (E (M))

which implies that

sext (soc (M)) = sext(M) = sext (E (M)) = sext
(
S(Z)

)
.

�

Corollary 5.12. If R is a local left artinian ring such that E (R/Rad(R)) is finitely
generated, then:
(1) sext

(
S(X)

)
=

{
M | soc (M) ∼= S(X)

}
(2) qext

(
S(X)

)
=

{
M |M/Rad (M) ∼= S(X)

}
.

Proof. (1) This is a direct consequence of Lemma 5.11.

(2) In the proof of Lemma 5.10, we noticed that qext (M) = qext (M/Rad (M)).
�

Lemma 5.13. If R is a local left artinian ring such that E (R/Rad(R)) is finitely
generated, then

soc (M) ∼=M/Rad (M) .

for each non finitely generated left module M .

Proof. From Lemma 5.10, we have that sext (M) = qext (M). Now, if soc (M) ∼=
S(X) and M/Rad (M) ∼= S(Y ), then

sext
(
S(X)

)
= sext (M) = qext (M/Rad (M)) = qext

(
S(Y )

)
= sext

(
S(Y )

)
.

From this we conclude that |X | = |Y | and then soc (M) ∼=M/Rad (M). �

Theorem 5.14. Suppose that a ring R is such that the injective hull of every simple
left module if finitely generated. Then the following conditions are equivalent:

(1) sext (M) = qext (M), ∀M ∈ R- mod .
(2) R-sext = R-qext.
(3) R is isomorphic to a finite direct product of left local, left artinian rings.
(4) R is isomorphic to a finite direct product of left local and both left and right

perfect rings with the property that soc (M) ∼= M/Rad(M) for each non-
finitely generated left module M .
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Proof. The equivalence of (1) and (2) is given by Lemma 5.1 and (1) =⇒ (3) is
Proposition 5.5.

(3) =⇒ (4) A left artinian ring is left and right perfect and also it is left
noetherian. By [3, Theorem V.2.3], we can assume R is local. Then it follows from
Lemma 5.13 that soc (M) ∼=M/Rad (M).

(4) =⇒ (1) Assume that R is a left local and left and right perfect ring, we
want to show that sext (M) = qext (M) for each left module M .

Indeed, by Lemma 5.11, we have that sext (M) = sext (soc (M)) and as in
the proof of Lemma 5.10 we can show that qext (M) = qext (M/Rad (M)). Thus
we have the conclusion for every non finitely generated left module M since, in
this case,

sext (M) = sext (soc (M)) = sext (M/Rad (M))
= qext (M/Rad (M)) = qext (M) .

Now, ifM is finitely generated, then soc (M) andM/Rad (M) are semisimple
finitely generated modules, then

sext (M) = sext (S) = qext (S) = qext (M/Rad (M)) = qext (M) ,

where S denotes the unique element of R-simp. �

Example. A ring R such that R-sext = R-qext but R-her �= R-quot: By [8, Chapter
13, Exercise 5 ] a commutative artinian ring R has the property that its finitely
generated modules are closed under injective hulls. Thus the ring of Example 4,
satisfies the required properties, as any other commutative artinian local ring with
a non principal ideal.

Example. A commutative perfect non artinian ring satisfies that R-nat = R-conat
but R-sext �= R-qext . Take, for example, the trivial extension of a field F by
an infinite-dimensional vector space FV . A particular case is the trivial extension
Q � R.
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lems.
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1. Introduction

Let R be an associative ring with identity. R is called reversible if αβ = 0 implies
βα = 0, and it is called symmetric if αβγ = 0 implies αγβ = 0 for all α, β, γ ∈ R.
The reversibility property, a natural generalization of commutativity, has been ex-
ploited by various authors over the years; but apparently the name was introduced
by Cohn [3], who noted that the Köthe conjecture holds for the class of reversible
rings.

Marks [10] has discussed the relationship between symmetric and reversible
rings. Symmetric rings are clearly reversible, but the converse is not true. In fact,
Marks showed that the group algebra Z2Q8 of the quaternion group of order
8 over the two-element field is reversible but not symmetric. In [5], Gutan and
Kisielewicz characterized reversible group algebras KG of torsion groups G over
fields K. In particular, they described all finite reversible group algebras which are
not symmetric.

In this expository paper, we present some of results in [5], together with
extensions to group rings RG over commutative rings R with 1. We deal briefly
with the question of when reversible group rings are not symmetric, noting that
Z2Q8 is the minimal reversible group ring which is not symmetric. We investigate
when a group ring RG is a duo ring, where R is either a field or an integral domain.
Finally, we present some results on the more general notion of graded reversibility.

This research was supported in part by Discovery Grants from the Natural Sciences and Engi-
neering Research Council of Canada.
Corresponding author: Yuanlin Li.
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For a discussion of reversibility of semigroups and rings not assumed to have an
identity, we refer to a recent paper [6], in which it was proved that symmetric
rings, not necessarily with identity, satisfy the Köthe conjecture.

2. Reversibility in group rings

In this section we discuss recent developments regarding reversibility in group
rings. We deal first with group algebras KG over fields K, and then with group
rings RG over commutative rings R. Finally, we discuss minimal reversible group
rings which are not symmetric.

Consider a group ring RG of a torsion group G over an associative ring R
with identity. If RG is reversible, then the structure of G is very restricted; in
fact, G is either an abelian group or a Hamiltonian group. To see this, we need
only to verify that every cyclic subgroup 〈g〉 of G is normal. Let h ∈ G and
ḡ = 1 + g + g2 + · · ·+ go(g)−1. Since h(1 − g)ḡ = 0 and RG is reversible, we have
ḡh(1−g) = 0 and thus ḡh = ḡhg, so h = gihg for some i. Hence, hgh−1 = g−i ∈ 〈g〉,
implying that 〈g〉 is normal.

2.1. Reversibility in group algebras KG

Marks [10] showed that the group algebra Z2Q8 of the quaternion group of order
8 over the two-element field is reversible, but not symmetric. In [5], Gutan and
Kisielewicz characterized all reversible group algebrasKG of torsion groupsG over
fields K. In particular, they described all finite reversible group algebras which
are not symmetric, extending a result of Marks. If G is abelian, clearly KG is
commutative, hence symmetric, so the interesting case is when G is a Hamiltonian
group, i.e., G = Q8 ×E2 ×E′

2, where Q8 is the quaternion group of order 8, E2 is
an elementary abelian 2-group, and E′

2 is an abelian group all of whose elements
are of odd order. Gutan and Kisielewicz first considered when KQ8 is reversible
and obtained the following two results.

Theorem 2.1. Let K be a field of characteristic �= 2. Then KQ8 is reversible if
and only if the equation 1 + x2 + y2 = 0 has no solutions in K.

Note that if K is a field of characteristic p > 2, then 1 + x2 + y2 = 0 has a
solution in K. Consequently, if K is a field of characteristic p > 2, then KQ8 is
not reversible.

Theorem 2.2. Let K be a field of characteristic = 2. Then KQ8 is reversible if
and only if the equation 1 + x+ x2 = 0 has no solutions in K.

By using a result of Perlis and Walker ([12, Prop. II. 2.6]) together with
the above two theorems, Gutan and Kisielewicz obtained the following general
characterization theorem.

Theorem 2.3. Let K be a field and let G be a torsion group. Then KG is a reversible
ring if and only if one of the following conditions holds.
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(1) G is abelian.
(2) G = Q8 × E2 × E′

2 is Hamiltonian, the characteristic of K is 0, and the
equation 1 + x2 + y2 = 0 has no solutions in any cyclotomic field K(ξd) for
any odd d which is an order of an element of E′

2.
(3) G = Q8×E′

2, the characteristic of K is 2, and the equation 1+x+x2 = 0 has
no solutions in any cyclotomic field K(ξd) for any odd d which is an order
of an element of E′

2.

As a consequence, they characterized all finite reversible group algebras.

Theorem 2.4. A finite group ring KG of a non-abelian group G over a field K is
reversible if and only if K = GF (2n) with an odd n ≥ 1 and G = Q8 × E′

2, where
the order of E′

2 divides 2m − 1 for some odd m > 1.

The following result from [5] addresses the question of which reversible group
algebras KG are not symmetric.

Corollary 2.5. A reversible group algebra KG of a non-abelian torsion group G
over a field K is not symmetric if and only if char(K) = 2, and G = Q8 × E′

2.

Note that (R1 × R2)G is reversible if and only if both R1G and R2G are
reversible. It now follows from Theorem 2.1 and Corollary 2.5 that (Q× Z2)Q8 is
reversible but not symmetric.

2.2. Reversible group rings over commutative rings

We now present some recent results from [8] regarding reversibility of group rings
RG over commutative rings R, which extend the above mentioned results of Gutan
and Kisielewicz. The following two preliminary results are useful.

Lemma 2.6. Let R be a ring with identity. If R contains a nonzero nilpotent element
r such that 2r = 0, then RQ8 is not reversible.

Theorem 2.7. ZnQ8 is reversible if and only if n = 2.

Note that if RQ8 is reversible and char(R) = n > 0, then the subring ZnQ8

of RQ8 is also reversible, and thus n = 2. This tells us that if RQ8 is reversible,
then the characteristic of R is either 0 or 2.

For R a commutative ring with characteristic 2, a necessary and sufficient
condition for RQ8 to be reversible was given by Parmenter and the second author
in [8].

Theorem 2.8. Let R be a commutative ring of characteristic 2. Then RQ8 is re-
versible if and only if the equation x2 + xy + y2 = 0 has no nonzero solutions
in R.

Note that all of the above reversible group rings RQ8 are not symmetric
because RQ8 has a non-symmetric subring Z2Q8. Note also that in a field K of
characteristic 2, the equation x2+xy+y2 = 0 has no nonzero solutions if and only
if 1 + x+ x2 = 0 has no solutions. Thus the above theorem extends Theorem 2.2.
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As a consequence of Theorem 2.8, we obtain the following necessary and suffi-
cient condition for group ring RQ8 over a commutative Artinian R of characteristic
2 to be reversible.

Corollary 2.9. If R is a commutative Artinian ring of characteristic 2, then RQ8

is reversible if and only if R =
∏
Ki, where each Ki is a field of characteristic 2,

in which the equation 1 + x+ x2 = 0 has no solutions.

Next we discuss the case where R is a commutative ring of characteristic
0. It is interesting to note that while the most complex argument of Gutan and
Kisielewicz’s proof of reversibility of group algebras KQ8 occurs when K has
characteristic 2, the most complicated situation with regard to general group rings
RG appears to be the case when R has characteristic 0.

Let R2 = { x ∈ R | 2lx = 0 for some l > 0} denote the 2-torsion of R and
ann{2} = { x ∈ R | 2x = 0} be the annihilator of 2 in R. Clearly ann{2} ⊆ R2. If
RQ8 is reversible, then by Lemma 2.6, R2 has no nonzero nilpotent elements, so
R2 = ann{2}.

In [8], Parmenter and the second author were able to prove the following two
results, which extend Theorem 2.1. The first shows that when investigating the
reversibility of RG over a commutative ring R of characteristic 0, one may always
assume that R2 = 0 (i.e., R has no 2-torsion).

Proposition 2.10. Let R be a commutative ring of characteristic 0. Then the fol-
lowing statements are equivalent:
(1) RQ8 is reversible.
(2) R2 has no nonzero nilpotent elements, and both R2Q8 and (R/R2)Q8 are

reversible.
(3) The equation x2+xy+y2 = 0 has no nonzero solutions in R2, and (R/R2)Q8

is reversible.

The next theorem characterizes all reversible group rings RQ8 when R has
no nonzero nilpotent elements.

Theorem 2.11. Let R be a commutative ring of characteristic 0. Assume that R2 =
0 and R has no nonzero nilpotent elements. Then the following statements are
equivalent.
(1) RQ8 is reversible.
(2) The equation x2 + y2 + z2 = 0 has no nonzero solutions in R.
(3) RQ8 has no nonzero nilpotent elements.

The following example given in [8] shows that even when R has nonzero
nilpotent elements, it is still possible that RQ8 is reversible.

Example 2.12. Let R =
{[

x y
0 x

]∣∣∣∣ x, y ∈ Q
}

, where Q is the field of rational

numbers. Then R is a commutative ring of characteristic 0 with nonzero nilpotent
elements, and RQ8 is reversible.
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We close this subsection by proposing a few research problems.

Problem 2.13. Let R be a commutative ring of characteristic 0 (not necessarily
without nonzero nilpotent elements) and R2 = 0. Find a necessary and sufficient
condition such that RQ8 is reversible.

After solving the above problem, one may attack the following.

Problem 2.14. Let R be a commutative ring of characteristic 0 (not necessarily
without nonzero nilpotent elements) and R2 = 0. Find a necessary and sufficient
condition such that R(Q8 × E2 × E′

2) is reversible.

When R is non-commutative, very little is known about reversibility of RG.
Perhaps, one may first study the following question.

Question 2.15. Let R be a non-commutative division ring of characteristic 0 and
G = Q8 or Cn. When is RG reversible?

2.3. Minimal reversible group rings

In [10], Marks asks whether Z2Q8 is the smallest ring which is reversible but not
symmetric. In [5] Gutan and Kisielewicz asserted that it is the minimal group ring
over a field with this property. Using an argument on the orders of group rings,
one can prove that this is the case when group rings over commutative rings are
considered. The following theorem proved in [7] confirms that Z2Q8 is indeed the
smallest group ring with this property, thereby providing a partial answer to the
question raised by Marks.

Theorem 2.16. Z2Q8 is the smallest reversible group ring which is not symmetric.

To see this, we only need to show that every reversible group ring RG having
|RG| ≤ |Z2Q8| = 256 is symmetric except for RG = Z2Q8. If RG is reversible,
then R is reversible and G is either abelian or Hamiltonian; and since Q8 is the
smallest Hamiltonian group, Z2Q8 is the minimal reversible non-symmetric group
ring with G Hamiltonian. Thus, we may suppose that G is abelian, R is reversible
but not commutative, and |RG| ≤ 256. If |G| ≥ 3, then |R| < 7; therefore, R is
commutative, hence RG is both reversible and symmetric. Thus we may assume
that G = C2. If |RC2| < 256, then |R| ≤ 15 and thus R is either commutative
or non-reversible. Hence, we need only to consider the case RC2 with R non-
commutative and reversible, and |R| = 16. It was proved in [7] that there is a
unique non-commutative reversible ring R0 with 1 of order 16. Moreover, R0C2 is
not reversible, so Theorem 2.16 follows.

3. Duo group rings

An associative ring R is called left (right) duo if every left (right) ideal is an ideal,
and R is said to be duo if it is both left and right duo. Say that R has the “SI”
property if αβ = 0 implies αRβ = {0} for all α, β ∈ R.
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Let R be a commutative ring with identity and G be any group. Using the
standard involution ∗ on the group ring RG, defined by (∑ aigi)∗ =

∑
aig

−1
i for

all ai ∈ R and gi ∈ G, we see that RG is left duo if and only if it is right duo.
Marks [10] has clarified the relationships among duo, reversible and symmet-

ric rings. Moreover, he proved the following result.

Proposition 3.1. Let R be a commutative ring with identity, and let G be a finite
group. Then the group ring RG is reversible if and only if RG has the “SI” property.

It was pointed out in [2] that this result remains valid for an arbitrary group
G. Since the “SI” property is simply the statement that left annihilators and right
annihilators are ideals, it is obvious that duo rings have the “SI” property. It now
follows from Proposition 3.1 that if RG is a duo ring, then it is reversible. However,
the converse is not true, as the following example shows.

Example 3.2. Let Q8 = 〈a, b|a4 = 1, a2 = b2, ab = a−1〉 be the quaternion group of
order 8. The integral group ring ZQ8 is a reversible ring, but not a duo ring.

It follows from Theorem 2.1 that the rational group algebraQQ8 is reversible.
As a subring of the rational algebra, clearly, the integral group ring ZQ8 is re-
versible.

To show that ZQ8 is not a duo ring, one needs only to verify that the left
ideal R(a+ 2b) generated by a+ 2b is not a right ideal.

Remark 3.3. ZQ8 is, in fact, symmetric; hence this example shows that “symmet-
ric” does not imply “duo”.

3.1. Duo group algebras

As mentioned earlier, if a group ring RG over a commutative ring is duo, then it
is reversible. All reversible group rings of torsion groups over fields were charac-
terized by Gutan and Kisielewicz (Theorem 2.8). A natural question which arises
is whether a reversible group algebra KG is also duo. An affirmative answer was
given by Bell and the Li in [2]. The following result proved in [2] characterizes
when a group algebra KQ8 is duo.

Theorem 3.4. The following statements are equivalent:
(1) KQ8 is duo.
(2) The equation 1 + x2 + y2 = 0 has no solutions in K when char(K) �= 2, or

the equation 1 + x+ x2 = 0 has no solutions in K when char(K) = 2.
(3) KQ8 is reversible.

The above theorem together with a result of Perlis and Walker ([12, Prop.
II.2.6]) gives a characterization of when a group algebra is duo.

Theorem 3.5. Let K be a field and let G be a torsion group. Then KG is a duo
ring if and only if one of the following conditions holds.
(1) G is abelian.
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(2) G = Q8 × E2 × E′
2 is Hamiltonian, the characteristic of K is 0 and the

equation 1 + x2 + y2 = 0 has no solutions in any cyclotomic field K(ξd) for
any odd d which is an order of an element of E′

2.
(3) G = Q8×E′

2, the characteristic of K is 2 and the equation 1+x+x2 = 0 has
no solutions in any cyclotomic field K(ξd) for any odd d which is an order
of an element of E′

2.

As a consequence, we have the following:

Corollary 3.6. Let K a field and let G be a torsion group. Then KG is duo if and
only if KG is reversible.

Remark 3.7. It was brought to our attention recently that some theorems equivalent
to Theorem 2.3 and Corollary 3.6 were proved by Menal [11] with different methods
and different terminology.

3.2. Duo group rings over integral domains

We now deal with the question of when a group ring RG is duo, where R is an
integral domain and G is a non-abelian torsion group. Note that if RG is duo, then
RG is reversible and thus G = Q8 × E2 × E′

2 is a Hamiltonian group. Therefore,
as a homomorphic image of a duo ring RG = (RQ8)(E2 × E′

2), RQ8 is duo. Thus
determining when RG is duo essentially reduces to determining when RQ8 is duo.

As mentioned earlier, the integral group ring ZQ8 is a reversible ring but not
a duo ring, while QQ8 is a duo ring. A natural question which arises is as follows:

Question 3.8. Is there any ring R with identity between Z and Q (excluding Q),
such that RQ8 is duo?

We also propose the following general question.

Question 3.9. Let R be a integral domain and G be a non-abelian torsion group.
When is RG duo?

Note that if RQ8 is duo, then it is reversible, so either char(R) = 2 or
char(R) = 0. In the latter case, it follows from Theorem 2.11 that for all x, y ∈ R,
1 + x2 + y2 �= 0. Moreover, the following result due to Gao and Li [4] shows that
1 + x2 + y2 is, in fact, invertible in R, giving a necessary condition for RQ8 to be
duo.

Lemma 3.10. Let R be an integral domain such that RQ8 is duo. If 1+x2+y2 �= 0
for some x, y ∈ R, then 1+x2+y2 is invertible in R. Moreover, either char(R) = 2
or char(R) = 0. In the latter case, 1 + x2 + y2 ∈ U(R) for all x, y ∈ R.

Using this lemma, Gao and Li were able to prove the following main result,
providing a negative answer to Question 3.8.

Theorem 3.11. Let R be an integral domain such that RQ8 is duo. Then the fol-
lowing statements hold.
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(1) If char(R) �= 0, then R must be a field.
(2) If S is a ring of algebraic integers with quotient field KS and S ⊆ R ⊆ KS,

then R = KS. In particular, if Z ⊆ R ⊆ Q, then R = Q.

In view of this theorem, one might conjecture that if RQ8 is duo, then R is
a field. However, the following proposition shows that this is not the case.

Proposition 3.12. Let S = Q[x] be the polynomial ring over the rational field, and
SP be the localization of S at the maximal ideal P = 〈x〉. Then R = SP is a local
integral domain of characteristic 0, but not a field, such that RQ8 is duo.

Remark 3.13. We note that the ring R in Proposition 3.12 is a principal local
integral domain such that RQ8 is duo. However, for any prime p, the localization
Z(p) of Z at the ideal generated by p is a principal local integral domain, but Z(p)Q8

is not duo.

Note that Theorem 3.11 together with Theorem 2.3 provides a complete
answer to Question 3.9 when char(R) = 2 and a partial answer when char(R) = 0.

Theorem 3.14. If R is an integral domain with char(R) �= 0 and G is a non-abelian
torsion group, then the following statements are equivalent:

(1) RG is duo.
(2) R is a field and RG is reversible.
(3) G = Q8×E′

2, R = K is a field of characteristic 2 and the equation 1+x+x2 =
0 has no solutions in any cyclotomic field K(ξd) for any odd d which is an
order of an element of E′

2.

Theorem 3.15. If R is an integral domain with char(R) = 0 such that S ⊆ R ⊆ KS,
where S is a ring of algebraic integers, and G is a non-abelian torsion group, then
the following statements are equivalent:

(1) RG is duo.
(2) R is a field and RG is reversible.
(3) G = Q8 × E2 × E′

2, R = K is a field of characteristic 0 and the equation
1+ x2 + y2 = 0 has no solutions in any cyclotomic field K(ξd) for any odd d
which is an order of an element of E′

2.

We note that if char(R) = 0, a necessary condition for RQ8 to be duo is
given in Lemma 3.10, i.e., 1+x2+ y2 ∈ U(R) for all x, y ∈ R. We are not aware of
any example of an integral domain R with char(R) = 0 satisfying this necessary
condition for which RQ8 is not duo. We close this subsection by proposing the
following question.

Question 3.16. Assume that R is an integral domain with char(R) = 0 such that
1 + x2 + y2 ∈ U(R) for all x, y ∈ R. Is RQ8 duo?
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4. Graded reversibility in integral group rings

This section deals with graded reversibility in integral group rings and presents
the results obtained in [9]. Let R be an S-algebra graded by a group A. Call R
graded reversible with respect to the grading if ab = 0 implies ba = 0, where a, b
are homogeneous elements of R. In the following we will be interested in graded
reversibility when R = ZG (viewed as a Z-algebra) in the important special case
where A = C2, the cyclic group of order 2. To be very specific, this means ZG =
R0

⊕
R1, where R0, R1 are subgroups of (ZG,+) satisfying R0R0 ⊆ R0, R0R1 ⊆

R1, R1R0 ⊆ R1, R1R1 ⊆ R0 and the reversibility condition applies to elements a, b
where a ε Ri and b ε Rj for some i, j.

If G has a subgroup H of index 2 and g ε G −H , then a C2-grading of ZG
can be given as follows:

ZG = ZH ⊕ (ZH)g.
Note that any automorphism α of ZG gives another C2-grading since ZG =

α(ZH) ⊕ α((ZH)g). It is an open question as to whether this method gives all
C2-gradings of ZG (see [1] for further information about this problem). We will
focus exclusively on gradings of the type ZG = ZH ⊕ (ZH)g and try to determine
when ZG is graded reversible. While the reversibility of integral group rings ZG
is completely determined ([9, Theorem 1.1]), very little is known about graded
reversibility. The following result due to Li and Parmenter gives a necessary and
sufficient condition for ZG to be graded reversible.

Proposition 4.1. Assume that ZG = ZH ⊕ (ZH)g is a C2-grading. Then ZG is
graded reversible if and only if both of the following hold.
(i) ZH is reversible.
(ii) Whenever α1, α2 ε ZH satisfy α1α2 = 0, then α2α

g
1 = 0 (where αg

1 =
gα1g

−1).

Corollary 4.2. Assume ZG = ZH ⊕ (ZH)g is graded reversible. Then every finite
subgroup of H is normal in G.

It seems to be an open question as to whether the conclusion of Corollary 4.2
can actually replace condition (ii) in Proposition 4.1. In the special case where H
is abelian this would say that ZG is graded reversible if and only if every finite
subgroup of H is normal in G. The latter condition is automatically satisfied when
H is cyclic, and Li and Parmenter showed that ZG is indeed graded reversible in
that case. We remark that cyclotomic polynomials play a very crucial role in
proving the following main result (see [9, Lemma 2.3] for details).

Theorem 4.3. Let 〈a〉 be a finite cyclic group of order n and let s be a positive
integer such that (s, n) = 1. For α ε Z〈a〉, let αf denote the image of α under the
automorphism of Z〈a〉 which maps a to as. If α1α2 = 0 in Z〈a〉, then αf

1α2 = 0.

It follows immediately from the above theorem that condition (ii) of Proposi-
tion 4.1 is satisfied when H is finite cyclic. Since ZH has no zero divisors when H
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is infinite cyclic, condition (ii) is also satisfied. Therefore, ZG is graded reversible
whenever H is cyclic. Note that if ZG is reversible, clearly it is graded reversible;
however the converse is not true. The above observation provides many examples
of groups G where ZG is not reversible but can be made graded reversible over
C2 (e.g., all meta-cyclic groups G having a cyclic normal subgroup H of index 2,
including dihedral groups).
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exist for semiprime rings. This existence of right p.q.-Baer right ring hull for a
semiprime ring unifies the result by Burgess and Raphael on the existence of a
closely related unique smallest overring for a von Neumann regular ring with
bounded index and the result of Dobbs and Picavet showing the existence
of a weak Baer envelope for a commutative semiprime ring. As applications,
we illustrate the transference of certain properties between a semiprime ring
and its right p.q.-Baer right ring hull, and we explicitly describe a structure
theorem for the right p.q.-Baer right ring hull of a semiprime ring with only
finitely many minimal prime ideals. The existence of PP right ring hulls for
reduced rings is also obtained. Further application to ring extensions such as
monoid rings, matrix, and triangular matrix rings are investigated. Moreover,
examples and counterexamples are provided.
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Throughout all rings are associative rings with unity. Ideals without the adjectives
“right” or “left” mean two-sided ideals.

In this paper, we prove the existence of principally (and finitely generated)
right FI-extending right ring hulls for semiprime rings by using the concepts of
distinguished extending classes (or D-E classes), pseudo right ring hulls, and tech-
niques studied in [12]. From this result, we obtain the existence of right p.q.-Baer
right ring hulls for semiprime rings. Thereby, the existence of right p.q.-Baer right
ring hulls for semiprime rings unifies the results on the existence of a closely related
unique smallest overring for a von Neumann regular ring with bounded index by



48 G.F. Birkenmeier, J.K. Park and S.T. Rizvi

Burgess and Raphael [16], and that of the weak Baer envelope for a commuta-
tive semiprime ring by Dobbs and Picavet [18]. As applications, (i) we investigate
the transference of properties between a semiprime ring and its right p.q.-Baer
right ring hull; (ii) a structure theorem for the right p.q.-Baer right ring hull of
a semiprime ring with only finitely many minimal prime ideals is described; (iii)
we establish the existence of PP right ring hulls for reduced rings; and (iii) the
existence of right p.q.-Baer right ring hulls of ring extensions such as monoid
rings, matrix, and triangular matrix rings are studied. Furthermore, examples and
counterexamples are provided.

Recall from [9] that a ring R is called right p.q.-Baer (i.e., right principally
quasi-Baer) if the right annihilator of a principal ideal of R is generated by an
idempotent as a right ideal. Equivalently, R is right p.q.-Baer if R modulo the
right annihilator of each principal right ideal is projective. We let pqB denote
the class of right p.q.-Baer rings. Similarly, left p.q.-Baer rings can be defined.
If a ring R is both right and left p.q.-Baer, then we say that R is p.q.-Baer. A
ring R is called right PP if the right annihilator of every singleton subset of R is
generated by an idempotent as a right ideal. Note that the definition of a right PP
ring is equivalent to every principal right ideal of R being projective (these rings
are also called right Rickart rings). A ring R is called PP if R is both right and
left PP.

Recall from [4] that a ring R is called quasi-Baer if the right annihilator
of every right ideal is generated by an idempotent (see [4], [5], [6], and [8] for
more details on quasi-Baer rings). The class of p.q.-Baer rings includes biregular
rings, quasi-Baer rings and abelian (i.e., every idempotent is central) PP rings.
Also recall that a ring R is called right (FI)-extending if every right ideal (ideal) is
essential as a right R-module in an idempotent generated right ideal of R. We let
E and FI denote the class of right extending rings and that of right FI-extending
rings, respectively.

We say that a ring R is principally right FI-extending (resp., finitely generated
right FI-extending ) if every principal ideal (resp., finitely generated ideal) of R is
essential as a right R-module in a right ideal of R generated by an idempotent. We
use pFI (resp., fgFI) to denote the class of principally (resp., finitely generated)
right FI-extending rings.

An overring S of a ring R is said to be a right ring of quotients (resp., right
essential overring) of R if RR is dense (resp., essential) in SR. Thus every right
ring of quotients of R is a right essential overring of R.

For a right R-module MR, we use NR ≤ MR, NR � MR, NR ≤ess MR, and
NR ≤den MR to denote that NR is a submodule of MR, NR is a fully invariant
submodule of MR, NR is an essential submodule of MR, and NR is a dense (or
rational) submodule of MR, respectively. We use I(R), B(R), Cen(R), Matn(R),
and Tn(R) to denote the set of all idempotents of R, the set of all central idempo-
tents of R, the center of R, the n-by-n matrix ring over R, and the n-by-n upper
triangular matrix ring over R, respectively. For a nonempty subset Y of a ring R,



Principally Quasi-Baer Ring Hulls 49

〈Y 〉R, �R(Y ), and rR(Y ) denote the subring of R generated by Y , the left anni-
hilator of Y in R, and the right annihilator of Y in R, respectively. The notion
I � R means that I is an ideal of a ring R.

We let Q(R), E(RR), and ER denote the maximal right ring of quotients of R,
the injective hull of RR, and the endomorphism ring End(E(RR)R), respectively.
Let QR = End(ERE(RR)). Note that Q(R) = 1 · QR (i.e., the canonical image
of QR in E(RR)) and that B(QR) = B(ER) [21, pp. 94–96]. Also, B(Q(R)) =
{b(1) | b ∈ B(QR)} [20, p.366]. Thus RB(ER) = RB(Q(R)), the subring of Q(R)
generated by R and B(Q(R)). If R is semiprime, then Cen(Q(R)) = Cen(Qm(R))
[20, pp. 389–390], where Qm(R) is the Martindale right ring of quotients of R.

Proposition 1.

(i) ([5, Proposition 1.8] and [9, Proposition 1.12]) The center of a quasi-Baer
(resp., right p.q.-Baer) ring is Baer (resp., PP).

(ii) ([9, Proposition 3.11]) Assume that a ring R is semiprime. Then R is quasi-
Baer if and only if R is p.q.-Baer and the center of R is Baer.

(iii) ([26, pp. 78–79] and [5, Theorem 3.5]) Let a ring R be von Neumann regular
(resp., biregular). Then R is Baer (resp., quasi-Baer) if and only if the lattice
of principal right ideals (resp., principal ideals) is complete.

(iv) A ring R is biregular if and only if R is right (or left) p.q.-Baer ring and
rR(�R(RaR)) = RaR, for all a ∈ R.

Proof. The proof of part (iv) is straightforward. �
Let R be a ring and e = e2 ∈ R. Recall from [3] that e is called left (resp.,

right) semicentral if exe = xe (resp., exe = ex) for every x ∈ R. Note that
e = e2 ∈ R is left (resp., right) semicentral if and only if eR (resp., Re) is an
ideal of R. We use S�(R) (resp., Sr(R)) to denote the set of all left (resp., right)
semicentral idempotents of R. See [7, Propositions 1.1 and 1.3] for more details on
left (or right) semicentral idempotents.

Proposition 2.

(i) Let R be a ring, Ki an ideal of R, and ei ∈ S�(R) such that KiR ≤ess eiRR for
i = 1, 2, . . . , n. Then there exists g ∈ S�(R) such that (

∑n
i=1Ki)R ≤ess gRR.

(ii) Let R be a right nonsingular ring. Then R is principally right FI-extending
if and only if R is finitely generated right FI-extending.

Proof. (i) We will first prove the result for n = 2. Let A = K1, B = K2, e = e1,
and f = e2. Then AR ≤ess eRR, BR ≤ess fRR, and e, f ∈ S�(R). Since A+B is an
ideal of R, we have that A+B = [(A+B)∩ eR]⊕ [(A+B)∩ (1− e)R]. Note that
(A+B)∩(1−e)R = B∩(1−e)R. Thus A+B = [(A+B)∩eR]⊕[B∩(1−e)R]. Now
[(A+B)∩eR]R ≤ess eRR. Also [B∩(1−e)R]R ≤ess fRR∩(1−e)RR = (1−e)fRR

because BR ≤ess fRR and fR ∩ (1 − e)R = (1 − e)fR. So (A + B)R ≤ess (eR +
(1− e)fR)R = (e+ f − ef)RR. In this case, we see that e+ f − ef ∈ S�(R). Now
an induction argument can be used to complete the proof.

(ii) This part follows from part (i) and [10, Proposition 1.10]. �
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We include the following result from [9], for the convenience of the reader,
which shows the connections between the right p.q.-Baer condition and some
“finitely generated” right FI-extending conditions for semiprime rings.

Lemma 3. ([9, Corollary 1.11]) Let R be a semiprime ring. Then the following
conditions are equivalent.

(i) R is right p.q.-Baer.
(ii) R is principally right FI-extending.
(iii) R is finitely generated right FI-extending.

Definition 4. (cf. [12, Definition 2.1]) Let K denote a class of rings. For a ring R,
Q̂K(R) denotes the smallest right ring of quotients of R which is in K. Further,
let QK(R) be the smallest right essential overring of R which is in K. We say that
QK(R) is the absolute K right ring hull of R. Note that if Q(R) = E(RR), then
Q̂K(R) = QK(R). In this paper, we call Q̂K(R) the K right ring hull of R.

Since our interest is primarily in classes of rings which are defined by prop-
erties on the set of right ideals of the rings in the classes, we recall the following
definition.

Definition 5. ([12, Definition 1.6]) Let R be a class of rings, K a subclass of R, and
X a class containing all subsets of every ring. We say that K is a class determined
by a property on right ideals if there exist an assignment DK : R → X such that
DK(R) ⊆ {right ideals of R} and a property P such that each element of DK(R)
has P if and only if R ∈ K.

If K is a class determined by the particular property P such that a right
ideal is essential in an idempotent generated right ideal, then we say that K is a
D-E class and use C to designate a D-E class. Note that every D-E class contains
the class E of right extending (hence right self-injective) rings. Recall from [10]
that a ring R is right FI-extending if every ideal is essential in an idempotent
generated right ideal. Thus the class FI of right FI-extending rings is a D-E class.
Furthermore, from their definitions, we see that pFI and fgFI are D-E classes.

Some examples illustrating Definition 5 are (see [12]):

(1) K is the class of right Noetherian rings, DK(R) = {right ideals of R}, and P
is the property that a right ideal is finitely generated.

(2) K is the class of von Neumann regular rings, DK(R) = {principal right ideals
of R}, and P is the property that a right ideal is generated by an idempotent.

(3) K = pqB,DpqB(R) = {rR(xR) | x ∈ R}, and P is the property that a right
ideal is generated by an idempotent.

(4) C = E (resp., C = FI), DE(R) = {I | IR ≤ RR} (resp., DFI(R) = {I | I �
R}). (Recall that E is the class of right extending rings and FI is the class
of right FI-extending rings.)

(5) C = pFI, DpFI(R) = {principal ideal of R}.
(6) C = fgFI, DfgFI(R) = {finitely generated ideal of R}.
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Next, we consider generating a right essential overring in a class K from a base
ring R and some subset of ER. By using equivalence relations, in [12] we reduce
the size of the subsets of ER needed to generate a right essential overring of R in a
D-E class of rings C. Also in [12], to develop the theory of pseudo right ring hulls
for D-E classes C, we fix DC(R) for each ring R and define

δC(R) = {e ∈ I(ER) | VR ≤ess eE(RR) for some V ∈ DC(R)}.
We set δC(R)(1) = {e(1) | e ∈ δC(R)}.
Definition 6. (cf. [12, Definition 2.2]) Let S be a right essential overring of R. If
δC(R)(1) ⊆ S and 〈R ∪ δC(R)(1)〉S ∈ C, then we call 〈R ∪ δC(R)(1)〉S the pseudo
right ring hull of R with respect to S and denote it by R(C, S). If S = R(C, S),
then we say that S is a C pseudo right ring hull of R.

To find a right essential overring S of R such that S ∈ C, one might naturally
look for a right essential overring T of R with δC(R)(1) ⊆ T and take S = 〈R ∪
δC(R)(1)〉T . Indeed, under some mild conditions, this choice of S can be in C.
However, in order to obtain a right essential overring with some hull-like behavior,
we need to determine subsets Λ of δC(R)(1) for which 〈R ∪ Λ〉T ∈ C in some
minimal sense. Moreover, to facilitate the transfer of information between R and
〈R ∪ Λ〉T , one would want to include in Λ enough of δC(R)(1) so that for all (or
almost all) V ∈ DC(R) there is e ∈ δC(R) with VR ≤ess e(1) · (〈R ∪ Λ〉T )R and
e(1) ∈ Λ.

Lemma 7. Let {e1, . . . , en} ⊆ B(T ), where T is an overring of a ring R. Then there
exists a set of orthogonal idempotents {f1, . . . , fm} ⊆ B(T ) such that

∑n
i=1 eiR ⊆∑m

i=1 fiR.

Proof. The proof is similar to that of [23, Lemma 3.2]. �

For a semiprime ring R, the concepts of (right) FI-extending and quasi-Baer
coincide by [10, Theorem 4.7]. Recall that the existence of the quasi-Baer right ring
hull and that of right FI-extending right ring hull of a semiprime ring were shown
in [14, Theorem 3.3]. It was also proved in [14, Theorem 3.3] that the quasi-Baer
right ring hull is precisely the same as its right FI-extending right ring hull for a
semiprime ring. In view of this result, it is natural to ask: Do the right principally
quasi-Baer right ring hull and the principally right FI-extending right ring hull
exist for a semiprime ring and if they do, are they equal? In our next result, we
provide affirmative answers to these two questions.

Burgess and Raphael [16] study ring extensions of von Neumann regular rings
with bounded index. In particular for a von Neumann regular ring R with bounded
index, they obtain a closely related unique smallest overring, R#, which is “almost
biregular” (see [16, p. 76 and Theorem 1.7]). The next result shows that their ring
R# is precisely our principally right FI-extending pseudo right ring hull of a von
Neumann regular ring R with bounded index (see also [14, Theorem 3.8]). When
R is a commutative semiprime ring, the “weak Baer envelope” defined in [18] is
exactly the right p.q.-Baer right ring hull Q̂pqB(R).
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Theorem 8. Let R be a semiprime ring. Then we have the following.

(i) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂pFI(R) = R(pFI, Q(R)).
(ii) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂pqB(R).
(iii) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂fgFI(R) = R(fgFI, Q(R)).

Proof. (i) Let Bp(Q(R)) = {c ∈ B(Q(R)) | there exists x ∈ R with RxRR ≤ess

cRR}. We first claim that

Bp(Q(R)) = δpFI(R)(1).

For this claim, note that by [1, Theorem 7], δpFI(R) ⊆ B(ER). Thus δpFI(R)(1) ⊆
B(Q(R)). To prove the claim, let e(1) ∈ δpFI(R)(1) with e ∈ δpFI(R). Then there
exists x ∈ R such that RxRR ≤ess eE(RR). Thus RxR = eRxR = e(1)RxR ⊆
e(1)R = eR. So RxRR ≤ess eRR = e(1)RR. Hence e(1) ∈ Bp(Q(R)) because e(1) ∈
δpFI(R)(1) ⊆ B(Q(R)). Conversely, let c ∈ Bp(Q(R)). Then there exists b ∈ B(ER)
such that c = b(1). Also there is x ∈ R such thatRxRR ≤ess cRR = b(1)RR = bRR.
Thus RxRR ≤ess bE(RR). So b ∈ δpFI(R). Hence c = b(1) ∈ δpFI(R)(1). Therefore
Bp(Q(R)) = δpFI(R)(1).

Let S = 〈R ∪ δpFI(R)(1)〉Q(R). Take 0 �= s ∈ S. From Lemma 7, s =
∑
ribi,

where each ri ∈ R and the bi are mutually orthogonal idempotents in B(S). There
exists ci ∈ δpFI(R)(1) such that RriRR ≤ess ciRR for each i. Hence s =

∑
riei,

where ei = bici for each i. Observe that the ei are mutually orthogonal idempotents
in B(S) since ci ∈ δpFI(R)(1) = Bp(Q(R)) and SsS ⊆ D =

⊕
eiS. Now we claim

that SsSS ≤ess DS . Let 0 �= y ∈ D. There exist yi ∈ S such that y =
∑
eiyi.

In this case, there is ejyj �= 0 for some j and v ∈ R with 0 �= ejyjv ∈ R. Since
yejv = ejyjv = bjcjyjv ∈ cjR and RrjRR ≤ess cjRR, there exists w ∈ R such
that 0 �= yejvw ∈ RrjR. Hence 0 �= ejyjvw ∈ RrjejR = RsejR ⊆ SsS because
sej = rjej and ej = bjcj ∈ S. Since e =

∑
ei ∈ B(S) and SsSS ≤ess DS =⊕

eiSS = eSS , it follows that S ∈ pFI. Hence S = R(pFI, Q(R)).

Next we assume that T is a right ring of quotients of R and T ∈ pFI.
Take e ∈ δpFI(R). Then by the above claim, e(1) ∈ Bp(Q(R)). So there is
x ∈ R such that RxRR ≤ess e(1)RR. Hence RxRR ≤ess e(1)Q(R)R. Note that
TxT = T (RxR)T ⊆ T (e(1)Q(R))T = e(1)Q(R). Thus TxTR ≤ess e(1)Q(R)R,
so TxTR ≤ess e(1)Q(R)R. Hence TxTT ≤ e(1)Q(R)T from [12, Lemma 1.4(i)]
because RR ≤den TR. Therefore TxTT ≤ess e(1)TT . On the other hand, since
T ∈ pFI, there exists c = c2 ∈ T such that TxTT ≤ess cTT . Thus e(1) = c because
e(1) ∈ B(Q(R)). Hence e(1) ∈ T for each e(1) ∈ δpFI(R)(1). So S is a subring of
T . Therefore S = Q̂pFI(R).

(ii) It is a direct consequence of part (i) and Lemma 3.
(iii) As in the proof of part (i), we can verify that δfgFI(R)(1) = {e ∈

B(Q(R)) | there is a finitely generated ideal I of R with IR ≤ess eRR}. A proof
similar to that used in part (i) yields that

〈R ∪ δfgFI(R)(1)〉Q(R) = R(fgFI, Q(R)) = Q̂fgFI(R).
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Since δpFI(R)(1) ⊆ δfgFI(R)(1), Q̂pFI(R) ⊆ Q̂fgFI(R). By Lemma 3, Q̂pFI(R) ∈
fgFI, so Q̂fgFI(R) ⊆ Q̂pFI(R). Thus Q̂fgFI(R) = Q̂pFI(R). �

Recall that a ring R is left π-regular if for each a ∈ R there exist b ∈ R and
a positive integer n such that an = ban+1. Note from [17] that the class of special
radicals includes most well-known radicals (e.g., the prime radical, the Jacobson
radical, the Brown-McCoy radical, the nil radical, the generalized nil radical, etc.).
For a ring R, the classical Krull dimension kdim(R) is the supremum of all lengths
of chains of prime ideals of R.

By Theorem 8, if R is a semiprime ring, then Q̂pqB(R) = RBp(Q(R)), the
subring of Q(R) generated by R and Bp(Q(R)). Thus we have the following corol-
laries which show the transference of certain properties between R and Q̂pqB(R).
We use LO, GU, and INC for “lying over”, “going up”, and “incomparability”,
respectively (see [25, p. 292]).

Corollary 9. Let R be a semiprime ring.
(i) If K is a prime ideal of Q̂pqB(R), then Q̂pqB(R)/K ∼= R/(K ∩R).
(ii) LO, GU, and INC hold between R and Q̂pqB(R).

Proof. The proof follows from Theorem 8 and [14, Lemma 2.1]. �

Corollary 10. Assume that R is a semiprime ring. Then:
(i) �(R) = �(Q̂pqB(R)) ∩ R, where �(−) is a special radical of a ring.
(ii) R is left π-regular if and only if Q̂pqB(R) is left π-regular.
(iii) kdim (R) = kdim (Q̂pqB(R)).

Proof. Theorem 8 and [14, Theorem 2.2] yield this result. �

Corollary 11. Let R be a semiprime ring. Then:
(i) R is von Neumann regular if and only if QpqB(R) is von Neumann regular.
(ii) R is strongly regular if and only if QpqB(R) is strongly regular.
(iii) R has bounded index at most n if and only if QpqB(R) has bounded index at

most n.

Proof. This can be verified by Theorem 8 and similar arguments as used in the
proof of [14, Corollary 3.6 and Theorem 3.8]. �

Let qB be the class of quasi-Baer rings. In [14, Theorem 3.3], it is shown that
there exist Q̂qB(R) and Q̂FI(R) for each semiprime ring R.

Theorem 12. (cf. [14, Theorem 3.3]) Let R be a semiprime ring. Then Q̂FI(R) =
RB(Q(R)) = R(FI, Q(R)).

From Theorem 12 and [5, Theorem 3.5], one can see that for a semiprime ring
R, Q̂qB(R) is the smallest right ring of quotients of R which is right p.q.-Baer and
has a complete lattice of annihilator ideals. However, in general, Q̂pqB(R) is a
proper subring of Q̂qB(R) as in the next example.
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Example 13.

(i) Let F be a field and let Fn = F for all positive integer n. Put

R =

{
(an)∞n=1 ∈

∞∏
n=1

Fn | an is eventually constant

}
,

which is a subring of
∏∞

n=1 Fn. Then Q̂pqB(R) = R, but Q̂qB(R) =
∏∞

n=1 Fn.
(ii) Let R be a biregular ring (i.e., every principal ideal of R is generated by a

central idempotent). Then R = Q̂pqB(R) and if its lattice of principal ideals
is not complete then R �= Q̂qB(R) (see [5, Theorem 3.5]). In fact, let R =
{(dn) ∈

∏∞
n=1Dn | dn is eventually constant}, a subring of ∏∞

n=1Dn where
Dn = D is a division ring for all n. Then R is biregular, so R = Q̂pqB(R),
but R �= Q̂qB(R) by Theorem 8 because B(Q(R)) �⊆ R or by [5, Theorem
3.5].

Despite Example 13, we have the following result in which Q̂pqB(R) does
coincide with Q̂qB(R). Recall that the extended centroid of R is Cen(Q(R)).

Theorem 14. Assume that R is a semiprime ring with only finitely many minimal
prime ideals, say P1, . . . , Pn. Then Q̂pqB(R) = Q̂qB(R) and Q̂pqB(R) ∼= R/P1 ⊕
· · · ⊕R/Pn.

Proof. Since R has exactly n minimal prime ideals, the extended centroid
Cen(Q(R)) of R has a complete set of primitive idempotents with n elements
by [1, Theorem 11]. Note that the extended centroid of R is equal to that of
Q̂pqB(R). Thus Q̂pqB(R) also has exactly n minimal prime ideals by [1, Theorem
11]. By [11, Theorem 3.4] and [9, Theorem 3.7], Q̂pqB(R) is quasi-Baer and so
Q̂pqB(R) = Q̂qB(R). The rest of the proof follows from [13, Theorem 3.15]. �

Theorem 15. Let R be a reduced ring. Then QpqB(R) exists and is the PP absolute
right ring hull of R.

Proof. Note that since R is reduced, then Q(R) = E(RR); and so Q̂K(R) = QK(R)
for any class K of rings. By Theorem 8, QpFI(R) = QpqB(R). Let S = QpFI(R) =
QpqB(R). From [9, Corollary 1.15], S is right (and left) PP.

Suppose A is a right ring of quotients of R which is right PP. Let e ∈
δpFI(R)(1). (Note that δpFI(R)(1) = Bp(Q(R)) ⊆ B(Q(R)) as in the proof of
Theorem 8.) Then there exists x ∈ R such that RxRR ≤ess eRR. So we have
that SxSS ≤ess eSS . Since S is semiprime and e is a central idempotent in S, it
follows that �eS(SxS) = reS(SxS) = 0 by noting that the ring S is semiprime.
Therefore rS(SxS) = (1 − e)S. Moreover, since QqB(R) is reduced by [14, The-
orem 3.8], so is S (⊆ QqB(R)). Thus rS(x) = rS(SxS) = (1 − e)S. Since A is
right PP, there exists f ∈ I(A) such that rA(x) = fA. Then rR(x) = (1− e)S ∩R
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and rR(x) = rA(x) ∩ R. Hence rR(x)R ≤ess (1 − e)SR ≤ess (1 − e)Q(R)R and
rR(x)R ≤ess fAR ≤ess fQ(R)R. Therefore

rR(x)R ≤ess ((1 − e)Q(R) ∩ fQ(R))R = f(1− e)Q(R)R

because 1− e is central. Thus (1− e)Q(R) = f(1− e)Q(R) = fQ(R), so 1− e = f.
Therefore e = 1− f ∈ A, hence QpqB(R) = S ⊆ A by Theorem 8. �

Note that Theorem 15 shows that when R is a commutative semiprime ring,
QpqB(R) is related to the Baer extension considered in [19]. Also note that the
generalized nil radical, Ng [17], is the radical whose semisimple class is the class
of reduced rings. Hence for every ring R such that R �= Ng(R), R has a nontrivial
homomorphic image, R/Ng(R), which has a Baer absolute right ring hull and a
right PP absolute right ring hull.

A monoid G is called a u.p.-monoid (unique product monoid) if for any
two nonempty finite subsets A, B ⊆ G there exists an element x ∈ G uniquely
presented in the form ab, where a ∈ A and b ∈ B. The class of u.p.-monoids is quite
large and important (see [24] and [22]). For example, this class includes the right
or left ordered monoids, submonoids of a free group, and torsion-free nilpotent
groups. Every u.p.-monoid is cancellative, and every u.p.-group is torsion-free.

Theorem 16. Let R[G] be a semiprime monoid ring of a monoid G over a ring R.
Then:
(i) Q̂pqB(R)[G] ⊆ Q̂pqB(R[G]).
(ii) If G is a u.p.-monoid, then Q̂pqB(R[G]) = Q̂pqB(R)[G].

Proof. (i) To show that Q̂pqB(R)[G] ⊆ Q̂pqB(R[G]), we claim that Bp(Q(R)) ⊆
Bp(Q(R[G])). To prove the claim, let e ∈ Bp(Q(R)). Then there exists a ∈ R such
that RaRR ≤ess eRR. Since R[G] is a free right R-module, a routine argument
shows that (RaR)[G]R ≤ess eR[G]R. Thus (RaR)[G]R[G] ≤ess eR[G]R[G]. Since
Bp(Q(R)) ⊆ B(Q(R[G])) from the proof of part (i), e ∈ B(Q(R[G])). So e ∈
Bp(Q(R[G])) because (RaR)[G] = R[G]aR[G]. Hence Bp(Q(R)) ⊆ Bp(Q(R[G])).
Theorem 8 shows that Q̂pqB(R)[G] ⊆ Q̂pqB(R[G]).

(ii) This is a consequence of part (i) and [11, Theorem 1.2]. �

Corollary 17. Let R be a semiprime ring. Then Q̂pqB(R[x, x−1]) = Q̂pqB(R)[x, x−1]
and Q̂pqB(R[X ]) = Q̂pqB(R)[X ], where X a nonempty set of not necessarily com-
muting indeterminates.

Proof. Note that R[x, x−1] ∼= R[C∞], which is semiprime, where C∞ is the in-
finite cyclic group. Since R is semiprime, so is R[X ]. Thus Q̂pqB(R[x, x−1]) =
Q̂pqB(R)[x, x−1] and Q̂pqB(R[X ]) = Q̂pqB(R)[X ] follow from Theorem 16. �

Example 18. There is a semiprime ring R such that Q̂pqB(R[[x]]) �= Q̂pqB(R)[[x]].
In [6, Example 2.3], there is a commutative von Neumann regular ring R (hence
right p.q.-Baer), but the ring R[[x]] is not right p.q.-Baer. Thus Q̂pqB(R) = R
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and so Q̂pqB(R)[[x]] = R[[x]]. Since R[[x]] is not right p.q.-Baer, Q̂pqB(R[[x]]) �=
Q̂pqB(R)[[x]].

Let R be a ring. Then the subring RB(Q(R)) of Q(R) generated by R and
B(Q(R)) is called the idempotent closure of R (see [2]). From the following lemma,
one can see that the idempotent closure of Matn(R) is the matrix ring of n-by-n
matrices over the idempotent closure of R and similarly for Tn(R). Let 1n denote
the unity of Matn(R).

Lemma 19. Let δ ⊆ B(Q(R)) and Δ = {1nc | c ∈ δ}. Then:
(i) Matn(〈R ∪ δ〉Q(R)) = 〈Matn(R) ∪Δ〉Q(Matn(R)).
(ii) Q(Tn(R)) = Q(Matn(R)) = Matn(Q(R)).
(iii) Tn(〈R ∪ δ〉Q(R)) = 〈Tn(R) ∪Δ〉Q(Matn(R)).

Proof. (i) This part follows from straightforward calculation.
(ii) Let T = Tn(R). By routine calculations, TT is dense in Matn(R)T . So we

have that Q(Tn(R)) = Q(Matn(R)). From [27, 2.3], Q(Matn(R)) = Matn(Q(R)).
Thus it follows that Q(Tn(R)) = Q(Matn(R)) = Matn(Q(R)).

(iii) This follows from part (ii) and a routine calculation. �

Theorem 20. Let R be a semiprime ring. Then Q̂K(Matn(R)) = Matn(Q̂K(R)),
where K = pqB, pFI, or fgFI.

Proof. Assume that K = pqB, pFI, or fgFI. By Theorem 8, it follows that
Q̂K(Matn(R)) = 〈Matn(R) ∪ δfgFI(Matn(R))(1n)〉Q(Matn(R)). Observe that if J is
a finitely generated ideal of Matn(R), then there is a finitely generated ideal I of
R such that J = Matn(I). Thus δfgFI(Matn(R))(1n) = {1nc | c ∈ δfgFI(R)(1n)}.
So Lemma 19 and Theorem 8 yield that Q̂K(Matn(R)) = Matn(Q̂K(R)). �

Theorem 21. Let R be a semiprime ring. Then Q̂pqB(Tn(R)) = Tn(Q̂pqB(R)).

Proof. Let T = Tn(R) and S be a right ring of quotients of T . From [9, Proposition
2.6], Tn(Q̂pqB(R)) is a right p.q.-Baer ring. Assume that S is a right p.q.-Baer
ring. Take e ∈ Bp(Q(R)). Then there exists x ∈ R such that RxRR ≤ess eRR,
hence RxRR ≤ess eQ(R)R. Therefore Q(R)xQ(R)Q(R) ≤ess eQ(R)Q(R). Thus
eQ(R)xQ(R)eeQ(R)e ≤ess eQ(R)eeQ(R)e because e ∈ Bp(Q(R)) ⊆ B(Q(R)). Since
eQ(R)e is a semiprime ring, 0 = reQ(R)e(eQ(R)xQ(R)e) = rQ(R)(eQ(R)xq(R)e)∩
eQ(R)e = rQ(R)(Q(R)xQ(R)) ∩ eQ(R).

So we have that rQ(R)(Q(R)xQ(R))eQ(R) = rQ(R)(Q(R)xQ(R))Q(R)e = 0.
Hence rQ(R)(Q(R)xQ(R)) ⊆ (1 − e)Q(R).

Obviously, (1 − e)Q(R) ⊆ rQ(R)(Q(R)xQ(R)). Thus rQ(R)(Q(R)xQ(R)) =
(1− e)Q(R).

Next we show that rQ(R)(RxR) = (1 − e)Q(R). For this, first note that
(1 − e)Q(R) = rQ(R)(Q(R)xQ(R)) ⊆ rQ(R)(RxR). Thus by the modular law,
rQ(R)(RxR) = (1− e)Q(R)⊕ [rQ(R)(RxR)∩ eQ(R)]. Assume to the contrary that
rQ(R)(RxR) ∩ eQ(R) �= 0. Take 0 �= eq ∈ rQ(R)(RxR) ∩ eQ(R) with q ∈ Q(R).
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Since RxRR ≤ess eQ(R)R, there exists r ∈ R such that 0 �= eqr ∈ RxR. Thus
eqr ∈ rQ(R)(RxR) ∩ R = rR(RxR). So eqr ∈ RxR ∩ rR(RxR) = 0 because R is
semiprime. This is absurd. So rQ(R)(RxR)∩ eQ(R) = 0. Therefore rQ(R)(RxR) =
(1− e)Q(R).

Let θ ∈ T = Tn(R) be the n-by-n matrix with x in the (1,1)-position and 0
elsewhere. Thus TθT is the n-by-n matrix with RxR throughout the top row and
0 elsewhere. Moreover, Q(T )θQ(T ) = Matn(Q(R)xQ(R)). Since TθT ⊆ SθS ⊆
Q(T )θQ(T ) and rQ(R)(RxR) = (1− e)Q(R), we have that

(1 − f)Q(T ) = rQ(T )(Q(T )θQ(T )) ⊆ rQ(T )(SθS) ⊆ rQ(T )(TθT ) = (1− f)Q(T ),

where f is the diagonal matrix with e on the diagonal. Since S is right p.q.-
Baer, there exists c = c2 ∈ S such that cS = rS(SθS) = S ∩ rQ(R)(SθS) =
S ∩ (1− f)Q(T ). Thus cQ(T ) ⊆ (1− f)Q(T ). Let 0 �= (1− f)q ∈ (1− f)Q(T ) with
q ∈ Q(T ). Then 0 �= (1 − f)qQ(T ) ∩ S ⊆ (1 − f)Q(T ) ∩ S = cS ⊆ cQ(T ). Hence
0 �= (1 − f)qα ∈ cQ(T ) with α ∈ Q(T ). So cQ(T )Q(T ) ≤ess (1 − f)Q(T )Q(T ) and
hence c = 1− f . Thus f = 1− c ∈ S. Therefore Tn(Q̂pqB(R)) ⊆ S by Theorem 8.
So Q̂pqB(T ) also exists and Q̂pqB(T ) = Tn(Q̂pqB(R)). �

For a ring R and a nonempty set Γ, CFMΓ(R), RFMΓ(R), and CRFMΓ(R)
denote the column finite, the row finite, and the column and row finite matrix
rings over R indexed by Γ, respectively.

Theorem 22. ([15, Theorem 19])

(i) R ∈ qB if and only if CFMΓ(R) (resp., RFMΓ(R) and CRFMΓ(R)) ∈ qB.
(ii) If R ∈ FI, then CFMΓ(R) (resp., CRFMΓ(R)) ∈ FI.
(iii) If R is semiprime, then we have that Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)),

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)), and
Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)).

Theorems 15 and 21, and the fact that the right p.q.-Baer condition is a Morita
invariant property [9, Theorem 2.2] motivate the following questions:

(1) Is the right p.q.-Baer property preserved under the various infinite matrix
ring extensions?

(2) Does Q̂pqB(R) of a ring R have behavior similar to that of Q̂qB(R) for the
various infinite matrix ring extensions?

Our next example provides negative answers to these questions.

Example 23. Let F be a field and Fn = F for n = 1, 2 . . . . Put

R =

{
(qn)∞n=1 ∈

∞∏
n=1

Fn | qn is eventually constant

}
,

which is a subring of
∏∞

n=1 Fn. Then R is a commutative von Neumann regular
ring. Hence R is a right p.q.-Baer ring. Let S = CFMΓ(R), where Γ = {1, 2, . . .}.
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Take

a1 = (0, 1, 0, 0, . . . ), a2 = (0, 1, 0, 1, 0, 0, . . . ), a3 = (0, 1, 0, 1, 0, 1, 0, 0, . . . ),

and so on, in R. Let x be the element in S with an in the (n, n)-position for
n = 1, 2, . . . and 0 elsewhere, and let

e = (qn)∞n=1 ∈ Q(R) =
∞∏

n=1

Fn

such that q2n = 1 and q2n−1 = 0 for n = 1, 2, . . . . Then e = e2 ∈ B(Q(R)), hence

eI ∈ CFMΓ(Q̂qB(R)) ⊆ Q(S)

because Q̂qB(R) = RB(Q(R)) from Theorem 12, where I is the unity matrix in
S. Therefore eI ∈ B(Q(S)). Also note that (

∑
aiR)R ≤ess eRR. We claim that

SxSS ≤ess (eI)SS .

For convenience, let Eij be the matrix in S with 1 in the (i, j)-position and 0
elsewhere. Take 0 �= (eI)s ∈ (eI)S with s = (rij) ∈ S. Then there is a nonzero
column, say the m-th column, of (eI)s. In this case the m-th column of (eI)s is the
same as the first column of (eI)sEm1. Thus the first column of (eI)Em1 is nonzero
and all other columns except the first column of (eI)Em1 are zero. So without loss
of generality, we may assume that the first column of the matrix (eI)s is nonzero
and all the other columns except the first column are zero. In the first column of
(eI)s, there are only finitely many nonzero entries, say

erk11, erk21, . . . , erkn1

with
k1 < k2 < · · · < kn.

To show that SxSS ≤ess (eI)SS , we proceed by induction. Suppose n = 1. Since
(
∑
aiR)R ≤ess eRR, there exist b1, λ1, . . . , λm ∈ R such that 0 �= erk11b1 = a1λ1+

· · ·+amλm. Thus 0 �= (eI)s(b1E11) = (λ1Ek11+· · ·+λmEk1m)·x·(E11+· · ·+Em1) ∈
SxS.

Next consider the case for n > 1. Since (
∑
aiR)R ≤ess eRR, there is b1 ∈ R

such that 0 �= erk11b1 ∈
∑
aiR. If erki1b1 = 0 for some i with 1 < i ≤ n,

then we are done by induction. So erki1b1 �= 0 for all i = 1, 2, . . . , n. Assume
that erk21b1 �∈ ∑

aiR. There exists b2 ∈ R with 0 �= erk21b1b2 ∈ ∑
aiR. In

this case, note that erk11b1b2 ∈
∑
aiR. Suppose erki1b1b2 = 0 for some i �= 2.

Again we are done by induction. Next if erk31b1b2 �∈ R, then there is b3 ∈ R
such that 0 �= erk31b1b2b3 ∈

∑
aiR and erki1b1b2b3 �= 0 for all i. Also note that

erk11b1b2b3, erk21b1b2b3, erk31b1b2b3 ∈ ∑
aiR. Continue this process, it follows

that there are b1, b1, . . . , bn ∈ R with erki1b1b2 · · · bn �= 0 and erki1b1b2 · · · bn ∈∑
aiR for all i. Let b = b1b2 · · · bn. Then there is a positive integer � and λij ∈ R

such that

erk11b = a1λ11 + a2λ12 + · · ·+ a�λ1�, erk21b = a1λ21 + a2λ22 + · · ·+ a�λ2�, . . . ,
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and
erkn1b = a1λn1 + a2λn2 + · · ·+ a�λn�.

Thus

0 �= (eI)s(bE11) = (λ11Ek11 + · · ·+ λ1�Ek1� + λ21Ek21 + · · ·+ λ2�Ek2� + · · ·

· · ·+ λn1Ekn1 + · · ·+ λn�Ekn�) · x · (E11 + · · ·E�1) ∈ SxS.
Therefore SxSS ≤ess (eI)SS , hence eI ∈ Bp(Q(S)). But note that eI �∈ S. Observe
that S is a semiprime ring because R is semiprime. Thus the ring S is not right
p.q.-Baer by Theorem 8(ii). Furthermore, since R is right p.q.-Baer, Q̂pqB(R) = R.
Thus we have that Q̂pqB(CFMΓ(R)) �⊆ CFMΓ(Q̂pqB(R)). Also CFMΓ(Q̂pqB(R))
is not right p.q.-Baer.

For Q̂pqB(CRFMΓ(R)) �⊆ CRFMΓ(Q̂pqB(R)), let x and e be as in the case of
the column finite matrix ring. Then, by the same method, we can show that eI ∈
Bp(Q(CRFMΓ(R))); but eI �∈ CRFMΓ(R). So CRFMΓ(R) (= CRFMΓ(Q̂pqB(R))
is not right p.q.-Baer by Theorem 8(ii). Also we have that

Q̂pqB(CRFMΓ(R)) �⊆ CRFMΓ(Q̂pqB(R)).

Finally for Q̂pqB(RFMΓ(R)) �⊆ RFMΓ(Q̂pqB(R)), let U = RFMΓ(R) and
x, e be as before. Then by modifying the method used for the case of column
finite matrix rings, it can be shown that

UUxU ≤ess
U (eI)U,

where I is the unity matrix in U . Note eI is a central idempotent. So we have
that (eI)U(eI)UxU ≤ess

(eI)U(eI)(eI)U(eI). Since UxU is an ideal of the semiprime
ring (eI)U(eI), r(eI)U(eI)(UxU) = �(eI)U(eI)(UxU) = 0. So UxU(eI)U(eI) ≤ess

(eI)U(eI)(eI)U(eI). Thus UxUU ≤ess (eI)UU . Moreover, since e ∈ B(Q(R)) =
B(Qm(R)), there exists J � R such that �R(J) = 0 and eJ ⊆ R. Thus

RFMΓ(J) � RFMΓ(R), �RFMΓ(R)(RFMΓ(J)) = 0,

and
(eI)RFMΓ(J) ⊆ RFMΓ(R),

where I is the unity matrix in RFMΓ(R). So eI ∈ Qm(RFMΓ(R)). Hence we
have that eI ∈ B(Qm(RFMΓ(R))). So eI ∈ B(Q(U)), hence eI ∈ Bp(Q(U)). But
eI �∈ U . Therefore U = RFMΓ(R) (= RFMΓ(Q̂pqB(R)) is not right p.q.-Baer by
Theorem 8. Thus Q̂pqB(RFMΓ(R)) �⊆ RFMΓ(Q̂pqB(R)).
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Abstract. In this paper we investigate strongly prime ideals in the near-ring
N0(Rn) of continuous, zero-preserving self-maps of Rn. The strongly prime
and uniformly strongly prime radicals of these near-rings are characterized.
The Peano space-filling curves play a crucial rôle in this investigation. We also
consider strongly prime ideals in N0(Rω), where ω denotes the first transfinite
cardinal.
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1. Preliminaries

In this note, all near-rings are right distributive. For all relevant definitions, we
refer to Pilz [9]. Strongly prime rings were introduced by Handelman and Lawrence
[4], and the concept was extended to near-rings by Groenewald [3]. A near-ring
N is called strongly prime if for all 0 �= a ∈ N there exists a finite subset F of
N such that aFx = 0 implies x = 0, for all x ∈ N . F is called an insulator of
a. If F is independent of the choice of a, then N is said to be uniformly strongly
prime. An ideal A of N is called (uniformly) strongly prime if the factor near-
ring N/A is (uniformly) strongly prime. The strongly prime radical Ps(N) (resp.
uniformly strongly prime radical Pu(N)) is the intersection of the strongly prime
(resp. uniformly strongly prime) ideals of N . N is said to be (uniformly) strongly
prime of bound 1 if is (uniformly) strongly prime and the insulator F always
contains exactly one element. (Uniformly) strongly prime ideals of N of bound 1
are defined in the obvious manner.

Let G be an additive (but not necessarily abelian) topological group. The set
N0(G) of continuous self maps f of G such that f(0) = 0 is easily seen to be a
zero-symmetric near-ring with pointwise addition and composition of mappings.
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For surveys of results on near-rings of continuous functions, we refer to [7] and [8].
Let

PG = {f ∈ N0(G) | ∃U open in G such that 0 ∈ U, f(U) = 0} .
Then PG is an ideal of N0(G), which may be nontrivial [5]. Hence N0(G) need
not be simple, in contrast to the situation for the near-ring M0(G) of all zero-
preserving self-maps of G. Investigations of strongly prime ideals in near-rings of
continuous functions commenced in [2], and continued in [1].

Proposition 1.1. [1, Proposition 2.8] PR is a strongly prime ideal of N0(R) which is
contained in every strongly prime ideal of N0(R), where R denotes the real numbers
with the usual topology.

Remark 1.2. In the proof of the above proposition, the required insulator for any
a ∈ N0(R)\PR was F = {f, g}, where f(x) = x2, and g(x) = −x2 for all x ∈ R.
An examination of the proof shows that F could be substituted by G = {h} where

h(x) :=
{
x sin(1/x) if x �= 0

0 if x = 0 .

Hence Proposition 1.1 can be sharpened to

Proposition 1.3. PR is a uniformly strongly prime ideal of bound 1 in N0(R), which
is contained in every strongly prime ideal of N0(R).

Corollary 1.4. Ps(N0(R)) = Pu(N0(R)) = PR.

In the sequel, we will consider strongly prime ideals of N0(Rn), where n ∈ N
and Rn has the usual topology. We will also investigate N0(Rω), where ω denotes
the first transfinite cardinal, and Rω has the usual product topology. The Peano
space-filling curves will play a fundamental rôle in the investigation of N0(Rn). A
space-filling curve is a continuous, surjective mapping f from I = [0, 1] onto In.
The existence of such curves for all n ∈ N is well known. From such curves, it is
easy to construct continuous, surjective mappings σ from I onto B(0, 1) = {x ∈
Rn : |x| ≤ 1} such that σ(0) = σ(1) = 0, and we will make frequent use of such
mappings.

If a, b, c, d ∈ R, a < b, c < d, the standard homeomorphism of [a, b] onto [c, d]
is the mapping τ defined by τ(x) = d−c

b−a
(x − b) + d. For all undefined topological

concepts, we refer to any of the standard texts, for example [6].

2. Strongly prime ideals in N0(Rn)

In this section, we investigate strongly prime ideals in N0(Rn), and characterise
Ps(N0(Rn)) and Pu(N0(Rn)).

Lemma 2.1. Let G be a topological group with a countable, monotone decreasing
open base at 0 consisting of arcwise connected sets. If f ∈ N0G), then f /∈ PG if
and only if there exists an arc α such that α(0) = 0, α(1) �= 0 and for all ε > 0
there exists 0 < t < ε such that f(α(t)) �= 0.
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Proof. Suppose that there exists an arc α which satisfies the conditions of the
lemma. Let U be an open set of G which contains 0. Since α is continuous, there
exists ε > 0 such that α([0, ε)) ⊆ U. Then there exists 0 < t < ε such that
f(α(t)) �= 0. Let g = α(t). Then f(g) �= 0, so f /∈ PG.

Conversely, suppose that f /∈ PG. Let B = {Bn : n ∈ N} be a countable,
monotone decreasing open base at 0 which consists of arcwise connected sets.
Since f /∈ PG, for each n ∈ N there exists gn ∈ Bn such that f(gn) �= 0. Let αn be
an arc in Bn such that αn(0) = gn and αn(1) = gn+1 for each n ∈ N. Define the
arc α by

α(t) =

{
αnτn(t) if t ∈

(
1

n+1 ,
1
n

]
0 if t = 0

,

where τn denotes the standard homeomorphism of
(

1
n+1 ,

1
n

]
onto (0, 1]. It follows

from the continuity of αn and τn that α is continuous on (0, 1]. Let U be an
open set in G which contains 0. Then there exists n ∈ N such that Bn ⊆ U . It
follows from the definition of α that α(t) ∈ Bn ⊆ U for 0 < t < 1

n
. Moreover,

α(0) = 0 ∈ U . Hence, α([0, 1
n )) ⊆ U , so α is continuous at 0. Finally, α(0) = 0 and

α(1) = g1 �= 0, so α is the required arc. �

Proposition 2.2. For each n ∈ N, PRn is a uniformly strongly prime ideal of N0(Rn)
of bound 1.

Proof. Let α be an arc in Rn whose range is the unit closed ball B(0, 1), such that
α(0) = 0 = α(1), and let β : [0, 1]→ Rn be defined by

β(t) =

{
1
nατn(t) if t ∈

(
1

n+1 ,
1
n

]
0 if t = 0

,

where τn is the standard homeomorphism of
(

1
n+1 ,

1
n

]
onto (0, 1]. It is easily

verified that β is continuous on [0, 1]. Moreover β([0, 1
n
]) contains the open ball

B(0, 1
n
) for each n ∈ N. Let γ(x) = 2

π
arctan |x| for all x ∈ Rn. Then γ maps

Rn continuously into [0, 1] and γ(0) = 0 if and only if x = 0. Let f = βγ.
Let a, b ∈ N0(Rn)\PRn . If ε > 0, a(B(0, ε)) �= 0, so γa(B(0, ε)) �= 0. It fol-
lows from the continuity of the functions and the connectedness of B(0, ε) that
γa(B(0, ε)) contains an interval [0, δ) for some δ > 0. Let n ∈ N be such that
1
n
< δ. Then B(0, 1

n
) ⊆ β([0, δ)) and so B(0, 1

n
) ⊆ βγa(B(0, ε)) = fa(B(0, ε)).

Since b ∈ N0(Rn)\PRn , b(B(0, 1
n
)) �= 0 and so bfa(B(0, ε)) �= 0. Hence bfa ∈

N0(Rn)\PRn Thus {f} is the required insulator. �

Let c be any cardinal (finite or infinite), and . If a ∈ N0(R), define a : Rc → Rc

by πia(x) = a(πi(x)) for all i. Clearly, a ∈ N0(Rc).

Lemma 2.3. Let I be an ideal of N0(Rc). If I contains all a such that a is bounded
on R, then I = N0(Rc).
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Proof. Let m(x) :=
{

x2 x ≥ 0
−x2 x < 0 , n(x) := x, a(x) := arctanx. Then a is

bounded on R and so a ∈ I. Let b := m(a + n) − mn ∈ I. It may be shown

that b(x) =
{

2x arctanx+ (arctanx)2 if x ≥ 0
−2x arctanx− (arctanx)2 if x < 0 . Moreover, b is unbounded

and strictly monotone increasing and hence is a bijection of R onto itself. Hence b
has a continuous inverse b−1. Clearly, b = m(a+ n)−mn ∈ I and (b)−1 = (b−1).
From this we deduce that I = N0(Rc). �
Proposition 2.4. Let I be a strongly prime ideal of N0(Rn). Then PRn ⊆ I.

Proof. Suppose to the contrary that PRn � I. Let a ∈ PRn\I. Then there exists
an open set U of Rn such that a(U) = 0. Let fi, . . . , fm ∈ N0(Rn). Let V :=
m⋂

i=1

f−1
i (U). Then V is open in Rn and 0 ∈ V . Hence there exists δ > 0 such that

B(0, δ) ⊆ V . By Lemma 2.3 there exists a bounded function b ∈ N0(R) such that
b ∈ N0(Rn)\I. For a suitable choice of ε > 0, we have that

∣∣εb(x)∣∣ < δ for all
x ∈ Rn. Moreover, εb /∈ I, otherwise b = ε−1(εb) ∈ I, contradicting our choice of
b. Then εb(x) ∈ V for all x ∈ Rn. Hence for 1 ≤ i ≤ n, it holds that fi(εb)(x) ∈ U
and so afi(εb)(x) = 0. Thus afi(εb) = 0 ∈ I, so {f1, . . . , fm} is not an insulator for
I. Hence I is not a strongly prime ideal of N0(Rn). This concludes the proof. �
Theorem 2.5. Pu(N0(Rn)) = Ps(N0(Rn)) = PRn for all n ∈ N.

Proof. Follows immediately from Propositions 2.2 and 2.4 and the fact that every
uniformly strongly prime ideal is strongly prime. �

3. Strongly prime ideals in N0(Rω)

In this section we investigate strongly prime ideals in N0(Rω), where ω is the first
transfinite cardinal, and Rω has the usual (Tychonoff) product topology. Recall

that Rω metrizable, with metric d defined by d(x, y) :=
∞∑

i=1

|xi−yi|
2i(1+|xi−yi|) , where

x := (xi)i∈N and y := (yi)i∈N.

Proposition 3.1. PRω is a strongly prime ideal of N0(Rω), and is contained in every
strongly prime ideal of N0(Rω).

Proof. Let a ∈ N0(Rω)\PRω . Then B := {B(0, 1
n ) | n ∈ N} is a countable, mono-

tone decreasing local basis at 0 which consists of arcwise connected sets. Hence by
Lemma 2.1, here exists an arc α such that α(0) = 0, α(1) �= 0, and for all ε > 0
there exists 0 < t < ε such that a(α(t)) �= 0. Let β(X) := d(x, 0) for all x ∈ Rω. Let
f := αβ. If b ∈ N0(Rω)\PRω , and ε > 0, then b(B(0, ε)) �= 0, so βb(B(0, ε)) �= 0. It
follows from the continuity of β and b that βb(B(0, ε)) contains an interval [0, δ)
for some δ > 0. Then there exists t ∈ [0, δ) such that a(α(t)) �= 0. Let t = βb(x),
where x ∈ B(0, ε). Then a(αβ)b(x) �= 0, i.e., afb(x) �= 0. Hence afb /∈ PRω , and
so {f} is the required insulator for PRω . Hence PRω is strongly prime.
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Now let I be an ideal of such that PRω � I. We show that I is not strongly
prime. Let a ∈ PRn\I. Then there exists an open set U of Rn such that a(U) = 0.

Let f1, . . . , fm ∈ N0(Rω). Let V :=
m⋂

i=1

f−1
i (U). Then V is open in Rn and 0 ∈ V .

By definition of the product topology, there exist δ > 0 and n ∈ N such that

0 ∈W ⊆ V , where V =
∞∏

i=1

Wi with Wi = (−δ, δ) for i ≤ n and Wi = R for i > n.

By Lemma 2.3 there exists a bounded function b ∈ N0(R) such that b ∈ N0(Rω)\I.
For a suitable choice of ε > 0, we have that |εb(x)| < δ for all x ∈ R. Moreover,
εb /∈ I, otherwise b = ε−1(εb) ∈ I, contradicting our choice of b. Then εb(y) ∈ V

for all y ∈ Rω. It is clear that afi(εb)(y) = 0 for all y ∈ Rω and 1 ≤ i ≤ m. Hence
aF (εb) = 0 ∈ I, so I is not strongly prime, as required. �

As an immediate consequence of Proposition 3.1 we have:

Theorem 3.2. Ps(N0(Rω)) = PRω .

Proposition 3.3. Let G be a T0 topological group which is first countable, contains
an arc and is not locally compact. Suppose that there exists a continuous mapping
β : G→ R such that β(0) = 0 and β(U) �= 0 for every open set U which contains
0. Then PG is not a uniformly strongly prime ideal of N0(G).

Proof. Let α : [0, 1]→ G be an arc in G. We may assume without loss of generality
that α(0) = 0 and α(1) �= 0. We may also assume that α(t) �= 0 for 0 < t ≤ 1.
For otherwise, replace α with γ, where γ is defined as follows. Let s := sup{t ∈
[0, 1] | α(t) = 0}. Since [0, 1] is closed, s ∈ [0, 1]. By continuity of α, α(s) = 0.
Let γ = ατ , where τ is the standard homeomorphism of [0, 1] onto [s, 1]. Let
f1, . . . , fn ∈ N0(G). Let Si := fiα([0, 1]) for 1 ≤ i ≤ n. Since [0, 1] is compact, so

is Si. Let S :=
n⋃

i=1

Si. Then S is a compact subset of G. Since G is T0 (and hence

Hausdorff), S is closed.
Since G is first countable, there exists a monotone decreasing open basis

B := {Bn | n ∈ N} at 0. Since G is not locally compact, Bn is not contained in S
for all n ∈ N. Let gn ∈ Bn\S for each n ∈ N. Since G is T0, and hence completely
regular, there exist a continuous mapping δi : G → [0, 1] such that δi(S) = 0

and δi(gi) = 1. Let δ :=
∞∑

i=1

δi

2i . It follows easily from the Weierstrass M -test that
∞∑

i=1

δi

2i converges uniformly, and hence that δ is continuous. Moreover, δ(S) = 0

and δ(gi) > 0 for all i ∈ N. Let a := αδ. Then a(gi) �= 0 and hence a(Bi) �= 0 for
all i ∈ N. Hence a /∈ PG.

Let b := αβ. It is easily verified that b /∈ PG. Moreover afib = αδfiαβ = 0
for 1 ≤ i ≤ n. Hence PG is not a uniformly strongly prime ideal of N0(G). �
Corollary 3.4. Let G be a metrizable group which contains an arc and is not locally
compact. Then PG is not a uniformly strongly prime ideal of N0(G). In particular,
PRω is not a uniformly strongly prime ideal of N0(Rω).
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Proof. Clearly, G is T0 and first countable. Let d be a metric which induces the
topology on G, and let β(g) = d(0, g) for all g ∈ G. Then β is continuous, β(0) = 0
and β(U) �= 0 for all open sets U which contain 0. Hence PG is not uniformly
strongly prime by of Proposition 3.3. Finally, we note that Rω metrizable, not
locally compact, and contains an arc: Let g and h be distinct elements of Rω, and
let α(t) := tg+(1− t)h for 0 ≤ t ≤ 1. Hence PRω is not a uniformly strongly prime
ideal of N0(Rω) by the first part of the corollary. �
Remark 3.5. We have not been able to establish whether N0(Rω) contains any
proper uniformly strongly prime ideals, nor to characterize Pu(N0(Rω)). This is a
matter of further investigation.
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Abstract. Let R be any ring; a ∈ R is called a weak zero-divisor if there
are r, s ∈ R with ras = 0 and rs �= 0. It is shown that, in any ring R,
the elements of a minimal prime ideal are weak zero-divisors. Examples show
that a minimal prime ideal may have elements which are neither left nor right
zero-divisors. However, every R has a minimal prime ideal consisting of left
zero-divisors and one of right zero-divisors. The union of the minimal prime
ideals is studied in 2-primal rings and the union of the minimal strongly prime
ideals (in the sense of Rowen) in NI-rings.

Mathematics Subject Classification (2000). Primary: 16D25; Secondary: 16N40,
16U99.

Keywords. Minimal prime ideal, zero-divisors, 2-primal ring, NI-ring.

Introduction

E. Armendariz asked, during a conference lecture, if, in any ring, the elements
of a minimal prime ideal were zero-divisors of some sort. In what follows this
question will be answered in the positive with an appropriate interpretation of
“zero-divisor”.

Two very basic statements about minimal prime ideals hold in a commutative
ring R: (I) If P is a minimal prime ideal, then the elements of P are zero-divisors,
and (II) the union of the minimal prime ideals isM = {a ∈ R | ∃ r ∈ R with ar ∈
N∗(R) but r /∈ N∗(R)}, where N∗(R) is the prime radical. We will see that (I),
suitably interpreted, is true for all rings. The statement (II) is false in general non-
commutative rings but a version of it does hold in rings where the set of nilpotent
elements forms an ideal.

In a commutative ring R we always have that R/N∗(R) is reduced (i.e., has
no non-zero nilpotent elements); this fails in the non-commutative case. Hence we
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can expect “commutative-like” behaviour when, for a non-commutative ring R,
R/N∗(R) is reduced; these rings are called 2-primal and have been extensively
studied. Statement (II), above, holds for these rings. A larger class of rings is
where the set of nilpotent elements, N(R), forms an ideal (called NI-rings). Once
again statements (I) (Corollary 2.9) and (II) (Corollary 2.11) hold when “minimal
prime ideals” are replaced by “minimal r-strongly prime ideals” whose definition
is recalled below. (The two types of prime ideal coincide in commutative rings.)

Various weakened forms of commutativity yield results which show that min-
imal prime ideals consist of (left or right) zero-divisors. A thorough study of this
is in [2, e.g., Corollary 2.7]. Our purpose here is to look at minimal prime ideals
in general where elements need not be zero-divisors but always are what we call
weak zero-divisors (Theorem 2.2); an element a in a ring R is a weak zero-divisor
if there are r, s ∈ R with ras = 0 and rs �= 0. It will also be seen that, in spe-
cial cases, other sorts of prime ideals consist of weak zero-divisors. Examples will
show that “weak zero-divisor” cannot be replaced by “left (or right) zero-divisor”
(Examples 3.2, 3.3 and the semiprime Example 3.4), however, in any ring R there
is a minimal prime ideal consisting of left zero-divisors and one consisting of right
zero-divisors (Proposition 2.7).

Terminology. For a ring R (always unital) the prime radical is denoted N∗(R), the
upper nil radical N∗(R) and the set of nilpotent elements N(R). As usual, R is
called semiprime if N∗(R) = 0, while R is called an NI-ring if N∗(R) = N(R).
Recall that an ideal P in a ring R is called completely prime if R/P is a domain.

There are several uses of the term “strongly prime”. In the sequel we will
use the definition chosen by Rowen (see [13] and [6]). In order to avoid confusion
we will say that a prime ideal P in a ring R is an r-strongly prime ideal if R/P
has no non-zero nil ideals. (Since every maximal ideal of R is an r-strongly prime
ideal, there are r-strongly prime ideals which are not completely prime.) A ring
in which every minimal prime ideal is completely prime is called 2-primal. The
2-primal rings are special cases of NI-rings.

The (two-sided) ideal of a ring R generated by a subset X is written 〈X〉 or
by an element a ∈ R written 〈a〉.

Section 1 is devoted to a brief look at r-strongly prime ideals. Section 2
contains the main results and Section 3 is devoted to examples, counterexamples
and special cases.

1. On r-strongly prime ideals

The main topic will be deferred to the next section. Since r-strongly prime ideals
will show up in several places we first briefly study these ideals. We get a description
of r-strongly prime ideals in terms of special sorts of m-systems. Recall that an
m-system S in a ring R is a subset of R \ {0} such that 1 ∈ S, and for r, s ∈ S
there is t ∈ R such that rts ∈ S. The complement of a prime ideal is an m-system
and an ideal maximal with respect to not meeting an m-system S is a prime ideal
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(e.g., [11, §10]). A subset S of R \ {0} containing 1 and which is closed under
multiplication is an example of an m-system.

A ring R, viewed as an algebra over Z, has an enveloping algebra Re =
R ⊗Z R

op. The bimodule RRR can be thought of as a left Re-module. The ring
M(R) = Re/ annRe R is called the multiplication ring of R. Then, R is a faithful
M(R)-module. For λ ∈ M(R) we can lift λ to some

∑n
i=1 ri ⊗ si ∈ Re and,

for a ∈ R, think of λa as
∑n

i=1 riasi. We now formalize the definitions (cf. [13,
Definition 2.6.5]). (In [9], the multiplication algebra was used in the definition of
a different sort of “strongly prime” ideal.)

Definition 1.1. Let R be a ring.
(1) A prime ideal P of R is called an r-strongly prime ideal if R/P has no non-

zero nil ideals.
(2) A subset S of R \ {0} is called an nm-system if

(i) S is an m-system and
(ii) for t ∈ S there is λ ∈ M(R), depending on t, such that (λt)n ∈ S for all

n ≥ 1.

It is readily seen that any r-strongly prime ideal contains an r-strongly prime
ideal which is minimal among r-strongly prime ideals. The intersection of the
(minimal) r-strongly prime ideals of a ring R is N∗(R) (see [13, Proposition 2.6.7]).
The connection between r-strongly prime ideals and nm-systems is clear. The basic
information is contained in the following.

Proposition 1.2. Let R be a ring. Then
(i) If S ⊆ R \ {0} with 1 ∈ S is multiplicatively closed, then S is an nm-system.
(ii) If P is an r-strongly prime ideal, then R \ P is an nm-system.
(iii) If S is an nm-system and I is an ideal maximal with respect to not meeting

S, then I is an r-strongly prime ideal.
(iv) Every r-strongly prime ideal in R contains a minimal r-strongly prime ideal

(i.e., minimal among the r-strongly prime ideals).

Proof. (i) This is clear since for t ∈ S we can use λ = 1 ∈ M(R) and then
(λt)n = tn ∈ S for all n ≥ 1.

(ii) If P is an r-strongly prime ideal and S = R \ P , S is an m-system and
because R/P has no non-zero nil ideals, for t ∈ S there is λ ∈ M(R) such that λt
is not nil modulo P , which is exactly the defining feature of an mn-system.

(iii) If S is an nm-system and I an ideal maximal with respect to not meeting
S, then I is prime since S is an m-system. Suppose that x /∈ I generates an
ideal which is nil modulo I. Consider the ideal I + 〈x〉. Using maximality we pick
t ∈ (I + 〈x〉) ∩ S and write t = a + y, a ∈ I, y ∈ 〈x〉. There is λ ∈ M(R) such
that (λt)n ∈ S for all n ≥ 1. Now (λt)n = (λa + λy)n = b+ (λy)n, where b ∈ I .
However, for somem ≥ 1, (λy)m ∈ I, which is impossible. Hence, I is an r-strongly
prime ideal.

(iv) Clear. �
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The result [6, Lemma 2.2], using a multiplicatively closed set for S, is a special
case of Proposition 1.2(iii).

In a commutative ring R a multiplicatively closed set S ⊆ R \ {0}, 1 ∈ S,
has a “saturation” T = {t ∈ R | 〈t〉 ∩ S �= ∅} which is a multiplicatively closed set
and is the complement of the union of the prime ideals maximal with respect to
not meeting S. There is a similar result, [9, Proposition 3.6], in connection with
the “strongly prime ideals” of that paper. However, there is no “saturation” for
nm-systems, in general. A given nm-system can in some cases be enlarged but
Example 3.1 will show that there is not always a “saturation”.

Remark 1.3. Let R be a ring and S ⊆ R \ {0} an nm-system. Define T = {t ∈ R |
∃ r, s ∈ R with rts ∈ S}. Then, T is an nm-system whose complement contains
the same ideals as the complement of S.

Proof. We first show that T is anm-system. If t, u ∈ T , there are r, s, r′s′ ∈ R with
rts, r′us′ ∈ S. Since S is, in particular, anm-system there is x ∈ R with rtsxr′us′ ∈
S. It follows that tsxr′u ∈ T , showing that T is an m-system. Moreover, if rts ∈ S,
there is λ ∈M(R) with (λ(rts))n ∈ S, for all n ∈ N. However, rts ∈ T . �

Theorem 2.10, below, gives examples of multiplicatively closed sets which are
saturated. As a final remark in this section we have the following companion to
a result of Shin, [14, Proposition 1.11]: R is 2-primal if and only if each minimal
prime ideal is completely prime.

Proposition 1.4. A ring R is an NI-ring if and only if each minimal r-strongly
prime ideal is completely prime.

Proof. If R is an NI-ring, then each minimal r-strongly prime ideal is completely
prime by [6, Theorem 2.3(1)]. In the other direction, if each minimal r-strongly
prime ideal is completely prime, then R/N∗(R) is reduced. This means that
N∗(R) = N(R). �

2. Weak zero-divisors

The following definition contains some terminology to be used throughout.

Definition 2.1. Let R be a ring.
(i) An element a ∈ R is called a left zero-divisor if there is 0 �= r ∈ R with

ar = 0. The set of elements which are not left zero-divisors is denoted Snl.
(Similarly for right zero-divisors and Snr.)

(ii) An element a ∈ R is called a weak zero-divisor if there are r, s ∈ R with
ras = 0 and rs �= 0. The set of elements of R which are not weak zero-
divisors is denoted by Snw.

The notion of a weak zero-divisor is what is needed to answer the question
about elements of minimal primes.
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Theorem 2.2. Let R be a ring and P a minimal prime ideal of R. Then, for each
a ∈ P , a is a weak zero-divisor.

Proof. Let P be a minimal prime ideal and put S = R \ P . Suppose, on the
contrary, that a ∈ P is not a weak zero-divisor. Consider the set

T = {r1ai1r2 · · · rkaikrk+1 | k ∈ N, ij ≥ 0, r1 · · · rk+1 ∈ S} .
It is clear that T ⊇ S. The claim is that T is an m-system. It first must be shown
that 0 /∈ T . If 0 = r1a

i1r2 · · · rkaikrk+1 ∈ T , then the product remains 0 if any fac-
tors a are removed since a ∈ Snw; once all the factors are removed from the expres-
sion we get r1 · · · rk+1 = 0, which is not possible since that product is in S. It is next
shown that T is an m-system: given two elements of T , r1ai1r2 · · · rkaikrk+1 and
s1a

j1s2 · · · sla
jlsl+1, we know that there is t ∈ R such that r1 · · · rk+1ts1 · · · sl+1 ∈

S. From that, r1ai1r2 · · · rkaikrk+1ts1a
j1s2 · · · sla

jlsl+1 ∈ T , as required. �

Examples 3.2 and 3.3, below, show that left or right zero-divisors cannot
replace weak zero-divisors in Theorem 2.2. However, in a reduced ring weak zero-
divisors are both left and right zero-divisors.

Corollary 2.3. In a ring R, if a is an element of a minimal prime ideal, then there
are r, s ∈ R such that ras ∈ N∗(R) and rs /∈ N∗(R). If R/N∗(R) is reduced (i.e.,
N∗(R) = N(R)), then there is r /∈ N∗(R) such that ra ∈ N∗(R) and ar ∈ N∗(R).

Proof. The first part is Theorem 2.2 applied to R/N∗(R). The second follows since
in a reduced ring S, abc = 0 implies acb = bac = 0. �

Corollary 2.3 can, of course, be restated for any ideal I of R in place of N∗(R)
and using the prime ideals minimal over I.

The following simple lemma will be used here and again later.

Lemma 2.4. Let R be any ring and X a subset of R. Set M(X) = {a ∈ R | ∃ r, s ∈
R with ras ∈ X but rs /∈ X} and Mr(X) = {a ∈ R | ∃ r ∈ R with ar ∈ X but r /∈
X}. Then, R\M(X) and R\Mr(X) are multiplicatively closed and both contain 1.

Proof. We write M for M(X) and Mr for Mr(X). Suppose a, b ∈ R \ M and
ab ∈ M . Then, there are r, s ∈ R with rabs ∈ X while rs /∈ X . Since a /∈ M ,
rbs ∈ X and then b ∈ M . This contradiction shows ab /∈ M . The statements
about Mr are proved similarly. �

In Lemma 2.4 there is an analogous statement for Ml = Ml(X) = {a ∈ R |
∃ r ∈ R with ra ∈ X but r /∈ X}. Results about Mr for various sets X can be
restated for Ml.

Corollary 2.5. Let R be a ring. Then, Snw and Snl are closed under multiplication
and contain 1; in particular, Snw and Snl are nm-systems with Snw ⊆ Snl.

Proof. In Lemma 2.4 we take X = {0}. Moreover, if a is a left zero-divisor then it
is a weak zero-divisor. �
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Remark 2.6. Let R be a ring. If the set of weak zero-divisors in R forms an idealW
then W is a completely prime ideal. Moreover, if a minimal prime ideal P contains
all the weak zero-divisors, then P is completely prime and P = N∗(R) = N(R).

Proof. By Corollary 2.5, R \W is a multiplicatively closed set. Hence, W is prime
and if rs ∈ W then r ∈ W or s ∈W .

For the remaining part, the minimal prime ideal P is the only minimal prime
and is, hence, N∗(R). �

Remark 2.6 can be illustrated by a trivial extension of a domain. If R is the
ring of column finite ℵ0×ℵ0 upper triangular matrices with constant diagonal over
a domain D, then R is an example of the situation of Remark 2.6 with P = N∗(R)
nil but not nilpotent. Rings of the type in Remark 2.6 are the subject of [7].

According to Proposition 1.2(iii) or [6, Lemma 2.2], if S is a multiplicatively
closed set in a ring R with 0 /∈ S and 1 ∈ S, then an ideal maximal with respect
to not meeting S is an r-strongly prime ideal.

Proposition 2.7. Let R be any ring.
(i) There is an r-strongly prime ideal consisting of weak zero-divisors.
(ii) There is an r-strongly prime ideal consisting of left zero-divisors. There is a

minimal prime ideal consisting of left zero-divisors. Similarly for right zero-
divisors.

Proof. By Proposition 1.2(i) and (iii), an ideal maximal with respect to not meet-
ing the multiplicatively closed set Snw is an r-strongly prime ideal. Similarly for
Snl. Moreover, among the prime ideals not meeting Snl there are minimal prime
ideals. �

The ring of Example 3.2 has two minimal prime ideals, one consists of ele-
ments which are both left and right zero-divisors while the other has weak zero-
divisors which are not left or right zero-divisors. See also Example 3.6.

Proposition 2.8. Let P be a completely prime ideal in a ring R which is minimal
among r-strongly prime ideals. Then, the elements of P are weak zero-divisors.

Proof. We use Proposition 1.2(iii) and put S = R \ P . The argument of Theo-
rem 2.2 is modified. If a ∈ P is not a weak zero-divisor then put

T = {r1ai1r2 · · · rkaikrk+1 | ij ≥ 0, rj ∈ S, j = 1, . . . , k}.
It follows that T is a multiplicatively closed set strictly containing S and with
0 /∈ T . An ideal maximal with respect to not meeting T is an r-strongly prime and
is contained in P . This is not possible. �

There is an example, [6, Proposition 1.3], based on [6, Example 1.2], of a
prime NI-ring R in which N∗(R) �= 0. Hence, there are r-strongly prime ideals
minimal among r-strongly prime ideals but which are not minimal prime ideals (0
is the only minimal prime ideal). Moreover, by [6, Theorem 2.3(1)], these minimal
r-strongly prime ideals are completely prime; then Proposition 2.8 applies and the
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elements of such ideals are weak zero-divisors. We will use the construction of [6,
Example 1.2] and our Example 3.2 to show that in Proposition 2.8 weak zero-
divisors are required (see Example 3.3, below). We collect some of the remarks
above as follows.

Corollary 2.9. Let R be an NI-ring and P a minimal r-strongly prime ideal. Then
P consists of weak zero-divisors.

Proof. As already mentioned, [6, Theorem 2.3(1)] says that Proposition 2.8 applies.
�

It also follows from [6, Example 1.2] that, unlike the commutative semiprime
case, the union of the minimal primes is not the set of weak zero-divisors. However,
in an NI-ring there is an analogous result. Recall (e.g., [12, §2.1, Exercise 11]), that,
in a commutative ring R we always have N∗(R) = N(R) and, also, the union of
the minimal prime ideals is {r ∈ R | ∃s /∈ N∗(R) such that rs ∈ N∗(R)}.

Recall that an ideal I of R is called a completely semiprime ideal if R/I is a
reduced ring; if I is a completely semiprime ideal then the prime ideals minimal
over I are completely prime. The next result mimics the commutative case.

Theorem 2.10. Let R be a ring and I a completely semiprime ideal. Then, Mr(I) =
{a ∈ R | ∃ r ∈ R with ar ∈ I but r /∈ I} is the union of the completely prime ideals
minimal with respect to containing I. In addition, R \Mr(I) is multiplicatively
closed and contains 1. The sets Mr(I) and Ml(I) coincide.

Proof. Let P be the set of completely prime ideals minimal over I. Suppose a ∈ P
for some P ∈ P and we can suppose a /∈ I. In the reduced ring R/I, a+ I is a left
zero-divisor. I.e., there is r /∈ I such that ar ∈ I, showing that a ∈Mr(I).

In the other direction, if we have a ∈Mr(I) with r /∈ I and ar ∈ I but a /∈ P
for each P ∈ P , then, since these primes are completely prime, r would be in I,
which is impossible. Hence, Mr(I) =

⋃
P∈P P .

The next part is an application of the second part of Lemma 2.4 applied to
X = I. The last observation follows since left and right zero-divisors coincide in a
reduced ring. �

The set R \Mr(I) in Theorem 2.10 is a saturated nm-system as discussed at
the end of Section 1.

When R is an NI-ring Theorem 2.10 yields a result analogous with the com-
mutative case.

Corollary 2.11. Let R be an NI-ring and Mr = Mr(N(R)) = {a ∈ R | ∃ r ∈
R with ar ∈ N(R) but r /∈ N(R)}. Then, Mr is the union of the minimal r-
strongly prime ideals of R. Moreover, R \Mr is closed under multiplication and
contains 1.

Proof. We need only invoke Theorem 2.10 with I = N(R) and the fact that in an
NI-ring N(R) is completely semiprime (e.g., [6, Lemma 2.1]). �
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In the special case of a 2-primal ring, the minimal r-strongly prime ideals
of Corollary 2.11 are, in fact, the minimal prime ideals; in a 2-primal ring Corol-
lary 2.11 is exactly as for commutative rings.

It is remarked in [5, page 4869] that if R is a PI-ring or a ring of bounded
index, then R is a NI-ring if and only if R is 2-primal.

The conclusion of Corollary 2.11 need not hold when the ring is not an NI-
ring: see Example 3.5, below.

3. Examples and special rings

Our first example is to illustrate how an nm-system can fail to have a saturation.

Example 3.1. There is a ring R such that T = {t ∈ R | 〈t〉 = R} = {t ∈ R |
〈t〉 ∩ S �= ∅} is not an m-system and is not a saturation for S = {1}.

Proof. LetK be a field and F = K〈Y,X1, X2〉 a free algebra in 3 variables. Set I to
be the ideal of F generated by ρ = X1Y X2−1 and R = F/I. We write the images
Y +I = y,X1+I = x1 and X2+I = x2. By construction, y ∈ T (as are x1 and x2).
However, in order to have v, uj, wj ∈ F , j = 1, . . . ,m with

∑
j ujY vY wj − 1 ∈ I

we would need an equation of the form
∑

j ujY vY wj − 1 =
∑

i riρsi for some
ri, si ∈ F , i = 1, . . . , n. The equation shows that for some k, 1 ≤ k ≤ n, rksk has a
non-zero constant term. The corresponding rkX1Y X2sk, when split into monomial
terms, has a monomial term with only one copy of Y . No such term can exist in
the other expression. Hence, no element of yRy is in T . This shows that T is not
an m-system. �

When a semiprime ring R has only finitely many minimal prime ideals (see
[10, Theorem 11.43] for characterizations of such rings) then each element of a
minimal prime is a left and a right zero-divisor. The following example shows that
even when there are only finitely many minimal prime ideals weak zero-divisors
may be required when the ring is not semiprime.

Example 3.2. Let K be a field and R = K〈X,Y 〉/I where I is generated by the
monomials XY iX, i ≥ 1. Write X + I = x and Y + I = y. Then, 〈y〉 is a minimal
prime of R, R has only two minimal primes and N∗(R) �= 0. Moreover, y is neither
a left nor a right zero-divisor but xyx = 0 while x2 �= 0.

Proof. Since R/〈y〉 ∼= K[X ], 〈y〉 is a prime ideal, and, similarly, 〈x〉 is a prime
ideal. Put L = 〈x〉 ∩ 〈y〉. Then, L3 = 0. Moreover, R/L is reduced since if r2 ∈ L
and r is written as a polynomial with no terms containing a factor xyix, i ≥ 1,
then r /∈ L would mean that r has a term purely in x or in y. Then, r2 would also
have such a term. It follows that any prime ideal Q of R contains L and, hence,
〈x〉〈y〉 ⊆ Q. Hence, the minimal primes are 〈x〉 and 〈y〉. However, y is not a left
or a right zero-divisor while xyx = 0 and x2 �= 0. On the other hand the elements
of 〈x〉 are all left and right zero-divisors. �
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The ring R in Example 3.2 is an NI-ring (even 2-primal) because 〈x〉 ∩ 〈y〉 =
N(R) = N∗(R). The set Mr from Corollary 2.11 is 〈x〉 ∪ 〈y〉 and R/N(R) is
the reduced ring K〈X,Y 〉/K, where K is generated by {XY, YX}. Moreover (cf.,
Corollary 2.5), Snw = R \ (〈x〉 ∪ 〈y〉) and Snl = R \ 〈x〉 = Snr.

Example 3.3. There is an example of an NI-ring R such that N∗(R) �= N(R) in
which there is a prime ideal minimal over N(R) whose elements are neither left
nor right zero-divisors (they are weak zero-divisors).

Proof. We rename the ring from Example 3.2 as S and use it as the seed ring in
the construction of [6, Example 1.2]. To recall the construction: for each n ∈ N let
Sn be the ring of 2n × 2n upper triangular matrices over S, and Sn is embedded
in Sn+1 by sending A ∈ Sn to (A 0

0 A ). Then, R is the direct limit of this system of
rings. According to [6, Example 1.2], R is an NI-ring but N∗(R) �= N(R).

Now let P be the set of elements r from R which from some n ∈ N, the
matrices representing r have an element of 〈y〉 in the (1, 1) position. The claim is
that P is a prime ideal minimal over N(R). It is clear that it is an ideal. Moreover,
R/P ∼= S/〈y〉 ∼= K[x], a prime ring. Just as in Example 3.2, a prime ideal contained
in P and containing N(R) would have to contain the elements with (1, 1) entry
equal to y. Again as in Example 3.2, if we take for a ∈ P an element represented
by ( y 0

0 y ) ∈ S1, then the equation ar = 0 in R with r �= 0 would imply that there
is a representative of r in, say, Sn. The element corresponding to a in Sn is yI2n

where I2n is the identity matrix. Then the product ar = 0 in Sn multiplies each
row of r by y. Since y is not a left zero-divisor, we have a contradiction. Similarly,
a is not a right zero-divisor. �

In the ring R of Example 3.3, r ∈ N(R) if and only if r has a representative
whose diagonal elements are in N(S). Examples 3.2 and 3.3 are not semiprime; the
next example is of a semiprime ring which has a minimal prime whose elements
are neither left nor right zero-divisors.

Example 3.4. There is a semiprime ring R and a minimal prime ideal P along with
a ∈ P such that a is neither a left nor a right zero-divisor.

Proof. We again use the ring of Example 3.2 as a starting point. We will here call
that ring R0. Let R1 be the ring K〈X,Y, Z〉/I where I is generated by {XY iX |
i ≥ 1}, the same defining relations as for R0. There is a natural embedding of R0

into R1. However, R1 is a prime ring.
The ring R is defined as follows: R is the ring of all sequences r = (rn) from

R1 such that for some k ∈ N, depending on r, rj ∈ R0 is constant for all j ≥ k.
The ring R is semiprime. To see this, if r = (rn) ∈ R and, for some k ∈ N, rk �= 0
then rkR1rk �= 0, showing that rRr �= 0.

We define P = {r = (rn) ∈ R | rn is eventually constant and in 〈y〉}. Since
R/P ∼= R0/〈y〉, P is a prime ideal. It now needs to be shown that P is a minimal
prime ideal. Suppose that Q ⊆ P is a prime ideal. For any idempotent e ∈ R (all
the idempotents in R are central), eR(1− e) = 0 means that e ∈ Q or 1− e ∈ Q.
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However, if e is eventually 1, e /∈ P and, hence, e /∈ Q. Thus
⊕

i∈N
R1 ⊆ Q.

For u ∈ R0, let û denote the element of R which is constantly u. We will see
that x̂Rŷx̂ ⊆ Q. Indeed, for v ∈ R, we may assume that v /∈ ⊕

i∈N
R1 and,

hence, that v has the form v = (0, . . . , 0, w, w, . . .), where w ∈ R0. Then, as in the
proof of Example 3.2, x̂vŷx̂ ∈ Q. The rest of the proof follows as in the proof of
Example 3.2, showing that ŷ ∈ Q and that Q = P .

Finally, ŷ is neither a left nor a ring zero-divisor but is, of course, a weak
zero-divisor. �

It can also be seen that the ring of Example 3.4 is left and right non-singular.
See also Proposition 3.9 for more about constructions related to that in Exam-
ple 3.4.

Example 3.5. There is a ring R with N∗(R) = 0 where Mr = Mr(N(R)) = {a ∈
R | ∃ r /∈ N(R) with ar ∈ N(R)} is not the union of the minimal (r-strongly)
prime ideals.

Proof. Consider a division ring D and the ring R of sequences of 2 × 2 matrices
over D which are eventually a constant diagonal matrix (e.g., [14, Example 5.6]).
Then the von Neumann regular ring R has no nonzero nil ideals and the minimal
r-strongly prime ideals are also the minimal prime ideals; they are the maximal
ideals (i) In of sequences zero in the nth component, and (ii) the ideals Pi, i = 1, 2,
of sequences, eventually a constant diagonal matrix which is zero in the ii position.
Consider a ∈ R where, for i = 1, . . . , n, n ≥ 1, the ith component of a, ai, is nonzero
but there is 0 �= ri, which is not nilpotent, with airi = 0, while the constant part
of a can be the identity matrix. Put r ∈ R to be ri for i = 1, . . . , n and 0 beyond.
Then, ar = 0 but a is not in the union of the minimal (r-strongly )prime ideals.
For example, a = (( 1 0

0 0 ), ( 1 0
0 1 ), ( 1 0

0 1 ), . . .) and r = (( 0 0
0 1 ), ( 0 0

0 0 ), ( 0 0
0 0 ), . . .). Hence,

a ∈ Mr but is not in the union of the prime ideals. Similarly, a is in the set
Ml =Ml(N(R)).

On the other hand, the union of the prime ideals is contained inMr∩Ml. �

In the ring R of Example 3.5, the minimal prime ideals consist of left (and
right) zero-divisors. The set of elements of R with constant part 0 is a completely
semiprime ideal, call it K. The minimal prime ideals containing K are P1 and
P2 whose union is, according to Theorem 2.10, Mr(K) = Ml(K). As in any von
Neumann regular ring, the set of left zero-divisors is {a ∈ R | Ra �= R} = Mr(0)
and that of right zero-divisors in {a ∈ R | aR �= R} = Ml(0); these coincide
if, as in our example, the ring is directly finite. However, elements of a proper
ideal in a von Neumann regular ring are all left and right zero-divisors. (See also
Proposition 3.8, below, for information about a related class of rings to that of the
von Neumann regular ones.)

The next example illustrates the left and right versions of Proposition 2.7.
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Example 3.6. Let A be a domain which is neither left nor right Ore and R = (A A
0 A ).

Then, R has two minimal prime ideals, one consists of left zero-divisors and the
other of right zero-divisors; neither consists of both.

Proof. The two minimal prime ideals are I = (A A
0 0 ) and J = ( 0 A

0 A ). �
See also [2, Example 2.6] and its references for information on minimal prime

ideals and zero-divisors of rings of the form of that of Example 3.6.
The ring K〈X,Y 〉/I, where I = 〈XY 〉, of [2, Example 2.8] shows the same

phenomenon as that of Example 3.6.
As in the commutative case, zero-divisors of all sorts do not behave well with

respect to homomorphic images. Some information can be gleaned.

Proposition 3.7. Suppose R is an NI-ring.
(i) If a+N(R) ∈ R/N(R) is a weak zero-divisor, then a is a weak zero-divisor

in R.
(ii) If every element of a proper ideal of R/N(R) is a weak zero-divisor, then

every element of a proper ideal of R is a weak zero-divisor.

Proof. (i) Suppose that a ∈ R is such that a+N(R) is a weak zero-divisor. Then,
there are r, s ∈ R such that ras ∈ N(R) and rs /∈ N(R). For some minimal m ∈ N,
(ras)m = 0. If some of the factors a in (ras)m can be removed to get a non-zero
element, the proof is complete. Removing all the factors a, if necessary, leaves
(rs)m �= 0, which gives the result. (ii) This follows directly from (i). �

The converse of Proposition 3.7 is false even in the commutative case. Con-
sider a field K and the ring R = K[X,Y ]/I, where I = 〈{Xn, XY }〉, for some
n ≥ 2. Then Y + I is a zero-divisor in R but not modulo N∗(R) = 〈X + I〉.

The argument in Proposition 3.7(i) does not work for left zero-divisors and,
in fact, the conclusion is false for left (or right) zero-divisors. In Example 3.3, the
element a shown to be a weak zero-divisor but neither a left nor a right zero-divisor,
is both a left and right zero-divisor modulo N(R).

There are various weak forms of von Neumann regularity which guarantee
that elements of proper ideals are in fact zero-divisors. Recall that a ring R is right
weakly π-regular if for every a ∈ R there is m ∈ N such that am ∈ am〈am〉.
Proposition 3.8. Let R be a right weakly π-regular ring. Then, every element of a
proper ideal is a left zero-divisor.

Proof. Let a ∈ R be in a proper ideal and we may assume that a is not nilpotent.
We can write, for some m ∈ N, am = am

∑n
i=1 ria

msi and am(1−∑
ria

msi) = 0.
We know that

∑
ria

msi �= 1 and, thus, there is a minimal k ≥ 1 such that
ak(1−∑

ria
msi) = 0. Then, ak−1(1−∑

ria
msi) ∈ ranna. �

Proposition 3.7 applies to rings not covered by Proposition 3.8. Using [1,
Theorem 2.6], one needs to find NI-rings R which do not satisfy the idempotent
condition WCI ([1, Definition 2.1]), and, hence, is not right weakly π-regular, but
for which R/N(R) is right weakly π-regular. One such is [1, Example 1.7].
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For a von Neumann regular ring satisfying general comparability ([4, Defi-
nition, page 83]), the minimal prime ideals are generated by central idempotents
([4, Theorem 8.26]) and, hence, an element of a minimal prime ideal is annihilated
by a non-zero central idempotent. More generally the observation applies to any
ring in which the minimal primes are generated by central idempotents. We will
not go into details here but the condition that each minimal prime of a ring R is
generated by central idempotents is equivalent to saying that the Pierce sheaf of
R has prime stalks (see [8, V 2] or [3]). Biregular rings have this property as do
full products of prime rings.

More generally we have the following which will help in the construction of
examples. The key property of a Pierce sheaf of a ring R which we will use is that
if for some x ∈ SpecB(R) and r, s ∈ R we have rx = sx, then there is e ∈ B(R)\x
such that re = se.

Proposition 3.9. Let R be a ring whose Pierce sheaf has stalks Rx which have
the property that each minimal prime ideal of Rx consists of left or of right zero-
divisors. Then each minimal prime ideal of R consists of left or of right zero
divisors.

Sketch of proof. Let Rx be a stalk of R (x refers to a maximal ideal of the boolean
algebra B(R) of central idempotents of R and Rx = R/Rx).

Since for any prime ideal P of R, P ∩B(R) = x, for some x ∈ SpecB(R) and
R → Rx = R/Rx is surjective, a minimal prime ideal P of R has the following
form. For x = P ∩B(R) and Q = Px = P/Rx, P = {r ∈ R | rx ∈ Q}. Moreover,
each such pair (x,Q) yields a minimal prime ideal of R.

Then, if Q, a minimal prime ideal of Rx, consists, say, of left zero-divisors,
for u ∈ P , as constructed above, there is r ∈ R with rx �= 0x and uxrx = 0. For
some e ∈ B(R) \ x, ure = 0. Since re �= 0, u is a left zero-divisor. �

The converse is true in a ring like that in Example 3.4 but a small change in
that example shows that it is false in general.

Example 3.10. There is a ring R which has a Pierce stalk Rx so that Rx has a
minimal prime ideal with an element which is neither a left nor a right zero-divisor
but the corresponding minimal prime ideal of R consists of zero-divisors.

Proof. Let R0 be the ring of Example 3.2 and S = K〈x, y, z〉/I, where I is gener-
ated by {xyix | i ≥ 1} and {zxy, zx2}. Then, let R be the ring of sequences from
S which are eventually constant and in R0. The Pierce stalks of R are Rn = S,
n ∈ N, and R∞ = R0. Let P = {r ∈ R | r∞ ∈ 〈y〉}; P is a minimal prime ideal
of R. It can be seen that the elements of P are all right zero-divisors even though
P∞ has an element which is not a right zero-divisor. Indeed, any monomial in 〈y〉
is annihilated on the left by zx �= 0. Now let r ∈ P be such that r∞ = u ∈ R0,
u �= 0. Then, for some n ∈ N, rn = u. Let e ∈ R be such that em = 0 if m �= n
and en = 1. Then, zxer = 0, while zxe �= 0. �
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1. The theorem

Below, rings are associative with 1, but possibly noncommutative. Modules are
unital. We also make use of the well-known fact that a ring R is semi-simple if and
only if every maximal left ideal is a summand.

Theorem 1. Let R and S be rings and let RMS be an R-S-bimodule. If MS has
finite uniform dimension and for r ∈ R the equality annM (r) = (0) implies r ∈
U(R) then R is semi-local.

Proof. Let R = R/J(R), and let RA be a maximal submodule of RR . We wish
to show that A is a direct summand. Since MS has finite uniform dimension there
exists an element b ∈ R, b /∈ A, such that annM (b) ⊆ MS has maximal uniform
dimension (with respect to the restriction b /∈ A).

Let x ∈ R be such that xb ∈ A. Notice the containment annM(b − bxb) ⊇
annM (b) ⊕ annM (1 − xb) (in fact, equality holds, although we do not need that
information). But b− bxb /∈ A, so by the maximality condition on b we conclude
annM (1−xb) = (0). Therefore 1−xb ∈ U(R). Repeating the argument, we see that
1−yxb ∈ U(R) for all y ∈ R, so xb ∈ J(R). We have thus shown that A∩Rb = (0).
By maximality of A we have A⊕Rb = R, finishing the proof. �
Corollary 2. If S is a ring and MS is an Artinian right S-module then R =
End(MS) is a semi-local ring.

Notice that in the proof of Theorem 1, we could weaken the condition “r ∈
U(R)” to “r is left invertible.” We also remark that in the original proof given
by Camps and Dicks in [1], they showed that R is semi-local if and only if there
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exists an integer n ≥ 0 and a function d : R→ {1, 2, . . . , n} satisfying d(b− bxb) =
d(b) + d(1 − xb), and if d(a) = 0 then a ∈ U(R). One can recover this fact by
letting d(a) denote the composition length of the right annihilator of a ∈ R and
following the ideas in the proof of Theorem 1.
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Abstract. In this paper we study connections between topological and alge-
braical properties of a Boolean ring. We discuss some properties of the lattice
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1. Preliminaries

Boolean rings form a remarkable subclass of the class of associative rings. Ring
topologies on Boolean rings have many unexpected and subtle properties. For
instance, if (R, T ) is a Boolean topological ring, then:
(i) components coincide with quasicomponents;
(ii) the product of two neighborhoods of zero is a neighborhood of zero;
(iii) (R, T ) is locally connected provided if it is a bounded connected ring.
Recall that a Boolean ring is an associative ring R with identity satisfying the
identity x2 = x. We consider x ≤ y if and only if xy = x. A Boolean ring R is
called trivial if it consists of only one element. Any Boolean ring consisting of two
elements is isomorphic to F2 = Z/2Z = {0, 1}.

Methods and ideas of Boolean rings are used in the mathematical logics,
measure theory, Stone duality, Banach algebras and other domains. An outstanding
role in the theory of Boolean rings belongs to the theory of Boolean algebras,
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established by M.H. Stone [4, 21, 22, 23, 24]. A Boolean ring R endowed with
the operations x ∨ y = x + y + xy, x ∧ y = xy, x′ = 1 + x is a Boolean algebra.
The element x′ is called the complement of x. Always x′ ∧ x = 0, x′ ∨ x = 1 and
(x′)′ = x.

The paper uses the terminology from [3, 11, 21, 25]. As usual, ω stands for
the set of all natural numbers {0, 1, 2, . . .} or for the first infinite ordinal. As a rule,
we will simply say “a space” instead of “a topological space”. By R we denote the
topological ring of reals. Symbol |A| denotes the cardinality of a set A and w(X)
denotes the weight of a space X. The closure of a subset A of a space X is denoted
by clX(A) or, briefly, by clA. A clopen subset is a closed-and-open subset of the
space.

A zero-dimensional non-empty compact space is called a Stone space.
Denote by C(X) the ring of all continuous functions of X into F2 for every

Stone space X . Put MY = {f |f ∈ C(X), f(Y ) = 0} for every subset Y ⊆ X.
Obviously, MY is an ideal of C(X) and MY =MclY for every subset Y ⊆ X. The
ideal Mx = M{x} of C(X) is maximal and MY = ∩{My|y ∈ Y }. Every maximal
ideal of the ring C(X) has the form Mx.

If A is a subset of a space X , then 1A : A → F2 denotes the characteristic
function of A for which 1A(x) = 1 if and only if x ∈ A.
Proposition 1.1. If A,B are closed subsets of a Stone space X, then:
(i) MA ⊆MB if and only if B ⊆ A.
(ii) MA =MB if and only if A = B.

Proof. (i) Let B ⊆ A. ThenMA = ∩{Mx|x ∈ A} ⊆ ∩{Mx|x ∈ B} =MB. Suppose
that x0 ∈ A \B. There exists a clopen subset U of X such that x0 ∈ U ⊆ X \ B.
Then 1U ∈ MB \ MA. Thus B ⊆ A provided MB ⊆ MA. The assertion (i) is
proved. The assertion (ii) follows immediately from (i). �

Let R be a Boolean ring. Denote by X(R) the set of all maximal ideals of R.
We put V (L) = {I|I ∈ X(R), L ⊆ I} for every L ⊆ R. The family {V (L)|L ⊆ R}
is a closed base for the Stone topology on X(R). The space X(R) becomes a Stone
space, rings R and C(X(R)) are isomorphic.

If S is the category of all Stone spaces and B is the category of all Boolean
rings, then X : B → S and C : S → B are contravariant functors such that
C(X(R)) = R,X(C(X)) = X for all R ∈ B and X ∈ S. The Stone Duality
Theorem is composed from above given facts (see [4, 6, 20, 21, 23, 24]).

For every property P (S, respectively) of the categoryS of all Stone spaces (of
the category B of all Boolean rings, respectively) there exists a unique property
C(P ) (X(S), respectively) of Boolean rings (of Stone spaces, respectively) such
that:
(i) The properties P and X(C(P )) are equivalent.
(ii) The properties S and C(X(S)) are equivalent.
(iii) A Stone space X has the property P if and only if the Boolean ring R =

C(X) has the property S = C(P ).
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One principal aim is to find characterizations of the properties C(P ) and X(S) for
the given properties P and S. We should mention that some properties of Boolean
rings may be described in the terms:
(a) of the properties of the lattice of precompact topologies on a ring;
(b) of the properties of the upper semilattice of totally bounded topologies on a

ring;
(c) of the properties of the Bohr topology on a ring.
An atom of a Boolean ring R is an element a ∈ R, a �= 0, such that if 0 �= b ≤ a,
then b = a, equivalently, the principal ideal of R generated by a is equal to {0, a}.
A Boolean ring R is called atomless provided it has no atoms. An element y ∈ R
contains an atom provided x ≤ y for some atom x ∈ R. A Boolean ring R is called
atomic provided each of its non-zero element contains an atom. Thus 1b = 1{b} is
an atom in C(X) if and only if b is an isolated point of X.

Remark 1.1. We will consider that ∅ is a compact zero-dimensional space for which
C(∅) = 0.

2. Topologies on a Boolean ring

Let R be a Boolean ring. We will consider that R = C(X) for some non-empty
Stone space X .

Denote by T (R) the set of all ring topologies on R and by Tρ(R) – the set of
all Hausdorff ring topologies on R.

A topology T ∈ T (R) is called precompact provided for every non-empty set
U ∈ T there exists a finite subset F such that R = F+U . A Hausdorff precompact
topology is called totally bounded.

Set T p(R) = {T |T ∈ T (R), T is precompact} and T p
ρ (R) = T p(R) ∩ Tρ(R).

We associate to every subset Y ⊆ X a precompact ring topology TY on R = C(X)
having the family {Mx|x ∈ Y } as a subbase at 0.
Proposition 2.1. Let Y, Z be subsets of a Stone space X and R = C(X). Then:
(i) TY ∈ T p(R).
(ii) TY is Hausdorff if and only if Y is dense in X.
(iii) TY ⊆ TZ if and only if Y ⊆ Z.
(iv) TY = TZ if and only if Y = Z.
(v) T p(R) = {TH |H ⊆ X}.

Proof. (i) For every x ∈ X there exists a unique homomorphism hx : R→ F2 such
that h−1

x (0) =Mx. The homomorphism

hX : R→ FX
2 , where r !→ (hx(r))x∈X ,

is an isomorphism of R onto h(R) ⊆ FX
2 .

Let Y ⊆ X and πY : FX
2 → FY

2 be the natural projection. Obviously, hY =
πY ◦ hX . Consider the topology of Tychonoff product on the ring FY

2 . The ring
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FY
2 endowed with this topology is a compact Boolean ring. By construction, TY =

{h−1
Y (U)|U is open in FY

2 }. This implies TY ∈ T p(R).
(ii) The homomorphism hY : R → FY

2 is injective if and only if the set Y is
dense in X.

(iii) If Y ⊆ Z, then TY ⊆ TZ . Suppose that b ∈ Y \Z and TY ⊆ TZ . For every
y ∈Mb there exists a finite subset F (y) ⊆ Z such that y ∈ ∩{Mz|z ∈ F (y)} ⊆Mb.
There exists a function f : X → F2 such that f(b) = 1 and F (y) ⊆ f−1(0). Then
f /∈Mb and f ∈ ∩{Mz|z ∈ F (y)} ⊆Mb, contradiction.

(iv) Follows from (iii).
(v) Suppose that T ∈ T p(R). If T = {∅, R}, then T = T∅. Suppose that

T �= T∅. There exist a Hausdorff compact Boolean ring S and a continuous ho-
momorphism g : R → S such that T = {g−1(U)|U is an open subset of S}. It is
obvious that 0 = g(0) �= g(1) = 1. There exists an open subbase {Hα|α ∈ Ω} at
0S such that Hα is a maximal ideal of S for each α ∈ Ω. For every α ∈ Ω there
exists a unique xα ∈ X such that Mxα = g−1(Hα). If H = {xα|α ∈ Ω}, then
T = TH . �

Remark 2.1. We call the homomorphism hY : R→ FY
2 canonical.

Corollary 2.2. If |X | = τ and R = C(X), then |T p(R)| = 2τ .

Corollary 2.3. If R = C(X), then the set T p(R) is a complete lattice, TX is the
maximal element and T∅ is the minimal element of T p(R).

Corollary 2.4. For every topology T ∈ T p(R) there exists a unique topology T ′ ∈
T p(R) such that T ∨ T ′ = TX and T ∧ T ′ = T∅.

Remark 2.2. The lattice T p(R) considered as a Boolean algebra is isomorphic to
the Boolean algebra P(X) of all subsets ofX . Denote by T mp the maximal element
of T p(R).

Remark 2.3. For two spaces X and Y denote by Cp(X,Y ) the space of all contin-
uous functions of X into Y with the topology of pointwise convergence. Clearly,
Cp(X,Y ) is a subspace of the space Y X . If Z is a closed subspace of Y , then
Cp(X,Z) is a closed subspace of the space Cp(X,Y ) (see [3], Section 0.3; [11], Sec-
tion 2.6). We consider F2 as a subspace (but not a subring) of the space R. Under
this convention T mp is the topology of the space Cp(X) = Cp(X,F2) and Cp(X)
is a closed subspace of the space Cp(X,R). We identify Cp(X) with (C(X), T mp).
Hence, if P is a topological property hereditary related to closed subspaces and
Cp(X,R) ∈ P , then Cp(X) ∈ P too.

Remark 2.4. Let Y be a subspace of a space X and C(Y |X) = {f |Y |f ∈ C(X)}.
Then (C(Y |X), TY ) is a subring and a subspace of the topological ring Cp(Y ).
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3. Countably linearly compact Boolean rings

The concept of a linearly compact ring (module) is a natural generalization of com-
pactness in the class of topological rings (modules, respectively)(see, for instance,
the historical notes in ([5], p. 675), [7], [28], [17], [18] and [15]).

The following concept was introduced in ([26], p. 39). A topological ring R is
called countably linearly compact if the intersection of every countable filter base
consisting of the sets of the form x+ I, x ∈ R and I is a closed left ideal of R, is
non-empty. This concept is a generalization of countably compactness to the class
of topological rings.

Lemma 3.1. Let {Rα|α ∈ Ω} be a family of Boolean topological rings and R =∏
α∈ΩRα. Then every closed ideal I has the form I =

∏
α∈Ω Iα, where each Iα is

a closed ideal of Rα.

Proof. Set Iα = prαI, where prα is the projection of R on Rα, α ∈ Ω. Obviously,
I ⊆ ∏

α∈Ω Iα. Conversely, let x = (xα) ∈
∏

α∈Ω Iα. Fix α ∈ Ω. There exists
y ∈ I such that prα(y) = xα. Then xα ×

∏
β �=α 0β = y(xα ×

∏
β �=α 0β) ∈ I. This

implies that xK =
∏

α∈K xα ×
∏

β /∈K 0β ∈ I for every finite subset K ⊆ Ω. Then
x ∈ cl{xK |K is a finite subset of Ω} ⊆ I. �

The problem of the countably compactness of the product of two countably
compact groups is not completely solved: under some set-theoretical assumptions
there were constructed two countably compact abelian groups A and B whose
product A × B is not countably compact [10]. In this context the theorem below
may be of some interest.

Theorem 3.2. Let {Rα|α ∈ Ω} be a family of Boolean topological countably linearly
compact rings. Then R =

∏
α∈ΩRα is a countably linearly compact ring.

Proof. Let r0 + J0 ⊇ r1 + J1 ⊇ · · · ⊇ rn + Jn ⊇ · · · be a non-increasing family
of closed subsets, where Ji is a closed ideal of R, i ∈ ω. Let ri = (xi

α) for every
i ∈ ω. According to Lemma 3.1, there exists the closed ideals Iα,i of Rα, α ∈ Ω,
such that Ji =

∏
α∈Ω Iα,i. Obviously, x0

α + Iα,0 ⊇ x1
α + Iα,1 ⊇ · · · for every α ∈ Ω.

If xα ∈ ∩i∈ω(xi
α + Iα,i), α ∈ Ω, then (xα) ∈ ∩i∈ω(ri + Ji), i.e., R is a countably

linearly compact ring. �

Remark 3.1.

(i) Every countably linearly compact Boolean ring is precompact.
(ii) The class of countably linearly compact Boolean rings is closed relative to

the following operations: products, closed ideals and continuous homomorphic
images.

(iii) The underlying topological space of a countably linearly compact ring is a
Baire space ([26], Lemma I.4.22, p. 40).
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4. On minimal topologies

A ring topology T on a ring R is called minimal provided it is a Hausdorff topology
and there is no strictly coarser Hausdorff ring topology on R [19, 2, 8, 10].

Lemma 4.1. Let (R, T ) be a Hausdorff (not necessarily associative) topological ring
and b ∈ R. Then the set Nb = {x|x ∈ R, bx = b} is closed in the topology T .

Proof. Follows immediately from continuity of the operations of the topological
ring. �

Proposition 4.2. Let X be a Stone space, R = C(X) and b ∈ X. The following
assertions are equivalent:

(i) b is an isolated point of X;
(ii) Mb ∈ T for each T ∈ Tρ(R);
(iii) Mb ∈ T for each T ∈ T p

ρ (R);
(iv) R \Mb ∈ T for each T ∈ Tρ(R);
(v) R \Mb ∈ T for each T ∈ T p

ρ (R).

Proof. The implications (ii)⇒(iii) and (iv)⇒(v) are obvious. The implications
(ii)⇒(iv), (iii)⇒(v) follow from the fact that any open subgroup of a topologi-
cal group is closed.

Let I be a maximal ideal of R and 1X be the identity of R. Then R \ I
= 1X + I. Hence the ideal I is closed in the space (R, T ) if and only if I ∈ T .
Therefore we have proved the equivalences (iv)⇔(ii) and (v)⇔(iii).

(iii)⇒(i). Let b be a non-isolated point of X. Then Y = X \ {b} is a dense
subset of X , TY ∈ T p

ρ (R) and Mb /∈ TY .
(i)⇒(ii). Let b be an isolated point of X. Consider r = 1b ∈ R. If T ∈ Tρ(R),

then Mb = R \Nr ∈ T . �

Proposition 4.3. The sets Tρ(R) and T p
ρ (R) are complete upper semilattices for

every Boolean ring R.

Proof. Obviously. �

Theorem 4.4. Let X be a Stone space, R = C(X) and
0

X be the set of all isolated
points of X. The following statements are equivalent:

(i) Tρ(R) is a complete lattice, i.e., there exists a topology T0 ∈ Tρ(R) such that
T0 ≤ T for every T ∈ Tρ(R);

(ii) T p
ρ (R) is a complete lattice, i.e., there exists a topology T0 ∈ T p

ρ (R) such that
T0 ≤ T for every T ∈ T p

ρ (R);
(iii) R has a minimal totally bounded topology;

(iv)
0

X is dense in X.
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Proof. The implication (iv)⇒(i) follows from Proposition 4.2 (see [27], Theorem
9). Let T0 ∈ Tρ(R) and T0 ≤ T for every T ∈ T p

ρ (R). Since T p
ρ (R) �= ∅, we obtain

T0 ∈ T p
ρ (R).
The implication (ii)⇒(iii) is obvious.
(iii)⇒(iv). Let T0 be a minimal totally bounded topology. According to

Proposition 2.1, there exists a dense subset Y of X such that T0 = TY . Obviously,
0

X ⊆ Y . If y ∈ Y \
0

X , then the set Z = Y \ {y} is dense in X, TZ ∈ T p
ρ (R), TZ ≤ T0

and TZ �= T0, a contradiction. �

Corollary 4.5. There exists no more than one totally bounded minimal topology on
a Boolean ring.

Corollary 4.6. Let X be a Stone space,
0

X dense in X, R = C(X) and Z = X \
0

X.
Then:

(i) T p
ρ (R) = {TY |

0

X ⊆ Y ⊆ X}.
(ii) |T p

ρ (R)| = 2τ , where τ = |Z|.
(iii) T p

ρ (R) is a Boolean lattice.
(iv) The lattice T p

ρ (R) is finite if and only if the set of non-isolated points Z of
X is finite.

Corollary 4.7. Let X be a Stone space, R = C(X) and Tmp = T 0
X

. Then Tmp =

∩T p
ρ (R) = ∩Tρ(R).

5. Intersection of totally bounded topologies

Let
0

X be the set of all isolated points of a Stone space X and R = C(X). Then
T p(R) is a lattice with zero and identity. Namely, the identity is T mp = TX and
the zero is Tm = T∅ = {∅, R}.

If R is an atomic ring, then Tmp is the least element of T p
ρ (R).

Definition 5.1. A topology T ∈ T (R) is called atomic provided Mx is open in T
for every isolated point x of X .

Let Ta(R) be the set of all atomic topologies on R and T p
a (R) = Ta(R) ∩

T p(R).

Theorem 5.2. Let R be a Boolean ring and T ∈ T p(R). The following assertions
are equivalent:

(i) T ∈ Ta(R).
(ii) There exist two totally bounded topologies T ′, T ′′ ∈ T p

ρ (R) such that T =
T ′ ∩ T ′′ and T ′ ∪ T ′′ = T mp.
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Proof. Assume that R = C(X), whereX is a Stone space. The implication (ii)⇒(i)
follows from Corollary 4.7.

We fix T ∈ T p
a (R). According to Proposition 2.1, there exists a subset H ⊆ X

such that T = TH . According to Definition 5.1 and Corollary 4.6, we have
0

X ⊆ H.

Case 1. H is dense in X . In this case T ∈ T p
ρ (R), T ′ = T and T ′′ = TX .

Case 2. H is not dense in X . Then X1 = X \ clXH is a locally compact subspace
without isolated points and there exist two subsets Y1 and Z1 of X1 such that
Y1 ∪ Z1 = X1,X1 ⊆ clXY1 = clXZ1 and Y1 ∩ Z1 = ∅. Let Y = H ∪ Y1 and

Z = H∪(X\Y1). Then Y and Z are dense subsets ofX ,X = Y ∪Z,
0

X ⊆ Y ∩Z = H
and T ′ = TY , T ′′ = TZ are the searched totally bounded topologies. �

Corollary 5.3. Let R be an atomless Boolean ring. Then for every T ∈ T p(R)
there exist T ′, T ′′ ∈ T p

ρ (R) such that T = T ′ ∩ T ′′ and T ′ ∪ T ′′ = T mp.

Remark 5.1. Let R be a Boolean ring, X be a Stone space and R = C(X).

1. If
0

X is dense in X, then Ta(R) = Tρ(R).

2. If
0

X = ∅, then Ta(R) = T (R).
3. A topology T = TY is atomic if and only if

0
X ⊆ Y .

4. The set T p
a (R) is a complete lattice with the minimal topology Tmp

and the maximal topology T mp.
5. The lattice T p

a (R) considered as a Boolean algebra is isomorphic to the

Boolean algebra P(Z) of all subsets of Z = X \
0

X .

6. The Bohr topology on a Boolean ring

The maximal totally bounded topology T mp on a Boolean ring R is the Bohr
topology on R.

It is well known that the set of all maximal ideals of R is a subbase and the
set of all cofinite ideals of R, respectively, is a base for the space (R, T mp) at zero.

A ring R is called a minimally almost periodic ring provided its Bohr topology
is the coarsest possible Hausdorff ring topology on R (see [14]).

Theorem 6.1. Every minimally almost periodic Boolean ring R is finite.

Proof. Let R = C(X) and X be a Stone space. Since the topology T mp is the

minimal element of the lattice T p
ρ (R), the ring R is atomic and the set

0

X is dense

in X . Moreover, in this case T mp = Tmp and |T p
ρ (R)| = 1. Thus X \

0

X = ∅ and

the set
0

X = X is finite. Therefore the ring R = FX
2 is finite too. �
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Theorem 6.2. For a Boolean ring R the following assertions are equivalent:
(i) R is finite;
(ii) R is minimally almost periodic;
(iii) The Bohr topology on R is compact;
(iv) The Bohr topology on R is countably compact;
(v) The Bohr topology on R is pseudocompact.

Proof. Implications (i)⇒(iii)⇒(ii) and (iii)⇒(iv)⇒(v) are obvious. Implications
(ii)⇒(iii) and (ii)⇒(i) follow from Theorem 6.1. Implication (v)⇒(iii) follows from
M.O. Asanov-N.V. Velichko’s generalization of Grothendieck’s Theorem ([3], The-
orem 3.4.1). �

Recall that that the tightness t(X) of a spaceX is countable provided clXL =
∪{clXH |H ⊆ L, |H | ≤ ω} for every subset L ⊆ X.

Theorem 6.3. If R is a Boolean ring endowed with the Bohr topology, then the
tightness t(R) of R is countable.

Proof. The proof is similar to the Arhangel’skii’s proof of Theorem 2.1.1 from [3].
Let A ⊆ C(X) = R, where X is the Stone space corresponding to the ring R.
Denote by A′ the closure of A in (R, T mp).

We fix f ∈ A′. If n ≥ 1, then for every ξ = (x1, . . . , xn) ∈ Xn there exists gξ ∈
A such that gξ(xi) = f(xi) for every i ≤ n.We put Vxi = g−1

ξ (gξ(xi))∩f−1(f(xi))
and Vξ =

∏
{Vxi |i ≤ n}. Then Vξ is an open set and ξ ∈ Vξ. Thus there exists a

finite set Bn ⊆ Xn such that Xn = ∪{Vξ|ξ ∈ Bn}. Let L = {gξ|ξ ∈ ∪{Bn|n ∈ ω}}.
Then f ∈ clL and L ⊆ A. �

Theorem 6.4. Let X be the Stone space of a Boolean ring R with the Bohr topology
T mp. The following conditions are equivalent:
(i) X is a scattered space;
(ii) R is a superatomic ring;
(iii) R is a k-space;
(iv) R is a sequential space;
(v) R is a Fréchet-Urysohn space.

Proof. Implications (v)⇒(iv)⇒(iii) are obvious. Implications (i)⇒(ii)⇒(i) are well
known.

We can consider that the space (R, T mp) is a closed subspace of the space
Cp(X,R) of all real-valued continuous functions with the topology of pointwise
convergence (see Remark 2.3). Thus the implication (i)⇒(v) follows from ([3],
Theorem 3.1.2). Denote by Y the Cantor subset of reals. If X is not scattered, then
there exists a continuous mapping of X onto Y and the ring C(Y ) is a subring of
R = C(X). The ring C(Y ) with the Bohr topology is a closed subspace of (R, T mp).
Thus the ring C(Y ) with the Bohr topology is a Fréchet-Urysohn space. We claim
that C(Y ) is not a Fréchet-Urysohn space. There exists on Y a σ-additive Borel
measure μ such that μ(Y ) = 1 and μ(U) > 0 for every non-empty subset U ⊆ Y .
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For every n ∈ ω there exists a finite cover ξn = {Vi|i ∈ An} such that V n
i is clopen,

diam(V n
i ) < 2−n and μ(V n

i ) <
1

(n+1)2 . Let ξ
′
n = {∪{V n

i |i ∈ B}|B ⊆ An, |B| ≤ n}
and ξ = ∪{ξ′n|n ∈ ω} = {Wm|m ∈ ω}, where:
P1. μ(Wm+1) ≤ μ(Wm);
P2. If ε > 0, F is a finite subset of Y , U is open in Y and F ⊆ U, then there

exists m ∈ ω such that F ⊆Wm ⊆ U and μ(Wm) < ε.

Thus ξ is a clopen base for Y and limμ(Wm) = 0.
We fix a point rn ∈ Wn. Then {rn|n ∈ ω} is a dense subset of Y and for

each m ∈ ω there exists fm ∈ C(Y ) such that {ri|i ≤ m} ∪Wm ⊆ f−1
m (0) and

μ(f−1
m (0)) < 2μ(Wm).
Let g(x) = 0 for every x ∈ X. From P2 it follows that g is an accumulation

point of Z = {fm|m ∈ ω} in R. For every sequence from Z there exists a sub-
sequence {fmk

|k ∈ ω} such that μ(f−1
mk
(0)) ≤ 2−k for every k ∈ ω. There exists,

in this case, a Fσ-subset H ⊆ Y such that μ(H) = 1 and lim f−1
mk
(x) = 1 for any

x ∈ H . Thus a subsequence {fmn |n ∈ ω} of Z for which g = lim fmn does not
exist. Hence C(Y ) and C(X) are not Fréchet-Urysohn spaces. �

7. Compact topologies on Boolean rings

A space X is called extremally disconnected provided the closure of each its open
subset is open (see [11, 13, 20]).

Theorem 7.1. Let X be a Stone space and R = C(X). The following conditions
are equivalent:
(i) There exists a compact ring topology in Tρ(R);
(ii) There exists a compact ring topology in T p

ρ (R);
(iii) R is atomic and X is extremally disconnected;
(iv) There exists a discrete space Dτ such that X = βDτ .

Proof. The implications (i)⇒(ii)⇒(i) and (iii)⇒(iv) are obvious.

(iv)⇒(i) Let Y be a discrete space and X = βY. Then
0

X = Y and the
space X is extremally disconnected. Every mapping f : Y → F2 has a continuous
extension βf : βY → F2. Thus hY : R→ FY

2 is an isomorphism of R onto FY
2 and

TY is a compact ring topology on R.
(ii)⇒(iii) Let T be a compact ring topology onR. Then T = Tmp = T 0

X
= TY .

Thus X is a compactification of the discrete space Y =
0

X and the canonical
mapping hY : F → FY

2 is an isomorphism onto FY
2 . In particular, for every function

f : Y → F2 there exists a unique continuous mapping bf : X → F2 such that
f = bf |Y. Then clXf−1(0) ∩ clXf−1(1) = ∅, i.e., X = βY . �

Remark 7.1. The Stone-C̆ech compactification of a discrete space is called a free
compact space (see [20], p. 246).
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8. Dense ideals of a ring

The following concept is central in the theory of complete rings of quotients (see,
for instance, [16]). Let R be a commutative ring with identity. An ideal I of R is
called dense provided rI = 0 implies r = 0.

Proposition 8.1. Let Y be a closed subset of a Stone space X and R = C(X). The
following conditions are equivalent:
(i) The ideal MY is dense in R;
(ii) The set X \ Y is dense in X.

Proof. (i)⇒(ii) By definition, MY = ∩{My|y ∈ Y } = {f |f ∈ R, Y ⊆ f−1(0)}.
Assume that the set Z = X \ Y is not dense in X. There exists r ∈ R such

that r−1(1) ⊆ Y and r−1(1) �= ∅. Then r �= 0 and r · f = 0 for every f ∈MY .
(ii)⇒(i) Assume that the set Z = X \ Y is dense and f · r = 0 for every

f ∈ MY . There exists a clopen subset U of X such that U = r−1(1). If r �= 0,
then U �= ∅ and there exists an element t ∈ U ∩ Z. Since Y is closed in X we can
assume that U ∩ Y = ∅ and r ∈MY . Then r · r = r �= 0, a contradiction. �

9. Self-injective Boolean rings

Let X be a Stone space and R = C(X). An open set U ⊆ X is called regular
provided U = Int clXU = X \ clX(X \ clXU).

A mapping f : X → F2 is called semicontinuous provided f−1(1) is a regular
open subset of X . The set E(f) = f−1(1) ∪ Int f−1(0) is open and dense in X .

Denote by B(X) the set of all semicontinuous mappings f : X → F2.
For each mappings f, g ∈ B(X) there exist an open dense subset Y of X and

two uniquely determined mappings ϕ, ψ ∈ B(X) such that ϕ(x) = f(x)+g(x) and
ψ(x) = f(x) · g(x) for every x ∈ U . We put ϕ = f + g and ψ = f · g. Then B(X)
will be a Boolean ring and C(X) a subring of B(X). The space X is extremally
disconnected if and only if C(X) = B(X).

It is well known that B(X) is a complete Boolean ring and the complete ring
of quotients of C(X) (see [6, 12, 20, 24]). Recall that a continuous mapping f :
X → Y of a space X on a space Y is called irreducible provided f(A) �= Y for every
proper closed subset A of X. A pair (aX, πX) is called the projective resolution
or the projective envelope, or the absolute of the space X if aX is an extremally
disconnected compact space and πX : aX → X is a continuous irreducible mapping
onto X (see [11, 20]).

If iX(f)(t) = f(πX(t)) for any f ∈ B(X) and t ∈ π−1
X (E(f)), then iX :

B(X)→ C(aX) is an isomorphism.
Every ideal I of a ring R is considered as anR-module. We put S(f) = f−1(1)

for any f ∈ B(X).
We fix for an ideal I of R an R-module homomorphism ϕ : I → R. We fix

V (f, ϕ) = S(ϕ(f)) and W (f, ϕ) = S(f) \ V (f, ϕ) for each f ∈ I. We put also
V (ϕ) = ∪{V (f, ϕ)|f ∈ I} and W (ϕ) = ∪{W (f, ϕ)|f ∈ I}.
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We note that S(f), V (f, ϕ) and W (f, ϕ), f ∈ I, are clopen subsets of the
space X. This implies that V (ϕ) and W (ϕ) are open subsets of X.

We mention also that S(f · g) = S(f) ∩ S(g) for all f, g ∈ R.

Lemma 9.1. V (f, ϕ) ⊆ S(f) for every f ∈ I.

Proof. Since ϕ(f) = ϕ(f · f) = fϕ(f) we have V (f, ϕ) = S(ϕ(f)) = S(fϕ(f)) =
S(f) ∩ S(ϕ(f)) ⊆ S(f). �

Lemma 9.2. If f, g ∈ B(X), then f ≤ g if and only if S(f) ⊆ S(g).

Proof. Obviously. �

Lemma 9.3. If f, g ∈ I and f ≤ g, then V (f, ϕ) ⊆ V (g, ϕ).

Proof. Indeed, V (f, ϕ) = S(ϕ(f)) = S(ϕ(fg)) =S(fϕ(g)) = S(f) ∩ S(ϕ(g)) ⊆
S(ϕ(g)) = V (g, ϕ). �

Lemma 9.4. ϕ(ϕ(f)) = ϕ(f) for every f ∈ I.

Proof. Since ϕ(f) = ϕ(f · f) = fϕ(f) ∈ I, we have ϕ(ϕ(f)) = ϕ(ϕ(f · f)) =
ϕ(fϕ(f)) = ϕ(f)ϕ(f) = ϕ(f). �

Lemma 9.5. If f, g ∈ I, then S(f) ∩ S(ϕ(g)) = S(ϕ(f)) ∩ S(ϕ(g)).

Proof. According to Lemma 9.4 we have S(f) ∩ S(ϕ(g)) = S(f · ϕ(g)) = S[ϕ(f ·
ϕ(g))] = S[ϕ(ϕ(g) · f)] = S(ϕ(g) · ϕ(f)) = S(ϕ(f)) ∩ S(ϕ(g)). �

Theorem 9.6. V (f, ϕ) = S(f) ∩ V (ϕ) for every f ∈ I.

Proof. Obviously, V (f, ϕ) ⊆ S(f) ∩ V (ϕ).
Conversely, let t ∈ S(f) ∩ V (ϕ). There exists g ∈ I such that t ∈ V (g, ϕ).

According to Lemma 9.5, we have t ∈ S(f) ∩ S(ϕ(g)) = S(ϕ(f)) ∩ S(ϕ(g)) ⊆
V (f, ϕ). �

Corollary 9.7. Let D(I) = ∩{f −1(0)|f ∈ I}. Then V (ϕ) ∩W (ϕ) = ∅ and V (ϕ) ∪
W (ϕ) = X \D(I).

Proof. From Theorem 9.6 it follows that V (ϕ) ∩W (ϕ) = ∅. If f ∈ I, then D(I) ∩
V (f, ϕ) ⊆ f−1(0)∩ f−1(1) = ∅ and V (f, ϕ)∪W (f, ϕ) = S(f) = X \ f−1(0). Thus
V (ϕ) ∪W (ϕ) ⊆ X \ D(I). For every t ∈ X \ D(I) there exists a function g ∈ I
such that g(t) = 1. Hence, t ∈ S(f). �

Theorem 9.8. If ϕ ∈ HomR(I, R), then the following statements are equivalent:

(i) ϕ can be extended to an R-module homomorphism ψ : R→ R;
(ii) There exists a clopen subset H ⊆ X such that V (ϕ) ⊆ H ⊆ X \W (ϕ).
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Proof. (i)⇒(ii) Let 1X(t) = 1 for every t ∈ X. If ψ : R → R is an R-module
homomorphism and ϕ = ψ|I, then we put H = S(ψ(1X)). The set H is clopen
in X and v(f, ϕ) = S(ϕ(f)) = S(ϕ(f · 1X)) = S(ψ(f · 1X)), S(f · ψ(1X)) =
S(f) ∩ S(ψ(1X)) ⊆ H for every f ∈ I. This implies that V (ϕ) ⊆ H. Furthermore,
H ∩ W (f, ϕ) = ∅ for every f ∈ I. Assume on the contrary that there exists
t ∈ H ∩W (f, ϕ). Then ψ(1X)(t) = 1, f(t) = 1 and ϕ(f)(t) = 0. Therefore 0 =
ϕ(f)(t) = ψ(f)(t) = ψ(1X)(t) · f(t) = 1, a contradiction.

(ii)⇒(i) Let H be a clopen subset of X and V (ϕ) ⊆ H ⊆ X \W (ϕ). Consider
the mapping ψ : R → R, r !→ r · 1H . If A ⊆ X \D(I), then A ∩ V (ϕ) = A ∩ H.
Since V (f, ϕ) = S(f)∩V = S(f)∩H, we obtain ϕ(f) = ψ(f) for every f ∈ I. �

Remark 9.1. The clopen subset H = V (ψ) from Theorem 9.8 is called the kernel of
the extension ψ of the homomorphism ϕ. Every extension ψ of the homomorphism
ϕ is determined in this way by some kernel H . Thus, the set of extensions of the
homomorphism ϕ to R can be enumerated by kernels of type H . If X \ D(I) is
dense in X , then ϕ has at most one extension.

Remark 9.2. Let ϕ1, ϕ2 : R→ R be the extensions of ϕ : I → R. We put ϕ1 ≤ ϕ2

if ϕ1(g) ≤ ϕ2(g) for any g ∈ R, i.e., V (ϕ1) ⊆ V (ϕ2). Denote Hmin = clXV (ϕ) and
Hmax = X \ clXW (ϕ). If ψ is an extension of the homomorphism ϕ, then Hmin ⊆
V (ψ) ⊆ Hmax. Suppose now that the space X is extremally disconnected. There
exist two R-module homomorphisms ϕmax, ϕmin : R → R for which V (ϕmin) =
Hmin and V (ϕmax) = Hmax. In this case the mappings ϕmax, ϕmin are the maximal
and the minimal extensions of the homomorphism ϕ.

Theorem 9.9. Let (V,W ) be a pair of open subsets of X such that V ∩W = ∅ and
V ∪W = X \D(I). Then:
(i) The mapping ϕ : I → R, where V (f, ϕ) = S(f) ∩ V for every f ∈ I, is an

element of HomR(I, R) and V (ϕ) = V, W (ϕ) =W.
(ii) If ϕ1 ∈ HomR(I, R), V (ϕ1) = V and W (ϕ1) =W, then ϕ1 = ϕ.

Proof. (i) Let f ∈ I. Then S(f) ∩ V is a clopen subset. It is obvious that S(f) ∩
D(I) = ∅ and S(f) ⊆ V ∪W .

By construction, ϕ(f) = f · 1V for any f ∈ I. Since S(ϕ(f)) = S(f) ∩ V is a
clopen subset, ϕ(f) ∈ R. Thus ϕ is a mapping of I in R. If f ∈ I and g ∈ R, then
S(f · g) = f−1(1) ∩ g−1(1) ∩ V = f−1(1) ∩ (g−1(1) ∩ V ). Thus ϕ(g · f) = g · ϕ(f).
Let f, g ∈ I and h = f + g. Then V (h, ϕ) = h−1(1) ∩ V W (ϕ) =W.

(ii) Follows from Theorem 9.6. �

Theorem 9.10. The following assertions are equivalent for a Boolean ring R :
(i) R is self-injective.
(ii) The Stone space X of R is extremally disconnected.
(iii) The ring R considered as a Boolean algebra is complete.

Proof. (i)⇒(ii) We will use the well-known Baer’s Test for the self-injectivity of
R : if I is an ideal of R and ϕ : I → R is an R-module homomorphism, then there
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exists an R-module homomorphism ψ : R → R such that ϕ = ψ|I (see [16], §4.2,
Lemma 1, p. 88).

Let R be a self-injective ring, V be an open subset of X , W = X \ clXV ,
Y = X \ (V ∪ U) and I = MY . Then D(I) = Y. We consider the homomorphism
ϕ ∈ HomR(I, R) such that V (ϕ) = V and W (ϕ) = W. There exists an R-module
homomorphism ψ : R → R such that ϕ = ψ|I. The set H = S(ψ(1X)) is clopen
and V ⊆ H ⊆ X \W. By construction, H = clXV. Thus the closure of an open set
is open.

(ii)⇒(i) Let X be an extremally disconnected space and ϕ : I → R be an
R-module homomorphism. The set clXV (ϕ) = H is clopen in X and V (ϕ) ⊆ H ⊆
X \W (ϕ). Theorem 9.8 finishes the proof.

The equivalence (ii)⇔(iii) is well known ([21], p. 140). �
Corollary 9.11. The ring B(X) is self-injective for every compact space X.

Corollary 9.12. There are no Boolean self-injective countable rings. In particular,
every infinite Boolean ring contains a non self-injective subring.

10. Zero-dimensional F -spaces

A compact space Z is called an F -space provided for each pair of disjoint open
Fσ-sets V and W their closures are disjoint.

Every extremally disconnected compact space is an F -space and each closed
subspace of an F -space is an F -space (see [20], Proposition 24.2.5 and Notes
24.2.12).

Definition 10.1. A commutative ring R with identity is called ω-self-injective pro-
vided for every countably generated ideal I of R every ϕ ∈ HomR(I, R) can be
extended to an endomorphism ψ ∈ HomR(R,R).

Remark 10.1. If X is a compact zero-dimensional space and Y is a closed Gδ-
subspace of X, then the ideal MY is countably generated.

Indeed, we may assume without loss in generality that Y = ∩{Ui|i ∈ ω},
where Ui are clopen subsets of X and U0 ⊇ U1 ⊇ · · · . Let f ∈ C(X) and f−1

n (0) =
Un for any n ∈ ω. Then the ideal I is generated by the set {fn|n ∈ ω} and
D(I) = Y.

Theorem 10.2. Let X be a Stone space and R = C(X). The following assertions
are equivalent:
(i) X is an F -space;
(ii) R is ω-self-injective.

Proof. (i)⇒(ii) An ideal I of R is countably generated if and only if D(I) is a
Gδ-set.

Let X be an F -space and I be a countably generated ideal of R. There exists
a sequence (fn)n∈ω such that D(I) = ∩{f−1

i (0)|i ∈ ω} and f−1
i+1(0) ⊆ f−1

i (0) for
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any i ∈ ω. Then X \D(I) = ∪{S(fi)|i ∈ ω}. We fix an R-module homomorphism
ϕ : I → R. The sets Vi(ϕ) = V (ϕ) ∩ S(fi) and Wi(ϕ) = W (ϕ) ∩ S(fi) are clopen
in X for every i ∈ ω. Since V (ϕ) = ∪{Vi(ϕ)|i ∈ ω} and W (ϕ) = ∪{Wi(ϕ)|i ∈ ω},
the sets V (ϕ) and W (ϕ) are open Fσ-subsets of X. Thus clXV (ϕ)∩ clXW (ϕ) = ∅
and there exists a clopen subset H of X such that V (ϕ) ⊆ X ⊆ X \W (ϕ). From
Theorem 9.8 it follows that ϕ can be extended to an R-module homomorphism
ψ : R→ R.

(ii)⇒(i) Assume that R is an ω-self-injective ring, V and W are open Fσ-sets
of X and V ∩W = ∅. The set Y \ (V ∪W ) is a closed Gδ-set of X. According to
Remark 10.1, the ideal I =MY is countably generated. According to Theorem 9.9,
there exists ϕ ∈ HomR(I, R) such that V (ϕ) = V and W (ϕ) = W. By condition,
ϕ can be extended to a homomorphism ψ ∈ HomR(R,R). According to Theorem
9.8, there exists a clopen subset H of X such that V ⊆ H ⊆ X \W = X \W (ϕ).
Therefore the closures of the sets V and W are disjoint. We proved that X is an
F -space. �

Let m be an infinite cardinal. The union of m closed subsets is called an
Fm-set.

Definition 10.3. A space X is called an F (m)-space provided the closures of each
two disjoint open Fm-sets are disjoint.

Definition 10.4. A commutative ring R with identity is called m-self-injective
provided for every ideal I of R generated by a subset of cardinality ≤ m every
ϕ ∈ HomR(I, R) can be extended to a homomorphism ψ ∈ HomR(R,R).

Theorem 10.5. Let X be a Stone space and R = C(X). The following assertions
are equivalent:
(i) The Stone space X is an F (m)-space;
(ii) R is m-self-injective.

Proof. The proof is similar to the proof of Theorem 10.2. �

11. Necessary conditions for countably compactness

Lemma 11.1. Let Y be a dense subspace of a Stone space X, TY be a countably
compact topology on R = C(X), {Un|n ∈ ω} be a sequence of clopen subsets of
the space X and the family {Un ∩ Y |n ∈ ω} be discrete in the space Y. Then there
exists a clopen subset U of X such that U ∩ Y = ∪{Un ∩ Y |n ∈ ω}. Moreover, the
set clX(∪{Un|n ∈ ω}) is open in X.

Proof. The assertions are true if the set {n|n ∈ ω,Un �= ∅} is finite. We may
suppose that Un �= ∅ for any n ∈ ω. For every n ∈ ω there exists a function
rn ∈ C(X) such that r−1

n (1) = ∪{Ui|i ≤ n}. Let r be an accumulation point of the
set B = {rn|n ∈ ω}. By construction, ∪{Y ∩ Un|n ∈ ω} = Y ∩ r−1(1). Thus for
U = r−1(1) we have U ∩ Y =

⋃
{Y ∩ Un|n ∈ ω} and U = clX ∪ {Un|n ∈ ω}. �
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The cardinal number c(X) = sup{|γ||γ is a family of pairwise disjoint non-
empty open subsets of X} is called the Souslin number or the cellularity of the
space X ([11], p. 86).

Theorem 11.2. Let X be an infinite Stone space and R = C(X). If there exists a
countably compact Hausdorff topology on R, then there exists a closed Gδ-subspace
Z on X with the properties:
(i) Z is an F -space;
(ii) the Souslin number c(Z) ≥ 2ω.

Proof. Since a countably compact topology is precompact there exists a dense
subspace Y of X such that the topology TY is countably compact. Let Cp(Y |X)
be the set {f |Y |f ∈ C(X)} in the topology of pointwise convergence and R be
the space of reals. Then Cp(Y |X) may be considered as a subspace of the space
Cp(Y,R) of all real valued functions in the topology of pointwise convergence
(Remarks 2.4 and 2.3). The space (R, TY ) is homeomorphic to the space Cp(Y |X).
Case 1. The space Cp(Y |X) is compact. It follows from Theorem 7.1 that Y is
a discrete subspace and X = βY . Thus X is extremally disconnected. If Y1 is a
countable subspace of Y, then Z = clY1 \ Y1 is the searched space.
Case 2. The space Cp(Y |X) is not compact. In this case the subspace Y is not
pseudocompact (see [3], Theorem 3.4.23). There exist a real-valued function f on
Y and a sequence (yn)n∈ω in Y such that f(y1) = 1 and f(yn+1) ≥ f(yn) + 3 for
any n ∈ ω. We fix for every n ∈ ω a clopen subset Un of X such that yn ∈ Un∩Y ⊆
f−1(f(yn) − 1, f(yn) + 1). By construction, {Un ∩ Y |n ∈ ω} is a discrete family
of non-empty subsets of Y. Obviously, Y1 = ∪{Un|n ∈ ω} is an open σ-compact
subspace of the space X. By Lemma 11.1, the space X1 = clY1 is open and closed
in X . Let Z = X1 \ Y1. We claim that X1 = βY1. Let Φ1 and Φ2 be two disjoint
closed subsets of the space Y1. For every n ∈ ω there exists a clopen subset Vn

of X such that Φ1 ∩ Un ⊆ Vn ⊆ Un and Vn ∩ Φ2 = ∅. Thus V ′ = ∪{Vn|n ∈ ω}
is an open subset of X1,Φ1 ⊆ V ′ and clV ′ ∩ Φ2 = ∅. According to Lemma 11.1,
the set V = clXV

′ is clopen in X. Therefore clΦ1 ∩ clΦ1 = ∅ and X1 = βY1.
The space Z = βY1 \ Y1 = X1 \ Y1 is an F -space (see [13], Theorem 14.27, p.
210). Clearly, Z is a Gδ-subset of X . There exists a family {Nβ|β ∈ B} of infinite
subsets of ω such that the intersection Nα ∩ Nβ is finite for every pair α, β of
distinct numbers of the set B = [0, 1] (see [11], Example 3.6.18, p. 229). Then
{Wβ |Wβ = Z ∩ clX(∪{Un|n ∈ Nβ}), β ∈ B} is a disjoint family of non-empty
clopen subsets of Z of cardinality 2ω. �

Corollary 11.3. Let m be an infinite regular number, m < 2ω, {Xβ|β ∈ B} be a
family of non-empty Stone spaces, the density d(Xβ) ≤ m for any β ∈ B, |Xβ| ≥ 2
for any β ∈ B and an infinite Stone space X is a continuous homomorphic image
of the product

∏{Xβ|β ∈ B}. Then every topology T ∈ Tρ(R) on R = C(X) is
not countably compact.

Proof. Use Theorem 11.2 and Theorem 2.3.17 from ([11], p. 112). �
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Corollary 11.4. Let X be an infinite zero-dimensional dyadic space. Then no Haus-
dorff topology T ∈ Tρ(R) on R = C(X) is countably compact.

Corollary 11.5. Let R = C(X) be an infinite free Boolean ring. Then no Hausdorff
topology T ∈ Tρ(R) on R = C(X) is countably compact and X is a dyadic space.

A Boolean ring P is called a projective Boolean ring if for any two Boolean
rings A,B and any homomorphisms g : P → B and f : A → B, for which
f(A) = B, there exists a homomorphism h : P → A such that g = fh.

Corollary 11.6. Let R = C(X) be an infinite projective Boolean ring. Then no
Hausdorff topology T ∈ Tρ(R) on R = C(X) is countably compact and X is a
dyadic space.

A space X is called a perfectly-κ-normal if for each open subset U of X there
exists a continuous function f ∈ C(X,R) such that f−1(0) = clXU (see [3], Section
0.3).

Remark 11.1. Let R be a Boolean ring. Since (R, T mp) is a dense subspace of the
space Fτ

2 for some cardinal number τ , we have:
(i) For each T ∈ T p(R) the Souslin number c(R, T ) is countable.
(ii) The space (R, T mp) is perfectly-κ-normal.

12. Basically disconnected spaces

Let m be an infinite cardinal. A space X is called m-basically disconnected if the
closure of every open Fm-set is open. If m = ω, then an m-basically disconnected
space is called basically disconnected or ω-extremally disconnected (see [11, 13, 20]).

A space is extremally disconnected if and only if it is τ -basically disconnected
for every cardinal τ .

Every m-basically disconnected space is an F (m)-space.
A lattice E is called m-complete if every non-empty subset H ⊆ E of the

cardinality |H | ≤ m has the supremum ∨H and infimum ∧H.
Let X be a Stone space and R = C(X). The ring R is m-complete if and only

if X is m-basically disconnected (see [21]).

Let m be an infinite cardinal. A space X is called:
– m-compact if every open cover of X of cardinality ≤ m contains a finite
subcover;

– ω(m)-bounded if for every subset H ⊆ X of cardinality ≤ m the closure clXH
is compact;

– m-pseudocompact if X is completely regular and every completely regular
continuous image of X of weight ≤ m is compact.

Every ω(m)-bounded space is m-compact and every m-compact space is m-pseudo-
compact. If m = ω, then an ω(m)-bounded space is ω-bounded, an m-compact
space is countably compact and an m-pseudocompact space is pseudocompact.
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Theorem 12.1. Let X be a Stone space, R = C(X) an atomic m-complete Boolean
ring, Y = {x|x ∈ X,x is an isolated point of X},τ = |Y | and m an infinite
cardinal.
(i) There exists a dense subset S of the space (R, TY ) such that:

(i1) The set S is dense in the space (R, T mp) and S contains
all atoms of R;

(i2) S is an m-complete atomic subring of R;
(i3) S is ω(m)-bounded as a subspace of (R, TY ).

(ii) The space (R, TY ) is m-pseudocompact.
(iii) If τm = τ, then there exists a non-empty subset Z ⊆ X \ Y such that for

every finite subset Φ ⊆ Z the topology TY ∪Φ is m-pseudocompact.

Proof. (i) Let τ ≤ m. In this caseX = βY is an extremally disconnected space, the
space (R, TY ) is compact and S = R is the searched subring. Thus we may consider
that m < τ . Denote by S0 the set of all functions r ∈ C(X) such that |r−1(0)∩Y | ≤
m and by S1 the set of all functions r ∈ C(X) such that |r−1(1) ∩ Y | ≤ m and
set S = S0 ∪ S1. Then S is an m-complete atomic subring of R. It is obvious
that S1 = 1 + S0. The subspaces S0, S1, S are ω(m)-bounded respectively to the
topology TY .

If a space contains a dense m-pseudocompact subspace, then it is m-pseudo-
compact. Thus (ii) follows from (i).

(iii) Suppose that τm = τ. Then the set Z = X \ ∪{clXH |H ⊆ Y , |H | ≤ m}
is non-empty. If L ⊆ Z ∪ Y, the set L∩ Z is finite and |L| ≤ m, then the subspace
L is C∗-embedded in X and clXL is the Stone–C̆ech compactificaton of L. Thus,
if Y ⊆ L ⊆ Y ∪ Z and L ∩ Z is finite, then SL = {r|r ∈ C(X), |r−1 ∩ L| ≤ m} is
an ω(m)-bounded subspace of the space (R, TL). �
Theorem 12.2. Let Y be an infinite dense discrete subspace of a Stone space X,R =
C(X),m be an infinite cardinal number, m < |Y |, and for every set Z ⊆ Y the set
clXZ is open if and only if min{|Z|, |Y \ Z|} ≤ m.

(i) The space (R, TY ) is ω(m)-bounded.
(ii) If τ is a cardinal, T ∈ Tρ(R) and the space (R, T ) is τ-compact, then τ ≤ m.

Proof. The space X is τ -basically disconnected if and only if τ ≤ m. Moreover,
the space X is not extremally disconnected.

(i) In this case S = R, where S is the set constructed in the proof of Theorem
12.1.

(ii) Suppose that the topology T ∈ Tρ(R) is τ -compact. Then the topology
TY ⊆ T is τ -compact too. If τ ≥ |Y |, then the topology TY is compact, contra-
diction (see Theorem 7.1). Thus τ < |Y |. We fix a subset A ⊆ Y, where |A| = τ
and |Y \ A| = |Y |. If B ⊆ Y and |B| ≤ m, then there exists a unique function
fB ∈ C(X) such that f−1

B (1) = clXB. Let H = {fB|B ⊆ A, |B| < ω}. Then
|H | = τ and there exists a function f ∈ C(X) such that if U ∈ TY and f ∈ U,
then |U ∩H | = τ. By construction, f−1(1) = clXA is an open subset of X. Thus
τ = |A| ≤ m. �
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A subset L ⊆ X of a topological space X is called bounded provided every
continuous function f : X → R is bounded on L.

By Cp(X,R) it is denoted the set of all continuous real valued functions
furnished with the topology of pointwise convergence. Let Y ⊆ X and Cp(Y |X) =
{f |Y |f ∈ C(X,F2)}. We consider F2 = {0, 1} as a discrete subspace of the reals
R and Cp(Y |X) as a subspace of the space C(Y,R). By construction, Cp(Y |X) is
a subring of the Boolean ring C(Y ) and it is not a subring of the ring Cp(Y,R).
By construction, Cp(Y |X) is a subring of the ring FY

2 .

Proposition 12.3. Let Y be a subspace of the space X and indX = 0. Then:
(i) Cp(Y |X) is a dense subspace of the space FY

2 .
(ii) If Cp(Y |X) contains a non-empty compact subset Φ of countable character in

Cp(Y |X), then there exists a countable subset H ⊆ Y such that the subspace
Y0 = Y \H is discrete and C∗-embedded in X.

(iii) If Cp(Y |X) contains a dense C̆ech complete subspace, then Y is a discrete
C∗-embedded subspace of the space X.

Proof. The assertion (i) is obvious.
(ii) Let Φ be a non-empty compact subset of countable character in Cp(Y |X).

We fix x0 = (x0y |y ∈ Y ) ∈ Φ ⊆ Cp(Y |X) ⊆ FY
2 . There exists a sequence {Un|n ∈

ω} of open subsets of FY
2 such that Un+1 ⊆ Un for every n ∈ ω, and for every

open set U ⊇ Φ there exists m ∈ ω such that Φ ⊆ Um ⊆ U. There exists a
countable subset H ⊆ Y such that Φ1 = {x = (xy|y ∈ Y )|xy = x0y for all
y ∈ H} ⊆ ∩{Un|n ∈ ω}.

Let g : Y0 → FY
2 be a function. Then there exists f ∈ C(X) and x1 = (x1y |y ∈

Y ) ∈ Φ1 such that f(y) = g(y) = x1y for every y ∈ Y0. Thus g is a continuous
function and Y0 is C∗-embedded in X. Therefore Y0 is a discrete subspace of the
space X.

Suppose that Z is a C̆ech complete dense subspace of the space Cp(Y |X).
Thus Z is a dense Gδ-subset of the compact space FY

2 . We claim that Cp(Y |X) =
FY

2 . Suppose that g ∈ FY
2 \ Cp(Y |X). Then L = {f + g|f ∈ Cp(Y |X)} is a dense

Gδ-subset of the compact space FY
2 and Z∩L ⊆ L∩Cp(Y |X) = ∅, a contradiction,

since in a compact space the intersection of two dense Gδ-subsets is dense. �

Theorem 12.4. Let Y be a subspace of a space X. Then:
(i) If Y is a pseudocompact space and Cp(Y |X) is countably compact, then

Cp(Y |X) is compact.
(ii) If Y is a countably compact space and Cp(Y |X) is pseudocompact, then

Cp(Y |X) is compact.
(iii) If Y is a countably compact space and Cp(Y |X) is a closed bounded subset of

the space Cp(Y ) = Cp(Y |Y ), then Cp(Y |X) is compact.

Proof. We consider Cp(Y ) as a closed subspace of the space Cp(Y,R).
If Cp(Y |X) is a bounded closed subset of the space Cp(Y ), then Cp(Y |X) is

a closed bounded subset of Cp(Y,R). Thus (iii) follows from the Asanov-Velichko’s
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generalization of Grothendieck’s Theorem ([3], Theorem 3.4.1). The assertion (i)
follows from ([3], Theorem 3.4.23). The assertion (ii) follows from (iii) and Theorem
of Preiss-Simon ([3], Theorem 4.5.5). �

Remark 12.1. If Y is a σ-pseudocompact subspace of the space X and Cp(Y |X)
is compact, then Cp(Y |X) is an Eberlein compact (see [3], Theorem 3.4.23).

Denote by Aτ the one-point compactification of the discrete space Dτ of
cardinality τ.

The cardinal p(Y ) = sup{|ξ||ξ is a point-finite family of non-empty open
subsets of Y } is the Alexandroff number of the space Y. It is obvious that c(Y ) ≤
p(Y ). If Y is a Baire space, then c(Y ) = p(Y ).

Theorem 12.5. Let Y be an infinite subspace of a space X and ind X = 0. Then
p(Y ) = sup{τ |Aτ is embedded in Cp(Y |X)} = sup{w(Z)|Z is a compact subspace
of Cp(Y |X)}.

Proof. Let ξ = {Uα|α ∈ Dτ} be a point-finite family of non-empty open subsets of
Y. We fix for every α ∈ Dτ a non-empty clopen subset Vα of X and fα : X → F2

such that ∅ �= Y ∩ Vα ⊆ Uα and f−1
α (1) = Vα. Consider that f(x) = 0 for all

x ∈ X. Then the subspace {f |Y } ∪ {fα|Y |α ∈ Dτ} of Cp(Y |X) is homeomorphic
to Aτ . Thus p(Y ) ≤ sup{τ |Aτ is embedded in Cp(Y |X)}. It is well known that
p(Y ) = sup{τ |Aτ is embedded in Cp(Y,R)} (see [3], Proposition 3.3.2 and Theorem
3.5.9). Thus sup{τ |Aτ is embedded in Cp(Y |X)} ≤ p(Y ). �

We say that the spaces X and Y are S-equivalent if the topological spaces
Cp(X) and Cp(Y ) are homeomorphic.

Corollary 12.6. Let X and Y be S-equivalent Stone spaces. Then:

(i) c(X) = c(Y ).
(ii) The space X is scattered if and only if the space Y is scattered.

Construction 12.1 (D.B. Shakhmatov for E = [0, 1] and m = ω, [3], Example
1.2.5). Let τ and m be infinite cardinals, E be a compact space of the weight ≤ m,
τm = τ and |E| ≥ 2.

Denote by M the set of all ordinals of cardinality < τ.

We put Eα = E for every α ∈ M. If B ⊆ M, then EB =
∏
{Eα|α ∈ B} and

let πB : EM → EB stands for the natural projection.
We fix x0, x1 ∈ E, x0 �= x1. Let Gm = {x|x ∈ EM , |{α|α ∈ M,πα(x) �=

x0}| ≤ m}. Then Gm is a subspace of EM and |Gm| = τm = τ. There exists an
enumeration {gα|α ∈ M} of Gm such that |{α|α ∈ M, g = gα}| = τ for every
g ∈ Gm.

Let γ = {A ⊆M ||A| ≤ m}. Consequently, |γ| = τm = τ . We fix an enumera-
tion {Aβ|β ∈M} of γ such that |{β|A = Aβ}| = τ for every A ∈ γ.
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We consider for every α ∈M the point xα ∈ EM , where

πμ(xα) =

⎧⎪⎨⎪⎩
πμ(gα), if μ ≤ α;
x1, if μ > α and α ∈ Aμ;
x0, if μ > α and α /∈ Aμ.

Now we put Xτm = {xα|α ∈M} ⊆ EM .

Property 1. If B ⊆M and |B| ≤ m, then πB(Xτm) = EB .

There exists α > sup{δ|δ ∈ B} such that g = πB(gα). Then πB(xα) = g.
Thus πB(Xτ ) = EB .

Property 2. The space Xτm is dense in EM .

This assertion follows from Property 1.

Property 3. Let Y be a dense subspace of EM . The space Y is m-pseudocompact
if and only if πB(Y ) = EB provided B ⊆M and |B| ≤ m.

Let Y be an m-pseudocompact space, B ⊆ M and |B| ≤ m. Then πB(Y ) is
a dense compact subset of EB. Therefore πB(Y ) = EB .

Suppose that πB(Y ) = EB , where |B| ≤ m. Let ϕ : Y → Z be a continuous
mapping and w(Z) ≤ m. Since Y is dense in EM and w(Z) ≤ m, there exist a set
B ⊆M and a continuous mapping g : EB → Z such that |B| ≤ m and ϕ = g ◦ πB

(see [11], Problems 2.7.12 and 2.7.13 for m = ω). Then ϕ(Y ) = g(EB) is a compact
space. Thus Y is m-pseudocompact.

Property 4. Xτm is an m-pseudocompact space and βXτm = EB .

It follows from Properties 1–3.

Property 5. Let H and L be the subsets of Xτm and |H ∪ L| ≤ m. If H ∩ L = ∅,
then clEMH ∩ clEML = ∅.

Suppose, thatH = {xα|α ∈M1} and L = {xα|α ∈M2}, whereM1∪M2 ⊆M
and M1 ∩M2 = ∅. We fix θ ∈ M for which θ > sup(M1 ∪M2). Let Sα = S for
α ∈ M. Then Cp(Xτm, S) is a subspace of the space SM =

∏{Sα|α ∈ M}. We
fix B ⊆ M, where |B| ≤ m. We consider the natural projection πB : SM → SB .
We put L = {xα|α ∈ B} ⊆ Xτm. If g ∈ SB , then g is a mapping of L into
B. Since |B| ≤ m, there exists a continuous function f : Xτm → S such that
g = f |L. Thus f ∈ Cp(Xτm, S) and g = πB(f). Since Cp(Xτm, S) is dense in
SM , from Property 3 it follows that Cp(Xτm, S) is an m-pseudocompact space.
By construction, πθ(xα) = x1, if α ∈ M1, and πθ(xα) = x0, if α ∈ M2. Thus
clEMH ⊆ π−1

θ (x1), clEML ⊆ π−1
θ (x0) and clEMH ∩ clEML = ∅.

Property 6. Let Z ⊆ Xτm and |Z| ≤ m. Then Z is a discrete closed subspace of
the space Xτ and the subspace clEMZ is homeomorphic to the Stone-C̆ech com-
pactification βZ of Z.

Property 6 follows from Property 5. The following property is obvious.
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Property 7. Let S be a closed subspace of the space [0, 1], {0, 1} ⊆ S and S = [0, 1] if
indS ≥ 1. Denote by Cp(Y, S) the space of all continuous mappings of Y in S with
the topology of pointwise convergence. Then Cp(Xτm, S) is an m-pseudocompact
space.

Example 12.1. Let τ and m be infinite cardinals, τm = τ,D = {0, 1} be the two-
point discrete space, X = Dτ and R = C(X). Then :
(i) There exists no minimal totally bounded topology on R.
(ii) The Boolean ring R is atomless, free and has τ generators.
(iii) There exists some m-pseudocompact topology T ∈ T p

ρ (R) which is not count-
ably compact.

(iv) There exists a dense subset Y of X such that the topology TY is m-pseudo-
compact and TZ is a m-pseudocompact topology on R provided Z ⊆ Y and
|Y \ Z| ≤ m.

(v) If T ∈ Tρ(X), then the topology T is not countably compact.
Construction. From Construction 12.1 it follows that there exists a dense subspace
Y = Xτm ⊆ Dτ = X such that the space Cp(Y,D) is m-pseudocompact and βY =
X . The space (C(X), TY ) is homeomorphic to the space Cp(Y,D). The assertion
(iv) follows from Property 6. If Z ⊆ Y and |Y \Z| ≤ m, then Z is dense in X and
TZ ⊆ TY . The assertion (iii) follows from the assertion (iv). The assertions (i) and
(ii) are obvious, since X is without isolated points.

Example 12.2. Let τ and m be infinite cardinals and m < τ. Then there exists a
Stone space X such that:
(i) X is m-basically disconnected.
(ii) R = C(X) is an atomic m-complete Boolean ring.
(iii) The minimal topology Tmp ∈ T p

ρ (R) is ω(m)-bounded.
Construction. Let Dτ be a discrete space of cardinality τ. Denote by U(H) the
closure of H in βDτ for every H ⊆ Dτ . By definition, U(H) is a clopen subset of
βDτ . Let Φ = βDτ\ ∪ {U(H)|H ⊆ Dτ , |H | ≤ m}. Obviously, Φ is a non-empty
subset of βDτ and Y = βDτ\Φ is a locally compact space. Denote by X = Y ∪{b}
the one-point Alexandroff compactification of the space Y and let p : βDτ → X
be the natural projection, where p(y) = y, y ∈ Y .
Property 1. Y is an ω(m)-bounded space.

Indeed, let L ⊆ Y and |L| ≤ m. For every y ∈ L there exists Hy ⊆ Dτ

such that |Hy| ≤ m and y ∈ U(Hy). Let H = ∪{Hy|y ∈ L}. Then |H | ≤ m and
L ⊆ U(H). Thus clY L is a closed subset of the compact set U(H) and hence it is
compact.

Property 2. The space X is m-basically disconnected.

Let V be an open Fm-subset of the spaceX. There exists a family {Pα|α ∈ A}
of compact subsets of X such that V = ∪{Pα|α ∈ A} and |A| ≤ m. Suppose
that b /∈ V. Then for every α ∈ A there exists a subset Hα ⊆ Dτ such that
Pα ⊆ U(Hα) ⊆ V . We put H = ∪{Hα|α ∈ A}. Then U(H) is a clopen subset of X
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and clXV = U(H). Suppose now that b ∈ V. There exists a subset H of Dτ such
that b ∈ X\U(H) ⊆ V and |H | ≤ m. The set X\U(H) is clopen. If H ′ = H ∩ V,
then clXV = U(H ′) ∪ (X\U(H)) is a clopen subset of X.
Property 3. Let Im = {f |f ∈ C(X), |Dτ ∩ f−1(0)| ≤ m} and Φm = {f |f ∈
C(X), |Dτ ∩ f−1(1)| ≤ m}. Then C(X) = Im ∩ Φm and Im ∪ Φm = ∅.

Obviously, Im ∩ Φm = ∅. We fix f ∈ C(X). If f(b) = 1, then there exists a
subset H ⊆ Dτ such that |H | ≤ m and b ∈ X\U(H) ⊆ f−1(1); thus f ∈ Φm. If
f(1) = 0, then b ∈ X\U(H) ⊆ f−1(0) and f ∈ Im.
Property 4. Im is an ideal of C(X).

The proof is obvious.

Property 5. R = C(X) is atomic.

The set Dτ of isolated points of X is dense in X. Thus the ring R is atomic.

Property 6. If Z = Dτ , then Tmp = TZ and the topology TZ is ω(m)-bounded.

We consider the projection π : FX
2 → FL

2 . Then

π(Im) = {f : Z → F2||f−1(0)| ≤ m} and π(Φm) = {f : Z → F2||f−1(1)| ≤ m}.
Obviously, π(Im) and π(Φm) are ω(m)-bounded subspaces of FZ . Thus the subspace
S = π(Φm)∪π(Im) of FZ

2 is ω(m)-bounded. The space (C(X), TZ) is homeomorphic
to the space S.

Example 12.3. Let τ be an infinite cardinal andDτ be a discrete space of cardinality
τ. Denote by βDτ the Stone-C̆ech compactification of the space Dτ . Then:
(i) βDτ is a free compact space.
(ii) βDτ is extremally disconnected.
(iii) The ring C(βDτ ) is self-injective and atomic.
(iv) The set T p

ρ (C(βDτ )) is a complete lattice and the topology Tmp∈T p
ρ (C(βDτ ))

is compact.
(v) The set Tρ(C(βDτ )) is a complete lattice with the minimal element Tmp.
(vi) If R is a Boolean ring of cardinality ≤ τ, then we can consider that R is a

subring of C(βDτ ).

We deduce that every Boolean ring is a subring of a self-injective atomic
Boolean ring.

Example 12.4. Let Dτ be a discrete space of an infinite cardinality τ and X =
βDτ\Dτ . Then X is an F -space which is not extremally disconnected. The ring
R = C(X) is an ω-self-injective but not self-injective. An ideal I of R and a non
extendable homomorphism ϕ : I → R can be constructed as follows:

We fix a countable subset N ⊆ Dτ and a mapping q : N → [0, 1] such that
the set q(N) is dense in [0, 1]. We fix for every t ∈ [0, 1] an infinite sequence
(t(n) ∈ q(N)|n ∈ ω) such that |t − t(n + 1)| < |t − t(n)| < 2−n for every n ∈ ω.
Then t = lim t(n). We may consider that t(n) < t(n + 1) < t for t > 0. We put
At = {at(n)|n ∈ ω}. If t, t′ ∈ [0, 1] and t �= t′, then the set At ∩ At′ is finite (see
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[11]). There exists a maximal family {Aβ|β ∈ B} of infinite subsets of N with the
properties:

– [0, 1] ⊆ B;
– if α, β ∈ B and α �= β, then the set Aα ∩Aβ is finite.

The subset Uα = X ∩ clβDτAα is clopen in X. The set U = X ∩ clβDτN =
clβDτN\Dτ is clopen in X. If α �= β, then Uα ∩ Uβ = ∅.

Therefore {Uα|α ∈ B} is a family of disjoint clopen subsets of U. The set
∪{Uα|α ∈ B} is dense in U. For any α ∈ B fix a non-empty clopen subset Vα

of Uα such that Wα = Uα\Vα �= ∅. We put V = ∪{Uα|α ∈ B}, W = (X \ U) ∪⋃{Wα|α ∈ B} and Y = X \ (V ∪W ). There is no clopen subset H of X such
that V ⊆ H ⊆ X \W. There exist an ideal I of R = C(X) and an R-module
homomorphism ϕ : I → R such that D(I) = Y, V (ϕ) = V and W (ϕ) = W.
According to Theorem 9.8, the homomorphism ϕ is not extendable.

Example 12.5. Let X be an infinite perfectly normal zero-dimensional Stone space.
Therefore every closed subset of X is a Gδ-set and every ideal of R = C(X) is
countably generated. The space X is not an F -space. Hence by Theorem 10.2
the ring R is not ω-self-injective. We fix a non-isolated point b ∈ X and a closed
subset Y of X such that b ∈ clX(X\Y ) and b ∈ Y. There exists a sequence
{bn ∈ X\Y |n ∈ N} such that b = lim bn and bn �= bm for n �= m. There exist
two sequences {Un|n ∈ ω} and {Hn|n ∈ ω} of clopen subsets of X such that
Y = ∩{Un|n ∈ N}, bn ∈ Hn ⊆ Un\Un+1 for any n ∈ ω. Let V = ∪{H2n|n ∈ ω} and
W = X\clX(V ∪Y ). Then V ∩W = ∅ andX\Y = V ∪W. There exists an R-module
homomorphism ϕ : I → R, where I = MY , V (ϕ) = V and W (ϕ) = W. Since it
does not exist a clopen set H for which V ⊆ H ⊆ X\W , the homomorphism ϕ is
not extendable on R. The ideal I =Mb is maximal.

Example 12.6. Let X be an infinite compact scattered space. Then X is not an

F -space. Denote by
0

X the set of all isolated points of X.We fix an isolated point b

of the space X1 = X\
0

X. There exists a sequence {Un|n ∈ N} of clopen subsets of
X such that b ∈ Y = ∩{Un|n ∈ N}, U1 ∩X1 = {b} and Un+1 ⊆ Un, Un\Un+1 �= ∅
for any n ∈ ω. The setHn = Un\Un+1 is finite. We fix a point bn ∈ Un\Un+1. Then
b = lim bn. We put V = ∪{U2n\U2n+1|n ∈ N} and W = ∪{U2n−1\U2n|n ∈ N}.
Then X\Y = V #W. If I = MY and ϕ : I → R is a homomorphism for which
V (ϕ) = V and W (ϕ) = W, then ϕ is not extendable on R. The ring R is atomic.
The complete lattices Tρ(R) and T p

ρ (R) do not contain compact topologies.

Example 12.7. Let C0 = {(x, 0)|0 < x ≤ 1}, C1 = {(x, 1)|0 ≤ x < 1}, X =
C0 ∪ C1, O(x, 0, ε) = {(x, 0)} ∪

⋃
{{(y, 0), (y, 1)}|x− ε < y < x} and O(x, 1, ε) =

{(x, 1)} ∪⋃{{(y, 0), (y, 1)}|x < y < x+ ε}.
We consider a topology on X generated by the open basis {O(x, i, ε)|x ∈

X, i ∈ {0, 1}, ε > 0}. The space X is perfectly normal, zero-dimensional and
compact. The space X is called the two arrows space of P.S. Alexandroff and
P.S. Urysohn (see [1], [11]). Every ideal of R = C(X) is countably generated. But
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R is not ω-self-injective. The ring R is atomless. The sets Tρ(R) and T p
ρ (R) are

not lattices. On X there exists a σ-additive measure μ such that μ(X) = 1 and
μ(∪{{(x, 0), (x, 1)}|a < x < b}) = b − a provided 0 ≤ a < b ≤ 1. The function
d(f, g) = μ({x|x ∈ X, f(x) �= g(x)}) is an invariant metric on R. The topology
Td generated by the distance d on R is a ring topology and the space (R, Td) is
arcwise connected. The topology Td is not minimal.

Example 12.8. Let m be an infinite cardinal number, τ = 2m and L a dense subset
of the topological space Fτ

2 of cardinality m (see [11],Theorem 2.3.15 of Hewitt–
Marczewski–Pondiczery). For every subset A ⊆ Fτ

2 denote by r(A) the subring of
the Boolean ring Fτ

2 generated by the set A.We consider that r(∅) = {0, 1} ⊆ Fτ
2 . If

H ⊆ Fτ
2 is an infinite subset, then we fix a point a(H) ∈ Fτ

2 such that |H∩U | = |H |
provided U is open in Fτ

2 and a(H) ∈ U.
We construct the subrings {Rα|α < τ} of the ring Fτ

2 with the properties:
(i) R0 = r(L), Rα ⊆ Rβ for 0 ≤ α < β < τ.
(ii) If α is a limit ordinal, then Rα = ∪{Rβ |β < α}.
(iii) If Rα is constructed, then Rα+1 = r(({a(H)|H ⊆ Rα, H is infinite and |H | ≤

m}) ∪Rα).
By construction, R = ∪{Rα|α < τ} is a subring of the compact ring Fτ

2 . Let T be
the topology of the subspace R of the compact space Fτ

2 .

Property 1. |R| = τ and |Fτ
2 | = 2τ .

Property 2. The topology T is m-compact.

Property 3. The topology T is not ω(m)-bounded.

Property 4. The ring R is atomless.

13. Open questions

Question 1. Is it true that every minimal topological Boolean ringR is precompact?

Question 2. Under which conditions a commutative infinite ring is minimally al-
most periodic?

Question 3. Let τ be an infinite cardinal, R = Z〈X〉 the free associative ring over
a set X, |X | = τ and τω > τ. Does R admit a pseudocompact ring topology?

Question 4. Does there exist a countably linearly compact Boolean ring which is
not countably compact?

We note that every countably linearly compact Boolean ring is pseudocom-
pact.

From Proposition 4.2 it follows that on infinite non-atomless Boolean rings
no Hausdorff topology is connected. If R is a Boolean ring, T ∈ T p(R) and the
space (R, T ) is connected, then T = {∅, R}.
Question 5. Which atomless Boolean rings admit connected ring topologies?
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Question 6. Which atomless Boolean rings admit arcwise connected ring topolo-
gies?

We mention that each Hausdorff topological (Boolean) ring is a closed subring
of some Hausdorff topological arcwise connected (Boolean) ring.

Let Z be the discrete ring of the integers.

Question 7 (see [3] for Cp(X,R)). Let X , Y be topological spaces and indX =
indY = 0. Determine the relations between the following assertions:
(α) The spaces X and Y are homeomorphic.
(σ) The spaces X and Y are S-equivalent.
(κ) The spaces Cp(X,R) and Cp(Y,R) are homeomorphic, i.e., the spaces X and

Y are tp-equivalent.
(δ) The spaces Cp(X,Z) and Cp(Y,Z) are homeomorphic.
(γ) The topological groups Cp(X,R) and Cp(Y,R) are isomorphic.
(θ) The topological groups Cp(X,Z) and Cp(Y,Z) are isomorphic.
(λ) The spaces Cp(X,R) and Cp(Y,R) are linear homeomorphic, i.e., the spaces

X and Y are lp-equivalent.
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[1] P.S. Alexandroff et P.S. Urysohn, Mémoire sur les Espaces Topologiques Compacts.
– Verhandelingen Kon. Akad., van Wetenschappen. Amsterdam 14, 1929, 1–96.

[2] A.V. Arhangel’skii, Topological Invariants in Algebraic Environment. – In: Recent
Progress in General Topology II. North Holland. Elsevier Science Publ., 2002, 1–57.

[3] A.V. Arhangel’skii, Topological Function Spaces. – Kluwer Acad. Publ., 1992.

[4] G. Birgkhoff, Lattice Theory. – Providence, 1967.
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Abstract. For any ring R, let J (R) be the unique Boolean lattice of two sided
ideals which is isomorphic to the lattice of natural classes of non-singular
right R-modules Nf (R). Let 1 = 1R = 1Q ∈ R ⊂ Q be rings with R ⊂ Q an
essential extension of right R-modules. Under some appropriate assumptions
it is shown that there is an isomorphism of Boolean lattices Ψ : J (R) −→
J (Q). The natural inclusion map φ : R −→ Q, induces a natural order
preserving map φ∗ : Nf(Q) −→ Nf (R) of the Boolean lattices of natural
classes of Q and R. It is shown that φ∗ is essentially the inverse of Ψ.
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Introduction

It is known that the set N (R) of natural classes of right R-modules is a lattice
direct sum N (R) = Nt(R)⊕Nf (R) of complete Boolean sublattices, where Nf (R)
consists of all non-singular (called torsion free) classes of right R-modules. Every
associative ring with identity contains a unique lattice of (two-sided) ideals J (R) ∼=
Nf (R). (See [11; Thm. 6.6.6, p. 202].)

If T is a regular right self injective ring, then it was shown in [13 ; Prop. 4.1,
p. 25] that the set B(T ) of central idempotents of T can be made into a complete
Boolean lattice. The lattice operations in B(T ) are not the ring operations in
B(T ): e∧ f = ef, e∨ f = e+ f − ef , where e, f ∈ T . More generally, for any ring
R with identity with Z2(R) ≤ R the second right singular submodule the right
R-injective hull T = E[R/(Z2(R))] is such a ring as described above, and in [4;
5.11, p. 74] it was shown that J (R) ∼= B(E[R/(Z2(R))]) = B(T ).

If R = Z2(R), then J (R) = {0} is a singleton. If R is right non-singular, then
the maximal right ring of quotients ofR is its rightR-injective hullER = E(RR). It
was shown recently ([11 ; Corollary 6.6.7, p. 203]) that in this case J (R) ∼= J (ER).
This note is just the beginning introduction of a larger project described below.
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Let 1R = 1Q = 1 ∈ R ⊆ Q be rings such thatR ⊆ QR is an essential extension
of right R- modules. This note begins with determining how the essential right R-
ideals of R are related to the essential right Q-ideals of Q (Theorem 3.4). Let L(R)
denote the essential right ideals of R, and L(Q) the Q-essential right ideals of Q.
Then under two additional hypotheses (H1) and (H2) on the essential extension
R ⊆ QR, it is shown that J (R) ∼= J (Q). If R ⊆ Q is a rational extension of right
R-modules, that is Q is a right ring of quotients of R, then (H1), (H2) hold. In
order to prove that J (R) ∼= J (Q) it seems that there must be one to one functions
L(R) −→ L(Q), and L(Q) −→ L(R). The hypotheses (H1), (H2) seem to be the
minimal hypotheses that guarantee this.

Recently it has been shown that there exist subrings R ⊆ Q, where Q ⊆
E(R) is an essential right R-submodule such that Q carries several non isomorphic
multiplicative ring structures extending the multiplication on R. Examples in this
area are hard to come by. In [1] and [2], all the examples of rings R are upper
triangular matrix rings, in which case J (R) = J (Q) = {0} because R = Z2(R).
The same applies to the familiar first example in [16]. For the other examples in [16]
and [17], the author has not been able to compute Z2(R). The results of Section 3
might be useful in answering questions like the next one. Under what conditions
on the correspondence between L(R)←→ L(Q) is there up to isomorphism over R
a unique ring structure on Q compatible with the right R-module structure? Are
the conditions (H1) and (H2) necessary and sufficient for this? All of the above is
in Sections 1–4. For those readers not interested in natural classes, their use has
been avoided in Sections 1–4.

This note is a part of an on going larger project. Section 5 applies the results
of Section 4 to what should be functors. If φ : R −→ S is an identity preserving
homomorphism of rings, then there always is an order preserving induced map
φ∗ : Nf (S) −→ Nf (R). If only surjective ring homomorphisms φ whose kernels
are closed as right ideals are used, then it has been shown N ( ), Nt( ), Nf ( )
are functors ([11; Theorem 6.5.14, p. 195], [9; 5.13, p. 538]), and they have been
studied and used a lot in some form or other ([11], [10], [20], [9], and also in
[4, 5, 6, 7, 8]). In this special case φ∗ = Nf (φ) : Nf (S) −→ Nf (R) are lattice
monomorphisms. The minimum condition needed to make Nf ( ) into a functor
is that φ∗(Nf (S)) ⊆ Nf (R). This note is the first step in extending some of the
previous results (where φ had to be surjective with a right closed kernel) to the
case when S = Q, 1 ∈ R ⊆ QR is essential, and φ : R −→ Q is the natural
inclusion. Here it is also shown that φ∗(Nf (Q)) ⊆ Nf (R) in 5.3(iv). One possible
next step which is beyond the scope of this note is to create a category of rings
and ring homomorphisms which includes all maps of the above-described kind
φ : R −→ Q. Clearly, this is very far from allowing φ : R −→ S to be
an arbitrary ring homomorphism, which is a project that is beyond the scope of
this note. Y. Zhou invented and studied M-natural classes in [19] and pre-natural
classes in [20], where he showed that the set N p(R) of all pre-natural classes of
right R-modules is a lattice. Another part of the on going larger project is to
replace N (R) with N p(R).
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1. Preliminaries

Notation 1.1. The categories of right and left unital modules over an arbitrary
ring R are denoted by Mod-R and R-Mod. The symbols <, ≤ denote right R-
modules, and only right R-modules, while <e, ≤e, <r, ≤r denote essential and
rational extensions of right R-modules. For K ≤ N ∈Mod-R, and x ∈ N , define
x⊥ = {r ∈ R | xr = 0} ≤ R, and x−1K = (x + K)⊥ = {r ∈ R | xr ∈ K}.
(Note that if Lx : RR −→ M , r −→ Lx(r) = xr, then x−1K = L−1

x K.)
Set N⊥ = {r ∈ R | Nr = 0} ≤ R. Let ‘�’ denote two sided ideals in any
ring. Thus N⊥ � R. Right R-injective hulls are denoted by both ‘ ̂ ’ and ‘E’ as
N̂ = EN = E(N), where the latter is used if N is given by a complex formula.

For a module M its singular submodule ZM = Z(M) ≤ M is ZM = {m ∈
M | m⊥ ≤e R}, while the second singular submodule ZM ≤e Z2(M) = Z2M
is defined by Z[M/Z(M)] = Z2M/ZM ≤ M/ZM . Right R-modules M1, M2

are orthogonal (=perpendicular), denoted by M1 ⊥ M2, if there do not exist
0 �= Vi ≤Mi such that V1

∼= V2.
A class K of right R-modules is a natural class if it is closed under isomorphic

copies, submodules, arbitrary direct sums, and injective hulls. Let N (R) denote
the set of all natural classes of right R-modules. It is well known that N (R) is
a complete Boolean lattice, where the partial order is simply class inclusion of
natural classes. The Boolean complement of K is K⊥ = {NR | ∀M ∈ K, N ⊥M}.

For simplicity, a module M is said to be torsion if M = Z2M , and torsion
free (abbreviate t.f.) if ZM = 0 (=⇒ Z2M = 0). A class K is torsion free if
every module in K is torsion free, and Nf (R) denotes the set of all torsion free
natural classes Nf (R) = {K ∈ N (R) | K is t.f .}. The applicant has proved that
N (R) = Nt(R)⊕Nf(R) is a lattice direct sum, whereNt(R) are the torsion natural
classes which are defined in a similar way.

For any subclass F of right R-modules, since natural classes are closed under
arbitrary intersections, d(F) ∈ N (R) denotes the natural class generated by F .
Very explicitly,

d(F) = { N = NR | ∀ 0 �=W ≤ N, ∃ 0 �= V ≤W, and ∃ V ↪→ A, some A ∈ F}.

Note that this just says that N ∈ d(F) if and only if there exists an essential direct
sum ⊕αxαR ≤e N of cyclics xαR ↪→ Aα ∈ F for some Aα ∈ F .

In fact, if Y is a right R-module, then d(Y ) consists of all right R-modules
which can be embedded in the injective hull of some direct sum of Y ’s. Also,
d(Y )⊥ = { MR | M ⊥ Y }.

Terminology 1.2. As usual, R being a unital subring of Q means that 1 = 1R =
1Q ∈ R ⊆ Q are rings. If in addition also R ≤e QR is an essential extension of right
R-modules, then Q will be said to be a right over ring of R. Left over rings are
defined similarly. If for a unital subring R ⊆ Q, R ≤r QR is a rational extension of
right R-modules, then as usual, Q will be said to be a right ring of quotients of R.
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Notation 1.3. The same objets K, Z , Z2 , E, ≤, ≤e, ≤r, and d(·) as defined above
for R, over another ring S will be denoted by superscripts as KS , ZS , ZS

2 , ES , ⊆
, ⊆e, ⊆r, and dS(·). For y ∈ NS, define ann(y) = ann S(y) = {s ∈ S | ys = 0 }.
Functors 1.4. In order to investigate the functors N (·), N (·)t, and under certain
conditions Nf (·), let φ : R −→ S be any ring homomorphism preserving identities.
The above map induces a map Mod-S −→ Mod-R, N = NS −→ Nφ ∈Mod-R,
where for y ∈ N and r ∈ R, y · r = y(φr). For KS ∈ N (S), define KS

φ = {Nφ :
N ∈ KS}. The correspondence N → Nφ induces a covariant functor φ# : Mod-
S −→ Mod-R which on morphisms, is the identity. This functor φ# induces a map
φ∗ : N (S) −→ N (R) by φ∗(K) = d(KS

φ ). For any ring with identity R, the ring
contains a unique lattice J (R) of two sided ideals, defined as J (R) = { I ≤ RR is
a right complement |Z2(R) ≤ I ≤ RR, E(I) ≤ E(R) is fully invariant}.

For any I ∈ J (R), for any C ≤ RR such that I ⊕ C ≤e RR, necessarily
I ⊥ C.

Always, there is an isomorphism of complete Boolean lattices ηR : J (R) −→
Nf (R) given by ηR(I) = d(I/Z2(R)). (See [11; Thm. 6.6.6, p. 202], [5; Thm. 2.6,
p. 106], [6; Thm. 2.6, p. 333].)

2. Large right ideals

We review and develop some facts about complement submodule which we need
and which may be of independent interest.

Complement closure 2.1. Let ZM ⊆ K < M be right R-modules. Then K has in
M a complement closure K ≤e K ≤M satisfying the following:

(1) K = { x ∈M | x−1K <e R };
(2) K = { x ∈M | K ≤e K + xR };
(3) K =

⋂
{ C | K ≤ C, C ≤M is a complement }.

(4) K is the unique smallest complement closure of K in M .
(5) If L ≤e K, then L = K.
(6) K/Z2M ≤M/Z2M is a complement.

Proof. Conclusions (1)–(4) are in [4; p. 53, Prop. 1.3 ]. (5) By (3) and (4), L ⊆ K.
From L <e K ≤e K, we get L ≤e K, and hence L = K. (6) Since by 2.1 (1)⇐⇒ (2),
for x ∈ M , (x + Z2M)−1(K/Z2M)) = { r ∈ R | xr ∈ K } is a large right ideal if
and only if K ≤e K + xR = K. Thus K/Z2M = K/(Z2M). �

The following lemma circumvents the difficulties posed by the possibility that
ZQ

2 Q� JQ �= ∅ for J ∈ J (R), or equivalently, ZQ
2 Q� (Z2R)Q �= ∅.

Lemma 2.2. For any ring R, and any right R-modules A <e B ≤ M , and any
x ∈M ,

x−1B ≤e R ⇐⇒ x−1A ≤e R.
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Proof. =⇒ If not, then (x−1A) ⊕ C ≤ R for some C �= 0. There exists 0 �=
c0 ∈ C ∩ x−1B. If xc0 = 0, then 0 �= c0 ∈ (x−1A) ∩ C = 0, a contradiction. So
0 �= xc0R ≤ B. But A ≤e B, and hence also 0 �= xc0R ∩ A ⊆ xC ∩ A = 0, since
xC +A = xC ⊕A. Thus C = 0. �

3. Mod-R and mod-Q for R ⊂ Q

Throughout this section, unless otherwise stated, it is assumed that 1 = 1Q =
1R ∈ R <e Q are rings, i.e., Q is a right over ring of R. If A,B ∈ Mod-R, with
A ∪ B ⊆ N where N ∈ Mod-Q, then (AQ + BQ) ⊆ NQ. This section considers
when such binary module properties as A ∩ B = 0, A <e B, A ⊥ B do or do not
transfer to AQ ∩BQ = 0, AQ ⊆e BQ, AQ ⊥Q BQ.

In (i) of the next lemma, R <e Q is not required. It is worth stating explicitly
in words, that below the converse of 3.1(i) holds either if Y is R-nonsingular, or if
Q is a ring of right quotients of R.

Lemma 3.1. If X ⊂ Y are right Q-modules, then
(i) X <e Y =⇒ X ⊂e Y ;
(ii) ZX = 0, X ⊂e Y =⇒ X <e Y ;
(iii) R <r Q, X ⊂e Y =⇒ X <e Y .

Proof. (i) is clear. (ii) For any 0 �= y ∈ Y , there is a q ∈ Q with 0 �= yq ∈ X . But
then also 0 �= (yq)q−1R ⊆ yR ∩X , since 0 �= yq /∈ ZX . So X ⊂e Y .

(iii) For 0 �= y ∈ Y , again let 0 �= yq ∈ X, q ∈ Q. Since R <r Q, and
yq, q ∈ Q, there is an r ∈ R with yqr �= 0 and qr ∈ R. Thus 0 �= yqr ∈ yR ∩X .
Hence X <e Y . �

Lemma 3.2. For X, Y ∈ Mod-Q, HomQ(X,Y ) =HomR(X,Y ) if one of (i), (ii),
or (iii) holds:
(i) ZY = 0;
(ii) R <r Q, and Y ⊆ Q;
(iii) X ≤ R̂, Y ≤ R̂; X,Y ∈ Mod-Q, R <r Q.

Proof. For f ∈ HomR(X,Y ) and any x ∈ X, q ∈ Y , define z = f(xq)− (fx)q. (i)
For any r ∈ q−1R ≤e R, zr = f((xq)r) − f(x(qr)) = 0. Thus z ∈ ZY = 0.

(ii) Since R <r Q and z ∈ Y ⊆ Q, if z �= 0, we can find an r ∈ R with zr �= 0
and qr ∈ R. Thus r ∈ q−1R, and as above in (i) we have zr = 0, a contradiction.
Thus z = 0.

(iii) By [15; p.95, Prop.2], HomR(R̂, R̂)=HomQ(R̂, R̂). Extend f to f̃ ∈
HomR(R̂, R̂). Then z = f̃(xq) − (f̃x)q = 0, and f ∈ HomQ(X,Y ). �

The notation XQ ⊥ YQ or X ⊥Q Y denotes orthogonality of Q-modules.

Lemma 3.3. For rings 1 = 1Q = 1R ∈ R <e Q , let φ : R −→ Q be the inclusion
map. Let A,B ∈ Mod-R, N ∈ Mod-Q with A ≤ Nφ, B ≤ Nφ and let X,Y ∈ Mod-
Q. Then the following hold:
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(i) A+B = AR ⊕BR ≤ NR, Z(A⊕B) = 0 =⇒ AQ⊕BQ ≤ NQ;
(ii) AR ⊥ BR =⇒ (AQ) ⊥ (BQ), and (AQ) ⊥Q (BQ);
(iii) Xφ ⊥ Yφ =⇒ XQ ⊥ YQ;
(iv) ZXφ = 0, ZYφ = 0; XQ ⊥ YQ =⇒ Xφ ⊥ Yφ;
(v) Z[A(Q)φ] ⊆ A =⇒ A ≤e AQ.

Proof. (i) If 0 �= ξ =
∑n

i=1 aipj =
∑m

j=1 bjqj ∈ AQ∩BQ, ai ∈ A, bj ∈ B; pi, qj ∈
Q, and L = [∩n

1p
−1
i R] ∩ [∩m

1 q
−1
j R] ≤e R, then ξL ⊆ A ∩ B = (0), and hence

ξ ∈ Z(AQ ∩BQ) = 0, a contradiction.
(ii) If 0 �= αQ ∼= βQ, α ∈ AQ, β ∈ BQ as Q-modules and with annQ α =

annQ β, then as in (i), there is an L ≤e R with αL ⊆ A, βL ⊆ B. Since ZB = 0,
there is a λ ∈ L with 0 �= βλ ∈ B. Since α⊥ = R ∩ annQ α = β⊥ = R ∩
annQ β = β⊥, also 0 �= αλ, and (αλ)⊥ = λ−1β⊥ = (βλ)⊥. Thus αλR ∼= βλR is a
contradiction.

(iii) If 0 �= xQ ∼= yQ, x ∈ X, y ∈ Y with annQ(x) = annQ(y) ⊂ Q, then
x⊥ = R ∩ annQ(y) = y⊥. Thus xR ∼= yR is a contradiction.

(iv) If not, let x ∈ X, y ∈ Y, x⊥ = y⊥. Now define ψ : xQ −→ yQ by
ψxq = yq for q ∈ Q. This is well defined, for if xq = 0, then xR ∼= yR implies that
0 = x[q(q−1R] ∼= y[q(q−1R], and hence that yq ∈ ZY = 0, and xq ∈ ZX = 0. Thus
not only ψ is well defined, but it is also a Q-isomorphism, which is a contradiction.

(v) For any 0 �= η ∈ AQ � A, η =
∑n

1 aiqi, ai ∈ A, qi ∈ Q, since L =
∩n

1 q
−1
i R ≤e R and since η /∈ Z(AQ), it follows that 0 �= ηL ⊆ A. Thus A ≤e

AQ. �

Theorem 3.4. Let 1 = 1Q = 1R ∈ R <e Q be rings, and I ≤ R, J ≤ R, X ⊆
QQ, Y ⊆ QQ be any right ideals.

(1) If R <e Q, then
(i) X ∩R ≤e R =⇒ X ⊆e Q;
(ii) I ≤e R =⇒ IQ ⊆e Q.

(2) If R <r Q, then the converses hold
(i) X ⊆e Q =⇒ X ∩R ≤e R;
(ii) IQ ⊆e Q =⇒ I ≤e R.

Proof. (1)(i). First we show that (X ∩ R)Q ≤e QR. For any 0 �= q ∈ Q, there
is an r ∈ R with 0 �= qr ∈ R. Since X ∩ R ≤e R, there is an s ∈ R with
0 �= (qr)s ∈ X ∩ R ⊆ (X ∩ R)Q. Hence (X ∩ R)Q ≤e QR, and by Lemma 3.1(i),
hence also (X ∩R)Q ⊆e QQ.

(1)(ii). For 0 �= q ∈ Q, it suffices to show that 0 �= qR ∩ I, since qR ∩ I ⊆
qQ ∩ IQ. First, 0 �= qr ∈ R for some r ∈ R. Then 0 �= qrs ∈ I.

(2)(i). It suffices to show that XR ≤e QR, for then also X ∩R ≤e R = Q∩R.
For any 0 �= y ∈ Q, 0 �= yq ∈ X for some q ∈ Q. Since R <r Q, for 0 �= yq, q ∈ Q,
there exists an r ∈ R with 0 �= yqr and qr ∈ R, or 0 �= yqr ∈ X with qr ∈ R.
Hence 0 �= yqr ∈ yR ∩X , and XR ≤e QR, and hence XR ≤e QR.
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(2)(ii). It suffices to show that for any 0 �= y ∈ Q, yR∩ I �= 0. By hypothesis
we have for some 0 �= q0 ∈ Q, 0 �= yq0 ∈ IQ ⊆e Q, where yq0 =

∑m
k=1 ykqk for

some yk ∈ I, qk ∈ Q.
Since R <r Q, for 0 �= yq0, q0 ∈ Q, there is an r0 ∈ R, with yq0r0 �= 0, and

q0r0 ∈ R. Thus yq0r0 =
∑m

k=1 ykqkr0. Next, for 0 �= yq0r0, q1r1 ∈ Q, there is an
r1 ∈ R with Q1r0r1 ∈ R, and 0 �= yq0r0r1 =

∑m
k=1 ykqkr0r1. There is an r2 ∈ R

with 0 �= yq0r0r1r2 =
∑m

k=1 ykqkr0r1r2, where q2r0r1r2 ∈ R, as well the previous
q1r0r1r2 ∈ R. Continuing this way we get r0, r1, . . . , rn ∈ R such that

0 �= yq0r0r1 . . . rn =
m∑

k=1

ykqkr0r1 . . . rn ∈ yR ∩ I, qkr0r1 . . . rk ∈ R.

Thus I ≤e R. �

Corollary 3.5. If above R <r Q , then ∀ Y ⊆e Q , ∃ J ≤e R, Y ⊇ JQ ⊆e Q.

Proof. From Y ⊆e Q it follows by 3.4 (2)(i) that Y ∩ R ≤e R. Then for J =
Y ∩R ≤e R, by 3.4 (1)(ii), JQ ⊆e Q. �

It is beneficial for later arguments to visualize the previous facts as set con-
tainment relations in the lattices L(R), and L(Q) of all large right R-ideals and
all large Q-ideals.

Corollary 3.6. Let 1 = 1R = 1Q ∈ R ≤e Q be any rings, and let L(R) and L(Q)
denote the set of all large right ideals of R and Q. Then the following hold:
(1) (i) L(Q) ⊇ { X ⊆ Q | X ∩R ∈ L(R) };

(ii) L(Q) ⊇ { IQ | I ∈ L(R) };
(2) If in addition, R <r Q, then

(i) L(R) ⊇ { X ∩R | X ⊆e Q };
(ii) L(R) ⊇ { I ≤ R | IQ ⊆e Q }.
Below in (1) and (2), ⊆ refers to R-submodules, but not Q-submodules.

Proposition 3.7. Let 1 = 1Q = 1R ∈ R <e Q be an over ring of R and let
φ : R −→ Q be the inclusion map. Then for any N ∈Mod-Q, the following hold:
(1) ZN ⊆ ZQN ;
(2) Z2N ⊆ ZQ

2 N .
If in addition , R <r Q, then
(3) ZN = ZQN ;
(4) Z2N = ZQ

2 N .

Proof. (1) If ξ ∈ ZN , then ξ⊥ ≤e R ≤e Q, implies that ξ⊥ ≤ (ξ⊥Q)R ≤e Q. By
Lemma 3.1(i), ξ⊥Q ⊆e Q. But since ξ(ξ⊥Q) = 0, it follows that ξ⊥Q ⊆ annQ ξ ⊆e

Q. Thus ξ ∈ ZQN , and ZN ⊆ ZQN .
(2) Note that ZQN by definition is a Q-module, while ZN may not be,

and that [N/ZQN ]φ = Nφ/(ZQN)φ. Let π; N/ZN −→ N/ZQN be the projection
induced by the inclusion of right R -modules in (1), and that π is a homomorphism
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of R-modules. Then since Z is a subfunctor of the identity functor, it follows that
on objects πZ[·] ⊆ Zπ[·]. Hence

(i) πZ
N

ZN
⊆ Z

(
π

[
N

ZN

])
= Z

(
π

[
N

ZQN

]
φ

)
= Z

[
N

ZN

]
.

By (1) applied to N/ZQN ∈ Mod-Q, we get

(ii) Z

[
N

ZQN

]
⊆ ZQ

[
N

ZQN

]
=
ZQ

2 N

ZQN
.

But

(iii) π

(
Z

[
N

ZN

])
= π

(
Z2N

ZN

)
=
Z2N + ZQN

ZQN
.

Thus

(iv)
Z2N + ZQN

ZQN
⊆ Z

[
ZQ

2 N

ZQN

]
, Z2N ⊆ ZQ

2 N.

Note that if in equation (ii), the “⊆” was “=”, then in (iv) we would get that
Z2N + ZQN = Z2N . Now if in addition it was known that ZQN = ZN , then we
could conclude that Z2N = ZQ

2 N .
(3) Since ZN ⊆ ZQN by (1), let 0 �= x ∈ ZQN , and we will show that x ∈

ZN . Since annQ(x) ⊆e QQ, by Theorem 3.4, (2)(i) we get that x⊥ = annQ(x) ≤e

R. Hence x ∈ ZN , hence ZQN ⊆ ZN , and by (2) above, ZQN = ZN . (4). The
remark at the end of the proof of (2) above shows that Z2N = ZQ

2 N . �
Corollary 3.8. If R <e Q, then
(i) ZR ⊆ ZRQ ⊆ ZQ ⊆ ZQQ;
(ii) Z2R ⊆ Z2RQ ⊆ Z2Q ⊆ ZQ

2 Q.

There is no reason to expect that the above inclusions in 3.8(ii) are essential
extensions of R-modules.

Proposition 3.9. If R <r Q, then
(i) ZR ≤e ZQ = ZQQ;
(ii) ZQ(Q) ≤e Z

Q
2 (Q); hence

(iii) ZR ≤e Z2R ≤e Z
Q
2 (Q).

Proof. (i) If 0 �= η ∈ ZQ then for some r ∈ R, 0 �= ηr ∈ R. Then (ηr)⊥ =
annQ(ηr) ≤e R by Theorem 3.4 (2)(i). Thus 0 �= (ηr) ∈ ZR, and ZR ≤e ZQ.
Lastly, by Proposition 3.7 (3), ZQ = ZQQ. (ii) This follows by Lemma 3.1(iii).
Finally, upon combining (i) and (ii) we get conclusion (iii). �
Proposition 3.10. If R <r Q, consider 0 �= A ≤ R, and 0 �= B ≤ R, with ZB = 0.
Then
(i) A ≤e AQ ; and
(ii) B ≤e BQ, and ZQ

2 (Q) +BQ = ZQ
2 (Q)⊕BQ.
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Proof. (i) Let 0 �= η =
∑n

1 aiqi ∈ AQ with ai ∈ A, qi ∈ Q. Since R <e Q,
0 �= ηr0 ∈ R. Since R ≤r Q, there is an r1 ∈ R, 0 �= ηr0 ∈ R, and q1r1 ∈ R.
Continuing this way we get r = r0r1 . . . rn ∈ R and 0 �= η

∑n
1 aiqi ∈ AQ.

(ii) Suppose that 0 �= η =
∑n

1 biqi ∈ ZR ∩ BQ. Since R <r Q, there is an
r1 ∈ R, ηr1 �= 0, and q1r1 ∈ R. Continuing this way we get r = r1 . . . rn ∈ R, and
get the contradiction 0 �= ηr ∈ B ∩ ZR = 0. Thus ZR⊕ BQ ≤e Z

Q
2 (Q)⊕ BQ by

the previous Proposition 3.8(iii). �

Hypotheses 3.11. Let 1 = 1R = 1Q ∈ R ≤e QR = Q be rings, and φ : R ↪→ Q, the
inclusion map. Define (H1) and (H2) to be the following hypotheses.

(H1) ∀ B ≤ R, B ≤e BQ.

(H2) ZR ≤e Z
Q
2 (Q). (ZR = 0 =⇒ ZQ

2 (Q) = 0).

If R <r Q, all of the above hold.

The next theorem allows us to transfer properties of right ideals between R
and Q.

Theorem 3.12. Let R <e Q be rings, and let (H1) and (H2) hold. Let X, Y , U be
any right Q ideals, where ZQQ ⊆ Y ⊆e QQ; ZQQ ⊆ X ⊆ X ⊕ U ⊆e QQ. Then
the following hold.

(i) Y ∩R ≤e R; in particular (X ∩R)⊕ (U ∩R) ≤e R.
(ii) X ⊥Q U ⇐⇒ (X ∩R) ⊥ (U ∩R).
(iii) ZR ≤e Z

QQR and ZR ≤ I ≤ I ⊕ V ≤ R, =⇒ IQ+ V Q = IQ⊕ V Q ⊆ QQ.
(iv) ZR ⊆ I ⊆ I ⊕ V ≤e R, =⇒ IQ⊕ V Q ⊆e QQ.
(v) I ⊥ V ⇐⇒ IQ ⊥Q V Q.

Proof. If not for some V �= 0, we have (Y ∩R)⊕ V ≤ R. By (H1), V ≤e V Q, and
hence (Y ∩ R) ⊕ V Q ≤ QR. Also, ZR ⊕ V Q ≤ QR. Since Y ⊆e Q, there exists
0 �= ξ =

∑n
1 viqi ∈ Y ∩ V Q. Let L = ∩n

1 q
−1
i R ≤e R. Then 0 �= ξL ⊆ V ∩ X =

V ∩ Y ∩R = 0, a contradiction. Thus V = 0 and Y ∩R ≤e R.
(ii) Always, (ii) ⇐= by Lemma 3.3 (ii). =⇒: Since ZR ≤ X ∩ R ≤e X and

U ∩R ≤e U , by Lemma 3.2 (i), this holds.
(iii) Since ZR ≤ I ≤e IQ, and V ≤e V Q, we have Z[(IQ) ∩ (V Q)] = 0. Let

0 �= ξ =
∑n

1 yiqi =
∑m

1 vjqj ∈ [(IQ) ∩ (V Q)], and set L = [∩n
1 q

−1
i R] ∩ [∩m

1 q
−1
j R].

Then ξL ⊆ I ∩ V = 0 gives the contradiction that 0 �= ξ ∈ Z[(IQ) ∩ (V Q)] = 0.
Always <e=⇒⊆e.

(iv) Since I ⊕ V ≤e R ≤e Q, and since I ⊕ V ⊆ IQ ⊕ V Q ≤ QR, it follows
that IQ⊕V Q ≤e QR. But by Lemma 3.1, for Q-modules, always ≤e =⇒ ⊆e, and
thus (iv) follows.

(v)⇐= always holds. =⇒: Since ZR ≤ I ≤e IQ, and V ≤e V Q, ZV Q = 0,
and the rest follows from Lemma 3.2 (i). �
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4. Over rings

Throughout this section, many of the submodules used are so called type submod-
ules, even when this is not stated. Type submodules are defined below, and the
connection with natural classes clarified.

Type submodules 4.1. For any right R-module M , a submodule N ≤ M is a
type submodule if N ≤M is a complement, and if ∃ P ≤M such that N⊕P ≤e M
is an essential extension, and N ⊥ P (see 1.1 for ‘⊥’). If above ‘∃’ is replaced by
‘∀’, we get the same definition. Another equivalent definition is the following. A
submodule N ≤ M is a type submodule if there exists a natural class K ∈ N (R)
such that N ∈ K, but for any N < L ≤ M , L /∈ K. In other words, N ≤ M
is a maximal K submodule. Such a submodule N is also called a type K type
submodule of M .

A sort of converse of the above is that for any natural class K and any right
R-module M whatever, M always has at least one maximal K-submodule.
Notation 4.2. Recall that by definition J (R) = {I ≤ RR is a right complement
|Z2(R) ≤ I ≤ RR, E(I) ≤ E(R) is fully invariant}. Now let J ∈ J (R). Then firstly
[11; Lemma 6.6.5, p. 202 ] states that J/Z2R ≤ R/Z2R is the unique type sub-
module of the right R-module R/Z2R of type d(J/Z2R). Secondly, [11; Proposition
6.6.4 part (1), p. 201] says that J ≤ RR is also a type submodule.

Let Z2(R) ≤ J ≤R. Then J ≤ R being a right complement is equivalent to
J/Z2R ≤ R/Z2R being a right R- complement. (See first [11; Lemma 6.6.3, p.
201], and secondly observe the fact [12; Exercise 15, p. 20] that for any R-modules
A ≤ B ≤ C, if B is closed in C, then B/A ≤ C/A is closed in C/A.)

Elements of J (R) are complement right ideals of the form J ≤ R with
Z2R ≤ J , and such that J ⊥ C for any J ⊕ C ≤e R. So given J ∈ J (R), select
any right ideals B,C ≤ R, where

Z2R ⊕B ≤e J ≤ J ⊕ C ≤e R, Z2R⊕B ⊕ C ≤e R, B ⊥ C.

Furthermore note that it follows that J �R where ‘�′ denotes two sided ideals in
an ring.

Next 3.1, 3.3, 3.4, and 3.11 allow us to transfer essentiality, direct sums,
orthogonality of right ideals from R to Q, and vice versa. We do this in Section 4
without explicitly quoting the appropriate justifying result from Section 3.

Lemma 4.3. With the above notation from 4.2, if 3.11 (H1) and (H2) hold, then

ZQ
2 Q⊕BQ⊕ CQ ⊆e Q, BQ ⊥Q CQ, and (BQ)R ⊥ (CQ)R.

Lemma 4.4. Let Z2R ⊕ B ≤e J ≤ J ⊕ C ≤e R be as in 4.2, and define J̃ to be
J̃ = { ζ ∈ Q | { q ∈ Q | ζq ∈ ZQ

2 Q⊕BQ } ⊆e Q }. Then the following hold.

(i) J̃ is the unique right Q-complement closure of ZQ
2 Q ⊕ BQ ⊆e Q in Q; it is

independent of the choice of B in 4.2.
(ii) J̃ ⊕ CQ ⊆e Q;
(iii) JQ ⊆ J̃ .
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Lemma 4.5. In the notation of 4.3, 4.4:
(i) ZQ

2 Q, BQ, and CQ are pairwise orthogonal as Q-modules;
(ii) J̃ ⊥Q CQ.
(iii) J̃ ∈ J (Q);
(iv) BQ ↪→e J̃/ZQ

2 (Q).

Construction 4.6. Let J1, J2 ∈ J (R). Define U1, U2 as any right ideals such that
Z2R⊕ (J1 ∩ J2)⊕ U1 ≤e J1 and Z2R⊕ (J1 ∩ J2)⊕ U2 ≤e J2. Then
(i) U1 ⊥ J2, U2 ⊥ J1 and in particular U1 ⊥ U2;
(ii) U1Q ⊥ J2Q, U2Q ⊥ J1Q, and U1Q ⊥ U2Q;
(iii) J (R) −→ J (Q), J −→ J̃ is one to one.

Aside from showing that the function below is well defined and one to one,
the next proposition gives a wealth of information about how the ideal structure
of R relates to that of Q.

Proposition 4.7. Assume (H1) and (H2), and let J ∈ J (R), B, J̃ , C be as above.
Then the following hold.

(i) J̃ ∩ CQ = 0.
(ii) J̃ ⊕ CQ ⊆e Q.
(iii) J̃ ⊥Q CQ.
(iv) J̃ ∈ J (Q).
(v) J̃ is independent of the choice of B.
(vi) J −→ J̃ is a well-defined map Ψ : J (R) −→ J (Q).
(vii) The above map Ψ is one to one.

Proposition 4.8. If as before R <e Q and (H1) and (H2) hold, then the map Ψ in
4.7 is an isomorphism. Both Ψ and its inverse are order preserving maps.

Proof. To show that the map is onto take Y ∈ J (Q), and choose any V and U
such that ZQ

2 Q⊕ V ⊆e Y ⊆ Y ⊕ U ⊆e Q with Y ⊂ QQ Q-closed. Then since Y is
a type submodule we have Y ⊥Q U .

Since (H1) and (H2) guarantee that Z2R ≤e Z
Q
2 Q∩R, and that ⊆e =⇒ ≤e,

we conclude that

ZQ
2 Q⊕ V ⊕ U ⊆e Q =⇒ Z2R⊕ V ∩R⊕ U ∩R ≤e R.

Next define I to be the unique complement closure of Z2R⊕ V ∩R ≤e I ≤ R.
Then the following five steps finish the proof.

(i) I ⊕ U ∩R ≤e R;
(ii) I ⊥ U ∩R;
(iii) I ∈ J (R) and ∀I ∈ J (R), Ĩ ∈ J (Q) as defined in 4.4 is a Q-complement

with ZQ
2 Q⊕ [(V ∩R)Q] ⊆e Ĩ ⊆ QQ.

(iv) Since [(V ∩R)Q] ⊆e V , ZQ
2 Q⊕ [(V ∩R)Q] ⊆e Y . Thus

(v) Y = Ĩ, and Ψ is onto, and hence an isomorphism. �
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Since both Ψ and its inverse, almost by definition preserve the partial order
⊂ ⊆, Ψ is an order isomorphism, and hence a complete isomorphism (i.e., preserv-
ing arbitrary infinite joins and meets in both directions) of the complete Boolean
lattices J (R) ∼= J (Q).

The next theorem is formulated in terms of lattices of ideals of the rings R
and Q, and does not require a knowledge of natural classes and the functor N (·).
Theorem 4.11. Let 1 = 1R = 1Q ∈ R ≤e QR = Q be rings, assume (H1) and (H2),
and let Ψ be the map Ψ : J (R) −→ J (Q), J ∈ J (R), Ψ(J) = J̃ , where J̃ is
as defined in Lemma 4.4. Then Ψ is an isomorphism, and both Ψ and its inverse
preserve the order.

5. Lattices

For any identity preserving homomorphism φ : R −→ Q of associative rings R, Q,
there is an order preserving induced function φ∗ = N (φ) : N (R) −→ N (Q). And
there is always a lattice direct sum N (R) = Nt(R)⊕Nf(R) of complete Boolean
lattices, and similarly for Q.

The last section showed that Ψ is an isomorphism. This section contains
new additional information that the restriction and co-restriction of φ∗ to φ∗ :
Nf (R) −→ Nf (Q) is not only an isomorphism, but essentially the inverse of Ψ,
in view of the isomorphisms Nf (R) ∼= J (R) for all R.

Since the above map φ∗ has been used often in many articles for a long period
of time, it is of interest to see what happens under the assumptions (H1), (H2) on
the rings R <e Q, and how the map Ψ relates to the map φ∗.

Recall that in general, a one to one and onto order preserving map of partially
ordered sets is not an isomorphism of ordered sets, for the inverse map need not
preserve order.

Corollary 5.1. When R <e Q and (H1), (H2) hold, then Ψ induces a lattice iso-
morphism Ψ̃ = ηQΨη−1

R : Nf (R) −→ Nf (Q), where ηR, ηQ are as in 1.4.

Proof. For any ring, J (R) ∼= Nf (R) under the isomorphism J −→ d(J/Z2R) ∈
Nf (R). �

Observation 5.2. The following is valid for any identity preserving homomorphism
φ : R −→ Q of any rings R and Q without any special assumptions. Every element
of N (Q) is of the form dQ(N), N = NQ. Then φ∗(dQ(N)) = φ∗{ Vφ | VQ ∈
dQ(N)} = d(Nφ).

Proposition 5.3. Let φ : R −→ Q be the inclusion map of R ≤e Q, and let φ∗ :
N (Q) −→ N (R) and φ∗(KQ) = d(KQ

φ ) be the induced map. Let N (R) = Nt(R)⊕
Nf (R), and similarly for Q. Assume (H1) and H(2) and let Y ∈ J (Q), and let

ZQ
2 (Q) ⊆ ZQ

2 (Q)⊕ V ⊆e Y ⊆ Y ⊕ U ⊆e Q.
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Then define I to be the unique complement closure of Z2(R) ⊕ (V ∩ R) ≤e

(Y ∩R) ≤e I.
Then the following hold:

(i) ηQ(Y ) = dQ(VQ); ηR(I) = d(V ∩R).
(ii) Z2R⊕ (V ∩R) ≤e (Y ∩R) ≤ (Y ∩R)⊕ (U ∩R) ≤e R.
(iii) (Y ∩R)⊕ (U ∩R) ≤e I ⊕ (U ∩R); I ∈ J (R); Ψ(I) = Y .
(iv) φ∗[dQ(V )] = d((V ∩R)R) = d[(Y ∩R)/Z2R]; φ∗(Nf (Q)) ⊆ N (R)f .

(v) Ψ̃φ∗ = 1Nf (Q), φ∗Ψ̃ = 1Nf (R), Ψ̃−1 = φ∗.
(vi) In particular, the restriction and co-restriction φ∗ : Nf (Q) −→ Nf (R) is a

lattice isomorphism.

Proof. (i) Since VQ ↪→e Y/ZQ
2 (Q), and V ∩ R ↪→e I/Z2(R) are essential sub-

modules, (i) now follows by the definitions of ηR(I) = d(I/Z2(R)) and ηQ(Y ) =
d(Y/ZQ

2 (Q)).
(ii) This follows by intersecting ZQ

2 (Q) ⊆ ZQ
2 (Q) ⊕X ⊆e Y ⊆ Y ⊕ U ⊆e Q

with R.
(iii) Since Y ⊥Q U , by 3.11 Y ∩R ⊥ U ∩R. But then (Y ∩R) ⊥Q (U ∩R)Q.

Since (Y ∩R)Q ⊆e Y , and similarly (U ∩R)Q ⊆e U , it follows that IQ ⊥Q U . By
2.1 (4), IQ ⊆e Y , and this means that Ψ(I) = Y .

(iv) By definition of φ∗, φ∗(dQ(V )) = d({ Vφ | V ∈ dQ(V ) } = d(VR) =
d((V ∩R)R). Since Z2(R) ≤ R is a complement submodule, by (**) V ∩R embeds
as an essential submodule of (Y ∩ R)/Z2R. Since an arbitrary element of Nf (Q)
is of the form dQ(VQ), and since Z(VR) = 0, d(V ∩R) ∈ Nf (R), (iv) follows.

(v) An arbitrary element of N (Q)f is of the form dQ(V ) as in (i). Then
Ψ̃[φ∗dQ(Q)] = ηQΨ(η−1

R [d(V ∩ R)]) = ηQΨ(I)ηQ(Y ) = dQ(Y/ZQ
2 (Q)) = dQ(V ).

Thus Ψ̃φ∗ = 1.
An arbitrary element of N (R)f is of the form d(B), where Z2R⊕B ≤e J ∈

J (R) is as in 4.2. Let J̃ ∈ J (Q) be as in 4.4. Then φ∗Ψ̃d(B)=φ∗ηQΨ(η−1
R [d(B)])=

φ∗ηQΨ(J)=φ∗dQ[J̃/(ZQ
2 (Q)]=φ

∗dQ(BQ) by Lemma 4.5 (iv). In view of (H1), and
(H2), since B ≤e BQ, φ∗Ψ̃d(B) = φ∗d(BQ) = d(B). Hence φ ∗ Ψ̃ = 1. �

Recall that N (R)f ∼= N (Q)f , so that the maps ηR, ηQ below are isomor-
phisms of partially ordered sets.

Finally, we summarize the main results of Section 5 in the next theorem.

Theorem 5.4. Let 1 = 1R = 1Q ∈ R ≤e QR = Q be rings, assume (H1) and (H2),
and let Ψ be the map Ψ : J (R) −→ J (Q), J ∈ J (R), Ψ(J) = J̃ , where J̃ is as
defined in Lemma 4.4. Let φ∗, ηR, ηQ be as in 1.4. Then there is a commutative
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diagram of isomorphisms of complete Boolean lattices. In particular,

J (R) Ψ−−−−→ J (Q)
ηR

⏐⏐/ ηQ

⏐⏐/
Nf (R)

φ∗
−−−−→ Nf (Q)

(i) Ψ , φ∗ are isomorphisms, and Ψ , φ∗ and their inverses preserve the order.
(ii) Ψ̃ = ηQφ

∗η−1
R : Nf (R) −→ Nf (Q) is an isomorphism.

(iii) Ψ̃−1 = φ∗.

6. Examples

The earlier proof that J (R) ∼= J (ER) when ZR = 0 was more of an existence type
of proof, while here an explicit way of evaluating the map Ψ : J (R) −→ J (Q) is
given. Even in cases when ZR = 0 andQ = ER, examples are of interest. Examples
are hard to construct, since if R = Z2(R), then J (R) = {0} is degenerate.
Example 6.1. For p ∈ Z, set Zp = Z/pZ, Z(p) = { a/b | a, b ∈ Z, gcd(b, p) = 1},
and set eij to be the usual matrix units, n = n+ (p) ∈ Zp, and eij = 1eij . Define

Z2(R) =

⎡⎣ 0 0 0
Zp Zp 0
0 0 0

⎤⎦ < Z2(R)⊕B ⊕ C

= R =

⎡⎣ Z 0 0
Zp Zp 0
Z 0 Z

⎤⎦ ⊂ Q =

⎡⎣Z(p) 0 0
Zp Zp 0
Z 0 Z

⎤⎦ .
Recall that ‘�’ is used to denote two-sided ideals in both of the rings R as well
as Q. Above B = Ze11 < R, C = Ze31 + Ze33 � RR, BC = 0, CB �= 0, Z(R) =
Zpe21 < Z2(R)�R. Then J (R) = { 0, I, J, R }, where I = Z2(R)⊕B�R, J =
Z2(R)⊕C�R, Ψ(I) = Ĩ = ZQ

2 (Q)⊕Z(p)e11 �Q ∈ J (Q), where ZQ
2 (Q) = Z2(R);

and similarly Ψ(J) = J̃ = J � Q. Also Ψ(R) = Q and Ψ(0) = 0. Note that
Ĩ = Z2(R)⊕BQ, BQ�Q.

Here Nf (R) = { d(B) = d(I/Z2(R)), d(C) = d(J/Z2(R)), d(B ⊕ C) =
d(R/Z2(R)), 0}, and similarly
J (Q) = {dQ(BQ) = dQ(Ĩ/ZQ

2 (Q)), d
Q(CQ), dQ(BQ⊕ CQ) = Q/ZQ

2 (Q), 0}.
Recall that the isomorphism ηR : J (R) −→ Nf (R) is defined by

ηR(I) = d(I/Z2(R)) = d(B),

and induces an isomorphism Ψ̃−1 = ηRΨ−1η−1
Q : Nf (Q) −→ Nf (R), which is

essentially the inverse of Ψ. We now verify that Ψ̃−1 = φ∗, where the latter is
the restriction and co-restriction to φ∗; Nf (Q) −→ Nf (R), which is an order
isomorphism.
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First,

Ψ̃−1(dQ(Ĩ/ZQ
2 (Q))) = ηRΨ−1η−1

Q (dQ(Ĩ/ZQ
2 (Q)))

= ηRΨ−1(Ĩ) = ηR(I) = d(I/Z2(R)) = d(B).

Next,

φ∗(dQ(Ĩ/ZQ
2 (Q))) = φ∗(dQ(BQ)) = d((BQ)R) = d(B).

Thus
Ψ̃−1 = φ∗, or Ψ̃=(φ∗|Nf (Q))−1 = (φ∗)−1.

In the previous example all the rings in each row of the matrix had to be the
same (i.e., Z, Zp, and Z). Here in the next example the fact that the ring R has
a well-defined multiplication hinges on the fact that pZ · Zp = 0. The notation of
the previous example is continued.

Example 6.2. Let

Z2(R) =

⎡⎣ 0 0 0
Zp Z 0
0 0 0

⎤⎦ �R = Z2(R)⊕B ⊕ C =

⎡⎣ Z p · Z 0
Zp Z 0
Zp 0 Z

⎤⎦
<e Q =

⎡⎣Z(p) p · Z(p) 0
Zp Z(p) 0
Zp 0 Z(p)

⎤⎦ ,
where B = Ze11 + p ·Ze12 < R, C = Zpe31 +Ze33 �RR. Then BC = 0, CB �= 0,
Z(R) = Zpe21 < Z2(R) = Z(R) + Ze22 �R. And ZQ

2 (Q) = Zpe21 + Z(p)e21. Set

I = Z2R⊕B ⊂ Ĩ = ZQ
2 (Q)⊕BQ,

or
I = Z2(R) + Ze11 + p · Ze12 ⊂ Ĩ = ZQ

2 (Q) + Z(p)e11 + p · Z(p)e12.

Similarly set
J = Z2R ⊕ C ⊂ J̃ = ZQ

2 (Q)⊕ CQ,

that is

J = Z2(R) + Zpe31 + Ze33 ⊂ J̃ = ZQ
2 (Q) + Zpe31 + Z(p)e33.

Then
J (R) = { 0, I, J, R },

while
J (Q) = { 0, Ĩ, J̃ , R }.

Again
Ψ : J (R) −→ J (Q)

by
I −→ Ĩ , J −→ J̃ , R −→ Q, 0 −→ 0.

Here

Nf (R) = { d(B), d(C), d(B ⊕ C) = d(R/Z2(R)), 0 },
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and similarly

J (Q) = { dQ(BQ), dQ(CQ), dQ(BQ⊕ CQ) = Q/ZQ
2 (Q), 0}.

Thus Ψ̃ : Nf (R) −→ Nf (Q) by

d(I/Z2(R)) −→ dQ(Ĩ/ZQ
2 (Q)), d(J/Z2(R)) −→ dQ(J̃/ZQ

2 (Q)),

d(R/Z2(R)) −→ dQ(Q/Z2(Q)), 0 −→ 0.

Here

φ∗[Ĩ/ZQ
2 (Q)] = [dQ(BQ)] = d[(BQ)R] = d[B] = (Ψ̃)−1{dQ(BQ)} = d(B),

and similarly for the others. Thus again (φ∗)−1 = Ψ̃ as previously.
It was only due to the uncomplicated nature of the last two examples that in

both R/Z2(R) = (I/Z2(R))⊕(J/Z2(R)) is a direct sum, usually it is only essential
in R/Z2(R), as is illustrated in the next example from T.Y. Lam ([14; p. 372] and
[14; p. 381, Ex. 14]).

Example 6.3. For any field or division ring F , let

B ⊕ C <e R =

⎡⎣F F F
0 F 0
0 0 F

⎤⎦ , B =

⎡⎣0 F 0
0 F 0
0 0 0

⎤⎦ , C =

⎡⎣0 0 F
0 0 0
0 0 F

⎤⎦ , Z(R) = 0, B ⊥ C.

Then J (R) = { 0, B, C, R }, and Nf (R) = { d(B), d(C), d(B ⊕ C) =
d(R), 0 }. Here the maximal right ring of quotients of R is the direct product of
the full two by two matrix ring Q = E(RR) =M2(F )×M2(F ), where φ : R −→ Q
is given by

r =

⎡⎣a b c
0 d 0
0 0 e

⎤⎦ −→ φ(r) =
([
a b
0 d

]
,

[
a c
0 e

])
.

Now J (Q) = { 0,M2(F ) × (0), (0) ×M2(F ), Q}; Ψ : J (R) −→ J (Q) is
B −→ M2(F ) × (0), C −→ (0) ×M2(F ), 0 −→ 0, R −→ Q. Thus Ψ̃(d(B)) =
dQ(M2(F )) × (0)), Ψ̃(d(C)) = dQ((0) ×M2(F )), 0 −→ 0, dQ(Q) −→ d(R). Note
that d(R) =Mod-R = 1 ∈ Nf (R) and similarly for dQ(Q).

Recall that the map φ∗ : Nf (Q) −→ Nf (R) is given by φ∗[dQ(M2(F )×(0)] =
d[(M2(F )×(0))φ] = d(B), where the last step holds because B ≤e (M2(F )×(0))R.
The latter is of course an R-module via the homomorphism φ. Thus φ∗[Ψ̃(d(B))] =
φ∗[dQ(M2(F ) × (0))] = d(B), and similarly for C. Thus φ∗Ψ̃ = 1. In order to
prove that Ψ̃φ∗ = 1, we use the steps in the last two computations to get that
Ψ̃φ∗[dQ(M2(F ) × (0))] = Ψ̃[d(B)] = dQ(M2(F )) × (0)) and similarly for C. Thus
Ψ̃−1 = φ∗.
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Abstract. Negacyclic codes of length 2s over the Galois ring GR(2a, m) are

ideals of the chain ring GR(2a,m)[x]

〈x2s
+1〉 . This structure is used to provide the Ham-

ming and homogeneous distances of all such negacyclic codes. The technique
is then generalized to obtain the structure and Hamming and homogeneous
distances of all γ-constacyclic codes of length 2s over GR(2a, m), where γ is
any unit of the ring GR(2a, m) that has the form γ = (4k0 − 1)+4k1ξ + · · ·+
4km−1ξ

m−1, for integers k0, k1, . . . , km−1. Among other results, duals of such
γ-constacyclic codes are studied, and necessary and sufficient conditions for
the existence of a self-dual γ-constacyclic code are established.
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1. Introduction

Constacyclic codes over finite fields play a very significant role in algebraic coding
theory. The most important class of these codes is the class of cyclic codes, which
has been well studied since the late 1950’s [47, 48, 49, 50]. However, most of the
research is concentrated on the situation when the code length n is relatively
prime to the characteristic of the field F . In this case, cyclic codes of length n are
classified as ideals 〈f(x)〉 of F [x]

〈xn−1〉 , where f(x) is a divisor of x
n − 1. The case

when the code length n is divisible by the characteristic p of the field yields the
so-called repeated-root codes, which were first studied since 1967 by Berman [6],
and then in the 1970’s and 1980’s by several authors such as Massey et al. [41],
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Falkner et al. [26], Roth and Seroussi [52]. However, repeated-root codes over finite
fields were investigated in the most generality in the 1990’s by Castagnoli et al.
[15], and van Lint [55], where they showed that repeated-root cyclic codes have a
concatenated construction, and are asymptotically bad. Nevertheless, such codes
are optimal in a few cases, that motivates researchers to further study this class
of codes (see, for example, [54, 44]).

In the early 1990’s, Nechaev [43], and Hammons et al. [13, 29] established
the celebrated result that many well-known seemingly nonlinear codes over finite
fields such as Kerdock and Preparata codes are actually closely related to linear
codes over the ring Z4. Since then, codes over Z4 in particular, and codes over
finite rings in general, have proved their importance, and they have received a
great deal of attention.

The Galois ring of characteristic pa and dimensionm, denoted by GR(pa,m),
is the Galois extension of degree m of the ring Zpa , for some prime number p. In
particular, rings of the form Zpa such as Z4 are Galois rings. The class of Galois
rings has been used widely as an alphabet for cyclic and negacyclic codes, for
instance [14, 56, 24, 3, 7, 8, 34, 10]. Various decoding schemes for codes over
Galois rings have also been addressed [9, 10, 11, 12].

In recent years, we have been working on the description of several classes
of constacyclic codes, such as cyclic and negacyclic codes, over various types of
Galois rings. In 2004, the structure of negacyclic codes of length 2s over Z2a was
obtained [24]. In 2005 [19], we investigated negacyclic codes of length 2s over the
Galois ring GR(2a,m). We showed that the ring GR(2a,m)[x]

〈x2s+1〉 is indeed a chain
ring, and the negacyclic codes of length 2s over GR(2a,m) are precisely the ideals
generated by (x+ 1)i of this chain ring, for i = 0, 1, . . . , 2sa. Using this structure,
Hamming distances of such negacyclic codes were addressed. We were able to
provide Hamming distances of such negacyclic codes 〈(x+ 1)i〉 for 0 ≤ i ≤ 2s(a−
1)+2s−1. The computation technique in [19] was used by other authors [59] to give
Hamming distances of such negacyclic codes for all i. In 2007, we computed the
Hamming distances of all those negacyclic codes for the case when the alphabet is
Z2a [22], i.e., the Galois ring GR(2a,m) with dimension m = 1. We also provided
the Lee, homogeneous, and Euclidean distances of all such codes. Since 2003,
special classes of repeated-root constacyclic codes over certain classes of finite
chain rings and Galois rings have been studied by numerous other authors (see,
for example, [1, 7, 8, 37, 45, 53]).

The purpose of this paper is to complete the computation of Hamming dis-
tances and furthermore provide the homogeneous distances of negacyclic codes of
length 2s over GR(2a,m) that started in [19], and then extend such structure and
distances to other more general classes of constacyclic codes. Although our tech-
nique in [19] was used recently in [59] to give Hamming distances of such negacyclic
codes, our computation here is simpler with the use of the newly obtained Ham-
ming distances of 2m-ary cyclic codes [23], and more importantly, it is applicable
to the more general classes of γ-constacyclic codes considered in Section 4. In Sec-
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tion 3, we first use the structure of negacyclic codes of length 2s over GR(2a,m),
and the Hamming distance of 2m-ary cyclic codes of length 2s, that we obtained in
[19], and [23], to provide the Hamming distances of the remaining negacyclic codes
from [19] (i.e., the codes 〈(x+1)i〉 for 2s(a−1)+2s−1+1 ≤ i ≤ 2sa−1.) Section 3 in-
cludes a different proof of the structure of the ring GR(2a,m)[x]

〈x2s+1〉 , which makes it eas-
ier to carry our results over to the setting of γ-constacyclic codes in Section 4. We
also establish the homogeneous distances of all such negacyclic codes. In Section 4,
this structure and computation technique are then extended to give the structure
and Hamming and homogeneous distances of all codes of much larger classes of
constacyclic codes over GR(2a,m), namely, the classes of γ-constacyclic codes of
length 2s over GR(2a,m), where γ is a unit of the Galois ring GR(2a,m) with the
form γ = (4k0 − 1)+ 4k1ξ+ · · ·+4km−1ξ

m−1, for integers k0, k1, . . . , km−1. These
γ-constacyclic codes include as particular cases many classes of constacyclic codes
that were investigated, such as negacyclic codes [24, 19, 22], (2θ − 1)-constacyclic
codes [20], (4k−1)-constacyclic codes [21, 22]. Among other results, we give the du-
als of all such γ-constacyclic code, and provide necessary and sufficient conditions
for the existance of a self-dual γ-constacyclic code.

2. Chain rings, Galois rings, and constacyclic codes

In this paper, all rings under consideration are associative rings with identity. An
ideal I of a ring R is called principal if it is generated by one element. A ring R is a
principal ideal ring if its ideals are principal. R is said to be local if it has a unique
maximal right (left) ideal. Furthermore, a ring R is called a chain ring if the set
of all right (left) ideals of R is linearly ordered under set-theoretic inclusion.

While we only consider finite commutative chain rings in this paper, it is
worth mentioning that a finite chain ring need not be commutative. The smallest
noncommutative chain ring has order 16 [35], that can be represented as R =
GF(4)⊕GF(4), where the operations +, · are defined as

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1) · (a2, b2) = (a1a2, a1b2 + b1a
2
2).

The following equivalent conditions are known for the class of finite commu-
tative chain rings (see for example [24, Prop. 2.1]).

Proposition 2.1. Let R be a finite commutative ring, then the following conditions
are equivalent:
(i) R is a local ring and the maximal ideal M of R is principal,
(ii) R is a local principal ideal ring,
(iii) R is a chain ring.

The following properties of chain rings are well known.

Proposition 2.2. Let R be a finite commutative chain ring, with maximal ideal
M = 〈r〉. Denote R̄ = R

M , and let β be the nilpotency of r. Then
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(a) There is some prime p and positive integers k, l with k ≥ l such that |R| =
pk, |R̄| = pl, and the characteristic of R and R̄ are powers of p,

(b) The ideals of R are 〈ri〉, where i = 0, 1, . . . , β, and they are strictly inclusive:

R = 〈r0〉 � 〈r1〉 � · · · � 〈rβ−1〉 � 〈rβ〉 = 〈0〉.

(c) For i = 0, . . . , β, |〈ri〉| = |R̄|β−i. In particular, |R| = |R̄|β, i.e., k = lβ.

A polynomial in Zpa [x] is called a basic irreducible polynomial if its reduction
modulo p is irreducible in Zp[x]. TheGalois ring of characteristic pa and dimension
m, denoted by GR(pa,m), is the Galois extension of degree m of the ring Zpa .
Equivalently,

GR(pa,m) =
Zpa [u]
〈h(u)〉 ,

where h(u) is a monic basic irreducible polynomial of degree m in Zpa [u]. Krull
[36] initiated the study of Galois rings in 1924, and later these rings were rediscov-
ered independently by Janusz [33] in 1966, and Raghavendran [51] in 1969. Since
then, Galois rings have been proven to be very applicable in many branches of
mathematics such as combinatorics and coding theory. Note that if a = 1, then
GR(p,m) = GF(pm), and if m = 1, then GR(pa, 1) = Zpa . We list some well-
known facts about Galois rings (cf. [42, 29, 32, 46]), which will be used freely
throughout this paper.

Proposition 2.3. Let GR(pa,m) = Zpa [u]
〈h(u)〉 be a Galois ring, then the following con-

ditions hold:

(i) Each ideal of GR(pa,m) is of the form 〈pk〉 = pk GR(pa,m), for 0 � k � a. In
particular, GR(pa,m) is a chain ring with maximal ideal 〈p〉 = pGR(pa,m),
and residue field GF(pm).

(ii) For 0 � i � a, |piGR(pa,m)| = pm(a−i).
(iii) Each element of GR(pa,m) can be represented as vpk, where v is a unit and

0 � k � a, in this representation k is unique and v is unique modulo 〈pn−k〉
(iv) h(u) has a root ζ in GR(pa,m), which is also a primitive (pm − 1)th root of

unity. The set
T (p,m) = {0, 1, ζ, ζ2, . . . , ζpm−2}

is a complete set of representatives of the cosets GR(pa,m)
p GR(pa,m) = GF(pm) in

GR(pa,m). Each element r ∈ GR(pa,m) can be written uniquely as

r = ζ0 + ζ1p+ · · ·+ ζa−1p
a−1,

with ζi ∈ T (p,m), 0 � i � a− 1.
(v) For each positive integer d, there is a natural injective ring homomorphism

GR(pa,m)→ GR(pa,md).
(vi) In GR(pa,m) = Zpa [u]

〈h(u)〉 , let ξ = u + 〈h(u)〉, then h(ξ) = 0, and ξ is in fact
a primitive element of GR(pa,m). The Galois ring GR(pa,m) can be viewed
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as GR(pa,m) = Zpa [ξ]. Every element r ∈ GR(pa,m) can be expressed as

r = r0 + r1ξ + · · ·+ rm−1ξ
m−1,

where r0, r1, . . . , rm−1 ∈ Zpa .
(vii) There is a natural surjective ring homomorphism GR(pa,m)→ GR(pa−1,m)

with kernel 〈pa−1〉.
(viii)Each subring of GR(pa,m) is a Galois ring of the form GR(pa, l), where l

divides m. Conversely, if l divides m then GR(pa,m) contains a unique copy
of GR(pa, l). That means, the number of subrings of GR(pa,m) is the number
of positive divisors of m.

For a finite ring R, consider the set Rn of n-tuples of elements from R as
a module over R. Any subset C ⊆ Rn is called a code of length n over R, the
code C is linear if in addition, C is an R-submodule of Rn. Given an n-tuple
(x0, x1, . . . , xn−1) ∈ Rn, the cyclic shift τ and negashift ν on Rn are defined as
usual, i.e.,

τ(x0, x1, . . . , xn−1) = (xn−1, x0, x1, · · · , xn−2),
and

ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, · · · , xn−2).

A code C is called cyclic if τ(C) = C, and C is called negacyclic if ν(C) = C. Cyclic
codes over finite fields, and more generally, over finite rings, are well studied, while
negacyclic codes over finite fields were initiated by Berlekamp in the late 1960’s
(cf. [4, 5]), and since 1999, repeated-root negacyclic codes over finite rings have
been brought to attention by Wolfmann [57], Blackford [7], and Dinh and López-
Permouth [24], among others.

More generally, if λ is a unit of the ring R, then the λ-constacyclic (λ-twisted)
shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed under
the λ-constacyclic shift τλ. In light of this definition, when λ = 1, λ-constacyclic
codes are cyclic codes, and when λ = −1, λ-constacyclic codes are just negacyclic
codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x+ · · ·+ cn−1x

n−1, and the code C is in turn
identified with the set of all polynomial representations of its codewords. Then in
the ring R[x]

〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x). From that, the
following fact is well known and straightforward:

Proposition 2.4. A linear code C of length n is λ-constacyclic over R if and only
if C is an ideal of R[x]

〈xn−λ〉 .

Given n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn, their
inner product or dot product is defined as usual

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1
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(evaluated in R). Two n-tuples x, y are called orthogonal if x · y = 0. For a linear
code C over R, its dual code C⊥ is the set of n-tuples over R that are orthogonal
to all codewords of C, i.e.,

C⊥ = {x | x · y = 0, ∀y ∈ C}.
A code C is called self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥.
The following result is well known (cf. [14, 24]).

Proposition 2.5. Let R be a finite chain ring of size pα. The number of codewords
in any linear code C of length n over R is pk, for some integer k, 0 ≤ k ≤ αn.
Moreover, the dual code C⊥ has pαn−k codewords, so that |C| · |C⊥| = |R|n.

The dual of a cyclic code is a cyclic code, and the dual of a negacyclic code
is a negacyclic code. In general, we have the following implication of the dual of a
λ-constacyclic code.

Proposition 2.6. The dual of a λ-constacyclic code is a λ−1-constacyclic code.

Proof. Let C be a λ-constacyclic code length n over R. Consider arbitrary elements
x ∈ C⊥, and y ∈ C. Since C is λ-constacyclic, τn−1

λ (y) ∈ C. Thus,
0 = x · τn−1

λ (y) = λτλ−1(x) · y = τλ−1(x) · y.
That means τλ−1 (x) ∈ C⊥. Therefore, C⊥ is closed under the τλ−1-shift, i.e., C⊥

is a λ−1-constacyclic code. �

3. Negacyclic codes of length 2s over GR(2a, m)

As mentioned in Proposition 2.4, negacyclic codes of length 2s over a Galois ring
GR(2a,m) are precisely the ideals of ring

R(a,m) = GR(2a,m)[x]
〈x2s + 1〉 .

The following fact is useful in expressing (x+ 1)2
n

in R(a,m), as well as relating
the roles of the elements x+ 1 and 2 in R(a,m):
Proposition 3.1. (cf. [19, Lemma 3.1, Proposition 3.2]) For any positive integer n,
there exists a polynomial αn(x) ∈ Z[x] such that (x + 1)2

n

= x2n

+ 1 + 2αn(x),
and αn(x) is a unit in R(a,m). In particular, 〈(x + 1)2

s〉 = 〈2〉 in R(a,m), and
the element x+ 1 is nilpotent in R(a,m) with nilpotency 2sa.

We proved in [19, Proposition 3.3, Theorem 3.6] that R(a,m) is a chain ring,
and from that derived the structure of its ideals as follows:

Theorem 3.2. The ring R(a,m) is a chain ring with maximal ideal 〈x + 1〉 and
residue field GF(2m). Negacyclic codes of length 2s over the Galois ring GR(2a,m)
are precisely the ideals 〈(x + 1)i〉, 0 ≤ i ≤ 2sa, of R(a,m). Each negacyclic code
〈(x + 1)i〉 has 2m(2sa−i) codewords, its dual is the negacyclic code 〈(x + 1)2

sa−i〉,
which contains 2mi codewords.
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Here, we provide a different proof, using polynomial representation, which
makes it easier to extend to a more general setting in Section 4.

Proof. Let f(x) ∈ R(a,m), then f(x) can be expressed as

f(x) = b0 + b1(x+ 1) + · · ·+ b2s−1(x + 1)2
s−1,

where bi ∈ GR(2a,m). If b0 is in the maximal ideal 2GR(2a,m), then f(x) is
nilpotent, and so it is not invertible. On the other hand, assume that f(x) is
not invertible. If b0 �∈ 2GR(2a,m), then b0 is a unit in GR(2a,m). In R(a,m),
by Proposition 3.1, x + 1 is nilpotent. So there is an odd integer k such that
(x+1)k = 0, and thus, g(x)k = 0, where g(x) = b1(x+1)+ · · ·+ b2s−1(x+1)2

s−1.
Now, f(x) = b0 + g(x), and thus,

1 = 1 + [g(x)b−1
0 ]k = [1 + g(x)b−1

0 ]h(x) = f(x)b−1
0 h(x),

which contradicts the assumption that f(x) is not invertible. Therefore, b0 must
be in 2GR(2a,m). That means that f(x) is not invertible if and only if b0 ∈
2GR(2a,m). Moreover, in light of Proposition 3.1, 2 ∈ 〈(x+1)2s〉 ⊆ 〈x+1〉. Thus,
〈x + 1〉 is the set of noninvertible elements of R(a,m), proving that R(a,m) is a
chain ring whose maximal ideal is 〈x + 1〉 (cf. Proposition 2.1). By Proposition
3.1, the nilpotency of x + 1 is 2sa, so the ideals of R(a,m) are 〈(x + 1)i〉, 0 ≤
i ≤ 2sa (cf. Proposition 2.2). The rest of the theorem follows readily from the
fact that negacyclic codes of length 2s over GR(2a,m) are ideals of this chain ring
R(a,m). �

Using this structure, we obtained in [19] the Hamming distances of a large
part of the class of such negacyclic codes. Indeed, the Hamming distances of the
codes 〈(x + 1)i〉, where 0 ≤ i ≤ 2s(a− 1) + 2s−1, were established:

Proposition 3.3. (cf. [19, Theorem 4.1]) Let C be a negacyclic code of length 2s over
GR(2a,m), i.e., C = 〈(x + 1)i〉 ⊆ R(a,m), for some integer i ∈ {0, 1, . . . , 2sa},
and let d(C) denote the Hamming distance of C. Then

d(C)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0 if i = 2sa,
= 1 if 0 ≤ i ≤ 2s(a− 1),
= 2 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1,
≥ 2 if 2s(a− 1) + 2s−1 + 1 ≤ i ≤ 2sa− 1.

We now obtain the Hamming distances of the remaining negacyclic codes,
i.e., for 2s(a − 1) + 2s−1 + 1 ≤ i ≤ 2sa − 1. Although our technique in [19] was
used recently in [59] to compute Hamming distances of such negacyclic codes, our
computation here is simpler, and more importantly, it is applicable also for the
more general classes of γ-constacyclic codes in the next section. The main tool is
the Hamming distances of all 2m-ary cyclic codes of length 2s, that we gave in [23].
Note that, over F2m , cyclic codes and negacyclic codes coincide. Their Hamming
distances are as follows:
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Theorem 3.4. (cf. [23, Corollary 4.12]) Let C be a (nega)cyclic code of length 2s

over F2m , then C = 〈(x + 1)i〉 ⊆ F2m [x]
〈x2s+1〉 , for i ∈ {0, 1, . . . , 2s}. The Hamming

distance d(C) of C is determined by:

d(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = 0,
2, if 1 ≤ i ≤ 2s−1,
2k+1, if 2s − 2s−k + 1 ≤ i ≤ 2s − 2s−k + 2s−k−1,

i.e., 1 +
∑k

l=1 2
s−l ≤ i ≤ ∑k+1

l=1 2
s−l,

where 1 ≤ k ≤ s− 1,
0, if i = 2s.

Proposition 3.5. Let j be an integer with 1 ≤ j ≤ s− 1. Then in R(a,m),
(i) the Hamming distance of

〈
(x+ 1)2

s(a−1)+
∑ j

l=1 2s−l
〉

is 2j,

(ii) the Hamming distance of
〈
(x+ 1)2

s(a−1)+1+
∑ j

l=1 2s−l
〉

is 2j+1,

(iii) the Hamming distance of
〈
(x+ 1)i

〉
is 2k+1, for any integer i such that

2s(a− 1) + 2s − 2s−k + 1 ≤ i ≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e.,

2s(a− 1) + 1 +
∑k

l=1
2s−l ≤ i ≤ 2s(a− 1) +

∑k+1

l=1
2s−l,

where 1 ≤ k ≤ s− 1.

Proof. By Proposition 3.1, 〈(x + 1)2
s〉 = 〈2〉 in R(a,m). Therefore,〈

(x+ 1)2
s(a−1)+

∑ j
l=1 2s−l

〉
=

〈
2a−1 (x+ 1)

∑ j
l=1 2s−l

〉
,

and 〈
(x+ 1)2

s(a−1)+1+
∑ j

l=1 2s−l
〉
=

〈
2a−1 (x+ 1)1+

∑ j
l=1 2s−l

〉
.

Now, the ideals〈
2a−1 (x+ 1)

∑ j
l=1 2s−l

〉
and

〈
2a−1 (x+ 1)1+

∑j
l=1 2s−l

〉
of R(a,m) are indeed the sets of elements from the ideals

〈
(x+ 1)

∑ j
l=1 2s−l

〉
and〈

(x+ 1)1+
∑ j

l=1 2s−l
〉
of F2m [x]

〈x2s+1〉 multiplied with 2a−1. Hence, (i) and (ii) follow
from Theorem 3.4.

Now, using (i) and (ii), we get that the Hamming distance of both ne-
gacyclic codes

〈
(x+ 1)2

s(a−1)+1+
∑ k

l=1 2s−l
〉
, and

〈
(x+ 1)2

s(a−1)+
∑k+1

l=1 2s−l
〉
are

2k+1. Since the ideals of R(a,m) are strictly inclusive, we get (iii). �

From Propositions 3.3 and 3.5, we now have the Hamming distances of all
negacyclic codes of length 2s over GR(2a,m):
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Theorem 3.6. Let C be a negacyclic code of length 2s over GR(2a,m), i.e., C =
〈(x + 1)i〉 ⊆ R(a,m), for some integer i ∈ {0, 1, . . . , 2sa}. Then the Hamming
distance of C can be completely determined as follows:

d(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 2sa,
1 if 0 ≤ i ≤ 2s(a− 1),
2 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1,
2k+1 if 2s(a− 1) + 2s − 2s−k + 1 ≤ i

≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e., 2s(a− 1) + 1 +
∑k

l=1 2
s−l ≤ i

≤ 2s(a− 1) +
∑k+1

l=1 2
s−l,

where 1 ≤ k ≤ s− 1.

In [22, Theorem 4.4], we derived the Hamming distances of all negacyclic
codes of length 2s over the Galois ring Z2a , i.e., GR(2a, 1). That gave an affirmative
answer to our conjecture in [19, Conjecture 4.16]. Theorem 3.6 shows that the same
formula can be used to determine the Hamming distances of all negacyclic codes
of length 2s over GR(2a,m), for any m.

We now establish the other kind of distance of all negacyclic codes, namely,
the homogeneous distance. The homogeneous weight was first introduced in [16]
(see also [17, 18]) over integer residue rings, and later over finite Frobenius rings.
This weight has numerous applications for codes over finite rings, such as construct-
ing extensions of the Gray isometry to finite chain rings [31, 30, 27], or providing
a combinatorial approach to MacWilliams equivalence theorems (cf. [38, 39, 58])
for codes over finite Frobenius rings [28].

Let a ≥ 2, the homogeneous weight on GR(2a,m) is a weight function on
GR(2a,m) given as

wth : GR(2a,m) −→ N,

r !→

⎧⎪⎨⎪⎩
0, if r = 0
(2m − 1) 2m(a−2), if r ∈ GR(2a,m)

∖
2a−1GR(2a,m)

2m(a−1), if r ∈ 2a−1GR(2a,m)
∖
{0}.

The homogeneous weight of a codeword (c0, c1, . . . , cn−1) of length n over
GR(2a,m) is the rational sum of the homogeneous weights of its components,
i.e.,

wth(c0, c1, . . . , cn−1) = wth(c0) + wth(c1) + · · ·+ wth(cn−1).

The homogeneous distance (or minimum homogeneous weight) dh of a linear code
C is the minimum homogeneous weight of nonzero codewords of C:

dh(C) = min{wth(x− y) : x, y ∈ C, x �= y} = min{wth(c) : c ∈ C, c �= 0}.

Theorem 3.7. Let C be a negacyclic code of length 2s over GR(2a,m), i.e., C =
〈(x + 1)i〉 ⊆ R(a,m), for some integer i ∈ {0, 1, . . . , 2sa}. Then the homogeneous
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distance dh(C) of C can be completely determined as follows:

dh(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 2sa,
(2m − 1) 2m(a−2) if 0 ≤ i ≤ 2s(a− 2),
2m(a−1) if 2s(a− 2) + 1 ≤ i ≤ 2s(a− 1),
2m(a−1)+1 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1,

2m(a−1)+k+1 if 2s(a− 1) + 2s − 2s−k + 1 ≤ i
≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e., 2s(a− 1) + 1 +
∑k

l=1 2
s−l ≤ i

≤ 2s(a− 1) +
∑k+1

l=1 2
s−l,

where 1 ≤ k ≤ s− 1.

Proof. In R(a,m), note that, by Proposition 3.1, 〈(x + 1)2
s〉 = 〈2〉, therefore

〈(x+ 1)2
sj+t〉 = 〈2j(x+ 1)t〉.

If 0 ≤ i ≤ 2s(a− 2), we get 〈1〉 ⊇ C ⊇ 〈2a−2〉. Since dh(〈1〉) = dh(〈2a−2〉) =
(2m − 1) 2m(a−2), dh(C) = (2m − 1) 2m(a−2).

If 2s(a − 2) + 1 ≤ i ≤ 2s(a − 1), then 〈2a−2(x + 1)〉 ⊇ C ⊇ 〈2a−1〉. Clearly,
dh(〈2a−1〉) = 2m(a−1), and dh(〈2a−2(x+1)〉) ≥ 2(2m−1)2m(a−2) ≥ 2m(a−1). Thus,

2m(a−1) ≤ dh(〈2m(a−1)〉) ≤ dh(C) ≤ dh(〈2a−1〉) = 2m(a−1),

implying dh(C) = 2m(a−1).
If 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1, then 〈2a−1(x+ 1)〉 ⊇ C ⊇ 〈2a−1(x+

1)2
s−1〉. By Theorem 3.6, the Hamming distances of both 〈2a−1(x + 1)〉 and

〈2a−1(x + 1)2
s−1〉 are 2, thus their homogeneous distances are 2m(a−1)+1. Hence,

dh(C) = 2m(a−1)+1.

For 1 ≤ k ≤ s− 1, if 2s(a− 1) + 1+
k∑

l=1

2s−l ≤ i ≤ 2s(a− 1) +
k+1∑
l=1

2s−l, then

〈
2a−1(x+ 1)

1+
k∑

l=1
2s−l

〉
⊇ C ⊇

〈
2a−1(x+ 1)

k+1∑
l=1

2s−l
〉
.

Using Theorem 3.6, we have the Hamming distances of both〈
2a−1(x+ 1)

1+
k∑

l=1
2s−l

〉
and

〈
2a−1(x+ 1)

k+1∑
l=1

2s−l
〉

are 2k+1. Thus, their homogeneous distances are 2k+1 · 2m(a−1) = 2m(a−1)+k+1.
Therefore, dh(C) = 2m(a−1)+k+1. �

4. Some classes of constacyclic codes
of length 2s over GR(2a, m)

As mentioned in Proposition 2.3, since the Galois ring GR(2a,m) is a Galois
extension of Z2a , there exists a primitive element ξ such that GR(2a,m) = Z2a [ξ].
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Each element r ∈ GR(2a,m) is uniquely expressed as:

r = r0 + r1ξ + · · ·+ rm−1ξ
m−1,

where ri ∈ Z2a . To simplify notations, we will say that an element γ of GR(2a,m)
is of Type (∗−) if it has the form γ = (4k0−1)+4k1ξ+ · · ·+4km−1ξ

m−1, and γ is
called to be of Type (∗+) if it has of the form γ = (4k0+1)+4k1ξ+· · ·+4km−1ξ

m−1,
for integers k0, k1, . . . , km−1. Clearly, elements of Type (∗−) or (∗+) are invertible
in GR(2a,m). Furthermore, the sets of Type (∗−) and Type (∗+) elements are
disjoint when a ≥ 2, they coincide if a = 1.

We now extend our technique in Section 3 to consider γ-constacyclic codes
of length 2s over GR(2a,m) where γ is of Type (∗−). Such γ-constacyclic codes
are ideals of the ring

R(a,m, γ) = GR(2a,m)
〈x2s − γ〉 .

Proposition 3.1 holds true when we replace the ring R(a,m) by R(a,m, γ).

Proposition 4.1. Let γ ∈ GR(2a,m) be of Type (∗−). For any positive integer n,
there exists a polynomial αn(x) ∈ Z[x] such that (x+1)2

n

= x2n

+1+2αn(x), and
αn(x) is a unit in R(a,m, γ). In R(a,m, γ), 〈(x + 1)2

s〉 = 〈2〉, and the element
x+ 1 is nilpotent with nilpotency 2sa.

Proof. The first assertion can be proved using the same proof as for R(a,m) (cf.
[19, Lemma 3.1]). For the second statement, using n = s, we have that there is an
unit αs(x) in R(a,m, γ) such that:

(x+ 1)2
s

= x2s

+ 1 + 2αs(x)

= γ + 1 + 2αs(x)

= 4k0 + 4k1ξ + · · ·+ 4km−1ξ
m−1 + 2αs(x)

= 2αs(x)(1 + y),

where y = 2(k0+k1ξ+· · ·+km−1ξ
m−1)α−1

s (x) is a nilpotent element in R(a,m, γ).
Thus, in R(a,m, γ), 1+ y is invertible, and hence, 〈(x+1)2

s〉 = 〈2〉, and x+1 has
nilpotency 2sa. �

Using Proposition 4.1, the same proofs as in Section 3 can be extended from
R(a,m) to R(a,m, γ) to provide the structure and Hamming and homogeneous
distances of all γ-constacyclic codes of length 2s over GR(2a,m):

Theorem 4.2. (cf. Theorems 3.2, 3.6, 3.7) Let γ ∈ GR(2a,m) be of Type (∗−).
The ring R(a,m, γ) is a chain ring with maximal ideal 〈x + 1〉 and residue field
GF(2m). γ-constacyclic codes of length 2s over the Galois ring GR(2a,m) are
precisely the ideals 〈(x + 1)i〉, 0 ≤ i ≤ 2sa, of R(a,m, γ). Each γ-constacyclic
code C = 〈(x+1)i〉 has 2m(2sa−i) codewords, and its Hamming distance d(C) and
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homogeneous distances dh(C) are completely determined as follows:

d(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 2sa,
1 if 0 ≤ i ≤ 2s(a− 1),
2 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1,
2k+1 if 2s(a− 1) + 2s − 2s−k + 1 ≤ i

≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e., 2s(a− 1) + 1 +
∑k

l=1 2
s−l ≤ i

≤ 2s(a− 1) +
∑k+1

l=1 2
s−l,

where 1 ≤ k ≤ s− 1.

dh(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 2sa,
(2m − 1) 2m(a−2) if 0 ≤ i ≤ 2s(a− 2),
2m(a−1) if 2s(a− 2) + 1 ≤ i ≤ 2s(a− 1),
2m(a−1)+1 if 2s(a− 1) + 1 ≤ i ≤ 2s(a− 1) + 2s−1,
2m(a−1)+k+1 if 2s(a− 1) + 2s − 2s−k + 1 ≤ i

≤ 2s(a− 1) + 2s − 2s−k + 2s−k−1,

i.e., 2s(a− 1) + 1 +
∑k

l=1 2
s−l ≤ i

≤ 2s(a− 1) +
∑k+1

l=1 2
s−l,

where 1 ≤ k ≤ s− 1.

Lemma 4.3 Let γ1, γ2 be of Type (∗−), and γ3, γ4 be of Type (∗+). Then

(a) γ1γ2 is of Type (∗+), i.e., the product of two elements of Type (∗−) is an
element of Type (∗+).

(b) γ1γ3 is of Type (∗−), i.e., the product of an element of Type (∗−) and an
element of Type (∗+) is an element of Type (∗−).

(c) γ3γ4 is of Type (∗+), i.e., the product of two elements of Type (∗+) is an
element of Type (∗+).

(d) γ−1
1 is of Type (∗−), i.e., the inverse of an element of Type (∗−) is an element

of Type (∗−).
(e) γ−1

3 is of Type (∗+), i.e., the inverse of an element of Type (∗+) is an element
of Type (∗+).

Proof. Note that each element (4k0 − 1) + 4k1ξ + · · · + 4km−1ξ
m−1 of Type (∗−)

can be expressed as 4z−1, and any element (4k′0−1)+4k′1ξ+ · · ·+4k′m−1ξ
m−1 of

Type (∗+) can be expressed as 4z′ + 1, for z, z′ ∈ GR(2a,m). Parts (a), (b), and
(c) follow readily. For (d), write γ1 = 4z − 1. Then, observe that

γ1

a−1∏
j=0

[
(4z)2

j

+ 1
]
= (4z)2

a − 1 = −1,

therefore,

γ−1
1 = γ1

a−1∏
j=0

[
(4z)2

j

+ 1
]2

.
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Since, for 0 ≤ j ≤ a− 1, (4z)2
j

+ 1 are of Type (∗+), (b), (c) imply that γ−1 is of
Type (∗−), proving (d). The proof of (e) is similar to that of (d). �
Proposition 4.4. Let γ ∈ GR(2a,m) be of Type (∗−). Assume that C is a γ-
constacyclic code of length 2s over GR(2a,m). Then C = 〈(x+ 1)i〉 ⊆ R(a,m, γ),
for some i ∈ {0, 1, . . . , 2sa}. Its dual is a γ−1-constacyclic code of length 2s over
GR(2a,m), C⊥ = 〈(x + 1)2

sa−i〉 ⊆ R(a,m, γ−1), which contains 2mi codewords.

Proof. In light of Proposition 2.6, C⊥ is a γ−1-constacyclic code of length 2s over
GR(2a,m). Lemma 4.3 shows that γ−1 is also of Type (∗−). Thus, Theorem 4.2 is
applicable for C⊥ and R(a,m, γ−1). Hence, C⊥ is an ideal of the form 〈(x+ 1)j〉,
0 ≤ j ≤ 2sa, of the chain ringR(a,m, γ−1). On the other hand, by Proposition 2.5,

|C| · |C⊥| = |GR(2a,m)|2s

= 22sam,

which implies,

|C⊥| = 22sam

|C| =
22sam

|2m(2sa−i)| = 2mi.

Therefore, C⊥ must be the ideal 〈(x + 1)2
sa−i〉 of R(a,m, γ−1). �

Theorem 4.5. Let γ ∈ GR(2a,m) be of Type (∗−), i.e., γ can be expressed as

γ = (4k0 − 1) + 4k1ξ + · · ·+ 4km−1ξ
m−1,

for integers k0, k1, . . . , km−1. Self-dual γ-constacyclic codes of length 2s over
GR(2a,m) exist if and only if γ2 = 1, which occurs only in the following cases:
(i) 1 ≤ a ≤ 3 : any values of k0, k1, . . . , km−1;
(ii) a ≥ 4 : ki ≡ 0 (mod 2a−3), 0 ≤ i ≤ m− 1, i.e., γ is of the form

γ = (2a−1l0 − 1) + 2a−1l1ξ + · · ·+ 2a−1lm−1ξ
m−1,

for li ∈ {0, 1}.
In such case, 〈(x+ 1)2

s−1a〉 is the unique self-dual γ-constacyclic code.

Proof. Let C be a γ-constacyclic code of length 2s over GR(2a,m). By Proposition
4.4, C = 〈(x + 1)j〉, for some integer j ∈ {0, 1, . . . , 2sa} and C = C⊥ if and only
if γ = γ−1 and j = 2sa− j. That means that C is self-dual if and only if γ2 = 1,
and in such case C must be the ideal 〈(x + 1)2

s−1a〉.
We now determine values of γ of the given form such that γ2 = 1. Denote

z = k0 + k1ξ + · · · + km−1ξ
m−1, then γ = 4z − 1. We have γ2 = (4z − 1)2 =

8z(2z − 1) + 1, and so γ2 = 1 if and only if 8z = 0, as 2z − 1 is invertible in
GR(2a,m). If 1 ≤ a ≤ 3, 8z = 0 in GR(2a,m) for any z. When a ≥ 4, 8z = 0
if and only if, for 0 ≤ i ≤ m − 1, 8ki = 0 in Z2a , which is equivalent to ki ≡ 0
(mod 2a−3). �
Remark 4.6.

4.6.1. When a = 1, there is just one class of such γ-constacyclic codes, namely,
cyclic codes of length 2s over GR(2,m) = F2m , those were studied in [23]. When
a = 2, there is also only one class of such γ-constacyclic codes, namely, negacyclic
codes of length 2s over GR(4,m), those were investigated by many researchers in
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Table 1. γ-constacyclic codes of length 2s over GR(2a,m) for any unit
γ of the form γ = (4k0 − 1) + 4k1ξ + · · ·+ 4km−1ξ

m−1.

a number of possible number of possible values of γ
values of γ so that self-dual codes exist

(number of classes of (number of classes of γ-constacyclic
γ-constacyclic codes) codes having self-dual codes)

1 1 (γ = 1) 1

2 1 (γ = −1) 1

3 2m 2m

≥ 4 2m(a−2) 2m

the general case, as well as in the special case when m = 1 (i.e., the alphabet is
Z4), see, for example, [1, 2, 7, 22, 24]. When a > 2, there are 2m(a−2) classes of
such γ-constacyclic codes. When a = 3, Theorem 4.5 implies that γ2 = 1 for any
values of k0, k1, . . . , km−1, which shows unique self-dual γ-constacyclic code over
GR(23,m) always exists. Table 1 gives the number of γ-constacyclic classes, and
those that have self-dual codes.

4.6.2. The class of γ-constacyclic codes with γ = 4k0−1, i.e., k1 = · · · = km−1 = 0,
over Z2a , i.e., the Galois ring GR(2a,m) with dimension m = 1, was investigated
in [21] and [22, Section XIII]. There are 2a−2 classes of such γ-constacyclic codes.

4.6.3. Cyclic codes are in general not such γ-constacyclic codes (except the case
a = 1, when cyclic and negacyclic codes coincide). As pointed out in Proposition
2.4, cyclic codes of length 2s over GR(2a,m) are ideals of the ring R(a,m, 1) =
GR(2a,m)[x]

〈x2s−1〉 . Using polynomial representation similar to the proof of Proposition
3.2, it can be shown that, unlike the chain ring R(a,m), this ring R(a,m, 1) is
a local ring with maximal ideal 〈2, x + 1〉, but it is not a chain ring. Indeed, [53,
Theorem 3.4] showed that for any prime p, GR(pa,m)

〈xps−1〉 is not a chain ring. While
the complete structure of such cyclic codes is still unknown in general, there have
been many results for the special case when the alphabet is the ring Z4 (a = 2,
m = 1). In 2003, [1, 2] gave a structure of cyclic codes of length 2s over Z4, and
[8] provided a structure of cyclic codes over Z4 of oddly even length (length 2n,
where n is odd). In 2006, [25] established a structure of cyclic codes over Z4 of any
length.
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Couniformly Presented Modules and Dualities
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Abstract. A module UR is couniform if it has dual Goldie dimension 1, that
is, it is non-zero and the sum of any two proper submodules of UR is a proper
submodule of UR. A module MR is couniformly presented if it is non-zero
and there exists a short exact sequence 0 → CR → PR → MR → 0 with
PR projective and both CR and PR couniform modules. The endomorphism
ring of a couniformly presented module has at most two maximal ideals, and
a weak form of the Krull-Schmidt Theorem holds for finite direct sums of
couniformly presented modules. Cokernels of morphisms between couniform
projective modules are couniformly presented, provided that the morphisms
are not onto. Via a suitable duality functor, finite direct sums of cokernels of
morphisms between couniform projective modules correspond to finite direct
sums of kernels of morphisms between uniform injective modules.
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1. Introduction

This paper is divided into two parts and devoted to two topics. In the first part,
we generalize to a larger class of modules the results that were proved in [1] for
cyclically presented modules over local rings. This larger class of modules consists
of all couniformly presented modules, that is, the non-zero modules MR for which
there exists an exact sequence 0→ CR → PR →MR → 0 with PR projective and
both CR and PR couniform modules. Recall that a module is couniform if it has
dual Goldie dimension one, that is, it is non-zero and the sum of any two proper
submodules is a proper submodule.

During this last year, several classes of modules with a behavior very similar
to the behavior described in Theorems 2.5 and 4.3 (at most two maximal ideals

The content of this paper is part of a thesis written by Nicola Girardi under the supervision of
Alberto Facchini (University of Padova).
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in the endomorphism ring and the validity of a weak form of the Krull-Schmidt
Theorem) have been discovered: cyclically presented modules over local rings [1],
kernels of non-zero morphisms between indecomposable injective modules [2], ar-
tinian modules whose socle is isomorphic to the direct sum of two fixed simple
modules [7], and so on. All these classes mimic the behavior of uniserial modules
[4], or, more generally, biuniform modules [5]. In this paper, we study the behavior
of couniformly presented modules, which extend to arbitrary rings the class of
cyclically presented modules over local rings.

Direct sums of modules in each of the previous classes are described by a
pair of invariants: lower part and epigeny class for cyclically presented modules
over local rings, upper part and monogeny class for kernels of non-zero morphisms
between indecomposable injective modules, monogeny class and epigeny class for
uniserial modules, or, more generally, biuniform modules. In the second part of
this paper, we consider dualities that allow us to exchange, in our context, two of
these notions: monogeny class and epigeny class, and lower part and upper part
(Propositions 5.2 and Corollary 6.2). It was discovered in [1] that the concepts of
epigeny class and lower part for cyclically presented modules over local rings are
exchanged in a similar way by the Auslander-Bridger transpose.

The first author is greatly indebted to Dolors Herbera, who suggested to
study the category C that appears in Theorem 5.1, that is, cokernels of morphisms
between couniform projective modules. Our idea of studying the category of couni-
formly presented modules is a slight generalization of her idea. Also, some of the
techniques we use in this paper were suggested by her and already appear in the
paper [6].

All the rings considered in this paper will be assumed to have an identity
element. For any ring R, the Jacobson radical of R will be denoted by J(R), and
the group of units will be denoted by U(R). Thus U(R) = R \ J(R) when R
is a local ring. The modules we will consider are unitary right modules unless
otherwise stated, and morphisms will be written on the left. If MR is a module,
we will write 〈MR〉 to denote the isomorphism class of MR, that is, the class of
all right R-modules isomorphic to MR.

2. Couniformly presented modules

Recall that a right module MR over a ring R is said to be couniform (or hollow) if
it has dual Goldie dimension one, that is, if it is non-zero and the sum of any two
proper submodules of MR is a proper submodule of MR. Equivalently, a non-zero
module is couniform if and only if all its proper submodules are superfluous, if
and only if all its non-zero homomorphic images are indecomposable modules. For
instance, every non-zero uniserial module, that is, every non-zero module whose
lattice of submodules is linearly ordered under inclusion, is couniform. The follow-
ing easy lemma, taken from [1, Lemma 8.7], describes the projective modules that
are couniform.
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Lemma 2.1. The following conditions are equivalent for a projective right module
PR over an arbitrary ring R:
(1) PR is couniform.
(2) PR is the projective cover of a simple module.
(3) The endomorphism ring End(PR) of PR is local.
(4) There exists an idempotent e ∈ R with PR

∼= eR and eRe a local ring.
(5) PR is a finitely generated module with a unique maximal submodule.
(6) PR has a greatest proper submodule.

Moreover, if these equivalent conditions hold, then Hom(PR, R) is a couniform
projective left R-module.

Notice the following interesting elementary fact:

Lemma 2.2. If PR →MR is the projective cover of a couniform module MR, then
the projective module PR is also couniform.

Proof. Let K be the kernel of PR → MR. Assume PR = A1 + A2. Then (A1 +
K)/K + (A2 + K)/K = PR/K ∼= MR, so that, for i = 1 or i = 2, one has that
(Ai + K)/K = PR/K. Thus Ai + K = PR. Now K superfluous in PR implies
Ai = PR. �

By the previous two lemmas, there is a bijection between the set of all iso-
morphism classes 〈PR〉, where PR ranges in the class of all couniform projective
right R-modules, and the the set of all isomorphism classes 〈SR〉, where SR ranges
in the class of all simple right R-modules with a projective cover. It associates to
each isomorphism class 〈PR〉 the isomorphism class 〈PR/rad(PR)〉, where rad(PR)
denotes the unique maximal submodule of the couniform projective module PR.
In particular, the position 〈PR〉 !→ 〈PR/rad(PR)〉 defines a bijection between the
set of isomorphism classes 〈PR〉 of all couniform projective modules PR and the
the set of isomorphism classes 〈SR〉 of all simple modules SR if and only if the ring
R is semiperfect [5, Theorem 3.6(d)].

We say that a module MR is couniformly presented if it is non-zero and there
exists an exact sequence

0→ CR
ι−→ PR →MR → 0

with PR projective and both CR and PR couniform modules. In this case, we will
say that 0 → CR

ι−→ PR → MR → 0 is a couniform presentation of MR. Notice
that PR → MR is necessarily a projective cover of MR, because every proper
submodule of PR is superfluous. Without loss of generality, we will always suppose
that the monomorphism ι : CR → PR is the inclusion. Clearly, every couniformly
presented module is cyclic. Every cyclically presented module over a local ring R is
either zero, or isomorphic to R, or couniformly presented. Over a right chain ring
R, that is, a ring R with RR uniserial, a right module is couniformly presented
if and only if it is cyclic but not projective. In particular, couniformly presented
right modules over right chain rings are uniserial.
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LetR be an arbitrary ring. Given any couniformly presented right moduleMR

with couniform presentation 0→ CR
ι−→ PR → MR → 0, every endomorphism f

of MR lifts to an endomorphism f0 of the projective cover PR, and we will denote
by f1 the restriction of f0 to CR. Hence we have a commutative diagram

0 → CR
ι−→ PR → MR → 0

f1 ↓ ↓ f0 ↓ f

0 → CR
ι−→ PR → MR → 0.

(1)

The morphisms f0 and f1 that complete diagram (1) are not uniquely deter-
mined by f . Nevertheless, it is easily seen that f : MR →MR is an epimorphism if
and only if f0 : PR → PR is an epimorphism, if and only if f0 is an automorphism.
It follows that if we substitute f0 and f1 with two other morphisms f ′0 and f ′

1

making the diagram analogous to diagram (1) commute, then f0 : PR → PR is an
epimorphism if and only if f ′

0 : PR → PR is an epimorphism. In this notation, let
us show that the same holds for CR, i.e., that

Lemma 2.3. f1 : CR → CR is an epimorphism if and only if f ′
1 : CR → CR is an

epimorphism.

Proof. The commutativity of the two diagrams (1) (one relative to f0, f1, the other
relative to f ′0, f ′

1) gives, by subtraction, a commutative diagram

0 → CR
ι−→ PR → MR → 0

f1−f ′
1 ↓ ↓ f0−f ′

0 ↓ 0
0 → CR

ι−→ PR → MR → 0.
(2)

Hence (f0 − f ′0)(PR) ⊆ CR. Since CR is superfluous in PR, it follows that (f0 −
f ′
0)(CR) is superfluous in (f0 − f ′0)(PR), so that (f0 − f ′

0)(CR) = (f1 − f ′
1)(CR) is

a proper submodule of CR. Thus f1− f ′1 is not an epimorphism. This and the fact
that CR is couniform yields that f1 : CR → CR is an epimorphism if and only if
f ′
1 : CR → CR is an epimorphism. �

Our proof of Lemma 2.3 is essentially the same as the proof of [6, Lemma 7.1].
Notice that, in the proof of Lemma 2.3, we have seen that, for every morphism

g : PR → CR (where PR ⊃ CR are couniform modules and PR is projective), g(CR)
is properly contained in CR.

For every couniform module UR, the endomorphism ring End(UR) has a
proper completely prime two-sided ideal KUR consisting of all the endomorphisms
of UR that are not surjective (see [5, Lemma 6.26]). The ring End(UR)/KUR is
an integral domain, but it is not a division ring in general (for instance, take
as UR the Prüfer group Z(p∞) viewed as a Z-module.) Our proof of Lemma 2.3
also shows that for every couniformly presented right module MR with couniform
presentation 0 → CR

ι−→ PR → MR → 0, there is a well-defined ring morphism
End(MR)→ End(CR)/KCR, defined by f !→ f1 +KCR .

Similarly to [6, Section 7], by Lemma 2.3, we can consider the ring morphism

Φ: End(MR)→ End(MR)/KMR × End(CR)/KCR
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defined by Φ(f) = (f + KMR , f1 + KCR) for every f ∈ End(MR). Recall that
a ring morphism ϕ : S → S′ is said to be a local morphism if, for every s ∈ S,
ϕ(s) ∈ U(S ′) implies s ∈ U(S).
Lemma 2.4. Let 0 → CR → PR → MR → 0 be a couniform presentation of a
couniformly presented module MR. Then the ring morphism Φ is local.

Proof. Let f ∈ End(MR) be an endomorphism with Φ(f) invertible. Consider
the commutative diagram (1). Then f + KMR and f1 + KCR are invertible in
End(MR)/KMR and End(CR)/KCR respectively, so that, in particular, f /∈ KMR

and f1 /∈ KCR, that is, the morphisms f and f1 are epimorphisms. Thus f0 also
is an epimorphism, hence an automorphism of PR because PR is projective and
indecomposable. By the Snake Lemma applied to diagram (1), f0 isomorphism
and f1 epimorphism imply f monomorphism. �

The next result describes the endomorphism ring of a couniformly presented
module.

Theorem 2.5. Let 0 → CR → PR → MR → 0 be a couniform presentation of a
couniformly presented module MR. Let K := { f ∈ End(MR) | f is not surjective }
and I := { f ∈ End(MR) | f1 : CR → CR is not surjective }. Then K and I are
completely prime two-sided ideals of End(MR), the union K ∪ I is the set of all
non-invertible elements of End(MR), and every proper right ideal of End(MR) and
every proper left ideal of End(MR) is contained either in K or in I. Moreover, one
of the following two conditions hold:
(a) Either the ideals K and I are comparable, so that End(MR) is a local ring

with maximal ideal the greatest ideal among K and I, or
(b) K and I are not comparable, J(End(MR)) = K ∩ I, and

End(MR)/J(End(MR))

is canonically isomorphic to the direct product of the two division rings
End(MR)/K and End(MR)/I.

Proof. Let π1 and π2 be the canonical projections of

End(MR)/KMR × End(CR)/KCR

onto End(MR)/KMR and End(CR)/KCR, respectively. We already know that K =
KMR is a completely prime ideal of End(MR). Notice that I is the kernel of the
composite morphism π2Φ: End(MR) → End(CR)/KCR. As End(CR)/KCR is an
integral domain, it follows that I is a completely prime ideal of End(MR).

As the ideals K and I are proper, it follows that K ∪ I ⊆ End(MR) \
U(End(MR)). Conversely, if f ∈ End(MR) is non-invertible, it is not an auto-
morphism, so that it is either non-surjective or non-injective. If f is not surjective,
then f ∈ K. If f is surjective but not injective, then in diagram (1) we have that
f0 is surjective, so that f0 is an automorphism of PR. By the Snake Lemma ap-
plied to (1), we have that f0 automorphism of PR and f non-injective imply f1
non-surjective. Thus f ∈ I.
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Every proper right or left ideal L of End(MR) is contained in K ∪ I. If there
exist x ∈ L \K and y ∈ L \ I, then x+ y ∈ L, x ∈ I and y ∈ K. Hence x+ y /∈ K
and x+ y /∈ I. Thus x+ y /∈ K ∪ I, so that x+ y ∈ L and is an invertible element
of End(MR), a contradiction. This proves that L is contained either in K or in I.
In particular, the unique maximal right ideals of End(MR) are at most K and I.
Similarly, the unique maximal left ideals of End(MR) are at most K and I.

If K and I are comparable, then (a) clearly holds. If K and I are not com-
parable, the ring End(MR) has exactly two maximal right ideals K and I, so
that J(End(MR)) = K ∩ I, End(MR)/K and End(MR)/I are division rings, and
there is a canonical injective ring homomorphism π : End(MR)/J(End(MR)) →
End(MR)/K × End(MR)/I. But K + I = End(MR) because K and I are incom-
parable maximal right ideals of End(MR), hence π is surjective by the Chinese
Remainder Theorem. �

Remark 2.6. The ideal I in the statement of Theorem 2.5 does not depend on
the couniform presentation of MR. Suppose 0 → CR → PR → MR → 0 and
0 → C′

R → P ′
R → MR → 0 are two couniform presentations of MR. Let f be an

endomorphism ofMR, and consider a diagram (1) relative to f for each of the two
couniform presentations. We need to show that f1 is an epimorphism if and only
if f ′1 is an epimorphism. Construct another diagram (1) as follows. The identity of
MR lifts to an isomorphism g0 : P → P ′ between the two projective covers of MR,
and g0 restricts to a morphism g1 : C → C′, which is an isomorphism as well. By
Lemma 2.3, we then have that f1 is an epimorphism if and only if g−1

1 f ′1g1 is an
epimorphism, and this is an epimorphism if and only if f ′1 is an epimorphism.

By Theorem 2.5, couniformly presented modules have semilocal endomor-
phism ring, hence cancel from direct sums [5, Corollary 4.6].

Remark 2.7. When the base ring R is commutative, the endomorphism ring of the
cyclic R-module MR

∼= eR/C is the ring eR/C = eRe/C, which is a local ring
with maximal ideal eJ(R)e/C. Hence, in this case, K ⊇ I. This inclusion can be
proper. For instance, let R be a commutative valuation domain of Krull dimension
≥ 2, that is, a valuation domain with at least three prime ideals 0 ⊂ P ⊂ J(R),
and consider the couniformly presented module R/P . If r ∈ J(R)\P , then r+P ∈
K = J(R)/P , but r + P /∈ I because rP = P (for every p ∈ P , rR ⊇ P ⊇ pR, so
that p = rs for some s ∈ R, and s ∈ P because p ∈ P and r /∈ P .)

3. Epigeny class and lower part

Recall that if A and B are two modules, we say that A and B have the same
epigeny class, and write [A]e = [B]e, if there exist an epimorphism A → B and
an epimorphism B → A; cf. [4]. If MR and M ′

R are two couniformly presented
modules with couniform presentations 0→ CR → PR →MR → 0 and 0→ C ′

R →
P ′

R →M ′
R → 0, we say that MR and M ′

R have the same lower part, and we write
[MR]� = [M ′

R]�, if there are two homomorphisms f0 : PR → P ′
R and f ′

0 : P ′
R → PR
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such that f0(CR) = C′
R and f ′

0(C
′
R) = CR. In particular, if MR and M ′

R have the
same lower part, then CR and C′

R have the same epigeny class.
Notice the duality between this notion of having the same lower part, and

the definition of having the same upper part given in [2]. For any right R-module
A, let E(A) denote the injective envelope of A. Two modules A and B are said to
have the same upper part if there exist a homomorphism f0 : E(A) → E(B) and
a homomorphism f ′0 : E(B) → E(A) such that f−1

0 (B) = A and f ′−1
0 (A) = B.

We write [A]u = [B]u if A and B have the same upper part. Also notice that
if MR and M ′

R are couniformly presented modules with couniform presentations
0 → CR → PR → MR → 0 and 0 → C ′

R → P ′
R → M ′

R → 0, then there are
idempotents e, e′ ∈ R with PR

∼= eR and P ′
R
∼= e′R. If we assume PR = eR

and P ′
R = e′R, C,C ′ right ideals of R contained in eR, e′R respectively, and

MR = eR/C,M ′
R = e′R/C′, then MR and M ′

R have the same lower part if and
only if there exist r, s ∈ R such that rC = C′ and sC′ = C. Also notice that
our definition of having the same lower part for arbitrary couniformly presented
modules over arbitrary rings extends the definition of having the same lower part
given in [1] for cyclically presented modules over local rings. Moreover, since the
ideal I of E := End(MR) in the statement of Theorem 2.5 does not depend on the
couniform presentation of MR (Remark 2.6), our notion of having the same lower
part is well defined.

Remark 3.1. Let MR and M ′
R be couniformly presented modules. It is easily seen

that MR and M ′
R have the same lower part if and only if there exists an en-

domorphism f ∈ End(MR) \ I of MR that factors through M ′
R. Similarly, MR

and M ′
R have the same epigeny class if and only if there exists an endomorphism

f ∈ End(MR)\K ofMR that factors throughM ′
R. Here I andK are the completely

prime ideals of End(MR) defined in the statement of Theorem 2.5.

Lemma 3.2. Let MR and NR be couniformly presented right modules over a ring
R. Then MR

∼= NR if and only if [MR]� = [NR]� and [MR]e = [NR]e.

Proof. Let E := End(MR) and let I and K be the ideals of E as in Theorem
2.5. Assume that MR and M ′

R have the same epigeny class and the same lower
part. Then there exist f ∈ E \ K and g ∈ E \ I such that both f and g factor
throughM ′

R. If either f or g is an automorphism, it follows thatMR is isomorphic
to a non-zero direct summand of M ′

R, which is indecomposable, thus MR
∼= M ′

R.
Assuming that f and g are not automorphisms, we have f ∈ I \K and g ∈ K \ I,
hence f + g is an automorphism of MR that factors through M ′

R ⊕M ′
R. By [3,

Lemma 2.3], it follows that MR is isomorphic to a direct summand of M ′
R, thus

also in this case we have MR
∼=M ′

R.
The converse is obvious. �
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4. Weak Krull-Schmidt Theorem

Proposition 4.1. Let M,N1, . . . , Nn (n ≥ 2) be n + 1 couniformly presented right
R-modules. Suppose that M is a direct summand of N1⊕· · ·⊕Nn and that M �∼= Ni

for all i = 1, . . . , n. Then there are two distinct indices i, j = 1, . . . , n such that
[M ]� = [Ni]� and [M ]e = [Nj ]e.

Proof. Since M is a direct summand of N1 ⊕ · · · ⊕Nn, with the obvious notation
for the canonical mappings, we have 1M = πM ιM =

∑n
k=1 πM ιkπkιM . Let E :=

End(MR) be the endomorphism ring of MR and let I and K be the ideals of E
as in Theorem 2.5. There exist indices i and j such that πM ιiπiιM ∈ E \ I and
πM ιjπjιM ∈ E \K. This implies that [M ]� = [Ni]� and [M ]e = [Nj ]e. Moreover,
i �= j otherwise M would be isomorphic to Ni = Nj, which is not. �

Lemma 4.2. Let M,M ′,M ′′ be couniformly presented modules over an arbitrary
ring R and assume [M ]� = [M ′]� and [M ]e = [M ′′]e. Then

(a) M ⊕D ∼=M ′ ⊕M ′′ for some R-module D;
(b) the module D in (a) is unique up to isomorphism and is couniformly pre-

sented;
(c) [D]� = [M ′′]� and [D]e = [M ′]e.

Proof. (a) Let E = EndR(M) and let I and K be the ideals of E as in Theorem
2.5. There exist an endomorphism f ∈ E \ I which factors through M ′ and an
endomorphism g ∈ E \K which factors through M ′′. If either f or g is an auto-
morphism, then M ∼= M ′ or M ∼= M ′′, thus (a) clearly holds with D = M ′′ and
D =M ′ respectively. We can thus assume f ∈ K \ I and g ∈ I \K. It then follows
that f + g is an automorphism of M which factors through M ′ ⊕M ′′, thus (a)
holds also in this case.

(b) IfM⊕D ∼=M ′⊕M ′′ andM⊕D′ ∼=M ′⊕M ′′, thenM⊕D ∼=M⊕D′, so
that D ∼= D′ because the endomorphism ring of M is semilocal, hence M cancels
from direct sums [5, Corollary 4.6]. This shows that the complement D is unique
up to isomorphism.

Taking the dual Goldie dimension of both sides of S :=M ⊕D ∼=M ′ ⊕M ′′,
we get that D is a couniform module. Considering the canonical projection πD of
S onto D, we have that D is a homomorphic image of M ′ or of M ′′. In fact, D =
πD(S) = πD(M ′+M ′′) ⊆ πD(M ′)+πD(M ′′) ⊆ D, hence D = πD(M ′)+πD(M ′′),
and the claim holds because D is couniform. Without loss of generality we can
assume that D is a homomorphic image of M ′, thus it is a homomorphic image of
the projective cover P ′ ofM ′. We then have a short exact sequence 0→ A→ P ′ →
D → 0, which is a couniform presentation of D provided that we prove that A is
couniform. With the usual notation for the couniform presentations ofM,M ′,M ′′,
consider the two short exact sequences 0→ C ⊕A→ P ⊕ P ′ →M ⊕D ∼= S → 0
and 0 → C′ ⊕ C′′ → P ′ ⊕ P ′′ → M ′ ⊕M ′′ ∼= S → 0. By Schanuel’s Lemma we
have C ⊕A⊕ P ′ ⊕ P ′′ ∼= C ′ ⊕C ′′ ⊕ P ⊕ P ′. Taking the dual Goldie dimension of
both sides, we see that A is couniform.
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(c) If D ∼= M ′, then M ∼= M ′′ by cancellation, so that [D]e = [M ′]e and
[D]� = [M ′]� = [M ]� = [M ′′]�, as required. The case D ∼= M ′′ is exactly the
same. So we can assume that D �∼= M ′ and D �∼= M ′′. By Proposition 4.1, either
[D]� = [M ′]� and [D]e = [M ′′]e or [D]� = [M ′′]� and [D]e = [M ′]e. In the first case,
D ∼= M so that D,M,M ′,M ′′ are all isomorphic, which is not. Thus the second
case holds, as required. �
Theorem 4.3. (Weak Krull-Schmidt Theorem) Let M1, . . . ,Mn, N1, . . . , Nt be co-
uniformly presented right R-modules. Then the modules M1 ⊕ · · · ⊕Mn and N1 ⊕
· · · ⊕ Nt are isomorphic if and only if n = t and there are two permutations σ, τ
of {1, 2, . . . , n} with [Mi]� = [Nσ(i)]� and [Mi]e = [Nτ(i)]e for all i = 1, . . . , n.

Proof. (⇒) Assume M1 ⊕ · · · ⊕Mn
∼= N1 ⊕ · · · ⊕Nt. Comparing the dual Goldie

dimension of the two sides, we get n = t.
We will prove by induction on n the existence of the permutations σ and τ ,

the case n = 1 being trivial. If Mi
∼= Nj for some indices i and j, we can cancel

Mi and Nj (which is possible because their endomorphism ring is semilocal) and
conclude by induction. Therefore we may assume that Mi �∼= Nj for all indices i
and j.

SinceM1 is isomorphic to a direct summand of N1⊕· · ·⊕Nt, Proposition 4.1
implies the existence of two distinct indices i, j = 1, 2, . . . , n such that [M1]� =
[Ni]� and [M1]e = [Nj ]e. For the sake of simplicity, without loss of generality, we
can assume that i = 1 and j = 2. By Lemma 4.2 applied to the three couniformly
presented modules M1, N1, N2, we can find a couniformly presented module D,
unique up to isomorphism, such that M1 ⊕ D ∼= N1 ⊕ N2, [D]� = [N2]� and
[D]e = [N1]e. Thus M1 ⊕ · · · ⊕Mn

∼= N1 ⊕ · · · ⊕Nn
∼= M1 ⊕D ⊕N3 ⊕ · · · ⊕Nn.

Cancel M1, getting that M2 ⊕ · · · ⊕Mn is isomorphic to D⊕N3 ⊕ · · · ⊕Nn. Now
we deal with direct sums of n− 1 couniformly presented modules, so that we can
again conclude by induction.

(⇐) The statement is trivial for n = t = 1 by Lemma 3.2, and we proceed by
induction again. Assume that M1, . . . ,Mn, N1, . . . , Nn are couniformly presented
right R-modules and that there are two permutations σ, τ of {1, 2, . . . , n} with
[Mi]� = [Nσ(i)]� and [Mi]e = [Nτ(i)]e for every i = 1, . . . , n. If σ(1) = τ(1), then
M1

∼= Nσ(1). Thus σ and τ induce two bijections {2, 3, . . . , n} → {1, 2, . . . , n} \
{σ(1)}, with the same properties as σ and τ , so that, by induction, M2⊕ · · ·⊕Mn

is isomorphic to the direct sum of the Nj ’s with j �= σ(1), from which it clearly
follows that M1 ⊕ · · · ⊕Mn

∼= N1 ⊕ · · · ⊕Nn.
Thus we can suppose σ(1) �= τ(1). By Lemma 4.2, there exists a couniformly

presented module M0, unique up to isomorphism, such that M0 ⊕M1
∼= Nσ(1) ⊕

Nτ(1), [M0]� = [Nτ(1)]� and [M0]e = [Nσ(1)]e. That is, the modules M0,M1 and
the modules Nσ(1), Nτ(1) have the same lower parts and the same epigeny classes,
counting multiplicities. The modules M0,M1, . . . ,Mn and the modules M0, N1,
. . . , Nn have the same lower parts and the same epigeny classes as well, so that
the modules M2, M3, . . . , Mn and the modules M0, N1, . . . , N̂σ(1), . . . , N̂τ(1),
. . . , Nn have the same lower parts and the same epigeny classes. By the inductive
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hypothesis, M2 ⊕M3 ⊕ · · · ⊕Mn and the direct sum of the modules M0 and Nj

with j different from σ(1) and τ(1) are isomorphic. Thus M0 ⊕N1 ⊕ · · · ⊕ Nn
∼=

M2⊕· · ·⊕Mn⊕Nσ(1)⊕Nτ(1)
∼=M0⊕M1⊕M2⊕· · ·⊕Mn. Cancelling the module

M0, we obtain that N1 ⊕N2 ⊕ · · · ⊕Nn
∼=M1 ⊕M2 ⊕ · · · ⊕Mn, as desired. �

5. Kernels of morphisms between indecomposable
injective modules

In [2] it has been proved that theorems similar to Theorems 2.5 and 4.3 hold
for kernels of morphisms between indecomposable injective modules (equivalently,
uniform injective modules). More precisely, let R be an arbitrary ring. Recall that
two right R-modules A and B are said to belong to the same monogeny class if
there exist a monomorphism A → B and a monomorphism B → A. In this case,
we write [A]m = [B]m. If E1, E2, E

′
1, E

′
2 are uniform injective right R-modules and

ϕ : E1 → E2, ϕ′ : E′
1 → E′

2 are arbitrary morphisms, then kerϕ ∼= kerϕ′ if and
only if [kerϕ]m = [kerϕ′]m and [kerϕ]u = [kerϕ′]u. If ϕ : E1 → E2 is a non-zero
non-injective morphism, every morphism f : kerϕ→ kerϕ′ extends to a morphism
f1 : E1 → E′

1. Any maximal ideal of EndR(kerϕ) is equal to either the completely
prime ideal { f ∈ EndR(kerϕ) | f is not injective } or the completely prime ideal
{ f ∈ EndR(kerϕ) | f−1

1 (kerϕ) 	 kerϕ }. Then EndR(kerϕ) is either a local ring
or has exactly two maximal ideals.

If ϕi : Ei,1 → Ei,2 (i = 1, 2, . . . , n) and ϕ′
j : E

′
j,1 → E′

j,2 (j = 1, 2, . . . , t) are
non-injective morphisms between uniform injective modules Ei,1, Ei,2, E

′
j,1, E

′
j,2

over an arbitrary ring R, then ⊕n
i=1 kerϕi

∼= ⊕t
j=1 kerϕ

′
j if and only if n = t and

there exist two permutations σ, τ of {1, 2, . . . , n} such that [kerϕi]m = [kerϕ′
σ(i)]m

and [kerϕi]u = [kerϕ′
τ(i)]u for every i = 1, 2, . . . , n. The proof of all these results

can be found in [2]. Let us see the relation between this theory of finite direct sums
of kernels of morphisms between uniform injective modules and the the theory of
couniformly presented modules developed in the previous sections.

Let R be a fixed ring. Fix a set {Eλ | λ ∈ Λ } of representatives up to
isomorphism of the uniform injective right R-modules. Set ER := E(⊕λ∈ΛEλ)
and S := End(ER), so that SER turns out to be an S-R-bimodule. Consider the
E-dual functors, i.e., the pair of contravariant additive functors

H := SHomR(−, E) : Mod-R→ S-Mod

H ′ := HomS(−, E)R : S-Mod→ Mod-R.

If KR is the kernel of a morphism between uniform injective R-modules,
there is an exact sequence 0 → KR → Eλ

ϕ−→ Eμ for suitable λ, μ ∈ Λ. Ap-

plying the exact functor H , we get an exact sequence H(Eμ)
H(ϕ)−→ H(Eλ) →

H(KR) → 0. Now for each index λ ∈ Λ there is a direct-sum decomposition
ER = Eλ ⊕ E(⊕μ�=λEμ), so that there exist a monomorphism ιλ : Eλ → ER

and an epimorphism πλ : ER → Eλ such that πλιλ = 1Eλ
and eλ := ιλπλ ∈ S
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is an idempotent endomorphism of ER. Hence, for every λ ∈ Λ, we have that
eλER = ιλEλ, and SH(Eλ) = HomR(Eλ, ER) ∼= Seλ is a cyclic projective left S-
module whose endomorphism ring End(SSeλ) is isomorphic to eλSeλ

∼= End(Eλ),
which is a local ring. Thus SH(Eλ) ∼= Seλ is a couniform projective left S-module.

Now H(ϕ) : SH(Eμ) → SH(Eλ) corresponds to the right multiplication
Seμ → Seλ by the endomorphism ιμϕπλ of ER. Thus the finitely presented S-
module SH(KR) ∼= Seλ/Sιμϕπλ is the cokernel of a morphism between couniform
projective left S-modules. In particular, if ϕ �= 0 and ϕ is non-injective, SH(KR)
is a couniformly presented S-module.

Conversely, let us prove that every couniform projective left S-module is
isomorphic to Seλ for some λ ∈ Λ. To see this, recall that, by Lemma 2.1, a
couniform projective left S-module is isomorphic to Se for some idempotent e ∈ S
with eSe a local ring. Hence the direct summand eER of ER is an injective right
R-module, necessarily indecomposable because eSe ∼= EndR(eER) is local. In the
spectral category Spec-R of Mod-R, ER is a semisimple object (it is the coproduct
of the simple objects Eλ) and eER is a simple subobject of ER [8, Ch. V, §7]. It
follows that eER is isomorphic to Eλ, for some λ ∈ Λ, in the category Spec-R.
Thus eER

∼= Eλ in Mod-R, so that Se ∼= Seλ in S-Mod, which is what we wanted
to prove.

If SC is the cokernel of a morphism between couniform projective left S-
modules, there is an exact sequence Seλ

f−→ Seμ → SC → 0 for suitable λ, μ ∈ Λ.
If we apply the left exact functor H ′, we get an exact sequence 0 → H ′(SC) →
H ′(Seμ)

H′(f)−→ H ′(Seλ). Now H ′(Seλ)R = HomS(Seλ, SE) ∼= eλE = Eλ is a
uniform injective R-module. Thus H ′(SC) is the kernel of a morphism between
uniform injective R-modules.

It is easily seen that H ′H(KR) ∼= KR and HH ′(SC) ∼= SC canonically. Since
H and H ′ are additive functors, they respect finite direct sums. It follows easily
that:

Theorem 5.1. The functors H,H ′ define inverse categorical dualities

H : K → C and H ′ : C → K
between the full subcategory K of Mod-R whose objects are all finite direct sums
of kernels of morphisms between uniform injective right R-modules and the full
subcategory C of S-Mod whose objects are all finite direct sums of cokernels of
morphisms between couniform projective left S-modules.

Proposition 5.2. Let KR and K ′
R be kernels of non-zero non-injective morphisms

between uniform injective right R-modules. Then:
(a) [KR]m = [K ′

R]m if and only if [H(KR)]e = [H(K ′
R)]e.

(b) [KR]u = [K ′
R]u if and only if [H(KR)]� = [H(K ′

R)]�.

Proof. Let KR be the kernel of the non-zero non-injective morphism ϕ : Eλ →
Eμ. In view of Remark 3.1 and Theorem 5.1, it suffices to show that if f is an
endomorphism of KR, then
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(a) f is in the completely prime ideal of End(KR) consisting of all non-
injective endomorphisms of KR if and only if H(f) is in the completely prime
ideal of End(H(KR)) consisting of all non-surjective endomorphisms of H(KR);

(b) f is in the completely prime ideal of End(KR) consisting of all the endo-
morphisms g of KR with g−1

1 (KR) 	 KR if and only if H(f) is in the completely
prime ideal I of End(H(KR)) consisting of all the endomorphisms h of H(KR)
with h1 : SC → SC non-surjective.
(In (b) we have that g : KR → KR, g1 : E(KR) → E(KR), the endomorphism
h of H(KR) lifts to h0 : SP → SP , where SP is the projective cover of H(KR),
and h1 : SC → SC is the restriction of h0 to the kernel SC of the epimorphism
SP → H(KR).)

Now (a) follows immediately from the fact that the contravariant functor
H(−) = HomR(−, ER) is exact and ER is an injective cogenerator. For (b), apply
the contravariant exact functor H to the commutative diagram with exact rows

0 → KR → Eλ → Eμ

f ↓ ↓ f1 ↓ f2

0 → KR → Eλ → Eμ.

getting a commutative diagram with exact rows

H(Eμ) = Seμ → H(Eλ) = Seλ = SP → H(KR) → 0
H(f2) ↓ ↓ H(f1) ↓ H(f)

H(Eμ) = Seμ → H(Eλ) = Seλ = SP → H(KR) → 0.

Then f is in the completely prime ideal of End(KR) consisting of all the endomor-
phisms g of KR with g−1

1 (KR) 	 KR if and only if f2 is not injective, if and only
if H(f2) is not surjective, if and only if H(f)1 : SC → SC is not surjective, if and
only if H(f) belongs to I. �

6. A further duality between epigeny classes and
monogeny classes

In Section 5, we saw that monogeny class and epigeny class (and lower part and
upper part) are related by a duality between suitable categories of modules: the cat-
egory of kernels of morphisms between uniform injective modules and the category
of cokernels of morphisms between couniform projective modules. In [1, Proposi-
tion 7.1] it was shown that, for cyclically presented modules over local rings, lower
part and epigeny class are related by the Auslander-Bridger transpose, which also
can be seen as a duality between suitable categories. In this final section, we will
show that there is a similar relation between monogeny class and epigeny class in
the case of suitable categories of uniserial modules.

Recall that if SA and SB are left modules over a ring S, SA is said to be
cogenerated by SB if SA is isomorphic to a submodule of a direct product of
copies of SB. Equivalently, if for every non-zero a ∈ SA there exists a morphism
ϕ : SA→ SB such that ϕ(a) �= 0.
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Let R be a ring. Fix a set {Eλ | λ ∈ Λ } of representatives up to isomorphism
of all injective right R-modules that are injective envelopes of non-zero uniserial
R-modules. Set ER := E(⊕λ∈ΛEλ) and S := End(ER). Then SER is an S-R-
bimodule and

Hom(−, SER) : Mod-R→ S-Mod

is an additive contravariant exact functor. Let CR denote the full subcategory of
Mod-R whose objects are all serial right R-modules of finite Goldie dimension. Let
SC′ be the full subcategory of S-Mod whose objects are all finite direct sums of
uniserial left S-modules with a projective cover and cogenerated by SE. Notice that
if a non-zero uniserial module U has a projective cover P , then P is a couniform
module by Lemma 2.2, so that, in particular, P , hence U , are cyclic modules.

Proposition 6.1. The functor Hom(−, SER) : Mod-R→ S-Mod induces a categor-
ical duality between CR and SC′.

Proof. Since the functor Hom(−, SER) is additive, it respects finite direct sums.
Thus it suffices to show that Hom(−, SER) induces a duality between uniserial
right R-modules and the uniserial left S-modules with a projective cover and
cogenerated by SE.

Let us prove that if UR �= 0 is uniserial, then Hom(UR, SER) is a uniserial
left S-module with a projective cover and is cogenerated by SE. We claim that if
ϕ, ϕ′ ∈ Hom(UR, SER) and kerϕ ⊆ kerϕ′, then Sϕ ⊇ Sϕ′. To prove the claim,
assume kerϕ ⊆ kerϕ′. Let π : U → U/ kerϕ, π′ : U → U/ kerϕ′ and p : U/ kerϕ→
U/ kerϕ′ be the canonical projections, so that π′ = pπ. Let ϕ : U/ kerϕ → ER

and ϕ′ : U/ kerϕ′ → ER be the injective right R-module morphisms induced by ϕ
and ϕ′, respectively. We have ϕ′p = sϕ for some s ∈ S because ER is injective,
so that ϕ′ = ϕ′π′ = ϕ′pπ = sϕπ = sϕ. This proves the claim. Hence, for every
ϕ, ϕ′ ∈ Hom(UR, SER), we have that kerϕ ⊆ kerϕ′ if and only if Sϕ ⊇ Sϕ′. Thus,
UR uniserial implies that Hom(UR, SER) is a uniserial left S-module.

We will now determine the projective cover of Hom(UR, SER). Since UR �= 0,
there exists a unique λ ∈ Λ with Eλ an injective envelope of UR. Let ι : UR → Eλ be
a fixed essential monomorphism. Applying the functor Hom(−, SER), we get an

S-module epimorphism SHom(Eλ, ER)
SHom(ι,ER)−→ SHom(UR, ER). Since ER

∼=
Eλ⊕E(⊕μ�=λEμ), there exists a monomorphism ιλ : Eλ → ER and an epimorphism
πλ : ER → Eλ such that πλιλ = 1Eλ

and eλ := ιλπλ ∈ S is an idempotent
endomorphism of ER. Hence we have an isomorphism SHom(Eλ, ER)→ Seλ given
by f !→ fπλ. Moreover, we have an isomorphism EndR(Eλ) → eλSeλ given by
f !→ ιλfπλ, so that eλSeλ

∼= EndS(Seλ) is a local ring. Thus Seλ is a couniform
projective left S-module by Lemma 2.1. Finally, Hom(UR, SER) �= 0 because it
contains the embedding ιλι : UR → ER, and SHom(ι, ER) is a projective cover of
Hom(UR, SER).

Finally, Hom(UR, SER) is cogenerated by SE because it is an S-submodule
of SE

U , the direct product of a family of copies of SE indexed in the set U .
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Conversely, let us prove that every uniserial left S-module with a projective
cover and cogenerated by SE is isomorphic to Hom(UR, SER) for some uniserial
module UR.

To this end, we claim that any couniform projective left S-module is isomor-
phic to Seλ for some λ ∈ Λ. To see this, notice that, by Lemma 2.1, a couniform
projective left S-module is isomorphic to Se for some idempotent e ∈ S with eSe
a local ring. Hence the direct summand eER of ER is an injective right R-module,
necessarily indecomposable because eSe ∼= EndR(eER) is local. In the spectral
category Spec-R of Mod-R, ER is a semisimple object, namely the coproduct of
the simple objects Eλ, and eER is a simple subobject of ER [8, Ch. V, §7]. It
follows that eER is isomorphic to Eλ, for some λ ∈ Λ, in the category Spec-R.
Thus eER

∼= Eλ in Mod-R, so that Se ∼= Seλ in S-Mod, which is what we wanted
to show.

Hence couniform left S-modules with a projective cover are isomorphic to
Seλ/ST for some left ideal ST of S properly contained in Seλ. Thus, assume we
have a non-zero uniserial module Seλ/ST cogenerated by SE and let us prove that
there exists a uniserial module UR with Hom(UR, SER) ∼= Seλ/ST . We will show
that the required uniserial module is UR := { x ∈ ιλ(Eλ) | tx = 0 for every t ∈ T }
(notice that T ⊆ S and ιλ(Eλ) ⊆ ER, so that the product tx is defined).

Let us first prove that the submodule UR of ιλ(Eλ) is uniserial. Let x, y be
any two elements of UR. Then l.annS(x) and l.annS(y) are two left ideals of S that
contain 1−eλ and T . Thus l.annS(x)/(S(1−eλ)+T ) and l.annS(y)/(S(1−eλ)+T )
are two submodules of S/(S(1−eλ)+T ) ∼= Seλ/ST , which is a uniserial S-module.
Hence l.annS(x)/(S(1−eλ)+T ) and l.annS(y)/(S(1−eλ)+T ) are comparable, so
that l.annS(x) and l.annS(y) are comparable as well. Without loss of generality,
we can suppose l.annS(x) ⊆ l.annS(y). Let us prove that this implies yR ⊆ xR.
Assume the contrary, that is, assume yR �⊆ xR. Then (yR + xR)/xR is a non-
zero module. Now ER is an injective cogenerator because simple modules are
non-zero uniserial modules, so that there exists a morphism ϕ : yR + xR → ER

with ϕ(x) = 0 and ϕ(y) �= 0. The R-module morphism ϕ extends to an element
s ∈ S, and sx = 0, sy �= 0. This contradicts l.annS(x) ⊆ l.annS(y). Hence UR is a
uniserial submodule of ιλ(Eλ).

We finally prove that HomR(UR, SER) ∼= Seλ/ST . We have a restriction
morphism ρ : Seλ → Hom(UR, SER) because UR ⊆ ιλ(Eλ) ⊆ ER, and ρ is an
epimorphism because ER is injective. It remains to show that kerρ = T . From
TUR = 0, it follows that ker ρ = l.annS(UR) ∩ Seλ ⊇ T . Conversely, if seλ ∈ Seλ

but seλ /∈ T , then seλ + ST �= 0. As Seλ/ST is cogenerated by SE, there is an S-
module morphism Seλ → SE that maps ST to 0 and seλ to a non-zero element of
SE. S-module morphisms Seλ → SE are given by right multiplication by elements
of eλE = ιλ(Eλ). Hence there exists x ∈ UR with seλx �= 0, that is, ρ(seλ)(x) �= 0.
Thus seλ /∈ ker ρ, which proves that ker ρ = T .

We now show that the functor Hom(−, SER) is full and faithful. Let U1

and U2 be non-zero uniserial modules. For each i = 1, 2, there exist an essential
monomorphism ιi : Ui → Eλi and an epimorphism ρi : Seλi → Hom(Ui, ER).
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Notice that ρ1 and ρ2 are projective covers. Any S-module morphism
f : SHom(U1, ER) → SHom(U2, ER) lifts to an S-module morphism g between
the projective covers:

0 → ker ρ1 −→ Seλ1

ρ1−→ SHom(U1, E) → 0
↓ ↓ g ↓ f

0 → ker ρ2 −→ Seλ2

ρ2−→ SHom(U2, E) → 0.
(3)

Now g is right multiplication by some eλ1seλ2 ∈ eλ1Seλ2 . Set α := πλ1sιλ2 : Eλ2 →
Eλ1 . Let us prove that α(ι2(U2)) ⊆ ι1(U1). Suppose not. Then there exists y ∈
ι2(U2) with α(y) /∈ ι1(U1). Since ER is an injective cogenerator, there exists
t : Eλ1 → ER such that t(ι1(U1)) = 0 and t(α(y)) �= 0, that is, t ∈ Seλ1 , t ∈ ker ρ1

and tπλ1sιλ2(y) �= 0. Hence tπλ1sιλ2 = g(t) �= 0. Thus t ∈ ker ρ1 and g(t) /∈ ker ρ2,
which contradicts the commutativity of diagram (3). Thus α(ι2(U2)) ⊆ ι1(U1),
there exists β : U2 → U1 with ι1β = αι2, and Hom(β, SER) = f , which proves
that the functor Hom(−, SER) is full.

It is also faithful, because if β : U2 → U1 is a non-zero R-module morphism,
there exists u2 ∈ U2 with β(u2) �= 0. But ER is an injective cogenerator, so that
there exists ϕ : U1 → ER with ϕ(β(u2)) �= 0. Then Hom(β, SER)(ϕ) = ϕβ �= 0,
which proves that Hom(−, SER) is faithful. �

Corollary 6.2. If UR, U
′
R are uniserial right R-modules, then:

(a) UR and U ′
R are in the same monogeny class if and only if the uniserial left

S-modules Hom(UR, SER) and Hom(U ′
R, SER) are in the same epigeny class.

(b) UR and U ′
R are in the same epigeny class if and only if the uniserial left

S-modules Hom(UR, SER) and Hom(U ′
R, SER) are in the same monogeny

class.

Proof. (a) The implication (⇒) follows from the fact that Hom(−, ER) is an exact
contravariant functor. For (⇐), every epimorphism Hom(UR, ER)→ Hom(U ′

R, ER)
is of the form Hom(ϕ,ER) for some ϕ : U ′

R → UR by Proposition 6.1. Applying
the exact functor Hom(−, ER) to the exact sequence 0→ kerϕ→ U ′

R

ϕ−→ UR, we
see that Hom(kerϕ,ER) = 0, so that kerϕ = 0 because ER is a cogenerator. Thus
ϕ : U ′

R → UR is a monomorphism.
The proof for (b) is similar. �
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indecomposable injective modules, to appear in Glasg. Math. J., 2010.

[3] N.V. Dung and A. Facchini, Direct summands of serial modules, J. Pure Appl. Al-
gebra 133 (1998), 93–106.



164 A. Facchini and N. Girardi

[4] A. Facchini, Krull-Schmidt fails for serial modules, Trans. Amer. Math. Soc. 348
(1996), 4561–4575.

[5] A. Facchini, “Module Theory. Endomorphism rings and direct sum decompositions
in some classes of modules”, Progress in Math. 167, Birkhäuser Verlag, Basel, 1998.
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Abstract. This paper offers an expository account of some ideas, methods,
and conjectures concerning quantized coordinate rings and their semiclassi-
cal limits, with a particular focus on primitive ideal spaces. The semiclassical
limit of a family of quantized coordinate rings of an affine algebraic variety
V consists of the classical coordinate ring O(V ) equipped with an associ-
ated Poisson structure. Conjectured relationships between primitive ideals
of a generic quantized coordinate ring A and symplectic leaves in V (rela-
tive to a semiclassical limit Poisson structure on O(V )) are discussed, as are
breakdowns in the connections when the symplectic leaves are not algebraic.
This prompts replacement of the differential-geometric concept of symplectic
leaves with the algebraic concept of symplectic cores, and a reformulated con-
jecture is proposed: The primitive spectrum of A should be homeomorphic to
the space of symplectic cores in V , and to the Poisson-primitive spectrum of
O(V ). Various examples, including both quantized coordinate rings and en-
veloping algebras of solvable Lie algebras, are analyzed to support the choice
of symplectic cores to replace symplectic leaves.

Mathematics Subject Classification (2000). 16W35; 16D60, 17B63, 20G42.

Keywords. Quantized coordinate ring, semiclassical limit, Poisson algebra,
symplectic leaf, symplectic core, Dixmier map.

0. Introduction

By now, the “Cheshire cat” description of quantum groups is well known – a
quantum group is not a group at all, but something that remains when a group
has faded away, leaving an algebra of functions behind. The appropriate functions
depend on which category of group is under investigation. We concentrate here
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on (affine) algebraic groups G, on which the natural functions of interest are the
polynomial functions. These constitute the classical coordinate ring of G, which
we denote O(G). (The group structure on G induces a Hopf algebra structure on
O(G), but we shall not make use of that.) A quantized coordinate ring of G is,
informally, a deformation of O(G), in the sense that it is an algebra with a set of
generators patterned after those in O(G), but with a new multiplication that is
typically noncommutative. Examples and references will be given in Section 1. We
do not address the question of what properties are required to qualify an algebra as
a quantized coordinate ring – this remains a fundamental open problem. Quantized
coordinate rings have also been defined for a number of algebraic varieties other
than algebraic groups, and our discussion will incorporate them as well.

Many parallels have been found between the structures of quantized and
classical coordinate rings, and general principles for organizing and predicting
such parallels are needed. The present paper concentrates on a circle of ideas and
results focussed on ideal structure, particularly spaces of prime or primitive ideals.
The theme/principle we follow, based on much previous work, can be stated this
way:

The primitive ideals of a suitably generic quantized coordinate ring of an
algebraic variety V should match subsets of V in some partition defined
through the geometry of V and a Poisson structure obtained from a
semiclassical limit process.

Many of the terms just mentioned require explanations, which we will give over the
course of the paper. Here we just mention that, in the above statement, “generic”
refers to the assumption that suitable parameters in the construction of the quan-
tized coordinate ring should be non-roots of unity.

To begin the story (omitting many definitions and details), we refer to the
results of Soibelman and Vaksman [51, 45, 46], who studied the “standard” generic
quantized coordinate rings of simple compact Lie groups K. They established
a bijection between the irreducible ∗-representations of K (on Hilbert spaces)
and the symplectic leaves in K (relative to a Poisson structure arising from the
quantization). This amounts to a linkage between primitive ideals and symplectic
leaves, a relationship which is a key ingredient of the Orbit Method from Lie
theory. Informed by this principle, and inspired by the work of Soibelman and
Vaksman, Hodges and Levasseur conjectured that similar bijections should exist
for semisimple complex algebraic groups [22]. The case of SL2(C) being easy [22,
Appendix], they first verified the conjecture for SL3(C) [op. cit.], and then for
SLn(C) [23]. It was established for connected semisimple groups by Joseph [27] and
by Hodges, Levasseur, and Toro [24]. In light of these achievements, it is natural
to pose this conjecture for other classes of generic quantized coordinate rings. (It
is easily seen that the above conjecture cannot hold for non-generic quantized
coordinate rings. In such cases, the quantized coordinate rings are usually finitely
generated modules over their centers, and they have far more primitive ideals than
can be matched to symplectic leaves.)
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In the specific cases just mentioned, the symplectic leaves turn out to be
algebraic, in the sense that they are locally closed in the Zariski topology. Hodges,
Levasseur, and Toro pointed out in [24] that symplectic leaves need not be alge-
braic for Poisson structures arising from multiparameter quantizations, and that
the above conjecture cannot be expected to hold in such cases. We argue that it
should not be surprising that the concept of symplectic leaves, which comes from
differential geometry, is not always well suited for algebraic problems. Thus, sym-
plectic leaves should be replaced by more algebraically defined objects. The notion
of symplectic cores introduced by Brown and Gordon [6] fills the role well, up to
the present state of knowledge; we will give evidence to buttress this statement.

Our aim here is to present an account of the above story, with introductions
to and discussions of the relevant concepts. In particular, the tour will pass through
way stations such as quantized coordinate rings , semiclassical limits, Poisson struc-
tures , symplectic leaves, the Orbit Method , symplectic cores, and the Dixmier map.
By the end of the tour, we will be in purely algebraic territory, where we can formu-
late a conjecture that does not require any differential geometry (i.e., symplectic
leaves). Namely:

If A is a generic quantized coordinate ring of an affine algebraic variety
V over an algebraically closed field of characteristic zero, and if V is
given the Poisson structure arising from an appropriate semiclassical
limit, then the spaces of primitive ideals in A and symplectic cores in
V , with their respective Zariski topologies, are homeomorphic.

A parallel conjecture relates the prime and primitive spectra of A to the spaces of
Poisson prime and Poisson-primitive ideals in O(V ).

Fix a base field k throughout the paper; all algebras mentioned will be unital
k-algebras. This field can be general at first, but then we will require it to have
characteristic zero, and/or be algebraically closed. When discussing symplectic
leaves, we restrict k to R or C.

1. Quantized coordinate rings

We begin by recalling two basic examples, to clarify the idea that a quantized co-
ordinate ring of an algebraic group (or variety) is, loosely speaking, a deformation
of the classical coordinate ring. References to many other examples are given in
§§1.2, 1.4, 1.5.
1.1. Quantum SL2. Recall that the group SL2(k) is a closed subvariety of the
variety of 2 × 2 matrices over k, defined by the single equation “determinant =
1”. The coordinate ring of the matrix variety is naturally realized as a polynomial
ring in four variables Xij , corresponding to the functions that pick out the four
entries of the matrices. The coordinate ring of SL2(k) can thus be described as
follows:

O(SL2(k)) = k[X11, X12, X21, X22]/〈X11X22 −X12X21 − 1〉.
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To “quantize” this coordinate ring, we replace the commutative multiplication by
a noncommutative one, parametrized by a nonzero scalar q, as below. The reasons
for this particular choice of relations will not be given here; see [4, §§I.1.6, I.1.8],
for instance, for a discussion.

Given a choice of scalar q ∈ k×, the “standard” one-parameter quantized
coordinate ring of SL2(k) is the k-algebra Oq(SL2(k)) presented by generators
X11, X12, X21, X22 and the following relations:

X11X12 = qX12X11 X11X21 = qX21X11

X12X22 = qX22X12 X21X22 = qX22X21

X12X21 = X21X12 X11X22 −X22X11 = (q − q−1)X12X21

X11X22 − qX12X21 = 1 .

The case when q = 1 is special: The first six relations then reduce to saying
that the generators Xij commute with each other, the last reduces to the defining
relation for the variety SL2(k), and so the algebra O1(SL2(k)) is just the classical
coordinate ring. We write this, very informally, as

O(SL2(k)) = lim
q→1

Oq(SL2(k));

it is our first example of a “semiclassical limit”.

1.2. Quantum matrices, quantum SLn and GLn. The pattern indicated in §1.1
extends to definitions of “standard” single parameter quantized coordinate rings
Oq(Mn(k)), Oq(SLn(k)), and Oq(GLn(k)) for all positive integers n. Multipa-
rameter versions, which we label in the form Oλ,p(−), have also been defined.
Generators and relations for these algebras may be found, for instance, in [12,
§§ 1.2–1.4], [4, §§ I.2.2–I.2.4].

1.3. Quantum affine spaces. The coordinate ring of affine n-space over k is the
polynomial algebra in n indeterminates, and the most basic quantization is ob-
tained by replacing commutativity (xy = yx) with q-commutativity: xy = qyx.
Thus, the “standard” one-parameter quantized coordinate ring of kn, relative to a
choice of scalar q ∈ k×, is the k-algebra

Oq(kn) = k〈x1, . . . , xn | xixj = qxjxi for 1 ≤ i < j ≤ n〉.
The multiparameter version of this algebra requires an n × n matrix of nonzero
scalars, q = (qij), which is multiplicatively antisymmetric in the sense that qii = 1
and qji = q−1

ij for all i, j. The multiparameter quantized coordinate ring of kn

corresponding to a choice of q is the k-algebra

Oq(kn) = k〈x1, . . . , xn | xixj = qijxjxi for all i, j〉.
In the one-parameter case, we can write O(kn) = limq→1 Oq(kn) in the

same sense as above. For the multiparameter case, we imagine a limit in which all
qij → 1.
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1.4. Quantized coordinate rings of semisimple groups. The single parameter ver-
sions of these Hopf algebras, which we denoteOq(G), were first defined for semisim-
ple algebraic groups G of classical type (types A, B, C, D) via generators and rela-
tions, by Faddeev, Reshetikhin, and Takhtadjan [43] and Takeuchi [48]. A detailed
development (done for k = C, but the pattern is the same over other fields) can be
found in [32, Chapter 9]. In most of the more recent literature, Oq(G) is defined
as a restricted Hopf dual of the quantized enveloping algebra of the Lie algebra of
G (e.g., see [4, Chapter I.7]). This is a more uniform approach, which also covers
groups of exceptional type. That the two approaches yield the same Hopf algebras
in the classical cases was established by Hayashi [20] and Takeuchi [48] (see [32,
Theorem 11.22]).

The single parameter algebras Oq(G) constitute the “standard” quantized
coordinate rings of semisimple groups. Multiparameter versions, which we label
Oq,p(G), were introduced by Hodges, Levasseur, and Toro [24].

1.5. Additional examples. Quantized coordinate rings, both single- and multipa-
rameter, have been defined for many algebraic varieties, such as algebraic tori, toric
varieties, and versions of affine spaces related to classical groups of types B, C, D.
For a general survey, see [12, Section 1]. Quantized toric varieties were introduced
in [26] (see also [17, 16]). A family of iterated skew polynomial algebras cover-
ing multiparameter quantized Euclidean and symplectic spaces was introduced by
Oh [38] and extended by Horton [25] (see also [14, § 2.5] for the odd-dimensional
Euclidean case). Among other algebras that have been studied in the literature,
we mention quantized coordinate rings for varieties of antisymmetric matrices [47]
and varieties of symmetric matrices [37, 28].

1.6. Limits of families of algebras. The semiclassical limits informally introduced
in §§1.1, 1.3 are more properly viewed in the framework of families of algebras. For
example, the algebras Oq(SL2(k)) are quotients of a single algebra over a Laurent
polynomial ring k[t±1], namely the algebra A given by generators X11, X12, X21,
X22 and relations as in §1.1, but with q replaced by t:

X11X12 = tX12X11 X11X21 = tX21X11

X12X22 = tX22X12 X21X22 = tX22X21

X12X21 = X21X12 X11X22 −X22X11 = (t− t−1)X12X21

X11X22 − tX12X21 = 1 .

(1.6a)

For each q ∈ k×, there is a natural identification A/(t − q)A ≡ Oq(SL2(k)).
The “limit as q → 1” is then simply the case q = 1 of these identifications:
A/(t− 1)A ≡ O(SL2(k)).

Similarly, if we take

B = k[t±1]〈x1, . . . , xn | xixj = txjxi for 1 ≤ i < j ≤ n〉, (1.6b)

then B/(t− q)B ≡ Oq(kn) for all q ∈ k×, and
lim
q→1

Oq(kn) = B/(t− 1)B ≡ O(kn).



170 K.R. Goodearl

The multiparameter algebras Oq(kn) can, likewise, be set up as common quotients
of an algebra over a Laurent polynomial ring k[t±1

ij | 1 ≤ i < j ≤ n]. However,
for purposes such as obtaining Poisson structures on semiclassical limits, we need
to be able to exhibit the Oq(kn) as quotients of k[t±1]-algebras. There are many
ways to do this; we will discuss some in §2.3.
1.7. An older example: the Weyl algebra. Weyl defined the algebra we now call
the first Weyl algebra as

C〈x, y | xy − yx = 
i〉,
where 
 is Planck’s constant and i =

√
−1. Physicists often use the term “classical

limit” to denote the transition from a quantum mechanical system to a classical
one by letting Planck’s constant go to zero. The fact that lim�→0 of the above
algebra is the polynomial ring C[x, y] is one instance of this point of view.

To relate this semiclassical limit to the ones above, take k = C and take the
scalar q in quantized coordinate rings to be e�. Then 
 → 0 corresponds to q → 1.
In many constructions, particularly the C*-algebra quantum groups corresponding
to compact Lie groups, the parameter q is either written directly in the form e�

or is taken to be a nonnegative real number, with calculations involving e� used
for motivation.

2. Semiclassical limit constructions

In the context of quantized coordinate rings, semiclassical limits are constructed
via quotients of algebras over Laurent polynomial rings, as in §1.6. A different
version, using associated graded rings, is needed in other arenas, particularly for
enveloping algebras of Lie algebras. We describe both constructions in this section.

2.1. Semiclassical limits: commutative fibre version. Let k[h] be a polynomial alge-
bra, with the indeterminate named h as a reminder of Planck’s constant. Suppose
that A is a torsionfree k[h]-algebra, and that A/hA is commutative. Since A is
then a flat k[h]-module, the family of factor algebras

(
A/(h − α)A

)
α∈k

(or, for
short, A itself) is called a flat family of k-algebras, and A/hA is viewed as the
“limit” of the family. It may happen that some of the algebras A/(h−α)A collapse
to zero or are otherwise not desirable. If so, it is natural to treat A as an algebra
over a localization of k[h] (cf. Example 2.2(c), for instance). We will usually not
do this explicitly.

An immediate question is, what kind of information about the algebras
A/(h − α)A is contained in this limit? Observe that, because of the commuta-
tivity of A/hA, all additive commutators [a, b] = ab − ba in A are divisible by h.
Moreover, division by h is unique, since A is torsionfree as a k[h]-module. Hence,
we obtain a well-defined binary operation 1

h
[−,−] on A. This operation enjoys four

key properties:
(1) Bilinearity;
(2) Antisymmetry;



Semiclassical Limits of Quantized Coordinate Rings 171

(3) The Jacobi identity (thus A, equipped with 1
h [−,−], is a Lie algebra over k);

(4) The Leibniz identities , that is, the product rule (for derivatives) in each
variable: 1

h
[a, bc] =

(
1
h
[a, b]

)
c + b

(
1
h
[a, c]

)
for all a, b, c ∈ A, and similarly for

1
h
[bc, a].

Operations satisfying properties (1)–(4) are called Poisson brackets .
The above Poisson bracket on A induces, uniquely, a Poisson bracket on

A/hA, which we denote {−,−}. Thus, writing overbars to denote cosets modulo
hA, we have

{a, b} = 1
h [a, b]

for a, b ∈ A. The commutative algebra A/hA, equipped with this Poisson bracket,
is called the semiclassical limit of the family

(
A/(h−α)A

)
α∈k

. Loosely speaking,
the Poisson bracket on the semiclassical limit records a “first-order impression” of
the commutators in A and in the algebras A/(h− α)A.

2.2. Examples

(a) Fit the one-parameter quantum affine spaces Oq(kn) into the k[t±1]-algebra B
of (1.6b), and set h = t− 1. Then B represents a flat family of k[h]-algebras, with
B/hB commutative. We identify B/hB with the polynomial ring k[x1, . . . , xn]
and compute the resulting Poisson bracket on the indeterminates as follows. For
1 ≤ i < j ≤ n, we have [xi, xj ] = hxjxi in B, and hence

{xi, xj} = xixj

in k[x1, . . . , xn]. Because of the Leibniz identities, the above information deter-
mines this Poisson bracket uniquely. It may be described in full as follows:

{f, g} =
∑

1≤i<j≤n

xixj

(
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj

)
for all f, g ∈ k[x1, . . . , xn].
(b) Take A = k[h]〈x, y | xy − yx = h〉. Then A/(h− α)A ∼= A1(k) for all nonzero
α ∈ k, while A/hA can be identified with the polynomial ring k[x, y]. In this case,
the semiclassical limit Poisson bracket on k[x, y] satisfies (and is determined by)

{x, y} = 1.

(c) The family
(
Oq(SL2(k))

)
q∈k× fits into the k[t±1]-algebra A with generators

X11, X12, X21, X22 and relations (1.6a). This is a flat family over k[h], where
h = t − 1. Since t is invertible in A, the specialization A/(h + 1)A is zero, corre-
sponding to the fact that A is actually a torsionfree (even free) algebra over the
localization k[h][(h+ 1)−1]. Here the semiclassical limit is the classical coordinate
ring O(SL2(k)), equipped with the Poisson bracket satisfying

{X11, X12} = X11X12 {X11, X21} = X11X21

{X12, X22} = X12X22 {X21, X22} = X21X22

{X12, X21} = 0 {X11, X22} = 2X12X21 .

(2.2c)
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(d) In parallel with (c), the family
(
Oq(M2(k))

)
q∈k× fits into a k[t±1]-algebra C

given by generators X11, X12, X21, X22 and the first six relations of (1.6a). Its
semiclassical limit is the classical coordinate ring O(M2(k)), equipped with the
Poisson bracket satisfying the equations (2.2c).

To illustrate one piece of information reflected in this semiclassical limit, we
focus on the quantum determinant in the algebra C, namely the element Dt =
X11X22− tX12X21. It is well known that Dt is a central element. Hence, its image
in O(M2(k)), namely the ordinary determinant D = X11X22−X12X21, is Poisson
central : {D, f} = 0 for all f ∈ O(M2(k)). (This can also be checked directly, via
(2.2c) and the Leibniz identities.)

2.3. Multiparameter examples. To obtain a semiclassical limit – with Poisson
bracket – for a multiparameter family of algebras, we convert to a single param-
eter family and apply the construction of §2.1. The procedure is clear when the
parameters involved are integer powers of a single parameter. For example, con-
sider the algebras Oq(kn) where q = (qaij ) for q ∈ k× and an antisymmetric
integer matrix (aij). Then define

A = k[t±1]〈x1, . . . , xn | xixj = taijxjxi for all i, j〉,
which is a torsionfree k[t − 1]-algebra with A/(t − 1)A commutative. The semi-
classical limit is the polynomial algebra k[x1, . . . , xn], equipped with the Poisson
bracket satisfying

{xi, xj} = aijxixj

for all i, j.
More general parameters can be dealt with by various means. A simple but

ad hoc method to handle any Oq(kn) is via the algebra

A = k[h]〈x1, . . . , xn | xixj =
(
1 + (qij − 1)h

)
xjxi for 1 ≤ i < j ≤ n〉,

which is set up so that A/(h − 1)A ∼= Oq(kn) and A/hA ∼= k[x1, . . . , xn]. This
yields a Poisson bracket satisfying {xi, xj} = (qij − 1)xixj for all i, j.

A variant of the previous procedure, involving quadratic rather than lin-
ear polynomials in h, is used in [18] to construct semiclassical limits for which
the conjecture sketched in the Introduction applies to the generic multiparameter
quantum affine spaces Oq(kn).

Inverse to the construction of semiclassical limits is the problem of quantiza-
tion: trying to represent a given algebra supporting a Poisson bracket as a semiclas-
sical limit of a suitable family of algebras. We will not discuss this problem except
to indicate a solution for the case of homogeneous quadratic Poisson brackets on
polynomial rings. Namely, suppose we have a polynomial algebra k[x1, . . . , xn],
equipped with a Poisson bracket such that {xi, xj} = αijxixj for all i, j, where
(αij) is an antisymmetric matrix of scalars over k. In place of ad hoc procedures
such as the one sketched above, it is natural, assuming that char k = 0, to use
power series. In this case, set exp(αij) =

∑∞
n=0

1
n!α

n
ijh

n ∈ k[[h]] for all i, j, and
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form the k[[h]]-algebra

A = k[[h]]〈x1, . . . , xn | xixj = exp(αij)xjxi for all i, j〉.

The semiclassical limit algebra is k[x1, . . . , xn], and its Poisson bracket is the orig-
inal one.

Analogous k[[h]]-algebra constructions are given for commonly studied fami-
lies of quantized coordinate rings of skew polynomial type in [14, Section 2].

2.4. Semiclassical limits: filtered/graded version. Suppose that A is a Z-filtered
k-algebra, say with filtration (An)n∈Z. Thus, the An are k-subspaces of A, with
Am ⊆ An when m ≤ n, such that AmAn ⊆ Am+n for all m, n. We will assume
that the filtration is exhaustive, that is, that

⋃
n∈Z

An = A, and that 1 ∈ A0; thus,
A0 is a unital subalgebra of A. Finally, let grA =

⊕
n∈Z

grnA be the associated
graded algebra, where grnA = An/An−1.

Now assume that grA is commutative. Homogeneous elements a ∈ grmA

and b ∈ grnA can be lifted to elements â ∈ Am and b̂ ∈ An, and since grA
is commutative, the commutator [â, b̂] must lie in Am+n−1. We then set {a, b}
equal to the coset of [â, b̂] in grm+n−1A. It is an easy exercise, left to the reader,
to verify that {a, b} is well defined, and that the extension of {−,−} to sums of
homogeneous elements defines a Poisson bracket on grA. The commutative algebra
grA, equipped with this Poisson bracket, is called the semiclassical limit of A.

More generally, assume there is an integer d < 0 such that [Am, An] ⊆
Am+n+d for all m,n ∈ Z. This assumption of course forces grA to be commuta-
tive. Modify the definition above by setting {a, b} equal to the coset of [â, b̂] in
grm+n+dA, for a ∈ grmA and b ∈ grnA. This recipe again produces a well-defined
Poisson bracket on grA [34, Lemma 2.7].

2.5. Bridging the two constructions. The semiclassical limit of a Z-filtered algebra
A constructed in §2.4 can also be obtained by applying the construction of §2.1 to
an auxiliary algebra, namely the Rees ring

Ã :=
∑
n∈Z

Anh
n ⊆ A[h±1],

where A[h±1] is a Laurent polynomial ring over A. Since 1 ∈ A0, the polynomial
algebra k[h] is a subalgebra of Ã, and we note that Ã is a torsionfree k[h]-algebra.
(It is not a k[h±1]-algebra unless A−1 = A0, in which case all An = A0.) On one
hand, Ã/(h−1)Ã ∼= A. On the other, Ã/hÃ ∼= grA, because hÃ =

∑
n∈Z

An−1h
n.

Thus, if grA is commutative, we have a Poisson bracket 1
h [−,−] on Ã, which

induces a Poisson bracket {−,−}1 on grA as in §2.1. This bracket concides with
the Poisson bracket {−,−}4 constructed in §2.4, as follows.

Start with a ∈ grmA and b ∈ grnA, and lift these elements to â ∈ Am and
b̂ ∈ An. With respect to the natural epimorphism π : Ã → grA, the elements a
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and b lift to âhm, b̂hn ∈ Ã. Hence,

{a, b}1 = π
( 1
h
[âhm, b̂hn]

)
= π([â, b̂]hm+n−1) = [â, b̂] +Am+n−2 = {a, b}4 .

Therefore {−,−}1 = {−,−}4.

2.6. Example: enveloping algebras. Let g be a finite-dimensional Lie algebra over
k, and put the standard (nonnegative) filtration on the enveloping algebra U(g), so
that U(g)0 = k and U(g)1 = k+g, while U(g)n = U(g)n1 for n > 1. The associated
graded algebra is commutative, and is naturally identified with the symmetric
algebra S(g) of the vector space g. In particular, we use the same symbol to denote
an element of g and its coset in gr1 U(g) = S(g)1. Then S(g) is the semiclassical
limit of U(g), equipped with the Poisson bracket satisfying

{e, f} = [e, f ]

for all e, f ∈ g, where [e, f ] denotes the Lie product in g. The above formula
determines {−,−} uniquely, since g generates S(g).

Now view the dual space g∗ as an algebraic variety, namely the affine space
Adim g. The coordinate ring O(g∗) is a polynomial algebra over k in dim g indeter-
minates, as is S(g). There is a canonical isomorphism

θ : S(g)
∼=−−−−→ O(g∗) (2.6)

which sends each e ∈ g to the polynomial function on g∗ given by evaluation
at e, that is, θ(e)(α) = α(e) for α ∈ g∗. (This isomorphism is often treated as
an identification of the algebras S(g) and O(g∗).) Via θ, the Poisson bracket on
S(g) obtained from the semiclassical limit process above carries over to a Poisson
bracket on O(g∗), known as the Kirillov-Kostant-Souriau Poisson bracket .

If {e1, . . . , en} is a basis for g, then S(g) = k[e1, . . . , en] and θ sends the ei to
indeterminates xi such that O(g∗) = k[x1, . . . , xn]. An explicit description of the
KKS Poisson bracket on O(g∗) can be obtained in terms of the structure constants
of g, as follows. These constants are scalars clij ∈ k such that [ei, ej ] =

∑
l c

l
ijel for

all i, j. Since {ei, ej} = [ei, ej] in S(g), an application of θ yields {xi, xj} =
∑

l c
l
ijxl

for all i, j. It follows that

{p, q} =
∑
i,j,l

clijxl
∂p

∂xi

∂q

∂xj

for p, q ∈ O(g∗) [7, Proposition 1.3.18]. To see this, just check that the displayed
formula determines a Poisson bracket on O(g∗) which agrees with the KKS bracket
on pairs of indeterminates.

The KKS Poisson bracket on O(g∗) can also be obtained by applying the
method of §2.1 to the homogenization of U(g), that is, the k[h]-algebra A with
generating vector space g and relations ef − fe = h[e, f ] for e, f ∈ g (where [e, f ]
again denotes the Lie product in g). Here A/hA ∼= S(g) ∼= O(g∗) and A/(h−λ)A ∼=
U(g) for all λ ∈ k×.
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3. Symplectic leaves

We introduce symplectic leaves first in the context of Poisson manifolds, following
the original definition of Weinstein [54], and then we carry the concept over to
complex affine Poisson varieties, following Brown and Gordon [6].

3.1. Poisson algebras. We reiterate the general definition from §2.1: a Poisson
bracket on a k-algebra R is any antisymmetric bilinear map R × R → R which
satisfies the Jacobi and Leibniz identities. Unless a special notation imposes itself,
we denote all Poisson brackets by curly braces: {−,−}.

A Poisson algebra over k is just a k-algebra R equipped with a particular
Poisson bracket. We restrict our attention to commutative Poisson algebras in the
present paper. As for the noncommutative case, Farkas and Letzter have shown
that Poisson brackets essentially reduce to commutators [11, Theorem 1.2]: If R is
a prime ring which is not commutative, any Poisson bracket on R is a multiple of
the commutator bracket by an element of the extended centroid of R.

3.2. Symplectic leaves in Poisson manifolds. Let M be a smooth manifold, and let
C∞(M) denote the algebra of smooth real-valued functions on M . (Some authors
replace C∞(M) by the algebra of smooth or analytic complex-valued functions.) A
Poisson structure onM is a choice of Poisson bracket on C∞(M), so that C∞(M)
becomes a Poisson algebra. A smooth manifold, together with a choice of Poisson
structure, is called a Poisson manifold .

Now assume that M is a Poisson manifold. For each f ∈ C∞(M), the map
Xf = {f,−} is a derivation on C∞(M) and thus a vector field on M . Such vector
fields are called Hamiltonian vector fields (for the given Poisson structure), and the
flows (or integral curves) of Hamiltonian vector fields are known as Hamiltonian
paths . More specifically, a smooth path γ : [0, 1] → M is Hamiltonian provided
there is some f ∈ C∞(M) such that, at each point γ(t) along the path, the
tangent vector dγ/dt equals Xf |γ(t). Since the change from a Hamiltonian path
following the flow of a vector field Xf to one following a different vector field Xg

need not be smooth, one must work with piecewise Hamiltonian paths , i.e., finite
concatenations of Hamiltonian paths.

These paths determine an equivalence relation on M , points p and p′ being
equivalent if and only if there is a piecewise Hamiltonian path in M running
from p to p′. The resulting equivalence classes are called symplectic leaves, and
the partition of M as the disjoint union of its symplectic leaves is known as the
symplectic foliation of M .

3.3. Poisson bivector fields. For many purposes, it is more useful to record a
Poisson structure in the form of a bivector field rather than a Poisson bracket. In
particular, this allows the most direct definition of Poisson structures on non-affine
algebraic varieties.

Let M be a Poisson manifold. For a point p ∈ M , let mp denote the maxi-
mal ideal of C∞(M) consisting of those functions that vanish at p. Evaluation of
Poisson brackets at p induces an antisymmetric bilinear form πp on the cotangent
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space mp/m
2
p, where

πp(f +m2
p, g +m2

p) = {f, g}(p)
for f, g ∈ mp. Now πp acts in each variable as a linear map in the dual space
of mp/m

2
p, that is, as a tangent vector to M at p. Since πp is antisymmetric, it

is thus a tangent bivector at p, namely an element of Tp(M) ∧ Tp(M). The map
π : p !→ πp is a smooth global section of Λ2TM , that is, a tangent bivector field on
M . To recover the Poisson bracket on C∞(M) from the bivector field π, observe
that {f, g}(p) = {f − f(p), g − g(p)}(p) for f, g ∈ C∞(M) and p ∈ M , which we
rewrite in the form

{f, g}(p) = πp(df(p), dg(p)), (3.3)

where df(p) = f − f(p) + m2
p ∈ mp/m

2
p and similarly for dg(p).

Conversely, via (3.3) any tangent bivector field π on M induces an antisym-
metric bilinear map {−,−} on C∞(M) satisfying the Leibniz conditions. This is a
Poisson bracket exactly when the Jacobi identity is satisfied, which is equivalent to
the vanishing of the Schouten bracket [π, π] (which we will not define here; see [1,
p. 44], [53, 2nd ed., Remark 2.2(3)], for instance). A Poisson bivector field onM is
any tangent bivector field π for which [π, π] = 0. As indicated in the sketch above,
Poisson brackets on C∞(M) correspond bijectively to Poisson bivector fields onM .

3.4. Poisson varieties. For any complex algebraic variety V , the definition of a
Poisson bivector field on V can be copied from §3.3 – it is any tangent bivector
field π on V for which [π, π] = 0. In the context of algebraic geometry, however,
the map π : V → Λ2TV is required to be a regular function. Now one defines
a Poisson variety to be a complex algebraic variety equipped with a particular
Poisson bivector field. Associated concepts are defined by requiring compatibility
with these bivector fields. For example, a Poisson morphism from a Poisson va-
riety (V, π) to a Poisson variety (W,π′) is a regular map φ : V → W such that
(Tφ ∧ Tφ)π = π′φ. A Poisson subvariety of V is a subvariety X such that the
inclusion map X → V is a Poisson morphism.

If V is an affine Poisson variety, the formula (3.3) defines a Poisson bracket
on O(V ). Conversely, any Poisson bracket on O(V ) induces a Poisson bivector
field on V as in §3.3. Thus, affine Poisson varieties can equally well be defined as
complex affine varieties whose coordinate rings are Poisson algebras. This point
of view can be extended to arbitrary varieties by defining a Poisson variety to be
a complex algebraic variety whose sheaf of regular functions is a sheaf of Poisson
algebras.

3.5. Smooth Poisson varieties as manifolds. In order to define symplectic leaves
in Poisson varieties, manifold structures are needed. The fundamental result is
that any smooth (i.e., nonsingular) complex variety V has a unique structure as a
complex analytic manifold (e.g., [44, Chapter II, §2.3]). This allows one to view V
as a smooth manifold. If V is a Poisson variety, its chosen Poisson bivector field
π is necessarily smooth (because it is regular), and so V together with π becomes
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a Poisson manifold. One can achieve this result in the affine case with Poisson
brackets as well, by showing that any Poisson bracket on O(V ) extends uniquely
to a Poisson bracket on the algebra of smooth complex functions on V ; taking real
parts then yields a Poisson bracket on C∞(V ).

Given a smooth Poisson variety V , we view V as a smooth manifold as above,
and define the symplectic leaves of V to be the symplectic leaves of the manifold
V , defined as in §3.2.
3.6. Symplectic leaves in singular Poisson varieties. Let V be an arbitrary complex
variety, and define the sequence of closed subvarieties

V0 = V ⊃ V1 ⊃ · · · ⊃ Vm = ∅,

where each Vi+1 is the singular locus of Vi. To build this chain, recall first that
the singular locus of a nonempty variety is a proper closed subvariety. Since V is
a noetherian topological space, the chain must eventually reach the empty set.

If V is a Poisson variety, then V1 is a Poisson subvariety [42, Corollary 2.4]. By
induction, all the Vi are Poisson subvarieties of V . Consequently, V is (canonically)
the disjoint union of smooth locally closed Poisson subvarieties Zi := Vi−1 \ Vi.
Following [6, §3.5], we define the symplectic leaves of V to be the symplectic leaves
of the various Zi, defined as in §3.5.
3.7. Example. There is a known recipe, described in [22, Appendix A], for deter-
mining the symplectic leaves in a semisimple complex algebraic group G, relative
to the Poisson structure arising from the “standard quantization” of G. For illus-
tration, we present the case G = SL2(C); details are given in [22, Theorem B.2.1].
The Poisson bracket on O(G) is described in §2.2(c) above. The symplectic leaves
in G are as follows:

• the singletons
{[
α 0
0 α−1

]}
, for α ∈ C×;

• the sets
{[
α 0
γ α−1

] ∣∣∣∣ α, γ ∈ C×
}
and

{[
α β
0 α−1

] ∣∣∣∣ α, β ∈ C×
}
;

• the sets
{[
α β
γ δ

]
∈ G

∣∣∣∣ β = λγ �= 0
}
, for λ ∈ C×.

3.8. Example. The standard example of a non-algebraic solvable Lie algebra is a
3-dimensional complex Lie algebra g with basis {e1, e2, e3} such that

[e1, e2] = e2 [e1, e3] = αe3 [e2, e3] = 0

for some α ∈ R \ Q. Write O(g∗) = C[x1, x2, x3] following the notation of §2.6.
The KKS Poisson structure on g∗ is given by the Poisson bracket on O(g∗) such
that

{x1, x2} = x2 {x1, x3} = αx3 {x2, x3} = 0.

As in [53, 1st ed., Example II.2.37; 2nd ed., Example II.2.43], the symplectic leaves
in g∗ are the following sets:

• the individual points on the x1-axis;
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• the x1x2-plane minus the x1-axis;
• the x1x3-plane minus the x1-axis;
• the surfaces (x3 = λxα

2 �= 0) for λ ∈ C×.

Since α is irrational, the surfaces (x3 = λxα
2 �= 0) are not algebraic – they are

locally closed in the Euclidean topology but not in the Zariski topology.

4. The Orbit Method from Lie theory

4.1. The Orbit Method. This term has been applied to a whole complex of methods
in the representation theory of Lie groups and Lie algebras, and extended, as a
guiding principle, to many other domains. To quote Kirillov’s survey article [30],

The idea behind the orbit method is the unification of harmonic analy-
sis with symplectic geometry (and it can also be considered as a part of
the more general idea of the unification of mathematics and physics).
In fact, this is a post factum formulation. Historically, the orbit method
was proposed in [29] for the description of the unitary dual (i.e., the set
of equivalence classes of unitary irreducible representations) of nilpo-
tent Lie groups. It turned out that not only this problem but all other
principal questions of representation theory – topological structure of the
unitary dual, explicit description of the restriction and induction func-
tors, character formulae, etc. – can be naturally answered in terms of
coadjoint orbits.

In Lie theory, the relevant orbits are defined as follows. Recall that if G is
a Lie group with Lie algebra g, then G acts on g by the adjoint action and on
g∗ by the coadjoint action. The G-orbits of these actions are called adjoint orbits
and coadjoint orbits , respectively. As a particular instance, the Orbit Method
suggests that the primitive ideals of the enveloping algebra of g, being the kernels
of the irreducible representations, should be related to the coadjoint orbits in g∗.
Kirillov’s original work provided the best such relationship – a bijection – when g
is nilpotent. There is also a bijection in case g is solvable, except that the coadjoint
orbits may have to be taken with respect to a different group than a Lie group
with Lie algebra g. We discuss this situation in Section 5.

To place the coadjoint orbits in a geometric setting, view g∗ as the variety
Adim g, as in §2.6. We can then ask for a geometric description of these orbits
within g∗. The answer is a famous result discovered independently by Kirillov,
Kostant, and Souriau (see, e.g., [31, §I.2.2, Theorem 2]):

4.2. Theorem. [Kirillov-Kostant-Souriau] Let G be a Lie group and g its Lie al-
gebra. Then the coadjoint orbits of G in g∗ are precisely the symplectic leaves for
the KKS Poisson structure.
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4.3. Example. Return to Example 3.8, and place the x1x2x3-coordinates of points
of g∗ in column vectors. We choose a Lie group G with Lie algebra g as follows:

G :=

⎧⎨⎩
⎡⎣1 u v
0 t 0
0 0 tα

⎤⎦ ∣∣∣∣ u, v ∈ C, t ∈ C×

⎫⎬⎭ .

The coadjoint action of G on g∗ can be identified with left multiplication of ma-
trices from G on column vectors representing points in g∗. One easily checks that
the G-orbits are exactly the symplectic leaves of g∗ identified in Example 3.8, as
required by Theorem 4.2.

4.4. A general principle. In situations outside Lie theory, there may not be a
suitable group action whose orbits play the role of coadjoint orbits. Instead, taking
account of Theorem 4.2, one focusses on symplectic leaves. Restricting to the study
of irreducible representations and primitive ideals, one is led to a general principle
that we formulate as follows:

Given a noncommutative algebra A, relate the primitive ideals of A to
the symplectic leaves corresponding to the Poisson structure on some
associated algebraic variety arising from a semiclassical limit.

This loose phrasing is intended to give the flavor of ideas coming out of the Orbit
Method rather than to set up a precise recipe. Furthermore, this principle already
requires modification in the case of enveloping algebras, and for general quantized
coordinate rings.

On the other hand, the principle is right on target for the generic single pa-
rameter quantized coordinate rings Oq(G) of semisimple complex algebraic groups
G, as conjectured by Hodges and Levasseur in [22, §2.8, Conjecture 1]: there is a
bijection between the set of primitive ideals of Oq(G) and the set of symplectic
leaves in G (for the semiclassical limit Poisson structure). They verified this con-
jecture for G = SL2(C) and G = SL3(C) in [22, Corollary B.2.2, Theorems 4.4.1,
A.3.2], and then for G = SLn(C) in [23, Theorem 4.2 and following remarks]. The
full conjecture was established by Joseph [27, §§10.3, A.4.5] and by Hodges, Lev-
asseur, and Toro [24, Theorems 1.8, 4.18, Corollary 4.5] for connected semisimple
complex Lie groups G. The latter results also cover the multiparameter algebra
Oq,p(G) under suitable algebraicity conditions on p.

4.5. Generic versus non-generic situations. As mentioned in the introduction, the
principle discussed in §4.4 does not apply to non-generic quantized coordinate
rings, which typically have “too many” primitive ideals. The quantum plane pro-
vides the simplest illustration of this difficulty, and of the differences between the
generic and non-generic cases. Take

Aq = Oq(C2) = C〈x, y | xy = qyx〉,
where q is an arbitrary nonzero scalar in C. By Example 2.2(a), the semiclassical
limit of the family (Aq)q∈C× is the polynomial ring k[x, y], equipped with the
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Poisson bracket such that {x, y} = xy. It is easily checked that the corresponding
symplectic leaves in C2 consist of

• the individual points on the x- and y-axes;
• the xy-plane minus the x- and y-axes.

If q is not a root of unity, one similarly checks that the primitive ideals of Aq

consist of
• the maximal ideals 〈x− α, y〉 and 〈x, y − β〉, for α, β ∈ C;
• the zero ideal.

(See [4, Example II.7.2], for instance, for details.) In this case, there is a natural
bijection between the set of primitive ideals of Aq and the set of symplectic leaves
in C2.

On the other hand, if q is a primitive lth root of unity, the center of Aq equals
the polynomial ring C[xl, yl], and Aq is a finitely generated C[xl, yl]-module. In
this case, the primitive ideals of Aq are maximal ideals, and they are parametrized
(up to l-to-one) by the maximal ideals of C[xl, yl]. While the set of primitive ideals
of Aq has the same cardinality as the set of symplectic leaves in C2, there is no
natural bijection, and certainly no homeomorphism if Zariski topologies are taken
into account.

Such disparities occur in all the standard families of quantized coordinate
rings, and provide just one of many distinctions between the generic and non-
generic cases. We do not discuss the non-generic situation further, and concentrate
on generic algebras.

5. Limitations of the Orbit Method for solvable Lie algebras

For a solvable finite dimensional complex Lie algebra g, the primitive ideals of the
enveloping algebra U(g) are parametrized by means of the famous Dixmier map.
At first glance, this is a successful instance of the Orbit Method, since the Dixmier
map induces a bijection from a set of orbits in g∗ onto the set of primitive ideals
of U(g). However, the relevant orbits are not, in general, those of the coadjoint
action of a Lie group with Lie algebra g. Instead, the following group is needed.

5.1. The algebraic adjoint group. Let g be a finite dimensional complex Lie algebra.
Treating g for a moment just as a vector space, we have the general linear group
GL(g) on g, which is a complex algebraic group whose Lie algebra is the general
linear Lie algebra gl(g). Any algebraic subgroup of GL(g) (i.e., any Zariski closed
subgroup) has a Lie algebra which is naturally contained in gl(g). The algebraic
adjoint group of g is the smallest algebraic subgroup G ⊆ GL(g) whose Lie algebra
contains ad g = {adx | x ∈ g} (cf. [2, §12.2]; [50, Definition 24.8.1]).

The natural action of GL(g) on g by linear automorphisms restricts to an
action of G on g, the adjoint action. This, in turn, induces a (left) action of G on
g∗, the coadjoint action, under which

(g.α)(x) = α(g−1.x)
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for g ∈ G, α ∈ g∗, and x ∈ g. The orbits of this action, the coadjoint orbits , are
collected in the set g∗/G. We equip g∗/G with the quotient topology induced from
the Zariski topology on g∗, and thus refer to it as the space of coadjoint orbits.

5.2. Prime and primitive spectra. For any algebra A, we denote the collection of
all primitive ideals of A by primA. This set supports a Zariski topology, under
which the closed sets are the sets V (I) := {P ∈ primA | P ⊇ I} for ideals I of A.
We treat primA as a topological space with this topology, and refer to it as the
primitive spectrum of A. The analogous process, applied to the set of all prime
ideals of A, results in the prime spectrum of A, denoted specA. Since primitive
ideals are prime, primA ⊆ specA. In fact, primA is a subspace of specA, that is,
its topology coincides with the relative topology inherited from specA. Finally, we
shall need the subspace of specA consisting of all the maximal ideals of A. This
is the maximal ideal space of A, denoted maxspecA.

5.3. The Dixmier map. Let g be a solvable finite dimensional complex Lie algebra.
Following [2, §10.8], we use the name Dixmier map and the label Dx for the map

Dx : g∗ −→ primU(g)

introduced by Dixmier in [9]. We do not give the definition here, but just refer to
[2]. It turns out that this map is constant onG-orbits, and so it induces a factorized
Dixmier map

Dx : g∗/G −→ primU(g)
[2, §12.4]. Work of Dixmier, Conze, Duflo, and Rentschler led to the result that Dx
is a continuous bijection [2, Sätze 13.4, 15.1]. The conjecture that it is a homeomor-
phism was established later by Mathieu [35, Theorem], resulting in the following
theorem:

5.4. Theorem. [Dixmier-Conze-Duflo-Rentschler-Mathieu] Let g be a solvable fi-
nite dimensional complex Lie algebra, and G its adjoint algebraic group. Then the
factorized Dixmier map Dx is a homeomorphism from g∗/G onto primU(g).

5.5. Algebraic versus non-algebraic cases. If g is an algebraic Lie algebra, meaning
that it is the Lie algebra of some algebraic group, then the adjoint algebraic group
G is a Lie group, and its coadjoint orbits in g∗ are the symplectic leaves for the
KKS Poisson structure, by Theorem 4.2. Otherwise, G is larger than the relevant
Lie group, in the sense that its Lie algebra properly contains ad g. In this case, its
coadjoint orbits are larger too, typically larger than individual symplectic leaves.
Our basic example illustrates this behavior.

5.6. Example. Return to Example 3.8, and again place the x1x2x3-coordinates of
points of g∗ in column vectors. The adjoint algebraic group G, written so as to act
by left multiplication on column vectors, can be expressed as

G =

⎧⎨⎩
⎡⎣1 u v
0 t 0
0 0 t′

⎤⎦ ∣∣∣∣ u, v ∈ C, t, t′ ∈ C×

⎫⎬⎭
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[50, §24.8.4]. The coadjoint orbits of G in g∗ are the following sets:

• the individual points on the x1-axis;
• the x1x2-plane minus the x1-axis;
• the x1x3-plane minus the x1-axis;
• g∗ minus the x1x2- and x1x3-planes.

Comparing with Example 3.8, we see that the first three G-orbits are symplectic
leaves, while the fourth is not. However, the fourth is at least a union of symplectic
leaves.

The fourth G-orbit above is Zariski dense in g∗, while the others are not.
Viewing these orbits as points in the orbit space g∗/G, we find that g∗/G has a
unique dense point (i.e., a unique dense singleton subset). By Theorem 5.4, the
same holds for primU(g). (Translated into ideal theory, this means that there is
one primitive ideal of U(g) which is contained in all other primitive ideals.) On
the other hand, all the surfaces (x3 = λxα

2 �= 0) are Zariski dense in g∗, and so the
quotient topology on the space of symplectic leaves in g∗ has uncountably many
dense points. Therefore this space of symplectic leaves cannot be homeomorphic
to primU(g).

6. Poisson ideal theory and symplectic cores

Since the concept of symplectic leaves is differential-geometric, it should not be so
surprising that it is not always suited to describe answers to algebraic problems, as
seen in the previous section. Consequently, we look for an algebraic replacement.
This is provided by Brown and Gordon’s notion of symplectic cores, which is
described via the ideal theory of Poisson algebras.

6.1. Poisson prime ideals. Let R be a (commutative) Poisson algebra (recall §3.1).
A Poisson ideal of R is any ideal I of the ring R which is also a Lie ideal

relative to {−,−}, that is, {R, I} ⊆ I. Sums, products, and intersections of Poisson
ideals are again Poisson ideals. Whenever I is a Poisson ideal of R, the Poisson
bracket on R induces a well-defined Poisson bracket on R/I, so that R/I becomes
a Poisson algebra.

The Poisson core of an arbitrary ideal J of R is the largest Poisson ideal
contained in J . This exists and is unique, because it is the sum of all Poisson
ideals contained in J . We use P(J) to denote the Poisson core of J .

A Poisson-prime ideal of R is any proper Poisson ideal P of R with the fol-
lowing property: whenever the product of Poisson ideals I and J of R is contained
in P , one of I or J must be contained in P . Obviously any prime Poisson ideal is
Poisson-prime, but the converse can fail in positive characteristic. As we shall see
in a moment, (Poisson-prime) is the same as (prime Poisson) when R is noetherian
and k has characteristic zero; in that case, we will drop the hyphen and speak of
Poisson prime ideals. Note also that if Q is an arbitrary prime ideal of R, then
P(Q) is a Poisson-prime ideal.
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The Poisson-prime spectrum of R, denoted P.specR, is the set of all Poisson-
prime ideals of R, equipped with the natural Zariski-type topology, in which the
closed sets are those of the form VP (I) := {P ∈ P.specR | P ⊇ I}, for ideals I
of R. It suffices to consider Poisson ideals in defining closed sets, since the ideal I
in the definition of a closed set can be replaced by the Poisson ideal it generates.
(This observation is helpful in showing that finite unions of closed sets are closed.)

6.2. Lemma. Let R be a Poisson k-algebra, where chark = 0. Then the Poisson
core of every prime ideal of R is prime, and all minimal prime ideals of R are
Poisson ideals. If R is noetherian, the Poisson-prime ideals of R coincide with the
prime Poisson ideals.

Proof. Commutativity is not needed for this result. The commutative case is cov-
ered, for instance, by [13, Lemma 1.1], and the general case is proved the same
way. We sketch the details for the reader’s convenience.

The first conclusion is a consequence of [10, Lemma 3.3.2], and the second
follows.

Now assume that R is noetherian, and let P be a Poisson-prime ideal of R.
There exist prime ideals Q1, . . . , Qt minimal over P such that Q1Q2 · · ·Qt ⊆ P .
The minimal prime ideals Qi/P in the Poisson algebra R/P must be Poisson ideals
by what has been proved so far, and hence the Qi are Poisson ideals of R. Poisson-
primeness of P then implies that some Qj ⊆ P , whence P = Qj , proving that P
is prime. �

6.3. Poisson-primitive ideals and symplectic cores. Let R be a (commutative)
Poisson algebra.

The Poisson-primitive ideals of R are the Poisson cores of the maximal ideals
of R. Note from §6.1 that all Poisson-primitive ideals are Poisson-prime.

This terminology is chosen to reflect the following parallel. An ideal P in
an algebra A is left primitive if and only if P is the largest ideal contained in
some maximal left ideal. If we view A as a (noncommutative) Poisson algebra via
the commutator bracket [−,−], then the ideals of A are precisely the Poisson left
ideals. Thus, the left primitive ideals of A are exactly the Poisson cores of the
maximal left ideals.

The Poisson-primitive spectrum of R, denoted P.primR, is the set of all
Poisson-primitive ideals of R. This is a subset of P.specR, and we give it the
relative topology.

By definition, the process of taking Poisson cores defines a surjective map

maxspecR −→ P.primR,

and we note that this map is continuous. Its fibres, namely the sets

{m ∈ maxspecR | P(m) = P}
for P ∈ P.primR, are called symplectic cores. They determine a partition of
maxspecR.
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Now suppose that R = O(V ) is the coordinate ring of an affine variety V ,
and that k is algebraically closed. As in the complex case, we say that V is a
Poisson variety. Since k is algebraically closed, there is a natural identification
V ≡ maxspecR, with which we transfer the symplectic cores from maxspecR to
V . In other words, the symplectic cores in V are the sets

{p ∈ V | P(mp) = P}

for P ∈ P.primR, where mp = {f ∈ R | f(p) = 0}.

6.4. Example. Return to Example 3.8, and set R = O(g∗) = C[x1, x2, x3]. The
Poisson-primitive ideals of R can be computed as follows:

P(〈x1 − α, x2, x3〉) = 〈x1 − α, x2, x3〉 (α ∈ C)

P(〈x1 − α, x2 − β, x3〉) = 〈x3〉 (α ∈ C, β ∈ C×)

P(〈x1 − α, x2, x3 − γ〉) = 〈x2〉 (α ∈ C, γ ∈ C×)

P(〈x1 − α, x2 − β, x3 − γ〉) = 〈0〉 (α ∈ C, β, γ ∈ C×).

It follows that the symplectic cores in g∗ are the sets

• the individual points on the x1-axis;
• the x1x2-plane minus the x1-axis;
• the x1x3-plane minus the x1-axis;
• g∗ minus the x1x2- and x1x3-planes.

These are precisely the coadjoint orbits of the adjoint algebraic group of g, as we
saw in Example 5.6.

7. Symplectic cores versus symplectic leaves

Symplectic cores are related to symplectic leaves by the following result of Brown
and Gordon [6, Lemma 3.3 and Proposition 3.6]; further relations will be given
below. Here “locally closed” refers to the Zariski topology.

7.1. Theorem. [Brown-Gordon] Let V be a complex affine Poisson variety.

(a) Each symplectic core in V is a union of symplectic leaves, and is a smooth
(nonsingular) subvariety of its closure.

(b) If the symplectic leaves in V are all locally closed, then they coincide with the
symplectic cores.

It is a standard result that the orbits of a connected algebraic group G acting
on a variety X can be recovered from the orbit closures, as follows. Take any orbit
closure C, and remove all orbit closures properly contained in C. The result will
be a single G-orbit, and all G-orbits in X are obtained by this means. Yakimov has
conjectured that the symplectic cores in a complex affine Poisson variety can be
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recovered from the closures of the symplectic leaves in a similar manner. We verify
this below, with the help of the following lemma of Brown and Gordon [6, Lemma
3.5]. All topological properties are to be taken relative to the Zariski topology.

7.2. Lemma. [Brown-Gordon] Let V be a complex affine Poisson variety, and R =
O(V ). Let L be a symplectic leaf in V , and set K = {f ∈ R | f = 0 on L}.
Then K is a Poisson-primitive ideal of R, and L is contained in the corresponding
symplectic core, that is, P(mp) = K for all p ∈ L.

7.3. Lemma. Let V be a complex affine Poisson variety, and R = O(V ). Let K be
a Poisson ideal of R, and X the closed subvariety of V determined by K. Then X
is a union of symplectic cores and a union of symplectic leaves. In particular, the
closure of any symplectic leaf of V is a union of symplectic leaves.

Proof. If p ∈ X , then mp ⊇ K. Since K is a Poisson ideal, it must be contained in
the Poisson-primitive ideal P = P(mp). Now the set C = {q ∈ V | P(mq) = P} is
the symplectic core containing p, and C ⊆ X because mq ⊇ P ⊇ K for all q ∈ C.
Therefore X is a union of symplectic cores. That X is a union of symplectic leaves
now follows from Theorem 7.1(a).

For any symplectic leaf L of V , the ideal I of functions in R that vanish
on L is a Poisson ideal by Lemma 7.2. The closed subvariety determined by I is
the closure of L, and this is a union of symplectic leaves by what we have just
proved. �

We can now prove that symplectic cores are obtained from symplectic leaves
in the manner proposed by Yakimov; this is parts (c) and (e) of the following
theorem. Here overbars denote closures.

7.4. Theorem. Let V be a complex affine Poisson variety, and L a symplectic leaf
in V .
(a) There is a unique symplectic core C in V containing L, and C ⊆ L.
(b) C is the union of those symplectic leaves of V which are dense in L.
(c) C = L \ ⋃

M M where M runs over those symplectic leaves whose closures
are properly contained in L.

(d) C is the unique symplectic core dense in L.
(e) Each symplectic core in V is dense in the closure of every symplectic leaf

it contains. Hence, it can be obtained from the closure of such a leaf as in
part (c).

Proof. Set R = O(V ), and let K be the ideal of functions in R that vanish on L.
(a) The symplectic cores and the symplectic leaves both partition V , and the

latter form a finer partition, by Theorem 7.1(a). This implies the existence and
uniqueness of C.

By Lemma 7.2, K is a Poisson-primitive ideal, and the symplectic core it
determines contains L. By uniqueness, this core is C, that is,

C = {p ∈ V | P(mp) = K}.
In particular, mp ⊇ K for all p ∈ C, from which it follows that C ⊆ L.
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(b) If M is a symplectic leaf which is dense in L, then K equals the ideal
of functions in R that vanish on M , and Lemma 7.2 implies that M ⊆ C. On
the other hand, if M ′ is a symplectic leaf which is contained in but not dense in
L, the ideal K ′ of functions vanishing on M ′ properly contains K, whence M ′ is
contained in a symplectic core different from C. In this case, M ′ is disjoint from
C. Part (b) now follows, because L is a union of symplectic leaves, by Lemma 7.3.

(c) In view of Lemma 7.3, the given union
⋃

M M equals the union of those
symplectic leaves which are contained in L but not dense in L. The given formula
for C thus follows from part (b).

(d) Clearly C is dense in L, since L ⊆ C ⊆ L. If D is a different symplectic
core contained in L, then by (b), any symplectic leaf N ⊆ D is not dense in L.
But D ⊆ N by (a), and thus D is not dense in L.

(e) Suppose that D is a symplectic core in V , and N a symplectic leaf con-
tained in D. By (a), D is the unique symplectic core containing N , and D ⊆ N ,
whence D is dense in N . The final statement now follows from (c), with C and L
replaced by D and N . �

8. Symplectic cores versus primitive ideals for solvable Lie algebras

We now show that the concept of symplectic cores exactly overcomes the limita-
tions of symplectic leaves with respect to the Dixmier map discussed in Section 5.
Namely, the Dixmier map provides a homeomorphism from the space of symplectic
cores in g∗ onto the primitive spectrum of U(g), for any solvable finite dimensional
complex Lie algebra g. This just amounts to showing that the coadjoint orbits in
g∗, with respect to the adjoint algebraic group of g, coincide with the symplectic
cores. Solvability is not needed for the latter result.

All that is required to obtain the new statement about the Dixmier map
is to reinterpret parts of the development of Theorem 5.4 in terms of the new
concepts. This reinterpretation also shows that (for g solvable) P.primO(g∗) is
homeomorphic to primU(g). With a little extra effort, we can handle prime ideals
as well, showing that P.specO(g∗) is homeomorphic to specU(g).

Throughout this section, g will denote a finite dimensional complex Lie alge-
bra and G its adjoint algebraic group. We do not assume g solvable until The-
orem 8.5. Some of the results we will need are developed in the literature in
terms of S(g) rather than O(g∗). This requires use of the Poisson isomorphism
θ : S(g)

∼=−−−−→ O(g∗) of (2.6).
8.1. Actions of G and g. The group G acts on g and g∗ by the adjoint and coadjoint
actions, respectively, as in §5.1. In turn, these induce actions of G by C-algebra
automorphisms on S(g) and O(g∗), actions which we also refer to as adjoint and
coadjoint actions . All G-actions we mention will refer to one of these four cases.
Let us write specG S(g) and specGO(g∗) for the sets of G-stable prime ideals in
S(g) and O(g∗), respectively, equipped with the relative topologies from specS(g)
and specO(g∗).
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We claim that the isomorphism θ isG-equivariant. To see this, let {e1, . . . , en}
be a basis for g and {α1, . . . , αn} the corresponding dual basis for g∗. As in §2.6,
O(g∗) = C[x1, . . . , xn] where each xi = θ(ei). Given γ ∈ G, there are scalars
γij ∈ C such that γ.ej =

∑
i γijei for all j. Consequently,

(γ.xj)(αi) = xj(γ−1.αi) = (γ−1.αi)(ej) = αi(γ.ej) = γij

for all i, j, from which we conclude that γ.xj =
∑

i γijxi for all j. Therefore
γ.θ(ej) = θ(γ.ej) for all j, and the G-equivariance of θ follows.

For each e ∈ g, the Lie derivation ad e = [e,−] on g extends uniquely to a
derivation on S(g), namely the Hamiltonian {e,−}. This yields an action of g on
S(g) by derivations. We write specg S(g) for the set of g-stable prime ideals of
S(g), equipped with the relative topology from specS(g).

8.2. Lemma.

(a) specG S(g) = specg S(g) = P.specS(g).
(b) specGO(g∗) = P.specO(g∗).
(c) θ induces a homeomorphism specg S(g) ≈−−−−→ P.specO(g∗).

Proof. (a) Since g generates the algebra S(g), the g-stable ideals of S(g) coincide
with the Poisson ideals. Hence, specg S(g) = P.specS(g). By [2, §13.1] or [50,
§24.8.3], the g-stable ideals of S(g) coincide with the G-stable ideals. From this,
we immediately obtain specG S(g) = specg S(g).

(b)(c) These follow immediately from (a), because θ is both G-equivariant
and a Poisson isomorphism. �

Following our previous notation for maximal ideals corresponding to points
in varieties, write mα for the maximal ideal of O(g∗) corresponding to a point
α ∈ g∗.

8.3. Proposition. Let g be a finite dimensional complex Lie algebra and G its
adjoint algebraic group. There is a homeomorphism φ : g∗/G → P.primO(g∗)
such that φ(G.α) = P(mα) for all α ∈ g∗.

Proof. Since S(g) is isomorphic to O(g∗), its maximal ideal space is homeomorphic
to g∗. A coordinate-free way to express the inverse isomorphism is to send each
α ∈ g∗ to the ideal mα = 〈e− α(e) | e ∈ g〉 of S(g). Observe that θ(mα) = mα.

By [2, Lemma 13.2 and proof], there is a topological embedding

τ : g∗/G −→ specg S(g)

such that τ(G.α) =
⋂

γ∈G γ.mα for α ∈ g∗. Thus, τ(G.α) is the largest G-stable
ideal of S(g) contained in mα. Invoking [2, §13.1] or [50, §24.8.3] again, we find
that τ(G.α) is the largest g-stable ideal of S(g) contained in mα. In particular, it
now follows from [10, Lemma 3.3.2] that τ(G.α) is a prime ideal. Hence, we can
say that τ(G.α) equals the largest member of specG S(g) contained in mα. Since θ
is G-equivariant, it follows that θτ(G.α) equals the largest member of specG O(g∗)
contained in mα. In view of Lemma 8.2(b), we conclude that θτ(G.α) = P(mα).
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Combining the above with Lemma 8.2(c), we obtain a topological embedding

φ : g∗/G→ P.specO(g∗)
such that φ(G.α) = P(mα) for α ∈ g∗. Since the image of φ is, by definition,
P.primO(g∗), the proposition is proved. �

8.4. Corollary. Let g be a finite dimensional complex Lie algebra and G its adjoint
algebraic group. The G-orbits in g∗ are precisely the symplectic cores.

Proof. Injectivity and well-definedness of the homeomorphism φ of Proposition
8.3 say that for all α, β ∈ g∗, we have G.α = G.β if and only if P(mα) = P(mβ).
Thus, α and β lie in the same G-orbit if and only if they lie in the same symplectic
core. �

Corollary 8.4 allows us to phrase the Dixmier-Conze-Duflo-Rentschler-Mathieu
Theorem in terms of symplectic cores:

8.5. Theorem. Let g be a solvable finite dimensional complex Lie algebra, and let
X be the set of symplectic cores in g∗, with the quotient topology induced from g∗.
Then the Dixmier map induces a homeomorphism X → primU(g).

8.6. The extended Dixmier map. Continue to assume that g is solvable. Via the
embedding g∗/G −→ specg S(g) from [2, Lemma 13.2] used above, identify g∗/G
with a subspace of specg S(g). Borho, Gabriel, and Rentschler showed that Dx
extends uniquely to a continuous map

D̃x : specg S(g)→ specU(g),

given by the rule

D̃x(P ) =
⋂

{Dx(α) | α ∈ g∗ and mα ⊇ P}

for P ∈ specg S(g) [2, Satz 13.4]. They named this the extended Dixmier map, and
proved that it is a continuous bijection [2, Satz 13.4, Kor. 15.1]. Their methods,
combined with Mathieu’s theorem, imply that D̃x is a homeomorphism, as we will
see shortly.

8.7. Quasi-homeomorphisms and sauber spaces. Let X and Y be topological
spaces. A continuous map φ : X → Y is a quasi-homeomorphism provided the
induced map F !→ φ−1(F ) is an isomorphism from the lattice of closed subsets of
Y onto the lattice of closed subsets of X . If X is a subspace of Y , the inclusion
map X → Y is a quasi-homeomorphism if and only if F ∩X = F for all closed
sets F ⊆ Y [2, §1.6]. Borho, Gabriel, and Rentschler observed that the inclusion
map primU(g)→ specU(g) is a quasi-homeomorphism [2, Beispiel 1.6], as is the
above embedding g∗/G −→ specg S(g) [2, Lemma 13.2].

A generic point of a closed subset F ⊆ X is any point x ∈ F such that
F = {x}. The space X is sauber (English: tidy) provided every irreducible closed
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subset of X has precisely one generic point. As observed in [2, §13.3], the prime
spectrum of any noetherian ring is sauber. We include the short argument in
the lemma below, for the reader’s convenience. The same argument shows that
specg S(g) is sauber. These spaces are noetherian as well, since they have Zariski
topologies arising from noetherian rings.

8.8. Lemma. Let A be a noetherian ring and R a commutative noetherian Poisson
k-algebra, with char k = 0.

(a) The prime spectrum specA is a sauber noetherian space, and if A is a Ja-
cobson ring, the inclusion map primA→ specA is a quasi-homeomorphism.

(b) The Poisson prime spectrum P.specR is a sauber noetherian space, and if
R is an affine k-algebra, the inclusion map P.primR→ P.specR is a quasi-
homeomorphism.

Proof. (a) Suppose that F1 ⊇ F2 ⊇ · · · is a decreasing sequence of closed sets in
specA. We may write each Fj = V (Ij) where Ij =

⋂
Fj . Then I1 ⊆ I2 ⊆ · · · is

an increasing sequence of ideals of A. Since this sequence stabilizes, so does the
original sequence of closed sets. Thus, specA is a noetherian space.

Let F = V (I) be an arbitrary closed subset of specA, where I is an ideal
of A. We may replace I by its prime radical, so there is no loss of generality in
assuming that I is semiprime. Since A is noetherian, there are only finitely many
prime ideals minimal over I, say Q1, . . . , Qn, and I = Q1∩· · ·∩Qn. It follows that
F = V (Q1) ∪ · · · ∪ V (Qn).

If F is irreducible, then F = V (Qj) for some j. In this case, Qj is the unique
generic point of F , proving that specA is sauber.

Now assume that A is a Jacobson ring, so that all prime ideals of A are
intersections of primitive ideals. It follows that

I =
⋂

F =
⋂

(F ∩ primA),

from which we see that F equals the closure of F ∩ primA in specA. Thus, by [2,
§1.6], the inclusion map primA→ specA is a quasi-homeomorphism.

(b) The argument applied in (a) also shows that P.specR is a noetherian
space.

As discussed in §6.1, any closed set F in P.specR can be written F = VP (I)
for some Poisson ideal I. There are only finitely many prime ideals minimal over
I, say Q1, . . . , Qn, and the Qi are Poisson ideals by Lemma 6.2. Hence, we may
replace I by Q1 ∩ · · · ∩Qn, and it follows that F = VP (Q1) ∪ · · · ∪ VP (Qn).

Just as in (a), if F is irreducible, F = VP (Qj) for some j, and then Qj is the
unique generic point of F . This proves that P.specR is sauber.

Now assume that R is an affine k-algebra. Then R is a Jacobson ring, and it
follows that every Poisson prime ideal of R is an intersection of Poisson-primitive
ideals (e.g., see [13, Lemma 1.1(e)]). From this, we conclude as in (a) that the
inclusion map P.primR→ P.specR is a quasi-homeomorphism. �
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8.9. Lemma. Let X ⊆ X ′ and Y ⊆ Y ′ be topological spaces, such that X ′ and
Y ′ are sauber and noetherian. Assume also that the inclusion maps X → X ′ and
Y → Y ′ are quasi-homeomorphisms. Then any continuous map φ : X → Y extends
uniquely to a continuous map φ′ : X ′ → Y ′. Moreover, if φ is a homeomorphism,
so is φ′.

Proof. The existence and uniqueness of φ are proved in [2, Lemma 13.3]. The final
statement follows by the usual universal property argument. �

8.10. Theorem. [Borho-Gabriel-Rentschler-Mathieu] Let g be a solvable finite di-
mensional complex Lie algebra. The extended Dixmier map

D̃x : specg S(g) −→ specU(g)

is a homeomorphism.

Proof. Following the proof of [2, Satz 13.4], recall that specg S(g) and specU(g)
are sauber noetherian spaces, and that the embedding g∗/G → specg S(g) and
the inclusion primU(g) → specU(g) are quasi-homeomorphisms. The map D̃x
is defined, with the help of Lemma 8.9, to be the unique continuous map from
specg S(g) to specU(g) extending Dx. Since Dx is a homeomorphism, Lemma 8.9
implies that D̃x is a homeomorphism. �

In Poisson-ideal-theoretic terms, Theorems 5.4 and 8.10 can be restated as
follows.

8.11. Theorem. Let g be a solvable finite dimensional complex Lie algebra. Then
there is a homeomorphism

ψ : P.primO(g∗) −→ primU(g)

such that ψ(P(mα)) = Dx(α) for α ∈ g∗, and ψ extends uniquely to a homeomor-
phism

P.specO(g∗) −→ specU(g).

Proof. To obtain ψ, just compose the factorized Dixmier map Dx with the inverse
of the homeomorphism φ of Proposition 8.3. By Lemma 8.8, P.specO(g∗) and
specU(g) are sauber noetherian spaces, and the inclusion maps P.primO(g∗) →
P.specO(g∗) and primU(g) → specU(g) are quasi-homeomorphisms. Therefore
the existence and uniqueness of the desired extension of ψ follow from Lemma
8.9. �

9. Modified conjectures for quantized coordinate rings

In light of Theorems 7.1, 7.4, 8.5, and 8.11, we nominate the concept of symplectic
cores as the best algebraic approximation for symplectic leaves. Further, we sug-
gest that symplectic leaves should be replaced by symplectic cores in applications
of the Orbit Method to algebraic problems. In particular, we revise and refine
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the general principle discussed in §4.4 to the following conjecture. It is, of neces-
sity, somewhat imprecise, given the lack of a precise definition of the concept of
quantized coordinate rings.

9.1. Primitive spectrum conjecture for quantized coordinate rings.

Assume that k is algebraically closed of characteristic zero, and let A
be a generic quantized coordinate ring of an affine algebraic variety
V over k. Then A should be a member of a flat family of k-algebras
with semiclassical limit O(V ), such that primA is homeomorphic to the
space of symplectic cores in V , with respect to the semiclassical limit
Poisson structure. Further, there should be compatible homeomorphisms
primA→ P.primO(V ) and specA→ P.specO(V ).

Each of the known types of quantized coordinate rings supports an action of an
algebraic torus H = (k×)m (see [4, §§II.1.14–18] for a summary), which has a
parallel action (by Poisson automorphisms) on the semiclassical limit (e.g., see
[19, §0.2]; [14, Section 2]). We tighten the conjecture above and posit that there
should exist homeomorphisms as described which are also equivariant with respect
to the relevant torus actions.

9.2. Remarks

(a) The discussion of the simple example Aq = Oq(C2) in §4.5 indicates why
Conjecture 9.1 is restricted to generic quantized coordinate rings. In particular,
primAq has a generic point when q is not a root of unity, but no generic points
otherwise. Since P.specC[x, y] has a generic point, it is not homeomorphic to
primAq when q is a root of unity.
(b) Each of the “standard” single parameter quantized coordinate rings is defined
as a member of a one-parameter family of algebras, and it is this (flat) family to
which the conjecture is meant to apply. For instance, the algebras Oq(SLn(k))
(with n fixed) are defined for all q ∈ k× in the same way (e.g., [4, §I.2.4]), and
substituting an indeterminate t for q in the definition results in a torsionfree k[t±1]-
algebra A with A/(t − q)A ∼= Oq(SLn(k)) for all q ∈ k×, just as with the case
n = 2 in §§1.6, 2.2(c). The semiclassical limit is O(SLn(k)) with the Poisson
bracket satisfying

{Xij , Xim} = XijXim (j < m)

{Xij , Xlj} = XijXlj (i < l)

{Xij , Xlm} = 0 (i < l, j > m)

{Xij , Xlm} = 2XimXlj (i < l, j < m).

This Poisson structure and the above flat family should feature in the SLn case of
Conjecture 9.1, that is, for q not a root of unity, primOq(SLn(k)) should be home-
omorphic to the space of symplectic cores in SLn(k) and to P.primO(SLn(k)),
and specOq(SLn(k)) should be homeomorphic to P.specO(SLn(k)). Such a “stan-
dard” version of the conjecture is to be posed for Oq(Mn(k)), Oq(GLn(k)), Oq(G),
and other “standard” cases.
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The situation is more involved for “nonstandard” cases, and for multiparam-
eter families, which have to be reduced to single parameter families in order to
obtain semiclassical limits. In such cases, the conjecture may be sensitive to the
choice of flat family – different flat families may yield different Poisson structures
in the semiclassical limit, and the conjecture may hold for some of these semiclas-
sical limits but not for others. This phenomenon appears in an example of Vancliff
[52, Example 3.14], which we discuss in Example 9.9.

(c) As discussed at the end of Example 2.6, the enveloping algebra of a finite
dimensional Lie algebra g is a generic member of the flat family given by the
homogenization of U(g), and so U(g) should qualify as a generic quantized coordi-
nate ring of g∗. The semiclassical limit of this family is the Poisson algebra O(g∗).
For this setting, K.A. Brown has noted difficulties with Conjecture 9.1 in what
one might expect to be the most canonical case, namely when g is semisimple
[3]. Following the Orbit Method, one would seek a bijection L ←→ P between
symplectic leaves in g∗ and primitive ideals in U(g) such that the Gelfand-Kirillov
dimension of U(g)/P equals the dimension of L. In particular, the zero-dimension-
al symplectic leaves of g∗, which are the same as the zero-dimensional symplectic
cores, should match up with the maximal ideals of finite codimension in U(g).
However, U(g) has infinitely many such maximal ideals, while there is only one
zero-dimensional symplectic leaf in g∗. (The latter can be verified by using Theo-
rem 4.2 together with the fact that the identification of g∗ with g via the Killing
form identifies the coadjoint orbits in g∗ with the adjoint orbits in g [8, p. 12].)

Other differences are already visible in the case g = sl2(C). As is easily
computed, all but one of the coadjoint orbits in g∗ are closed (compare with the
adjoint orbits, computed in [8, Example 1.2.1]). It follows (using Proposition 8.3,
or by direct computation) that all but one of the points of P.primO(g∗) are closed.
However, primU(g) has infinitely many non-closed points, and therefore it is not
homeomorphic to P.primO(g∗).

(d) Whenever Conjecture 9.1 does hold, the space of symplectic cores in V must
be homeomorphic to P.primO(V ). It is an open question whether the space of
symplectic cores for an arbitrary affine Poisson algebra R is homeomorphic to
P.primR, but this does hold when R satisfies the Poisson Dixmier-Moeglin equiv-
alence, as follows from [13, Theorem 1.5]; we excerpt the basic argument in Lemma
9.3. This equivalence requires that the Poisson-primitive ideals of R coincide with
the locally closed points of P.specR, and with those Poisson prime ideals P of R
for which the Poisson center (cf. §9.6(b)) of the quotient field of R/P is algebraic
over k. It holds for the semiclassical limits of many quantized coordinate rings via
[13, Theorem 4.1], as shown in [14, Section 2].

(e) As in Theorem 8.11, the existence of a homeomorphism primA→ P.primO(V )
as in the conjecture typically implies the existence of a compatible homeomorphism
specA→ P.specO(V ). We display this in Lemma 9.4 below for emphasis. On the
other hand, a homeomorphism specA → P.specO(V ) will restrict to a homeo-
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morphism primA → P.primO(V ) provided O(V ) satisfies the Poisson Dixmier-
Moeglin equivalence and A satisfies the Dixmier-Moeglin equivalence. The latter
equivalence requires that the primitive ideals of A coincide with the locally closed
points of specA, and with those prime ideals P of A for which the center of the
Goldie quotient ring of A/P is algebraic over k. It was verified for many quantized
coordinate rings in [16] (see [4, Corollary II.8.5] for a summary).

9.3. Lemma. Let R be a commutative affine Poisson k-algebra, and assume that all
Poisson-primitive ideals of R are locally closed points in P.specR. Then the Zariski
topology on P.primR coincides with the quotient topology induced by the Poisson
core map P(−) : maxspecR → P.primR. Consequently, the space of symplectic
cores in maxspecR is homeomorphic to P.primR.

Proof. Observe first that the map P(−) is continuous. It is surjective by definition
of P.primR.

We claim that P =
⋂
{m ∈ maxspecR | P(m) = P}, for any Poisson-

primitive ideal P of R. Since P is locally closed in P.specR (by assumption), the
singleton {P} is open in its closure VP (P ), and so {P} = VP (P ) \ VP (J) for some
Poisson ideal J of R. Note that J �⊆ P ; hence, after replacing J by J + P , we
may assume that J � P . If m ⊇ P is a maximal ideal such that P(m) �= P , then
m ⊇ P(m) ⊇ J . The remaining maximal ideals containing P must intersect to P
by the Nullstellensatz, verifying the claim.

Now consider a set X ⊆ P.primR whose inverse image, Y , under P(−) is
closed in maxspecR. Thus,

Y = {m ∈ maxspecR | P(m) ∈ X} = {m ∈ maxspecR | m ⊇ I}
for some ideal I of R. If P ∈ X and m ∈ maxspecR with P(m) = P , then
m ∈ Y , and so m ⊇ I. By the claim above, the intersection of these maximal
ideals equals P , and thus P ⊇ I. Conversely, if P ∈ P.primR and P ⊇ I, then
P = P(m) for some maximal ideal m ⊇ I, whence m ∈ Y and P ∈ X . Therefore
X = {P ∈ P.primR | P ⊇ I}, a closed set in P.primR. This proves that the
topology on P.primR is the quotient topology inherited from maxspecR via P(−).

The final statement of the lemma follows directly. �

9.4. Lemma. Let A be a noetherian k-algebra and R a commutative noetherian
Poisson k-algebra, with char k = 0.

(a) A bijection φ : specA → P.specR is a homeomorphism if and only if φ and
φ−1 preserve inclusions.

(b) Assume that A is a Jacobson ring and R an affine k-algebra. Then any
homeomorphism primA → P.primR extends uniquely to a homeomorphism
specA→ P.specR.

(c) Assume that A satisfies the Dixmier-Moeglin equivalence and R the Poisson
Dixmier-Moeglin equivalence. Then any homeomorphism specA → P.specR
restricts to a homeomorphism primA→ P.primR.
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Proof. (a) For P,Q ∈ specA, we have P ⊆ Q if and only if Q ∈ {P}, and simi-
larly in P.specR. Hence, any homeomorphism between these spaces must preserve
inclusions.

Conversely, if φ and φ−1 preserve inclusions, then φ(V (P )) = VP (φ(P )) for all
P ∈ specA. Since the closed sets in specA are exactly the finite unions of V (P ) s
(recall the proof of Lemma 8.8(a)), it follows that φ sends closed sets to closed sets,
i.e., φ−1 is continuous. Similarly, φ is continuous, and hence a homeomorphism.

(b) Lemmas 8.8 and 8.9.
(c) Under the assumed equivalences, primA consists of the locally closed

points in specA, and P.primR consists of the locally closed points in P.specR. �

9.5. Example. Let Aq = Oq(k2), where k is algebraically closed of characteristic
0 and q ∈ k×. View R = O(k2) as the semiclassical limit of the family (Aq)q∈k× ,
with the Poisson structure exhibited in Example 2.2(a). The torus H = (k×)2 acts
on Aq via algebra automorphisms and on R via Poisson automorphisms so that
(in both cases) (α1, α2).xi = αixi for (α1, α2) ∈ H and i = 1, 2.

Assume that q is not a root of unity. As is easily checked (e.g., [4, Example
II.1.2]), the prime ideals of Aq are

• the maximal ideals 〈x1 − α, x2〉 and 〈x1, x2 − β〉, for α, β ∈ k;
(♦) • the height 1 primes 〈x1〉 and 〈x2〉;

• the zero ideal.

All of these prime ideals, except for 〈x1〉 and 〈x2〉, are primitive [4, Example II.7.2].
The closed sets in specAq are easily found, but we shall not list them here – see
[4, Example II.1.2 and Exercise II.1.C].

With very similar computations, one finds the Poisson prime and Poisson-
primitive ideals in R, and a list of the closed subsets of P.specR. In terms of
notation, the answers are the same as forAq – the list (♦) also describes the Poisson
prime ideals of R, and all of these ideals, except for 〈x1〉 and 〈x2〉, are Poisson-
primitive. We conclude that there exist compatible homeomorphisms primAq →
P.primR and specAq → P.specR, sending the ideal 〈x1−α, x2〉 of Aq to the ideal
〈x1 − α, x2〉 of R, and so on. (We say that these maps are given by “preservation
of notation”.) These homeomorphisms are equivariant with respect to the actions
of H described above.

By inspection, all Poisson-primitive ideals of R are locally closed in P.specR.
Consequently, we conclude from Lemma 9.3 that the space of symplectic cores in
maxspecR ≈ k2 is homeomorphic to P.primR.

Analyzing the prime ideals in a quantized coordinate ring typically involves
investigating localizations of factor algebras, which often turn out to be quantum
tori. We sketch some basic procedures used to determine prime ideals in quantum
tori, and similar ones for the analogous “Poisson tori”.
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9.6. Some computational tools

(a) A quantum torus over k is the localization of a quantum affine space Oq(kn)
obtained by inverting the generators xi, that is, an algebra

Oq((k×)n) = k〈x±1
1 , . . . , x±1

n | xixj = qijxjxi for all i, j〉,
where q = (qij) is a multiplicatively antisymmetric n × n matrix over k. Set
T = Oq((k×)n).

Since T is a Zn-graded algebra, with 1-dimensional homogeneous compo-
nents, its center, Z(T ), is spanned by central monomials [21, Lemma 1.1]. The
latter are easily computed: a monomial xm1

1 xm2
2 · · ·xmn

n is central if and only if∏n
j=1 q

mj

ij = 1 for all i. All ideals of T are induced from ideals of Z(T ) [21, Theo-
rem 1.2]; [15, Proposition 1.4], from which it follows that contraction and extension
give inverse homeomorphisms between specT and specZ(T ) [15, Corollary 1.5(b)].
In particular, it follows from the above facts that T is a simple algebra if and only
if Z(T ) = k [36, Proposition 1.3].
(b) Let R = k[x±1

1 , . . . , x±1
n ] be a Laurent polynomial ring, equipped with a Poisson

bracket such that {xi, xj} = πijxixj for all i, j, where (πij) is an antisymmetric
n × n matrix over k. The results of part (a) all have Poisson analogs for R, as
follows.

The Poisson center of R, denoted ZP (R), is the subalgebra consisting of
those r ∈ R for which the derivation {r,−} vanishes. Since the Poisson bracket on
R respects the Zn-grading, ZP (R) is spanned by the monomials it contains [21,
Lemma 2.1]; [52, Lemma 1.2(a)]. A monomial xm1

1 xm2
2 · · ·xmn

n is Poisson central
if and only if

∑n
j=1 πijmj = 0 for all i. All Poisson ideals of R are induced from

ideals of ZP (R) [21, Theorem 2.2]; [52, Lemma 1.2(b)], from which it follows that
contraction and extension give inverse homeomorphisms between P.specR and
specZP (R). In particular, it follows from the above facts that R is Poisson-simple
(meaning that it has no proper nonzero Poisson ideals) if and only if ZP (R) = k.

9.7. Example. Let Aq = Oq(SL2(k)), where k is algebraically closed of character-
istic 0 and q ∈ k×. View R = O(SL2(k)) as the semiclassical limit of the fam-
ily (Aq)q∈k× , with the Poisson structure exhibited in Example 2.2(c). The torus
H = (k×)2 again acts on Aq and R, this time so that

(α, β).X11 = αβX11 (α, β).X12 = αβ−1X12

(α, β).X21 = α−1βX21 (α, β).X22 = α−1β−1X22

for (α, β) ∈ H .
Now restrict q to a non-root of unity. The prime ideals of Aq can be computed

with the tools of §9.6(a), as outlined in [4, Exercise II.1.D]. For instance, one checks
that Aq has a localization

Aq[X−1
11 , X

−1
12 , X

−1
21 ] ∼= k〈x±1, y±1, z±1 | xy = qyx, xz = qzx, yz = zy〉,

and that the center of the latter algebra is k[(yz−1)±1]. It follows that the prime
ideals of Aq not containing X12 or X21 consist of 〈0〉 and 〈X12−λX21〉, for λ ∈ k×.
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The full list of prime ideals of Aq is as follows:

• the maximal ideals 〈X11 − λ, X12, X21, X22 − λ−1〉, for λ ∈ k×;
(♠) • the ideal 〈X12, X21〉;

• the height 1 primes 〈X21〉 and 〈X12 − λX21〉, for λ ∈ k;
• the zero ideal.

A diagram of specAq , with inclusions marked, is given in [4, Diagram II.1.3].
A similar computation, using §9.6(b), yields the Poisson prime ideals of R,

which can be described exactly as in (♠). This provides a naturalH-equivariant bi-
jection φ : specAq → P.specR, given by “preservation of notation”. By inspection,
φ and φ−1 preserve inclusions, and thus, by Lemma 9.4(a), φ is a homeomorphism.

The algebra Aq satisfies the Dixmier-Moeglin equivalence by [4, Corollary
II.8.5], and R satisfies the Poisson Dixmier-Moeglin equivalence by [13, Theo-
rem 4.3]. Therefore Lemma 9.4(c) implies that φ restricts to a homeomorphism
primAq → P.primR. In Aq, all prime ideals are primitive except for 〈X12, X21〉
and 〈0〉 (cf. [4, Example II.8.6]). Similarly, inR all Poisson prime ideals are Poisson-
primitive except for 〈X12, X21〉 and 〈0〉. As in the previous example, we can use
Lemma 9.3 to see that the space of symplectic cores in maxspecR ≈ SL2(k) is
homeomorphic to P.primR.

9.8. Evidence for Conjecture 9.1. In most of the instances discussed below, k is
assumed to be algebraically closed of characteristic zero.

(a) Examples 9.5 and 9.7 are the most basic instances in which the conjecture has
been verified. In the same way (although with somewhat more effort), one can
verify it for Oq(GL2(k)). In particular, most of the work required to determine the
prime ideals in the generic Oq(GL2(k)) is done in [4, Example II.8.7].

(b) We next turn to the quantized coordinate ringsOq(G) and Oq,p(G) over k = C,
where G is a connected semisimple complex Lie group, q ∈ k× is not a root of unity,
and p is an antisymmetric bicharacter on the weight lattice of G (as in [24, §3.4]).

The Poisson structure on O(G) resulting from the semiclassical limit process
gives G the combined structure of a Poisson-Lie group (e.g., see [33, Chapter
1] for the concept, and [22, §A.1] for the result). There is a known recipe for
the symplectic leaves in G in case the Poisson structure arises from the standard
quantization [22, Appendix A], and similarly in the multiparameter “algebraic”
case [24, Theorem 1.8]. In both these cases, it follows that the symplectic leaves are
Zariski locally closed (see [5, Theorem 1.9] for a more explicit statement). Hence,
the symplectic leaves in G coincide with the symplectic cores (Theorem 7.1(b)).

As discussed in §4.4, Hodges and Levasseur put forward the conjecture that
there should be a bijection between primOq(G) and the set of symplectic leaves in
G [22, §2.8, Conjecture 1]. Such bijections were developed for G = SLn(C) in [23],
and for general G in [27] and [24]. More generally, Hodges, Levasseur, and Toro
established a bijection between primOq,p(G) and the set of symplectic leaves in G
in the algebraic case. All these bijections are equivariant with respect to natural
actions of a maximal torus of G.
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Except for the case G = SL2(C) covered in Example 9.7, the topological
properties of the above bijections are not known. Even when G = SL3(C), it is
not known whether primOq(G) is homeomorphic to the space of symplectic leaves
(= cores) in G.

(c) The prime and primitive spectra of general multiparameter quantum affine
spaces Oq(kn) were analyzed by Goodearl and Letzter in [17], assuming k alge-
braically closed together with a minor technical assumption (that either chark = 2,
or −1 is not in the subgroup 〈qij〉 ⊆ k×). They proved that there are compatible
topological quotient maps kn ≈ maxspecO(kn)→ primOq(kn) and specO(kn)→
specOq(kn), equivariant with respect to natural actions of the torus (k×)n [17,
Theorem 4.11]. Similar results were proved not only for quantum tori Oq((k×)n)
[17, Theorem 3.11] but also for quantum affine toric varieties [17, Theorem 6.3].

Oh, Park, and Shin converted these topological quotient results into the fol-
lowing (assuming char k = 0 and −1 /∈ 〈qij〉 ⊆ k×): For each Oq(kn), there
is a Poisson structure on O(kn) such that there are compatible homeomorphisms
P.primO(kn)→ primOq(kn) and P.specO(kn)→ specOq(kn) [41, Theorem 3.5].
Goodearl and Letzter, finally, showed that such homeomorphisms could be ob-
tained for semiclassical limit Poisson structures [18, Theorem 3.6], and extended
the results to quantum affine toric varieties [18, Theorem 5.2].

All these Poisson algebra structures on O(kn) satisfy the Poisson Dixmier-
Moeglin equivalence [13, Example 4.6]. Hence, the space of symplectic cores in kn

is homeomorphic to primOq(kn), via Lemma 9.3. The symplectic cores in kn are
algebraic, whereas this does not always hold for the symplectic leaves, as shown by
Vancliff [52, Corollary 3.4]. An explicit example is computed in [18, Example 3.10].

(d) The prime and primitive spectra of the algebras KP,Q
n,Γ (k) introduced by Hor-

ton [25] were analyzed by Oh in [40]. These algebras are multiparameter quan-
tizations of O(k2n), and include quantum symplectic spaces Oq(sp k2n), even-
dimensional quantum Euclidean spacesOq(o k2n), and quantum Heisenberg spaces,
among others. Oh introduced Poisson algebra structures AP,Q

n,Γ (k) on O(k2n), and
constructed compatible homeomorphisms P.primAP,Q

n,Γ (k) → primKP,Q
n,Γ (k) and

P.specAP,Q
n,Γ (k)→ specKP,Q

n,Γ (k), assuming the parameters involved in P , Q, Γ are
suitably generic [40, Theorem 4.14].

As stated in Remark 9.2(b), a quantized coordinate ring may belong to some
flat families for which Conjecture 9.1 holds and also to others for which it fails.
We outline Vancliff’s example [52, Example 3.14] illustrating this phenomenon.

9.9. Example

(a) Let ai = i− 1 for i = 1, 2, 3, and set

R0 = C[h][(1 + aih)−1 | i = 1, 2, 3]

A = R0〈x1, x2, x3 | xixj = rijxjxi for i, j = 1, 2, 3〉,
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where rij = (1+aih)(1+ajh)−1 for all i, j. This defines a flat family of C-algebras,
whose semiclassical limit is the polynomial ring R = C[x1, x2, x3] with the Poisson
bracket satisfying

{x1, x2} = −x1x2 {x1, x3} = −2x1x3 {x2, x3} = −x2x3 .

It follows from [52, Corollary 3.4] that the symplectic leaves in C3 for this Poisson
structure are algebraic; hence, they coincide with the symplectic cores (Theorem
7.1(b)). By [13, Example 4.6], R satisfies the Poisson Dixmier-Moeglin equivalence,
and so Lemma 9.3 implies that the space of symplectic leaves in C3 is homeomor-
phic to P.primR.

The Poisson-primitive ideals of R are listed in [52, Example 3.14] (where they
are labelled “maximal Poisson ideals”). They consist of

(♦) • the maximal ideals 〈x1 −α, x2, x3〉, 〈x1, x2 − β, x3〉, 〈x1, x2, x3 − γ〉, for
α, β, γ ∈ C;

• the height 1 primes 〈x1〉, 〈x2〉, 〈x3〉, and 〈x1x3 − λx2
2〉, for λ ∈ C×.

We can compute them by using §9.6(b) to find the Poisson prime ideals of R and
then applying the Poisson Dixmier-Moeglin equivalence. For instance, the Poisson
center of the localization C[x±1

1 , x±1
2 , x±1

3 ] is C[(x1x
−2
2 x3)±1], from which it follows

that any nonzero Poisson prime ideal of R must contain either one of the xi or
else x1x3 − λx2

2 for some λ ∈ C×. The full list of Poisson prime ideals of R is
• 〈x1 − α, x2, x3〉, 〈x1, x2 − β, x3〉, 〈x1, x2, x3 − γ〉, for α, β, γ ∈ C;
• 〈x1, x2〉, 〈x1, x3〉, 〈x2, x3〉;
• 〈x1〉, 〈x2〉, 〈x3〉, 〈x1x3 − λx2

2〉, for λ ∈ C×;
• 〈0〉.

Inspection immediately shows that the locally closed points of P.specR are the
Poisson prime ideals listed in (♦).
(b) A generic member of the flat family given by A is Bq = A/(h− q)A, where q
is a complex scalar such that 1 + q and 1 + 2q generate a free abelian subgroup
of rank 2 in C×. For such q, the primitive ideals of Bq, as stated in [52, Example
3.14], consist of

• 〈x1 − α, x2, x3〉, 〈x1, x2 − β, x3〉, 〈x1, x2, x3 − γ〉, for α, β, γ ∈ C;
• 〈x1〉, 〈x2〉, 〈x3〉, 〈0〉.

These can be computed by finding the prime ideals using §9.6(a) and then applying
the Dixmier-Moeglin equivalence, which holds becauseBq is a quantum affine space
[15, Corollary 2.5].

Observe that primBq is not homeomorphic to P.primR. For instance, primBq

has a generic point, while P.primR does not.
(c) In contrast to the above, any generic Bq is a member of a flat family with a
semiclassical limit R′ (the algebra R, but with a different Poisson structure) such
that primBq ≈ P.primR′ and specBq ≈ P.specR′, by [18, Theorem 3.6].

It would be very interesting to obtain criteria to determine which flat fami-
lies yield “good” semiclassical limits relative to Conjecture 9.1. For quantum affine
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spaces and their Poisson analogs, one good condition appears in the work of Oh,
Park, and Shin [41, Theorem 3.5] – roughly, if the scalars appearing in the defining
Poisson brackets of the semiclassical limit arise from an embedding into the addi-
tive group (k,+) of the subgroup of k× generated by the scalars appearing in the
defining commutation relations of the quantum affine space, then the prime and
primitive spectra of the quantum affine space are homeomorphic to the Poisson
prime and Poisson-primitive spectra of the semiclassical limit.

We close with an example of the “simplest possible” quantum group for which
primitive ideals match symplectic cores but not symplectic leaves. There is no
nontrivial multiparameter version of quantum SL2, and to deal with Oq,p(SL3(C))
would require investigating 36 families of primitive ideals (indexed by S3 × S3, as
in [24, Corollary 4.5]). Instead, we look at a multiparameter quantization of GL2.
It is convenient to use Takeuchi’s original presentation [49].

9.10. Example. For the classification of primitive ideals, we assume only that k is
algebraically closed, and we choose a generic pair of parameters p, q ∈ k×, meaning
that they generate a free abelian subgroup of rank 2 in k×. We restrict to k = C
and special choices of p and q when setting up a semiclassical limit and discussing
symplectic leaves.

(a) Define the two-parameter quantum 2×2 matrix algebraMq−1,p as in [49]. This
is the k-algebra with generators X11, X12, X21, X22 and relations

X11X12 = qX12X11 X11X21 = p−1X21X11

X21X22 = qX22X21 X12X22 = p−1X22X12

X12X21 = (pq)−1X21X12 X11X22 −X22X11 = (q − p)X12X21 .

The element D = X11X22 − qX12X21 is the quantum determinant in Mq−1,p, but
it is normal rather than central:

XijD = (pq)i−jDXij

for all i, j [49, §2]. Since the powers of D form an Ore set, we can construct the
Ore localization A = Aq−1,p =Mq−1,p[D−1]. There is a Hopf algebra structure on
A [49, §2], but we do not need that here.

For comparison with other presentations of multiparameter quantized coordi-
nate rings, we point out that A = Opq−1 ,p(GL2(k)) in the notation of [12, §1.3]; [4,
§I.2.4]), where p =

[
1 q−1

q 1

]
. In particular, [4, Corollary II.6.10] applies, implying

that all prime ideals of A are completely prime.
Observe that X12 and X21 are normal in A, and so we can localize with

respect to their powers. Although X11 is not normal, its powers also form an Ore
set (e.g., verify this first in Mq−1,p, which is an iterated skew polynomial ring over
k[X11]). Note that any ideal I of A which contains X11 also contains X12X21,
whence D ∈ I and I = A. Hence, no prime ideal of A contains X11, which means
that no prime ideals of A are lost in passing from A to the localization A[X−1

11 ].
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(b) The quotient A/〈X12, X21〉 is isomorphic to a commutative Laurent polyno-
mial ring k[x±1

11 , x
±1
22 ]. Hence, we know the prime ideals of A containing 〈X12, X21〉.

The others correspond to prime ideals in the localizations(
A/〈X12〉

)
[X−1

21 ],
(
A/〈X21〉

)
[X−1

12 ], and A[X−1
11 , X

−1
12 , X

−1
21 ].

We claim that these localizations are simple algebras, from which it will follow that
the only prime ideals of A not containing 〈X12, X21〉 are 〈X12〉, 〈X21〉, and 〈0〉.

First,
(
A/〈X12〉

)
[X−1

21 ] is isomorphic to the algebra

T1 := k〈x±1, y±1, z±1 | xy = p−1yx, xz = xz, yz = qzy〉.

Via §9.6(a), we compute that Z(T1) = k, whence T1 is simple. Similarly,(
A/〈X21〉

)
[X−1

12 ] is simple.
Third, observe that X22 = X−1

11 (D+qX12X21) in A[X−1
11 ], and so this algebra

can be generated by X±1
11 , X12, X21, D±1. Consequently, A[X−1

11 , X
−1
12 , X

−1
21 ] is

isomorphic to the k-algebra T3 with generators x±1, y±1, z±1, w±1 and relations

xy = qyx xz = p−1zx xw = wx

yz = (pq)−1zy yw = (pq)−1wy zw = pqwz.

Another application of §9.6(a) shows that T3 is simple, establishing the claim.
Therefore, the prime ideals of A consist of

• the maximal ideals 〈X11 − λ, X12, X21, X22 − μ〉, for λ, μ ∈ k×;
(♦) • the ideals 〈X12, X21, f(X11, X22)〉, for irreducible polynomials f(s, t) ∈

k[s±1, t±1];
• the ideals 〈X12, X21〉, 〈X12〉, 〈X21〉, and 〈0〉.

(c) The torus H = (k×)4 acts on A by k-algebra automorphisms such that

(α1, α2, β1, β2).Xij = αiβjXij (9.10c)

for all i, j. Only four of the prime ideals of A are H-stable, and thus [16, Corollary
2.7(ii), Remark 5.9(i)] implies that A satisfies the Dixmier-Moeglin equivalence
(cf. [4, Corollary II.8.5(c)]). Therefore, the primitive ideals of A are

• the maximal ideals 〈X11 − λ, X12, X21, X22 − μ〉, for λ, μ ∈ k×;
• the ideals 〈X12〉, 〈X21〉, and 〈0〉.

(d) Now restrict to k = C, choose α ∈ R \Q, assume that q is transcendental over
Q(α), and take p = 1 + α(q − 1). The assumptions on α and q ensure that the
subgroup 〈p, q〉 ⊆ C× is free abelian of rank 2, as needed above. Our choice of p
is a first-order Taylor approximation of qα, which is convenient for extension to
polynomial rings.
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Choose a Laurent polynomial ring k[z±1], set zα = 1 + α(z − 1), and let
B =Mz−1,zα

over k[z±1, z−1
α ] in the notation of [49, §2]. Thus, B is the k[z±1, z−1

α ]-
algebra given by generators X11, X12, X21, X22 and relations

X11X12 = zX12X11 X11X21 = z−1
α X21X11

X21X22 = zX22X21 X12X22 = z−1
α X22X12

X12X21 = (zzα)−1X21X12 X11X22 −X22X11 = (z − zα)X12X21 .

Observe that B is an iterated skew polynomial algebra over k[z±1, z−1
α ], and so it

is torsionfree over k[z±1]. This algebra has been arranged so that B/(z − q)B ∼=
Mq−1,p and B/(z − 1)B ∼= O(M2(k)). In B, the quantum determinant is D =
X11X22 − zX12X21, and it is normal. We set C = B[D−1] and observe that C is
a torsionfree k[z±1]-algebra such that C/(z − q)C ∼= A and C/(z − 1)C ∼= R :=
O(GL2(k)).

Thus, A is one of the quantizations of R in the family of algebras C/(z−γ)C.
The semiclassical limit of this family is the algebra R, equipped with the Poisson
bracket determined by

{X11, X12} = X11X12 {X11, X21} = −αX11X21

{X21, X22} = X21X22 {X12, X22} = −αX12X22

{X12, X21} = −(1 + α)X12X21 {X11, X22} = (1− α)X12X21 .

To find the Poisson prime ideals of R, we can proceed in parallel with part
(b) above, using §9.6(b) in place of §9.6(a). We compute that the Poisson prime
ideals of R can be listed exactly as in (♦). This yields an obvious bijection φ :
specA→ P.specR given by “preservation of notation”. Clearly φ and φ−1 preserve
inclusions, and so φ is a homeomorphism by Lemma 9.4(a). (Alternatively, one can
easily identify the closed sets in specA and P.specR and then check that φ and
φ−1 are closed maps.)

The torus H acts on R by Poisson algebra automorphisms satisfying (9.10c),
and only four Poisson prime ideals of R are stable under this action. Consequently,
[13, Theorem 4.3] implies that R satisfies the Poisson Dixmier-Moeglin equivalence.
Thus, the Poisson-primitive ideals of R are

(♠) • the maximal ideals 〈X11 − λ, X12, X21, X22 − μ〉, for λ, μ ∈ k×;
• the ideals 〈X12〉, 〈X21〉, and 〈0〉,

and therefore φ restricts to a homeomorphism primA→ P.primR.
(e) In view of (♠), we can now identify the symplectic cores in GL2(C)≈maxspecR
with respect to the Poisson structure under discussion. They are

• the singletons
{[
λ 0
0 μ

]}
, for λ, μ ∈ C×;

• the sets
[
C× C×

0 C×

]
,
[
C× 0
C× C×

]
and

{[
λ β
γ μ

]
∈ GL2(C)

∣∣∣∣ β, γ �= 0
}
.

The space of symplectic cores in GL2(C) is homeomorphic to P.primR by Lem-
ma 9.3.
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Since
[
C× C×

0 C×

]
and

[
C× 0
C× C×

]
are complex manifolds of odd dimension,

they cannot be symplectic leaves. In fact, each is the union of a one-parameter
family of symplectic leaves, which can be calculated as in [18, Example 3.10(v)].

For instance, the symplectic leaves contained in
[
C× C×

0 C×

]
are the surfaces{[

λ β
0 δλα

] ∣∣∣∣ λ, β ∈ C×
}
, for δ ∈ C×.
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Abstract. We establish commutativity theorems for certain classes of rings
in which every invertible element is central, or, more generally, in which all
invertible elements commute with one another. We prove that if R is a semiex-
change ring (i.e., its factor ring modulo its Jacobson radical is an exchange
ring) with all invertible elements central, then R is commutative. We also
prove that if R is a semiexchange ring in which all invertible elements com-
mute with one another, and R has no factor ring with two elements, then R
is commutative. We offer some examples of noncommutative rings in which
all invertible elements commute with one another, or are central. We close
with a list of problems for further research.
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1. Introduction

We say that an associative unital ring R is unit-central if U(R) ⊆ Z(R), i.e., if
every invertible element of the ring lies in the center. In various natural situations
the unit-central condition implies full commutativity.

It is also of interest to weaken the unit-central condition and consider rings
R for which U(R) is an abelian group. We will refer to such a ring R as having
commuting units. Rings with commuting units have also been investigated by a
number of authors (e.g., see [7], [12], [21], [22]). For a ring that is additively
generated by its units (cf. [17], [18], [19], [26], [28]), having commuting units is
obviously equivalent to commutativity.

Our main focus in this note will be on unit-central rings and rings with
commuting units. A still wider class consists of those rings in which any two
nilpotent elements commute with one another. This property proved instrumental
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in the study of prime rings in [5]. We will consider this condition in Theorem 2.8
below.

We will denote the Jacobson radical of a ring R by rad(R), the set of nilpo-
tent elements by N(R), and the right annihilator of an element a in R by annR

r (a).
For any other notation not defined here, we refer the reader to [20].

We record the following construction technique for the classes of rings under
consideration.

Proposition 1.1. Let S be a ring, let M be an (S, S)-bimodule, and define R =
S⊕M as an additive group, with multiplication in R defined by (s1,m1)(s2,m2) =
(s1s2, s1m2 +m1s2).

(i) R is unit-central if and only if S is unit-central and sm = ms for all s ∈ S
and m ∈M.

(ii) R has commuting units if and only if S has commuting units and sm = ms
for all s ∈ U(S) and m ∈M.

Proof. Straightforward. �

2. Commutativity theorems

We begin with a basic but useful lemma. Recall that a ring is said to be abelian if
every idempotent element is central.

Lemma 2.1. Let R be a ring. Then:

(i) If R is unit-central, then N(R) ∪ rad(R) ⊆ Z(R).
(ii) If R has commuting units, then for all a, b ∈ N(R)∪ rad(R)∪U(R) we have

ab = ba.
(iii) If R is unit-central, then R is abelian.
(iv) If for all a, b ∈ N(R) we have ab = ba, then R is Dedekind-finite.

Proof. Statements (i) and (ii) are straightforward. If e ∈ R is an idempotent in a
unit-central ring, then (i) implies eR(1− e) = {0}, and (iii) follows. A Dedekind-
infinite ring contains an infinite set of matrix units, whence (iv). �

Obviously neither the property of having commuting units nor the unit-
central condition is Morita invariant; however, they do pass to corner rings:

Lemma 2.2. Let R be a ring and e ∈ R an idempotent. If R is unit-central (resp.
a ring with commuting units) , then the corner ring eRe is unit-central (resp. a
ring with commuting units) .

Proof. Suppose R is unit-central, with ere ∈ U(eRe) and ese ∈ eRe. Then ere+
(1 − e) is contained in U(R), so it commutes with ese, and hence ere and ese
commute.

The proof for the “commuting units” case is analogous. �
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Recall that a ring R is called an exchange ring if the module RR satisfies
P. Crawley and B. Jónsson’s exchange property: given a set I, whenever

A =M ⊕N =
⊕
i∈I

Ai with M ∼= R

in the category of right R-modules, there exist submodules A′
i ⊆ Ai such that

A =M ⊕
(⊕

i∈I

A′
i

)
.

R.W. Warfield Jr. showed in [29, Corollary 2] that this property is left-right sym-
metric. Every ring R that is semiregular (i.e., R/rad(R) is von Neumann regular
and idempotents of R/rad(R) lift to R) is an exchange ring. Also, every clean
ring (i.e., ring in which every element is the sum of a unit and an idempotent) is
an exchange ring. For example, the endomorphism ring of an continuous module
is both semiregular and clean (for the latter, see [9]). By [4, Proposition 2.6], every
strongly π-regular ring is clean; by [27, Example 2.3], every π-regular ring is an ex-
change ring. In addition to semiregular and clean rings, the class of exchange rings
includes all C∗-algebras of real rank zero and Gromov translation rings of discrete
trees over von Neumann regular rings (see [2, Theorem 7.2] and [3, Theorem 2.7]).

Exchange rings can be characterized as those rings for which every pair of
comaximal right ideals contain a complementary pair of idempotents, i.e., R is an
exchange ring if and only if for each element a ∈ R there exists an idempotent
e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R. This characterization was indepen-
dently discovered by K.R. Goodearl and W.K. Nicholson (see [14, p. 167] and [23,
Proposition 1.1 and Theorem 2.1]), and it is very useful in practice. For example,
the proof by P. Ara, K.C. O’Meara, and F. Perera that Gromov translation rings
of discrete trees over von Neumann regular rings are exchange rings in [3] relied
crucially on Goodearl and Nicholson’s characterization.

A ring R is said to be a semiexchange ring if the factor ring R/rad(R) is
an exchange ring. This common generalization of exchange rings and semilocal
rings arises naturally: according to [23, Corollary 2.4], a ring is an exchange ring
if and only if it is a semiexchange ring and idempotents lift modulo the Jacobson
radical. The (apparently rather deep) open problem of the left-right symmetry of
the quasi-duo condition has an affirmative answer for the class of semiexchange
rings (see [11, Theorem 4.6]). Basic properties of semiexchange rings are developed
in [10]. Of course, a semiexchange ring need not be either semilocal or an exchange
ring, as can be seen by taking a direct product of a semilocal ring and an exchange
ring, or an infinite direct product of semilocal rings.

A ring with commuting units can be both semilocal and an exchange ring
without being commutative. On the other hand, a unit-central ring that is either
semilocal or an exchange ring must be commutative, by the following theorem.

Theorem 2.3. Every unit-central semiexchange ring is commutative.
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Proof. Let R be a unit-central semiexchange ring. To prove that R is commuta-
tive, by [20, p. 200, Ex. 12.8B] it suffices to show that x − x2 ∈ Z(R) for every
x ∈ R.

Fix x ∈ R. The exchange ring R = R/rad(R) is unit-central, therefore
abelian, and it is well known that abelian exchange rings are clean [23, Proposi-
tion 1.8(2)]. So x = e+ u for some e, u ∈ R such that e is an idempotent and u
a unit of R. Then 1− 2e ∈ U(R), so 1 − 2e ∈ U(R) ⊆ Z(R), hence 2e ∈ Z(R).
As u ∈ U(R) ⊆ Z(R), we have 2eu ∈ Z(R) and u − u2 ∈ Z(R). Moreover,
e− e2 ∈ rad(R) ⊆ Z(R). Consequently, x−x2 = (e− e2)− 2eu+(u−u2) ∈ Z(R),
as required. �

Remark 2.4. The classical commutativity theorems of Jacobson, Herstein, and
Kaplansky made heavy use of subdirect product representations. If R is a unit-
central ring, and R/rad(R) is a finite subdirect product of simple artinian rings,
then R is semilocal, and by Theorem 2.3, R must be commutative. One might
be tempted to try to extend this conclusion to the case where R/rad(R) is a
subdirect product of an arbitrary set of simple artinian rings. Unfortunately, this
generalization fails. If k is an infinite field, and {xi : i ∈ I} is an infinite set of
noncommuting indeterminates, then the free algebra R = k〈{xi : i ∈ I}〉 is a
noncommutative unit-central ring with rad(R) = (0), and by [1, Corollary 3], R
can be represented as a subdirect product of simple artinian rings.

Example 2.5. Let

R =
(

F2 V
0 F2

)
where V is any nonzero F2-vector space. Then R is a noncommutative semipri-
mary ring with commuting units. Thus, in Lemma 2.1(iii) and Theorem 2.3 the
unit-central hypothesis cannot be weakened to “commuting units.”

If, however, we assume that R has no factor ring isomorphic to F2, then
Theorem 2.3 can be extended to rings with commuting units. To prove this, we will
make use of the following theorem, which occurred (with different terminology) as
[21, Theorem 2.2]. (The “left suitable” condition in [21, Theorem 2.2] is equivalent
to the ring being an exchange ring: see [21, Lemma 1.2] or [23, Theorem 2.1].)

Theorem 2.6 (Nicholson, Springer). A semiprime exchange ring with commuting
units is commutative.

The following theorem strengthens a result of J. Han, [16, Theorem 2.9].
We note that Nicholson has a complementary result for semiperfect rings, [22,
Corollary 1(1)].

Theorem 2.7. Let R be a semiexchange ring with commuting units. If R has no
factor ring isomorphic to F2, then every element of R is a sum of two units, and
consequently R is commutative.
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Proof. Let R = R/rad(R). As R is a semiprimitive exchange ring with commuting
units, Theorem 2.6 implies R is commutative. In a commutative exchange ring
with no factor ring isomorphic to F2, every element is the sum of two units. (See
[6, Theorem 3]; the idea was already implicit in [13, Theorem 2].) Thus, every
element of R is the sum of two units, whence every element of R is the sum of
two units. Since R has commuting units, it is commutative. �

An element a of a ring R is a von Neumann regular element if there exists
some b ∈ R such that a = aba.

Theorem 2.8. Let R be a ring with the property that for all a, b ∈ N(R) we have
ab = ba. (In particular, any ring with commuting units has this property.) Then
R does not contain any nonzero nilpotent von Neumann regular element.

Proof. Assume the contrary, that there exists some a ∈ R such that a = aba for
some b ∈ R, and an = 0 �= an−1 for some integer n � 2. Put e = ab.

The nilpotent elements a and ea(1 − e) commute, hence aea(1 − e) = 0.
From a2(1 − e) = 0 we obtain a2 = a2e = a3b, whence a2 = am+2bm for every
m ∈ N. Therefore a2 = 0, which implies a = ea(1− e). Hence

a =
(
ea(1− e)

)
b
(
ea(1− e)

)
=

(
ea(1− e)

)(
(1 − e)be

)(
ea(1− e)

)
=

(
ea(1− e)

)(
ea(1− e)

)(
(1 − e)be

)
= 0,

a contradiction. �
Using Theorem 2.8, we can recover the following special case of Theorem 2.6.

Corollary 2.9 (Nicholson, Springer). Any von Neumann regular ring with commut-
ing units is commutative.

Proof. Let R be a von Neumann regular ring with commuting units. By Theo-
rem 2.8, R is reduced and von Neumann regular, i.e., strongly regular. In a strongly
regular ring every element is the product of a unit and a central idempotent. Hence
R is commutative. �
Remark 2.10. It follows from Theorem 2.3 that any unit-central artinian ring is
commutative. A unit-central noetherian ring, however, need not be commutative.
For instance, the Weyl algebras over a field are noncommutative unit-central noe-
therian rings. For another example of this sort, let A = k[t1, t2, . . . , tn] where k is
a field and the ti’s are commuting indeterminates, and let σ be any nonidentity
k-linear automorphism of A. Then the skew polynomial ring R = A[x;σ] is a
noncommutative unit-central noetherian ring.

We note in closing that commutativity theorems complementary to those in
this section can be found in [15, §5].
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3. Open problems

A ring R is called right duo if each right ideal of R is two-sided. We ask the
following question.

Question 3.1. Is every unit-central right duo ring commutative?

Following Nicholson and M.F. Yousif in [24], we call a ring R right principally
injective, or right P-injective, if for every a ∈ R, every right R-module homomor-
phism aR → R extends to a right R-module homomorphism R → R. Since a
right self-injective ring is an exchange ring, we know that every unit-central right
self-injective ring is commutative. This suggests the following question.

Question 3.2. Is every unit-central right principally-injective ring commutative?

Nicholson and E. Sánchez-Campos [25] called an element a of a ring R a
right morphic element if R/aR ∼= annR

r (a) as right R-modules. A ring R is called
a right morphic ring if every element of R is a right morphic element. Clearly
every unit and idempotent in a ring is morphic. We ask the following question.

Question 3.3. Is every unit-central right morphic ring commutative?

A ring R is said to have stable range 1 if for all a, b ∈ R such that aR+bR =
R, there exists y ∈ R such that a + by is a unit. As every semilocal ring has
stable range 1, and Theorem 2.3 shows that every unit-central semilocal ring is
commutative, we ask the following.

Question 3.4. Is every unit-central ring with stable range 1 commutative?
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Abstract. A criterion is given for the existence of a symplectic structure on a
finitely generated projective module P over a commutative ring R. If P⊕Q =
Rn, P admits a symplectic structure iff Q = ker (A) for some von Neumann
regular alternating matrix A ∈ Mn(R). Every n-generated symplectic space
over R arises in this way. In supplement to this, it is also shown that a
matrix A ∈ Mn(R) is von Neumann regular iff each of its determinantal
ideals is generated by an idempotent in R.
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1. Introduction

Over a commutative ring R, a symplectic module means a finitely generated (f.g.)
projective R-module P that is equipped with a bilinear pairing B : P × P → R
such that B(v, v) = 0 for all v ∈ P , and the mapping v !→ B(v, − ) is an R-
isomorphism from P onto its R-dual P ∗. While the usual R-modules (resp. bi-
linear R-modules) and their morphisms constitute the “linear (resp. bilinear)
category” over R, the symplectic R-modules and their morphisms constitute a
separate “symplectic category”. The study of symplectic structures and their au-
tomorphism groups has proved to be of interest and importance in both algebra
and geometry.

If P is a f.g. free R-module Rn, the symplectic structures on P are given by
the alternating matrices in GLn(R), where a matrix A = (aij) is called alternating
if AT = −A and aii = 0 for all i. If n is odd, it is easy to see that this alternating
condition implies that det (A) = 0. On the other hand, if n = 2m, an obvious
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invertible alternating n × n matrix is given by
(

0 Im

−Im 0

)
. Thus, if R �= 0,

symplectic structures can be found on the free module Rn iff n is even.
If P is only f.g. projective but not free, it is known that P may not sup-

port a symplectic structure. In fact, this can happen even when P is self-dual
(P ∼= P ∗) and has constant rank 2m; see, for instance, Theorem 1.4 and Corol-
lary 6.4 in [Sw2]. A simpler example can also be constructed as follows. Let R be
a Dedekind domain having a non-principal ideal J whose square is principal, and
let P = R2m−1 ⊕ J (m ≥ 1). Since J∗ ∼= J−1 ∼= J , P is self-dual of rank 2m.
However, P is not free (since J is not principal). According to [La5] (comment
(b) after (VII.5.8)), over a Dedekind domain, this implies that P cannot support
a symplectic structure.

In view of the remarks above, it would thus be desirable to find, in general,
some criteria for the existence of symplectic structures on a given f.g. projective
module P . However, a modest search of the literature did not turn up any such
criterion (except in the case of certain special modules). In this paper, we prove
the following result, which offers a general matrix-theoretic criterion for P to be
a symplectic module.

Theorem A. Given a decomposition Rn = P ⊕Q, P admits a symplectic structure
iff Q = ker (A) for some alternating von Neumann regular matrix A ∈ Mn(R). (A
matrix A is said to be von Neumann regular if A = AMA for some M ∈ Mn(R).)

If one prefers to put more emphasis on A than on P , this result can be refor-
mulated as follows; Given an alternating matrix A ∈ Mn(R), the bilinear pairing
defined by A induces a symplectic structure on the factor module Rn/ker (A) iff
the matrix A is von Neumann regular. It is of interest to note that the above for-
mulation of the existence criteria for symplectic structures is independent of any
assumptions on the rank function (on the Zariski prime spectrum) of the projective
modules in question. This makes the criteria readily applicable even to projective
modules of nonconstant rank.

The results above, along with some of their simplifications in the case of
special ground rings R, are presented in the first half of §2. The rest of §2 gives
yet other formulations of these results in case the projective module P is the
syzygy module defined by a unimodular row. The results presented in §2 seemed
to have escaped earlier notice as the notion of von Neumann regular matrices has
not been previously brought to bear on the general study of symplectic structures.
But in retrospect, this important notion (first invented by J. von Neumann in the
1930s) provided exactly the right tool to deal with the existence question addressed
in the aforementioned results.

In view of the special role played by von Neumann regular matrices in this
work, we offer in §3 the following criterion for a square matrix to be von Neumann
regular.
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Theorem B. Over a commutative ring R, a matrix A ∈ Mn(R) is von Neumann
regular iff each of its determinantal ideals is generated by an idempotent in R.

Since we have not been able to find this result in a few standard sources in
linear algebra over commutative rings (such as [Br], [HA], and [MD]), we cannot
assume that it is well known. In Eisenbud’s book [Ei], there is a criterion for a
f.g. R-module to be projective of constant rank, in terms of the Fitting invariants
of the module. With some additional work, Theorem B above can be deduced
from this criterion. This will be done in §3, but such a proof seems somewhat
circuitous as it requires the tools of Fitting invariants as well as the theory of
ranks of projective modules. To compensate for this, a separate elementary and
completely self-contained proof for Theorem B is offered in §3. Our proof there is
largely matrix-theoretic, and again totally bypasses any consideration of projective
modules and their ranks. The paper concludes with a short section (§4) on von
Neumann regular matrices of small size and the explicit construction of (some of)
their quasi-inverses.

Throughout this paper, R denotes a commutative ring with 1, and U(R)
denotes the group of units of R. The module of n× n alternating matrices over
R is denoted by An(R). All R-modules are assumed unital. Greek letters such
as σ and τ are used to denote row vectors, while elements of the free module
Rn are usually written as column vectors (e.g., σT , τT , where “T ” means the
transpose). For n-tuples u and v (rows or columns alike), [u, v] denotes their
dot product. For any row vector τ = (b1, . . . , bn), we’ll write P (τ) = P (b1, . . . , bn)
for the kernel of the R-homomorphism Rn → R defined by τ . This is the (first)
syzygy module for the ideal in R generated by the bi ’s. This module is especially
important for us in case τ is unimodular ; that is, when

∑
i biR = R.

As in the statement of Theorem A, an element A in a ring S is said to be
von Neumann regular if A = AMA for some M ∈ S. We refer to any such M as
a quasi-inverse for A. If A has a quasi-inverse that is a unit, we say that A is
unit-regular. If all elements A ∈ S are von Neumann regular (resp. unit-regular),
S is said to be a von Neumann regular (resp. unit-regular) ring. For other standard
terminology and notations in the theory of rings and modules, we refer the reader
to [La1] and [La3].

2. Symplectic structures on projective modules

To begin our study of the existence of symplectic structures on f.g. projective
modules over a commutative ring R, we first recall a useful fact on von Neumann
regular matrices, which will be used freely throughout this paper. Given a matrix
A ∈ Mn(R), we have an R-endomorphism A : Rn → Rn defined by σT !→ AσT .
Using the fact that Rn is a projective module, it is easy to show that A is von
Neumann regular iff im (A) is a direct summand of Rn. The key point of the
proof of this basic fact is that this condition implies that ker (A) is also a direct
summand of Rn. The details of the proof can be found in [La2: pp. 59–60].
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The following notations will be fixed for the first result of this section, namely,
(2.1). Let P, Q be a pair of (f.g. projective) R-modules such that P ⊕Q = Rn.
We write E for the projection of Rn onto P with kernel Q, and let S := Mn(R),
which we shall identify with the endomorphism ring of Rn. Using “star” to denote
(as before) the formation of dual modules, we shall apply freely the canonical
decomposition (Rn)∗ = P ∗ ⊕Q∗, and will always identify (Rn)∗ with Rn.

Theorem 2.1. With the above notations, the following statements are equivalent :
(1) There exists a symplectic structure on P .
(2) Q = ker (A) for some von Neumann regular matrix A ∈ An(R).
(3) E ∈ S has a factorization MA with M ∈ S, A ∈ An(R), and A (Q) = 0.

The matrix A in (2) and in (3) is unit-regular iff the projective module Q is
self-dual. Under (2) or (3), this is always the case if the category of f.g. projective
modules over R satisfies the cancellation law.

Proof. (1) ⇒ (2). We fix a symplectic structure on P , and think of it as an
isomorphism A : P → P ∗ such that for every uT ∈ P , the functional AuT

vanishes on uT . Extend A to Rn → Rn by taking A (Q) = 0. Then ker (A) = Q,
and A is von Neumann regular since im (A) = P ∗ is a direct summand in Rn.
Finally, for any uT ∈ P and vT ∈ Q, we have vAuT = [v, AuT ] = 0 (since
AuT ∈ P ∗), and hence

(u+ v)A (uT + vT ) = uAuT = 0.

Thus, the matrix of A with respect to the standard basis on Rn is alternating,
which proves (2).
(2) ⇒ (3). Assuming (2), im (A) = A · (P ⊕Q) = A (P ) is a direct summand of
Rn, since A is von Neumann regular. Let M be the inverse of the isomorphism
A : P → A (P ). Defining M to be zero on a direct complement of A (P ), we may
view M as an R-endomorphism of Rn. Then E = MA since both are zero on
Q, and the identity on P . This checks (3).
(3)⇒ (1). For the matrices A, M in (3), we have ker (A) ⊆ ker (E) = Q ⊆ ker (A),
so ker (A) = Q. For any uT ∈ P and vT ∈ Q, we have vA = −(AvT )T = 0, and
hence [v, AuT ] = vAuT = 0. This shows that A maps P (injectively) into P ∗.
We also have uAuT = 0, since A is alternating. Thus, A gives a symplectic
structure on P if A : P → P ∗ is onto. To check this, let αT ∈ P ∗. For any
xT ∈ P , we have

α · xT = α (E xT ) = (αM)AxT .

Writing αM = u+v where uT ∈ P and vT ∈ Q, and recalling that v A = 0, this
gives α ·xT = (uA)xT . But this equation holds also for all xT ∈ Q (since in that
case both sides are zero). Thus, α = uA, and hence αT = ATuT = −AuT . This
completes the proof of (3) ⇒ (1), but it is useful to note a couple of additional
properties of A here. First, we have A = AE, since they agree on P and are both
zero on Q. Thus, S ·E = S ·A; that is, S and A generate the same left ideal in
the matrix ring S. Second, A must be von Neumann regular, since im (A) = P ∗
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is a direct summand of Rn. Alternatively, going back to the equation E = MA,
we have AMA = AE = A.

Finally, let A be the matrix in (2) or in (3). Then

ker (A) = Q, and coker (A) = Rn/im (A) = Rn/P ∗ ∼= Q∗.

Since A is von Neumann regular, Ehrlich’s result in [Eh] implies that A is unit-
regular iff ker (A) ∼= coker (A); that is, iff Q ∼= Q∗. If the category of f.g. projective
R-modules satisfies the cancellation law, then under the condition (2) or (3), we
have

P ⊕Q ∼= P ∗ ⊕Q∗ ∼= P ⊕Q∗ =⇒ Q ∼= Q∗.

So in this case, Q is necessarily self-dual, and A is necessarily unit-regular. �
Remark 2.2. There are many known cases where the category of f.g. projective
R-modules satisfies the cancellation law. For instance, R can be any Dedekind
domain, any Bézout domain, any semilocal ring, or any (commutative) von Neu-
mann regular ring; see [La6]. For each of these rings, the matrix A in (2) or (3)
above will be unit-regular.

Instead of focusing on the existence of a symplectic structure on P , we may
also start with a matrix A ∈ An(R) and ask when would A induce a symplectic
structure on the factor module Rn/ker (A). From this viewpoint, we have the
following variation on the theme of Theorem 2.1.

Theorem 2.3. For a matrix A ∈ An(R), let Q = ker (A) ⊆ Rn. The pairing

(2.4) Rn/Q×Rn/Q→ R defined by 〈xT +Q, yT +Q 〉 = xAyT ∈ R
gives a symplectic structure on Rn/Q iff A is von Neumann regular. (In this
case, A is unit-regular iff Q ∼= Q∗ .) Every n-generated symplectic module over
R arises in this way, from a suitable von Neumann regular matrix A ∈ An(R).

Proof. First note that the pairing is well defined, since for any vT ∈ Q, we have
AvT = 0 (and hence also v A = 0 since AT = −A). If A is von Neumann regular,
then Q is a direct summand in Rn, so Rn = P ⊕ Q for some (f.g. projective)
submodule P ⊆ Rn. By (2)⇒ (1) in Theorem 2.1, the pairing sending

(
xT , yT

)
∈

P × P to xAyT ∈ R is a symplectic structure on P . This proves the “if” part
in the theorem. For the “only if” part, recall that modules supporting symplectic
structures are assumed to be f.g. projective. Thus, if Rn/Q is a symplectic module
under the pairing defined in (2.4), then Rn/Q is projective and so Q is a direct
summand in Rn. Fixing as before a direct complement P of Q, we see that
im (A) = {AyT : yT ∈ P} is precisely P ∗, when we make the usual identification
(Rn)∗ = Rn. Since P ∗ is a direct summand of Rn, A is von Neumann regular,
as desired. The last conclusion of the theorem follows from the proof of (1)⇒ (2)
in Theorem 2.1. �

In some special cases, Theorem 2.1 can be improved. With the same notations
as in (2.1), the following result presents such an improvement.
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Corollary 2.5. If R is a self-injective ring or a von Neumann regular ring, and
S = Mn(R), then the statements (1)–(3) in Theorem 2.1 are equivalent to:
(2)′ Q = ker (A) for some matrix A ∈ An(R).

Proof. It suffices to show that (2)′ ⇒ (2). Assuming (2)′ holds, ker (A) = Q is a
direct summand of Rn. If R (and hence Rn) is injective as an R-module, then
im (A) ∼= Rn/Q ∼= P is also an injective R-module. This implies that im (A) is a
direct summand of Rn, so A ∈ S is von Neumann regular. (For a more general
formulation, see [La2: pp. 59–60].) Thus, (2) holds – for the same A in (2)′. If,
instead, R is a von Neumann regular ring, then so is S by [La2: Ex. 21.10B]
(or by Example 3.3(B) below). In this case, all matrices in S are von Neumann
regular, so (2) again holds. �

Next, we’ll specialize Theorem 2.1 to the case where Q ∼= R. This is the case
where the projective module P in question is the syzygy module

(2.6) P (τ) = {uT ∈ Rn : [u, τ ] = 0}
for a unimodular row τ of length n. (In the terminology of [La5: Ch. I ], P is an
n-generated “stably free module of type 1”.) In preparation for the special version
of Theorem 2.1 for such modules P , we need a special determinantal identity, as
follows.

Lemma 2.7. For any a ∈ R and any rows σ, τ of length n over R, we have

det
(
a · In − σT τ

)
= an−1

(
a− [σ, τ ]

)
.

Proof. This is presumably a classical result. For the convenience of the reader, we
include a “modern” proof. We first observe that, for any matrix G ∈ GLn(R), if
σ′ := σGT and τ ′ := τ G−1, then it suffices to prove the determinantal identity
for σ′, τ ′. This follows simply by noting that

(2.8) a · In − σT τ = a · In −G−1 (σ′)T τ ′G = G−1 [ a · In − (σ′)T τ ′ ]G,

and that [σ′, τ ′ ] = σ′ (τ ′)T = σGT (G−1)T τT = σ τT = [σ, τ ].
It is sufficient to prove the determinantal identity over a field R. In this

case, we can find a matrix G ∈ GLn(R) such that τ ′ := τ G−1 has the form
(c1, 0, . . . , 0). If σ′ := σGT = (b1, . . . , bn), then a ·In+(σ′)T τ ′ is lower triangular
with diagonal entries (a − b1c1, a, . . . , a), so its determinant is an−1(a − b1c1) =
an−1

(
a− [σ′, τ ′]

)
. �

Corollary 2.9. In the notations of (2.7), assume that a ∈ U(R) and that [σ, τ ] ∈
rad (R) (the Jacobson radical of R ). Then a · In − σT τ ∈ GLn(R).

Proof. This follows from (2.7) since U(R) + rad (R) ⊆ U(R). �
It is now easy to reformulate Theorem 2.1 into a result for the existence of

symplectic structures on syzygy modules (of even rank).

Theorem 2.10. For two rows σ, τ of odd length n over a ring R. The following
are equivalent :
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(3) In − σT τ has a factorization MA with M ∈ Mn(R), A ∈ An(R), and
AσT = 0.

(4) [σ, τ ] = 1 and P (τ) has a symplectic structure.
The matrix A in (3) is necessarily unit-regular.

Proof. (3)⇒ (4). Assume (3). Since n is odd and A ∈ An(R), det (A) = 0. Thus,
from the factorization In − σT τ =MA in (3), we have

det (In − σT τ) = det (M) · det (A) = 0.

On the other hand, (2.7) gives det (In − σT τ) = 1 − [σ, τ ]. Therefore, [σ, τ ] = 1
(so τ is a unimodular vector), and we have a decomposition

(2.11) Rn = Q⊕ P (τ), where Q := R · σT ∼= R.

Let E be the projection of Rn onto P (τ) with kernel Q. Then E = In − σT τ ,
since (In − σT τ) (uT ) = uT − [u, τ ]σT = uT for all uT ∈ P (τ), and

(In − σT τ) (σT ) = σT − [σ, τ ]σT = 0.

Thus, by assumption, E = MA. Also, AσT = 0 implies that A (Q) = 0. There-
fore, the condition (3) here boils down to the condition (3) in Theorem 2.1, so by
that theorem, P (τ) has a symplectic structure. Finally, since Q ∼= R is self-dual,
the last paragraph of Theorem 2.1 implies that the matrix A here is necessarily
unit-regular.
(4)⇒ (3). Given (4), we certainly have the decomposition in (2.11), and as above,
the projection E is given by In−σT τ in S = Mn(R). The assumption that P (τ)
has a symplectic structure implies, by Theorem 2.1, that there is a factorization
In − σT τ = MA, where A ∈ An(R) vanishes on R · σT ; that is, the condition (3)
in this theorem holds. �
Remark 2.12. In case R is an integral domain, we can weaken (3) into the following:
(3)′ In − σT τ ∈ Mn(R) is right-divisible by some A ∈ An(R).
Indeed, if (3)′ holds, write In − σT τ = MA (for some M ∈ Mn(R)). Since
det (A) = 0, AwT = 0 for some nonzero wT ∈ Rn. Then E (wT ) =M (AwT ) = 0
implies that wT ∈ Q, so wT = r σT for some (nonzero) r ∈ R. But then

r ·AσT = AwT = 0 =⇒ AσT = 0

since R is a domain. This checks the condition (3) in Theorem 2.10..

For the syzygy module P (τ) in (2.11), there was an earlier criterion given
by the second author for the existence of a symplectic structure. This criterion
is expressed in terms of the notion of the “skew-completability” of a row. For
odd n, a row τ = (b1, . . . , bn) is said to be skew-completable if there exists a
matrix C ∈ An+1(R) ∩ GLn+1(R) with first row (0, b1, . . . , bn). (Of course, for
this to happen, τ must be unimodular.) The second author’s earlier result on the
existence of symplectic structures on syzygy modules is the following, expositions
on which can be found in [Kr] and [La5: VII.5.28].
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Theorem 2.13. Let [σ, τ ] = 1, where σ = (a1, . . . , an), τ = (b1, . . . , bn), and
n is odd. The syzygy module P (τ) has a symplectic structure iff the row τ is
skew-completable.

The proof of this result given in [La5] was a little bit round about, since
it depended on working with the skew-completability of σ instead of the skew-
completability of τ . This necessitated working with the inverse of a certain in-
vertible alternating matrix. As it turned out, the proof actually becomes simpler
and more natural if we work directly with τ , and prove the version of the result
exactly as stated above. Since this may not be well known, we give such a proof
below.

Proof of Theorem 2.13. Starting with the decomposition in (2.11), we take the unit
vector basis e1, . . . , en on Rn, and let Rn+1 = R ·e0⊕Rn, where e0 is a new unit
vector. For the “only if” part of the theorem, fix a symplectic structure on P (τ),
and extend it to a symplectic structure B on Rn+1 by stipulating that R ·e0⊕Q
is orthogonal to P (τ), and B(e0, σT ) = 1. Then the matrix C =

(
B(ei, ej)

)
i,j≥0

is alternating and invertible, say with first row (0, c1, . . . , cn). For i ≥ 1, we have
ei = bi · σT + γT

i for some γT
i ∈ P (τ). Thus, for i ≥ 1 :

ci = B
(
e0, ei

)
= biB

(
e0, σ

T
)
+B

(
e0, γ

T
i

)
= bi .

This shows that C is a “skew-completion” of τ .
Conversely, assume (0, τ) is the first row of a matrix in An+1(R)∩GLn+1(R).

This matrix defines a symplectic form B on Rn+1. Since

B (e0, σT ) =
∑

i≥1 aiB (e0, ei) =
∑

i≥1 aibi = 1,

the 2-space H := R · e0 ⊕ Q is the symplectic hyperbolic plane under the form
B. We can thus decompose Rn+1 into an orthogonal sum H ⊥ H ′, where H ′

is the orthogonal complement of H (see [Sw1: Lemma A.1], or the proof of
[La5: VII.5.8]). Since H ′ is a symplectic module and P (τ) ∼= Rn+1/H ∼= H ′

as R-modules, it follows that P (τ) has a symplectic structure.1 �
The easiest and best known special case of Theorem 2.13 is where n = 3.

In this case, the unimodular row τ = (b1, b2, b3) turns out to be always skew-
completable; see the last paragraph of §4. This being the case, Theorem 2.13
guarantees that P (b1, b2, b3) always has a symplectic structure (and is, in par-
ticular, self-dual). This is consistent with a result of Bass [Ba: Prop. 4.4], which
implies the same conclusion for any (f.g.) stably free module of rank two.

1At the conclusion of this proof, it is relevant to recall that the existence criteria for symplectic
structures on P (σ) and on P (τ) are the same, since P (σ) ∼= P (τ)∗ by [La5: (I.4.10)]. Thus,
Theorem 2.13 actually implies that σ is skew-completable iff τ is skew-completable.
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3. Characterization of von Neumann regular matrices

In view of (2.1) and (2.3), it is of interest to detect when a given square matrix
over a commutative ring is von Neumann regular. In (3.2) below, we shall pro-
vide a necessary and sufficient condition for this which does not seem well known
to matrix theorists or ring theorists. We first prove the following lemma, which
prepares us for such a result.

Lemma 3.1. Let R be any ring with Jacobson radical rad (R). If A = (aij) ∈
Mn(R) is a von Neumann regular matrix with aij ∈ rad (R) for all i, j, then
A = 0.

Proof. This is clear since A ∈ Mn

(
rad (R)

)
= rad

(
Mn(R)

)
(see [La1: p. 57]),

and the only von Neumann regular element in the Jacobson radical of a ring is
zero. �

For any matrix A ∈ Mn(R) (where R is a commutative ring), let Di(A) (1 ≤
i ≤ n) denote the ith determinantal ideal of A, that is, the ideal in R generated
by the i× i minors of A; see [No], or [Ei]. We have a descending sequence

D0(A) ⊇ D1(A) ⊇ D2(A) ⊇ · · · ⊇ Dn(A) = det (A) · R ⊇ (0),

where, by convention, D0(A) = R. Recall that the McCoy rank of A is defined
to be the largest i for which Di(A) is a faithful ideal (that is, ann (Di(A)) = 0);
see [MC: p. 159]. The following criterion for the von Neumann regularity of A is
in terms of its determinantal ideals Di(A) ’s.

Theorem 3.2. A matrix A = (aij) ∈ Mn(R) is von Neumann regular iff each
determinantal ideal Di(A) (0 ≤ i ≤ n) is idempotent (or equivalently, each Di(A)
is generated by an idempotent in R : see Footnote 4 below). In this case, the McCoy
rank of A is the largest integer r such that Dr(A) = R.

Examples 3.3.

(A) In the case where R is a connected ring, the theorem shows that A is von
Neumann regular iff each Di(A) is either (0) or R. Here, the McCoy rank of A
is the least r such that Di(A) = 0 for all i > r.
(B) If R is a von Neumann regular ring, then all finitely generated ideals of R are
generated by an idempotent (see [La1: (4.23)]). In this case, Theorem 3.2 recovers
the well-known fact that any matrix ring Mn(R) is von Neumann regular. (This
is true even for noncommutative von Neumann regular rings R; see [La2: Ex.
21.10B].)

(C) The matrix A =

⎛⎝ 1 1 0
2 5 2
−2 −8 −4

⎞⎠ provides a good illustration for Theorem 3.2

over the ring R = Z. In [La2: p. 60], it is shown that A is von Neumann regular.
In our setting, this follows immediately from Theorem 3.2 since D3(A) = 0, while

D2(A) = Z upon noting that det
(

1 0
2 2

)
= 2 and det

(
1 1
2 5

)
= 3. Of course,

the McCoy rank of A here is the same as the ordinary rank of A, which is 2. But



222 T.Y. Lam and R.G. Swan

the above computation of D2(A) gives more information. It implies, for instance,
that A remains von Neumann regular if we change its third row at will, as long
as we ensure that det (A) = 0. More precisely, the last row can be of the form
(a, b, 2(b− a)/3) for any a, b ∈ Z with a ≡ b (mod 3).

Proof of Theorem 3.2. Once the regularity criterion is proved, the second statement
in (3.2) follows, since an idempotent-generated ideal is faithful iff it is the unit ideal.

To prove the regularity criterion, first assume A is von Neumann regular.We
claim that the ideal I := D1(A) =

∑
aijR has the property that I + ann (I) = R.

If otherwise, there exists a maximal ideal m ⊇ I + ann (I). Over the localization
Rm, A remains von Neumann regular. Since aij ∈ mRm, Lemma 3.1 implies that
aij = 0 ∈ Rm for all i, j. Thus, there exists r ∈ R \m such that raij = 0 ∈ R for
all i, j. But then r ∈ ann (I) ⊆ m, a contradiction. From I+ann (I) = R, we have
an equation e + f = 1 where e ∈ I and f ∈ ann (I). Multiplying this equation
by e, we get e = e2 + ef = e2. For any x ∈ I, we have x = x − fx = ex ∈ eR.
Thus, I = eR is idempotent.2

Now consider any i ∈ [1, n], and let ϕ be the R-homomorphism Rn →
Rn defined by A. This module homomorphism induces a homomorphism on the
exterior powers

Λi(ϕ) : Λi(Rn) −→ Λi(Rn).
For the unit vector basis {e1, . . . , en} on Rn, the exterior power Λi(Rn) has a
basis consisting of

ek1 ∧ · · · ∧ eki , where 1 ≤ k1 < · · · < ki ≤ n.

With respect to this basis, Λi(ϕ) has a matrix whose entries are the i× i minors
of A. Fixing a matrix B ∈ Mn(R) such that A = ABA and letting ψ : Rn →
Rn be the homomorphism defined by B, we have (by functoriality) Λi(ϕ) =
Λi(ϕ)Λi(ψ)Λi(ϕ). Thus, the matrix representing Λi(ϕ) is von Neumann regular.
Since Di(A) is just the first determinantal ideal of this matrix, it follows from the
case we have settled above that Di(A) is idempotent, as desired.

To prove the converse, assume that each Di(A) is idempotent. To show that
A is von Neumann regular, we view A as an R-homomorphism Rn → Rn and
want to show that im (A) is a direct summand of Rn. (See the introductory re-
marks on von Neumann regular matrices made at the beginning of §2.) This may be
checked locally (since each Di(A) remains idempotent in the localizations). Thus,
we may assume that R is a local ring. Then R has no nontrivial idempotents, so
there exists an integer r ∈ [1, n] such that

(3.4) D1(A) = · · · = Dr(A) = R and Dr+1(A) = · · · = Dn(A) = 0.

If r = n, then Dn(A) = R implies that det (A) ∈ U(R). In this case, A is
invertible, and hence von Neumann regular. In the following, we may thus assume
that r < n. Since R is local, Dr(A) = R means that some r × r minor is a

2As was pointed out by K. Goodearl, this conclusion about the first determinantal ideal could also
have been gotten from an argument using the trace ideals of projective modules; see [La3: §2H].
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unit. For convenience, let us assume that this is the determinant of the upper-left

r × r corner B of A. Then A =
(
B C
D E

)
, with B ∈ GLr(R). Now use the

fact that, for U, V ∈ GLn(R), A is von Neumann regular iff UAV is, and that
Di(A) = Di(UAV ) for all i (see [No]). This enables us to change A by matrix
equivalence, and in particular, by elementary transformations. Using the latter
(and the invertibility of B), we can bring A to the form diag (B,E′). It then
follows that E′ = 0 (since Dr+1(A) = 0 by (3.4)), which clearly implies that A
is von Neumann regular. �

As we have mentioned in the Introduction, there is a more powerful method
using which we can give a quicker proof of Theorem 3.2. This is done by exploiting
the theory of Fitting invariants {Fittj(C)} of a f.g.R-module C. For an exposition
on this topic, see §20 in Eisenbud’s book [Ei]. For a module such as C = coker (A)
where A is an n×n matrix thought of as an R-endomorphism of Rn, the Fitting
invariants Fittj(C)’s are, up to a reindexing, precisely the determinantal ideals
Di(A)’s. A basic fact on Fitting invariants is given by the following result from
[Ei: Prop. 20.8].3

Proposition 3.5. A f.g. R-module C is projective of constant rank iff each Fittj(C)
is (0) or R.

From this result, we can fairly quickly deduce Theorem 3.2 as follows. Given
A ∈ Mn(R), let C = coker (A). As we have mentioned before, A is von Neumann
regular iff im (A) is a direct summand of Rn, and clearly, this is the case iff C is
a projective R-module. Since C is finitely presented, this condition is equivalent
to Cp being Rp-free for each prime ideal p (see [La5: (I.3.4)]). By Prop. 3.5,
this amounts to each Fittj(Cp) being (0) or Rp, which can be easily translated
into Fittj(Cp)2 = Fittj(Cp) (for each p), since Fittj(Cp) is a f.g. ideal, and Rp is
connected.4 Thus, A is von Neumann regular iff each Fittj(C) is idempotent; that
is, iff each Di(A) is idempotent. This completes the second proof of Theorem 3.2.

The proof above is certainly pretty short, but it does depend on Prop. 3.5
as well as a considerable amount of material not developed in this paper. In view
of this, we believe the direct and self-contained proof given earlier in this section
would still play a useful role in the literature. In addition, a careful analysis of the
Fitting invariants proof above in relation to Theorem 3.2 suggests the possibility
of an improved version of Prop. 3.5, which we shall discuss below.

Note that, although Prop. 3.5 is stated in terms of a (f.g.) module C over
a general ring, it is basically a result of a local nature, since it does not address
the case where the module C (in case it is projective) has possibly non-constant
rank. One might thus wonder if there is a global version of Prop. 3.5 that would

3In Eisenbud’s exposition, the base ring R was assumed to be noetherian. But a careful exam-
ination of the proof of [Ei: Prop. 20.8] will show that the noetherian assumption on R is not
needed.
4Here, we used the well-known fact that a f.g. ideal is idempotent iff it is generated by an
idempotent. For a proof of this, see [La3: (2.43)].
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give a characterization for an arbitrary f.g. projective module. Fortuitously, the
statement of Theorem 3.2 suggests the right generalization, as follows.

Theorem 3.6. A f.g. R-module C is projective iff each Fittj(C) is generated by
an idempotent.

Proof. First assume C is (f.g.) projective. Then C is also finitely presented, so
each Fittj(C) is a f.g. ideal. Thus, we only need to check that, for each j, the
inclusion Fittj(C)2 ⊆ Fittj(C) is an equality (for then Fittj(C) will be generated
by an idempotent, according to the fact mentioned in Footnote 4). As in the second
proof for (3.2) above, this property can be checked locally, so we may assume that
R is a local ring. But then C ∼= Rk for some k ≥ 0. In this case, the desired
conclusion is trivial since each Fittj(C) is surely either R or (0).5

Conversely, assume that each Fittj(C) is generated by an idempotent. Then
the same is true at every prime ideal p, so by Prop. 3.5, Cp is free. The free
rank of Cp at every prime p is determined by the sequence of Fitting invariants
Fittj

(
Cp

)
. From this, we see easily that the rank function rankC : Spec (R)→ Z

is locally constant. Since C is f.g., a theorem of Bourbaki [Bo: pp. 109–111] (see
also [La4: Ex. 2.21]) implies that C is a (f.g.) projective R-module. �

4. Von Neumann regular matrices of small size

In this final section, we’ll briefly comment on the case of von Neumann regular
matrices of small size. In this case, we shall reprove the “if” part of Theorem 3.2
from a constructive point of view, and give some examples on the computation of
quasi-inverses for von Neumann regular matrices.

To begin with, the case of a 1 × 1 matrix A = (a) is basically trivial. If
aR = eR where e = e2, then writing e = ar, one has a = ea = ara, so a is
indeed von Neumann regular, with a quasi-inverse r. A more careful construction
would have given an equation a = aua with u ∈ U(R), so a is in fact unit-regular.
(For a more general result, see [La2: Ex. 12.6A].)

The case n = 2 can be handled directly too, as follows. If a matrix A ∈
M2(R) has

D1(A) = eR and D2(A) = (det A)R = e′R,

where e, e′ are idempotents, there is no loss in assuming that det A = 0. This
is because R splits into e′R × (1 − e′)R, and in the component e′R, the projec-
tion e′A of A is invertible (and hence von Neumann regular). Thus, it suffices
to analyze the projection of A in the other component (1 − e′)R), which has
determinant zero. In this case, we have the following explicit result, independently
of Theorem 3.2.

5More precisely, Fittj(C) is R for all j in case k = 0; and is (0) for j < k and R for j = k

in case k ≥ 1.
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Proposition 4.1. Let A =
(
a b
c d

)
with ad = bc and D1(A) = eR, where e = e2.

Fix an equation aw + bx+ cy + dz = e. Then the matrix M =
(
w y
x z

)
satisfies

A = AMA (so A is von Neumann regular, with quasi-inverse M ).

Proof. This can be checked by a direct computation, using the fact that ea =
a, eb = b, ec = c, and ed = d, along with ad = bc. �

For the case n = 3, let us consider the special case of alternating matrices; say

(4.2) A =

⎛⎝ 0 −c b
c 0 −a
−b a 0

⎞⎠ ∈ A3(R).

Here, we have D3(A) = 0, D1(A) = aR + bR + cR, and quick inspection shows
that D2(A) = D1(A)2. (The latter is a special case of [KLS: (3.8)(2)].) Thus, we
can “ignore” D2(A) and D3(A), and replace (3.2) by the following simpler and
sharper statement.

Proposition 4.3. The matrix A in (4.2) is von Neumann regular iff aR+bR+cR =
eR for some idempotent e ∈ R. (In this case, A is in fact unit-regular.) In
particular, A is von Neumann regular if the row (a, b, c) is unimodular; in case
R is connected and A �= 0, the converse holds.

Here, the “if” part of the first statement (as well as the claim in parentheses)
can be checked explicitly without assuming Theorem 3.2 or Theorem 2.10. Indeed,
let aR+bR+cR = eR for some e = e2 ∈ R, and let f = 1−e. Since R = eR×fR
and A has projection 0 in fR, it is sufficient to work in the other component
eR, whereby we may assume e = 1. Under this assumption, σ = (a, b, c) is
unimodular. Fix a vector τ = (p, q, r) such that [σ, τ ] = ap + bq + cr = 1. Then
we have R3 = R · σT ⊕ P (τ) as in (2.11). We claim that the condition (3) in
Theorem 2.10 is always satisfied. To see this, start with the “projection matrix”
in the proof of that theorem, which is

(4.4) E = I3 − σT τ =

⎛⎝1 − ap −aq −ar
−bp 1 − bq −br
−cp −cq 1 − cr

⎞⎠.
If we let M :=

⎛⎝ 0 r −q
−r 0 p
q −p 0

⎞⎠ ∈ A3(R), a quick calculation shows that MA = E.

Since obviously AσT = 0, the condition (3) in Theorem 2.10 is satisfied. Moreover,

(4.5) AMA = A (I3 − σT τ) = A−AσT τ = A.

Thus, A is indeed von Neumann regular, with a quasi-inverse M . On the other
hand, we also have

(4.6) MAM = (I3 − σT τ)M =M − σT τM =M (since τM = 0),
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so M is von Neumann regular as well, with quasi-inverse A ! Finally, the fact that
A is unit-regular (the last part of Theorem 2.10) can be directly checked by using
the matrices

(4.7) U =M + σTσ, and V = A+ τT τ.

In view of A, M ∈ A3(R) and AσT = 0 = τM , we see easily that UV = I3 and
AUA = A, so A is unit-regular with an invertible quasi-inverse U . Similarly,

(4.8) M VM =M (A+ τT τ)M =MAM =M (by (4.6)),

so M is also unit-regular, with invertible quasi-inverse V .
Since we have verified condition (3) in Theorem 2.10, it follows that, in the

above situation, P (τ) has a symplectic structure. Of course, in confirmation of
Theorem 2.13, it is also easy to show directly that τ = (p, q, r) is skew-completable
(as was mentioned in the last paragraph of §2). Indeed, the “bordered” alternating
matrix V =

(
0 τ

−τT −A

)
constructed from A and τ provides a natural skew-

completion for τ . Here, V is invertible since its Pfaffian is ap+bq+cr = 1. In the
study of the elementary symplectic Witt groups over commutative rings (see for
instance [La5: p. 320]), the (class of the) invertible alternating matrix V is known
as the Vaserstein symbol of the unimodular row σ = (a, b, c).
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1. Introduction

Schur’s Lemma states that for any ring R and any simple module MR, the endo-
morphism ring End(MR) is a division ring. In this note we are interested in the
converse of Schur’s Lemma (CSL), i.e., whether for a given module category C ,
every object in C whose endomorphism ring is a division ring is in fact simple. If
this is the case, we say that C has CSL. The case that has received almost exclusive
attention in the literature (see, e.g., [1], [2], [7], [10], [9], [14]) is C = ModR, the
category of right R-modules. Here we will focus on the case C = FLR, the category
of right R-modules of finite length.

We propose to separate the study of rings R which satisfy CSL for FLR from
the study of rings which satisfy CSL for FLR but not for ModR, since the two
properties relate to different topics: extensions of simples versus constructions of
large modules.

It turns out that the CSL property for finite length modules – and sometimes
the CSL property for all modules – is controlled by the following combinatorial
information:

Definition 1.1. Let R be a ring. Recall that the right Gabriel quiver (or right
Ext-quiver) of R is the directed graph Q consisting of the following data:

• The points of Q are in bijective correspondence with the isomorphism classes
of simple right R-modules.
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• There is an arrow i→ j in Q whenever the corresponding simple modules Si

and Sj extend, i.e., Ext1R(Si, Sj) �= {0}.
We say that the right Gabriel quiver is totally disconnected if there are no arrows
between any two different points.

For example, the right Gabriel quiver of a semisimple ring is a disjoint union
of finitely many points. The right Gabriel quiver of the discrete valuation ring
R = k[x](x) (for k a field) has one point and one loop.

The reader should be aware that the literature contains some variants of the
definition we give here. In the classical setting where R is a finite-dimensional
algebra over a field, some authors adopt the convention that in the right Gabriel
quiver of R the arrow between the vertices corresponding to Si and Sj carries
as label the pair given by the dimensions of Ext1R(Si, Sj) as a vector space over
End(Sj)R and End(Si)R respectively.

Theorem 1.2. Let R be any ring. Then FLR has CSL if and only if the right Gabriel
quiver of R is totally disconnected.

We will prove Theorem 1.2 in Section 2.
In general, for FLR to have CSL is a considerably weaker condition than for

ModR to have CSL. The distinction between CSL on FLR and CSL on ModR is
illustrated in the following examples.

Example 1.3. Let R be any commutative ring whatsoever. Then FLR has CSL. To
see this, supposeM is an R-module of finite length such that End(MR) is a division
ring. If M were not simple, then by [14, Corollary], MR would be isomorphic to
the field of fractions of R/p where p = annR(M) is a prime but not maximal ideal
of R, contradicting the hypothesis that M has finite length.

By contrast, in [14] it is shown that for a commutative ring R, the category
ModR has CSL if and only if R has Krull dimension 0.

We infer from Theorem 1.2 that the (right) Gabriel quiver of any commutative
ring is totally disconnected.

Example 1.3 suggests a further reason why the (not necessarily commutative)
rings R for which FLR has CSL are an interesting object of study: they include all
commutative rings, so this condition is a new sort of generalization of commuta-
tivity.

Example 1.4 (J.H. Cozzens [4]). Let K be an algebraically closed field of positive
characteristic p, let ϕ: x !→ xpn

be a Frobenius automorphism on K, and let
k = K〈ϕ〉 be the fixed field of ϕ. Then the skew Laurent polynomial ring R =
K[x, x−1;ϕ] has, up to isomorphism, a unique simple right module S, which is
injective. Thus, every finite length right R-module is semisimple, and hence FLR

has CSL.
Nevertheless, ModR does not have CSL. It is easy to show that if R is a right

or left Ore domain, then ModR has CSL if and only if R is a division ring. In the
present example R is a simple noetherian domain, hence an Ore domain.
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Note that the category FLR is equivalent to the category FLk, which obviously
has CSL (as even Modk does).

We can generalize this example using [13, Theorem A]. Let rad(A) denote
the Jacobson radical of a ring A. Recall that a finite-dimensional k-algebra A is
called elementary if A/rad(A) is a finite direct product of copies of k.

Proposition 1.5. Let A be a finite-dimensional elementary algebra over a finite field
whose right Gabriel quiver is totally disconnected. Then there exists a noetherian
ring R such that the following properties hold:
(i) The categories FLA and FLR are equivalent.
(ii) Both FLA and FLR have CSL.
(iii) The category ModA has CSL, but the category ModR does not.

On the other hand, for semiprimary rings the CSL property for all modules is
controlled by the right Gabriel quiver, i.e., it is controlled by the CSL property for
finite length modules. Recall that a ring R is said to be semiprimary if the Jacobson
radical rad(R) is nilpotent and R/rad(R) is a semisimple ring. Semiprimary rings
figure prominently in our main object of study here: it is well known that the
endomorphism ring of a finite length module is semiprimary.

Theorem 1.6. Let R be a semiprimary ring. The following conditions are equiva-
lent:
(i) FLR has CSL.
(ii) The right Gabriel quiver of R is totally disconnected.
(iii) R is a finite direct product of full matrix rings over local rings.
(iv) ModR has CSL.

We defer the proofs of Proposition 1.5 and Theorem 1.6 to Section 3. The
literature contains results akin to Theorem 1.6, such as the following.

Theorem 1.7. Let R be a one-sided noetherian ring or a perfect ring. Then ModR

has CSL if and only if R is a finite direct product of full matrix rings over local
perfect rings.

The left noetherian case is covered by [2, Theorem 1], the right noetherian
case by [5, Theorem 3.4], and the perfect case by [1, Theorem 1.2].

Example 1.8. Let k be a field of characteristic 0, and let A1(k) = k〈x, y〉/(xy −
yx− 1) be the first Weyl algebra over k. If

S1 = A1(k)/xA1(k) and S2 = A1(k)/(x+ y)A1(k),

then by [11, Proposition 5.6, Theorem 5.7], S1 and S2 are nonisomorphic simple
right A1(k)-modules for which Ext1A1(k)(S1, S2) �= {0}. Therefore, the right Gabriel
quiver of A1(k) is not totally disconnected, so Theorem 1.2 tells us FLA1(k) does
not have CSL.

The conclusion of Example 1.8 can be extended from A1(k) to certain gener-
alized Weyl algebras; see [3, Theorem 1.1] for details.
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Example 1.9. Let R be a right bounded Dedekind prime ring. Then FLR has CSL.
To prove this, first note that if R is right primitive then by [6, Theorem 4.10]
it is simple artinian (so in this case even ModR has CSL). Now assume R is not
right primitive. Suppose S1 and S2 are arbitrary nonisomorphic simple right R-
modules. Then annR

r (S1) = m1 and annR
r (S2) = m2 are maximal ideals of R and

m1 �= m2, by [12, Theorem 3.5]. By [6, Theorem 1.2, Proposition 2.2], m1 and m2

are invertible ideals. We can therefore apply [8, Proposition 1] to conclude that
Ext1A1(k)(S1, S2) = {0}. Thus, by Theorem 1.2, FLR has CSL.

Example 1.10. Let G be a finite group and F a field.
(i) If the characteristic of F does not divide the order ofG, then FG is semisimple

and hence the Gabriel quiver is totally disconnected (no arrows).
(ii) If the characteristic of F is a prime number p and G is a finite p-group, then

FG is a local ring and again, the Gabriel quiver is totally disconnected (the
only arrow is a loop).

(iii) In the case where the number of simples is different from the number of
blocks, there is a block where two nonisomorphic simples extend, and we get
a proper arrow in the Gabriel quiver.

Thus, in cases (i) and (ii), but not (iii), FLFG has CSL.

2. CSL for finite length modules

In this section we give a proof of Theorem 1.2. First, assume that FLR has CSL.
As a consequence of the next lemma, the right Gabriel quiver of R must be totally
disconnected.

Lemma 2.1. Suppose 0 → T → M → S → 0 is a non-split short exact sequence
in ModR where S and T are nonisomorphic simple modules. Then End(MR) is
isomorphic to a division subring of End(SR) and of End(TR).

Proof. Since HomR(M,T ) = {0}, HomR(M,M) embeds in HomR(M,S); since
HomR(T, S) = {0}, we can identify HomR(M,S) with HomR(S, S). This yields a
ring monomorphism End(MR) → End(SR). Similarly, since HomR(S,M) = {0}
and HomR(T, S) = {0}, we obtain a ring monomorphism End(MR) → End(TR).
Thus End(MR) is isomorphic to a subring of the division rings End(SR) and
End(TR), so End(MR) is a domain. Being also semiprimary, End(MR) is a di-
vision ring. �

For the converse, we assume that the right Gabriel quiver of R is totally
disconnected. We first show that every finite length indecomposable module is
isotypic, and then that every isotypic module is either simple or admits a nonzero
nilpotent endomorphism. Note that some of the results apply both to finite length
modules over an arbitrary ring and to arbitrary modules over a semiprimary ring.
We will use these results again in the next section.



Extensions of Simple Modules 233

Definition 2.2. A moduleM is isotypic if all simple subquotients ofM are isomor-
phic. A sequence

0 =M0 ⊂M1 ⊂ · · · ⊂M� =M

of submodules is called an isotypic filtration of M of length � if for every i =
1, . . . , �, the quotient Mi/Mi−1 is isotypic.

Proposition 2.3. Suppose R is a ring whose right Gabriel quiver is totally discon-
nected. Suppose that either
(i) M is an object of FLR, or
(ii) R is semiprimary, and M is an object of ModR.

Then M is a finite direct sum of isotypic modules.

Proof. Step 1: The module M has an isotypic filtration. For example, the radical
filtration of M can be refined to an isotypic filtration.
Step 2: For each isotypic filtration

0 ⊂M1 ⊂ · · · ⊂M� =M

there is an isotypic filtration 0 ⊂ M ′
1 ⊂ · · · ⊂ M ′

� = M such that Mi ⊆ M ′
i for

each i and HomR(M ′
1,M/M ′

1) = {0}. Zorn’s Lemma can be applied to the set
of all isotypic submodules of M that contain M1; let M ′

1 be a maximal member
of this set. We have HomR(M ′

1,M/M ′
1) = {0} since the socle of M/M ′

1 cannot
contain a simple summand isomorphic to a subquotient of M ′

1. For i > 1, put
M ′

i =Mi +M ′
1. Then

M ′
i

M ′
i−1

=
Mi +M ′

1

Mi−1 +M ′
1

∼= Mi

Mi ∩ (Mi−1 +M ′
1)
=

Mi

Mi−1 + (Mi ∩M ′
1)

is epimorphic image of Mi/Mi−1 and hence isotypic.
Step 3: Let M and N be isotypic modules that both satisfy (i) or (ii) of the propo-
sition and for which HomR(M,N) = {0}. Then Ext1R(M,N) = {0}. When M and
N are semisimple, this follows from the hypothesis on the right Gabriel quiver.
The general case follows by induction on the lengths of semisimple filtrations of
M and N .
Step 4: The module M is a direct sum of isotypic modules. We induct on the length
� of the isotypic filtration of M produced in Step 2. The case � = 1 is trivial. For
the induction step, let M have an isotypic filtration 0 ⊂ M ′

1 ⊂ · · · ⊂ M ′
�+1 = M .

By inductive hypothesis,M/M ′
1
∼=

⊕
i M

′′
i is a direct sum of isotypic modulesM ′′

i .
Since HomR(M ′

1,M
′′
i ) = {0} for all i, by Step 3 we have

Ext1R(M
′
1,M/M ′

1) =
⊕

i

Ext1R(M
′
1,M

′′
i ) = {0}

Thus, the short exact sequence 0 → M ′
1 → M → M/M ′

1 → 0 splits, and M ∼=
M1 ⊕

⊕
iM

′′
i is a direct sum of isotypic modules. �
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Next we prove a criterion for isotypic modules to admit a nonzero nilpotent
endomorphism. The argument is adapted from the proof of [1, Theorem 1.2].

Lemma 2.4. Let R be any ring, and let M be a right R-module. Then M has no
nonzero semisimple direct summand if and only if soc(M) ⊆ rad(M).

Proof. If M has no nonzero semisimple direct summand, then every simple sub-
module is superfluous, whence soc(M) ⊆ rad(M). Conversely, if M does have a
nonzero semisimple direct summand, thenM has a simple direct summand, which
is contained in soc(M) but not rad(M), so soc(M) �⊆ rad(M). �

Proposition 2.5. Suppose that MR is a nonzero isotypic module that is not simple.
Assume in addition that either M has finite length or R is a perfect ring. Then M
has a nonzero nilpotent endomorphism.

Proof. If M has a nonzero simple direct summand, the conclusion is clear; so
assume otherwise. By Lemma 2.4, soc(M) ⊆ rad(M). Now, M is nonzero and
isotypic, and the hypotheses imply that M/rad(M) is semisimple; therefore, there
exists a nonzero homomorphism f0: M/rad(M)→ soc(M). The composite map

f : M π−→M/rad(M)
f0−→ soc(M) ι−→M

(where π is the canonical epimorphism and ι the inclusion map) is a nonzero
endomorphism of M satisfying f2 = 0. �

Theorem 1.2 is now established. The “only if” part follows from Lemma 2.1.
The “if” part follows from Propositions 2.3 and 2.5.

3. CSL for all modules

To prove Theorem 1.6 we will show

(i)⇔ (ii)⇒ (iii)⇒ (iv)⇒ (i).

By Theorem 1.2, statements (i) and (ii) are equivalent for any ring R.
(ii) ⇒ (iii): According to Proposition 2.3, the module RR =

⊕
i Pi is a

finite direct sum of indecomposable isotypic submodules Pi. Two such submodules
are either isomorphic or have no nonzero homomorphisms between them. Thus,
R = End(RR) is a finite direct product of matrix rings over the local endomorphism
rings of the Pi’s.

(iii)⇒ (iv): Apply “(iv)⇒ (iii)” of [1, Theorem 1.2]. �

We now prove Proposition 1.5. Let A be an elementary algebra over a finite
field k of pn elements. Let K be an algebraically closed field of characteristic p and
ϕ: K → K the Frobenius automorphism, given by α !→ αpn

; we identify k with
the fixed field of ϕ. Let Σ = K[x, x−1;ϕ] be the V-ring studied in [4]; we claim
that the ring R = Σ⊗k A has the required properties.
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(i) We infer from [13, Theorem A] that the categories of FLA and FLR are
equivalent.

(ii) Follows from (i) and (iii).

(iii) Applying Theorem 1.6 to the semiprimary ring A, we deduce that ModA

has CSL. To see that R does not have CSL, note that since A is elementary, the
ring homomorphism π: A→ k gives rise to a surjective ring homomorphism

π ⊗ 1: R = A⊗k Σ −→ k ⊗k Σ.

Since ModΣ does not have CSL (as explained in Example 1.4), and Σ is isomorphic
to a factor ring of R, ModR does not have CSL. �

4. Some questions

The rings in Examples 1.4 and 1.8 are both simple noetherian domains. In light
of the diametrically different behavior in the two examples, we pose the following
question.

Question 4.1. For which simple noetherian domains R does FLR have CSL?

Question 4.2. When do other subcategories of ModR have CSL? What are the con-
ditions under which all artinian modules have CSL? All noetherian modules? Is
there an example of a ring which has CSL for finite length modules, but not CSL
for artinian modules?

One may also consider categories with quasi-CSL in the following sense:

Definition 4.3. Let C be a category of modules, i.e., C is a full subcategory of
ModR for some ring R. We say that an object M of C is quasi-simple if the only
submodules N ⊆M such thatN andM/N are objects of C areN = 0 andN =M .
The category C is said to have quasi-CSL if the only modules with endomorphism
ring a division ring are the quasi-simple ones.

Question 4.4. Are there interesting categories with quasi-CSL?

Example 4.5. For a given ring R, the category FLR or the category ModR has
quasi-CSL if and only if it has CSL.

Nevertheless, in general quasi-CSL and CSL are different conditions on a
module category, as will be seen in Example 4.8 below. We preface this example
with some motivating observations.

Example 4.6. Even if R has CSL, then the ring U2(R) of upper triangular 2 by 2
matrices with coefficients in R need not have CSL. Indeed, if S is a simple right
R-module, then the row

(
S S

)
is a right module over U2(R) of length 2 with

endomorphism ring End(SR).
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In fact, the category ModU2(R) is just the category of all maps between right
R-modules, a map f : A→ B being a module over U2(R) via

(a, b) ·
(
x y
0 z

)
= (ax, f(a)y + bz).

Consider the full subcategory S(R) of ModU2(R) consisting of all maps which are
monomorphisms (“S=submodules”).
Question 4.7. If R has CSL, does S(R) have quasi-CSL?

Categories of type S(R) play a role in applications of ring theory; for example,
the embeddings of a subgroup in a finite abelian group, or the embeddings of a
subspace in a vector spaces such that the subspace is invariant under the action
of a linear operator, fall into this type of category.

Example 4.8. For Λ a commutative uniserial ring with radical generator p and
radical factor field k, the category S(Λ) has quasi-CSL but not CSL, as follows.
There are exactly two quasi-simple modules, S1 =

(
k k

)
and S2 =

(
0 k

)
, up to

isomorphy; both have endomorphism ring k. Then S(Λ) has quasi-CSL since any
embedding

(
A B

)
with B a semisimple Λ-module is a direct sum of copies of S1

and S2. On the other hand, if B is not semisimple then multiplication by p is a
nonzero nilpotent endomorphism.
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1. Introduction

Throughout, R is a ring with 1, and J(R) its Jacobson radical. M will denote a
unital right module over an unspecified ring, with endomorphisms acting on the
left. S will always denote the ring of endomorphisms of M , and Δ is the ideal of
S consisting of all endomorphisms with essential kernels. A summand of M will
always mean a direct summand. If N is a summand of M , then N = eM for some
idempotent e ∈ S, and the endomorphism ring of N is isomorphic to the ring
eSe. A ring R is abelian if all its idempotents are central, and a module M is an
abelian module if S is abelian. A module M is called square-free if M does not
contain any nonzero submodule of the form X⊕X . It is known that if M is square
free, then S/Δ is abelian. For definitions and properties of (quasi-) continuous
modules, extending modules and the conditions (C1), (C2) and (C3) we refer the
reader to [9].

In their pioneering paper [3], Crawley and Jonsson defined and studied the
exchange property: for a cardinal number ℵ, a module M is said to have the ℵ-
exchange property if whenever N ⊕M = ⊕i∈IAi for modules N and Ai, with |I| ≤
ℵ, there exist submodules A′

i ≤ Ai such thatN⊕M = ⊕i∈IA
′
i⊕M . The ℵ-exchange

property is inherited by summands and finite direct sums. IfM has the ℵ-exchange
property for every finite (resp. countable) cardinal ℵ, then M is said to have the
finite (resp. countable) exchange property. If M has the ℵ-exchange property for
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every cardinal ℵ, then M is said to have the full exchange property. Clearly the
finite and full exchange properties coincide for finitely generated modules and
indecomposable modules. It was also proved in [3] that the 2-exchange property
implies the finite exchange property. The question whether the finite exchange
property implies the full (or the countable) exchange property, is still open.

Modules with the finite exchange property were characterized via their endo-
morphism rings. Warfield [23] defined a ring R to be an exchange ring if RR has the
(finite) exchange property; (to avoid any confusion in the subsequent sections, we
will call such rings finite exchange rings). He proved that the definition is right-left
symmetric, and established that a module M has the finite exchange property if
and only if its endomorphism ring S is a finite exchange ring. Nicholson [15] gave a
very interesting characterization of the finite exchange property: M has the finite
exchange property if and only if for each finite family (xi)i∈F of elements of S with∑

i∈F xi = 1, there exist orthogonal idempotents ei ∈ Sxi such that
∑

i∈F ei = 1.
A major contribution to the study of the exchange property was given by

Zimmerman-Huisgen and Zimmerman [25]. They proved that the ℵ-exchange prop-
erty for a module M can be checked in a direct sum of copies of M , and then
generalized Nicholson’s characterization by considering summable families of en-
domorphisms of M . This result was utilized by a number of authors to get infor-
mation regarding the exchange property of some special types of modules; we list
a few:

(1) Mohamed and Müller [8] established that continuous modules have the full
exchange property.

(2) Quasi-continuous modules and abelian modules do not necessarily have the
finite exchange property (e.g., ZZ). Oshiro and Rizvi [21] proved that quasi-
continuous modules with the finite exchange property have the full exchange
property (see also [10]).

(3) Yu [24] proved that abelian modules with the finite exchange property have
the countable exchange property.

(4) Nielsen [17] strengthened the result of Yu, proving that abelian modules with
the finite exchange property have the full exchange property.

The ℵ-exchange property, for an arbitrary cardinal ℵ, can be discussed for any
ring equipped with an appropriate topology for which summability can be defined
(cf. [11]). We consider a ring R with a left linear Hausdorff topology; this is a ring
topology for which 0 has a neighborhood basis J consisting of left ideals U with
∩U∈JU = 0. With respect to this topology a family (ai)i∈I is called summable
to an element a ∈ R if for each U ∈ J there is a finite set F ⊆ I such that∑

i∈K ai − a ∈ U for every finite subset K with F ⊆ K ⊆ I. This implies that
the sequence of partial sums is Cauchy in the usual sense. For simplicity, we call
a family (ai)i∈I Cauchy if the sequence of partial sums is Cauchy. If the topology
is complete, then the “summable” and “Cauchy” concepts are equivalent. In this
article, we call a ring R topological if R is equipped with a complete left linear
Hausdorff topology. Such a ring is called ℵ-exchange ring if for each summable
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family (ai)i∈I with
∑

i∈I ai = 1 and |I| ≤ ℵ, there exist orthogonal idempotents
ei ∈ Rai such that

∑
i∈I ei = 1. Strictly speaking, these rings should be called

(right) ℵ-exchange rings. The right-left symmetry of such rings is not any more
a valid question, as the topology is defined using left ideals only. So, there will
be no confusion if we just denote these rings by ℵ-exchange rings. A topological
ring R is called finite (resp. countable) exchange ring if R is an ℵ-exchange ring
for every finite (resp. countable) cardinal ℵ. If R is an ℵ-exchange ring for every
cardinal ℵ, then R is said to be a full exchange ring. If the topology is discrete,
the only summable families are the finite ones, and therefore ℵ-exchange rings are
the same as finite exchange rings. We also note that the endomorphism ring S of
a module M is a topological ring with respect to the finite topology (for which the
neighborhood basis of 0 consists of the annihilators of the finite subsets of M).

The motivation of studying ℵ-exchange rings is two fold. First it is purely
ring theoretic, and can be applied to modules by considering their endomorphism
rings. Second a quotient ring of an endomorphism ring S of a module M loses its
connection with M , but still the ℵ-exchange property can be discussed for such
quotient rings. This is very beneficial if the ℵ-exchange property can be lifted,
which is indeed the case. Mohamed and Müller [11] proved that the ℵ-exchange
ring property can be lifted modulo any closed ideal N contained in the Jacobson
radical of a ring R, provided that idempotents lift modulo N . Then they proved
that square-free modules with the finite exchange property have the countable
exchange property. Recently Nielsen [19] proved that such modules have the full
exchange property. This is a consequence of his more general result: If R is a
topological finite exchange ring and R/J(R) is abelian, then R is a full exchange
ring. Most of the known results of the exchange property for continuous and quasi-
continuous modules follow from Nielsen’s theorem.

A module M is said to have the (finite) internal exchange property, if sum-
mands of M exchange in every (finite) direct sum decomposition of M . The 2-
internal exchange property implies the finite internal exchange property [12]. The
question whether the finite internal exchange property implies the (full) internal
exchange property, is still open, in general. This question is answered in the af-
firmative for square-free modules [7]. The relation between the exchange property
and the internal exchange property is discussed in [20]. Analogous to the Zimmer-
mann’s result, modules with the internal exchange property are characterized in
terms of their endomorphism rings [6].

2. Finite exchange rings

Most of the material in this section can be found in Nicholson [15]. We list some
results for the reader’s convenience. We also give ring theoretic proofs for some
basic properties of exchange rings.



242 S.H. Mohamed

The following fundamental theorem is an amalgamation of Propositions 1.1
and 1.11, and Theorem 2.1 of [15]. For a proof cf. Theorem 3.1 and Proposition 2.3
below.

2.1 Theorem. The following are equivalent for a module M with endomorphism
ring S:
(1) SS has the finite exchange property;
(2) M has the finite exchange property;
(3) For each finite family (xi)i∈F of elements of S with

∑
i∈F xi = 1, there exist

orthogonal idempotents ei ∈ Sxi such that
∑

i∈F ei = 1;
(4) SS has the finite exchange property.

As the 2-exchange property is equivalent to the finite exchange property, we have:

2.2 Corollary. The following are equivalent for a ring R:
(1) RR has the finite exchange property;
(2) For every a ∈ R, there exists e2 = e ∈ Ra such that (1 − e) ∈ R(1− a);
(3) RR has the finite exchange property.

Corner [2], Monk [14] and Nicholson [15] established first order ring-theoretic
characterizations of finite exchange rings. The following proposition, which is a
mixture of these characterizations, provides a ring-theoretic proof of the right-left
symmetry of finite exchange rings (see also [16]).

2.3 Proposition. The following are equivalent for an element a in a ring R:
(1) There exists e2 = e ∈ Ra such that 1− e ∈ R(1− a);
(2) There exist r, s ∈ R such that ras = 0 and ra+ s(1− a) = 1;
(3) There exists α ∈ R such that (1 + α(1 − a))(1− aα) = 0,
(4) There exist r′, s′ ∈ R such that r′(1− a)s′ = 0 and ar′ + (1− a)s′ = 1;
(5) There exists e′2 = e′ ∈ aR such that 1− e′ ∈ (1− a)R.

Proof. For any element α ∈ R, define
r = 1 + α(1 − a), s = 1− αa, r′ = 1 + (1 − a)α, s′ = 1− aα.

Clearly ra+ s(1− a) = 1 = ar′ + (1 − a)s′, as = s′a and (1− a)r = r′(1 − a).
Now assume (3). Then rs′ = 0, and so ras = 0 and r′(1 − a)s′ = 0. Hence

(3) implies (2) and (4).
Assume (2). Then s(1− a)s = s, and so s(1− a) is an idempotent. Then (1)

follows with e = ra.
Assume (1). Let e = ra and 1 − e = s(1 − a). We may assume that er = r

and (1− e)s = s. Hence rar = r and ras = 0. Define α = r − s. Then

1 + α(1 − a) = 1 + r(1 − a)− s(1− a) = 1 + r − e− (1− e) = r.

Consequently

(1 + α(1 − a))(1 − aα) = r − raα = r − rar + ras = 0.

Hence (3) follows.
Similar arguments yield the equivalence of (3), (4) and (5). �
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The following properties of finite exchange rings will be used frequently in
this article without any further reference.

2.4 Proposition. Let R be a finite exchange ring. Then:
(1) Any homomorphic image of R is a finite exchange ring;
(2) Idempotents lift modulo every right (left) ideal;
(3) J(R) is the largest ideal that does not contain nonzero idempotents.

Proof. We only give a proof for (2).Using the right-left symmetry of finit exchange
rings, it is enough to consider left ideals. Let I be a left ideal in R and a ∈ R such
that a− a2 ∈ I. By Proposition 2.3, there exists an idempotent e such that e = ra
and 1− e = s(1− a) for some r, s ∈ R. Then

e− a = e(1− a)− (1− e)a = ra(1− a)− s(1− a)a = (r − s)(a− a2) ∈ I. �
The following basic result will be generalized in Section 3, to allow lifting of

the ℵ-exchange property.
2.5 Theorem. ([15], Proposition 1.5) A ring R is a finite exchange ring if and only
if R/J(R) is a finite exchange ring and idempotents lift modulo J(R).

We end this section by a ring theoretic proof of the known fact that the
finite exchange property is inherited by summands and finite direct sums (cf. [15,
Corollary 2.6]).

2.6 Corollary. Let e be an idempotent in a ring R. Then R is a finite exchange
ring if and only if eRe and (1− e)R(1− e) are finite exchange rings.

Proof. Throughout the proof, we will use (2) of Proposition 2.3.
“Only if”: For a ∈ eRe, there exist r, s ∈ R such that ras = 0 and ra+s(1−a) = 1.
Then (ere)a(ese) = 0 and (ere)a+ (ese)(e− a) = e.
“if”: Let x ∈ R, and consider the element exe in the finite exchange ring eRe.
There exist α, β ∈ eRe such that αxβ = 0 and αxe+β(1−x)e = e. Then β(1−x)
and αxe are idempotents. We may assume that α = αxα. Then clearly αx is an
idempotent orthogonal to β(1−x). Let f = αx+β(1−x). Then f is an idempotent
with fe = e and ef = f . Consequently R(1 − e) = R(1 − f), and hence the rings
(1−e)R(1−e) and (1−f)R(1−f) are isomorphic. Therefore the ring (1−f)R(1−f)
is a finite exchange ring.

Repeating the same argument with the element (1− f)x(1− f) in the finite
exchange ring (1 − f)R(1 − f), we get γ, δ ∈ (1 − f)R(1 − f) such that γxδ = 0
and γx and δ(1−x) are orthogonal idempotents. Write g = γx+ δ(1−x). Then g
is an idempotent and (1− g)f = 1− g and f(1− g) = f . Define r = (1− g)α+ γ
and s = (1− g)β + δ. Then

rx + s(1− x) = (1− g)f + g = 1.

It remains to show that rxs = 0. First we note that αx(1 − g) = αxf(1 − g) =
αxf = αx. Also αxδ = αxfδ = 0 and γx(1 − g) = γxg(1− g) = 0. Hence

rxs = (1 − g)αxβ + (1 − g)αxδ + γx(1− g)β + γxδ = 0. �
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3. Topological rings

Given two modules U and V , a family (fi)i∈I of homomorphisms U → V is called
summable if for each u ∈ U , fi(u) = 0 for almost all i ∈ I. In that case the map
f : U → V defined by f(u) =

∑
i∈I fi(u) is a well-defined homomorphism; we write∑

i∈I fi to denote such a homomorphism. The summability just defined amounts
to the convergence of the series

∑
i∈I fi in the finite topology of Hom(U, V ).

Zimmerman-Huisgen and Zimmerman generalized Nicholson’s result (Theo-
rem 2.1). For the reader’s convenience we include the main ideas of the proof.

3.1 Theorem. ([25, Proposition 3]). The following are equivalent for a module M
with endomorphism ring S and any cardinal ℵ:
(1) M has the ℵ-exchange property;
(2) Whenever N⊕M = ⊕i∈IAi with Ai

∼=M and |I| ≤ ℵ, there exist submodules
Ai

′ ≤ Ai such that N ⊕M = ⊕i∈IAi
′ ⊕M ;

(3) For each summable family (xi)i∈I in S with
∑

i∈I xi = 1, there exist orthog-
onal idempotents ei ∈ Sxi such that

∑
i∈I ei = 1.

Proof. (1)⇒ (2) is trivial.
(2) ⇒ (3): Let A = ⊕i∈IAi with Ai = M . Define f : M → A by f(m) =
(xi(m))i∈I and g : A → M by g((mi)i∈I) =

∑
i∈I mi. It is clear that gf = 1M ,

hence A = Ker g ⊕ fM , with fM ∼= M . By hypothesis, A = ⊕i∈IA
′
i ⊕ fM , with

A′
i ≤ Ai. Write Ai = A′

i ⊕A′′
i . Then fM ∼= ⊕i∈IA

′′
i . Let η : fM → ⊕i∈IA

′′
i be an

isomorphism and define ei = gη−1πiηf , where πj : ⊕i∈IA
′′
i → A′′

j is the natural
projection. It is easy to check that (ei)i∈I is a family of orthogonal idempotents.
Clearly the family (ei)i∈I is summable and

∑
i∈I ei = 1. Now let τi denote the

projection Ai → A′′
i along A′

i. Then πiηf = τixi and consequently ei ∈ Sxi.
(3)⇒ (1): Let A = ⊕i∈IAi = N ⊕M . Let p : N ⊕M →M and νj : ⊕i∈IAi → Aj

denote the natural projections, and let μj = νi|M . Define xi = pμi. Then xi ∈ S
and the family (xi)i∈I is summable to 1. By hypothesis, we can find orthogonal
idempotents ei = sixi ∈ Sxi with

∑
i∈I ei = 1. Define ϕi : Ai → M by ϕi =

eisipμj . Clearly (ϕi)i∈I is summable, let ϕ =
∑

i∈I ϕi. Noting that ϕiϕj = 0
for i �= j, one can check that kerϕ = ⊕i∈I(Ai ∩ kerϕi). Also ϕi|M = ei, hence
ϕ|M = 1|M . Therefore A = kerϕ⊕M . �

Now we give some applications of this core theorem. We start by the following
result which was proved by Yu [24] for endomorphism rings; the arguments are
identical.

3.2 Theorem. Let R be a topological ring. If R is an abelian finite exchange ring,
then R is a countable exchange ring.

Proof. Consider a summable family (ai)i∈I with |I| ≤ ℵo. For each integer n
define bn =

∑
i>n ai. Inductively, we construct orthogonal idempotents e1 ∈

Ra1, . . . , en ∈ Ran and fn ∈ Rbn such that e1 + · · · + en + fn = 1. Write
fn = rbn. Then fn = fnran+1 + fnrbn+1. As the ring fnRfn is again a finite
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exchange ring by Corollary 2.6, we get fn = en+1 + fn+1 for orthogonal idempo-
tents en+1 ∈ fnRfnran+1 ≤ Ran+1 and fn+1 ∈ fnRfnrbn+1 ≤ Rbn+1. Clearly
en+1 is orthogonal to ei(1 ≤ i ≤ n), and e1 + · · · + en + en+1 + fn+1 = 1. This
completes our induction process. Since (ai)i∈I is summable, bn → 0 hence fn → 0,
and consequently

∑
i∈I ei = 1. �

3.3 Corollary. An abelian module with the finite exchange property has the countable
exchange property.

Nielsen [17] extended Yu’s result, using clever inductive ideas to go over limit
ordinals. We include the proof for comparison with that given in Theorem 3.2.

3.4 Theorem. An abelian module M with the finite exchange property has the full
exchange property.

Proof. Consider a summable family (xi)i∈I of elements of S with
∑

i∈I xi = 1.
We may assume that I is well ordered, with first element 1 and last element τ .
For any η ∈ I, define yη =

∑
i>η xi and zη =

∑
i≥η xi. Fix an element α ∈ I.

Suppose, by induction, that we have constructed orthogonal idempotents ei ∈ Sxi

and fi ∈ Syi(1 ≤ i < α) such that for all β < α,

1 =
∑
i≤β

ei + fβ.

Clearly, the family (ei)i<α is summable and orthogonal. Write ε =
∑

i<α ei.
Then ε is an idempotent, and (1 − ε)ei = 0 for i < α. It follows that (1 − ε) =
fβ(1 − ε) for β < α. Now

fβ = rβyβ = rβ

⎛⎝ ∑
β<i<α

xi + zα

⎞⎠ = rβ

⎛⎝ ∑
β<i<α

xi

⎞⎠+ rβzα

for some element rβ ∈ S. As fβSfβ is an exchange ring, there exist orthogonal

idempotents hβ ∈ fβSrβ

(∑
β<i<α xi

)
and gβ ∈ fβSrβzα such that fβ = hβ + gβ .

Now consider an arbitrary element m ∈M . Since (ei)i<α is summable, there
exists γ < α such that xi(1− ε)(m) = 0 for γ < i < α. Then

(1− ε)(m) = fγ(1− ε)(m) = (hγ + gγ)(1− ε)(m)

= gγ(1− ε)(m) = rγzα(1− ε)(m).
(1)

Since gγ = rγzα is an idempotent and S is abelian, gγ = zαrγ (cf. [15, Proposition
1.8]), and consequently

(1− ε)(m) = zαrγ(1− ε)(m) = zα(1− ε)rγ(m) ∈ zα(1− ε)M. (2)

From (1) and (2), it is clear that zα is an automorphism of (1− ε)M . Hence there
exists z′α ∈ (1− ε)S(1− ε) such that (1− ε) = z′αzα, and so

(1− ε) = z′α(xα + yα) = z′αxα + z′αyα.
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As (1 − ε)S(1 − ε) is an exchange ring, we get orthogonal idempotents eα ∈
(1− ε)Sxα and fα ∈ (1− ε)Syα such that 1− ε = eα + fα. Clearly eα and fα are
orthogonal to (ei)i<α and

1 = ε+ eα + fα =
∑
i<α

ei + eα + fα =
∑
i≤α

ei + fα.

This completes the induction process.
Since (xi)i∈I is summable, yn → 0 hence fn → 0, and consequently∑

i∈I

ei = 1. �

Another remarkable contribution of Nielsen [19] is the following result which
generalizes Theorem 3.2. This was recently communicated to the author by Nielsen
and is not published yet. So we are not including its proof, which is very technical
and uses highly nontrivial arguments. We note that Theorem 3.4 follows then as
a corollary; however it was a step in that direction.

3.5 Theorem. Let R be a topological ring. If R is an abelian finite exchange ring,
then R is a full exchange ring.

Now we introduce the main theorem of [11]. It generalizes, and was inspired
by, the analogous result of Nicholson (cf. Theorem 2.5). First we need the following
two lemmas concerning lifting of idempotents.

3.6 Lemma. Assume that idempotents lift modulo an ideal N contained in the
Jacobson radical of a ring R. If ā is an idempotent in the ring R̄ = R/N , then ā
lifts to an idempotent e ∈ Ra.

Proof. There exists an idempotent f ∈ R such that ā = f̄ . Now a2−a ∈ N implies
ap − a ∈ N , and hence ap − f ∈ N for every positive integer p. Then a2 = f + n,
with n ∈ N . Write u = 1+ fnf . Then u is a unit in R with u−1 = 1+m, for some
m ∈ N . As uf = fu, we get u−1f = fu−1. Define e = au−1fa = afu−1a. Then
e ∈ Ra, and

e2 = au−1fa2fu−1a = au−1f(f + n)fu−1a = au−1fuu−1a = e.

It remains to show that e− f ∈ N . We have

e = au−1fa = a(1 +m)(a2 − n)a = a4 + k, with k ∈ N.
As a4 − f ∈ N , we get e− f ∈ N . �

3.7 Lemma. Let g and h be idempotents in a ring R. If gh ∈ J(R), then there exist
orthogonal idempotents γ and δ such that gR = γR and hR = δR.

Proof. We have ghg ∈ J(R), and so ghg ∈ J(gRg). Hence g − ghg is a unit in
the ring gRg. Let a ∈ gRg be the inverse of g − ghg. Then g = a(1 − h)g, and
so a(1 − h)a = a. Define γ = a(1 − h). Then γ ∈ gR(1 − h) and γ2 = γ. Clearly
γg = g and gγ = γ, and so gR = γR.
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As hgh ∈ J(R), we can similarly find an idempotent δ ∈ hR(1− g) such that
hR = δR. Clearly γ and δ are orthogonal. �

3.8 Theorem. Assume that idempotents lift modulo a closed ideal N contained in
the Jacobson radical of a topological ring R. For any cardinal ℵ, if R/N is an
ℵ-exchange ring, then so is R.

Proof. Consider a summable family (ai)i∈I of elements of R with
∑

i∈I ai = 1
and |I| ≤ ℵ. In the quotient topology on R̄ = R/N , (āi)i∈I sums to 1̄. The
hypothesis and Lemma 3.6 imply the existence of idempotents ei ∈ Rai such
that the family (ēi)i∈I is orthogonal in R̄ and

∑
i∈I ēi = 1̄. As the (ai)i∈I are

summable and the topology is linear, the family (ei)i∈I is Cauchy, hence sum-
mable by completeness. Define u =

∑
i∈I ei. Then clearly u is a unit in R, and∑

i∈I u
−1ei = 1 =

∑
i∈I eiu

−1. It remains to show that the family (u−1ei)i∈I

consists of orthogonal idempotents.
First we claim that

∑
i∈I eiR is direct. To verify our claim, it is enough to

consider a finite sub-sum e1R + · · · + enR. Assume, by induction, that we have
constructed orthogonal idempotents f1, . . . , fn−1 such that eiR = fiR, 1 ≤ i ≤
n − 1. Write f = f1 + · · · + fn−1. Hence f is an idempotent and enf ∈ J(R).
Then, by Lemma 3.7, we get orthogonal idempotents λ and fn such that fR = λR
and enR = fnR. Clearly fn is orthogonal to fi, 1 ≤ i ≤ n − 1, and our claim is
established. Now

ek =

(∑
i∈I

eiu
−1

)
ek =

∑
i∈I

eiu
−1ek = eku

−1ek +
∑
i�=k

eiu
−1ek.

Using that
∑

i∈I eiR is direct, we get eku
−1ek = ek and eiu

−1ek = 0 for i �= k.
Hence (u−1ei)i∈I is a family of orthogonal idempotents, as desired. �

3.9 Corollary. Let R be a topological ring, and let N be a closed ideal contained in
J(R). If R is a finite exchange ring and R/N is abelian, then R is a full exchange
ring.

Proof. Idempotents lift modulo N by Proposition 2.4. The result then follows by
Theorems 3.5 and 3.8. �

Remark. Nielsen ([19, Lemma 3]) pointed out that if R is a finite exchange ring
and R/N is abelian for an ideal N ≤ J(R), then R/J(R) is abelian. Hence N can
be replaced by J(R) in the above theorem.

As noted in the introduction, the ring S of endomorphisms of a module M
is a topological ring with respect to the finite topology. And if M has the finite
exchange property, then the ideals Δ and J(S) are closed and Δ ≤ J(S) ([11,
Lemma 11]). Also if M is any square free module, then S/Δ has no nonzero
nilpotent elements, hence abelian ([9, Lemma 3.4]).



248 S.H. Mohamed

Then Corollary 3.9 gives rise to:

3.10 Theorem. ([19, Theorem 9]). Square free modules with the finite exchange
property have the full exchange property.

The exchange property was established for injective modules by Warfield [22],
for quasi-injective modules by Fuchs [4], and for continuous modules by Mohamed
and Müller [8]. Also it is proved in [9, Theorem 2.37] that a quasi-continuous
module is a direct sum of a quasi-injective module and a square-free module.
Hence, to investigate the exchange property for quasi-continuous modules, it is
enough to consider quasi-continuous square-free modules. Based on this, Oshiro
and Rizvi [21] (see also [10]), proved that quasi-continuous modules with the finite
exchange property have the full exchange property. The proofs, though ingenious,
are quite lengthy and involved, and depend on other properties of quasi-continuous
modules ((C1) and (C3)). Now all the relevant results concerning continuous and
quasi-continuous modules follow from Theorem 3.10.

4. Internal exchange property

A summand X of a module Y is said to exchange in a decomposition Y = ⊕i∈IYi,
if Y = ⊕i∈IY

′
i ⊕X , with Y ′

i ≤ Yi. If this is true for every summand of Y , then the
decomposition Y = ⊕i∈IYi is said to be exchangeable. For a cardinal number ℵ, a
module M is said to have the ℵ-internal exchange property, if any decomposition
M = ⊕i∈IMi with |I| ≤ ℵ is exchangeable. If M has the ℵ-internal exchange
property for every finite (resp. countable) cardinal ℵ, them M is said to have
the finite (resp. countable) internal exchange property. If M has the ℵ-internal
exchange property for every cardinal ℵ, then M is said to have the full internal
exchange property. The finite internal exchange property follows from the 2-internal
exchange property and is inherited by summands [12].

Clearly the ℵ-exchange property implies the ℵ-internal exchange property.
The following two results discuss the relation between the exchange property and
internal exchange property.

4.1 Lemma. Consider the following conditions on a module M and a cardinal
number ℵ:
(1) M (ℵ) has the internal exchange property;
(2) M (ℵ) is exchangeable;
(3) Any summand isomorphic to M in M (ℵ) exchanges in M (ℵ);
(4) M has the ℵ-exchange property.

Then (1)⇒ (2)⇒ (3)⇔ (4).

Proof. That (1)⇒ (2)⇒ (3) is obvious, and (3)⇔ (4) by Theorem 3.1. �
This leads to the following corollary, which was observed by Nielsen [20].

4.2 Corollary. A module M has the finite exchange property if and only if M ⊕M
has the finite internal exchange property.
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Proof. The “if” part follows by the above lemma with ℵ = 2. Conversely, ifM has
the finite exchange property, then M ⊕M has the finite exchange property, and
hence M ⊕M has the finite internal exchange property. �

Unlike the exchange property, the finite internal exchange property may not
pass to finite direct sums. As an example, ZZ has the finite internal exchange
property, but not the finite exchange property, and hence (Z ⊕Z)Z does not have
the internal exchange property, by Corollary 4.2.

In dealing with exchangeable decompositions, the following lemma shows that
complement summands can be left intact.

4.3 Lemma. ([12, Lemma 5]) Let M = N ⊕K ′, with K ′ ≤ K ≤ M . If K has an
exchangeable decomposition K = ⊕i∈IKi, then M = N ⊕ (⊕i∈IK

′
i) with K ′

i ≤ Ki.

Proof. By the modular law, K = (N ∩K)⊕K ′. Exchanging N ∩K in the decom-
position K = ⊕i∈IKi, we get K = (N ∩ K) ⊕ (⊕i∈IK

′
i), with K

′
i ≤ Ki. Clearly

M = N + (⊕i∈IK
′
i), and N ∩ (⊕i∈IK

′
i) = N ∩K ∩ (⊕i∈IK

′
i) = 0. �

4.4 Proposition. ([13]) Let M = A ⊕ B. Then M has the finite internal exchange
property if and only if the decomposition is exchangeable, and A and B have the
finite internal exchange property.

Proof. For the nontrivial direction, consider a decomposition M = U ⊕ V and
a summand N of M . Exchanging V in the decomposition M = A ⊕ B, we get
M = V ⊕ A′ ⊕ B′, with A = A′ ⊕ A′′ and B = B′ ⊕ B′′. Then U ∼= A′ ⊕ B′ and
V ∼= A′′ ⊕ B′′. Hence U = U1 ⊕ U2 and V = V1 ⊕ V2 where U1

∼= A′, U2
∼= B′,

V1
∼= A′′ and V2

∼= B′′. Write X = U1 ⊕ V1 and Y = U2 ⊕ V2. Then X ∼= A and
Y ∼= B. Hence X and Y have the internal exchange property and M = X ⊕ Y
is an exchangeable decomposition. Exchanging N in this decomposition, we get
M = N ⊕X ′ ⊕ Y ′ with X ′ ≤ X and Y ′ ≤ Y . Now applying Lemma 4.3, we get

M = N ⊕ (U ′
1 ⊕ V ′

1)⊕ (U ′
2 ⊕ V ′

2) = N ⊕ (U ′
1 ⊕ U ′

2)⊕ (V ′
1 ⊕ V ′

2),

with U ′
1 ≤ U1, V ′

1 ≤ V1, U ′
2 ≤ U2 and V ′

2 ≤ V2. �
Analogous to Theorem 3.10, square-free modules with the finite internal ex-

change property have the full internal exchange property. This result was obtained
independently by Mohamed [7] and Nielsen [20]. The proof of this result is purely
module-theoretic and needs the following lemma.

4.5 Lemma. ([6]) A square-free module M with the finite internal exchange property
has (C3).

Proof. Given summands A and B of M with A ∩ B = 0. Write M = B ⊕ C, and
exchange A in this decomposition. We get M = A ⊕ B′ ⊕ C′ with B = B′ ⊕ B′′

and C = C ′ ⊕ C ′′. Then A ∼= B′′ ⊕ C ′′. As M is square-free, B′′ = 0 and hence
M = A⊕B ⊕ C′. �
4.6 Theorem. A square-free module M with the finite internal exchange property
has the full internal exchange property.
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Proof. Let M = ⊕i∈IMi and let X be a summand of M . We may assume that I
is well ordered, with a last element τ . For any η ∈ I, define

Aη = ⊕i≤ηMi, Bη = ⊕i>ηMi, Cη = ⊕i≥ηMi.

Then M = Aη ⊕Bη = ⊕i<ηMi ⊕ Cη and Cη =Mη ⊕Bη.
Fix an element α ∈ I. Suppose, by transfinite induction, that we have con-

structed submodules M ′
i ≤Mi and B′

i ≤ Bi (i < α) such that for all β < α,

M = X ⊕ (⊕i≤βM
′
i)⊕B′

β (3)

It follows that X∩(⊕i<αM
′
i) = 0. AsM has (C3) by Lemma 4.5, X⊕(⊕i<αM

′
i) is

a summand ofM . Exchanging this summand in the decompositionM = ⊕i<αMi⊕
Cα, we get

M = X ⊕ (⊕i<αM
′
i)⊕ (⊕i<αMi)′ ⊕ C′

α, (4)

with (⊕i<αMi)′ ≤ ⊕i<αMi and C′
α ≤ Cα. Comparing (3) and (4), then it is

obvious that (⊕i<αMi)′ embeds in B′
β ≤ Bβ for every β < α.

Consider an element a ∈ (⊕i<αMi)′. There exists γ < α such that aR ∈
⊕iγMi ≤ Aγ . However aR embeds in Bγ and Aγ ∩ Bγ = 0. As M is square-free,
aR = 0 and consequently (⊕i<αMi)′ = 0. Therefore

M = X ⊕ (⊕i<αM
′
i)⊕ C ′

α.

As Cα has the finite internal exchange property, the decomposition Cα =Mα⊕Bα

is exchangeable. Thus we get by Lemma 4.3,M = X⊕ (⊕i<αM
′
i)⊕M ′

α⊕B′
α, with

M ′
α ≤Mα and B′

α ≤ Bα. Hence

M = X ⊕ (⊕i≤αM
′
i)⊕B′

α.

This completes our induction process. Therefore

M = X ⊕ (⊕i≤τM
′
i)⊕B′

τ .

Since Bτ = 0, M = X ⊕ (⊕i∈IM
′
i). �

Analogous to Theorem 3.1, we have the following characterizations for mod-
ules with the internal exchange property in terms of their endomorphism rings.

4.7 Theorem. ([6, Theorem 2.1]). The following are equivalent for a module M and
a cardinal number ℵ:

(1) M has the ℵ-internal exchange property;
(2) For every idempotent e and every summable family of orthogonal idempotents

(fi)i∈I in S with
∑

i∈I fi = 1 and |I| ≤ ℵ, there exists an idempotent g ∈ S
such that eS = gS and gfi(1− g) = 0 for all i ∈ I;

(3) For every idempotent e and every summable family of orthogonal idempotents
(fi)i∈I in S with

∑
i∈I fi = 1 and |I| ≤ ℵ, there exist orthogonal idempotents

ei ∈ Sfie such that
∑

i∈I ei = e.
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Proof. (1)⇒ (2): We have M = ⊕i∈IfiM and eM is a summand of M . Then

M = ⊕i∈INi ⊕ eM with Ni ≤ fiM.

Let g :M → eM be the projection along ⊕i∈INi. Then eM = gM , hence eS = gS,
and ⊕i∈INi = (1 − g)M . One can check that gfi(1− g) = 0.
(2)⇒ (3): Define ei = gfie. Then

eiej = gfi(eg)fje = (gfig)fje = gfifje.

Hence e2i = ei and eiej = 0 for i �= j. Clearly (ei)i∈I is summable and∑
i∈I

ei =
∑
i∈I

gfie = g

(∑
i∈I

fi

)
e = ge = e.

(3) ⇒ (1): Let M = ⊕i∈IMi with |I| ≤ ℵ, and let (fi)i∈I be the natural pro-
jections with respect to this decomposition. Then (fi)i∈I is a summable family
of orthogonal idempotents in S with

∑
i∈I fi = 1. Consider a summand N of M .

Then N = eM for some idempotent e ∈ S. The hypothesis implies the existence of
orthogonal idempotents ei = sifie with si ∈ S and

∑
i∈I ei = e. Define gi = eisifi.

Clearly (gi)i∈I is a summable, write g =
∑

i∈I gi. Now

gigj = giejgj = gieejgj = eiejgj .

Hence g2
i = gi and gigj = 0 for i �= j, and consequently g is an idempotent. Now

eg = e

(∑
i∈I

gi

)
=

∑
i∈I

egi =
∑
i∈I

eigi =
∑
i∈I

gi = g;

ge =

(∑
i∈I

gi

)
e =

∑
i∈I

gie =
∑
i∈I

ei = e.

It follows that N = gM . Also gfi(1− g) = gi(1− g) = 0, and so (1− g)fi(1− g) =
fi(1 − g). Hence

(1−g)M =

(∑
i∈I

fi

)
(1−g)M ≤

∑
i∈I

fi(1−g)M =
∑
i∈I

(1−g)fi(1−g)M ≤ (1−g)M.

Therefore (1−g)M =
∑

i∈I fi(1−g)M = ⊕i∈Ifi(1−g)M . WriteM ′
i = fi(1−g)M .

Then M ′
i ≤Mi, and M = ⊕i∈IM

′
i ⊕N . �

4.8 Corollary. The following are equivalent for a module M :
(1) M has the finite internal exchange property;
(2) For any idempotents e and f of S, there exists an idempotent g ∈ S such

that eS = gS and gf(1− g) = 0;
(3) For any idempotents e and f of S, there exists an idempotent γ ∈ Sfe such

that e− γ ∈ S(1− f)e;
(4) SS has the finite internal exchange property.

Proof. Obvious. �
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4.9 Proposition. The finite internal exchange property for a ring R is right-left
symmetric.

Proof. Assume that RR has the finite exchange property. Let e and f be idem-
potents in R. Applying (2) of Corollary 4.8 to the idempotents 1 − e and f , we
get an idempotent g′ in R such that (1 − e)R = g′R and g′f(1 − g′) = 0. Define
g = 1 − g′. Then Re = Rg and (1 − g)fg = 0. Hence RR has the finite internal
exchange property. �

5. Questions

In Theorems 3.10 and 4.6, it is proved that square-free modules with the finite (in-
ternal) exchange property have the full (internal) exchange property. As a square-
free module with the finite internal exchange property has (C3), by Lemma 4.5,
and also (C2) implies (C3), it is interesting to investigate the following questions:

5.1 Question. Does the finite (internal) exchange property imply the full, or count-
able, (internal) exchange property for a module with (C2) or (C3)?

Quasi continuous modules have the internal exchange property [21]. But ex-
tending modules (that is modules with (C1)) do not, in general, enjoy even the
finite internal exchange property (e.g., the abelian group Z ⊕Z). So it is interest-
ing to investigate whether the finite (internal) exchange property implies the full
(internal) exchange property for extending modules?

5.2 Lemma. An extending module M has a decomposition M = F ⊕Q where F is
square free and Q is essential over a square.

Proof. Same argument as in [9, Proposition 2.35].
By Zorn’s Lemma, M contains a direct sum K = ⊕i∈ISi maximal such that

Si is a square. Let Si = X2
i . Then K ∼= ⊕i∈IX

2
i
∼= (⊕i∈IXi)2. Hence

K = K1 ⊕K2, with K1
∼= ⊕i∈IXi

∼= K2.

Then K is a square. Let Q be a closure of K in M . Then Q is a summand of M .
Write M = F ⊕Q. Then maximality of K implies F is square free. �

The above lemma, along with Proposition 4.4, suggests that it is enough to
consider the questions:

5.3 Question. Let M be an extending module which is essential over a square.
Does the finite (internal) exchange property for M imply the full, or countable,
(internal) exchange property?

As for exchange rings, the ℵ-internal exchange property can be discussed for
topological rings, which may not be endomorphism rings. A topological ring R is
called ℵ-internal exchange ring if RR has the ℵ-internal exchange property. Such a
ring R is called finite (resp. countable) internal exchange ring if R is an ℵ-internal
exchange ring for every finite (resp. countable) cardinal ℵ. If R is an ℵ-internal
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exchange ring for every cardinal ℵ, then R is said to be a full internal exchange
ring.

The class of internal exchange rings is very large; it contains all abelian rings.
An example of a finite internal exchange ring which is not abelian is the ring of
all 2× 2 lower triangular matrices over Z (for a proof use (2) of Corollary 4.8; cf.
[6, Example 2.5]).

A slight modification of the proof given in Theorem 3.8 yields the following:

5.4 Proposition. Assume that idempotents lift modulo a closed ideal N contained
in the Jacobson radical of a topological ring R. For any cardinal number ℵ, if R/N
is an ℵ-internal exchange ring, then so is R.

Proof. Consider an idempotent e ∈ R and a summable family (fi)i∈I of orthogonal
idempotents of R with

∑
i∈I fi = 1 and |I| ≤ ℵ. In the quotient topology on

R̄ = R/N , (f̄i)i∈I is a family of orthogonal idempotents which sums to 1̄. By
Theorem 4.7 and Lemma 3.6 we get idempotents ei ∈ Rfie such that the family
(ēi)i∈I is orthogonal in R̄ and

∑
i∈I ēi = ē. The family (ei)i∈I is summable by

completeness. Define eα = 1− e, I ′ = I ∪ {α} and u = ∑
i∈I′ ei. Then clearly u is

a unit in R, hence ∑
i∈I′

u−1ei = 1 =
∑
i∈I′

eiu
−1.

It follows that e =
∑

i∈I u
−1eie =

∑
i∈I u

−1ei. Now, the same argument as in
Theorem 3.8 yields that the family (u−1ei)i∈I consists of orthogonal idempotents.

�

5.5 Corollary. Assume that idempotents lift modulo a closed ideal N contained in
the Jacobson radical of a topological ring R. If R/N is abelian, then R is a full
internal exchange ring.

5.6 Question. It is interesting to investigate the following questions for a topological
finite internal exchange ring R:
(a) Find ideals N ≤ J(R), if any, for which idempotents lift modulo N .
(b) Which ideals N ≤ J(R) are closed?
(c) Determine the ideals N , satisfying (a) and (b), for which R/N is a full (or

countable) internal exchange ring.
(d) Let S be an endomorphism ring of a module M with the finite internal ex-

change property. Discuss questions (a), (b) and (c) for the ring S.

5.7 Question. The proof given in Theorem 4.6 is purely module-theoretic. It would
be of interest to have a ring-theoretic proof.

In connection with Proposition 4.4, we have the following questions:

5.8 Question. Let M = ⊕i∈IMi be an exchangeable decomposition with all Mi hav-
ing the finite internal exchange property. Does M have the finite internal exchange
property?
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Repeated applications of Proposition 4.4 gives an affirmative answer for any
finite index set I. Otherwise the question is still open; it might be interesting to
consider the question for indecomposable Mi’s.

5.9 Question. Let M = ⊕i∈IMi be an exchangeable decomposition with all Mi

having the full (countable) internal exchange property. Does M have the full (count-
able) internal exchange property? This question is still not answered, even for
|I| = 2.
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Abstract. This is the third in a series of papers. The first two, by Yiftach
Barnea and this author, study the maximal bounded Z-filtrations of the finite-
dimensional simple Lie algebras over the complex numbers. Those papers
obtain a complete characterization for all but the five exceptional Lie algebras,
namely the ones of type G2, F4, E6, E7 and E8. Here, we fill in the missing
step for the algebra G2. The proof is computational and uses MAGMA, a
computer algebra package, to handle the 7 × 7 matrices that occur.
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1. Preliminaries

Let L be a Lie algebra over the complex field K. A Z-filtration F = {Fi | i ∈ Z}
of L is a collection of K-subspaces

· · · ⊆ F−2 ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ F2 ⊆ · · ·
indexed by the integers Z such that [Fi, Fj] ⊆ Fi+j for all i, j ∈ Z. One usually
also assumes that

⋃
i Fi = L and

⋂
i Fi = 0. In particular, F0 is a Lie subalgebra of

L and each Fi is an F0-Lie submodule of L. Furthermore, we say that the filtration
is bounded if there exist integers � and �′ with F� = 0 and F�′ = L. In this case,
it is clear that each Fi, with i < 0, is ad-nilpotent on L.

If A is any finite-dimensional Lie algebra then the Ado-Iwasawa Theorem
(see [4, Chapter VI]) implies that A embeds in some L = gln(K) and therefore
we obtain a filtration of L with F−1 = 0, F0 = A and F1 = L. Thus, it is clearly
hopeless to try to classify all the bounded filtrations of the various gln(K), even
if only up to isomorphism. Nevertheless, there is something that can be done.

Research supported in part by NSA grant 144-LQ65.
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Again, let F be a filtration of an arbitrary Lie algebra L. If G = {Gi | i ∈ Z}
is a second such filtration, we say that G contains F , or G is larger than F , if
Gi ⊇ Fi for all i. In particular, it makes sense to speak about maximal bounded
filtrations, and the goal of [1, 2], the first two papers in this series, is to classify
such filtrations F when L is a simple Lie algebra over the complex numbers.

This classification is achieved in four key steps. The first step shows that F0,
the 0-component of F , contains a Cartan subalgebraH of L. Since each component
Fi is then an adH-submodule of L, it follows easily that these Fi are sums of certain
adH-eigenspaces, that is root spaces, Lα. Note that it is necessary to allow α to
equal 0 here, with L0 = H . The second step makes this statement more precise
by proving that F = Fλ is a dual filtration. Here λ is a functional on the real
root space of L, and each Fi is given by the sum of those Lα with λ(α) ≤ i. It
turns out that not every dual filtration is maximal, and the third step shows that
Fλ is maximal if and only if λ takes on integer values on an R-basis of roots for
the root space. Finally, the fourth step precisely determines these maximal λ by
better understanding the R-bases that occur.

Paper [2] deals with the fourth step, while [1] essentially handles the first
three. Indeed, all that is missing is the verification of the first step in the case of
the five exceptional Lie algebras, namely those of type G2, F4, E6, E7 and E8. In
this paper, we supply the verification for the smallest exception, namely G2. The
method of proof is somewhat computational, using the precise embedding of G2 in
the Lie algebra B3. Specifically, we have G2 ⊆ B3 ⊆ gl7(K), and consequently our
argument requires dealing with certain 7× 7 matrices. For this, we use MAGMA,
a computer algebra package.

We begin with some preliminary observations. For the most part, these are
fairly immediate consequences of the results in [5] and [1, Section 2]. It is first
necessary to deal with matrix rings. Here, of course, the filtrations satisfy FiFj ⊆
Fi+j , and we allow K to be a division ring. See [5] for basic definitions.

Lemma 1.1. Let R = Mn(K) be the ring of n× n matrices over the division ring
K and let S ∼= ⊕

∑k
i=1 Mni(K) be the subring of R consisting of all block diagonal

matrices of the form diag(s1, s2, . . . , sk), where si ∈ Mni(K). If F = {Fa | a ∈ Z}
is a maximal bounded Z-filtration of S, then there exists a maximal bounded Z-
filtration G = {Ga | a ∈ Z} of R with Ga ∩ S = Fa for all a ∈ Z.

Proof. By [5, Theorem 3.6], F = F1 ⊕F2 ⊕ · · · ⊕ Fk, where each Fi is a maximal
bounded filtration of Mni(K). Furthermore, by choosing an appropriate basis, we
can assume that each Fi is a weight filtration. In other words, if Ni denotes the set
of integers that correspond to the row and column positions ofMni(K) in Mn(K),
then Fi is determined by a weight function ωi : Ni → Z. But N = {1, 2, . . . , n} is
the disjoint union of the various Ni, so we can define ω : N → Z to extend all of
the functions ωi. Finally, the filtration G = {Ga | a ∈ Z} of R determined by ω
is maximal bounded, by [5, Theorem 3.6], and the definition of weight filtration
clearly implies that Ga ∩ S = Fa for all a ∈ Z. �
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In the above situation, we say that G covers F . Indeed, we will use this
notation in all of the various contexts below. In the remainder of this paper,K will
denote an algebraically closed field of characteristic 0, essentially K is the complex
numbers, and we consider the finite-dimensional simple Lie algebras over K.

Lemma 1.2. Let L be a simple Lie algebra over K and assume that L ⊆ gln(K) ⊆
Mn(K) = R. If F = {Fa | a ∈ Z} is a maximal bounded Z-filtration of L, then
there exists a maximal bounded Z-filtration G = {Ga | a ∈ Z} of R such that
Ga ∩ L = Fa for all a ∈ Z.

Proof. First assume that L acts irreducibly on the vector space V = Kn. Then,
following [1, Section 2], we let FR = {F̃a | a ∈ Z} to be the family of subspaces of
R that are defined by

F̃a =
∑

Fi1Fi2 · · ·Fit

where the sum is over all t ≥ 0 and all subscripts with i1 + i2 + · · · + it ≤ a.
According to [1, Lemma 2.4], FR is a bounded Z-filtration of R, and hence we
can extend FR to G = {Ga | a ∈ Z}, a maximal bounded filtration of R. Since
GL = {Ga ∩ L | a ∈ Z} is a bounded Z-filtration of L containing F , by [1,
Lemma 2.1], the maximality of F now implies that F = GL, as required.

For the general case, we use Weyl’s Theorem [3, Theorem 6.3], which asserts
that L acts completely reducibly on V . Thus, with respect to a suitable basis,
R = Mn(K) contains the subring S ∼= ⊕

∑k
i=1 Mni(K) of block diagonal matrices

corresponding to the irreducible constituents of this representation of L. In other
words, there exist homomorphisms φi : L → glni

(K) ⊆ Mni(K) that are either
irreducible representations of L or zero maps, and with at least one φi not zero.
Now if φi �= 0, then φi(F) is a maximal bounded Z-filtration of φi(L) ∼= L, so by
the above, φi(F) is covered by Gi, a maximal bounded filtration of Mni(K). On
the other hand, if φi = 0, then φi(L) = 0, so φi(F) is obviously covered by any
maximal bounded filtration Gi of Mni(K). Since Fa is a subdirect product of its
images φi(Fa), it follows from [5, Theorem 3.6] that G = G1 ⊕ G2 ⊕ · · · ⊕ Gk is a
maximal bounded filtration of S with GL ⊇ F . Finally, we can apply the preceding
lemma to find a maximal bounded filtration H = {Ha | a ∈ Z} of R that covers
G. Then HL ⊇ F , and the maximality of F yields the result. �

This has two consequences of interest. First, we have

Lemma 1.3. Let F = {Fa | a ∈ Z} be a maximal bounded Z-filtration of the simple
K-Lie algebra L. If x ∈ F0 and if x = xs + xn is its Jordan decomposition in L,
then the semisimple part xs and the nilpotent part xn both belong to F0.

Proof. Using an irreducible representation of L, we embed L in the Lie algebra
gln(K) ⊆ Mn(K) = R. Therefore, by the previous lemma, F is covered by a
maximal filtration G = {Ga | a ∈ Z} of R and, in particular, F0 = G0 ∩ L and
x ∈ F0 ⊆ G0. Now, by [3, Theorem 6.4], x = xs + xn is also the usual Jordan
decomposition of x in the matrix ring R. Thus, by [3, Proposition 4.2], xs = p(x)
and xn = q(x), where p and q are polynomials over K without constant terms.



260 D.S. Passman

Since G0 is a subalgebra of R, it now follows that xs, xn ∈ G0 and consequently
xs, xn ∈ G0 ∩ L = F0. �

Furthermore, we have

Lemma 1.4. Let L ⊆ L be simple Lie algebras over K. If F = {Fa | a ∈ Z} is a
maximal bounded Z-filtration of L, then there exists a maximal bounded Z-filtration
G = {Ga | a ∈ Z} of L with Fa = Ga ∩ L for all a ∈ Z.

Proof. Using an irreducible representation of L, we embed L in gln(K)⊆Mn(K)=
R. Then L ⊆ gln(K), so Lemma 1.2 implies that there exists a Z-filtration H =
{Ha | a ∈ Z} of R with Ha∩L = Fa for all a ∈ Z. Furthermore, by [1, Lemma 2.1],
HL = {Ha∩L | a ∈ Z} is a bounded filtration of L, and this extends to a maximal
bounded filtration G = {Ga | a ∈ Z} of L. Note that

Ga ∩ L ⊇ (Ha ∩ L) ∩ L = Ha ∩ L = Fa,

so {Ga ∩ L | a ∈ Z} is a bounded filtration of L containing F . The maximality of
F now implies that Ga ∩ L = Fa for all a ∈ Z. �

The following is implicit in the work of [1].

Lemma 1.5. Let F = {Fa | a ∈ Z} be a maximal bounded filtration of the simple
K-Lie algebra of classical type. Then F0 ⊇ B, a Borel subalgebra of L.

Proof. By [1, Section 5], F0 contains a Cartan subalgebra H of L, and indeed
F = Fλ for some suitable linear functional λ on the root space. It follows from the
definition of Fλ that if α is a root, then at least one of the root spaces Lα or L−α is
contained in F0. With this, it is easy to see that if B/F−1 is a Borel subalgebra of
F0/F−1 containing (H + F−1)/F−1, then B ⊆ F0 is a Borel subalgebra of L. �

If L is a K-Lie algebra and if S is a solvable subalgebra, then S ⊆ B where
B is a Borel subalgebra of L. If B is uniquely determined by S, then we say that
S is uniquely extendible in L. It is clear that if S ⊆ T ⊆ L, with S and T both
solvable, and if S is uniquely extendible, then so is T . Our reason for introducing
this concept is the simple result given below that can be used in concert with the
previous two lemmas.

Lemma 1.6. Let L ⊆ L be Lie algebras over K, and let B be a Borel subalgebra of
L. If B ∩ L is uniquely extendible in L, then B ∩ L is a Borel subalgebra of L.

Proof. Obviously, S = B ∩ L is a solvable subalgebra of both L and L, and hence
S ⊆ B, where B is a suitable Borel subalgebra of L. Furthermore, B extends to
B1, a Borel subalgebra of L. In other words, we have S ⊆ B and S ⊆ B1 so,
since S is uniquely extendible in L, we conclude that B = B1 ⊇ B and hence
S = B1 ∩ L ⊇ B. Thus S = B, as required. �

We close this section with two fairly standard results from Lie theory. We
include brief proofs of each for the convenience of the reader.
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To start with, we say that the subalgebra S of L is ad-nilpotent if adS is
nilpotent in its action on L. Certainly this implies that S is a nilpotent and hence
solvable subalgebra of L, so S ⊆ B for some Borel subalgebra B of L. Indeed, if L
is simple, then S embeds in N , the nilradical of B. The following lemma contains
a sufficient condition for such a subalgebra S to be uniquely extendible. Note that
the expressions Sk and Nk below are the associative powers of S and N in the
endomorphism ring of V = Kn, the space of n-tuples over K.

Lemma 1.7. Let S be a Lie subalgebra of gln(K) so that S acts on the right on
the vector space V = Kn. If V Sn = 0 but V Sn−1 �= 0, then S is contained in a
unique Borel subalgebra of gln(K) and hence in a unique Borel subalgebra of any
intermediate Lie algebra.

Proof. Since V Sn = 0, S is nilpotent in its action on V and hence ad-nilpotent in
its action on gln(K). If B = N +H is a Borel subalgebra of gln(K) containing S,
then the nilradical N contains S. It follows that V N i ⊇ V Si for all i, and we know
that V Nn = 0. Thus, since V Sn−1 �= 0, it is clear that V N i = V Si for all i. But
B is the set of elements of gln(K) that stabilize the flag V = V N0 ⊇ V N1 ⊇ · · · ⊇
V Nn = 0, so since V N i = V Si we see that B is uniquely determined by S. �

Finally, we have

Lemma 1.8. Let S be a solvable Lie subalgebra of gln(K) closed under Jordan
decomposition in its action on V = Kn. Then S is the direct sum S = M + C,
where M is the Lie ideal consisting of nilpotent elements of S and where C is a
complementary commutative space of semisimple elements.

Proof. S is contained in a Borel subalgebra B = N + H of gln(K), where N is
the Lie ideal of all nilpotent elements of B and where H is a Cartan subalgebra, a
commutative semisimple complement. It follows that M = N ∩ S is the subspace
of S consisting of all nilpotent elements of S. Furthermore, M is a Lie ideal of S
with S/M abelian. The goal is to find a semisimple complementary subspace for
M in S, and we proceed by induction on dimK S.

Suppose first that S has a semisimple element x not contained in its center.
Then adx is semisimple in its action on S, so S is the direct sum S = S0+S1 where
S0 = CS(x) and S1 is an adx-stable complement. Clearly S0 is a Lie subalgebra of
S and dimS0 < dimS since x is not central in S. Furthermore, if y ∈ S0, then the
nilpotent and semisimple parts of y are polynomials in y and hence also commute
with x. In other words, S0 is closed under Jordan decomposition, so by induction
S0 = M0 + C0. On the other hand, S1 is spanned by eigenvectors of ad x with
nonzero eigenvalues and hence each such eigenvector is contained in [S, S] ⊆ M .
Thus S =M + C0, and C0 is the required complement of semisimple elements.

It now suffices to assume that all semisimple elements of S are central in S,
and we let C denote the set of all such elements. We show that C is a subspace
of S. To this end, let x, y ∈ C. Then x and y commute, so they are commuting
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diagonalizable elements and hence they can be simultaneously diagonalized. Thus
Kx+Ky consists of semisimple elements and hence is contained in C. It follows
that C is a subspace and sinceM +C contains the nilpotent and semisimple parts
of all elements of S, we conclude that S =M + C. �

2. The Lie algebra G2

As we mentioned, in order to complete the classification of the maximal bounded
Z-filtrations of the simple Lie algebras, we must show, in the case of the exceptional
Lie algebras, that the 0-component of such filtrations contains a Cartan subalgebra.
The goal of this section is to prove this for G2, and indeed we have

Theorem 2.1. Let F = {Fi | i ∈ Z} be a maximal bounded Z-filtration of the Lie
algebra L of type G2 over the algebraically closed field K of characteristic 0. Then
F0 contains a Cartan subalgebra of L.

Proof. We use the precise description of G2 as given in [3, Section 19.3]. Indeed,
those few pages describe a faithful 7-dimensional representation of the Lie algebra
and show that L ⊆ L where L is of type B3. Our argument requires some matrix
and vector space computations and, for this, we use MAGMA, a computer algebra
package. The original version of this manuscript, containing an annotated write
up of the fairly simple code we require, can be found on the author’s web page

www.math.wisc.edu/˜passman/abstracts.html.

A complete MAGMA input and output text file is also available there.
Now let F = {Fi | i ∈ Z} be a maximal bounded Z-filtration of the Lie

algebra L. Then it follows from Lemma 1.4 that L has a maximal bounded Z-
filtration G = {Gi | i ∈ Z} such that Fi = Gi ∩ L for all i ∈ Z. Furthermore, by
Lemma 1.5,G0 contains a Borel subalgebraB of L, and hence F0 = G0∩L ⊇ B∩L,
a solvable subalgebra of L. In particular, B∩L ⊆ B, a Borel subalgebra of L. Since
all Borel subalgebras of L are conjugate, we can assume that B is as described in
[3, Section 19.3]. Furthermore, let N denote the nilradical of B, and let N be the
nilradical of B. From [3, Sections 1.2 and 19.3], we have

dimN = 6, dimB = 6 + 2 = 8, dimL = 8 + 6 = 14

dimN = 9, dimB = 9 + 3 = 12, dimL = 12 + 9 = 21.

Our computations use the basis {a, b, c, d, e, f} for N as described in [3].
These basis members are, in fact, all root vectors corresponding, respectively, to
the roots α, β, α+β, 2α+β, 3α+β, and 3α+2β of G2, where α and β are simple.
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We note that the 7× 7 matrices for c and d are given by

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 t 0 0
−t 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 t 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−t 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where t =
√
2. Furthermore, the nonzero Lie products of the basis elements are

easily found to be

[a, b] = −c, [a, c] = −2d, [a, d] = −3e, [b, e] = f, [c, d] = −3f,
and hence we have

Lemma 2.2. The terms of the lower central series of N are given by

N [1] = Ka+Kb+Kc+Kd+Ke+Kf

N [2] = Kc+Kd+Ke+Kf

N [3] = Kd+Ke+Kf

N [4] = Ke+Kf

N [5] = Kf.

Furthermore, N is contained in a unique Borel subalgebra of the algebra L. In
particular, if N ⊆ L ∩B, then L ∩B is a Borel subalgebra of L.

Proof. The terms of the lower central series are trivial to compute from the above
commutator relations. For the last part, we want to show that S = N is uniquely
extendible in L. For this, we first observe thatN is ad-nilpotent on L. Furthermore,
L admits the same 7-dimensional module V as does L. Thus, in view of Lemma 1.7,
it suffices to show that N6 �= 0 in its action on V . But f ∈ N [5] ⊆ N5 and we
easily check that the matrix product fa is not 0. Thus N6 �= 0, and consequently
Lemma 1.6 yields the result. �

It can be shown that N contains an element having one 7× 7 Jordan block
in its action on V , and such regular nilpotent elements are known to be contained
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in unique Borel subalgebras. Next, we note that

dimL ≥ dim(L+B) = dimL+ dimB − dim(L ∩B)
and hence

dim(L ∩B) ≥ dimL+ dimB − dimL = 14 + 12− 21 = 5.

Since L ∩B ⊆ B, it also follows that dim(L ∩B) ≤ 8.
Now L ∩ B = F0 ∩ B and, since B is closed under taking semisimple and

nilpotent parts, the same is true of L∩B by Lemma 1.3. Furthermore, recall from
[3, Theorem 6.4] that the Jordan decomposition of any element of L in its action on
V and in its ad-action on L are identical. It therefore follows from Lemma 1.8 that
L∩B =M +C whereM = L∩N ⊆ N and where C is a semisimple complement.
If dimC ≥ 2, then dimC = 2 and C is a Cartan subalgebra of L contained in F0.
Thus, we can assume that either C = 0 or C = Kh has dimension 1. Indeed, by
taking a suitable conjugate if necessary, we can assume that h ∈ H ⊆ B where H
is any Cartan subalgebra of our choosing.

Note thatM is properly smaller than N since, if N ⊆ L∩B, then Lemma 2.2
implies that L ∩ B = B contains a Cartan subalgebra of L. Thus dim(L ∩ B) <
dimN + 1 = 7, and hence there are just two cases remaining to be considered. In
case 1, we have dim(L∩B) = 5 and either L∩B =M or L∩B =M +Kh, where
M = N ∩ B and where h is some nonzero element of H . On the other hand, in
case 2, dim(L∩B) = 6 and, since L∩B �= N , we have L∩B =M +Kh, whereM
and h are as above. Furthermore, we can assume that H is the Cartan subalgebra
which we now describe.

Following [3, Section 19.3], we note that a Cartan subalgebra of L is diagonal
with basis d1 = e22−e55, d2 = e33−e66 and d3 = e44−e77, where of course {eij} is
the set of matrix units in M7(K). Furthermore, a Cartan subalgebra H ⊆ B of L
is given by all elements of the form h = k1d1+k2d2+k3d3 with k1, k2, k3 ∈ K and
k1 + k2 + k3 = 0. In particular, if all ki are nonzero, then rankh = 6. Thus, up to
scalar factors, there are just three nonzero members of H of rank less than 6, and
these all have rank 4. Specifically, we take these three elements to be h1 = d1−d2,
h2 = d2 − d3 and h3 = d3 − d1. For convenience, let us define

Na = Ka+Kc+Kd+Ke+Kf = Ka+ [N,N ] ⊆ N,

and
Nb = Kb+Kc+Kd+Ke+Kf = Kb+ [N,N ] ⊆ N.

Then, we have

Lemma 2.3. Let H be the Cartan subalgebra of L contained in the diagonal subspace
of M7(K). Then H ⊆ B and, up to a scalar multiple, there are just three nonzero
elements of H having rank less than 6. These elements, h1, h2 and h3, all have
rank 4 and satisfy α(h1) = −1, β(h1) = 2, α(h2) = 1, β(h2) = −1 and α(h3) =
0, β(h3) = −1. Furthermore, suppose M is a Lie subalgebra of N of codimension
1. Then M �N , M ⊇ [N,N ] and, if M is adh-stable with h = h1, h2 or h3, then
M = Na or Nb.
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Proof. The values of α(hi) and β(hi) are easily computed from the formulas
[hi, a] = α(hi)a and [hi, b] = β(hi)b. It remains to consider the Lie subalgebra
M of codimension 1 in N . Since normalizers grow in nilpotent algebras, it fol-
lows that M �N and of course N/M is abelian. Thus M ⊇ [N,N ], and note that
N = Ka+Kb+[N,N ]. Finally, suppose h = h1, h2 or h3 and thatM is adh-stable.
Since α(h) �= β(h), h has distinct eigenvalues on Ka + Kb, with eigenvectors a
and b. Thus we conclude that the only possibilities for M are Ka+ [N,N ] = Na

or Kb+ [N,N ] = Nb. �

It follows from the values of α(h) and β(h) given above that h1, h2 and h3

are not regular elements of H . Since α(h3) = 0, h3 is, in some sense, the worst
offender.

Now, as is well known, L = G2 has no nonzero representation of degree less
than 7, and it has a unique irreducible representation of degree equal to 7. Indeed,
this is a consequence of Weyl’s dimension formula and the fact that irreducible
representations are uniquely determined by their highest weight. An explicit for-
mula for the degrees of the irreducible representations of G2 can be found in [3,
page 140]. The unique representation of degree 7 is obviously the representation
described in [3, Section 19.3], where L acts on the right on a 7-dimensional vec-
tor space V . Furthermore, since dimL/L = 21 − 14 = 7, we see that the adjoint
representation of L on L has the factor module L/L ∼= V . In other words, we
can compute certain invariants for the adjoint action of L on L/L by considering
the matrix action of L on V . For convenience, let {v1, v2, v3, v4, v5, v6, v7} be the
natural basis for V corresponding to the matrix representation of L. We can now
handle the two cases in turn. We start with

Lemma 2.4. Case 1 cannot occur.

Proof. Suppose, by way of contradiction, that dim(L ∩B) = 5. Then

dim(L +B) = dimL+ dimB − dim(L ∩B) = 14 + 12− 5 = 21,

and hence L+B = L. Furthermore, since B and L∩B are ad(L∩B)-submodules
of L, we conclude that

V ∼= L

L
=
L+B

L
∼= B

L ∩B
as (L ∩ B)-modules.

If M = L∩B ⊆ N , then M has codimension 1 in N , and hence M ⊇ [N,N ]
by Lemma 2.3. Note also thatM ⊆ N ⊆ N and thatN�B with B/N being abelian
of dimension 3. It follows that N/M is an M -submodule of B/M of dimension 4
and that M acts trivially on the quotient B/N . Translating this to the module
V , we conclude that VM ⊇ V [N,N ] has dimension at most 4. But our MAGMA
computations show that dimV [N,N ] = 5, so this possibility cannot occur.

It remains to assume that L ∩B = M +Kh, where M = N ∩ B and h is a
nonzero element of H . Obviously, dimM = 4 here, so M has codimension 2 in N .
Since M ⊆ N ⊆ N , in this situation we have L ∩ B = M +Kh ⊆ N +Kh ⊆ B
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and N +Kh is an ideal of B of codimension 2. Hence L ∩B acts trivially on this
quotient. Translating to the module V , we conclude that dimV (L ∩ B) ≤ 5. In
particular, rankh ≤ 5 and, as we have indicated, this implies that h = h1, h2, or
h3 up to a scalar factor. Since normalizers grow in N , we have M �M1 � N with
dimM1 = 5. Thus M1 ⊇ [N,N ] ⊇ Kc+Kd and hence, since M has codimension
1 in M1, we haveM ∩ (Kc+Kd) �= 0. Choose 0 �= m = xc+ yd ∈M ∩ (Kc+Kd)
with x, y ∈ K and not both 0.

We now compute the dimension of V m+ V hi for all i = 1, 2, 3. To this end,
note that rankhi = 4 and indeed V hi has a basis consisting of those vj that
correspond to the four columns where the matrix hi has nonzero diagonal entries.
Thus, to compute the dimension of (V m+ V hi)/V hi, we merely form the matrix
of m, delete the columns of that matrix corresponding to the basis elements of
V hi, and determine the rank of the remaining 7 × 3 matrix. Indeed, to compute
this rank, we can certainly delete any zero row or column. When we do this, the
matrices we obtain for m, corresponding to h1, h2 and h3, respectively, are⎡⎢⎢⎣

0 yt
−xt 0
0 −x

−yt 0

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

0 xt
−xt 0
0 y

−yt 0

⎤⎥⎥⎦ , [
−xt 0 −y
−yt x 0

]
.

Note that the rank of each of these matrices is equal to 2 provided that one of x or
y is nonzero. Thus dim(V m+V hi)/V hi = 2, so dim(V m+V hi) = 2+dimV hi = 6,
and this is the required contradiction since dimV (L ∩ B) ≤ 5. �

Finally, we show that the second case cannot occur. This is surprisingly a
bit more complicated. Since L ∩B has dimension 6, there are actually just a few
possibilities for this subalgebra. But in this case, we know less about its action on
the module V .

Lemma 2.5. Case 2 cannot occur.

Proof. Suppose, by way of contradiction, that dim(L ∩B) = 6. Then

dim(L +B) = dimL+ dimB − dim(L ∩B) = 14 + 12− 6 = 20,

and thus L+B has codimension 1 in L. Furthermore, we know that

V ∼= L

L
>
L+B

L
∼= B

L ∩B
as (L∩B)-modules. Under this isomorphism, the submodule (L+B)/L corresponds
to a subspace W of codimension 1 in V . Unfortunately, we will not always have a
precise description of this subspace.

We are also given that L∩B =M +Kh, whereM = N ∩B and where h is a
nonzero element of H . Certainly, dimM = 5, so that M has codimension 1 in N .
Since L ∩ B = M +Kh ⊆ N +Kh and N +Kh is an ideal of B, it follows that
L ∩B acts trivially on the 2-dimensional quotient B/(N +Kh). Translating this
into V , it follows that dimW (M +Kh) ≤ 6− 2 = 4. In particular, h has rank at
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most 4 on W , and hence h has rank at most 5 on V . We conclude, as before, that
h = h1, h2 or h3.

In addition, note that M is an adh-stable subalgebra of N of codimension
1, so Lemma 2.3 implies that M = Na = Ka+ [N,N ] or Nb = Kb + [N,N ]. The
first possibility is easy to handle. Indeed, since either choice for M is nilpotent,
M must act trivially on the 1-dimensional module V/W , and hence W ⊇ VM . In
particular, ifM = Na, thenW ⊇ V Na, and the latter subspace has dimension 6 by
our computations. Thus W = V Na and W (L∩B) =W (M +Kh) =WNa +Whi

for some i = 1, 2 or 3. However, the latter three subspaces have dimension 6, 5
and 5, respectively, and this contradicts the fact that dimW (M +Kh) ≤ 4.

It follows that M �= Na, and hence M = Nb. In this case, W ⊇ V Nb and
V Nb has dimension 5 with basis {v1, v3, v4, v5, v6}. Thus W = V Nb +Ku, where
u is a nonzero vector in U = Kv2 +Kv7. Note that each of h1, h2 and h3 acts on
U with eigenvectors v2 and v7. First, let us assume that h = h1 or h2. Then the
eigenvalues of h are 1 and 0, with v2h1 = v2, v7h1 = 0, and v2h2 = 0, v7h2 = v7.
Since V Nb is h-stable and W is h-stable, it follows that W ∩ U must be h-stable.
In particular, we must have W =W1 = V Nb +Kv2 = V Nb + V h1 or W =W2 =
V Nb +Kv7 = V Nb + V h2. In this case, computations show that dimW1Nb = 5
and dimW2Nb = 5, again contradicting the fact that dimW (M +Kh) ≤ 4.

It remains to assume thatM = Nb and h = h3. Here we haveW = V Nb+Ku,
where u = xv2 + yv7 with x, y ∈ K and not both 0. We first obtain a lower bound
for the dimension of WNb. To this end, note that V (Nb)2 has dimension 2 with
basis {v4, v5}. Furthermore, c, d ∈ Nb, so Ku(Nb) ⊇ Kuc + Kud. We compute
dim(V (Nb)2 + Kuc + Kud)/V (Nb)2) by constructing a 2 × 7 matrix with first
row equal to uc and second row equal to ud. Next we delete the fourth and fifth
columns, since they correspond to the vectors v4 and v5 in V (Nb)2, and then we
find the rank of the remaining matrix. Indeed, we can also delete any zero column,
and when we do so, we obtain[

−xt y 0
−yt 0 −x

]
,

a matrix quite similar to the h3 matrix of the previous lemma. Clearly, this matrix
has rank 2 provided x or y is nonzero.

In other words, we have shown that dimWNb/V (Nb)2 ≥ 2 and hence that
dimWNb ≥ 4. Of course, WNb ⊆ V Nb. On the other hand, since v2h3 = −v2 and
v7h3 = −v7, we see that u = u(−h3) ∈ W (L ∩ B). Thus W (L ∩ B) contains the
direct sum WNb +Ku and hence dimW (L ∩B) ≥ 5, again a contradiction. �

The proofs of Lemmas 2.4 and 2.5 appear, in some sense, to be dual to
each other. Furthermore, once these two cases are eliminated, we know that only
the earlier configurations can occur, and consequently F0 must contain a Cartan
subalgebra of L. This completes the proof of Theorem 2.1. �

Since the subspaces of V considered above all have natural bases, it is clear
that the above computations can all be achieved without using a computer algebra
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package like MAGMA. On the other hand, it is also clear that without such a pack-
age, the experimentation required to find such a proof would have made reaching
this goal somewhat problematical. Finally, the author would like to thank the ref-
eree for his comment on regular nilpotent elements and for suggesting the validity
of Lemma 1.8, which made some later arguments considerably cleaner.
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c© 2010 Birkhäuser Verlag Basel/Switzerland

On the Blowing-up Rings, Arf Rings
and Type Sequences

D.P. Patil

In honour of Professor S.K. Jain on the occasion of his 70th birthday
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Section 2 we give summary of numerical invariants of monomial curves, espe-
cially monomial curves defined by arithmetic sequences and almost arithmetic
sequences. In particular, we give an explicit formula for the type sequence (see
(2.1)–(6)) and give a characterization of almost-Gorensteinness of the alge-
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Γ generated by an arithmetic sequence. In Section 3 we mainly study Arf
rings and their type sequences. We begin with recalling definition of Arf ring
and its branch sequence and give a formula (see Theorem (3.4)) for the degree
of singularity of R as the sum of the lengths of quotients of the successive
terms of its branch sequence as well as the sum of the first coefficients of the
Hilbert-Samuel polynomials of the terms of its branch sequence. Further, we
use a results proved in [3] and [7] to give (see Theorem (3.6)) a characteriza-
tion of complete local Arf domains with algebraically residue field using the
type sequence of R and type sequences of the rings in the branch sequence of
R. Finally we prove that the type sequence of the blowing-up ring of a com-
plete local Arf domain with algebraically residue field is the sequence obtained
from the type sequence of R obtained by removing its first term. In Section 4
we give some examples of Arf rings and some of not Arf rings. In Example 4,
we give necessary and sufficient conditions for the algebroid semigroup ring
R = K[[Γ]] of the numerical semigroup generated by an arithmetic sequence
Γ over a field K to be an Arf ring.

Mathematics Subject Classification (2000). Primary 14H20; Secondary 13H10,
13P10.

Keywords. Hilbert function of a local ring, h-polynomial, semigroup ring, stan-
dard basis of a numerical semigroup, monomial curves, blowing-up ring, Arf
ring.



270

0. Introduction

This is an expository article on some numerical invariants of one-dimensional
noetherian local rings. More precisely, let (R,mR) be a noetherian local one-
dimensional analytically irreducible domain, i.e., the m-adic completion R̂ of R
is a domain or, equivalently, the integral closure R of R in its quotient field Q(R)
is a discrete valuation ring and a finite R-module. We further assume that R is
residually rational, i.e., R and R have the same residue field. A particular impor-
tant class of rings which satisfy these assumptions are algebroid semigroup rings
which are coordinate rings of algebroid monomial curves.

Various algebraic and geometric properties of the ring R are described by
some numerical invariants, for example, Hilbert functions, multiplicity, h-poly-
nomial, blowing-up rings, standard basis, degree of singularity, Cohen-Macaulay
type, type sequences, Gorenstein, almost Gorenstein and Arf rings etc. Several au-
thors have studied these numerical invariants (see for example [1], [2], [3], [4] [18]).
The first term t1 of the type sequence of R is the Cohen-Macaulay type of R
and the sum

∑n
i=1 ti is the degree of singularity of R . Further, the “Gorenstein-

ness” and “almost Gorensteinness” are characterized by type sequences. It is worth
noting here that if R is a semigroup ring, then the above properties correspond
to the properties “symmetric” and “pseudo-symmetric” of numerical semigroups,
respectively. These properties are of a special interest (see [5], [21]), since each
numerical semigroup can be expressed as an intersection of numerical semigroups
that are either symmetric or pseudo-symmetric. Furthermore, the property “Arf”
can be described by its type sequence and each term ti is related to the ith term
in the “branch sequence” of R .

In Section 1 we recall the definitions of the Hilbert functions, multiplicity, h-
polynomial, blowing-up rings, standard basis, degree of singularity, Cohen-Macau-
lay type, type sequences and almost Gorenstein rings etc.

In Section 2 we give summary of numerical invariants of monomial curves,
especially monomial curves defined by arithmetic sequences and almost arithmetic
sequences. In particular, we give an explicit formula for the type sequence (see
(2.1)–(6)) and give a characterization of almost-Gorensteinness of the algebroid
semigroup ring R = K[[Γ]] (over a field K ) of the numerical semigroup Γ gener-
ated by an arithmetic sequence.

In Section 3 we mainly study Arf rings and their type sequences. We begin
with recalling definition of Arf ring and its branch sequence and give a formula
(see Theorem (3.4)) for the degree of singularity of R as the sum of the lengths
of quotients of the successive terms of its branch sequence as well as the sum of
the first coefficients of the Hilbert-Samuel polynomials of the terms of its branch
sequence. Further, we use a results proved in [3] and [7] to give (see Theorem (3.6))
a characterization of complete local Arf domains with algebraically residue field
using the type sequence of R and type sequences of the rings in the branch se-
quence of R. Finally we prove that (see Corollary (3.9)) the type sequence of the
blowing-up ring of a complete local Arf domain with algebraically residue field is
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the sequence obtained from the type sequence of R obtained by removing its first
term. In Section 4 we give some examples of Arf rings and some of not Arf rings. In
Example 4, we give necessary and sufficient conditions for the algebroid semigroup
ring R = K[[Γ]] (over a field K ) of the numerical semigroup Γ generated by an
arithmetic sequence to be an Arf ring.

1. Preliminaries – notation, definitions and some results

Throughout this article we make the following assumptions and notation.

Notation 1.1. Let N = {0, 1, 2, . . .} and Z = {0,±1,±2, . . .} denote the set of
all natural numbers and all integers respectively. Further, for a, b ∈ N, we denote
[a, b] := {r ∈ N | a ≤ r ≤ b } and Na := {n ∈ N | n ≥ a}.

For convenience, some definitions and some well-known results for one-dim-
ensional noetherian local rings are collected in 1.2 below:

Notation, Definitions and Some Results 1.2. Let (R,m) be a 1-dimensional Cohen-
Macaulay local ring of multiplicity e and embedding dimension ν ≥ 2 . Further,
let hR := hR(Z) = h0 + h1Z + · · ·+ hsZ

s , s := deg hR denote the h-polynomial
of R . Then:

(1) (H i lbe r t func t i on and h-po lynomia l ) Let (R,m) be a d-dimensional
noetherian local ring of the multiplicity e = e0(R) and the embedding dimension
ν := DimR/m(m/m2) = �(m/m2) = μ(m) := the minimal number of generators of
m . For any m-primary ideal a in R , the numerical function Ha : N → N defined
by n !→ �(R/an+1) (= the length of the R-module R/an+1) is called the Hi lbe r t
f u n c t i o n o f a . It is well known that there is a polynomial Pa(X) ∈ Q[X ]
of degree d such that Pa(n) = Ha(n) for all sufficiently large values of n and
the leading coefficient of Pa(X) is of the form e0(a)/d! with e0(a) ∈ N+. The
uniquely determined polynomial Pa(X) and the positive natural number e0(a)
are called the H i l b e r t - S amu e l p o l y n om i a l and the mu l t i p l i c i t y of
a , respectively. The Hilbert function (respectively, Hilbert-Samuel polynomial,
multiplicity) of m is also called the Hi lbe r t func t i on (respectively, H i lbe r t -
S amu e l p o l y n om i a l , m u l t i p l i c i t y ) of R . We simply put HR = Hm ,
PR = Pm , e(R) = e0(R) = e0(m) .

The generating function of the numerical function H0
R : n !→ DimR/m(mn/mn+1) =

HR(n)−H(n− 1) is the Po i n c a r é s e r i e s PR(Z) :=
∑

n∈N
H0

R(n)Z
n . It is well

known that there exists a polynomial hR(Z) ∈ Z[Z] such that PR(Z) =
hR(Z)
(1− Z)d

.

The polynomial hR(Z) = h0 +h1Z + · · ·+hsZ
s is called the h- p o l ynom i a l of

R ; h0 = 1 , h1 = H0
R(1)− d = ν − d is called the embedd i n g c o d imen s i o n

of R .
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(2) ( B l ow i n g - u p r i n g s ) Let us recall some definitions and results proved
in [7] on blowing-up rings. These results hold more generally for semi-local 1-
dimensional Cohen-Macaulay rings. Let R be a semi-local Cohen-Macaulay ring
of dimension 1 and let m be the (Jacobson) radical of R . Let R be the integral
closure of R in its total quotient ring Q(R) . An ideal a in R is called o p e n if
it is open in the m-adic topology on R , or, equivalently mn ⊆ a for some n ≥ 1 ,
or, equivalently, the length �(R/a) is finite. For any two R-submodules M,N of
R , we put (M :R N) := {y ∈ R | yN ⊆M}.

For an open ideal a in R , let B(a) := ∪n∈N(an : an) . The ring B(a) is called
the b l ow ing - up of R along a or the f i r s t n e i g hbou rhood r i ng of a .

(2.a) Proposition. [7, Proposition 1.1] For an open ideal a in R , the ring B(a) is
a finitely generated R-module and R ⊆ B(a) ⊆ R . Moreover, if R is local and if a
is a m-primary ideal which is not principal, then R � B(a) . In particular, if R is
local and if R is not a discrete valuation ring, then R � B(m) . Furthermore, there
exists a non-zero divisor x ∈ a such that B(a) = R[

z1
x
, . . . ,

zr

x
] , where z1, . . . , zr

is a generating set for the ideal a . In particular, aB(a) = xB(a) .

An open ideal a in R is called s t a b l e in R if B(a) = (a : a) , or, equiva-
lently, aB(a) = a . It is clear that if a is an open ideal in R , then an is stable
for some n > 0 and if an is stable, then am is stable for every m ≥ n .

Since dim(R) = 1 , for any open ideal a in R , for all sufficiently large values
of n , we have Ha(n) = �(R/an+1) = e0(a)

(
n+1

1

)
− e1(a) with e0(a) ∈ N+ and

e1(a) ∈ Z and Pa(X) := e0(a)
(
X+1

1

)
− e1(a), the positive natural number e0(a) is

the Hilbert- Samuel polynomial of a , respectively.

The next proposition shows how the integers e0(a) and e1(a) are connected
to the blowing-up B(a) of R along a:

(2.b) Proposition. [7, Theorem 1.5] �(B(a)/aB(a)) = e0(a) and �(B(a)/R) =
e1(a)≥e0(a)−�(R/a). Moreover, �(B(a)/anB(a)) = e0(a)n for all n ∈ N.

If m is not principal, then B(m) �= R and B(m) is a finitely generated R-
module. The annihilator annR(B(m)/R) := {y ∈ R | yB ⊆ R} of the R-module
B(m)/R is called the c o ndu c t o r o f R i n B(m) . The conductor of R in R
is called the c onduc t o r o f R . We put C := annR(R/R) .

(3) (M i n ima l r e d u c t i o n s a n d r e d u c t i o n n umb e r ) Let (R,m) be
a one-dimensional local Cohen-Macaulay ring. For an m-primary ideal a in R
which is not a principal ideal, we put r(a) := min{n ∈ N | �(an/an+1) = e0(a)} .
The natural number r(a) are called the r educ t i o n numbe r of a (see [11]). It
is easy to see (see for example [11, Theorem 5.1]) the following equalities:

r(a) = min{n ∈ N | �(R/am) = e0(a)m− e1(a) for all m ≥ n}
= min{n ∈ N | B(a) = (an : an)}
= min{n ∈ N | xan = an+1 for some x ∈ a}
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Note that for the last equality we need to assume either R is reduced with
infinite residue field, or R is analytically irreducible; in both these cases, for every
non-zero ideal a in R , there exists x ∈ a such that xR is a minimal reduction of
a , i.e., xam = am+1 for some m ∈ N . In fact in the later case (see [2, Corollary 17])
if x ∈ a , then xR is a minimal reduction of a if and only if v(x) = min(v(a)) ,
where v is the discrete valuation of the integral closure R of R in its quotient field.

(4) ( S t a n d a r d b a s i s o f a n um e r i c a l s em i g r o u p s ) Let Γ ⊆ N be
a numerical semigroup, i.e., Γ is closed under addition, 0 ∈ Γ and gcd(Γ) = 1 .
Then there exists a least positive integer c := c(Γ) ∈ Γ such that z ∈ Γ for
all z ≥ c . This positive integer is called the c o n d u c t o r of Γ . Therefore
Γ\Nc = {0 = v0, v1, . . . , vn−1} , where 0 = v0 < v1 < · · · < vn−1 < vn := c are el-
ements of Γ . The least positive integer m := v1 ∈ Γ is called the multiplicity of Γ.

The set Sm(Γ) := {z ∈ Γ | z − m �∈ Γ} is called the standard basis or
the Apéry set of Γ with respect to m. We put S := Sm(Γ) and write S = {0 =
s0, s1, . . . , sm−1} with 0 = s0 < s1 < · · · < sm−1. Note that every element h ∈ Γ
can be written in the unique form h = ρm + s with ρ ∈ N and s ∈ S . Further,
note that sm−1 = c− 1 +m.

(5) (Monomi a l cu r v e s ) Let m0, . . . ,mν−1 be positive integers and let K be
a field. Then the curve C(m0, . . . ,mν−1) in the ν-affine space Aν

K over K defined
by the parametric equations X0 = Tm0, . . . , Xν−1 = Tmν−1 is called an a f f i n e
m o n om i a l c u r v e over K defined by m0, . . . ,mν−1 . We may assume that
gcd(m0, . . . ,mν−1) = 1 . The numerical semigroup Γ :=

∑ν−1
i=0 Nmi generated

by m0, . . . ,mν−1, is called the v a l u e s em i g r o u p of C(m0, . . . ,mν−1) . The
coordinate ring of C(m0, . . . ,mν−1) is the subalgebra K[Γ] :=K[T z | z ∈ Γ] =
K[Tm0, . . . , Tmν−1] of the polynomial algebra K[T ] and is called the a f f i n e
semigroup r ing of Γ over K. The kernel P(C(m0, . . . ,mν−1)) of the canonical
surjective K-algebra homomorphism ϕ : K[X0, . . . , Xν−1]→ K[Tm0, . . . , Tmν−1]
defined byXi !→ Tmi, i = 0, . . . , ν−1, is the def ining idea l o f C(m0, . . . ,mν−1).

The K-subalgebra K[[Γ]] := K[[T z | z ∈ Γ]] = K[[Tm0 , . . . , Tmν−1]] of the
power series algebra K[[T ]] over K is called the a l g eb r o i d s em i g r oup r i ng
of Γ over K ; it is the coordinate ring of the a l g e b r o i d monom i a l c u r v e
C((m0, . . . ,mν−1)) := Spec (K[[Tm0, . . . , Tmν−1]]) in the algebroid ν-space Aν

K :=
Spec (K[[X0, . . . , Xν−1]]) defined by the parametric equations X0 = Tm0, . . . ,
Xν−1 = Tmν−1.

The kernel P (C((m0, . . . ,mν−1))) of the canonical surjective K-algebra ho-
momorphism ϕ : K[[X0, . . . , Xν−1]]→ K[[Tm0, . . . , Tmν−1]] defined by Xi !→ Tmi ,
i = 0, . . . , ν − 1, is the defining ideal of C((m0, . . . ,mν−1)) .

(6) (Type s e qu en c e s and a lmo s t Go r en s t e i n r i n g s ) Let (R,mR) be a
noetherian local one-dimensional analytically irreducible domain, i.e., the m-adic
completion R̂ of R is a domain or, equivalently, the integral closure R of R in its
quotient field Q(R) is a discrete valuation ring and a finite R-module. We further
assume that R is residually rational, i.e., R and R have the same residue field. A
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particular important class of rings which satisfy these assumptions are algebroid
semigroup rings which are coordinate rings of algebroid monomial curves (see (5)
above).

Let v : Q(R) → Z ∪ {∞} be the discrete valuation of R and let C :=
annR(R/R) = {x ∈ R | xR ⊆ R} be the conductor ideal of R in R . Then the
value semigroup v(R) = {v(x) | x ∈ R, x �= 0} is a numerical semigroup, that is,
N \ v(R) is finite and therefore v(R) = {0 = v0, v1, . . . , vn−1} ∪ {z ∈ N | z ≥ c} ,
where 0 = v0 < v1 < · · · < vn−1 < vn := c are elements of v(R) , n := n(R) :=
�(R/C) = card (v(R) \Nc) and c := c(R) := �(R/C) (here �(−) denote the length
as an R-module).

The positive integer c is also determined by the equality C = {x ∈ Q(R) |
v(x) ≥ c} or, equivalently C = (mR)

c . Note that c be the conductor of the value
semigroup v(R) . The positive integer δ := δ(R) := �(R/R) = card (N \ v(R)) is
called the d e g r e e o f s i n g u l a r i t y of R . It is clear that δ(R) is the sum of
n positive integers ti(R) := �(A−1

i /A−1
i−1) , i = 1, . . . , n, where Ai := {x ∈ R |

v(x) ≥ vi} and A−1
i := (R : Ai) := {x ∈ Q(R) | xAi ⊆ R } . The sequence

t1(R), t2(R), . . . tn(R) is called the t yp e s equ en c e of R .
Several authors have studied the properties of type sequences (see [1], [4]).

The term “type sequence” is chosen since the first term t1(R) = �(m−1/R) is the
Cohen-Macaulay type of R. Further, we have:

(6.a) Proposition.

(1) 1 ≤ ti(R) ≤ τR for every i = 1, . . . , n (see [8, §3, Proposition 2 and Propo-
sition 3]) and hence (see also [4, Proposition 2.1])

(2) �∗(R) ≤ (τR − 1) (�(R/C)− 1) , where �∗(R) := τR · �(R/C)− �(R/R) . More-
over, the equality holds if and only if �(R/R) = τR + �(R/C)− 1 , or equiv-
alently ti(R) = 1 for i = 2, . . . , n .

A ring R as above is called a lmo s t G o r e n s t e i n if the type sequence
of R is {τR, 1, 1, . . . , 1} , or equivalently, �∗(R) attains its upper bound, i.e.,
�(R/R) = τR−1+ �(R/C) . It is clear that Gorenstein rings are almost Gorenstein
but not conversely (see [18, (1.2)-(1)]).

(7) Type sequence of a numerical semi-group Γ can also be defined analogously:
Let c = c(Γ) ∈ N be the conductor of Γ and let Γ \Nc = {0 = v0, v1, . . . , vn−1} ,
where 0 = v0 < v1 < · · · < vn−1 < vn := c are elements of Γ . Further, for
i = 0, . . . , n , let Γi := {h ∈ Γ | h ≥ vi} , Γ(i) := {x ∈ Z | x + Γi ⊆ Γ} and let
ti = card (Γ(i) \ Γ(i− 1)) . Then Γ = Γ(0) ⊆ Γ(1) ⊆ · · · ⊆ Γ(n− 1) ⊆ Γ(n) = N
and the sequence ti, i = 1, . . . , n is called the type s equence of Γ . In particu-
lar, the cardinality t1 of the set T(Γ) := Γ(1)\Γ is called the Cohen-Macaulay
type of the semigroup Γ .

The type sequence of a ring R need not be same as the type sequence of the
numerical semi-group v(R) of R (see [4]). However, if R = K[[Γ]] is the algebroid
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semigroup ring of Γ over a field K, then the type sequence of R is equal to the
type sequence of its semigroup v(R) = Γ .

2. Numerical invariants of certain monomial curves

We begin this section with explicit descriptions of the standard basis, degree of
singularity, Cohen-Macaulay type, the defining ideal, h-polynomial, type sequence
of the class of monomial curves defined by an arithmetic sequence.

2.1. ( A c l a s s o f m o n om i a l c u r v e s d e f i n e d b y a n a r i t hm e t i c
s e q u e n c e ) In addition to the notation introduced in (1.2)–(5), we further fix
the following notation.

Let m, d ∈ N, m ≥ 2, d ≥ 1 be such that gcd(m, d) = 1 and let p be an
integer p ≥ 1 and put mi := m+ id for i = 0, 1, . . . , p+ 1. Let Γ :=

∑p+1
i=0 Nmi be

the semigroup generated by the arithmetic sequence m0,m1, . . . ,mp+1. Further,
let R := K[[Γ]] be the algebroid semigroup ring of Γ over K, P := P ((C))
be the defining ideal of the algebroid monomial curve C := C((Γ)) over K and
G := G((Γ)) be the associate graded ring of R with respect to its maximal ideal.

For any positive natural number k ∈ N+, let qk ∈ N and rk ∈ [1, p + 1] be
the unique integers defined by the equation k = qk(p+ 1)+ rk. We put q := qm−1

and r := rm−1 − 1. Therefore q ∈ N, r ∈ [0, p] and m− 2 = q(p+ 1) + r.

Put s0=0 and sk :=mrk
+qkmp+1=(1+qk)m+(rk+qk(p+1))d for k ∈ [1,m−1].

Further, we put S1 := {mi + jmp+1 | i ∈ [1, p+ 1] and j ∈ [0, q − 1]} (note
that S1 = ∅ if q = 0) and S2 := {mi + qmp+1 | i ∈ [1, r + 1]}.
With the notations we have:

(1) The standard basis S :=Sm(Γ) with respect to the multiplicity m = m0 of Γ
is :

S = {sk | k ∈ [0,m− 1]} = {0} ∪ S1 ∪ S2.

Further, c := c(Γ) = (m− 1)(d+ q) + q + 1 is the conductor of Γ.
(2) The degree of singularity δ := δ(Γ) of Γ is :

δ = ((m− 1)(d+ q) + (r + 1)(q + 1)) /2.

(3) The set T := T (Γ) = Γ(1) \ Γ = {mi + qmp+1 −m0 | i ∈ [1, r + 1]}.
In particular, the Cohen-Macaulay type of Γ is τ := τΓ = r+1. Furthermore,
R is Gorenstein if and only if r = 1.

(4) The defining ideal P of the algebroid monomial curve C is generated by(
ν

2

)
=

(
p+ 2
2

)
elements. Moreover, P is a set-theoretic complete intersec-

tion, that is, there exists F1, . . . , Fν−1 ∈ P := K[X0, . . . , Xν−1] such that

P =
√
PF1 + · · ·+ PFν−1 .
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(5) The associated graded ring G of R is always Cohen-Macaulay and the
h-polynomial of R is

hR :=

⎧⎪⎨⎪⎩
1 +

∑q
i=1(p+ 1)Zi + (r + 1)Zq+1, if r ≤ p− 2 ,

1 +
∑q+1

i=1 (p+ 1)Zi + pZq+2, if r = p− 1 ,
1 +

∑q+1
i=1 (p+ 1)Zi, if r = p .

In particular, the Hilbert function of R is non-decreasing.
(6) The ith term ti = ti(Γ) of the type sequence (t1, t2, . . . , tn) of Γ is

ti =

{
1, if vi−1 �= jmp+1 for every j ∈ [0, q],
r + 1, if vi−1 = jmp+1 for some j ∈ [0, q].

In particular, if d = 1, then the i-the term ti of the type sequence (t1, t2, . . .,
tn) of Γ is

ti =

{
r + 1, if i =

(
j+1
2

)
(p+ 1) + j + 1 for some j ∈ [0, q],

1, otherwise.

Furthermore, R is almost Gorenstein if and only if either R is Gorenstein,
or m = p+ 2. Moreover, in this case we have τR = m− 1.

Proof. (1), (3) and (4) are special cases of the general results proved in [17, (3.5)],
[16, § 5] and [14] (see also [13]). (2) is proved in [22, § 3, Supplement 6]. (5) is
proved in [9, Theorem 3.8]. (6) is proved in [20, Theorem 3.8 and Corollaries 3.8,
3.9]. �

Remark 2.2. (A class of monomial curves def ined by an almost ar i thmet ic
sequence) Suppose that Γ :=

∑p
i=0 Nmi+Nn be the semigroup generated by an almost

arithmetic sequence m0, m1, . . . , mp, n with gcd(m0, m1, . . . , mp, n) = gcd(m,d, n) = 1,
i.e., mi = m0 + id , i = 0, 1, . . . , p is an arbitrary arithmetic sequence with m = m0 ≥
2, d ≥ 1, p ≥ 1 and n is an arbitrary positive integer. Results analogous to (1), (3)
and (4) are proved in [17], [16] and [14]. Moreover, an explicit formula for the minimal
number μ(P) is given in [15]. The characterization for the Cohen-Macaulayness of G is
given (in most cases) in [10] and the explicit computation of the h-polynomial is done
in [18]. So far no explicit formulas (in terms of the generating set of Γ ) for the degree
singularity and the terms in the type sequence are known even if Γ is generated by an
almost arithmetic sequence.

Remark 2.3. A well-known question: whether or not monomial curves in the affine ν-
space Aν

K defined by an arbitrary sequence of positive integers m0, . . . , mν−1 are set-
theoretic complete intersections is still open in general even in the case of embedding
dimension ν = 4 . For an arbitrary numerical semigroup Γ the characterization for the
Cohen-Macaulayness of G and the behaviour of the Hilbert function HR are not known
in general.
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3. Blowing-up rings and Arf rings

In this section let us recall the definition of an Arf ring studied by Lipman in [7].
Let R be a semi-local Cohen-Macaulay ring of dimension 1 and let m be the

(Jacobson) radical of R . Let R be the integral closure of R in its total quotient
ring Q(R) .

An element z ∈ R is said to be i n t e g r a l o v e r t h e i d e a l a in R if
z satisfies an integral equation zn + a1z

n−1 + · · · + an = 0 with aj ∈ aj for all
j = 1, . . . , n . The set a of all elements in R which are integral over a is an ideal
in R and is called the integral closure of a in R . An ideal a in R is said to be
i n t e g r a l l y c l o s e d i n R if a = a . A semi-local Cohen-Macaulay ring R of
dimension 1 is called an A r f r i n g if every integrally closed open ideal in R
is stable, or, equivalently (see [7, Theorem 2.2]), if A is any local ring infinitely
near to R , then A has maximal embedding dimension, i.e., embdim(A) = e0(A) .
In particular, if a local ring R is Arf, then R has maximal embedding dimension.

The next proposition gives necessary and sufficient conditions for the equality
(see (1.2)-(2)-(2.b)) e0(a)− e1(a) = �(R/a) .

Proposition 3.1. Let (R,m) be a one-dimensional local Cohen-Macaulay ring and
let a be a m-primary ideal. Then the following statements are equivalent:
(i) e0(a)− e1(a) = �(R/a) .
(ii) B(a) = (a : a) , i.e, a is stable.
(iii) There exists z ∈ a such that za = a2 .
(iv) �(a/a2) = e0(a) .
(v) r(a) ≤ 1 , i.e., �(an/an+1) = e0(a) for all n ≥ 1 .
(vi) Ha(n) = Pa(n) for all n ∈ N .
In particular, the maximal ideal m is stable ⇐⇒ embdim(R) = e0(R) ⇐⇒
e0(R)− e1(R) = 1.

Proof. Most of these equivalences are proved in [11, Theorem 5.1]. �

The next proposition provides a link between stability of m , conductor of
B(m) over R and the type τR of R .

Proposition 3.2. Let (R,m) be a one-dimensional Cohen-Macaulay local ring. The
following statements are equivalent:
(i) �(m/m2) = e0(R) , i.e., embdim(R) = e0(R) .
(ii) annR(B(m)/R) = (R : B(m)) = m .
(iii) τR = e0(R)− 1 .
Moreover, in this case τR = e1(R) .

Proof. The equivalence of (i) and (ii) is proved in [12, Corollary 2].
(i)⇐⇒ (iii): In view of the equivalence of (i), (iii) and (iv) in (3.3) (for a = m ),
it is enough to prove that: τR = e0(R) − 1 ⇐⇒ xm = m2 for some x ∈ m .
Let x ∈ m be a minimal reduction of m . Then, since R is Cohen-Macaulay,
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�(R/xR) = e0(R) and from xR ⊆ · · · ⊆ (xR : m) ⊆ · · · ⊆ m � R we have
τR = � ((R : m)/R) = � ((xR : m)/xR) ≤ �(R/xR)− 1 = e0(R)− 1 . Moreover, the
equality τR = e0(R)−1 ⇐⇒ � ((xR : m)/xR) = �(R/xR)−1 ⇐⇒ � (R/(xR : m)) =
1 = �(R/m) ⇐⇒ (xR : m) = m ⇐⇒ xm = m2 . �

(3.3) Branch and multiplicity sequences. Let (R,m) be a semilocal Cohen-Macau-
lay ring of dimension 1 . Then, since the integral closure R of R in the quotient
field of R is a finite R-module, there exists a finite sequence

(3.3.1) R = R0 � R1 � · · · � Rm−1 � Rm = R

of one-dimensional noetherian semilocal rings such that for each i = 1, . . . ,m, the
ring Ri is obtained from the ring Ri−1 by blowing up the radical mi−1 of Ri−1 .
Furthermore, for each maximal ideal n of R , every local ring R′

i := (Ri)n∩Ri
is

called i n f i n i t e l y n e a r t o R . For each i = 1, . . . ,m, the multiplicity and the
residue field of the local ring R′

i are denoted by e(R′
i) and ki respectively. The

sequence R′
0, R

′
1, . . . , R

′
m is called the b r an ch s equ en c e o f R a l o ng n and

the sequence of pairs ((e0(R′
i), [ki : k0]) , i = 0, . . . ,m is called the mult ip l i c i ty

s e q u e n c e of R , where for each 0 ≤ i ≤ m , ki denotes the residue field of R′
i

and [ki : k0] denotes the degree of the field extension ki|k0 (see [7, pages 661,
669]. In particular, if R is analytically irreducible, residually rational and R �= R ,
then each Ri in (3.3.1) is also analytically irreducible, residually rational; if mi

is the maximal ideal of Ri , then the ring Ri is obtained from Ri−1 by blowing
up mi−1 . Further, Ri = R′

i for each i = 0, . . . ,m , since R is local (see [6,
Theorem 4]) and n is the only maximal ideal in R .

In the next result we give a formula for the degree of singularity in terms of
the branch sequence:

Proposition 3.4. Let (R,m) be a one-dimensional noetherian local analytically
irreducible, residually rational domain and let R = R0 � R1 � · · · � Rm−1 �
Rm = R be the branch sequence of R . For each i = 0, . . . ,m , let Γi, δi, e0(Ri)
and e1(Ri) be the value-semigroup, degree of singularity, multiplicity and the first
coefficient of the Hilbert-Samuel polynomial of Ri respectively. Then:

δ(R) = δ0 =
m∑

i=1

card (Γi \ Γi−1) =
m∑

i=1

� (Ri/Ri−1) =
m∑

i=1

e1(Ri−1) .

Proof. Note that Γ0 � Γ1 � · · · � Γm−1 � Γm = N and δi = card (N \ Γi) for
each i = 0, . . . ,m . Therefore δ0 =

∑m
i=1 card (Γi \ Γi−1) =

∑m
i=1 � (Ri/Ri−1) =∑m

i=1 e1(Ri−1) by (1.2)-(2)-(2.b). �

Now recall the following characterization of complete local Arf rings in terms
of its value semigroup given in [7] which will be used in the proof of the Theo-
rem (3.6).

Proposition 3.5. ([7, Theorem 2.2 and Corollary 3.8]) Let (R,m) be a one-
dimensional noetherian local analytically irreducible ring and let R = R0 � R1 �
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· · · � Rm−1 � Rm = R be the branch sequence of R . Then R is an Arf ring
if and only if embdim(Ri) = e0(Ri) for each i = 0, . . . ,m . Moreover, if R is
complete with algebraically residue field k , then R is an Arf ring if and only if
the value semi-group v(R) of R is {0, e0(R0), e0(R0)+e0(R1), . . . , e0(R0)+ · · ·+
e0(Rm−2)} ∪Nc , where c = e0(R0) + · · ·+ e0(Rm−2) + e0(Rm−1) .

Now we can give the characterization for completer local Arf domains with
algebraically closed residue field using the type sequences of R and the terms in
its branch sequence.

Theorem 3.6. Let (R,m) be a complete local domain with algebraically closed
residue field k . Let R=R0 �R1 � · · ·�Rm−1 �Rm =R be the branch sequence
of R . For each j = 0, . . . ,m − 1 , let Cj be the conductor of R over Rj , and
let nj = n(Rj), cj = �(R/Cj) and ti(Rj) be the ith term in the type sequence
of Rj . Then: R is an Arf ring if and only if for each j = 0, . . . ,m − 1 and
i = 1, . . . , nj , we have nj = m− j and ti(Rj) = e0(Rj+i−1)− 1 = ti+1(Rj−1) .

For the proof of this theorem we use of the following result proved in [3] (see
also [4]) which shows how the property Arf is described by its type sequence.

Proposition 3.7. [3, Theorem 1.7-(5)] Let (R,m) be a one-dimensional noetherian
local analytically irreducible, residually rational domain. Let v be the discrete
valuation of R and let v(R) = {0 = v0, v1, . . . , vn−1} ∪ Nc be the value semi-
group of R , where 0 = v0 < v1 < · · · < vn−1 < vn = c , C is the conductor of R
over R , n := n(R) = �(R/C) and c = c(R) := �(R/C). If R is an Arf ring, then
ti = vi − vi−1 − 1 is the ith term in the type sequence of R .

Proof of (3.6) : (⇒): By the assumptions on R and (3.5), for each j = 0, . . . ,m−1
we have Rj is an Arf complete domain with integral closure R , the same residue
field k , Rj � Rj+1 � · · · � Rm−1 � Rm = R is the branch sequence of Rj and
the value semigroup v(Rj) is {0, v1,j, v2,j , . . . , vm−j−1,j} ∪ Ncj , where vi,j =
e0(Rj) + · · · e0(Rj+i−1) , i = 1, . . . ,m− j − 1 and cj = e0(Rj) + · · ·+ e0(Rm−1) .
Therefore we have nj = n(Rj) = (m − j − 1) + 1 = m − j . Further, for each
j = 0, . . . ,m− 1 , if {ti(Rj) | 1 ≤ i ≤ m− j} is the type sequence of Rj , then by
(3.7) we have ti(Rj) = vi,j −vi−1,j −1 = e0(Rj+i−1)−1 = vi+1,j−1−vi,j−1−1 =
ti+1(Rj−1) for every 1 ≤ i ≤ m− j .
(⇐): For each j = 0, . . . ,m−1 , by assumption, we have τRj =t1(Rj)=e0(Rj)−1 .
Therefore emdim(Rj) = e0(Rj) by (3.1) and (3.2) and hence R is an Arf ring by
the first part of (3.6). �

In particular, for the ready reference we note the following formulas for the
ith term ti in the type sequence of R , in terms of the types, the multiplicities
and the lengths arising from the terms of the branch sequence of R .

Corollary 3.8. Let (R,m) be an Arf complete local domain with algebraically closed
residue field k and let R=R0 �R1 � · · ·�Rm−1 �Rm=R be the branch sequence
of R . Then : m = n = n(R) and for each i = 1, . . . , n , the ith term ti in the
type sequence of R is given by : ti = τ(Ri−1) = e0(Ri−1)− 1 = �(Ri/Ri−1) .
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Corollary 3.9. Let (R,m) be an Arf complete local domain with algebraically closed
residue field k and let B = B(m) be the blowing up of R along m . If t1, . . . , tn
is the type sequence of R , then t2, . . . , tn is the type sequence of B .

4. Examples

In this section we give some examples of Arf rings and some of not Arf rings.
In the following examples R denote the algebroid semi-group ring K[[Γ]] of the
numerical semi-group Γ over a field K . Note that in this case each term Rj in
the branch sequence of R is also semigroup ring; in fact, if Γ is generated by
n1, n2, . . . , np with n1 < n2 < · · · < np , then R1 = K[[Γ1]] , where Γ1 = v(R1)
is generated by n1, n2 − n1, . . . , np − n1 ; by repeating this argument we get the
result for Rj , j ≥ 2 .

Example 1. (see [19, Lemma 3.11-(1)] for details) Let e, p ∈ N with e ≥ 3, p ≥ 1
and Γ be the semigroup generated by e, pe + 1, pe + 2, . . . , pe + (e − 1) . Then
there are exactly p + 1 terms in the branch sequence of R and embdim(Rj) =
e = e0(Rj) for every j = 0, . . . , p . Therefore R is an Arf ring by (3.5).

Example 2. (see [19, Lemma 3.11-(2)] for details) Let e, p, a ∈ N with e ≥ 3,
p ≥ 2, 1 ≤ a ≤ e − 1 and Γ be the semigroup generated by e, pe − a, pe −
a + 1, . . . , pe − a + (a − 1) . Then there are exactly p + 1 terms in the branch
sequence of R and embdim(Rj) = e = e0(Rj) for every j = 0, . . . , p − 2 and
embdim(Rp−1) = e− a = e0(Rp−1) . Therefore R is an Arf ring by (3.5).

Example 3. (see [19, Example 4.1] for details) Let e, r, r′ ∈ N with e ≥ 3, 1 ≤ r,
1 ≤ r′, r + r′ ≤ e − 1 and let Γ be the semi-group generated by the sequence
e, e+ r, e+ r + r′, e+ r + r′ + 1, . . . , 2e+ r + r′ − 1. The type sequence of R is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e− 1, if r′ = r = 1,
e− 1, r − 1, if r′ = 1 and r ≥ 2,
e− 1, r′ − 1, r − 1, if r′ = r,
e− 1, r − 1, r′ − 1, if r′ < r,
e− 2, r, r′ − 1, if r < r′.

In particular, R is almost Gorenstein if and only if (r′, r) ∈ {(1, 2), (2, 2), (2, 1)}.
Further, R is an Arf ring in cases (i), (ii), (iii) and R is not Arf in the case (iv).

Example 4. Let m, d, p ∈ N, m ≥ 2, p ≥ 1, d ≥ 1, gcd(m, d) = 1, Γ be the
semigroup generated by an arithmetic sequence m,m + d, . . . ,m + pd and let
R = K[[Γ]] . Let B be the blowing-up of R along the maximal ideal of R . Then
B = K[[Γ′]] , where Γ′ is the semigroup generated by m, d , and so embdim(B) = 2 .
Further, by (3.5):
(i) If d = 1 , then R is Arf if and only if embdim(R) = m (in fact, in this case,

B = K[[T ]] ).
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(ii) If d = 2 or m = 2 , then for every j ≥ 2 the jth term in the branch
sequence of R is Rj = K[[Γj ]] , where Γj is the semigroup generated by
2, 2n + 1 for some integer n ≥ 1 and so embdim(Rj) = e0(Rj) for every
j ≥ 1 . Therefore, R is an Arf ring if and only if embdim(R) = m ; in
particular, if m = 2 , then R is an Arf ring.

(iii) If d ≥ 3 and m ≥ 3 , then e0(B) ≥ 3 , embdim(B) = 2 < 3 ≤ min{m, d} =
e0(B) and hence R is not an Arf ring.
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1. Introduction

Our object in this paper is to describe a new algebraic structure to enrich the
algebraic theory underlying “tropical geometry,” an area of mathematics that has
developed considerably over the last ten years, [1, 8, 24, 25, 27, 28, 29, 30, 33], with
applications to combinatorics, polynomials (Newton’s polytope), linear algebra,
and algebraic geometry; cf. [12] and [26]. A survey of tropical geometry and its
applications can be found in [23], but we review some of the basics here, for the
convenience of the reader not versed in tropical geometry.

1.1. Brief overview of tropical geometry

Given a complex variety W = {(z1, . . . , zn) : zi ∈ �} ⊂ �(n), and any small t > 0,
one can define its amoeba

A(W ) = {(logt |z1|, . . . , logt |zn|) : (z1, . . . , zn) ∈ W} ⊂ �
(n)
0 ,

The first author has been supported by the Chateaubriand scientific post-doctorate fellowships,
Ministry of Science, French Government, 2007–2008.
The second author has been supported in part by the Israel Science Foundation, grant 1178/06.
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where �0 = � ∪ {−∞}. Note that logt |z1z2| = logt |z1| + logt |z2|. Furthermore,
we recall for any s, t that that

logt z = logs z logt s,

so changing t merely rescales the amoeba, which becomes more compressed as
t decreases. As explained in [8, §1.1], the limiting case t → 0 degenerates to a
polyhedral complex in �(n)

0 , where now �0 is given the structure of the max-plus
algebra M = (�0,⊕,+), for which the new addition ⊕ is defined as the maximum,
and multiplication + is taken to be the original addition in �.

Any polynomial f over M in the commuting indeterminates λ1, . . . , λn de-
fines a graph in M(n+1), whose points are

(a1, . . . , an, f(a1, . . . , an)), ai ∈M.

But because addition is taken to be the maximum, the polynomial defines a piece-
wise linear function M(n) → M, whose graph is a collection of n-dimensional
planar sections. For example, the graph of a polynomial in one indeterminate is a
sequence of line segments and two rays; the graph of a polynomial in two indeter-
minates consists of “slices” of planes.

An affine tropical hypersurface is defined as the domain of non-differentiabil-
ity, also called also the corner locus, of the piecewise linear function determined by
a polynomial. (Tropical varieties are defined more generally as weighted rational
polyhedral complexes satisfying a certain “balancing condition.”)

Example 1.1. Graph of the tropical polynomial 0+ λ2 ⊕ 3+ λ ⊕ 2:

�

�

−1 3

(−1, 2)

(3, 6)

M

f(a)f(a)

Here the tropical hypersurface is comprised merely of the two points {−1, 3} in
the real line, the first coordinates of the respective vertices {(−1, 2), (3, 6)} where
the graph is not differentiable.

The tropical structure can also be described as the target of a certain field
with non-Archimedean valuation, as explained in [8, §1.2]. Passing from the orig-
inal algebraic variety to this “tropical variety” preserves various topological and
geometric invariants involving intersections. From this perspective, “curves” are
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much easier to study in the tropical framework than in customary algebraic geom-
etry, and tropical geometry has been used to simplify proofs of deep results from
algebraic geometry [4].

1.2. The semiring structure of the max-plus algebra

The two operations ⊕ and + endow the max-plus algebra M with the structure
of an (associative) semiring, in which a⊕ a = a for every element a ∈ M. In the
sequel, for elements a, b ∈ M, we write a+ b for a⊕ b and ab for a+ b.

Recall that a semiring (R,+, ·, 0R, 1R) is a set R endowed with two binary
operations + and · , such that:
1. (R,+, 0R) is an Abelian monoid with “zero element” 0R;
2. (R, · , 1R) is a monoid with “unit element” 1R;
3. Multiplication distributes over addition;
4. 0R · a = a · 0R = 0R, ∀a ∈ R.

We use [11] as a standard reference on semiring theory. For any semiring R,
one can define the semiring R,λ- of polynomials, where polynomial addition and
multiplication are defined in the familiar way:( ∑

i

αiλ
i

)( ∑
j

βjλ
j

)
=

∑
k

( ∑
i+j=k

αiβk−j

)
λk.

(The reason for the unusual notation , - will become clear in Example 2.4 below.)
Since the polynomial semiring was defined over an arbitrary semiring, we can
define inductively

R,λ1, . . . , λn- = R,λ1, . . . , λn−1-,λn-.
A semiring with additive inverses is a ring, and many of the basic defini-

tions (including homomorphisms, sub-semirings, ideals, prime ideals, and modules)
mimic those from ring theory.

Unfortunately, the max-plus algebra M has no additive inverse (even if one
formally adjoins a zero element, often denoted −∞). In fact, every element of M
is additively idempotent, and in any semiring, any additive idempotent having an
additive inverse is 0. Indeed, if a+ b = 0 then

0 = a+ b = (a+ a) + b = a+ 0 = a.

Thus, the theory of cosets is useless here. To facilitate algebraic computations,
Izhakian [13] introduced the extended tropical arithmetic �, to be described ex-
plicitly in Example 2.10(a) below. This survey indicates how any max-plus semiring
is “covered” by a certain semiring, which we call a supertropical semiring, that
has a more manageable structure theory than the max-plus semiring, and in whose
language many algebraic concepts related to tropical geometry can be described
much more naturally. We will discuss the algebraic structure theory of supertrop-
ical semirings, including polynomials and their roots, cf. [15, 20], matrix theory,
cf. [17], [19], and valuation theory, cf. [14].
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Conceptually, the relation of � to the max-plus algebraM is similar to that
of the complex numbers � to �. Although one can manage with � and reformulate
properties of � in terms of �, it quickly becomes much easier to work with �, and,
moreover, imaginary numbers have their own meaning in applications; likewise,
supertropical semirings have new elements, called ghost elements, which may well
have their own intrinsic meaning, as we shall discuss at the end of this overview.

2. Basic notions

Instead of the special case (�,+), we start with an arbitrary monoid G (totally)
ordered under ≤. Although our main example is (�,+), we write the monoid
G in multiplicative notation, since it is to be a multiplicative submonoid of our
supertropical semiring. Polynomials over a semiring R are written with coefficients
in R. For example, taking R = �0, where the unit element 1R is 0 and the neutral
element 0R is −∞, the monomial λ means 1Rλ, which as just noted is 0 + λ in
this setting, one has the equality

(λ⊕ 3)+ (λ⊕ 4) = λ⊕ λ ⊕ 4+ λ ⊕ 7.

This notation is rather cumbersome, so from now on, even when giving ex-
amples in a semiring built over �, we utilize the more familiar semiring notation ·
and + in place of + and ⊕, and our equation becomes

(λ + 3)(λ+ 4) = λ2 + 4λ+ 7.

Recall that a monoid G is ordered if ab ≤ ac and ba ≤ ca for all b ≤ c
and a in G. Any ordered monoid G can be viewed as a semiring G0 := G ∪ {0},
which is G with a formal element 0 adjoined, declaring that a > 0 for any a ∈ G.
The semigroup multiplication in G0 is the original monoid operation of G (with
0a = a0 = 0 for all a ∈ G0), and the semigroup sum in G0 is taken to be the
maximum in G (with 0+ a = a+0 = a for all a ∈ G0). Thus, 0 is the zero element
in the semiring G0, which we call the associated semiring of the ordered monoid.

We say that a pair of elements (a, b) in a semiring is (additively) bipotent
if a + b ∈ {a, b}; the semiring is bipotent if every pair of elements is bipotent. A
semidomain is a semiring in which a, b �= 0 implies ab �= 0. Thus, G0 as constructed
above is a bipotent semidomain.

Conversely, any semidomain R yields a multiplicative monoid G = R \ 0,
together with a partial order on G given by

a ≤ b iff a+ b = b. (2.1)

Clearly, two elements are related under this order iff they are additively bipotent
in R. Thus, the semidomain R is bipotent iff our order on G is a total order; in
this case, R can be identified with the associated semiring of G0.

In this way, the category of ordered monoids (where morphisms are required
to respect the order) is isomorphic to the category of bipotent semidomains (whose



Supertropical Algebra 287

morphisms are the semiring homomorphisms). So far we have merely changed
languages. Here is the abstract algebraic formulation of Izhakian’s main idea.

Definition 2.1. A cover of a semiring G0 is a semiring R with a semiring projection
ν : R→ G0; in other words, ν is an onto semiring homomorphism satisfying ν2 = ν.

A supertropical semiring is a semiring R = (R,G0, ν) having an ideal G0,
called the ghost ideal, which itself is an idempotent semiring (but whose unit
element differs from that of R unless G0 = R), such that R is a cover of G0 (with
respect to the projection ν), satisfying the following conditions, where we write aν

for ν(a):
(i) (Bipotence) If aν �= bν , then the pair (a, b) is bipotent;
(ii) (Supertropicality) a+ b = aν whenever aν = bν .

A special case of supertropicality is

a+ a = aν , ∀a ∈ R. (2.2)

In particular, 1ν
R = 1R +1R is a multiplicative idempotent of R, which also serves

as the unit element of G0.

Definition 2.2. For any supertropical semiring R = (R,G0, ν), we define the ν-
topology to have a base of open sets of the form

Wα,β = {a ∈ R : αν < aν < βν}
and

Wα,β;T = {a ∈ T : αν < aν < βν}, αν , βν ∈ G0.

This topology enables us to employ density arguments. Note that points in
G are closed, but not points in T .
2.1. Semirings with ghosts

In order to deal with polynomials and matrices, we need to describe the set-up in
somewhat greater generality.

Definition 2.3. A semiring with ghosts (R,G0, ν) is a semiring R together with a
semiring ideal G0, which we call the ghost ideal, and an idempotent semiring map

ν : R → G0,

called the ghost map, such that Equation (2.2) holds.

The ghost ideal G0 is equipped with the natural partial order given in Equa-
tion (2.1).

The following examples fit into this broader context.

Example 2.4. Suppose (R,G0, ν) is a supertropical semiring.
1. Fun(R(n), R) denotes the set of functions from R(n) to R; here
f ∈ Fun(R(n), R) is ghost if f(r1, . . . , rn) ∈ G0 for every r1, . . . , rn ∈ R.

2. The sub-semiring with ghosts CFun(R(n), R) of Fun(R(n), R) consists of the
continuous functions (with respect to the ν-topology).
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3. There is a natural semiring homomorphism

Φ : R,λ1, . . . , λn- → CFun(R(n), R),

and we write R[λ1, . . . , λn] for the image of Φ; in this semiring, each element
is the image of a set of polynomials that correspond to the same function. For
example, λ2+λ+7 (which we recall means 0+λ+λ ⊕ 0+λ ⊕ 7) and λ2+7 are
the same function over �0. The ghost ideal of R[λ1, . . . , λn] is G0[λ1, . . . , λn].

4. Likewise, for Λ = {λ1, . . . , λn}, one can define the Laurent polynomial semir-
ing R,Λ,Λ−1- and its image R[Λ,Λ−1] in CFun(R(n), R).

5. We define the matrix semiring with ghostsMn(R); its ghost ideal is Mn(G0).

None of these are supertropical semirings. Bipotence fails for polynomials:
(2λ+ 1) + (λ+ 2) = 2λ+ 2. Likewise, bipotence fails for matrices.

Remark 2.5. The semiring Fun(R(n), R) satisfies the following amazing property,
called the Frobenius Property:( ∑

fi

)m =
∑

fm
i (2.3)

for every natural number m. For example,

(f + g)2 = f2 + g2 + fg + gf = f2 + g2 + (fg)ν = f2 + g2. (2.4)

since, for any a = (a1, . . . , an) ∈ R(n),

(f(a)g(a))ν ≤ max{ν(f(a)2), ν(g(a)2)}.

A suggestive way of viewing (2.3) is to note that for anym there is a semiring
endomorphism Fun(R(n), R)→ Fun(R(n), R) given by f !→ fm, reminiscent of the
Frobenius automorphism in classical algebra. But here the Frobenius property
holds for every m. This plays an important role in our theory.

Here is a fundamental relation, called ghost surpasses, which replaces equality
in many theorems taken from classical algebra.

Definition 2.6. a |
G
= b in a semiring with ghosts (R,G0, ν), if a = b + c for some

element c ∈ G0.

Example 2.7. Any ring R of characteristic 2 is a semiring with ghosts, taking
G0 = {0R}, where aν = 0R for all a. Note in this case that ghost surpasses is the
same as equality, and Equation (2.2) is equivalent to 1R + 1R = 1ν

R = 0R. In this
way, ring theory of characteristic 2 is subsumed in the theory of semirings with
ghosts.

2.2. Supertropical domains and semifields

We finally are ready to introduce the fundamental objects of supertropical algebra.

Definition 2.8. A supertropical domain is a commutative supertropical semiring
(R,G0, ν) for which the following extra properties hold (where G = G0 \ {0}):
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(i) The set T = R \ G0 is a monoid, called the monoid of tangible elements;
(ii) The restriction νT : T → G is onto; in other words, G is a monoid, and every

element of G has the form aν for some a ∈ T .
A supertropical domain (R,G0, ν) is called a supertropical semifield if every

tangible element �= 0R is invertible.

Note in a supertropical domain that if a |
G
= b with a tangible, then a = b.

On the other hand, if a + b |
G
= 0R with b tangible, then a |

G
= b. These properties

help explain the importance of tangible elements as well as the ghost surpassing
relation.

Example 2.9. Given a homomorphism of Abelian monoids ν : T → G, where the
monoid G is ordered, one can define the semiring

R := T ∪ G0,

where G0 = G ∪{0}, with respect to the following operations (writing aν for ν(a)):

ab =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

product in T for a, b ∈ T ;
product in G for a, b ∈ G;
aνb for a ∈ T , b ∈ G;
abν for a ∈ G, b ∈ T ;
0 for a = 0 or b = 0,

a+ b =

⎧⎨⎩ a for aν > bν ;
b for aν < bν ;
aν for aν = bν ,

a+ 0 = 0 + a = a.

Note that ab ∈ G0 if a ∈ G0 or b ∈ G0, so G0 is an ideal of R, and clearly 1ν
R is the

multiplicative unit of G0, implying (R,G0, ν) is a supertropical domain. (R,G0, ν)
is a supertropical semifield, iff ν is onto and G is a group.

Example 2.10. Here are the motivating examples of supertropical semifields, using
Remark 2.9:
(a) T = (�,+) and G = (�,+), with ν the identity map (Izhakian’s original

example of the extended tropical arithmetic �);
(b) T = F× (F a field) and G is an ordered group, with ν a valuation. (Here

we forget the original addition on the field F !) As a special case, one could
take the field of locally convergent Puiseux series, which plays a key role in
tropical geometry.

From this vantage point, a supertropical domain could be viewed as a generaliza-
tion of a valuation, thereby giving rise to the “supervaluation theory” described
in [14].

The innovation in this structure is that the ideal G0 = Rν is to be treated
much the same way, via the ghost surpassing relation, as one would customary
treat the 0 element in classical commutative algebra. This provides R with a rich
algebraic structure, in which much of the theory of real commutative algebra can
be formulated.
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3. Polynomials and their roots

Classical results about polynomials over fields that we use as signposts for the
supertropical theory:

• The fundamental theorem of algebra;
• Hilbert’s Nullstellensatz;
• Unique factorization into irreducibles;
• Properties of the resultant of two polynomials in a single indeterminate;
• The Euclidean algorithm;
• Finite generation of ideals in polynomial rings.

What happens in the supertropical case? Polynomials should play a role in
any reasonable algebraic theory. Our initial excursion into supertropical algebra
is to try to build a foundation for algebraic geometry by means of polynomials
and their roots. A nonzero polynomial over the max-plus algebra cannot have any
zeroes in the classical sense! But here is an alternate definition.

An n-tuple a = (a1, . . . , an) ∈ R(n) is called a (supertropical) root of a
polynomial f ∈ R[λ1, . . . , λn] if f(a) ∈ G0, which can be written also as f(a) |

G
= 0R.

We are interested mainly in the set of tangible roots, called the tangible root set
of f ; this is readily seen to be a tropical hypersurface.

Example 3.1. The tangible roots of the polynomial f = λ1 + λ2 + 0 over �0 are:⎧⎪⎨⎪⎩
(0, a) for a < 0;
(a, 0) for a < 0;
(a, a) for a > 0.

The “curve” of tangible roots of f is comprised of three rays, all emanating from
(0, 0).

3.1. Polynomials in one indeterminate over a supertropical semifield

Classically, every polynomial has a root in the algebraic closure. The tropical
version: Given any supertropical semifield R, we define its divisible closure

R̄ =
{ a

m
: a ∈ R, m ∈ �

}
.

which is a supertropical semifield when we extend ν to R̄ by putting ν( a
m ) =

aν

m .
For example, � is divisibly closed, but � is not. One sees easily that any supertrop-
ical polynomial has a tangible root in the divisible closure; cf. [15, Proposition 4.7].

There are two kinds of tangible roots of a polynomial f =
∑

j∈J hj, where hj

are distinct monomials. Given a ∈ T (n), we let cj = hj(a), and S(a) = {cνj : j ∈ J}:
Corner root. At least two of the cj’s are ν-maximal (and thus equal) in

S(a). In this case,

f(a) = cνj ∈ G0.
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Cluster root. There is a unique j for which cνj is maximal in S(a). Then
f(a) = cj; this will necessarily be ghost when the coefficient
of the monomial hj is ghost.

Example 3.2. The set of tangible roots of the polynomial f = λ4 + 3νλ3 + 5νλ2 +
6λ+ 6 over � is

{0} ∪ {a : 1ν ≤ aν ≤ 3ν}.
The tangible corner roots are 0,1,2, and 3, as seen by noting in each evaluation
that two terms match:

f(0) = 04 + 3ν03 + 5ν02 + 6 · 0 + 6 = 0 + 3ν + 5ν + 6 + 6 = 6ν ;

f(1) = 14 + 3ν13 + 5ν12 + 6 · 1 + 6 = 4 + 6ν + 7ν + 7 + 6 = 7ν ;

f(2) = 24 + 3ν23 + 5ν22 + 6 · 2 + 6 = 8 + 9ν + 9ν + 8 + 6 = 9ν ;

f(3) = 34 + 3ν33 + 5ν32 + 6 · 3 + 6 = 12 + 12ν + 11ν + 9 + 6 = 12ν.

(3.1)

For any other number a between 1 and 3, a single monomial with ghost coeffi-
cient dominates in the evaluation f(a), and thus a is a cluster root. For example,
f(1.5) = 8ν and f(2.5) = 10.5ν.

We turn to factorization of polynomials, which is always done as functions.
Here are some results for polynomials in one indeterminate over a divisibly closed
supertropical semifield.

It is not hard to see that any polynomial f with tangible coefficients can be
factored as the product ∏

j

(λ+ aj)ij ,

where the aj range over the tangible roots of f . In particular, all irreducible poly-
nomials with tangible coefficients are linear.

For example, over � (and also overM),

λ2 + 5λ+ 7 = (λ+ 5)(λ+ 2);

λ2 + 8 = (λ+ 4)2.

An example of an irreducible quadratic polynomial:

λ2 + 5νλ+ 7.

In general, any polynomial factors (as functions) as the product of linear and
quadratic polynomials. But unique factorization of polynomials can fail.

Example 3.3.

λ4 + 4νλ3 + 6νλ2 + 5νλ+ 3 = (λ2 + 4νλ+ 2)(λ2 + 2νλ+ 1)

= (λ2 + 4νλ+ 2)(λ+ 2)(λ+ (−1))
= (λ2 + 4νλ+ 3)(λ2 + 2νλ+ 0).
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Nevertheless, there is a version of unique factorization in one indeterminate.

Theorem 3.4. [15, Theorem 7.41] The factorization of a polynomial in one inde-
terminate into linear and quadratic irreducible factors, which is minimal in the
number of ghost terms, is unique.

In Example 3.3, it comes from the second line: (λ2+4νλ+2)(λ+2)(λ+(−1)).
Another interpretation of this factorization is in terms of the roots of a polynomial:

Proposition 3.5. [15, Proposition 7.47] Suppose f is a polynomial of degree t, whose
tangible root set is the closed interval [α1, αt], and α1, . . . , αt are corner roots of
f , arranged in ascending ν-value. Then

f = (λ2 + αν
t λ+ αtα1)

t−1∏
k=2

(λ+ αk),

and this is the (unique) factorization minimal in ghosts, having only one ghost
term.

The notion of “relatively prime” for polynomials is quite delicate. Given a
polynomial f , we write deg(f) for the degree of the lowest order monomial of f.
For example, deg(λ3 + 2λ2 + λν) = 1.

Definition 3.6. Two polynomials f and g of respective degrees m and n are rela-
tively prime if there do not exist tangible polynomials p and q (not both 0) with
deg(p) < n and deg(q) < m, such that pf + qg is ghost with deg(pf) = deg(qg)
and deg(pf) = deg(qg).

Theorem 3.7. [20, Theorem 3.14] Two non-constant monic polynomials f and g
in F [λ] are relatively prime iff f and g do not have a common tangible root.

3.2. Factorization of polynomials in several indeterminates

In two indeterminates, we have a worse violation of unique factorization:

(0 + λ1 + λ2)(λ1 + λ2 + λ1λ2) = λ1 + λ2 + λ2
1 + λ2

2 + ν(λ1λ2) + λ2
1λ2 + λ2

2λ1

= (0 + λ1)(0 + λ2)(λ1 + λ2)

= (0 + λ1 + λ2 + λ1λ2)(λ1 + λ2).

But this is an instance of the following important phenomenon (in arbitrarily
many indeterminates):

Theorem 3.8. [15, Theorem 7.53] Suppose f =
∑m

i=1 fi is written as a sum of
monomials, for m ≥ 2. Then f divides

∏
j �=i(fi + fj). More precisely,∏

i<j

(fi + fj) = g1 · · · gm−1 (3.2)

where g1 = f =
∑

i fi, g2 =
∑

i<j fifj, . . . , and gm−1 =
∑

i

∏
j �=i fj.

It follows that the root set of any polynomial is contained as a subvariety
of a union of hyperplanes. Algebraically, it implies that every prime ideal of the
polynomial semiring contains a binomial (sum of two monomials).
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3.3. A tropical version of the Hilbert Nullstellensatz

As in commutative ring theory, we define the radical
√
A of a subset A ⊂ R as

√
A = {a ∈ R : ak ∈ A for some k}.

An ideal A of R is radical if A =
√
A. The situation here is actually nicer than the

classical one – for any supertropical semiring R, the radical of any sub-semiring
of Fun(R(n), R) is also a sub-semiring, because of the Frobenius property (Re-
mark 2.5).

The connection between supertropical algebra and geometry is more subtle
than in the classical case. Given a polynomial f =

∑
j hj (written as a sum of

monomials), for each tangible monomial hj we define the jth tangible component
Dj of f to be the set

Dj := {a ∈ (T ∪ {0})(n) : f(a) = hj(a)}.

Thus, the union of the tangible components of f is the complement of its tangi-
ble root set. Assuming F is a supertropical semifield, radical semiring ideals of
F [λ1, . . . , λn] correspond to the tangible components, as follows:

For any tangible component D of f , we write f .D g if g has a tangible
component containing D; f ∈ir-com S for S ⊆ F [λ1, . . . , λn], if, for every tangible
component D = Dj of f , there is some tangible g ∈ S (depending on Dj) with
f .D g. The supertropical version of the Nullstellensatz is:

Theorem 3.9. [15, Theorem 6.17] Suppose A�F [λ1, . . . , λn] and f ∈ R[λ1, . . . , λn].
Then f ∈ir-com A iff f ∈

√
A+ G0[λ1, . . . , λn].

Generation of ideals is tricker: For example, the ideal of �[λ] generated by
{λ+ n : n ∈ �} is not finitely generated.

4. Supertropical matrix theory

We turn to matrix theory, again referring to the classical literature for inspiration.
Let |A| denote the determinant of the matrix A. Classical results in linear algebra
(for matrices A and B) include:

• |AB| = |A||B|;
• |A| = 0 iff the rows of A are linearly dependent;
• A adj(A) = |A|I;
• fA(A) = 0, where fA = |λI −A|;
• The roots of fA are eigenvalues of A;
• If fA is separable, then |A| is diagonalizable;
• Cramer’s rule enables one to solve the matrix equation Ax = v.
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4.1. Review of matrix theory over the max-plus algebra

There is a considerable literature for matrices over the max-plus algebra, espe-
cially relating to the asymptotic behavior of matrices with entries < 1, which are
used in the theories of discrete event systems, stochastic processes, and dynamic
programming. We review some previously known results:

An important combinatoric tool is the weighted digraph GA = (V,E) of an
n × n matrix A = (ai,j). This graph has vertex set V = {1, . . . , n}, and an edge
(i, j) from i to j (given weight ai,j) whenever ai,j �= 0R. The matrix A is said
to be irreducible if GA is strongly connected. Each summand of the determinant
corresponds to a multicycle of length n.

The maximal cycle mean ρmax(A), in GA is the maximum ratio w(C)/�(C)
over all the cycles C in GA, where w(C) and �(C) denote respectively the weight
and the length of the cycle C in GA.

1. For any matrix A, ρmax(A) is the maximal eigenvalue of A and is associated
with the eigenvector vρmax of ρmax.

2. When A is irreducible, ρmax(A) > 0 is the only eigenvalue of A.
3. ρmax(A) is the maximal root of the characteristic polynomial of A.

The Kleene star A∗ of a matrix A ∈Mn(�) is

A∗ := I +A+A2 +A3 + . . . ,

Given a matrix A = (aij), where each cycle of GA has weight < 1, then:

1. A∗ =
∑n−1

i=0 A
i ,

2. A∗u is the unique solution of the system x = Ax+ u, where u, x ∈ �(n).

A combinatoric version of the Cayley-Hamilton theorem was proved by
Straubing [31]. Definitions of matrix rank have been put forward by Gondran-
Minoux, and by Develin, Santos and Sturmfels, Barvinok (also called Schein) and
Kapranov ranks [2, 5, 6, 9, 10, 21, 22], e.g., the largest k such that the matrix has
a k × k nonsingular submatrix. Also, Sturmfels [32] has utilized a version of the
resultant in combinatorics.

4.2. Supertropical determinants

These various notions can be unified and strengthened by means of the supertrop-
ical structure. Supertropical matrix theory starts with the determinant. Since we
cannot take negatives, we simply drop the minus signs (which is reasonable since
+1 = −1 in characteristic 2). Our main tool is the permanent |A|, which can be
defined for any matrix A over any commutative semiring. To emphasize its paral-
lel to the determinant, we call the permanent the tropical determinant. Although
the permanent is not multiplicative over arbitrary commutative semirings, it is
multiplicative in this theory, in a certain sense.

Let us develop the supertropical determinant in detail. Assume that R =
(R,G0, ν) is a supertropical domain. Take V = R(n), with the standard basis
(e1, . . . , en). V has the ghost subspace H0 = G(n)

0 . As before, we define the relation



Supertropical Algebra 295

v |
H
= w to denote v = w + y for y ∈ H0. Let us define the function Φγ : V (n) → R

by the following formula, where vi = (vi,1, . . . , vi,n):

Φγ(v1, . . . , vn) = γ
∑

π∈Sn

v1,π(1) · · · vn,π(n), (4.1)

where γ ∈ R is fixed.

Theorem 4.1. Φγ satisfies the following properties:
1. Φγ is linear in each tangible component; i.e.,

Φγ(v1, . . . , αivi + α′
iv

′
i, . . . , vn) = αiΦγ(v1, . . . , vi, . . . , vn)

+ α′
iΦγ(v1, . . . , v′i, . . . , vn).

2. Φγ(v1, . . . , vn) ∈ G0 if vi = vj with i �= j.
3. Φγ(v1, . . . , vn) = 0R if some vi = 0V .
4. Φγ(vπ(1), . . . , vπ(n)) = Φγ(v1, . . . , vn), for all permutations π.
5. Φγ(e1, . . . , en) = γ.

Furthermore, Φγ is unique up to ghost surpassing, in the sense that if Φ′
γ

is another function satisfying the same properties (1)–(5) and Φγ(v1, . . . , vn) is
tangible, then

Φ′
γ(v1, . . . , vn) |

G
= Φγ(v1, . . . , vn).

Define the tropical determinant as Formula (4.1) (normalized):

|(ai,j)| =
∑

π∈Sn

aπ(1),1 · · ·aπ(n),n. (4.2)

Thus, there are two ways for |(ai,j)| to be ghost: Two dominant summands
in the right side of (4.2) are ν-matched, or the dominant summand is ghost. The
former possibility matches the tropical version of a singular matrix over the max-
plus algebra, but one also needs the latter possibility to develop the matrix theory
along the lines of classical matrix algebra.

Definition 4.2. A matrix A is nonsingular if |A| is tangible; A is singular when
|A| ∈ G0. Likewise, the rank of a matrix is the largest k such that A has a non-
singular k × k submatrix.

Theorem 4.3. [17, Theorem 3.5] |AB| |
G
= |A| |B| , for any n × n matrices over a

supertropical semiring. In particular, |AB| = |A| |B| whenever AB is nonsingular.

Proof. Take Φ|B|(A) = |AB| in Theorem 4.1. This satisfies (1)–(5), for γ = |B| ,
and thus must be |A| |B| except when |AB| is ghost. �

Given Theorem 4.3, one might expect a Zariski topology-type argument to
imply that |AB|ν = |A|ν |B|ν for all matrices A and B, presumably seen by mod-
ifying A and B slightly to get tangible tropical determinants. But in [17, Ex-

ample 6.11] it is seen that A =
(
0 0
1 2

)
(over �) satisfies |A|ν = 2ν whereas
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∣∣A2
∣∣ν = 5ν . This might seem to discredit the Zariski density approach, but note

that if Ã =
(
a0 a′0
a1 a2

)
and Ã =

(
b0 b′0
b1 b2

)
where a0, a

′
0, b0, b

′
0 are “close” to 0 and

a1, b1 are “close” to 1 and a2, b2 are “close” to 2, then ÃB̃ =
(
a′0b1 a′0b2
a2b1 a2b2

)
, whose

tropical determinant is (a′0a2b1b2)ν , which is still a ghost! In other words, if Ã, B̃
are “close” to A, then ÃB̃ remains singular, and the Zariski density argument is
inapplicable! This can be understood generically as follows, for the 2 × 2 matrix

A =
(
a1,1 a1,2

a2,1 a2,2

)
: In [17, Example 3.11] it is seen that∣∣A2

∣∣ = (a2
1,1 + a2

2,2)a1,2a
ν
2,1 + |A|2 .

Thus, the familiar product rule for determinants only holds for A when the ghost
term (a2

1,1 + a2
2,2)a1,2a

ν
2,1 is inessential.

4.3. Adjoints

Definition 4.4. The minor A′
i,j is obtained by deleting the i row and j column of A.

The adjoint matrix adj(A) is the transpose of the matrix (a′i,j), where a
′
i,j = |A′

i,j |.

Some easy calculations:
• |A| = ∑n

j=1 ai,j a
′
i,j , ∀i.

• ∑n
j=1 ai,j a

′
k,j ∈ G0,

∑n
j=1 a

′
j,i aj,k ∈ G0, ∀k �= i.

Theorem 4.5. [17, Theorem 4.9]
1. |A adj(A)| = |A|n ,
2. | adj(A)| = |A|n−1

.

The proof is a direct consequence of a special case of a celebrated theorem
of Birkhoff and von Neumann which states that any directed graph where all in-
degrees and out-degrees are equal to k is a disjoint union of k multicycles; one can
quote instead the graph-theoretic version of Hall’s marriage theorem.

Definition 4.6. A quasi-identity matrix is a nonsingular matrix IG which is a mul-
tiplicatively idempotent matrix of tropical determinant 1R, equal to the identity
matrix on the diagonal and ghost off the diagonal.

The identity matrix is a quasi-identity matrix, but there are many other
examples.

Theorem 4.7. For any nonsingular matrix A over a supertropical semifield,

A adj(A) = |A| IA,
for a suitable quasi-identity matrix IA.

Likewise adj(A)A = |A| I ′A, for a suitable quasi-identity matrix I ′A (perhaps
different from IA).
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4.4. The Hamilton-Cayley theorem

One also has a supertropical version of the Hamilton-Cayley theorem: We say that
the matrix A satisfies the polynomial f ∈ R[λ] if f(A) ∈Mn(G0).

Theorem 4.8. [17, Theorem 5.2] Any matrix A satisfies its characteristic polyno-
mial fA = |λI +A|.

(This actually follows from the result of Straubing [31] quoted earlier.)

Definition 4.9. A vector v is a supertropical eigenvector of A, with supertropical
eigenvalue β ∈ T , if Av |

H
= βv.

Theorem 4.10. [17, Theorem 7.10] Every (tangible) root of the polynomial fA is a
supertropical eigenvalue of A.

4.5. Tropical dependence

Definition 4.11. A subset W ⊂ R(n) is tropically dependent if there is a finite sum∑
αiwi |

H
= (0), with each αi tangible or 0R, but not all of them 0R; otherwise W

is called tropically independent.

Theorem 4.12. [17, Theorem 6.5] Suppose R is a supertropical domain. Vectors
v1, . . . , vn ∈ R(n) are tropically dependent, iff the matrix whose rows are v1, . . . , vn

is singular.

More generally, the following numbers are equal (and could be viewed as the
rank of a matrix A over a supertropical domain), cf. [18]:

(a) The number of tropically independent rows of A;
(b) The number of tropically independent columns of A;
(c) The largest size of a nonsingular square submatrix of A.

4.6. Solving supertropical equations

One basic application of matrices in classical algebra is to solve the matrix equation
Ax = v, for a given nonsingular matrix A and vector v. This cannot be done in
general over the max-plus algebra, but one does have the following result:

Theorem 4.13. [19, Theorems 3.3 and 3.5] The matrix equation Ax |
H
= v, for |A|

invertible and v a tangible vector, has a tangible solution given by an analog of
Cramer’s rule, which is the unique largest solution (in terms of ν-values).

This solution gives the solution for Ax = v when it exists.

Example 4.14. Define the Vandermonde matrix A to be the n × n matrix (ai,j),
where ai,j = aj−1

i and a0
i = 1. Then |A| = ∏

i�=j(ai + aj); cf. [16]. Thus, if the
ai are distinct and tangible, A is nonsingular, and the Vandermonde matrix is an
important tool in solving equations.
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Nevertheless, we saw above that the Vandermonde matrix A =
(
0 0
1 2

)
has

the poor behavior that A2 =
(
1 2
3 4

)
is singular.

4.7. The resultant of two polynomials

The tropical resultant has already been studied by Sturmfels [32, 33], Dickenstein,
Feichtner, and Sturmfels [7], and Tabera [34], but our purely algebraic approach is
quite different, leading to a characterization of relatively prime polynomials and a
supertropical version of Bézout’s Theorem. Given two polynomials f(λ) and g(λ)
over a supertropical domain R, one can define the resultant R(f, g) just as in the
classical definition, where one uses the tropical determinant instead of the usual
determinant. Then one has

Theorem 4.15. [20, Theorem 3.14] R(f, g) ∈ T iff f, g do not have a common
tangible root in R.

This leads to a version of Bézout’s theorem, [20, Theorem 5.1].

5. The structure theory of semirings with tangibles and ghosts

One of the pillars of the theory of field extensions is the formal construction of a
field extension K = F [λ]/〈f〉 of F , in which f formally has a root (the coset λ of
λ); moreover, for any field extension L of F containing a root a of f , there is an
injection K → L sending λ !→ a.

We would like a parallel result in supertropical algebra. However, as stated at
the outset, semirings do not in general have a natural theory of quotient structures
(modulo a given ideal), and this poses one of the main challenges to the structure
theory.

In order to circumvent this difficulty, we introduce a quotient structure rem-
iniscent of the Rees quotient from semigroup theory.

Definition 5.1. Suppose R = (R,G0, ν) is a semiring with ghosts. Given an ideal A
of R, we define R/A to be (R,A+G0, ν), the same semiring R but we now enlarge
the ghost ideal to be A+ G0.

When A ⊃ B are ideals of R, we can identify R/B with (R/B)/(A/B), a
rather trivial version of Noether’s second isomorphism theorem.

Remark 5.2. If P is a prime ideal of R containing G0, then R/P becomes a su-
pertropical domain, since by definition of prime ideal, its set of tangible elements
R \ P is a monoid.

Example 5.3. Suppose we want to adjoin the square root of 3 (which is really 3
2 )

to the supertropical semiring F = (�,�ν , ν), the cover of the max-plus algebra of
�. We could take F [λ]/I = (F [λ], I, ν) where I = F [λ](λ2 + 3) + �

ν , and note
that λ2 + 3 ∈ I implies that the element λ can now be viewed as a root of the
polynomial λ2 + 3.
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Instead, one could simply adjoin 3
2 to � (taken in the divisible closure � of �),

so we would like some version of Noether’s First Isomorphism Theorem to identify
the two constructions.

Definition 5.4. A supertropical homomorphism ϕ : (R,G0, ν) → (R′,G′
0, ν

′) of
semirings with ghosts is a semiring homomorphism such that ϕ(aν) = ϕ(a)ν

′
for

all a ∈ R.
In particular, ϕ(1ν

R) = ϕ(1R)ν
′
= 1ν′

R′ , so ϕ(G0) ⊆ G′
0.

Definition 5.5. The ghost kernel g-kerϕ of a supertropical homomorphism ϕ :
(R,G0, ν) → (R′,G′

0, ν
′) is ϕ−1(G′

0). The homomorphism ϕ is a ghost injection if
g-kerϕ ⊆ G0.

Ghost injections have the following application to supertropical domains:

Remark 5.6. If ϕ is a ghost injection and a, b ∈ T such that ϕ(a)ν
′
= ϕ(b)ν

′
, then

aν = bν . (Indeed,
ϕ(a+ b) = ϕ(a) + ϕ(b) = ϕ(a)ν

′
,

implying a+ b ∈ G0, so aν = bν .)

We are now ready for our version of Noether’s First Isomorphism Theorem,
which essentially holds by definition:

Remark 5.7. Suppose ϕ : R → W is a supertropical homomorphism, with ghost
kernel A. Then ϕ induces a natural ghost injection R/A→W .

Although immediate, this result is quite useful in the structure theory.

Example 5.8. Suppose f ∈ F [λ] and a is a root of f in some semiring with ghosts
R containing F . Let I = F [λ]f . Then there is a supertropical homomorphism from
F [λ]/I to R, induced by the substitution homomorphism g(λ) !→ g(a). (Indeed,
since f(a) is ghost, the ghost kernel contains I.)

6. Conclusions and directions for further research

6.1. The role of ghosts

“Ghost elements” were introduced into supertropical domains in order to facilitate
calculations of roots of polynomials and supertropical determinants. But they seem
to have their own significance, as a kind of “noise.” The fact that the product law
holds for tangible determinants but not for ghost determinants suggests some sort
of “uncertainty” arising from ghosts, and it would be interesting to see whether
this uncertainty is compatible with other notions of uncertainty arising in physics
and statistics. Also, the breakdown of the product law for determinants may be
related to pathological situations in game theory and economics. A careful analysis
of matrix multiplication involving singular matrices should lead to insight in these
matters.
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6.2. Structure theory

The structure theory of supertropical algebras is still in its early development, and
one can “tropicalize” many algebraic notions in order to apply their techniques
to supertropical algebra. For example, there is the natural notion of a supertrop-
ical module (V,H, μ) over a supertropical domain (R,G0, ν), namely a semiring
module V supplied with a ghost submodule H, together with a ghost projection μ
compatible with the ghost map ν of R.

Finally, in view of Example 2.7, and since many theorems of supertropical
algebra parallel the theory of algebras of characteristic 2, there should be a theory
of semirings with ghosts that encompasses both theories. M. Akian, S. Gaubert,
and A. Guterman [3] prove some pretty results in this direction.

6.3. Linear algebra

Having the basic properties of matrices in hand, one should go on to develop vari-
ous analogs of vector spaces. In the supertropical situation, a vector subspace of a
vector space can have the same dimension, leading to some interesting situations.
The authors have launched such an investigation together with Knebusch, includ-
ing supertropical vector spaces and their bases, and supertropical inner products.

6.4. Category theory

Having established the basic supertropical algebraic notions, one could study su-
pertropical categories, and develop the appropriate homology and cohomology
theories. One major advance would be to put all of this in the general framework
of category theory, both as a source of examples and as a way of tapping general
categorical results.

6.5. Multiple ghost layers

Another promising direction of research is to refine the ghost ideal, so as to obtain
different layers of ghosts, which thereby should enable one to consider the multi-
plicity of a root. This approach, although considerably more intricate, leads to a
cleaner theory, including unique factorization (with one exceptional class) in the
polynomial semiring F [λ].
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1. Projective modules

All rings are associative with identity element and all modules are unital. Let R
be a ring. For any R-module M we denote HomR(M,R) by M∗. Recall that an
ideal A of R is called idempotent if A = A2. An idempotent ideal A of R will be
called trivial if A = R or A = 0, otherwise A is called non-trivial. Clearly if e
is an idempotent element of R and A is the ideal ReR then A is an idempotent
ideal of R. However, it is easy to give examples of rings R for which the only
idempotent elements are 0, 1 but R contains non-trivial idempotent ideals and
we mention some examples later. We are interested in the relationship between
idempotent ideals of R and projective R-modules. Recall the Dual Basis Lemma
(see, for example, [2, p. 203] or [43, 18.6]).
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Lemma 1.1. Let R be any ring. A right R-module X is projective if and only if
there exist an index set Λ, elements xλ (λ ∈ Λ) of X and ϕλ (λ ∈ Λ) of X∗ such
that for each x ∈ X there exists at most a finite number of elements λ ∈ Λ such
that ϕλ(x) �= 0 and x =

∑
λ∈Λ xλϕλ(x).

Next we mention a famous theorem of Kaplansky [17] (see, for example, [2,
Corollary 26.2] or [43, 8.10]).

Theorem 1.2. Let R be any ring. Then every projective (right or left) R-module is
a direct sum of countably generated submodules.

As a consequence Kaplansky [17] proved the following result.

Corollary 1.3. Let R be a ring with Jacobson radical J such that the ring R/J is
a division ring. Then every projective (right or left) R-module is free.

Let R be a general ring and again let J denote the Jacobson radical of R.
Corollary 1.3 has been generalized in a number of different ways. For example,
Beck [4] proved that if X is a projective right R-module such that X/XJ is a
free (R/J)-module then X is a free R-module. This is a consequence of the fact
that if F is a free right R-module such that F = FJ + F1, for some submodule
F1 of F , then there exists a direct summand F2 of F such that F2 ⊆ F1 and
F2

∼= F . Beck’s Theorem was improved by Pr̆́ıhoda [28] who proved that if X and
Y are projective right R-modules and X/XJ ∼= Y/Y J then X ∼= Y . Recall that a
projective R-module is called a generator in case there exists a positive integer n
such that the projective R-module X(n) contains a non-zero free direct summand.
In another direction, Akasaki [1] proved that if R/J is a finite direct product of
division rings and every projective R-module is a generator then every projective
R-module is free. This not only generalized Corollary 1.3 but also a theorem of
Hinohara [11] who proved the result in case R is commutative. Hinohara [12]
extended his theorem to what he called “weakly Noetherian” commutative rings.

We also ought to mention work of Warfield [41] here. An R-moduleM is said
to have the exchange property if, for any R-module L such that L = M ⊕ N =
⊕i∈ILi, for some submodules N and Li (i ∈ I) of L, then there exist submodules
Hi ⊆ Li (i ∈ I) such that L = M ⊕ (⊕i∈IHi). The ring R is called an exchange
ring if the module RR has the exchange property and in this case the module RR
also has the exchange property. The ring R is an exchange ring provided for each
r in R there exists an idempotent e in R such that rR + J = eR + J . If R is an
exchange ring then every projective right R-module is isomorphic to a direct sum
of right ideals each generated by an idempotent. See [41] for more details.
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2. Idempotent ideals

Let R be a ring and let M be a right R-module. Following [43, p. 154] the trace
ideal of M , denoted by Tr(M), is defined by

Tr(M) =
∑

ϕ∈M∗
ϕ(M).

It is well known and easy to check that Tr(M) is a two-sided ideal of R. Now
suppose that X is a projective right R-module. By Lemma 1.1 there exist an
index set Λ, elements xλ (λ ∈ Λ) of X and ϕλ (λ ∈ Λ) of X∗ such that for each
x ∈ X there exists at most a finite number of elements λ ∈ Λ such that ϕλ(x) �= 0
and x =

∑
λ∈Λ xλϕλ(x). Let θ ∈ X∗. For each x ∈ X ,

θ(x) = θ

(∑
λ∈Λ

xλϕλ(x)

)
=

∑
λ∈Λ

θ(xλ)ϕλ(x) ∈ Tr(X)2.

It follows that Tr(X) is an idempotent ideal of R. This and other properties of
trace ideals we state in the next result. The proofs are very easy and are omitted.

Lemma 2.1. Let R be any ring and let X and Xi (i ∈ I) be projective right R-
modules. Then
(i) Tr(X) is an idempotent ideal of R.
(ii) X = XTr(X).
(iii) Tr(X) = ∩{A : A is an ideal of R such thatX = XA}.
(iv) Tr(X) = R if and only there exists a positive integer n such that X (n) ∼= R⊕Y

for some R-module Y .
(v) Tr(eR) = ReR for every idempotent element e in R.
(vi) Tr(⊕i∈IXi) =

∑
i∈I Tr(Xi).

Lemma 2.1 has the following consequence (see [3, Proposition 2.4]).

Corollary 2.2. Let R be any ring and let X be a projective right R-module. Then
Tr(X) = R if and only if the countable direct sum X ⊕X ⊕ . . . is free.

Let R be any ring and let X be any non-zero projective right R-module with
trace ideal T . Note that X = XT so that the (R/T )-module X/XT is zero. Given
an infinite cardinal ℵ, in [3] Bass defines X to be uniformly ℵ-big provided X has
a generating set of cardinality ℵ (and in this case we shall call X ℵ-generated)
but there does not exist a proper ideal A of R such that X/XA has a generating
set of cardinality less than ℵ. Then X is uniformly big if X is uniformly ℵ-big for
some infinite cardinal ℵ. Clearly (non-zero) uniformly big projective modules are
generators. As usual ℵ0 will denote the cardinality of the natural numbers. Bass
[3, Theorems 2.2 and 3.1] proves the next result.

Theorem 2.3. Let R be a ring with Jacobson radical J .
(i) If R/J is right or left Noetherian then every uniformly ℵ-big projective right

R-module is free, for every uncountable cardinal ℵ.



306 P.F. Smith

(ii) If R/J is right Noetherian then every uniformly ℵ0-big projective right R-
module is free.

Bass [3] defines a ring R to be right p-connected provided Tr(X) = R for
every non-zero projective right R-module X , in other words if every non-zero
projective right R-module is a generator. He proves the following consequence of
Theorems 1.2 and 2.3 (see [3, Corollary 3.4]).

Corollary 2.4. Let R be a right p-connected ring with Jacobson radical J such that
the ring R/J is right Noetherian. Then every infinite direct sum of projective right
R-modules is free. In particular, every non-countably generated projective right
R-module is free.

Note that Corollary 2.2 shows that every ring R such that non-finitely gen-
erated (or even non-countably generated) projective modules are free is right p-
connected. Note also that if R is a ring with Jacobson radical J such that R/J is
a right Noetherian ring then an ℵ0-generated projective right R-module X is free
if and only if X/XA is not finitely generated for every proper ideal A of R. This
raises the following obvious question.

Question 2.5. Let R be a ring with Jacobson radical J such that the ring R/J is
left Noetherian. Is every uniformly ℵ0-big projective right R-module free?

The relationship that exists between projective modules and idempotent
ideals was further illustrated byWhitehead [42] who gives a necessary and sufficient
condition for an idempotent ideal to be the trace ideal of a countably generated
projective module. This gives as a consequence the following result.

Theorem 2.6. Let A be an idempotent ideal of a ring R such that the left ideal
A is finitely generated. Then there exists a countably generated projective right
R-module X such that A = Tr(X).

Corollary 2.7. Let R be a left Noetherian ring. Then R is right p-connected if and
only if R has no non-trivial idempotent ideals.

Note that Corollary 2.7 is not true for rings R which are not left Noetherian.
In Section 5 we shall give an example of a commutative ring R such that every
projective R-module is free, and therefore R is p-connected, but R contains a
non-trivial idempotent ideal.

3. Projective modules and idempotent ideals

In this section we investigate further the relationship between projective modules
and idempotent ideals. Let R be a ring and let A be any ideal of R. Consider the
descending chain of ideals

A = A1 ⊇ A2 ⊇ · · · ⊇ Aα ⊇ Aα+1 ⊇ . . .
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of R, where, for each ordinal α ≥ 1, Aα+1 = AαA and Aα = ∩1≤β<αA
β when

α is a limit ordinal. Because R is a set there exists an ordinal ρ ≥ 1 such that
Aρ = Aρ+1 and in this case we write κ(A) = Aρ. Jacobson [13, Theorem 11] proves
that if R is a right Noetherian ring with Jacobson radical J then κ(J) = 0. We
can then define a descending chain of ideals

A = κ0(A) ⊇ κ1(A) ⊇ · · · ⊇ κα(A) ⊇ κα+1(A) ⊇ . . . ,

where, for each ordinal α ≥ 0, κα+1(A) = κ(κα(A)) and κα(A) = ∩0≤β<α κ
β(A)

for every limit ordinal α. In particular, note that κ1(A) = κ(A). Because R is a
set there exists an ordinal ν ≥ 0 such that κν(A) = κν+1(A). In this case, clearly
κν(A) is an idempotent ideal of R contained in A. Let id(A) denote the sum of all
idempotent ideals of R contained in A. Clearly id(A) is an idempotent ideal of R
and id(A) ⊆ κα(A) for every ordinal α ≥ 0. We have proved the following result.

Lemma 3.1. Let A be an ideal of an arbitrary ring R. Then there exists an ordinal
ν ≥ 0 such that κν(A) = id(A).

Let A be any ideal of a ring R and let B = id(A). Note that B is the unique
largest idempotent ideal of R contained in A. Let C be any ideal of R such that
B ⊆ C ⊆ A and C/B is an idempotent ideal of the ring R/B. Then

C ⊆ C2 +B = C2 +B2 ⊆ C2,

and hence C = C2 and B = C. We have proved that id(A/ id(A)) = 0.
We now define, for any ideal A of a ring R, δ(A) = ∩∞

i=1A
i and a descending

chain
A = δ0(A) ⊇ δ1(A) ⊇ · · · ⊇ δα(A) ⊇ δα+1(A) ⊇ . . . ,

where, for each ordinal α ≥ 0, δα+1(A) = δ(δα(A)) and δα(A) = ∩0≤β<α δ
β(A)

for every limit ordinal α.

Lemma 3.2. With the above notation, if A is a proper ideal of a ring R then
κα(A) ⊆ δα(A) for every ordinal α ≥ 0.

Proof. By transfinite induction on α ≥ 0. �
Note that the above remarks show that, for any ideal A of a ring R, there

exists an ordinal μ ≥ 0 such that δμ(A) = id(A), and, of course, in this case
κμ(A) = id(A). Thus the sequence {κα(A)} “converges” to id(A) faster than the
sequence {δα(A)}. In [14], Jategaonkar shows that, for each ordinal α ≥ 1, there
exists a principal right ideal ring with unique maximal ideal J such that R/J is a
division ring and κ(J) = 0 but δα(J) �= 0.

Let R be a ring with Jacobson radical J . Krause and Lenagan [20] prove
that if R is a ring with right Krull dimension α, for some ordinal α ≥ 0, then
δα(J) is nilpotent and hence δα+1(J) = 0. Herstein [9] gives an example of a
right Noetherian PI ring with δ(J) �= 0 and he and Small [10] show that, for each
right Noetherian PI ring R, δm(J) = 0 for some positive integer m. Cauchon [6]
proved that δ2(J) = 0 for every right Noetherian PI ring R and Jategaonkar [15]
proved that δ(J) = 0 for every right and left FBN ring (and in particular every
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right and left Noetherian PI ring). (For the definition and basic properties of Krull
dimension, PI rings and FBN rings see [23].) Now we ask the following question:

Question 3.3. Does there exist a right and left Noetherian ring R and an ideal A
of R such that κn(A) = 0, for some positive integer n, but δm(A) �= 0 for every
positive integer m?

In view of Bass’ work referred to in Section 1 above we are interested in
the following situation: X is a projective right module over a ring R and A is an
ideal of R such that X/XA has a generating set of cardinality ℵ (i.e., X/XA is
ℵ-generated). We first deal with the situation when X/XA is finitely generated.

Theorem 3.4. Let A be an ideal of a ring R and let X be a projective right R-
module such that X/XA is a finitely generated module. Then X/Xκ(A) is finitely
generated.

Proof. Let B = κ(A). Let Y be a finitely generated submodule of X such that
X = Y +XA. Let F be a free right R-module with basis {fλ : λ ∈ Λ}, for some
index set Λ, such that F = X ⊕X ′, for some submodule X ′ of F . There exists a
finite subset Λ1 of Λ such that Y ⊆ F1, where F1 =

∑
λ∈Λ1

fλR. Let Λ2 = Λ \ Λ1

and let F2 =
∑

λ∈Λ2
fλR. Note that

X = Y +XA ⊆ F1 + (F1 + F2)A = F1 ⊕ F2A.

Now we claim that
X ⊆ F1 ⊕ F2A

α,

for every ordinal α ≥ 1. Suppose that this statement is false and let α be the least
ordinal such thatX � F1⊕F2A

α. Then α ≥ 2. If α−1 exists thenX ⊆ F1⊕F2A
α−1

and hence

X = Y +XA ⊆ Y + (F1 ⊕ F2A
α−1)A ⊆ F1 ⊕ F2A

α.

Thus α is a limit ordinal and

X ⊆ F1 ⊕ F2A
β ,

for all ordinals 1 ≤ β < α. It follows that

X ⊆ ∩1≤β<α(F1 ⊕ F2A
β) = F1 ⊕ [∩1≤β<α(F2A

β)] = F1 ⊕ F2A
α,

a contradiction. Thus X ⊆ F1 ⊕ F2A
α for all ordinals α ≥ 1. In particular, X ⊆

F1 ⊕ F2B. It follows that

X ⊆ F1 ⊕ F2B ⊆ F1 + (X +X ′)B ⊆ F1 +XB +X ′B,

and hence X = π(X) = π(F1)+XB, where π : F → X is the canonical projection.
Because, F1 is finitely generated, we deduce that π(F1) is finitely generated and
hence so too is X/XB. �

Note that the above proof can easily be adapted to prove that if A an ideal
of R such that, for some projective right R-module X , X/XA is ℵ-generated, for
some infinite cardinal ℵ, then X/Xκ(A) is also ℵ-generated.
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Corollary 3.5. Let R be a right Noetherian ring with Jacobson radical J such
that every projective right (R/J)-module is finitely generated or free. Then every
projective right R-module is finitely generated or free.

Proof. Let X be any projective right R-module. Then X/XJ is a projective right
(R/J)-module. If X/XJ is free then X is a free R-module by Beck’s Theorem
mentioned above (see [4]). Suppose that X/XJ is finitely generated. By Theorem
3.4 and [13, Theorem 11], X is finitely generated. �

Now we ask:

Question 3.6. Let R be a ring with Jacobson radical J such that every projective
(R/J)-module is finitely generated or free. Is every projective R-module finitely
generated or free?

Note also the following immediate corollary of Theorem 3.4.

Corollary 3.7. Let A be an ideal of a ring R and let X be a projective right R-
module such that X/XA is a finitely generated module. Then X/Xκn(A) is finitely
generated for every positive integer n.

This corollary immediately raises the following question.

Question 3.8. Let A be an ideal of a ring R and let X be a projective right R-
module such that X/XA is a finitely generated module. Is X/Xκω(A) also finitely
generated, where ω is the first infinite ordinal?

The difficulty that arises in trying to answer Question 3.8 is that the generat-
ing sets for the modules X/Xκn(A) may increase in size as the positive integer n
increases. For example in the proof of Theorem 3.4, π(F1) may require more gen-
erators than Y . We shall show that this problem disappears for infinite generating
sets. We first prove a lemma.

Lemma 3.9. Let R be an arbitrary ring, let F be a free right R-module with basis
{fλ : λ ∈ Λ} and let X be a direct summand of F with π : F → X the canonical
projection. Let Y be a countably generated submodule of X. Then there exist a
countably generated submodule Z of X with Y ⊆ Z and a countable subset Ω of Λ
such that if G =

∑
λ∈Ω fλR then Z ⊆ G and π(G) = Z.

Proof. Suppose that S is a countable generating set for Y . For each s ∈ S there
exists a finite subset Λs of Λ such that s ∈ ∑

λ∈Λs
fλR. Let ΛY = ∪s∈S Λs and let

FY =
∑

λ∈ΛY
fλR. Then ΛY is a countable subset of Λ and Y ⊆ FY . Note that

Y ⊆ π(FY ) =
∑

λ∈ΛY
π(fλ)R.

Let Y1 =
∑

λ∈ΛY
π(fλ)R. As before, starting with Y1 we can find a countable

subset ΛY1 of Λ such that Y1 ⊆ FY1 =
∑

λ∈ΛY1
fλR. Let Y2 =

∑
λ∈ΛY1

π(fλ)R. Re-
peat this process to obtain countably generated submodules Y ⊆ Y1 ⊆ Y2 ⊆ · · · of
X and countable subsets ΛY ⊆ ΛY1 ⊆ ΛY2 ⊆ · · · of Λ such that Yi ⊆

∑
λ∈ΛYi

fλR

and Yi+1 =
∑

λ∈ΛYi
π(fλ)R, for all positive integers i. Let Z = ∪i≥1Yi, Ω =
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∪i≥1ΛYi and let G =
∑

λ∈Ω fλR. Then Ω is a countable subset of Λ. Clearly
Z ⊆ G. Let λ ∈ Ω. Then π(fλ) ∈ Yi ⊆ Z, for some i ≥ 1. Thus π(G) ⊆ Z. But
Z ⊆ G implies that Z = π(Z) ⊆ π(G), so that π(G) = Z. �

For convenience, we have chosen to state and prove Lemma 3.9 for a count-
ably generated submodule Y but it is clear that the same proof would prove the
corresponding result for any ℵ-generated submodule Y , for any infinite cardinal
ℵ. More precisely, if, in Lemma 3.9, Y is ℵ-generated then so too is Z and Ω has
cardinality at most ℵ. But we have the additional information that if Y is finitely
generated then Ω is countable. This brings us to the main new theorem.

Theorem 3.10. Let A be an ideal of a ring R and let X be a projective right
R-module such that X/XA is ℵ-generated, for some infinite cardinal ℵ. Then
X/X id(A) is ℵ-generated.

Proof. Let B = id(A). Let Y be an ℵ-generated submodule of X such that X =
Y +XA. Let F be a free right R-module with basis {fλ : λ ∈ Λ}, for some index
set Λ, such that F = X⊕X ′, for some submodule X ′ of F . Let π : F → X denote
the canonical projection. By Lemma 3.9 there exist an ℵ-generated submodule Z
of X with Y ⊆ Z and a subset Ω of Λ of cardinality at most ℵ such that if G =∑

λ∈Ω fλR then Z ⊆ G and π(G) = Z. Let Ω′ = Λ \ Ω and let G′ =
∑

λ∈Ω′ fλR.
Note that

X = Y +XA ⊆ Z + (G+G′)A ⊆ G⊕G′A.

Now we claim that
X ⊆ G⊕G′κα(A),

for every ordinal α ≥ 0. Suppose that this is not the case. Let α be the least ordinal
such that X � G ⊕ G′κα(A). Clearly α ≥ 1. If α − 1 exists then X ⊆ G ⊕ G′C
where C = κα−1(A). Next we prove by induction that

X ⊆ G⊕G′Cβ ,

for every ordinal β ≥ 1. Suppose that this statement is false and let β be the
least ordinal such that X � G ⊕ G′Cβ. Clearly β ≥ 2. If β − 1 exists then X ⊆
G⊕G′Cβ−1. Note that

X ⊆ G+G′C = G+ (X +X ′)C = G+XC +X ′C,

so that X = π(X) ⊆ π(G) +XC = Z +XC. Thus

X ⊆ Z +XC ⊆ Z + (G⊕G′Cβ−1)C ⊆ Z +GC +G′Cβ ⊆ G⊕G′Cβ ,

a contradiction. Thus β is a limit ordinal and

X ⊆ G⊕G′Cγ ,

for all ordinals 1 ≤ γ < β. It follows that

X ⊆ ∩1≤γ<β(G⊕G′Cγ) = G⊕ [∩1≤γ<β(G′Cγ)] = G⊕G′Cβ ,

a contradiction. Thus X ⊆ G⊕G′Cβ for all ordinals β ≥ 1.
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In particular,
X ⊆ G⊕G′κ(C) = G⊕G′κα(A),

another contradiction. Thus α is a limit ordinal. It follows that X ⊆ G⊕G′κμ(A)
for every ordinal 0 ≤ μ < α. Now we have

X ⊆ ∩0≤μ<α[G⊕G′κμ(A)] = G⊕ [∩0≤μ<α(G′κμ(A))] = G⊕G′κα(A),

a contradiction. Thus X ⊆ G⊕G′κα(A) for all ordinals α ≥ 0. In particular,

X ⊆ G⊕G′ id(A) ⊆ G+X id(A) +X ′ id(A),

so that X = π(X) ⊆ π(G) +X id(A) = Z +X id(A) and hence X = Z +X id(A).
Thus X/X id(A) is ℵ-generated. �

Theorem 3.10 has many consequences and we mention some of these next.

Corollary 3.11. Let A be an ideal of a ring R and let X be a projective right
R-module such that X/XA is finitely generated. Then X/X id(A) is countably
generated.

Corollary 3.12. Let R be any ring and let ℵ be any cardinal with ℵ > ℵ0. Then an
ℵ-generated projective right R-module X is uniformly ℵ-big if and only if X/XA
is not ℵ′-generated for any proper idempotent ideal A of R and cardinal ℵ′ < ℵ.

Proof. The necessity is clear. Conversely, suppose that X is not uniformly ℵ-big.
There exists a cardinal ℵ′ < ℵ and a proper ideal B of R such that X/XB is ℵ′-
generated. By Theorem 3.10X/X id(B) is ℵ′-generated and id(B) is an idempotent
ideal of R. �

Compare the next result with Corollary 2.4.

Corollary 3.13. Let R be a ring with no non-trivial idempotent ideals. Then every
projective (right or left) R-module is countably generated or uniformly big.

Proof. By Corollary 3.12. �

4. Shallow rings

Let R be any ring. Recall that, for any ideal A of R, id(A) denotes the unique
maximal idempotent ideal contained in A. Following [36], given a non-negative
integer n, the ring R will be called right n-shallow provided κn(A) = id(A) for
every ideal A of R. Next, the ring R is called right shallow if for each ideal A
of R there exists a positive integer m such that κm(A) = id(A). For example,
Jacobson’s Theorem mentioned above implies that if R is a right Noetherian ring
with Jacobson radical J and J is a maximal ideal of R then R is right 1-shallow (in
fact, κ(A) = 0 for every proper ideal A of R). More generally, it is proved in [36,
Theorem 3.4] that if R is a right Noetherian ring with Jacobson radical J such that
J is an intersection of n distinct maximal ideals, for some positive integer n, then
R is right (2n-1)-shallow. If R is a commutative Noetherian ring with n minimal
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prime ideals, where n is a positive integer, then R is (right) (n+1)-shallow (see
[36, Theorem 2.6]).

A ring R is called right ℵ0-hereditary provided every countably generated
right ideal is projective. Bergman [5, Corollary 8.3] has shown that if A is an ideal
of a left ℵ0-hereditary ring then κ(A) = ∩∞

i=1A
i. If R is also right ℵ0-hereditary

then κ(A) is an idempotent ideal (see [5, Corollary 5.3]). Thus right and left ℵ0-
hereditary rings are right and left 1-shallow. Moreover, right hereditary rings are
right 1-shallow by [36, Proposition 4.4]. Other examples of right shallow rings
include right Artinian rings (clearly), principal right ideal rings (see [36, Theorem
2.8]) and rings with right Krull dimension 1 (see [36, Proposition 2.9]).

In order to find examples of right shallow rings we now prove the following
result.

Theorem 4.1. Let R be a semiprime ring such that R contains only a finite number
of minimal prime ideals and whenever P ⊆ Q are prime ideals of R there exists a
positive integer m such that κm(Q) ⊆ P (respectively, δm(Q) ⊆ P ). Let A be any
ideal of R. Then there exists a positive integer n such that κn(A) (respectively,
δn(A)) is generated by a central idempotent of R.

Proof. We prove the result for κ, the proof for δ being similar. Let P1, . . . , Pk

denote the minimal prime ideals of R, for some positive integer k. Note that
P1 ∩ · · · ∩ Pk = 0. Let A be any proper ideal of R. Clearly A �= R implies that
A + Pi �= R for some 1 ≤ i ≤ k. Without loss of generality, i = 1. There exists a
maximal idealM of R such that A+P1 ⊆M . By hypothesis, κt(A) ⊆ κt(M) ⊆ P1

for some positive integer t. LetA1 = κt(A) and note thatA1 ⊆ P1. LetB = ∩n
i=2Pi.

If R = A1 + Pi (2 ≤ i ≤ n) then R = A1 + B and A1 ∩ B = 0 so that A1

is generated by a central idempotent. Otherwise we can suppose without loss of
generality that R �= A1+P2. Then, as before, there exists a positive integer s such
that κs(A1) ⊆ P2, so that κs+t(A) ⊆ P1∩P2. Repeating this argument there exist
a positive integer n and an integer 1 ≤ j ≤ k such that κn(A) ⊆ P1 ∩ · · · ∩Pj and
R = κn(A) + (Pj+1 ∩ · · · ∩ Pk). Thus R = κn(A) ⊕ (Pj+1 ∩ · · · ∩ Pk) and hence
κn(A) is generated by a central idempotent element of R. �

Note that in Theorem 4.1 one only needs that Q be a maximal ideal of R.
To see how Theorem 4.1 is useful in providing examples of right shallow rings we
prove the following corollary.

Corollary 4.2. Let R be a ring which satisfies the ascending chain condition on
(two-sided) ideals such that whenever P ⊆ Q are prime ideals of R there exists a
positive integer m such that κm(Q) ⊆ P . Then R is a right shallow ring.

Proof. It is well known that R contains only a finite number of minimal prime
ideals and that if P1, . . . , Pk are the minimal prime ideals of R, for some positive
integer k, then the ideal N = P1∩· · ·∩Pk is nilpotent. Let R denote the semiprime
ring R/N . Let A be any proper ideal of R. Let A denote the ideal (A+N)/N of
R. By Theorem 4.1 there exists a positive integer n such that κn(A) is generated
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by a central idempotent element e = e+N of R. Because e+N ∈ A = (A+N)/N
we can suppose without loss of generality that e ∈ A. Because idempotents can
be lifted modulo the nilpotent ideal N , we can suppose without loss of generality
that e = e2. It is easy to check that (κn(A) +N)/N ⊆ κn(A) and hence we have
the following:

ReR ⊆ κn(A) ⊆ ReR+N.

Suppose that N t = 0 for some positive integer t. Then (κn(A))t ⊆ (ReR+N)t ⊆
ReR + N t = ReR, so that κn+1(A) = ReR = id(A). It follows that R is a right
shallow ring. �

An ideal A of a general ring R has the right Artin-Rees property or simply
the right AR property provided for each right ideal L of R there exists a positive
integer n such that L ∩ An ⊆ LA. For a discussion of the AR property see [23,
Section 4.2] or [39]. Perhaps the most familiar ideals with the right AR property
are those found by Nouazé and Gabriel [25]. For any ring S, let C(S) denote the
centre of S. Following [23, 4.1.13], given a positive integer k, elements c1, c2, . . . , ck
of R form a centralizing sequence of elements of R provided

c1 ∈ C(R) and ci ∈ C(R/(c1R+ · · ·+ ci−1R)) for all 2 ≤ i ≤ k.

Nouazé and Gabriel [25, 2.7] proved that if R is a right Noetherian ring and A
an ideal of R such that A is generated by a centralizing sequence of elements of
R then A satisfies the right AR property. This fact was generalized by McConnell
(see [23, 4.2.7]). By a right Ore set in a general ring R we mean a multiplicatively
closed subset T of R such that 1 ∈ T and, for all r ∈ R and t ∈ T , there exist
r1 ∈ R and t1 ∈ T such that rt1 = tr1. Recall that an element c of an arbitrary
ring R is called regular if rc �= 0 and cr �= 0 for every non-zero element r of R. Let
U be a non-empty subset of a ring R. Then rR(U) will denote the right annihilator
and lR(U) the left annihilator of U in R. The next result is taken partially from
[37, Theorem 1.1] (see also [23, 4.2.9]).

Theorem 4.3. Let R be a right Noetherian ring and let A be an ideal of R. Consider
the following statements.
(i) A has the right AR property.
(ii) {1− a : a ∈ A} is a right Ore set.
(iii) κ(A) = {r ∈ R : r(1 − a) = 0 for some a ∈ A}.
(iv) E ∩ κ(A) ⊆ EA for every right ideal E of R.
Then (i) ⇒ (ii) ⇒ (iii) ⇔ (iv).

Proof. (i)⇒ (ii) Let r ∈ R, a ∈ A. For each positive integer n let bn = r(1−an)−
(1−an)r = anr−ran ∈ An. Let E = b1R+b2R+. . . . BecauseR is right Noetherian,
there exists a positive integer k such that E = b1R + · · · + bkR. Moreover, by
hypothesis, E ∩Am ⊆ EA for some positive integer m. Let n = max{k,m}. Then
bn ∈ E ∩ Am ⊆ EA = b1A + · · · + bkA. Thus there exist ai ∈ A (1 ≤ i ≤ k) such
that bn = b1a1 + . . . bkak and this gives

r(1 − an)− (1− an)r = [r(1 − a)− (1 − a)r]a1 + · · ·+ [r(1 − ak)− (1− ak)r]ak.
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Rearranging the terms we obtain r(1 − c) = (1− a)r1, where

c = an + (1− a)a1 + · · ·+ (1− ak)ak,

and
r1 = (1 + a+ · · ·+ an−1)r − ra1 − · · · − (1 + a+ · · ·+ ak−1)rak.

Note that c ∈ A. Now (ii) follows.
(ii)⇒ (iii) Let S denote the set of elements 1− a where a ∈ A. Let B = {r ∈

R : rs = 0 for some s ∈ S}. Then it can be shown using (ii) that B is an ideal of
R. Clearly B ⊆ κ(A). Let R denote the ring R/B and for each element r in R let
r denote the coset r +B. Let r ∈ R and s ∈ S. Suppose that rs ∈ B. Then there
exists s′ ∈ S such that r(ss′) = rss′ = 0, so that r ∈ B. Now suppose that sr ∈ B.
Consider the ascending chain rR(s) ⊆ rR(s

2) ⊆ · · · of right ideals of R. Because R
is right Noetherian, there exists a positive integer k such that rR(s

k) = rR(s
k+1).

By (ii) there exists r1 ∈ R and s1 ∈ S such that skr1 = rs1. Now sr ∈ B implies
that sk+1r1 ∈ B and hence skr1 ∈ B. Thus rs1 ∈ B and it follows that r ∈ B. We
deduce that S = {s : s ∈ S} is a right Ore set of regular elements of R and we
can form the partial right quotient ring Q = RS . It is easy to check that the set C
of Q consisting of all elements rs, where r ∈ A and s ∈ S, is an ideal of Q and C
is contained in the Jacobson radical J of Q. Because Q is a right Noetherian ring,
κ(C) ⊆ κ(J) = 0. Again it is an easy check to show that (Aα + B)/B ⊆ Cα for
every ordinal α ≥ 0. It follows that κ(A) ⊆ B, as required.

(iii) ⇒ (iv) Let e ∈ E ∩ κ(A). Then e(1 − a) = 0 for some a ∈ A and hence
e = ea ∈ EA.

(iv) ⇒ (iii) Let r ∈ κ(A). Then (iv) gives rR ⊆ rR ∩ κ(A) ⊆ rRA = rA and
hence r(1 − b) = 0 for some b ∈ A. Moreover, if s ∈ R and s(1 − c) = 0 for some
c ∈ A then s = sc ∈ κ(A). �

Corollary 4.4. Let R be a prime right Noetherian ring and let A be a proper ideal
of R such that {1− a : a ∈ A} is a right Ore set. Then κ(A) = 0.

Proof. By Goldie’s Theorem R is a right order in a simple right Artinian ring
(see, for example, [23, Theorem 2.3.6]). Thus R satisfies the descending chain
condition on right annihilators and hence also the ascending chain condition on
left annihilators. There exists c ∈ A such that lR(1−c) is maximal in the collection
of left annihilators of the form lR(1 − a), where a ∈ A. Let b ∈ A and let r ∈ R
such that r(1− b) = 0. Then (1− b)u = (1− c)(1− d) for some u ∈ R and d ∈ A.
But lR(1−c) ⊆ lR(1−c)(1−d) so that lR(1−c) = lR(1−c)(1−d) by the choice of
c. It follows that r(1− c) = 0. By Theorem 4.3, κ(A)(1− c) = 0. Since κ(A) is an
ideal of the prime ring R and 1− c �= 0 it follows that κ(A) = 0, as required. �

Corollary 4.5. Let R be a right Noetherian ring such that whenever P ⊆ Q are
prime ideals of R there exists a positive integer m such that {1 − (c + P ) : c ∈
κm(Q/P )} is a right Ore set in the ring R/P . Then R is a right shallow ring.

Proof. By Corollaries 4.2 and 4.4. �
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We now return to consider projective modules. Let R be a right shallow ring
and let X be a projective right R-module such that X/XA is finitely generated for
some ideal A of R. There exists a positive integer n such that κn(A) = id(A). By
Corollary 3.7 the module X/X id(A) is also finitely generated. Thus a countably
(but not finitely) generated projective right R-module X is ℵ0-big if and only if
there does not exist a proper idempotent ideal I of R such that X/XI is finitely
generated.

Theorem 4.6. Let R be a right shallow ring with no non-trivial idempotent ideals
such that the ring R/J is right Noetherian, where J is the Jacobson radical of R.
Then every projective right R-module is finitely generated or free.

We conclude this section with the following two related questions.

Question 4.7. let R be a right and left Noetherian right shallow ring. Is R left
shallow?

Question 4.8. Let R be a ring such that every projective right R-module is finitely
generated or free. Is every projective left R-module finitely generated or free?

5. Group rings

For the definition and basic properties of group rings see [27]. Let S be a ring, G
a group and let R denote the group ring SG. Every element of R is a finite sum
of the form s1g1+ · · ·+ sngn, for some positive integer n and elements si ∈ S, gi ∈
G (1 ≤ i ≤ n). Let ε : R→ S denote the augmentation map defined by

ε(s1g1 + · · ·+ sngn) = s1 + · · ·+ sn,

for all positive integers n and elements si ∈ S, gi ∈ G (1 ≤ i ≤ n). Then ε is an
epimorphism whose kernel is the augmentation ideal ωG given by

ωG =

⎧⎨⎩ ∑
1≤i≤n

sigi :
∑

1≤i≤n

si = 0

⎫⎬⎭ =
∑
g∈G

(g − 1)R =
∑
g∈G

R(g − 1).

For any subgroup H of G we set ωH =
∑

h∈H(h − 1)R. Note that ωH is a
right ideal of R. In case H is a normal subgroup of G, ωH =

∑
h∈H R(h − 1),

ωH is a two-sided ideal of R and ωH is the kernel of the canonical epimorphism
εH : R→ S(G/H) defined by

ε(s1g1 + · · ·+ sngn) = s1(g1H) + · · ·+ sn(gnH),

for all positive integers n and elements si ∈ S, gi ∈ G (1 ≤ i ≤ n).
An idempotent element e of a ring S will be called non-trivial if e �= 0 and e �=

1. We shall call the ring S connected if it has no non-trivial idempotent elements.
We can think of S as a subring of the group ring SG. Thus every idempotent
element of S is an idempotent element of SG. It can turn out that even if S is
connected, the group ring R = SG can have idempotent elements. For example,
suppose that S is any ring and that there exists an element x ∈ G such that x
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has order n for some integer n ≥ 2, where n is a unit in S. Consider the element
e = n−1(1+x+· · ·+xn−1) of R. It is easy to check that e is a non-trivial idempotent
element of R distinct from 0 and 1. Moreover, ε(e) = 1 so that e − 1 ∈ ωG and
R(e − 1)R is a non-trivial idempotent ideal of R. Non-trivial idempotent ideals
of R can arise in other ways. Let G be a finite non-soluble group such that the
order of each non-trivial element of G is not a unit in S. Because G is finite and
non-soluble, there exists a normal subgroup N of G such that N = N ′, where N ′

denotes the derived subgroup ofN . Then N is generated by the set of commutators
x−1y−1xy, with x, y ∈ N , and it is easy to check that ωN is generated as a right
(or left) ideal by the elements x−1y−1xy − 1 of R. But, for all x, y ∈ N ,
x−1y−1xy−1 = x−1y−1(xy−yx) = x−1y−1[(x−1)(y−1)−(y−1)(x−1)] ∈ (ωN)2.

Thus ωN = (ωN)2 and ωN is a non-trivial idempotent ideal of R.
There are even more possibilities for manufacturing non-trivial idempotent

ideals in group rings. Let K be a field of characteristic p, for some prime p, and
let G denote the Prüfer p-group. Then G is an Abelian (and hence soluble) group
generated by elements x1, x2, . . . such that x

p
1 = 1 and xp

i+1 = xi for every positive
integer i. It follows that in the group ringKG, (x1−1)p = 0 and xi−1 = (xi+1−1)p,
for every positive integer i. Thus ωG is a nil non-trivial idempotent ideal of the
group ringKG. Note that the ringKG is a commutative ring with unique maximal
ideal ωG. By Corollary 1.3 every projectiveKG-module is free and hence KG is p-
connected. But ωG is a non-trivial idempotent ideal ofKG. Compare Corollary 2.7.
Moreover the ring KG is clearly connected but contains a non-trivial idempotent
ideal.

At this point we want to mention another famous theorem of Kaplansky [18]
(see [27, Theorem 2.1.8]):

Theorem 5.1. The group ring ZG is connected for every group G.

Note that one consequence of Theorem 5.1 is that if G is any finite non-soluble
group then the group ring ZG is connected but contains a non-trivial idempotent
ideal. Before proceeding we recall some well-known results. The first is the following
version of Krull’s Intersection Theorem (see, for example, [19, Theorem 77]).

Lemma 5.2. Let S be a commutative Noetherian domain. Then δ(A) = ∩∞
i=1A

i = 0
for every proper ideal A of R.

The second well-known result we want to quote is the following one (see [27,
Lemma 3.1.6]).

Lemma 5.3. Let S be any ring, let N be a normal subgroup of a group G such that
N is a finite p-group, for some prime p, and let R be the group ring SG. Then
there exists a positive integer k such that (ωN)k ⊆ Rp.

Corollary 5.4. Let S be a commutative Noetherian domain, let N be normal sub-
group of a group G such that N is a finite p-group, for some prime p which is not
a unit in S, and let R be the group ring SG. Then δ(ωN) = 0.
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Proof. By Lemma 5.3, we have that δ(ωN) = ∩∞
i=1(ωN)

i ⊆ ∩∞
i=1Rp

i. Because
p is not a unit in the commutative Noetherian domain S, Lemma 5.2 gives that
∩∞

i=1Rp
i = 0. The result follows. �

Suppose that S is a commutative Noetherian domain of characteristic p, for
some prime p, G is a finite p-group and R = SG. By Lemma 5.3, there exists a
positive integer k such that (ωG)k = 0. Let P be a maximal ideal of the ring R.
Then ωG ⊆ P . The ring R/ωG ∼= S and hence ∩∞

i=1(P/ωG)
i = 0 by Lemma 5.2.

Thus δ(P ) ⊆ ωG and hence δ2(P ) = 0. It follows that δ2(A) = 0 for every proper
ideal A of R. On the other hand, recall that if H is a finite group which is not a
p-group then SH is not connected and contains non-trivial idempotent ideals.

In what follows we shall consider commutative Noetherian domains S of
characteristic 0. In this case we shall identify the ring Z with the subring S′ =
{n1 : n ∈ Z} of S. The next theorem was proved by Swan [40, Theorem 7] in
1963.

Theorem 5.5. Let S be a Dedekind domain of characteristic 0 and let G be a finite
soluble group such that no prime divisor of the order of G is a unit in S. Then
every projective module over the group ring SG is either finitely generated or free.

By using one of the main results of [40], Roggenkamp [29, Theorem 3] proved
the next result.

Theorem 5.6. Let S be a Dedekind domain of characteristic 0 and let G be a finite
soluble group such that no prime divisor of the order of G is a unit in S. Then the
group ring SG has no non-trivial idempotent ideals.

We now prove a theorem which gives both Theorems 5.5 and 5.6 as corollaries.
As we shall see the proof uses Roggenkamp’s Theorem which in turn used Swan’s
Theorem so we are not really saying anything new but merely viewing these results
in a new light!

Theorem 5.7. Let S be a Dedekind domain of characteristic 0 and let G be a finite
soluble group such that no prime divisor of the order of G is a unit in S. Let A
be any proper ideal of R = SG. Then there exists a positive integer n such that
δn(A) = 0.

Proof. We prove the result by induction on the order |G| of G. If |G| = 1 then
R ∼= S and hence R is a commutative Noetherian domain. Then δ(A) = 0 by
Lemma 5.2. Suppose that |G| > 1. LetN be a minimal normal subgroup ofG. Then
N is a p-group for some prime p. Let B = δ(A). Suppose that R �= B+ωN . Then
(B+ωN)/ωN is a proper ideal of the ring R/ωN ∼= S(G/N). By induction, there
exists a positive integer m such that δm((B + ωN)/N) = 0 and hence δm+1(A) =
δm(B) ⊆ ωN . Corollary 5.4 shows that δm+2(A) = 0.

Now suppose that R = B + ωN . By Lemma 5.3 it follows that R = B +Rp.
Let r ∈ R such that 1− rp ∈ B. If r′ ∈ R and r′(1− rp) = 0 then

r′ = r′rp ∈ ∩∞
i=1Rp

i = R(∩∞
i=1Sp

i) = 0,
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by Lemma 5.2. Similarly, (1 − rp)r′ = 0 implies that r′ = 0. Thus 1 − rp is a
regular element of R. If Q is the quotient field of S then the ring QG is right
and left Artinian and hence every regular element of QG is a unit. It follows that
R(1−rp)∩S �= 0. Let C = B∩S �= 0. The ring S/C is Artinian and hence the ring
R/RC ∼= (S/C)G is right Artinian. It follows that R/B is a right Artinian ring
and hence Ak = Ak+1 for some positive integer k. Thus Ak is an idempotent ideal
of R. By Theorem 5.6, Ak = 0. But R is a semiprime ring by Passman’s Theorem
(see [27, Theorem 4.2.13]). Thus A = 0 and hence δ(A) = 0. �

Note that Theorem 5.5 follows from Theorem 5.7 by Theorem 4.6. Note also
that the first paragraph of the proof of Theorem 5.7 gives the following result.

Theorem 5.8. Let S be a commutative Noetherian domain and let G be a finite
soluble group such that no prime divisor of the order of G is a unit in S. Then in
the group ring SG there exists a positive integer n such that δn(ωG) = 0.

Corollary 5.9. Let S be a commutative Noetherian domain and let G be a finite
soluble group such that no prime divisor of the order of G is a unit in S. Then
there exists a positive integer n such that δn(A) = 0 for every ideal A of SG such
that SG �= A+ ωG.

Proof. By Theorem 5.8 there exists a positive integer k such that δk(ωG) = 0. Let
R = SG. Let ε : R → S denote the canonical epimorphism. Let A be any ideal of
R such that R �= A+ ωG. Then ε(A) is a proper ideal of S and hence, by Lemma
5.2, δ(ε(A)) = 0. It follows that δ(A) ⊆ ωG. Hence δk+1(A) = 0. �

Note that Gruenberg [7] proves that if Z is the ring of integers and G a finite
group then, in the integral group ring ZG, δ(ωG) = 0 if and only if G is a finite
p-group for some prime p. This brings us to the following question.

Question 5.10. Let S be a commutative Noetherian domain of characteristic 0 and
let G be a finite soluble group such that p is not a unit in S for each prime divisor
p of the order of G. Does there exist a proper ideal A of the group ring SG such
that δn(A) �= 0 (or even κn(A) �= 0) for every positive integer n?

Recall that a group G is called metanilpotent provided there exists a normal
subgroup N of G such that the groups N and G/N are both nilpotent. We have
the following partial answer to Question 5.10.

Theorem 5.11. Let S be a commutative Noetherian domain of characteristic 0 and
let G be a finite metanilpotent group such that no prime divisor of the order of G
is a unit in S. Then for each proper ideal A of the group ring SG there exists a
positive integer n such that δn(A) = 0.

Proof. Note first that the ring R is right and left Noetherian. By Passman’s The-
orem (see [27, Theorem 4.2.13]) the ring R is semiprime. Let N be a normal
subgroup of G such that N and G/N are both nilpotent groups. We shall prove
the result by induction on the order |N | of the subgroup N . Suppose first that
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|N | = 1. In this case the group G is finite nilpotent. By [35, Theorems 2.1 and
3.2] (see [34] for the terminology) every ideal of R has the right AR property. It
follows that if Q ⊆ P are prime ideals of R then δ(P ) ⊆ Q by [33, Theorem 1.2].
Now apply Theorem 4.1 to obtain that for every proper ideal A of R there exists
a positive integer n such that δn(A) = 0.

Now suppose that |N | > 1. Let P be a maximal ideal of R. Suppose that
|N | ∈ P . Then there exists a prime divisor p of |N | such that Rp ⊆ P . Let H be
the Sylow p-subgroup of N . Because N is nilpotent, H is a normal subgroup of G.
By Lemma 5.3 (ωH)k ⊆ P , for some positive integer k, and hence ωH ⊆ P . Note
that R/ωH ∼= S(G/H). By induction on the order of N , there exists a positive
integer n such that δn(P/ωH) = 0 and hence δn(P ) ⊆ ωH . By Corollary 5.4,
δn+1(P ) ⊆ ∩∞

i=1(ωH)
i = 0. Suppose that |N | /∈ P . By [38, Lemma 3.4], P has the

right AR property.
Suppose that the result is false and let A be any proper ideal of R such

that δn(A) �= 0 for every positive integer n. Let P1, . . . , Pt denote the minimal
prime ideals of R and note that 0 = P1 ∩ · · · ∩ Pt by the above remarks. By the
above proof we know that, for every positive integer k, every maximal ideal of R
containing δk(A) has the right AR property. By [33, Theorem 1.2] and the proof
of Theorem 4.1, there exists a positive integer t such that δt(A) is generated by a
central idempotent element e in R.

With the above notation, e+ ωH is a central idempotent of the ring R/ωH
and is not a unit. By induction, e ∈ ReR ⊆ ωH . By Corollary 5.4, e = 0. Thus
δt(A) = 0, a contradiction. �

Note that the proof of Corollary 5.9 shows that if S and G are as in Corollary
5.9 and A is an ideal of the group ring SG such that SG �= δt(A) + ωG, for some
positive integer t, then δn(A) = 0 for some positive integer n. In fact, the proof
shows rather more, namely if SG �= κt(A) + ωG, for some positive integer t, then
κn(A) = 0 for some positive integer n. This raises the following question which is
a special case of Question 3.3.

Question 5.12. With the notation of Theorem 5.8 does there exist an ideal A of
the group ring SG such that κn(A) = 0 for some positive integer n but δm(A) �= 0
for every positive integer m?

6. Group rings of infinite groups

Now we consider group rings of certain infinite groups. A group G is called poly-
cyclic provided there exist a finite chain

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = 1,

where, for each 1 ≤ i ≤ n, Gi is a normal subgroup of Gi−1 such that the factor
group Gi−1/Gi is cyclic. Note that a group G is polycyclic if and only if G is
a soluble group such that every subgroup is finitely generated. Next a group G
is called polycyclic-by-finite if G contains a polycyclic normal subgroup N such
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that the factor group G/N is finite. Polycyclic-by-finite groups are interesting for
us because of the following theorem of Hall [8, Theorem 1] (or see [27, Theorem
10.2.7]):

Theorem 6.1. Let S be a right Noetherian ring and let G be a polycyclic-by-finite
group. Then the group ring SG is right Noetherian.

In what follows we need a mechanism to reduce from an infinite group G to
a finite factor group of G and this is provided by a theorem of Roseblade. By a
capital of a commutative ring S is meant a field S/P , for some maximal ideal P
of S. A commutative ring S is called a Hilbert ring provided every prime ideal of
S is an intersection of maximal ideals, i.e., the Jacobson radical of every prime
homomorphic image of S is zero. A field is called absolute provided every non-zero
element is a root of unity. With this terminology Roseblade [31, Corollary A] (see
also [27, Theorem 12.3.7]) proved:

Theorem 6.2. Let S be a commutative Noetherian Hilbert ring all of whose capitals
are absolute, let G be a polycyclic-by-finite group and let R be the group ring SG.
Then every simple right R-module is finite dimensional over a capital of S.

Theorem 6.2 has the following consequence (see [30] or [27, Corollary 12.3.9]):

Corollary 6.3. With the notation of Theorem 6.2, for every maximal ideal M of R
there exists a normal subgroup N of finite index in G such that ωN ⊆M .

We want to apply Roseblades’s Theorem to certain group ring situations.
To do this we again need information about intersections of powers of the aug-
mentation ideal of certain group rings. Note that Jennings [16] proved that if G
is a finitely generated torsion-free nilpotent group then δ(ωG) = 0 in the group
ring ZG. For related results see [26]. We could use Jennings result in the proof
of the next result but choose not to do so in order that the presentation be more
self-contained.

Lemma 6.4. Let S be a commutative Noetherian domain of characteristic 0 and
let G be a polycyclic group such that no prime p is a unit in S. Then in the group
ring R = SG, δn(ωG) = 0 for some positive integer n.

Proof. Let G = G0 ⊇ G1 ⊇ · · · ⊇ Gt = 1 denote the derived series of G. We shall
prove the result by induction on t. If t = 0 then ωG = 0. Suppose that t ≥ 1. Let
N = Gt−1. Then N is a finitely generated Abelian subgroup of G. By induction on
t we know that in the ring R/ωN ∼= S(G/N), δm(ωG/ωN) = 0 for some positive
integer m. It follows that δm(ωG) ⊆ ωN . Let T denote the torsion subgroup of
N . Then T is a finite subgroup of N and a finite normal subgroup of G. We now
complete the proof by induction on |T |.

Suppose first that |T | = 1. Then N is a finitely generated torsion-free
Abelian group. The ring SN is a commutative Noetherian domain. Let A =∑

x∈N(x − 1)SN , the augmentation ideal of SN . For any g ∈ G and x ∈ N ,
g(x−1) = (gxg−1−1)g. It follows that ωN = AR = RA. By Lemma 5.2 δ(A) = 0
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and hence δ(ωN) = δ(A)R = 0. In this case, δm+1(ωG) = 0. Now suppose that T
is non-trivial. Let p be any prime divisor of the order of T and let H be the Sylow
p-subgroup of T . By induction on |T |, there exists a positive integer n such that
δn(ωG) ⊆ ωH and hence δn+1(ωG) = 0 by Corollary 5.4. The result follows. �

Theorem 6.5. Let S be a Dedekind domain of characteristic 0 such that S has zero
Jacobson radical and such that no prime is a unit in S. Suppose further that every
capital of S is absolute. Let G be a polycyclic group and let R = SG. Then for
each proper ideal A of R there exists a positive integer n such that δn(A) = 0.

Proof. Let A be any proper ideal of R. Let M be a maximal ideal of R such that
A ⊆ M . By Corollary 6.3 there exists a normal subgroup N of finite index in G
such that ωN ⊆M . Then M/ωN is a proper ideal of the ring R/ωN ∼= S(G/N).
By Theorem 5.7 there exists a positive integer k such that δk(M/ωN) = 0 and
hence

δk(A) ⊆ δk(M) ⊆ ωN.

By Lemma 6.4,
δk+1(A) ⊆ δ(ωN) ⊆ δ(ωG) = 0,

and the result is proved. �

Note that if S and G are as in Theorem 6.5, in particular if S is the ring Z
of integers, then R = SG has no non-trivial idempotent ideals and every projec-
tive right R-module is finitely generated or free. We have the following result for
polycyclic groups that are metanilpotent.

Theorem 6.6. Let S be a commutative Noetherian domain and let G be a finitely
generated group having a finite normal subgroup N such that both N and G/N
are nilpotent and such that no prime divisor of the order of an element of finite
order in G is a unit in S. Then for each proper ideal A of R there exists a positive
integer n such that δn(A) = 0.

Proof. Adapt the proof of Theorem 5.11. �

These results lead to the following obvious question.

Question 6.7. Let R be the group ring SG of a commutative Noetherian domain S
over a polycyclic-by-finite group G. Is R right (and left) shallow?

We end this section with two recent theorems. The first is due to Linnell,
Puninski and the author [21].

Theorem 6.8. The following statements are equivalent for a polycyclic-by-finite
group G.

(i) G is polycyclic.
(ii) The integral group ring ZG has no non-trivial idempotent ideals.
(iii) Ever projective right (ZG)-module is finitely generated or free.
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The second and related theorem is due to McGovern, Puninski and Roth-
maler [24].

Theorem 6.9. Let G be a polycyclic-by-finite group. Then G is polycyclic if and
only if every projective right (ZG)-module is a direct sum of finitely generated
submodules.

7. Ideals with a centralizing sequence of generators

Let R be any ring and let A be any ideal of R. We shall say that A has a centralizing
sequence of generators if A can be generated by a centralizing sequence of elements
of R and in this case, following [23, 4.1.13], we call A polycentral. For example,
in [22] McConnell proved that if U is the universal enveloping algebra of a finite
dimensional Lie algebra g over a field, then every ideal of U is polycentral if and
only if g is nilpotent (see also [37]). Corresponding theorems for group rings can
be found in [30] and [32]. In particular, it is proved in [37] that if K is a field and
G a finitely generated group such that there exists a finite normal subgroup N of
G such that G/N is nilpotent and the order of N is a unit in K then every ideal of
the group algebra KG is polycentral. In this section we show that every ring such
that every ideal is polycentral is right and left shallow. We begin with a simple
result whose proof is standard and therefore omitted.

Lemma 7.1. Let R be a ring such that every ideal is polycentral. Then R satisfies
the ascending chain condition (acc) on (two-sided) ideals.

Next we shall give more examples of rings for which every ideal is polycentral.
We shall call a ring R hypercentral provided for all ideals A ⊂ B of R the non-zero
ideal B/A of the ring R/A contains a non-zero central element of R/A, i.e., there
exists an element b ∈ B \ A such that rb − br ∈ A for all r ∈ R. We shall be
interested in polynomial rings S[x] in an indeterminate x over a ring S.

Lemma 7.2. Let S be any hypercentral ring. Then the polynomial ring R = S[x] is
also hypercentral.

Proof. Let A ⊂ B be any ideals of R. Let k be the non-negative integer which is
the least degree of an element which belongs to B but not A. Let Ak and Bk denote
the sets consisting of the zero element and the leading coefficients of elements of
degree k in A and B, respectively. Then Ak ⊂ Bk are ideals of S. By hypothesis,
there exists b ∈ Bk \Ak such that sb− bs ∈ Ak for all s ∈ S. Let c be any element
of B of degree k with leading coefficient b. Note that c /∈ A. For any s ∈ S there
exists d ∈ A such that sc− cs and d have the same leading coefficient and hence
sc−cs−d = 0, by the choice of k. Thus sc−cs ∈ A. Because xc = cx, we conclude
that rc− cr ∈ A for all r ∈ R. It follows that R is hypercentral. �
Proposition 7.3. Let S be any ring such that every ideal is polycental and let
R denote the polynomial ring S[x1, . . . , xn] over S in commuting indeterminates
x1, . . . , xn, for some positive integer n. Then every ideal of R is polycentral.
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Proof. By Lemma 7.1 the ring S satisfies acc on ideals. By adapting the proof of
the Hilbert Basis Theorem, it follows that the ring R satisfies the acc on ideals.
By Lemma 7.2 the ring R is hypercentral. The result follows. �

Corollary 7.4. Let S be any simple ring and let R denote the polynomial ring
S[x1, . . . , xn] over S in commuting indeterminates x1, . . . , xn, for some positive
integer n. Then every ideal of R is polycentral.

Proof. By Proposition 7.3. �

In a similar way it can be proved that if S is any ring such that every ideal
is polycentral and R denotes the ring S[[x1, . . . , xn]] of formal power series over S
in commuting indeterminates x1, . . . , xn, for some positive integer n, then every
ideal of R is polycentral. In particular, if S is a simple ring then every ideal of the
ring S[[x1, . . . , xn]] is polycentral.

Now let R and R′ be any rings and let M be a left R′-, right R-bimodule.
By an essential sub-bimodule of R′MR we mean a sub-bimodule L ofM such that
K ∩ L �= 0 for every non-zero sub-bimodule K of M .

Lemma 7.5. Let R and R′ be rings and let M be any left R′-, right R-bimodule
such that M satisfies acc on sub-bimodules. Let L be an essential sub-bimodule of
M and let A be a polycentral ideal of R such that LA = 0. Then MAn = 0 for
some positive integer n.

Proof. Suppose that the result if false. Let k be the least positive integer such
that there exist rings S′ and S and a left S′-, right S-bimodule N , an essential
sub-bimodule K of N and a polycentral ideal B of S with a centralizing sequence
of generators b1, . . . , bk such that N satisfies acc on sub-bimodules and KB = 0
but NBn �= 0 for every positive integer n. Suppose that k = 1. Let b = b1. For each
positive integer i, let Hi = {m ∈ N : mbi = 0}. Clearly Hi is a sub-bimodule of
N for each i ≥ 1. Moreover, H1 ⊆ H2 ⊆ . . . . By hypothesis, there exists a positive
integer t such that Ht = Ht+1. It is easy to check that K ∩Nbt = 0. But Nbt is a
sub-bimodule of N . Hence Nbt = 0 so that NBt = 0, a contradiction. Thus k ≥ 2.

By the above proof Nbt1 = 0 for some positive integer t. Suppose that t = 1.
Let S denote the ring S/Sb1 and note that N is a left S′-, right S-bimodule
with essential sub-bimodule K such that K(B/Sb1) = 0. By the choice of k,
there exists a positive integer n such that N(B/Sb1)n = 0 and hence NBn = 0,
a contradiction. Thus t ≥ 2. Consider the left S ′-, right S-bimodule G, where
G = {m ∈ N : mb1 = 0}. Note that G satisfies acc on sub-bimodules and G
contains an essential sub-bimodule K∩G with (K∩G)(B/Sb1) = 0. By the choice
of k, there exists a positive integer n1 such that GBn1 = 0. Now consider the left
S′-, right S-bimodule Nb1 which satisfies acc on sub-bimodules and which contains
an essential sub-bimodule K ∩Nb1 such that (K ∩Nb1)B = 0. By induction on t,
there exists positive integer n2 such that (Nb1)Bn2 = 0, so that NBn2 ⊆ G and
hence NBn = 0, where n = n1 + n2, a contradiction. The result follows. �
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Theorem 7.6. Let R be a ring which satisfies acc on ideals and let A be a polycentral
ideal of R. Then for each ideal B of R there exists a positive integer n such that
B ∩An ⊆ BA,

Proof. Let B be any ideal of R. Consider the collection S of ideals C of R such
that B ∩ C = BA. Note that BA belongs to S. Let D be a maximal member
of S. Consider the left R-, right R-bimodule M = R/D. Clearly M satisfies acc
on sub-bimodules. Moreover, if (B + D) ∩ E = D for some ideal E of R then
B ∩ E ⊆ B ∩ D = BA so that B ∩ E = BA and hence E = D. It follows
that (B + D)/D is an essential sub-bimodule of RMR with [(B + D)/D]A = 0.
By Lemma 7.5 there exists a positive integer n such that MAn = 0 and hence
An ⊆ D. Thus B ∩An ⊆ BA, as required. �

Corollary 7.7. Let R be a prime ring such that every ideal is polycentral. Then
δ(A) = ∩∞

i=1A
i = 0, for every proper ideal A of R.

Proof. Let A be any proper ideal of R and let B = ∩∞
i=1A

i. Suppose that B �= 0
and let c be a non-zero central element of R such that c ∈ B. By Lemma 7.1, the
ring R satisfies acc on ideals. Now Theorem 7.6 gives that cR ∩An ⊆ cRA = cA,
for some positive integer n. Then c ∈ cA and hence c(1−a) = 0 and cR(1−a) = 0.
Because R is prime, we have 1− a = 0 and A = R, a contradiction. �

In particular, note that prime rings such that every ideal is polycentral do
not contain a non-trivial idempotent ideal. Applying Corollary 7.4, we deduce that
if S is a simple ring then the polynomial ring S[x1, . . . , xn] and the formal power
series ring S[[x1, . . . , xn]] do not contain non-trivial idempotent ideals. This raises
the following question.

Question 7.8. Does there exist a ring S which does not contain any non-trivial
idempotent ideal but the polynomial ring S[x] does contain a non-trivial idempotent
ideal?

Of course, there is a corresponding question to Question 7.8 for the ring
S[[x]] of formal power series. Combining Corollary 7.7 with Corollary 4.2 we see
that every ring for which every ideal is polycentral is right and left shallow. Finally
we return to consider projective modules.

Theorem 7.9. Let S be a simple right Noetherian ring and let R be the polynomial
ring S[x1, . . . , xn] over S in the commuting indeterminates x1, . . . , xn. Then every
projective right R-module is finitely generated or free.
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On Ef-extending Modules and
Rings with Chain Conditions

Le Van Thuyet and Truong Cong Quynh

Abstract. A module M is called ef-extending if every closed submodule which
contains essentially a finitely generated submodule is a direct summand of M .
A ring R is called right ef-extending if RR is an ef-extending module. In this
paper, we obtain some properties of a ring R for which R⊕R is ef-extending
as a right R-module. Then we study the structure of rings for which the direct
sum of any two ef-extending right R-modules is ef-extending.

Mathematics Subject Classification (2000). 16D50, 16L60, 16D80.

Keywords. Ef-extending rings, extending (or CS) rings, PF rings, QF rings.

1. Introduction

Throughout the paper, R represents an associative ring with identity 1 �= 0 and
all modules are unitary R-modules. We write MR (resp., RM) to denote that M
is a right (resp., left) R-module. For a right R-module M , σ[M ] denotes the full
subcategory of Mod-R whose objects are submodules of M -generated modules.
Unless otherwise mentioned, by a module we will mean a right R-module.

We recall the concepts and notations will be used in this paper. We denote
the Jacobson radical of a ring R by J and the injective hull of M by E(M). If
A is a submodule of M (resp., proper submodule), we denote by A ≤ M (resp.,
A < M).

A submodule K of M is essential in M if K ∩ L �= 0 for every non-zero
submodule L of M . In this case, M is called an essential extension of K and we
write K ≤e M . A submodule C of M is closed in M if C has no proper essential
extension in M . A module M is called uniform if M �= 0 and every non-zero
submodule of M is essential in M . A module M is called to have finite uniform
dimension if M does not contain an infinite direct sum of non-zero submodules.

The work was supported by the NAFOSTED of Vietnam.
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A module M is called small if M is small in E(M). If M is not a small module,
we say that M is non-small.

We consider the following conditions on a module MR:
C1: Every submodule of M is essential in a direct summand of M.
C2: Every submodule ofM that is isomorphic to a direct summand of M is itself

a direct summand of M.
C3: M1 ⊕M2 is a direct summand of M for any two direct summands M1, M2

of M with M1 ∩M2 = 0.
Module MR is called extending (or CS) (resp., continuous, quasi-continuous)

if it satisfies C1 (resp., both C1 and C2, both C1 and C3). R is called right
extending (resp., continuous) if RR is an extending (resp., continuous) module. A
module M is called uniform-extending if every uniform submodule is essential in
a direct summand of M .

Recall that a moduleM is called ef-extending if every closed submodule which
contains essentially a finitely generated submodule is a direct summand of M . A
ring R is called right ef-extending if RR is an ef-extending module (see [13]). Ef-
extending modules were studied in Thuyet and Wisbauer [13], Chien and Thuyet
[3], Quynh and Thuyet [11, 12]. Some characterizations of ef-extending modules
and rings were obtained. It is well known that a right extending ring is right ef-
extending, but the converse is not true in general (see [12]). Some characterizations
of QF-rings via ef-extending properties have been studied in [11]. In this paper,
we characterize the QF-ring via ef-extending modules and prove that R is QF if
and only if R(N)

R is an ef-extending module with finite uniform dimension and RR

is pseudo-injective. Moreover, we also study the structure of rings for which the
direct sum of two ef-extending modules is an ef-extending module.

2. Results

It is well known that the direct sum of two extending modules may not be an ex-
tending module, in general. The same situation happens for ef-extending modules.
In fact, let p be a prime number. Then Z-modules Z/pZ, Z/p3Z are ef-extending.
Since (1 + pZ, p+ p3Z)Z is a closed submodule of M = Z/pZ⊕Z/p3Z which con-
tains essentially a finitely generated submodule. But it is not a direct summand
of M , so it follows that M is not ef-extending.

We first consider rings for which the direct sum of two ef-extending modules
is an ef-extending module.

By using the technique of proving [5, Lemma 7.3], we have:

Lemma 2.1. Let A and B be uniform modules with local endomorphism rings such
that M = A⊕B is ef-extending. Let C be a submodule of A and let f : C → B be
a homomorphism. Then the followings hold:
1. If f cannot be extended to a homomorphism from A to B, then f is a

monomorphism and B is embedded in A.
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2. If any monomorphism B → A is an isomorphism, then B is A-injective.
3. If B is not embedded in A, then B is A-injective.

Proof. (1). Suppose f cannot be extended to a homomorphism from A to B. Let

U = {x− f(x)|x ∈ C} ≤ A⊕B.

Then U ∼= C is a uniform submodule of M and clearly U ∩B = 0. Hence there is
a direct summand U∗ of M such that U ≤e U∗. By the Krull-Schmidt-Azumaya
Theorem ([2, Corollary 12.7]), we have M = A ⊕ U∗ or M = U ⊕ B. Suppose
that M = B ⊕ U∗. Let π : B ⊕ U∗ → B be the projection. Then it is easy to see
that π|A extends f : C → B, a contradiction. Thus M = A ⊕ U∗ which implies
thatf(x) �= 0 for x �= 0, i.e., f is a monomorphism. Since U∗ ∩B = 0, clearly B is
embedded in A.

(2). As in the proof of (1), let f : C → B be any homomorphism, with C ≤ A
and suppose that M = A ⊕ U∗, ψ : A ⊕ U∗ → A be the projection. Then clearly
ψ|B is a monomorphism (because U is essential in U∗), hence an isomorphism by
the hypothesis. It follows easily that M = B ⊕ U∗, so that, as in (1), f can be
extended to a homomorphism from A to B. It follows that B is A-injective.

(3) can be obtained easily by (1). �

Lemma 2.2. Let M be a module such that Soc (M) is finitely generated and essential
in M . Then M is an extending module if and only if M is an ef-extending module.

Proof. It is obvious. �

Lemma 2.3. The following statements are equivalent for a module M :

1. The direct sum of any two uniform modules is ef-extending.
2. Any uniform self-injective module has length at most 2.
3. Any direct sum of uniform modules is extending.

Proof. (1) ⇒ (2). Consider any uniform injective module U . Suppose x ∈ Rad
U and T is a maximal nonzero submodule of xR. Then U and xR/T have local
endomorphism rings and U⊕xR/T is ef-extending by assumption. Hence the map
f : xR → xR/T can be extended to f̄ : U → xR/T by Lemma 2.1. However
xR ≤ Rad U ≤ Ker f̄ which yields a contradiction. We conclude that Rad U is
semisimple and hence simple.

Assume that K1,K2 are two distinct maximal submodules of U . Then any
monomorphism f : Ki → Kj is onto for i, j ∈ {1, 2}, since f extends to a monomor-
phism of U which has to be an automorphism. So the endomorphism rings of K1

and K2 are local. Now Ki ⊕Kj is extending for i, j ∈ {1, 2} and hence K1 is both
K2-injective and K1-injective by Lemma 2.1. Since K1+K2 = U , this implies that
K1 is U -injective and hence is a direct summand of U , a contradiction.

(2)⇒ (3). By [5, 13.1].
(3)⇒ (1). Obvious. �
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Consider the following property for a ring R:

(W):The direct sum of any two ef-extending right R-modules is ef-extending.

In [7], Er has proved that if R has finite uniform dimension and the direct sum
of any two extending right R-modules is extending, then R is right Artinian. We
prove the following:

Proposition 2.4. Assume that R has property (W) and E(RR) =
⊕
i∈I

Ei where Ei

is indecomposable for all i ∈ I. Then R is a right Artinian ring whose uniform
right R-modules have length at most two.

Proof. Since E(RR) =
⊕
i∈I

Ei where Ei is indecomposable for all i ∈ I, Ei is an

uniform submodule for all i ∈ I. Let {Vj}j∈J be any nonempty family of injective
hulls of simple modules. Let V = ⊕j∈JVj . Then the module

M = E(RR)⊕ V

is extending by Lemma 2.3, hence quasi-injective by [5, Lemma 8.10]. Therefore
V is a quasi-injective module which is E(RR)-injective. Thus V is injective. This
implies that R is right Noetherian.

As R is right Noetherian, every injective module is a direct sum of uniform
modules. Since by Lemma 2.1, each uniform module has length at most two, every
injective module is a direct sum of injective hulls of simple modules. This proves
that R is right Artinian. �
Corollary 2.5. Assume that R has finite uniform dimension and property (W ).
Then R is a right Artinian ring whose uniform right R-modules have length at
most two.

Lemma 2.6. Let M be an ef-extending, C3 module. If R satisfies ACC on right
ideals of the form r(m), m ∈M , then M is a direct sum of uniform submodules.

Proof. Same argument of [5, 8.2], M contains a maximal local direct summand
N =

⊕
i∈I Ni. By [5, 8.1], N is closed in M . Let H be a complement of N in

M . That means N ⊕ H ≤e M . Assume that H �= 0. Let r(y) be maximal in
{x ∈ M \ {0}|xR ∩ N = 0}. Since M is ef-extending, yR ≤e K ≤⊕ M . Repeat
above proving, we have K is uniform. Since M has C3 and so N ⊕ K is a local
direct summand of M . This is a contradiction. Therefore H = 0 and so N ≤e M .
It implies that N =M . �

Hence we have a characterization of a right Artinian ring via ef-extending
property:

Proposition 2.7. The following statements are equivalent for a ring R:
1. R has finite uniform dimension and the direct sum of any two ef-extending,

C3 right R-modules is ef-extending.
2. R has finite uniform dimension and direct sum of any two uniform right

R-modules is ef-extending.
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3. R has finite uniform dimension and direct sum of any two uniform right
R-modules is extending.

4. R is a right Artinian ring whose uniform right R-modules have length at most
two.

Proof. (1) ⇒ (2). Since every uniform module has C3, it follows that direct sum
of any two uniform modules is ef-extending by (1).

(3)⇔ (2). By Lemma 2.3.
(4)⇔ (2). By [7, Theorem 1].
(4)⇒ (1). By Lemma 2.6 and [8, Lemma 6]. �

Corollary 2.8. The following statements are equivalent for a ring R:
1. R has finite uniform dimension and the direct sum of any two ef-extending,

C3 right R-modules is ef-extending.
2. R has finite uniform dimension and the direct sum of any two extending right

R-modules is extending.

Proof. By Proposition 2.7 and [7, Theorem 1]. �
Next we have some results about an ef-extending, pseudo-injective module.

A module M is called pseudo-N -injective (resp., essentially pseudo-N-injective) if,
for any submodule A (resp., essential submodule A) of N , every monomorphism
f : A→M can be extended to a homomorphism f̄ : N →M .

Proposition 2.9. Assume that R satisfies ACC on right ideals of the form r(m),
m ∈ M . Then M is quasi-injective if and only if M is pseudo-injective and ef-
extending.

Proof. Let M be a pseudo-injective, ef-extending module. Since M is pseudo-
injective, M has C2 by [4, Theorem 2.6]. Thus M is a direct sum of uniform
modules by Lemma 2.6. Then M is quasi-injective by [1, Lemma 3.5]. �
Corollary 2.10 ([4], [1, Theorem 3.6]). Let R be a right Noetherian ring. Then M
is quasi-injective if and only if M is pseudo-injective and extending.

Corollary 2.11. The following statements are equivalent for a ring R:
1. R is QF.
2. R is a right pseudo-injective, right ef-extending ring satisfying ACC on right

annihilators.

If the right R-module R(N)
R is ef-extending, then we have:

Theorem 2.12. The following statements are equivalent for a ring R:
1. R is QF.
2. R(N)

R is an ef-extending module and RR is an essentially pseudo-injective
module with finite uniform dimension.

3. R(N)
R is an ef-extending module and RR is a pseudo-injective module with

finite uniform dimension.
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Proof. (2)⇔ (3). By [1, Theorem 3.2].
(1)⇒ (3) is clear.
(3)⇒ (1). Since R has finite uniform dimension and R is right ef-extending,

R = e1R ⊕ e2R ⊕ · · · ⊕ enR for some uniform right ideals eiR of R. Therefore R
is right self-injective by [1, Lemma 3.5]. It implies that eiR is injective for every
i = 1, 2, . . . , n. On the other hand, R(N)

R = (e1R⊕· · ·⊕enR)(N) =
⊕
ω′
εiR is uniform-

extending, for some countable set ω′ and εi ∈ {e1, e2, . . . , en} for each i ∈ ω′. By
[5, Corollary 8.10], R(N)

R is injective. By a well-known result of Faith ([6]), R has
ACC on right annihilators and hence R is QF.

�
Corollary 2.13 ([1, Theorem 3.7]). The following statements are equivalent for a
ring R:
1. R is QF.
2. R(N)

R is an extending module and RR is an essentially pseudo-injective module
with finite uniform dimension.

We characterize a right PF ring via the ef-extending property of (R ⊕R)R.

Theorem 2.14. The following statements are equivalent for a ring R:
1. R is right PF.
2. (R⊕R)R is ef-extending, left Kasch and Sr ≤e RR.
3. (R⊕R)R is ef-extending, left Kasch and J ≤ Zl.

Proof. (1)⇒ (2), (3) are clear.
(2) ⇒ (1). By the same argument of [11, Theorem 2.7], we claim that R is

semiperfect. Let T be a maximal left ideal of R. Since R is left Kasch, r(T ) �= 0.
There exists 0 �= a ∈ r(T ) or T ≤ l(a) which yields T = l(a) by maximality
of T and so r(T ) = rl(a). Since R is right ef-extending, aR ≤e eR for some
e2 = e ∈ R. On the other hand, aR ≤ rl(a) ≤ eR and then rl(a) ≤e eR. Hence
r(T ) ≤e eR. It implies that R is semiperfect by [10, Lemma 4.1]. Thus R =
e1R⊕· · ·⊕enR, where {ei}n

i=1 is the complete set of orthogonal local idempotents.
For every i �= j (i, j ∈ {1, 2, . . . , n}), let f : eiR −→ ejR be a monomorphism.
We have eiR ∼= f(eiR) ≤ ejR. Since R satisfies the right C2 (because R is left
Kasch), then f(eiR) is a direct summand of ejR or f(eiR) = ejR (because ejR is
indecomposable). Hence f is an isomorphism. Since R is right ef-extending, every
uniform right ideal of R is essential in direct summand of RR. Therefore for every
i0 ∈ {1, 2, . . . , n}, ⊕

{1,2,...,n}\{i0}
eiR is ei0R-injective by [5, Corollary 8.9]. Since

eiR is also ef-extending, indecomposable and so eiR is quasi-continuous. By [9,
Theorem 2.13], R is right quasi-continuous. Thus R is right continuous.

By Utumi’s Theorem (see [10, Theorem 1.26]), J = Zr. By [10, Example
7.18], (R ⊕ R)R satisfies the C2 and so (R ⊕ R)R is continuous. Therefore R is
right self-injective by [10, Theorem 1.35]. Thus R is right PF.

(3)⇒ (1). By (2)⇒ (1) and [15, Theorem 2]. �
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Basel-Berlin 1997, pp. 151–159.

[9] S.H. Mohammed and B.J. Müller, Continuous and Discrete Modules, London Math.
Soc. LN 147: Cambridge Univ.Press., 1990.

[10] W.K. Nicholson and M.F. Yousif. Quasi-Frobenius Rings, Cambridge Univ. Press.
2003.

[11] T.C. Quynh and L.V. Thuyet, Some properties of ef-extending rings, to appear in
Math. J. Okayama Univ.

[12] L.V. Thuyet and T.C. Quynh, On general injective rings with chain conditions,
Algebra Colloquium, 16(2)(2009), 243–252.

[13] L.V. Thuyet and R. Wisbauer, Extending property for finitely generated submodules,
Vietnam J. Math., 25(1997), 65–73.

[14] R. Wisbauer, Foundations of Module and Ring Theory. Gordon and Breach: Reading,
1991.

[15] M.F. Yousif, CS rings and Nakayama permutations, Comm. Algebra 25 (1997) 3787–
3795.



334 L.V. Thuyet and T.C. Quynh

Le Van Thuyet
Department of Mathematics
Hue University
3 LeLoi
Hue city, Vietnam
e-mail: lvthuyet@hueuni.edu.vn

lvthuyethue@gmail.com

Truong Cong Quynh
Department of Mathematics
Danang University
459 Ton Duc Thang
DaNang city, Vietnam
e-mail: tcquynh@dce.udn.vn



Advances in Ring Theory

Trends in Mathematics, 335–345
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On Clean Group Rings
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Abstract. A ring with unity is called clean (uniquely clean) if each of its
elements is (uniquely) the sum of an idempotent and a unit. When is a group
ring clean? The question seems to be difficult in general. For example, it is
even unknown when the group ring of a cyclic group of order 2 is clean. After
reviewing the known results, we present several new partial answers to the
question. We also give a different proof of the main result on uniquely clean
group rings obtained by Chen, Nicholson and Zhou [6].
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Keywords. Clean ring, group ring, uniquely clean ring.

All rings here are associative rings with unity. Let R be a ring and let G be a
group. We denote by RG the group ring of G over R. Let us recall some concepts
and notation needed. We write J(R) and U(R) for the Jacobson radical and the
set of units of R, respectively. An element of a ring is called clean if it is the sum
of an idempotent and a unit, and the ring is called clean if each of its elements
is clean. A ring is called uniquely clean if each of its elements can be uniquely
written as the sum of a unit and an idempotent. A ring R is (von Neumann)
regular if a ∈ aRa for all a ∈ R. A ring R such that a ∈ aU(R)a for all a ∈ R is
called unit-regular. A ring whose idempotents are central is called abelian, and an
abelian regular ring is called strongly regular. A ring R is called strongly π-regular
if aR ⊇ a2R ⊇ · · · terminates for every a ∈ R, or equivalently Ra ⊇ Ra2 ⊇ · · ·
terminates for every a ∈ R. As usual, we write Cn and Sn for the cyclic group of
order n and the symmetric group of degree n, respectively. A group G is called
locally finite if every finitely generated subgroup of G is finite. Let p be a prime
number. A group G is called a p-group if the order of each element of G is a power
of p. A group G is said to be an elementary p-group if all non-identity elements
of G are of order p. It is well known that a finite abelian, elementary p-group is a
direct product of finitely many copies of Cp.
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1. A brief review

When is a group ring RG clean? This question was first considered by Han and
Nicholson [10] who observed the following facts: (1) If R is semiperfect then RC2

is clean; (2) if R is a Boolean ring and G is a locally finite group, then RG is
clean; (3) Z(7)C3 is not clean where Z(7) is the localization of Z at the prime ideal
generated by 7. This example gave a negative answer to the question of J.K.Park
whether the group ring RG is clean if R is a clean ring and G is a finite group
with |G| a unit of R. The authors in [10] also raised the question whether RG is
clean when R is a commutative regular ring and G is a locally finite group. This
question has a positive answer by a result in [7] that if R is strongly regular or
commutative strongly π-regular and if G is a locally finite group then RG is clean
(strongly π-regular, indeed). It is a result of [4] that if R is right pure-injective
and if G is locally finite then RG is clean. There is a discussion about the uniquely
clean group rings in [6], where it was shown that, for a locally finite group G, RG
is uniquely clean if and only if R is uniquely clean and G is a 2-group. McGovern
[11] discussed the cleanness of RG when R is a commutative clean ring and G is
an abelian group. In particular, he proved that if R is a commutative clean ring
and G is an abelian elementary 2-group, then RG is clean.

In general, the question when RG is clean seems to be difficult. It is even
unknown when RC2 is clean. If RG is clean, then R must be clean (being an image
of RG). But, for a commutative ring R and an abelian group G, RG being clean
implies that G is locally finite (see [11, Proposition 2.7] or [7, Proposition 7]).
Because some of the important examples of clean rings are semiperfect rings (see
[2]), unit-regular rings (see [3]), strongly π-regular rings (see [1]), and abelian clean
rings, the following questions seem worthy of consideration: If G is a locally finite
group and if R is a semiperfect or unit-regular or strongly π-regular or abelian
clean ring, then when is RG clean? We present several new partial answers to
these questions. In the last part of the paper, we give a different proof of the main
result obtained in [6].

For a group ring RG, the ring homomorphism ε : RG → R, Σrgg !→ Σrg ,
is called the augmentation mapping of RG and its kernel, denoted by Δ(RG), is
Δ(RG) =

{∑
g∈G ag(g − 1) : 1 �= g ∈ G, ag ∈ R

}
. For r =

∑
rgg ∈ RG, the

support of r is the set {g ∈ G : rg �= 0}. The center of the group G is denoted by
Z(G). The ring of n× n matrices over R is denoted by Mn(R).

2. A sufficient condition

We start with a well-known result due to Connell.

Lemma 1. [8, Proposition 9] If R is a ring and G is a locally finite group then
J(R) = J(RG) ∩R. In particular, J(R)(RG) ⊆ J(RG).

Lemma 2. Let p be a prime with p ∈ J(R). If G is a locally finite p-group, then
/(RG) ⊆ J(RG).
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Proof. We first suppose G is finite and prove the claim by induction on |G|. Take
z ∈ Z(G) with order o(z) = p and let 〈z〉 be the subgroup of G generated by
z. Then the group G = G/〈z〉 has smaller order, so J(RG) ⊇ /(RG) by induc-
tion hypothesis. The mapping ϕ : RG → RG, Σrgg !→ Σrg ḡ, is an onto ring
homomorphism whose kernel is (RG)(1 − z). Since zp = 1, (1 − z)p ∈ p(RG) ⊆
J(R)(RG) ⊆ J(RG) by Lemma 1. Since 1 − z is central in RG, it follows that
1 − z ∈ J(RG), so (RG)(1 − z) ⊆ J(RG). Therefore, J(RG) = ϕ(J(RG)). Thus,
for any h ∈ G, ϕ(1 − h) = 1 − h̄ ∈ /(RG) ⊆ ϕ(J(RG)). This shows that
1− h ∈ (RG)(1 − z) + J(RG) = J(RG). So Δ(RG) ⊆ J(RG).

Now for the general case let r ∈ Δ(RG). If H is the subgroup of G generated
by the support of r, then r ∈ Δ(RH) and, since H is a finite p-group, Δ(RH) ⊆
J(RH) as proved above. Thus r ∈ J(RH) is quasi-regular. Since r is arbitrary in
Δ(RG), Δ(RG) is a quasi-regular ideal. So Δ(RG) ⊆ J(RG). �

Lemma 3. Let p be a prime number with p ∈ J(R). Let G be a locally finite group
with G = KH where K is a normal p-subgroup of G and H is a subgroup of G. If
RH is clean then RG is clean.

Proof. For g ∈ G, there exist k ∈ K and h ∈ H such that g = kh = (k −
1)h + h ∈ ∑

k∈K(1 − k)(RG) + RH . So RG =
∑

k∈K(1 − k)(RG) + RH . By
Lemma 2, Δ(RK) ⊆ J(RK). Since G is locally finite, G/K is locally finite, so
J(RK) ⊆ J(RG) by [15, Lemma 4.1]. Hence Δ(RK) ⊆ J(RG) and this shows
that

∑
k∈K(1− k)(RG) ⊆ Δ(RK)(RG) ⊆ J(RG). Hence one obtains

(2.1) RG = J(RG) +RH.

By [8, Proposition 9], RH ∩ J(RG) ⊆ J(RH). But, since RH/[RH ∩ J(RG)]
∼= RG/J(RG) is semiprimitive, J(RH) = RH ∩J(RG). Therefore, RH/J(RH) ∼=
RG/J(RG). Suppose RH is clean. Then RH/J(RH) is clean and hence so is
RG/J(RG). Now to show that RG is clean, it suffices to show that idempotents
of RG/J(RG) can be lifted to idempotents of RG by [10, Proposition 6]. Let
x2 − x ∈ J(RG) where x ∈ RG. By (2.1), write x = y + z with y ∈ J(RG)
and z ∈ RH . Then z2 − z ∈ RH ∩ J(RG) = J(RH). Since RH is clean, there
exists e2 = e ∈ RH ⊆ RG such that z − e ∈ J(RH) (by [10, Proposition 6]). So
x− e = −y + (z − e) ∈ J(RG). �

Theorem 4. Let p be a prime with p ∈ J(R). If R is a clean ring and G is a locally
finite p-group, then RG is clean.

Proof. We may assume that G is finite, and the claim follows by Lemma 3 with
H = {1}. �

By [10], Z(7)C3 is not clean. This shows that the assumption that p ∈ J(R)
in Theorem 4 is essential.

Example 5. Let p > 2 be a prime number and Dp be the Dihedral group of order
2p. Let R be a clean ring with p ∈ J(R). Then RDp is clean.
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Proof. We have Dp =
〈
a, b : ap = 1, b2 = 1, ba = a−1b

〉
= 〈a〉 〈b〉, where 〈a〉 is a

normal p-subgroup of Dp. Since p ∈ J(R), p−1 ∈ U(R), so 2 is a unit of R. Hence
R 〈b〉 ∼= RC2 is clean by Lemma 6 below. So RDp is clean by Lemma 3. �
Lemma 6. If R is a clean ring with 2 ∈ U(R) and if G is an abelian elementary
2-group, then RG is clean.

Proof. We may assume that G is a finite group. Then G is a direct product of n
copies of C2 for some n ≥ 1. Since 2 ∈ U(R), RC2

∼= R ⊕ R. Because 2 is a unit
of RC2, we have R(C2 × C2) ∼= (RC2)(C2) ∼= RC2

⊕
RC2

∼= R ⊕ R ⊕ R ⊕ R. A
similar argument shows that RG is isomorphic to the direct sum of 2n copies of
R. So the claim follows. �

3. Unit-regular and strongly π-regular rings

An element a ∈ R is π-regular if for some n > 0, an ∈ anRan. The ring R is called
π-regular if each of its elements is π-regular.

Lemma 7. If a nonzero integer k is π-regular in a ring R, then there exists a direct
sum decomposition R = R1 ⊕R2 such that k ∈ U(R1) and k is nilpotent in R2.

Proof. There exists n ≥ 1 such that kn ∈ knRkn = k2nR. Write kn = k2na with
a ∈ R and let e = kna. Then e2 = e and kn = kne. So eR = knR = Rkn = Re.
Hence e is central and so R = eR⊕(1−e)R. Since e = kna = kn ·eae = eae ·kn, kn

is a unit of eR; so k is a unit of eR. From kn = k2na, it follows that (k(1− e))n =
kn(1− e) = kn − kne = kn − kn = 0. Thus, k is nilpotent in (1− e)R. �
Theorem 8. Let R be a clean ring and let G be an abelian elementary 2-group. If
2 ∈ R is π-regular, then RG is clean.

Proof. By Lemma 7, R = R1 ⊕ R2 where 2 ∈ J(R1) and 2 ∈ U(R2), so RG ∼=
R1G

⊕
R2G. Since R1, R2 are still clean, R1G is clean by Theorem 4 and R2G is

clean by Lemma 6. So RG is clean. �
Lemma 9. [5, Lemma 4.4] If 2 = 0 in a ring R then RS3

∼= RC2

⊕
M2(R).

Theorem 10. Let R be a clean ring and let G = H × K where H is an abelian
elementary 2-group and K is the direct product of finitely many copies of S3. If
2, 3 ∈ R are π-regular, then RG is clean.

Proof. We have RG ∼= (RK)H . By Theorem 8, RK being clean will imply that
(RK)H is clean. So we only need to show that RK is clean. Thus it suffices to
show that RS3 is clean, because we can easily finish the proof by a simple induction
process. By Lemma 7,

R = R1 ⊕R2,

where 2 is a unit of R1 and 2 is nilpotent in R2. Thus, R2/2R2 is a clean ring and
2 = 0 in R2/2R2; so (R2/2R2)S3 is clean by Lemma 9 and Theorem 4. Because
(2R2)S3 is a nilpotent ideal of R2S3 and because (R2S3)/(2R2)S3

∼= (R2/2R2)S3,
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R2S3 is clean by [10, Proposition 6]. Because RS3
∼= R1S3

⊕
R2S3, it remains to

show that R1S3 is clean. Again by Lemma 7,

R1 = R11 ⊕R12

where 3 ∈ U(R11) and 3 is nilpotent in R12. Thus, 6 ∈ U(R11), so

R11S3
∼= R11

⊕
R11

⊕
M2(R11)

by [5, Lemma 4.7]. Hence R11S3 is clean. Let g = (123) ∈ S3 and let 〈g〉 be the
subgroup of S3 generated by g. Then

R12S3/(R12S3)(1 − g) ∼= R12(S3/〈g〉) ∼= R12C2.

Since 2 is a unit in R12, R12C2 is clean by Lemma 6, so R12S3/(R12S3)(1 − g) is
clean. Since (R12S3)(1− g) = (1− g)(R12S3),

[(R12S3)(1 − g)]3 ⊆ (R12S3)(1 − g)3 = (R12S3)[3(g2 − g)] ⊆ 3(R12S3).

Because 3 is a nilpotent element in R12, 3(R12S3) is a nilpotent ideal of R12S3; so
(R12S3)(1−g) is nilpotent in R12S3. Thus, idempotents of (R12S3)/(R12S3)(1−g)
can be lifted to idempotents of R12S3. So, by [10, Proposition 6], R12S3 is clean.
Hence R1S3

∼= R11S3

⊕
R12S3 is clean. �

Let R be a simple ring. If n is an integer, then either nR = 0 or nR = R. So
either n = 0 or n ∈ U(R). In either case, n is π-regular in R.

Corollary 11. Let R be a clean ring and let Mi (i = 1, . . . , n) be maximal ideals of
R. If G = H ×K where H is an abelian elementary 2-group and K is the direct
product of finitely many copies of S3, then

(
R/ ∩n

i=1 Mi

)
G is a clean ring.

Proof. Since R/Mi is a simple ring, every integer is π-regular in R/Mi. So, by
Theorem 10,

(
R/Mi

)
G is clean for each i. By Chinese Remainder Theorem,

R/ ∩n
i=1 Mi

∼= R/M1

⊕
· · ·

⊕
R/Mn.

So (
R/ ∩n

i=1 Mi

)
G ∼=

(
R/M1

)
G

⊕
· · ·

⊕(
R/Mn

)
G

is clean. �

Corollary 12. Let R be a π-regular clean ring and let G = H ×K where H is an
abelian elementary 2-group and K is the direct product of finitely many copies of
S3. Then RG is a clean ring.

Corollary 13. Let R be a unit-regular or strongly π-regular ring and let G = H×K
where H is an abelian elementary 2-group and K is the direct product of finitely
many copies of S3. Then RG is a clean ring.
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4. Abelian clean rings

Lemma 14. If R is a local ring and G is an abelian elementary 2-group, then RG
is clean.

Proof. If 2 ∈ J(R), then RG is clean by Theorem 4. If 2 /∈ J(R), then 2 ∈ U(R)
because R is local; so RG is clean by Lemma 6. �

It is worth noting that C2 is the only cyclic group G for which RG is clean
for every local ring R (see [7, Proposition 12]).

Lemma 15. [15, Lemma 6.1] If R is a semiperfect ring and G is the direct product
of finitely many copies of S3, then RG is semiperfect.

Corollary 16. Let R be a semiperfect ring and let G = H × K where H is an
abelian elementary 2-group and K is the direct product of finitely many copies of
S3. Then RG is clean.

Proof. By Lemma 15, RK is a semiperfect ring. For each local idempotent e of
RK, (e(RK)e)H is clean by Lemma 14. So (RK)H is clean by [10, Proposition
2]. Hence RG ∼= (RK)H is clean. �
Proposition 17. For a ring R and for a locally finite group G, RG is clean if and
only if SG is clean for every indecomposable image S of R.

Proof. (⇒). For an image S of R, SG is an image of RG. So the implication
follows.

(⇐). If I is an ideal of R and if ai ∈ R and gi ∈ G (i = 1, . . . , n), we abuse
the notation “

∑
āigi ∈ (R/I)G” to mean that

∑
(ai + I)gi ∈ (R/I)G. Suppose

that RG is not clean. Then there exists a finite subset F of G such that
∑

g∈F agg
is not clean in RG, where each ag ∈ R. Thus,

F :=
{
I � R :

∑
g∈F

āgg is not clean in (R/I)G
}

is not empty. For a chain {Iλ} of elements of F , let I = ∪λIλ. Then I is an ideal of
R. Assume that

∑
g∈F āgg is clean in (R/I)G. Because G is a locally finite group,

there exists a finite subgroup H of G with F ⊆ H such that

(4.1)
∑
g∈H

āgg =
∑
g∈H

ēgg +
∑
g∈H

ūgg

where ag = 0 for all g ∈ H\F ,
∑

g∈H ēgg is an idempotent in (R/I)H and∑
g∈H ūgg is a unit in (R/I)H with inverse

∑
g∈H v̄gg. Write

H = {1 = g1, g2, . . . , gn}.
Thus, the following hold in R/I for k = 1, . . . , n,

(4.2)

⎧⎪⎨⎪⎩
āgk

= ēgk
+ ūgk

ēgk
=

∑
gigj=gk

ēgi ēgj∑
gigj=gk

ūgi v̄gj = δ1k1̄ =
∑

gigj=gk
v̄gi ūgj
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where δ11 = 1 and δ1k = 0 for k �= 1. It follows that all the following elements (for
k = 1, . . . , n) are in I:

agk
− egk

− ugk
, egk

−
∑

gigj=gk

egiegj , δ1k −
∑

gigj=gk

ugivgj , δ1k −
∑

gigj=gk

vgiugj .

Because {Iλ} is a chain, there exists some Iλ such that all these elements are in Iλ.
Hence (4.2) holds in R/Iλ and (4.1) holds in (R/Iλ)G. So,

∑
g∈F āgg is clean in

(R/Iλ)G. This contradiction shows that I is in F . By Zorn’s Lemma, F contains
a maximal element, say I. It now suffices to show that R/I is indecomposable.

Assume that R/I is decomposable. Then there exist ideals Kj � I of R
(j = 1, 2) such that

R/I ∼= R/K1

⊕
R/K2, via r + I !→ (r +K1, r +K2).

Then
(R/I)G ∼=

(
R/K1

⊕
R/K2

)
G ∼= (R/K1)G

⊕
(R/K2)G,

where the composition of the two isomorphisms is∑
(rg + I)g !→

(∑
(rg +K1)g,

∑
(rg +K2)g

)
.

By the maximality of I in F , ∑
g∈F (ag +Kj)g is clean in (R/Kj)G for j = 1, 2.

Hence ( ∑
g∈F

(ag +K1)g,
∑
g∈F

(ag +K2)g
)

is a clean element of (R/K1)G
⊕
(R/K2)G; so

∑
g∈F āgg is clean in (R/I)G. This

is a contradiction. �

By [7, Theorem 3.1], if R is a commutative strongly π-regular ring and if G is
a locally finite group then RG is a clean ring. The next corollary generalizes this.
It is also interesting to compare the next result with Corollary 12.

Corollary 18. If R is a commutative π-regular clean ring and if G is a locally finite
group, then RG is clean.

Proof. Let R/I be an indecomposable image of R. By Proposition 17, it suffices to
show that (R/I)G is clean. Since every ideal of R/I not contained in J(R/I)
contains a nonzero idempotent, it follows that R/I is local. However, R/I is
π-regular and the Jacobson radical of a π-regular ring is nil. So J(R/I) is nil.
Note that a local ring is strongly π-regular if and only if its Jacobson radical is
nil. So R/I is a commutative strongly π-regular ring. Hence (R/I)G is clean by
[7, Theorem 3.1]. �

Corollary 19. If R is a commutative local ring such that J(R) is nil and if G is a
locally finite group, then RG is clean.
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In [11], McGovern proved that if R is a commutative clean ring and if G is
an abelian elementary 2-group then RG is clean. McGovern’s proof is technical,
relying on a result of Johnstone [9] that a commutative ring A is clean if and only
if Max(A) (the set of maximal ideals of A equipped with the hull-kernel topology)
is zero-dimensional and every prime ideal of A is contained in a maximal ideal.

Corollary 20. Let R be an abelian ring and let G = H ×K where H is an abelian
elementary 2-group and K is the direct product of finitely many copies of S3. Then
RG is clean if and only if R is clean.

Proof. (⇒). This is obvious.
(⇐). Let R be an abelian clean ring and let R/I be an indecomposable image

of R. Since idempotents lift modulo I, R being abelian implies that R/I is abelian;
so R/I is an abelian, indecomposable clean ring. Since every left ideal of R/I not
contained in J(R/I) contains a nonzero idempotent, it follows that R/I is local.
So (R/I)G is clean by Corollary 16. �

A ring R is called semi-abelian if there exist orthogonal idempotents ei (i =
1, . . . , n) such that 1 = e1 + · · ·+ en and each eiRei is an abelian ring. Examples
of semi-abelian rings include abelian rings and semiperfect rings.

Lemma 21. A ring R is semi-abelian and clean if and only if there exist orthogonal
idempotents ei (i = 1, . . . , n) such that 1 = e1+· · ·+en and each eiRei is an abelian
clean ring.

Proof. (⇐). This is by [10, Theorem, p. 2590].
(⇒). Since R is semi-abelian, there exist orthogonal idempotents ei (i =

1, . . . , n) such that 1 = e1 + · · ·+ en and each eiRei is an abelian ring. Since R is
clean, it is an exchange ring

(
i.e., for each a ∈ R, there exists e2 = e ∈ R such that

e− a ∈ R(a− a2)
)
by [13, Proposition 1.8]. Thus each eiRei is also an exchange

ring by [13, Proposition 1.10]. Since eiRei is abelian, it is clean by [13, Proposition
1.8]. �

Corollary 22. Let R be a semi-abelian ring and let G = H × K where H is an
abelian elementary 2-group and K is the direct product of finitely many copies of
S3. Then RG is clean if and only if R is clean.

Proof. Let R be a semi-abelian ring and let G be given as in the corollary. If R
is clean, then, by Lemma 21, there exist orthogonal idempotents ei (i = 1, . . . , n)
such that 1 = e1 + · · · + en and each eiRei is an abelian clean ring. Thus, for
each i, ei(RG)ei

∼= (eiRei)G is clean by Corollary 20. So RG is clean by [10,
Theorem]. �

We do not know if R being clean always implies that RC2 is clean. The next
proposition may be useful in considering this question.
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Proposition 23. Let R be a ring and let a+ bg ∈ RC2. Then a + bg ∈ U(RC2) if
and only if a± b ∈ U(R). In this case,

(a+ bg)−1 = (a− b)−1a(a+ b)−1 − (a− b)−1b(a+ b)−1g.

Proof. (⇐). From {
a(a− b)−1 − b(a− b)−1 = 1
(a− b)−1a− (a− b)−1b = 1,

one obtains

a(a− b)−1a(a+ b)−1 − b(a− b)−1b(a+ b)−1

= a
[
1 + (a− b)−1b

]
(a+ b)−1 +

[
1− a(a− b)−1

]
b(a+ b)−1

=
[
a+ a(a− b)−1b+ b− a(a− b)−1b

]
(a+ b)−1

= 1

and

b(a− b)−1a(a+ b)−1 − a(a− b)−1b(a+ b)−1

= b
[
1 + (a− b)−1b

]
(a+ b)−1 −

[
1 + b(a− b)−1

]
b(a+ b)−1

=
[
b+ b(a− b)−1b− b− b(a− b)−1b

]
(a+ b)−1

= 0.

So

(a+ bg)
[
(a− b)−1a(a+ b)−1 − (a− b)−1b(a+ b)−1g

]
=

[
a(a− b)−1a(a+ b)−1 − b(a− b)−1b(a+ b)−1

]
+

[
b(a− b)−1a(a+ b)−1 − a(a− b)−1b(a+ b)−1

]
g

= 1.

Similarly, [
(a− b)−1a(a+ b)−1 − (a− b)−1b(a+ b)−1g

]
(a+ bg) = 1.

(⇒). Note that, a+bg !→ a+b and a+bg !→ a−b give two ring homomorphisms
from RC2 onto R, so the claim follows. �

5. Uniquely clean group rings

The following theorem is the main result proved in [6]. Here we give a different
proof. A lemma is needed.

Lemma 24. Let R be a ring and let G be a locally finite group. Then RG is uniquely
clean if and only if SG is uniquely clean for every indecomposable image S of R.

Proof. The proof (with a slight modification) of Proposition 17 works well. �
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Theorem 25. [6] Let R be a ring and let G be a group. If RG is uniquely clean,
then R is uniquely clean and G is a 2-group; the converse holds if G is locally
finite.

Proof. Suppose that RG is a uniquely clean ring. Then, by [14, Theorems 20
and 22], R is uniquely clean and RG/J(RG) is Boolean. The Booleanness of
RG/J(RG) implies that 1 − g ∈ J(RG) for all g ∈ G, so /(RG) ⊆ J(RG).
Thus, G is a p-group and p ∈ J(R) for some prime p by [8, Proposition 15(i)]. But,
R/J(R) is Boolean (by [14, Theorem 20]), so p = 2.

For the converse, we suppose that R is a uniquely clean ring and G is a
locally finite 2-group. Let S be an indecomposable image of R. Then S is uniquely
clean by [14, Theorem 22], so S is abelian by [14, Lemma 4]. Thus, S is a uniquely
clean with only trivial idempotents, so S/J(S) ∼= Z2 by [14, Theorem 15]. By [12,
Theorem, p.138], SG is a local ring. But, from S/J(S) ∼= Z2, we see that Z2 is an
image of SG; this implies that SG/J(SG) ∼= Z2. So SG is uniquely clean by [14,
Theorem 15]. It is now by Lemma 24 that RG is uniquely clean. �
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